
Sujata Ghosh
Sanjiva Prasad (Eds.)

 123

LN
CS

 1
01

19

7th Indian Conference, ICLA 2017
Kanpur, India, January 5–7, 2017
Proceedings

Logic and
Its Applications

Lecture Notes in Computer Science 10119

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison, UK Takeo Kanade, USA
Josef Kittler, UK Jon M. Kleinberg, USA
Friedemann Mattern, Switzerland John C. Mitchell, USA
Moni Naor, Israel C. Pandu Rangan, India
Bernhard Steffen, Germany Demetri Terzopoulos, USA
Doug Tygar, USA Gerhard Weikum, Germany

FoLLI Publications on Logic, Language and Information
Subline of Lectures Notes in Computer Science

Subline Editors-in-Chief

Valentin Goranko, Stockholm University, Sweden

Michael Moortgat, Utrecht University, The Netherlands

Subline Area Editors

Nick Bezhanishvili, University of Amsterdam, The Netherlands

Anuj Dawar, University of Cambridge, UK

Philippe de Groote, Inria Nancy, France

Gerhard Jäger, University of Tübingen, Germany

Fenrong Liu, Tsinghua University, Beijing, China

Eric Pacuit, University of Maryland, USA

Ruy de Queiroz, Universidade Federal de Pernambuco, Brazil

Ram Ramanujam, Institute of Mathematical Sciences, Chennai, India

More information about this series at http://www.springer.com/series/7407

http://www.springer.com/series/7407

Sujata Ghosh • Sanjiva Prasad (Eds.)

Logic and
Its Applications
7th Indian Conference, ICLA 2017
Kanpur, India, January 5–7, 2017
Proceedings

123

Editors
Sujata Ghosh
Indian Statistical Institute
Chennai, Tamil Nadu
India

Sanjiva Prasad
Indian Institute of Technology Delhi
New Delhi
India

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-662-54068-8 ISBN 978-3-662-54069-5 (eBook)
DOI 10.1007/978-3-662-54069-5

Library of Congress Control Number: 2016959632

LNCS Sublibrary: SL1 – Theoretical Computer Science and General Issues

© Springer-Verlag GmbH Germany 2017
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer-Verlag GmbH Germany
The registered company address is: Heidelberger Platz 3, 14197 Berlin, Germany

Preface

The seventh edition of the Indian Conference on Logic and Its Applications (ICLA
2017) was held during January 5–7, 2017 at IIT Kanpur. Co-located with the con-
ference was the ninth edition of the Methods for Modalities Workshop (M4M-9), held
during January 8–9, 2017. This volume contains the papers that were accepted for
publication and presentation at ICLA 2017.

The ICLA is a biennial conference organized under the aegis of ALI, the Associ-
ation for Logic in India. The aim of this conference series is to bring together
researchers from a wide variety of fields in which formal logic plays a significant role.
Areas of interest include mathematical and philosophical logic, computer science logic,
foundations and philosophy of mathematics and the sciences, use of formal logic in
areas of theoretical computer science and artificial intelligence, logic and linguistics,
and the relationship between logic and other branches of knowledge. Of special interest
are studies in systems of logic in the Indian tradition, and historical research on logic.

We received 34 submissions this year. Each submission was reviewed by at least
three Program Committee members, and by external experts in some cases. We thank
all those who submitted papers to ICLA 2017. After going through the detailed reviews
and having extensive discussions on each paper, the Program Committee decided to
accept 13 papers for publication and presentation. These contributions range over a
varied set of themes including proof theory, model theory, automata theory, modal
logics, algebraic logics, and Indian systems. In addition, the authors of some other
submissions were invited to participate in the conference and to present their ideas for
discussion. We would like to extend our gratitude to the Program Committee members
for their hard work, patience, and knowledge in putting together an excellent technical
program. We also extend our thanks to the external reviewers for their efforts in
providing expert opinions and valuable feedback to the authors.

The program also included four invited talks. We are grateful to Nicholas Asher,
Natasha Dobrinen, Luke Ong, and Richard Zach for accepting our invitation to speak at
ICLA 2017 and for contributing to this proceedings volume.

We would like to express our appreciation of the Department of Mathematics and
the Department of Computer Science and Engineering at IIT Kanpur for hosting the
conference. Special thanks are due to Anil Seth, Mohua Banerjee, Sunil Simon, and
other members of the Organizing Committee for their commitment and effort, and their
excellent arrangements in the smooth running of the conference. We also express our
appreciation of the tireless efforts of all the volunteers who contributed to making the
conference a success.

The putting together of the technical program was immensely facilitated by the
EasyChair conference management software, which we used from managing the
submissions to producing these proceedings.

We would like to thank the Association for Symbolic Logic for supporting the
conference. Finally, we are grateful to the Editorial Board at Springer for publishing
this volume in the LNCS series.

November 2016 Sujata Ghosh
Sanjiva Prasad

VI Preface

Organization

Program Committee

Natasha Alechina University of Nottingham, UK
Maria Aloni University of Amsterdam, The Netherlands
Steve Awodey Carnegie Mellon University, Pittsburgh, USA
Mohua Banerjee Indian Institute of Technology Kanpur, India
Patricia Blanchette University of Notre Dame, USA
Maria Paola

Bonacina
Università degli Studi di Verona, Italy

Lopamudra
Choudhury

Jadavpur University, India

Agata Ciabattoni Technische Universität Wien, Austria
Anuj Dawar University of Cambridge, UK
Hans van Ditmarsch LORIA, Nancy, France
Sujata Ghosh Indian Statistical Institute Chennai, India
Brendan Gillon McGill University, Montreal, Canada
Roman Kossak City University of New York, USA
S. Krishna Indian Institute of Technology Bombay, India
Benedikt Löwe Universiteit van Amsterdam, The Netherlands and

Universität Hamburg, Germany
Gopalan Nadathur University of Minnesota, USA
Satyadev

Nandakumar
Indian Institute of Technology Kanpur, India

Alessandra
Palmigiano

Technische Universiteit Delft, The Netherlands

Prakash Panangaden McGill University, Montreal, Canada
Sanjiva Prasad Indian Institute of Technology Delhi, India
R. Ramanujam Institute of Mathematical Sciences, Chennai, India
Christian Retoré LIRMM University of Montpellier, France
Sunil Simon Indian Institute of Technology Kanpur, India
Isidora Stojanovic Jean Nicod Institute, Paris, France
S.P. Suresh Chennai Mathematical Institute, India
Rineke Verbrugge University of Groningen, The Netherlands
Yanjing Wang Peking University, China

Additional Reviewers

Bagchi, Amitabha
Bienvenu, Meghyn
Bilkova, Marta
Fisseni, Bernhard
Freschi, Elisa
Greco, Giuseppe
Gupta, Gopal
Henk, Paula
Ju, Fengkui
Karmakar, Samir
Kurur, Piyush
Kuznets, Roman
Lapenta, Serafina

Lodaya, Kamal
Mukhopadhyay, Partha
Majer, Ondrej
Narayan Kumar, K.
Paris, Jeff
Rafiee Rad, Soroush
Sadrzadeh, Mehrnoosh
Sreejith, A.V.
Turaga, Prathamesh
Velázquez-Quesada, Fernando R.
Woltzenlogel Paleo, Bruno
Zanuttini, Bruno

VIII Organization

Contents

Conversation and Games . 1
Nicholas Asher and Soumya Paul

Ramsey Theory on Trees and Applications. 19
Natasha Dobrinen

Automata, Logic and Games for the k-Calculus . 23
C.-H. Luke Ong

Semantics and Proof Theory of the Epsilon Calculus 27
Richard Zach

Neighbourhood Contingency Bisimulation . 48
Zeinab Bakhtiari, Hans van Ditmarsch, and Helle Hvid Hansen

The Complexity of Finding Read-Once NAE-Resolution Refutations 64
Hans Kleine Büning, Piotr Wojciechowski, and K. Subramani

Knowing Values and Public Inspection . 77
Jan van Eijck, Malvin Gattinger, and Yanjing Wang

Random Models for Evaluating Efficient Büchi Universality Checking 91
Corey Fisher, Seth Fogarty, and Moshe Vardi

A Substructural Epistemic Resource Logic . 106
Didier Galmiche, Pierre Kimmel, and David Pym

Deriving Natural Deduction Rules from Truth Tables 123
Herman Geuvers and Tonny Hurkens

A Semantic Analysis of Stone and Dual Stone Negations with Regularity . . . 139
Arun Kumar and Mohua Banerjee

Achieving While Maintaining: A Logic of Knowing How with Intermediate
Constraints . 154

Yanjun Li and Yanjing Wang

Peirce’s Sequent Proofs of Distributivity . 168
Minghui Ma and Ahti-Veikko Pietarinen

On Semantic Gamification . 183
Ignacio Ojea Quintana

http://dx.doi.org/10.1007/978-3-662-54069-5_1
http://dx.doi.org/10.1007/978-3-662-54069-5_2
http://dx.doi.org/10.1007/978-3-662-54069-5_3
http://dx.doi.org/10.1007/978-3-662-54069-5_3
http://dx.doi.org/10.1007/978-3-662-54069-5_4
http://dx.doi.org/10.1007/978-3-662-54069-5_5
http://dx.doi.org/10.1007/978-3-662-54069-5_6
http://dx.doi.org/10.1007/978-3-662-54069-5_7
http://dx.doi.org/10.1007/978-3-662-54069-5_8
http://dx.doi.org/10.1007/978-3-662-54069-5_9
http://dx.doi.org/10.1007/978-3-662-54069-5_10
http://dx.doi.org/10.1007/978-3-662-54069-5_11
http://dx.doi.org/10.1007/978-3-662-54069-5_12
http://dx.doi.org/10.1007/978-3-662-54069-5_12
http://dx.doi.org/10.1007/978-3-662-54069-5_13
http://dx.doi.org/10.1007/978-3-662-54069-5_14

Ancient Indian Logic and Analogy . 198
Jeff B. Paris and Alena Vencovská

Definability of Recursive Predicates in the Induced Subgraph Order 211
Ramanathan S. Thinniyam

Computational Complexity of a Hybridized Horn Fragment of
Halpern-Shoham Logic . 224

Przemysław Andrzej Wałęga

Author Index . 239

X Contents

http://dx.doi.org/10.1007/978-3-662-54069-5_15
http://dx.doi.org/10.1007/978-3-662-54069-5_16
http://dx.doi.org/10.1007/978-3-662-54069-5_17
http://dx.doi.org/10.1007/978-3-662-54069-5_17

Conversation and Games

Nicholas Asher(B) and Soumya Paul

Institut de Recherche en Informatique de Toulouse, Toulouse, France
nicholas.asher@irit.fr, soumya.paul@gmail.com

Abstract. In this paper we summarize concepts from earlier work and
demonstrate how infinite sequential games can be used to model strate-
gic conversations. Such a model allows one to reason about the structure
and complexity of various kinds of winning goals that conversationalists
might have. We show how to use tools from topology, set-theory and
logic to express such goals. We then show how to tie down the notion
of a winning condition to specific discourse moves using techniques from
Mean Payoff games and discounting. We argue, however, that this still
requires another addition from epistemic game theory to define appro-
priate solution and rationality underlying a conversation.

Keywords: Strategic reasoning · Conversations · Dialogues · Infinite
games · Epistemic game theory

1 Introduction

Conversations have a natural analysis as games. They involve typically at least
two agents, each with their own interests and goals. These goals may be compat-
ible, or they may conflict; but in either case, one agents’ successfully achieving
her conversational goals will typically depend upon her taking her interlocu-
tor’s goals and interests into account. In cooperative conversations where agents’
goals are completely aligned, conversational partners may still need to coordi-
nate actions, even linguistic actions. A strategic or non-cooperative conversation
involves (at least) two people (agents) who have opposing interests concerning
the outcome of the conversation. A debate between two political candidates is
an instance. Each candidate has a certain number of points to convey to the
audience, and each wants to promote her own position and damage her oppo-
nent’s or opponents’. To achieve these goals, each participant typically needs to
plan for anticipated responses from the other.

This paper surveys some results from what we feel is an exciting new applica-
tion of games to language. The core of formal results are summarized from [4,6];
the part on weighted and discounted games draws from [3] but also introduces
new material; the last section points to work in progress.

Various game-theoretic models for cooperative conversation have been pro-
posed, most notably the model of signalling games [22]. Another closely related

The authors thank ERC grant 269427 for supporting this research.

c© Springer-Verlag GmbH Germany 2017
S. Ghosh and S. Prasad (Eds.): ICLA 2017, LNCS 10119, pp. 1–18, 2017.
DOI: 10.1007/978-3-662-54069-5 1

2 N. Asher and S. Paul

model is that persuasion games [15]. In a signalling game one player with a
knowledge of the actual state sends a signal and the other player who has no
knowledge of the state chooses an action, usually upon an interpretation of the
received signal. The standard setup supposes that both players have common
knowledge of each other’s preference profiles as well as their own over a set of
commonly known set of possible states, actions and signals. However for mod-
eling non-cooperative strategic contexts of sequential dynamic games, signalling
games suffer from many drawbacks. We summarise below the difficulties we see
(see [6] for a more comprehensive discussion):

– A game that models a non-cooperative setting, that is a setting where the
preferences of the players are opposed, must be zero-sum. However, it has
been shown [11] that in a zero-sum criterion, in equilibrium, the sending and
receiving of any message has no effect on the receiver’s decision. Signaling
games typically assign a game a finite horizon; backward inductions arguments
threaten to conclude that communication should not occur in such situations.

– In order to use games as part of a general theory of meaning, one has to
make clear how to construct the game-context, which includes providing an
interpretation of the game’s ingredients (types, messages, actions). Franke’s
extension of signalling, games, interpretation games, addresses this issue [13].
Such games encode a ‘canonical context’ for an utterance, in which relevant
conversational implicatures may be drawn. The game structure is determined
by the set of ‘sender types’. Interpretation games model the interpretation
of the messages and actions of a signaling game in a co-operative context for
‘Gricean agents’ quite well. But in the non-cooperative setting, things get very
intricate and problems remain.

– Signalling games are one-shot and fail to capture the dynamic nature of a
strategic conversation. One can attempt to encode a finite sequence of moves
of a particular player as a single message m sent by that player but then one
runs into the problem of assigning correct utilities for m because such utilities
depend again on the possible set of continuations of m.

– Finally, there is an inherent asymmetry associated with the setting of a sig-
nalling game - one player is informed of the state of the world but the other
is not; one player sends a message but the other does not. Conversations (like
debates), on the other hand, are symmetric - all participants should (and
usually do) get equal opportunities to get their messages across.

Strategic conversations are thus special and have characteristics unique to
them which, to our knowledge, have not been captured in other frameworks.
Here is a short list of these characteristics:

– Conversations are sequential and dynamic and inherently involve a ‘turn-
structure’ which is important in determining the merit of a conversation to
the participants. In other words, it is important to keep track of “who said
what”.

– A ‘move’ by a player in a linguistic game typically carries more semantic con-
tent than usually assumed in game theory. What a player says may have a

Conversation and Games 3

set of ‘implicatures’, may be ‘ambiguous’, may be ‘coherent/incoherent’ or
‘consistent/inconsistent’ with regards to what she had said earlier in the con-
versation. She may also ‘acknowledge’ other people’s contributions or ‘retract’
her previous assertions. These features too have important consequences on
the existence and complexity of winning strategies.

– Conversations typically have a ‘Jury’ who evaluates the conversation and
determines if one or more of the players have reached their goals. In other
words a Jury determines the winners in a conversation, if there is a winner.
Players will spin the description of the game to their advantage and so may
not present an accurate view of what happened. The Jury can be a concrete
or even a hypothetical entity who acts as a ‘passive player’ in the game. For
example, in a courtroom situation there is a physical Jury who gives the ver-
dict, whereas in a political debate the Jury is the audience or the citizenry
in general. This means that the winning conditions of the players are affected
by the Jury in that, they depend on what they believe that the Jury expects
them to achieve.

– Conversations do not have a ‘set end’. When two or more people engage in a
conversation they do not know at the outset how many turns it will last or
how many chances each player will get to speak (if at all). In a more scripted
conversation like a political debate or a courtroom debate, there may be a
moderator whose job is to ensure that each player receives his or her fair
chance to put their points across; but even such a moderator may not know at
the outset how the conversation will unfold and how many turns each player
will receive. Players thus cannot strategize for a set horizon while starting a
conversation. This rules out backward induction reasoning for both the players
and analysts of conversation.

– Finally, epistemic elements are a natural component of such games. The play-
ers and the Jury have ‘types’, and players have ‘beliefs’ about the types of
the other players and the Jury. They strategize based on their beliefs and also
update their beliefs after each turn.

The first four considerations led [6] to model conversations as infinite games
over a countable ‘vocabulary’ V . They call such games Message Exchange games
(ME games). The intuitive idea behind an ME game is that a conversation
proceeds in turns where in each turn one of the players ‘speaks’ or plays a string
of letters from her own “vocabulary”. The two vocabularies are distinguished
in order to keep track of who said what, which is crucial to the analysis of a
conversation. We will assume that both players use the same expressions in a set
V to communicate, but that when 0 uses a symbol v ∈ V , she is actually playing
(v, 0), which allows us to see that it was 0 that played v at a certain point in
the sequence; and when 1 plays v, he’s actually playing (v, 1).

However, a conversationalist does not play just any sequence of arbitrary
strings but sentences or sets of sentences that ‘make sense’. To ensure this, the
vocabulary V should have a built-in, exogenous semantics. [6] identify V with
the language of a semantic theory for discourse, SDRT [1]. SDRT’s language
characterizes the semantics and pragmatics of moves in dialogue. This means

4 N. Asher and S. Paul

that we can exploit the notion of entailment associated with the language of
SDRSs to track commitments of each player in an ME game. In particular, the
language of SDRT features variables for dialogue moves that are characterized
by contents that the move commits its speaker to. Crucially, some of this con-
tent involves predicates that denote rhetorical relations between moves—like the
relation of question answer pair (qap), in which one move answers a prior move
characterized by a question. The vocabulary V of an ME game thus contains a
countable set of discourse constituent labels DU = {π, π1, π2, . . .}, and a finite
set of discourse relation symbols R = {R,R1, . . .Rn}, and formulas φ, φ1, ... from
some fixed language for describing elementary discourse move contents. V con-
sists of formulas of the form π : φ, where φ is a description of the content of
the discourse unit labelled by π in a logical language like the language of higher
order logic used, e.g., in Montague Grammar, and R(π, π1), which says that π1

stands in relation R to π. One such relation R is qap. Thus, each discourse rela-
tion represented in V comes with constraints as to when it can be coherently
used in a context and when it cannot.

2 Message Exchange Games

We now formally define Message Exchange games, state some of their properties
and show how they model strategic conversations, as explored in [6]. For simplic-
ity, we restrict our description to conversations with two participants, whom we
denote by Player 0 and Player 1. It is straightforward to generalize ME games
to the case where there are more than two players. Thus, in what follows, we let
i range over the set of players {0, 1}. Furthermore, Player −i will always denote
Player (1 − i), the opponent of Player i.

We first define the notion of a ‘Jury’. As noted in Sect. 1, a Jury is an entity
or a group of entities that evaluates a conversation and decides the winner. A
Jury thus ‘groups’ instances of conversations as being winning for Player 0 or
Player 1 or both.

For any set A let A∗ be the set of all finite sequences over A and let Aω

be the set of all countably infinite sequences over A. Let A∞ = A∗ ∪ Aω and
A+ = A∗\{ε}. Now, let V be a vocabulary as defined at the end of Sect. 1 and
let Vi = V × {i}.

Definition 1. A Jury J over (V0 ∪ V1)ω is a tuple J = (win1,win2) where
wini ⊆ (V0 ∪ V1)ω is the winning condition or winning set for Player i.

Given the definition of a Jury over (V0 ∪ V1)ω we define a Message Excahge
game game as:

Definition 2. A Message Exchange game (ME game) G over (V0 ∪ V1)ω is a
tuple G = ((V0 ∪ V1)ω,J) where J is a Jury over (V0 ∪ V1)ω.

Formally an ME game G is played as follows. Player 0 starts the game by
playing a non-empty sequence in V +

0 . The turn then moves to Player 1 who plays

Conversation and Games 5

a non-empty sequence from V +
1 . The turn then goes back to Player 0 and so on.

The game generates a play ρn after n (≥ 0) turns, where by convention, ρ0 = ε
(the empty move). A play can potentially go on forever generating an infinite
play ρω, or more simply ρ. Player i wins the play ρ iff ρ ∈ wini. G is zero-sum if
wini = (V0 ∪V1)ω\win−i and is non zero-sum otherwise. Note that both player or
neither player might win a non zero-sum ME game G. The Jury of a zero-sum
ME game can be denoted simply as win where by convention win = win0 and
win1 = (V0 ∪ V1)ω\win.

The basic structure of an ME game means that plays are segmented into
rounds—a move by Player 0 followed by a move by Player 1. A finite play of an
ME game is (also) called a history, and is denoted by ρ. Let Z be the set of all
such histories, Z ⊆ (V0 ∪ V1)∗, where ε ∈ Z is the empty history and where a
history of the form (V0∪V1)+V +

0 is a 0-history and one of the form (V0∪V1)+V +
1

is a 1-history. We denote the set of i-histories by Zi. Thus Z = Z0 ∪ Z1. For
ρ ∈ Z, turns(ρ) denotes the total number of turns (by either player) in ρ. A
strategy σi of Player i is thus a function from the set of −i-histories to V +

i . That
is, σi : Z−i → V +

i . A play ρ = x0x1 . . . of an ME game G is said to conform
to a strategy σi of Player i if for every prefix ρj of ρ, j = i(mod 2) implies
ρj+1 = ρjσi(ρj). A strategy σi is called winning for Player i if ρ ∈ wini for every
play ρ that conforms to σi.

Given how we have characterized the vocabulary (V0 ∪ V1), we have a fixed
meaning assignment function from EDUs to formulas describing their con-
tents. Then, a sequence of conversational moves can be represented as a graph
(DU, E, �), where DU is the set of vertices each representing a discourse unit,
E ⊆ DU×DU a set of edges representing links between discourse units that are
labeled by � : E → R with discourse relations.1

Example 1. To illustrate this structure of conversations, consider the following
example taken from [2] from a courtroom proceedings where a prosecutor is
querying the defendant. We shall return to this example later on for a strategic
analysis.

a. Prosecutor: Do you have any bank accounts in Swiss banks, Mr. Bronston?
b. Bronston: No, sir.
c. Prosecutor: Have you ever?
d. Bronston: The company had an account there for about six months, in Zurich.
e. Prosecutor: Thank you Mr. Bronston.

Example 2. We can view the conversation in Eg. 1 as a play of an ME game as
follows.

1 We note that this is a simplification of SDRT which also countenances complex
discourse units (cdus) and another set of edges in the graph representation, linking
cdus to their simpler constituents. These edges represent parthood, not rhetorical
relations. We will not, however, appeal to cdus here.

6 N. Asher and S. Paul

(P, πbank: DoyouhaveanybankaccountsinSwissbanks,Mr.Bronston?)

(B, π¬bank: No)

(P, πbank−elab: Haveyouever?)

(B, πcompany: Thecompanyhadanaccountthereforaboutsixmonths, inZurich)

(P, πack: ThankyouMr.Bronston)

· · · · · · · · ·

qap

q-followup

qap

ack

The picture shows a weakly connected graph with a set of discourse con-
stituent labels

DU = {πbank, π¬bank, πbank−elab, πcompany, πack, . . .}

and a set of relations

R = {qap, q − followup, ack, . . .}

The arrows depict the individual relation instances between the DUs. A weakly
connected graph represents a fully coherent conversation, in which each player’s
contribution is coherently linked with a preceding one. The graph also reveals
that each player responds to a contribution of the other; this is a property that
[6] call responsiveness (vide infra).

ME game messages come with a conventionally associated meaning in virtue
of the constraints enforced by the Jury; an agent who asserts a content of a
message commits to that content, and it is in virtue of such commitments that
other agents respond in kind. While SDRT has a rich language for describing
dialogue moves, earlier work did not make explicit how dialogue moves explicitly
affect the commitments of the agents who make the moves or those who observe
the moves. [24,25] link the semantics of the SDRT language with commitments
explicitly (in two different ways). They augment the SDRT language with for-
mulas that describe the commitments of dialogue participants, using a simple
propositional modal syntax. Thus for any formula φ in the language of dynamic
semantics that describes the content of a label π ∈ DU, they add:

¬φ | φ1 ∨ φ2 | Ciφ, i ∈ {0, 1} | C∗φ

with the derived operators ∧, =⇒ ,
,⊥ are defined as usual, providing a propo-
sitional logic of commitments over the formulas that describe labels. Of particular
interest are the commitment operators Ci and C∗. If φ is a formula for describ-
ing a content, Ciφ is a formula that says that Player i commits to φ and C∗φ
denotes ‘common commitment’ of φ. Commitment is modelled as a Kripke modal

Conversation and Games 7

operator via an alternativeness relation in a pointed model with a distinguished
(actual) world w0. This allows them to provide a semantics for discourse moves
that links the making of a discourse move by an agent to her commitments: i’s
assertion of a discourse move φ, for instance, we will assume, entails a common
commitment that i commits to φ, written C∗Ciφ. They show how each discourse
move φ defines an action, a change or update on the model’s commitment struc-
ture; in the style of public announcement logic viz. [8,9]. For instance, if agent i
asserts φ, then the commitment structure for the conversational participants is
updated such so as to reflect the fact that C∗Ciφ. Finally, they define an entail-
ment relation |= that ensures that φ |= C∗Ciφ. This semantics is useful because
it allows us to move from sequences of discourse moves to sequences of updates
on any model for the discourse language. See [24,25] for a detailed development
and discussion.

ME games resemble infinite games like Banach Mazur or Gale-Stewart games
that have been used in topology, set theory [18] and computer science [16]. We
can leverage some of the results from these areas to talk about the general
‘shape’ of conversations or to analyse the complexity of the winning conditions
of the players in ME games. For instance, [23] shows that ME games, like Banach
Mazur games or Gale-Stewart games, are determined. Other features have been
extensively explored in [6]. We give a flavor of some of the applications here.

To do that we first need to define an appropriate topology on (V0 ∪ V1)ω

which will allow us to characterize the descriptive complexity of the winning
sets win0 and win1. We proceed as follows. We define the topology on (V0 ∪V1)ω

by defining the open sets to be sets of the form A(V0∪V1)ω where A ⊆ (V0∪V1)∗.
Such an open set will be often denoted as O(A). When A is a singleton set {x}
(say), we abuse notation and write O({x}) as O(x). The Borel sets are defined as
the sigma-algebra generated by the open sets of this topology. The Borel sets can
be arranged in a natural hierarchy called the Borel hierarchy which is defined as
follows. Let Σ0

1 be the set of all open sets. Π0
1 = Σ0

1 , the complement of the set
of Σ0

1 sets, is the set of all closed sets. Then for any α > 1 where α is a successor
ordinal, define Σ0

α to be the countable union of all Π0
α−1 sets and define Π0

α to
be the complement of Σ0

α. Δ0
α = Σ0

α ∩ Π0
α.

Definition 3 [18]. A set A is called complete for a class Σ0
α (resp. Π0

α) if
A ∈ Σ0

α\Π0
α (resp. Π0

α\Σ0
α) and A /∈ (Σ0

β ∪ Π0
β) for any β < α.

The Borel hierarchy represents the descriptive or structural complexity of the
Borel sets. A set higher up in the hierarchy is structurally more complex than
one that is lower down. Complete sets for a particular class of the hierarchy
represent the structurally most complex sets of that class. We can use the Borel
hierarchy and the notion of completeness to capture the complexity of winning
conditions in conversations. For example, two typical sets in the fist level of the
Borel hierarchy are defined as follows. Let A ⊆ (V0 ∪ V1)+, then

reach(A) = {ρ ∈ (V0 ∪ V1)ω|ρ = xyρ′, y ∈ A}

and
safe(A) = (V0 ∪ V1)ω\reach(A)

8 N. Asher and S. Paul

A little thought shows that reach(A) ∈ Σ0
1 and safe(A) ∈ Π0

1 . Let reachability be
the class of sets of the form reach(A) and safety be the class of sets of the form
safe(A).

Example 3. Returning to our example of Bronston and the Prosecutor, let us
consider what goals the Jury expects each of them to achieve. The Jury will
award its verdict in favor of the Prosecutor: (i) if he can eventually get Bronston
to admit that (a) he had an account in Swiss banks, or (b) he never had an
account in Swiss banks, or (ii) if Bronston avoids answering the Prosecutor
forever. In the case of (i)a, Bronston is incriminated, (i)b, he is charged with
perjury and (ii), he is charged with contempt of court. Bronston’s goal is the
complement of the above, that is to avoid either of the situations (i)a, (i)b
and (ii). We thus see that the Jury winning condition for the Prosecutor is a
boolean combination of a reachability condition and the complement of a safety
condition, which is in the first level of the Borel hierarchy.

Conversations typically must also satisfy certain natural constraints which
the Jury might impose throughout the course of a play. Here are some constraints
defined in [6]. We will then study the complexity of the sets satisfying them.

Let ρ = x0x1x2 . . . be a play of an ME game G where x0 = ε and xj ∈
V +
((j−1) mod 2) is the sequence played by Player ((j − 1) mod 2) in turn j. For

every i define the function dui : V +
i → ℘(DU) such that dui(xj) gives the set

of contributions (in terms of DUs) of Player i in the jth turn. By convention,
dui(xj) = ∅ for xj ∈ V +

−i.

Definition 4. Let G = ((V0 ∪ V1)ω,J) be an ME game over (V0 ∪ V1)ω. Let
ρ = x0x1x2 . . . be a play of G. Then
Consistency: ρ is consistent for Player i if the set {dui(xj)}j>0 is consistent. Let

CONSi denote the set of consistent plays for Player i in G.
Coherence: Player i is coherent on turn j > 0 of play ρ if for all π ∈ dui(xj)

there exists π′ ∈ (dui(xk) ∪ du−i(xk−1)) where k ≤ j such that there exits
R ∈ R such that (π′Rπ ∨πRπ′) holds. Let COHi denote the set of all coherent
plays for Player i in G.

Responsiveness: Player i is responsive on turn j > 0 of play ρ if there exists
π ∈ duj(xj) such that there exits π′ ∈ du−i(xj−1) such that π′Rπ for some
R ∈ R. Let RESi denote the set of responsive plays for Player i in G. xj (or
abusing notation, π) will be sometimes called a response move.

Rhetorical-cooperativity: Player i is rhetorically-cooperative in ρ if she is both
coherent and responsive in every turn of hers in ρ. ρ is rhetorically-cooperative
if both the players are rhetorically-cooperative in ρ. Let RCi denote the set of
rhetorically-cooperative plays for Player i in G and let RC be the set of all
rhetorically-cooperative plays.

To define two more constraints, NEC and CNEC, we need definitions of an
‘attack’ and a ‘response’.

Definition 5. Let G = ((V0 ∪ V1)ω,J) be an ME game over (V0 ∪ V1)ω. Let
ρ = x0x1x2 . . . be a play of G. Then

Conversation and Games 9

Attack: attack(π′, π) on Player −i holds at turn j of Player i just in case π ∈
dui(xj), π′ ∈ du−i(xk) for some k ≤ j, there is an R ∈ R such that π′Rπ and:
(i) π′ entails that −i is committed to φ for some φ, (ii) φ entails that ¬φ holds.
In such a case, we shall often abuse notation and denote it as attack(k, j).
Furthermore, xj or alternatively π shall be called an attack move. An attack
move is relevant if it is also a response move. attack(k, j) on −i is irrefutable
if there is no move x� ∈ V−i in any turn � > j such that attack(j, �) holds
and x0x1 . . . x� is consistent for −i.

Response: response(π′, π) on Player −i holds at turn j of Player i if there exits
π′′ ∈ dui(x�), π′ ∈ du−i(xk) and π ∈ dui(xj) for some � ≤ k ≤ j, such that
attack(π′′, π′) holds at turn k of Player −i, there exists R ∈ R such that π′Rπ
and π implies that (i) one of i’s commitments φ attacked in π′ is true or (ii)
one of −i’s commitments in π′ that entails that i was committed to ¬φ is
false. We shall often denote this as response(k, j).

Definition 6. Let G = ((V0 ∪ V1)ω,J) be an ME game over (V0 ∪ V1)ω. Let
ρ = x0x1x2 . . . be a play of G. Then

NEC: NEC holds for Player i in ρ on turn j if for all �, k, � ≤ k < j, such that
attack(�, k), there exists m, k < m ≤ j, such that response(k,m). NEC holds
for Player i for the entire play ρ if it holds for her in ρ for infinitely many
turns. Let NECi denote the set of plays of G where NEC holds for player i.

CNEC: CNEC holds for Player i on turn j of ρ if there are fewer attacks on i
with no response in ρj than for −i. CNEC holds for Player i over a ρ if in
the limit there are more prefixes of ρ where CNEC holds for i than there are
prefixes ρ where CNEC holds for −i. Let CNECi be the set of all plays of G
where CNEC holds for i.

For a zero-sum ME game G, the structural complexities of most of the above
constraints can be derived from the constraint of rhetorical decomposition sen-
sitivity (RDS), which is a crucial feature of many conversational goals and is
defined as follows.

Definition 7. Given a zero sum ME game G = ((V0 ∪V1)ω,win), win is rhetor-
ically decomposition sensitive (RDS) if for all ρ ∈ win and for all finite prefixes
ρj of ρ, ρj ∈ Z1 implies there exists x ∈ V +

0 such that O(ρjx) ∩ win = ∅.

[6] show that if Player 0 has a winning strategy for an RDS winning condition
win then win is a Π0

2 complete set. Formally,

Proposition 1 [6]. Let G = ((V0 ∪V1)ω,win) be a zero-sum ME game such that
win is RDS. If Player 0 has a winning strategy in G then win is Π0

2 complete for
the Borel hierarchy.

In the zero-sum setting, CONS0, RES0, COH0, NEC0 are all RDS and it is
easy to observe that Player 0 has winning strategies in all these constraints
(considered individually). Hence, as an immediate corollary to Proposition 1 we
have

10 N. Asher and S. Paul

Corollary 1. CONS0, RES0, COH0, NEC0 are Π0
2 complete for the Borel hier-

archy for a zero sum ME game.

CNEC, on the other hand, is a structurally more complex constraint. This
is not surprising because CNEC can be intuitively viewed as a limiting case of
NEC. Indeed, this was formally shown in [6].

Proposition 2 [6]. CNECi is Π0
3 complete for the Borel hierarchy for a zero

sum ME game.

The above results have interesting consequences in terms of first-order defin-
ability. Note that certain infinite sequences over our vocabulary (V0 ∪V1) can be
coded up using first-order logic over discrete linear orders (N, <), where N is the
set of non-negative natural numbers. Indeed, for every i and for every a ∈ Vi, let
ai
0 be a predicate such that given a sequence x = x0x1 . . . , xj ∈ (V0 ∪V1) for all

j ≥ 0, x |= ai
0(j) iff xj = a. Closing under finite boolean operations and ∀,∃, we

obtain the logic FO(<). Now for any formula ϕ ∈ FO(<) and for any play ρ of
an ME game G, ρ |= ϕ can be defined in the standard way. Thus every formula
ϕ ∈ FO(<) gives a set of plays ρ(ϕ) of G defined as:

ρ(ϕ) = {ρ ∈ (V0 ∪ V1)ω| ρ |= ϕ}

A set A ⊆ (V0∪V1)ω is said to be FO(<) definable if there exists a FO(<) formula
ϕ such that A = ρ(ϕ). The following result is well-known.

Theorem 1 [20]. A ⊆ (V0 ∪ V1)ω is FO(<) definable if and only if A ∈ (Σ0
2 ∪

Π0
2).

Thus FO(<) cannot define sets that are higher than the second level of the Borel
hierarchy in their structural complexity. Thus as a corollary of Proposition 2 and
Corollary 1, we have

Corollary 2. CONS0, RES0, COH0, NEC0 are all FO(<) definable but CNECi

is not.

This agrees with our intuition because as we observed, CNECi is a limit
constraint and FO(<), being local [14], lacks the power to capture it. To define
CNECi one has to go beyond FO(<) and look at more expressive logics. One
such option is to augment FO(<) with a counting predicate cnt which ranges
over (N ∪ {∞}) [19]. Call this logic FO(<, cnt). One can write formulas of the
type ∃∞xϕ(x) in FO(<, cnt) which says that “there are infinitely many x’s such
that ϕ(x) holds.” Note that it is straightforward to write a formula in FO(<, cnt)
that describes CNECi. Another option is to consider the logic Lω1ω(FO,<)
which is obtained by closing FO(<) under infinitary boolean connectives

∨
j

and
∧

j . We can define a strict syntactic subclass of Lω1ω(FO,<), denoted
L ∗

ω1ω(FO,<), where every formula is of the form OpOq . . . Otϕpq...t, where, for
k ∈ {p, q, . . . , t − 1}, Ok =

∨
k iff Ok+1 =

∧
k+1 and each ϕpq...t is an (FO,<)

formula, p, q, . . . , t ∈ N. That is, in every formula of L ∗
ω1ω(FO,<), the infinitary

connnectives are not nested and occur only in the beginning. We can then show
that L ∗

ω1ω(FO,<) can express sets in any countable level of the Borel hierarchy.

Conversation and Games 11

3 Weighted Message Exchange Games

So far we have reviewed how the framework of Message Exchange games models
strategic conversations as infinite sequential games and how we can use it to
analyze the complexity of certain intuitive, winning goals in such conversations
in terms of both their topological and logical complexities. Nevertheless, there
are two issues with ME games that still need to be addressed.

– Let’s suppose that a conversation at the outset can be potentially infinite.
But still in real life, the Jury ends the game after a finite number of turns.
By doing so, how can it be sure that it has correctly determined the outcome
of the conversation? In other words, how does the Jury, at any point in a
conversation gauge how the players are faring and how can it reliably (or even
rationally) choose a winner in a finite time?

– How does the Jury determine the winning conditions win0 and win1? Surely,
it does not come up with a arbitrary subset of (V0 ∪ V1)ω with an arbitrary
Borel complexity.

To address the above questions, [3] introduced the model of weighted ME
games or WME games. A WME game is an ME game where the Jury specifies the
winning sets wini as subsets of (V0∪V1)ω by evaluating each move of every player.
It does this by assigning a ‘weight’ or a ‘score’ to the moves. The cummulative
weight of a conversation ρ is then the discounted sum of these individual weights.

More formally, let Z be the set of all integers and Z+ be the set of non-
negative integers. For any n ∈ Z+ let [n] = [0, n − 1] ∩ Z+ = {0, 1, . . . , n − 1}.
A weight function is a function w : (Z0 × V +

1 ∪ Z1 × V +
0) → {0, 1, 2} × {0, 1, 2}.

Intuitively, given a history ρ ∈ Z, w assigns a tuple of integers (a0, a1) = w(ρ, x)
to the next legal move x of the play ρ. A weight of 0 is intended to denote a
‘bad’ move, 1 a ‘neutral’ or ‘average’ move, and 2 is intended to denote a ‘good’
or ‘strong’ move. An example of a ‘strong’ move is an attack CDU whereas an
example of a ‘bad’ move can be an incoherent CDU, as defined in Sect. 2. Note
that the weight function, w depends on the current history of the game in that,
given two different histories ρ1, ρ2 ∈ Z, it might be the case that w(ρ1, x) �=
w(ρ2, x) for the same continuing move x. For notational simplicity, in what
follows, given a play ρ = x0x1 . . ., we shall denote by wj

i (ρ), the weight assigned
by w to Player i in the jth turn of ρ (j ≥ 1). That is, if w(ρj−1, xj) = (a0, a1),
then wj

0(ρ) = a0 and wj
1(ρ) = a1.

A discounting factor is a real λ ∈ (0, 1). For every play ρ of an ME game G,
the Jury, using some discounting factor λ, computes the discounted-weight of ρ
for each player i, which is denoted by wi(ρ) and is defined as:

Definition 8. Let ρ be a play of G and let λ be a discounting factor. Then the
discounted-weight of ρ for Player i is given by

wi(ρ) =
∑

j≥1

λj−1wj
i (ρ)

12 N. Asher and S. Paul

We can now consider the Jury simply as a tuple (w, λ) where w is a weight
function and λ is a discounting factor.2 And formally define WME games as:

Definition 9. A Weighted Message Exchange game (WME game) is a tuple
G = ((V0 ∪ V1)ω, (w, λ)).

We can now use w and λ to implicitly determine the winning sets wini of the
players and turn G into either a zero-sum or a non zero-sum game.

Definition 10. Let G = ((V0 ∪ V1)ω, (w, λ)) be WME game. Then

i. Zero-sum: win = {ρ ∈ (V0 ∪ V1)ω|w0(ρ) ≥ w1(ρ)}.
ii. Non-zero sum: Fix constants νi ∈ R called ‘thresholds’. Then,

wini = {ρ ∈ (V0 ∪ V1)ω|wi(ρ) ≥ νi}.

For this exposition, we concentrate on the zero-sum setting. Winning strate-
gies are then defined as in Sect. 2. We can also define the notions of best-response
and ε-best-response strategies for a given ε > 0. This leads to the definition of
a Nash-equilibrium and an ε-Nash-equilibrium. It can also be shown that ε-Nash-
equilibia always exist in WME games (see [3] for more details). It was also shown
in [3] that given an ε > 0 there exists nε ∈ Z+ such that after nε turns neither
player can gain more than just a ‘small amount’ than what they have already
gained so far. More formally,

Proposition 3 [3]. Let G = ((V0 ∪ V1)ω, (w, λ)) be a WME game. Then given
ε > 0 we have for Player i and any play ρ of G

nε∑

j=1

λj−1wj
i (ρ) − ε ≤ wi(ρ) ≤

nε∑

j=1

λj−1wj
i (ρ) + ε

where nε ≤ ln[ε
2 (1−λ)]

lnλ .

Thus if the Jury stops the conversation ρ after nε turns it is guaranteed that
no player could have gained more than ε from what they have already gained so
far. Thus, it may already be able to come to a conclusion after nε turns of the
game - if Player i has already gained much more than 2ε than Player −i, then i
may be declared the winner.

We have thus answered both the questions posed at the beginning of the
section.

Let’s now consider an application of WME games to the segment of a real-life
debate.

2 Note that [3] considers the discounting as a function of the history rather than
a constant factor which, arguably, better reflects real-life situations. We stick to a
constant discounting factor here for the simplicity of presentation. The main concepts
remain the same.

Conversation and Games 13

Example 4. Consider the following excerpt from the 1988 Dan Quayle-Lloyd
Bentsen Vice-Presidential debate that has exercised us now for several years.
Quayle (Q), a very junior and politically inexperienced Vice-Presidential candi-
date, was repeatedly questioned about his experience and his qualifications to be
President. Till a point in the dbate both of them were going neck to neck. But
then to rebut doubts about his qualifications, Quayle compared his experience
with that of the young John (Jack) Kennedy. To that, Bentsen (BN) made a
discourse move that Quayle apparently did not anticipate. We give the relevant
part of the debate below where for the simplicity of the ensuing analysis we have
labeled each CDU:

a. Quayle: ... the question you’re asking is, “What kind of qualifications does Dan Quayle have
to be president,”

b. Quayle: ... I have far more experience than many others that sought the office of vice president
of this country. I have as much experience in the Congress as Jack Kennedy did when he sought
the presidency.

c. Bensten: Senator, I served with Jack Kennedy. I knew Jack Kennedy. Jack Kennedy was a
friend of mine. Senator, you’re no Jack Kennedy.

d. Quayle: That was unfair, sir. Unfair.
e. Bensten: You brought up Kennedy, I didn’t.

Let us analyze the above exchange from the perspective of a WME game.
Without loss of generality suppose Quayle is Player 0 and Bensten is Player
1. Let us denote by ρ all the conversation that took place before the above
exchange. Since both of them were neck-neck till then we can assume that both
had gained a weight of c (say) that far. Next, Quayle makes moves (a) and
(b) which might be considered an average move at that point (the audience
applauds but is skeptical). So we can assign w(ρ, 〈a〉〈b〉) = (1, 1) - Bensten
neither gains nor loses from this move of Quayle. Bensten then makes the bril-
liant move (b) which does serious damage to Quayle. The audience bursts with
applause. Hence, we set w(ρ〈a〉〈b〉, 〈c〉) = (0, 2). Quayle is unable to retaliate to
(b) and makes another rather timid move (c) which has even a negative impact
to his cause on the audience. The audience is still basking in Bensten’s previous
move and we set w(ρ〈a〉〈b〉〈c〉, 〈d〉) = (1, 1). Bensten goes ahead and cements his
position further by making another attack move (d) on Quayle. We hence set
w(ρ〈a〉〈b〉〈c〉〈d〉, 〈e〉) = (0, 2).

Now suppose the Jury (in this case the audience) is using a discount factor
λ. The discounted-weights to Quale and Bensten are respectively:

wQ(ρ〈a〉〈b〉〈c〉〈d〉〈e〉) = 1 + λ2

and
wBN (ρ〈a〉〈b〉〈c〉〈d〉〈e〉) = 1 + 2λ + λ2 + 2λ3

We thus see that wBN (ρ〈a〉〈b〉〈c〉〈d〉〈e〉) > wQ(ρ〈a〉〈b〉〈c〉〈d〉〈e〉) for any value
of λ ∈ (0, 1). Not just that, even if after the above initial slump, Quayle plays
in such a way that every move he makes is a brilliant move and every move

14 N. Asher and S. Paul

Bensten makes is a disaster, Quayle still cannot recover and gain more than
Bensten eventually for values of λ as high as 0.8! Discounting thus reiterates the
fact that it is always beneficial to makes ones best moves earlier on in a debate.
This also ‘colours’ the weighting function of the Jury in ones favour.

In passing, we would like to remark that Quayle never recovered from one
disastrous move in that debate and lost handily as is rightly predicted by our
model.

4 Imperfect Information and Epistemic Considerations

WME games address certain open questions in the theory of ME games, as we
have shown in the previous section. But they give rise to other questions as well.

– How does the Jury determine a weighting scheme?
– If the Jury is identified simply with a weighting function and a discount factor,

and players know these parameters, they can determine when the Jury will end
the game. So don’t WME games fall prey to troublesome backwards induction
arguments that ME games were designed to avoid?

Concerning the first question, we’ve shown that the predictions of WME
games hold for a wide range of weighting schemes, but indeed it is clear that
different Juries will have different weighting schemes. Consider how a partisan
audience say of a political candidate c reacts to his discourse moves and how a
audience hostile to c’s views reacts. The U.S. Presidential primary debates and
general debates show that these reactions can vary widely. In particular, Juries
may be biased and only “hear what they want to hear,” even to the extent that
they ignore inconsistencies or incoherences on the part of their preferred player.
Concrete Juries adopt the weighting schemes they do, in virtue of their beliefs
and desires. Thus, weighting schemes may vary quite widely, and a conversational
participant should be as well informed as she can be about the Jury she wants
to sway.

The second question needs a negative response. [3] simply assumes that the
Jury’s characteristics are unknown to the conversational participants. But this
is not really realistic, especially in virtue of our response to the first question
above. So in this section, we study the exact information structure implicit in
the strategic reasoning in conversations by extending framework of ME games
with epistemic notions. We use the well-established theory of type-structures,
first introduced in [17] and widely studied since. We assume that each player
i ∈ ({0, 1} ∪ {J }) has a (possibly infinite) set of types Ti. With each type ti of
Player i is associated a (first-order) belief function βi(ti) which assigns to ti a
probability distribution over the types of the other players. That is, βi : Ti →
Δ(

∏
j �=i Tj). βi(ti) represents the ‘beliefs’ of type ti of Player i about the types

of the other players and the Jury. The higher-order beliefs can be defined in
a standard way by iterating the functions βi. We assume that each type ti of
each Player i starts the game with an initial belief βi(ti) ∈ Δ(

∏
j �=i Tj), called

the ‘prior belief’. The players take turns in making their moves and after every

Conversation and Games 15

move, all the players dynamically update their beliefs through Bayesian updates.
The notions of ‘optimal strategies’, ‘best-response’, ‘rationality’, ‘common belief
in rationality’ etc. can then be defined in the standard way (see [12]).

Having imposed the above epistemic structure on ME games, we can now rea-
son about the ‘rationality’ of the players’ strategies. In order to justify or predict
the outcome of games, many different solution concepts viz., Nash equilibrium,
iterated removal of dominated strategies, correlated equilibrium, rationalizabil-
ity etc. have been proposed [7,10,21]. Most of them have also been characterized
in terms of the exact belief structure and strategic behavior of the players (see
[12] for an overview). We can borrow results from this rich literature to predict
or justify outcomes in strategic conversations. The details of the above is on-
going work and we leave it to an ensuing paper. However, let us apply the above
concepts and analyze our original example of Bronston and the Prosecutor.

To illustrate the power of types, let us return to Eg. 1. One conversational goal
of the Prosecutor in Eg. 1 is to get Bronston to commit to an answer eventually
(and admit to an incriminating fact) or to continue to refuse to answer (in which
case he will be charged with contempt of court). Under such a situation, the
response 1d of Bronston is clearly a clever strategic move. Bronston’s response
(1d) was a strategic move aimed to ‘misdirect’ the Jury J . He believed that J
was of a type that would be convinced by his ambiguous response and neither
incriminate him nor charge him with perjury nor of contempt of court. His move
was indeed rational, given his belief about the Jury type. It turns out that while
the jury of a lower court J1 was not convinced of Bronston’s arguments and
charged him with perjury, a higher court J2 overturned the verdict and released
him. Thus his belief agreed with J2 but not J1.

We now return briefly to the information players have about the Jury in
WME games. Intuitively, each Player i is uncertain about: (i) the type of the
other player (1 − i), (ii) the strategy that (1 − i) is employing and (iii) the type
of the Jury which is the discounting factor λ and the weight function w. We
thus assume that at every history ρ of an ME/WME game G each type ti ∈ Ti

of Player i has beliefs on:

1. the set of types T(1−i) of Player (1 − i),
2. the set of strategies S(1−i) of Player (1 − i),
3. the weight function w.
4. the discounting factor λ.

Although going into the details of each one of these points would take too
long for this exposition, we can show that each of these factors can be modelled
precisely preserving our intuitions. This supplies us with a needed answer to
our second question. Indeed, the Jury ends the game after a finite number of
turns n (say), and from its viewpoint, the game is finite. But note that the
players are uncertain about the exact value of n and hold beliefs about it. Hence,
from their viewpoint, although the game ends after finitely many turns, they do
not know the exact number of turns. Thus, intuitively a rational player is one
who strategizes for a wide range of possibilities for the value of n [this will be
elaborated presently]. For her, the game is ‘potentially infinite’. And hence, we

16 N. Asher and S. Paul

as analysts, model the situation as an infinite game as well. In [5], we argued
that an infinitary approach was needed to handle both technical issues having to
do with Backwards Induction arguments as well as to capture the intuition that
a conversationalist, to be sure of succeeding in convincing a Jury of a particular
position, should be prepared to argue for her position for “as long as it takes”
and to answer every possible objection by an opponent. Since the list of possible
objections is most likely infinite, the analyst must provide an infinitary game-
theoretic framework. These points still hold once we add an epistemic layer to
WME games.

5 Conclusion

In this paper we have summarized concepts from earlier work and have demon-
strated how infinite sequential games paired with the notion of a Jury, ME
games, can be used to model strategic conversations. Such a model allows one to
reason about the structure and complexity of various kinds of winning goals that
conversationalists might have. We have shown how to use tools from topology,
set-theory and logic to express such goals. We then discussed a problem with
pure ME games: how can an actual Jury reliably determine a winner or winners
in a conversation after only finitely many rounds. We addressed this issue by
moving to Weighted ME (WME) games. We showed how to apply elements of
WME games to a snippet of a historic moment in American political debates.
However, WME games, we also showed, don’t furnish a completely satisfactory
analysis, because though the Jury can reliably determine a winner or winners of a
conversation after a finite moment, this information crucially cannot be common
knowledge of the participants without re-introducing the damaging backwards
induction arguments that ME games were originally designed to solve. We then
demonstrated how we can use ideas from epistemic game theory would in prin-
ciple solve this problem.

Thus, what we have put forward in this paper is a framework for an epistemic,
game-theoretic approach to conversation. As far as we know, this approach is
utterly different from any other model proposed for the study of linguistic conver-
sation, though it may have other applications as well. There are many directions
into which we would like to delve deeper in the future. One such direction, as
we already mentioned, is to work out the epistemic theory of ME games in full
detail. That is our current work in progress. Another direction has to do with a
more detailed investigation of the Jury, or possible Juries. So far we have consid-
ered the Jury as a ‘passive’ entity; it simply evaluates the play and determines
the winner. In real life situations, however, the Jury actively participate in the
conversation itself, albeit typically in a limited way. It can applaud or boo moves
of the players. Thus, the Jury can be seen as making these moves in the game.
Based on what the players observe about the Jury, they may update or change
their beliefs and vice-versa. Incorporating this into our ME games requires a
modification of the current framework where the Jury is another player making
moves from its own set of vocabulary. We plan to explore this in future work.

Conversation and Games 17

Finally, in addition to the Jury, debates usually also have a moderator whose
job is to conduct the debate and assign turns to the players. The moderator may
also actively ‘pass comments’ about the moves of the players. A fair moderator
gives all the players equal opportunity to speak and put their points across.
However, if the moderator is unfair, he may ‘starve’ a particular player by not
letting her enough chance to speak, respond to attacks and so on. Exploring
the effects a biased moderator can have on conversations is another interesting,
future topic of research.

References

1. Asher, N., Lascarides, A.: Logics of Conversation. Cambridge University Press,
Cambridge (2003)

2. Asher, N., Lascarides, A.: Strategic conversation. Semantics, Pragmatics 6(2)
(2013). http://dx.doi.org/10.3765/sp.6.2

3. Asher, N., Paul, S., Evaluating conversational success: weighted message exchange
games. In: Hunter, J., Stone, M. (eds.) 20th Workshop on the Semantics and Prag-
matics of Dialogue (SEMDIAL), New Jersey, USA, July 2016 (2016, to appear)

4. Hintikka, J.: Language-games. In: Saarinen, E. (ed.) Game-Theoretical Semantics.
Synthese Language Library, vol. 6790, pp. 1–26. Springer, Netherlands (2011).
doi:10.1007/978-1-4020-4108-2 1

5. Asher, N., Paul, S., Venant, A.: Message exchange games in strategic conversation.
J. Philos. Log. (2016). doi:10.1007/s10992-016-9402-1

6. Asher, N., Paul, S., Venant, A.: Message exchange games in strategic conversations.
J. Philos. Log. (2016, in press)

7. Aumann, R.: Subjectivity and correlation in randomized strategies. J. Math.
Econom. 1, 67–96 (1974)

8. Baltag, A., Moss, L.S.: Logics for epistemic programs. Synthese 139(2), 165–224
(2004)

9. Baltag, A., Moss, L.S., Solecki, S.: The logic of public announcements, common
knowledge and private suspicions. Technical report SEN-R9922, Centrum voor
Wiskunde en Informatica (1999)

10. Bernheim, B.D.: Rationalizable strategic behaviour. Econometrica 52(4), 1007–
1028 (1984)

11. Crawford, V., Sobel, J.: Strategic information transmission. Econometrica 50(6),
1431–1451 (1982)

12. Dekel, E., Siniscalchi, M.: Epistemic game theory. In: Aumann, R.J., Hart, S. (eds.)
Handbook of Game Theory with Economic Applications, vol. 4, chap. 12, pp. 619–
702. Elsevier Publications (2015)

13. Franke, M.: Semantic meaning and pragmatic inference in non-cooperative conver-
sation. In: Icard, T., Muskens, R. (eds.) Interfaces: Explorations in Logic. Language
and Computation, Lecture Notes in Artificial Intelligence, pp. 13–24. Springer-
Verlag, Berlin, Heidelberg (2010)

14. Gaiffman, H.: On local and non-local properties. In: Proceedings of the Herbrand
Symposium, Logic Colloquium 1981. North Holland (1982)

15. Glazer, J., Rubinstein, A.: On optimal rules of persuasion. Econometrica 72(6),
119–123 (2004)

16. Grädel, E., Thomas, W., Wilke, T. (eds.): Automata Logics, and Infinite Games:
A Guide to Current Research. LNCS, vol. 2500. Springer, Heidelberg (2002)

http://dx.doi.org/10.3765/sp.6.2
http://dx.doi.org/10.1007/978-1-4020-4108-2_1
http://dx.doi.org/10.1007/s10992-016-9402-1

18 N. Asher and S. Paul

17. Harsanyi, J.C.: Games with incomplete information played by bayesian players,
parts i-iii. Manag. Sci. 14, 159–182 (1967)

18. Kechris, A.: Classical Descriptive Set Theory. Springer-Verlag, New York (1995)
19. Libkin, L.: Elements of finite model theory. Springer, Heidelberg (2004)
20. McNaughton, R., Papert, S.: Counter-free automata. In: Research Monograph, vol.

65. MIT Press, Cambridge (1971)
21. Nash, J.: Non-cooperative games. Ann. Math. 54(2), 286–295 (1951)
22. Spence, A.M.: Job market signaling. J. Econom. 87(3), 355–374 (1973)
23. Venant, A.: Structures, semantics and games in strategic conversations. Ph.D. the-

sis, Université Paul Sabatier, Toulouse (2016)
24. Venant, A., Asher, N.: Dynamics of public commitments in dialogue. In: Pro-

ceedings of the 11th International Conference on Computational Semantics, pp.
272–282, London, UK, Association for Computational Linguistics, April 2015

25. Asher, N., Venant, A.: Ok or not ok? In: Semantics and Linguistic Theory 25.
Cornell University Press, New York (2015)

Ramsey Theory on Trees and Applications

Natasha Dobrinen(B)

University of Denver, 2280 S Vine Street, Denver, USA
Natasha.Dobrinen@du.edu

Modern Ramsey Theory on infinite structures began with the following sem-
inal result of Ramsey.

Theorem 1 (Ramsey, [14]). For each positive integer k and each finite color-
ing of all k-sized subsets of the natural numbers, N, there is an infinite set M of
natural numbers such that each k-sized subset of M has the same color.

This result was motivated by and applied to solve a problem in logic regard-
ing canonical k-ary relations on the natural numbers. Ramsey’s Theorem has
been extended in a myriad of directions, for instance, varying sizes of sets col-
ored, varying the number of colors allowed, including infinitely many colors, and
coloring more complex structures. Progress in Ramsey theory has led to progress
in a wide array of mathematical areas, such as model theory, set theory, and logic
in general, as well as algebra, analysis, topology and dynamics. In this talk, we
concentrate on Ramsey theory on trees and applications to homogeneous struc-
tures.

A key result en route to the proof that the Boolean Prime Ideal Theorem is
strictly weaker than the Axiom of Choice (see [9]) is the Ramsey-type theorem of
Halpern and Läuchli on trees. There are many variations of the Halpern-Läuchli
Theorem (see [18]); here we shall state the strong tree version. Let T be a finitely
branching tree of height ω with no terminal nodes, and let T (n) denote the nodes
on the n-th level of T . A subtree S ⊆ T is called a strong subtree of T if for each
level of n of S at which some node in S branches, every node in S(n) branches
maximally in T . The following is the Strong Tree Version of the Halpern-Läuchli
Theorem, proved in another form in [8].

Theorem 2. Let d ≥ 1 and let Ti, i < d, be finitely branching trees of height ω.
Given any finite coloring of

⋃
n<ω

∏
i<d Ti(n), there are strong subtrees Si ⊆ Ti,

all with the same infinite set L of branching levels, such that, for all n ∈ L, all
members of

∏
i<d Si(n) have the same color.

For one tree, Milliken strengthened the Halpern-Läuchli Theorem by showing
that for any given any finitely branching strong tree T of height ω, given any
finite strong tree U and a coloring of all copies of U in T by finitely many colors,
there is a strong subtree S ⊆ T of infinite height in which all copies of U have
the same color. (See [13].) In the terminology of [18], the collection of strong
subtrees of T forms a topological Ramsey space.

Milliken’s Theorem has found numerous applications to homogeneous rela-
tional structures including the following. In [16], Sauer applied Milliken’s Theo-
rem in his proof that the Rado graph R, also known as the infinite random graph,
c© Springer-Verlag GmbH Germany 2017
S. Ghosh and S. Prasad (Eds.): ICLA 2017, LNCS 10119, pp. 19–22, 2017.
DOI: 10.1007/978-3-662-54069-5 2

20 N. Dobrinen

and other homogeneous universal binary structures, have finite Ramsey degrees.
This means that for each finite graph G, there is a finite number tG such that
given any finite coloring of all copies of G in R, there is a copy R′ of R in which
all copies of G take on at most tG colors. Moreover, for all graphs G with two or
more vertices, the Ramsey number tG is greater than one. Avilés and Todorcevic
applied Milliken’s Theorem in [1] to find a finite basis for analytic strong n-gaps.
More recently, they developed a new type of Miiliken’s Theorem in [2] in order to
classify minimal analytic gaps. A dual version of the Halpern-Läuchli Theorem
was established by Todorcevic and Tyros in [19].

Building on Sauer’s techniques, Dobrinen, Laflamme and Sauer employed
Milliken’s Theorem to prove in [5] that the Rado graph, and more generally
simple binary relational structures, have the rainbow Ramsey property, even
though they do not have the Ramsey property. The rainbow Ramsey property
states that for each finite k, each finite graph G, and each coloring of the copies
of G in R by ω many colors, where each color appears at most k times, there is
a copy R′ inside R where each color appears at most once.

Extending Sauer’s result in another direction, Laflamme, Sauer and Vuk-
sanovic used Milliken’s Theorem to obtain canonical partitions for finitary as well
as countable colorings of n-tuples in countable homogeneous binary relational
structures in [12]. More recently, Vlitas has established a Ramsey-classification
theorem for equivalence relations on sets of finite strong subtrees of finitely many
countably infinite strong trees in [20].

Turning now to trees on uncountable cardinals, Shelah proved in [17] that
it is consistent with ZFC (the standard axioms of set theory) that a version
of Milliken’s Theorem holds for one strong tree on a measurable cardinal κ. In
that theorem, the tree has height κ and less than κ-sized branching on each
level, and the coloring is on m-sized subsets of levels of the tree, where m is
some fixed positive integer. This result was augmented by Džamonja, Larson
and Mitchell in [6] to prove homogeneity for colorings of m-sized antichains in
a strong tree on a measurable cardinal. They then applied that result to obtain
canonical partitions of m-sized subsets of the κ-rationals in [6] and canonical
partitions for colorings of finite subgraphs of the universal graph on κ vertices
in [7]. Recently, Dobrinen and Hathaway in [4] proved consistency of the strong
subtree version of Milliken’s Theorem for finitely many trees on a measurable
cardinal, also establishing results for trees on weakly compact cardinals.

All of the proofs of the results mentioned in this paragraph use the set-
theoretic method of forcing, using ideas from an unpublished proof of Harrington
of the strong tree version of the Halpern-Läuchli Theorem for finitely many
finitely branching strong trees of countable height. Recently, Dobrinen has built
on these ideas to prove a version of Milliken’s Theorem relevant to the universal
homogeneous triangle-free graph.

A triangle-free graph is a graph which omits triangles. The universal homo-
geneous triangle-free graph is the Fräıssé limit of the Fräıssé class of all finite
triangle-free graphs, which we shall denote by H3. Each countable triangle-free
graph embeds into H3. A construction of H3 was given by Henson in [10], where

Ramsey Theory on Trees and Applications 21

among other things, he proved that for any coloring of the vertices of H3 into
two colors, there is either a copy of H3 in the first color, or else there are copies
of each finite triangle-free graph in the second color. Later, it was proved by
Komjáth and Rödl in [11] that for any coloring of the vertices in H3 into two
colors, there is a copy of H3 with all vertices having the same color.

The question of colorings of vertices being resolved, interest turned to col-
orings of copies of finite triangle-free graphs G in H3. The Ramsey degree of a
finite triangle-free graph G is the smallest number tG such that for any coloring
of the copies of G in H3 into finitely many colors, there is always a copy H′ of
H3 in which all copies of G take on at most tG colors. If there is no such bound,
then we write tG = ∞. The big Ramsey numbers problem for H3 is the problem
of finding out whether or not each finite triangle-free graph G has tG < ∞.

Sauer proved in [15] that for G being an edge, that is a graph with two
vertices with one edge between them, tG = 2. In recent work, the Dobrinen
has developed a notion of strong tree coding triangle-free graphs. Using ideas
from Harrington’s forcing proof of the Halpern-Läuchli Theorem, the author has
proved an analogue of Milliken’s Theorem for these strong triangle-free trees,
from which it follows that the spaces of strong triangle-free trees are almost
topological Ramsey spaces. Using this plus a new type of so-called subtree enve-
lope, the Dobrinen has recovered the results in [11] for vertices and [15] for edges,
as well as other finite graphs. At the time of writing this abstract, it looks like
all finite triangle-free graphs have finite Ramsey degrees, though the paper [3]
is not yet in final form.

This talk will provide an overview of the various versions of the Halpern-
Läuchli Theorem and Milliken Theorem and the applications mentioned in this
abstract. The author aims to convey the fascinating confluence of ideas from
logic, Ramsey theory and set theory leading to applications to solving problems
in model theory/universal relational structures.

Acknowledgments. The author gratefully acknowledges the support of NSF Grants
DMS-142470 and DMS-1600781.

References

1. Avilés, A., Todorcevic, S.: Finite basis for analytic strong n-gaps. Combinatorica
33(4), 375–393 (2013)

2. Avilés, A., Todorcevic, S.: Types in the n-adic tree and minimal analytic gaps.
Adv. Math. 292, 558–600 (2016)

3. Dobrinen, N.: The universal triangle-free graph has finite Ramsey degrees. (2016,
in preparation)

4. Dobrinen, N., Hathaway, D.: The Halpern-Läuchli Theorem at a measurable car-
dinal (2016, submitted). 15 pages

5. Dobrinen, N., Laflamme, C., Sauer, N.: Rainbow Ramsey simple structures. Dis-
crete Math. 339(11), 2848–2855 (2016)

6. Džamonja, M., Larson, J., Mitchell, W.J.: A partition theorem for a large dense
linear order. Israel J. Math. 171, 237–284 (2009)

22 N. Dobrinen

7. Džamonja, M., Larson, J., Mitchell, W.J.: Partitions of large Rado graphs. Arch.
Math. Logic 48(6), 579–606 (2009)

8. Halpern, J.D., Läuchli, H.: A partition theorem. Trans. Am. Math. Soc. 124, 360–
367 (1966)

9. Halpern, J.D., Lévy, A.: The Boolean prime ideal theorem does not imply the
axiom of choice. In: Axiomatic Set Theory, pp. 83–134. American Mathematical
Society (1971). Proceedings of the Symposium on Pure Mathematics, Vol. XIII,
Part I, University California, Los Angeles, Calififornia (1967)

10. Henson, C.W.: A family of countable homogeneous graphs. Pac. J. Math. 38(1),
69–83 (1971)

11. Komjáth, P., Rödl, V.: Coloring of universal graphs. Graphs Comb. 2(1), 55–60
(1986)

12. Laflamme, C., Sauer, N., Vuksanovic, V.: Canonical partitions of universal struc-
tures. Combinatorica 26(2), 183–205 (2006)

13. Milliken, K.R.: A partition theorem for the infinite subtrees of a tree. Trans. Am.
Math. Soc. 263(1), 137–148 (1981)

14. Ramsey, F.P.: On a problem of formal logic. Proc. Lon. Math. Soc. 30, 264–296
(1929)

15. Sauer, N.: Edge partitions of the countable triangle free homogenous graph. Dis-
crete Math. 185(1–3), 137–181 (1998)

16. Sauer, N.: Coloring subgraphs of the Rado graph. Combinatorica 26(2), 231–253
(2006)

17. Shelah, S.: Strong partition relations below the power set: consistency - was Sier-
pinski right? II. In: Sets, Graphs and Numbers, Budapest, vol. 60, pp. 637–688
(1991). Colloq. Math. Soc. János Bolyai, North-Holland

18. Todorcevic, S.: Introduction to Ramsey Spaces. Princeton University Press,
Princeton (2010)

19. Todorcevic, S., Tyros, K.: A disjoint unions theorem for threes. Adv. Math. 285,
1487–1510 (2015)

20. Vlitas, D.: A canonical partition relation for uniform families of finite strong sub-
trees. Discrete Math. 335, 45–65 (2014)

Automata, Logic and Games for the λ-Calculus

C.-H. Luke Ong(B)

University of Oxford, Oxford, UK
Luke.Ong@cs.ox.ac.uk

Automata, logic and games provide the mathematical theory that underpins
the model checking of reactive systems:

– automata on infinite words and trees as models of computation for state-based
systems,

– logical systems such as temporal and modal logics for specifying correctness
properties, and

– two-person games as a mathematical model of the interactions between a
system and its environment.

An elegant and fundamental result in the theory of automata, logic and games
[3] is the correspondence between alternating parity tree automata (APT), the
modal mu-calculus Lµ, and parity games, which are standard formalisms for
algorithmic reasoning about trees. On the one hand, the mu-calculus model-
checking problem and the parity decision problem (Does Verifier have a winning
strategy in a given parity game?) are interreducible [17,19]. On the other, modal
mu-calculus and alternating parity tree automata are recursively equivalent for
defining tree languages [2,8,19].

Research in model checking has traditionally concerned itself with the veri-
fication of properties of “ground type objects” such as words or trees. A recent
trend in algorithmic verification is higher-order model checking [4,9,10], which is
the model checking of infinite trees generated by the λY-calculus (simply-typed
lambda calculus extended with fixpoint operators) [13,15] or, equivalently, recur-
sion schemes. Higher-order model checking has been applied with some success
to the verification of higher-type functional programs [5,7,11,14]. In this model
checking approach, the verification problem is reduced to the model checking of
Böhm trees, which are the computation trees of functional programs.

Our work is motivated by the question: what is the automata-logic-games cor-
respondence for (higher-type) Böhm trees? Simply-typed Böhm trees are ordered
ranked trees extended with binders in the form of lambda-abstractions; which
may be viewed as higher-order functions on trees. Indeed, one may well ask if
such a correspondence is plausible, since Clairambault and Murawski [1] have
considered a monadic second order logic over a class of binding structures and
shown the model checking problem to be undecidable. However, we develop just
such a correspondence for Böhm trees. In the following we discuss the main
ideas.

Abstract of an invited talk presented at ICLA 2017.

c© Springer-Verlag GmbH Germany 2017
S. Ghosh and S. Prasad (Eds.): ICLA 2017, LNCS 10119, pp. 23–26, 2017.
DOI: 10.1007/978-3-662-54069-5 3

24 C.-H.L. Ong

The starting point is recent work by Tsukada and Ong [18] on the model
checking problem for higher-type (possibly infinite) Böhm trees. They introduced
a notion of type [6] for Böhm trees: a Böhm tree u is said to have type σ if Verifier
has a winning strategy in the corresponding type-checking game. Tsukada and
Ong showed that the type checking of λY-definable Böhm trees is decidable.
This type-checking game is the games component of the new trio for higher
types.

The automata component of the trio is alternating dependency tree automata
(ADTA), which was first introduced by Stirling [16] for finite binding trees, in
order to characterise solution sets of the Higher-Order Matching Problem. We
extend ADTA to infinite binding trees with ω-regular winning conditions. ADTA
are closed under union, intersection and complementation. The emptiness prob-
lem for nondeterministic dependency tree automata is decidable, but undecidable
for alternating dependency tree automata [12]. A key result is that types and
ADTA are effectively equivalent1 for defining languages of Böhm trees. As a
corollary, the ADTA acceptance problem for λY-definable Böhm trees is decid-
able.

The logic for describing the corresponding correctness properties is higher-
type mu-calculus L→

µ , which extends ordinary modal mu-calculus with pred-
icates for detecting variables, and corresponding constructs for detecting λ-
abstractions. There is a characterisation of the set-theoretic semantics of L→

µ

by a model checking game. Furthermore L→
µ and ADTA are recursively equiva-

lent for defining languages of Böhm trees.
Thus there is an exact automata-logic-games correspondence for Böhm trees

at higher types, which naturally extends the classical correspondence for ordinary
trees, as illustrated by the following diagram.

ATDA:seerTmhöB

∩

L→
µ

∩

Type-Checking Games

∩

(Ranked) Trees: APT Lµ

Parity Games

1 We suppress a delicate distinction between types and a subsystem of parity permis-
sive types. There is a corresponding distinction between ADTA and a subclass of
parity permissive ADTA. The expressive equivalence result holds both generally and
when restricted to the parity permissive subsystems.

Automata, Logic and Games for the λ-Calculus 25

Acknowledgements. This is based on joint work with Matthew Hague, Steven
Ramsay, and Takeshi Tsukada, partially funded by EPSRC UK. Part of the work was
done while the authors were visiting the Institute for Mathematical Sciences, National
University of Singapore in 2016. The visit was partially supported by the Institute.

References

1. Clairambault, P., Murawski, A.S.: Böhm trees as higher-order recursive schemes.
In: Proceedings of IARCS Annual Conference on Foundations of Software Tech-
nology and Theoretical Computer Science (FSTTCS 2013), LIPIcs, vol. 24, pp.
91–102. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2013)

2. Emerson, E.A., Jutla, C.S.: Tree automata, mu-calculus and determinacy
(extended abstract). In: 32nd Annual Symposium on Foundations of Computer
Science, San Juan, Puerto Rico, vol. 1–4 , pp. 368–377, October 1991

3. Grädel, E., Thomas, W., Wilke, T. (eds.): Automata, Logics, and Infinite Games: A
Guide to Current Research. LNCS, vol. 2500. Springer, Heidelberg (2002). doi:10.
1007/3-540-36387-4

4. Knapik, T., Niwiński, D., Urzyczyn, P.: Higher-order pushdown trees are easy.
FoSSaCS 2002, 205–222 (2002)

5. Kobayashi, N.: Model checking higher-order programs. J. ACM 60(3), 1–62 (2013)
6. Kobayashi, N., Ong, C.-H.L.: A type system equivalent to the modal mu-calculus

model checking of higher-order recursion schemes. In: Proceedings of the 24th
Annual IEEE Symposium on Logic in Computer Science, LICS 2009, 11–14 August
2009, Los Angeles, CA, USA, pp. 179–188 (2009)

7. Kobayashi, N., Sato, R., Unno, H.: Predicate abstraction and CEGAR for higher-
order model checking. In: Hall, M.W., Padua, D.A. (eds.) PLDI, pp. 222–233. ACM
(2011)

8. Kupferman, O., Vardi, M.Y., Wolper, P.: An automata-theoretic approach to
branching-time model checking. J. ACM 47(2), 312–360 (2000)

9. Ong, C.-H.L.: On model-checking trees generated by higher-order recursion
schemes. In: Proceedings of 21th IEEE Symposium on Logic in Computer Science
(LICS 2006), pp. 81–90. IEEE Computer Society (2006)

10. Ong, C.-H.L.: Higher-order model checking: an overview. In: 30th Annual
ACM/IEEE Symposium on Logic in Computer Science, LICS 2015, Kyoto, Japan,
6–10 July 2015, pp. 1–15 (2015)

11. Ong, C.-H.L., Ramsay, S.J.: Verifying higher-order functional programs with
pattern-matching algebraic data types. In: POPL 2011, vol. 46, pp. 587–598,
January 2011

12. Ong, C.-H.L., Tzevelekos, N.: Functional reachability. In: 2009 24th Annual IEEE
Symposium on Logic in Computer Science (LICS 2009), pp. 286–295, August 2009

13. Platek, R.A.: Foundations of recursion theory. Ph.D. thesis, Standford University
(1966)

14. Ramsay, S.J., Neatherway, R.P., Ong, C.-H.L.: A type-directed abstraction refine-
ment approach to higher-order model checking. In: The 41st Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL
2014, San Diego, CA, USA, 20–21 January 2014, pp. 61–72. ACM (2014)

15. Scott, D.S.: A type-theoretical alternative to ISWIM, CUCH, OWHY. Theor. Com-
put. Sci. 121(1&2), 411–440 (1993)

http://dx.doi.org/10.1007/3-540-36387-4
http://dx.doi.org/10.1007/3-540-36387-4

26 C.-H.L. Ong

16. Stirling, C.: Dependency tree automata. In: Alfaro, L. (ed.) FoSSaCS 2009.
LNCS, vol. 5504, pp. 92–106. Springer, Heidelberg (2009). doi:10.1007/
978-3-642-00596-1 8

17. Streett, R.S., Emerson, E.A.: An automata theoretic decision procedure for the
propositional mu-calculus. Inf. Comput. 81(3), 249–264 (1989)

18. Tsukada, T., Ong, C.-H.L.: Compositional higher-order model checking via ω-
regular games over böhm trees. In: Joint Meeting of the Twenty-Third EACSL
Annual Conference on Computer Science Logic (CSL) and the Twenty-Ninth
Annual ACM/IEEE Symposium on Logic in Computer Science (LICS), CSL-LICS
2014, Vienna, Austria, 14–18 July 2014, pp. 78:1–78:10 (2014)

19. Walukiewicz, I.: Pushdown processes: games and model-checking. Inf. Comput.
164(2), 234–263 (2001)

http://dx.doi.org/10.1007/978-3-642-00596-1_8
http://dx.doi.org/10.1007/978-3-642-00596-1_8

Semantics and Proof Theory of the Epsilon
Calculus

Richard Zach(B)

Department of Philosophy, University of Calgary, Calgary, Canada
rzach@ucalgary.ca

Abstract. The epsilon operator is a term-forming operator which
replaces quantifiers in ordinary predicate logic. The application of this
undervalued formalism has been hampered by the absence of well-
behaved proof systems on the one hand, and accessible presentations
of its theory on the other. One significant early result for the original
axiomatic proof system for the ε-calculus is the first epsilon theorem, for
which a proof is sketched. The system itself is discussed, also relative to
possible semantic interpretations. The problems facing the development
of proof-theoretically well-behaved systems are outlined.

1 Introduction

A formalism for logical choice operators has long been available in the form of
Hilbert’s epsilon calculus. The epsilon calculus is one of the first formal systems
of first-order predicate logic. It was introduced in 1921 by David Hilbert [10],
who proposed to use it for the formalization and proof theoretical investigation
of mathematical systems. In the epsilon calculus, a term-forming operator ε is
used, the intuitive meaning of which is an indefinite choice function: εx A(x) is
some x which satisfies A(x) if A(x) is satisfied at all, and arbitrary otherwise.
Quantifiers can then be defined, e.g., (∃x)A(x) as A(εxA(x)).

The epsilon calculus and proof theoretic methods developed for it, such as
the so-called epsilon substitution method, have mainly been applied to the proof
theoretic analysis of mathematical systems of arithmetic and analysis (especially
in work by Ackermann, Mints, Arai). (See [4] for a survey of the epsilon calculus
and its history.) Despite its long history and manifold uses, the epsilon calculus
as a logical formalism in general is not thoroughly understood, yet its potential
for applications in logic and other areas, especially linguistics and computer
science, has by far not been fully explored.

There are various options for definitions of semantics of the epsilon operator.
The choice of εx A(x) may be extensional (i.e., depend only on the set of x which
satisfy A(x); this definition validates the so-called axiom of ε-extensionality), it
may be intensional (i.e., depend also on A(x) itself; ε-extensionality fails), and it
may be completely indeterministic (i.e., different occurrences of the same ε-term

Richard Zach—Research supported by the Natural Sciences and Engineering
Research Council.

c© Springer-Verlag GmbH Germany 2017
S. Ghosh and S. Prasad (Eds.): ICLA 2017, LNCS 10119, pp. 27–47, 2017.
DOI: 10.1007/978-3-662-54069-5 4

28 R. Zach

εx A(x) may select different witnesses for A(x)). The first and third versions
have been investigated by Blass and Gurevich [6]. These different semantics
result in different expressive power (in particular, over finite models), and are
characterized by different formalizations. Below we present the first two versions
of the semantics of the ε-calculus and sketch completeness results.

The very beginnings of proof theory in the work of Hilbert and his students
consisted in the proof theoretic study of axiom systems for the ε-calculus. One
of the most significant results in this connection are the epsilon theorems. It
plays a role similar to Gentzen’s midsequent theorem in the proof theory of
the sequent calculus: it yields a version of Herbrand’s Theorem. In fact, it was
used to give the first correct proof of Herbrand’s theorem (Hilbert and Bernays
[11]). In a simple formulation, the theorem states that if an existential formula
(∃x)A(x) (not containing ε) is derivable in the epsilon calculus, then there are
terms t1,. . . ,tn so that a (Herbrand-) disjunction A(t1) ∨ . . . ∨ A(tn) is derivable
in propositional logic. The proof gives a constructive procedure that, given a
derivation of (∃x)A(x), produces the corresponding Herbrand disjunction. An
analysis of this proof (see [18]) gives a hyper-exponential bound on the length
of the Herbrand disjunction in the number of critical formulas occurring in the
proof. The bound is essentially optimal, since it is known from work by Orevkov
and Statman that the length of Herbrand disjunctions is hyper-exponential in the
length of proofs of the original existential formula (this is the basis for familiar
speed-up theorems of systems with cut over cut-free systems). In Sect. 4 we prove
the first epsilon theorem with identity, along the lines of Bernays’s proof.

A general proof theory of the epsilon calculus requires formal systems that are
more amenable to proof-theoretic investigations than the Hilbert-type axiomatic
systems studied in the Hilbert school. Although some sequent systems for the
epsilon calculus exist, it is not clear that they are the best possible formula-
tions, nor have their proof-theoretic properties been investigated in depth. Mae-
hara’s [13] and Leisenring’s [12] systems were not cut-free complete. Yasuhara
[21] studied a cut-free complete system, but only gave a semantic cut-elimination
proof. Section 5 surveys these and other systems, and highlights some of the dif-
ficulties in developing a systematic proof theory on the basis of them. Proof-
theoretically suitable formalisms for the ε-calculus are still a desideratum for
applications of the epsilon calculus.

The classical ε-calculus is usually investigated as a proof-theoretic formalism,
and no systematic study of the model theory of epsilon calculi other than Asser’s
classic [3] exists. However, Abiteboul and Vianu [2], Blass and Gurevich [6], and
Otto [19] have studied the model theory of choice operators in the context of
finite model theory and database query languages. And applications of choice
operators to model definite and indefinite noun phrases in computational lin-
guistics Meyer Viol [15] and von Heusinger [8,9] have led to the definition of
indexed epsilon calculus by Mints and Sarenac [16].

With a view to applications, it is especially important to develop the seman-
tics and proof theory of epsilon operators in non-classical logics. Of particular
importance in this context is the development of epsilon calculi for intuitionistic
logic, not least because this is the context in which the epsilon calculus can and

Semantics and Proof Theory of the Epsilon Calculus 29

has been applied in programming language semantics. Some work has been done
on intuitionistic ε-calculi (e.g., Bell [5], DeVidi [7], Meyer Viol [15], Mints [17]),
but there are still many important open questions. The straightforward exten-
sions of intuitionistic logic by epsilon operators are not conservative and result
in intermediate logics related to Gödel logic. Meyer Viol [15] has proposed a con-
servative extensions of intuitionistic logic by epsilon operators which warrants
further study.

2 Syntax and Axiomatic Proof Systems

Definition 1. The language of of the elementary calculus L=
EC contains the

usual logical symbols (variables, function and predicate symbols, =). A subscript
ε will indicate the presence of the symbol ε, and ∀ the presence of the quantifiers
∀ and ∃. The terms Trm and formulas Frm of Lε∀ are defined as usual, but
simultaneously, to include:

If A is a formula in which x has a free occurrence but no bound occurrence,
then εx A is a term, and all occurrences of x in it are bound.

If E is an expression (term or formula), then FV(E) is the set of variables which
have free occurrences in E.

When E, E′ are expressions (terms or formulas), we write E ≡ E′ iff E and
E′ are syntactically identical up to a renaming of bound variables. We say that
a term t is free for x in E iff x does not occur free in the scope of an ε-operator
εy or quantifier ∀y, ∃y for any y ∈ FV(t).

If E is an expression and t is a term, we write E[x/t] for the result of sub-
stituting every free occurrence of x in E by t, provided t is free for x in E,
and renaming bound variables in t if necessary. We write E(x) to indicate that
x ∈ FV(E), and E(t) for E[x/t]. We write E{t/u} for the result of replacing
every occurrence of t in E by u.1

Definition 2 (ε-Translation). If E is an expression, define Eε by:

1. Eε = E if E is a variable, a constant symbol, or ⊥.
2. If E = fn

i (t1, . . . , tn), Eε = fn
i (tε1, . . . , t

ε
n).

3. If E = Pn
i (t1, . . . , tn), Eε = Pn

i (tε1, . . . , t
ε
n).

4. If E = ¬A, then Eε = ¬Aε.
5. If E = (A ∧ B), (A ∨ B), (A → B), or (A ↔ B), then Eε = (Aε ∧ Bε),

(Aε ∨ Bε), (Aε → Bε), or (Aε ↔ Bε), respectively.
1 Skipping details, (a) we want to replace not just every occurrence of t by u, but every
occurrence of a term t′ ≡ t. (b) t may have an occurrence in E where a variable in t
is bound by a quantifier or ε outside t, and such occurrences shouldn’t be replaced
(they are not subterm occurrences). (c) When replacing t by u, bound variables in
u might have to be renamed to avoid conflicts with the bound variables in E′ and
bound variables in E′ might have to be renamed to avoid free variables in u being
bound.

30 R. Zach

6. If E = ∃xA(x) or ∀xA(x), then Eε = Aε(εx A(x)ε) or Aε(εx ¬A(x)ε).
7. If E = εx A(x), then Eε = εx A(x)ε.

Definition 3. An ε-term p ≡ εx B(x;x1, . . . , xn) is a type of an ε-term εx A(x)
iff

1. p ≡ εx A(x)[x1/t1] . . . [xn/tn] for some terms t1, . . . , tn.
2. FV(p) = {x1, . . . , xn}.
3. x1, . . . , xn are all immediate subterms of p.
4. Each xi has exactly one occurrence in p.
5. The occurrence of xi is left of the occurrence of xj in p if i < j.

We denote the set of types as Typ.

Proposition 4. The type of an epsilon term εx A(x) is unique up to renaming
of bound, and disjoint renaming of free variables.

Definition 5. An ε-term e is nested in an ε-term e′ if e is a proper subterm
of e.

Definition 6. The degree deg(e) of an ε-term e is defined as follows:
(1) deg(e) = 1 iff e contains no nested ε-terms. (2) deg(e) =
max{deg(e1), . . . ,deg(en)} + 1 if e1, . . . , en are all the ε-terms nested in e.
For convenience, let deg(t) = 0 if t is not an ε-term.

Definition 7. An ε-term e is subordinate to an ε-term e′ = εx A(x) if some
e′′ ≡ e occurs in e′ and x ∈ FV(e′′).

Note that if e is subordinate to e′ it is not a subterm of e′, because x is free
in e and so the occurrence of e (really, of the variant e′′) in e′ is in the scope
of εx.2

Definition 8. The rank rk(e) of an ε-term e is defined as follows: (1) rk(e) = 1
iff e contains no subordinate ε-terms. (2) rk(e) = max{rk(e1), . . . , rk(en)} + 1 if
e1, . . . , en are all the ε-terms subordinate to e.

Proposition 9. If p is the type of e, then rk(p) = rk(e).

2.1 Axioms and Proofs

Definition 10. The axioms of the elementary calculus EC are

A for any tautology A (Taut)

2 One might think that replacing e in εx A(x) by a new variable y would result in an
ε-term εx A′(y) so that e′ ≡ εx A′(y)[y/e]. But (a) εx A′(y) is not in general a term,
since it is not guaranteed that x is free in A′(y) and (b) e is not free for y in εx A′(y).

Semantics and Proof Theory of the Epsilon Calculus 31

and its only rule of inference is

A A → B
A

MP

For EC=, we add

t = t for any term t (=1)
t = u → (A[x/t] ↔ A[x/u]). (=2)

The axioms and rules of the (intensional) ε-calculus ECε (EC=
ε) are those of EC

(EC=) plus the critical formulas

A(t) → A(εx A(x)). (crit)

The axioms and rules of the extensional ε-calculus ECext
ε are those of EC=

ε plus

(∀x(A(x) ↔ B(x)))ε → εx A(x) = εx B(x), (ext)

that is,

A(εx ¬(A(x) ↔ B(x))) ↔ B(εx ¬(A(x) ↔ B(x))) → εx A(x) = εx B(x)

The axioms and rules of EC∀, ECε∀, ECext
ε∀ are those of EC, ECε, ECext

ε , respec-
tively, together with the axioms

A(t) → ∃xA(x) (Ax∃)
∀xA(x) → A(t) (Ax∀)

and the rules
A(x) → B

∃xA(x) → B
R∃

B → A(x)
B → ∀xA(x) R∀

Applications of these rules must satisfy the eigenvariable condition, viz., the
variable x must not appear in the conclusion or anywhere below it in the proof.

Definition 11. If Γ is a set of formulas, a proof of A from Γ in ECext
ε∀ is a

sequence π of formulas A1, . . . , An = A where for each i ≤ n, Ai ∈ Γ , Ai is an
instance of an axiom, or follows from formulas Aj (j < i) by a rule of inference.

If π only uses the axioms and rules of EC, ECε, ECext
ε , etc., then it is a proof

of A from Γ in EC, ECε, ECext
ε , etc., and we write Γ �π A, Γ �π

ε A, Γ �π
εext A,

etc.
We say that A is provable from Γ in EC, etc. (Γ � A, etc.), if there is a proof

of A from Γ in EC, etc.

32 R. Zach

Note that our definition of proof, because of its use of ≡, includes a tacit
rule for renaming bound variables. Note also that substitution into members
of Γ is not permitted. However, we can simulate a provability relation in which
substitution into members of Γ is allowed by considering Γ inst, the set of all
substitution instances of members of Γ . If Γ is a set of sentences, then Γ inst = Γ .

Proposition 12. If π = A1, . . . , An ≡ A is a proof of A from Γ and x /∈ FV(Γ)
is not an eigenvariable in π, then π[x/t] = A1[x/t], . . . , An[x/t] is a proof of
A[x/t] from Γ inst.

Lemma 13. If π is a proof of B from Γ ∪ {A}, then there is a proof π[A] of
A → B from Γ , provided A contains no eigenvariables of π free.

Proof. By induction on the length of π, as in the classical case.

Theorem 14 (Deduction Theorem). If Σ ∪ {A} is a set of sentences, Σ �
A → B iff Σ ∪ {A} � B.

Corollary 15. If Σ ∪ {A} is a set of sentences, Σ � A iff Σ ∪ {¬A} � ⊥.

Lemma 16 (ε-Embedding Lemma). If Γ �π
ε∀ A, then there is a proof πε so

that Γ εinst �πε

ε Aε.

Proof. By induction, see [18].

3 Semantics and Completeness

3.1 Semantics for ECext
ε

Definition 17. A structure M = 〈|M| , (·)M〉 consists of a nonempty
domain |M| �= ∅ and a mapping (·)M on function and predicate symbols where
(f0

i)M ∈ |M|, (fn
i)M ∈ |M||M|n , and (Pn

i)M ⊆ |M|n.

Definition 18. An extensional choice function Φ on M is a function
Φ : ℘(|M|) → |M| where Φ(X) ∈ X whenever X �= ∅.

Note that Φ is total on ℘(|M|), and so Φ(∅) ∈ |M|.

Definition 19. An assignment s on M is a function s : Var → |M|.
If x ∈ Var and m ∈ |M|, s[x/m] is the assignment defined by

s[x/m](y) =

{
m if y = x

s(y) otherwise

Definition 20. The value valM,Φ,s(t) of a term and the satisfaction relation
M, Φ, s |= A are defined as follows:

1. valM,Φ,s(x) = s(x)
2. M, Φ, s |= � and M, Φ, s �|= ⊥

Semantics and Proof Theory of the Epsilon Calculus 33

3. valM,Φ,s(fn
i (t1, . . . , tn)) = (fn

i)M(valM,Φ,s(t1), . . . , valM,Φ,s(tn))
4. M, Φ, s |= t1 = tn iff valM,Φ,s(t1) = valM,Φ,s(t2)
5. M, Φ, s |= Pn

i (t1, . . . , tn) iff 〈valM,Φ,s(t1), . . . , valM,Φ,s(tn)〉 ∈ (Pn
i)M

6. valM,Φ,s(εx A(x)) = Φ(valM,Φ,s(A(x))) where

valM,Φ,s(A(x)) = {m ∈ |M| : M, Φ, s[x/m] |= A(x)}

7. M, Φ, s |= ∃xA(x) iff for some m ∈ |M|, M, Φ, s[x/m] |= A(x)
8. M, Φ, s |= ∀xA(x) iff for all m ∈ |M|, M, Φ, s[x/m] |= A(x)

Proposition 21. If s(x) = s′(x) for all x /∈ FV(t) ∪ FV(A), then valM,Φ,s(t) =
valM,Φ,s′(t) and M, Φ, s |= A iff M, Φ, s′ |= A.

Proposition 22 (Substitution Lemma). If m = valM,Φ,s(u), then
valM,Φ,s(t(u)) = valM,Φ,s[x/m](t(x)) and M, Φ, s |= A(u) iff M, Φ, s[x/m] |=
A(x).

Definition 23. 1. A is locally true in M w.r.t. Φ and s iff M, Φ, s |= A.
2. A is true in M with respect to Φ, M, Φ |= A, iff for all s on M: M, Φ, s |= A.
3. A is generically true in M with respect to s, M, s |=g A, iff for all choice

functions Φ on M: M, Φ, s |= A.
4. A is generically valid in M, M |= A, if for all choice functions Φ and assign-

ments s on M: M, Φ, s |= A.

Definition 24. Let Γ ∪ {A} be a set of formulas.

1. A is a local consequence of Γ , Γ |=l A, iff for all M, Φ, and s:
if M, Φ, s |= Γ then M, Φ, s |= A.

2. A is a truth consequence of Γ , Γ |= A, iff for all M, Φ:
if M, Φ |= Γ then M, Φ |= A.

3. A is a generic consequence of Γ , Γ |=g A, iff for all M and s:
if M, s |=g Γ then M |= A.

4. A is a generic validity consequence of Γ , Γ |=v A, iff for all M:
if M |=v Γ then M |= A.

Proposition 25. If Σ ∪ {A} is a set of sentences, Σ |=l A iff Σ |= A

Proposition 26. If Σ ∪ {A,B} is a set of sentences, Σ ∪ {A} |= B iff Σ |=
A → B.

Corollary 27. If Σ ∪ {A} is a set of sentences, Σ |= A iff for no M, Φ,
M |= Σ ∪ {¬A}

3.2 Soundness and Completeness

Theorem 28. If Γ �ε A, then Γ |=l A.

34 R. Zach

Proof. Suppose Γ,Φ, s |= Γ . We show by induction on the length n of a proof π
that M, Φ, s′ |= A for all s′ which agree with s on FV(Γ). We may assume that
no eigenvariable x of π is in FV(Γ) (if it is, let y /∈ FV(π) and not occurring
in π; consider π[x/y] instead of π).

If n = 0 there’s nothing to prove. Otherwise, we distinguish cases according
to the last line An in π. The only interesting case is when An is a critical formula,
i.e., An ≡ A(t) → A(εx A(x)). Then either M, Φ, s |= A(t) or not (in which case
there’s nothing to prove). If yes, M, Φ, s[x/m] |= A(x) for m = valM,Φ,s(t), and
so Y = valM,Φ,s(A(x)) �= ∅. Consequently, Φ(Y) ∈ Y , and hence M, Φ, s |=
A(εx A(x)).

Lemma 29. If Γ is a set of sentences and Γ ��ε ⊥, then there are M, Φ so that
M, Φ |= Γ .

Theorem 30 (Completeness). If Γ ∪ {A} are sentences and Γ |= A, then
Γ �εext A.

Proof. Suppose Γ �|= A. Then for some M, Φ we have M, Φ |= Γ but M, Φ �|= A.
Hence M, Φ |= Γ ∪ {¬A}. By the Lemma, Γ ∪ {¬A} �ε ⊥. By Corollary 15,
Γ �ε A.

The proof of the Lemma comes in several stages. We have to show that if Γ is
consistent, we can construct M, Φ, and s so that M, Φ, s |= Γ . Since FV(Γ) = ∅,
we then have M, Φ |= Γ .

Lemma 31. If Γ ��ε ⊥, there is Γ ∗ ⊇ Γ with (1) Γ ∗ ��ε ⊥ and (2) for all
formulas A, either A ∈ Γ ∗ or ¬A ∈ Γ ∗.

Proof. Let A1, A2, . . . be an enumeration of Frmε. Define Γ0 = Γ and

Γn+1 =

{
Γn ∪ {An} if Γn ∪ {An} ��ε ⊥
Γn ∪ {¬An} if Γn ∪ {¬An} ��ε ⊥ otherwise

Let Γ ∗ =
⋃

n≥0 Γn. Obviously, Γ ⊆ Γ ∗. For (1), observe that if Γ ∗ �π
ε ⊥, then π

contains only finitely many formulas from Γ ∗, so for some n, Γn �π
ε ⊥. But Γn

is consistent by definition.
To verify (2), we have to show that for each n, either Γn ∪ {An} ��ε ⊥ or

Γn ∪ {¬A} ��ε ⊥. For n = 0, this is the assumption of the lemma. So suppose
the claim holds for n − 1. Suppose Γn ∪ {A} �π

ε ⊥ and Γn ∪ {¬A} �π′
ε ⊥. Then

by the Deduction Theorem, we have Γn �π[A]
A → ⊥ and Γn �π′[A′]

¬ A → ⊥. Since
(A → ⊥) → ((¬A → ⊥) → ⊥) is a tautology, we have Γn �ε ⊥, contradicting
the induction hypothesis.

Lemma 32. If Γ ∗ �ε B, then B ∈ Γ ∗.

Proof. If not, then ¬B ∈ Γ ∗ by maximality, so Γ ∗ would be inconsistent.

Semantics and Proof Theory of the Epsilon Calculus 35

Definition 33. Let ≈ be the relation on Trmε defined by

t ≈ u iff t = u ∈ Γ ∗

It is easily seen that ≈ is an equivalence relation. Let t̃ = {u : u ≈ t} and
T̃rm = {t̃ : t ∈ Trm}.

Definition 34. A set T ∈ T̃rm is represented by A(x) if T = {t̃ : A(t) ∈ Γ ∗}.
Let Φ0 be a fixed choice function on T̃rm, and define

Φ(T) =

{
˜εx A(x) if T is represented by A(x)

Φ0(T) otherwise.

Proposition 35. Φ is a well-defined choice function on T̃rm.

Proof. Use (ext) for well-definedness and (crit) for choice function.

Now let M = 〈T̃rm, (·)M〉 with cM = c̃, (Pn
i)M = {〈t̃1, . . . , t̃1〉 :

Pn
i (t1, . . . , tn)}, and let s(x) = s̃.

Proposition 36. M, Φ, s |= Γ ∗.

Proof. We show that valM,Φ,s(t) = t̃ and M, Φ, s |= A iff A ∈ Γ ∗ by simultane-
ous induction on the complexity of t and A.

If t = c is a constant, the claim holds by definition of (·)M. If A = ⊥ or = �,
the claim holds by Lemma 32.

If A ≡ Pn(t1, . . . , tn), then by induction hypothesis, valM,Φ,s(t)i = t̃i. By
definition of (·)M, 〈t̃1, . . . , t̃n〉 ∈ (Pn

i)(t1, . . . , tn) iff Pn
i (t1, . . . , tn) ∈ Γ ∗.

If A ≡ ¬B, (B ∧ C), (B ∨ C), (B → C), (B ↔ C), the claim follows
immediately from the induction hypothesis and the definition of |= and the
closure properties of Γ ∗. For instance, M, Φ, s |= (B ∧ C) iff M, Φ, s |= B
and M, Φ, s |= C. By induction hypothesis, this is the case iff B ∈ Γ ∗ and
C ∈ Γ ∗. But since B,C �ε B ∧ C and B ∧ C �ε B and �ε C, this is the case iff
(B ∧ C) ∈ Γ ∗. Remaining cases: Exercise.

If t ≡ εx A(x), then valM,Φ,s(t) = Φ(valM,Φ,s(A(x))). Since valM,Φ,s(A(x)) is

represented by A(x) by induction hypothesis, we have valM,Φ,s(t) = ˜εx A(x) by
definition of Φ.

3.3 Semantics for ECε

In order to give a complete semantics for ECε, i.e., for the calculus without
the extensionality axiom (ext), it is necessary to change the notion of choice
function so that two ε-terms εx A(x) and εx B(x) may be assigned different
representatives even when M, Φ, s |= ∀x(A(x) ↔ B(x)), since then the negation
of (ext) is consistent in the resulting calculus. The idea is to add the ε-term
itself as an additional argument to the choice function. However, in order for
this semantics to be sound for the calculus—specifically, in order for (=2) to be
valid—we have to use not ε-terms but ε-types.

36 R. Zach

Definition 37. An intensional choice operator is a mapping Ψ : Typ×|M|<ω →
|M|℘(|M|) such that for every type p = εx A(x; y1, . . . , yn) is a type, and m1,
. . . , mn ∈ |M|, Ψ(p,m1, . . . ,mn) is a choice function.

Definition 38. If M is a structure, Ψ an intensional choice operator, and s
an assignment, valM,Ψ,s(t) and M, Ψ, s |= A is defined as before, except (6) in
Definition 20 is replaced by:

(6′) valM,Ψ,s(εx A(x)) = Ψ(p,m1, . . . ,mn)(valM,Φ,s(A(x))) where

(a) p = εx A′(x;x1, . . . , xn) is the type of εx A(x),
(b) t1, . . . , tn are the subterms corresponding to x1, . . . , xn, i.e., εx A(x) ≡

εx A′(x; t1, . . . , tn),
(c) mi = valM,Ψ,s(t)1, and
(d) valM,Φ,s(A(x)) = {m ∈ |M| : M, Ψ, s[x/m] |= A(x)}

The soundness and completeness proofs generalize to ECε, EC=
ε , and ECε∀.

4 The First Epsilon Theorem

4.1 The Case Without Identity

Definition 39. An ε-term e is critical in π if A(t) → A(e) is one of the critical
formulas in π. The rank rk(π) of a proof π is the maximal rank of its critical
ε-terms. The r-degree deg(π, r) of π is the maximum degree of its critical ε-terms
of rank r. The r-order o(π, r) of π is the number of different (up to renaming of
bound variables) critical ε-terms of rank r.

Lemma 40. If e = εx A(x), εy B(y) are critical in π, rk(e) = rk(π), and B∗ ≡
B(u) → B(εy B(y)) is a critical formula in π. Then, if e is a subterm of B∗, it
is a subterm of B(y) or a subterm of u.

Proof. Suppose not. Since e is a subterm of B∗, we have B(y) ≡ B′(εx A′(x, y), y)
and either e ≡ εx A′(x, u) or e ≡ εx A′(x, εy B(y)). In each case, we see that
εx A′(x, y) and e have the same rank, since the latter is an instance of the former
(and so have the same type). On the other hand, in either case, εy B(y) would be

εy B′(εx A′(x, y), y)

and so would have a higher rank than εx A′(x, y) as that ε-term is subordinate
to it. This contradicts rk(e) = rk(π).

Lemma 41. Let e, B∗ be as in the lemma, and t be any term. Then

1. If e is not a subterm of B(y), B∗{e/t} ≡ B(u′) → B(εy B(y)).
2. If e is a subterm of B(y), i.e., B(y) ≡ B′(e, y), B∗{e/t} ≡ B′(t, u′) →

B′(t, εy B′(t, y)).

Semantics and Proof Theory of the Epsilon Calculus 37

Lemma 42. If �π
ε E and E does not contain ε, then there is a proof π′ such

that �π′
ε E and rk(π′) ≤ rk(pi) = r and o(π′, r) < o(π, r).

Proof. Let e be an ε-term critical in π and let A(t1) → A(e), dots, A(tn) → A(e)
be all its critical formulas in π.

Consider π{e/t}i, i.e., π with e replaced by ti throughout. Each critical for-
mula belonging to e now is of the form A(t′j) → A(ti), since e obviously cannot
be a subterm of A(x) (if it were, e would be a subterm of εx A(x), i.e., of itself!).
Let π̂i be the sequence of tautologies A(ti) → (A(t′j) → A(ti)) for i = 1, . . . , n,
followed by π{e/t}i. Each one of the formulas A(t′j) → A(ti) follows from one of
these by (MP) from A(ti). Hence, A(ti) �π̂i

ε E. Let πi = π̂i[Ai] as in Lemma 13.
We have �πi

ε Ai → E.
The ε-term e is not critical in πi: Its original critical formulas are replaced by

A(ti) → (A(t′j) → A(ti)), which are tautologies. By (1) of the preceding Lemma,
no critical ε-term of rank r was changed at all. By (2) of the preceding Lemma,
no critical ε-term of rank < r was replaced by a critical ε-term of rank ≥ r.
Hence, o(πi, r) = o(π) − 1.

Let π′′ be the sequence of tautologies ¬
∨n

i=1 A(ti) → (A(ti) → A(e)) followed
by π. Then

∨n
i=1 A(ti) �π′′

E , e is not critical in π′′, and otherwise π and π′′

have the same critical formulas. The same goes for π′′[¬
∨

A(ti)], a proof of
¬

∨
A(ti) → E.

We now obtain π′ as the πi, i = 1, . . . , n, followed by π[¬
∨n

i=1 A(ti)], followed
by the tautology

(¬
∨

A(ti) → E) → (A(t1) → E) → · · · → (A(tn) → E) → E) . . .)

from which E follows by n + 1 applications of (MP).

Theorem 43 (First Epsilon Theorem for ECε). If E is a formula not con-
taining any ε-terms and �ε E, then �ε E.

Proof. By induction on o(π, r), we have: if �π
ε E, then there is a proof π∗ of

E with rk(π−) < r. By induction on rk(()π) we have a proof π∗∗ of E with
rk(π∗∗) = 0, i.e., without critical formulas at all.

Corollary 44 (Extended First ε-Theorem). If �ε E(e1, . . . , en), then �∨m

i=1

E(tj1, . . . , t
j
n) for some terms tj (in EC).

Proof. If E contains ε-terms, say, E is E(e1, . . . , en), then replacement of
ε-terms in the construction of πi may change E—but of course only the ε-terms
appearing as subterms in it. In each step we obtain not a proof of E but of some
disjunction of instances E(e′

1, . . . , e
′
n). For details, see [18].

4.2 The Case with Identity

In the presence of the identity (=) predicate in the language, things get a bit
more complicated. The reason is that instances of the (=2) axiom schema,

t = u → (A(t) → A(u))

38 R. Zach

may also contain ε-terms, and the replacement of an ε-term e by a term ti in
the construction of πi may result in a formula which no longer is an instance of
(=2). For instance, suppose that t is a subterm of e = e′(t) and A(t) is of the
form A′(e′(t)). Then the original axiom is

t = u → (A′(e′(t)) → A′(e′(u))

which after replacing e = e′(t) by ti turns into

t = u → (A′(ti) → A′(e′(u)).

So this must be avoided. In order to do this, we first observe that just as in
the case of the predicate calculus, the instances of (=2) can be derived from
restricted instances. In the case of the predicate calculus, the restricted axioms
are

t = u → (Pn(s1, . . . , t, . . . sn) → Pn(s1, . . . , u, . . . , sn) (=′
2)

t = u → fn(s1, . . . , t, . . . , sn) = fn(s1, . . . , u, . . . , sn) (=′′
2)

to which we have to add the ε-identity axiom schema:

t = u → εx A(x; s1, . . . , t, . . . sn) = εx A(x; s1, . . . , u, . . . sn) (=ε)

where εx A(x;x1, . . . , xn) is an ε-type.

Proposition 45. Every instance of (=2) can be derived from (=′
2), (=′′

2),
and (=ε).

Proof. By induction.

Now replacing every occurrence of e in an instance of (=′
2) or (=′′

2)—where
e obviously can only occur inside one of the terms t, u, s1, . . . , sn—results in a
(different) instance of (=′

2) or (=′′
2). The same is true of (=ε), provided that the

e is neither εx A(x; s1, . . . , t, . . . sn) nor εx A(x; s1, . . . , u, . . . sn). This would be
guaranteed if the type of e is not εx A(x;x1, . . . , xn), in particular, if the rank of
e is higher than the rank of εx A(x;x1, . . . , xn). Moreover, the result of replacing
e by ti in any such instance of (=ε) results in an instance of (=ε) which belongs
to the same ε-type. Thus, in order for the proof of the first ε-theorem to work
also when = and axioms (=1), (=′

2), (=′′
2), and (=ε) are present, it suffices to

show that the instances of (=ε) with ε-terms of rank rk(π) can be removed. Call
an ε-term e special in π, if π contains an occurrence of t = u → e′ = e as an
instance of (=ε).

Theorem 46. If �π
ε= E, then there is a proof π= so that �π=

ε= E, rk(π=) =
rk(pi), and the rank of the special ε-terms in π= has rank < rk(π).

Proof. The basic idea is simple: Suppose t = u → e′ = e is an instance of (=ε),
with e′ ≡ εx A(x; s1, . . . , t, . . . sn) and e ≡ εx A(x; s1, . . . , u, . . . sn). Replace e

Semantics and Proof Theory of the Epsilon Calculus 39

everywhere in the proof by e′. Then the instance of (=ε) under consideration is
removed, since it is now provable from e′ = e′. This potentially interferes with
critical formulas belonging to e, but this can also be fixed: we just have to show
that by a judicious choice of e it can be done in such a way that the other (=ε)
axioms are still of the required form.

Let p = εx A(x;x1, . . . , xn) be an ε-type of rank rk(π), and let e1, . . . , el be
all the ε-terms of type p which have a corresponding instance of (=ε) in π. Let
Ti be the set of all immediate subterms of e1, . . . , el, in the same position as
xi, i.e., the smallest set of terms so that if ei ≡ εx A(x; t1, . . . , tn), then ti ∈ T .
Now let let T ∗ be all instances of p with terms from Ti substituted for the xi.
Obviously, T and thus T ∗ are finite (up to renaming of bound variables). Pick
a strict order ≺ on T which respects degree, i.e., if deg(t) < deg(u) then t ≺ u.
Extend ≺ to T ∗ by

εx A(x; t1, . . . , tn) ≺ εx A(x; t′1, . . . , t
′
n)

iff

1. max{deg(ti) : i = 1, . . . , n} < max{deg(ti) : i = 1, . . . , n} or
2. max{deg(ti) : i = 1, . . . , n} = max{deg(ti) : i = 1, . . . , n} and

(a) ti ≡ t′i for i = 1, . . . , k.
(b) tk+1 ≺ t′k+1

Lemma 47. Suppose �π
ε= E, e a special ε-term in π with rk(e) = rk(π), deg(e)

maximal among the special ε-terms of rank rk(π), and e maximal with respect to
≺ defined above. Let t = u → e′ = e be an instance of (=ε) in π. Then there is
a proof π′, �π′

ε= E such that

1. rk(π′) = rk(π)
2. π′ does not contain t = u → e′ = e as an axiom
3. Every special ε-term e′′ of π′ with the same type as e is so that e′′ ≺ e.

Proof. Let π0 = π{e/e′} and suppose t′ = u′ → e′′′ = e′′ is an (=ε) axiom in π.
If rk(e′′) < rk(e), then the replacement of e by e′ can only change subterms

of e′′ and e′′′. In this case, the uniform replacement results in another instance
of (=ε) with ε-terms of the same ε-type, and hence of the same rank < rk(π),
as the original.

If rk(e′′) = rk(e) but has a different type than e, then this axiom is unchanged
in π0: Neither e′′ nor e′′′ can be ≡ e, because they have different ε-types, and
neither e′′ nor e′′′ (nor t′ or u′, which are subterms of e′′, e′′′) can contain e as
a subterm, since then e wouldn’t be degree-maximal among the special ε-terms
of π of rank rk(π).

If the type of e′′, e′′′ is the same as that of e, e cannot be a proper subterm of
e′′ or e′′′, since otherwise e′′ or e′′′ would again be a special ε-term of rank rk(π)
but of higher degree than e. So either e ≡ e′′ or e ≡ e′′′, without loss of generality
suppose e ≡ e′′. Then the (=ε) axiom in question has the form

t′ = u′ → εx A(x; s1, . . . t′, . . . sn)
︸ ︷︷ ︸

e′′′

= εx A(x; s1, . . . u′, . . . sn)
︸ ︷︷ ︸

e′′≡e

40 R. Zach

and with e replaced by e′:

t′ = u′ → εx A(x; s1, . . . t′, . . . sn)
︸ ︷︷ ︸

e′′′

= εx A(x; s1, . . . t, . . . sn)
︸ ︷︷ ︸

e′

which is no longer an instance of (=ε), but can be proved from new instances
of (=ε). We have to distinguish two cases according to whether the indicated
position of t and t′ in e′, e′′′ is the same or not. In the first case, u ≡ u′, and the
new formula

t′ = u → εx A(x; s1, . . . t′, . . . sn)
︸ ︷︷ ︸

e′′′

= εx A(x; s1, . . . t, . . . sn)
︸ ︷︷ ︸

e′

can be proved from t = u together with

t′ = t → εx A(x; s1, . . . t′, . . . sn)
︸ ︷︷ ︸

e′′′

= εx A(x; s1, . . . t, . . . sn)
︸ ︷︷ ︸

e′

(=ε)

t = u → (t′ = u → t′ = t) (=′
2)

Since e′ and e′′′ already occurred in π, by assumption e′, e′′′ ≺ e.
In the second case, the original formulas read, with terms indicated:

t = u → εx A(x; s1, . . . t, . . . , u′, . . . , sn)
︸ ︷︷ ︸

e′

= εx A(x; s1, . . . u, . . . , u′, . . . , sn)
︸ ︷︷ ︸

e

t′ = u′ → εx A(x; s1, . . . u, . . . , t′, . . . , sn)
︸ ︷︷ ︸

e′′′

= εx A(x; s1, . . . u, . . . , u′, . . . , sn)
︸ ︷︷ ︸

e′′≡e

and with e replaced by e′ the latter becomes:

t′ = u′ → εx A(x; s1, . . . u, . . . , t′, . . . sn)
︸ ︷︷ ︸

e′′′

= εx A(x; s1, . . . t, . . . , u′, . . . , sn)
︸ ︷︷ ︸

e′

This new formula is provable from t = u together with

u = t → εx A(x; s1, . . . u, . . . , t′, . . . sn)
︸ ︷︷ ︸

e′′′

= εx A(x; s1, . . . t, . . . , t′, . . . , sn)
︸ ︷︷ ︸

e′′′′

t′ = u′ → εx A(x; s1, . . . t, . . . , t′, . . . sn)
︸ ︷︷ ︸

e′′′′

= εx A(x; s1, . . . t, . . . , u′, . . . , sn)
︸ ︷︷ ︸

e′

and some instances of (=′
2). Hence, π′ contains a (possibly new) special ε-

term e′′′′. However, e′′′′ ≺ e.
In the special case where e = e′′ and e′ = e′′′, i.e., the instance of (=ε) we

started with, then replacing e by e′ results in t = u → e′ = e′, which is provable
from e′ = e′, an instance of (=1).

Semantics and Proof Theory of the Epsilon Calculus 41

Let π1 be π0 with the necessary new instances of (=ε), added. The instances
of (=ε) in π1 satisfy the properties required in the statement of the lemma.

However, the results of replacing e by e′ may have impacted some of the crit-
ical formulas in the original proof. For a critical formula to which e ≡ εx A(x, u)
belongs is of the form

A(t′, u) → A(εx A(x, u), u) (1)

which after replacing e by e′ becomes

A(t′′, u) → A(εx A(x, t), u) (2)

which is no longer a critical formula. This formula, however, can be derived from
t = u together with

A(t′′, u) → A(εx A(x, t), u) (ε)
t = u → (A(εx A(x, t), t) → A(εx A(x, t), u)) (=2)
u = t → (A(t′′, u) → A(t′′, t)) (=2)

Let π2 be π1 plus these derivations of (2) with the instances of (=2) them-
selves proved from (=′

2) and (=ε). The rank of the new critical formulas is the
same, so the rank of π2 is the same as that of π. The new instances of (=ε)
required for the derivation of the last two formulas only contain ε-terms of lower
rank that that of e, as can be verified.

π2 is thus a proof of E from t = u which satisfies the conditions of the lemma.
From it, we obtain a proof π2[t = u] of t = u → E by the deduction theorem.
On the other hand, the instance t = u → e′ = e under consideration can also
be proved trivially from t �= u. The proof π[t �= u] thus is also a proof, this time
of t �= u → E, which satisfies the conditions of the lemma. We obtain π′ by
combining the two proofs.

Theorem 48 (First Epsilon Theorem for EC=
ε). If E is a formula not con-

taining any ε-terms and �ε= E, then �= E (in EC=).

Proof. By repeated application of the Lemma, every instance of (=ε) involving
ε-terms of a given type p can be eliminated from π. The Theorem follows by
induction on the number of different types of special ε-terms of rank rk(π) in π.

5 Proof Theory of the Epsilon Calculus

5.1 Sequent Calculi

Leisenring [12] presented a one-sided sequent calculus for the ε-calculus. It oper-
ates on sets of formulas (sequents); proofs are trees of sets of formulas each of
which is either an axiom (at a leaf of the tree) or follows from the sets of formulas
above it by an inference rule. Axioms are A,¬A. The rules are given below:

42 R. Zach

Γ,A Γ,B

Γ,A ∧ B
∧R

Γ,¬A,¬B

Γ,¬(A ∧ B) ∧L
Γ,A

Γ,¬¬A
¬¬

Γ,A,B

Γ,A ∨ B
∨R

Γ,¬A Γ,¬B

Γ,¬(A ∨ B) ∨L
Π,A Λ,¬A

Π,Λ cut

Γ,A(t)
Γ,∃xA(x) ∃R

Γ,¬A(εx A(x))
Γ,¬∃xA(x) ∃L

Γ,A

Γ,A,B
w

Γ,A(εx ¬A(x))
Γ,∀xA(x) ∀R

Γ,¬A(t)
Γ,¬∀xA(x) ∀L

In contrast to classical sequent systems, there are no eigenvariable conditions!
It is complete, since proofs can easily be translated into derivations in ECε;

in particular it derives critical formulas:

¬A(t), A(t)

¬A(t), ∃xA(x)
∃R

¬A(εx A(x)), A(εx A(x))

¬∃xA(x) , A(εx A(x))
∃L

¬A(t), A(εx A(x))
cut

This sequent, however, has no cut-free proof.
Maehara [13] instead proposed to simply add axioms corresponding to to

critical formulas and leave out quantifier rules. Hence, its axioms are ¬A,A and
¬A(t), A(εx A(x)). It is complete, since the additional axioms allow derivation of
critical formulas. However, it is also not cut-free complete. Converses of critical
formulas are derivable using cut:

¬¬A(t) ,¬A(εx ¬A(x)) ¬A(t) , A(t)

¬A(εx ¬A(x)), A(t)
cut

But these obviously have no cut-free proof. Furthermore, addition of these con-
verses as axioms will not result in a cut-free complete system, either. Consider
the example given by Wessels: Let e = εx ¬(A(x) ∨ B(x)).

¬¬(A(t) ∨ B(t)) ,¬(A(e) ∨ B(e))
.... cut

¬(A(e) ∨ B(e)) , A(t) ∨ B(t)

¬A(e), A(e)

¬A(e), A(e) ∨ B(e)
∨R

¬A(εx ¬(A(x) ∨ B(x))), A(t) ∨ B(t)
cut

Wessels [20] proposed to add instead the following rule to the propositional
one-sided sequent calculus:

Γ,Δ(z),¬A(z) Γ,A(t)
Γ,Δ(εx A(x))

ε0

Semantics and Proof Theory of the Epsilon Calculus 43

Here, Δ(z) must be not empty, and z may not occur in the lower sequent. This
system also derives critical formulas, and so is complete:

A(z),¬A(z)
¬A(t)
︸ ︷︷ ︸

Γ

, A(a)
︸︷︷︸

Δ

,¬A(z)
w

¬A(t)
︸ ︷︷ ︸

Γ

, A(t)

¬A(t), A(εx A(x))
ε0

The rule ε0 is sound.3

Wessels offered a cut-elimination proof for her system. However, the proof
relied on a false lemma to which Maehara gave a counterexample.

Wessels’ Lemma. If � Γ,Δ(εx A(x)) then � Γ,Δ(z),¬A(z).

Let A(x) = P (x, εy Q(εu P (u, y))), Δ(z) = Q(z), and Γ = ¬Q(εx B(x,w)).
Then

¬Q(εx P (x,w))
︸ ︷︷ ︸

Γ

, Q(εx P (x, εy Q(εu P (u, y))))
︸ ︷︷ ︸

Δ(εx A(x))

is derivable, since it is of the form ¬B(w), B(εy B(y)). However, the correspond-
ing sequent in the consequent of the lemma,

¬Q(εx P (x,w))
︸ ︷︷ ︸

Γ

, Q(z)
︸ ︷︷ ︸
Δ(z)

,¬P (z, εy Q(εu P (u, y)))
︸ ︷︷ ︸

¬A(z)

is not derivable, because not valid.4

Mints (in a review of Wessels’ paper) proposed the following rule instead:

Γ,Δ(εx A(x)),¬A(εx A(x)) Γ,A(t)
Γ,Δ(εx A(x))

ε1

It, too, derives all critical formulas:

A(εx A(x)),¬A(εx A(x))
¬A(t)
︸ ︷︷ ︸

Γ

, A(εx A(x))
︸ ︷︷ ︸

Δ

,¬A(εx A(x))
w

¬A(t)
︸ ︷︷ ︸

Γ

, A(t)

¬A(t), A(εx A(x))
ε1

3 Suppose the upper sequents are valid but the lower sequent is not, i.e., for some
M, Ψ, s, M �|= Γ, Δ(εx A(x)). In particular, M, Ψ, s �|= Γ . Hence, M, Ψ, s |= A(t),
i.e., M, Ψ, s |= A′(t, t1, . . . , tn), as the right premise is valid. So valM,Ψ,s(t) ∈
valM,Ψ,s(A(x)). Now let s(z) = valM,Ψ,s(εx A′(x, t1, . . . , tn)). Then M, Ψ, s |= A(z)
and so M, Ψ, s �|= ¬A(z). Since the left premise is valid, M, Ψ, s |= Δ(z). But also
M, Ψ, s �|= Δ(z) since M, Ψ, s �|= Δ(εx A(x)).

4 Let |M| = {1, 2}, QM = {1}, PM = {〈1, 2〉, 〈2, 2〉}, s(z) = s(w) = 2. Since 〈1, 2〉 ∈
PM , we can choose Ψ so that valM,Ψ,s(εx P (x, 2)) = 1. So M, Ψ, s �|= ¬Q(εx P (x, w)).
Also, M, Ψ, s �|= Q(z). As valM,Ψ,s(εu P (u, 2)) = 1 and 1 ∈ QM , we can also fix Ψ so
that valM,Ψ,s(εy Q(εu P (u, y))) = 2. But then M, Ψ, s �|= ¬P (z, εy Q(εu P (u, y))).).

44 R. Zach

The system was developed in detail by Yasuhara [21]. The Mints-Yasuhara sys-
tem is cut-free complete. However, it is not known if the sequent has a cut-
elimination theorem that transforms a proof with cuts successively into one
without cuts. Both Gentzen’s and Tait’s approach to cut-elimination do not
seem to work. In a Gentzen-style proof, the main induction is on on cut length,
i.e., the height of the proof tree above an uppermost cut. In the induction step,
a cut is permuted upward to reduce the cut length. For instance, we replace the
subproof proof ending in a cut

.... π

Π, A

.... π′

¬A,Λ, B(t)

¬A ,Λ,∃xB(x)
∃R

Π,Λ,∃x B(x)
cut

by

.... π

Π, A

.... π′

¬A ,Λ, B(t)

Π,Λ, B(t)
cut

Π,Λ,∃xB(x) ∃R

To permute a cut across the ε1 rule:

.... π

Π, A

.... π′

¬A,Γ,Δ(εx B(x)),¬B(εx B(x))

.... π′′

Γ,B(t)

¬A ,Γ,Δ(εx B(x))
ε1

Π,Γ,Δ(εx B(x))
cut

one might try to replace the proof tree with
.... π

Π, A

.... π′

¬A ,Γ,Δ(εx B(x)),¬B(εx B(x))

Π,Γ,Δ(εx B(x)),¬B(εx B(x))
cut

.... π′′

Γ,B(t)
Γ,Δ(εx B(x))

ε1

However, here the condition on ε1 is violated if ¬A is in Δ.
In a Tait-style cut elimination proof, the main induction is on cut rank, i.e.,

complexity of the cut formula. In the induction step, the complexity of the cut
formula is reduced. For instance, if a subproof ends in a cut

.... π

Π, ¬(A ∧ B)

.... π′

Λ, A ∧ B

Π,Λ cut

we replace it with
.... π1

Π, ¬A ,¬B

.... π′
1

Λ, A

Π,Λ, ¬B
cut

.... π′
2

Λ, B

Π,Λ cut

Semantics and Proof Theory of the Epsilon Calculus 45

This approach requires inversion lemmas. A typical case is: If π′ � Π,A ∧ B
then there is a π′

1 � Π,A of cut rank and length ≤ that of π′. In the proof of
the inversion lemma, one replaces all ancestors of A ∧ B in π′ by A and “fixes”
those rules that are no longer valid. For instance, replace

....
Γ,A

....
Γ,B

Γ,A
∧R by

....
Γ,A

But now consider a derivation π′ which contains the ε1 rule:5
....

Π,A ∧ B(εx C(x)),¬C(εx C(x))

....
Π,C(t)

Π,A ∧ B(εx C(x)
ε1

The inversion lemma produces
....

Π,A,¬C(εx C(x))

....
Π,C(t)

Π,A
ε1

This, again, no longer satisfies the condition of ε1.

Open Problem 49. Prove cut-elimination for the Mints-Yasuhara system, or
give a similarly simple sequent calculus for which it can be proved.

5.2 Natural Deduction

In Gentzen’s classical natural deduction system NK, the quantifier rules are
given by

A(z)
∀xA(x) ∀I

∀xA(x)
A(t) ∀E

A(t)
∃xA(x) ∃I

∃xA(x)

[A(z)]....
C

B
∃E

where z must not appear in any undischarged assumptions (nor in A(x) or B).
Meyer Viol [15] has proposed a system in which the ∃E rule is replaced by

∃xA(x)
A(εx A(x))

∃Eε

and the following term rule is added

A(t)
A(εx A(x)) Iε

5 (A ∧ B(εx C(x)) is Δ(εx C(x)) in this case).

46 R. Zach

Open Problem 50. Does Meyer Viol’s system have a normal form theorem?

Adding ∃Eε and Iε to the intuitionistic system NJ results in a system that
is not conservative over intuitionistic logic. For instance, Plato’s principle, the
formula

∃x(∃y A(y) → A(x))

becomes derivable:
[∃y A(εx A(x))]

A(εx A(x))
∃Eε

∃y A(y) → A(εx A(x)) → I

∃x(∃y A(y) → A(x)) ∃I

However, the system also does not collapse to classical logic: it is conservative
for propositional formulas.

Intuitionistic natural deduction systems are especially intriguing, as Abadi,
Gonthier and Werner [1] have shown that a system of quantified propositional
intuitionistic logic with a choice operator εX can be given a Curry-Howard cor-
respondence via a type system which εX A(X) is a type such that the type A(X)
is inhabited. System E is paired with a simply typed λ-calculus that, in addition
to λ-abstraction and application, features implementation: 〈t : A with X = T 〉
of type A(εXA/X). If A(X) is a type specification of an interface with variable
type X, then A(T) for some type T is an implementation of that interface.

References

1. Abadi, M., Gonthier, G., Werner, B.: Choice in dynamic linking. In: Walukiewicz,
I. (ed.) FoSSaCS 2004. LNCS, vol. 2987, pp. 12–26. Springer, Heidelberg (2004).
doi:10.1007/978-3-540-24727-2 3

2. Abiteboul, S., Vianu, V.: Non-determinism in logic-based languages. Ann. Math.
Artif. Intell. 3(2–4), 151–186 (1991)

3. Asser, G.: Theorie der logischen Auswahlfunktionen. Z. Math. Logik Grundlag.
Math. 3, 30–68 (1957)

4. Avigad, J., Zach, R.: The epsilon calculus. In: Zalta, E.N. (ed.) The Stanford
Encyclopedia of Philosophy (Summer 2016th edn. (2016). http://plato.stanford.
edu/entries/epsilon-calculus/

5. Bell, J.L.: Hilbert’s epsilon-operator and classical logic. J. Philos. Logic 22, 1–18
(1993)

6. Blass, A., Gurevich, Y.: The logic of choice. J. Symbolic Logic 65, 1264–1310 (2000)
7. DeVidi, D.: Intuitionistic epsilon- and tau-calculi. Math. Logic Q. 41, 523–546

(1995)
8. von Heusinger, K.: The reference of indefinites. In: von Heusinger, K., Egli, U.

(eds.) Reference and Anaphoric Relations, pp. 247–265. Kluwer, Dordrecht (2000)
9. von Heusinger, K.: Choice functions and the anaphoric semantics of definite NPs.

Res. Lang. Comput. 2, 309–329 (2004)
10. Hilbert, D.: Neubegründung der Mathematik: Erste Mitteilung. Abhandlungen aus

dem Seminar der Hamburgischen Universität 1, 157–77 , series of talks given at
the University of Hamburg, July 25–27, 1921. English in [14], pp. 198–214 (1922)

http://dx.doi.org/10.1007/978-3-540-24727-2_3
http://plato.stanford.edu/entries/epsilon-calculus/
http://plato.stanford.edu/entries/epsilon-calculus/

Semantics and Proof Theory of the Epsilon Calculus 47

11. Hilbert, D., Bernays, P.: Grundlagen der Mathematik. Springer, Berlin (1939)
12. Leisenring, A.: Mathematical Logic and Hilbert’s ε-symbol. MacDonald Technical

and Scientific, London (1969)
13. Maehara, S.: The predicate calculus with ε-symbol. J. Math. Soc. Japan 7, 323–344

(1955)
14. Mancosu, P. (ed.): From Brouwer to Hilbert. The Debate on the Foundations of

Mathematics in the 1920s. Oxford University Press, New York (1998)
15. Meyer Viol, W.P.M.: Instantial Logic. An Investigation into Reasoning with

Instances. ILLC Dissertation Series 1995–11. ILLC, Amsterdam (1995)
16. Mints, G., Sarenac, D.: Completeness of indexed epsilon-calculus. Arch. Math.

Logic 42, 617–625 (2003)
17. Mints, G.: Heyting predicate calculus with epsilon symbol. J. Soviet Math. 8, 317–

323 (1977)
18. Moser, G., Zach, R.: The epsilon calculus and herbrand complexity. Stud. Logica.

82(1), 133–155 (2006)
19. Otto, M.: Epsilon-logic is more expressive than first-order logic over finite struc-

tures. J. Symbolic Logic 65(4), 1749–1757 (2000)
20. Wessels, L.: Cut elimination in a Gentzen-style ε-calculus without identity. Z.

Math. Logik Grundlag. Math. 23, 527–538 (1977)
21. Yashahura, M.: Cut elimination in ε-calculi. Z. Math. Logik Grundlag. Math. 28,

311–316 (1982)

Neighbourhood Contingency Bisimulation

Zeinab Bakhtiari1, Hans van Ditmarsch1,2, and Helle Hvid Hansen3,4(B)

1 LORIA, CNRS — Université de Lorraine, Nancy, France
2 Institute for Mathematical Sciences, Chennai, India

3 Delft University of Technology, Delft, The Netherlands
h.h.hansen@tudelft.nl

4 CWI, Amsterdam, The Netherlands

Abstract. We introduce a notion of bisimulation for contingency logic
interpreted on neighbourhood structures, characterise this logic as
bisimulation-invariant fragment of modal logic and of first-order logic,
and compare it with existing notions in the literature.

1 Introduction

A proposition is non-contingent if it is necessarily true or necessarily false, and
otherwise it contingent. The notion of (non-)contingency goes back to Aristotle
[1]. The modal logic of contingency goes back to Montgomery and Routley [14].
They captured non-contingency by an operator Δ such that Δϕ means that
formula ϕ is non-contingent (and where ∇ϕ means that ϕ is contingent). In an
epistemic modal logic, ‘ϕ is non-contingent’ means that you know whether ϕ,
and ‘ϕ is contingent’ means that you are ignorant about ϕ [8,10,18]. Contin-
gency is definable with necessity: Δϕ is definable as �ϕ ∨ �¬ϕ. But necessity
cannot always be defined with non-contingency. The definability of � with Δ has
been explored in various studies [7,14,16]. In [7] the almost-definability schema
∇ψ → (�ϕ ↔ (Δϕ∧Δ(ψ → ϕ))) is proposed — as long as there is a contingent
proposition ψ, � is definable with Δ; which inspired a matching notion of con-
tingency bisimulation: back and forth only apply when non-bisimilar accessible
worlds exist.

Schemas such as Δ(ϕ ∧ ψ) → (Δϕ ∧ Δψ) are invalid for the non-contingency
operator. The operator Δ is therefore not monotone, and the logic of contingency
is not a normal modal logic. Non-normal logics are standardly interpreted on
neighbourhood models [2,13,17]. Fan and Van Ditmarsch proposed in [6] to
interpret the contingency operator on neighbourhood models. They left as an
open question what a suitable notion of contingency bisimulation would be over
neighbourhood models. We answer this question here.

We introduce a notion of neighbourhood Δ-bisimilarity, inspired by the
semantics of the Δ-modality and [9], where different notions of structural invari-
ance among neighbourhood models were studied. By way of augmented neigh-
bourhood models and their correspondence to Kripke models we can provide a
detailed comparison to the bisimulations of [7]. We show that the two notions

c© Springer-Verlag GmbH Germany 2017
S. Ghosh and S. Prasad (Eds.): ICLA 2017, LNCS 10119, pp. 48–63, 2017.
DOI: 10.1007/978-3-662-54069-5 5

Neighbourhood Contingency Bisimulation 49

differ at the level of relations, but the ensuing bisimilarity notions coincide. Fur-
thermore, we investigate the notions of Δ-morphisms and Δ-quotients and prove
some analogues of results from [9]. These are instrumental in proving our two
characterisation theorems (similar to [7, Theorems 4.4 and 4.5]): neighbourhood
contingency logic is the Δ-bisimulation invariant fragment of classical modal
logic, and of first-order logic.

Section 2 provides preliminaries. Section 3 recalls contingency logic over
Kripke models and introduces different perspectives on relational contingency
bisimulation. Section 4 introduces neighbourhood contingency bisimulation and
studies its properties, and it is followed by the characterisation results in Sect. 5.
The concluding Sect. 6 reflects on the relevance of our work and indicates future
directions. Due to space limitations, some proofs have been omitted. They will
be included in the extended version.

2 Coherence

We assume that the reader is familiar with the standard notions of sets, functions
and relations. The following is merely to recall notation and to introduce the
crucial notion of coherence. Given U ⊆ X, we denote by U c the complement of
U in X. The disjoint union of two sets X1 and X2 is denoted by X1 + X2 and
the inclusion maps by ιi : Xi → X1 + X2, i = 1, 2. Given a function f : X → Y ,
the f -image of U ⊆ X is f [U] = {f(x) ∈ Y | x ∈ U}, and the inverse f -
image of V ⊆ Y is f−1[V] = {x ∈ X | f(x) ∈ V }. The graph of f is the
relation Gr(f) = {(x, f(x)) ⊆ X × Y | x ∈ X}. The kernel of f is the relation
ker(f) = {(x, y) ∈ X × X | f(x) = f(y)}. Let R ⊆ X × Y be a relation. The
R-image of U ⊆ X is the set R[U] = {y ∈ Y | ∃x ∈ U : (x, y) ∈ R}, and the
inverse R-image of V ⊆ Y is R−1[V] = {x ∈ X | ∃y ∈ V : (x, y) ∈ R}.

Given a relation R ⊆ X × Y , the converse of R is written R−1 ⊆ Y × X, the
composition of R and S ⊆ Y × Z is R;S ⊆ X × Z. For the reflexive, symmetric,
and transitive closure we employ, respectively, Rr, Rs, and R+ such that the
equivalence closure can be defined as Re = ((Rr)s)+. If R is an equivalence
relation, we often write [x]R (or simply [x]) instead of R(x).

Definition 1 (R-coherent pairs). Let R ⊆ X × Y be a relation, U ⊆ X
and V ⊆ Y . The pair (U, V) is R-coherent if R[U] ⊆ V and R−1[V] ⊆ U , or
equivalently, for all (x, y) ∈ R, x ∈ U iff y ∈ V . Given a relation R ⊆ X × X,
we say that U ⊆ X is R-closed if (U,U) is R-coherent.

Note that if R is reflexive and (U,U ′) is R-coherent, then U = U ′.

3 Contingency Logic

In this section we introduce basic modal logic and contingency logic on Kripke
models, and contingency bisimulation following [7,8]. We also compare that to
a novel notion of relational contingency bisimulation in terms of coherence.

50 Z. Bakhtiari et al.

Definition 2 (Languages). Let AtProp be a set of atomic propositions. The
languages L� and LΔ are generated by the following grammars:

L�
 ϕ :: = p ∈ AtProp | ¬ϕ | ϕ ∧ ϕ | �ϕ
LΔ
 ϕ :: = p ∈ AtProp | ¬ϕ | ϕ ∧ ϕ | Δϕ

The other Boolean connectives ⊥,�, ∨ and ↔ are defined in the usual way.

The formula �ϕ should be read as “ϕ is necessarily true”, and the formula Δϕ
as “ϕ is non-contingent”. The language LΔ can be viewed as a fragment of L�
via an inductively defined translation (−)t : LΔ → L� with only non-trivial
clause (Δϕ)t = �ϕt ∨ �¬ϕt.

Definition 3 (Kripke models). A (Kripke) frame is a pair F = (S,R) where
S is a set (of states), and R ⊆ S ×S is an accessibility relation. A Kripke model
is a triple M = (S,R, V) where (S,R) is a frame and where V : AtProp → P(S)
is a valuation. Given ,∈ S, a pair (M, s) is a pointed model.

Definition 4. Let M = (S,R, V) be a Kripke model, and s ∈ S. The interpre-
tation of formulas from L� and LΔ is defined inductively in the usual manner:

M, s |= p iff s ∈ V (p)
M, s |= ϕ ∧ ψ iff M, s |= ϕandM, s |= ψ
M, s |= ¬ϕ iff M, s
|= ϕ
M, s |= �ϕ iff for all t ∈ R(s) : M, t |= ϕ
M, s |= Δϕ iff for all t1, t2 ∈ R(s) : (M, t1 |= ϕ ⇔ M, t2 |= ϕ).

where p ∈ AtProp. We say that (M, s) and (M ′, s′) are modally LΔ-equivalent
(notation: (M, s) ≡Δ (M ′, s′)) if for all ϕ ∈ LΔ, M, s |= ϕ iff M ′, s′ |= ϕ.

For all Kripke models M , states s in M , and all ϕ ∈ LΔ, M, s |= ϕ iff M, s |= ϕt.
We assume the reader is familiar with standard relational bisimulations (for

�). In [7], Fan, Wang and Van Ditmarsch defined a weaker notion (for Δ) which
we refer to as o-Δ-bisimulation for “original Δ-bisimulation”.

Definition 5 (o-Δ-bisimulation [7]). Let M = (S,R, V) be a Kripke model.
A relation Z ⊆ S × S is an o-Δ-bisimulation on M , if whenever (s, s′) ∈ Z:
(Atoms) s and s′ satisfy the same propositional variables;
(Δ−Zig) for all t ∈ R(s), if there are t1, t2 ∈ R(s) such that (t1, t2) /∈ Z, then
there is a t′ ∈ R(s′) such that (t, t′) ∈ Z;
(Δ−Zag) for all t′ ∈ R(s′), if there are t′1, t

′
2 ∈ R(s′) such that (t′1, t

′
2) /∈ Z, then

there is a t ∈ R(s) such that (t, t′) ∈ Z.
We write (M, s)≈on

Δ (M, s′), if there is an o-Δ-bisimulation on M that con-
tains (s, s′). Two pointed models (M, s) and (M ′, s′) are o-Δ-bisimilar, written
(M, s)≈Δ(M ′, s′), if (M + M ′, ι1(s))≈on

Δ (M + M ′, ι2(s′)), i.e., there is an o-Δ-
bisimulation on the disjoint union of M and M ′ linking (the injection images
of) s and s′.

Neighbourhood Contingency Bisimulation 51

Note that (M, s) ≈Δ (M ′, s′) is not witnessed by a relation Z ⊆ S ×S′ since,
by definition, o-Δ-bisimulation relations always live on a single model.

We introduced the notation ≈on
Δ , since, a priori, it is not clear whether

(M, s) ≈on
Δ (M, s′) iff (M, s) ≈Δ (M, s′). At the end of this section (Propo-

sition 4), we will see that, in fact, this is true, and hence we could dispense with
the notation ≈on

Δ , but for now we keep writing ≈on
Δ for clarity.

Given a model M , we will also view ≈on
Δ as the relation on the state space

of M that contains all pairs (s, s′) such that (M, s) ≈on
Δ (M, s′). In order to

compare o-Δ-bisimilarity with our later notion (in Definition 6), we need the
following result.

Proposition 1. For all Kripke models M , the relation ≈on
Δ on M is an equiv-

alence relation, and itself an o-Δ-bisimulation on M .

Proposition 1 follows from the stronger result that o-Δ-bisimilarity is an
equivalence relation over the class of all pointed Kripke models [4,5]. This is quite
non-trivial to prove, since o-Δ-bisimulations are not closed under composition
(Example 1). Our proof relies on a number of closure properties. We must omit
details due to space limitations.

Lemma 1. The set of o-Δ-bisimulation relations on a Kripke model M is closed
under taking unions, converse, and transitive symmetric closure.

It is now easy to prove Proposition 1 using the closure properties of Lemma 1.
Proof of Proposition 1. By definition, the relation ≈on

Δ on M is the union of all o-
Δ-bisimulations on M , and hence the largest one. Reflexivity of ≈on

Δ follows since
the identity relation is an (o-Δ-)bisimulation. Symmetry follows from closure
under converse. For transitivity, we use that the composition of two bisimulations
is contained in the transitive symmetric closure of their union, which is again a
bisimulation.

On (relational) �-bisimilarity and o-Δ-bisimilarity it is known that �-
bisimilarity implies o-Δ-bisimilarity, but not vice versa [7, Proposition 3.4]; o-
Δ-bisimilarity implies LΔ-equivalence [7, Proposition 3.5], whereas the converse
only holds over saturated Kripke models [7, Proposition 3.9]; An L�-formula is
equivalent to an LΔ-formula iff it is invariant under o-Δ-bisimulation [7, Theo-
rem 4.4]. A first-order formula is equivalent to an LΔ-formula iff it is invariant
under o-Δ-bisimulation [7, Theorem 4.5]. o-Δ-bisimilarity is an o-Δ-bisimulation
[7, Proposition 3.13].

The notion of contingency bisimulation for neighbourhood models using
coherent sets, introduced later in Definition 9, has a natural analogue for Kripke
models. The definition is derived from the semantics of the Δ-modality.

Definition 6 (rel-Δ-bisimulation). Let M = (S,R, V) and M ′ = (S′, R′, V ′)
be Kripke models. A relation Z ⊆ S × S′ is a rel-Δ-bisimulation (for relational
Δ-bisimulation) between M and M ′, if whenever (s, s′) ∈ Z:
(Atoms) s and s′ satisfy the same propositional variables;
(Coherence) for all Z-coherent pairs (U,U ′):

(R(s) ⊆ U or R(s) ⊆ U c) iff (R′(s′) ⊆ U ′ or R′(s′) ⊆ U ′c)

52 Z. Bakhtiari et al.

We write (M, s) ∼betw
Δ (M ′, s′), if there is a rel-Δ-bisimulation between M

and M ′ that contains (s, s′). A rel-Δ-bisimulation on a model M is a rel-
Δ-bisimulation between M and M . We define the notion of rel-Δ-bisimilarity
between states in potentially different models via the disjoint union (analogously
to the notion of o-Δ-bisimilarity): Two pointed models (M, s) and (M ′, s′) are
rel-Δ-bisimilar, written (M, s) ∼Δ (M ′, s′), if (M + M ′, ι1(s)) ∼betw

Δ (M +
M ′, ι2(s′)), i.e.,. if there is a rel-Δ-bisimulation on M + M ′ that contains
(ι1(s), ι2(s′)).

In Proposition 4 we will see that over a single model ∼betw
Δ and ∼Δ coincide,

but in general they differ. At first it would seem more natural to define rel-Δ-
bisimilarity between pointed models as ∼betw

Δ . However, the following Example 1
(item 4) shows that this notion is too restrictive. The example also shows that,
in general, rel-Δ-bisimulations are different from o-Δ-bisimulations.

Example 1. Consider the four figures (and matching items below) where we
assume a single variable p to be false in all states of all models, except in figure
4 where p is true at s and t.

s t u

s1 s2 t1

M M ′ M ′′

1

Z1 Z2

Z1

Z1

s t

s1 s2

M,Z1

2

Z1

Z1

Z1

s t

s1 s2

M,Z2

3

Z2

Z2

s t

s1 s2

M1 M2

4

1 The composition of two o-Δ-bisimulations may not be an o-Δ-
bisimulation. Z1 and Z2 are o-Δ-bisimulations, but not Z1;Z2 = {(s, u)}, as
Δ-Zig fails.

2 A rel-Δ-bisimulation may not be an o-Δ-bisimulation. Z1 is not an o-Δ-
bisimulation, since Δ-Zig fails for (s, t) ∈ Z1. However, Z1 is a rel-Δ-bisimulation
on M . The Z1-coherent pairs are: ({s, s1, s2}, U ′) and (S,U ′) for all U ′ with
t ∈ U ′, ({t}, U ′) for all U ′ with t /∈ U ′, and (∅, ∅). Since R(s1) = R(s2) =
R(t) = ∅, (Coherence) for (s1, t) and (s2, t) is satisfied. For (s, t), e.g., for
({s, s1, s2}, {t}): R(s) = {s1, s2} ⊆ {s, s1, s2} and R(t) = ∅ ⊆ {t}, and for
({t}, {s1}): R(s) = {s1, s2} ⊆ {t}c and R(t) = ∅ ⊆ {s1}.

3 An o-Δ-bisimulation may not be a rel-Δ-bisimulation. Z2 is an o-Δ-
bisimulation, but not a rel-Δ-bisimulation, since ({s1}, {s2}) is Z2-coherent,
(s, t) ∈ Z2, and ∅ = R(t) ⊆ {s2}, but R(s) � {s1} and R(s) � {s1}c.

4 A rel-Δ-bisimulation on a disjoint union, but not between disjoints. The
pictured relation is a rel-Δ-bisimulation on M1 + M2, but there is no rel-Δ-
bisimulation between M1 and M2 linking s and t. The only candidate is {(s, t)},
but the coherent pair ({s, s1}, {t}) does not satisfy (Coherence). So (M1 +
M2, ι1(s)) ∼betw

Δ (M1 + M2, ι2(t)), but not (M1, s) ∼betw
Δ (M2, t).

Neighbourhood Contingency Bisimulation 53

Although the two notions of contingency bisimulations differ at the level of
relations, we can show that rel-Δ-bisimilarity coincides with o-Δ-bisimilarity.
We will need the following lemma.

Lemma 2. Let M = (S,R, V) be a Kripke model, and assume that Z ⊆ S×S is
an equivalence relation. Z is an o-Δ-bisimulation iff Z is a rel-Δ-bisimulation.

Proof. First, suppose Z is an o-Δ-bisimulation and (s, s′) ∈ Z. Since Z is an
equivalence relation, we need to show that for all Z-closed subsets U ,

(R(s) ⊆ U or R(s) ⊆ U c) iff (R(s′) ⊆ U or R(s′) ⊆ U c) (1)

To see that (1) holds, let R(s) ⊆ U or R(s) ⊆ U c, where U is Z-closed. Suppose
towards a contradiction that R(s′) ∩ U
= ∅ and R(s′) ∩ U c
= ∅. Then, there
are t1, t2 ∈ R(s′) such that t1 ∈ U and t2 ∈ U c. Since U is Z-closed, (t1, t2) /∈
Z. By applying Δ-Zag, there are s1, s2 ∈ R(s) such that (s1, t1), (s2, t2) ∈ Z.
From R(s) ⊆ U or R(s) ⊆ U c, we obtain t1, t2 ∈ U or t1, t2 ∈ U c, which is a
contradiction. Therefore, R(s′) ⊆ U or R(s′) ⊆ U c. The other direction of (1)
may be checked in a similar way.

Now, assume that Z is a rel-Δ-bisimulation, and let (s, s′) ∈ Z. (Atoms)
is immediate. For Δ-Zig, assume t, t1, t2 ∈ R(s) such that (t1, t2) /∈ Z. Suppose
towards a contradiction that there is no t′ ∈ R(s′) such that (t, t′) ∈ Z, then
Z(t) ∩ R(s′) = ∅ and hence R(s′) ⊆ (Z(t))c. As Z(t) is Z-closed and Z is a
rel-Δ-bisimulation we get by (Coherence) that R(s) ⊆ Z(t) or R(s) ⊆ (Z(t))c.
But R(s) ⊆ Z(t) is false since (t1, t2) /∈ Z, and R(s) ⊆ (Z(t))c is also false since
t ∈ R(s)∩Z(t). Hence we have a contradiction and conclude that Z satisfies the
Δ-Zig condition. By a similar argument Z satisfies Δ-Zig.

We have the following analogue of Proposition 1, and it can be proved in a
similar way (via closure properties). We omit a proof due to space limitations.

Proposition 2. For all Kripke models M , the relation ∼betw
Δ on M is the largest

rel-Δ-bisimulation on M , and it is is an equivalence relation on S.

It follows from Propositions 1 and 2, and Lemma 2 that the two notions of
contingency bisimilarity coincide.

Proposition 3. Let M and M ′ be Kripke models.

1. For all s, t in M : (M, s) ≈on
Δ (M, t) iff (M, s) ∼betw

Δ (M, t).
2. For all s in M and s′ in M ′: (M, s) ≈Δ (M ′, s′) iff (M, s) ∼Δ (M ′, s′).

Recall that [4,5] proved that over the class of all pointed Kripke models,
o-Δ-bisimilarity ≈Δ is an equivalence. Due to Proposition 3(2), it follows that
also rel-Δ-bisimilarity ∼Δ an equivalence.

Finally, we show that we could dispense with the notation ≈on
Δ as item 1 of

the next proposition ensures that no ambiguity can arise when writing (M, s) ≈Δ

(M, s′). We also clarify the similar question regarding ∼betw
Δ and ∼Δ.

54 Z. Bakhtiari et al.

Proposition 4. For all Kripke models M and M ′:
1. (M, s) ≈on

Δ (M, s′) iff (M, s) ≈Δ (M, s′).
2. (M, s) ∼betw

Δ (M, s′) iff (M, s) ∼Δ (M, s′).
3. (M, s) ∼betw

Δ (M ′, s′) implies (M, s) ∼Δ (M ′, s′). The implication is strict.

Proof. Item 1. (⇒): If Z is an o-Δ-bisimulation on M , then it is easy to prove
that Y := {(ι1(s), ι2(t)) | (s, t) ∈ Z} is a o-Δ-bisimulation on M + M .

(⇐): Let Y be an o-Δ-bisimulation on M +M . Define Z := {(s, s′) ∈ S ×S |
∃i, j ∈ {1, 2} : (ιi(s), ιj(s′)) ∈ Y }. To prove Δ-Zig for Z, suppose (s, s′) ∈ Z
and t, t1, t2 ∈ R(s) such that (t1, t2) /∈ Z. This implies that ιi(t), ιi(t1), ιi(t2) ∈
Ri(ιi(s)), and there are i, j ∈ {1, 2} such that (ιi(s), ιj(s′)) ∈ Y , and by defi-
nition of Z, (ιi(t1), ιi(t2)) /∈ Y . By Δ-Zig for Y , there are ιj(t′), ιj(t′1), ιj(t

′
2) ∈

Rj(ιj(s′)) such that (ιi(t), ιj(t′)), (ιi(t1), ιj(t′1)), (ιi(t2), ιj(t
′
2)) ∈ Y . Hence t′ ∈

R(s′) and (t, t′), (t1, t′1), (t2, t
′
2) ∈ Z, which proves Δ-Zig. Δ-Zag can be proved

in a similar manner.
Item 2. (M, s) ∼betw

Δ (M, s′) ⇐⇒ (M, s) ≈on
Δ (M, s′) Proposition 3(2)

⇐⇒ (M, s) ≈Δ (M, s′) (Item 1)
⇐⇒ (M, s) ∼Δ (M, s′) Proposition 3(1)

Item 3. The implication can be proved using Lemma 3 and Proposition 5
of the next section. The converse fails since item 4 of Example 1 shows models
(M1, s) and (M2, t) such that (M1, s) ∼Δ (M2, t), however, we do not have
(M1, s) ∼betw

Δ (M2, t).

4 Neighbourhood Semantics of Contingency Logic

In this section we recall the neighbourhood semantics of LΔ from [8], and then
we proceed to introduce the notion of Δ-bisimulation between neighbourhood
models, and investigate its properties.

Definition 7 (Neighbourhood models). A neighbourhood frame is a pair
(S, ν) where S is a set of states and ν : S → P(P(S)) is a neighbourhood
function which assigns to each s ∈ S its collection ν(s) of neighbourhoods. A
neighbourhood model is a triple M = (S, ν, V) where (S, ν) is a neighbourhood
frame and V : AtProp → P(S) is a valuation. A neighbourhood morphism
between M = (S, ν, V) and M ′ = (S′, ν′, V ′) is a function f : S → S′ such that
(i) for all p ∈ AtProp, s ∈ V (p) iff f(s) ∈ V ′(p), and (ii) for all subsets U ⊆ S′,
f−1(U) ∈ ν(s) iff U ∈ ν′(f(s)).

Neighbourhood morphisms are the neighbourhood analogue of bounded mor-
phisms, and they indeed preserve truth of L�-formulas [9, Lemma 2.6], and
hence also of LΔ-formulas. The semantics of L� ∪LΔ-formulas is given below in
Definition 8.

In what follows, we will also use disjoint unions (or coproducts) of neigh-
bourhood models. We recall the definition from [9, Definition 2.9]. Let M1 =
(S1, ν1, V1) and M2 = (S2, ν2, V2) be two neighbourhood models. Their dis-
joint union M1 + M2 is the model M = (S, ν, V) where S = S1 + S2,

Neighbourhood Contingency Bisimulation 55

V (p) = ι1[V1(p)] ∪ ι2[V2(p)], and for all U ⊆ S1 + S2, all i = 1, 2, and all si ∈ Si:
U ∈ ν(ιi(si)) iff ι−1

i [Si] ∈ νi(si). Being a bit sloppy and omitting explicit use of
inclusion maps, this condition can be stated as: U ∈ ν(si) iff U ∩ Si ∈ νi(si).
The definition of ν ensures that the inclusion maps ιi : Si → S1 + S2 are neigh-
bourhood morphisms, and hence preserve truth of L� ∪ LΔ-formulas.

Definition 8 (Neighbourhood Semantics of Contingency Logic). Given
a neighbourhood model M = (S, ν, V). The interpretation of formulas from L�
and LΔ in M is defined inductively for atomic propositions and Boolean connec-
tives as usual. Truth of modal formulas is given by,

M, s |= �ϕ iff [[ϕ]]M ∈ ν(s)
M, s |= Δϕ iff [[ϕ]]M ∈ ν(s) or [[ϕ]]cM ∈ ν(s).

where [[ϕ]]M = {s ∈ S | M, s |= ϕ} denotes the truth set of ϕ in M . We write
(M, s) ≡Δ (M ′, s′) if (M, s) and (M ′, s′) satisfy the same LΔ-formulas.

Again, it is clear that over neighbourhood models we can view LΔ as a
fragment of L�, since for all neighbourhood models M , all states s in M , and
all ϕ ∈ LΔ, M, s |= ϕ iff M, s |= ϕt.

Augmented Neighbourhood Models. Neighbourhood semantics can be seen as a
generalization of Kripke semantics, since every Kripke model can be turned into
a pointwise equivalent neighbourhood model, cf. [2, Theorem 7.9]. For a Kripke
model K = (S,R, V), define nbh(K) = (S, νR, V) where νR(s) = {X ⊆ S |
R(s) ⊆ X}. It is straightforward to check that for all ϕ ∈ L� ∪ LΔ,

K, s |= ϕ iff nbh(K), s |= ϕ. (2)

A neighbourhood model (S, ν, V) is augmented (cf. [2]) if all neighbourhood
collections are closed under supersets and under arbitrary intersections, that is,
for all s ∈ S, if U ∈ ν(s) and U ⊆ U ′ ⊆ S, then U ′ ∈ ν(s); and

⋂
νR(s) ∈ νR(s).

For an augmented M = (S, ν, V), define a Kripke model krp(M) = (S,R, V) by
taking R(s) =

⋂
ν(s). Again, M and krp(M) are pointwise equivalent, and we

have nbh(krp(M)) = M and krp(nbh(K)) = K. Thus, Kripke models are in 1-1
correspondence with augmented neighbourhood models.

In [8, Theorem 19], the logic CL was shown to be sound and strongly complete
with respect to the class of Kripke frames. From Eq. (2) it follows immediately
that CL is sound and strongly complete with respect to the class of augmented
neighbourhood frames. This question was left open in [6].

We now define the notion of Δ-bisimulation between neighbourhood models.
The idea of this definition was inspired by the definition of precocongruences in
[9] and the neighbourhood semantics of the Δ-modality.

Definition 9 (nbh-Δ-bisimulation). Let M = (S, ν, V) and M ′ =
(S′, ν′, V ′) be neighbourhood models. A relation Z ⊆ S × S′ is a nbh-Δ-
bisimulation (for “neighbourhood Δ-bisimulation”) if for all (s, s′) ∈ Z, the
following hold:

56 Z. Bakhtiari et al.

(Atoms) s and s′ satisfy the same atomic propositions.
(Coherence) for all Z-coherent pairs (U,U ′):

U ∈ ν(s) or U c ∈ ν(s) iff U ′ ∈ ν′(s′) or U ′c ∈ ν′(s′).

We write (M, s) ∼betw
Δ (M ′, s′), if there is a nbh-Δ-bisimulation between M

and M ′ that contains (s, s′). A nbh-Δ-bisimulation on a model M is a nbh-Δ-
bisimulation between M and M . Two pointed models (M, s) and (M ′, s′) are nbh-
Δ-bisimilar, written (M, s) ∼Δ (M ′, s′), if (M+M ′, ι1(s)) ∼betw

Δ (M+M ′, ι2(s′)),
i.e., if there is a nbh-Δ-bisimulation on M + M ′ that contains (ι1(s), ι2(s′)).

The following proposition shows that there is no conflict between the notions
of nbh-Δ-bisimulations and rel-Δ-bisimulations for augmented models. This
allows us to simply speak of Δ-bisimulations, and it justifies the overloading
of the notation ∼Δ.

Proposition 5. A relation Z is a rel-Δ-bisimulation between Kripke models M
and M ′ if and only if Z is a nbh-Δ-bisimulation between nbh(M) and nbh(M ′).
Consequently,

1. (M, s) ∼betw
Δ (M ′, s′) iff (nbh(M), s) ∼betw

Δ (nbh(M ′), s′).
2. (M, s) ∼Δ (M ′, s′) iff (nbh(M), s) ∼Δ (nbh(M ′), s′).

Proof. Item 1 is straigtforward to prove using the correspondence between
Kripke models and augmented neighbourhood models. Item 2 can be proved
using item 1 and the isomorphism nbh(M + M ′) ∼= nbh(M) + nbh(M ′), which
is easy to verify.

Over arbitrary pointed neighbourhood models, ∼betw
Δ is strictly contained in

∼Δ, but on a single neighbourhood model they coincide.

Lemma 3. For all pointed neighbourhood models (M, s) and (M ′, s′):

1. (M, s) ∼betw
Δ (M ′, s′) implies (M, s) ∼Δ (M ′, s′). The implication is strict.

2. (M, s) ∼betw
Δ (M, s′) iff (M, s) ∼Δ (M, s′).

Proof. Item 1. One can show that if Z is a nbh-Δ-bisimulation between M1 and
M2, then the embedding ι(Z) = {(ι1(s1), ι2(s2)) | (s1, s2) ∈ Z} is a nbh-Δ-
bisimulation on M1 + M2 = (S, ν, V). The implication is strict due to Exam-
ple 1 (item 4) and Proposition 5.

Item 2. (⇒) follows from item 1. To prove (⇐), assume that Y is a nbh-Δ-
bisimulation on M + M . We show that Z := {(s, t) ∈ S × S | ∃i, j ∈ {1, 2} :
(ιi(s), ιj(t)) ∈ Y } is a nbh-Δ-bisimulation on M . First, note that for all s ∈ S,
U ⊆ S, and all i ∈ {1, 2}: ιi(s) ∈ ι1[U] ∪ ι2[U] iff s ∈ U .

(Atoms): Let (s, t) ∈ Z witnessed by (ιi(s), ιj(t)) ∈ Y where i, j ∈ {1, 2}.
Since Y satisfies (Atoms), we have ιi(s) ∈ ι2[V (p)]∪ι1[V (p)] iff ιj(t) ∈ ι1[V (p)]∪
ι2[V (p)], and hence s ∈ V (p) iff t ∈ V (p).

(Coherence): We first note that if the pair (U, V) is Z-coherent, then
(ι1[U]∪ι2[U], ι1[V]∪ι2[V]) is Y -coherent. Namely, take any pair (ιi(s), ιj(t)) ∈ Y .

Neighbourhood Contingency Bisimulation 57

By definition of Z, it follows that (s, t) ∈ Z. We now have ιi(s) ∈ ι1[U] ∪ ι2[U]
iff s ∈ U iff (by Z-coherence) t ∈ V iff ιj(t) ∈ ι1[V] ∪ ι2[V]. Furthermore, it is
straightforward to show that for all s ∈ S, all U ⊆ S, and all i ∈ {1, 2}:

U ∈ ν(s) ⇐⇒ (ι1[U] ∪ ι2[U]) ∈ ν′(ιi(s)) (3)
U c ∈ ν(s) ⇐⇒ (ι1[U] ∪ ι2[U])c ∈ ν′(ιi(s)) (4)

Coherence for Z now follows easily from (3), (4) and coherence for Y .

We state another basic fact about Δ-bisimilarity which can be proved using
closure properties as for Proposition 1.

Proposition 6. For all neighbourhood models M , the Δ-bisimilarity relation
∼Δ on M is itself a Δ-bisimulation and an equivalence relation.

As desired, Δ-bisimilar states cannot be distinguished with the LΔ-language.

Proposition 7. For all pointed neighbourhood models (M1, s1) and (M2, s2), if
(M1, s1) ∼Δ (M2, s2) then (M1, s1) ≡Δ (M2, s2).

Proof. (M1, s1) ∼Δ (M2, s2) iff (M1 +M2, ι1(s1)) ∼betw
Δ (M1 +M2, ι2(s2)). Since

the inclusion morphisms preserve truth, we have for all LΔ-formulas ϕ that
M1, s1 |= ϕ iff (M1+M2), ι1(s1) |= ϕ, and similarly for M2, s2. Hence it suffices
to prove that for all models M , (M, s) ∼betw

Δ (M, s′) implies (M, s) ≡Δ (M, s′).
So assume that Z is a Δ-bisimulation on a model M . We prove that for all

formulas ϕ ∈ LΔ and all (s, s′) ∈ Z, M, s |= ϕ iff M, s′ |= ϕ, by induction on
ϕ. The base case ϕ = p holds by (Atoms). The Boolean cases are routine, so
lets turn to the case where ϕ = Δψ. By induction hypothesis, we have for all
(x, y) ∈ Z, x ∈ [[ψ]]M iff y ∈ [[ψ]]M . That is, the pair ([[ψ]]M , [[ψ]]M) is Z-coherent.
As Z is a Δ-bisimulation, it follows that for all (s, s′) ∈ Z, ([[ψ]]M ∈ ν(s) or
[[ψ]]cM ∈ ν(s)) iff ([[ψ]]M ∈ ν′(s′) or [[ψ]]cM ∈ ν′(s′)), that is, M, s |= Δψ iff
M, s′ |= Δψ.

As with the standard notions of Kripke and neighbourhood bisimula-
tions, LΔ-equivalence does not always imply Δ-bisimilarity. Neither does LΔ-
equivalence imply o-Δ-bisimilarity as shown in [7, Example 3.10]. The same
example shows that also LΔ-equivalence, does not imply nbh-Δ-bisimilarity due
to Propositions 3(2) and 5(2). However, a converse to Proposition 7 can be proved
for an appropriate notion of saturated models following a similar line of reasoning
as in [9, Sect. 4.1]. To this end, we introduce Δ-morphisms and Δ-congruences.
They will play the part of neighbourhood morphisms and congruences from [9].

Definition 10 (Δ-morphisms and Δ-congruences). Let M = (S, ν, V)
and M ′ = (S′, ν′, V ′) be neighbourhood models. A function f : S → S′ is a
Δ-morphism from M to M ′ if its graph Gr(f) is a Δ-bisimulation. A relation
is a Δ-congruence if it is the kernel of some Δ-morphism.

It is natural to ask whether Δ-morphisms are a generalisation of neighbour-
hood morphisms (cf. Definition 7). This is indeed the case.

58 Z. Bakhtiari et al.

Lemma 4. Every neighbourhood morphism is a Δ-morphism.

As a step towards showing that Δ-congruences are Δ-bisimulations, we show
that we can take quotients with respect to Δ-bisimulations that are also equiv-
alence relations.

Proposition 8 (Δ-quotient). Let M = (S, ν, V) be a neighbourhood model
and let Z be a Δ-bisimulation on M which is also an equivalence relation, i.e.,
for all Z-closed U ⊆ S and all (s, t) ∈ Z,

(U ∈ ν(s) or U c ∈ ν(s)) ⇐⇒ (U ∈ ν(t) or U c ∈ ν(t)). (†)

We define the Δ-quotient of M by Z as the model MZ = (SZ , νZ , VZ) where
SZ = {[s] | s ∈ S} is the set of Z-equivalence classes, VZ(p) = {[s] | s ∈ V (p)},
and

νZ([s]) = {UZ ⊆ SZ | q−1[UZ] ∈ ν(s) or q−1[UZ]c ∈ ν(s)}.

The quotient map q : S → SZ given by q(s) = [s] is a Δ-morphism, and Z =
ker(q). Consequently, (M, s) ∼betw

Δ (MZ , [s]).

We can now show that Δ-congruences are indeed a special kind of Δ-
bisimulations. This will be used to prove the Hennessy-Milner theorem in a
moment.

Proposition 9. Let M = (S, ν, V) be a neighbourhood model and Z a relation
on S. Z is a Δ-congruence iff Z is an equivalence relation and a Δ-bisimulation.

Proof. Assume Z = ker(f) for some Δ-morphism f from M to M ′. Note that if
U is Z-closed then (U, f [U]) is Gr(f)-coherent. Equation (†) now easily follows
from f being a Δ-morphism, and Z = ker(f). Conversely, if Z is an equivalence
relation and a Δ-bisimulation on M , then we can form the Δ-quotient MZ , and
it follows that Z is a Δ-congruence.

Proposition 9 allows us to show a neighbourhood analogue of the fact that
Kripke bisimilarity implies o-Δ-bisimilarity [7]. For neighbourhood models, the
equivalence notion that matches the expressiveness of the language L� is called
behavioural equivalence [9]: Two pointed neighbourhood models (M, s) and
(M ′, s′) are behaviourally equivalent if there exists a neighbourhood model N and
neighbourhood morphisms f : M → N and f ′ : M ′ → N such that f(s) = f ′(s′).

Proposition 10. Let M be a neighbourhood model, and s, t two states in M . If
(M, s) and (M, t) are behaviourally equivalent then they are Δ-bisimilar.

Proof. If (M, s) and (M, t) are behaviourally equivalent, then by [9, Proposi-
tion 3.20] the pair (s, t) is contained in a congruence, i.e. in the kernel of a
neighbourhood morphism f . By Lemma 4, ker(f) is a Δ-congruence, which by
Proposition 9, is a Δ-bisimulation on M , hence (M, s) ∼betw

Δ (M, t). Finally, it
follows from Lemma 3 that (M, s) ∼Δ (M, t).

Neighbourhood Contingency Bisimulation 59

Finally, we prove a Hennessy-Milner style theorem for an appropriate notion
of saturated models which essentially comes from [9, Sect. 4.1].

Definition 11 (LΔ-saturated model). Let M = (S, ν, V) be a neighbourhood
model. A subset X ⊆ S is LΔ-compact if for all sets Φ of LΔ-formulas, if any
finite subset Φ′ ⊆ Φ is satisfiable in X, then Φ is satisfiable in X. M is LΔ-
saturated, if for all s ∈ S and all ≡Δ-closed neighbourhoods X ∈ ν(s), both X
and Xc are LΔ-compact.

Theorem 1 (Hennessy-Milner).

1. For all LΔ-saturated neighbourhood models M , and all states s, t in M :
(M, s) ≡Δ (M, t) iff (M, s) ∼betw

Δ (M, t).
2. If N is a class of neighbourhood models in which the disjoint union of any

two models is LΔ-saturated, then for all M,M ′ in N,

(M, s) ≡Δ (M ′, s′) iff (M, s) ∼Δ (M ′, s′).

Proof. Due to space limitations we only provide an outline. Item 1: Can be
proved using the same line of argumentation as in the proofs of Lemma 4.3,
Lemma 4.5 and Proposition 4.6 of [9]. More precisely, we can show for any
neighbourhood model M = (S, ν, V): (i) If all ≡Δ-coherent neighbourhoods X ∈
ν(s) are LΔ-definable then ≡Δ is a Δ-congruence. (ii) If M is LΔ-saturated then
for all X ⊆ S, X is ≡Δ-coherent iff X is LΔ-definable. The theorem follows from
items (i) and (ii) together with Proposition 9.

Item 2: (M, s) ≡Δ (M ′, s′) implies (M + M ′, s) ≡Δ (M + M ′, s′) since
the inclusion morphisms are Δ-bisimulations. By item 1, (M + M ′, s) ∼betw

Δ

(M + M ′, s′), hence by definition, (M, s) ∼Δ (M ′, s′).

As finite neighbourhood models are clearly LΔ-saturated, we have an imme-
diate corollary.

Corollary 1. Over the class of finite neighbourhood models, LΔ-equivalence
implies Δ-bisimilarity.

Frame Class (un)definability. We now use Δ-bisimulations to demonstrate that
LΔ is too weak to define some well-known frame classes. These results were
already proved in [6, Proposition 7], but without the use of a bisimulation argu-
ment.

A frame class F is LΔ-definable if there is a set Φ ⊆ LΔ such that for all
frames F , F ∈ F iff F |= Φ.

Let M be the class of (monotone) neighbourhood frames (S, ν) in which ν(s)
is closed under supersets, for all s ∈ S. Let C be the class of neighbourhood
frames (S, ν) in which ν(s) is closed under intersections, for all s ∈ S.

60 Z. Bakhtiari et al.

Example 2. Consider the neighbourhood frames shown here:

in particular, ν1(s2) = ν2(t2) = ∅. It can easily be checked that Z =
{(s1, t1), (s2, t2)} is a Δ-bisimulation. Note that F1 ∈ M, but F2
∈ M.

Example 3. Consider the following neighbourhood frames:

in particular, ν3(s2) = ν4(t2) = ∅. It can easily be checked that Z =
{(s1, t1), (s2, t2)} is a Δ-bisimulation. Note that F3 ∈ C, but F4 /∈ C.

Proposition 11. The frame classes M and C are not definable in LΔ.

Proof. Example 2 shows that M is not LΔ-definable, since suppose towards a
contradiction that Φ ⊆ LΔ defines M. Then F1 |= Φ and F2
|= Φ. Hence there
is a valuation V2 on F2, a state tj in F2 and a ϕ ∈ Φ such that (F2, V2), tj
|= ϕ.
We define a valuation V1 on F1 by si ∈ V1(p) iff ti ∈ V2(p) for i = 1, 2 and all
p ∈ AtProp. It follows that ((F1, V1), si) ∼Δ ((F2, V2), ti) for i = 1, 2, and hence
that (F1, V1), sj
|= ϕ, which implies that F1
|= Φ, a contradiction.

Similarly, Example 3 can be used to show that C is not LΔ-definable.

5 Characterisation Results

We first recall the basic definition of an ultrafilter. Let S be a non-empty set.
An ultrafilter over S is a collection of sets u ⊆ P(S) satisfying (i) S ∈ u and
∅ /∈ u; (ii) U1, U2 ∈ u implies U1 ∩ U2 ∈ u; (iii) U1 ∈ u and U1 ⊆ U2 ⊆ S implies
U2 ∈ u; and (iv) for all U ⊆ S we have U ∈ u or U c ∈ u.

The collection of all ultrafilters over S will be denoted by Ult(S). For s ∈ S,
the principal ultrafilter generated by s is us = {U ⊆ S | s ∈ U}.

Definition 12 (Ultrafilter extension [9]). Let M = (S, ν, V) be a neighbour-
hood model. The ultrafilter extension of M is the triple Mue = (Ult(S), νue, V ue)
where V ue(p) = {u ∈ Ult(S) | V (p) ∈ u} and νue : Ult(S) → P(P(Ult(S))) is
defined by

νue(u) = {Û ⊆ Ult(S) | U ⊆ S,�(U) ∈ u}
where �(U) = {s ∈ S | U ∈ ν(s)} and Û = {v ∈ Ult(S) | U ∈ v}.

Lemma 5. Let (M, s) be a pointed neighbourhood model. Then, Mue is an LΔ-
saturated model and (M, s) ≡Δ (Mue , us).

Neighbourhood Contingency Bisimulation 61

Proof. Since LΔ can be seen as a fragment of L�, [9, Lemma 4.24] ensures that
(M, s) ≡Δ (Mue , us) and [9, Proposition 4.25] ensures that Mue is LΔ-saturated.

As in the L� case, modal LΔ-equivalence in a model implies Δ-bisimilarity
in the ultrafilter extension. (Apply Lemma 5 and Theorem 1.)

Proposition 12. Let M be a neighbourhood model and s, t states in M . Then,
(M, s) ≡Δ (M, t) implies (Mue , us) ∼Δ (Mue , ut).

We are now ready to prove the characterisation theorems.

Theorem 2. An L�-formula is equivalent to an LΔ-formula over the class of
neighbourhood models iff it is invariant under Δ-bisimulation.

Proof. This can be proved analogously to the characterisation result [7, Theo-
rem 4.4] using the above notions of LΔ-saturation and ultrafilter extensions for
neighbourhood models, together with the compactness of classical modal logic
(via strong completeness), cf. [2, Sect. 9.2]. The only minor difference is that we
must first take disjoint unions before taking the ultrafilter extension.

In [9], a Van Benthem style characterisation theorem was given for classical
modal logic with respect to a two-sorted first-order correspondence language L1.
The two sorts s and n correspond to states and to neighbourhoods, respectively,
and the basic idea of viewing a neighbourhood model as a first-order L1-structure
is to encode the neighbourhood function ν as a relation Rν ⊆ s×n between states
and neighbourhoods, and encode subsets via the (inverse) element-of relation
R� ⊆ n×s between neighbourhoods and states. The language L1 is a first-order
language with equality which contains a unary predicate symbol P (of sort s)
for each p ∈ AtProp, a binary relation symbol N (interpreted by Rν), and a
binary relation symbol E (interpreted by R�). A translation (−)� : L� → L1 is
defined recursively over the Boolean connectives and atomic propositions, and
by (�ϕ)� = ∃u (xNu ∧ ∀y (uEy ↔ ϕ�)). We refer to [9, Sect. 5] for further
details.

Theorem 3. A first-order L1-formula is equivalent to an LΔ-formula over the
class of neighbourhood models iff it is invariant under Δ-bisimulation.

Proof. Let α ∈ L1 be invariant under Δ-bisimulations. It follows from Lemma 4
that α is invariant under neighbourhood morphisms, and hence under behav-
ioural equivalence. From the characterisation theorem [9, Theorem 5.5] it fol-
lows that α is equivalent to ϕ� for some formula ϕ ∈ L� which is necessarily
also invariant under Δ-bisimulations. Hence by our Theorem 2, ϕ is equivalent
to ψt for some ψ ∈ LΔ.

6 Discussion and Future Work

We proposed a notion of contingency bisimulation on neighbourhood models, we
related it to an existing notion of contingency bisimulation on Kripke models,

62 Z. Bakhtiari et al.

and also provided the characterization of (neighbourhood) contingency logic as
a fragment of the modal logic of necessity, and of first-order logic. Our work
contributes to a research program aiming at generalizing knowing that to knowing
whether, knowing how, knowing value, etc. [19], including weaker modal notions
than knowledge.

In [8], the LΔ-theory of all Kripke frames was axiomatized by the logic
CL (going back to [10–12,20]). We observed (below (2)) that CL is sound and
complete with respect to the class of augmented neighbourhood frames (which
answers an open question in [7]). In [7] an axiomatization CCL of classical con-
tingency logic (i.e., the LΔ-theory of all neighbourhood frames) is also given.
This raises the questions of what the axiomatizations are of monotone con-
tingency logic and regular contingency logic. Proposition 11 means that one
cannot fill these gaps with the axioms Δϕ → Δ(ϕ → ψ) ∨ Δ(¬ϕ → χ) and
Δ(ψ → ϕ) ∧ Δ(¬ψ → ϕ) → Δϕ that are in CL but not in CCL. So these
questions remain open.

The (Coherence) condition in our definition of Δ-bisimulation is a non-
local property, since one needs to check all Z-coherent pairs, so over large Kripke
models the Δ-Zig and Δ-Zag conditions of o-Δ-bisimulations will be easier to
check. As we proved that Δ-bisimilarity coincides with o-Δ-bisimilarity, one can
view the Δ-Zig and Δ-Zag conditions as a back-forth characterisation of Δ-
bisimilarity over Kripke models. We would like to find local zig-zag conditions
also for Δ-bisimilarity over neighbourhood models.

The notion of Δ-bisimulation was based on the semantics of the modality Δ.
It has a natural generalisation to the framework of coalgebraic modal logic [3,15].
Many of our results hold at this general coalgebraic level. We are preparing a
separate paper in which the coalgebraic perspective will be worked out.

Acknowledgments. Zeinab Bakhtiari and Hans van Ditmarsch gratefully acknowl-
edge support from European Research Council grant EPS 313360. We thank Jie Fan,
Yanjing Wang and the anonymous referees for their comments which helped improve
the paper substantially.

References

1. Brogan, A.P.: Aristotle’s logic of statements about contingency. Mind 76(301),
49–61 (1967)

2. Chellas, B.F.: Modal Logic, An Intoduction. Cambridge University Press, Cam-
bridge (1980)

3. Cirstea, C., Kurz, A., Pattinson, D., Schröder, L., Venema, Y.: Modal logics are
coalgebraic. Comput. J. 54(1), 31–41 (2008)

4. Fan, J.: Logical studies for non-contingency operator. Ph.D. thesis, Peking Univer-
sity (2015). (in Chinese)

5. Fan, J.: A note on non-contingency logic (manuscript) (2016). https://www.
researchgate.net/publication/305091939

6. Fan, J., van Ditmarsch, H.: Neighborhood contingency logic. In: Banerjee, M.,
Krishna, S.N. (eds.) ICLA 2015. LNCS, vol. 8923, pp. 88–99. Springer, Heidelberg
(2015). doi:10.1007/978-3-662-45824-2 6

https://www.researchgate.net/publication/305091939
https://www.researchgate.net/publication/305091939
http://dx.doi.org/10.1007/978-3-662-45824-2_6

Neighbourhood Contingency Bisimulation 63

7. Fan, J., Wang, Y., van Ditmarsch, H.: Almost necessary. In: Proceedings of 10th
Advances in Modal Logic (AiML), pp. 178–196 (2014)

8. Fan, J., Wang, Y., van Ditmarsch, H.: Contingency and knowing whether. Rev.
Symbolic Logic 8(1), 75–107 (2015)

9. Hansen, H.H., Kupke, C., Pacuit, E.: Neighbourhood structures: bisimilarity and
basic model theory. Logical Methods Comput. Sci. 5(2) (2009). (paper 2)

10. van der Hoek, W., Lomuscio, A.: A logic for ignorance. Electron. Notes Theor.
Comput. Sci. 85(2), 117–133 (2004)

11. Humberstone, L.: The logic of non-contingency. Notre Dame J. Formal Logic 36(2),
214–229 (1995)

12. Kuhn, S.: Minimal non-contingency logic. Notre Dame J. Formal Logic 36(2), 230–
234 (1995)

13. Montague, R.: Universal grammar. Theoria 36, 373–398 (1970)
14. Montgomery, H., Routley, R.: Contingency and non-contingency bases for normal

modal logics. Logique et Analyse 9, 318–328 (1966)
15. Pattinson, D.: Coalgebraic modal logic: soundness, completeness and decidability

of local consequence. Theor. Comput. Sci. 309(1–3), 177–193 (2003)
16. Pizzi, C.: Contingency logics and propositional quantification. Manuscrito 22(2),

283 (1999)
17. Scott, D.: Advice on modal logic. In: Lambert, K. (ed.) Philosophical Problems in

Logic: Some Recent Developments, pp. 143–173. Kluwer, Dordrecht (1970)
18. Steinsvold, C.: A note on logics of ignorance and borders. Notre Dame J. Formal

Logic 49(4), 385–392 (2008)
19. Wang, Y.: Beyond knowing that: a new generation of epistemic logics. In: van Dit-

marsch, H., Sandu, G. (eds.) Jaakko Hintikka on Knowledge and Game Theoretical
Semantics. Outstanding Contributions to Logic. Springer (2016, to appear)

20. Zolin, E.: Completeness and definability in the logic of noncontingency. Notre Dame
J. Formal Logic 40(4), 533–547 (1999)

The Complexity of Finding Read-Once
NAE-Resolution Refutations

Hans Kleine Büning1, Piotr Wojciechowski2(B), and K. Subramani2

1 Universität Paderborn, Paderborn, Germany
kbcsl@uni-paderborn.de

2 LCSEE, West Virginia University, Morgantown, WV, USA
pwojciec@mix.wvu.edu, k.subramani@mail.wvu.edu

Abstract. In this paper, we analyze boolean formulas in conjunctive
normal form (CNF) from the perspective of read-once resolution (ROR)
refutation. A read-once (resolution) refutation is one in which each input
clause is used at most once. It is well-known that read-once resolution
is not complete, i.e., there exist unsatisfiable formulas for which no
read-once resolution exists. Likewise, the problem of checking if a 3CNF
formula has a read-once refutation is NP-complete. This paper is con-
cerned with a variant of satisfiability called Not-All-Equal Satisfiabil-
ity (NAE-Satisfiability). NAE-Satisfiability is the problem of checking
whether an arbitrary CNF formula has a satisfying assignment in which
at least one literal in each clause is set to false. It is well-known that
NAE-satisfiability is NP-complete. Clearly, the class of CNF formulas
which are NAE-satisfiable is a proper subset of the class of satisfiable
CNF formulas. It follows that traditional resolution cannot always find a
proof of NAE-unsatisfiability. Thus, traditional resolution is not a sound
procedure for checking NAE-satisfiability. In this paper, we introduce a
variant of resolution called NAE-resolution, which is a sound and com-
plete procedure for checking NAE-satisfiability in CNF formulas. We
focus on a variant of NAE-resolution called read-once NAE-resolution,
in which each input clause can be part of at most one NAE-resolution
step. Our principal result is that read-once NAE-resolution is a sound and
complete procedure for checking the NAE-satisfiability of 2CNF formu-
las; we also provide a polynomial time algorithm to determine the short-
est read-once NAE-resolution of a 2CNF formula. Finally, we establish
that the problem of checking whether a 3CNF formula has a read-once
NAE-resolution is NP-complete.

Keywords: Read-once · NAE-SAT · Refutation · Optimal length refu-
tation

P. Wojciechowski—This research is supported in part by the National Science Foun-
dation under Award CCF-0827397.
K. Subramani—This work was supported by the Air Force Research Laboratory
under US Air Force contract FA8750-16-3-6003. The views expressed are those of
the authors and do not reflect the official policy or position of the Department of
Defense or the U.S. Government.

c© Springer-Verlag GmbH Germany 2017
S. Ghosh and S. Prasad (Eds.): ICLA 2017, LNCS 10119, pp. 64–76, 2017.
DOI: 10.1007/978-3-662-54069-5 6

The Complexity of Finding Read-Once NAE-Resolution Refutations 65

1 Introduction

This paper is concerned with techniques for checking Not-All-Equal (NAE) sat-
isfiability of propositional formulas in Conjunctive Normal Form (CNF). Briefly,
the NAE-SAT problem is concerned with checking if a CNF formula has a sat-
isfying assignment in which each clause has at least one literal set to false. It is
well-known that the NAE-satisfiability problem for 3CNF formulas (also called
NAE3SAT) is NP-complete [10]. Indeed, the problem remains NP-complete,
even when all the literals in each clause are positive. The problem can be solved
in polynomial time, when there are at most two literals per clause [7,8].

It is not hard to see that the class of CNF formulas which are NAE-satisfiable
is a proper subset of CNF formulas which are satisfiable in the ordinary sense.
Therefore, proof systems for satisfiability may not be sound for checking NAE-
satisfiability. Indeed, this is the case with resolution refutation [9], which is com-
plete for NAE-satisfiability but not sound. In other words, if a resolution refu-
tation exists for a CNF formula, then the formula is definitely NAE-unsatisfiable
(since it is unsatisfiable). However, if a refutation does not exist for a formula,
then it may still be NAE-unsatisfiable. In this paper, we design a new resolution
scheme called NAE-resolution which is simultaneously sound and complete for
the problem of checking NAE-satisfiability in CNF formulas.

Propositional proof complexity is concerned with lengths of proofs (alterna-
tively refutations) in propositional logic [1]. In order to discuss lengths of proofs,
it is vital that we have a concrete proof system in mind [11]. Several proof sys-
tems have been discussed in the literature including Frege Systems, Extended
Frege Systems, Resolution and so on. The notion of proof length in various proof
systems is discussed in [2]. Observe that if it can be established that the length
of any proof (refutation) of a contradiction must be exponential in the length of
the input formula, then we have in fact separated the class NP from the class
coNP [3].

Even if we focus on a particular proof system there exist several variants with
different computational complexities. For instance, in case of resolution refuta-
tions, the commonly studied variants are tree-like proofs, dag-like proofs and
read-once proofs [4]. Read-once refutations are the simplest from the conceptual
perspective, since each clause (original or derived) can be used exactly once.

This paper focuses on a weak and incomplete proof system called read-
once resolution. It is well-known that read-once resolution is an incomplete proof
system [5]. Furthermore, even asking if an arbitrary unsatisfiable CNF formula
has a read-once refutation is NP-complete. We design a variant of read-once
resolution called read-once NAE-resolution which is sound but not complete.

The investigations of this paper are concerned with properties of read-once
NAE-resolutions when applied to the problem of checking NAE-satisfiability in
CNF formulas.

66 H.K. Büning et al.

The principal contributions of this paper are as follows:

1. A proof of existence of read-once NAE-resolution refutations for every NAE-
unsatisfiable 2CNF formula.

2. The design and analysis of a polynomial time algorithm for finding a read-
once NAE-resolution refutation for a NAE-unsatisfiable 2CNF formula.

3. The design and analysis of a polynomial time algorithm for finding the short-
est read-once NAE-resolution refutation for a NAE-unsatisfiable 2CNF for-
mula.

4. The design and analysis of a polynomial time algorithm for finding the
minimum-weight read-once NAE-resolution refutation of a NAE-unsatisfiable
2CNF formula.

5. A proof that the problem of checking for the presence of read-once NAE-
resolution refutations in a 3CNF formula is NP-complete.

The rest of this paper proceeds as follows: In Sect. 2, we cover some of the
basic concepts necessary for our results. Section 3 formally defines the prob-
lems studied in this paper. Sections 4 and 5 describe the results that we have
obtained. Finally, in Sect. 6 we summarize our results and describe avenues of
future research.

2 NOT-ALL-EQUAL Satisfiability

We assume that the reader is familiar with the basic concepts and terminology of
propositional logic. A formula α in CNF (conjunctive normal form) is a conjunc-
tion of clauses. Each clause in α is disjunction of literals written as (L1∨. . .∨Ln)
or (L1, . . . , Ln). A literal is a propositional variable x or its negation, ¬x. Let
φ = (L1, . . . , Ln) be a clause, then φc is the clause (¬L1, . . . ,¬Ln).

We now recall some definitions with respect to NAE-satisfiability.

Definition 1. A clause is NAE-satisfied by a truth assignment v, if at least
one literal in the clause is assigned a value of false and one literal is assigned a
value of true.

Definition 2. A CNF formula φ, is NAE-satisfiable if there exists a truth
assignment v such that every clause of φ is NAE-satisfied.

The class of NAE-satisfiable formulas is denoted as NAE-SAT.
Note that, if a truth assignment v NAE-satisfies a formula in CNF, then so

does ¬v. We now compare NAE-satisfiability to regular satisfiability.

Lemma 1. Let φ be a formula in CNF. We have that φ ∈ NAE-SAT if and
only if φ ∪ φc ∈ SAT, where φc := {(¬L1, . . . ,¬Lt) : (L1, . . . , Lt) ∈ φ}.

The Complexity of Finding Read-Once NAE-Resolution Refutations 67

Proof. Let φ be NAE-satisfied by the truth assignment v. Thus, every clause φi

of φ contains a literal Li and a literal Ki for which v(Li) = true and v(Ki) =
false. Hence, v satisfies both φi and φc

i .
Let φ∧φc be satisfied by the truth assignment, v. Thus, the clause φi contains

a literal Li such that v(Li) = true. Similarly, φc
i contains a literal Ki such that

v(Ki) = true. By construction, φi contains the literal ¬Ki. Thus, under truth
assignment v, φi contains both a true and a false literal. This means that v
NAE-satisfies φ. ��

Lemma 1 immediately leads to the observation that deciding whether a for-
mula φ is in NAE-SAT can be performed by means of resolution on φ ∪ φc.
Instead of adding the complementary clause φc

i in the beginning we extend the
resolution calculus with a new rule. This rule generates complementary clauses
on demand.

We now define the inference rules for NAE-resolution.

Definition 3. Let Li and Kj be literals, and let x be a variable. NAE-resolution
consists of the following inference rules:

1. Resolution:
(L1, . . . , Lt, x) (¬x,K1, . . . ,Kr)

(L1, . . . , Lt,K1, . . . ,Kr)
.

We denote this NAE-resolution step as:

(L1, . . . , Lt, x), (¬x,K1, . . . ,Kr) | 1
RES (L1, . . . , Lt,K1, . . . ,Kr).

2. NAE-extension:
(L1, . . . , Lt)

(¬L1, . . . ,¬Lt)
.

We denote this NAE-resolution step as:

(L1, . . . , Lt) | NAE-ext (¬L1, . . . ,¬Lt).

We write φ | NAE-Res π to indicate that the clause π can be derived from φ by
NAE-resolution. Similarly, we write φ | RES π to indicate that the clause π can
be derived from φ by regular resolution.

Note that the NAE-extension rule is what allows us to simultaneously negate
all the literals of a clause.

It can easily be seen that NAE-resolution preserves NAE-satisfiability. That
is, if the original formula is NAE-satisfiable, then any formula we get by adding
the resolvents and the clauses introduced by the NAE-extension rule is NAE-
satisfiable. The following theorem summarizes the relationship between the var-
ious calculi.

Theorem 1. Let φ be a formula in CNF. We have that the following proposi-
tions are equivalent:

1. φ �∈ NAE-SAT.
2. φ ∪ φc �∈ SAT.

68 H.K. Büning et al.

3. φ ∪ φc | RES �.
4. there exists some literal L : φ | NAE-Res L.
5. φ | NAE-Res �.

Proof. The proof of this is broken up as follows:

1. φ �∈ NAE-SAT if and only if φ ∪ φc �∈ SAT:

This was already proved in Lemma 1.
2. φ ∪ φc �∈ SAT if and only if φ ∪ φc | RES �:

This is a trivial consequence of the definition of SAT and the completeness
of resolution.

3. φ �∈ NAE-SAT if and only if there exists some literal L : φ | NAE-Res L:
See Theorem 4 for proof.

4. There exists some literal L : φ | NAE-Res L if and only if φ | NAE-Res �:
If φ | NAE-Res L, then φ | NAE-Res ¬L since L | NAE-ext ¬L. Thus, we have that
φ | NAE-Res � since L,¬L | 1

RES �.
If φ | NAE-Res �, then the final resolution step must be L,¬L | 1

RES � for some
literal L. Thus, φ | NAE-Res L. ��

3 Read-Once Proofs and NAE-SAT

Let φ be a CNF formula and let π be a clause. A read-once resolution derivation
of π, φ | ROR π, is a resolution derivation, such that in each resolution step we
remove the parent clauses from the current set of clauses and add the resolvent.
Let ROR be the set of CNF formulas for which a read-once resolution refutation
exists. It has been shown [5] that the problem of determining if a CNF formula
is in ROR is NP-complete.

Definition 4. Let φ be a CNF formula and π a clause. A read-once NAE-
resolution derivation of π, φ | RO-NAE-Res π, is a derivation using the resolution
rule and/or NAE-extension rule. In the case of resolution, we delete the parent
clauses and add the resolvent. In the case of the extension rule, σ | NAE-ext σc,
we remove the clause σ and add σc.

There are two ways to check for the existence of a read-once proof of NAE-
unsatisfiability. Given a CNF formula φ, we can check if φ ∪ φc has a read-once
refutation. Alternatively, we can ask whether φ has a read-once NAE-resolution
refutation (under the resolution and NAE-extension rules).

These methods of checking for read-once refutations correspond to the fol-
lowing sets of CNF formulas:

1. ROR-NAE := {φ ∈ CNF | φ ∧ φc | ROR �}.
2. RO-NAE-RES := {φ ∈ CNF | ∃ literal L : φ | RO-NAE-Res L}.

In this paper, we study the problems of determining if certain forms of CNF
formulas, specifically 2CNF and 3CNF, are subsets of to these classes.

We now define the length of a read-once NAE-resolution refutation.

The Complexity of Finding Read-Once NAE-Resolution Refutations 69

Definition 5. The length of a read-once NAE-resolution refutation is the num-
ber of NAE-resolution steps in that refutation.

This lets us define the concept of a shortest read-once NAE-resolution refu-
tation.

Definition 6. The shortest read-once NAE-resolution refutation of a system φ,
is the read-once NAE-resolution resolution with the fewest steps.

We now show that a formula in 2CNF, φ, has a read-once NAE-resolution
refutation if and only if φ ∪ φc has a read-once resolution refutation.

Theorem 2. φ ∈ ROR-NAE if and only if φ ∈ RO-NAE-RES.

Proof. Let φ be in ROR-NAE. There exists a read-once resolution refutation
φ ∪ φc | ROR �. The final step of this refutation must be resolving a pair of one
literal clauses to derive the empty clause. Thus, we must have that, for some
literal L, φ∪φc | ROR L. Let D be the shortest such resolution derivation. Thus,
there is no literal L′ which can be derived by a shorter read-once resolution
derivation.

By construction, every resolution step (except the last one) of D results in a
two literal clause. Thus, we can restructure D so that each resolution step is of
the form:

(L, xi), (¬xi, xj) | 1
RES (L, xj).

Let π be a clause such that both π and πc are used in D. Without loss of
generality, we can assume that π = (xi, xj), and that the restructured derivation
uses π before it uses πc. There are four cases we need to consider:

1. The resolution step involving π is (L,¬xi), π | 1
RES (L, xj) and the resolution

step involving πc is (L, xi), πc | 1
RES (L,¬xj). Thus, there must be a sequence

of resolution steps which produced (L, xi) from (L,¬xi). However, this means
that the set of clauses used in these resolution steps can derive xi. This
contradicts our construction of D.

2. The resolution step involving π is (L,¬xj), π | 1
RES (L, xi) and the resolution

step involving πc is (L, xj), πc | 1
RES (L,¬xi). Thus, there must be a sequence

of resolution steps which produced (L, xj) from (L,¬xj). However, this means
that the set of clauses used in these resolution steps can derive xj . This
contradicts our construction of D.

3. The resolution step involving π is (L,¬xj), π | 1
RES (L, xi) and the resolution

step involving πc is (L, xi), πc | 1
RES (L,¬xj). Thus, D derives (L, xi) twice.

By removing the sequence of resolution steps between these two derivations
of (L, xi), we produce a shorter derivation of L. This contradicts our con-
struction of D.

70 H.K. Büning et al.

4. The resolution step involving π is (L,¬xi), π | 1
RES (L, xj) and the resolution

step involving πc is (L, xj), πc | 1
RES (L,¬xi). Thus, D derives (L, xj) twice.

By removing the sequence of resolution steps between these two derivations
of (L, xj), we produce a shorter derivation of L. This contradicts our con-
struction of D.

Thus, π and πc cannot be both used in D.

We now have φ | NAE-Res L as follows:

1. Apply the NAE-extension rule to every clause π ∈ φ such that πc is used in
D. Note, we are guaranteed that π is not used in D.

2. Derive L using the same resolution steps as D.

Now let φ be in RO-NAE-RES. For some literal L, there exists a read-once
derivation φ | NAE-Res L. Let π1, . . . , πt be the set of clauses used in this read-
once derivation. We can use the dual clauses πc

1, . . . , π
c
t to derive (¬L). As a

final step, we can use (L) and (¬L) to derive the empty clause. This forms a
read-once resolution refutation of φ ∪ φc. ��

4 NAE-2SAT

In this section, we show that read-once NAE-resolution refutation is both sound
and complete for formulas in 2CNF. We also show that the problem of finding
the shortest read-once NAE-resolution refutation is in P.

Theorem 3. Let φ be a formula in 2CNF. We have φ �∈ NAE-SAT if and only
if φ ∈ ROR-NAE, and a refutation can be found in quadratic time.

Proof. Let φ be a 2CNF formula that is not in NAE-SAT. If φ contains a unit
clause, say (x), then {(x), (¬x)} ⊆ φ ∪ φc. We have that (x), (¬x) | 1

RES �. This
is clearly a ROR-NAE-SAT refutation. Thus, we assume that φ contains no unit
clause.

From φ ∪ φc, we create an implication graph, G, as follows:

1. For every variable xi, we create the verticies xi and x̄i.
2. For every clause (L ∨ K), we create the edges L̄ → K and K̄ → L.

G contains a strongly connected component, say G1, with a pair of comple-
mentary literals if and only if φ∪φc is unsatisfiable. Moreover, the computation
of the strongly connected components and finding a complementary pair of lit-
erals can be performed in linear time. A formula φ is not in NAE-SAT if and
only if φ∪φc is unsatisfiable. Thus, there exists a strongly connected component
C in G that contains complementary literals.

Let L̄0 → L1 → L2 . . . Lm → L0 be a shortest path in C between the
complementary pair of literals L0 and ¬L0. For i �= j we have Li �= Lj and
Li �= ¬Lj , otherwise there would be a shorter path in C.

The Complexity of Finding Read-Once NAE-Resolution Refutations 71

Thus, there is a read-once resolution derivation

(L0 ∨ L1), (¬L1 ∨ L2), . . . , (¬Lm ∨ L0) | ROR L0.

Since we are dealing with φ∪φc, there are clauses (¬L0∨¬L1), (L1∨¬L2), . . . ,
(Lm ∨¬L0) in φ∪φc. These clauses form a read-once resolution of (¬L0). More-
over, the two sets of clauses have no clause in common, because the literals Li

for i �= 0 are pairwise disjoint. Finally, we can resolve (L0) and (¬L0). Thus, we
have a read-once resolution refutation for φ∪φc. By Theorem 2, this corresponds
to a ROR-NAE-SAT refutation of φ.

Since the computation of the strongly connected components includes decid-
ing whether a complementary pair of literals exists costs linear time and finding
a complementary pair with a shortest path costs for each variable again takes
linear time, to construct a read-once resolution proof requires no more than
quadratic time. ��

4.1 Finding Shortest Proofs

Earlier in Sect. 4, we described an implication graph for checking the satisfiability
of 2CNF formulas. We can construct a similar implication graph for checking the
NAE-satisfiability of 2CNF formulas. We refer to this as the NAE-implication
graph. The NAE-implication graph of a formula φ is equivalent to the implication
graph of φ ∪ φc.

Example 1. Consider the 2CNF formula.

(x1, x2) (x2, x3) (¬x3, x4)

From this formula we can generate the NAE-implication graph in Fig. 1.

x1

x̄1

x2

x̄2

x3

x̄3

x4

x̄4

Fig. 1. Example NAE-implication graph

Theorem 4. A CNF formula φ is not NAE-satisfiable if and only if the clause
φ | NAE-Res (xi) for some variable xi.

72 H.K. Büning et al.

Proof. Assume that φ | NAE-Res (xi) for some variable xi. We know that any
assignment, x, that NAE-satisfies φ must NAE-satisfy (xi). However, the clause
(xi) has only one literal. Thus, it cannot be NAE-satisfied. This means that φ
is not NAE-satisfiable.

Let φ be a CNF formula that is not NAE-satisfiable. We can construct the
unsatisfiable formula φ′ = φ ∪ φc of CNF clauses.

Since φ′ is unsatisfiable we can derive the clauses (xi) and (¬xi) for some
variable xi.

Let (xj1, . . . , xjm, xk) ∧ (¬xk, xl1, . . . , xlm) | 1
RES (xj1, . . . , xjm, xl1, . . . , xlm)

be the first step in the derivation of (xi) from the clauses in φ′. We have four
possibilities for the original clauses in φ.

1. (xj1, . . . , xjm, xk), (¬xk, xl1, . . . , xlm) ∈ φ:
From the NAE-resolution rules we get:

(xj1, . . . , xjm, xk), (¬xk, xl1, . . . , xlm) | 1
RES (xj1, . . . , xjm, xl1, . . . , xlm).

2. (xj1, . . . , xjm, xk), (xk,¬xl1, . . . ,¬xlm) ∈ φ:
From the NAE-resolution rules we get:

(xk,¬xl1, . . . ,¬xlm) | NAE-ext (¬xk, xl1, . . . , xlm).

(xj1, . . . , xjm, xk) ∧ (¬xk, xl1, . . . , xlm) | 1
RES (xj1, . . . , xjm, xl1, . . . , xlm).

3. (¬xj1, . . . ,¬xjm,¬xk), (¬xk, xl1, . . . , xlm) ∈ φ:
From the NAE-resolution rules we get:

(¬xj1, . . . ,¬xjm,¬xk) | NAE-ext (xj1, . . . , xjm, xk).

(xj1, . . . , xjm, xk) ∧ (¬xk, xl1, . . . , xlm) | 1
RES (xj1, . . . , xjm, xl1, . . . , xlm).

4. (¬xj1, . . . ,¬xjm,¬xk), (xk,¬xl1, . . . ,¬xlm) ∈ φ:
From the NAE-resolution rules we get:

(xk,¬xl1, . . . ,¬xlm) | NAE-ext (¬xk, xl1, . . . , xlm).

(¬xj1, . . . ,¬xjm,¬xk) | NAE-ext (xj1, . . . , xjm, xk).

(xj1, . . . , xjm, xk) ∧ (¬xk, xl1, . . . , xlm) | 1
RES (xj1, . . . , xjm, xl1, . . . , xlm).

In all four cases, φ | NAE-Res (xj1, . . . , xjm, xl1, . . . , xlm).
This same argument can be repeated for each subsequent derivation step.

Thus, φ | NAE-Res (xi). ��

Let φ be a CNF formula such that there is a read-once resolution refutation
φ ∪ φc | ROR �. Starting with φ, we apply the NAE-extension rule and generate
φ ∪ φc. Next, we apply the resolution rule according to the read-once resolution
refutation for φ ∪ φc.

Now, suppose there is a derivation φ | NAE-Res � in which the resolution oper-
ation is read-once and the extension rule is used at most once on either φ or φc.

The Complexity of Finding Read-Once NAE-Resolution Refutations 73

We rearrange the derivation such that we first apply the extension rule and then
the resolution rule.

Let (α∨x), (¬x∨β) | 1
RES (α∨β) and (α∨β) | NAE-ext (αc∨βc) be an instance

where the extension rule is used on a derived clause. We can replace these deriva-
tion steps with:

(α ∨ x) | NAE-ext (αc ∨ ¬x), (¬x ∨ β) | NAE-ext (x ∨ βc), and (αc ∨ ¬x)(x ∨
βc) | 1

RES (αc ∨ βc).
This can be done repeatedly until the NAE-extension rule is applied to only

the original clauses of the formula. Since the desired refutation starts with φ∪φc,
we can remove the instances of the NAE-extension rule to generate a proof of
φ ∪ φc | ROR �.

To prove NAE-unsatisfiability we need to derive the clause (xi). Thus, we
need to find a path from x̄i to xi in the NAE-implication graph. Note that we do
not need to also find a path from xi to x̄i. Thus, we have the following theorem.

Theorem 5. Let φ be a formula in 2-CNF without unit clauses. The following
statements are equivalent:

1. φ is not in NAE-SAT.
2. φ ∪ {(¬L1,¬L2) : (L1, L2) ∈ φ} | RES L for some literal L, and there is a

derivation in which at most one of the clauses (L1, L2) or (¬L1,¬L2) occurs.

A decision procedure based on the representation as a graph solves the problem
in linear time.

We show that, in the case of NAE-unsatisfiable 2CNF formulas, we always
have a Read-Once NAE-resolution refutation.

Theorem 6. If a 2CNF formula, φ, has a NAE-resolution derivation of (xi),
then it has a NAE-resolution derivation of (xi) using only one literal more than
once.

Proof. Let G be the NAE-implication graph corresponding to φ. We know that
φ | NAE-Res (xi) if and only if there exists a path from x̄i to xi in G. Let p denote
this path. Let xj be the first variable such that both xj and x̄j appear on p. We
are guaranteed for this xj to exist since both xi and x̄i appear on p. We can
assume without loss of generality that xj appears before x̄j . Thus, we can break
p up as follows:

1. a path, p1, from x̄i to xj ,
2. a path, p2, from xj to x̄j ,
3. and a path, p3, from x̄k to xi.

This can be seen in Fig. 2.
By our choice of xj , we know that for k �= j, p1 and p2 together do not

contain both xk and x̄k. As a consequence of this no two edges in p1 or p2
correspond to the same constraint. Thus, p2 corresponds to a read-once NAE-
resolution derivation of (¬xj) in which only the literal ¬xj appears twice.

74 H.K. Büning et al.

We also have that p1 is a literal once NAE-resolution derivation of (xi, xj) which
has no literals in common with the NAE-resolution derivation corresponding to
p2. Combining these two yields a read-once NAE-resolution derivation of (xi) in
which only the literal ¬xj is used twice. ��

xi

x̄j

xj

x̄i

p1

p2

p3

Fig. 2. Example of path p

Note that, in this NAE-resolution derivation the subpath p2 from xj to x̄j is a
proof of NAE-unsatisfiability by itself since it shows (¬xj) which already enough
to force xj to be both true and false. Thus, we have the following corollary.

Corollary 1. If a 2CNF formula, φ, has a NAE-resolution derivation of (xi),
then, for some xj, there is a NAE-resolution derivation of (xj) (or (¬xj)) using
only the literal xj (or ¬xj) more than once.

Corollary 1 provides us with a polynomial time algorithm to find the shortest
read-once NAE-refutation of a 2CNF formula.

Algorithm 1. Find-Minimum-NAE-refutation

Function Find-Minimum-NAE-refutation (NAE-unsatisfiable 2CNF formula φ)

1: From φ, construct the NAE-implication graph G.
2: for (Each i = 1 . . . n) do
3: Find the shortest path from x̄i to xi in G.
4: end for
5: return (The shortest of the located paths.)

Note that, we do not need to consider the paths from xi to x̄i since the
existence of such a path means that there is a path of equal length from x̄i to xi.

This algorithm can be easily modified to solve the following problem:

Definition 7. In the minimum-weight read-once NAE-resolution refutation
problem each clause of φ is assigned a non-negative weight. The goal is to find
a read-once NAE-resolution refutation with minimum total weight.

The Complexity of Finding Read-Once NAE-Resolution Refutations 75

To find the minimum-weight read-once NAE-resolution refutation for a 2CNF
formula, we construct a weighted NAE-implication graph. In the weighted graph
each edge is assigned the same weight as the corresponding 2CNF clause. We
then run a modified version of Algorithm 1 on this weighted graph to find the
minimum-weight path from x̄i to xi.

5 Read-Once NAE-resolution Refutation for 3CNF

Now we focus on applying NAE-resolution to formulas in 3CNF and show that
the problem whether for a formula φ the formula φ∪φc has a read-once resolution
refutation is NP-complete. Since ROR - the set of formulas in CNF for which
a read-once resolution exists - is NP-complete, we see that ROR-NAE-3SAT
is in NP. Therefore, we only have to show NP-hardness. This is done by a
reduction to the problem whether a formula in 2CNF has a read-once resolution
refutation (ROR-2CNF). The ROR-2CNF problem is NP-complete [6].

Theorem 7. ROR-NAE-3SAT is NP-complete.

Proof. Let φ be a 2CNF formula. We construct the 3CNF formula φ∗ as follows:

1. For each variable xi of φ, create the variable xi for φ∗.
2. Create the variable x0 for φ∗.
3. For each clause π ∈ φ, create the clause (π ∨ x0) ∈ φ∗.

We show that φ ∈ ROR-2CNF if and only if φ∗ ∈ ROR-NAE-3SAT.
Assume that φ ∈ ROR-2CNF. A read-once resolution refutation φ | ROR �

can easily be extended to the read-once NAE-resolution derivation φ∗ | ROR x0.
Thus, by Theorem 4, φ∗ is in ROR-NAE-3SAT.

Now suppose that φ∗ is in ROR-NAE-3SAT. We must show that φ has a
read-once resolution refutation. We do this by showing that every resolution
step done on the 3CNF clauses corresponds to a valid derivation on the 2CNF
clauses.

We have the following cases:

1. (xi, xj , x0) | NAE-ext (¬xi,¬xj ,¬x0): Both of these clauses correspond to the
2CNF clause (xi, xj). If (xi, xj) is satisfied, then both (xi, xj , x0) and
(¬xi,¬xj ,¬x0) are NAE-satisfied by setting x0 to false.

2. (xi, xj , x0), (¬xk,¬xl,¬x0) | 1
RES (xi, xj ,¬xk,¬xl): This corresponds to the

two CNF clauses (xi, xj ,¬xk,¬xl) and (¬xi,¬xj , xk, xl). However, these are
made redundant by the 2CNF clauses (xi, xj) and (xk, xl) which are already
derivable from φ. Thus, no NAE-resolution refutation of φ∗ performs a reso-
lution step centered on x0.

3. (xi, xj , x0), (¬xj ,¬xk, x0) | 1
RES (xi,¬xk, x0): This corresponds to the res-

olution step (xi, xj), (¬xj ,¬xk) | 1
RES (xi,¬xk). Since φ | RES (xi, xj) and

φ | RES (¬xj ,¬xk), this is a valid derivation from φ.

Thus, all steps in the NAE-resolution refutation of the 3CNF formula corre-
spond to steps used in the resolution refutation of the original 2CNF formula.
Thus, φ∗ has a read-once NAE-resolution refutation if and only if φ the has a
read-once resolution refutation. ��

76 H.K. Büning et al.

6 Conclusion

In this paper, we introduced the notion of NAE-resolutions and show how they
can be applied to the problem of checking NAE-satisfiability in CNF formulas.
Prior to our work, the standard approach in the literature was to convert the
NAE-satisfiability problem to simple satisfiability. Our principal contribution is
showing that the problem of checking whether a 2CNF formula has a read-once
NAE-resolution is in P. Furthermore, we showed that the problem of finding the
optimal length read-once NAE-resolution is also in P.

References

1. Beame, P., Pitassi, T.: Propositional proof complexity: past, present, future. Bull.
EATCS 65, 66–89 (1998)

2. Buss, S.R.: Propositional proof complexity: an introduction. http://www.math.
ucsd.edu/∼sbuss/ResearchWeb/marktoberdorf97/paper.pdf

3. Cook, S.A., Reckhow, R.A.: On the lengths of proofs in the propositional calculus
(preliminary version). In: Proceedings of the 6th Annual ACM Symposium on
Theory of Computing, Seattle, Washington, USA, 30 April – 2 May 1974, pp.
135–148 (1974)

4. Harrison, J.: Handbook of Practical Logic and Automated Reasoning, 1st edn.
Cambridge University Press, Cambridge (2009)

5. Iwama, K., Miyano, E.: Intractability of read-once resolution. In: Proceedings of
the 10th Annual Conference on Structure in Complexity Theory (SCTC 1995),
CA, USA, pp. 29–36. IEEE Computer Society Press, Los Alamitos, June 1995

6. Kleine Büning, H., Wojciechowski, P., Subramani, K.: On the computational com-
plexity of read once resolution decidability in 2CNF formulas. https://arxiv.org/
abs/1610.04523

7. Moore, C., Mertens, S.: The Nature of Computation, 1st edn. Oxford University
Press, Oxford (2011)

8. Papadimitriou, C.H.: Computational Complexity. Addison-Wesley, New York
(1994)

9. Robinson, J.A.: A machine-oriented logic based on the resolution principle. J. ACM
12(1), 23–41 (1965)

10. Schaefer, T.: The complexity of satisfiability problems. In: Aho, A. (ed.) Proceed-
ings of the 10th Annual ACM Symposium on Theory of Computing, pp. 216–226.
ACM Press, New York City (1978)

11. Urquhart, A.: The complexity of propositional proofs. Bull. Symbolic Logic 1(4),
425–467 (1995)

http://www.math.ucsd.edu/~sbuss/ResearchWeb/marktoberdorf97/paper.pdf
http://www.math.ucsd.edu/~sbuss/ResearchWeb/marktoberdorf97/paper.pdf
https://arxiv.org/abs/1610.04523
https://arxiv.org/abs/1610.04523

Knowing Values and Public Inspection

Jan van Eijck1,2, Malvin Gattinger1(B), and Yanjing Wang3

1 ILLC, University of Amsterdam, Amsterdam, The Netherlands
malvin@w4eg.eu

2 SEN1, CWI, Amsterdam, The Netherlands
3 Department of Philosophy, Peking University, Beijing, China

Abstract. We present a basic dynamic epistemic logic of “knowing
the value”. Analogous to public announcement in standard DEL, we
study “public inspection”, a new dynamic operator which updates the
agents’ knowledge about the values of constants. We provide a sound and
strongly complete axiomatization for the single and multi-agent case,
making use of the well-known Armstrong axioms for dependencies in
databases.

Keywords: Knowing what · Bisimulation · Public announcement logic

1 Introduction

Standard epistemic logic studies propositional knowledge expressed by “knowing
that”. However, in everyday life we talk about knowledge in many other ways,
such as “knowing what the password is”, “knowing how to swim”, “knowing
why he was late” and so on. Recently the epistemic logics of such expressions
are drawing more and more attention (see [1] for a survey).

Merely reasoning about static knowledge is important but it is also interest-
ing to study the changes of knowledge. Dynamic Epistemic Logic (DEL) is an
important tool for this, which handles how knowledge (and belief) is updated by
events or actions [2]. For example, extending standard epistemic logic, one can
update the propositional knowledge of agents by making propositional announce-
ments. They are nicely studied by public announcement logic [3] which includes
reduction axioms to completely describe the interplay of “knowing that” and
“announcing that”. Given this, we can also ask: What are natural dynamic coun-
terparts the knowledge expressed by other expressions such as knowing what,
knowing how etc.? How do we formalize “announcing what”?

In this paper, we study a basic dynamic operation which updates the knowl-
edge of the values of certain constants.1 The action of public inspection is the
knowing value counterpart of public announcement and we will see that it fits
1 In this paper, by constant we mean something which has a single value given the
actual situation. The range of possible values of a constant may be infinite. This
terminology is motivated by first-order modal logic as it will become more clear
later.

c© Springer-Verlag GmbH Germany 2017
S. Ghosh and S. Prasad (Eds.): ICLA 2017, LNCS 10119, pp. 77–90, 2017.
DOI: 10.1007/978-3-662-54069-5 7

78 J. van Eijck et al.

well with the logic of knowing value. As an example, we may use a sensor to
measure the current temperature of the room. It is reasonable to say that after
using the sensor you will know the temperature of the room. Note that it is not
reasonable to encode this by standard public announcement since it may result
in a possibly infinite formula: [t = 27.1 ◦C]K(t = 27.1 ◦C) ∧ [t = 27.2 ◦C]K(t =
27.2 ◦C) ∧ . . . , and the inspection action itself may require an infinite action
model in the standard DEL framework of [4] with a separate event for each
possible value. Hence public inspection can be viewed as a public announce-
ment of the actual value, but new techniques are required to express it formally.
In our simple framework we define knowing and inspecting values as primitive
operators, leaving the actual values out of our logical language.

The notions of knowing and inspecting values have a natural connection with
dependencies in databases. This will also play a crucial role in the later technical
development of the paper. In particular, our completeness proofs employ the
famous set of axioms from [5]. For now, consider the following example.

Example 1. Suppose a university course was evaluated using anonymous ques-
tionnaires which besides an assessment for the teacher also asked the students
for their main subject. See Table 1 for the results. Now suppose a student tells
you, the teacher, that his major is Computer Science. Then clearly you know
how that student assessed the course, since there is some dependency between
the two columns. More precisely, in the cases of students 3 and 4, telling you
the value of “Subject” effectively also tells you the value of “Assessment”. In
practice, a better questionnaire would only ask for combinations of questions
that do not allow the identification of students.

Table 1. Evaluation results

Student Subject Assessment

1 Mathematics Good

2 Mathematics Very good

3 Logic Good

4 Computer Science Bad

Other examples abound: The author of [6] gives an account of how easily so-
called ‘de-identified data’ produced from medical records could be ‘re-identified’,
by matching patient names to publicly available health data.

These examples illustrate that reasoning about knowledge of values in isola-
tion, i.e. separated from knowledge that, is both possible and informative. It is
such knowledge and its dynamics that we will study here.

2 Existing Work

Our work relates to a collection of papers on epistemic logics with other operators
than the standard “knowing that” Kϕ. In particular we are interested in the Kv

Knowing Values and Public Inspection 79

operator expressing that an agent knows a value of a variable or constant. This
operator is already mentioned in the seminal work [3] which introduced public
announcement logic (PAL). However, a complete axiomatization of PAL together
with Kv was only given in [7,8] using the relativized operator Kv(ϕ, c) for the
single and multi-agent cases. Moreover, it has been shown in [9] that by treating
the negation of Kv as a primitive diamond-like operator, the logic can be seen
as a normal modal logic in disguise with binary modalities.

Inspired by a talk partly based on an earlier version of this paper,
Baltag proposed the very expressive Logic of Epistemic Dependency (LED) [10],
where knowing that, knowing value, announcing that, announcing value can all
be encoded in a general language which also includes equalities like c = 4 to
facilitate the axiomatization.

In this paper we go in the other direction: Instead of extending the standard
PAL framework with Kv, we study it in isolation together with its dynamic
counterpart [c] for public inspection. In general, the motto of our work here
is to see how far one can get in formalizing knowledge and inspection of values
without going all the way to or even beyond PAL. In particular we do not include
values in the syntax and we do not have any nested epistemic modalities.

As one would expect, our simple language is accompanied by simpler models
and also the proofs are less complicated than existing methods. Still we consider
our Public Inspection Logic (PIL) more than a toy logic. Our completeness
proof includes a novel construction which we call “canonical dependency graph”
(Definition 6). We also establish the precise connection between our axioms and
the Armstrong axioms widely used in database theory [5].

Table 2 shows how PIL fits into the family of existing languages. Note that
[10] is the most expressive language in which all operators are encoded using
Kt1,...,tn

i t which expresses that given the current values of t1 to tn, agent i knows
the value of t. Moreover, to obtain a complete proof system for LED one also
needs to include equality and rigid constants in the language. It is thus an open
question to find axiomatizations for a language between PIL and LED without
equality.

Table 2. Comparison of languages

PAL p Kϕ [!ϕ]ϕ [3]

PAL+Kv p Kϕ Kv(c) [!ϕ]ϕ [3]

PAL+Kvr p Kϕ Kv(c) Kv(ϕ, c) [!ϕ]ϕ [7–9]

PIL Kv(c) [c]ϕ This paper

PIL+K Kϕ Kv(c) [c]ϕ Future work

LED p Kϕ Kv(c) Kv(ϕ, c) [c]ϕ [!ϕ]ϕ c = c [10]

All languages include the standard boolean operators �, ¬ and ∧ which we
do not list in Table 2.

We also discuss other related works not in this line at the end of the paper.

80 J. van Eijck et al.

3 Single-Agent PIL

We first consider a simple single-agent language to talk about knowing and
inspecting values. Throughout the paper we assume a fixed set of constants C.

Definition 1 (Syntax). Let c range over C. The language L1 is given by:

ϕ ::= � | ¬ϕ | ϕ ∧ ϕ | Kv(c) | [c]ϕ

Besides standard interpretations of the boolean connectives, the intended
meanings are as follows: Kv(c) reads “the agent knows the value of c” and the
formula [c]ϕ is meant to say “after revealing the actual value of c, ϕ is the case”.
We also use the standard abbreviations ϕ ∨ ψ := ¬(¬ϕ ∧ ¬ψ) and ϕ → ψ :=
¬ϕ ∨ ψ.

Definition 2 (Models and Semantics). A model for L1 is a tuple M =
〈S,D, V 〉 where S is a non-empty set of worlds (also called states), D is a non-
empty domain and V is a valuation V : (S×C) → D. To denote V (s, c) = V (t, c),
i.e. that c has the same value at s and t according to V , we write s =c t. If this
holds for all c ∈ C ⊆ C we write s =C t. The semantics are as follows:

M, s � � always
M, s � ¬ϕ ⇔ M, s � ϕ
M, s � ϕ ∧ ψ ⇔ M, s � ϕ and M, s � ψ
M, s � Kv(c) ⇔ for all t ∈ S : s =c t
M, s � [c]ϕ ⇔ M|sc, s � ϕ

where M|sc is 〈S′,D, V |S′×C〉 with S′ = {t ∈ S | s =c t}. If for a set of formulas
Γ and a formula ϕ we have that whenever a model M and a state s satisfy
M, s � Γ then they also satisfy M, s � ϕ, then we say that ϕ follows semantically
from Γ and write Γ � ϕ. If this hold for Γ = ∅ we say that ϕ is semantically
valid and write � ϕ.

Note that the actual state s plays an important role in the last clause of our
semantics: Public inspection of c at s reveals the local actual value of c to the
agent. The model is restricted to those worlds which agree on c with s. This
is different from PAL and other DEL variants based on action models, where
updates are usually defined on models directly and not on pointed models.

We employ the usual abbreviation 〈c〉ϕ as ¬[c]¬ϕ. Note however, that public
inspection of c can always take place and is deterministic. Hence the determinacy
axiom 〈c〉ϕ ↔ [c]ϕ is semantically valid and we include it in the following system.

Definition 3. The proof system SPIL1 for PIL in the language L1 consists of
the following axiom schemata and rules. If a formula ϕ is provable from a set of
premises Γ we write Γ � ϕ. If this holds for Γ = ∅ we also write � ϕ.

Knowing Values and Public Inspection 81

Axiom Schemata

TAUT all instances of propositional tautologies
DIST [c](ϕ → ψ) → ([c]ϕ → [c]ψ)
LEARN [c]Kv(c)
NF Kv(c) → [d]Kv(c)
DET 〈c〉ϕ ↔ [c]ϕ
COMM [c][d]ϕ ↔ [d][c]ϕ
IR Kv(c) → ([c]ϕ → ϕ)

Rules

MP
ϕ,ϕ → ψ

ψ

NEC
ϕ

[c]ϕ

Intuitively, LEARN captures the effect of the inspection; NF says that the agent
does not forget; DET says that inspection is deterministic; COMM says that inspec-
tions commute; finally, IR expresses that inspection does not bring any new
information if the value is known already. Note that DET says that [c] is a func-
tion. It also implies seriality which we list in the following Lemma.

Lemma 1. The following schemes are provable in SPIL1:

– 〈c〉� (seriality)
– Kv(c) → (ϕ → [c]ϕ) (IR’)
– [c](ϕ ∧ ψ) ↔ [c]ϕ ∧ [c]ψ (DIST’)
– [c1] . . . [cn](ϕ → ψ) → ([c1] . . . [cn]ϕ → [c1] . . . [cn]ψ) (multi-DIST)
– [c1] . . . [cn](ϕ ∧ ψ) ↔ [c1] . . . [cn]ϕ ∧ [c1] . . . [cn]ψ (multi-DIST’)
– [c1] . . . [cn](Kv(c1) ∧ . . .Kv(cn)) (multi-LEARN)
– (Kv(c1) ∧ · · · ∧ Kv(cn)) → [d1] . . . [dn](Kv(c1) ∧ · · · ∧ Kv(cn)) (multi-NF)
– (Kv(c1) ∧ · · · ∧ Kv(cn)) → ([c1] . . . [cn]ϕ → ϕ) (multi-IR)

Moreover, the multi-NEC rule is admissible: If � ϕ, then � [c1] . . . [cn]ϕ.

Proof. For reasons of space we only prove three of the items and leave the others
as an exercise for the reader. For IR’, we use DET and TAUT:

(IR)
Kv(c) → ([c]¬ϕ → ¬ϕ)

(DET)
Kv(c) → (¬[c]ϕ → ¬ϕ)

(TAUT)
Kv(c) → (ϕ → [c]ϕ)

To show multi-NEC, we use DIST, NEC and TAUT. For simplicity, consider the case
where C = {c1, c2}.

(DIST)
[c2](ϕ → ψ) → ([c2]ϕ → [c2]ψ)

(NEC)
[c1]([c2](ϕ → ψ) → ([c2]ϕ → [c2]ψ))

(DIST, TAUT)
[c1][c2](ϕ → ψ) → [c1]([c2]ϕ → [c2]ψ)

(DIST, TAUT)
[c1][c2](ϕ → ψ) → ([c1][c2]ϕ → [c1][c2]ψ)

For multi-LEARN, we use LEARN, NEC, COMM, DIST’ and TAUT:

82 J. van Eijck et al.

(LEARN)
[c1]Kv(c1) (NEC)

[c2][c1]Kv(c1) (COMM)
[c1][c2]Kv(c1)

(LEARN)
[c2]Kv(c2) (NEC)

[c1][c2]Kv(c2) (DIST’, TAUT)
[c1]([c2]Kv(c1) ∧ [c2]Kv(c2)) (DIST’, TAUT)

[c1][c2](Kv(c1) ∧ Kv(c2))

Definition 4. We use the following abbreviations for any two finite sets of con-
stants C = {c1, . . . , cm} and D = {d1, . . . , dn}.

– Kv(C) := Kv(c1) ∧ · · · ∧ Kv(cm)
– [C]ϕ := [c1] . . . [cm]ϕ
– Kv(C,D) := [C]Kv(D).

Note that by multi-DIST’ and COMM the exact enumeration of C and D in
Definition 4 do not matter modulo logical equivalence.

In particular, these abbreviations allow us to shorten the “multi” items from
Lemma 1 to Kv(C,C), Kv(C) → Kv(D,C) and Kv(C) → ([C]ϕ → ϕ). The
abbreviation Kv(C,D) allows us to define dependencies and it will be crucial in
our completeness proof. We have that:

M, s � Kv(C,D) ⇔ for all t ∈ S : if s =C t then s =D t

Definition 5. Let L2 be the language given by ϕ ::= � | ¬ϕ | ϕ ∧ ϕ | Kv(C,C).

Note that this language is essentially a fragment of L1 due to the above
abbreviation, where (possibly multiple) [c] operators only occur in front of Kv
operators (or conjunctions thereof). Moreover, the next Lemma might count as
a small surprise.

Lemma 2. L1 and L2 are equally expressive.

Proof. As Kv(·, ·) was just defined as an abbreviation, we already know that L1 is
at least as expressive as L2: we have L2 ⊆ L1. We can also translate in the other
direction by pushing all sensing operators through negations and conjunctions.
Formally, let t : L1 → L2 be defined by

Kv(d)
→ Kv(∅, {d})
¬ϕ
→ ¬t(ϕ)
ϕ ∧ ψ
→ t(ϕ) ∧ t(ψ)

[c]¬ϕ
→ ¬t([c]ϕ)
[c](ϕ ∧ ψ)
→ t([c]ϕ) ∧ t([c]ψ)
[c]�
→ �
[c1] . . . [cn]Kv(d)
→ Kv({c1, . . . , cn}, {d})

Note that this translation preserves and reflects truth because determinacy and
distribution are valid (determinacy allows us to push [c] through negations,
distribution to push [c] through conjunctions). At this stage we have not yet
established completeness, but determinacy is also an axiom. Hence we can note
separately that ϕ ↔ t(ϕ) is provable and that t preserves and reflects provability
and consistency.

Knowing Values and Public Inspection 83

Example 2. Note that the translation of [c]ϕ formulas also depends on the top
connective within ϕ. For example we have

t([c](¬Kv(d) ∧ [e]Kv(f))) = t([c]¬Kv(d)) ∧ t([c][e]Kv(f))
= ¬Kv({c}, {d}) ∧ Kv({c, e}, {f})

The language L2 allows us to connect PIL to the maybe most famous axioms
about database theory and dependence logic from [5].

Lemma 3. Armstrong’s axioms are semantically valid and derivable in SPIL1:

– Kv(C,D) for any D ⊆ C (projectivity)
– Kv(C,D) ∧ Kv(D,E) → Kv(C,E) (transitivity)
– Kv(C,D) ∧ Kv(C,E) → Kv(C,D ∪ E) (additivity)

Proof. The semantic validity is easy to check, hence we focus on the derivations.
For projectivity, take any two finite sets D ⊆ C. If D = C, then we only need

a derivation like the following which basically generalizes learning to finite sets.

(LEARN)
[c1]Kv(c1) (NEC)

[c2][c1]Kv(c1) (COMM)
[c1][c2]Kv(c1)

(LEARN)
[c2]Kv(c2) (NEC)

[c1][c2]Kv(c1) (DIST)
[c1]([c2]Kv(c1) ∧ [c2]Kv(c2)) (DIST)

[c1][c2](Kv(c1) ∧ Kv(c2))

If D � C, then continue by applying NEC for all elements of C\D to get Kv(C,D).
Transitivity follows from IR and NF as follows. For simplicity, first we only

consider the case where C, D and E are singletons.

(NF)
Kv(e) → [c]Kv(e)

(NEC)
[d](Kv(e) → [c]Kv(e))

(DIST)
[d]Kv(e) → [d][c]Kv(e)

(COMM)
[d]Kv(e) → [c][d]Kv(e)

(IR)
Kv(d) → ([d]Kv(e) → Kv(e))

(NEC)
[c](Kv(d) → ([d]Kv(e) → Kv(e)))

(DIST)
[c]Kv(d) → [c]([d]Kv(e) → Kv(e))

(DIST)
[c]Kv(d) → ([c][d]Kv(e) → [c]Kv(e))

(TAUT)
[c]Kv(d) → ([d]Kv(e) → [c]Kv(e))

Now consider any three finite sets of constants C = {c1, . . . , cl}. Using the
abbreviations from Definition 4 and the “multi” rules given in Lemma 1 it is
easy to generalize the proof. In fact, the proof is exactly the same with capital
letters.

Similarly, additivity follows immediately from multi-DIST’.

We can now use Armstrong’s axioms to prove completeness of our logic. The
crucial idea is a new definition of a canonical dependency graph.

Theorem 1 (Strong Completeness). For all sets of formulas Δ ⊆ L1 and
all formulas ϕ ∈ L1, if Δ � ϕ, then also Δ � ϕ.

84 J. van Eijck et al.

Proof. By contraposition using a canonical model. Suppose Δ � ϕ. Then Δ ∪
{¬ϕ} is consistent and there is a maximally consistent set Γ ⊆ L1 such that
Γ ⊇ Δ ∪ {¬ϕ}. We will now build a model MΓ such that for the world C in
that model we have MΓ , C � Γ which implies Δ � ϕ.

Definition 6 (Canonical Graph and Model). Let the graph GΓ :=
(P(C),→) be given by A → B iff Kv(A,B) ∈ Γ . By Lemma 3 this graph
has properties corresponding to the Armstrong axioms: projectivity, transitiv-
ity and additivity. We call a set of variables s ⊆ C closed under GΓ iff whenever
A ⊆ s and A → B in GΓ , then also B ⊆ s. Then let the canonical model be
MΓ := (S,D, V) where

S := {s ⊆ C | s is closed under GΓ },D := {0, 1} and V (s, c) =
{

0 if c ∈ s
1 otherwise

Note that our domain is just {0, 1}. This is possible because we do not have
to find a model where the dependencies hold globally. Instead, Kv(C, d) only
says that given the C-values at the actual world, also the d values are the same
at the other worlds. The dependency does not need to hold between two non-
actual worlds. This distinguishes our models from relationships as discussed in
[5] where no actual world or state is used, see Example 4 below.

Given the definition of a canonical model we can now show:

Lemma 4 (Truth Lemma). MΓ , C � ϕ iff ϕ ∈ Γ .

Before going into the proof, let us emphasize two peculiarities of our truth
lemma: First, the states in our canonical model are not maximally consistent sets
of formulas but sets of constants. Second, we only claim the truth Lemma at one
specific state, namely C where all constants have value 0. As our language does
not include nested epistemic modalities, we actually never evaluate formulas at
other states of our canonical model.

Proof (Truth Lemma). Note that it suffices to show this for all ϕ in L2: Given
some ϕ ∈ L1, by Lemma 2 we have that MΓ , C � ϕ ⇐⇒ MΓ , C � t(ϕ)
because the translation preserves and reflects truth. Moreover, we have ϕ ∈
Γ ⇐⇒ t(ϕ) ∈ Γ , because ϕ ↔ t(ϕ) is provable in SPIL1. Hence it suffices
to show that MΓ , C � t(ϕ) iff t(ϕ) ∈ Γ , i.e. to show the Truth Lemma for L2.
Again, negation and conjunction are standard, the crucial case are dependencies.

Suppose Kv(C,D) ∈ Γ . By definition C → D in GΓ . To show MΓ , C �
Kv(C,D), take any t such that C =C t in MΓ . Then by definition of V we have
C ⊆ t. As t is closed under GΓ , this implies D ⊆ t. Now by definition of V we
have C =D t.

For the converse, suppose Kv(C,D) �∈ Γ . Then by definition C �→ D in GΓ .
Now, let t := {c′ ∈ C | C → {c′} in GΓ }. This gives us C ⊆ t. But we also
have D �⊆ t because otherwise additivity would imply C → D in GΓ . Moreover,
because GΓ is transitive it is enough to “go one step” in GΓ to get a set that is
closed under GΓ . This means that t is closed under GΓ and therefore a state in
our model, i.e. we have t ∈ S. Now by definition of V and projectivity, we have
C =C t but C �=D t. Thus t is a witness for MΓ , C � Kv(C,D).

Knowing Values and Public Inspection 85

This also finishes the completeness proof. Note that we used all three prop-
erties corresponding to the Armstrong axioms.

Example 3. To illustrate the idea of the canonical dependency graph, let us
study a concrete example of what the graph and model look like. Consider the
maximally consistent set Γ = {¬Kv(c),¬Kv(d),Kv(e),Kv(c, d), . . . }. The inter-
esting part of the canonical graph GΓ then looks as follows, where the nodes are
subsets of {c, d, e}. For clarity we only draw → ∩ �⊆, i.e. we omit edges given by
inclusions. For example all nodes will also have an edge going to the ∅ node.

{c, d, e}{e, c}

{c, d}

{d, e}

{c}{d}∅

{e}

To get a model out of this graph, note that there are exactly three subsets of C

closed under following the edges. Namely, let S = {s : {e}, t : {d, e}, u : {c, d, e}}
and use the binary valuation which says that a constant has value 0 iff it is an
element of the state. It is then easy to check that M, u � Γ .

s t u
c 1 1 0
d 1 0 0
e 0 0 0

It is also straightforward to define an appropriate notion of bisimulation.

Definition 7. Two pointed models ((S,D, V), s) and ((S′,D′, V ′), s′), are
bisimilar iff (i) For all finite C ⊆ C and all d ∈ C: If there is a t ∈ S such
that s =C t and s �=d t, then there is a t′ ∈ S′ such that s′ =C t′ and s′ �=d t′;
and (ii) Vice versa.

Note that we do not need the bisimulation to also link non-actual worlds.
This is because all formulas are evaluated at the same world. In fact it would be
too strong for the following characterization.

Theorem 2. Two pointed models satisfy the same formulas iff they are
bisimilar.

Proof. By Lemma 2 we only have to consider formulas of L2. Moreover, it suffices
to consider formulas Kv(C, d) with a singleton in the second set because Kv(C,D)
is equivalent to

∧
d∈D Kv(C, d). Then it is straightforward to show that if M, s

and M′, s′ are bisimilar then M, s � ¬Kv(C, d) ⇐⇒ M′, s′ � ¬Kv(C, d) by
definition of our bisimulation. The other way around is also obvious since the
two conditions for bisimulation are based on the semantics of ¬Kv(C, d).

Note that a bisimulation characterization for a language without the dynamic
operator can be obtained by restricting Definition 7 to C = ∅. We leave it as
an exercise for the reader to use this and Theorem 2 to show that [c] is not
reducible, which distinguishes it from the public announcement [ϕ] in PAL.

86 J. van Eijck et al.

Example 4 (Pointed Models Make a Difference). It seems that the following
theorem of our logic does not translate to Armstrong’s system from [5].

[c](Kv(d) ∨ Kv(e)) ↔ ([c]Kv(d) ∨ [c]Kv(e))

First, to see that this is provable, note that it follows from determinacy and
seriality. Second, it is valid because we consider pointed models which convey
more information than a simple list of possible values. Consider the following
table which represents 4 possible worlds.

c d e
1 1 3
1 1 2
2 2 1
2 3 1

Here we would say that “After learning c we know d or we know e.”, i.e. the
antecedent of above formula holds. However, the consequent only holds if we
evaluate formulas while pointing at a specific world/row: It is globally true that
given c we will learn d or that given c we will learn e. But none of the two disjuncts
holds globally which would be needed for a dependency in Armstrong’s sense.
Note that this is more a matter of expressiveness than of logical strength. In
Armstrong’s system there is just no way to express [c](Kv(d) ∨ Kv(e)).

4 Multi-agent PIL

We now generalize the Public Inspection Logic to multiple agents. In the lan-
guage we use Kvi to say that agent i knows the value of c and in the models
an accessibility relation for each agent is added to describe their knowledge. To
obtain a complete proof system we can leave most axioms as above but have to
restrict the irrelevance axiom. Again the completeness +proof uses a canonical
model construction and a truth lemma for a +restricted but equally expressive
syntax. The only change is that we now define a dependency graph for each agent
in order to define accessibility relations instead of restricted sets of worlds.

Definition 8 (Multi-Agent PIL). We fix a non-empty set of agents I. The
language LI

1 of multi-agent Public Inspection Logic is given by

ϕ ::= � | ¬ϕ | ϕ ∧ ϕ | Kvic | [c]ϕ

where i ∈ I. We interpret it on models 〈S,D, V,R〉 where S, D and V are as
before and R assigns to each agent i an equivalence relation ∼i over S. The
semantics are standard for the booleans and as follows:

M, s � Kvic ⇐⇒ ∀t ∈ S : s ∼i t ⇒ s =c t
M, s � [c]ϕ ⇐⇒ M|sc, s � ϕ

where M|sc is 〈S′,D, V |S′×C, R|S′×S′〉 with S′ = {t ∈ S | s =c t}.

Knowing Values and Public Inspection 87

Analogous to Definition 4 we define the following abbreviation to express
dependencies known by agent i and note its semantics:

Kvi(C,D) := [c1] . . . [cn](Kvi(d1) ∧ · · · ∧ Kvi(dm))

M, s � Kvi(C,D) ⇔ for all t ∈ S : if s ∼i t and s =C t then s =D t

The proof system SPIL for PIL in the language LI
1 is obtained by replac-

ing each Kv in the axioms of SPIL1 by Kvi, and replacing IR by the following
restricted version:

RIR Kvic → ([c]ϕ → ϕ) where ϕ does not mention any agent besides i

Before summarizing the completeness proof for the multi-agent setting, let
us highlight some details of this definition.

As be fore the actual state s plays an important role in the semantics of [c].
However, we could also use an alternative but equivalent definition: Instead of
deleting states, only delete the ∼i links between states that disagree on the value
of c. Then the update no longer depends on the actual state.

For traditional reasons we define ∼i to be an equivalence relation. This is
not strictly necessary, because our language can not tell whether the relation is
reflexive, transitive or symmetric. Removing this constraint and extending the
class of models would thus not make any difference in terms of validities.

For the proof system, note that the original irrelevance axiom IR is not valid
in the multi-agent setting because ϕ might talk about other agents for which the
inspection of c does matter.

Theorem 3 (Strong Completeness for SPIL). For all sets of formulas Δ ⊆
LI
1 and all formulas ϕ ∈ LI

1, if Δ � ϕ, then also Δ � ϕ.

Proof. By the same methods as for Theorem 1. Given a maximally consistent
set Γ ⊆ LI

1 we want to build a model MΓ such that for the world C in that
model we have MΓ , C � Γ .

First, for each agent i ∈ I, let Gi
Γ be the graph given by A →i B : ⇐⇒

Γ � Kvi(A,B). Given that the proof system SPIL was obtained by indexing
the axioms of SPIL1, it is easy to check that indexed versions of the Armstrong
axioms are provable and therefore all the graphs Gi

Γ for i ∈ I will have the
corresponding properties. In particular RIR suffices for this.

Second, define the canonical model MΓ := (S,D, V,R) where S := P(C),
D := {0, 1}, V (s, c) := 0 if c ∈ s and V (s, c) := 1 otherwise, and s ∼i t iff s and
t are both closed or both not closed under Gi

Γ .

Lemma 5 (Multi-Agent Truth Lemma). MΓ , C � ϕ iff ϕ ∈ Γ .

Proof. Again it suffices to show the Truth Lemma for a restricted language and
we only consider the state C. We proceed by induction on ϕ. The crucial case is
when ϕ is of form Kvi(C,D).

Suppose Kvi(C,D) ∈ Γ . Then by definition C → D in Gi
Γ . To show MΓ , C �

Kvi(C,D), take any t such that C ∼i t and C =C t in MΓ . Then by definition

88 J. van Eijck et al.

of V we have C ⊆ t. Moreover, C is closed under Gi
Γ . Hence by definition of ∼i

also t must be closed under Gi
Γ which implies D ⊆ t. Now by definition of V we

have C =D t.
For the converse, suppose Kvi(C,D) �∈ Γ . Then by definition C �→ D in Gi

Γ .
Now, let t := {c′ ∈ C | C → {c′} in Gi

Γ }. This gives us C ⊆ t. But we also
have D �⊆ t because otherwise additivity would imply C → D in Gi

Γ . Moreover,
because Gi

Γ is transitive it is enough to “go one step” in Gi
Γ to get a set that

is closed under Gi
Γ . This means that t is closed under Gi

Γ and therefore by
definition of ∼i we have C ∼i t. Now by definition of V and projectivity, we
have C =C t but C �=D t. Thus t is a witness for MΓ , C � Kvi(C,D).

Again the Truth Lemma also finishes the completeness proof.

Fig. 1. Two canonical dependency graphs and the resulting canonical model.

Example 5. Analogous to Example 3, the following illustrates the multi-agent
version of our canonical construction. Consider the maximally consistent set
Γ = {¬Kv1(d),Kv1(c, d),¬Kv1(d, c),¬Kv2(c),¬Kv2(c, d),Kv1(d, c), . . . }. Note
that agents 1 and 2 do not differ in which values they know right now but
there is a difference in what they will learn from inspections of c and d. The two
canonical dependency graphs generated from Γ are shown in Fig. 1. Again for
clarity we only draw the non-inclusion arrows. The subsets of C = {c, d} closed
under the graphs are thus {{c, d}, {d}, ∅} and {{c, d}, {c}, ∅} for agent 1 and 2
respectively, inducing the equivalence relations as shown in Fig. 1.

It is also not hard to find the right notion of bisimulation for SPIL.

Definition 9. Given two models (S,D, V,R) and (S′,D′, V ′, R′), a relation Z ⊆
S × S′ is a multi-agent bisimulation iff for all sZs′ we have (i) For all finite
C ⊆ C, all d ∈ C and all agents i: If there is a t ∈ S such that s ∼i t and s =C t
and s �=d t, then there is a t′ ∈ S′ such that tZt′ and s′ ∼i t′ and s =C t and
s′ �=d t′; and (ii) Vice versa.

Theorem 4. Two pointed models satisfy the same formulas of the multi-agent
language LI

1 iff there is a multi-agent bisimulation linking them.

As it is very similar to the one of Theorem 2, we omit the proof here.

Knowing Values and Public Inspection 89

5 Future Work

Between our specific approach and the general language of [10], a lot can still
be explored. An advantage of having a weaker language with explicit operators,
instead of encoding them in a more general language, is that we can clearly see
the properties of those operators showing up as intuitive axioms.

The framework can be extended in different directions. We could for example
add equalities c = d to the language, together with knowledge K(c = d) and
announcement [c = d]. No changes to the models are needed, but axiomatizing
these operators seems not straightforward. Alternatively, just like Plaza added
Kv to PAL, we can also add K to PIL. Another next language to be studied is
thus PIL + K from Table 2 above and given by

ϕ ::= � | ¬ϕ | ϕ ∧ ϕ | Kvic | Kiϕ | [c]ϕ.

Note that in this language, we can also express knowledge of dependency in
contrast to de facto dependency. For example, Ki[c]Kvid expresses that agent
i knows that d functionally depends on c, while [c]Kvid express that the value
of d (given the information state of i) is determined by the actual value of c
de facto. In particular the latter does not imply that i knows this. The agent
can still consider other values of c possible that would not determine the value
of d. To see the difference technically, we can spell out the truth condition for
Ki[c]Kvi(d) under standard Kripke semantics for Ki on S5 models:

M, s � Ki[c]Kvi(d) ⇔ for all t1 ∼i s, t2 ∼i s : t1 =c t2 =⇒ t1 =d t2

Now consider Example 4: [c]Kv(d) holds in the first row, but K[c]Kv(d) does not
hold since the semantics of K require [c]Kv(d) to hold at all worlds considered
possible by the agent. This also shows that [c]Kv(d) is not positively introspective
(i.e. the formula [c]Kv(d) → Ki[c]Kv(d) is not valid), and it is essentially not a
subjective epistemic formula.

In this way, K[c]Kv(d) can also be viewed as the atomic formula = (c, d)
in dependence logic (DL) from [11]. A team model of DL can be viewed as
the set of epistemically accessible worlds, i.e., a single-agent model in our case.
The connection with dependence logic also brings PIL closer to the first-order
variant of epistemic inquisitive logic by [12], where knowledge of entailment of
interrogatives can also be viewed as the knowledge of dependency. For a detailed
comparison with our approach, see [13, Sect. 6.7.4].

Another approach is to make the dependency more explicit and include func-
tions in the syntax. In [14] a functional dependency operator Kfi is added to the
epistemic language with Kvi operators: Kfi(c, d) := ∃fKi(d = f(c)) where f
ranges over a pool of functions.

Finally, there is an independent but related line of work on (in)dependency
of variables using predicates, see for example [15–18]. In particular, [17] also uses
a notion of dependency as an epistemic implication “Knowing c implies knowing
d.”, similar to our formula Kv(c, d). In [18] also a “dependency graph” is used to
describe how different variables, in this case payoff functions in strategic games,

90 J. van Eijck et al.

may depend on each other. Note however, that these graphs are not the same
as our canonical dependency graphs from Definition 6. Our graphs are directed
and describe determination between sets of variables. In contrast, the graphs in
[18] are undirected and consist of singleton nodes for each player in a game. We
leave a more detailed comparison for a future occasion.

Acknowledgements. We thank the following people for useful comments on this
work: Alexandru Baltag, Peter van Emde Boas, Hans van Ditmarsch, Jie Fan, Kai Li
and our anonymous reviewers.

This research cooperation was made possible by travel grant 040.11.490 from NWO
for Yanjing Wang, which is herewith gratefully acknowledged.

References

1. Wang, Y.: Beyond knowing that: a new generation of epistemic logics. In: van Dit-
marsch, H., Sandu, G. (eds.) Jaakko Hintikka on Knowledge and Game Theoretical
Semantics. Springer (2016, forthcoming)

2. van Ditmarsch, H., van der Hoek, W., Kooi, B.: Dynamic Epistemic Logic, vol. 1.
Springer, Heidelberg (2007)

3. Plaza, J.: Logics of public communications. Synthese 158(2), 165–179 (2007)
4. Baltag, A., Moss, L.S., Solecki, S.: The logic of public announcements, common

knowledge, and private suspicions. In: Bilboa, I. (ed.) TARK 1998, pp. 43–56 (1998)
5. Armstrong, W.W.: Dependency structures of data base relationships. In: IFIP

Congress, Geneva, Switzerland, vol. 74, pp. 580–583 (1974)
6. Sweeney, L.: Only you, your doctor, and many others may know. Technology Sci-

ence (2015). http://techscience.org/a/2015092903/
7. Wang, Y., Fan, J.: Knowing that, knowing what, and public communication: public

announcement logic with KV operators. In: IJCAI 2013, pp. 1147–1154 (2013)
8. Wang, Y., Fan, J.: Conditionally knowing what. In: Advances in Modal Logic, vol.

10, pp. 569–587 (2014)
9. Gu, T., Wang, Y.: “Knowing value” logic as a normal modal logic. In: Advances

in Modal Logic, vol. 11, pp. 362–381 (2016)
10. Baltag, A.: To know is to know the value of a variable. In: Advances in Modal

Logic, vol. 11, pp. 135–155 (2016)
11. Väänänen, J.: Dependence Logic: A New Approach to Independence Friendly

Logic. Cambridge University Press, New York (2007)
12. Ciardelli, I., Roelofsen, F.: Inquisitive dynamic epistemic logic. Synthese 192(6),

1643–1687 (2015)
13. Ciardelli, I.: Questions in logic. Ph.D. thesis, University of Amsterdam (2016)
14. Ding, Y.: Epistemic logic with functional dependency operator. Bachelor’s thesis

(in Chinese), Peking University (2015)
15. More, S.M., Naumov, P.: An independence relation for sets of secrets. Stud. Logica

94(1), 73–85 (2010)
16. Naumov, P.: Independence in information spaces. Stud. Logica 100(5), 953–973

(2012)
17. Naumov, P., Nicholls, B.: Rationally functional dependence. J. Philos. Logic 43(2–

3), 603–616 (2014)
18. Harjes, K., Naumov, P.: Functional dependence in strategic games. Notre Dame J.

Formal Logic 57(3), 341–353 (2016)

http://techscience.org/a/2015092903/

Random Models for Evaluating Efficient
Büchi Universality Checking

Corey Fisher1(B), Seth Fogarty2, and Moshe Vardi1

1 Rice University, Houston, USA
corey.s.fisher@gmail.com

2 Trinity University, San Antonio, USA

Abstract. Automata-theoretic formal verification approaches the prob-
lem of guaranteeing that a program conforms to its specification by
reducing conformance to language containment. We can prove confor-
mance by representing both programs and specifications as automata
and proving that the specification contains the program. This connec-
tion to the theory of automata on infinite words motivated an extensive
research program into the algorithmic theory of automata on infinite
words, with a focus on algorithms that perform well in practice. The focus
on practical performance is important because of the large gap between
worst-case complexity and practice for many automata-theoretic algo-
rithms. Unfortunately, there are few benchmark instances of automata
in industrial verification. To overcome this challenge, Tabakov and Vardi
proposed a model for generating random automata as test cases.

The Tabakov-Vardi (T-V) model, however, is just one random model,
based on a specific, rather simple model of random graphs. Other models
of random graphs have been studied over the years. While the T-V model
has the advantage of simplicity, it is not clear that performance analy-
sis conducted on this model is robust, and an analogous analysis over
other random models might yield different conclusions. To address this
problem, we introduce three novel models of random automata, yielding
automata that are richer in structure than the automata generated by the
T-V model. By generating large corpora of random automata and using
them to evaluate the performance of universality-checking algorithms,
we show that the T-V model is a robust random model for evaluating
performance of universality-checking algorithms.

1 Introduction

Automata-theoretic formal verification is an approach to the problem of guar-
anteeing that a program (in software or hardware) conforms to its specification,
in which conformance is reduced to the problem to language containment. By
representing both programs and specifications as automata and proving that the
specification contains the program, we can prove conformance [19]. This connec-
tion to automata theory, and, in particular, to the theory of automata on infinite

We recommend viewing the plots in this paper online. For a longer technical report,
see http://www.cs.rice.edu/∼vardi.

c© Springer-Verlag GmbH Germany 2017
S. Ghosh and S. Prasad (Eds.): ICLA 2017, LNCS 10119, pp. 91–105, 2017.
DOI: 10.1007/978-3-662-54069-5 8

http://www.cs.rice.edu/~vardi

92 C. Fisher et al.

words [21], motivated an extensive research program into the algorithmic theory
of automata on infinite words, cf. [20], and the focus of this program is often on
algorithms that perform well in practice, cf. [12].

We focus here on the Büchi universality-checking problem, which is a sim-
plified case of containment checking, the canonical verification problem [19]. An
automaton A is universal if it accepts all input words; equivalently A is univer-
sal if its complement A is empty, that is it accepts no input words. A simplistic
way to check universality of A is to check emptiness of A, which can be reduced
to reachability analysis of A’s state-transition graphs. Such an approach would
have to deal with the blow-up of Büchi complementation, so extant algorithms
for universality use a variety of heuristics to check emptiness of A without con-
structing it in full, cf. [4].

The focus on performance in practice is important because of the large gap
between worst-case complexity and performance in practice for many automata-
theoretic algorithms. For example, the best upper bound for the complementa-
tion of Büchi automata is 2O(n log n) [15] (realized, for example, by the rank-based
construction in [9]), which matches the known lower bound [13]. This bound is
significantly lower that the earlier upper bound of 2O(n2) [16], which uses Büchi
’s Ramsey-based construction [1]. Yet a comparison of the rank-based construc-
tion with the Ramsey-based construction on real-life instances showed that the
Ramsey-based construction can be quite competitive in practice with the rank-
based construction – each outperforms the other on different problem instances
[5].

Nevertheless, the quest for automata-theoretic algorithms that perform well
in practice is hampered by the fact that there is a shortage of benchmark
instances of automata that arise in industrial verification (see discussion below).
To overcome this challenge, Tabakov and Vardi proposed a model for generating
random automata on which different algorithms can be evaluated and compared
[17,18]. The model has three parameters: (1) the size (number of states) of
the automaton, (2) the density of transitions (ratio of transitions to states),
and (3) The density of accepting states (ratio of accepting to total number of
states). Subject to these parameters, the model generates automata randomly.
The Tabakov-Vardi (T-V, for short) model is attractive for two reasons [17]:
First, the model gives rise to an interesting universality terrain, which describes
the relationship between the probability of automaton universality (which means
that all input words are accepted) and the density parameters. Second, the model
gives rise to an interesting performance terrain, which describes the relationship
between algorithmic performance and the density parameters. (We discuss these
two terrains in detail in the body of the paper.) In subsequent years, this model
has become the standard model for the evaluation of Büchi -complementation
tools, cf. [2,4,11,14].

The T-V model, however, is just one specific random model, based on a spe-
cific, and quite simple model of random graphs [8]. As we show in this paper,
several other models of random graphs have been studied over the years. While
the T-V model has the advantage of simplicity, it is not a priori clear that perfor-
mance analyses conducted on this model are robust, as it is entirely possible that

Random Models for Evaluating Efficient Büchi Universality Checking 93

analogous analyses over other random models would yield different conclusions.
Since performance analyses over random models are used in this context as a
substitute to such analyses over a benchmark suite of real-life problem instances,
it is desirable at least to know whether analyses over random models yield robust
conclusions.

To address this problem, we introduce three1 novel models of structured ran-
dom automata, based on existing random graph models – the vertex-copying
model [7], the Frank-Strauss model [6], and the co-accessible model [10]. These
models are based on different models that have been proposed for random graphs.
While the T-V model is uniformly random, generating unstructured automata,
these new models constrain randomness in some way to provide structural guar-
antees about the resulting automata: The vertex-copying model guarantees a
power-law degree distribution, the Frank-Strauss model restricts which transi-
tions are valid, and the co-accessible model guarantees that each state in the
resulting automaton can reach an accepting state.

These structural properties help the models represent a wide variety of pos-
sible types of problem instances that might be encountered in the real world.
Furthermore, these model generate problem instances that are quite unlikely to
be generated by the T-V model. Our goal is to compare performance analysis on
the T-V model against performance analysis on the three new models. If perfor-
mance analyses on the a variety of different models all reach similar conclusions,
then we can conclude that these conclusions are likely robust. If, on the other
hand, performance analyses on different models reach different conclusions, then
we would gain a deeper understanding of how structure affects algorithmic per-
formance and learn that the choice of algorithm should depend on the structure
of the problem instance being solved.

By generating large corpora of random automata and using them to evaluate
the performance of universality-checking algorithms we first show that the new
models possess the same useful properties for universality as the T-V model. We
then replicate results of Fogarty and Vardi [4] for universality checking, using all
four random models. We show that the finding reached in [4], concluding that
the two tools compared are competitive, is robust across the four models. Finally,
we compare Fogarty and Vardi’s Rank tool [4], the most recent implementation
of the rank-based algorithm, with a modern Ramsey-based tool, RABIT 2.32,
and show that the Ramsey-based tool strongly outperforms the rank-based tool,
again over all four models. We conclude, therefore, that the T-V model, in spite
of its simplicity, is an adequate random model for evaluating performance of
universality-checking algorithms.

1 The full version of the paper, with more models, can be found in the technical
report [3].

2 http://languageinclusion.org/doku.php?id=tools.

http://languageinclusion.org/doku.php?id=tools

94 C. Fisher et al.

2 Background

Automata Theory. A Büchi automaton is a tuple A = (Σ,Q,Q0, δ, F), where
Σ is a finite alphabet, Q is the finite set of states, Q0 ⊆ Q is the set of initial
states, δ ⊆ Q×Σ×Q is the transition relation, and F ⊆ Q is the set of accepting
states. Büchi automata take infinite words from Σω as input. A run of a Büchi
automaton on a word w0, w1, ... ∈ Σω is any infinite sequence q0, q1, ... ∈ QωS
such that q0 ∈ Q0, and (qi, wi, qi+1) ∈ δ. A run is accepting if some accepting
state qi ∈ F occurs infinitely often in the run. The Büchi automaton accepts
a word w if there is some run of w that is accepting. The set of all words an
automaton A accepts is called the language of A, or L (A). A complement A
of an automaton A is an automaton whose language is Σω\L (A). Finding the
complement of an automaton is called complementation.

An automaton A is contained in an automaton B when L (A) ⊆ L (B). In
automata-theoretic verification [19], we prove that a program satisfies a specifi-
cation by modeling the program as a Büchi automaton A and the specification
as a Büchi automaton B, and then proving that A is contained in B. To check
this containment, we check that the intersection of L (A) with L

(
B

)
is empty.

If it is not empty, then a word in the intersection is a trace of A that violates
the specification B. In practice, efficient containment algorithms do not explic-
itly construct the complement B, using instead various strategies for on-the-fly
complementation and symbolic construction, cf. [4]. Nevertheless, because these
strategies are still fundamentally based on complementation, there is a close link
between the efficiency of complementation and the efficiency of containment. The
two complementation constructions that have been studied in the context of con-
tainment checking are the Ramsey-based construction of [16] and the rank-based
construction of [9]. While the rank-based construction has a better worst-case
complexity, the Ramsey-based approach is quite competitive in the context of
containment checking [4]. Since the hard step in containment checking is the
need to construct (at least implicitly) B, papers on the subject, e.g. [4,17,18],
usually focus on universality checking, where L (A) = Σω – that is, checking if
L (B) contains the set of all words.

Evaluating Automata-Theoretic Algorithms. The quest for automata-theoretic
algorithms that perform well in practice is hampered by a shortage of bench-
mark instances of automata that arise in industrial verification. The automaton
B above corresponds to a formal specification of intended design functionality.
Industrial specifications are typically proprietary and not openly available. To
overcome this challenge, Tabakov and Vardi (T-V) proposed a model for gener-
ating random automata on which different algorithms can be evaluated and com-
pared [17,18]. In subsequent years, this model has become the standard model
for the evaluation of automata-theoretic tools, cf. [2,4,11,14]. Specifically, the
T-V model was used in [4] to show that despite the worst-case-complexity gap
between the Ramsey-based and the rank-based approaches, the two approaches
are co-competitive in practice – that is, they each can outperform the other in
non-trivial cases, depending on the properties of the automata being checked.

Random Models for Evaluating Efficient Büchi Universality Checking 95

The T-V model generates automata using the uniformly random choice of
elements from a set. The T-V model takes three parameters - an integral size n, a
positive real transition density r, and a real accepting-state density f between 0
and 1. The transition density is the average out-degree of each state in the result
automaton per input symbol. The accepting-state density is the percentage of
states in the result automaton that are accepting states. Formally, a (n, r, f)
T-V random automaton is defined as follows. Each random automaton A =
(Σ,Q,Q0, δ, F) has the alphabet Σ = {1, 0} and set of states Q = {0, . . . , n−1}.
The set Q0 of initial states is {0}. For each σ ∈ Σ, the model generates a
digraph (directed graph) Dσ over the nodes {0, . . . , n − 1} with n ∗ r edges
chosen uniformly at random from the set of all possible edges (u, v) ∈ Q×Q. The
transition relation δ is then defined as {(u, σ, v) | (u, v) ∈ Dσ}. The accepting
states F comprise �n∗f� states selected uniformly at random from Q. Note that
each element of Dσ is a random digraph - specifically, a Karp [8] random digraph.
Thus, we say that the T-V model lifts the Karp model of random digraphs into
automata.

The T-V model is attractive for performance evaluation for two reasons
[17,18]: First, the useful properties of its universality terrain, which describes
the relationship between the probability of automaton universality (which means
that all input words are accepted) and the density parameters. When transition
and accepting-state densities are low, the probability for universality is low, while
at higher densities the probability steadily increases. Thus, the model provides
a way to evaluate the performance of universality-checking algorithms on both
universal and non-universal automata. We call a model “interesting” when its
universality probabilities vary with the input parameters and increase from low
to high probability. Second, the model gives rise to an interesting performance
terrain, which describes the relationship between algorithmic performance and
the density parameters. Specifically, at low and high densities universality check-
ing is easier than at intermediate densities. Thus, the model provides a way to
evaluate the performance of universality-checking tools on both easy and hard
problems. We take these two features, universality terrain and performance ter-
rain to be desiderata that we expect to have in other models of random automata.

3 Random Models

Our goal in this work is to compare the T-V model to other models of random
automata as a framework for evaluating the performance of universality-checking
algorithms. We take advantage of the fact that the Tabakov-Vardi technique of
lifting digraphs into automata is not limited to Karp random digraphs. By sub-
stituting other random-digraph models, we can generate new models of random
automata.

The Tabakov-Vardi lifting is as follows. A random automata model that
lifts a random digraph model has all of the parameters of the digraph model,
plus an accepting-state density parameter f . Each random automaton is a tuple
(Σ,Q,Q0, δ, F), with the elements defined as follows. We take the alphabet

96 C. Fisher et al.

Σ = {0, 1} for all models. For each character σ ∈ Σ, create a random digraph
Dσ using the digraph parameter values of the automaton model. The set Q of
states of the random automaton is equivalent to the set N of Dσ’s nodes, usually
N = {0, . . . , n − 1}, where n is the size parameter. The initial state set Q0 ⊆ Q
is a singleton set containing one state from Q, usually 0. The transition relation
δ is the union of all sets {(q, σ, r) | (q, r) ∈ Dσ} for σ ∈ Σ. Finally, the set
F ⊆ Q of accepting states consists of �|N | ∗ f� elements of Q chosen uniformly
at random (without repetition). Not all models we study use the Tabakov-Vardi
lifting; see details below.

In the rest of this section, we introduce three3 new models based on this
lifting - the vertex-copying model, the Frank-Strauss model, and the co-accessible
model. The first two models are based on existing models of structured random
digraphs which have found common use in other disciplines, and the co-accessible
model guarantees a particular automaton property. While the lack of existing
benchmarks makes it difficult to compare these models directly to industrial
problem instances, we can use a variety of structured random models to more
fully explore the problem space. If these models disagree with the Tabakov-Vardi
model, then the T-V model is not rich enough to fully represent the space on its
own – if they agree, then it is likely that the conclusions of the T-V model are
quite robust.

We show each of the models to have a universality terrain that is somewhat
similar but not identical to that of the T-V model, using experiments run on the
DAVinCI cluster4 at Rice University. To show that each model has an interesting
universality terrain, we present with each model a terrain plot showing how likely
the automata generated by the model are to be universal when made with certain
parameters. We generated and tested 100 automata using the parameters at each
point on the plot. The universality terrains show that the random models we
introduce generate automata whose likelihood of being universal ranges from 0
to 1, just as in the T-V model.

Vertex-Copying Automata. The random vertex-copying model presented here is
a simplification of the model defined by Kleinberg et al. [7]. A vertex-copying
digraph starts out as an empty set of nodes, and adds edges over time. By
sometimes choosing edges at random, and at other times copying edges from one
node to another, it creates a heavy-tailed distribution – a “rich get richer” effect
as nodes with many edges steadily gain more and more edges. This copying is
intended to model hyperlinks on the Web – links are often created when someone
discovers a link to a site they’re interested in on another site, then adds a link to
it on their own website, thus “copying” the link from one site to another. This
approach may also model code reuse - when a code block is reused, then calls to
functions are duplicated.

An (n, b, r) vertex-copying random digraph takes as parameters the size
n, the copying probability b, and the transition density r. The vertices are
{0, . . . , n − 1}. The model begins with no edges and adds edges (u, v) to the

3 Other models can be found in the technical report [3].
4 http://www.rcsg.rice.edu/sharecore/davinci/.

http://www.rcsg.rice.edu/sharecore/davinci/

Random Models for Evaluating Efficient Büchi Universality Checking 97

Fig. 1. A vertex-copying universality terrain for n = 20. The transition density r ranges
from 1 to 3, and the copying probability b ranges from 0.2 to 0.8. The accepting-state
density f was set to 0.3. The universality probability is comparable to that of the T-V
model for most values of r. Note that increasing b does not monotonically increase
universality probability – after a certain point it actually reduces it. This may be
because all transitions go to a small number of states, with few transitions leaving
them, increasing the likelihood of rejection.

graph one at a time until there are �n ∗ r� edges. Each time it does so, it has
a probability b of copying an edge from one node to another, and a probability
1 − b of simply generating an edge uniformly at random. If it copies, then it
chooses an edge (u, v) ∈ E and a node u′ ∈ V \u uniformly at random. It then
adds (u′, v) to E. If it generates the edge at random, it acts as in the T-V model.
This digraph model extends to automata by directly using the standard lifting.
Its universality terrain is given in Fig. 1.

Frank-Strauss Automata. The Frank-Strauss random graph model, based on an
approach by Frank and Strauss5 [6], limits the space of possible edges. Instead of
the vertices being integers, vertices are unordered pairs of integers. The Frank-
Strauss model permits edges only between vertices that share an element – the
vertex (0, 1) can connect to (0, 3) and (1, 3), but not to (2, 3). Within this space,
edges are generated uniformly at random. The Frank-Strauss model can repre-
sent systems that require some relationship between actors. For example, it can
be used to represent binary relationships between individuals in a social setting.
Alternatively, we may have a program such that if one module calls another,
5 Referred to in their paper as a “Markov graph”.

98 C. Fisher et al.

Fig. 2. A Frank-Strauss universality terrain for l = 21. r ranges from 1 to 3 and f
ranges from 0.2 to 0.8. While the universality probably scales more quickly with r than
in the T-V model, there are still a number of points where universality is neither nearly
guaranteed nor always absent.

then there must be some relation between them – for example, operating on
shared data.

An (l, r) Frank-Strauss random graph takes as parameters a label size l and
a transition density r. The set V of vertices is the set {(i, j) | i, j ∈ 0, . . . , l − 1}
of unordered pairs of elements. Since we allow the case where i = j, there are(
l+1
2

)
= l(l+1)

2 such vertices. We generate �|V | ∗ r� edges. To generate each edge,
first choose a vertex (u1, u2) uniformly at random as the source, and then choose
a vertex (v1, v2) ∈ {u1, u2} × {0, . . . , l} uniformly at random as the destination.
This digraph model extends to automata directly by using the standard lifting.
The universality terrain is presented in Fig. 2.

Co-accessible Automata. The co-accessible model of random automata is so
named because it guarantees that the resulting automata are co-accessible, where
an automaton is co-accessible if all states q ∈ Q are co-accessible, that is, can
reach an accepting state. Because this property is meaningful only for automata,
the co-accessible model cannot be based on lifting a model of random digraphs.
It is loosely based on Leslie’s generation of connected automata [10]. Automata
possessing this property correspond to useful program properties – for exam-
ple, a co-accessible automaton may specify that the program can recover and
perform its intended function from every state.

Random Models for Evaluating Efficient Büchi Universality Checking 99

The co-accessible model takes as parameters a size n, a transition density r,
and an accepting state density f . The co-accessible model does not define the
transition relation based on an underlying digraph. Instead, we start with a set
Q = {0, . . . , n − 1} of states and initial and accepting state sets Q0 and F as in
the T-V model. The transition relation δ is initially empty.

To fill in δ, we construct a random spanning inverted forest over Q. This is
a set of trees over the automaton which contains every state, each rooted at an
accepting state, and where edges go from children to parents instead of parents
to children. A forest can be found as follows: make a set of co-accessible states
C = F and states that are not yet co-accessible U = Q\F , then select some
u ∈ U , c ∈ C and σ ∈ Σ uniformly at random. Add (u, σ, c) to δ, then remove u
from U and add it to C, repeating until U is empty.

Once the spanning forest has been constructed, the model must fill in the rest
of the transition relation. It then ensures that each character σ ∈ Σ is associated
with exactly �n ∗ r� edges. If some σ0 has more than �n ∗ r� transitions, replace
random transitions (u, σ0, v) with (u, σ1, v) for σ0 �= σ1 and σ1 ∈ Σ. Then
generate new edges uniformly at random, as in the T-V model, for each character
with fewer than �n ∗ r� transitions. We assume r ≥ 1. The universality terrain
is given in Fig. 3.

Fig. 3. A co-accessible universality terrain for n = 20. The transition density r ranges
from 1 to 3, and f ranges from 0.2 to 0.8. Notice that the slope is much shallower than
in previous models. This gives us an extremely wide range of useful configurations for
testing.

100 C. Fisher et al.

4 Experiments

Methodology. Having defined three new random models and, via universality
testing, proven them to be interesting for performance evaluation, we then used
these models to run timing experiments for three universality checkers. We first
compared the Rank and Ramsey tools6 from [4]. To acquire a more recent pic-
ture of the comparison between algorithms, we also compared these tools with
the RABIT 2.3 tool7, a more recent Ramsey-based containment checker. As in
the previous section, experiments were run on the DAVinCI cluster at Rice Uni-
versity, which consists of many Westmere nodes with 2.83 GHz processors and
48 GB of memory per node. We limited each job to 30 GB of memory and one
hour of time. Jobs that did not finish were marked as timeouts.

We ran two types of experiments: terrain experiments and scaling experi-
ments. In terrain experiments, the size of the automata is held constant, and
two other parameters are changed to see the effects on running time. In scaling
experiments, all parameters are held constant except those affecting the size of
the automaton, and we steadily increase the size to see how the implementa-
tions respond to larger problems. We conduct scaling experiments with parame-
ters that are particularly difficult for at least one tool to handle, as determined
by the terrain experiments, to test practical worst-case performance. We gener-
ated 100 automata using each combination of parameter values in both kinds of
experiments, and report median running time.

Fig. 4. For terrain experiments on the Tabakov-Vardi model, we tested parameter
values of n = 100, or l = 14, r ∈ {1, 1.5, 2, 2.5, 3}, and f ∈ {0.02, 0.26, 0.5, 0.74, 0.98}.
These graphs show results for the Rank and Ramsey tools. Note that Rank and Ramsey
are not directly comparable - Ramsey tends to be slower at points where r = 1.5 and
r = 2, while Rank tends to be slower at f = 0.02 and f = 0.26. This agrees with
previous results [4] using the Tabakov-Vardi model.

6 https://www.cs.rice.edu/CS/Verification/Software/software.html.
7 http://www.languageinclusion.org/doku.php?id=tools.

https://www.cs.rice.edu/CS/Verification/Software/software.html
http://www.languageinclusion.org/doku.php?id=tools

Random Models for Evaluating Efficient Büchi Universality Checking 101

Fig. 5. For terrain experiments on the Frank-Strauss model, we tested parameter values
of n = 105, or l = 14, r ∈ {1, 1.5, 2, 2.5, 3}, and f ∈ {0.02, 0.26, 0.5, 0.74, 0.98}. These
graphs show results for the Rank and Ramsey tools. Again, the Rank model tends to
perform the slowest at low f and low r, while Ramsey is slowest at r = 2. This agrees
with our results on the Tabakov-Vardi model, as do the terrains of other models found
in the technical report [3].

Results. We find both that choice of model does not seriously impact tool com-
parisons, and that RABIT noticeably outperforms Rank and Ramsey.

In both terrain (Figs. 4, 5 and 6) and scaling (Fig. 7) experiments, we find
that the relative efficiency of tools is very similar across models. All models show
that, as in the Tabakov-Vardi model in [4], the Rank and Ramsey are not directly
comparable – which parameters are used to generate an automaton determine
which tool solves it most efficiently, as seen in the terrain experiments in Fig. 5.
Since all models agree with T-V here, it is reasonable to use the T-V model
to compare tools. Nevertheless, while models agree on the comparison between
tools, they do not have the same running time. For example, in Fig. 7, we see
on a log scale that there is a factor 10 difference between the running time of
Ramsey on the Tabakov-Vardi and co-accessible models. Thus, the T-V model
should be relied on for relative comparisons, but not for predicting runtimes.

Since there was little difference in comparison between models, Rank and
Ramsey compare similarly to their results in [4]. Yet, when we compare Rank to
RABIT, we saw a massive speedup at all difficult points – sometimes thousands
of times faster. At n = 100, the terrain was flat, with most cases terminating in
just over a tenth of a second. Therefore, the improved modern Ramsey tools are
more suited for practical use than Rank-based ones. However, as seen in Fig. 6,
random models can still provide interesting performance terrain on the more
efficient tools by scaling up the size of the problems.

There is one noticeable difference between algorithms not shown – both
Ramsey-based algorithms used much more memory than Rank did. When pro-
vided with 5 GB of memory, the Rank tool performed acceptably, but Ramsey
and RABIT crashed regularly. 30 GB of memory provided was necessary to avoid
crashes due to running out of memory.

102 C. Fisher et al.

Fig. 6. For all terrain experiments at n = 100 for RABIT, we found that the ter-
rain was entirely flat - very few problems took more than one second to terminate.
Therefore we show results for RABIT on n = 400, instead, with parameter values
r ∈ {1, 1.5, 2, 2.5, 3}, and f ∈ {0.02, 0.26, 0.5, 0.74, 0.98}. Note that the maximum
Y-axis value is only 800 seconds, because at no point was the median result a timeout.
RABIT has the most difficulty at high transition density and extremely low acceptance
densities, with orders of magnitude slower performance on f = 0.02. While it does not
appear on this graph, we also find that RABIT takes about two orders of magnitude
more time at r = 2.0 and high f than other areas, and one order of magnitude less than
the extremely difficult areas. Also, we find that at r = 1.5, we consistently had a small
(5 %) chance of timeouts at all values of n tested with few to no timeouts elsewhere,
though the median time taken was no higher.

5 Concluding Remarks

While formal verification provides important software tools, it has been unclear
whether these tools are efficient enough to be used in practice. Thus, the T-V
model is a powerful tool for automata-theoretic formal verification, allowing us
to test the efficiency of algorithms for determining conformance to a specifica-
tion. Due to concerns about whether the model accurately reflected real-world
performance, we tested other models to see if the structure of a problem would
influence the results; we found that it did not. Future work in the area can pro-
ceed to test algorithms and tools on the T-V model, more confident that it is
robust and that its results are widely applicable.

This work gives reason to believe that the Tabakov-Vardi model is a robust
model with results that are likely to be close to the real-world. Complementation,

Random Models for Evaluating Efficient Büchi Universality Checking 103

Fig. 7. For this set of scaling experiments, we set r = 1.5 and f = 0.98, and scale
n from 10 to 100. In the Frank-Strauss model, l scales from 4 to 14. This point was
chosen for scaling because it is particularly difficult for Ramsey. On this log-scale plot,
different tools (indicated by shared color and marker shape) tend to have similar slopes
regardless of model (indicated by shared line style). Notably, an obvious exponential
gap exists between other models and Ramsey at these parameters for every model
except the trivally-easy vertex-copying model. Since f is high, this is an easy point
for Rank. The relationship between tools found by T-V is also reflected in the other
random models shown here.

and thus containment checking, should be practical on real-world problems. We
also discovered an improvement of many orders of magnitude in modern contain-
ment checkers using a Ramsey-based approach. RABIT outperformed both older
Ramsey and rank-based tools significantly, and can scale up much higher. Since
little work has been done on rank-based solvers since 2010, current heuristics-
driven Ramsey-based approaches are the best available options for containment
checking for Büchi automata.

Acknowledgements. Work supported in part by NSF grants CCF-1319459 and IIS-
1527668, by NSF Expeditions in Computing project “ExCAPE: Expeditions in Com-
puter Augmented Program Engineering”, as well as the Data Analysis and Visualiza-
tion Cyberinfrastructure funded by NSF grant OCI-0959097 and Rice University.

104 C. Fisher et al.

References

1. Büchi, J.R.: Turing-machines and the Entscheidungsproblem. Math. Ann. 148(3),
201–213 (1962)

2. Doyen, L., Raskin, J.: Antichains for the automata-based approach to model-
checking. arXiv preprint arXiv:0902.3958 (2009)

3. Fisher, C., Fogarty, S., Vardi, M.: Random models for efficient Büchi universal-
ity checking. Technical report. Department of Computer Science, Rice University,
Houston, TX, October 2016. http://www.cs.rice.edu/∼vardi

4. Fogarty, S., Vardi, M.Y.: Efficient Büchi Universality Checking. In: Esparza, J.,
Majumdar, R. (eds.) TACAS 2010. LNCS, vol. 6015, pp. 205–220. Springer,
Heidelberg (2010). doi:10.1007/978-3-642-12002-2 17

5. Fogarty, S., Vardi, M.Y.: Büchi complementation and size-change termination. In:
Kowalewski, S., Philippou, A. (eds.) TACAS 2009. LNCS, vol. 5505, pp. 16–30.
Springer, Heidelberg (2009). doi:10.1007/978-3-642-00768-2 2

6. Frank, O., Strauss, D.: Markov graphs. J. Am. Stat. Assoc. 81(395), 832–842 (1986)
7. Kleinberg, J., Kumar, R., Raghavan, P., Rajagopalan, S., Tomkins, A.: The

web as a graph: measurements, models, and methods. In: Asano, T., Imai, H.,
Lee, D.T., Nakano, S., Tokuyama, T. (eds.) COCOON 1999. LNCS, vol. 1627,
pp. 1–17. Springer, Heidelberg (1999). doi:10.1007/3-540-48686-0 1

8. Karp, R.M.: The transitive closure of a random digraph. Random Struct. Alg. 1(1),
73–93 (1990)

9. Kupferman, O., Vardi, M.Y.: Weak alternating automata are not that weak. ACM
Trans. Comput. Logic (TOCL) 2(3), 408–429 (2001)

10. Leslie, T.: Efficient approaches to subset construction. Technical report. University
of Waterloo, Canada (1995)

11. de Wulf, M., Doyen, L., Henzinger, T.A., Raskin, J.-F.: Antichains: a new algo-
rithm for checking universality of finite automata. In: Ball, T., Jones, R.B. (eds.)
CAV 2006. LNCS, vol. 4144, pp. 17–30. Springer, Heidelberg (2006). doi:10.1007/
11817963 5

12. Tsai, M.-H., Fogarty, S., Vardi, M.Y., Tsay, Y.-K.: State of Büchi complementation.
In: Domaratzki, M., Salomaa, K. (eds.) CIAA 2010. LNCS, vol. 6482, pp. 261–271.
Springer, Heidelberg (2011). doi:10.1007/978-3-642-18098-9 28

13. Michel, M.: Complementation is more difficult with automata on infinite words.
CNET, Paris (1988). 15

14. Abdulla, P.A., Chen, Y.-F., Clemente, L., Hoĺık, L., Hong, C.-D., Mayr, R., Voj-
nar, T.: Advanced ramsey-based Büchi automata inclusion testing. In: Katoen,
J.-P., König, B. (eds.) CONCUR 2011. LNCS, vol. 6901, pp. 187–202. Springer,
Heidelberg (2011). doi:10.1007/978-3-642-23217-6 13

15. Safra, S.: On the complexity of ω-automata. In: 29th Annual Symposium on Foun-
dations of Computer Science, pp. 319–327. IEEE (1988)

16. Sistla, A.P., Vardi, M.Y., Wolper, P.: The complementation problem for Büchi
automata with applications to temporal logic. Theor. Comput. Sci. 49(2), 217–237
(1987)

17. Tabakov, D., Vardi, M.Y.: Experimental evaluation of classical automata construc-
tions. In: Sutcliffe, G., Voronkov, A. (eds.) LPAR 2005. LNCS, vol. 3835, pp. 396–
411. Springer, Heidelberg (2005). doi:10.1007/11591191 28

18. Tabakov, D., Vardi, M.Y.: Model checking Büchi specifications. In: Proceedings of
1st International Conference on Language and Automata Theory and Applications,
pp. 565–576 (2007)

http://arxiv.org/abs/0902.3958
http://www.cs.rice.edu/~vardi
http://dx.doi.org/10.1007/978-3-642-12002-2_17
http://dx.doi.org/10.1007/978-3-642-00768-2_2
http://dx.doi.org/10.1007/3-540-48686-0_1
http://dx.doi.org/10.1007/11817963_5
http://dx.doi.org/10.1007/11817963_5
http://dx.doi.org/10.1007/978-3-642-18098-9_28
http://dx.doi.org/10.1007/978-3-642-23217-6_13
http://dx.doi.org/10.1007/11591191_28

Random Models for Evaluating Efficient Büchi Universality Checking 105

19. Vardi, M., Wolper, P.: An automata-theoretic approach to automatic program
verification. In: Proceedings of the First Symposium on Logic in Computer Science,
pp. 322–331. IEEE Computer Society (1986)

20. Vardi, M.Y.: The Büchi complementation saga. In: Thomas, W., Weil, P. (eds.)
STACS 2007. LNCS, vol. 4393, pp. 12–22. Springer, Heidelberg (2007). doi:10.
1007/978-3-540-70918-3 2

21. Vardi, M.Y., Wolper, P.: Reasoning about infinite computations. Inf. Comput.
115(1), 1–37 (1994)

http://dx.doi.org/10.1007/978-3-540-70918-3_2
http://dx.doi.org/10.1007/978-3-540-70918-3_2

A Substructural Epistemic Resource Logic

Didier Galmiche1, Pierre Kimmel1, and David Pym2(B)

1 Université de Lorraine, LORIA, Nancy, France
2 University College London, London, UK

d.pym@ucl.ac.uk

Abstract. We present a substructural epistemic logic, based on Boolean
BI, in which the epistemic modalities are parametrized on agents’ local
resources. The new modalities can be seen as generalizations of the usual
epistemic modalities. The logic combines Boolean BI’s resource semantics
with epistemic agency. We give a labelled tableaux calculus and establish
soundness and completeness with respect to the resource semantics. We
illustrate the use of the logic by discussing an example of side-channels
in access control using resource tokens.

1 Introduction

The concept of resource is important in many fields including, among others,
computer science, economics, and security. For example, in operating systems,
processes access system resources such as memory, files, processor time, and
bandwidth, with correct resource usage being essential for the robust function of
the system. The internet can be regarded as a giant, dynamic net of resources,
in which Uniform Resource Locators refer to located data and code. In recent
years, the concept of resource has been studied and analysed in computer science
through the bunched logic, BI, [14] and its variants, such as Boolean BI (BBI)
[15] and applications, such as Separation Logic [15,21]. The resource seman-
tics — i.e., the interpretation of BI’s semantics in terms of resources — that
underpins these logics is mainly concerned sharing and separation, correspond-
ing to additive, such as ∧, and multiplicative connectives, such as ∗, respectively.
These logics are the logical kernels of the separating, or separation, logics, with
resources being interpreted in various ways, such as memory regions, [15,21] or
elements of other particular monoids of resources [3].

The logic BI of bunched implications — see, for example, [11,14,20] — freely
combines intuitionistic propositional additives with intuitionistic propositional
multiplicatives. In Boolean BI (BBI) [15], the additives are classical. The key
feature of BI as a modelling tool, and hence of its specific model Separation
Logic, is its control of the representation and handling of resources provided
by the resource semantics and the associated proof systems. BI’s basic propo-
sitional connectives come in two groups. The additives, which can be handled
either classically or intuitionistically, are familiar disjunction, conjunction, and
implication. For example,

r |= φ ∧ψ iff r |= φ and r |= ψ.
c© Springer-Verlag GmbH Germany 2017
S. Ghosh and S. Prasad (Eds.): ICLA 2017, LNCS 10119, pp. 106–122, 2017.
DOI: 10.1007/978-3-662-54069-5 9

A Substructural Epistemic Resource Logic 107

The key point here is that the resource r is shared between the two components
of the disjunction.

In contrast, the multiplicative conjunction, ∗, divides the resource between its
propositional components, using a partial commutative monoidal operation, ◦,

r |= φ ∗ψ iff there are s and t such that r = s ◦ t and s |= φ and t |= ψ.

That is, the monoid specifies a separation of the resources between the compo-
nents of the conjunction. In Separation Logic, where the semantics is built out
of sets of memory locations, the two resource components are required to be
disjoint. Details may be found in the references given above.

BI’s sequent proof systems employ bunches, with two context-building oper-
ations: one for the additives (characterized by ∧, which admits weakening and
contraction) and one for the multiplicatives (characterized by ∗, which admits
neither weakening nor contraction), leading to the following rules for the corre-
sponding implications, → and −∗:

Γ ; φ � ψ

Γ � φ → ψ
and

Γ , φ � ψ

Γ � φ −∗ ψ
.

Again, details may be found in the references given above.
The soundness and completeness of BI for the semantics given above is estab-

lished in [20] and via labelled tableaux in [11], and the completeness of BBI for
the partial monoid semantics described above is established in [16].

Modal extensions of BI, such as MBI [1,3], DBI, and DMBI [6], have been
proposed to introduce dynamics into resource semantics. In recent work, the idea
of introducing agents, together with their knowledge, into the resource semantics
has led to an Epistemic Separation Logic, called ESL, in which epistemic possible
worlds are considered as resources [7]. This logic corresponds to an extension of
Boolean BI with a knowledge modality, Ka, such that Ka φ means that the agent
a knows that φ holds.

Various previous works on epistemic logics consider the concept of resource,
using a variety of approaches. They include [2,13,17]. Here we aim to explore
more deeply the idea of epistemic [9] reasoning in the context of resource seman-
tics, and its associated logic, by taking the basic epistemic modality Ka and
parametrizing it with a resource s, with the associated introduction of relations
not only between resources, according to an agent, but also between composition
of resources in different ways. The parametrizing resource may be thought of as
being associated with, or local to, the agent. This approach leads to the defini-
tion of three new modalities Ls

a, M
s
a, and Ns

a and, consequently, to a new logic
in which, as a leading example, we can obtain an account of access to resources
and its control, whether they be pieces of knowledge, locations, or other entities.
We call this logic Epistemic Resource Logic or ERL.

In Sect. 2, we set up the logic ERL by a semantic definition and, in Sect. 3, we
give the key conservative extension properties of the logic. In Sect. 4, we explain,
how to use the logic to model and reason about the relationship between a
security policy — in the context of access control — and the system to which it

108 D. Galmiche et al.

is applied (cf. [22]). Our application to systems security policy stands in contrast
to other work (e.g., [19]) in which epistemic logic has been applied to the analysis
of cryptographic protocols. In Sect. 5, we set up a labelled tableaux calculus for
ERL, and establish soundness with respect to ERL’s semantic definition and also
completeness from a countermodel extraction method. Details of the arguments
are provided in [12].

2 An Epistemic Resource Logic

The language L of the epistemic resource logic, or ERL, is obtained by adding
two new modal operators L and M to the BI language. In order to define the
language of ERL, we introduce the following structures: a finite set of agents A; a
finite set of resources Res, with a particular element, e; an internal composition
operator · on Res (· : Res×Res ⇀ Res); a countable set of propositional symbols
Prop. The language L of ERL is defined as follows:

φ : := p | ⊥ | � | ¬φ | I | φ∨ψ | φ ∧ψ | φ → φ | φ ∗φ | φ −∗ φ | Ls
a φ | Ms

a φ,

where p ∈ Prop, a ∈ A and s ∈ Res. We also define the following operators:
Ns

a φ ≡ Ls
a(M

s
a φ), M̃s

a φ ≡ ¬Ms
a¬φ, L̃s

a φ ≡ ¬Ls
a¬φ, Ñs

a φ ≡ ¬Ns
a¬φ. The

meanings of these connectives are defined in the sequence of definitions that
follow below. For simplicity, we write rs instead of r · s and so write Lrs

a φ

instead of Lr·s
a φ.

Note that we introduce modalities that depend on agents and resources, and
compare them with previous work on an epistemic extension of Boolean BI [7].
With a slight abuse of notation, we have explicit resources in the language syntax:
just as in [8], we must assume that the resource elements present in the syntax
of the modalities have counterparts in the partial resource monoid semantics.
This design choice has consequences both for the expressivity of the logic and
for the formulation of the tableaux calculus.

Definition 1 (Partial resource monoid). A partial resource monoid (PRM)
is a structure R = (R, •) such that

– R is a set of resources such that Res ⊆ R (which notably means that e ∈ R),
and

– • : R × R ⇀ R is an operator on R such that, for all r1, r2, r3 ∈ R,
– • is an extension of ·: if r1, r2, r3 ∈ Res, then r1 = r2 · r3 iff r1 = r2 • r3,
– e is a neutral element: r1 • e ↓ and r1 • e = r1,
– • is commutative: if r1 • r2 ↓, then r2 • r1 ↓ and r2 • r1 = r1 • r2, and
– • is associative: if r1 • (r2 • r3) ↓, then (r1 • r2) • r3 ↓ and

(r1 • r2•)r3 = r1 • (r2 • r3).

Here r•r′ ↓ means r•r′ is defined. We call e the unit resource and • the resource
composition. Henceforth, ℘(S) denotes the powerset of S.

A Substructural Epistemic Resource Logic 109

Definition 2 (Model). A model is a triple M = (R , {∼a}a∈A, V) such that

– R = (R, •) is a PRM,
– for all a ∈ A, ∼a⊆ R × R is an equivalence relation, and
– V : Prop → ℘(R) is a valuation function.

We can place this logic in the context of our previous work on modal [3,4]
and epistemic extensions of (Boolean) BI [6,7]. In [7], an epistemic extension of
Boolean BI, called ESL, is introduced. In this logic, there is just one epistemic
modality, Ka, which allows the knowledge of an agent a to be expressed. More
formally, the semantics of this modality is defined by r |=W Ka φ if and only
if, for all r′ such that r ∼a r′, r′ |=W φ, where r and r′ are semantic worlds
(or resources) and ∼a is a relation between worlds that expresses that they
are equivalent from the point of view of the agent a. This parametrization of
modality on resource derives from ideas that are conveniently expressed in, for
example, [3,4].

In this paper, we aim to develop the idea in order to consider a modality like
Ka and to parametrize it on a resource s, requiring the world relation to be of
the form r • s ∼a r′ or r ∼a r′ • s or even r • s ∼a r′ • s. Then, in the spirit of
ESL, we define a new logic from Boolean BI that allows us to model not only
relations between resources according to an agent, but also how those relations
are restricted by resources. We can also consider the resources upon which the
agent’s relation are parametrized to be local to the agent.

In this spirit, we define three new modalities Ls
a φ, Ms

a φ, and Ns
a φ, for which

we have the following semantics expressing the evident three forms of the agent’s
contingency for truth in the presence of composable resources:

1. Ls
a φ expresses that the agent, a, can establish the truth of φ using a given

resource whenever the ambient resource, r, can be combined with the agent’s
local resource, s, to yield a resource that a judges to be equivalent to that
given resource:

r |=W Ls
a φ iff for all r′ such that r′ ∼a r • s, r′ |=W φ.

2. Ms
a φ expresses that the agent, a, can establish the truth of φ using a resource

that is the combination of its local resource, s, with any resource such that a
judges the combined resource to be equivalent to the ambient resource, r:

r |=W Ms
a φ iff for all r′ such that r′ • s ∼a r, r′ • s |=W φ.

3. Ns
a φ expresses that the agent, a, can establish the truth of φ using any

resource combined with its local resource, s, provided a judges that combi-
nation to be equivalent to the combination of that resource with the ambient
resource, r:

r |=W Ns
a φ iff for all r′ such that r′ • s ∼a r • s, r′ • s |=W φ.

ERL can thus be seen as a particular epistemic logic that provides new modal-
ities which model access to resources, whether they are interpreted as pieces of
knowledge, locations, or otherwise.

110 D. Galmiche et al.

Definition 3 (Satisfaction and validity). Let M = (R , {∼a}a∈A, V) be a
model. The satisfaction relation |=W⊆ R×L is defined, for all r ∈ R, as follows:

r |=W p iff r ∈ V (p)
r |=W ⊥ never
r |=W � always

r |=W ¬φ iff r � |=W φ

r |=W φ ∨ψ iff r |=W φ or r |=W ψ

r |=W φ ∧ψ iff r |=W φ and r |=W ψ

r |=W φ → ψ iff if r |=W φ, then r |=W ψ

r |=W I iff r = e
r |=W φ ∗ ψ iff there exist r1, r2 ∈ R s.t. r1 • r2 ↓, r1 • r2 = r, and r1 |=W φ and r2 |=W ψ

r |=W φ −∗ ψ iff for all r′ ∈ R, if r • r′ ↓ and r′ |=W φ, then r • r′ |=W ψ

r |=W Ls
a φ iff for all r′ ∈ R, if r • s ∼a r′, then r′ |=W φ

r |=W Ms
a φ iff for all r′ ∈ R, if r ∼a r′ • s, then r′ • s |=W φ

r |=W Ns
a φ iff for all r′ such that r′ • s ∼a r • s, r′ • s |=W φ .

A formula φ is valid, denoted � φ, if and only if, for all M and all r, r |=W φ.

Note that Ns
a φ ≡ Ls

a(M
s
a φ). To see this, consider that r |=W Ls

a(M
s
a φ) iff,

for all r′ ∈ R, if r • s ∼a r′, then r′ |=W Ms
a φ iff, for all r′ ∈ R, if r • s ∼a r′,

then, for all r′′ ∈ R, if r′ ∼a r′′ • s, then r′′ • s |=W φ iff, for all r′, r′′ ∈ R, if
r • s ∼a r′ and r′ ∼a r′′ • s, then r′′ • s |=W φ iff (by the transitivity of ∼a), for
all r′′ ∈ R, if r • s ∼a r′′ • s, then r′′ • s |=W φ iff r |=W Ns

a φ.

Proposition 1 (Satisfaction for the secondary modalities). Let M =
(R , {∼a}a∈A, V) be a model, and let r ∈ R. The following statements hold:

1. r |=W L̃s
a φ iff there exists r′ ∈ R such that r • s ∼a r′ and r′ |=W φ;

2. r |=W M̃s
a φ iff there exists r′ ∈ R such that r ∼a r′ • s and r′ • s |=W φ;

3. r |=W Ñs
a φ iff there exists r′ ∈ R such that r • s ∼a r′ • s and r′ • s |=W φ.

Proof. For example, consider the first part. L̃s
a φ ≡ ¬Ls

a¬φ, so r |=W L̃s
a φ iff

r |=W ¬Ls
a¬φ iff r � |=W Ls

a¬φ iff there exists r′ ∈ R s.t. r • s ∼a r′ and
r′ � |=W ¬φ iff there exists r′ ∈ R s.t. r • s ∼a r′ and r′ |=W φ. Parts 2 and 3 are
similar.

Note that the first point of the definition of •, in Definition 1, implies that
the three other definitions (neutral element, commutativity, and associativity)
extend to ·, so that the following are semantically equivalent (i.e., every valid
formula in the one is valid in the other) for any agent a and any resources r, s,
and t: Lre

a φ ≡ Lr
a φ, Lrs

a ≡ Lsr
a , and Lr(st)

a ≡ L(rs)t
a . Of course, these equivalences

also hold for M φ, N φ, L̃ φ, M̃ φ, and Ñ φ.

3 Some Properties of ERL

Consider two fragments of ERL. First, ERLBBI — corresponding to BBI [15] —
with A = ∅ on the language L|BBI defined as L excluding the L, M, and N
operators. Second, ERLEL — corresponding to the epistemic logic EL consisting

A Substructural Epistemic Resource Logic 111

of classical propositional additives and the basic epistemic operator Ka [9] —
with Res = {e}, on the language L|EL defined as L excluding I, ∗, and −∗ and
with L, M, and N replaced by the operator Ka, which is defined, for all agents
a, by Ka φ = Le

a φ = Me
a φ.

Proposition 2 (ERL is a conservative extension of BBI and EL). If, in
every model of BBI, the neutral element of the composition is the element e of
Res, then ERLBBI is semantically equivalent to Boolean BI (BBI). If the agent
sets are the same for the two languages, ERLEL is semantically equivalent to the
epistemic logic EL.

Definition 4. The logic ERL∗ is defined as ERL but with the addition of the
two following properties to the partial resource monoid (Definition 1): 1. • has
the right-composition property, namely, if r1 = r2 and r1•r3 ↓, then r2•r3 ↓ and
r2•r3 = r1•r3; 2. • has the right-cancellation property, namely, if r1•r3 = r2•r3,
then r1 = r2.

Note that left-cancellation and left-composition also hold trivially, as • is com-
mutative.

Lemma 1. Let a ∈ A be an agent, r, s ∈ Res be resources and φ be a formula
of ERL∗. We have the following equalities:

1. Lt
a(L

s
a φ) ≡ Lts

a φ

2. Mt
a(M

s
a φ) ≡ Ms

a φ

3. Mt
a(L

s
a φ) ≡ Ls

a φ

4. Nt
a(N

s
a φ) ≡ Lt

a(N
s
a φ)

5. Le
a φ ≡ Me

a φ ≡ Ne
a φ

6. ˜Lt
a(˜L

s
a φ) ≡ ˜Lts

a φ

7. ˜Mt
a(˜M

s
a φ) ≡ ˜Ms

a φ

8. ˜Mt
a(˜L

s
a φ) ≡ ˜Ls

a φ

9. ˜Nt
a(˜N

s
a φ) ≡ ˜Lt

a(˜N
s
a φ).

Proof. Straightforward calculations using the semantic definitions of the modal-
ities.

4 Modelling with the Logic ERL

Using a very simple, well-known example, we illustrate how to use ERL, and its
special fragment ERL∗, in modelling access control situations. There is often a
gap between theory and practice when dealing with security matters. Specifically,
when a particular security policy is applied to a particular system, the behaviour
of the system may not be as intended.

Consider the example of Schneier’s gate, [22], wherein a security system is
ineffective because of the existence of a side-channel that allows a control to be
circumvented. Here a facility that is intended to be secured is protected by a
barrier that prevents cars from entering into the facility. The barrier may be
controlled by a token — such as a card, a remote, or a code — the holding of
which distinguishes authorized personnel from intruders. If, however, the barrier
itself is surrounded by ground that can be traversed by a vehicle, without any
kind of fence or wall, then any car can drive around it (whether it’s with a
malicious intent or just by laziness of getting through the security procedure)

112 D. Galmiche et al.

and the access control policy, as implemented by the barrier and the tokens, is
undermined. So, the access control policy — that only authorized personnel, in
possession of a token, may take vehicles into the facility — is undermined by the
architecture of the system to which it is applied.

We show how ERL∗ can be used to model, and so reason about, the situ-
ation described above (following [22]), illustrating how such situations can be
identified by logical analysis. Related analyses, employing logical models of lay-
ered graphs, can be found in [5]. We start with a simple model, depicted in
Fig. 1, and gradually refine it. We model just a facility protected by an access
barrier. A vehicle having the appropriate access token should be able to get
inside. Here we use resources to represent various entities in the model and the
atomic formulae characterize properties on those entities. A substantive expla-
nation of systems modelling using locations, resources, processes, and associated
substructural modal logics may be found in [1,3]. We consider the following sets
of resources, agents, and properties: Res = {e, t, b}, A = {a}, Prop = {O, J}. O
and J respectively express being outside and inside the facility (we use J instead
of I to avoid confusion with I, the unit operator). If a resource c ∈ R represents
a vehicle, c |=W O means that c is outside the facility, and c |=W J means it
is inside. The agent a is a generic one that represents a user of the system. The
resources b and t represent tokens that stand respectively for the barrier and the
access token of the users.

From the modelling perspective, the resources we have exposed here are
diverse in nature: t is a material token (key or card for instance), c represents
a car, while b seems to be just a marker for the presence or well-functioning of
the barrier. This diversity raises the question of the meaning and value of the
neutral resource e. We elide that problem by accepting that resources encompass
a variety of different objects, but we can also employ the epistemic nature of our
logic and consider that resources represent not objects as such but rather the
knowledge that a given object is in our system. For example, c can be viewed
as an abstract token marking the presence of a car, and t the presence of the
required access device in this car. Thus resources act as an abstraction layer of
our system. In that view, it’s easy to see e as the absence of information (we
know nothing of our system).

Fig. 1. Barrier problem, base case Fig. 2. Barrier problem with agents

We have the following property: O → Lbt
a J . According to the semantics,

based on a resource monoid R, c |=W O → Lbt
a J just in case if c |=W O, then,

A Substructural Epistemic Resource Logic 113

for every c′ ∈ R such that c • b • t ∼a c′, c′ |=W J . Thus the combination of the
two tokens grants access to the inside. The use of the token b for the presence
of the barrier helps in modelling a situation in which the barrier is completely
shut or is broken (in which case entering wouldn’t be possible). Note that the
formulae O → Lt

aJ , O → Lb
aJ , and O → Le

aJ are not valid because we cannot
enter if the barrier is shut, if we have no access token, or both.

The use of the operator L in this situation is illustrative. First, consider what
differences the use of one of the other two operators would make. If we were to
state O → Mbt

a J , then it would mean that anyone outside can get (without
condition) inside and acquire the two access tokens. This is of course not what
we expect. On the other hand, using N has an interesting effect. O → Nbt

a J
requires not only that an entering agent have the expected tokens, but also that
those tokens remain active once they are inside. This is slightly different from
our first approach: we don’t know if the tokens are still active once the agent is
inside.

We can also consider which of the additive implication, →, and the multi-
plicative, −∗, would be the better modelling choice in this example. For a first
approach, → seems quite sufficient. Indeed, if we assert O → Lbt

a J as valid, then
any resource satisfies it. So, if we have a car c such that c |=W O, we also have
c |=W O → Lbt

a J , and then we get the expected c |=W Lbt
a J .

However, if we consider more complex properties, the situation is different.
Imagine, for example, an environment that is composed not only of the car c, but
also other information o. Our epistemic world is thus o • c. So, even if we have
c |=W O, we cannot use the property O → Lbt

a J as we don’t have o • c |=W O.
On the contrary, if we state the property O −∗ Lbt

a J as valid instead, then we
have, in particular, o |=W O −∗ Lbt

a J and, together with c |=W O, this gives
o • c |=W Lbt

a J , as desired. So, the use of −∗ instead of → is much more useful
in more complex systems, as it allows us to set aside, as with Separation Logic’s
Frame Rule, some of the entities of our system and still apply the property.

Now we introduce agents to the model (see Fig. 2). The first model may seem
crude, because a single resource is used to model the access of any agent. So,
we seek to benefit from the logic that allows us to take agents into account. We
change the model by defining a detailed set of agents, A = {α, β, γ} and now
take three users, α, β, and γ. Each user should have its own access token, and
the resource set is modified accordingly: Res = {e, b, tα, tβ, tγ}. Now the slightly
different formula O → Lbta

a J is valid for any agent a ∈ A. So, for example,
O → Lbtα

α J is valid, which means that α can get inside with his own token, but
O → Lbtβ

α J is not, which means α cannot use β’s token.
Now consider that the access is controlled and the agents are supposed to

cross the barrier only if they have the appropriate access device. We want to
capture the fact that the system can actually be flawed (as mentioned in the
problem presentation). It is actually quite easy to do, because being able to
circumvent the barrier just means being able to access inside of the complex
without any token. We could be a little more specific by imagining that some
agents know the shortcut (or dare to use it) and others don’t (See Fig. 3). In

114 D. Galmiche et al.

Fig. 3. Barrier problem with a shortcut Fig. 4. Barrier problem with a fence

the previous setting, suppose that the agent β is aware of the shortcut and is
disposed to use it. Our new set of properties should now be the following:

{
O → Lbta

a J (for every a ∈ A), O → Le
βJ

}
.

The unit resource e expresses a direct access (with no resource needed). Note
how the use of agents can help us to express different security policies in the
same model.

We can reasonably suppose that such a flawed system would be quickly dealt
with; for example, by installing a fence that would prevent going around the
barrier (See Fig. 4). We could, of course, just model that by removing our last
addition and get back to the intended policy, but it is more interesting to encode
it by a formula. For example, we might then also describe a fault in the fence
(or its removal). To do so, we can simply add a propositional formula F that is
valid for any resource provided there is a fence preventing the passage of ‘rogue’
agents. Our system then becomes

{
O → Lbta

a J (for every a ∈ A), O ∧ ¬F → Le
βJ

}
.

Having established a system of formulae that describes our modelling situ-
ation quite clearly, we can seek to some properties of the model. The idea is
to establish a property of the system that goes beyond its basic definition. For
example, we may want to check that every agent inside the facility has passed
the barrier and has in its possession its access token. This means that we must
prove that, for every agent a ∈ A, J → M̃bta

a J .
Indeed, if c |=W J → M̃bta

a J , this means that if c |=W J , then there exists
c′ ∈ R such that c ∼a c′ • b • ta and c′ • b • ta |=W J , which expresses that
every resource representing a car that is inside must in fact be equivalent, for a
certain agent a ∈ A, to a resource that is inside and is composed with both the
appropriate token ta and the barrier token b. This is exactly what we wanted
to capture. Notice that this particular property is not verified by the system we
stated in the last paragraph. Indeed, as we noticed before, specifying entrance
with r |=W O → Lbta

a J makes J being satisfied by any resource r′ such that
r • b • ta ∼a r′. We see that r′ does not contain b and ta. The use of N instead
solves this problem: we then have r • b • ta ∼a r′ • b • ta and r′ • b • ta |=W J , as
required.

A Substructural Epistemic Resource Logic 115

So far, we have consider only simple situations, mainly one car crossing the
barrier in various situations. Of course, we may wish to consider more complex
models and establish similar properties. For example, we may want to see what
happen if several cars are modelled together in the system. We have the sets of
properties in the form of implications stated before. To state there is a car in
the system, we just assert that the formula O is valid. Then, by looking at the
semantics of our formulae, we create a resource c to satisfy that formula. In order
to have several cars, we are first tempted to state something like O ∧ O ∧ O (for
three cars). However, given our semantics, we have trivially that O∧O∧O ≡ O,
which is annoying for our modelling. It is better to state O ∗ O ∗ O, using the
multiplicative conjunction, instead. Then, to satisfy this formula, we need indeed
three resources c1, c2, c3 and we have c1 • c2 • c3 |=W O ∗ O ∗ O. Then, using
−∗ as described above, we can see the system evolve as cars are allowed inside.
Thus, the use of ∗ is particularly relevant to model several instances of a same
object.

Although we have shown how ERL is sufficiently expressive to describe a
security problem and check some of its behavioural properties, the modelling
approach described so far quite limited to capturing specific situations in a more-
or-less ad hoc manner. One approach to analysing the relationship between policy
and system architecture is to reason in terms of layers, as developed in [4,5,10],
using logics that are similar to, but weaker than, BI. In this set-up, a policy
architecture is layered over a system architecture. Another way to think of this
that we design first a general model with very few details, and then to design
several others that refine one another by inheriting the last model’s designs while
adding some new and more precise details.

5 A Tableaux Calculus for ERL

We define a labelled tableaux calculus for ERL in the spirit of previous work
for BI [11], BBI [16], ESL [7], and ILGL [10]. First, we introduce labels and
constraints that correspond, respectively, to resources and to the equality and
equivalence relations on resources and agents. We consider a finite set of con-
stants Λr such that |Λr| = |Res| − 1. On it we build an infinite countable set
of (resource) constants γr such that Λr ⊂ γr, and then γr = Λr ∪ {c1, c2, . . .}.
Concatenation of lists is denoted by ⊕; �� denotes the empty list. A resource
label is a word built on γr, where the order of letters is not taken into account;
that is, a finite multiset γr and by ε the empty word. For example, xy is the
composition of the resource labels x and y. We say that x is a resource sublabel
of y if and only if there exists z such that xz = y. The set of resource sublabels
of x is denoted E(x).

We define a function λ : Res �→ Lr such that: 1. λ(e) = ε; 2. for all r ∈
Res\{e}, λ(r) ∈ Λr; 3. λ is injective (if λ(r) = λ(r′), then r = r′). Note that λ

is trivially a bijection between Res and Λr ∪ {ε}.

Definition 5 (Constraints). A resource constraint is an expression of the
form x � y, where x and y are resource labels. An agent constraint is an

116 D. Galmiche et al.

Fig. 5. Rules for constraint closure (for any u ∈ A)

expression of the form x �u y, where x and y are resource labels and u belongs
to the set of agents A.

A set of constraints is any set C that contains resource constraints and agent
constraints. Let C be a set of constraints. The (resource) domain of C is the set
of all resource sublabels that appear in C ; that is,

Dr(C) =
⋃

x�y∈C

(E(x) ∪ E(y)) ∪
⋃

x�uy∈C

(E(x) ∪ E(y)).

Let C be a set of constraints. The (resource) alphabet Ar(C) of C is the set of
resource constants that appear in C . In particular, Ar(C) = γr ∩Dr(C). Now we
introduce, in Fig. 5, the rules for constraint closure that allow us to capture the
properties of the models into the calculus.

Definition 6 (Closure of constraints). Let C be a set of constraints. The
closure of C , denoted C , is the least relation closed under the rules of Fig. 5 such
that C ⊆ C .

There are six rules (〈ε〉, 〈sr〉, 〈dr〉, 〈tr〉, 〈cr〉, and 〈kr〉) that produce resource
constraints and four rules (〈ra〉, 〈sa〉, 〈ta〉, and 〈ka〉) that produce agent con-
straints. We note that v, introduced in the rule 〈ra〉, must belong to the set of
agents A.

Proposition 3. The following rules can be derived from the rules of constraint
closure:

xk � y 〈pl〉x � x
x � yk 〈pr〉
y � y

xk �u y 〈ql〉x � x
x �u yk 〈qr〉
y � y

x �u y x � x′ y � y′
〈wa〉

x′ �u y′ .

A Substructural Epistemic Resource Logic 117

Corollary 1. Let C be a set of constraints and u ∈ A be an agent.

1. x ∈ Dr(C) iff x � x ∈ C iff x �u x ∈ C .
2. If xy ∈ Dr(C), x′ � x ∈ C , and y′ � y ∈ C , then xy � x′y′ ∈ C .

Proposition 4. Let C be a set of constraints. We have Ar(C) = Ar(C).

Lemma 2 (Compactness). Let C be a (possibly infinite) set of constraints.

1. If x � y ∈ C , then there is a finite set Cf such that Cf ⊆ C and x � y ∈ Cf .
2. If x �u y ∈ C , then there is a finite set Cf such that Cf ⊆ C and x �u y ∈ Cf .

We define a labelled tableaux calculus for ERL in the spirit of previous work
for BI [11], BBI [16], ESL [7], and ILGL [10] by using similar definitions and
results.

Definition 7. A labelled formula is a 3-tuple of the form (Sφ : x) such that
S ∈ {T,F}, φ ∈ L is a formula and x ∈ Lr is a resource label. A constrained
set of statements (CSS) is a pair 〈F , C〉, where F is a set of labelled formulae
and C is a set of constraints, satisfying the property: if (Sφ : x) ∈ F , then
x � x ∈ C (call this property Pcss). A CSS 〈F , C〉 is finite if F and C are finite.
The relation � is defined by 〈F , C〉 � 〈F ′, C ′〉 iff F ⊆ F ′ and C ⊆ C ′. We write
〈Ff , Cf 〉 �f 〈F , C〉 when 〈Ff , Cf 〉 � 〈F , C〉 holds and 〈Ff , Cf 〉 is finite, meaning
that Ff and Cf are both finite.

Proposition 5. For any CSS 〈Ff , C〉, where Ff is finite, there exists Cf ⊆ C
such that Cf is finite and 〈Ff , Cf 〉 is a CSS.

Proof. By induction on the number of labelled formulae of Ff and by Lemma 2.

Figure 6 presents the rules of tableaux calculus for ERL. Note that ‘ci and cj
are new label constants’ means ci �= cj ∈ γr \(Ar(C) ∪ Λr).

Definition 8 (Tableau). Let 〈F0, C0〉 be a finite CSS. A tableau for 〈F0, C0〉 is
a list of CSS, called branches, inductively built according the following rules:

1. The one branch list [〈F0, C0〉] is a tableau for 〈F0, C0〉;
2. If the list Tm ⊕ [〈F , C〉] ⊕ Tn is a tableau for 〈F0, C0〉 and

cond〈F , C〉
〈F1, C1〉 | . . . | 〈Fk, Ck〉

is an instance of a rule of Fig. 6 for which cond〈F , C〉 is fulfilled, then the list
Tm ⊕ [〈F ∪ F1, C ∪ C1〉; . . . ; 〈F ∪ Fk, C ∪ Ck〉] ⊕ Tn is a tableau for 〈F0, C0〉.

A tableau for the formula φ is a tableau for 〈{(Fφ : c1)}, {c1 � c1}〉.

118 D. Galmiche et al.

Fig. 6. Rules of the tableaux calculus for ERL

A Substructural Epistemic Resource Logic 119

We remark that a tableau for a formula φ verifies the property (Pcss) of Definition
7 (by the rule 〈ra〉) and any application of a rule of Fig. 6 provide also a tableau
that verifies the property (Pcss) (in particular by Corollary 1).

In this calculus, we have two particular set of rules. The first set is composed
by the rules 〈TI〉, 〈T∗〉, 〈F−∗〉, 〈FL〉, 〈FM〉, 〈FN〉, 〈TL̃〉, 〈TM̃〉, and 〈TÑ〉, that
introduce new label constants (ci and cj) and new constraints, except for 〈TI〉
that only introduces a new constraint. The second set is composed of the rules
〈F∗〉, 〈T−∗〉, 〈TL〉, 〈TM〉, 〈TN〉, 〈FL̃〉, 〈FM̃〉, and〈FÑ〉, that have a condition
on the closure of constraints. To apply one of these rules we choose a label which
satisfies the condition and then apply the corresponding rule. Otherwise, we
cannot apply the rule.

Definition 9 (Closure condition). A CSS 〈F , C〉 is closed if one of the fol-
lowing conditions holds, where φ ∈ L: 1. (Tφ : x) ∈ F , (Fφ : y) ∈ F and
x � y ∈ C ; 2. (FI : x) ∈ F and x � ε ∈ C ; 3. (F� : x) ∈ F ; and 4. (T⊥ : x) ∈ F .
A CSS is open if it is not closed. A tableau for φ is closed if all its branches are
closed and a tableaux proof for φ is a closed tableau for φ.

To illustrate the construction of tableaux, we consider Ms
a φ → Mr

a(M
s
a φ).

To build the corresponding tableau, we start with the CCS 〈{(FMs
a φ →

Mr
a(M

s
a φ) : c1)}, {c1 � c1}〉 and with the following representation of the formula

set F and the constraints set C :

[F] [C]√
1(FM

s
a φ → Mr

a(M
s
a φ) : c1) c1 � c1.

We then apply the rules of our tableaux method, respecting the priority order,
and we obtain the tableau of Fig. 7. We omit the λ and write r for λ(r), for any
resource.

Fig. 7. Tableau for Ms
a φ → Mr

a(M
s
a φ)

120 D. Galmiche et al.

Note that we mark with
√

the steps of the tableau construction.
The main steps are the following: first apply the rule 〈F →〉 and then
obtain two formulae both with M as operator. According to the pri-
ority rules, first apply the 〈FM〉 rule, which generates a new formula,
a new resource label c2, and the constraint c1 �a c2r. Then apply the 〈FM〉
rule again, which generates a new formula, a new resource label c3, and the
constraint c2r �a c3s. We must now apply the 〈TM〉 rule and then we need a
resource label z such that c1 �a zs ∈ C . Now, having closure by rule 〈ta〉 with
agent a, we generate the constraint c1 �a c3s, and thus apply the rule with
z = c1 and generate (Tφ : c3s). As we also have (Fφ : c3s), we have a closed
branch and thus a closed tableau.

Theorem 1 (Soundness). Let φ be a formula of ERL. If there exists a tableaux
proof for φ, then φ is valid.

Proof. The proof is similar to the soundness proof of BI tableaux [11] and its
recent extensions [6,7,10]. The main point is the notion of realizability of a CSS
〈F , C〉, meaning that there exists a model M and an embedding (|.|) from the
resource labels to the resource set of M such that if (Tφ : x) ∈ F , then |x| �M φ

,and if (Fφ : x) ∈ F , then |x| ��M φ. More details are given in [12].

We propose a countermodel extraction method, adapted from [16], that trans-
forms the sets of resource and agent constraints of a branch 〈F , C〉 into a model
M such that if (Tφ : x) ∈ F , then ρx �M φ, and if (Fφ : x) ∈ F , then ρx ��M φ,
where ρx is the representative of the equivalence class of x.

More details are given in [12] and examples of countermodels with a similar
method are given in [6–8,10,11].

Theorem 2 (Completeness). Let φ be an ERL formula. If φ is valid, then
there exists a tableaux proof for φ.

Proof. The proof consists in building, using a fair strategy, a Hintikka CSS from
a formula for which there is no tableaux proof that is a sequence of labelled
formulae in which all labelled formulae occur infinitely many times, and an oracle
that is a set of non-closed CSS with some specific properties. Then, assuming
there is no tableaux proof for φ, we build a Hintikka CSS, and deduce from it
that φ is not valid. More details are given in [12].

6 Conclusions

We have presented a substructural epistemic logic, based on Boolean BI, in
which the epistemic modalities, which extend the usual epistemic modalities,
are parametrized on the agent’s local resource. The logic represents a first step
in developing an epistemic resource semantics. This step is illustrated through
an example that explores the gap between policy and implementation in access
control. We have provided a system of labelled tableaux for the logic, and estab-
lished soundness and completeness.

A Substructural Epistemic Resource Logic 121

Much further work is suggested. First, the theory, pragmatics, and inter-
pretation of the epistemic modalities with resource semantics, including aspects
of local reasoning for resource-carrying agents [15,21], concurrency [18]. Second,
logical theory, including proof systems, model-theoretic properties, and complex-
ity. Connections with other approaches to modelling the relationship between
policy and implementation in system management, such as those discussed in
[23] and approaches involving logics for layered graphs [1,4], should be explored.

References

1. Anderson, G., Pym, D.: A calculus and logic of bunched resources and processes.
Theor. Comput. Sci. 614, 63–96 (2016)

2. Baltag, A., Coecke, B., Sadrzadeh, M.: Epistemic actions as resources. J. Logic
Comput. 17(3), 555–585 (2006)

3. Collinson, M., Monahan, B., Pym, D.: A Discipline of Mathematical Systems Mod-
elling. College Publications (2012)

4. Collinson, M., McDonald, K., Pym, D.: Layered graph logic as an assertion lan-
guage for access control policy models. J. Logic Comput. (2015). doi:10.1093/
logcom/exv020

5. Collinson, M., McDonald, K., Pym, D.: A substructural logic for layered graphs.
J. Logic Comput. 24(4), 953–988 (2014)

6. Courtault, J.-R., Galmiche, D.: A modal separation logic for resource dynamics.
J. Logic Comput., 46 pages (2015). doi:10.1093/logcom/exv031

7. Courtault, J.-R., Ditmarsch, H., Galmiche, D.: An epistemic separation logic. In:
Paiva, V., Queiroz, R., Moss, L.S., Leivant, D., Oliveira, A.G. (eds.) WoLLIC
2015. LNCS, vol. 9160, pp. 156–173. Springer, Heidelberg (2015). doi:10.1007/
978-3-662-47709-0 12

8. Courtault, J.-R., Galmiche, D., Pym, D.: A logic of separating modalities. Theor.
Comput. Sci. 637, 30–58 (2016). doi:10.1016/j.tcs.2016.04.040

9. van Ditmarsch, H., Halpern, J.Y., van der Hoek, W., Kooi, B. (eds.): Handbook
of Epistemic Logic. College Publications (2015)

10. Docherty, S., Pym, D.: Intuitionistic layered graph logic. In: Olivetti, N., Tiwari,
A. (eds.) IJCAR 2016. LNCS (LNAI), vol. 9706, pp. 469–486. Springer, Heidelberg
(2016). doi:10.1007/978-3-319-40229-1 32

11. Galmiche, D., Méry, D., Pym, D.: The semantics of BI and resource tableaux.
Math. Struct. Comp. Sci. 15(6), 1033–1088 (2005)

12. Galmiche, D., Kimmel, P., Pym, D.: A substructural epistemic resource logic
(extended version). UCL research note RN/16/08 (2016). http://www.cs.ucl.ac.
uk/fileadmin/UCL-CS/research/Research Notes/RN 16 08.pdf

13. Halpern, J.Y., Pucella, R.: Modeling adversaries in a logic for security protocol
analysis. In: Abdallah, A.E., Ryan, P., Schneider, S. (eds.) FASec 2002. LNCS, vol.
2629, pp. 115–132. Springer, Heidelberg (2003). doi:10.1007/978-3-540-40981-6 11

14. O’Hearn, P., Pym, D.: The logic of bunched implications. Bull. Symbolic Logic
5(2), 215–244 (1999)

15. Ishtiaq, S., O’Hearn, P.: BI as an assertion language for mutable data structures. In:
28th ACM Symposium on Principles of Programming Languages (POPL), London,
pp. 14–26 (2001)

16. Larchey-Wendling, D.: The formal strong completeness of partial monoidal Boolean
BI. J. Logic Comput. 26(2), 605–640 (2014). doi:10.1093/logcom/exu031

http://dx.doi.org/10.1093/logcom/exv020
http://dx.doi.org/10.1093/logcom/exv020
http://dx.doi.org/10.1093/logcom/exv031
http://dx.doi.org/10.1007/978-3-662-47709-0_12
http://dx.doi.org/10.1007/978-3-662-47709-0_12
http://dx.doi.org/10.1016/j.tcs.2016.04.040
http://dx.doi.org/10.1007/978-3-319-40229-1_32
http://www.cs.ucl.ac.uk/fileadmin/UCL-CS/research/Research_Notes/RN_16_08.pdf
http://www.cs.ucl.ac.uk/fileadmin/UCL-CS/research/Research_Notes/RN_16_08.pdf
http://dx.doi.org/10.1007/978-3-540-40981-6_11
http://dx.doi.org/10.1093/logcom/exu031

122 D. Galmiche et al.

17. Naumov, P., Tao, J.: Budget-constrained knowledge in multiagent systems. Proc.
AAMAS 219–226, 2015 (2015)

18. O’Hearn, P.W.: Resources, concurrency and local reasoning. Theor. Comput. Sci.
375(1–3), 271–307 (2007)

19. Pucella, R.: Knowledge and security. Chap. 12 of [9], pp. 591–655
20. Pym, D., O’Hearn, P., Yang, H.: Possible worlds, resources: the semantics of BI.

Theor. Comput. Sci. 315(1), 257–305. Erratum: p. 22, l. 22 (preprint), p. 285, 1.-12
(TCS): ‘, for some P ′, Q ≡ P ;P ′’ should be ‘P � Q’

21. Reynolds, J.: Separation logic: a logic for shared mutable data structures. IEEE
Symposium on Logic in Computer Science, LICS 2002, pp. 55–74, Denmark,
Copenhagen (July 2002)

22. Schneier, B.: The weakest link (2005). https://www.schneier.com/blog/archives/
2005/02/the weakest lin.html. Schneier on security, https://www.schneier.com

23. Toninho, B., Caires, L.: A spatial-epistemic logic for reasoning about security pro-
tocols. In: 8th International Workshop on Security Issues in Concurrency, SecCo
2010 (2010)

https://www.schneier.com/blog/archives/2005/02/the_weakest_lin.html
https://www.schneier.com/blog/archives/2005/02/the_weakest_lin.html
https://www.schneier.com

Deriving Natural Deduction Rules
from Truth Tables

Herman Geuvers1,2(B) and Tonny Hurkens1,2

1 Radboud University, Nijmegen, The Netherlands
herman@cs.ru.nl

2 Technical University Eindhoven, Eindhoven, The Netherlands

Abstract. We develop a general method for deriving natural deduction
rules from the truth table for a connective. The method applies to both
constructive and classical logic. This implies we can derive “construc-
tively valid” rules for any classical connective. We show this constructive
validity by giving a general Kripke semantics, that is shown to be sound
and complete for the constructive rules. For the well-known connectives
(∨, ∧, →, ¬) the constructive rules we derive are equivalent to the nat-
ural deduction rules we know from Gentzen and Prawitz. However, they
have a different shape, because we want all our rules to have a standard
“format”, to make it easier to define the notions of cut and to study proof
reductions. In style they are close to the “general elimination rules” stud-
ied by Von Plato [13] and others. The rules also shed some new light on
the classical connectives: e.g. the classical rules we derive for → allow to
prove Peirce’s law. Our method also allows to derive rules for connectives
that are usually not treated in natural deduction textbooks, like the “if-
then-else”, whose truth table is clear but whose constructive deduction
rules are not. We prove that ”if-then-else”, in combination with ⊥ and
�, is functionally complete (all other constructive connectives can be
defined from it). We define the notion of cut, generally for any construc-
tive connective and we describe the process of “cut-elimination”.

1 Introduction

Natural deduction rules come in various forms, where one either uses formulas
A, or sequents Γ � A (where Γ is a sequence or a finite set of formulas). Other
formalisms use a linear format, using flags or boxes to explicitly manage the
open and discharged assumptions.

We use a tree format with sequents, where all rules have a special form:

Γ � A1 . . . Γ � An Γ, B1 � D . . . Γ, Bm � D

Γ � D

So if the conclusion of a rule is Γ � D, then the hypotheses of the rule can be
of one of two forms:

1. Γ � A: instead of proving D from Γ , we now need to prove A from Γ . We
call A a Lemma.

c© Springer-Verlag GmbH Germany 2017
S. Ghosh and S. Prasad (Eds.): ICLA 2017, LNCS 10119, pp. 123–138, 2017.
DOI: 10.1007/978-3-662-54069-5 10

124 H. Geuvers and T. Hurkens

2. Γ,B � D: we still need to prove D from Γ , but we are now also allowed to
use B as additional assumption. We call B a Casus.

One obvious advantage is that we don’t have to give the Γ explicitly, as it
can be retrieved from the other information in a deduction. So, we will present
the deduction rules without the Γ in the format

� A1 . . . � An B1 � D . . . Bm � D

� D

For every connective we have elimination rules and introduction rules. The elim-
ination rules have the following form, where ϕ is the formula that is eliminated
and Ai, Bj are direct subformulas of ϕ.

� ϕ � A1 . . . � An B1 � D . . . Bm � D
el

� D

The introduction rules have a classical and an intuitionistic form; the fol-
lowing form is the classical one. (ϕ is the formula that is “introduced” and
Ai, Bj are direct subformulas of ϕ.) The classical duality between elimination
and introduction is clearly visible from these rules.

ϕ � D � A1 . . . � An B1 � D . . . Bm � D
inc

� D

The intuitionistic introduction rules have the following form

� A1 . . . � An B1 � ϕ . . . Bm � ϕ
ini

� ϕ

We see that, compared to the classical rule, the D has been replaced by ϕ,
the formula we introduce, and we have omitted the first premise, which is ϕ �
ϕ, because it is trivial. For each connective, we extract the introduction and
elimination rules from a truth table as described in the following Definition.

Definition 1. Suppose we have an n-ary connective c with a truth table tc (with
2n rows). We write ϕ = c(A1, . . . , An) for a formula with c as main connective
and A1, . . . , An as immediate subformulas. Each row of tc gives rise to an elim-
ination rule or an introduction rule for c in the following way.

A1 . . . An ϕ
p1 . . . pn 0

�→
� ϕ . . . � Aj (if pj = 1) Ai � D (if pi = 0) . . .

el
� D

A1 . . . An ϕ
q1 . . . qn 1

�→
. . . � Aj (if qj = 1) Ai � ϕ (if qi = 0) . . .

ini

� ϕ

A1 . . . An ϕ
r1 . . . rn 1

�→
ϕ � D . . . � Aj (if rj = 1) Ai � D (if ri = 0) . . .

inc

� D

If pj = 1 in tc, then Aj occurs as a Lemma in the rule; if pi = 0 in tc, then
Ai occurs as a Casus. The rules are given in abbreviated form and it should be

Deriving Natural Deduction Rules from Truth Tables 125

understood that all judgments can be used with an extended hypotheses set Γ . So
the elimination rule in full reads as follows (where Γ is a set of formulas).

Γ � ϕ . . . Γ � Aj (if pj = 1) Γ, Ai � D (if pi = 0) . . .
el

Γ � D

Definition 2. Given a set of connectives C := {c1, . . . , cn}, we define the intu-
itionistic and classical natural deduction systems for C, IPCC and CPCC as fol-
lows.

– Both IPCC and CPCC have an axiom rule

axiom(if A ∈ Γ)
Γ � A

– IPCC has the elimination rules for the connectives in C and the intuitionistic
introduction rules for the connectives in C, as defined in Definition 1.

– CPCC has the elimination rules for the connectives in C and the classical intro-
duction rules for the connectives in C, as defined in Definition 1.

Example 3. From the truth table we derive the following intuitionistic rules for
∧, 3 elimination rules and one introduction rule:

� A ∧ B A � D B � D
∧-ela� D

� A ∧ B A � D � B
∧-elb� D

� A ∧ B � A B � D
∧-elc� D

� A � B
∧-in

� A ∧ B

These rules are all intuitionistically correct, as one can observe by inspection.
We will show that these are equivalent to the well-known intuitionistic rules. We
will also show how these rules can be optimized and be reduced to 2 elimination
rules and 1 introduction rule.

From the truth table we also derive the following rules for ¬, 1 elimination
rule and 1 introduction rule, a classical and an intuitionistic one.

� ¬A � A
¬-el

� D

A � ¬A
¬-ini

� ¬A

¬A � D A � D
¬-inc

� D

As an example of the classical derivation rules we show that ¬¬A � A is deriv-
able: ¬¬A, ¬A � ¬¬A ¬¬A, ¬A � ¬A

¬-el
¬¬A, ¬A � A ¬¬A, A � A

¬-inc

¬¬A � A
It can be proven that ¬¬A � A is not derivable with the intuitionistic rules.
As an example of the intuitionistic derivation rules we show that A � ¬¬A is
derivable:

A, ¬A � ¬A A, ¬A � A
¬-el

A, ¬A � ¬¬A
¬-ini

A � ¬¬A

126 H. Geuvers and T. Hurkens

In the intuitionistic case, there is an obvious notion of cut: an intro of ϕ
immediately followed by an elimination of ϕ. In such case there is at least one
k for which pk �= qk. In case pk = 0, qk = 1, we have a sub-derivation Σ of � Ak

and a sub-derivation Θ of Ak � D and we can “plug” Σ on top of Θ to obtain a
derivation of � D. In case pk = 1, qk = 0, we have a sub-derivation Σ of Ak � ϕ
and a sub-derivation Θ of � Ak and we can “plug” Θ on top of Σ to obtain
a derivation of � ϕ. This is then used as a hypothesis for the elimination rule
(that remains in this case) instead of the original one that was a consequence of
the introduction rule (that now disappears). Note that in general there are more
such k, so the cut-elimination procedure is non-deterministic. We view this non-
determinism as a natural feature in natural deduction; the fact that for some
connectives (or combination of connectives), cut-elimination is deterministic is
an “emerging” property.

1.1 Contribution of the Paper and Related Work

The main contributions of the paper are:

– A general construction of natural deduction rules for a logical connective from
its truth table semantics, yielding natural deduction rules in a fixed structured
format.

– The method applies to both a classical and a constructive (!) reading of the
connectives, and applies to connectives of any arity.

– Soundness and completeness of the constructive connectives with respect to a
general Kripke semantics that we define.

– Example of the if-then-else connective, which is shown to be constructively
functionally complete, once the constants � and ⊥ have been added.

– A general definition of “direct cut” and “elimination of a direct cut” for the
generalized constructive connectives.

Natural deduction has been studied extensively, since the original work by
Gentzen, both for classical and intuitionistic logic. Overviews can be found in [7,
12]. Also the generalization of natural deduction to include other connectives or
allow different derivation rules has been studied by various researchers. Notably,
there is the work of Schroeder-Heister [10], Von Plato [13], Milne [6] and Francez
and Dyckhoff [3,4] is related to ours. Schroeder-Heister studies general formats of
natural deduction where also rules may be discharged (as opposed to the normal
situation where only formulas may be discharged). He also studies a general
rule format for intuitionistic logic and shows that the connectives ∧,∨,→,⊥
are complete for it. Von Plato, Milne, Francez and Dyckhoff study “generalized
elimination rules”, where the idea is that elimination rules arise naturally from
the introduction rules, following Prawitz’s [9] inversion principle: “the conclusion
obtained by an elimination does not state anything more than what must have
already been obtained if the major premiss of the elimination was inferred by
an introduction”.

A difference is that we focus not so much on the rules but on the fact that
we can define different and new connectives constructively. In our work, we do

Deriving Natural Deduction Rules from Truth Tables 127

not take the introduction rules as primary, with the elimination rules defined
from them, but we derive elimination and introduction rules directly from the
truth table. Then we optimize them, which can be done in various ways, where
we adhere to a fixed format for the rules. Many of the generalized elimination
rules, for example for ∧, appear naturally as a consequence of our approach of
deriving the rules from the truth table.

The idea of deriving deduction rules from the truth table also occurs in the
work of Milne [6], for the classical case: from the introduction rules, a truth table
is derived and then the elimination rules are derived from the truth table. For
the if-then-else connective, this amounts to classical rules equivalent to ours (see
Sect. 2.1), but less optimized. We start from the truth table and also derive rules
for constructive logic.

In Sect. 3 we give a complete Kripke semantics for the constructive connec-
tives. This is reminiscent of the Lindenbaum construction used in [6] to prove
classical completeness. The Kripke semantics also allows us to prove some meta
properties about the rules. For example, we give a generalization of the disjunc-
tion property in intuitionistic logic. In Sect. 4 we define cuts precisely, for the
intuitionistic case.

2 Simple Properties and Examples

We first define precisely how the “plugging one derivation in another” works.

Lemma 4. If Γ � ϕ and Δ,ϕ � ψ, then Γ,Δ � ψ

Proof. By a simple induction on the derivation of Δ,ϕ � ψ, using the fact that,
in general (for all Γ , Γ ′ and ϕ): If Γ � ϕ and Γ ⊆ Γ ′, then Γ ′ � ϕ. ��

We can be a bit more precise about what is happening in the proof of
Lemma 4. If Π is the derivation of Δ,ϕ � ψ, due to the format of our rules,
the only place in Π where the hypothesis ϕ can be used is at a leaf of Π, in an
instance of the (axiom) rule. These leaves are of the shape Δ′, ϕ � ϕ for some
Δ′ ⊇ Δ.

If Σ is the derivation of Γ � ϕ, then Σ is also a derivation of Δ′, Γ � ϕ
(for any Δ). So, we can replace each leaf of Π that is an instance of an axiom
Δ′, ϕ � ϕ by a derivation Σ of Δ′, Γ � ϕ, to obtain a derivation of Γ,Δ � ψ. We
introduce some notation to support this.

Notation 5. If Σ is a derivation of Γ � ϕ and Π is a derivation of Δ,ϕ � ψ,
then we have a derivation of Γ,Δ � ψ that looks like this:

···· Σ

Γ, Δ1 � ϕ . . .

···· Σ

Γ, Δn � ϕ···· Π

Γ, Δ � ψ

So in Π, every application of an (axiom) rule at a leaf, deriving Δ′ � ϕ for some
Δ′ ⊇ Δ is replaced by a copy of a derivation Σ, which is also a derivation of
Δ′, Γ � ϕ.

128 H. Geuvers and T. Hurkens

In Definitions 1 and 2, we have given the precise rules for our logic, in intu-
itionistic and classical format. We can freely reuse formulas and weaken the
context, so the structural rules of contraction and weakening are wired into the
system. To reduce the number of rules, we can take a number of rules together
and drop one or more hypotheses. We illustrate this by again looking at the
example of the rules for ∧ (Example 3).

Example 6. From the truth table we have derived the 3 intuitionistic elimina-
tion rules of Example 3. These rules can be reduced to the following 2 equivalent
elimination rules:

� A ∧ B A � D
∧-el1� D

� A ∧ B B � D
∧-el2� D

The general method is that we can replace two rules that only differ in one
hypothesis, which in one rule occurs as a Lemma and in the other as a Casus, by
one rule where the hypothesis is removed. It will be clear that the Γ ’s above are
not relevant for the argument, so we will not write these.

Lemma 7. A system with two derivation rules of the form

� A1 . . . � An B1 � D . . . Bm � D C � D

� D

� A1 . . . � An � C B1 � D . . . Bm � D

� D

is equivalent to the system with these two rules replaced by

� A1 . . . � An B1 � D . . . Bm � D

� D

Proof. The implication from bottom to top is immediate. From top to bottom,
suppose we have the two given rules. We now derive the bottom one. Assume
we have derivations of � A1, . . . ,� An, B1 � D, . . . , Bm � D. We now have the
following derivation of � D.

� A1 . . . � An B1 � D . . . Bm � D

C � A1 . . . C � An C � C C,B1 � D . . . C,Bm � D

C � D

� D

Similarly, we can replace a rule which has only one Casus by a rule where the
Casus is the conclusion. To illustrate this: the simplified elimination rules for ∧,
∧-el1 and ∧-el2 have only one Casus. The rule ∧-el1 (left) can thus be replaced
by the rule ∧-el′1 (right), which is the usual projection rule.

� A ∧ B A � D
∧-el1� D

� A ∧ B
∧-el′1� A

There is a general Lemma stating this simplification is correct. The proof is
similar to the proof of Lemma4.

Deriving Natural Deduction Rules from Truth Tables 129

Lemma 8. A system with a derivation rule of the form to the left is equivalent
to the system with this rule replaced by the rule on the right.

� A1 . . . � An ψ � D

� D

� A1 . . . � An

� ψ

Definition 9. The derivation rules for the standard intuitionistic connectives
are the following. These rules are derived from the truth tables and optimized
following Lemmas 7 and 8. The rules for ∧ are the intro rule of Example 3 and
the elimination rules of Example 6. The rules for ¬ are given in Example 3. The
rules for ∨ and → and � and ⊥ are:

� A ∨ B A � D B � D
∨-el

� D

� A
∨-in1� A ∨ B

� B
∨-in2� A ∨ B

�-in
� �

� A → B � A
→ -el

� B

� B
→ -in1� A → B

A � A → B
→ -in2� A → B

� ⊥
⊥-el

� D

Example 10. As our only example for classical logic, we give the classical rules
for implication. The elimination rule is the same (→ -el above) and we also have
the first introduction rule → -in1, but in addition we have the rule → -inc

2. We
observe that this rule is classical in the sense that one can derive Peirce’s law,
without using negation. See the derivation below, of Peirce’s law.

A � D A → B � D
→ -inc

2� D

A � A

A � ((A → B) → A) → A

(A → B) → A � (A → B) → A A → B � A → B

A → B, (A → B) → A � A

A → B, (A → B) → A � ((A → B) → A) → A

A → B � ((A → B) → A) → A
→ -inc

2� ((A → B) → A) → A

2.1 If Then Else

We now give two examples of ternary connectives that we can treat by our
method: if-then-else and most, which have the obvious (classical) truth table
semantics given below. We look into if-then-else in further detail and we will say
something about most in Sect. 3.

A B C most(A, B, C) A→B/C

0 0 0 0 0
0 0 1 0 1
0 1 0 0 0
0 1 1 1 1
1 0 0 0 0
1 0 1 1 0
1 1 0 1 1
1 1 1 1 1

130 H. Geuvers and T. Hurkens

Example 11. The constructive rules for if-then-else we obtain, after optimiza-
tion are the following four.

� A→B/C � A
then-el

� B

� A→B/C A � D C � D
else-el

� D

� A � B
then-in

� A→B/C

A � A→B/C � C
else-in

� A→B/C

We now show in some detail that we can obtain these four optimized rules.
(NB. other optimizations are possible, yielding a different set of rules.) From the
lines in the truth table of A→B/C with a 0 we get the following four elimination
rules:

� A→B/C A � D B � D C � D

� D

� A→B/C A � D � B C � D

� D

� A→B/C � A B � D C � D

� D

� A→B/C � A B � D � C

� D

Using Lemmas 7 and 8, these can be reduced. The two rules on the first line
reduce to else-el, the two rules on the second line reduce to then-el.

Similarly, from the lines in the truth table of A→B/C with a 1 we get four
introduction rules, which can consequently be reduced to else-in and then-in.

Example 12. From the lines in the truth table of A→B/C with a 1 we get the
following four classical introduction rules:

A→B/C � D A � D B � D � C

� D

A→B/C � D A � D � B � C

� D

A→B/C � D � A � B C � D

� D

A→B/C � D � A � B � C

� D

Using Lemmas 7 and 8 these can be reduced to the following two. (The two
rules on the first line reduce to else-in, the two rules on the second line reduce
to then-in.)

A→B/C � D A � D � C
else-inc

� D

� A � B
then-in

� A→B/C

These are the classical rules for if-then-else. Only the rule else-inc is different
from the constructive one, as given in Example 11.

Deriving Natural Deduction Rules from Truth Tables 131

Constructively, A→B/C is equivalent to (A → B)∧ (A∨C). It can be shown
that A→B/C is “in between” other constructive renderings of if-then-else:

(A ∧ B) ∨ (¬A ∧ C)
��
� A→B/C

��
� (A → B) ∧ (¬A → C)

The left-to-right can easily be derived, for the non-derivability of the reverse, we
need a Kripke model (see Sect. 3).

If we compare with well-known classical rules for if-then-else, we observe that
two of them hold, while the other fails.

Fact 13. 1. if A thenB elseB � B and B � if A thenB elseB,
2. if (if A thenB elseC) thenD elseE 	� if A then (if B thenD elseE) else

(if C thenD elseE)

3. if A then (if B thenD elseE) else (if C thenD elseE) 	� if (if A then else

BC) thenD elseE.
As a matter of fact, either one of the last two rules renders the connective

if-then-else classical.

An important property is that (just as in classical logic), the constructive
if-then-else, together with � and ⊥ is functionally complete: all other connectives
can be defined in terms of it. We prove this for ∧, ∨, → and ¬. A result from
Schroeder-Heister [10] implies that all constructive connectives can be defined
in terms of if-then-else.

Definition 14. We define the usual intuitionistic connectives in terms of �, ⊥
and if-then-else, as follows: A ∨̇ B := A→A/B, A ∧̇ B := A→B/A,
A →̇ B := A→B/�, ¬̇A := A→⊥/�.

Lemma 15. The defined connectives in Definition 14 satisfy the derivation rules
for these same connectives as given in Definition 9. As an immediate conse-
quence, the intuitionistic connective if-then-else, together with � and ⊥, is func-
tionally complete.

Proof. Lemma 15 shows that the well-known intuitionistic connectives can all be
defined in terms of if-then-else, � and ⊥. In [10], it is shown that all connectives
can be defined in terms of ∨, ∧, → and ¬. ��

3 Kripke Semantics

We now define a Kripke semantics for the intuitionistic rules and prove that it is
complete. We follow standard methods, given e.g. in [11,12], which we generalize
to arbitrary connectives. Formulas are built from atoms using existing or defined
connectives of any arity, so for each n-ary connective c, we assume a truth table
tc : {0, 1}n → {0, 1} and we have inductively defined derivability � as a relation
between a sets of formulas and a formula above.

132 H. Geuvers and T. Hurkens

Definition 16. We define a Kripke model as a triple (W,≤, at) where W is a
set of worlds with a reflexive, transitive relation ≤ on it and a function at : W →
℘(At) satisfying w ≤ w′ ⇒ at(w) ⊆ at(w′).

In a Kripke model we want to define the relation w � ϕ between worlds and
formulas (ϕ is true in world w). We do this by defining [[ϕ]]w ∈ {0, 1}, with the
meaning that [[ϕ]]w = 1 if w � ϕ and [[ϕ]]w = 0 if w �� ϕ.

Definition 17. Given a Kripke model (W,≤, at) we define [[ϕ]]w ∈ {0, 1}, by
induction on ϕ as follows.

– If ϕ is atomic, we define [[ϕ]]w := 1 if ϕ ∈ at(w).
– If ϕ = c(ϕ1, . . . , ϕn), we define [[ϕ]]w := 1 if tc([[ϕ1]]w′ , . . . , [[ϕn]]w′) = 1 for

each w′ ≥ w, where tc is the truth table of c.

We define Γ |= ψ (ψ is a consequence of Γ) as: for each Kripke model and each
world w, if for each ϕ in Γ , [[ϕ]]w = 1, then [[ψ]]w = 1.

An immediate consequence of this definition is that for all worlds w,w′, if
[[ϕ]]w = 1 and w′ ≥ w, then [[ϕ]]w′ = 1.

Lemma 18 (Soundness). If Γ � ψ, then Γ |= ψ

Proof. By induction on the derivation of Γ � ψ. We treat the case for the last
rule being an introduction: ψ = c(ψ1, . . . , ψn) and we have a line p1, . . . , pn|1 in
the truth table for c. The introduction rule then is as follows.

Γ � ψj (for ψj with pj = 1) Γ, ψi � ψ (for ψi with pi = 0) . . .
in

Γ � ψ

Given a Kripke model and a world w in this model with [[ϕ]]w = 1 for all ϕ ∈ Γ ,
we need to prove that [[ψ]]w = 1. The induction hypothesis says that [[ψj]]w = 1 for
all j with pj = 1. Let w′ ≥ w. There are two cases: (1) [[ψi]]w′ = 1 for some i with
pi = 0. Then by induction hypothesis: [[ψ]]w′ = 1, so tc([[ψ1]]w′ , . . . , [[ψn]]w′) = 1.
(2) [[ψi]]w′ = 0 for all i with pi = 0. Then tc([[ψ1]]w′ , . . . , [[ψn]]w′) = 1. So, for all
w′ ≥ w: tc([[ψ1]]w′ , . . . , [[ψn]]w′) = 1. So [[ψ]]w = 1. ��

Now we prove completeness: if Γ |= ψ, then Γ � ψ. We prove this by con-
structing a special, universal Kripke model.

Definition 19. For ψ a formula and Γ a set of formulas, we say that Γ is
ψ-maximal if Γ �� ψ and for every formula ϕ /∈ Γ we have: Γ, ϕ � ψ.

If Γ �� ψ, we can extend Γ to a ψ-maximal set Γ ′ that contains Γ as follows.
Take an enumeration of the formulas as ϕ1, ϕ2, . . . and define recursively Γ0 := Γ
and Γi+1 := Γi if Γi, ϕi+1 � ψ and Γi+1 := Γi, ϕi+1 if Γi, ϕi+1 �� ψ. Then take
Γ ′ :=

⋃
i∈N Γi. (NB. as always, Γi, ϕi+1 denotes Γi ∪ {ϕi+1}.)

Deriving Natural Deduction Rules from Truth Tables 133

Fact 20. We list a couple of simple important facts about ψ-maximal sets Γ .

1. For every ϕ, we have ϕ ∈ Γ or Γ, ϕ � ψ.
2. So, for every ϕ, if ϕ /∈ Γ then Γ, ϕ � ψ.
3. For every ϕ, if Γ � ϕ, then ϕ ∈ Γ .

Definition 21. We define the Kripke model U = (W,≤, at) as follows:

– A world w ∈ W is a pair (Γ, ψ) where Γ is a ψ-maximal set of formulas.
– (Γ, ψ) ≤ (Γ ′, ψ′) := Γ ⊆ Γ ′.
– at(Γ, ψ) := Γ ∩ At.

Lemma 22. In the model U we have, for all worlds (Γ, ψ) ∈ W :

∀ϕ,ϕ ∈ Γ ⇔ [[ϕ]](Γ,ψ) = 1.

Proof. The proof is by induction on ϕ. If ϕ ∈ At, the result is immediate, so
suppose that ϕ = c(ϕ1, . . . , ϕn) where c has truth table tc. We prove the two
directions separately.

(⇒): Assume ϕ ∈ Γ .
We have [[ϕ]](Γ,ψ) = 1 iff for all Γ ′ ⊇ Γ and for all ψ′, writing w′ = (Γ ′, ψ′),

we have tc([[ϕ1]]w′ , . . . , [[ϕn]]w′) = 1.
So let Γ ′ ⊇ Γ and let ψ′ be a formula such that Γ ′ is ψ′-maximal. For the

sub-formulas of ϕ we have the following possibilities

– [[ϕj]]w′ = 1, and then by induction hypothesis: ϕj ∈ Γ ′ and so Γ ′ � ϕj .
– [[ϕi]]w′ = 0, and then by induction hypothesis: ϕi /∈ Γ ′ and so Γ ′, ϕi � ψ′.

This corresponds to an entry in the truth table tc for the connective c.
Suppose tc([[ϕ1]]w′ , . . . , [[ϕn]]w′) = 0. Then this row in the truth table yields

an elimination rule that allows us to prove ψ′:

Γ
′ � ϕ . . . Γ

′ � ϕj (for ϕj with [[ϕj]]w′ = 1) Γ
′
, ϕi � ψ

′
(for ϕi with [[ϕi]]w′ = 0) . . .

el
Γ

′ � ψ
′

Note that all hypotheses of the rule are derivable, because ϕ ∈ Γ ′ and the other
hypotheses are derivable by induction. So we have Γ ′ � ψ′. Contradiction! So:
tc([[ϕ1]]w′ , . . . , [[ϕn]]w′) = 1, what we needed to prove.

(⇐): Assume [[ϕ]](Γ,ψ) = 1 and suppose (towards a contradiction) ϕ /∈ Γ .
Then Γ �� ϕ (because if Γ � ϕ, then ϕ ∈ Γ by the facts we remarked about

Kripke model U .) So there is a ϕ-maximal theory Γ ′ ⊇ Γ with Γ ′ �� ϕ. So (Γ,′ ϕ)
is a world in U with (Γ, ψ) ≤ (Γ ′, ϕ). We write w′ := (Γ ′, ϕ) and we have

tc([[ϕ1]]w′ , . . . , [[ϕn]]w′) = 1.

We consider the different sub-formulas of ϕ:

134 H. Geuvers and T. Hurkens

– the ϕj with [[ϕj]]w′ = 1, and so (by induction hypothesis) ϕj ∈ Γ ′ and so
Γ ′ � ϕj ;

– the ϕi with [[ϕi]]w′ = 0, and so (by induction hypothesis) ϕi /∈ Γ ′ and so
Γ ′, ϕi � ϕ.

Now, using an introduction rule for connective c, we can derive ϕ:

Γ ′ � ϕj (for ϕj with [[ϕj]]w′ = 1) Γ ′, ϕi � ϕ (for ϕi with [[ϕi]]w′ = 0) . . .
in

Γ ′ � ϕ

So we have Γ ′ � ϕ, because the hypotheses of the rule are all derivable. Contra-
diction! So ϕ ∈ Γ ′. ��

Theorem 23. If Γ |= ψ, then Γ � ψ.

Proof. Suppose Γ |= ψ and Γ �� ψ. We can find a ψ-maximal superset Γ ′ of Γ
such that Γ ′ �� ψ. In particular: ψ /∈ Γ ′. So (Γ ′, ψ) is a world in the Kripke model
U in which each member of Γ is true: [[ϕ]](Γ ′,ψ) = 1 for ϕ ∈ Γ , by Lemma 22.
However, ψ is not true in (Γ ′, ψ): [[ψ]](Γ ′,ψ) = 0. So Γ �|= ψ. Contradiction, so
Γ � ψ. ��

In intuitionistic logic, the connective ∨ has a special property that does not
hold for classical logic, called the disjunction property: If � A ∨ B, then � A
or � B. This implies that the disjunction is “strong”: if one has a proof of a
disjunction, one has a proof of one of the disjoints. (Which is classically not the
case, viz. � A∨¬A.) The disjunction property can easily be proved using Kripke
semantics, relying on the completeness theorem. We want to generalize this to
other connectives and we introduce the notion of a splitting connective.

Definition 24. Let c be an n-ary connective, 1 ≤ i, j ≤ n. We say that c is
i, j-splitting in case the truth table for c has the following shape

A1 . . . Ai . . . Aj . . . An c(A1, . . . , An)

− . . . 0 . . . 0 . . . − 0
− . . . 0 . . . 0 . . . − 0
...

...
...

...
...

...
...

...
− . . . 0 . . . 0 . . . − 0
− . . . 0 . . . 0 . . . − 0

So, in all rows where pi = pj = 0 we have c(p1, . . . , pn) = 0. Phrased purely in
terms of tc, that is: tc(p1, . . . , pi−1, 0, pi+1, . . . , pj−1, 0, pj+1, . . . , pn) = 0 for all
p1, . . . , pi−1, pi+1, . . . , pj−1, pj+1, . . . , pn ∈ {0, 1}.

A connective can be i, j-splitting for more than one i, j-pair. Examples are
the ternary connectives most and if-then-else. We now state and prove our gen-
eralization of the disjunction property.

Lemma 25. Let c be an i, j-splitting connective and suppose � c(A1, . . . , An).
Then � Ai or � Aj.

Deriving Natural Deduction Rules from Truth Tables 135

Proof. Let c be an i, j-splitting connective and let ϕ = c(A1, . . . , An) be a for-
mula with � ϕ.

Suppose �� Ai and �� Aj . Then there are Kripke models K1 and K2 such that
K1 �� Ai and K2 �� Aj . We may assume that the sets of worlds of K1 and K2 are
disjoint so we can construct a Kripke model K as the union of K1 and K2 where
we add a special “root world” w0 that is below all worlds of K1 and K2, with
at(w0) = ∅. It is easily verified that K is a Kripke model and we have w0 �� Ai,
because w0 is below some world w in K1 with w �� Ai; similarly w0 �� Aj . So,
[[Ai]]w0 = [[Aj]]w0 = 0. But then w0 �� ϕ, because [[ϕ]]w0 = [[c(A1, . . . , An)]]w0 = 1
iff for all w ≥ w0: tc([[A1]]w, . . . , [[An]]w) = 1. However, for w := w0, whatever the
values of [[Ak]]w are for k �= i, j, tc([[A1]]w, . . . , [[An]]w) = 0. On the other hand,
w0 � ϕ, because � ϕ, so we have a contradiction. We conclude that � Ai or
� Aj . ��

Example 26. Looking at the truth tables in Sect. 2.1, we see that most is i, j-
splitting for every i, j. Indeed, if � most(A,B,C), we can derive � A or � B but
also � A or � C and also � B or � C.

The connective if-then-else is not 1, 2-splitting but it is 1, 3-splitting and 2, 3-
splitting: if � A→B/C, then we have � A or � C and also � B or � C.

4 Cuts and Cut-Elimination

The idea of a cut in intuitionistic logic is an introduction of a formula ϕ imme-
diately followed by an elimination of ϕ. We will call this a direct intuitionistic
cut. In general in between the intro rule for ϕ and the elim rule for ϕ, there may
be other auxiliary rules, so occasionally we may have to first permute the elim
rule with these auxiliary rules to obtain a direct cut that can be contracted. We
leave that for future research and now just define the notion of direct cut and
contraction of a direct cut.

Definition 27. Let c be a connective of arity n, with an elim rule and an intu-
itionistic intro rule derived from the truth table, as in Definition 1. So suppose
we have the following rules in the truth table tc.

A1 . . . An c(A1, . . . , An)

p1 . . . pn 0
q1 . . . qn 1

An intuitionistic direct cut in a derivation is a pattern of the following form,
where ϕ = c(A1, . . . , An) and: (1) Aj ranges over all formulas where qj = 1, Ai

ranges over all formulas where qi = 0; (2) Ak ranges over all formulas where
pk = 1, A� over all formulas where p� = 0,

. . .

···· Σj

Γ � Aj

···· Σi

Γ, Ai � ϕ . . .

Γ � ϕ . . .

···· Πk

Γ � Ak

···· Π�

Γ, A� � D . . .

Γ � D

136 H. Geuvers and T. Hurkens

The elimination of a direct cut is defined by replacing the derivation pattern
above by

1. If
 = j (for some
, j):
···· Σj

Γ � Aj . . .

···· Σj

Γ � Aj···· Π�

Γ � D

2. If k = i (for some k, i):

···· Πk

Γ � Ai . . .

···· Πk

Γ � Ai···· Σi

Γ � ϕ . . .

···· Πk

Γ � Ai

···· Π�

Γ, A� � D . . .

Γ � D

There may be several choices for the i and j in the previous definition, so
cut-elimination is non-deterministic in general. As an example, we give the cut-
elimination rules for if-then-else with optimized deduction rules.

Example 28. The intuitionistic cut-elimination rules for if-then-else are the
following.

(then-then)

Γ � A

···· Σ

Γ � B

Γ � A→B/C Γ � A

Γ � B

→
···· Σ

Γ � B

(else-then)

···· Σ

Γ, A � A→B/C Γ � C

Γ � A→B/C

···· Π

Γ � A

Γ � B

→

···· Π

Γ � A . . .

···· Π

Γ � A···· Σ

Γ � A→B/C

···· Π

Γ � A

Γ � B

Deriving Natural Deduction Rules from Truth Tables 137

(then-else)
···· Σ

Γ � A Γ � B

Γ � A→B/C

···· Π

Γ, A � D Γ, C � D

Γ � D

→

···· Σ

Γ � A . . .

···· Σ

Γ � A···· Π

Γ � D

(else-else)

Γ, A � A→B/C

···· Σ

Γ � C

Γ � A→B/C Γ, A � D

···· Π

Γ, C � D

Γ � D

→

···· Σ

Γ � C . . .

···· Σ

Γ � C···· Π

Γ � D

5 Conclusion and Further Work

We have introduced a general procedure for deriving natural deduction rules from
truth tables that applies both to classical and intuitionistic logic. Our deduction
rules obey a specific format, making it easier to study. To show that the intuition-
istic rules are truly constructive we have defined a complete Kripke semantics for
the intuitionistic rules. We have defined cut-elimination for intuitionistic logic
in general. In an extended version of the paper [5] we have described a Curry-
Howard proofs-as-terms isomorphism for the derivations in constructive logic.
We have studied it in more detail for if-then-else.

The work described here raises many new research questions that we will
pursue further: Is cut-elimination normalizing in general for an arbitrary set of
connectives? How to define cut-elimination for the classical case, and what is its
connection with a term calculus for classical logic as studied e.g. in [1,2,8]?

Another issue is the possibility of “hidden cuts” that need to be made explicit
via a permuting conversion operation on the derivation (or on the proof-term).
These already occur in the fragment with just if-then-else and we describe these
permuting conversions in [5]. The question is if we can describe and study these
permuting conversions in general.

References

1. Ariola, Z.M., Herbelin, H.: Minimal classical logic and control operators. In:
Baeten, J.C.M., Lenstra, J.K., Parrow, J., Woeginger, G.J. (eds.) ICALP
2003. LNCS, vol. 2719, pp. 871–885. Springer, Heidelberg (2003). doi:10.1007/
3-540-45061-0 68

2. Curien, P.-L., Herbelin, H.: The duality of computation. In: ICFP, pp. 233–243
(2000)

3. Dyckhoff, R.: Some remarks on proof-theoretic semantics. In: Piecha, T.,
Schroeder-Heister, P. (eds.) Advances in Proof-Theoretic Semantics, vol. 43, pp.
79–93. Springer, Heidelberg (2016)

http://dx.doi.org/10.1007/3-540-45061-0_68
http://dx.doi.org/10.1007/3-540-45061-0_68

138 H. Geuvers and T. Hurkens

4. Francez, N., Dyckhoff, R.: A note on harmony. J. Philos. Logic 41(3), 613–628
(2012)

5. Geuvers, H., Hurkens, T.: Deriving natural deduction rules from truth tables
(Extended version). Technical report (2016). http://www.cs.ru.nl/∼herman/
PUBS/NatDedTruthTables Extended.pdf

6. Milne, P.: Inversion principles and introduction rules. In: Dag Prawitz on Proofs
and Meaning, Outstanding Contributions to Logic, vol. 7, pp. 189–224 (2015)

7. Negri, S., von Plato, J.: Structural Proof Theory. Cambridge University Press,
Cambridge (2001)

8. Parigot, M.: λμ-calculus: an algorithmic interpretation of classical natural deduc-
tion. In: Voronkov, A. (ed.) LPAR 1992. LNCS, vol. 624, pp. 190–201. Springer,
Heidelberg (1992). doi:10.1007/BFb0013061

9. Prawitz, D.: Ideas and results in proof theory. In: Fenstad, J., (ed.) 2nd
Scandinavian Logic Symposium, North-Holland, pp. 237–309 (1971)

10. Schroeder-Heister, P.: A natural extension of natural deduction. J. Symb. Log.
49(4), 1284–1300 (1984)

11. Troelstra, A.S., van Dalen, D.: Constructivism in Mathematics, vol. 1. Elsevier,
Amsterdam (1988)

12. van Dalen, D.: Logic and Structure. Universitext, 3rd edn. Springer, London (1994)
13. von Plato, J.: Natural deduction with general elimination rules. Arch. Math. Log.

40(7), 541–567 (2001)

http://www.cs.ru.nl/~ herman/PUBS/NatDedTruthTables_Extended.pdf
http://www.cs.ru.nl/~ herman/PUBS/NatDedTruthTables_Extended.pdf
http://dx.doi.org/10.1007/BFb0013061

A Semantic Analysis of Stone and Dual Stone
Negations with Regularity

Arun Kumar1(B) and Mohua Banerjee2

1 Department of Mathematics, Institute of Science,
Banaras Hindu University, Varanasi 221005, India

arunk2956@gmail.com
2 Department of Mathematics and Statistics,

Indian Institute of Technology, Kanpur 208016, India
mohua@iitk.ac.in

Abstract. This article investigates whether a few well-known ‘nega-
tion’ operators may be termed as negations, using Dunn’s approach.
The semantics of the Stone negation is investigated in perp frames, that
of dual Stone negation in exhaustive frames, and that of Stone and dual
Stone negations with the regularity property, in K− frames. The study
leads to new semantics for the logics corresponding to the classes of Stone
algebras, dual Stone algebras and regular double Stone algebras.

Keywords: Perp semantics · Regular double stone algebras

1 Introduction

In classical logic, the interpretation of negation (¬) is such that a proposition
¬α is true at a state if and only if α is false at that state. However, there are
different semantics of negation as we move to non-classical logics. In the well-
known Kripke semantics for intuitionistic logic [1], ¬α is true at a state (present
time point or evidential situation) w if and only if α is false (not verified) not only
at w, but as well at every other accessible (‘later’) state. The ‘perp’ semantics
introduced by Dunn in [2,3] provides another framework for studying various
negations as modal operators. The intended interpretation of negation in this
Kripke-type semantics is that of impossibility or unnecessity. As mentioned by
Dunn in [4], the motivation of perp semantics lies in the Birkhoff-von Neumann-
Goldblatt definition of ortho-negation in quantum logic, where ortho-negation is
described using a relation of ‘incompatibility’ (or orthogonality or perp) between
states. ¬α is true at a given state w if and only if w is incompatible with every
state at which α is true. Dunn in his model of negations, uses a ‘compatibility’
relation to define the perp semantics. Propositions are interpreted in frames
containing a compatibility relation, and ¬α is true at a given state w if and only
if α is false at all states which are compatible with w.

In this article, we study a few well-known ‘negation’ operators, investigating
whether they qualify to be negations in accordance with the (perp) semantic
c© Springer-Verlag GmbH Germany 2017
S. Ghosh and S. Prasad (Eds.): ICLA 2017, LNCS 10119, pp. 139–153, 2017.
DOI: 10.1007/978-3-662-54069-5 11

140 A. Kumar and M. Banerjee

analysis due to Dunn. Our motivation for selecting the particular operators under
study here, comes from our interest and work in classical Pawlakian rough set
theory [5]. Rough sets have been shown to form various algebraic structures
(cf. [6]), such as Stone, regular double Stone, Nelson, topological quasi Boolean,
pre-rough, rough algebras, or Kleene algebras [7]. For many of these classes
of algebras, representation theorems in terms of rough set algebras have been
obtained as well. All the afore-mentioned algebras involve some unary operators
as algebraic ‘negations’. One is a De Morgan as well as a Kleene negation, another
a Stone negation, and a third one is a dual Stone negation. Moreover, the last
two together satisfy the regularity property. We pose the question about the kind
of semantics these operators induce, in line with Dunn’s approach to the study
of negations.

The characterization of the De Morgan laws in the perp semantic framework
is given by Dunn [8] and Restall [9]. In [7], we obtained a characterization for
Kleene negation in perp frames. In this work, our focus is on Stone and dual
Stone negations satisfying the regularity property.

The basic logic involved in the study is the bounded distributive lattice logic
BDLL. Distributive lattices are algebraic models of the logic DLL introduced
by Dunn [10]. The language of DLL consists of propositional variables p, q, r, . . .,
and the logical connectives ∨,∧. The well-formed formulas of the logic are then
given by the scheme: p | α ∨ β | α ∧ β . Let us denote the set of propositional
variables by P, and that of well-formed formulas by F . Consequents α � β are
used to define the system through the following postulates and rules – for this,
we refer to [4,8].

Definition 1 (DLL- postulates).

1. α � α (Reflexivity)

2.
α � β β � γ

α � γ (Transitivity)
3. α ∧ β � α, α ∧ β � β (Conjunction Elimination)

4.
α � β α � γ

α � β ∧ γ (Conjunction Introduction)
5. α � α ∨ β, β � α ∨ β (Disjunction Introduction)

6.
α � γ β � γ

α ∨ β � γ (Disjunction Elimination)
7. α ∧ (β ∨ γ) � (α ∧ β) ∨ (α ∧ γ) (Distributivity)

In [10], DLL was extended by adding the propositional constants �,⊥ and the
postulates below to give the logic BDLL, whose algebraic models are bounded
distributive lattices:

– α � � (Top);
– ⊥ � α (Bottom).

In this article, we study logics L that are all extensions of BDLL. By α �L β, we
shall mean that the consequent α � β is derivable in L. The algebraic semantics

A Semantic Analysis of Stone and Dual Stone Negations with Regularity 141

of L is defined in the standard way. If AL denotes the class of all algebras
corresponding to the logic L, validity of α � β in AL will be denoted as α �AL β.

In Sect. 2, we present the preliminaries of perp semantics, and then study
the perp semantics for the logic of Stone algebras. The study of the semantics
for the logic of dual Stone algebras in ‘exhaustive’ frames is given in Sect. 3. In
Sect. 4, semantics for the logic of regular double Stone algebras is studied in a
‘united’ framework. Section 5 concludes the article.

2 The Stone Negation in the Kite of Negations

Let us present the basic notions in perp semantics. The language of the extensions
of BDLL considered here contain an additional unary connective ∼, to stand
for negation.

Definition 2. A compatibility frame is a triple (W,C,≤) with the following
properties:

1. (W,≤) is a partially ordered set;
2. C is a binary relation on W such that for x, y, x′, y′ ∈ W, if x′ ≤ x, y′ ≤ y

and xCy then x′Cy′.

C is called a compatibility relation on W .
A perp frame is a tuple (W,⊥,≤), where ⊥, the perp relation on W , is the

complement of the compatibility relation C.

As in [8], we do not distinguish between compatibility and perp frames, and
present the results in terms of the compatibility relation.
A relation � between points of W and propositional variables in P is called an
evaluation, if it satisfies the hereditary condition:

if x � p and x ≤ y then y � p, for any x, y ∈ W.

Recursively, an evaluation � can be extended to F ; in particular, the definition
for the ∼ case is given for any x ∈ W as:

x �∼ α if and only if for all y ∈ W, xCy implies that y � α.

For a compatibility frame F := (W,C,≤) and an evaluation �, the pair (F,�) is
called a model. The notion of validity is given in the usual manner. A consequent
α � β is valid in a model (F,�), denoted as α �(F,�) β, if and only if, if x � α
then x � β, for each x ∈ W . If F denotes a class of compatibility frames, α � β
is valid in F, denoted as α �F β, if and only if α �(F,�) β for all F ∈ F.

In [8] it has been proved that the following logic Ki is the minimal logic which
is sound and complete with respect to the class of all compatibility frames. Ki

is built upon the logic BDLL, by adding the following rules and postulates.

1.
α � β

∼ β �∼ α (Contraposition).

142 A. Kumar and M. Banerjee

∼∼ a ≤ a

De Morgan

a∧ ∼ a = 0

Intuitionistic

a ∧ b ≤ c ⇒ a∧ ∼ c ≤∼ b

Minimal(Johansson)

a ≤∼∼ a Quasi − Minimal(Dunn′sMinimal)

∼ a∧ ∼ b ≤∼ (a ∨ b) Preminimal

Ortho

Fig. 1. Dunn’s Lopsided Kite of Negations

2. ∼ α∧ ∼ β �∼ (α ∨ β) (∨-linearity).
3. � �∼ ⊥ (Nor).

Further, Dunn [2,3,8] established correspondence and completeness results about
various negations with respect to perp semantics and arrived at the lopsided kite
of negations (Fig. 1).

Frame completeness results for various logics with negation have been proved
using the canonical frames for the logics. Let Λ denote any extension of Ki. The
definitions for the canonical frame are as follows. A set P of sentences in Λ is
called a prime theory if

1. α � β holds and α ∈ P , then β ∈ P ,
2. α, β ∈ P then α ∧ β ∈ P ,
3. � ∈ P and ⊥ /∈ P ,
4. α ∨ β ∈ P implies α ∈ P or β ∈ P .

Let Wc be the collection of all prime theories of Λ. Define a relation Cc on Wc

as P1CcP2 if and only if, for all sentences α of F , ∼ α ∈ P1 implies α /∈ P2.
The tuple (Wc, Cc,⊆) is the canonical frame for Λ. Λ is called canonical, if its
canonical frame is a frame for Λ.

Let us note that the algebraic structures corresponding to the logic Ki, the
Ki-algebras, are structures of the form (K,∨,∧,∼, 0, 1) where

1. (K,∨,∧, 0, 1) is a bounded distributive lattice,
2. ∀a, b ∈ K, a ≤ b implies ∼ b ≤∼ a,
3. ∼ a∧ ∼ b ≤∼ (a ∨ b), and
4. ∼ 0 = 1.

A Semantic Analysis of Stone and Dual Stone Negations with Regularity 143

2.1 Stone Property

In [8], an intuitionistic negation is defined as one having the (1) Absurd (a∧ ∼
a = 0) and (2) minimal (Johansson) (a ∧ b ≤ c ⇒ a∧ ∼ c ≤∼ b) properties. The
usual definition of pseudo complement in a bounded distributive lattice L is:

∼ a := max{c ∈ L : a ∧ c = 0}, a ∈ L. (*)

One can show that it satisfies (1) and (2); on the other hand, if ∼ in a Ki-algebra
satisfies (1) and (2), then it coincides with the pseudo complement defined in
(∗). Hence a Stone algebra can be defined as a Ki-algebra with ∼ satisfying (1),
(2) and the Stone property: ∼ a∨ ∼∼ a = 1. ∼ is a Stone negation.

We prove a correspondence result for the Stone property.

Theorem 1. � �∼ α∨ ∼∼ α is valid in a compatibility frame (W,C,≤) if and
only if C satisfies the following first order property:

∀x∀y1∀y2(xCy1 ∧ xCy2 → (y1Cy2 ∧ y2Cy1)). (*)

The extension of the logic Ki having the axiom � �∼ α∨ ∼∼ α, is canonical.

Proof. Let (∗) hold in any compatibility frame (W,C,≤), and let us assume
x �∼ α∨ ∼∼ α, i.e., x �∼ α and x �∼∼ α.

x �∼ α implies there exists y1 such that xCy1 and y1 � α. x �∼∼ α implies
there exists y2 such that xCy2 and y2 �∼ α. As, (∗) holds, we have y1Cy2 and
y2Cy1. But y2Cy1 and y1 � α imply y2 �∼ α which is a contradiction. Hence,
x �∼ α∨ ∼∼ α.

Now suppose (∗) does not hold. This means ∃x∃y1∃y2((xCy1 ∧ xCy2) ∧
(not(y1Cy2) ∨ not(y2Cy1))). Assume not(y1Cy2) is true and define, z � p if
and only if y2 ≤ z and not(y1Cz). Let us first show that the relation � is well
defined, i.e. hereditary. So let z � p and z ≤ z′, hence, y2 ≤ z′. If y1Cz′ then
using the frame condition we have y1Cz, which is a contradiction.

We have x �∼ p as xCy2 and y2 � p (as not(y1Cy2)). Also, x �∼∼ p as xCy1
and y1Cz imply z � p. Hence we have x �∼ p∨ ∼∼ p.

Canonicity: First observe that for any prime theory P and any formula α of
this logic, ∼ α∨ ∼∼ α ∈ P , which implies either ∼ α ∈ P or ∼∼ α ∈ P .
Now let PCcQ1 and PCcQ2, for any prime theories P , Q1 and Q2. We want to
show that Q1CcQ2 and Q2CcQ1. Let us show Q1CcQ2.
Let ∼ α ∈ Q1 but we have PCcQ1 hence ∼∼ α /∈ P . This means ∼ α ∈ P . We
also have PCcQ2 which will give us α /∈ Q2. Hence Q1CcQ2.
Similarly one can show Q2CcQ1. ��

The Absurd and Minimal (Johansson) properties are characterized in [2,8].

144 A. Kumar and M. Banerjee

Theorem 2 ([2,8]).

1. The rule
α ∧ β � γ

α∧ ∼ γ �∼ β is valid in a compatibility frame if and only if the
following frame condition holds:

∀x∀y(xCy → ∃z(x ≤ z ∧ y ≤ z ∧ xCz)).

2. α∧ ∼ α � ⊥ is valid, precisely in the class of all compatibility frames satisfying
the frame condition: ∀x(xCx).

Moreover, canonicity holds in the respective cases.

Hence Stone negation can be visualized as an ‘impossibility’ as well as a modal
operator. Let LS denote Ki enhanced with the following rules and postulates.

(i)
α ∧ β � γ

α∧ ∼ γ �∼ β
(ii) α∧ ∼ α � ⊥
(iii) � �∼ α∨ ∼∼ α.

Let us call a compatibility frame (W,C,≤) a Stone frame if it satisfies the frame
conditions:

1. ∀x∀y(xCy → ∃z(x ≤ z ∧ y ≤ z ∧ xCz)),
2. ∀x(xCx) and
3. ∀x∀y1∀y2(xCy1 ∧ xCy2 → (y1Cy2 ∧ y2Cy1)).

Let FS denote the class of all Stone frames, and AS , the class of all Stone alge-
bras. Then we can conclude the following theorem, and that the Stone negation
can be positioned in Dunn’s Lopsided Kite of Negations (Fig. 2).

Theorem 3. For any α, β ∈ F . The following are equivalent.

(i) α �LS
β.

(ii) α �AS
β.

(iii) α �FS
β.

3 The Dual Stone Negation in the Dual Kite

Dunn shows in [8] that the dual of the negations in the kite of negations can be
studied via the ‘dual’ of compatibility frames, namely exhaustive frames (defined
below). Through the semantics in exhaustive frames, it has been shown that the
negations in the dual lopsided kite of negations can be treated as modal operators.
But in this case, modalities are interpreted as ‘unnecessity’. To study the dual
Stone negation, we make use of this semantics. The additional unary connective
for negation in the language of the extensions of BDLL considered in this case,
is denoted ¬.

A Semantic Analysis of Stone and Dual Stone Negations with Regularity 145

∼∼ a ≤ a

De Morgan

a∧ ∼ a = 0

Intuitionistic

a ∧ b ≤ c ⇒ a∧ ∼ c ≤∼ b

Minimal(Johansson)

a ≤∼∼ a Quasi − Minimal(Dunn′sMinimal)

∼ a∧ ∼ b ≤∼ (a ∨ b) Preminimal

∼ a∨ ∼∼ a = 1

Stone

Ortho

Fig. 2. Enhanced Lopsided Kite of Negations

Definition 3. An exhaustive frame is a triple (W,R,≤) such that

1. (W,≤) is a partially ordered set, and
2. ≤ ◦R◦ ≤−1⊆ R.

It is observed in [8] that exhaustive frames are the ‘dual’ of compatibility frames.
In fact, any compatibility frame is an exhaustive frame, but the interpretations
for negation are different in these frames. Negation is interpreted as ‘impossibil-
ity’ in compatibility frames, while in exhaustive frames negation is interpreted
as ‘unnecessity’.
A relation � between points of W and propositional variables in P is called an
evaluation here, if it satisfies the backward hereditary condition:

if x � p and y ≤ x then y � p, x, y ∈ W.

� can be recursively extended to the set F , with the evaluation of the formula
¬α at x ∈ W given as:

x � ¬α if and only if ∃y(xRy ∧ y � α).

The notion of validity is as in the previous section. The minimal logic which
is sound and complete with respect to the class of all exhaustive frames, is the
logic Ku [8]. It is BDLL enhanced with:

1.
α � β

¬β � ¬α (Contraposition).
2. ¬(α ∧ β) � ¬α ∨ ¬β (∧-linearity).
3. ¬� � ⊥ (dual-Nor).

146 A. Kumar and M. Banerjee

The completeness results in this case, are also proved using the canonical model.
The definition is as follows. For any extension Λ of the logic Ku, let Wc be the
collection of all the prime theories. The canonical relation Rc on Wc is defined
as: PRcQ if and only if, for all sentences α, ¬α /∈ P implies α ∈ Q. The tuple
(Wc, Rc,⊇) is the canonical frame for Λ.

The algebras corresponding to the logic Ku are the Ku −algebras, which are
structures of the form (K,∨,∧,¬, 0, 1), where

1. (K,∨,∧, 0, 1) is a bounded distributive lattice,
2. ∀a, b ∈ K, ¬(a ∧ b) = ¬a ∨ ¬b,
3. a ≤ b ⇒ ¬b ≤ ¬a, and
4. ¬1 = 0.

3.1 Dual Stone Property

The dual pseudo complement in a distributive lattice L is defined as:

¬a := min{c ∈ L : a ∨ c = 1}, a ∈ L.

It can be shown that a Ku-algebra with ¬ satisfying the (1) dual intuitionistic
property (a∨ ∼ a = 0) and (2) dual minimal (Johansson) property (c ≤ a ∨ b ⇒
¬b ≤ a ∨ ¬c), coincides with a dual pseudo complemented lattice. Thus a dual
Stone algebra is a Ku-algebra with negation satisfying (1), (2) and the dual Stone
property: ¬a ∧ ¬¬a = 0. ¬ is a dual Stone negation.

Theorem 4 (Dunn [8]).

1. � � α ∨ ¬α is valid in an exhaustive frame if and only if the frame satisfies
the following first order condition: ∀x(xRx).

2. The rule
γ � α ∨ β

¬β � α ∨ ¬γ is valid in an exhaustive frame if and only if the frame
satisfies the following first order condition:

∀x∀y(xRy → ∃z(x ≤ z ∧ y ≤ z ∧ xRz)).

We characterize the dual Stone property in an exhaustive frame.

Theorem 5. ¬α ∧ ¬¬α � ⊥ is valid in an exhaustive frame (W,R,≤) if and
only if R satisfies the following first order property:

∀x∀y1∀y2(xRy1 ∧ xRy2 → (y1Ry2 ∧ y2Ry1)). (*)

The extension of Ku containing the axiom ¬α ∧ ¬¬α � ⊥, is canonical.

Proof. Let (∗) hold in an exhaustive frame (W,R,≤) and let x ∈ W. Suppose
x � ¬α ∧ ¬¬α, this implies x � ¬α and x � ¬¬α. Hence there exist y1, y2 such
that xRy1, xRy2 and y1 � α, y2 � ¬α. As (∗) holds, y2Ry1. But then y2 � ¬α,
which is a contradiction. Hence, x � ¬α ∧ ¬¬α.

A Semantic Analysis of Stone and Dual Stone Negations with Regularity 147

Suppose (∗) does not hold. This means ∃x∃y1∃y2((xRy1 ∧ xRy2) ∧
(not(y1Ry2) ∨ not(y2Ry1))). Assume not(y1Ry2) and define, z � p if and only if
y1Rz.

Then � is well-defined: let z � p and z′ ≤ z, then using the property of
exhaustive frames we have, y1 ≤ y1, y1Rz and z ≥ z′ imply y1Rz′. Hence z′ � p.

Now, clearly we have x � ¬p, as, xRy2 and y2 � p. Also, x � ¬¬p as, xRy1
and y1 � ¬p. Hence x � ¬p ∧ ¬¬p. So, ¬p ∧ ¬¬p � ⊥ is not valid in (W,R,≤).

Canonicity: First observe that for any prime theory P and any formula α, ¬α ∧
¬¬α /∈ P , as we have assumed our logic contains ¬α ∧ ¬¬α � ⊥. This implies
¬α /∈ P or ¬¬α /∈ P . Now let PRcQ1 and PRcQ2. We want to show that
Q1RcQ2 and Q2RcQ1. Let us show Q1RcQ2. So, let ¬α /∈ Q1 but we have
PRcQ1 hence ¬¬α ∈ P . This means ¬α /∈ P . We also have PRcQ2 which will
give us α ∈ Q2. Hence Q1RcQ2.

Similarly one can show Q2RcQ1. ��

Let LDS denote the logic Ku with the following additional rules and postulates.

(i)
γ � α ∨ β

¬β � α ∨ ¬γ.
(ii) � � α ∨ ¬α.
(iii) ¬α ∧ ¬¬α � ⊥.

Let us call an exhaustive frame (W,R,≤) a dual Stone frame if it satisfies the
following frame conditions.

1. ∀x∀y(xRy → ∃z(x ≤ z ∧ y ≤ z ∧ xRz)).
2. ∀x(xRx).
3. ∀x∀y1∀y2(xRy1 ∧ xRy2 → (y1Ry2 ∧ y2Ry1)).

Denote by FDS , the class of all dual Stone frames, and let ADS denote the class
of dual Stone algebras. The following theorem results, and we conclude that
the dual Stone negation can be positioned in Dunn’s dual (Lopsided) Kite of
Negation (Fig. 3).

Theorem 6. For any α, β ∈ F , the following are equivalent.

(i) α �LDS
β.

(ii) α �ADS
β.

(iii) α �FDS
β.

4 Stone and Dual Stone Negations with Regularity in
the United Kite

Dunn further provided a ‘uniform’ semantics for combining both the kite of
negations and its dual to give the united kite of negations. The minimal logic in
this context is K−, an extension of BDLL containing unary connectives ∼,¬ to
stand for two negations, and the following postulates and rules.

148 A. Kumar and M. Banerjee

dual Ortho

a ∨ ¬a = 1

dual Intuitionistic

c ≤ a ∨ b ⇒ ¬b ≤ a ∨ ¬c

dual Minimal(Johansson)

a ≤ ¬¬a
dual De Morgan

¬¬a ≤ a

dual Quasi Minimal

a ≤ b ⇒ ¬a ≤ ¬b
dual Preminimal

¬a ∧ ¬¬a = 0

dual Stone

Fig. 3. Enhanced Dual Lopsided Kite of Negations

1. ∼ α∧ ∼ β �∼ (α ∨ β).
2. ¬(α ∧ β) � ¬α ∨ ¬β.
3. � �∼ ⊥.
4. ¬� � ⊥.

5.
α � β

∼ β �∼ α.

6.
α � β

¬β � ¬α.
7. ∼ α ∧ ¬β � ¬(α ∨ β).
8. ∼ (α ∧ β) �∼ α ∨ ¬β.

The semantics of the logic K− is defined in a K− frame, a triple (W,R,≤) such
that

1. (W,≤) is a partially ordered set,
2. ≤−1 ◦R ⊆ R◦ ≤, and
3. ≤ ◦R ⊆ R◦ ≤−1.

The semantic clauses are as in the previous sections. The evaluations are defined
as in Sect. 2; the extension to the cases for the two negations are given for any
x ∈ W as:

x �∼ α if and only if ∀y(xRy → y � α), and
x � ¬α if and only if ∃y(xRy ∧ y � α).

Let R¬ := R◦ ≤ and R∼ := R◦ ≤−1. The semantic clauses for ∼ and ¬ can be
re-defined in terms of R¬ and R∼.

A Semantic Analysis of Stone and Dual Stone Negations with Regularity 149

Lemma 1. [8] For any x ∈ W ,
x �∼ α if and only if ∀y(xR∼y → y � α),
x � ¬α if and only if ∃y(xR¬y ∧ y � α).

The canonical model for K− is defined as follows. Let P be a prime theory, and
consider the two sets P¬ := {α : ¬α /∈ P} and P∼ := {α :∼ α /∈ P}. (Wc, Rc,⊆c)
can be shown [8] to be a K− frame and is called the canonical model for K−,
where Wc is the collection of all prime theories, ⊆c is the inclusion relation and
Rc is defined as follows: PRcQ if and only if P¬ ⊆ Q ⊆ P∼. [8] also proves

Lemma 2. If P¬ ⊆ Q, then PRC¬Q; if Q ⊆ P∼, PRC∼Q.

K− is sound and complete with respect to the class of all K− − algebras,
which are defined to be structures of the form (K,∨,∧,∼,¬, 0, 1), where

1. (K,∨,∧,∼, 0, 1) is a Ki- algebra,
2. (K,∨,∧,¬, 0, 1) is a Ku- algebra,
3. ∀a, b ∈ K, (∼ a ∧ ¬b) ≤ ¬(a ∨ b),
4. ∀a, b ∈ K, ∼ (a ∧ b) ≤ (∼ a ∨ ¬b).

4.1 Stone and Dual Stone Negations with Regularity

A regular double Stone algebra (K,∨,∧,∼,¬, 0, 1) is a bounded distributive lat-
tice such that (1) ∼ defines a Stone negation, (2) ¬ defines a dual Stone negation
and (3) a∧¬a ≤ b∨ ∼ b, for all a, b ∈ K. Note that regularity can also be charac-
terized [11] as: ∼ a =∼ b and ¬a = ¬b imply a = b, a, b ∈ K. A regular double
Stone algebra is a K−-algebra with the negations satisfying (1)–(3). Observe
that a negation that is a Stone as well as dual Stone negation, is just an Ortho
(Boolean) negation.

A sequent calculus for the logic of regular double Stone algebras and a rough
set semantics for it was provided in [12,13]. In this section, we present another
semantics for this logic. For that, we characterize the Stone, dual Stone and
regularity properties in a K− frame.

Theorem 7.

1. � �∼ α ∨ ∼∼ α is valid in a K− frame (W,R,≤) if and only if the frame
satisfies the following first order property:

∀x∀y1∀y2(xR∼y1 ∧ xR∼y2 → (y1R∼y2 ∧ y2R∼y1)).

2. ¬α ∧ ¬¬α � ⊥ is valid in a K− frame (W,R,≤) if and only if the frame
satisfies the following first order condition:

∀x∀y1∀y2(xR¬y1 ∧ xR¬y2 → (y1R¬y2 ∧ y2R¬y1)).

3. α ∧ ¬α � β ∨ ∼ β is valid in a K− frame (W,R,≤) if and only if the frame
satisfies the following first order property:

∀x((∀y(xR¬y → x ≤ y)) ∨ (∀z(xR∼z → z ≤ x))). (*)

150 A. Kumar and M. Banerjee

Moreover, canonicity of the enhanced logics holds in all the cases.

Proof. We only prove the canonicity parts for items 1 and 2.
1. Canonicity:
For any prime theories P , Q1 and Q2, let PRc∼Q1 and PRc∼Q2. Our claim is
Q1Rc∼Q2 and Q2Rc∼Q1. Let us show Q1Rc∼Q2, the other will follow similarly.

PRc∼Q1, i.e., PRc◦ ⊆−1 Q1 implies there exists P1 such that PRcP1 and
P1 ⊇ Q1. By definition of Rc, we have PRcP1 implies P¬ ⊆ P1 ⊆ P∼.

PRc∼Q2 implies that there exists P2 such that PRcP2 and P2 ⊇ Q2. By
definition of Rc, PRcP2 implies P¬ ⊆ P2 ⊆ P∼. Let us show that Q2 ⊆ Q1∼:
let α /∈ Q1∼. Then ∼ α ∈ Q1, which implies ∼ α ∈ P1. So ∼ α ∈ P∼, whence
∼∼ α /∈ P . Then ∼ α ∈ P , and then α /∈ P∼, i.e. α /∈ P2, implying α /∈ Q2.
Hence Q2 ⊆ Q1∼. Using Lemma 2, we have Q1Rc∼Q2.
2. Canonicity:
Let P,Q1, Q2 ∈ Wc such that PRc¬Q1 and PRc¬Q2. PRc¬Q1 implies that
there exists a prime theory P1 such that PRcP1 and P1 ⊆ Q1. Let us show that
Q1Rc¬Q2. In other words, in view of Lemma 2, we have to show that Q1¬ ⊆ Q2.
Let α ∈ Q1¬. Then ¬α /∈ Q1, which implies ¬α /∈ P1. So ¬α /∈ P¬ = {β : ¬β /∈
P}, whence ¬¬α ∈ P . But we have for any β ∈ F either ¬β /∈ P or ¬¬β /∈ P .
Hence we have ¬α /∈ P . So α ∈ P¬ and PRc¬Q2, hence α ∈ Q2. Hence we have
Q1¬ ⊆ Q2.
3. Let (∗) hold in any K− frame (W,R,≤), and let x ∈ W . Assume ∀y(xR¬y →
x ≤ y) is true. Let us show that x � α ∧ ¬α. Assume x � α. Let xR¬y, then by
our assumption x ≤ y. Hence using hereditary property of �, y � α. So x � ¬α,
whereby x � α ∧ ¬α. Now let ∀z(xR∼y → z ≤ x) be true. Let us show that
x � β∨ ∼ β. Let x � β, and xR∼z. Then by our assumption z ≤ x. Using
hereditary property of � again, we have z � β, hence x �∼ β.

In either case, if x � α ∧ ∼ α then x � β ∨ ∼ β holds.
Now, let (∗) not hold. Then ∃x((∃y1(xR¬y1 ∧ x � y1)) ∧ (∃y2(xR∼y2 ∧ y2 �

x))). Let us define � as: (i) y � p if and only if x ≤ y, and (ii) z � q if and
only if z � x. One can show that � is a well defined consequence relation: (1)
let y � p and y ≤ y′. Then x ≤ y ≤ y′. Hence y′ � p. (2) Let z � q and z ≤ z′.
If z′

� q then by definition of �, z′ ≤ x. Hence z ≤ z′ ≤ x, which implies z � q
contradicting our assumption.

Now x � p ∧ ¬p: x � p, using the definition of �. As (∗) does not hold, we
have y1 in W such that xR¬y1 and x � y1. By definition y1 � p. Hence x � ¬p.

Also x � q ∨ ∼ q: as x ≤ x, hence x � q. We also have an element y2 in W
such that xR∼y2 and y2 � x. Hence x �∼ q. So x � q ∨ ∼ q.
Canonicity:
We show that the canonical frame (Wc, Rc,⊆) satisfies (∗).

So let P ∈ Wc and suppose there exists a prime theory Q such that (PRc¬Q∧
P � Q). Let us show that ∀Q′(PRc∼Q′ → Q′ ⊆ P).

P � Q means that there is α such that α ∈ P and α /∈ Q. PRc¬Q implies the
existence of a prime theory Q1 such that PRcQ1 and Q1 ⊆ Q. Hence α /∈ Q1.
So, α /∈ P¬, but then by definition of P¬, ¬α ∈ P . Hence α ∧ ¬α ∈ P . By our
assumption α ∧ ¬α � β∨ ∼ β. Hence for any formula β we have either β ∈ P or

A Semantic Analysis of Stone and Dual Stone Negations with Regularity 151

∼ β ∈ P . Now let PRc∼Q′, and let γ ∈ Q′. By definition, PRc∼Q′ implies that
there is a prime theory Q′

1 such that PRcQ
′
1 and Q′

1 ⊇ Q′. Hence γ ∈ Q′
1. But

Q′
1 ⊆ P∼. Then γ ∈ P∼ implies ∼ γ /∈ P . Hence γ ∈ P , and we get Q′ ⊆ P . ��

Let LRDSA denote the logic which contains all axioms and postulates of the
logic K− along with the following.

(i) α ∧ ∼ α � ⊥.
(ii) α ∨ ¬α � ⊥.

(iii)
α ∧ β � γ

α ∧ ∼ γ ≤∼ β.

(iv)
γ � α ∨ β

¬β � α ∨ ¬γ.
(v) � �∼ α ∨ ∼∼ α.
(vi) ¬α ∧ ¬¬α � ⊥.
(vii) α ∧ ¬α � β ∨ ∼ β (Regularity).

We call a K− frame (W,R,≤) a regular double Stone frame if it satisfies the
following first order conditions.

1. ∀x∀y(xR∼y → yR∼x).
2. ∀x∀y(xR¬y → yR¬x).
3. ∀x(xR∼x).
4. ∀x(xR¬x).
5. ∀x∀y1∀y2(xR∼y1 ∧ xR∼y2 → (y1R∼y2 ∧ y2R∼y1)).
6. ∀x∀y1∀y2(xR¬y1 ∧ xR¬y2 → (y1R¬y2 ∧ y2R¬y1)).
7. ∀x((∀y(xR¬y → x ≤ y)) ∨ (∀z(xR∼z → z ≤ x))).

Let us denote by FRDSA, the class of all regular double Stone frames, by ARDSA,
the class of all regular double Stone algebras, and by RSRDSA, the class of reg-
ular double Stone algebras formed by rough sets over Pawlakian approximation
spaces. Comer [14] has proved the representation result that given any regular
double Stone algebra K, there is a regular double Stone algebra R formed by
rough sets over some approximation space such that K can be embedded in R.
Making use of this result, we obtain

Theorem 8. For any α, β ∈ F , the following are equivalent.

1. α �LRDSA
β.

2. α �ARDSA
β.

3. α �RSRDSA
β.

4. α �FRDSA
β.

The enhanced united kite of negations with Stone and dual Stone negations can
be seen in Fig. 4.

152 A. Kumar and M. Banerjee

dual-Ort

dual-Min

dual-Ort

dual-Qua

dual-DeM

dual Stone

MinDeM

Ort

K−(Pre + dual − Pre)

Qua

Stone

Fig. 4. Enhanced United Kite of Negations

5 Conclusions

We have investigated the semantics of some negations that appear in classical
rough set-theoretic structures. It is shown that Stone (dual Stone) negation can
be treated as an ‘impossibility’ (‘unnecessity’) operator, via the semantics in
compatibility (exhaustive) frames. Further, a semantics for the logic of regular
double Stone algebras in K− frames is presented, which is equivalent to the
already established rough set semantics for the logic.

Similar to the Jónsson-Tarski duality of modal logic, duality results can be
proved between classes of (compatibility) frames and classes of various lattices
with negation [2,3,8]. Such duality results for the classes of frames and algebras
presented here can also be obtained [7]. Our next aim is to carry out a compre-
hensive semantic analysis as above, of negations appearing in generalized rough
set theory. A preliminary study in [7] has shown that some of the operators
that arise in the generalized framework occupy new positions in Dunn’s kites of
negations. So the investigation appears worth pursuing further.

References

1. Kripke, S.: Semantic analysis of intuitionistic logic I. In: Crossley, J., Dummett,
M. (eds.) Formal Systems and Recursive Functions, pp. 92–129. North-Holland,
Amsterdam (1963)

2. Dunn, J.: Star and Perp: two treatments of negation. In: Tomberlin, J. (ed.)
Philosophical Perspectives, vol. 7, pp. 331–357. Ridgeview Publishing Company,
Atascadero (1994)

3. Dunn, J.: Generalised ortho negation. In: Wansing, H. (ed.) Negation: A Notion
in Focus, pp. 3–26. Walter de Gruyter, Berlin (1996)

4. Dunn, J.: A comparative study of various model-theoretic treatments of negation: a
history of formal negations. In: Gabbay, D., Wansing, H. (eds.) What is Negation?
pp. 23–51. Kluwer Academic Publishers, Netherlands (1999)

A Semantic Analysis of Stone and Dual Stone Negations with Regularity 153

5. Pawlak, Z.: Rough sets. Int. J. Comput. Inf. Sci. 11, 341–356 (1982)
6. Banerjee, M., Chakraborty, M.K.: Algebras from rough sets. In: Pal, S.K.,

Polkowski, L., Skowron, A. (eds.) Rough-Neuro Computing: Techniques for Com-
puting with Words. Cognitive Technologies, pp. 157–184. Springer, Berlin (2004)

7. Kumar, A.: A study of algebras and logics of rough sets based on classical and
generalized approximation spaces. Doctoral dissertation, Indian Institute of Tech-
nology, Kanpur (2016)

8. Dunn, J.: Negation in the context of gaggle theory. Stud. Logica 80, 235–264 (2005)
9. Restall, G.: Defining double negation elimination. L. J. IGPL 8(6), 853–860 (2000)

10. Dunn, J.: Positive modal logic. Stud. Logica 55, 301–317 (1995)
11. Varlet, J.: A regular variety of type (2,2,1,1,0,0). Algebra Univ. 2, 218–223 (1972)
12. Dai, J.-H.: Logic for rough sets with rough double stone algebraic semantics. In:

Śl ↪ezak, D., Wang, G., Szczuka, M., Düntsch, I., Yao, Y. (eds.) RSFDGrC 2005.
LNCS (LNAI), vol. 3641, pp. 141–148. Springer, Heidelberg (2005). doi:10.1007/
11548669 15

13. Banerjee, M., Khan, M.A.: Propositional logics from rough set theory. In: Peters,
J.F., Skowron, A., Düntsch, I., Grzyma�la-Busse, J., Or�lowska, E., Polkowski,
L. (eds.) Transactions on Rough Sets VI. LNCS, vol. 4374, pp. 1–25. Springer,
Heidelberg (2007). doi:10.1007/978-3-540-71200-8 1

14. Comer, S.: Perfect extensions of regular double Stone algebras. Algebra Univ.
34(1), 96–109 (1995)

http://dx.doi.org/10.1007/11548669_15
http://dx.doi.org/10.1007/11548669_15
http://dx.doi.org/10.1007/978-3-540-71200-8_1

Achieving While Maintaining:

A Logic of Knowing How with Intermediate Constraints

Yanjun Li1(B) and Yanjing Wang2

1 Faculty of Philosophy, University of Groningen, Groningen, The Netherlands
Y.J.Li@rug.nl

2 Department of Philosophy, Peking University, Beijing, China

Abstract. In this paper, we propose a ternary knowing how operator to
express that the agent knows how to achieve ϕ given ψ while maintain-
ing χ in-between. It generalizes the logic of goal-directed knowing how
proposed by Wang in [10]. We give a sound and complete axiomatization
of this logic.

1 Introduction

Standard epistemic logic proposed by von Wright and Hintikka studies proposi-
tional knowledge expressed by “knowing that ϕ” [6,9]. However, there are very
natural knowledge expressions beyond “knowing that”, such as “knowing what
your password is”, “knowing why he came late”, “knowing how to go to Beijing”,
and so on. In recent years, there have been attempts to capture the logics of such
different kinds of knowledge expressions by taking each “knowing X” as a single
modality [2,3,5,10,13,14].1

In particular, Wang proposed a logical language of goal-directed knowing how
[10], which includes formulas Kh(ψ,ϕ) to express that the agent knows how to
achieve ϕ given the precondition ψ.2 The models are labeled transition systems
which represent the agent’s abilities, inspired by [11]. Borrowing the idea from
conformant planning in AI (cf. e.g., [8,15]), Kh(ψ,ϕ) holds globally in a labeled
transition system, if there is an uniform plan such that from all the ψ-states this
plan can always be successfully executed to reach some ϕ-states. As an example,
in the following model Kh(p, q) holds, since there is a plan ru which can always
work to reach a q-state from any p-state.

s6 s7 : q s8 : q

s1 r �� s2 : p r ��

u

��

s3 : p r ��

u

��

s4 : q r ��

u

��

s5

1 See [12] for a survey.
2 See [1,4,10] for detailed discussions on related work in AI and Philosophy.

c© Springer-Verlag GmbH Germany 2017
S. Ghosh and S. Prasad (Eds.): ICLA 2017, LNCS 10119, pp. 154–167, 2017.
DOI: 10.1007/978-3-662-54069-5 12

Achieving While Maintaining: A Logic of Knowing 155

In [10], a sound and complete proof system is given, featuring a crucial axiom
capturing the compositionality of plans:

COMPKh Kh(p, r) ∧ Kh(r, q) → Kh(p, q)

However, as observed in [7], constraints on how we achieve the goal often
matter. For example, the ways for me to go to New York are constrained by the
money I have; we want to know how to win the game by playing fairly; people
want to know how to be rich without breaking the law. Generally speaking,
actions have costs, both financially and morally, we need to stay within our
“budget” in reaching our goals. Clearly such intermediate constraints cannot be
expressed by Kh(ψ,ϕ) since it only cares about the starting and ending states.
This motivates us to introduce a ternary modality Kh(ψ, χ, ϕ) where χ constrains
the intermediate states.3

In the rest of the paper, we first introduce the language, semantics, and a
proof system of our logic in Sect. 2. In Sect. 3 we give the highly non-trivial
completeness proof of our system, which is much more complicated than the one
for the standard knowing how logic. In the last section we conclude with future
directions.

2 The Logic

Definition 1 (Language). Given a set of proposition letters P, the language
LKhm is defined as follows:

ϕ := � | p | ¬ϕ | (ϕ ∧ ϕ) | Khm(ϕ,ϕ, ϕ)

where p ∈ P. Khm(ψ, χ, ϕ) expresses that the agent knows how to guarantee ϕ
given ψ while maintaining χ in-between (excluding the start and the end). Note
that Khm(ψ ∧ χ, χ, ϕ ∧ χ) expresses knowing how with inclusive intermediate
constraints. We use the standard abbreviations ⊥, ϕ ∨ ψ and ϕ → ψ, and define
Uϕ as Khm(¬ϕ,�,⊥). U is intended to be an universal modality, and it will
become more clear after defining the semantics. Note that the binary know-how
operator in [11] can be defined as Kh(ψ,ϕ) := Khm(ψ,�, ϕ).

Definition 2 (Model). Given a countable set of proposition letters P and a
countable non-empty set of action symbols Σ. A model (also called an ability
map) is essentially a labelled transition system (S,R,V) where:

– S is a non-empty set of states;
– R : Σ → 2S×S is a collection of transitions labelled by actions in Σ;
– V : S → 2P is a valuation function.

3 This ternary modality is first proposed and discussed briefly in the full version of
[10], which is under submission.

156 Y. Li and Y. Wang

We write s
a−→ t if (s, t) ∈ R(a). For a sequence σ = a1 . . . an ∈ Σ∗, we write

s
σ−→ t if there exist s2 . . . sn such that s

a1−→ s2
a2−→ · · · an−1−−−→ sn

an−−→ t. Note that
σ can be the empty sequence ε (when n = 0), and we set s

ε−→ s for any s. Let σk

be the initial segment of σ up to ak for k ≤ |σ|. In particular let σ0 = ε. We say
σ = a1 · · · an is strongly executable at s′ if for each 0 ≤ k < n: s′ σk−→ t implies
that t has at least one ak+1-successor.

Intuitively, σ is strongly executable at s if you can always successfully finish the
whole σ after executing any initial segment of σ from s. For example, ab is not
strongly executable at s1 in the model below, though it is executable at s1.

s2 b �� s4 : q
s1 : p

a��
�����

a��
�����
s3

Definition 3 (Semantics). Suppose s is a state in a model M = (S,R,V).
Then we inductively define the notion of a formula ϕ being satisfied (or true) in
M at state s as follows:

M, s � � always
M, s � p ⇐⇒ s ∈ V(p)
M, s � ¬ϕ ⇐⇒ M, s � ϕ
M, s � ϕ ∧ ψ ⇐⇒ M, s � ϕ and M, s � ψ
M, s � Khm(ψ, χ, ϕ) ⇐⇒ there exists σ ∈ Σ∗ such that for each s′ with

M, s′ � ψ we have σ is strongly χ-executable
at s′ and M, t � ϕ for all t with s′ σ−→ t.

where we say σ = a1 · · · an is strongly χ-executable at s′ if:

– σ is strongly executable at s′, and
– s′ σk−→ t implies M, t � χ for all 0 < k < n.

It is obvious that ε is strongly χ-executable at each state s for each formula χ.
Note that Khm(ψ,⊥, ϕ) expresses that there is σ ∈ Σ ∪ {ε} such that the agent
knows doing σ on ψ-states can guarantee ϕ, namely the witness plan σ is at
most one-step. As an example, Kh(p,⊥, o) and Kh(p, o, q) hold in the following
model for the witness plans a and ab respectively. Note that the truth value of
Kh(ψ, χ, ϕ) does not depend on the designated state.

s2 : o
b

���
�����s1 : p

a���
�����

b
��� ����

s4 : q
s3 : ¬o

a�� �����

Now we can also check that the operator U defined by Khm(¬ψ,�,⊥) is indeed
an universal modality :

M, s � Uϕ ⇔ for all t ∈ S,M, t � ϕ

The following formulas are valid on all models.

Achieving While Maintaining: A Logic of Knowing 157

Proposition 1. � U(p → q) → Khm(p,⊥, q)

Proof. Assuming that M, s � U(p → q), it means that M, t � p → q for all
t ∈ S. Given M, t � p, it follows that M, t � q. Thus, we have ε is strongly
⊥-executable at t. Therefore, we have M, s � Khm(p,⊥, q). �

Proposition 2. � Khm(p, o, r) ∧ Khm(r, o, q) ∧ U(r → o) → Khm(p, o, q)

Proof. Assuming M, s � Khm(p, o, r) ∧ Khm(r, o, q) ∧ U(r → o), we will show
that M, s � Khm(p, o, q). Since M, s � Khm(p, o, r), it follows that there exists
σ ∈ Σ∗ such that for each M, u � p, σ is strongly o-executable at u and that
M, v � r for each v with u

σ−→ v. Since M, s � Khm(r, o, q), it follows that there
exists σ′ ∈ Σ∗ such that for each M, v′ � r, σ′ is strongly o-executable at v′ and
that M, t � q for each t with v′ σ−→ t. In order to show M, s � Khm(p, o, q), we
only need to show that σσ′ is strongly o-executable at u and that M, t′ � q for

each t′ with u
σσ′
−−→ t′, where u is a state with M, u � p.

By assumption, we know that σ is strongly o-executable at u, and for each
v with u

σ−→ v, it follows by assumption that M, v � r and σ′ is strongly o-
executable at v. Moreover, since M, s � U(r → o), it follows that M, v � o for
each v with u

σ−→ v. Thus, σσ′ is strongly o-executable at u. What is more, for

each t′ with u
σσ′
−−→ t′, there is v such that u

σ−→ v
σ′
−→ t′ and M, v � r, it follows

by assumption that M, t′ � q. Therefore, we have M, s � Khm(p, o, q). �

Proposition 3. � Khm(p, o, q) ∧ ¬Khm(p,⊥, q) → Khm(p,⊥, o)

Proof. Assuming M, s � Khm(p, o, q)∧¬Khm(p,⊥, q), we will show that M, s �
Khm(p,⊥, o). Since M, s � Khm(p, o, q), it follows that there exists σ ∈ Σ∗ such
that for each M, u � p, σ is strongly o-executable at u and M, v � q for all v
with u

σ−→ v. If σ ∈ Σ ∪ {ε}, it follows that M, s � Khm(p,⊥, q). Since M, s �
¬Khm(p,⊥, q), it follows that σ
∈ Σ∪{ε}. Thus, σ = a1 · · · an where n ≥ 2. Let
u be a state such that M, u � p. Since σ = a1 · · · an is strongly o-executable at
u, it follows that a1 is executable at u. Moreover, since n ≥ 2, we have M, v � o
for each v with u

a1−→ v. Therefore, we have M, s � Khm(p,⊥, o). �

Proposition 4. � U(p′ → p) ∧ U(o → o′) ∧ U(q → q′) ∧ Khm(p, o, q) →
Khm(p′, o′, q′)

Proof. Assuming M, s � U(p′ → p) ∧ U(o → o′) ∧ U(q → q′) ∧ Khm(p, o, q), we
will show M, s � Khm(p′, o′, q′). Since M, s � Khm(p, o, q), it follows that there
exists σ ∈ Σ∗ such that for each M, u � p: σ is strongly o-executable at u and
M, v � q for each v with u

σ−→ v. Let s′ be a state with M, s′ � p′. Next we will
show that σ is strongly o′-executable at s′ and M, v′ � q′ for all v′ with s′ σ−→ v′.

Since M, s � U(p′ → p), it follows that M, s′ � p. Thus, σ is strongly o-
executable at s′ and M, v′ � q for each v′ with s′ σ−→ v′. Since M, s � U(o → o′),
it follows that σ is strongly o′-executable at s′. Since M, s � U(q → q′), it follows
that M, v′ � q′ for each v′ with s′ σ−→ v′. �

158 Y. Li and Y. Wang

Definition 4 (Deductive System SKHM). The axioms and rules shown in
Table 1 constitutes the proof system SKHM.

Note that DISTU, NECU, TU are standard for the universal modality U . 4KhmU and
4KhmU are introspection axioms reflecting that Khm formulas are global. EMPKhm
captures the interaction between U and Khm via the empty plan. COMPKhm is
the new composition axiom for Khm. UKhm shows how we can weaken the know-
ing how claims. ONEKhm is the characteristic axiom for SKHM compared to the
system for binary Kh, and it expresses the condition for the necessity of the
intermediate steps.

Table 1. System SKHM

TAUT

DISTU Up ∧ U(p → q) → Uq

TU Up → p

4KhmU Khm(p, o, q) → UKhm(p, o, q)

5KhmU ¬Khm(p, o, q) → U¬Khm(p, o, q)

EMPKhm U(p → q) → Khm(p, ⊥, q)

COMPKhm Khm(p, o, r) ∧ Khm(r, o, q) ∧ U(r → o) → Khm(p, o, q)

ONEKhm Khm(p, o, q) ∧ ¬Khm(p, ⊥, q) → Khm(p, ⊥, o)

UKhm U(p′ → p) ∧ U(o → o′) ∧ U(q → q′) ∧ Khm(p, o, q) → Khm(p′, o′, q′)

MP
ϕ, ϕ → ψ

ψ
NECU

ϕ

Uϕ
SUB

ϕ(p)

ϕ[ψ/p]

Remark 1. Note that the corresponding axioms for COMPKhm, EMPKhm and UKhm
in the setting of binary Kh are the following:4

COMPKh Kh(p, q) ∧ Kh(q, r) → Kh(p, r)
EMPKh U(p → q) → Kh(p, q)
UKh U(p′ → p) ∧ U(q → q′) ∧ Kh(p, q) → Kh(p′, q′)

In the system SKH of [10] UKh can be derived using COMPKh and EMPKh.
However, UKhm cannot be derived using COMPKhm and EMPKhm. In particular,
Khm(p′,⊥, p) ∧ Khm(p, o, q) → Khm(p′, o, q) is not valid due to the lack of
U(p → o), in contrast with the SKH-derivable Kh(p′, p) ∧ Kh(p, q) → Kh(p′, q)
which is crucial in the derivation of UKh in SKH.
4 We can obtain the corresponding axioms by taking the intermediate constraint as

�. Note that in [10], we use the name WKKh for UKh.

Achieving While Maintaining: A Logic of Knowing 159

Since U is an universal modality, DISTU and TU are obviously valid. Due to the
fact that the modality Khm is not local, it is easy to show that 4KhmU and 5KhmU
are valid. Moreover, by Propositions 1–4, we have that all axioms are valid. Due
to a standard argument in modal logic, we know that the rules MP, NECU and SUB
preserve formula’s validity. The soundness of SKHM follows immediately.

Theorem 1. SKHM is sound w.r.t. the class of all models.

Below we derive some theorems and rules that are useful in the later proofs.

Proposition 5. We can derive the following in SKHM:

4U Up → UUp
5U ¬Up → U¬Up

ULKhm U(p′ → p) ∧ Khm(p, o, q) → Khm(p′, o, q)
UMKhm U(o → o′) ∧ Khm(p, o, q) → Khm(p, o′, q)
URKhm U(q → q′) ∧ Khm(p, o, q′) → Khm(p, o, q′)
UNIV U¬p → Khm(p,⊥,⊥)
REU from ϕ ↔ ψ prove Uϕ ↔ Uψ
RE from ϕ ↔ ψ prove χ ↔ χ′

where χ′ is obtained by replacing some occurrences of ϕ in χ by ψ.

Proof. REU is immediate given DISTU and NECU. 4U and 5U are special cases of
4KhmU and 5KhmU respectively. ULKhm, UMKhm, URKhm are the special cases of UKhm.
To prove UNIV, first note that U¬p ↔ U(p → ⊥) due to REU. Then due to EMPKhm,
we have U¬p → Khm(p,⊥,⊥). RE can be obtained by an inductive proof on the
shape of χ, which uses UKhm and NECU for the case of Khm(·, ·, ·). �

3 Completeness

This section will prove that SKHM is complete w.r.t. the class of all models. The
key is to build a canonical model based on a fixed maximal consistent set, just
as in [10]. However, the canonical model here is much more complicated. Firstly,
the state of the canonical model is a pair consisting of a maximal consistent
set and a marker which will play an important role in defining the witness plan
for Khm-formulas. Secondly, different from the canonical model in [10] where
each formula of the form Kh(ψ,ϕ) is realized by an one-step witness plan, some
Khm(ψ, χ, ϕ) formulas here have to be realized by a two-step witness plan, and
the intermediate states need to satisfy χ.

Here are some notions before we prove the completeness. Given a set of LKhm

formulas Δ, let Δ|Khm and Δ|¬Khm be the collections of its positive and negative
Khm formulas:

Δ|Khm = {θ | θ = Khm(ψ, χ, ϕ) ∈ Δ};

Δ|¬Khm = {θ | θ = ¬Khm(ψ, χ, ϕ) ∈ Δ}.

In the following, let Γ be a maximal consistent set (MCS) of LKhm formulas.
We first prepare ourselves with some handy propositions.

160 Y. Li and Y. Wang

Definition 5. Let ΦΓ be the set of all MCS Δ such that Δ|Khm = Γ |Khm.

Since every Δ ∈ ΦΓ is maximal consistent it follows immediately that:

Proposition 6. For each Δ ∈ ΦΓ , we have Khm(ψ, χ, ϕ) ∈ Γ if and only if
Khm(ψ, χ, ϕ) ∈ Δ for all Khm(ψ, χ, ϕ) ∈ LKhm.

Proposition 7. If ϕ ∈ Δ for all Δ ∈ ΦΓ then Uϕ ∈ Δ for all Δ ∈ ΦΓ .

Proof. Suppose ϕ ∈ Δ for all Δ ∈ ΦΓ , then by the definition of ΦΓ , ¬ϕ is not
consistent with Γ |Khm ∪ Γ |¬Khm, for otherwise Γ |Khm ∪ Γ |¬Khm ∪ {¬ϕ} can be
extended into a maximal consistent set in ΦΓ due to a standard Lindenbaum-like
argument. Thus there are Khm(ψ1, χ1, ϕ1), . . . , Khm(ψk, χk, ϕk) ∈ Γ |Khm and
¬Khm(ψ′

1, χ
′
1, ϕ

′
1), . . . , ¬Khm(ψ′

l, χ
′
l, ϕ

′
l) ∈ Γ |¬Khm such that

�
∧

1≤i≤k

Khm(ψi, χi, ϕi) ∧
∧

1≤j≤l

¬Khm(ψ′
j , χ

′
j , ϕ

′
j) → ϕ.

By NECU,

� U(
∧

1≤i≤k

Khm(ψi, χi, ϕi) ∧
∧

1≤j≤l

¬Khm(ψ′
j , χ

′
j , ϕ

′
j) → ϕ).

By DISTU we have:

� U(
∧

1≤i≤k

Khm(ψi, χi, ϕi) ∧
∧

1≤j≤l

¬Khm(ψ′
j , χ

′
j , ϕ

′
j)) → Uϕ.

Since Khm(ψ1, χ1, ϕ1), . . . , Khm(ψk, χk, ϕk) ∈ Γ , we have UKhm(ψ1, χ1, ϕ1),
. . . , UKhm(ψk, χk, ϕk) ∈ Γ due to 4KhmU and the fact that Γ is a maximal
consistent set. Similarly, we have U¬Khm(ψ′

1, χ
′
1, ϕ

′
1), . . . , U¬Khm(ψ′

l, χ
′
l, ϕ

′
l) ∈

Γ due to 5KhmU. By DISTU and NECU, it is easy to show that � U(p∧q) ↔ Up∧Uq.
Then due to a slight generalization, we have:

U(
∧

1≤i≤k

Khm(ψi, χi, ϕi) ∧
∧

1≤j≤l

¬Khm(ψ′
j , χ

′
j , ϕ

′
j)) ∈ Γ.

Now it is immediate that Uϕ ∈ Γ . Due to Proposition 6, Uϕ ∈ Δ for all
Δ ∈ ΦΓ . �

Proposition 8. Given Khm(ψ,�, ϕ) ∈ Γ and Δ ∈ ΦΓ , if ψ ∈ Δ then there
exists Δ′ ∈ ΦΓ such that ϕ ∈ Δ′.

Proof. Assuming Khm(ψ,�, ϕ) ∈ Γ and ψ ∈ Δ ∈ ΦΓ , if there does not exist
Δ′ ∈ ΦΓ such that ϕ ∈ Δ′, it means that ¬ϕ ∈ Δ′ for all Δ′ ∈ ΦΓ . It follows
by Proposition 7 that U¬ϕ ∈ Γ , namely Khm(ϕ,�,⊥) ∈ Γ . Since U(ϕ → ⊥)
and Khm(ψ,�, ϕ) ∈ Γ , it follows by COMPKhm that Khm(ψ,�,⊥) ∈ Γ namely,
U¬ψ ∈ Γ . By Proposition 6, we have that U¬ψ ∈ Δ. It follows by TU that
¬ψ ∈ Δ. This is contradictory with ψ ∈ Δ. Therefore, there exists Δ′ ∈ ΦΓ such
that ϕ ∈ Δ′. �

Achieving While Maintaining: A Logic of Knowing 161

Definition 6. Let the set of action symbols ΣΓ be defined as ΣΓ = {〈ψ,⊥, ϕ〉 |
Khm(ψ,⊥, ϕ) ∈ Γ} ∪ {〈χψ, ϕ〉 | Khm(ψ, χ, ϕ),¬Khm(ψ,⊥, ϕ) ∈ Γ}.

The later part of ΣΓ is to handle the cases where the intermediate state is indeed
necessary: ¬Khm(ψ,⊥, ϕ) makes sure that you cannot have a plan to guarantee
ϕ in less than two steps.

In the following we build a separate canonical model for each MCS Γ , for it is
not possible to satisfy all of Khm formulas simultaneously in a single model since
they are global. Because the later proofs are quite technical, it is very important
to first understand the ideas behind the canonical model construction. Note that
to satisfy a Khm(ψ, χ, ϕ) formula, there are two cases to be considered:

(1) Khm(ψ,⊥, ϕ) holds and we just need an one-step witness plan, which
can be handled similarly using the techniques developed in [10];

(2) Khm(ψ,⊥, ϕ) does not hold, and we need to have a witness plan which
at least involves an intermediate χ-stage. By ONEKhm, Khm(ψ,⊥, χ) holds. It is
then tempting to reduce Khm(ψ, χ, ϕ) to Khm(ψ,⊥, χ)∧Khm(χ, χ, ϕ). However,
it is not correct since we may not have a strongly χ-executable plan to make
sure ϕ from any χ-state. Note that Khm(ψ, χ, ϕ) and Khm(ψ,⊥, χ) only make
sure we can start from certain χ-states that result from the witness plan for
Khm(ψ,⊥, χ). However, we cannot refer to such χ-states in the language of
LKhm. This is why we include χψ markers in the building blocks of the canonical
model besides maximal consistent set. χψ roughly tells us where does this state
“comes from”.5

Definition 7 (Canonical Model). The canonical model for Γ is a tuple
Mc

Γ = 〈Sc,Rc,Vc〉 where:

– Sc = {(Δ,χψ) | χ ∈ Δ ∈ ΦΓ , and 〈χψ, ϕ〉 ∈ ΣΓ for some ϕ or 〈ψ,⊥, χ〉 ∈
ΣΓ }. We write the pair in S as w, v, · · · , and refer to the first entry of w ∈ S
as L(w), to the second entry as R(w);

– w
〈ψ,⊥,ϕ〉−−−−−→c w′ iff ψ ∈ L(w) and R(w′) = ϕψ;

– w
〈χψ,ϕ〉−−−−→c w′ iff R(w) = χψ and ϕ ∈ L(w′);

– p ∈ Vc(w) iff p ∈ L(w).

For each w ∈ S, we also call w a ψ-state if ψ ∈ L(w).

In the above definition, R(w) marks the use of w as an intermediate state. The
same maximal consistent set Δ may have different uses depending on different

R(w). We will make use of the transitions w
〈ψ,⊥,χ〉−−−−−→c v

〈χψ,ϕ〉−−−−→c w′ where R(v) =

χψ. Note that if R(w) = χψ then w
〈χψ,ϕ〉−−−−→c v for each ϕ-state v. The highly

non-trivial part of the later proof of the truth lemma is to show adding such
transitions and making them to be composed arbitrarily will not cause some
Khm(ψ, χ, ϕ)
∈ L(w) to hold at w.

We first show that each Δ ∈ ΦΓ appears as L(w) for some w ∈ Sc.
5 In [10], the canonical models are much simpler: we just need MCSs and the canonical
relations are simply labeled by 〈ψ, ϕ〉 for Kh(ψ, ϕ) ∈ Γ .

162 Y. Li and Y. Wang

Proposition 9. For each Δ ∈ ΦΓ , there exists w ∈ Sc such that L(w) = Δ.

Proof. Since � � → �, it follows by NECU that � U(� → �). Thus, we have
U(� → �) ∈ Γ . It follows by EMPKhm that Khm(�,⊥,�) ∈ Γ . It follows that
a = 〈�,⊥,�〉 ∈ ΣΓ . Since � ∈ Δ, it follows that (Δ,�) ∈ Sc. �

Since Γ ∈ ΦΓ , it follows by Proposition 9 that Sc
= ∅.

Proposition 7 helps us to prove the following two handy propositions which
will play crucial roles in the completeness proof. Note that according to Propo-
sition 7, to obtain that Uϕ in all the Δ ∈ ΦΓ , we just need to show that ϕ is in
all the Δ ∈ ΦΓ , not necessarily in all the w ∈ Sc.

Proposition 10. Given a = 〈ψ′,⊥, ϕ′〉 ∈ ΣΓ , If for each ψ-state w ∈ Sc we
have that a is executable at w, then U(ψ → ψ′) ∈ Γ .

Proof. Suppose that every ψ-state has an outgoing a-transition, then by the
definition of Rc, ψ′ is in all the ψ-states. For each Δ ∈ ΦΓ , either ψ
∈ Δ, or
ψ ∈ Δ thus ψ′ ∈ Δ. Now by the fact that Δ is maximally consistent it is not
hard to show ψ → ψ′ ∈ Δ in both cases. By Proposition 7, U(ψ → ψ′) ∈ Δ for
all Δ ∈ ΦΓ . It follows by Γ ∈ ΦΓ that U(ψ → ψ′) ∈ Γ . �

Proposition 11. Given w ∈ Sc and a = 〈ψ,⊥, ϕ′〉 or 〈χψ, ϕ′〉 ∈ ΣΓ such that
a is executable at w, if ϕ ∈ L(w′) for each w′ with w

a−→ w′ then U(ϕ′ → ϕ) ∈ Γ .

Proof. Firstly, we focus on the case of a = 〈ψ,⊥, ϕ′〉. For each Δ ∈ ΦΓ with
ϕ′ ∈ Δ, we have v = (Δ,ϕ′ψ) ∈ Sc. Since 〈ψ,⊥, ϕ′〉 is executable at w, it means
that ψ ∈ L(w). By the definition, it follows that w

a−→ v. Since ϕ ∈ L(w′) for
each w′ with w

a−→ w′, it follows that ϕ ∈ L(v). Therefore, we have ϕ ∈ Δ for
each Δ ∈ ΦΓ with ϕ′ ∈ Δ, namely ϕ′ → ϕ ∈ Δ for all Δ ∈ ΦΓ . It follows by
Proposition 7 that U(ϕ′ → ϕ) ∈ Γ .

Secondly, we focus on the case of a = 〈χψ, ϕ′〉. For each Δ ∈ ΦΓ with ϕ′ ∈ Δ,
it follows by Proposition 9 that there exists v ∈ Sc such that L(v) = Δ. Since
a is executable at w, it follows that w

a−→ v. Since ϕ ∈ L(w′) for each w′ with
w

a−→ w′, it follows that ϕ ∈ L(v). Therefore, we have shown that ϕ′ ∈ Δ implies
ϕ ∈ Δ for all Δ ∈ ΦΓ . It follows by Proposition 7 that U(ϕ′ → ϕ) ∈ Γ . �

Before proving the truth lemma, we first need a handy result.

Proposition 12. Given a non-empty sequence σ = a1 · · · an ∈ Σ∗
Γ where ai =

〈ψi,⊥, ϕi〉 or ai = 〈χψi

i , ϕi〉 for each 1 ≤ i ≤ n, we have Khm(ψ, χ, ϕi) ∈ Γ for
all 1 ≤ i ≤ n if for each ψ-state w ∈ Sc:

– σ is strongly executable at w;
– w

σj−→ t′ implies χ ∈ L(t′) for all 1 ≤ j < n.

Proof. If there is no ψ-state in Sc, it follows that ¬ψ ∈ L(w′) for each w′ ∈ Sc.
It follows by Proposition 9 that ¬ψ ∈ Δ for all Δ ∈ ΦΓ . By Proposition 7, we
have U¬ψ ∈ Γ . By UNIV, Khm(ψ,⊥,⊥) ∈ Γ . Since � ⊥ → χ and � ⊥ → ϕ.

Achieving While Maintaining: A Logic of Knowing 163

Then by NECU, we have � U(⊥ → χ) and � U(⊥ → ϕ). By UMKhm and URKhm, it
is obvious that Khm(ψ, χ, ϕ) ∈ Γ .

Next, assuming v ∈ Sc is a ψ-state, we will show Khm(ψ, χ, ϕ) ∈ Γ . There
are two cases: n = 1 or n ≥ 2. For the case of n = 1, we will prove it directly;
for the case of n ≥ 2, we will prove it by induction on i.

– n = 1. If a1 is in the form of 〈χψ1
1 , ϕ1〉, by the definition of

〈χψ1
1 ,ϕ1〉−−−−−−→ it follows

that R(w) = χψ1
1 for each ψ-state w. Let χ0 be a formula satisfying that

� χ0 ↔ χ1 and χ0
= χ1. By the rule of Replacement of Equals RE, it follows
that 〈χψ1

0 , ϕ1〉 ∈ ΣΓ . Let w′ = (L(v), χψ1
0) then it follows that w′ ∈ Sc.

Since ψ ∈ L(v), then we have ψ ∈ L(w′). However, since R(w′) = χψ1
1
= χψ1

0 ,
σ = 〈χψ1

1 , ϕ1〉 is not executable at the ψ-state w′, contradicting the assumption
that σ is strongly executable at all ψ-states. Therefore, we know that a1 cannot
be in the form of 〈χψ1

1 , ϕ1〉.
If a1 = 〈ψ1,⊥, ϕ1〉, it follows that Khm(ψ1,⊥, ϕ1) ∈ Γ . Since a1 is exe-

cutable at each ψ-state, it follows by Proposition 10 that U(ψ → ψ1) ∈ Γ .
Since Khm(ψ1,⊥, ϕ1) ∈ Γ , it follows by ULKhm that Khm(ψ,⊥, ϕ1) ∈ Γ . By
NECU and UMKhm, it is clear that Khm(ψ, χ, ϕ1) ∈ Γ .

– n ≥ 2. By induction on i, next we will show that Khm(ψ, χ, ϕi) ∈ Γ for each
1 ≤ i ≤ n. For the case of i = 1, with the similar proof as in the case of n = 1,
we can show that a1 can only be 〈ψ1,⊥, ϕ1〉 and U(ψ → ψ1) ∈ Γ . Therefore by
UKhm we have Khm(ψ, χ, ϕ1) ∈ Γ . Under the induction hypothesis (IH) that
Khm(ψ, χ, ϕi) ∈ Γ for each 1 ≤ i ≤ k, we will show that Khm(ψ, χ, ϕk+1) ∈ Γ ,
where 1 ≤ k ≤ n − 1. Because σ is strongly executable at v, it follows that
there are w′, v′ ∈ Sc such that

v
a1 �� · · · ak−1

�� w′ ak �� v′ ak+1
�� · · · an �� t.

Moreover, for each t′ with w′ ak−→ t′ we have χ ∈ L(t′). It follows by Proposi-
tion 11 that U(ϕk → χ) ∈ Γ (�). Proceeding, there are two cases of ak+1:

• ak+1 = 〈ψk+1,⊥, ϕk+1〉. Since σ is strongly executable at v, it follows that
for each t′ with w′ ak−→ t′ we know that ak+1 is executable at each t′. It fol-

lows by the definition of
〈ψk+1,⊥,ϕk+1〉−−−−−−−−−−→ that ψk+1 ∈ L(t′). Moreover, since

ak is executable at w′, it follows by Proposition 11 that U(ϕk → ψk+1) ∈
Γ . Since ak+1 ∈ ΣΓ , it then follows that Khm(ψk+1,⊥, ϕk+1) ∈ Γ . It
then follows by ULKhm that Khm(ϕk,⊥, ϕk+1) ∈ Γ . Since � U(⊥ →
χ), it follows by UMKhm that Khm(ϕk, χ, ϕk+1) ∈ Γ . Since by IH we
have that Khm(ψ, χ, ϕk) ∈ Γ , It follows from (�) and COMPKhm that
Khm(ψ, χ, ϕk+1) ∈ Γ .

• ak+1 = 〈χψk+1
k+1 , ϕk+1〉. Since σ is strongly executable at v, it follows that

for each t′ with w′ ak−→ t′ we know that ak+1 is executable at t′. Then we
have that R(t′) = χ

ψk+1
k+1 for each t′ with w′ ak−→ t′.

164 Y. Li and Y. Wang

Note that the action ak cannot be in the form of 〈χψk

k , ϕk〉. Suppose it
can be, let v′′ = (L(v′), χψk+1

0) where � χ0 ↔ χk+1 and χ0
= χk+1. Since
w′ ak−→ v′, it follows that ϕk ∈ L(v′). Then it follows by the definition
of transitions that w′ ak−→ v′′. However, we know that R(v′′)
= χ

ψk+1
k+1

thus ak+1 = 〈χψk+1
k+1 , ϕk+1〉 is not executable at v′′, contradicting the

strong executability. Therefore, we know that ak cannot be in the form
of 〈χψk

k , ϕk〉.

Now ak = 〈ψk,⊥, ϕk〉. Since w′ ak−→ v′ and ak+1 = 〈χψk+1
k+1 , ϕk+1〉 is

executable at v′, we have R(v′) = ϕψk

k = χ
ψk+1
k+1 by definition of transitions.

It follows that ψk = ψk+1 and ϕk = χk+1. Since ak+1 ∈ ΣΓ , it follows that
Khm(ψk+1, χk+1, ϕk+1) ∈ Γ . Thus, we have Khm(ψk, ϕk, ϕk+1) ∈ Γ . By
(�) and UMKhm we then have that Khm(ψk, χ, ϕk+1) ∈ Γ (�). If k = 1,
by Proposition 10 it is easy to show that U(ψ → ψ1) ∈ Γ . Then by ULKhm
we have Khm(ψ, χ, ϕk+1) ∈ Γ . If k > 1, there is a state w′′ such that

v
a1 �� · · · ak−2

�� w′′ ak−1
�� w′ ak �� v′ ak+1

�� · · · an �� t.

Since σ is strongly executable at v, it follows that for each t′ with w′′ ak−1−−−→
t′ we have ak is executable at t′. It follows by the definition of

〈ψk,⊥,ϕk〉−−−−−−→,
it follows that ψk ∈ L(t′) for each t′ with w′′ ak−1−−−→ t′. Since ak−1 is
executable at w′′, it follows by Proposition 11 that U(ϕk−1 → ψk) ∈ Γ .
Moreover, since v

σk−1−−−→ t′ for each t′ with w′′ ak−1−−−→ t′, it follows that
χ ∈ L(t′). Thus by Proposition 11 again, we have U(ϕk−1 → χ) ∈ Γ . Since
we have proved (�), it follows by ULKhm that Khm(ϕk−1, χ, ϕk+1) ∈ Γ .
Since by IH we have Khm(ψ, χ, ϕk−1) ∈ Γ , it follows by COMPKhm that
Khm(ψ, χ, ϕk+1) ∈ Γ .

�

Now we are ready to prove the truth lemma.

Lemma 1. For each ϕ, we have Mc
Γ , w � ϕ iff ϕ ∈ L(w).

Proof. Boolean cases are trivial, and we only focus on the case of Khm(ψ, χ, ϕ).

Left to Right: If there is no state w′ such that Mc
Γ , w′ � ψ, it follows by

induction that ¬ψ ∈ L(w′) for each w′ ∈ Sc. It follows by Proposition 9 that
¬ψ ∈ Δ for all Δ ∈ ΦΓ . By Proposition 7, we have U¬ψ ∈ L(w). By UNIV,
Khm(ψ,⊥,⊥) ∈ L(w). Since � ⊥ → χ and � ⊥ → ϕ. Then by NECU, we
have � U(⊥ → χ) and � U(⊥ → ϕ). By UMKhm and URKhm, it is obvious that
Khm(ψ, χ, ϕ) ∈ L(w).

Next, assuming Mc
Γ , v � ψ for some v ∈ Sc, we will show Khm(ψ, χ, ϕ) ∈

L(w). Since Mc
Γ , w � Khm(ψ, χ, ϕ), it follows that there exists σ ∈ Σ∗ such that

for each Mc
Γ , w′ � ψ: σ is strongly χ-executable at w′ and Mc

Γ , v′ � ϕ for all v′

with w′ σ−→ v′. There are two cases: σ is empty or not.

Achieving While Maintaining: A Logic of Knowing 165

– σ = ε. This means that Mc
Γ , w′ � ϕ for each Mc

Γ , w′ � ψ. It follows by
induction that ψ ∈ L(w′) implies ϕ ∈ L(w′). Thus, we have ψ → ϕ ∈ L(w′)
for all w′ ∈ Sc. By Proposition 9, we have ψ → ϕ ∈ Δ for all Δ ∈ ΦΓ . It
follows by Proposition 7 that U(ψ → ϕ) ∈ L(w). It then follows by EMPKhm
that Khm(ψ,⊥, ϕ) ∈ L(w). By NECU and UMKhm, it is easy to show that
Khm(ψ, χ, ϕ) ∈ L(w).

– σ = a1 · · · an where for each 1 ≤ i ≤ n, ai = 〈ψi,⊥, ϕi〉 or ai = 〈χψi

i , ϕi〉. Since
σ is strongly χ-executable at each w′ with Mc

Γ , w′ � ψ, it follows by IH that for
each ψ-state w′: σ is strongly executable at w′ and w′ σj−→ t′ implies χ ∈ L(t′)
for all 1 ≤ j < n. By Proposition 12, we have that Khm(ψ, χ, ϕn) ∈ L(v).
Since Mc

Γ , v � ψ and σ is strongly χ-executable at v and Mc
Γ , v′′ � ϕ for each

v′′ with v
σ−→ v′′, it follows that there exists v′ such that an is executable at v′

and Mc
Γ , v′′ � ϕ for each v′′ with v′ an−−→ v′′. (Please note that v′ = v if n = 1.)

Note that an is either 〈ψn,⊥, ϕn〉 or 〈χψn
n , ϕn〉. It follows by Proposition 11

and IH that U(ϕn → ϕ) ∈ Γ , then we have U(ϕn → ϕ) ∈ L(v). It follows by
URKhm and Proposition 6 that Khm(ψ, χ, ϕ) ∈ L(w).

This completes the proof for w � Khm(ψ, χ, ϕ) implies Khm(ψ, χ, ϕ) ∈ L(w).

Right to Left: Suppose that Khm(ψ, χ, ϕ) ∈ L(w), we need to show that
Mc

Γ , w � Khm(ψ, χ, ϕ). There are two cases: there is a state w′ ∈ Sc such that
Mc

Γ , w′ � ψ or not. If there is no such state, it follows Mc
Γ , w � Khm(ψ, χ, ϕ).

For the second case, let w′ be a state such that Mc
Γ , w′ � ψ. It follows by

IH that ψ ∈ L(w′). Since we already have Khm(ψ, χ, ϕ) ∈ L(w), it follows by
Proposition 6 that Khm(ψ, χ, ϕ) ∈ Γ . Since � U(χ → �), it follows by UMKhm
that Khm(ψ,�, ϕ) ∈ Γ . It follows by Proposition 8 that there exists Δ′ ∈ ΦΓ

such that ϕ ∈ Δ′. There are two cases: Khm(ψ,⊥, ϕ) ∈ Γ or not.

– Khm(ψ,⊥, ϕ) ∈ Γ . It follows that a = 〈ψ,⊥, ϕ〉 ∈ ΣΓ . Therefore, we have
v = (Δ′, ϕψ) ∈ Sc. Since ψ ∈ L(w′), it follows that w′ a−→ v. Thus, a is strongly
χ-executable at w′. What is more, ϕ ∈ L(v′) for each v′ with w′ a−→ v′ by the
definition of the transition. It follows by IH that Mc

Γ , v′ � ϕ for all v′ with
w′ a−→ v′. Therefore, we have Mc

Γ , w � Khm(ψ, χ, ϕ) witnessed by a single
step σ.

– ¬Khm(ψ,⊥, ϕ) ∈ Γ . It follows by ONEKhm that Khm(ψ,⊥, χ) ∈ Γ . We then
have a = 〈ψ,⊥, χ〉 ∈ ΣΓ and b = 〈χψ, ϕ〉 ∈ ΣΓ . Since Khm(ψ,⊥, χ) ∈ Γ
and � U(⊥ → �), it follows by UMKhm that Khm(ψ,�, χ) ∈ Γ . It follows by
Proposition 8 that there exists Δ′′ ∈ ΦΓ such that χ ∈ Δ′′. Therefore, we have
t = (Δ′′, χψ) ∈ Sc. Since there exists Δ′ ∈ ΦΓ with ϕ ∈ Δ′, it follows by
Proposition 7 that there is t′ ∈ Sc such that L(t′) = Δ′. Now, starting with
any ψ-state, a is clearly executable and it will lead to a χ-state, and then
by a b step we will reach all the ϕ states. Therefore, by IH, we have that
ab is strongly χ-executable at w′, and that for all v′ with w′ ab−→ v′ we have
Mc

Γ , v′ � ϕ. Therefore, we have Mc
Γ , w � Khm(ψ, χ, ϕ). Note that we do need

a 2-step σ in this case.

�

166 Y. Li and Y. Wang

Now due to a standard Lindenbaum-like argument, each SKHM-consistent set
of formulas can be extended to a maximal consistent set Γ . Due to the truth
lemma, Mc

Γ , (Γ,�) � Γ. The completeness of SKHM follows immediately.

Theorem 2. SKHM is strongly complete w.r.t. the class of all models.

4 Conclusions

This paper generalizes the knowing how logic presented in [10] and proposes a
ternary modal operator Khm(ψ, χ, ϕ) to express that the agent knows how to
achieve ϕ given ψ while maintaining χ in-between. This paper also presents a
sound and complete axiomatization of this logic. Compared to the completeness
proof in [10], the proof here is much more complicated. The essential difference
is that, in order to handle the intermediate constraints, a state of the canonical
model here is a pair consisting of a maximal consistent set and a marker of the
form χψ which indicates that this state has a 〈ψ,⊥, χ〉-predecessor.

For future research, besides the obvious questions of decidability and model
theory of the logic, we may give some alternative semantics to the same language
by relaxing the strong executability. Intuitively, strongly executable plans may
be too strong for knowledge-how in some cases. For example, if there is an action
sequence σ in the agent’s ability map such that doing σ at a ψ-state will always
make the agent stop on ϕ states, we can probably also say the agent knows how
to achieve ϕ given ψ, e.g., I know how to start the engine in that old car, just
turn the key several times until it starts, and five times should suffice at most.
Please note that there are two kinds of states on which the agent might stop:
either states that the agent achieves after doing σ successfully, or states on which
the agent is unable to continue executing the remaining actions.

Another interesting topic is extending this logic with the public announce-
ment operator. Intuitively, [θ]ϕ says that ϕ holds after the information θ is
provided. The update of the new information amounts to the change of the back-
ground knowledge throughout the model, and this may affect the knowledge-how.
For example, a doctor may not know how to treat a patient with the disease p
since he is worried that the only available medicine might cause some very bad
side-effect r, which can be expressed as ¬Khm(p,¬r,¬p). Suppose a new sci-
entific discovery shows that the side-effect is not possible under the relevant
circumstance, then the doctor should know how to treat the patient, which can
be expresses as [¬r]Khm(p,¬r,¬p).6

Moreover, we can consider contingent plans which involve conditions based
on the knowledge of the agent. A contingent plan is a partial function on the
agent’s belief space. Such plans make more sense when the agent has the ability
of observations during the execution of the plan. To consider contingent plan,
we need to extend the model (ability map) with an epistemic relation. We then
can express knowledge-that and knowledge-how at the same time, and discuss
their interactions in one unified logical framework.
6 However, the announcement operator [ϕ] is not reducible in LKhm as discussed in
the full version of [10] which is under submission.

Achieving While Maintaining: A Logic of Knowing 167

References

1. Ågotnes, T., Goranko, V., Jamroga, W., Wooldridge, M.: Knowledge and ability.
In: van Ditmarsch, H., Halpern, J., van der Hoek, W., Kooi, B. (eds.), Handbook
of Epistemic Logic, chapter 11, pp. 543–589. College Publications (2015)

2. Fan, J., Wang, Y., van Ditmarsch, H.: Almost necessary. Adv. Modal Logic 10,
178–196 (2014)

3. Fan, J., Wang, Y., van Ditmarsch, H.: Contingency and knowing whether. Rev.
Symbolic Logic 8, 75–107 (2015)

4. Gochet, P.: An open problem in the logic of knowing how. In: Hintikka, J. (ed.),
Open Problems in Epistemology. The Philosophical Society of Finland (2013)

5. Gu, T., Wang, Y.: Knowing value logic as a normal modal logic. In: Beklemishev,
L., Demri, S., Máté, A. (eds.) Advances in Modal Logic, vol. 11, pp. 362–381 (2016)

6. Hintikka, J.: Knowledge and Belief: An Introduction to the Logic of the Two
Notions. Cornell University Press, Ithaca (1962)

7. Lau, T., Wang, Y.: Knowing your ability. The Philosophical Forum (2016, forth-
coming)

8. Smith, D.E., Weld, D.S.: Conformant graphplan. In: AAAI, vol. 98, pp. 889–896
(1998)

9. von Wright, G.H.: An Essay in Modal Logic. North Holland, Amsterdam (1951)
10. Wang, Y.: A logic of knowing how. In: van der Hoek, W., Holliday, W.H., Wang,

W. (eds.) LORI 2015. LNCS, vol. 9394, pp. 392–405. Springer, Heidelberg (2015).
doi:10.1007/978-3-662-48561-3 32

11. Wang, Y.: Representing imperfect information of procedures with hyper models.
In: Banerjee, M., Krishna, S.N. (eds.) ICLA 2015. LNCS, vol. 8923, pp. 218–231.
Springer, Heidelberg (2015). doi:10.1007/978-3-662-45824-2 16

12. Wang, Y.: Beyond knowing that: a new generation of epistemic logics. In: van Dit-
marsch, H., Sandu, G. (eds.), Jaakko Hintikka on knowledge and game theoretical
semantics. Springer, Heidelberg (2016, forthcoming)

13. Wang, Y., Fan, J.: Knowing that, knowing what, and public communication: public
announcement logic with Kv operators. Proc. IJCAI 13, 1147–1154 (2013)

14. Wang, Y., Fan, J.: Conditionally knowing what. Adv. Modal Logic 10, 569–587
(2014)

15. Yu, Q., Li, Y., Wang, Y.: A dynamic epistemic framework for conformant planning.
In: Proceedings of TARK 2015, pp. 298–318 (2015). EPTCS 2016

http://dx.doi.org/10.1007/978-3-662-48561-3_32
http://dx.doi.org/10.1007/978-3-662-45824-2_16

Peirce’s Sequent Proofs of Distributivity

Minghui Ma1(B) and Ahti-Veikko Pietarinen2

1 Institute of Logic and Cognition, Sun Yat-Sen University, Guangzhou, China
mmh.thu@gmail.com

2 Chair of Philosophy, Tallinn University of Technology, Tallinn, Estonia
ahti.pietarinen@gmail.com

Abstract. Peirce’s 1880 work on the algebra of logic resulted in a suc-
cessful calculus (PC) for Boolean algebra. Its leading principle (Peirce’s
Rule) is that of residuation. We show how the law of distributivity, which
Peirce states but does not prove in 1880, can be proved using Peirce’s
Rule in PC. The system PC is here presented as a sequent calculus,
which was also Peirce’s preferred method. We then give a shorter proof
in his 1896 graphical alpha system, and remark on the main findings also
of historical importance.

Keywords: Peirce’s rule · Distributivity · Sequent calculus · Alpha
graphs

1 Introduction

Charles Peirce produced several versions of algebraic and logical calculi when
working on the improvements on Boole’s work since the late 1860s [10–15,17].
These calculi have in the previous literature been taken to exhibit an important
transition from algebraically considered systems to proper logical languages [1,
4,5,7,9,26,31]. They also were destined to lead to the graphical method of logic,
namely the theory of existential graphs [3,23,25].

It is widely believed that Peirce’s calculus can be understood as natural
deduction [4,27,30]. However, we show that Peirce’s calculus is a calculus of
sequents. In the modern terminology, a sequent calculus is a theory about con-
sequence relation, and unlike natural deduction does not appeal to assumptions
that need to be discharged.

We present Peirce’s calculi of 1880 on the algebra of logic [11], in which he
asserted, but did not produce, the proof of the distributivity laws. We explain
Peirce’s sequent calculus for Boolean algebras, and show the centrality of its
leading principle (Peirce’s Rule) by which the full law of distributivity can then

M. Ma—The work is supported by the National Foundation for Social Sciences and
Humanities (grant no. 16CZX049).
A. Pietarinen—The work is supported by the Academy of Finland (project 1270335)
and the Estonian Research Council (project PUT 1305) (Principle Investigator A.-V.
Pietarinen).

c© Springer-Verlag GmbH Germany 2017
S. Ghosh and S. Prasad (Eds.): ICLA 2017, LNCS 10119, pp. 168–182, 2017.
DOI: 10.1007/978-3-662-54069-5 13

Peirce’s Sequent Proofs of Distributivity 169

be proven. We also show that in his 1896 invention of the system of alpha graphs
and its calculus [17], which is the graphical version of propositional logic, the
proof of distributivity becomes very short. We conclude that Peirce was exactly
developing such a sequent calculus for Boolean algebras. The main historical
observations are also provided.

2 Peirce’s Sequent Calculus for Boolean Algebras

In 1880 Peirce presents a calculus for Boolean algebras [11]. Using modern
Lindenbaum–Tarski construction, one can prove its soundness and completeness
with respect to the class of all Boolean algebras. It is in this way, by improving
upon Boole’s work, that he came to develop various calculi for classical proposi-
tional logic. Next, we analyse Peirce’s calculus and show how the distributivity
laws are proved in it.

2.1 The Leading Principle

In Sect. 2, Peirce began with the treatment of illation (deduction). He described
the general form of inference as follows:

The general type of inference is

P

∴ C,

where ∴ is the sign of illation. [11, p. 17]

P is the premiss (or a set of premises), and C is the conclusion obtained by using
rules of inference. A general rule of inference is also called a “habit” by Peirce.
He then introduced the vital leading principle:

A habit of inference may be formulated in a proposition which shall state that
every proposition c, related in a given general way to any true proposition p, is
true. Such a proposition is called the leading principle of the class of inferences
whose validity it implies.

Peirce then introduced a sign � of the copula to express this leading principle.
The form P ∴ C expresses an argument, and Pi � Ci expresses the truth of
its leading principle. Peirce presents the meaning of the copula in a modern,
model-theoretic fashion:

The symbol � is the copula, and signifies primarily that every state of things
in which a proposition of the class Pi is true is a state of things in which the
corresponding propositions of the class Ci is true. [11, p. 18]

It follows that the copula � is the sign that stands for logical consequence.
The calculus that he develops is indeed about the copula and its properties.

Peirce emphasizes the significance of the leading principle or the copula. He
identifies the copula of the form A � B with a compound proposition built from

170 M. Ma and A.-V. Pietarinen

A (the premiss) and B (the conclusion) by the sentential operation of material
implication. In Sect. 3 of the 1880 paper on forms of propositions, he stated the
following:

The forms A � B, or A implies B, and A�B, or A does not imply B, embrace
both hypothetical and categorial propositions. . . . To say, ‘if A, then B’ is obvi-
ously the same as to say that from A, B follows, logically or extralogically. By
thus identifying the relation expressed by the copula with that of illation, we
identify the proposition with the inference, and the term with the proposition.
This identification, by means of which all that is found true of term, proposition,
or inference is at once known to be true of all three, is a most important engine
of reasoning, which we have gained by beginning with a consideration of the
genesis of logic. ([11, pp. 21–22], added emphasis)

It has been believed ever since [28] that Peirce (and also Schröder) confused
the metalogical consequence relation with the material implication. However, we
show that the upshot of Peirce’s important identification of the two actually
marks a vital discovery in the history of logic, and that it is this identification
that justifies Peirce’s calculus as a calculus for Boolean algebras.

2.2 The Algebra of the Copula

For the sake of clarity, we separate the two meanings of the copula � using
two symbols: (1) the consequence relation (the sign of illation) ⇒, and (2) the
material implication →. Peirce introduced the algebra of the copula in Sect. 4
of the 1880 paper. His algebra of the copula is a calculus of the consequence
relation. An expression of the form x ⇒ y is called a sequent.

Defintion 1. The calculus of copula consists of the following axiom and rules:

(1) Identity: (Id) x ⇒ x
(2) Peirce’s Rule:

x ∧ y ⇒ z
(PR)

x ⇒ y → z

(3) Rule of Transitivity:
x ⇒ y y ⇒ z

x ⇒ z
(Tr)

The double line in (PR) means that the lower sequent can be derived from the
upper sequent and vice versa.

The axiom of identity is easy to understand. Every proposition follows from
itself. Peirce explained it in terms of the memory or monotonicity of belief: what
we have hitherto believed we continue to believe, in the absence of any reason
to the contrary. We name the second rule Peirce’s Rule, because it is probably
the first formulation of the law of residuation: that the material implication is
a right residual of conjunction. We remark on the nature and significance of
Peirce’s Rule after having presented his 1880 calculus.

Peirce’s Sequent Proofs of Distributivity 171

The meaning of the rule (Tr) is the transitivity of the consequence relation.
If y follows from x and z follows from y, then z must follow from x. Peirce
mentions that the transitivity of the copula derives from De Morgan’s work. He
also states that “the same principle may be algebraically conceived as a rule for
the elimination of y from the two propositions x � y and y � z” [11, p. 25]. After
Gentzen’s 1934 work, the rule (Tr) became called a cut rule in proof theory. It
concerns the elimination of the middle, or the cut term.

2.3 Peirce’s Calculus for Boolean Algebras

After the introduction of the algebra of the copula, Peirce continued his 1880
exposition to introduce the logic of non-relative terms. The non-relative terms
are constructed from propositions using logical multiplication × and addition +.
Here we change the notation into ∧ for conjunction and ∨ for disjunction.

First of all, Peirce commented on the rule (PR) when the negation sign is
introduced. For any term x, let x be the negation of x. Then the proposition
x → y is equivalent with x ∨ y. Hence by (PR) we can derive:

x ∧ y ⇒ z

x ⇒ y ∨ z

Moreover, Peirce stated the following derived variant of the rule (PR):

x ∧ y ⇒ z

x ⇒ y ∨ z

Two important further variants of (PR) can be stated as follows:

x ⇒ y

(The possible) ⇒ x ∨ y

x ⇒ y

x ∧ y ⇒ (The impossible)

Peirce proceeded to introduce two notations: 0 for the impossible, and ∞ for
the possibility. We replace 0 and ∞ with ⊥ and � respectively. The following
axioms were given by Peirce:

(�) x ⇒ � (⊥) ⊥ ⇒ x

Moreover, from the axiom (Id), and using the two variants of (PR), one can
derive the law of excluded middle and the law of contradiction:

� ⇒ x ∨ x and x ∧ x ⇒ ⊥.

The negation sign can be defined in terms of → and ⊥ as follows:

x := x → ⊥.

Then x ∧ x ⇒ ⊥ is obtained from x → ⊥ ⇒ x → ⊥ by (PR).
Peirce then introduced the rules for conjunction (multiplication) and dis-

junction (addition). The definition of his calculus is now complete. He proved
all the axioms of lattices and stated the distributive laws. For convenience, we
summarize his 1880 calculus for classical propositional logic as follows:

172 M. Ma and A.-V. Pietarinen

Defintion 2. Peirce’s calculus PC consists of the following axioms and rules:

(1) Axioms:

(Id) x ⇒ x (�) x ⇒ � (⊥) ⊥ ⇒ x (Em) � ⇒ x ∨ x

(2) Rules:

x ∧ y ⇒ z
(PR)

x ⇒ y → z

x ⇒ y y ⇒ z

x ⇒ z
(Tr)

x1 ⇒ z x2 ⇒ z
(∨I)

x1 ∨ x2 ⇒ z

z ⇒ x1 z ⇒ x2 (∧I)
z ⇒ x1 ∧ x2

x1 ∨ x2 ⇒ z
(∨E)

xi ⇒ z

z ⇒ x1 ∧ x2 (∧E)
z ⇒ xi

In (∨E) and (∧E), i ∈ {1, 2}. A derivation of a sequent x ⇒ y in PC is a proof
tree with the root x ⇒ y such that each node is either an axiom or derived by a
rule of inference. A sequent x ⇒ y is derivable in PC (notation
PC x ⇒ y) if
there is a derivation of x ⇒ y in PC.

Peirce also introduced the equality sign (=): x = y is a shorthand for “x ⇒ y
and y ⇒ x”. One can now easily derive the following lattice-theoretic equalities:

(Idempotency) x = x ∨ x x ∧ x = x
(Commutativity) x ∨ y = y ∨ x x ∧ y = y ∧ x
(Associativity) x ∨ (y ∨ z) = (x ∨ y) ∨ z x ∧ (y ∧ z) = (x ∧ y) ∧ z
(Absorption) x ∨ (y ∧ z) = x x ∧ (y ∨ z) = x.

3 Distributivity Laws

3.1 Derivation in Peirce’s Sequent Calculus

In the 1880 paper, Peirce stated the following distributive laws:

(D1) (x ∨ y) ∧ z = (x ∧ z) ∨ (y ∧ z) (D2) (x ∧ y) ∨ z = (x ∨ z) ∧ (y ∨ z).

He casually mentions that “they are easily proved . . ., but the proof is too tedious
to give” [11, p. 33]. This passage provoked a challenge by Schröder, who took the
laws of distributivity to be independent from the lattice axioms. A rejoinder and
a lively discussion ensued and Peirce’s lost and subsequently recovered version
of the proof was finally added to Huntington’s 1904 paper [8]. [6] provides a rich
account of the context of Peirce’s casual note and the debates that followed.

We can give a proof of (D1) and (D2) in Peirce’s calculus. The following
lemmas stated by Peirce can be derived in the calculus PC.

Lemma 1. The sequents xi ⇒ x1∨x2 and x1∧x2 ⇒ xi for i = 1, 2 are derivable
in PC.

Peirce’s Sequent Proofs of Distributivity 173

Proof. By replacing z in (∨E) and (∧E) with x1 ∨ x2 and x1 ∧ x2 respectively.

Lemma 2. The following rules are derivable in PC:

(R1)
x ⇒ y

z → x ⇒ z → y
(R2)

x ⇒ z y ⇒ u

x ∧ y ⇒ z ∧ u

(R3)
x ⇒ y

y → z ⇒ x → z
(R4)

x ⇒ z y ⇒ u

x ∨ y ⇒ z ∨ u

Proof. (R1) is derived as follows:

z → x ⇒ z → x (PR)
(z → x) ∧ z ⇒ x x ⇒ y

(Tr)
(z → x) ∧ z ⇒ y

(PR)
z → x ⇒ z → y

(R2) is derived as follows:

x ∧ y ⇒ x x ⇒ z
(Tr)

x ∧ y ⇒ z

x ∧ y ⇒ y y ⇒ u
(Tr)

x ∧ y ⇒ u
(∧I)

x ∧ y ⇒ z ∧ u

For (R3), assume x ⇒ y. By (R2), we get x∧ (y → z) ⇒ y ∧ (y → z). One easily
derives that y∧(y → z) ⇒ z by (PR) and commutativity. Then by (Tr), we have
x ∧ (y → z) ⇒ z. Finally, by commutativity and (PR), we get y → z ⇒ x → z.
The rule (R4) is likewise easily shown.

Before deriving the distributive laws, we observe that since ∧ is commutative,
we also have the following version of Peirce’s Rule:

x ∧ y ⇒ z
(PR)

y ⇒ x → z

We can thus apply (PR) without considering the first or the second coordinate
of the conjunction.

Theorem 1. The distributive laws (D1) and (D2) are derivable in PC.

Proof. (D1) First, we derive (x ∧ y) ∨ (x ∧ z) ⇒ x ∧ (y ∨ z) as follows:

x ∧ y ⇒ x

x ∧ y ⇒ y y ⇒ y ∨ z
(Tr)

x ∧ y ⇒ y ∨ z
(∧I)

x ∧ y ⇒ x ∧ (y ∨ z)

Similarly we get x∧z ⇒ x∧(y∨z). By (∨I), we get (x∧y)∨(x∧z) ⇒ x∧(y∨z).
Secondly, we derive x ∧ (y ∨ z) ⇒ (x ∧ y) ∨ (x ∧ z) as follows:

174 M. Ma and A.-V. Pietarinen

(1) We have the following derivation:

x ∧ y ⇒ x ∧ y
(PR)

y ⇒ x → (x ∧ y)
x ∧ z ⇒ x ∧ z (PR)

z ⇒ x → (x ∧ z)
(R4)

y ∨ z ⇒ (x → (x ∧ y)) ∨ (x → (x ∧ z))

(2) We have the following derivation:

x ∧ y ⇒ (x ∧ y) ∨ (x ∧ z)
(R1)

x → (x ∧ y) ⇒ x → (x ∧ y) ∨ (x ∧ z)

Similarly, we have x → (x ∧ z) ⇒ x → (x ∧ y) ∨ (x ∧ z). Then by (∨I), we
get (x → (x ∧ y)) ∨ (x → (x ∧ z)) ⇒ x → (x ∧ y) ∨ (x ∧ z).

By (1) and (2), and using (Tr), we get y ∨ z ⇒ x → (x ∧ y) ∨ (x ∧ z). By (PR),
we get x ∧ (y ∨ z) ⇒ (x ∧ y) ∨ (x ∧ z).

(D2) First, we easily derive x ∧ y ⇒ x ∨ z and x ∧ y ⇒ y ∨ z. By (∧I), we get
x∧y ⇒ (x∨z)∧(y∨z). From z ⇒ x∨z and z ⇒ y∨z, we get z ⇒ (x∨z)∧(∨z).
By (∨I), we get (x ∧ y) ∨ z ⇒ (x ∨ z) ∧ (y ∨ z). Second, we have the following:
(3) By (D1), we get (x ∨ z) ∧ (y ∨ z) ⇒ (x ∧ (y ∨ z)) ∨ (z ∧ (y ∨ z)). Note that

z∧(y∨z) ⇒ z by absorption. Then by (R4) we get (x∧(y∨z))∨(z∧(y∨z)) ⇒
(x ∧ (y ∨ z)) ∨ z. By (Tr), we get (x ∨ z) ∧ (y ∨ z) ⇒ (x ∧ (y ∨ z)) ∨ z.

(4) By commutativity and (D1), we get x ∧ (y ∨ z) ⇒ (x ∧ y) ∨ (x ∧ z). By
(R4), we get (x ∧ (y ∨ z)) ∨ z ⇒ ((x ∧ y) ∨ (x ∧ z)) ∨ z. By associativity and
absorption, we get ((x ∧ y)∨ (x ∧ z))∨ z ⇒ (x ∧ y)∨ z. Then by (Tr) we get
(x ∧ (y ∨ z)) ∨ z ⇒ (x ∧ y) ∨ z.

From (3) and (4), by (Tr), we get (x ∨ z) ∧ (y ∨ z) ⇒ (x ∧ y) ∨ z.

Remark 1. One of Peirce’s own proofs is found in manuscript R 417 written in
1893. At the end of that proof, he remarked: “This is what I had in mind in
a statement Am.Math. J.III.33. which has been severely criticized”. That 1880
statement was that the cases of distributive principle are “easily proved . . . but
the proof is too tedious to give”. The 1893 proof is correct but it is not equivalent
to the proof that Peirce apparently recovered from his earlier work on the 1880
paper and which he sent to Huntington on the Christmas Eve of 1903. The
reason is that the 1893 proof uses a new principle of iteration.

Remark 2. Huntington published in 1904 the proof Peirce had sent to him,
including Peirce’s footnote about it [8]. In the published proof, the axiom—
Huntington’s “postulate”—number 9 is crucial. Without it, the axioms 1–8 only
define uniquely complemented lattices which need not be distributive. The axiom
9 says that, if it is not the case that a ≤ b, then there is a non-zero element x
such that x ≤ a and x ≤ b. This is equivalent to the condition:

(i) If ∀x(x ≤ a & x ≤ b ⇒ x = 0), then a ≤ b.

Peirce’s Sequent Proofs of Distributivity 175

The condition (i) is also equivalent to the condition:

(ii) If ∀x(x ≤ a ∧ b ⇒ x = 0), then a ≤ b.

Moreover, (ii) is equivalent to the condition:

(iii) a ∧ b ≤ 0 implies a ≤ b.

This is a special case of Peirce’s leading principle (PR). Conversely, from the
axiom 9 one can derive (PR):

Assume a ∧ b ≤ c but not a ≤ b ∧ c. Then there is x
= 0 such that x ≤ a
and x ≤ b ∧ c. Then x ≤ a ∧ b ∧ c ≤ c ∧ c = 0, a contradiction.

Hence the axiom 9 and Peirce’s Rule are equivalent. This equivalence justifies
our proof of distributivity in the fashion presented here.

3.2 Negation, Contraposition and Completeness

Peirce’s Rule (PR) is also closely related with the rules for negation and impli-
cation. Recall that Peirce defined negation as x := x → ⊥.1

Proposition 1. The following sequents and rules are derivable in PC:

(1) Double negation laws: (DB1) x ⇒ x; (DB2) x ⇒ x.
(2) Rules of Contraposition:

x ⇒ y

y ⇒ x
(CP)

y ⇒ x

x ⇒ y
(ICP)

Proof. For (DB1), first we have x ∧ (x → ⊥) ⇒ ⊥. By (PR), we get x ⇒ x.
For (DB2), we start from (Em) � ⇒ x ∨ x. Then we have x ∧ � ⇒ x ∧ (x ∨ x).
Clearly x ⇒ x ∧ �. Then x ⇒ x ∧ (x ∨ x). By (D1), we have x ∧ (x ∨ x) ⇒
(x ∧ x) ∨ (x ∧ x). Clearly x ∧ x ⇒ ⊥. Then we have x ∧ (x ∨ x) ⇒ (x ∧ x) ∨ ⊥.
Clearly (x ∧ x) ∨ ⊥ ⇒ x ∧ x and x ∧ x ⇒ x. By (Tr), we have x ∧ (x ∨ x) ⇒ x.
Finally by (Tr), we have x ⇒ x.

The rule (CP) is an instance of (R3). The inversion of contraposition (ICP)
follows immediately from (CP) and double negation laws.

Lemma 3. The following rules are derivable in PC:

x ∧ y ⇒ z

y ⇒ x ∨ z
(R5)

y ⇒ x ∨ z

x ∧ y ⇒ z
(R6)

Proof. For (R5), assume x ∧ y ⇒ z. Then x ∨ (x ∧ y) ⇒ x ∨ z. By distributivity
and (Tr), we have (x ∨ x) ∧ (x ∨ y) ⇒ x ∨ z. Clearly x ∨ x = �. Then we have
x ∨ y ⇒ x ∨ z. Since y ⇒ x ∨ y, we have y ⇒ x ∨ z. (R6) is shown similarly.
1 This definition of negation, that “from x anything you please necessarily follows”

was, from the “formal point of view”, perfectly acceptable to Peirce. But he also
thought that it does not “really define denial in terms of consequence” (Peirce to
Huntington, February 14, 1904; see also [2]).

176 M. Ma and A.-V. Pietarinen

Proposition 2. The sequent x → y = x ∨ y is derivable in PC.

Proof. First, we derive x∨y ⇒ x → y as follows. It is easy to show x∧ (x∨y) ⇒
x∧y. Clearly x∧y ⇒ y. By (Tr), x∧(x∨y) ⇒ y. By (PR), we get x∨y ⇒ x → y.
Second, we have x ∧ (x → y) ⇒ y. By (R5), we get x → y ⇒ x ∨ y.

Peirce also admitted the importance of De Morgan laws and proved them.
Proposition 3. The De Morgan laws (DM1) x ∧ y = x∨ y and (DM2) x ∨ y =
x ∧ y are derivable in PC.

Proof. For (DM1), first we have x ⇒ x ∨ y. By (CP), we get x ∨ y ⇒ x. By
(DB2) and (Tr), we have x ∨ y ⇒ x. Similarly we get x ∨ y ⇒ y. Then by (∧I),
we get x ∨ y ⇒ x ∧ y. By (CP), (DB2) and (Tr), we ge x ∧ y = x ∨ y. The law
(DM2) is shown similarly.

We can also establish the soundness and completeness of the calculus PC
with respect to the class of all Boolean algebras. The soundness is obtained
by induction on the derivation of sequents in PC. For the completeness, the
Lindenbaum–Tarski construction is applied. We can use the equality sign that
Peirce proposed to establish a congruence relation on the set of all terms con-
structed from a set of propositional variables Prop and ⊥ using ∧,∨,→.

Theorem 2 (Completeness). A sequent x ⇒ y is derivable in PC if and only
if x ⇒ y is valid in all Boolean algebras.

Peirce’s calculus is therefore fully adequate as a calculus for Boolean algebras.
It follows that the calculus PC, as Peirce had presented it, is a successful calculus
that agrees with classical propositional logic. Peirce achieved his sequent calculus
for his logic immediately in the 1880 paper.

3.3 Peirce’s Rule in Perspective

The rule (PR) is a formulation of Peirce’s leading principle of inference. Leading
principles that have a “maximum abstractness” (NEM 4, p. 175, 1898) are logical
principles. The maximal abstractness means that such principles add nothing to
the premises of the inference which they govern.

The distributivity laws are derivable from (PR), together with the lattice
rules for conjunction and disjunction, the identity and transitivity (Tr). But
they are not derivable without (PR). Now Schröder thought that distributive
laws are independent of the theory of lattices [29, Ch.XII]. Peirce stated the
point clearly in a footnote to his 1885 paper:

It is interesting to observe that [the] reasoning [example in Peirce’s 1885 paper]
is dilemmatic. [. . .] The dilemma was only introduced into logic from rhetoric
by the humanists of the renaissance; and at that time logic was studies with so
little accuracy that the peculiar nature of this mode of reasoning escaped notice.
I was thus led to suppose that the whole non-relative logic was derivable from the
principles of the ancient syllogistic, and this error2 is involved in Chapter II of my

2 Peirce later added a note in the margin of his copy of the paper: “But it was not
an error!!! See my original demonstration in marginal note.” This marginal note has
not been recovered.

Peirce’s Sequent Proofs of Distributivity 177

paper in the third volume of this Journal [the 1880 paper]. My friend, Professor
Schröder, detected the mistake and showed that the distributive formulæ

(x + y)z � xz + yz

(x + z)(y + z) � xy + z

could not be deduced from syllogistic principles. I had myself independently dis-
covered and virtually stated the same thing. (Studies in Logic, p. 189.)3 There
is some disagreement as to the definition of the dilemma (see Keynes’s excel-
lent Formal Logic, p. 241); but the most useful definition would be a syllogism
depending on the above distribution formulæ.4 The distribution formulæ

xz + yz � (x + y)z

xy + z � (x + z)(y + z)

are strictly syllogistic. De Morgan’s added moods are virtually dilemmatic,
depending on the principle of excluded middle.5 [12, p. 190]

Clearly (x ∧ z) ∨ (y ∧ z) ⇒ (x ∨ y) ∧ z (D1, right-to-left) and (x ∧ y) ∨ z ⇒
(x ∨ z) ∧ (y ∨ z) (D2, left-to-right) are derivable using only lattice rules and
without Peirce’s Rule. But our reformulation of Peirce’s calculus also explains
the derivability of the distributive laws (x ∨ y) ∧ z ⇒ (x ∧ z) ∨ (y ∧ z) (D1,
left-to-right) and (x ∨ z)∧ (y ∨ z) ⇒ (x ∧ y)∨ z (D2, right-to-left) perfectly. The
calculus PC is not to be conceived in the style of natural deduction but as a
sequent calculus. Consequently, the proof of distributive laws is not hard.

The second aspect of Peirce’s Rule concerns implication which is intuitionis-
tic. As noted, (PR) can be viewed algebraically as the law of residuation:

(RES)a ∧ c ≤ b if and only if c ≤ a → b.

This is exactly the way to introduce intuitionistic implication. A Heyting algebra
is identified with an algebra (H,∧,∨, 0, 1,→), where (A,∧,∨, 0, 1) is a bounded
lattice, and → is a binary operation on H satisfying (RES). Now distributivity
can be derived from the lattice rules and (PR). Equally, the algebraic distributive

3 In that 1883 publication of the “Note B” in his Studies in Logic Peirce stated that
two relatives are “undistributed” in a relative product and in a relative sum.

4 Keynes distinguishes five different formulations of dilemmatic arguments: those given
by (i) Mansel, Whately and Jevons, (ii) by Fowler, (iii) Keynes’s own formulation,
(iv) by Hamilton, and (v) by Thomson. Peirce appears to mean none of theirs as
“the most useful definition”. For example, he proposes the rule of dilemma to be
“If (ab + c)(a + c) then c” (see R 736, NEM IV, p. 115). This is proved using the
distributivity principle thus: c + (aba) implies c, and by the law of contradiction,
c + 0 implies c. This direction of the derivation of the dilemmatic rule depends on
the second distribution principle as given here in Peirce’s footnote, namely one that
is not derivable from the lattice rules alone. In the other direction, the distribution
principle applied is strictly syllogistic.

5 Later in 1893 Peirce takes a dilemmatic argument to be “any argument whose validity
depends upon the principle of excluded middle” (CP 2.474). Dilemmatic arguments
would thus not be intuitionistically valid.

178 M. Ma and A.-V. Pietarinen

laws can also be derived from (RES). Moreover, if we remove the law of excluded
middle (Em) from the calculus PC, we would obtain not a propositional calculus
but a calculus for Heyting algebras, and hence intuitionistic logic. Peirce was not
far from this invention, and there are further and collateral reasons why his logic
and its philosophy took steps towards intuitionism [24, Ch. 3].

4 Distributivity Law in the Alpha System

Peirce’s 1896 system α has, due to the ‘deep inference’ nature of its proofs, very
short proofs of distributivity. We shall briefly present the definition of alpha
graphs and reformulate Peirce’s system alpha. The short proof of distributivity
is presented in alpha.

Peirce’s alpha graphs are syntactic objects which are formed from simple
propositions (propositional variables) on the sheet of assertion (SA) using the
operation of cut and juxtaposition. The sheet of assertion itself is a blank
space, denoted by �. It can be viewed as a primitive graph. The logical meaning
of cut is negation, and that of juxtaposition conjunction.

Defintion 3 (Alpha Graphs). The set Gα of all alpha graphs is defined induc-
tively by the following rule:

Gα � G := p | � | G1 G2 | G ,

where p is a propositional letter.

An area of an alpha graph is a continuous region over the sheet of assertion
as defined by the interior of a cut (the oval around a graph). The graph G1 G2

is the juxtaposition of G1 and G2 by placing them on the SA or within the same
area. The graph G is the enclosure of G. A partial graph of a graph G is a
graph H as a part of G.

A position in a graph is a point on the sheet of assertion (but not on the
line of cut). A position in a graph is positive if it is enclosed by an even number
of cuts. A position in a graph is negative if it is enclosed by an odd number of
cuts. A graph can be inserted or deleted at a position in a graph. The notation
G{ } stands for the graph with a distinguished position. The graph G{H} is
obtained from G{ } by filling the position in G{ } by H. Moreover, we use the
notation G{H+} and G{H−} to mean that the position taken by H is positive
and negative respectively.

A graphical rule is G
H where G is the premiss and H is the conclusion. Peirce

presented his system alpha in 1897–8. Here we reformulate it as follows.

Defintion 4. The system alpha consists of the following axiom and rules:

(1) Axiom: � (Sheet of Assertion)
(2) Deletion rule:

G{H+}
G{�} (DR)

Every positive partial graph H in a graph G can be deleted.

Peirce’s Sequent Proofs of Distributivity 179

(3) Insertion rule:

G{H−}
G{JH} (IR)

Any graph can be inserted into a negative position in a graph G.
(4) Double negation rule:

G{H}
(DN)

G{ H }

The double line means that the upper graph can derive the lower graph, and
vice versa. (DN) means that any partial graph H of a graph G can be replaced
by a doubly enclosed H, and any doubly enclosed G can be replaced by H,
where there is nothing between the two cuts.

(5) Iteration/deiteration rule:

K{GH{J}}
K{GH{GJ}} (IT)

K{GH{GJ}}
K{GH{J}} (DIT)

(IT) means that, in any graph K{GH}, the partial graph G can be iterated
at any position in H. (DIT) is the converse of (IT).

A proof of a graph G in α is a finite sequence of graphs G0, . . . , Gn such that
Gn = G, and each Gi is either �, or derived from previous graphs by a rule. A
graph G is provable in α if it has a derivation in α.

A graphical rule G
H is derivable in α if there is a finite sequence of graphs

H0, . . . ,Hn such that Hn = H, and each Hi is either �, G or derived from
previous graphs by a rule.

The alpha system is essentially a type of deep inference in the sense that
inference rules apply inside graphs in the positions. In the standard sequent
calculus, rules are applied only to the outermost connectives of formulas. The
system alpha can be shown to be sound and complete with respect to Boolean
algebras. The natural interpretation of graphs is clear from the intended meaning
of graphical operations. For the purpose of the present paper, we only present
the proof of the full law of distributivity in the alpha system.

Proposition 4. The following distributivity rules are derivable in α:

G H J
(D1)

GH GJ

G HJ
(D2)

G H G J

180 M. Ma and A.-V. Pietarinen

Proof. For (D1), we have the following proofs:

G H J
(IT)

G GH J
(IT)

G GH GJ
(DR)

GH GJ

GH GJ
(IT)

GH GJ GH GJ
(4 times DR)

G G H J
(DIT)

G H J
(DN)

G H J

(D2) is shown similarly:

G H J
(IT)

G H J G H J
(DR twice)

G H G J

G H G J
(IT,DR)

G H G J
(DIT)

G H J
(DN)

G H J

The proof of distributivity in the alpha calculus is short compared to its proof
in PC. The reason is the deep inference nature of proofs in alpha.

Remark 3. Importantly, the bottom-up direction of (D1) and the top-down
direction of (D2), the premises are first duplicated by iteration. Peirce had
noticed in the Grand Logic (R 418, 1893) how this non-syllogistic operation
of reusing the premise can be eminently useful: “The same premise may be writ-
ten in more than once . . . the student of exclusively non-relative logic is quite
unaware that anything can be gained by bringing in again a premise already used.
Ordinary syllogistic gives no hint of such a thing; nay seems rather opposed to
it” (R 418). The alpha proofs of (D1) and (D2) are exactly the graphical versions
of his 1893 proof of distribution given in R 418.

Remark 4. In the previous chapter of his Grand Logic (R 417), Peirce had pro-
duced nearly equivalent proofs to the above proof in the alpha system which do
use the rule of iteration but without the initial duplication of the premises by
iteration. He tells that this R 417 proof was what he always intended his demon-
stration of distributivity to be. He must thus also mean his lost 1880 proof that
Schröder pressed Peirce to reproduce, namely one that Peirce had stated, cor-
rectly, to be “easy but tedious”. However, in the 1880 system he does not yet
have the rule of iteration, which casts some doubt on the credibility of the claim
that he had a proof similar to the 1893 proof with iteration at hand already in
1880.

Proposition 5. The following rules are provable in α:

GH J
(RG1)

G H J

G H J
(RG2)

GH J

Peirce’s Sequent Proofs of Distributivity 181

Proof. (RG1) is obtained immediately by the addition of double cuts. (RG2) is
obtained by the removal of those double cuts.

The rules (RG1) and (RG2) are the graphical correlates of Peirce’s leading
principle. In the α system, Peirce’s leading principle becomes provable in a trivial
fashion. For (RG1), the proof only needs one application of (DN) that introduces
a double cut. For (RG2), the proof only needs one application of (DN) in order
to delete a double cut. One can therefore conclude that the validity of Peirce’s
Rule is in the alpha system a matter of immediate observation. This justifies its
use in the earlier proofs.

5 Conclusions

Peirce created numerous logical systems that coincide with Boolean algebra.
The full law of distributivity can be proved in the 1880 system by using what
we term Peirce’s Rule, which is a version of residuation. The full law also has an
immediate proof in Peirce’s 1896 graphical α system, which has a deep inference
nature of proofs and which is an outgrowth of his developments of the algebra
of logic and its notation. His calculi are indeed of the nature of sequents and not
of natural deduction with hypotheses that need to be discharged. The central
notion that characterizes his logical investigations is the illative relation of a
consequence. A sequent calculus is a theory about that consequence relation.
It was such sequent calculus that Peirce was developing for systems that agree
with Boolean algebras.

References

1. Badesa, C.: The Birth of Model Theory: Löwenheim’s Theorem in the Frame of
the Theory of Relatives. Princeton University Press, Princeton (2004)

2. Bellucci, F., Pietarinen, A.-V.: Existential graphs as an instrument of logical analy-
sis: part 1. Alpha. Rev. Symbolic Logic 9(2), 209–237 (2016a)

3. Bellucci, F., Pietarinen, A.V.: From Mitchell to Carus: Fourteen Years of Logical
Graphs in the Making. Transactions of the Charles S. Peirce Society (2016, in
press)

4. Brady, G.: From Peirce to Skolem: A Neglected Chapter in the History of Logic.
Elsevier Science, Amsterdam (2000)

5. Dipert, R.: Peirce’s deductive logic: its development, influence, and philosophical
significance. In: Misak, C. (ed.) The Cambridge Companion to Peirce, pp. 257–286.
Cambridge University Press, Cambridge (2004)

6. Houser, N.: Peirce and the law of distribution. In: Drucker, T. (ed.) Perspectives
on the History of Mathematical Logic, pp. 10–32. Birkhäuser, Boston (1991)

7. Houser, N., Roberts, D., Van Evra, J. (eds.): Studies in the Logic of Charles S.
Peirce. Indiana University Press, Bloomington (1997)

8. Huntington, E.V.: Sets of independent postulates for the algebra of logic. Trans.
Am. Math. Soc. 5, 288–309 (1904)

9. Martin, R.M.: Peirce’s Logic of Relations and Other Studies. Foris, Dordrecht
(1980)

182 M. Ma and A.-V. Pietarinen

10. Peirce, C.S.: On an improvement in Boole’s calculus of logic. Proc. Am. Acad. Arts
Sci. 7, 250–261 (1867)

11. Peirce, C.S.: On the algebra of logic. Am. J. Math. 3(1), 15–57 (1880). (Reprinted
in [22, vol. 4, pp. 163–209])

12. Peirce, C.S.: On the algebra of logic: a contribution to the philosophy of notation.
Am. J. Math. 7(2), 180–196 (1885)

13. Peirce, C.S.: Algebra of the Copula [Version 1]. In: Writings of Charles S. Peirce,
vol. 8 (1890–1892), pp. 210–211. Indiana University Press (2010)

14. Peirce, C.S.: Grand Logic. Division I. Stecheology. Part I. Non Relative Logic.
Chapter VIII. The Algebra of the Copula (R 411) (1893a)

15. Peirce, C.S.: Grand Logic. Chapter XI. The Boolian Calculus (R 417) (1893b)
16. Peirce, C.S.: Grand Logic. Book II. Division I. Part 2. Logic of Relatives. Chapter

XII. The Algebra of Relatives (R 418) (1893c)
17. Peirce, C.S.: 1896–7. On Logical Graphs (R 482)
18. Peirce, C.S.: Letter to E. V. Huntington, February 14, 1904 (R L 210) (1904b)
19. Peirce, C.S.: The Collected Papers of Charles S. Peirce. vol. 8, ed. by Hartshorne,

C., Weiss, P., Burks, A. W. Cambridge: Harvard University Press. Cited as CP
followed by volume and paragraph number, pp. 1931–1966

20. Peirce, C.S.: Manuscripts in the Houghton Library of Harvard University, as iden-
tified by Richard Robin. Annotated Catalogue of the Papers of Charles S. Peirce,
Amherst: University of Massachusetts Press (1967). Cited as R followed by manu-
script number

21. Peirce, C.S.: The New Elements of Mathematics by Charles S. Peirce. vol. 4, ed.
by Eisele, C. The Hague: Mouton. Cited as NEM followed by volume and page
number (1976)

22. Peirce, C.S.: Writings of Charles S. Peirce: A Chronological Edition, vol. 7, ed. by
Moore, E.C., Kloesel, C.J.W., et al. Bloomington: Indiana University Press. Cited
as W followed by volume and page number (1982)

23. Pietarinen, A.V.: Peirce’s diagrammatic logic in IF perspective. In: Blackwell, A.F.,
Marriott, K., Shimojima, A. (eds.) Diagrams 2004. LNCS (LNAI), vol. 2980, pp.
97–111. Springer, Heidelberg (2004). doi:10.1007/978-3-540-25931-2 11

24. Pietarinen, A.-V.: Signs of Logic: Peircean Themes on the Philosophy of Language,
Games, and Communication. Springer, Dordrecht (2006)

25. Pietarinen, A.-V.: Moving pictures of thought II: graphs, games, and pragmati-
cism’s proof. Semiotica 186, 315–331 (2011)

26. Prior, A.N.: The algebra of the copula. In: Moore, E., Robin, R. (eds.) Studies in the
Philosophy of Charles Sanders Peirce, pp. 79–94. The University of Massachusetts
Press, Amherst (1964)

27. Roberts, D.D.: Existential graphs and natural deduction. In: Moore, E., Robin,
R. (eds.) Studies in the Philosophy of Charles Sanders Peirce, pp. 109–121. The
University of Massachusetts Press, Amherst (1964)

28. Russell, B.: Sur la logique des relations avec des applications á la théorie des séries.
Revue de mathématiques/Rivista di Matematiche 7, 115–148 (1901)

29. Schröder, E.: Vorlesungen über die Algebra der Logik, vol. 1. B. G. Teubner, Leipzig
(1890)

30. Sowa, J.: Peirce’s contributions to the 21st century. In: Schärfe, H., Hitzler, P.,
Øhrstrøm, Peter (eds.) ICCS-ConceptStruct 2006. LNCS (LNAI), vol. 4068, pp.
54–69. Springer, Heidelberg (2006). doi:10.1007/11787181 5

31. Turquette, A.: Peirce’s icons for deductive logic. In: Moore, E., Robin, R. (eds.)
Studies in the Philosophy of Charles Sanders Peirce, pp. 95–108. The University
of Massachusetts Press, Amherst (1964)

http://dx.doi.org/10.1007/978-3-540-25931-2_11
http://dx.doi.org/10.1007/11787181_5

On Semantic Gamification

Ignacio Ojea Quintana(B)

Columbia University, New York City, USA
ignacio.ojea@columbia.edu

Abstract. The purpose of this essay is to study the extent in which the
semantics for different logical systems can be represented game theoret-
ically. I will begin by considering different definitions of what it means
to gamify a semantics, and show completeness and limitative results. In
particular, I will argue that under a proper definition of gamification,
all finitely algebraizable logics can be gamified, as well as some infinitely
algebraizable ones (like �Lukasiewicz) and some non-algebraizable (like
intuitionistic and van Fraassen supervaluation logic).

1 Introduction

1.1 Logic Gamification

The present work builds on the well established work on game semantics for
classical logic developed by Jaakko Hintikka [5,6], and independently by Rohit
Parikh [13]. It is embedded in a research line that seeks to build formal connec-
tions between logic and game theory, systematically developed in van Benthem
[18]. Its contribution amounts extending some of those results to non-classical
logics, and to provide an answer to the general question of which semantics can
be represented game-theoretically.

In the past few years there have been several developments in game seman-
tics for many valued logics, for example by Fermüller [2,3]. In particular there
are several well studied applications on games in �Lukasiewicz-style (fuzzy) log-
ics; Mundici [11] provides an alternative semantics for finite-valued �Lukasiewicz
logics in terms of Ulam’s games and Cintula and Majer [1] develop an approach
similar to what is going to be done here. Here I will briefly discuss the differ-
ences between my approach and Fermüller’s, and provide a justification for my
account.

But the central issue in this essay is to clearly define and discuss what it
means for a semantics to be gamifiable, and to show that under an appropriate
definition (a) all finitely-algebraizable logics are gamifiable, and (b) some non-
algebraizable logics are gamifiable.

1.2 The Basic Case

Perfect information games in extensive form are trees whose nodes are possible
states and turns for the players, arrows from a node to its children represent
c© Springer-Verlag GmbH Germany 2017
S. Ghosh and S. Prasad (Eds.): ICLA 2017, LNCS 10119, pp. 183–197, 2017.
DOI: 10.1007/978-3-662-54069-5 14

184 I.O. Quintana

the available moves or actions that the player has at that node. A strategy for a
player i is a function that assigns a move at each node corresponding to a turn
for player i. In terminal nodes payoffs are assigned for the players.

In Evaluation Games for Classical Propositional logic, two players V and
F (for Verifier and Falsifier) dispute over the truth value of a formula φ of
a language L in some model M. To avoid unnecesary complications, I assume
that L is Classical a Propositional language. It is possible to assign a game GM

φ

to each pair < φ,M > of formulas and Classical Propositional models in the
following way:

– If φ = p for atomic sentence p, then GM
p is a single (terminal) node tree in

which V wins if M � p and F wins otherwise.
– If φ = ¬α, then GM

φ is GM
α , with turns and win-lose markings reversed.

– If φ = α ∨ β, then GM
φ is a tree that starts with a node which has GM

α and
GM

β as its only children and that it is a turn for V. The basic idea is that she
decides with which subformula to continue the game.

– Finally, if φ = α∧β, then GM
φ is a tree that starts with a node which has GM

α

and GM
β as its only children and that it is a turn for F. The basic idea is that

he decides with which subformula to continue the game.

The point of such assignment is that the following bridging result holds:

Proposition 1 (Success for Classical Propositional Logic). For all for-
mulas φ and Propositional models M: V has a winning strategy in GM

φ if and
only if M � φ.

The well-known result is due to Hintikka and it generalizes to first order
logic. A first intuitive definition of what it means for a semantic to be gamifiable
can be generalized from this result.

Definition 1 (Semantic gamification - intuitive). We start with a logic L
and a semantics S for that logic that assigns truth values to the formulas in the
language of L. We say S is intuitively gamifiable if there is a game theoretic
representation GS and a game-theoretic condition (expressed using a solution
concept) C such that for all formulas φ in the language, S assigns certain truth
v to φ if and only if the condition C applies to the game theoretic representation
of the formula GS

φ .

1.3 Structure of the Essay

In the next section I will discuss gamification for finitely algebraizable logics.
In particular, I will present a hierarchy of notions of gamification and show the
extent to which those logics can be gamified. Also, I will discuss some of the
philosophical and technical aspects of those definitions.

In section three I will discuss non-finitely algebraizable logics, in particular
intuitionistic and supervaluationist. The purpose of this section is to show that
game semantics can be viewed as more general than the standard approaches to
logics for semantics.

The last section includes concluding remarks on the significance of the results.

On Semantic Gamification 185

2 Finitely Algebraizable Logics

2.1 Logical Matrices

Logical Matrices were first introduced by �Lukasiewicz and Tarski [9] in the 1920’s
as a general concept that was implicitly used in the work of other logicians. The
reader can refer to [4,16] for a more advanced treatment than the one given
here. The basic idea is a generalization of the Boolean Algebra underlying truth
values in Classical Logic. Formulas are assigned truth values in the domain of the
algebra and connectives are interpreted as the algebraic operations over those
truth values.

Given a propositional language L, a L − matrix is a pair < A, F > where
A is an algebra of type-L with universe A, and F ⊆ A; where F is the set of
designated values. An assignment h is an homomorphism from the algebra of
formulas Fm to the algebra A of the same L-type [h ∈ Hom(Fm,A)]. Here the
elements of the algebra serve as the truth-values of the semantics. One of the key
features here is compositionality. h starts by assigning elements of A to the set
Var of propositional variables and can be extended to all of L by interpreting
operations in the language as operations in the algebra:

– h(pi) = ai, where pi ∈ V ar and ai ∈ A.
– h(¬φ) = ¬Ah(φ).
– h(φ ∗ ψ) = h(φ) ∗A h(ψ), for any diadic connective ∗.

The notion of model is the same as before. A logic L in the language L is
said to be complete relative to a class of L-matrices M, if all the elements of
M are models of L and for every Γ ∪ {φ} ⊆ Fm such that Γ �L φ there is a
matrix < A, F >∈ M and h ∈ Hom(Fm,A) such that h[Γ] ⊆ F but h(φ) �∈ F .
If this is the case, then it is said that M is a matrix semantics for L, or that M
is strongly characteristic for L. In particular, if M is a singleton with matrix M,
then M is the characteristic matrix of S.

Definition 2 (Finitely algebraizable). A logic L is finitely algebraizable if it
is complete relative to a class of finite L-matrices M.

2.2 Games

In this work we are interested in a very restricted class of games: two player
perfect information extensive games of finite depth [and in almost all cases,
strictly competitive or zero-sum games]. As before the players are V and F. We
will introduce the basic notions following [10,12]; where the reader should turn
for a more elaborate presentation.

An extensive game model is a tree G =< S,R, turn,V > with a set of state-
nodes S and a family R of binary transition relations for the available moves,
pointing from parent to daughter nodes. R is assumed here to be well-founded1 in

1 Since R is well founded, branches of the trees have only finite depth.

186 I.O. Quintana

that there is no infinite sequence < a1, a2, ... > of nodes such that < ai, ai+1 >∈
M for all i ∈ N . turn is a function that assigns players to non-terminal nodes,
indicating the player whose turn it is. V is a function that assigns utility values
for players at all terminal nodes, but possibly also to any other node.2

A strategy for player i is a function si that assigns at each of i’s turns one of
the available actions. A mixed strategy for a player i is a function σi : Si → [0, 1]
which assigns a probability σi(si) � 0 to each pure strategy si ∈ Si, satisfying
that

∑
si∈Si

σi(si) = 1.
Given a set of players I = {1, ..., n}, a pure strategy profile is an n-tuple

< s1, ..., sn > where each si is a pure strategy for player i. Each pure strategy
profile is associated with a terminal node in the game model, the one that would
be reached if players played the strategy in the profile. Furthermore, given a
pure strategy profile < s1, ..., sn >, Vi(< s1, ..., sn >) =df Vi(a), where a is the
terminal node of that strategy profile and Vi is the utility for any player i. The
payoff of a (possibly mixed) strategy profile < σ1, ..., σn >, Vi(< σ1, ..., σn >) =∑

<s>∈S [σ1(s1)...σ1(sn)]Vi(< s1, ..., sn >).
The solution concept that we will be using in almost all cases is that of

Nash Equilibrium: A strategy profile < σ1, ..., σn > is a Nash equilibrium if
and only if for any player i ∈ {1, ..., n} and any strategy σ′

i �= σi for that
player, Vi(< σ1, ..., σi, ..., σn >) � Vi(< σ1, ..., σ

′
i, ..., σn >). The insight behind

Nash Equilibrium is that unilateral deviation is not profitable. Once the strategy
profile is reached, no player has an incentive to change strategies given the other
player’s strategic choices are fixed. Yet a particular subset of the Nash Equilibra
will be used here, namely those obtained by the Backward Induction procedure.

2.3 Strong Gamification

When evaluation games for Classical Propositional logic were introduced before,
there was an implicit function game that assigned extensive game trees of the
ones just presented to formulas in L in some model M; so that φ in M got
assigned to GM

φ . This way of presenting the evaluation games followed van Ben-
them in [17] and Parikh in [13,14].

The simple generalization proposed here requires us to drop the model depen-
dence of the function, so that each formula φ ∈ L gets an game form, a tree Gφ

in all which terminal nodes < pi > corresponding to atomic sentences pi have no
assigned payoffs for the players. We later define V in a way that assigns members
of the relevant (non-Classical) matrix to terminal nodes - but can be extended
to other nodes. In general, given a game G, V(G) is the payoff that Verifier gets
in the (relevant) equilibria of G.3

In detail, state-nodes of the trees are members of S and are denoted here
with tuples < φ >, where φ ∈ L. It is useful to reformulate the definition of
game(φ) = Gφ:

2 A further assumptions is that there is complete and perfect information.
3 For the games considered, it is not hard to show existence of equilibria as well as

uniqueness of payoff under all equilibria.

On Semantic Gamification 187

– Gpi
is a single node tree < pi >, which can be seen as a test or payoff gaining

game.
– G¬φ is Gφ with turns reversed, replacing each terminal atomic node < pi >

by a node < pi > and vice versa. Also, formulas < φ > in game nodes are
syntactically dualized, interchanging conjunctions and disjunctions.

– Gφ∨ψ is the disjoint union of two game trees Gφ and Gψ put under a common
root node < φ ∨ ψ > that is a turn for V.

– Gφ∧ψ is the disjoint union of two game trees Gφ and Gψ put under a common
root node < φ ∧ ψ > that is a turn for F.

It is worth noticing that in this definition Gφ is generated solely from the
syntactic structure of φ.

Let us go back briefly to the alethic or Model-theoretic approach to logic. Part
of the gist of it is that we are able to model our natural or intuitive understanding
of the connectives that appear in the formula algebra Fm with operations in
our modeling algebra A. This was captured by the fact that for any assignment
(homomorphism) h : Fm → A, h(¬φ) = ¬Ah(φ) and h(φ ∗ ψ) = h(φ) ∗A h(ψ).
Thus the algebra can successfully represent the alethic structure that we want
it to embody. In the pragmatic or game-theoretic approach to logic, we want to
have a relation of the same sort between the games and some underlying algebra.
This will be captured by analogous principles:

– V(Gpi
) = ai, where gi is an atomic game and ai ∈ A.

– V(G¬φ) = ¬AV(Gφ).
– V(Gφ∗ψ) = V(Gφ) ∗A V(Gψ) for any diadic connective ∗.

Furthermore, in principle nothing ensures that the algebraic operation will
coincide with our strategic intuitions and theories about how games are resolved
(i.e. its equilibria). Conversely, it should not be clear prima facie that concepts
in game theory and game structures function the same way as algebraic trans-
formations. Yet, at least for some algebraic structures we know that the relation
holds. The overall project is then:

Fm Games

A

game(φ) = Gφ

game

h(φ) h
V(Gφ)

V

Given a formula algebra Fm, an underlying algebra A and h ∈
Hom(Fm,A), the central purpose of evaluation games is to provide a trans-
lation function game and a payoff function Vh so that for any formula φ ∈ Fm:

h(φ) = Vh ◦ game(φ)

188 I.O. Quintana

Definition 3 (Strong Semantic Gamification). Begin with a logic L and a
semantics S for that logic. We say S is strongly gamifiable if for each formula φ
in the language and each assignment hS there is (a) a game theoretic translation
Gφ, (b) a payoff assignment Vh to Gφ that is defined in terms of h and (c) a
game-theoretic condition (solution concept) C such that: For all formulas φ, an
assignment hS assigns certain truth v to φ if and only if the condition C applies
to the game Gφ with payoffs determined by Vh.

I will now overview a few results that show that some many valued logics are
strongly gamifiable. Since the precise cases considered here are not the main focus
of the present essay, I will only provide a superficial presentation of each case.
Nevertheless, the reader is invited to read some of the proofs in the appendix to
get a gist of the basic techniques used here.

2.4 Strong Kleene

We start with Kleene’s 3-valued system developed in [7,8] because generalizing
evaluation games for it is straightforward. The set of truth values is K = {1, 1

2 , 0},
where “1” codes truth, “0” codes falsity and “1

2” codes undefined. The operations
¬K3 ,∨K3 ,∧K3 are defined in analogy to Classical logic: (a) ¬K3x = 1 − x,
(b) x ∨K3 y = max{x, y} and (c) x ∧K3 y = min{x, y}.

In order to develop evaluation games for Kleene’s 3-valued system I need,
given a homomorphism h, a translation function G (or game) and an evaluation
function Vh that assigns payoffs to terminal nodes of those trees and values to
complex game trees using a solution concept. The translation function is the
same as for the classical case. The valuation function Vh needs first to assign
members of K = {1, 1

2 , 0} to the terminal nodes < pi > and < pi > such that
the payoff of both players are specified. Vh(Gφ) is the payoff that Verifier gets
in the equilibria of the game Gφ; and since I am considering strictly competitive
games, the payoff that Falsifier gets will be 1 − Vh(Gpi

).
The valuation for terminal nodes is:

– Vh(Gpi
) = h(pi). Hence Verifier gets h(pi) and Falsifier gets 1-h(pi).

– Vh(Gpi
) = 1 − h(pi). Hence Verifier gets 1 − h(pi) and Falsifier gets h(pi).

Proposition 2 (Success for Strong Kleene). Given the matrix K3 and arbi-
trary assignment h, for all formulas φ ∈ LK: h(φ) = x if and only if Vh(Gφ) = x
[i.e. in all the Nash Equilibria in Gφ Verifier gets a payoff of x].

The proof of the proposition is included in the appendix. Furthermore, the
observant reader might have noticed that there is nothing essential in the fact
that only three truth-values were considered. What is crucial is that the truth
values are linearly ordered and the (Kleene) operations correspond to max, min
and dualization. Then any logic of this form, with finite or infinite truth values,
can be modeled analogously with a strictly-competitive two player game.

On Semantic Gamification 189

2.5 Gamification and Some Results

A natural question is whether all finitely algebraizable logics can be strongly
gamified. I do not have an answer to this. Nevertheless, it is possible to show
that all finitely algebraizable logics can be gamified, under a weaker notion of
gamification.

Definition 4 (Semantic Gamification). Begin with a logic L and a seman-
tics S for that logic. We say S is gamifiable if for each formula φ in the language
and each assignment hS there is a game Gφ

h whose structure and payoffs depend
on h and (b) a game-theoretic condition (solution concept) C such that: For all
formulas φ, an assignment hS assigns certain truth v to φ if and only if the
condition C applies to the game Gφ

h.

The crucial difference here is that formulas are not mapped to game forms,
but rather the mapping goes from formulas and assignments to completely spec-
ified games. In particular, the same formula can be mapped to different games
under different assignments (and of course different matrices).

The strategy adopted here to show that all finitely algebraizable logics can
be gamified is indirect. The first step consists in showing that Post logics are
gamifiable. The second, to argue that this is sufficient given the truth-functional
completeness of those logics.

2.6 Post and Truth-Functional Completeness

In 1921 [15] Emil Post presented a finitely many valued logic and showed that
it is truth-functionally complete i.e. that all truth functions f : An → A are
expressible in terms of the truth functions corresponding to the connectives
provided by that logic. Post’s intepretation of the disjunction and conjunction is
similar to that of Strong Kleene and �Lukasiewicz, max and min respectively. The
most salient feature of Post logic is Post’s negation ∼; so let L∼ by L augmented
with that connective. Its interpretation -when A = {0, ..., n} - is the following:

– h(∼ φ) = h(φ) − 1(mod n + 1).

Proposition 3 (Success for Post). For every formula φ in the language of
Post, truth value v and assignment h: h(φ) = v if and only if in all the Nash
Equilibria in Gh

φ Verifier gets a payoff of v.

The proof of this result, although innelegant and tedious, is included in the
Appendix.

Any matrix M =< A,F > with finite universe A can be represented in a Post
matrix of size |A|, making use of the fact that it is truth-functionally complete.
This is done in two steps. First, by corresponding each truth value in the matrix
with a truth value in the Post logic. Second, the interpretation that matrix M
gives to each connective is nothing more than a truth function; which by truth
functional completeness can be captured in the Post logic by some composition

190 I.O. Quintana

of Post connectives. In a nutshell, providing a game semantic for Post logic is
virtually the same as providing a game semantic for any finite matrix.

A similar result was given by Fermüller [3] in 2013, but with a different
approach. There Fermüller associates games with signed formulas, which capture
the idea that Verifier asserts a certain truth value for the formula at hand. For
example, the expression ’v : φ’ stands for Verifier’s claim that the formula φ
has truth value v in the relevant assignment. His basic idea is to have win-
lose games in which Verifier makes the assertion that φ has certain truth value
and Falsifier contests that assertion. In this way, his result are also expressed in
terms of winning strategies, rather than Nash Equilibria or Backwards Induction
solutions. This is, h assigns v to φ if and only if Verifier has a winning strategy
in the game corresponding to v : φ.

3 General Gamification

So far the focus of the paper has been on finitely-algebraizable logics, but what
about other kinds of logics? Allow me to slightly generalize the definition of
semantic gamification so that formulas in a semantics are represented by a set
of games, rather than a single game.

Definition 5 (General Semantic Gamification). Begin with a logic L and
a semantics S for that logic. We say S is gamifiable if for each formula φ in
the language and each assignment hS there is a set of games Gφ

h, each of whose
structure and payoffs depend on h and (b) a game-theoretic condition (solution
concept) C such that: For all formulas φ, an assignment hS assigns certain truth
v to φ if and only if the condition C applies to all the games in Gφ

h.

Under this simple generalization, it is not hard to show that some non-
algebraizable logics, such as Intuitionistic and Supervaluationistic, are gamifiable
in general.

3.1 Supervaluationist

Supervaluationist logic was developed by Van Fraassen [19,20] to treat issues
of vagueness while satisfying some classical logic principles. The basic idea to
evaluate a formula is to start with a partial assignment with three truth values
and consider all the classical extensions of that assignment. If the formula is true
in all its classical extensions, then it is true in the supervaluation; similarly for
falsehood. If the formula is true in some extensions and false in others, then it
gets an intermediate value.

More formally, an initial truth-value assignment is any function h such that
for h(pi) ∈ {0, 1

2 , 1} for all propositional variables pi and that is extended to
all formulas using the Strong Kleene compositional rules. A classical extension
h′ to a initial truth-value assignment h [h � h′] is a function such that (a)
h′(pi) ∈ {0, 1} for all propositional variables pi and extends to all formulas as

On Semantic Gamification 191

expected, and (b) for all pi ∈ V ar, if h(pi) ∈ {0, 1}, then h(pi) = h′(pi). A
supervaluation induced by an assignment h is a function fh such that for all
φ ∈ L: (a) fh(φ) = 1 if and only if for all classical extensions h′ of h, h′(φ) = 1;
(b) fh(φ) = 0 if and only if for all classical extensions h′ of h, h′(φ) = 0; and
(c) fh(φ) = 1

2 otherwise. One interesting aspect of supervaluatinist logic is that
it is not compositional. For example, if h(φ) = h(ψ) = 1

2 , then fh(φ ∨ ψ) = 1 if
ψ = ¬φ but fh(φ ∨ ψ) = 1

2 if φ = p1 and ψ = p2.
The basic idea of gamifying supervaluationist logic involves mapping each

formula and assignment pair (φ, h) to a set of classical games, namely those
classical games that correspond to the classical extensions of h.

Proposition 4 (Success for Supervaluation). Given an arbitrary assign-
ment h and a supervaluational semantics fh, for all formulas φ: (a) fh(φ) = 1
if and only if V has a winning strategy in every game in Gh

φ, (b) fh(φ) = 0 if
and only if F has a winning strategy in every game in Gh

φ, and (c) fh(φ) = 1
2

otherwise.

3.2 Intuitionistic Logic

Intuitionistic logic requires no introduction, and I will presume the reader is
familiar with the Kripke semantics for intuitionistic logic. The only subtelty that
is involved in gamifying the Kripke semantics for intuitionistic logic is that given
a structure K of partially ordered nodes, the translation function associates to
each formula-node pair (φ, k) a game G(φ,k). Once again, the shape of the game
depends on the structure provided by the Krike frame. The basic idea is that
games represent what is for the formula to be true in that node. As an example,
consider the usual clauses for the conditional and negation:

– A node k forces φ → ψ if, for every k′ � k, if k′ forces φ then k′ forces ψ.
– A node k forces ¬φ if, for no k′ � k does k′ forces φ.

Then the translation functions are the following:

– The game corresponding to (φ → ψ, k), G(φ→ψ,k) has a root node that is a
move for Falsifier whose children are the games G(∼φ∨ψ,k′)

4, for all k′ � k.
– The game corresponding to (¬φ, k), G(¬φ,k) has a root node that is a move

for Falsifier whose children are the games G(φ,k′), for all k′ � k. Here G(φ,k′)
is just like G(φ,k′) but with roles and payoffs switched [just like in the classical
negation clause].

The next obvious step is to match, for each formula φ the set of all games
G(φ,k) for all k in the Kripke structure K. In this way we obtain GK

φ , the set of
games corresponding to φ in K.

Proposition 5 (Success for Intuitionism). Given an arbitrary Kripke struc-
ture K, for all formulas φ: (a) K = 1 if and only if V has a winning strategy in
every game in GK

φ .

4 Here ∼ is just classical negation.

192 I.O. Quintana

As far as I know, Proposition 7 is new - although it is a natural application
of dynamic reasoning.

4 Conclusion and Discussion

To gamify a semantics means, intuitively, to provide a game-theoretic representa-
tion of it. The purpose of this essay was to clarify different notions of gamification
and to study the extension to which different propositional logical systems can
be gamifiable. I presented three notions of gamification - weak, basic and gen-
eral. I argued that several finitely-algebraizable logics strongly gamifiable, but it
is still open whether all of them are. In the next section I presented a result that
shows that all finitely-algebraizable logics are gamifiable. The last section shows
that even non-algebraizable and non-compositional logics are easily gamifiable
if we relax the condition of uniqueness and allow formulas to be represented as
sets of games.

So far, I have not provided any philosophical account of what we learn about
a semantics by knowing if it is, or not, gamifiable. That was not the main purpose
of the essay, but a few words are worth saying. Hintikka’s original motivation to
provide a game semantics had to do more with the pragmatic nature of assertion,
or the meaning of conditionals, than with purely logical concerns. The purpose
here was to advance an approach to logic that is neither semantic nor syntactic,
but rather pragmatic. Valuation functions for formulas usually express the truth
values that formulas have under some assignment or model a la Tarski, so that
-in general- the truth value of a compound expression depends in some way on
the truth value of its components. When providing game-theoretic semantics,
I intended to avoid alethic considerations and ideas and substitute them by
instrumental, pragmatic or operational concepts. The hope is that furthering
this approach will provide us with more insights about the relation between
Theoretical Reason - captured in our logical systems - and Practical Rationality
- captured in our game and decision theoretic ideas. For a logical system to be
gamifiable, then, means that its Theoretical import can be captured strategically.

To conclude, two questions and potential lines of research emerge from here.
To begin, it would be interesting to answer whether all algebraizable logics can
be strongly gamified. Furthermore, the converse problem for weak gamification is
also interesting: Given a class of two-player games closed under some operations
and with payoffs in a set V, whether there is a language L closed under some
operations and a matrix-semantics A with assignment h such that (a) there
is a function that translates games into formulas and (b) the (BI, Nash, etc.)
solutions of the game correspond in some way to the value that its corresponding
formula gets in h.5

5 Notice here that nothing secures uniqueness of solutions for these games, so solving
this problem might require generalizing the presented definition of matrix algebra
in some way.

On Semantic Gamification 193

A Appendix: Proofs

Success for Strong Kleene. The proof of this proposition is by induction, and it
is analogous to the traditional proof of Proposition 1. The atomic case is triv-
ial and guaranteed by the definition of V in labeled and unlabeled terminal
nodes [i.e. literals]. For complex expressions, assuming by Induction Hypoth-
esis that Proposition 2 holds for all the subformulas, we need to ensure that:
(a) V(G¬φ) = ¬K3V(Gφ); (b) V(Gφ∨ψ) = V(Gφ)∨K3 V(Gψ); and (c) V(Gφ∧ψ) =
V(Gφ) ∧K3 V(Gψ).

In the case of binary connectives we get the identity easily, since the Nash
Equilibria are obtained by the Backward Induction procedure and the player’s
payoffs are such that Verifier prefers maximizing between V(Gφ) and V(Gψ),
and Falsifier prefers minimizing between those two alternatives. The case for
negation requires an observation:

Observation 1 (Mirroring of Pure Strategies and NE). If sV is a pure
strategy for Verifier in Gφ, then sV is a pure strategy for Falsifier in G¬φ [and
vice versa]. Furthermore, given some payoff assignment V to the terminal nodes,
if < sV , sF > is a Nash Equilibrium in Gφ, then < sF , sV > is a Nash Equilib-
rium in G¬φ.

A short proof of the observation is the following. Any pure strategy profile
< sV , sF > in Gφ is associated with a terminal node, the one that is reached
by the path indicated by the strategies, with some payoffs (x, 1 − x) for Verifier
and Falsifier respectively. Also, < sF , sV > in G¬φ leads to the same node,
but now with payoffs (1 − x, x). Notice that in G¬φ there was a turn switch;
so < sF , sV > is the profile where Verifier plays sF and Falsifier plays sV . If
the second profile < sF , sV > in game G¬φ is not a Nash Equilibrium, then at
least one player, say Falsifier, can change the strategy to s′

V so that < sF , s′
V >

terminates in a node with payoff y > x for him [leaving sF fixed]. But then
Verifier can change her strategy in Gφ to also obtain a better payoff. Obviously,
the argument is symmetric, and hence one profile is a Nash Equilibrium if and
only if the other is.

With this observation, we get that V(G¬φ) = 1 − V(Gφ), which is what we
needed. �

Success for Post. It is easy to see that Post’s negation does not satisfy De Mor-
gan’s properties in general. Yet, a weaker (partial) form of De Morgan’s is sat-
isfied:

Observation 2 (Partial De Morgan’s for Post’s Logic).

– h(∼ (φ ∨ ψ)) =
{

h(∼ φ∧ ∼ ψ) if h(φ) = 0 �= h(ψ) or h(φ) = 0 �= h(ψ)
h(∼ φ∨ ∼ ψ) if otherwise

– h(∼ (φ ∧ ψ)) =
{

h(∼ φ∨ ∼ ψ) if h(φ) = 0 �= h(ψ) or h(φ) = 0 �= h(ψ)
h(∼ φ∧ ∼ ψ) if otherwise

194 I.O. Quintana

For simplicity, I avoid this proof here.
Providing a game semantics for Post requires a slight change in methodology.

In all the cases presented here, the function game : L∼ → A was defined
independently of the evaluation function V for the games. In this way we had
game forms. For disjunctions and conjunctions, nothing different is needed. Yet,
in order to provide a game that corresponds to a formula that involves Post’s
negation, it is necessary to look at the truth values of the components. Notice
then that for formulas φ not involving Post negation, we can rely in the success
lemmas already shown, so that h(φ) = V ◦ game(φ). Hence in when defining
game we can use this fact. Se we only need to show that the success holds
for formulas that involve the negation. game(∼ φ) is game(φ) transformed
inductively in the following way:

For terminal nodes, we need to generalize the x function that we had before
because now ’bars’ are cummulative. So we have a function in the exponent that
tracks the amount of times terminal nodes were negated. Non negated terminal
nodes < pi > are now replaced by < p0i >. Give game(φ), we start by replacing
each terminal node < pk

i > with < pk+1
i >. As expected, we stipulate that

V(Gpk
i
) = [h(pi)−k](mod n+1) = h(∼ ... ∼ (pi)) where the negation is iterated

k times. If < ψ > is a non-terminal node and has children < α > and < β >,
and if h(α) = n �= h(β) or h(β) = n �= h(α):

turn(< ψ >) =
{
V if turn(< ψ >) = F
F if turn(< ψ >) = V

Otherwise, turns are not changed.
The only thing that is really needed now is to show the case for Post-negated

formulas, i.e. that V(game(∼ φ)) = [V(game(φ))−1](mod n+1). In order to do
this we need an observation. Notice that the tree corresponding to game(∼ φ)
and the tree coresponding to game(φ) are the same, but the games are different
in that turn assignments to non-terminal nodes and exponential markings in
terminal nodes might have changed.

Observation 3. Given trees game(∼ φ) and game(φ), for any node < ψ >¬φ

in the former corresponding to a node < ψ >φ in the latter we have that V ◦
game(ψ¬φ) = [V ◦ game(ψφ) − 1](mod n + 1).

The proof is by (Backwards) Induction. If < pk
i > is terminal, then the

observation follows by definition. Say < ψ > is a non-terminal node and has
children < α > and < β > such that V ◦ game(α¬φ) = [V ◦ game(αφ) −
1](mod n + 1) and V ◦ game(β¬φ) = [V ◦ game(βφ) − 1](mod n + 1).

Case 1: V ◦ game(α¬φ) = n �= V ◦ game(β¬φ) or V ◦ game(β¬φ) = n �=
V ◦ game(α¬φ). Suppose the former, the latter case is symmetrical. By induc-
tive hypothesis, V ◦ game(αφ) = 0 �= V ◦ game(βφ). If turn(< α >φ) = V,
V ◦ game(ψφ) = max{V ◦ game(αφ),V ◦ game(βφ)} = V ◦ game(βφ). Also,
by definition, turn(< α >¬φ) = F, and then V ◦ game(ψ¬φ) = min{V ◦
game(α¬φ),V ◦ game(β¬φ)} = min{n,V ◦ game(βφ) − 1(mod n + 1)} =
V◦game(βφ)−1(mod n+1). So V◦game(ψ¬φ) = [V◦game(ψφ)−1](mod n+1).
If turn(< α >φ) = F, V ◦ game(ψφ) = min{V ◦ game(αφ),V ◦ game(βφ)} =
0 = V ◦ game(αφ). Also, by definition, turn(< α >¬φ) = V, and then

On Semantic Gamification 195

V ◦ game(ψ¬φ) = max{V ◦ game(α¬φ),V ◦ game(β¬φ)} = max{n,V ◦
game(β¬φ)} = n = V ◦ game(α¬φ) = [V ◦ game(αφ) − 1](mod n + 1).

Case 2: Otherwise. Either (i) V ◦ game(α¬φ) = V ◦ game(β¬φ) = n or
(ii) V ◦ game(α¬φ) �= n �= V ◦ game(β¬φ). This proof is left to the reader
for its simplicity. �

Success for Supervaluationism. The main consideration here is to translate each
formula and assignment pair (φ, h) to a set of classical games. This is done in two
steps. First, map each formula φ to its game form without any specified payoffs,
using the original translation method. Second, consider in order the propositional
letters pi that appears in the game form and the value that h assigns to pi. If
h(pi) ∈ {0, 1}, then assign the corresponding payoff to pi and move to the next.
If h(pi) = 1

2 , then split the game into two games, one in which the payoff of pi is
(1,0) and another in which it is (0,1). Continue the procedure with all the games
that were generated in the steps before.

It should be clear to the reader that the set of games obtained are the games
corresponding to all of the classical extensions of h. Then the proposition follows
by mere definition. �

Success for Intuitionism. Begin with a Kripke structure K of partially ordered
nodes {ki}i∈I . Recall that this proof is just for the propositional case; nothing
conceptually different is added for the first order case.

There is an atomic forcing relation defined for all nodes k such that for all
propositional letters pi, either k forces pi [i.e. k makes pi true, or the forcing
relation is not defined for that node and propositional letter. This atomic forcing
relation is subject to the constrain that if k � k′ and k forces pi, then k′ forces
pi. The extensio of the forcing relation to all formulas is the following: (a) A
node k forces φ ∧ ψ if it forces φ and ψ; (b) A node k hforces φ ∨ ψ if it forces φ
or ψ; (c) A node k forces φ → ψ if, for every k′ � k, if k′ forces φ then k′ forces
ψ; and (d) A node k forces ¬φ if, for no k′ � k does k′ forces φ.

Given a formula and a node k in a Kripke structure K, the translation func-
tions are the following: (a) The game corresponding to (pi, k) is a one node
game with payoffs (1, 0) if k forces pi and (0, 1) otherwise; (b) The game cor-
responding to (φ ∧ ψ, k), G(φ∧ψ,k), consists of a root node for Falsifier with
two subgames,G(φ,k) and G(ψ,k); (c) The one corresponding to disjunction is
as expected; (d) The game corresponding to (φ → ψ, k), G(φ→ψ,k), has a root
node that is a move for Falsifier whose children are the games G(∼φ∨ψ,k′), for
all k′ � k; and (e) The game corresponding to (¬φ, k), G(¬φ,k) has a root node
that is a move for Falsifier whose children are the games G(φ,k′), for all k′ � k.
Here G(φ,k′) is just like G(φ,k′) but with roles and payoffs switched [just like in
the classical negation clause].

To show the result is sufficies to show that for any pair (φ, k), k forces φ if
and only if Verifier has a winning strategy in G(φ,k). The atomic case is trivial.
So are the cases for conjunction, disjunction and classical negation. This is just
the same proof as for classical logic. The case for the conditional is slightly more

196 I.O. Quintana

complicated. It is worth noticing is that here ∼ refers to classical negation, and
hence ∼ φ∨ψ is just code for the material conditional. We begin with (φ → ψ, k),
and suppose k forces φ → ψ. Then, in a nutshell, for every k′ � k, k′ forces
∼ φ ∨ ψ. But then, by inductive hypothesis, Verifier has a winning strategy in
every such G(∼φ∨ψ,k′). So it has a winning strategy in G(φ→ψ,k). Suppose Verifier
has a winning strategy in G(φ→ψ,k). Then whichever choice Falsifier makes at the
root node, Verifier still has a winning strategy. That means that for all k′ � k,
Verifier has a winning strategy in G(∼φ∨ψ,k′). By inductive hypothesis this just
means that for every k′ � k, if k′ forces φ then k′ forces ψ. Consider (¬φ, k).
Suppose k forces ¬φ. Then there is no k′ � k such that k′ forces φ. The game
G(¬φ,k) has a root node that is a move for Falsifier whose children are the games
G(φ,k′), for all k′ � k. Now, by (a minor extension of) Observation 2 - Mirroring
of pure strategies and Nash Equilibria -, we know that for all such k′ Falsifier
has a winning strategy in G(φ,k′) if and only if Verifier has a winning strategy in
G(φ,k′), and viceversa. We also know, by inductive hypothesis, that Verifier has a
winning strategy in G(φ,k′) if and only if k′ forces φ. Since k forces ¬φ, there is no
k′ � k such that Verifier has a winning strategy in G(φ,k′). But all of the G(φ,k′)
are two-player perfect information games, and therefore are determined. Ergo,
Falsifier has a winning strategy in all those G(φ,k′). By Observation 2, Verifier has
a winning strategy in all the G(φ,k′). Hence, whichever move Falsifier makes in
the root node of G(¬φ,k), it leads to a game won by Verifier. To conclude, Verifier
has a winning strategy for G(¬φ,k). Now for the converse. Suppose Verifier has
a winning strategy for G(¬φ,k). This just means that whatever G(φ,k′) Falsifier
chooses at the root node, Verifier has a winning strategy there. Therefore, again
by Observation 2, Falsifier has a winning strategy in all the G(φ,k′) with k′ � k.
By inductive hypothesis, this just means that there is no k′ � k such that k′

forces φ. �

References

1. Cintula, P., Majer, O.: Towards evaluation games for fuzzy logics. In: Majer, O.,
Pietarinen, A.V., Tulenheimo, T. (eds.) Games: Unifying Logic, Language, and
Philosophy. Logic, Epistemology, and the Unity of Science, vol. 15, pp. 117–138.
Springer, Dordrecht (2009)

2. Fermüller, C.G.: Dialogue games for many-valued logics - an overview. Stud. Log-
ica. 90(1), 43–68 (2008)

3. Fermüller, C.G.: On matrices, Nmatrices and Games. J. Logic Comput. (2013)
4. Hähnle, R.: Advanced many-valued logics. In: Gabbay, D.M., Guenthner, F. (eds.)

Handbook of Philosophical Logic. Handbook of Philosophical Logic, vol. 2, pp.
297–395. Springer, Dordrecht (2001)

5. Hintikka, J.: Logic, Language Games, and Information. Clarendon Press, Oxford
(1973)

6. Hintikka, J., Sandu, G.: Game-Theoretical Semantics (1997)
7. Kleene, S.C.: On notation for ordinal numbers. J. Symbolic Logic 3(4), 150–155

(1938)
8. Kleene, S.C.: Introduction to Metamathematics: Bibliotheca Mathematica.

Wolters-Noordhoff, Groningen (1952)

On Semantic Gamification 197

9. �Lukasiewicz, J., Borkowski, L.: Selected Works: Studies in Logic and the Founda-
tions of Mathematics. North-Holland Publishing Co., Amsterdam (1970)

10. Mas-Colell, A., Whinston, M.D., Green, J.R.: Microeconomic Theory. Oxford Uni-
versity Press, Oxford (1995)

11. Mundici, D.: Ulam’s games, �Lucasiewicz logic, and AFC*-algebras. Fundamenta
Informaticae 18, 151 (1993)

12. Osborne, M.J., Rubinstein, A.: A Course in Game Theory. MIT press, Cambridge
(1994)

13. Parikh, R.: D-structures and their semantics. Not. AMS 19, A329 (1972)
14. Parikh, R.: The logic of games and its applications. Ann. Discrete Math. 102,

111–140 (1985)
15. Post, E.L.: Introduction to a general theory of elementary propositions. Am. J.

Math. 43(3), 163–185 (1921)
16. Urquhart, A.: Basic many-valued logic. In: Gabbay, D.M., Guenthner, F. (eds.)

Handbook of Philosophical Logic. Handbook of Philosophical Logic, vol. 2, pp.
249–295. Springer, Dordrecth (2001)

17. van Benthem, J.: Logic games are complete for game logics. Studia Logica. Int. J.
Symbolic Logic 75, 183–203 (2003)

18. van Benthem, J.: Logic in Games. MIT Press, Cambridge (2014)
19. van Fraassen, B.C.: Presuppositions: supervaluations and free logic. In: Lambert,

K. (ed.) The Logical Way of doing Things, pp. 67–92. Yale University Press (1969)
20. van Fraassen, B.C.: Singular terms, truth-value gaps, and free logic. J. Philos.

63(17), 481–495 (1966)

Ancient Indian Logic and Analogy

Jeff B. Paris(B) and Alena Vencovská

University of Manchester, Manchester M13 9PL, UK
{jeff.paris,alena.vencovska}@manchester.ac.uk

Abstract. B.K. Matilal, and earlier J.F. Staal, have suggested a reading
of the ‘Nyāya five limb schema’ (also sometimes referred to as the Indian
Schema or Hindu Syllogism) from Gotama’s Nyāya-Sūtra in terms of a
binary occurrence relation. In this paper we provide a rational justifi-
cation of a version of this reading as Analogical Reasoning within the
framework of Polyadic Pure Inductive Logic.

1 Introduction

In the Nyāya-Sūtra (∼150CE), Gotama discussed the structure of logical rea-
soning, offering a fundamental schema consisting of:

• statement of the thesis,
• statement of a reason,
• an example supporting the reason on the grounds of similarity to the present

case,
• application of the above to the present case,
• conclusion.

B.M. Matilal [5] gives this ‘time-honoured’ illustration of the schema:

• There is fire on the hill.
• For there is smoke.
• (Wherever there is smoke, there is fire), as in the kitchen.
• This is such a case (smoke on the hill).
• Therefore it is so, i.e. there is fire on the hill.

It is often emphasised that this reasoning should be understood as occur-
ring in the context of a debate, employed to persuade an opponent. Hence the
apparently unnecessary number of steps; they each have a role. Considering the
argument taken out of this context, it is commonly rephrased as

• (Wherever there is smoke, there is fire), as in the kitchen.

J.B. Paris—Supported by a UK Engineering and Physical Sciences Research Council
(EPSRC) Research Grant.
A. Vencovská—Supported by a UK Engineering and Physical Sciences Research
Council Research Grant.

c© Springer-Verlag GmbH Germany 2017
S. Ghosh and S. Prasad (Eds.): ICLA 2017, LNCS 10119, pp. 198–210, 2017.
DOI: 10.1007/978-3-662-54069-5 15

Ancient Indian Logic and Analogy 199

• There is smoke on the hill. A
• Therefore there is fire on the hill.

This is clearly close to one of the Aristotelian syllogisms, but the Indian
Schema, as we shall call it, can be reduced to it only at the cost of imposing
the perspective of our contemporary deductive logic and rendering the example
(almost1 redundant. See for instance [2] for a collection of papers relating to
attempts at understanding and formalising the schema in various ways. We have
suggested in [7,8] that returning to the position where the example itself carries
the weight of the evidence, somehow itself representing the universal implication,
allows formulations of the argument within Pure Inductive Logic (to be intro-
duced shortly) which can be justified as rational on the grounds of following
from principles usually accepted in that subject as rational. When the example
is so taken to encapsulate the evidence, the argument may be rephrased as2

• When there was smoke in the kitchen, there was fire.
• There is smoke on the hill. B
• Therefore there is fire on the hill.

– with the rider that the kitchen is a good example, which is taken to mean that
the example captures all the relevant information.

Regarding this rider the Nyāya-Sūtra is a cryptic text and does not elaborate
on its methodology. Nevertheless it is clear that the relationship here between
smoke and fire is not simply taken to be contingent, coincidental, but funda-
mental, a concomitance, or even causal relationship, that cannot be otherwise.
Being a good example then can be equated with capturing this link, rather as in
mathematics we may give a ‘proof by example’. Of course the problem in prac-
tice of precisely demarcating what we mean by this notion in general appears
immensely difficult but fortunately that is not our problem in this short paper.
We shall simply be interested in providing a justification for this inference on
the grounds of its logical form alone.

2 The Paks.a Formalisation

In our previous attempts [7,8] at formalising B we worked within Unary Pred-
icate Logic, so using S, F, h and k in the obvious sense we employed S(k) to
express There is smoke in the kitchen, F (h) to express There is fire on the
hill etc. Within Pure Inductive Logic, B then becomes the assertion that, in
the absence of any other pertinent information S(h) and S(k) → F (k) provide
grounds for accepting F (h). In [7,8] we elaborated on the background and evi-
dence for this reading of the schema (and so will not repeat ourselves here) and

1 It has been suggested that under such a perspective, the role of the example may be
to ensure existential import, see e.g. [4, p. 16].

2 Notice that we are taking the evidence as a single instance of a kitchen, hence the
switch from ‘whenever’ on line 1 to ‘when’.

200 J.B. Paris and A. Vencovská

showed that such inference is indeed justified by certain well accepted ratio-
nal symmetry principles of probability assignment and in consequence is itself
rational.

Some authors however, notably Staal [12] and Matilal [5], have suggested that
it is much closer to the Indian way of thinking to formalise the Indian Schema
by employing a binary relation standing for ‘occurring at’: According to Staal
in Indian logic an entity is never regarded in isolation but always considered as
occurring at a locus, and the fundamental relation which underlies all expressions
is that between an entity and its locus (paks.a). Using R for this relation and
f, s, h, k for fire, smoke, hill and kitchen respectively, B becomes the claim that,
in the absence of any other pertinent information, R(s, h) and R(s, k) → R(f, k)
provide grounds for accepting R(f, h). In this note we show that Pure Inductive
Logic supports this version as a rational inference. To facilitate this we first need
to summarize some necessary background from Pure Inductive Logic and briefly
explain what this logic is attempting to elucidate.

3 Pure Inductive Logic

The framework for Pure Inductive Logic is Predicate Logic employing a lan-
guage L with a finite set of relation symbols R1, . . . , Rq, countably many con-
stants a1, a2, a3, . . . and no function symbols nor equality.3 SL denotes the set
of sentences of L and QFSL denotes the set of quantifier free sentences in SL.

A probability function on L is a function w : SL → [0, 1] such that for any
θ, φ,∃xψ(x) from SL,

(i) If |= θ then w(θ) = 1.
(ii) If θ |= ¬φ then w(θ ∨ φ) = w(θ) + w(φ).

(iii) w(∃xψ(x)) = lim
n→∞ w

(
n∨

i=1

ψ(ai)

)

.

Any function w satisfying the above conditions has the properties we usually
expect of probability (see [10, Proposition 3.1]), in particular if ψ logically implies
θ then w(ψ) ≤ w(θ).

Given a probability function w and θ, φ ∈ SL with w(φ) > 0 we define the
conditional probability of θ given φ as usual by

w(θ |φ) =
w(θ ∧ φ)

w(φ)
. (1)

With a fixed φ ∈ SL, w(φ) > 0, the function defined by (1) is also a proba-
bility function.

The aim of Pure Inductive Logic (see for example [10]) is to investigate
the logical or rational assignment of belief, as subjective probability,4 in the
3 In place of ai we sometimes use other letters to avoid subscripts or double subscripts.
4 In our view this makes it an obvious logic to investigate ‘analogical arguments’ where
it is subjective probability which is being propagated by considerations of rationality.

Ancient Indian Logic and Analogy 201

absence of any intended interpretation. To explain this, consider a valid natural
language argument, such as A where lines 1 and 2 are the premises and line
3 the conclusion. What we understand here by ‘valid’ is that this conclusion
is true whenever the premises are true independently of the meaning of ‘fire’
‘smoke’, ‘kitchen’ etc. In other words the conclusion is a logical consequence of the
premises depending only on their form and not on the meaning or interpretation
we give to ‘fire, kitchen’ etc.

Most natural language ‘arguments’ however are not so valid. Instead the
premises only seem to provide some support for the conclusion rather than deem
it categorically true. B is just such an example (though as Matilal points out at [4,
p. 16] and [5, p. 197] contemporary scholars have commonly understood, and in
consequence criticised, the Indian schema as aiming to render a valid conclusion).
Nevertheless we can still investigate the question of how much of this support is
logical or rational, depending only on the form of the premises and conclusion and
not on the actual interpretation of ‘fire’, ‘smoke’ etc. So, just as Predicate Logic
seeks to understand the notion of logical consequence by considering sentences of
a formal language devoid of any particular interpretation, Pure Inductive Logic
aims to address the more general issue of the logical or rational assignment of
probabilities to sentences of a formal language (such as L above) in the absence of
any particular interpretation. Note that this is indeed a more general issue since
the support given by some evidence to a hypothesis arguably can be measured by
the conditional probability of the hypothesis given the evidence. A hypothesis is
a logical consequence of the evidence just when this support is total (probability
1) for all probability functions giving non-zero probability to the evidence.

A key requirement here is the rationality of the probability assignment (with-
out it we would get no further than simply standard Predicate Logic). Whilst we
may not know exactly what we mean by ‘rational’ here nevertheless there are,
in this completely uninterpreted context, some constraints or principles govern-
ing this assignment that we feel are rational and should be enforced. The most
basic of these is that since there is no reason to treat any one constant any
differently from any other interchanging constants should not alter the assigned
probabilities. Precisely, a rational probability function should satisfy:

The Constant Exchangeability Principle, Ex. If θ ∈ SL and the constant
symbol aj does not appear in θ then w(θ) = w(θ′) where θ′ is the result of
replacing each occurrence of ai in θ by aj .5

Similarly, in the absence of any particular interpretation there is no reason
to treat a relation any differently from its negation. This leads to the rationality
requirement on a probability function that it satisfy,

The Strong Negation Principle, SN. w(θ) = w(θ′) where θ′ is the result of
replacing each occurrence of the relation symbol Pi in θ by ¬Pi.

A word of caution here however. In our main theorem below we will formalise
B in a predicate language and then, in this rarified set-up, argue that adopting

5 This formulation of Ex is equivalent to that given in, say, [10], and avoids introducing
extra notation.

202 J.B. Paris and A. Vencovská

the above principles Ex+SN, the conditional probability of the conclusion given
the conjunction of the premises must be at least 1/2 (in fact strictly greater
than 1/2 in all except exceptional circumstances). However for one to accept this
conclusion requires one to agree, or allow for the sake of argument, that all the
relevant information is given in the premises,6 so that the actual interpretation
ceases to matter and nothing essential is lost in the resulting formalisation as
simply uninterpreted sentences of a predicate logic.7 This is what we intend by
a ‘good example’.

4 The Main Result

The following theorem shows that when formalising the Indian Schema as in the
section before last (that is, via a binary relation representing ‘occurring at’) and
assuming that the condition on the example being a good one is taken to be
that it represents all the relevant information, the Schema is at least as rational
as Ex+SN. By this we mean that any probability function on L (where from
now on L is the fixed language with single binary relation symbol R) satisfying
Ex+SN gives probability at least 1/2 to fire occurring on the hill given (just)
that smoke occurs on the hill, and that smoke in the kitchen implied fire in the
kitchen.

Theorem 1. Let w be a probability function on SL satisfying Ex+SN. Let
h, k, s, f be distinct constants from amongst the a1, a2, a3,

Then8

w(R(f, h) |R(s, h) ∧ (R(s, k) → R(f, k))) ≥ w(R(f, h) |R(s, h)) ≥ 1/2. (2)

A few remarks are in order here. Firstly one might object that for the claimed
justification one really requires the left hand term to be strictly greater than 1/2.
In fact it is not difficult to show that if for a particular probability function w
satisfying Ex+SN the left hand term of (2) - and hence also the middle term -
does take the value 1/2 then this w must give the same value 1/2 to

w(R(kn+1, s) |R(k1, s) ∧ R(k2, s) ∧ . . . ∧ R(kn, s)) (3)

for any number of ‘kitchens’ k1, k2, . . . , kn+1. In other words w must completely
dismiss any inductive influence, informally, no matter if all the many kitchens
seen in the past have been smokey this evidence amounts to nothing when it
comes to the probability assigned to the next kitchen seen being also smokey.
Thus to say that a purportedly rational w could fail to give the left hand side

6 Of course one has a vast background knowledge about fires and kitchens etc. none
of which is alluded to in these premises.

7 In other words such reasoning is appropriate only in so far as one is content to apply
a principle of ceteris paribus.

8 To avoid problems with zero denominators we identify w(θ | φ) ≥ w(ψ | η) with w(θ∧
φ) · w(η) ≥ w(ψ ∧ η) · w(φ).

Ancient Indian Logic and Analogy 203

of (2) a value not strictly greater than 1/2 entails saying that it is rational to
give (3) a value of 1/2 for all n, a not-inconsistent position to take but one which
is hardly popular.

Of course one might wish that the support is not simply greater than 1/2
but actually substantially greater. However that can only be achieved by making
additional assumptions beyond simply Ex+SN and currently we cannot envisage
any such assumption which would avoid introducing a subjective element (just
how much is ‘substantially greater’?). This would seem to directly conflict with
the idea of probabilities being assigned on purely rational or logical grounds.

A second remark here concerns our formalization of B. We have chosen to
capture ‘when there was smoke in the kitchen there was fire’, by R(s, k) →
R(f, k). Various other formulations are possible here, for example

R(s, k) ←→ R(f, k), R(s, k) ∧ R(f, k).

In each case one can prove by the same methods that for a probability function
satisfying Ex+SN conditioning R(f, h) on this evidence together with R(s, h)
gives a value of at least one half, see Theorem 5 in the appendix. However in these
cases it is currently open whether or not we can still interleaf w(R(f, h) |R(s, h))
as in Theorem 1.9

Thirdly, in case the reader might object here that the second inequality in
(2) already gives the claimed ‘support’ for R(f, h) from evidence R(s, h) alone
we are at pains to point out that by the assumption that all pertinent evidence
has been included one cannot simply throw away the R(s, k) → R(f, k).

Finally we remark that Matilal’s suggestion from [5, p. 197] that the reasoning
in the Indian Schema may be more correctly understood as inductive, and for
practical purposes providing knowledge of the real world, seems to us along
the lines of the approach we have adopted here: we take the assignment of a
probability of at least one half to the conclusion (equivalently, the conclusion
being at least as probable as its negation) to be a justification for giving the
conclusion the status of a working assumption.

5 Conclusion

We have shown that a version of the Indian Schema expressed in terms of the
binary occurrence relation, as suggested by Staal and Matilal, is actually a con-
sequence of the two of the central principles in Pure Inductive Logic, Constant
Exchangeability and Strong Negation. By this we certainly do not wish to imply
that the ancients were somehow aware of these principles (so this paper is not at
all intended as a contribution to the History of Indian Logic). Rather we simply
intend to point out that the everyday common senseness of the Indian Schema

9 There are several other currently open problems with these, and other formulations
(see for example [7–9]), in particular when the evidence involves multiple smokey
kitchen, and the heterogenous non-smokey lakes, a case not treated at all in this
paper.

204 J.B. Paris and A. Vencovská

does in fact have a formal justification as rational within the context of Pure
Inductive Logic.

This paper has left much open for further research and investigation. For
example in the way we formalise the schema in terms of the paks.a, the con-
comitance, should it be implication, bi-implication or conjunction? Should ‘hill’
be thought of as a constant or a predicate etc., etc.? There is also the issue of
the effect of heterogenous examples and of mixtures of multiple reasons of both
kinds. We have already considered some of these questions in [7–9] within the
context of Pure Inductive Logic but much remains unanswered. One advantage
of using this framework is that following recent advances (see [10]) it is now
equipped with some powerful representation theorems and a choice of attrac-
tive rational principles in addition to Ex+SN. Nevertheless there is the question
whether this is the best framework in which to investigate such classical analog-
ical reasoning, and certainly other have previously been proposed, for example
[3,6,11]. Hopefully this short note will stimulate answers to these questions, not
least from the Indian Logic community who clearly (unlike the present authors)
have first hand access to the original texts and language.

Appendix

To prove the theorem we need to appeal to a representation theorem for proba-
bility functions on L satisfying Ex. First we introduce some notation.

For the language L as above a state description for a1, . . . , an is a sentence
of L of the form ∧

i,j≤n

R(ai, aj)εi,j

where the εi,j ∈ {0, 1} and R(ai, aj)1 = R(ai, aj), R(ai, aj)0 = ¬R(ai, aj). By a
theorem of Gaifman, see [1], or [10, Chap. 7], a probability function on SL is
determined by its values on the state descriptions.

Let D = (di,j) be an N × N {0, 1}-matrix. Define a probability function wD

on SL by setting

wD

⎛

⎝
∧

i,j≤n

R(ai, aj)εi,j

⎞

⎠

to be the probability of (uniformly) randomly picking, with replacement,
h(1), h(2), . . . , h(n) from {1, 2, . . . , N} such that for each i, j ≤ n, dh(i),h(j) = εi,j .
This uniquely determines a probability function on SL satisfying Ex. (For details
see e.g. [10, Chap. 7]).

Clearly convex mixtures of these wD also satisfy Ex. Indeed by the proof of
[10, Theorem 25.1] it follows that any probability function w satisfying Ex can
be approximated arbitrarily closely on QFSL by such convex mixtures. More
precisely:

Ancient Indian Logic and Analogy 205

Lemma 2. For a probability function w on SL satisfying Ex and θ1, . . . , θm ∈
QFSL and ε > 0 there is an N ∈ N and λD ≥ 0 for each N × N {0, 1}-matrix
D such that

∑
D λD = 1 and for j = 1, . . . ,m,

|w(θj) −
∑

D

λDwD(θj)| < ε.

We can extend this representation result to probability functions satisfying
additionally SN as follows.

For θ ∈ SL let θ¬ be the result of replacing each occurrence of R in θ by
¬R and similarly for matrix D as above let D¬ be the result of replacing each
occurrence of 0/1 in D by 1/0 respectively. For w a probability function on SL
set w¬ to be the function on SL defined by

w¬(θ) = w(θ¬).

Then w¬ satisfies Ex and the probability function 2−1(w+w¬) satisfies Ex+SN.
Conversely if w satisfies Ex+SN then w = w¬ so

w = 2−1(w + w¬).

Thus every probability function satisfying Ex+SN is of the form 2−1(v + v¬) for
some probability function v satisfying Ex and conversely every such probability
function satisfies Ex+SN.

Notice that if
w =

∑

D

λDwD

then
w¬ =

∑

D

λDwD¬

and
2−1(w + w¬) =

∑

D

λD2−1(wD + wD¬
).

In particular then by Lemma 2,

Lemma 3. For a probability function w on SL satisfying Ex+SN and
θ1, . . . , θm ∈ QFSL and ε > 0 there is an N ∈ N and λD ≥ 0 for each N × N
{0, 1}-matrix D such that

∑
D λD = 1 and for j = 1, . . . ,m,

|w(θj) − 2−1
∑

D

λD(wD(θj) + wD¬
(θj))| < ε.

Let w be a probability function on SL satisfying Ex and for a 2 × 2 {0, 1}-
matrix

E =
[

e11 e12
e21 e22

]

206 J.B. Paris and A. Vencovská

let

|E|w = w(R(a1, a3)e11 ∧ R(a1, a4)e12 ∧ R(a2, a3)e21 ∧ R(a2, a4)e22).

We will omit the subscript w if it is clear from the context. Notice that when
D = (di,j) is an N × N {0, 1}-matrix, then for E as above we have

|E|wD = N−4
∑

i,j,r,s

de11
i,r de12

i,s de21
j,r de22

j,s , (4)

where x1 = x, x0 = 1 − x. We will write |E|D in place of |E|wD .
A useful observation is that for any probability function w satisfying Ex, |E|

is invariant under permuting rows and permuting columns so for example
∣
∣
∣
∣
1 0
1 0

∣
∣
∣
∣ =

∣
∣
∣
∣
0 1
0 1

∣
∣
∣
∣ ,

∣
∣
∣
∣
1 1
0 0

∣
∣
∣
∣ =

∣
∣
∣
∣
0 0
1 1

∣
∣
∣
∣ ,

∣
∣
∣
∣
1 0
0 1

∣
∣
∣
∣ =

∣
∣
∣
∣
0 1
1 0

∣
∣
∣
∣ ,

∣
∣
∣
∣
1 0
0 0

∣
∣
∣
∣ =

∣
∣
∣
∣
0 1
0 0

∣
∣
∣
∣ =

∣
∣
∣
∣
0 0
0 1

∣
∣
∣
∣ =

∣
∣
∣
∣
0 0
1 0

∣
∣
∣
∣ , (5)

etc. We will use this observation frequently in what follows.
Let

X =

∣
∣
∣
∣

1 1
1 1

∣
∣
∣
∣

+

∣
∣
∣
∣

0 0
0 0

∣
∣
∣
∣
, Y =

∣
∣
∣
∣

1 1
1 0

∣
∣
∣
∣

+

∣
∣
∣
∣

0 0
0 1

∣
∣
∣
∣
, T =

∣
∣
∣
∣

1 0
1 0

∣
∣
∣
∣
, U =

∣
∣
∣
∣

1 0
0 1

∣
∣
∣
∣
, Z =

∣
∣
∣
∣

0 0
1 1

∣
∣
∣
∣
.

Lemma 4. For any probability function w satisfying Ex we have T,Z ≥ U and
X ≥ 2Z, 2T .

Proof. We shall prove that T ≥ U , the other inequalities follow similarly. Let
D = (di,j) be an N × N {0, 1}-matrix and assume first that w = wD. By the
above observation,

T =
1
2

(∣
∣
∣
∣
1 0
1 0

∣
∣
∣
∣
D

+
∣
∣
∣
∣
0 1
0 1

∣
∣
∣
∣
D

)

U =
1
2

(∣
∣
∣
∣
1 0
0 1

∣
∣
∣
∣
D

+
∣
∣
∣
∣
0 1
1 0

∣
∣
∣
∣
D

)

so T ≥ U is the inequality
∑

i,j,r,s

di,r(1 − di,s)dj,r(1 − dj,s) +
∑

i,j,r,s

(1 − di,r)di,s(1 − dj,r)dj,s

≥
∑

i,j,r,s

di,r(1 − di,s)(1 − dj,r)dj,s +
∑

i,j,r,s

(1 − di,r)di,sdj,r(1 − dj,s)

which is equivalent to the sum over r, s of

(
∑

i

di,r(1 − di,s)

)2

+

⎛

⎝
∑

j

(1 − dj,r)dj,s

⎞

⎠

2

− 2

(
∑

i

di,r(1 − di,s)

)⎛

⎝
∑

j

(1 − dj,r)dj,s

⎞

⎠

Ancient Indian Logic and Analogy 207

being nonnegative, and hence clearly true. From this it follows that the result
holds for convex combinations of the wD and hence by Lemma 2 for general w
satisfying Ex.

Proof of Theorem 1. We start with the left hand side inequality. Let w be a
probability function satisfying Ex+SN. If w(R(s, h)∧(R(s, k) → R(f, k)) and/or
w(R(s, h)) equals 0 then (2) holds by our convention, so assume that these values
are nonzero. Consider an approximation 2−1

∑
D λD(wD + wD¬

) of w for the θ
of the form

R(f, h)e11 ∧ R(f, k)e12 ∧ R(s, h)e21 ∧ R(s, k)e22

with small ε and N ∈ N as guaranteed by Lemma 3.
For an N ×N {0, 1}-matrix D = (di,j), write u for 2−1(wD +wD¬

). We have

u(R(f, h) ∧ R(s, h) ∧ (R(s, k) → R(f, k)) = 2−1(XD + 2TD + YD),

u(R(s, h) ∧ (R(s, k) → R(f, k)) = 2−1(XD + 2TD + 3YD + 2UD),

u(R(f, h) ∧ R(s, h)) = 2−1(XD + 2TD + 2YD),

u(R(s, h)) = 2−1(XD + 2TD + 4YD + 2UD + 2ZD).

Let D̂ be another (not necessarily distinct) N × N {0, 1} matrix. Working with
approximations of w for arbitrarily small ε it can be seen that to show (2) for w
it suffices to demonstrate that for any pair D, D̂ we have

(XD + 2TD + YD)(XD̂ + 2TD̂ + 4YD̂ + 2UD̂ + 2ZD̂)
+ (XD̂ + 2TD̂ + YD̂)(XD + 2TD + 4YD + 2UD + 2ZD)

≥ (XD + 2TD + 3YD + 2UD)(XD̂ + 2TD̂ + 2YD̂)
+ (XD̂ + 2TD̂ + 3YD̂ + 2UD̂)(XD + 2TD + 2YD).

This simplifies to

2XDZD̂ + 4TDZD̂ + 2YDZD̂ + 2XD̂ZD + 4TD̂ZD + 2YD̂ZD ≥ 4YD̂YD + 2UDYD̂ + 2UD̂YD

and since by Lemma 4 we have ZD ≥ UD, ZD̂ ≥ UD̂, it suffices to show that

(XD + 2TD)ZD̂ + (XD̂ + 2TD̂)ZD ≥ 2YD̂YD. (6)

We have

XD + 2TD =
∑

i,j

[(∑

r

di,rdj,r

)2 +
(∑

s

(1 − di,s)(1 − dj,s)
)2

+ 2
(∑

r

di,rdj,r

)(∑

s

(1 − di,s)(1 − dijs)
)]

=
∑

i,j

(∑

r

di,rdj,r +
∑

s

(1 − di,s)(1 − dj,s)
)2

=
∑

i,j

(xi,j + yi,j)2, (7)

208 J.B. Paris and A. Vencovská

where
xi,j =

∑

r

di,rdj,r, yi,j =
∑

s

(1 − di,s)(1 − dj,s).

Similarly
ZD =

∑

i,j

(∑

r,s

di,rdi,s(1 − dj,r)(1 − dj,s)
)

=
∑

i,j

z2i,j (8)

where
zi,j =

∑

r

di,r(1 − dj,r),

and, using (5),

YD =
∑

i,j

(∑

r

(1 − di,r)dj,r

)(∑

s

di,sdj,s +
∑

s

(1 − di,s)(1 − dj,s)
)

=
∑

i,j

zi,j(xi,j + yi,j). (9)

Similarly for D̂ = (d̂i,j). Writing ui,j for xi,j+yi,j etc., the inequality (6) becomes

(∑

i,j

u2
i,j

)(∑

i,j

ẑ2i,j
)

+
(∑

i,j

û2
i,j

)(∑

i,j

z2i,j
)

≥ 2
(∑

i,j

zi,jui,j

)(∑

i,j

ẑi,j ûi,j

)

which holds since for any particular pairs i, j and g, h,

u2
i,j ẑ

2
g,h + û2

g,hz2i,j ≥ 2zi,jui,j ẑg,hûg,h.

Turning to the right hand side inequality it is enough to show that

w(R(f, h) ∧ R(s, h)) ≥ 2−1w(R(s, h)),

equivalently
w(R(f, h) ∧ R(s, h)) ≥ w(¬R(f, h) ∧ R(s, h)).

Proceeding as above (but much simpler since it does not need to involve the D̂)
it is sufficient to show that

XD + 2TD ≥ 2UD + 2ZD,

and indeed this holds by Lemma 4. �

Theorem 5. Let w be a probability function on SL satisfying Ex+SN. Let
h, k, s, f be distinct constants from amongst the a1, a2, a3,

Then
w(R(f, h) |R(s, h) ∧ (R(s, k) ←→ R(f, k))) ≥ 1/2.

w(R(f, h) |R(s, h) ∧ (R(s, k) ∧ R(f, k))) ≥ 1/2.

Ancient Indian Logic and Analogy 209

Proof. Starting with the bi-implication case and proceeding as in the proof of
the second inequality in Theorem 1 it is enough to show that

XD + 2TD ≥ 2YD. (10)

To this end notice that

XD =
∑

r,s

((∑

i

di,rdi,s
)2

+
(∑

i

(1 − di,r)(1 − di,s)
)2)

,

2TD = 2
∑

r,s

(∑

i

di,r(1 − di,s)
)2

,

2YD =
∑

r,s

2
((∑

i

di,r(1 − di,s)
)(∑

i

(1 − di,r)(1 − di,s) +
∑

i

di,r(1 − di,s)
)(∑

i

di,rdi,s
))
.

Writing

Ar,s =
∑

i

di,rdi,s, Br,s =
∑

i

(1 − di,r)(1 − di,s), Cr,s =
∑

i

di,r(1 − di,s)

the required inequality becomes
∑

r,s

(
A2

r,s + B2
r,s + 2C2

r,s − 2Ar,sCr,s + 2Br,sCr,s

)
≥ 0,

which clearly holds.
The second inequality in the theorem can likewise be reduced to showing

that XD ≥ YD and this follows from (10) and Lemma 4. �

References

1. Gaifman, H.: Concerning measures on first order calculi. Israel J. Math. 2, 1–18
(1964)

2. Ganeri, J.: Indian Logic: A Reader. Routledge, New York (2001)
3. Ganeri, J.: Ancient Indian logic as a theory of case based reasoning. J. Indian

Philos. 31, 33–45 (2003)
4. Matilal, B.K.: The Character of Logic in India. SUNY Series in Indian Thought.

State University of New York Press, Albany (1998) (Ed. Halbfass, W.)
5. Matilal, B.M.: Introducing Indian logic. In: Ganeri, J. (ed.) Indian Logic, A Reader.

Routledge (2001)
6. Oetke, C.: Ancient Indian logic as a theory of non-monotonic reasoning. J. Indian

Philos. 24, 447–539 (1996)
7. Paris, J.B., Vencovská, A.: The Indian schema as analogical reasoning. http://

eprints.ma.man.ac.uk/2436/01/covered/MIMS ep2016 10.pdf
8. Paris, J.B., Vencovská, A.: The Indian schema analogy principles. IfCoLog J. Logics

Appl. http://eprints.ma.man.ac.uk/2436/01/covered/MIMS ep2016 8.pdf
9. Paris, J.B., Vencovská, A.: Ancient Indian Logic, Paks.a and Analogy. In: Proceed-

ings of the joint Conference of the 3rd Asian Workshop on Philosophical Logic
(AWPL 2016) and the 3rd Taiwan Philosophical Logic Colloquium (TPLC 2016),
Taipei, October 2016 (to appear)

http://eprints.ma.man.ac.uk/2436/01/covered/MIMS_ep2016_10.pdf
http://eprints.ma.man.ac.uk/2436/01/covered/MIMS_ep2016_10.pdf
http://eprints.ma.man.ac.uk/2436/01/covered/MIMS_ep2016_8.pdf

210 J.B. Paris and A. Vencovská

10. Paris, J.B., Vencovská, A.: Pure Inductive Logic. Association of Symbolic Logic
Perspectives in Mathematical Logic Series. Cambridge University Press, New York
(2015)

11. Schayer, S.: On the method of research into Nyāya (translated by J. Tuske). In:
Ganeri, J. (ed.) Indian Logic: A Reader, pp. 102–109. Routledge, London, New
York (2001)

12. Staal, J.F.: The concept of Paks.a in Indian Logic. In: Ganeri, J. (ed.) Indian Logic:
A Reader, pp. 151–161. Routledge, London, New York (2001)

Definability of Recursive Predicates
in the Induced Subgraph Order

Ramanathan S. Thinniyam(B)

The Institute of Mathematical Sciences,
CIT Campus, Taramani, Chennai 600113, India

thinniyam@imsc.res.in

Abstract. Consider the set of all finite simple graphs G ordered by the
induced subgraph order ≤i. Building on previous work by Wires [14] and
Jezek and Mckenzie [5–8], we show that every recursive predicate over
graphs is definable in the first order theory of (G,≤i, P3) where P3 is the
path on 3 vertices.

1 Introduction

Finite graphs and graph theory have become of central importance with the
advent of computer science since many computational problems can be modelled
using them. Alongside this, the logical study of graphs has gained importance.

The “graph as a model” way of looking at graphs is the flourishing field of
descriptive complexity, which has had success in creating logical objects equiv-
alent to computational complexity classes. However, we will use a different way
of looking at graphs. We will study the set of all isomorphism types of simple
finite graphs (referred to as “graphs” from here on and denoted G) with a single
relation on G, namely the induced subgraph relation (please see Fig. 1). This and
other such relations such as the subgraph relation and the minor relation form
interesting partial orders and their first order theory has been studied [13,14].

Note in particular that we do not have explicit access to the edge relation
inside a particular graph, since we only have the single order relation as the
vocabulary. Inspite of this, many graph families such as paths, cycles, cliques
etc. and graph theoretical concepts such as connectivity, maximum degree etc.
can be expressed in the first order theory of such objects, though in an indirect
way. Thus we continue the exploration of the definablity and decidability in these
first order theories (and their fragments).

Our work can be considered as continuing that of Jezek and Mckenzie [5–8],
who studied the substructure orderings on various kinds of finite objects such
as posets, lattices etc. This was later extended to the induced subgraph order
by Wires [14]. The primary objective of these model theoretic studies is the
determination of the automorphism group of these objects. On the other hand,
our motivation is to explore the computational content of these objects.

To further this aim, we prove that the set of all recursive predicates is defin-
able in the object (G,≤i, P3) i.e. the induced subgraph order with a constant P3

c© Springer-Verlag GmbH Germany 2017
S. Ghosh and S. Prasad (Eds.): ICLA 2017, LNCS 10119, pp. 211–223, 2017.
DOI: 10.1007/978-3-662-54069-5 16

212 R.S. Thinniyam

for the path on three vertices. The notion of recursive predicate we use is that
of recognizability by a Turing machine of the encodings of graphs as numbers,
for a fixed encoding that we define. We obtain the result by combining classical
results on arithmetical definability and previous work by Jezek and McKenzie,
and Wires.

Other work on orders on combinatorial objects includes that by Kunos [11]
on the subdigraph order; and on word orders by Kuske [12].

Fig. 1. The first few levels of the induced subgraph order. The arrows indicate the
covering relation. ∅ is the empty graph.

While we are able to answer the question about definability of recursive
predicates, our methods are too coarse to handle questions of definability of
complexity classes (which are of course a strict subset of recursive predicates),
say the set of all PTIME predicates over graphs. In addition, we do not take
up the problem of precisely determining the logical resources required for the
result. This paper is part of a preliminary investigation of the strength of such
theories of combinatorial objects.

2 Preliminaries

First we give some definitions regarding graphs.

Definition 1 (Labelled Graph). A (finite) labelled graph g is a structure
(Vg, Eg, Lg) with

1. finite domain (aka vertex) set Vg,

Definability of Recursive Predicates in the Induced Subgraph Order 213

2. a symmetric binary relation Eg ⊆ Vg × Vg which is the edge set of the graph,
and

3. a bijective function Lg : Vg → [n] where [n] stands for the initial segment
{1, 2, 3..., n} of the natural numbers with n = |Vg| i.e. n is the number of
vertices in the graph.

We will write vi to denote the vertex whose image under Lg is i. We will write
vivj to denote the edge (if it exists) between vi and vj . In addition, we restrict
ourselves to simple graphs i.e. graphs which dont have edges of the form (vi, vi)
for some vi ∈ Vg.

Definition 2. An isomorphism between two labelled graphs g1 and g2 is a bijec-
tion η : Vg1 → Vg2 such that for any two vertices vi, vj of g1, the edge vivj exists
if and only if there is an edge between vertices η(vi), η(vj) in g2.

We say g1 is isomorphic to g2 if there is an isomorphism between them, and
write g1 � g2. The relation � is an equivalence relation on the set of all finite
labelled graphs.

Definition 3 (Graph). By a graph g, we mean an equivalence class under the
relation � over the set of all finite labelled graphs. The set of all graphs will be
denoted G.

We will write g = [g′] to denote that the graph g is the isomorphism type of the
labelled graph g′.

All variables x, y, z occuring in formulae denote graphs and not labelled
graphs. However, we will however need to talk about specific vertices or edges
inside a graph and thus will require a labelling. So we will abuse notation and
use u, v to talk of vertices of a graph (not a labelled one), uv for the edge joining
u and v, and e to denote the edge of a graph. We denote graphs by g, h, and
graph families by caligraphic letters such as P, C.

We will denote by Ni,Ki, Ci, Si, Pi the graph consisting of i isolated vertices,
the i-clique, the cycle on i vertices, the star on i vertices and the path on i
vertices respectively (see Fig. 2); and by N ,K, C,S,P the corresponding families
of isolated vertices, cliques, cycles, stars and paths. We denote the cardinality
(number of vertices) of a graph g by |g|, and the disjoint union of graphs g and
h by g ∪ h.

Next we need some definitions regarding the first order structures we study
and definability in them.

For the standard syntax and semantics of first order logic, we refer the reader
to Enderton [2].

Definition 4 (Induced Subgraph Order). We consider the first order theory
of the structure (G,≤i, P3) where P3 is a constant symbol for the path on three
vertices and the ≤i is the induced subgraph order which is defined as: g ≤i g′ iff
g can be obtained from g′ by deleting some (arbitrarily many) vertices of g′.

214 R.S. Thinniyam

The constant symbol P3 is used to break the symmetry of the induced subgraph
order which by itself cannot distinguish between a graph and its complement
since the map sending a graph to its complement is an automorphism of the
order.

Definition 5 (Arithmetic). By arithmetic, we mean the first order theory of
the structure (N, φ+, φ×) where N is the set of all natural numbers and φ+, φ×
are ternary predicates for addition and multiplication respectively.

We will also use variables x, y, z to denote numbers in arithmetical formulae;
and lower case letters k, l,m, n to denote numbers.

Definition 6 (Constant Definability). Fix a first order language L. Let e be
an element of the domain of an L-structure A. We say that e is definable in A,
if there exists an L formula αe(x) in one free variable, such that A, e � αe(x)
and for any e′ �= e in the domain of A, A, e′

� αe(x).

For any definable domain element e, we use e as a constant symbol repre-
senting the domain element because an equivalent formula can be written in the
language L via use of the defining formula αe.

Definition 7 (Covering Relation of a Poset). Given elements x, y of a
poset (P,≤) we define the covering relation x � y as x � y iff x < y and there
exists no element z of P such that x < z < y. This can easily written using a
first order formula in the vocabulary of {≤}.

Definition 8 (Definability of Predicates). We say a predicate is definable
in arithmetic iff it is definable in (N, φ+, φ×) and a predicate is definable in
graph theory iff it is definable in (G,≤i, P3).

We use the symbol φ for arithmetical formulae and ψ for graph theory formulae
to aid the reader.

Observation 1. For any definable family F of (G,≤i, P3) which forms a total
order under ≤i, every member of F is definable as a constant.

To see this, first observe that there exists a minimum element f1 in F by well
foundedness of the order ≤i.

f1(x) := F(x) ∧ (∀y F(y) ⊃ (y ≤i x))

Assuming fn (the nth smallest element of F) has been defined, fn+1 can be
defined as the unique cover of fn in F .

Next we have the definitions we need to formalize the meaning of “recursive
predicate over graphs.” There exist notions of computability and recursive pred-
icates over abstract structures (see [3]), but these are fairly technical. For our
purposes, we use a fixed encoding of graphs as strings so that the standard notion
of a computable predicate as one accepted by a Turing machine can be used. We
encode graphs as numbers (equivalently binary strings). These encodings were
originally introduced by us in previous work [13].

Definability of Recursive Predicates in the Induced Subgraph Order 215

Fig. 2. Isolated points, path, cycle, clique and star of order 5 from left to right.

Definition 9 (Number Representation of a Graph). A number represen-
tation of a graph g is defined using the following procedure.

1. Choose an labelled graph g′ such that g = [g′]. The order on vertices given by
Lg′ induces an order ≤e on set S of all tuples of vertices (vi, vj) of g with
j < i. Let (vi, vj) and (vk, vl) belong to S (i.e. j < i, l < k). Then (vi, vj) ≤e

(vk, vl) iff i < k or i = k, j < l.
2. Arrange all the tuples belonging to S in descending order by ≤e to form the

sequence seq.
3. Create the number m whose binary expansion is

(
n
2

)
+ 1 bits long and has the

following property: the most significant bit is 1 (always true for a number).
The ith most significant bit is 0 or 1 according to whether the i − 1th tuple in
seq corresponds to a non-edge or edge (respectively) of the labelled graph g′.

The number m is called a number representation of the graph g.

Definition 10 (Unique Number Representation). The unique number
representation of a graph g is the least number m such that it is a number
representation of g and is denoted UN(g). Note that the map UN : G → N is
a one-one map. (See Fig. 3 for an example.)

Fig. 3. Two different number representations of P3 corresponding to two different
labellings. The one on the left (i.e. 1011 in binary which is the number 11) is UN(P3).

Observation 2. The representation UN induces an ordering on the vertices of
the graph which comes from the underlying labelled graph.

We can finally state what we mean by recursive predicates over graphs.

216 R.S. Thinniyam

Definition 11. We say a predicate R ⊆ Gn is recursive if there exists a Turing
machine M such that

R(ḡ) ⇐⇒ UN(ḡ) ∈ L(M)

i.e. the Turing machine accepts exactly the tuples of strings which correspond to
UN encodings of tuples belonging to R.

3 Main Result

We note that the richness of a structure (for instance, its ability to interpret
arithmetic) does not automatically imply the obtained result. Something more
is required: the ability of the structure to perform operations on its elements,
and in some sense, access its own internal structure in a way that is first order
definable.

We will state the main result and show how the various modules come
together to form the proof. Some of the details are postponed to make the
presentation more understandable.

Theorem 1. Every recursive predicate R ⊆ Gn on graphs is definable in
(G,≤i, P3).

We need to show that for every recursive predicate R ⊆ Gn over graphs, there
exists a formula ψR(x̄) (where |x̄| = n) in graph theory such that for any n-tuple
of graphs ḡ,

R(ḡ) ⇐⇒ (G,≤i, P3) |= ψR(ḡ)

Since R is a recursive predicate, by Definition 11 there exists a machine M which
accepts the UN number encodings of the set of graphs which belong to R.

R(ḡ) ⇐⇒ UN(ḡ) ∈ L(M)

The following is a classical theorem (see Appendix for a proof sketch):

Theorem 2. Every recursive predicate R on numbers is definable in arithmetic.

Thus there is an arithmetic formula φUN(R)(x̄) such that for any tuple n̄ of
numbers,

(N, φ+, φ×) |= φUN(R)(n̄) ⇐⇒ n̄ ∈ UN(R)

Next we recall that

Theorem 3 (Wires [14]). Arithmetic i.e. (N, φ+, φ×), is definable in graph
theory i.e.,(G,≤i, P3).

In particular, the image set of the following map from numbers to graphs is
definable:

UG : G → N

Definability of Recursive Predicates in the Induced Subgraph Order 217

UG takes a number n to the graph Nn which consists of n isolated points. There
also exist defining formulae in graph theory for the predicates:

ψ(+)(x, y, z) iff ;x, y, z ∈ N and |x| + |y| = |z|.
ψ×(x, y, z) iff ;x, y, z ∈ N and |x| × |y| = |z|

We will write |x| to denote the graph N|x| since there is a formula which
defines the binary predicate Norder(x, y) iff |x| = |y| and y ∈ N .

We will abuse notation by writing i instead of Ni and expressions such as
i + j, ij will be taken to mean the member of N such that its order equals
i + j, i × j respectively. Similarly, since the order relation < over the naturals
is definable using addition, we will use quantifiers such as ∀1 < j < n in graph
theory whose meaning is really ∀j N (j) ∧ N1 ≤i j ∧ j ≤i Nn.

Observation 3. For every formula φ(x̄) in arithmetic there is a formula ψt(x̄)
in graph theory such that

(N, φ+, φ×) |= φ(n̄) ⇐⇒ (G,≤i, P3) |= ψt(UG(n̄))

Applying this translation to the formula φUN(R)(n̄) gives us the graph formula
ψt
UN(R)(UG(n̄)).

Given a graph g, the above formula essentially states what we require but in
terms of the graph UG(UN(g)). If there were a definable way to go between these
two graphs inside the induced order, we could potentially “do the computation
inside arithmetic and come back”. This is essentially what we do to get the
formula we require. In order to do this we require two things:

1. Acess to the edge relation inside arithmetic so that we can carry out the
required computation inside arithmetic.

2. The ability to access the internal structure of a graph using the induced
subgraph order.

The first of these has already been accomplished in previous work:

Theorem 4 ([13]). The following predicates are definable in arithmetic:

1. φUN (x) iff x is a number which represents an isomorphism type of a graph as
given in Definition 10.

2. φedge(x, i, j) iff x is a number representation of graph gx and vivj ∈ Egx .
3. φlength(n, x) iff the length of the binary representation of x is n. We will just

write length(x) to denote n.

Now we tackle the second problem i.e. that of accessing the internal structure
of a graph. This is accomplished by using definable “vertex labelled representa-
tions” of graphs (which are themselves graphs), called o-presentations. This was
first introduced by Jezek and Mckenzie, and defined for graphs by Wires.

Definition 12 (o-presentation). An o-presentation of g ∈ G is another graph
g̃ defined as follows: Fix an enumeration v1, v1, .., vn of vertices of g. Let g′ be the
graph formed by the disjoint union of g and the cycles Cn+i+2 for each 1 ≤ i ≤ n.
Add n additional edges to g′ connecting each cycle Cn+i+2 to the corresponding
vertex vi. The resulting graph is denoted g̃.

218 R.S. Thinniyam

Fig. 4. Top left: the star graph S4. Bottom left: a vertex labelling of S4. Right: the
o-presentation corresponding to the vertex labelling.

Given a graph g, an o-presentation can be regarded as the representation of a
labelled graph g′ with g = [g′], as another graph g̃. From the example in the
Fig. 4, it is clear that there is a bijective correspondence between o-presentations
and labellings of a graph.

The proof of the following lemma is deferred to the end of the section so as
to not obstruct the flow of the main proof:

Lemma 1. The following predicates are definable in (G ≤i, P3):

1. The set of all o-presentations, denoted G̃ i.e. G̃(x) holds iff there is a graph y
such that x is an o-presentation of y.

2. The predicate ψopres(x, y) iff y is an o-presentation x̃ of x, also written y = x̃
for short.

3. ψedgeOP (x, i, j) iff there exists a graph y such that y = x̃ and in the vertex
labelling corresponding to the o-presentation, there is an edge between vertices
vi and vj in the graph y.

Using Lemma 1 and Theorem 4 we can now define the binary relation n =
UG(UN(x)) by the formula ψenc(x, n):

ψenc(x, n) :=n ∈ N ∧ ∃y y = x̃ ∧ ψt
graphOrder(n, |x|)

∧ ψt
UN (n) ∧ ∀1 ≤ i < j ≤ |x|

ψt
edge(n, i, j) ⇐⇒ ψedgeOP (y, i, j)

The formula asserts that n is a trivial graph (has no edges) and there exists an
o-presentation y of x such that there exists an edge between vertices vi and vj in
the enumeration of the graph g corresponding to the o-presentation if and only
if there is an edge between vertices vi and vj in an enumeration of the graph
which is consistent with the UN representation.

By use of Lemma 1, we are able to write y = x̃. The formulae ψt
edge

and ψt
UN (n) are the translations of the formulae from Theorem4 by using

Definability of Recursive Predicates in the Induced Subgraph Order 219

Observation 3. ψt
graphOrder is the translation of the following arithmetic formula

φgraphOrder(n,m) := length(n) = 1 + m(m − 1)/2

Note that the arguments in the translated formulae have to be members of
the family N and are applied to the image graph under the map UG while the
arithmetic formulae are on the numbers obtained from the inverse of this map.
Also note the use of ∀1 ≤ i < j ≤ |x| which is syntactic sugar for a more involved
formula we can write in graph theory due to definability of arithmetic (recall
remarks under Theorem3). We can now define R in the induced subgraph order:

ψR(x̄) := ∃ȳ

n∧

i=1

ψenc(xi, yi) ∧ ψt
UN(R)(ȳ)

ψR essentially inverts the encoding function UN to go back from the number
encodings to the graphs.

All that remains to be done is the proof of Lemma1. In order to do so, we
need some machinery:

Lemma 2 (Wires [14]). The following predicates are definable in (G,≤i, P3).

1. The families N ,K, C,P standing for trivial graphs, complete graphs (cliques),
cycles and paths respectively.

2. |x| = |y| iff x and y have the same cardinality (i.e. same number of vertices,
also known as order of the graph).

3. maxComp(x, y) iff x is a maximal connected component of y.
4. cover(x, y, n) iff there are exactly n − 1 graphs between x and y in the order

and x ≤i y. Also denoted x �

n
i y.

cover(x, y, n) := |x| + n = |y|

The order of the graph defines a layering of the induced subgraph order.
5. z = x ∪ y iff z is the disjoint union of x and y.
6. C→1(x) iff x is the connected graph formed by adding one extra vertex and

one extra edge to a cycle.
7. conn(x) iff x is a connected graph.
8. C→2(x) iff x is graph formed by taking a graph g with C→1(g) and adding an

additional vertex and joining it to the unique degree 1 vertex in g.
9. pointedCycleSum(x, y, z) iff x and y are incomparable cycles and z is formed

by starting with the graph x ∪ y and adding one extra vertex v and two extra
edges, one from v to any vertex of x and another from v to any vertex of y.
We will write z = x +p y for short.

Notice that from the definability of C→1(x) we also have definability of the graph
Ci→1 which stands for the member of C→1 of order i + 1 because the family is
totally ordered by number of vertices and for similar reasons as Observation 1.
Additionally, given a parameter n, we can obtain Cn→1.

We are now ready to give a proof of Lemma 1:

Proof of Lemma 1. We recollect the statement. The following are definable in
graphs:

220 R.S. Thinniyam

1. The set of all o-presentations, denoted G̃ i.e. G̃(x) holds iff there is a graph y
such that x is an o-presentation of y.

2. The predicate ψopres(x, y) iff y is an o-presentation x̃ of x, also written y = x̃
for short.

3. ψedgeOP (x, i, j) iff there exists a graph y such that y = x̃ and in the ver-
tex labelling corresponding to the o-presentation, there is an edge between
vertices vi and vj in the graph y.

Proof. We take up the definition of the family G̃. First we note that given a
number n, we can construct the object

⋃n
i=1 Cn+i+2 as follows:

csum(n, x) iff n ∈ N and x =
n⋃

i=1

Cn+i+2.

csum(n, x) := ∀z maxComp(z, x) ⊃ C(z)
∧ cardCond(n, x) ∧ allCycles(n, x)
where

cardCond(n, x) := N (n) ∧ |x| = n2 + n(n + 1)/2 + 3n
allCycles(n, x) := ∀m (n + 3 ≤ m ≤ 2n + 2) ⊃ Cm ≤i x

The formula constrains every maximal component to be a cycle using the
maxComp predicate. This forces all the cycles to be disjoint. Enforcing the
cardinality condition and the fact that each cycle has to be present (allCycles)
makes sure that the graph is made up of exactly one copy of each cycle and
nothing else.

Now we can define the set of o-presentations as follows:

G̃(x) := ∃n cardCond(n, x) ∧ hasC1s(n, x)
∧ hasUnionOfCycles(n, x)
where

cardCond(n, x) := N (n) ∧ |x| = n2 + n(n + 1)/2 + 3n
hasC1s(n, x) := ∀i (1 ≤ i ≤ n) ⊃ Ci+n+2→1 ≤i x

hasUnionOfCycles(n, x) :=
n⋃

i=1

Cn+i+2 ≤i x

The formula cardCond states that the graph has as many vertices as required to
contain as induced subgraph a graph on n vertices and cycles of order n+i+2 for
each i between 1 and n. hasCycles states that the C→1 are induced subgraphs.
hasUnionOfCycles states that the disjoint union of all the required cycles is an
induced subgraph. Because of the cardinality constraint already imposed, this
implies that there is a unique copy of each cycle in x. In addition, there are no
chord or edges between the cycles. No restriction is place on the edges between
the non-cycle vertices. Thus the resulting graph x is of the required form.

Definability of Recursive Predicates in the Induced Subgraph Order 221

We take up the second predicate, ψopres(x, y) iff y is an o-presentation of x.

ψopres(x, y) := |y| = |x|2 + |x|(|x| + 1)/2 + 3|x| ∧ G̃(y)

∧ ∃z z = x ∪
|x|⋃

i=1

P|x|+1+i ∧ z �

|x|
i y

The object
⋃n

i=1 Pn+i+1 can be constructed given n by taking the appropriate⋃n
i=1 Cn+i+2, deleting n vertices from it, and enforcing the condition that no

cycles are present.
The formula ψopres states that y is an o-presentation of appropriate order

and deletion of |x| vertices from y gives the disjoint union of x with paths of size
|x| + 2 to 2|x| + 1. The only way to get an o-presentation by adding |x| vertices
to z is to add two edges between every new vertex and and ends of one of the
paths and one edge from the new vertex to a vertex in x. Thus any such y must
be an o-presentation of x.

Moving on to the last predicate ψedgeOP (x, i, j), we first need the following
intermediate predicate:

CP4C(x, i, j) iff i, j ∈ N , 3 < i < j and x is formed by adding to the graph
Ci ∪ Cj two additional vertices v1, v2 and the edge v1v2, one edge between Ci

and v1 and one edge between Cj and v2. We denote x by CP4C(i, j).

CP4C(x, i, j) := conn(x) ∧ N (i) ∧ N (j) ∧ 3 < i < j

∧ Ci +p Cj �i x

∧ Ci→1 ∪ Cj �i x ∧ Cj→1 ∪ Ci �i x

From the definition, x has to be obtained by adding one new vertex v to
g0 = Ci→1 ∪ Cj and some number of edges which are incident on v. Notice
that there is only one copy of Cj present as subgraph in x because of cardinality
constraints. Thus there is exactly one edge between v and Cj (connectivity con-
straint). If there were multiple edges, we cannot get Cj→1 as induced subgraph.
Now suppose there is also exactly one edge from v to copy of Ci in g0, then we
can get Ci +p Cj as induced subgraph, which is not allowed. Suppose there are
multiple edges between v and copy of Ci in g0, then we cannot get Cj→1 ∪ Ci as
induced subgraph from x by deleting a single vertex (since v remains connected
to the rest of the graph not considering Cj on deleting only one vertex). But
given the connectivity constraint, there must be an edge from v to the dangling
vertex of Ci→1 inside g0. Thus the graph we get is the required graph.

We can now write

ψedgeOP (x, i, j) := ∃y x = ỹ ∧ ∃m (|x| = m2 + m(m + 1)/2 + 3m)
∧ CP4C(m + i + 2,m + j + 2) ≤i x

The existence of an edge between vertices vi and vj in the graph x is captured
by the presense of a CP4C induced subgraph in y (which is an o-presentation of
x) with appropriate parameters and this is stated by the formula ψedgeOP . ��

This concludes the proof of Lemma 1 and thus completes the proof of
Theorem 1.

222 R.S. Thinniyam

4 Discussion

Our result leads to a number of interesting questions and potential areas for
research.

There has been considerable work in the area of bounded arithmetic sys-
tems and their connection to complexity theory [1,10]. An intimate connection
has been shown between propositional proof systems, systems of bounded arith-
metic and complexity theory. Characterizing complexity classes of graph prob-
lems using fragments of the induced subgraph order may prove useful.

The way we have arrived at our result is very roundabout in the sense that
we dont use any “natural computational predicates” over graphs. There may
be such predicates over graphs which are the equivalent of the bit predicate and
exponentiation in arithmetic. It is by carefully controlling these two (and further
expanding the language) that the bounded arithmetic theories were discovered.
In addition, we note that the method of computation we use essentially puts a
total order on the vertices of the graph (via the o-presentation). This is closely
related to the question of “order-invariant querying” which is of much interest
in finite model theory and descriptive complexity [4].

There are related objects such as the subgraph order and the graph minor
order whose expressive power is enough to interpret arithmetic [13] but it is not
clear if o-presentations can be defined in them. On the other hand we do not have
the tools to tackle the problem of proving inexpressibility in such rich structures.
It would be interesting (though doubtful) to see if there are any general methods
to generate o-presentations in different types of structures.

Acknowledgment. I would like to thank my guide Prof. R. Ramanujam for his advice
and discussions on both technical matter and the presentation of this paper.

Appendix: Proof Sketch of Theorem2

Theorem Statement: Every recursive predicate R on numbers is definable in first
order arithmetic.

Proof (sketch). For simplicity we look at the case of only unary predicates,
assume R ⊆ N. Let M = (Q, δ, s, F) be a turing machine over the alphabet
{0, 1}. First, consider strings over the alphabet Σ = (0, 1,#, s, q1, ..., qn) where
Q = {s, q1, ..., qn}. They can be encoded as binary strings by using some encod-
ing e.g. 0 is mapped to 01, 1 to 001, # to 0001, s to 00001, qi to 0i+41. Given any
input x, we can encode the run of the Turing machine as a number y, which we
will think of a string over the extended alphabet Σ (ignoring the 1 in the most
significant digit). y = c1#c2#...#cm where each ci is a string containing exactly
one state symbol and remaining 0’s and 1’s. The placement of the head of the
machine is given by the position just after the state symbol. c1 is sx i.e. the
starting state s concatenated with the input x, cm is a configuration containing
a final state and the relationship between any two consecutive configurations
is restricted based on the transition function δ. All of this can be written as a

Definability of Recursive Predicates in the Induced Subgraph Order 223

formula φR(x) which essentially states “there exists a number y such that the
binary encoding of the number represents an accepting run of the machine on
x”, making crucial use of the bit predicate and exponentiation. For details on
definability in arithmetic, please see Kaye [9]. ��

References

1. Cook, S., Nguyen, P.: Logical Foundations of Proof Complexity. Cambridge Uni-
versity Press, Cambridge (2010)

2. Enderton, H.: A Mathematical Introduction to logic. Academic Press, Burlington
(2001)

3. Fitting, M.: Fundamentals of Generalized Recursion Theory. Elsevier, Amsterdam
(2011)

4. Grohe, M.: The quest for a logic capturing PTIME. In: 23rd Annual IEEE Sym-
posium on Logic in Computer Science, LICS 2008, pp. 267–271. IEEE (2008)

5. Ježek, J., McKenzie, R.: Definability in substructure orderings, IV: finite lattices.
Algebra Univers. 61(3–4), 301–312 (2009)

6. Ježek, J., McKenzie, R.: Definability in substructure orderings, I: finite semilattices.
Algebra Univers. 61(1), 59–75 (2009)

7. Ježek, J., McKenzie, R.: Definability in substructure orderings, III: finite distrib-
utive lattices. Algebra Univers. 61(3–4), 283–300 (2009)

8. Ježek, J., McKenzie, R.: Definability in substructure orderings, II: finite ordered
sets. Order 27(2), 115–145 (2010)

9. Kaye, R.: Models of Peano arithmetic. Oxford University Press, Oxford (1991)
10. Krajicek, J.: Bounded Arithmetic, Propositional Logic and Complexity Theory.

Cambridge University Press, Cambridge (1995)
11. Kunos, Á.: Definability in the embeddability ordering of finite directed graphs.

Order 32(1), 117–133 (2015)
12. Kuske, D.: Theories of orders on the set of words. RAIRO Theor. Inform. Appl.

40(01), 53–74 (2006)
13. Ramanujam, R., Thinniyam, R.S.: Definability in first order theories of graph

orderings. In: Artemov, S., Nerode, A. (eds.) LFCS 2016. LNCS, vol. 9537, pp.
331–348. Springer, Heidelberg (2016). doi:10.1007/978-3-319-27683-0 23

14. Wires, A.: Definability in the substructure ordering of simple graphs. Ann. Comb.
20(1), 139–176 (2016)

http://dx.doi.org/10.1007/978-3-319-27683-0_23

Computational Complexity of a Hybridized
Horn Fragment of Halpern-Shoham Logic

Przemys�law Andrzej Wa�l ↪ega(B)

Institute of Philosophy, University of Warsaw, Warsaw, Poland
p.a.walega@gmail.com

Abstract. We propose hybridization of sub-propositional fragments of
Halpern-Shoham logic as a way of obtaining expressive and decidable
referential interval temporal logics. In the paper, we hybridize a Horn
fragment of Halpern-Shoham logic whose language is restricted in its
modal part to necessity modalities, and prove that satisfiability problem
in this fragment is NP-complete over reflexive or an irreflexive and dense
underlying structure of time.

Keywords: Interval logic · Hybrid logic · Computational complexity

1 Introduction

Temporal reasoning constitutes one of the main topics investigated within the
field of AI and has been successfully applied in a number of areas, e.g., philoso-
phy, program verification, automatic planning, etc. Logics that serve to formalise
reasoning about time may be divided into two categories, namely point-based and
interval-based depending on the type of primitive ontological objects involved in
the representation. The latter approach seems to be more natural for human-
like reasoning and more suitable for continuous process modelling or representing
constructs from natural language [8].

An elegant and well studied interval-based temporal logic was introduced
by Halpern and Shoham in [10] as a propositional multimodal logic. The logic
(denoted by HS) introduces one modal operator for each of the well-known Allen
relations [1], except “equals” relation. The Allen relations form a jointly exhaus-
tive and pairwise disjoint set of binary relations between intervals, namely: begins
(relB), during (relD), ends (relE), overlaps (relO), adjacent to (relA), later than
(relL), their inverses denoted by relB, relD, relE, relO, relA, and relL respectively,
and an equality relation.

HS is highly expressive, in particular it is strictly more expressive than any
point-based temporal logic over linear orders [10]. On the other hand, HS is unde-
cidable for a range of linear orders including N, Z, Q, and R [10]. Therefore, a
number of methods to reduce its computational complexity have been studied.
One approach for reducing the complexity is to restrict the set of modal opera-
tors [7,8]. Another, more recent approach is the investigation of sub-propositional

c© Springer-Verlag GmbH Germany 2017
S. Ghosh and S. Prasad (Eds.): ICLA 2017, LNCS 10119, pp. 224–238, 2017.
DOI: 10.1007/978-3-662-54069-5 17

A Hybridized Horn Fragment of Halpern-Shoham Logic 225

languages such as Horn and core fragments [5,6]. Importantly, full HS is refer-
ential, i.e., it enables us to label intervals and then to refer to a chosen interval
with a concrete label. This kind of reference is a crucial construct in temporal
knowledge representation [2,4] and the most straightforward way to provide it is
to hybridize a logic. That is to add the second sort of expressions to the language
(the so-called nominals), i.e., primitive formulas each of which is true in exactly
one interval, and satisfaction operators indexed by nominals that enable to access
a particular interval denoted by this nominal [4]. Although HS is not a hybrid
logic, it is expressive enough to define the difference operator (which states that
a formula is satisfied in some interval different from the current one), which in
turn can be used to express nominals and satisfaction operators [2]. However,
HS fragments are usually no longer able to express the difference operator and
they lose the ability to refer to particular intervals. The most straightforward
way to restore the referentiality in HS fragments is to hybridize them. Surpris-
ingly, although hybridization of interval temporal logics was already recognised
as a promising line of research [4], it has received only limited attention from
the research community. One exception is an attempt of adding a very restricted
reference property (enabling to state that some propositional variable is satisfied
in a particular interval) [3].

An interesting fragment of HS is a Horn fragment allowing only boxes, i.e.,
necessity modalities (diamonds, i.e., possibility modalities are forbidden) called
HS�

horn [3,5,11]. HS�
horn is known to be tractable (P-complete) if the underlying

structure of time is reflexive, or irreflexive and dense [5]. On the other hand,
this logic is still expressive enough to be used as a template to define temporal
ontology languages [3]. Since HS�

horn maintains a good balance between com-
putational complexity and expressive power, it has recently gained attention
among researchers working on HS [3,5,6,11]. In this paper, we hybridize HS�

horn

and study the computational complexity of the obtained logic (called HS�,i,@
horn).

Our main result is that over reflexive, or irreflexive and dense underlying time
structures hybridization of HS�

horn results in an NP-complete logic – recall that
HS�

horn is P-complete over such structures (in contrast to classical modal logic
which is PSpace-complete before and after hybridization). Hence, adding ref-
erentiality to HS�

horn enables us to maintain decidability but it has a price of
reaching NP-completeness, i.e., losing tractability of the logic (provided that
P �= NP).

The paper is organized as follows. In Sect. 2 we describe HS, HS�
horn, and

its hybrid version HS�,i,@
horn . In Sect. 3 we prove that satisfiability in HS�,i,@

horn is
NP-hard, and in Sect. 4 that this problem is in NP over reflexive and irreflexive
and dense time structures. Finally, in Sect. 5 we briefly conclude the paper.

2 Halpern-Shoham Logic

HS language is a modal language consisting of a set of propositional variables
PROP, propositional constants � (true) and ⊥ (false), classical propositional
connectives ¬,∧,∨,→, and twelve modal operators of the form 〈R〉 such that

226 P.A. Wa�l ↪ega

R ∈ {B,B,D,D,E,E,O,O,A,A, L, L} (in what follows we denote this set by HSrel),
as well as the necessity modalities of the form [R] with R ∈ HSrel. Well-formed
HS-formulas are defined by the following grammar

ϕ := � | ⊥ | p | ¬ϕ | ϕ ∧ ψ | ϕ ∨ ψ | ϕ → ψ | 〈R〉ϕ | [R]ϕ,

where p ∈ PROP, ϕ,ψ are HS-formulas, and R ∈ HSrel. An HS-model M is a
pair (D, V) such that D = (D,�) is a linear order (antisymmetric, transitive, and
total relation) of time-points, I

(
D) = {[x, y] | x, y ∈ D and x � y} is a set of all

intervals over D, and V : PROP → P (I(D)) assigns to each propositional variable
a set of intervals. Allen’s relations between intervals are defined as follows:

whereas relB, relD, relE, relO, relA, and relL are inverses of the respective relations
(i.e., relR = relR

−1 for any R ∈ {B,D,E,O,A, L}). The satisfaction relation for a
model M and an interval [x, y] is defined as follows:

M, [x, y] |= � for all [x, y] ∈ I(D);
M, [x, y] �|= ⊥ for all [x, y] ∈ I(D);
M, [x, y] |= p iff [x, y] ∈ V (p), for p ∈ PROP;
M, [x, y] |= ¬ϕ iff M, [x, y] �|= ϕ;
M, [x, y] |= ϕ ∧ ψ iff M, [x, y] |= ϕ and M, [x, y] |= ψ;
M, [x, y] |= ϕ ∨ ψ iff M, [x, y] |= ϕ or M, [x, y] |= ψ;
M, [x, y] |= ϕ → ψ iff if M, [x, y] |= ϕ then M, [x, y] |= ψ;
M, [x, y] |= 〈R〉ϕ iff there exists [x′, y′] ∈ I(D) such that

[x, y]relR[x′, y′] and M, [x′, y′] |= ϕ;
M, [x, y] |= [R]ϕ iff for every [x′, y′] ∈ I(D) such that

[x, y]relR[x′, y′] we have M, [x′, y′] |= ϕ;

where R ∈ HSrel. An HS-formula ϕ is true in an HS-model M (in symbols:
M |= ϕ) iff for all [x, y] ∈ I(D) it holds that M, [x, y] |= ϕ.

Decidability of the HS-satisfiability problem depends on the type of underly-
ing temporal frame but for most interesting frames it is undecidable, e.g., over
any class of temporal frames that contains an infinite ascending chain it is co-
recursively enumerable-hard. (in particular over N, Z, Q, and R) [10]. A recently
introduced way to obtain a decidable logic is by limiting the ‘propositional side’
of the language [3,5,6]. In particular, attention was paid to a fragment containing

A Hybridized Horn Fragment of Halpern-Shoham Logic 227

only Horn clauses and no diamond modalities (the so-called HS�
horn) which has

a relatively low computational complexity and expressive power high enough for
practical applications (see, e.g., [3]). A well-formed HS�

horn-formula ϕ is defined
as follows:

λ := � | ⊥ | p | [R]λ; ϕ := λ | [U](λ1 ∧ . . . ∧ λk → λ) | ϕ ∧ ψ;

where p ∈ PROP, R ∈ HSrel, and [U] is a universal modality, i.e., [U]ϕ is satisfied
iff ϕ is satisfied in every [x, y] ∈ I(D). Although operators of the form 〈R〉 are
forbidden in HS�

horn, clauses with 〈R〉 in an antecedent are expressible in the
logic as follows:

[U](λ1 ∧ 〈R〉λ2 → λ3)
df= [U](λ2 → [R]p) ∧ [U](p ∧ λ1 → λ3),

where p is a new propositional variable, i.e., a variable that did not occur in the
formula earlier.

The computational complexity of HS�
horn-satisfiability depends on the type of

an underlying temporal frame D. First, there are irreflexive and reflexive frames.
Importantly, in the former case, when � is reflexive, point intervals are allowed,
i.e., [x, x] ∈ I(D) for any x ∈ D, and relations relR for R ∈ HSrel are no longer
pairwise disjoint. Second distinction is between discrete and dense temporal
frames. Interestingly, over irreflexive and discrete frames HS�

horn-satisfiability
is undecidable, whereas in the other three cases it is P-complete (see Table 1).

Table 1. Cumulative results: contributions of this paper are on a gray background.

In what follows we hybridize HS�
horn, i.e., we add to the language the second sort

of atoms – the set of the so-called nominals NOM, and satisfaction operators @i

indexed by nominals. We define a well-formed HS�,i,@
horn -formula ϕ as follows:

λ := � | ⊥ | p | i | [R]λ | @iλ; ϕ := λ|[U](λ1 ∧ . . . ∧ λk → λ)|ϕ ∧ ψ;

where p ∈ PROP, i ∈ NOM, R ∈ HSrel, [U] is the universal modality. We distin-
guish literals – expressions of the form λ and clauses – expressions of the form
[U](λ1 ∧ . . . ∧ λk → λ). For any ϕ ∈ HS�,i,@

horn , we call all conjuncts of ϕ that
are not clauses initial conditions of ϕ. A hybrid HS-model M is a pair (D, V),

228 P.A. Wa�l ↪ega

such that V : ATOM → P (I(D)) assigns to each atom (ATOM = PROP∪NOM)
a set of intervals with an additional restriction that V (i) is a singleton for any
i ∈ NOM. The additional satisfaction relation conditions for nominals and sat-
isfaction operators are:

M, [x, y] |= i iff V (i) = {[x, y]}, for i ∈ NOM;
M, [x, y] |= @iϕ iff M, [x′, y′] |= ϕ, where V (i) = {[x′, y′]} and i ∈ NOM.

Hybridization increases expressive power of the logic, e.g., it enables to express
identity of two intervals by @ij. In the following sections we show the main
contribution of this paper (see Table 1), i.e., that HS�,i,@

horn -satisfiability is NP-
complete over reflexive and over irreflexive and dense time frames. The undecid-
ability of HS�,i,@

horn over irreflexive and discrete frames is a direct consequence of
the already known undecidability of HS�

horn over such frames [5].

3 NP-Hardness

In this section, we prove the lower bound of HS�,i,@
horn -satisfiability.

Theorem 1. HS�,i,@
horn -satisfiability over linear orders is NP-hard.

Proof. To prove NP-hardness of HS�,i,@
horn -satisfiability we construct a polynomial

reduction from 3SAT problem (known to be NP-complete – see, e.g., [12]).

3SAT is the following decision problem:
Input: ϕ = (l11 ∨ l21 ∨ l31)∧ . . .∧ (l1n ∨ l2n ∨ l3n), where each lji is a propositional
literal, i.e., a propositional variable or its negation.
Output: “yes” if ϕ is PC-satisfiable (PC is classical propositional calculus),
“no” otherwise.

Fix a propositional calculus formula ϕ = (l11 ∨ l21 ∨ l31) ∧ . . . ∧ (l1n ∨ l2n ∨ l3n) and
let x1, . . . , xm be all propositional variables occurring in ϕ. We map ϕ into an
HS�,i,@

horn -formula by means of the following translation:

τ(ϕ) =
∧

1≤k≤m

ψk ∧
∧

1≤s≤n

χs,

where ψk and χs are defined in subsequent paragraphs. In τ(ϕ) we will use pair-
wise distinct nominals i0, i1, . . . , im and pairwise distinct propositional variables
x1, . . . , xm, x1, . . . , xm.

First, for any k ∈ {1, . . . , m} let:

ψk = [U](i0 ∧ 〈L〉ik → xk) (1)

∧
∧

R∈HSrel/{L}
[U](i0 ∧ 〈R〉ik → xk) ∧ [U](i0 ∧ ik → xk) (2)

∧ [U](xk ∧ xk → ⊥), (3)

A Hybridized Horn Fragment of Halpern-Shoham Logic 229

where (according to the statement in Sect. 2 that we can express a diamond
modality in the antecedent) [U](i ∧ 〈R〉j → p) is treated as an abbreviation in
the following way:

[U](i ∧ 〈R〉j → p) df= [U](j → [R]q) ∧ [U](q ∧ i → p),

where p is a fresh variable (i.e., a variable not occurring in the formula anywhere
else). Formula ψk enables us to simulate negation of xk by means of xk. The
‘trick’ we use to encode such a negation consists in noticing that the interval
denoted by ik must be in some Allen’s relation with the interval denoted by i0.
We enforce that (1) xk is satisfied in i0 if ik is accessible from i0 by means of relL,
and (2) otherwise xk is satisfied in i0. Finally, (3) xk and xk cannot be satisfied
in the same interval. Hence we have enforced that in i0 a variable xk is satisfied
iff xk is not satisfied there.

Second, for any s ∈ {1, . . . , n} we define:

χs = [U]
(
i0 ∧ neg

(
l1s

)
∧ neg

(
l2s

)
∧ neg

(
l3s

)
→ ⊥

)
,

where for any propositional literal l in ϕ we define

neg(l) =

{
xt, if l = xt,

x, if l = ¬xt,
for any t ∈ (1, . . . , m).

A formula χs assures that a clause (l1s ∨ l2s ∨ l3s) is satisfied in i0. It does it by
excluding models in which negations of all three propositional literals occurring
in the clause are simultaneously satisfied in i0.

Notice that τ(ϕ) is a conjunction of formulas each preceded by the univer-
sal modality [U]. Hence, τ(ϕ) is HS-satisfiable iff it is true (i.e., satisfied in all
intervals) in some HS-model (we will use this fact afterwards in the proof). The
number of formulas of the form ψk and χs is linear in the size of ϕ, and each
ψk and χs is of a constant size. Hence the translation τ is feasible in polynomial
time with respect to the size of ϕ. To finish the proof it remains to show that
the following conditions are equivalent:

1. ϕ is PC-satisfiable;
2. τ(ϕ) is HS-satisfiable.

(1 ⇒ 2) Assume that ϕ is PC-satisfiable. Then, there exists a PC-model (valu-
ation) v : PROP(ϕ) → {0, 1} (by PROP(ϕ) we denote a set of all propositional
variables occurring in ϕ) such that v |=PC ϕ (where |=PC is a PC-satisfaction
relation). We construct an HS-model M = (D, V) as follows (see also Fig. 1):

– D = (D,�) is a linear order;
– V : ATOM(τ(ϕ)) → P (I(D)) is such that:

• a, b, c, d are any pairwise distinct elements of D with a � b � c � d;
• V (i0) = {[a, b]};
• for each xk ∈ PROP(ϕ):

230 P.A. Wa�l ↪ega

∗ if v(xk) = 1, then V (ik) = {[a, b]} and V (xk) = {[a, b]};
∗ if v(xk) = 0, then V (ik) = {[c, d]} and V (xk) = {[a, b]}.

We show that M |= τ(ϕ). First, for any xk ∈ PROP(ϕ) we have M |= ψk since
xk is satisfied in i0 if V (ik) = {[a, b]} and xk is satisfied in i0 if V (ik) = {[c, d]},
and xk, xk are not satisfied in any interval simultaneously. Furthermore, for any
s ∈ {1, . . . , n} in the clause (l1s ∨ l2s ∨ l3s) in ϕ at least one of its propositional
literals – without loss of generality say l1s – is satisfied in v. From the construction
of V it follows that neg(l1s) is not satisfied in i0, so M |= χs.

Fig. 1. Construction of a HS-model from a PC-model.

(1 ⇐ 2) Assume that τ(ϕ) is HS-satisfiable. Fix an HS-model M such that
M |= τ(ϕ). We construct a PC-model v (as presented in Fig. 2) such that for
any propositional variable xk ∈ PROP(ϕ):

v(xk) =

{
1 if M, [i−0 , i+0] |= xk;
0 if M, [i−0 , i+0] |= xk;

, where V (i0) = {[i−0 , i+0]}.

Fig. 2. Construction of a PC-model from a HS-model.

We show that v |=PC ϕ. Fix a clause (l1s ∨ l2s ∨ l3s) in ϕ. Since M |= χs, one
of neg

(
l1s

)
, neg

(
l2s

)
, neg

(
l3s

)
– without loss of generality say neg

(
l1s

)
– is not

satisfied in i0. If l1s is a propositional variable, say xt for some t ∈ (1, . . . ,m), then
M, [i−0 , i+0] |= xt. By the construction v |=PC xt, hence v |=PC (l1s ∨l2s ∨l3s). On the
other hand, if l1s is a negated propositional variable, say ¬xt, then M, [i−0 , i+0] |=
xt. Hence v |=PC ¬xt, and v |=PC (l1s ∨ l2s ∨ l3s). ��

A Hybridized Horn Fragment of Halpern-Shoham Logic 231

Notice that the above theorem holds regardless of whether D is reflexive or
irreflexive, and whether it is discrete or dense. Moreover, the proof does not use
@i operators (there are no @i operators in a formula τ(ϕ)). Hence, the nominals
already make the logic NP-hard and consequently, NP-hardness holds also for
the logic without @i operators.

4 Membership in NP

To prove that HS�,i,@
horn -satisfiability is in NP over reflexive, as well as over irreflex-

ive and dense frames we exploit a technique that was presented in [5, Theo-
rem3.5], and [3, Theorem 6]. The main idea of our proof is that for a fixed
interval [a, b] and a fixed interpretation of nominals we are able to check in poly-
nomial time if a given HS�,i,@

horn -formula is satisfiable in [a, b] (Lemma 4). Then, we
will show that there is only a bounded (by an exponential function in the size of
the formula) number of significantly different choices of [a, b] and interpretations
of nominals. Hence, we can nondeterministically ‘guess’ them in NP. We start
by defining the following problem.

(a, b, I)-satisfaction over D for a fixed [a, b] ∈ I(D), I : NOM(ϕ) → I(D),
and a linear order D = (D,�) is the following decision problem:
Input: an HS�,i,@

horn -formula ϕ.
Output: “yes” if there is an HS-model M = (D, V) with V (i) = {I(i)} for
i ∈ NOM(ϕ) such that M, [a, b] |= ϕ, “no” otherwise.

If the answer is positive, we say that ϕ is (a, b, I)-satisfiable over D. At first,
we will construct a model that will enable us to check if ϕ is (a, b, I)-satisfiable
over D. Let ϕ be an HS�,i,@

horn -formula, D = (D,�) be a linear order, [a, b] ∈ I(D),
and I : NOM(ϕ) → I(D). We will define a set of triples of the form (ψ, x, y),
where each such triple has an intuitive meaning that in order to satisfy ϕ in
[a, b], formula ψ must be satisfied in [x, y]. We start with the set:

V
(a,b,I)
ϕ,D =

{
(λ, a, b) | λ is an initial condition of ϕ

}
∪

{
(�, x, y) | [x, y] ∈ I(D)

}

∪
{
(i, x, y) | i ∈ NOM(ϕ) and I(i) = [x, y]

}
.

cl
(
V

(a,b,I)
ϕ,D

)
is the result of applying non-recursively the below rules to V

(a,b,I)
ϕ,D :

(cl1) if ([R]λ, x, y) ∈ V
(a,b,I)
ϕ,D , then add to V

(a,b,I)
ϕ,D all (λ, x′, y′) such that [x′, y′] ∈

I(D) and [x, y]relR[x′, y′];
(cl2) if (λ, x′, y′) ∈ V

(a,b,I)
ϕ,D for all [x′, y′] ∈ I(D) such that [x, y]relR[x′, y′] and

[R]λ occurs in ϕ, then add ([R]λ, x, y) to V
(a,b,I)
ϕ,D ;

(cl3) if [U](λ1 ∧ . . . ∧ λk → λ) occurs in ϕ and (λj , x, y) ∈ V
(a,b,I)
ϕ,D for all j ∈

{1, . . . , k}, then add (λ, x, y) to V
(a,b,I)
ϕ,D ;

(cl4) if (@iλ, x, y) ∈ V
(a,b,I)
ϕ,D , then add (λ, x′, y′) to V

(a,b,I)
ϕ,D where [x′, y′] = I(i);

232 P.A. Wa�l ↪ega

(cl5) if (λ, x′, y′) ∈ V
(a,b,I)
ϕ,D for some i ∈ NOM(ϕ) with I(i) = [x′, y′], and @iλ

occurs in ϕ, then add (@iλ, x, y) to V
(a,b,I)
ϕ,D for all [x, y] ∈ I(D).

We define the following sets, obtained by subsequent applications of cl to V
(a,b,I)
ϕ,D :

cl0
(
V

(a,b,I)
ϕ,D

)
=V

(a,b,I)
ϕ,D ;

clα+1
(
V

(a,b,I)
ϕ,D

)
= cl

(
clα

(
V

(a,b,I)
ϕ,D

))
, for α + 1 a succesor ordinal;

clβ
(
V

(a,b,I)
ϕ,D

)
=

⋃

γ<β

clγ
(
V

(a,b,I)
ϕ,D

)
, for γ an ordinal, and β a limit ordinal;

cl∗
(
V

(a,b,I)
ϕ,D

)
=

⋃

γ an ordinal

clγ
(
V

(a,b,I)
ϕ,D

)
.

Next we construct K(a,b,I)
ϕ,D = (D, V) such that for any at ∈ ATOM(ϕ) ∪ {�,⊥}:

V (at) =
{

[x, y] | (at, x, y) ∈ cl∗
(
V

(a,b,I)
ϕ,D

)}
.

We say that a set A satisfies the condition (mod) if the following holds:

(mod) (⊥, x, y) /∈ A for any [x, y] ∈ I(D), and
if (i, x, y) ∈ A for some i ∈ NOM(ϕ),
then (i, x′, y′) /∈ A for any [x′, y′] �= [x, y].

A straightforward consequence of the conditions (cl1)–(cl5) is: if cl∗
(
V

(a,b,I)
ϕ,D

)

satisfies (mod), then K(a,b,I)
ϕ,D is an HS-model. Then, cl∗

(
V

(a,b,I)
ϕ,D

)
determines in

which intervals particular literals of ϕ are satisfied in K(a,b,I)
ϕ,D in the following

sense.

Lemma 1. If cl∗
(
V

(a,b,I)
ϕ,D

)
satisfies (mod), then for any literal λ in ϕ, and any

[x, y] ∈ I(D), the following conditions are equivalent:

1. (λ, x, y) ∈ cl∗
(
V

(a,b,I)
ϕ,D

)
;

2. K(a,b,I)
ϕ,D , [x, y] |= λ.

Proof (Sketch). (1 ⇒ 2) The implication holds for cl0
(
V

(a,b,I)
ϕ,D

)
. Then, by trans-

finite induction on an ordinal γ the implication holds for any clγ
(
V

(a,b,I)
ϕ,D

)
and

consequently for cl∗
(
V

(a,b,I)
ϕ,D

)
.

(1 ⇐ 2) The implication holds for atoms by the definition of K(a,b,I)
ϕ,D , for �

by the definition of cl0
(
V

(a,b,I)
ϕ,D

)
, and for ⊥ by (mod). Then, by induction on a

literal structure the implication holds for any literal in ϕ. ��

A Hybridized Horn Fragment of Halpern-Shoham Logic 233

Lemma 2. Let ϕ be an HS�,i,@
horn -formula. The following are equivalent:

1. ϕ is (a, b, I)-satisfiable over D;
2. cl∗

(
V

(a,b,I)
ϕ,D

)
satisfies (mod).

Proof. (1 ⇒ 2) Assume ϕ is (a, b, I)-satisfiable over D, so there is an HS-model
M = (D, V) with V (i) = {I(i)} for any i ∈ NOM, and M, [a, b] |= ϕ. Define:

V = {(λ, x, y) | [x, y] ∈ I(D), λ is a literal occuring in ϕ, and M, [x, y] |= λ}.

It is easy to see that cl0
(
V

(a,b,I)
ϕ,D

)
⊆ V and V is closed under (cl1)–(cl5). As a

result, cl∗
(
V

(a,b,I)
ϕ,D

)
⊆ V. M is an HS-model, therefore it is easy to show that V

satisfies (mod). cl∗
(
V

(a,b,I)
ϕ,D

)
⊆ V, therefore cl∗

(
V

(a,b,I)
ϕ,D

)
also satisfies (mod).

(1 ⇐ 2) Assume cl∗
(
V

(a,b,I)
ϕ,D

)
satisfies (mod). Then, by Lemma 1 it is easy to

show that K(a,b,I)
ϕ,D , [a, b] |= ϕ. Therefore, ϕ is (a, b, I)-satisfiable over D. ��

The proof of Lemma 2 (2 ⇒ 1 implication) leads to the following statement.

Corollary 1. If ϕ is (a, b, I)-satisfiable over D, then K(a,b,I)
ϕ,D , [a, b] |= ϕ.

Next, we define Z(a,b,I)
ϕ,D – a bounded morphic image of K(a,b,I)

ϕ,D which will allow us
to check (a, b, I)-satisfiability by inspection of a bounded (by a polynomial in the
length of the formula ϕ) sized Z

(a,b,I)
ϕ,D (for a description of bounded morphisms

see [9, Chap. 5]). Let ϕ be an HS�,i,@
horn -formula, D = (D,�) a linear order, and

I : NOM(ϕ) → I(D). Fix [a, b] ∈ I(D) and the set X of all intervals denoted
by nominals. Let x1, . . . , xn be the sequence (without multiple occurrences) of
endpoints of intervals in X ∪ {[a, b]} in the ascending order, i.e., x1 � . . . � xn.
We define the set of sections of D:

all sec(a, b, I) =
{
(−∞, x1), [x1, x1], (x1, x2), [x2, x2], (x2, x3),

. . . , (xn−1, xn), [xn, xn], (xn,+∞)
}
.

Some sections may be empty, e.g., section (3, 4) in the case of a discrete D.
Hence, we define the set of all nonempty sections sec(a, b, I):

sec(a, b, I) =
{
σ ∈ all sec(a, b, I) | x ∈ σ for some x ∈ D

}
.

sec(a, b, I) is a partition of D into at most 2
(
|NOM(ϕ)| + 2

)
+ 1 sections. For

any σ, σ′ ∈ sec(a, b, I) we write σ � σ′ if for some x ∈ σ and y ∈ σ′ it holds
that [x, y] ∈ I(D). In Fig. 3 we present an example of sec(a, b, I), in the case of
NOM = {i}, I(i) = [x1, x2], a = x2, and b = x3.

Next, we define zones:

ζσ,σ′ =
{
[x, y] ∈ I(D) | x ∈ σ, y ∈ σ′} for σ, σ′ ∈ sec(a, b, I), σ � σ′.

While considering partition depicted in Fig. 3 we have, e.g., ζσ2,σ6 = {[x1, x3]}.

234 P.A. Wa�l ↪ega

Fig. 3. A set of nonempty sections {σ1, . . . σ7} determined by endpoints x1, x2, x3.

We define a Kripke model Z(a,b,I)
ϕ,D = (Z, {RELR}R∈HSrel

, V ′) such that:

– Z =
{
ζσ,σ′ | σ, σ′ ∈ sec(a, b, I), σ � σ′, σ �= σ′} ∪

{
ζσ | σ ∈ sec(a, b, I)

}
;

– ζRELRζ ′ iff [x, y]relR[x′, y′] for some [x, y] ∈ ζ and [x′, y′] ∈ ζ ′;
– V ′(at) = {ζ | f−1(ζ) ⊆ V (at)} for any atom at ∈ ATOM(ϕ);

where R ∈ HSrel and f : I(D) → Z satisfies the following condition:

f ([x, y]) = ζ iff [x, y] ∈ ζ.

Importantly, the size of Z(a,b,I)
ϕ,D is bounded by a polynomial in the length of the

formula ϕ. Indeed, as we have already stated, sec(a, b, I) is a partition of D into
at most 2

(
|NOM(ϕ)| + 2

)
+ 1 = h sections, so there are at most (1+h)

h zones,
which constitute the universe Z.

Lemma 3. f : I(D) → Z is a surjective bounded morphism from K(a,b,I)
ϕ,D to

Z
(a,b,I)
ϕ,D , i.e., it is a surjection and for any R ∈ HSrel the following conditions

hold:

(bm1) if [x, y]relR[x′, y′] then f([x, y])RELRf([x′, y′]);
(bm2) if ζRELRζ ′ then for every [x, y] ∈ f−1(ζ) there exists [x′, y′] ∈ f−1(ζ ′)

such that [x, y]relR[x′, y′];
(bm3) for any at ∈ ATOM(ϕ) and any [x, y] ∈ I(D) it holds that

K(a,b,I)
ϕ,D , [x, y] |= at iff Z

(a,b,I)
ϕ,D , f([x, y]) |= at.

The proof of Lemma 3 is analogous to the proof of a bounded morphism intro-
duced to prove P-completeness of HS�

horn [5, pp. 8–10]. Since f is a surjective
bounded morphism from K(a,b,I)

ϕ,D to Z
(a,b,I)
ϕ,D , it is known that K(a,b,I)

ϕ,D , [x, y] |= ϕ

iff Z
(a,b,I)
ϕ,D , f([x, y]) |= ϕ for any [x, y] ∈ I(D), and any HS-formula ϕ [9, Chap. 5,

Corollary 16]. As a result, by Corollary 1 we obtain the following statement.

Corollary 2. Let ϕ be an HS�,i,@
horn -formula and D a reflexive, or a irreflexive and

dense linear order. The following conditions are equivalent for any [a, b] ∈ I(D),
and any I such that I : NOM(ϕ) → I(D):

1. ϕ is (a, b, I)-satisfiable over D;
2. K(a,b,I)

ϕ,D , [a, b] |= ϕ;

3. Z
(a,b,I)
ϕ,D , f([a, b]) |= ϕ.

A Hybridized Horn Fragment of Halpern-Shoham Logic 235

Hence, our aim is now to show that we can check in P if Z(a,b,I)
ϕ,D , f([a, b]) |= ϕ.

Lemma 4. The problem of (a, b, I)-satisfiability over D can be computed in poly-
nomial time with respect to |ϕ| if D is reflexive or irreflexive and dense.

Proof (Sketch). To check if an HS�,i,@
horn -formula ϕ is (a, b, I)-satisfiable in (reflex-

ive or irreflexive and dense) D it suffices (by Corollary 2) to construct Z
(a,b,I)
ϕ,D

and then check if Z(a,b,I)
ϕ,D , f([a, b]) |= ϕ. To construct Z

(a,b,I)
ϕ,D let:

U
(a,b,I)
ϕ,D =

{
(λ, f([a, b])) | λ is an initial condition of ϕ

}
∪

{
(�, ζ) | ζ ∈ Z

}

∪
{
(i, f([x, y])) | i ∈ NOM(ϕ) and I(i) = [x, y]

}
.

Then define rules (cl1′)–(cl5′) analogously to (cl1)–(cl5), i.e., let:

(cl1′) if ([R]λ, ζ) ∈ U
(a,b,I)
ϕ,D , then add to U

(a,b,I)
ϕ,D all (λ, ζ ′) such that ζRELRζ ′;

(cl2′) if (λ, ζ ′) ∈ U
(a,b,I)
ϕ,D for all ζ ′ ∈ Z such that ζrelRζ ′ and [R]λ occurs in ϕ,

then add ([R]λ, ζ) to U
(a,b,I)
ϕ,D ;

(cl3′) if [U](λ1 ∧ . . . ∧ λk → λ) occurs in ϕ and (λj , ζ) ∈ U
(a,b,I)
ϕ,D for all j ∈

{1, . . . , k}, then add (λ, ζ) to U
(a,b,I)
ϕ,D ;

(cl4′) if (@iλ, ζ) ∈ U
(a,b,I)
ϕ,D , then add (λ, ζ ′) to U

(a,b,I)
ϕ,D where {I(i)} = ζ ′;

(cl5′) if (λ, ζ ′) ∈ U
(a,b,I)
ϕ,D for some i ∈ NOM(ϕ) with {I(i)} = ζ ′ and @iλ occurs

in ϕ, then add (@iλ, ζ) to U
(a,b,I)
ϕ,D for all ζ ∈ Z.

cl′
(
U
(a,b,I)
ϕ,D

)
is the result of applying non-recursively the rules (cl1′)–(cl5′) to

U
(a,b,I)
ϕ,D and:

cl′0
(
U
(a,b,I)
ϕ,D

)
=U

(a,b,I)
ϕ,D ;

cl′k+1
(
U
(a,b,I)
ϕ,D

)
= cl′

(
cl′k

(
U
(a,b,I)
ϕ,D

))
.

We show that a subsequent application of (cl1′)–(cl5′) to U
(a,b,I)
ϕ,D reaches a fixed

point after at most |Z| · |ϕ| iterations. The initial set U
(a,b,I)
ϕ,D contains elements

of the form (λ, ζ) such that λ is a subformula of ϕ or it is a constant �, where
ζ ∈ Z. Then, it is easy to see that each application of rules (cl1′)–(cl5′) results
in adding elements of the form (λ, ζ), where λ is a subformula of ϕ and ζ ∈ Z.
Obviously, there are at most |Z| · |ϕ| such pairs, so after at most |Z|·|ϕ| iterations
cl′ reaches a fixed point.

We introduce a condition analogous to (mod), namely we say that a set A
satisfies condition (mod′) if the following holds:

(mod′) (⊥, ζ) /∈ A for any ζ ∈ Z, and
if (i, ζ) ∈ A for some i ∈ NOM(ϕ),
then (i, ζ ′) /∈ A for any ζ ′ �= ζ.

236 P.A. Wa�l ↪ega

We will prove now that cl′|Z|·|ϕ| (
U
(a,b,I)
ϕ,D

)
enables us to construct the previously

defined Z
(a,b,I)
ϕ,D =

(
Z, {R′

R∈HSrel
}, V ′) in the sense that the following lemma holds.

Lemma 5. If cl′|Z|·|ϕ| (
U
(a,b,I)
ϕ,D

)
satisfies (mod′), then for any literal λ in ϕ,

and any ζ ∈ Z the following conditions are equivalent:

1. Z
(a,b,I)
ϕ,D , ζ |= λ;

2. (λ, ζ) ∈ cl′|Z|·|ϕ| (
U
(a,b,I)
ϕ,D

)
.

Proof (Sketch). Notice that by (bm3) and Lemma 1 for any literal λ in ϕ, and
any ζ ∈ Z the following conditions are equivalent:

– Z
(a,b,I)
ϕ,D , ζ |= λ;

– K(a,b,I)
ϕ,D , [x, y] |= λ for some [x, y] ∈ ζ;

– K(a,b,I)
ϕ,D , [x, y] |= λ for all [x, y] ∈ ζ;

– (λ, x, y) ∈ cl∗
(
V

(a,b,I)
ϕ,D

)
for all [x, y] ∈ ζ.

Since rules (cl1′)–(cl5′) are analogous to (cl1)–(cl5), it is easy to show that
another equivalent condition is

– (λ, ζ) ∈ cl′|Z|·|ϕ| (
U
(a,b,I)
ϕ,D

)
.

��

Finally, the following lemma shows how to check if Z(a,b,I)
ϕ,D , f([a, b]) |= ϕ.

Lemma 6. Let ϕ be a HS�,i,@
horn -formula. The following conditions are equivalent:

1. Z
(a,b,I)
ϕ,D , f([a, b]) |= ϕ;

2. cl′|Z|·|ϕ|
(
U
(a,b,I)
ϕ,D

)
satisfies condition (mod′).

Proof. (1 ⇒ 2) Assume Z
(a,b,I)
ϕ,D , f([a, b]) |= ϕ. Let us define the following set:

U = {(λ, ζ) | ζ ∈ Z, λ is a literal occuring in ϕ, and Z
(a,b,I)
ϕ,D , ζ |= λ}.

It is easy to see that cl′0
(
U
(a,b,I)
ϕ,D

)
⊆ U and U is closed under (cl1′)–(cl5′). As

a result, cl′|Z|·|ϕ|
(
U
(a,b,I)
ϕ,D

)
⊆ U. Z(a,b,I)

ϕ,D is a model, therefore it is easy to see

that cl′|Z|·|ϕ|
(
U
(a,b,I)
ϕ,D

)
must satisfy (mod′). cl′|Z|·|ϕ|

(
U
(a,b,I)
ϕ,D

)
⊆ U, therefore

cl′|Z|·|ϕ|
(
U
(a,b,I)
ϕ,D

)
also satisfies (mod′).

(1 ⇐ 2) Assume cl′|Z|·|ϕ|
(
U
(a,b,I)
ϕ,D

)
satisfies (mod′). Then, with Lemma 5 it

is easy to show that Z
(a,b,I)
ϕ,D , [a, b] |= ϕ. ��

A Hybridized Horn Fragment of Halpern-Shoham Logic 237

We have shown that after |Z| · |ϕ| applications of cl′ to U
(a,b,I)
ϕ,D we reach a fixed

point. To check if Z(a,b,I)
ϕ,D , f([a, b]) |= ϕ it remains to check if cl′|Z|·|ϕ|

(
U
(a,b,I)
ϕ,D

)

satisfies (mod′) (by Lemma 6). The whole procedure is in P with respect to the
size of ϕ, which by Corollary 2 ends the proof. ��

Theorem 2. HS�,i,@
horn -satisfiability over reflexive, or irreflexive and dense time

frames is in NP.

Proof. Fix an HS�,i,@
horn -formula ϕ and D. The construction of Z

(a,b,I)
ϕ,D depends

only on the sequence x1 ◦ . . . ◦ xn of endpoints of intervals in X ∪ {[a, b]} where
◦ ∈ {<,=}, and X is a set of all intervals denoted by nominals. To encode such
a sequence it suffices to use at most n · log(n) · n · 2 bits (log(n) bits for each
xk, 1 bit for each ◦, and 1 bit to separate xk’s from ◦’s). Since n ≤ (2 + 2 · |ϕ|),
the representation of the sequence is of polynomial size wrt |ϕ|, and can be
nondeterministically ‘guessed’ and written on the tape by a machine working in
NP. After such a ‘guess’ construct Z

(a,b,I)
ϕ,D and check if Z

(a,b,I)
ϕ,D , f([a, b]) |= ϕ,

which by Lemma 4 can be done in polynomial time. By Corollary 2 ϕ is HS-
satisfiable iff there is a sequence x1 ◦ . . . ◦ xn such that Z

(a,b,I)
ϕ,D , f([a, b]) |= ϕ.

Hence, HS�,i,@
horn -satisfiability is in NP. ��

5 Conclusions

In this paper, we have introduced a hybridized version of the logic HS�
horn and

proved NP-completeness of its satisfiability problem in the case of reflexive, as
well as irreflexive and dense time frames. Such hybridization provides referen-
tiality, i.e., the capability of referring to particular intervals – which plays a
key role in temporal knowledge representation. It seems that hybridization of
sub-propositional fragments of HS is a promising line of research and may pro-
vide expressive and decidable referential interval logics. As a future work we
plan to hybridize other fragments of HS, study their computational complexity,
expressive power, and potential areas of application.

Acknowledgements. The author is supported by the Polish National Science Cen-
tre grant DEC-2011/02/A/HS1/00395. He thanks Micha�l Zawidzki for valuable com-
ments and stimulating discussions on hybridization of temporal logics. Moreover, the
author thanks Joanna Golińvska-Pilarek, Roman Kontchakov, Carl Schultz, Michael
Zakharyaschev and anonymous reviewers for their comments and suggestions on how
to improve this paper.

References

1. Allen, J.F.: Maintaining knowledge about temporal intervals. Commun. ACM
26(11), 832–843 (1983)

2. Areces, C., Blackburn, P., Marx, M.: The computational complexity of hybrid
temporal logics. Logic J. IGPL 8(5), 653–679 (2000)

238 P.A. Wa�l ↪ega

3. Artale, A., Kontchakov, R., Ryzhikov, V., Zakharyaschev, M.: Tractable interval
temporal propositional and description logics. In: Proceedings of the 29th AAAI
Conference on Artificial Intelligence (AAAI 2015), pp. 1417–1423 (2015)

4. Blackburn, P.: Representation, reasoning, and relational structures: a hybrid logic
manifesto. Logic J. IGPL 8(3), 339–625 (2000)

5. Bresolin, D., Kurucz, A., Muñoz-Velasco, E., Ryzhikov, V., Sciavicco, G.,
Zakharyaschev, M.: Horn fragments of the halpern-shoham interval temporal logic.
Technical report. arXiv preprint arXiv:1604.03515 (2016)

6. Bresolin, D., Muñoz-Velasco, E., Sciavicco, G.: Sub-propositional fragments of the
interval temporal logic of Allen’s relations. In: Fermé, E., Leite, J. (eds.) JELIA
2014. LNCS (LNAI), vol. 8761, pp. 122–136. Springer, Heidelberg (2014). doi:10.
1007/978-3-319-11558-0 9

7. Della Monica, D., Goranko, V., Montanari, A., Sciavicco, G., et al.: Interval tem-
poral logics: a journey. Bull EATCS 3(105), 73–99 (2013)

8. Goranko, V., Montanari, A., Sciavicco, G.: A road map of interval temporal logics
and duration calculi. J. Appl. Non Class. Logics 14(1–2), 9–54 (2004)

9. Goranko, V., Otto, M.: Model theory of modal logic. In: Blackburn, P., Wolter, F.,
van Benthem, J. (eds.) Handbook of Modal Logic, pp. 255–325. Elsevier, Amster-
dam (2006)

10. Halpern, J.Y., Shoham, Y.: A propositional modal logic of time intervals. J. ACM
(JACM) 38(4), 935–962 (1991)

11. Kontchakov, R., Pandolfo, L., Pulina, L., Ryzhikov, V., Zakharyaschev, M.: Tem-
poral and spatial OBDA with many-dimensional Halpern-Shoham logic. In: Pro-
ceedings of the 25th International Joint Conference on Artificial Intelligence
(IJCAI 2016). AAAI Press (2016)

12. Papadimitriou, C.H.: Computational Complexity. Wiley, New York (2003)

http://arxiv.org/abs/1604.03515
http://dx.doi.org/10.1007/978-3-319-11558-0_9
http://dx.doi.org/10.1007/978-3-319-11558-0_9

Author Index

Asher, Nicholas 1

Bakhtiari, Zeinab 48
Banerjee, Mohua 139

Ditmarsch, Hans van 48
Dobrinen, Natasha 19

Eijck, Jan van 77

Fisher, Corey 91
Fogarty, Seth 91

Galmiche, Didier 106
Gattinger, Malvin 77
Geuvers, Herman 123

Hansen, Helle Hvid 48
Hurkens, Tonny 123

Kimmel, Pierre 106
Kleine Büning, Hans 64
Kumar, Arun 139

Li, Yanjun 154

Ma, Minghui 168

Ojea Quintana, Ignacio 183
Ong, C.-H. Luke 23

Paris, Jeff B. 198
Paul, Soumya 1
Pietarinen, Ahti-Veikko 168
Pym, David 106

Subramani, K. 64

Thinniyam, Ramanathan S. 211

Vardi, Moshe 91
Vencovská, Alena 198

Wałęga, Przemysław Andrzej 224
Wang, Yanjing 77, 154
Wojciechowski, Piotr 64

Zach, Richard 27

	Preface
	Organization
	Contents
	Conversation and Games
	1 Introduction
	2 Message Exchange Games
	3 Weighted Message Exchange Games
	4 Imperfect Information and Epistemic Considerations
	5 Conclusion
	References

	Ramsey Theory on Trees and Applications
	References

	Automata, Logic and Games for the -Calculus
	References

	Semantics and Proof Theory of the Epsilon Calculus
	1 Introduction
	2 Syntax and Axiomatic Proof Systems
	2.1 Axioms and Proofs

	3 Semantics and Completeness
	3.1 Semantics for ECext
	3.2 Soundness and Completeness
	3.3 Semantics for EC

	4 The First Epsilon Theorem
	4.1 The Case Without Identity
	4.2 The Case with Identity

	5 Proof Theory of the Epsilon Calculus
	5.1 Sequent Calculi
	5.2 Natural Deduction

	References

	Neighbourhood Contingency Bisimulation
	1 Introduction
	2 Coherence
	3 Contingency Logic
	4 Neighbourhood Semantics of Contingency Logic
	5 Characterisation Results
	6 Discussion and Future Work
	References

	The Complexity of Finding Read-Once NAE-Resolution Refutations
	1 Introduction
	2 NOT-ALL-EQUAL Satisfiability
	3 Read-Once Proofs and NAE-SAT
	4 NAE-2SAT
	4.1 Finding Shortest Proofs

	5 Read-Once NAE-resolution Refutation for 3CNF
	6 Conclusion
	References

	Knowing Values and Public Inspection
	1 Introduction
	2 Existing Work
	3 Single-Agent PIL
	4 Multi-agent PIL
	5 Future Work
	References

	Random Models for Evaluating Efficient Büchi Universality Checking
	1 Introduction
	2 Background
	3 Random Models
	4 Experiments
	5 Concluding Remarks
	References

	A Substructural Epistemic Resource Logic
	1 Introduction
	2 An Epistemic Resource Logic
	3 Some Properties of ERL
	4 Modelling with the Logic ERL
	5 A Tableaux Calculus for ERL
	6 Conclusions
	References

	Deriving Natural Deduction Rules from Truth Tables
	1 Introduction
	1.1 Contribution of the Paper and Related Work

	2 Simple Properties and Examples
	2.1 If Then Else

	3 Kripke Semantics
	4 Cuts and Cut-Elimination
	5 Conclusion and Further Work
	References

	A Semantic Analysis of Stone and Dual Stone Negations with Regularity
	1 Introduction
	2 The Stone Negation in the Kite of Negations
	2.1 Stone Property

	3 The Dual Stone Negation in the Dual Kite
	3.1 Dual Stone Property

	4 Stone and Dual Stone Negations with Regularity in the United Kite
	4.1 Stone and Dual Stone Negations with Regularity

	5 Conclusions
	References

	Achieving While Maintaining:
	1 Introduction
	2 The Logic
	3 Completeness
	4 Conclusions
	References

	Peirce's Sequent Proofs of Distributivity
	1 Introduction
	2 Peirce's Sequent Calculus for Boolean Algebras
	2.1 The Leading Principle
	2.2 The Algebra of the Copula
	2.3 Peirce's Calculus for Boolean Algebras

	3 Distributivity Laws
	3.1 Derivation in Peirce's Sequent Calculus
	3.2 Negation, Contraposition and Completeness
	3.3 Peirce's Rule in Perspective

	4 Distributivity Law in the Alpha System
	5 Conclusions
	References

	On Semantic Gamification
	1 Introduction
	1.1 Logic Gamification
	1.2 The Basic Case
	1.3 Structure of the Essay

	2 Finitely Algebraizable Logics
	2.1 Logical Matrices
	2.2 Games
	2.3 Strong Gamification
	2.4 Strong Kleene
	2.5 Gamification and Some Results
	2.6 Post and Truth-Functional Completeness

	3 General Gamification
	3.1 Supervaluationist
	3.2 Intuitionistic Logic

	4 Conclusion and Discussion
	A Appendix: Proofs
	References

	Ancient Indian Logic and Analogy
	1 Introduction
	2 The Paksa Formalisation
	3 Pure Inductive Logic
	4 The Main Result
	5 Conclusion
	References

	Definability of Recursive Predicates in the Induced Subgraph Order
	1 Introduction
	2 Preliminaries
	3 Main Result
	4 Discussion
	References

	Computational Complexity of a Hybridized Horn Fragment of Halpern-Shoham Logic
	1 Introduction
	2 Halpern-Shoham Logic
	3 NP-Hardness
	4 Membership in NP
	5 Conclusions
	References

	Author Index

