
MiMC: Efficient Encryption and Cryptographic
Hashing with Minimal Multiplicative

Complexity

Martin Albrecht1(B), Lorenzo Grassi3, Christian Rechberger2,3, Arnab Roy2,
and Tyge Tiessen2

1 Royal Holloway, University of London, London, UK
martinralbrecht@googlemail.com

2 DTU Compute, Technical University of Denmark, Kongens Lyngby, Denmark
{crec,arroy,tyti}@dtu.dk

3 IAIK, Graz University of Technology, Graz, Austria
{lorenzo.grassi,christian.rechberger}@iaik.tugraz.at

Abstract. We explore cryptographic primitives with low multiplicative
complexity. This is motivated by recent progress in practical applications
of secure multi-party computation (MPC), fully homomorphic encryp-
tion (FHE), and zero-knowledge proofs (ZK) where primitives from sym-
metric cryptography are needed and where linear computations are,
compared to non-linear operations, essentially “free”. Starting with the
cipher design strategy “LowMC” from Eurocrypt 2015, a number of bit-
oriented proposals have been put forward, focusing on applications where
the multiplicative depth of the circuit describing the cipher is the most
important optimization goal.

Surprisingly, albeit many MPC/FHE/ZK-protocols natively support
operations in GF(p) for large p, very few primitives, even considering all
of symmetric cryptography, natively work in such fields. To that end, our
proposal for both block ciphers and cryptographic hash functions is to
reconsider and simplify the round function of the Knudsen-Nyberg cipher
from 1995. The mapping F (x) := x3 is used as the main component there
and is also the main component of our family of proposals called “MiMC”.
We study various attack vectors for this construction and give a new attack
vector that outperforms others in relevant settings.

Due to its very low number of multiplications, the design lends itself
well to a large class of applications, especially when the depth does not
matter but the total number of multiplications in the circuit dominates
all aspects of the implementation. With a number of rounds which we
deem secure based on our security analysis, we report on significant per-
formance improvements in a representative use-case involving SNARKs.

Keywords: Distributed cryptography · Cryptanalysis · Block ciphers ·
Hash functions · Zero knowledge

c© International Association for Cryptologic Research 2016
J.H. Cheon and T. Takagi (Eds.): ASIACRYPT 2016, Part I, LNCS 10031, pp. 191–219, 2016.
DOI: 10.1007/978-3-662-53887-6 7

192 M. Albrecht et al.

1 Introduction

Modern cryptography developed many techniques that go well beyond solving
traditional confidentiality and authenticity problems in two-party communica-
tion. Secure multi-party computation (MPC), zero-knowledge proofs (ZK), and
fully homomorphic encryption (FHE) are some of the most striking examples.
In various applications of these three technologies, part of the circuit or function
that is being evaluated is in turn a cryptographic primitive such as a PRF, a
symmetric encryption scheme, or a collision resistant function.

In this work, we focus on a large class of such applications where the total
number of field multiplications in the underlying cryptographic primitive poses
the largest performance bottleneck. Examples include MPC protocols based on
Yao’s garbled circuit and all ZK-proof system that we are aware of, includ-
ing recent developments around SNARKs [BSCG+13] which found practical
applications, e.g., in Zerocash [BCG+14]. This motivates the following question
addressed in this work: How does a construction for a secure block cipher or a
secure cryptographic hash functions look like that minimizes the number of field
multiplications?

Earlier work on specialized designs for such applications, like
LowMC [ARS+15], Kreyvium [CCF+16], or the very recent FLIP [MJSC16]
all consider the case of Boolean multiplications and mostly focus on the depth
of the resulting circuit.

Surprisingly, albeit many MPC/FHE/ZK-protocols natively support oper-
ations in GF(p) for large p, very few candidates, even considering all of sym-
metric cryptography, exist which natively work in such fields. Our focus in this
paper is hence on multiplications in the larger fields GF(2m) and GF(p) which
is motivated as follows: As many protocols support multiplications in larger
fields natively, encoding of a description in GF(2) is cumbersome and inefficient.
Whilst it is possible to do bit operations over Fp using standard tricks (which
turn XOR into a non-linear operation), such a conversion is expensive. Consider
AES as an example: it allows for an efficient description in a variety of field sizes.
This is also the reason why the bit-cased LowMC which has a lower number of
AND gates can often barely, if at all, outperform AES in actual implementations
of the GMW MPC protocols, despite being much better than AES in terms of
GF(2) metrics. See [ARS+16a, Table 6] for details of the most striking example.
This is also partly due to the very high number of XORs computed in LowMC,
resulting them to be no longer negligible.

Contributions and Related Work. The design we propose is extremely sim-
ple: A function F (x) := x3 is iterated with subkey additions. This is described
in detail in Sect. 2. In fact, our design is a simplified variant of a design by
Nyberg and Knudsen [KN95] from the 1990s, which was aimed to demonstrate
ways to achieve provable security against the then emerging differential and lin-
ear attacks, using a small number of rounds (smaller than, say, DES). However,
not much later, [JK97] showed very efficient, even practical interpolation attacks

MiMC: Efficient Encryption and Cryptographic Hashing 193

on such proposals. Indeed, our proposal resembles PURE , a design introduced
in [JK97] in order to present their attack. We pick up this work from almost
20 years ago and study in earnest if a much higher number of rounds can make
this design secure in Sect. 4. It turns out, perhaps surprisingly, that the required
much higher number of rounds (in the order of 100 s instead of 10 or less) is very
competitive when it comes to the new application areas of symmetric cryptog-
raphy that motivate this work.

We propose several variants of our design called MiMC: variants for GF(p)
and GF(2n) as well as variants that use the cube mapping directly or in a Feis-
tel structure. MiMC can be used for encryption as well as for collision-resistant
cryptographic hashing. See Sect. 2 for the basic variant in GF(2n) and Sect. 5 for
a discussion on the other variants. MiMC is distinguished from any of the many
constructions that have been proposed in this field recently to the that it con-
tradicts popular belief: A recent standard textbook [KR11, Sect. 8.4] explicitly
considers such constructions as “not serious, for various reasons”.

Metrics. Given the wide variety of applications and protocols, no simple metric
will be able to reliably predict application level performance. Issues of conver-
sion between various field types (as the conversion between GF(2) and GF(p)
mentioned above, which can be quite costly) add to the complication. Neverthe-
less, in order to give at least some hint towards expected performance, we will
use the minimal number of multiplication to compute an output (minMULs),
and the average number of multiplications needed per input bit (MULs/bit) on
various designs. For the important special case of GF(2) we will use minANDs
and ANDs/bit, respectively.

A discussion of various constructions in GF(p) and GF(2) can be found in
Sect. 3. In the benchmarking part in Sect. 6.1, we will also come across the case of
an extremely imbalanced LowMC-variant where this simple metric clearly fails
to predict actual performance. The application performance is not independent
of the size of the multiplier, but for the sizes relevant for MiMC this dependence
is fairly weak. The experimental result supporting this is provided in the full
version of this paper [AGR+16].

Implementation Results. The hashing mode for GF(p) may prove to be par-
ticularly useful as it is the first of its kind, despite various applications in verifi-
able computing [CFH+15] and applications of SNARKS like Zerocash [BCG+14]
requiring such a function. Due to a lack of an alternative, authors implemented
and optimized SHA-256, which leads to a bottleneck in efficiency. We demon-
strate that MiMC compares very favorably in such an application. Based on
our experiments and implementations, we report a factor 10 improvement in
Sect. 6.1. We briefly mention more direct implementations in Sect. 6.2 and discuss
the suitability of the design for cheap (generic) protection against higher-order
side-channel attacks in Sect. 6.3.

In follow-up to this work [GRR+16], it was found that MiMC is also a very
competitive candidate as an MPC-friendly PRF. Compared to AES, benchmark

194 M. Albrecht et al.

results showed that MiMC has a more than 10 times higher throughput in the
online phase, and still about six times faster in the offline/precomputation phase
in the LAN setting. Even the latency, which one could expect to be relatively
high for MiMC due to its serial nature and the relatively high number of rounds,
is better than the latency of AES. Note that for the AES case, this does not
include conversion losses due to the application not using the AES field GF(28),
and hence the difference in real-world application settings will likely be larger.

2 The MiMC Primitives

In the following, we describe a block cipher, a permutation, and a permutation-
based cryptographic hash function with a low number of multiplications in a
finite field Fq (alternatively GF(q)) where q is either a prime p or a power of 2.

2.1 The Block Cipher

In order to achieve an efficient implementation over a field Fq (with q either
prime or a power of 2), i.e., to minimize computationally expensive multiplica-
tions in the field, our design operates entirely over Fq, thereby avoiding S-boxes
completely. More precisely, we use a permutation polynomial over Fq as round
function. In the following, we restrict ourselves to F2n and we denote by MiMC-
b/κ a keyed permutation with block size b and key size κ. The concept however
equally applies to Fp, which we will discuss briefly in Sect. 5.

MiMC-n/n. Our block cipher is constructed by iterating a round function r
times where each round consists of a key addition with the key k, the addition of
a round constant ci ∈ F2n , and the application of a non-linear function defined as
F (x) := x3 for x ∈ F2n . For a discussion of this particular choice of polynomial
and alternatives, we refer to Sect. 5.3. The ciphertext is finally produced by
adding the key k again to the output of the last round. Hence, the round function
is described as Fi(x) = F (x ⊕ k ⊕ ci) where c0 = cr = 0 and the encryption
process is defined as

Ek(x) = (Fr−1 ◦ Fr−2 ◦ . . . F0)(x) ⊕ k.

We choose n to be odd and the number of rounds as r =
⌈

n
log2 3

⌉
. The r − 1

round constants are chosen as random elements from F2n .
Note that the random constants ci do not need to be generated for every

evaluation of MiMC. Instead the constants are fixed once and can be hard-coded
into the implementation on either side. No extra communication is thus needed,
just as with round constants in LowMC, AES, or in fact any other cipher.

Decryption for MiMC-n/n can be realized analogously to encryption by
reversing the order of the round constants and using F−1(x) := xs with
s = (2n+1 − 1)/3 instead of F (x) := x3 (the complete derivation of s is given in
Sect. 4, Lemma 1). Hence, encryption and decryption need to be implemented

MiMC: Efficient Encryption and Cryptographic Hashing 195

Fig. 1. r rounds of MiMC-n/n

separately. Furthermore, decryption is much more expensive than encryption.
Using modes where the inverse is not needed is thus advisable. We note that
for our targeted applications, such as PRFs or cryptographic hash functions,
computing the inverse is usually not required. We therefore provide benchmark
results only for the encryption function. The fact that the inverse has a more
complex algebraic description also has a beneficial effect on security as it lim-
its cryptanalytic approaches that try to combine the encryption and decryption
direction, such as inside-out approaches (Fig. 1).

MiMC-2n/n (Feistel). By using the same non-linear permutation in a Feistel
network, we can process larger blocks at the cost of increasing the number of
rounds by a factor of two. The round function of MiMC-2n/n is defined as
following

xL‖xR ←− xR ⊕ (xL ⊕ k ⊕ ci)
3‖xL.

The round constants ci are again random elements of F2n except for the first and
last round constants which are equal to 0. In the last round, the swap operation is
not applied. The number of rounds for the Feistel version is r′ = 2·r = 2·

⌈
n

log2 3

⌉
,

where r is the number of rounds of MiMC-n/n.
Decryption for MiMC-2n/n can easily be realized by using the encryption

function with reversed order of round constants, as usual for Feistel networks.

2.2 The Permutation

To construct the permutation MiMCP from the cipher MiMC as described above,
we simply set the key to the all-0 string.

2.3 The Hash Function

For the hash function MiMChash, we propose to instantiate the permutation
MiMCP in the sponge framework [BDPA08]. Given a permutation of size n, and
a desired security level s, we can hash r = n−2s bits per call to the permutation.
The MiMC permutation can be realized either in the SPN mode or Feistel mode
by setting the key to 0κ where κ is the size of the key in bits. MiMCHash-�
denotes the hash function with � bit output.

As usual, the message is first padded according to the sponge specification
so that the number of message blocks is a multiple of r where r is the rate in
sponge mode. For MiMCHash-t we use MiMC-n/n permutation where n = 4·t+1
and s = 2 · t. For MiMCHash-256 we thus use a MiMC-n/n permutation with

196 M. Albrecht et al.

n = 1025. The rate and the capacity are chosen as 512 and 513 respectively. This
choice allows for processing the same amount of input bits as SHA-256 (512 bits)
while at the same time offering collision security of 128-bits and preimage security
of 256-bits, and in contrast to SHA-256 also full 256-bit 2nd-preimage security
independent of the message length. We also propose MiMCHash-256b, which also
offers collision resistance of 128 bits but only 128-bit security against preimage-
style attacks, similar to SHAKE-256 as specified in the new SHA-3 standard.
This construction makes use of a MiMC-n/n permutation where n = 769. The
rate and the capacity are chosen as 512 and 257 respectively. More generally
for MiMCHash-tb, we use the MiMC-n/n permutation where n = 3 · t + 1 and
s = t + 1.

3 Related Designs and Comparison

In this section, we give an overview of related designs, i.e. symmetric primitives
which are based on arithmetic operations in some ring.

3.1 Knudsen-Nyberg Cipher

As discussed above, our design can be seen as a resurrection of a design due
to Knudsen and Nyberg in [KN95], who proposed a DES-like cipher using a
similar idea for non-linear mappings in a finite field. The Feistel round function of
the 64-bit KN-cipher uses an affine mapping e : F232 → F237 to first transform
the 32-bit input into a 37-bit value. After addition with a 37-bit round key, the
resulting 37-bit value is then input to the non-linear permutation g : x → x3 in
F237 . Five bits of the output of g are then discarded to reduce the final output
again to 32 bits. In summary, one application of the round function is given as

xL||xR → xR||xL ⊕ f(e(xR) ⊕ ki)

where f consists of application g followed by discarding one bit. The KN cipher
is a six-round Feistel design with six 37-bit independent round keys and is prov-
ably secure against differential attacks. However, it is vulnerable to an interpo-
lation attack (see below) because of the low algebraic degree of the polynomial
corresponding to the encryption function. The Feistel variant of our design —
MiMC-2n/n — can be easily recognized as a variant of the KN cipher, except for
that we do not discard any bits (and hence always stay in the same field), add
independent round constants and have a higher number of rounds. Indeed, our
design more closely resembles PURE , the cipher used in [JK97] to demonstrate
the vulnerability of the KN cipher to interpolation attacks, except for the higher
number of rounds in our design. The performance of both designs essentially
differs linearly in by how much we extend the number of rounds. We note that
our GCD attack in Sect. 4.2 also extends to PURE and allows to reduce the
number of plaintext-ciphertext pairs required for a successful cryptanalysis.

MiMC: Efficient Encryption and Cryptographic Hashing 197

3.2 The Pohlig-Hellman Cipher

The Pohlig-Hellman cipher was described in [PH78]. Choose a prime p. Pick
1 ≤ k ≤ p − 2 with gcd(k, p − 1) = 1 and 1 ≤ d ≤ p − 2 with d = k−1 mod
p − 1, with p public and k and d private. To encrypt the message 1 ≤ m ≤
p − 1 compute c = mk mod p. To decrypt compute m = cd mod p. Encryption
and decryption take between log2 p and 2 log2 p multiplications depending on
the Hamming weights of k and d. A key recovery attack solves the discrete
logarithm problem in Fp. The General Number Field Sieve solves this problem

in complexity exp
((

3

√
64
9 + o(1)

)
(ln p)

1
3 (ln ln p)

2
3

)
= Lp

[
1
3 , 3

√
64
9

]
. Thus for n-

bit security, the number of multiplications required grows faster than O(n).

3.3 Naor-Reingold PRF

The Naor-Reingold PRF [NR97] is a pseudorandom function whose security can
be reduced to the decisional Diffie-Hellman problem. For a given n ∈ N, primes
p and q with q dividing p − 1, an element g ∈ F

∗
p of order q, and n + 1 elements

a0, . . . , an ∈ Zq, and an n-bit input x1, . . . , xn ∈ F2 define

fp,q,g,a(x1, . . . , xn) := ga0
∏

xi=1 ai

where (g,a) is the secret key. Evaluation of the function corresponds to one
exponentiation in Fp and n multiplications in Zq. Thus it takes between p and
2p multiplications in Fp. As the security of this primitive can be reduced to the
decisional Diffie-Hellman problem, just as with the Pohlig-Hellman cipher, for n
bit security the number of multiplications grows faster than O(n).

3.4 Ajtai, SWIFFT, SWIFFTX

SWIFFT [LMPR08] is a hash function family related to hard problems in lattices.
In can be seen in the tradition of the work of Ajtai [Ajt96] and was used as
a building block for the SWIFFTX SHA-3 submission [ADL+08]. The hash
function consists of an application of the Number Theoretic Transform (NTT)
over Z257 and in dimension 64 to m = 16 blocks of n = 64 bits. Each such
transform costs 1

2n log2 n = 3 · n = 192 multiplications by a constant per 64
bits. The output of the NTT is then pointwise multiplied with 64 random fixed
elements in Z257, costing another 64 multiplications. For m · n bits of input
the algorithm scales linearly in m, so require mn(1 + 1

2 log2 n) operations for
m · n bits of input. On modern microprocessors most of these multiplications
can be avoided by using precomputed lookup tables and some specifically chosen
constants. However, it is not clear that these techniques translate to our setting.
Furthermore, we note that multiplication by small constants can be more efficient
than general multiplications in, e.g. homomorphic encryption schemes. On the
other hand, the constants in an NTT are not small a priori. Still, our analysis
might be somewhat pessimistic. We note that SWIFFT itself does not fulfil
standard requirements for general purpose hash functions and that SWIFFTX

198 M. Albrecht et al.

addresses these issues by running four SWIFFT instances (increasing the number
of multiplications accordingly) and by introducing an S-box.

3.5 SPRING

SPRING [BBL+15] is a PRF proposal with security related to the Learning with
Errors (LWE) problem. Similarly, to SWIFFT this construction employs an NTT
over Z257, but at dimension n = 128. This costs 1

2n log2 n = 448 multiplications
in Z257. Additional, k multiplications in Z257 are required in a post-processing
step for k ∈ {64, 128} being the bit size of the input to the PRF. Hence, for
k = 128 we expect 576 multiplications in Z257. We note that these multiplications
can be realized efficiently on modern CPUs, but not necessarily in the scenarios
targeted in this work.

3.6 Comparison

In Table 1 we compare MiMC with various block cipher and PRF designs. In
Table 2 we compare MiMC with various cryptographic hash function proposals.
In both cases, we notice a big difference between MiMC instantiations, and
other designs for the two metrics that interest us: (1) the minimal number of
multiplications needed to encrypt a block or at least n bits (minMULs), and
(2) the number of multiplications per encrypted bit. For the GF(p) version of
MiMC, the number of multiplications has to be multiplied by 2.

4 Design Rationale and Analysis of MiMC

In this section we explain the design rationale of the keyed permutation and
argue its security. The monomial x3 serves as the non-linear layer of the block
cipher. Note that we can use x3 to construct the cipher iff it is a permutation
monomial in the field F2n . The following well known result governs the choice of
the monomial and size of the field in the design of MiMC.

Proposition 1. Any monomial xd is a permutation in the field F2n iff
gcd(d, 2n − 1) = 1.

Hence, x → x3 is not a permutation in F2n when n is even but only when n is
odd. In particular, choosing thus n = 2t + 1 ensures that x3 is a permutation
in F2n .

Moreover, using the previous proposition, we can compute the inverse of the
non-linear permutation x3 in F2n .

Lemma 1. Let n an odd integer. The inverse of the non-linear function x3 in
F2n is given by xs with s := (2n+1 − 1)/3.

MiMC: Efficient Encryption and Cryptographic Hashing 199

Table 1. Comparison of ciphers in encryption mode (excluding key schedule). We list
the size-optimized variants. Note that in most cases multiplication refers to the field
GF(2) (minANDs and ANDs/bit) whereas in MiMC and others multiplication is in a
larger field(minMULs and MULs/bit). For stream ciphers we give the minANDs needed
to generate n bits of output.

Name Security minANDs ANDs/bit Remarks and Reference

AES-128 128 5120 40 GF(2) rep. [BP12] ([BMP13])

Simon 128 4352 34 [BSS+13]

Noekeon 128 2048 16 [DPVAR00]

Robin 128 3072 24 [GLSV14]

Fantomas 128 2112 16.5 [GLSV14]

LowMC 128 1132 8.85 [ARS+15]

Grain-128a 128 4864 + 19 · n 19 [ÅHJM11]

Trivium 80 1152 + 3 · n 3 [CP08]

Kreyvium 128 1152 + 3 · n 3 [CCF+16]

minMULs MULs/bit

AES-128 128 800 6.25 GF(24) rep. [CGP+12]

SPRING 128 576 4.5 [BBL+15]

Pohlig-Hellman 128 3072 ≈ 1.5 [PH78,ENI13]

MiMC-129/129 129 82 0.64 This paper

MiMC-258/129 129 164 0.64 This paper

Proof. Given y = x3, we are looking for an s such that x = ys in GF (2n),
that is x3·s = x. By Fermat’s little theorem, this is equivalent to look for an s
such that 3 · s = 1 (mod 2n − 1). That is, there exists an integer t such that
3 · s = 1 + t · 2n − 1. By Proposition 1, we have that gcd(3, 2x − 1) = 1 if and
only if x is odd (i.e. gcd(3, 2x − 1) = 3 if and only if x is even). For t = 1, we
obtain 3 · s = 2n which is a contradiction. If t is equal to 2, then 3 · s = 2n+1 − 1.
Since n + 1 is even (by hypothesis), then 3 divides 2n+1 − 1. Finally, since x3 is
a permutation in GF (2n) for n odd (by previous proposition), then the inverse
is unique and is given by s := (2n+1 − 1)/3. 	

4.1 Computation Cost Model

In most models of computation field multiplication is considered to be more
computationally expensive than addition. However, note that squaring is a linear
operation in a binary field F2n . Hence, if we consider the number of non-linear
multiplications in a binary field then the number required to compute x3 is one.
In the SNARK setting, each witness variable (and possibly each constraint) is
generated from a field operation more specifically from a field multiplication. As
a consequence, computing x3 generates two equations x · x = y and y · x = x3.
Hence, in this setting we do not benefit from the linearity of squaring over the

200 M. Albrecht et al.

Table 2. Comparison of hash functions. We list the size-optimized variants. Note
that in most cases multiplication refers to the field GF(2) (minANDs and ANDs/bit)
whereas in MiMC multiplication is in a larger field (minMULs and MULs/bit).

Name Coll. Resist minANDs ANDs/bit Remarks and Reference

SHA-256 128 29000 56.64 [BCG+14])

SHA3-256 128 38400 35.29 [NIS14]

SHAKE128 128 38400 28.57 [NIS14]

minMULs MULs/bit

SWIFFTX 112–256 16384 8.0 [ADL+08]

MiMCHash-256 129 1293 2.52 This paper

MiMCHash-256b 129 971 1.89 This paper

fields F2n and computing x3 costs two multiplications. However, the cost of
additions in these fields is still negligible compared to that of multiplication.
Note that we can also disregard the cost of multiplication by a constant. Details
on the form of equations involved in SNARK is given in Sect. 6.

We stress that although the cost of an addition is considered negligible com-
pared to a multiplication, very large number of additions can reduce the efficiency
of a design.

4.2 Security Analysis

Our designs resist a variety of cryptanalysis techniques. The algebraic design
principle of MiMC causes a natural concern about the security of the keyed per-
mutation against algebraic cryptanalytic techniques. We describe several possible
algebraic attacks (incl. a new “GCD” attack) against the design and analyze the
resistance of the block cipher against these attacks. We also consider statistical
attacks.

To summarize the following results, the number of rounds for the case of
MiMC-n/n is derived from an interpolation attack, while the number of rounds
for the case of MiMC-2n/n is deduced from a Meet-in-the-Middle GCD attack.

We discuss the case in which some restrictions on the memory that the
attacker can use to implement the attack hold in the full version of this paper
[AGR+16]. We show that in this case it is possible to reduce the total number of
rounds. We have also analysed the security when the adversary has a restriction
on the number of plaintexts available in [AGR+16].

Interpolation Attack. Interpolation attacks, introduced by Jakobsen and
Knudsen [JK97], construct a polynomial corresponding to the encryption func-
tion without knowledge of the secret key. If an adversary can construct such a
polynomial then for any given plaintext the corresponding cipher-text can be
produced without knowledge of the secret key.

MiMC: Efficient Encryption and Cryptographic Hashing 201

Let Ek : F2n → F2n be an encryption function. For a randomly fixed key
k, the polynomial P (x) representing Ek(x) can be constructed using Lagrange’s
theorem, where x is the indeterminate corresponding to the plaintext. If the
polynomial has degree d then we can find it using Lagrange’s formula

P (x) =
d∑

i=1

yi

∏
1≤j≤d,i�=j

x − xj

xi − xj

where Ek(xi) = yi for i = 1, 2, . . . d.
This method can be extended to a key recover attack. The attack proceeds

by simply guessing the key of the final round, decrypting the cipher-texts and
constructing the polynomial for r − 1 rounds. With one extra p/c pair, the
attacker checks whether the polynomial is correct.

Observe that the number of unknown coefficients of the interpolation poly-
nomial is d + 1 and that the complexity of constructing a Lagrangian interpo-
lation polynomial is O(d log d) [Sto85]. Hence, setting d = 3r with r = rmax ≈
n/ log2(3) thwarts this attack. Note that no function mapping from GF(2n) to
GF(2n) has degree ≥ 2n, since T 2n−1 ≡ 1 for each T ∈ F2n and the degree of
the interpolation polynomial does not increase for r > rmax.

By the same argument, a similar result holds for the case of the Feistel
network MiMC-2n/n. Indeed, at each round the left/right hand part of the state
can be described as a polynomial of the left and of the right hand part of the
plaintext, with at most 32r−1 + 3r + 3r−1 + 1 unknown coefficients (observe
that at round r, the degree of the polynomial is at most 3r in the left part of
the plaintext and 3r−1 in the right part). Thus, the complexity of constructing
this Lagrangian interpolation polynomial is approximately O(r · 32r), where a
function mapping from GF(2n)2 to GF(2n) has degree at most 22n.

Note that in the chosen-plaintext scenario and in the case of MiMC-2n/n, an
attacker can reduce the degree of the interpolation polynomial. For example, for
chosen plaintexts of the form x||x3 the degree of the interpolation polynomial
after r rounds is at most 2 · 3r−1 in the left part of the plaintext and 2 · 3r−2

in the right part, while for chosen plaintexts of the form 0||x the degree of the
interpolation polynomial is at most 3r−1 in the left part of the plaintext and
3r−2 in the right part. Thus, for this second case, the interpolation polynomial
of the right part of the text depends only by the right part of the plaintexts and
has degree 3r−2. In order to avoid the reduced degree of the polynomial, it is
sufficient to add (at least) two rounds more to the number of rounds calculated
for MiMC-n/n.

A meet-in-the-middle variant of the interpolation attack was also proposed
in [JK97], constructing a polynomials g(x) = h(y) instead of one polynomial
y = f(x). For MiMC-n/n, this approach does not produce an improvement
due to the prohibitive degree of the inverse operation. In contrast, for MiMC-
2n/n we have that g and h may have degree 3r/2 in the left part of the plain-
text and 3r/2−1 in the right part only instead of degree 3r and 3r−1 respec-
tively. However, this lower degree comes at the price of increases computational
cost. Indeed, constructing g and h requires solving a system of equation in

202 M. Albrecht et al.

n = 2 · (3r/2 + 1) · (3r/2−1 + 1) unknowns costing O(nω) = O(3r) operations,
where the hidden constant is ≥ 1 and we conservatively set the linear algebra
constant ω = 2. The chosen plaintext variant of this attack is quite similar. As
before, the idea is to choose plaintexts in which the left part is fixed. In this
way, one of the two interpolation polynomial depends only on one variable, the
right part of the plaintext. Thus, constructing g and h requires solving a sys-
tem of equation in n = (3r/2−2 + 1) + (3r/2 + 1) · (3r/2−1 + 1) unknowns costing
O(n2) = O(3r−1) operations where the hidden constant is ≥ 1.

We note that the complexity of an interpolation attack may decrease if the
polynomial P (x) is sparse for a chosen key. However, because we are adding
random round constants in each round and x3 is a permutation in F2n by con-
struction, our P (x) is not expected to be sparse1.

Computing GCDs. From the description of MiMC, it is clear that factoring
univariate polynomials recovers the key. However, if we are given more than
one known plaintext-cipher-text pair, we can reduce the complexity further by
computing a GCD of them. Denote by E(k, x) the encryption of x under key
k. For a pair (x, y) ∈ F

2
q, E(K,x) − y denotes a univariate polynomial in Fq[K]

corresponding to (x, y). Note that in general, given plaintext/cipher text pair
(x, y), it should be hard for a generic encryption scheme to compute the uni-
variate polynomial E(K,x) − y explicitly in the variable K (i.e. the secret key).
However, this is not the case of MiMC, for which the polynomial E(K,x) − y
can be always computed explicitly, and it simply corresponds to the definition
of encryption process (that is, the iterative application of the cubic function).
Moreover, note that this attack may also be applied to PURE , the cipher used
in [JK97] to demonstrate the vulnerability of the KN cipher to interpolation
attacks, assuming round keys are not independent but linearly derived from k.

Consider now two such polynomials E(K,x1) − y1 and E(K,x2) − y2, with
y1 = E(k, x1) and y2 = E(k, x2) for the fixed but unknown key k. It is clear
that these polynomials share (K − k) as a factor. Indeed, with high probability
the greatest common divisor will be (K − k). Thus, by computing the GCD of
the two polynomials, we can find the value of k.

1 This claim is supported by our experiments. In particular, for a field F2n and using
x3 as permutation, we observed:

– after 1 round, all terms appear (percentage: 100 %);
– after 2 round, 8 terms appear instead of 10 (percentage: 80 %);
– after 3 round, 19 terms appear instead of 28 (percentage: 67.86 %);
– after 4 round, 54 terms appear instead of 82 (percentage: 65.85 %);
– after 5 round, 161 terms appear instead of 244 (percentage: 66 %);
– after 6 round, 531 terms appear instead of 730 (percentage: 72.74 %);

and so on, where the percentage of the non-null terms continues to grow for the next
rounds. For example, for the particular field GF (217), after 10 rounds almost all the
terms are non-zero.

MiMC: Efficient Encryption and Cryptographic Hashing 203

MiMC-n/n for a known plain text x corresponds to a polynomial having
degree 3r, where the leading monomial always has non-zero coefficient. Hence, we
can recover k with a GCD computation of two polynomials at degree 3r (indeed,
considering differences of two polynomials G(K,xi) − yi reduces this degree to
3r − 1 by canceling the leading term). It is well-known that the complexity
for finding the GCD of two polynomials of degree d is O(d log2 d). Hence, the
complexity of this attack is O(r2 · 3r). For MiMC-n/n the time complexity of
this attack is higher than that of the interpolation attack.

More care must be taken for MiMC-2n/n, since in this case the meet-in-the-
middle variant of this attack can be performed. That is, instead of constructing
polynomials expressing ciphertexts as polynomials in the plaintext and the key,
we can construct two polynomials G′(K,xi) and G′′(K, yi) expressing the state
in round r/2 as a polynomial in the key and the plaintext or ciphertext respec-
tively. Then, considering G′(K,x1) − G′′(K, y1) and G′(K,x2) − G′′(K, y2) we
can apply a GCD attack on polynomials of degree 3r/2, reducing the complexity
to O(r2 · 3r/2). Hence, to thwart this attack we must increase the number of
rounds to r = 2 · rmax ≈ 2 · n/ log2(3).

Invariant Subfields. The algebraic structure of MiMC allows to mount a
invariant subfield attack on the block cipher under a poor choice of round con-
stants. That is, if all the round constants ci and the key k are in subfield F2m

of F2n then by choosing a plaintext x ∈ F2m an adversary can ensure that
Ek(x) ∈ F2m . This attack is thwarted by picking n to be prime. The only sub-
field is then F2 such that picking constants �= 1 will be enough to avoid the
attack.

Differential Attacks. Differential cryptanalysis is one of the most widely used
technique in symmetric-key cryptanalysis. The different types of cryptanalysis
methods based on this technique depend on the propagation of an input differ-
ence through a given number of rounds of an iterative block cipher to yield a
known output difference with high probability. The probability of the propaga-
tion often determines how many rounds can be attacked using this technique.

Given an input difference δ and an output difference δ′, the differential prob-
ability of the round function is given as

Pr (δ → δ′) = |{x ∈ F2n : F (x + δ) + F (x) = δ′}|/2n (1)

In our case the number of x satisfying F (x+ δ)+F (x) = δ′ is determined by
the non-linear function x3. Hence it is enough to determine the size of the set

D = {x ∈ F2n : (x + δ)3 + x3 = δ′, δ �= 0}.

As this is a quadratic equation in x for any, there are at most two solutions to the
equation. This implies Pr (δ → δ′) ≤ 2

2n . This is sufficient to give any differential
trail of at least two rounds a probability too low to be useful in an attack. A
detailed analysis of the differential property of monomials of the form x2t+1 in
F2n can be found in [Nyb94,Can97].

204 M. Albrecht et al.

Linear Attacks. Similar to differential attacks, linear attacks pose no threat to
MiMC. Indeed, the cubic function is an almost bent or an almost perfect nonlinear
(APN) function, i.e., differential 2-uniform, where an APN permutation provides
the best resistance against linear and differential cryptanalysis. Thus, since its
maximum square correlation is limited to 2−n+1 (cf. for example [AÅBL12] for
details), any linear trail of the cubing function will have negligible potential after
a few rounds.

Algebraic Degree and Higher-Order Differentials. As discussed above,
the large number of rounds ensures that the algebraic degree of MiMC in its
native field will be maximal or almost maximal. This naturally thwarts higher-
order differential attacks when considering the difference as defined in the field
(i.e., using the inverse of the field addition). But what happens to the degree
when viewing the rounds as vectorial Boolean functions? As squaring is a linear
operation in F2n , it is also linear when viewed as vectorial function over F2.
Cubing on the other hand introduces an additional multiplication which gives
the round function an algebraic degree of 2 in every component when viewed as
a vectorial Boolean function. Again, the large number of rounds should cause
the degree to rise quickly and reach the limit of 2n which is sufficient to thwart
any higher-order differential attacks also when viewing the round function as a
vectorial Boolean function.

Hash-Specific Security Considerations. For usage in the MiMC permuta-
tion in the sponge mode as described in Sect. 2.3 we require the permutation to
not show non-trivial non-random behavior for up to 2s input/output pairs. As
specified in Sect. 2 the size of the permutation n determines the number of rounds
(based on the GCD attack described above). As 2s < n for both MiMCHash-256
and MiMCHash-256b, this choices leaves us with an additional security margin,
even if an hypothetical inside-out approach could double the number of rounds
in an attack.

5 Variants

In this section, we discuss two variants of MiMC. One for instantiating MiMC
over prime fields and one for extending the key size to increase security.

5.1 MiMC over Prime Fields

The above descriptions of MiMC can also be used to operate over prime fields
i.e. a field Fp where p is prime. In that case, it needs to be assured that the
cubing in the round function creates a permutation. For this, it is sufficient to
require gcd(3, p − 1) = 1.

Following the notation as above, we can consider MiMC-p/p where the per-
mutation monomial x3 is defined over Fp. The number of rounds for constructing

MiMC: Efficient Encryption and Cryptographic Hashing 205

the keyed permutation is r =
⌈

log p
log2 3

⌉
. In the Feistel mode, we define MiMC-2p/p

where the round function is defined over Fp and where the number of rounds
is double with respect to MiMC-p/p. In both the constructions the r round
constants are chosen as random elements in Fp.

Our cryptanalysis from Sect. 4 transfers to this case except for the subfield
attack which does not apply here.

5.2 Larger Keys

Instead of considering our simple iterative construction where we add the same
key in each round, we may also consider the case where we have a key which is
κ-times bigger than the block size n. In this case, we may consider an instance
where we are cyclically adding κ independent keys to our rounds. Our i-th round
function then becomes:

Fi(x) = (x ⊕ ki mod κ ⊕ ci)
3

It is clear that differential and linear cryptanalysis are not affected by this mod-
ification if we model MiMC as a Markov cipher. However, considering a larger
key size does affect algebraic attacks. In particular, a simple GCD attack is not
sufficient any more to recover the keys k0, k1, . . . , kκ−1. Instead, we may consider
Resultants or Gröbner bases.

We consider the case where κ = 2. It is well-known [BKW93] that the maxi-
mum degree reached during a Gröbner basis computation of a bivariate system
of equations is ≤ 2 ·maxdeg(P)+1, where maxdeg(P) is the maximum degree of
our input system (i.e. 3r in our case). Hence, from e.g. [BFS14], the complexity
of solving such a system of equations is

O
(

2 · 3r ·
(

2 · 3r + 3
2 · 3r + 1

))
.

Applying resultants, from [LMS13] we expect a complexity of

Õ (
d4.69

)
= Õ (

34.69 r
)
.

Conservatively, we may anticipate a meet-in-the-middle attack which would
reduce the cost of either of these attacks to a square root of the above esti-
mates.

5.3 Different Round Functions

Considering the case GF(2n), we may consider a round function of the form

F (x) = (x ⊕ k ⊕ c)d

for generic exponents d. In particular, we have decided to limit our analysis to
exponents of the form 2t + 1 and 2t − 1, for positive integer t (note that 3 is the

206 M. Albrecht et al.

only number that can be written in both ways). Remember that for MiMC-n/n,
d has to satisfy the condition gcd(d, 2n − 1) = 1 in order to be a permutation,
while in the case of MiMC-2n/n (that is, for Feistel Networks) this condition is
not necessary.

For further analysis, we recall the Lucas’s Theorem:

Theorem 1. For non-negative integers m and n and a prime p, the following
congruence relation holds:

(
m

n

)
≡

k∏
i=0

(
mi

ni

)
(mod p),

where m = mkpk + mk−1p
k−1 + ... + m1p + m0 and n = nkpk + nk−1p

k−1 + ... +
n1p+n0 are the base p expansions of m and n respectively, using the convention
that

(
m
n

)
= 0 if m < n.

Exponents of the form 2t+1 (with t > 1) have the nice property that the cost
to compute x2t+1 does not depend on t, i.e. it requires only one multiplication (in
some applications). Moreover, the degree of the resulting r-round interpolation
polynomial is (2t + 1)r, which is significantly higher than 3r even for “small” t.
The major problem of this kind of exponents is that the corresponding interpo-
lation polynomials are in general sparse. For example, using Lucas’s Theorem,
it is very easy to note that just after one round the polynomial has only 4 terms
instead of 2t + 2:

(x ⊕ k)2
t+1 ≡2 (x ⊕ k)2

t · (x ⊕ k) ≡2

≡2 (x2t ⊕ k2t) · (x ⊕ k) ≡2 x2t+1 ⊕ k · x2t ⊕ k2t · x ⊕ k2t+1.

Using the same technique, after r rounds, the number of terms of the polyno-
mial is upper bounded by 3r + 1, which is (much) smaller than (2t + 1)r + 1.
Note that 3r + 1 is exact the same upper bounded obtained for the exponent
3 (which corresponds to t = 1). Thus, the number of rounds to guarantee the
security against the algebraic attacks doesn’t change choosing exponent of the
form 2t + 1 for t > 1. That is, both from the security point of view and from
the implementation one, there is no advantage to choose exponents of the form
2t + 1 greater than 3.

Similar considerations can be done also for exponents of the form 2t + 2s =
2s · (2t−s + 1), where s < t.

For this reason, coefficients of the form 2t −1 are more interesting. Indeed, in
this case it is very easy to prove that the interpolation polynomial is not sparse:

(x ⊕ k)2
t−1 ≡2

2t−1⊕
i=0

xi · k2t−1−i,

since (
2t − 1

i

)
≡2 1 ∀i ∈ {0, 1, . . . , 2t − 1}.

MiMC: Efficient Encryption and Cryptographic Hashing 207

On the other hand, in order to compute x2t−1, we need more multiplications and
square operations. Thus, a natural question is if it is possible to minimize the
total number of multiplications necessary to compute the ciphertext choosing an
exponent of the form 2t − 1 different from 3.

There are different ways to compute ge where g ∈ F2n and e = 2t − 1
for some t ≥ 2, the classical algorithm being the square-and-multiply algo-
rithm, cf. [MVO96, Sect. 14.6]. For this algorithm, the number of multiplica-
tions requested for this exponent is equal to the number of squares t − 1. In
Algorithm 1, we give a slight variation of the original algorithm.

Data: g ∈ F2n and e = 2t − 1 for some t ≥ 2
Result: ge

g0 ← g;
g1 ← g2 · g;
A ← 1;
for i from 0 to �t/2� do

A ← (A2)2;
A ← A · g1;

end
if t mod 2 �= 0 then

A ← A2;
A ← A · g0;

end
return A.

Algorithm 1. Modular exponentiation with cache

By simple computation, the number of multiplications for the previous algo-
rithm is �t/2�, while the number of squares is t − 1. Observe that with respect
to the original algorithm, it requires precomputation and to store the quantity
g2 · g. Thus, for our purpose, this algorithm is better than the original one (for
the case e = 2t − 1). This algorithm can be improved2, but for our purpose it
suffices.

Thus, using the previous analysis about the number of rounds, the total
number of multiplications m and of squares s for MiMC-n/n (analogous for
MiMC-2n/n) is

m =
⌈

t

2

⌉
·
⌈

n

log2(2t − 1)

⌉
s = (t − 1) ·

⌈
n

log2(2t − 1)

⌉
.

2 For example, suppose that t ≥ 8. The idea is to precompute g0, g1 (defined as before)
and also g2 := (g1)

4 ·g1. Thus, in the for loop 0 ≤ i ≤ �t/4� and A ← A8 ·g2. Finally,
after the for loop and before the if -statement, one has to take care of the case t
mod 4 �= 0.

208 M. Albrecht et al.

For example, for n = 129, the best result is obtained for t = 4 (that is for the
exponent 15)3, for which the total number of multiplications is 66 (instead of
82 for the exponent 3), while the number of squares is 99 (instead of 82 for the
exponent 3).

Note that the sum of the total number of multiplications m and of the total
number of squares s is almost constant for each choice of t.

Finally, only for completeness, it is also possible to extend the previous analy-
sis to the case GF (p). In this case, since the square operation is not linear, it
counts as a multiplication. Thus, if we consider an exponent of the form 2t − 1,
the total number of multiplications m for MiMC-p/p is

m =
(⌈

t

2

⌉
+t − 1

)
· log(p − 1)
log(2t − 1)

.

To conclude, if the cost of a square operation is negligible with respect to
the cost of a multiplication (that is, if the square operation is linear), then it is
possible to minimize the total number of multiplications choosing an exponent of
the form 2t − 1 different from 3. Instead, when the number of square operations
can not be ignored (as for example in the case of SNARK settings or in the
GF (p) case), the choice of an exponent of the form 2t − 1 different from 3 does
not offer any advantage due to the fact that the number m+s is almost constant.

6 Application and Implementation

We implemented the MiMC block cipher and hash function in C++ using
NTL [Sho]. Note that we put no restriction on the irreducible polynomial to
represent the finite field F2n in our proposal.

6.1 Verifiable Computation and SNARK

Recently, several techniques have been proposed to achieve practical or
nearly practical verifiable computation through constructions such as Pinoc-
chio [PHGR16] and zk-SNARK. A special kind of Succinct Non-interactive
Argument of Knowledge or SNARK was proposed in 2014 to build Zero-
cash [BCG+14] — a digital currency similar to Bitcoin but achieving anonymity.
In [BSCG+13] an implementation of a publicly verifiable non-interactive argu-
ment system is given.

The main idea of the SNARK is to provide a circuit whose satisfiability
enables a verifier to check correctness of an underlying computation. In this
concrete implementation, we focus on the (zk)SNARK for arithmetic circuit
satisfiability. The main target of our design proposals is to improve the efficiency
of (zk)SNARK when they are used as cryptographic primitives in a SNARK
setting.

3 Actually, the best result is obtained for t = 6, that is for the exponent 63. But since
gcd(63, 2129 − 1) = 7, the round function defined using the exponent 63 is not a
permutation.

MiMC: Efficient Encryption and Cryptographic Hashing 209

An F-arithmetic circuit takes input from the field F and its gates produce
output in F. Also the circuits considered here consist of bilinear gates only.
Arithmetic circuit satisfiability (ACS) is defined as follows:

Definition 1. The ACS problem of an F-arithmetic circuit C : Fn × F
h → F

l

is depicted by the relation R = {(x, a) ∈ F
n × F

h : C(x, a) = 0l} such that its
language is L = {x ∈ F

n : ∃a ∈ F
h s.t C(x, a) = 0l}.

Since the circuit consists of bilinear gates only, we aim to minimize the num-
ber of NLM or field multiplications in our design. The addition in the field, which
is the same as bitwise XOR, is a comparatively less expensive operation. The
SNARK algorithm generates the proof for satisfiability of a system of rank-1
quadratic constraints over a finite field. This system of constraints is defined as
below.

Definition 2. A system of rank-1 quadratic equations over a field F is a
sequence of tuples ((Ai, Bi, Ci), n) for i = 1, . . . , Nc and Ai, Bi, Ci ∈ F

1+N ′

such that n ≤ N ′. This system is satisfiable with an input x ∈ F
n if there is a

witness w ∈ F
N ′

such that

〈Ai, w〉 · 〈Bi, w〉 = 〈Ci, w〉 ∀i = 1, . . . , Nc

Here Nc is the number of constraints and N ′ is the number of variables.

The number of such constraints contributes to the efficiency of the SNARK
algorithm. From the above definition it is also clear that in a SNARK setting
over F2m we can not ignore the squaring as linear operation.

MiMC in the SNARK Setting. In MiMC, each round can be expressed with
the following equations

X + ki + Ci︸ ︷︷ ︸
α

+U = 0 (2)

U · U = Y (3)
Y · U = Z (4)

where ki, Ci are the round key and constants respectively. Note that the above
3 equations can be combined to form one rank-1 quadratic constraint (as in
Definition 2)

(X + α)(X + α + Y) = Y + Z (5)

For the MiMCHash the round key is fixed to a constant hence α can be treated
as a constant in this equation. Note that the number of witness per round of
MiMC is 2. Therefore the total number of witness for the fixed key permuta-
tion is 2 · R, where R ≈ n

log 3 is the number of rounds and n is the block size.
The witness generation requires one constant addition (XOR) and two multi-
plications in the corresponding field. The complexity of the prover algorithm of
SNARK (Appendix E in [BSCG+13]) is dominated by O(Nc log Nc) where Nc is
the number of rank-1 constraints.

210 M. Albrecht et al.

LowMC in the SNARK Setting. In LowMC, each round consists of Sbox
(3-bit), matrix multiplication (over F2), round key and constant addition (XOR).
Each 3-bit Sbox application can be written as

b · c = a + z1 (6)
a · (c + 1) = b + z2 (7)
a · (b + 1) = b + c + z3 (8)

The above three equations can be combined to form 2 rank-1 constraints as
following

b · c = a + z1 (9)
a · (b + c) = c + z2 + z3 (10)

The witness generation for each Sbox requires 3 multiplications and 6 additions
(out of which 2 are constant additions) over F2. In each round there are m Sboxes.
Hence per round the witness generation process will require 3 m multiplications
and 6 m (2 m of them are constant addition) additions per round. Suppose Nb is
the block size of the permutation. Then there will be approximately (l − 1) · Nb

additions over F2 due to linear layer of LowMC in each round, where l is the
average number of non-zero entries in each row of the random matrix of the
linear layer. Also there will be Nb constant additions over F2 which is due to
round constant and key addition. The total number of rank-1 constraints for R
rounds of LowMC will be R · 2m. Note that the number of additions is much
higher in comparison with the number of multiplication over F2.

Remark 1. For the MiMC permutation, the operations are performed over a
larger field e.g. F21025 . Indeed the cost of a single multiplication is higher in
the larger field compared to a multiplication over F2. Moreover, the number of
additions are significantly more than the number of multiplications (see Table 3).
Although in the cost model the cost of addition is much less than the cost of
multiplication, very large number of additions over F2 brings down the efficiency
of LowMC in SNARK setting in comparison to MiMC. On the other hand, in
MiMC the number of additions per round is one.

Experimental Results. Following the libsnark [Lab] implementation we have
implemented a prototype of SNARK for generating the circuit and witness for
MiMC permutation for different block sizes and MiMCHash-256. One important
target application of MiMC is SNARK or SNARK like algorithms. We have mea-
sured the time taken by MiMCHash for processing a single block and compared
it with the time taken by SHA-256 using the libsnark implementation.

For processing a single block i.e. for hashing a single block message our MiMC
implementation in the SNARK setting requires ≈ 7.8 milliseconds to generate
the arithmetic circuit and witness while SHA-256 takes ≈ 73 milliseconds.

Since LowMC was designed for MPC/ZK applications we have also imple-
mented it in the SNARK setting. A comparison of LowMC with MiMC is given
in Table 3.

MiMC: Efficient Encryption and Cryptographic Hashing 211

Table 3. Comparison of LowMC and MiMC with block size 1025 and the corresponding
parameters for LowMC and Keccak permutation with specified parameters. For all
implementations we have used the -O3 optimization option of the gcc compiler. For
LowMC, the number of rounds and the number of Sboxes per round are denoted as R
and m respectively.

MiMC LowMC Keccak-[1600, 24]

R = 16 R = 55

m = 196 m = 20

Total time 7.8 ms 90.3 ms 271.2 ms 75.8 ms

Constraint generation 6.3 ms 13.5 ms 9.2 ms 65.2 ms

Witness generation 1.5 ms 76.8 ms 262.0 ms 10.6 ms

addition 646 8420888 28894643 422400

multiplication 1293 9408 3300 38400

rank-1 constraint 646 4704 2200 38400

If we intend to use the LowMC permutation to construct a hash function
using Sponge mode then the block size of LowMC should be 1025 bit for achiev-
ing the same security level as SHA-256 or MiMCHash-256. We have implemented
LowMC with the updated parameter-set v2 from [ARS+16b] with this block size
and two possible choices for the parameters (R,m), where R and m are number of
rounds and number of Sbox per round respectively. One is minimizing the num-
ber of rounds for the given block size and security requirements, the other one is
minimizing the number of ANDs/bit. Both are derived from the round formula
given in [ARS+16b]. LowMC is a block cipher designed for MPC/FHE appli-
cations and the original proposal did not provide any suggestion to construct a
secure hash function using the permutation. However if used in the sponge mode
then the performance of the resulting hash function can be approximated by the
performance of the LowMC permutation in SNARK setting.

We have also compared the performance of the Keccak-[1600, 24] [NIS14]
permutation when used for the SHA-3 and SHAKE hash function in our SNARK
setting. Note that the truncation after a Keccak permutation can be expressed
as equality constraints. In fact the performance for the SHAKE128 or SHA3
are almost same as the Keccak-[1600, 24]. The performance comparison in the
Table 3 shows that MiMC is significantly more efficient than LowMC and SHA-3
in SNARK setting.

All field operations are implemented using the NTL together with the gf2x
library. All computations were carried out on an Intel Core i7 2.10 GHz proces-
sor with 16 GB memory and we took the average over ≈ 2000 repetitions. As
a design with an unusual imbalance between ANDs and XORs, the comparison
with LowMC variants is interesting as it gives an example where the number mul-
tiplications alone can no longer be used as a hint for the eventual performance.
Where the round-minimized LowMC variant is more than 10 times slower with
about 8 times more multiplications, reducing the number of ANDs in the other

212 M. Albrecht et al.

LowMC variant at the expense of many more rounds does not have the expected
effect: The runtime grows again. The reason is the huge amount of XOR com-
putations whose cost is clearly are no longer negligible. This shows the limits of
a simplified metric that focuses on AND gates (or multiplication gates) also.

All implementations in C++ can be found on https://github.com/byt3bit/
mimc snark.git.

6.2 Direct Implementation

For the sake of completeness we provide a brief discussion of the complexity for
the direct implementation MiMC, but stress that it has limited impact on the
performance on our target platforms. Each round of MiMC-n/n performs one
multiplication in the field F2n . For the considered values of n this computation of
x3 becomes computationally expensive, since it is not feasible to use the efficient
lookup table method even for n = 32, 64.

The evaluation of x3 can be reduced to field multiplication. Since the prob-
lem is frequently encountered in many public-key cryptographic algorithms and
protocols, efficient field multiplication is a well studied area in the literature.
One strategy for efficient field multiplication is to use lookup tables. Indeed,
several algorithms [GP97,DWBV+96,HMV93] are proposed in the literature
which use precomputed lookup tables to improve the efficiency of finite field
multiplication. We briefly describe the complexity for evaluating the monomial
using several algorithms from the literature (Table 4).

Table 4. Complexities of different algorithms for implementing field multiplications

Number of instructions Look-up table

XOR ADD,SUB, SHIFT, AND Bit size No. of access

[HMV93] 2g2 g2
(
3
2

− 1
2(2b−1)

)
2b2b 3g2

[GP97] 6glog 3 − 8 · g + 2 glog 3 2b2b 3glog 3

[KA98] 4g2 — (2b − 1)22b 2g2 + g

[Has00]
(
1
2
(g + 1)(b + 3) − 4

)
 n
w

� (g − 1)
 n
w

� + 4g − 2 (b + d)2b (g − 1)
 b+d
w

�

In all lookup-table based multiplication algorithms above, b is the size of
the internal data path of the processor. Any element in F2n is partitioned as
a collection into g groups each having b bits. If n is not a multiple of b then
the most significant group will contain n (mod b) bits. Note that the algorithm
in [HMV93] requires n to be multiple of b. Furthermore, d denotes the degree
of the second highest monomial (with non-zero coefficient) in the irreducible
polynomial that defines the field F2n and w denotes the word size of processor.
The resources of a processor are optimally utilized when b = w. For example in
a 32 bit processor two polynomials can be added using � n

32� XOR instructions.
However choosing b = w in this case increases the size of the lookup table to 25

https://github.com/byt3bit/mimc_snark.git
https://github.com/byt3bit/mimc_snark.git

MiMC: Efficient Encryption and Cryptographic Hashing 213

GB for the algorithms from [HMV93,GP97]. On the other hand choosing b < w
may imply lower utilization of processor’s resources. The algorithm described
in [Has00] proposes a better utilization of resources when a small value of b is
chosen to keep the size of the lookup table sufficiently small. Also, this algorithm
does not require n to be multiple of b.

6.3 Generic Masking Against Side-Channel Attack

Side-channel attacks exploit different types of physical leakage of information
e.g. power consumption or EM emanations during the execution of cryptographic
algorithms on a device for recovering sensitive variables (e.g. secret key). Mask-
ing is a well known technique to prevent implementations of cryptographic algo-
rithms from such attacks. Most of the masking schemes usually protect an imple-
mentation against first-order attacks. Over the past years several higher-order
side-channel attacks were proposed and demonstrated successfully against many
well-known cryptographic algorithms. Higher order masking schemes are useful
to protect a cryptographic algorithm against such attacks.

In a higher order masking scheme a sensitive variable (e.g. variables involving
secret keys) is split into t+1 shares where t is known as the order of masking. It
has been shown that the complexity of side-channel attacks increases exponen-
tially with the masking order.

In FSE 2012 a generic higher order masking scheme [CGP+12] was proposed
by Carlet, Goubin, Prouff, Quisquater and Rivain. For masking an S-box using
CGPQR scheme we need to consider the polynomial corresponding to the S-box,
which can be easily computed from the S-box table using Lagrange’s theorem in a
field F2n . In CGPQR masking scheme evaluation of this polynomial is protected
against higher order attacks. For example, let x be a secret variable for which
we evaluate a function f(x). Let x0, x1, . . . , xt are the t+1 shares corresponding
to this variable such that x =

⊕t
i=0 xi. Any linear function �(x) is easy to mask

since �(x) = �(x0)⊕ . . .⊕ �(xt). However masking a non-linear function is not as
easy as linear or affine functions.

The operations necessary for evaluating a polynomial in F2n are addition,
multiplication by a scalar, squaring and regular multiplication. For tth order
masking any affine and linear operation in F2n requires O(t) logical operations,
whereas regular multiplication requires O(t2) logical operations. Hence regular
multiplication is significant operation in CGPQR masking scheme and its effi-
ciency can be increased by minimizing the number of regular multiplications in
a field for a cryptographic algorithm.

MiMC is constructed using a monomial x3 in F2n . Evaluation of this mono-
mial in each round requires only one multiplication and hence is optimized for
CGPQR higher order masking scheme.

7 Conclusions

We have reconsidered a 20-year old cipher design idea, given a thorough security
analysis, and demonstrated that it can be very competitive in emerging new

214 M. Albrecht et al.

applications of symmetric cryptography: SNARKs. It might seem that the use-
fulness of the design is limited to this setting, as the number of rounds is high
compared to other more “traditional” designs for symmetric primitives. However
there is evidence that the opposite is true, which was recently discovered in a
follow-up work [GRR+16]. Due to its very simple design and despite the high
number of rounds, it also turned out to be very competitive in a very different
application setting: The currently fastest known MPC protocols with security
against active adversaries. This clearly shows that there is a good use-case for
designs which work natively in GF(p), and we hope that MiMC can inspire more
design and cryptanalysis in this direction.

Acknowledgements. We thank Alessandro Chiesa, Eran Tromer and Madars Virza
for helpful discussions on SNARKs. The work in this paper has been partially supported
by the Austrian Science Fund (project P26494-N15) and by the EU H2020 project
Prismacloud (grant agreement nr. 644962). Albrecht was supported by EPSRC grant
EP/L018543/1 “Multilinear Maps in Cryptography”.

A SNARK Prover Algorithm

Here we give a brief description of the parameters chosen to implement the
prover algorithm for MiMCHash-256 using the MiMC-1025/1025 permutation
with a fixed key. We also briefly describe a part the prover algorithm for MiMC
in a SNARK setting. For a more detailed description of the SNARK algorithm
we refer the readers to [BSCG+13].

A.1 Complexity of the Prover Algorithm

Let S be the system of rank-1 quadratic constraints as described in Definition 2
of the article with the tuples (Ai, Bi, Ci) ∈ F

N ′+1 for i ∈ [Nc]. Fix an arbitrary
subset X = {α1, α2, . . . , αN} of F such that αi = ωi−1 for i ∈ [Nc] and ω is
the Nc th root of unity. Given an input x ∈ F

m and witness w ∈ F
N ′

such that
(x,w) ∈ R. The prover algorithm performs the following steps :

1. Choose δ1, δ2, δ3 independently at random from the field F

2. Construct the polynomial

Q(z) :=
F (z)G(z) − H(z)

U(z)

where U(z) := zNc − 1 and F,G,H are univariate polynomials of degree N
defined as

F (z) = F0(z) +
N ′∑
i=1

wiFi(z)

︸ ︷︷ ︸
F ′

+δ1U(z), G(z) = G0(z) +
N ′∑
i=1

wiGi(z) + δ2U(z)

H(z) = H0(z) +
N ′∑
i=1

wiHi(z) + δ3U(z)

MiMC: Efficient Encryption and Cryptographic Hashing 215

Here Fi, Gi,Hi : X → F are the Lagrange basis functions for the correspond-
ing polynomials satisfying the following conditions

Fi(αj) = Aj(i), Gi(αj) = Bj(i),Hi(αj) = Cj(i)

for each i ∈ {0, 1, . . . , N ′} and j ∈ [N]. Note that for any input x and witness
w if (x,w) ∈ R then U(z) divides F (z)G(z) − H(z).

3. Output the vector (1, δ1, δ2, δ3, w, q) such that q = (q0, q1, . . . qN) represents
the polynomial Q.

Note that each of the polynomials F ′, G′,H ′ (hence F,G,H) can be computed
using an inverse FFT which has a complexity O(Nc log Nc). Next a multiplicative
coset Y := γX of X = {α1, . . . αNc

} is chosen such that γ ∈ F − X . The
polynomial Q(z) is computed in two steps

– Evaluate Q′(z) := F ′(z)G′(z)−H′(z)
U(z) on Y point-by-point using the evaluations

of F ′, G′,H ′, U on Y
– Compute Q′(z) using inverse FFT and compute Q(z) := Q′(z) + δ2F

′(z) +
δ2G

′(z) + δ1δ2U(z) − δ3.

The first step out of the above two takes O(Nc) field operations and the
inverse FFT has the complexity O(Nc log Nc).

A.2 Parameters for MiMCHash-256

Over F2n We describe the parameter choices for n = 1025. The hash function
constructed over this particular field promises the same level of security as SHA-
256. For processing a single block we use the MiMC-1025/1025 over F21025 . The
two constraints in each round of MiMC permutation can be combined to obtain a
single rank one quadratic constraint. Hence we get approximately 1025/ log(3) ≈
646 constraints from the permutation together plus an additional constraint for
compression function making the total number of constraints 647. Note that
each round introduces two variables in the constraints hence the number of
witness is 1293 where w1 = x ∈ F21025 is the input to the hash function and
w ∈ (F21025)

1293.
In the prover algorithm the number of constraints N should be such that the

principal N -th root exists in F21025 . To satisfy this condition we choose N = 1801
(since 1801 divides |F∗

21025 |). This is the smallest number which divides the order
of the multiplicative group corresponding to the finite field and also greater than
647. We add 1154 dummy constraints of the form 0.Xi = 0 to make the total
number of constraint 1801. Note that although the complexity of the prover
algorithm depends on the number of constraints (or number of multiplications)
for a specific algorithm the number of constraints may not be feasible choice for
the FFT algorithm. In such case the complexity actually depends on the best
possible choice of the multiplicative subgroup of F∗

2n .
This is not only applicable to MiMC or MiMCHash but a feature of the

SNARK algorithm. In [BSCG+13] a finite field Fp is chosen in such way that
p − 1 is of the form 2t · q.

216 M. Albrecht et al.

Over Fp When we use MiMC-p/p over Fp for some prime p (with 1025 or more
bits) to construct the hash function we have the option of choosing p such that
p − 1 = 2l · q. However this yields a very large prime number p. For ≈ 1025
bit security of the keyed permutation it is enough to have 1025/ log(3) ≈ 646
rounds. Hence the number of witness will be 1293 in this case for processing a
single block. Instead of choosing such large prime we can choose p such that p−1
has a prime factor closed to and greater than 1293.

References

[AÅBL12] Abdelraheem, M.A., Ågren, M., Beelen, P., Leander, G.: On the distri-
bution of linear biases: three instructive examples. In: Safavi-Naini, R.,
Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 50–67. Springer,
Heidelberg (2012). doi:10.1007/978-3-642-32009-5 4

[ADL+08] Arbitman, Y., Dogon, G., Lyubashevsky, V., Micciancio, D., Peikert, C.,
Rosen, A.: Swifftx: a proposal for the SHA-3 standard. Submission to
NIST (2008)

[AGR+16] Albrecht, M., Grassi, L., Rechberger, C., Roy, A., Tiessen, T.: MiMC: effi-
cient encryption and cryptographic hashing with minimal multiplicative
complexity. Cryptology ePrint Archive, Report 2016/492 (2016). http://
eprint.iacr.org/2016/492

[ÅHJM11] Ågren, M., Hell, M., Johansson, T., Meier, W.: Grain-128a: a new version
of grain-128 with optional authentication. IJWMC 5(1), 48–59 (2011)

[Ajt96] Ajtai, M.: Generating hard instances of lattice problems (extended
abstract). In: 28th ACM STOC, May 1996, pp. 99–108. ACM Press
(1996)

[ARS+15] Albrecht, M.R., Rechberger, C., Schneider, T., Tiessen, T., Zohner, M.:
Ciphers for MPC and FHE. In: Oswald, E., Fischlin, M. (eds.) EURO-
CRYPT 2015. LNCS, vol. 9056, pp. 430–454. Springer, Heidelberg (2015).
doi:10.1007/978-3-662-46800-5 17

[ARS+16a] Albrecht, M., Rechberger, C., Schneider, T., Tiessen, T., Zohner, M.:
Ciphers for MPC and FHE. Cryptology ePrint Archive, Report 2016/687
(2016). http://eprint.iacr.org/2016/687

[ARS+16b] Albrecht, M.R., Rechberger, C., Schneider, T., Tiessen, T., Zohner, M.:
Ciphers for MPC and FHE. Cryptology ePrint Archive, Report 2016
(2016). http://eprint.iacr.org/

[BBL+15] Banerjee, A., Brenner, H., Leurent, G., Peikert, C., Rosen, A.: SPRING:
fast pseudorandom functions from rounded ring products. In: Cid, C.,
Rechberger, C. (eds.) FSE 2014. LNCS, vol. 8540, pp. 38–57. Springer,
Heidelberg (2015). doi:10.1007/978-3-662-46706-0 3

[BCG+14] Ben-Sasson, E., Chiesa, A., Garman, C., Green, M., Miers, I., Tromer,
E., Virza, M.: Zerocash: decentralized anonymous payments from bitcoin.
In: 2014 IEEE Symposium on Security and Privacy, SP 2014, Berkeley,
CA, USA, 18–21 May 2014, pp. 459–474. IEEE Computer Society (2014)

[BDPA08] Bertoni, G., Daemen, J., Peeters, M., Assche, G.: On the indifferentiabil-
ity of the sponge construction. In: Smart, N. (ed.) EUROCRYPT 2008.
LNCS, vol. 4965, pp. 181–197. Springer, Heidelberg (2008). doi:10.1007/
978-3-540-78967-3 11

http://dx.doi.org/10.1007/978-3-642-32009-5_4
http://eprint.iacr.org/2016/492
http://eprint.iacr.org/2016/492
http://dx.doi.org/10.1007/978-3-662-46800-5_17
http://eprint.iacr.org/2016/687
http://eprint.iacr.org/
http://dx.doi.org/10.1007/978-3-662-46706-0_3
http://dx.doi.org/10.1007/978-3-540-78967-3_11
http://dx.doi.org/10.1007/978-3-540-78967-3_11

MiMC: Efficient Encryption and Cryptographic Hashing 217

[BFS14] Bardet, M., Faugère, J.-C., Salvy, B.: On the complexity of the F5
Gröbner basis Algorithm. J. Symb. Comput. 70, 49–70 (2014)

[BKW93] Becker, T., Kredel, H., Weispfenning, V.: Gröbner Bases: A Computa-
tional Approach to Commutative Algebra. Springer, New York (1993)

[BMP13] Boyar, J., Matthews, P., Peralta, R.: Logic minimization techniques with
applications to cryptology. J. Cryptology 26(2), 280–312 (2013)

[BP12] Boyar, J., Peralta, R.: A small depth-16 circuit for the AES S-box.
In: Gritzalis, D., Furnell, S., Theoharidou, M. (eds.) Information Secu-
rity and Privacy Conference (SEC). IFIP Advances in Information and
Communication Technology, vol. 376, pp. 287–298. Springer, Heidelberg
(2012)

[BSCG+13] Ben-Sasson, E., Chiesa, A., Genkin, D., Tromer, E., Virza, M.: SNARKs
for C: verifying program executions succinctly and in zero knowledge.
In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8043, pp.
90–108. Springer, Heidelberg (2013). doi:10.1007/978-3-642-40084-1 6

[BSS+13] Beaulieu, R., Shors, D., Smith, J., Treatman-Clark, S., Weeks, B.,
Wingers, L.: The SIMON and SPECK families of lightweight block
ciphers. Cryptology ePrint Archive, Report 2013/404 (2013). http://
eprint.iacr.org/2013/404

[Can97] Canteaut, A.: Differential cryptanalysis of feistel ciphers and differen-
tially δ-uniform mappings. In: Workshop on Selected Areas in Cryptog-
raphy, SAC 1997, Workshop Record, pp. 172–184 (1997)

[CCF+16] Canteaut, A., Carpov, S., Fontaine, C., Lepoint, T., Naya-Plasencia, M.,
Paillier, P., Sirdey, R.: Stream ciphers: a practical solution for efficient
homomorphic-ciphertext compression. To appear in Proceedings of FSE
2016, available on Cryptology ePrint Archive, Report 2015/113 (2016).
http://eprint.iacr.org/

[CFH+15] Costello, C., Fournet, C., Howell, J., Kohlweiss, M., Kreuter, B., Naehrig,
M., Parno, B., Zahur, S.: Geppetto: versatile verifiable computation. In:
2015 IEEE Symposium on Security and Privacy, SP 2015, pp. 253–270.
IEEE Computer Society (2015)

[CGP+12] Carlet, C., Goubin, L., Prouff, E., Quisquater, M., Rivain, M.: Higher-
order masking schemes for S-boxes. In: Canteaut, A. (ed.) FSE 2012.
LNCS, vol. 7549, pp. 366–384. Springer, Heidelberg (2012). doi:10.1007/
978-3-642-34047-5 21

[CP08] Cannière, C., Preneel, B.: Trivium. In: Robshaw, M., Billet, O. (eds.)
New Stream Cipher Designs. LNCS, vol. 4986, pp. 244–266. Springer,
Heidelberg (2008). doi:10.1007/978-3-540-68351-3 18

[DPVAR00] Daemen, J., Peeters, M., Van Assche, G., Rijmen, V.: Nessie proposal:
Noekeon. In: First Open NESSIE Workshop (2000)

[DWBV+96] De Win, E., Bosselaers, A., Vandenberghe, S., De Gersem, P., Vande-
walle, J.: A fast software implementation for arithmetic operations in
GF(2n). In: Kim, K., Matsumoto, T. (eds.) Advances in Cryptology –
ASIACRYPT ’96. Lecture Notes in Computer Science, vol. 1163, pp.
65–76. Springer, Berlin Heidelberg (1996)

[ENI13] ENISA. Algorithms, key sizes and parameters report – 2013 recom-
mendations. Technical report, European Union Agency for Network and
Information Security, October 2013

http://dx.doi.org/10.1007/978-3-642-40084-1_6
http://eprint.iacr.org/2013/404
http://eprint.iacr.org/2013/404
http://eprint.iacr.org/
http://dx.doi.org/10.1007/978-3-642-34047-5_21
http://dx.doi.org/10.1007/978-3-642-34047-5_21
http://dx.doi.org/10.1007/978-3-540-68351-3_18

218 M. Albrecht et al.

[GLSV14] Grosso, V., Leurent, G., Standaert, F.-X., Varıcı, K.: LS-designs: bitslice
encryption for efficient masked software implementations. In: Cid, C.,
Rechberger, C. (eds.) FSE 2014. LNCS, vol. 8540, pp. 18–37. Springer,
Heidelberg (2015). doi:10.1007/978-3-662-46706-0 2

[GP97] Guajardo, J., Paar, C.: Efficient algorithms for elliptic curve cryptosys-
tems. In: Kaliski, B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 342–
356. Springer, Heidelberg (1997). doi:10.1007/BFb0052247

[GRR+16] Grassi, L., Rechberger, C., Rotaru, D., Scholl, P., Smart, N.: MPC-
friendly symmetric key primitives. Cryptology ePrint Archive, Report
2016 (2016). http://eprint.iacr.org/

[Has00] Hasan, M.A.: Look-up table-based large finite field multiplication in
memory constrained cryptosystems. IEEE Trans. Comput. 49(7), 749–
758 (2000)

[HMV93] Harper, G., Menezes, A., Vanstone, S.: Public-key cryptosystems with
very small key lengths. In: Rueppel, R.A. (ed.) EUROCRYPT 1992.
LNCS, vol. 658, pp. 163–173. Springer, Heidelberg (1993). doi:10.1007/
3-540-47555-9 14

[JK97] Jakobsen, T., Knudsen, L.R.: The interpolation attack on block ciphers.
In: Biham, E. (ed.) FSE 1997. LNCS, vol. 1267, pp. 28–40. Springer,
Heidelberg (1997). doi:10.1007/BFb0052332

[KA98] Koc, C.K., Acar, T.: Montgomery multiplication in GF(2k). Des. Codes
Crypt. 14(1), 57–69 (1998)

[KN95] Knudsen, L.R., Nyberg, K.: Provable security against a differential
attack. J. Crypt. 8(1), 27–37 (1995)

[KR11] Knudsen, L.R., Robshaw, M.: The Block Cipher Companion. Information
Security and Cryptography. Springer, Heidelberg (2011)

[Lab] SCIPR lab. libsnark. https://github.com/scipr-lab/libsnark
[LMPR08] Lyubashevsky, V., Micciancio, D., Peikert, C., Rosen, A.: SWIFFT:

a modest proposal for FFT hashing. In: Nyberg, K. (ed.) FSE 2008.
LNCS, vol. 5086, pp. 54–72. Springer, Heidelberg (2008). doi:10.1007/
978-3-540-71039-4 4

[LMS13] Lebreton, R., Mehrabi, E., Schost, É.: On the complexity of solving
bivariate systems: the case of non-singular solutions. In: Kauers, M.
(ed.) International Symposium on Symbolic and Algebraic Computa-
tion, ISSAC’13, Boston, MA, USA, 26–29 June 2013, pp. 251–258. ACM
(2013)

[MJSC16] Méaux, P., Journault, A., Standaert, F.-X., Carlet, C.: Towards stream
ciphers for efficient FHE with low-noise ciphertexts. In: Fischlin, M.,
Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9665, pp. 311–343.
Springer, Heidelberg (2016). doi:10.1007/978-3-662-49890-3 13

[MVO96] Menezes, A.J., Vanstone, S.A., Van Oorschot, P.C.: Handbook of Applied
Cryptography, 1st edn. CRC Press Inc., Boca Raton (1996)

[NIS14] NIST. DRAFT FIPS PUB 202, SHA-3 standard: permutation-based hash
and extendable-output functions (2014)

[NR97] Naor, M., Reingold, O.: Number-theoretic constructions of efficient
pseudo-random functions. In: 38th Annual Symposium on Foundations
of Computer Science, FOCS 1997, pp. 458–467. IEEE Computer Society
(1997)

[Nyb94] Nyberg, K.: Differentially uniform mappings for cryptography. In:
Helleseth, T. (ed.) EUROCRYPT 1993. LNCS, vol. 765, pp. 55–64.
Springer, Heidelberg (1994). doi:10.1007/3-540-48285-7 6

http://dx.doi.org/10.1007/978-3-662-46706-0_2
http://dx.doi.org/10.1007/BFb0052247
http://eprint.iacr.org/
http://dx.doi.org/10.1007/3-540-47555-9_14
http://dx.doi.org/10.1007/3-540-47555-9_14
http://dx.doi.org/10.1007/BFb0052332
https://github.com/scipr-lab/libsnark
http://dx.doi.org/10.1007/978-3-540-71039-4_4
http://dx.doi.org/10.1007/978-3-540-71039-4_4
http://dx.doi.org/10.1007/978-3-662-49890-3_13
http://dx.doi.org/10.1007/3-540-48285-7_6

MiMC: Efficient Encryption and Cryptographic Hashing 219

[PH78] Pohlig, S.C., Hellman, M.E.: An improved algorithm for computing log-
arithms over GF(p) and its cryptographic significance (corresp.). IEEE
Trans. Inf. Theory 24(1), 106–110 (1978)

[PHGR16] Parno, B., Howell, J., Gentry, C., Raykova, M.: Pinocchio: nearly prac-
tical verifiable computation. Commun. ACM 59(2), 103–112 (2016)

[Sho] Shoup, V.: Number theory library 5.5.2 (NTL) for C++. http://www.
shoup.net/ntl/

[Sto85] Stoss, H.-J.: The complexity of evaluating interpolation polynomials.
Theor. Comput. Sci. 41, 319–323 (1985)

http://www.shoup.net/ntl/
http://www.shoup.net/ntl/

	MiMC: Efficient Encryption and Cryptographic Hashing with Minimal Multiplicative Complexity
	1 Introduction
	2 The MiMC Primitives
	2.1 The Block Cipher
	2.2 The Permutation
	2.3 The Hash Function

	3 Related Designs and Comparison
	3.1 Knudsen-Nyberg Cipher
	3.2 The Pohlig-Hellman Cipher
	3.3 Naor-Reingold PRF
	3.4 Ajtai, SWIFFT, SWIFFTX
	3.5 SPRING
	3.6 Comparison

	4 Design Rationale and Analysis of MiMC
	4.1 Computation Cost Model
	4.2 Security Analysis

	5 Variants
	5.1 MiMC over Prime Fields
	5.2 Larger Keys
	5.3 Different Round Functions

	6 Application and Implementation
	6.1 Verifiable Computation and SNARK
	6.2 Direct Implementation
	6.3 Generic Masking Against Side-Channel Attack

	7 Conclusions
	A SNARK Prover Algorithm
	A.1 Complexity of the Prover Algorithm
	A.2 Parameters for MiMCHash-256

	References

