
Chapter 8

Viewpoints and Visualisation

Marc M. Lankhorst, Leon van der Torre, H.A. (Erik) Proper,

Farhad Arbab, Stijn J.B.A. Hoppenbrouwers, and Maarten W.A. Steen

Establishing and maintaining a coherent enterprise architecture is clearly a complex

task, because it involves many different people with differing backgrounds using

various notations. In order to get to grips with this complexity, researchers have

initially focused on the definition of architectural frameworks for classifying and

positioning the various architecture descriptions with respect to each other. A

problem with looking at enterprise architecture through the lens of an architectural

framework is that it categorises and divides architecture descriptions rather than

providing insight into their coherence.

To integrate the diverse architecture descriptions, we advocate an approach in

which architects and other stakeholders can define their own views of the enterprise

architecture. In this approach views are specified by viewpoints. Viewpoints define
abstractions on the set of models representing the enterprise architecture, each

aimed at a particular type of stakeholder and addressing a particular set of concerns.

Viewpoints can be used both to view certain aspects in isolation, and for relating

two or more aspects.

M.M. Lankhorst (*)

BiZZdesign, Capitool 15, 7521 PL Enschede, The Netherlands

e-mail: m.lankhorst@bizzdesign.com

L. van der Torre

University of Luxembourg, Luxembourg, Luxembourg

H.A. Proper

Luxembourg Institute of Science and Technology, Luxembourg, Luxembourg

F. Arbab

University of Leiden, Leiden, The Netherlands

S.J.B.A. Hoppenbrouwers

Radboud University Nijmegen, Nijmegen, The Netherlands

M.W.A. Steen

BiZZdesign, Enschede, The Netherlands

© Springer-Verlag Berlin Heidelberg 2017

M. Lankhorst et al., Enterprise Architecture at Work, The Enterprise Engineering
Series, DOI 10.1007/978-3-662-53933-0_8

171

mailto:m.lankhorst@bizzdesign.com

8.1 Architecture Viewpoints

In this section we discuss the notion of views and viewpoints as basic tools in

communicating about architectures. In the context of enterprise architectures, a

viewpoint is typically used for activities like design, analysis, obtaining commit-

ment, formal decision making, etc. As we argued in Chap. 4, we regard all of these

activities to be communicative in nature.

As defined in Sect. 3.2.4, a viewpoint essentially prescribes the concepts,

models, analysis techniques, and visualisations that are to be used in the construc-

tion of different views of an architecture description. A view is typically geared

towards a set of stakeholders and their concerns. Simply put, a view is what you see,

and a viewpoint describes from where you are looking.

In discussing the notion of viewpoint, we will first provide a brief overview of

the origin of viewpoints. This is followed by a more precise definition of view-

points, and the concept of viewpoint frameworks.

8.1.1 Origin of Viewpoints

The concept of viewpoint is not new. For example, in the mid 1980s, Multiview

(Wood-Harper et al. 1985) already introduced the notion of views. In fact,

Multiview identified five viewpoints for the development of (computerised) infor-

mation systems: Human Activity System, Information Modelling, Socio-Technical

System, Human–Computer Interface, and the Technical System. During the same

period in which Multiview was developed, the so-called CRIS Task Group of IFIP

Working Group 8.1 developed similar notions, where stakeholder views were

reconciled via appropriate ‘representations’. Special attention was paid to disagree-
ment about which aspect (or perspective) was to dominate the system design

(namely, ‘process’, ‘data’, or ‘behaviour’). As a precursor to the notion of concern,
the CRIS Task Group identified several human roles involved in information

system development, such as executive responsible, development coordinator,

business analyst, business designer (Olle et al. 1988).

The use of viewpoints is not limited to the information systems community; it

was also introduced by the software engineering community. In the 1990s, a

substantial number of software engineering researchers worked on what was

phrased as ‘the multiple perspectives problem’ (Finkelstein et al. 1992; Kotonya

and Sommerville 1992; Nuseibeh 1994; Reeves et al. 1995). By this term, the

authors referred to the problem of how to organise and guide (software) develop-

ment in a setting with many actors, using diverse representation schemes, having

diverse domain knowledge, and using different development strategies. A general

framework has been developed in order to address the diverse issues related to this

problem (Finkelstein et al. 1992; Kotonya and Sommerville 1992; Nuseibeh 1994).

In this framework, a viewpoint combines the notion of actor, role, or agent in the

development process with the idea of a perspective or view which an actor

172 8 Viewpoints and Visualisation

http://dx.doi.org/10.1007/978-3-662-53933-0_4
http://dx.doi.org/10.1007/978-3-662-53933-0_3

maintains. A viewpoint is more than a partial specification; in addition, it contains

partial knowledge of how further to develop that partial specification. These early

ideas on viewpoint-oriented software engineering have found their way into the

IEEE 1471 standard for architecture description (IEEE Computer Society 2000)

and the subsequent ISO/IEC/IEEE 42010:2011 standard (ISO/IEC/IEEE 2011), on

which we have based our definitions below.

8.1.2 Architecture Viewpoints

In the context of architecture, viewpoints provide a means to focus on particular

aspects of an architecture description. These aspects are determined by the concerns

of the stakeholders with whom communication takes place. What should and should

not be visible from a specific viewpoint is therefore entirely dependent on argu-

mentation with respect to a stakeholder’s concerns. Viewpoints are designed for the
purpose of serving as a means of communication in a conversation about certain

aspects of an architecture. Though viewpoints can be used in strictly

uni-directional, informative conversations, they can in general also be used in

bi-directional classes of conversations: the architect informs stakeholders, and

stakeholders give their feedback (critique or consent) on the presented aspects.

What is and what is not shown in a view depends on the scope of the viewpoint and

on what is relevant to the concerns of the stakeholders. Ideally, these are the same,

i.e., the viewpoint is designed with the specific concerns of a stakeholder in mind.

Relevance to a stakeholder’s concern, therefore, is the selection criterion that is

used to determine which objects and relations are to appear in a view.

Below we list some examples of stakeholders and their concerns, which could

typically serve as the basis for the definition/selection of viewpoints:

– Upper-level management: How can we ensure our policies are followed in the

development and operation of processes and systems? What is the impact of

decisions (on personnel, finance, ICT, etc.)? Which improvements can a new

system bring to a pre-existing situation in relation to the costs of acquiring that

system?

– Middle-level management: What is the current situation with regards to the

computerised support of a business process?

– End user: What is the potential impact of a new system on the activities of a

prospective user?

– Architect: What are the consequences for the maintainability of a system with

respect to corrective, preventive, and adaptive maintenance?

– Operational manager: What new technologies do we need to prepare for? Is there

a need to adapt maintenance processes? What is the impact of changes to

existing applications? How secure are the systems?

– Project manager (of system development project): What are the relevant

domains and their relations? What is the dependence of business processes on

the applications to be built? What is their expected performance?

8.1 Architecture Viewpoints 173

– System developer: What are the modifications with respect to the current

situation that need to be performed?

– System administrators: What is the potential impact of a new system on the work

of the system administrators that are to maintain the new system?

In line with the ISO/IEC/IEEE 42010:2011 standard, and based on the detailed

definition given in Proper (2004), we define a viewpoint as follows:

Viewpoint: a specification of the conventions for constructing and using

views.

This should also involve the various ‘ways of . . .’ that we outlined in Sect. 3.2.5,
but in this chapter we will focus on the selection of the content of views, the visual

representation of this content, and the typical use of these viewpoints, i.e., on the

ways of modelling, communicating, and using. The ‘way of supporting’, i.e., tool
support for views, will be addressed in Chap. 11, and the ‘way of working’ has
already been addressed in Chap. 7.

8.1.3 Viewpoint Frameworks

In the context of architecture descriptions, a score of viewpoint frameworks exists,

leaving designers and architects with the burden of selecting the viewpoints to be used

in a specific situation. Some of these frameworks of viewpoints are: the Zachman

framework (Zachman 1987), Kruchten’s 4+1 viewmodel (Kruchten 1995), RM-ODP

(ITU 1996), and TOGAF (The Open Group 2011). These frameworks have usually

been constructed by their authors in an attempt to cover all relevant aspects/concerns

of the architecture of some class of systems. In practice, numerous large organisations

have defined their own frameworks of viewpoints by which they describe their

architectures. We shall discuss two of these framework in more detail below.

The ‘4+1’ View Model

Kruchten (1995) introduced a framework of viewpoints (a view model) comprising

five viewpoints. The use of multiple viewpoints is motivated by the observation that

it ‘allows to address separately the concerns of the various stakeholders of the

architecture: end-user, developers, systems engineers, project managers, etc., and to

handle separately the functional and non-functional requirements’.
The goals, stakeholders, concerns and meta-model of the 4+1 framework can be

presented, in brief, as in Table 8.1. Note that in Kruchten (2000), the viewpoints

have been renamed; physical viewpoint ! deployment viewpoint, development

viewpoint! implementation viewpoint, and scenario viewpoint! use-case view-

point, better to match the terminology of UML.

The framework proposes modelling concepts (the meta-model) for each of the

specific viewpoints. It does so, however, without explicitly discussing how these

174 8 Viewpoints and Visualisation

http://dx.doi.org/10.1007/978-3-662-53933-0_3
http://dx.doi.org/10.1007/978-3-662-53933-0_11
http://dx.doi.org/10.1007/978-3-662-53933-0_7

modelling concepts contribute to the goals of the specific viewpoints. One might, for

example, wonder whether object classes, associations, etc., are the right concepts for

communication with end users about the services they require from the system. The 4

+1 framework is based on experiences in practical settings by its author.

RM-ODP

The Reference Model for Open Distributed Processing (RM-ODP) (ITU 1996) was

produced in a joint effort by the international standard bodies ISO and ITU in order

to develop a coordinating framework for the standardisation of open distributed

processing. The resulting framework defines five viewpoints: enterprise, informa-
tion, computation, engineering and technology. The modelling concepts used in

each of these views are based on the object-oriented paradigm.

The goals, concerns and associated meta-models of the viewpoints identified by

the RM-ODP can be presented, in brief, as in Table 8.2.

RM-ODP provides a modelling language for each of the viewpoints identified. It

furthermore states: ‘Each language [for creating views/models conforming to a

viewpoint] has sufficient expressive power to specify an ODP function, application

or policy from the corresponding viewpoint.’ RM-ODP does not explicitly associ-

ate viewpoints to a specific class of stakeholders. This is left implicit in the concerns

which the viewpoints aim to address.

Table 8.1 Kruchten’s ‘4+1’ view model.

Viewpoint Logical Process Development Physical Scenarios
Goal Capture the

services
which the
system
should pro-
vide

Capture
concurrency
and synchro-
nisation as-
pects of the
design

Describe static
organisation of
the software and
its development

Describe
mapping of
software onto
hardware, and
its distribu-
tion

Provide a
driver to dis-
cover key el-
ements in de-
sign
Validation
and illustra-
tion

Stake-
holders

Architect
End users

Architect
System de-
signer
Integrator

Architect
Developer
Manager

Architect
System de-
signer

Architect
End users
Developer

Concerns Functionali-
ty

Performance
Availability
Fault toler-
ance
...

Organisation
Reuse
Portability
...

Scalability
Performance
Availability
...

Understand-
ability

Meta-model Object clas-
ses
Associations
Inheritance
...

Event
Message
Broadcast
...

Module
Subsystem
Layer
...

Processor
Device
Bandwidth
...

Objects
Events
Steps
...

8.1 Architecture Viewpoints 175

8.2 Models, Views, and Visualisations

An important principle in our approach is the separation of the content and the

presentation or visualisation of a view. This separation is not explicitly made in the

IEEE standard, but it has important advantages. It facilitates the use of different

visualisation techniques on the same modelling concepts, and vice versa. Operations

on the visualisation of a view, e.g., changing its layout, need not change its content.

The view content, referred to as the ‘view’ in the remainder of this chapter, is a

selection or derivation from a (symbolic) model of the architecture, and is

expressed in terms of the same modelling concepts. The presentation or notation

of this view, referred to as ‘visualisation’ in the remainder, can take many forms,

from standard diagrams to tables, cartoons, or even dynamic visualisations like

movies. Editing operations on this visualisation can lead to updates of the view and

of the underlying model. The creation and update of both the view and the

visualisation are governed by a viewpoint. This viewpoint is jointly defined

and/or selected in an iterative process by architect and stakeholder together. This

is illustrated in Fig. 8.1.

The separation between view and visualisation is based on the notion of ‘mean-

ing’. In Chap. 3 we introduced the concept of the signature of an architecture as its

alphabet: that is, the set of symbols used to describe the concepts of the architecture

and the relations among these concepts. This idea can also be used to clarify the

distinction between view and its visualisation. A further discussion of these formal

foundations can be found in Chap. 9.

A view stripped from its visual properties can be formalised just like any other

model, e.g., by defining its signature, as outlined in Chap. 3. By formalising its

relation with an underlying model, a view’s quality and consistency can be greatly

Table 8.2 The RM-ODP viewpoints

Viewpoint Enterprise Information Computational Engineering Technology
Goal Capture

purpose,
scope, and
policies of
the system

Capture se-
mantics of in-
formation and
processing
performed by
the system

Express distri-
bution of the
system in in-
teracting objects

Describe de-
sign of distri-
bution-ori-
ented aspects
of the system

Describe
choice of
technology
used in the
system

Concerns Organisa-
tional re-
quirements
and struc-
ture

Information
and process-
ing required

Distribution of
system
Functional de-
composition

Distribution
of the system,
and mecha-
nisms and
functions
needed

Hardware and
software
choices
Compliancy
to other views

Meta-model Objects
Communi-
ties
Permissions
Obligations
Contract

...

Object classes
Associations
Process

...

Objects
Interfaces
Interaction
Activities

...

Objects
Channels
Node
Capsule
Cluster

...

Not stated ex-
plicitly

176 8 Viewpoints and Visualisation

http://dx.doi.org/10.1007/978-3-662-53933-0_3
http://dx.doi.org/10.1007/978-3-662-53933-0_9
http://dx.doi.org/10.1007/978-3-662-53933-0_3

enhanced and new opportunities for its use may arise, e.g., in changing the

underlying models by interacting with such a view.

8.2.1 Example: Process Illustrations

To illustrate the difference between a view and its visualisation, we introduce the

process illustration viewpoint. This viewpoint illustrates a process model in an

informal way for employees and managers. A process illustration is derived from a

model of the architecture using a set of translation and abstraction rules. As process

illustrations are meant for communicating the coherence between business pro-

cesses, they typically abstract from details regarding the applications and technol-

ogy involved. Moreover, process illustrations do not apply abstract concepts and

notations, but rather use recognisable terms and intuitive notations.

A process illustration of the Car Tax Collection process is depicted in Fig. 8.2.

The figure shows the various sub-processes involved and the information flows

between them. The figure is derived from an ArchiMate model via a series of

translation and abstraction rules, for instance to replace abstract shapes with

meaningful symbols, abstract from complex relations, and visually group all objects

and relations that belong to or happen within a certain actor.

In Fig. 8.3 you can see a number of presentation rules that can be applied in the

‘model-to-illustration’ derivation. The basic idea behind these rules is to find suitable
and intuitive graphic symbols that will replace ArchiMate shapes. These rules apply

to ArchiMate concepts for which there is an immediate correspondent in the process

illustration notation (i.e., actor, role, device, service, business object, etc.).

Of course, many other rules can be added here. For instance, rules referring to a

specific layout of the final drawing or to the more extensive usage of 3D graphic

symbols can increase the readability and usability of the final drawing.

select
derive

visualise

update update

Viewpoint

View Visualisation Model

Architect Stakeholder

Fig. 8.1 Separation of concerns: model, view, visualisation, and viewpoint

8.2 Models, Views, and Visualisations 177

8.2.2 Example: Landscape Maps

A more complex example to illustrate the differences between a model, a view, and

its visualisation, is the landscape map viewpoint. Landscape maps, as defined in

Sanden and Sturm (1997), are a technique for visualising enterprise architectures.

They present architectural elements in the form of an easy-to-understand 2D ‘map’.
A landscape map view of architectures provides non-technical stakeholders, such as

managers, with a high-level overview, without burdening them with the technical-

ities of architectural drawings.

Many systems used by many processes realising various products and services

comprise too much detail to display in a single figure. This is a typical example of

where landscape maps can help. In Fig. 8.4, a landscape map is depicted that shows

which information systems support the operations of our fictitious insurance com-

pany ArchiSurance. The vertical axis represents the company’s business functions;
the horizontal axis shows its insurance products. An application rectangle covering

one or more cells means that this particular function/product pair is supported by

the application, e.g., contracting of a legal aid insurance is supported by the legal

aid back-office system. The visualisation chosen makes it immediately obvious to

the viewer that there is (possibly unwanted) overlap between applications, as is the

case in the Car insurance application and the Legal Aid CRM system. Clearly,

BPM
declaration point

Customs unit
BPM
17
ex2

Collection

RDW

Administration

B/CICT

Desk

Handling

Archive

$$
Vault

Catalogue
value

Declaration
file

BPM
workstation

(Customs
unit)

BPM
server

(BCICT)

RIN
server

(Collection)

BPM
17
ex3

BPM
17
ex1

invoice

payment

decaration
payment

payment

check

Fig. 8.2 Process illustration of the Car Tax Collection process

178 8 Viewpoints and Visualisation

$$$$

Fig. 8.3 Translation rules

Maintaining
Customer &

Intermediary
Relations

Claim
Handling

Contracting

Document
Processing

Liability
Insurance

Car
Insurance

Travel
Insurance

Home
Insurance

Legal Aid
Insurance

Web portal

Call center application

Customer relationship management system

Home & Away
Policy administration

Legal Aid
back

office
system

Legal Aid
CRM

Document management system

Home & Away
Financial application

Business

Functions

Products

Financial
Handling

Car insurance
application

Fig. 8.4 Landscape map of ArchiSurance

8.2 Models, Views, and Visualisations 179

landscape maps are a richer representation than cross-reference tables, which cover

only two dimensions. In order to obtain the same expressive power of a landscape

map two cross-reference tables would be necessary; but even then, you would get a

presentation that is not as insightful and informative as a landscape map.

The dimensions of the landscape maps can be freely chosen from the architec-

ture that is being modelled. In practice, dimensions are often chosen from different

architectural domains, for instance business functions, products and applications,

etc. In most cases, the vertical axis represents behaviour such as business processes

or functions; the horizontal axis represents ‘cases’ for which those functions or

processes must be executed. These ‘cases’ can be different products, services,

market segments, or scenarios. The third dimension represented by the cells of

the matrix is used for assigning resources like information systems, infrastructure,

or human resources.

The visualisation of architecture models as landscape maps is based on archi-

tecture relations. The dimensions that are used in the landscape maps determine

which relations are used. For instance, the landscape map in Fig. 8.4 relates

business functions (contracting, claim handling, etc.) to products (home insurance,

travel insurance, etc.) to applications (Web portal, car insurance application, etc.).

The relation between business functions, products, and applications is not directly

supported by relations in the underlying model. Rather, this needs to be inferred

indirectly: a product comprises a number of business services, which are realised by

business processes and functions, which use (the application services of) applica-

tion components. For this inference, the formalisation of the underlying symbolic

models and the rules for the composition of relations described in Chaps. 3 and 4 are

indispensable.

For landscape maps to be of practical use, the visualisation must be intuitive and

easy to understand. To a large extent, the choice of the axes and the ordering of the

rows and columns determine the layout of a landscape map. If adjacent cells in the

plane have the same value assigned, they can be merged to form a single shape. If

there are no other criteria for ordering the axes such as time or priority, changes to

the ordering can be used to optimise the layout of shapes in the plane, and also to

limit their number. Various layout optimisation algorithms can be employed, and

user manipulation of, for example, the order of rows and columns may also help in

creating a pleasing visualisation.

Summarising, in developing the landscape map viewpoint, it has been fruitful to

distinguish the operation on the model from the visualisation of the view, because

they are completely different concerns. The same holds for the other viewpoints we

have defined. To separate these concerns, views have to be distinguished from their

visualisation.

180 8 Viewpoints and Visualisation

http://dx.doi.org/10.1007/978-3-662-53933-0_3
http://dx.doi.org/10.1007/978-3-662-53933-0_4

8.3 Visualisation and Interaction

The distinction we make between a model and its visualisation naturally leads to the

concept of interactive visualisation; that is, visualisation which can change the

model due to interaction with a stakeholder. Interaction has traditionally been

considered as something completely outside the model and the view. Interaction

is at least partly a visualisation issue: for example, when a user draws an object on

the canvas of some tool. However, it can also partly be defined as part of the model

and view, since the object the user draws may be put in the underlying model or

view as well.

These two considerations have led to a new visualisation and interaction model

for enterprise architectures in ArchiMate. Its goal is that interaction is separated

from updating the model, or from its visualisation.

8.3.1 Actions in Views

The effect of a user interacting with the visualisation can be an update of the view.

But where will this be defined? Clearly, the visualisation itself is ‘dumb’ and does

not know about the semantics of the view. Hence, rules for changing the view

cannot be tied to the visualisation and must be defined in the view itself. This is why

we introduce the notion of actions in views. Consider for example a landscape map

view, and a user who interacts with this view by moving an application to another

business function. Does the relation between the interaction with the landscape map

and the update of the model mean something? Obviously the relation between the

move in the landscape map leads to an update of the underlying model or view, and

thus means something.

In Sect. 7.2.3 we have identified a number of basic modelling actions, such as

introducing, refining, abandoning, abstracting, and translating a concept in a model.

These actions operate on the architecture model or view, not on its visualisation.

However, most changes to a model will be conducted by a user who changes a

visualisation of that model. Hence, we need to define the ways in which a user can

manipulate these visualisations and the effects on the underlying model in terms of

these basic modelling actions. We can then relate these actions to the manipulations

of the visualisation by making the actions part of the view being visualised.

Thus, a clear separation of model and visualisation leads to a separation of

concerns in tool building. An extremely generic visualisation engine can be

constructed that does not need to know about the semantics of the models it

displays. If we define the possible actions together with the views, a generic editor

can be configured by this set of actions.

The actions in views should be defined in terms of the effects they have on

elements of the underlying model. For example, consider a view of a business

process model, and an action that merges two processes into a single process. Issues

8.3 Visualisation and Interaction 181

http://dx.doi.org/10.1007/978-3-662-53933-0_7

that are relevant for the action of merging processes are the effects of the merger:

for example, the removal of processes, addition of a new process, transferring some

relations from an old, removed process to a new process.

For each viewpoint, we define a set of actions. For example, for the landscape

map viewpoint we define the move of an application to another cell, we define

changing the columns and rows of the matrix, and we define the addition and

deletion of applications. Moreover, we must determine for each action which

parameters it needs as input, and define the consequences of executing the action.

When actions for each view have been defined, we can go one step further and

define the relation between actions. One important relation is that one action may

consist of a set of simpler actions. For example, consider an architect or stakeholder

that wishes to change an existing landscape map. First the effects of this change on

the underlying model need to be assessed. Some changes may be purely ‘cosmetic’
in nature, e.g., changing the colour of an object. Other changes need to be propa-

gated to the underlying model by invoking one of the basic modelling actions of

Sect. 7.2.3, e.g., if an object is added or deleted.

Mapping a seemingly simple change to the map onto the necessary modifications

of the model may become quite complicated. Since a landscape map abstracts from

many aspects of the underlying model, such a mapping might be ambiguous: many

different modifications to the model might correspond to the same change of the

landscape map. Human intervention is required to solve this, but a landscape map

tool might suggest where the impact of the change is located.

In the example of Fig. 8.4, you may, for instance, want to remove the seemingly

redundant Legal Aid CRM system by invoking a ‘remove overlap’ operation on this
object. This operation influences both the visualisation and the architectural model.

The effects of the operation on the underlying model are shown in Fig. 8.5. First,

you select the object to be removed, in this case the Legal Aid CRM system. The

envisaged tool colours this object and maps it back onto the underlying object in the

architecture. Next, the relations connecting this object to its environment are

computed, possibly using the impact-of-change analysis techniques described in

Chap. 9 (the second part of Fig. 8.5). Here, this concerns the relations of Legal Aid

CRM to the Call centre application and the Legal Aid back-office system. These

relations will have to be connected to one or more objects that replace the objects

that are to be removed. Since we have chosen a ‘remove overlap’ operation, the
landscape tool computes with which other objects Legal Aid CRM overlaps, in this

case the CRM system. The relations formerly connecting Legal Aid CRM are then

moved to the other CRM system, unless these already exist (e.g. the relation with

the Call centre application).

Naturally, this scenario presents an ideal situation with minimal user interven-

tion. In reality, a tool cannot always decide how a proposed change is to be mapped

back onto the model, and may only present the user with a number of options. For

example, if the functionality of the Legal Aid CRM system overlaps with more than

one other system, remapping its relations requires knowledge about the correspon-

dence between these relations and the functions realised by these other systems.

182 8 Viewpoints and Visualisation

http://dx.doi.org/10.1007/978-3-662-53933-0_7
http://dx.doi.org/10.1007/978-3-662-53933-0_9

Implementing a tool that realises this ‘actions in views’ concept is not a trivial
task. In Chap. 11, we will describe the design of a software tool that provides a

proof of concept of these ideas.

Maintaining
Customer &

Intermediary
Relations

Claim
Handling

Contracting

Liability
Insurance

Car
Insurance

Travel
Insurance

Home
Insurance

Legal Aid
Insurance

Web portal

Call center application

Customer relationship management system

Home & Away
Policy administration

Legal Aid
back

office
system

Legal Aid
CRM

Home & Away
Financial application

Business

Functions

Products

Financial
Handling

Car insurance
application

Maintaining
Customer &

Intermediary
Relations

Claim
Handling

Contracting

Liability
Insurance

Car
Insurance

Travel
Insurance

Home
Insurance

Legal Aid
Insurance

Web portal

Call center application

Customer relationship management system

Home & Away
Policy administration

Legal Aid
back

office
system

Legal Aid
CRM

Home & Away
Financial application

Business

Functions

Products

Financial
Handling

Car insurance
application

Front office applications

Back office applications

Home & Away
Policy

administration

Home & Away
Financial

application

Car Insurance
application

Legal Aid
backoffice

system

Web
portal

Call center
application

CRM application Legal Aid
CRM

Front office applications

Back office applications

Home & Away
Policy

administration

Home & Away
Financial

application

Car Insurance
application

Legal Aid
backoffice

system

Web
portal

Call center
application

CRM application Legal Aid
CRM

Fig. 8.5 Editing a landscape map

8.3 Visualisation and Interaction 183

http://dx.doi.org/10.1007/978-3-662-53933-0_11

8.4 Creating, Selecting, and Using Viewpoints

It is interesting to note that both of the discussed frameworks of viewpoints (Sect.

8.1.3) do not provide an explicit motivation for their choice regarding the modelling

concepts used in specific viewpoints. When using one of the two frameworks,

architects will not find it difficult to select a viewpoint for the modelling task at

hand. However, this ‘ease of choice’ is more a result of the limitation of the

selections of options available (one is limited to the number of viewpoints provided

by the framework) than the result of a well-motivated choice about the viewpoint’s
utility towards the tasks at hand.

One should realise that a well-integrated set of viewpoints (such as the

ArchiMate viewpoints) brings more (utility!) to a development project than the

sum of its parts! Among other things, it allows views to be more easily related and

integrated into a consistent whole. However, defining such an integrated viewpoint

framework is an expensive undertaking. This means that even though a pre-existing

(off-the-shelf) viewpoint framework may not be the ideal answer to an architect’s
specific communication needs, the alternative strategy of defining a tailor-made

viewpoint framework for each development project is likely to be too costly. Hence

our attention to defining ‘ad hoc’ viewpoints relative to a predefined modelling

language (i.e., meta-model) as a compromise between fixed viewpoints and free

viewpoints.

8.4.1 Classification of Viewpoints

As we can see from the list of stakeholders in Sect. 8.1.2, an architect is confronted

with many different types of stakeholders and concerns. To help the architect in

selecting the right viewpoints for the task at hand, we introduce a framework for the

definition and classification of viewpoints and views. The framework is based on

two dimensions, purpose and content. The following three types of architecture

support define the purpose dimension of architecture views (Steen et al. 2004):

– Designing: Design viewpoints support architects and designers in the design

process from initial sketch to detailed design. Typically, design viewpoints

consist of diagrams, like those used in UML.

– Deciding: Decision support views assist managers in the process of decision

making by offering an insight into cross-domain architecture relations, typically

through projections and intersections of underlying models, but also by means of

analytical techniques. Typical examples are cross-reference tables, landscape

maps, lists, and reports.

– Informing: These viewpoints help to inform any stakeholder about the enter-

prise architecture, in order to achieve understanding, obtain commitment, and

convince adversaries. Typical examples are illustrations, animations, cartoons,

flyers, etc.

184 8 Viewpoints and Visualisation

The goal of this classification is to assist architects and others to find suitable

viewpoints given their task at hand, i.e., the purpose that a view must serve and the

content it should display. With the help of this framework, it is easier to find typical

viewpoints that might be useful in a given situation. This implies that we do not

provide an orthogonal categorisation of each viewpoint into one of three classes;

these categories are not exclusive in the sense that a viewpoint in one category

cannot be applied to achieve another type of support. For instance, some decision

support viewpoints may be used to communicate to any other stakeholders as well.

For characterising the content of a view we define the following abstraction

levels:

– Details: Views of the detailed level typically consider one layer and one aspect

from the framework that was introduced in Chap. 5. Typical stakeholders are a

software engineer responsible for the design and implementation of a software

component or a process owner responsible for effective and efficient process

execution. Examples of views are a BPMN process diagram and a UML class

diagram.

– Coherence: At the coherence abstraction level, multiple layers or multiple

aspects are spanned. Extending the view to more than one layer or aspect enables

the stakeholder to focus on architecture relations like process–use–system (mul-

tiple layer) or application–uses–object (multiple aspect). Typical stakeholders

are operational managers responsible for a collection of IT services or business

processes.

– Overview: The overview abstraction level addresses both multiple layers and

multiple aspects. Typically, such overviews are addressed to enterprise archi-

tects and decision makers such as CEOs and CIOs.

In Fig. 8.6, the dimensions of purpose and abstraction level are visualised in a

single picture, together with examples of stakeholders. Tables 8.3 and 8.4 summa-

rise the different purposes and abstraction levels.

The landscape map viewpoint described in Sect. 8.2.1 is a typical example of a

decision support view, which give a high-level overview and can, for example, be

used to identify redundancies or gaps in the application landscape of an enterprise.

The process illustration viewpoint described in Sect. 8.2.1 is an example of a

viewpoint intended for ‘informing’ others. It depicts workflows in a cartoon-like

fashion, easily readable for employees and managers. Process illustrations can be

on the detailed, coherence, or overview abstraction level.

To assist the architect in designing an enterprise architecture, we present a set of

basic design viewpoints in the next sections. These viewpoints are all diagrams for

designing architectures. Some viewpoints are multiple-aspect and multiple-layer

overviews at the ‘coherence’ level of abstraction, while others are at the ‘details’
level.

8.4 Creating, Selecting, and Using Viewpoints 185

http://dx.doi.org/10.1007/978-3-662-53933-0_5

Table 8.3 Viewpoint purpose

 Typical stakeholders Purpose Examples
Designing Architect, software

developer, business
process designer

Navigate, design,
support design de-
cisions, compare al-
ternatives

UML diagram,
BPMN diagram,
flowchart, ER dia-
gram

Deciding Manager, CIO, CEO
ble, landscape map,
list, report

Informing Employee, customer,
others

Explain, convince,
obtain commitment

Animation, cartoon,
process illustration,
chart

Cross-reference ta-Decision making

architect,
software

developer,
business process

designer

Deciding

Designing Informing

Details

Coherence

Overview

Deciding

Designing Informing

Details

Coherence

Overview

product manager,
CIO, CEO

customer,
employee,

others

architect,
software

developer,
business process

designer

Deciding

Designing Informing

Details

Coherence

Overview

Deciding

Designing Informing

Details

Coherence

Overview

product manager,
CIO, CEO

customer,
employee,

others

Fig. 8.6 Classification of enterprise architecture viewpoints

Table 8.4 Viewpoint abstraction levels

 Typical stake-
holders

Purpose Examples

Details Software engi-
neer, process
owner

Design, manage
Testbed process diagram

Coherence Operational man-
agers

Analyse dependen-
cies, impact of-
change

Views expressing rela-
tions like ‘use’, ‘realise’,
and ‘assign’

Overview Enterprise archi-
tect, CIO, CEO

Change manage-
ment

Landscape map

UML class diagram,

186 8 Viewpoints and Visualisation

8.4.2 Guidelines for Using Viewpoints

To help you in selecting and using viewpoints for tasks at hand, we present a

number of guidelines, based on our own experience and interviews with architects

from practice.

In general, the use of an architectural viewpoint will pass through a number of

phases. These phases roughly are:

1. Scoping: Select one or more appropriate viewpoints, select the (sub)domain that

needs to be represented or modelled, and determine the constraints that apply to

the domain being modelled.

2. Creation of views: Create or select the actual content of the viewpoint, i.e.,

create or select a view conforming to the viewpoint used. This can pertain to the

selection of a part of the larger (pre-existing) architecture model, or the creation

or refinement of a part of the architecture model (in terms of a view).

3. Validation: Validate the resulting view. Do the stakeholders agree that the view

is a correct representation of the actual or intended situation?

4. Obtaining commitment: If agreement has been reached among the key stake-

holders involved, the next step will be to create commitment for the results. In

other words, do the stakeholders commit themselves to the (potential) impact of

what is described by the view?

5. Informing: Inform other stakeholders of the results. These stakeholders will be

those members of the development community, whose explicit commitment has,

in a conscious decision, been considered not to be crucial.

Note that these phases will not necessarily be executed in a linear order. Practical

circumstances usually dictate a more evolutionary approach. The viewpoints to be

used for architectural communication will have to support the activities of each of

the phases. The guidelines resulting from the interviews are divided over them.

They are discussed in the next sections.

8.4.3 Scoping

The importance of focusing on the concerns of stakeholders, and the extent to which

a specific view(point) addresses these concerns, was confirmed by the outcomes of

the interviews. When you communicate with business managers, you only need

those views or models that enable a discussion of factors deserving special atten-

tion. Typically, these are factors that have a high impact if they fail and also have a

high risk of indeed failing. For communication with the actual software developers,

on the other hand, more detailed models are crucial.

The selection of viewpoints should be done consciously and based on rational

considerations. Furthermore, architects state that this decision, and its

rationalisation, must be readily available. It is quite possible that a stakeholder

8.4 Creating, Selecting, and Using Viewpoints 187

(usually a technology-oriented one) will ask for more detail in a model than you can

give, or want to give, in that particular phase of the project. An architect should be

prepared to clarify better the goals of the particular model and phase, and why the

requested details are not yet relevant (or even harmful).

Determining the constraints that should guide the ensuing creation phase is also

considered to be important. Numerous IT projects suffer from the problem that

designers have too much ‘design freedom’ when producing a model of a desired

future system. This increases the risk of ending up with lengthy design processes.

Limiting design freedom by means of architecture principles, a higher-level archi-

tecture, or any other means, reduces this risk considerably.

8.4.4 Creation of Views

During the creation of a view, in particular when it involves actual modelling, you

should try to put a limit on the number of participants in a conversation. Graphical

models may or may not be used in communication with stakeholders, but most

actual modelling is done by individuals (or two people at most). Genuine group

modelling sessions are very rare.

During the early stages of system design, it is often considered bad to ‘think’ in
terms of ‘solutions’. However, when detailed modelling takes place in a cooperative

setting, give informants some room to think in terms of ‘solutions’ even if pure

requirements thinking (what, not how) does not officially allow for this. Most

people just think better in terms of concrete solutions; it is a vital part of their

creativity. Just be sure that requirements thinking is returned to in due course. In

general, when you discuss models with stakeholders and informants, in particular

when you try to establish a common understanding, you should discuss different

scenarios and alternatives to the model being considered. Doing so leads to an

exploration of the meaning and impact of the model taking shape, and also leads to

improved mutual understanding.

The graphical notation that is part of a viewpoint should be approached flexibly

when it comes to communicating with non-technical stakeholders. If people are not

used to or prepared to deal with abstract graphical models, do not use them. Use

other forms of visualisation, text, or tables. Iconised diagrams work particularly

well. However, be prepared to point out the relation between the alternative

visualisation and your abstract models if asked to.

Even if graphical models play a big role in architecture, text is the chief form in

which (written) communication takes place. Two main ways in which this occurs

are:

– Graphical (partial!) models that are used to support textual descriptions (‘illus-
tration by diagram’).

– Text explaining and elaborating on a graphical model (‘textual modelling’).

188 8 Viewpoints and Visualisation

In fact, text is often better than a graphical model for conveying large amounts of

detail.

Language studies have indeed shown how the specific form of a language does

have an impact on what is expressed by means of the language (Cruse 2000). In the

case of modelling languages, the modelling concepts offered by the language will,

in general, influence the level of detail or abstraction that the resulting models will

exhibit.

Finally, during a modelling session, several things may come to the fore that will

influence the further process. External events may occur that are a threat to the

process as a whole. Be prepared to stop modelling if executive commitment is

withdrawn. It may be frustrating, but from a business perspective it may also be

crucial. It is simply part of a flexible project setup. If the informants turn out to be

less informed than expected, it is better to stop than to try and ‘make the best of it’
and produce an ill-conceived model.

In the field of agile development (Martin 2002; Rueping 2003; Ambler 2002), a

refreshing perspective can be found on such considerations.

8.4.5 Validation

In validation of an architecture with stakeholders, a clear difference should be made

between validation of content (qualitative validation, by modellers and experts) and

validation in terms of commitment (by executives). Both are crucial, but very

different. Obtaining (and validating) commitment is discussed in the next

subsection.

Whether good mutual communication and understanding about a model is being

reached is often a matter of intuition. If the people involved have a mutual feeling

that ‘their thoughts are well in sync’, then dare to trust that feeling. However, if the
opposite is the case, be prepared to invest in substantial discussion of concrete

examples, or face the dire consequences of poor validation. If the required ‘level of
agreement’ between participants is high, an atmosphere of mutual trust and coop-

eration between these participants is crucial.

Validation is an activity that should be conducted in limited groups. ‘Feedback
rounds’ involving a larger number of people, by e-mail or printed documentation,

do not really work. If you want feedback that is worth something, find key people

and discuss the models/views, preferably face to face. Make sure the ‘opinion
leaders’ in an organisation agree to the model.

Also, you should take care that the languages used to express a view do not have

a wrong connotation that may result in incorrect impressions about the scope and

status of models. A language like UML cannot be used in a discussion with business

people. Even though the language is suitable to express the models, the notation has

an implementation-oriented connotation to this audience.

8.4 Creating, Selecting, and Using Viewpoints 189

Furthermore, do not show a concrete view of the desired system too early on in

the development process. The concreteness of the diagram may give the stake-

holders a feeling that important decisions have already been made.

With regards to the last observation, an interesting statement on this issue can

also be found in Weinberg (1988). He argues that when the design of a system, or a

model in general, is still in its early stages, and different aspects are not yet clear

and definite, the graphical notation used should also reflect this. He suggests using

squiggly lines rather than firm lines, so as to communicate to the reader of a view

that specific parts of the view are still open to debate. We use this principle in the

Introductory viewpoint discussed in Sect. 8.5.2.

8.4.6 Obtaining Commitment

Obtaining commitment for a specific architectural design involves obtaining com-

mitment for the impact of this design on the future system and its evolution, as well

as the costs/resources needed to arrive at this future system. This means that the

message that one needs to get across to the stakeholders involves:

– What are the major problems in the current situation?

– How bad are these problems (to the concerns and objectives of the

stakeholders)?

– How will this improve in the new situation? (Benefits!)

– At what costs will these improvements come?

When discussing costs and benefits with stakeholders, make these costs and

benefits as SMART (Specific, Measurable, Attainable, Realisable, and Time-

bound) as possible. Make sure that the stakeholders agree, up front, with the criteria

that are used to express/determine costs and benefits. It is their commitment that is

needed. They will be the judge. Let them also decide what they want to base their

judgement on! Create shared responsibility towards the outcomes.

Selecting the stakeholders that should be involved when obtaining commitment

is also of key importance. Involving the wrong stakeholders, or leaving out impor-

tant ones, will have obvious repercussions. At the same time, selecting a too large a

group of stakeholders may bog down the process. Too much communication may

be a bad thing: it may create unnoticed and uncontrolled discussion outside the

main discussion, leading to twisted conceptualisations and expectations.

Though ideally ‘everyone’ should be heard, this is generally a practical impos-

sibility. Therefore, choose your experts carefully. Aim for the opinion leaders, and

also accept that you cannot please everyone. Realise that some people will not be

perfectly satisfied, prepare for it, and deal with it.

People who actually make the decisions are usually those who are just outside

the group of people who really know what is going on. Make sure that the former

people are also involved and aware of what is happening.

190 8 Viewpoints and Visualisation

Getting executive commitment may actually be dictated technologically. If their

business is highly technological, business people do not see technology as second-

ary, and will only commit to something if they are assured that ‘their organisation
will be able to run it’.

Sharing design decisions and their underlying considerations at a late stage has a

negative impact on the commitment of stakeholders. Start building commitment

early on in the process. This implies that the linear ordering of the ‘viewpoint use
phases’ as provided at the start of this section should not be applied strictly.

Once agreement has been reached, you should document this explicitly. Models

are never accepted as sufficient statements to base agreements and commitment

on. Commitments and agreements also need to be spelled out separately, in text.

8.4.7 Informing Stakeholders

Once commitment from the opinion leaders has been obtained, other stakeholders

may be informed about the future plans and their impact. In doing so, it still makes

sense to concentrate on cost/benefit considerations when trying to ‘sell’ the new

system. Below, we have gathered some observations that apply to the informing

phase. However, due to their general communicative nature, some of these obser-

vations are also applicable to the creation, validation, and commitment phases.

Do not impose presumed architectural terminology on true business people. Use

their terminology. Even a concept like ‘service’ is suspect because it is relatively

technology oriented and often unknown by stakeholders that are strictly on the

business side.

Models are particularly important in giving stakeholders a feeling that they are

‘part of the larger whole’. Often, just knowing where in the model ‘they can be

found’ is important to stakeholders, even if they do not understand the fine points of

the model.

Communication is the crucial factor in enterprise architecture. It will even pay

off actually to employ some communication experts (think marketing, PR, even

entertainment!) in larger projects. As a result, you will end up with stakeholders

who are genuinely prepared to change the way they and their business work, not just

with some interesting looking plans and models. Crucially, communication can be

quite different for various stages of system development. Therefore, it is important

to have a good communication strategy and a framework guiding you in this.

Even if people are willing to and able to read models thoroughly, text (spoken or

written) needs to be added. Models alone never suffice.

8.4 Creating, Selecting, and Using Viewpoints 191

8.5 Basic Design Viewpoints

The most basic type of viewpoint is the selection of a relevant subset of the

ArchiMate concepts and the representation of that part of an architecture that is

expressed in the concepts in this selection. This is sometimes called a ‘diagram’,
akin to, for instance, the UML diagrams.

In Sect. 7.3.2, we introduced the following four metaphorical directions from

which we can identify relevant model elements:

1. ‘Inwards’, towards the internal composition of the element

2. ‘Upwards’, towards the elements that are supported by it

3. ‘Downwards’, towards its realisation by other elements

4. ‘Sideways’, towards peer elements with which it cooperates

We also use these directions to identify possibly useful viewpoints.

For the ‘composition’ viewpoints, we start from the basic structure of our

modelling language. In its elementary form, the generic meta-model that is behind

the language consists of active structural elements such as actors, behavioural

elements such as functions and processes and passive informational elements

such as business and data objects, which are processed by the active elements in

the course of their behaviour.

From this basic structure, we can deduce a first set of viewpoint types, containing

three viewpoints that are centred around one specific type of concept:

1. Active elements, e.g. the composition of a business actor from sub-actors, i.e. an

organisation structure

2. Behaviour elements, e.g. the structure of a business process in terms of

sub-processes

3. Passive elements, e.g. the information structure in terms of data objects

Although these viewpoints take a specific type of concept and its structure as

their focus, they are not limited to these concepts, and closely related concepts are

also included.

For the ‘upwards’ support of elements in their environment, the active elements

offer interfaces through which their services can be used. ‘Downwards’ services are
realised by processes and functions, and application components are deployed on

infrastructure elements. ‘Sideways’ cooperation is achieved through collaborations

between active elements and their behaviour in the form of interactions, and flows

of information and value that relate the elements. Passive elements often play a role

in these relations, e.g., by being passed from one element to another, but are not the

focus. Hence we concentrate on the relations between the active and behaviour

elements.

Next to the design viewpoints resulting from these metaphorical directions,

which focus on a limited part of an enterprise architecture, we also need to represent

the whole architecture, but in a simplified form. Especially early in the design

process, when we do not yet know all the details that are added later on, we want to

192 8 Viewpoints and Visualisation

http://dx.doi.org/10.1007/978-3-662-53933-0_7

express an architecture using a subset of the ArchiMate language denoted in an

informal, simplified form. This helps to avoid the impression that the design is

already fixed and immutable, which may easily arise from a more formal diagram.

Furthermore, such a high-level overview is very useful in obtaining commitment

from stakeholders at an early stage of the design (see also Sect. 8.4.6). To this end,

we introduce the Simplified viewpoint.

In each of the viewpoint types, concepts from the three layers of business,

application, and technology may be used. However, not every combination of

these would give meaningful results; in some cases, for example, separate view-

points for the different layers are advisable. Based on common architectural

practice, our experiences with the use of ArchiMate models in practical cases and

the diagrams used in other languages like UML, we have selected the most useful

combinations in the form of a ‘standard’ set of basic viewpoints to be used with the
ArchiMate concepts (Table 8.5).

Some of these viewpoints have a scope that is limited to a single layer or aspect:

the Business Function and Business Process viewpoints show the two main per-

spectives on the business behaviour; the Organisation viewpoint depicts the struc-

ture of the enterprise in terms of its departments, roles, etc.; the Information

Structure viewpoint describes the information and data used; the Application

Structure, Behaviour, and Cooperation viewpoints contain the applications and

components and their mutual relations; and the Infrastructure viewpoint shows

the infrastructure and platforms underlying the enterprise’s information systems

in terms of networks, devices, and system software. Other viewpoints link multiple

layers and/or aspects: The Actor Cooperation and Product viewpoints relate the

enterprise to its environment; the Application Usage viewpoint relates applications

to their use in, for example, business processes; and the Deployment viewpoint

shows how applications are mapped onto the underlying infrastructure.

Table 8.5 Design viewpoints

Early design Cooperation
Introductory, p. 210 Actor Cooperation, p. 212

Business Process Cooperation, p. 216

Application Cooperation, p. 219

Composition Realisation
Organisation, p. 212

Business Function, p. 214

Business Process, p. 217

Information Structure, p. 218

Application Behaviour, p. 222

Application Structure, p. 222

Infrastructure, p. 223

Service Realisation, p. 216

Implementation & Deployment, p. 224

Support
Product, p. 215

Application Usage, p. 221

Infrastructure Usage, p. 224

8.5 Basic Design Viewpoints 193

In the next subsections, we will explain these design viewpoints in more detail

and provide examples of each one. In these examples, we have made extensive use

of the abstraction rule that can be applied on chains of structural relations in

ArchiMate, which was explained in Sect. 5.11. Note that it is explicitly not the
intention to limit the user of the ArchiMate language to these viewpoints; neither do

we expect an architect to draw all these diagrams in a given situation! They are

meant to assist the modeller in choosing the contents of a view, but combinations or

subsets of these viewpoints could well be useful in specific situations.

It is important in the examples that these views exhibit considerable overlap.

Different aspects of the Handle Claim business process are shown, for example, in

Fig. 8.15 (its use of information), Fig. 8.13 (realisation of services by business

processes) and Fig. 8.14 (its relations with other business processes), and there are

many more of these overlaps between views. This shows that underlying these

different views there is a single model, and each view is a projection of the relevant

elements in that model. We will use two examples throughout the description of the

basic design viewpoints to illustrate this coherence:

– The handling of insurance claims

– The policy administration systems and infrastructure

8.5.1 Introductory Viewpoint

The Introductory viewpoint forms a subset of the full ArchiMate language using a

simplified notation. It is typically used at the start of a design trajectory, when not

everything needs to be detailed, or to explain the essence of an architecture model to

non-architects who require a simpler notation. Another use of this basic, less formal

viewpoint is that it tries to avoid the impression that the architectural design is

already fixed, an impression that may easily arise when using a more formal, highly

structured, or detailed visualisation.

We use a simplified notation for the concepts and for the relations. All relations

except ‘triggering’ and ‘realisation’ are denoted by simple lines; ‘realisation’ has an
arrow in the direction of the realised service; ‘triggering’ is also represented by an

arrow. The concepts are denoted with slightly thicker lines and rounded corners,

which give a less formal impression. The example in Fig. 8.7 illustrates this

notation.

On purpose, the layout of this example is not as ‘straight’ as an ordinary

architecture diagram; this serves to avoid the idea that the design is already fixed

and immutable. This conforms to the suggestion made in Weinberg (1988) to use

squiggly lines rather than firm lines, to show to the reader of a view that specific

parts of the view are still open to debate.

194 8 Viewpoints and Visualisation

http://dx.doi.org/10.1007/978-3-662-53933-0_5

8.5.2 Organisation Viewpoint

The Organisation viewpoint shows the structure of an internal organisation of the

enterprise, department, or other organisational entity. It can be represented in the

form of a nested block diagram, but also in more traditional ways like the

organigram. An Organisation view is typically used to identify authority, compe-

tencies, and responsibilities within an organisation.

In Fig. 8.8, we see the high-level subdivision of ArchiSurance into a front and

back office and a finance department. Within the back office, there are three

departments responsible for specific products, e.g., car, travel, or legal aid insur-

ance, and the shared service centre for document processing. The front office

comprises two departments that handle the relations with customers and interme-

diaries, respectively.

Handle Claim

Customer
information

Claims
payment

CRM
application

 Policy
 administration

 Financial
 application

Claim
registration

Client
ArchiSurance

MainframeUnix
servers

Network

Register Accept Valuate Pay

Fig. 8.7 Example of an Introductory view

8.5 Basic Design Viewpoints 195

8.5.3 Actor Cooperation Viewpoint

The Actor Cooperation viewpoint focuses on the relations of actors with each other

and their environment. A common example of this is what is sometimes called a

‘context diagram’, which puts an organisation into its environment, consisting of

external parties such as customers, suppliers, and other business partners. It is

useful in determining external dependencies and collaborations and shows the

value chain or network in which the organisation operates. Another important use

of this viewpoint is in showing how a number of cooperating (business and/or

application) actors together realise a business process, by showing the flows

between them.

The main roles involved in the insurance business are the insurant, the insurer,

the intermediary and the customer’s bank. These cooperate in different settings. For
example, closing an insurance contract involves the customer, insurer and interme-

diary, whereas premium collection involves the insurer, the customer and the

customer’s bank. The main collaborations of ArchiSurance, which fulfils the role

of the insurer, are shown in Fig. 8.9 and the information flows in Fig. 8.10.

8.5.4 Business Function Viewpoint

The Business Function viewpoint shows the main business functions of an organi-

sation and their relations in terms of the flows of information, value, or goods

Fig. 8.8 ArchiSurance organisation structure

196 8 Viewpoints and Visualisation

between them. Business functions are used to represent what is most stable about a

company in terms of the primary activities it performs, regardless of organisational

changes or technological developments. Business function architectures of compa-

nies that operate in the same market therefore often exhibit many similarities. The

Business Function viewpoint thus provides high-level insight into the general

operations of the company, and can be used to identify necessary competencies,

or to structure an organisation according to its main activities.

In the example of Fig. 8.11, we can see the information flow associated with the

handling of insurance claims. Claims are submitted to the Maintaining Customer

Fig. 8.9 Collaborations of ArchiSurance and its partners

Fig. 8.10 Information flows between ArchiSurance’s departments and partners in handling

insurance claims

8.5 Basic Design Viewpoints 197

Relations business function, processed by Claim Handling, and paid by Financial

Handling. In the Business Process viewpoint (Sect. 8.5.6), we will see a more

detailed depiction of this process.

8.5.5 Product Viewpoint

The Product viewpoint depicts the value this product offers to the customers or other

external parties involved and shows the composition of one or more products in

terms of the constituting (business or application) services, and the associated

contract(s) or other agreements. It may also be used to show the interfaces (channels)

through which this product is offered, and the events associated with the product.

Fig. 8.11 Business functions and flows of information and money

198 8 Viewpoints and Visualisation

A Product view is typically used in designing a product by composing existing

services or by identifying which new services have to be created for this product,

given the value a customer expects from it. It may then serve as input for business

process architects and others that need to design the processes and IT systems that

realise this product.

A typical insurance product of ArchiSurance is depicted in Fig. 8.12. The value

to the customer of an insurance is typically the added security it provides, the

protection from loss and the reduced risk. The services mentioned here are realised

by various business processes, an example of which is given in Sect. 8.5.7.

8.5.6 Service Realisation Viewpoint

The Service Realisation viewpoint is used to show how one or more business

services are realised by the underlying processes (and sometimes by application

components). Thus, it forms the bridge between the Product viewpoint and the

Business Process viewpoint. It provides a ‘view from the outside’ of one or more

business processes.

Business services are realised by business processes. In Fig. 8.12, we saw the

services that constitute the travel insurance product. The business processes that

realise these services are shown in Fig. 8.13. For example, the Claim registration

service is realised by the Handle Claim business process that we use as an example

throughout this chapter.

Fig. 8.12 The travel insurance product

8.5 Basic Design Viewpoints 199

8.5.7 Business Process Cooperation Viewpoint

The Business Process Cooperation viewpoint is used to show the relations of one or

more business processes with each other and/or their surroundings. It can be used

both to create a high-level design of business processes within their context and to

provide an operational manager responsible for one or more such processes with

insight into their dependencies. Important aspects of coordination are:

– Causal relations between the main business processes of the enterprise

– The mapping of business processes onto business functions

– Realisation of services by business processes

– The use of shared data

– The execution of a business process by the same roles or actors

Each of these can be regarded as a ‘sub-viewpoint’ of the Business Process

Cooperation viewpoint. Below, we give examples of some of the resulting views.

In Fig. 8.14, the most important business processes of ArchiSurance are

depicted. It also shows their causal dependencies, e.g. the Collect premium process

needs to be preceded by the Close Contract process, since of course no premium can

be collected before the insurance policy has been issued. This figure also shows the

Handle Claim process that occurs in many of the other viewpoints.

8.5.8 Business Process Viewpoint

The Business Process viewpoint is used to show the high-level structure and

composition of one or more business processes. Next to the processes themselves,

this viewpoint contains other directly related concepts such as:

Fig. 8.13 Realisation of business services by ArchiSurance business processes

200 8 Viewpoints and Visualisation

– The services a business process offers to the outside world, showing how a

process contributes to the realisation of the company’s products
– The assignment of business processes to roles, which gives insight into the

responsibilities of the associated actors

– The information used by the business process

Each of these can be regarded as a ‘sub-viewpoint’ of the Business Process

viewpoint.

In Fig. 8.15, the Handle Claim business process is shown with the sub-processes

that are carried out in handling insurance claims.

8.5.9 Information Structure Viewpoint

The Information Structure viewpoint is basically identical to the traditional infor-

mation models created in the development of almost any information system. It

shows the structure of the information used in the enterprise or in a specific business

process or application, in terms of data types or (object-oriented) class structures.

Furthermore, it may show how the information at the business level is represented

Fig. 8.14 Some of the main business processes, triggers, and relations of ArchiSurance

8.5 Basic Design Viewpoints 201

at the application level in the form of the data structures used there, and how these

are then mapped onto the underlying infrastructure, e.g., by means of a database

schema.

In Fig. 8.16, the most important business objects of ArchiSurance are shown.

Some of these are used in the Handle Claim business process, as depicted in

Fig. 8.15.

8.5.10 Application Cooperation Viewpoint

The Application Cooperation viewpoint shows the relations of a number of appli-

cations or components. It describes the dependencies in terms of the information

flows between them, or the services they offer and use. This viewpoint is typically

used to create an overview of the application landscape of an organisation.

This viewpoint is also used to express the coordination or orchestration (i.e.,

internal coordination) of services that together support the execution of a business

Fig. 8.15 The Handle Claim business process and its use of information

Fig. 8.16 Information model of ArchiSurance

202 8 Viewpoints and Visualisation

process. By modelling the interdependencies between services, the coordination of

the underlying applications is established in a more independent way. If this

coordination is centralised and internal to the enterprise, we speak of ‘orchestra-
tion’; in the case of coordination between independent entities, the term ‘choreog-
raphy’ is often used.

The front- and back-office applications of ArchiSurance are shown in Fig. 8.17.

It is clear that the back office is structured according to the different types of

products, whereas the front office is already more integrated. One of the applica-

tions shown is the Home & Away policy administration used in several other

viewpoints as well.

Some of the connections between the ArchiSurance applications are shown in

Fig. 8.18, which shows that ArchiSurance uses the Enterprise Service Bus concept

to link its applications.

In Fig. 8.19, we see in more detail how the Policy information service from the

Home & Away Policy administration is used by the department’s Financial appli-
cation, through an interface in which the message queuing service from the lower-

level infrastructure is used (see also Fig. 8.24).

Fig. 8.17 Applications and information flow of ArchiSurance

8.5 Basic Design Viewpoints 203

8.5.11 Application Usage Viewpoint

The Application Usage viewpoint describes how applications are used to support

one or more business processes, and how they are used by other applications. It can

be used in designing an application by identifying the services needed by business

processes and other applications, or in designing business processes by describing

the services that are available. Furthermore, since it identifies the dependencies of

business processes upon applications, it may be useful to operational managers

responsible for these processes.

Fig. 8.18 Applications connected through the ArchiSurance Service Bus

Fig. 8.19 Details of the connection between the Home & Away Policy administration and

Financial application

204 8 Viewpoints and Visualisation

Figure 8.20 shows how the Handle Claim business process uses the application

services offered by several applications. Each of these services is realised by the

behaviour of an application, an example of which is given in Fig. 8.21.

8.5.12 Application Behaviour Viewpoint

The Application Behaviour viewpoint describes the internal behaviour of an appli-

cation or component, for example, as it realises one or more application services.

This viewpoint is useful in designing the main behaviour of applications or com-

ponents, or in identifying functional overlap between different applications.

Fig. 8.20 Application usage by the Handle Claim business process

Fig. 8.21 Behaviour of the CRM system

8.5 Basic Design Viewpoints 205

Part of the behaviour of the CRM system is shown in Fig. 8.21. The Customer

relation management application function uses customer data and realises the

Client registration service, which is provided via a Web client.

8.5.13 Application Structure Viewpoint

The Application Structure viewpoint shows the structure of one or more applica-

tions or components. This viewpoint is useful in designing or understanding the

main structure of applications or components and the associated data, e.g., to create

a first-step work breakdown structure for building a system, or in identifying legacy

parts suitable for migration.

Figure 8.22 shows the main components that constitute the policy administration

of ArchiSurance’s Home & Away department. It also depicts some of the important

data objects used by these components. These data objects are realisations of the

business objects of Fig. 8.16.

8.5.14 Technology Viewpoint

The Technology viewpoint comprises the hardware and software infrastructure

upon which the application layer depends. It contains physical devices and net-

works, and supporting system software such as operating systems, databases, and

middleware.

Part of the IT infrastructure of ArchiSurance and its intermediaries is shown in

Fig. 8.23.

Fig. 8.22 Main structure of the Home & Away Policy administration

206 8 Viewpoints and Visualisation

8.5.15 Technology Usage Viewpoint

The Technology Usage viewpoint shows how applications are supported by the

software and hardware infrastructure: technology services delivered by the devices,

system software and networks are provided to the applications. An example of this

viewpoint is given in Fig. 8.24, which shows the use, by a number of back-office

applications, of the messaging and data access services offered by ArchiSurance’s
technical infrastructure.

This viewpoint plays an important role in the analysis of performance and

scalability, since it relates the technical infrastructure to the world of applications.

It is very useful in determining the performance and quality requirements of the

infrastructure based on the demands of the various applications that use it. In

Chap. 9, we will describe a quantitative analysis technique that can be used to

determine, for example, the load on the infrastructure, based on its use by applica-

tions (and their use by business processes).

8.5.16 Implementation & Deployment Viewpoint

The Implementation & Deployment viewpoint shows how one or more applications

are deployed on the technical infrastructure. This comprises the mapping of (log-

ical) applications and components onto (physical) artefacts, for instance, Enterprise

Java Beans, and the mapping of the information used by these applications and

components onto the underlying storage infrastructure, e.g. database tables or other

Fig. 8.23 Infrastructure of ArchiSurance

8.5 Basic Design Viewpoints 207

http://dx.doi.org/10.1007/978-3-662-53933-0_9

files. In security and risk analysis, Deployment views are used to identify critical

dependencies and risks.

Figure 8.25 shows the mapping of logical application components of the Home

& Away Policy administration (see Fig. 8.22) used in several of the other examples

onto physical artefacts such as database tables. This figure also shows that the

artefacts are part of multiple groupings and that a grouping as a whole is related to

Fig. 8.25 Implementation of the Home & Away Policy administration

Fig. 8.24 Use of technology services by ArchiSurance’s back-office applications

208 8 Viewpoints and Visualisation

the system software on which it is deployed. This saves you from having to draw all

the individual relations with the elements in a group.

8.5.17 Physical Viewpoint

The Physical viewpoint contains equipment such as physical machines, tools or

instruments that can create, use, store, move or transform materials and shows how

this equipment is connected via the distribution network, on which facilities it is

deployed and what other active elements are assigned to the equipment (Fig. 8.26).

8.6 Motivation Viewpoints

For the Motivation concepts, we have also defined a number of example view-

points. Table 8.6 summarises these viewpoints.

8.7 Strategy Viewpoints

The next table summarises the viewpoints for the Strategy concepts (Table 8.7).

Fig. 8.26 Physical devices used by ArchiSurance to acquire data

8.7 Strategy Viewpoints 209

8.7.1 Capability Map Viewpoint

One often used strategy viewpoint that we want to highlight explicitly is the

capability map. This is a map of the enterprise that visualises its capabilities in

some state, for example, current capabilities and their current maturity level, or

required capabilities in a future state. Each key capability can be made more

specific by showing its sub-capabilities.

From a top-down perspective, capabilities are derived from the strategic direc-

tion of the organisation. From a bottom-up perspective, resources (e.g. people,

information, technology and other assets) can be linked to the capabilities they

support, providing a link between these and the strategic direction of the enterprise.

Table 8.6 Motivation viewpoints

Viewpoint Description Concepts and relations
Stakeholder

viewpoint

Allows the analyst to model the

stakeholders, internal or external

drivers for change, and the as-

sessments of these drivers

Stakeholder, Driver, As-

sessment, Goal, Associa-

tion relation, Aggrega-

tion relation

Goal realisation

viewpoint

Allows the designer to model the

refinement of high-level goals into

more concrete goals, and the re-

finement of concrete goals into re-

quirements or constraints that real-

ise these goals

Goal, Requirement,

Constraint, Principle,

Realisation relation, Ag-

gregation relation

Goal contribu-

tion viewpoint

Allows a designer or analyst to

model the influence relationships

between goals and requirements

Goal, Requirement,

Constraint, Principle,

Realisation relation, Ag-

gregation relation, Influ-

ence relation

Principles view-

point

Allows the analyst or designer to

model the principles that are rele-

vant to the design problem at hand,

including the goals that motivate

those principles.

Goal, Principle, Realisa-

tion relation, Aggrega-

tion relation, Influence

relation

Requirements

realisation

viewpoint

Allows the designer to model the

realisation of requirements by core

elements.

Goal, Requirement,

Constraint, all Core ele-

ments, Realisation rela-

tion, Aggregation rela-

tion

Motivation

viewpoint

Allows the designer or analyst to

model the motivation aspect, with-

out focusing on certain elements

within this aspect

All Motivation elements

and relations

210 8 Viewpoints and Visualisation

This way, capabilities can be used as a starting point for the definition of asset

portfolios.

As an example, a typical capability map is shown in Fig. 8.27.

Because the capabilities of an enterprise are relatively stable and easily

recognisable by its stakeholders, capability maps are very useful as a canvas onto

which other information can be projected. You can create various kinds of heat

maps and colour maps that all exhibit the same familiar structure. For example, you

might show benchmark data on the efficiency of capability implementations,

highlighting those capabilities that need to be improved. Or you can display the

organisation’s departments involved in capabilities using different colours or plot

the applications supporting capabilities on such a map.

8.8 Implementation and Migration Viewpoints

Table 8.8 summarises the viewpoints for the Implementation and Migration

concepts.

For more details on all of these viewpoints, please consult the ArchiMate

standard (The Open Group 2016a).

Table 8.7 Strategy viewpoints

Viewpoint Description Concepts and relations
Strategy

viewpoint

A high-level, strategic overview of

the strategies (courses of action) of

the enterprise, the capabilities and re-

sources supporting those and the en-

visaged outcomes

Course of action, Capa-

bility, Resource, Out-

come

Capability

Map view-

point

A structured overview of the capa-

bilities of the enterprise. A capability

map typically shows two or three lev-

els of capabilities across the entire

enterprise

Capability, Resource,

Outcome

Resource

Map view-

point

A structured overview of the re-

sources of the enterprise, how these

support its capabilities and how they

are realised by projects and programs

Capability, Resource,

Work package

Outcome

Realisation

viewpoint

Is used to show how the highest-

level, business-oriented results are

produced by the capabilities and un-

derlying core elements

Capability, Resource,

Outcome, Value, Mean-

ing, Core element

8.8 Implementation and Migration Viewpoints 211

Fig. 8.27 Example of a capability map

Table 8.8 Implementation and Migration viewpoints

Viewpoint Description Concepts and relations
Project viewpoint Is used to model the

management of architec-

ture change.

Work package Deliverable,

Goal, Business Role, Business

Actor, Realisation relation, Ag-

gregation relation, Triggering

relation, Flow relation, Assign-

ment relation

Migration view-

point

Entails models and con-

cepts that can be used for

specifying the transition

from an existing architec-

ture to a desired architec-

ture.

Plateau, Gap, Association rela-

tion, Aggregation relation, Trig-

gering relation

Implementation

and Migration

viewpoint

Is used to relate programs

and projects to the parts

of the architecture that

they implement.

All Implementation and Migra-

tion concepts, all Core concepts,

Requirement, Constraint, Goal,

all relations

212 8 Viewpoints and Visualisation

8.9 Combined Viewpoints

Next to the viewpoints for specific parts of the ArchiMate language, we can of

course also combine elements from different parts of the language to create

composite viewpoints. Moreover, we need not stick to the standard ArchiMate

notation described in Chap. 5, but we can use other symbols if that is a better fit with

the intended audience. This is also particularly useful if we want to use ArchiMate

in combination with other techniques, such as those described in Chap. 6. Creating

cross-cutting views that combine information from different but related models

may create new insights that cannot be had from viewing these models in isolation.

8.10 ArchiMate and TOGAF Viewpoints

TOGAF (The Open Group 2011) identifies a large number of viewpoints as part of

its content meta-model, subdivided in three main types of architectural artefact:

matrices, catalogues and diagrams. As we have seen in Sect. 6.13, ArchiMate and

TOGAF exhibit a very similar layered structure. This correspondence suggests a

fairly easy mapping between TOGAF’s views and the ArchiMate viewpoints.

Although corresponding viewpoints from ArchiMate and TOGAF do not necessar-

ily have identical coverage, we can see that many viewpoints from both methods

address approximately the same issues.

Moreover, ArchiMate is not limited to a specific set of viewpoints and allows the

definition of new viewpoints via the viewpoint mechanism described in the stan-

dard (The Open Group 2016a, Chap. 14). Most TOGAF views can easily be

expressed in ArchiMate concepts.

The most important disparity we observe between TOGAF and ArchiMate is

that the ArchiMate viewpoints that deal with the relationships between architectural

layers, such as the product and application usage viewpoints, are difficult to map

onto TOGAF’s diagrams, which are largely confined to a single architectural layer.

Although TOGAF does support several matrices that provide such a correspon-

dence between layers, such as the ‘Application/Organization Matrix’ or the ‘Data
Entity/Business Function Matrix’ it does not provide graphical representations of

these.

The ArchiMate language and its analysis techniques support pretty much all of

TOGAF’s diagrammatic views. Using ArchiMate as a description language

together with TOGAF as a method for developing architectures provides the

architect with two nicely complementary, open and vendor-independent methods.

Since both are administered by The Open Group, further integration of TOGAF and

ArchiMate can be expected.

8.10 ArchiMate and TOGAF Viewpoints 213

http://dx.doi.org/10.1007/978-3-662-53933-0_5
http://dx.doi.org/10.1007/978-3-662-53933-0_6
http://dx.doi.org/10.1007/978-3-662-53933-0_6

8.11 Summary

In the previous sections, we have advocated a viewpoint-oriented approach to

enterprise architecture modelling, in which architects and other stakeholders can

define their own views of the architecture. In this approach views are specified by

viewpoints, which define abstractions on the set of models representing the enter-

prise architecture, each aimed at a particular type of stakeholder and addressing a

particular set of concerns.

We have described the use of viewpoints in communication, and the distinction

between an architecture model, a view of that model, and its visualisation and

manipulation. We have presented guidelines for the selection and use of view-

points, and outlined a number of viewpoints in the ArchiMate language that can be

used by architects involved in the creation or change of enterprise architecture

models. Finally, we have shown how TOGAF’s views and ArchiMate’s viewpoints
match.

214 8 Viewpoints and Visualisation

	Chapter 8: Viewpoints and Visualisation
	8.1 Architecture Viewpoints
	8.1.1 Origin of Viewpoints
	8.1.2 Architecture Viewpoints
	8.1.3 Viewpoint Frameworks

	8.2 Models, Views, and Visualisations
	8.2.1 Example: Process Illustrations
	8.2.2 Example: Landscape Maps

	8.3 Visualisation and Interaction
	8.3.1 Actions in Views

	8.4 Creating, Selecting, and Using Viewpoints
	8.4.1 Classification of Viewpoints
	8.4.2 Guidelines for Using Viewpoints
	8.4.3 Scoping
	8.4.4 Creation of Views
	8.4.5 Validation
	8.4.6 Obtaining Commitment
	8.4.7 Informing Stakeholders

	8.5 Basic Design Viewpoints
	8.5.1 Introductory Viewpoint
	8.5.2 Organisation Viewpoint
	8.5.3 Actor Cooperation Viewpoint
	8.5.4 Business Function Viewpoint
	8.5.5 Product Viewpoint
	8.5.6 Service Realisation Viewpoint
	8.5.7 Business Process Cooperation Viewpoint
	8.5.8 Business Process Viewpoint
	8.5.9 Information Structure Viewpoint
	8.5.10 Application Cooperation Viewpoint
	8.5.11 Application Usage Viewpoint
	8.5.12 Application Behaviour Viewpoint
	8.5.13 Application Structure Viewpoint
	8.5.14 Technology Viewpoint
	8.5.15 Technology Usage Viewpoint
	8.5.16 Implementation and Deployment Viewpoint
	8.5.17 Physical Viewpoint

	8.6 Motivation Viewpoints
	8.7 Strategy Viewpoints
	8.7.1 Capability Map Viewpoint

	8.8 Implementation and Migration Viewpoints
	8.9 Combined Viewpoints
	8.10 ArchiMate and TOGAF Viewpoints
	8.11 Summary

