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Abstract. We present, for the first time, a general strategy for designing
ARX symmetric-key primitives with provable resistance against single-
trail differential and linear cryptanalysis. The latter has been a long
standing open problem in the area of ARX design. The wide-trail design
strategy (WTS), that is at the basis of many S-box based ciphers, includ-
ing the AES, is not suitable for ARX designs due to the lack of S-boxes in
the latter. In this paper we address the mentioned limitation by propos-
ing the long trail design strategy (LTS) – a dual of the WTS that is
applicable (but not limited) to ARX constructions. In contrast to the
WTS, that prescribes the use of small and efficient S-boxes at the expense
of heavy linear layers with strong mixing properties, the LTS advocates
the use of large (ARX-based) S-Boxes together with sparse linear lay-
ers. With the help of the so-called long-trail argument, a designer can
bound the maximum differential and linear probabilities for any number
of rounds of a cipher built according to the LTS.

To illustrate the effectiveness of the new strategy, we propose Sparx –
a family of ARX-based block ciphers designed according to the LTS.
Sparx has 32-bit ARX-based S-boxes and has provable bounds against
differential and linear cryptanalysis. In addition, Sparx is very efficient
on a number of embedded platforms. Its optimized software implemen-
tation ranks in the top 6 of the most software-efficient ciphers along with
Simon, Speck, Chaskey, LEA and RECTANGLE.

As a second contribution we propose another strategy for designing
ARX ciphers with provable properties, that is completely independent
of the LTS. It is motivated by a challenge proposed earlier by Wallén
and uses the differential properties of modular addition to minimize the
maximum differential probability across multiple rounds of a cipher. A
new primitive, called LAX, is designed following those principles. LAX
partly solves the Wallén challenge.
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1 Introduction

ARX, standing for Addition/Rotation/XOR, is a class of symmetric-key algo-
rithms designed using only the following simple operations: modular addition,
bitwise rotation and exclusive-OR. In contrast to S-box-based designs, where the
only non-linear elements are the substitution tables (S-boxes), ARX designs rely
on modular addition as the only source of non-linearity. Notable representatives
of the ARX class include the stream ciphers Salsa20 [1] and ChaCha20 [2], the
SHA-3 finalists Skein [3] and BLAKE [4] as well as several lightweight block
ciphers such as TEA, XTEA [5], etc. Dinu et al. recently reported [6] that the
most efficient software implementations on small processors belonged to ciphers
from the ARX class: Chaskey-cipher [7] by Mouha et al., speck [8] by the Amer-
ican National Security Agency (NSA) and LEA [9] by the South Korean Elec-
tronic and Telecommunications Research Institute.1

For the mentioned algorithms, the choice of using the ARX paradigm was
based on three observations2. First, getting rid of the table look-ups, asso-
ciated with S-Box based designs, increases the resilience against side-channel
attacks. Second, this design strategy minimizes the total number of operations
performed during an encryption, allowing particularly fast software implemen-
tations. Finally, the computer code describing such algorithms is very small,
making this approach especially appealing for lightweight block ciphers where
the memory requirements are the harshest.

Despite the widespread use of ARX ciphers, the following problem has
remained open up until now.

Open Problem. Is it possible to design an ARX cipher that is provably secure
against single-trail differential and linear cryptanalysis by design?

To the best of our knowledge, there has only been one attempt at tackling this
issue. In [10] Biryukov et al. have proposed several ARX constructions for which
it is feasible to compute the exact maximum differential and linear probabilities
over any number of rounds. However, these constructions are limited to 32-bit
blocks. The general case of this problem, addressing any block size, has still
remained without a solution.

More generally, the formal understanding of the cryptographic properties of
ARX is far less satisfying than that of, for example, S-Box-based substitution-
permutation networks (SPN). Indeed, the wide-trail strategy [11] (WTS) and
the wide-trail argument [12] provide a way to design S-box based SPNs with
provable resilience against differential and linear attacks. It relies on bounding
the number of active S-Boxes in a differential (resp. linear) trail and deducing a
lower bound on the best expected differential (resp. linear) probability.

1 Speck and the MAC Chaskey are being considered for standardization by ISO.
2 For Speck, we can only a guess it is the case as the designers have not published

the rationale behind their algorithm.
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Our Contribution. We propose two different strategies to build ARX-based block
ciphers with provable bounds on the maximum expected differential and linear
probabilities, thus providing a solution to the open problem stated above.

The first strategy is called the Long Trail Strategy (LTS). It borrows the idea
of counting the number of active S-Boxes from the wide-trail argument but the
overall principle is actually the opposite to the wide-trail strategy as described
in [11]. While the WTS dictates the spending of most of the computational
resources in the linear layer in order to provide good diffusion between small
S-boxes, the LTS advocates the use of large and comparatively expensive S-Boxes
in conjunction with cheaper and weaker linear layers. We formalize this method
and describe the long-trail argument that can be used to bound the differential
and linear trail probabilities of a block cipher built using this strategy.

Using this framework, we build a family of lightweight block ciphers called
Sparx. All three instances in this family can be entirely specified using only three
operations: addition modulo 216, 16-bit rotations and 16-bit XOR. These ciphers
are, to the best of our knowledge, the first ARX-based block ciphers for which the
probability of both differential and linear trails are bounded. Furthermore, while
one may think that these provable properties imply a performance degradation,
we show that it is not the case. On the contrary, Sparx ciphers have very
competitive performance on lightweight processors. In fact, the most lightweight
version – Sparx-64 is in the top 3 for 16-bit micro-controllers according to the
classification method presented in [6].

Finally, we propose the LAX construction, where bit rotations are replaced
with a more general linear permutation. The bounds on the differential proba-
bility are expressed as a function of the branching number of the linear layer.
We note that the key insight behind this construction has been published in [13],
but its realization has been left as a challenge.

Outline. First, we introduce the notations and concepts used throughout the
paper in Sect. 2. In Sect. 3, we describe how an ARX-based cipher with provable
bounds can be built using an S-Box-based approach and how the method used is
a particular case of the more general Long Trail Strategy. Section 4 contains the
specification of the Sparx family of ciphers, the description of its design rationale
and a discussion about the efficiency of its implementation on microcontrollers.
The LAX structure is presented in Sect. 5. Finally, Sect. 6 concludes the paper.

2 Preliminaries

We use F2 to denote the set {0, 1}. Let f : Fn
2 → F

n
2 , (a, b) ∈ F

n
2 ×F

n
2 and x ∈ F

n
2 .

We denote the probability of the differential trail (a d→ b) by Pr[f(x)⊕f(x⊕a) =
b] and the correlation of the linear approximation (a �→ b) by

(
2 Pr[a · x =

b · f(x)] − 1
)

where y · z is the scalar product of y and z.
In an iterated block cipher, not all differential (respectively linear) trails are

possible. Indeed, they must be coherent with the overall structure of the round
function. For example, it is well known that a 2-round differential trail for the
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AES with less than 4 active S-Boxes is impossible. To capture this notion, we
use the following definition.

Definition 1 (Valid Trail). Let f be an n-bit permutation. A trail a0 → ... →
ar for r rounds of f is a valid trail if Pr[ai → ai+1] > 0 for all i in [0, r − 1].
The set of all valid r-round differential (respectively linear) trails for f is denoted
Vδ(f)r (resp. V�(f)r).

We use the acronyms MEDCP and MELCC to denote resp. maximum
expected differential characteristic probability and maximum expected linear char-
acteristic correlation – a signature introduced earlier in [14]. The MEDCP of
the keyed function fki

: x �→ f(x⊕ki) iterated over r rounds is defined as follows:

MEDCP(fr) = max
(Δ0→...Δr)∈Vδ(f)r

r−1∏

i=0

Pr[Δi
d→ Δi+1],

where Pr[Δi
d→ Δi+1] is the expected value of the differential probability of Δi

d→
Δi+1 for the function fk when k is picked uniformly at random. MELCC(fr) is
defined analogously. Note that MEDCP(fr) and

(
MEDCP(f1)

)r are not equal.
As designers, we thrive to provide upper bounds for both MEDCP(fr) and

MELCC(fr). Doing so allows us to compute the number of rounds f needed
in a block cipher for the probability of all trails to be too low to be usable. In
practice, we want MEDCP(fr) � 2−n and MELCC(fr) � 2−n/2 where n is
the block size.

While this strategy is the best known, the following limitations must be taken
into account by algorithm designers.

1. The quantities MEDCP(fr) and MELCC(fr) are relevant only if we make
the Markov assumption, meaning that the differential and linear probabilities
are independent in each round. This would be true if the subkeys were picked
uniformly and independently at random but, as the master key has a limited
size, it is not the case.

2. These quantities are averages taken over all possible keys: it is not impossible
that there exists a weak key and a differential trail T such that the probability
of T is higher than MEDCP(fr) for this particular key. The same holds for
the linear probability.

3. These quantities deal with unique trails. However, it is possible that several
differential trails share the same input and output differences, thus leading to
a higher probability for said differential transition. This so-called differential
effect can be leveraged to decrease the data complexity of differential attack.
The same holds for linear attacks where several approximations may form a
linear hull.

Still, this type of bound is the best that can be achieved in a generic fashion (to
the best of our knowledge). In particular, this is the type of bound provided by
the wide-trail argument used in the AES.
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3 ARX-Based Substitution-Permutation Network

In this section, we present a general design strategy for building ARX-based
block ciphers borrowing techniques from SPN design. The general idea is to build
a SPN with ARX-based S-boxes instead of with S-boxes based on look-up tables
(LUT). The proofs for the bound on the MEDCP and MELCC are inspired
by the wide-trail argument introduced in the design of the AES [12]. However,
because of the use of large S-Boxes, the method used relies on a different type of
interaction between the linear and non-linear layers. We call the corresponding
design strategy the long trail strategy. It is quite general and could be also applied
in other contexts e.g. for non-arx constructions.

First, we present possible candidates for the ARX-based S-Box and, along
the way, identify the likely reason behind the choice of the rotation constants
in SPECK-32. Then, we describe the long trail strategy in more details. Finally,
we present two different algorithms for computing a bound for the MEDCP
and MELCC of block ciphers built using a LT strategy. We also discuss how to
ensure that the linear layer provides sufficient diffusion.

3.1 ARX-Boxes

Definition 2 (ARX-box). An ARXbox is a permutation on m bits (where m
is much smaller than the block size) which relies entirely on addition, rotation
and XOR to provide both non-linearity and diffusion. An arx-box is a particular
type of S-Box.

Possible constructions for arx-boxes can be found in a recent paper by
Biryukov et al. [10]. A first one is based on the MIX function of Skein [3] and
is called Marx-2. The rotation amounts, namely {1, 2, 7, 3}, were chosen so as
to minimize the differential and linear probabilities. The key addition is done
over the full state. The second construction is called Speckey and consists of
one round of Speck-32 [8] with the key added to the full state instead of only
to half the state as in the original algorithm. The two constructions Marx-2
and Speckey are shown in Fig. 1a and b. The differential and linear bounds
for them are given in Table 1. While it is possible to choose the rotations used
in Speckey in such a way as to slightly decrease the differential and linear
bounds3, such rotations are more expensive on small microcontrollers which only
have instructions implementing rotations by 1 and by 8 (in both directions). We
infer, although we cannot prove it, that the designers of Speck-32 made similar
observations.

3.2 Naive Approaches and Their Limitations

A very simple method to build ARX-based ciphers with provable bounds on
MEDCP and MELCC is to use a SPN structure where the S-boxes are replaced
3 Both can be lowered by a factor of 2 if we choose rotations (9, 2), (9, 5), (11, 7) or

(7, 11) instead of (7, 2).
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Fig. 1. Key addition followed by the candidate 32-bit ARX-boxes, Marx-2 and
Speckey. The branch size is 8 bits for Marx-2, 16 bits for Speckey.

Table 1. Maximum expected differential characteristic probabilities (MEDCP) and
maximum expected absolute linear characteristic correlations (MELCC) of Marx-2
and Speckey (log2 scale); r is the number of rounds.

r 1 2 3 4 5 6 7 8 9 10

Marx-2 MEDCP(Mr) −0 −1 −3 −5 −11 −16 −22 −25 −29 −35
MELCC(Mr) −0 −0 −1 −3 −5 −8 −10 −13 −15 −17

Speckey MEDCP(Sr) −0 −1 −3 −5 −9 −13 −18 −24 −30 −34
MELCC(Sr) −0 −0 −1 −3 −5 −7 −9 −12 −14 −17

by ARX operations for which we can compute the MEDCP and MELCC. This
is indeed the strategy we follow but care must be taken when actually choosing
the ARX-based operations and the linear layer.

Let us for example build a 128-bit block cipher with an S-Box layer consist-
ing in one iteration of Speckey on each 32-bit word and with an MDS linear
layer, say a multiplication with the MixColumns matrix with elements in GF (232)
instead of GF (28). The MEDCP bound of such a cipher, computed using a clas-
sical wide-trail argument, would be equal to 1! Indeed, there exists probability
1 differentials for 1-round Speckey so that, regardless of the number of active
S-Boxes, the bound would remain equal to 1. Such an approach is therefore not
viable.

As the problem identified above stems from the use of 1-round Speckey,
we now replace it with 3-round Speckey where the iterations are interleaved
with the addition of independent round keys. The best linear and differential
probabilities are no longer equal to 1, meaning that it is possible to build a
secure cipher using the same layer as before provided that enough rounds are
used. However, such a cipher would be very inefficient. Indeed, the MDS bound
imposes that 5 arx-boxes are active every 2 rounds, so that the MEDP bound
is equal to p

5r/2
d where r is the number of rounds and pd is the best differential

probability of the arx-box (3-rounds Speckey). To push the bound below 2−128
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we need at least 18 SPN rounds, meaning 54 parallel applications of the basic
arx-round! We will show that, with our alternative approach, we can obtain the
same bounds with much fewer rounds.

3.3 The Long Trail Design Strategy

Informed by the shortcomings of the naive design strategies described in the
previous section, we devised a new method to build ARX-based primitives with
provable linear and differential bounds. It is based on the following observation.

Observation 1 (Impact of Long Trails). Let d(r) and �(r) be the MEDCP
and MELCC of some arx-box iterated r times and interleaved with the addition
of independent subkeys. Then, in most cases:

d(qr) � d(r)q and �(qr) � �(r)q.

In other words, in order to diminish the MEDCP and MELCC of a construc-
tion, it is better to allow long trails of arx-boxes without mixing.

For example, if we look at Speckey, the MEDCP for 3 rounds is 2−3 and
that of 6 rounds is 2−15 which is far smaller than (2−3)2 = 2−6 (see Table 1).
Similarly, the MELCC for 3 rounds is 2−1 and after 6 rounds it is 2−7 � (2−1)2.

In fact, a similar observation has been made by Nikolić when designing the
CAESAR candidate family Tiaoxin [15]. It was later generalized to larger block
sizes in [16], where Jean and Nikolić present, among others, the AES-based A2

⊕
permutation family. It uses a partial S-Box layer where the S-Box consists of
2 AES rounds and a word-oriented linear layer in such a way that some of the
S-Box calls can be chained within 2-round long trails. Thus, they may use the 4-
round bound on the number of active 8-bit AES S-Boxes, which is 25, rather than
twice the 2-round bound, which would be equal to 10 (see Table 2). Their work
on this permutation can be interpreted as a particular case of the observation
above.

Definition 3 (Long Trail). We call Long Trail (LT) an uninterrupted
sequence of calls to an arx-box interleaved with key additions. No difference
can be added into the trail from the outside. Such trails can happen for two
reasons.

1. A Static Long Trail occurs with probability 1 because one output word of the
linear layer is an unchanged copy of one of its input words.

Table 2. Bound on the number of active 8-bit S-Boxes in a differential (or linear) trail
for the AES.

# R 1 2 3 4 5 6 7 8 9 10
# Active S-Boxes 1 5 9 25 26 30 34 50 51 55
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2. A Dynamic Long Trail occurs within a specific differential trail because one
output word of the linear layer consists of the XOR of one of its input words
with a non-zero difference and a function of words with a zero difference. In
this way the output word of the linear layer is again equal to the input word
as in a Static LT, but here this effect has been obtained dynamically.

Definition 4 (Long Trail Strategy). The Long Trail Strategy is a design
guideline: when designing a primitive with a rather weak but large S-Box (say,
an ARX-based permutation), it is better to foster the existence of long trails
rather than to have maximum diffusion in each linear layer.

This design principle has an obvious caveat: although slow, diffusion is nec-
essary! Unlike the WTS, in this context it is better to trade some of the power
of the diffusion layer in favor of facilitating the emergence of long trails.

The long trail strategy is a method for building secure and efficient ciphers
using a large but weak S-Box S such that we can bound the MEDCP (and
MELCC) of several iterations of x �→ S(x ⊕ k) with independent round keys.
In this paper, we focus on the case where S consists of arx operations but this
strategy could have broader applications such as, as briefly discussed above, the
design of block ciphers operating on large blocks using the AES round function
as a building block.

In a way, this design method is the direct opposite of the wide trail strategy
as it is summarized by Daemen and Rijmen in [11] (emphasis ours):

Instead of spending most of the resources on large S-boxes, the wide trail
strategy aims at designing the round transformation(s) such that there are
no trails with a low bundle weight. In ciphers designed by the wide trail
strategy, a relatively large amount of resources is spent in the linear step
to provide high multiple-round diffusion.

The long trail approach minimizes the amount of resources spent in the linear
layer and does spend most of the resources on large S-Boxes. Still, as discussed
in the next section, the method used to bound the MEDCP and MELCC in the
long trail strategy is heavily inspired by the one used in the wide trail strategy.

A Cipher Structure for the LT Strategy. We can build block ciphers based
on the long trail strategy using the following two-level structure. First, we must
choose an S-Box layer operating on w words in parallel. The composition of a
key addition in the full state and the application of this S-Box layer is called a
round. Several rounds are iterated and then a word-oriented linear mixing layer
is applied to ensure diffusion between the words. The composition of r rounds
followed by the linear mixing layer is called a step4, as described in Fig. 2. The
encryption thus consists in iterating such steps. We used this design strategy to
build a block cipher family, Sparx, which we describe in Sect. 4.

4 This terminology is borrowed from the specification of LED [17] which also groups
several calls of the round function into a step.
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Fig. 2. A cipher structure for the LT strategy.

Long Trail-Based Bounds. In what follows we only discuss differential long
trails for the sake of brevity. Linear long trails are treated identically.

Definition 5 (Truncated LT Decomposition). Consider a cipher with a
round function operating on w words. A truncated differential trail is a sequence
of values of {0, 1}w describing whether an S-Box is active at a given round.
The LT Decomposition of a truncated differential trail is obtained by grouping
together the words of the differential trails into long trails and then counting how
many active long trails of each length are present. It is denoted {ti}i≥1 where ti
is equal to the number of truncated long trails with length i.

Example 1. Consider a 64-bit block cipher using a 32-bit S-Box, one round of
Feistel network as its linear layer and 4 steps without a final linear layer. Consider
the differential trail (δL

0 , δR
0 ) → (δL

1 , δR
1 ) → (0, δR

2 ) → (δL
3 , 0) (see Fig. 3 where

the zero difference is dashed). Then this differential trail can be decomposed into
3 long trails represented in black, blue and red: the first one has length 1 and
δR
0 as its input; the second one has length 2 and δL

0 as its input; and the third
one has length 3 and δL

1 as its input so that the LT decomposition of this trail is
{t1 = 1, t2 = 1, t3 = 1}. Using the terminology introduced earlier, the first two
trails are Static LT, while the third one is Dynamic LT.

Theorem 1 (Long Trail Argument). Consider a truncated differential trail
T covering r rounds consisting of an S-Box layer with S-Box S interleaved with
key additions and some linear layer. Let {ti}i≥1 be the LT decomposition of T .
Then the probability pD of any fully specified differential trail fitting in T is
upper-bounded by

pD ≤
∏

i≥1

(
MEDCP(Si)

)ti

where MEDCP(Si) is an upper-bound on the probability of a differential trail
covering i iterations of S.

Proof. Let Δi,s
d→ Δj,s+1 denote any differential trail occurring at the S-Box

level in one step, so that the S-Box with index i at step s sees the transition
Δi,s

d→ Δj,s+1. By definition of a long trail, we have in each long trail a chain of

differential trails Δi0,s0

d→ Δi1,s0+1
d→ ...

d→ Δit,s0+t which, because of the lack
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δL0 δR0
S S

L ⊕
δL1 δR1

L

S S

⊕
0 δR2

L

S S

⊕
δL3 0

S S

Fig. 3. An example of active LT decomposition.

of injection of differences from the outside, is a valid trail for t iterations of the S-
Box. This means that the probability of any differential trail following the same
sequence of S-boxes as in this long trail is upper-bounded by MEDCP(St). We
simply bound the product by the product of the bounds to derive the theorem.�	

3.4 Choosing the Linear Layer: Bounding the MEDCP and MELCC
while Providing Diffusion

In order to remain as general as possible, in this section we do not consider the
details of a specific S-Box but instead we focus on fleshing out design criteria
for the linear layer. All the information for the S-Box that is necessary to follow
the explanation is the MEDCP and MELCC of its r-fold iterations including
the key additions e.g. the data provided in Table 1 for our arx-box candidates.

As the linear layers we consider may be weaker than usual designing spn,
it is also crucial that we ensure that ciphers built using such a linear layer are
not vulnerable to integral attacks [18], in particular those based on the divi-
sion property [19]. Incidentally, this gives us a criteria quantifying the diffusion
provided by several steps of the cipher.

In this section, we propose two methods for bounding the MEDCP and
MELCC of several steps of a block cipher. The first one is applicable to any
linear layer but is relatively inefficient, while the second one works only for a
specific subset of linear layers but is very efficient.

When considering truncated differential trails, it is hard to bound the proba-
bility of the event that differences in two or more words cancel each other in the
linear layer i.e. the event that a Dynamic LT occurs. Therefore, for simplicity
we assume that such cancellations happen for free i.e. with probability 1. Due to
this simplification, we expect our bounds to be higher (i.e. looser) than the tight
bounds. In other words, we underestimate the security of the cipher. Note that
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we also exclude the cases where the full state at some round has zero difference
as the latter is impossible due to the cipher being a permutation.

Algorithms for Bounding MEDCP and MELCC of a Cipher. In this
sub-section we propose generic approaches that do not depend on the number of
rounds per step. In fact, to fully avoid the confusion between rounds and steps
in what follows we shall simply refer to SPN rounds.

One way to bound the MEDCP and MELCC of a cipher is as follows:

1. Enumerate all possible truncated trails composed of active/inactive S-boxes.
2. Find an optimal decomposition of each trail into long trails (LT).
3. Bound the probability of each trail using the product of the MEDCP (resp.

MELCC) of all active long trails i.e. by applying the Long Trail Argument
(see Theorem 1) on the corresponding optimal trail decomposition.

4. The maximum bound over all trails is the final upper bound.

This approach is feasible only for a small number of rounds, because the
number of trails grows exponentially. The algorithm is based on a recursive
dynamic programming approach and has time complexity O(wr2), where w is
the number of S-Boxes applied in parallel in each S-Box layer and r is the number
of rounds.

As noted, the most complicated step in the above procedure is finding an opti-
mal decomposition of a given truncated trail into long trails. The difficulty arises
from the so-called branching: situation in which a long trail may be extended in
more than one way. Recall that our definition of LT (cf. Definition 3) relies on
the fact that there is no linear transformation on a path between two S-Boxes in
a LT. The only transformations allowed are some XORs. Therefore, branching
happens only when some output word of the linear layer receives two or more
active input words without modifications. In order to cut off the branching effect
(and thus to make finding the optimal decomposition of a LT feasible), we can
put some additional linear functions that will modify the contribution of (some
of) the input words. Equivalently, when choosing a linear layer we simply do
not consider layers which cause branching of LTs. As we will show later, this
restriction has many advantages.

To simplify our study of the linear layer, we introduce a matrix representation
for it. In a block cipher operating on w words, a linear layer may be expressed
as a w × w block matrix. We will denote zero and identity sub-matrices by
0 and 1 respectively and an unspecified (arbitrary) sub-matrices by L. This
information is sufficient for analyzing the high-level structure of a cipher. Using
this notation, the linear layers to which we restrict our analysis have matrices
where each column has at most one 1.

For the special subset of linear layers outlined above, we present an algorithm
for obtaining MEDCP and MELCC bounds, that is based on a dynamic pro-
gramming approach. Since there is no LT branching, any truncated trail consists
of disjoint sequences of active S-Boxes. By Observation 1, we can treat each such
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sequence as a LT to obtain an optimal decomposition. Because of this simpli-
fication, we can avoid enumerating all trails by grouping them in a particular
way.

We proceed round by round and maintain a set of best trails up to an equiv-
alence relation, which is defined as follows. For all S-Boxes at the current last
round s, we assign a number, which is equal to the length of the LT that covers
this S-Box, or zero if the S-Box is not active. We say that two truncated trails for
s steps are equivalent if the tuples consisting of those numbers (current round
s and length of LT) are the same for both trails. This equivalence captures the
possibility to replace some prefix of a trail by an equivalent one without breaking
the validity of the trail or its LT decomposition. The total probability, however,
can change. The key observation here is that from two equivalent trails we can
keep only the one with the highest current probability. Indeed, if the optimal
truncated trail for all r rounds is an extension of the trail for s rounds with lower
probability, we can take the first s rounds from the trail with higher probabil-
ity without breaking anything and obtain a better trail, which contradicts the
assumed optimality.

Due to page limit constraints, the pseudo-code for the algorithm is given in
the full version of this paper [20].

This algorithm can be used to bound the probability of linear trails. Propaga-
tion of a linear mask through some linear layer can be described by multiplying
the mask by the transposed inverse of the linear layer’s matrix. In our matrix
notation we can easily transpose the matrix but inversion is harder. However, we
can build the linear trails bottom-up (i.e. starting from the last round): in this
case we need only the transposed initial matrix. Our algorithm does not depend
on the direction, so we obtain bounds on linear trails probabilities by running
the algorithm on the transposed matrix using the linear bounds for the iterated
S-box.

Ensuring Resilience Against Integral Attacks. As illustrated by the struc-
tural attack against SASAS and a recent generalization [21] to ciphers with more
rounds, a spn with few rounds may be vulnerable to integral attacks. This attack
strategy has been further improved by Todo [19] who proposed the so-called divi-
sion property as a means to track which bit should be fixed in the input to have
a balanced output. He also described an algorithm allowing an attacker to easily
find such distinguishers.

We implemented this algorithm to search for division-property-based integral
trails covering as many rounds as possible. With it, for each matrix candidate
we compute a maximum number of rounds covered by such a distinguisher. This
quantity can then be used by the designer of the primitive to see if the level of
protection provided against this type of attack is sufficient or not.

Tracking the evolution of the division property through the linear layer
requires special care. In order to do this, we first make a copy of each word
and apply the required XORs from the copy to the original words. Due to such
state expansion, the algorithm requires both a lot of memory and time. In fact,
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it is even infeasible to apply on some matrices. To overcome this issue, we ran
the algorithm with reduced word size. During our experiments, we observed that
such an optimization may only result in longer integral characteristics and that
this side effect occurs only for very small word sizes (4 or 5 bits). In light of this,
we conjecture that the values obtained in these particular cases are upper bounds
and are very close to the values which could be obtained without reducing the
word size.

4 The SPARX Family of Ciphers

In this Section, we describe a family of block ciphers built using the framework
laid out in the previous section. The instance with block size n and key size k is
denoted Sparx-n/k.

4.1 High Level View

The plaintexts and ciphertexts consist of w = n/32 words of 32 bits each and
the key is divided into v = k/32 such words. The encryption consists of ns steps,
each composed of an arx-box layer of ra rounds and a linear mixing layer. In the
arx-box layer, each word of the internal state undergoes ra rounds of Speckey,
including key additions. The v words in the key state are updated once ra arx-
boxes have been applied to one word of the internal state. The linear layers λw

for w = 2, 4 provide linear mixing for the w words of the internal state.
This structure is summarized by the pseudo-code in Algorithm 1. The struc-

ture of one round is represented in Fig. 4, where A is the 32-bit arx-box con-
sisting in one unkeyed Speck-32 round. We also use Aa to denote a rounds of
Speckey with the corresponding key additions (see Fig. 5a).

The different versions of Sparx all share the same definition of A. However,
the permutations λw and Kv depend on the block and key sizes. The different
members of the Sparx-family are specified below. The round keys can either be
derived on the fly by applying Kv on the key state during encryption or they can
be precomputed and stored. The first option requires less RAM, while the second
is faster. The only operations needed to implement any instance of Sparx are:

Fig. 4. A high level view of step s of Sparx.



Design Strategies for ARX with Provable Bounds: Sparx and LAX 497

Algorithm 1. Sparx encryption
Inputs plaintext (x0, ..., xw−1); key (k0, ..., kv−1)
Output ciphertext (y0, ..., yw−1)

Let yi ← xi for all i ∈ [0, ..., w − 1]
for all s ∈ [0, ns − 1] do

for all i ∈ [0, w − 1] do
for all r ∈ [0, ra − 1] do

yi ← yi ⊕ kr

yi ← A(yi)
end for
(k0, ..., kv−1) ← Kv

(
(k0, ..., kv−1)

)
� Update key state

end for
(y0, ..., yw−1) ← λw

(
(y0, ..., yw−1)

)
� Linear mixing layer

end for
Let yi ← yi ⊕ ki for all i ∈ [0, ..., w − 1] � Final key addition
return (y0, ..., yw−1)

– addition modulo 216, denoted �,
– 16-bit exclusive-or (XOR), denoted ⊕, and
– 16-bit rotation to the left or right by i, denoted respectively x ≪ i and x ≫ i.

We claim that no attack using less than 2k operations exists against Sparx-n/k
in neither the single-key nor in the related-key setting. We also faithfully declare
that we have not hidden any weakness in these ciphers. Sparx is free for use
and its source code is available in the public domain5.

4.2 Specification

Table 3 summarizes the different Sparx instances and their parameters. The
quantity minsecure(ns) corresponds to the minimum number of steps for which
we can prove that the MEDCP is below 2−n, that the MELCC is below 2−n/2

for the number of rounds per step chosen and for which we cannot find integral
distinguishers covering this amount of steps.

SPARX-64/128. The lightest instance of Sparx is Sparx-64/128. It operates
on two words of 32 bits and uses a 128-bit key. There are 8 steps and 3 rounds
per step. As it takes 5 steps to achieve provable security against linear and
differential attacks, our security margin is at least equal to 37% of the rounds.
Furthermore, while our long trail argument proves that 5 steps are sufficient to
ensure that there are no single-trail differential and linear distinguishers, we do
not expect this bound to be tight.

The linear layer λ2 simply consists of a Feistel round using L as a Feistel func-
tion. The general structure of a step of Sparx-64/128 is provided in Fig. 5b. The

5 See https://www.cryptolux.org/index.php/SPARX.

https://www.cryptolux.org/index.php/SPARX
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Table 3. The different Sparx instances.

Sparx-64/128 Sparx-128/128 Sparx-128/256

# State words w 2 4 4
# Key words v 4 4 8
# Rounds/Step ra 3 4 4
# Steps ns 8 8 10
Best Attack (# rounds) 15/24 22/32 24/40
minsecure(ns) 5 5 5

Fig. 5. A high level view of Sparx-64/128. Branches have a width of 16 bits (except
for the keys in the step structure).

128-bit permutation used in the key schedule has a simple definition summarized
in Fig. 6, where the counter r is initialized to 0. It corresponds to the pseudo
code given in Algorithm 2, where (z)L and (z)R are the 16-bit left and right
halves of the 32-bit word z.

The L function is borrowed from Noekeon [22] and can be defined using
16- or 32-bit rotations. It is defined as a Lai-Massey structure mapping a 32-bit
value x||y to x ⊕ (

(x ⊕ y) ≪ 8
)||y ⊕ (

(x ⊕ y) ≪ 8
)
. Alternatively, it can be

seen as a mapping of a 32-bit value z to z ⊕ (z ≪32 8) ⊕ (z ≫32 8) where the
rotations are over 32 bits.

k0 k1 k2 k3

A r + 1

Fig. 6. K64
4 (used in Sparx-64/128).

r ← r + 1
k0 ← A(k0)
(k1)L ← (k1)L + (k0)L mod 216
(k1)R ← (k1)R + (k0)R mod 216
(k3)R ← (k3)R + r mod 216
k0, k1, k2, k3 ← k3, k0, k1, k2

Algorithm 2. Pseudo-code of K64
4
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SPARX-128/128 and SPARX-128/256. For use cases in which a larger block
size can be afforded, we provide Sparx instances with a 128-bit block size and
128- or 256-bit keys. They share an identical step structure which is fairly similar
to Sparx-64/128. Indeed, the linear layer relies again on a Feistel function except
that L is replaced by L′, a permutation of {0, 1}64. Both Sparx-128/128 and
Sparx-128/256 use 4 rounds per step but the first uses 8 steps while the last
uses 10.

Fig. 7. The step structure of both Sparx-128/128 and Sparx-128/256.

Fig. 8. The 128-bit permutation K128
4

used in Sparx-128/128.

r ← r + 1
k0 ← A(k0)
(k1)L ← (k1)L + (k0)L mod 216

(k1)R ← (k1)R + (k0)R mod 216

k2 ← A(k2)
(k3)L ← (k3)L + (k2)L mod 216

(k3)R ← (k3)R + (k2)R + r mod 216

k0, k1, k2, k3 ← k3, k0, k1, k2

Algorithm 3. Pseudo-code of K128
4

The Feistel function L′ can be defined as follows. Let a||b||c||d be a 64-bit
word where each a, ..., d is 16-bit long. Let t = (a ⊕ b ⊕ c ⊕ d) ≪ 8. Then
L′(a||b||c||d) = c⊕t || b⊕t || a⊕t || d⊕t. This function can also be expressed using
32-bit rotations. Let x||y be the concatenation of two 32-bit words and L′

b denote
L′ without its final branch swap. Let t =

(
(x ⊕ y) ≫32 8

) ⊕ (
(x ⊕ y) ≪32 8

)
,

then L′
b(x||y) = x ⊕ t||y ⊕ t. Alternatively, we can use L to compute L′

b as
follows: L′

b(x||y) = y ⊕ L(x ⊕ y)||x ⊕ L(x ⊕ y).
These two ciphers, Sparx-128/128 and Sparx-128/256, differ only by their

number of steps and by their key schedule. The key schedule of Sparx-128/128
needs a 128-bit permutation K128

4 described in Fig. 8 and Algorithm 3 while
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Fig. 9. The 256-bit permutation K256
8 used in Sparx-128/256.

Algorithm 4. Sparx-128/256 key schedule permutation K256
8 .

r ← r + 1
k0 ← A(k0)
(k1)L ← (k1)L + (k0)L mod 216

(k1)R ← (k1)R + (k0)R mod 216

k4 ← A(k4)
(k5)L ← (k5)L + (k4)L mod 216

(k5)R ← (k5)R + (k4)R + r mod 216

k0, k1, k2, k3, k4, k5, k6, k7 ← k5, k6, k7, k0, k1, k2, k3, k4

Sparx-128/256 uses a 256-bit permutation K256
4 , which is presented in both

Fig. 9 and Algorithm 4.

4.3 Design Rationale

Choosing the ARX-box. We chose the round function of Speckey/Speck-
32 over Marx-2 because of its superior implementation properties. Indeed, its
smaller total number of operations means that a cipher using it needs to do
fewer operations when implemented on a 16-bit platform. Ideally, we would have
used an arx-box with 32-bit operations but, at the time of writing, no such
function has known differential and linear bounds (cf. Table 1) for sufficiently
many rounds.

We chose to evaluate the iterations of the arx-box over each branch rather
than in parallel because such an order decreases the number of times each 32-
bit branch must be loaded in CPU registers. This matters when the number of
registers is too small to contain both the full key and the full internal state of
the cipher and does not change anything if it is not the case.

Mixing Layer, Number of Steps and Rounds per Step. Our main app-
roach for choosing the mixing layer was exhaustive enumeration of all matrices
suitable for our long trail bounding algorithm from Sect. 3.4 and selecting the
final matrix according to various criteria, which we will discuss later.
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For Sparx-64/128, there is only one linear layer fulfilling our design criteria:
one corresponding to a Feistel round. For such a structure, we found that the best
integral covers 4 steps (without the last linear layer) and that, with 3 rounds
per step, the MEDCP and MELCC are bounded by 2−75 and 2−38. These
quantities imply that no single trail differential or linear distinguisher exists for
5 or more steps of Sparx-64/128.

For Sparx instances with 128-bit block we implemented an exhaustive search
on a large subset of all possible linear layers. After some filtering, we arrived at
roughly 3000 matrices. For each matrix we ran our algorithm from Sect. 3.4 to
obtain bounds on MEDCP and MELCC for different values of the number of
rounds per step (ra). We also ran the algorithm for searching integral character-
istics described in Sect. 3.4.

Then, we analyzed the best matrices and found that there is a matrix which
corresponds to a Feistel-like linear layer with the best differential/linear bound
for ra = 4. This choice also offered good compromise between other parameters,
such as diffusion, strength of the ARX-box, simplicity and easiness/efficiency of
implementation. It also generalizes elegantly the linear layer of Sparx-64/128.
We thus settled for this Feistel-like function.

For more details on the selection procedure and other interesting candidates
for the linear layer we refer the reader to the full version of this paper [20].

The Linear Feistel Functions. The linear layer obtained using the steps
described above is only specified at a high level, it remains to define the linear
Feistel functions L and L′. The function L that we have chosen has been used
in the Lai-Massey round constituting the linear layer of Noekeon [22]. We
reuse it here because it is cheap on lightweight processors as it only necessitates
one rotation by 8 bits and 3 XORs. It also provides some diffusion as it has
branching number 3. Its alternative representation using 32-bit rotations allows
an optimized implementation on 32-bit processors.

Used for a larger block size, the Feistel function L′ is a generalization of
L: it also relies on a Lai-Massey structure as well as a rotation by 8 bits. The
reason behind these choices are the same as before: efficiency and diffusion.
Furthermore, L′ must also provide diffusion between the branches. While this is
achieved by the XORs, we further added a branch swap in the bits of highest
weight. This ensures that if only one 32-bit branch is active at the input of L′ then
two branches are active in its output. Indeed, there are two possibilities: either
the output of the rotation is non-zero, in which case it gets added to the other
branch and spreads to the whole state through the branch swap. Otherwise, the
output is equal to 0, which means that the two 16-bit branches constituting the
non-zero 32-bit branch hold the same non-zero value. These will then be spread
over the two output 32-bit branches by the branch swap. The permutation L′

also breaks the 32-bit word structure, which can help prevent the spread of
integral patterns.
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Key Schedule. The key schedules of the different versions of Sparx have been
designed using the following general guidelines.

First, we look at criteria related to the implementation. To limit code size,
components from the round function of Sparx are re-used in the key-schedule
itself. To accommodate cases where the memory requirements are particularly
stringent, we allow an efficient on-the-fly computation of the key.

We also consider cryptographic criteria. For example, we need to ensure that
the keys used within each chain of 3 or 4 arx-boxes are independent from one
another. As we do not have enough entropy from the master key to generate
truly independent round keys, we must also ensure that the round-keys are as
different as possible from one another. This implies a fast mixing of the master
key bits in the key schedule. Furthermore, in order to prevent slide attacks [23],
we chose to have the round keys depend on the round index. Finally, since the
subkeys are XOR-ed in the key state, we want to limit the presence of high
probability differential pattern in the key update. Diffusion in the key state is
thus provided by additions modulo 216 rather than exclusive-or. While there
may be high probability patterns for additive differences, these would be of little
use because the key is added by an XOR to the state.

As with most engineering tasks, some of these requirements are at odds
against each other. For example, it is impossible to provide extremely fast diffu-
sion while also being extremely lightweight. Our designs are the most satisfying
compromises we could find.

4.4 Security Analysis

Single Trail Differential/Linear Attack. By design and thanks to the long
trail argument, we know that there is no differential or linear trail covering 5
steps (or more) with a useful probability for any instance of Sparx. Therefore,
the 8 steps used by Sparx-64/128 and Sparx-128/128 and the 10 used by
Sparx-128/256 are sufficient to ensure resilience against such attacks.

Attacks Exploiting a Slow Diffusion. We consider several attacks in this
category, namely impossible and truncated differential attacks, meet-in-the mid-
dle attacks as well as integral attacks.

When we chose the linear layers, we ensured that they prevented division-
property-based integral attacks, meaning that they provide good diffusion. Fur-
thermore, the Feistel structure of the linear layer makes it easy to analyse and
increases our confidence in our designs. In the case of 128-bit block sizes, the
Feistel function L′ has branching number 3 in the sense that if only one 32-bit
branch is active then the two output branches are active. This prevents attacks
trying to exploit patterns at the branch level. Finally, this Feistel function also
breaks the 32-bit word structure through a 16-bit branch swap which frustrates
the propagation of integral characteristics.
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Meet-in-the-middle attacks are further hindered by the large number of key
additions. This liberal use of the key material also makes it harder for an attacker
to guess parts of it to add rounds at the top or at the bottom of, say, a differential
characteristic.

Best Attacks. The best attacks we could find are integral attacks based on
Todo’s division property. The attack against Sparx-64/128 covers 15/24 rounds
and recovers the key in time 2101 using 237 chosen plaintexts and 264 blocks
of memory. For 22-round Sparx-128/128, we can recover the key in time 2105

using 2102 chosen plaintexts and 272 blocks of memory. Finally, we attack 24-
round Sparx-128/256 in time 2233, using 2104 chosen plaintexts and 2202 blocks
of memory. A description of these attacks as well as the description of some
time/data tradeoffs are provided in the full version of this paper [20].

4.5 Software Implementation

Next we describe how Sparx can be efficiently implemented on three resource
constrained microcontrollers widely used in the Internet of Things (IoT), namely
the 8-bit Atmel ATmega128, the 16-bit TI MSP430, and the 32-bit ARM Cortex-
M3. We support the described optimization strategies with performance figures
extracted from assembly implementations of Sparx-64/128 and Sparx-128/128
using the FELICS open-source benchmarking framework [24]. We use the same
tool to get the most suitable implementations of Sparx for the two IoT-specific
usage scenarios described in [6]. The first scenario uses a block cipher to encrypt
128 bytes of data using CBC mode, while the second encrypts 128 bits of data
using a cipher in CTR mode. The most suitable implementation for a given usage
scenario is selected using the Figure of Merit (FOM) defined in [6]:

FOM(i1, i2, i3) =
pi1,AV R + pi2,MSP + pi3,ARM

3
,

where the performance parameter pi,d aggregates the code size, the RAM con-
sumption, and the execution time for implementation i according to the require-
ments of the usage scenario. The smaller the FOM value of an implementation
in a certain use case, the better (more suitable) is the implementation for that
particular use case. Finally, we compare the results of our implementations with
the results available on the tool’s website.6

Implementation Aspects. In order to efficiently implement Sparx on a
resource constrained embedded processor, it is important to have a good under-
standing of its instruction set architecture (ISA). The number of general-purpose
registers determines whether the entire cipher’s state can be fitted into registers

6 We submitted our implementations of Sparx to the FELICS framework. Up to date
results are available at https://www.cryptolux.org/index.php/FELICS.

https://www.cryptolux.org/index.php/FELICS
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Table 4. Performance characteristics of the main components of Sparx

Component AVR MSP ARM
Cycles Registers Cycles Registers Cycles Registers

A 16 4 + 1 9 2 11 1 + 3
A−1 19 4 9 2 12 1 + 3
λ2 – 1-step 24 8 + 1 11 4 + 3 5 2 + 1
λ2 – 2-steps 12 8 7 4 + 1 3 2
λ4 – 1-step 48 16 + 2 36 8 + 1 16 4 + 5
λ4 – 2-steps 24 16 + 2 13 8 + 1 12 4 + 4

or whether a part of it has to be spilled to RAM. Memory operations are gen-
erally slower than register operations, consume more energy and increase the
vulnerability of an implementation to side channel attacks [25]. Thus, the num-
ber of memory operations should be reduced as much as possible. Ideally the
state should only be read from memory at the beginning of the cryptographic
operation and written back at the end. Concerning the three targets we imple-
mented Sparx for, they have 32 8-bit, 12 16-bit, and 13 32-bit general-purpose
registers, which result in a total capacity of 256 bytes, 192 bytes, and 416 bytes
for AVR, MSP, and ARM, respectively.

The Sparx family’s simple structure consists only of three components: the
arx-box A and its inverse A−1, the linear layer λ2 or λ4 (depending on the
version), and the key addition. The key addition (bitwise XOR) does not require
additional registers and its execution time is proportional to the ratio between
the operand width and the target device’s register width. The execution time in
cycles and the number of registers required to perform A, A−1, λ2, and λ4 on
each target device are given in Table 4.

The costly operation in terms of both execution time and number of required
registers is the linear layer. The critical point is reached for the 128-bit linear
layer λ4 on MSP, which requires 13 registers. Since this requirement is above
the number of available registers, a part of the state has to be saved onto the
stack. Consequently, the execution time increases by 5 cycles for each push –
pop instruction pair.

A 2-step implementation uses a simplified linear layer without the most
resource demanding part – the branch swaps. It processes the result of the left
branch after the first step as the right branch of the second step and similarly
the result of the right branch after the first step as the left branch of the second
step. This technique reduces the number of required registers and improves the
execution time at the cost of an increase in code size. The performance gain is
a factor of 2 on AVR, 2.7 on MSP, and 1.3 on ARM.

The linear transformations L and L′ exhibit interesting implementation prop-
erties. For each platform there is a different optimal way to perform them. The
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Table 5. Different trade-offs between the execution time and code size for encryption
of a block using Sparx-64/128 and Sparx-128/128. Minimal values are given in bold.

Implementation Block size [bits] AVR MSP ARM

Time Code RAM Time Code RAM Time Code RAM

[cyc.] [B] [B] [cyc.] [B] [B] [cyc.] [B] [B]

1-step rolled 64 1789 248 2 1088 166 14 1370 176 28

1-step unrolled 64 1641 424 1 907 250 12 1100 348 24

2-steps rolled 64 1677 356 2 1034 232 10 1331 304 28

2-steps unrolled 64 1529 712 1 853 404 8 932 644 24

1-step rolled 128 4553 504 11 2809 300 26 3463 348 44

1-step unrolled 128 4165 1052 10 2353 584 24 2784 884 40

2-steps rolled 128 4345 720 11 2593 432 18 3399 620 40

2-steps unrolled 128 3957 1820 10 2157 1004 16 2377 1692 36

optimal way to implement the linear layers on MSP is using the representations
from Figs. 5c and 7b. On ARM the optimal implementation performs the rota-
tions directly on 32-bit values. The function L can be executed on AVR using
12 XOR instructions and no additional registers. On the other hand, the opti-
mal implementation of L′ on AVR requires 2 additional registers and takes 24
cycles.7

The linear layer performed after the last step of Sparx can be dropped
without affecting the security of the cipher, but it turns out that it results in
poorer overall performances. The only case when this strategy helps is when top
execution time is the main and only concern of an implementation. Thus we
preferred to keep the symmetry of the step function and the overall balanced
performance figures.

The salient implementation-related feature of Sparx family of ciphers is
given by the simple and flexible structure of the step function depicted in Fig. 4,
which can be implemented using different optimization strategies. Depending on
specific constraints, such as code size, speed, or energy requirements to name a
few, the rounds inside the step function can be rolled or unrolled; one or two
step functions can be computed at once. The main possible trade-offs between
the execution time and code size are explored in Table 5.

Except for the 1-step implementation of Sparx-128/128 on MSP, which
needs RAM memory to save the cipher’s state, all other RAM requirements
are determined only by the process of saving the context onto the stack at
the begging of the measured function. Thus, the RAM consumption of a pure
assembly implementation would be zero, except for the 1-step rolled and unrolled
implementations of Sparx-128/128 on MSP.

Due to the 16-bit nature of the cipher, performing A and A−1 on a 32-bit
platform requires a little bit more execution time and more auxiliary registers
than performing the same operations on a 16-bit platform. The process of packing

7 For more details please see the implementations submitted to the FELICS framework
(https://www.cryptolux.org/index.php/FELICS).

https://www.cryptolux.org/index.php/FELICS
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and unpacking a state register to extract and store back the two 16-bit branches
of A or A−1 adds a performance penalty. The cost is amplified by the fact that
the flexible second operand can not be used with a constant to extract the least or
most significant 16 bits of a 32-bit register. Thus an additional masking register
is required.

The simple key schedules of Sparx-64/128 and Sparx-128/128 can be imple-
mented in different ways. The most efficient implementation turns out to be the
one using the 1-iteration rolled strategy. Another interesting approach is the 4-
iterations unrolled strategy, which has the benefit that the final permutation is
achieved for free by changing the order in which the registers are stored in the
round keys. This strategy increases the code size by up to a factor of 4, while
the execution time is on average 25 % better.

Although we do not provide performance figures for Sparx-128/256, we
emphasize that the only differences with respect to implementation aspects
between Sparx-128/256 and Sparx-128/128 are the key schedules and the dif-
ferent number of steps.

Evaluation and Comparison. We evaluate the performance of our imple-
mentations of Sparx using FELICS in the two aforementioned usage scenarios.
The key performance figures are given in the full version of this paper [20]. The
balanced results are achieved using the 1-step implementations of Sparx-64/128
and Sparx-128/128.

Table 6. Top 10 best implementations in Scenario 1 (encryption key schedule + encryp-
tion and decryption of 128 bytes of data using CBC mode) ranked by the Figure of
Merit (FOM) defined in FELICS. The results for all ciphers are the current ones from
the Triathlon Competition at the moment of submission. The smaller the FOM, the
better the implementation.

Rank Cipher Block size Key size Scenario 1
FOM

1 Speck 64 128 5.0
2 Chaskey-LTS 128 128 5.0
3 Simon 64 128 6.9
4 RECTANGLE 64 128 7.8
5 LEA 128 128 8.0
6 SPARX 64 128 8.6

7 SPARX 128 128 12.9

8 HIGHT 64 128 14.1
9 AES 128 128 15.3
10 Fantomas 128 128 17.2
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Then we compare the performance of Sparx with the current results avail-
able on the Triathlon Competition at the time of submission.8 As can be seen
in Table 6 the two instances of Sparx perform very well across all platforms
and rank very high in the FOM-based ranking. The forerunners are the NSA
designs Simon and Speck, Chaskey, RECTANGLE and LEA, but, apart from
RECTANGLE, none of them provides provable bounds against differential and
linear cryptanalysis.

Besides the overall good performance figures in the two usage scenarios, the
following results are worth mentioning:

– the execution time of Sparx-64/128 on MSP is in the top 3 of the fastest
ciphers in both scenarios thanks to its 16-bit oriented operations;

– the code size of the 1-step rolled implementations of Sparx-64/128 and
Sparx-128/128 on MSP is in the top 5 in both scenarios as well as in the
small code size and RAM table for scenario 2;

– the 1-step rolled implementation of Sparx-64/128 breaks the previous mini-
mum RAM consumption record on AVR in scenario 2;

– the execution time of the 2-steps implementation of Sparx-64/128 in scenario
2 is in the top 3 on MSP, in the top 5 on AVR, and in the top 7 on ARM;
it also breaks the previous minimum RAM consumption records on AVR and
MSP.

Given its simple and flexible structure as well as its very good overall rank-
ing in the Triathlon Competition of lightweight block ciphers, the Sparx family
of lightweight ciphers is suitable for applications on a wide range of resource
constrained devices. The absence of look-up tables reduces the memory require-
ments and provides, according to [25], some intrinsic resistance against power
analysis attacks.

5 Replacing Rotations with Linear Layers: The LAX
Construction

In this section we outline an alternative strategy for designing an ARX cipher
with provable bounds against differential and linear cryptanalysis. It is com-
pletely independent from the Long Trail Strategy outlined in the previous sec-
tions and uses the differential properties of modular addition to derive proofs of
security.

5.1 Motivation

In his Master thesis [13] Wallén posed the challenge to design a cipher that uses
only addition modulo-2 and GF(2)-affine functions, and that is provably resis-
tant against differential and linear cryptanalysis [13, Sect. 5]. In this section we
partially solve this challenge by proposing a construction with provable bounds
against single-trail differential cryptanalysis (DC).
8 Up to date results are available at https://www.cryptolux.org/index.php/FELICS.

https://www.cryptolux.org/index.php/FELICS
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5.2 Theoretical Background

Definition 6 (xdp+). The XOR differential probability (DP) of addition modulo
2n is defined as:

xdp+(α, β → γ) = 2−2n · #{(x, y) : ((x ⊕ α) + (y ⊕ β)) ⊕ (x + y) = γ} ,

where α, β and γ are n-bit XOR differences and x and y are n-bit values.

The XOR linear correlation of addition modulo 2n (xlc+) is defined in a sim-
ilar way. Efficient algorithms for the computation of xdp+ and xlc+ have been
proposed resp. in [26–29]. These results also reveal the following property. The
magnitude of both xdp+ and |xlc+| is inversely proportional to the number of bit
positions at which the input/output differences (resp. masks) differ. For xdp+,
this fact is formally stated in the form of the following proposition.

Proposition 1 (Bound on xdp+). The differential probability xdp+ is upper-
bounded by 2−k, where k is the number of bit positions, excluding the MSB, at
which the bits of the differences are not equal:

xdp+(α, β → γ) ≤ 2−k : k = #{i : ¬(α[i] = β[i] = γ[i]), 0 ≤ i ≤ w − 2}

Proof. Follows from [26, Alg. 2, Sect. 4].

A similar proposition also holds for |xlc+| (see e.g. [10]). Proposition 1 pro-
vides the basis of the design strategy described in the following section.

5.3 The LAX Construction

LAX is a block cipher construction with 2n-bit block and n-bit words. We
investigate three instances of LAX designated by the block size: LAX-16, LAX-
32 and LAX-64. A brief description of the round function of LAX-2n, shown in
Fig. 10 (left), is given below.

Let L be an n × n binary matrix that is (a) invertible and (b) has branch
number d > 2. With �(x) is denoted the multiplication of the n-bit vector x

xL xR

LL

yL yR

αi−2 βi−2

γi−2

LL

αi−1 βi−1

γi−1

LL

αi βi

γi

LL

Fig. 10. Left: the round function of LAX; Right: three round differential of LAX.
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by the matrix L: �(x) = Lx. Note that due to condition (b) it follows that
∀x �= 0 : h(x) + h(�(x)) ≥ d, where h(x) is the Hamming weight of x.

The round function A(·) of LAX-2n maps a pair of n-bit words (xL, xR) to
a pair of n-bit words (yL, yR) as follows (see Fig. 10 (left)):

(yL, yR) = A(xL, xR) = (�(xR), �(xL � xR)) .

The matrix L is chosen as the non-identity part of the generator matrix G
of a systematic [2n, n, d] linear code over GF(2) such that G = [I L]. More
specifically, the matrices L for LAX-16, LAX-32 and LAX-64 are derived from
the following codes respectively: [16, 8, 5], [32, 16, 8] and [64, 32, 10]. Note that
the matrix of LAX-32 is the same as the one used in block cipher ARIA [30].

5.4 Bounds on the Differential Probability of LAX

Lemma 1. For all differences α �= 0, the differential (α, α → α) is impossible.

Proof. Let xdp+(α, β → γ) �= 0 for some differences α, β and γ. The statement of
the lemma follows from the following two properties of xdp+ [26]. First, it must
hold that α[0]⊕β[0]⊕γ[0] = 0. Second, if α[i] = β[i] = γ[i] for some 0 ≤ i ≤ n−2,
then it must hold that α[i + 1] ⊕ β[i + 1] ⊕ γ[i + 1] = α[i]. Since we want that
α = β = γ, from the first property it follows that α[0] = β[0] = γ[0] = 0. Given
that, due to the second property it follows that α[i] = β[i] = γ[i] = 0, ∀i ≥ 1.
Therefore the only value of α for which xdp+(α, β → γ) �= 0 and α = β = γ is
α = 0. �	
Theorem 2 (Differential bound on 3 rounds of LAX-2n). The maximum
differential probability of any trail on 3 rounds of LAX-2n is 2−(d−2), where d
is the branch number of the matrix L.

Proof. Let (αi−1, βi−1, γi−1), (αi, βi, γi) and (αi+1, βi+1, γi+1) be the input/out-
put differences of the addition operations in three consecutive rounds of LAX-
2n and let pk = xdp+(αk, βk → γk) for k ∈ {i − 1, i, i + 1} (see Fig. 10
(right)). We have to show that pi−1pipi+1 ≤ 2−(d−2) or, equivalently, that
log2 pi−1 +log2 pi +log2 pi+1 ≤ −(d−2). Denote with h(x) the Hamming weight
of the word x and with h∗(x) the Hamming weight of x, excluding the MSB.
Note that h∗(x) ≤ h(x) − 1. We consider two cases:

Case 1: βi−1 �= γi−1. By Proposition 1 we have that log2 pi−1 ≤ −h∗(βi−1 ⊕
γi−1) and log2 pi ≤ −h∗(αi ⊕ βi). Since βi = �(γi−1) and αi = �(βi−1) (see
Fig. 10 (right)) and using the linearity of �(·) we have that −h∗(αi ⊕ βi) =
−h∗(�(βi−1 ⊕ γi−1)). As βi−1 �= γi−1 it follows that h∗(βi−1 ⊕ γi−1) �= 0 and
h∗(�(βi−1 ⊕ γi−1)) �= 0. Thus we derive:

log2 pi−1 + log2 pi ≤ −h∗(βi−1 ⊕ γi−1) − h∗(�(βi−1 ⊕ γi−1)).

From the properties of L it follows that −h(βi−1⊕γi−1)−h(�(βi−1⊕γi−1)) ≤ −d
and so −h∗(βi−1 ⊕ γi−1) − h∗(�(βi−1 ⊕ γi−1)) ≤ −(d − 2). Therefore:

log2 pi−1 + log2 pi ≤ −(d − 2).
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Case 2: βi−1 = γi−1 �= 0. In this case αi = βi = �(βi−1) = �(γi−1). Due to
Lemma 1 it follows that γi �= βi. Therefore we can apply the argument from
Case 1 on rounds i and i + 1 to derive the statement of the theorem in this
case. �	

5.5 Experimental Results

We have implemented the search algorithm proposed in [10] in order to find the
probabilities of the best differential trails in LAX-16 and LAX-32. In Table 7,
we compare the results to the theoretical bounds computed using Theorem 2.

Table 7. Best differential probabilities and best absolute linear correlations (log2 scale)
for up to 12 rounds of LAX.

# Rounds 1 2 3 4 5 6 7 8 9 10 11 12

LAX-16 pbest +0 −2 −4 −7 −8 −11 −13 −16 −18 −20 −23 −25

cbest +0 +0 −1 −2 −3 −5 −5 −7 −8 −9 −10 −11

pbound −3 −6 −9 −12

LAX-32 pbest +0 −2 −6 −9 −11 −16 −18 −20 −24 −28 −29 −34

cbest +0 +0 +0 −4 −4 −8 −8 −8 −8 −12 −12 −16

pbound −6 −12 −18 −24

Clearly the bound from Theorem 2 does not hold for the linear case. The
problem is the “three-forked branch” in the LAX round function that acts as
an XOR when the inputs are linear masks rather than differences. Thus, LAX
only provides differential bounds and the full solution to the Wallén challenge
still remains an open problem.

6 Conclusion

In this paper we presented, for the first time, a general strategy for designing
ARX primitives with provable bounds against differential (DC) and linear crypt-
analysis (LC) – a long standing open problem in the area of ARX design. The
new strategy, called the Long Trail Strategy (LTS) advocates the use of large
and computationally expensive S-boxes in combination with very light linear
layers (the so-called Long Trail Argument). This makes the LTS to be the exact
opposite of the Wide Trail Strategy (WTS) on which the AES (and many other
SPN ciphers) are based. Moreover, the proposed strategy is not limited to ARX
designs and can easily be applied also to S-box based ciphers.

To illustrate the effectiveness of the LTS we have proposed a new family of
lightweight block ciphers, called SPARX, designed using the new approach. The
family has three instances depending on the block and key sizes: Sparx-64/128,
Sparx-128/128 and Sparx-128/256. With the help of the Long Trail Argument
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we prove resistance against single-trail DC and LC for each of the three instances
of Sparx. In addition, we analyze the new constructions against a wide range of
attacks such as impossible and truncated differentials, meet-in-the-middle and
integral attacks. Our analysis did not find an attack covering 5 or more rounds
of any of the three instances. The latter ensures a security margin of about 37 %
of Sparx.

Beside (provable) security the members of the Sparx family are also very
efficient. We have implemented them in software on three resource constrained
microcontrollers widely used in the Internet of Things (IoT), namely the 8-bit
Atmel ATmega128, the 16-bit TI MSP430, and the 32-bit ARM Cortex-M3.
According to the FELICS open-source benchmarking framework our implemen-
tations of Sparx-64/128 and Sparx-128/128 rank respectively 6 and 7 in the
list of top 10 most software efficient lightweight ciphers. In addition, the execu-
tion time of Sparx-64/128 on MSP is in the top 3 of this list. To the best of
our knowledge, this paper is the first to propose a practical ARX design that
has both arguments for provable security and competitive performance.

A secondary contribution of the paper is the proposal of an alternative strat-
egy for ARX design with provable bounds against differential cryptanalysis. It is
independent of the LTS and uses the differential properties of modular addition
to derive proofs of security. As an illustration of this approach, the LAX fam-
ily of constructions is described. The provable security of LAX against linear
cryptanalysis is left as an open problem.

Acknowledgements. The work of Daniel Dinu and Léo Perrin is supported by the
CORE project ACRYPT (ID C12-15-4009992) funded by the Fonds National de la
Recherche, Luxembourg. The work of Aleksei Udovenko is supported by the Fonds
National de la Recherche, Luxembourg (project reference 9037104). Vesselin Velichkov
is supported by the Internal Research Project CAESAREA of the University of
Luxembourg (reference I2R-DIR-PUL-15CAES). The authors thank Anne Canteaut
for useful discussions regarding error correcting codes.

References

1. Bernstein, D.J.: New Stream Cipher Designs: The eSTREAM Finalists. LNCS, vol.
4986. Springer, Heidelberg (2008)

2. Bernstein, D.J.: ChaCha, a variant of Salsa20. In: Workshop Record of SASC, vol.
8 (2008)

3. Niels, F., Lucks, S., Schneier, B., Whiting, D., Bellare, M., Kohno, T., Callas, J.,
Walker, J.: The Skein hash function family. Submission to NIST (round 3) (2010)

4. Aumasson, J.P., Henzen, L., Meier, W., Phan, R.C.W.: SHA-3 Proposal BLAKE
(2010). https://131002.net/blake/blake.pdf

5. Needham, R.M., Wheeler, D.J.: Tea extensions. Technical report, Cambridge
University, Cambridge, UK, October 1997

6. Dinu, D.D., Le Corre, Y., Khovratovich, D., Perrin, L., Großschädl, J., Biryukov,
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