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Abstract. Garbled circuits is a cryptographic technique, which has
been used among other things for the construction of two and three-
party secure computation, private function evaluation and secure out-
sourcing. Garbling schemes is a primitive which formalizes the syntax
and security properties of garbled circuits. We define a generalization
of garbling schemes called reactive garbling schemes. We consider func-
tions and garbled functions taking multiple inputs and giving multiple
outputs. Two garbled functions can be linked together: an encoded out-
put of one garbled function can be transformed into an encoded input
of the other garbled function without communication between the par-
ties. Reactive garbling schemes also allow partial evaluation of garbled
functions even when only some of the encoded inputs are provided. It
is possible to further evaluate the linked garbled functions when more
garbled inputs become available. It is also possible to later garble more
functions and link them to the ongoing garbled evaluation. We provide
rigorous definitions for reactive garbling schemes. We define a new notion
of security for reactive garbling schemes called confidentiality. We provide
both simulation based and indistinguishability based notions of security.
We also show that the simulation based notion of security implies the
indistinguishability based notion of security. We present an instantiation
of reactive garbling schemes. We finally present an application of reac-
tive garbling schemes to reactive two-party computation secure against
a malicious, static adversary.

1 Introduction

Garbled circuits is a technique originating in the work of Yao and later for-
malised by Bellare, Hoang and Rogaway [2], who introduced the notion of a
garbling scheme along with an instantiation. Garbling schemes have found a
wide range of applications. However, many of these applications are using spe-
cific constructions of garbled circuits instead of the abstract notion of a garbling
scheme. One possible explanation is that the notion of a garbling scheme falls
short of capturing many of the current uses. In the notion of a garbling scheme,
the constructed garbled function can only be used for a single evaluation and the
garbled function has no further use. In contrast, many of the most interesting
current applications of garbled circuits have a more granular look at garbling,
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where several components are garbled, dynamically glued together and possibly
evaluated at different points in time. We now give a few examples of this.

In the standard cut-and-choose paradigm for two-party computation, Alice
sends s copies of a garbled function to Bob. Half of the garblings (chosen by Bob)
are opened to check that they were correctly constructed. This guarantees that
the majority of the remaining instances were correctly constructed. Alice and
Bob then use the remaining garblings for evaluation. Bob takes the majority
output of these evaluations as his output. Although conceptually simple, this
introduces a number of problems: Bob must ensure that Alice uses consistent
inputs. It is also required that the probability that Bob aborts does not depend
on his choice of input. Previous protocols solve these problems by doing white-
box modifications of the underlying garbling scheme. We will show how to solve
these problems by using reactive garbling schemes in a black-box manner.

In [18], Lindell presents a very efficient protocol for achieving active secure
two-party computation from garbled circuits. In the scheme of Lindell, first s
circuits are sent. Then a random subset of them are opened up to test that they
were correctly constructed and the rest, the so-called evaluation circuits, are then
evaluated in parallel. If the evaluations don’t all give the same output, then the
evaluator can construct a certificate of cheating which can be fed into a small
corrective garbled circuit. Another example is a technique introduced simultane-
ously by Krater, shelat and Shen [16] and Frederiksen, Jakobsen and Nielsen [6],
where a part of the circuit which checks the so-called input consistency of one
of the parties is constructed after the main garbled circuit has been constructed
and after Alice has given her input. We use a similar technique in our example
application, showing that this trick can be applied to (reactive) garbling schemes
in general. Another example is the work of Huang, Katz, Kolesnikov, Kumaresan
and Malozemoff [14] on amortising garbled circuits, where one of the analytic
challenges is a setting where many circuits are garbled prior to inputs being
given. Our security notion allows this behaviour and this part of their protocol
could therefore be cast as using a general (reactive) garbling scheme. Another
example is the work of Huang, Evans, Katz and Malka [13] on fast secure two-
party computation using garbled circuits, where they use pipelining: the circuit
is garbled and evaluated in blocks for efficiency. Finally, we remark that some-
times the issue of garbling many circuits and gluing them together and having
them interact with other security components can also lead to subtle insecurity
problems, as demonstrated by the notion of a garbled RAM as introduced by Lu
and Ostrovsky in [19], where the construction was later proven to be insecure by
Gentry, Halevi, Lu, Ostrovsky, Raykova and Wichs [10]. We believe that having
well founded abstract notions of partial garbling and gluing will make it harder
to overlook security problems.

Our goal is to introduce a notion of reactive garbling schemes, which is general
enough to capture the use of garbled circuits in most of the existing applications
and which will hopefully form a foundation for many future applications of gar-
bling schemes. Reactive garbling schemes generalize garbling schemes in several
ways. First of all, we allow a garbled evaluation to save a state and use it in
further computations. Specifically, when garbling a function f one can link it to
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a previous garbling of some function g and as a result get a garbling of f ◦ g.
Even more, given two independent garblings of f and g, it is possible to do a
linking which will produce a garbling of f ◦ g or g ◦ f . The linking depends only
on the output encoding and input encoding of the linked garblings. We also allow
garbling of a single function which allows partial evaluation and which allows
dynamic input selection based on partial outputs. This can be mixed with link-
ing, so that the choice of which functions to garble and link can be based on
partial outputs. This can be important in reactive secure computation which
allows inputs to arrive gradually and allows branching based on public partial
outputs. We introduce the syntax and security definitions for this notion. We give
an instantiation of reactive garbling schemes in the random oracle model. We
also construct a reactive, maliciously UC secure two-party computation protocol
based on reactive garbling schemes in a black-box manner.

1.1 Discussion and Motivation

In this section, we describe the purpose of our framework and why certain design
choices were made for the framework in this paper.

One of the main goals of garbling schemes was to define a primitive that
would be used in constructions without relying on the underlying instantiation.
Unfortunately, most secure two-party computation protocols still rely on garbled
circuits to provide security. In some sense, the notion of garbling schemes is not
able to achieve this goal for the given task. One way of thinking of our result is
to note that many techniques that previously only worked for garbled circuits,
now work for reactive garbling schemes.

More precisely, to achieve reactive secure computation, the protocol for reac-
tive computation shows how three issues which typically are solved using the
underlying instantiation of garbled circuits in cut-and-choose protocols can be
solved using reactive garbling schemes. These issues are Alice’s input consistency,
selective failure attacks and how to run the simulator against a corrupted Bob.
We solve these three issues by using the notion of reactive garbling schemes. This
means that many protocols in the literature can easily be modified to achieve
security by only relying on the properties of reactive garbling schemes.

We now discuss why certain design choices were made. In particular, why we
included notions such as linking multiple output wires to a single input wire, par-
tial evaluation and output encoding. The reason that we allow multiple output
wires to link to a single input wire is that otherwise we would exclude important
constructions such as Minilego [7] and Lindell’s reduced circuit optimization [18].

Output encodings are important for many reasons. First, it provides a method
for defining linking. Roughly because of this notion, it is easy to define a linking
as information which allows an encoded output to be converted into an encoded
input. Secondly, in certain cases, constructions based on garbling schemes require
a special property of the encoded output which otherwise cannot be described.
This is the case of [11] where the encoded input has to be the same size as
the encoded output. It is also useful for output reuse, covers pipelining and has
applications to protocols where the receiver can use a proof of cheating to extract
the sender’s input.
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We included partial evaluation for two main reasons, first we consider that
it can be an important feature for reactive computation, secure outsourcing and
secure computation where a partial output would be valuable. A partial output
could be used to determine what future computation to run on data. In addition,
we could garble blocks of functions and decide to link certain blocks together
based on partial outputs.

In addition, many schemes in the literature inherently allow partial evalu-
ation and not allowing partial evaluation imposes artificial restrictions on the
constructions. For example, fine-grained privacy in [1] cannot be realized by
standard schemes precisely because those schemes give out partial outputs.

1.2 Recasting Previous Constructions

The concept of using output encoding and linking has been implicitly used in
many previous works. In particular, in cut-and-choose protocols, it has been used
in [5,6,17,23] to enforce sender input consistency (ensure that the sender uses the
same input in each instance) and to prevent selective failure attacks (an attack
that works by having the probability that the receiver aborts depend on his
choice of input). These concepts have also been used for different optimizations.
Pipelining [13,16] and output reuse [11,20] are examples of direct optimizations.
Linking has also been employed to reduce the number of circuits that need
to be sent in protocols that apply cut-and-choose at the circuit level [4,18].
This is done by adding a phase where a receiver can extract the input of a
cheating sender. Another example is gate soldering [7,21]. This technique works
by employing cut-and-choose at the gate level. The gates are then randomly
split among different buckets and soldered together. This optimization reduces
the replication factor for a security �(s) to �( s

log(n) ) where n is the number of
non-xor gates. There are many applications that benefit from output encoding
and linking in garbling schemes. In addition, if we allow sequences where the
input is chosen as a function of the garbling, reactive garbling schemes are also
adaptive. The constructions of [9,12] require adaptive garbling.

1.3 Structure of the Paper

In Sect. 2, we give the preliminaries. In Sect. 3, we define the syntax and secu-
rity of reactive garbling schemes. In Sect. 4, we describe an instantiation of a
reactive garbling scheme. In Sect. 4.1, we give a full description of the reactive
garbling scheme. In Sect. 5, we give an intuitive description of the reactive two-
party computation protocol based on reactive garbling schemes. In Sect. 5.1, we
provide a full description of the reactive two-party computation protocol. We
note that the techniques that we introduce in Sect. 5 can be applied to previous
secure two-party computation protocol to convert them into constructions that
only use reactive garbling schemes in a black-box manner. There is a full version
of the paper with more details. [22] In the full version there is a detailed simula-
tion proof that our reactive computation protocol is secure, a proof of security
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of our reactive garbling scheme using the indistinguishability based notion of
security, we recast Lindell’s construction using reactive garbling schemes, we
describe Minilego’s garbling and soldering as a reactive garbling scheme, and we
prove security of our garbling scheme using the simulation based definition of
confidentiality. We also show that simulation based definition implies the indis-
tinguishability based definition of security.

2 Preliminaries

Let N be the set of natural numbers. For n ∈ N, let {0, 1}n be the set of n-bit
strings. Let {0, 1}∗ = ∪

n∈N

{0, 1}n. We use � and ⊥ as the syntax for true and false

and we assume that �,⊥ �∈ {0, 1}∗. We use () to denote the empty sequence.
For a sequence σ, we use x ∈ σ to denote that x is in the sequence. When we
iterate over x ∈ σ in a for-loop, we do it from left to right. For a sequence σ and
an element x we use σ ‖ x to denote that we append x to σ. We use ‖ to denote
concatenation of sequences. When unambiguous, we also use juxtaposition for
concatenating and appending. We use x

$← X to denote sampling a uniformly
random x from a finite set X. We use [A] to denote the possible legal outputs
of an algorithm A. This is just the set of possible outputs, with ⊥ removed.

rule Example
on (7, x1) from A
on x2 from B
x ← ()
x ← x ‖ x1 ‖ x2

z ← 0
for y ∈ (1, 2, 4) do

if z ≥ y then abort
z ← z + y

send x to A

Fig. 1. A rule

We prove security of protocols in the UC
framework and we assume that the reader is
familiar with the framework. When we spec-
ify entities for the UC framework, ideal func-
tionalities, parties in protocol, adversaries
and simulators we give them by a set of rules
of the form Example (which sends (x1, x2)
to the adversary in its last line). In Fig. 1, we
give an example of a rule. A line of the form
“send m to F .R”, where F is another entity
and R the name of a rule, the entity will send
(R, id,m) to F , where id is a unique identifier
of the rule that is sending, including the ses-
sion and sub-session identifier, in case many
copies of the same rule are currently in execution. We then give (R, id, ?) to the
adversary and let the adversary decide when to deliver the message. Here ? is
just a special reserved string indicating that the real input has been removed.
When a message of the form (R, id,m) arrives from an entity A, the receiver
stores (R,A, id,m) in a pool of pending messages and turns the activation over
to the adversary. A line of the form “onP fromA” executed in a rule named
R running with identifier id and where P is a pattern, is executed as follows.
The entity executing the rule stores (R,A, id, P ) in a pool of pending receives
and turns over the activation to the adversary. We say that a pending mes-
sage (R,A, id,m) matches pending receive (R,A, id, P ) if m can be parsed on
the form P . Whenever an entity turns over the activation to the adversary it
sends along (R,A, id, ?) for all matched (R,A, id, P ), where ? is just a special
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reserved bit-string. There is a special procedure Initialize which is executed
once, when the entity is created. All other rules begin with an on-command.
The rule is considered ready for id if the first line is of the form “onP fromA”
and (R,A, id, P ) is matched and the rule was never executed with identifier
id. In that case (R,A, id, P ) is considered to be in the set of pending receives.
If the adversary sends (R,A, id, ?) to an entity that has some pending receive
(R,A, id, P ) matched by some pending message (R,A, id,m), then the entity
parses m using P and starts executing right after the line “onP fromA” which
added (R,A, id, P ) to the list of pending receives. A line of the form “awaitP”
where P is a predicate on the state of the entity works like the on-command.
The line turns activation over to the adversary along with an identifier, and
the entity will report to the adversary which predicates have become true. The
adversary can instruct the entity to resume execution right after any “awaitP”
where P is true on the state of the entity. If an entity executes a rule which ter-
minates, it turns the activation over to the adversary. The keyword abortmakes
an entity terminate and ignore all future inputs. A line of the form “verifyP”
makes the entity abort if P is not true on the state of the entity. We use A
to denote the adversary and Z to denote the environment. A line of the form
“onP” is equivalent to “onP fromZ”. When specifying ideal functionalities
we use Corrupt to denote the set of corrupted parties.

We define security of cryptographic schemes via code-based games [3]. The
game is given by a set of procedures. There is a special procedure Initialize
which is called once, as the first call. There is another special procedure Finalize
which may be called by the adversary. The output is true or false, � or ⊥,
where � indicates that the adversary won the game. In between Initialize
and Finalize, the adversary might call the other procedures at will. The other
procedures might also output ⊥ or � at which point the game ends with that
output. Other outputs go back to the adversary.

3 Syntax and Security of Reactive Garbling Schemes

Section overview. We will start by defining the notion of gradual function, this
will allow us to describe the type of functions that can be garbled. The functions
that we define, in contrast to standard garbling schemes allow multiple inputs
and outputs as well as partial evaluation.

Next, we will define the syntax of a reactive garbling scheme in the same
way that a garbling scheme was described before. We will describe tags, a way
of assigning identities to garbled functions, so that we can refer to them later. We
will then describe different algorithms: how to encode inputs, decode outputs,
link garblings together and other algorithms. Next, we will define correctness.
The work of [2] defined the notion of correctness by comparing it to a plaintext
evaluation. We define the notion of garbling sequences which is the equivalent
of plaintext evaluation but for reactive garbling. Some garbling sequences don’t
make sense, for example producing an encoded input for a function that has not
been defined. As a result, we will define the concept of legal garbling sequences
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to avoid sequences that are nonsensical. Finally, we can define correctness by
comparing the plaintext evaluation of a garbling sequence with the evaluation
of a garbling sequence by applying the algorithms define before. We then use
the notion of garbling sequence to define the side-information function for reac-
tive garbling. This is necessary to describe our notion of security which we call
confidentiality.

Gradual Functions. We first define the notion of a gradual function. A gradual
function is an extension of the usual notion of a function f : A1 × · · · × An →
B1 × · · · × Bm, where we allow to partially evaluate the function on a subset of
the input components. Some output components might become available before
all input components have arrived. We require that when an output component
has become available, it cannot become unavailable or change as more input
components arrive. We also require that the set of available outputs depends only
on which inputs are ready, not on the exact value of the inputs. In our framework,
we only allow garblings of gradual functions. This allows us to define partial
evaluation and to avoid issues such as circular evaluation and determining when
outputs are defined. These issues would make our framework more complex. The
access function will be the function describing which outputs are available when
a given set of inputs is ready. We will use ⊥ to denote that an input is not yet
specified and that an output is not yet available. We therefore require that ⊥
is not a usual input or output of the function. We now formalize these notions.
For a function f : A1 × · · ·×An → B1 × · · ·×Bm we use the following notation.
f.n := n and f.m := m, f.A := A1 × · · · × An, f.B := B1 × · · · × Bm, and
f.Ai := Ai and f.Bi := Bi.

Definition 1. We use component to denote a set C = {0, 1}� ∪ {⊥} for some
� ∈ N, where ⊥ �∈ {0, 1}∗. We call � the length of C and we write len(C) = �.
Let C1, . . . , Cn be components and let x′, x ∈ C1 × · · · × Cn.

– We say that x′ is an extension of x, written x � x′ if xi �= ⊥ implies that
xi = x′

i for i = 1, . . . , n.
– We say that x and x′ are equivalently undefined, written x �� x′, if for all

i = 1, . . . , n it holds that xi = ⊥ iff x′
i = ⊥.

Definition 2 (Gradual Function). Let A1, . . . , An, B1, . . . , Bm be compo-
nents and let f : A1 × · · · × An → B1 × · · · × Bm. We say that f is a gradual
function if it is monotone and variable defined.

– It is monotone if for all x, x′ ∈ A1 ×· · ·×Am it holds that x � x′ implies that
f(x) � f(x′).

– It is variable defined if x �� x′ then f(x) �� f(x′).

We say that an algorithm computes a gradual function f : A1 × · · · × An →
B1 × · · · × Bm if on all inputs x ∈ A1 × · · · × Am it accepts with output f(x)
and on all other inputs it rejects. We define a notion of access function which
specifies which outputs components will be available given that a given subset
of input components are available.
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Definition 3 (Access Function). The access function of a gradual function
f : A1 × · · ·×An → B1 × · · ·×Bm is a function access(f) : {⊥,�}n → {⊥,�}m

defined as follows. For j = 1, . . . , m, let qj : Bj → {⊥,�} be the function
where qj(⊥) = ⊥ and qj(y) = � otherwise. Let q : B1 × · · · × Bm → {⊥,�}m

be the function (y1, . . . , ym) �→ (q1(y1), . . . , qm(ym)). For i = 1, . . . , n, let pi :
{⊥,�} → Ai be the function with pi(⊥) = ⊥ and pi(�) = 0len(Ai). Let p :
{⊥,�}n → A1 × · · · × An be the function (x1, . . . , xn) �→ (p1(x1), . . . , pn(xn)).
Then access(f) = q ◦ f ◦ p.

Definition 4 (Gradual functional similarity). Let f ,g be gradual functions.
We say that f is similar to g (f ∼ g) if f.n = g.n, f.m = g.m, f.A = g.A,
f.B = g.B and access(f) = access(g).

In the following, if we use a function at a place where a gradual function is
expected and nothing else is explicitly mentioned, we extend it to be a gradual
function by adding ⊥ to all input and output components and letting all outputs
be undefined until all inputs are defined.

Syntax of Algorithms. A reactive garbling scheme consists of seven algorithms
G = (St,Gb,En, li,Ev, ev,De). The algorithms St, Gb and Li are randomized
and the other algorithms are deterministic. Gradual functions are described by
strings f . We call f the original gradual function. For each such description, we
require that ev(f, ·) computes some gradual function ev(f, ·) : A1 × · · · × An →
B1 × · · · × Bm. This is the function that f describes. We often use f also to
denote the gradual function ev(f, ·).
– On input of a security parameter k ∈ N, the setup algorithm outputs a pair

of parameters (sps, pps) ← St(1k), where sps ∈ {0, 1}∗ is the secret parameters
and pps ∈ {0, 1}∗ is the public parameters. All other algorithms will also receive
1k as their first input, but we will stop writing that explicitly.

– On input f , a tag1 t ∈ {0, 1}∗ and the secret parameters sps the garbling
algorithm Gb produces as output a quadruple of strings (F, e, o, d), where F is
the garbled function, e is the input encoding function, d is the output decoding
function, which is of the form d = (d1, . . . , dm), and o is the output encoding
function. When (F, e, o, d) ← Gb(sps, f, t) we use Ft to denote F , we use dt,i to
denote the ith entry of d, and similarly for the other components. This naming
is unique by the function-tag uniqueness and garble-tag uniqueness conditions
described later.

– The encoding algorithm En takes input (e, t, i, x) and produces encoded input
Xt,i.

– The linking algorithm li takes input of the form (t1, i1, t2, i2, o, e) and produces
an output Lt1,i1,t2,i2 called the encoded linking information. Think of this as
information which allows to take an encoded output Yt1,i1 for Ft1 and turn it
into an encoded input Xt2,i2 for Ft2 . In other words, we link the output wire

1 Some of the algorithms will take as input values output by other algorithms. To
identify where these inputs originate from we use tags.
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with index i1 of the garbling with tag t1 to the input wire with index i2 of the
garbling with tag t2.

– The garbled evaluation algorithm Ev takes as input a set F of pairs (t, Ft)
where t is a tag and Ft a garbled function (let T be the set of tags t occurring
in F), a set X of triples (t, i,Xt,i) where t ∈ T , i ∈ [Ft.n] and Xi,j �= ⊥ is an
encoded input, and a set L of tuples (t1, i1, t2, i2, Lt1,i1,t2,i2) with t1, t2 ∈ T
and i1 ∈ [Ft1 .m] and i2 ∈ [Ft2 .n] and Lt1,i1,t2,i2 �= ⊥ an encoded linking
information. It outputs a set Y = {(t, i, Yt,i)}t∈T,i∈[Ft.m], where each Yt,i is an
encoded output. It might be that Yt,i = ⊥ if the corresponding output is not
ready.

– The decoding algorithm takes input (t, i, dt,i, Yt,i), and produces a final output
yt,i. We require that De(·, ·, ·,⊥) = ⊥. The reason for this is that Yt,i = ⊥
is used to signal that the encoded output cannot be computed yet, and we
want this to decode to yt,i = ⊥. We extend the decoding algorithm to work
on sets of decoding functions and sets of encoded outputs, by simply decoding
each encoded output for which the corresponding output decoding function is
given, as follows. For a set δ, called the overall decoding function, consisting
of triples of the form (t, i, dt,i), and a set Y of triples of the form (t, i, Yt,i),
we let De(δ,Y) output the set of (t, i,De(t, i, dt,i, Yt,i)) for which (t, i, dt,i) ∈ δ
and (t, i, Yt,i) ∈ Y.

Basic requirements. We require that f.n and f.m can be computed in linear
time from a function description f . We require that len(f.Ai) and len(f.Bj) can
be computed in linear time for i = 1, . . . , n and j = 1, . . . ,m. We require that
the same numbers can be computed in linear time from any garbling F of f .
We finally require that one can compute access(f) in polynomial time given a
garbling F of f . We do not impose the length condition and the non-degeneracy
condition from [2], i.e., e and d might depend on f . Our security definitions
ensure that the dependency does not leak unwarranted information (Fig. 2).

Projective Schemes. Following [2], we call a scheme projective (on input com-
ponent i) if all X ∈ { En(e, t, i, x) | x ∈ {0, 1}n } are of the form {X1,0,X1,1} ×

En De Li

Gb Ev

et,i

xt,i
Xt,i

dt,i

Yt,i

yt,i

ot1,i1

et2,i2

Lt1,i1,t2,i2

1k

f

t

Ft

et = et,1, . . . , et,n

dt = dt,1, . . . , dt,m

ot = ot,1, . . . , ot,m

F
X
L

Y

Fig. 2. Input-output behaviour of the central algorithms of a reactive garbling scheme.
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. . . × {Xc,0,Xc,1}, where c = len(f.Xi), and En(e, t, i, x) = (X1,x[1], ...,Xc,x[c]).
This should hold for all k, f , t, �, x ∈ {0, 1}c and (sps, pps) ∈ [St(1k)] and
(F, e, o, d) ∈ [Gb(sps, f, t, �)]. As in [2] being projective is defined only relative
to the input encodings. One can define a similar notion for output decodings.
Having projective output decodings is needed for capturing some applications
using reactive garbling scheme, for instance [18].

Correctness. To define correctness, we need a notion of calling the algorithms
of a garbling scheme in a meaningful order. For this purpose, we define a notion
of garbling sequence σ. A garbling sequence is a sequence of garbling commands,
each command has one of the following forms: (Func, f, t), (Link, t1, i1, t2, i2),
(Input, t, i, x), (Output, t, i), (Garble, t). In the rest of the paper, we will use σ to
refer to a garbling sequence. A garbling sequence is called legal if the following
conditions hold.

Function uniqueness: σ does not contain distinct commands (Func, f1, t) and
(Func, f2, t).

Garble uniqueness: Each command (Garble, t) occurs at most once in σ.
Garble legality: If (Garble, t) occurs in σ, it is preceded by (Func, ·, t).
Linkage legality: If the command (Link, t1, i1, t2, i2) occurs in σ, then the

command is preceded by commands of the forms (Func, f1, t1), (Garble, t1),
(Func, f2, t2) and (Garble, t2), and 1 ≤ i1 ≤ f1.m, 1 ≤ i2 ≤ f2.n and
f1.Bi1 = f2.Ai2 .

Input legality: If (Input, t, i, x) occurs in σ it is preceded by (Func, f, t) and
(Garble, f) and x ∈ f.Ai \ {⊥}.

Output legality: If (Output, t, i) occurs in a sequence it is preceded by (Func, f, t)
and (Garble, t) and 1 ≤ i ≤ f.m.

proc eval(σ ∈ L)
for (Func, t, f) ∈ σ, do

ft ← f
for i = 1, . . . , ft.n do xt,i ← ⊥
for j = 1, . . . , ft.m do yt,j ← ⊥

for (Input, t, i, x) ∈ σ do xt,i ←↩ x
T ← ∅
repeat

U ← T
for (Func, t, f) ∈ σ do

(yt,1, . . . , yt,ft.m) ← ft(xt,1, . . . , xt,ft.n)
for (Link, t, i1, t2, i2) ∈ σ do xt2,i2 ←↩ yt,i1

T ← {(t, i, yt,i) | t ∈ Tags(σ), i = 1, . . . , ft.m}
until T = U ∨ (·, ·, Error) ∈ T
return T

Fig. 3. Plaintext evaluation

Note that if a sequence is
legal, then so is any prefix of
the sequence. We call a gar-
bling sequence illegal if it is
not legal. Since we allow to link
several output components onto
the same input component we
have to deal with the case where
they carry different values. We
consider this an error, and to
catch it, we use the following safe
assignment operator.
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(u ←↩ v) :=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

u ← Error if v = Error

u ← u if v = ⊥
u ← v if u = ⊥ ∨ u = v

u ← Error otherwise

We now define an algorithm eval, which takes as input a legal garbling
sequence σ and outputs a set of tuples (t, i, yt,i), one for each command
(Output, t, i), where possibly yt,i = ⊥. The values are computed by taking the
least fix point of the evaluation of all the gradual functions, see Fig. 3. We call
this the plain evaluation of σ. We extend the definition of a legal sequence to
include the requirement that

Input uniqueness (·, ·, Error) �∈ eval(σ).

Therefore the use of the safe assignment in eval is only to conveniently define
the notion of legal sequence. In the rest of the paper we assume that all inputs
to eval are legal. The values yt,i �= ⊥ are by definition the values that are ready
in σ, i.e., ready(σ) = {(t, i)|∃(t, i, yt,i) ∈ eval(σ)(yt,i �= ⊥)}. Note that since the
gradual functions are variable defined, which outputs are ready does not depend
on the values of the inputs, except via whether they are ⊥ or not.

proc Eval(σ ∈ L)
for c ∈ σ do

if c = (Func, t, f) then ft ← f ;
if c = (Garble, t) then

(Ft, et, ot, dt) ← Gb(sps, ft, t)
F ← F ‖(t, Ft)

if c = (Input, t, i, x) then
Xt,i ← En(et, t, i, x)
X ← X ‖(t, i, Xt,i)

if c = (Link, t1, i1, t2, i2) then
Lt1,i1,t2,i2 ← li(t1, i1, t2, i2, ot1 , et2)
L ← L ‖(t1, i1, t2, i2, Lt1,i1,t2,i2)

if c = (Output, t, i) then
δ ← δ ‖(t, i, dt,i)

return De(δ,Ev(F , X , L))

Fig. 4. Garbled evaluation

The procedure Eval in Fig. 4
demonstrates how a legal garbling
sequence is intended to be translated
into calls to the algorithms of the gar-
bling scheme. We call the procedure
executed by Eval garbled evaluation
of σ.

Lemma 1. For a function description
f , let T (f) be the worst case running
time of ev(f, ·). The algorithm eval
will terminate in time poly(T |σ|(n +
m)), where n = max(Func,t,f)∈σ f.n,
m = max(Func,t,f)∈σ f.m, and T =
max(Func,t,f)∈σ T (f).

Proof. By monotonicity, if the loop in
eval does not terminate, another vari-
able yt,i has changed from ⊥ to �= ⊥ and can never change value again. This
bounds the number of iterations as needed.

Side-Information Functions. We use the same notion of side-information func-
tions as in [2]. A side information function Φ maps function descriptions f into
the side information Φ = Φ(f) ∈ {0, 1}∗. Intuitively, a garbling of f should not
leak more than Φ(f). The exact meaning of the side information functions are
given by our security definition. We extend a side information function Φ to the
set of garbling sequences. For the empty sequence σ = () we let Φ(σ) = ().
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For a sequence σ, we define the side-information as Φ(σ) := Φσ(σ)
where for a sequence σ̄ and a command c: Φσ(σ̄ ‖ c) = Φσ(σ̄) ‖ Φσ(c),
where Φσ(Func, t, f) = (Func, t, Φ(f)), Φσ(Link, t1, i1, t2, i2) = (Link, t1, i1, t2, i2),
Φσ(Input, t, i, x) = (Input, t, i, |x|), Φσ(Garble, t) = (Garble, t) and Φσ(Output, t, i) =
(Output, t, i, yt,i), where yt,i is defined by eval(σ).

Legal Sequence Classes. We define the notion of a legal sequence class L (rela-
tive to a given side-information function Φ). It is a subset of the legal garbling
sequences which additionally has these five properties:

Monotone: If σ′ ‖ σ′′ ∈ L, then σ′ ∈ L.
Input independent: If σ′ ‖(Input, t, i, x) ‖ σ′′ ∈ L, then σ′ ‖(Input, t, i, x′) ‖ σ′′ ∈

L for all x′ ∈ {0, 1}|x|.
Function independent: If σ′ ‖(Func, t, f) ‖ σ′′ ∈ L, then σ′ ‖(Func, t, f ′) ‖ σ′′ ∈ L

for all f with Φ(f ′) = Φ(f).
Name invariant: If σ ∈ L and σ′ is σ with all tags t replaced by t′ = π(t) for

an injection π, then σ′ ∈ L.
Efficient: Finally, the language L should be in P, i.e., in polynomial time.

It is easy to see that the set of all legal garbling sequences is a legal sequence
class.

Definition 5 (Correctness). For a legal sequence class L and a reactive gar-
bling scheme G we say that G is L-correct if for all σ ∈ L, it holds that
De(Eval(σ)) ⊆ eval(σ) for all choices of randomness by the randomized algo-
rithms.

Function Individual Garbled Evaluation. The garbled evaluation function Ev just
takes as input sets of garbled functions, inputs and linking information and then
somehow produces a set of garbled outputs. It is often convenient to have more
structure to the garbled evaluation than this.

proc Ev(F , X , L)
for (t, F ) ∈ F do

Ft ← F
for i = 1, . . . , Ft.n do Xt,i ← ⊥

for (t, i, X) ∈ X do Xt,i ← X
T ← ∅
repeat

U ← T
for (t, Ft) ∈ F do

(Yt,1, . . . , Yt,Ft.m) ← EvI(Ft, (Xt,1, . . . , Xt,Ft.n))
for (t, i1, t2, i2, L) ∈ L do Xt2,i2 ← Li(L, Yt,i1)
T ← {(t, i, Yt,i) | t ∈ Tags(σ) ∧ i = 1, . . . , Ft.m}

until T = U
return T

Fig. 5. Function individual evaluation

We say that garbled
evaluation is function indi-
vidual if each garbled func-
tion F is evaluated on
its own. Specifically there
exist deterministic poly-
time algorithms EvI and Li
called the individual gar-
bled evaluation algorithm
and the garbled linking
algorithm. The input to
EvI is a garbled function
and some garbled inputs.
For each fixed garbled
function F with n = F.n
and m = F.m the algo-
rithm computes a gradual
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function EvI(F ) : A1 × · · · × An → B1 × · · · × Bm and (X1, . . . , Xn) �→
EvI(F,X1, . . . , Xn), with access(EvI(F )) = access(f), where f is the function
garbled by F . We denote the output by (Y1, . . . , Ym) = EvI(F,X1, . . . , Xn). The
intention is that the Yj are garbled outputs (or ⊥). To say that Ev has individual
garbling we then require that it is defined from EvI and Li as in Fig. 5.

Security of Reactive Garbling. We define a notion of security that we call con-
fidentiality, which unifies privacy and obliviousness as defined in [2]. Oblivious-
ness says that if the evaluator is given a garbled function and garbled inputs
but no output decoding function it can learn a garbled output of the function
but learns no information on the plaintext value of the output. Privacy says
that if the evaluator is given a garbled function, garbled inputs and the out-
put decoding function it can learn the plaintext value of the function, but no
other information, like intermediary values from the evaluation. It is necessary
to synthesise these properties as we envision protocols where the receiver of the
garbled functions might receive the output decoding function for some of the
output components but not all of them. Obliviousness does not cover this case,
since the adversary has some of the decoding keys. It is not covered by privacy
either, as the receiver should not gain any information about outputs for which
he does not have a decoding function.

In the confidentiality (indistinguishability) game, the adversary feeds two
sequences σ0 and σ1 to the game, which produces a garbling of one of the two
sequences, σb for a uniform bit b. The adversary wins if it can guess which
sequence was garbled. It is required that the two sequences are not trivially dis-
tinguishable. For instance, the two commands at position i in the two sequences
should have the same type, the side information of functions at the same positions
in the sequences should be the same, and all outputs produced by the sequences
should be the same. This is formalized by requiring that the side information
of the sequences are the same. This is done by checking that Φ(σ0) = Φ(σ1) in
the rule Finalize. If one considers garbling sequences with only one function
command, one garbling command, one input command per input component,
no linking and where no output command is given, then confidentiality implies
obliviousness. If in addition an output command is given for each output com-
ponent, then confidentiality implies privacy.

In the confidentiality (simulation) game, the adversary feeds a sequence σ
to the game. The game samples a uniform bit b. If b = 0, then the game uses
the reactive garbling scheme to produce values for the sequence. Otherwise,
if the bit b = 1, the game feeds the output of the side-information function
to the simulator and forwards any response to the adversary. The simulation-
based notion of confidentiality implies the indistinguishability-based notion of
indistinguishability [22].

Definition 6 (Confidentiality). For a legal sequence class L relative to side-
information function Φ and a reactive garbling scheme G, we say that G is (L, Φ)-
confidential if for all PPT A it holds that Advadp.ind.con

G,L′,Φ,A (1k) is negligible, where
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Advadp.ind.con
G,L′,Φ,A (1k) = Pr[Gameadp.ind.con

G,L′,Φ,A (1k) = �] − 1
2 and Gameadp.ind.con

G,L′,Φ is
given in Fig. 6.

Notice that this security definition is indistinguishability based, which is
known to be very weak in some cases for garbling (cf. [2]). Consider for instance
garbling a function f where the input x is secret and y = f(x) is made a public
output. The security definition then only makes a requirement on the garbling
scheme in the case where the adversary inputs two sequences where in sequence
one the input is x1 and in sequence two the input is x2 and where f(x1) = f(x2).
Consider then what happens if f is collision resistant. Since no adversary can
compute such x1 and x2 where x1 �= x2, it follows that x1 = x2 in all pairs
of sequences that the adversary can submit to the game. It can then be seen
that it would be secure to “garble” collision resistant functions f by simply
sending f in plaintext. Despite this weak definition, we later manage to prove
that it is sufficient for building secure two-party computation. Looking ahead,
when we need to securely compute f , we will garble a function f ′ which takes
an additional input p which is the same length as the output of f and where
f ′(x, p) = p⊕f(x) and ask the party that supplies p to always let p be the all-zero
string. Our techniques for ensuring active security in general is used to enforce
that even a corrupted party does this. Correctness is thus preserved. Clearly f ′

is not collision resistant even if f is collision resistant. This prevents a secure
garbling scheme from making insecure garblings of f ′. In fact, note that this
trick ensures that f ′ has the efficient invertibility property defined by [2], which
means that the indistinguishability and simulation based security coincide.

4 Instantiating a Confidential Reactive Garbling Scheme

We show that the instantiation of garbling schemes in [2] can be extended to
a reactive garbling scheme in the random-oracle (RO) model. We essentially
implement the dual-key cipher construction from [2] using the RO. To link a
wire with 0-token T0 and 1-token T1 to an input wire with tokens I0 and I1,
we provide the linking information L0 = RO(T0) ⊕ I0 and L1 = RO(T1) ⊕ I1
in a random order with each value tagged by the permutation bits of their
corresponding input wires and output wires. Evaluation is done using function
individual evaluation. Evaluation of a single garbled circuit is done as in [2].
Evaluation of a linking is: given Tb and a permutation bit, the bit is used to
retrieve Lb from which Ib = Lb ⊕ RO(Tb) is computed. We provide the details
in Sect. 4.1. We use the RO because reactive garbling schemes run into many of
the same subtle security problems as adaptive garbling schemes [1], which are
conveniently handled by being able to program the RO. We leave as an open
problem the construction of (efficient) reactive garbling schemes in the standard
model.

4.1 A Reactive Garbling Scheme

We will now give the details of the construction of a confidential reactive garbling
scheme based on a random oracle. The protocol is inspired by the construction
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proc Initialize()
b

$←{0, 1}
σ0 ← ∅
σ1 ← ∅

proc Func(f0, f1, t)
for c ∈ {0, 1} do
σc ← σc ‖(Func, fc, t)
if f0 
∼ f1 then return ⊥

proc Output(t, i)
for c ∈ {0, 1} do
σc ← σc ‖(Output, t, i)
return dt,i

proc Input(t, i, x0, x1)
for c ∈ {0, 1} do
σc ← σc ‖(Input, t, i, xc)
return En(et, t, i, xb)

proc Link(t1, i1, t2, i2)
for c ∈ {0, 1} do
σc ← σc ‖(Link, t1, i1, t2, i2)
return li(t1, i1, t2, i2, ot1,i1 , et2,i2)

proc Finalize(b′)
if b = b′ ∧ Φ(σ0) = Φ(σ1) ∧ σ0 ∈ L

then return �
else return ⊥

proc Garble(t)
for c ∈ {0, 1} do σc ← σc ‖(Garble, t)
(Ft, et, ot, dt) ← Gb(sps, ft, t)
return Ft

Fig. 6. The game Gameadp.ind.con
G,L,Φ (1k) defining adaptive indistinguishability confiden-

tiality. In Finalize we check that σ0 ∈ L and the adversary loses if this is not the case.
It is easy to see that when L is a legal sequence class and Φ(σ0) = Φ(σ1), then σ0 ∈ L iff
σ1 ∈ L. We can therefore by monotonicity assume that the game returns ⊥ as soon as
it happens that σc 
∈ L. We use a number of notational conventions from above. Tags
are used to name objects relative to σc, which is assumed to be legal. As an example, in
Garble(t), the function ft refers to the function fc occurring in the command (Func, fc, t)
which was added to σc in Func by Garble Legality. For another example, the dt,i in
Output(t, i) refers to the ith component of the dt component output by Gb(sps, ft, t) in
the execution of Garble(t, π) which must have been executed by Output Legality.

of garbling schemes from dual-key ciphers presented in [2]. The pseudocode for
our reactive garbling scheme is shown in Figs. 7 and 8.

To simplify notation, we define lsb as the least significant bit, slsb as the
second least significant bit. The operation Root removes the last two bits of a
string. The symbol H denotes the random oracle.

We use the notation of [2] to represent a circuit. A circuit is a 6-tuple f =
(n,m, q,A,B,G). Here n ≥ 2 is the number of inputs, m ≥ 1 is the number
of outputs and q ≥ 1 is the number of gates. We let r = n + q be the number
of wires. We let Inputs = {1, . . . , n}, Wire = {1, . . . , n + q}, OutputWires =
{n + q − m + 1, . . . , n + q} and Gates = {n, . . . , n + q}. Then A : Gates →
Wires \OutputWires is a function to identify each gate’s first incoming wire and
B : Gates → Wires \OutputWires is a function to identify each gate’s second
incoming wire. Finally, G : Gates ×{0, 1}2 → {0, 1} is a function that determines
the functionality of each gate. We require that A(g) < B(g) < g for all g ∈ Gates.

Our protocol will also follow the approach of [2]. To garble a circuit, two
tokens are selected for each wire, one denoted by Xt,i,0 which shall encode the
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proc Gb(ft, t)
(n, m, q, A, B, G) ← ft

for i ∈ {1, . . . , n + q − m} do
c

$←{0, 1} // Type of the zero-encoding

Xt,i,0 ← {0, 1}k−1 ‖ c

Xt,i,1 ← {0, 1}k−1 ‖ 1 − c
for i ∈ {1, . . . , m} do

c
$←{0, 1}, ri

$←{0, 1} // Type and mask of zero-encoding

Yt,i,0 ← {0, 1}k−2 ‖ ri ‖ c

Yt,i,1 ← {0, 1}k−2 ‖ 1 − ri ‖ 1 − c
Xt,n+q−m+i,0 ← Yt,i,0

Xt,n+q−m+i,1 ← Yt,i,1

for (i, u, v) ∈ {n + 1, . . . , n + q} × {0, 1} × {0, 1} do
a ← A(i), b ← B(i) // Left wire, right wire

// Left-wire encoding of u and its type.

A ← root(Xt,a,u), a ← lsb(Xt,a,u)
// Right-wire encoding of v and its type.

B ← root(Xt,b,v), b ← lsb(Xt,b,v)
// Unique tag

T ← t ‖ i ‖ a ‖ b
// Row of Garbled table associated to gate i and input (u, v)
P [i, a, b] ← H(T ‖ A ‖ B) ⊕ Yt,i,G(i,u,v)

Ft ← (n, m, q, A, B, P )
et ← ((X1,0, X1,1), . . . , (Xn,0, Xn,1))
ot ← ((Y1,0, Y1,1), . . . , (Ym,0, Ym,1))
dt ← {r1, . . . , rm}
return (Ft, et, ot, dt)

proc En(t, i, x)
Xt,i ← et,i,x

return Xt,i

proc De(t, i, Yt,i, dt,i)
yt,i ← slsb(Yt,i) ⊕ dt,i

return yt,i

Fig. 7. Reactive garbling scheme

value 0 and the other denoted by Xt,i,1 which will encode the value 1, we refer
to this mapping as the semantic of a token.

The encoding of an input for a value x is simply the token of the given
wire with semantic x. The decoding of an output is the mask for that wire.
We decouple the decoding from the linking to simplify the proof of security.
The simulator will be able to produce linking without having to worry about the
semantics of the output encoding.

For each wire, the two associated tokens will be chosen such that the least
significant bit (the type of a token) will differ. It is important to note that the
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proc li(ot1,i1 , et2,i2)
// Type of zero-encoding

c ← lsb(ot1,i1,0)
K0 ← root(ot1,i1,0)
K1 ← root(ot1,i1,1)
T ← (t1, i1, t2, i2)
// Encryption of encoded input whose

associated output encoding has

type 0

U0 ← H(T ‖ kc) ⊕ et2,i2,c

// Encryption of input encoding whose

associated output encoding has

type 1

U1 ← H(T ‖ k1⊕c) ⊕ et2,i2,1⊕c

Lt1,i1,t2,i2 ← (U0, U1)
return Lt1,i1,t2,i2

proc Li(Lt1,i1,t2,i2 , Yt1,i1)
r ← lsb(Yt1,i1)
K ← root(Yt1,i1)
T ← (t1, i1, t2, i2)
Xt,i ← H(T ‖ k) ⊕ Lt1,i1,t2,i2,r

return Xt,i

proc EvI(Ft, X1, . . . , Xn)
(n, m, q, A, B, P ) ← Ft

for i ← n + 1 to n + q do
a ← A(i), b ← B(i)
A ← Xt,a, B ← Xt,b

if A 
= ⊥ ∧ B 
= ⊥ then
a ← lsb(A), b ← lsb(B)
T ← t ‖ i ‖ a ‖ b
Xg ← P [g, a, b] ⊕ H(T ‖ A ‖ B)

(Yt,i, . . . , Yt,m) ← (Xn+q−m+1, . . . , Xn+q)
return (Yt,1, . . . , Yt.m)

Fig. 8. Reactive garbling scheme (continued)

semantics and type of a token are independent. The second least significant bit
is called the mask and will have a special meaning later when the tokens are
output tokens. We use root(X) to denote the part of a token that is not the type
bit or the mask bit.

Each gate g will be garbled by producing a garbled table. A garbled table will
consist of four ciphertexts p[g, a, b] where a, b ∈ {0, 1}, The ciphertext P [g, a, b]
will be produced in the following way: first find the token associated to the left
input wire (i1) with type a, denote the semantic of this token as x. Secondly,
find the token associated to the right input wire (i2) with type b, denote the
semantic of this token as y. The ciphertext will be an encryption of the token of
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z ← G(g, x, y). We will denote T ← t ‖ g ‖ a ‖ b. The encryption will be
P [g, a, b] ← H(T ‖ root(Xt,i1,x) ‖ root(Xt,i2,y)) ⊕ (Xt,i,z)

For each non-output wire, the token with semantic 0 will be chosen randomly
and the token with semantic 1 will be chosen uniformly at random except for
the last bit which will be chosen to be the negation of the least significant bit of
the token with semantic 0 for the same wire.

For each output wire, the first token will also be chosen uniformly at random.
The token with semantic 0 will be chosen randomly and the token with semantic
1 will be chosen uniformly at random except for the least significant bit and the
second least significant bit. For both of these positions, the second token will be
chosen so that they differ from the value in the 0-token for the same position.
We refer to the second least significant bit of the 0-token of an output token as
the mask of an output wire.

A linking between output (t1, i1) and input (t2, i2) consists of two ciphertexts:
let c be the type of the 0-token for the output wire. In this case, we set T =
t1 ‖ i1 ‖ t2 ‖ i2. The linking is simply

L ← (ET
root(Yt1,i1,c)

(Xt2,i2,c), Eroot(Yt1,i1,1−c)(Xt2,i2,1−c))

where ET
k (z) = H(T ||k) ⊕ z. Converting an encoded output into an encoded

input follows naturally.
In [22] we prove the following theorem.

Theorem 1. Let L be the set of all legal garbling sequence, let Φ denote the
circuit topology of a function. Then RGS is (L, Φ)-confidential in the random
oracle model.

5 Application to Secure Reactive Two-Party
Computation

We now show how to implement reactive two-party computation secure against
a malicious, static adversary using a projective reactive garbling scheme. For
simplicity we assume that L is the set of all legal sequences. It can, however, in
general consist of a set of sequences closed under the few augmentations we do
of the sequence in the protocol. The implementation could be optimized using
contemporary tricks for garbling based protocols, but we have chosen to not do
this, as the purpose of this section is to demonstrate the use of our security
definition, not efficiency.

We implement the ideal functionality in Fig. 9. The inputs to the parties will
be a garbling sequence. The commands are received one-by-one, to have a well
defined sequence, but can be executed in parallel. We assume that at any point
in time the input sequence received by a party is a prefix or suffix of the input
sequence of the other parties, except that when a party receives a secret input by
receiving input (Input, t, i, x), then the other party receives (Input, t, i, ?), to not
leak the secret x, where we use ? to denote a special reserved input indicating
that the real input has been removed. We also assume that the sequence of



1040 J.B. Nielsen and S. Ranellucci

rule Initialize
σ ← {}

rule Func
on (Func, t, f) from A
on (Func, t, f) from B
σ ← σ ‖(Func, t, f)

rule InputA

on (Input, t, i, x) from A
on (Input, t, i, ?) from B
await (Garble, t) ∈ σ
on (Input, t, i, x′) from S
if A ∈ Corrupt then x ← x′

send (Input, t, i, done) to A
send (Input, t, i, done) to B
σ ← σ ‖(Input, t, i, x)

rule InputB

on (Input, t, i, ?) from A
on (Input, t, i, x) from B
await (Garble, t) ∈ σ)
on (Input, t, i, x′) from S
if B ∈ Corrupt then x ← x′

send (Input, t, i, done) to A
send (Input, t, i, done) to B
σ ← σ ‖(Input, t, i, x)

rule Link
await (Garble, t) ∈ σ)
on (Link, t1, i1, t2, i2) from A
on (Link, t1, i1, t2, i2) from B
await (Garble, t) ∈ σ)
send (Link, t1, i1, t2, i2, done) to A
send (Link, t1, i1, t2, i2, done) to B
σ ← σ ‖(Link, t1, i1, t2, i2)

rule Garble
on (Garble, t) from A
on (Garble, t) from B
await (Func, t, f) ∈ σ
send (Garble, t, done) to A
send (Garble, t, done) to B
σ ← σ ‖(Garble, t)

rule Output
on (Output, t, i) from A
on (Output, t, i) from B
await ∃(t, i, yt,i 
= ⊥) ∈ eval(σ)
send (Output, t, i, done) to A
send (Output, t, i, yt,i) to B
σ ← σ ‖(Output, t, i)

Fig. 9. Ideal Functionality FL,Φ
R2PC (only suitable for static security). For each line of the

form, “on c from P” for a command c and a party P, when the activation is given to
the adversary the ideal functionality sends along (Φ(c),P).

inputs given to any party is in L. If not, the ideal functionality will simply stop
operating. We only specify an ideal functionality for static security. To correctly
handle adaptive security a party should sometimes be allowed to replace its
input when becoming adaptively corrupted. Since we only prove static security,
we chose to not add these complication to the specification.

The implementation will be based on the idea of a watchlist [15]. Alice and
Bob will run many instances of a base protocol where Alice is the garbler and Bob
is the evaluator. Alice will in each instance provide Bob with garbled functions,
linking information, encoded inputs for Alice’s inputs and encoded inputs for
Bob’s inputs, and decoding information. For all Bob’s input bits, Alice computes
encodings of both 0 and 1, and Bob uses an oblivious transfer to pick the encoding
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he wants. For a given input bit, the same oblivious transfer instance is used to
choose the appropriate encodings in all the instances. This forces Bob to use the
same input in all instances. Bob then does a garbled evaluation and decodes to
get a plaintext output. Bob therefore gets one possible value of the output from
each instance. If Alice cheats by sending incorrect garblings or using different
inputs in different instances, the outputs might be different. We combat this
by using a watchlist. For a random subset of the instances, Bob will learn all
the randomness used by Alice to run the algorithms of the garbling scheme and
Bob can therefore check whether Alice is sending the expected values in these
instances. The instances inspected by Bob are called the watchlist instances.
The other instances are called the evaluation instances. The watchlist is random
and unknown to Alice. The number of instances and the size of the watchlist
is set up such that except with negligible probability, either a majority of the
evaluation instances are correct or Bob will detect that Alice cheated without
leaking information about his input. Bob can therefore take the output value that
appears the most often among the evaluation instances as his output. There are
several issues with this general approach that must be handled.

1. We cannot allow Bob to learn the encoded inputs of Alice in watchlist
instances, as Bob also knows the input encoding functions for the watch-
list instances. This is handled by letting Alice send her random tape ri for
each instance i to Bob in an oblivious transfer, where the other message is a
key that will be used by Alice to encrypt the encodings of her input. That way
Bob can choose to either make instance i a watchlist instance, by choosing
ri, or learn the encoded inputs of Alice, but not both.

2. Alice might not send correct input encodings of her own inputs, in which case
correctness is not guaranteed. This is not caught by the watchlist mechanism
as Bob does not learn Alice’s input encodings for the watchlist instances. To
combat this attack, Alice must for all input bits of Alice, in all instances,
commit to both the encoding of 0 and 1, in a random order, and send along
with her input encodings an opening of one of the commitments. The ran-
domness used to commit is picked from the random tape that Bob knows in
the watchlist instances. That way Bob can check in the watchlist instances
that the commitments were computed correctly, and hence the check in the
evaluation position that the encoding sent by Alice opens one of the commit-
ments will ensure that most evaluation instances were run with correct input
encodings, except with negligible probability.

3. We have to ensure that Alice uses the same input for herself in all instances.
For the same reason as item 2, this cannot be caught by the watchlist mech-
anism. Instead, it is done by revealing in all instances a privacy-preserving
message digest of Alice’s input. Bob can then check that this digest is the same
in all instances. For efficiency, the digest is computed using a two-universal
hash function. This is a common trick by now, see [6,8,23]. However, all pre-
vious work used garbled circuits in a white box manner to make this trick
work. We can do it by a black box use of reactive garbling, as follows. First
Alice garbles the function f to be evaluated producing the garbling F where
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Alice is to provide some input component x. Then Alice garbles the function
g which takes as input a mask m, an index c for a family h of two-universal
hash functions and an input x for the hash function and which outputs x
and y = hc(x) ⊕ m. Alice then randomly samples a mask m and then sends
encodings of m and x to Bob as well as the output decoding function for
y. Bob then samples an index c at random and makes it public. Then Alice
sends the encoding of c to Bob. Alice then links the output component x of G
into the input component x of F . This lets Bob compute y and an encoding
X of the input x of f .

4. As usual Alice can mount a selective attack by for example offering Bob a
correct encoding of 0 and an incorrect encoding of 1 in one of the OTs used
for picking Bob’s input. This will not be caught by the watchlist mechanism
if Bob’s input is 0. As usual this is combated by encoding Bob’s input and
instead using the encoding as input. The encoding is such that any s positions
are uniformly random and independent of the input of Bob. Hence if Alice
learns up to s bits of the encoding, it gives her no information on the input
of Bob, and if she mounts more than s selective attacks, she will get caught
except with probability 2−s. This is again a known trick used in a white
box manner in previous works, and again we use linking to generalize this
technique to (reactive) garbling schemes. First, Alice will garble an identity
function for which Bob will get an encoding of a randomly chosen input x′

via OT. Then Bob selects a random hash function h from a two-universal
family of hash functions such that h(x′) = x where x is Bob’s real input. Bob
sends h to Alice. Alice then garbles the hash function and links the output
of the identity function to the input of the hash function and she links the
output of the hash function to the encoded function which Bob is providing
an input for.

With the above augmentations which solves obvious security problems, along
with an augmentation described below, addressing a problem with simulation,
the protocol is UC secure against a static adversary. We briefly sketch how to
achieve simulation security.

Simulating corrupted Alice is easy. The simulator can cheat in the OTs used
to set up the watchlist and learn both the randomness ri and the input encodings
of Alice in all the evaluation instances. The mechanisms described above ensure
that in a majority of evaluation instances Alice correctly garbled and also used
the same correct input encoding. Since the input encoding is projective, the
input x of Alice can be computed from the input encoding function and her
garbled input. By correctness of the garbling scheme, it follows that all correct
evaluation instances would give the same output z consistent with x. Hence the
simulator can use x as the input of Alice in the simulation.

As usual simulating corrupted Bob is more challenging. To get a feeling for
the problem, assume that Alice has to send a garbled circuit F of the function
f to be computed before Bob gives inputs. When Bob then gives input, the
input y of Bob can be extracted in the simulation by cheating in the OTs and
inspecting the choice bits used by Bob. The simulator then inputs y to the
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ideal functionality and gets back the output z = f(x, y) that Bob is to learn.
However, the simulator then in addition has to make F output z in the simulated
execution of the protocol. This in general would require finding an input x′ of
Alice such that z = f(x′, y), which could be computationally hard. Previous
papers have used white-box modifications of the garbled circuit or the output
decoding function to facilitate enough cheating to make F hit z without having
to compute x′. We show how to do it in a very simple and elegant way in a black-
box manner from any reactive garbling scheme which can garble the exclusive-or
function. In our protocol Alice will not send to Bob the decoding key for the
encoded output Z. Instead, she garbles a masking function (ψ(z,m) = z ⊕ m)
and links the output of the function f to the first argument of the masking
function. Then she produces an encoding M of the all-zero string for m and
sends M to Bob along with the output decoding function for ψ. Bob can then
compute and decode from Z and M the value z ⊕ 0 = z. In the simulation, the
simulator of corrupted Bob knows the watchlist and can hence behave honestly
in the watchlist instances and use the freedom of m to make the output z ⊕ m
hit the desired output from the ideal functionality in the evaluation positions.
This will be indistinguishable from the real world because of the confidentiality
property. Since this trick does not require modifying the garbled function, our
protocol will only require a projective garbling scheme which is confidential. It
will work for any side-information function. Earlier protocols required that the
side-information be the topology of the circuit to hide the modification of the
function f needed for simulation, or they needed to do white box modifications
of the output decoding function to make the needed cheating occur as part of
the output decoding.

5.1 Details of the Reactive 2PC Protocol

We now give more details on the protocol. The different instances will be indexed
by j ∈ I = {1, . . . , s}. The watchlist is given by w = (w1, . . . , ws) ∈ {0, 1}s,
where wj = 1 iff j is a watchlist instance. In the protocol s instances are run
in parallel. When a copy of a variable v is used in each instance, the copy used
in instance j is denoted by vj . In most cases the code for an instance does not
depend on j explicitly but only on whether the instance is on the watchlist or the
evaluation list, in which case we will write the code generically using the variable
name v. The convention is that all s copies v1, . . . , vs are manipulated the same
way, in single instruction multiple data program style. For instance, w = 1 will
mean wj = 1, such that w = 1 is true iff the instance is in the watchlist.

We will use commitments and oblivious transfer within the protocol. We work
in the OT hybrid model. We use OT.send(m0,m1) to mean that Alice sends
two messages via the oblivious-transfer functionality and we use the notation
OT.choose(b) to say that Bob chooses to receive mb. We use a perfect binding
and computationally hiding commitment scheme. If a public key is needed, it
could be generated by Alice and sent to Bob in initialization. A commitment
to a message m produced with randomness r is denoted by com(m; r), sending
(m, r) constitutes an opening of the commitment.
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rule A.Initialize
// Sample watchlist key and an

evaluation key

wk, ek
$←{0, 1}k

OT.send(ek,wk)
σ ← ()

rule B.Initialize
// Learn either the watchlist

key or the evaluation key

w
$←{0, 1}

k ← OT.choose(w)
σ ← ()

rule A.Func
on (Func, t, f)
σ ← σ ‖(Func, t, f)

rule B.Func
on (Func, t, f)
σ ← σ ‖(Func, t, f)

rule A.Garble
on (Garble, t)
await ∃f : (Func, t, f) ∈ σ
(Ft, et, ot, dt) ← Gb(f, t; r)
E ← Ewk(r)
send Ft, E to B
σ ← σ ‖(Garble, t)

rule B.Garble
on (Garble, t)
await ∃f : (Func, t, f) ∈ σ
on F ′, E from A
if w = 1 then

r ← Dwk(E)
(Ft, et, ot, dt) ← Gb(f, t; r)
verify F ′ = Ft

Ft ← F ′

σ ← σ ‖(Garble, t)

rule A.Link
on (Link, t1, i1, t, i2)
await (Garble, t) ∈ σ
await (Garble, t1) ∈ σ
send li(ot1,i1 , et,i2) to B
σ ← σ ‖(Link, t1, i1, t, i2)

rule B.Link
on (Link, t1, i1, t, i2)
await (Garble, t) ∈ σ
await (Garble, t1) ∈ σ
on L̄ from A
L ← L ‖(t1, i1, t, i2, L̄)
if w = 1 then verify
L̄ = li(ot1,i1 , et,i2)
σ ← σ ‖(Link, t1, i1, t, i2)

Fig. 10. Protocol (Initialize,Garble,Link)

If we write A(x; r) for a randomized algorithm, where r is not bound before,
then it means that we make a random run of A on input x and that we use r in
the following to denote the randomness used by A. If we send a set {x, y}, then
it is sent as a vector with the bit strings x and y sorted lexicographically, such
that all information extra to the elements is removed before sending. When rules
are called, tags t are provided. It follows from the input sequences being legal
that these tags are unique, except when referring to a legal previous occurrence.
We further assume that all tags provided as inputs are of the form 0‖{0, 1}∗,
which allows us to use tags of the form 1‖{0, 1}∗ for internal book keeping. Tags
for internal use will be derived from the tags given as input and the name of the
rule creating the new tag. For a garbling scheme G, a commitment scheme com
and an encryption scheme E , we use πG,com,E to denote protocol given by the set
of rules in Figs. 10, 11, 12 13, 14 and 15. We add a few remarks to the figures.
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rule A.InputA

on (Input, t, i, x)
await (Garble, t) ∈ σ
t̄ ← 1‖(Input, t, i)‖0
�1 ← len(ft.Ai)
�2 ← len(g�1 .A2)
�3 ← len(g�1 .A3)

m
$←{0, 1}�2

// Garble auxiliary function g
(Gt̄, et̄, dt̄, ot̄) ← Gb(g�1 , t̄; r)
// Watchlist encryption of garbled auxilary function’s randomness

E ← Ewk(r)
send (Gt̄, dt̄,2, E) to B
for u ∈ {1, . . . , �1} do

Xu,0 ← En(et̄,1,u, 0)
Xu,1 ← En(et̄,1,u, 1)

ru,0, ru,1
$←{0, 1}k

// Commit to tokens

Su,1 ← {com(Xu,0; ru,0), com(Xu,1; ru,1)}
// Watchlist encryption of tokens

Eu,1 ← Ewk((Xu,0, Xu,1))
// Watchlist encryption of commitment’s randomness

Eu,2 ← Ewk((ru,0, ru,1))
// Evaluation encryption of tokens for Alice’s choice of input

Eu,3 ← Eek((Xu,xi,u , ru,xi,u))
// Linking G to Ft

Lu ← li(ot̄,1,u, et,i,u)
send (Su,1, Eu,1, Eu,2, Eu,3, Lu) to B

for u ∈ {1, . . . , �2} do
Mu,0 ← En(et̄,2,u, 0)
Mu,1 ← En(et̄,2,u, 1)

r′
u,0, r

′
u,1

$←{0, 1}k

Su,2 ← {com(Mu,0; r
′
u,0), com(Mu,1; r

′
u,1)}

Eu,4 ← Ewk((Mu,0, Mu,1))
Eu,5 ← Ewk((r

′
u,0, r

′
u,1))

Eu,6 ← Eek((Mu,mi,u , r′
u,mu

))
send (Su,2, Eu,4, Eu,5, Eu,6) to B

// Auxiliary input from Bob

on c from B
// Encoding of auxiliary input

for u ∈ {1, . . . , �3} do send Cu,cu to B
σ ← σ ‖(Input, t, i, �)

Fig. 11. InputA
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rule B.InputA

on (Input, t, i, ?)
await (Garble, t) ∈ σ
t̄ ← 1‖(Input, t, i)‖0
c

$←{0, 1}�3

on G′̄
t, d′̄

t,2, E from A

for u ∈ {1, . . . , �1} do on (Su,1, Eu,1, Eu,2, Eu,3, Lu) from A
for u ∈ {1, . . . , �2} do on (Su,2, Eu,4, Eu,5, Eu,6) from A
send c to A
for u ∈ {1, . . . , �3} do on Cu,cu from A
// Use watchlist key to verify correctness of garbling and commitments.
if w = 1 then

r ← Dwk(E), (Gt̄, et̄, dt̄, ot̄) ← Gb(g�1 , t̄; r)

for u ∈ {1, . . . , �1} do
Xu,0 ← En(et̄,1,u, 0)
Xu,1 ← En(et̄,1,u, 1)

for u ∈ {1, . . . , �2} do
Mu,0 ← En(et̄,2,u, 0)
Mu,1 ← En(et̄,2,u, 1)

for u ∈ {1, . . . , �3} do
Cu,0 ← En(et̄,3,u, 0)
Cu,1 ← En(et̄,3,u, 1)

for u ∈ {1, . . . , �1} do
(ru,0, ru,1) ← Dwk(Eu,2)
verify Dwk(Eu,1) = (Xu,0, Xu,1)
verify Su,1 = {com(Xu,0; ru,0), com(Xu,1; ru,1)}
verify Lu = li(ot̄,1,u, et,i,u)

for u ∈ {1, . . . , �2} do
(r′

u,0, r′
u,1) ← Dwk(Eu,5)

verify Dwk(Eu,3) = (Mu,0, Mu,1)
verify Su,2 = {com(Mu,0; ru,0), com(Mu,1, ru,1)}

for u ∈ {1, . . . , �3} do
verify Cu,cu = En(et̄,3,u, cu)

else
// Use evaluation key to extract tokens for Alice’s choice of input

for u ∈ {1, . . . , �1} do
(Xu,xi,u

, ru,xi,u
) ← Dek(Eu,3)

for u ∈ {1, . . . , �2} do
(Mu,xi,u

, r′
u,xi,u

) ← Dek(Eu,6)

// Verify commitments of tokens for Alice’s choice of input
verify ∀u ∈ {1, . . . , �1} (com(Xu,xi,u

; ru,xi,u
) ∈ Su,1)

verify ∀u ∈ {1, . . . , �2} (com(Mu,mu ; r′
u,mu

) ∈ Su,2)

X̄ ← {(t̄, 1, Xx), (t̄, 2, Mm), (t̄, 3, Cc)}
Ȳ ← Ev({(t̄, Gt̄)}, X̄ )

y2 ← De(d2, Ȳ2)
// Verify that auxiliary outputs are the same in each instance

verify ∀j, j′ (yj
2 = yj′

2 )

X ← X ‖ X̄
F ← F ‖(t̄, Gt̄)
L ← L ‖(t̄, 1, t, i, L)
σ ← σ ‖(Input, t, i, 	)

Fig. 12. InputA (continued)

In the Initialize-rules Alice and Bob setup the watchlist. They use a (sym-
metric) encryption scheme E = (E,D) with k-bit keys. For each instance j, Alice
sends two keys via the oblivious transfer functionality, the watchlist key wkj

and the evaluation key ekj . Alice will later encrypt and send the information
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rule A.InputB

on (Input, t, i, ?)
await (Garble, t) ∈ σ
� ← len(ft.Ai)
�1 ← � + 2s + 1
t̄ ← 1‖(Input, t, i)‖0
t′ ← 1‖(Input, t, i)‖1
// Garble the identity function

(Idt̄, et̄, ot̄, dt̄) ← Gb(id�1 , t̄; r)
// Send to Bob the garbled identity function and the watchlist

encryption of its randomness to Bob

send E ← Ewk(r), Idt̄ to B
for u ∈ {1, . . . , �1} do

Xu,0 ← En(et̄,u, 0)
Xu,1 ← En(et̄,u, 1)
// Oblivious Transfer of Bob’s input tokens

OT.send({Xj
u,0}j∈{1,...,s}, {Xj

u,1}j∈{1,...,s})
// Await universal hash function

on h from B
// Garble universal hash function

(Ht′ , et′ , ot′ , dt′) ← Gb(h, t′; r′)
// Send garbled hash function and the watchlist encryption of its

randomness to Bob

send Ht′ ,Ewk(r
′) to B

for u ∈ {1, . . . , �1} do
// Link Idt̄ to Ht′

send L̄u ← li(ot̄,u, et′,u) to B
// Link Ht′ to Ft

send Lu ← li(ot′,u, et,i,u) to B

σ ← σ ‖(Input, t, i, �)

Fig. 13. InputB

Bob is to learn for watchlist (evaluation) instances with the key wk (ek). In the
Func-rules they simply associate a function to a tag. In the Garble-rules Alice
garbles the function and sends the garbling to Bob, she also sends an encryption
using the watchlist key of the randomness used to produce this garbling. This
allows Bob, for the watchlist positions to check that Alice produced a correct
garbling and to store the result of garbling. This knowledge will be used in other
rules. In the Link-rules Alice sends linking information. Bob can for all watchlist
positions check that the information is correct, since he knows the randomness
used to garble. In the Output-rules Alice awaits that she has sent to Bob the
encoded inputs and linkings to produce the encoded output associated to this
rule. She produces a garbling of ψ. She will link the output to ψ and produce an
encoding of the zero-string for the second component, she also sends an encryp-
tion of the randomness used to produce the garbling of ψ to Bob. Bob awaits
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rule B.InputB

on (Input, t, i, x)
await (Garble, t) ∈ σ
t̄ ← 1‖(Input, t, i)‖0
t′ ← 1‖(Input, t, i)‖1
// sample a random string x̄

x̄
$←{0, 1}�1

// Sample a random universal hash function h such that h(x̄) = x
h

$←{ h̄ ∈ H� | h̄(x̄) = x }
// Await a garbled identity function from Alice

on E, Id′̄
t from A

// Obliviously learn tokens for x̄
for u ∈ {1, . . . , �1} do

{X̄j
u,x̄u

}j∈{1,...,s} ← OT.choose(x̄u)
X̄t̄,x̄ ← (X̄1,x̄1 , . . . , X̄�1,x̄�1

)

if w = 1 then
/* Verify garbled identity function and the correctness of

received tokens using the watchlist encryption of the

/*ssenmodnar

r ← Dwk(E)
(Idt̄, et̄, ot̄, dt̄) ← Gb(id�1 , t̄; r)
verify Idt̄ = Id′̄

t

verify ∀u ∈ {1, . . . , �1} : X̄t̄,u = En(et̄,u, x̄u)

else
X ← X ‖(t̄, X̄t̄,x̄)

send h to A
on H ′, E′ from A
for u ∈ {1, . . . , �1} do

on L̄u from A
on Lu from A

if w = 1 then
/* Verify garbled hash function using the watchlist encryption

/*ssenmodnarehtfo

r′ ← Dwk(E
′)

(Ht′ , et′ , ot′ , dt′) ← Gb(h, t′; r′)
verify Ht′ = H ′

// Verify linking information

for u ∈ {1, . . . , �1} do
verify L̄u = li(ot̄,u, et′,u)
verify Lu = li(ot′,u, et,i,u)

else
F ← F ‖(t̄, Id)
F ← F ‖(t′, H)
X ← X ‖(t̄, X̄t̄,x̄)
L ← L ‖(t′, 1, t, i, L)
for u ∈ {1, . . . , �1} do

L ← L ‖(t̄, u, t′, u, L̄u)
σ ← σ ‖(Input, t, i, �)

Fig. 14. InputB (continued)
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rule A.Output
on (Output, t, i)
await (t, i) ∈ ready(σ)
t̄ ← 1‖(Output, t, i)
// Garble ψ
(Ψ, et̄, dt̄, ot̄) ← Gb(ψ, t̄; r)
L ← li(ot,i, et̄,1)
E ← Ewk(r)
// Encode all zero-string

Xt̄,0 ← En(et̄,2, 0)
send (L, E, Ψ, Xt̄,0, dt̄) to B

rule B.Output
on (Output, t, i)
await (t, i, �) ∈ ready(σ)
t̄ ← 1‖(Output, t, i)
on (L̄, Ē, Ψ̄ , X̄t̄,0, d̄t̄) from A
if w = 1 then

r ← Dwk(Ē)
(Ψ, et̄, dt̄, ot̄) ← Gb(ψ, t̄; r)
L ← li(ot,i, et̄,1)
/* Verify:

1) Ψ̄ is the garbling of ψ
2) Linking is correct

3) Encoding of the all zero-string was sent

4) Correct output decoding was sent */

verify L̄ = L ∧ Ψ̄ = Ψ
verify X̄t̄,0 = En(et̄,2, 0) ∧ d̄t̄,1 = dt̄,1

else
F ← F ‖(t̄, Ψ)
X ← X ‖(t̄, 2, X̄t̄,0)
L ← L ‖(t, i, t̄, 1, L̄)
δ ← δ ‖(t̄, 1, d̄t̄,1)
await ∃(t̄, 1, Yt,1) ∈ Ev(F , X , L)

yj
t,i ← De(d̄t̄,1, Yt̄,1)

// Apply majority decoding

yt,i ← maj(y1
t,i, . . . , y

1
t,i)

Fig. 15. Protocol (Output)

that he has received the garbling, linking and encoding to produce the encoded
output in question. For each instance of the watchlist, he uses the randomness to
check that the linking was done correctly, that ψ was garbled correctly and that
an encoding of an all zero-string was sent for the second component of ψ. He
then evaluates each instance in the evaluation set and takes the majority value
as his output.
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In the InputA-rules Alice commits to both her input encodings and encrypts
the openings of the commitments using the watchlist key. The opening of Alice’s
input encoding will be encrypted using the evaluation key. To verify Alice’s
input, we first pass Alice’s input through an auxiliary function which combines
the identity function with an additional verification function which forces Alice
to use the same input in different instances. We then link the output of the
identity function to the appropriate input. We denoted the auxiliary function by
gl : A1 × A2 × A3 → B1 × B2 and g�(x,m, c) = (x, v�(x,m, c)) where A1 = A2 =
B1 = {0, 1}� ∪ {⊥} and v� : A1 × A2 × A3 → B2. Efficient such functions with
the properties needed for the security of the protocol can be based on universal
hash functions, see for instance [6,23].

In the InputB-rules Alice first garbles the identity function. Bob then randomly
samples a value x′ and gets an encoding of that value via oblivious transfer for
the garbled identity function. Then Bob samples uniformly at random a function
h from a two-universal family of hash functions such that h(x′) = x where x is
the input of Bob. Alice will then garble the hash function. She will link the
garbling of the identity function to the garbling of the hash function. She will
then link the garbled hash function to the garbled function. We will denote by
H� a two-universal family of hash functions h : {0, 1}�+2s+1 → {0, 1}�. We use
id : A → A to denote the identify function on A.

In [22] we prove the following theorem.

Theorem 2. Let L be the set of all legal sequences and let Φ be a side-
information function. Let G be a reactive garbling scheme. Let com be a com-
mitment scheme and E an encryption scheme. If G is L-correct and (L, Φ)-
confidential and com is computationally hiding and perfect binding and E is
IND-CPA secure, then πG,com,E UC securely realizes FL,Φ

R2PC
in the FOT-hybrid model

against a static, malicious adversary.
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