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Abstract. Tweakable blockcipher (TBC) is a powerful tool to design
authenticated encryption schemes as illustrated by Minematsu’s Offset
Two Rounds (OTR) construction. It considers an additional input, called
tweak, to a standard blockcipher which adds some variability to this
primitive. More specifically, each tweak is expected to define a different,
independent pseudo-random permutation.

In this work we focus on OTR’s way to instantiate a TBC and show
that it does not achieve independence for a large amount of parame-
ters. We indeed describe collisions between the input masks derived from
the tweaks and explain how they result in practical attacks against this
scheme, breaking privacy, authenticity, or both, using a single encryption
query, with advantage at least 1/4.

We stress however that our results do not invalidate the OTR con-
struction as a whole but simply prove that the TBC’s input masks should
be designed differently.

1 Introduction

Communications over an insecure channel usually rise the issue of confidential-
ity and authenticity of data exchanged through this channel. Although efficient
solutions are known for each of these properties individually, their combination
to ensure both is not obvious [BN00,Kra01] and has, in practice, resulted in
security breaches (e.g. [Kra01,AP13]). Also, the combination of different con-
structions, potentially relying on different primitives, may reveal quite costly.

Designing an authenticated encryption (AE) scheme, which efficiently
achieves both authenticity and confidentiality, has thus become a major topic
in cryptography, with many past contributions [Dwo04,Dwo07,MV04,BRW04,
Rog04,KR11]. Since the beginning of the CAESAR competition [CAE14],
a large number of new constructions have been proposed, from blockci-
pher modes of operation [IMGM15,Min14,AFF+15,DN14,HKR15] to ad-hoc
designs [Nik14], or sponge-based constructions [BDP+14,ABB+14]. Among the
former, OTR [Min14] follows an approach based on tweakable blockciphers
(TBC), a powerful primitive introduced by Liskov, Rivest and Wagner [LRW02].
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1.1 Tweakable Blockcipher

Compared to a regular blockcipher, a TBC ˜E : K × T × {0, 1}n → {0, 1}n takes
an additional input T ∈ T , called a tweak, which adds some variability. As
illustrated in [LRW02], a TBC enables simpler designs and security proofs for
AE schemes, and can be instantiated from a blockcipher. To achieve efficiency,
the design of the input masks must take into account the fact that the TBC
is generally not used alone but rather in a mode of operation. In particular,
the cost of changing the tweak must be much smaller than the cost of changing
the key.

The now common constructions to build a TBC out of a block cipher are the
Xor-Encrypt (XE) and Xor-Encrypt-Xor (XEX) constructions of [Rog04]. The
principle of XE is to derive an input mask Δ from the tweak and xor it with
the message before calling EK (XEX also xors this mask to the output). The
efficiency comes from designing the input mask Δ in such a way that Δi+1 (used
to encrypt the i-th message block) can be easily derived from Δi. For example,
in OCB2 [Rog04], Δi+1 is obtained from Δi by multiplying the latter by some
elements of F2n (namely X or (X + 1), where X generates F

∗
2n).

OTR’s masks slightly differs from OCB2’s one by using, among others, Δi,0 =
Xi+1δ for the 2i−1-th block and Δi,1 = (Xi+1+1)δ for the 2i-th block (where δ
is the encryption of the nonce). This approach is very well suited to the Feistel-
based construction of OTR.

1.2 Our Contribution

However, we show in this paper that this solution is, at best, unsafe and even
totally insecure in many cases. Indeed, the security of XE relies on the hardness
of constructing collisions among the input masks Δi.

This can easily be proven for OCB2 due to the form of Δ = Xi(X +
1)jEK(N). A collision in the offsets means that Xi(1 + X)j = Xi′

(1 + X)j′

for some integers i, i′, j and j′, and so that (1 + X)j−j′
= Xi′−i. This equation,

along with the discrete logarithm of X + 1 in base X, allows to define bounds
on i and j excluding any collision. Unfortunately, this is no longer true for OTR
due to the special form of its offsets. For example, if we just consider the input
masks Δi,0 = Xi+1δ and Δi,1 = (Xi+1+1)δ, it is impossible to formally exclude
collisions: there are no algebraic reason why Xi should differ from Xj + 1 for
any i, j ≤ B, for some bound B.

The simple fact that no formal proof can be provided should itself call for
another design of the masks, nevertheless one might still wonder if these collisions
are likely.

In this work, we investigate this issue and show that, for a large family of
blocksize n ≤ 10000 (OTR is defined for any blockcipher size n ∈ N

∗), standard
choices of parameters lead to trivial collisions. Moreover, we show that the block
sizes outside this family are not necessarily secure and need a specific, costly
study to exclude collision for reasonable B. We focus on the most popular choices,
namely n = 64 and n = 128, and present a collision for the former case when
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F264 is generated, as usual, using the primitive pentanomial P = X64 + X4 +
X3 + X + 1. We get similar results for n = 128 when F2128 is generated by some
specific primitive pentanomials. However, the latter do not include the usually
used one, namely P = X128 + X7 + X2 + X + 1. We therefore study more
thoroughly this case and propose a bound B = 245 excluding collisions. We do
not claim that this bound is optimal but we provide evidence that collisions are
likely to occur between 245 and 264.

In a second part, we describe concrete attacks against privacy and authen-
ticity resulting from these collisions. They show that the latter do not simply
invalidate the security proof but also completely break the security of the con-
struction.

Finally, we describe some ways of constructing the input masks which prevent
collisions. We therefore emphasize that our work does not question the intrinsic
security of OTR seen as a TBC mode of operation, but simply shows that the
instantiation of the TBC in [Min14] should be fixed. In particular, due to our
attack, Minematsu modified the masks generation in the last version of the
CAESAR submission, AES-OTRv3 [Min16].

2 Preliminaries

2.1 Basic Notations

For sake of clarity, we will use the same notations as the ones of [Min14].
The set of all finite-length binary strings, including the empty string ε, is
denoted by {0, 1}∗. ∀S ∈ {0, 1}∗, |S| denotes the length of S and |S|a =
max{�(|S|/a)�, 1}. The concatenation of two binary strings S and T is written
ST . ∀S ∈ {0, 1}∗, (S[1], . . . , S[m]) n← S denotes the n-bit block partitioning of S,
i.e. S = S[1] . . . S[m], where |S[i]| = n for i < m and |S[m]| ≤ n (we thus have
m = |S|n). The sequence of a zeros is denoted by 0a. For all n ∈ N and S such
that |S| ≤ n, Sn denotes the padding S10n−|S|−1 if |S| < n and S otherwise. In
the following, we will omit the subscript n if it is made obvious by the context.
For a finite set S, we write S

$← S if S is uniformly chosen from S.

2.2 Blockciphers and Tweakable Blockciphers

We review the standard definitions of blockciphers and tweakable blockciphers
from [LRW02,Rog04]. A blockcipher is a function E : K × {0, 1}n → {0, 1}n

where n ∈ N, K 	= ∅ is a finite set and E(K, .) = EK(.) is a permutation for each
K ∈ K. The PRF and PRP advantages of E against adversary A are defined as:

AdvprfE (A) = P[K $← K : AEK(.) ⇒ 1] − P[ρ $← Func(n) : Aρ(.) ⇒ 1]

AdvprpE (A) = P[K $← K : AEK(.) ⇒ 1] − P[π $← Perm(n) : Aπ(.) ⇒ 1]

where Func(n) (resp. Perm(n)) is the set of all the functions (resp. permutations)
{0, 1}n → {0, 1}n.
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A tweakable blockcipher is a blockcipher with an additional public input. It is
formalized as a function ˜E : K×T ×{0, 1}n → {0, 1}n where n ∈ N, K, T 	= ∅ are
finite sets and ˜E(K,T, .) = ˜EK(T, .) = ˜ET

K(.) is a permutation for each K ∈ K
and T ∈ T . The tweakable PRF and tweakable PRP advantages of ˜E against
adversary A is defined as:

Adv
˜prf

˜E
(A) = P[K $← K : A ˜EK(.,.) ⇒ 1] − P[ρ̃ $← Func(T , n) : Aρ̃(.,.) ⇒ 1]

Advp̃rp
˜E

(A) = P[K $← K : A ˜EK(.,.) ⇒ 1] − P[π̃ $← Perm(T , n) : Aπ̃(.,.) ⇒ 1]

where Func(T , n) (resp. Perm(T , n)) is the set of all mappings from T to func-
tions (resp permutations) {0, 1}n → {0, 1}n.

2.3 Authenticated Encryption

Definition. An authenticated encryption AE[τ ] having a τ -bit tag consists of
an encryption algorithm AE-Eτ and a decryption algorithm AE-Dτ . The former
takes as input a key K ∈ Kae, a nonce N ∈ Nae and an associated data A ∈ Aae

along with a message M ∈ Mae and outputs a ciphertext C ∈ Mae as well as
a tag TE ∈ {0, 1}τ . On input (K,N,A,C, TE), the latter outputs a plaintext M
such that |M | = |C| or an error symbol ⊥. The sets Kae, Nae, Aae and Mae are
assumed to be non-empty and finite.

Security Model. The security properties expected from an authenticated
encryption scheme are privacy and authenticity. The former informally requires
that no adversary, even given access to encryption queries, is able to distinguish
AE[τ ] from an oracle $ returning a random pair (C, TE) $← {0, 1}|M | × {0, 1}τ

on input (N,A,M). This is formally defined by the following advantage:

AdvprivAE[τ ](A) = Pr[K $← Kae : AAE−Eτ → 1] − Pr[A$ → 1].

We say an adversary A is nonce-respecting if it cannot submit two queries
(Ni, Ai,Mi) and (Nj , Aj ,Mj) with Ni = Nj for i 	= j. In this paper, we
will always consider nonce-respecting adversaries. It is claimed in [Min14] that
AdvprivOTR[τ ](A) ≤ 6(q+σA+σM )2

2n where q is the number of encryption queries and
(σA, σM ) = (

∑q
i |Ai|,

∑q
i |Mi|).

Authenticity informally requires that no adversary, even with access to
encryption and decryption queries, is able to produce a valid tuple (N,A,C, TE),
i.e. one such that AE-Dτ (N,A,C, TE) 	=⊥. Obviously, (N,A,C, TE) must not
have been previously returned by the encryption oracle. The authenticity notion
is defined by the advantage:

AdvauthAE[τ ](A) = Pr[K $← Kae : AAE−Eτ ,AE−Dτ forges]

where A forges if one of the decryption query (N ′
i , A

′
i, C

′
i, T

′
E,i) does not return ⊥.

Notice that N ′
i may be equal to Nj or N ′

i′ for all i, i′ and j. It is claimed in [Min14]
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that AdvauthOTR[τ ](A) ≤ 6(q+q′+σA+σM+σA′+σC′ )2

2n where q (resp. q′) is the num-
ber of encryption (resp. decryption) queries, (σA, σM ) = (

∑q
i |Ai|,

∑q
i |Mi|) and

(σA′ , σC′) = (
∑q

i |A′
i|,

∑q
i |C ′

i|).

2.4 Galois Field

For all non negative integers n, we denote by F2n the field with 2n elements and
by F

∗
2n its multiplicative group. To represent this field one [IK03,Rog04,Min14]

usually selects the lexicographically first polynomial P among the primitive poly-
nomials of degree n with coefficients in F2 having a minimum number of non-zero
coefficients, and use F2[X]/P (X) as a representation of F2n . [Ser98] provides such
polynomials for n ≤ 10000. An element a ∈ F2n can then be written as a formal
polynomial b1X

n−1 + . . .+ bn−1X + bn of degree n− 1 or equivalently as a n-bit
string b1 . . . bn. In the following, we will use both notations interchangeably.

For any a = b1X
n−1 + . . .+ bn and c = b′

1X
n−1 + . . .+ b′

n in F2n , the product
a · c is (

∑n
i=1 biX

n−i)(
∑n

j=1 b′
jX

n−j) mod P (X). In particular, it is worthy to
note that a · X can be computed very efficiently with a shift and a conditional
xor, hence the interest of a low-weight polynomial P . For example, for n = 119,
one would select P (X) = X119+X8+1 [Ser98], so a ·X = (a << 1)⊕0110b107b1.

The table in [Ser98] shows that, up to n = 10000, primitive trinomials exist
for slightly over one half of the values of n. In this case, the field F2n is usually
generated by Xn+Xj +1 for some j ∈ [1, n−1]. Otherwise, the table shows that,
for n ≤ 10000, one can at least find an irreducible pentanomial. For example,
for n = 128, one can use P (X) = X128 + X7 + X2 + X + 1.

3 Description of OTR

Before describing our attack, we recall the AE scheme of [Min14], OTR[E, τ ],
parametrized by a keyed permutation EK : {0, 1}n → {0, 1}n, and a tag length
τ ≤ n. Its encryption algorithm OTR-EE,τ consists of an encryption core EFE

and an authentication core AFE which processes the additional authenticated
data. Since our attack applies on EFE , we omit the description of AFE in Fig. 1
and assume that the string A (authenticated data) is empty.

EFE can be seen as a variation of the tweakable blockcipher based authen-
ticated encryption mode OCB [Rog04]. In OTR, tweakable blockciphers are
instantiated using a two-rounds Feistel permutation where internal round func-
tions are PRFs with tweak-dependent input masks. Algorithm 1 gives a for-
mal description of the authenticated encryption algorithm EF[ρ̃, τ ] that uses a
tweakable random function ρ̃. As defined in [Min14], the tweak space of ρ̃ is
T = ({0, 1}n × N × {0, 1}) ∪ ({∗} × {0, 1}n × N × {0, 1} × {0, 1}).1

An important theorem in the security proof of OTR is that, if ρ̃ is a tweakable
random function, then EF[ρ̃, τ ] is a secure authenticated encryption scheme.

1 We slightly changed the notations from [Min14] to give a more formal construction
of the tweakable PRF.
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⊕
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Σ

⊕
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EK
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Ẽ∗,N,�,b1,b2
K

Σ = M [2] ⊕ . . . ⊕ M [m − 2]

⊕ Z ⊕ C[m]

Σ = M [2] ⊕ . . . ⊕ M [m − 1]

⊕ M [m]

Fig. 1. Encryption core EFE of OTR for a message M = M [1] . . . M [m] and a blocksize
n. The integer � is defined as �m

2
�. Δi,b = (Xi+1 + b)δ, for i = 1, . . . , � and b ∈ {0, 1}.

Δ∗,b1,b2 = [(X + 1)X�+1 + X · b1 + b1 + b2]δ with b1 = 0 if m is odd and 1 otherwise
while b2 = 0 if |M [m]| < n and 1 otherwise. The dotted boxes represent the tweakable
random functions of the OTR construction.

Theorem 1 (Theorem 3 of [Min14]). Fix τ ∈ {1, . . . , n}. For any adversary
A, and tweakable random function ρ̃

Advpriv
EF[ρ̃,τ ](A) = 0.
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Moreover, for any adversary A making q encryption queries and qv decryption
queries,

Advauth
EF[ρ̃,τ ](A) ≤ 2qv

2n
+

qv

2τ
.

We refer to the original paper for the full proof of this theorem. Minematsu also
instantiates ρ̃ using the XE approach [Rog04]:

˜EN,i,a
K (P ) = EK(P + Δi,a) with Δi,a = Xi−1L + a · δ

˜E∗,N,i,b1,b2
K (P ) = EK(P + Δ∗,i,b1,b2) with Δ∗,i,b1,b2 = (X + 1)(Xi−1L + b1 · δ) + b2 · δ

where δ = EK(N) and L = X2δ. Once developed, the final expression of the Δ
values is

Δi,a = (Xi+1 + a)δ

Δ∗,i,b1,b2 = (Xi+2 + Xi+1 + b1X + b1 + b2)δ.

Algorithm 1. Description of EF[ρ̃, τ ].

1: Σ ← 0n

2: (M [1], . . . , M [m])
n← M

3: � ← �m/2�
4: for i = 1 to � − 1 do
5: C[2i−1] ← ρ̃N,i,0(M [2i−1])⊕M [2i]
6: C[2i] ← ρ̃N,i,1(C[2i−1])⊕M [2i−1]
7: Σ ← Σ ⊕ M [2i]
8: end for
9: if m is even then

10: Z ← ρ̃N,�,0(M [m − 1])
11: C[m] ← msb|M [m]|(Z) ⊕ M [m]
12: C[m−1] ← ρ̃N,�,1(C[m])⊕M [m−1]
13: Σ ← Σ ⊕ Z ⊕ C[m]

14: if |M [m]| �= n then TE ←
ρ̃∗,N,�,1,0(Σ)

15: else TE ← ρ̃∗,N,�,1,1(Σ)
16: else � m is odd
17: C[m] ← msb|M [m]|(ρ̃

N,�,0(0n)) ⊕
M [m]

18: Σ ← Σ ⊕ M [m]
19: if |M [m]| �= n then TE ←

ρ̃∗,N,�,0,0(Σ)
20: else TE ← ρ̃∗,N,�,0,1(Σ)
21: end if
22: C ← (C[1], . . . , C[m])
23: return (C, TE)

To finish the proof of security, [Min14] uses the Lemma 1, claiming the CPA
security of the tweakable PRF ˜E, provided that E is a perfect blockcipher (a
random permutation):

Lemma 2 (Lemma 1 of [Min14]). For any adversary A making q queries,

Adv
˜prf

˜E
(A) ≤ 5q2

2n
.

The proof of Lemma 1 relies on the fact that the masks Δ are assumed to
be “differentially uniform” for any two distinct inputs. However, we show below
that this is not the case for a large choice of parameters n, and that it actually
completely breaks the security of OTR.
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4 Collision in Masks Polynomials

4.1 Flaw in OTR’s Proof

In [Min14], all possible masks Δ are regrouped in a set

S1(δ) =
{

Xi+1δ, (Xi+1 + 1)δ, (Xi+2 + Xi+1)δ, (Xi+2 + Xi+1 + X)δ,

(Xi+2 + Xi+1 + 1)δ, (Xi+2 + Xi+1 + X + 1)δ
}

i=1

(no upper bound on i is given but we can suppose that it is bounded by the
maximum number of blocks one can query for an encryption, and that is it at
most 2n/2) and it is claimed that for any Δ,Δ′ ∈ S1(δ1) ∪ S1(δ2) such that Δ
and Δ′ are generated from two different expressions, and d ∈ {0, 1}n,

Pr
δ1,δ2

$←{0,1}n

[Δ + Δ′ = d] ≤ 1
2n

where the probability is taken over the random choices of δ1 and δ2. This is true
if Δ ∈ S1(δ1) and Δ′ ∈ S1(δ2), but not if both Δ and Δ′ are generated from the
same δ.

Namely, suppose that there are two integers i and j ≥ 2 such that

Xi = Xj + 1 (1)

or Xi = Xj+1 + Xj + r(X) (2)

or Xi+1 + Xi = Xj+1 + Xj + r(X) (3)

with r(X) ∈ {0, 1,X,X + 1}. Then we directly have a collision inside S1(δ) for
any δ. This problem is not highlighted in the proof and we will show that we
can actually find (and use) such pairs of integers.

In the following, we will use the terms ‘type-1’, ‘type-2’, and ‘type-3’ for
collisions satisfying, respectively, Eqs. (1), (2) and (3).

4.2 Finding Collisions

The problem with the polynomials considered above is that it seems impossible,
given n ∈ N and a polynomial P generating F2n , to provide a formal argument
excluding collisions for any i, j ∈ [2, t] for some integer 2 < t ≤ 2n/2. One can
note that we do not consider collisions in the set {Xi}t

i=2, as X is a generator
of F∗

2n (since P is primitive) and we chose t ≤ 2n/2.
Actually, we show that trivial collisions can be found when the definition

polynomial P has a special form, in particular when P is a trinomial or a pen-
tanomial.
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Case 1: F2n is generated by a trinomial P (X) = Xn + Xj + 1.
As explained in [Ser98], this is the standard choice for a majority of values

n ≤ 10000. In such a case, a collision in S1 is trivially given by P since Xn =
Xj + 1 (this is thus a type-1 collision). Any encryption of a message M of m
blocks such that �m

2 � ≥ n − 1 will then lead to the re-use of a mask and so to
one of the attacks described in the next session.

One might argue that this can be avoided by generating F2n with a pen-
tanomial instead of a trinomial. However, this unconventional choice will nega-
tively impact the performances of the scheme and will not necessarily prevent
collisions.

Case 2: F2n is generated by a pentanomial P (X) = Xn +Xj1 +Xj2 +Xj3 +1.
This case includes, for example, n = 64 and n = 128. Although there is no trivial
collision as in the previous case, it is still necessary to check, for the chosen n and
P , that S1 only contains distinct elements, which requires a significant amount
of computations and storage space. We here describe the most popular cases:

– n = 64. The lexicographically first primitive pentanomial of degree 64 is X64+
X4 +X3 +X +1 [Ser98]. It leads to a type-2 collision since X64 = X4 +X3 +
X + 1.

– n = 128. Here again, the pentanomial generating F2128 may give an obvious
collision. For example, setting P = X128+X68+X67+X +1 leads to a type-2
collision X128 = X68+X67+X+1, and setting P = X128+X127+X61+X60+1
leads to a type-3 collision X128 + X127 = X61 + X60 + 1. However, this is not
the case with the lexicographically first primitive pentanomial of degree 128,
P = X128 + X7 + X2 + X + 1, that one generally uses to define F2128 . The
latter therefore needs a more thorough study that we defer to Sect. 6.

5 Practical Attacks

One may wonder if the collisions found in the input masks simply invalidate the
security proofs of OTR. Unfortunately, this is not the case and we show below
that any kind of collision leads to attacks breaking privacy and/or authenticity.
We recall that, for sake of simplicity, authenticated data are assumed to be
empty in the following attacks. Attacks for non-empty authenticated data can
easily be derived from them.

5.1 Type-1 Collisions

A type-1 collision occurs when there are i and j such that Xi = Xj +1. We can
assume, without loss of generality, that j < i (since Xi = Xj+1 ⇔ Xj = Xi+1).
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Breaking Authenticity. To break authenticity, one can make a query on an
arbitrary message M = M [1] . . . M [2i − 3] for a nonce N , defining δ = EK(N)
and L = X2δ, and receive the ciphertext C = C[1] . . . C[2i − 3] along with the
tag T = TE.

The message M has an odd number of blocks so C[2i − 3] = EK(Xiδ) ⊕
M [2i − 3].

Let C ′ = C ′[1] . . . C ′[2i − 3] such that C ′[k] = C[k] for k /∈ {2j − 3, 2j −
2, 2i − 3}, C ′[2j − 3] = 0n, C ′[2j − 2] = M [2j − 3] ⊕ C[2i − 3] ⊕ M [2i − 3] and
C ′[2i − 3] = C[2i − 3] ⊕ C[2j − 3].

Then, the pair (C ′, TE) is valid: OTR-DE,τ (N, ε, C ′, T ) = M ′[1] . . . M ′[2i −
3] 	=⊥. Indeed, by construction, we have M ′[k] = M [k] ∀k /∈ {2j−3, 2j−2, 2i−3}.
Moreover, we have

M ′[2j − 3] = EK(C ′[2j − 3] ⊕ (Xj + 1)δ) ⊕ C ′[2j − 2]

= EK(0n ⊕ (Xj + 1)δ) ⊕ M [2j − 3] ⊕ C[2i − 3] ⊕ M [2i − 3]

= EK((Xj + 1)δ) ⊕ M [2j − 3] ⊕ EK(Xiδ)
= M [2j − 3]

and

M ′[2j − 2] = EK(M ′[2j − 3] ⊕ Xjδ) ⊕ C ′[2j − 3]

= EK(M [2j − 3] ⊕ Xjδ) ⊕ 0n

= C[2j − 3] ⊕ M [2j − 2].

Finally, we have M ′[2i − 3] = M [2i − 3] ⊕ C[2j − 3]. Therefore:

Σ′ = Σ ⊕ C[2j − 3] ⊕ C[2j − 3] = Σ

and the tag TE remains valid for C ′.
For an adversary A following this procedure,

AdvauthAE[τ ](A) = 1.

Breaking Privacy. We describe here a way that an adversary A can use to
break privacy with advantage almost 1/4 with a single query. To break privacy,
A queries the encryption oracle with a random nonce N and a message M =
M [1] . . . M [2i − 2] such that |M [2i − 2]| = 1 and M [2j − 3] = 010n−2. A will
receive C = C[1] . . . C[2i − 2] with |C[2i − 2]| = 1. If C[2i − 2] = 1 (which
happens with probability 1

2 ), A just picks its output bit at random (she does
not try further up). Otherwise, we have C[2i − 2] = 010n−2 = M [2j − 3].

As a consequence, we get the following:

M [2i − 3] = EK(C[2i − 2] ⊕ (Xi + 1)δ) ⊕ C[2i − 3]

= EK(M [2j − 3] ⊕ Xjδ) ⊕ C[2i − 3]
= C[2j − 3] ⊕ M [2j − 2] ⊕ C[2i − 3]
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and M [2j − 2] ⊕ M [2i − 3] = C[2j − 3] ⊕ C[2i − 3], which defines an efficient
distinguisher between the random encryption oracle and the real encryption
oracle. More formally,

AdvprivAE[τ ](A) =
1
2

(

1 − 1
2n

)

− 1
2

· 1
2

=
1
4

− 1
2n+1

.

5.2 Type-2 Collisions

A type-2 collision occurs when there are i and j such that Xi = Xj+1+Xj+r(X)
with r(X) ∈ {0, 1,X,X + 1}. We show below how one can break authenticity if
i ≥ j and privacy if i < j.

Breaking Privacy for i < j . To break privacy, one submits a message M =
M [1] . . . M [m] = 0n . . . 0nM [2i − 3]M [2i − 2]0n . . . M [m − 1]0|M [m]| where m,
|M [m]|, M [2i − 3],M [2i − 2] and M [m − 1] are defined as follows:

– If r(X) = X + 1, then one sets m = 2(j − 1), |M [m]| = n − 1, M [2i − 3] =
M [2i − 2] ∈ {0, 1}n and M [m − 1] ∈ {0, 1}n.
Since the last block of M is 0n−1, the n − 1 most significant bits of Z ⊕ C[m]
are 0n−1. Therefore, if the last bit of Z is 1 (which occurs with probability 1

2 ),
Z ⊕ C[m] = 0n. Also, in this case, Σ = M [2i − 2] = M [2i − 3]. If the last bit
of Z is not 1, one simply submits new messages with different M [m − 1] until
this condition is fulfilled.
The authentication tag TE then verifies the following relation:

TE = EK(Σ ⊕ Δ∗,m,1,0)

= EK(M [2i − 3] ⊕ (Xj+1 + Xj + X + 1)δ)

= EK(M [2i − 3] ⊕ Xiδ)
= C[2i − 3] ⊕ M [2i − 2]

Therefore, TE ⊕ C[2i − 3] = M [2i − 2], which breaks privacy.
– If r(X) = X, then one sets m = 2(j −1), |M [m]| = n, M [2i−3] = M [2i−2] ∈

{0, 1}n and M [m − 1] ∈ {0, 1}n. In such a case, Σ = M [2i − 2] = M [2i − 3]
and the previous attack still applies.

– If r(X) = 1, then one sets m = 2(j−1)−1, |M [m]| = n, M [2i−3] = M [2i−2] ∈
{0, 1}n and M [m − 1] = 0n. Here again, Σ = M [2i − 2] = M [2i − 3] so the
equality TE ⊕ C[2i − 3] = M [2i − 2] still holds.

– Else, r(X) = 0. One then sets m = 2(j − 1) − 1, |M [m]| = n − 1, M [2i − 3] ∈
{0, 1}n, M [m − 1] = 0n and M [2i − 2] is equal to M [2i − 3] except on the last
bit. We then have:

Σ = M [2i − 2] ⊕ M [m]

= M [2i − 2] ⊕ 0|M [m]|1
= M [2i − 3]

and TE ⊕ C[2i − 3] = M [2i − 2], as before.
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In all these cases, we have a distinguishing criteria between the truly random
oracle and the real encryption oracle that can be trivially checked. An adversary
A using this algorithm will break the privacy with advantage 1

4 − 1
2n+1 with a

single encryption query.

Breaking Authenticity for i ≥ j. The previous attacks against privacy shows
that, for any r(X), if there is a type-2 collision among the tweaks polynomials,
with i < j, one can submit a message M such that its encryption (C, TE) satisfies
the equation TE = C[2i − 3] ⊕ M [2i − 2]. Informally, by taking this assertion
backward, this means that one can compute a valid tag for some specific message
from C[2i − 3] and M [2i − 2]. The idea of the authenticity attacks is to query
encryption for a message M such that |M | > 2in to get these two bitstrings and
then to truncate it to make TE a valid tag for a shorter message of size ≈ 2jn.

More specifically, we distinguish the following cases:

– If r(X) = X, then Δi−1,0 = Δ∗,j−1,1,1. A selects an integer m > 2(i − 1)
and submits a message M = M [1] . . . M [m] such that M [k] = 0n for k ∈
[1, 2(j −2)], M [2j −3],M [2j −2] ∈ {0, 1}n, M [2i−2] = M [2i−3] = M [2j −2]
and M [k] ∈ {0, 1}n otherwise. Let (C, TE) be the response to this encryption
query. Then, the pair (C ′, TE′) ← (C[1] . . . C[2j −4]C[2j −2]C[2j −3], C[2i−
3]⊕M [2i−2]) is valid (recall that the last two blocks of C are switched during
the encryption process), and decrypts to M ′ = M [1] . . . M [2j − 3]. Indeed, if
M ′ is the decryption of C ′, M ′[k] = M [k] for k ≤ 2j − 2, Σ′ = M ′[2j − 2], the
valid tag for C ′ should be

˜TE = EK(Σ′ ⊕ Δ∗,j−1,1,1)
= EK(M ′[2j − 2] ⊕ Δ∗,j−1,1,1)
= EK(M [2i − 3] ⊕ Δi−1,0)
= C[2i − 3] ⊕ M [2i − 2]
= TE′

This clearly breaks the authenticity of the scheme.
– If r(X) = X + 1 (and Δi−1,0 = Δ∗,j−1,1,0), then one selects an integer

n > 2(i−1) and queries the message M = M [1] . . . M [m] such that M [k] = 0n

for k ∈ [1, 2(j − 2)], M [2j − 3],M [2j − 2] ∈ {0, 1}n, M [2i − 2] = M [2i − 3] =
M [2j − 2] and M [k] ∈ {0, 1}n are arbitrary strings otherwise.
With probability 1

2 , the last bit of C[2j−3] is 1. In this case, msbn−1(C[2j − 3])
= C[2j − 3]. Let (C ′, TE′) = (C[1] . . . C[2j − 4]C[2j − 2]msbn−1(C[2j −
3]), C[2i − 3] ⊕ M [2i − 2]) and M ′ the decryption of C ′. Again, for k <
2j − 3, M ′[k] = M [k], but we also have M ′[2j − 3] = M [2j − 3] and
Z ′ = C[2j − 3] ⊕ M [2j − 2]:

M ′[2j − 3] = EK(C ′[2j − 2] ⊕ Δj−1,1) ⊕ C ′[2j − 3]

= EK(msbn−1(C[2j − 3]) ⊕ Δj−1,1) ⊕ C[2j − 2]

= EK(C[2j − 3] ⊕ Δj−1,1) ⊕ C[2j − 2]
= M [2j − 3]
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Z ′ = EK(M ′[2j − 3] ⊕ Δj−1,0)
= EK(M [2j − 3] ⊕ Δj−1,0)
= C[2j − 3] ⊕ M [2j − 2]

As a direct consequence, we also have

Σ′ = Z ′ ⊕ C ′[2j − 2] = C[2j − 3] ⊕ M [2j − 2] ⊕ msbn−1(C[2j − 3])

= M [2j − 2].

As a consequence, using similar equalities to the r(X) = X case, we can show
that the authentication tag for C ′ should be ˜TE = C[2i−3]⊕M [2i−2] = TE′.
This attack produces a forgery with probability 1

2 .
– If r(X) = 1, Δi−1,0 = Δ∗,j−1,0,1. A again selects m ≥ 2(i − 2) and queries

encryption of M = M [1] . . . M [m] such that M [k] = 0n for k ∈ [1, 2(j −
1)], M [2i − 3] = 0n and M [k] ∈ {0, 1}n for k > 2i − 2. Let (C ′, TE′) =
(C[1] . . . C[2j −4]C[2j −3], C[2i−3]⊕M [2i−2]) and M ′ its decryption. Once
again, we have M [k] = M ′[k] for k < 2j − 3. Moreover, as the number of
blocks in C ′ is odd,

M ′[2j − 3] = C ′[2j − 3] ⊕ EK(Δj−1,0)
= C[2j − 3] ⊕ EK(M [2j − 3] ⊕ Δj−1,0)
= M [2j − 2] = 0n

and hence Σ′ = 0n(= M [2i − 3]). Finally

TE′ = C[2i − 3] ⊕ M [2i − 2] = EK(M [2i − 3] ⊕ Δi−1,0)

= EK(Σ′ ⊕ Δ∗,j−1,0,1) = ˜TE

where ˜TE is the expected tag for C ′. Again, we are able to produce a forgery.
– If r(X) = 0, then one proceeds as in the previous case except that M [2i −

3] = 0n−11. We will still have Σ′ = M [2i − 3] and the pair (C ′, TE′) =
(C[1] . . . C[2j − 4]msbn−1(C[2j − 3]), C[2i − 3] ⊕ M [2i − 2]) is a valid forgery.

5.3 Type-3 Collisions

A type-3 collision occurs when there are 
 and 
′ such that X�+2 + X�+1 =
X�′+2 + X�′+1 + r(X), with r(X) ∈ {0, 1,X,X + 1}. We assume, without loss
of generality, that 
 < 
′.

The input masks of the form Xk+2 + Xk+1 + r(X) are the ones involved in
the computation of the tag TE. So a type-3 collision informally means that the
input mask used to compute TE for a message of length m′ such that 
′ = �m′

2 �
is the same than the one used to compute TE for a truncated message of length
m verifying 
 = �m

2 �. Again, this leads to a practical attack against authenticity.



346 R. Bost and O. Sanders

Breaking Authenticity. As previously, the attack will slightly differ according
to r(X).

– If r(X) = X, Δ∗,�,0,0 = Δ∗,�′,1,1 A submits an encryption query for the
message M [1] . . . M [2
]M [2
 + 1] . . . M [2
′ − 1]M [2
′] with M [2
 − 1] = 0n,
M [2
] has its last bit set to 1 (in particular msbn−1(M [2
]) = M [2
]), and
M [i] = 0n for i ∈ [2
 + 1, 2
′]. Upon receiving (C[1] . . . C[2
′], TE), A forges
(C ′, TE′) = (C[1] . . . C[2
− 2]msbn−1(C[2
− 1]), TE), which is a valid cipher-
text.
Indeed, if Σ is the checksum corresponding to (C[1] . . . C[2
′], TE) and Σ′ is
the one corresponding to the forged ciphertext, we have:

Σ′ = M [2] ⊕ . . . ⊕ M [2
 − 2] ⊕ msbn−1(EK(Δ�,0)) ⊕ C ′[2
 − 1]

= M [2] ⊕ . . . ⊕ M [2
 − 2] ⊕ msbn−1(EK(Δ�,0) ⊕ C[2
 − 1])

= M [2] ⊕ . . . ⊕ M [2
 − 2] ⊕ msbn−1(M [2
])

= M [2] ⊕ . . . ⊕ M [2
 − 2] ⊕ M [2
]
= Σ

Therefore, ˜TE = EK(Σ′ ⊕Δ∗,�,0,0) = EK(Σ ⊕Δ∗,�′,1,1) = TE, so the tag TE
is also valid for this truncated ciphertext C ′.

– if r(X) = X + 1, one proceeds as in the previous case except that we take
any value for M [2
] and (C ′, TE′) = (C[1] . . . C[2
 − 2]C[2
 − 1], TE): we
don’t have to play with the padding. Therefore, ˜TE = EK(Σ′ ⊕ Δ∗,�,0,1) =
EK(Σ ⊕ Δ∗,�′,1,1) = TE, and TE remains valid for this truncated ciphertext.

– If r(X) = 1, Δ∗,�,0,0 = Δ∗,�′,0,1, and A will proceed as in the first case r(X) =
X, except that its first query will be with M with an odd number of blocks.
A will query M = M [1] . . . M [2
′ − 1] such that M [2
 − 1] = 0n, M [2
] has its
last bit set to 1, and M [i] = 0n for i ∈ [2
 + 1, 2
′ − 1]. The forgery will be
(C ′, TE′) = (C[1] . . . C[2
 − 2]msbn−1(C[2
 − 1]), TE).
The proof that (C ′, TE′) is a valid forgery proceeds exactly as for the r(X) =
X case.

– if r(X) = 0, Δ∗,�,0,1 = Δ∗,�′,0,1, and A submits an encryption query on M =
M [1] . . . M [2
′ − 1] such that M [2
 − 1] = 0n, and M [i] = 0n for i ∈ [2
 +
1, 2
′ − 1]. The forgery will be (C ′, TE′) = (C[1] . . . C[2
 − 2]C[2
 − 1], TE).
The validity of the forgery can be easily proven from the same arguments as
before.

In every case, we are able to easily produce a valid forgery from a single encryp-
tion request. For an adversary A following this procedure,

AdvauthAE[τ ](A) = 1.

6 Practical Security of OTR with 128 Bits Blocks

In the previous sections we exhibited tweak collisions on OTR breaking the
security claim, in particular for non generic block sizes (sizes that are not divisible
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by 8) and for 64 bits block ciphers. These collisions allow the adversary to break
privacy and/or authenticity of the scheme in two encryption/decryption requests
with a small number of blocks. Here, we focus on the case n = 128.

Also, note that for the sake of breaking OTR, we are only interested in
collisions before the birthday bound, i.e. collisions for which the maximum index
i of the polynomials defined by Δi,a or Δ∗,i,b1,b2 is smaller than 2n/2. Higher order
collisions are less interesting as OTR’s proofs only guarantees security below the
birthday bound.

6.1 Analytical Collisions

One strategy for quickly finding collisions could rely on the fact that F2d ⊂ F2128

for any d dividing 128. Indeed, any relation Y i = Y j + 1 for some Y ∈ F2d

gives us a type-1 collision Xa·i = Xa·j + 1 with a such that Y = Xa in F2128 .
Such relations can easily be found in F2d for d ∈ {16, 32, 64}, for example by
computing the discrete logarithm of Y j + 1 in base Y . However, they do not
lead to truly practical attacks because Y 2d−1 = 1 (as any element of F2d) which
implies that 2128 − 1|a · (2d − 1) (recall that X generates F

∗
2128) and so that

(2128 − 1)/(2d − 1) divides a. Therefore, such relations will only give collisions
for quite large indices a · i (since a is at least greater than 264 +1) and so beyond
the birthday bound.

6.2 Searching for Collisions Exhaustively

We also tried to algorithmically and exhaustively find collisions among tweaks
polynomials. This can be done easily on a desktop computer for n = 64, but not
for n = 128.

Indeed, to check collisions for tweak polynomials of index less than d, we
need at least 2d · 128 bits of memory: the index i polynomials we are interested
in are of the form Xi(+1) and Xi + Xi−1(+X)(+1), so to save memory, we can
only store Xi and Xi + Xi−1 mod P (X), and do the collision search on the 126
high degree bits. To exhibit a genuine collision, we then just have to recompute
the different possibilities for the polynomials and find the matching ones. Also,
for each polynomial, we have to store its ‘index’ i, adding O(log d) storage. So
if we were to exhaustively search for all collisions for d < 264, we would need
2 · 264 · 192 bits, i.e. 24 exabytes.

On the computational point of view, the complexity of the algorithm is well-
known, O(d log d), as we can generate all the 2d polynomials, sort them using
the lexicographic order on their bits, and finally search a collision in O(d).

It is also important to notice that the collision search is embarrassingly par-
allelizable: once generated, we can put the polynomials in some bins, depending
on the value of the high degree bits, and limit the search to collisions inside each
bin. This algorithm is described by Algorithm 2.

Algorithm 2 also offers a nice time/memory tradeoff: instead of keeping all
bins in memory, we can instead limit ourself to the bins fitting in memory, and
run the algorithms several times so that all the bins are spanned.
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Algorithm 2. Our collision search algorithm
for k = 0 to 2p − 1 do � In parallel

Sk ← ∅ � Initialize bins
end for
for i = 0 to d do � In parallel

αi ← Xi mod P
kα ← msbp(αi)
Skα ← Skα ∪ (αi, i)
βi ← Xi+1 + Xi mod P
kβ ← msbp(βi)
Skβ ← Skβ ∪ (βi, i)

end for
for k = 0 to 2p − 1 do � In parallel

Lexicographically sort Sk

Sequentially scan Sk for a collision
end for

We coded this algorithm in C, using OpenMP and SSE instructions, and
we were able to show that there is no collisions among the tweak polynomials
of index less than 245 for F2128 defined by X128 + X7 + X2 + X + 1, proving
Proposition 3, which fixes Lemma 1 of [Min14].

Proposition 3. For any adversary A making q queries on ˜E as defined in
Sect. 3, with tweak space T = {0, 1}128 × {0, . . . , 245} × {0, 1} ∪ {∗} × {0, 1}128 ×
{0, . . . , 245} × {0, 1} × {0, 1},

Advp̃rp
˜E

(A) ≤ 5q2/2128.

This exhaustive search took us around 15 CPU-years, using 3TB of RAM.

6.3 Probable Collision Before the Birthday Bound

The collisions exhibited earlier in the paper, for example for n = 64 or n = 119,
use the special form of the polynomial. For the latter, we use the fact that it is
a trinomial, directly giving a type-1 collision. For the former, as there are non
zero coefficients of two consecutive degrees higher than 2, the polynomial gives
a type-2 collision. One could wonder if, excepting these ‘trivial’ collisions, it is
easy to find other before-birthday-bound collisions? Said otherwise, what is the
repartition of the indices of colliding polynomials? We can also remember that
if the tweak polynomials behaved randomly, we would expect a collision to be
happening just before the birthday bound.

We ran experiments for n = 16, 32 and 64, using (respectively) irreducible
polynomials X16 + X5 + X3 + X + 1, X32 + X7 + X3 + X2 + 1 and X64 + X4 +
X3 + X + 1. They are summarized in Table 1.

If we were to extrapolate, we would expect a collision for n = 128 using
irreducible polynomial X128 + X7 + X4 + X + 1 to also happen slightly before
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Table 1. Lower indices of colliding tweak polynomials (excepted trivial ones).

n 16 32 64

Polynomial (X + 1)X105 =
(X+1)X134+X

(X+1)X30115 =
X19743 + X

X2242000936 =
X2302312163 + 1

log(degree) 7.07 14.88 31.10

the birthday bound. We support this claim with a few experiments we ran on
smaller fields. Figures 2, 3 and 4 show the repartition of the smallest collisions
of tweak polynomials (i.e. the collision with the lowest index) depending on the
choice of the irreducible polynomial chosen to define F2n .

The graphs not only show that the first collision is extremely likely to happen
before the birthday bound, but also that it should not happen too early before:
we cannot really hope for gaining more than a few bits.

In this case the security proof of [Min14] is only invalidated by a small
amount. However, we do not have any formal argument to fill the gap between
245 and 264.

7 Other Instantiations of Input Masks

The previous collisions do not exclude GF doublings to derive the offsets but
simply show that this should be done differently. One of the most obvious solution
consists in defining the input mask for the block M [i] as Xi+2δ and Δ∗ as

4 ≤ d ≤ 5

5 <
d ≤ 6

6 <
d ≤ 7

7 <
d ≤ 8

8 <
d ≤ 9

3

19

27

43

2

Fig. 2. Log of the lowest indices of colliding tweak polynomials for every F216 repre-
sentations using the 94 degree 16 irreducible pentanomials over F2. In other words,
among the 94 possible representations of F216 , 3 leads to a collision between the 25

first tweak polynomials, 19 to a collision between polynomials of indices i and j such
that max(i, j) ∈]25, 26], and so on and so forth.
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Fig. 3. Log of the lowest indices of colliding tweak polynomials for every F232 repre-
sentations using the 351 degree 32 irreducible pentanomials over F2.

Xm(X + 1)jδ where m is the number of blocks of M and where j would depend
on some properties of M , namely the parity and the number of bits of M [m].

More specifically, the tweakable random function ρ̃ (see Sect. 3) can be instan-
tiated as follows:

˜EN,i,a
K (P ) = EK(Δi,a + P ) with Δi,a = X2(i−1)+aL

˜E∗,N,i,b1,b2
K (P ) = EK(Δ∗,i,b1,b2 + P ) with Δ∗,i,b1,b2 = (X + 1)1+b2+2b1X2(i−1)L

where δ = EK(N) and L = X2δ, as previously.
A collision then only occurs if there are some i, j ∈ N

∗ and a, b1, b2 ∈ {0, 1}
such that:

X2(i−1)+a = (X + 1)1+b2+2b1X2(j−1) ⇔ X2(i−j)+a = (X + 1)1+b2+2b1

However, [Rog04] shows that the latter relation cannot hold for i, j ≤ 2115 (resp.
i, j ≤ 251) when F2128 (resp. F264) is generated by the standard polynomial. A
collision attack would thus require to query encryption for a huge message M ,
whose number of blocks would be far greater than the birthday bound, which is
impossible.

Unfortunately, such a solution entails a doubling of the number of multi-
plications, compared to the original construction. It is therefore preferable to
construct ρ̃ in a slightly different way:

˜EN,i,a
K (P ) = EK(Δi,a + P ) with Δi,a = (X + 1)aXi−1L

˜E∗,N,i,b1,b2
K (P ) = EK(Δ∗,i,b1,b2 + P ) with Δ∗,i,b1,b2 = (X + 1)2+b2+2b1Xi−1L.

Here again, the argument of [Rog04] formally excludes any practical collision
attack. The point is that, since Δi,1 = Δi,0 ⊕ Δi+1,0, almost one half of the
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Fig. 4. Log of the lowest indices of colliding tweak polynomials for every F264 repre-
sentations using the 1386 degree 64 irreducible pentanomials over F2.

offsets only require one xor to be computed. The cost is thus similar to the one
of the original instantiation [Min14]. The last version of OTR [Min16] uses a
similar method to generate tweaks and thus avoid our attack.

8 Conclusion

In this work, we have presented practical attacks against OTR resulting from
collisions between the input masks. Although the occurrence of such collisions
depend on both the blocksize n and on the polynomial generating F2n , we argue
that the large number of parameters concerned calls for another design of the
input masks. We have therefore proposed some ways to immunize OTR to these
attacks which do not affect efficiency while being provably secure.

Our results thus do not question the intrinsic security of OTR but simply
point out a flaw in the current instantiation.
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