
Jung Hee Cheon
Tsuyoshi Takagi (Eds.)

 123

LN
CS

 1
00

31

22nd International Conference on the Theory
and Application of Cryptology and Information Security
Hanoi, Vietnam, December 4–8, 2016, Proceedings, Part I

Advances in Cryptology –
ASIACRYPT 2016

Lecture Notes in Computer Science 10031

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Zurich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbrücken, Germany

More information about this series at http://www.springer.com/series/7410

http://www.springer.com/series/7410

Jung Hee Cheon • Tsuyoshi Takagi (Eds.)

Advances in Cryptology –

ASIACRYPT 2016
22nd International Conference on the Theory
and Application of Cryptology and Information Security
Hanoi, Vietnam, December 4–8, 2016
Proceedings, Part I

123

Editors
Jung Hee Cheon
Seoul National University
Seoul
Korea (Republic of)

Tsuyoshi Takagi
Kyushu University
Fukuoka
Japan

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-662-53886-9 ISBN 978-3-662-53887-6 (eBook)
DOI 10.1007/978-3-662-53887-6

Library of Congress Control Number: 2016956613

LNCS Sublibrary: SL4 – Security and Cryptology

© International Association for Cryptologic Research 2016
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer-Verlag GmbH Germany
The registered company address is: Heidelberger Platz 3, 14197 Berlin, Germany

Preface

ASIACRYPT 2016, the 22nd Annual International Conference on Theory and
Application of Cryptology and Information Security, was held at InterContinental
Hanoi Westlake Hotel in Hanoi, Vietnam, during December 4–8, 2016. The conference
focused on all technical aspects of cryptology, and was sponsored by the International
Association for Cryptologic Research (IACR).

Asiacrypt 2016 received a total of 240 submissions from all over the world. The
Program Committee selected 67 papers from these submissions for publication in the
proceedings of this conference. The review process was made via the usual double-
blind pier review by the Program Committee comprising 43 leading experts in the field.
Each submission was reviewed by at least three reviewers and five reviewers were
assigned to submissions co-authored by Program Committee members. This year, the
conference operated a two-round review system with a rebuttal phase. In the first-round
review the Program Committee selected the 140 submissions that were considered of
value for proceeding to the second round. In the second-round review the Program
Committee further reviewed the submissions by taking into account their rebuttal letter
from the authors. The selection process was assisted by a total of 309 external
reviewers. These two-volume proceedings contain the revised versions of the papers
that were selected. The revised versions were not reviewed again and the authors are
responsible for their contents.

The program of Asiacrypt 2016 featured three excellent invited talks. Nadia Heninger
gave a talk on “The Reality of Cryptographic Deployments on the Internet,” Hoeteck
Wee spoke on “Advances in Functional Encryption,” and Neal Koblitz gave a non-
technical lecture on “Cryptography in Vietnam in the French and American Wars.” The
conference also featured a traditional rump session that contained short presentations on
the latest research results of the field. The Program Committee selected the work “Faster
Fully Homomorphic Encryption: Bootstrapping in Less Than 0.1 Seconds” by Ilaria
Chillotti, Nicolas Gama, Mariya Georgieva, and Malika Izabachène for the Best Paper
Award of Asiacrypt 2016. Two more papers, “Nonlinear Invariant Attack—Practical
Attack on Full SCREAM, iSCREAM, andMidori64” by Yosuke Todo, Gregor Leander,
Yu Sasaki and “Cliptography: Clipping the Power of Kleptographic Attacks” by
Alexander Russell, Qiang Tang, Moti Yung, Hong-Sheng Zhou were solicited to submit
full versions to the Journal of Cryptology.

Many people contributed to the success of Asiacrypt 2016. We would like to thank
the authors for submitting their research results to the conference. We are very grateful
to all of the Program Committee members as well as the external reviewers for their
fruitful comments and discussions on their areas of expertise. We are greatly indebted to
Ngo Bao Chau and Phan Duong Hieu, the general co-chairs for their efforts and overall
organization. We would also like to thank Nguyen Huu Du, Nguyen Quoc Khanh,
Nguyen Duy Lan, Duong Ngoc Thai, Nguyen Ta Toan Khoa, Nguyen Ngoc Tuan,

Le Thi Lan Anh, and the local Organizing Committee for their continuous supports.
We thank Steven Galbraith for expertly organizing and chairing the rump session.

Finally we thank Shai Halevi for letting us use his nice software for supporting the
paper submission and review process. We also thank Alfred Hofmann, Anna Kramer,
and their colleagues at Springer for handling the editorial process of the proceedings.
We would like to express our gratitude to our partners and sponsors: XLIM, Microsoft
Research, CISCO, Intel, Google.

December 2016 Jung Hee Cheon
Tsuyoshi Takagi

VI Preface

ASIACRYPT 2016

The 22nd Annual International Conference on Theory
and Application of Cryptology and Information Security

Sponsored by the International Association for Cryptologic Research (IACR)

December 4–8, 2016, Hanoi, Vietnam

General Co-chairs

Ngo Bao Chau VIASM, Vietnam and University of Chicago, USA
Phan Duong Hieu XLIM, University of Limoges, France

Program Co-chairs

Jung Hee Cheon Seoul National University, Korea
Tsuyoshi Takagi Kyushu University, Japan

Program Committee

Elena Andreeva KU Leuven, Belgium
Xavier Boyen Queensland University of Technology, Australia
Anne Canteaut Inria, France
Chen-Mou Cheng National Taiwan University, Taiwan
Sherman S.M. Chow Chinese University of Hong Kong, Hong Kong,

SAR China
Nico Döttling University of California, Berkeley, USA
Thomas Eisenbarth Worcester Polytechnic Institute, USA
Georg Fuchsbauer École Normale Supérieure, France
Steven Galbraith Auckland University, New Zealand
Sanjam Garg University of California, Berkeley, USA
Vipul Goyal Microsoft Research, India
Jens Groth University College London, UK
Sylvain Guilley Secure-IC S.A.S., France
Alejandro Hevia Universidad de Chile, Chile
Antoine Joux Foundation UPMC and LIP6, France
Xuejia Lai Shanghai Jiaotong University, China
Hyung Tae Lee Nanyang Technological University, Singapore
Kwangsu Lee Sejong University, Korea
Dongdai Lin Chinese Academy of Sciences, China
Feng-Hao Liu Florida Atlantic University, USA
Takahiro Matsuda AIST, Japan
Alexander May Ruhr University Bochum, Germany

Florian Mendel Graz University of Technology, Austria
Amir Moradi Ruhr University Bochum, Germany
Svetla Nikova KU Leuven, Belgium
Tatsuaki Okamoto NTT, Japan
Elisabeth Oswald University of Bristol, UK
Thomas Peyrin Nanyang Technological University, Singapore
Rei Safavi-Naini University of Calgary, Canada
Peter Schwabe Radboud University, The Netherlands
Jae Hong Seo Myongji University, Korea
Damien Stehlé ENS de Lyon, France
Ron Steinfeld Monash University, Australia
Rainer Steinwandt Florida Atlantic University, USA
Daisuke Suzuki Mitsubishi Electric, Japan
Mehdi Tibouchi NTT, Japan
Yosuke Todo NTT, Japan
Hoang Viet Tung University of California Santa Barbara, USA
Dominique Unruh University of Tartu, Estonia
Ivan Visconti University of Salerno, Italy
Huaxiong Wang Nanyang Technological University, Singapore
Meiqin Wang Shandong University, China
Aaram Yun UNIST, Korea

External Reviewers

Michel Abdalla
Aysajan Abidin
Shashank Agrawal
Shweta Agrawal
Ahmad Ahmadi
Mamun Akand
Saed Alsayigh
Joël Alwen
Abdelrahaman Aly
Daniel Apon
Muhammad Rizwan

Asghar
Tomer Ashur
Nuttapong Attrapadung
Benedikt Auerbach
Saikrishna

Badrinarayanan
Shi Bai
Razvan Barbulescu
Lejla Batina
Georg T. Becker

Christof Beierle
Fabrice Benhamouda
Begül Bilgin
Céline Blondeau
Tobias Boelter
Carl Bootland
Jonathan Bootle
Yuri Borissov
Christina Boura
Colin Boyd
Wouter Castryck
Dario Catalano
Andrea Cerulli
Gizem Cetin
Pyrros Chaidos
Nishanth Chandran
Yu-Chen Chang
Lin Changlu
Binyi Chen
Cong Chen
Jie Chen

Ming-Shing Chen
Yu Chen
Céline Chevalier
Chongwon Cho
Kyu Young Choi
HeeWon Chung
Kai-Min Chung
Eloi de Chérisey
Michele Ciampi
Craig Costello
Joan Daemen
Ricardo Dahab
Wei Dai
Bernardo David
Thomas de Cnudde
David Derler
Apoorvaa Deshpande
Christoph Dobraunig
Yarkin Doroz
Ming Duan
Léo Ducas

VIII ASIACRYPT 2016

Dung Hoang Duong
Maria Eichlseder
Martianus Frederic

Ezerman
Xiong Fan
Pooya Farshim
Serge Fehr
Max Fillinger
Dario Fiore
Victor Fischer
Marc Fischlin
Thomas Fuhr
Jake Longo Galea
David Galindo
Peter Gazi
Essam Ghadafi
Mohona Ghosh
Zheng Gong
Rishab Goyal
Hannes Gross
Vincent Grosso
Berk Gulmezoglu
Chun Guo
Jian Guo
Qian Guo
Divya Gupta
Iftach Haitner
Dong-Guk Han
Kyoohyung Han
Shuai Han
Goichiro Hanaoka
Christian Hanser
Mitsuhiro Hattori
Gottfried Herold
Felix Heuer
Takato Hirano
Shoichi Hirose
Wei-Chih Hong
Yuan-Che Hsu
Geshi Huang
Guifang Huang
Jialin Huang
Xinyi Huang
Pavel Hubacek
Ilia Iliashenko
Mehmet Sinan Inci

Vincenzo Iovino
Gorka Irazoqui
Ai Ishida
Takanori Isobe
Tetsu Iwata
Aayush Jain
Sune Jakobsen
Yin Jia
Shaoquan Jiang
Chethan Kamath
Sabyasachi Karati
Sayasachi Karati
Yutaka Kawai
Carmen Kempka
HeeSeok Kim
Hyoseung Kim
Jinsu Kim
Myungsun Kim
Taechan Kim
Paul Kirchner
Elena Kirshanova
Fuyuki Kitagawa
Susumu Kiyoshima
Jessica Koch
Markulf Kohlweiss
Vladimir Kolesnikov
Thomas Korak
Yoshihiro Koseki
Ashutosh Kumar
Ranjit Kumaresan
Po-Chun Kuo
Robert Kübler
Thijs Laarhoven
Ching-Yi Lai
Russell W.F. Lai
Virginie Lallemand
Adeline Langlois
Sebastian Lauer
Su Le
Gregor Leander
Kwangsu Lee
Gaëtan Leurent
Anthony Leverrier
Jingwei Li
Ming Li
Wen-Ding Li

Benoit Libert
Fuchun Lin
Tingting Lin
Meicheng Liu
Yunwen Liu
Zhen Liu
Zidong Lu
Yiyuan Luo
Atul Luykx
Vadim Lyubashevsky
Bernardo Magri
Mary Maller
Alex Malozemoff
Antonio Marcedone
Benjamin Martin
Daniel Martin
Marco Martinoli
Daniel Masny
Maike Massierer
Mitsuru Matsui
Willi Meier
Bart Mennink
Peihan Miao
Kazuhiko Minematsu
Nicky Mouha
Pratyay Mukherjee
Sean Murphy
Jörn Müller-Quade
Valérie Nachef
Michael Naehrig
Matthias Nagel
Yusuke Naito
Mridul Nandi
María Naya-Plasencia
Kartik Nayak
Khoa Nguyen
Ivica Nikolic
Ventzislav Nikov
Ryo Nishimaki
Anca Nitulescu
Koji Nuida
Maciej Obremski
Toshihiro Ohigashi
Miyako Ohkubo
Sumit Kumar Pandey
Jong Hwan Park

ASIACRYPT 2016 IX

Seunghwan Park
Alain Passelègue
Christopher Patton
Bo-Yuan Peng
Rachel Player
Antigoni Polychroniadou
Bertram Pöttering
Sebastian Ramacher
Vanishree Rao
Shuqin Ren
Reza Reyhanitabar
Bastian Richter
Thomas Ristenpart
Mike Rosulek
Hansol Ryu
Akshayaram Srinivasan
Yusuke Sakai
Kochi Sakumoto
Amin Sakzad
Simona Samardjiska
Yu Sasaki
Pascal Sasdrich
Falk Schellenberg
Benedikt Schmidt
Tobias Schneider
Jacob Schuldt
Okan Seker
Nicolas Sendrier
Jae Hong Seo
Minhye Seo
Yannick Seurin
Masoumeh Shafienejad
Barak Shani
Danilo Sijacic
Alice Silverberg
Siang Meng Sim
Dave Singelee

Luisa Siniscalchi
Daniel Slamanig
Nigel Smart
Raphael Spreitzer
Douglas Stebila
Christoph Striecks
Takeshi Sugawara
Yao Sun
Berk Sunar
Koutarou Suzuki
Alan Szepieniec
Mostafa Taha
Somayeh Taheri
Junko Takahashi
Katsuyuki Takashima
Benjamin Tan
Jean-Pierre Tillich
Junichi Tomida
Yiannis Tselekounis
Himanshu Tyagi
Thomas Unterluggauer
Damien Vergnaud
Gilles Villard
Vanessa Vitse
Damian Vizar
Michael Walter
Han Wang
Hao Wang
Qiungju Wang
Wei Wang
Yuyu Wang
Yohei Watanabe
Hoeteck Wee
Wei Wei
Mor Weiss
Mario Werner
Bas Westerbaan

Carolyn Whitnall
Alexander Wild
Baofeng Wu
Keita Xagawa
Zejun Xiang
Hong Xu
Weijia Xue
Shota Yamada
Takashi Yamakawa
Hailun Yan
Jun Yan
Bo-Yin Yang
Bohan Yang
Guomin Yang
Mohan Yang
Shang-Yi Yang
Kan Yasuda
Xin Ye
Wentan Yi
Scott Yilek
Kazuki Yoneyama
Rina Zeitoun
Fan Zhang
Guoyan Zhang
Liang Feng Zhang
Liangfeng Zhang
Tao Zhang
Wentao Zhang
Yusi Zhang
Zongyang Zhang
Jingyuan Zhao
Yongjun Zhao
Yixin Zhong
Hong-Sheng Zhou
Xiao Zhou
Jincheng Zhuang

Local Organizing Committee

Co-chairs

Ngo Bao Chau VIASM, Vietnam and University of Chicago, USA
Phan Duong Hieu XLIM, University of Limoges, France

X ASIACRYPT 2016

Members

Nguyen Huu Du VIASM, Vietnam
Nguyen Quoc Khanh Vietcombank, Vietnam
Nguyen Duy Lan Microsoft Research, USA
Duong Ngoc Thai Google, USA
Nguyen Ta Toan Khoa NTU, Singapore
Nguyen Ngoc Tuan VIASM, Vietnam
Le Thi Lan Anh VIASM, Vietnam

Sponsors

XLIM
Microsoft Research
CISCO
Intel
Google

ASIACRYPT 2016 XI

Invited Talks

Advances in Functional Encryption

Hoeteck Wee

ENS, Paris, France
wee@di.ens.fr

Abstract. Functional encryption is a novel paradigm for public-key encryption that
enables both fine-grained access control and selective computation on encrypted
data, as is necessary to protect big, complex data in the cloud. In this talk, I will
provide a brief introduction to functional encryption and an overview of the state
of the art, with a focus on constructions based on lattices.

CNRS, INRIA and Columbia University. Supported in part by ERC Project aSCEND (H2020 639554)
and NSF Award CNS-1445424.

The Reality of Cryptographic Deployments
on the Internet

Nadia Heninger

University of Pennsylvania, Philadelphia, USA

Abstract. Security proofs for cryptographic primitives and protocols rely on a
number of (often implicit) assumptions about the world in which these compo-
nents live. They assume that implementations are correct, that specifications are
followed, that systems make sensible choices about error conditions, and that
reliable sources of random numbers are present. However, a number of real world
studies examining cryptographic deployments have shown that these assump-
tions are often not true on a large scale, with catastrophic effects for security.
In addition to simple programming errors, many real-world cryptographic vul-
nerabilities can be traced back to more complex underlying causes, such as
backwards compatibility, legacy protocols and software, hard-coded resource
limits, and political interference in design choices.

Many of these issues appear on the surface to be at an entirely different level
of abstraction from the cryptographic primitives used in their construction.
However, by taking advantage of the structure of many cryptographic primitives
when used at Internet scale, it is possible to uncover fundamental vulnerabilities
in implementations. I will discuss the interplay between mathematical crypt-
analysis techniques and the thorny implementation issues that lead to vulnerable
cryptographic deployments in the real world.

Contents – Part I

Asiacrypt 2016 Best Paper

Faster Fully Homomorphic Encryption: Bootstrapping in Less
Than 0.1 Seconds . 3

Ilaria Chillotti, Nicolas Gama, Mariya Georgieva,
and Malika Izabachène

Mathematical Analysis I

A General Polynomial Selection Method and New Asymptotic
Complexities for the Tower Number Field Sieve Algorithm 37

Palash Sarkar and Shashank Singh

On the Security of Supersingular Isogeny Cryptosystems 63
Steven D. Galbraith, Christophe Petit, Barak Shani, and Yan Bo Ti

AES and White-Box

Simpira v2: A Family of Efficient Permutations Using the AES
Round Function . 95

Shay Gueron and Nicky Mouha

Towards Practical Whitebox Cryptography: Optimizing Efficiency
and Space Hardness. 126

Andrey Bogdanov, Takanori Isobe, and Elmar Tischhauser

Efficient and Provable White-Box Primitives . 159
Pierre-Alain Fouque, Pierre Karpman, Paul Kirchner,
and Brice Minaud

Hash Function

MiMC: Efficient Encryption and Cryptographic Hashing with Minimal
Multiplicative Complexity . 191

Martin Albrecht, Lorenzo Grassi, Christian Rechberger, Arnab Roy,
and Tyge Tiessen

Balloon Hashing: A Memory-Hard Function Providing Provable Protection
Against Sequential Attacks . 220

Dan Boneh, Henry Corrigan-Gibbs, and Stuart Schechter

http://dx.doi.org/10.1007/978-3-662-53887-6_1
http://dx.doi.org/10.1007/978-3-662-53887-6_1
http://dx.doi.org/10.1007/978-3-662-53887-6_2
http://dx.doi.org/10.1007/978-3-662-53887-6_2
http://dx.doi.org/10.1007/978-3-662-53887-6_3
http://dx.doi.org/10.1007/978-3-662-53887-6_4
http://dx.doi.org/10.1007/978-3-662-53887-6_4
http://dx.doi.org/10.1007/978-3-662-53887-6_5
http://dx.doi.org/10.1007/978-3-662-53887-6_5
http://dx.doi.org/10.1007/978-3-662-53887-6_6
http://dx.doi.org/10.1007/978-3-662-53887-6_7
http://dx.doi.org/10.1007/978-3-662-53887-6_7
http://dx.doi.org/10.1007/978-3-662-53887-6_8
http://dx.doi.org/10.1007/978-3-662-53887-6_8

Linear Structures: Applications to Cryptanalysis
of Round-Reduced KECCAK. 249

Jian Guo, Meicheng Liu, and Ling Song

Randomness

When Are Fuzzy Extractors Possible? . 277
Benjamin Fuller, Leonid Reyzin, and Adam Smith

More Powerful and Reliable Second-Level Statistical Randomness Tests
for NIST SP 800-22 . 307

Shuangyi Zhu, Yuan Ma, Jingqiang Lin, Jia Zhuang, and Jiwu Jing

Authenticated Encryption

Trick or Tweak: On the (In)security of OTR’s Tweaks 333
Raphael Bost and Olivier Sanders

Universal Forgery and Key Recovery Attacks on ELmD Authenticated
Encryption Algorithm . 354

Aslı Bay, Oğuzhan Ersoy, and Ferhat Karakoç

Statistical Fault Attacks on Nonce-Based Authenticated Encryption
Schemes . 369

Christoph Dobraunig, Maria Eichlseder, Thomas Korak, Victor Lomné,
and Florian Mendel

Authenticated Encryption with Variable Stretch . 396
Reza Reyhanitabar, Serge Vaudenay, and Damian Vizár

Block Cipher I

Salvaging Weak Security Bounds for Blockcipher-Based Constructions 429
Thomas Shrimpton and R. Seth Terashima

How to Build Fully Secure Tweakable Blockciphers from Classical
Blockciphers. 455

Lei Wang, Jian Guo, Guoyan Zhang, Jingyuan Zhao, and Dawu Gu

Design Strategies for ARX with Provable Bounds: SPARX and LAX 484
Daniel Dinu, Léo Perrin, Aleksei Udovenko, Vesselin Velichkov,
Johann Großschädl, and Alex Biryukov

SCA and Leakage Resilience I

Side-Channel Analysis Protection and Low-Latency in Action:
– Case Study of PRINCE and Midori – . 517

Amir Moradi and Tobias Schneider

XVIII Contents – Part I

http://dx.doi.org/10.1007/978-3-662-53887-6_9
http://dx.doi.org/10.1007/978-3-662-53887-6_9
http://dx.doi.org/10.1007/978-3-662-53887-6_10
http://dx.doi.org/10.1007/978-3-662-53887-6_11
http://dx.doi.org/10.1007/978-3-662-53887-6_11
http://dx.doi.org/10.1007/978-3-662-53887-6_12
http://dx.doi.org/10.1007/978-3-662-53887-6_13
http://dx.doi.org/10.1007/978-3-662-53887-6_13
http://dx.doi.org/10.1007/978-3-662-53887-6_14
http://dx.doi.org/10.1007/978-3-662-53887-6_14
http://dx.doi.org/10.1007/978-3-662-53887-6_15
http://dx.doi.org/10.1007/978-3-662-53887-6_16
http://dx.doi.org/10.1007/978-3-662-53887-6_17
http://dx.doi.org/10.1007/978-3-662-53887-6_17
http://dx.doi.org/10.1007/978-3-662-53887-6_18
http://dx.doi.org/10.1007/978-3-662-53887-6_19
http://dx.doi.org/10.1007/978-3-662-53887-6_19

Characterisation and Estimation of the Key Rank Distribution
in the Context of Side Channel Evaluations . 548

Daniel P. Martin, Luke Mather, Elisabeth Oswald, and Martijn Stam

Taylor Expansion of Maximum Likelihood Attacks for Masked
and Shuffled Implementations. 573

Nicolas Bruneau, Sylvain Guilley, Annelie Heuser, Olivier Rioul,
François-Xavier Standaert, and Yannick Teglia

Unknown-Input Attacks in the Parallel Setting: Improving the Security
of the CHES 2012 Leakage-Resilient PRF . 602

Marcel Medwed, François-Xavier Standaert, Ventzislav Nikov,
and Martin Feldhofer

Block Cipher II

A New Algorithm for the Unbalanced Meet-in-the-Middle Problem. 627
Ivica Nikolić and Yu Sasaki

Applying MILP Method to Searching Integral Distinguishers Based
on Division Property for 6 Lightweight Block Ciphers. 648

Zejun Xiang, Wentao Zhang, Zhenzhen Bao, and Dongdai Lin

Reverse Cycle Walking and Its Applications. 679
Sarah Miracle and Scott Yilek

Mathematical Analysis II

Optimization of LPN Solving Algorithms . 703
Sonia Bogos and Serge Vaudenay

The Kernel Matrix Diffie-Hellman Assumption . 729
Paz Morillo, Carla Ràfols, and Jorge L. Villar

Cryptographic Applications of Capacity Theory: On the Optimality
of Coppersmith’s Method for Univariate Polynomials 759

Ted Chinburg, Brett Hemenway, Nadia Heninger, and Zachary Scherr

A Key Recovery Attack on MDPC with CCA Security
Using Decoding Errors . 789

Qian Guo, Thomas Johansson, and Paul Stankovski

SCA and Leakage Resilience II

A Tale of Two Shares: Why Two-Share Threshold Implementation Seems
Worthwhile—and Why It Is Not . 819

Cong Chen, Mohammad Farmani, and Thomas Eisenbarth

Contents – Part I XIX

http://dx.doi.org/10.1007/978-3-662-53887-6_20
http://dx.doi.org/10.1007/978-3-662-53887-6_20
http://dx.doi.org/10.1007/978-3-662-53887-6_21
http://dx.doi.org/10.1007/978-3-662-53887-6_21
http://dx.doi.org/10.1007/978-3-662-53887-6_22
http://dx.doi.org/10.1007/978-3-662-53887-6_22
http://dx.doi.org/10.1007/978-3-662-53887-6_23
http://dx.doi.org/10.1007/978-3-662-53887-6_24
http://dx.doi.org/10.1007/978-3-662-53887-6_24
http://dx.doi.org/10.1007/978-3-662-53887-6_25
http://dx.doi.org/10.1007/978-3-662-53887-6_26
http://dx.doi.org/10.1007/978-3-662-53887-6_26
http://dx.doi.org/10.1007/978-3-662-53887-6_27
http://dx.doi.org/10.1007/978-3-662-53887-6_28
http://dx.doi.org/10.1007/978-3-662-53887-6_28
http://dx.doi.org/10.1007/978-3-662-53887-6_29
http://dx.doi.org/10.1007/978-3-662-53887-6_29
http://dx.doi.org/10.1007/978-3-662-53887-6_30
http://dx.doi.org/10.1007/978-3-662-53887-6_30

Cryptographic Reverse Firewall via Malleable Smooth Projective
Hash Functions . 844

Rongmao Chen, Yi Mu, Guomin Yang, Willy Susilo, Fuchun Guo,
and Mingwu Zhang

Efficient Public-Key Cryptography with Bounded Leakage
and Tamper Resilience. 877

Antonio Faonio and Daniele Venturi

Public-Key Cryptosystems Resilient to Continuous Tampering and Leakage
of Arbitrary Functions . 908

Eiichiro Fujisaki and Keita Xagawa

Author Index . 939

XX Contents – Part I

http://dx.doi.org/10.1007/978-3-662-53887-6_31
http://dx.doi.org/10.1007/978-3-662-53887-6_31
http://dx.doi.org/10.1007/978-3-662-53887-6_32
http://dx.doi.org/10.1007/978-3-662-53887-6_32
http://dx.doi.org/10.1007/978-3-662-53887-6_33
http://dx.doi.org/10.1007/978-3-662-53887-6_33

Contents – Part II

Asiacrypt 2016 Award Papers

Nonlinear Invariant Attack: Practical Attack on Full SCREAM,
iSCREAM, and Midori64 . 3

Yosuke Todo, Gregor Leander, and Yu Sasaki

Cliptography: Clipping the Power of Kleptographic Attacks 34
Alexander Russell, Qiang Tang, Moti Yung, and Hong-Sheng Zhou

Zero Knowledge

Zero-Knowledge Accumulators and Set Algebra . 67
Esha Ghosh, Olga Ohrimenko, Dimitrios Papadopoulos,
Roberto Tamassia, and Nikos Triandopoulos

Zero-Knowledge Arguments for Matrix-Vector Relations and Lattice-Based
Group Encryption . 101

Benoît Libert, San Ling, Fabrice Mouhartem, Khoa Nguyen,
and Huaxiong Wang

Post Quantum Cryptography

From 5-Pass MQ-Based Identification to MQ-Based Signatures 135
Ming-Shing Chen, Andreas Hülsing, Joost Rijneveld,
Simona Samardjiska, and Peter Schwabe

Collapse-Binding Quantum Commitments Without Random Oracles 166
Dominique Unruh

Digital Signatures Based on the Hardness of Ideal Lattice Problems
in All Rings . 196

Vadim Lyubashevsky

Provable Security

Adaptive Oblivious Transfer and Generalization . 217
Olivier Blazy, Céline Chevalier, and Paul Germouty

Selective Opening Security from Simulatable Data Encapsulation 248
Felix Heuer and Bertram Poettering

http://dx.doi.org/10.1007/978-3-662-53890-6_1
http://dx.doi.org/10.1007/978-3-662-53890-6_1
http://dx.doi.org/10.1007/978-3-662-53890-6_2
http://dx.doi.org/10.1007/978-3-662-53890-6_3
http://dx.doi.org/10.1007/978-3-662-53890-6_4
http://dx.doi.org/10.1007/978-3-662-53890-6_4
http://dx.doi.org/10.1007/978-3-662-53890-6_5
http://dx.doi.org/10.1007/978-3-662-53890-6_5
http://dx.doi.org/10.1007/978-3-662-53890-6_5
http://dx.doi.org/10.1007/978-3-662-53890-6_6
http://dx.doi.org/10.1007/978-3-662-53890-6_7
http://dx.doi.org/10.1007/978-3-662-53890-6_7
http://dx.doi.org/10.1007/978-3-662-53890-6_8
http://dx.doi.org/10.1007/978-3-662-53890-6_9

Selective-Opening Security in the Presence of Randomness Failures 278
Viet Tung Hoang, Jonathan Katz, Adam O’Neill, and Mohammad Zaheri

Efficient KDM-CCA Secure Public-Key Encryption
for Polynomial Functions . 307

Shuai Han, Shengli Liu, and Lin Lyu

Structure-Preserving Smooth Projective Hashing . 339
Olivier Blazy and Céline Chevalier

Digital Signature

Signature Schemes with Efficient Protocols and Dynamic Group Signatures
from Lattice Assumptions . 373

Benoît Libert, San Ling, Fabrice Mouhartem, Khoa Nguyen,
and Huaxiong Wang

Towards Tightly Secure Lattice Short Signature and Id-Based Encryption . . . 404
Xavier Boyen and Qinyi Li

From Identification to Signatures, Tightly: A Framework and Generic
Transforms . 435

Mihir Bellare, Bertram Poettering, and Douglas Stebila

How to Obtain Fully Structure-Preserving (Automorphic) Signatures
from Structure-Preserving Ones. 465

Yuyu Wang, Zongyang Zhang, Takahiro Matsuda, Goichiro Hanaoka,
and Keisuke Tanaka

Functional and Homomorphic Cryptography

Multi-key Homomorphic Authenticators. 499
Dario Fiore, Aikaterini Mitrokotsa, Luca Nizzardo, and Elena Pagnin

Multi-input Functional Encryption with Unbounded-Message Security 531
Vipul Goyal, Aayush Jain, and Adam O’Neill

Verifiable Functional Encryption . 557
Saikrishna Badrinarayanan, Vipul Goyal, Aayush Jain, and Amit Sahai

ABE and IBE

Dual System Encryption Framework in Prime-Order Groups
via Computational Pair Encodings . 591

Nuttapong Attrapadung

XXII Contents – Part II

http://dx.doi.org/10.1007/978-3-662-53890-6_10
http://dx.doi.org/10.1007/978-3-662-53890-6_11
http://dx.doi.org/10.1007/978-3-662-53890-6_11
http://dx.doi.org/10.1007/978-3-662-53890-6_12
http://dx.doi.org/10.1007/978-3-662-53890-6_13
http://dx.doi.org/10.1007/978-3-662-53890-6_13
http://dx.doi.org/10.1007/978-3-662-53890-6_14
http://dx.doi.org/10.1007/978-3-662-53890-6_15
http://dx.doi.org/10.1007/978-3-662-53890-6_15
http://dx.doi.org/10.1007/978-3-662-53890-6_16
http://dx.doi.org/10.1007/978-3-662-53890-6_16
http://dx.doi.org/10.1007/978-3-662-53890-6_17
http://dx.doi.org/10.1007/978-3-662-53890-6_18
http://dx.doi.org/10.1007/978-3-662-53890-6_19
http://dx.doi.org/10.1007/978-3-662-53890-6_20
http://dx.doi.org/10.1007/978-3-662-53890-6_20

Efficient IBE with Tight Reduction to Standard Assumption
in the Multi-challenge Setting . 624

Junqing Gong, Xiaolei Dong, Jie Chen, and Zhenfu Cao

Déjà Q All Over Again: Tighter and Broader Reductions
of q-Type Assumptions . 655

Melissa Chase, Mary Maller, and Sarah Meiklejohn

Partitioning via Non-linear Polynomial Functions: More Compact IBEs
from Ideal Lattices and Bilinear Maps . 682

Shuichi Katsumata and Shota Yamada

Foundation

How to Generate and Use Universal Samplers . 715
Dennis Hofheinz, Tibor Jager, Dakshita Khurana, Amit Sahai,
Brent Waters, and Mark Zhandry

Iterated Random Oracle: A Universal Approach for Finding Loss
in Security Reduction . 745

Fuchun Guo, Willy Susilo, Yi Mu, Rongmao Chen, Jianchang Lai,
and Guomin Yang

NIZKs with an Untrusted CRS: Security in the Face of Parameter
Subversion . 777

Mihir Bellare, Georg Fuchsbauer, and Alessandra Scafuro

Cryptographic Protocol

Universal Composition with Responsive Environments 807
Jan Camenisch, Robert R. Enderlein, Stephan Krenn, Ralf Küsters,
and Daniel Rausch

A Shuffle Argument Secure in the Generic Model. 841
Prastudy Fauzi, Helger Lipmaa, and Michał Zając

Efficient Public-Key Distance Bounding Protocol . 873
Handan Kılınç and Serge Vaudenay

Indistinguishable Proofs of Work or Knowledge . 902
Foteini Baldimtsi, Aggelos Kiayias, Thomas Zacharias,
and Bingsheng Zhang

Multi-party Computation

Size-Hiding Computation for Multiple Parties . 937
Kazumasa Shinagawa, Koji Nuida, Takashi Nishide, Goichiro Hanaoka,
and Eiji Okamoto

Contents – Part II XXIII

http://dx.doi.org/10.1007/978-3-662-53890-6_21
http://dx.doi.org/10.1007/978-3-662-53890-6_21
http://dx.doi.org/10.1007/978-3-662-53890-6_22
http://dx.doi.org/10.1007/978-3-662-53890-6_22
http://dx.doi.org/10.1007/978-3-662-53890-6_23
http://dx.doi.org/10.1007/978-3-662-53890-6_23
http://dx.doi.org/10.1007/978-3-662-53890-6_24
http://dx.doi.org/10.1007/978-3-662-53890-6_25
http://dx.doi.org/10.1007/978-3-662-53890-6_25
http://dx.doi.org/10.1007/978-3-662-53890-6_26
http://dx.doi.org/10.1007/978-3-662-53890-6_26
http://dx.doi.org/10.1007/978-3-662-53890-6_27
http://dx.doi.org/10.1007/978-3-662-53890-6_28
http://dx.doi.org/10.1007/978-3-662-53890-6_29
http://dx.doi.org/10.1007/978-3-662-53890-6_30
http://dx.doi.org/10.1007/978-3-662-53890-6_31

How to Circumvent the Two-Ciphertext Lower Bound for Linear
Garbling Schemes . 967

Carmen Kempka, Ryo Kikuchi, and Koutarou Suzuki

Constant-Round Asynchronous Multi-Party Computation Based
on One-Way Functions . 998

Sandro Coretti, Juan Garay, Martin Hirt, and Vassilis Zikas

Reactive Garbling: Foundation, Instantiation, Application. 1022
Jesper Buus Nielsen and Samuel Ranellucci

Author Index . 1053

XXIV Contents – Part II

http://dx.doi.org/10.1007/978-3-662-53890-6_32
http://dx.doi.org/10.1007/978-3-662-53890-6_32
http://dx.doi.org/10.1007/978-3-662-53890-6_33
http://dx.doi.org/10.1007/978-3-662-53890-6_33
http://dx.doi.org/10.1007/978-3-662-53890-6_34

Asiacrypt 2016 Best Paper

Faster Fully Homomorphic Encryption:
Bootstrapping in Less Than 0.1 Seconds

Ilaria Chillotti1(B), Nicolas Gama2,1, Mariya Georgieva3(B),
and Malika Izabachène4(B)

1 Laboratoire de Mathématiques de Versailles, UVSQ, CNRS,
Université Paris-Saclay, 78035 Versailles, France

ilaria.chillotti@uvsq.fr
2 Inpher, Lausanne, Switzerland

nicolas.gama@gmail.com
3 Gemalto, 6 rue de la Verrerie, 92190 Meudon, France

mariya.georgieva@gemalto.com
4 CEA LIST, Point Courrier 172, 91191 Gif-sur-Yvette Cedex, France

malika.izabachene@cea.fr

Abstract. In this paper, we revisit fully homomorphic encryption
(FHE) based on GSW and its ring variants. We notice that the internal
product of GSW can be replaced by a simpler external product between
a GSW and an LWE ciphertext.

We show that the bootstrapping scheme FHEW of Ducas and Mic-
ciancio [11] can be expressed only in terms of this external product. As
a result, we obtain a speed up from less than 1 s to less than 0.1 s. We
also reduce the 1GB bootstrapping key size to 24 MB, preserving the
same security levels, and we improve the noise propagation overhead by
replacing exact decomposition algorithms with approximate ones.

Moreover, our external product allows to explain the unique asymme-
try in the noise propagation of GSW samples and makes it possible to
evaluate deterministic automata homomorphically as in [13] in an effi-
cient way with a noise overhead only linear in the length of the tested
word.

Finally, we provide an alternative practical analysis of LWE based
scheme, which directly relates the security parameter to the error rate
of LWE and the entropy of the LWE secret key.

Keywords: Fully homomorphic encryption · Bootstrapping · Lattices ·
LWE · GSW

1 Introduction

Fully homomorphic encryption (FHE) allows to perform computations over
encrypted data without decrypting them. This concept has long been regarded
as an open problem until the breakthrough paper of Gentry in 2009 [15] which
demonstrates the feasibility of computing any function on encrypted data. Since
c© International Association for Cryptologic Research 2016
J.H. Cheon and T. Takagi (Eds.): ASIACRYPT 2016, Part I, LNCS 10031, pp. 3–33, 2016.
DOI: 10.1007/978-3-662-53887-6 1

4 I. Chillotti et al.

then, many constructions have appeared involving new mathematical and algo-
rithmic concepts and improving efficiency.

In homomorphic encryption, messages are encrypted with a noise that grows
at each homomorphic evaluation of an elementary operation. In a somewhat
encryption scheme, the number of homomorphic operations is limited, but can
be made asymptotically large using bootstrapping [15]. This technical trick intro-
duced by Gentry allows to evaluate arbitrary circuits by essentially evaluating
the decryption function on encrypted secret keys. This step has remained very
costly until the recent paper of Ducas and Micciancio [11], which presented a
very fast bootstrapping procedure running in around 0.69 s, making an impor-
tant step towards practical FHE for arbitrary NAND circuits. In this paper, we
further improve the bootstrapping procedure.

We first provide an intuitive formalization of LWE/RingLWE on numbers or
polynomials over the real torus, obtained by combining the Scale-Invariant-LWE
problem of [9] or the LWE normal form of [10] with the General-LWE problem of
Brakerski-Gentry-Vaikutanathan [5]. We call TLWE this unified representation
of LWE ciphertexts, which encode polynomials over the Torus. Its security relies
either on the hardness of general or ideal lattice reduction, depending on the
choice of dimensions. Using the same formalism, we extend the GSW/RingGSW
ciphertexts to TGSW, which is the combined analogue of Gentry-Sahai-Water’s
ciphertexts from [3,16], and which can also instantiate the ring version used in
Ducas-Micciancio scheme [11] in the FHEW cryptosystem. Similarly, a TGSW
ciphertext encodes an integer polynomial message, and depending on the choice
of dimensions, its security is also based on (worst-case) generic or ideal lattice
reduction algorithms. TLWE and TGSW are basically dual to each other, and
the main idea of our efficiency result comes from the fact that these two schemes
can directly be combined together to map the external product of their two
messages into a TLWE sample. Since a TGSW sample is essentially a matrix
whose individual rows are TLWE samples, our external product TGSW times
TLWE is much quicker than the usual internal product TGSW times TGSW
used in previous work. This could mostly be understood as comparing the speed
of the computation of a matrix-vector product to a matrix-matrix product. As a
result, we obtain a significant improvement (12 times faster) of the most efficient
bootstrapping procedure [11]; it now runs in less than 0.052 s.

We also analyze the case of leveled encryption. Using an external product
means that we lose some composability properties in the design of homomorphic
circuits. This corresponds to circuits where boolean gates have different kinds of
wires that cannot be freely interconnected. Still, we show that we maintain the
expressiveness of the whole binary decision diagram and automata-based logic,
which was introduced in [13] with the GSW-GSW internal product, and we
tighten the analysis. Indeed, while it was impractical (10 transitions per second
in the ring case, and impractical in the non-ring case), we show that the TGSW-
TLWE external product enables to evaluate up to 5000 transitions per second, in
a leveled homomorphic manner. We also refine the mapping between automata
and homomorphic gates, and reduce the number of homomorphic operations to
test a word with a deterministic automata. This allows to compile and evaluate

Faster Fully Homomorphic Encryption 5

constant-time algorithms (i.e. with data-independent control flow) in a leveled
homomorphic manner, with only sub-linear noise overhead in the running time.

We also propose a new security analysis where the security parameter is
directly expressed as a function of the entropy of the secret and the error rate.
For the parameters that we propose in our implementation, we predict 188-bits
of security for both the bootstrapping key and the keyswitching key.

Roadmap. In Sect. 2, we give mathematical definitions and a quick overview of
the classical version of LWE-based schemes. In Sect. 3, we generalize LWE and
GSW schemes using a torus representation of the samples. We also review the
arithmetic operations over the torus and introduce our main theorem character-
izing the new morphism between TLWE and TGSW. As a proof of concept, we
present two main applications in Sect. 4 where we explain our fast bootstrapping
procedure, and in Sect. 5, we present efficient leveled evaluation of deterministic
automata, and apply it on a constant-time algorithm with logarithmic memory.
Finally, we provide a practical security analysis in Sect. 6.

2 Background

Notation. In the rest of the paper we will use the following notations. The
security parameter will be denoted as λ. The set {0, 1} (without any structure)
will be written B. The real Torus R/Z, called T set of real numbers modulo 1. R
denotes the ring of polynomials Z[X]/(XN +1). TN [X] denotes R[X]/(XN +1)
mod 1. Finally, we note by Mp,q(E) the set of matrices p× q with entries in E.

This section combines some algebra theory, namely abelian groups, commu-
tative rings, R-modules, and on some metrics of the continuous field R.

Definition 2.1 (R-module). Let (R,+,×) be a commutative ring. We say that
a set M is a R-module when (M,+) is an abelian group, and when there exists an
external operation · which is bi-distributive and homogeneous. Namely, ∀r, s ∈ R
and x, y ∈ M , 1R · x = x, (r + s) · x = r · x + s · x, r · (x + y) = r · x + r · y, and
(r × s) · x = r · (s · x).

Any abelian group is by construction a Z-module for the iteration (or expo-
nentiation) of its own law. In this paper, one of the most important abelian
group we use is the real torus T, composed of all reals modulo 1 (R mod 1).
The torus is not a ring, since the real internal product is not compatible with
the modulo 1 projection (expressions like 0 × 1

2 are undefined). But as an addi-
tive group, it is a Z-module, and the external product · from Z×T to T, like in
0 · 12 = 0, is well defined. More importantly, we recall that for all positive integers
N and k, (TN [X]k,+, •) is a R-module.

A R-module M shares many arithmetic operations and constructions with
vector spaces: vectors Mn or matrices Mn,m(M) are also R-modules, and their
left dot product with a vector in Rn or left matrix product in Mk,n(R) are both
well defined.

6 I. Chillotti et al.

Gaussian Distributions. Let σ ∈ R
+ be a parameter and k ≥ 1 the dimension.

For all x, c ∈ R
k, we note ρσ,c(x) = exp(−π ‖x − c‖2 /σ2). If c is omitted,

then it is implicitly 0. Let S be a subset of Rk, ρσ,c(S) denotes
∑

x∈S
ρσ,c(x)

or
∫

x∈S
ρ

σ,c(x).dx. For all closed (continuous or discrete) additive subgroup
M ⊆ R

k, then ρσ,c(M) is finite, and defines a (restricted) Gaussian Distribution
of parameter σ, standard deviation

√
2/πσ and center c over M , with the density

function DM,σ,c(x) = ρσ,c(x)/ρσ,c(M). Let L be a discrete subgroup of M , then
the Modular Gaussian distribution over M/L exists and is defined by the density
DM/L,σ,c(x) = DM,σ,c(x + L). Furthermore, when span(M) = span(L), then
M/L admits a uniform distribution of constant density UM/L. In this case, the
smoothing parameter η

M,ε(L) of L in M is defined as the smallest σ ∈ R such
that supx∈M |DM/L,σ,c(x) − UM/L| ≤ ε · UM/L. If M is omitted, it implicitly
means R

k.

Subgaussian Distributions. A distribution X over R is σ-subgaussian iff it
satisfies the Laplace-transformation bound: ∀t ∈ R,E(exp(tX)) ≤ exp(σ2t2/2).
By Markov’s inequality, this implies that the tails of X are bounded by
the Gaussian function of standard deviation σ: ∀x > 0,P(|X| ≥ x) ≤
2 exp(−x2/2σ2). As an example, the Gaussian distribution of standard devia-
tion σ (i.e. parameter

√
π/2σ), the equi-distribution on {−σ, σ}, and the uni-

form distribution over [−√
3σ,

√
3σ], which all have standard deviation σ, are

σ-subgaussian1. If X and X ′ are two independent σ and σ′-subgaussian vari-
ables, then for all α, β ∈ R, αX + βX ′ is

√
α2σ2 + β2σ′2-subgaussian.

Distance and Norms. We use the standard ‖·‖p and ‖·‖∞ norms for scalars
and vectors over the real field or over the integers. By extension, the norm
‖P (X)‖p of a real or integer polynomial P ∈ R[X] is the norm of its coefficient
vector. If the polynomial is modulo XN + 1, we take the norm of its unique
representative of degree ≤ N − 1.

By abuse of notation, we write ‖x‖p = minu∈x+Zk(‖u‖p) for all x ∈ T
k. It is

the p-norm of the representative of x with all coefficients in] − 1
2 , 1

2]. Although
it satisfies the separation and the triangular inequalities, this notation is not
a norm, because it lacks homogeneity2, and T

k is not a vector space either.
But we have ∀m ∈ Z, ‖m · x‖p ≤ |m| ‖x‖p. By extension, we define ‖a‖p for a
polynomial a ∈ TN [X] as the p- norm of its unique representative in R[X] of
degree ≤ N − 1 and with coefficients in] − 1

2 , 1
2].

1 For the first two distributions, it is tight, but the uniform distribution over
[−√

3σ,
√

3σ] is even 0.78σ-subgaussian.
2 Mathematically speaking, a more accurate notion would be distp(x, y) = ‖x − y‖p,

which is a distance. However, the norm symbol is clearer for almost all practical
purposes.

Faster Fully Homomorphic Encryption 7

Definition 2.2 (Infinity norm over Mp,q(TN [X])). Let A ∈ Mp,q(TN [X]).
We define the infinity norm of A as

‖A‖∞ = max
i∈[[1,p]]
j∈[[1,q]]

‖ai,j‖∞ .

Concentrated Distribution on the Torus, Expectation and Variance
A distribution X on the torus is concentrated iff. its support is included in a
ball of radius 1

4 of T, except for negligible probability. In this case, we define
the variance Var(X) and the expectation E(X) of X as respectively Var(X) =
minx̄∈T

∑
p(x)|x − x̄|2 and E(X) as the position x̄ ∈ T which minimizes this

expression. By extension, we say that a distribution X ′ over T
n or TN [X]k is

concentrated iff. each coefficient has an independent concentrated distribution
on the torus. Then the expectation E(X ′) is the vector of expectations of each
coefficient, and Var(X ′) denotes the maximum of each coefficient’s Variance.

These expectation and variance over T follow the same linearity rules than
their classical equivalent over the reals.

Fact 2.3. Let X1,X2 be two independent concentrated distributions on either
T,Tn or TN [X]k, and e1, e2 ∈ Z such that X = e1 · X1 + e2 · X2 remains concen-
trated, then E(X) = e1 ·E(X1)+e2 ·E(X2) and Var(X) ≤ e21 ·Var(X1)+e22 ·Var(X2).

Also, subgaussian distributions with small enough parameters are necessarily
concentrated:

Fact 2.4. Every distribution X on either T,Tn or TN [X]k where each coefficient
is σ-subgaussian where σ ≤ 1/

√
32 log(2)(λ + 1) is a concentrated distribution:

a fraction 1 − 2−λ of its mass is in the interval [− 1
4 , 1

4].

2.1 Learning with Error Problem

The Learning With Errors (LWE) problem was introduced by Regev in 2005 [21].
The Ring variant, called RingLWE, was introduced by Lyubashevsky, Peikert
and Regev in 2010 [19]. Both variants are nowadays extensively used for the
construction of lattice-based Homomorphic Encryption schemes. In the original
definition [21], a LWE sample has its right member on the torus and is defined
using continuous Gaussian distributions. Here, we will work entirely on the real
torus, employing the same formalism as the Scale Invariant LWE (SILWE) scheme
in [9], or LWE scale-invariant normal form in [10]. Without loss of generality, we
refer to it as LWE.

Definition 2.5 ((Homogeneous) LWE). Let n ≥ 1 be an integer, α ∈ R
+ be

a noise parameter and s be a uniformly distributed secret in some bounded set
S ∈ Z

n. Denote by DLWE
s,α the distribution over T

n × T obtained by sampling a
couple (a, b), where the left member a ∈ T

n is chosen uniformly random and the
right member b = a · s + e. The error e is a sample from a gaussian distribution
with parameter α.

8 I. Chillotti et al.

– Search problem: given access to polynomially many LWE samples, find s ∈ S.
– Decision problem: distinguish between LWE samples and uniformly random

samples from T
n × T.

Both the LWE search or decision problems are reducible to each other, and
their average case is asymptotically as hard as worst-case lattice problems. In
practice, both problems are also intractable, and their hardness increases with
the the entropy of the key set S (i.e. n if keys are binary) and α ∈]0, ηε(Z)[.

Regev’s encryption scheme [21] is the following: Given a discrete message
space M ∈ T, for instance {0, 1

2}, a message μ ∈ M is encrypted by summing
up the trivial LWE sample (0, μ) of μ to a Homogeneous LWE sample (a, b) ∈
T

n+1 with respect to a secret key s ∈ B
n and a noise parameter α ∈ R

+. The
semantic security of the scheme is equivalent to the LWE decisional problem. The
decryption of a sample c = (a, b) consists in computing this quantity ϕs(a, b) =
b − s · a, which we call the phase of c, and to round it to the nearest element in
M. Decryption is correct with overwhelming probability 1 − 2−p provided that
the parameter α is O(R/

√
p) where R is the packing radius of M.

3 Generalization

In this section we extend this presentation to rings, following the generalization
of [5], and also to GSW [16].

3.1 TLWE

We first define TLWE samples, together with the search and decision problems.
In the following, ciphertexts are viewed as normal samples.

Definition 3.1 (TLWE samples). Let k ≥ 1 be an integer, N a power of 2,
and α ≥ 0 be a noise parameter. A TLWE secret key s ∈ BN [X]k is a vector of k
polynomials ∈ R = Z[X]/XN +1 with binary coefficients. For security purposes,
we assume that private keys are uniformly chosen, and that they actually contain
n ≈ Nk bits of entropy. The message space of TLWE samples is TN [X]. A fresh
TLWE sample of a message μ ∈ TN [X] with noise parameter α under the key
s is an element (a, b) ∈ TN [X]k × TN [X], b ∈ TN [X] has Gaussian distribution
D

TN [X],α,s•a+μ around μ+s ·a. The sample is random iff its left member a (also
called mask) is uniformly random ∈ TN [X]k (or a sufficiently dense submodule3),
trivial if a is fixed to 0, noiseless if α = 0, and homogeneous iff its message μ
is 0.

3 A submodule G is sufficiently dense if there exists an intermediate submodule H
such that G ⊆ H ⊆ T

n, the relative smoothing parameter ηH,ε(G) is ≤ α, and
H is the orthogonal in T

n of at most n − 1 vectors of Z
n. This definition allows

to convert any (Ring)-LWE with non-binary secret to a TLWE instance via binary
decomposition.

Faster Fully Homomorphic Encryption 9

– Search problem: given access to polynomially many fresh random homogeneous
TLWE samples, find their key s ∈ BN [X]k.

– Decision problem: distinguish between fresh random homogeneous TLWE sam-
ples from uniformly random samples from TN [X]k+1.

This definition is the analogue on the torus of the General-LWE problem
of [5]. It allows to consider both LWE and RingLWE as a single problem. Choos-
ing N large and k = 1 corresponds to the classical (bin)RingLWE (over cyclo-
tomic rings, and up to a scaling factor q). When N = 1 and k large, then R and
TN [X] respectively collapses to Z and T, and TLWE is simply bin-LWE (up to
the same scaling factor q). Other choices of N, k give some continuum between
the two extremes, with a security that varies between worst-case ideal lattices
to worst-case regular lattices.

Thanks to the underlying R-module structure, we can sum TLWE samples,
or we can make integer linear or polynomial combinations of samples with coef-
ficients in R. However, each of these combinations increases the noise inside the
samples. They are therefore limited to small coefficients.

We additionally define a function called the phase of a TLWE sample, that
will be used many times. The phase computation is the first step of the classical
decryption algorithm, and uses the secret key.

Definition 3.2 (Phase). Let c = (a, b) ∈ TN [X]k × TN [X] and s ∈ BN [X]k,
we define the phase of the sample as ϕs(c) = b − s • a.

The phase is linear over TN [X]k+1 and is (kN + 1)-lipschitzian for the �∞
distance: ∀x,y ∈ TN [X]k+1, ‖ϕs(x) − ϕs(y)‖∞ ≤ (kN + 1) ‖x − y‖∞.

Note that a TLWE sample contains noise, that its semantic is only function of
its phase, and that the phase has the nice property to be lipschitzian. Together,
these properties have many interesting implications. In particular, we can always
work with approximations, since two samples at a short distance on TN [X]k+1

share the same properties: they encode the same message, and they can in general
be swapped. This fact explains why we can work and describe our algorithms on
the infinite Torus.

Given a finite message space M ⊆ TN [X], the (classical) decryption algo-
rithm computes the phase ϕs(c) of the sample, and returns the closest μ ∈ M.
It is easy to see that if c is a fresh TLWE sample of μ ∈ M with gaussian noise
parameter α, the decryption of c over M is equal to μ as soon as α is Θ(

√
λ)

times smaller than the packing radius of M. However decryption is harder to
define for non-fresh samples. In this case, correctness of the decryption procedure
involves a recurrence formula between the decryption of the sum and the sum
of the decryption of the inputs conditioned by the noise parameters. In addi-
tion, message spaces of the input samples can be in different subgroups of T.
To raise the limitations of the decryption function, we will instead use a math-
ematical definition of message and error by reasoning directly on the following
Ω-probability space.

10 I. Chillotti et al.

Definition 3.3 (The Ω-probability space). Since samples are either inde-
pendent (random, noiseless, or trivial) fresh c ← TLWEs,α(μ), or linear combi-
nation c̃ =

∑p
i=1 ei ·ci of other samples, the probability space Ω is the product of

the probability spaces of each individual fresh samples c with the TLWE distribu-
tions defined in Definition 3.1, and of the probability spaces of all the coefficients
(e1, . . . , ep) ∈ Rp or Z

p that are obtained with randomized algorithm.

In other words, instead of viewing a TLWE sample as a fixed value which is
the result of one particular event in Ω, we will consider all the possible values
at once, and make statistics on them.

We now define functions on TLWE samples: message, error, noise variance,
and noise norm. These functions are well defined mathematically, and can be
used in the analysis of various algorithms. However, they cannot be directly
computed or approximated in practice.

Definition 3.4. Let c be a random variable ∈ TN [X]k+1, which we’ll interpret
as a TLWE sample. All probabilities are on the Ω-space. We say that c is a
valid TLWE sample iff there exists a key s ∈ BN [X]k such that the distribution
of the phase ϕs(c) is concentrated. If c is trivial, all keys s are equivalent, else
the mask of c is uniformly random, so s is unique. We then define:

– the message of c, denoted as msg(c) ∈ TN [X] is the expectation of ϕs(c);
– the error, denoted Err(c), is equal to ϕs(c) − msg(c);
– Var(Err(c)) denotes the variance of Err(c), which is by definition also equal to

the variance of ϕs(c);
– finally, ‖Err(c)‖∞ denotes the maximum amplitude of Err(c) (possibly with

overwhelming probability).

Unlike the classical decryption algorithm, the message function can be viewed
as an ideal black box decryption function, which works with infinite precision
even if the message space is continuous. Provided that the noise amplitude
remains smaller than 1

4 , the message function is perfectly linear. Using these
intuitive and intrinsic functions will considerably ease the analysis of all algo-
rithms in this paper. In particular, we have:

Fact 3.5. Given p valid and independent TLWE samples c1, . . . , cp under the
same key s, and p integer polynomials e1, . . . , ep ∈ R, if the linear combination
c =

∑p
i=1 ei • ci is a valid TLWE sample, it satisfies: msg(c) =

∑p
i=1 ei •msg(ci),

with variance Var(Err(c)) ≤ ∑p
i=1 ‖ei‖22 · Var(Err(ci)) and noise amplitude

‖Err(c)‖∞ ≤ ∑p
i=1 ‖ei‖1 · ‖Err(ci)‖∞. If the last bound is < 1

4 , then c is neces-
sarily a valid TLWE sample (under the same key s).

In order to characterize the average case behaviour of our homomorphic
operations, we shall rely on the heuristic assumption of independence below.
This heuristic will only be used for practical average-case bounds. Our worst-
case theorems and lemma based on the infinite norm do not use it at all.

Faster Fully Homomorphic Encryption 11

Assumption 3.6 (Independence Heuristic). All the coefficients of the error
of TLWE or TGSW samples that occur in all the linear combinations we consider
are independent and concentrated. More precisely, they are σ-subgaussian where
σ is the square-root of their variance.

This assumption allows us to bound the variance of the noise instead of
its norm, and to provide realistic average-case bounds which often correspond
to the square root of the worst-case ones. The error can easily be proved sub-
gaussian, since each coefficients are always obtained by convolving Gaussians
or zero-centered bounded uniform distributions. But the independence assump-
tion between all the coefficients remains heuristic. Dependencies between coef-
ficients may affect the variance of their combinations in both directions. The
independence of coefficients can be obtained by adding enough entropy in all
our decomposition algorithms and by increasing some parameters accordingly,
but as noticed in [11], this work-around seems more as a proof artefact, and
is experimentally not needed. Since average case corollaries should reflect prac-
tical results, we leave the independence of subgaussian samples as a heuristic
assumption.

3.2 TGSW

In this section we present a generalized scale invariant version of the FHE scheme
GSW [16], that we call TGSW. GSW was proposed Gentry, Sahai and Waters
in 2013 [16], and improved in [3] and its security is based on the LWE problem.
The scheme relies on a gadget decomposition function, which we also extend to
polynomials, but most importantly, the novelty is that our function is an approx-
imate decomposition, up to some precision parameter. This allows to improve
running time and memory requirements for a small amount of additional noise.

Definition 3.7 (Approximate Gadget Decomposition). Let h ∈ Mp,k+1

(TN [X]) as in (1). We say that Dech,β,ε(v) is a decomposition algorithm on
the gadget h with quality β and precision ε if and only if for any TLWE sample
v ∈ TN [X]k+1, it efficiently and publicly outputs a small vector u ∈ R(k+1)� such
that ‖u‖∞ ≤ β and ‖u · h − v‖∞ ≤ ε. Furthermore, the expectation of u · h − v
must to be 0 when v is uniformly distributed in TN [X]k+1

Definition 3.7 is generic, but in the rest of the paper, we will only use this
fixed gadget:

h =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1/Bg . . . 0
...

. . .
...

1/B�
g . . . 0

...
. . .

...
0 . . . 1/Bg

...
. . .

...
0 . . . 1/B�

g

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

∈ Mp,k+1(TN [X]). (1)

12 I. Chillotti et al.

The matrix h consists in a diagonal of columns, each containing a super-
increasing sequence of constant polynomials in T. Algorithm 1 represents an
efficient decomposition of TLWE samples on h, and the following lemma proves
its correctness. In theory, decomposition algorithms should be randomized to
guarantee that the distribution of all error coefficients remain independent. In
practice, we already rely on Heuristic 3.6. We just need that the expectation of
the small errors induced by the approximations remains null, so that the message
is not changed.

Lemma 3.8 Let � ∈ N and Bg ∈ N. Then for β = Bg/2 and ε = 1/2B�
g,

Algorithm1 is a valid Dech,β,ε.

Algorithm 1. Gadget Decomposition of a TLWE sample
Input: A TLWE sample (a, b) = (a1, . . . , ak, b = ak+1) ∈ TN [X]k × TN [X]
Output: A combination [e1,1, . . . , ek+1,�] ∈ R(k+1)�

1: For each ai choose the unique representative
∑N−1

j=0 ai,jX
j , with ai,j ∈ T, and set

āi,j the closest multiple of 1
B�

g
to ai,j

2: Decompose each āi,j uniquely as
∑�

p=1 āi,j,p
1

B
p
g

where each āi,j,p ∈ [[−Bg/2, Bg/2[[

3: for i = 1 to k + 1
4: for p = 1 to �
5: ei,p =

∑N−1
j=0 āi,j,pXj ∈ R

6: Return (ei,p)i,p

Proof. Let v = (a, b) = (a1, . . . , ak, b = ak+1) ∈ TN [X]k+1 be a TLWE sample,
given as input to Algorithm1. Let u = [e1,1, . . . , ek+1,�] ∈ R(k+1)� be the corre-
sponding output by construction ‖u‖∞ ≤ Bg/2 = β.

Let εdec = u · h − v. For all i ∈ [[1, k + 1]] and j ∈ [[1, �]], we have by con-
struction εdeci,j =

∑�
p=0 ei,p • 1

Bp
g

− ai,j = āi,j − ai,j . Since āi,j is defined as
the nearest multiple of 1

B�
g

on the torus, we have |āi,j − ai,j | ≤ 1/2B�
g = ε. εdec

has therefore a concentrated distribution when v is uniform. We now verify that
it is zero-centered. Finally, if we call f the function from T to T which rounds
an element x to its closest multiple of 1

B�
g

and the function g the symmetry
defined by g(x) = 2f(x) − x on the torus; we easily verify that the E(εdeci,j)
is equal to E(ai,j − f(ai,j)) when ai,j has uniform distribution, which is equal
to E(g(ai,j) − f(g(ai,j))) when g(ai,j) has uniform distribution also equal to
E(f(ai,j) − ai,j) = −E(εdeci,j). Thus, the expectation of εdec is 0. ��

We are now ready to define TGSW samples, and to extend the notions of
phase of valid sample, message and error of the samples.

Definition 3.9 (TGSW samples). Let � and k ≥ 1 be two integers, α ≥ 0
be a noise parameter and h the gadget defined in Eq. (1). Let s ∈ BN [X]k

Faster Fully Homomorphic Encryption 13

be a RingLWE key, we say that C ∈ M(k+1)�,k+1(TN [X]) is a fresh TGSW
sample of μ ∈ R/h⊥ with noise parameter α iff C = Z + μ • h where
each row of Z ∈ M(k+1)�,k+1(TN [X]) is an Homogeneous TLWE sample (of
0) with Gaussian noise parameter α. Reciprocally, we say that an element
C ∈ M(k+1)�,k+1(TN [X]) is a valid TGSW sample iff there exists a unique
polynomial μ ∈ R/h⊥ and a unique key s such that each row of C − μ • h is a
valid TLWE sample of 0 for the key s. We call the polynomial μ the message of
C, and we denote it by msg(C).

Definition 3.10 (Phase, Error). Let A =∈ M(k+1)�,k+1(TN [X]) be a TGSW
sample for a secret key s ∈ BN [X]k and noise parameter α ≥ 0.

We define the phase of A, denoted as ϕs(A) ∈ (TN [X])(k+1)�, as the list of
the (k + 1)� TLWE phases of each line of A. In the same way, we define the
error of A, denoted Err(A), as the list of the (k + 1)� TLWE errors of each line
of A.

Since TGSW samples are essentially vectors of TLWE samples, they are nat-
urally compatible with linear operations. And both phase and message functions
remain linear.

Fact 3.11. Given p valid TGSW samples C1, . . . , Cp of messages μ1, . . . , μp

under the same key, and with independent error coefficients, and given p integer
polynomials e1, . . . , ep, the linear combination C =

∑p
i=1 ei • Ci is a sample of

μ =
∑p

i=1 ei · μi, with variance Var(C) =
(∑p

i=1 ‖ei‖22 · Var(Ci)
)1/2 and noise

infinity norm ‖Err(C)‖∞ =
∑p

i=1 ‖ei‖1 · ‖Err(C)‖∞.

Also, the phase remains 1 + kN lipschitzian for the infinity norm.

Fact 3.12. For all A ∈ Mp,k+1(TN [X]), ‖ϕs(A)‖∞ ≤ (Nk + 1) ‖A‖∞.

We finally define the homomorphic product between TGSW and TLWE sam-
ples, whose corresponding message is simply the product of the two messages of
the initial samples. Since the left member encodes an integer polynomial, and
the right one a torus polynomial, this operator performs a homomorphic evalu-
ation of their external product. Theorem3.14 (resp. Corollary 3.15) analyzes the
worst-case (resp. average-case) noise propagation of this product. Then, Corol-
lary 3.16 relates this new morphism to the classical internal product between
TGSW samples.

Definition 3.13 (External product). We define the product � as

� : TGSW × TLWE −→ TLWE
(A, b) �−→ A � b = Dech,β,ε(b) · A.

The formula is almost identical to the classical product defined in the original
GSW scheme in [16], except that only one vector needs to be decomposed. For
this reason, we get almost the same noise propagation formula, with an additional
term that comes from the approximations in the decomposition.

14 I. Chillotti et al.

Theorem 3.14 (Worst-case External Product). Let A be a valid TGSW
sample of message μA and let b be a valid TLWE sample of message μb.
Then A � b is a TLWE sample of message μA · μb and ‖Err(A � b)‖∞ ≤
(k + 1)�Nβ ‖Err(A)‖∞ + ‖μA‖1 (1 + kN)ε + ‖μA‖1 ‖Err(b)‖∞ (worst case),
where β and ε are the parameters used in the decomposition Dech,β,ε(b). If
‖Err(A � b)‖∞ ≤ 1/4 we are guaranteed that A � b is a valid TLWE sample.

Proof. As A = TGSW(μA), then by definition it is equal to A = ZA + μA · h,
where ZA is a TGSW encryption of 0 and h is the gadget matrix. In the same
way, as b = TLWE(μb), then by definition it is equal to b = zb + (0, μb), where
zb is a TLWE encryption of 0. Let

{
‖Err(A)‖∞ = ‖ϕs(ZA)‖∞ = ηA

‖Err(b)‖∞ = ‖ϕs(zb)‖∞ = ηb.

Let u = Dech,β,ε(b) ∈ R(k+1)�. By definition A � b is equal to

A � b = u · A

= u · ZA + μA · (u · h).

From Definition 3.7, we have that u · h = b + εdec, where ‖εdec‖∞ =
‖u · h − b‖∞ ≤ ε. So

A � b = u · ZA + μA · (b + εdec)
= u · ZA + μA · εdec + μA · zb + (0, μA · μb).

Then the phase (linear function) of A � b is

ϕs(A � b) = u · Err(A) + μA · ϕs(εdec) + μA · Err(b) + μAμb.

Taking the expectation, we get that msg(A � b) = 0 + 0 + 0 + μAμb, and so
Err(A � b) = ϕs(A � b) − μAμb. Then thanks to Fact 3.12, we have

‖Err(A � b)‖∞ ≤ ‖u · Err(A)‖∞ + ‖μA · ϕ(εdec)‖∞ + ‖μA · Err(b)‖∞
≤ (k + 1)�NβηA + ‖μA‖1 (1 + kN) ‖εdec‖∞ + ‖μA‖1 ηb.

The result follows. ��
We similarly obtain the more realistic average-case noise propagation, based

on the independence heuristic, by bounding the Gaussian variance instead of the
amplitude.

Corollary 3.15 (Average-case External Product). Under the same con-
ditions of Theorem3.14 and by assuming the Heuristic 3.6, we have that
Var(Err(A�b)) ≤ (k+1)�Nβ2Var(Err(A))+(1+kN) ‖μA‖22 ε2+‖μA‖22 Var(Err(b)).

Faster Fully Homomorphic Encryption 15

Proof. Let ϑA = Var(Err(A)) = Var(ϕs(ZA)) and ϑb = Var(Err(b)) =
Var(ϕs(zb)). By using the same notations as in the proof of Theorem3.14 we
have that the error of A�b is Err(A�b) = u ·Err(A)+μA ·ϕs(εdec)+μA ·Err(b)
and thanks to Assumption 3.6 and Fact 3.12, we have:

Var(Err(A � b)) ≤ Var(u · Err(A))) + Var(μA · ϕ(εdec)) + Var(μA · Err(b))

≤ (k + 1)�Nβ2ϑA + (1 + kN) ‖μA‖22 ε2 + ‖μA‖22 ϑb.

��
The last corollary describes exactly the classical internal product between

two TGSW samples, already presented in [3,11,13,16] with adapted notations.
As we mentioned before, it is much slower to evaluate, because it consists in
(k + 1)� independent computations of the � product, which we illustrate now.

Corollary 3.16 (Internal Product). Let the product

� : TGSW × TGSW −→ TGSW

(A,B) �−→ A � B =

⎡

⎢
⎣

A � b1

...
A � b(k+1)�

⎤

⎥
⎦ =

⎡

⎢
⎣

Dech,β,ε(b1) · A
...

Dech,β,ε(b(k+1)�) · A

⎤

⎥
⎦ ,

with A and B two valid TGSW samples of messages μA and μB respectively
and bi corresponding to the i-th line of B. Then A � B is a TGSW sample of
message μA·μB and ‖Err(A � B)‖∞ ≤ (k+1)�Nβ ‖Err(A)‖∞+‖μA‖1 (1+kN)ε+
‖μA‖1 ‖Err(B)‖∞ (worst case). If ‖Err(A � B)‖∞ ≤ 1/4 we are guaranteed that
A � B is a valid TGSW sample.

Furthermore, by assuming the Heuristic 3.6, we have that Var(Err(A � B)) ≤
(k + 1)�Nβ2Var(Err(A)) + (1 + kN)(μAε)2 + μ2

AVar(Err(b)) (average case).

Proof. Let A and B be two TGSW samples, and μA and μB their message.
By definition, the i-th row of B encodes μB • hi, so the i-th row of A � B
encodes (μAμB) • hi. This proves that A � B encodes μAμB . Since the internal
product A � B consists in (k + 1)� independent runs of the external products
A � bi, the noise propagation formula directly follows from Theorem3.14 and
Corollary 3.15. ��

In the next section, we show that all internal products in the bootstrapping
procedure can be replaced with the external one. Consequently, we expect a
speed-up of a factor at least (k + 1)�.

4 Application: Single Gate Bootstrapping in Less
Than 0.1 Seconds

In this section, we show how to use Theorem 3.14 to speed-up the bootstrapping
presented in [11]. With additional optimizations, we drastically reduce the boot-
strapping key size, and also reduce a bit the noise overhead. To bootstrap a LWE

16 I. Chillotti et al.

sample (a, b) ∈ T
n+1, which is rescaled as (ā, b̄) mod 2N , using relevant encryp-

tions of its secret key s ∈ B
n, the overall idea is the following. We start from a

fixed polynomial testv ∈ TN [X], which is our phase detector: its i-th coefficient
is set to the value that the bootstrapping should return if ϕs(a, b) = i/2N . testv
is first encoded in a trivial LWE sample. Then, we iteratively rotate its coef-
ficients, using external multiplications with TGSW encryptions of the hidden
monomials X−siāi . By doing so, the original testv gets rotated by the (hidden)
phase of (a, b), and in the end, we simply extract the constant term as a LWE
sample.

4.1 TLWE to LWE Extraction

Like in previous work, extracting a LWE sample from a TLWE sample simply
means rewriting polynomials into their list of coefficients, and discarding the
N − 1 last coefficients of b. This yields a LWE encryption of the constant term
of the initial polynomial message.

Definition 4.1 (TLWE Extraction). Let (a′′, b′′) be a TLWEs′′(μ) sam-
ple with key s′′ ∈ Rk, We call KeyExtract(s′′) the integer vector s′ =
(coefs(s′′

1(X), . . . , coefs(s′′
k(X)) ∈ Z

kN and SampleExtract(a′′, b′′) the LWE sam-
ple (a′, b′) ∈ T

kN+1 where a′ = (coefs(a′′
1(1/X), . . . , coefs(a′′

k(1/X)) and b′ = b′′
0

the constant term of b′′. Then ϕs′(a′, b′) (resp. msg(a′, b′)) is equal to the con-
stant term of ϕs′′(a′′, b′′) (resp. to the constant term of μ = msg(a′′, b′′)). And
‖Err(a′, b′)‖∞ ≤ ‖Err(a′′, b′′)‖∞ and Var(Err(a′, b′)) ≤ Var(Err(a′′, b′′)).

4.2 LWE to LWE Key-Switching Procedure

Given a LWEs′ sample of a message μ ∈ T, the key switching procedure ini-
tially proposed in [5,7] outputs a LWEs sample of the same μ without increasing
the noise too much. Contrary to previous exact keyswitch procedures, here we
tolerate approximations.

Definition 4.2. Let s′ ∈ {0, 1}n′
, s ∈ {0, 1}n, a noise parameter γ ∈ R and a

precision parameter t ∈ N, we call key switching secret KSs′→s,γ,t a sequence of
fresh LWE samples KSi,j ∈ LWEs,γ(s′

i · 2−j) for i ∈ [1, n′] and j ∈ [1, t].

Lemma 4.3 (Key switching). Given (a′, b′) ∈ LWEs′(μ) where s′ ∈ {0, 1}n′

with noise η′ = ‖Err(a′, b′)‖∞ and a keyswitching key KSs′→s,γ,t, where s ∈
{0, 1}n, the key switching procedure outputs a LWE sample (a, b) ∈ LWEsn

(μ)
where ‖Err(a, b)‖∞ ≤ η′ + n′tγ + n′2−(t+1).

Faster Fully Homomorphic Encryption 17

Algorithm 2. KeySwitch procedure
Input: A LWE sample (a′ = (a′

1, . . . , a
′
n′), b′) ∈ LWEs′(μ), a switching key KSs′→s

where s′ ∈ {0, 1}n′
, s ∈ {0, 1}n and t ∈ N a precision parameter

Output: A LWE sample LWEs(μ)
1: Let ā′

i be the closest multiple of 1
2t to a′

i, thus |ā′
i − a′

i| < 2−(t+1)

2: Binary decompose each ā′
i =
∑t

j=1 ai,j · 2−j where ai,j ∈ {0, 1}

3: Return (0, b′) −
n′
∑

i=1

t∑

j=1

ai,j · KSi,j

Proof. We have

ϕs(a, b) = ϕs(0, b′) −
n′

∑

i=1

t∑

j=1

ai,jϕs(KSi,j)

= b′ −
n′

∑

i=1

t∑

j=1

ai,j

(
2−js′

i + Err(KSi,j)
)

= b′ −
n′

∑

i=1

ā′
is

′
i −

n′
∑

i=1

t∑

j=1

ai,jErr(KSi,j)

= b′ −
n′

∑

i=1

a′
is

′
i −

n′
∑

i=1

t∑

j=1

ai,jErr(KSi,j) +
n′

∑

i=1

(a′
i − ā′

i)s
′
i

= ϕs′(a′, b′) −
n′

∑

i=1

t∑

j=1

ai,jErr(KSi,j) +
n′

∑

i=1

(a′
i − ā′

i)s
′
i.

The expectation of the left side of the equality is equal to msg(a, b). For the
right side, each ai,j is uniformly distributed in {0, 1} and (a′

i − ā′
i) is a 0-centered

variable so the expectation of the sum is 0. Thus, msg(a, b) = msg(a′, b′). We
obtain ‖ϕs(a, b) − msg(a, b)‖∞ ≤ η′ + n′ · t · γ + n′2−(t+1). ��

Corollary 4.4. Let t be an integer parameter. Under Assumption 3.6 Given
(a′, b′) ∈ LWEs′(μ) with noise variance η′ = Var(Err(a′, b′)) and a key switching
key KSs′→s,γ,�, the key switching procedure outputs an LWE sample (a′, b′) ∈
LWEs(μ) where Var(Err(a, b)) ≤ η′ + n′ · t · γ2 + n′2−2(t+1).

4.3 Bootstrapping Procedure

Given a LWE sample LWEs(μ) = (a, b), the bootstrapping procedure constructs
an encryption of μ under the same key s but with a fixed amount of noise. As
in [11], we will use TLWE as an intermediate encryption scheme to perform a
homomorphic evaluation of the phase but here we will use its external product
from Theorem 3.14 with a TGSW encryption of the key s.

Definition 4.5. Let s ∈ B
n, s′′ ∈ BN [X]k and α be a noise parameter. We

define the bootstrapping key BKs→s′′,α as the sequence of n TGSW samples
where BKi ∈ TGSWs′′,α(si).

18 I. Chillotti et al.

Algorithm 3. Bootstrapping procedure
Input: A LWE sample (a, b) ∈ LWEs,η(μ), a bootstrapping key BKs→s′′,α, a keyswitch

key KSs
′ →s,γ where s′ = KeyExtract(s′′), two fixed messages μ0, μ1 ∈ T

Output: A LWE sample LWEs

(
μ0 if ϕs(a, b) ∈

]
− 1

4
, 1
4

[
; μ1 else

)

1: Let μ̄ = μ1+μ0
2

and μ̄′ = μ0 − μ̄
2: Let b̄ = �2Nb� and āi = �2Nai� for each i ∈ [1, n]

3: Let testv := (1+X+ . . . +XN−1) × X− 2N
4 • μ̄′ ∈ TN [X]

4: ACC ←
(
X b̄ • (0, testv)

)
∈ TN [X]k+1

5: for i = 1 to n
6: ACC ← [h + (X−āi − 1) • BKi

]
� ACC

7: Let u := (0, μ̄) + SampleExtract(ACC)
8: Return KeySwitchKS(u)

We first provide a comparison between the bootstrapping of Algorithm3
and [11, Algorithms 1 and 2] proposal.

– Like [11], we rescale the computation of the phase of the input LWE sample
so that it is modulo 2N (line 2) and we map all the corresponding operations
in the multiplicative cyclic group {1,X, . . . ,X2N−1}. Since our LWE samples
are described over the real torus, the rescaling is done explicitly in line 2.
This rescaling may induce a cumulated rounding error of amplitude at most
δ ≈ √

n/4N in the average case and δ ≤ (n + 1)/4N in the worst case. In
the best case, this amplitude can decrease to zero (δ = 0) if in the actual
representation of LWE samples, all the coefficients are restricted to multiple
of 1

2N , which would be the analogue of [11]’s setting.
– As in [11], messages are encoded as roots of unity in R. Our accumulator is

a TLWE sample instead of a TGSW sample in [11]. Also accumulator opera-
tions use the external product from Theorem 3.14 instead of the slower classi-
cal internal product. The test vector (1+X+ . . . +XN−1) is embedded in the
accumulator from the very start, when the accumulator is still noiseless while
in [11], it is added at the very end. This removes a factor

√
N to the final

noise overhead.
– All the TGSW ciphertexts of X−āisi required to update the accumulator inter-

nal value are computed dynamically as a very small polynomial combination
of BKi in the for loop (line 5). This completely removes the need to decom-
pose each āi on an additional base Br, and to precompute all possibilities in
the bootstrapping key. In other words, this makes our bootstrapping key 46
times smaller than in [11], for the exact same noise overhead. Besides, due
to this squashing technique, two accumulator operations were performed per
iteration instead of one in our case. This gives us an additional 2X speed up.

Theorem 4.6 (Bootstrapping Theorem). Let h ∈ M�(k+1),k+1(TN [X]) be
the gadget defined in Eq. 1 and let Dech,ε,β be the associated vector gadget decom-
position function.

Faster Fully Homomorphic Encryption 19

Let s ∈ B
n, s′′ ∈ BN [X]k and α, γ be noise amplitudes. Let BK = BKs→s′′,α

be a bootstrapping key, let s′ = KeyExtract(s′′) ∈ B
kN and KS = KSs′→s,γ,t be a

keyswitching secret.
Given (a, b) ∈ LWEs(μ) for μ ∈ T, two fixed messages μ0, μ1, Algorithm3

outputs a sample in LWEs(μ′) s.t. μ′ = μ0 if |ϕs(a, b)| < −1/4 − δ and μ′ = μ1

if |ϕs(a, b)| > 1/4 + δ where δ is the cumulated rounding error equal to n+1
4N in

the worst case and δ = 0 if the all coefficients of (a, b) are multiple of 1
2N . Let v

be the output of Algorithm3. Then ‖Err(v)‖∞ ≤ 2n(k +1)�βNα+kNtγ +n(1+
kN)ε + kN2−(t+1).

Proof. Line 1: the division by two over torus gives two possible values for (μ̄, μ̄′).
In both cases, μ̄ + μ̄′ = μ0 and μ̄ − μ̄′ = μ1.

Line 2: let ϕ̄
def
= b̄ − ∑n

i=1 āisi mod 2N . We have

∣
∣
∣ϕ − ϕ̄

2N

∣
∣
∣ = b − �2Nb�

2N
+

n∑

i=1

(
ai − �2Nai�

2N

)
si ≤ 1

4N
+

n∑

i=1

1
4N

≤ n + 1
4N

. (2)

And if the coefficients (a, b) ∈ 1
2N Z/Z, then ϕ = ϕ̄

2N . In all cases, |ϕ − ϕ̄
2N | < δ.

At line 3, the test vector testv := (1+X+ . . . +XN−1) · X− 2N
4 • μ̄′ is defined

such that for all p ∈ [0, 2N], the constant term of Xp • testv is either μ̄′ if
p ∈]] − N

2 , N
2 [[and −μ̄′ else.

In the loop for (from line 5 to 6), we will prove the following invariant: At the
beginning of iteration i+1 ∈ [1, n+1] (i.e. at the end of iteration i), msg(ACCi) =
Xb−∑i

j=1 ājsj • testv and ‖Err(ACCi)‖∞ ≤ ∑i
j=1

(
2(k + 1)�Nβ ‖Err(BKj)‖∞ +

(1 + kN)ε
)
.

At the beginning of iteration i = 1, the accumulator contains a trivial cipher-
text msg(ACC1) =

(
X b̄ • testv

)
, so ‖Err(ACC1)‖∞ = 0.

During iteration i, Ai = h + (X−āi − 1) • BKi is a TGSW sample of message
X−āisi (this can be seen by replacing si with its two possible values 0 and 1)
and of noise ‖Err(Ai)‖∞ ≤ 2 ‖Err(BKi)‖∞. This inequality holds from Fact 3.11.
Then, we have:

msg(ACCi) = msg
(
Ai � ACCi−1

)

= msg
(
Ai

)
• msg(ACCi−1) (from Theorem 3.14)

= X−āisi · (Xb−∑i−1
j=1 ājsj • testv)

and from the norm inequality of Theorem3.14,

‖Err(ACCi)‖∞ ≤ (k + 1)�Nβ ‖Err(Ai)‖∞ + ‖msg(Ai)‖1 (1 + kN)ε+
+ ‖msg(Ai)‖1 ‖Err(ACCi−1)‖∞

≤ (k + 1)�Nβ2 ‖Err(BKi)‖∞ + (1 + kN)ε + ‖Err(ACCi−1)‖∞ .

This proves the invariant by induction on i.

20 I. Chillotti et al.

After SampleExtract (line 7), the message of u is equal to the constant
term of the message of ACCn, i.e. X ϕ̄ • testv where ϕ̄ = b̄ − ∑n

i=1 āisi. If
ϕ̄ ∈ [[−N/2, N/2[[, the constant term is equal to μ̄′ and −μ̄′ otherwise.

In other words, |ϕs(a, b)| < 1/4 − δ, then ϕs(a, b) < 1/4 − δ and ϕs(a, b) ≥
−1/4 + δ and thus using Eq. (2), we obtain that ϕ̄ ∈]] − N

2 , N
2 [[and thus, the

message of u is equal to μ̄′. And if |ϕs(a, b)| > 1/4 + δ then ϕs(a, b) > 1/4 + δ
or ϕs(a, b) < −1/4 − δ and using Eq. (2), we obtain the message of u is equal
to −μ̄′.

Since SampleExtract does not add extra noise, ‖Err(u)‖∞ ≤ ‖Err(ACCn)‖.
Since the KeySwitch procedure preserves the message, the message of v =
KeySwitchKS(u) is equal to the message of u. And ‖Err(v)‖∞ ≤ ‖Err(u)‖∞ +
kNtγ + kN2−(t+1). ��
Corollary 4.7. Let ϑBK = Var(Err(BKi)) = 2/π ·α2 and VKS = Var(Err(KSi)) =
2/π · γ2. Under the same conditions of Theorem4.6, and assuming Assump-
tion 3.6, then the Variance of the output v of Algorithm3 satisfies Var(Err(v)) ≤
2Nn(k + 1)�β2ϑBK + kNtVKS + n(1 + kN)ε2 + kN2−2(t+1).

Proof. The proof is the same as for the proof of the bound on ‖Err(v)‖∞ replacing
all ‖‖∞ inequalities by Var() inequalities. ��

4.4 Application to Circuits

In [11], the homomorphic evaluation of a NAND gate between LWE samples
is achieved with 2 additions (one with a noiseless trivial sample) and a boot-
strapping. Let BK = BKs→s′′,α be a bootstrapping key and KS = KSs′→s,γ,t

be a keyswitching secret defined as in Theorem 4.6 such that 2n(k + 1)�βNα +
kNtγ + n(1 + kN)ε + kN2−(t+1) < 1

16 , We denote as Bootstrap (c) the out-
put of the bootstrapping procedure described in Algorithm 3 applied to c with
μ0 = 0 and μ1 = 1

4 . Let consider two LWE samples c1 and c2, with mes-
sage space {0, 1/4} and ‖Err(c1)‖∞ , ‖Err(c2)‖∞ ≤ 1

16 . The result is obtained
by computing c̃ = (0, 5

8)-c1-c2, plus a bootstrapping. Indeed the possible val-
ues for the messages of c̃ are 5

8 , 3
8 if either c1 or c2 encode 0, and 1

8 if both
encode 1

4 . Since the noise amplitude ‖Err(c̃)‖∞ is < 1
8 , then |ϕs(c̃)| > 1

4 iff.
NAND(msg(c1),msg(c2)) = 1. This explains why it suffices to bootstrap c̃ with
parameters (μ1, μ0) = (14 , 0) to get the answer. By using a similar approach, it
is possible to directly evaluate with a single bootstrapping all the basic gates:

– HomNOT(c) = (0, 1
4)-c (no bootstrapping is needed);

– HomAND(c1, c2) = Bootstrap
(
(0,− 1

8)+c1+c2
)
;

– HomNAND(c1, c2) = Bootstrap
(
(0, 5

8)-c1-c2
)
;

– HomOR(c1, c2) = Bootstrap
(
(0, 1

8)+c1+c2
)
;

– HomXOR(c1, c2) = Bootstrap (2 · (c1-c2)).

The HomXOR(c1, c2) gate can be achieved also by performing Bootstrap
(2 · (c1+c2)).

Faster Fully Homomorphic Encryption 21

4.5 Parameters Implementation and Timings

In this section, we review our implementation parameters and provide a com-
parison with previous works.

Samples. From a theoretical point of view, our scale invariant scheme is defined
over the real torus T, where all the operations are modulo 1. In practice, since
we can work with approximations, we chose to rescale the elements over T by a
factor 232, and to map them to 32-bit integers. Thus, we take advantage of the
native and automatic mod 232 operations, including for the external multipli-
cation with integers. Except for some FFT operations, this seems more stable
and efficient than working with floating point numbers and reducing modulo 1
regularly. Polynomials mod XN + 1 are either represented as the classical list of
the N coefficients, either using the Lagrange half-complex representation, which
consists in the complex (2 · 64bits) evaluations of the polynomial over the roots
of unity exp(i(2j + 1)π/N) for j ∈ [[0, N

2 [[. Indeed, the N
2 other evaluations are

the conjugates of the first ones, and do not need to be stored. The conversion
between both representations is done via Fast Fourier Transform (FFT) (using
the library FFTW [12], also used by [11]). Note that the direct FFT transform is√

2N lipschitzian, so the lagrange half-complex representation tolerates approx-
imations, and 53 bits of precision is indeed more than enough, provided that the
real representative remains small. However, the modulo 1 that can reduce the
coefficients of Torus polynomials cannot be applied from the Lagrange repre-
sentation: we need to perform regular transformations to and from the classical
representation. Luckily, it does not represent an overhead, since these conversions
are needed anyway, at each iteration of the bootstrapping in order to decompose
the accumulator in base h.

Parameters. We take the same or even stronger security parameters as [11], but
we adapt them to our notations. We used n = 500, N = 1024, k = 1.

– LWE samples: 32 · (n + 1) bits ≈ 2 KBytes.
The mask of all LWE samples (initial and KeySwitch) are clamped to multiples
of 1

2048 . Therefore, the phase computation in the bootstrapping is exact (δ =
0).

– TLWE samples: (k + 1) · N · 32 bits ≈ 8 KBytes.
– TGSW samples: (k + 1) · � TLWE samples ≈ 48 KBytes.

To define h and Dech,β,ε, we used � = 3, Bg = 1024, so β = 512 and ε = 2−31.
– Bootstrapping Key: n TGSW samples ≈ 23.4 MBytes.

We used α = 9.0 · 10−9. Since we have a lower noise overhead, our parameter
is higher than the parameter ≈ 3.25 · 10−10 of [11], (i.e. ours is more secure),
but in counterpart, our TLWE key is binary. See Sect. 6 for more details on
the security analysis.

– Key Switching Key: k · N · t LWE samples ≈ 29.2 MBytes.
we used γ = 3.05 · 10−5, t = 15 (The decomposition in the key switching has
an precision 2−16).

– Correctness: The final error variance after bootstrapping is 9.24.10−6, by
Corollary 4.7. It corresponds to a standard deviation of σ = 0.00961.

22 I. Chillotti et al.

In [11], the final standard deviation is larger 0.01076. In other words, the
noise amplitude after our bootstrapping is < 1

16 with very high probability
erf(1/16

√
2σ) ≥ 1 − 2−33.56 (this is comparable to probability ≥ 1 − 2−32

in [11]).

Note that the size of the key switching key can be reduced by a factor
n + 1 = 501 if all the masks are the output of a pseudo random function;
we may for instance just give the seed. The same technique can be applied to
the bootstrapping key, on which the size is only reduced by a factor k + 1 = 2.

Implementation Tools and Source Code. The source code of our implementation
is available on github https://github.com/tfhe/tfhe. We implemented the FHE
scheme in C/C++, and run the bootstrapping algorithm on a 64-bit single core
(i7-4930MX) at 3.00 GHz. This seems to correspond to the machine used in [11].
We implemented a version with classical representation for polynomials, and a
version in Lagrange half-complex representation. The following table compares
the number of multiplications or FFT that are required to complete one external
product and the full bootstrapping.

#(Classical products) #(FFT + Lagrange repr.)

External product 12 8

Bootstrapping 6000 4006

Bootstrapping in [11] (72000) 48000

In practice, we obtained a running time of 52ms per bootstrapping using
the Lagrange half-complex representation. It is coherent with the 12x speed-
up predicted by the table. Profiling the execution shows that the FFTs and
complex multiplications are still taking more than 90 % of the total time. Other
operations like keyswitch have a negligible running time compared to the main
loop of the bootstrapping.

5 Leveled Homomorphic Encryption

In the previous section, we showed how to accelerate the bootstrapping compu-
tation in FHE. In this section, we focus on the improvement of Leveled Homo-
morphic encryption schemes. We present an efficient way to evaluate any deter-
ministic automata homomorphically.

5.1 Boolean Circuits Interpretation

In order to express our external product in a circuit, we consider two kinds
of wires: control wires which encode either a small integer or a small integer
polynomial. They will be represented by a TGSW sample; and data wires which

https://github.com/tfhe/tfhe

Faster Fully Homomorphic Encryption 23

encode either a sample in T or in TN [X]. They will be represented by a TLWE
sample. The gates we present contain three kinds of slots: control input, data
input and data output. In this following section, the rule to build valid circuits
is that all control wires are freshly generated by the user, and the data input
ports of our gates can be either freshly generated or connected to a data output
or to another gate.

We now give an interpretation of our leveled scheme, to simulate boolean
circuits only. In this case, the message space of the input TLWE samples will be
restricted to {0, 1

2}, and the message space of control gates to {0, 1}.

– The constant source Cst(μ) for μ ∈ {0, 1
2} is defined with a single data output

equal to (0, μ).
– The negation gate Not(d) takes a single data input d and outputs (0, 1

2) − d.
– The controlled And gate CAnd(C,d) takes one control input C and one data

input d, and outputs C � d.
– The controlled Mux gate CMux(C,d1,d0) takes one control input C and two

data inputs d1,d0 and returns C � (d1 − d0) + d0.

Unlike classical circuits, these gates have to be composed with each other
depending on the type of inputs/outputs. In our applications, the TGSW encryp-
tions are always fresh ciphertexts.

μ
T-LWE (trivial)μ

0 0

μd
1
2 − μd

T-LWET-LWE
η η

μC

T-LWE

T-GSW

μd

μC · μd

T-LWE

ηC

ηd

ηd + O(ηC)

μC

T-LWE

T-GSW

μd0

μC · (μd1 − μd0) + μd0

T-LWE

μd1

T-LWE 1

0

ηC

ηd1

ηd0

max(ηd1 , ηd0) + O(ηC)

Theorem 5.1 (Correctness). Let μ ∈ {0, 1
2}, d,d1,d0 ∈ TLWEs({0, 1

2}) and
C ∈ TGSWs({0, 1}).

– msg(Cst(μ)) = μ
– msg(Not(d)) = 1

2 − μ = not μ
– msg(CAnd(C,d)) = msg(C) · msg(d)
– msg(CMux(C,d1,d0)) = msg(C)?msg(d1):msg(d0)

Theorem 5.2 (Worst-case noise). In the conditions of Theorem5.1, we have

– ‖Err(Cst(μ))‖∞ = 0
– ‖Err(Not(d))‖∞ = ‖Err(d)‖∞
– ‖Err(CAnd(C,d))‖∞ ≤ ‖Err(d)‖∞ + η(C)
– ‖Err(CMux(C,d1,d0))‖∞ ≤ max(‖Err(d0)‖∞ , ‖Err(d1)‖∞) + η(C),

where η(C) = (k + 1)�Nβ ‖Err(C)‖∞ + (kN + 1)ε.

24 I. Chillotti et al.

Proof. The noise is indeed null for constant gates, and negated for the Not gate,
which preserves the norm. The noise bound for the CAnd gate is exactly the one
from Theorem 3.14, however, we need to explain why there is a max in the CMux
formula instead of the sum we would obtain by blindly applying Theorem3.14.
Let d = d1−d0, recall that in the proof of Theorem3.14, the expression of C�d
is Dech,β,ε(d) • zC + μCεdec + μCzd + (0, μC · μd), where C = zC + μC · h and
d = zd + μd, zC and zd are respectively TGSW and TLWE samples of 0, and
‖εdec‖∞ ≤ ε. Thus, CMux(C,d1,d0) is the sum of four terms:

– Dech,β,ε(d) • zC of norm ≤ (k + 1)�NβηC ;
– μCεdec of norm ≤ (kN + 1)ε;
– zd0 + μC(zd1 − zd0), which is either zd1 or zd0 , depending on the value of μC ;
– μd0 + μC · (μd1 − μd0), which is the output message μC?μd1 :μd0 , and is not

part of the noise.

Thus, summing the three terms concludes the proof. ��
Corollary 5.3 (Average noise of boolean gates). In the conditions of The-
orem5.1, and in the conditions of Assumption 3.6, we have:

– Var(Err(Cst(μ))) = 0;
– Var(Err(Not(d))) = Var(Err(d));
– Var(Err(CAnd(C,d))) ≤ Var(Err(d)) + ϑ(C);
– Var(Err(CMux(C,d1,d0))) ≤ max(Var(Err(d0)),Var(Err(d1))) + ϑ(C),

where ϑ(C) = (k + 1)�Nβ2Var(Err(C)) + (kN + 1)ε2.

Proof. Same as Theorem 5.2, replacing all norm inequalities by Variance inequal-
ities. ��

We now obtain theorems which are analogue to [13], with a bit less noise on
the mux gate, but with the additional restriction that CAnd and CMux have a
control wire, which must necessarily be a fresh TGSW ciphertext.

The next step is to understand the meaning of this additional restriction in
terms of expressiveness of the resulting homomorphic circuits.

It is clear that we cannot build a random boolean circuit, and just apply the
noise recurrence formula from Theorem 5.2 or Corollary 5.3 to get the output
noise level. Indeed, it is not allowed to connect a data wire to an control input.

In the following section, we will show that we can still obtain the two most
important circuits of [13], namely the deterministic automata circuits, which can
evaluate any permutation of regular languages with noise propagation sublinear
in the word length and the lookup table, which evaluates arbitrary functions
with sublinear noise propagation.

5.2 Deterministic Automata

It is folklore that every deterministic program which reads its input bit-by-bit
in a pre-determined order, uses less than B bits of memory, and produces a
boolean answer, is equivalent to a deterministic automata of at most 2B states

Faster Fully Homomorphic Encryption 25

(independently of the time complexity). This is in particular the case for every
boolean function of p variables, that can be trivially executed with p − 1 bits
of internal memory by reading and storing its input bit-by-bit before returning
the final answer. It is of particular interest for most arithmetic functions, like
addition, multiplication, or CRT operations, whose naive evaluation only requires
O(log(p)) bits of internal memory.

Let A = (Q, i, T0, T1, F) be a deterministic automata (over the alphabet
{0, 1}, where Q is the set of states, i ∈ Q denotes the initial state, T0, T1

are the two transitions (deterministic) functions from Q to Q and F ⊂ Q is
the set of final states. Such automata is used to evaluate (rational) boolean
functions on words where the image of (w1, . . . , wp) ∈ B

p is equal to 1 iff.
Twp

(Twp−1(. . . (Tw1(i)))) ∈ F , and 0 otherwise.
Following the construction of [13], we show that we are able to evaluate any

deterministic automata homomorphically using only constant and CMux gates
efficiently. The noise propagation remains linear in the length of the word w,
but compared to [13, Theorem 7.11], we reduce the number of evaluated CMux
gates by a factor |w| for a specific class of acyclic automata that are linked to
fixed-time algorithms.

Theorem 5.4 (Evaluating Deterministic Automata). Let A = (Q, i, T0,
T1, F) be a deterministic automata. Given p valid TGSW samples C1, . . . , Cp

encrypting the bits of a word w ∈ B
p, with noise amplitude η = maxi ‖Err(Ci)‖∞

and ϑ = maxi Var(Err(Ci)), by evaluating at most ≤ p#Q Cmux gates, one can
produce a TLWE sample d which encrypts 1

2 iff A accepts w, and 0 otherwise
such that ‖Err(d)‖∞ ≤ p · ((k + 1)�Nβη + (kN + 1)ε). Assuming Heuristic 3.6,
Var(Err(d)) ≤ p · ((k +1)�Nβ2ϑ+(kN +1)ε2). Furthermore, the number of eval-
uated CMux can be decreased to ≤ #Q. if A satisfies either one of the conditions:

(i) for all q ∈ Q (except KO states), all the words that connect i to q have
the same length;

(ii) A only accepts words of the same length.

Proof. We initialize #Q noiseless ciphertexts dq,p for q ∈ Q with dq,p = (0, 1
2) =

Cst(12) if q ∈ F and dq,p = (0, 0) = Cst(0) otherwise. Then for each letter of
w, we map the transitions as follow for all q ∈ Q an j ∈ [[0, p − 1]]: dq,j−1 =
CMux(Cj ,dT1(q),j ,dT0(q),j). And we finally output di,0.

Indeed, with this construction, we have

msg(di,0) = msg(dTw1(i),1
) = . . . = msg(dTwp(Twp−1

...(Tw1(i))...),p
),

which encrypts 1
2 iff Twp

(Twp−1 . . . (Tw1(i)) . . .) ∈ F , i.e. iff w1 . . . wp is accepted
by A. This proves correctness.

For the complexity, each dq,j for all q ∈ Q an j ∈ [[0, p− 1]] is computed with
a single CMux. By applying the noise propagation inequalities of Theorem5.2
and Corollary 5.3, it follows by an immediate induction on j from p down to 0,
that for all j ∈ [[0, p]], ‖Err(dq,j)‖∞ ≤ (p − j) · ((k + 1)�Nβη + (kN + 1)ε) and
Var(Err(dq,j)) ≤ (p − j) · ((k + 1)�Nβ2ϑ + (kN + 1)ε2).

26 I. Chillotti et al.

Note that it is sufficient to evaluate only the dq,j when q is accessible by at
least one word of length j. Thus, if the A satisfies the additional condition (i),
then for each q ∈ Q, we only need to evaluate dq,j for at most one position j.
Thus, we evaluate less than #Q CMux gates in total.

Finally, if A satisfies (ii), then we first compute the minimal deterministic
automata of the same language (and removing the KO state if it is present),
then with an immediate proof by contradiction, this minimal automata satisfies
(i), and has less than #Q states. ��

For sake of completeness, since every boolean function with p variables can
be evaluated by an Automata (that accepting only words of length p), we obtain
the evaluation of arbitrary boolean function as an immediate corollary, which is
the leveled variant of [13, Corollary 7.9].

Lemma 5.5 (Arbitrary Functions). Let f be any boolean function with p
inputs, and c1, . . . , cp be p TGSWs({0, 1}) ciphertexts of x1, . . . , xp ∈ {0, 1},
with noise ‖Err(ci)‖∞ ≤ η for all i ∈ [1, p]. Then the CMux-based Reduced
Binary Decision Diagram of f computes a TLWEs ciphertext d of 1

2f(x1, . . . , xp)
with noise ‖Err(d)‖∞ ≤ p((k + 1)�Nβη + (kN + 1)ε) by evaluating N (f) ≤ 2p

CMux gates where N (f) is the number of distinct partial functions (xl, . . . , xp) →
f(x1, . . . , xp) for all l ∈ [[1, p + 1]], (x1, . . . , xl−1) ∈ B

l−1.

Proof (sketch). A trivial automata which evaluates f consists in its full binary
decision tree, with the initial state i = q0,0 as the root, each state ql,j depth
l ∈ [[0, p−1]] and j ∈ [[0, 2l −1]] is connected with T0(ql,j) = ql+1,2j and T1(ql,j) =
ql+1,2j+1, and at depth p, qp,j ∈ F iff f(x1, . . . , xp) = 1 where j =

∑p
l=1 xl2p−l.

The minimal version of this automaton has at most N (f) states, the rest follows
from Theorem 5.4. ��

Application: Compilation for Leveled Homomorphic Circuits. We now
give an example of how we can map a problem to an automata in order to
perform a leveled homomorphic evaluation. We will illustrate this concept on
the computation of the p-th bit of an integer product a × b where a and b are
given in base 2. We do not claim that the automata approach is the fastest way
to solve the problem, arithmetic circuits based on bitDecomp/recomposition are
likely to be faster. But the goal is to clarify the generality and simplicity of
the process. All we need is a fixed-time algorithm that solves the problem using
the least possible memory. Among all algorithms that compute a product, the
most naive ones are in general the best: here, we choose the elementary-school
multiplication algorithm that computes the product bit-by-bit, starting from
the LSB, and counting the current carry with the fingers. The pseudocode of
this algorithm is recalled in Algorithm 4. The pseudo-code is almost given as a
deterministic automata, since each step reads a single input bit, and uses it to
update its internal state (x, y), that can be stored in only M = log2(4p) bits of
memory. More precisely, the states Q of the corresponding automata A would be
all (j, (x, y)) where j ∈ [[0, jmax]] is the step number (i.e. number of reads from

Faster Fully Homomorphic Encryption 27

the beginning) and (x, y) ∈ B× [[0, 2p[[are the 4p possible values of the internal
memory. The initial state is (0, 0, 0), the total number of reads jmax is ≤ p2,
and the final states are all (jmax, x, y) where y is odd. This automata satisfies
condition (i), since a state (j, x, y) can only be reached after reading j inputs,
so by Theorem 5.4, the output can be homomorphically computed by evaluating
less than #Q ≤ 4p3 CMux gates, with some O(p) noise overhead. The number
of Mux can decrease by a factor 8 by minimizing the automata. Using the same
parameters as the bootstrapping key, for p = 32, evaluating one Mux gate takes
about 0.0002 s, so the whole program (16384 Cmux) would be homomorphically
evaluated in 3.2 s.

We mapped a problem from its high-level description to an algorithm using
very few bits of memory. Since low memory programs are in general more naive,
it should be easier to find them than obtaining a circuit with low multiplicative
depth that would be required for other schemes such as BGV, FHE over integers.
Once a suitable program is found, as in the previous example, compiling it to a
net-list of CMux gates is straightforward by our Theorem5.4.

Algorithm 4. Elementary fixed time algorithm that computes the p-th bit of
the product of a and b

Input: a and b as little endian bits
Output: p-th bit of ab
1: Internal memory: x ∈ {0, 1}, y ∈ [[0, 2p[[
2: initialize x = 0, y = 0
3: for k = 0 to p − 1 do
4: for i = 0 to k − 1 do
5: read ai; x = ai

6: read bk−i; y = y + xbk−i

7: end for
8: read ak; x = ak

9: read b0; y = �(y + xb0)/2

10: end for
11: for i = 0 to p do
12: read ai; x = ai

13: read bp−i; y = y + xbp−i

14: end for
15: accept if y == 1 mod 2

6 Practical Security Parameters

For an asymptotical security analysis, since the phase is lipschitzian, TLWE
samples can be equivalently mapped to their closest binLWE (or bin-RingLWE),
which in turn can be reduced to standard LWE/ringLWE with full secret using
the modulus-dimension reduction [6] or group-switching techniques [13]. It can

28 I. Chillotti et al.

then be reduced to worst case BDD instances. It is also easy to write a direct
and tighter search-to-decision reductions for TLWE, or a direct worst-case to
average-case reductions from TLWE to Gap-SVP or BDD.

In this section, we will rather focus on the practical hardness of LWE, and
express after all the security parameter λ directly as a function of the entropy
of the secret n and the error rate α.

Our analysis is based on the work described in [2]. This paper studies many
attacks against LWE, ranging from a direct BDD approach with standard lat-
tice reduction, sieving, or with a variant of BKW [4], resolution via man in
the middle attacks. Unfortunately, they found out that there is no single-best
attack. According to their results table [2, Sect. 8, Tables 7 and 8] for the range
of dimensions and noise used for FHE, it seems that the SIS-distinguisher attack
is often the best candidate (related to the Lindner-Peikert [17] model, and also
used in the parameter estimation of [11]). However, since q is not a parameter in
our definition of TLWE, we need to adapt their results. This section relies on the
following heuristics concerning the experimental behaviour of lattice reduction
algorithms. They have been extensively verified and used in practice.

1. The fastest lattice reduction algorithms in practice are blockwise lattice algo-
rithms (like BKZ-2.0 [8], D-BKZ [20], or the slide reduction with large block-
size [14,20]).

2. Practical blockwise lattice reduction algorithms have an intrinsic quality δ >
1 (which depends on the blocksize), and given a m-dimensional real basis B
of volume V , they compute short vectors of norm δmV 1/m.

3. The running time of BKZ-2.0 (expressed in bit operations) as a function of
the quality parameter is: log2(tBKZ)(δ) = 0.009

log2(δ)
2 − 27 (According to the

extrapolation by Albrecht et al. [1] of Liu-Nguyen datasets [18]).
4. The coordinates of vectors produced by lattice reduction algorithms are bal-

anced. Namely, if the algorithm produces vectors of norm ‖v‖2, each coeffi-
cient has a marginal Gaussian distribution of standard deviation ‖v‖2 /

√
n.

Provided that the geometry of the lattice is not too skewed in particular direc-
tions, this fact can sometimes be proved, especially if the reduction algorithm
samples vectors with Gaussian distribution over the input lattice. This simple
fact is at the heart of many attacks based on Coppersmith techniques with
lattices.

5. For mid-range dimensions and polynomially small noise, the SIS-distinguisher
plus lattice reduction algorithms combined with the search-to-decision is the
best attack against LWE; (but this point is less clear, according to the analysis
of [1], at least, this attack model tends to over-estimate the power of the
attacker, so it should produce more conservative parameters).

6. Except for small polynomial speedups in the dimension, we don’t know better
algorithms to find short vectors in random anti-circulant lattices than generic
algorithms. This folklore assumption seems still up-to date at the time of
writing.

If one finds a small integer combination that cancels the mask of homogeneous
LWE samples, one may use it to distinguish them from uniformly chosen random

Faster Fully Homomorphic Encryption 29

samples. If this distinguisher has small advantage ε, we repeat it about 1/ε2

times. Then, thanks to the search to decision reduction (which is particularly
tight with our TLWE formulation), each successful answer of the distinguisher
reveals one secret key bit. To handle the continuous torus, and since q is not
a parameter of TLWE either, we show how to extend the analysis of [2] to our
scheme.

Let (a1, b1), . . . , (am, bm) be either m LWE samples of parameter α or
m uniformly random samples of T

n+1, we need to find a small combination
v1, . . . , vm of samples such that

∑
viai is small. This condition differs from

most previous models, were working on a discrete group, and required an exact
solution. By allowing approximations, we may find solutions for much smaller
m than the usual bound n log q, even m < n can be valid. Now, consider
the (m+n)-dimensional lattice, generated by the rows of the following basis
B ∈ Mn+m,n+m(R):

B =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0

. . . 0
0 1

a1,1 · · · a1,n 1 0
...

. . .
...

. . .

am,1 · · · am,n 0 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

Our target is to find a short vector w = [x1, . . . , xn, v1, . . . , vm] in the lattice
of B, whose first n coordinates (x1, . . . , xn) =

∑m
i=1 viai mod 1 are shorter

than the second part (v1, . . . , vm). To take this skewness into account, we choose
a real parameter q > 1 (that will be optimized later), and apply the unitary
transformation fq to the lattice, which multiplies the first n coordinates by q
and the last m coordinates by 1/qn/m. Although this matrix looks like a classical
LWE matrix instance, the variable q is a real parameter, and it doesn’t need
to be an integer. It then suffices to find a regular short vector with balanced
coordinates in the transformed lattice, defined by this basis:

fq(B) =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

q 0

. . . 0
0 q

qa1,1 · · · qa1,n
1

qn/m 0

...
. . .

...
. . .

qam,1 · · · qam,n 0 1

qn/m

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, with q ∈ R > 1.

The direct approach is to apply the fastest algorithm (BKZ-2.0 or slide reduc-
tion) directly to fq(B), which outputs a vector fq(w) of standard deviation
δn+m/

√
n + m where δ ∈]1, 1.1] is the quality of the reduction.

Once we have a vector w, all we need is to analyse the term
∑m

i=1 vibi =∑m
i=1 vi(ais + ei) = s · ∑m

i=1(viai) +
∑m

i=1 viei = s · x + v · e.

30 I. Chillotti et al.

It has Gaussian distribution of square parameter σ2 = δ2(m+n)π
2q2 · nS2

m+n +
q2n/mδ2(m+n)α2m

m+n = δ2(m+n)
(

πS2

2q2 · n
m+n + q2n/mα2 m

m+n

)
. Here S = ‖s‖√

n
≈ 1√

2
.

By definition of the smoothing parameter, it may be distinguished from the
uniform distribution with advantage ε as long as σ2 ≥ η2

ε(Z). To summarize, the
security parameter of LWE is (bounded by) the solution of the following system
of equations

λ(n, α) = log2(tattack) = min
0<ε<1

log2
(n

ε2
tBKZ(n, α, ε)

)
(3)

log2(tBKZ)(n, α, ε) =
0.009

log2(δ)2
− 27 (4)

ln(δ)(n, α, ε) = max
m>1
q>1

1
2(m+n)

(

ln(η2
ε(Z)) − ln

(
πS2

2q2
n

m+n
+ q

2n
m α2 m

m+n

))

(5)

ηε(Z) ≈
√

1
π

ln(
1
ε
). (6)

Here, Eq. (3) means that we need to run the distinguisher 1
ε2 times per

unknown key bit (by Chernoff’s bound), and we need to optimize the advan-
tage ε accordingly. Equation (4) is the heuristic prediction of the running time
of lattice reduction. In Eq. (5) q and m need to be chosen in order to maximize
the targeted approximation factor of the lattice reduction step.

Differentiating Eq. (5) in q, we find that its maximal value is

qbest =
(

πS2

2α2

) m
2(m+n)

.

Replacing this value and setting t = n
m+n , Eq. (5) becomes:

ln(δ)(n, α, ε) = max
t>0

1
2n

(
t2�2 + t(1 − t)�1

)
where

⎧
⎨

⎩

�1 = ln
(

η2
ε(Z)
α2

)

�2 = ln
(

2η2
ε(Z)

πS2

)
.

Finally, by differentiating this new expression in t, the maximum of δ is
reached for tbest = �1

2(�1−�2)
, because �1 > �2, which gives the best choices of m

and q and δ. Finally, we optimize ε numerically in Eq. (3).
All previous results are summarized in Fig. 1, which displays the security

parameter λ as a function of n, log2(α).
In particular, in the following table we precise the values for the keyswitching

key and the bootstrapping key (for our implementation and for the one in [11]).

n α λ εbest mbest qbest δbest
Switch key 500 2−15 136 2−12 444 125.7 1.0058

Boot. key 1024 9.0 · 10−9 194 2−10 968 7664 1.0048

Boot.key [11] 1024 3.25 · 10−10 141 2−7 993 44096 1.0055

Faster Fully Homomorphic Encryption 31

Fig. 1. Security parameter λ as a function of n and α for LWE samples. This curve
shows the security parameter levels λ (black levels) as a function of n = kN (along the x-
axis) and log2(1/α) (along the y-axis) for TLWE (also holds for bin-LWE), considering
both the attack of this section and the collision attack in time 2n/2.

The table shows that the strength of the lattice reduction is compatible with
the values announced in [11]. Our model predicts that the lattice reduction phase
is harder (δ = 1.0055 in our analysis and δ = 1.0064 in [11]), but the value of
ε is bigger in our case. Overall, the security of their parameters-set is evaluated
by our model to 136-bits of security, which is larger than the ≥ 100-bits of
security announced in [11]. The main reason is that we take into account the
number of times we need to run the SIS-distinguisher to obtain a non negligible
advantage. Since our scheme has a smaller noise propagation overhead, we were
able to raise the input noise levels in order to strengthen the system, so with
the parameters we chose in our implementation, our model predicts 194-bits of
security for the bootstrapping key and 136-bits for the keyswitching key (which
remains the bottleneck).

7 Conclusion

In this paper, we presented a generalization of the LWE and GSW homomorphic
encryption schemes. We improved the execution timing of the bootstrapping
procedure and we reduced the size of the keys by keeping at least the same
security as in previous fast implementations. This result has been obtained by
simplifying the multiplication morphism, which is the main operation used in
the scheme we described. As a proof of concept we implemented the scheme
itself and we gave concrete parameters and timings. Furthermore, we extend the
applicability of the external product to leveled homomorphic encryption. We

32 I. Chillotti et al.

finally gave a detailed security analysis. Now the main drawback to make our
scheme adapted for real life applications is the expansion factor of the ciphertexts
of around 400000 with fairly limited batching capabilities.

Acknowledgements. This work has been supported in part by the CRYPTOCOMP
project.

References

1. Albrecht, M.R., Cid, C., Faugère, J., Fitzpatrick, R., Perret, L.: On the complexity
of the BKW algorithm on LWE. Des. Codes Crypt. 74(2), 325–354 (2015)

2. Albrecht, M.R., Player, R., Scott, S.: On the concrete hardness of learning with
errors. J. Math. Crypt. 9(3), 169–203 (2015)

3. Alperin-Sheriff, J., Peikert, C.: Faster bootstrapping with polynomial error. In:
Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014. LNCS, vol. 8616, pp. 297–314.
Springer, Heidelberg (2014). doi:10.1007/978-3-662-44371-2 17

4. Blum, A., Kalai, A., Wasserman, H.: Noise-tolerant learning, the parity problem,
and the statistical query model. J. ACM 50(4), 506–519 (2003)

5. Brakerski, Z., Gentry, C., Vaikuntanathan, V.: (Leveled) fully homomorphic
encryption without bootstrapping. In: ITCS, pp. 309–325 (2012)

6. Brakerski, Z., Langlois, A., Peikert, C., Regev, O., Stehlé, D.: Classical hardness
of learning with errors. In: Proceedings of 45th STOC, pp. 575–584. ACM (2013)

7. Brakerski, Z., Vaikuntanathan, V.: Efficient fully homomorphic encryption from
(standard) LWE. In: FOCS, pp. 97–106 (2011)

8. Chen, Y., Nguyen, P.Q.: BKZ 2.0: better lattice security estimates. In: Lee,
D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp. 1–20. Springer,
Heidelberg (2011). doi:10.1007/978-3-642-25385-0 1

9. Cheon, J.H., Stehlé, D.: Fully homomophic encryption over the integers revis-
ited. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9056,
pp. 513–536. Springer, Heidelberg (2015). doi:10.1007/978-3-662-46800-5 20

10. Chillotti, I., Gama, N., Georgieva, M., Izabachène, M.: A homomorphic LWE
based e-voting scheme. In: Takagi, T. (ed.) PQCrypto 2016. LNCS, vol. 9606,
pp. 245–265. Springer, Heidelberg (2016). doi:10.1007/978-3-319-29360-8 16

11. Ducas, L., Micciancio, D.: FHEW: bootstrapping homomorphic encryption in less
than a second. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol.
9056, pp. 617–640. Springer, Heidelberg (2015). doi:10.1007/978-3-662-46800-5 24

12. Frigo, M., Johnson, S.G.: The design, implementation of FFTW3. In: Proceed-
ings of the IEEE, vol. 93, no. 2, pp. 216–231 (2005). Special issue on “Program
Generation, Optimization, and Platform Adaptation”

13. Gama, N., Izabachène, M., Nguyen, P.Q., Xie, X.: Structural lattice reduction:
generalized worst-case to average-case reductions. IACR Crypt. ePrint Arch. 2014,
48 (2014)

14. Gama, N., Nguyen, P.Q.: Predicting lattice reduction. In: Smart, N. (ed.) EURO-
CRYPT 2008. LNCS, vol. 4965, pp. 31–51. Springer, Heidelberg (2008). doi:10.
1007/978-3-540-78967-3 3

15. Gentry, C.: Fully homomorphic encryption using ideal lattices. In: 41st ACM
STOC, pp. 169–178 (2009)

http://dx.doi.org/10.1007/978-3-662-44371-2_17
http://dx.doi.org/10.1007/978-3-642-25385-0_1
http://dx.doi.org/10.1007/978-3-662-46800-5_20
http://dx.doi.org/10.1007/978-3-319-29360-8_16
http://dx.doi.org/10.1007/978-3-662-46800-5_24
http://dx.doi.org/10.1007/978-3-540-78967-3_3
http://dx.doi.org/10.1007/978-3-540-78967-3_3

Faster Fully Homomorphic Encryption 33

16. Gentry, C., Sahai, A., Waters, B.: Homomorphic encryption from learning with
errors: conceptually-simpler, asymptotically-faster, attribute-based. In: Canetti,
R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8042, pp. 75–92. Springer,
Heidelberg (2013). doi:10.1007/978-3-642-40041-4 5

17. Lindner, R., Peikert, C.: Better key sizes (and Attacks) for LWE-based encryp-
tion. In: Kiayias, A. (ed.) CT-RSA 2011. LNCS, vol. 6558, pp. 319–339. Springer,
Heidelberg (2011). doi:10.1007/978-3-642-19074-2 21

18. Liu, M., Nguyen, P.Q.: Solving BDD by enumeration: an update. In: Dawson, E.
(ed.) CT-RSA 2013. LNCS, vol. 7779, pp. 293–309. Springer, Heidelberg (2013).
doi:10.1007/978-3-642-36095-4 19

19. Lyubashevsky, V., Peikert, C., Regev, O.: On ideal lattices and learning with errors
over rings. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 1–23.
Springer, Heidelberg (2010). doi:10.1007/978-3-642-13190-5 1

20. Micciancio, D., Walter, M.: Practical, predictable lattice basis reduction. In:
Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9665, pp. 820–849.
Springer, Heidelberg (2016). doi:10.1007/978-3-662-49890-3 31

21. Regev, O.: On lattices, learning with errors, random linear codes, and cryptogra-
phy. In: STOC, pp. 84–93 (2005)

http://dx.doi.org/10.1007/978-3-642-40041-4_5
http://dx.doi.org/10.1007/978-3-642-19074-2_21
http://dx.doi.org/10.1007/978-3-642-36095-4_19
http://dx.doi.org/10.1007/978-3-642-13190-5_1
http://dx.doi.org/10.1007/978-3-662-49890-3_31

Mathematical Analysis I

A General Polynomial Selection Method
and New Asymptotic Complexities

for the Tower Number Field Sieve Algorithm

Palash Sarkar and Shashank Singh(B)

Applied Statistics Unit, Indian Statistical Institute, Kolkata, India
palash@isical.ac.in, sha2nk.singh@gmail.com

Abstract. In a recent work, Kim and Barbulescu had extended the
tower number field sieve algorithm to obtain improved asymptotic com-
plexities in the medium prime case for the discrete logarithm problem
on Fpn where n is not a prime power. Their method does not work when
n is a composite prime power. For this case, we obtain new asymptotic
complexities, e.g., Lpn(1/3, (64/9)1/3) (resp. Lpn(1/3, 1.88) for the mul-
tiple number field variation) when n is composite and a power of 2; the
previously best known complexity for this case is Lpn(1/3, (96/9)1/3)
(resp. Lpn(1/3, 2.12)). These complexities may have consequences to the
selection of key sizes for pairing based cryptography. The new complex-
ities are achieved through a general polynomial selection method. This
method, which we call Algorithm-C, extends a previous polynomial selec-
tion method proposed at Eurocrypt 2016 to the tower number field case.
As special cases, it is possible to obtain the generalised Joux-Lercier and
the Conjugation method of polynomial selection proposed at Eurocrypt
2015 and the extension of these methods to the tower number field sce-
nario by Kim and Barbulescu. A thorough analysis of the new algorithm
is carried out in both concrete and asymptotic terms.

1 Introduction

The discrete logarithm problem (DLP) over the multiplicative group of a finite
field is a basic problem in cryptography. Two general approaches are known for
tackling the DLP on such groups. These are the function field sieve (FFS) [1,2,
12,14] algorithm and the number field sieve (NFS) [8,13,15] algorithm.

Let p be a prime, n ≥ 1 be an integer and Q = pn. Suppose that p = LQ(a, cp)
where

LQ(a, cp) = exp
(
(cp + o(1))(ln Q)a(ln lnQ)1−a

)
.

Depending on the value of a, fields FQ are classified into the following types: small
characteristic, if a ≤ 1/3; medium characteristic, if 1/3 < a < 2/3; boundary, if
a = 2/3; and large characteristic, if a > 2/3.

For fields of small characteristic, there has been tremendous progress in the
FFS algorithm leading to a quasi-polynomial time algorithm [4]. Based on the
FFS algorithms given in [4,11], a record computation of discrete log in the binary
c© International Association for Cryptologic Research 2016
J.H. Cheon and T. Takagi (Eds.): ASIACRYPT 2016, Part I, LNCS 10031, pp. 37–62, 2016.
DOI: 10.1007/978-3-662-53887-6 2

38 P. Sarkar and S. Singh

extension field F29234 was reported by Granger et al. [9]. Applications of the FFS
algorithm to the medium prime case have been reported in [10,14,19].

For medium to large characteristic finite fields, the NFS algorithm is gener-
ally considered to be the state-of-the-art. NFS was initially proposed for solving
the factoring problem. Its application to DLP was first proposed by Gordon [8]
for prime order fields. Application to composite order fields was shown by Schi-
rokauer [21]. Important improvements to the NFS for prime order fields was
given by Joux and Lercier [13].

A major step in the application of NFS was by Joux, Lercier, Smart and
Vercauteren [15] who showed that the NFS algorithm is applicable to all finite
fields. When the prime p is of a special form, Joux and Pierrot [16] showed
the application of the special number field sieve algorithm to obtain improved
complexity.

The NFS algorithm proceeds by constructing two polynomials f(x) and g(x)
over the integers which have a common factor ϕ(x) of degree n modulo p. The
polynomial ϕ(x) defines the field Fpn while the polynomials f(x) and g(x) define
two number fields. The efficiency of the NFS algorithm is crucially dependent
on the properties of the polynomials f(x) and g(x) used to construct the num-
ber fields. Consequently, polynomial selection is an important step in the NFS
algorithm and is an active area of research.

There has been a recent spurt of interest in the study of the NFS algorithm
for DLP in finite fields. The work [3] by Barbulescu et al. extends a previous
method [13] for polynomial selection and also presents a new method. The exten-
sion of [13] is called the generalised Joux-Lercier (GJL) method while the new
method proposed in [3] is called the Conjugation method. The paper also pro-
vides a comprehensive comparison of the trade-offs in the complexity of the NFS
algorithm offered by the various polynomial selection methods.

The NFS based algorithm has been extended to multiple number field sieve
algorithm (MNFS). The work [6] showed the application of the MNFS to medium
to high characteristic finite fields. More recently, Pierrot [18] proposed MNFS
variants of the GJL and the Conjugation methods. Sarkar and Singh pro-
posed [20] a new polynomial selection method which subsumes both the GJL
and the Conjugation methods. Using this method, the asymptotic complexity of
both the NFS and the MNFS were worked out in [20].

The minimum asymptotic complexities using the NFS algorithm of Bar-
bulescu et al. [3] can be written as LQ(1/3, (c/9)1/3) where c = 96 for the
medium characteristic case; c = 48 for the boundary case and c = 64 for the
large characteristic case. The multiple number field sieve algorithm [18] improves
these complexities. Further, the minimum complexities are achievable for a cer-
tain value of cp. The analysis in [20] improves the asymptotic complexity of the
boundary case for a range of values of cp.

When the extension degree n is composite, the finite field Fpn can be repre-
sented as a tower of fields. The idea of using this in the context of DLP is due
to Schirokauer [21]. This variant is called the tower number field sieve (TNFS)
algorithm.

A General Polynomial Selection Method and New Asymptotic Complexities 39

At Asiacrypt 2015, Barbulescu et al., [5] presented a detailed analysis of
the tower number field sieve (TNFS) variant. In a recent paper, Kim and Bar-
bulescu [17] extended the TNFS algorithm and applied previous polynomial
selection methods to the TNFS, the multiple TNFS (MTNFS) and the spe-
cial TNFS variants. These were respectively called the exTNFS, MexTNFS and
the SexTNFS algorithms. The polynomial selection methods considered in [17]
include the methods from Joux-Lercier-Smart-Vercauteren [15], the GJL and the
Conjugation methods from [3] and the polynomial selection method from [20].

Consequences to the Medium Prime Case. An important achievement of
the work by Kim and Barbulescu [17] is to improve the asymptotic complexity
of the medium prime case when n is not a prime power. In this case, they show
that the complexity LQ(1/3, (48/9)1/3) is achievable. Further, if p is of a special
form, then the complexity of LQ(1/3, (32/9)1/3) is achievable. The condition n
is not a prime power is equivalent to saying that n can be written as ηκ with
gcd(η, κ) = 1. How restrictive is the condition gcd(η, κ) = 1?

One way of removing this restriction is to embed Fpn into Fpnm with
gcd(n,m) = 1 and compute discrete logarithms in Fpnm . Let Q = pn and
Q′ = pnm. The complexity of the NFS algorithm in FQ′ can be written as
LQ′(1/3, μ) where μ is a constant. Note that LQ′(1/3, μ) is LQ(1/3, μm1/3)
(ignoring small terms). The best complexity obtained by Kim and Barbulescu
is μ = (48/9)1/3. So, the best complexity achieved for solving DLP in Fpn by
embedding into Fpnm is LQ(1/3, ν) where ν = (48m/9)1/3.

Since m ≥ 2, ν ≥ (96/9)1/3. For p = LQ(a, cp) with 1/3 < a < 2/3, the
complexity of NFS for directly solving DLP in Fpn is LQ(1/3, (96/9)1/3). So, we
see that trying to solve DLP in Fpn by embedding into a larger field increases
the complexity. This motivates the problem of finding a variant of NFS for
fields Fpn where n is a composite prime-power with complexity LQ(1/3, ν) with
ν < (96/9)1/3.

Our Contributions

This paper makes two contributions.
The first contribution is to present a general polynomial selection method

which we call Algorithm-C. The polynomial selection method of [20] can be
obtained as a special case and so, in turn, the GJL and the Conjugation methods
are also obtained as special cases. Further, the exTNFS variants of the GJL and
the Conjugation methods are also obtained as special cases of Algorithm-C.

One important feature of Algorithm-C is that both prime-power and non
prime-power n can be covered. For the medium prime case, we have the following
consequences.

1. For non prime-power n, the minimum complexity achievable is that obtained
by Kim and Barbulescu [17]. The analysis, however, reveals improvement
over the complexities achieved by Kim and Barbulescu in certain ranges of
the relevant parameters.

40 P. Sarkar and S. Singh

2. For composite prime-power n, the complexities achieved by the new polynomial
selection method are currently the best known. For some small values of n, the
minimum achievable complexities using the exTNFS and the MexTNFS algo-
rithms are shown in Table 1. For n = 4, 8, 9 and 16 the new complexities may
have consequences to choosing the key sizes for pairing based cryptography.

Table 1. Improved minimum complexities LQ(1/3, c) for some composite prime-power
n. The entries in the table are the various values of c in different cases.

NFS MNFS

n new [3] new [18]

2i, i ≥ 2 (64/9)1/3 ≈ 1.92 (96/9)1/3 ≈ 2.2 1.88 2.12

9 (112/15)1/3 ≈ 1.95 (96/9)1/3 ≈ 2.2 1.92 2.12

25 (880/117)1/3 ≈ 1.96 (96/9)1/3 ≈ 2.2 1.94 2.12

2 The Set-Up of the Tower Number Field Sieve
Algorithm

The target is to compute discrete logarithm in the field Fpn where n is composite.
Suppose that n = ηκ is a non-trivial factorisation of n. We do not necessarily
require gcd(η, κ) = 1.

Let h(z) be a monic polynomial of degree η which is irreducible over both Z

and Fp. Let R = Z[z]/(h(z)). Also, note that Fpη = Fp[z]/(h(z)).
Let f(x) and g(x) be polynomials in R[x] whose leading coefficients are from

Z. The other coefficients of f and g are polynomials in z of degrees at most η−1.
In particular, f and g can be viewed as bi-variate polynomials in x and z with
coefficients in Z. The following properties are required.

1. Both f(x) and g(x) are irreducible over R.
2. Over Fpη , f(x) and g(x) have a common factor ϕ(x) of degree κ.

The field Fpn is realised as Fpη [x]/(ϕ(x)) = (R/pR)[x]/(ϕ(x)).
Let Kf and Kg be the number fields associated with the polynomials f

and g respectively. The above set-up provides two different decompositions of a
homomorphism from R[x] to Fpn . One of these goes through R[x]/(f(x)) and
the other goes through R[x]/(g(x)).

With this set-up, it is possible to set up a factor base and perform the three
main steps (relation collection, linear algebra and descent) of the NFS algorithm.
For details we refer to [5,17]. In this work, we will need only the following facts.

1. The factor base consists of B elements for some value B which determines
the overall complexity of the algorithm.

2. A polynomial φ(x) ∈ R[x] generates a relation if both the norms N(φ, f) and
N(φ, g) are B-smooth, where

N(φ, f) := Resz(Resx(φ(x), f(x)), h(z));
N(φ, g) := Resz(Resx(φ(x), g(x)), h(z)).

A General Polynomial Selection Method and New Asymptotic Complexities 41

In this work, we describe a method to choose h(z), f(x), g(x) and ϕ(x) such that
the above norms are suitably bounded. Consequences to the complexity of the
NFS algorithm are analysed.

2.1 Bounds on Resultants

Let f(z, x) be a bivariate polynomial with integer coefficients where fi,j is the
coefficient of xizj . Then

‖f‖∞ = max |fi,j |.
We summarise bounds on resultants of univariate and bivariate polynomials

given in [7].

Univariate Polynomials: Let a(u) and b(u) be two polynomials with integer
coefficients. From [7], we have

|Resu(a(u), b(u))|
≤ (deg(a) + 1)deg(b)/2(deg(b) + 1)deg(a)/2‖a‖deg(b)∞ × ‖b‖deg(a)∞ . (1)

Bivariate Polynomials: Let a(u, v) and b(u, v) be two polynomials with integer
coefficients. Let c(u) = Resv(a(u, v), b(u, v)). Then

‖c‖∞
≤ (degv(a) + degv(b))!(max(degu(a),degu(b)) + 1)degv(a)+degv(b)+1

×‖a‖degv(b)∞ × ‖b‖degv(a)∞ . (2)

The bounds given by (1) and (2) combine to provide bounds on N(φ, f).
Let φ(x, z) and f(x, z) be two polynomials and

ρ(z) = Resx(φ(x, z), f(x, z)).

Further, suppose degxφ ≤ t − 1 and degzφ ≤ η − 1. For ‖φ‖∞ = E2/(tη), the
number of possible φ(x, z)’s is E2. Assuming that t, η,degxf and degzf are small
in comparison to E, using (2) we have

‖ρ‖∞ = O
(
E2degx(f)/(tη) · ‖f‖t−1

∞
)

.

Suppose h(z) is a polynomial of degree η with ‖h‖∞ = H. Let

Γ = Resz (Resx(φ(x), f(x)), h(z)) .

Assuming that H = O(log Q), using (1) we have

|Γ| = O
(
‖ρ‖η

∞ · ‖h‖deg(ρ)∞
)

=
(
E2degxf/t · ‖f‖η(t−1)

∞
)1+o(1)

.

Note that in the TNFS set-up described above N(φ, f) = Γ.

Sieving Polynomials: Sieving is done using polynomials φ(x) ∈ R[x] of degrees
at most t−1 with ‖φ‖∞ = E2/ηt. Then the number of sieving polynomials is E2.

42 P. Sarkar and S. Singh

3 Using the LLL Algorithm for Polynomial Selection

The work [3] provides two methods for selecting polynomials for the classical
NFS algorithm. These are called the generalised Joux-Lercier (GJL) and the
Conjugation method. The GJL method is based on an earlier method due to
Joux and Lercier [13] and uses the LLL algorithm to select polynomials.

The GJL matrix: Given a vector a = [a0, . . . , an−1] ∈ F
n
p and r ≥ n, define an

(r + 1) × (r + 1) matrix in the following manner.
⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

p
. . .

. . .
p

a0 a1 · · · an−1 1
.

a0 a1 · · · an−1 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(3)

We extend the idea of the GJL to work for tower fields. In the TNFS set-up,
Q = pn where n = ηκ. Recall that h(z) is a monic irreducible polynomial of
degree η over the integers and R = Z[z]/(h(z)).

Let ϕ(x) ∈ R[x] be a monic polynomial of degree k. We can write

ϕ(x) = xk + ϕk−1(z)xk−1 + · · · + ϕ1(z)x + ϕ0(z),

where each
ϕi(z) = ϕi,0 + ϕi,1z + · · · + ϕi,η−1z

η−1

is a polynomial of degree less than η with the coefficients ϕi,j in Z.
Let λ be an integer such deg(ϕi) ≤ λ−1 for i = 0, . . . , k. The possible values

of λ are 1, . . . , η. The quantity λ will be a parameter of the polynomial selection
algorithm and the asymptotic complexity. Though in theory λ can take any
value in the range 1, . . . , η, in practice the values of λ which can be achieved are
1 and η. Later we will consider these values of λ in more details. Note that the
condition η = 1 reduces to the classical NFS and in this case λ is necessarily 1.

The polynomial ϕi(z) can be uniquely encoded by the vector
ϕi = (ϕi,0, . . . , ϕi,λ−1) and the polynomial ϕ(x) is uniquely encoded by the
vector

ϕ = (ϕ0,0, . . . , ϕ0,λ−1, . . . , ϕk−1,0, . . . , ϕk−1,λ−1) (4)

which is the concatenation of the vectors ϕ0, . . . ,ϕk−1.
We introduce some matrix notation.

1. diagi(p): the i × i diagonal matrix having all the diagonal entries to be p.
2. 0i,j : the i × j matrix all of whose entries are 0.

A General Polynomial Selection Method and New Asymptotic Complexities 43

3. For a vector a, let shifti(a) be the vector (0, . . . , 0
︸ ︷︷ ︸

i

,a).

Given the polynomial ϕ(x) and an integer r ≥ k, we define a lower triangular
matrix Mϕ,r as follows:

Mϕ,r =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

diagλk(p)
ϕ 1

0λ−1,1+λk diagλ−1(p)
shiftλ(ϕ) 1

0λ−1,1+λ(k+1) diagλ−1(p)
shift2λ(ϕ) 1

.
0λ−1,1+λ(r−1) diagλ−1(p)

shift(r−k)λ(ϕ) 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(rλ+1)×(rλ+1)

(5)

Note that for λ = 1, the matrix given by (5) becomes identical to the matrix
given by (3).

Apply the LLL algorithm to Mϕ,r and let the first row of the resulting LLL-
reduced matrix be written as

[ψ0,0, . . . , ψ0,λ−1, ψ1,0, . . . , ψ1,λ−1, . . . , ψr−1,0, . . . , ψr−1,λ−1, ψr].

This vector is taken to represent a polynomial ψ(x) ∈ R[x] of degree r where

ψ(x) = ψ0(z) + ψ1(z)x + · · · + ψr−1(z)xr−1 + ψrx
r;

ψi(z) = ψi,0 + ψi,1z + · · · + ψi,λ−1z
λ−1.

We denote ψ(x) as

ψ(x) = LLL(Mϕ,r). (6)

The number of rows of Mϕ,r which are constructed from ϕ is r − k +1. Each
of these rows contribute 1 as the diagonal entry. All the other rows contribute
p as the diagonal entry and there are rλ + 1 − (r − k + 1) = r(λ − 1) + k such
rows. Since Mϕ,r is a lower triangular matrix, its determinant is the product of
its diagonal entries which is equal to pr(λ−1)+k. Since the matrix has rλ+1 rows,
each entry of the first row of the matrix formed by applying LLL to Mϕ,r is at
most

p
r(λ−1)+k

rλ+1 .

So, each ψi,j and also ψr is at most this value. Consequently,

‖ψ‖∞ = p
r(λ−1)+k

rλ+1 = Q
1
n · r(λ−1)+k

rλ+1 = Qε/n (7)

where

ε =
r(λ − 1) + k

rλ + 1
. (8)

Note that for k ≤ r, ε < 1. The quantity ε will be another parameter in the
asymptotic analysis.

44 P. Sarkar and S. Singh

4 A New Polynomial Selection Method for TNFS

Algorithm C describes the polynomial selection method for TNFS. It extends
Algorithm-A in [20] to the setting of tower fields.

Algorithm. C: Polynomial selection for TNFS.
Input: p, n = ηκ, d (a factor of κ), r ≥ κ/d and λ ∈ {1, η}.
Output: f(x), g(x) and ϕ(x).

Let k = κ/d;
Let R = Z[z]/(h(z));
Let Fpη = Fp[z]/(h(z));
repeat

Randomly choose a monic polynomial A1(x) ∈ R[x] having the
following properties:
deg A1(x) = r + 1;
A1(x) is irreducible over Q[z]/(h(z)) and hence over R;
A1(x) has coefficient polynomials of size O(ln(p));
over Fpη , A1(x) has an irreducible factor A2(x) of degree k such that

all the coefficient polynomials of A2(x) have degrees at most λ − 1.

Randomly choose monic polynomials C0(x) and C1(x) with small
integer coefficients such that deg C0(x) = d and deg C1(x) < d.
Define

f(x) = Resy (A1(y), C0(x) + y C1(x)) ;
ϕ(x) = Resy (A2(y), C0(x) + y C1(x)) mod p;
ψ(x) = LLL(MA2,r);
g(x) = Resy (ψ(y), C0(x) + y C1(x)) .

until f(x) and g(x) are irreducible over Q[z]/(h(z)) (and hence over
R) and ϕ(x) is irreducible over Fpη = Fp[z]/(h(z)).

return f(x), g(x) and ϕ(x).

In Algorithm-C, there is only one loop. It is possible to rewrite the algorithm
with a nested loop structure. Such a description will have an outer loop which
will construct suitable A1(x), A2(x) and ψ(x). For each such (A1(x), A2(x), ψ(x))
the inner loop will try to find suitable C0(x) and C1(x) such that the required
conditions on f(x), g(x) and ϕ(x) are satisfied. This approach would have been
necessary if it had been difficult to find the required polynomials. As things
stand, however, the current description of Algorithm-C finds the required poly-
nomials within a few trials. So, we did not implement the more complex nested
version.

The following result states the basic properties of Algorithm C.

Proposition 1. The outputs f(x), g(x) and ϕ(x) of Algorithm C satisfy the
following.

A General Polynomial Selection Method and New Asymptotic Complexities 45

1. deg(f) = d(r + 1); deg(g) = rd and deg(ϕ) = κ;
2. over Fpn , both f(x) and g(x) have ϕ(x) as a factor;
3. ‖f‖∞ = O(ln(p)) and ‖g‖∞ = O(Qε/n).

Consequently, if φ is a sieving polynomial, then

N(φ, f) = E2d(r+1)/t × LQ(2/3, o(1)); (9)

N(φ, g) = E2dr/t × Q(t−1)ε/κ × LQ(2/3, o(1)); (10)

N(φ, f) × N(φ, g) = E(2d(2r+1))/t × Q(t−1)ε/κLQ(2/3, o(1)). (11)

We note the following points.

1. If η = 1, then λ must be 1 and we obtain Algorithm-A of [20]. As has been
noted in [20], Algorithm-A generalises and also subsumes the GJL and the
Conjugation methods for polynomial selection for the classical NFS given
in [3].

2. If η > 1 and λ = 1, then ϕ(x) produced by Algorithm-C has coefficients in Fp

and is of degree κ. For such a ϕ(x) to be irreducible over Fpη it is required
that gcd(η, κ) = 1.

3. TNFS variants of the GJL and the Conjugation methods were described
in [17]. These can be seen as special cases of Algorithm-C: Suppose η > 1
and λ = 1; if k = κ, then we obtain the TNFS variant of the GJL algo-
rithm; and if r = k = 1, then we obtain the TNFS variant of the Conjugation
method.

4. The case λ = η > 1 has not been considered earlier. For this case, Algorithm-
C allows ϕ(x) to have coefficients in Fpn . As a result, for irreducibility of ϕ(x),
the condition gcd(η, κ) = 1 is no longer required. Later we show that this case
leads to new asymptotic complexity when n is a composite prime-power.

5. Algorithm-C has the condition λ ∈ {1, η}. It is possible to generalise the
condition to λ ∈ {1, . . . , η}. However, as mentioned earlier, the case 1 < λ < η
is difficult to achieve in practice and so we do not consider this case.

5 Non-asymptotic Analysis and Examples

In Table 2, we compare the expressions for norm bounds for the various algo-
rithms. As has already been mentioned in [20], the NFS-GJL and the NFS-Conj
methods can be seen as special cases of NFS-A: for the former choose d = 1
while for the latter, choose d = n and r = k = 1. We explain that NFS-A,
exTNFS-GJL and exTNFS-Conj can be seen as special cases of exTNFS-C.

1. Choose η = λ = 1 in exTNFS-C to obtain NFS-A.
2. Choose η > 1, λ = 1 and d = 1 in exTNFS-C to obtain exNFS-GJL.
3. Choose η > 1, λ = 1, d = κ and r = k in exTNFS-C to obtain exNFS-

Conj. Choosing η > 1, λ = 1, d = κ and r > k in exTNFS-C provides a
generalisation of exNFS-Conj.

46 P. Sarkar and S. Singh

We note that NFS-JLSV1 cannot be derived as a special case of NFS-A and
similarly, exTNFS-JLSV1 cannot be derived as a special case of exTNFS-C.

The exTNFS-JLSV1, exTNFS-GJL and exTNFS-Conj algorithms are
applicable only for non-prime power n. These algorithms cannot be applied when
n is a composite prime-power. In Table 3, we compare concrete norm bounds for
n = 4, 8 and 9 for NFS-JLSV1, NFS-GJL, NFS-Conj, NFS-A with exTNFS-C.
This shows that new trade-offs are achievable with exTNFS-C. In Table 4, we
compare concrete norm bounds for n = 6 and 12. This shows that exTNFS-GJL
and exTNFS-Conj can be seen as special cases of exTNFS-C; also, by choosing
r > k, new trade-offs are achievable.

5.1 Plots of Norm Bounds

In Fig. 1, we provide plots of norm bound for various finite fields of composite
prime power extension degree. It is clear from the plots that for composite prime
power extension degree, Algorithm-C provides the lowest norm bound. Note that
we have used the estimates of Q-E pairs given in the Table 2 of the paper [3] for
plotting the norm bounds.

Plots of norm bound for extension degrees 12 and 24 are given in the Fig. 2.
Note that for these extension degrees, two types of towers are possible; one for
which gcd(η, κ) = 1, and the other for which gcd(η, κ) �= 1. Let us denote by
Algorithm-B, the special case of Algorithm-C where λ = 1 and so gcd(η, κ) = 1.
Plots for Algorithm-B are shown separately in Fig. 2. It is interesting to note
that, in the certain range of finite fields, the minimum norm bound achieved by
Algorithm-C is lower than the minimum norm bound achieved by Algorithm-B,
i.e., it is not necessarily the best to choose gcd(η, κ) = 1. While this appears in
the concrete comparison, it is not captured by the asymptotic analysis.

Table 2. Parameterised efficiency estimates for NFS obtained from the different poly-
nomial selection methods.

Method Norms product Conditions

NFS-JLSV1 [15] E
4n
t Q

t−1
n

NFS-GJL [3] E
2(2r+1)

t Q
t−1
r+1 r ≥ n

NFS-Conj [3] E
6n
t Q

t−1
2n

NFS-A [20] E
2d(2r+1)

t Q
t−1

d(r+1) d|n, r ≥ n/d

exTNFS-JLSV1 [17] E
4κ
t Q

t−1
κ n = ηκ, gcd(η, κ) = 1, η small

exTNFS-GJL [17] E
2(2r+1)

t Q
t−1
r+1 n = ηκ, gcd(η, κ) = 1, η small, r ≥ κ

exTNFS-Conj [17] E
6κ
t Q

t−1
2κ n = ηκ, gcd(η, κ) = 1, η small

exTNFS-C E
2d(2r+1)

t Q
(t−1)(r(λ−1)+k)

κ(rλ+1) n = ηκ, k = κ/d, r ≥ k;

NFS: η = λ = 1;

exTNFS (gcd(η, κ) = 1): η > 1, λ = 1;

exTNFS: η = λ

A General Polynomial Selection Method and New Asymptotic Complexities 47

Fig. 1. Product of norms for various polynomial selection methods

5.2 Examples for Non Prime-Power n

We provide concrete examples for the following settings.

– n = 6 with (η, κ) = (2, 3) or (3, 2): Example 1 below.
– n = 12 with (η, κ) = (3, 4): Example 2 below.

In both cases, η > 1 and so the obtained examples cannot be generated by
Algorithm-A. Since gcd(η, κ) = 1, we have taken λ = 1 and we provide both
examples which can and cannot be generated by the TNFS variant of the Con-
jugation method from [17].

Example 1. Let p be the 201-bit prime given below

p = 1606938044258990275541962092341162602522202993782792835301611 (12)

and n = 6.

Case 1: Let (η, κ) = (2, 3) so we can take λ = 1. Choose d = κ, and so k =
κ/d = 1. Taking r = k, we get the following polynomials.

h(z) = z2 + 14 z + 20

f(x) = x6 + 5x5 + 6x4 + 18x3 + 73x2 + 52x + 20

g(x) = 516378785784706099560748701401 x3 + 1874354673374387667869084608560 x2

+ 459276162276102007999766811670 x + 1683194203609950937495174411516

48 P. Sarkar and S. Singh

Table 3. Comparison of norm bounds for composite prime-power n with t = 2.

FQ Method Norm bound

Fp4 NFS-JLSV1
NFS-GJL (r = n)
NFS-Conj
NFS-A (d = 2, r = n/d)

E8Q
1
4

E9Q
1
5

E12Q
1
8

E10Q
1
6

exTNFS-C (η = λ = 2, κ = 2, d = 1, r = k = κ) E5Q
2
5

exTNFS-C (η = λ = 2, κ = 2, d = 2, r = k = 1) E6Q
1
3

Fp8 NFS-JLSV1
NFS-GJL (r = n)
NFS-Conj
NFS-A (d = 2, r = n/d)
NFS-A (d = 4, r = n/d)

E16Q
1
8

E17Q
1
9

E24Q
1
16

E18Q
1
10

E20Q
1
12

exTNFS-C (η = λ = 2, κ = 4, d = 1, r = k = κ) E9Q
2
9

exTNFS-C (η = λ = 2, κ = 4, d = 2, r = k = 2) E10Q
1
5

exTNFS-C (η = λ = 2, κ = 4, d = 4, r = k = 4) E12Q
1
6

Fp9 NFS-JLSV1
NFS-GJL (r = n)
NFS-Conj
NFS-A (d = 3, r = n/d)

E18Q
1
9

E19Q
1
10

E27Q
1
18

E21Q
1
12

exTNFS-C (η = λ = 3, κ = 3, d = 1, r = k = κ) E7Q
3
10

exTNFS-C (η = λ = 3, κ = 3, d = 3, r = k = 1) E9Q
1
4

φ(x) = x3 + 4370464675316262929768958368698673612607491294431378655895 x2

+ 13111394025948788789306875106096020837822473883294135967675 x

+ 8740929350632525859537916737397347225214982588862757311786

Clearly, the above polynomials represents the polynomials generated by Conju-
gation method and we have ‖g‖∞ ≈ 2101.

If we choose r = k + 1 i.e., r = 2, we get the following polynomials.

h(z) = z2 + z + 20

f(x) = x9 + 14x8 + 74x7 + 183x6 + 200x5 − 32x4 − 375x3 − 232x2 − 48x − 1

g(x) = 46647198736133019425 x6 + 530869201059776791498 x5 + 2094297655062561189093 x4

+ 3465328474724235168588 x3 + 2717008192279799547052 x2

+ 1322043132032704860464 x + 290748395825577445032

φ(x) = x3 + 315444052193803149917391335705534526435873425227915090402562 x2

+ 1261776208775212599669565342822138105743493700911660361610232 x

+ 315444052193803149917391335705534526435873425227915090402559

We note that ‖g‖∞ ≈ 272. Thus taking r > k, gives us the polynomials which
are not obtained by Conjugation method.

A General Polynomial Selection Method and New Asymptotic Complexities 49

Table 4. Comparison of norm bounds for non prime-power n with t = 2.

FQ Method Norm bound

Fp6 NFS-JLSV1
NFS-GJL (r = n)
NFS-Conj
NFS-A (d = 2, r = n/d)

E12Q
1
6

E13Q
1
7

E18Q
1
12

E14Q
1
8

exTNFS-JLSV1 (η = 2, κ = 3) E6Q
1
3

exTNFS-GJL (η = 2, r = κ = 3) E7Q
1
4

exTNFS-Conj (η = 2, κ = 3) E9Q
1
6

exTNFS-C (η = 2, λ = 1, d = 1, r = k = κ = 3) E7Q
1
4

exTNFS-C (η = 2, λ = 1, d = 3, κ = 3, r = k = 1) E9Q
1
6

exTNFS-C (η = 2, λ = 1, d = 3, κ = 3, k = 1, r = 2) E15Q
1
9

Fp12 NFS-JLSV1
NFS-GJL (r = n)
NFS-Conj
NFS-A (d = 2, r = n/d)

E24Q
1
12

E25Q
1
13

E36Q
1
24

E26Q
1
14

exTNFS-JLSV1 (η = 3, κ = 4) E8Q
1
4

exTNFS-GJL (η = 3, r = κ = 4) E9Q
1
5

exTNFS-Conj (η = 3, κ = 4) E12Q
1
8

exTNFS-C (η = 3, λ = 1, d = 1, r = k = κ = 4) E9Q
1
5

exTNFS-C (η = 3, λ = 1, d = 4, κ = 4, r = k = 1) E12Q
1
8

exTNFS-C (η = 3, λ = 1, d = 4, κ = 4, k = 1, r = 2) E20Q
1
12

Case 2: Let (η, κ) = (3, 2). Taking d = κ and r = 1, we get the following
polynomials.

h(z) = z3 + z2 + 15 z + 7

f(x) = x4 − x3 − 2x2 − 7x − 3

g(x) = 717175561486984577278242843019 x2 + 2189435313197775056442946543188 x

+ 2906610874684759633721189386207

φ(x) = x2 + 131396875851816610915684123600060137654000542337369130402554 x

+ 131396875851816610915684123600060137654000542337369130402555

Note that ‖g‖∞ ≈ 2102. If we take d = κ and r = 2, we get the following set of
polynomials where ‖g‖∞ ≈ 269.

h(z) = z3 + z2 + 15 z + 7

f(x) = x6 − 4x5 − 53x4 − 147x3 − 188x2 − 157x − 92

g(x) = 15087279002722300985 x4 + 124616743720753879934 x3 + 451785460058994237397 x2

+ 749764394939964245000 x + 567202989572349792620

50 P. Sarkar and S. Singh

Fig. 2. Product of norms for various polynomial selection methods. Note that
algorithm-B is the algorithm-C with gcd(η, κ) = 1.

φ(x) = x2 + 459743211307624787973091830151418256356779099860453048165628 x

+ 1379229633922874363919275490454254769070337299581359144496879

Example 2. Consider p given by (12) and n = 12. Take η = 3, so we have κ = 4.
Since gcd(η, κ) = 1, we can take λ = 1. For d = 4 and r = 1, we get the following
set of polynomials.

A General Polynomial Selection Method and New Asymptotic Complexities 51

h(z) = z3 + 4 z2 + z + 10

f(x) = x8 − 76x7 − 2425x6 − 18502x5 − 29145x4 − 27738x3 − 19029x2 − 5470x − 899

g(x) = 671675518400038868509761185847 x4 + 9229254771349687453155139482193 x3

+ 26443212483689677462178491316111 x2 + 10373268895295520528776837441409 x

+ 12363161023892249178889813706137

φ(x) = x4 + 646864792711457069399567439420493376414881652645022449494547 x3

+ 1021416876665447593884133690181094257197328168116350116415450x2

+ 667312667750761865313480451840635053444883928304549026363993 x

+ 40895750078609591827826024840283354060004551319053153738907

Note that ‖g‖∞ ≈ 2105. If we take d = 2 and r = 2, we get the following set of
polynomials.

h(z) = z3 + 9 z2 + 16 z + 6

f(x) = x6 − 31x5 − 1368x4 − 12769x3 − 25114x2 + 80676x + 46152

g(x) = −3110542872966491216142377505541399497324 x4

−54264461590446758438380470085644010261628 x3

−314785140535769975569807658242015173572525 x2

−494316435479518971993478541468803889032252 x

+1282345843739963030376594369830360797777868

φ(x) = x4 + 1116388795346251464070007744580761572151679553868796347306938 x3

+ 244260557761228308164124096832151544783881431251339247716776 x2

+ 1431585169281315380026562186279392445746733001920060626360960 x

+ 32011873619053829538406325963389282580742061899867342029365

Note that ‖g‖∞ ≈ 2140.

5.3 Examples for Composite Prime-Power n

Example 3. Consider again the prime p given by the Eq. (12). Let n = 4. Take
η = 2, so we have κ = 2 and gcd(η, κ) �= 1. For d = 2 and r = 1, we get the
following set of polynomials.

h(z) = z2 + 3 z + 9

f(x) = x4 − 63x3 + (z−2252)x2 + (26 z−16788)x + 169 z − 4547

g(x) = 1383414878882125995926103183619409643753 x2 + (−12055618797162796264

473546996019291321934 z + 14012672311131936989090775878360513129145)x

−156723044363116351438156110948250787185142 z − 64083108396303246416

666280265568245909149

52 P. Sarkar and S. Singh

φ(x) = x2 + (798416622337500091381910575158288554062555186688024078635466 z

+785830490896857795429628245104444589150795878935080690250345)x

+737787824833559534713064923010775587679999464247556010451392 z

+574168116105209687333394632310804043827128463459291961444641

Note that ‖g‖∞ ≈ 2137.

Example 4. Consider n = 8 and p as given by the Eq. (12). Take η = 2, so we
have κ = 4 and gcd(η, κ) �= 1. For d = 2 and r = 2, we get the following set of
polynomials.

h(z) = z2 + 5 z + 1

f(x) = x6 − 12x5 − 34x4 + (−z+555)x3 + (−21 z+2768)x2 + (−147 z+9405)x

+(−343 z+23477)

g(x) = −854222881267358737695287657076641386620058484405 x4

+(467414345978337995266367841532280454475021913634 z

−1878475973524618534396011193885090526793115658979)x3

+(3248230356563661967038490496701146071676382792940 z

−19355129191104729581101186589804682604098474268847)x2

+(1070862123949157988233922008249401828342277305930 z

−20761869164169319401391385643744079935947739470833)x

+8655868066594601909115589364961851171185700663912 z

−100078545728007341155285556202587502786725328926840

φ(x) = x4 + (219112197525249939489021148723396195060526757240452305599911 z

+232195459756277207668290744189666458139902433390551341656528)x3

+(594916073500040823788294024401624746100803972996113795081168 z

+1491733188035767138269714863651199530197565717202128281224736)x2

+(368670618173749485914803951629408734838837634364966781557695 z

+432633999913395482830349485439642501997391862510211315077671)x

+377149149105267014252611707616265415027056683736547273647776 z

+1541864260749309457110332874518502663676542578712339437212985

Note that ‖g‖∞ ≈ 2167. If we take d = 4 and r = 1, we get the following
polynomials.

h(z) = z2 + 12 z + 7

f(x) = x8 − 33x7 + (z−732)x6 + (14 z−3424)x5 + (57 z−2627)x4 + (68 z−5218)x3

+(100 z−3524)x2 + (48 z−2940)x + (36 z−1764)

A General Polynomial Selection Method and New Asymptotic Complexities 53

g(x) = −8459635622214131881453154771645357881453 x4 + (279295371920032891418561
2401694261426806 z − 75589030561045575141735230547349874103523)x3 + (1955
0676034402302399299286811859829987642 z − 46258053500428493420510179894369

30074575)x2 + (11171814876801315656742449606777045707224 z − 485670535777

58344123346279040038759970502)x + 16757722315201973485113674410165568560

836 z−47471673499995120540659954245122066311394

φ(x) = x4 + (565475204609949271152307636708128312016958684733798907353217 z + 11

84756784924463459634744713698224486003358229093291131584098)x3 + (744450
343751664346982229272274572979074304805571006680869297 z + 258607273176292

839733402534181758389412492634739073744580569)x2 + (654962774180806809067
268454491350645545631745152402794111257 z + 1525151051179873287455054670110

572738969026928807578855733140)x + 178975139141715075829921635566444667057

346120837207773516080 z + 6807885325108196556406199128246965059313373994285

75448298096

Note that ‖g‖∞ ≈ 2136.

Example 5. Consider n = 9 and p as given by the Eq. (12). Take η = 3, so we
have κ = 3. For d = 1 and r = 3, we get the following set of polynomials.

h(z) = z3 + z2 + 18 z + 15

f(x) = x4 − 6x3 − 211x2 − 1187x + z−2034

g(x) = 26981402912709485347737825847046497279699330705965517 x3

+(−145287218523022264703232833237431484597080807921826676 z2

+50411393983336265694242961439957876885464685858782189 z

+206881479896404787521252534650020897293982167689590409)x2

+(−562799080702299135013029013687164984984908940586595961 z2

+349365561960939643979968647853372949952345188547313416 z

−23877234432621396396578679238125394048073361562258711)x

+1285779122778936362366127131791594871482581595497499229 z2

+687713620758567056387946957984845559129643558060874123 z

−830129381763336761947236727036816628661146469569955030

φ(x) = x3 + (669339476643413131528050298510860109656533927528567342123649 z2

+1552664467516964209731788191787357794434681140723383971203939 z

+943932691068840507491372697519702885049901068217108999449340)x2

+(1191853923360225777848944386877957883516261096877478017413866 z2

+421341580961908534729044227924897299449513889433708503340901 z

+235622039392351511019273446915854970293312748291080468943554)x

+209551211497370380856126797068962682591000324511877123851147 z2

54 P. Sarkar and S. Singh

+1000724369592593057730299648522737075992111849892300346453870 z

+1059974783679948959817423948843794374202743207017793637420370

Note that ‖g‖∞ ≈ 2180.

6 Asymptotic Complexity Analysis for the Medium
Prime Case

For 1/3 < a ≤ 2/3, write

p = LQ(a, cp), where cp =
1
n

(
ln Q

ln lnQ

)1−a

and so n =
1
cp

(
ln Q

ln lnQ

)1−a

(13)

For each cp, the runtime of the NFS algorithm is the same for the family of finite
fields Fpn where p is given by (13).

Recall that n = ηκ, k = κ/d, r ≥ k and ε is given by (8). Suppose that η can
be written as

η = cη

(
ln Q

ln lnQ

)2/3−a

. (14)

The boundary case arises when a = 2/3 and in this case η = cη. If further, we
have η = 1, then cη is also 1.

From n = ηκ, we get

κ =
1
cθ

(
ln Q

ln lnQ

)1/3

where (15)

cθ = cpcη.

So, given Q and κ, the value of cθ is fixed. We recall the following.

1. The number of polynomials to be considered for sieving is E2, so the cost of
relation collection step is O(E2).

2. The factor base is of size B and hence cost of linear algebra step is O(B2).

Let

B = LQ(1/3, cb). (16)

Set

E = B (17)

so that asymptotically, the cost of relation collection step is same as the cost of
linear algebra step.

A General Polynomial Selection Method and New Asymptotic Complexities 55

Let π = Ψ(Γ, B) be the probability that a random positive integer which is at
most Γ is B-smooth. Let Γ = LQ(z, ζ) and B = LQ(b, cb). Using the L-notation
version of the Canfield-Erdös-Pomerance theorem,

(Ψ(Γ, B))−1 = LQ

(

z − b, (z − b)
ζ

cb

)

. (18)

Following the usual convention, we assume that the same smoothness probability
π holds for the event that a random sieving polynomial φ(x) is smooth over the
factor base.

Since the total number of polynomials considered for sieving is E2, the num-
ber of relations obtained after sieving is E2π. For the linear algebra step to be
successful, we need E2π = B and so

π−1 = B. (19)

Obtaining π−1 from (18) and setting it to be equal to B allows solving for cb.
Balancing the costs of the sieving and the linear algebra phases leads to the
runtime of the NFS algorithm to be B2 = LQ(b, 2cb). So, to determine the
runtime, we need to determine cb.

Lemma 1. Let n = ηκ and κ = kd for positive integers η, k and d. For a fixed
value of t, using the expressions for p and E (= B) given by (13) and (16) and
η = cη(ln Q/ ln lnQ)2/3−a, we obtain the following.

E
2
t d(2r+1) = LQ

(
2/3, 2cb(2r+1)

cθkt

)
;

Q
(t−1)ε

κ = LQ (2/3, (t − 1)cθε) ;

}

(20)

where ε is given by the Eq. (8).

Theorem 1. Let n = ηκ; κ = kd; r ≥ k; t ≥ 2; p = LQ(a, cp) with 1/3 <
a ≤ 2/3; and η = cη(ln Q/ ln lnQ)2/3−a. It is possible to ensure that the runtime
of the NFS algorithm with polynomials chosen by Algorithm B is LQ(1/3, 2cb)
where

cb =
2(2r + 1)

6cθkt
+

√(
2r + 1
3cθkt

)2

+
(t − 1)cθε

3
. (21)

Proof. The product of the norms given by (20) is

Γ = LQ

(
2
3
,
2cb(2r + 1)

cθkt
+ (t − 1)cθε

)

.

Then π−1 given by (18) is

LQ

(
1
3
,
1
3

(
2(2r + 1)

cθkt
+

(t − 1)cθε

cb

))

.

56 P. Sarkar and S. Singh

From the condition π−1 = B, we get

cb =
1
3

(
2(2r + 1)

cθkt
+

(t − 1)cθε

cb

)

. (22)

Solving the quadratic for cb and choosing the positive root gives

cb =
2(2r + 1)

6cθkt
+

√(
2r + 1
3cθkt

)2

+
(t − 1)cθε

3
.

�	
We wish to minimise the value of cb with respect to cθ. To do this, we differen-
tiate (21) with respect to cθ and set to 0 to obtain the following equation which
has to be solved for cθ.

0 =
−2(2r + 1)

6ktc2θ
+

1
2

((
2r + 1
3cθkt

)2

+
(t − 1)cθε

3

)−1/2 (−2(2r + 1)2

9k2t2c3θ
+

(t − 1)ε
3

)

This can be seen as a quadratic in c3θ which can be solved using standard algebraic
manipulations to obtain

c3θ = 8
(

2r + 1
3kt

)2

· 3
(t − 1)ε

.

Taking cube roots on both sides gives the value of cθ. Substituting this value of
cθ in (21) we obtain

2cb =
(

64(2r + 1)(t − 1)ε
9kt

)1/3

=
(

64(2r + 1)(t − 1)
9kt

· r(λ − 1) + k

rλ + 1

)1/3

.(23)

The expression on the right hand side of (23) clearly increases as t increases. So,
to minimise 2cb, we should choose the minimum value of t which is t = 2. With
t = 2, the right hand side of (23) becomes

(
32(2r + 1)

9k
· r(λ − 1) + k

rλ + 1

)1/3

(24)

We consider several cases:
Case λ = 1: The right hand side of (24) becomes

(
32(2r + 1)
9(r + 1)

)

which takes the minimum value of (48/9)1/3 for r = 1. This can arise in the
following ways.

1. η = 1, a = 2/3: This corresponds to the boundary case and the minimum
complexity of (48/9)1/3 has already been reported in [3].

A General Polynomial Selection Method and New Asymptotic Complexities 57

2. η > 1, 1/3 < a < 2/3: Again, the minimum complexity of (48/9)1/3 for this
case has already been reported in [17]. Note that since λ = 1 and η > 1, this
case requires gcd(η, κ) = 1 and hence applies to non prime-power values of n.

In both the above cases, the minimum complexity is not achievable for all values
of cθ. The minimum achievable values of 2cb as cθ varies depends on the values
of r, k and t. This is shown in Fig. 3 by the plot of 2cb against cθ where cb is given
by (21). This plot extends a similar plot provided in [20] for the case η = 1.
Case λ = η > 1: For a fixed k, increasing r leads to increase in the value of (24)
which shows that this expression is minimised for the minimum value of r which
is r = k. Setting r = k, and using λ = η, (24) becomes

(
32(2k + 1)

9
· η

kη + 1

)1/3

. (25)

The expression given by (25) decreases as k increases and so the minimum is
achieved for the maximum value of k which is k = κ implying that d = 1. Using
k = κ in (25) we obtain the minimum possible value of 2cb in this case to be

(
32(2κ + 1)

9
· η

κη + 1

)1/3

=
(

32(2n + η)
9(n + 1)

)1/3

. (26)

We consider composite prime-power values of n. Suppose that n can be written
as n = ηi for some prime η and some i > 1.

1. If η = 2, then the minimum possible value of 2cb for the case λ = η = 2 is
(64/9)1/3 ≈ 1.92 for all n = 2i. In particular, this case covers n = 4, 8, 16.

2. If η = 3 and n = 9, then the minimum possible value of 2cb for the case
λ = η = 3 is (112/15)1/3 ≈ 1.95.

3. If η = 5 and n = 25, then the minimum possible value of 2cb for the case
λ = η = 5 is (880/117)1/3 ≈ 1.96.

The above covers the small composite prime-power values of n and the minimum
value of 2cb that can be achieved in each case. Note that similar to the case of
λ = 1, this minimum is achieved at a particular value of cθ. The more general
picture of the variation in complexity is given by 2cb where the expression for
cb is given by (21). Figure 3 shows the plots of 2cb (minimised over t, k and r)
against cθ for different values of λ.

7 Multiple Number Field Sieve Variant

In the multiple number field sieve (MNFS) algorithm, several number fields are
considered. These number fields are generated by the irreducible polynomials in
R[x], having a common irreducible factor over Fpη . There are two variants of
MNFS algorithm. We discuss the second variant of MNFS only where the image
of φ(x) needs to be smooth in the first number field and at least one of the other
V number fields.

58 P. Sarkar and S. Singh

Fig. 3. Complexity plots for the medium prime case using the exTNFS algorithm.

Methods for obtaining the collection of number fields for MNFS algorithm
have been mentioned in [18]. We adapt one of these methods to our set-
ting. Note that the Algorithm C produces two polynomials f(x) and g(x)
of degrees d(r + 1) and dr respectively. The polynomial g(x) is defined as
Resy(ψ(y), C0(x) + yC1(x)) where ψ(x) = LLL(MA2,r), i.e., ψ(x) is defined
from the first row of the matrix obtained after applying the LLL-algorithm to
MA2,r. We use f(x) for constructing the first number field. Let g1(x) = g(x) and
g2(x) = Resy(ψ2(y), C0(x) + yC1(x)), where ψ2(x) is the polynomial defined
from the second row of the matrix MA2,r. For i = 3, . . . , V , we consider
gi(x) = sig1(x)+tig2(x) where the coefficients si and ti are of the size of V 1/(2η).
These gi(x) are used for constructing the other V number fields.

Clearly the gi’s have degree dr. Asymptotically, we have ‖ψ2‖∞ = ‖ψ1‖∞ =
Q1/(d(r+1)). If we choose V = LQ(1/3), all the gi’s have their infinity norms
given by Proposition 1.

Let B and B′ be the bounds on the norms of the ideals which are in the
factor basis defined by f and each of gi’s respectively. So, the size of the entire
factor basis is B + V B′. We further use the following condition to balances the
factor basis.

B = V B′. (27)

With this condition, the size of the factor basis is B1+o(1) (see [17] for the role of
ECM based smoothness testing in this setting) and so asymptotically, the linear
algebra step takes time B2. Similar to the analysis of NFS variant, the number

A General Polynomial Selection Method and New Asymptotic Complexities 59

of sieving polynomials is E2 and the coefficient polynomials of φ(x) can take
E2/t distinct values. Since we require that the cost of relation collection should
be same as the cost of linear algebra, we have E2 = B2 i.e., E = B.

As before, let π be the probability that a random sieving polynomial φ(x)
gives rise to a relation. Let π1 be the probability that φ(x) is smooth over
the factor basis for the first number field and π2 be the probability that
φ(x) is smooth over at least one of the other V factor bases. Further, let
Γ1 = Resx(f(x), φ(x)) be the bound on the norm corresponding to the first
number field and Γ2 = Resx(gi(x), φ(x)) be the bound on the norm for any of
the other number fields. Recall that Γ2 is determined only by the degree and the
L∞-norm of gi(x) and hence is the same for all gi(x)’s. Heuristically, we have

π1 = Ψ(Γ1, B);
π2 = V Ψ(Γ2, B

′);
π = π1 × π2.

(28)

One relation is obtained in about π−1 trials and so total number of relations
obtained after sieving would be E2π and this should be equal to B for linear
algebra step to go through. Hence we have, as before, B = E = π−1.

The following choices of B and V are made.

E = B = LQ

(
1
3 , cb

)
;

V = LQ

(
1
3 , cv

)
; and so

B′ = B/V = LQ

(
1
3 , cb − cv

)
.

(29)

Theorem 2. Let n = ηκ; p = LQ(a, cp) with 1/3 < a < 2/3; and η =
cη(ln Q/ ln lnQ)2/3−a. It is possible to ensure that the runtime of the MNFS
algorithm is LQ(1/3, 2cb) where

cb =
2r + 1
3cθkt

+

√
r(3r + 2)
9c2θk

2t2
+

(t − 1)cθε

3
. (30)

Proof. For a sieving polynomial φ,

Γ1 = N(φ, f) = E2d(r+1)/tLQ(2/3, o(1))
= LQ(2/3, (2cb(r + 1))/(cθkt));

π−1
1 = LQ(1/3, 2(r + 1)/(3cθkt));

Γ2 = N(φ, g) = E2dr/t × Q(t−1)ε/κLQ(2/3, o(1)
= LQ(2/3, 2cbr/(cθkt) + (t − 1)cθε);

π−1
2 = LQ

(
1
3
,−cv +

1
3(cb − cv)

(
2cbr

cθkt
+ (t − 1)cθε

))

;

π−1 = LQ

(
1
3
,
2(r + 1)
3cθkt

− cv +
1

3(cb − cv)

(
2cbr

cθkt
+ (t − 1)cθε

))

;

60 P. Sarkar and S. Singh

From the condition π−1 = B, we obtain the following equation.

cb =
2(r + 1)
3cθkt

− cv +
1

3(cb − cv)

(
2cbr

cθkt
+ (t − 1)cθε

)

. (31)

Simplifying, we obtain

3cθkt(c2b − c2v) = 2(2r + 1)cb − 2(r + 1)cv + (t − 1)c2θεkt. (32)

We wish to find cv such that cb is minimised subject to the constraint (32). Using
the method of Lagrange multipliers, the partial derivative of (32) with respect
to cv gives

cv =
(r + 1)
3cθkt

.

Using this value of cv in (32) provides the following quadratic in cb.

(3cθkt)2c2b − (6(2r + 1)cθkt)cb + (r + 1)2 − 3(t − 1)c3θk
2t2ε = 0.

Solving this and taking the positive square root, we obtain the expression for cb

given by (30). �	

Fig. 4. Complexity plots for the medium prime case using the MexTNFS algorithm.

To find the absolute minimum complexity, we need to minimise the expression
for cb given by (30) with respect to cθ. The standard way of doing this is to

A General Polynomial Selection Method and New Asymptotic Complexities 61

differentiate with respect to cθ and set to 0 to find the value of cθ for which the
minimum value of cb is attained. Differentiating the right hand side of (30) with
respect to cθ and setting to 0 yields (after some simplifications) a quadratic in
c3θ which can be solved to obtain:

c3θ =
2

3εk2t2(t − 1)
·
(
4r2 + 9r + 1 +

√
7r2 + 16r + 1

)
. (33)

Substituting the value of cθ in (30) provides the expression for the corresponding
value of 2cb in terms of t, r, k and λ. For each value of λ, we wish to obtain the
minimum possible value of 2cb. This is achieved with t = 2 and r = k. The
actual value of r depends on the value of λ: for λ = 1 the minimum value of 2cb

is ≈ 1.71 and is achieved for r = 1; for λ = 2 the minimum value of 2cb is ≈ 1.88
and is achieved for r = 1; for λ = 3 the minimum value of 2cb is ≈ 1.92 and is
achieved for r = 4; for λ = 5 the minimum value of 2cb is ≈ 1.94 and is achieved
for r = 4.

The variation of 2cb with cθ is more complex. Figure 4 shows these plots for
various values of λ. From [17], the complexities for the medium characteristic
case, the large characteristic case and the best complexity for the boundary case
are respectively LQ(1/3, 2.12), LQ(1/3, 1.90) and LQ(1/3, 1.71). For composite
prime-power n, these are the previously known best known complexities for these
cases. To make the comparison of the new complexities easier, Fig. 4 shows the
lines for 2.12, 1.90 and 1.71.

8 Conclusion

In this paper, we have presented a new polynomial selection method for exTNFS
algorithm. The new polynomial selection method subsumes GJL, Conjugation
and Sarkar-Singh polynomial selection methods. The exTNFS algorithm com-
bined with new polynomial selection method provides new asymptotic complex-
ities for the extension fields with composite prime power extension degrees.

References

1. Adleman, L.M.: The function field sieve. In: Adleman, L.M., Huang, M.-D. (eds.)
ANTS 1994. LNCS, vol. 877, pp. 108–121. Springer, Heidelberg (1994). doi:10.
1007/3-540-58691-1 48

2. Adleman, L.M., Huang, M.-D.A.: Function field sieve method for discrete loga-
rithms over finite fields. Inf. Comput. 151(1–2), 5–16 (1999)

3. Barbulescu, R., Gaudry, P., Guillevic, A., Morain, F.: Improving NFS for the dis-
crete logarithm problem in non-prime finite fields. In: Oswald, E., Fischlin, M.
(eds.) EUROCRYPT 2015. LNCS, vol. 9056, pp. 129–155. Springer, Heidelberg
(2015). doi:10.1007/978-3-662-46800-5 6

4. Barbulescu, R., Gaudry, P., Joux, A., Thomé, E.: A heuristic quasi-polynomial
algorithm for discrete logarithm in finite fields of small characteristic. In: Nguyen,
P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 1–16. Springer,
Heidelberg (2014). doi:10.1007/978-3-642-55220-5 1

http://dx.doi.org/10.1007/3-540-58691-1_48
http://dx.doi.org/10.1007/3-540-58691-1_48
http://dx.doi.org/10.1007/978-3-662-46800-5_6
http://dx.doi.org/10.1007/978-3-642-55220-5_1

62 P. Sarkar and S. Singh

5. Barbulescu, R., Gaudry, P., Kleinjung, T.: The tower number field sieve. In: Iwata,
T., Cheon, J.H. (eds.) ASIACRYPT 2015. LNCS, vol. 9453, pp. 31–55. Springer,
Heidelberg (2015). doi:10.1007/978-3-662-48800-3 2

6. Barbulescu, R., Pierrot, C.: The multiple number field sieve for medium and high
characteristic finite fields. LMS J. Comput. Math. 17, 230–246 (2014)

7. Bistritz, Y., Lifshitz, A.: Bounds for resultants of univariate and bivariate poly-
nomials. Linear Algebra Appl. 432(8), 1995–2005 (2010). Special issue devoted to
the 15th ILAS Conference at Cancun, Mexico, 16–20 June 2008

8. Gordon, D.M.: Discrete logarithms in GF(p) using the number field sieve. SIAM
J. Discrete Math. 6(1), 124–138 (1993)

9. Granger, R., Kleinjung, T., Zumbrägel, J.: Discrete logarithms in GF(29234).
NMBRTHRY list, January 2014

10. Joux, A.: Faster index calculus for the medium prime case application to 1175-bit
and 1425-bit finite fields. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT
2013. LNCS, vol. 7881, pp. 177–193. Springer, Heidelberg (2013). doi:10.1007/
978-3-642-38348-9 11

11. Joux, A.: A new index calculus algorithm with complexity L(1/4 + o(1)) in small
characteristic. In: Lange, T., Lauter, K., Lisoněk, P. (eds.) SAC 2013. LNCS, vol.
8282, pp. 355–379. Springer, Heidelberg (2014). doi:10.1007/978-3-662-43414-7 18

12. Joux, A., Lercier, R.: The function field sieve is quite special. In: Fieker, C., Kohel,
D.R. (eds.) ANTS 2002. LNCS, vol. 2369, pp. 431–445. Springer, Heidelberg (2002).
doi:10.1007/3-540-45455-1 34

13. Joux, A., Lercier, R.: Improvements to the general number field sieve for discrete
logarithms in prime fields. A comparison with the gaussian integer method. Math.
Comput. 72(242), 953–967 (2003)

14. Joux, A., Lercier, R.: The function field sieve in the medium prime case. In:
Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 254–270. Springer,
Heidelberg (2006). doi:10.1007/11761679 16

15. Joux, A., Lercier, R., Smart, N.P., Vercauteren, F.: The number field sieve in
the medium prime case. In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117,
pp. 326–344. Springer, Heidelberg (2006). doi:10.1007/11818175 19

16. Joux, A., Pierrot, C.: The special number field sieve in Fpn - application to pairing-
friendly constructions. In: Cao, Z., Zhang, F. (eds.) Pairing 2013. LNCS, vol. 8365,
pp. 45–61. Springer, Heidelberg (2014). doi:10.1007/978-3-319-04873-4 3

17. Kim, T., Barbulescu, R.: Extended tower number field sieve: a new complex-
ity for the medium prime case. In: Robshaw, M., Katz, J. (eds.) CRYPTO
2016. LNCS, vol. 9814, pp. 543–571. Springer, Heidelberg (2016). doi:10.1007/
978-3-662-53018-4 20

18. Pierrot, C.: The multiple number field sieve with conjugation and general-
ized Joux-Lercier methods. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT
2015. LNCS, vol. 9056, pp. 156–170. Springer, Heidelberg (2015). doi:10.1007/
978-3-662-46800-5 7

19. Sarkar, P., Singh, S.: Fine tuning the function field sieve algorithm for the medium
prime case. IEEE Trans. Inf. Theory 62(4), 2233–2253 (2016). http://ieeexplore.
ieee.org/xpl/articleDetails.jsp?reload=true&arnumber=7405328

20. Sarkar, P., Singh, S.: New complexity trade-offs for the (multiple) number field sieve
algorithm in non-prime fields. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT
2016. LNCS, vol. 9665, pp. 429–458. Springer, Heidelberg (2016). doi:10.1007/
978-3-662-49890-3 17

21. Schirokauer, O.: Using number fields to compute logarithms in finite fields. Math.
Comput. 69(231), 1267–1283 (2000)

http://dx.doi.org/10.1007/978-3-662-48800-3_2
http://dx.doi.org/10.1007/978-3-642-38348-9_11
http://dx.doi.org/10.1007/978-3-642-38348-9_11
http://dx.doi.org/10.1007/978-3-662-43414-7_18
http://dx.doi.org/10.1007/3-540-45455-1_34
http://dx.doi.org/10.1007/11761679_16
http://dx.doi.org/10.1007/11818175_19
http://dx.doi.org/10.1007/978-3-319-04873-4_3
http://dx.doi.org/10.1007/978-3-662-53018-4_20
http://dx.doi.org/10.1007/978-3-662-53018-4_20
http://dx.doi.org/10.1007/978-3-662-46800-5_7
http://dx.doi.org/10.1007/978-3-662-46800-5_7
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?reload=true&arnumber=7405328
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?reload=true&arnumber=7405328
http://dx.doi.org/10.1007/978-3-662-49890-3_17
http://dx.doi.org/10.1007/978-3-662-49890-3_17

On the Security of Supersingular Isogeny
Cryptosystems

Steven D. Galbraith1(B), Christophe Petit2, Barak Shani1, and Yan Bo Ti1

1 Mathematics Department, University of Auckland, Auckland, New Zealand
{s.galbraith,barak.shani}@auckland.ac.nz, yanbo.ti@gmail.com
2 Mathematical Institute, Oxford University, Oxford OX2 6GG, UK

christophe.petit@maths.ox.ac.uk

Abstract. We study cryptosystems based on supersingular isogenies.
This is an active area of research in post-quantum cryptography. Our
first contribution is to give a very powerful active attack on the super-
singular isogeny encryption scheme. This attack can only be prevented
by using a (relatively expensive) countermeasure. Our second contribu-
tion is to show that the security of all schemes of this type depends
on the difficulty of computing the endomorphism ring of a supersingular
elliptic curve. This result gives significant insight into the difficulty of the
isogeny problem that underlies the security of these schemes. Our third
contribution is to give a reduction that uses partial knowledge of shared
keys to determine an entire shared key. This can be used to retrieve the
secret key, given information leaked from a side-channel attack on the
key exchange protocol. A corollary of this work is the first bit security
result for the supersingular isogeny key exchange: Computing any com-
ponent of the j-invariant is as hard as computing the whole j-invariant.

Our paper therefore provides an improved understanding of the secu-
rity of these cryptosystems. We stress that our work does not imply
that these systems are insecure, or that they should not be used. How-
ever, it highlights that implementations of these schemes will need to
take account of the risks associated with various active and side-channel
attacks.

Keywords: Isogenies · Supersingular elliptic curves

1 Introduction

In 2011, Jao and De Feo [17] introduced the supersingular isogeny Diffie–Hellman
key exchange protocol as a candidate for a post-quantum key exchange. The
security of this scheme is based on so-called supersingular isogeny problems.
Similar problems had appeared in a previous hash function construction by
Charles–Lauter–Goren [6], and were subsequently used to build other crypto-
graphic functions such as public-key encryption, undeniable signatures and des-
ignated verifier signatures [13,18,34]. As with classical Diffie–Hellman, the basic

c© International Association for Cryptologic Research 2016
J.H. Cheon and T. Takagi (Eds.): ASIACRYPT 2016, Part I, LNCS 10031, pp. 63–91, 2016.
DOI: 10.1007/978-3-662-53887-6 3

64 S.D. Galbraith et al.

version of the key exchange protocol uses ephemeral elements, but the encryp-
tion scheme and some of the more sophisticated applications use static values
for at least one element.

The idea behind the supersingular isogeny key exchange protocol is largely
based on the isogeny protocol for ordinary elliptic curves proposed in [29]. How-
ever, there is a (subexponential) quantum algorithm [7] to break the system in
the ordinary case (in part since the ordinary case is based on commutative ring
theory). In contrast, the case of supersingular curves is non-commutative and
seems to be a promising candidate for a post-quantum-secure system [2].

One particular feature of Jao and De Feo’s protocols compared to other
schemes based on isogeny problems is the publication of auxiliary points, which
are used to get around the difficulties of non-commutativity. These auxiliary
points open the door to active attacks on the encryption scheme (or key exchange
where one party uses a static key). To be precise, one could try to perform some
kind of “small subgroup” or “invalid curve” attacks such as have been proposed
for DLP cryptosystems in the past [8,23]. The possibility of active attacks has
been mentioned by Kirkwood, Lackey, McVey, Motley, Solinas and Tuller [20]
and Costello, Longa and Naehrig [9]. Both papers discuss “validation” techniques
that are designed to prevent such attacks, but neither paper demonstrates all the
details of the attacks. Some of the validation methods discussed in [9] use pair-
ings, but we observe a stronger property of pairings that makes detecting such
attacks easier. Note that [9] is only concerned with ephemeral Diffie–Hellman
key exchange, and so their scheme is not subject to attacks on static keys.

The first contribution of our paper (Sect. 3) is to describe a general active
attack against the static-key variant of the protocol. Our attack allows to recover
the whole static key with the minimum number of queries and negligible com-
putation. Our attack is not prevented by any of the validation techniques intro-
duced in [9], nor by our stronger validation technique using pairings. Our attack
is prevented by the method in [20] (see Sect. 2.5), but this adds significant cost
to the running time of the system.

The second contribution of our paper (Sect. 4) is to explore the security
of the schemes assuming there is an efficient algorithm to compute the endo-
morphism ring of a supersingular elliptic curve. It is known that computing
endomorphism rings of supersingular curves is equivalent to computing isoge-
nies between supersingular elliptic curves, and it is believed that both these
problems are hard [6,17]. But previous techniques were not sufficient to break
the Jao–De Feo cryptosystems if the endomorphism ring was known (the result-
ing isogeny would have too high degree). We present a new method to find an
isogeny of the correct degree in the special case of the isogeny problem arising in
these cryptosystems. This shows that the hardness of computing endomorphism
rings is necessary for the security of any cryptosystem based on the Jao and
De Feo concept (it is not restricted to ElGamal or key exchange, and requires
no interaction with a user). We give heuristic and experimental evidence that
our algorithm is practical.

On the Security of Supersingular Isogeny Cryptosystems 65

Our third contribution (Sect. 5) is to define and analyse an isogeny analogue
of the hidden number problem. Our main result is an algorithm to compute the j-
invariant of a “hidden” elliptic curve given partial information of the j-invariants
of “nearby” curves. We believe that, as with the original hidden number prob-
lem in finite fields, this result will have applications of two flavours. On the one
hand, our theorem shows how to mount a type of side-channel attack on the key
exchange protocol: An attacker can compute the shared secret with high prob-
ability if they can get partial information of the shared key during “correlated”
executions of the key exchange protocol. On the other hand, the result gives the
first bit security result for the supersingular isogeny key exchange: Computing
one component of the finite field representation of the j-invariant is as hard
as computing the whole j-invariant. A consequence of this result is that it is
secure for an implementation to use only one component of the j-invariant of
the shared key.

The paper is organised as follows. Section 2 quickly reviews the Jao–De Feo
cryptosystem and other preliminaries. Our results and discussions are given in
Sects. 3, 4 and 5. In Sect. 6 we present our conclusions.

2 Preliminaries

2.1 Supersingular Elliptic Curves and Isogenies

Fix a prime p and a prime power q = pk and let E1 and E2 be elliptic curves
defined over Fq. An isogeny between E1 and E2 is a non-constant morphism
defined over Fq that sends the identity in E1 to the identity in E2. Then φ is
a group homomorphism from E1(Fq) to E2(Fq) [30, III.4.8]. The degree of φ
as an isogeny is equal to the degree of φ as a morphism. In addition, if φ is
separable, then deg φ = #ker φ [30, III.4.10]. In this case, we say that E1 and
E2 are isogeneous.

The isogeny is defined by its kernel in the sense that for every finite subgroup
G ⊂ E1, there is a unique E2 (up to isomorphism) and a separable isogeny
φ : E1 → E2 such that ker φ = G [30, III.4.12]. We sometimes write E1/G for
E2. Vélu [32] gave an algorithm to construct an isogeny given a finite subgroup.
Notice that the total number of distinct isogenies with degree �, which we now
call �-isogenies, is equal to the number of distinct subgroups of E1 of order �.
For every prime � not dividing p, there are � + 1 isogenies of degree � since the
group of �-torsion points form a subgroup E[�] = Z/�Z ⊕ Z/�Z [30, III.6.4].

If G = 〈P 〉 ⊂ E1 is a cyclic group of order �n then the isogeny with kernel G
factors as a chain of isogenies

E1 → E2 → · · · → E�+1

such that each φi : Ei → Ei+1 is an isogeny of degree � with kernel in Ei[�]. We
will use the following notation

G1 = G, Gi+1 = φi(Gi),
P1 = P, Pi+1 = φi(Pi).

66 S.D. Galbraith et al.

Now, note that φi(Gi) = 〈φi(Pi)〉 ⊆ Ei+1[�n−i]. The kernel of φ1 is 〈[�n−1]P 〉
and for i > 1 the kernel of φi is 〈[�n−i]φi−1(Pi−1)〉.

For every φ : E1 → E2, there exists an isogeny φ̂ : E2 → E1 such that

φ ◦ φ̂ = [deg φ] = φ̂ ◦ φ.

We call φ̂ the dual isogeny of φ. This allows us to define an equivalence relation
on elliptic curves that are isogenous.

If we have a pair of isogenies φ : E1 → E2 and ψ : E2 → E1 such that
φ ◦ ψ and ψ ◦ φ are the identity, then we say that φ and ψ are isomorphisms.
We also then say that E1 and E2 are isomorphic curves. This naturally defines
an equivalence relation and the isomorphism classes can be represented by the
j-invariants [30, III.1.4(b)].

Isogenies that have the same domain and range are known as endomorphisms.
For an elliptic curve E, we write End(E) for the set of all endomorphisms φ :
E → E together with the zero morphism. In fact, we can define addition and
multiplication on endomorphisms by setting (φ + ψ)(P) = φ(P) + ψ(P) and
(φ · ψ)(P) = φ(ψ(P)) for all φ, ψ ∈ End(E) and P ∈ E. This gives it a ring
structure. The multiplication-by-n maps are examples of endomorphisms and
so Z ↪→ End(E). In fact, over a finite field, End(E) is isomorphic to either a
maximal order in a quaternion algebra or to an order in an imaginary quadratic
field [30, III.9.3]. In the former case, we say that E is supersingular, otherwise,
we say that it is ordinary.

An elliptic curve E/Fpk is supersingular if and only if |E(Fpk)| ≡ 1 (mod p).
It is known that there are approximately p/12 isomorphism classes of supersingu-
lar elliptic curves E over Fp [30, V.4.1]. It is also known that every supersingular
curve is isomorphic to one defined over Fp2 [30, V.3.1(a)(iii)]. A theorem of Tate
states that E1 and E2 are isogenous over Fpk if and only if |E1(Fpk)| = |E2(Fpk)|
[31, Sect. 3].

2.2 Hard Problem Candidates Related to Isogenies

Starting from the work of Charles–Lauter–Goren [6] and later Jao–De Feo [17],
several recent cryptosystems have been based on the computational hardness of
computing isogenies between supersingular elliptic curves. The main problem in
this area can be described as follows:

Definition 1 (Supersingular Isogeny Problem). Given a finite field K and
two supersingular elliptic curves E1, E2 defined over K such that |E1| = |E2|,
compute an isogeny ϕ : E1 → E2.

We stress that this isogeny is not unique (in fact there are infinitely many of
them without additional restrictions). Further, the most natural representations
of an isogeny are either as a pair of rational maps or as a kernel, and both
these representations generally require exponential space. However, one can also
represent an isogeny of smooth degree as a composition of low degree isogenies,

On the Security of Supersingular Isogeny Cryptosystems 67

and this can be done in polynomial space. Hence the computational problem
makes sense.

This problem has been studied in a number of previous works. The crypt-
analysis of Charles–Lauter–Goren’s hash function requires to compute isogenies
of degree �e for some small, fixed prime �. Similarly, the Jao–De Feo schemes
involve isogenies of the same form with an additional condition on e.

Another important problem in this area is the problem of computing the
endomorphism ring of a given elliptic curve.

Definition 2 (Endomorphism Ring Computation). Given an elliptic
curve E defined over a finite field K, compute its endomorphism ring.

This problem was studied by Kohel [21]. In the supersingular case Kohel
described a probabilistic algorithm running in time Õ(p), where p is the charac-
teristic of the field. This was later improved to Õ(

√
p) by Galbraith [15] using

birthday paradox arguments. We remark that for some supersingular elliptic
curves the problem is easy (for example when j = 0), but the problem is believed
to be hard on average.

Heuristically, one can turn an algorithm that computes isogenies into an
algorithm that computes the full endomorphism ring of an elliptic curve; the
reduction actually underlies Kohel’s algorithm.

It turns out that the converse is also true, at least heuristically. There is
an equivalence of categories between the set of supersingular curves and the
set of maximal orders of a quaternion algebra (see [12,21,22]). Given the endo-
morphism rings of the two elliptic curves, one can identify the corresponding
maximal orders in the quaternion algebra, and then use techniques developed
in [22] to compute paths between them in the quaternion algebra and translate
these paths into isogeny paths.

The algorithm in [22] solves the quaternion algebra analog of the supersin-
gular isogeny problem, which requires to compute an ideal with a smooth norm
connecting two given maximal orders. However, the degree of the ideal returned
by this algorithm is about p7 in general and p7/2 if one of the orders is special
(a p-extremal order, as defined in [22]), whereas a degree about p is expected
to suffice in general, and a degree about p1/2 would be needed to break the
Jao–De Feo cryptosystems. Here p is the characteristic of the field.

2.3 Jao–De Feo scheme

Key Exchange Protocol. There are three steps in the key exchange protocol:
The set-up, the key exchange and the key derivation.

In the set-up, a prime of the form p = 2n · 3m · f − 1 is generated where f
is small and 2n ≈ 3m (more generally p = �n

A�m
B f ± 1 where �A, �B are small

primes). A supersingular elliptic curve E over Fp2 is constructed, and linearly
independent points PA, QA ∈ E[2n] and PB , QB ∈ E[3m] are chosen. Here “lin-
early independent” means that the group 〈PA, QA〉 generated by PA and QA has
order 22n, and similarly, |〈PB , QB〉| = 32m.

68 S.D. Galbraith et al.

In the key exchange, Alice picks random integers 0 ≤ a1, a2 < 2n (not both
divisible by 2) and Bob picks random integers 0 ≤ b1, b2 < 3m (not both divisible
by 3). Alice and Bob compute

GA = 〈[a1]PA + [a2]QA〉, GB = 〈[b1]PB + [b2]QB〉
respectively. Using Vélu’s formulas [32], they will then be able to compute the
isogenies φA and φB with respective kernels GA and GB . They then compute
EA = φA(E) = E/GA, φA(PB), φA(QB) and EB = φB(E) = E/GB , φB(PA),
φB(QA) respectively. Their respective messages in the protocol will be

(EA, φA(PB), φA(QB)), (EB , φB(PA), φB(QA)).

Upon receipt of Bob’s message, to derive the shared key, Alice would compute

〈[a1]φB(PA) + [a2]φB(QA)〉 = 〈φB([a1]PA + [a2]QA)〉 = φB(GA).

Alice then computes the isogeny from EB , with kernel equal to this subgroup.
Bob will perform a similar computation and the resulting isogeny will be gener-
ated by GA and GB (since the subgroups have a trivial intersection). The shared
secret will be

EAB := E/〈GA, GB〉 = EA/〈φA(GB)〉 = EB/〈φB(GA)〉.
This can be summarised in the following diagram, where we use the notation

from above.

E

E/GA

E/GB

E/〈GA, GB〉

φA

φB

The Jao–De Feo key exchange scheme originates from a similar scheme for
ordinary elliptic curves proposed by Rostovtsev and Stolbunov [29]. The ordinary
case is based on a commutative mathematical structure, however this structure
enables a subexponential-time quantum algorithm [7] to break the system. On
the other hand, the supersingular curves variant is based on a non-commutative
structure and so it seems to be a promising candidate for a post-quantum-secure
system. The auxiliary points included in the protocol messages allow Jao and
De Feo to get around the difficulties of non-commutativity.

We stress that the isogeny problem involved here differs from a general one in
several ways. On the one hand, the special primes used and the auxiliary points
given to an attacker may make the supersingular isogeny problem easier than
the general isogeny problem. On the other hand there is a very strong constraint
imposed on the degree of the isogeny, and this might a priori make the problem
harder; we discuss this issue in more detail in Sect. 4. We remark that our first
and third results use the auxiliary points in essential ways. However the result of
Sect. 4 does not use the auxiliary points and only uses the fact that the required
isogeny has a strongly constrained degree.

On the Security of Supersingular Isogeny Cryptosystems 69

Encryption Protocol. The public-key encryption scheme is constructed from
the key exchange scheme with a few adaptations [13]. Namely, the shared secret
would be used as a key for a symmetric encryption scheme (below we use the
one-time pad) to encrypt the message. We will use the same notation as above
and assume that Bob wants to send a message to Alice. There are four steps to
the encryption protocol: The set-up, key generation, encryption and decryption.

The set-up is almost identical to the key exchange protocol, where the two
parties Alice and Bob agree on a prime of the form p = 2n · 3m · f − 1, a
supersingular elliptic curve over Fp2 , and linearly independent points PA, QA ∈
E[2n] and PB , QB ∈ E[3m]. In addition, they agree on a keyed hash function Hk

that sends Fp2 to the set {0, 1}w of w-bit strings.
In the key generation phase, Alice picks random integers 0 ≤ a1, a2 < 2n

(not both divisible by 2) and computes

EA, φA(PB), φA(QB)

as above. She also chooses a random ephemeral key, k, for the hash and publishes
the tuple

(EA, φA(PB), φA(PB), k)

as her public key. She retains (a1, a2) as her private key.
Upon the receipt of Alice’s public keys, Bob selects a w-bit message m ∈

{0, 1}w and chooses random integers 0 ≤ b1, b2 < 3m (not both divisible by 3)
and computes

EB , φB(PA), φB(QA).

Using his randomly generated keys b1 and b2, he can also compute EAB as in
the key-exchange protocol. He then computes

c = m ⊕ Hk(j(EAB))

and sends the tuple
(EB , φB(PA), φB(QA), c)

to Alice.
To decrypt Bob’s message, Alice computes EAB using EB , φB(PA), φB(QA)

and a1, a2 and recovers the message m by computing

m = c ⊕ Hk(j(EAB)).

We stress that encryption is just one possible application where a static key
may be used for at least one element in the protocol. We anticipate that as the
subject develops further there will be more protocols of this type.

Equivalent Keys and Normalisation. The Vélu formulas tell us that the
isogeny is determined solely by its kernel. In Alice’s case, there are 3 · 2n−1

choices of kernels, and the total number of choices for (a1, a2) is about 22n, so
there will be private keys that correspond to the same public keys.

70 S.D. Galbraith et al.

We define an equivalence relation on the private keys, by saying (a1, a2) ∼
(a′

1, a
′
2) if the two keys lead to the same subgroup for all possible input points.

The relation is satisfied by (a′
1, a

′
2) = (θa1, θa2) for any θ ∈ Z

∗
2n , and so the

equivalence class is a point in projective space over a ring. We may define a
unique equivalence class representative by “normalising” as explained in the
following lemma (this fact is also used by [9]).

Lemma 1. Let P,Q ∈ E[2n] be linearly independent generators of E[2n]. Then
for some (a1, a2) ∈ Z

2 (not simultaneously even), we have that (a1, a2) ∼ (1, α)
or (a1, a2) ∼ (α, 1) for some α ∈ Z (using the equivalence relation defined above).

Proof. If a1 is odd, then it is invertible modulo the order of the group, so let
θ ≡ a−1

1 (mod 2n), then θ must be odd, hence

〈[a1]PA + [a2]QA〉 = 〈[θa1]PA + [θa2]QA〉 = 〈PA + [α]QA〉,

where the first equality stems from the fact that θ is co-prime to the order of
the generator, and the last equality is obtained by setting α = θa2.

If a1 is even, then a2 must be odd, and repeating the procedure gives (α, 1). ��
This result tells us that there is no loss of generality for Alice to restrict her

secret key to be (1, α) or (α, 1). This was noted by [9]. However, even if Alice
does not employ such a simplification, the result also tells us that there is no
loss of generality for an attacker to assume the secret key is of one of these two
forms. This observation is used repeatedly in the adaptive attack presented in
Sect. 3.

2.4 Active Attacks and Validation Methods

Active attacks are a standard type of attack on cryptosystems that use a static
private key. These first arose in the setting of protocols based on the discrete
logarithm problem, where a user can be treated as an oracle that takes as input
a group element g and returns ga for some long-term secret value a. A first
kind of attack is the “small subgroup” attack of Lim and Lee [23]. Here a group
element g of small order � is sent, so that on receipt of the value ga one can do
a search and learn a (mod �). Similar ideas have been used based on “invalid
curve” attacks, which involve providing a point that lies in a different group
altogether (see Ciet and Joye [8]).

In the context of the isogeny cryptosystem, if Alice has a fixed key (a1, a2)
then a dishonest Bob can send her (E,P,Q) and then Alice will compute an
isogeny φ : E → E′ with kernel 〈[a1]P + [a2]Q〉. The idea is to try to learn
something about Alice’s secret key (a1, a2) using knowledge of E′. The possibility
of such attacks is mentioned in [9,20], but neither paper presented full details of
them.

The concept of “validation” is intended to prevent active attacks. In the case
of protocols based on the DLP, the typical countermeasures check that g does lie
in the correct group, and that the order of g is the correct value. In the context

On the Security of Supersingular Isogeny Cryptosystems 71

of supersingular isogeny cryptosystems the validation of (E,P,Q) should test
that E really is a supersingular elliptic curve, that P and Q lie on the curve and
have the correct order, and that P and Q are independent. Methods to do this
are given in [9].

In particular, Sect. 9 of [9] presented some explicit validation steps. Their
two requirements are: The points in the public key have full order and they are
independent. They use the Weil pairing of the two points to check independence.
We remark that it is not necessary to use the Weil pairing: Since the DLP is
easy in a group of order 2n one can just try to solve the DLP of Q to the base
P , and if the algorithm fails then the points are independent. In particular, to
show that 〈P,Q〉 = E[2n] it suffices to compute [2n−1]P and [2n−1]Q and verify
that these points are both different, and neither is the identity.

Remark 1. We now observe that the Weil pairing can be used to check a lot
more than just independence. A standard fact is that if φ : E → E′ is an isogeny
and if P,Q ∈ E[N] then

eN (φ(P), φ(Q)) = eN (P,Q)deg(φ)

where the first Weil pairing is computed on E′ and the second on E (for details
see [30, III.8.2] or [4, IX.9]). This allows to validate not only that the points are
independent but also that they are consistent with being the image of the correct
points under an isogeny of the correct degree. Hence, a natural validation step
for Alice to run in the Jao–De Feo scheme is to check

e2n(φB(PA), φB(QA)) = e2n(PA, QA)3
m

.

This will give her some assurance that the points φB(PA), φB(QA) provided
by Bob are consistent with being the images of the correct points under an
isogeny of the correct degree. However, as we will show, this validation step is
not sufficient to prevent all adaptive attacks. It will be necessary to use a much
stronger protection, which we describe in the next section.

2.5 The Kirkwood et al. Validation Method

The Fujisaki-Okamoto transform [14] leads to a general method to secure any key
exchange protocol of a certain type. This is explained in Sect. 5.2 of Peikert [28]
and, in the context of the isogeny cryptosystem, it is discussed by Kirkwood
et al. [20].

The idea is to complete the key exchange protocol and then for each party
to encrypt to the other party the randomness used in the protocol so that they
can check that the protocol has been performed correctly. Note that [20] does
not contain a formal analysis of the security of the resulting protocol.

We now briefly describe the key exchange protocol that arises when this
transform is applied to the Jao–De Feo protocol. In the following description, we
show what Bob should do and how Alice can verify that Bob has followed the
protocol correctly (this is suited for the case where Alice is using a static key
and where Bob is a potential adversary).

72 S.D. Galbraith et al.

(1) Bob obtains Alice’s static public key (EA, φA(PB), φA(QB)).
(2) Bob chooses a random seed rB and derives his private key using a pseudo-

random function PRF (Kirkwood et al. call this a key derivation function).

(b1, b2) = PRF(rB).

He then computes his message (EB , φB(PA), φB(QA)) where φB is defined
to have kernel 〈[b1]PB + [b2]QB〉.

(3) Bob derives the shared secret value EAB from (EA, φA(PB), φA(QB)) and
(b1, b2) and computes a session key (SK) and validation key (VK) via a key
derivation function (KDF)

SK | VK = KDF(j(EAB)).

(4) Bob then sends (EB , φB(PA), φB(QA)) and cB = EncVK(rB ⊕SK) to Alice.
(5) From (a1, a2) and (EB , φB(PA), φB(QA)), Alice derives E′

AB , then SK ′ and
VK ′.

(6) Alice computes
r′
B = DecVK′(cB) ⊕ SK ′.

She then computes PKDF(r′
B) and recomputes Bob’s operations. If the

resulting message is equal to the value (EB , φB(PA), φB(QA)) originally sent
by Bob then Alice terminates the protocol correctly and uses SK ′ = SK
for future communicate with Bob. If not, the protocol terminates in a non-
accepting state.

Notice that this protocol requires that Bob reveals his secret key to Alice, so
it compels him to change his secret key after each verification. This validation
method can be used for both the key-exchange and the encryption protocols.

3 Adaptive Attack

In this section, we will assume that Alice is using a static key (a1, a2), and that
a dishonest user is playing the role of Bob and trying to learn her key. Our
discussion is entirely about Alice’s key and points in E[2n], but it should be
clear that the same methods would work for points in E[�m] for any small prime
� (see Remark 2 for further discussion).

There are two attack models that can be defined in terms of access to an
oracle O:

1. O(E,R, S) = E/〈[a1]R + [a2]S〉. This corresponds to Alice taking Bob’s pro-
tocol message, completing her side of the protocol, and outputting the shared
key.

2. O(E,R, S,E′) which returns 1 if j(E′) = j(E/〈[a1]R + [a2]S〉) and 0 other-
wise. This corresponds to Alice taking Bob’s protocol message, completing her
side of the protocol, and then performing some operations using the shared
key that return an error message if the shared key is not the same as the j-
invariant provided (e.g., the protocol involves verifying a MAC corresponding
to a key derived from the session key).

On the Security of Supersingular Isogeny Cryptosystems 73

Our attacks can be mounted in both models. To emphasise their power we explain
them in the context of the second, weaker, model.

3.1 First Step of the Attack

From Lemma 1, we may assume that the private key is normalised. In the follow-
ing exposition, we will assume that the normalisation is (1, α). The case where
we have (α′, 1) where α′ is even is performed in exactly the same way with some
tweaks. Note that if α′ is odd then it can be converted to the (1, α) case, so we
may assume α′ is even in the second case.

To differentiate between (1, α) and (α′, 1) an attacker honestly gener-
ates Bob’s ephemeral values (EB , R = φB(PA), S = φB(QA)) and follows
the protocol to compute the resulting key EAB . Then the attacker sends
(EB , R, S + [2n−1]R) to Alice and tests the resulting j-invariant. Expressing
this in terms of the oracle access: The attacker queries an oracle of the sec-
ond type on (EB , R, S + [2n−1]R,EAB). If the oracle returns 1 then the curve
EB/〈[a1]R + [a2](S + [2n−1]R)〉 is isomorphic to EAB and so 〈[a1]R + [a2](S +
[2n−1]R)〉 = 〈[a1]R + [a2]S〉. Hence, by the following Lemma, a2 is even and we
are in the first case. If the oracle returns 0 then a2 is odd.

Lemma 2. Let R,S ∈ E[2n] be linearly independent points of order 2n and let
a1, a2 ∈ Z. Then

〈[a1]R + [a2](S + [2n−1]R)〉 = 〈[a1]R + [a2]S〉

if and only if a2 is even.

Proof. If a2 is even then [a2][2n−1]R = 0 and so the result follows. Conversely,
if the two groups are equal then there is some λ ∈ Z

∗
2n such that

λ([a1]R + [a2](S + [2n−1]R)) = [a1]R + [a2]S.

Since the points are independent we have λa2 = a2 and so λ = 1. Hence, since
S has order 2n, we have a22n−1 ≡ 0 (mod 2n) and a2 is even. ��

Note that the Weil pairing

e2n(R,S + [2n−1]R) = e2n(R,S) = e2n(PA, QA)3
m

and so the attack is not detectable using pairings.
Similarly one can call the oracle on (EB , R + [2n−1]S, S,EAB). The oracle

returns 1 if and only if a1 is even. Hence, we can determine which of the two
cases we are in and determine if α is even or odd. Having recovered a single bit
of α, we will now explain how to use similar ideas to recover the rest of the bits
of α.

74 S.D. Galbraith et al.

3.2 Continuing the Attack

We now assume that Alice’s static key is of the form (1, α) and we write

α = α0 + 21α1 + 22α2 + · · · + 2n−1αn−1.

The attacker will learn one bit of α for each query of the oracle. Algorithm 1
gives pseudo-code for the attack.

We now give some explanation and present the derivation of the algorithm.
Suppose an attacker has recovered the first i bits of α, so that

α = Ki + 2iαi + 2i+1α′,

where Ki is known but αi ∈ {0, 1} and α′ ∈ Z are not known.
The attacker generates EB , R = φB(PA), S = φB(QA) and EAB as in the

protocol. To recover αi, the attacker will choose suitable integers a, b, c, d and
query the oracle on

(EB , [a]R + [b]S, [c]R + [d]S,EAB).

The integers a, b, c, and d will be chosen to satisfy the following conditions:

1. If αi = 0, then 〈[a + αc]R + [b + αd]S〉 = 〈R + [α]S〉.
2. If αi = 1, then 〈[a + αc]R + [b + αd]S〉 �= 〈R + [α]S〉.
3. [a]R + [b]S and [c]R + [d]S both have order 2n.
4. The Weil pairing e2n([a]R + [b]S, [c]R + [d]S) must be equal to

e2n(φB(PA), φB(QA)) = e2n(PA, QA)deg φB = e2n(PA, QA)3
m

.

The first two conditions help us distinguish the bit αi and the latter two prevent
the attack from being detected via order checking and Weil pairing validation
checks respectively.

Consider the following integers:

ai = 1, bi = −2n−i−1Ki,

ci = 0, di = 1 + 2n−i−1.

One can verify that they satisfy the third condition. To satisfy the fourth
condition we need to use a scaling by θ that we will discuss later.

To show that the first two conditions are satisfied, note that 〈[a]R + [b]S +
[α]([c]R + [d]S)〉 is equal to

〈R − [2n−i−1Ki]S + [α][1 + 2n−i−1]S〉
= 〈R + [α]S + [−2n−i−1Ki + 2n−i−1(Ki + 2iαi + 2i+1α′)]S〉
= 〈R + [α]S + [αi2n−1]S〉

=

{
〈R + [α]S〉 if αi = 0,

〈R + [α]S + [2n−1]S〉 if αi = 1.

By the following Lemma, these two subgroups are different. Hence the response
of the oracle tells us αi.

On the Security of Supersingular Isogeny Cryptosystems 75

Lemma 3. Let R and S be linearly independent elements of the group E[2n]
with full order, then the subgroups

〈R + [α]S + [2n−1]S〉 and 〈R + [α]S〉

are different.

Proof. The proof is very similar to the proof of Lemma2. The subgroups have
order 2n, since R has order 2n, and R and S are linearly independent. Then if
the subgroups are the same, we must have some λ such that

[λ]R + [λα]S = R + [α]S + [2n−1]S.

By the linear independence of R and S, we can compare coefficients and conclude
that λ = 1, and that [2n−1]S = O, which implies that S has order a factor of
2n−1, which is a contradiction. ��

Algorithm 1. Adaptive attack using oracle O(E,R, S,E′).
Data: n, E, PA, QA, PB , QB , EA, φA(PB), φA(QB)
Result: α

1 Set K0 ← 0;
2 for i ← 0 to n − 3 do
3 Set αi ← 0;
4 Choose random (b1, b2);
5 Set GB ← 〈[b1]PB + [b2]QB〉;
6 Set EB ← E/GB and let φB : E → EB be the isogeny with kernel GB ;
7 Set (R, S) ← (φB(PA), φB(QA));
8 Set EAB ← EA/〈[b1]φA(PB) + [b2]φA(QB)〉;
9 Set θ ←√(1 + 2n−i−1)−1 (mod 2n);

10 Query the oracle on
(
EB , [θ](R − [2n−i−1Ki]S), [θ][1 + 2n−i−1]S, EAB

)
;

11 if Response is false then αi = 1;

12 Set Ki+1 ← Ki + 2iαi;

13 end
14 Brute force αn−2, αn−1 using E and EA and Kn−2 = α (mod 2n−2) to find α

(this requires no oracle calls);
15 Return α;

Finally, we address the fourth condition. We need that

e2n([a]R + [b]S, [c]R + [d]S) = e2n(R,S)ad−bc = e2n(PA, QA)3
m

.

The idea is that we can mask the points chosen from the attack above to satisfy
the fourth condition. Recall that the points we wish to send to Alice are

(R′, S′) = (R − [2n−i−1Ki]S, [1 + 2n−i−1]S).

76 S.D. Galbraith et al.

Computing the Weil pairing of the two points, we have

e2n(R′, S′)

=e2n(R − [Ki2n−i−1]S, [1 + 2n−i−1]S)

=e2n(R, [1 + 2n−i−1]S) · e2n(−[Ki2n−i−1]S, [1 + 2n−i−1]S)

=e2n(R,S)1+2n−i−1
,

which is not the correct value. So we choose θ such that

e2n(θR′, θS′) = e2n(R,S)θ2(1+2n−i−1) = e2n(PA, QA)3
m

= e2n(R,S).

Note that 〈[θ]R′ + [α][θ]S′〉 = 〈[θ](R′ + [α]S′)〉 = 〈R′ + [α]S′〉 as long as θ is
coprime to the order 2n. Hence we need θ to be the square root of 1 + 2n−i−1

modulo 2n. The following lemma shows that such a square root exists as long as
n − i − 1 ≥ 3. Note that θ will be odd, as required.

Lemma 4. If a is an odd number and m = 8, 16, or some higher power of 2,
then a is a quadratic residue modulo m if and only if a ≡ 1 (mod 8).

The condition n − i − 1 ≥ 3 means we may not be able to launch the attack
in an undetected way for the last two bits. This is why we use a brute force
method to determine these bits.

The attack in the case (α′, 1) follows by swapping the roles of R and S.

3.3 Analysis and Complexity of the Attack

The attack requires fewer than n ≈ 1
2 log2(p) interactions with Alice. This seems

close to optimal for attack model 2, where the attacker only gets one bit of
information at each query. We can reduce the number of queries by doing more
computation (increasing the range of the brute-force search).

We now consider the attack in the context of [9,20]. Due to our third and
fourth conditions, the attack passes the validation steps in [9], and even the
stronger check of taking the degree of the isogeny into account as mentioned in
Remark 1.

The approach in [20] would be able to detect the attack. This is because the
auxiliary points sent to Alice in the attack are not the correct values generated
in an honest protocol run.

Remark 2. We now say a few words about attacking odd prime power isogenies.
Let � be an odd prime such that �n | (p+1) and E[�n] ⊂ E(Fp2). Let PA, QA be
generators of E[�n]. Alice would compute an �n-isogeny with kernel 〈[a1]PA +
[a2]QA〉 and a dishonest user Bob is trying to learn her key a1, a2, where a1 and
a2 are not simultaneously divisible by �. As above, we take Alice’s secret key to
be (1, α).

The obvious generalisation for this attack is to set R = φB(PA) and S =
φB(QA) and to send Alice points

(R − [x�n−i−1]S, [1 + �n−i−1]S).

On the Security of Supersingular Isogeny Cryptosystems 77

In her computation for the subgroup, Alice would compute

〈R + [α]S + [�n−i−1][α − x]S〉.
Since we want to compare this subgroup against 〈R + [α]S〉, we need

(�n−i−1)(α − x) ≡ 0 (mod �n)

to ensure the subgroups computed are the same. Hence for each coefficient of a
power of � in the �-expansion of α, we will need at most �−1 queries to recover it.

For � = 3 this is as good as one would expect (at most two queries), but for
primes � ≥ 5 this seems not optimal since one would hope that given an oracle
that returns one bit of information one could learn the value with only �log2(�)�
queries. In AppendixB we specify a simple attack, that is easily detectable and
uses a stronger oracle, but can be used to efficiently handle the case � > 3.

4 Solving the Isogeny Problem When the Endomorphism
Ring Is Known

Let p = �n
A�m

B f − 1 as in the Jao–De Feo cryptosystems, and let E and EA be
two supersingular elliptic curves such that there exists an isogeny φA : E → EA

of degree �n
A between them. In this section we additionally suppose that we know

(or can compute) the endomorphism rings End(E) and End(EA), and we provide
an efficient algorithm to recover φA assuming a certain natural heuristic holds.
A formal statement of our reduction is below and we will prove this in Sect. 4.2.

Theorem 1. Let E and EA be supersingular elliptic curves over Fp2 such that
E[�n

A] ⊆ E(Fp2) and there is an isogeny φA : E → EA of degree �n
A from E to

EA. Suppose there is no isogeny φ : E → EA of degree < �n
A. Then, given an

explicit description of End(E) and End(EA), there is an efficient algorithm to
compute φA.

As recalled in Sect. 2.2, computing the endomorphism ring of a supersingu-
lar elliptic curve is a problem essentially equivalent to computing an arbitrary
isogeny between two supersingular elliptic curves. However, the the algorithm
of [22] does not produce an isogeny that satisfies the additional constraint that
it must be of small degree, as is required in the Jao–De Feo cryptosystems
(�n

A ≈ p1/2). Hence the current state of knowledge does not give a reduction of
the form we require. The aim of this section is to present an alternative method
to [22] in this context. We use the notation of [22].

4.1 The Importance of the Correct Isogeny

We first explain that to break the Jao–De Feo protocol it is not sufficient to
compute any isogeny from E to EA. There are infinitely many such isogenies,
but to break the Jao and De Feo cryptosystems it is necessary to find the right
sort of isogeny, as we now explain.

78 S.D. Galbraith et al.

Suppose there are curves E and isogenies φA : E → EA, φB : E → EB

with ker(φA) = GA, ker(φB) = GB satisfying the usual isogeny diagram from
Sect. 2.3:

E

EA = E
GA

EB = E
GB

EAB = E
〈GA,GB〉

φA

φB

The correctness of the protocol follows from the fact that E/〈GA, GB〉 =
EA/〈φA(GB)〉 = EB/〈φB(GA)〉 and that φA(GB) and φB(GA) can be computed
by the honest parties.

Suppose an attacker given E,EA, EB can compute an isogeny φ′ : E → EA.
So the picture now looks like:

E

EA = E
GA

EB = E
GB

EAB = E
〈GA,GB〉

φA

φ′

φB

The natural approach for an attacker to try to compute EAB is to compute
φB(ker(φ′)) and hence an isogeny from EB with this kernel. However, the
attacker only has the points φB(PA), φB(QA) to work with, and so can only com-
pute φB(ker(φ′)) if ker(φ′) ⊆ 〈PA, QA〉 (in which case φ′ is an isogeny of degree
dividing 2n). A random isogeny φ′ is unlikely to have this property. Indeed, φA

is likely to be the only isogeny from E to EA with kernel in 〈PA, QA〉 (apart
from composing with an automorphism, which is of no consequence).

This is the crux of the difficulty in giving a reduction from computing endo-
morphism rings to computing the secret key in the Jao–De Feo cryptosystem:
Known algorithms to compute an isogeny from E to EA, given End(E) and
End(EA), are not likely to give an isogeny of the correct degree. However, as we
now explain, the particularly small degree of the secret key gives the reduction
an advantage that does not arise in the general case.

4.2 Reduction of Problem to Computation of Endomorphism Ring

We show how the existence of a small degree isogeny actually helps the crypt-
analysis of Jao–De Feo’s cryptosystems, assuming we know (or we are able to
compute) the endomorphism rings of the curves in play.

On the Security of Supersingular Isogeny Cryptosystems 79

We write Bp,∞ for the quaternion algebra ramified at p and ∞ and use
the standard notions of reduced trace and reduced norm (see Vigneras [33] for
background). One extends the reduced norm to ideals in Bp,∞.

Given two maximal orders O and OA, one can compute in polynomial time
an ideal I that connects them (see [22, Lemma 8]). Computing an isogeny of
the correct degree corresponds to computing an equivalent ideal of the correct
norm. In order to find such an equivalent ideal we use the following lemma.

Lemma 5. [22, Lemma 5] Let I be a left O-ideal of reduced norm N and α an
element in I. Then Iγ, where γ = ᾱ/N , is a left O-ideal of norm n(α).

We observe that in the context of Jao–De Feo cryptosystems, there exists by con-
struction an element α of small norm N�n

A in I, corresponding via this lemma to
an ideal of norm �n

A. Moreover as Minkowski bases can be computed in polyno-
mial time for lattices of dimension up to 4 [27], this element α can be efficiently
recovered as long as it is in fact the smallest element in I. These observations
lead to the following first simple algorithm:

Algorithm 2. Computing small degree isogenies in Jao–De Feo cryptosys-
tems given an algorithm to compute the endomorphism ring of a random
supersingular elliptic curve.
Data: �A, n, E, EA, O = End(E), OA = End(EA) such that E and EA

are connected by an isogeny of degree �n
A

Result: Isogeny ϕA : E → EA of small degree �n
A, or failure

1 Compute an ideal I connecting O and OA as in [22, Lemma 8];
2 Compute a Minkowski-reduced basis of I;
3 Let α be the non-zero element in I of minimal norm;
4 if n(α) �= n(I)�n

A then return failure;
5 Compute an ideal I ′ = Iᾱ/n(I) ;
6 Compute the isogeny ϕA that corresponds to I ′ using Vélu’s formulae;
7 Return ϕA;

All the steps in this algorithm can be performed in polynomial time. The
above discussion forms the proof of Theorem 1.

Proof. (Theorem 1). Given an explicit representation of the endomorphism rings,
we can translate the endomorphism rings into maximal orders of quaternion
algebras. One can then find, in polynomial time, an ideal I connecting them
by [22, Lemma 8].

By Lemma 5, it is sufficient to find an element of I of the correct norm. But
given that the norm we seek is the smallest norm in the ideal, we can use lattice
reduction methods to recover the smallest norm in polynomial time. Then using
methods in [22], we can recover the isogeny we seek. ��

In the remainder of this section, we study the success probability of this
algorithm on average, and show how to use it to achieve a very large success
probability.

80 S.D. Galbraith et al.

Heuristically, we can approximate the probability that E and EA are con-
nected by an isogeny of degree � by estimating the probability that two ran-
domly chosen supersingular elliptic curves are connected by an isogeny of the
same degree.1

Random pairs of elliptic curves over Fp2 are unlikely to be connected by
isogenies of degrees significantly smaller than

√
p. Indeed, when � =

∏
i pei

i ,
there are exactly

a(�) :=
∏

i

(pi + 1)pei−1
i

isogenies of degree � from any curve E, hence any curve E is connected to at
most

∑
�≤D a(�) curves EA by an isogeny of degree at most D. A calculation

given in AppendixA shows that this sum converges to

15
2π2

D2

as D tends to infinity. As there are roughly p/12 supersingular invariants over
Fp2 we can evaluate the success probability of the above algorithm as

SR ≈ max
(

0, 1 − 90
π2

�2n
A

p

)

.

For the parameters used in Jao–De Feo’s cryptosystems we expect this basic
attack to succeed with a probability larger than 50 % as soon as f > 180

π2 ≈ 18.23,
where f is the cofactor in p = �n

A�m
B f ± 1.

The success rate of our attack can be easily improved in two ways. First, we
can apply the algorithm separately on all curves that are at distance �e

A of EA

for some small constant e, until it succeeds for one of them. Clearly one of these
curves will be connected to E by an isogeny of degree �n−e

A , and as a result the
success rate will increase to

SR ≈ max

(

0, 1 − 90
π2

�
2(n−e)
A

p

)

.

With �A = 2 and e = 10 this method will lead to a success rate above 99 %, even
when f = 1. Second, we can try to use the Minkowski-reduced basis computed
in Step 3 of the algorithm to find an element α of the appropriate norm, even
when it is not the smallest element. We explore two heuristic methods in that
direction in our experiments below.

1 The argument is not totally accurate as E and EA are slightly closer in the �A-
isogeny graph than random pair of curves would be. This may a priori impact the
probabilities, however a significant distortion of these probabilities would reveal some
unexpected properties of the graph, such as the existence of more or fewer loops of
certain degrees than expected.

On the Security of Supersingular Isogeny Cryptosystems 81

4.3 Experimental Results

We tested our algorithm in Magma with �A = 2 and with a λ-bit prime p, a
randomly selected maximal order, another random maximal order connected to
the first by a path of length �log�A(p)/2� + δ, with δ ∈ {−5, . . . , 5}. One can
traverse from the first order to the second via �log�A(p)/2� + δ steps in the
�A-isogeny tree.

The first three columns of Table 1 (“First basis element”) correspond to the
attack described in the previous section. The next three columns (“All basis
elements”) correspond to a variant where instead of considering only the smallest
element in Step 4 of the algorithm, we try all elements in the Minkowski-reduced
basis. Finally, the last three columns (“Linear combinations”) correspond to a
variant where we search for α of the right norm amongst all elements of the
form

∑4
i=1 ciβi, where ci ∈ {−4, . . . , 4} and βi are the Minkowski-reduced basis

elements. Each percentage in the table corresponds to a success rate over 100
experiments.

Table 1. Experimental results for δ values. � = 2.

First basis element All basis elements Linear combinations

λ λ λ

100 150 200 100 150 200 100 150 200

−5 100 % 99 % 99% 100 % 100% 99% 100 % 100 % 100%

−4 93 % 99 % 94% 98 % 99% 100% 100 % 100 % 100%

−3 83 % 84 % 88% 92 % 95% 99% 100 % 100 % 100%

−2 40 % 43 % 45% 81 % 74% 76% 100 % 100 % 100%

−1 0 % 2 % 0% 35 % 42% 35% 100 % 100 % 99%

δ 0 0 % 0 % 0% 3 % 4 % 3% 100 % 100 % 100%

1 0 % 0 % 0% 1 % 0 % 0% 97 % 99 % 98%

2 0 % 0 % 0% 0 % 0 % 0% 95 % 94 % 91%

3 0 % 0 % 0% 0 % 0 % 0% 57 % 68 % 70%

4 0 % 0 % 0% 0 % 0 % 0% 25 % 28 % 18%

5 0 % 0 % 0% 0 % 0 % 0% 0 % 3 % 1%

The experimental results are entirely convincing, so we leave better strategies
to identify α from the Minkowski-reduced basis to further work.

5 Isogeny Hidden Number Problem

In this section we present an algorithm that takes partial information about the
shared j-invariant j(EAB) of Alice and Bob, and recovers the entire j-invariant,
i.e. their shared key. This algorithm can therefore be used as a tool to obtain
the shared key from a side-channel attack and to prove a bit security result.

82 S.D. Galbraith et al.

Influenced by work on Diffie–Hellman key exchange in Z
∗
p, we propose the

isogeny hidden number problem as a useful abstraction for analysing different
cases where partial information is provided.

Hidden number problems have been used in other research. For example, [5]
proved that some bits are hardcore for Diffie–Hellman shared keys in Z

∗
p, [16,25,

26] studied partial leakage of nonces in DSA and EC-DSA signatures, and [1,24]
discussed side-channel attacks in the context of signatures.

Definition 3. (Isogeny hidden number problem). Let Es be an unknown
supersingular elliptic curve over Fp2 . The isogeny hidden number problem is to
compute the j-invariant j(Es) given an oracle O such that O(r) outputs partial
information on j(E′) for some curve E′ which is r-isogenous to Es.

We now explain how the oracle O in this problem can be realized in the con-
text of the supersingular isogeny Diffie–Hellman key exchange. We use the same
notation as earlier in the paper, so that PA, QA, PB , QB ∈ E are known, and so
are Alice and Bob’s session values: EA, EB , φA(PB), φA(QB), φB(PA), φB(QA).
We set Es := EAB to be the unknown elliptic curve. We suppose we have
another oracle O′ that takes these values and produces some partial information
on j(EAB), which we interpret as the oracle query O(1).

As a second stage, the adversary chooses a small integer r (coprime to Alice’s
prime �) and a point R ∈ EB [r] of full order. Let φBC : EB → EC be an isogeny
of degree r with kernel 〈R〉, that is EC = EB/〈R〉. Note that there is a curve
E′ := EAC and an r-isogeny EAB → EAC corresponding to the image of R under
the isogeny from EB to EAB . We also have that EAC = EC/φC(GA) where GA

is the kernel of φA and φC = φBC ◦ φB. This situation is pictured below.

E

EA

EB

EAB

φA

φB

EAC

ECφBC

The curves EA, EC and the corresponding values φA(PB), φA(QB), φC(PA) =
φBC(φB(PA)), φC(QA) = φBC(φB(QA)) can be used to perform a key exchange,
which will constitute the curve EAC (this is the dotted arrow in the figure).

Querying the oracle O′ on these values results in some partial information
on j(EAC). We interpret this as the oracle query O(r).

We give a full solution to the isogeny hidden number problem in the case
where the oracle outputs an entire component of the j-invariant, and propose an
attack where the oracle outputs some most significant bits of both components.
This leads to a bit security result and to an active attack, which can be realized
by a side-channel attack, when Alice uses a static key.

On the Security of Supersingular Isogeny Cryptosystems 83

5.1 Algorithms for the Isogeny Hidden Number Problem

We recall that each j-invariant is an element in Fp2 . Let Fp2 = Fp(θ), where
θ2 + Aθ + B = 0, with A,B ∈ Fp. We write j = j1 + j2θ. For simplicity we only
consider two cases of partial knowledge:

1. Oracle returns an entire component ji of each j-invariant.
2. Oracle returns the most significant bits of both components.

Other models of partial information could be considered as well.
We first remark that, since there are only around p/12 supersingular j-

invariants, one might expect that knowledge of one component ji uniquely deter-
mines the entire j-invariant. This is not true in general, and it seems to be the
case that there is no bound independent of p on the number of supersingular
j-invariants in Fp2 with a fixed value for ji (one exception is the rare class of
j-invariants that actually lie in Fp and so are uniquely determined by their first
component; the number of such j-invariants grows proportional to

√
p). Fur-

thermore, there seems to be no known efficient algorithm that computes the
other component j3−i given the value ji together with the fact that the curve is
supersingular. Hence, even the first case is not trivial.

Our result is based on the modular polynomials Φr(x, y), which have the
property that there is an isogeny φ : E → E′ of degree r with cyclic kernel
if and only if Φr(j(E), j(E′)) = 0. We refer to [10, Sect. 11.C], [3, Sect. 3.8]
for background. These polynomials give a way to relate the known information
on the different j-invariants. The degree of Φr(x, y), as well as their number of
monomials, grow with r. Since the degree of these polynomials influences the
complexity of the computation, it is desirable to work with the smallest possible
r (in practice we can take either r = 2 or r = 3). For r = 2 we have

Φ2(x, y) = x3 + y3 − x2y2 + 1488x2y + 1488xy2

− 162000x2 − 162000y2 + 40773375xy

+ 8748000000x + 8748000000y − 157464000000000.

The framework is the following. Let x = x1 + x2θ, y = y1 + y2θ. We call x1 a
“coefficient of 1” and x2 a “coefficient of θ”. Then Φ2(x, y) = F1(x1, x2, y1, y2)+
F2(x1, x2, y1, y2)θ for F1, F2 ∈ Fp[x1, x2, y1, y2], of total degree 4. Let j = j(E) =
j1 + j2θ and j′ = j(E′) = j′

1 + j′
2θ, then if Φ2(j, j′) ≡ 0 (mod p) it holds that

F1(j1, j2, j′
1, j

′
2) = F2(j1, j2, j′

1, j
′
2) ≡ 0 (mod p).

Given some most significant bits of x, a common approach is to write

h := MSBk(x) = x − e, for |e| <
p

2k+1
,

so e is a relatively small integer. If all the bits are given, then e = 0. Substituting
the known values that the oracle provides into each Fi, one constructs new
polynomials Gi whose roots can be used to fully recover the j-invariant j(E).
The problem reduces to the problem of recovering desired roots of Gi.

84 S.D. Galbraith et al.

Complete Component. In this case we assume the attacker has a whole
component for each j-invariant. We show that two samples are sufficient to
recover the secret j-invariant j(Es). That is, we need one component of j(Es)
and one component of another j(E′). Moreover, we can work with any pair of
components (the components do not have to be in the same position).

Theorem 2. Let the oracle O in the isogeny hidden number problem output
one component of the finite field representation of j(E′) ∈ Fp2 . Then there is an
algorithm to solve the isogeny hidden number problem that makes two queries to
O and succeeds with probability at least 1/18 if both components are coefficients
of 1, with probability at least 1/12 if both components are coefficients of θ, and
with probability at least 1/15 otherwise.

Proof. Let Es be the desired elliptic curve. The query O(1) gives one com-
ponent of j(Es) and the query O(2) gives one component of j(E′) where
Φ2(j(Es), j(E′)) = 0.

Writing j(Es) = j1+j2θ and j(E′) = j′
1+j′

2θ then, as explained, Φ2(j, j′) = 0
can be expressed as F1(j1, j2, j′

1, j
′
2) = F2(j1, j2, j′

1, j
′
2) = 0 for two polynomials

F1, F2.
The oracle queries provide values x3−k = j3−k, y3−l = j′

3−l for k, l ∈ {1, 2}.
Plugging these values into the polynomials Fi, we construct two bivariate poly-
nomials Gi in variables xk, yl where the highest degree of each variable is at
most 3. By taking the resultant of these polynomials with respect to yl we get a
univariate polynomial in xk of degree at most 18. We show in Appendix C that
the resultant is not the constant zero. One can then factor this polynomial to get
at most 18 roots over Fp, where one of the roots is jk. As we have jk and j3−k,
we can construct j(Es). Hence, taking one of these solutions at random, we have
determined the unknown j-invariant of Es with probability at least 1/18.

Note that if the oracle queries yield j2, j
′
2, then G2 is of degree 2, and so

the resultant is of degree at most 12 (see Appendix C). Therefore, there are at
most 12 possibilities of Fp-solutions to the remaining unknown, which bound
the success probability by 1/12. Similarly, if only one of the components is a
coefficient of θ, then the degree of the variable associated to this component in
G2 is 2, and so the resultant is of degree at most 15. ��
Remark 3. The solution given in Theorem2 applies directly to any degree r.
Note that the degree of Φr(x, y) increases with r, so we get more candidates for
jk. The proof holds with non-negligible probability for any low degree r. Notice
that one can run the algorithm for several different degrees r and test if there is
only one root which is common to all lists of candidates, this will be jk.

This solution assumes the oracle always gives the correct answer. An oracle
that gives correct answers with some probability can be treated using the ideas
in the next partial information model.

Theorem 2 provides the following bit security result for the supersingular
isogeny key-exchange in a manner analogous to how the hidden number problem
is used to give bit security results for Diffie–Hellman key exchange in Z

∗
p [5].

On the Security of Supersingular Isogeny Cryptosystems 85

Theorem 3. Computing any component of the shared j-invariant j(EAB) in the
supersingular isogeny key exchange is as hard as computing the entire j-invariant
j(EAB).

Indeed, the isogeny hidden number problem in this case can be derived from
the oracle O′ described above, that takes the public parameters as well as the
values EA, EC , φA(PB), φA(QB), φC(PA), φC(QA) and outputs a component
of j(EAC) (if Alice’s prime � is 2, one can take r = 3 or work with Bob’s
values and EBC). We have just shown that, given an algorithm that computes a
component of the shared j-invariant from the public keys, there is an algorithm
that computes the entire j-invariant.

Partial Components. In this case we assume the attacker has most significant
bits of both component for each j-invariant. Therefore, we write ji = hi + ei

and j′
i = h′

i + e′
i for i = 1, 2 and for a pair of j-invariants j, j′. Substituting

these values to the equations of Fi, we construct two new polynomials G1, G2 ∈
Fp[u1, u2, v1, v2] of degree 4, such that

G1(e1, e2, e′
1, e

′
2) = G2(e1, e2, e′

1, e
′
2) ≡ 0 (mod p).

The problem of computing the hidden j-invariant can therefore be expressed
in terms of finding a small solution to a system of multivariate polynomial equa-
tions modulo p. One can then solve the problem by applying the well-known
lattice-based techniques due to Coppersmith and Howgrave-Graham. We refer
to [19] for a survey of these methods, where multivariate polynomials are con-
sidered.

These lattice methods require several relations, so we expect to need more
than the six relations that are coming from the three 2-isogenous curves to Es.
To get more relations one can take isogenies of higher degrees, but we suggest
working with degree 2 to get a stronger attack. That is, instead of fixing Es

and taking several r-isogenous curves E′ for increasing r, we suggest following
a (short) path in the 2-isogeny graph rooted at Es. This ensures that the only
polynomial being used is Φ2, which has minimal degree and the minimal number
of monomials.

The main idea is to consider a part of the 2-isogeny graph close to Es (typi-
cally it will be a tree rooted at Es). For every edge in the graph we obtain partial
information on a j-invariant, which gives rise to two polynomials, namely G1, G2,
which are satisfied by a simultaneous “small” solution.

Once enough polynomials are gathered, one can apply the techniques men-
tioned above to get a solution to the entire system where some of the roots are
small (coming from the coordinates of a short vector in a corresponding lattice).
Given these roots, one can recover the j-invariant for a curve Ed in this path.
Using the modular polynomials, we can “travel back” to find the j-invariant
of the root Es. Indeed, suppose our path is E0 = Es, E1, . . . , Ek. Then as we
know j(Ed) for some d ≤ k, we can use Φ2 to compute j(Ed−1) by solving
Φ2(j(Ed), y) ≡ 0 (mod p). We get at most 3 candidates for j(Ed−1), and we

86 S.D. Galbraith et al.

proceed recursively to find candidates for j(Ed−2), . . . , j(E0). Since the distance
from Ed to the root Es is short, this results in a small list of candidates for
j(Es).

We remark that in practice the polynomials G1, G2 consist of many mono-
mials, and therefore this approach would require knowledge of many bits. How-
ever, Coopersmith’s method shows how to generate more relations, which help
to reduce the number of bits, and as an attack one can also rely on lattice
algorithms working better in practice than theoretically guaranteed.

5.2 Active Attack When Alice Uses a Static Key

We assume that Alice uses a static key for encryption or key exchange. A legit-
imate key exchange protocol takes place between Alice and Bob, and an adver-
sary Eve who sees the protocol messages wishes to obtain the resulting shared
j-invariant jAB . Hence Eve knows (E,EA, EB) and the corresponding points.

We further assume that Eve can (adaptively) engage in protocol sessions
with Alice (who always uses the same static secret key) and that, through some
side-channel or other means, Eve is able to obtain partial information on the
shared key computed by Alice on each protocol session.

Here, Alice acts as the oracle O that provides the partial information.
Eve first observes a protocol exchange between Alice and Bob, and so sees
(EB , φB(PA), φB(QA)). She learns some partial information on j(EAB).

Eve then chooses a small integer r coprime to Alice’s prime �, and as described
above computes an isogeny φC , the curve EC and the corresponding points
φC(PA), φC(QA). She sends (EC , φC(PA), φC(QA)) to Alice as part of a key
exchange session. Alice then computes EAC = EC/φC(GA) and some partial
information about this j-invariant j(EAC) is leaked. This leads to the scenario
described in the isogeny hidden number problem, and using one of the solutions
to this problem yields the desired j-invariant j(EAB).

Note that this attack can be detected by the countermeasure of Kirkwood
et al. [20], since the query on EC is not on a correct execution of the protocol.
However, the protocol still requires Alice to compute EAC and so in the con-
text of a side-channel attack, an attacker might already have received enough
information to determine the desired secret key j(EAB).

6 Conclusion

We have given several results on the security of cryptosystems based on the
Jao–De Feo concept. Our main conclusion is that it seems very hard to prevent
all active attacks using simple methods. Our first active attack seems to be
undetectable using pairings or any other tools, as the curves and points appear
to be indistinguishable from correct executions of the protocol. Similarly, our
side-channel attack based on leakage of partial knowledge of the key seems to be
hard to detect (without storing all previous sessions and each user checking that
all curves EC sent to her are not related to previous curves EB by an isogeny

On the Security of Supersingular Isogeny Cryptosystems 87

of small degree). However, both these active attacks are detected by the heavy-
duty countermeasure of Kirkwood et al. [20]. The latter attack comes from a
reduction that gives the first bit security result for the supersingular isogeny key
exchange.

Our paper therefore suggests that there is no way to avoid the use of such
general countermeasures. It also shows that there is a risk of side-channel and
fault attacks on these protocols, and these topics will no doubt generate a small
following of literature in the coming years.

We have also discussed the connection between the problem of computing
endomorphism rings and computing isogenies. In general, knowledge of End(EA)
does not immediately lead to a 2-power isogeny of low degree from E to EA. But
in the setting of the Jao and De Feo scheme such an isogeny can be efficiently
computed when End(E) and End(EA) are known. This demonstrates that the
isogenies considered in these cryptosystems are special, which is natural to sus-
pect since they are too short to provide good mixing in the expander graph.

Acknowledgement. We thank the anonymous reviewers for their comments. We
would like to thank Roger Heath-Brown for his help with the calculation in Appen-
dix A. The idea to study bit security of the isogeny scheme, which led to our third
result, was suggested to us by Katsuyuki Takashima. We thank David Jao for com-
ments on the Kirkwood et al. validation. The second author is supported by a GCHQ
grant on post-quantum cryptography.

A Number of Isogenies of Degree Smaller Than D

To the sum
∑D

n=2 a(n) with a(n) =
∏

pe|n(p+1)pe−1 we can associate a Dirichlet

series d(s) =
∑

n≥1
a(n)
ns . This Dirichlet series is in fact equal to d(s) = ζ(s)ζ(s−1)

ζ(2s)

by applying Euler’s product formula. The function has a pole at s = 2 with
residue equal to ζ(2)/ζ(4). Using Perron’s formula and Cauchy’s Residue theo-
rem, we arrive at ∑

n≤D

a(n) ∼ c · D2

where

c = Res(s = 2) =
1
2

ζ(2)
ζ(4)

=
15
2π2

.

B Low Order Adaptive Attack

In this appendix, we will discuss an adaptive attack that is easily detected but
can be more powerful than the attack in Sect. 3. This adaptive attack uses points
of small order; in particular, the attacker uses points

(
R, [�k]S

)
, where R,S ∈

E[�n]. We will illustrate the attack using the first oracle model and when � > 3.
As with the attack presented in Sect. 3, we will assume that Alice is using a

static key (1, α), and that a dishonest user is playing the role of Bob to learn

88 S.D. Galbraith et al.

her key. It will be immediately clear that the attack will not stand up to the
validations proposed by [9].

Let Alice be working in E[�n] ⊂ E(Fp2), where �n | (p+1) and � > 3. Suppose
that an attacker has recovered the first i bits of α, so that

α = Ki + �iαi + �i+1α′

where Ki is known but αi ∈ {0, 1, . . . , � − 1} and α′ are not known.
The attacker computes EB , R = φB(PA), S = φB(QA) and queries the oracle

on (EB , R, [�n−i−1]S). The resulting elliptic curve that the oracle computes is

EB/〈R + [α][�n−i−1]S〉 = EB/〈R + [�n−i−1][Ki + �iαi + �i+1α′]S〉
= EB/〈R + [�n−i−1][Ki]S + [�n−1αi]S〉.

Since the component R + [�n−i−1][Ki]S is known, the attacker can recover αi

if he knows the j-invariant by trying all of the � different values of αi. For
each �-ary bit, we only need one oracle interaction. This therefore solves the
problem mentioned in Remark 2. The pseudo-code for this attack is presented in
Algorithm 3.

Notice that with the second oracle model the attacker would need to make
at most � queries to the O(E,R, S,E′) oracle to recover αi.

Algorithm 3. Low order adaptive attack using oracle O(E,R, S).
Data: n, E, PA, QA, PB , QB , EA, φA(PB), φA(QB)
Result: α

1 Set K0 ← 0;
2 for i ← 0 to n − 1 do
3 Choose random (b1, b2);
4 Set GB ← 〈[b1]PB + [b2]QB〉;
5 Set EB ← E/GB and let φB : E → EB be the isogeny with kernel GB ;
6 Set (R,S) ← (φB(PA), φB(QA));
7 Set ji ← Query the oracle on

(
EB , R, [�n−i−1]S

)
;

8 for x ← 0 to � − 1 do
9 Set jatt ← j(EB/〈R + [Ki]S + [x]S〉) ;

10 if jatt = ji then αi ← x;
11 end
12 Set Ki+1 ← Ki + αi�

i;
13 end
14 Return Kn;

C The Resultant of G1(xk, yl) and G2(xk, yl)

Let p, q ∈ k[x, y] be two polynomials, and k some field. The resultant of p and
q with respect to y, denoted Res(p, q, y), is given by the determinant of the
Sylvester matrix of p and q as univariate polynomials in y, that is, we consider

On the Security of Supersingular Isogeny Cryptosystems 89

p, q ∈ k(x)[y]. The resultant Res(p, q, y) is a univariate polynomial in x, so
belongs to k[x]. For background on the resultant we refer to Sects. 5 and 6 of
Chap. 3 in [11].

We show that the resultant Res(G1, G2, yl), considered in Sect. 5.1, is not
identically zero. We will use the fact that the modular polynomial Φr(X,Y) ∈
Fp[X,Y] is absolutely irreducible (irreducible over the algebraic closure). We
therefore consider Φr, as well as G1, G2, in Fp[X,Y]. Recall that there are four
cases depending on the values of (k, l). For example when (k, l) = (1, 2) we have
G1(x1, y2) + G2(x1, y2)θ = Φ2(x1 + j2θ, j

′
1 + y2θ).

Assume for contradiction that Res(G1, G2, yl) ≡ 0. By Proposition 1(ii) in
[11, Chap.3, §6], Res(G1, G2, yl) ≡ 0 if and only if there exists a polynomial
h ∈ Fp[xk, yl] with positive degree in yl such that h | G1 and h | G2.

Consider the following linear substitution of variables:

– If k = 1 then set x1 = X − j2θ and if k = 2 then set x2 = (X − j1)θ−1.
– If l = 1 then set y1 = Y − j′

2θ and if l = 2 then set y2 = (Y − j′
1)θ

−1.

One can check that these substitutions give

G1(xk, yl) + G2(xk, yl)θ = Φr(X,Y).

Hence, letting h̄(X,Y) be the polynomial obtained by evaluating h(xk, yl) with
these substitutions we have

h̄(X,Y) | Φr(X,Y).

From the facts that the degree of h̄ is equal to the degree of h, and that Φr

is irreducible, it follows that (since we assumed h is non-constant) that h is
a constant multiple of both G1 and G2. But by comparing the monomials in
G1, G2, it is easy to see that they are not constant multiples of each other.
Hence we have a contradiction and the resultant is non-zero.

We now explain the degrees arising in the proof of Theorem2. Given the
components j3−k, j′

3−l, consider Φ2(x, y) and the corresponding polynomials
G1(xk, yl), G2(xk, yl). We have

degxk
Res(G1, G2, yl) =

⎧
⎨

⎩

12 if k = l = 1,
18 if k = l = 2,
15 otherwise.

It follows from the following lemma, since degx1
F1 = degy1

F1 = 3, degx2
F1 =

degy2
F1 ≤ 3, degx1

F2 = degy1
F2 ≤ 2 and degx2

F2 = degy2
F2 ≤ 3.

Lemma 6. Let p, q ∈ k[x, y] be two polynomials with

degx p = nx, degy p = ny,

degx q = mx, degy q = my.

Then degx Res(p, q, y) ≤ mynx + nymx.

90 S.D. Galbraith et al.

Proof. The Sylvester matrix of p and q with respect to y is a (my+ny)×(my+ny)
matrix. The first my rows, coming from the coefficients of p, contain polynomials
in x of degree at most nx. Similarly, the last ny rows contain polynomials in x
of degree at most mx. The resultant Res(p, q, y) is given by the determinant of
this matrix, which is formed by summing products of an entry from each row.
The first my rows contribute at most mynx to the degree of x, and the last ny

rows contribute at most nymx. ��

References

1. Aranha, D.F., Fouque, P.-A., Gérard, B., Kammerer, J.-G., Tibouchi, M., Zapalow-
icz, J.-C.: GLV/GLS decomposition, power analysis, and attacks on ECDSA sig-
natures with single-bit nonce bias. In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT
2014. LNCS, vol. 8873, pp. 262–281. Springer, Heidelberg (2014). doi:10.1007/
978-3-662-45611-8 14

2. Biasse, J.-F., Jao, D., Sankar, A.: A quantum algorithm for computing isogenies
between supersingular elliptic curves. In: Meier, W., Mukhopadhyay, D. (eds.)
INDOCRYPT 2014. LNCS, vol. 8885, pp. 428–442. Springer, Heidelberg (2014).
doi:10.1007/978-3-319-13039-2 25

3. Blake, I.F., Seroussi, G., Smart, N.P.: Elliptic Curves in Cryptography. Cambridge
University Press, Cambridge (1999)

4. Blake, I.F., Seroussi, G., Smart, N.P.: Advances in Elliptic Curve Cryptography.
Cambridge University Press, Cambridge (2005)

5. Boneh, D., Venkatesan, R.: Hardness of computing the most significant bits of
secret keys in diffie-hellman and related schemes. In: Koblitz, N. (ed.) CRYPTO
1996. LNCS, vol. 1109, pp. 129–142. Springer, Heidelberg (1996). doi:10.1007/
3-540-68697-5 11

6. Charles, D.X., Lauter, K.E., Goren, E.Z.: Cryptographic hash functions from
expander graphs. J. Cryptol. 22(1), 93–113 (2009)

7. Childs, A.M., Jao, D., Soukharev, V.: Constructing elliptic curve isogenies in quan-
tum subexponential time. J. Math. Cryptol. 8(1), 1–29 (2014)

8. Ciet, M., Joye, M.: Elliptic curve cryptosystems in the presence of permanent and
transient faults. Des. Codes Crypt. 36(1), 33–43 (2005)

9. Costello, C., Longa, P., Naehrig, M.: Efficient algorithms for supersingular isogeny
Diffie-Hellman. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS, vol. 9814,
pp. 572–601. Springer, Heidelberg (2016). doi:10.1007/978-3-662-53018-4 21

10. Cox, D.A.: Primes of the Form x2 +ny2. John Wiley & Sons Inc, New York (1989)
11. Cox, D.A., Little, J., O’Shea, D.: Ideals, Varieties, and Algorithms: An Introduction

to Computational Algebraic Geometry and Commutative Algebra. Undergraduate
Texts in Mathematics, 3rd edn. Springer, Secaucus (2007)

12. Deuring, M.: Die typen der multiplikatoren ringe elliptischer funktionenkörper.
Abh. Math. Sem. Hansischen Univ. 14, 197–272 (1941)

13. De Feo, L., Jao, D., Plût, J.: Towards quantum-resistant cryptosystems from super-
singular elliptic curve isogenies. J. Math. Cryptol. 8(3), 209–247 (2014)

14. Fujisaki, E., Okamoto, T.: Secure integration of asymmetric and symmetric encryp-
tion schemes. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 537–554.
Springer, Heidelberg (1999). doi:10.1007/3-540-48405-1 34

15. Galbraith, S.D.: Constructing isogenies between elliptic curves over finite fields.
LMS J. Comput. Math. 2, 118–138 (1999)

http://dx.doi.org/10.1007/978-3-662-45611-8_14
http://dx.doi.org/10.1007/978-3-662-45611-8_14
http://dx.doi.org/10.1007/978-3-319-13039-2_25
http://dx.doi.org/10.1007/3-540-68697-5_11
http://dx.doi.org/10.1007/3-540-68697-5_11
http://dx.doi.org/10.1007/978-3-662-53018-4_21
http://dx.doi.org/10.1007/3-540-48405-1_34

On the Security of Supersingular Isogeny Cryptosystems 91

16. Howgrave-Graham, N.A., Smart, N.P.: Lattice attacks on digital signature schemes.
Des. Codes Crypt. 23(3), 283–290 (2001)

17. Jao, D., Feo, L.: Towards quantum-resistant cryptosystems from supersingular
elliptic curve isogenies. In: Yang, B.-Y. (ed.) PQCrypto 2011. LNCS, vol. 7071,
pp. 19–34. Springer, Heidelberg (2011). doi:10.1007/978-3-642-25405-5 2

18. Jao, D., Soukharev, V.: Isogeny-based quantum-resistant undeniable signatures.
In: Mosca, M. (ed.) PQCrypto 2014. LNCS, vol. 8772, pp. 160–179. Springer,
Heidelberg (2014). doi:10.1007/978-3-319-11659-4 10

19. Jochemsz, E., May, A.: A strategy for finding roots of multivariate polynomials
with new applications in attacking RSA variants. In: Lai, X., Chen, K. (eds.)
ASIACRYPT 2006. LNCS, vol. 4284, pp. 267–282. Springer, Heidelberg (2006).
doi:10.1007/11935230 18

20. Kirkwood, D., Lackey, B.C., McVey, J., Motley, M., Solinas, J.A., Tuller, D.: Fail-
ure is not an option: standardization issues for post-quantum key agreement. In:
Workshop on Cybersecurity in a Post-Quantum World (2015)

21. Kohel, D.: Endomorphism rings of elliptic curves over finite fields. Ph.D. thesis,
University of California, Berkeley (1996)

22. Kohel, D., Lauter, K., Petit, C., Tignol, J.-P.: On the quaternion �-isogeny path
problem. LMS J. Comput. Math. 17(Special issue A), 418–432 (2014)

23. Lim, C.H., Lee, P.J.: A key recovery attack on discrete log-based schemes using a
prime order subgroup. In: Kaliski, B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp.
249–263. Springer, Heidelberg (1997). doi:10.1007/BFb0052240

24. De Mulder, E., Hutter, M., Marson, M.E., Pearson, P.: Using Bleichenbacher’s
solution to the hidden number problem to attack nonce leaks in 384-bit ECDSA:
extended version. J. Crypt. Eng. 4(1), 33–45 (2014)

25. Nguyen, P.Q., Shparlinski, I.E.: The insecurity of the digital signature algorithm
with partially known nonces. J. Crypt. 15(3), 151–176 (2002)

26. Nguyen, P.Q., Shparlinski, I.E.: The insecurity of the elliptic curve digital signature
algorithm with partially known nonces. Des. Codes Crypt. 30(2), 201–217 (2003)

27. Nguyen, P.Q., Stehlé, D.: Low-dimensional lattice basis reduction revisited. In:
Buell, D. (ed.) ANTS 2004. LNCS, vol. 3076, pp. 338–357. Springer, Heidelberg
(2004). doi:10.1007/978-3-540-24847-7 26

28. Peikert, C.: Lattice cryptography for the internet. In: Mosca, M. (ed.) PQCrypto
2014. LNCS, vol. 8772, pp. 197–219. Springer, Heidelberg (2014). doi:10.1007/
978-3-319-11659-4 12

29. Rostovtsev, A., Stolbunov, A.: Public-key cryptosystem based on isogenies. Cryp-
tology ePrint Archive, Report 2006/145 (2006). http://eprint.iacr.org/

30. Silverman, J.H.: The Arithmetic of Elliptic Curves. Graduate Texts in Mathemat-
ics, vol. 106, 2nd edn. Springer, New York (2009)

31. Tate, J.: Endomorphisms of abelian varieties over finite fields. Inventiones mathe-
maticae 2(2), 134–144 (1966)

32. Vélu, J.: Isogénies entre courbes elliptiques. C.R. Acad. Sci. Paris Sér. A. 273,
238–241 (1971)

33. Vignéras, M.-F.: Arithmétique des Algèbres de Quaternions. Lecture Notes in
Mathematics, vol. 800. Springer, New York (1980)

34. Xi, S., Tian, H., Wang, Y.: Toward quantum-resistant strong designated verifier
signature from isogenies. Int. J. Grid Util. Comput. 5(2), 292–296 (2012)

http://dx.doi.org/10.1007/978-3-642-25405-5_2
http://dx.doi.org/10.1007/978-3-319-11659-4_10
http://dx.doi.org/10.1007/11935230_18
http://dx.doi.org/10.1007/BFb0052240
http://dx.doi.org/10.1007/978-3-540-24847-7_26
http://dx.doi.org/10.1007/978-3-319-11659-4_12
http://dx.doi.org/10.1007/978-3-319-11659-4_12
http://eprint.iacr.org/

AES and White-Box

Simpira v2: A Family of Efficient Permutations
Using the AES Round Function

Shay Gueron1,2 and Nicky Mouha3,4,5,6(B)

1 Department of Mathematics, University of Haifa, Haifa, Israel
shay@math.haifa.ac.il

2 Israel Development Center, Intel Corporation, Haifa, Israel
3 Department of Electrical Engineering-ESAT/COSIC, KU Leuven, Leuven, Belgium

nicky@mouha.be
4 iMinds, Ghent, Belgium

5 Project-team SECRET, Inria, Paris, France
6 National Institute of Standards and Technology, Gaithersburg, MD, USA

Abstract. This paper introduces Simpira, a family of cryptographic
permutations that supports inputs of 128 × b bits, where b is a positive
integer. Its design goal is to achieve high throughput on virtually all mod-
ern 64-bit processors, that nowadays already have native instructions for
AES. To achieve this goal, Simpira uses only one building block: the AES
round function. For b = 1, Simpira corresponds to 12-round AES with
fixed round keys, whereas for b ≥ 2, Simpira is a Generalized Feistel
Structure (GFS) with an F -function that consists of two rounds of AES.
We claim that there are no structural distinguishers for Simpira with
a complexity below 2128, and analyze its security against a variety of
attacks in this setting. The throughput of Simpira is close to the theoreti-
cal optimum, namely, the number of AES rounds in the construction. For
example, on the Intel Skylake processor, Simpira has throughput below
1 cycle per byte for b ≤ 4 and b = 6. For larger permutations, where
moving data in memory has a more pronounced effect, Simpira with
b = 32 (512 byte inputs) evaluates 732 AES rounds, and performs at 824
cycles (1.61 cycles per byte), which is less than 13 % off the theoretical
optimum. If the data is stored in interleaved buffers, this overhead is
reduced to less than 1%. The Simpira family offers an efficient solution
when processing wide blocks, larger than 128 bits, is desired.

Keywords: Cryptographic permutation · AES-NI · Generalized Feis-
tel structure (GFS) · Beyond birthday-bound (BBB) security · Hash
function · Lamport signature · Wide-block encryption · Even-Mansour

1 Introduction

The introduction of AES instructions by Intel (subsequently by AMD, and
recently ARM) has changed the playing field for symmetric-key cryptography
on modern processors, which lead to a significant reduction of the encryption

c© International Association for Cryptologic Research 2016
J.H. Cheon and T. Takagi (Eds.): ASIACRYPT 2016, Part I, LNCS 10031, pp. 95–125, 2016.
DOI: 10.1007/978-3-662-53887-6 4

96 S. Gueron and N. Mouha

overheads. The performance of these instructions has been steadily improving
in every new generation of processors. By now, on the latest Intel Architecture
Codename Skylake, the AESENC instruction that computes one round of AES
has latency of 4 cycles and throughput of 1 cycle. The improved AES perfor-
mance trend can be expected to continue, with the increasing demand for fast
encryption of more and more data.

To understand the impact of the AES instructions in practice, consider for
example the way that Google Chrome browser connects to https://google.com.
In this situation, Google is in a privileged position, as it controls both the client
and the server side. To speed up connections, Chrome (the client) is configured
to identify the processor’s capabilities. If AES-NI are available, it would offer (to
the server) to use AES-128-GCM for performing authenticated encryption dur-
ing the TLS handshake. The high-end server would accept the proposed cipher
suite, due to the high performance of AES-GCM on its side. This would capture
any recent 64-bit PC, tablet, desktop, or even smartphone. On older proces-
sors, or architectures without AES instructions, Chrome resorts to proposing
the ChaCha20-Poly1305 algorithm during the secure handshake negotiation.

An advantage of AES-GCM is that the message blocks can be processed inde-
pendently for encryption. This allows pipelining of the AES round instructions,
so that the observed performance is dominated by their throughput, and not by
their latency [43,44]. We note that even if a browser negotiates to use an inher-
ently sequential mode such as CBC encryption, the web server can process multi-
ple independent data buffers in parallel to achieve high throughput (see [43,44]),
and this technique is already used in the recent OpenSSL version 1.0.2. This per-
formance gain by collecting multiple independent encryption tasks and pipelining
their execution, is important for the design rationale of Simpira.

Setting. This paper should be understood in the following setting. We focus
only on processors with AES instructions. Assuming that several independent
data sources are available, we explore several symmetric-key cryptographic con-
structions with the goal of achieving a high throughput. Our reported bench-
marks are performed on the latest Intel processor, namely Architecture Code-
name Skylake, but we expect to achieve similar performance on any processor
that has AES instructions with throughput 1.

In particular, we focus here on applications where the 128-bit block size of
AES is not sufficient, and support for a wider range of block sizes is desired. This
includes various use cases such as permutation-based hashing and wide-block
encryption, or just to easily achieve security beyond 264 input blocks without
resorting to (often inefficient) modes of operation with “beyond birthday-bound”
security. For several concrete suggestions of applications, we refer to Sect. 7.

Admittedly, our decision to focus on only throughput may result in unopti-
mized performance in certain scenarios where the latency is critical. However,
we point out that this is not only a property of Simpira, but also of AES itself,
when it is implemented on common architectures with AES instructions. To
achieve optimal performance on such architectures, AES needs to be used in

https://google.com

A Family of Efficient Permutations Using the AES Round Function 97

a parallelizable mode of operation, or in a protocol that supports processing
independent inputs. Similarly, this is the case for Simpira as well. In fact, for
128-bit inputs, Simpira is the same as 12-round AES with fixed round keys.

Origin of the Name. Simpira is named after a mythical animal of the Peruvian
Amazon. According to the legend, one of its front legs has the form of a spiral
that can be extended to cover the entire surface of the earth [26]. In a similar
spirit, the Simpira family of permutations extends itself to a very wide range
of input sizes. Alternatively, Simpira can be seen as an acronym for “SIMple
Permutations based on the Instruction for a Round of AES.”

Update. This paper proposes Simpira v2. Compared to Simpira v1, the Type-
1.x GFS by Yanagihara and Iwata was found to have a problem (see Sect. 8), and
is replaced by a new construction that performs the same number of AESENCs.
We also updated the round constants (see Sect. 4). Although no attack is cur-
rently known on Simpira v2 with the old rotation constants, the new constants
seem to strengthen Simpira without affecting its performance in our benchmarks.
Unless otherwise specified, Simpira in this document is assumed to refer to Sim-
pira v2.

2 Related Work

Block ciphers that support wide input blocks have been around for a long time.
Some of the earliest designs are Bear and Lion [2], and Beast [62]. They are
higher-level constructions, in the sense that they use hash functions and stream
ciphers as underlying components.

Perhaps the first wide-block block cipher that is not a higher-level construc-
tion is the Hasty Pudding Cipher [75], which supports block sizes of any posi-
tive number of bits. Another early design is the Mercy block cipher that oper-
ates on 4096-bit blocks [27]. More recently, low-level constructions that can be
scaled up to large input sizes are the spongent [17,18] permutations and the
LowMC [1] block ciphers.

Our decision to use only the AES round function as a building block for
Simpira means that some alternative constructions are not considered in this
paper. Of particular interest are the EGFNs [7] used in Lilliput [6], the AESQ
permutation of PAEQ [13], and Haraka1 [56]. The security claims and benchmark
targets of these designs are very different from those of Simpira. We only claim
security up to 2128 blocks of input. However unlike Haraka, we consider all
distinguishing attacks up to this bound. Also, we focus only on throughput, and
not on latency. An interesting topic for future work is to design variants of these
constructions with similar security claims, and to compare their security and
implementation properties with Simpira.
1 The first version of Haraka was vulnerable to an attack by Jérémy Jean [52] due to

a bad choice of round constants. We therefore refer to the second version of Haraka,
which prevents the attack.

98 S. Gueron and N. Mouha

3 Design Rationale of Simpira

AES [31] is a block cipher that operates on 128-bit blocks. It iterates the AES
round function 10, 12 or 14 times, using round keys that are derived from a
key of 128, 192 or 256 bits, respectively. On Intel (and AMD) processors, the
AES round function is implemented by the AESENC instruction. It takes a 128-bit
state and a 128-bit round key as inputs, and returns a 128-bit output that is
the result of applying the SubBytes, ShiftRows, MixColumns and AddRoundKey
operations. An algorithmic description of AESENC is given in Algorithm 1 of
Sect. 4, where we give the full specification of Simpira.

A cryptographic permutation can be obtained by setting the AES round keys
to fixed, publicly-known values. It is a bad idea to set all round keys to zero.
Such a permutation can easily be distinguished from random: if all input bytes
are equal to each other, the AES rounds preserve this property. Such problems
are avoided when round constants are introduced: this breaks the symmetry
inside every round, as well as the symmetry between rounds. Several ciphers
are vulnerable to attacks resulting from this property, such as the CAESAR
candidate PAES [53,54] and the first version of Haraka [52]. The aforementioned
design criterion, already present in Simpira v1, excludes the round constants of
these designs.

We decided to use two rounds of AES in Simpira as the basic building block.
As the AESENC instruction includes an XOR with a round key, this can be used
to introduce a round constant in one AES round, and to do a “free XOR” in the
other AES round. An added advantage is that two rounds of AES achieve full
bit diffusion: every output bit depends on every input bit, and every input bit
depends on every output bit.

Another design choice that we made, is to use only AES round functions in
our construction, and no other operations. Our hope is that this design would
maximize the contribution of every instruction to the security of the crypto-
graphic permutation. It also simplifies the analysis and the implementation.
From the performance viewpoint, the theoretically optimal software implemen-
tation would be able to dispatch a new AESENC instruction in every CPU clock
cycle. A straightforward way to realize this design strategy is to use a (Gener-
alized) Feistel Structure (GFS) for b ≥ 2 that operates on b input subblocks of
128 bits each, as shown in Fig. 1.

As with any design, our goal is to obtain a good trade-off between security
and efficiency. In order to explore a large design space, we use simple metrics to
quickly estimate whether a given design reaches a sufficient level of security, and
to determine its efficiency. In subsequent sections, we will formally introduce the
designs, and study them in detail to verify the accuracy of our estimates.

3.1 Design Criteria

Our design criteria are as follows. The significance of both criteria against crypt-
analysis attacks will be explained in Sect. 6.

A Family of Efficient Permutations Using the AES Round Function 99

Fig. 1. Two common classes of Generalized Feistel Structures (GFSs) are the Type-1
GFS (left) and the Type-2 GFS (right). For each example, two rounds are shown of a
GFS that operates on b = 6 subblocks. We will initially consider these GFSs in this
paper, as well as other GFSs with a different number of F -functions per round, and
other subblock shuffles at the end of every round. At a later stage, we will consider
more advanced constructions as well.

– Security: We calculate the number of Feistel rounds to achieve either full bit
diffusion, as well as the number of Feistel rounds to achieve at least 25 (linearly
or differentially) active S-boxes. To ensure a sufficient security margin against
known attacks, we require that the number of rounds is three times the largest
of these two numbers.

– Efficiency: As explained in Sect. 1, we will only focus on throughput. Given
that we use no other operations besides the AES round function, we will use
the number of AES round functions as an estimate for the total number of
cycles.

Suzaki and Minematsu [76] formally defined DRmax to calculate how many
Feistel rounds are needed for an input subblock to affect all the output sub-
blocks. We will say that full subblock diffusion is achieved after DRmax rounds
of the permutation or its inverse, whichever is greater. To achieve the strictly
stronger criterion of full bit diffusion, one or two additional Feistel rounds may
be required.

To obtain a lower bound for the minimum number of active S-boxes, we use
a simplified representation that assigns one bit to every pair of bytes, to indicate
whether or not they contain a non-zero difference (or linear mask). This allows
us to use the Mixed-Integer Linear Programming (MILP) technique introduced
by Mouha et al. [70] to quickly find a lower bound for the minimum number of
active S-boxes.

3.2 Design Space Exploration

For each input size of the permutation, we explore a range of designs, and choose
the one that maximizes the design criteria. If the search returns several alterna-
tives, it does not really matter which one we choose. In that case, we arbitrarily
choose the “simplest” design. The resulting Simpira design is shown in Figs. 2
and 3.

100 S. Gueron and N. Mouha

Fig. 2. One round of the Simpira construction for b ∈ {1, 2, 3, 4, 6, 8}. The total number
of rounds is 6 for b = 1, 15 for b = 2, b = 4 and b = 6, 21 for b = 3, and 18 for b = 8. F is
shorthand for Fc,b, where c is a counter that is initialized by one, and incremented after
every evaluation of Fc,b. Every Fc,b consists of two AES round evaluations, where the
round constants that are derived from (c, b). The last round is special: the MixColumns

is omitted when b = 1, and the final subblocks may be output in a different order. See
Sect. 4 for a full specification.

A Family of Efficient Permutations Using the AES Round Function 101

Fig. 3. The Simpira construction for b /∈ {1, 2, 3, 4, 6, 8}. F is shorthand for Fc,b, which
consists of two rounds of AES as specified in Algorithm 2. A generic construction is
shown for all b ≥ 4, however for b ∈ {4, 6, 8} we will use the construction of Fig. 2.
By convention, the leftmost F -function is from left to right; when this is not the case
in the diagram, the direction of every F -function should be inverted. The full-round
Simpira iterates the construction in this diagram three times. See Sect. 4 for a full
specification.

102 S. Gueron and N. Mouha

We will restrict ourselves to “simple” designs, such as for example construc-
tions with identical round functions, instead of exhaustively searching for the
optimal design that satisfies the design criteria. This is meant to simplify the
cryptanalysis, as well as the implementation. We revisit this assumption in the
full version of this paper [45].

Case b = 1. Full bit diffusion is reached after two rounds of AES, and four
rounds of AES ensures at least 25 active S-boxes [31]. Following the design
criteria, we select a design with 12 AES rounds.

Case b = 2. This is a (standard) Feistel structure. Full subblock diffusion is
achieved after two Feistel rounds, and three Feistel rounds are needed to reach
full bit diffusion. We find that five rounds ensures that there are at least 25 active
S-boxes (see Fig. 5). Consequently, we select a design with 15 Feistel rounds.

Case b = 3. There are several designs that are optimal according to our cri-
teria. They have either one or two F -functions per Feistel round, and various
possibilities exist to reorder the subblocks at the end of every Feistel round. We
choose what is arguably the simplest design: a Type-1 GFS according to Zheng
et al.’s classification [83]. Full subblock diffusion requires five Feistel rounds, and
at least six Feistel rounds are needed to ensure that there are least 25 active S-
boxes. As seven Feistel rounds are needed to achieve full bit diffusion, we select
a design with 21 Feistel rounds.

Case b ≥ 4. The Type-1 GFS does not scale well for larger b, as diffusion
becomes the limiting factor. More formally, Yanagihara and Iwata [79,80] proved
that the number of rounds required to reach full subblock diffusion is (at best)
quadratic in the number of subblocks, regardless of how the subblocks are
reordered at the end of every Feistel round.

In Simpira v1, the Yanagihara and Iwata’s Type-1.x (b,2) GFS [81] was
used for b ≥ 4, except for b = 6 and b = 8. This is a design with two F -
functions per round, where the number of rounds for full subblock diffusion is
linear in b. Unfortunately, as we will explain in Sect. 8, this GFS is problematic
as the same input subblock can be processed by more than one F -function. This
general observation enabled attacks on Simpira v1 by Dobraunig et al. [35] and
by Rønjom [74].

The Simpira v2 in this paper addresses this problem by ensuring that every
subblock will enter an F -function only once. We do this by means of a new GFS
construction. It uses 4b−6 F -functions to reach full bit diffusion, and ensures that
at least 30 S-boxes are active (as explained in the full version of this paper [45]).
This construction is iterated three times, resulting in a design with 12b − 18
F -functions, which is the same number of F -function as in Simpira v1.

We could also have used this construction for b = 4. However, we instead
chose to go for a Type-2 GFS with 15 rounds. This not only results in a simpler

A Family of Efficient Permutations Using the AES Round Function 103

construction, but also has the advantage ensuring at least 40 active S-boxes
(instead of only 30) after five rounds.

But even if we had considered Yanagihara and Iwata’s Type-1.x (b,2) GFS,
we should also consider GFSs with more than two F -functions per Feistel round,
which reach full subblock diffusion even quicker. However, this seems to come at
the cost of using more F -functions in total. Looking only at the tabulated values
of DRmax(π) and DRmax(π−1) in literature [76,79–81], we can immediately
rule out almost all alternative designs. Nevertheless, two improved Type-2 GFS
designs by Suzaki and Minematsu [76] turned out be superior. Instead of a cyclic
left shift, they reorder the subblocks in a different way at the end of every Feistel
round. We now explore these in detail.

Case b = 6. Let the subblock shuffle at the end of every Feistel round be pre-
sented by a list of indices that indicates which input subblock is mapped to which
output subblock, e.g. {b − 1, 0, 1, 2, . . . , b − 2} denotes a cyclic left shift. Suzaki
and Minematsu’s improved Type-2 GFS with subblock shuffle {3, 0, 1, 4, 5, 2}
reaches full subblock diffusion and full bit diffusion after five Feistel rounds. At
least 25 active S-boxes (in fact at least 30) are reached after four Feistel rounds.
Following the design criteria, we end up with a design with 15 Feistel rounds. As
this design has three F -functions in every Feistel round, it evaluates 3 · 15 = 45
F -functions. This is less than the general b ≥ 4 case that requires 6b − 9 Feistel
rounds with 2 F -functions per round, which corresponds to (6 · 6 − 9) · 2 = 54
F -functions.

Case b = 8. Suzaki and Minematsu’s improved Type-2 GFS with subblock shuf-
fle {3, 0, 7, 4, 5, 6, 1, 2} ensures both full subblock diffusion and full bit diffusion
after six rounds. After four Feistel rounds, there are at least 25 active S-boxes
(in fact at least 30). According to the design criteria, we end up with a design
with 18 Feistel rounds, or 18 · 4 = 72 F -functions in total. The general b ≥ 4
design would have required (6b − 9) · 2 F -functions, which for b = 8 corresponds
to (6 · 8 − 9) · 2 = 78 F -functions.

3.3 Design Alternatives

Until now, the only designs we discussed were GFS constructions where the F -
function consists of two rounds of AES. We now take a step back, and briefly
discuss alternative design choices.

As explained earlier, it is convenient to use two rounds of AES as a building
block. It not only means that we reach full bit diffusion, but also that a “free
XOR” is available to add a round constant on Intel and AMD architectures.

It is nevertheless possible to consider GFS designs with an F -function that
consists of only one AES round. A consequence of this design choice is that
extra XOR instructions will be needed to introduce round constants, which could
increase the cycle count. But this design choice also complicates the analysis. For
example when b = 2, we find that 25 Feistel rounds are then needed to ensure
at least 25 linearly active S-boxes. As shown in Fig. 4, this is because the tool

104 S. Gueron and N. Mouha

can only ensure one active S-box for every Feistel round. Using two rounds of
AES avoids this problem (see Fig. 5), and also significantly speeds up the tool:
it makes bounding the minimum number of active S-boxes rather easy, instead
of becoming increasingly complicated for a reasonably large value of b.

Fig. 4. A linear characteristic for an AES-based Feistel that uses only one round of
AES inside its F -function. Crosshatches represent bytes with non-zero linear masks.
The AES round consists of the AddConstant (AC), SubBytes (AC), ShiftRows (SR),
and MixColumns (MC) operations. This round has only one active S-box. Therefore, 25
rounds are needed to ensure that there are least 25 linearly active S-boxes.

Likewise, we could also consider designs with more than two AES rounds per
F -function. In our experiments, we have not found any cases where this results
in a design where the total number of AES rounds is smaller. The intuition
is as follows: the number of Feistel rounds to reach full subblock diffusion is
independent of the F -function, therefore adding more AES rounds to every F
function is not expected to result in a better trade-off.

If we take another step back, we might consider to use other instructions
besides AESENC. Clearly, AESDEC can be used as an alternative, and the security
properties and the benchmarks will remain the same. In fact, we use AESDEC when
b = 1, to implement the inverse permutation. We do not use the AESENCLAST and
AESDECLAST instructions, as they omit the MixColumns (resp. InvMixColumns)
operation that is crucial to the wide trail design strategy [30] of AES. We do,
however, use only one AESENCLAST for the very last round of the b = 1 per-
mutation, as this makes an efficient implementation of the inverse permutation
possible on Intel architectures. This is equivalent to applying a linear transfor-
mation to the output of the b = 1 permutation, therefore it does not reduce its
cryptographic properties.

Of course, it is possible to use non-AES instructions, possibly in combination
with AES instructions. Actually, we do not need to be restricted to (generalized)

A Family of Efficient Permutations Using the AES Round Function 105

Fig. 5. A linear characteristic for one round of Simpira with b = 2 with 5 active S-
boxes. Crosshatches represent bytes with non-zero linear masks. As Simpira uses two
AES rounds per F -function, it can reach 25 active S-boxes in only 5 Feistel rounds,
corresponding to 10 AES rounds in total.

Feistel designs for b ≥ 2. However, such considerations are outside of the scope
of this paper.

4 Specification of Simpira

An algorithmic specification of the Simpira design of Figs. 2 and 3 is given in
Figs. 9, 10 and 11. It uses one round of AES as a building block, which corre-
sponds to the AESENC instruction on Intel processors (see Algorithm 1). Its input
is a 128-bit xmm register, which stores the AES 4 × 4 matrix of bytes as shown
in Fig. 6. For additional details, we refer to [44].

Fig. 6. The internal state of AES can be represented by a 4 × 4 matrix of bytes, or as
a 128-bit xmm register value s = s15‖ . . . ‖s0, where s0 is the least significant byte.

The F -function is specified in Algorithm 2. It is parameterized by a counter c
and by the number of subblocks b. Here, SETR EPI32 converts four 32-bit values
into a 128-bit value, using the same byte ordering as the mm setr epi32()

106 S. Gueron and N. Mouha

Fig. 7. The constants used inside the Fc,b function of Algorithm 2, expressed as a 4×4
matrix of bytes. Here, c = c4‖ . . . ‖c0 and b = b4‖ . . . ‖b0 are 32-bit integers, where the
least significant byte is c0 and b0 respectively.

compiler intrinsic. Figure 7 shows how the constants can be expressed using the
4 × 4 byte matrix of AES.

Note that the constants have been updated in Simpira v2. The old constants
of Simpira v1 are shown in Fig. 8. This update can be seen as “Grøstl strengthen-
ing,” as it is inspired by the new round constants of the final-round Grøstl SHA-3
candidate [41]. No attack is currently known on Simpira v2 with the old rota-
tion constants. Nevertheless, this change seems to strengthen Simpira without
affecting its performance in our benchmarks.

Fig. 8. The old Simpira v1 constants used inside the Fc,b function of Algorithm 2,
expressed as a 4 × 4 matrix of bytes. Again, c = c4‖ . . . ‖c0 and b = b4‖ . . . ‖b0 are
32-bit integers, where the least significant byte is x0 and c0 respectively.

Both the input and output of Simpira consist of b subblocks of 128 bits. The
arrays use zero-based numbering, and array subscripts should be taken modulo
the number of elements of the array. The subblock shuffle is done implicitly:
we do not reorder the subblocks at the end of a Feistel round, but instead we
apply the F -functions to other subblock inputs in the subsequent round. It is
rather straightforward to implement the cyclic left shift in this way. For b = 6
and b = 8, the implementation of the subblock shuffle uses a decomposition into
disjoint cycles.

As a result of this implementation choice, for b ∈ {2, 3, 4, 6, 8}, Simpira and
its reduced-round variants are not always equivalent to a (generalized) Feistel
with identical rounds. For example, for b = 2 the F -function is alternatingly
applied from left to right and from right to left. When the number of rounds
is odd, this is not equivalent to a Feistel with identical rounds: the two output
subblocks will be swapped.

When b = 1, an extra InvMixColumns operation is applied to the output.
This is equivalent to omitting the MixColumns operation in the last round, and

A Family of Efficient Permutations Using the AES Round Function 107

is required to efficiently implement the inverse Simpira permutation using Intel’s
AES instructions. For details on how to efficiently implement both Simpira and
Simpira−1 when b = 1, we refer to the full version of this paper [45].

The design strategy of Simpira is intended to be very conservative. Because
we think that the security of Simpira with very large b may not yet be well-
understood, we recommend to use Simpira with b ≤ 65536, corresponding to
inputs of at most one megabyte. However, the external cryptanalysis of Sim-
pira for any value of b is highly encouraged.

5 Benchmarks

We measured the performance of Simpira on the latest Intel processor, Archi-
tecture Codename Skylake. On this platform, the latency of AESENC is 4 cycles,
and its throughput is 1 cycle. It follows that the software can be written in a
way that fills the pipeline, by operating on four independent inputs. To obtain
maximum throughput for all permutation sizes, we wrote functions that compute
Simpira on four independent inputs. All Simpira permutations are benchmarked
in the same setting, to make the results comparable.

Note that when b = 4, Simpira uses two independent F -functions, which
means that maximum throughput could already be reached with only two inde-
pendent inputs. For b = 8, where Simpira has four independent F -functions,
even a single-stream Simpira implementation would fill the pipeline.

The measurements are performed as follows. We benchmark a function that
evaluates Simpira for four independent inputs, and computed the number of
cycles to carry out 256 calls to this function, as a “unit.” This provides us
with the throughput of Simpira. The results were obtained by using the RDTSCP
instruction, 250 repetitions as a “warmup” phase, averaging the measurement
on subsequent 1000 runs. Finally, this experiment was repeated 30 times, and
the best result was selected. The platform was set up with Hyperthreading and
Turbo Boost disabled.

The four data inputs can be stored sequentially at different pointers, or in
an interleaved way (i.e. A[0]B[0]C[0]D[0]A[1]B[1]C[1]D[1]...). We bench-
marked both settings. The results are shown in Table 1. We present only bench-
marks for the forward Simpira permutation; the benchmarks for Simpira−1

turned out to be very similar.
We refer to the full version of this paper [45] for a comparison with other

constructions.

6 Cryptanalysis

The design criteria of Sect. 3 are not meant to be sufficient to guarantee security.
In fact, it is not difficult to come up with trivially insecure constructions that
satisfy (most of) the criteria. Rather, the design criteria are meant to assist
us in identifying interesting constructions, which must then pass the scrutiny
of cryptanalysis. Actually, during the design process of Simpira, we stumbled

108 S. Gueron and N. Mouha

. .

. .

. .

Fig. 9. Algorithm 2 specifies Fc,b using the AESENC operation that is defined in Algo-
rithm 1. Algorithms 3–6 specify Simpira and its inverse for b ≤ 4, where the input and
output consist of b subblocks of 128 bits. Note that all arrays use zero-based number-
ing, and array subscripts should be taken modulo the number of elements of the array.

A Family of Efficient Permutations Using the AES Round Function 109

. .

. .

Fig. 10. Algorithms 7–10 specify Simpira and its inverse for b = 6 and b = 8, using
the Fc,b-function that is specified in Algorithm 2. The input and the output consist
of b subblocks of 128 bits. Note that all arrays use zero-based numbering, and array
subscripts should be taken modulo the number of elements of the array.

upon designs that were either insecure, or for which the security analysis was
not so straightforward. When this happened, we adjusted the design criteria and
repeated the search for constructions.

As such, we will not directly use the design criteria to argue the security
of Simpira. Instead, we will use the fact that Simpira uses (generalized) Feistel

110 S. Gueron and N. Mouha

. .

Fig. 11. Algorithms 11–12 specify Simpira and its inverse for b /∈ {1, 2, 3, 4, 6, 8}, using
the Fc,b-function that is specified in Algorithm 2. Both the input and the output consist
of b subblocks of 128 bits.

structures and the AES round function, both of which have been extensively
studied in literature. This allows us to focus our cryptanalysis efforts on the
most promising attacks for this type of construction. We have tried to make
this section easy to understand, which will hopefully convince the reader that
Simpira should have a very comfortable security margin against all currently-
known attacks.

A Family of Efficient Permutations Using the AES Round Function 111

Table 1. Benchmarking results for the throughput of the Simpira permutations. For
every b, we benchmark a function that applies the 128b-bit permutation to four indepen-
dent inputs. The data is either stored sequentially at different pointers, or in interleaved
buffers. We give the number of cycles to process the four inputs, as well as the overhead
compared the theoretical optimum of performing only AESENC instructions.

b Bits # AESENC Non-interleaved Interleaved

Cycles (4×) Overhead Cycles (4×) Overhead

1 128 12 50 3 % 50 3 %

2 256 30 122 1 % 122 1 %

3 384 42 171 2 % 171 2 %

4 512 60 241 1 % 241 1 %

6 768 90 362 1 % 362 1 %

8 1024 144 594 3 % 594 3 %

16 2048 348 1586 14 % 1400 1 %

32 4096 732 3295 13 % 2946 1 %

64 8192 1500 6791 13 % 6040 1 %

128 16384 3036 13942 15 % 12220 1 %

256 32768 6108 31444 29 % 24799 2 %

Security Claim. In what follows, we will only consider structural distinguish-
ers [8] with a complexity up to 2128. Simpira can be used in constructions that
require a random permutation, however no statements can be made for adver-
saries that exceed 2128 queries. This type of security argument was first made
by the SHA-3 [38] design team in response to high-complexity distinguishing
attacks on the underlying permutation [19–21], and has since been reused for
other permutation-based designs.

Symmetry Attacks. As explained in Sect. 3, the round constants are meant
to avoid symmetry inside a Simpira round, as well as symmetry between rounds.
The round constants also depend on b, which means that Simpira permutations
of different widths should be indistinguishable from each other. The round con-
stants are generated by a simple counter: this not only makes the design easy to
understand and to implement, but also avoids any concerns that the constants
may contain a backdoor. Every F -function has a different round constant: this
does not seem to affect performance on recent Intel platforms, but greatly reduces
the probability that a symmetry property can be maintained over several rounds.

Invariant Subspace Attacks. In its basic form, an invariant subspace
attack [59] implies that there exists a coset of a vector space, so any number
of iterations of the cryptographic round function maps to cosets of the same
subspace. Rønjom [74] describes such an attack on Simpira v1 with b = 4, which
is fixed in the current version. As explained in Sect. 9, no invariant subspace
attacks were found for Simpira v2.

112 S. Gueron and N. Mouha

State Collisions. For most block-cipher-based modes of operation, it is possible
to define a “state,” which is typically 128 bits long. This can be the chaining
value for CBC mode, the counter for CTR mode, or the checksum in OCB. When
a collision is found in this state, which is expected to happen around 264 queries,
the mode becomes insecure. For the Feistel-based Simpira (b ≥ 2), there is no
such concept of a “state.” In fact: all subblocks receive roughly an equal amount
of “processing.” This allows Simpira to reach security beyond 264 queries after
a sufficient amount of Feistel rounds.

Linear and Differential Cryptanalysis. Simpira’s security argument against
linear [12] and differential [63] cryptanalysis (up to attacks with complexity 2128)
is the same as the argument for AES, which is based on counting the number of
active S-boxes. As explained in [31], four rounds of AES have at least 25 (linearly
or differentially) active S-boxes. Then any four-round differential characteristic
holds with a probability less than 2−6·25 = 2−150, and any four-round linear
characteristic holds with a correlation less than 2−3·25 = 2−75.

Here, 2−6 refers to the maximum difference propagation probability, and 2−3

is the maximum correlation amplitude of the S-box used in AES. The afore-
mentioned reasoning makes the common assumptions that the probabilities of
every round of a characteristic can be multiplied, and that this leads to a good
estimate for the probability of the characteristic, and also of the corresponding
differential.

The number of rounds typically needs to be slightly higher to account for
partial key guesses (for keyed constructions), and to have a reasonable security
margin. For any of the Simpira designs, we have at least three times the number
of rounds required to reach 25 active S-boxes. This should give a sizable secu-
rity margin against linear and differential cryptanalysis, and even against more
advanced variants such as saturation and integral cryptanalysis [29]. In the case
of integral cryptanalysis, of particular interest are the recently proposed integral
distinguishers on Feistel and Generalized Feistel Networks by Todo [77] and by
Zhang and Wenling [82].

Boomerang and Differential-Linear Cryptanalysis. Instead of using one
long characteristic, boomerang [78] and differential-linear [11,58] cryptanalysis
combine two shorter characteristics. But even combined with partial key guesses,
the fact that Simpira has at least three times the number of rounds that result
in 25 active S-boxes, should be more than sufficient to protect against this type
of attacks.

Truncated and Impossible Differential Cryptanalysis. When full bit
diffusion is not reached, it is easy to construct a truncated differential [55] char-
acteristic with probability one. A common way to construct an impossible differ-
ential [9,10] is the miss in the middle approach. It combines two probability-one
truncated differentials, whose conditions cannot be met together.

A Family of Efficient Permutations Using the AES Round Function 113

However, every Simpira variant has at least three times the number of rounds
to reach full bit diffusion. This should not only prevent truncated and impossible
differential attacks, but result in a satisfactory security margin against such
attacks.

Meet-in-the-middle and Rebound Attacks. Meet-in-the-middle-attacks
[34] separate the equations that describe a symmetric-key primitive into two
or three groups. This is done in such a way that some variables do not appear
into at least one of these groups. A typical rebound attack [65] also splits a cipher
into three parts: an inner part that is satisfied by meet-in-the-middle techniques
(in the inbound phase), and two outer parts that are fulfilled in a probabilistic
way (in the outbound phase).

With Simpira, splitting the construction in three parts will always result
in one part that either has at least 25 active S-boxes, or that reaches full bit
diffusion. This should not only prevent meet-in-the-middle and rebound attacks,
but also provide a large security margin against these attacks.

On Simpira with b = 1 (corresponding to 12-round AES with fixed
round keys), the best known distinguisher is a rebound attack by Gilbert and
Peyrin [42] that attacks 8 rounds out of 12.

Generic Attacks. A substantial amount of literature exists on generic attacks
of Feistel structures. In particular, we are interested in attacks in Maurer et al.’s
indifferentiability setting [64], which is an extension of the indistinguishabil-
ity notion for constructions that use publicly available oracles. In Simpira, the
F -functions contain no secret key, and are therefore assumed to be publicly
available.

Coron et al. [25] showed that five rounds of Feistel are not indifferentiable
from a random permutation, and presented a indifferentiability proof for six
rounds. Holenstein et al. [51] later showed that their proof is flawed, and provided
a new indifferentiability proof for fourteen rounds. In very recent work, Dai
and Steinberger [32] and independently Dachman-Soled et al. [28] announced
an indifferentiability proof for the 10-round Feistel, which Dai and Steinberger
subsequently improved to a proof for 8 rounds [33].

A problem with the aforementioned indifferentiability proofs is that they are
rather weak: if the F -function is 128 bits wide, security is only proven up to
about 216 queries. The indistinguishability setting is better understood, where
many proofs are available for not only Feistel, but also various generalized Feistel
structures. But even in this setting, most proofs do not go beyond 264 queries,
and proving security with close to 2128 queries requires a very large number of
rounds [50].

So although several of Simpira’s Feistel-based permutations were proven to
be indistinguishable from random permutations using [66,83], it is an open prob-
lem to prove stronger security bounds for Simpira and other generalized Feistel
structures. Nevertheless, no generic attacks are known for Simpira, even when
up to 2128 are made.

114 S. Gueron and N. Mouha

Note that strictly speaking, there is an exception to the previous sentence for
Simpira with b = 1. It is guaranteed to be an even permutation [22, Theorem 4.8],
and therefore 2128−1 queries can distinguish it from a random permutation with
advantage 0.5. We only mention this for completeness; actually all of Simpira’s
permutations can be shown to be even, but this is typically not considered to be
more than just a mathematical curiosity.

Other Attacks. We do not consider brute-force-like attacks [71], such as the
biclique attacks on AES [16]: they perform exhaustive search on a smaller number
of rounds, and therefore do not threaten the practical security of the cipher.
However, it will be interesting to investigate such attacks in future work, as they
give an indication of the security of the cipher in the absence of other attacks. We
also do not look into algebraic attacks, as AES seems to very resistant against
such attacks.

7 Applications

Simpira can be used in various scenarios where AES does not permit an efficient
construction with security up to 2128 evaluations of the permutation. We present
a brief overview possible applications.

A Block Cipher Without Round Keys. The (single-key) Even-Mansour
construction [37,39,40] uses a secret key K to turn a plaintext P into a ciphertext
C as follows:

C = EK(P) = π(P ⊕ K) ⊕ K , (1)

where π is an n-bit permutation. As argued by Dunkelman et al. [37], the con-
struction is minimal, in the sense that simplifying it, for example by removing
one of its components, will render it completely insecure. Mouha and Luykx [68]
showed that the Even-Mansour is in some sense optimal in the multi-key setting,
where several keys are independently and uniformly drawn from the key space.

When D plaintext-ciphertexts are available, the secret key K of the Even-
Mansour construction can be recovered in 2n/D (off-line) evaluations of the per-
mutation π [37]. This may be acceptable in lightweight authentication algorithms
which rekey regularly, but may not be sufficient for encryption purposes [67,68].
In order to achieve security up to about 2128 queries against all attacks in the
multi-key setting, the Even-Mansour construction requires a permutation of at
least 256 bits.

An important advantage of the Even-Mansour construction is that it avoids
the need to precalculate round keys (and store them securely!) or to calculate
them on the fly. Moreover, it also allows the easy construction of a tweakable
block cipher. For a given tweak T , one can turn the Even-Mansour construction
into a tweakable block cipher [60,61]:

C = EK(P) = π(P ⊕ K · T) ⊕ K · T , (2)

A Family of Efficient Permutations Using the AES Round Function 115

that can be proven to be secure up to 2n/2 queries in the multi-key setting using
the proof of [68,69]. For concreteness, we use the multiplication K ·T in GF (2n),
which restricts the tweaks to T �= 0. However, any ε-AXU hash function can be
used instead of this multiplication [23].

If the cipher is computed in a parallelizable mode of operation, indepen-
dent blocks can be pipelined, and the performance would be dominated by Sim-
pira with the relevant value of b, plus the overhead of the key addition.

Permutation-Based Hashing. Achieving 128-bit collision resistance with a
128-bit permutation has been shown to be impossible [72]. Typically, a large per-
mutation size is used to achieve a high throughput, for example 1600 bits in the
sponge construction of SHA-3 [38]. The downside of using a large permutation is
that performance is significantly reduced when many short messages need to be
hashed, for example to compute a Lamport signature [57]. Simpira overcomes
these problems by providing a family of efficient permutations with different
input sizes.

In particular for hashing short messages, one may consider to use Sim-
pira with a Davies-Meyer feed-forward: π(x) ⊕ x. This construction has been
shown to be optimally preimage and collision-resistant [14,15], and even preim-
age aware [36], but not indifferentiable from a random oracle [24] as it is easy
to find a fixed point: π−1(0). To match the intended application, padding of the
input and/or truncation of the output of Simpira may be required.

Wide-Block Encryption and Robust Authenticated Encryption. Wide-
block encryption can be used to provide security against chosen ciphertext
attacks when short (or even zero-length) authentication tags are used. In the
context of full-disk encryption, there is usually no space to store an authenti-
cation tag. In an attempt to reduce the risk that ciphertext changes result in
meaningful plaintext, a possibility is to use a wide block cipher to encrypt an
entire disk sector, which typically has a size of 512 to 4096 bytes.

The same concern also exists when short authentication tags are used, and
can be addressed by an encode-then-encipher approach [5]: add some bits of
redundancy, and then encrypt with an arbitrary-input-length block cipher. Note
that this technique achieves robust authenticated encryption [49].

Typical solutions for wide-block encryption such as the VIL [4], CMC [47] and
EME [46,48] modes of operation have the disadvantage that they are patented,
and do not provide security beyond 264 blocks of input. We are unaware of any
patents related to Simpira.

When used in an Even-Mansour construction, Simpira with b ≥ 2 can provide
a wide block cipher that provides security up to 2128 blocks. When the block
size exceeds the key size, the Even-Mansour construction can be generalized as
follows:

C = EK(P) = π(P ⊕ (K · T)‖0∗) ⊕ (K · T)‖0∗) , (3)

where we set T = 1 if no tweak is provided. Note that this straightforward
extension of the Even-Mansour construction appears in the proof for various

116 S. Gueron and N. Mouha

sponge constructions. The first proof of security of this construction in the multi-
key setting was given by Andreeva et al. [3].

8 A Problem with Yanagihara and Iwata’s GFS

For b ≥ 4 (except b = 6 and b = 8), Simpira v1 used Yanagihara and Iwata’s
Type-1.x (b,2) GFS [81]. This is a GFS with two F -functions per round, shown
in Fig. 12. Strictly speaking, we consider a variant of Yanagihara and Iwata’s
construction, that is identical up to a reordering of the input and output sub-
blocks.

This construction has a problem. As can be seen from Fig. 12, the same
value x0 will eventually be processed by two F -functions. This clearly results in
a redundant calculation, as the same F -function is evaluated twice on the same
input.

Fig. 12. Yanagihara and Iwata’s Type-1.x (b,2) GFS [81], which was used in Sim-
pira v1. Note that regardless of b, the same x0 will eventually enter an F -function
twice after a sufficient number of rounds.

In Simpira v1, the F -functions are not entirely identical due to the round
constants. However, it can be seen that the problem in Yanagihara and Iwata’s
Type-1.x GFS also results in an attack on Simpira v1. In particular, the bounds
on the number of active S-boxes were not correct, as the exact same S-box
transitions were counted more than once. Dobraunig et al. [35] exploited the
fact that the actual number of active S-boxes is much lower than expected, and
constructed a series of attacks on the full 15-round Simpira v1 with b = 4,
including a collision attack with complexity 282.62 on Simpira when it is used in
a truncated Davies-Meyer hash construction.

The problem with Yanagihara and Iwata’s construction was confirmed to us
by its designers. It was pointed out to us that their Type-1.x GFS was implicitly
assumed to use independent round keys, but that this assumption was unfortu-
nately not mentioned in their paper [81].

When this assumption does not hold, the counts of active S-boxes can be
incorrect. This occurs when various simple key schedules are used, such as for
example the Even-Mansour construction. We avoid this problem in Simpira v2

A Family of Efficient Permutations Using the AES Round Function 117

by ensuring that the same input is never processed by more than one F -function.
This can be seen to avoid attacks on GFS in block-cipher-based constructions,
when used with a uniformly random key.

But Simpira is designed to be a family of cryptographic permutations, and
should therefore also be secure in unkeyed settings. In the next section, we show
how the unkeyed setting leads to invariant subspace attacks on Simpira v1 for
b = 4.

9 Invariant Subspace Attacks

Leander et al. [59] introduced the term invariant subspace attack, which applies
when there exists a (large) subspace, so that any coset of this subspace is mapped
to itself when the round function is applied. We now explain such an attack
applies to Yanagihara and Iwata Type-1.x (4,2) GFS. Again, strictly speaking
Yanagihara and Iwata defined a variant of this construction, that is however
identical up to a reordering of the input and output blocks. As illustrated in
Fig. 13, we find that if the second and the last subblock of the input are identical,
this property is preserved after any multiple of two rounds.

Fig. 13. Yanagihara and Iwata Type-1.x (4,2) GFS [81], which was used in Simpira v1
for b = 4. We assume that all F -functions are identical. Here A, B and X can be any
value. The leftmost input subblock enters the same F -function twice, and therefore
guarantees that the output value Y will appear twice as well.

A similar observation also holds for Simpira v1 with b = 4, where only the
round constants slightly destroy the symmetry property of the input. This is
a consequence of the sparse round constants in Simpira v1, and the reuse of
values into several F -functions, as explained in Sect. 8. In particular, for any
even multiple of rounds up to 126, Simpira v1 round constants (see Fig. 8) only

118 S. Gueron and N. Mouha

differ in the zeroth byte of the AES state. This means that if the second and the
last subblock of the input are identical, this property will be preserved, except
for the first column of corresponding AES states.

Rønjom [74] described an invariant subspace attack on Simpira v1 with b = 4.
In particular, Rønjom identified a large subspace such that any coset of this space
is invariant under two rounds of Simpira v2. This leads to a plaintext invariant
over infinitely many even rounds. It can be seen as a generalization of the attack
on Yanagihara-Iwata’s Type-1.x GFS that is described in this section.

The property does not hold for an odd number of rounds, so it does not
apply directly for Simpira v1 with b = 4, which consists of 15 Feistel rounds. For
this reason, we did not detect any nonrandomess in our test vectors, although
it included the all-zero input that is an element of the coset of the invariant
subspace. However, simply applying the permutation twice means that the total
number of rounds is even, so that the distinguisher applies.

Do such invariant subspaces attacks also exist for Simpira v2? In an attempt
to find such attacks, we first look for invariant subspaces when all F -functions
are identical. This should give a good starting point to find invariant subspaces
when the real (non-identical) F -functions of Simpira are used. More specifically,
we select a random F -function, and consider four values for every input subblock:
0, F (0), F (F (0)) and F (F (0))⊕F (0). We then apply the Feistel round function
several times, and use Gaussian elimination to check whether we stay within a
particular linear subspace.

Using this technique, we found invariant subspaces for the GFS used in Sim-
pira v2 when b ∈ {4, 6, 8} (i.e. assuming identical F -functions), but not for other
values of b. In fact, it can be seen that there is an invariant subspace for any

Fig. 14. The Type-2 GFS with b = 4, used in Simpira v2. We assume that all F -
functions are identical. Here, A and B can be any value. If the odd-numbered input
subblocks are equal, and the even-numbered input subblock are equal, then this prop-
erty is preserved for any number of rounds.

A Family of Efficient Permutations Using the AES Round Function 119

Type-2 GFS with an “even-odd shuffle [76],” that is, where even-numbered input
subblocks are mapped to odd-numbered output subblocks and vice versa. For
b = 4, such an invariant subspace is shown in Fig. 14. With the introduction
of appropriate round constants, however, these invariant subspace attacks are
avoided.

We chose to retain Type-2 GFS in Simpira v2 for b ∈ {4, 6, 8}, instead of
replacing them by Generalized Feistel structures that “inherently” avoid invari-
ant subspace attacks. This is because Type-2 GFS constructions are efficient and
well-analyzed, and invariant subspaces can be avoided by using round constants.

We searched for invariant subspaces in all Simpira v2 variants, but were
unable to find any. A similar search was also performed by Rønjom [73], who
also could not identify invariant subspaces in the updated Simpira design. Unfor-
tunately, currently no provable arguments against invariant subspace attacks are
known. This is an interesting topic for future work.

10 Conclusion

We introduced Simpira, which is a family of cryptographic permutations that
processes inputs of 128 × b bits. It is intended to be a very conservative design
that achieves high throughput on processors with AES instructions. We decided
to use two rounds of AES as a building block, with the goal of simplifying
the design space exploration, and making the cryptanalysis and implementation
straightforward.

With this building block, we explored a large number of generalized Feistel
structures, and calculated how many rounds are required to reach either full bit
diffusion, or 25 linearly or differentially active S-boxes, whichever is greater. To
ensure a large security margin, we multiplied this number of rounds by three.
Of all designs that we considered, we selected the ones with the lowest amount
of F -functions in total.

Following these design criteria, Simpira resulted in seven different designs.
For b = 1, we have AES with fixed round keys. Simpira uses a Feistel structure
for b = 2, a Type-1 GFS for b = 3, and a Type-2 GFS for b = 4. The b ≥ 5
design is a dedicated construction that we introduce in this paper. For b = 6 and
b = 8, we use Suzaki and Minematsu’s improved Type-2 GFS, as it has fewer
F -functions than general construction for b ≥ 5.

Our benchmarks on Intel Skylake showed that Simpira is close to the theo-
retical optimum of only executing AESENC instructions. For b ≤ 4, Simpira is less
than 3 % away from this optimum. For b ≤ 32, corresponding to inputs of up to
512 bytes, Simpira is less than 13 % away from this optimum for a non-interleaved
implementation, and less than 1 % away for an interleaved implementation.

It is unfortunate that many methods to encrypt wide input blocks, such as
VIL, CMC, and EME, have not seen widespread adoption. The main obstacle
appears to be that they are patented. We hope that Simpira can provide an
interesting alternative: it is not only free from patent concerns, but offers security
way beyond the 264 limit for typical AES-based modes.

120 S. Gueron and N. Mouha

Acknowledgments. We thank the organizers and participants of Dagstuhl Seminar
16021, where an early version of this work was presented. The detailed comments and
suggestions of the seminar participants helped to improve this manuscript significantly.
Thanks to Christoph Dobraunig, Maria Eichlseder, Florian Mendel and Sondre Rønjom
their attacks on Simpira v1, which lead to the updated Simpira v2 that is presented in
this document. We also thank Eik List for pointing out some notation issues in an ear-
lier version of this text, and Sébastien Duval, Brice Minaud, Kazuhiko Minematsu, and
Tetsu Iwata for their insights into Feistel structures. This work was supported in part
by the Research Council KU Leuven: GOA TENSE (GOA/11/007), by Research Fund
KU Leuven, OT/13/071, by the PQCRYPTO project, which was partially funded by
the European Commission Horizon 2020 research Programme, grant #645622, by the
ISRAEL SCIENCE FOUNDATION (grant No. 1018/16), and by the French Agence
Nationale de la Recherche through the BLOC project under Contract ANR-11-INS-
011, and the BRUTUS project under Contract ANR-14-CE28-0015. Nicky Mouha is
supported by a Postdoctoral Fellowship from the Flemish Research Foundation (FWO-
Vlaanderen), and by FWO travel grant 12F9714N. Certain algorithms and commercial
products are identified in this paper to foster understanding. Such identification does
not imply recommendation or endorsement by NIST, nor does it imply that the algo-
rithms or products identified are necessarily the best available for the purpose.

References

1. Albrecht, M.R., Rechberger, C., Schneider, T., Tiessen, T., Zohner, M.: Ciphers for
MPC and FHE. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol.
9056, pp. 430–454. Springer, Heidelberg (2015). doi:10.1007/978-3-662-46800-5 17

2. Anderson, R.J., Biham, E.: Two practical and provably secure block ciphers: BEAR
and LION. In: Gollmann, D. (ed.) FSE 1996. LNCS, vol. 1039, pp. 113–120.
Springer, Heidelberg (1996). doi:10.1007/3-540-60865-6 48

3. Andreeva, E., Daemen, J., Mennink, B., Van Assche, G.: Security of keyed
sponge constructions using a modular proof approach. In: Leander, G. (ed.) FSE
2015. LNCS, vol. 9054, pp. 364–384. Springer, Heidelberg (2015). doi:10.1007/
978-3-662-48116-5 18

4. Bellare, M., Rogaway, P.: On the construction of variable-input-length ciphers. In:
Knudsen, L. (ed.) FSE 1999. LNCS, vol. 1636, pp. 231–244. Springer, Heidelberg
(1999). doi:10.1007/3-540-48519-8 17

5. Bellare, M., Rogaway, P.: Encode-then-encipher encryption: how to exploit nonces
or redundancy in plaintexts for efficient cryptography. In: Okamoto, T. (ed.) ASI-
ACRYPT 2000. LNCS, vol. 1976, pp. 317–330. Springer, Heidelberg (2000). doi:10.
1007/3-540-44448-3 24

6. Berger, T.P., Francq, J., Minier, M., Thomas, G.: Extended generalized Feistel
networks using matrix representation to propose a new lightweight block cipher:
Lilliput. IEEE Trans. Comput. 65(7), 2074–2089 (2016)

7. Berger, T.P., Minier, M., Thomas, G.: Extended generalized Feistel networks
using matrix representation. In: Lange, T., Lauter, K., Lisoněk, P. (eds.) SAC
2013. LNCS, vol. 8282, pp. 289–305. Springer, Heidelberg (2014). doi:10.1007/
978-3-662-43414-7 15

8. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: Cryptographic sponge func-
tions. http://sponge.noekeon.org/CSF-0.1.pdf

http://dx.doi.org/10.1007/978-3-662-46800-5_17
http://dx.doi.org/10.1007/3-540-60865-6_48
http://dx.doi.org/10.1007/978-3-662-48116-5_18
http://dx.doi.org/10.1007/978-3-662-48116-5_18
http://dx.doi.org/10.1007/3-540-48519-8_17
http://dx.doi.org/10.1007/3-540-44448-3_24
http://dx.doi.org/10.1007/3-540-44448-3_24
http://dx.doi.org/10.1007/978-3-662-43414-7_15
http://dx.doi.org/10.1007/978-3-662-43414-7_15
http://sponge.noekeon.org/CSF-0.1.pdf

A Family of Efficient Permutations Using the AES Round Function 121

9. Biham, E., Biryukov, A., Shamir, A.: Cryptanalysis of skipjack reduced to 31
rounds using impossible differentials. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS,
vol. 1592, pp. 12–23. Springer, Heidelberg (1999). doi:10.1007/3-540-48910-X 2

10. Biham, E., Biryukov, A., Shamir, A.: Cryptanalysis of skipjack reduced to 31
rounds using impossible differentials. J. Cryptology 18(4), 291–311 (2005)

11. Biham, E., Dunkelman, O., Keller, N.: Enhancing differential-linear cryptanalysis.
In: Zheng, Y. (ed.) ASIACRYPT 2002. LNCS, vol. 2501, pp. 254–266. Springer,
Heidelberg (2002). doi:10.1007/3-540-36178-2 16

12. Biham, E., Shamir, A.: Differential cryptanalysis of DES-like cryptosystems. J.
Cryptology 4(1), 3–72 (1991)

13. Biryukov, A., Khovratovich, D.: PAEQ: parallelizable permutation-based authen-
ticated encryption. In: Chow, S.S.M., Camenisch, J., Hui, L.C.K., Yiu, S.M. (eds.)
ISC 2014. LNCS, vol. 8783, pp. 72–89. Springer, Heidelberg (2014). doi:10.1007/
978-3-319-13257-0 5

14. Black, J., Rogaway, P., Shrimpton, T.: Black-box analysis of the block-cipher-based
hash-function constructions from PGV. In: Yung, M. (ed.) CRYPTO 2002. LNCS,
vol. 2442, pp. 320–335. Springer, Heidelberg (2002). doi:10.1007/3-540-45708-9 21

15. Black, J., Rogaway, P., Shrimpton, T., Stam, M.: An analysis of the blockcipher-
based hash functions from PGV. J. Cryptology 23(4), 519–545 (2010)

16. Bogdanov, A., Khovratovich, D., Rechberger, C.: Biclique cryptanalysis of the full
AES. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp.
344–371. Springer, Heidelberg (2011). doi:10.1007/978-3-642-25385-0 19

17. Bogdanov, A., Knežević, M., Leander, G., Toz, D., Varıcı, K., Verbauwhede, I.:
spongent: a lightweight hash function. In: Preneel, B., Takagi, T. (eds.) CHES
2011. LNCS, vol. 6917, pp. 312–325. Springer, Heidelberg (2011). doi:10.1007/
978-3-642-23951-9 21

18. Bogdanov, A., Knežević, M., Leander, G., Toz, D., Varıcı, K., Verbauwhede, I.:
SPONGENT: the design space of lightweight cryptographic hashing. IEEE Trans.
Comput. 62(10), 2041–2053 (2013)

19. Boura, C., Canteaut, A.: A zero-sum property for the Keccak-f permutation with
18 rounds. In: ISIT 2010. pp. 2488–2492. IEEE (2010)

20. Boura, C., Canteaut, A.: Zero-sum distinguishers for iterated permutations and
application to Keccak-f and Hamsi-256. In: Biryukov, A., Gong, G., Stinson,
D.R. (eds.) SAC 2010. LNCS, vol. 6544, pp. 1–17. Springer, Heidelberg (2011).
doi:10.1007/978-3-642-19574-7 1

21. Boura, C., Canteaut, A., De Cannière, C.: Higher-order differential properties of
Keccak and Luffa. Cryptology ePrint Archive, Report 2010/589 (2010)

22. Cid, C., Murphy, S., Robshaw, M.J.B.: Algebraic Aspects of the Advanced Encryp-
tion Standard. Springer, Heidelberg (2006)

23. Cogliati, B., Lampe, R., Seurin, Y.: Tweaking Even-Mansour ciphers. In: Gennaro,
R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9215, pp. 189–208. Springer,
Heidelberg (2015). doi:10.1007/978-3-662-47989-6 9

24. Coron, J.-S., Dodis, Y., Malinaud, C., Puniya, P.: Merkle-Damg̊ard revisited: how
to construct a hash function. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621,
pp. 430–448. Springer, Heidelberg (2005). doi:10.1007/11535218 26

25. Coron, J.-S., Patarin, J., Seurin, Y.: The random oracle model and the ideal cipher
model are equivalent. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp.
1–20. Springer, Heidelberg (2008). doi:10.1007/978-3-540-85174-5 1

26. Cosśıos, D.: Breve Bestiario Peruano. Editorial Casatomada, 2nd edn. (2008)

http://dx.doi.org/10.1007/3-540-48910-X_2
http://dx.doi.org/10.1007/3-540-36178-2_16
http://dx.doi.org/10.1007/978-3-319-13257-0_5
http://dx.doi.org/10.1007/978-3-319-13257-0_5
http://dx.doi.org/10.1007/3-540-45708-9_21
http://dx.doi.org/10.1007/978-3-642-25385-0_19
http://dx.doi.org/10.1007/978-3-642-23951-9_21
http://dx.doi.org/10.1007/978-3-642-23951-9_21
http://dx.doi.org/10.1007/978-3-642-19574-7_1
http://dx.doi.org/10.1007/978-3-662-47989-6_9
http://dx.doi.org/10.1007/11535218_26
http://dx.doi.org/10.1007/978-3-540-85174-5_1

122 S. Gueron and N. Mouha

27. Crowley, P.: Mercy: a fast large block cipher for disk sector encryption. In: Goos,
G., Hartmanis, J., Leeuwen, J., Schneier, B. (eds.) FSE 2000. LNCS, vol. 1978, pp.
49–63. Springer, Heidelberg (2001). doi:10.1007/3-540-44706-7 4

28. Dachman-Soled, D., Katz, J., Thiruvengadam, A.: 10-round Feistel is indifferen-
tiable from an ideal cipher. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT
2016. LNCS, vol. 9666, pp. 649–678. Springer, Heidelberg (2016). doi:10.1007/
978-3-662-49896-5 23

29. Daemen, J., Knudsen, L., Rijmen, V.: The block cipher square. In: Biham, E. (ed.)
FSE 1997. LNCS, vol. 1267, pp. 149–165. Springer, Heidelberg (1997). doi:10.1007/
BFb0052343

30. Daemen, J., Rijmen, V.: The wide trail design strategy. In: Honary, B. (ed.) Cryp-
tography and Coding 2001. LNCS, vol. 2260, pp. 222–238. Springer, Heidelberg
(2001). doi:10.1007/3-540-45325-3 20

31. Daemen, J., Rijmen, V.: The Design of Rijndael: AES - The Advanced Encryption
Standard. Springer, Heidelberg (2002)

32. Dai, Y., Steinberger, J.: Indifferentiability of 10-round Feistel networks. Cryptology
ePrint Archive, Report 2015/874 (2015)

33. Dai, Y., Steinberger, J.: Indifferentiability of 8-round Feistel networks. In: Rob-
shaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS, vol. 9814, pp. 95–120. Springer,
Heidelberg (2016). doi:10.1007/978-3-662-53018-4 4

34. Diffie, W., Hellman, M.E.: Exhaustive cryptanalysis of the NBS data encryption
standard. Computer 10(6), 74–84 (1977)

35. Dobraunig, C., Eichlseder, M., Mendel, F.: Cryptanalysis of Simpira. Cryptology
ePrint Archive, Report 2016/244 (2016)

36. Dodis, Y., Ristenpart, T., Shrimpton, T.: Salvaging Merkle-Damg̊ard for practical
applications. In: Joux, A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp. 371–388.
Springer, Heidelberg (2009). doi:10.1007/978-3-642-01001-9 22

37. Dunkelman, O., Keller, N., Shamir, A.: Minimalism in cryptography: the Even-
Mansour scheme revisited. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT
2012. LNCS, vol. 7237, pp. 336–354. Springer, Heidelberg (2012). doi:10.1007/
978-3-642-29011-4 21

38. Dworkin, M.J.: SHA-3 standard: permutation-based hash and extendable-output
functions. Federal Inf. Process. Stds. (NIST FIPS) - 202, August 2015

39. Even, S., Mansour, Y.: A construction of a cipher from a single pseudoran-
dom permutation. In: Imai, H., Rivest, R.L., Matsumoto, T. (eds.) ASIACRYPT
1991. LNCS, vol. 739, pp. 210–224. Springer, Heidelberg (1993). doi:10.1007/
3-540-57332-1 17

40. Even, S., Mansour, Y.: A construction of a cipher from a single pseudorandom
permutation. J. Cryptology 10(3), 151–162 (1997)

41. Gauravaram, P., Knudsen, L.R., Matusiewicz, K., Mendel, F., Rechberger, C.,
Schläffer, M., Thomsen, S.S.: Grøstl - a SHA-3 candidate. Submission to the NIST
SHA-3 Competition (Round 3) (2011). http://www.groestl.info/Groestl.pdf

42. Gilbert, H., Peyrin, T.: Super-Sbox cryptanalysis: improved attacks for AES-like
permutations. In: Hong, S., Iwata, T. (eds.) FSE 2010. LNCS, vol. 6147, pp. 365–
383. Springer, Heidelberg (2010). doi:10.1007/978-3-642-13858-4 21

43. Gueron, S.: Intel’s new AES instructions for enhanced performance and security. In:
Dunkelman, O. (ed.) FSE 2009. LNCS, vol. 5665, pp. 51–66. Springer, Heidelberg
(2009). doi:10.1007/978-3-642-03317-9 4

44. Gueron, S.: Intel R© Advanced Encryption Standard (AES) new instruc-
tions set, September 2012. https://software.intel.com/en-us/articles/
intel-advanced-encryption-standard-aes-instructions-set, Revision 3.01

http://dx.doi.org/10.1007/3-540-44706-7_4
http://dx.doi.org/10.1007/978-3-662-49896-5_23
http://dx.doi.org/10.1007/978-3-662-49896-5_23
http://dx.doi.org/10.1007/BFb0052343
http://dx.doi.org/10.1007/BFb0052343
http://dx.doi.org/10.1007/3-540-45325-3_20
http://dx.doi.org/10.1007/978-3-662-53018-4_4
http://dx.doi.org/10.1007/978-3-642-01001-9_22
http://dx.doi.org/10.1007/978-3-642-29011-4_21
http://dx.doi.org/10.1007/978-3-642-29011-4_21
http://dx.doi.org/10.1007/3-540-57332-1_17
http://dx.doi.org/10.1007/3-540-57332-1_17
http://www.groestl.info/Groestl.pdf
http://dx.doi.org/10.1007/978-3-642-13858-4_21
http://dx.doi.org/10.1007/978-3-642-03317-9_4
https://software.intel.com/en-us/articles/intel-advanced-encryption-standard-aes-instructions-set
https://software.intel.com/en-us/articles/intel-advanced-encryption-standard-aes-instructions-set

A Family of Efficient Permutations Using the AES Round Function 123

45. Gueron, S., Mouha, N.: Simpira v2: a family of efficient permutations using the
AES round function. Cryptology ePrint Archive, Report 2016/122 (2016). Full
version of this paper

46. Halevi, S.: EME*: extending EME to handle arbitrary-length messages with
associated data. In: Canteaut, A., Viswanathan, K. (eds.) INDOCRYPT
2004. LNCS, vol. 3348, pp. 315–327. Springer, Heidelberg (2004). doi:10.1007/
978-3-540-30556-9 25

47. Halevi, S., Rogaway, P.: A tweakable enciphering mode. In: Boneh, D. (ed.)
CRYPTO 2003. LNCS, vol. 2729, pp. 482–499. Springer, Heidelberg (2003). doi:10.
1007/978-3-540-45146-4 28

48. Halevi, S., Rogaway, P.: A parallelizable enciphering mode. In: Okamoto, T. (ed.)
CT-RSA 2004. LNCS, vol. 2964, pp. 292–304. Springer, Heidelberg (2004). doi:10.
1007/978-3-540-24660-2 23

49. Hoang, V.T., Krovetz, T., Rogaway, P.: Robust authenticated-encryption AEZ
and the problem that it solves. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT
2015. LNCS, vol. 9056, pp. 15–44. Springer, Heidelberg (2015). doi:10.1007/
978-3-662-46800-5 2

50. Hoang, V.T., Rogaway, P.: On generalized Feistel networks. In: Rabin, T. (ed.)
CRYPTO 2010. LNCS, vol. 6223, pp. 613–630. Springer, Heidelberg (2010). doi:10.
1007/978-3-642-14623-7 33

51. Holenstein, T., Künzler, R., Tessaro, S.: The equivalence of the random oracle
model and the ideal cipher model, revisited. In: STOC 2011, pp. 89–98. ACM
(2011)

52. Jean, J.: Cryptanalysis of Haraka. Cryptology ePrint Archive, Report 2016/396
(2016)

53. Jean, J., Nikolić, I., Sasaki, Y., Wang, L.: Practical cryptanalysis of PAES. In:
Joux, A., Youssef, A. (eds.) SAC 2014. LNCS, vol. 8781, pp. 228–242. Springer,
Heidelberg (2014). doi:10.1007/978-3-319-13051-4 14

54. Jean, J., Nikolić, I., Sasaki, Y., Wang, L.: Practical forgeries and distinguishers
against PAES. IEICE Trans. 99–A(1), 39–48 (2016)

55. Knudsen, L.R.: Truncated and higher order differentials. In: Preneel, B. (ed.) FSE
1994. LNCS, vol. 1008, pp. 196–211. Springer, Heidelberg (1995). doi:10.1007/
3-540-60590-8 16

56. Kölbl, S., Lauridsen, M.M., Mendel, F., Rechberger, C.: Haraka - efficient short-
input hashing for post-quantum applications. Cryptology ePrint Archive, Report
2016/098 (2016)

57. Lamport, L.: Constructing digital signatures from a one way function. Techni-
cal report. SRI-CSL-98, SRI International Computer Science Laboratory, October
1979

58. Langford, S.K., Hellman, M.E.: Differential-linear cryptanalysis. In: Desmedt, Y.G.
(ed.) CRYPTO 1994. LNCS, vol. 839, pp. 17–25. Springer, Heidelberg (1994).
doi:10.1007/3-540-48658-5 3

59. Leander, G., Abdelraheem, M.A., AlKhzaimi, H., Zenner, E.: A cryptanalysis of
PRINTcipher: the invariant subspace attack. In: Rogaway, P. (ed.) CRYPTO
2011. LNCS, vol. 6841, pp. 206–221. Springer, Heidelberg (2011). doi:10.1007/
978-3-642-22792-9 12

60. Liskov, M., Rivest, R.L., Wagner, D.: Tweakable block ciphers. In: Yung, M. (ed.)
CRYPTO 2002. LNCS, vol. 2442, pp. 31–46. Springer, Heidelberg (2002). doi:10.
1007/3-540-45708-9 3

61. Liskov, M., Rivest, R.L., Wagner, D.: Tweakable block ciphers. J. Cryptology
24(3), 588–613 (2011)

http://dx.doi.org/10.1007/978-3-540-30556-9_25
http://dx.doi.org/10.1007/978-3-540-30556-9_25
http://dx.doi.org/10.1007/978-3-540-45146-4_28
http://dx.doi.org/10.1007/978-3-540-45146-4_28
http://dx.doi.org/10.1007/978-3-540-24660-2_23
http://dx.doi.org/10.1007/978-3-540-24660-2_23
http://dx.doi.org/10.1007/978-3-662-46800-5_2
http://dx.doi.org/10.1007/978-3-662-46800-5_2
http://dx.doi.org/10.1007/978-3-642-14623-7_33
http://dx.doi.org/10.1007/978-3-642-14623-7_33
http://dx.doi.org/10.1007/978-3-319-13051-4_14
http://dx.doi.org/10.1007/3-540-60590-8_16
http://dx.doi.org/10.1007/3-540-60590-8_16
http://dx.doi.org/10.1007/3-540-48658-5_3
http://dx.doi.org/10.1007/978-3-642-22792-9_12
http://dx.doi.org/10.1007/978-3-642-22792-9_12
http://dx.doi.org/10.1007/3-540-45708-9_3
http://dx.doi.org/10.1007/3-540-45708-9_3

124 S. Gueron and N. Mouha

62. Lucks, S.: BEAST: a fast block cipher for arbitrary blocksizes. In: Horster, P. (ed.)
CMS 1996. IFIP Conference Proceedings, vol. 70, pp. 144–153. Chapman & Hall,
New York (1996)

63. Matsui, M.: Linear cryptanalysis method for DES cipher. In: Helleseth, T. (ed.)
EUROCRYPT 1993. LNCS, vol. 765, pp. 386–397. Springer, Heidelberg (1994).
doi:10.1007/3-540-48285-7 33

64. Maurer, U., Renner, R., Holenstein, C.: Indifferentiability, impossibility results on
reductions, and applications to the random oracle methodology. In: Naor, M. (ed.)
TCC 2004. LNCS, vol. 2951, pp. 21–39. Springer, Heidelberg (2004). doi:10.1007/
978-3-540-24638-1 2

65. Mendel, F., Rechberger, C., Schläffer, M., Thomsen, S.S.: The rebound attack:
cryptanalysis of reduced Whirlpool and Grøstl. In: Dunkelman, O. (ed.) FSE
2009. LNCS, vol. 5665, pp. 260–276. Springer, Heidelberg (2009). doi:10.1007/
978-3-642-03317-9 16

66. Moriai, S., Vaudenay, S.: On the pseudorandomness of top-level schemes of block
ciphers. In: Okamoto, T. (ed.) ASIACRYPT 2000. LNCS, vol. 1976, pp. 289–302.
Springer, Heidelberg (2000). doi:10.1007/3-540-44448-3 22

67. Mouha, N.: The design space of lightweight cryptography. Cryptology ePrint
Archive, Report 2015/303 (2015)

68. Mouha, N., Luykx, A.: Multi-key security: the Even-Mansour construction revis-
ited. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9215, pp.
209–223. Springer, Heidelberg (2015). doi:10.1007/978-3-662-47989-6 10

69. Mouha, N., Mennink, B., Herrewege, A.V., Watanabe, D., Preneel, B., Ver-
bauwhede, I.: Chaskey: an efficient MAC algorithm for 32-bit microcontrollers.
In: Joux, A., Youssef, A. (eds.) SAC 2014. LNCS, vol. 8781, pp. 306–323. Springer,
Heidelberg (2014). doi:10.1007/978-3-319-13051-4 19

70. Mouha, N., Wang, Q., Gu, D., Preneel, B.: Differential and linear cryptanalysis
using mixed-integer linear programming. In: Wu, C.-K., Yung, M., Lin, D. (eds.)
Inscrypt 2011. LNCS, vol. 7537, pp. 57–76. Springer, Heidelberg (2012). doi:10.
1007/978-3-642-34704-7 5

71. Rechberger, C.: On bruteforce-like cryptanalysis: new meet-in-the-middle attacks
in symmetric cryptanalysis. In: Kwon, T., Lee, M.-K., Kwon, D. (eds.) ICISC
2012. LNCS, vol. 7839, pp. 33–36. Springer, Heidelberg (2013). doi:10.1007/
978-3-642-37682-5 3

72. Rogaway, P., Steinberger, J.: Security/efficiency tradeoffs for permutation-based
hashing. In: Smart, N. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 220–236.
Springer, Heidelberg (2008). doi:10.1007/978-3-540-78967-3 13

73. Rønjom, S.: Personal Communication, March 2016
74. Rønjom, S.: Invariant subspaces in Simpira. Cryptology ePrint Archive, Report

2016/248 (2016)
75. Schroeppel, R.: The hasty pudding cipher - a tasty morsel, submission to the NIST

AES competition (1998)
76. Suzaki, T., Minematsu, K.: Improving the generalized Feistel. In: Hong, S., Iwata,

T. (eds.) FSE 2010. LNCS, vol. 6147, pp. 19–39. Springer, Heidelberg (2010).
doi:10.1007/978-3-642-13858-4 2

77. Todo, Y.: Structural evaluation by generalized integral property. In: Oswald, E.,
Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9056, pp. 287–314. Springer,
Heidelberg (2015). doi:10.1007/978-3-662-46800-5 12

78. Wagner, D.: The boomerang attack. In: Knudsen, L. (ed.) FSE 1999. LNCS, vol.
1636, pp. 156–170. Springer, Heidelberg (1999). doi:10.1007/3-540-48519-8 12

http://dx.doi.org/10.1007/3-540-48285-7_33
http://dx.doi.org/10.1007/978-3-540-24638-1_2
http://dx.doi.org/10.1007/978-3-540-24638-1_2
http://dx.doi.org/10.1007/978-3-642-03317-9_16
http://dx.doi.org/10.1007/978-3-642-03317-9_16
http://dx.doi.org/10.1007/3-540-44448-3_22
http://dx.doi.org/10.1007/978-3-662-47989-6_10
http://dx.doi.org/10.1007/978-3-319-13051-4_19
http://dx.doi.org/10.1007/978-3-642-34704-7_5
http://dx.doi.org/10.1007/978-3-642-34704-7_5
http://dx.doi.org/10.1007/978-3-642-37682-5_3
http://dx.doi.org/10.1007/978-3-642-37682-5_3
http://dx.doi.org/10.1007/978-3-540-78967-3_13
http://dx.doi.org/10.1007/978-3-642-13858-4_2
http://dx.doi.org/10.1007/978-3-662-46800-5_12
http://dx.doi.org/10.1007/3-540-48519-8_12

A Family of Efficient Permutations Using the AES Round Function 125

79. Yanagihara, S., Iwata, T.: On permutation layer of type 1, source-heavy, and target-
heavy generalized Feistel structures. In: Lin, D., Tsudik, G., Wang, X. (eds.)
CANS 2011. LNCS, vol. 7092, pp. 98–117. Springer, Heidelberg (2011). doi:10.
1007/978-3-642-25513-7 8

80. Yanagihara, S., Iwata, T.: Improving the permutation layer of type 1, type 3,
source-heavy, and target-heavy generalized Feistel structures. IEICE Trans. 96–
A(1), 2–14 (2013)

81. Yanagihara, S., Iwata, T.: Type 1.x generalized Feistel structures. IEICE Trans.
97A(4), 952–963 (2014)

82. Zhang, H., Wu, W.: Structural evaluation for generalized Feistel structures
and applications to LBlock and TWINE. In: Biryukov, A., Goyal, V. (eds.)
INDOCRYPT 2015. LNCS, vol. 9462, pp. 218–237. Springer, Heidelberg (2015).
doi:10.1007/978-3-319-26617-6 12

83. Zheng, Y., Matsumoto, T., Imai, H.: On the construction of block ciphers prov-
ably secure and not relying on any unproved hypotheses. In: Brassard, G. (ed.)
CRYPTO 1989. LNCS, vol. 435, pp. 461–480. Springer, Heidelberg (1990). doi:10.
1007/0-387-34805-0 42

http://dx.doi.org/10.1007/978-3-642-25513-7_8
http://dx.doi.org/10.1007/978-3-642-25513-7_8
http://dx.doi.org/10.1007/978-3-319-26617-6_12
http://dx.doi.org/10.1007/0-387-34805-0_42
http://dx.doi.org/10.1007/0-387-34805-0_42

Towards Practical Whitebox Cryptography:
Optimizing Efficiency and Space Hardness

Andrey Bogdanov1(B), Takanori Isobe2, and Elmar Tischhauser1

1 Technical University of Denmark, Kongens Lyngby, Denmark
{anbog,ewti}@dtu.dk

2 Sony Global Manufacturing & Operations Corporation, Tokyo , Japan
Takanori.Isobe@jp.sony.com

Abstract. Whitebox cryptography aims to provide security for crypto-
graphic algorithms in an untrusted environment where the adversary has
full access to their implementation. Typical security goals for whitebox
cryptography include key extraction security and decomposition security :
Indeed, it should be infeasible to recover the secret key from the imple-
mentation and it should be hard to decompose the implementation by
finding a more compact representation without recovering the secret key,
which mitigates code lifting.

Whereas all published whitebox implementations for standard cryp-
tographic algorithms such as DES or AES are prone to practical key
extraction attacks, there have been two dedicated design approaches for
whitebox block ciphers: ASASA by Birykov et al. at ASIACRYPT’14 and
SPACE by Bogdanov and Isobe at CCS’15. While ASASA suffers from
decomposition attacks, SPACE reduces the security against key extrac-
tion and decomposition attacks in the white box to the security of a
standard block cipher such as AES in the standard blackbox setting.
However, due to the security-prioritized design strategy, SPACE imposes
a sometimes prohibitive performance overhead in the real world as it
needs many AES calls to encrypt a single block.

In this paper, we address the issue by designing a family of dedicated
whitebox block ciphers SPNbox and a family of underlying small block
ciphers with software efficiency and constant-time execution in mind.
While still relying on the standard blackbox block cipher security for
the resistance against key extraction and decomposition, SPNbox attains
speed-ups of up to 6.5 times in the black box and up to 18 times in
the white box on Intel Skylake and ARMv8 CPUs, compared to SPACE.
The designs allow for constant-time implementations in the blackbox set-
ting and meet the practical requirements to whitebox cryptography in
real-world applications such as DRM or mobile payments. Moreover, we
formalize resistance towards decomposition in form of weak and strong
space hardness at various security levels. We obtain bounds on space
hardness in all those adversarial models.

Thus, for the first time, SPNbox provides a practical whitebox block
cipher that features well-understood key extraction security, rigorous

c© International Association for Cryptologic Research 2016
J.H. Cheon and T. Takagi (Eds.): ASIACRYPT 2016, Part I, LNCS 10031, pp. 126–158, 2016.
DOI: 10.1007/978-3-662-53887-6 5

Towards Practical Whitebox Cryptography: Optimizing Efficiency 127

analysis towards decomposition security, demonstrated real-world effi-
ciency on various platforms and constant-time implementations. This
paves the way to enhancing susceptible real-world applications with
whitebox cryptography.

Keywords: White-box cryptography · Space hardness · Code lifting ·
Decomposition · Key extraction · Mass surveillance · Trojans · Malware

1 Introduction

1.1 Black Box vs White Box

Whitebox cryptography was introduced by Chow et al. in 2002 [14] as a technique
to secure software implementations of block ciphers when the adversary has full
access to the execution environment. This setup is called the whitebox setting,
which is opposed to the standard blackbox setting where the attacker can neither
observe nor influence the internals of the block cipher. The functionality of the
cipher shall be the same when implemented in the black-box and white-boxe
settings. However, the whitebox implementation in the untrusted environment
(as e.g. in the mobile client software) and blackbox implementation in the secure
environment (as e.g. on the backend server) can vary significantly to meet distinct
security demands arising from two different threat models:

– In the black box: The adversary is able to access inputs and outputs of
the cipher with known, chosen or adaptively chosen plaintexts/ciphertexts.
Given the blackbox implementation, the attacker aims to recover the secret
key (key recovery) or to distinguish the block cipher from a randomly drawn
permutation (distinguishing).

– In the white box: The attacker has full access to the execution environment
of the cipher. Given the whitebox implementation of the cipher, the adver-
sary’s goal is then to extract the secret key (key extraction) or to decompose
the implementation to find a more compact representation that can be used as
an effective key to replicate the functionality (decomposition, or code lifting).

1.2 Whitebox Cryptography in the Wild

The seminal papers [14,15] in whitebox cryptography had the goal to provide
security in digital rights management (DRM) applications where encrypted con-
tents (e.g. a music or movie file) are decrypted on the user’s device. A malicious
end user may attempt to extract the key from its software and then illegally
distribute it outside the DRM system.

15 years have passed since those papers were published, and the context
of whitebox cryptography has drastically changed. With the rapidly increasing
demand for software-only security solutions in embedded devices, laptop PCs,
mobile and server systems as well as the ever growing field of cloud-based ser-
vices, the target for whitebox cryptography is no longer limited to the software

128 A. Bogdanov et al.

Fig. 1. Cloud-based content distribution: Cloud server encrypts contents in the black
box and distributes them to user devices. User devices decrypt the contents in the
white box.

Fig. 2. Cloud-based mobile payments with HCE: Cloud server sends tokenized payment
credentials provided by the issuer, to the mobile. Mobile phone transfers payment
data with tokenized payment credentials to the payment processor via HCE. Payment
processor sends it to the issuer for authorization.

implementation in the user-controlled device only. Such a device is now merely
a part of a larger system, as e.g. in cloud computing or cloud-based payment. In
addition, as whitebox cryptography inherently addresses resistance to malware,
Trojans and zero-day vulnerabilities, it will find more and more applications in
banking and other security-critical settings as well.

For illustrative purposes, we mention three application scenarios for whitebox
cryptography, see also Figs. 1 and 2.

DRM in the Cloud. DRM-based services have moved to cloud-based contents
distribution systems such as Adobe Primetime Cloud DRM [1] and Akamai’s
Secure Cloud-Based Workflows for Premium Content [2]. State-of-the-art con-
tents distribution services often utilize IaaS (Infrastructure as a Service), for
instance, Google cloud platform, IBM, Amazon AWS and Microsoft Azure, in
order to optimize costs and to scale infrastructure. This application is illustrated
in Fig. 1.

On the user device that plays the contents, whitebox implementation shall
protect the contents key against key extraction and decomposition attacks [6,
28,39] and recent side-channel attacks [11,35]. A useful security property in this

Towards Practical Whitebox Cryptography: Optimizing Efficiency 129

context is space hardness, which aims to mitigate code lifting, and discourages
the adversary from illegally distributing the code due to its large size [9].

On the cloud server that distributes the contents, a blackbox implementation
is used to deal with a large number of user keys simultaneously, since running
whitebox implementations for all users would require a huge amount of memory.
Though usually much better protected than the player devices, cloud comput-
ing infrastructures do pose additional threats to the application. Namely, they
are based on co-residency and multi-tenancy, i.e. the user runs multiple virtual
machines (VMs) in the hardware resources of the same physical machine. There-
fore, VM isolation raises a new security concern: cache timing attacks which
exploit the fact that cache memory access times are data dependent. This may
allow one to extract the secret key, given shared cache across co-located VMs.
With the rapidly increasing deployment of cloud services, cache timing attacks
have lately received a lot of attention [18,22,23,34]. Thus, cloud service providers
have to deal with countermeasures. Indeed, having seen the novel cache timing
attacks of [23,41], VMware made memory deduplication an opt-in feature, and
Amazon disabled deduplication on its EC2 cloud servers. However, Irazouqui et
al. show that attacks exploiting the L3 shared cache are still applicable even if
such system-level countermeasures are deployed [22]. Thus, this threat has to be
addressed at the cipher implementation level as well.

All in all, for DRM applications in the cloud, the blackbox cipher implemen-
tation should be secure against cache timing attacks on the cloud server, whereas
the whitebox implementation should provide key extraction security and space
hardness on the consumer device.

Host Card Emulation in Cloud-based Mobile Payments. NFC (Near
Field Communication) is extensively used in applications such as payment sys-
tems. A standard NFC payment implementation employs a mobile phone with
credentials stored inside a hardware-based secure element. HCE (Host Card
Emulation) is a technology that enables NFC transactions in a pure software
environment without secure elements — here anyone can create a mobile appli-
cation without depending on the secure element. This allows one to launch new
payment services in a more flexible way with a much less complex ecosystem.
Thus, HCE is expected to become a game changer for mobile payments. Google
provides the HCE architecture from Android 4.4 Kitkat on, by which anyone
can emulate an NFC smart card for a payment service. Moreover, Visa and
MasterCard also support the cloud-based HCE payments. In the HCE, instead
of expensive secure hardware, credentials are stored in alternative media such as
cloud. Figure 2 provides an overview of cloud-based payment systems with HCE.

In cloud-based payments, resilient whitebox cryptography on the mobile
phone is central to the overall security. More precisely [29,37], a whitebox imple-
mentation shall replace the secure element in two ways. First, it should protect
sensitive data such as tokens, payment information and card data from malware
and spyware possibly running on the same CPU. Second, it should ensure that
legitimate devices and users are accessing their payment credentials in the cloud
by means of secure authentication between the cloud and the device.

130 A. Bogdanov et al.

From the implementation viewpoint, a mobile phone may not have rich
resources, and available memory can be restrictive. Thus, the deployed white-
box cipher shall support variable sizes of its whitebox tables to meet a vari-
ety of implementation demands. In the cloud, which manages credentials, the
corresponding blackbox implementation should prevent cross-VM cache timing
attacks [18,22,23,34] similar to the previous application.

Memory-Leakage Resilient Software. Leakage of memory by vulnerabilities
such as buffer overflows, cold boot attacks [20], bus monitoring attacks, Trojans
and malware, or heartbleed-type vulnerabilities is a major problem in today’s
software. The notion of space hardness has been used to restrict the effect of
memory leakage in applications where the leakage channel from the implemen-
tation environment to the adversary’s backend is of limited capacity [9]. In par-
ticular, the use of space-hard whitebox cryptography can mitigate the damage
of a memory-leakage vulnerability in security-critical systems. Indeed, those are
typically insulated from the Internet, making it infeasible for Trojans to use low-
capacity covert and side channels for the transmission of necessary key material
if space-hard ciphers are employed.

Thus, for a memory-leakage resilient software implementation, the space
hardness is necessary. It can be considered as a class of leakage resilient cryp-
tography in bounded retrieval model where malware has complete control over
the computer but can only send out a bounded amount of information.

1.3 Existing Whitebox Constructions

In order to meet some of the demands arising from applications, several whitebox
constructions have been proposed.

Whitebox Implementations of DES and AES. Whitebox implementations
of DES and AES were first proposed by Chow et al. in [14,15]. Their approach is
to find a representation of the algorithm as a network of look-ups in randomized
and key-dependent tables. In the wake of these seminal papers, several further
variants of whitebox implementations for DES and AES were proposed [12,24,
27,40]. However, all published whitebox solutions for DES and AES to date have
been practically broken by key extraction and table-decomposition attacks [6,26,
30,31,39].

ASASA. Dedicated whitebox block ciphers were proposed by Biryukov et
al. in [7] at ASIACRYPT’14. They are based on the ASASA structure that
consists of two secret nonlinear layers (S) and three secret affine layers (A), with
affine and nonlinear layers interleaved. The security of ASASA against the key
extraction in the whitebox setting relies on the hardness of the decomposition
problem for ASASA. Unfortunately, efficient decomposition attacks on ASASA
have been proposed [28]. The security of constructions based on multiple secret
nonlinear and linear layers is still to be explored and seems hard to evaluate,
despite several cryptanalytic efforts [8,10,38]. Moreover, generic ASASA-type
constructions are difficult to implement in the constant-time fashion in the black
box, which makes them potentially susceptible to side channel leakage.

Towards Practical Whitebox Cryptography: Optimizing Efficiency 131

SPACE. At CCS ’15, Bogdanov and Isobe proposed a family of whitebox-secure
block ciphers SPACE [9]. The design of SPACE is such that the security against
key extraction and decomposition attacks in the whitebox setting reduces to the
well-studied problem of key recovery for block ciphers in the standard blackbox
setting. Their approach is to construct the whitebox table from a well-understood
standard block cipher (AES in their example) by constraining the plaintext and
truncating the ciphertext. Furthermore, to mitigate code lifting, they proposed
the new security notion of space hardness which is a generalization of the weak
whitebox security notion of [7]. Space hardness quantifies security against code
lifting by the amount of code that needs to be extracted from an implementation
by a whitebox adversary to maintain its functionality with a certain probability.

However, in order to strongly guarantee security against key extraction and
space hardness in the whitebox setting, SPACE employs a very conservative
design strategy. Namely, a target-heavy Feistel construction is deployed that does
not allow for parallel or even pipelined implementations. Moreover, the internal
F-function of SPACE requires one full 10-round AES-128 call. As estimated
in [9], at least 128 full-round AES-128 calls are necessary to perform a single
block encryption. That appears rather unacceptable in real-world applications.
However, it’s possible to derive a constant-time implementation of SPACE in
the black box.

Thus, all existing designs have important practical limitations. This paper
aims to bridge this gap by a novel design that addresses the key extraction
security, the decomposition security (space hardness), constant-time blackbox
implementation requirement as well as efficiency issues simultaneously.

1.4 Our Contributions

The contributions of this paper are as follows.

Design of SPNbox: New Efficient Whitebox Block Cipher. We propose
SPNbox, a new family of space-hard block ciphers, which significantly improves
upon the SPACE ciphers proposed at CCS 2015 [9]. While SPACE is based on
a target-heavy Feistel construction, SPNbox is an SPN-type design with small
block ciphers as the key-dependent S-boxes. In order to efficiently utilize the
parallelism offered by both standard SIMD and the AES-NI instructions on con-
temporary microprocessors, the small block ciphers are based on the AES round
transformation. The resulting parallelization opportunities allow for significantly
faster implementations both in the black box and in the white box. At the same
time, similarly to SPACE, SPNbox still offers all important whitebox security
properties of quantifiable space hardness as well as reduction of key extraction
security to the blackbox key-recovery security of the underlying block cipher.
See Sect. 2.

Security Analysis of SPNbox in the Black Box. Our constructions come
with security analysis as block ciphers. As the overall design as well as the
design of underlying small block cipher follows the principles of substitution-
permutation networks, we use the well-established tools of symmetric-key

132 A. Bogdanov et al.

cryptanalysis. See Sect. 3. In addition, we stress that our ciphers are secure
against new types of attacks such as differential computational and differential
fault attacks [11,35] in the white box as well as cross-VM cache timing attacks
for cloud in the black box [18,22,23,34].

Refined Compression Attack Settings. Resistance to decomposition attacks
is formalized by the notions of weak whitebox security and incompressibility [7],
(M,Z)-space hardness and strong (M,Z)-space hardness [9] as well as by a
related notion of (λ, δ) compressibility [16]. As opposed to previous studies of
space hardness [9] that did not go beyond a weak whitebox adversary, this paper
considers various levels of space hardness for table-based whitebox implementa-
tions, which are classified with respect to the adversary’s abilities such as types of
table accesses, knowledge about the execution environment or reverse engineer-
ing capabilities. This covers a very wide class of real-world adversaries that are
thinkable in applications. In particular, we introduce known-space, chosen-space
and adaptively-chosen-space attacks on space hardness. See Sect. 4.

Provable Bounds on Space Hardness. Moreover, we obtain bounds on space
hardness in all those adversarial models under the assumption that the under-
lying tables are secure against decomposition, which is in turn guaranteed by
the security of the underlying small block ciphers in the standard blackbox set-
ting. This enables us to obtain rigorous upper bounds on the success probability,
given a space of size M , in each adversarial model. These are the first security
bounds on space hardness for table-based whitebox implementations, while pre-
vious results only roughly evaluate the security by an attack-based approach [9].
Furthermore, we apply our bounds to SPNbox and SPACE ciphers. As a result,
we update the evaluations of space hardnesses of SPACE ciphers, and show that
SPNbox offers a conservative level of space hardness in each adversary model.

Efficient Optimized Software Implementations of SPNbox and SPACE.
We implement both SPNbox and SPACE families of whitebox block ciphers on
Intel Skylake and ARMv8. Our implementations use SIMD/AVX, AES-NI and
NEON extensions whenever possible to optimize performance. As a result, we
report that instances of SPNbox achieve speed-ups of up to 6.5 times in the black
box and up to 18 times compared to SPACE in the whitebox setting. See Sect. 5.

2 SPNbox: Efficient Space-Hard Block Ciphers

2.1 Design Choices

From Feistel to nested SPN. The SPACE family of space-hard block ciphers
employs a very conservative design strategy which involves using the full 10-
round AES-128 transformation, even for 8-bit inputs. Furthermore, its Feistel
structure prevents the exploitation of any parallel execution or pipelining pos-
sibilities. At the same time, it seems likely that the security margin offered by
the proposed SPACE instances can be reduced without ill effects.

Towards Practical Whitebox Cryptography: Optimizing Efficiency 133

The requirement of parallelism immediately points to an SPN-type design.
For the desired level of space hardness, key-dependent S-boxes of varying size can
be employed. This can then be combined with a public linear MDS diffusion layer
operating on the entire state, allowing rigorous security arguments for standard
blackbox security.

Within this design framework, it remains to construct key-dependent S-boxes
of different sizes (for instance 8, 16, 24 and 32 bits as in SPACE). This is accom-
plished by using smaller internal block ciphers, which are themselves SPNs,
yielding a nested SPN structure [3]. For the reasons of efficiency, security and
side-channel protection, it is desirable to base these internal SPNs on the AES
round transformation, especially given the availability of the AES-NI instruc-
tions [19]. The efficiency requirements also dictate that little or no truncation
should take place, and ideally, the AES round transformation should be used to
compute some of the larger S-boxes in parallel.

In order to also have an efficient implementation for the inverse cipher,
the design should employ involutory MDS matrices wherever possible. Since
we mainly target high-performance software implementations, our selection
criteria for efficient MDS matrices differs somewhat from the widely studied
area of lightweight hardware implementations as in [36]: In software, arbitrary
bit permutations are costly, which means that a matrix with smaller coeffi-
cients but higher theoretical XOR count can result in a more efficient SIMD
implementation.

Efficient Constant-Time Small Block Ciphers. We note that these small SPN-
type block ciphers used to construct the key-dependent S-boxes are of poten-
tial independent interest: Block ciphers of sizes smaller than 32 bit are virtu-
ally unstudied, and an AES-NI based implementation further allows an efficient
constant-time implementation, which avoids the pitfalls of key-dependent table
lookups (which is the usual way of implementing small nonlinear functions due
to efficiency reasons though bit-sliced implementations may be possible as well).
In addition, in order to prevent the differential computational attacks [11], this
small SPN-type block cipher depends on 128 bits of key information.

2.2 Specification

We now define the SPNbox family of block ciphers and their concrete instan-
tiations SPNbox-8, SPNbox-16, SPNbox-24, and SPNbox-32. SPNbox-nin is a
substitution-permutation network (SPN) with a block length of n bits, a k-bit
secret key, and based on nin-bit substitution boxes. For SPNbox-8, SPNbox-
16 and SPNbox-32, the block length is n = 128 bits, whereas SPNbox-24 has
n = 120. While SPNbox can support a wide range of key sizes, we use k = 128
for concreteness in the following.

Representation of Finite Fields. We will in the sequel sometimes view the set
{0, 1}m of bit strings as the finite field GF(2m). For this, we identify GF(2m)
with the quotient ring GF(2)[x]/(p) for a suitable irreducible polynomial p ∈

134 A. Bogdanov et al.

GF(2)[x]. An m-bit string am−1am−2 · · · a1a0 ∈ {0, 1}m then corresponds to the
polynomial am−1xm−1 + am−2xm−2 + · · · + a1x + a0 ∈ GF(2m). We write such
an element in a hexadecimal representation of its bit string, e.g. 4x for 100.

For GF(28), we use the same irreducible polynomial as the AES, namely
p(x) = x8 + x4 + x3 + x + 1. Similarly, we use p(x) = x16 + x5 + x3 + x + 1 for
GF(216), p(x) = x24+x4+x3+x+1 for GF(224) and p(x) = x32+x7+x3+x2+1
for GF(232), respectively.

State. The state of SPNbox-nin is organised as a vector of t
def= n/nin elements

of nin bits each:
X = {X0, . . . , Xt−1}.

Each of the nin-bit elements Xi can in turn be represented by a vector of �
def=

nin/8 bytes: Xi = {Xi,�−1, . . . , Xi,0}.

Key Schedule. The k-bit master key is expanded to (Rnin
+ 1) round keys

k0, . . . , kRnin
of nin bits using any generic key derivation function (KDF) [32]:

(k0, . . . , kRnin
) = KDF(k, nin · (Rnin

+ 1)).

For example, one can use the SHAKE extendable output function which is based
on the SHA-3 hash [33].

Round Transformation. The encryption of a plaintext X0 to a ciphertext XR

is accomplished by applying R rounds of the following round transformation to
the plaintext:

XR =
(©R

r=1 (σr ◦ θ ◦ γ)
)
(X0).

For all concrete proposals SPNbox-8, SPNbox-16, SPNbox-24 and SPNbox-32,
we set the number of rounds to R = 10. We now define in turn each of the
components γ, θ and σr. An overview of the round transformation is given in
Fig. 3

Fig. 3. Round transformation of SPNbox.

Towards Practical Whitebox Cryptography: Optimizing Efficiency 135

The Nonlinear Layer γ. γ is a nonlinear substitution layer, in which t key-
dependent identical bijective nin-bit S-boxes are applied to the state:

γ : GF(2nin)t → GF(2nin)t

(X0, . . . , Xt−1) �→ (Snin
(X0), . . . , Snin

(Xt−1)) .

In SPNbox-nin, the substitution Snin
is realised by an internal small block cipher

of block length nin, which will be defined in the next subsection.

The Linear Layer θ. θ is a linear diffusion layer that applies a t× t MDS matrix
to the state:

θ : GF(2nin)t → GF(2nin)t

(X0, . . . , Xt−1) �→ (X0, . . . , Xt−1) · Mnin
.

We denote by cir (a0, . . . , at−1) the t × t circulant matrix A with the coefficients
a0, . . . , at−1 in the first row; and by had (a0, . . . , at−1) the t×t Hadamard matrix
A with coefficients Ai,j = ai⊕j , with t a power of two.

For the concrete proposals SPNbox-ninwith nin = 32, 24, 16, 8, the matrix
Mnin

is then respectively defined as follows:

M32 = cir (1x, 2x, 4x, 6x) for nin = 32,

M24 = cir (1x, 2x, 5x, 3x, 4x) for nin = 24,

M16 = had (1x, 3x, 4x, 5x, 6x, 8x, bx, 7x) for nin = 16,

and

M8 = had (08x, 16x, 8ax, 01x, 70x, 8dx, 24x, 76x,

a8x, 91x, adx, 48x, 05x, b5x, afx, f8x)
for nin = 8.

Note that M32,M16 and M8 are involutions. M32 and M16 are the matrices used
in the block ciphers Anubis [4] and Khazad [5], respectively. M8 is an optimised
involutory Hadamard-Cauchy matrix proposed at FSE 2015 [36].

The Affine Layer σr. σr is an affine layer that adds round-dependent constants
to the state:

σr : GF(2nin)t → GF(2nin)t

(X0, . . . , Xt−1) �→ (
X0 ⊕ Cr

0 , . . . , Xt−1 ⊕ Cr
t−1

)
,

with Cr
i

def= (r − 1) · t + i + 1 for 0 ≤ i ≤ t − 1.

136 A. Bogdanov et al.

The Underlying Small Block Ciphers. The key-dependent nin-bit bijective
S-boxes Snin

in the nonlinear layer γ are small SPN-type block ciphers them-
selves. They are based on the round transformation of the AES and consist of
Rnin

rounds operating on a state x = {x0, . . . , x�−1} of �
def= nin/8 bytes:

Snin
: GF(28)� → GF(28)�

x �→
(
©Rnin

i=1

(
AKi ◦ MCnin

◦ SB
))

(AK0(x)).

Here, SB denotes the application of the AES S-box to each byte of the state. For
0 ≤ i ≤ Rnin

, AKi is defined as the addition of the round key ki (as expanded
by the key schedule) by XOR. MCnin

implements an MDS diffusion layer on
all � bytes of the state. It is based on the AES MixColumns operation. For the
concrete proposals of nin = 32, 24, 16, it is defined as the multiplication of x
with the matrices

A32 = cir (2x, 1x, 1x, 3x) for nin = 32,

A24 =

⎛

⎝
2x 1x 1x

3x 2x 1x

1x 3x 2x

⎞

⎠ for nin = 24,

A16 =
(
2x 1x

3x 2x

)

for nin = 16,

respectively. For nin = 8, MCnin
is the identity mapping. Note that A32 is the

AES MixColumns matrix (adjusted for Intel’s byte order), while A24 and A16

are obtained from A32 as (x, y, z, 0) × A32 and (x, y, 0, 0) × A32, respectively. As
square submatrices of A32, all derived matrices are also �× � MDS matrices over
GF(28). An overview of the round transformation is given in Fig. 4.

Fig. 4. Round transformation of the underlying block ciphers Snin .

The number of rounds for each concrete proposal is defined as R32 = 16,
R24 = 20, R16 = 32 and R8 = 64.

Towards Practical Whitebox Cryptography: Optimizing Efficiency 137

2.3 SPNbox vs ASASA

Both SPNbox and the ASASA construction are based on the classical
substitution-permutation network structure, consisting however of secret key-
dependent S-box and public linear layers. The main constructive difference is how
to construct the secret key-dependent S-box. However, this is the discrepancy
having far-reaching practical consequences both in terms of security arguments
and implementation.

In the ASASA construction, as its name suggests, tables are based on the
ASASA structure that consists of two secret nonlinear layers (S) and three secret
affine layers (A), with affine and nonlinear layers interleaved. On the other hand,
SPNbox is based on the SPN-type small block cipher that consists of the public
nonlinear and linear layer, and secret key XOR layers.

Regarding the security of the whitebox implementation, the difficulty of the
key extraction and the decomposition problem for ASASA relies on the hardness
of the decomposition problem for ASASA, which is still to be explored and seems
hard to evaluate, despite several cryptanalytic efforts [8,10,38]. Actually, efficient
decomposition attacks on ASASA have been proposed [28]. On the other hand,
SPNbox relies on well analyzed problem of the key recovery attack of the block
cipher in the standard blackbox setting.

In the blackbox implementation, assuming the random choice of secret S-
boxes, the substitution layer of ASASA is realized by the table based implemen-
tation due to the secrecy of underlying component, and is impossible to optimize
the performance by AES-NI. The table-based blackbox implementation of the
ASASA is not secure against cache timing attacks similar to the table-based
blackbox AES implementation [18,22,23,34].

3 Security in the Black Box: Analysis as a Block Cipher

We evaluate the general construction of SPNbox-8, -16, -24 and -32, modeling
the underlying small block cipher as pseudorandom permutation. We further-
more analyze the security of the underlying small block ciphers Snin

against
cryptanalytic attacks. Finally, we evaluate the security against cross-VM cache
timing attacks for cloud application.

3.1 General Construction

First, we evaluate the security of the general construction of SPNbox-8, -16, -
24 and -32, assuming an underlying small block cipher, i.e. the key-dependent
nin-bit bijective S-boxes Snin

, is a pseudo random permutation. The generic
construction of all variants is a 10-round SPN-type construction.

Differential Cryptanalysis. Here we analyze the differential properties of an
nin-bit permutation Snin

: {0, 1}nin → {0, 1}nin . Given input difference a and
output difference b, the differential probability of function f is defined as

DP (a, b) = #{(v, u)|u ⊕ v = a and f(v) ⊕ f(u) = b}

138 A. Bogdanov et al.

for u, v ∈ {0, 1}nin . The bound of the maximum differential probability MDP
is proved as follows [21].

Pr
(n ln 2

2n−1 ln n
≤ MDP <

n

2n−1

)
≈ 1

Suppose that the maximum differential probability of Snin
of SPNbox-8, -16,

-24 and -32 to be 2−4 (= 8/27), 2−11 (= 16/215), 2−18.42 (= 24/223) and 2−26

(= 32/231), respectively. Due to properties of MDS diffusion matrices. SPNbox-
8, -16, -24 and -32 have at least 34, 18, 12 and 5 active Snin

after 4, 4, 4 and 2
rounds.

Linear Cryptanalysis. Now we analyze the linear properties of an nin-bit
permutation Snin

: {0, 1}nin → {0, 1}nin .
Given an input mask α and an output mask β, α, β ∈ {0, 1}nin , the correla-

tion of a linear approximation (α, β) for a function f : {0, 1}nin → {0, 1}nin is
defined as

Cor = 2−nin [#{x ∈ {0, 1}nin |α · x ⊕ β · f(x) = 0} −
#{x ∈ {0, 1}nin |α · x ⊕ β · f(x) = 1}.

The linear probability LP of (α, β) is defined as Cor2. For a fixed-key block
cipher, the maximum linear probability MLP is normally distributed in mean
≈ (1.38 · 2n − ln(1.38 · 2n) + 1) · 2−n and standard deviation ≈ 2.6 × 2−n [21].

Suppose that the maximum linear probability of Snin
of SPNbox-8, -16, -24

and -32 to be 2−3.67 (= 19.99 ·2−8), 2−10.62 (= 41.37 ·2−16), 2−18.02 (= 63 ·2−24)
and 2−25.61 (= 84 · 2−32), respectively. SPNbox-8, -16, -24 and -32 have at least
51, 18, 12 and 5 active F

(j)
i (x) after 6, 4, 4 and 2 rounds.

Other Cryptanalysis. Any input difference nonlinearly affects all states after
one round due to the MDS matrix. Following the miss-in-the-middle approach,
after 3 rounds, we have not found any useful impossible differentials for the
respective variants. Also, a 2.5-round generic integral distinguisher against the
SPN-type construction is proposed [8]. We also consider other-types of attacks
including a higher order differential, a truncated differential, a slide, and an
algebraic attack. Consequently, we expect that none of them work better than
brute force attacks.

3.2 The Underlying Small Block Ciphers

We evaluate the security of underlying small block ciphers Snin
. These are based

on well-analyzed AES components such as the inversion base 8-bit S-box and
the MDS circulant matrix on GF(28).

Towards Practical Whitebox Cryptography: Optimizing Efficiency 139

Differential/Linear Cryptanalysis. The differential/linear probability of 8-
bit S-box is 2−6. S8, S16, S24, and S32 have at least 2, 3, 4 and 10 differen-
tially/linearly active S-boxes after 2, 2, 2 and 4 rounds, respectively. We there-
fore expect all Snin

, for nin = 8, 16, 24, 32, to not have any differential or linear
trails with probabilities exceeding the bound 2−nin after 2, 2, 2 and 4 rounds,
respectively. Since they are proposed with much higher numbers of rounds, they
offer ample security margin.

Meet-in-the-Middle and Other Cryptanalysis. In each cipher, four times
128-bit key information is involved, and one round already achieves full diffusion.
Thus, we believe that the small block ciphers are secure against MitM attacks.
We developed MitM attacks on each variant using splice and cut, biclique and
partial matching techniques. However, we did not find full round attacks.

Considering further attacks, the byte-oriented structure combined with full
diffusion after 1 round means that for impossible (truncated) differential attacks,
and integral and higher order differential attacks, we can at most construct
cryptanalytic properties spanning 3 and 4 rounds, respectively. All small block
ciphers are proposed with much significantly higher numbers of rounds. Finally,
the use of distinct round constants in the key schedule precludes slide attacks.

3.3 Cache Timing Attack

There are several techniques exploiting cache information over VM isolations
in the cloud: the Prime+Probe attack [22] and Flush+Reload attacks [18,23,
41]. All attacks make use of timing differences between cache hits and misses.
Our key-dependent small block ciphers are designed to be executed in constant
time by using AES-NI, and there are no cache accesses during key-dependent
operations. Thus, it is impossible to mount cache timing attacks against the
blackbox implementation of SPNbox.

4 Security in the White Box: Analysis of Space Hardness

In this section, we first evaluate the security against key-extraction and decom-
position attacks in the whitebox model. Second, we evaluate the difficulty of
code lifting attacks by notions of weak and strong space hardness [9]. We gener-
alize the adversarial models of space hardness to capture a wide class of adver-
saries: from adversaries with limited control (greybox) to stronger ones with
more knowledge of the computational platform and reverse engineering abili-
ties (whitebox). Then, we show bounds for weak and strong space hardness for
table-based whitebox cryptography under the assumption that tables are secure
against key extraction and table decomposition attacks, i.e. it is computation-
ally infeasible to compress the tables in the whitebox models1. By contrast, the

1 Whitebox AES implementations [12,14,24,40] and the ASASA construction [7] do
not satisfy the assumption due to practical decomposition attacks [6,26,28,30,31].

140 A. Bogdanov et al.

authors of [9] evaluate the space hardness of their proposals only by attack-based
approaches, called compression attack. Finally, we evaluate the security against
recent advanced side-channel attacks [11,35].

4.1 Key Extraction and Table Decomposition Attacks

As the tables are constructed from small block ciphers, the security of key-
extraction and decomposition attacks in the whitebox model reduces to the key
recovery problem for these small block ciphers in the blackbox model (which is
evaluated in Sect. 3). The advantage of key extraction in the whitebox model
for SPNbox, AdvKE-WB, is upper-bounded by the advantage of the key recovery
for the underlying block cipher in the blackbox model, AdvKR-BB: AdvKE-WB ≤
AdvKR-BB.

4.2 Existing Notions of Space Hardness

The difficulty of a decomposition attack is measured by space hardness that
is summarized here. The whitebox implementation of a cipher should resists
decomposition: Instead of a secret key, the adversary can directly use the imple-
mentation itself as a larger effective key. In particular, he can isolate the program
code where the key is embedded in order to copy the functionality of encryp-
tion/decryption routines and to utilize it in a stand-alone manner. We refer to
decomposition attacks as code lifting attack. If a code lifting attack succeeds, the
adversary gets the advantage which is almost the same as key extraction, i.e. he
can encrypt/decrypt any plaintext/ciphertext.

To formalize the difficulty of code lifting, the notions of weak white-box secu-
rity and incompressibility have been introduced in [7]. To capture the resistance
towards compression attacks in a more fine-grained fashion, two further security
notions were introduced in [9]: (M,Z)-space hardness and strong (M,Z)-space
hardness. Space hardness measures the difficulty of compressing the whitebox
implementation of a cipher, and quantifies security against code lifting by the
amount of code that needs to be extracted from the implementation by a white-
box adversary to maintain its functionality. Moreover, Delerablee et al. propose a
related notion of (λ, δ) compressibility [16]. However, the latter aims to evaluate
the difficulty of code compression, given the full code. Space hardness [9] assesses
the difficulty of isolating code from execution environments, namely, code lift-
ing, by the amount of the data. Thus, it covers a wide class of adversaries: from
the one with limited control all the way to the stronger ones with full code and
complete access to the environments. For the sake of clarity, the paper at hand
refers to (M,Z)-space hardness of [9] as weak (M,Z)-space hardness:

Definition 1 (Weak (M,Z)-space hardness [9]). An implementation of a
block cipher EK is weakly (M,Z)-space hard if it is infeasible to encrypt (decrypt)
any randomly drawn plaintext (ciphertext) with probability of more than 2−Z

given any code (table) of size less than M bits.

Towards Practical Whitebox Cryptography: Optimizing Efficiency 141

Fig. 5. Target block cipher construction for the white box and its adversarial models

Weak (M,Z)-space hardness estimates the code (table) size M that needs to
be isolated from the whitebox environment to be able to encrypt (decrypt) any
plaintext (ciphertext) with a success probability larger than 2−Z .

Definition 2 (Strong (M,Z)-space hardness [9]). An implementation of a
block cipher EK is strongly (M,Z)-space hard if it is infeasible to obtain a valid
plaintext and ciphertext pair with probability higher than 2−Z given the code
(table) of size less than M bits.

Strong (M,Z)-space hardness assumes an adversary who tries to find any valid
input/output pair. It is relevant to message authentication codes in the context
of forgeries.

4.3 Target Construction

To simplify our evaluation of space hardness in the sequel, we define a target
construction: an n-bit block cipher that is encrypted/decrypted by key dependent
table-based implementations in the whitebox environment as shown in Fig. 5. Let
the input and output sizes of each table be nin and nout, respectively, and the
number of rounds be R, where the each round consists of t tables. We denote j-th
table in round r as a function F

(r)
j : {0, 1}nin → {0, 1}nout for j ∈ {0, 1, . . . , t−1}

and r ∈ {1, 2, . . . , R}. In the cases of SPNbox and SPACE [9], all tables are
identical, and the total table sizes T is estimated as T = (2nin × nout).

4.4 Adversary Models of Space Hardness

We consider three adversary models that are classified with respect to the adver-
sary’s ability, while previous works [9] do not specify the adversary model. In
particular, we simulate the action of the adversary against the execution envi-
ronments by access to the table (space) functions F

(r)
j (see Fig. 5).

142 A. Bogdanov et al.

Fig. 6. Weak (M,Z)-space hardness of SPACE-8, 16, 24 and 32 and SPNbox-8, 16, 24
and 32 in known- and chosen-space attack

Definition 3 (Known-Space (KS) Attack). The adversary obtains q pairs of
inputs and the corresponding outputs of tables (xi, F

(r)
j (xi)), i ∈ {0, 1, . . . , q−1},

j ∈ {0, 1, . . . , t − 1} and r ∈ {1, 2, . . . , R}.
Definition 4 (Chosen-Space (CS) Attack). The adversary obtains q pairs
of inputs and the corresponding outputs of tables (xi, F

(r)
j (xi)) for a series of

a priori chosen inputs xi, i ∈ {0, 1, . . . , q − 1}, j ∈ {0, 1, . . . , t − 1} and r ∈
{1, 2, . . . , R}.
Definition 5 (Adaptively-Chosen-Space (ACS) Attack). The adversary
obtains q pairs of inputs and the corresponding outputs of tables (xi, F

(r)
j (xi))

for a series of adaptively chosen inputs xi, i ∈ {0, 1, . . . , q − 1}, j ∈
{0, 1, . . . , t − 1} and r ∈ {1, 2, . . . , R}, namely he can choose xa after obtain-
ing (xa−1, F

(r)
j (xa−1)).

The known-space attack models the limited control of the adversary over
the platform, where the adversary passively gets a part of space from the envi-
ronments, e.g. with the aid of a trojan, malware, or a memory-leakage software
vulnerability. The model is applicable to memory-leakage resilient cryptography
where malware has complete control over the computer but can only send out a
bounded amount of information [17].

The chosen-space attack captures the stronger adversary who has the ability
to isolate any part of tables (space) with the knowledge of the memory layout,
but the amount of data and the timing of access to the implementation are
restricted due to the limited capacity of the communication channel and access
controlled environments.

Finally, the adaptively-chosen-space attack assumes an adversary who has
full access to the execution environment at any time by decompiler and
debugger tools, e.g. IDA Pro and IL DASM, which is corresponding to the

Towards Practical Whitebox Cryptography: Optimizing Efficiency 143

original whitebox adversary defined in [14] and the assumption of (λ, δ)
compressibility [16].

Previous weak and strong (M,Z)-space hardness are evaluated by compres-
sion attacks [9]. The assumption of these attacks is classified as the known-
table attack, i.e. weak KS-(M,Z)-space hardness and KS-(M,Z)-space hardness,
respectively. Thus, previous evaluation of space hardness in [9] can capture only
the weaker adversary than the standard whitebox adversary who has full access
to the execution environment.

4.5 Weak Space Hardness

We show bounds for the weak (M,Z)-space hardness of the target construc-
tion in known-, chosen- and adaptively-chosen space attacks. Our evaluation
assumes that the table decomposition is computationally infeasible as evaluated
in Sect. 4.1, and input values of each table in the cipher are uniformly distrib-
uted, which is a reasonable assumption for block ciphers. The evaluation of the
weak space hardness in the case where the adversary has a partial knowledge of
a plaintext is provided in SubSect. 4.6.

Known-Space Attack. First, we introduce the following lemma.

Lemma 1 (Inequality of Arithmetic and Geometric Means). For
arbitary n positive positive numbers x0, x1, . . . , xn−1, the inequality

n
√

x0 · x1 · · · xn−1 ≤ x0 + x1 + . . . , xn−1

n

holds, with equality if and only if x0 = x1, . . . ,= xn−1.

There are various proofs in the literature, and for example we refer to [13].
For known-space attacks, we have the following theorem:

Theorem 1. Given known space of size M , the probability that a randomly-
drawn plaintext can be computed is upper bounded by (M/T)tR.

Proof. Let the number of known entries of each table F
(r)
j be #F

(r)
j for j ∈

{0, 1, . . . , t − 1} and r ∈ {1, 2, . . . , r}. The probability that an input of a tables
F

(r)
j matches with known ones is estimated as (#F

(r)
j /2nin). Hence, a randomly-

drawn plaintext can be computed with the probability of

t−1∏

j=0

R∏

r=1

#F
(r)
j

2nin
=

(1
2nin

)tR t−1∏

j=0

R∏

r=1

#F
(r)
j .

Here the sum of the numbers of known inputs is expressed as
∑t−1

j=0

∑R
r=1 #F

(r)
j . According to Lemma 1, we have

t−1∏

j=0

R∏

r=1

(#F
(r)
j) ≤

(∑t−1
j=0

∑Rt
r=1 #F

(r)
j

tR

)tR

.

144 A. Bogdanov et al.

Fig. 7. Weak (M,Z)-space hardness of SPACE-8, 16, 24 and 32 and SPNbox-8, 16, 24
and 32 in adaptively-chosen attack.

Only if #F
(1)
0 = #F

(1)
1 = . . . = #F

(R)
t−1 , the equation holds. Here, M is estimated

as M = (
∑t−1

j=0

∑R
r=1 #F

(r)
j · nout)/tR bits.

Thus, we have

(1
2nin

)tR t−1∏

j=0

R∏

r=1

#F
(r)
j ≤

(1
2nin

)tR(∑t−1
j=0

∑Rt
r=1 #F

(r)
j

tR

)tR

≤
(1

2nin

)tR(M · 2nin

T

)tR

��

From Theorem 1, we obtain weak KS-(M,− log2((M/T)tR))-space hardness,
i.e. given any known space of size M , it is infeasible to encrypt a randomly-drawn
plaintext with the probability larger than (M/T)tR. Figure 6 shows the relation
between M and Z in terms of weak KS-(M,Z) space hardness of SPACE-8, 16, 24
and 32 and SPNbox-8, 16, 24 and 32. For example, in SPNbox-16, given space of
size M = T/4, the success probability is upper bounded by 2−160 (= (2−2)8·10)
(Fig. 6).

Chosen-Space Attack. Due to the randomly-drawn plaintext, inputs of tables
are unpredictable in advance even in the chosen-table attack. Thus, the chosen-
space attack has no advantage over the known-space attack. We obtain weak
CS-(M,− log2((M/T)tR))-space hardness from Theorem 1.

Adaptive-Space Attack. The adversary is able to encrypt any plaintext by
adaptively accessing the tables and computing round functions one by one. Thus
he can prepare a set of pairs of plaintexts and the corresponding ciphertexts
before a target plaintext is given. If the target plaintext is included in the set of
prepared pairs, the corresponding ciphertext is obtained with the probability one.

Towards Practical Whitebox Cryptography: Optimizing Efficiency 145

Let us estimate how large space is necessary to compute N plaintexts in
advance. In the encryptions of N plaintexts, it requires N · t · R table accesses,
and each table function F

(r)
j has N accesses. We provide the following Lemma.

Lemma 2. For q table accesses, the expected value of the number of used entries
in the table is estimated as (1 − ((2nin − 1)/2nin)q) · 2nin .

Proof. An i-th entry of the table is used during q table accesses with the proba-
bility of (1 − ((2nin − 1)/2nin)q). There are 2nin entries in the table. ��

Here, we define (2nin −1)/2nin as ein. Using Lemma 2, we obtain Theorem 2.

Theorem 2. Given adaptively-chosen space of size M , the probability that a
randomly-drawn plaintext can be computed is upper bounded by N · 2−128 + (1 −
N · 2−128)(M/T)tR, where N = logein

(1 − M/T)/tR�.
Proof. According to Lemma 2, in order to compute N pairs of plaintexts and
the corresponding ciphertexts, it requires (1 − (ein)N ·tR) · 2nin · nout = (1 −
(ein)N ·tR) · T -bit space. In the other words, adaptively-chosen space of size M
enables to compute N(= logein

(1 − M/T)/tR�) pairs of plaintexts and the
corresponding ciphertexts. Then, the randomly-drawn plaintext is included in a
set of the prepared pairs with probability of 2−128+N . Otherwise, given space of
size M , the probability that the randomly-drawn plaintext can be computed is
upper-bounded by (M/T)tR from Theorem 1. ��

From Theorem 2, we obtain weak ACS-(M , − log2(N · 2−128 + (1 − N ·
2−128)(M/T)tR)-space hardness. For example, in SPNbox-16, given M = 0.46 ·T
space, the success probability is upper bounded by 2−88.4 (= 9 · 2−128 + (1 − 9 ·
2−128) · (0.465)8·10) (Fig. 8).

Fig. 8. Strong KS-(M,Z)-space hardness of SPACE-8, 16, 24 and 32 and SPNbox-8, 16,
24 and 32 in known/chosen space attacks

146 A. Bogdanov et al.

4.6 On (Partial) Target Plaintext for Weak Space Hardness

So far we assume that a plaintext is randomly drawn. However, the adversary
might have the (partial) knowledge of a plaintext, e.g. the header of a file and
the format-fixed encryption cases.

Let us estimate the security when the adversary has z-bit (z ≤ n) informa-
tion about the given plaintext in advance. In the known-space attack, since the
adversary is not able to choose the entries of tables, the advantage in this setting
is same as that in the randomly-drawn plaintext setting. In the chosen-space set-
ting, the adversary is able to know inputs of some tables in advance. If the inputs
of tables in first y rounds is known, it is weak CS-(X,− log2((M/T)t(R−y)))-space
hardness, where y depends on the z and constructions. In the adaptively-chosen
space setting, since the plaintext space is reduced to 2128−z, we have ACS-
(M , − log2(N · 2−128+z + (1 − N · 2−128+z)(M/T)tR)-space hardness.

4.7 Strong Space Hardness

Next, we show bounds for the strong (M,Z)-space hardness in known-, chosen-
and adaptively-chosen space attacks.

Known- and Chosen-Space Attack. To begin with, we give the following
lemma.

Lemma 3. Given any space of size M , the expected number of the computable
pairs is 2n · (M/T)tR.

Proof. According to Theorem 1, given space of size M , a randomly-drawn plain-
text can be computed with the probability (M/T)tR or less. It holds in any set
of known/chosen-space of size M . Here, the entire space of the plaintext is 2n. ��

From Lemma 3, the probability to find a valid pairs with known/chosen space
of size M is information-theoretically upper bounded by 2n · (M/T)tR. We prove
strong KP- and CP- (M , − log2(2n · (M/T)tR))-space hardness. For example, in
SPNbox-16, given M = T/4 space, the success probability is upper bounded by
2−32 (= 2128 · (1/4)8·10).

Adaptively-Chosen Space Attack. In this setting, the adversary has full
access to execution environment at any time. Thus, he easily obtain a valid
pair of plaintext and ciphertext by adaptively accessing inputs and outputs of
each table tR times. Therefore, we can not ensure strong space hardness in this
setting.

4.8 Tradeoffs Between Strong Space Hardness and Time
Complexity

In the previous subsection, we have obtained the upper bound of the probability
to find a valid pair of plaintexts and ciphertexts given known- and chosen-space

Towards Practical Whitebox Cryptography: Optimizing Efficiency 147

Fig. 9. Three types of attacks for strong space hardness

of size M . Here, we try to figure out how much time complexity is necessary to
find the pair and reveal the tradeoff between the success probability and time
complexity. In the multi-table setting, we assume #F

(1)
0 = #F

(1)
1 = . . . = #F

(R)
t−1

which is the optimal case with respect to the success probability. We consider
following three types of attacks as shown in Fig. 9.

Brute Force Attack. The adversary simply tries to encrypt 2b plaintexts with
the given space of size M . The time complexity is estimated as 2b for b ≤ n and
the success probability is 2b · (M/T)tR. If b = n, the probability becomes the
upper bounded value of Lemma 3.

Start-from-the-Middle Attack. Assume that if input values of all tables in
consecutive h rounds are chosen, then the n-bit internal state are determined.
We call such states in r rounds start states. We prepare a start state, and then
check whether a pair of the plaintext and the ciphertext is computed from the
start state through the remaining (R−h) rounds with the given space of size M .
The number of possible state states is estimated (#F)th = 2n · (#F/2nin)th =
2n · (M/T)th. The time complexity is estimated as 2b (≤ 2n · (M/T)th) and the
success probability is 2b · (M/T)t(R−h).

Meet-in-the-Middle Attack. We start with two start states in the different
locations, and mount the meet-in-the-middle approach. In particular, we check
whether two states match in the middle rounds, and a pair of the plaintext and
the ciphertext is computed from the start states through the (R−2h) rounds. The
number of possible start states is estimated 2 · (#F)th = 2(n+1) · (#F/2nin)th =
2n+1 · (M/T)th. The time complexity is estimated as 2b (≤ 2n · (M/T)th) and
the success probability is 22b−n · (M/T)t(R−2h).

148 A. Bogdanov et al.

Fig. 10. Tradeoffs between time complexity and strong (T/4, Z)-space hardness of
SPNbox-16 in known/chosen space attacks

Table 1. Summary of bounds for weak/strong space hardness against known-, chosen-
and adaptively-chosen space attacks

Known/Chosen-space attack

Weak space hardness (M,− log2((M/T)tR))

Strong space hardness (M , − log2(2
n · (M/T)tR))

Adaptively-chosen space attack

Weak space hardness (M , − log2(2
−128+N + (M/T)tR)

N = �logein(1 − M/T)/tR�, where ein = (2nin − 1)/2nin

Evaluation. Fig. 10 shows the trade off between time complexity and strong
KS-(T/4, Z)-space hardness of SPNbox-16. As mentioned in Sect. 4.7, given T/4
space, the success probability is upper bounded by 2−32 (= 2128 · (1/4)8·10). In
our evaluations, in order to achieve it, it requires at most time complexity of
2112(= 2128 · (1/4)8·1) by the meet-in-the-middle approach and the start-from-
the-middle approach. If adversary’s time complexity is restricted, the success
probability decreases depending on the time complexity. If time complexity is
280 or 264, the probability is estimated as 2−64 (=280·2−144) or 2−80 (=264·2−144)
by the start-from-the-middle attack.

4.9 Summary of Space Hardness

Table 1 provides a summary of weak and strong space hardness of the target
construction in known-, chosen- and adaptively-chosen space attacks. It shows
the upper bounds of the success probability against each attack, given space of
size M ; or, in other words, lower bounds for the required space with respect to
the success probability of 2−Z .

Towards Practical Whitebox Cryptography: Optimizing Efficiency 149

Table 2 shows the lower bounds of the required space with respect to success
probabilities of 2−64 and 2−128 of SPACE-8,-16,-24 and -32 and SPNbox-8,-16,-
24 and -32. These results update the evaluations of SPACE-8,-16,-24 and -32 as
weak KP-(T/20.44, 128), (T/2, 128), (T/2, 128) and (T/2, 128)-space hardness,
while previous results claim weak KP-(T/4, 128)-space hardness [9]. All variants
SPNbox-8,-16,-24 and -32 achieve weak (T/4, 64)-space hardness in known, cho-
sen and adaptively-chosen space attacks, which is a reasonable security level for
practical applications. Also, all variants achieve strong (T/2.3, 64) to (T/32, 64)-
space hardness in known/chosen space attacks.

4.10 Advanced Side Channel Attacks

Differential Computation Analysis. Bos et al. proposed a new class of side
channel attacks called differential computation analysis [11]. This attack exploits
memory access patterns during the software execution of whitebox AES [15,
24,40] with the aid of a binary instrumentation framework such as PIN and
Valgrind. Since the software execution traces contain time demarcated physical
addresses of memory locations being read/written into, they essentially leak the
values of the inputs to the various tables accessed, and can be used as side-
channel information to extract the key.

This attack basically utilizes the fact that each table depends on only a frac-
tion of the key, e.g. 8 and 16 bits of key [15,24,40]. A small part of the key is
efficiently extracted using side-channel leakages. On the other hand, any table
of SPNbox contains full 128-bit key information. Thus, even if the adversary can
fully monitor the memory access patterns for the target key-dependent table,
there are 2128 possible candidates of corresponding memory access patterns for

Table 2. Comparison of SPACE, SPNbox: Lower bounds of the required space with
respected to the success probability 2−64 and 2−128

cipher T Weak Space hardness Strong Space hardness

Z = 64 Z = 128 Z = 64 Z = 128

KS/CS ACS KS/CS ACS KS/CS KS/CS

SPACE-8 [9] 3.84 KB T/20.22 T/20.22 T/20.44 T/20.44 T/20.64 T/20.86

SPACE-16 [9] 918 KB T/20.5 T/20.5 T/2 - T/21.5 T/22

SPACE-24 [9] 218 MB T/20.5 T/20.5 T/2 - T/21.5 T/22

SPACE-32 [9] 51.5 GB T/20.5 T/20.5 T/2 - T/21.5 T/22

SPNbox-8 256 B T/20.40 T/20.40 T/20.80 T/20.80 T/21.20 T/21.60

SPNbox-16 132 KB T/20.81 T/20.81 T/21.61 - T/22.40 T/23.20

SPNbox-24 50.3 MB T/21.28 T/21.28 T/22.57 - T/23.68 T/24.96

SPNbox-32 17.2 GB T/21.60 T/21.60 T/23.20 - T/24.80 T/26.40

KS: Known-space attack
CP : Chosen-space attack
ACS: Adaptive-chosen-space Attack

150 A. Bogdanov et al.

each key value. Therefore, a differential computational attack on SPNbox is com-
putationally infeasible.

Differential Fault Attacks. Sanfelix et al. propose a differential fault attack
on whitebox AES and DES [35]. This attack modifies the specific byte position
of internal states by injecting a fault. In the case of the AES, the fault injection
targets the MixColumn operation in the 9-th round.

The tables of SPNbox compose of small block ciphers, and the internals of the
small block ciphers are inaccessible in whitebox setting. Thus, any fault injection
attack reduces to a differential attack on a small block cipher in the blackbox
setting. Since the underlying cipher is secure against a differential attack in the
blackbox setting as estimated in Sect. 3.2, SPNbox is secure against differential
fault attacks.

5 Efficient Software Implementations

5.1 Setting

In this section, we discuss implementation characteristics of the SPNbox family
of block ciphers. We also present experimental measurements based on our opti-
mised high-performance software implementations and compare them to equiva-
lent instances of the SPACE family of whitebox ciphers proposed at CCS 2015 [9].
Altogether, this provides a comprehensive implementation study of all proposed
variants both in the blackbox and the whitebox setting. As target platforms
for the server-side, we chose the recent Skylake generation of Intel microproces-
sors which support the AES-NI instruction set [19] and SSE instructions up to
AVX2. As a mobile platform, we use the ARMv8 (AArch64) microarchitecture
with NEON instructions.

For the blackbox implementations, we specifically focus on constant-time
implementations without key-dependent table lookups on recent Intel platforms.
Whenever possible, we realise the small block ciphers with AES-NI instructions.

For the whitebox implementations, both on Intel and ARM, the small block
ciphers are implemented as table lookups, while the linear mixing of the table
lookups is implemented using AVX2 (Intel) and NEON (ARMv8) instructions.

5.2 Implementation Characteristics of SPNbox

The SPNbox ciphers can efficiently utilize the parallelism offered by both stan-
dard SIMD and the AES instructions on contemporary microprocessors. With
block sizes of n = 128 or n = 120 bit, one block fits naturally in the 128/256-bit
SSE/AVX registers on Intel, or the 128-bit NEON registers on ARMv8. Addi-
tionally, the parallel and independent application of the S-boxes Snin

, realised by
the small internal block ciphers, offers opportunities for exploiting parallelism,
both inside one block and across blocks of a longer message.

Towards Practical Whitebox Cryptography: Optimizing Efficiency 151

In the Black Box. In the blackbox setting on Intel platforms, the small block
ciphers are implemented in a round-based fashion using the AES-NI instructions
for the individual transformations. The composition of MCnin

◦SB can be realised
by first using the pshufb instruction reordering the bytes of the state equiva-
lent to inverse ShiftRows, followed by an aesenc instruction for one full AES
round. For nin = 32, this is already sufficient. For nin = 24, 16, we note that by
construction, the matrices A24 and A16 are submatrices of A32 such that their
multiplication with the state corresponds to (x, y, z, 0)×A32 and (x, y, 0, 0)×A32,
respectively (the last 8 resp. 16 bits are ignored). We can therefore realize the
round function of the small block ciphers by XOR-ing the values (0, 0, 0, 52x) or
(0, 0, 52x, 52x) before applying inverse ShiftRows and the AES round, with 52x

being the inverse of 0 through the AES S-box. This allows the efficient re-use of
Intel’s AES-NI instructions also for smaller block sizes. For nin = 8, the linear
mixing step is the identity mapping, so can be omitted.

For the implementation of the linear layer θ in the outer rounds, it is ben-
eficial to re-organise the internal state such that the i-th S-boxes of multiple
message blocks are collected in one 128-bit register. This allows an efficient par-
allel execution of the finite field arithmetic, which vastly outweighs the overhead
imposed by the input and output conversion to and from this format.

Additionally, on the Skylake platform, the AES round function has a latency
of 4 cycles with a throughput of 1. Altogether, this implies that in order to both
fully utilize the AES-NI instruction pipeline and fill the SSE/AVX registers for
SIMD operations, our implementations for nin = 32, 24, 16, 8 process 8/4/8/16
consecutive blocks at a time, respectively (which is possible in any parallelizable
mode, in particular ECB or CTR). By reordering the round keys accordingly,
the implementation of the internal block ciphers can remain unchanged.

Efficient and Constant-Time Parallel Finite Field Arithmetic. Since we explic-
itly aim for constant-time implementations in the black box, the conditional
polynomial reduction has to be carried out without branching. For this, we
employ an optimized variant of the technique introduced in [25], which allows a
simultaneous doubling of 4 elements of GF(232) and GF(224), or 8 elements of
GF(216) or 16 elements of GF(28) with just four instructions with a latency of
3 and a throughput of 1.

The in-place multiplication by two of register %xmm0 can be implemented in
constant-time as follows:

vpcmpgtd MSB4_M, %xmm0, %xmm1
vpslld $1, %xmm0, %xmm0
vpand REDPOLY4_M, %xmm1, %xmm1
vpxor %xmm0, %xmm1, %xmm0

with MSB4 M containing four 32-bit copies of the value 7fffffffx, and
REDPOLY4 M containing four 32-bit copies of the reduction polynomial, i.e. 8dx.

152 A. Bogdanov et al.

In the White Box. In the whitebox setting, the small block ciphers Snin

are implemented as lookup tables of size nin · 2nin bytes. The linear layer θ of
SPNbox is then implemented on top of these table lookups using AVX (Intel) or
NEON instructions (ARMv8).

Again, we found it beneficial to re-organize the state to collect the i-th S-
boxes of consecutive blocks in one SSE/NEON register for a SIMD execution
of the finite field arithmetic. Compared to SPACE, we have 4,5,8 and 16 par-
allel independent table lookups in SPNbox-32,24,16 and 8, respectively. Since
memory-XMM register transfers have a throughput of 0.5 on Skylake, two of
these independent table lookups can be scheduled per cycle on Intel platforms.
This has to be contrasted to the situation in the serial round function of SPACE,
where no simultaneous table lookups were possible.

On ARM, the smaller caches and slower memory interface imply that lookups
in larger tables tend to be relatively more expensive than on Intel platforms.

5.3 Performance Measurements

We provide performance measurements for SPNbox and SPACE in both the black-
box and the whitebox setting for the encryption of messages of length 2048 bytes.
For the Intel platform, all measurements were taken on a single core of an Intel
Core i7-6700 CPU at 3400 MHz with Turbo Boost and hyperthreading disabled,
and averaged over 100000 repetitions, processing one message at a time. For the
ARMv8 platform, a single Cortex-A57 core at 2100 MHz of a Samsung Exynos
7420 CPU as shipped in a Samsung Galaxy S6 mobile phone was used.

Our findings are summarised in Table 3 and Fig. 11 for the blackbox setting;
and Table 4 for the whitebox setting. The whitebox performance is further illus-
trated in Fig. 12 (grouped by table size) and Fig. 13 (grouped by platform). All
performance figures are given in cycles per byte (cpb).

Fig. 11. Constant-time blackbox performance of SPACE and SPNbox on Intel Skylake
platform for various table sizes in cycles per byte (lower is better).

Towards Practical Whitebox Cryptography: Optimizing Efficiency 153

Fig. 12. Whitebox performance of SPACE and SPNbox on Intel Skylake and ARMv8
platforms for various table sizes in cycles per byte (lower is better).

Fig. 13. Whitebox performance of SPACE and SPNbox on Intel Skylake and ARMv8
platforms for various table sizes in cycles per byte (lower is better).

Discussion. The blackbox constant-time implementation results in Table 3 indi-
cate that for each variant with comparable space hardness, the SPNbox ciphers
offer significantly increased performance compared to SPACE. Somewhat inter-
estingly, the largest improvement (factor 4.5 speed-up) is obtained for the 32-bit
variant offering the highest level of space hardness. This is due to inherent con-
struction differences: While SPACE always uses the full AES transform and its
performance is only affected by the number of Feistel rounds, SPNbox needs more
and more rounds in its internal block ciphers to ensure sufficient key mixing when
the block sizes becomes smaller. Additionally, the use of the AES round trans-
formation implies increasing overhead with smaller block sizes, since increasing
parts of the state are unused. For nin = 8, the decrease in performance is caused
by the heavy 16 × 16 MDS diffusion layer over GF(28).

154 A. Bogdanov et al.

Table 3. Software performance of the SPNbox and SPACE cipher families on the Intel
Skylake platform in the blackbox setting. Numbers are given in cycles per byte (cpb).

Algorithm Rounds (outer) Rounds (inner) Performance [cpb]

SPNbox-32 10 16 15.09

SPNbox-24 10 20 40.48

SPNbox-16 10 32 39.98

SPNbox-8 10 64 46.49

SPACE-32 128 10 101.02

SPACE-24 128 10 107.01

SPACE-16 128 10 101.21

SPACE-8 300 10 248.31

Table 4. Software performance of the SPNbox and SPACE cipher families in the white-
box setting on Intel Skylake and ARMv8 platforms. Numbers are given in cycles per
byte (cpb).

Algorithm Rounds (outer) Table size Performance Intel [cpb] ARM

SPNbox-32 10 17.2 GB 184.56 —

SPNbox-24 10 50.3 MB 33.48 479.38

SPNbox-16 10 132 KB 17.59 27.37

SPNbox-8 10 256 B 22.93 42.66

SPACE-32 128 51.5 GB 5535.01 —

SPACE-24 128 218 MB 354.86 2384.74

SPACE-16 128 918 KB 305.11 377.51

SPACE-8 300 3.84 KB 203.19 409.57

Regarding the performance of SPACE, our results largely confirm the esti-
mation of R cpb for R rounds on an AES-NI platform provided in [9].

Also in the whitebox setting, SPNbox significantly outperforms SPACE for all
variants, on both Intel and ARM platforms. One observes that any increases in
pure lookup performance due to smaller table size is increasingly compensated
for by the heavier linear MDS layers. The surprisingly good performance of
SPNbox-32 can to some extent be attributed to the fact that our test platform
had 16 GB of memory available.

Comparing the blackbox to the whitebox performances of each variant of
SPNbox, it becomes apparent that from nin = 24 and smaller, table-based imple-
mentations outperform round-based implementations. The latter, however, offer
constant timing behaviour. Further optimizations of the constant-time imple-
mentations also remain possible.

Summarising, the constant-time blackbox performance of the proposed SPN-
box ciphers outperforms the SPACE variants by factors of 2.5 to 6.5. In the

Towards Practical Whitebox Cryptography: Optimizing Efficiency 155

whitebox setting, the new SPNbox ciphers offer performance improvements by
factors of 8 to 18 (on Intel) and 5 to 13 (on ARM) over SPACE, as illustrated in
Figs. 12 and 13.

6 Conclusion and Outlook

In this paper, we proposed SPNbox, a new family of space-hard block ciphers,
which significantly improves upon the SPACE ciphers. Employing an SPN-type
design with efficient constant-time small block ciphers, the resulting paralleliza-
tion opportunities allow significantly faster implementations both in the black
box and in the white box. Instances of SPNbox achieve speed-ups of up to 6.5
times in the black box and up to 18 times in the whitebox setting, while offer-
ing comparable space hardness. Moreover, we formalized the security models of
space hardness which are classified with respect to the adversary’s abilities. We
proved security bounds of space hardness in all adversarial models. We then
applied this analysis to SPNbox, showing that SPNbox offers sufficiently high
levels of space hardness in each adversary model.

Our work also raises a couple of open research questions and directions.
Concerning the design of the small internal block ciphers, there seems to be
an efficiency bottleneck regarding the key mixing: The smaller the block size,
the more rounds are needed to avoid meet-in-the-middle attacks, which limits
their efficiency. This raises the question of how to build more efficient block
ciphers with very small block lengths and a relatively large key. Especially, fast
key mixing and efficient key scheduling functions for small block ciphers are
essentially unknown.

A possible solution for this efficiency problem is to use table lookups for
secret S-boxes. This however introduces side-channel issues with key-dependent
lookups, motivating further research into how to construct secret S-boxes of
various sizes with efficient constant-time implementations.

References

1. Adobe Systems Incorporated. Adobe Primetime Technical Primer for Operators
(2014)

2. Akamai Technologies. Securing Cloud-Based Workflows for Premium Content
(2014)

3. Benadjila, R., Billet, O., Gilbert, H., Macario-Rat, G., Peyrin, T., Robshaw, M.,
Seurin, Y.: SHA-3 Proposal: ECHO. Submission to NIST (2009)

4. Barreto, P., Rijmen, V.: The Anubis Block Cipher. Submission to the NESSIE
Project (2000)

5. Barreto, P., Rijmen, V.: The Khazad Legacy-level Block Cipher. Submission to the
NESSIE Project (2000)

6. Billet, O., Gilbert, H., Ech-Chatbi, C.: Cryptanalysis of a white box AES imple-
mentation. In: Handschuh, H., Hasan, M.A. (eds.) SAC 2004. LNCS, vol. 3357, pp.
227–240. Springer, Heidelberg (2004). doi:10.1007/978-3-540-30564-4 16

http://dx.doi.org/10.1007/978-3-540-30564-4_16

156 A. Bogdanov et al.

7. Biryukov, A., Bouillaguet, C., Khovratovich, D.: Cryptographic schemes based on
the ASASA structure: black-box, white-box, and public-key (extended abstract).
In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014. LNCS, vol. 8873, pp. 63–84.
Springer, Heidelberg (2014). doi:10.1007/978-3-662-45611-8 4

8. Biryukov, A., Shamir, A.: Structural cryptanalysis of SASAS. J. Cryptology 23(4),
505–518 (2010)

9. Bogdanov, A., Isobe, T.: White-box cryptography revisited: space-hard ciphers. In:
Proceedings of the 22nd ACM SIGSAC Conference on Computer and Communi-
cations Security, pp. 1058–1069. ACM (2015)

10. Borghoff, J., Knudsen, L.R., Leander, G., Thomsen, S.S.: Slender-set differential
cryptanalysis. J. Cryptology 26(1), 11–38 (2013)

11. Bos, J.W., Hubain, C., Michiels, W., Teuwen, P.: Differential computation analysis:
hiding your white-box designs is not enough. In: Gierlichs, B., Poschmann, A.Y.
(eds.) CHES 2016. LNCS, vol. 9813, pp. 215–236. Springer, Heidelberg (2016).
doi:10.1007/978-3-662-53140-2 11

12. Bringer, J., Chabanne, H., Dottax, E.: White box cryptography: another attempt.
IACR Cryptology ePrint Archive 2006:468 (2006)

13. Chong, K.-M.: The arithmetic mean-geometric mean inequality: a new proof. Math.
Mag. 49(2), 87–88 (1976)

14. Chow, S., Eisen, P., Johnson, H., Oorschot, P.C.: A white-box DES implementation
for DRM applications. In: Feigenbaum, J. (ed.) DRM 2002. LNCS, vol. 2696, pp.
1–15. Springer, Heidelberg (2003). doi:10.1007/978-3-540-44993-5 1

15. Chow, S., Eisen, P., Johnson, H., Oorschot, P.C.: White-box cryptography and an
AES implementation. In: Nyberg, K., Heys, H. (eds.) SAC 2002. LNCS, vol. 2595,
pp. 250–270. Springer, Heidelberg (2003). doi:10.1007/3-540-36492-7 17

16. Delerablée, C., Lepoint, T., Paillier, P., Rivain, M.: White-box security notions for
symmetric encryption schemes. In: Lange, T., Lauter, K., Lisoněk, P. (eds.) SAC
2013. LNCS, vol. 8282, pp. 247–264. Springer, Heidelberg (2014). doi:10.1007/
978-3-662-43414-7 13

17. Dziembowski, S.: Intrusion-resilience via the bounded-storage model. In: Halevi,
S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 207–224. Springer, Heidelberg
(2006). doi:10.1007/11681878 11

18. Gruss, D., Spreitzer, R., Mangard, S.: Cache template attacks: automating attacks
on inclusive last-level caches. In: 24th USENIX Security Symposium, USENIX
Security 15, pp. 897–912. USENIX Association (2015)

19. Gueron, S.: Intel Advanced Encryption Standard (AES) Instructions Set. Intel
white paper, September 2012

20. Halderman, J.A., Schoen, S.D., Heninger, N., Clarkson, W., Paul, W., Calandrino,
J.A., Feldman, A.J., Appelbaum, J., Felten, E.W.: Lest we remember: cold boot
attacks on encryption keys. In: Proceedings of the 17th USENIX Security Sympo-
sium, pp. 45–60. USENIX Association (2008)

21. Hawkes, P., O’Connor, L.: XOR and Non-XOR differential probabilities. In: Stern,
J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 272–285. Springer, Heidelberg
(1999). doi:10.1007/3-540-48910-X 19

22. Irazoqui, G., Eisenbarth, T., Sunar, B.: S$a: A shared cache attack that works
across cores and defies VM sandboxing - and its application to AES. In: 2015
IEEE Symposium on Security and Privacy, SP 2015, pp. 591–604. IEEE Computer
Society (2015)

http://dx.doi.org/10.1007/978-3-662-45611-8_4
http://dx.doi.org/10.1007/978-3-662-53140-2_11
http://dx.doi.org/10.1007/978-3-540-44993-5_1
http://dx.doi.org/10.1007/3-540-36492-7_17
http://dx.doi.org/10.1007/978-3-662-43414-7_13
http://dx.doi.org/10.1007/978-3-662-43414-7_13
http://dx.doi.org/10.1007/11681878_11
http://dx.doi.org/10.1007/3-540-48910-X_19

Towards Practical Whitebox Cryptography: Optimizing Efficiency 157

23. Irazoqui, G., Inci, M.S., Eisenbarth, T., Sunar, B.: Wait a minute! A fast, cross-
VM attack on AES. In: Stavrou, A., Bos, H., Portokalidis, G. (eds.) RAID
2014. LNCS, vol. 8688, pp. 299–319. Springer, Heidelberg (2014). doi:10.1007/
978-3-319-11379-1 15

24. Karroumi, M.: Protecting white-box AES with dual ciphers. In: Rhee, K.-H.,
Nyang, D.H. (eds.) ICISC 2010. LNCS, vol. 6829, pp. 278–291. Springer,
Heidelberg (2011). doi:10.1007/978-3-642-24209-0 19

25. Käsper, E., Schwabe, P.: Faster and timing-attack resistant AES-GCM. In:
Clavier, C., Gaj, K. (eds.) CHES 2009. LNCS, vol. 5747, pp. 1–17. Springer,
Heidelberg (2009). doi:10.1007/978-3-642-04138-9 1

26. Lepoint, T., Rivain, M., Mulder, Y., Roelse, P., Preneel, B.: Two attacks on a
white-box AES implementation. In: Lange, T., Lauter, K., Lisoněk, P. (eds.) SAC
2013. LNCS, vol. 8282, pp. 265–285. Springer, Heidelberg (2014). doi:10.1007/
978-3-662-43414-7 14

27. Link, H.E., Neumann, W.D.: Clarifying obfuscation: improving the security of
white-box DES. In: International Symposium on Information Technology: Cod-
ing and Computing (ITCC 2005), vol. 1, pp. 679–684 (2005)

28. Minaud, B., Derbez, P., Fouque, P.-A., Karpman, P.: Key-recovery attacks on
ASASA. In: Iwata, T., Cheon, J.H. (eds.) ASIACRYPT 2015. LNCS, vol. 9453, pp.
3–27. Springer, Heidelberg (2015). doi:10.1007/978-3-662-48800-3 1

29. Workgroup Mobey, H.C.E., Forum. The Host Card Emulation in Payments:
Options for Financial Institutions (2014)

30. Mulder, Y., Roelse, P., Preneel, B.: Cryptanalysis of the xiao – lai white-box AES
implementation. In: Knudsen, L.R., Wu, H. (eds.) SAC 2012. LNCS, vol. 7707, pp.
34–49. Springer, Heidelberg (2013). doi:10.1007/978-3-642-35999-6 3

31. De Mulder, Y., Wyseur, B., Preneel, B.: Cryptanalysis of a perturbated white-
box AES implementation. In: Gong, G., Gupta, K.C. (eds.) INDOCRYPT
2010. LNCS, vol. 6498, pp. 292–310. Springer, Heidelberg (2010). doi:10.1007/
978-3-642-17401-8 21

32. National Institute of Standards and Technology. Recommendation for Key Deriva-
tion Using Pseudorandom Functions. NIST Special Publication (SP) 800–108
(2009)

33. National Institute of Standards and Technology: SHA-3 Standard: Permutation-
Based Hash and Extendable-Output Functions. Federal Information Processing
Standards Publication 202 (2015)

34. Ristenpart, T., Tromer, E., Shacham, H., Savage, S.: Hey, you, get off of my cloud:
exploring information leakage in third-party compute clouds. In: Proceedings of the
2009 ACM Conference on Computer and Communications Security, CCS 2009, pp.
199–212. ACM (2009)

35. Sanfelix, E., Mune, C., de Haas, J.: Unboxing the white-box practical attacks
against obfuscated ciphers. In: Black Hat Europe 2015 (2015)

36. Sim, S.M., Khoo, K., Oggier, F., Peyrin, T.: Lightweight MDS involution matrices.
In: Leander, G. (ed.) FSE 2015. LNCS, vol. 9054, pp. 471–493. Springer, Heidelberg
(2015). doi:10.1007/978-3-662-48116-5 23

37. Alliance, S.C., Paper, W.: Host Card Emulation (HCE) 101 (2014)
38. Tiessen, T., Knudsen, L.R., Kölbl, S., Lauridsen, M.M.: Security of the AES with

a secret S-Box. In: Leander, G. (ed.) Fast Software Encryption. LNCS, vol. 9054,
pp. 175–189. Springer, Heidelberg (2015). doi:10.1007/978-3-662-48116-5 9

http://dx.doi.org/10.1007/978-3-319-11379-1_15
http://dx.doi.org/10.1007/978-3-319-11379-1_15
http://dx.doi.org/10.1007/978-3-642-24209-0_19
http://dx.doi.org/10.1007/978-3-642-04138-9_1
http://dx.doi.org/10.1007/978-3-662-43414-7_14
http://dx.doi.org/10.1007/978-3-662-43414-7_14
http://dx.doi.org/10.1007/978-3-662-48800-3_1
http://dx.doi.org/10.1007/978-3-642-35999-6_3
http://dx.doi.org/10.1007/978-3-642-17401-8_21
http://dx.doi.org/10.1007/978-3-642-17401-8_21
http://dx.doi.org/10.1007/978-3-662-48116-5_23
http://dx.doi.org/10.1007/978-3-662-48116-5_9

158 A. Bogdanov et al.

39. Wyseur, B., Michiels, W., Gorissen, P., Preneel, B.: Cryptanalysis of white-box
DES implementations with arbitrary external encodings. In: Adams, C., Miri, A.,
Wiener, M. (eds.) SAC 2007. LNCS, vol. 4876, pp. 264–277. Springer, Heidelberg
(2007). doi:10.1007/978-3-540-77360-3 17

40. Xiao, Y., Lai, X.: A secure implementation of white-box AES. In: 2nd International
Conference on Computer Science and its Applications (CSA2009) (2009)

41. Yarom, Y., Falkner, K.: FLUSH+RELOAD: A high resolution, low noise, L3 cache
side-channel attack. In: Proceedings of the 23rd USENIX Security Symposium, pp.
719–732. USENIX Association (2014)

http://dx.doi.org/10.1007/978-3-540-77360-3_17

Efficient and Provable White-Box Primitives

Pierre-Alain Fouque1,2(B), Pierre Karpman1,3,4,5, Paul Kirchner6,
and Brice Minaud1,7

1 Université de Rennes 1, Rennes, France
pierre-alain.fouque@ens.fr

2 Institut Universitaire de France, Paris, France
3 Inria, Rennes, France

4 École Polytechnique, Paris, France
5 Nanyang Technological University, Singapore, Singapore

pierre.karpman@inria.fr
6 École Normale Supérieure, Paris, France

pkirchne@clipper.ens.fr
7 Royal Holloway University of London, Egham, UK

brice.minaud@gmail.com

Abstract. In recent years there have been several attempts to build
white-box block ciphers whose implementations aim to be incompress-
ible. This includes the weak white-box ASASA construction by Bouil-
laguet, Biryukov and Khovratovich from Asiacrypt 2014, and the
recent space-hard construction by Bogdanov and Isobe from CCS 2015.
In this article we propose the first constructions aiming at the same goal
while offering provable security guarantees. Moreover we propose con-
crete instantiations of our constructions, which prove to be quite efficient
and competitive with prior work. Thus provable security comes with a
surprisingly low overhead.

Keywords: White-box cryptography · Provable security

1 Introduction

1.1 White-Box Cryptography

The notion of white-box cryptography was originally introduced by Chow et
al. in the early 2000s [CEJO02a,CEJO02b]. The basic goal of white-box cryp-
tography is to provide implementations of cryptographic primitives that offer
cryptographic guarantees even in the presence of an adversary having direct
access to the implementation. The exact content of these security guarantees
varies, and different models have been proposed.

P.-A. Fouque, P. Karpman, P. Kirchner, B. Minaud—Partially supported by the
French ANR project BRUTUS, ANR-14-CE28-0015.
P. Karpman—Partially supported by the Direction Générale de l’Armement and by
the Singapore National Research Foundation Fellowship 2012 (NRF-NRFF2012-06).

c© International Association for Cryptologic Research 2016
J.H. Cheon and T. Takagi (Eds.): ASIACRYPT 2016, Part I, LNCS 10031, pp. 159–188, 2016.
DOI: 10.1007/978-3-662-53887-6 6

160 P.-A. Fouque et al.

Ideally, white-box cryptography can be thought of as trying to achieve secu-
rity guarantees similar to a Trusted Execution Environment [ARM09] or trusted
enclaves [CD16], purely through implementation means—in so far as this is fea-
sible. Of course this line of research finds applications in many situations where
code containing secret information is deployed in non-trusted environments, such
as software protection (DRM) [Wys09,Gil16].

Concretely, the initial goal in [CEJO02a,CEJO02b] was to offer implemen-
tations of the DES and AES block ciphers, such that an adversary having full
access to the implementation would not be able to extract the secret keys. Unfor-
tunately both the initial constructions and later variants aiming at the same goal
(such as [XL09]) were broken [BGEC04,GMQ07,WMGP07,DMRP12]: to this
day no secure white-box implementation of DES or AES is known.

Beside cryptanalytic weaknesses, defining white-box security as the impossi-
bility to extract the secret key has some drawbacks. Namely, it leaves the door
open to code lifting attacks, where an attacker simply extracts the encryption
function as a whole and achieves the same functionality as if she had extracted
the secret key: conceptually, the encryption function can be thought of as an
equivalent secret key1.

This has led research on white-box cryptography into two related directions.
One is to find new, sound and hopefully achievable definitions of white-box cryp-
tography. The other is to propose new constructions fulfilling these definitions.

In the definitional line of work, various security goals have been proposed
for white-box constructions. On the more theoretical end of the spectrum, the
most demanding property one could hope to attain for a white-box construction
would be that of virtual black-box obfuscation [BGI+01]. That is, an adversary
having access to the implementation of a cipher would learn no more than they
could from interacting with the cipher in a black-box way (i.e. having access to
an oracle computing the output of the cipher). Tremendous progress has been
made in recent years in the domain of general program obfuscation, starting
with [GGH+13]. However the current state of the art is still far from practical
use, both in terms of concrete security (see e.g. [Hal15]) and performance (see
e.g. an obfuscation of AES in [Zim15]).

A less ambitious goal, proposed in [DLPR13,BBK14] is that an adversary
having access to the implementation of an encryption scheme may be able to
encrypt (at least via code lifting), but should remain unable to decrypt. This
notion is called strong white-box in [BBK14] and one-wayness in [DLPR13].
Such a goal is clearly very similar to that of a trapdoor permutation, and indeed
known constructions rely on public-key primitives. As a consequence they are
no faster than public key encryption. An interesting way to partially circum-
vent this issue, proposed in [BBK14], is to use multivariate cryptography, where
knowledge of the secret information allows encryption and decryption at a speed
comparable to standard symmetric ciphers (although public key operations are
quite slow). However multivariate cryptography lacks security reductions to
well-established hard problems (although they are similar in flavor to MQ),

1 This can be partially mitigated by the use of external encodings [CEJO02a].

Efficient and Provable White-Box Primitives 161

and numerous instantiations have been broken, including those of [BBK14]: see
[GPT15,DDKL15,MDFK15].

Finally, on the more modest but efficiently achievable end of the spectrum,
one can ask that an adversary having access to the white-box implementation
cannot produce a functionally equivalent program of significantly smaller size.
This notion has been called incompressibility in [DLPR13], weak white-box in
[BBK14] and space-hardness in [BI15]2. This definition implies in particular
that it is difficult for an adversary to extract a short master key, which captures
the goal of the original white-box constructions by Chow et al. In addition, the
intent behind this approach is that large, incompressible code can more easily
be made resistant to code lifting when combined with engineering obfuscation
techniques [BBK14,BI15,Gil16]; and make code distribution more cumbersome
for a potential attacker.

As mentioned earlier, there is no known implementation of AES or DES
that successfully hides the encryption key. A fortiori there is no known way to
achieve incompressibility for AES, DES or indeed any pre-existing cipher. How-
ever recent constructions have proposed new, ad-hoc, and quite efficient ciphers
specifically designed to meet the incompressibility criterion [BBK14,BI15]. These
constructions aim for incompressibility by relying on a large pseudo-random
table hard-coded into the implementation of the cipher, with repeated calls to
the table being made during the course of encryption. The idea is that, without
knowledge of all or most of the table, most plaintexts cannot be encrypted. This
enforces incompressibility.

In [BBK14], the table is used as an S-box in a custom block cipher design.
This requires building the table as a permutation, which is achieved using an
ASASA construction, alternating secret affine and non-linear layers. Unfortu-
nately this construction was broken [DDKL15,MDFK15]. This type of attack is
completely avoided in the new SPACE construction [BI15], where the table is
built by truncating calls to AES. This makes it impossible for an adversary to
recover the secret key used to generate the table, based solely on the security of
AES. However this also implies that the table is no longer a permutation and
cannot be used as an S-box. Accordingly, in SPACE, the table is used as a round
function in a generalized Feistel network. While an adversary seeking to extract
the key is defeated by the use of AES, there is no provable resistance against an
adversary trying to compress the cipher.

We also remark that the standard formalization of white-box cryptography
is very close to other models. For example, the bounded-storage model consid-
ers the problem of communicating securely given a long public random string
which the adversary is unable to store. Indeed, up to renaming, it is essentially
the same as the incompressibility of the key, and one of our design is inspired
by a solution proposed to this problem [Vad04]. Another model, even stronger
than incompressibility, is intrusion-resilience [Dzi06]. The goal is to communi-
cate securely, even when a virus may output any data to the adversary during

2 Here, we lump together very similar definitions, although they are technically dis-
tinct. More details are provided in Sect. 2.1.

162 P.-A. Fouque et al.

the computations of both parties, as long as the total data leaked is somewhat
smaller than the key size. The disadvantage of this model is that it requires
rounds of communication (e.g. 9 rounds in [CDD+07]), while white-box solu-
tions need only add some computations.

1.2 Our Contribution

Both of the previously mentioned constructions in [BBK14,BI15] use ad-hoc
designs. They are quite efficient, but cannot hope to achieve provable security.
Our goal is to offer provable constructions, while retaining similar efficiency.

First, we introduce new formal definitions of incompressibility, namely weak
and strong incompressibility. Weak incompressibility is very close to incompress-
ibility definitions in previous work [BBK14,BI15], and can be regarded as a for-
malization of the space-hardness definition of [BI15]. Strong incompressibility on
the other hand is a very demanding notion; in particular it is strictly stronger
than the incompressibility definition of [DLPR13].

Our main contribution is to introduce two provably secure white-box con-
structions, named WhiteKey and WhiteBlock. We prove both constructions in
the weak model. The bounds we obtain are close to a generic attack, and yield
quite efficient parameters. Moreover we also prove WhiteKey in the strong model.

Previous work has concentrated on building white-box block ciphers. This
was of course unavoidable when attempting to provide white-box implementa-
tions of AES or DES. However, it was already observed in the seminal work of
Chow et al. that the use of white-box components could be limited to key encap-
sulation mechanisms [CEJO02a]. That is, the white-box component is used to
encrypt and decrypt a symmetric key, which is then used to encrypt or decrypt
the rest of the message. This is of course the same technique as hybrid encryp-
tion, and beneficial for the same reason: white-box component are typically
slower than standard symmetric ciphers (albeit to a lesser extent than public-key
schemes).

In this context, the white-box component need not be a block cipher, and
our WhiteKey construction is in fact a key generator. That is, it takes a random
string as input and outputs a key, which can then be used with any standard
block cipher. Its main feature is that it is provably strongly incompressible.
Roughly speaking, this implies it is unfeasible for an adversary, given full access
to a white-box implementation of WhiteKey, to produce a significantly smaller
implementation that is functionally equivalent on most inputs. In fact, an effi-
cient adversary knowing this smaller implementation cannot even use it to dis-
tinguish, with noticeable probability, outputs of the original WhiteKey instance
from random.

However, WhiteKey is not invertible, and in particular it is not a block cipher,
unlike prior work. Nevertheless we also propose a white-box block cipher named
WhiteBlock. WhiteBlock can be used in place of any 128-bit block cipher, and is
not restricted to key generation. However this comes at some cost: WhiteBlock
has a more complex design, and is slightly less efficient than WhiteKey. Further-
more, it is proved only in the weak incompressibility model (essentially the same

Efficient and Provable White-Box Primitives 163

model as that of SPACE [BI15]), using a heuristic assumption. Thus WhiteKey
is a cleaner and more efficient solution, if the key generation functionality suf-
fices (which is likely in most situations where a custom white-box design can be
used).

Regarding the proof of WhiteKey in the strong incompressibility model, the
key insight is that what we are trying to build is essentially an entropy extractor.
Indeed, roughly speaking, the table can be regarded as a large entropy pool. If
an adversary tries to produce an implementation significantly smaller than the
table, then the table still has high (min-)entropy conditioned on the knowledge of
the compressed implementation. Thus if the key generator functions as a good
entropy extractor, then the output of the key generator looks uniform to an
(efficient) adversary knowing only the compressed implementation.

Furthermore, for efficiency reasons, we want our extractor to be local, i.e. we
want our white-box key generator to make as few calls to the table as possible.
Hence a local extractor does precisely what we require, and as a result our proof
relies directly on previous work on local extractors [Vad04]. Meanwhile our proofs
in the weak incompressibility model use dedicated combinatorial arguments.

Finally, we provide concrete instantiations of WhiteKey and WhiteBlock,
named PuppyCipher and CoureurDesBois respectively. Our implementa-
tions show that these instances are quite efficient, yielding performance com-
parable to previous ad-hoc designs such as SPACE. Like in previous work, our
instances also offer various choices in terms of the desired size of the white-box
implementation.

1.3 Related Work

We are aware of three prior incompressible white-box schemes [DLPR13,BBK14,
BI15]. In the first of these papers, incompressibility is formally defined [DLPR13].
A public-key scheme is proven in the incompressible model: in a nutshell, the
scheme consists in a standard RSA encryption, except for the fact that the public
key is inflated by adding an arbitrary multiple of the group order. This provably
results in an incompressible scheme, which is also one-way due to its public-key
nature. However it is orders of magnitude slower than a symmetric scheme (note
that it is also slower than standard RSA due to the size of the exponent).

On the other hand, the authors of [BBK14,BI15] propose symmetric encryp-
tion schemes aiming at incompressibility alone. These constructions naturally
achieve higher performance. The white-box construction of [BBK14] was broken
in [MDFK15,DDKL15]. The construction in [BI15] provides provable guaran-
tees against an adversary attempting to recover the secret key used to generate
the table. However no proof is given against an adversary merely attempting
to compress the implementation. In fact the construction relies on symmetric
building blocks, and any such proof seems out of reach.

An independent work by Bellare, Kane and Rogaway was recently published
at Crypto 2016 [BKR16]; its underlying goal and techniques are similar to
our strong incompressibility model, and the WhiteKey construction in partic-
ular. Although the setting of [BKR16] is different and no mention is made of

164 P.-A. Fouque et al.

white-box cryptography, the design objective is similar. The setting considered
in [BKR16] is that of the bounded-retrieval model [ADW09], and the aim is to
foil key exfiltration attempts by using a large encryption key. The point is that
encryption should remain secure in the presence of an adversary having access
to a bounded exfiltration of the big key. The exfiltrated data is modeled as the
output of an adversarially-defined function of the key with bounded output.

The compressed implementation plays the same role in our definition of
strong incompressibility: interestingly, our strong model almost matches big-
key security in that sense (contrary to prior work on incompressible white-box
cryptography, which is closer to our weak model). Relatively minor differences
include the fact that we require a bound on the min-entropy of the table/big key
relative to the output of the adversarially-defined function, rather than specif-
ically the number of bits; and we can dispense with a random oracle at the
output because we do not assume that the adversary is able to see generated
keys directly, after the compression phase. A notable difference is how authen-
ticity is treated: we require that the adversary is unable to encrypt most plain-
texts, given the compressed implementation; whereas the authors of [BKR16]
only enforce authenticity when there is no leakage. A word-based generalization
of the main result in [BKR16], as mentioned in the discussion of that paper,
would be very interesting from our perspective, likely allowing better bounds for
WhiteKey in the strong incompressibility model. Proofs of weak incompressibil-
ity, the WhiteBlock construction, as well as the concrete design of the WhiteKey
instance using a variant of the extractor from [CMNT11], are unrelated.

As mentioned earlier in the introduction, the design of local extractors is also
directly related to our proof in the strong incompressibility model, most notably
[Vad04].

2 Models

2.1 Context

As noted in the introduction, the term white-box cryptography encompasses a
variety of models, aiming to achieve related, but distinct security goals. Here
we are interested in the incompressibility model. The basic goal is to prevent
an attacker who has access to the full implementation of a cipher to produce a
more compact implementation.

Incompressibility has been defined under different names and with slight
variations in prior work. It is formally defined as (λ, δ)-Incompressibility in
[DLPR13]. A very similar notion is called weak white-box in [BBK14], and space-
hardness in [BI15]. In [BBK14], the weak white-box model asks that an efficient
adversary, given full access to the cipher implementation, is unable to produce
a new implementation of the same cipher of size less than some security para-
meter T . In [BI15], this notion is refined by allowing the adversary-produced
implementation to be correct up to a negligible proportion 2−Z of the input
space. Thus a scheme is considered (T,Z)-space-hard iff an efficient adversary
is unable to produce an implementation of the cipher of size less than T , that

Efficient and Provable White-Box Primitives 165

is correct on all but a proportion 2−Z of inputs. This is essentially equivalent
to the (λ, δ)-incompressibility definition of [DLPR13], where λ and δ play the
respective roles of T and 2−Z .

In this work, we introduce and use two main notions of incompressibility,
which we call weak and strong incompressibility. Weak incompressibility may be
regarded as a formalization of space-hardness from [BI15]. As the names suggest,
strong incompressibility implies weak incompressibility (see the full version of
this paper [FKKM16]). The point of strong incompressibility is that it provides
stronger guarantees, and is a natural fit for the WhiteKey construction.

2.2 Preliminary Groundwork

To our knowledge, all prior work that has attempted to achieve white-box incom-
pressibility using symmetric means3 has followed a similar framework. The gen-
eral idea is as follows. The white-box implementation of the cipher is actually
a symmetric cipher that uses a large table as a component. The table is hard-
coded into the implementation. To an adversary looking at the implementation,
the table looks uniformly random. An adversary attempting to compress the
implementation would be forced to retain only part of the table in the com-
pressed implementation. Because repeated pseudo-random calls to the table are
made in the course of each encryption and decryption, any implementation that
ignores a significant part of the table would be unable to encrypt or decrypt
accurately most messages. This enforces incompressibility.

To a legitimate user in possession of the shared secret however, the table is
not uniformly random. It is in fact generated using a short secret key. Of course
this short master key should be hard to recover from the table, otherwise the
scheme could be dramatically compressed.

Thus a white-box encryption scheme is made up of two components: an
encryption scheme, which takes as input a short master secret key and uses it to
encrypt data, and a white-box implementation, which is functionally equivalent,
but does not use the short master secret key directly. Instead, it uses a large table
(which can be thought of as an equivalent key) that has been derived from the
master key. This situation is generally formalized by defining a white-box scheme
as an encryption scheme together with a white-box compiler, which produces the
white-box implementation of the scheme.

Definition 1 (Encryption Scheme). An encryption scheme is a mapping E :
K × R × P → C, taking as input a key K ∈ K, possibly some randomness
r ∈ R, and a plaintext P ∈ P. It outputs a ciphertext C ∈ C. Furthermore it is
required that the encryption scheme be invertible, in the sense that there exists a
decryption function D : K × C → P such that ∀K,R,P,D(K,E(K,R,P)) = P .

3 This excludes the incompressible construction from [DLPR13], which is based on a
modified RSA.

166 P.-A. Fouque et al.

Definition 2 (White-box Encryption Scheme). A white-box encryption
scheme is defined by a pair of two encryption schemes:

E1 : K × R × P → C
E2 : T × R × P → C

together with a white-box compiler C : K → T , such that for all K ∈ K,
E1(K, ·, ·) is functionally equivalent to E2(C(K), ·, ·).

In the definition above, E1 can be thought of as a standard encryption scheme
relying on a short (say, 128-bit) master key K, while E2 is its white-box imple-
mentation, relying on a large table T derived from K. To distinguish between
E1 and E2, we will sometimes call the first scheme the cipher, and the second
the (white-box) implementation.

2.3 Splitting the Adversaries

A white-box scheme is faced with two distinct adversaries:

– The black-box adversary only has black-box access to the scheme. She attempts
to attack the cipher with respect to some standard black-box security notion.

– The white-box adversary has full access to the white-box implementation. She
attempts to break incompressibility by producing a smaller implementation of
the scheme.

The black-box adversary can be evaluated with respect to standard security
notions such as IND-CCA. The specificity of white-box schemes is of course the
second adversary, on which we now focus. The white-box adversary itself can be
decomposed into two distinct adversaries:

– The compiler adversary attempts to recover the master key K of E1 given the
implementation E2. This is the adversary that succeeds in the cryptanalyses
of many previous schemes, e.g. [BGEC04,GMQ07,DDKL15,MDFK15]. More
generally this adversary attempts to distinguish C(K) for K ←$ K from a
uniform element of T .

– Finally, the implementation adversary does not attempt to distinguish T , and
instead regards T as uniformly random. She focuses purely on the white-box
implementation E2. She attempts to produce a functionally equivalent (up to
some error rate specified by the security parameters), but smaller implemen-
tation of E2.

Nicely enough, the three black-box, compiler and implementation adversaries
target respectively the E1, C, and E2 components of the white-box scheme (hence
their name). Of course the two white-box adversaries (targeting the compiler
and implementation) break incompressibility, so they can be captured by the
same security definition (as in [DLPR13]). However it is helpful to think of the
two as separate adversaries, especially because they can be thwarted by sepa-
rate mechanisms. Moreover it is clear that resistance to both adversaries implies

Efficient and Provable White-Box Primitives 167

incompressibility (the dichotomy being whether the table can be efficiently dis-
tinguished from random).

The authors of [BI15] introduce a new general method to make sure that the
compiler adversary fails, i.e. C(T) is indistinguishable from uniform. Namely,
they propose to generate the table T by truncating the output of successive calls
to AES (or some other fixed block cipher). In this scenario the master key K
of E1 is the AES key. Assuming AES cannot be distinguished from a uniformly
random permutation, and the truncated output is (say) at most half of the
original cipher, then the table T is indistinguishable from a random function.

2.4 Weak Incompressibility

As noted in the previous section, using the technique from [BI15], defeating
the compiler adversary is quite easy, and relies directly and provably on the
security of a standard cipher. As a result, our security definition (and indeed,
our constructions) focus on the implementation adversary.

The weak incompressibility notion we define below is very close to the space-
hardness notion of [BI15], indeed it is essentially a formalization of it. Like in
[BBK14,BI15], the definition is specific to the case where the table T is actually
a table (rather than an arbitrary binary string) which implements a function (or
permutation) T : I → O, and can be queried on inputs i ∈ I.

We write weak incompressibility as ENC-TCOM: ENC reflects the fact that
the adversary’s ultimate goal is to encrypt a plaintext. TCOM stands for table-
compressed, as the adversary is given access to a compressed form of the table.
This is of course weaker than being given access to a compressed implementation
defined in an arbitrary adversarially-defined way, as will be the case in the next
section.

In the following definition, the encryption scheme should be thought of as
the white-box implementation E2 from the previous sections. In particular the
“key” is a large table.

Definition 3 (Weak Incompressibility, ENC-TCOM). Let E : T ×R×P
denote an encryption scheme. Let s, λ denote security parameters. Let us further
assume that the key T ∈ T is a function T : I → O for some input and output
sets I and O. The encryption scheme is said to be τ -secure for (s, λ, δ)-weak
incompressibility iff, with probability at least 1 − 2−λ over the random choice
of T ∈ T (performed in the initial step of the game), the probability of success
of an adversary running in time τ and playing the following game is upper-
bounded by δ.

1. The challenger B picks T ∈ T uniformly at random.
2. For 0 ≤ i < s, the adversary chooses qi ∈ I, and receives T (qi) from the

challenger. Note that the queries are adaptive.
At this point the adversary is tasked with trying to encrypt a random message:

3. The challenger chooses P ∈ P uniformly at random, and sends P to the
adversary.

4. The adversary chooses C ∈ C. The adversary wins iff C decrypts to P (for
key T).

168 P.-A. Fouque et al.

In other words, a scheme is (s, λ, δ)-weakly incompressible iff any adversary
allowed to adaptively query up to s entries of the table T can only correctly
encrypt up to a proportion δ of plaintexts (except with negligible probability
2−λ over the choice of T). Note that (s, λ, δ)-weak incompressibility matches
exactly with (s,− log(δ))-space-hardness in [BI15]. The only difference is that
our definition is more formal, as is necessary since we wish to provide a security
proof. In particular we specify that the adversary’s queries are adaptive.

It should also be noted that the adversary’s goal could be swapped for e.g.
indistinguishability in the definition above. The reason we choose a weaker goal
here is that it matches with prior white-box definitions, namely space-hardness
[BI15] and weak white-box [BBK14]. Moreover it makes sense in white-box con-
texts such as DRM, where an attacker is attempting to create a rogue encryption
or decryption algorithm: the point is that such an algorithm should fail on most
inputs, unless the adversary has succeeded in extracting the whole table (or close
to it), and the algorithm includes it.

It is noteworthy that in our definitions, “incompressibility” is captured as a
power given to the adversary. The adversary’s goal, be it encryption or indistin-
guishability, can be set independently of the specific form of compressed imple-
mentation she is allowed to ask for. This makes the definition conveniently mod-
ular, in the spirit of standard security notions such as IND-CCA.

2.5 Strong Incompressibility

We now introduce a stronger notion of incompressibility. This definition is strong-
er in two significant ways.

1. First, there is no more restriction on how the adversary can choose to com-
press the implementation. In the case of weak incompressibility, the adversary
was only allowed to “compress” by learning a portion of the table. With strong
incompressibility, she is allowed to compress the implementation in an arbi-
trary way, as long as the table T retains enough randomness from the point
of view of the adversary (i.e. she does not learn the whole secret).

2. Second, the adversary’s goal is to distinguish the output of the encryption
function from random, rather than being able to encrypt. This requirement
may be deemed too demanding for some applications, but can be thought of
as the best form of incompressibility one can ask for.

We denote strong incompressibility by IND-COM because the ultimate goal
of the adversary is to break an indistinguishability game (IND), given a com-
pressed (or compact) implementation of their choice (COM). We actually give
more power to the adversary than this would seem to imply, as the adversary is
also given the power to query plaintexts of her choice after receiving the com-
pressed implementation.

Note that in the following definitions, f is not computationally bounded, so
generating the tables via a pseudorandom function is not possible.

Efficient and Provable White-Box Primitives 169

Definition 4 (Strong Incompressibility, IND-COM). Let E : T × R × P
denote an encryption scheme. Let μ denote a security parameter. Let us further
assume that the key T ∈ T is chosen according to some distribution D (typically
uniform). The scheme E is said to be (τ, ε)-secure for μ-strong incompressibility
iff the advantage of an adversary A running in time τ and playing the following
game is upper-bounded by ε.

1. The adversary chooses a set S and a function f : T → S, subject only to the
condition that for all s ∈ S, the min-entropy of the variable T conditioned on
f(T) = s is at least μ. The function f should be thought of as a compression
algorithm chosen by the adversary.

2. Meanwhile the challenger B picks T ∈ T according to the distribution D (thus
fixing an instance of the encryption scheme).

3. The adversary receives f(T). At this point the adversary is tasked with break-
ing a standard IND-CPA game, namely:

4. The adversary may repeatedly choose any plaintext P ∈ P, and learns
E(T,R, P).

5. The adversary chooses two plaintext messages P0, P1 ∈ P, and sends (P0, P1)
to B.

6. The challenger chooses a uniform bit b ∈ {0, 1}, randomness R ∈ R, and
sends E(T,R, Pb) to the adversary.

7. The adversary computes b′ ∈ {0, 1} and wins iff b′ = b.

It may be tempting, in the previous definition, to allow the adversary to first
query E, and choose f based on the answers. However it is not necessary to
add such interactions to the definition: indeed, such interactions can be folded
into the function f , which can be regarded as an arbitrary algorithm or protocol
between the adversary and the challenger having access to T . The only limitation
is that the min-entropy of T should remain above μ from the point of view of
the adversary. It is clear that a limitation of this sort is necessary, otherwise the
adversary could simply learn T .

Furthermore, while a definition based on min-entropy may seem rather
impractical, it encompasses as a special case the simpler space-hard notion of
[BI15]. In that case the table T is a uniform function, and f outputs a fixed
proportion 1/4 of the table. The min-entropy μ is then simply the number of
unknown output bits of the table (namely 3/4 of its output).

The WhiteKey construction that we define later on is actually a key gener-
ator. That is, it takes as input a uniformly random string and outputs a key.
The strong incompressibility definition expects an encryption scheme. In order
for the WhiteKey key generator to fulfill strong incompressibility, it needs to be
converted into an encryption scheme. This is achieved generically by using the
generated key (the output of WhiteKey) with a conventional symmetric encryp-
tion scheme, as in a standard hybrid cryptosystem. For instance, the plaintext
can be XORed with the output of a pseudorandom generator whose input is the
generated key. Strictly speaking, when we say that WhiteKey satisfies strong
incompressibility, we mean that this is the case when WhiteKey is thus used

170 P.-A. Fouque et al.

as a key generator in combination with any conventional symmetric encryption
process.

Note that this does not enforce authenticity. For instance, if the generated
key is used as an input to a stream cipher, forgeries are trivial. More generally
it is not possible to prevent existential forgeries, as the adversarially compressed
implementation could include any fixed arbitrary valid ciphertext. However uni-
versal forgeries can be prevented. This is naturally expressed by the following
model. The model actually captures the required goal in previous definitions
of incompressibility, in fact the model as a whole is essentially equivalent to
incompressibility in the sense of [DLPR13].

Definition 5 (Encryption Incompressibility, ENC-COM). Let E : T ×
R × P denote an encryption scheme. Let μ denote a security parameter. Let
us further assume that the key T ∈ T is chosen according to some distribution
D (typically uniform). The scheme E is said to be (τ, ε)-secure for μ-strong
incompressibility iff the advantage of an adversary A running in time τ and
playing the following game is upper-bounded by ε.

1. The adversary chooses a distribution D with min-entropy at least μ on P.
2. The adversary chooses a set S and a function f : T → S, subject only to the

condition that for all s ∈ S, the min-entropy of the variable T conditioned on
f(T) = s is at least μ. The function f should be thought of as a compression
algorithm chosen by the adversary.

3. Meanwhile the challenger B picks T ∈ T according to the distribution D (thus
fixing an instance of the encryption scheme).

4. The adversary receives f(T).
At this point the adversary is tasked with forging a message, namely:

5. The adversary samples a plaintext M ∈ P from the distribution D.
6. The adversary may repeatedly choose any plaintext P ∈ P, and learns

E(T,R, P).
7. The adversary wins iff she can compute a C ∈ C such that D(T,C) = M .

This model can also be fulfilled by the WhiteKey scheme, if we derive the
required randomness from H(P)+ r where H is a random oracle, P is the plain-
text, and r is a uniform value of μ bits added to the encryption. The decryption
starts by recovering the key, and then checks if the randomness used came from
H(P ′, r) where P ′ is the decrypted plaintext. This naturally makes any encryp-
tion scheme derived from a key generator resistant to universal forgeries.

Remark that it is necessary in the model to have the forged message gener-
ated independently of f(T), otherwise one can simply put an encryption of the
message in f(T).

Finally, observe that ENC-COM is stronger than ENC-TCOM, as ENC-
TCOM it is the special case of ENC-COM where the adversary’s chosen function
f does nothing more than querying T on some adaptively chosen inputs, and
returning the outputs.

Efficient and Provable White-Box Primitives 171

3 Constructions

In this section, we present two constructions that are provably secure in the
weak white-box model ENC-TCOM of Sect. 2 (cf. Definition 3): the WhiteBlock
block cipher, and the WhiteKey key generator. WhiteKey is also provable in the
strong model. We also propose PuppyCipher and CoureurDesBois as con-
crete instantiations of each construction, using the AES as underlying primitive.

3.1 The WhiteBlock Block Cipher

The general idea of WhiteBlock is to build a Feistel network whose round func-
tion uses calls to a large table T . An adversary who does not extract and store a
large part of this table should be unable to encrypt most plaintexts. For that pur-
pose, it is important that the inputs of table calls be pseudo-random, or at least
not overly structured. Otherwise the adversary could attempt to store a struc-
tured subset of the table that exploits this lack of randomness. In WhiteBlock,
the pseudo-randomness of table calls is enforced by interleaving calls to a block
cipher between each Feistel round.

Concretely, WhiteBlock defines a family of block ciphers with blocks of size
b = 128 bits, and a key of size κ = 128 bits4. The family is parameterized
with a size parameter which corresponds to the targeted size of a white-box
implementation. In principle, this size can be anything from a few dozen bytes
up to ≈ 264 bytes, but we will mostly restrict this description to the smallest
case considered in this article, which has an implementation of size 221 bytes.

Formally, we define one round of WhiteBlock (with tables of input size 16
bits) as follows. Let Ak denote a call to the block cipher A with key k, and
T i : {0, 1}16 → {0, 1}64 denote the i-th table. The Feistel round function is
defined by:

F : {0, 1}64 → {0, 1}64,
x63 . . . x0 �→ T 3(x63 . . . x48) ⊕ T 2(x47 . . . x32) ⊕ T 1(x31 . . . x16) ⊕ T 0(x15 . . . x0)

and one round of WhiteBlock with key k is defined as:

Rk : {0, 1}128 → {0, 1}128
x127 . . . x0 �→ Ak

(
((x127 . . . x64) ⊕ F(x63 . . . x0))||x63 . . . x0

)
.

A full instance of WhiteBlock is then simply the composition of a certain number
of independently-keyed round functions, with the addition of one initial top call
to A: WhiteBlockk0,...kr

: {0, 1}128 → {0, 1}128, x �→ Akr
◦Rkr−1 ◦ · · · ◦ Rk0(x).

We give an illustration of this construction (omitting the outer sandwiching calls
to A) in Fig. 1.

4 This generalizes well to other sizes.

172 P.-A. Fouque et al.

Fig. 1. The WhiteBlock construction, with tables on t bits, without the outer calls to
A. We have t′ = (b/2) mod s, c = �(b/2)/t�.

Constructing the Tables. For WhiteBlock instances with small tables, the
most efficient way to implement the cipher is simply to use the white-box imple-
mentation, i.e. use a table-based implementation of F (this will be clear from
the results of Sect. 5). In that case, it is easy to generate the tables “perfectly”
by drawing each entry uniformly at random, either by using a suitable source of
randomness (in that case, no one may be able to compress the tables) or by using
the output of a cryptographically-strong PRG seeded with a secret key. In the
latter case, the owner of the secret knows how to compactly represent the tables,
but this knowledge seems to be hard to exploit in a concrete implementation.

For larger instances, it is not true anymore that the fastest implementation
is table-based, and it may be useful in some contexts to be able to compute the
output of a table more efficiently than by querying it. Surely, if one knows how
to compactly represent a table, it is desirable that he would be able to do so, at
least for large tables. In that respect, drawing the tables at random would not
be satisfactory anymore.

Consequently, the tables used in WhiteBlock are generated as follows. Let
again T i : {0, 1}16 → {0, 1}64 be such a table (in the 16-bit case), then an
instance of it is defined with two parameters k ∈ {0, 1}128, c ∈ {0, 1}128−16 as
T (x) �= �Ak(c||x)�64, with �·�64 denoting the truncation to the 64 lowest bits.

An instance of WhiteBlock can thus always be described and implemented
compactly when knowing k and c. Of course this knowledge is not directly acces-
sible in a white-box implementation, where a user would only be given the tables
as a whole.

Concrete Parameters for Various Instances of WhiteBlock. We need
to address two more points before finishing this high-level description of
WhiteBlock: (1) given the size of the tables, how many rounds r are necessary to
obtain a secure white-box construction; (2) how to generate the multiple round
keys k0, . . . kr. The answer to (1) is provided by the analysis of the construction
done in the full paper, specifically [FKKM16, Theorem 3]. By instantiating the
formula from the theorem with concrete parameters, we obtain the results given

Efficient and Provable White-Box Primitives 173

in Table 1. As for (2), we simply suggest to use independent keys (as both their
generation process and the cost of storing the precomputed subkeys are negligi-
ble w.r.t. the generation and storage of the tables). There is some flexibility in
the framework and one can for instance consider using a tweakable block cipher
instead, as we do in our actual instantiation of WhiteBlock presented next.

Table 1. Number of rounds for WhiteBlock instances with tables of selected input sizes
from t = 16 to 32 bits, at a white-box security level of 128 − t bits for a compression
factor of 4. Black-box security is 128 bits in all cases.

Instance WB size # Tables/round WB security #rounds

WhiteBlock 16 221 B 4 112 bits @ 1/4 18

WhiteBlock 20 224.6 B 3 108 bits @ 1/4 23

WhiteBlock 24 228 B 2 104 bits @ 1/4 34

WhiteBlock 28 232 B 2 100 bits @ 1/4 34

WhiteBlock 32 236 B 2 96 bits @ 1/4 34

PuppyCipher: WhiteBlock in Practice. So far WhiteBlock has been
described from an abstract point of view, where all components are derived
from a block cipher A. In practice, we need to specify a concrete cipher; we
thus define the PuppyCipher family as an instantiation of WhiteBlock using
AES128 [DR02] for the underlying block cipher. Furthermore, though relying on
a secure block cipher is an important argument in the proof of the construction,
one can wish for a less expensive round function in practice. Hence we also define
the lighter, more aggressive alternative “Hound” which trades provable security
for speed. The only differences between PuppyCipher and Hound are:

1. The calls to the full AES128 are traded for calls to AES128 reduced to five
rounds (this excludes the calls in the table generation, which still use the full
AES).

2. The round keys kr . . . k0 used as input to A are simply derived from a unique
key K as ki

�= K ⊕ i. Note that using a tweakable cipher such as KIASU-
BC [JNP14] would also be possible here.

In Sect. 5, we discuss the efficiency of PuppyCipher and Hound imple-
mented with the AES instructions, for tables of 16, 20, and 24-bit inputs.

3.2 The WhiteKey Key Generator

In WhiteBlock, we generated pseudo-random calls to a large table by interleaving
a block cipher between table calls. If we are not restricted by the state size of
a block cipher, generating pseudo-random inputs for the table is much easier:
we can simply use a pseudo-random generator. From a single input, we are then
able to generate a large number of pseudo-random values to be used as inputs

174 P.-A. Fouque et al.

for table calls. It then remains to combine the outputs of these table calls into
a single output value of appropriate size. For this purpose, we use an entropy
extractor. More details on our choice of extractor are provided in the design
rationale below.

We now describe the WhiteKey function family, which can in some way be
seen as an unrolled and parallel version of WhiteBlock, with some adjustments.
As with WhiteBlock, we describe the main components of WhiteKey for use with
a 128-bit block cipher and tables of 16-bit inputs, but this generalizes easily to
other sizes.

Thus WhiteKey uses a table T : {0, 1}16 → {0, 1}128. Let n denote the
number of table calls (which will be determined later on by security proofs),
t

�= n/8� and d
�= √n�. At a high level, the construction of WhiteKey can be

described by the following process: (1) from a random seed, generate t 128-bit
values using a block cipher A with key k in counter mode; (2) divide each such
value into eight 16-bit words; (3) use these words as n inputs to the table T
(possibly ignoring from one to seven of the last generated values), resulting in
n 128-bit values Qi,j , 0 ≤ i, j ≤ d = √n� (if n is not a square, the remaining
values Qi,j are set to zero); (4) from a random seed, generate d 128-bit values
ai and d 128-bit values bi using A with key k′ in counter mode; (5) the output
of WhiteKey is

∑
i,j Qi,j · ai · bj , the operations being computed in F2128 .

Let us now define this more formally. We write At
k(s) for the t first 128-bit

output blocks of A in counter mode with key k and initial value s. We write Cn

for the parallel application of n ≤ 8 × t tables T : {0, 1}16 → {0, 1}128 (written
here in the case n = 8 × t for the sake of simplicity):

Cn : {0, 1}t×128 → {0, 1}n×128

xt128−1xt128−2 . . . x0 �→ T (xt128−1 . . . xt128−16)|| . . . || T (x15 . . . x0)

We write Sn for the “matrixification” mapping; taking d
�= √n� (here with

n = 57, for a not too complex general case):

Sn : {0, 1}n×128 → Md(F2128)

xn128−1xn128−2 . . . x0 �→

⎛

⎜
⎝

x127 . . . x0 x255 . . . x0 · · · x1023 . . . x896

...
...

. . .
...

xn128−1 . . . xn128−128 0 · · · 0

⎞

⎟
⎠ .

Finally, we write E the “product” mapping:

E : Fd
2128 × F

d
2128 × Md(F2128) → F2128

a, b,Q �→
∑

i,j

Qi,j · ai · bj

We can then describe an instance of WhiteKey parametered by (k1, s1, k2, s2)
over t and n values as WhiteKeyt,n

k1,s1,k2,s2

�= E ◦Ad
k2

(s2) ◦ Ad
k2

(s2 + d) ◦ Sn ◦Cn ◦
At(k1, s1) (using a Curried version of E for simplicity of notations).

Efficient and Provable White-Box Primitives 175

Constructing the Tables. The table used in an instance of WhiteKey is built
in the same way as for WhiteBlock. The only difference is that the output of A
is not truncated and the full 128 bits are used.

Design Rationale of WhiteKey. The first part of the scheme consists in
selecting a fraction of the secret that needs to be accessed, which is a necessary
step. The fastest way to implement this part is to access the secret in parallel at
locations that are thus determined independently.

The second part is to derive a short key from the table outputs, which are of
high min-entropy. The standard way to build a key derivation function is to use
a hash function [Kra10]. However it is slow, since even a fast hash function like
BLAKE2b takes 3 cycles per byte on modern processors [ANWOW13]. Instead,
we decided to use an extractor, which has also the advantage to be uncondi-
tionally secure for a uniform seed. The extractor literature focused primarily on
reducing the number of seed bits and maximizing the number of extracted bits,
because of their importance in theoretical computer science; see [Sha11] for a
survey. In our case, we want to extract only a few bits and speed is the princi-
pal concern. The approach recommended by [BDK+11] is to generate pseudo-
random elements in a large field using a standard pseudorandom generator (say,
AES-CTR) and to compute a dot product with the input. The main problem
of this extractor is that it uses a seed which is very large, and it takes about as
much time to generate it (with AES-NI) as to use it. Hence, we decided to use
the extractor introduced in [CMNT11], which has a seed length about the square
root of the length of the input. Since we can evaluate

∑
i,j Qi,jaibj with about

one multiplication and one addition in the field per input value, the computation
of the extractor takes essentially the same time. Indeed, the complexity of the
extractor is similar to GHASH.

Another possibility for the extractor is to increase the degree, for instance
use

∑
i,j,k Qi,j,kaibjck. While this approach, proposed by [CNT12], is indeed

sound and allows to reduce the seed further, the best bound we know on the
statistical distance of the output is about q−1/2 when working over Fq. The main
problem is that the tensor decomposition of Qi,j,k does not have the needed
properties, so that Coron et al. use a generic bound on the number of zeroes,
which must account for elliptic curves and therefore a deviation of q−1/2 is
required. The specific case of

∑1
k=0

∑
i,j Qi,j,kaibjck can probably be tackled

using linear matrix pencil theory, at the cost of a much more difficult proof.

Concrete Parameters for Various Instances of WhiteKey. Once the size
of an instance of WhiteKey has been chosen (i.e. the output size of the table
T), the only parameter that needs to be determined is the number of calls to
the tables n, and thus the number of output blocks t of A. This is obtained by
instantiating the formula of [FKKM16, Theorem 2] for a given white-box secu-
rity. We give the parameters for instances of various sizes in Table 2. The tables
used in these instances have the same input size as the ones of the WhiteBlock
instances of Table 1, but they are twice as large because of their larger output

176 P.-A. Fouque et al.

size, which impacts the size of a white-box implementation similarly. On the
other hand, a single table is used in WhiteKey, whereas up to four (for input
sizes of 16 bits and more) are necessary in WhiteBlock.

Table 2. Number of table calls for WhiteKey instances with tables of selected input
sizes from 16 to 32 bits, at a white-box security level of 96 to 112 bits for a compression
factor of 4. Black-box security is 128 bits in all cases.

Instance WB size # Table/block WB security #Table calls (#blocks)

WhiteKey 16 220 B 8 112 bits @ 1/4 57 (8)

WhiteKey 20 224 B 6 108 bits @ 1/4 55 (10)

WhiteKey 24 228 B 5 104 bits @ 1/4 53 (11)

WhiteKey 28 232 B 4 100 bits @ 1/4 51 (13)

WhiteKey 32 236 B 4 96 bits @ 1/4 49 (13)

CoureurDesBois: WhiteKey in Practice. Similarly to WhiteBlock and
PuppyCipher, we define the CoureurDesBois family as a concrete instan-
tiation of WhiteKey. It simply consists in using AES128 for A and a specific
representation for F2128 , e.g. F2[x]/x128 + x7 + x2 + x + 1 (the “GCM” field).

Unlike PuppyCipher, the components of CoureurDesBois are not cas-
caded multiple times; hence we cannot hope for a similar tradeoff of provable
security against speed. However, the main advantage of CoureurDesBois com-
pared to PuppyCipher is that it lends itself extremely well to parallelization.
This allows to optimally hide the latency of the executions of AES and of the
queries to the table in memory.

We further discuss the matter in Sect. 5, where we evaluate implementations
of CoureurDesBois with AES instructions for tables of 16 to 24-bit inputs.

4 Security Proofs

For both the WhiteBlock and WhiteKey constructions, we provide proofs in the
weak incompressibility model. These proofs provide concrete bounds, on which
we base our implementations. This allows direct comparison to previous work
[BBK14,BI15]. Moreover in the case of WhiteKey, we provide a proof in the
strong incompressibility model. This proof shows the soundness of the general
construction in a very demanding model. However we do not use it to derive the
parameters of our constructions.

Recall that weak incompressibility (Definition 3) depends on three parame-
ters s, λ, δ: essentially if the number of outputs of the table known to the
adversary is s, then (s, λ, δ)-incompressibility says that with probability at least
1 − 2−λ, the adversary is unable to encrypt more than a ratio δ of plaintexts,
no matter which s table outputs she chooses to learn. If inputs to the table are
t-bit long, then α = s2−t is the fraction of the table known to the adversary. We

Efficient and Provable White-Box Primitives 177

can fix α = 1/4 as in [BI15], hence s = α2t. In that case weak incompressibility
essentially matches (s,− log(δ))-space hardness from [BI15], and − log(δ) can be
thought of as the number of bits of white-box security.

However we do not claim security for δ = 2−128, which would express 128
bits of white-box security. Instead, we claim security for δ = 2−128+t. Thus for
larger table of size ≈ 228, white-box security drops to around 2100. We believe
this is quite acceptable.

The reason we claim only 128−t bits of white-box security rather than 128 is
a result of our security proofs, as we shall see. This should be compared with the
fact that an adversary allowed to store s table inputs could use the same space
to store s outputs of the whole scheme (within a small constant factor λ/t in
the case of WhiteBlock). Such an adversary would naturally be able to encrypt
a proportion s2−λ of inputs. Since s = 2t/4, with a small constant factor 1/4,
this yields the 128 − t bits of white-box security achieved by our proofs.

Our security claims are summarized in Tables 1 and 3.2.

4.1 Proofs of Weak Incompressibility

We provide proofs of both WhiteKey and WhiteBlock in the weak incompress-
ibility model. In the case of WhiteKey, a proof is also available in the strong
incompressibility model. However the proof of WhiteKey for weak incompress-
ibility is fairly straightforward, yields better bounds (as one would expect),
and also serves as a warm-up for the combinatorially more involved proof of
WhiteBlock. The bulk of the proofs for WhiteKey and WhiteBlock are given in
the full paper [FKKM16]. In this section, we provide some context and a brief
outline.

Weak Incompressibility of WhiteKey. First note that if the AES in counter
mode used in the initial layer of WhiteKey is modeled as a pseudo-random gener-
ator (PRG), the proof is quite straightforward. Indeed, we are then free to regard
the inputs of table calls as uniformly random (after paying the PRG advantage
of an adversary against counter mode AES). It follows that the adversary has
probability α of knowing the output of each individual table call, where α is the
proportion of the table she has queried, regardless of which particular inputs
she chose to query. Since the extractor in the last layer of the scheme is linear,
as soon as the adversary is missing one table output, the global output of the
scheme is uniformly random from her point of view.

However we focus on a different route for the proof, where the initial layer of
the scheme is modeled as a pseudo-random function (PRF) rather than a PRG.
The main reason we do this is that the resulting proof will be much closer to the
proof of WhiteBlock, and serve to prepare it.

We thus view the initial layer of WhiteKey as being comprised of a PRF
generating the inputs of the table calls. Using standard arguments, this pseudo-
random function can be replaced by a random function; the effect this has on
the weak incompressibility adversary is upper-bounded by the distinguishing
advantage of a real-or-random adversary against the PRF.

178 P.-A. Fouque et al.

In the weak incompressibility game, the adversary learns the output of the
table on some adaptively chosen inputs. By nature of white-box security, any
keying material present in the PRF is known to the adversary (formally, in our
definition of white-box encryption scheme this keying material would have to
be appended to the table T of the white-box implementation, and could be
recovered with a single or few queries). Hence the adversary can choose which
table inputs she queries based on full knowledge of the initial PRF.

On the other hand, for a given PRF input, as soon as the adversary does not
know a single output of the table, due to the linearity of the final layer of the
construction, the output has full 128-bit entropy from the point of view of the
adversary.

Thus the core of the proof, is to show that, with high probability over the
random choice of the PRF, for the best possible choice of s table inputs the
adversary chooses to query5, most PRF outputs still include at least one table
input that is unknown to the adversary. We explicitly compute this upper bound
in the complete proof.

More precisely, [FKKM16, Theorem 2] shows:

log (Pr [μ(s) ≥ k]) ≤ 2t − k log
(

k

ρ

)

− (n − k) log
(

n − k

n − ρ

)

(1)

where:

– n = 2λ is the size of the input space of WhiteKey;
– t is the number of bits at the input of a table;
– s is the number of table entries stored by the adversary;
– ρ = 2λ(s/2t)m, with m the number of table calls in the construction;
– k is the maximal number of inputs the adversary may be able to encrypt;
– and μ(s) is the maximal number of WhiteKey inputs that can be encrypted

with storage size s; it is a random variable over the uniform choice of the
initial PRF (A in counter mode, in the previous description).

We want this bound to be below −λ. We are now interested in what this
implies, in terms of number of table calls m necessary to achieve a given security
level. As noted earlier, the bound imposes k ≈ 2t. For simplicity we let k = 2t,
which means we achieve λ−t bits of white-box security (i.e. δ = 2t−λ in the sense
of Definition 3). We can also fix s/2t = 1/4 for the purpose of being comparable
to [BI15].

The term (n − k) ln ((n − k)/(n − ρ)) is equivalent to ρ − k as k/n tends to
zero6. Since we are looking for an upper bound we can approximate it by k. This
yields a probability:

2t

(

1 − k2−t

(

log
(

k

ρ

)

− 1
))

= 2t
(
1 − k2−t (log(k) − λ + 2m − 1)

)

= −2t (log(k) − λ + 2m)
5 In this respect, the adversary we consider is computationally unbounded.
6 In fact, simple functional analysis shows that we can bound the right-hand term by

4(ρ − k) provided αm < 1/2 and k < 4n, which will always be the case.

Efficient and Provable White-Box Primitives 179

In the end, we get that m only needs to be slightly larger than λ−log(k)
2 .

Indeed, as long as this is the case, the 2t factor will ensure that the bound is
(much) lower than −128.

This actually matches a generic attack. If the adversary just stores s = 2t/4
random outputs of the table, then on average she is able to encrypt a ratio 2−2m

of inputs. This imposes 2−2m < k2−λ, so m > (λ − log(k))/2. When testing our
parameter choices against Eq. 1, we find that it is enough to add a single table
call beyond what the generic attack requires: in essence, [FKKM16, Theorem 2]
implies that no strategy is significantly better than random choices.

Weak Incompressibility of WhiteBlock. The general approach of the proof
is the same as above. However the combinatorial arguments are much trickier,
essentially because table calls are no longer independent (they depend on table
outputs in the previous round.). Nevertheless an explicit bound is proven in the
full paper.

However, what we prove is only that w.h.p., for most inputs to WhiteBlock,
during the computation of the output, at least two table calls at different rounds
are unknown to the adversary. Since table outputs cover half a block, this implies
that at two separate rounds during the course of the computation, 64 bits are
unknown and uniform from the point of view of the adversary. At this point
we heuristically assume that for an efficient adversary, this implies the output
cannot be computed with probability significantly higher then 2−128. In practice
the bottleneck in the bound provided by the proof comes from other phenomena,
namely we prove 128− t bits of security for t-bit tables. Nevertheless this means
our proof is heuristic.

More precisely, [FKKM16, Theorem 3] shows:

log (Pr [μ(s) ≥ k]) ≤ 2t + k

(

λ + m
(
1 − 1

k
− 1

r

)
log

(s

2t

))

where:

– λ is the input size of WhiteBlock;
– t is the number of bits at the input of a table;
– r is the number of rounds;
– m is the total number of table calls in the construction (m �= �(λ/2)/t� · r);
– s is the number of table entries stored by the adversary;
– k is the maximal number of inputs the adversary may be able to encrypt;

and μ(s) is the maximal number of WhiteBlock inputs that can be encrypted
with storage size s; it is a random variable over the uniform choice of the round
permutations Aki

.
We are now interested in what this bound implies, in terms of number of

rounds r to achieve a given security level. Observe that the bound requires
k ≈ 2t. For simplicity we let k = 2t, which means we achieve λ − t bits of
white-box security (i.e. δ = 2t−λ in the sense of Definition 3). We can also fix

180 P.-A. Fouque et al.

s/2t = 1/4 for the purpose of being comparable to [BI15]. Observe that 1/k is
negligible compared to 1/r. Let c = �(λ/2)/t� be the number of table calls per
round. Then our bound asks:

λ − 2m

(

1 − 1
r

)

= λ − 2c(r − 1) < 0

Indeed, as long as this value is negative, the preceding k = 2t factor will ensure
that the bound is (much) lower than −128. We get:

r >
λ

2c
+ 1

We can compare this bound with the previous generic attack, where the
adversary stores table outputs at random. As we have seen, this attack implies
m > (λ−log(k))/2, so r > (λ−log(k))/(2c). Instead our proof requires r > λ

2c +1.
Thus the extra number of rounds required by our security proof, compared to
the lower bound coming from the generic attack, is less than log(k)/(2c) + 1: it
is only a few extra rounds (and not, for instance, a multiplicative factor).

4.2 Proof of Strong Incompressibility

We first prove that
∑

i,j Qi,jaibj ∈ Fq is a strong extractor. This extractor comes
mostly from Coron et al. [CMNT11, Sect. 4.2] but we tighten the proof.

Definition 6. A family H of hash functions h : X �→ Y is ε-pairwise indepen-
dent if

∑

x�=x′

(
Pr

h←H
[h(x) = h(x′)] − 1

Y

) ≤ ε|X|2
Y

.

The next lemma is a variant of the leftover hash lemma, proven in [Sti02,
Theorem 8.1].

Lemma 1. Let h ∈ H be uniformly sampled, and x ∈ X be an independent ran-
dom variable with min-entropy at least k. Then, the statistical distance between
(h(x), h) and the uniform distribution is at most

√
|Y |2−k + ε.

We now prove that our function is indeed pairwise independent.

Lemma 2. Let H = F
2n
q , X = Mn(Fq) and Y = Fq. Then, the function

ha,b(Q) =
∑

i,j Qi,jaibj = atQb is 11q−n-pairwise independent.

Proof. We first count the number of a, b such that
∑

i,j Qi,jaibj = atQb = 0. Let
Q be a matrix of rank r. Then, there exist r vectors u, v such that Q =

∑r−1
k=0 uiv

t
i

and the ui as well as the vi are linearly independent. Thus,

atQb =
r−1∑

k=0

atuiv
t
ib

Efficient and Provable White-Box Primitives 181

and therefore, by a change of basis, this form has the same number of zeros as

r−1∑

k=0

aibi

which is q2n−1 + q2n−r − q2n−r−1.
Now, there are

∏r−1
k=1

(qn−qk)2

qr−qk matrices of rank r. We deduce:

∑

x�=x′

(
Pr

h←H
[h(x) = h(x′)] − 1

Y

)
=

n∑

r=1

(
(q−r − q−r−1)q−n2

r−1∏

k=0

(qn − qk)2

qr − qk

)

≤
n∑

r=1

q−rq−n2
q2nr−r2

∞∏

k=1

1
1 − 1/qk

≤2 − 1/q

1 − 1/q
q−n

∞∏

k=1

1
1 − 1/qk

≤11q−n ��
Hence, if the input of our extractor has at least 2μ bits of entropy, the

generated key will be essentially uniform. The proof for the security of sampling
the seed from a pseudorandom generator (from which we cannot build a public-
key primitive) is in [BDK+11]. We now prove that the input has indeed a lot of
entropy.

Lemma 3. Let f : [n] �→ [0; 1] be of average μ. Then, the average of the image
k uniform elements is at least μ − δ, except with probability

exp(− k2δ2/2
k/4 + δμ/3

).

Proof. This is the result of Bernstein’s inequality (see [BLB04, Theorem 3]),
since the variance of all terms is at most 1/4 and they are all positive. ��

We now use a lemma of Vadhan [Vad04, Lemma 9]:

Lemma 4. Let S be a random variable over [n]t with distinct coordinates and
μ, δ, ε > 0, such that for any function f : [n] �→ [0; 1] of average (δ−2τ)/ log(1/τ),
we have that the probability that the average of the image of the t positions given
by S is smaller than (δ − 3τ)/ log(1/τ) is at most ε.

Then, for every X of min-entropy δn over {0, 1}n, the variable (S,XS) where
XS is the subset of bits given by S is ε + 2−Ω(τn) close to (A,B) where B
conditioned on A = a has a min-entropy (δ − τ)t.

Finally, it is clear that if a sampling done with a pseudorandom generator
instead of a uniform function leads to a low min-entropy key, we have a distin-
guisher on the pseudorandom generator.

182 P.-A. Fouque et al.

5 Implementation

In this section, we evaluate the efficiency of PuppyCipher {16,20,24}, Hound
{16,20,24} and CoureurDesBois {16,20,24}, when implemented with the AES
and PCLMULQDQ instructions (the latter being only used for the finite field
arithmetic of CoureurDesBois) on a recent Haswell CPU. For each algorithm,
we tested table-based white-box implementations and “secret” implementations
where one has the knowledge of the key used to generate the tables.

The number of rounds we choose was directly deduced from proofs in the
weak model (cf. Sects. 3 and 4). Since this model essentially matches that of
previous work [BBK14,BI15], this allows for a direct comparison.

The processor on our test machine was an Intel Xeon E5-1603v3, which has
a maximal clock frequency of 2.8 GHz and a 10 MB cache (which is thus larger
than the implementation sizes of the ‘16 instances). The machine has 32 GB of
memory, in four sticks of 8 GB all clocked at 2133 MHz. All measurements were
done on an idle system, without Turbo Boost activated7. As a reference, we first
measured the performance of AES128 implemented with the AES instructions,
given in Table 3. We give the average (Avg.) number of clock cycles and the
standard deviation (Std. Dev.) for one execution, both in the transient and
steady regime (in practice, when performing series of independent runs, the
transient regime only corresponds to the first run of the series). The average
and standard deviation are computed from 25 series of 11 runs. The figures
obtained from this test are coherent with the theoretical performance of the AES
instruction set (even if slightly better): on a Haswell architecture, the aesenc
and aesenclast instructions are both given for a latency of 7 cycles, and the
cost of a single full AES128 is dominated by the 10 × 7 calls to perform the 10
rounds of encryption.

Table 3. Performance of a single call to AES128 with AES instructions on a Xeon
E5-1603v3. All numbers are in clock cycles.

Transient Avg. Transient Std. Dev. Steady Avg. Steady Std. Dev.

AES128 79 3.6 68 2.4

5.1 PUPPYCIPHER

Writing a simple implementation of PuppyCipher is quite straightforward.
The main potential for instruction-level parallelism (ILP) are the calls to the
tables (or the analogous on-the-fly function calls); the rest of the cipher is chiefly
sequential, especially the many intermediate calls to the (potentially reduced)
AES. This parallelism is however somewhat limited, especially starting from
PuppyCipher 24 where only two parallel calls to the tables can be made.

7 As a matter of fact, this CPU does not have Turbo Boost support.

Efficient and Provable White-Box Primitives 183

In all implementations, we precompute the sub-keys for the calls to AES
(including calls potentially made to emulate the tables). Not doing so would
only add a negligible overhead.

The performance measurements were done in a setting similar to the reference
test on AES128 from above. We give the results for PuppyCipher {16,20,24}
in Table 4 and for Hound {16,20,24} in Table 5. In both tables, we also express
the performance in the steady regime as the number of equivalent AES128 calls
(Eq. A) with AES instructions on the same platform (taken to be 68 cycles, as
per Table 3) as it is a block cipher with similar expected (black-box) security,
and as the number of equivalent ephemeral Diffie-Hellman key exchanges with
the FourQ elliptic curve (Eq. F), one of the fastest current implementation of
ECDHE [CL15] (measured at 92000 cycles on the Haswell architecture), as there
is some overlap in what white-box and public-key cryptography try to achieve.

Discussion. As it was mentioned in Sect. 3, for a small white-box implemen-
tation such as the one of PuppyCipher 16, table-based implementations may
be the most efficient way of implementing the cipher, especially as the entire
tables can usually fit in the cache. However, from a certain size on, the random
RAM accesses inherent to such implementations cost more than recomputing
the necessary outputs of the tables (when the secret is known).

It is quite easy to estimate how much time is spent in RAM accesses compared
to the time spent in calls to the (potentially reduced) AES. Indeed, knowing the
number of rounds and the cost of one AES execution, one can subtract this
contribution to the total. For instance, based on the cycle counts in the steady
and transient regimes, for PuppyCipher 24, at least 2380 = 35 × 68 and at
most 2765 = 35 × 79 cycles are expected to be spent in AES instructions; the
real figure in this case is about 2690 cycles, for an average cost per AES call of
77 cycles. All in all, this means that in steady regime, close to 90% of the time is
spent in RAM accesses. This is understandingly slightly more for the Hound 24
variant, where RAM accesses represent about 93% of the execution time.

Table 4. Performance of a single call to PuppyCipher {16,20,24} (“PC”) on a Xeon
E5-1603v3. All numbers are in clock cycles, rounded to the nearest ten. The “white-
box” instances are table-based, and the “secret” instances uses on-the-fly computations
of the tables on their queried values. All calls to AES use the AES instructions.

Tr. Avg. Tr. Std. Dev. St. Avg. St. Std. Dev. Eq. A Eq. F

PC 16 (white-box) 2960 130 2800 70 41 0.030

PC 16 (secret) 4140 60 3940 10 58 0.043

PC 20 (white-box) 13660 1000 11500 1190 169 0.125

PC 20 (secret) 4810 60 4540 100 67 0.049

PC 24 (white-box) 27570 1410 23390 1340 344 0.25

PC 24 (secret) 6760 120 6600 60 97 0.072

184 P.-A. Fouque et al.

Table 5. Performance of a single call to Hound {16,20,24} (“HD”) on a Xeon E5-
1603v3. All numbers are in clock cycles, rounded to the nearest ten. The “white-box”
instances are table-based, and the “secret” instances uses on-the-fly computations of
the tables on their queried values. All calls to AES use the AES instructions.

Tr. Avg. Tr. Std. Dev. St. Avg. St. Std. Dev. Eq. A Eq. F

HD 16 (white-box) 2300 180 2190 130 32 0.024

HD 16 (secret) 3520 80 3280 2 48 0.036

HD 20 (white-box) 11870 980 9940 1030 146 0.11

HD 20 (secret) 4000 230 3700 65 54 0.040

HD 24 (white-box) 26540 1450 21740 1230 320 0.24

HD 24 (secret) 5490 60 5360 60 79 0.058

It is also interesting to look at how many RAM accesses can effectively be
done in parallel. As two to four table calls are independent every round, we
may hope to partially hide the latency of some of these. For PuppyCipher 24,
removing one of the two table accesses decreases the cycle count to 19400 on
average. This means that the second table call only adds less than 4000 cycles.
Put another way, using a single table per round, one table access takes 490 cycles
on average, but this goes down to an amortized 300 cycles when two tables
are accessed per round. In the end, the 68 table access of PuppyCipher 24
only cost an equivalent 42 purely sequential accesses. A similar analysis can be
performed for PuppyCipher 20 and PuppyCipher 16, where the 69 and 72
parallel accesses cost 31 and 23 equivalent accesses respectively.

Comparison with SPACE. We can compare the performance of PuppyCi-
pher with the one of SPACE-(16,128) and SPACE-(24,128), which offer simi-
lar white-box implementation sizes as PuppyCipher 16 and PuppyCipher 24
respectively [BI15]. As the authors of SPACE do not provide cycle counts for
their ciphers but only the number of necessary cache or RAM accesses, a few
assumptions are needed for a brief comparison. Both SPACE instances need 128
table accesses, which is much more than the 72 of PuppyCipher 16 and 68
of PuppyCipher 24. However, there is an extra cost in PuppyCipher due to
the many AES calls, which need to be taken into account. On the other hand,
the table accesses in SPACE are necessarily sequential, which is not the case
for PuppyCipher, and we have just seen that parallel accesses can bring a
considerable gain. It is thus easiest to use our average sequential access times
as a unit. In that respect, PuppyCipher 24 and Hound 24 cost on average
48 = 23390/490 and 44 = 21790/490 table accesses, which is significantly less
than the 128 of SPACE-(24,128). Similarly, we measured one sequential table
access for PuppyCipher 16 to take 59 cycles on average, and we thus have a
cost of 47 = 2800/59 and 37 = 2190/59 for table accesses for PuppyCipher 16
and Hound 16.

Efficient and Provable White-Box Primitives 185

The performance gap reduces slightly when one considers the case of “secret”
implementations. As the tables of SPACE use the AES as a building block,
the cost of a secret SPACE (24–128) implementation should correspond to
approximately 128 sequential calls to AES; the corresponding PuppyCipher
and Hound implementations cost an equivalent 97 and 79 AES respectively.

5.2 COUREURDESBOIS

The main advantage of CoureurDesBois compared to PuppyCipher (as far
as efficiency is concerned) is the higher degree of parallelism that it offers. Unlike
PuppyCipher, the calls to AES can be made in parallel, and there is no limit
either in the potential parallelism of table accesses. Because the output of the
tables are of a bigger size, there is also fewer accesses to be made. Consequently,
we expect CoureurDesBois to be quite more efficient than PuppyCipher.

A consequence of the higher parallelism of CoureurDesBois is that there are
more potential implementation tradeoffs than for PuppyCipher. In our imple-
mentations, we chose to parallelize the AES calls up to four calls at a time, and
the table accesses (or equivalent secret computations) at the level of one block
(i.e. from eight parallel accesses for CoureurDesBois 16 to five for Coureur-
DesBois 24). The final step of CoureurDesBois also offers some parallelism;
we have similarly regrouped the calls to AES used for randomness generation by
four, and the finite field multiplications are regrouped by rows of eight.

The results for CoureurDesBois {16,20,24} are given in Table 6.

Table 6. Performance of a single call to CoureurDesBois {16,20,24} (“CDB”) on
a Xeon E5-1603v3. All numbers are in clock cycles, rounded to the nearest ten. The
“white-box” instances are table-based, and the “secret” instances uses on-the-fly com-
putations of the tables on their queried values. All calls to AES use the AES instruc-
tions.

Tr. Avg. Tr. Std. Dev. St. Avg. St. Std. Dev. Eq. A Eq. F

CDB 16 (white-box) 3190 460 2020 20 29.7 0.022

CDB 16 (secret) 3100 380 2150 30 31.6 0.023

CDB 20 (white-box) 7880 880 4700 600 69.1 0.051

CDB 20 (secret) 4060 460 2900 20 42.6 0.032

CDB 24 (white-box) 17360 980 11900 610 175 0.13

CDB 24 (secret) 4470 560 3050 30 44.9 0.033

Discussion. We can notice a few things from these results. First, Coureur-
DesBois is indeed more efficient than PuppyCipher; for instance, Coureur-
DesBois 24 is about twice as fast as Hound 24. Second, the performance
gap between secret and white-box implementations is somewhat smaller for the
smaller instances of CoureurDesBois; on the other hand, the gap between
transient and steady regime performance is slightly bigger than for PuppyCi-
pher.

186 P.-A. Fouque et al.

As pointed out above, more tradeoffs are possible in implementing Coureur-
DesBois than for PuppyCipher. As a result, it would be interesting to evaluate
alternatives in practice.

Implementations of our schemes will be made available at http://whitebox4.
gforge.inria.fr/.

Acknowledgments. The authors would like to thank Florent Tardif for letting us
use his test machine.

References

[ADW09] Alwen, J., Dodis, Y., Wichs, D.: Survey: leakage resilience and
the bounded retrieval model. In: Kurosawa, K. (ed.) ICITS 2009.
LNCS, vol. 5973, pp. 1–18. Springer, Heidelberg (2010). doi:10.1007/
978-3-642-14496-7 1

[ANWOW13] Aumasson, J.-P., Neves, S., Wilcox-O’Hearn, Z., Winnerlein, C.:
BLAKE2: simpler, smaller, fast as MD5. In: Jacobson, M., Locasto, M.,
Mohassel, P., Safavi-Naini, R. (eds.) ACNS 2013. LNCS, vol. 7954, pp.
119–135. Springer, Heidelberg (2013). doi:10.1007/978-3-642-38980-1 8

[ARM09] ARM: Security Technology Building a Secure System Using Trust-
Zone Technology. White paper (2009). http://infocenter.arm.com/help/
topic/com.arm.doc.prd29-genc-009492c/

[BBK14] Biryukov, A., Bouillaguet, C., Khovratovich, D.: Cryptographic schemes
based on the ASASA structure: black-box, white-box, and public-key
(Extended Abstract). In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014.
LNCS, vol. 8873, pp. 63–84. Springer, Heidelberg (2014). doi:10.1007/
978-3-662-45611-8 4

[BDK+11] Barak, B., Dodis, Y., Krawczyk, H., Pereira, O., Pietrzak, K., Standaert,
F.-X., Yu, Y.: Leftover hash lemma, revisited. In: Rogaway, P. (ed.)
CRYPTO 2011. LNCS, vol. 6841, pp. 1–20. Springer, Heidelberg (2011).
doi:10.1007/978-3-642-22792-9 1

[BGEC04] Billet, O., Gilbert, H., Ech-Chatbi, C.: Cryptanalysis of a white box
AES implementation. In: Handschuh, H., Hasan, M.A. (eds.) SAC 2004.
LNCS, vol. 3357, pp. 227–240. Springer, Heidelberg (2004). doi:10.1007/
978-3-540-30564-4 16

[BGI+01] Barak, B., Goldreich, O., Impagliazzo, R., Rudich, S., Sahai, A., Vadhan,
S., Yang, K.: On the (im)possibility of obfuscating programs. In: Kilian,
J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 1–18. Springer, Heidelberg
(2001). doi:10.1007/3-540-44647-8 1

[BI15] Bogdanov, A., Isobe, T.: Revisited, white-box cryptography: space-hard
ciphers. In: CCM 2015, pp. 1058–1069. ACM (2015)

[BKR16] Bellare, M., Kane, D., Rogaway, P.: Big-key symmetric encryption:
resisting key exfiltration. In: Robshaw, M., Katz, J. (eds.) CRYPTO
2016. LNCS, vol. 9814, pp. 373–402. Springer, Heidelberg (2016). doi:10.
1007/978-3-662-53018-4 14

[BLB04] Boucheron, S., Lugosi, G., Bousquet, O.: Concentration inequalities.
In: Bousquet, O., Luxburg, U., Rätsch, G. (eds.) ML -2003. LNCS
(LNAI), vol. 3176, pp. 208–240. Springer, Heidelberg (2004). doi:10.
1007/978-3-540-28650-9 9

http://whitebox4.gforge.inria.fr/
http://whitebox4.gforge.inria.fr/
http://dx.doi.org/10.1007/978-3-642-14496-7_1
http://dx.doi.org/10.1007/978-3-642-14496-7_1
http://dx.doi.org/10.1007/978-3-642-38980-1_8
http://infocenter.arm.com/help/topic/com.arm.doc.prd29-genc-009492c/
http://infocenter.arm.com/help/topic/com.arm.doc.prd29-genc-009492c/
http://dx.doi.org/10.1007/978-3-662-45611-8_4
http://dx.doi.org/10.1007/978-3-662-45611-8_4
http://dx.doi.org/10.1007/978-3-642-22792-9_1
http://dx.doi.org/10.1007/978-3-540-30564-4_16
http://dx.doi.org/10.1007/978-3-540-30564-4_16
http://dx.doi.org/10.1007/3-540-44647-8_1
http://dx.doi.org/10.1007/978-3-662-53018-4_14
http://dx.doi.org/10.1007/978-3-662-53018-4_14
http://dx.doi.org/10.1007/978-3-540-28650-9_9
http://dx.doi.org/10.1007/978-3-540-28650-9_9

Efficient and Provable White-Box Primitives 187

[CD16] Costan, V., Devadas, S.: Intel SGX Explained. IACR Cryptology ePrint
Archive 2016:86 (2016)

[CDD+07] Cash, D., Ding, Y.Z., Dodis, Y., Lee, W., Lipton, R., Walfish, S.:
Intrusion-resilient key exchange in the bounded retrieval model. In:
Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 479–498. Springer,
Heidelberg (2007). doi:10.1007/978-3-540-70936-7 26

[CEJO02a] Chow, S., Eisen, P., Johnson, H., Oorschot, P.C.: White-box cryptogra-
phy and an AES implementation. In: Nyberg, K., Heys, H. (eds.) SAC
2002. LNCS, vol. 2595, pp. 250–270. Springer, Heidelberg (2003). doi:10.
1007/3-540-36492-7 17

[CEJO02b] Chow, S., Eisen, P., Johnson, H., Oorschot, P.C.: A white-box DES
implementation for DRM applications. In: Feigenbaum, J. (ed.) DRM
2002. LNCS, vol. 2696, pp. 1–15. Springer, Heidelberg (2003). doi:10.
1007/978-3-540-44993-5 1

[CL15] Costello, C., Longa, P.: FourQ: four-dimensional decompositions on a
Q-curve over the mersenne prime. In: Iwata, T., Cheon, J.H. (eds.)
ASIACRYPT 2015. LNCS, vol. 9452, pp. 214–235. Springer, Heidelberg
(2015). doi:10.1007/978-3-662-48797-6 10

[CMNT11] Coron, J.-S., Mandal, A., Naccache, D., Tibouchi, M.: Fully homo-
morphic encryption over the integers with shorter public keys. In:
Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 487–504.
Springer,
Heidelberg (2011). doi:10.1007/978-3-642-22792-9 28

[CNT12] Coron, J.-S., Naccache, D., Tibouchi, M.: Public key compression and
modulus switching for fully homomorphic encryption over the inte-
gers. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012.
LNCS, vol. 7237, pp. 446–464. Springer, Heidelberg (2012). doi:10.1007/
978-3-642-29011-4 27

[DDKL15] Dinur, I., Dunkelman, O., Kranz, T., Leander, G.: Decomposing the
ASASA block cipher construction. IACR Cryptology ePrint Archive
2015:507 (2015)

[DLPR13] Delerablée, C., Lepoint, T., Paillier, P., Rivain, M.: White-box security
notions for symmetric encryption schemes. In: Lange, T., Lauter, K.,
Lisoněk, P. (eds.) SAC 2013. LNCS, vol. 8282, pp. 247–264. Springer,
Heidelberg (2014). doi:10.1007/978-3-662-43414-7 13

[DMRP12] Mulder, Y., Roelse, P., Preneel, B.: Cryptanalysis of the xiao – lai white-
box AES implementation. In: Knudsen, L.R., Wu, H. (eds.) SAC 2012.
LNCS, vol. 7707, pp. 34–49. Springer, Heidelberg (2013). doi:10.1007/
978-3-642-35999-6 3

[DR02] Daemen, J., Rijmen, V.: The Design of Rijndael: AES - The Advanced
Encryption Standard. Information Security and Cryptography. Springer,
Heidelberg (2002)

[Dzi06] Dziembowski, S.: Intrusion-resilience via the bounded-storage model. In:
Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 207–224.
Springer, Heidelberg (2006). doi:10.1007/11681878 11

[FKKM16] Fouque, P.-A., Karpman, P., Kirchner, P., Minaud, B.: Efficient and
Provable White-Box Primitives. IACR Cryptology ePrint Archive
2016:642 (2016)

[GGH+13] Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.:
Candidate indistinguishability obfuscation and functional encryption for
all circuits. In: FOCS 2013, pp. 40–49. IEEE (2013)

http://dx.doi.org/10.1007/978-3-540-70936-7_26
http://dx.doi.org/10.1007/3-540-36492-7_17
http://dx.doi.org/10.1007/3-540-36492-7_17
http://dx.doi.org/10.1007/978-3-540-44993-5_1
http://dx.doi.org/10.1007/978-3-540-44993-5_1
http://dx.doi.org/10.1007/978-3-662-48797-6_10
http://dx.doi.org/10.1007/978-3-642-22792-9_28
http://dx.doi.org/10.1007/978-3-642-29011-4_27
http://dx.doi.org/10.1007/978-3-642-29011-4_27
http://dx.doi.org/10.1007/978-3-662-43414-7_13
http://dx.doi.org/10.1007/978-3-642-35999-6_3
http://dx.doi.org/10.1007/978-3-642-35999-6_3
http://dx.doi.org/10.1007/11681878_11

188 P.-A. Fouque et al.

[Gil16] Gilbert, H.: On White-Box Cryptography. invited talk, Fast Software
Encryption 2016 (2016). slides https://fse.rub.de/slides/wbc fse2016
hg 2pp.pdf

[GMQ07] Goubin, L., Masereel, J.-M., Quisquater, M.: Cryptanalysis of white box
DES implementations. In: Adams, C., Miri, A., Wiener, M. (eds.) SAC
2007. LNCS, vol. 4876, pp. 278–295. Springer, Heidelberg (2007). doi:10.
1007/978-3-540-77360-3 18

[GPT15] Gilbert, H., Plût, J., Treger, J.: Key-recovery attack on the ASASA
cryptosystem with expanding S-boxes. In: Gennaro, R., Robshaw,
M. (eds.) CRYPTO 2015. LNCS, vol. 9215, pp. 475–490. Springer,
Heidelberg (2015). doi:10.1007/978-3-662-47989-6 23

[Hal15] Halevi, S.: Graded Encoding, Variations on a Scheme. IACR Cryptology
ePrint Archive, 2015:866 (2015)

[JNP14] Jean, J., Nikolić, I., Peyrin, T.: Tweaks and keys for block ciphers: the
TWEAKEY framework. In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014.
LNCS, vol. 8874, pp. 274–288. Springer, Heidelberg (2014). doi:10.1007/
978-3-662-45608-8 15

[Kra10] Krawczyk, H.: Cryptographic extraction and key derivation: the HKDF
scheme. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 631–
648. Springer, Heidelberg (2010). doi:10.1007/978-3-642-14623-7 34

[MDFK15] Minaud, B., Derbez, P., Fouque, P.-A., Karpman, P.: Key-recovery
attacks on ASASA. In: Iwata, T., Cheon, J.H. (eds.) ASIACRYPT 2015.
LNCS, vol. 9453, pp. 3–27. Springer, Heidelberg (2015). doi:10.1007/
978-3-662-48800-3 1

[Sha11] Shaltiel, R.: An introduction to randomness extractors. In: Aceto, L.,
Henzinger, M., Sgall, J. (eds.) ICALP 2011. LNCS, vol. 6756, pp. 21–41.
Springer, Heidelberg (2011). doi:10.1007/978-3-642-22012-8 2

[Sti02] Stinson, D.R.: Universal hash families and the leftover hash lemma, and
applications to cryptography and computing. J. Comb. Math. Comb.
Comput. 42, 3–32 (2002)

[Vad04] Vadhan, S.P.: Constructing locally computable extractors and cryp-
tosystems in the bounded-storage model. J. Cryptology 17(1), 43–77
(2004)

[WMGP07] Wyseur, B., Michiels, W., Gorissen, P., Preneel, B.: Cryptanalysis of
white-box DES implementations with arbitrary external encodings. In:
Adams, C., Miri, A., Wiener, M. (eds.) SAC 2007. LNCS, vol. 4876, pp.
264–277. Springer, Heidelberg (2007). doi:10.1007/978-3-540-77360-3 17

[Wys09] Wyseur, B.: White-box cryptography. Ph.D. thesis, KU Leuven (2009)
[XL09] Xiao, Y., Lai, X.: A secure implementation of white-box AES. In: CSA

2009, pp. 1–6. IEEE (2009)
[Zim15] Zimmerman, J.: How to obfuscate programs directly. In: Oswald, E.,

Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9057, pp. 439–467.
Springer, Heidelberg (2015). doi:10.1007/978-3-662-46803-6 15

https://fse.rub.de/slides/wbc_fse2016_hg_2pp.pdf
https://fse.rub.de/slides/wbc_fse2016_hg_2pp.pdf
http://dx.doi.org/10.1007/978-3-540-77360-3_18
http://dx.doi.org/10.1007/978-3-540-77360-3_18
http://dx.doi.org/10.1007/978-3-662-47989-6_23
http://dx.doi.org/10.1007/978-3-662-45608-8_15
http://dx.doi.org/10.1007/978-3-662-45608-8_15
http://dx.doi.org/10.1007/978-3-642-14623-7_34
http://dx.doi.org/10.1007/978-3-662-48800-3_1
http://dx.doi.org/10.1007/978-3-662-48800-3_1
http://dx.doi.org/10.1007/978-3-642-22012-8_2
http://dx.doi.org/10.1007/978-3-540-77360-3_17
http://dx.doi.org/10.1007/978-3-662-46803-6_15

Hash Function

MiMC: Efficient Encryption and Cryptographic
Hashing with Minimal Multiplicative

Complexity

Martin Albrecht1(B), Lorenzo Grassi3, Christian Rechberger2,3, Arnab Roy2,
and Tyge Tiessen2

1 Royal Holloway, University of London, London, UK
martinralbrecht@googlemail.com

2 DTU Compute, Technical University of Denmark, Kongens Lyngby, Denmark
{crec,arroy,tyti}@dtu.dk

3 IAIK, Graz University of Technology, Graz, Austria
{lorenzo.grassi,christian.rechberger}@iaik.tugraz.at

Abstract. We explore cryptographic primitives with low multiplicative
complexity. This is motivated by recent progress in practical applications
of secure multi-party computation (MPC), fully homomorphic encryp-
tion (FHE), and zero-knowledge proofs (ZK) where primitives from sym-
metric cryptography are needed and where linear computations are,
compared to non-linear operations, essentially “free”. Starting with the
cipher design strategy “LowMC” from Eurocrypt 2015, a number of bit-
oriented proposals have been put forward, focusing on applications where
the multiplicative depth of the circuit describing the cipher is the most
important optimization goal.

Surprisingly, albeit many MPC/FHE/ZK-protocols natively support
operations in GF(p) for large p, very few primitives, even considering all
of symmetric cryptography, natively work in such fields. To that end, our
proposal for both block ciphers and cryptographic hash functions is to
reconsider and simplify the round function of the Knudsen-Nyberg cipher
from 1995. The mapping F (x) := x3 is used as the main component there
and is also the main component of our family of proposals called “MiMC”.
We study various attack vectors for this construction and give a new attack
vector that outperforms others in relevant settings.

Due to its very low number of multiplications, the design lends itself
well to a large class of applications, especially when the depth does not
matter but the total number of multiplications in the circuit dominates
all aspects of the implementation. With a number of rounds which we
deem secure based on our security analysis, we report on significant per-
formance improvements in a representative use-case involving SNARKs.

Keywords: Distributed cryptography · Cryptanalysis · Block ciphers ·
Hash functions · Zero knowledge

c© International Association for Cryptologic Research 2016
J.H. Cheon and T. Takagi (Eds.): ASIACRYPT 2016, Part I, LNCS 10031, pp. 191–219, 2016.
DOI: 10.1007/978-3-662-53887-6 7

192 M. Albrecht et al.

1 Introduction

Modern cryptography developed many techniques that go well beyond solving
traditional confidentiality and authenticity problems in two-party communica-
tion. Secure multi-party computation (MPC), zero-knowledge proofs (ZK), and
fully homomorphic encryption (FHE) are some of the most striking examples.
In various applications of these three technologies, part of the circuit or function
that is being evaluated is in turn a cryptographic primitive such as a PRF, a
symmetric encryption scheme, or a collision resistant function.

In this work, we focus on a large class of such applications where the total
number of field multiplications in the underlying cryptographic primitive poses
the largest performance bottleneck. Examples include MPC protocols based on
Yao’s garbled circuit and all ZK-proof system that we are aware of, includ-
ing recent developments around SNARKs [BSCG+13] which found practical
applications, e.g., in Zerocash [BCG+14]. This motivates the following question
addressed in this work: How does a construction for a secure block cipher or a
secure cryptographic hash functions look like that minimizes the number of field
multiplications?

Earlier work on specialized designs for such applications, like
LowMC [ARS+15], Kreyvium [CCF+16], or the very recent FLIP [MJSC16]
all consider the case of Boolean multiplications and mostly focus on the depth
of the resulting circuit.

Surprisingly, albeit many MPC/FHE/ZK-protocols natively support oper-
ations in GF(p) for large p, very few candidates, even considering all of sym-
metric cryptography, exist which natively work in such fields. Our focus in this
paper is hence on multiplications in the larger fields GF(2m) and GF(p) which
is motivated as follows: As many protocols support multiplications in larger
fields natively, encoding of a description in GF(2) is cumbersome and inefficient.
Whilst it is possible to do bit operations over Fp using standard tricks (which
turn XOR into a non-linear operation), such a conversion is expensive. Consider
AES as an example: it allows for an efficient description in a variety of field sizes.
This is also the reason why the bit-cased LowMC which has a lower number of
AND gates can often barely, if at all, outperform AES in actual implementations
of the GMW MPC protocols, despite being much better than AES in terms of
GF(2) metrics. See [ARS+16a, Table 6] for details of the most striking example.
This is also partly due to the very high number of XORs computed in LowMC,
resulting them to be no longer negligible.

Contributions and Related Work. The design we propose is extremely sim-
ple: A function F (x) := x3 is iterated with subkey additions. This is described
in detail in Sect. 2. In fact, our design is a simplified variant of a design by
Nyberg and Knudsen [KN95] from the 1990s, which was aimed to demonstrate
ways to achieve provable security against the then emerging differential and lin-
ear attacks, using a small number of rounds (smaller than, say, DES). However,
not much later, [JK97] showed very efficient, even practical interpolation attacks

MiMC: Efficient Encryption and Cryptographic Hashing 193

on such proposals. Indeed, our proposal resembles PURE , a design introduced
in [JK97] in order to present their attack. We pick up this work from almost
20 years ago and study in earnest if a much higher number of rounds can make
this design secure in Sect. 4. It turns out, perhaps surprisingly, that the required
much higher number of rounds (in the order of 100 s instead of 10 or less) is very
competitive when it comes to the new application areas of symmetric cryptog-
raphy that motivate this work.

We propose several variants of our design called MiMC: variants for GF(p)
and GF(2n) as well as variants that use the cube mapping directly or in a Feis-
tel structure. MiMC can be used for encryption as well as for collision-resistant
cryptographic hashing. See Sect. 2 for the basic variant in GF(2n) and Sect. 5 for
a discussion on the other variants. MiMC is distinguished from any of the many
constructions that have been proposed in this field recently to the that it con-
tradicts popular belief: A recent standard textbook [KR11, Sect. 8.4] explicitly
considers such constructions as “not serious, for various reasons”.

Metrics. Given the wide variety of applications and protocols, no simple metric
will be able to reliably predict application level performance. Issues of conver-
sion between various field types (as the conversion between GF(2) and GF(p)
mentioned above, which can be quite costly) add to the complication. Neverthe-
less, in order to give at least some hint towards expected performance, we will
use the minimal number of multiplication to compute an output (minMULs),
and the average number of multiplications needed per input bit (MULs/bit) on
various designs. For the important special case of GF(2) we will use minANDs
and ANDs/bit, respectively.

A discussion of various constructions in GF(p) and GF(2) can be found in
Sect. 3. In the benchmarking part in Sect. 6.1, we will also come across the case of
an extremely imbalanced LowMC-variant where this simple metric clearly fails
to predict actual performance. The application performance is not independent
of the size of the multiplier, but for the sizes relevant for MiMC this dependence
is fairly weak. The experimental result supporting this is provided in the full
version of this paper [AGR+16].

Implementation Results. The hashing mode for GF(p) may prove to be par-
ticularly useful as it is the first of its kind, despite various applications in verifi-
able computing [CFH+15] and applications of SNARKS like Zerocash [BCG+14]
requiring such a function. Due to a lack of an alternative, authors implemented
and optimized SHA-256, which leads to a bottleneck in efficiency. We demon-
strate that MiMC compares very favorably in such an application. Based on
our experiments and implementations, we report a factor 10 improvement in
Sect. 6.1. We briefly mention more direct implementations in Sect. 6.2 and discuss
the suitability of the design for cheap (generic) protection against higher-order
side-channel attacks in Sect. 6.3.

In follow-up to this work [GRR+16], it was found that MiMC is also a very
competitive candidate as an MPC-friendly PRF. Compared to AES, benchmark

194 M. Albrecht et al.

results showed that MiMC has a more than 10 times higher throughput in the
online phase, and still about six times faster in the offline/precomputation phase
in the LAN setting. Even the latency, which one could expect to be relatively
high for MiMC due to its serial nature and the relatively high number of rounds,
is better than the latency of AES. Note that for the AES case, this does not
include conversion losses due to the application not using the AES field GF(28),
and hence the difference in real-world application settings will likely be larger.

2 The MiMC Primitives

In the following, we describe a block cipher, a permutation, and a permutation-
based cryptographic hash function with a low number of multiplications in a
finite field Fq (alternatively GF(q)) where q is either a prime p or a power of 2.

2.1 The Block Cipher

In order to achieve an efficient implementation over a field Fq (with q either
prime or a power of 2), i.e., to minimize computationally expensive multiplica-
tions in the field, our design operates entirely over Fq, thereby avoiding S-boxes
completely. More precisely, we use a permutation polynomial over Fq as round
function. In the following, we restrict ourselves to F2n and we denote by MiMC-
b/κ a keyed permutation with block size b and key size κ. The concept however
equally applies to Fp, which we will discuss briefly in Sect. 5.

MiMC-n/n. Our block cipher is constructed by iterating a round function r
times where each round consists of a key addition with the key k, the addition of
a round constant ci ∈ F2n , and the application of a non-linear function defined as
F (x) := x3 for x ∈ F2n . For a discussion of this particular choice of polynomial
and alternatives, we refer to Sect. 5.3. The ciphertext is finally produced by
adding the key k again to the output of the last round. Hence, the round function
is described as Fi(x) = F (x ⊕ k ⊕ ci) where c0 = cr = 0 and the encryption
process is defined as

Ek(x) = (Fr−1 ◦ Fr−2 ◦ . . . F0)(x) ⊕ k.

We choose n to be odd and the number of rounds as r =
⌈

n
log2 3

⌉
. The r − 1

round constants are chosen as random elements from F2n .
Note that the random constants ci do not need to be generated for every

evaluation of MiMC. Instead the constants are fixed once and can be hard-coded
into the implementation on either side. No extra communication is thus needed,
just as with round constants in LowMC, AES, or in fact any other cipher.

Decryption for MiMC-n/n can be realized analogously to encryption by
reversing the order of the round constants and using F−1(x) := xs with
s = (2n+1 − 1)/3 instead of F (x) := x3 (the complete derivation of s is given in
Sect. 4, Lemma 1). Hence, encryption and decryption need to be implemented

MiMC: Efficient Encryption and Cryptographic Hashing 195

Fig. 1. r rounds of MiMC-n/n

separately. Furthermore, decryption is much more expensive than encryption.
Using modes where the inverse is not needed is thus advisable. We note that
for our targeted applications, such as PRFs or cryptographic hash functions,
computing the inverse is usually not required. We therefore provide benchmark
results only for the encryption function. The fact that the inverse has a more
complex algebraic description also has a beneficial effect on security as it lim-
its cryptanalytic approaches that try to combine the encryption and decryption
direction, such as inside-out approaches (Fig. 1).

MiMC-2n/n (Feistel). By using the same non-linear permutation in a Feistel
network, we can process larger blocks at the cost of increasing the number of
rounds by a factor of two. The round function of MiMC-2n/n is defined as
following

xL‖xR ←− xR ⊕ (xL ⊕ k ⊕ ci)
3‖xL.

The round constants ci are again random elements of F2n except for the first and
last round constants which are equal to 0. In the last round, the swap operation is
not applied. The number of rounds for the Feistel version is r′ = 2·r = 2·

⌈
n

log2 3

⌉
,

where r is the number of rounds of MiMC-n/n.
Decryption for MiMC-2n/n can easily be realized by using the encryption

function with reversed order of round constants, as usual for Feistel networks.

2.2 The Permutation

To construct the permutation MiMCP from the cipher MiMC as described above,
we simply set the key to the all-0 string.

2.3 The Hash Function

For the hash function MiMChash, we propose to instantiate the permutation
MiMCP in the sponge framework [BDPA08]. Given a permutation of size n, and
a desired security level s, we can hash r = n−2s bits per call to the permutation.
The MiMC permutation can be realized either in the SPN mode or Feistel mode
by setting the key to 0κ where κ is the size of the key in bits. MiMCHash-�
denotes the hash function with � bit output.

As usual, the message is first padded according to the sponge specification
so that the number of message blocks is a multiple of r where r is the rate in
sponge mode. For MiMCHash-t we use MiMC-n/n permutation where n = 4·t+1
and s = 2 · t. For MiMCHash-256 we thus use a MiMC-n/n permutation with

196 M. Albrecht et al.

n = 1025. The rate and the capacity are chosen as 512 and 513 respectively. This
choice allows for processing the same amount of input bits as SHA-256 (512 bits)
while at the same time offering collision security of 128-bits and preimage security
of 256-bits, and in contrast to SHA-256 also full 256-bit 2nd-preimage security
independent of the message length. We also propose MiMCHash-256b, which also
offers collision resistance of 128 bits but only 128-bit security against preimage-
style attacks, similar to SHAKE-256 as specified in the new SHA-3 standard.
This construction makes use of a MiMC-n/n permutation where n = 769. The
rate and the capacity are chosen as 512 and 257 respectively. More generally
for MiMCHash-tb, we use the MiMC-n/n permutation where n = 3 · t + 1 and
s = t + 1.

3 Related Designs and Comparison

In this section, we give an overview of related designs, i.e. symmetric primitives
which are based on arithmetic operations in some ring.

3.1 Knudsen-Nyberg Cipher

As discussed above, our design can be seen as a resurrection of a design due
to Knudsen and Nyberg in [KN95], who proposed a DES-like cipher using a
similar idea for non-linear mappings in a finite field. The Feistel round function of
the 64-bit KN-cipher uses an affine mapping e : F232 → F237 to first transform
the 32-bit input into a 37-bit value. After addition with a 37-bit round key, the
resulting 37-bit value is then input to the non-linear permutation g : x → x3 in
F237 . Five bits of the output of g are then discarded to reduce the final output
again to 32 bits. In summary, one application of the round function is given as

xL||xR → xR||xL ⊕ f(e(xR) ⊕ ki)

where f consists of application g followed by discarding one bit. The KN cipher
is a six-round Feistel design with six 37-bit independent round keys and is prov-
ably secure against differential attacks. However, it is vulnerable to an interpo-
lation attack (see below) because of the low algebraic degree of the polynomial
corresponding to the encryption function. The Feistel variant of our design —
MiMC-2n/n — can be easily recognized as a variant of the KN cipher, except for
that we do not discard any bits (and hence always stay in the same field), add
independent round constants and have a higher number of rounds. Indeed, our
design more closely resembles PURE , the cipher used in [JK97] to demonstrate
the vulnerability of the KN cipher to interpolation attacks, except for the higher
number of rounds in our design. The performance of both designs essentially
differs linearly in by how much we extend the number of rounds. We note that
our GCD attack in Sect. 4.2 also extends to PURE and allows to reduce the
number of plaintext-ciphertext pairs required for a successful cryptanalysis.

MiMC: Efficient Encryption and Cryptographic Hashing 197

3.2 The Pohlig-Hellman Cipher

The Pohlig-Hellman cipher was described in [PH78]. Choose a prime p. Pick
1 ≤ k ≤ p − 2 with gcd(k, p − 1) = 1 and 1 ≤ d ≤ p − 2 with d = k−1 mod
p − 1, with p public and k and d private. To encrypt the message 1 ≤ m ≤
p − 1 compute c = mk mod p. To decrypt compute m = cd mod p. Encryption
and decryption take between log2 p and 2 log2 p multiplications depending on
the Hamming weights of k and d. A key recovery attack solves the discrete
logarithm problem in Fp. The General Number Field Sieve solves this problem

in complexity exp
((

3

√
64
9 + o(1)

)
(ln p)

1
3 (ln ln p)

2
3

)
= Lp

[
1
3 , 3

√
64
9

]
. Thus for n-

bit security, the number of multiplications required grows faster than O(n).

3.3 Naor-Reingold PRF

The Naor-Reingold PRF [NR97] is a pseudorandom function whose security can
be reduced to the decisional Diffie-Hellman problem. For a given n ∈ N, primes
p and q with q dividing p − 1, an element g ∈ F

∗
p of order q, and n + 1 elements

a0, . . . , an ∈ Zq, and an n-bit input x1, . . . , xn ∈ F2 define

fp,q,g,a(x1, . . . , xn) := ga0
∏

xi=1 ai

where (g,a) is the secret key. Evaluation of the function corresponds to one
exponentiation in Fp and n multiplications in Zq. Thus it takes between p and
2p multiplications in Fp. As the security of this primitive can be reduced to the
decisional Diffie-Hellman problem, just as with the Pohlig-Hellman cipher, for n
bit security the number of multiplications grows faster than O(n).

3.4 Ajtai, SWIFFT, SWIFFTX

SWIFFT [LMPR08] is a hash function family related to hard problems in lattices.
In can be seen in the tradition of the work of Ajtai [Ajt96] and was used as
a building block for the SWIFFTX SHA-3 submission [ADL+08]. The hash
function consists of an application of the Number Theoretic Transform (NTT)
over Z257 and in dimension 64 to m = 16 blocks of n = 64 bits. Each such
transform costs 1

2n log2 n = 3 · n = 192 multiplications by a constant per 64
bits. The output of the NTT is then pointwise multiplied with 64 random fixed
elements in Z257, costing another 64 multiplications. For m · n bits of input
the algorithm scales linearly in m, so require mn(1 + 1

2 log2 n) operations for
m · n bits of input. On modern microprocessors most of these multiplications
can be avoided by using precomputed lookup tables and some specifically chosen
constants. However, it is not clear that these techniques translate to our setting.
Furthermore, we note that multiplication by small constants can be more efficient
than general multiplications in, e.g. homomorphic encryption schemes. On the
other hand, the constants in an NTT are not small a priori. Still, our analysis
might be somewhat pessimistic. We note that SWIFFT itself does not fulfil
standard requirements for general purpose hash functions and that SWIFFTX

198 M. Albrecht et al.

addresses these issues by running four SWIFFT instances (increasing the number
of multiplications accordingly) and by introducing an S-box.

3.5 SPRING

SPRING [BBL+15] is a PRF proposal with security related to the Learning with
Errors (LWE) problem. Similarly, to SWIFFT this construction employs an NTT
over Z257, but at dimension n = 128. This costs 1

2n log2 n = 448 multiplications
in Z257. Additional, k multiplications in Z257 are required in a post-processing
step for k ∈ {64, 128} being the bit size of the input to the PRF. Hence, for
k = 128 we expect 576 multiplications in Z257. We note that these multiplications
can be realized efficiently on modern CPUs, but not necessarily in the scenarios
targeted in this work.

3.6 Comparison

In Table 1 we compare MiMC with various block cipher and PRF designs. In
Table 2 we compare MiMC with various cryptographic hash function proposals.
In both cases, we notice a big difference between MiMC instantiations, and
other designs for the two metrics that interest us: (1) the minimal number of
multiplications needed to encrypt a block or at least n bits (minMULs), and
(2) the number of multiplications per encrypted bit. For the GF(p) version of
MiMC, the number of multiplications has to be multiplied by 2.

4 Design Rationale and Analysis of MiMC

In this section we explain the design rationale of the keyed permutation and
argue its security. The monomial x3 serves as the non-linear layer of the block
cipher. Note that we can use x3 to construct the cipher iff it is a permutation
monomial in the field F2n . The following well known result governs the choice of
the monomial and size of the field in the design of MiMC.

Proposition 1. Any monomial xd is a permutation in the field F2n iff
gcd(d, 2n − 1) = 1.

Hence, x → x3 is not a permutation in F2n when n is even but only when n is
odd. In particular, choosing thus n = 2t + 1 ensures that x3 is a permutation
in F2n .

Moreover, using the previous proposition, we can compute the inverse of the
non-linear permutation x3 in F2n .

Lemma 1. Let n an odd integer. The inverse of the non-linear function x3 in
F2n is given by xs with s := (2n+1 − 1)/3.

MiMC: Efficient Encryption and Cryptographic Hashing 199

Table 1. Comparison of ciphers in encryption mode (excluding key schedule). We list
the size-optimized variants. Note that in most cases multiplication refers to the field
GF(2) (minANDs and ANDs/bit) whereas in MiMC and others multiplication is in a
larger field(minMULs and MULs/bit). For stream ciphers we give the minANDs needed
to generate n bits of output.

Name Security minANDs ANDs/bit Remarks and Reference

AES-128 128 5120 40 GF(2) rep. [BP12] ([BMP13])

Simon 128 4352 34 [BSS+13]

Noekeon 128 2048 16 [DPVAR00]

Robin 128 3072 24 [GLSV14]

Fantomas 128 2112 16.5 [GLSV14]

LowMC 128 1132 8.85 [ARS+15]

Grain-128a 128 4864 + 19 · n 19 [ÅHJM11]

Trivium 80 1152 + 3 · n 3 [CP08]

Kreyvium 128 1152 + 3 · n 3 [CCF+16]

minMULs MULs/bit

AES-128 128 800 6.25 GF(24) rep. [CGP+12]

SPRING 128 576 4.5 [BBL+15]

Pohlig-Hellman 128 3072 ≈ 1.5 [PH78,ENI13]

MiMC-129/129 129 82 0.64 This paper

MiMC-258/129 129 164 0.64 This paper

Proof. Given y = x3, we are looking for an s such that x = ys in GF (2n),
that is x3·s = x. By Fermat’s little theorem, this is equivalent to look for an s
such that 3 · s = 1 (mod 2n − 1). That is, there exists an integer t such that
3 · s = 1 + t · 2n − 1. By Proposition 1, we have that gcd(3, 2x − 1) = 1 if and
only if x is odd (i.e. gcd(3, 2x − 1) = 3 if and only if x is even). For t = 1, we
obtain 3 · s = 2n which is a contradiction. If t is equal to 2, then 3 · s = 2n+1 − 1.
Since n + 1 is even (by hypothesis), then 3 divides 2n+1 − 1. Finally, since x3 is
a permutation in GF (2n) for n odd (by previous proposition), then the inverse
is unique and is given by s := (2n+1 − 1)/3. 	

4.1 Computation Cost Model

In most models of computation field multiplication is considered to be more
computationally expensive than addition. However, note that squaring is a linear
operation in a binary field F2n . Hence, if we consider the number of non-linear
multiplications in a binary field then the number required to compute x3 is one.
In the SNARK setting, each witness variable (and possibly each constraint) is
generated from a field operation more specifically from a field multiplication. As
a consequence, computing x3 generates two equations x · x = y and y · x = x3.
Hence, in this setting we do not benefit from the linearity of squaring over the

200 M. Albrecht et al.

Table 2. Comparison of hash functions. We list the size-optimized variants. Note
that in most cases multiplication refers to the field GF(2) (minANDs and ANDs/bit)
whereas in MiMC multiplication is in a larger field (minMULs and MULs/bit).

Name Coll. Resist minANDs ANDs/bit Remarks and Reference

SHA-256 128 29000 56.64 [BCG+14])

SHA3-256 128 38400 35.29 [NIS14]

SHAKE128 128 38400 28.57 [NIS14]

minMULs MULs/bit

SWIFFTX 112–256 16384 8.0 [ADL+08]

MiMCHash-256 129 1293 2.52 This paper

MiMCHash-256b 129 971 1.89 This paper

fields F2n and computing x3 costs two multiplications. However, the cost of
additions in these fields is still negligible compared to that of multiplication.
Note that we can also disregard the cost of multiplication by a constant. Details
on the form of equations involved in SNARK is given in Sect. 6.

We stress that although the cost of an addition is considered negligible com-
pared to a multiplication, very large number of additions can reduce the efficiency
of a design.

4.2 Security Analysis

Our designs resist a variety of cryptanalysis techniques. The algebraic design
principle of MiMC causes a natural concern about the security of the keyed per-
mutation against algebraic cryptanalytic techniques. We describe several possible
algebraic attacks (incl. a new “GCD” attack) against the design and analyze the
resistance of the block cipher against these attacks. We also consider statistical
attacks.

To summarize the following results, the number of rounds for the case of
MiMC-n/n is derived from an interpolation attack, while the number of rounds
for the case of MiMC-2n/n is deduced from a Meet-in-the-Middle GCD attack.

We discuss the case in which some restrictions on the memory that the
attacker can use to implement the attack hold in the full version of this paper
[AGR+16]. We show that in this case it is possible to reduce the total number of
rounds. We have also analysed the security when the adversary has a restriction
on the number of plaintexts available in [AGR+16].

Interpolation Attack. Interpolation attacks, introduced by Jakobsen and
Knudsen [JK97], construct a polynomial corresponding to the encryption func-
tion without knowledge of the secret key. If an adversary can construct such a
polynomial then for any given plaintext the corresponding cipher-text can be
produced without knowledge of the secret key.

MiMC: Efficient Encryption and Cryptographic Hashing 201

Let Ek : F2n → F2n be an encryption function. For a randomly fixed key
k, the polynomial P (x) representing Ek(x) can be constructed using Lagrange’s
theorem, where x is the indeterminate corresponding to the plaintext. If the
polynomial has degree d then we can find it using Lagrange’s formula

P (x) =
d∑

i=1

yi

∏

1≤j≤d,i�=j

x − xj

xi − xj

where Ek(xi) = yi for i = 1, 2, . . . d.
This method can be extended to a key recover attack. The attack proceeds

by simply guessing the key of the final round, decrypting the cipher-texts and
constructing the polynomial for r − 1 rounds. With one extra p/c pair, the
attacker checks whether the polynomial is correct.

Observe that the number of unknown coefficients of the interpolation poly-
nomial is d + 1 and that the complexity of constructing a Lagrangian interpo-
lation polynomial is O(d log d) [Sto85]. Hence, setting d = 3r with r = rmax ≈
n/ log2(3) thwarts this attack. Note that no function mapping from GF(2n) to
GF(2n) has degree ≥ 2n, since T 2n−1 ≡ 1 for each T ∈ F2n and the degree of
the interpolation polynomial does not increase for r > rmax.

By the same argument, a similar result holds for the case of the Feistel
network MiMC-2n/n. Indeed, at each round the left/right hand part of the state
can be described as a polynomial of the left and of the right hand part of the
plaintext, with at most 32r−1 + 3r + 3r−1 + 1 unknown coefficients (observe
that at round r, the degree of the polynomial is at most 3r in the left part of
the plaintext and 3r−1 in the right part). Thus, the complexity of constructing
this Lagrangian interpolation polynomial is approximately O(r · 32r), where a
function mapping from GF(2n)2 to GF(2n) has degree at most 22n.

Note that in the chosen-plaintext scenario and in the case of MiMC-2n/n, an
attacker can reduce the degree of the interpolation polynomial. For example, for
chosen plaintexts of the form x||x3 the degree of the interpolation polynomial
after r rounds is at most 2 · 3r−1 in the left part of the plaintext and 2 · 3r−2

in the right part, while for chosen plaintexts of the form 0||x the degree of the
interpolation polynomial is at most 3r−1 in the left part of the plaintext and
3r−2 in the right part. Thus, for this second case, the interpolation polynomial
of the right part of the text depends only by the right part of the plaintexts and
has degree 3r−2. In order to avoid the reduced degree of the polynomial, it is
sufficient to add (at least) two rounds more to the number of rounds calculated
for MiMC-n/n.

A meet-in-the-middle variant of the interpolation attack was also proposed
in [JK97], constructing a polynomials g(x) = h(y) instead of one polynomial
y = f(x). For MiMC-n/n, this approach does not produce an improvement
due to the prohibitive degree of the inverse operation. In contrast, for MiMC-
2n/n we have that g and h may have degree 3r/2 in the left part of the plain-
text and 3r/2−1 in the right part only instead of degree 3r and 3r−1 respec-
tively. However, this lower degree comes at the price of increases computational
cost. Indeed, constructing g and h requires solving a system of equation in

202 M. Albrecht et al.

n = 2 · (3r/2 + 1) · (3r/2−1 + 1) unknowns costing O(nω) = O(3r) operations,
where the hidden constant is ≥ 1 and we conservatively set the linear algebra
constant ω = 2. The chosen plaintext variant of this attack is quite similar. As
before, the idea is to choose plaintexts in which the left part is fixed. In this
way, one of the two interpolation polynomial depends only on one variable, the
right part of the plaintext. Thus, constructing g and h requires solving a sys-
tem of equation in n = (3r/2−2 + 1) + (3r/2 + 1) · (3r/2−1 + 1) unknowns costing
O(n2) = O(3r−1) operations where the hidden constant is ≥ 1.

We note that the complexity of an interpolation attack may decrease if the
polynomial P (x) is sparse for a chosen key. However, because we are adding
random round constants in each round and x3 is a permutation in F2n by con-
struction, our P (x) is not expected to be sparse1.

Computing GCDs. From the description of MiMC, it is clear that factoring
univariate polynomials recovers the key. However, if we are given more than
one known plaintext-cipher-text pair, we can reduce the complexity further by
computing a GCD of them. Denote by E(k, x) the encryption of x under key
k. For a pair (x, y) ∈ F

2
q, E(K,x) − y denotes a univariate polynomial in Fq[K]

corresponding to (x, y). Note that in general, given plaintext/cipher text pair
(x, y), it should be hard for a generic encryption scheme to compute the uni-
variate polynomial E(K,x) − y explicitly in the variable K (i.e. the secret key).
However, this is not the case of MiMC, for which the polynomial E(K,x) − y
can be always computed explicitly, and it simply corresponds to the definition
of encryption process (that is, the iterative application of the cubic function).
Moreover, note that this attack may also be applied to PURE , the cipher used
in [JK97] to demonstrate the vulnerability of the KN cipher to interpolation
attacks, assuming round keys are not independent but linearly derived from k.

Consider now two such polynomials E(K,x1) − y1 and E(K,x2) − y2, with
y1 = E(k, x1) and y2 = E(k, x2) for the fixed but unknown key k. It is clear
that these polynomials share (K − k) as a factor. Indeed, with high probability
the greatest common divisor will be (K − k). Thus, by computing the GCD of
the two polynomials, we can find the value of k.

1 This claim is supported by our experiments. In particular, for a field F2n and using
x3 as permutation, we observed:

– after 1 round, all terms appear (percentage: 100 %);
– after 2 round, 8 terms appear instead of 10 (percentage: 80 %);
– after 3 round, 19 terms appear instead of 28 (percentage: 67.86 %);
– after 4 round, 54 terms appear instead of 82 (percentage: 65.85 %);
– after 5 round, 161 terms appear instead of 244 (percentage: 66 %);
– after 6 round, 531 terms appear instead of 730 (percentage: 72.74 %);

and so on, where the percentage of the non-null terms continues to grow for the next
rounds. For example, for the particular field GF (217), after 10 rounds almost all the
terms are non-zero.

MiMC: Efficient Encryption and Cryptographic Hashing 203

MiMC-n/n for a known plain text x corresponds to a polynomial having
degree 3r, where the leading monomial always has non-zero coefficient. Hence, we
can recover k with a GCD computation of two polynomials at degree 3r (indeed,
considering differences of two polynomials G(K,xi) − yi reduces this degree to
3r − 1 by canceling the leading term). It is well-known that the complexity
for finding the GCD of two polynomials of degree d is O(d log2 d). Hence, the
complexity of this attack is O(r2 · 3r). For MiMC-n/n the time complexity of
this attack is higher than that of the interpolation attack.

More care must be taken for MiMC-2n/n, since in this case the meet-in-the-
middle variant of this attack can be performed. That is, instead of constructing
polynomials expressing ciphertexts as polynomials in the plaintext and the key,
we can construct two polynomials G′(K,xi) and G′′(K, yi) expressing the state
in round r/2 as a polynomial in the key and the plaintext or ciphertext respec-
tively. Then, considering G′(K,x1) − G′′(K, y1) and G′(K,x2) − G′′(K, y2) we
can apply a GCD attack on polynomials of degree 3r/2, reducing the complexity
to O(r2 · 3r/2). Hence, to thwart this attack we must increase the number of
rounds to r = 2 · rmax ≈ 2 · n/ log2(3).

Invariant Subfields. The algebraic structure of MiMC allows to mount a
invariant subfield attack on the block cipher under a poor choice of round con-
stants. That is, if all the round constants ci and the key k are in subfield F2m

of F2n then by choosing a plaintext x ∈ F2m an adversary can ensure that
Ek(x) ∈ F2m . This attack is thwarted by picking n to be prime. The only sub-
field is then F2 such that picking constants �= 1 will be enough to avoid the
attack.

Differential Attacks. Differential cryptanalysis is one of the most widely used
technique in symmetric-key cryptanalysis. The different types of cryptanalysis
methods based on this technique depend on the propagation of an input differ-
ence through a given number of rounds of an iterative block cipher to yield a
known output difference with high probability. The probability of the propaga-
tion often determines how many rounds can be attacked using this technique.

Given an input difference δ and an output difference δ′, the differential prob-
ability of the round function is given as

Pr (δ → δ′) = |{x ∈ F2n : F (x + δ) + F (x) = δ′}|/2n (1)

In our case the number of x satisfying F (x+ δ)+F (x) = δ′ is determined by
the non-linear function x3. Hence it is enough to determine the size of the set

D = {x ∈ F2n : (x + δ)3 + x3 = δ′, δ �= 0}.

As this is a quadratic equation in x for any, there are at most two solutions to the
equation. This implies Pr (δ → δ′) ≤ 2

2n . This is sufficient to give any differential
trail of at least two rounds a probability too low to be useful in an attack. A
detailed analysis of the differential property of monomials of the form x2t+1 in
F2n can be found in [Nyb94,Can97].

204 M. Albrecht et al.

Linear Attacks. Similar to differential attacks, linear attacks pose no threat to
MiMC. Indeed, the cubic function is an almost bent or an almost perfect nonlinear
(APN) function, i.e., differential 2-uniform, where an APN permutation provides
the best resistance against linear and differential cryptanalysis. Thus, since its
maximum square correlation is limited to 2−n+1 (cf. for example [AÅBL12] for
details), any linear trail of the cubing function will have negligible potential after
a few rounds.

Algebraic Degree and Higher-Order Differentials. As discussed above,
the large number of rounds ensures that the algebraic degree of MiMC in its
native field will be maximal or almost maximal. This naturally thwarts higher-
order differential attacks when considering the difference as defined in the field
(i.e., using the inverse of the field addition). But what happens to the degree
when viewing the rounds as vectorial Boolean functions? As squaring is a linear
operation in F2n , it is also linear when viewed as vectorial function over F2.
Cubing on the other hand introduces an additional multiplication which gives
the round function an algebraic degree of 2 in every component when viewed as
a vectorial Boolean function. Again, the large number of rounds should cause
the degree to rise quickly and reach the limit of 2n which is sufficient to thwart
any higher-order differential attacks also when viewing the round function as a
vectorial Boolean function.

Hash-Specific Security Considerations. For usage in the MiMC permuta-
tion in the sponge mode as described in Sect. 2.3 we require the permutation to
not show non-trivial non-random behavior for up to 2s input/output pairs. As
specified in Sect. 2 the size of the permutation n determines the number of rounds
(based on the GCD attack described above). As 2s < n for both MiMCHash-256
and MiMCHash-256b, this choices leaves us with an additional security margin,
even if an hypothetical inside-out approach could double the number of rounds
in an attack.

5 Variants

In this section, we discuss two variants of MiMC. One for instantiating MiMC
over prime fields and one for extending the key size to increase security.

5.1 MiMC over Prime Fields

The above descriptions of MiMC can also be used to operate over prime fields
i.e. a field Fp where p is prime. In that case, it needs to be assured that the
cubing in the round function creates a permutation. For this, it is sufficient to
require gcd(3, p − 1) = 1.

Following the notation as above, we can consider MiMC-p/p where the per-
mutation monomial x3 is defined over Fp. The number of rounds for constructing

MiMC: Efficient Encryption and Cryptographic Hashing 205

the keyed permutation is r =
⌈

log p
log2 3

⌉
. In the Feistel mode, we define MiMC-2p/p

where the round function is defined over Fp and where the number of rounds
is double with respect to MiMC-p/p. In both the constructions the r round
constants are chosen as random elements in Fp.

Our cryptanalysis from Sect. 4 transfers to this case except for the subfield
attack which does not apply here.

5.2 Larger Keys

Instead of considering our simple iterative construction where we add the same
key in each round, we may also consider the case where we have a key which is
κ-times bigger than the block size n. In this case, we may consider an instance
where we are cyclically adding κ independent keys to our rounds. Our i-th round
function then becomes:

Fi(x) = (x ⊕ ki mod κ ⊕ ci)
3

It is clear that differential and linear cryptanalysis are not affected by this mod-
ification if we model MiMC as a Markov cipher. However, considering a larger
key size does affect algebraic attacks. In particular, a simple GCD attack is not
sufficient any more to recover the keys k0, k1, . . . , kκ−1. Instead, we may consider
Resultants or Gröbner bases.

We consider the case where κ = 2. It is well-known [BKW93] that the maxi-
mum degree reached during a Gröbner basis computation of a bivariate system
of equations is ≤ 2 ·maxdeg(P)+1, where maxdeg(P) is the maximum degree of
our input system (i.e. 3r in our case). Hence, from e.g. [BFS14], the complexity
of solving such a system of equations is

O
(

2 · 3r ·
(

2 · 3r + 3
2 · 3r + 1

))

.

Applying resultants, from [LMS13] we expect a complexity of

Õ (
d4.69

)
= Õ (

34.69 r
)
.

Conservatively, we may anticipate a meet-in-the-middle attack which would
reduce the cost of either of these attacks to a square root of the above esti-
mates.

5.3 Different Round Functions

Considering the case GF(2n), we may consider a round function of the form

F (x) = (x ⊕ k ⊕ c)d

for generic exponents d. In particular, we have decided to limit our analysis to
exponents of the form 2t + 1 and 2t − 1, for positive integer t (note that 3 is the

206 M. Albrecht et al.

only number that can be written in both ways). Remember that for MiMC-n/n,
d has to satisfy the condition gcd(d, 2n − 1) = 1 in order to be a permutation,
while in the case of MiMC-2n/n (that is, for Feistel Networks) this condition is
not necessary.

For further analysis, we recall the Lucas’s Theorem:

Theorem 1. For non-negative integers m and n and a prime p, the following
congruence relation holds:

(
m

n

)

≡
k∏

i=0

(
mi

ni

)

(mod p),

where m = mkpk + mk−1p
k−1 + ... + m1p + m0 and n = nkpk + nk−1p

k−1 + ... +
n1p+n0 are the base p expansions of m and n respectively, using the convention
that

(
m
n

)
= 0 if m < n.

Exponents of the form 2t+1 (with t > 1) have the nice property that the cost
to compute x2t+1 does not depend on t, i.e. it requires only one multiplication (in
some applications). Moreover, the degree of the resulting r-round interpolation
polynomial is (2t + 1)r, which is significantly higher than 3r even for “small” t.
The major problem of this kind of exponents is that the corresponding interpo-
lation polynomials are in general sparse. For example, using Lucas’s Theorem,
it is very easy to note that just after one round the polynomial has only 4 terms
instead of 2t + 2:

(x ⊕ k)2
t+1 ≡2 (x ⊕ k)2

t · (x ⊕ k) ≡2

≡2 (x2t ⊕ k2t) · (x ⊕ k) ≡2 x2t+1 ⊕ k · x2t ⊕ k2t · x ⊕ k2t+1.

Using the same technique, after r rounds, the number of terms of the polyno-
mial is upper bounded by 3r + 1, which is (much) smaller than (2t + 1)r + 1.
Note that 3r + 1 is exact the same upper bounded obtained for the exponent
3 (which corresponds to t = 1). Thus, the number of rounds to guarantee the
security against the algebraic attacks doesn’t change choosing exponent of the
form 2t + 1 for t > 1. That is, both from the security point of view and from
the implementation one, there is no advantage to choose exponents of the form
2t + 1 greater than 3.

Similar considerations can be done also for exponents of the form 2t + 2s =
2s · (2t−s + 1), where s < t.

For this reason, coefficients of the form 2t −1 are more interesting. Indeed, in
this case it is very easy to prove that the interpolation polynomial is not sparse:

(x ⊕ k)2
t−1 ≡2

2t−1⊕

i=0

xi · k2t−1−i,

since (
2t − 1

i

)

≡2 1 ∀i ∈ {0, 1, . . . , 2t − 1}.

MiMC: Efficient Encryption and Cryptographic Hashing 207

On the other hand, in order to compute x2t−1, we need more multiplications and
square operations. Thus, a natural question is if it is possible to minimize the
total number of multiplications necessary to compute the ciphertext choosing an
exponent of the form 2t − 1 different from 3.

There are different ways to compute ge where g ∈ F2n and e = 2t − 1
for some t ≥ 2, the classical algorithm being the square-and-multiply algo-
rithm, cf. [MVO96, Sect. 14.6]. For this algorithm, the number of multiplica-
tions requested for this exponent is equal to the number of squares t − 1. In
Algorithm 1, we give a slight variation of the original algorithm.

Data: g ∈ F2n and e = 2t − 1 for some t ≥ 2
Result: ge

g0 ← g;
g1 ← g2 · g;
A ← 1;
for i from 0 to �t/2� do

A ← (A2)2;
A ← A · g1;

end
if t mod 2 �= 0 then

A ← A2;
A ← A · g0;

end
return A.

Algorithm 1. Modular exponentiation with cache

By simple computation, the number of multiplications for the previous algo-
rithm is �t/2�, while the number of squares is t − 1. Observe that with respect
to the original algorithm, it requires precomputation and to store the quantity
g2 · g. Thus, for our purpose, this algorithm is better than the original one (for
the case e = 2t − 1). This algorithm can be improved2, but for our purpose it
suffices.

Thus, using the previous analysis about the number of rounds, the total
number of multiplications m and of squares s for MiMC-n/n (analogous for
MiMC-2n/n) is

m =
⌈

t

2

⌉

·
⌈

n

log2(2t − 1)

⌉

s = (t − 1) ·
⌈

n

log2(2t − 1)

⌉

.

2 For example, suppose that t ≥ 8. The idea is to precompute g0, g1 (defined as before)
and also g2 := (g1)

4 ·g1. Thus, in the for loop 0 ≤ i ≤ �t/4� and A ← A8 ·g2. Finally,
after the for loop and before the if -statement, one has to take care of the case t
mod 4 �= 0.

208 M. Albrecht et al.

For example, for n = 129, the best result is obtained for t = 4 (that is for the
exponent 15)3, for which the total number of multiplications is 66 (instead of
82 for the exponent 3), while the number of squares is 99 (instead of 82 for the
exponent 3).

Note that the sum of the total number of multiplications m and of the total
number of squares s is almost constant for each choice of t.

Finally, only for completeness, it is also possible to extend the previous analy-
sis to the case GF (p). In this case, since the square operation is not linear, it
counts as a multiplication. Thus, if we consider an exponent of the form 2t − 1,
the total number of multiplications m for MiMC-p/p is

m =
(⌈

t

2

⌉

+t − 1
)

· log(p − 1)
log(2t − 1)

.

To conclude, if the cost of a square operation is negligible with respect to
the cost of a multiplication (that is, if the square operation is linear), then it is
possible to minimize the total number of multiplications choosing an exponent of
the form 2t − 1 different from 3. Instead, when the number of square operations
can not be ignored (as for example in the case of SNARK settings or in the
GF (p) case), the choice of an exponent of the form 2t − 1 different from 3 does
not offer any advantage due to the fact that the number m+s is almost constant.

6 Application and Implementation

We implemented the MiMC block cipher and hash function in C++ using
NTL [Sho]. Note that we put no restriction on the irreducible polynomial to
represent the finite field F2n in our proposal.

6.1 Verifiable Computation and SNARK

Recently, several techniques have been proposed to achieve practical or
nearly practical verifiable computation through constructions such as Pinoc-
chio [PHGR16] and zk-SNARK. A special kind of Succinct Non-interactive
Argument of Knowledge or SNARK was proposed in 2014 to build Zero-
cash [BCG+14] — a digital currency similar to Bitcoin but achieving anonymity.
In [BSCG+13] an implementation of a publicly verifiable non-interactive argu-
ment system is given.

The main idea of the SNARK is to provide a circuit whose satisfiability
enables a verifier to check correctness of an underlying computation. In this
concrete implementation, we focus on the (zk)SNARK for arithmetic circuit
satisfiability. The main target of our design proposals is to improve the efficiency
of (zk)SNARK when they are used as cryptographic primitives in a SNARK
setting.

3 Actually, the best result is obtained for t = 6, that is for the exponent 63. But since
gcd(63, 2129 − 1) = 7, the round function defined using the exponent 63 is not a
permutation.

MiMC: Efficient Encryption and Cryptographic Hashing 209

An F-arithmetic circuit takes input from the field F and its gates produce
output in F. Also the circuits considered here consist of bilinear gates only.
Arithmetic circuit satisfiability (ACS) is defined as follows:

Definition 1. The ACS problem of an F-arithmetic circuit C : Fn × F
h → F

l

is depicted by the relation R = {(x, a) ∈ F
n × F

h : C(x, a) = 0l} such that its
language is L = {x ∈ F

n : ∃a ∈ F
h s.t C(x, a) = 0l}.

Since the circuit consists of bilinear gates only, we aim to minimize the num-
ber of NLM or field multiplications in our design. The addition in the field, which
is the same as bitwise XOR, is a comparatively less expensive operation. The
SNARK algorithm generates the proof for satisfiability of a system of rank-1
quadratic constraints over a finite field. This system of constraints is defined as
below.

Definition 2. A system of rank-1 quadratic equations over a field F is a
sequence of tuples ((Ai, Bi, Ci), n) for i = 1, . . . , Nc and Ai, Bi, Ci ∈ F

1+N ′

such that n ≤ N ′. This system is satisfiable with an input x ∈ F
n if there is a

witness w ∈ F
N ′

such that

〈Ai, w〉 · 〈Bi, w〉 = 〈Ci, w〉 ∀i = 1, . . . , Nc

Here Nc is the number of constraints and N ′ is the number of variables.

The number of such constraints contributes to the efficiency of the SNARK
algorithm. From the above definition it is also clear that in a SNARK setting
over F2m we can not ignore the squaring as linear operation.

MiMC in the SNARK Setting. In MiMC, each round can be expressed with
the following equations

X + ki + Ci︸ ︷︷ ︸
α

+U = 0 (2)

U · U = Y (3)
Y · U = Z (4)

where ki, Ci are the round key and constants respectively. Note that the above
3 equations can be combined to form one rank-1 quadratic constraint (as in
Definition 2)

(X + α)(X + α + Y) = Y + Z (5)

For the MiMCHash the round key is fixed to a constant hence α can be treated
as a constant in this equation. Note that the number of witness per round of
MiMC is 2. Therefore the total number of witness for the fixed key permuta-
tion is 2 · R, where R ≈ n

log 3 is the number of rounds and n is the block size.
The witness generation requires one constant addition (XOR) and two multi-
plications in the corresponding field. The complexity of the prover algorithm of
SNARK (Appendix E in [BSCG+13]) is dominated by O(Nc log Nc) where Nc is
the number of rank-1 constraints.

210 M. Albrecht et al.

LowMC in the SNARK Setting. In LowMC, each round consists of Sbox
(3-bit), matrix multiplication (over F2), round key and constant addition (XOR).
Each 3-bit Sbox application can be written as

b · c = a + z1 (6)
a · (c + 1) = b + z2 (7)
a · (b + 1) = b + c + z3 (8)

The above three equations can be combined to form 2 rank-1 constraints as
following

b · c = a + z1 (9)
a · (b + c) = c + z2 + z3 (10)

The witness generation for each Sbox requires 3 multiplications and 6 additions
(out of which 2 are constant additions) over F2. In each round there are m Sboxes.
Hence per round the witness generation process will require 3 m multiplications
and 6 m (2 m of them are constant addition) additions per round. Suppose Nb is
the block size of the permutation. Then there will be approximately (l − 1) · Nb

additions over F2 due to linear layer of LowMC in each round, where l is the
average number of non-zero entries in each row of the random matrix of the
linear layer. Also there will be Nb constant additions over F2 which is due to
round constant and key addition. The total number of rank-1 constraints for R
rounds of LowMC will be R · 2m. Note that the number of additions is much
higher in comparison with the number of multiplication over F2.

Remark 1. For the MiMC permutation, the operations are performed over a
larger field e.g. F21025 . Indeed the cost of a single multiplication is higher in
the larger field compared to a multiplication over F2. Moreover, the number of
additions are significantly more than the number of multiplications (see Table 3).
Although in the cost model the cost of addition is much less than the cost of
multiplication, very large number of additions over F2 brings down the efficiency
of LowMC in SNARK setting in comparison to MiMC. On the other hand, in
MiMC the number of additions per round is one.

Experimental Results. Following the libsnark [Lab] implementation we have
implemented a prototype of SNARK for generating the circuit and witness for
MiMC permutation for different block sizes and MiMCHash-256. One important
target application of MiMC is SNARK or SNARK like algorithms. We have mea-
sured the time taken by MiMCHash for processing a single block and compared
it with the time taken by SHA-256 using the libsnark implementation.

For processing a single block i.e. for hashing a single block message our MiMC
implementation in the SNARK setting requires ≈ 7.8 milliseconds to generate
the arithmetic circuit and witness while SHA-256 takes ≈ 73 milliseconds.

Since LowMC was designed for MPC/ZK applications we have also imple-
mented it in the SNARK setting. A comparison of LowMC with MiMC is given
in Table 3.

MiMC: Efficient Encryption and Cryptographic Hashing 211

Table 3. Comparison of LowMC and MiMC with block size 1025 and the corresponding
parameters for LowMC and Keccak permutation with specified parameters. For all
implementations we have used the -O3 optimization option of the gcc compiler. For
LowMC, the number of rounds and the number of Sboxes per round are denoted as R
and m respectively.

MiMC LowMC Keccak-[1600, 24]

R = 16 R = 55

m = 196 m = 20

Total time 7.8 ms 90.3 ms 271.2 ms 75.8 ms

Constraint generation 6.3 ms 13.5 ms 9.2 ms 65.2 ms

Witness generation 1.5 ms 76.8 ms 262.0 ms 10.6 ms

addition 646 8420888 28894643 422400

multiplication 1293 9408 3300 38400

rank-1 constraint 646 4704 2200 38400

If we intend to use the LowMC permutation to construct a hash function
using Sponge mode then the block size of LowMC should be 1025 bit for achiev-
ing the same security level as SHA-256 or MiMCHash-256. We have implemented
LowMC with the updated parameter-set v2 from [ARS+16b] with this block size
and two possible choices for the parameters (R,m), where R and m are number of
rounds and number of Sbox per round respectively. One is minimizing the num-
ber of rounds for the given block size and security requirements, the other one is
minimizing the number of ANDs/bit. Both are derived from the round formula
given in [ARS+16b]. LowMC is a block cipher designed for MPC/FHE appli-
cations and the original proposal did not provide any suggestion to construct a
secure hash function using the permutation. However if used in the sponge mode
then the performance of the resulting hash function can be approximated by the
performance of the LowMC permutation in SNARK setting.

We have also compared the performance of the Keccak-[1600, 24] [NIS14]
permutation when used for the SHA-3 and SHAKE hash function in our SNARK
setting. Note that the truncation after a Keccak permutation can be expressed
as equality constraints. In fact the performance for the SHAKE128 or SHA3
are almost same as the Keccak-[1600, 24]. The performance comparison in the
Table 3 shows that MiMC is significantly more efficient than LowMC and SHA-3
in SNARK setting.

All field operations are implemented using the NTL together with the gf2x
library. All computations were carried out on an Intel Core i7 2.10 GHz proces-
sor with 16 GB memory and we took the average over ≈ 2000 repetitions. As
a design with an unusual imbalance between ANDs and XORs, the comparison
with LowMC variants is interesting as it gives an example where the number mul-
tiplications alone can no longer be used as a hint for the eventual performance.
Where the round-minimized LowMC variant is more than 10 times slower with
about 8 times more multiplications, reducing the number of ANDs in the other

212 M. Albrecht et al.

LowMC variant at the expense of many more rounds does not have the expected
effect: The runtime grows again. The reason is the huge amount of XOR com-
putations whose cost is clearly are no longer negligible. This shows the limits of
a simplified metric that focuses on AND gates (or multiplication gates) also.

All implementations in C++ can be found on https://github.com/byt3bit/
mimc snark.git.

6.2 Direct Implementation

For the sake of completeness we provide a brief discussion of the complexity for
the direct implementation MiMC, but stress that it has limited impact on the
performance on our target platforms. Each round of MiMC-n/n performs one
multiplication in the field F2n . For the considered values of n this computation of
x3 becomes computationally expensive, since it is not feasible to use the efficient
lookup table method even for n = 32, 64.

The evaluation of x3 can be reduced to field multiplication. Since the prob-
lem is frequently encountered in many public-key cryptographic algorithms and
protocols, efficient field multiplication is a well studied area in the literature.
One strategy for efficient field multiplication is to use lookup tables. Indeed,
several algorithms [GP97,DWBV+96,HMV93] are proposed in the literature
which use precomputed lookup tables to improve the efficiency of finite field
multiplication. We briefly describe the complexity for evaluating the monomial
using several algorithms from the literature (Table 4).

Table 4. Complexities of different algorithms for implementing field multiplications

Number of instructions Look-up table

XOR ADD,SUB, SHIFT, AND Bit size No. of access

[HMV93] 2g2 g2
(
3
2

− 1
2(2b−1)

)
2b2b 3g2

[GP97] 6glog 3 − 8 · g + 2 glog 3 2b2b 3glog 3

[KA98] 4g2 — (2b − 1)22b 2g2 + g

[Has00]
(
1
2
(g + 1)(b + 3) − 4

)
 n
w

� (g − 1)
 n
w

� + 4g − 2 (b + d)2b (g − 1)
 b+d
w

�

In all lookup-table based multiplication algorithms above, b is the size of
the internal data path of the processor. Any element in F2n is partitioned as
a collection into g groups each having b bits. If n is not a multiple of b then
the most significant group will contain n (mod b) bits. Note that the algorithm
in [HMV93] requires n to be multiple of b. Furthermore, d denotes the degree
of the second highest monomial (with non-zero coefficient) in the irreducible
polynomial that defines the field F2n and w denotes the word size of processor.
The resources of a processor are optimally utilized when b = w. For example in
a 32 bit processor two polynomials can be added using � n

32� XOR instructions.
However choosing b = w in this case increases the size of the lookup table to 25

https://github.com/byt3bit/mimc_snark.git
https://github.com/byt3bit/mimc_snark.git

MiMC: Efficient Encryption and Cryptographic Hashing 213

GB for the algorithms from [HMV93,GP97]. On the other hand choosing b < w
may imply lower utilization of processor’s resources. The algorithm described
in [Has00] proposes a better utilization of resources when a small value of b is
chosen to keep the size of the lookup table sufficiently small. Also, this algorithm
does not require n to be multiple of b.

6.3 Generic Masking Against Side-Channel Attack

Side-channel attacks exploit different types of physical leakage of information
e.g. power consumption or EM emanations during the execution of cryptographic
algorithms on a device for recovering sensitive variables (e.g. secret key). Mask-
ing is a well known technique to prevent implementations of cryptographic algo-
rithms from such attacks. Most of the masking schemes usually protect an imple-
mentation against first-order attacks. Over the past years several higher-order
side-channel attacks were proposed and demonstrated successfully against many
well-known cryptographic algorithms. Higher order masking schemes are useful
to protect a cryptographic algorithm against such attacks.

In a higher order masking scheme a sensitive variable (e.g. variables involving
secret keys) is split into t+1 shares where t is known as the order of masking. It
has been shown that the complexity of side-channel attacks increases exponen-
tially with the masking order.

In FSE 2012 a generic higher order masking scheme [CGP+12] was proposed
by Carlet, Goubin, Prouff, Quisquater and Rivain. For masking an S-box using
CGPQR scheme we need to consider the polynomial corresponding to the S-box,
which can be easily computed from the S-box table using Lagrange’s theorem in a
field F2n . In CGPQR masking scheme evaluation of this polynomial is protected
against higher order attacks. For example, let x be a secret variable for which
we evaluate a function f(x). Let x0, x1, . . . , xt are the t+1 shares corresponding
to this variable such that x =

⊕t
i=0 xi. Any linear function �(x) is easy to mask

since �(x) = �(x0)⊕ . . .⊕ �(xt). However masking a non-linear function is not as
easy as linear or affine functions.

The operations necessary for evaluating a polynomial in F2n are addition,
multiplication by a scalar, squaring and regular multiplication. For tth order
masking any affine and linear operation in F2n requires O(t) logical operations,
whereas regular multiplication requires O(t2) logical operations. Hence regular
multiplication is significant operation in CGPQR masking scheme and its effi-
ciency can be increased by minimizing the number of regular multiplications in
a field for a cryptographic algorithm.

MiMC is constructed using a monomial x3 in F2n . Evaluation of this mono-
mial in each round requires only one multiplication and hence is optimized for
CGPQR higher order masking scheme.

7 Conclusions

We have reconsidered a 20-year old cipher design idea, given a thorough security
analysis, and demonstrated that it can be very competitive in emerging new

214 M. Albrecht et al.

applications of symmetric cryptography: SNARKs. It might seem that the use-
fulness of the design is limited to this setting, as the number of rounds is high
compared to other more “traditional” designs for symmetric primitives. However
there is evidence that the opposite is true, which was recently discovered in a
follow-up work [GRR+16]. Due to its very simple design and despite the high
number of rounds, it also turned out to be very competitive in a very different
application setting: The currently fastest known MPC protocols with security
against active adversaries. This clearly shows that there is a good use-case for
designs which work natively in GF(p), and we hope that MiMC can inspire more
design and cryptanalysis in this direction.

Acknowledgements. We thank Alessandro Chiesa, Eran Tromer and Madars Virza
for helpful discussions on SNARKs. The work in this paper has been partially supported
by the Austrian Science Fund (project P26494-N15) and by the EU H2020 project
Prismacloud (grant agreement nr. 644962). Albrecht was supported by EPSRC grant
EP/L018543/1 “Multilinear Maps in Cryptography”.

A SNARK Prover Algorithm

Here we give a brief description of the parameters chosen to implement the
prover algorithm for MiMCHash-256 using the MiMC-1025/1025 permutation
with a fixed key. We also briefly describe a part the prover algorithm for MiMC
in a SNARK setting. For a more detailed description of the SNARK algorithm
we refer the readers to [BSCG+13].

A.1 Complexity of the Prover Algorithm

Let S be the system of rank-1 quadratic constraints as described in Definition 2
of the article with the tuples (Ai, Bi, Ci) ∈ F

N ′+1 for i ∈ [Nc]. Fix an arbitrary
subset X = {α1, α2, . . . , αN} of F such that αi = ωi−1 for i ∈ [Nc] and ω is
the Nc th root of unity. Given an input x ∈ F

m and witness w ∈ F
N ′

such that
(x,w) ∈ R. The prover algorithm performs the following steps :

1. Choose δ1, δ2, δ3 independently at random from the field F

2. Construct the polynomial

Q(z) :=
F (z)G(z) − H(z)

U(z)

where U(z) := zNc − 1 and F,G,H are univariate polynomials of degree N
defined as

F (z) = F0(z) +
N ′
∑

i=1

wiFi(z)

︸ ︷︷ ︸
F ′

+δ1U(z), G(z) = G0(z) +
N ′
∑

i=1

wiGi(z) + δ2U(z)

H(z) = H0(z) +
N ′
∑

i=1

wiHi(z) + δ3U(z)

MiMC: Efficient Encryption and Cryptographic Hashing 215

Here Fi, Gi,Hi : X → F are the Lagrange basis functions for the correspond-
ing polynomials satisfying the following conditions

Fi(αj) = Aj(i), Gi(αj) = Bj(i),Hi(αj) = Cj(i)

for each i ∈ {0, 1, . . . , N ′} and j ∈ [N]. Note that for any input x and witness
w if (x,w) ∈ R then U(z) divides F (z)G(z) − H(z).

3. Output the vector (1, δ1, δ2, δ3, w, q) such that q = (q0, q1, . . . qN) represents
the polynomial Q.

Note that each of the polynomials F ′, G′,H ′ (hence F,G,H) can be computed
using an inverse FFT which has a complexity O(Nc log Nc). Next a multiplicative
coset Y := γX of X = {α1, . . . αNc

} is chosen such that γ ∈ F − X . The
polynomial Q(z) is computed in two steps

– Evaluate Q′(z) := F ′(z)G′(z)−H′(z)
U(z) on Y point-by-point using the evaluations

of F ′, G′,H ′, U on Y
– Compute Q′(z) using inverse FFT and compute Q(z) := Q′(z) + δ2F

′(z) +
δ2G

′(z) + δ1δ2U(z) − δ3.

The first step out of the above two takes O(Nc) field operations and the
inverse FFT has the complexity O(Nc log Nc).

A.2 Parameters for MiMCHash-256

Over F2n We describe the parameter choices for n = 1025. The hash function
constructed over this particular field promises the same level of security as SHA-
256. For processing a single block we use the MiMC-1025/1025 over F21025 . The
two constraints in each round of MiMC permutation can be combined to obtain a
single rank one quadratic constraint. Hence we get approximately 1025/ log(3) ≈
646 constraints from the permutation together plus an additional constraint for
compression function making the total number of constraints 647. Note that
each round introduces two variables in the constraints hence the number of
witness is 1293 where w1 = x ∈ F21025 is the input to the hash function and
w ∈ (F21025)

1293.
In the prover algorithm the number of constraints N should be such that the

principal N -th root exists in F21025 . To satisfy this condition we choose N = 1801
(since 1801 divides |F∗

21025 |). This is the smallest number which divides the order
of the multiplicative group corresponding to the finite field and also greater than
647. We add 1154 dummy constraints of the form 0.Xi = 0 to make the total
number of constraint 1801. Note that although the complexity of the prover
algorithm depends on the number of constraints (or number of multiplications)
for a specific algorithm the number of constraints may not be feasible choice for
the FFT algorithm. In such case the complexity actually depends on the best
possible choice of the multiplicative subgroup of F∗

2n .
This is not only applicable to MiMC or MiMCHash but a feature of the

SNARK algorithm. In [BSCG+13] a finite field Fp is chosen in such way that
p − 1 is of the form 2t · q.

216 M. Albrecht et al.

Over Fp When we use MiMC-p/p over Fp for some prime p (with 1025 or more
bits) to construct the hash function we have the option of choosing p such that
p − 1 = 2l · q. However this yields a very large prime number p. For ≈ 1025
bit security of the keyed permutation it is enough to have 1025/ log(3) ≈ 646
rounds. Hence the number of witness will be 1293 in this case for processing a
single block. Instead of choosing such large prime we can choose p such that p−1
has a prime factor closed to and greater than 1293.

References

[AÅBL12] Abdelraheem, M.A., Ågren, M., Beelen, P., Leander, G.: On the distri-
bution of linear biases: three instructive examples. In: Safavi-Naini, R.,
Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 50–67. Springer,
Heidelberg (2012). doi:10.1007/978-3-642-32009-5 4

[ADL+08] Arbitman, Y., Dogon, G., Lyubashevsky, V., Micciancio, D., Peikert, C.,
Rosen, A.: Swifftx: a proposal for the SHA-3 standard. Submission to
NIST (2008)

[AGR+16] Albrecht, M., Grassi, L., Rechberger, C., Roy, A., Tiessen, T.: MiMC: effi-
cient encryption and cryptographic hashing with minimal multiplicative
complexity. Cryptology ePrint Archive, Report 2016/492 (2016). http://
eprint.iacr.org/2016/492

[ÅHJM11] Ågren, M., Hell, M., Johansson, T., Meier, W.: Grain-128a: a new version
of grain-128 with optional authentication. IJWMC 5(1), 48–59 (2011)

[Ajt96] Ajtai, M.: Generating hard instances of lattice problems (extended
abstract). In: 28th ACM STOC, May 1996, pp. 99–108. ACM Press
(1996)

[ARS+15] Albrecht, M.R., Rechberger, C., Schneider, T., Tiessen, T., Zohner, M.:
Ciphers for MPC and FHE. In: Oswald, E., Fischlin, M. (eds.) EURO-
CRYPT 2015. LNCS, vol. 9056, pp. 430–454. Springer, Heidelberg (2015).
doi:10.1007/978-3-662-46800-5 17

[ARS+16a] Albrecht, M., Rechberger, C., Schneider, T., Tiessen, T., Zohner, M.:
Ciphers for MPC and FHE. Cryptology ePrint Archive, Report 2016/687
(2016). http://eprint.iacr.org/2016/687

[ARS+16b] Albrecht, M.R., Rechberger, C., Schneider, T., Tiessen, T., Zohner, M.:
Ciphers for MPC and FHE. Cryptology ePrint Archive, Report 2016
(2016). http://eprint.iacr.org/

[BBL+15] Banerjee, A., Brenner, H., Leurent, G., Peikert, C., Rosen, A.: SPRING:
fast pseudorandom functions from rounded ring products. In: Cid, C.,
Rechberger, C. (eds.) FSE 2014. LNCS, vol. 8540, pp. 38–57. Springer,
Heidelberg (2015). doi:10.1007/978-3-662-46706-0 3

[BCG+14] Ben-Sasson, E., Chiesa, A., Garman, C., Green, M., Miers, I., Tromer,
E., Virza, M.: Zerocash: decentralized anonymous payments from bitcoin.
In: 2014 IEEE Symposium on Security and Privacy, SP 2014, Berkeley,
CA, USA, 18–21 May 2014, pp. 459–474. IEEE Computer Society (2014)

[BDPA08] Bertoni, G., Daemen, J., Peeters, M., Assche, G.: On the indifferentiabil-
ity of the sponge construction. In: Smart, N. (ed.) EUROCRYPT 2008.
LNCS, vol. 4965, pp. 181–197. Springer, Heidelberg (2008). doi:10.1007/
978-3-540-78967-3 11

http://dx.doi.org/10.1007/978-3-642-32009-5_4
http://eprint.iacr.org/2016/492
http://eprint.iacr.org/2016/492
http://dx.doi.org/10.1007/978-3-662-46800-5_17
http://eprint.iacr.org/2016/687
http://eprint.iacr.org/
http://dx.doi.org/10.1007/978-3-662-46706-0_3
http://dx.doi.org/10.1007/978-3-540-78967-3_11
http://dx.doi.org/10.1007/978-3-540-78967-3_11

MiMC: Efficient Encryption and Cryptographic Hashing 217

[BFS14] Bardet, M., Faugère, J.-C., Salvy, B.: On the complexity of the F5
Gröbner basis Algorithm. J. Symb. Comput. 70, 49–70 (2014)

[BKW93] Becker, T., Kredel, H., Weispfenning, V.: Gröbner Bases: A Computa-
tional Approach to Commutative Algebra. Springer, New York (1993)

[BMP13] Boyar, J., Matthews, P., Peralta, R.: Logic minimization techniques with
applications to cryptology. J. Cryptology 26(2), 280–312 (2013)

[BP12] Boyar, J., Peralta, R.: A small depth-16 circuit for the AES S-box.
In: Gritzalis, D., Furnell, S., Theoharidou, M. (eds.) Information Secu-
rity and Privacy Conference (SEC). IFIP Advances in Information and
Communication Technology, vol. 376, pp. 287–298. Springer, Heidelberg
(2012)

[BSCG+13] Ben-Sasson, E., Chiesa, A., Genkin, D., Tromer, E., Virza, M.: SNARKs
for C: verifying program executions succinctly and in zero knowledge.
In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8043, pp.
90–108. Springer, Heidelberg (2013). doi:10.1007/978-3-642-40084-1 6

[BSS+13] Beaulieu, R., Shors, D., Smith, J., Treatman-Clark, S., Weeks, B.,
Wingers, L.: The SIMON and SPECK families of lightweight block
ciphers. Cryptology ePrint Archive, Report 2013/404 (2013). http://
eprint.iacr.org/2013/404

[Can97] Canteaut, A.: Differential cryptanalysis of feistel ciphers and differen-
tially δ-uniform mappings. In: Workshop on Selected Areas in Cryptog-
raphy, SAC 1997, Workshop Record, pp. 172–184 (1997)

[CCF+16] Canteaut, A., Carpov, S., Fontaine, C., Lepoint, T., Naya-Plasencia, M.,
Paillier, P., Sirdey, R.: Stream ciphers: a practical solution for efficient
homomorphic-ciphertext compression. To appear in Proceedings of FSE
2016, available on Cryptology ePrint Archive, Report 2015/113 (2016).
http://eprint.iacr.org/

[CFH+15] Costello, C., Fournet, C., Howell, J., Kohlweiss, M., Kreuter, B., Naehrig,
M., Parno, B., Zahur, S.: Geppetto: versatile verifiable computation. In:
2015 IEEE Symposium on Security and Privacy, SP 2015, pp. 253–270.
IEEE Computer Society (2015)

[CGP+12] Carlet, C., Goubin, L., Prouff, E., Quisquater, M., Rivain, M.: Higher-
order masking schemes for S-boxes. In: Canteaut, A. (ed.) FSE 2012.
LNCS, vol. 7549, pp. 366–384. Springer, Heidelberg (2012). doi:10.1007/
978-3-642-34047-5 21

[CP08] Cannière, C., Preneel, B.: Trivium. In: Robshaw, M., Billet, O. (eds.)
New Stream Cipher Designs. LNCS, vol. 4986, pp. 244–266. Springer,
Heidelberg (2008). doi:10.1007/978-3-540-68351-3 18

[DPVAR00] Daemen, J., Peeters, M., Van Assche, G., Rijmen, V.: Nessie proposal:
Noekeon. In: First Open NESSIE Workshop (2000)

[DWBV+96] De Win, E., Bosselaers, A., Vandenberghe, S., De Gersem, P., Vande-
walle, J.: A fast software implementation for arithmetic operations in
GF(2n). In: Kim, K., Matsumoto, T. (eds.) Advances in Cryptology –
ASIACRYPT ’96. Lecture Notes in Computer Science, vol. 1163, pp.
65–76. Springer, Berlin Heidelberg (1996)

[ENI13] ENISA. Algorithms, key sizes and parameters report – 2013 recom-
mendations. Technical report, European Union Agency for Network and
Information Security, October 2013

http://dx.doi.org/10.1007/978-3-642-40084-1_6
http://eprint.iacr.org/2013/404
http://eprint.iacr.org/2013/404
http://eprint.iacr.org/
http://dx.doi.org/10.1007/978-3-642-34047-5_21
http://dx.doi.org/10.1007/978-3-642-34047-5_21
http://dx.doi.org/10.1007/978-3-540-68351-3_18

218 M. Albrecht et al.

[GLSV14] Grosso, V., Leurent, G., Standaert, F.-X., Varıcı, K.: LS-designs: bitslice
encryption for efficient masked software implementations. In: Cid, C.,
Rechberger, C. (eds.) FSE 2014. LNCS, vol. 8540, pp. 18–37. Springer,
Heidelberg (2015). doi:10.1007/978-3-662-46706-0 2

[GP97] Guajardo, J., Paar, C.: Efficient algorithms for elliptic curve cryptosys-
tems. In: Kaliski, B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 342–
356. Springer, Heidelberg (1997). doi:10.1007/BFb0052247

[GRR+16] Grassi, L., Rechberger, C., Rotaru, D., Scholl, P., Smart, N.: MPC-
friendly symmetric key primitives. Cryptology ePrint Archive, Report
2016 (2016). http://eprint.iacr.org/

[Has00] Hasan, M.A.: Look-up table-based large finite field multiplication in
memory constrained cryptosystems. IEEE Trans. Comput. 49(7), 749–
758 (2000)

[HMV93] Harper, G., Menezes, A., Vanstone, S.: Public-key cryptosystems with
very small key lengths. In: Rueppel, R.A. (ed.) EUROCRYPT 1992.
LNCS, vol. 658, pp. 163–173. Springer, Heidelberg (1993). doi:10.1007/
3-540-47555-9 14

[JK97] Jakobsen, T., Knudsen, L.R.: The interpolation attack on block ciphers.
In: Biham, E. (ed.) FSE 1997. LNCS, vol. 1267, pp. 28–40. Springer,
Heidelberg (1997). doi:10.1007/BFb0052332

[KA98] Koc, C.K., Acar, T.: Montgomery multiplication in GF(2k). Des. Codes
Crypt. 14(1), 57–69 (1998)

[KN95] Knudsen, L.R., Nyberg, K.: Provable security against a differential
attack. J. Crypt. 8(1), 27–37 (1995)

[KR11] Knudsen, L.R., Robshaw, M.: The Block Cipher Companion. Information
Security and Cryptography. Springer, Heidelberg (2011)

[Lab] SCIPR lab. libsnark. https://github.com/scipr-lab/libsnark
[LMPR08] Lyubashevsky, V., Micciancio, D., Peikert, C., Rosen, A.: SWIFFT:

a modest proposal for FFT hashing. In: Nyberg, K. (ed.) FSE 2008.
LNCS, vol. 5086, pp. 54–72. Springer, Heidelberg (2008). doi:10.1007/
978-3-540-71039-4 4

[LMS13] Lebreton, R., Mehrabi, E., Schost, É.: On the complexity of solving
bivariate systems: the case of non-singular solutions. In: Kauers, M.
(ed.) International Symposium on Symbolic and Algebraic Computa-
tion, ISSAC’13, Boston, MA, USA, 26–29 June 2013, pp. 251–258. ACM
(2013)

[MJSC16] Méaux, P., Journault, A., Standaert, F.-X., Carlet, C.: Towards stream
ciphers for efficient FHE with low-noise ciphertexts. In: Fischlin, M.,
Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9665, pp. 311–343.
Springer, Heidelberg (2016). doi:10.1007/978-3-662-49890-3 13

[MVO96] Menezes, A.J., Vanstone, S.A., Van Oorschot, P.C.: Handbook of Applied
Cryptography, 1st edn. CRC Press Inc., Boca Raton (1996)

[NIS14] NIST. DRAFT FIPS PUB 202, SHA-3 standard: permutation-based hash
and extendable-output functions (2014)

[NR97] Naor, M., Reingold, O.: Number-theoretic constructions of efficient
pseudo-random functions. In: 38th Annual Symposium on Foundations
of Computer Science, FOCS 1997, pp. 458–467. IEEE Computer Society
(1997)

[Nyb94] Nyberg, K.: Differentially uniform mappings for cryptography. In:
Helleseth, T. (ed.) EUROCRYPT 1993. LNCS, vol. 765, pp. 55–64.
Springer, Heidelberg (1994). doi:10.1007/3-540-48285-7 6

http://dx.doi.org/10.1007/978-3-662-46706-0_2
http://dx.doi.org/10.1007/BFb0052247
http://eprint.iacr.org/
http://dx.doi.org/10.1007/3-540-47555-9_14
http://dx.doi.org/10.1007/3-540-47555-9_14
http://dx.doi.org/10.1007/BFb0052332
https://github.com/scipr-lab/libsnark
http://dx.doi.org/10.1007/978-3-540-71039-4_4
http://dx.doi.org/10.1007/978-3-540-71039-4_4
http://dx.doi.org/10.1007/978-3-662-49890-3_13
http://dx.doi.org/10.1007/3-540-48285-7_6

MiMC: Efficient Encryption and Cryptographic Hashing 219

[PH78] Pohlig, S.C., Hellman, M.E.: An improved algorithm for computing log-
arithms over GF(p) and its cryptographic significance (corresp.). IEEE
Trans. Inf. Theory 24(1), 106–110 (1978)

[PHGR16] Parno, B., Howell, J., Gentry, C., Raykova, M.: Pinocchio: nearly prac-
tical verifiable computation. Commun. ACM 59(2), 103–112 (2016)

[Sho] Shoup, V.: Number theory library 5.5.2 (NTL) for C++. http://www.
shoup.net/ntl/

[Sto85] Stoss, H.-J.: The complexity of evaluating interpolation polynomials.
Theor. Comput. Sci. 41, 319–323 (1985)

http://www.shoup.net/ntl/
http://www.shoup.net/ntl/

Balloon Hashing: A Memory-Hard Function
Providing Provable Protection Against

Sequential Attacks

Dan Boneh1, Henry Corrigan-Gibbs1(B), and Stuart Schechter2

1 Stanford University, Stanford, CA 94305, USA
{dabo,henrycg}@cs.stanford.edu

2 Microsoft Research, Redmond, WA 98052, USA

Abstract. We present the Balloon password-hashing algorithm. This
is the first practical cryptographic hash function that: (i) has proven
memory-hardness properties in the random-oracle model, (ii) uses a
password-independent access pattern, and (iii) meets—and often
exceeds—the performance of the best heuristically secure password-
hashing algorithms. Memory-hard functions require a large amount of
working space to evaluate efficiently and, when used for password hash-
ing, they dramatically increase the cost of offline dictionary attacks. In
this work, we leverage a previously unstudied property of a certain class
of graphs (“random sandwich graphs”) to analyze the memory-hardness
of the Balloon algorithm. The techniques we develop are general: we also
use them to give a proof of security of the scrypt and Argon2i password-
hashing functions, in the random-oracle model. Our security analysis uses
a sequential model of computation, which essentially captures attacks
that run on single-core machines. Recent work shows how to use mas-
sively parallel special-purpose machines (e.g., with hundreds of cores)
to attack memory-hard functions, including Balloon. We discuss these
important attacks, which are outside of our adversary model, and pro-
pose practical defenses against them. To motivate the need for security
proofs in the area of password hashing, we demonstrate and implement
a practical attack against Argon2i that successfully evaluates the func-
tion with less space than was previously claimed possible. Finally, we use
experimental results to compare the performance of the Balloon hashing
algorithm to other memory-hard functions.

Keywords: Memory-hard functions · Password hashing · Pebbling
arguments · Time-space trade-offs · Sandwich graph · Argon2 · Scrypt

1 Introduction

The staggering number of password-file breaches in recent months demonstrates
the importance of cryptographic protection for stored passwords. In 2015 alone,

The full version of this paper is available online at https://eprint.iacr.org/2016/027.

c© International Association for Cryptologic Research 2016
J.H. Cheon and T. Takagi (Eds.): ASIACRYPT 2016, Part I, LNCS 10031, pp. 220–248, 2016.
DOI: 10.1007/978-3-662-53887-6 8

https://eprint.iacr.org/2016/027

Balloon Hashing: A Memory-Hard Function Providing Provable Protection 221

attackers stole files containing users’ login names, password hashes, and contact
information from many large and well-resourced organizations, including Last-
Pass [79], Harvard [47], E*Trade [62], ICANN [45], Costco [41], T-Mobile [76],
the University of Virginia [74], and a large number of others [65]. In this environ-
ment, systems administrators must operate under the assumption that attackers
will eventually gain access to sensitive authentication information, such as pass-
word hashes and salts, stored on their computer systems. After a compromise,
the secrecy of user passwords rests on the cost to an attacker of mounting an
offline dictionary attack against the stolen file of hashed passwords.

An ideal password-hashing function has the property that it costs as much
for an attacker to compute the function as it does for the legitimate authenti-
cation server to compute it. Standard cryptographic hashes completely fail in
this regard: it takes 100 000× more energy to compute a SHA-256 hash on a
general-purpose x86 CPU (as an authentication server would use) than it does
to compute SHA-256 on special-purpose hardware (such as the ASICs that an
attacker would use) [21]. Iterating a standard cryptographic hash function, as is
done in bcrypt [66] and PBKDF2 [43], increases the absolute cost to the attacker
and defender, but the attacker’s 100 000× relative cost advantage remains.

Memory-hard functions help close the efficiency gap between the attacker
and defender in the setting of password hashing [8,18,37,56,60]. Memory-hard
functions exploit the observation that on-chip memory is just as costly to power
on special-purpose hardware as it is on a general-purpose CPU. If evaluating the
password-hashing function requires large amounts of memory, then an attacker
using special-purpose hardware has little cost advantage over the legitimate
authentication server (using a standard x86 machine, for example) at running
the password-hashing computation. Memory consumes a large amount of on-chip
area, so the high memory requirement ensures that a special-purpose chip can
only contain a small number of hashing engines.

An optimal memory-hard function, with security parameter n, has a space-
time product that satisfies S · T ∈ Ω(n2), irrespective of the strategy used to
compute the function [60]. The challenge is to construct a function that provably
satisfies this bound with the largest possible constant multiple on the n2 term.

In this paper, we introduce the Balloon memory-hard function for password
hashing. This is the first practical password-hashing function to simultaneously
satisfy three important design goals [56]:

– Proven memory-hard. We prove, in the random-oracle model [13], that com-
puting the Balloon function with space S and time T requires S · T ≥ n2/8
(approximately). As the adversary’s space usage decreases, we prove even
sharper time-space lower bounds.
To motivate our interest in memory-hardness proofs, we demonstrate in Sect. 4
an attack against the Argon2i password hashing function [18], winner of a
recent password-hashing design competition [56]. The attack evaluates the
function with far less space than claimed without changing the time required
to compute the function. We also give a proof of security for Argon2i in the

222 D. Boneh et al.

random-oracle model, which demonstrates that significantly more powerful
attacks against Argon2i are impossible under our adversary model.

– Password-independent memory-access pattern. The memory-access pattern of
the Balloon algorithm is independent of the password being hashed. Pass-
word-hashing functions that lack this property are vulnerable to a crippling
attack in the face of an adversary who learns the memory-access patterns of
the hashing computation, e.g., via cache side-channels [23,54,77]. The attack,
which we describe in the full version of this paper, makes it possible to run a
dictionary attack with very little memory. A hashing function with a password-
independent memory-access pattern eliminates this threat.

– Performant. The Balloon algorithm is easy to implement and it matches or
exceeds the performance of the fastest comparable password-hashing algo-
rithms, Argon2i [18] and Catena [37], when instantiated with standard cryp-
tographic primitives (Sect. 6).

We analyze the memory-hardness properties of the Balloon function using
pebble games, which are arguments about the structure of the data-dependency
graph of the underlying computation [48,57,59,72,75]. Our analysis uses the
framework of Dwork, Naor, and Wee [32]—later applied in a number of cryp-
tographic works [6,8,33,34,37]—to relate the hardness of pebble games to the
hardness of certain computations in the random-oracle model [13].

The crux of our analysis is a new observation about the properties of “random
sandwich graphs,” a class of graphs studied in prior work on pebbling [6,8]. To
show that our techniques are broadly applicable, we apply them in the full
version of this paper to give simple proofs of memory-hardness, in the random-
oracle model, for the Argon2i and scrypt functions. We prove stronger memory-
hardness results about the Balloon algorithm, but these auxiliary results about
Argon2i and scrypt may be of independent interest to the community.

The performance of the Balloon hashing algorithm is surprisingly good, given
that our algorithm offers stronger proven security properties than other practical
memory-hard functions with a password-independent memory access patterns.
For example, if we configure Balloon to use Blake2b as the underlying hash
function [10], run the construction for five “rounds” of hashing, and set the space
parameter to require the attacker to use 1 MiB of working space to compute the
function, then we can compute Balloon Hashes at the rate of 13 hashes per
second on a modern server, compared with 12.8 for Argon2i, and 2.1 for Catena
DBG (when Argon2i and Catena DBG are instantiated with Blake2b as the
underlying cryptographic hash function).1

Caveat: Parallel Attacks. The definition of memory-hardness we use puts a lower-
bound on the time-space product of computing a single instance of the Balloon
function on a sequential (single-core) computer. In reality, an adversary mount-
ing a dictionary attack would want to compute billions of instances of the Bal-
loon function, perhaps using many processors running in parallel. Alwen and
1 The relatively poor performance of Argon2i here is due to the attack we present in

Sect. 4. It allows an attacker to save space in computing Argon2i with no increase in
computation time.

Balloon Hashing: A Memory-Hard Function Providing Provable Protection 223

Serbinenko [8], formalizing earlier work by Percival [60], introduce a new com-
putational model— the parallel random-oracle model (pROM)—and a memory-
hardness criterion that addresses the shortcomings of the traditional model. In
recent work, Alwen and Blocki prove the surprising result that no function that
uses a password-independent memory access pattern can be optimally memory-
hard in the pROM [3]. In addition, they give a special-purpose pROM algorithm
for computing Argon2i, Balloon, and other practical (sequential) memory-hard
functions with some space savings. We discuss this important class of attacks
and the relevant related work in Sect. 5.1.

Contributions. In this paper, we

– introduce and analyze the Balloon hashing function, which has stronger prov-
able security guarantees than prior practical memory-hard functions (Sect. 3),

– present a practical memory-saving attack against the Argon2i password-
hashing algorithm (Sect. 4), and

– explain how to ameliorate the danger of massively parallel attacks against
memory-hard functions with a password-independent access pattern (Sect. 5.1)

– prove the first known time-space lower bounds for Argon2i and an idealized
variant of scrypt, in the random-oracle model. (See the full version of this
paper for these results.)

With the Balloon algorithm, we demonstrate that it is possible to provide prov-
able protection against a wide class of attacks without sacrificing performance.

Notation. Throughout this paper, Greek symbols (α, β, γ, λ, etc.) typically
denote constants greater than one. We use log2(·) to denote a base-two logarithm
and log(·) to denote a logarithm when the base is not important. For a finite
set S, the notation x ←R S indicates sampling an element of S uniformly at
random and assigning it to the variable x.

2 Security Definitions

This section summarizes the high-level security and functionality goals of a pass-
word hashing function in general and the Balloon hashing algorithm in particu-
lar. We draw these aims from prior work on password hashing [60,66] and also
from the requirements of the recent Password Hashing Competition [56].

2.1 Syntax

The Balloon password hashing algorithm takes four inputs: a password, salt,
time parameter, and space parameter. The output is a bitstring of fixed length
(e.g., 256 or 512 bits). The password and salt are standard [52], but we elaborate
on the role of the latter parameters below.

Space Parameter (Buffer Size). The space parameter, which we denote as “n”
throughout, indicates how many fixed-size blocks of working space the hash

224 D. Boneh et al.

function will require during the course of its computation, as in scrypt [60]. At a
high level, a memory-hard function should be “easy” to compute with n blocks
of working space and should be “hard” to compute with much less space than
that. We make this notion precise later on.

Time Parameter (Number of Rounds). The Balloon function takes as input a
parameter r that determines the number of “rounds” of computation it performs.
As in bcrypt [66], the larger the time parameter, the longer the hash computation
will take. On memory-limited platforms, a system administrator can increase
the number of rounds of hashing to increase the cost of computing the function
without increasing the algorithm’s memory requirement. The choice of r has
an effect on the memory-hardness properties of the scheme: the larger r is, the
longer it takes to compute the function in small space.

2.2 Memory-Hardness

We say that a function fn on space parameter n is memory-hard in the (sequen-
tial) random-oracle model [13] if, for all adversaries computing fn with high prob-
ability using space S and T random oracle queries, we have that S · T ∈ Ω(n2).
This definition deserves a bit of elaboration. Following Dziembowski et al. [34]
we say that an algorithm “uses space S” if the entire configuration of the Tur-
ing Machine (or RAM machine) computing the algorithm requires at least S
bits to describe. When, we say that an algorithm computes a function “with
high probability,” we mean that the probability that the algorithm computes
the function is non-negligible as the output size of the random oracle and the
space parameter n tend to infinity. In practice, we care about the adversary’s
concrete success probability, so we avoid asymptotic notions of security wherever
possible. In addition, as we discuss in the evaluation section (Sect. 6), the exact
value of the constant hidden inside the Ω(·) is important for practical purposes,
so our analysis makes explicit and optimizes these constants.

A function that is memory-hard under this definition requires the adversary
to use either a lot of working space or a lot of execution time to compute the
function. Functions that are memory-hard in this way are not amenable to imple-
mentation in special-purpose hardware (ASIC), since the cost to power a unit of
memory for a unit of time on an ASIC is the same as the cost on a commodity
server. An important limitation of this definition is that it does not take into
account parallel or multiple-instance attacks, which we discuss in Sect. 5.1.

2.3 Password-Independent Access Pattern

A first-class design goal of the Balloon algorithm is to have a memory access
pattern that is independent of the password being hashed. (We allow the data-
access pattern to depend on the salt, since the salts can be public.) As mentioned
above, employing a password-independent access pattern reduces the risk that
information about the password will leak to other users on the same machine
via cache or other side-channels [23,54,77]. This may be especially important in

Balloon Hashing: A Memory-Hard Function Providing Provable Protection 225

cloud-computing environments, in which many mutually distrustful users share
a single physical host [69].

Creating a memory-hard function with a password-independent access pat-
tern presents a technical challenge: since the data-access pattern depends only
upon the salt—which an adversary who steals the password file knows—the
adversary can compute the entire access pattern in advance of a password-
guessing attack. With the access pattern in hand, the adversary can expend a
huge amount of effort to find an efficient strategy for computing the hash function
in small space. Although this pre-computation might be expensive, the adversary
can amortize its cost over billions of subsequent hash evaluations. A function that
is memory-hard and that uses a password-independent data access pattern must
be impervious to all small-space strategies for computing the function so that it
maintains its strength in the face of these pre-computation attacks. (Indeed, as
we discuss in Sect. 5.1, Alwen and Blocki show that in some models of computa-
tion, memory-hard functions with password-independent access patterns do not
exist [3].)

2.4 Collision Resistance, etc.

If necessary, we can modify the Balloon function so that it provides the stan-
dard properties of second-preimage resistance and collision resistance [51]. It is
possible to achieve these properties in a straightforward way by composing the
Balloon function B with a standard cryptographic hash function H as

HB(passwd, salt) := H(passwd, salt, B(passwd, salt)).

Now, for example, if H is collision-resistant, then HB must also be.2 That is
because any inputs (xp, xs) �= (yp, ys) to HB that cause HB(xp, xs) = HB(yp, ys)
immediately yield a collision for H as:

(xp, xs, B(xp, xs)) and (yp, ys, B(yp, ys)),

no matter how the Balloon function B behaves.

3 Balloon Hashing Algorithm

In this section, we present the Balloon hashing algorithm.

3.1 Algorithm

The algorithm uses a standard (non-memory-hard) cryptographic hash function
H : ZN × {0, 1}2k → {0, 1}k as a subroutine, where N is a large integer. For the
purposes of our analysis, we model the function H as a random oracle [13].

2 We are eliding important definitional questions about what it even means, in a formal
sense, for a function to be collision resistant [16,70].

226 D. Boneh et al.

Fig. 1. Pseudo-code of the Balloon hashing algorithm.

The Balloon algorithm uses a large memory buffer as working space and we
divide this buffer into contiguous blocks. The size of each block is equal to the
output size of the hash function H. Our analysis is agnostic to the choice of
hash function, except that, to prevent pitfalls described in the full version of
this paper, the internal state size of H must be at least as large as its output
size. Since H maps blocks of 2k bits down to blocks of k bits, we sometimes refer
to H as a cryptographic compression function.

The Balloon function operates in three steps (Fig. 1):

1. Expand. In the first step, the Balloon algorithm fills up a large buffer with
pseudo-random bytes derived from the password and salt by repeatedly invok-
ing the compression function H on a function of the password and salt.

2. Mix. In the second step, the Balloon algorithm performs a “mixing” oper-
ation r times on the pseudo-random bytes in the memory buffer. The user-
specified round parameter r determines how many rounds of mixing take
place. At each mixing step, for each block i in the buffer, the routine updates
the contents of block i to be equal to the hash of block (i−1) mod n, block i,
and δ other blocks chosen “at random” from the buffer. (See Theorem 1 for
an illustration of how the choice of δ affects the security of the scheme.)

Balloon Hashing: A Memory-Hard Function Providing Provable Protection 227

Since the Balloon functions are deterministic functions of their arguments,
the dependencies are not chosen truly at random but are sampled using a
pseudorandom stream of bits generated from the user-specific salt.

3. Extract. In the last step, the Balloon algorithm outputs the last block of the
buffer.

Multi-core Machines. A limitation of the Balloon algorithm as described
is that it does not allow even limited parallelism, since the value of the ith block
computed always depends on the value of the (i−1)th block. To increase the rate
at which the Balloon algorithm can fill memory on a multi-core machine with
M cores, we can define a function that invokes the Balloon function M times in
parallel and XORs all the outputs. If Balloon(p, s) denotes the Balloon function
on password p and salt s, then we can define an M -core variant BalloonM (p, s) as:

BalloonM (p, s) := Balloon(p, s‖“1”) ⊕ · · · ⊕ Balloon(p, s‖“M”).

A straightforward argument shows that computing this function requires com-
puting M instances of the single-core Balloon function. Existing password hash-
ing functions deploy similar techniques on multi-core platforms [18,37,60,61].

3.2 Main Security Theorem

The following theorem demonstrates that attackers who attempt to compute the
Balloon function in small space must pay a large penalty in computation time.
The complete theorem statement is given in the full version of this paper.

Theorem 1 (informal). Let A be an algorithm that computes the n-block
r-round Balloon function with security parameter δ ≥ 3, where H is modeled as a
random oracle. If A uses at most S blocks of buffer space then, with overwhelming
probability, A must run for time (approximately) T , such that

S · T ≥ r · n2

8
.

Moreover, under the stated conditions, one obtains the stronger bound:

S · T ≥ (2r − 1)n2

8
if

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

δ = 3 and S < n/64 or,
δ = 4 and S < n/32 or,
δ = 5 and S < n/16 or,
δ = 7 and S < n/8.

The theorem shows that, when the adversary’s space usage falls below a
certain threshold (parameterized by δ), the computation time increases expo-
nentially in the number of rounds r. For example, when δ = 7 and the space S
is less than n/8, the time to evaluate Balloon is at least 2r times the time to
evaluate it with space n. Thus, attackers who attempt to compute the Balloon
function in very small space must pay a large penalty in computation time.

228 D. Boneh et al.

Fig. 2. An example computation (left) and its corresponding data-dependency graph
(right).

The proof of the theorem is given in the full version of this paper.
Here we sketch the main ideas in the proof of Theorem 1.

Proof idea. The proof makes use of pebbling arguments, a classic tech-
nique for analyzing computational time-space trade-offs [42,48,59,63,72,78] and
memory-hard functions [8,32,33,37]. We apply pebbling arguments to the data-
dependency graph corresponding to the computation of the Balloon function
(See Fig. 2 for an example graph). The graph contains a vertex for every random
oracle query made during the computation of Balloon: vertex vi in the graph
represents the response to the ith random-oracle query. An edge (vi, vj) indicates
that the input to the jth random-oracle query depends on the response of the
ith random-oracle query.

The data-dependency graph for a Balloon computation naturally separates
into r + 1 layers—one for each round of mixing (Fig. 3). That is, a vertex on
level � ∈ {1, . . . , r} of the graph represents the output of a random-oracle query
made during the �th mixing round.

The first step in the proof shows that the data-dependency graph of a Balloon
computation satisfies certain connectivity properties, defined below, with high
probability. The probability is taken over the choice of random oracle H, which
determines the data-dependency graph. Consider placing a pebble on each of a
subset of the vertices of the data-dependency graph of a Balloon computation.
Then, as long as there are “not too many” pebbles on the graph, we show that
the following two properties hold with high probability:

– Well-Spreadedness. For every set of k consecutive vertices on some level of the
graph, at least a quarter of the vertices on the prior level of the graph are on
unpebbled paths to these k vertices.

– Expansion. All sets of k vertices on any level of the graph have unpebbled
paths back to at least 2k vertices on the prior level. The value of k depends
on the choice of the parameter δ.

The next step is to show that every graph-respecting algorithm computing
the Balloon function requires large space or time. We say that an adversary A
is graph respecting if for every i, adversary A makes query number i to the

Balloon Hashing: A Memory-Hard Function Providing Provable Protection 229

Fig. 3. The Balloon data-dependency graph on n = 8 blocks and r = 2 rounds, drawn
with δ = 1 for simplicity. (The real construction uses δ ≥ 3.) The dashed edges are
fixed and the solid edges are chosen pseudorandomly by applying the random oracle
to the salt.

random-oracle only after it has in storage all of the values that this query takes
as input.3

We show, using the well-spreadedness and expansion properties of the Balloon
data-dependency graph, that every graph-respecting adversary A must use space
S and time T satisfying S ·T ≥ n2/8, with high probability over the choice of H.
We use the graph structure in the proof as follows: fix a set of k values that the
adversary has not yet computed. Then the graph properties imply that these k
values have many dependencies that a space-S adversary cannot have in storage.
Thus, making progress towards computing the Balloon function in small space
requires the adversary to undertake a huge amount of recomputation.

The final step uses a technique of Dwork, Naor, and Wee [32]. They use the
notion of a graph labeling to convert a directed acyclic graph G into a func-
tion fG. They prove that if G is a graph that is infeasible for time-T space-S
graph-respecting pebbling adversaries to compute, then it is infeasible for time-
T ′ space-S′ arbitrary adversaries to compute the labeling function fG, with high
probability in the random-oracle model, where T ′ ≈ T and S′ ≈ S.

We observe that Balloon computes the function fG where G is the Balloon
data-dependency graph. We then directly apply the technique of Dwork, Naor,
and Wee to obtain a upper bound on the probability that an arbitrary adversary
can compute the Balloon function in small time and space.
�

4 Attacking and Defending Argon2

In this section, we analyze the Argon2i password hashing function [18], which
won the recent Password Hashing Competition [56].

3 This description is intentionally informal—see the full version of the paperor the
precise statement.

230 D. Boneh et al.

An Attack. We first present an attack showing that it possible for an attacker
to compute multi-pass Argon2i (the recommended version) saving a factor of
e ≈ 2.72 in space with no increase in computation time.4 Additionally, we show
that an attacker can compute the single-pass variant of Argon2i, which is also
described in the specification, saving more than a factor of four in space, again
with no increase in computation time. These attacks demonstrate an unexpected
weakness in the Argon2i design, and show the value of a formal security analysis.

A Defense. In the full version of this paper we give the first proof of security
showing that, with high probability, single-pass n-block Argon2i requires space
S and time T to compute, such that S · T ≥ n2/192, in the sequential random-
oracle model. Our proof is relatively simple and uses the same techniques we have
developed to reason about the Balloon algorithm. The time-space lower bound
we can prove about Argon2i is weaker than the one we can prove about Balloon,
since the Argon2i result leaves open the possibility of an attack that saves a
factor of 192 factor in space with no increase in computation time. If Argon2i
becomes a standard algorithm for password hashing, it would be a worthwhile
exercise to try to improve the constants on both the attacks and lower bounds
to get a clearer picture of its exact memory-hardness properties.

4.1 Attack Overview

Our Argon2i attacks require a linear-time pre-computation operation that is
independent of the password and salt. The attacker need only run the pre-
computation phase once for a given choice of the Argon2i public parameters
(buffer size, round count, etc.). After running the pre-computation step once,
it is possible to compute many Argon2i password hashes, on different salts and
different passwords using our small-space computation strategy. Thus, the cost
of the pre-computation is amortized over many subsequent hash computations.

The attacks we demonstrate undermine the security claims of the Argon2i
(version 1.2.1) design documents [18]. The design documents claim that com-
puting n-block single-pass Argon2i with n/4 space incurs a 7.3× computational
penalty [18, Table 2]. Our attacks show that there is no computational penalty.
The design documents claim that computing n-block three-pass Argon2i with
n/3 space incurs a 16, 384× computational penalty [18, Sect. 5.4]. We compute
the function in n/2.7 ≈ n/3 space with no computational penalty.

We analyze a idealized version the Argon2i algorithm, which is slightly sim-
pler than that proposed in the Argon2i v1.2.1 specification [18]. Our idealized
analysis underestimates the efficacy of our small-space computation strategy,
so the strategy we propose is actually more effective at computing Argon2i
than the analysis suggests. The idealized analysis yields an expected n/4 stor-
age cost, but as Fig. 4 demonstrates, empirically our strategy allows computing
4 We have notified the Argon2i designers of this attack and the latest version of the

specification incorporates a design change that attempts to prevent the attack [19].
We describe the attack on the original Argon2i design, the winner of the password
hashing competition [56].

Balloon Hashing: A Memory-Hard Function Providing Provable Protection 231

single-pass Argon2i with only n/5 blocks of storage. This analysis focuses on the
single-threaded instantiation of Argon2i—we have not tried to extend it to the
many-threaded variant.

4.2 Background on Argon

At a high level, the Argon2i hashing scheme operates by filling up an n-block
buffer with pseudo-random bytes, one 1024-byte block at a time. The first two
blocks are derived from the password and salt. For i ∈ {3, . . . , n}, the block
at index i is derived from two blocks: the block at index (i − 1) and a block
selected pseudo-randomly from the set of blocks generated so far. If we denote
the contents of block i as xi, then Argon2i operates as follows:

x1 = H(passwd, salt ‖ 1)
x2 = H(passwd, salt ‖ 2)
xi = H(xi−1, xri

) where ri ∈ {1, . . . , i − 1}
Here, H is a non-memory-hard cryptographic hash function mapping two blocks
into one block. The random index ri is sampled from a non-uniform distribution
over Si = {1, . . . , i−1} that has a heavy bias towards blocks with larger indices.
We model the index value ri as if it were sampled from the uniform distrib-
ution over Si. Our small-space computation strategy performs better under a
distribution biased towards larger indices, so our analysis is actually somewhat
conservative.

The single-pass variant of Argon2i computes (x1, . . . , xn) in sequence and
outputs bytes derived from the last block xn. Computing the function in the
straightforward way requires storing every generated block for the duration of
the computation— n blocks total.

The multiple-pass variant of Argon2i works as above except that it computes
pn blocks instead of just n blocks, where p is a user-specified integer indicating
the number of “passes” over the memory the algorithm takes. (The number
of passes in Argon2i is analogous to number of rounds r in Balloon hashing.)
The default number of passes is three. In multiple-pass Argon2i, the contents of
block i are derived from the prior block and one of the most recent n blocks.
The output of the function is derived from the value xpn. When computing
the multiple-pass variant of Argon2i, one need only store the latest n blocks
computed (since earlier blocks will never be referenced again), so the storage
cost of the straightforward algorithm is still roughly n blocks.

Our analysis splits the Argon2i computation into discrete time steps, where
time step t begins at the moment at which the algorithm invokes the compression
function H for the tth time.

4.3 Attack Algorithm

Our strategy for computing p-pass Argon2i with fewer than n blocks of memory
is as follows:

232 D. Boneh et al.

Fig. 4. Space used by our algorithm for computing single-pass Argon2i during a single
hash computation.

– Pre-computation Phase. We run the entire hash computation once—on an
arbitrary password and salt—and write the memory access pattern to disk.
For each memory block i, we pre-compute the time ti after which block i is
never again accessed and we store {t1, . . . , tpn} in a read-only array. The total
size of this table on a 64-bit machine is at most 8pn bytes.5

Since the Argon2i memory-access pattern does not depend on the password
or salt, it is possible to use this same pre-computed table for many subsequent
Argon2i hash computations (on different salts and passwords).

– Computation Phase. We compute the hash function as usual, except that
we delete blocks that will never be accessed again. After reading block i during
the hash computation at time step t, we check whether the current time t ≥ ti.
If so, we delete block i from memory and reuse the space for a new block.

The expected space required to compute n-block single-pass Argon2i is n/4.
The expected space required to compute n-block many-pass Argon2i tends to
n/e ≈ 2.7 as the number of passes tends to infinity. We analyze the space usage
of the attack algorithm in detail in Appendix A.

5 Discussion

In this section, we discuss parallel attacks against memory-hard functions and
compare Balloon to other candidate password-hashing functions.

5.1 Memory Hardness Under Parallel Attacks

The Balloon Hashing algorithm achieves the notion of memory-hardness intro-
duced in Sect. 2.2: an algorithm for computing Balloon must, with high proba-
bility in the random-oracle model, use (roughly) time T and space S that satisfy
5 On an FPGA or ASIC, this table can be stored in relatively cheap shared read-only

memory and the storage cost can be amortized over a number of compute cores.
Even on a general-purpose CPU, the table and memory buffer for the single-pass
construction together will only require 8n + 1024(n/4) = 8n + 256n bytes when
using our small-space computation strategy. Argon2i normally requires 1024n bytes
of buffer space, so our strategy still yields a significant space savings.

Balloon Hashing: A Memory-Hard Function Providing Provable Protection 233

S · T ∈ Ω(n2). Using the time-space product in this way as a proxy metric
for computation cost is natural, since it approximates the area-time product
required to compute the function in hardware [60].

As Alwen and Serbinenko [8] point out, there are two key limitations to the
standard definition of memory-hardness in which we prove security. First, the
definition yields a single-instance notion of security. That is, our definition of
memory-hardness puts a lower-bound on the ST cost of computing the Balloon
function once, whereas in a password-guessing attack, the adversary potentially
wants to compute the Balloon function billions of times.6 Second, the definition
treats a sequential model of computation—in which the adversary can make a
single random-oracle query at each time step. In contrast, a password-guessing
adversary may have access to thousands of computational cores operating in
parallel.

To address the limitations of the conventional single-instance sequential
adversary model, which we use for our analysis of the Balloon function, Alwen
and Serbinenko introduce a new adversary model and security definition. Essen-
tially, they allow the adversary to make many parallel random-oracle queries at
each time step. In this “parallel random-oracle model” (pROM), they attempt
to put a lower bound on the sum of the adversary’s space usage over time:∑

t St ∈ Ω(n2), where St is the number of blocks of space used in the t-th com-
putation step. We call a function that satisfies this notion of memory-hardness
in the pROM an amortized memory-hard function.7

To phrase the definition in different terms: Alwen and Serbinenko look for
functions f such that computing f requires a large amount of working space at
many points during the computation of f . In contrast, the traditional definition
(which we use) proves the weaker statement that the adversary computing f
must use a lot of space at some point during the computation of f .

An impressive recent line of work has uncovered many new results in this
model:

– Alwen and Blocki [3,4] show that, in the pROM, there does not exist a per-
fectly memory-hard function (in the amortized sense) that uses a password-
independent memory-access pattern. In the sequential setting, Balloon and
other memory-hard functions require space S and time T to compute such
that S · T ∈ Ω(n2). In the parallel setting, Alwen and Blocki show that the
best one can hope for, in terms of amortized space usage is Ω(n2/ log n).
Additionally, they give special-case attack algorithms for computing many
candidate password-hashing algorithms in the pROM. Their algorithm

6 Bellare, Ristenpart, and Tessaro consider a different type of multi-instance secu-
rity [12]: they are interested in key-derivation functions f with the property that
finding (x1, . . . , xm) given (f(x1), . . . , f(xm)) is roughly m times as costly as invert-
ing f once. Stebila et al. [73] and Groza and Warinschi [40] investigate a similar
multiple-instance notion of security for client puzzles [31] and Garay et al. [38] inves-
tigate related notions in the context of multi-party computation.

7 In the original scrypt paper, Percival [60] also discusses parallel attacks and makes
an argument for the security of scrypt in the pROM.

234 D. Boneh et al.

computes Balloon, for example, using an amortized time-space product of
roughly O(n7/4).8

– Alwen et al. [6] show that the amortized space-time complexity of the single-
round Balloon function is at least Ω̃(n5/3), where the Ω̃(·) ignores logarithmic
factors of n. This result puts a limit on the effectiveness of parallel attacks
against Balloon.

– Alwen et al. [5] construct a memory-hard function with a password-independ-
ent access pattern and that has an asymptotically optimal amortized time-
space product of S · T ∈ Ω(n2/ log n). Whether this construction is useful for
practical purposes will depend heavily on value of the constant hidden in the
Ω(·). In practice, a large constant may overwhelm the asymptotic improve-
ment.

– Alwen et al. [6] prove, under combinatorial conjectures9 that scrypt is near-
optimally memory-hard in the pROM. Unlike Balloon, scrypt uses a data-
dependent access pattern—which we would like to avoid—and the data-
dependence of scrypt’s access pattern seems fundamental to their security
analysis.

As far as practical constructions go, these results leave the practitioner with
two options, each of which has a downside:

Option 1. Use scrypt, which seems to protect against parallel attacks, but which
uses a password-dependent access pattern and is weak in the face of an adver-
sary that can learn memory access information. (We describe the attack in
the full version of the paper)

Option 2. Use Balloon Hashing, which uses a password-independent access pat-
tern and is secure against sequential attacks, but which is asymptotically
weak in the face of a massively parallel attack.

A good practical solution is to hash passwords using a careful composition of
Balloon and scrypt: one function defends against memory access pattern leakage
and the other defends against massively parallel attacks. For the moment, let
us stipulate that the pROM attacks on vanilla Balloon (and all other practi-
cal password hashing algorithms using data-independent access patterns) make
these algorithms less-than-ideal to use on their own. Can we somehow combine
the two constructions to get a “best-of-both-worlds” practical password-hashing
algorithm? The answer is yes: compose a data-independent password-hashing
algorithm, such as Balloon, with a data-dependent scheme, such as scrypt.
To use the composed scheme, one would first run the password through the

8 There is no consensus on whether it would be feasible to implement this parallel
attack in hardware for realistic parameter sizes. That said, the fact that such pROM
attacks exist at all are absolutely a practical concern.

9 A recent addendum to the paper suggests that the combinatorial conjectures that
underlie their proof of security may be false [7, Sect. 0].

Balloon Hashing: A Memory-Hard Function Providing Provable Protection 235

data-independent algorithm and next run the resulting hash through the data-
dependent algorithm.10

It is not difficult to show that the composed scheme is memory-hard against
either: (a) an attacker who is able to learn the function’s data-access pattern on
the target password, or (b) an attacker who mounts an attack in the pROM using
the parallel algorithm of Alwen and Blocki [3]. The composed scheme defends
against the two attacks separately but does not defend against both of them
simultaneously: the composed function does not maintain memory-hardness in
the face of an attacker who is powerful enough to get access-pattern information
and mount a massively parallel attack. It would be even better to have a practical
construction that could protect against both attacks simultaneously, but the best
known algorithms that do this [5,8] are likely too inefficient to use in practice.

The composed function is almost as fast as Balloon on its own—adding the
data-dependent hashing function call is effectively as costly as increasing the
round count of the Balloon algorithm by one.

5.2 How to Compare Memory-Hard Functions

If we restrict ourselves to considering memory-hard functions in the sequen-
tial setting, there are a number of candidate constructions that all can be
proven secure in the random-oracle model: Argon2i [19],11 Catena BRG, Catena
DBG [37], and Balloon. There is no widely accepted metric with which one mea-
sures the quality of a memory-hard function, so it is difficult to compare these
functions quantitatively.

In this section, we propose one such metric and compare the four candidate
functions under it. The metric we propose captures the notion that a good
memory-hard function is one that makes the attacker’s job as difficult as possible
given that the defender (e.g., the legitimate authentication server) still needs to
hash passwords in a reasonable amount of time. Let Tf (A) denote the expected
running time of an algorithm A computing a function f and let STf (A) denote
its expected space-time product. Then we define the quality Q of a memory-hard
function against a sequential attacker AS using space S to be the ratio:

Q[AS , f] =
STf (AS)

Tf (Honest)
.

We can define a similar notion of quality in the amortized/parallel setting: just
replace the quantity in the numerator (the adversary’s space-time product) with
the sum of a pROM adversary’s space usage over time:

∑
t St of AS .

10 Our argument here gives some theoretical justification for the Argon2id mode of
operation proposed in some versions of the Argon2 specification [19, Appendix B].
That variant follows a hashing with a password-independent access pattern by hash-
ing with a password-dependent access pattern.

11 We provide a proof of security for single-pass Argon2i in the full version of this
paper.

236 D. Boneh et al.

We can now use the existing memory-hardness proofs to put lower bounds on
the quality (in the sequential model) of the candidate memory-hard functions.
We show in the full version of the paper that Argon2i has a sequential time-space
lower bound of the form S · T ≥ n2/192, for S < n/24. The n-block r-round
Balloon function has a time-space lower-bound of the form S · T ≥ (2r − 1)n2/8
for S < n/64 when the parameter δ = 3. The n-block Catena BRG function has
a time-space lower bound of the form S · T ≥ n2/16 (Catena BRG has no round
parameter). The r-round n-block Catena DBG function has a claimed time-space
lower bound of the form S · T ≥ n(rn

64S)r, when S ≤ n/20. These lower-bounds
yield the following quality figures against an adversary using roughly n/64 space:

Q[AS ,Balloon(r=1)] ≥ n

16
; Q[AS ,Balloon(r>1)] ≥ (2r − 1)n

8(r + 1)

Q[AS ,Catena-BRG] ≥ n

32
; Q[AS ,Catena-DBG] ≥ rr

2r log2 n

Q[AS ,Argon2i] ≥ n

192

From these quality ratios, we can draw a few conclusions about the protection
these functions provide against one class of small-space attackers (using S ≈
n/64):

– In terms of provable memory-hardness properties in the sequential model,
one-round Balloon always outperforms Catena-BRG and Argon2i.

– When the buffer size n grows and the number of rounds r is held fixed, Balloon
outperforms Catena-DBG as well.

– When the buffer size n is fixed and the number of rounds r grows large,
Catena-DBG provides the strongest provable memory-hardness properties in
the sequential model.

– For many realistic choices of r and n (e.g., r = 5, n = 218), r-round Balloon
outperforms the other constructions in terms of memory-hardness properties.

6 Experimental Evaluation

In this section, we demonstrate experimentally that the Balloon hashing algo-
rithm is competitive performance-wise with two existing practical algorithms
(Argon2i and Catena), when all are instantiated with standard cryptographic
primitives.

6.1 Experimental Set-Up

Our experiments use the OpenSSL implementation (version 1.0.1f) of SHA-
512 and the reference implementations of three other cryptographic hash
functions (Blake2b, ECHO, and SHA-3/Keccak). We use optimized ver-
sions of the underlying cryptographic primitives where available, but the
core Balloon code is written entirely in C. Our source code is available at

Balloon Hashing: A Memory-Hard Function Providing Provable Protection 237

https://crypto.stanford.edu/balloon/ under the ISC open-source license. We
used a workstation running an Intel Core i7-6700 CPU (Skylake) at 3.40 GHz
with 8 GiB of RAM for our performance benchmarks. We compiled the code for
our timing results with gcc version 4.8.5 using the -O3 option. We average all
of our measurements over 32 trials. We compare the Balloon functions against
Argon2i (v.1.2.1) [18] and Catena [37]. For comparison purposes, we implemented
the Argon2i, Catena BRG, and Catena DBG memory-hard algorithms in C.

On the Choice of Cryptographic Primitives. The four memory-hard functions
we evaluate (Argon2i, Balloon, Catena-BRG, Catena-DBG) are all essentially
modes of operation for an underlying cryptographic hash function. The choice
of the underlying hash function has implications for the performance and the
security of the overall construction. To be conservative, we instantiate all of the
algorithms we evaluate with the Blake2b as the underlying hash function [10].

Memory-hard functions going back at least as far as scrypt [60] have used
reduced-round hash functions as their underlying cryptographic building block.
Following this tradition, the Argon2i specification proposes using a new and very
fast reduced-round hash function as its core cryptographic primitive. Since the
Argon2i hash function does not satisfy basic properties of a traditional crypto-
graphic hash function (e.g., it is not collision resistant), modeling it as a random
oracle feels particularly problematic. Since our goal in this work is to analyze
memory-hard functions with provable security guarantees, we instantiate the
memory-hard functions we evaluate with traditional cryptographic hashes for
the purposes of this evaluation.

That said, we stress that the Balloon construction is agnostic to the choice
of underlying hash function—it is a mode of operation for a cryptographic hash
function—and users of the Balloon construction may instantiate it with a faster
reduced-round hash function (e.g., scrypt’s BlockMix or Argon2i’s compression
function) if they so desire.

6.2 Authentication Throughput

The goal of a memory-hard password hash function is to use as much working
space as possible as quickly as possible over the course of its computation. To
evaluate the effectiveness of the Balloon algorithm on this metric, we measured
the rate at which a server can check passwords (in hashes per second) for various
buffer sizes on a single core.

Figure 5 shows the minimum buffer size required to compute each memory-
hard function with high probability with no computational slowdown, for a vari-
ety of password hashing functions. We set the block size of the construction
to be equal to the block size of the underlying compression function, to avoid
the issues discussed in the full version of this paper. The charted results for
Argon2i incorporate the fact that an adversary can compute many-pass Argon2i
(v.1.2.1) in a factor of e ≈ 2.72 less working space than the defender must allo-
cate for the computation and can compute single-pass Argon2i with a factor of
four less space (see Sect. 4). For comparison, we also plot the space usage of two

https://crypto.stanford.edu/balloon/

238 D. Boneh et al.

Fig. 5. The Balloon algorithm outperforms Argon2i and Catena DBG for many settings
of the security parameters, and Balloon is competitive with Catena BRG. We instanti-
ate Argon2i, Balloon, and Catena with Blake2b as the underlying cryptographic hash
function.

non-memory-hard password hashing functions, bcrypt [66] (with cost = 12) and
PBKDF2-SHA512 [43] (with 105 iterations).

If we assume that an authentication server must perform 100 hashes per
second per four-core machine, Fig. 5 shows that it would be possible to use one-
round Balloon hashing with a 2 MiB buffer or eight-round Balloon hashing with
a 256 KiB buffer. At the same authentication rate, Argon2i (instantiated with
Blake2b as the underlying cryptographic hash function) requires the attacker
to use a smaller buffer—roughly 1.5 MiB for the one-pass variant. Thus, with
Balloon hashing we simultaneously get better performance than Argon2i and
stronger memory-hardness guarantees.

6.3 Compression Function

Finally, Fig. 6 shows the result of instantiating the Balloon algorithm construc-
tion with four different standard cryptographic hash functions: SHA-3 [17],
Blake2b [10], SHA-512, and ECHO (a SHA-3 candidate that exploits the AES-NI
instructions) [14]. The SHA-3 function (with rate = 1344) operates on 1344-bit
blocks, and we configure the other hash functions to use 512-bit blocks.

On the x-axis, we plot the buffer size used in the Balloon function and on
the y-axis, we plot the rate at which the Balloon function fills memory, in bytes
of written per second. As Fig. 6 demonstrates, Blake2b and ECHO outperform
the SHA functions by a bit less than a factor of two.

Balloon Hashing: A Memory-Hard Function Providing Provable Protection 239

Fig. 6. Throughput for the Balloon algorithm when instantiated with different com-
pression functions. The dotted lines indicate the sizes of the L1, L2, and L3 caches on
our test machine.

7 Related Work

Password Hashing. The problem of how to securely store passwords on shared
computer systems is nearly as old as the systems themselves. In a 1974 article,
Evans et al. described the principle of storing passwords under a hard-to-invert
function [35]. A few years later, Robert Morris and Ken Thompson presented
the now-standard notion of password salts and explained how to store passwords
under a moderately hard-to-compute one-way function to increase the cost of
dictionary attacks [52]. Their DES-based “crypt” design became the standard
for password storage for over a decade [49] and even has a formal analysis by
Wagner and Goldberg [80].

In 1989, Feldmeier and Karn found that hardware improvements had driven
the cost of brute-force password guessing attacks against DES crypt down by
five orders of magnitude since 1979 [36,46]. Poul-Henning Kamp introduced the
costlier md5crypt to replace crypt, but hardware improvements also rendered
that design outmoded [27].

Provos and Mazières saw that, in the face of ever-increasing processor speeds,
any fixed password hashing algorithm would eventually become easy to compute
and thus ineffective protection against dictionary attacks. Their solution, bcrypt,
is a password hashing scheme with a variable “hardness” parameter [66]. By peri-
odically ratcheting up the hardness, a system administrator can keep the time
needed to compute a single hash roughly constant, even as hardware improves.
A remaining weakness of bcrypt is that it exercises only a small fraction of
the CPU’s resources—it barely touches the L2 and L3 caches during its execu-
tion [50]. To increase the cost of custom password-cracking hardware, Reinhold’s
HEKS hash [67] and Percival’s popular scrypt routine consume an adjustable
amount of storage space [60], in addition to time, as they compute a hash.
Balloon, like scrypt, aims to be hard to compute in little space. Unlike scrypt,
however, we require that our functions’ data access pattern be independent of the

240 D. Boneh et al.

password to avoid leaking information via cache-timing attacks [23,54,77] (see
also the attack in the full version of this paper). The Dogecoin and Litecoin [22]
crypto-currencies have incorporated scrypt as an ASIC-resistant proof-of-work
function.

The recent Password Hashing Competition motivated the search for memory-
hard password-hashing functions that use data-independent memory access pat-
terns [56]. The Argon2 family of functions, which have excellent performance and
an appealingly simple design, won the competition [18]. The Argon2 functions
lack a theoretical analysis of the feasible time-space trade-offs against them;
using the same ideas we have used to analyze the Balloon function, we provide
the first such result in the full version of this paper.

The Catena hash functions [37], which became finalists in the Password
Hashing Competition, are memory-hard functions whose analysis applies peb-
bling arguments to classic graph-theoretic results of Lengauer and Tarjan [48].
The Balloon analysis we provide gives a tighter time-space lower bounds than
Catena’s analysis can provide in many cases, and the Balloon algorithm outper-
forms the more robust of the two Catena algorithms (see Sect. 6). Biryokov and
Khovratovich demonstrated a serious flaw in the security analysis of one of the
Catena variants, and they provide a corresponding attack against that Catena
variant [20].

The other competition finalists included a number of interesting designs that
differ from ours in important ways. Makwa [64] supports offloading the work of
password hashing to an untrusted server but is not memory-hard. Lyra [2] is a
memory-hard function but lacks proven space-time lower bounds. Yescrypt [61]
is an extension of scrypt and uses a password-dependent data access pattern.

Ren and Devadas [68] give an analysis of the Balloon algorithm using bipar-
tite expanders, following the pebbling techniques of Paul and Tarjan [58]. Their
results imply that an adversary that computes the n-block r-round Balloon func-
tion in n/8 space, must use at least 2rn/c time to compute the function (for
some constant c), with high probability in the random-oracle model. We prove
the stronger statement that an adversary’s space-time product must satisfy:
S ·T ∈ Ω(n2) for almost all values of S. Ren and Devadas also prove statements
showing that algorithms computing the Balloon functions efficiently must use
a certain amount of space at many points during their computation. Our time-
space lower bounds only show that the adversary must use a certain amount of
space a some point during the Balloon computation.

Other Studies of Password Protection. Concurrently with the design of hashing
schemes, there has been theoretical work from Bellare et al. on new security
definitions for password-based cryptography [12] and from Di Crescenzo et al.
on an analysis of passwords storage systems secure against adversaries that can
steal only a bounded number of bits of the password file [28]. Other ideas for
modifying password hashes include the key stretching schemes of Kelsey et al. [44]
(variants on iterated hashes), a proposal by Boyen to keep the hash iteration
count (e.g., time parameter in bcrypt) secret [24], a technique of Canetti et al.

Balloon Hashing: A Memory-Hard Function Providing Provable Protection 241

for using CAPTCHAs in concert with hashes [25], and a proposal by Dürmuth
to use password hashing to do meaningful computation [29].

Parallel Memory-Hardness. In a recent line of work [3–6,8] has analyzed memory-
hard functions from a number of angles in the parallel random-oracle model,
introduced by Alwen and Serbinenko [8]. We discuss these very relevant results
at length in Sect. 5.1.

Memory-Bound Functions. Abadi et al. [1] introduced memory-bound functions
as more effective alternatives to traditional proofs-of-work in heterogeneous com-
puting environments [11,31]. These functions require many cache misses to com-
pute and, under the assumption that memory latencies are consistent across
computing platforms, they are roughly as hard to compute on a computation-
ally powerful device as on a computationally weak one. The theoretical analysis
of memory-bound functions represented one of the first applications of pebbling
arguments to cryptography [30,32].

Proofs of Space. Dziembowski et al. [33] and Ateniese et al. [9] study proofs-of-
space. In these protocols, the prover and verifier agree on a large bitstring that
the prover is supposed to store. Later on, the prover can convince the verifier that
the prover has stored some large string on disk, even if the verifier does not store
the string herself. Spacemint proposes building a cryptocurrency based upon a
proof-of-space rather than a proof-of-work [55]. Ren and Devadas propose using
the problem of pebbling a Balloon graph as the basis for a proof of space [68].

Time-Space Trade-Offs. The techniques we use to analyze Balloon draws on
extensive prior work on computational time-space trade-offs. We use pebbling
arguments, which have seen application to register allocation problems [72], to
the analysis of the relationships between complexity classes [15,26,42,75], and
to prior cryptographic constructions [32–34,37]. Pebbling has also been a topic
of study in its own right [48,59]. Savage’s text gives a clear introduction to
graph pebbling [71] and Nordström surveys the vast body of pebbling results in
depth [53].

8 Conclusion

We have introduced the Balloon password hashing algorithm. The Balloon algo-
rithm is provably memory-hard (in the random-oracle model against sequential
adversaries), exhibits a password-independent memory access pattern, and meets
or exceeds the performance of the fastest heuristically secure schemes. Using a
novel combinatorial pebbling argument, we have demonstrated that password-
hashing algorithms can have memory-hardness proofs without sacrificing prac-
ticality.

This work raises a number of open questions:

– Are there efficient methods to defend against cache attacks on scrypt? Could
a special-purpose ORAM scheme help [39]?

242 D. Boneh et al.

– Are there practical memory-hard functions with password-independent
access patterns that retain their memory-hardness properties under paral-
lel attacks [8]? The recent work of Alwen et al. [4] is promising, though it is
still unclear whether the pROM-secure constructions will be competitive with
Balloon for concrete settings of the parameters.

– Is it possible to build hardware that effectively implements the pROM
attacks [3–5] against Argon2i and Balloon at realistic parameter sizes? What
efficiency gain would this pROM hardware have over a sequential ASIC at
attacking these constructions? Are these parallel attacks still practical in hard-
ware when the function’s memory-access pattern depends on the salt (as Bal-
loon’s access pattern does)?

Acknowledgements. We would like to our anonymous reviewers for their helpful
comments. We also thank Josh Benaloh, Joe Bonneau, Greg Hill, Ali Mashtizadeh,
David Mazières, Yan Michalevsky, Bryan Parno, Greg Valiant, Riad Wahby, Keith
Winstein, David Wu, Sergey Yekhanin, and Greg Zaverucha for comments on early
versions of this work. This work was funded in part by an NDSEG Fellowship, NSF,
DARPA, a grant from ONR, and the Simons Foundation. Opinions, findings and con-
clusions or recommendations expressed in this material are those of the authors and
do not necessarily reflect the views of DARPA.

A Details of the Attack on Argon2

In this section, we provide a detailed analysis of the attack on Argon2i that we
introduced in Sect. 4.

The goal of the attack algorithm is to compute Argon2i in the same number
of time steps as the näıve algorithm uses to compute the function, while using a
constant factor less space than the näıve algorithm does. In this way, an attacker
mounting a dictionary attack against a list of passwords hashed with Argon2i
can do so at less cost (in terms of the space-time product) than the Argon2i
specification claimed possible.

Argon2i has one-pass and many-pass variants and our attack applies to both;
the many-pass variant is recommended in the specification. We first analyze the
attack on the one-pass variant and then analyze the attack on the many-pass
variant.

We are interested in the attack algorithm’s expected space usage at time step
t—call this function S(t).12

Analysis of One-Pass Argon2i. At each step of the one-pass Argon2i algo-
rithm, the expected space usage S(t) is equal to the number of memory blocks
generated so far minus the expected number of blocks in memory that will never

12 As described in Sect. 4.2, the contents of block i in Argon2i are derived from the
contents of block i−1 and a block chosen at random from the set ri ←R {1, . . . , i−1}.
Throughout our analysis, all probabilities are taken over the random choices of the
ri values.

Balloon Hashing: A Memory-Hard Function Providing Provable Protection 243

be used after time t. Let Ai,t be the event that block i is never needed after time
step t in the computation. Then S(t) = t − ∑t

i=1 Pr[Ai,t].
To find S(t) explicitly, we need to compute the probability that block i is

never used after time t. We know that the probability that block i is never used
after time t is equal to the probability that block i is not used at time t + 1 and
is not used at time t + 2 and [. . .] and is not used at time n. Let Ui,t denote the
event that block i is unused at time t. Then:

Pr [Ai,t] = Pr

[
n⋂

t′=t+1

Ui,t′

]

=
n∏

t′=t+1

Pr[Ui,t′] (1)

The equality on the right-hand side comes from the fact that Ui,t′ and Ui,t′′ are
independent events for t′ �= t′′.

To compute the probability that block i is not used at time t′, consider
that there are t′ − 1 blocks to choose from and t′ − 2 of them are not block i:
Pr[Ui,t′] = t′−2

t′−1 . Plugging this back into Eq. 1, we get:

Pr [Ai,t] =
n∏

t′=t+1

(
t′ − 2
t′ − 1

)

=
t − 1
n − 1

Now we substitute this back into our original expression for S(t):

S(t) = t −
t∑

i=1

(
t − 1
n − 1

)

= t − t(t − 1)
n − 1

Taking the derivative S′(t) and setting it to zero allows us to compute the value
t for which the expected storage is maximized. The maximum is at t = n/2 and
the expected number of blocks required is S(n/2) ≈ n/4.

Larger in-degree. A straightforward extension of this analysis handles the case
in which δ random blocks—instead of one—are hashed together with the prior
block at each step of the algorithm. Our analysis demonstrates that, even with
this strategy, single-pass Argon2i is vulnerable to pre-computation attacks. The
maximum space usage comes at t∗ = n/(δ +1)1/δ, and the expected space usage
over time S(t) is:

S(t) ≈ t − tδ+1

nδ
so S(t∗) ≈ δ

(δ + 1)1+1/δ
n.

Analysis of Many-Pass Argon2i. One idea for increasing the minimum mem-
ory consumption of Argon2i is to increase the number of passes that the algo-
rithm takes over the memory. For example, the Argon2 specification proposes
taking three passes over the memory to protect against certain time-space trade-
offs. Unfortunately, even after many passes over the memory, the Argon2i algo-
rithm sketched above still uses many fewer than n blocks of memory, in expec-
tation, at each time step.

244 D. Boneh et al.

To investigate the space usage of the many-pass Argon2i algorithm, first
consider that the space usage will be maximized at some point in the middle
of its computation—not in the first or last passes. At some time step t in the
middle of its computation the algorithm will have at most n memory blocks in
storage, but the algorithm can delete any of these n blocks that it will never
need after time t.

At each time step, the algorithm adds a new block to the end of the buffer
and deletes the first block. At any one point in the algorithm’s execution, there
will be at most n blocks of memory in storage. If we freeze the execution of the
Argon2i algorithm in the middle of its execution, we can inspect the n blocks it
has stored in memory. Call the first block “stored block 1” and the last block
“stored block n.”

Let Bi,t denote the event that stored block i is never needed after time t.
Then we claim Pr[Bi,t] = (n−1

n)i. To see the logic behind this calculation: notice
that, at time t, the first stored block in the buffer can be accessed at time t + 1
but by time t + 2, the first stored block will have been deleted from the buffer.
Similarly, the second stored block in the buffer at time t can be accessed at time
t + 1 or t + 2, but not t + 3 (since by then stored block 2 will have been deleted
from the buffer). Similarly, stored block i can be accessed at time steps (t + 1),
(t + 2), . . . , (t + i) but not at time step (t + i + 1).

The total storage required is then:

S(t) = n −
n∑

i=1

E[Bi,t] = n −
n∑

i=1

(
n − 1

n

)i

≈ n − n

(

1 − 1
e

)

.

Thus, even after many passes over the memory, Argon2i can still be computed
in roughly n/e space with no time penalty.

References

1. Abadi, M., Burrows, M., Manasse, M., Wobber, T.: Moderately hard, memory-
bound functions. ACM Trans. Internet Technol. 5(2), 299–327 (2005)

2. Almeida, L.C., Andrade, E.R., Barreto, P.S.L.M., Simplicio Jr., M.A.: Lyra:
password-based key derivation with tunable memory and processing costs. J. Cryp-
tographic Eng. 4(2), 75–89 (2014)

3. Alwen, J., Blocki, J.: Efficiently computing data-independent memory-hard func-
tions. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS, vol. 9815, pp. 241–
271. Springer, Heidelberg (2016). doi:10.1007/978-3-662-53008-5 9

4. Alwen, J., Blocki, J.: Towards practical attacks on Argon2i and Balloon Hash-
ing. Cryptology ePrint Archive, Report 2016/759 (2016). http://eprint.iacr.org/
2016/759

5. Alwen, J., Blocki, J., Pietrzak, K.: The pebbling complexity of depth-robust graphs.
Manuscript (Personal Communication) (2016)

6. Alwen, J., Chen, B., Kamath, C., Kolmogorov, V., Pietrzak, K., Tessaro, S.: On
the complexity of scrypt and proofs of space in the parallel random oracle model.
In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9666, pp.
358–387. Springer, Heidelberg (2016). doi:10.1007/978-3-662-49896-5 13

http://dx.doi.org/10.1007/978-3-662-53008-5_9
http://eprint.iacr.org/2016/759
http://eprint.iacr.org/2016/759
http://dx.doi.org/10.1007/978-3-662-49896-5_13

Balloon Hashing: A Memory-Hard Function Providing Provable Protection 245

7. Alwen, J., Chen, B., Kamath, C., Kolmogorov, V., Pietrzak, K., Tessaro, S.: On
the complexity of scrypt and proofs of space in the parallel random oracle model.
Cryptology ePrint Archive, Report 2016/100 (2016). http://eprint.iacr.org/

8. Alwen, J., Serbinenko, V.: High parallel complexity graphs and memory-hard func-
tions. In: STOC, pp. 595–603 (2015)

9. Ateniese, G., Bonacina, I., Faonio, A., Galesi, N.: Proofs of space: when space is
of the essence. In: Abdalla, M., Prisco, R. (eds.) SCN 2014. LNCS, vol. 8642, pp.
538–557. Springer, Heidelberg (2014). doi:10.1007/978-3-319-10879-7 31

10. Aumasson, J.-P., Neves, S., Wilcox-O’Hearn, Z., Winnerlein, C.: BLAKE2: simpler,
smaller, fast as MD5. In: Jacobson, M., Locasto, M., Mohassel, P., Safavi-Naini,
R. (eds.) ACNS 2013. LNCS, vol. 7954, pp. 119–135. Springer, Heidelberg (2013).
doi:10.1007/978-3-642-38980-1 8

11. Back, A.: Hashcash-a denial of service counter-measure, May 1997. http://www.
cypherspace.org/hashcash/. Accessed 9 Nov 2015

12. Bellare, M., Ristenpart, T., Tessaro, S.: Multi-instance security and its application
to password-based cryptography. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO
2012. LNCS, vol. 7417, pp. 312–329. Springer, Heidelberg (2012). doi:10.1007/
978-3-642-32009-5 19

13. Bellare, M., Rogaway, P.: Random oracles are practical: a paradigm for designing
efficient protocols. In: CCS, pp. 62–73. ACM (1993)

14. Benadjila, R., Billet, O., Gilbert, H., Macario-Rat, G., Peyrin, T., Robshaw, M.,
Seurin, Y.: SHA-3 proposal: ECHO. Submission to NIST (updated) (2009)

15. Bennett, C.H.: Time/space trade-offs for reversible computation. SIAM J. Comput.
18(4), 766–776 (1989)

16. Bernstein, D.J., Lange, T.: Non-uniform cracks in the concrete: the power of free
precomputation. In: Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013. LNCS, vol.
8270, pp. 321–340. Springer, Heidelberg (2013). doi:10.1007/978-3-642-42045-0 17

17. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: Keccak sponge function
family. Submission to NIST (Round 2) (2009)

18. Biryukov, A., Dinu, D., Khovratovich, D.: Argon2 design document (version 1.2.1),
October 2015

19. Biryukov, A., Dinu, D., Khovratovich, D.: Argon2 design document (version 1.3),
February 2016

20. Biryukov, A., Khovratovich, D.: Tradeoff cryptanalysis of memory-hard functions.
In: Iwata, T., Cheon, J.H. (eds.) ASIACRYPT 2015. LNCS, vol. 9453, pp. 633–657.
Springer, Heidelberg (2015). doi:10.1007/978-3-662-48800-3 26

21. Bitcoin wiki - mining comparison. https://en.bitcoin.it/wiki/Mining hardware
comparison

22. Bonneau, J., Miller, A., Clark, J., Narayanan, A., Kroll, J.A., Felten, E.W.: SoK:
research perspectives and challenges for Bitcoin and cryptocurrencies. In: Sympo-
sium on Security and Privacy. IEEE, May 2015

23. Bonneau, J., Mironov, I.: Cache-collision timing attacks against AES. In: Goubin,
L., Matsui, M. (eds.) CHES 2006. LNCS, vol. 4249, pp. 201–215. Springer,
Heidelberg (2006). doi:10.1007/11894063 16

24. Boyen, X.: Halting password puzzles. In: USENIX Security (2007)
25. Canetti, R., Halevi, S., Steiner, M.: Mitigating dictionary attacks on password-

protected local storage. In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp.
160–179. Springer, Heidelberg (2006). doi:10.1007/11818175 10

26. Chan, S.M.: Just a pebble game. In: IEEE Conference on Computational Com-
plexity, pp. 133–143. IEEE (2013)

http://eprint.iacr.org/
http://dx.doi.org/10.1007/978-3-319-10879-7_31
http://dx.doi.org/10.1007/978-3-642-38980-1_8
http://www.cypherspace.org/hashcash/
http://www.cypherspace.org/hashcash/
http://dx.doi.org/10.1007/978-3-642-32009-5_19
http://dx.doi.org/10.1007/978-3-642-32009-5_19
http://dx.doi.org/10.1007/978-3-642-42045-0_17
http://dx.doi.org/10.1007/978-3-662-48800-3_26
https://en.bitcoin.it/wiki/Mining_hardware_comparison
https://en.bitcoin.it/wiki/Mining_hardware_comparison
http://dx.doi.org/10.1007/11894063_16
http://dx.doi.org/10.1007/11818175_10

246 D. Boneh et al.

27. CVE-2012-3287: md5crypt has insufficient algorithmic complexity (2012). http://
cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2012-3287. Accessed 9 Nov 2015

28. Di Crescenzo, G., Lipton, R., Walfish, S.: Perfectly secure password protocols in
the bounded retrieval model. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS,
vol. 3876, pp. 225–244. Springer, Heidelberg (2006). doi:10.1007/11681878 12

29. Dürmuth, M.: Useful password hashing: how to waste computing cycles with style.
In: New Security Paradigms Workshop, pp. 31–40. ACM (2013)

30. Dwork, C., Goldberg, A., Naor, M.: On memory-bound functions for fighting
spam. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 426–444. Springer,
Heidelberg (2003). doi:10.1007/978-3-540-45146-4 25

31. Dwork, C., Naor, M.: Pricing via processing or combatting junk mail. In:
Brickell, E.F. (ed.) CRYPTO 1992. LNCS, vol. 740, pp. 139–147. Springer,
Heidelberg (1993). doi:10.1007/3-540-48071-4 10

32. Dwork, C., Naor, M., Wee, H.: Pebbling and proofs of work. In: Shoup, V. (ed.)
CRYPTO 2005. LNCS, vol. 3621, pp. 37–54. Springer, Heidelberg (2005). doi:10.
1007/11535218 3

33. Dziembowski, S., Faust, S., Kolmogorov, V., Pietrzak, K.: Proofs of space. In:
Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9216, pp. 585–605.
Springer, Heidelberg (2015). doi:10.1007/978-3-662-48000-7 29

34. Dziembowski, S., Kazana, T., Wichs, D.: One-time computable self-erasing func-
tions. In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 125–143. Springer,
Heidelberg (2011). doi:10.1007/978-3-642-19571-6 9

35. Evans Jr., A., Kantrowitz, W., Weiss, E.: A user authentication scheme not requir-
ing secrecy in the computer. Commun. ACM 17(8), 437–442 (1974)

36. Feldmeier, D.C., Karn, P.R.: UNIX password security - ten years later. In: Brassard,
G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 44–63. Springer, Heidelberg (1990).
doi:10.1007/0-387-34805-0 6

37. Forler, C., Lucks, S., Wenzel, J.: Memory-demanding password scrambling. In:
Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014. LNCS, vol. 8874, pp. 289–305.
Springer, Heidelberg (2014). doi:10.1007/978-3-662-45608-8 16

38. Garay, J., Johnson, D., Kiayias, A., Yung, M.: Resource-based corruptions and the
combinatorics of hidden diversity. In: ITCS, pp. 415–428. ACM (2013)

39. Goldreich, O., Ostrovsky, R.: Software protection and simulation on oblivious
RAMs. J. ACM 43(3), 431–473 (1996)

40. Groza, B., Warinschi, B.: Revisiting difficulty notions for client puzzles and DoS
resilience. In: Gollmann, D., Freiling, F.C. (eds.) ISC 2012. LNCS, vol. 7483, pp.
39–54. Springer, Heidelberg (2012). doi:10.1007/978-3-642-33383-5 3

41. Ho, S.: Costco, Sam’s Club, others halt photo sites over possible breach, July
2015. http://www.reuters.com/article/2015/07/21/us-cyberattack-retail-idUSKC
N0PV00520150721. Accessed 9 Nov 2015

42. Hopcroft, J., Paul, W., Valiant, L.: On time versus space. J. ACM (JACM) 24(2),
332–337 (1977)

43. Kaliski, B.: PKCS #5: Password-based cryptography specification, version 2.0.
IETF Network Working Group, RFC 2898, September 2000

44. Kelsey, J., Schneier, B., Hall, C., Wagner, D.: Secure applications of low-entropy
keys. In: Okamoto, E., Davida, G., Mambo, M. (eds.) ISW 1997. LNCS, vol. 1396,
pp. 121–134. Springer, Heidelberg (1998). doi:10.1007/BFb0030415

45. Kirk, J.: Internet address overseer ICANN resets passwords after website
breach, August 2015. http://www.pcworld.com/article/2960592/security/icann-
resets-passwords-after-website-breach.html. Accessed 9 Nov 2015

http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2012-3287
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2012-3287
http://dx.doi.org/10.1007/11681878_12
http://dx.doi.org/10.1007/978-3-540-45146-4_25
http://dx.doi.org/10.1007/3-540-48071-4_10
http://dx.doi.org/10.1007/11535218_3
http://dx.doi.org/10.1007/11535218_3
http://dx.doi.org/10.1007/978-3-662-48000-7_29
http://dx.doi.org/10.1007/978-3-642-19571-6_9
http://dx.doi.org/10.1007/0-387-34805-0_6
http://dx.doi.org/10.1007/978-3-662-45608-8_16
http://dx.doi.org/10.1007/978-3-642-33383-5_3
http://www.reuters.com/article/2015/07/21/us-cyberattack-retail-idUSKCN0PV00520150721
http://www.reuters.com/article/2015/07/21/us-cyberattack-retail-idUSKCN0PV00520150721
http://dx.doi.org/10.1007/BFb0030415
http://www.pcworld.com/article/2960592/security/icann-resets-passwords-after-website-breach.html
http://www.pcworld.com/article/2960592/security/icann-resets-passwords-after-website-breach.html

Balloon Hashing: A Memory-Hard Function Providing Provable Protection 247

46. Klein, D.V.: Foiling the cracker: a survey of, and improvements to, password secu-
rity. In: Proceedings of the 2nd USENIX Security Workshop, pp. 5–14 (1990)

47. Krantz, L.: Harvard says data breach occurred in June, July 2015.
http://www.bostonglobe.com/metro/2015/07/01/harvard-announces-data-breach
/pqzk9IPWLMiCKBl3IijMUJ/story.html. Accessed 9 Nov 2015

48. Lengauer, T., Tarjan, R.E.: Asymptotically tight bounds on time-space trade-offs
in a pebble game. J. ACM 29(4), 1087–1130 (1982)

49. Leong, P., Tham, C.: UNIX password encryption considered insecure. In: USENIX
Winter, pp. 269–280 (1991)

50. Malvoni, K., Designer, S., Knezovic, J.: Are your passwords safe: energy-efficient
bcrypt cracking with low-cost parallel hardware. In: USENIX Workshop on Offen-
sive Technologies (2014)

51. Menezes, A.J., Van Oorschot, P.C., Vanstone, S.A.: Handbook of Applied Cryp-
tography. CRC Press, Boca Raton (1996)

52. Morris, R., Thompson, K.: Password security: a case history. Commun. ACM
22(11), 594–597 (1979)

53. Nordström, J.: New wine into old wineskins: a survey of some pebbling classics
with supplemental results, March 2015. http://www.csc.kth.se/∼jakobn/research/
PebblingSurveyTMP.pdf. Accessed 9 Nov 2015

54. Osvik, D.A., Shamir, A., Tromer, E.: Cache attacks and countermeasures: the
case of AES. In: Pointcheval, D. (ed.) CT-RSA 2006. LNCS, vol. 3860, pp. 1–20.
Springer, Heidelberg (2006). doi:10.1007/11605805 1

55. Park, S., Pietrzak, K., Alwen, J., Fuchsbauer, G., Gazi, P.: Spacemint: a cryp-
tocurrency based on proofs of space. Technical report, Cryptology ePrint Archive,
Report 2015/528 (2015)

56. Password hashing competition. https://password-hashing.net/
57. Paterson, M.S., Hewitt, C.E.: Comparative schematology. In: Record of the Project

MAC Conference on Concurrent Systems and Parallel Computation, pp. 119–127.
ACM (1970)

58. Paul, W.J., Tarjan, R.E.: Time-space trade-offs in a pebble game. Acta Informatica
10(2), 111–115 (1978)

59. Paul, W.J., Tarjan, R.E., Celoni, J.R.: Space bounds for a game on graphs. Math.
Syst. Theor. 10(1), 239–251 (1976)

60. Percival, C.: Stronger key derivation via sequential memory-hard functions. In:
BSDCan, May 2009

61. Peslyak, A.: yescrypt, October 2015. https://password-hashing.net/submissions/
specs/yescrypt-v2.pdf. Accessed 13 Nov 2015

62. Peterson, A.: E-Trade notifies 31,000 customers that their contact info may
have been breached in 2013 hack, October 2015. https://www.washingtonpost.
com/news/the-switch/wp/2015/10/09/e-trade-notifies-31000-customers-that-the
ir-contact-info-may-have-been-breached-in-2013-hack/. Accessed 9 Nov 2015

63. Pippenger, N.: A time-space trade-off. J. ACM (JACM) 25(3), 509–515 (1978)
64. Pornin, T.: The Makwa password hashing function, April 2015. http://www.bolet.

org/makwa/. Accessed 13 Nov 2015
65. Privacy Rights Clearinghouse: Chronology of data breaches. http://www.

privacyrights.org/data-breach. Accessed 9 Nov 2015
66. Provos, N., Mazières, D.: A future-adaptable password scheme. In: USENIX

Annual Technical Conference, pp. 81–91 (1999)
67. Reinhold, A.: HEKS: a family of key stretching algorithms (Draft G), July 2001.

http://world.std.com/∼reinhold/HEKSproposal.html. Accessed 13 Nov 2015

http://www.bostonglobe.com/metro/2015/07/01/harvard-announces-data-breach/pqzk9IPWLMiCKBl3IijMUJ/story.html
http://www.bostonglobe.com/metro/2015/07/01/harvard-announces-data-breach/pqzk9IPWLMiCKBl3IijMUJ/story.html
http://www.csc.kth.se/~jakobn/research/PebblingSurveyTMP.pdf
http://www.csc.kth.se/~jakobn/research/PebblingSurveyTMP.pdf
http://dx.doi.org/10.1007/11605805_1
https://password-hashing.net/
https://password-hashing.net/submissions/specs/yescrypt-v2.pdf
https://password-hashing.net/submissions/specs/yescrypt-v2.pdf
https://www.washingtonpost.com/news/the-switch/wp/2015/10/09/e-trade-notifies-31000-customers-that-their-contact-info-may-have-been-breached-in-2013-hack/
https://www.washingtonpost.com/news/the-switch/wp/2015/10/09/e-trade-notifies-31000-customers-that-their-contact-info-may-have-been-breached-in-2013-hack/
https://www.washingtonpost.com/news/the-switch/wp/2015/10/09/e-trade-notifies-31000-customers-that-their-contact-info-may-have-been-breached-in-2013-hack/
http://www.bolet.org/makwa/
http://www.bolet.org/makwa/
http://www.privacyrights.org/data-breach
http://www.privacyrights.org/data-breach
http://world.std.com/~reinhold/HEKSproposal.html

248 D. Boneh et al.

68. Ren, L., Devadas, S.: Proof of space from stacked expanders. Cryptology ePrint
Archive, Report 2016/333 (2016). http://eprint.iacr.org/

69. Ristenpart, T., Tromer, E., Shacham, H., Savage, S.: Hey, you, get off of my cloud:
exploring information leakage in third-party compute clouds. In: CCS, pp. 199–212.
ACM (2009)

70. Rogaway, P.: Formalizing human ignorance. In: Nguyen, P.Q. (ed.) VIETCRYPT
2006. LNCS, vol. 4341, pp. 211–228. Springer, Heidelberg (2006). doi:10.1007/
11958239 14

71. Savage, J.E.: Models of Computation: Exploring the Power of Computing. Addison-
Wesley, New York (1998)

72. Sethi, R.: Complete register allocation problems. SIAM J. Comput. 4(3), 226–248
(1975)

73. Stebila, D., Kuppusamy, L., Rangasamy, J., Boyd, C., Gonzalez Nieto, J.: Stronger
difficulty notions for client puzzles and denial-of-service-resistant protocols. In:
Kiayias, A. (ed.) CT-RSA 2011. LNCS, vol. 6558, pp. 284–301. Springer, Heidelberg
(2011). doi:10.1007/978-3-642-19074-2 19

74. Takala, R.: UVA site back online after chinese hack, August 2015. http://www.
washingtonexaminer.com/uva-site-back-online-after-chinese-hack/article/2570383.
Accessed 9 Nov 2015

75. Tompa, M.: Time-space tradeoffs for computing functions, using connectivity prop-
erties of their circuits. In: STOC, pp. 196–204. ACM (1978)

76. Tracy, A.: In wake of T-Mobile and Experian data breach, John Legere did what
all CEOs should do after a hack, October 2015. http://www.forbes.com/sites/
abigailtracy/2015/10/02/in-wake-of-t-mobile-and-experian-data-breach-john-leg
ere-did-what-all-ceos-should-do-after-a-hack/. Accessed 9 Nov 2015

77. Tromer, E., Osvik, D.A., Shamir, A.: Efficient cache attacks on AES, and counter-
measures. J. Cryptology 23(1), 37–71 (2010)

78. Valiant, L.G.: Graph-theoretic arguments in low-level complexity. In: Gruska, J.
(ed.) MFCS 1977. LNCS, vol. 53, pp. 162–176. Springer, Heidelberg (1977). doi:10.
1007/3-540-08353-7 135

79. Vaughan-Nichols, S.J.: Password site LastPass warns of data breach, June 2015.
http://www.zdnet.com/article/lastpass-password-security-site-hacked/. Accessed
9 Nov 2015

80. Wagner, D., Goldberg, I.: Proofs of security for the unix password hashing algo-
rithm. In: Okamoto, T. (ed.) ASIACRYPT 2000. LNCS, vol. 1976, pp. 560–572.
Springer, Heidelberg (2000). doi:10.1007/3-540-44448-3 43

http://eprint.iacr.org/
http://dx.doi.org/10.1007/11958239_14
http://dx.doi.org/10.1007/11958239_14
http://dx.doi.org/10.1007/978-3-642-19074-2_19
http://www.washingtonexaminer.com/uva-site-back-online-after-chinese-hack/article/2570383
http://www.washingtonexaminer.com/uva-site-back-online-after-chinese-hack/article/2570383
http://www.forbes.com/sites/abigailtracy/2015/10/02/in-wake-of-t-mobile-and-experian-data-breach-john-legere-did-what-all-ceos-should-do-after-a-hack/
http://www.forbes.com/sites/abigailtracy/2015/10/02/in-wake-of-t-mobile-and-experian-data-breach-john-legere-did-what-all-ceos-should-do-after-a-hack/
http://www.forbes.com/sites/abigailtracy/2015/10/02/in-wake-of-t-mobile-and-experian-data-breach-john-legere-did-what-all-ceos-should-do-after-a-hack/
http://dx.doi.org/10.1007/3-540-08353-7_135
http://dx.doi.org/10.1007/3-540-08353-7_135
http://www.zdnet.com/article/lastpass-password-security-site-hacked/
http://dx.doi.org/10.1007/3-540-44448-3_43

Linear Structures: Applications to Cryptanalysis
of Round-Reduced Keccak

Jian Guo1,2, Meicheng Liu1,2,3(B), and Ling Song1,2,3

1 Cryptanalysis Taskforce, Temasek Laboratories@NTU, Singapore, Singapore
ntu.guo@gmail.com, meicheng.liu@gmail.com, songling@iie.ac.cn

2 School of Physical and Mathematical Sciences,
Nanyang Technological University, Singapore, Singapore

3 State Key Laboratory of Information Security, Institute of Information Engineering,
Chinese Academy of Sciences, Beijing 100093, People’s Republic of China

Abstract. In this paper, we analyze the security of round-reduced ver-
sions of the Keccak hash function family. Based on the work pioneered
by Aumasson and Meier, and Dinur et al., we formalize and develop a
technique named linear structure, which allows linearization of the under-
lying permutation of Keccak for up to 3 rounds with large number of
variable spaces. As a direct application, it extends the best zero-sum
distinguishers by 2 rounds without increasing the complexities. We also
apply linear structures to preimage attacks against Keccak. By care-
fully studying the properties of the underlying Sbox, we show bilinear
structures and find ways to convert the information on the output bits to
linear functions on input bits. These findings, combined with linear struc-
tures, lead us to preimage attacks against up to 4-round Keccak with
reduced complexities. An interesting feature of such preimage attacks is
low complexities for small variants. As extreme examples, we can now
find preimages of 3-round SHAKE128 with complexity 1, as well as the first
practical solutions to two 3-round instances of Keccak challenge. Both
zero-sum distinguishers and preimage attacks are verified by implemen-
tations. It is noted that the attacks here are still far from threatening
the security of the full 24-round Keccak.

Keywords: Cryptanalysis · SHA-3 · Keccak · Preimage attacks ·
Zero-sum distinguishers

1 Introduction

The Keccak sponge function family [6] was designed by Bertoni et al. as one of
the 64 proposals submitted to the SHA-3 competition [24] in October 2008. It won
in October 2012 after intense competition, and was subsequently standardized
by the U.S. National Institute of Standards and Technology (NIST) as Secure
Hash Algorithm-3 [25] (SHA-3) in August 2015. As such, Keccak has received
intensive security analysis, since the design was made public in 2008, against
the traditional security notions such as collision, preimage, and second-preimage
c© International Association for Cryptologic Research 2016
J.H. Cheon and T. Takagi (Eds.): ASIACRYPT 2016, Part I, LNCS 10031, pp. 249–274, 2016.
DOI: 10.1007/978-3-662-53887-6 9

250 J. Guo et al.

resistance, as well as distinguishers of the underlying permutations and securi-
ties under some message authentication code, stream cipher, and authenticated
cipher modes.

Up to date, the best collision attacks are reduced up to 4 out of 24 rounds
of Keccak-224/256 with practical complexities [12,14], and up to 5 rounds of
Keccak-256 with theoretical complexities [13], by differential attacks. Practical
preimage attacks are up to 2 rounds, by the approaches of meet-in-the-middle [23]
and SAT solvers [21]. Theoretical preimage attacks work up to 7/8/9 rounds
for Keccak-224/256/512 respectively with small time complexity gains over
bruteforce [3,11,20]. There were mainly two types of distinguishers against the
underlying permutation of Keccak (named Keccak-f), i.e., zero-sum distin-
guishers [2,9] and those involving high probability differentials [17,19]. These
distinguishers work for 9 rounds in [2], 8 rounds in [19] with practical com-
plexities, and up to 15 rounds with theoretical complexities bounded by 2800

(birthday bound) for the 1600-bit Keccak-f permutation. Besides these, there
are also attacks in other security settings, we are not listing them all as they are
less relevant with our work here.

To promote security analysis with practical complexities, the Keccak team
has been organizing the “Keccak Crunchy Crypto Collision and Preimage Con-
test” [4] (we will call it Keccak Challenge for short) and offering cash prizes
for the winners. To make it feasible, the instances are set to be round-reduced
variants of Keccak with capacity c = 160 and the output truncated to 160 bits
for collisions and 80 bits for preimages, so the theoretical complexities for both
are 280, which is relatively small but yet beyond PC’s capability. Instances have
been solved for up to 4 and 2 rounds for collisions and preimages, respectively.

Our Contributions. In this paper, we focus on security analysis of Keccak
with respective to two security notions, i.e., distinguisher of round-reduced ver-
sions of the underlying permutation Keccak-f , and preimage of round-reduced
variants of the Keccak hash function family. Firstly, we review the zero-sum
distinguisher by Aumasson and Meier [2]. Zero-sum distinguishers finds a set of
input to the permutation, whose sum is zero and the set of corresponding output
sums to zero at the same time. This distinguisher makes use of the property of low
algebraic degrees 2 and 3 of the Sbox and its inverse used in Keccak-f , which is
the only non-linear step of the round function. The attack starts from the mid-
dle of the permutation, and extends freely towards both forward and backward
directions of the permutations. By setting up initial values of the middle starting
point, one can bypass one round without increasing the algebraic degrees. Sim-
ilar idea was extended to bypass one round by Dinur et al. [15] for key recovery
attacks in keyed settings. In this paper, we formalize this idea as linear struc-
tures and extend the free starting rounds to 3 by combining properties of the
linear layers and Sbox of the Keccak-f round function, and generally increase
the attacked rounds of the zero-sum distinguishers by Aumasson and Meier by 2
without increasing the complexities. Notably, we extend the practically attacked
rounds from 9 to 11. Furthermore, the 12-round Keccak-f permutations can

Linear Structures: Applications to Cryptanalysis of Round-Reduced Keccak 251

be distinguished with complexity 265 or 282. This is of special interests since the
12-round Keccak-f permutation variants are used in the CAESAR candidates
Keyak [8] and Ketje [7]. Nevertheless, we stress here that this distinguisher
does not affect the security of Keyak or Ketje. A summary of the comparisons
of our results with the previous ones is shown in Table 1. Our results are verified
by an implementation of the 11-round distinguisher with time and data complex-
ity 233, with all the 1600 bits of the output summing to zero with certainty. Note
that Table 1 does not include the distinguishers with complexities ≥ 2800, such
as [9,16]. In the Keccak reference [6, Page 61], the designers mentioned that
“Only structural distinguishers on f that have non-zero advantage below 2800

queries can possibly qualify as a threat for the security of a sponge function that
uses it.” This is a birthday bound with regard to the size of the permutation.

Table 1. Summary of distinguishers on the 1600-bit Keccak-f permutation, with
complexities bounded by 2800

#Rounds inv+forw Best Known inv + forw Improved inv+ forw Further

7 3 + 4 213 [19] 3 + 4 210 2+5 29

8 3 + 5 218 [2,19] 3 + 5 217 3+5 210

9 4 + 5 230a [2] 4 + 5 228 3+6 217

10 4 + 6 260b [2] 4 + 6 233 4+6 228

11 5 + 6 260c [2] 4+7 265 4+7 233

12 5 + 7 2129 [2] 5 + 7 282 4+8 265

13 6 + 7 2244 [2] 5+8 2129 5+8 282

14 6 + 8 2257 [2] 6 + 8 2244 5+9 2129

15 6 + 9 2513 [2] 6 + 9 2257 - -
a Corrected: 233. Note that the complexity 230 estimated in [2] is based on
the experiments made over a 25-dimensional space by the designers in [6],
which shows the maximum degree over 25 variables of 4 rounds to be 15. We
expect the maximum degree over 30 variables of 4 rounds to be 16, and thus
we estimate the time complexity for 5 rounds to be 233.
b Corrected: 265.
c Corrected: 282.

The second contributions of this paper are improved preimage attacks. In
contrast to the meet-in-the-middle and SAT solver techniques used previously,
we adopt the techniques of linear structures and find preimages by linearizing the
Keccak round functions and converting the preimage finding problems to that
of solving systems of linear equations. This technique leads to attacks on up to
4-round Keccak with reduced complexities. The complexities of 3-round preim-
ages are so significantly reduced that enables us to find preimages of SHAKE128
(a variant of Keccak [r = 1344, c = 256] adapted by SHA-3) practically, and
to solve two of 3-round preimage instances and a near-preimage with only two
bits difference of 4-round preimage instance of the Keccak Challenge. The

252 J. Guo et al.

summary of our preimage attacks together with the previous best ones is shown
in Table 2. Note that Table 2 does not include small optimizations of exhaustive
search, such as [3,11]. In this table, by variant 128 we mean SHAKE128(M, 128).
Different with the attacks of [20] which outperform exhaustive search by a larger
factor as the hash size becomes larger, our attacks outperform exhaustive search
by a larger factor as the hash size (or the capacity) becomes smaller.

Table 2. Summary of preimage attacks on Keccak reduced up to 4 rounds.

#Rounds Variant Time Reference

2 128/224/256 233 [23]

2 128/224/256 1 Sect. 6.1

2 384 2129 Sect. 6.1

2 512 2384 Sect. 6.1

3 128 226.6 Sect. 6.2

3 128 1 Sect. 6.4

3 224 297 Sect. 6.2

3 256 2192 Sect. 6.2

3 384 2322 Sect. 6.3

3 512 2482 Sect. 6.3

3 512 2506 [20]

4 128 2106 Sect. 6.4

4 224 2213 Sect. 6.3

4 256 2251 Sect. 6.3

4 224/256 2221/2252 [20]

4 384/512 2378/2506 [20]

Both improved zero-sum distinguishers and preimage attacks are possible
thanks to the technique linear structures. By exploiting the properties of the
Sbox used in Keccak, we find ways to linearize both the Sbox itself and its
inverse. Combining with properties of the linear layer of the Keccak round
function, we are able to find linear subspaces with large dimension by setting
proper initial values. A nice property of these linear structures is that the alge-
braic degrees can be kept the same for up to 3 rounds, i.e., output bits of 3-round
Keccak-f can be expressed as linear combinations of input bits. As a special
feature of the linear structure, complexities of our attacks reduce significantly
when the targets are Keccak instances with small capacities. In such cases, the
number of required constraints derived from pre-set constants is small and the
degree of freedom left is relatively large, and hence leads to faster attacks. As
extreme examples, we can find preimages of 3-round SHAKE128(M, 128) and solve
the 3-round Keccak[r = 1440, c = 160, � = 80] instance of Keccak Challenge
with complexity 1.

Linear Structures: Applications to Cryptanalysis of Round-Reduced Keccak 253

Organization. The rest of the paper is organized as follows. Section 2 gives the
details of the Keccak hash function family, followed by the properties of the
Sbox in Sect. 3. The linear structure is introduced in Sect. 4. Its applications of
zero-sum distinguishers and preimages attacks are presented in Sects. 5 and 6,
respectively. Section 7 concludes the paper.

2 Definition of Keccak

2.1 The Sponge Function

The Keccak hash function follows the sponge construction, as depicted in Fig. 1.
The message M is padded and split into blocks of r bits each. Beginning with
an initial value (IV), the first r bits of b-bit state is XORed with the message
block, followed by the application of the permutation f . This step is repeated
until all message blocks are processed. Then the first r bits are outputted, r
more bits can be obtained after an additional application of f , and this process
is repeated until all required digest bits are obtained. The number of iterations
is determined by the requested number of digest bits �. Finally the output is
truncated to its first � bits.

Fig. 1. The sponge function [5]

2.2 The Keccak Hash Functions

To define the Keccak hash function family, the designers give the details of
the underlying permutation f , as well as parameters set of (r, c, �). The IV is
set to be all “0”s. The underlying permutation of the Keccak hash function is
chosen in a set of seven Keccak-f permutations, denoted Keccak-f [b], where
b ∈ {25, 50, 100, 200, 400, 800, 1600} is the width of the permutation. The default
version of Keccak-f is of size b = 1600 bits, which can be represented as 5 × 5
64-bit lanes as depicted in Fig. 2, denoted as A[x, y] with x for the index of col-
umn and y for the index of row. In what follows, indexes of x and y are from the
set {0, 1, 2, 3, 4} and they are working in modulo 5 without other specification.

254 J. Guo et al.

Fig. 2. The Keccak state [6]

The underlying permutation Keccak-f [1600] consists of 24 identical round func-
tions up to a difference of constant addition. The round function R consists of
five operations (θ goes first):

R = ι ◦ χ ◦ π ◦ ρ ◦ θ.

θ : A[x, y] = A[x, y]⊕⊕4
j=0(A[x−1, j]⊕(A[x+1, j] ≪ 1)), for x, y = 0, . . . , 4.

ρ : A[x, y] = A[x, y] ≪ r[x, y], for x, y = 0, . . . , 4.
π : A[y, 2x + 3y] = A[x, y], for x, y = 0, . . . , 4.
χ : A[x, y] = A[x, y] ⊕ ((∼ A[x + 1, y])&A[x + 2, y]), for x, y = 0, . . . , 4.
ι : A[0, 0] = A[0, 0] ⊕ RC.

Here “⊕” denotes for bit-wise XOR, “≪” for bit rotation towards MSB of the
64-bit word, “∼” for bit negation of 64-bit word, “&” for bit-wise logic AND,
“r[x, y]” for lane dependent rotation constants presented in Table 3, and “RC”
for round-dependent round constants. We ignore the details of RC since it does
not affect our attacks to be presented.

Without other specifications, Keccak-f hereinafter refers to Keccak-f
[1600].

Table 3. Rotation constants r[x, y] in Keccak ρ operation.

x=0 x = 1 x = 2 x = 3 x = 4

y = 0 0 1 62 28 27

y = 1 36 44 6 55 20

y = 2 3 10 43 25 39

y = 3 41 45 15 21 8

y = 4 18 2 61 56 14

2.3 Instances of Keccak and SHA-3

The hash function Keccak[r, c, �] refers to the instance of the Keccak sponge
function family with parameters capacity c, bitrate r and output length �.

Linear Structures: Applications to Cryptanalysis of Round-Reduced Keccak 255

The official versions of Keccak have r = 1600 − c and c = 2�, where
� ∈ {224, 256, 384, 512}, called Keccak-224, Keccak-256, Keccak-384, and
Keccak-512. The padding rule of Keccak is of the form M10∗1, i.e., it pads
a single bit “1” followed by a smallest non-negative number of “0”, then a bit
“1”, such that the bit length of the padded message becomes multiple of r.

The SHA-3 standard takes mainly the four default instances of Keccak with
digest sizes 224, 256, 384, 512. The only difference is the padding rule. These four
SHA-3 instances pad the message with two bits “01” before applying the Keccak
padding rule, so the padded message becomes M0110∗1, i.e., it pads M by three
bits “011”, followed by a smallest non-negative number of “0”s, then a bit “1”,
such that the padded message is of multiple of r bits. Generally, all our analysis
results in this paper on Keccak applies to SHA-3, under the same parameters
(r, c, �), possibly with an increment of the complexities by at most 22 due to the
two extra padding bits.

The SHA-3 family also includes two extendable-output functions (XOFs),
called SHAKE128 and SHAKE256. More exactly, these instances SHAKE128(M, �)
and SHAKE256(M, �) are defined from Keccak[r = 1344, c = 256] and Keccak
[r = 1088, c = 512] by appending a four-bit suffix “1111” to the message, for any
output length �. Our preimage attacks on Keccak-256 also applies to SHAKE256
(M, 256). We will only consider preimage attacks on SHAKE128(M, 128).

3 Properties of the Sbox χ

In this section, we discuss the properties of the Sbox χ, which will be used
to construct distinguishers on Keccak-f permutation in Sect. 5, and to mount
preimage attacks on Keccak in Sect. 6.

3.1 Setting up Linear Equations from the Output of χ

Bilinear Structure. We show in this section that given t consecutive bits out
of the 5 output bits of χ, one can set up at least t − 1 linear equations on the 5
input bits due to the bilinear structure of the χ. Hereinafter, we may also refer
to the χ operation by Sbox.

The algebraic normal form of χ mapping 5-bit a = a0a1a2a3a4 into 5-bit
b = b0b1b2b3b4 can be written as bi = ai ⊕ (ai+1 ⊕ 1) · ai+2, i.e.,

b0 = a0 ⊕ (a1 ⊕ 1) · a2, (1)
b1 = a1 ⊕ (a2 ⊕ 1) · a3, (2)
b2 = a2 ⊕ (a3 ⊕ 1) · a4, (3)
b3 = a3 ⊕ (a4 ⊕ 1) · a0, (4)
b4 = a4 ⊕ (a0 ⊕ 1) · a1. (5)

Then, we show that given two consecutive bits of the output of χ, one linear
equation can be set up on the input bits. Without loss of generality, assume that
b0 and b1 are known. By (2), we have

256 J. Guo et al.

b1 · a2 = (a1 ⊕ (a2 ⊕ 1) · a3) · a2 = a1 · a2

and thus according to (1) we obtain

b0 = a0 ⊕ (b1 ⊕ 1) · a2. (6)

Given three consecutive bits of the output of χ, to say b0, b1 and b2, an additional
linear equation can be similarly set up:

b1 = a1 ⊕ (b2 ⊕ 1) · a3. (7)

Generally, the input a and output b of χ satisfy F (a, b) = 0 with F (a, b) =
aSb + Ta + Qb, for some 5 × 5 binary matrices S, T,Q.

Given four output bits of χ, any bit of the input can be represented as a
linear function on the unknown bit of the output, and one can naturally set up
four linear equations on the input bits by eliminating the unknown output bit. It
is clear that given all the five output bits of χ, the input bits are all determined.
We summarize in Table 4 the number of linear equations on the input bits that
can set up for given t consecutive bits of the output of χ.

Table 4. Number of linear equations obtained from the output of χ

#Known consecutive output bits 2 3 4 5

#Linear equations 1 2 4 5

3.2 Setting up More Linear Equations

As explained above, given t bits of the output of χ, for t = 4 or 5, one can set
up t linear equations on the input of χ, and for t < 4, one can set up t− 1 linear
equations. Here we present two more methods for setting up one or more extra
linear equations on input bits when less than 4 bits of the output are known.

The first method is to guess the value of an input bit. We obtain two extra
linear equations at cost of doubling the operations needed. For example, if a
single bit b0 of the output is known, no linear equation could be set with previous
methods. However, here we can guess the input bit a1 so that the equation
b0 = a0 ⊕ (a1 ⊕ 1) · a2 becomes linear. Together with the guess of a1 itself, we
obtain in total two more linear equations. The cost is that there are 2 choices
of the guess, so we obtained the two extra linear equations with the cost of an
increase of time complexity by a factor of 2. This is generally true when the
number of known output bits is less than 4, as summarized in Setting 1.

Setting 1. When the number of known output bits is in the range [1, 3], a guess
of an input bit leads to two extra linear equations on the input bits, by the cost
of doubling the time complexity.

Linear Structures: Applications to Cryptanalysis of Round-Reduced Keccak 257

The second method is to make use of the probabilistic equation bi = ai which
holds with probability 0.75, due to the fact that bi = ai ⊕ (ai+1 ⊕ 1) · ai+2 and
(ai+1 ⊕ 1) · ai+2 is 0 with probability 0.75 assuming uniformly distributed ai+1

and ai+2, as summarized in Setting 2. This method will result in time complexity
increase by a factor 0.75−1 = 20.415.

Setting 2. bi = ai of the χ holds with probability 0.75 when input bit aj’s are
uniformly distributed, for all i ∈ {0, . . . , 4}.

3.3 Linearizing the Inverse of χ

The inverse χ−1 : b �→ a has algebraic degree 3, and its algebraic normal form
can be written as

ai = bi ⊕ bi+2 ⊕ bi+4 ⊕ bi+1 · bi+2 ⊕ bi+1 · bi+4 ⊕ bi+3 · bi+4 ⊕ bi+1 · bi+3 · bi+4

= bi ⊕ (bi+1 ⊕ 1) · (bi+2 ⊕ (bi+3 ⊕ 1) · bi+4) (8)

where 0 ≤ i ≤ 4 and the indexes are operated on modulo 5, that is,

a0 = b0 ⊕ (b1 ⊕ 1) · (b2 ⊕ (b3 ⊕ 1) · b4), (9)
a1 = b1 ⊕ (b2 ⊕ 1) · (b3 ⊕ (b4 ⊕ 1) · b0), (10)
a2 = b2 ⊕ (b3 ⊕ 1) · (b4 ⊕ (b0 ⊕ 1) · b1), (11)
a3 = b3 ⊕ (b4 ⊕ 1) · (b0 ⊕ (b1 ⊕ 1) · b2), (12)
a4 = b4 ⊕ (b0 ⊕ 1) · (b1 ⊕ (b2 ⊕ 1) · b3). (13)

It is obvious to note

Setting 3. If there is a single unknown output bit bj of χ and all other output
bits are constants, then all input bits ai can be expressed as linear combination
of bj.

If we impose b3 = 0 and b4 = 1, then we have

a0 = b0 ⊕ (b1 ⊕ 1) · (b2 ⊕ 1),
a1 = b1,

a2 = 1 ⊕ b2 ⊕ (b0 ⊕ 1) · b1,

a3 = 0,

a4 = 1 ⊕ (b0 ⊕ 1) · b1,

and thus all ai’s are linear on b0 and b2. That’s, for b3 = 0, b4 = 1 and any fixed
b1, the algebraic degree of χ−1 becomes 1.

If we further impose b1 = 1, then we have

a0 = b0, a1 = 1, a2 = b0 ⊕ b2, a3 = 0, a4 = b0,

so all inputs bits ai’s become linear combinations of bi’s. Similar property holds
when b1 = 0. This is summarized as:

Setting 4. When bj+3 = 0, bj+4 = 1, and bj+1 is known (either 0 or 1), then
all inputs bits ai’s can be written as linear combinations of bi’s, for all j ∈
{0, . . . , 4}.

258 J. Guo et al.

4 The Linear Structures

In this section, we review the previous work, and formalize the idea of linear
structure. We show linearization of Keccak-f permutation for up to 3 rounds.
Our distinguisher and preimage attacks using linear structures depend directly
on the space size of the variables of these linear structures, i.e., more variable
bits result in lower attack complexities. We show in details how the largest space
size possible could be obtained in each scenario.

4.1 Techniques for Keeping 2 Rounds Being Linear

In [15], Dinur et al. exploited a method for keeping the first round of Keccak-f
being linear and used it to analyze the security of keyed variants of Keccak.
Here we restate and formalize their technique. Let A[1, i], i = 0, 1, 2, 3, be vari-
ables and A[1, 4] =

⊕3
i=0 A[1, i] ⊕ α with any constant α so that variables in

each column sum to a constant. Then, as shown in Fig. 3, we can see how the
variables affect the internal state under the transformation of Keccak-f round
function R = ι ◦ χ ◦ π ◦ ρ ◦ θ. In Fig. 3 and hereinafter, the 2-tuple number “x, y”
denotes the position of a lane at the initial state, and we track its position under
the π function, where 0 ≤ x, y ≤ 4. All bits of the lanes with orange slashes have
algebraic degree 1, those of the lanes in orange have algebraic degree at most
1, and the other lanes are all constants. Note the algebraic degrees will not be
affected by the linear operations θ, ρ, π, and ι. The only non-linear operation
is the χ, and its degree is 2 or 3 in forward or backward directions, respec-
tively. As shown in the third state in Fig. 3, each row contains a single bit of
degree 1 and the other 4 bits are constants. Since the only possibility for χ to
increase the algebraic degree is through two neighbouring bits due to the term
(ai+1 ⊕ 1) · ai+2, the algebraic degree of the state bits remains at most 1 after
χ, i.e., after one round function R. The size of free variables can be at most 4
lanes, i.e., 64 × 4 = 256 bits.

Fig. 3. Keeping the 1st forward round being linear with the degrees of freedom up to
256, with orange bits of degree at most 1, and white bits being constants.

Noting that the only nonlinear part of R is χ which operates on each 5-bit
row. Since there is at most 1 variable in each row as in the first state in Fig. 3,
the inverse function χ−1 is linear on these variables due to Setting 3. Thus, the

Linear Structures: Applications to Cryptanalysis of Round-Reduced Keccak 259

first inverse round R−1 is linear on these variables. This property was first used
to construct zero-sum distinguishers on Keccak-f in [2].

Increasing the Degrees of Freedom up to 512 for 2 Rounds. Let A[i, j]
for i = 0, 2 and j = 0, 1, 2, 3 be variables and A[i, 4] =

⊕3
j=0 A[i, j] ⊕ αi with

constants αi for i = 0, 2. Figure 4 shows how the variables propagate in one round
R for α0 = 0 and α2 = 0xff· · ·f. The bits of the lanes in gray (resp. lightgray) are
set to all 1’s (resp. 0’s), and the bits of white lanes are set to arbitrary constants.
The lanes with orange slashes or orange have algebraic degree at most 1 as above.
Since there are at most two variables in each row input to χ and the variables
are not adjacent, the outputs of χ are all linear on these variables. Therefore,
the algebraic degree of the state bits in these variables remains 1 after the first
round of Keccak-f permutation, and the size of free variables can achieve at
most 64 × 4 × 2 = 512. This is also true for other constants αi.

Fig. 4. Keeping the 1st forward round being linear with the degrees of freedom up to
512, with orange bits of degree at most 1, and gray, lightgray and white bits being
values 1, 0, and arbitrary constants, respectively. (Color figure online)

To keep the algebraic degrees to be at most one when χ−1 is applied (inverting
one round) to the 512 variables in the first state of Fig. 4, according to Setting 4,
we restrict the bits of gray lanes to be all ones and the bits of lightgray lanes to
be all zeros, where the bits in gray and lightgray lanes respectively correspond
to bi+4’s and bi+3’s in Setting 4. Note that the step ι only adds a constant to the
first lane and thus it does not affect the gray and lightgray lanes. In this case,
the first inverse round R−1 is linear on these 512 variables.

4.2 How to Keep 3 Rounds Being Linear

Based on the technique above, in this section we describe a technique for keeping
an additional forward round of Keccak-f being linear.

Let A[i, j] with i = 0, 2 and j = 0, 1, 2 be variables. In what follows, we show
how to impose some conditions on the input bits such that all the output bits
after two rounds forward are linear. To make sure that the variables do not affect
the values of the other bits after step θ of the first round, i.e., keeping the sum
of all columns to be zero constants, we impose the following 2 × 64 equations:

A[i, 0] ⊕ A[i, 1] ⊕ A[i, 2] = 0, i = 0, 2.

260 J. Guo et al.

The values of white lanes are set in such a way that the value of the gray and
lightgray lanes remained unchanged after step θ of the first round, as shown in
Fig. 5. The steps ρ and π are respectively shifts of the bits in the same lanes and
permutations of the positions of the lanes. After the steps χ and ι, the lane at
column 0 and row 0 equals A[0, 0]⊕A[2, 2]≪43, the other lanes in orange remain
unchanged up to constants, and the white lanes are all constants. To make sure
that the variables do not propagate after step θ of the second round, we impose
3 × 64 more equations:

A[2, 0]≪62 = A[0, 0] ⊕ A[2, 2]≪43,

A[2, 1]≪6 = A[0, 1]≪36,

A[2, 2]≪43 = A[0, 2]≪3.

Note that this result is still valid when constants are XORed to the above three
equations. Since this linear system has in total 5 × 64 = 320 equations and
6 × 64 = 384 variables, there remains 64 degrees of freedom. As shown in Fig. 5,
we can see that after the second round all the output bits are linear since no
adjacent bits contain variables before step χ of the second round.

Fig. 5. Keeping the 2nd forward round being linear with degree of freedom up to 64

To ensure that the inverse function χ−1 is linear, we restrict the bits of lanes
A[4, j] with j = 0, 1, 2 to be all ones and the bits of lanes A[3, j] with j = 0, 1, 2
to be all zeros as in Setting 4.

Increasing the Degrees of Freedom to up to 128. Similarly, we can increase
the degrees of freedom from 64 to 128 by setting A[i, j] with i = 0, 2 and j =
0, 1, 2, 3 be variables and imposing some conditions on the input bits as shown
in Fig. 6. We build a linear system of 6 × 64 = 384 equations on 8 × 64 = 512
variables which has 128 degrees of freedom and satisfies that the output bits
after the second round are all linear. To ensure that the inverse function χ−1 is

Linear Structures: Applications to Cryptanalysis of Round-Reduced Keccak 261

Fig. 6. Keeping the 2nd forward round being linear with the degree of freedom up to 128

linear, we restrict the bits of lanes A[4, j] with j = 0, 1, 2, 3 to be all ones and
the bits of lanes A[3, j] with j = 0, 1, 2, 3 to be all zeros.

Increasing the Degrees of Freedom to up to 194. We further extend the
degrees of freedom to 194 by setting A[i, j] with i = 0, 2 and j = 0, 1, · · · , 4 be
variables and imposing some conditions on the input bits as shown in Fig. 7. We
build a linear system of 7×64 = 448 equations on 10×64 = 640 variables which
has 194 degrees of freedom and satisfies that the output bits after the second
round are all linear. Note that there are two linear equations linearly dependent
on the other equations, so the degree of freedom is 194 instead of 192. To ensure
that the inverse function χ−1 is linear, we restrict the bits of lanes A[4, j] with
j = 0, 1, · · · , 4 to be all ones and the bits of lanes A[3, j] with j = 0, 1, · · · , 4 to
be all zeros.

In summary, we found linear structures of Keccak-f permutation reduced to
2 rounds with degree of freedom up to 512, and 3 rounds with degree of freedom
up to 194.

5 Zero-Sum Distinguishers

A zero-sum distinguisher for a function is a method to find a set of values
summing to zero such that their respective images also sum to zero. That is,
it is a method to find a set S such that

∑
x∈S x = 0 and

∑
x∈S f(x) = 0 for

the function f . It is well known that the d-th order derivative of a polynomial
with degree at most d is a constant. For a Boolean function of algebraic degree
at most d, its d-th order derivative is also a constant. Thus the outputs of a
Boolean function of degree at most d sum to zero when the inputs take over a
linear space of dimension at least d + 1.

262 J. Guo et al.

Fig. 7. Keeping the 2nd forward round being linear with the degree of freedom up to 194

The Keccak-f permutation is the core function of Keccak and SHA-3. The
known method for constructing zero-sum distinguishers on Keccak-f permuta-
tion, exploits the fact that adding a round in Keccak-f only doubles the degree
of the algebraic expression of the output bits in terms of the input bits, and only
triples the degree of the algebraic expression of the input bits in terms of the
output bits. This is due to that the algebraic degree of one Keccak-f round
is 2 and the algebraic degree of one inverse round is 3. The real zero-sum dis-
tinguisher starts from some middle round of the Keccak-f permutation, and
extends n rounds forward and m rounds backward. So the algebraic degree of
n forward rounds Rn is bounded by 2n, and m backward rounds R−m by 3m.
With a linear space SM from the middle round of size at least 21+max(2n,3m), one
can be ensured that both input and output sum to zero, i.e.,

∑
x∈SM

Rn(x) = 0
and

∑
x∈SM

R−m(x) = 0. The desired input space S of the (m + n)-round dis-
tinguisher can be obtained by S = {R−m(x) | x ∈ SM}.

The attack has been extended in two different directions, finding better
bounds of the algebraic degrees of Rn and R−m [9,16], and inserting rounds
in the starting point in the middle [2]. Our improved zero-sum distinguisher is
in line with the second approach. Aumasson and Meier showed in [2] that one
round could be inserted for free. This is achieved by carefully choosing the set
SM so that the algebraic degree keeps to be 1 after one round. It becomes obvi-
ous to note the linear structures presented in Sect. 4 could be used here to extend
the number of free rounds to three, i.e., with linear structures as SM (similar to
the way how initial structures are used in MITM preimage attacks [1,18]), the
algebraic degrees of one backward round R−1 and two forward rounds R2 are
kept to be 1.

| m+1←−−−−−−−
backward

| 2+n−−−−−−→
forward

|.

Linear Structures: Applications to Cryptanalysis of Round-Reduced Keccak 263

As such, with the same complexity 21+max(2n,3m), our improved distinguisher
works for (m + n + 3) rounds, i.e., (m + 1) rounds backward and (n + 2) rounds
forward. In Table 1, we summarize our results with the best combinations of m
and n. Note the number of attacked rounds is limited by the size of SM , a.k.a.,
the size of the linear structures. For instance, the largest space we found for
3-round linear structure is 2194, so the distinguisher works for all combinations
of m and n such that 21+max(2n,3m) ≤ 2194. When m = 4 (5 rounds backward)
and n = 7 (9 rounds forward), as stated in the last entry of the third column of
Table 1, the attack applies to m + n + 3 = 14 rounds with time/data complexity
21+max(2n,3m) = 21+max(27,34) = 2129 ≤ 2194.

As a trade-off, the size of linear structure could be larger for less rounds, e.g.,
up to 2512 for 2 rounds. So the distinguisher works as below

| m+1←−−−−−−−
backward

| 1+n−−−−−−→
forward

|.

While there is one free round less, we can afford larger complexities, e.g., with
m = 5 and n = 8, we can distinguish m + n + 2 = 15 rounds with complexity
21+max(2n,3m) = 2257. Results of other choices of (m,n) are listed in the second
column of Table 1.

As a direct application to the 12-round Keccak-f permutation used in the
CAESAR candidate Keyak [8], the 3-round linear structure is large enough and
the choice of (m = 3, n = 6) results in attack complexity 265. Ketje [7] uses
a 12-round Keccak-f permutation reduced to 400 bits (denoted as Keccak-
p[400, nr = 12]), by reducing the length of lanes from 64 to 16 bits. When we
project the zero-sum distinguisher to this small variant, the maximum sizes of
linear structures are reduced to 512/4 = 128 and 192/4 = 48 bits respectively for
2 and 3 rounds. While the size for the 3-round linear structure is insufficient for
distinguishing 12 rounds, the 128-bit 2-round linear structure makes it eligible
with complexity 282. We note that though our distinguishers work for 12-round
Keccak-f , they do not result in attacks in settings of authenticated cipher
against Keyak or Ketje.

In summary our improved zero-sum distinguishers work for up to 15 rounds,
and for up to 11 rounds with practical complexities.

Experiments. We have made an experiment for verifying our distinguishers on
Keccak-f permutation reduced to 7 rounds in the forward direction. We use
the structure with degrees of freedom up to 64 as shown in Sect. 4.2. Note that
all the bits of the 7-round output have algebraic degree at most 27−2 = 32 for
this structure. It is sufficient to use a 33 dimensional space. In our experiment,
31 out of those 64 variables are first randomly valued and fixed, then the outputs
are summed over all the possible values of the rest input variables. It turns out
that all the 1600 bits of this sum are zeros.

264 J. Guo et al.

6 Preimage Attacks

In this section, we exploit algebraic techniques to mount preimage attacks on
several variants of Keccak based on the properties of the Sbox χ and the linear
structures of Keccak-f permutation. The preimage attacks on SHA-3 are the
same except that the time complexity may be at most 22 larger in some cases
due to the two extra padding bits. In general, here we find preimages of message
with length ≤ r − 2 bits by setting the (r − 1)-th bit of the input state to
be 1 so that the padded message is one block, unless the degree of freedom is
insufficient. We choose the message in such a way that the internal states of the
first few rounds follow linear structures as presented in Sect. 4 and the χ of the
last round is inverted by the methods presented in Sect. 3. To achieve smallest
possible time complexities, we will use different linear structures, and different
methods inverting the χ for each instance of Keccak. Note, the first r − 1 bits
of the input to Keccak-f can be chosen freely by choosing the proper message
bit values. However, the last c = b − r bits could not be chosen since there is no
addition of message bits, so we can only choose “variables” of linear structures
from the first r−1 bits, and this is why we must use different linear structures for
different instances. In what follows, we present the preimage attacks by showing
the choice of linear structures, ways to invert the Sbox, followed by a complexity
analysis of each instance attacked. The basic idea of our attacks is to set up and
solve linear equations. The complexity in this section is measured by the number
of times for solving the linear system of equations.

6.1 Preimage Attacks on 2-Round Keccak

First we discuss the preimage attacks on Keccak reduced to 2 rounds. They fol-
low 1-round linear structures, plus 1-round inversion of the Sbox. These attacks
adopt some similar ideas of meet-in-the-middle [23], while they exploit the lin-
ear structures of Keccak. For 2-round Keccak-512, we execute the attack as
follows (depicted in Fig. 8):

1. Invert the first 320 bits of a given hash value h through χ−1 ◦ ι−1. Note these
bits form the full output of the 64 Sboxes in the first row, so the corresponding
input bits can be fully determined.

2. Randomly guess the values of the lanes in white of the state input to the first
round, as shown in Fig. 8, where the 1024 bits of the lanes in lightgray are
set to all zeros and the last bit of A[3, 1] is set to 1 such that the state input
to the first round satisfies the padding rule;

3. For each guess, we set A[0, 1] = A[0, 0] + α0 and A[2, 1] = A[2, 0] + α2 with
random constants α0, α2, build a linear system between A[0, 0], A[2, 0] and
the recovered 320 input bits of the χ in the second round, then solve this
system and check whether the resulted hash value is correct.

Since A[0, 0] and A[2, 0] have 128 bits, so we have a complexity gain over brute-
force of 2128, i.e., 2512−128 = 2384 for 2-round Keccak-512 preimage attack.

Linear Structures: Applications to Cryptanalysis of Round-Reduced Keccak 265

Fig. 8. Preimage attack on 2-round Keccak-512

Note the degree of freedom in our setting is sufficient to find a preimage even-
tually. There are 128 bits from A[0, 0] and A[2, 0], 319 bits from white lanes,
and 128 bits from α0 and α2, which sums to 575 bits, larger than the required
512 bits.

For the 2-round Keccak-384, the attack is similar to that for Keccak-512,
except that we can construct linear structure from r = 1600 − 2 × 384 − 1 = 831
bits instead of 575 bits for Keccak-512. We can obtain a linear structure of
256-bit variables from (A[0, 0], A[0, 1], A[2, 0], A[2, 1]) with A[0, 2] = A[0, 0] ⊕
A[0, 1] ⊕ α0 and A[2, 2] = A[2, 0] ⊕ A[2, 1] ⊕ α2, hence a linear system of 256-bit
equations, as shown in Fig. 9. For generating a message satisfying the padding
rule, we just need a solution with the last bit of A[2, 2] being 1. Therefore, the
time complexity of this attack is 2384−256+1 = 2129.

Fig. 9. Preimage attack on 2-round Keccak-384

266 J. Guo et al.

Noting that we can obtain 4 linear equations on the input bits given 4 output
bits of the 5-bit Sbox χ. We can also apply the above preimage attack to 2-round
Keccak-256, by solving the system of linear equations just once, i.e., with time
complexity 1. As a feature of sponge functions, all other variants with digest
size less than 256 bits could be attacked in exactly the same way by randomly
presetting the extra digest bits not outputted.

6.2 Preimage Attacks on 3-Round Keccak

Next, we show preimage attacks on several instances of Keccak reduced to 3
rounds.

Preimage attacks on 3-round SHAKE128. SHAKE128(M , �) is an instance of
SHA-3 standard defined from Keccak[r = 1344, c = 256], with unlimited output
length �. We focus on the preimage attack on SHAKE128(M , 128), denoted by
SHAKE128 hereinafter for simplicity.

Fig. 10. Preimage attack on 3-round SHAKE128

Similar to that in Sect. 4.2, we set A[i, j] with i = 0, 2 and j = 0, 1, 2, 3 being
variables, and impose some conditions on the input bits such that all the output
bits after two rounds are linear, as shown in Fig. 10. A[0, 4] is set to any constant
such that M is a legal message. The lanes in gray and lightgray are set to all
ones and all zeros. To make sure that all the output bits after two rounds are
linear, we require:

A[0, 0] ⊕ A[0, 1] ⊕ A[0, 2] ⊕ A[0, 3] = A[0, 4] ⊕ 0xff· · · f,
A[2, 0] ⊕ A[2, 1] ⊕ A[2, 2] ⊕ A[2, 3] = 0xff· · · f,
A[2, 0]≪62 = A[0, 0] ⊕ A[2, 2]≪43,

A[2, 1]≪6 = A[0, 1]≪36 ⊕ A[2, 3]≪15,

A[2, 2]≪43 = A[0, 2]≪3,

A[2, 3]≪15 = A[0, 3]≪41 ⊕ A[2, 0]≪62.

Linear Structures: Applications to Cryptanalysis of Round-Reduced Keccak 267

All these 6 × 64 linear equations are linearly independent and thus have 2128

solutions. We expect that there is one solution matching the given 128-bit hash
value. Since π ◦ ρ ◦ θ is linear, the bits input to χ of the last round are all linear
on the variables. For SHAKE128, the first two output bits of each 5 bits of the
64 Sboxes χ in the first row of the last round are known. According to the
properties of χ as shown in Table 4, we can set up 1 linear equation for each
Sbox, hence 64 linear equations in total between the input bits to the Sboxes
of the last round and hash value. There are two methods to obtain extra 64
linear equations, as shown in Sect. 3.1, including guess-and-determine technique
in Setting 1 and probabilistic linearization in Setting 2. For the former, we guess
32 bits input to χ of the last round and obtain 64 more linear equations, which
will find the correct solution in 232. For the latter, we exploit the probabilistic
equations bi = ai’s each of which holds with probability 0.75. Since we have 64
probabilistic equations, the total probability of this system is 0.7564 = 2−26.6.
We can expect a correct solution from 226.6 such systems which can be obtained
by changing the values of A[0, 4]. Thus the complexity of this attack is 226.6.

Preimage attacks on 3-round Keccak[r = 1440, c = 160, � = 80]. Similar
techniques as presented previously allow us to find solutions for the 3-round
preimage challenge with width 1600 in the Keccak Challenge [4]. As shown in
Fig. 11, we set the lanes with orange slashes of the first state to be variables. The
31st bit of A[2, 4] is set to 1 for ensuring that the state input to the first round
complies with the padding. Finally, we get 161 degrees of freedom such that the
bits input to χ of the last round are all linear. The sketch of the processing is
shown in Fig. 11. According to the properties of χ as presented in Sect. 3.1, we
can set up 16 linear equations between the bits input to the last χ and hash
value. We can obtain extra 2 × 64 linear equations by guessing 64 bits input
to the last χ. Now, we build a linear system of 16 + 2 × 64 = 144 equations
on 161 variables. Therefore, we immediately get correct solutions for any given
hash value by solving this system. A solution for the 3-round preimage challenge
with width 1600 is listed as below, where the message has length 1438 and each
64-bit word is expressed in hexadecimal.

Fig. 11. Preimage attack on 3-round Keccak[r = 1440, c = 160, � = 80]

268 J. Guo et al.

Challenge:

e7cfc02846a32506 756c

Preimage:

01e0bc766796d36f ffffffffffffffff bd25fc21a299814e 0000000000000000 0000000000000000

cc85265f6f0e696a ffffffffffffffff 3a6f339c0eb075b9 0000000000000000 0000000000000000

d22ac7903b459dc2 ffffffffffffffff 903a19e9986a2ac7 0000000000000000 0000000000000000

539674b5f5e23187 ffffffffffffffff 1770d654e35ec89e 0000000000000000 0000000000000000

b326d6f339c0e9bf ffffffffffffffff d71d16ae

Preimage attacks on 3-round Keccak [r = 640, c = 160, � = 80]. Similar
techniques also allow us to find solutions for the 3-round preimage challenge
with width 800. The sketch of the attack is shown in Fig. 12. To keep two rounds
being linear, the six lanes with orange slashes of input state are expressed by
64 variables for any fixed values of auxiliary variables, and the two lanes with
red grid, A[3, 0] and A[4, 3], are represented by 32 auxiliary variables. We set
up 64 linear equations on 64 variables for a given 80-bit hash value by guessing
8 bits of the variables, and expect a correct preimage for 216 tries. The time
complexity of this attack is 224. As a matter of fact, the time complexity can be
further cut down to 27 by applying a similar attack as described in Sect. 6.4. A
solution for the 3-round preimage challenge with width 800 is listed as below,
where the message has length 638.

Fig. 12. Preimage attack on 3-round Keccak[r = 640, c = 160]

Challenge:

0e668099c5b57b00 9302

Preimage:

ffffffff1097e68a 069e5c9097c2a342 9128124400000000 3bc3a3a300000000 0000000000000000

0000000056ace9cb 00000000cb56ace9 2ba3ccb200000000 990fc4d300000000 ff2c346d00000000

Preimage Attacks on 3-Round Keccak-224 and Keccak-256. Since
the rates r of Keccak-224 and Keccak-256 are much smaller than that of

Linear Structures: Applications to Cryptanalysis of Round-Reduced Keccak 269

SHAKE128, there are less choices of constant part when keeping two rounds being
linear with as many degrees of freedom as possible. For Keccak-256, we use
384 variables A[i, j], i = 0, 2, j = 0, 1, 2, out of which there will be 64 indepen-
dent variables after forcing the sum of variables in column 0, 2 of the input to
θ in the first round, and in column 0, 1, 2 of the input to the θ in the second
round to be constants as depicted in Fig. 13, i.e., the size of this linear structure
is 264. However, it is insufficient to match a 256-bit hash value by 64-bit vari-
ables. To get enough choices for the state input to the first round, we set the
constant part by using 128 auxiliary variables A[3, 0] and A[4, 2] such that the
linear structure remains linear after two rounds for any fixed values of auxiliary
variables. As depicted in Fig. 13, we required that the gray and lightgray lanes
of the state after step θ of the first round are respectively ones and zeros. To
achieve this, we first fix the values of A[0, 3] and A[3, 0], and then set up 192
linear equations,

⊕4
j=0(A[i − 1, j] ⊕ (A[i + 1, j] ≪ 1)) = 0xff· · · f, i = 1, 4 and

⊕4
j=0(A[i − 1, j] ⊕ (A[i + 1, j] ≪ 1)) = 0, i = 3, which implies that A[4, 2] is

determined by A[3, 0]. To make sure that the variables do not affect the other
bits after step θ of the second round, we impose 192 more equations according to
the value of A[1, 2]. Finally, the six lanes with orange slashes of input state can
be expressed by 64 variables for any fixed values of auxiliary variables, and the
two lanes with red grid can be represented by 64 auxiliary variables. As usual,
we can set up 64 linear equations on these 64 variables for a given 256-bit hash
value. Since there are 264 choices for variable lanes, 264 choices for auxiliary vari-
able lanes, and 2128 choices for constant lanes, we have 2256 choices for the state
input to the first round, and we expect a correct solution. The time complexity
of this attack is 2192.

The preimage attack on Keccak-224 is similar, as shown in Fig. 14. To keep
two rounds being linear, the eight lanes with orange slashes of input state are
expressed by 128 variables for any fixed values of auxiliary variables, and the
four lanes with red grid are represented by 64 auxiliary variables. We set up 128
linear equations on 128 variables for a given 224-bit hash value (half solutions
correspond to legal messages), and expect a correct preimage for 297 tries. The
time complexity of this attack is 297.

Fig. 13. Preimage attack on 3-round Keccak-256

270 J. Guo et al.

Fig. 14. Preimage attack on 3-round Keccak-224

6.3 Preimage Attacks on 3-Round Keccak-384/512 and 4-round
Keccak-224/256

For 3-round Keccak-512, on one hand, we have 128 variables such that the bits
input to step χ of the second round are all linear, as depicted in Fig. 8; on the
other hand, we can directly inverse 320 bits through χ−1 ◦ ι−1 from a given hash
value, each bit of which is a sum of 11 bits of the output of the second round.
Since π ◦ ρ just permutate the positions of the bits and ι just add a constant
to the first lane, they do not increase the nonlinear terms, and thus we neglect
these steps in the last one and a half rounds.

M
π◦ρ◦θ◦R−−−−−−−→

1.5 rounds
A

ι◦χ−−−→ B
θ−−→ C

π◦ρ−−−→ | χ−1◦ι−1

←−−−−−− h.

The expressions of θ and χ are given as follows,

χ : B[x][y][z] = A[x][y][z] ⊕ (A[x + 1][y][z] ⊕ 1) · A[x + 2][y][z],

θ : C[x][y][z] = B[x][y][z] ⊕
4⊕

y′=0

B[x − 1][y′][z] ⊕
4⊕

y′=0

B[x + 1][y′][z − 1].
(14)

Since the bits input to step χ of the second round are all linear, each output
bit of the second round is quadratic and the quadratic part is a product of two
linear combinations. Note that the quadratic parts of B[x][y][z] and B[x−1][y][z]
share a common factor A[x+1][y][z] according to (14). We linearize C[x][y][z] by
guessing 10 bits input to step χ. That is, we obtain 11 = 1 + 10 linear equations
and match 1 bit of the hash value. As such, we can match
 128

11 � = 11 bits of the
hash value since we have 128 variables. The time complexity of this preimage
attack is 2501.

For 3-round Keccak-384, we set the last bit of A[2, 2] to be 1 and have 255
variables such that the bits input to step χ of the second round are all linear,
as depicted in Fig. 9, and thus the time complexity of the preimage attack is
2384−� 255

11 � = 2361.

Linear Structures: Applications to Cryptanalysis of Round-Reduced Keccak 271

For Keccak-224/256, we cannot inverse the hash value through χ−1 as
Keccak-384/512, but we can set up the equations such as a0 = b0 for b1 = 1
according to (6). Since we have 127 and 64 variables such that the bits input to
step χ of the third round are all linear, as depicted in Figs. 14 and 13, the time
complexities for 4-round Keccak-224/256 are respectively 2213 and 2251.

Improved Preimage Attacks on 3-Round Keccak-384 and Keccak-512.
In the above attacks, we assume that all the guessed linear combinations are
linearly independent. It is possible to cut down the time complexity if elaborately
choose linearly dependent ones, since there will be more degrees of freedom for
guessing more linear combinations to match more bits of the hash value. For
3-round Keccak-384/512, we can further improve the attacks by this method.
Since we can inverse 320 bits of through χ−1 ◦ ι−1 from a given hash value, we
can choose the bits which share a sum of one column (according to the property
of θ) or common linear parts in quadratic terms (according to the property of χ).

By (14), B[x − 1][y][z] and B[x][y][z] are linear after guessing the value of
A[x + 1][y][z] for 0 ≤ y ≤ 4. It is also true that B[x + 1][y][z − 1] and B[x +
2][y][z − 1] are linear after guessing the value of A[x + 3][y][z − 1] for 0 ≤ y ≤ 4.
This means that after guessing the above 10 bits input to step χ, we not only
linearize C[x][y][z], but also obtain an extra equation:

C[x + 1][y + 1][z] = B[x + 1][y + 1][z] ⊕
4⊕

y′=0

B[x][y′][z] ⊕
4⊕

y′=0

B[x + 2][y′][z − 1],

the quadratic part of which only appears in B[x+1][y+1][z]. Thus we can set up
2 extra linear equations and match one more bit of the hash value by guessing
one more bit. Totally we set up 13 linear equations and match two bits of the
given hash value.

Then we consider another two equations:

C[x + 2][y + 2][z − 1] = B[x + 2][y + 2][z − 1] ⊕
4⊕

y′=0

B[x + 1][y
′
][z − 1] ⊕

4⊕

y′=0

B[x + 3][y
′
][z − 2],

C[x + 3][y + 3][z − 1] = B[x + 3][y + 3][z − 1] ⊕
4⊕

y′=0

B[x + 2][y
′
][z − 1] ⊕

4⊕

y′=0

B[x + 4][y
′
][z − 2].

Again, we can set up another 8 linear equations and match two more bits of the
hash value by guessing 6 more bits.

Generally, we can match 2
 t−5
8 � bits of a given hash value if we have t

variables. For 3-round Keccak-384/512, we have 255 and 128 variables, and
thus match 62 and 30 bits respectively. Therefore, the time complexities of this
improved preimage attack are respectively 2322 and 2482 for 3-round Keccak-
384/512.

6.4 Improved Preimage Attacks on SHAKE128

The idea presented in Sect. 6.3 also applies to SHAKE128. In this section we extend
it to improve the preimage attacks on SHAKE128.

272 J. Guo et al.

Instead of linearizing 2 rounds forward, we linearize 2 rounds by combining
one round forward and one round backward as discussed in Sect. 4.1, and we
have 512 variables such that these two rounds are linear. To make sure that the
state input to the first round corresponds to a legal message, we set up 262 linear
equations such that the last 256 bits are all zeros and the following last 6 bits
are all ones. Then there remains 250 degrees of freedom such that the bits input
to step χ of the third round are all linear.

For 3-round SHAKE128, we set up 64 linear equations between these 250 vari-
ables and a given hash value as the same way done in Sect. 6.2, and then obtain
extra 2 × 64 linear equations by guessing 64 bits input to step χ of the third
round. Each solution of this linear system corresponds to a preimage of the given
hash value. Therefore, the time complexity of this attack is 1.

For 4-round SHAKE128, given a 128-bit hash value, we expect 32 zeros and 32
ones among its last 64 bits (b1’s), and thus we can set up a linear system, which
matches 22 bits (b0’s) of the hash value, by guessing 220 bits input to step χ of
the third round. This attack gives a correct preimage in 2106.

6.5 Preimage Attacks on 4-Round Keccak
[r = 1440, C = 160, � = 80]

A similar attack as proposed in Sect. 6.4 also applies to Keccak[r = 1440, c =
160, � = 80]. In stead, we use two rounds forward and one round backward for
linearization. As shown in Sect. 4.2, we have 194 degrees of freedom for such
3-round linear structure. To make sure that the state input to the first round
corresponds to a legal message, we set up 161 linear equations such that the
last 161 bits are fixed. Then there remains 33 degrees of freedom such that the
bits input to step χ of the fourth round are all linear. Given an 80-bit hash
value of 4-round Keccak[r = 1440, c = 160, � = 80], we can set up 16 linear
equations by (6), and set up 17 probabilistic equations using bi = ai. This
attack gives a correct two-block preimage in 247+17×0.42 ≈ 254. We estimate
that the computations of the whole attack need approximately 220 CPU core
hours. We run this attack in less than 210 CPU core hours, and find a 78-bit
matched preimage of length 2874 for the 4-round Keccak preimage challenge
with width 1600.

Message:

bc739847dd59b8f6 21e6f9016ae9292d 44c2f9f008f175fc fb1a9d7d2f5af0d9 c709f78dfa830460

0000000000000000 0000000000000000 0000000000000000 0000000000000000 0000000000000000

0000000000000000 0000000000000000 0000000000000000 0000000000000000 0000000000000000

0000000000000000 0000000000000000 0000000000000000 0000000000000000 0000000000000000

0000000000000000 0000000000000000 00000000

34d781770fae25d9 4bcdf7304704b1a0 aeb1cc6a3d9a4b9f 879b5b095e744910 09096232b744ac44

63faab93d1b6a3f5 7aca93b5c0c2afa0 f1b2772194934266 41e5a573d5efc16f 34e0e077bfb4ce43

48bb5cb11aa15738 3ecb466e4aa6fec3 4e3e5449626d5e2d ccec6be24c92d63b fb652d66cc6a4621

356d6bfdd56b1afb d9da9b8c0e366cd3 034ad6fdd9caa885 236ade6960c8edaf 03d6d60e45aeb00e

b8132036d4e20f33 8e4a29bbbd2c1cb8 8549b303

Linear Structures: Applications to Cryptanalysis of Round-Reduced Keccak 273

Output:

7d aa d8 07 b0 50 6c 9c 02 76

Challenge:

7d aa d8 07 f8 50 6c 9c 02 76

Difference:

-- -- -- -- 48 -- -- -- -- --

7 Conclusions

In conclusion, we have described the linear structures of Keccak-f and exploited
them to analyze the security of Keccak, including zero-sum distinguishers on
Keccak-f permutation and preimage attacks on Keccak. Our distinguishers
work on Keccak-f reduced to up to 15 rounds, and are practical for up to
11 rounds. These results improve the previously best known distinguishers by
two more rounds with the same complexities. Our preimage attacks work on all
variants of Keccak reduced to up to 4 rounds except for 4-round Keccak-
384/512, much faster than the exhaustive search. Specially, in terms of practical
preimage attacks, we could find the preimage by solving a small linear system
just once for 2-round Keccak-224/256 and 3-round SHAKE128. With these tech-
niques, we have found preimages for 3-round Keccak Challenge with widths
1600 and 800, and a 78-bit matched preimage for 4-round Keccak Challenge
with width 1600. It will be interesting to see applications of linear structures to
other Keccak-like ciphers or functions.

Acknowledgement. We are grateful to Florian Mendel, Lei Wang, and anonymous
reviewers of ASIACRYPT 2016 for their fruitful discussions and helpful comments. The
second author was supported by the National Natural Science Foundation of China
(Grant Nos. 61672516, 61303258, 61379139 and 11526215) and the Strategic Priority
Research Program of the Chinese Academy of Sciences under Grant XDA06010701.

References

1. Aoki, K., Guo, J., Matusiewicz, K., Sasaki, Y., Wang, L.: Preimages for step-
reduced SHA-2. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp.
578–597. Springer, Heidelberg (2009). doi:10.1007/978-3-642-10366-7 34

2. Aumasson, J.P., Meier, W.: Zero-sum distinguishers for reduced Keccak-f and for
the core functions of Luffa and Hamsi (2009). https://131002.net/data/papers/
AM09.pdf

3. Bernstein, D.J.: Second Preimages for 6 (7?(8??)) Rounds of Keccak. NIST mailing
list (2010)

4. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: Keccak crunchy crypto
collision and pre-image contest. http://keccak.noekeon.org/crunchy contest.html

5. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: Cryptographic sponge func-
tions, January 2011. http://sponge.noekeon.org/CSF-0.1.pdf

6. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: The Keccak reference, Ver-
sion 3.0, January 2011. http://keccak.noekeon.org

http://dx.doi.org/10.1007/978-3-642-10366-7_34
https://131002.net/data/papers/AM09.pdf
https://131002.net/data/papers/AM09.pdf
http://keccak.noekeon.org/crunchy_contest.html
http://sponge.noekeon.org/CSF-0.1.pdf
http://keccak.noekeon.org

274 J. Guo et al.

7. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G., Van Keer, R.: CAESAR
submission: KETJE v1, March 2014. http://ketje.noekeon.org

8. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G., Van Keer, R.: CAESAR
submission: Keyak v2, December 2015. http://keyak.noekeon.org/

9. Boura, C., Canteaut, A., Cannière, C.: Higher-order differential properties of Kec-
cak and Luffa. In: Joux, A. (ed.) FSE 2011. LNCS, vol. 6733, pp. 252–269.
Springer, Heidelberg (2011). doi:10.1007/978-3-642-21702-9 15

10. Canteaut, A. (ed.): FSE 2012. LNCS, vol. 7549. Springer, Heidelberg (2012)
11. Chang, D., Kumar, A., Morawiecki, P., Sanadhya, S.K.: 1st and 2nd preimage

attacks on 7, 8 and 9 rounds of Keccak-224,256,384,512. In: SHA-3 Workshop,
August 2014

12. Dinur, I., Dunkelman, O., Shamir, A.: New attacks on Keccak-224 and Keccak-
256. In: Canteaut, A. (ed.) FSE 2012. LNCS, vol. 7549, pp. 442–461. Springer,
Heidelberg (2012). doi:10.1007/978-3-642-34047-5 25

13. Dinur, I., Dunkelman, O., Shamir, A.: Collision attacks on up to 5 rounds of SHA-3
using generalized internal differentials. In: Moriai, S. (ed.) FSE 2013. LNCS, vol.
8424, pp. 219–240. Springer, Heidelberg (2014). doi:10.1007/978-3-662-43933-3 12

14. Dinur, I., Dunkelman, O., Shamir, A.: Improved practical attacks on round-reduced
Keccak. J. Cryptol. 27(2), 183–209 (2014)

15. Dinur, I., Morawiecki, P., Pieprzyk, J., Srebrny, M., Straus, M.: Cube attacks and
cube-attack-like cryptanalysis on the round-reduced Keccak sponge function. In:
Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9056, pp. 733–761.
Springer, Heidelberg (2015). doi:10.1007/978-3-662-46800-5 28

16. Duan, M., Lai, X.: Improved zero-sum distinguisher for full round Keccak-f per-
mutation. Cryptology ePrint Archive, Report 2011/023 (2011). http://eprint.iacr.
org/

17. Duc, Alexandre, Guo, Jian, Peyrin, Thomas, Wei, Lei: Unaligned rebound attack:
application to Keccak. In: [10] 402–421

18. Guo, J., Ling, S., Rechberger, C., Wang, H.: Advanced meet-in-the-middle preim-
age attacks: first results on full tiger, and improved results on MD4 and SHA-2. In:
Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 56–75. Springer, Heidelberg
(2010). doi:10.1007/978-3-642-17373-8 4

19. Jean, J., Nikolić, I.: Internal differential boomerangs: practical analysis of the
round-reduced Keccak-f permutation. In: Leander, G. (ed.) FSE 2015. LNCS, vol.
9054, pp. 537–556. Springer, Heidelberg (2015). doi:10.1007/978-3-662-48116-5 26

20. Morawiecki, P., Pieprzyk, J., Srebrny, M.: Rotational Cryptanalysis of Round-
Reduced Keccak. In: [22] 241–262

21. Morawiecki, P., Srebrny, M.: A SAT-based preimage analysis of reduced Keccak
hash functions. Inf. Process. Lett. 113(10–11), 392–397 (2013)

22. Morawiecki, P., Pieprzyk, J., Srebrny, M.: Rotational cryptanalysis of round-
reduced Keccak. In: Moriai, S. (ed.) FSE 2013. LNCS, vol. 8424, pp. 241–262.
Springer, Heidelberg (2014). doi:10.1007/978-3-662-43933-3 13

23. Naya-Plasencia, M., Röck, A., Meier, W.: Practical analysis of reduced-round Kec-
cak. In: Bernstein, D.J., Chatterjee, S. (eds.) INDOCRYPT 2011. LNCS, vol. 7107,
pp. 236–254. Springer, Heidelberg (2011). doi:10.1007/978-3-642-25578-6 18

24. NIST: SHA-3 COMPETITION (2007–2012). http://csrc.nist.gov/groups/ST/
hash/sha-3/index.html

25. The U.S. National Institute of Standards and Technology: SHA-3 Standard:
Permutation-Based Hash and Extendable-Output Functions . Federal Information
Processing Standard, FIPS 202, 5th August 2015

http://ketje.noekeon.org
http://keyak.noekeon.org/
http://dx.doi.org/10.1007/978-3-642-21702-9_15
http://dx.doi.org/10.1007/978-3-642-34047-5_25
http://dx.doi.org/10.1007/978-3-662-43933-3_12
http://dx.doi.org/10.1007/978-3-662-46800-5_28
http://eprint.iacr.org/
http://eprint.iacr.org/
http://dx.doi.org/10.1007/978-3-642-17373-8_4
http://dx.doi.org/10.1007/978-3-662-48116-5_26
http://dx.doi.org/10.1007/978-3-662-43933-3_13
http://dx.doi.org/10.1007/978-3-642-25578-6_18
http://csrc.nist.gov/groups/ST/hash/sha-3/index.html
http://csrc.nist.gov/groups/ST/hash/sha-3/index.html

Randomness

When Are Fuzzy Extractors Possible?

Benjamin Fuller1(B), Leonid Reyzin2, and Adam Smith3

1 University of Connecticut, Storrs, CT, USA
benjamin.fuller@uconn.edu

2 Boston University, Boston, MA, USA
reyzin@cs.bu.edu

3 Pennsylvania State University, University Park, PA, USA
asmith@cse.psu.edu

Abstract. Fuzzy extractors (Dodis et al., Eurocrypt 2004) convert
repeated noisy readings of a high-entropy secret into the same uniformly
distributed key. A minimum condition for the security of the key is the
hardness of guessing a value that is similar to the secret, because the
fuzzy extractor converts such a guess to the key.

We define fuzzy min-entropy to quantify this property of a noisy source
of secrets. Fuzzy min-entropy measures the success of the adversary when
provided with only the functionality of the fuzzy extractor, that is, the
ideal security possible from a noisy distribution. High fuzzy min-entropy
is necessary for the existence of a fuzzy extractor.

We ask: is high fuzzy min-entropy a sufficient condition for key extrac-
tion from noisy sources? If only computational security is required,
recent progress on program obfuscation gives evidence that fuzzy min-
entropy is indeed sufficient. In contrast, information-theoretic fuzzy
extractors are not known for many practically relevant sources of high
fuzzy min-entropy.

In this paper, we show that fuzzy min-entropy is sufficient for informa-
tion theoretically secure fuzzy extraction. For every source distribution
W for which security is possible we give a secure fuzzy extractor.

Our construction relies on the fuzzy extractor knowing the precise
distribution of the source W . A more ambitious goal is to design a single
extractor that works for all possible sources. Our second main result is
that this more ambitious goal is impossible: we give a family of sources
with high fuzzy min-entropy for which no single fuzzy extractor is secure.
We show three flavors of this impossibility result: for standard fuzzy
extractors, for fuzzy extractors that are allowed to sometimes be wrong,
and for secure sketches, which are the main ingredient of most fuzzy
extractor constructions.

Keywords: Fuzzy extractors · Secure sketches · Information
theory · Biometric authentication · Error-tolerance · Key derivation ·
Error-correcting codes

c© International Association for Cryptologic Research 2016
J.H. Cheon and T. Takagi (Eds.): ASIACRYPT 2016, Part I, LNCS 10031, pp. 277–306, 2016.
DOI: 10.1007/978-3-662-53887-6 10

278 B. Fuller et al.

1 Introduction

Sources of reproducible secret random bits are necessary for many cryptographic
applications. In many situations these bits are not explicitly stored for future use,
but are obtained by repeating the same process (such as reading a biometric or a
physically unclonable function) that generated them the first time. However, bits
obtained this way present a problem: noise [4,8,12,14,19,30,31,33,37,39,43].
That is, when a secret is read multiple times, readings are close (according to
some metric) but not identical. To utilize such sources, it is often necessary to
remove noise, in order to derive the same value in subsequent readings.

The same problem occurs in the interactive setting, in which the secret chan-
nel used for transmitting the bits between two users is noisy and/or leaky [42].
Bennett, Brassard, and Robert [4] identify two fundamental tasks. The first,
called information reconciliation, removes the noise without leaking significant
information. The second, known as privacy amplification, converts the high
entropy secret to a uniform random value. In this work, we consider the nonin-
teractive version of these problems, in which these tasks are performed together
with a single message.

The noninteractive setting is modeled by a primitive called a fuzzy extrac-
tor [13], which consists of two algorithms. The generate algorithm (Gen) takes
an initial reading w and produces an output key along with a nonsecret helper
value p. The reproduce (Rep) algorithm takes the subsequent reading w′ along
with the helper value p to reproduce key. The correctness guarantee is that the
key is reproduced precisely when the distance between w and w′ is at most t.

The security requirement for fuzzy extractors is that key is uniform even to a
(computationally unbounded) adversary who has observed p. This requirement
is harder to satisfy as the allowed error tolerance t increases, because it becomes
easier for the adversary to guess key by guessing a w′ within distance t of w and
running Rep(w′, p).
Fuzzy Min-Entropy. We introduce a new entropy notion that precisely mea-
sures how hard it is for the adversary to guess a value within distance t of the
original reading w. Suppose w is sampled from a distribution W . To have the
maximum chance that w′ is within distance t of w, the adversary would want
to maximize the total probability mass of W within the ball Bt(w′) of radius t
around w′. We therefore define fuzzy min-entropy

Hfuzz
t,∞ (W) def= − log max

w′
Pr[W ∈ Bt(w′)].

The security of the resulting key cannot exceed the fuzzy min-entropy (Propo-
sition 1).

However, existing constructions do not measure their security in terms of
fuzzy min-entropy; instead, their security is shown to be the min-entropy of W ,
denoted H∞(W), minus some loss, for error-tolerance, that is at least log |Bt|.1
1 We omit w in the notation |Bt| since, as with almost all previous work, we study

metrics where the volume of the ball Bt(w) does not depend on the center w.

When Are Fuzzy Extractors Possible? 279

Since (trivially) H∞(W) − log |Bt| ≤ Hfuzz
t,∞ (W), it is natural to ask whether this

loss is necessary. This question is particularly relevant when the gap between
the two sides of the inequality is high.2 As an example, iris scans appear to
have significant Hfuzz

t,∞ (W) (because iris scans for different people appear to be
well-spread in the metric space [11]) but negative H∞(W) − log |Bt| [6, Sect. 5].
We therefore ask: is fuzzy min-entropy sufficient for fuzzy extraction? There is
evidence that it may be sufficient when the security requirement is computational
rather than information-theoretic—see Sect. 1.2. We provide an answer for the
case of information-theoretic security in two settings.

Contribution 1: Sufficiency of Hfuzz
t,∞ (W) for a Precisely Known W . It

should be easier to construct a fuzzy extractor when the designer has precise
knowledge of the probability distribution function of W . In this setting, we show
that it is possible to construct a fuzzy extractor that extracts a key almost as
long as Hfuzz

t,∞ (W) (Theorem 1). Our construction crucially utilizes the probabil-
ity distribution function of W and, in particular, cannot necessarily be realized
in polynomial time (this is similar, for example, to the interactive information-
reconciliation feasibility result of [34]). This result shows that Hfuzz

t,∞ (W) is a
necessary and sufficient condition for building a fuzzy extractor for a given dis-
tribution W .

A number of previous works in the precise knowledge setting have provided
efficient algorithms and tight bounds for specific distributions—generally the
uniform distribution or i.i.d. sequences (for example, [20,26–28,38,41]). Our
characterization unifies previous work, and justifies using Hfuzz

t,∞ (W) as the mea-
sure of the quality of a noisy distribution, rather than cruder measures such as
H∞(W)− log |Bt|. Our construction can be viewed as a reference to evaluate the
quality of efficient constructions in the precise knowledge setting by seeing how
close they get to extracting all of Hfuzz

t,∞ (W).

Contribution 2: The Cost of Distributional Uncertainty. Assuming pre-
cise knowledge of a distribution W is often unrealistic for high-entropy distribu-
tions; they can never be fully observed directly and must therefore be modeled. It
is imprudent to assume that the designer’s model of a distribution is completely
accurate—the adversary, with greater resources, would likely be able to build a
better model. (In particular, the adversary has more time to build the model
after a particular construction is deployed.) Because of this, existing designs work
for a family of sources (for example, all sources of min-entropy at least m with
at most t errors). The fuzzy extractor is designed given only knowledge of the
family. The attacker may know more about the distribution than the designer.
We call this the distributional uncertainty setting.

Our second contribution is a set of negative results for this more realistic
setting. We provide two impossibility results for fuzzy extractors. Both demon-
strate families W of distributions over {0, 1}n such that each distribution in

2 For nearly uniform distributions, Hfuzz
t,∞(W) ≈ H∞(W) − log |Bt|. In this setting,

standard coding based constructions of fuzzy extractors (using appropriate codes)
yield keys of size approximately Hfuzz

t,∞(W).

280 B. Fuller et al.

the family has Hfuzz
t,∞ linear in n, but no fuzzy extractor can be secure for most

distributions in W. Thus, a fuzzy extractor designer who knows only that the
distribution comes from W is faced with an impossible task, even though our
positive result, Theorem 1, shows that fuzzy extractors can be designed for each
distribution in the family individually.

The first impossibility result (Theorem 2) assumes that Rep is perfectly cor-
rect and rules our fuzzy extractors for entropy rates as high as Hfuzz

t,∞ (W) ≈ 0.18n.
The second impossibility result (Theorem 3), relying on the work of Holen-
stein and Renner [25], also rules out fuzzy extractors in which Rep is allowed
to make a mistake, but applies only to distributions with entropy rates up to
Hfuzz

t,∞ (W) ≈ 0.07n.
We also provide a third impossibility result (Theorem 4), this time for an

important building block called “secure sketch,” which is used in most fuzzy
extractor constructions (in order to allow Rep to recover the original w from the
input w′). The result rules out secure sketches for a family of distributions with
entropy rate up to 0.5n, even if the secure sketches are allowed to make mistakes.
Because secure sketches are used in most fuzzy extractors constructions, the
result suggests that building a fuzzy extractor for this family will be very difficult.
We define secure sketches formally in Sect. 7.

These impossibility results motivate further research into computationally,
rather information-theoretically, secure fuzzy extractors (Sect. 1.2).

1.1 Our Techniques

Techniques for Positive Results for a Precisely Known Distribution.
We now explain how to construct a fuzzy extractor for a precisely known dis-
tribution W with fuzzy min-entropy. We begin with distributions in which all
points in the support have the same probability (so-called “flat” distributions).
Gen simply extracts a key from the input w using a randomness extractor. Con-
sider some subsequent reading w′. To achieve correctness, the string p must
permit Rep to disambiguate which point w ∈ W within distance t of w′ was
given to Gen. Disambiguating multiple points can be accomplished by universal
hashing, as long as the size of hash output space is slightly greater than the
number of possible points. Thus, Rep includes into the public value p a “sketch”
of w computed via a universal hash of w. To determine the length of that sketch,
consider the heaviest (according to W) ball B∗ of radius t. Because the distri-
bution is flat, B∗ is also the ball with the most points of nonzero probability.
Thus, the length of the sketch needs to be slightly greater than the logarithm of
the number of non-zero probability points in B∗. Since Hfuzz

t,∞ (W) is determined
by the weight of B∗, the number of points cannot be too high and there will
be entropy left after the sketch is published. This remaining entropy suffices to
extract a key.

For an arbitrary distribution, we cannot afford to disambiguate points in the
ball with the greatest number of points, because there could be too many low-
probability points in a single ball despite a high Hfuzz

t,∞ (W). We solve this problem

When Are Fuzzy Extractors Possible? 281

by splitting the arbitrary distribution into a number of nearly flat distributions
we call “levels.” We then write down, as part of the sketch, the level of the
original reading w and apply the above construction considering only points in
that level. We call this construction leveled hashing (Construction 1).

Techniques for Negative Results for Distributional Uncertainty. We
construct a family of distributions W and prove impossibility for a uniformly
random W ← W. We start by observing the following asymmetry: Gen sees
only the sample w (obtained via W ← W and w ← W), while the adversary
knows W .

To exploit the asymmetry, in our first impossibility result (Theorem 2), we
construct W so that conditioning on the knowledge of W reduces the distribution
to a small subspace (namely, all points on which a given hash function produces
a given output), but conditioning on only w leaves the rest of the distribution
uniform on a large fraction of the entire space. An adversary can exploit the
knowledge of the hash value to reduce the uncertainty about key, as follows.

The nonsecret value p partitions the metric space into regions that produce
a consistent value under Rep (preimages of each key under Rep(·, p)). For each of
these regions, the adversary knows that possible w lie at distance at least t from
the boundary of the region (else, the fuzzy extractor would have a nonzero prob-
ability of error). However, in the Hamming space, the vast majority of points lie
near the boundary (this result follows by combining the isoperimetric inequal-
ity [21], which shows that the ball has the smallest boundary, with bounds on the
volume of the interior of a ball, which show that this boundary is large). This
allows the adversary to rule out so many possible w that, combined with the
adversarial knowledge of the hash value, many regions become empty, leaving
key far from uniform.

For the second impossibility result (Theorem 3, which rules out even fuzzy
extractors that are allowed a possibility of error), we let the adversary know some
fraction of the bits of w. Holenstein and Renner [25] showed that if the adver-
sary knows each bit of w with sufficient probability, and bits of w′ differ from
bits of w with sufficient probability, then so-called “information-theoretic key
agreement” is impossible. Converting the impossibility of information-theoretic
key agreement to impossibility of fuzzy extractors takes a bit of technical work.

1.2 Related Settings

Other Settings with Close Readings: Hfuzz
t,∞ is Sufficient. The security

definition of fuzzy extractors can be weakened to protect only against com-
putationally bounded adversaries [17]. In this computational setting, for most
distance metrics a single fuzzy extractor can simultaneously secure all possible
distributions by using virtual grey-box obfuscation for all circuits in NC1 [5].
This construction is secure when the adversary can rarely learn key with oracle
access to the program functionality. The set of distributions with fuzzy min-
entropy are exactly those where an adversary learns key with oracle access to
the functionality with negligible probability. Thus, extending our negative result

282 B. Fuller et al.

to the computational setting would have negative implications on the existence
of obfuscation.

Furthermore, the functional definition of fuzzy extractors can be weakened
to permit interaction between the party having w and the party having w′. Such
a weakening is useful for secure remote authentication [7]. When both interac-
tion and computational assumptions are allowed, secure two-party computation
can produce a key that will be secure whenever the distribution W has fuzzy
min-entropy. The two-party computation protocol needs to be secure without
assuming authenticated channels; it can be built under the assumptions that
collision-resistant hash functions and enhanced trapdoor permutations exist [3].

Correlated Rather than Close Readings. A different model for the problem
of key derivation from noisy sources does not explicitly consider the distance
between w and w′, but rather views w and w′ as samples of drawn from a
correlated pair of random variables. This model is considered in multiple works,
including [1,10,29,42]; recent characterizations of when key derivation is possible
in this model include [35,40]. In particular, Hayashi et al. [22] independently
developed an interactive technique similar to our non-interactive leveled hashing,
which they called “spectrum slicing.” To the best of our knowledge, prior results
on correlated random variables are in the precise knowledge setting; we are
unaware of works that consider the cost of distributional uncertainty.

2 Preliminaries

Random Variables. We generally use uppercase letters for random variables
and corresponding lowercase letters for their samples. A repeated occurrence of
the same random variable in a given expression signifies the same value of the
random variable: for example (W,SS(W)) is a pair of random variables obtained
by sampling w according to W and applying the algorithm SS to w.

The statistical distance between random variables A and B with the same
domain is SD(A,B) = 1

2

∑
a |Pr[A = a] − Pr[B = b]| = maxS Pr[A ∈ S] −

Pr[B ∈ S].

Entropy. Unless otherwise noted logarithms are base 2. Let (X,Y) be a pair of
random variables. Define min-entropy of X as H∞(X) = − log(maxx Pr[X = x]),
and the average (conditional) min-entropy of X given Y as H̃∞(X|Y) = −
log(Ey∈Y maxx Pr[X = x|Y = y]) [13, Sect. 2.4]. Define Hartley entropy H0(X)
to be the logarithm of the size of the support of X, that is H0(X) =
log |{x|Pr[X = x] > 0}|. Define average-case Hartley entropy by averaging the
support size: H̃0(X|Y) = log(Ey∈Y |{y|Pr[X = x|Y = y] > 0}|). For 0 < a < 1,
define the binary entropy h2(p) = −p log p − (1 − p) log(1 − p) as the Shan-
non entropy of any random variable that is 0 with probability p and 1 with
probability 1 − p.

Randomness Extractors. We use randomness extractors [32], as defined for
the average case in [13, Sect. 2.5].

When Are Fuzzy Extractors Possible? 283

Definition 1. Let M, χ be finite sets. A function ext : M × {0, 1}d → {0, 1}κ

a (m̃, ε) -average case extractor if for all pairs of random variables X,Y over
M, χ such that H̃∞(X|Y) ≥ m̃, we have

SD((ext(X,Ud), Ud, Y), Uκ × Ud × Y) ≤ ε.

Metric Spaces and Balls. For a metric space (M, dis), the (closed) ball
of radius t around w is the set of all points within radius t, that is, Bt(w) =
{w′|dis(w,w′) ≤ t}. If the size of a ball in a metric space does not depend on w, we
denote by |Bt| the size of a ball of radius t. We consider the Hamming metric over
vectors in Zn for some finite alphabet Z, defined via dis(w,w′) = |{i|wi �= w′

i}|.
Uκ denotes the uniformly distributed random variable on {0, 1}κ.

We will use the following bounds on |Bt| in {0, 1}n, see [2, Lemma 4.7.2,
Eq. 4.7.5, p. 115] for proofs.

Lemma 1. Let τ = t/n. The volume |Bt| of the ball of radius in t in the Ham-
ming space {0, 1}n satisfies

1
√

8nτ(1 − τ)
· 2nh2(τ) ≤ |Bt| ≤ 2nh2(τ).

2.1 Fuzzy Extractors

In this section, we define fuzzy extractors, slightly modified from the work of
Dodis et al. [13, Sect. 3.2]. First, we allow for error as discussed in [13, Sect. 8].
Second, in the distributional uncertainty setting we consider a general family W
of distributions instead of families containing all distributions of a given min-
entropy. Let M be a metric space with distance function dis.

Definition 2. An (M,W, κ, t, ε)-fuzzy extractor with error δ is a pair of ran-
domized procedures, “generate” (Gen) and “reproduce” (Rep). Gen on input
w ∈ M outputs an extracted string key ∈ {0, 1}κ and a helper string p ∈ {0, 1}∗.
Rep takes w′ ∈ M and p ∈ {0, 1}∗ as inputs. (Gen,Rep) have the following
properties:

1. Correctness: if dis(w,w′) ≤ t and (key, p) ← Gen(w), then Pr[Rep(w′, p) =
key] ≥ 1 − δ.

2. Security: for any distribution W ∈ W, if (Key, P) ← Gen(W), then
SD((Key, P), (Uκ, P)) ≤ ε.

In the above definition, the errors must be chosen before p is known in order for
the correctness guarantee to hold.

The Case of a Precisely Known Distribution. If in the above definition
we take W to be a one-element set containing a single distribution W , then the
fuzzy extractor is said to be for a precisely known distribution. In this case, we
need to require correctness only for w that have nonzero probability. Note that
we have no requirement that the algorithms are compact or efficient, and so the
distribution can be fully known to them.

284 B. Fuller et al.

3 New Notion: Fuzzy Min-Entropy

The fuzzy extractor helper string p allows everyone, including the adversary,
to find the output of Rep(·, p) on any input w′. Ideally, p should not provide
any useful information beyond this ability, and the outputs of Rep on inputs
that are too distant from w should provide no useful information, either. In this
ideal scenario, the adversary is limited to trying to guess a w′ that is t-close to
w. Letting w′ be the center of the maximum-weight ball in W is optimal, we
measure the quality of a source by (the negative logarithm of) this weight.

Definition 3. The t-fuzzy min-entropy of a distribution W in a metric space
(M, dis) is:

Hfuzz
t,∞ (W) = − log

⎛

⎝max
w′

∑

w∈M|dis(w,w′)≤t

Pr[W = w]

⎞

⎠

Fuzzy min-entropy measures the functionality provided to the adversary by
Rep (since p is public), and thus is a necessary condition for security. We for-
malize this statement in the following proposition.

Proposition 1. Let W be a distribution over (M, dis) with Hfuzz
t,∞ (W) = m. Let

(Gen,Rep) be a (M, {W}, κ, t, ε)-fuzzy extractor with error δ. Then

2−κ ≥ 2−m − δ − ε.

If δ = ε = 2−κ, then κ cannot exceed m + 2. Additionally, if fuzzy min-entropy
of the source is only logarithmic in a security parameter while the δ and ε para-
meters are negligible, then extracted key must be of at most logarithmic length.

Proof. Let W be a distribution where Hfuzz
t,∞ (W) = m. This means that there

exists a point w′ ∈ M such that Prw∈W [dis(w,w′) ≤ t] = 2−m. Consider the
following distinguisher D: on input (key, p), if Rep(w′, p) = key, then output 1,
else output 0.

Pr[D(Key, P) = 1] ≥ 2−m − δ, while Pr[D(Uκ, P) = 1] = 1/2−κ. Thus,

SD((Key, P), (Uκ, P)) ≥ δD((Key, P), (Uκ, P)) ≥ 2−m − δ − 2−κ. 	

Proposition 1 extends to the settings of computational security and interactive
protocols. Fuzzy min-entropy represents an upper bound on the security from
a noisy source. However, there are many distributions with fuzzy min-entropy
with no known information-theoretically secure fuzzy extractor (or correspond-
ing impossibility result).

We explore other properties of fuzzy min-entropy, not necessary for the proofs
presented here, in the full version [18, Appendix E].

When Are Fuzzy Extractors Possible? 285

4 Hfuzz
t,∞(W) is Sufficient in the Precise Knowledge Setting

In this section, we build fuzzy extractors that extract almost all of Hfuzz
t,∞ (W)

for any distribution W . We reiterate that these constructions assume precise
knowledge of W and are not necessarily polynomial-time. They should thus be
viewed as feasibility results. We begin with flat distributions and then turn to
arbitrary distributions.

4.1 Warm-Up for Intuition: Fuzzy Extractor for Flat Distributions

Let supp(W) = {w|Pr[W = w] > 0} denote the support of a distribution W . A
distribution W is flat if all elements of supp(W) have the same probability. Our
construction for this case is quite simple: to produce p, Gen outputs a hash of its
input point w and an extractor seed; to produce key, Gen applies the extractor
to w. Given w′, Rep looks for w ∈ supp(W) that is near w′ and has the correct
hash value, and applies the extractor to this w to get key.

The specific hash function we use is universal. (We note that universal hash-
ing has a long history of use for information reconciliation, for example [4,34,36].
This construction is not novel; rather, we present it as a stepping stone for the
case of general distributions).

Definition 4 ([9]). Let F : K × M → R be a function. We say that F is
universal if for all distinct x1, x2 ∈ M:

Pr
K←K

[F (K,x1) = F (K,x2)] =
1

|R| .

In our case, the hash output length needs to be sufficient to disambiguate
elements of supp(W) ∩ Bt(w′) with high probability. Observe that there are at
most 2H∞(W)−Hfuzz

t,∞(W) such elements when W is flat, so output length slightly
greater (by log 1/δ) than H∞(W) − Hfuzz

t,∞ (W) will suffice. Thus, the output key
length will be Hfuzz

t,∞ (W) − log 1/δ − 2 log 1/ε + 2 (by using average-case leftover
hash lemma, per [13, Lemmas 2.2b and 2.4]). As this construction is only a
warm-up, so we do not state it formally and proceed to general distributions.

4.2 Fuzzy Extractor for Arbitrary Distributions

The hashing approach used in the previous subsection does not work for arbi-
trary sources. Consider a distribution W consisting of the following balls: B1

t

is a ball with 2H∞(W) points with total probability Pr[W ∈ B1
t] = 2−H∞(W),

B2
t , ..., B2−H∞(W)

t are balls with one point each with probability Pr[W ∈ Bi
t] =

2−H∞(W). The above hashing algorithm writes down H∞(W) bits to achieve
correctness on B1

t . However, with probability 1 − 2−H∞(W) the initial reading is
outside of B1

t , and the hash completely reveals the point.
Instead, we use a layered approach: we separate the input distribution W

into nearly-flat layers, write down the layer from which the input w came

286 B. Fuller et al.

(i.e., the approximate probability of w) as part of p, and rely on the construction
from the previous part for each layer. In other words, the hash function output
is now variable-length, longer if probability of w is lower. Thus, p now reveals
a bit more about w. To limit this information and the resulting security loss,
we limit number of layers. As a result, we lose only 1 + log H0(W) more bits
of security compared to the previous section. We emphasize that this additional
loss is quite small: if W is over {0, 1}n, it is only 1 + log n bits (so, for example,
only 11 bits if W is 1000 bits long, and no more than 50 bits for any remotely
realistic W). We thus obtain the following theorem.

Theorem 1. For any metric space M, distribution W over M, distance t, error
δ > 0, and security ε > 0, there exists a (M, {W}, κ, t, ε)-known distribution
fuzzy extractor with error δ for κ = Hfuzz

t,∞ (W)−log H0(W)−log 1/δ−2 log 1/ε+1.
(Note that the value log H0(W) is doubly logarithmic in the size of the support
of W and is smaller than log 1/δ and log 1/ε for typical setting of parameters.)

We provide the construction and the proof in AppendixA. The main idea is that
providing the level information makes the distribution look nearly flat (the prob-
ability of points differs by at most a factor of two, which increases the entropy
loss as compared to the flat case by only one bit). And the level information itself
increases the entropy loss by log H0(W) bits, because there are only H0(W) levels
that contain enough weight to matter.

5 Impossibility of Fuzzy Extractors for Family with Hfuzz
t,∞

In the previous section, we showed the sufficiency of Hfuzz
t,∞ (W) for building fuzzy

extractors when the distribution W is precisely known. However, it may be
infeasible to completely characterize a high-entropy distribution W . Tradition-
ally, algorithms deal with this distributional uncertainty by providing security
for a family of distributions W. In this section, we show that distributional
uncertainty comes at a real cost.

We demonstrate an example over the binary Hamming metric in which every
W ∈ W has linear Hfuzz

t,∞ (W) (which is in fact equal to H∞(W)), and yet there
is some W ∈ W where even for 3-bit output keys and high constant ε = 1

4 . In
fact, we show that the adversary need not work hard: even a uniformly random
choice of distribution W from W will thwart the security of any (Gen,Rep).
The one caveat is that, for this result, we require Rep to be always correct (i.e.,
δ = 0). As mentioned in the introduction, this perfect correctness requirement is
removed in Sects. 6 and 7 at a cost of lower entropy rate and stronger primitive,
respectively.

As basic intuition, the result is based on the following reasoning: Gen sees
only a random sample w from a random W ∈ W, but not W . The adversary sees
W but not w. Because Gen does not know which W the input w came from, Gen
must produce p that works for many distributions W that contain w in their
support. Such p must necessarily reveal a lot of information. The adversary can
combine information gleaned from p with information about W to narrow down
the possible choices for w and thus distinguish key from uniform.

When Are Fuzzy Extractors Possible? 287

Fig. 1. The region of τ (x-axis) and μ (y-axis) pairs for which Theorem 2 applies is
the region below both curves.

Theorem 2. Let M denote the Hamming space {0, 1}n. There exists a family
of distributions W over M such that for each element W ∈ W, Hfuzz

t,∞ (W) =
H∞(W) ≥ m, and yet any (M,W, κ, t, ε)-fuzzy extractor with error δ = 0 has
ε > 1/4.

This holds as long as κ ≥ 3 and under the following conditions on the entropy
rate μ = m/n, noise rate τ = t/n, and n:

– any 0 ≤ τ < 1
2 and μ > 0 such that μ < 1 − h2(τ) and μ < 1 − h2

(
1
2 − τ

)

– any n ≥ max
(

2
1−h2(τ)−μ , 5

1−h2(1
2−τ)−μ

)

.

Note that the conditions on μ and τ imply the result applies to any entropy
rate μ ≤ .18 as long as τ is set appropriately and n is sufficiently large (for
example, the result applies to n ≥ 1275 and τ = .6

√
μ when 0.08 ≤ μ ≤ .18;

similarly, it applies to n ≥ 263 and τ =
√

μ when 0.01 ≤ μ ≤ 0.08). The τ vs. μ
tradeoff is depicted in Fig. 1.

Proof (Sketch). Here we describe the family W and provide a brief overview of
the main proof ideas. We provide a full proof in Appendix B. We will show the
theorem holds for an average member of W. Let Z denote a uniform choice of
W from W and denote by Wz the choice specified by a particular value of z.

288 B. Fuller et al.

Let {Hashk}k∈K be a family of hash function with domain M and the follow-
ing properties:

– 2−a-universality: for all v1 �= v2 ∈ M, Prk←K[Hashk(v1) = Hashk(v2)] ≤ 2−a,
where a = n · h2

(
1
2 − τ

)
+ 3.

– 2m-regularity: for each k ∈ K and h in the range of Hashk, |Hash−1
k (h)| = 2m,

where m ≥ μn.
– preimage sets have minimum distance t + 1: for all k ∈ K, if v1 �= v2 but
Hashk(v1) = Hashk(v2), then dis(v1, v2) > t.

We show such a hash family exists in Appendix B. Let Z be the random
variable consisting of pairs (k, h), where k is uniform in K and h is uniform in the
range of Hashk. Let Wz for z = (k, h) be the uniform distribution on Hash−1

k (h).
By the 2m-regularity and minimum distance properties of Hash, H∞(Wz) =
Hfuzz

t,∞ (Wz) = m. Let W = {Wz}.
The intuition is as follows. We now want to show that for a random z ← Z,

if (key, p) is the output of Gen(Wz), then key can be easily distinguished from
uniform in the presence of p and z.

In the absence of information about z, the value w is uniform on M (by
regularity of Hash). Knowledge of p reduces the set of possible w from 2n to
2n·h2(1

2−τ), because, by correctness of Rep, every candidate input w to Gen must
be such that all of its neighbors w′ of distance at most t produce the same output
of Rep(w′, p). And knowledge of z reduces the set of possible w by another factor
of 2a, because a hash value with a random hash function key likely gives fresh
information about w.

6 Impossibility in the Case of Imperfect Correctness

The impossibility result in the previous section applies only to fuzzy extractors
with perfect correctness. In this section, we build on the work of Holenstein and
Renner [25] to show the impossibility of fuzzy extractors even when they are
allowed to make mistakes a constant fraction δ (as much as 4%) of the time.
However, the drawback of this result, as compared to the previous section, is that
we can show impossibility only for a relatively low entropy rate of at most 7%.
In Sect. 7, we rule out stronger primitives called secure sketches with nonzero
error (which are used in most fuzzy extractor constructions), even for entropy
rate as high as 50%.

Theorem 3. Let M denote the Hamming space {0, 1}n. There exists a family
of distributions W over M such that for each element W ∈ W, Hfuzz

t,∞ (W) =
H∞(W) ≥ m, and yet any (M,W, κ, t, ε)-fuzzy extractor with error δ ≤ 1

25 has
ε > 1

25 .

When Are Fuzzy Extractors Possible? 289

Fig. 2. The region of τ (x-axis) and μ (y-axis) pairs for which Theorem 3 applies is
the region below this curve.

This holds for any κ > 0 under the following conditions on the entropy rate
μ = m/n, noise rate τ = t/n, and n:

– any 0 ≤ τ ≤ 1
2 and μ such that μ < 4τ(1 − τ)

(
1 − h2

(
1

4−4τ

))

– any sufficiently large n (as a function of τ and μ)

Note that the conditions on μ and τ imply that the result applies to any
entropy rate μ ≤ 1

15 as long as τ is set appropriately and n is sufficiently large.
The τ vs. μ tradeoff is depicted in Fig. 2.

Proof (Proof Sketch). We now describe the family W and provide an overview
of the main ideas. The full proof is in Appendix C.

Similarly to the proof of Theorem 2, we will prove that any fuzzy extractor
fails for an element Wz of W chosen according to the distribution Z. In this case,
Z will not be uniform but rather binomial (with tails cut off). Essentially, Z will
contain each bit of w with (appropriately chosen) probability β; given Z = z,
the remaining bits of w will be uniform and independent.

For a string z ∈ {0, 1,⊥}n, denote by info(z) the number of entries in z that
are not ⊥: info(z) = |{i s.t zi �=⊥}|. Let Wz be the uniform distribution over
all strings in {0, 1}n that agree with z in positions that are not ⊥ in z (i.e., all
strings w ∈ {0, 1}n such that for 1 ≤ i ≤ n, either zi =⊥ or wi = zi).

We will use W to prove the theorem statement. First, we show that every
distribution Wz ∈ W has sufficient Hfuzz

t,∞ . Indeed, z constrains info(z) coordi-
nates out of n and leaves the rest uniform. Thus, Hfuzz

t,∞ (Wz) is the same as Hfuzz
t,∞

of the uniform distribution on the space {0, 1}n−info(z). Second, we now want
to show that SD((Key, P, Z), (Uκ, P, Z)) > 1

25 . To show this, we use a result

290 B. Fuller et al.

of Holenstein and Renner [25, Theorem 4]. Their result shows impossibility of
interactive key agreement for a noisy channel where the adversary observes each
bit with some probability. Several technical results are necessary to apply the
result in our setting (presented in Appendix C).

7 Stronger Impossibility Result for Secure Sketches

Most fuzzy extractor constructions share the following feature with our construc-
tion in Sect. 4: p includes information that is needed to recover w from w′; both
Gen and Rep simply apply an extractor to w. The recovery of w from w′, known
as information-reconciliation, forms the core of many fuzzy extractor construc-
tions. The primitive that performs this information reconciliation is called secure
sketch. In this section we show stronger impossibility results for secure sketches.
First, we recall their definition from [13, Sect. 3.1] (modified slightly, in the same
way as Definition 2).

Definition 5. An (M,W, m̃, t)-secure sketch with error δ is a pair of random-
ized procedures, “sketch” (SS) and “recover” (Rec). SS on input w ∈ M returns a
bit string ss ∈ {0, 1}∗. Rec takes an element w′ ∈ M and ss ∈ {0, 1}∗. (SS,Rec)
have the following properties:

1. Correctness: ∀w,w′ ∈ M if dis(w,w′) ≤ t then Pr[Rec(w′,SS(w)) = w] ≥
1 − δ.

2. Security: for any distribution W ∈ W, H̃∞(W |SS(W)) ≥ m̃.

Secure sketches are more demanding than fuzzy extractors (secure sketches
can be converted to fuzzy extractors by using a randomness extractors like in
our Construction 1 [13, Lemma 4.1]). We prove a stronger impossibility result
for them. Specifically, in the case of secure sketches, we can extend the results
of Theorems 2 and 3 to cover imperfect correctness (that is, δ > 0) and entropy
rate μ up to 1

2 . Since most fuzzy extractor constructions rely on secure sketches,
this result gives evidence that fuzzy extractors even with imperfect correctness
and for high entropy rates are difficult to construct in the case of distributional
uncertainty.

Theorem 4. Let M denote the Hamming space {0, 1}n. There exists a family
of distributions W over M such that for each element W ∈ W, Hfuzz

t,∞ (W) =
H∞(W) ≥ m, and yet any (M,W, m̃, t)-secure sketch with error δ has m̃ ≤ 2.

This holds under the following conditions on δ, the entropy rate μ = m/n,
noise rate τ = t/n, and n:

– any 0 ≤ τ < 1
2 and μ > 0 such that μ < h2(τ) and μ < 1 − h2(τ)

– any n ≥ max
(

.5 log n+4δn+4
h2(τ)−μ , 2

1−h2(τ)−μ

)

Note that the result holds for any μ < 0.5 as long as δ < (h2(τ) − μ)/4 and
n is sufficiently large. The τ vs. μ tradeoff is depicted in Fig. 3.

We provide the proof, which uses similar ideas to the proof of Theorem2, in
Appendix D.

When Are Fuzzy Extractors Possible? 291

Fig. 3. The region of τ (x-axis) and μ (y-axis) pairs for which Theorem 4 applies is
the region below both curves.

Acknowledgements. The authors are grateful to Gene Itkis and Yevgeniy Dodis
for helpful discussions and to Thomas Holenstein for clarifying the results of [24,25].
The work of Benjamin Fuller was done while at MIT Lincoln Laboratory and Boston
University and is sponsored in part by US NSF grants 1012910 and 1012798 and the
United States Air Force under Air Force Contract FA8721-05-C-0002. Opinions, inter-
pretations, conclusions and recommendations are those of the authors and are not
necessarily endorsed by the United States Government. Leonid Reyzin is supported in
part by US NSF grants 0831281, 1012910, 1012798, and 1422965, and The Institute
of Science and Technology, Austria, where part of this work was performed. Adam
Smith’s work was supported in part by NSF awards 0747294, 0941553 and 1447700
and was performed partly while at Boston University’s Hariri Institute for Computing
and RISCS Center, and the Harvard Center for Research on Computation & Society.

A Proof of Theorem 1

We first provide a full description of the layered hashing construction.

Construction 1. Let W be a distribution over a metric space M with
H∞(W) = m.

– Let δ ≤ 1
2 be the error parameter.

– Let � = m + H0(W) − 1; round � down so that � − m is an integer (i.e., set
� = m + �(� − m)�).

– For each i = m,m+1, . . . , �−1, let Li = (2−(i+1), 2−i] and let Fi : Ki ×M →
Ri be a family of universal hash functions with log |Ri| = i + 1 − Hfuzz

t,∞ (W) +
log 1/δ. Let L� = (0, 2−�].

– Let ext be an (m̃, ε)-average-case extractor for m̃ = Hfuzz
t,∞ (W) − log H0(W) −

log 1/δ − 1 with output length κ.

292 B. Fuller et al.

Define GenW ,RepW as:

GenW

1. Input: w.
2. Find i such that

Pr[W = w] ∈ Li.
3. If i = � then set ss = (i, w, 0).
4. Else sample K ← Ki

and set ss = (i, Fi(K,w),K)
5. Sample a uniform extractor

seed seed
6. Output key = ext(w, seed),

p = (ss, seed).

RepW

1. Input: (w′, p = (ss, seed))
2. Parse ss as (i, y,K)
3. If i = � then set w∗ = y.
4. Else

(a) Let W ∗ = {w∗|dis(w∗, w′) ≤ t ∧
Pr[W = w∗] ∈ Li}.

(b) Find any w∗ ∈ W ∗ such that
Fi(K,w∗) = y;
if none exists, set w∗ =⊥.

5. Output ext(w∗, seed).

We instantiate this construction with the extractor parameters given by [13,
Lemma 2.4] (namely, κ = m̃ − 2 log 1/ε + 2) in order to prove Theorem1.

Proof (Proof of Theorem 1). We first argue correctness. Fix some w,w′ within
distance t. When Pr[W = w] ∈ L�, then Rep is always correct, so let’s consider
only the case when Pr[W = w] �∈ L�. The algorithm Rep will never output ⊥
since at least the correct w will match the hash. Thus, an error happens when
another element w∗ ∈ W ∗ has the same hash value F (Ki, w

∗) as F (Ki, w).
Observe that the total probability mass of W ∗ is less than |W ∗| · 2−(i+1) but
greater than or equal to the maximum probability mass in a ball of radius t,
2−Hfuzz

t,∞(W). Therefore, |W ∗| ≤ 2i+1−Hfuzz
t,∞(W). Each element of W ∗ has the same

hash as F (K,w) with probability at most 1/|Ri|, and thus correctness with error
|W ∗|/|R| ≤ δ follows by the union bound.
Security: We now argue security of the construction. Let Wi = {w|Pr[W =
w] ∈ Li}. For ease of notation, let us make the special case of i = � as part of
the general case, as follows: define K� = {0}, F�(0, w) = w, and R� = W�. Also,
denote by SS the randomized function that maps w to ss. First, we set up the
analysis by levels:

2−H̃∞(W |SS(W)) = E
ss

max
w

Pr[W = w |SS(W) = ss]

=
∑

ss

max
w

Pr[W = w ∧ SS(W) = ss]

=
�∑

i=m

∑

K∈Ki

∑

y∈Ri

max
w

Pr[W = w ∧ SS(W) = (i, y,K)]

≤
�∑

i=m

∑

K∈Ki

∑

y∈Ri

max
w∈Wi

Pr[W = w ∧ Fi(K,w) = y ∧ K output by Gen].

We now pay the penalty of |Ri| for the presence of y (observe that removing the
condition that Fi(K,w) = y from the conjunction cannot reduce the probability):

When Are Fuzzy Extractors Possible? 293

2−H̃∞(W |SS(W)) ≤
�∑

i=m

∑

K∈Ki

∑

y∈Ri

max
w∈Wi

Pr[W = w ∧ K is chosen by SS]

=
�∑

i=m

∑

K∈Ki

|Ri| · max
w∈Wi

Pr[W = w ∧ K is chosen by SS].

We now get rid of the key, because it is independent:

2−H̃∞(W |SS(W)) ≤
�∑

i=m

∑

K∈Ki

|Ri| · max
w∈Wi

Pr[W = w] · 1
|Ki|

=
�∑

i=m

|Ri| · max
w∈Wi

Pr[W = w]

≤ |R�| · 2−� +
�−1∑

i=m

|Ri| · 2−i.

Finally, we add everything up, recalling that |Ri| for i < � is 2i+1−Hfuzz
t,∞(W)+log 1/δ.

2−H̃∞(W |SS(W)) ≤ 2H0(W) · 2−� + (� − m) · 21−Hfuzz
t,∞(W)+log 1/δ

(next line uses � > m + H0(W) − 2)

< 22−m + (� − m) · 21−Hfuzz
t,∞(W)+log 1/δ

(next line uses m ≥ Hfuzz
t,∞ (W) and log 1/δ ≥ 1)

≤ (� − m + 1) · 21−Hfuzz
t,∞(W)+log 1/δ

(next line uses � ≤ m + H0(W) − 1)

≤ H0(W) · 21−Hfuzz
t,∞(W)+log 1/δ.

Taking the negative logarithm of both sides, we obtain m̃
def= H̃∞(W |SS(W)) =

Hfuzz
t,∞ (W) − log H0(W) − log 1/δ − 1. Applying the (m̃, ε) randomness extractor

gives us the desired result. 	

B Proof of Theorem 2

Proof. As a reminder, we show the impossibility for an average member of W.
For completeness, we reiterate the family W introduced in the proof sketch.

Let {Hashk}k∈K be a family of hash function with domain M and the follow-
ing properties:

– 2−a-universality: for all v1 �= v2 ∈ M, Prk←K[Hashk(v1) = Hashk(v2)] ≤ 2−a,
where a = n · h2

(
1
2 − τ

)
+ 3.

– 2m-regularity: for each k ∈ K and h in the range of Hashk, |Hash−1
k (h)| = 2m,

where m ≥ μn.

294 B. Fuller et al.

– preimage sets have minimum distance t + 1: for all k ∈ K, if v1 �= v2 but
Hashk(v1) = Hashk(v2), then dis(v1, v2) > t.

We demonstrate the existence of such a hash family in Lemma 4. Let Z be
the random variable consisting of pairs (k, h), where k is uniform in K and h is
uniform in the range of Hashk. Let Wz for z = (k, h) be the uniform distribution
on Hash−1

k (h). By the 2m-regularity and minimum distance properties of Hash,
H∞(Wz) = Hfuzz

t,∞ (Wz) = m. Let W = {Wz}.
We now want to show that for a random z ← Z, if (key, p) is the output of

Gen(Wz), then key can be easily distinguished from uniform in the presence of
p and z. The intuition is as follows: in the absence of information about z, the
value w is uniform on M (by regularity of Hash). Knowledge of p reduces the
set of possible w from 2n to 2n·h2(1

2−τ), because, by correctness of Rep, every
candidate input w to Gen must be such that all of its neighbors w′ of distance
at most t produce the same output of Rep(w′, p) (see Lemma 2). And knowledge
of z reduces the set of possible w by another factor of 2a, because a hash value
with a random hash function key likely gives fresh information about w (see
Lemma 3).

To formalize the intuition of the previous two sentences, view the sequence
of events that we are trying to analyze as a game. The adversary chooses a
uniform k ∈ K and uniform h in the range of Hashk. A uniform w from M
s.t. Hashk(w) = h then gets chosen, (key, p) = Gen(w) gets computed, and the
adversary receives p. The output of this game is (k, h, w, p, key). Note that, by
regularity of Hashk, w is uniform in M.

Consider now an alternative game. A uniform w gets chosen from M and uni-
form key k gets chosen from K. (key, p) = Gen(w) gets computed. The adversary
receives (k, h = Hashk(w), p). The output of the game is (k, h, w, p, key).

The distributions of the adversary’s views and the outputs in the two games
are identical: indeed, in both games, three random variable are uniform and
independent (i.e., w is uniform in M, k is uniform in K, and the random coins
of Gen are uniform in their domain), and the rest are determined fully by these
three. However, the second game is easier to analyze, which is what we now do.

The following lemma shows that the knowledge of p and key reduces the
entropy of w.

Lemma 2. Suppose M is {0, 1}n with the Hamming metric, κ ≥ 2, 0 ≤ t ≤
n/2, and ε ≥ 0. Suppose (Gen,Rep) is a (M,W, κ, t, ε)-fuzzy extractor with error
δ = 0, for some distribution family W over M. Let τ = t/n. For any fixed
p, there is a set GoodKeyp ⊆ {0, 1}κ of size at least 2κ−1 such that for every
key ∈ GoodKeyp,

log |{v ∈ M|(key, p) ∈ supp(Gen(v))}| ≤ n · h2

(
1
2

− τ

)

≤ n ·
(

1 − 2
ln 2

· τ2

)

,

and, therefore, for any distribution DM on M,

H0(DM|Gen(DM) = (key, p)) ≤ n · h2

(
1
2

− τ

)

≤ n ·
(

1 − 2
ln 2

· τ2

)

.

When Are Fuzzy Extractors Possible? 295

Proof. The set GoodKeyp consists of all keys for which H0(M|Rep(M, p) =
key) ≤ 2n−κ+1.

The intuition is as follows. By perfect correctness of Rep, the input w to
Gen has the following property: for all w′ within distance t of w, Rep(w′, p) =
Rep(w, p). Thus, if we partition M according to the output of Rep, the true w is
t away from the interior of a part. Interior sets are small, which means the set
of possible of w values is small. (We note that by perfect correctness, Rep has
a deterministic output even if the algorithm is randomized, so this partition is
well-defined.)

To formalize this intuition, fix p and partition M according to the output
of Rep(·, p) as follows: let Qp,key = {w′ ∈ M|Rep(w′, p) = key}. Note that there
are 2κ keys and thus 2κ parts Qp,key. Let GoodKeyp by the set of keys for which
these parts are not too large: key ∈ GoodKeyp ⇔ |Qp,key| ≤ 2 · M/2κ = 2n−κ+1.
Observe that GoodKeyp contains at least half the keys: |GoodKeyp| ≥ 2κ−1 (if not,
then ∪key|Qp,key| > |M|). For the remainder of the proof we focus on elements
in GoodKeyp.

As explained above, if w is the input to Gen, then every point w′ within
distance t of w must be in the same part Qp,key as w, by correctness of Rep.
Thus, w must come from the interior of some Qp,key, where interior is defined as

Inter(Qp,key) = {w ∈ Qp,key|∀w′ s.t. dis(w,w′) ≤ t, w′ ∈ Qp,key}.

We now use the isoperimetric inequality to bound the size of Inter(Qp,key).
Define a near-ball3 centered at x to be any set S that is contained in a ball of
some radius η and contains the ball of radius η − 1 around x. The inequality
of [16, Theorem 1] (the original result is due to Harper [21]) says that for any sets
A,B ⊂ {0, 1}n, there are near-balls X and Y centered at 0n and 1n, respectively,
such that |A| = |X|, |B| = |Y |, and mina∈A,b∈B dis(a, b) ≤ minx∈X,y∈Y dis(x, y).

Letting A be the Inter(Qp,key) and B be the complement of Qp,key and apply-
ing this inequality, we get a near-ball Sp,key centered at 0n and a near-ball D
centered at 1n, such that |Sp,key| = |Inter(Qp,key)|, |D| = 2n − |Qp,key|, and
∀s ∈ Sp,key, d ∈ D, dis(s, d) > t. Note that since key ∈ GoodKeyp and κ ≥ 2, we
have |Qp,key| ≤ 2n−κ+1, and therefore |D| ≥ 2n−1.

Thus, D includes all the strings of Hamming weight �n/2� (because it is
centered at 1n and takes up at least half the space), which means that the
maximum Hamming weight of an element of Sp,key is �n/2� − t − 1 ≤ n/2 − t
(because each element of Sp,key is at distance more than t from D). We can now
use binary entropy to bound the size of Sp,key by Lemma 1:

|Inter(Qp,key)| = |Sp,key| ≤ |{x|dis(x, 0) ≤ n/2 − t}| ≤ 2n·h2(1
2− t

n).

The theorem statement follows by taking the logarithm of both sides and
by observing (using Taylor series expansion at τ = 0 and noting that the third
derivative is negative) that h2

(
1
2 − τ

) ≤ 1 − 2
ln 2 · τ2. 	

3 In most statements of the isoperimetric inequality, this type of set is simply called
a ball. We use the term near -ball for emphasis.

296 B. Fuller et al.

We now analyze how the entropy drops further when the adversary learns
Hashk(w). Let K denote the uniform distribution on K. We defer the proof to
the full version of this work [18, Lemma B.2].

Lemma 3. Let L be a distribution. Let {Hashk}k∈K be a family of 2−a-universal
hash functions on the support of L. Assume k is uniform in K and independent
of L. Then

H̃0(L|K,HashK(L)) < log(1 + | supp(L)| · 2−a) ≤ max(1, 1 + H0(L) − a).

Let M denote the uniform distribution on M. By Lemma 2, for any p,
H0(M|Gen(M) = (key, p) s.t. key ∈ GoodKeyp) ≤ n · h2

(
1
2 − t

n

)
+ κ (because

there are most 2κ keys in GoodKeyp). Applying Lemma 3 (and recalling that
κ ≥ 3), we get that for any p,

H̃0(M|Gen(M) = (key, p) s.t. key ∈ GoodKeyp,K,HashK(M))

< max
(

1, 1 + n · h2

(
1
2

− t

n

)

+ κ − a

)

≤ κ − 2.

(Note carefully the somewhat confusing conditioning notation above, because
we are conditioning on both events and variables. The event is key ∈ GoodKeyp
and the variables are k and Hashk(M).)

By correctness, for a fixed p, Rep(w, p) can produce only one key—the same
one that was produces during Gen(w). Since applying a deterministic function
(in this case, Rep) cannot increase H0, we get that for each p,

H̃0(key|Gen(M) = (key, p) s.t. key ∈ GoodKeyp,K,HashK(M)) < κ − 2.

Thus, on average over z = (k, h), over half the keys in GoodKeyp (i.e., over a
quarter of all possible 2κ keys) cannot be produced. Let Implausible be the set
of triples (key, p, z = (k, h)) such that Pr[Gen(Wz) = (key, p)] = 0. Triples drawn
by sampling w from Wz and computing (p, key) = Gen(w) never come from this
set. On other hand, random triples come Implausible at over quarter of the time.
Thus, by definition of statistical distance, ε > 1

4 .
It remains to show that the hash family with the desired properties exists.

Lemma 4. For any 0 ≤ τ < 1
2 , μ > 0, α, and n such that μ ≤ 1 − h2(τ) − 2

n
and μ ≤ 1−α− 2

n , there exists a family of hash functions {Hashk}k∈K on {0, 1}n

that is 2−a-universal for a = αn, 2m regular for m ≥ μn, and whose preimage
sets have minimum distance t + 1 for t = τn.

Proof. Let C be the set of all binary linear codes of rate μ (to be precise, dimen-
sion m = �μn�), length n, and minimum distance t + 1:

C = {C|C is a linear subspace of {0, 1}n,dim(C) = m, min
c∈C−{0n}

dis(c, 0n) > t}.

For each C ∈ C, fix HC , an (n−m)×n parity check matrix for C, such that C =
ker HC . For v ∈ {0, 1}n, let the syndrome synC(v) = HC · v. Let {Hashk}k∈K =
{synC}C∈C .

When Are Fuzzy Extractors Possible? 297

2m regularity follows from the fact that for each h ∈ {0, 1}n−μn, Hash−1
k (h) is

a coset of C, which has size 2m. The minimum distance property is also easy: if
v1 �= v2 but synC(v1) = synC(v2), then HC(v1−v2) = 0n, hence v1−v2 ∈ C−{0n}
and hence dis(v1, v2) = dis(v1 − v2, 0) > t.

We show 2−a-universality by first considering a slightly larger hash family.
Let K′ be the set of all m-dimensional subspaces of {0, 1}n; for each C ′ ∈ K′,
choose a parity check matrix HC′ such that C ′ = ker HC′ , and let synC′(v) =
HC′ · v. Let {Hash′

k′}k′∈K′ = {synC′}C′∈K′ . This family is 2m−n-universal: for
v1 �= v2, PrC′∈K′ [HC′ · v1 = HC′ · v2] = PrC′∈K′ [v1 − v2 ∈ ker HC′ = C ′] = 2m

2n ,
because C ′ is a random m-dimensional subspace. Note that this family is not
much bigger than our family {Hashk}k∈K, because, as long as μ < 1 − h2(τ),
almost every subspace of {0, 1}n of dimension m has minimum distance t+1 for
a sufficiently large n. Formally,

Pr
C′∈K′

[C ′ /∈ C] = Pr
C′∈K′

[∃v1 �= v2 ∈ C ′ s. t. dis(v1, v2) ≤ t]

= Pr
C′∈K′

[∃v1 �= v2 ∈ C ′ s. t. dis(v1 − v2, 0n) ≤ t]

= Pr
C′∈K′

[∃v ∈ C ′ − {0n} s. t. dis(v, 0n) ≤ t]

≤
∑

v∈Bt(0n)−{0n}
Pr

C′∈K′
[v ∈ C ′] ≤ 2nh2(τ) · 2m

2n
≤ 1

2

(the penultimate inequality follows by Lemma 1 and the last one from m ≤ μn+1
and μ ≤ 1 − h2(τ) − 2

n).
Since this larger family is universal and at most factor of two bigger than

our family, our family is also universal:

Pr
C∈C

[synC(v1) = synC(v2)] =
|{C ∈ C|synC(v1) = synC(v2)}|

|C|
≤ |{C ∈ K′|synC(v1) = synC(v2)}|

|K′| · |K′|
|C| ≤ 2m−n+1

Thus, we obtain the desired result as long as m−n+1 ≤ −a, which is implied
by the condition μ ≤ 1 − α − 2

n and the fact that m ≤ μn + 1. 	

Applying Lemma 4 with α = h2

(
1
2 − τ

)
+ 3

n , we see that the largest possible
μ is maxτ min

(
1 − h2(τ), 1 − h2

(
1
2 − τ

)) ≈ 0.1887. Using the quadratic approx-
imation to h2

(
1
2 − τ

)
(see Lemma 2), we can let μ be a free variable and set

τ = .6
√

μ, in which case both constraints will be satisfied for all 0 < μ ≤ .18
and sufficiently large n, as in the theorem statement. This concludes the proof
of Theorem 2. 	

C Proof of Theorem 3

Proof. Similarly to the proof of Theorem2, we will prove that any fuzzy extractor
fails for an average element of W: letting Z denote a choice of W from W, we
will show that SD((Key, P, Z), (Uκ, P, Z)) > 1

25 .

298 B. Fuller et al.

For completeness, we reiterate the family of distributions introduced in the
proof sketch. In this case, Z will not be uniform but rather binomial (with tails
cut off). Essentially, Z will contain each bit of w with (appropriately chosen)
probability β; given Z = z, the remaining bits of w will be uniform and inde-
pendent.

For a string z ∈ {0, 1,⊥}n, denote by info(z) the number of entries in z that
are not ⊥: info(z) = |{i s.t zi �=⊥}|. Let Wz be the uniform distribution over
all strings in {0, 1}n that agree with z in positions that are not ⊥ in z (i.e., all
strings w ∈ {0, 1}n such that for 1 ≤ i ≤ n, either zi =⊥ or wi = zi).

Let 0 ≤ β′ ≤ 1 be a parameter (we will set it at the end of the proof).
Let Z ′ denote the distribution on strings in {0, 1,⊥}n in which each symbol is,
independently of other symbols, ⊥ with probability 1 − β′, 0 with probability
β′/2, and 1 with probability β′/2. Let β = β′ + 1.4√

n
. Consider two distribution

families: W ′ = {Wz}z←Z′ and a smaller family W = {Wz}z←Z , where Z =
Z ′|info(Z ′) ≤ βn (the second family is smaller because, although on average
info(Z ′) = β′n, there is a small chance that info(Z ′) is higher than even βn).

We will use W to prove the theorem statement. First, we will show that
every distribution Wz ∈ W has sufficient Hfuzz

t,∞ . Indeed, z constrains info(z)
coordinates out of n and leaves the rest uniform. Thus, Hfuzz

t,∞ (Wz) is the same as
Hfuzz

t,∞ of the uniform distribution on the space {0, 1}n−info(z). Let a = n−info(z).
By Lemma 1

Hfuzz
t,∞ (Wz) ≥ a

(

1 − h2

(
t

a

))

≥ n(1 − β)
(

1 − h2

(
t

n(1 − β)

))

= n(1 − β)
(

1 − h2

(
τ

1 − β

))

.

and therefore

μ = (1 − β)
(

1 − h2

(
τ

1 − β

))

. (1)

Note that smaller β gives a higher fuzzy entropy rate.
Second, we now want to show, similarly to the proof of Theorem 2, that

SD((Key, P, Z), (Uκ, P, Z)) > 1
25 . We will do so by considering the family W.

Observe that by triangle inequality

SD((Key, P, Z), (Uκ, P, Z)) ≥ SD((Key, P, Z ′), (Uκ, P, Z ′))
− SD((Key, P, Z ′), (Key, P, Z))
− SD((Uκ, P, Z), (Uκ, P, Z ′))
≥ SD((Key, P, Z ′), (Uκ, P, Z ′)) − 2 · SD(Z ′, Z)

≥ SD((Key, P, Z ′), (Uκ, P, Z ′)) − 1
25

.

The last line follows by Hoeffding’s inequality [23],

SD(Z ′, Z) = Pr[info(Z ′) > βn] ≤ exp

(

−2n

(
1.4√

n

)2
)

<
1
50

.

When Are Fuzzy Extractors Possible? 299

Denote SD((Key, P, Z ′), (Uκ, P, Z ′)) by ε′. To bound ε′, we recall a result of
Holenstein and Renner [25, Theorem 4] (we will use the version presented in
[24, Lemma 4.4]). For a random variable W with a values in {0, 1}n, let W noisy

denote a noisy copy of W : namely, the random variable obtained by passing W
through a binary symmetric channel with error rate 1−α

2 (that is, W noisy
i = Wi

with probability 1+α
2 and W noisy

i = 1−Wi with probability 1−α
2 , independently

for each position i). Holenstein and Renner show that if α2 ≤ β, then Shannon
entropy of Key conditioned on P and Wnoisy is greater than Shannon entropy
of Key conditioned on Z and Wnoisy . Intuitively, this means that the Rep, when
given P and W noisy , knows less about Key than the adversary (who knows P
and Z).

Recall the definitions of Shannon entropy H1(X) def= Ex←X − log Pr[X = x]
and conditional Shannon entropy H1(X|Y) def= Ey←Y H1(X|Y = y).

Theorem 5 ([25, Theorem 4]; [24, Lemma 4.4]). Suppose that (P,Key) is a
pair of random variables derived from W . If α2 ≤ β′, then

H1(Key|P,Z ′) ≤ H1(Key|P,Wnoisy)

where H1 denotes Shannon entropy, W noisy is W passed through a binary sym-
metric channel with error rate 1−α

2 , and Z ′ is W passed through a binary erasure
channel with erasure rate 1 − β′.

(For a reader interested in how our statement of Lemma 5 follows from [24,
Lemma 4.4], note that what we call Key, P,Wnoisy , and Z ′ are called U, V, Y ,
and Z, respectively, in [24]. Note also that we use only the part of the lemma
that says that secret key rate S→ = 0 when α2 ≤ β, and the definition [24,
Definition 3.1] of the notion S→ in terms of Shannon entropy.)

We now need to translate this bound on Shannon entropy to the language of
statistical distance ε of the key from uniform, reliability δ of the procedure Rep,
and key length κ, as used in the definition of fuzzy extractors. First, we will do
this translation for the case of noisy rather than worst-case input to Rep.

Corollary 1. Let (W,W noisy , Z ′) be a triple of correlated random variables such
that

– W and Wnoisy are uniform over {0, 1}n,
– W noisy is W passed through a binary symmetric channel with error rate 1−α

2
(that is, each bit position of W agrees with corresponding bit position of Wnoisy

with probability 1+α
2), and

– Z ′ is W passed through a binary erasure channel with erasure rate 1−β′ (that
is, each bit position of Z ′ agrees with the corresponding bit position of W with
probability β′ and is equal to ⊥ otherwise).

Suppose Gen(W) produces (Key, P) with Key of length κ. Suppose Pr[Rep(Wnoisy ,
P) = Key] = 1 − δ′]. Suppose further that SD((Key, P, Z ′), (Uκ, P, Z ′)) = ε′. If
α2 ≤ β′, then

κ ≤ h2(ε′) + h2(δ′)
1 − ε′ − δ′ .

300 B. Fuller et al.

In other words, if α2 ≤ β′, ε′ ≤ 1
12 , and δ′ ≤ 1

12 , then even a 1-bit Key is
impossible to obtain.

(We note that a similar result follows from [24, Theorem 3.17] if we set the
variables S→, γ, and m in that theorem to 0, δ, and κ, respectively. However, we
could not verify the correctness of that theorem due to its informal treatment of
what “ε-close to uniform” means; it seems that the small correction term −h2(ε),
just like in our result, is needed on the right-hand side to make that theorem
correct.)

Proof. Reliability allows us to bound the entropy of the key. By Fano’s inequality
[15, Sect. 6.2, p. 187], H1(Key|P,Wnoisy) ≤ κδ′ + h2(δ′). Hence, by Theorem 5
(and the assumption that α2 > β′), we have

H1(Key|P,Z ′) ≤ κδ′ + h2(δ′). (2)

We now need the following lemma, which shows that near-uniformity implies
high entropy.

Lemma 5. For a pair of random variables (A,B) such that the statistical dis-
tance between (A,B) and Uκ × B is ε, then H1(A|B) ≥ (1 − ε)κ − h2(ε).

Proof. Let E denote a binary random variable correlated with (A,B) as follows:
when A = a and B = b, then E = 0 with probability

max(Pr[(A,B) = (a, b)] − Pr[Uκ × B = (a, b)], 0).

Similarly, let F denote a binary random variable correlated with Uκ × B as
follows: when Uκ = a and B = b, then F = 0 with probability

max(Pr[Uκ × B = (a, b)] − Pr[(A,B) = (a, b)], 0).

Note that Pr[E = 0] = Pr[F = 0] = ε, by definition of statistical distance.
Note also that (A,B|E = 1) is the same distribution as (Uκ × B|F = 1). Since
conditioning cannot increase Shannon entropy (by a simple argument — see,
e.g., [2, Theorem 1.4.4]), we get

H1(A|B) ≥ H1(A|B,E)
= Pr[E = 1]H1(A|B,E = 1) + Pr[E = 0]H1(A|B,E = 0)
≥ (1 − ε)H1(A|B,E = 1) = (1 − ε)H1(Uκ|B,F = 1).

To bound this latter quantity, note that (the first line follows from the chain
rule H1(X) ≤ H1(X,Y) = H1(X|Y) + H1(Y) [2, Theorem 1.4.4])

κ = H1(Uκ|B) ≤ H1(Uκ|B,F) + H1(F)
= (1 − ε)H1(Uκ|B,F = 1) + ε · H1(Uκ|B,F = 0) + h2(ε)
≤ (1 − ε)H1(Uκ|B,F = 1) + ε · κ + h2(ε)

When Are Fuzzy Extractors Possible? 301

Rearranging terms, we get H1(Uκ|B,F = 1) ≥ κ − h2(ε)/(1 − ε), and thus

H1(A|B) ≥ (1 − ε)κ − h2(ε).

This concludes the proof of Lemma 5. 	

Combining (2) and Lemma 5 (applied to A = Key, B = (P,Z ′), and ε = ε′),

we get the claimed bound. This concludes the proof of Corollary 1. 	

Next, we translate this result from the noisy-input-case to the worst-case

input case. Set α =
√

β′. Suppose t ≥ n
(

1−√
β′

2 + 1.4√
n

)
. By Hoeffding’s inequal-

ity [23],

Pr[dis(W,W noisy) > t] ≤ exp

(

−2n

(
1.4√

n

)2
)

<
1
50

.

Thus, a fuzzy extractor that corrects t errors with reliability δ implies that
Pr[Rep(W noisy , P) = Key] ≥ 1− δ′] for δ′ = δ + 1

50 . Since δ ≤ 1/25, we have δ′ <
1/12 and Corollary 1 applies to gives us ε′ > 1/12 and ε > 1/12 − 1/25 > 1/25
as long as κ > 0.

Finally, we work out the relationship between μ and τ and eliminate β, as
follows. Recall that β = β′ + 1.4√

n
; therefore

√
β ≤ √

β′ + 1.2
n1/4 , and it suffices to

take τ ≥ 1−√
β

2 + 2
4√n

. Thus, we can set any τ > 1−√
β

2 as long as n is sufficiently
large. Solving for β (that is, taking any β > (1 − 2τ)2) and substituting into
Eq. 1, we can get any μ < 4τ(1− τ)

(
1 − h2

(
1

4−4τ

))
for a sufficiently large n. 	

D Proof of Theorem 4

Proof. Similarly to the proof of Theorem 2, we will prove that any secure sketch
algorithm fails for an average element of W: letting Z denote a uniform choice
of W from W, we will show that H̃∞(WZ |SS(WZ), Z) ≤ 2. The overall proof
strategy is the same as for Theorem 2. We highlight only the changes here.
Recall that |Bt| denotes the volume of the ball of radius t in the space {0, 1}n.
The parameters of the hash family are the same, except for universality: we
require 2−a-universality for a = (n − log |Bt| + h2(2δ))/(1 − 2δ).

We postpone the question of the existence of such a hash family until the
end of the proof.

We can now state and the analogue of Lemma 2. This result is an extension
of lower bounds from [13, Appendix C], which handles only the case of perfect
correctness. It shows that the value of the sketch reduces the entropy of a uniform
point by approximately log |Bt|.
Lemma 6. Let M denote the Hamming space {0, 1}n and |Bt| denote the vol-
ume of a Hamming ball of radius t in {0, 1}n. Suppose (SS,Rec) is a (M,W, m̃, t)
secure sketch with error δ, for some distribution family W over M. Then for
every v ∈ M there exists a set GoodSketchv such that Pr[SS(v) ∈ GoodSketchv] ≥
1/2 and for any fixed ss,

log |{v ∈ M|ss ∈ GoodSketchv}| ≤ n − log |Bt| + h2(2δ)
1 − 2δ

,

302 B. Fuller et al.

and, therefore, for any distribution DM over M,

H0(DM|ss ∈ GoodSketchDM) ≤ n − log |Bt| + h2(2δ)
1 − 2δ

.

Proof. For any v ∈ M , define Neight(v) be the uniform distribution on the ball
of radius t around v and let

GoodSketchv = {ss| Pr
v′←Neight(v)

[Rec(v′, ss) �= v] ≤ 2δ]}.

We prove the lemma by showing two propositions.

Proposition 2. For all v ∈ M, Pr[SS(v) ∈ GoodSketchv] ≥ 1/2.

Proof. Let the indicator variable 1v′,ss be 1 if Rec(v′, ss) = v and 0 otherwise.
Let qss be the quality of the sketch on the ball Bt(v):

qss = Pr
v′←Neight(v)

[Rec(v′, ss) = v] = E
v′∈Neight(v)

1v′,ss.

By the definition of correctness for (SS,Rec), for all v′ ∈ Bt(v),

Pr
ss←SS(v)

[Rec(v′, ss) = v] ≥ 1 − δ.

Hence, Ess←Gen(v) 1v′,ss ≥ 1 − δ. Therefore,

E
ss←Gen(v)

qss = E
ss
E
v′

1v′,ss = E
v′
E
ss

1v′,ss ≥ E
v′

(1 − δ) = 1 − δ.

Therefore, applying Markov’s inequality to 1 − qss, we get Pr[qss ≥ 1 − 2δ] =
Pr[1 − qss ≤ 2δ] ≤ 1/2.

	

To finish the proof of Lemma 6, we will show that the set {v ∈ M|ss ∈

GoodSketchv} forms a kind of error-correcting code, and then bound the size of
the code.

Definition 6. We say that a set C is an (t, δ)-Shannon code if there exists a
(possibly randomized) function Decode such that for all c ∈ C,

Pr
c′←Neight(c)

[Decode(c′) �= c] ≤ δ.

The set {v ∈ M|ss ∈ GoodSketchv} forms (t, 2δ) Shannon code if we set
Decode(y) = Rec(y, ss). We now bound the size of such a code.

Proposition 3. If C ⊆ {0, 1}n is a (t, δ)-Shannon code, then

log |C| ≤ n − log |Bt| + h2(δ)
1 − δ

.

When Are Fuzzy Extractors Possible? 303

Proof. Let the pair of random variables (X,Y) be obtained as follows: let X be
a uniformly chosen element of C and Y be a uniformly chosen element of the
ball of radius t around Y . By the existence of Decode and Fano’s inequality [15,
Sect. 6.2, p. 187], H1(X|Y) ≤ h2(δ) + δ log |C|. At the same time, H1(X|Y) =
H1(X)−H1(Y)+H1(Y |X) (because H1(X,Y) = H1(X)+H1(Y |X) = H1(Y)+
H1(X|Y)), and therefore H1(X|Y) ≥ log |C|−n+log |Bt| (because H1(Y) ≤ n).
Therefore, log |C| − n + log |Bt| ≤ h2(δ) + δ log |C|, and the lemma follows by
rearranging terms.

	

Lemma 6 follows from Proposition 3. 	

We now show that entropy drops further when the adversary learns Hashk(w).
Let M denote the uniform distribution on M and K denote the uniform distrib-
ution on K. Applying Lemma 3 to Lemma 6, we get that for any ss,

H̃0(M|ss ∈ GoodSketchM,K,HashK(M))

< max
(

1, 1 +
n − log |Bt| + h2(2δ)

1 − 2δ
− a

)

. (3)

To complete the proof, we will use this bound on H̃0 as a bound on H̃∞,
as justified by the following lemma (proof in the full version of this work [18,
Lemma D.7]).

Lemma 7. For any random variables X and Y , H̃∞(X|Y) ≤ H̃0(X|Y).

We need just one more lemma before we can complete the result, an analogue
of [13, Lemma 2.2b] for conditioning on a single value Z = z rather than with Z
on average (we view conditioning on a single value as equivalent to conditioning
on an event). The proof of this lemma is natural and is shown in the full version
of this work [18, Lemma D.8].

Lemma 8. For any pair of random variables (X,Y) and event η that is a (pos-
sibly randomized) function of (X,Y), H̃∞(X|η, Y) ≥ H̃∞(X|Y) − log 1/Pr[η].

Combining Lemmas 8 and 7 with Eq. 3, we get

H̃∞(WZ |Z,SS(WZ)) = H̃∞(M|SS(M),K,HashK(M))

≤ log
1

Pr[SS(M) ∈ GoodSketchM]
+

H̃∞(M|ss s.t. ss = SS(M) and ss ∈ GoodSketchM,K,HashK(M))

≤ log
1

Pr[SS(M) ∈ GoodSketchM]
+

H̃0(M|ss s.t. ss = SS(M) and ss ∈ GoodSketchM,K,HashK(M))

< log
1

Pr[SS(M) ∈ GoodSketchM]
+ max

(

1, 1 +
n − log |Bt| + h2(2δ)

1 − 2δ
− a

)

.

304 B. Fuller et al.

We can have shown that H̃∞(WZ |Z,SS(WZ)) ≤ 2, because the first term of the
above sum is at most 1 by Proposition 2 and the second term is 1 by our choice
of a as a = n−log |Bt|+h2(2δ)

1−2δ .
It remains to show that the desired hash family exists. Note in that (because

δ < .25) setting any α ≥ 1 − h2(τ) + .5 log n+4δn+2
n and choosing an αn-

universal hash function will be sufficient, because, by Lemma 1, log |Bt| ≥
nh2(τ) − 1

2 log n − 1, and so

a =
n − log |Bt| + h2(2δ)

1 − 2δ
≤n · 1 − h2(τ) + (.5 log n + 1 + h2(2δ))/n

1 − 2δ

<n · (1 − h2(τ) +
.5 log n + 1 + h2(2δ)

n
+ 4δ)

≤n ·
(

1 − h2(τ) +
.5 log n + 4δn + 2

n

)

≤n · α

(the second inequality is true because for any x < 1 and 0 < y < .5, x/(1− y) <
x+2y, because x < (x+2y)(1−y), because 0 < y(2−x−2y); the third inequality
follows from h2(2δ) < 1).

Such a hash family exists by Lemma 4 as long as μ ≤ 1 − α − 2/n ≤ h2(τ) −
(.5 log n + 4δn + 4)/n and μ ≤ 1 − h2(τ) − 2/n). 	

References

1. Ahlswede, R., Csiszár, I.: Common randomness in information theory and cryp-
tography - I: secret sharing. IEEE Trans. Inf. Theory 39(4), 1121–1132 (1993)

2. Ash, R.: Information Theory. Intersciene Publishers, New York (1965)
3. Barak, B., Canetti, R., Lindell, Y., Pass, R., Rabin, T.: Secure computation without

authentication. J. Cryptology 24(4), 720–760 (2011)
4. Bennett, C.H., Brassard, G., Robert, J.M.: Privacy amplification by public discus-

sion. SIAM J. Comput. 17(2), 210–229 (1988)
5. Bitansky, N., Canetti, R., Kalai, Y.T., Paneth, O.: On virtual grey box obfuscation

for general circuits. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014. LNCS, vol.
8617, pp. 108–125. Springer, Heidelberg (2014). doi:10.1007/978-3-662-44381-1 7

6. Blanton, M., Hudelson, W.M.P.: Biometric-based non-transferable anonymous cre-
dentials. In: Qing, S., Mitchell, C.J., Wang, G. (eds.) ICICS 2009. LNCS, vol. 5927,
pp. 165–180. Springer, Heidelberg (2009). doi:10.1007/978-3-642-11145-7 14

7. Boyen, X., Dodis, Y., Katz, J., Ostrovsky, R., Smith, A.: Secure remote authenti-
cation using biometric data. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol.
3494, pp. 147–163. Springer, Heidelberg (2005). doi:10.1007/11426639 9

8. Brostoff, S., Sasse, M.: Are passfaces more usable than passwords?: a field trial
investigation. In: McDonald, S., Waern, Y., Cockton, G. (eds.) People and Com-
puters, pp. 405–424. Springer, London (2000)

9. Carter, L., Wegman, M.N.: Universal classes of hash functions. J. Comput. Syst.
Sci. 18(2), 143–154 (1979)

10. Csiszár, I., Körner, J.: Broadcast channels with confidential messages. IEEE Trans.
Inf. Theory 24(3), 339–348 (1978)

http://dx.doi.org/10.1007/978-3-662-44381-1_7
http://dx.doi.org/10.1007/978-3-642-11145-7_14
http://dx.doi.org/10.1007/11426639_9

When Are Fuzzy Extractors Possible? 305

11. Daugman, J.: Probing the uniqueness and randomness of iriscodes: results from
200 billion iris pair comparisons. Proc. IEEE 94(11), 1927–1935 (2006)

12. Daugman, J.: How iris recognition works. IEEE Trans. Circ. Syst. Video Technol.
14(1), 21–30 (2004)

13. Dodis, Y., Ostrovsky, R., Reyzin, L., Smith, A.: Fuzzy extractors: how to generate
strong keys from biometrics and other noisy data. SIAM J. Comput. 38(1), 97–139
(2008)

14. Ellison, C., Hall, C., Milbert, R., Schneier, B.: Protecting secret keys with personal
entropy. Future Gener. Comput. Syst. 16(4), 311–318 (2000)

15. Fano, R.: Transmission of Information: A Statistical Theory of Communications.
MIT Press Classics, M.I.T. Press, New York (1961)

16. Frankl, P., Füredi, Z.: A short proof for a theorem of Harper about Hamming-
spheres. Discrete Math. 34(3), 311–313 (1981)

17. Fuller, B., Meng, X., Reyzin, L.: Computational fuzzy extractors. In: Sako, K.,
Sarkar, P. (eds.) ASIACRYPT 2013. LNCS, vol. 8269, pp. 174–193. Springer, Hei-
delberg (2013). doi:10.1007/978-3-642-42033-7 10

18. Fuller, B., Smith, A., Reyzin, L.: When are fuzzy extractors possible? IACR Cryp-
tology ePrint Archive 2014, 961 (2014)

19. Gassend, B., Clarke, D., Van Dijk, M., Devadas, S.: Silicon physical random func-
tions. In: Proceedings of the 9th ACM Conference on Computer and Communica-
tions Security, pp. 148–160. ACM (2002)

20. Hao, F., Anderson, R., Daugman, J.: Combining crypto with biometrics effectively.
IEEE Trans. Comput. 55(9), 1081–1088 (2006)

21. Harper, L.H.: Optimal numberings and isoperimetric problems on graphs. J. Comb.
Theory 1(3), 385–393 (1966)

22. Hayashi, M., Tyagi, H., Watanabe, S.: Secret key agreement: general capacity and
second-order asymptotics. In: 2014 IEEE International Symposium on Information
Theory, pp. 1136–1140. IEEE (2014)

23. Hoeffding, W.: Probability inequalities for sums of bounded random variables. J.
Am. Stat. Assoc. 58(301), 13–30 (1963)

24. Holenstein, T.: Strengthening key agreement using hard-core sets. Ph.D. thesis,
ETH Zurich (May 2006), reprint as vol. 7 of ETH Series in Information Security
and Cryptography, ISBN 3-86626-088-2, Hartung-Gorre Verlag, Konstanz (2006)

25. Holenstein, T., Renner, R.: One-way secret-key agreement and applications to cir-
cuit polarization and immunization of public-key encryption. In: Shoup, V. (ed.)
CRYPTO 2005. LNCS, vol. 3621, pp. 478–493. Springer, Heidelberg (2005). doi:10.
1007/11535218 29

26. Ignatenko, T., Willems, F.M.: Biometric security from an information-theoretical
perspective. Found. Trends Commun. Inf. Theory 7(2–3), 135–316 (2012)

27. Juels, A., Wattenberg, M.: A fuzzy commitment scheme. In: Sixth ACM Conference
on Computer and Communication Security, pp. 28–36. ACM, November 1999

28. Linnartz, J.-P., Tuyls, P.: New shielding functions to enhance privacy and pre-
vent misuse of biometric templates. In: Kittler, J., Nixon, M.S. (eds.) AVBPA
2003. LNCS, vol. 2688, pp. 393–402. Springer, Heidelberg (2003). doi:10.1007/
3-540-44887-X 47

29. Maurer, U.M.: Secret key agreement by public discussion from common informa-
tion. IEEE Trans. Inf. Theory 39(3), 733–742 (1993)

30. Mayrhofer, R., Gellersen, H.: Shake well before use: intuitive and secure pairing of
mobile devices. IEEE Trans. Mob. Comput. 8(6), 792–806 (2009)

31. Monrose, F., Reiter, M.K., Wetzel, S.: Password hardening based on keystroke
dynamics. Int. J. Inf. Secur. 1(2), 69–83 (2002)

http://dx.doi.org/10.1007/978-3-642-42033-7_10
http://dx.doi.org/10.1007/11535218_29
http://dx.doi.org/10.1007/11535218_29
http://dx.doi.org/10.1007/3-540-44887-X_47
http://dx.doi.org/10.1007/3-540-44887-X_47

306 B. Fuller et al.

32. Nisan, N., Zuckerman, D.: Randomness is linear in space. J. Comput. Syst. Sci.
52(1), 43–52 (1996)

33. Pappu, R., Recht, B., Taylor, J., Gershenfeld, N.: Physical one-way functions.
Science 297(5589), 2026–2030 (2002)

34. Renner, R., Wolf, S.: The exact price for unconditionally secure asymmetric cryp-
tography. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol.
3027, pp. 109–125. Springer, Heidelberg (2004). doi:10.1007/978-3-540-24676-3 7

35. Renner, R., Wolf, S.: Simple and tight bounds for information reconciliation and
privacy amplification. In: Roy, B. (ed.) ASIACRYPT 2005. LNCS, vol. 3788, pp.
199–216. Springer, Heidelberg (2005). doi:10.1007/11593447 11

36. Skoric, B., Tuyls, P.: An efficient fuzzy extractor for limited noise. Cryptology
ePrint Archive, Report 2009/030 (2009)

37. Suh, G.E., Devadas, S.: Physical unclonable functions for device authentication
and secret key generation. In: Proceedings of the 44th Annual Design Automation
Conference, pp. 9–14. ACM (2007)

38. Tuyls, P., Goseling, J.: Capacity and examples of template-protecting biometric
authentication systems. In: Maltoni, D., Jain, A.K. (eds.) BioAW 2004. LNCS, vol.
3087, pp. 158–170. Springer, Heidelberg (2004). doi:10.1007/978-3-540-25976-3 15

39. Tuyls, P., Schrijen, G.-J., van Škorić, B., Geloven, J., Verhaegh, N., Wolters, R.:
Read-proof hardware from protective coatings. In: Goubin, L., Matsui, M. (eds.)
CHES 2006. LNCS, vol. 4249, pp. 369–383. Springer, Heidelberg (2006). doi:10.
1007/11894063 29

40. Tyagi, H., Watanabe, S.: Converses for secret key agreement and secure computing.
IEEE Trans. Inf. Theo. 61(9) (2015)

41. Wang, Y., Rane, S., Draper, S.C., Ishwar, P.: A theoretical analysis of authenti-
cation, privacy and reusability across secure biometric systems. IEEE Trans. Inf.
Forensics Secur. 6(6), 1825–1840 (2012)

42. Wyner, A.D.: The wire-tap channel. Bell Syst. Tech. J. 54(8), 1355–1387 (1975)
43. Zviran, M., Haga, W.J.: A comparison of password techniques for multilevel

authentication mechanisms. Comput. J. 36(3), 227–237 (1993)

http://dx.doi.org/10.1007/978-3-540-24676-3_7
http://dx.doi.org/10.1007/11593447_11
http://dx.doi.org/10.1007/978-3-540-25976-3_15
http://dx.doi.org/10.1007/11894063_29
http://dx.doi.org/10.1007/11894063_29

More Powerful and Reliable Second-Level
Statistical Randomness Tests for NIST

SP 800-22

Shuangyi Zhu1,2,3, Yuan Ma1,2(B), Jingqiang Lin1,2, Jia Zhuang1,2,
and Jiwu Jing1,2

1 Data Assurance and Communication Security Research Center,
Chinese Academy of Sciences, Beijing, China

{zhushuangyi,yma,linjq,jzhuang13,jing}@is.ac.cn
2 State Key Laboratory of Information Security,

Institute of Information Engineering, Chinese Academy of Sciences, Beijing, China
3 University of Chinese Academy of Sciences, Beijing, China

Abstract. Random number generators (RNGs) are essential for cryp-
tographic systems, and statistical tests are usually employed to assess
the randomness of their outputs. As the most commonly used statis-
tical test suite, the NIST SP 800-22 suite includes 15 test items, each
of which contains two-level tests. For the test items based on the bino-
mial distribution, we find that their second-level tests are flawed due
to the inconsistency between the assessed distribution and the assumed
one. That is, the sequence that passes the test could still have statistical
flaws in the assessed aspect. For this reason, we propose Q-value as the
metric for these second-level tests to replace the original P-value with-
out any extra modification, and the first-level tests are kept unchanged.
We provide the correctness proof of the proposed Q-value based second-
level tests. We perform the theoretical analysis to demonstrate that the
modification improves not only the detectability, but also the reliability.
That is, the tested sequence that dissatisfies the randomness hypothesis
has a higher probability to be rejected by the improved test, and the
sequence that satisfies the hypothesis has a higher probability to pass it.
The experimental results on several deterministic RNGs indicate that,
the Q-value based method is able to detect some statistical flaws that the
original SP 800-22 suite cannot realize under the same test parameters.

Keywords: Statistical randomness test · NIST SP 800-22 · Random
number generator · P-value

1 Introduction

As essential primitives, random number generators (RNGs) are important for
cryptographic systems. The security of many cryptographic schemes and pro-
tocols is built on the perfect randomness of RNG outputs. RNGs are classified

c© International Association for Cryptologic Research 2016
J.H. Cheon and T. Takagi (Eds.): ASIACRYPT 2016, Part I, LNCS 10031, pp. 307–329, 2016.
DOI: 10.1007/978-3-662-53887-6 11

308 S. Zhu et al.

into two types: pseudo/deterministic and true/non-deterministic random num-
ber generators (PRNGs and TRNGs, respectively). In general, TRNGs based
on some random physical phenomenons, may be used directly as random bit
sources or generate seeds for PRNGs, and PRNGs extend the seeds to produce
deterministic long sequences.

For any type of RNG, statistical hypothesis tests have been widely employed
to assess the quality of the RNG, which evaluate whether the output sequences
fit with the given hypothesis (i.e., the sequence has perfect randomness) or not.
In addition, statistical randomness tests are also used to evaluate the outputs
of other cryptographic primitives such as hash functions and block ciphers, to
preliminarily validate the indistinguishability of their outputs from random map-
ping. The commonly used statistical test suites, each of which is composed of a
serial of test items, include Diehard [7] proposed by Marsaglia and SP 800-22
[11] standardized by US National Institute of Standard and Technology (NIST).

The most commonly used NIST SP 800-22 test suite is composed of 15 test
items, and provides comprehensive evaluation for different randomness aspects
of assessed sequences. For example, the Frequency Test assesses the uniformity of
the sequence, and the Runs Test assesses the transform frequency of 0’s and 1’s.
In the beginning of the testing process, the whole bit sequence is divided into N
blocks. In every test item, a test statistic value is computed for each data block.
According to the assumed distribution of the test statistic value, 15 test items are
divided into two types: binomial distribution based (binomial-based for short in
this paper) and chi-square distribution based (chi-square based for short). Each
test item uses its assumed distribution to compute the P-value, which roughly
represents the probability that the block is random. A test item is considered
to be passed when the computed P-value is larger than the significance level.
Then, based on the computed N P-values for N blocks, each test item performs
two-level tests: the first-level test and the second-level test, where passing the
former is the premise to execute the latter. The second-level testing approach
was found to increase the testing capability [9]. The first-level test focuses on the
passing ratio of the N P-values, and the second-level test further focuses on the
uniformity of the N P-values to assess whether the test statistic values follow the
expected distribution, i.e., the standard normal distribution1 or the chi-square
distribution. In the remainder of this paper, the test statistic refers to the test
statistic value that is assumed to follow the standard normal distribution in the
binomial-based tests.

Related Work. Several papers on the NIST SP 800-22 test suite have been pre-
sented in literature. Among the test items, Kim et al. [6] analyzed the correctness
of the Spectral Test and the Lemple-Ziv Test, and Hamano [4,5] adjusted the dis-
tribution parameters for the Spectral Test and corrected the Overlapping Test.
Sulak et al. [14] found that the P-values for short sequences (less than 512 bits)
follow a specific discrete distribution, rather than the assumed uniform distri-
bution for long sequences. Pareschi et al. [9] investigated the reliability of the
1 For a sufficiently large number of trials, the distribution of the binomial sum after

normalizing, is closely approximated by a standard normal distribution [11].

More Powerful and Reliable Second-Level Statistical Randomness Tests 309

second-level tests, and analyzed the sensitivity to the approximation errors intro-
duced by the computation of P-values. Furthermore, as the sequence length is
finite in practice and thus the set of possible statistic values is discrete, Pareschi
et al. [10] provided the actual distributions of P-values for the Frequency Test,
the Runs Test, and the Spectral Test, and evaluated the test errors for different
testing methods based on P-values. In our preliminary work [15], we analyzed
the correctness and the reliability of the second-level tests in the NIST SP 800-22
test suite.

Our Contribution. In this paper, we find that the P-values derived from the
binomial-based tests are unqualified for the second-level tests of the NIST SP
800-22 suite, though they are proper to be used for the first-level tests. The
P-values in the binomial-based tests are computed, using the absolute values of
the test statistics. Therefore, the second-level tests on P-values do not exactly
tell whether the test statistics follow the standard normal distribution or not,
because we cannot learn from the P-values that the test statistics are positive
or negative. In particular, even if P-values follow the uniform distribution on
[0, 1], there still exists a non-ignorable probability that the test statistics are not
aligned with the expected standard normal distribution; then, it fails to detect
some imperfect random sequences.

We propose a new metric called Q-value in this paper,2 for the second-level
tests of the binomial-based tests (but not the chi-square based ones), to replace
the original P-value without any extra modification. The Q-value is computed
directly using the test statistics, rather than their absolute values. We prove
that the uniformity of Q-values is equal to that the test statistics follow the
standard normal distribution as expected. In the case that there exists some
mean drifts of the assumed normal distribution, which is commonly caused by
flawed generators, the Q-value based tests produce greater gaps than the P-value
based ones under both the total variation distance (TVD) and the Kullback-
Leibler divergence (KLD), i.e., Q-value is more sensitive to detect such drifts.
Therefore, for the binomial-based tests, our Q-value based second-level tests have
greater testing capability than the P-value based ones.

Furthermore, inspired by [10], we investigate the actual distributions of P-
values and Q-values with a finite block length, for the binomial-based tests. The
comparison in the Frequency Test shows that the distribution of Q-value is more
smooth, i.e., it is closer to the uniform distribution on [0, 1]. Hence, the Q-value
based second-level tests are more reliable, i.e., our improvement also decreases
the probability of erroneously identifying an ideal generator as not random.

Finally, we perform the improved statistical tests on the outputs of several
PRNGs. The experimental results demonstrate that the Q-value based second-
level tests are able to detect some statistical flaws that the original SP 800-22
suite cannot detect under the same test parameters.

2 The term of q-value is defined as a measure of significance in terms of the false
discovery rate [12,13], while in this paper we use Q-value as another definition.

310 S. Zhu et al.

Organization. The rest of this paper is organized as follows. In Sect. 2, we
introduce the two-level statistical tests included in the NIST SP 800-22 test
suite. In Sect. 3, we state the problem in the second-level tests of binomial-based
tests. In Sect. 4, we propose Q-value based second-level statistical tests, and
investigate the detectability and the reliability. In Sect. 5, we apply the statistical
tests on several popular PRNGs to validate the effectiveness. Section 6 concludes
the paper.

2 Two-Level Statistical Tests in SP 800-22

2.1 Statistical Hypothesis Testing for Randomness

Hypothesis testing is a commonly used method to assess whether the tested data
fit with the null hypothesis that is denoted as H0. In the statistical hypothesis
testing, a statistic value is chosen and used to determine whether H0 should
be accepted or rejected. Under the null hypothesis, the theoretical reference
distribution of this statistic value is figured out by mathematical methods. From
this reference distribution, a confidence interval is determined based on a preset
confidence level γ (e.g., γ = 0.99), i.e., the probability that the statistic values
are inside the confidence interval is γ.

The null hypothesis in statistical tests for randomness is that, the tested
bit sequence is random. In the testing, the test statistic value is computed on
the tested bit sequence, and then is compared to the bounds of the confidence
interval. If the test statistic value lies outside the confidence interval, the null
hypothesis that the sequence is random is rejected. Otherwise, H0 is accepted.

A randomness test suite may contain a serial of test items, which evaluate
different aspects of randomness. These test items produce different confidence
intervals based on the same confidence level. Then, P-value is employed as a
unified metric for different test items, which is calculated using the test statistic.
For a randomness test item, a P-value is the probability that a perfect random
number generator would have produced a sequence less random than the tested
sequence [11]. More specifically, the P-value is computed as the probability of
obtaining a statistic value S equal to or “more extreme” than the observed value
Sobs of the tested sequence. According to the definition of “more extreme” cases,
the tests are generally divided into two categories: one-sided tests and two-sided
tests.

In the NIST SP 800-22 test suite, a test is considered to be two-sided when
S is assumed to follow a normal distribution, and the P-value is computed as
2min{Pr(S > Sobs),Pr(S < Sobs)}. A test is considered to be one-sided when
S is assumed to follow a chi-squared distribution, and the P-value is computed
as Pr(S > Sobs). Figure 1 shows the computations of P-values based on the
observed values for the one-sided and two-sided tests included in the NIST SP
800-22 test suite, where the shaped areas are the P-values.

Then the test is performed by comparing P-value with a significance level
denoted as α, and α = 1−γ where γ is the confidence level. If P-value p < α,then
H0 is rejected and the tested sequence is considered to be non-random. If p ≥ α,

More Powerful and Reliable Second-Level Statistical Randomness Tests 311

Set of possible values

Pr
ob

ab
ilit

y
de

ns
ity Observed value

 P−value

(a) Two-sided test

Set of possible values

Pr
ob

ab
ilit

y
de

ns
ity

Observed value
P−value

(b) One-sided test

Fig. 1. P-value in one-sided and two-sided tests

H0 is accepted and the sequence is considered to be random. When H0 is true and
p < α, H0 is erroneously rejected, which is called Type I Error. The probability
of Type I Error is α. On the contrary, the fact that, p ≥ α when H0 is false, is
called Type II Error. The significance level recommended by NIST is α = 0.01.

2.2 Two-Level Tests

The current version of the NIST SP 800-22 test suite [11] is composed of 15 test
items. According to the assumed distribution of the test statistic values, these
test items are divided into two categories: the binomial-based (i.e., the two-
sided tests) and the chi-square based (i.e., the one-sided tests). The Frequency
(Monobit) Test, the Runs Test, the Spectral Test, Maurer’s “Universal Statisti-
cal” Test, and the Random Excursions Variant Test belong to the binomial-based
tests, and the others are chi-square based.

In the testing process, according to the test parameters, the whole tested bit
sequence is partitioned into N blocks, and each block contains n bits. For each
test item, the hypothesis testing, where the null hypothesis is that the tested
sequence is random, is executed for each data block, and then N P-values are
obtained. Based on these P-values, the following two-level test is performed in
each test item.

1. Count the number of the blocks whose P-values are equal or greater than
α, and compute the passing ratio. If the ratio lies in the confidence interval

defined as 1 − α ± 3
√

(1−α)α
N , the first-level test is passed;

312 S. Zhu et al.

2. Divide the interval [0, 1] into K equal sub-intervals, and count each number
of the P-values in each sub-interval. Perform a chi-square goodness-of-fit test
on these K numbers with the assumed uniform distribution, yielding another
P-value pT . If pT is equal to or greater than another significance level αT ,
the second-level test is considered to be passed. In the NIST SP 800-22 test
suite, K = 10 and αT = 0.0001.

A test item is passed if the tested sequence passes the two-level test of this
test item, and the SP 800-22 test suite is passed if all the 15 included test items
are passed. The testing procedure is depicted in Fig. 2, where we use N = 1000
as an example. Note that, some test items are further composed of a serial of
sub-items (such as the Non-Overlapping Template Test), and each sub-item can
be treated as a separate test item that has its own P-values and pT . In addition,
for the Random Excursions and Random Excursions Variant Tests, the P-values
are computed only if the tested sequence block meets specific criteria, so the
number of available P-values may be less than N for the N sequence blocks.
These details are omitted in Fig. 2 for simplicity.

Choose a test
item

Compute
1000 P-values

Count the
number C of

P-values≥ 0.01

C>980

NoThe test item
fails

Yes

Compute
pT using 1000

P-values
Yes

All tests are
performed

Yes

No

No

The test suite
is passed

1000
sequence

blocks

pT ≥ 0.0001

First-level test

Second-level test

Fig. 2. The testing procedure of the NIST SP 800-22 test suite (N = 1000)

2.3 Frequency Test

We take the Frequency Test as an example to explain the P-value computa-
tion in the binomial-based tests. The bit block with length n is denoted as

More Powerful and Reliable Second-Level Statistical Randomness Tests 313

ε = {ε1, ε2, . . . , εn} ∈ {0, 1}n. Then S =
∑n

i=1(2εi − 1) is computed. Under the
null hypothesis, S is assumed to follow a binomial distribution. As n is always
very large, the limiting binomial distribution is approximated as a normal distri-
bution. Hence, S is assumed to follow the normal distribution N (u, σ2), where
u = 0 and σ2 = n. The test statistic d = (S − u)/σ follows N (0, 1). Then the
P-value is computed using the cumulative distribution function (CDF) of the
standard normal distribution Φ(·) or the complementary error function erfc(·):

p = 2(1 − Φ(|d|)) = erfc(
|d|√

2
),

where

Φ(x) =
1√
2π

∫ x

−∞
e− η2

2 dη,

erfc(x) =
2√
π

∫ ∞

x

e−η2
dη.

In all binomial-based tests, the same formula is used to compute P-values
based on the test statistics, while each test item has a unique formula to compute
the test statistic.

2.4 Spectral Test

The Spectral Test is also known as the Discrete Fourier Transform (DFT) Test
or the Fast Fourier Transform (FFT) Test. The purpose of this test is to detect
periodic features (i.e., repetitive patterns that are near each other) in the tested
sequence [11]. For tested sequence ε = {ε1, ε2, . . . , εn} ∈ {0, 1}n, the observed
value N1 is assumed to follow N (u, σ2), where u is the expected number of

frequency components that are beyond the 95% threshold T =
√

(ln 1
0.05)n.

Then the test statistic d is computed as:

d =
N1 − u

σ
,

where u = 0.95n/2, σ2 = 0.95 · 0.05 · n/c, and c = 4 in the NIST SP 800-22 test
suite.

3 Incompleteness of P-Value Based Second-Level Tests

In the binomial-based tests, the standard normal distribution should be used
as the reference for the observed test statistics. However, we find that, when
the computed P-values follow a uniform distribution, the test statistic values
are aligned with the half-normal distribution3, rather than the expected normal
3 The half-normal distribution refers to the fold at the mean of the standard normal

distribution in this paper.

314 S. Zhu et al.

distribution. We prove this observation using the following Lemma 1 [3] and
Theorem 1. To ensure the continuity of the statistic values’ CDF, we assume
that the sequence block length n is large enough in this section.

Lemma 1. Let F be a continuous CDF on R with inverse F−1 defined by

F−1(z) = inf{x : F (x) = z, 0 < z < 1},

where inf means the infimum. If Z is a uniform random variable on [0, 1], then
F−1(Z) has distribution function F . Also, if a random variable X has distribu-
tion function F , then F (X) is uniformly distributed on [0, 1].

Proof. The first statement follows after noting that for all x ∈ R,

Pr(F−1(Z) ≤ x) = Pr(inf{y : F (y) = Z} ≤ x)
= Pr(Z ≤ F (x)) = F (x).

The second statement follows from the fact that for all 0 < z < 1,

Pr(F (X) ≤ z) = Pr(X ≤ F−1(z))
= F (F−1(z)) = z. ��

Theorem 1. Let d be the test statistic in a binomial-based test, and let p be
the P-value computed in the test. The following two statements are equivalent:
(1) |d| follows the half-normal distribution, and (2) p is uniformly distributed on
[0, 1].

Proof. Let Y be a random variable following the half-normal distribution, and
let FY (·) be the CDF of Y . On one hand, if |d| follows the half-normal distribu-
tion, FY (|d|) is a uniformly distributed variable on [0, 1] according to the second
statement of Lemma 1. Since p is computed as 1−FY (|d|), p is also uniformly dis-
tributed on [0, 1]. On the other hand, if p = 1 − FY (|d|) is uniformly distributed
on [0, 1], FY (|d|) also follows the uniform distribution on [0, 1]. According to the
first statement of Lemma 1 (by replacing Z with FY (|d|)), F−1

Y (FY (|d|)) = |d|,
has the same CDF with Y , thus |d| follows the half-normal distribution. ��

Obviously, the condition that |d| follows the half-normal distribution is insuf-
ficient to deduce that d follows the normal distribution. Therefore, for the second-
level tests of the binomial-based tests, checking the uniformity of P-values is
unqualified to assess whether d satisfies the null hypothesis. Hence, the second-
level tests in the binomial-based tests could fail to detect some imperfect random
sequences or elaboratively constructed sequences.

Remark. As to the chi-square based tests in the NIST SP 800-22 test suite, we
clarify that these tests do not have the mentioned problem. The chi-square based
tests are one-sided, and their P-values are not computed from the absolute values
of the test statistic values.

Biased “Random” Sequence Construction. Below we will construct a
biased sequence, yet it passes the NIST SP 800-22 test suite with given test
parameters.

More Powerful and Reliable Second-Level Statistical Randomness Tests 315

1. Generate a random bit sequence with an appropriate length that passes the
test suite. For example, use the Blum-Blum-Shub generator (BBS) [2] which
is acknowledged as a good PRNG.

2. Perform the Frequency Test according to the test parameters n and N : cal-
culate the test statistic value di of the ith block (i = 1, ..., N). For each i,
if di is less than zero (i.e., 0’s are more than 1’s), perform a bitwise NOT
(negation) on the sequence block; otherwise, keep the block unchanged.

The processed sequence is significantly biased, as the number of 1’s is larger
than that of 0’s for each block after processing. However, the processed sequence
still has a very high probability to pass the test suite due to the following reasons.

– For the Frequency Test, the P-value for each block is unchanged since |d|
remains unchanged.

– For most test items, “0” and “1” have equal roles in the evaluation of ran-
domness. For example, in the Block Frequency, Cumulative Sums, Runs, Spec-
tral, Universal, Approximate Entropy, and Serial Tests, their P-values remain
unchanged after processing.

The effectiveness of the construction is confirmed by the statistical testing for
the original and processed BBS output sequences. The two test reports about the
original and processed BBS outputs are presented in Appendix A. We emphasize
that, the constructed sequence is elaborative, and changing the testing method
(e.g., enlarging the block length adopted by the test) certainly can detect the
bias. The goal of our construction is to demonstrate the incompleteness of the P-
value based second-level test, rather than to construct a flawed sequence which
can pass all the existing test methods. In practice, an undetectable flaw may
occur in other manners more than the unbalance, or occur in the focused aspects
of other binomial-based tests more than the Frequency Test.

4 Second-Level Tests Based on Q-Value

4.1 Q-Value

The bias in the constructed sequence above should be detected by the Frequency
Test that assesses the balance of the tested sequence. In our construction exper-
iment, as the P-value based second-level tests cannot assess the symmetry of the
test statistics, the constructed sequence “bypasses” the Frequency Test, even the
whole test suite. For this reason, we introduce Q-value to replace P-value in the
second-level tests of the binomial-based tests, and Q-value is defined as

q = 1 − Φ(d) =
1
2
erfc(

d√
2
).

The relationship between p and q is

p =
{

2q, q ≤ 0.5;
2(1 − q), q > 0.5.

Referring to the proof of Theorem 1, we have Theorem 2 for Q-value.

316 S. Zhu et al.

Theorem 2. Let d be the test statistic in a binomial-based test, and let q be the
Q-value computed in the test. The following two statements are equivalent: (1)
d follows the standard normal distribution, and (2) q is uniformly distributed on
[0, 1].

Checking the uniformity of Q-value is equal to assessing the distribution of
d rather than |d|. Therefore, we propose the Q-value based second-level tests
to replace the original second-level tests for the binomial-based tests. In the
testing process, the modification is only using N Q-values rather than P-values
to perform the chi-square goodness-of-fit test.

Different from P-value, Q-value is computed directly using the test statistics,
rather than their absolute values. Hence, Q-value based tests are able to assess
the symmetry (to zero) of the test statistics, and have greater testing capability.
The constructed sequence in Sect. 3 cannot pass the Q-value based second-level
test of the Frequency Test, because all the derived Q-values are not greater
than 0.5.

4.2 Testing Capability on the Drift of Test Statistics

The second-level tests in the binomial-based tests are designed to assess the dif-
ference between the theoretical reference distribution (i.e., the standard normal
distribution) and the observed distribution. In the practical testing on the out-
put sequences of RNGs (rather than the elaboratively constructed sequences),
we emphasize that both the P-value based and Q-value based tests can detect
the statistical flaws when the observed distribution is quite different from the
standard normal distribution. Hence, we focus on the case that the observed
distribution is (or is similar to) a normal distribution, but the distribution para-
meters (such as the mean or the variance) drift from the ideal ones. Next, we
compare the sensitivity to the drifts between the Q-value based test and the
P-value based test.

Test statistic

Pr
ob

ab
ilit

y
de

ns
ity

μ

 Observed
distribution

Theoretical
distribution

Fig. 3. The mean drift between the theoretical distribution and the observed one

More Powerful and Reliable Second-Level Statistical Randomness Tests 317

Mean Drift. The mean drift is defined as the distance between the mean values
of the theoretical distribution and the observed one. We assume that the test
statistic d, which is computed by a formula on the tested data, follows the
standard normal distribution. The mean drift with μ for the test statistic is
depicted in Fig. 3.

Either an error in the computation formula of d or the flawed data can cause
a drift. For example, Kim el al. [6] improved the formula in the Spectral Test,
which makes the the distribution of the calculated test statistics from good
RNGs show better consistency with the theoretical reference distribution. The
other case that, the tested data are flawed, is more common in the testing.
Below we show the consequence if one uses a biased generator of a noticeable
mean drift.

Test statistic

Pr
ob

ilit
y

de
ns

ity

−2 0 2 4 6

0.
0

0.
1

0.
2

0.
3

0.
4

Normal distribution
Observed distribution

Fig. 4. The mean drift caused by the simulated biased sequence

The statistical flaw on the frequency (i.e., the tested sequence is biased) is
common for imperfect RNGs, especially for those TRNGs where the physical
phenomenons are not ideal. We assume that the flawed generator outputs a
biased sequence with 50.2 % 1’s. The generator is simulated by the R software
[1], and the observed test statistics are computed with the parameters n =
105 and N = 1000. Due to the existence of the bias, the distribution of the
observed test statistics has a mean drift from the expected standard normal
distribution, as shown in Fig. 4. The histogram in Fig. 4 is plotted using the
probability density values computed on the 1000 test statistics. The mean of the
observed distribution drifts to 1.265. Knowing the inherent bias of the generator
output sequence, one can optimize brute-force attacks to reduce the breaking
complexity for cryptographic systems. Hence, it is important to detect the mean
drift for the testing of RNGs.

KLD and TVD. We denote the probability distribution function (PDF) of the
ideal test statistic d as f(x), and the PDF of |d| as g(x). When the mean of

318 S. Zhu et al.

the observed test statistics dμ has a drift μ (μ �= 0), the PDFs of dμ and |dμ|
are represented as fμ(x) and gμ(x), respectively. If the deviation caused by μ
between f(x) and fμ(x) is larger than that between g(x) and gμ(x), we say that
f(x) is more sensitive to the drift, and the statistical test based on f(x) has
greater testing capability on detecting the drift.

We choose Kullback-Leibler divergence (KLD) and total variation distance
(TVD) as the measurements of the sensitivity. For PDFs hA(x) and hB(x) of
two continuous random variables A and B, the KLD between them is defined as

DKL(hA(x)‖hB(x)) =
∫ ∞

−∞
hA(x) log

hA(x)
hB(x)

dx, (1)

and the TVD between them is defined as

δ(hA(x), hB(x)) =
1
2

∫ ∞

−∞
|hA(x) − hB(x)|dx. (2)

Roughly speaking, KLD represents the amount of information lost when
hB(x) is used to approximate hA(x), and TVD represents the largest possi-
ble difference between the probabilities that the two variables A and B have the
same value.

When d is assumed to follow the standard normal distribution, we get

f(x) =
1√
2π

e− x2
2 , fμ(x) =

1√
2π

e− (x−μ)2

2 , x ∈ (−∞,+∞),

and

g(x) =
2√
2π

e− x2
2 , gμ(x) =

1√
2π

(e− (x−μ)2

2 + e− (x+μ)2

2), x ∈ [0,+∞).

Then, substituting f(x) and fμ(x) into Eq. (1), we get the KLD between f(x)
and fμ(x), as shown in Eq. (3).

DKL(f(x)‖fμ(x)) =
∫ ∞

−∞
f(x) log

f(x)
fμ(x)

dx (3)

=
∫ ∞

−∞

1√
2π

e− x2
2 log

e− x2
2

e− (x−μ)2
2

dx =
μ2

2

By noting that e− (x−μ)2

2 + e− (x+μ)2

2 ≥ 2e− x2+μ2

2 , we get the KLD between
g(x) and gμ(x), which is strictly smaller than μ2/2, as shown in Eq. (4).

DKL(g(x)‖gμ(x)) =
∫ ∞

−∞
g(x) log

g(x)
gμ(x)

dx (4)

=
∫ ∞

0

2√
2π

e− x2
2 log

2e− x2
2

(e− (x−μ)2
2 + e− (x+μ)2

2)
dx <

μ2

2

More Powerful and Reliable Second-Level Statistical Randomness Tests 319

By observing that e− x2
2 and e− (x−μ)2

2 are symmetrical to x = 0 and x = μ,
respectively, we compare the result between δ(f(x), fμ(x)) and δ(g(x), gμ(x)), as
shown in Eq. (5).

δ(f(x), fμ(x)) =
1
2

· 1√
2π

∫ ∞

−∞
|e− x2

2 − e− (x−μ)2

2 |dx (5)

=
1

2
√

2π

∫ −μ
2

−∞
e− x2

2 −e− (x−μ)2

2 dx +
1

2
√

2π

∫ μ
2

− μ
2

e− x2
2 − e− (x−μ)2

2 dx

+
1

2
√

2π

∫ ∞

μ
2

e− (x−μ)2

2 − e− x2
2 dx

=
1

2
√

2π

∫ ∞

μ
2

|(e− (x−μ)2

2 − e− x2
2)| + |(e− x2

2 − e− (x+μ)2

2)|dx

+
1

2
√

2π

∫ μ
2

0

|2e− x2
2 − e− (x−μ)2

2 − e− (x+μ)2

2 |dx

>
1

2
√

2π

∫ ∞

0

|2e− x2
2 − e− (x−μ)2

2 − e− (x+μ)2

2 |dx = δ(g(x), gμ(x))

From Eqs. (3)–(5), we deduce DKL(f(x)‖fμ(x)) > DKL(g(x)‖gμ(x)) and
δ(f(x), fμ(x)) > δ(g(x), gμ(x)).

The KLD and TVD results with μ = 0.5 on the normal distribution f(x) and
the half-normal distribution g(x) are also depicted in Fig. 5, where the distances
represent the integral parts in Eqs. (1) and (2). We can see that the change
caused by μ in the normal distribution is larger than that in the half-normal
distribution, which means that the test based on the normal distribution is more
sensitive to the drift. Thus, we conclude that Q-value based second-level tests
are more powerful than the P-value based ones to detect the mean drift of the
test statistics.

Regarding to the drift of the variance, we note that the testing capability of
the two testing methods are identical, as their KLDs (or TVDs) are equal.

4.3 Testing Reliability Analysis Based on Actual Distribution

An asymptotic distribution refers to the limiting distribution when n approaches
infinity. The asymptotic distribution of P-value is the uniform distribution on
[0, 1]. However, in the practical cases that n is finite, the number of possible P-
values is limited, i.e., the set of P-values is discrete. This fact makes the actual
distribution of P-value is not a perfect uniform distribution on [0, 1]. When
the number of blocks N is very large, the inconsistency is revealed and the
observed P-values do not follow the assumed uniform distribution, which makes
these P-values fail the chi-square test in the second-level test. This decreases
the reliability of the statistical tests, i.e., increases the probability of erroneously
identifying an ideal generator as not random.

320 S. Zhu et al.

−4 −2 0 2 4

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x

fμ(x)
f(x)
distance

(a) The integral part in KLD be-
tween f(x) and fµ(x)

0 1 2 3 4 5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x

gμ(x)
g(x)
distance

(b) The integral part in KLD be-
tween g(x) and gµ(x)

−4 −2 0 2 4

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x

fμ(x)
f(x)
distance

(c) The integral part in TVD be-
tween f(x) and fµ(x)

0 1 2 3 4 5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x

gμ(x)
g(x)
distance

(d) The integral part in TVD be-
tween g(x) and gµ(x)

Fig. 5. The comparison of TVDs and KLDs with the drift µ = 0.5

In order to investigate the reliability of the Q-value based second level tests,
we deduce the actual distributions of Q-values for the binomial-based tests, and
compare them with those of P-values. The actual distributions of P-values for
the binomial-based tests have been analyzed in [10]. The actual distribution of
Q-value is closer to the assumed uniform distribution, meaning that the Q-value
based test has a lower probability that a sequence with perfect randomness fails
the test, i.e., higher reliability.

Actual Distribution. As we mentioned in Sect. 2.3, each binomial-based test
computes its normally distributed value S ∼ N (u, σ2). For an n-bit sequence
block, the number of possible values of S is denoted as m. The possible values
are increasingly ordered as S = {s1, s2, ..., sm}, i.e., si−1 < si for i = 2, . . . , m.
Note that the variables u, σ,m depend on the specific test item, such as the
Frequency, Runs, Spectral, Universal, and Random Excursions Variant Tests.

More Powerful and Reliable Second-Level Statistical Randomness Tests 321

As our goal is to provide a general conclusion for the binomial-based tests, we
do not consider the specific values of these variables.

For simplicity, we consider a common situation that m is odd and S is sym-
metrical with respect to u. For each si, P-value pi = erfc(|si−u|√

2σ
), and Q-value

qi = 1
2erfc(si−u√

2σ
). The sets of possible P-values and possible Q-values are denoted

as P and Q, respectively. According to the symmetry of S, it is observed that
pi = pm+1−i and qi + qm+1−i = 1, thus the cardinality |P| = m/2 + 1 and
|Q| = m.

The actual CDFs of P-value and Q-value are represented as:

F ′
p(x) =

m∑

i=1

Pr{S = si}U(x − pi), (6)

F ′
q(x) =

m∑

j=1

Pr{S = sj}U(x − qj), (7)

where

U(x) =
{

1, x ≥ 0;
0, x < 0.

Using the property pi = pm+1−i, F ′
p(x) is rewritten as:

F ′
p(x) = 2

(m−1)/2∑

i=1

Pr{S = si}U(x − pi) + Pr{S = sm+1
2

}U(x − pm+1
2

). (8)

In fact, these two CDFs are both stepladder-like functions. We compare the
number, height, and width of the steps between F ′

p(x) and F ′
q(x). Note that |Q|

is almost as twice as |P|, so the number of steps in F ′
q(x) is approximately as

twice as that in F ′
p(x). The coefficient of the step function in F ′

p(x) is as twice
as that in F ′

q(x), so the maximum width and height of the step in F ′
p(x) are also

as twice as those in F ′
q(x). Therefore, the actual distribution of Q-values is more

smooth, and is closer to the uniform distribution than that of P-values.
It should be noted that we assume S is symmetrical with respect to u, the

mean of the asymptotic distribution. The assumption is appropriate for the
Frequency Test; however, in other binomial-based tests, there may be a little
deviation between u and the mean of S. We leave the study on this case as our
future work.

Actual Distribution in the Frequency Test. We take the Frequency Test as
an example to demonstrate the difference between the distributions of P-value
and Q-value. Without loss of generality, the length n of the sequence block is
assumed to be even. It is easy to figure out that |S| = n + 1, |P| = n

2 + 1,
|Q| = n+1, and u = 0, σ2 = n. Then, from Equation (8) we get the actual CDF
of P-value:

F ′
p(x) = 2

∑

i

Pr{S = si}U(x − pi) +
2√
2πn

U(x − 1),

322 S. Zhu et al.

where Pr{S = si} = 2−n
(

n
i−1

) ≈ 2√
2πn

e
−(2i−n−2)2

2n , pi = erfc(|2i−n−2|√
2n

), and
i ∈ {1, 2, ..., n

2 }.
From Eq. (7), we get the actual CDF of Q-value:

F ′
q(x) =

∑

j

Pr{S = sj}U(x − qj),

where Pr{S = sj} = 2−n
(

n
j−1

) ≈ 2√
2πn

e
−(2j−n−2)2

2n , qj = 1
2erfc(2j−n−2√

2n
) and

j ∈ {1, 2, ..., n + 1}.
For the parameter n = 200, we plot the actual CDFs of P-value and Q-value,

as shown in Fig. 6. It is observed that Q-value’s actual CDF is closer to the
uniform distribution than P-value’s.

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

F p

Actual P−value CDF
Uniform CDF

(a) The actual CDF of P-value

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

F q

Actual Q−value CDF
uniform CDF

(b) The actual CDF of Q-value

Fig. 6. Actual CDF comparison between P-value and Q-value for the Frequency Test
(n = 200)

Then, we compare the uniformity between actual P-values and Q-values
through the chi-square goodness-of-fit test. Here we choose n = 220 and K = 16
to better express the difference between Q-values and P-values in the chi-square
test. As shown in Eq. (9), the statistic value χ2 is computed using Oi which is
the number of P-values or Q-values in the ith sub-interval.

χ2 =
K∑

i=1

(Oi − N/K)2

N/K
(9)

Using the Q-value and P-value CDFs with n = 220, we calculate two sets of
Oi based on P-values and Q-values, respectively. As expected, the set of Oi based
on Q-values shows better consistency with the uniform distribution than that
based on P-values, as shown in Fig. 7. Therefore, we conclude that, under the
same test parameters, the Q-value based second-level test has higher reliability
than the P-value based one.

To verify the correctness of the derived actual CDF of Q-value, we test the
BBS output sequence with test parameters n = 210 and N = 100000, and count

More Powerful and Reliable Second-Level Statistical Randomness Tests 323

0 2 4 6 8 10 12 14 16
0.061

0.0615

0.062

0.0625

0.063

0.0635

Sub−interval

Pr
ob

ab
ilit

y

Uniform density
P−value density
Q−value density

Fig. 7. The probability comparison between P-values and Q-values in each sub-interval
(K = 16, n = 220)

the number of Q-values in each sub-interval. The experimental and theoreti-
cal counting results in each sub-interval are shown in Fig. 8, which shows good
consistency between the theory and the experiment.

5 Statistical Tests on PRNGs

In this section, our experiments confirm that the Q-value based second-level tests
have lower probabilities to erroneously identify good RNGs as not random, and
also demonstrate that they have greater testing capability.

5.1 Experiment Setup

We choose several popular PRNGs including BBS, Linear Congruential Gen-
erator (LCG), Modular Exponentiation Generator (MODEXPG), and Micall-
Schnorr Generator (MSG), and test their original output sequences using the
NIST Statistical Test Suite (sts v2.1) [8] and our version using Q-values.

The test parameters adopted by each test item are the default values specified
in the sts v2.1 toolkit. Also, we run the PRNG functions included in the toolkit
to generate the output sequences, and the input parameters for these PRNGs
are the default values fixed in the source code of sts v2.1, where the default seed
of LCG is 23482349.

5.2 Statistical Testing

Using the recommended test parameters n = 106 and N = 1000, we perform
statistical tests on the output sequences of these PRNGs. We only list the second-
level test results (i.e., pt’s) for the Frequency Test, the Runs Test, the Spectral
Test, and the Universal Test, as shown in Table 1. We omit the results of the

324 S. Zhu et al.

0 2 4 6 8 10 12 14 16
3000

3500

4000

4500

5000

5500

6000

6500

7000

7500

8000

Sub−interval

N
um

be
r o

f o
cc

ur
re

nc
es

BBS data
Theoretical Q−value
Uniform density

Fig. 8. Q-value comparison between the experimental and theoretical results in each
sub-interval (n = 210, N = 100000, K = 16)

Table 1. Second-level test results for PRNGs (n = 106, N = 1000)

PRNG Second-
level
Test

Frequency Runs Spectral
(c = 4)

Spectral (c = 3.8) Universal

BBS P-value 0.6641 0.6350 0.5281 0.2480 0.4299

Q-value 0.4817 0.9379 0.0218 0.0113 0.4263

MSG P-value 0.3899 0.1746 0.6642 0.9619 0.7734

Q-value 0.8055 0.1786 0.1825 0.6350 0.9996

LCG P-value 0.8596 0.7075 0.4788 0.6392 0.8111

Q-value 0.4769 0.8905 0.0007 0.0026 0.4447

MODEXPG P-value 0.0 * 0.4541 0.2636 0.2676

Q-value 0.0 * 0.1538 0.1107 0.7578

* The first-level test fails.

Random Excursions Variant Test, for 18 different subitems are included in this
item and all these subitems are passed.

All the tested sequences of these PRNGs pass the whole original SP 800-22
test suite, except for MODEXPG. For BBS, MSG, and LCG, the pt’s of the three
binomial-based tests are all greater than the preset threshold αT = 0.0001, thus
these PRNGs pass both P-value based and Q-value based second-level tests. For
MODEXPG, the Frequency Test fails either for P-value or Q-value. However,
the Q-value’s pt of LCG in the Spectral Test becomes very small (0.0007), which
indicates that the test statistics are not well consistent with the standard normal
distribution, though pt is still greater than αT .

In order to confirm the discovery in the Spectral Test, we plot the histograms
using the probability density values computed on the 1000 test statistics from
LCG or MSG, and compare them with the PDF of the standard normal distri-
bution, as depicted in Fig. 9. The distribution of the test statistics of MSG has

More Powerful and Reliable Second-Level Statistical Randomness Tests 325

Test statistic

Pr
ob

ilit
y

de
ns

ity

−3 −2 −1 0 1 2 3

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

(a) The test statistics of LCG

Test statistic

Pr
ob

ilit
y

de
ns

ity

−3 −2 −1 0 1 2 3

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

(b) The test statistics of MSG

Fig. 9. Comparison between the standard normal distribution and the distribution of
test statistics for LCG and MSG

better consistency with the standard normal distribution, while the distribution
of the test statistics of LCG drifts to the right. As we analyzed in Sect. 4.2, the
Q-value based test is more sensitive to the mean drift, thus detects the drift
better than the P-value based test.

For the Spectral Test, Pareschi et al. [10] pointed out that the variance σ2 =
0.95 · 0.05 · n/c with c = 3.8, is closer to the ideal distribution than the original
value (c = 4) in the NIST SP 800-22 test suite [4,6,11]. Here we emphasize
that the modification only adjusts the variance of the test statistic value, rather
than the mean. The reason why the tested sequence almost fails the Spectral
Test is the asymmetry of the statistic values. Therefore, the mean drift (or the
asymmetry) still exists after modifying the variance, thus the Q-value based
test can still detect the drift. This is confirmed by the experiment, and the
experimental results for c = 3.8 are also shown in Table 1.

5.3 Further Analysis on LCG

We repeat the Spectral Test on the output sequences of LCG with different
seeds, and the pt results of the P-value and Q-valued based second-level tests
are presented in Table 2. From Table 2, we confirm that the conflict in Table 1 is
not a coincidence or individual example, as similar results are also obtained for
other seeds. It is noted that the choice of the LCG parameters has an impact
on the quality of the output, thus the output sequences derived from some seeds
are possible to show better statistical properties, as shown in the latter rows
of Table 2.

Although we get small pt’s in the Q-value based second-level tests for LCG
outputs, the sequence is still considered to pass the test (pt ≥ αT = 0.0001).
Therefore, we further test the LCG outputs using a longer block length n = 107

to improve the testing capability, and the tested sequence is the same with that

326 S. Zhu et al.

Table 2. The second-level test results of the Spectral Test on the outputs of LCG with
different seeds (n = 106, N = 1000, c = 4)

Seed P-value based test Q-value based test

73724612 0.3635 0.00006

12876498 0.2882 0.00030

52731971 0.0329 0.00096

92134122 0.0142 0.00106

82345342 0.1478 0.01581

59823781 0.6890 0.02959

23646172 0.2167 0.03732

in Table 1. We find that, out of N = 100 blocks only 2 blocks pass the Spectral
Test, i.e., the first-level test fails. For comparison, we also perform the test with
n = 107 and N = 100 on the same BBS output sequence in Table 1, and the test
is still passed. The detailed test reports are presented in Appendix B.

It is reasonable to conclude that the Q-value based second-level tests improve
the detectability under the same test parameters. In the process of increasing the
block length to improve the testing capability, the Q-value based second-level
tests discover statistical flaws sooner.

6 Conclusion

We investigate the testing capability of the second-level tests of the binomial-
based tests in the NIST SP 800-22 test suite, and find that, the sequence that
passes the tests could still have statistical flaws in the assessed aspect. Hence, we
propose Q-value as the metric for the second-level tests to replace the original
P-value without any extra modification. The Q-value based second-level test is
applicable for all the five binomial-based tests, including the Frequency, Runs,
Spectral, Universal, and Random Excursions Variant Tests. We provide the cor-
rectness proof of the proposed Q-value based second-level tests, and the distance
analyses show that the modification improves the testing capability. Surprisingly,
the comparison between the P-value’s and Q-value’s actual distributions indi-
cates that the testing reliability is also improved. The experiments on several
popular PRNGs demonstrate that the Q-value based second-level tests improve
the detectability under the same test parameters. In the future, we will study
the effectiveness of our method on TRNGs, and further analyze the properties
of the Q-value based second-level tests.

Acknowledgments. We thank the anonymous reviewers of CHES 2016 and ASI-
ACRYPT 2016, for their invaluable suggestions and comments to improve the qual-
ity and fairness of this paper. This work was partially supported by National Basic
Research Program of China (973 Program No. 2013CB338001), National Natural Sci-
ence Foundation of China (No. 61602476) and Strategy Pilot Project of Chinese Acad-
emy of Sciences (No. XDA06010702).

More Powerful and Reliable Second-Level Statistical Randomness Tests 327

A Statistical Test Results on the Original and Processed
BBS Output Sequences

See Tables 3 and 4.

Table 3. Statistical test report of the original BBS outputs (n = 106, N = 103)

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 P-VALUE PROPO STATISTICAL TEST

102 88 101 108 101 89 93 95 111 112 0.664168 995/1000 Frequency

86 109 99 91 89 106 106 94 116 104 0.474986 987/1000 BlockFrequency

88 102 85 106 112 98 88 109 103 109 0.463512 994/1000 CumulativeSums

97 96 83 104 103 94 107 109 103 104 0.807412 996/1000 CumulativeSums

89 115 89 103 102 95 100 102 93 112 0.635037 990/1000 Runs

98 90 97 101 116 102 99 93 104 100 0.883171 994/1000 LongestRun

103 98 80 92 102 96 116 94 108 111 0.371941 989/1000 Rank

107 108 83 99 109 101 90 94 96 113 0.528111 983/1000 FFT

97 104 101 118 84 86 112 94 97 107 0.319084 993/1000 NonOverlappingTemplate

103 101 104 106 112 94 90 95 90 105 0.841226 992/1000 OverlappingTemplate

114 118 104 101 98 93 93 97 84 98 0.429923 987/1000 Universal

107 98 97 89 95 99 101 101 106 107 0.965860 995/1000 ApproximateEntropy

62 58 67 60 68 61 53 63 60 52 0.906970 598/604 RandomExcursions

59 53 55 56 66 59 73 51 58 74 0.380976 600/604 RandomExcursionsVariant

90 96 81 105 109 96 104 117 109 93 0.323668 994/1000 Serial

81 97 91 104 112 100 105 103 113 94 0.484646 988/1000 Serial

111 95 100 107 113 88 97 97 97 95 0.779188 993/1000 LinearComplexity

Table 4. Statistical test report of the processed BBS outputs (n = 106, N = 103)

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 P-VALUE PROPO STATISTICAL TEST

102 88 101 108 101 89 93 95 111 112 0.664168 995/1000 Frequency

86 109 99 91 89 106 106 94 116 104 0.474986 987/1000 BlockFrequency

88 102 85 106 112 98 88 109 103 109 0.463512 994/1000 CumulativeSums

97 96 83 104 103 94 107 109 103 104 0.807412 996/1000 CumulativeSums

89 115 89 103 102 95 100 102 93 112 0.635037 990/1000 Runs

101 88 88 111 118 100 104 99 92 99 0.518106 993/1000 LongestRun

99 100 81 85 107 98 111 98 110 111 0.361938 990/1000 Rank

107 108 83 99 109 101 90 94 96 113 0.528111 983/1000 FFT

98 102 88 105 91 105 104 97 102 108 0.926487 994/1000 NonOverlappingTemplate

122 89 90 98 112 96 109 108 84 92 0.147815 991/1000 OverlappingTemplate

114 118 104 101 98 93 93 97 84 98 0.429923 987/1000 Universal

107 98 97 89 95 99 101 101 106 107 0.965860 995/1000 ApproximateEntropy

61 56 57 53 74 57 64 65 65 52 0.654467 597/604 RandomExcursions

56 60 58 55 76 54 69 51 54 71 0.280306 601/604 RandomExcursionsVariant

90 96 81 105 109 96 104 117 109 93 0.323668 994/1000 Serial

81 97 91 104 112 100 105 103 113 94 0.484646 988/1000 Serial

97 92 110 99 101 105 98 97 108 93 0.953089 992/1000 LinearComplexity

328 S. Zhu et al.

B Statistical Test Results with the Longer Block Length
on the LCG and BBS Output Sequences

See Tables 5 and 6.

Table 5. Statistical test report of the LCG outputs (n = 107, N = 102)

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 P-VALUE PROPO STATISTICAL TEST

12 16 4 12 12 8 10 8 11 7 0.334538 100/100 Frequency

12 10 8 11 11 8 11 10 6 13 0.911413 100/100 BlockFrequency

12 13 14 6 6 11 8 7 13 10 0.494392 99/100 CumulativeSums

9 11 10 11 11 17 10 6 9 6 0.474986 100/100 CumulativeSums

9 10 7 12 13 8 13 12 9 7 0.834308 99/100 Runs

9 10 9 10 13 16 7 6 12 8 0.534146 100/100 LongestRun

14 10 12 7 11 7 9 12 9 9 0.867692 98/100 Rank

100 0 0 0 0 0 0 0 0 0 0.000000 2/100 FFT

6 11 10 10 6 15 12 11 14 5 0.319084 100/100 NonOverlappingTemplate

17 13 7 10 13 7 8 6 9 10 0.304126 97/100 OverlappingTemplate

6 8 7 8 12 10 7 17 12 13 0.289667 98/100 Universal

10 3 8 10 8 12 13 6 21 9 0.013569 99/100 ApproximateEntropy

8 14 7 13 3 9 6 13 9 8 0.213309 88/90 RandomExcursions

9 8 13 11 7 9 11 11 6 5 0.694743 89/90 RandomExcursionsVariant

5 9 10 9 4 12 8 18 10 15 0.066882 100/100 Serial

8 10 11 7 13 6 12 13 10 10 0.816537 100/100 Serial

7 11 6 8 13 11 14 7 9 14 0.514124 100/100 LinearComplexity

Table 6. Statistical test report of the BBS outputs (n = 107, N = 102)

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 P-VALUE PROPO STATISTICAL TEST

12 10 7 6 11 6 15 7 8 18 0.096578 99/100 Frequency

11 8 7 11 8 7 6 12 14 16 0.350485 100/100 BlockFrequency

12 10 4 15 8 10 8 8 13 12 0.437274 99/100 CumulativeSums

12 5 10 12 9 4 11 13 11 13 0.437274 99/100 CumulativeSums

11 12 10 12 8 6 8 8 13 12 0.834308 100/100 Runs

7 16 14 11 5 7 13 9 5 13 0.122325 100/100 LongestRun

11 11 12 6 8 7 10 11 10 14 0.816537 99/100 Rank

16 13 13 6 14 10 7 7 5 9 0.162606 97/100 FFT

13 11 12 7 6 7 6 10 11 17 0.249284 97/100 NonOverlappingTemplate

18 12 10 11 8 9 11 7 7 7 0.334538 96/100 OverlappingTemplate

15 10 9 8 8 8 12 11 7 12 0.779188 100/100 Universal

9 11 11 6 7 8 10 7 8 23 0.010988 99/100 ApproximateEntropy

11 8 9 7 7 9 9 7 7 14 0.689019 88/88 RandomExcursions

9 8 8 6 10 7 4 11 17 8 0.105618 87/88 RandomExcursionsVariant

9 12 10 9 13 10 7 6 7 17 0.366918 100/100 Serial

7 20 8 8 9 9 8 8 9 14 0.108791 99/100 Serial

11 7 11 10 14 12 6 8 12 9 0.779188 100/100 LinearComplexity

More Powerful and Reliable Second-Level Statistical Randomness Tests 329

References

1. The R project for statistical computing. http://www.r-project.org
2. Blum, L., Blum, M., Shub, M.: A simple unpredictable pseudo-random number

generator. SIAM J. Comput. 15(2), 364–383 (1986)
3. Devroye, L.: Introduction. In: Devroye, L. (ed.) Non-Uniform Random Variate

Generation, pp. 1–26. Springer, New York (1986)
4. Hamano, K.: The distribution of the spectrum for the discrete fourier transform

test included in SP800-22. IEICE Trans. 88–A(1), 67–73 (2005)
5. Hamano, K., Kaneko, T.: Correction of overlapping template matching test

included in NIST randomness test suite. IEICE Trans. 90–A(9), 1788–1792 (2007)
6. Kim, S., Umeno, K., Hasegawa, A.: Corrections of the NIST statistical test suite

for randomness. IACR Cryptology ePrint Archive 2004, 18 (2004). http://eprint.
iacr.org/2004/018

7. Marsaglia, G.: Diehard Battery of Tests of Randomness. http://www.stat.fsu.edu/
pub/diehard/

8. NIST: Statistical test suite (sts 2.1). http://csrc.nist.gov/groups/ST/toolkit/rng/
documents/sts-2.1.2.zip

9. Pareschi, F., Rovatti, R., Setti, G.: Second-level NIST randomness tests for improv-
ing test reliability. In: International Symposium on Circuits and Systems (ISCAS
2007), pp. 1437–1440 (2007)

10. Pareschi, F., Rovatti, R., Setti, G.: On statistical tests for randomness included in
the NIST SP800-22 test suite and based on the binomial distribution. IEEE Trans.
Inf. Forensics Secur. 7(2), 491–505 (2012)

11. Rukhin, A., et al.: A statistical test suite for random and pseudorandom num-
ber generators for cryptographic applications. NIST Special Publication 800–22.
http://csrc.nist.gov/publications/nistpubs/800-22-rev1a/SP800-22rev1a.pdf

12. Storey, J.D.: The positive false discovery rate: A bayesian interpretation and the
q-value. Ann. Stat. 31(6), 2013–2035 (2003)

13. Storey, J.D., Tibshirani, R.: Statistical significance for genomewide studies. Proc.
Nat. Acad. Sci. 100(16), 9440–9445 (2003)

14. Sulak, F., Doğanaksoy, A., Ege, B., Koçak, O.: Evaluation of randomness test
results for short sequences. In: Carlet, C., Pott, A. (eds.) SETA 2010. LNCS, vol.
6338, pp. 309–319. Springer, Heidelberg (2010). doi:10.1007/978-3-642-15874-2 27

15. Zhuang, J., Ma, Y., Zhu, S., Lin, J., Jing, J.: Q value test: a new method on
randomness statistical test. J. Cryptologic Res. 3(2), 192–201 (2016). (in Chinese)

http://www.r-project.org
http://eprint.iacr.org/2004/018
http://eprint.iacr.org/2004/018
http://www.stat.fsu.edu/pub/diehard/
http://www.stat.fsu.edu/pub/diehard/
http://csrc.nist.gov/groups/ST/toolkit/rng/documents/sts-2.1.2.zip
http://csrc.nist.gov/groups/ST/toolkit/rng/documents/sts-2.1.2.zip
http://csrc.nist.gov/publications/nistpubs/800-22-rev1a/SP800-22rev1a.pdf
http://dx.doi.org/10.1007/978-3-642-15874-2_27

Authenticated Encryption

Trick or Tweak: On the (In)security
of OTR’s Tweaks

Raphael Bost1,2(B) and Olivier Sanders3

1 Direction Générale de l’Armement - Mâıtrise de l’Information, Bruz, France
raphael bost@alumni.brown.edu

2 Université de Rennes 1, Rennes, France
3 Orange Labs, Cesson-Sévigné, France

Abstract. Tweakable blockcipher (TBC) is a powerful tool to design
authenticated encryption schemes as illustrated by Minematsu’s Offset
Two Rounds (OTR) construction. It considers an additional input, called
tweak, to a standard blockcipher which adds some variability to this
primitive. More specifically, each tweak is expected to define a different,
independent pseudo-random permutation.

In this work we focus on OTR’s way to instantiate a TBC and show
that it does not achieve independence for a large amount of parame-
ters. We indeed describe collisions between the input masks derived from
the tweaks and explain how they result in practical attacks against this
scheme, breaking privacy, authenticity, or both, using a single encryption
query, with advantage at least 1/4.

We stress however that our results do not invalidate the OTR con-
struction as a whole but simply prove that the TBC’s input masks should
be designed differently.

1 Introduction

Communications over an insecure channel usually rise the issue of confidential-
ity and authenticity of data exchanged through this channel. Although efficient
solutions are known for each of these properties individually, their combination
to ensure both is not obvious [BN00,Kra01] and has, in practice, resulted in
security breaches (e.g. [Kra01,AP13]). Also, the combination of different con-
structions, potentially relying on different primitives, may reveal quite costly.

Designing an authenticated encryption (AE) scheme, which efficiently
achieves both authenticity and confidentiality, has thus become a major topic
in cryptography, with many past contributions [Dwo04,Dwo07,MV04,BRW04,
Rog04,KR11]. Since the beginning of the CAESAR competition [CAE14],
a large number of new constructions have been proposed, from blockci-
pher modes of operation [IMGM15,Min14,AFF+15,DN14,HKR15] to ad-hoc
designs [Nik14], or sponge-based constructions [BDP+14,ABB+14]. Among the
former, OTR [Min14] follows an approach based on tweakable blockciphers
(TBC), a powerful primitive introduced by Liskov, Rivest and Wagner [LRW02].

c© International Association for Cryptologic Research 2016
J.H. Cheon and T. Takagi (Eds.): ASIACRYPT 2016, Part I, LNCS 10031, pp. 333–353, 2016.
DOI: 10.1007/978-3-662-53887-6 12

334 R. Bost and O. Sanders

1.1 Tweakable Blockcipher

Compared to a regular blockcipher, a TBC Ẽ : K × T × {0, 1}n → {0, 1}n takes
an additional input T ∈ T , called a tweak, which adds some variability. As
illustrated in [LRW02], a TBC enables simpler designs and security proofs for
AE schemes, and can be instantiated from a blockcipher. To achieve efficiency,
the design of the input masks must take into account the fact that the TBC
is generally not used alone but rather in a mode of operation. In particular,
the cost of changing the tweak must be much smaller than the cost of changing
the key.

The now common constructions to build a TBC out of a block cipher are the
Xor-Encrypt (XE) and Xor-Encrypt-Xor (XEX) constructions of [Rog04]. The
principle of XE is to derive an input mask Δ from the tweak and xor it with
the message before calling EK (XEX also xors this mask to the output). The
efficiency comes from designing the input mask Δ in such a way that Δi+1 (used
to encrypt the i-th message block) can be easily derived from Δi. For example,
in OCB2 [Rog04], Δi+1 is obtained from Δi by multiplying the latter by some
elements of F2n (namely X or (X + 1), where X generates F

∗
2n).

OTR’s masks slightly differs from OCB2’s one by using, among others, Δi,0 =
Xi+1δ for the 2i−1-th block and Δi,1 = (Xi+1+1)δ for the 2i-th block (where δ
is the encryption of the nonce). This approach is very well suited to the Feistel-
based construction of OTR.

1.2 Our Contribution

However, we show in this paper that this solution is, at best, unsafe and even
totally insecure in many cases. Indeed, the security of XE relies on the hardness
of constructing collisions among the input masks Δi.

This can easily be proven for OCB2 due to the form of Δ = Xi(X +
1)jEK(N). A collision in the offsets means that Xi(1 + X)j = Xi′

(1 + X)j′

for some integers i, i′, j and j′, and so that (1 + X)j−j′
= Xi′−i. This equation,

along with the discrete logarithm of X + 1 in base X, allows to define bounds
on i and j excluding any collision. Unfortunately, this is no longer true for OTR
due to the special form of its offsets. For example, if we just consider the input
masks Δi,0 = Xi+1δ and Δi,1 = (Xi+1+1)δ, it is impossible to formally exclude
collisions: there are no algebraic reason why Xi should differ from Xj + 1 for
any i, j ≤ B, for some bound B.

The simple fact that no formal proof can be provided should itself call for
another design of the masks, nevertheless one might still wonder if these collisions
are likely.

In this work, we investigate this issue and show that, for a large family of
blocksize n ≤ 10000 (OTR is defined for any blockcipher size n ∈ N

∗), standard
choices of parameters lead to trivial collisions. Moreover, we show that the block
sizes outside this family are not necessarily secure and need a specific, costly
study to exclude collision for reasonable B. We focus on the most popular choices,
namely n = 64 and n = 128, and present a collision for the former case when

Trick or Tweak: On the (In)security of OTR’s Tweaks 335

F264 is generated, as usual, using the primitive pentanomial P = X64 + X4 +
X3 + X + 1. We get similar results for n = 128 when F2128 is generated by some
specific primitive pentanomials. However, the latter do not include the usually
used one, namely P = X128 + X7 + X2 + X + 1. We therefore study more
thoroughly this case and propose a bound B = 245 excluding collisions. We do
not claim that this bound is optimal but we provide evidence that collisions are
likely to occur between 245 and 264.

In a second part, we describe concrete attacks against privacy and authen-
ticity resulting from these collisions. They show that the latter do not simply
invalidate the security proof but also completely break the security of the con-
struction.

Finally, we describe some ways of constructing the input masks which prevent
collisions. We therefore emphasize that our work does not question the intrinsic
security of OTR seen as a TBC mode of operation, but simply shows that the
instantiation of the TBC in [Min14] should be fixed. In particular, due to our
attack, Minematsu modified the masks generation in the last version of the
CAESAR submission, AES-OTRv3 [Min16].

2 Preliminaries

2.1 Basic Notations

For sake of clarity, we will use the same notations as the ones of [Min14].
The set of all finite-length binary strings, including the empty string ε, is
denoted by {0, 1}∗. ∀S ∈ {0, 1}∗, |S| denotes the length of S and |S|a =
max{�(|S|/a)�, 1}. The concatenation of two binary strings S and T is written
ST . ∀S ∈ {0, 1}∗, (S[1], . . . , S[m]) n← S denotes the n-bit block partitioning of S,
i.e. S = S[1] . . . S[m], where |S[i]| = n for i < m and |S[m]| ≤ n (we thus have
m = |S|n). The sequence of a zeros is denoted by 0a. For all n ∈ N and S such
that |S| ≤ n, Sn denotes the padding S10n−|S|−1 if |S| < n and S otherwise. In
the following, we will omit the subscript n if it is made obvious by the context.
For a finite set S, we write S

$← S if S is uniformly chosen from S.

2.2 Blockciphers and Tweakable Blockciphers

We review the standard definitions of blockciphers and tweakable blockciphers
from [LRW02,Rog04]. A blockcipher is a function E : K × {0, 1}n → {0, 1}n

where n ∈ N, K 	= ∅ is a finite set and E(K, .) = EK(.) is a permutation for each
K ∈ K. The PRF and PRP advantages of E against adversary A are defined as:

AdvprfE (A) = P[K $← K : AEK(.) ⇒ 1] − P[ρ $← Func(n) : Aρ(.) ⇒ 1]

AdvprpE (A) = P[K $← K : AEK(.) ⇒ 1] − P[π $← Perm(n) : Aπ(.) ⇒ 1]

where Func(n) (resp. Perm(n)) is the set of all the functions (resp. permutations)
{0, 1}n → {0, 1}n.

336 R. Bost and O. Sanders

A tweakable blockcipher is a blockcipher with an additional public input. It is
formalized as a function Ẽ : K×T ×{0, 1}n → {0, 1}n where n ∈ N, K, T 	= ∅ are
finite sets and Ẽ(K,T, .) = ẼK(T, .) = ẼT

K(.) is a permutation for each K ∈ K
and T ∈ T . The tweakable PRF and tweakable PRP advantages of Ẽ against
adversary A is defined as:

Advp̃rf
Ẽ

(A) = P[K $← K : AẼK(.,.) ⇒ 1] − P[ρ̃ $← Func(T , n) : Aρ̃(.,.) ⇒ 1]

Advp̃rp
Ẽ

(A) = P[K $← K : AẼK(.,.) ⇒ 1] − P[π̃ $← Perm(T , n) : Aπ̃(.,.) ⇒ 1]

where Func(T , n) (resp. Perm(T , n)) is the set of all mappings from T to func-
tions (resp permutations) {0, 1}n → {0, 1}n.

2.3 Authenticated Encryption

Definition. An authenticated encryption AE[τ] having a τ -bit tag consists of
an encryption algorithm AE-Eτ and a decryption algorithm AE-Dτ . The former
takes as input a key K ∈ Kae, a nonce N ∈ Nae and an associated data A ∈ Aae

along with a message M ∈ Mae and outputs a ciphertext C ∈ Mae as well as
a tag TE ∈ {0, 1}τ . On input (K,N,A,C, TE), the latter outputs a plaintext M
such that |M | = |C| or an error symbol ⊥. The sets Kae, Nae, Aae and Mae are
assumed to be non-empty and finite.

Security Model. The security properties expected from an authenticated
encryption scheme are privacy and authenticity. The former informally requires
that no adversary, even given access to encryption queries, is able to distinguish
AE[τ] from an oracle $ returning a random pair (C, TE) $← {0, 1}|M | × {0, 1}τ

on input (N,A,M). This is formally defined by the following advantage:

AdvprivAE[τ](A) = Pr[K $← Kae : AAE−Eτ → 1] − Pr[A$ → 1].

We say an adversary A is nonce-respecting if it cannot submit two queries
(Ni, Ai,Mi) and (Nj , Aj ,Mj) with Ni = Nj for i 	= j. In this paper, we
will always consider nonce-respecting adversaries. It is claimed in [Min14] that
AdvprivOTR[τ](A) ≤ 6(q+σA+σM)2

2n where q is the number of encryption queries and
(σA, σM) = (

∑q
i |Ai|,

∑q
i |Mi|).

Authenticity informally requires that no adversary, even with access to
encryption and decryption queries, is able to produce a valid tuple (N,A,C, TE),
i.e. one such that AE-Dτ (N,A,C, TE) 	=⊥. Obviously, (N,A,C, TE) must not
have been previously returned by the encryption oracle. The authenticity notion
is defined by the advantage:

AdvauthAE[τ](A) = Pr[K $← Kae : AAE−Eτ ,AE−Dτ forges]

where A forges if one of the decryption query (N ′
i , A

′
i, C

′
i, T

′
E,i) does not return ⊥.

Notice that N ′
i may be equal to Nj or N ′

i′ for all i, i′ and j. It is claimed in [Min14]

Trick or Tweak: On the (In)security of OTR’s Tweaks 337

that AdvauthOTR[τ](A) ≤ 6(q+q′+σA+σM+σA′+σC′)2

2n where q (resp. q′) is the num-
ber of encryption (resp. decryption) queries, (σA, σM) = (

∑q
i |Ai|,

∑q
i |Mi|) and

(σA′ , σC′) = (
∑q

i |A′
i|,

∑q
i |C ′

i|).

2.4 Galois Field

For all non negative integers n, we denote by F2n the field with 2n elements and
by F

∗
2n its multiplicative group. To represent this field one [IK03,Rog04,Min14]

usually selects the lexicographically first polynomial P among the primitive poly-
nomials of degree n with coefficients in F2 having a minimum number of non-zero
coefficients, and use F2[X]/P (X) as a representation of F2n . [Ser98] provides such
polynomials for n ≤ 10000. An element a ∈ F2n can then be written as a formal
polynomial b1X

n−1 + . . .+ bn−1X + bn of degree n− 1 or equivalently as a n-bit
string b1 . . . bn. In the following, we will use both notations interchangeably.

For any a = b1X
n−1 + . . .+ bn and c = b′

1X
n−1 + . . .+ b′

n in F2n , the product
a · c is (

∑n
i=1 biX

n−i)(
∑n

j=1 b′
jX

n−j) mod P (X). In particular, it is worthy to
note that a · X can be computed very efficiently with a shift and a conditional
xor, hence the interest of a low-weight polynomial P . For example, for n = 119,
one would select P (X) = X119+X8+1 [Ser98], so a ·X = (a << 1)⊕0110b107b1.

The table in [Ser98] shows that, up to n = 10000, primitive trinomials exist
for slightly over one half of the values of n. In this case, the field F2n is usually
generated by Xn+Xj +1 for some j ∈ [1, n−1]. Otherwise, the table shows that,
for n ≤ 10000, one can at least find an irreducible pentanomial. For example,
for n = 128, one can use P (X) = X128 + X7 + X2 + X + 1.

3 Description of OTR

Before describing our attack, we recall the AE scheme of [Min14], OTR[E, τ],
parametrized by a keyed permutation EK : {0, 1}n → {0, 1}n, and a tag length
τ ≤ n. Its encryption algorithm OTR-EE,τ consists of an encryption core EFE

and an authentication core AFE which processes the additional authenticated
data. Since our attack applies on EFE , we omit the description of AFE in Fig. 1
and assume that the string A (authenticated data) is empty.

EFE can be seen as a variation of the tweakable blockcipher based authen-
ticated encryption mode OCB [Rog04]. In OTR, tweakable blockciphers are
instantiated using a two-rounds Feistel permutation where internal round func-
tions are PRFs with tweak-dependent input masks. Algorithm 1 gives a for-
mal description of the authenticated encryption algorithm EF[ρ̃, τ] that uses a
tweakable random function ρ̃. As defined in [Min14], the tweak space of ρ̃ is
T = ({0, 1}n × N × {0, 1}) ∪ ({∗} × {0, 1}n × N × {0, 1} × {0, 1}).1

An important theorem in the security proof of OTR is that, if ρ̃ is a tweakable
random function, then EF[ρ̃, τ] is a secure authenticated encryption scheme.

1 We slightly changed the notations from [Min14] to give a more formal construction
of the tweakable PRF.

338 R. Bost and O. Sanders

N

pad

EK

δ

×x2

L

M [1] M [2]

⊕
Δ1,0

EK

⊕
ẼN,1,0

K

⊕
EK

Δ1,1

ẼN,1,1
K

⊕

C[0] C[1]

.

M [2� − 3] M [2� − 2]

⊕
Δ�−1,0

EK

⊕
ẼN,�−1,0

K

⊕
EK

Δ�−1,1

ẼN,�−1,1
K

⊕

C[2� − 3] C[2� − 2]

if m is even if m is odd authentication

M [m − 1] M [m]

⊕
Δ�,0

EK Z msb
⊕

ẼN,�,0
K

pad
⊕

EK

Δ�,1

⊕

ẼN,�,1
K

C[m − 1] C[m]

M [m]0n

⊕
msbEK

⊕

Δ�,0

ẼN,�,1
K

C[m]

Σ

⊕
Δ∗,b1,b2

EK

TE

Ẽ∗,N,�,b1,b2
K

Σ = M [2] ⊕ . . . ⊕ M [m − 2]

⊕ Z ⊕ C[m]

Σ = M [2] ⊕ . . . ⊕ M [m − 1]

⊕ M [m]

Fig. 1. Encryption core EFE of OTR for a message M = M [1] . . . M [m] and a blocksize
n. The integer � is defined as �m

2
�. Δi,b = (Xi+1 + b)δ, for i = 1, . . . , � and b ∈ {0, 1}.

Δ∗,b1,b2 = [(X + 1)X�+1 + X · b1 + b1 + b2]δ with b1 = 0 if m is odd and 1 otherwise
while b2 = 0 if |M [m]| < n and 1 otherwise. The dotted boxes represent the tweakable
random functions of the OTR construction.

Theorem 1 (Theorem 3 of [Min14]). Fix τ ∈ {1, . . . , n}. For any adversary
A, and tweakable random function ρ̃

Advpriv
EF[ρ̃,τ](A) = 0.

Trick or Tweak: On the (In)security of OTR’s Tweaks 339

Moreover, for any adversary A making q encryption queries and qv decryption
queries,

Advauth
EF[ρ̃,τ](A) ≤ 2qv

2n
+

qv

2τ
.

We refer to the original paper for the full proof of this theorem. Minematsu also
instantiates ρ̃ using the XE approach [Rog04]:

ẼN,i,a
K (P) = EK(P + Δi,a) with Δi,a = Xi−1L + a · δ

Ẽ∗,N,i,b1,b2
K (P) = EK(P + Δ∗,i,b1,b2) with Δ∗,i,b1,b2 = (X + 1)(Xi−1L + b1 · δ) + b2 · δ

where δ = EK(N) and L = X2δ. Once developed, the final expression of the Δ
values is

Δi,a = (Xi+1 + a)δ

Δ∗,i,b1,b2 = (Xi+2 + Xi+1 + b1X + b1 + b2)δ.

Algorithm 1. Description of EF[ρ̃, τ].

1: Σ ← 0n

2: (M [1], . . . , M [m])
n← M

3: � ← �m/2�
4: for i = 1 to � − 1 do
5: C[2i−1] ← ρ̃N,i,0(M [2i−1])⊕M [2i]
6: C[2i] ← ρ̃N,i,1(C[2i−1])⊕M [2i−1]
7: Σ ← Σ ⊕ M [2i]
8: end for
9: if m is even then

10: Z ← ρ̃N,�,0(M [m − 1])
11: C[m] ← msb|M [m]|(Z) ⊕ M [m]
12: C[m−1] ← ρ̃N,�,1(C[m])⊕M [m−1]
13: Σ ← Σ ⊕ Z ⊕ C[m]

14: if |M [m]| �= n then TE ←
ρ̃∗,N,�,1,0(Σ)

15: else TE ← ρ̃∗,N,�,1,1(Σ)
16: else � m is odd
17: C[m] ← msb|M [m]|(ρ̃

N,�,0(0n)) ⊕
M [m]

18: Σ ← Σ ⊕ M [m]
19: if |M [m]| �= n then TE ←

ρ̃∗,N,�,0,0(Σ)
20: else TE ← ρ̃∗,N,�,0,1(Σ)
21: end if
22: C ← (C[1], . . . , C[m])
23: return (C, TE)

To finish the proof of security, [Min14] uses the Lemma 1, claiming the CPA
security of the tweakable PRF Ẽ, provided that E is a perfect blockcipher (a
random permutation):

Lemma 2 (Lemma 1 of [Min14]). For any adversary A making q queries,

Advp̃rf
Ẽ

(A) ≤ 5q2

2n
.

The proof of Lemma 1 relies on the fact that the masks Δ are assumed to
be “differentially uniform” for any two distinct inputs. However, we show below
that this is not the case for a large choice of parameters n, and that it actually
completely breaks the security of OTR.

340 R. Bost and O. Sanders

4 Collision in Masks Polynomials

4.1 Flaw in OTR’s Proof

In [Min14], all possible masks Δ are regrouped in a set

S1(δ) =
{
Xi+1δ, (Xi+1 + 1)δ, (Xi+2 + Xi+1)δ, (Xi+2 + Xi+1 + X)δ,

(Xi+2 + Xi+1 + 1)δ, (Xi+2 + Xi+1 + X + 1)δ
}

i=1

(no upper bound on i is given but we can suppose that it is bounded by the
maximum number of blocks one can query for an encryption, and that is it at
most 2n/2) and it is claimed that for any Δ,Δ′ ∈ S1(δ1) ∪ S1(δ2) such that Δ
and Δ′ are generated from two different expressions, and d ∈ {0, 1}n,

Pr
δ1,δ2

$←{0,1}n

[Δ + Δ′ = d] ≤ 1
2n

where the probability is taken over the random choices of δ1 and δ2. This is true
if Δ ∈ S1(δ1) and Δ′ ∈ S1(δ2), but not if both Δ and Δ′ are generated from the
same δ.

Namely, suppose that there are two integers i and j ≥ 2 such that

Xi = Xj + 1 (1)

or Xi = Xj+1 + Xj + r(X) (2)

or Xi+1 + Xi = Xj+1 + Xj + r(X) (3)

with r(X) ∈ {0, 1,X,X + 1}. Then we directly have a collision inside S1(δ) for
any δ. This problem is not highlighted in the proof and we will show that we
can actually find (and use) such pairs of integers.

In the following, we will use the terms ‘type-1’, ‘type-2’, and ‘type-3’ for
collisions satisfying, respectively, Eqs. (1), (2) and (3).

4.2 Finding Collisions

The problem with the polynomials considered above is that it seems impossible,
given n ∈ N and a polynomial P generating F2n , to provide a formal argument
excluding collisions for any i, j ∈ [2, t] for some integer 2 < t ≤ 2n/2. One can
note that we do not consider collisions in the set {Xi}t

i=2, as X is a generator
of F∗

2n (since P is primitive) and we chose t ≤ 2n/2.
Actually, we show that trivial collisions can be found when the definition

polynomial P has a special form, in particular when P is a trinomial or a pen-
tanomial.

Trick or Tweak: On the (In)security of OTR’s Tweaks 341

Case 1: F2n is generated by a trinomial P (X) = Xn + Xj + 1.
As explained in [Ser98], this is the standard choice for a majority of values

n ≤ 10000. In such a case, a collision in S1 is trivially given by P since Xn =
Xj + 1 (this is thus a type-1 collision). Any encryption of a message M of m
blocks such that �m

2 � ≥ n − 1 will then lead to the re-use of a mask and so to
one of the attacks described in the next session.

One might argue that this can be avoided by generating F2n with a pen-
tanomial instead of a trinomial. However, this unconventional choice will nega-
tively impact the performances of the scheme and will not necessarily prevent
collisions.

Case 2: F2n is generated by a pentanomial P (X) = Xn +Xj1 +Xj2 +Xj3 +1.
This case includes, for example, n = 64 and n = 128. Although there is no trivial
collision as in the previous case, it is still necessary to check, for the chosen n and
P , that S1 only contains distinct elements, which requires a significant amount
of computations and storage space. We here describe the most popular cases:

– n = 64. The lexicographically first primitive pentanomial of degree 64 is X64+
X4 +X3 +X +1 [Ser98]. It leads to a type-2 collision since X64 = X4 +X3 +
X + 1.

– n = 128. Here again, the pentanomial generating F2128 may give an obvious
collision. For example, setting P = X128+X68+X67+X +1 leads to a type-2
collision X128 = X68+X67+X+1, and setting P = X128+X127+X61+X60+1
leads to a type-3 collision X128 + X127 = X61 + X60 + 1. However, this is not
the case with the lexicographically first primitive pentanomial of degree 128,
P = X128 + X7 + X2 + X + 1, that one generally uses to define F2128 . The
latter therefore needs a more thorough study that we defer to Sect. 6.

5 Practical Attacks

One may wonder if the collisions found in the input masks simply invalidate the
security proofs of OTR. Unfortunately, this is not the case and we show below
that any kind of collision leads to attacks breaking privacy and/or authenticity.
We recall that, for sake of simplicity, authenticated data are assumed to be
empty in the following attacks. Attacks for non-empty authenticated data can
easily be derived from them.

5.1 Type-1 Collisions

A type-1 collision occurs when there are i and j such that Xi = Xj +1. We can
assume, without loss of generality, that j < i (since Xi = Xj+1 ⇔ Xj = Xi+1).

342 R. Bost and O. Sanders

Breaking Authenticity. To break authenticity, one can make a query on an
arbitrary message M = M [1] . . . M [2i − 3] for a nonce N , defining δ = EK(N)
and L = X2δ, and receive the ciphertext C = C[1] . . . C[2i − 3] along with the
tag T = TE.

The message M has an odd number of blocks so C[2i − 3] = EK(Xiδ) ⊕
M [2i − 3].

Let C ′ = C ′[1] . . . C ′[2i − 3] such that C ′[k] = C[k] for k /∈ {2j − 3, 2j −
2, 2i − 3}, C ′[2j − 3] = 0n, C ′[2j − 2] = M [2j − 3] ⊕ C[2i − 3] ⊕ M [2i − 3] and
C ′[2i − 3] = C[2i − 3] ⊕ C[2j − 3].

Then, the pair (C ′, TE) is valid: OTR-DE,τ (N, ε, C ′, T) = M ′[1] . . . M ′[2i −
3] 	=⊥. Indeed, by construction, we have M ′[k] = M [k] ∀k /∈ {2j−3, 2j−2, 2i−3}.
Moreover, we have

M ′[2j − 3] = EK(C ′[2j − 3] ⊕ (Xj + 1)δ) ⊕ C ′[2j − 2]

= EK(0n ⊕ (Xj + 1)δ) ⊕ M [2j − 3] ⊕ C[2i − 3] ⊕ M [2i − 3]

= EK((Xj + 1)δ) ⊕ M [2j − 3] ⊕ EK(Xiδ)
= M [2j − 3]

and

M ′[2j − 2] = EK(M ′[2j − 3] ⊕ Xjδ) ⊕ C ′[2j − 3]

= EK(M [2j − 3] ⊕ Xjδ) ⊕ 0n

= C[2j − 3] ⊕ M [2j − 2].

Finally, we have M ′[2i − 3] = M [2i − 3] ⊕ C[2j − 3]. Therefore:

Σ′ = Σ ⊕ C[2j − 3] ⊕ C[2j − 3] = Σ

and the tag TE remains valid for C ′.
For an adversary A following this procedure,

AdvauthAE[τ](A) = 1.

Breaking Privacy. We describe here a way that an adversary A can use to
break privacy with advantage almost 1/4 with a single query. To break privacy,
A queries the encryption oracle with a random nonce N and a message M =
M [1] . . . M [2i − 2] such that |M [2i − 2]| = 1 and M [2j − 3] = 010n−2. A will
receive C = C[1] . . . C[2i − 2] with |C[2i − 2]| = 1. If C[2i − 2] = 1 (which
happens with probability 1

2), A just picks its output bit at random (she does
not try further up). Otherwise, we have C[2i − 2] = 010n−2 = M [2j − 3].

As a consequence, we get the following:

M [2i − 3] = EK(C[2i − 2] ⊕ (Xi + 1)δ) ⊕ C[2i − 3]

= EK(M [2j − 3] ⊕ Xjδ) ⊕ C[2i − 3]
= C[2j − 3] ⊕ M [2j − 2] ⊕ C[2i − 3]

Trick or Tweak: On the (In)security of OTR’s Tweaks 343

and M [2j − 2] ⊕ M [2i − 3] = C[2j − 3] ⊕ C[2i − 3], which defines an efficient
distinguisher between the random encryption oracle and the real encryption
oracle. More formally,

AdvprivAE[τ](A) =
1
2

(

1 − 1
2n

)

− 1
2

· 1
2

=
1
4

− 1
2n+1

.

5.2 Type-2 Collisions

A type-2 collision occurs when there are i and j such that Xi = Xj+1+Xj+r(X)
with r(X) ∈ {0, 1,X,X + 1}. We show below how one can break authenticity if
i ≥ j and privacy if i < j.

Breaking Privacy for i < j . To break privacy, one submits a message M =
M [1] . . . M [m] = 0n . . . 0nM [2i − 3]M [2i − 2]0n . . . M [m − 1]0|M [m]| where m,
|M [m]|, M [2i − 3],M [2i − 2] and M [m − 1] are defined as follows:

– If r(X) = X + 1, then one sets m = 2(j − 1), |M [m]| = n − 1, M [2i − 3] =
M [2i − 2] ∈ {0, 1}n and M [m − 1] ∈ {0, 1}n.
Since the last block of M is 0n−1, the n − 1 most significant bits of Z ⊕ C[m]
are 0n−1. Therefore, if the last bit of Z is 1 (which occurs with probability 1

2),
Z ⊕ C[m] = 0n. Also, in this case, Σ = M [2i − 2] = M [2i − 3]. If the last bit
of Z is not 1, one simply submits new messages with different M [m − 1] until
this condition is fulfilled.
The authentication tag TE then verifies the following relation:

TE = EK(Σ ⊕ Δ∗,m,1,0)

= EK(M [2i − 3] ⊕ (Xj+1 + Xj + X + 1)δ)

= EK(M [2i − 3] ⊕ Xiδ)
= C[2i − 3] ⊕ M [2i − 2]

Therefore, TE ⊕ C[2i − 3] = M [2i − 2], which breaks privacy.
– If r(X) = X, then one sets m = 2(j −1), |M [m]| = n, M [2i−3] = M [2i−2] ∈

{0, 1}n and M [m − 1] ∈ {0, 1}n. In such a case, Σ = M [2i − 2] = M [2i − 3]
and the previous attack still applies.

– If r(X) = 1, then one sets m = 2(j−1)−1, |M [m]| = n, M [2i−3] = M [2i−2] ∈
{0, 1}n and M [m − 1] = 0n. Here again, Σ = M [2i − 2] = M [2i − 3] so the
equality TE ⊕ C[2i − 3] = M [2i − 2] still holds.

– Else, r(X) = 0. One then sets m = 2(j − 1) − 1, |M [m]| = n − 1, M [2i − 3] ∈
{0, 1}n, M [m − 1] = 0n and M [2i − 2] is equal to M [2i − 3] except on the last
bit. We then have:

Σ = M [2i − 2] ⊕ M [m]

= M [2i − 2] ⊕ 0|M [m]|1
= M [2i − 3]

and TE ⊕ C[2i − 3] = M [2i − 2], as before.

344 R. Bost and O. Sanders

In all these cases, we have a distinguishing criteria between the truly random
oracle and the real encryption oracle that can be trivially checked. An adversary
A using this algorithm will break the privacy with advantage 1

4 − 1
2n+1 with a

single encryption query.

Breaking Authenticity for i ≥ j. The previous attacks against privacy shows
that, for any r(X), if there is a type-2 collision among the tweaks polynomials,
with i < j, one can submit a message M such that its encryption (C, TE) satisfies
the equation TE = C[2i − 3] ⊕ M [2i − 2]. Informally, by taking this assertion
backward, this means that one can compute a valid tag for some specific message
from C[2i − 3] and M [2i − 2]. The idea of the authenticity attacks is to query
encryption for a message M such that |M | > 2in to get these two bitstrings and
then to truncate it to make TE a valid tag for a shorter message of size ≈ 2jn.

More specifically, we distinguish the following cases:

– If r(X) = X, then Δi−1,0 = Δ∗,j−1,1,1. A selects an integer m > 2(i − 1)
and submits a message M = M [1] . . . M [m] such that M [k] = 0n for k ∈
[1, 2(j −2)], M [2j −3],M [2j −2] ∈ {0, 1}n, M [2i−2] = M [2i−3] = M [2j −2]
and M [k] ∈ {0, 1}n otherwise. Let (C, TE) be the response to this encryption
query. Then, the pair (C ′, TE′) ← (C[1] . . . C[2j −4]C[2j −2]C[2j −3], C[2i−
3]⊕M [2i−2]) is valid (recall that the last two blocks of C are switched during
the encryption process), and decrypts to M ′ = M [1] . . . M [2j − 3]. Indeed, if
M ′ is the decryption of C ′, M ′[k] = M [k] for k ≤ 2j − 2, Σ′ = M ′[2j − 2], the
valid tag for C ′ should be

T̃E = EK(Σ′ ⊕ Δ∗,j−1,1,1)
= EK(M ′[2j − 2] ⊕ Δ∗,j−1,1,1)
= EK(M [2i − 3] ⊕ Δi−1,0)
= C[2i − 3] ⊕ M [2i − 2]
= TE′

This clearly breaks the authenticity of the scheme.
– If r(X) = X + 1 (and Δi−1,0 = Δ∗,j−1,1,0), then one selects an integer

n > 2(i−1) and queries the message M = M [1] . . . M [m] such that M [k] = 0n

for k ∈ [1, 2(j − 2)], M [2j − 3],M [2j − 2] ∈ {0, 1}n, M [2i − 2] = M [2i − 3] =
M [2j − 2] and M [k] ∈ {0, 1}n are arbitrary strings otherwise.
With probability 1

2 , the last bit of C[2j−3] is 1. In this case, msbn−1(C[2j − 3])
= C[2j − 3]. Let (C ′, TE′) = (C[1] . . . C[2j − 4]C[2j − 2]msbn−1(C[2j −
3]), C[2i − 3] ⊕ M [2i − 2]) and M ′ the decryption of C ′. Again, for k <
2j − 3, M ′[k] = M [k], but we also have M ′[2j − 3] = M [2j − 3] and
Z ′ = C[2j − 3] ⊕ M [2j − 2]:

M ′[2j − 3] = EK(C ′[2j − 2] ⊕ Δj−1,1) ⊕ C ′[2j − 3]

= EK(msbn−1(C[2j − 3]) ⊕ Δj−1,1) ⊕ C[2j − 2]

= EK(C[2j − 3] ⊕ Δj−1,1) ⊕ C[2j − 2]
= M [2j − 3]

Trick or Tweak: On the (In)security of OTR’s Tweaks 345

Z ′ = EK(M ′[2j − 3] ⊕ Δj−1,0)
= EK(M [2j − 3] ⊕ Δj−1,0)
= C[2j − 3] ⊕ M [2j − 2]

As a direct consequence, we also have

Σ′ = Z ′ ⊕ C ′[2j − 2] = C[2j − 3] ⊕ M [2j − 2] ⊕ msbn−1(C[2j − 3])

= M [2j − 2].

As a consequence, using similar equalities to the r(X) = X case, we can show
that the authentication tag for C ′ should be T̃E = C[2i−3]⊕M [2i−2] = TE′.
This attack produces a forgery with probability 1

2 .
– If r(X) = 1, Δi−1,0 = Δ∗,j−1,0,1. A again selects m ≥ 2(i − 2) and queries

encryption of M = M [1] . . . M [m] such that M [k] = 0n for k ∈ [1, 2(j −
1)], M [2i − 3] = 0n and M [k] ∈ {0, 1}n for k > 2i − 2. Let (C ′, TE′) =
(C[1] . . . C[2j −4]C[2j −3], C[2i−3]⊕M [2i−2]) and M ′ its decryption. Once
again, we have M [k] = M ′[k] for k < 2j − 3. Moreover, as the number of
blocks in C ′ is odd,

M ′[2j − 3] = C ′[2j − 3] ⊕ EK(Δj−1,0)
= C[2j − 3] ⊕ EK(M [2j − 3] ⊕ Δj−1,0)
= M [2j − 2] = 0n

and hence Σ′ = 0n(= M [2i − 3]). Finally

TE′ = C[2i − 3] ⊕ M [2i − 2] = EK(M [2i − 3] ⊕ Δi−1,0)

= EK(Σ′ ⊕ Δ∗,j−1,0,1) = T̃E

where T̃E is the expected tag for C ′. Again, we are able to produce a forgery.
– If r(X) = 0, then one proceeds as in the previous case except that M [2i −

3] = 0n−11. We will still have Σ′ = M [2i − 3] and the pair (C ′, TE′) =
(C[1] . . . C[2j − 4]msbn−1(C[2j − 3]), C[2i − 3] ⊕ M [2i − 2]) is a valid forgery.

5.3 Type-3 Collisions

A type-3 collision occurs when there are
 and
′ such that X�+2 + X�+1 =
X�′+2 + X�′+1 + r(X), with r(X) ∈ {0, 1,X,X + 1}. We assume, without loss
of generality, that
 <
′.

The input masks of the form Xk+2 + Xk+1 + r(X) are the ones involved in
the computation of the tag TE. So a type-3 collision informally means that the
input mask used to compute TE for a message of length m′ such that
′ = �m′

2 �
is the same than the one used to compute TE for a truncated message of length
m verifying
 = �m

2 �. Again, this leads to a practical attack against authenticity.

346 R. Bost and O. Sanders

Breaking Authenticity. As previously, the attack will slightly differ according
to r(X).

– If r(X) = X, Δ∗,�,0,0 = Δ∗,�′,1,1 A submits an encryption query for the
message M [1] . . . M [2
]M [2
 + 1] . . . M [2
′ − 1]M [2
′] with M [2
 − 1] = 0n,
M [2
] has its last bit set to 1 (in particular msbn−1(M [2
]) = M [2
]), and
M [i] = 0n for i ∈ [2
 + 1, 2
′]. Upon receiving (C[1] . . . C[2
′], TE), A forges
(C ′, TE′) = (C[1] . . . C[2
− 2]msbn−1(C[2
− 1]), TE), which is a valid cipher-
text.
Indeed, if Σ is the checksum corresponding to (C[1] . . . C[2
′], TE) and Σ′ is
the one corresponding to the forged ciphertext, we have:

Σ′ = M [2] ⊕ . . . ⊕ M [2
 − 2] ⊕ msbn−1(EK(Δ�,0)) ⊕ C ′[2
 − 1]

= M [2] ⊕ . . . ⊕ M [2
 − 2] ⊕ msbn−1(EK(Δ�,0) ⊕ C[2
 − 1])

= M [2] ⊕ . . . ⊕ M [2
 − 2] ⊕ msbn−1(M [2
])

= M [2] ⊕ . . . ⊕ M [2
 − 2] ⊕ M [2
]
= Σ

Therefore, T̃E = EK(Σ′ ⊕Δ∗,�,0,0) = EK(Σ ⊕Δ∗,�′,1,1) = TE, so the tag TE
is also valid for this truncated ciphertext C ′.

– if r(X) = X + 1, one proceeds as in the previous case except that we take
any value for M [2
] and (C ′, TE′) = (C[1] . . . C[2
 − 2]C[2
 − 1], TE): we
don’t have to play with the padding. Therefore, T̃E = EK(Σ′ ⊕ Δ∗,�,0,1) =
EK(Σ ⊕ Δ∗,�′,1,1) = TE, and TE remains valid for this truncated ciphertext.

– If r(X) = 1, Δ∗,�,0,0 = Δ∗,�′,0,1, and A will proceed as in the first case r(X) =
X, except that its first query will be with M with an odd number of blocks.
A will query M = M [1] . . . M [2
′ − 1] such that M [2
 − 1] = 0n, M [2
] has its
last bit set to 1, and M [i] = 0n for i ∈ [2
 + 1, 2
′ − 1]. The forgery will be
(C ′, TE′) = (C[1] . . . C[2
 − 2]msbn−1(C[2
 − 1]), TE).
The proof that (C ′, TE′) is a valid forgery proceeds exactly as for the r(X) =
X case.

– if r(X) = 0, Δ∗,�,0,1 = Δ∗,�′,0,1, and A submits an encryption query on M =
M [1] . . . M [2
′ − 1] such that M [2
 − 1] = 0n, and M [i] = 0n for i ∈ [2
 +
1, 2
′ − 1]. The forgery will be (C ′, TE′) = (C[1] . . . C[2
 − 2]C[2
 − 1], TE).
The validity of the forgery can be easily proven from the same arguments as
before.

In every case, we are able to easily produce a valid forgery from a single encryp-
tion request. For an adversary A following this procedure,

AdvauthAE[τ](A) = 1.

6 Practical Security of OTR with 128 Bits Blocks

In the previous sections we exhibited tweak collisions on OTR breaking the
security claim, in particular for non generic block sizes (sizes that are not divisible

Trick or Tweak: On the (In)security of OTR’s Tweaks 347

by 8) and for 64 bits block ciphers. These collisions allow the adversary to break
privacy and/or authenticity of the scheme in two encryption/decryption requests
with a small number of blocks. Here, we focus on the case n = 128.

Also, note that for the sake of breaking OTR, we are only interested in
collisions before the birthday bound, i.e. collisions for which the maximum index
i of the polynomials defined by Δi,a or Δ∗,i,b1,b2 is smaller than 2n/2. Higher order
collisions are less interesting as OTR’s proofs only guarantees security below the
birthday bound.

6.1 Analytical Collisions

One strategy for quickly finding collisions could rely on the fact that F2d ⊂ F2128

for any d dividing 128. Indeed, any relation Y i = Y j + 1 for some Y ∈ F2d

gives us a type-1 collision Xa·i = Xa·j + 1 with a such that Y = Xa in F2128 .
Such relations can easily be found in F2d for d ∈ {16, 32, 64}, for example by
computing the discrete logarithm of Y j + 1 in base Y . However, they do not
lead to truly practical attacks because Y 2d−1 = 1 (as any element of F2d) which
implies that 2128 − 1|a · (2d − 1) (recall that X generates F

∗
2128) and so that

(2128 − 1)/(2d − 1) divides a. Therefore, such relations will only give collisions
for quite large indices a · i (since a is at least greater than 264 +1) and so beyond
the birthday bound.

6.2 Searching for Collisions Exhaustively

We also tried to algorithmically and exhaustively find collisions among tweaks
polynomials. This can be done easily on a desktop computer for n = 64, but not
for n = 128.

Indeed, to check collisions for tweak polynomials of index less than d, we
need at least 2d · 128 bits of memory: the index i polynomials we are interested
in are of the form Xi(+1) and Xi + Xi−1(+X)(+1), so to save memory, we can
only store Xi and Xi + Xi−1 mod P (X), and do the collision search on the 126
high degree bits. To exhibit a genuine collision, we then just have to recompute
the different possibilities for the polynomials and find the matching ones. Also,
for each polynomial, we have to store its ‘index’ i, adding O(log d) storage. So
if we were to exhaustively search for all collisions for d < 264, we would need
2 · 264 · 192 bits, i.e. 24 exabytes.

On the computational point of view, the complexity of the algorithm is well-
known, O(d log d), as we can generate all the 2d polynomials, sort them using
the lexicographic order on their bits, and finally search a collision in O(d).

It is also important to notice that the collision search is embarrassingly par-
allelizable: once generated, we can put the polynomials in some bins, depending
on the value of the high degree bits, and limit the search to collisions inside each
bin. This algorithm is described by Algorithm 2.

Algorithm 2 also offers a nice time/memory tradeoff: instead of keeping all
bins in memory, we can instead limit ourself to the bins fitting in memory, and
run the algorithms several times so that all the bins are spanned.

348 R. Bost and O. Sanders

Algorithm 2. Our collision search algorithm
for k = 0 to 2p − 1 do � In parallel

Sk ← ∅ � Initialize bins
end for
for i = 0 to d do � In parallel

αi ← Xi mod P
kα ← msbp(αi)
Skα ← Skα ∪ (αi, i)
βi ← Xi+1 + Xi mod P
kβ ← msbp(βi)
Skβ ← Skβ ∪ (βi, i)

end for
for k = 0 to 2p − 1 do � In parallel

Lexicographically sort Sk

Sequentially scan Sk for a collision
end for

We coded this algorithm in C, using OpenMP and SSE instructions, and
we were able to show that there is no collisions among the tweak polynomials
of index less than 245 for F2128 defined by X128 + X7 + X2 + X + 1, proving
Proposition 3, which fixes Lemma 1 of [Min14].

Proposition 3. For any adversary A making q queries on Ẽ as defined in
Sect. 3, with tweak space T = {0, 1}128 × {0, . . . , 245} × {0, 1} ∪ {∗} × {0, 1}128 ×
{0, . . . , 245} × {0, 1} × {0, 1},

Advp̃rp
Ẽ

(A) ≤ 5q2/2128.

This exhaustive search took us around 15 CPU-years, using 3TB of RAM.

6.3 Probable Collision Before the Birthday Bound

The collisions exhibited earlier in the paper, for example for n = 64 or n = 119,
use the special form of the polynomial. For the latter, we use the fact that it is
a trinomial, directly giving a type-1 collision. For the former, as there are non
zero coefficients of two consecutive degrees higher than 2, the polynomial gives
a type-2 collision. One could wonder if, excepting these ‘trivial’ collisions, it is
easy to find other before-birthday-bound collisions? Said otherwise, what is the
repartition of the indices of colliding polynomials? We can also remember that
if the tweak polynomials behaved randomly, we would expect a collision to be
happening just before the birthday bound.

We ran experiments for n = 16, 32 and 64, using (respectively) irreducible
polynomials X16 + X5 + X3 + X + 1, X32 + X7 + X3 + X2 + 1 and X64 + X4 +
X3 + X + 1. They are summarized in Table 1.

If we were to extrapolate, we would expect a collision for n = 128 using
irreducible polynomial X128 + X7 + X4 + X + 1 to also happen slightly before

Trick or Tweak: On the (In)security of OTR’s Tweaks 349

Table 1. Lower indices of colliding tweak polynomials (excepted trivial ones).

n 16 32 64

Polynomial (X + 1)X105 =
(X+1)X134+X

(X+1)X30115 =
X19743 + X

X2242000936 =
X2302312163 + 1

log(degree) 7.07 14.88 31.10

the birthday bound. We support this claim with a few experiments we ran on
smaller fields. Figures 2, 3 and 4 show the repartition of the smallest collisions
of tweak polynomials (i.e. the collision with the lowest index) depending on the
choice of the irreducible polynomial chosen to define F2n .

The graphs not only show that the first collision is extremely likely to happen
before the birthday bound, but also that it should not happen too early before:
we cannot really hope for gaining more than a few bits.

In this case the security proof of [Min14] is only invalidated by a small
amount. However, we do not have any formal argument to fill the gap between
245 and 264.

7 Other Instantiations of Input Masks

The previous collisions do not exclude GF doublings to derive the offsets but
simply show that this should be done differently. One of the most obvious solution
consists in defining the input mask for the block M [i] as Xi+2δ and Δ∗ as

4 ≤ d ≤ 5

5 <
d ≤ 6

6 <
d ≤ 7

7 <
d ≤ 8

8 <
d ≤ 9

3

19

27

43

2

Fig. 2. Log of the lowest indices of colliding tweak polynomials for every F216 repre-
sentations using the 94 degree 16 irreducible pentanomials over F2. In other words,
among the 94 possible representations of F216 , 3 leads to a collision between the 25

first tweak polynomials, 19 to a collision between polynomials of indices i and j such
that max(i, j) ∈]25, 26], and so on and so forth.

350 R. Bost and O. Sanders

4 <
d ≤ 5

5 <
d ≤ 6

6 <
d ≤ 7

7 <
d ≤ 8

11
<

d ≤ 12

12
<

d ≤ 13

13
<

d ≤ 14

14
<

d ≤ 15

15
<

d ≤ 16

16
<

d ≤ 17

10
2 0 0 4 8

52

140

117

18

Fig. 3. Log of the lowest indices of colliding tweak polynomials for every F232 repre-
sentations using the 351 degree 32 irreducible pentanomials over F2.

Xm(X + 1)jδ where m is the number of blocks of M and where j would depend
on some properties of M , namely the parity and the number of bits of M [m].

More specifically, the tweakable random function ρ̃ (see Sect. 3) can be instan-
tiated as follows:

ẼN,i,a
K (P) = EK(Δi,a + P) with Δi,a = X2(i−1)+aL

Ẽ∗,N,i,b1,b2
K (P) = EK(Δ∗,i,b1,b2 + P) with Δ∗,i,b1,b2 = (X + 1)1+b2+2b1X2(i−1)L

where δ = EK(N) and L = X2δ, as previously.
A collision then only occurs if there are some i, j ∈ N

∗ and a, b1, b2 ∈ {0, 1}
such that:

X2(i−1)+a = (X + 1)1+b2+2b1X2(j−1) ⇔ X2(i−j)+a = (X + 1)1+b2+2b1

However, [Rog04] shows that the latter relation cannot hold for i, j ≤ 2115 (resp.
i, j ≤ 251) when F2128 (resp. F264) is generated by the standard polynomial. A
collision attack would thus require to query encryption for a huge message M ,
whose number of blocks would be far greater than the birthday bound, which is
impossible.

Unfortunately, such a solution entails a doubling of the number of multi-
plications, compared to the original construction. It is therefore preferable to
construct ρ̃ in a slightly different way:

ẼN,i,a
K (P) = EK(Δi,a + P) with Δi,a = (X + 1)aXi−1L

Ẽ∗,N,i,b1,b2
K (P) = EK(Δ∗,i,b1,b2 + P) with Δ∗,i,b1,b2 = (X + 1)2+b2+2b1Xi−1L.

Here again, the argument of [Rog04] formally excludes any practical collision
attack. The point is that, since Δi,1 = Δi,0 ⊕ Δi+1,0, almost one half of the

Trick or Tweak: On the (In)security of OTR’s Tweaks 351

5 <
d ≤ 6

6 <
d ≤ 26

26
<

d ≤ 27

27
<

d ≤ 28

28
<

d ≤ 29

29
<

d ≤ 30

30
<

d ≤ 31

31
<

d ≤ 32

32
<

d ≤ 33

6 0 4 10
48

164

536
572

46

Fig. 4. Log of the lowest indices of colliding tweak polynomials for every F264 repre-
sentations using the 1386 degree 64 irreducible pentanomials over F2.

offsets only require one xor to be computed. The cost is thus similar to the one
of the original instantiation [Min14]. The last version of OTR [Min16] uses a
similar method to generate tweaks and thus avoid our attack.

8 Conclusion

In this work, we have presented practical attacks against OTR resulting from
collisions between the input masks. Although the occurrence of such collisions
depend on both the blocksize n and on the polynomial generating F2n , we argue
that the large number of parameters concerned calls for another design of the
input masks. We have therefore proposed some ways to immunize OTR to these
attacks which do not affect efficiency while being provably secure.

Our results thus do not question the intrinsic security of OTR but simply
point out a flaw in the current instantiation.

Acknowledgements. We thank Jean-Gabriel Kammerer for helpful discussions on
the implementation of the collision search algorithm, and Julien Devigne for his help.
We also thank anonymous reviewers for their useful remarks.

References

[ABB+14] Andreeva, E., Bilgin, B., Bogdanov, A., Luykx, A., Mendel, F., Mennink,
B., Mouha, N., Wang, Q., Yasuda, K.: Primates. CAESAR 1st Round
(2014). https://competitions.cr.yp.to/caesar-submissions.html

[AFF+15] Abed, F., Fluhrer, S., Forler, C., List, E., Lucks, S., McGrew, D., Wenzel,
J.: Pipelineable on-line encryption. In: Cid, C., Rechberger, C. (eds.) FSE
2014. LNCS, vol. 8540, pp. 205–223. Springer, Heidelberg (2015). doi:10.
1007/978-3-662-46706-0 11

https://competitions.cr.yp.to/caesar-submissions.html
http://dx.doi.org/10.1007/978-3-662-46706-0_11
http://dx.doi.org/10.1007/978-3-662-46706-0_11

352 R. Bost and O. Sanders

[AP13] AlFardan, N.J., Paterson, K.G.: Lucky thirteen: breaking the TLS and
DTLS record protocols. In: 2013 IEEE Symposium on Security and Privacy,
pp. 526–540. IEEE Computer Society Press, May 2013

[BDP+14] Bertoni, G., Daemen, J., Michaël Peeters, G.V., Assche, R.K.: Caesar sub-
mission: keyak v1. In: CAESAR 1st Round (2014). https://competitions.
cr.yp.to/round1/keyakv1.pdf

[BN00] Bellare, M., Namprempre, C.: Authenticated encryption: relations among
notions and analysis of the generic composition paradigm. In: Okamoto, T.
(ed.) ASIACRYPT 2000. LNCS, vol. 1976, pp. 531–545. Springer,
Heidelberg (2000). doi:10.1007/3-540-44448-3 41

[BRW04] Bellare, M., Rogaway, P., Wagner, D.: The EAX mode of operation. In: Roy,
B., Meier, W. (eds.) FSE 2004. LNCS, vol. 3017, pp. 389–407. Springer,
Heidelberg (2004). doi:10.1007/978-3-540-25937-4 25

[CAE14] Caesar: competition for authenticated encryption: security, applicability
and robustness (2014). http://competitions.cr.yp.to/caesar.html

[DN14] Datta, N., Nandi, M.: ELmE: a misuse resistant parallel authenticated
encryption. In: Susilo, W., Mu, Y. (eds.) ACISP 2014. LNCS, vol. 8544, pp.
306–321. Springer, Heidelberg (2014). doi:10.1007/978-3-319-08344-5 20

[Dwo04] Dworkin, M.J.: Recommendation for block cipher modes of operation: the
CCM mode for authentication and confidentiality, sp. 800–38c. Technical
report, National Institute of Standards and Technology (2004)

[Dwo07] Dworkin, M.J.: Recommendation for block cipher modes of operation:
galois/counter mode (GCM) and GMAC, spp. 800–38d. Technical report,
National Institute of Standards and Technology (2007)

[HKR15] Hoang, V.T., Krovetz, T., Rogaway, P.: Robust authenticated-encryption
AEZ and the problem that it solves. In: Oswald, E., Fischlin, M. (eds.)
EUROCRYPT 2015. LNCS, vol. 9056, pp. 15–44. Springer, Heidelberg
(2015). doi:10.1007/978-3-662-46800-5 2

[IK03] Iwata, T., Kurosawa, K.: OMAC: one-key CBC MAC. In: Johansson, T.
(ed.) FSE 2003. LNCS, vol. 2887, pp. 129–153. Springer, Heidelberg (2003).
doi:10.1007/978-3-540-39887-5 11

[IMGM15] Iwata, T., Minematsu, K., Guo, J., Morioka, S.: CLOC: authenticated
encryption for short input. In: Cid, C., Rechberger, C. (eds.) FSE 2014.
LNCS, vol. 8540, pp. 149–167. Springer, Heidelberg (2015). doi:10.1007/
978-3-662-46706-0 8

[KR11] Krovetz, T., Rogaway, P.: The software performance of authenticated-
encryption modes. In: Joux, A. (ed.) FSE 2011. LNCS, vol. 6733, pp. 306–
327. Springer, Heidelberg (2011). doi:10.1007/978-3-642-21702-9 18

[Kra01] Krawczyk, H.: The order of encryption and authentication for protecting
communications (or: How Secure Is SSL?). In: Kilian, J. (ed.) CRYPTO
2001. LNCS, vol. 2139, pp. 310–331. Springer, Heidelberg (2001). doi:10.
1007/3-540-44647-8 19

[LRW02] Liskov, M., Rivest, R.L., Wagner, D.: Tweakable block ciphers. In: Yung,
M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 31–46. Springer, Heidelberg
(2002). doi:10.1007/3-540-45708-9 3

[Min14] Minematsu, K.: Parallelizable rate-1 authenticated encryption from pseudo-
random functions. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014.
LNCS, vol. 8441, pp. 275–292. Springer, Heidelberg (2014). doi:10.1007/
978-3-642-55220-5 16

https://competitions.cr.yp.to/round1/keyakv1.pdf
https://competitions.cr.yp.to/round1/keyakv1.pdf
http://dx.doi.org/10.1007/3-540-44448-3_41
http://dx.doi.org/10.1007/978-3-540-25937-4_25
http://competitions.cr.yp.to/caesar.html
http://dx.doi.org/10.1007/978-3-319-08344-5_20
http://dx.doi.org/10.1007/978-3-662-46800-5_2
http://dx.doi.org/10.1007/978-3-540-39887-5_11
http://dx.doi.org/10.1007/978-3-662-46706-0_8
http://dx.doi.org/10.1007/978-3-662-46706-0_8
http://dx.doi.org/10.1007/978-3-642-21702-9_18
http://dx.doi.org/10.1007/3-540-44647-8_19
http://dx.doi.org/10.1007/3-540-44647-8_19
http://dx.doi.org/10.1007/3-540-45708-9_3
http://dx.doi.org/10.1007/978-3-642-55220-5_16
http://dx.doi.org/10.1007/978-3-642-55220-5_16

Trick or Tweak: On the (In)security of OTR’s Tweaks 353

[Min16] Kazuhiko Minematsu. AES-OTR v3. Technical report, NEC Cor-
poration (2016). https://groups.google.com/group/crypto-competitions/
attach/1290d45334f8a3/AESOTR v3.pdf?part=0.1

[MV04] McGrew, D.A., Viega, J.: The security and performance of the galois/-
counter mode (GCM) of operation. In: Canteaut, A., Viswanathan, K.
(eds.) INDOCRYPT 2004. LNCS, vol. 3348, pp. 343–355. Springer,
Heidelberg (2004). doi:10.1007/978-3-540-30556-9 27

[Nik14] Nikolic, I.: Tiaoxin-346. CAESAR Submission (2014)
[Rog04] Rogaway, P.: Efficient instantiations of tweakable blockciphers and refine-

ments to modes OCB and PMAC. In: Lee, P.J. (ed.) ASIACRYPT 2004.
LNCS, vol. 3329, pp. 16–31. Springer, Heidelberg (2004). doi:10.1007/
978-3-540-30539-2 2

[Ser98] Seroussi, G.: Table of low-weight binary irreducible polynomials. Technical
report, HP (1998). http://www.hpl.hp.com/techreports/98/HPL-98-135.
pdf?jumpid=reg R1002 USEN

https://groups.google.com/group/crypto-competitions/attach/1290d45334f8a3/AESOTR_v3.pdf?part=0.1
https://groups.google.com/group/crypto-competitions/attach/1290d45334f8a3/AESOTR_v3.pdf?part=0.1
http://dx.doi.org/10.1007/978-3-540-30556-9_27
http://dx.doi.org/10.1007/978-3-540-30539-2_2
http://dx.doi.org/10.1007/978-3-540-30539-2_2
http://www.hpl.hp.com/techreports/98/HPL-98-135.pdf?jumpid=reg_R1002_USEN
http://www.hpl.hp.com/techreports/98/HPL-98-135.pdf?jumpid=reg_R1002_USEN

Universal Forgery and Key Recovery Attacks
on ELmD Authenticated Encryption Algorithm

Aslı Bay1(B), Oğuzhan Ersoy2, and Ferhat Karakoç1

1 TÜBİTAK BİLGEM, Gebze, Turkey
{asli.bay,ferhat.karakoc}@tubitak.gov.tr

2 Electrical and Electronics Engineering Department,
Boğaziçi University, Istanbul, Turkey

oguzhan.ersoy@boun.edu.tr

Abstract. In this paper, we provide a security analysis of ELmD: a
block cipher based Encrypt-Linear-mix-Decrypt authentication mode.
As being one of the second-round CAESAR candidate, it is claimed
to provide misuse resistant against forgeries and security against block-
wise adaptive adversaries as well as 128-bit security against key recovery
attacks. We scrutinize ElmD in such a way that we provide universal
forgery attacks as well as key recovery attacks. First, based on the colli-
sion attacks on similar structures such as Marble, AEZ, and COPA, we
present universal forgery attacks. Second, by exploiting the structure of
ELmD, we acquire ability to query to the block cipher used in ELmD.
Finally, for one of the proposed versions of ELmD, we mount key recovery
attacks reducing the effective key strength by more than 60 bits.

Keywords: Authenticated encryption · CAESAR · ELmD · Forgery
attack · Key recovery

1 Introduction

CAESAR competition [1] (Competition for Authenticated Encryption: Secu-
rity, Applicability, and Robustness) has been announced in January 2013 aim-
ing at fulfilling the needs of secure, efficient and robust authenticated encryption
schemes. In total, 57 candidates are submitted to the competition. These schemes
are released to crypto community for their security analysis and around 20 of
them were eliminated in the first round of the competition in July 2015. Since
then, around 30 candidates compete in the second round, and are being analyzed
in terms of their security and efficiency.

ELmD is amongst the second-round CAESAR candidates designed by Datta
and Nandi [5]. It is an Encrypt-Linear-mix-Decrypt block cipher authentica-
tion mode accepting associated data, and its structure is similar to some other

A. Bay—This author is financially supported by TÜBİTAK (BİDEB 2232, Project
No. 115C119).
O. Ersoy—The work was done while this author was working at TÜBİTAK BİLGEM.

c© International Association for Cryptologic Research 2016
J.H. Cheon and T. Takagi (Eds.): ASIACRYPT 2016, Part I, LNCS 10031, pp. 354–368, 2016.
DOI: 10.1007/978-3-662-53887-6 13

Universal Forgery and Key Recovery Attacks 355

authenticated encryption schemes such as AES-COPA [2], Marble [10], and
SHELL [12]. ELmD is fully parallelizable and online, that is, ith block of cipher-
text only depends on the first i blocks of plaintext. As an optional property,
it provides intermediate tag verification in order to fasten verification process
and to be secure against block-wise adaptive adversaries. Designers of ELmD
claim that the scheme provides nonce misuse resistance against forgery attacks.
According to authors’ assertion, ELmD provides 62.8-bit security for integrity
(forgery attacks) and for privacy (distinguishing attacks). Indeed, they claim
that ELmD provides 128-bit security against key recovery attacks that we dis-
prove by applying partial-sum [7] and Demirci-Selçuk meet-in-the-middle attacks
[6] on ELmD(6,6) where 6-round AES is used as the block cipher.

Previous Results. As far as we know, ELmD has been analyzed only by Zhang
and Wu [13] in terms of both integrity and privacy. Very similar to our internal
state recovery, they first find internal state parameter of ELmD by birthday
attack and then they provide an almost universal forgery attack with a few
queries. For breaking privacy, they propose a truncated differential analysis of
reduced version of ELmD (ELmD(4, 4)) with 2123 time and memory complexities.
In [13], the authors consider the internal parameter L generated by only the
encryption of zero with 4-round AES, i.e., L = AES4(0). However, both the
usage of 4 rounds of encryption/decryption and the generation of the internal
parameter L with four AES rounds in ELmD are not acceptable in the proposal.
Actually, after obtaining an input and output pair of 4-round AES (i.e., L =
AES4(0)), it is feasible to make a meet-in-the-middle analysis to recover the
secret key. Previously, similar efforts are made to other CAESAR candidates
COPA [11], Marble and AEZ in [8] to find state collisions beyond the birthday
bound. Indeed, for AEZ and Marble [8], this attack is used for realizing a key
recovery attack.

Our Contribution: In this paper, after obtaining the internal state parameter
of ELmD, we make universal forgeries with a few queries to the oracle. Further-
more, by exploiting the structure of ELmD, we are able to query decryption
oracle of the block cipher in ELmD. Finally, we mount key recovery attacks on
ELmD(6,6) reducing effective key strength more than 60 bits.

Outline of the rest of the paper: In Sect. 2, a brief description of ELmD is
given. Then in Sect. 3, we show how to recover internal state parameter L, and
present universal forgery attacks on ELmD with a few queries to the oracle. In
Sect. 4, we introduce novel methods to generate special plaintext pairs having
relation between their ciphertexts and to query to the decryption oracle of the
block cipher. By using chosen ciphertexts, in Sect. 5, key recovery attacks on
ELmD(6,6) are presented. Section 6 concludes the paper.

2 Brief Description of ELmD

Notation: ‘⊕’: bitwise addition in modulo 2 (exclusive OR), ‘·’: field multipli-
cation modulo the polynomial p(x) = x128 + x7 + x2 + x + 1 in GF (2128). Also,
0a denotes a-bit string of 0.

356 A. Bay et al.

Algorithm 1. Processing associated data: IV generation
1: Input: D, d, L
2: Output: IV
3: for i = 0 to d − 1 do
4: DDi = Di ⊕ 3 · 2i · L
5: Zi = EK(DDi)
6: (Yi, W

′
i+1) = ρ(Zi, W

′
i)

7: end for
8: if |D∗

d| = 128 then DDd = Dd ⊕ 3 · 2d · L
9: else DDd = Dd ⊕ 7 · 3 · 2d−1 · L

10: end if
11: Zd = EK(DDd)
12: (Yd, W ′

d+1) = ρ(Zd, W ′
d)

13: IV = W ′
d+1

Algorithm 2. Encryption and tag generation without producing intermediate
tag (t = 0)
1: Input: �, IV , M1, . . . , M�, L, |M∗

� |
2: Output: C1, . . . , C�, C�+1

3: W0 = IV
4: M�+1 = M�

5: for i = 1 to � − 1 do
6: MMi = Mi ⊕ 2i−1 · L
7: Xi = EK(MMi)
8: (Yi, Wi) = ρ(Xi, Wi−1)
9: CCi = E−1

K (Yi)
10: Ci = CCi ⊕ 32 · 2i−1 · L
11: end for
12: if |M∗

� | = 128 then MM� = M� ⊕ 2�−1 · L and MM�+1 = M�+1 ⊕ 2� · L
13: else MM� = M� ⊕ 7 · 2�−2 · L and MM�+1 = M�+1 ⊕ 7 · 2�−1 · L
14: end if
15: for i = � to � + 1 do
16: Xi = EK(MMi)
17: (Yi, Wi) = ρ(Xi, Wi)
18: end for
19: CC� = E−1

K (Y�)
20: C� = CC� ⊕ 32 · 2�−1 · L
21: CC∗

�+1 = E−1
K (Y�+1 ⊕ 1)

22: C∗
�+1 = CC∗

�+1 ⊕ 32 · 2� · L
23: if |M∗

� | �= 128 then C�+1 = trunc(C∗
�+1)|M∗

�
|

24: else C�+1 = C∗
�+1

25: end if

Universal Forgery and Key Recovery Attacks 357

ELmD is a block cipher based Encrypt-Linear-mix-Decrypt authentication
mode proposed by Datta and Nandi [5] for CAESAR competition. In the pro-
posal of ELmD, AES-128 [4] is used as the block cipher where the number of
rounds can be either 10 or 6. Note that 6-round AES used in ELmD includes
whitening-key layer and MixColumns operation at the last round. Hence from
now on, AESrd denotes AES with rd rounds. For simplicity, EK is also used for
AES-128 in the rest of the paper. In addition, L is a key-depending mask which
is generated in two ways; L = AES6(AES6(0)) when rd = 6 and L = AES10(0)
when rd = 10.

The linear mixing function ρ takes two inputs t, x ∈ {0, 1}128 and produces
two outputs t′, y ∈ {0, 1}128 as follows

ρ(x, t) = (y, t′) : y = x ⊕ 3 · t and t′ = x ⊕ 2 · t.

Associated data is used to generate IV (see Algorithm 1) which is an input to
both encryption/decryption function of ELmD. Let pub and param be a public
message number and the parameter set, respectively, which are both 64 bits,
and D = (D1, . . . , D

∗
d) be an associated data. By construction, the designers of

ELmD assign D0 = pub‖param and W ′
0 = 0. The last block of associated data is

padded as Dd = D∗
d‖10∗ if |D∗

d| �= 128, otherwise Dd = D∗
d.

ELmD has two versions, namely v1.0 and v2.0. ELmD v1.0 was modified
by the generation of last message block in such a way that the XOR of pre-
vious messages added to this block. Also, rd is modified to ELmD(6,6) and
ELmD(10,10).

Tagged ciphertext is generated as follows. Let M = M1‖M2‖ · · · ‖M∗
� be the

message to be encrypted. Padding is performed as M� = (⊕�−1
i=1Mi) ⊕ (M∗

� ‖10∗)

W 2’

EK

P0

EK

P
W 1’

Z1

D0

3L 2 3L

D1

Z0

. . . IV

EK

P

Zd

Dd

2
d

3L

W d’

EK

EK
-1

P

EK

EK
-1

P

EK

EK
-1

P

1

M 1

L 2
l-1

 L

3
2
L 3

2
2

l-1
L 3

2
2

l
L

M l M l+1

2
l
 L

C1 Cl Cl+1

. . .

X1 Xl Xl+1

Y1 Yl

W 1 W l

Fig. 1. Processing associated data and the generation of tagged ciphertext in ELmD
when |Dd| = |M�| = n

358 A. Bay et al.

if |M∗
� | < 128, otherwise M� = (⊕�−1

i=1Mi) ⊕ M∗
� . ELmD has an intermediate tag

option if it is needed, however for the simplicity we mention only tagged cipher-
text generation without producing intermediate tags (t = 0) in Algorithm 2.
ELmD encryption including processing associated data is depicted in Fig. 1.

ELmD decrypts and verifies a given tagged ciphertext pair in three steps.
First of all, IV is produced by using pub, param, and D as in Algorithm 1.
Afterwards, the tagged ciphertext is decrypted as an inversion of Algorithm 2,
and then tag is verified when M�+1 = M�. Once the tag is verified, plaintext is
released otherwise ⊥ is returned.

3 Universal Forgery Attack on ELmD

In this section, we present universal forgery attacks on ELmD. First, we recover
ELmD state L by collision search of ciphertexts. Using L, we can make universal
forgery attack on ELmD. Before going into details, we briefly describe the two
main forgery models:

– Existential Forgery is the generation of a valid ciphertext and tag pair for
an unspecified message which is not previously queried to an oracle.

– Universal Forgery is the generation of ciphertext and tag pair for a given
message which is not previously queried to an oracle.

3.1 Recovering Internal State Parameter L

Similar to state recovery attacks of COPA and Marble [8,11], we recover ELmD
state L by collision search of ciphertexts which has approximate complexity 265

due to birthday attack as follows.
For a fixed D0, let (D,M) = (D1,M1) = (α,M) and (D′,M ′) = (D′

1,M
′
1) =

(β,M) be two set of message pairs including associated data where α and β take
all possible values from the set

{
0, 1, . . . , 264 − 1

}
and α is an incomplete block

and β is complete, i.e., |α| = 64 and |β| = 128. Here, we aim to exploit different
parameter mask additions to the last blocks of associated data when the block
is incomplete. Also, we pick α and β such that (α‖1063) ⊕ β scans all values in
F2128 .

After message pairs are queried, we search a collision in the first ciphertexts
C1 and C ′

1, i.e., C1 = C ′
1. According to the birthday attack, around 2·264 message

pairs is enough to construct a collision. This collision implies that messages’
corresponding IV values are equal, i.e., IV = IV ′. As we use the same D0 for
two messages implying the same internal chaining value (W ′

1 = W ′′
1), we obtain

DD1 = DD′
1 (see Fig. 2). We recover L by solving

D′
1 ⊕ 3 · 7 · L = D1 ⊕ 3 · 2 · L, (1)

since L is the only unknown in the equation, where D1 = α‖1063 and D′
1 = β.

Universal Forgery and Key Recovery Attacks 359

EK

EK
-1

P
IV = IV’

L

32L

EK

P0

D0 , D0’

3L

EK

P

D1 , D1’

2.3L

W1’ = W1’’

M 1 , M 1’

C1 = C1’Collision :

implies

implies

3.7L

DD1 = DD1’

(D0 = D0’) (M 1 = M 1’)

Fig. 2. Recovering L by finding a collision in (t = 0)

3.2 Forgery

Once we recover L, we can make universal forgery attacks on ELmD by making
a few queries to the oracle.

A Universal Forgery Attack. Let (D,M) = (D1, . . . , Dd−1,Dd,M1, . . . ,
M�−1,M�) be targeted associated data and message pair with assigned D0 =
pub‖param, where |Dd| = 128. Compute D′

d such that D′
d‖10∗ = Dd ⊕ 2d · 3L ⊕

7·2d−1 ·3L and |D′
d| < 128. Note that because of the padding rule, we can always

obtain D′
d with |D′

d| < 128.
Query (D′,M) = (D1, . . . , Dd−1,D

′
d,M1, . . . ,M�−1,M�) with the same D0

and obtain the corresponding ciphertext and tag pair as (C̃, T̃). Due to the choice
of associated data, D and D′ produce the same IV. Hence, the corresponding
ciphertext and tag pair (C, T) of (D,M) is equal to that of (D′,M), i.e., (C, T) =
(C̃, T̃). Note that the same attack also works for |Dd| < 128 case. In a similar
manner, a |D′

d| = 128 block can be chosen where D′
d = Dd‖10∗ ⊕ 2d · 3L ⊕ 7 ·

2d−1 · 3L, and the rest of the attack is the same. Therefore, this forgery attack
works for any associated data and message pair.

Another Universal Forgery Attack. Here we present another forgery for
the same (D0,D,M) triple using only completed blocks. First, query M1 =
D0⊕3L⊕L without D, and obtain C1. Then, query (D′,M) such that D′

0 = D0,
D′

1 = C1 ⊕ 32L ⊕ 2 · 3L, D′
i+2 = Di ⊕ 2i · 3L ⊕ 2i+2 · 3L for i = 0, 1, . . . , d and

obtain ciphertext C and tag T . It can be seen that this (C, T) pair is also valid
for (D,M).

360 A. Bay et al.

Note that this forgery attack introduces an important ability of generating
a pair of plaintexts such that one of the corresponding ciphertext is half of the
other one. These related plaintext pairs are explained in Sect. 4, and used for
key recovery in Sect. 5.

Forgery of Intermediate tags (when t �= 0). In the proposal of ELmD, the
authors state that “When intermediate tags are used i.e. t �= 0, if the forger
can compute a valid intermediate tag such that the ciphertext up to that is not
identical to any of previous ciphertexts then the forger succeeds”. Once L is
known, we can make a universal forgery attack for the version of ELmD with
intermediate tags. Without any further details, it can be seen that the previously
given forgery attacks also applies when t �= 0. Because both attacks only uses
the associated data.

4 Exploiting the Structure of ELmD

In this section, we explore the block cipher used in ELmD by exploiting the
general structure of the authenticated encryption algorithm where the bottom
function is the decryption mode of the upper one. First, using the recovered L
value, we can obtain two types of plaintext pairs:

1. For any P1 and μ, (P1, P2) pair such that μ · E(P1) = E(P2).
2. For any Δ, (Q1, Q2) pair such that E(Q1) = E(Q2) ⊕ Δ.

Using these special plaintext pairs, we can obtain plaintext and corresponding
ciphertext pairs of the encryption block cipher EK(·) or AESrd. Especially, we
can query any ciphertext to the decryption mode of the cipher.

Following attacks are mostly explained for the maskless version of ELmD.
Since we know the L value, we can easily switch from (D,M,C) triple to
(DD,MM,CC) triple and vice versa, where Di = DDi ⊕ 2i−1 · 3L, Mi =
MMi⊕2i−1L and Ci = CCi⊕2i−1·32L. In other words, we can query (DD,MM)
and obtain CC values. For the simplicity, we usually use (DD,MM,CC) triples.
It is important to note that the last message block cannot be controlled since
MM�+1 = MM� ⊕ 2�−1L ⊕ 2�L.

4.1 2-Multiplicative Pairs: (R1, R2) with 2 · E(R1) = E(R2)

Initially, for any given/fixed D0 = pub‖param, we make a query for one block
message MM1

1 = DD0 without an additional associated data and obtain the cor-
responding ciphertext and tag pair (C1, T 1). As seen in Fig. 3, IV 1 = EK(DD0).
Because of our message choice, X1

1 is also equal to IV 1 and therefore Y 1
1 = 2·IV 1.

Even without knowing IV 1 value, we obtain CC1
1 such that EK(CC1

1) = 2·IV 1 =
2 · EK(DD0). Here, it is important to note that D0 has a special structure
and cannot take any 128-bit value. For any R1, using the same D0, query
DD2

1 = CC1
1 ,MM2

1 = MM2
2 = R1 and obtain the corresponding ciphertext

Universal Forgery and Key Recovery Attacks 361

and tag pair (C2, T 2). It can be seen that IV 2 = ρ(IV 1, 2 · IV 1) = 0 and there-
fore X2

1 = W 2
1 = EK(MM2

1). W 2
1 = EK(MM2

1) = X2
2 implies Y 2

2 = 2 · X2
2 and

EK(CC2
2) = 2 · EK(MM2

1). As can be seen in Fig. 3, by setting R2 = CC2
2 , we

obtain (R1, R2) pair such that 2 · E(R1) = E(R2). The complexity to obtain N
such 2-multiplicative pairs is only N + 1 queries if the same D0 = pub‖param
is used. Therefore, the complexity of getting a 2-multiplicative pair is approxi-
mately one block query.

Fig. 3. 2-multiplicative pairs

362 A. Bay et al.

4.2 μ-multiplicative Pairs: (P1, P2) with μ · E(P1) = E(P2)

Here, we present a method to generate (P1, P2) pair satisfying μ ·E(P1) = E(P2)
for any P1 and μ values with the help of observations in the previous part. First,
for a given P1, we obtain the plaintext R2 such that 2 · E(P1) = E(R2). Also,
we arrange associated data to make IV = 0.

Let μ′ = 3−1(μ ⊕ 1) where 3−1 represents the multiplicative inverse of 3 in
the given field. It can be seen that any μ′ ∈ F2128 can be represented as 2127 ·
m1 ⊕ 2126 · m2 ⊕ · · · ⊕ 2 · m127 ⊕ m128 where mi ∈ {1, 2}.

As shown in Fig. 4, by querying 129-block message with MMi = Rmi
for

i = 1, . . . , 128 and MM129 = P1, we can obtain the plaintext P2 = CC129

satisfying E(P2) = μ ·E(P1). The complexity to obtain any multiplicative pair of
a given Pi is about 27 block encryptions. In other words, obtaining the plaintext
of a given multiple of a given ciphertext costs 27 block ELmD encryptions which
is approximately 28 block cipher calls.

Fig. 4. μ-multiplicative pairs

Note that using μ-multiplicative pairs, we can obtain the plaintext P0 satis-
fying E(P0) = 0 · E(·) = 0.

4.3 1-Difference Pairs: (R1, R2) with E(R1) = E(R2) ⊕ 1

In this part, we show how to construct (R1, R2) pairs such that E(R1) = E(R2)⊕
01271 by using 2-multiplicative pairs (see Fig. 5). For any D0 (resp. M1), we
can obtain D1 (resp. M2) such that E(DD1) = 2 · E(DD0) (resp. E(MM2) =
2 · E(MM1)). By querying the corresponding associated data and message pair,
we can obtain R1 = MM3 and R2 = CC3 satisfying E(R1) = E(R2) ⊕ 1.
The complexity to obtain a 1-difference pair is simply a query of 1 associated
data block and 2 message blocks where associated data and message blocks are
2-multiplicative pairs.

Universal Forgery and Key Recovery Attacks 363

Fig. 5. 1-difference pairs

4.4 Δ-difference Pairs: (Q1, Q2) with E(Q1) = E(Q2) ⊕ Δ

First, we generate a 1-difference pair: {R1, R2} where E(R1) = E(R2) ⊕ 01271.
Then, for any Δ, compute δ = δ1‖δ2‖ · · · ‖δ128 such that 3 · δ = Δ over the
defined field.

We construct two messages M,M ′ each containing 129 blocks with the same
associated data D such that

MMi = R1 and MM ′
i = Rδi+1 for i = 1, 2, . . . , 129

where δ129 = 0.
As illustrated in Fig. 6, 129th ciphertext blocks of (D,M) and (D,M ′) differ

by Δ. Here, we briefly, explain the differential path of two messages (D,M)
and (D,M ′). As their associated data are equal, they will provide the same IV ,
that is IV ⊕ IV ′ = 0. After processing of the first blocks of two messages R1

and Rδ1+1 in the upper layer of encryption, we will get difference in X1’s as
ΔX1 = X1 ⊕ X ′

1 = δ1. Since ΔIV = 0, ΔW1 = W1 ⊕ W ′
1 = δ1. For the second

message blocks R1 and Rδ2+1, we get ΔX2 = X2 ⊕ X ′
2 = δ2. Then, we have

ΔW2 = W2 ⊕ W ′
2 = 2δ1 + δ2. Similarly, after the encryption of 128th blocks, we

have ΔW128 = W128 ⊕ W ′
128 = 2127δ1 + 2126δ2 + · · · + δ128 = δ. Finally, as we

choose the last message blocks equal, we have ΔX129 = X129 ⊕ X ′
129 = 0. Since

no difference is coming from upper encryption layer ΔY129 = Y129 ⊕ Y ′
129 =

3 · ΔW128 = 3 · δ = Δ. Hence, we obtain plaintexts Q1 = CC129 and Q2 =
CC ′

129 having required ciphertext difference: E(Q1) = E(Q2) ⊕ Δ. Note that by
changing the last message block, we can get several message pairs having desired
ciphertext difference.

364 A. Bay et al.

Fig. 6. Δ-difference pairs

4.5 Querying Decryption Oracle of the Block Cipher

Here, we describe how to query inner block cipher of ELmD, AESrd. Since, we
can obtain any multiple of a given ciphertext in μ-multiplicative pairs, it is
obvious that any ciphertext can be queried, i.e., plaintext of a given ciphertext
can be obtained, if the decryption of 01271 is known.

First, using 1-difference pairs, we obtain a pair (R1, R2) with E(R1) =
E(R2) ⊕ 1. Then, using μ-multiplicative pairs, we acquire R3 such that
3−1E(R1) = E(R3). By querying associated data satisfying IV = 0 and mes-
sage with MM1 = R3, MM2 = R2, we obtain CC2 which is equal to decryption
of 1, i.e., E(CC2) = 01271. After obtaining decryption of 1, we can query any
ciphertext with the help of μ-multiplicative pairs.

This property enables us to mount a chosen ciphertext attack.

5 Key Recovery

The encryption function EK used in ElmD is either 6-round AES (AES6) or 10-
round AES (AES10) depending on the application. For both versions of ELmD,
the designers claim that ELmD provides 128 bits of security against plaintext
and key recovery attacks. In this section, we show that this claim is not valid if
the function EK is AES6.

In Sect. 4, after recovering L parameter, it is shown how to obtain corre-
sponding plaintext for any given ciphertext in a time complexity of about 28

encryption operations. As a result, we can mount attacks on 6-round AES with
chosen ciphertexts. In [7], by using partial sums an attack on 6-round AES was
given with a time and data complexities of 244 and 234.6, respectively in cho-
sen plaintext scenario. This attack can be easily adapted to chosen ciphertext
case because of the AES structure. MixColumns and AddRoundKey operations

Universal Forgery and Key Recovery Attacks 365

can be swapped with applying the inverse of MixColumns to the round key. As
known, the inverse of AES without the MixColumns operation in the last round
has the same structure with AES, the similar attack can be applied. Note that
the MixColumn operations at the end of the cipher is not important because
ciphertexts can be easily manipulated. The total time complexity of key recov-
ery is 265 + 28 × 234.6 + 244 ≈ 265 which is dominated by the cost of recovery
of L.

In addition, we propose a Demirci-Selçuk meet-in-the-middle attack [6] using
the distinguisher on 3-round AES [9]. This attack also uses chosen ciphertexts.
The time and data complexities of this attack is 266 and 233, respectively. With
this attack the time complexity of key recovery attack on ELmD is 265+28×233+
266 ≈ 266.6 encryptions. Even though the time complexity is relatively higher
than the previous attack, this attack uses relatively less data and illustrates
Demirci-Selçuk MITM in a splice-and-cut [3] perspective.

While presenting the attack we use the following notation. AES6 consists of
6 full rounds of AES with initial key whitening and supports a key size of 128
bits. One full round of AES is composed of SubBytes (SB), ShiftRows (SR),
MixColumns (MC) and AddRoundKey (AK) operations [4]. The whitening key
and i-th round key (i ∈ {1, 2, 3, 4, 5, 6}) are denoted by k0 and ki respectively. We
use xi, yi, zi and wi to represent the blocks in i-th round before the SubBytes,
ShiftRows, MixColumns and AddRoundKey operations respectively where the
input of the first round is x1 = P ⊕ k0 and P is the plaintext. In the case of
swapping MixColumns and AddRoundKey operations we denote the round key
as ui = MC−1(ki) and the state after round key addition as w̄i. Also xj

i , yj
i ,

zj
i , wj

i and w̄j
i denotes the blocks for j-th plaintext and a(m,n, ..., l) are used

for m,n, ..., l-th bytes of a block a. The orders of 128-bit blocks’ bytes in 4 × 4
matrix of bytes is as conventional, that is the first row is composed of 0, 4, 8
and 12-th bytes of 128-bit block where 0-th byte is the left-most byte.

The attack is given in Algorithm 3 and depicted in Fig. 7. The number of
bits guessed in the attack is 144 and the probability that a wrong guess passes
the condition in Step 10 is 2−144. Thus, with the correct guess, a wrong one can
be returned by the algorithm. In Step 3 in Algorithm 3, 280 × 19 × 10

16×6 ≈ 281

encryptions are performed by guessing 10 bytes. Note that this step can be done
offline. For a ciphertext the time complexity of getting the corresponding plain-
text is approximately 28 encryptions as mentioned in Sect. 4. Thus the number
of operations performed in Step 6 is 19 × 232 × 28 = 244.25 encryptions. In Step
9, 144-bit differences are computed performing 264 × 19 × 10

16×6 ≈ 265 encryp-
tion operations. As a result the time complexity of Algorithm 3 is 281 offline
and 265 online encryptions. To store the 144-bit difference for possible 280 values
280×144-bit memory is required. Note that in the attack 12 bytes of w̄j

6 are fixed
to a constant 0. Thus the attack needs 232 chosen ciphertexts and corresponding
plaintexts.

Notice that with this attack we obtain 4 bytes of k0 so far. With slight
modifications in the attack it can be seen easily that other 4 bytes of k0 can
be found. Remaining 64 bits of the key can be recovered by brute force. The

366 A. Bay et al.

AK

w1

k1
x2

y2

z2

w2

x3

y3

z3

x4

y4

z4

w4

x5

y5

z5

w3

x6

w̄5

y6

z6

w̄6

C

k2

k3

k4

u5

u6

x6

w̄5

y6

z6

w̄6

u5

u6

P

k0
x1

z1

w1

SB

SR

MC

AK

SB

SR

MC

AK

SB

SR

MC

MC

MC

SB

SB

SB

SB

SR

SR

SR

SR

AK

AK

AK

AK

MC

AK

set w̄j
5(0) = j

guess y05(0)

guess y04(0, 5, 10, 15)

guess y03(0, 1, 2, 3)

guess y02(0)

compute y04(0, 5, 10, 15) ⊕ yj4(0, 5, 10, 15)

compute y05(0) ⊕ yj5(0)

compute y03(0, 1, 2, 3) ⊕ yj3(0, 1, 2, 3)

compute y02(0) ⊕ yj2(0)

compute w0
1(0) ⊕ wj

1(0)

set w̄j
5(0) = j

set w̄j
5(1, 2, 3) = 0

guess u6(0, 7, 10, 13)
set w̄j

6(1, 2, 3, 4, 5, 6, 8, 9, 11, 12, 14, 15) = 0

compute Cj

compute P j

guess k0(0, 5, 10, 15)

compute w0
1(0) ⊕ wj

1(0)
MC

zero difference
non-zero difference

Fig. 7. Demirci-Selçuk MITM attack on 6-round AES. The offline and online steps are
on the left-hand and right-hand sides, respectively.

Universal Forgery and Key Recovery Attacks 367

Algorithm 3. Demirci-Selçuk MITM Attack on 6-round AES.
1: Take 19 different values for w̄j

5(0, 1, 2, 3) and w̄j
6(1, 2, 3, 4, 5, 6, 8, 9, 11, 12, 14, 15)

such that w̄j
5(0) = j, and the other bytes are 0 for 0 ≤ j ≤ 18.

2: for each possible values of y0
5(0), y0

4(0, 5, 10, 15), y0
3(0, 1, 2, 3) and y0

2(0) do
3: Compute the difference (w0

1(0) ⊕ w1
1(0), w0

1(0) ⊕ w2
1(0), ..., w0

1(0) ⊕ w18
1 (0)) and

store it in Table T .
4: end for
5: for each possible values of u6(0, 7, 10, 13) do
6: Compute Cj ’s
7: Find P j ’s by using the method in Sect. 4.
8: for each possible values of k0(0, 5, 10, 15) do
9: Compute the difference (w0

1(0) ⊕ w1
1(0), w0

1(0) ⊕ w2
1(0), ..., w0

1(0) ⊕ w18
1 (0))

and find the difference in Table T .
10: if a match found then
11: Return k0(0, 5, 10, 15) as the correct key
12: end if
13: end for
14: end for

total complexity of recovering 128-bit key will be 2 × 281 = 282 offline and
2 × 265 + 264 ≈ 266 online encryptions.

The memory and data complexities will be 2 × 280 × 144-bit memory and
2 × 232 = 233 data respectively. Note that the offline time complexity can be
reduced to 274 by removing the guess of y5(0) from the offline step and adding
8-bit guess for u5(0) to online step. In that case the time complexity of online
step will be 274 encryption operations.

6 Conclusion

ELmD is an a block cipher based Encrypt-Linear-mix-Decrypt authentication
mode submitted to CAESAR Competition. It is claimed to be strong against
misuse forgery attacks, block-wise adaptive adversaries and key recovery attacks
with 128-bit security. This work provides universal forgery attacks against
ELmD. Furthermore, we disprove the 128-bit security claim of ELmD by apply-
ing two key recovery attacks, namely partial-sum and Demirci Selçuk meet-in-
the-middle attacks with 265 and 266.6 time complexities, respectively.

References

1. CAESAR - Competition for authenticated encryption: security, applicability, and
robustness. http://competitions.cr.yp.to/caesar.html

2. Andreeva, E., Bogdanov, A., Luykx, A., Mennink, B., Tischhauser, E., Yasuda, K.:
AES-COPA v. 1, submission to the CAESAR competition, March 2014. http://
competitions.cr.yp.to/round1/aescopav1.pdf

http://competitions.cr.yp.to/caesar.html
http://competitions.cr.yp.to/round1/aescopav1.pdf
http://competitions.cr.yp.to/round1/aescopav1.pdf

368 A. Bay et al.

3. Bogdanov, A., Khovratovich, D., Rechberger, C.: Biclique cryptanalysis of the full
AES. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp.
344–371. Springer, Heidelberg (2011). doi:10.1007/978-3-642-25385-0 19

4. Daemen, J., Rijmen, V.: The Design of Rijndael: AES - The Advanced Encryption
Standard. Information Security and Cryptography. Springer, Heidelberg (2002).
http://dx.doi.org/10.1007/978-3-662-04722-4

5. Datta, N., Nandi, M.: ELmD v2.0, submission to the CAESAR competition,
August 2015. https://competitions.cr.yp.to/round2/elmdv20.pdf

6. Demirci, H., Selçuk, A.A.: A meet-in-the-middle attack on 8-round AES. In:
Nyberg, K. (ed.) FSE 2008. LNCS, vol. 5086, pp. 116–126. Springer, Heidelberg
(2008). doi:10.1007/978-3-540-71039-4 7

7. Ferguson, N., Kelsey, J., Lucks, S., Schneier, B., Stay, M., Wagner, D.,
Whiting, D.: Improved cryptanalysis of rijndael. In: Goos, G., Hartmanis, J.,
Leeuwen, J., Schneier, B. (eds.) FSE 2000. LNCS, vol. 1978, pp. 213–230. Springer,
Heidelberg (2001). doi:10.1007/3-540-44706-7 15

8. Fuhr, T., Leurent, G., Suder, V.: Collision attacks against CAESAR candidates.
In: Iwata, T., Cheon, J.H. (eds.) ASIACRYPT 2015. LNCS, vol. 9453, pp. 510–532.
Springer, Heidelberg (2015). doi:10.1007/978-3-662-48800-3 21

9. Gilbert, H., Minier, M.: A collision attack on 7 rounds of rijndael. In: AES Candi-
date Conference, pp. 230–241 (2000)

10. Guo, J.: Marble specification version 1.0, submission to the CAESAR competition,
March 2014. http://competitions.cr.yp.to/round1/marblev10.pdf

11. Lu, J.: On the security of the COPA and marble authenticated encryption algo-
rithms against (almost) universal forgery attack. IACR Crypt. ePrint Arch. 2015,
79 (2015). http://eprint.iacr.org/2015/079

12. Wang, L.: SHELL v2.0, submission to the CAESAR competition, August 2015.
https://competitions.cr.yp.to/round2/shellv20.pdf

13. Zhang, J., Wu, W.: Security analysis of CAESAR second-round candidate: ELmD
(2016). www.escience.cn/system/download/77967

http://dx.doi.org/10.1007/978-3-642-25385-0_19
http://dx.doi.org/10.1007/978-3-662-04722-4
https://competitions.cr.yp.to/round2/elmdv20.pdf
http://dx.doi.org/10.1007/978-3-540-71039-4_7
http://dx.doi.org/10.1007/3-540-44706-7_15
http://dx.doi.org/10.1007/978-3-662-48800-3_21
http://competitions.cr.yp.to/round1/marblev10.pdf
http://eprint.iacr.org/2015/079
https://competitions.cr.yp.to/round2/shellv20.pdf
www.escience.cn/system/download/77967

Statistical Fault Attacks on Nonce-Based
Authenticated Encryption Schemes

Christoph Dobraunig1, Maria Eichlseder1, Thomas Korak1, Victor Lomné2,
and Florian Mendel1(B)

1 Graz University of Technology, Graz, Austria
florian.mendel@iaik.tugraz.at

2 ANSSI, Paris, France
victor.lomne@ssi.gouv.fr

Abstract. Since the first demonstration of fault attacks by Boneh et al.
on RSA, a multitude of fault attack techniques on various cryptosystems
have been proposed. Most of these techniques, like Differential Fault
Analysis, Safe Error Attacks, and Collision Fault Analysis, have the
requirement to process two inputs that are either identical or related,
in order to generate pairs of correct/faulty ciphertexts. However, when
targeting authenticated encryption schemes, this is in practice usually
precluded by the unique nonce required by most of these schemes.

In this work, we present the first practical fault attacks on several
nonce-based authenticated encryption modes for AES. This includes
attacks on the ISO/IEC standards GCM, CCM, EAX, and OCB, as well
as several second-round candidates of the ongoing CAESAR competi-
tion. All attacks are based on the Statistical Fault Attacks by Fuhr et al.,
which use a biased fault model and just operate on collections of faulty
ciphertexts. Hereby, we put effort in reducing the assumptions made
regarding the capabilities of an attacker as much as possible. In the
attacks, we only assume that we are able to influence some byte (or a
larger structure) of the internal AES state before the last application of
MixColumns, so that the value of this byte is afterwards non-uniformly
distributed.

In order to show the practical relevance of Statistical Fault Attacks
and for evaluating our assumptions on the capabilities of an attacker,
we perform several fault-injection experiments targeting real hardware.
For instance, laser fault injections targeting an AES co-processor of a
smartcard microcontroller, which is used to implement modes like GCM
or CCM, show that 4 bytes (resp. all 16 bytes) of the last round key can
be revealed with a small number of faulty ciphertexts.

Keywords: Fault attacks · Authenticated encryption · CAESAR ·
Differential Fault Attacks (DFA) · Statistical Fault Attacks (SFA)

1 Introduction

Fault attacks pose a serious threat for cryptographic implementations. For this
kind of attacks, the analyzed device is operated outside its defined operating
c© International Association for Cryptologic Research 2016
J.H. Cheon and T. Takagi (Eds.): ASIACRYPT 2016, Part I, LNCS 10031, pp. 369–395, 2016.
DOI: 10.1007/978-3-662-53887-6 14

370 C. Dobraunig et al.

conditions, which can lead to erroneous outputs. By analyzing the erroneous
output data, secret information can be revealed. In the worst case, a single fault
can reveal the entire secret key of a block cipher like AES, which has been shown
to be feasible by many researchers in the last decade [7,33]. Popular techniques to
inject faults include modifications of the power supply [50] or the clock source [6]
by injecting glitches. Other methods, such as laser fault injection [45], have been
proven even more powerful, because they additionally allow a precise localization
of the fault injection.

While fault attacks on block ciphers and stream ciphers have received a
great deal of attention from the scientific community, authenticated ciphers have
been arguably less popular targets among researchers. At the same time, they
describe an important class of cryptographic algorithms with many applications
in information security. Authenticated encryption provides both confidentiality
and authentication of data to two parties communicating via an insecure channel.
This is essential for many applications such as SSL/TLS, IPSEC, SSH, or hard-
disk encryption. In most applications, there is not much value in keeping the
data secret without ensuring that it has not been intentionally or unintentionally
modified. For this reason, in practical applications, block ciphers like AES are
typically used mainly as a building block for an authenticated encryption scheme.

An authenticated encryption scheme is usually modeled as a function with
four inputs: a unique nonce N , associated data A, plaintext P , and secret key K.
It generates two outputs: the ciphertext C, and the authentication tag T :

E(K,N,A, P) = (C, T).

The corresponding decryption algorithm takes the secret key K, nonce N ,
authenticated data A, ciphertext C, and tag T , and either outputs the plain-
text P if the verification tag is correct, or ⊥ if the verification of the tag failed:

D(K,N,A,C, T) ∈ {P,⊥}.
It is usually assumed (and typically essential for the security of the authenticated
encryption scheme) that nonces never repeat for encryptions E under the same
key K. We refer to such schemes as nonce-based authenticated encryption. While
some schemes claim a certain level of robustness even in misuse settings (such as
repeated nonces, or release of unverified plaintext), this does not mean that they
are intended to be intentionally misused in practical implementations: repeating
nonces always incurs a certain loss of security.

An interesting consequence of the unique nonce in the encryption procedure
is the implicitly provided protection against several classes of fault attacks [11,
12,49]. In particular, Differential Fault Analysis (DFA) [11] is rendered almost
impossible, since an attacker is unable to observe both the correct and the faulty
output for the same input, if the attacker cannot fix the value of the nonce.
Moreover, in contrast to nonce-based (but unauthenticated) encryption schemes
(such as CBC, CTR, etc.), where the decryption procedure (with a fixed nonce)
is still susceptible to DFA, this is not the case for nonce-based authenticated
encryption schemes that only return the plaintext if the tag is correct. For this

Statistical Fault Attacks on Nonce-Based Authenticated Encryption Schemes 371

reason, all published fault attacks on authenticated encryption schemes so far are
in settings where either the nonce is repeated, or unverified plaintext is released
[42,43].

These observations might lead to the impression that nonce-based authen-
ticated encryption schemes are not susceptible to fault attacks and thus, no
dedicated fault attack countermeasures might be necessary to protect the imple-
mented scheme against these attacks. However, in this work, we show that this
assumption is not true, and present the first fault attacks on authenticated
encryption schemes that are not performed in some kind of misuse scenario.
We show that countermeasures against fault attacks are essential for implemen-
tations of authenticated encryption schemes operating in hostile environments.

Our Contribution. We present fault attacks for a wide range of authenticated
encryption schemes. Our attacks do not require any misuse scenario, such as
nonce reuse or release of unverified plaintext. We focus our discussion on various
AES-based schemes, including the ISO/IEC standards CCM [48], GCM [32],
EAX [9], and OCB [40], as well as several second-round CAESAR [46] candidates.
However, our analysis is applicable to a broader range of constructions and is
not limited to AES-based schemes.

All our attacks are based on an enhancement of the Statistical Fault Attack
(SFA) presented by Fuhr et al. [18], which requires only very limited assumptions
about the attacker’s capabilities: the ability to induce a fault that leads to a
biased (non-uniform) distribution in certain bytes. In case of AES, we assume
that the attacker is able to influence some byte (or a larger structure) of the
internal state of AES before the last application of MixColumns, so that the
value of this byte is non-uniformly distributed. Particularly, we do not have to
rely on the exact position of a fault, the number of faults injected during a single
encryption, or even the knowledge that a certain fault has happened at all in an
individual encryption. All we need to do is to collect ciphertexts and estimate
the distribution of a single byte for various key guesses.

In order to evaluate the assumptions on the capabilities of an attacker, we also
perform fault-injection experiments targeting three different hardware platforms.
In the first setting, clock glitch attacks on a GCM software implementation
executed on an 8-bit microcontroller are performed. In addition, we evaluate
implementations using AES co-processors on a smartcard chip and a general-
purpose microcontroller by means of laser fault injection and clock tampering,
respectively. In all three settings, 4 bytes of the last round key of AES could be
successfully recovered with 30, 16, and 1 200 faulty ciphertexts, respectively. In
all practical scenarios, the attack has to be repeated three more times to recover
the full last round key (in case of AES-128).

Outline. The remainder of the paper is organized as follows. In Sect. 2, we
give some background on fault attacks in general, recapitulate the work of
Fuhr et al. [18] on SFA, and introduce our attack model. In Sect. 3, we show how
SFA can be applied to various AES-based authenticated encryption schemes.

372 C. Dobraunig et al.

Finally, we present practical experiments and verify the practicality of SFA on
three different hardware platforms in Sect. 4.

2 Background

In this section, we revisit the Statistical Fault Attacks on AES underlying our
attacks. We start with a general overview of different types of fault attacks, and
briefly describe the biased fault model in the attack of Fuhr et al. [18]. Finally,
we discuss the modified, much more general biased fault model we use in this
paper, and how to identify the best key candidates.

2.1 Fault Attacks

Since the seminal work of Boneh et al. [13], it has been shown that many cryp-
tographic algorithms are susceptible to Fault Attacks (FA). Indeed, numerous
papers have proposed FA on most cryptographic primitives, including symmet-
ric ciphers (DES [11], AES [37], etc.) as well as asymmetric schemes (RSA [13],
Elliptic Curve Cryptography [10], etc.).

Fault attacks induce a logical error by physical means in one of the inter-
mediate variables of a cryptographic primitive, and exploit the erroneous result
to get information on the secret key. The means to inject a logical error can
consist in over- or under-powering the device during a short time period, tam-
pering its clock, or injecting a light beam or an electro-magnetic field inside the
device [7,31,45].

Several cryptanalytic methods have been developed to exploit erroneous
results in order to retrieve the key. In Differential Fault Analysis (DFA) [11],
the attacker runs a cryptographic function twice on the same input and intro-
duces a fault near the end of one of the computations. Then, information on
the key can be retrieved from the differences between the correct and the faulty
output. The Safe Error Attack (SEA) [49] fixes part of the cryptographic secret
to a known value. Then, the observation of a collision on the result of a correct
and faulted computation for identical inputs leaks information on the secret. In
Collision Fault Analysis [12], one runs a cryptographic operation on two related
inputs, and introduces a fault near the beginning of one of the computations.
The adversary then exploits cases where a collision on the outputs occurs.

A common requirement of all these fault attacks is the necessity of process-
ing two inputs that are either identical or related, in order to generate pairs
of correct/faulty ciphertexts. Therefore, the attacker needs to be able to con-
trol the input of a cryptographic operation, which classifies them as chosen-
plaintext attacks. Some of these FA require only one pair of correct/faulty
outputs obtained from the same input, whereas others require several pairs to
retrieve the secret key.

Statistical Fault Attacks on Nonce-Based Authenticated Encryption Schemes 373

2.2 Statistical Fault Attacks

In 2013, Fuhr et al. proposed a new type of fault attack, called Statistical Fault
Attack (SFA) [18]. In contrast to most previous attacks, the adversary only
requires a collection of faulty ciphertexts encrypted with the same key. Hence,
SFA works with random and unknown plaintexts.

Fault Model. Unlike most traditional fault attacks, SFA requires a slightly
different fault model. Assuming that intermediate variables get uniformly dis-
tributed towards the last rounds for secure cryptographic primitives like AES,
an attacker has to be able to induce faults which change the distribution of some
intermediate values to be non-uniform. In particular, Fuhr et al. considered the
following three fault models:

(a) the stuck-at-0 fault model with probability 1,
(b) the stuck-at-0 fault model with probability 1/2,
(c) the stuck-at model to an unknown and random value e with probability 1.

Using these non-uniform fault models, Fuhr et al. were able to show several
attacks on AES based on simulations. Their attacks target the last 4 rounds
with a small number of faulty ciphertexts and practical complexity.

Description of the AES. AES is a byte-oriented block cipher following the
wide-trail design strategy. It operates on a state of 4 × 4 bytes and updates
it in 10, 12, or 14 rounds, depending on the key size of 128, 192, or 256 bits.
In each round (except the last one with no MixColumns), the following four
transformations are applied.

SubBytes (SB): This step is the only non-linear transformation of the cipher. It
is a permutation consisting of an S-box S applied to each byte of the state.

ShiftRows (SR): This step is a byte transposition that cyclically shifts each row
of the state by different offsets. Row j is shifted right by j byte positions.

MixColumns (MC): This step is a permutation operating on the state column
by column. To be more precise, it is a left-multiplication by a 4 × 4 circular
MDS matrix M over F28 .

AddRoundKey (AK): In this transformation, the state is modified by combining
it with a round key with a bitwise xor operation.

Attack Procedure and Complexity. While Fuhr et al. proposed several
attack variants, we will focus only on the attack that targets the 9th round
of AES. When changing the distribution of one byte of AES before the last
MixColumns, they showed that with these fault models, 4 bytes of the last round
key could be recovered with high probability using the Squared Euclidean Imbal-
ance (SEI) distinguisher with only 6, 14, and 80 faulty ciphertexts, respectively.
We briefly recount the attack below, but refer to [18] for a more detailed descrip-
tion.

374 C. Dobraunig et al.

If we denote our target state before the last MixColumns in the encryption to
the ith ciphertext by S̃i

9, we can express one byte of this state as a function of
the ciphertext C̃i, 4 bytes of the last round key K10, and one byte of MC−1(K9),
as follows. Our target state is

S̃i
9 = MC−1(SB−1 ◦ SR−1(C̃i ⊕ K10) ⊕ K9)

= MC−1(SB−1 ◦ SR−1(C̃i ⊕ K10)) ⊕ MC−1(K9).

Each byte of S̃i
9 can therefore be deduced using one hypothesis on 4 bytes of

K10 and on one particular byte of MC−1(K9). As shown by Fuhr et al., the xor
with MC−1(K9) does not modify the distance of the biased distribution from
uniform. Hence, it can be omitted in the attack. In other words, this allows to
mount the attack on a modified S̃i

9
′:

S̃i
9
′ = MC−1 ◦ SB−1 ◦ SR−1(C̃i ⊕ K10).

This allows us to recover 4 bytes of the last round key K10 by making 232

hypotheses on their value and predicting one byte of S̃i
9
′. By repeating the attack

4 times, one can recover the complete last round key K10.

2.3 A Generalized Fault Model

In this work, we want to go beyond specific fault models like in Sect. 2.2. The
only assumption we make is that the attacker is able to influence some byte
(or a larger structure) of the internal state of AES before the last MixColumns
such that this value becomes clearly non-uniformly distributed. We make no
assumptions about the details of this non-uniformity, nor do we require that the
attacker knows the new distribution. To exploit this type of fault, the attacker
will collect faulty (biased) ciphertexts, compute backwards to the target byte
for different key guesses, and try to reject wrong key guesses that would result
in an approximately uniform measured distribution of the biased target byte.
In the remainder of this section, we discuss how to identify the non-uniform
distribution for the wrong key guesses.

We do not consider the distribution on bit-level, but for example on byte-
level. Exploiting such non-uniform distributions of multi-bit values (more specif-
ically, distributions of several sums of single bits) has already been investigated
in the context of multidimensional linear cryptanalysis [21]. However, the dis-
tributions in this context are typically very close to uniform, unlike the dis-
tributions we expect in the case of SFA. Unfortunately, as noted by Samajder
and Sarkar [44], the state-of-the-art framework for multidimensional linear crypt-
analysis is not suitable for handling distributions which are significantly different
from uniform. On the positive side, testing the closeness of discrete distribu-
tions [41] is a well-established field of research. Here, the central challenge is
to determine whether two discrete distributions are the same (or close to each
other) with the help of as few samples as possible. In our case, we want to
determine whether our given samples are distributed uniformly or not.

Statistical Fault Attacks on Nonce-Based Authenticated Encryption Schemes 375

The algorithms needing the fewest samples to perform this task are based
on an idea of Goldreich and Ron [19]. Their algorithm makes use of collisions
between sampled values to test for uniformity, since the expected number of
collisions is lowest for uniformly distributed samples. Hence, the further a dis-
tribution deviates from the uniform distribution, the more collisions and multi-
collisions we expect.

Of course, it is possible to directly base the testing of the key hypothesis
on uniformity testing. For instance, Batu et al. [8] present a test which requires
O

(
ε−4 · √

2s · log(1/γ)
)

samples for distributions over 2s-element sets. Their test
accepts with probability 1 − γ if the samples come from a distribution with �1-
norm distance smaller than ε/

√
3 · 2s to the uniform distribution. It rejects with

probability 1 − γ if the samples come from a distribution which is more than ε
away from the uniform distribution.

However, for our use-case, an approach that ranks keys according to some
metric, like the number of collisions, is more suitable than a binary decision
whether the measured distribution is uniform or not. Significantly more samples
are needed to clearly separate the distribution for the right key hypothesis from
the wrong ones to enforce a binary decision, whereas for the ranking, it is usually
sufficient if the right key is ranked somewhere among the top candidates. Since
the uniformity tests of Batu et al. [8] and Paninski [36] are actually based on
counting collisions, they also provide us with a starting point for a ranking
algorithm. This algorithm ranks the key hypothesis according to the number of
collisions, and gives multi-collisions a higher weight. In our experiments, this
ranking algorithm performs as good as ranking based on the SEI.

Interestingly, the key ranking mechanism based on the SEI used in [18,38]
can also be linked to counting collisions. Let s be the bitsize of our biased
intermediate value Si = f−1(K̂, C̃i), computed from the faulty ciphertext C̃i

under the key hypothesis K̂. Assuming that we have N faulty ciphertexts, the
SEI d is calculated as

d(K̂) =
2s−1∑

δ=0

(
#{i | f−1(K̂, C̃i) = δ}

N
− 1

2s

)2

.

This distinguisher assigns high values to key hypotheses K̂ that lead to distri-
butions of intermediate values Si with many collisions. For instance, consider a
sample size of N = 2s samples. Then, the SEI is essentially counting collisions,
since only events that occur exactly once do not increase d. Moreover, since
the deviation from uniform is squared, a greater deviation, or in our sense a
multi-collision, contributes more to d.

To sum up, it turned out that the SEI cannot be outperformed in practice by
a new ranking algorithm based on counting collisions, since the SEI is actually
doing that. Hence, we decided to stick to the more common SEI to measure if
the distribution of one byte value becomes clearly non-uniformly distributed. So
for AES, the 4-byte key guesses of the last round key are ranked according to
the resulting SEI of one byte before the last MixColums when decrypting faulty
ciphertexts for one round. To be able to observe non-uniformness and to evaluate

376 C. Dobraunig et al.

the SEI, we require the input to the block cipher to be different for each fault
and the block cipher output to be known.

3 Statistical Fault Attacks on Authenticated Encryption

In this section, we evaluate the applicability of the Statistical Fault Attack to
several authenticated encryption modes for AES. This includes the widely-used
ISO/IEC-standardized modes like CCM [48], EAX [9], GCM [32] and OCB [40],
as well as new authenticated encryption modes proposed in the CAESAR ini-
tiative [46]. For evaluating the applicability of the fault attacks to these authen-
ticated encryption schemes, we only need very limited assumptions. As already
stated in Sect. 2, we assume that the attacker is able to influence some byte
(or a larger structure) of the internal state of AES before the last MixColumns
operation in a way that this value becomes clearly non-uniformly distributed.

We classify the investigated authenticated encryption modes into three cat-
egories, as illustrated in Fig. 1:

rand

Ek

C

(a) Basic Construction

rand

Δk ⊕

Ek

Δk ⊕
C

(b) XEX-like Construction

rand

Et
k

C

(c) Tweakable Block Cipher

Fig. 1. Classification of AES-based authenticated encryption schemes.

Basic Construction. The schemes in this category allow to directly observe
the output of the block cipher. This includes schemes based on classical
encryption schemes such as CTR [15], CBC [17], CFB [17], etc., but also
schemes based on the XE construction [39], which masks the input of the
block cipher using secret masks Δk. More generally, we assume that the input
to the block cipher is a secret random value, but the output is observable to
the attacker.

XEX-like Construction. This construction is similar to XE, but unlike XE,
both the input and the output of the block cipher are masked using secret,
nonce-dependent masks Δk. Constructions following the XEX construc-
tion [39] include for instance IAPM [28], OCB [40], and several of the CAE-
SAR candidates.

Tweakable Block Cipher. The third category covers schemes that use a dedi-
cated tweakable block cipher, which depends on a (typically nonce-depend-
ent) tweak in addition to the secret key. Since the focus of this work is on

Statistical Fault Attacks on Nonce-Based Authenticated Encryption Schemes 377

AES-based modes, we will restrict ourselves to constructions using the AES
round function and following the TWEAKEY framework [27], such as for
instance the CAESAR candidates KIASU [26] and Deoxys [24].

In the remainder of this section, we will discuss the applicability of Statistical
Fault Attacks to schemes of these three categories in turn.

3.1 Application to the Basic Construction

In this construction, the output of the block cipher is directly known to the
attacker, or can trivially be recovered by, say, xoring observable values with
public values or constants. It is easy to see that in this case, the Statistical Fault
Attack described in Sect. 2 can be applied in a straight-forward way to recover
the secret key k. As an example, we discuss the application of Statistical Fault
Attacks on AES in counter (CTR) modes as used in GCM, CCM and EAX (all
standardized by ISO/IEC).

Statistical Fault Attack on CCM, EAX and GCM. As a representative
example for the three modes, we will discuss the attack on CCM, which is shown
in Fig. 2. As its name implies, the CTR-with-CBC-MAC mode (CCM) can be
split into an encryption part using AES in counter mode to encrypt the plaintext
P and an authentication part using CBC-MAC to authenticate the nonce N ,
associated data A, and plaintext P , which generates the tag T . For clarity, we
have substituted the first part of the CBC-MAC, where the associated data is
processed, with its outcome V in Fig. 2. Since the fault attack is solely performed
on the encryption part, the following observations also hold for EAX and GCM
that both use AES in CTR mode for encryption.

N‖CTR0 � CTR1 · · · � CTRd

1 1
Ek Ek Ek

S P1 ⊕ · · · Pd ⊕

C1 · · · Cd S

V ⊕ · · · ⊕ ⊕

Ek Ek
trunc

T

Fig. 2. The counter with CBC-MAC mode.

378 C. Dobraunig et al.

For the sake of simplicity, we restrict our fault attack to the encryption Ek

of the first plaintext block (marked by the dashed rectangle in Fig. 2). Let us
recall the conditions of Sect. 2 that are necessary for the Statistical Fault Attack
to work:

1. The inputs of the block cipher need to be different for each fault.
2. The block cipher output needs to be known.

Condition 1 is always fulfilled, since it is required that the nonce N changes
for each encryption and thus, the input to Ek changes as well. Condition 2
is fulfilled assuming a known plaintext attack, where the plaintext block P1 is
known to the attacker. Then, one can compute the keystream part for encrypting
this plaintext block by xoring it with C1. The resulting keystream is the output
of the block cipher Ek. To sum up, we are able to observe outputs of the block
cipher Ek for various inputs. Thus, we have the same preconditions as for the
fault attack on plain AES described in Sect. 2. Hence, the attack can be applied
to CCM (and any other scheme based on CTR mode) in a straight-forward
way. We want to stress that the attacker does not require to know the input of
the block cipher, it is just necessary that it changes. Therefore, the attack also
applies to modes where the value of the counter is unknown, such as EAX.

Statistical Fault Attack on OCB. Although ISO/IEC-standard OCB is
based on the XEX construction, we show that it is also vulnerable to the attack
on the basic construction. The reason for this is that if the last plaintext block is
incomplete, it is instead processed using the XE construction, as shown in Fig. 3.
Therefore, the knowledge of this incomplete last plaintext and ciphertext block
allows an attacker to compute the output of the block cipher Ek and thus, the
Statistical Fault Attack is again applicable.

P1

Δ1 ⊕

Ek

Δ1 ⊕

C1

P2

Δ2 ⊕

Ek

Δ2 ⊕

C2

Pd−1

Δd−1 ⊕

Ek

Δd−1 ⊕

Cd−1

. . .

. . .

. . .

Pd‖0∗

Δ∗

Ek

⊕

Cd

∑
Mj

Δ$ ⊕

Ek

V ⊕

T

Fig. 3. Encryption in OCB.

Application to Other Modes. Besides CCM, EAX, GCM, and OCB, the
fault attack discussed in this section also applies to several other authenti-
cated encryption modes. For instance, to the CAESAR candidates Cloc [22] and

Statistical Fault Attacks on Nonce-Based Authenticated Encryption Schemes 379

Silc [23], which are based on cipher-feed-back mode (CFB), where the ciphertext
is the xor of the output of a block cipher Ek and the plaintext blocks. Another
example is AES-OTR [34], which uses a balanced two-round Feistel network for
encryption. The round function of this network is AES in an XE mode. Since
the balanced Feistel network has only two rounds, knowledge of the plaintext
and ciphertext implies knowledge of the block cipher output. Thus, again, the
Statistical Fault Attack is directly applicable.

3.2 Application to XEX-Like Constructions

In this construction, the output of the block cipher is masked with a secret value
Δk, which prevents a straightforward application of the basic attack. However,
depending on how Δk is computed, the Statistical Fault Attack may nevertheless
be applicable. In the simplest case, Δk is not nonce-dependent. This allows to
repeatedly observe ciphertexts masked with a secret, but constant value Δk.
We demonstrate how to exploit this in an attack on the CAESAR candidate
AES-COPA [4].

Statistical Fault Attack on AES-COPA. AES-COPA uses an XEX-like
construction for encrypting the plaintext, which is shown in Fig. 4. The input
V of the plaintext processing is the result of a PMAC-like processing of the
associated data A and the nonce N . Thus, V will change for different nonce
values. Each processed ciphertext block requires two invocations of the block
cipher Ek. AES-COPA masks both the input of the block cipher processing the
plaintext blocks Pj , and the output of the block cipher that generate ciphertext
blocks Cj . The masks are based on a secret value L = Ek(0). We focus our
attack on the block cipher call that generates C1, as marked in Fig. 4.

P1 P2 Pd

∑
Pj

3L ⊕ 2 · 3L ⊕ 2d−13L ⊕ 2d−132L ⊕

Ek Ek Ek Ek

V ⊕ ⊕ · · · ⊕ ⊕
L

Ek Ek Ek Ek

2L ⊕ 22L ⊕ 2dL ⊕ 2d7L ⊕

C1 C2 Cd T

Fig. 4. Plaintext processing of AES-COPA, L = Ek(0).

380 C. Dobraunig et al.

So far, only one of our two prerequisites for the SFA from Sect. 2 is fulfilled.
We can vary the input of the block cipher calls by changing, for example, the
nonce, associated data, or plaintext. However, the output of the block cipher
is unknown, since it is masked with the secret value Δk = 2 · Ek(0) to get C1.
To overcome this obstacle and since Δk solely depends on the secret key k, we
consider Δk as a part of the key schedule to compute the last round key. Thus,
instead of the last round key K10 of AES, we get K ′

10 := K10 ⊕ (2 · Ek(0)) as
the last round key.

Hence, instead of recovering the last round key K10 of AES as in the attacks
before, we now can recover K ′

10 by using SFA as described in Sect. 2. For recov-
ering K ′

10, the complexity and the needed numbers of faults are the same as for
the attack on AES itself. However, the knowledge of K ′

10 does not directly lead
to a key recovery attack of the master key k. Therefore, we need to perform
the Statistical Fault Attack a second time. One option is to target again the
first plaintext block and use our knowledge of K ′

10 to now target the AES round
key K9. Alternatively, we repeat the attack for the second plaintext block to
recover K10 ⊕ (4 ·Ek(0)) and thus get K10 by solving the resulting linear system.
In both cases, the master key can then easily be recovered from K9 and K10,
respectively.

Application to Other Modes. Besides COPA, other schemes that use a
nonce-independent Δk and allow the Statistical Fault Attack include ELmD [14]
and Shell [47]. In contrast, some schemes, such as IAPM, OCB, or some CAESAR
candidates, also include the nonce in the computation of Δk. All these schemes
have in common that Δk changes unpredictably for each block cipher call, which
prevents a straight-forward application of Statistical Fault Attacks.

Instead of relying on misuse settings like repeated nonces, we will have a
closer look at how these schemes typically compute Δk. In many cases, Δk

can be decomposed into two values: a known, nonce-dependent part δN , and a
secret, key-dependent part δk, which are then for example combined with a linear
function to produce Δk. In this case, we can adapt our attack as follows, similar
to the COPA case. First, we recover the modified last round key K ′

10 = K10⊕δk.
Depending on the key schedule and the function δk, this may already be sufficient
to recover the master key (e.g., if δk and the key schedule are linear). Otherwise,
we repeat the attack a second time to the round before to recover K9 as described
before.

3.3 Application to Modes Based on Tweakable Block Ciphers

In this construction, the authenticated encryption scheme uses a tweakable
block cipher Et

k instead of a regular block cipher as basic building block.
In this case, the Statistical Fault Attack is not generally applicable. How-
ever, for some tweakable block ciphers such as the ones presented within the
TWEAKEY framework [27], we can adapt our attack. In particular, this is pos-
sible if the last subkeys of the tweakable block cipher can be described by the

Statistical Fault Attacks on Nonce-Based Authenticated Encryption Schemes 381

composition of two values, δt ⊕ δk. We illustrate the working principle of the
attack for the CAESAR candidate Deoxys [24], but the same attack is also
applicable to KIASU [26], where the tweak t is only xored to each round-key.

Statistical Fault Attack on Deoxys. Deoxys offers two modes of operation,
both using two variants of the underlying tweakable block cipher Deoxys-BC. We
focus on Deoxys �=-128-128, which uses Deoxys-BC-256 as underlying tweakable
block cipher. As shown in Fig. 5, Deoxys �= encrypts the individual plaintext
blocks Pj in an ΘCB3-like [30] way. This ensures both the variation of the
tweakable block cipher inputs, and knowledge of the outputs. However, since the
tweak is partly defined by the nonce, we have to determine the influence of this
nonce on the last round key that we want to recover using SFA. Thus, we have to
have a closer look at the definition of the tweakable block cipher Deoxys-BC-256.

P1 P2 Pd

∑
Pj

E0,N,0
k E0,N,1

k
· · · E0,N,d−1

k E1,N,d−1
k

⊕ V

C1 C2 Cd T

Fig. 5. Plaintext processing for Deoxys �=.

Figure 6 shows how Deoxys-BC-256 uses the round function f of the AES,
but computes different round keys Ki based on the master key k and tweak t.
Here, Ki is the xor sum of three values: a key-dependent round key Kk

i , a tweak-
dependent round tweak Kt

i , and a round constant ci. The values are updated
using a simple byte permutation h. For instance, Kk

0 = k, Kt
0 = t, Kk

1 = 2h(k),
Kt

1 = h(t), Kk
r = 2h(2h(. . . 2h(k) . . .)), and Kt

r = h(h(. . . h(t) . . .)).

Kk
0 Kk

1 Kk
13 Kk

14
k h 2 h · · · h 2

t h h · · · h

Kt
0 ⊕ c0 Kt

1 ⊕ c1 Kt
13 ⊕ c13 Kt

14 ⊕ c14

K0 K1 K13 K14

P ⊕ f ⊕ f · · · ⊕ f ⊕ C

Fig. 6. Block cipher Deoxys-BC-256.

382 C. Dobraunig et al.

Since the value of the tweak used for encryption is publicly known, the varying
part Kt

i of the round keys Ki can be easily calculated. The unknown parts Kk
i

of the round key are constant for multiple calls of the block cipher under the
same key k. Hence, the last round key Kk

14 can be recovered with the SFA on
AES described in Sect. 2.

3.4 Summary and Discussion of Results

We demonstrated in the previous sections that several authenticated encryption
modes for AES are susceptible to Statistical Fault Attacks. A summary of the
results is given in Table 1. However, Statistical Fault Attacks are applicable to a
broader range of authenticated encryption schemes, and are not limited to AES-
based modes. Natural targets for the attack include, for instance, the CAESAR
candidates Joltik [25] and Scream [20], which also follow the TWEAKEY frame-
work [27], or Prøst [29], which applies the modes of COPA [5] and OTR [35] to
an Even-Mansour block cipher.

Moreover, the attack is not limited to block cipher based constructions. For
instance, the APE construction [3] uses a secret key in the finalization for tag
generation, making it a natural target for the attack. Also the sponge-based
CAESAR candidates Ascon [16] and PRIMATEs [2] both employ a keyed final-
ization, with similar effects. However, the fact that large parts of the internal
state are truncated to generate the authentication tag might complicate the
attack.

Table 1. Statistical fault attacks on AES-based authenticated encryption modes in
the nonce-respecting setting.

Primitive Classification Comments Reference

CCM Basic CTR Sect. 3.1

GCM Basic CTR Sect. 3.1

EAX Basic CTR Sect. 3.1

OCB Basic XE (incomplete blocks) Sect. 3.1

Cloc/Silca Basic CFB Sect. 3.1

OTRa Basic XE Sect. 3.1

COPAa XEX Sect. 3.2

ELmDa XEX Sect. 3.2

SHELLa XEX Sect. 3.2

KIASUa TBC TWEAKEY Sect. 3.3

Deoxysa TBC TWEAKEY Sect. 3.3
aCAESAR candidates.

Statistical Fault Attacks on Nonce-Based Authenticated Encryption Schemes 383

4 Practical Verification/Implementation of the Attacks

In order to demonstrate the practical relevance of Statistical Fault Attacks and
to validate the assumptions from previous sections, we performed three fault-
injection experiments targeting real hardware.

An AES-GCM implementation executed on an off-the-shelf microcontroller
served as target for the first experiment. In this context we used the ASM AES
version from [1] to realize the block cipher. Due to the lack of embedded plat-
forms implementing GCM or CCM completely in hardware, we put the focus
of the following analysis on hardware AES co-processors available on a smart-
card microcontroller and on a general-purpose microcontroller, respectively. The
remaining parts for realizing the authenticated encryption modes are then imple-
mented in software.

In all settings, the fault injections aim to induce a bias on at least one byte
of the AES state before the last MixColumns transformation, and allow to reveal
32 bits of the last AES round key. For full key recovery, the attack has to be
repeated three more times. The following list provides an overview of the fault-
injection methods and the attack results for the three settings:

1. Clock tampering has been used to disturb the execution of the AES software
implementation running on an ATxmega 256A3 general-purpose microcon-
troller. This setting allowed to reveal 4 bytes of the last round key with less
than 30 faulted ciphertexts.

2. Laser fault injections on an AES co-processor on a smartcard microcontroller.
Our experiments show that less than 16 faulty ciphertexts are sufficient to
reveal 4 bytes of the last round key.

3. Clock tampering on a hardware AES co-processor implemented on a general-
purpose microcontroller. In this setting, we need approximately 1 200 faulted
ciphertexts for recovering 4 bytes of the last round key.

For all attacks, 4 bytes of the last round key can be recovered out of the
faulted ciphertexts in less than one hour using an Intel Core i7 3770K. In the
following, we give a detailed description and summary of the practical fault-
injection attacks.

4.1 AES Software Implementation on an 8-Bit Microcontroller

In the following setting, we used clock glitches to provoke faults during an AES
computation implemented in software on an 8-bit microcontroller. In particular,
we used the ASM AES version from [1] for realizing the GCM AE mode.

For the clock-glitch experiments, we used a nominal clock frequency of
24 MHz (Tclk = 41.7 ns). According to [1], one 128-bit encryption requires 2 555
clock cycles. For simplicity, we used one general-purpose I/O pin of the microcon-
troller for indicating the start of the AES encryption. This trigger pin together
with the knowledge of the length of the AES encryption procedure allows to find
the correct time interval for inserting the clock glitch. Next to that, our results

384 C. Dobraunig et al.

show that faults in consecutive clock cycles also lead to successful key recovery.
As a consequence, this behavior allows to relax the precision prerequisite of the
trigger information.

With the found parameters, we collected two sets, each containing 80 faulty
ciphertexts. For the first set, a single clock glitch was inserted. For the second
set, clock glitches in 50 consecutive clock cycles were inserted. Next, we per-
formed SFA attacks using an increasing number of faulty ciphertexts on both
sets individually. The results containing the set size N , the SEI value for the
correct subkey (SEIc), and the maximum SEI value of the wrong subkey guesses
(SEIw) were stored in two separate lists (one list for each set) in the format
[N,SEIc,max(SEIw)]. For this attack scenario, we started with N = 4 and
increased N in every iteration by 4.

Figure 7 displays the evolution of the SEI values for increasing number of
ciphertexts in the single clock glitch setting. Values corresponding to the correct
subkey are plotted in red, the maximum SEI values of the wrong subkey guesses
are plotted in blue. With 30 faulty ciphertexts, SEIc exceeds max(SEIw), which
allows to reveal the correct subkey value.

10 20 30 40 50 60 70 80

2−5

2−4

2−3

2−2

2−1

number of faulty encryptions

S
E

I

correct key

wrong keys

Fig. 7. SEI values for correct key (SEIc) plotted against best SEI for a wrong key
(max(SEIw)) for increasing number of faulty encryptions. Setup: AES software imple-
mentation, single clock glitch (Table 2). (Color figure online)

Figure 8 displays the evolution of the SEI values for an increasing number of
ciphertexts for the setting with 50 consecutive clock glitches. In this setting, 24
ciphertexts are sufficient for SEIc to exceed max(SEIw), which allows to reveal
the correct subkey value.

Results of the fault attacks targeting the AES software implementations using
clock glitches show that with 30 faulty ciphertexts, it is possible to reveal the
32-bit subkey if a single clock glitch is inserted. Furthermore, if the clock glitch
is inserted in 50 consecutive clock cycles, approximately 25 faulty ciphertexts
are sufficient for subkey recovery. We did not further investigate the approach

Statistical Fault Attacks on Nonce-Based Authenticated Encryption Schemes 385

10 20 30 40 50 60 70 80

2−5

2−4

2−3

2−2

2−1

number of faulty encryptions

S
E

I

correct key

wrong keys

Fig. 8. Evolution of the SEI values with increasing number of faulty encryptions. Setup:
AES software implementation, multiple clock glitches (Table 2).

of inserting the clock glitch in consecutive clock cycles because this is out of
scope of the current work. Nevertheless, by carefully trimming the fault injection
parameters, the number of faulty ciphertexts for successful subkey recovery could
probably be further decreased.

4.2 AES Hardware Co-Processor of a Smartcard Microcontroller

In this experiment, we used a laser fault injection system to induce faults during
encryptions of an AES Hardware co-processor of a smartcard microcontroller.
This co-processor can easily be used as building block for realizing authenticated
encryption modes like GCM or CCM on the smartcard.

The laser fault injection system consists of an infrared laser diode module
and a microscope allowing to focus the laser spot depending on the microscope
objective used. Here an objective with a 10× magnification is used. The whole
system is mounted on a motorized X-Y-Z stage.

As the smartcard microcontroller runs its own operating system, the only
signal available for triggering the laser injection system is the sending of the
encryption command through APDU command. Therefore, a temporal delay
is added to postpone the laser injection during the AES encryption thanks to
a remotely controllable pulse generator. Furthermore, as the smartcard micro-
controller runs on its own internal clock network, an inherent temporal jitter
is present due to the asynchronism between the laser injection system and the
smartcard microcontroller clock network. These experimental conditions are very
close to the ones present in real world scenarios.

By applying a spatial fault injection cartography, we have been able to find
a spatial position where only one byte of the AES state is faulted. Furthermore,
by trying different delays, we found a spatio-temporal setting where only 4 bytes
of the ciphertext were faulted with a high reliability. By studying the indices of

386 C. Dobraunig et al.

10 20 30 40 50 60 70 80

2−5

2−4

2−3

2−2

2−1

number of faulty encryptions

S
E

I
correct key

wrong keys

Fig. 9. Evolution of the SEI values with increasing number of faulty encryptions. Setup:
AES hardware co-processor of a smartcard microcontroller, laser (Table 3). (Color
figure online)

the faulted ciphertext bytes, we concluded that we successfully induced a fault
on one byte of the AES state just before the last MixColumns. The fact that the
hardware AES module can also be used outside of the context of authenticated
encryption, i.e., for encrypting single plaintext blocks, simplified this profiling.
However, if the stand-alone usage of the AES co-processor is not possible on the
attacked platform, the search for the right fault injection parameters becomes
more complicated, but is still feasible.

With the found parameters, we collected again 80 faulty ciphertexts. With
the collected faulty ciphertexts, the same evaluation as in the previous section
was conducted. We started again with an initial attack set size N = 4 and
increased the size of the attack set by 4 in every iteration. The evolution of the
SEI values with increasing set size is depicted in Fig. 9. Values corresponding
to the correct subkey are plotted in red, the maximum SEI values of the wrong
subkey guesses are plotted in blue.

As depicted on Fig. 9, SEIc already exceeds max(SEIw) with only N = 16
ciphertexts. Therefore, this number of ciphertexts allows to retrieve 4 bytes of
the correct last round key. This result validates the practicability of the fault
model and even shows that laser-based fault injection systems are well suitable
for this kind of attacks.

4.3 AES Co-Processor on a General-Purpose Microcontroller

In this setting, we use clock glitches to inject faults during the encryption pro-
cedure of an AES co-processor integrated on a general-purpose microcontroller.
This co-processor can on the one hand be used as stand-alone block cipher to
encrypt plaintext blocks, on the other hand it can be used in the context of
AE for realizing a mode of operation like GCM or CCM. The co-processor in

Statistical Fault Attacks on Nonce-Based Authenticated Encryption Schemes 387

clk Tglitch

Tclk

Fig. 10. Clock signal with intentionally inserted additional positive clock edge.

stand-alone mode allows profiling the hardware in order to find suitable fault-
injection parameters. The target of the fault injection is the output of the byte
substitution (SubBytes) in the 9th AES round. The AES co-processor implements
the SubBytes function with pure combinational logic. Since one column of the
state is processed in a single clock cycle, this allows to create faults in 4 bytes
of the state with a single clock glitch.

We define with Tglitch the time interval between two subsequent positive clock
edges in case of a clock glitch. This value is smaller compared to the nominal
clock period Tclk, as illustrated in Fig. 10. If Tglitch is smaller than the path
delay of the combinational SubBytes block, the output value of this block has
not settled to its correct, stable value. As a result, a wrong value is sampled by
the registers at the output of the block, which leads to faults in the ciphertext.

For the clock glitch experiments, we used a nominal clock frequency of
10 MHz (Tclk = 100 ns). Preliminary fault experiments allowed to find the cor-
rect clock cycle (i.e., the delay between the start of the encryption and the
targeted instruction) to disturb the SubBytes operation in the 9th round before
the MixColumns step. With Tglitch = 10.2 ns, we achieved a fault probability of
99.5 %.

With these parameters, we executed the AES encryption to receive 2 000
faulty ciphertexts. The increased number of ciphertexts was required because
preliminary experiments revealed that the bias introduced with the clock glitch
was significantly smaller compared to the bias introduced by the laser attack.
With the collected faulty ciphertexts, the same evaluation as in the previous
section was conducted. Due to a smaller bias, we started with an initial attack set
size N = 32 and increased the size of the attack set by 32 in every iteration. The
evolution of the SEI values with increasing set size is depicted in Fig. 11. Values
corresponding to the correct subkey are again plotted in red, the maximum SEI
values of the wrong subkey guesses are plotted in blue.

As depicted on Fig. 11, starting at 1 200 ciphertexts, SEIc exceeds max(SEIw).
This allows to reveal the correct subkey in an attack setting. Compared to the
results presented in the previous section, the number of required ciphertexts is
nearly 100 times higher, but the number is still practical and this amount of
ciphertexts can be collected within minutes. However, the effort for performing
clock-glitch attacks compared to laser fault attacks (e.g., preparing the fault-
injection environment, finding good fault-injection parameters) is significantly
smaller, which has to be taken into account.

388 C. Dobraunig et al.

600 800 1 000 1 200 1 400 1 600 1 800

2−10

2−9

number of faulty encryptions

S
E

I
correct key

wrong keys

Fig. 11. Evolution of the SEI values with increasing number of faulty encryptions.
Setup: AES co-processor on a general-purpose microcontroller, clock glitch (Table 4).
(Color figure online)

4.4 Discussion and Remarks

The goal of the attacks presented in this section is a feasibility study proving
that the assumed biased fault model is indeed valid on different platforms using
different fault-injection mechanisms.

For the software implementation, a general-purpose I/O pin indicating the
start of the AES encryption has been used, which allowed a precise fault injection
using clock glitches. Real-world scenarios, like the second experiment targeting
the smartcard microcontroller, typically do not allow the usage of a trigger pin.
In such scenarios, other sources for synchronizing the fault-injection procedure
can be applied, like spying the communication or the power profile. This can
decrease the precision of the fault injections.

But it is important to note that the outcome of the SFA attack does not
strictly rely on a precise fault injection. If only a subset of the received ciphertexts
are affected by the expected fault pattern, the remaining ciphertexts (fault-free
or fault hitting another location during the cipher rounds) are treated as noise.
A more reliable fault injection process however minimizes the number of required
ciphertexts for successful key recovery.

Furthermore, when the attacked platform allows the usage of the AES co-
processor for stand-alone encryption (e.g., as in the previous experiments), one
can easily perform a profiling step which simplifies the search for appropriate
fault injection parameters. Nevertheless, if the AES co-processor can only be
used in the context of the authenticated encryption mode, it is still possible
to find the appropriate fault injection parameters. Of course, the number of
attempts and the search space for the parameters increase, resulting in a more
time-consuming setup phase for the fault injection.

Statistical Fault Attacks on Nonce-Based Authenticated Encryption Schemes 389

With the practical results presented in this section, we showed that imple-
mentations of AES-based authenticated encryption modes on different hardware
platforms are vulnerable to the proposed fault attacks introduced in this work.

5 Conclusion

In this work, we demonstrate for the first time that a wide range of nonce-based
authenticated encryption schemes, including the widely used ISO/IEC standards
CCM, GCM, EAX, and OCB, are susceptible to fault attacks. All our attacks
need only very limited assumptions about the attacker’s capabilities. To confirm
these assumptions and to show the practical relevance of the attacks, we perform
several fault-injection experiments targeting real hardware. This highlights the
need for dedicated fault attack countermeasures for authenticated encryption
schemes. Although our analysis focus only on AES-based constructions, we want
to note that it is applicable to a broader range of authenticated encryption
schemes. This is part of future work.

Acknowledgments. The authors would like to thank the organizers and participants
of ASK 2015 that initiated this work and the anonymous reviewers for useful comments.

The research leading to these results has received funding from the
European Union’s Horizon 2020 research and innovation programme
under grant agreement No 644052 (HECTOR). Furthermore, this work

has been supported in part by the Austrian Research Promotion Agency (FFG) under
grant number 845589, by the Austrian Science Fund (project P26494-N15) and by the
French ANR-14-CE28-0015 project.

390 C. Dobraunig et al.

A Data of Practical Verification/Implementation

Table 2. Evolution of the SEI values for correct key (SEIc) and the best wrong key
(max(SEIw)) for increasing number of faulty encryptions N . Setup: AES software
implementation, single clock glitch (left) and multiple clock glitches (right).

N SEIc max(SEIw)

4 0.25 1.00
8 0.12 0.43

12 0.13 0.30
16 0.11 0.22
20 0.09 0.16
24 0.09 0.12
28 0.10 0.09
32 0.10 0.09
36 0.09 0.07
40 0.08 0.06
44 0.09 0.05
48 0.08 0.05
52 0.08 0.05
56 0.09 0.04
60 0.09 0.04
64 0.08 0.04
68 0.08 0.03
72 0.08 0.03
76 0.08 0.03
80 0.09 0.03

N SEIc max(SEIw)

4 0.25 1.00
8 0.18 0.46

12 0.15 0.29
16 0.14 0.18
20 0.14 0.15
24 0.16 0.12
28 0.13 0.09
32 0.13 0.08
36 0.13 0.07
40 0.13 0.06
44 0.13 0.05
48 0.13 0.05
52 0.14 0.04
56 0.13 0.04
60 0.14 0.04
64 0.14 0.03
68 0.14 0.03
72 0.15 0.03
76 0.14 0.03
80 0.14 0.02

Statistical Fault Attacks on Nonce-Based Authenticated Encryption Schemes 391

Table 3. Evolution of the SEI values for correct key (SEIc) and the best wrong key
(max(SEIw)) for increasing number of faulty encryptions N . Setup: AES hardware
co-processor of a smartcard microcontroller, laser.

N SEIc max(SEIw)

4 0.62 1.00

8 0.31 0.46

12 0.29 0.29

16 0.22 0.18

20 0.23 0.14

24 0.19 0.11

28 0.17 0.09

32 0.18 0.08

36 0.19 0.07

40 0.17 0.07

44 0.20 0.06

48 0.19 0.05

52 0.16 0.04

56 0.17 0.04

60 0.17 0.03

64 0.17 0.03

68 0.19 0.03

72 0.19 0.03

76 0.21 0.03

80 0.21 0.02

392 C. Dobraunig et al.

Table 4. Evolution of the SEI values for correct key (SEIc) and the best wrong key
(max(SEIw)) for increasing number of faulty encryptions N . Setup: AES co-processor
on a general-purpose microcontroller, clock glitch.

N SEIc max(SEIw)

32 0.02930 0.08203
64 0.01514 0.03369
96 0.01020 0.02040

128 0.00769 0.01489
160 0.00625 0.01125
192 0.00521 0.00971
224 0.00474 0.00817
256 0.00430 0.00693
288 0.00398 0.00620
320 0.00355 0.00535
352 0.00341 0.00492
384 0.00304 0.00448
416 0.00284 0.00416
448 0.00271 0.00388
480 0.00266 0.00359
512 0.00247 0.00330
544 0.00241 0.00315
576 0.00240 0.00297
608 0.00233 0.00280
640 0.00231 0.00264
672 0.00229 0.00250
704 0.00213 0.00238
736 0.00206 0.00227
768 0.00195 0.00219
800 0.00188 0.00215
832 0.00182 0.00202
864 0.00180 0.00195
896 0.00181 0.00190
928 0.00178 0.00180
960 0.00171 0.00173
992 0.00168 0.00172

N SEIc max(SEIw)

1 024 0.00165 0.00164
1 056 0.00162 0.00162
1 088 0.00155 0.00154
1 120 0.00150 0.00151
1 152 0.00147 0.00145
1 184 0.00145 0.00140
1 216 0.00143 0.00136
1 248 0.00138 0.00137
1 280 0.00135 0.00130
1 312 0.00131 0.00128
1 344 0.00131 0.00125
1 376 0.00130 0.00122
1 408 0.00129 0.00120
1 440 0.00127 0.00117
1 472 0.00122 0.00113
1 504 0.00124 0.00111
1 536 0.00125 0.00107
1 568 0.00126 0.00106
1 600 0.00124 0.00104
1 632 0.00123 0.00103
1 664 0.00123 0.00101
1 696 0.00123 0.00100
1 728 0.00123 0.00098
1 760 0.00119 0.00097
1 792 0.00120 0.00095
1 824 0.00117 0.00093
1 856 0.00116 0.00089
1 888 0.00114 0.00087
1 920 0.00113 0.00088
1 952 0.00113 0.00087
1 984 0.00113 0.00084

Statistical Fault Attacks on Nonce-Based Authenticated Encryption Schemes 393

References

1. AVR crypto lib. http://avrcryptolib.das-labor.org. Accessed 13 Jan 2016
2. Andreeva, E., Bilgin, B., Bogdanov, A., Luykx, A., Mendel, F., Mennink, B.,

Mouha, N., Wang, Q., Yasuda, K.: PRIMATEs. Submission to the CAESAR Com-
petition (Round 2). http://competitions.cr.yp.to/round2/primatesv102.pdf

3. Andreeva, E., Bilgin, B., Bogdanov, A., Luykx, A., Mennink, B., Mouha, N.,
Yasuda, K.: APE: authenticated permutation-based encryption for lightweight
cryptography. In: Cid, C., Rechberger, C. (eds.) FSE 2014. LNCS, vol. 8540, pp.
168–186. Springer, Heidelberg (2015). doi:10.1007/978-3-662-46706-0 9

4. Andreeva, E., Bogdanov, A., Luykx, A., Mennink, B., Tischhauser, E., Yasuda,
K.: AES-COPA. Submission to the CAESAR Competition (Round 2). http://
competitions.cr.yp.to/round2/aescopav2.pdf

5. Andreeva, E., Bogdanov, A., Luykx, A., Mennink, B., Tischhauser, E., Yasuda,
K.: Parallelizable and authenticated online ciphers. In: Sako, K., Sarkar, P. (eds.)
ASIACRYPT 2013. LNCS, vol. 8269, pp. 424–443. Springer, Heidelberg (2013).
doi:10.1007/978-3-642-42033-7 22

6. Balasch, J., Gierlichs, B., Verbauwhede, I.: An in-depth and black-box charac-
terization of the effects of clock glitches on 8-bit MCUs. In: Fault Diagnosis and
Tolerance in Cryptography - FDTC 2011, pp. 105–114. IEEE (2011)

7. Bar-El, H., Choukri, H., Naccache, D., Tunstall, M., Whelan, C.: The sorcerer’s
apprentice guide to fault attacks. In: Fault Diagnosis and Tolerance in Cryptogra-
phy - FDTC 2004, pp. 330–342 (2004)

8. Batu, T., Fortnow, L., Rubinfeld, R., Smith, W.D., White, P.: Testing closeness of
discrete distributions. J. ACM 60(1), 4 (2013)

9. Bellare, M., Rogaway, P., Wagner, D.: The EAX mode of operation. In: Roy, B.,
Meier, W. (eds.) FSE 2004. LNCS, vol. 3017, pp. 389–407. Springer, Heidelberg
(2004). doi:10.1007/978-3-540-25937-4 25

10. Biehl, I., Meyer, B., Müller, V.: Differential fault attacks on elliptic curve cryp-
tosystems. In: Bellare, M. (ed.) CRYPTO 2000. LNCS, vol. 1880, pp. 131–146.
Springer, Heidelberg (2000). doi:10.1007/3-540-44598-6 8

11. Biham, E., Shamir, A.: Differential fault analysis of secret key cryptosystems. In:
Kaliski Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 513–525. Springer,
Heidelberg (1997). doi:10.1007/BFb0052259

12. Blömer, J., Krummel, V.: Fault based collision attacks on AES. In: Breveglieri,
L., Koren, I., Naccache, D., Seifert, J.-P. (eds.) FDTC 2006. LNCS, vol. 4236, pp.
106–120. Springer, Heidelberg (2006). doi:10.1007/11889700 11

13. Boneh, D., DeMillo, R.A., Lipton, R.J.: On the importance of checking crypto-
graphic protocols for faults. In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS, vol.
1233, pp. 37–51. Springer, Heidelberg (1997). doi:10.1007/3-540-69053-0 4

14. Datta, N., Nandi, M.: ELmD. Submission to the CAESAR Competition (Round
2). http://competitions.cr.yp.to/round2/elmdv20.pdf

15. Diffie, W., Hellman, M.E.: Privacy and authentication: an introduction to cryp-
tography. Proc. IEEE 67(3), 397–427 (1979)

16. Dobraunig, C., Eichlseder, M., Mendel, F., Schläffer, M.: Ascon. Submission to the
CAESAR Competition (Round 2). http://competitions.cr.yp.to/round2/asconv11.
pdf

17. Dworkin, M.: Recommendation for block cipher modes of operation. NIST Spec.
Publ. 800(38A), 1–59 (2001)

http://avrcryptolib.das-labor.org
http://competitions.cr.yp.to/round2/primatesv102.pdf
http://dx.doi.org/10.1007/978-3-662-46706-0_9
http://competitions.cr.yp.to/round2/aescopav2.pdf
http://competitions.cr.yp.to/round2/aescopav2.pdf
http://dx.doi.org/10.1007/978-3-642-42033-7_22
http://dx.doi.org/10.1007/978-3-540-25937-4_25
http://dx.doi.org/10.1007/3-540-44598-6_8
http://dx.doi.org/10.1007/BFb0052259
http://dx.doi.org/10.1007/11889700_11
http://dx.doi.org/10.1007/3-540-69053-0_4
http://competitions.cr.yp.to/round2/elmdv20.pdf
http://competitions.cr.yp.to/round2/asconv11.pdf
http://competitions.cr.yp.to/round2/asconv11.pdf

394 C. Dobraunig et al.

18. Fuhr, T., Jaulmes, É., Lomné, V., Thillard, A.: Fault attacks on AES with faulty
ciphertexts only. In: Fischer, W., Schmidt, J. (eds.) Fault Diagnosis and Tolerance
in Cryptography - FDTC 2013, pp. 108–118. IEEE Computer Society, Washington,
DC (2013)

19. Goldreich, O., Ron, D.: On testing expansion in bounded-degree graphs. Electron.
Colloquium Comput. Complex. (ECCC) 7(20), 1–6 (2000)

20. Grosso, V., Leurent, G.L., Standaert, F., Varici, K., Journault, A., Durvaux, F.,
Gaspar, L., Kerckhof, S.: SCREAM. Submission to the CAESAR Competition
(Round 2). http://competitions.cr.yp.to/round2/screamv3.pdf

21. Hermelin, M., Cho, J.Y., Nyberg, K.: Multidimensional extension of Matsui’s
Algorithm 2. In: Dunkelman, O. (ed.) FSE 2009. LNCS, vol. 5665, pp. 209–227.
Springer, Heidelberg (2009). doi:10.1007/978-3-642-03317-9 13

22. Iwata, T., Minematsu, K., Guo, J., Morioka, S., Kobayashi, E.: CLOC. Submission
to the CAESAR Competition (Round 2). http://competitions.cr.yp.to/round2/
clocv2.pdf

23. Iwata, T., Minematsu, K., Guo, J., Morioka, S., Kobayashi, E.: SILC. Submission
to the CAESAR Competition (Round 2). http://competitions.cr.yp.to/round2/
silcv2.pdf

24. Jean, J., Nikolic, I., Peyrin, T.: Deoxys. Submission to the CAESAR Competition
(Round 2). http://competitions.cr.yp.to/round2/deoxysv13.pdf

25. Jean, J., Nikolic, I., Peyrin, T.: Joltik. Submission to the CAESAR Competition
(Round 2). http://competitions.cr.yp.to/round2/joltikv13.pdf

26. Jean, J., Nikolic, I., Peyrin, T.: KIASU. Submission to the CAESAR Competition
(Round 1). http://competitions.cr.yp.to/round1/kiasuv1.pdf

27. Jean, J., Nikolić, I., Peyrin, T.: Tweaks and keys for block ciphers: the TWEAKEY

framework. In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014. LNCS, vol. 8874,
pp. 274–288. Springer, Heidelberg (2014). doi:10.1007/978-3-662-45608-8 15

28. Jutla, C.S.: Encryption modes with almost free message integrity. In: Pfitzmann,
B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 529–544. Springer, Heidelberg
(2001). doi:10.1007/3-540-44987-6 32

29. Kavun, E.B., Lauridsen, M.M., Leander, G., Rechberger, C., Schwabe, P.,
Yalçin, T.: Prøst. Submission to the CAESAR Competition (Round 1). http://
competitions.cr.yp.to/round1/proestv11.pdf

30. Krovetz, T., Rogaway, P.: The software performance of authenticated-encryption
modes. In: Joux, A. (ed.) FSE 2011. LNCS, vol. 6733, pp. 306–327. Springer,
Heidelberg (2011). doi:10.1007/978-3-642-21702-9 18

31. Maurine, P.: Techniques for EM fault injection: equipments and experimental
results. In: Bertoni, G., Gierlichs, B. (eds.) Fault Diagnosis and Tolerance in Cryp-
tography - FDTC 2012, pp. 3–4. IEEE Computer Society, Washington, DC (2012)

32. McGrew, D.A., Viega, J.: The security and performance of the galois/counter
mode (GCM) of operation. In: Canteaut, A., Viswanathan, K. (eds.) INDOCRYPT
2004. LNCS, vol. 3348, pp. 343–355. Springer, Heidelberg (2004). doi:10.1007/
978-3-540-30556-9 27

33. Tunstall, M., Mukhopadhyay, D., Ali, S.: Differential fault analysis of the advanced
encryption standard using a single fault. In: Ardagna, C.A., Zhou, J. (eds.) WISTP
2011. LNCS, vol. 6633, pp. 224–233. Springer, Heidelberg (2011). doi:10.1007/
978-3-642-21040-2 15

34. Minematsu, K.: AES-OTR. Submission to the CAESAR Competition (Round 2).
http://competitions.cr.yp.to/round2/aesotrv2.pdf

http://competitions.cr.yp.to/round2/screamv3.pdf
http://dx.doi.org/10.1007/978-3-642-03317-9_13
http://competitions.cr.yp.to/round2/clocv2.pdf
http://competitions.cr.yp.to/round2/clocv2.pdf
http://competitions.cr.yp.to/round2/silcv2.pdf
http://competitions.cr.yp.to/round2/silcv2.pdf
http://competitions.cr.yp.to/round2/deoxysv13.pdf
http://competitions.cr.yp.to/round2/joltikv13.pdf
http://competitions.cr.yp.to/round1/kiasuv1.pdf
http://dx.doi.org/10.1007/978-3-662-45608-8_15
http://dx.doi.org/10.1007/3-540-44987-6_32
http://competitions.cr.yp.to/round1/proestv11.pdf
http://competitions.cr.yp.to/round1/proestv11.pdf
http://dx.doi.org/10.1007/978-3-642-21702-9_18
http://dx.doi.org/10.1007/978-3-540-30556-9_27
http://dx.doi.org/10.1007/978-3-540-30556-9_27
http://dx.doi.org/10.1007/978-3-642-21040-2_15
http://dx.doi.org/10.1007/978-3-642-21040-2_15
http://competitions.cr.yp.to/round2/aesotrv2.pdf

Statistical Fault Attacks on Nonce-Based Authenticated Encryption Schemes 395

35. Minematsu, K.: Parallelizable rate-1 authenticated encryption from pseudorandom
functions. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol.
8441, pp. 275–292. Springer, Heidelberg (2014). doi:10.1007/978-3-642-55220-5 16

36. Paninski, L.: A coincidence-based test for uniformity given very sparsely sampled
discrete data. IEEE Trans. Inf. Theory 54(10), 4750–4755 (2008)

37. Piret, G., Quisquater, J.-J.: A differential fault attack technique against SPN struc-
tures, with application to the AES and Khazad. In: Walter, C.D., Koç, Ç.K., Paar,
C. (eds.) CHES 2003. LNCS, vol. 2779, pp. 77–88. Springer, Heidelberg (2003).
doi:10.1007/978-3-540-45238-6 7

38. Rivain, M.: Differential fault analysis on DES middle rounds. In: Clavier, C., Gaj,
K. (eds.) CHES 2009. LNCS, vol. 5747, pp. 457–469. Springer, Heidelberg (2009).
doi:10.1007/978-3-642-04138-9 32

39. Rogaway, P.: Efficient instantiations of tweakable blockciphers and refinements to
modes OCB and PMAC. In: Lee, P.J. (ed.) ASIACRYPT 2004. LNCS, vol. 3329,
pp. 16–31. Springer, Heidelberg (2004). doi:10.1007/978-3-540-30539-2 2

40. Rogaway, P., Bellare, M., Black, J.: OCB: a block-cipher mode of operation for
efficient authenticated encryption. ACM Trans. Inf. Syst. Secur. 6(3), 365–403
(2003)

41. Rubinfeld, R.: Taming big probability distributions. ACM Crossroads 19(1), 24–28
(2012)

42. Saha, D., Chowdhury, D.R.: Scope: on the side channel vulnerability of releasing
unverified plaintexts. In: Dunkelman, O., Keliher, L. (eds.) SAC 2015. LNCS, vol.
9566, pp. 417–438. Springer, Heidelberg (2016). doi:10.1007/978-3-319-31301-6 24

43. Saha, D., Kuila, S., Roy Chowdhury, D.: EscApe: diagonal fault analysis of APE.
In: Meier, W., Mukhopadhyay, D. (eds.) INDOCRYPT 2014. LNCS, vol. 8885, pp.
197–216. Springer, Heidelberg (2014). doi:10.1007/978-3-319-13039-2 12

44. Samajder, S., Sarkar, P.: Another look at normal approximations in cryptanalysis.
Cryptology ePrint Archive, Report 2015/679 (2015). http://ia.cr/2015/679

45. Skorobogatov, S.P., Anderson, R.J.: Optical fault induction attacks. In: Kaliski Jr.,
B.S., Koç, K., Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 2–12. Springer,
Heidelberg (2003). doi:10.1007/3-540-36400-5 2

46. The CAESAR committee: CAESAR: Competition for authenticated encryption:
Security, applicability, and robustness (2014). http://competitions.cr.yp.to/caesar.
html

47. Wang, L.: Shell. Submission to the CAESAR Competition (Round 2). http://
competitions.cr.yp.to/round2/shellv20.pdf

48. Whiting, D., Ferguson, N., Housley, R.: Counter with CBC-MAC (CCM). RFC
3610 (2003)

49. Yen, S., Joye, M.: Checking before output may not be enough against
fault-based cryptanalysis. IEEE Trans. Comput. 49(9), 967–970 (2000).
http://dx.doi.org/10.1109/12.869328

50. Zussa, L., Dutertre, J.M., Clediere, J., Tria, A.: Power supply glitch induced faults
on FPGA: an in-depth analysis of the injection mechanism. In: On-Line Testing
Symposium - IOLTS 2013, pp. 110–115. IEEE (2013)

http://dx.doi.org/10.1007/978-3-642-55220-5_16
http://dx.doi.org/10.1007/978-3-540-45238-6_7
http://dx.doi.org/10.1007/978-3-642-04138-9_32
http://dx.doi.org/10.1007/978-3-540-30539-2_2
http://dx.doi.org/10.1007/978-3-319-31301-6_24
http://dx.doi.org/10.1007/978-3-319-13039-2_12
http://ia.cr/2015/679
http://dx.doi.org/10.1007/3-540-36400-5_2
http://competitions.cr.yp.to/caesar.html
http://competitions.cr.yp.to/caesar.html
http://competitions.cr.yp.to/round2/shellv20.pdf
http://competitions.cr.yp.to/round2/shellv20.pdf
http://dx.doi.org/10.1109/12.869328

Authenticated Encryption
with Variable Stretch

Reza Reyhanitabar1(B), Serge Vaudenay2, and Damian Vizár2

1 NEC Laboratories Europe, Heidelberg, Germany
reza.reyhanitabar@neclab.eu
2 EPFL, Lausanne, Switzerland

Abstract. In conventional authenticated-encryption (AE) schemes, the
ciphertext expansion, a.k.a. stretch or tag length, is a constant or a para-
meter of the scheme that must be fixed per key. However, using variable-
length tags per key can be desirable in practice or may occur as a result
of a misuse. The RAE definition by Hoang, Krovetz, and Rogaway (Euro-
crypt 2015), aiming at the best-possible AE security, supports variable
stretch among other strong features, but achieving the RAE goal incurs
a particular inefficiency: neither encryption nor decryption can be online.
The problem of enhancing the well-established nonce-based AE (nAE)
model and the standard schemes thereof to support variable tag lengths
per key, without sacrificing any desirable functional and efficiency prop-
erties such as online encryption, has recently regained interest as evi-
denced by extensive discussion threads on the CFRG forum and the
CAESAR competition. Yet there is a lack of formal definition for this
goal. First, we show that several recently proposed heuristic measures
trying to augment the known schemes by inserting the tag length into
the nonce and/or associated data fail to deliver any meaningful security
in this setting. Second, we provide a formal definition for the notion of
nonce-based variable-stretch AE (nvAE) as a natural extension to the
traditional nAE model. Then, we proceed by showing a second modu-
lar approach to formalizing the goal by combining the nAE notion and
a new property we call key-equivalent separation by stretch (kess). It is
proved that (after a mild adjustment to the syntax) any nAE scheme
which additionally fulfills the kess property will achieve the nvAE goal.
Finally, we show that the nvAE goal is efficiently and provably achiev-
able; for instance, by simple tweaks to off-the-shelf schemes such as OCB.

Keywords: Authenticated encryption · Variable-length tags ·
Robustness · Security definitions · CAESAR competition

1 Introduction

Authenticated encryption (AE) algorithms have recently faced an immense
increase in popularity as appropriate cryptographic tools for providing data con-
fidentiality (privacy) and integrity (together with authenticity) services simul-
taneously. The notion of AE, as a cryptographic scheme in its own right, was
c© International Association for Cryptologic Research 2016
J.H. Cheon and T. Takagi (Eds.): ASIACRYPT 2016, Part I, LNCS 10031, pp. 396–425, 2016.
DOI: 10.1007/978-3-662-53887-6 15

Authenticated Encryption with Variable Stretch 397

originally put forward in several (partially) independent papers [3,4,20] and
further evolved to notions of nonce-based AE (nAE) by Rogaway et al. [35],
nonce-based AE with associated data (AEAD) by Rogaway [32,34], determin-
istic AE (DAE) and misuse-resistant AE (MRAE) by Rogaway and Shrimp-
ton [36], online nonce-misuse resistant AE by Fleischmann et al. [14], AE under
the release of unverified plaintext (AE-RUP) by Andreeva et al. [1], robust AE
(RAE) by Hoang et al. [16], and online AE (OAE2) by Hoang et al. [17].

Providing authenticity requires any AE scheme to incur a non-zero ciphertext
expansion or stretch, τ = |C| − |M |, where |M | and |C| are the lengths of the
plaintext and ciphertext in bits, respectively. Most standard AE schemes adopt
a syntax in which the ciphertex is explicitly partitioned as C = Ccore||Tag with
Ccore as the ciphertext core (decryptable to a putative plaintext) and Tag as the
authentication tag (used for verifying the decrypted message). In this paper, we
will use the terms ciphertext expansion, stretch and tag length interchangeably
unless the syntax of an AE scheme (e.g. an RAE scheme) does not allow par-
titioning of the ciphertext to a core and a tag part, in which case we use the
general term stretch.

The problem. This paper investigates the problem of using an AE scheme
with variable-length tags (variable stretch) under the same key. All the known
security notions for AE schemes [1,14,17,32,34,36] and constructions thereof,
with the exception of RAE [16], assume that the stretch τ is a constant or a
scheme parameter which must be fixed per key, and security is proved under this
assumption. A correct usage of such a scheme shall ensure that two instances of
the same scheme with different stretches τ1 and τ2 always use two independently
chosen keys K1 and K2. However, this rigid correct-use mandate may be violated
in practice for different reasons.

First, AE schemes may be used with variable-length tags per key due to
misuse and poorly engineered security systems. With the increasing scale of
deployment of cryptography, various types of misuse of cryptographic tools (i.e.
their improper use that leads to compromised security) occur routinely in prac-
tice [9,12,18,22,23,41]. Identifying potential ways of misuse and mitigating their
impact by sound design is therefore of great importance, while waving such a
potential misuse off because there have been no cases of occurrence is a dangerous
practice. Prior “Disasters” [6] have shown that it’s a question of when, not if, a
misuse will eventually happen in applications of (symmetric-key) cryptographic
schemes in practice.

The ongoing CAESAR competition [5] has explicitly listed a set of conven-
tional confidentiality and integrity goals for AE, but has left “any additional
security goals and robustness goals that the submitters wish to point out” as an
option. Among the potential additional goals, robustness features, in particular,
different flavours of misuse-resistance to nonce reuse [14,36] have attracted a lot
of attention. While the recent focus has been mainly on nonce misuse, proper
characterization and formalization of other potential misuse dimensions seems
yet a challenge to be further investigated. The current literature lacks a system-
atic approach to formalizing an appropriate notion of AE with misuse-resistance

398 R. Reyhanitabar et al.

to tag-length variation under the same key, without sacrificing interesting func-
tional and efficiency features such as online encryption.

Second, there are use cases such as resource-constrained communication
devices, where the support for variable-length tags is desired, but changing the
key per tag length and renegotiating the system parameters is a costly process
due to bandwidth and energy constraints. In those cases, supporting variable
stretch per key while still being able to provide a “sliding scale” authenticity
is deemed to be a useful functional and efficiency feature as pointed out by
Struik [39]. For instance, de Meulenaer et al. demonstrate that in case of wire-
less sensor networks, communication-related energy consumption is substantially
higher than the consumption caused by computation [10]. Sliding scale authentic-
ity could significantly extend the lifetime of such sensors, especially if processed
plaintexts are very short, while only a handful of them requires a very high level
of authenticity.

The problem has appeared to be highly interesting from both theoretical and
practical perspectives as evidenced by the relatively long CFRG forum thread
on issues arising from variable-length tags in OCB [24], followed by ongoing
discussions in the CAESAR competition mailing list [19], which in turn has
motivated several second-round CAESAR candidates to be tweaked [19,25,28]
with the aim of providing some heuristic measures for addressing the problem.

Issues arising from variable stretch per key. Lack of support for
variable-length tags per key in conventional AE models, in particular in the
widely-used nAE security model, is not just a theoretical and definitional com-
plaint, rather all known standard AE schemes such as the widely-deployed CCM,
GCM, and OCB schemes do misbehave in one way or another if misused in this
way [24,31,38]. Depending on the application scenario, the consequences of such
a misbehavior may range from a degraded security level to a complete loss of
security.

A CFRG forum discussion thread initiated by Manger [24], has raised the
following concerns with an “Attacker changing tag length in OCB”:

– OCB with different tag lengths are defined. Under the same key, shorter tags
are simply truncation of longer tags. The tag length is not mixed into the
ciphertext as it never affects any input to the underlying blockcipher. Conse-
quently, given a valid output from e.g. the OCB algorithm with 128-bit tag
it is trivial to produce a valid output for the OCB algorithm with 64-bit tag
under the same key, by just dropping the last 8 bytes.

– An attacker wanting to change the associated data while keeping the same
plaintext and the same tag length as applied by the originator (e.g. 128 bits)
only has to defeat the shortest accepted tag length (e.g. 64 bits) and the
differences between accepted tag lengths up to the targeted stretch. This is
not fulfilled by OCB.

– Would OCB be better if the algorithms with different tag lengths could not
affect each other? Perhaps restricting the nonce to <126 bits (instead of <128
bits) and encoding the tag length in 2 bits.

Authenticated Encryption with Variable Stretch 399

The CFRG discussions concluded by adopting Manger’s suggested heuristic
measure by designers of OCB: “just drop the tag length into the nonce” [31].
One may call this method nonce stealing for tag length akin to “nonce stealing”
for associated data (AD), proposed by Rogaway [32] to convert an AE scheme
to an AEAD scheme. The problem of variable-length tags per key has regained
interest in recent CAESAR competition discussions. Nandi [27] has raised the
question whether including the tag length in the associated data can resolve the
problem. A natural extension would be combining both measures, i.e., including
the tag length as part of both the nonce and the associated data.

But in the absence of a definitional and provable-security treatment of the
problem of robustness to tag-length variation per key, the proposed heuristic
measures and claims for added security in the tweaked schemes are informal,
and only limited to showing lack of some specific type of misbehavior by the
schemes.

RAE solves the problem, do we need another definition? RAE aims to
capture the “best-possible” AE security [16]. Similar to the MRAE and Pseudo-
random Injection (PRI) notions [36] it targets robustness to nonce-misuse, but
it also improves upon the prior notions by supporting variable stretch and hence
sliding scale authenticity for any arbitrary stretch. However, the cost to pay
for achieving such a strong goal is that any RAE scheme incurs a particular
inefficiency: neither encryption nor decryption can be online. We also note that
designing an efficient RAE scheme, e.g. AEZ [16], essentially entails designing
an efficient tweakable block cipher with variable-length messages and tweaks at
the first place followed by employing it in the encode-then-encipher paradigm,
a task that has turned out to be non-trivial as evidenced by several non-ideal
properties determined by recent attacks against the core cipher of prior AEZ
versions by Fuhr et al. [15].

While RAE aims to facilitate the use of any stretch, even a small one, and
promises to provide the best-possible security for any stretch even under nonce-
reuse, our main aim in this paper is to provide an enhancement to the conven-
tional AE models, in particular the popular nAE model, that just adds robust-
ness to tag-length variation under the same key without sacrificing the highly
desired online-ness feature. Unlike the RAE notion our aim is neither to facil-
itate/encourage using arbitrarily short tags nor to add nonce-misuse resistance
to a scheme which does not already possess such a property. The core goal is to
minimize/cut the interferences between instances of an AE scheme (e.g. OCB)
using different tag lengths under the same key and to meaningfully achieve the
best-possible authenticity in this setting without affecting/damaging the privacy
property.

Intuitively, one aims to have an AE scheme that can guarantee τc-bit authen-
ticity to the recipient whenever a received ciphertext has a τc-bit tag (τc-bit
stretch) irrespective of adversarial access to other instances of the same algo-
rithm under the same key but different (shorter or longer) τ -bit tags.

400 R. Reyhanitabar et al.

Heuristic Measures Fail. We show in Sect. 3 that in general, several recently
proposed heuristic measures, such as inserting the tag length into the nonce
[31], into the associated data [27] or both methods combined, fail to capture
the aforementioned intuition of a meaningful security in the variable-length tag
setting. This is done by showing generic forgery attacks against these measures
in a large class of nAE schemes (including e.g. GCM and OCB) that follow
the “ciphertext translation” design paradigm of Rogaway [32]. The attacks have
a much lower verification query complexity for τ bits of stretch than 2τ . For
example, an adversary having access to the instances of the same algorithm
with 32-bit, 64-bit, 96-bit and 128-bit tags under the same key will only need a
query complexity O(232) to forge a message with a 128-bit tag. The attacks are
rather straightforward generalization of the tag-length misusing attack presented
by the Ascon team on OMD version 1 [13].

Our Results. We formalize a security notion for nonce-based variable-stretch
AE (nvAE). First we provide an all-in-one security definition to formulate the
notion. Then we take an alternative modular approach for defining the notion by
introducing a property, named key-equivalent separation by stretch (kess), that
together with the conventional nAE security implies the nvAE security notion.
While the former approach provides an easy-to-understand, stand-alone defini-
tion by directly capturing the whole aim of nvAE, the latter modular approach
is easier to work with, at least for proving schemes nvAE-secure, in particu-
lar, when one tweaks an existing nAE-secure scheme and wants to establish the
nvAE-security of the modified scheme by just proving its kess property rather
than having to prove everything from scratch. We show that the nvAE goal
is efficiently and provably achievable by application of simple tweaks to off-
the-shelf popular schemes such as OBC, Minematsu’s OTR [25] or OMD with-
out sacrificing their desirable functional and efficiency features such as online
encryption. Furthermore, we establish the relations (implications and separa-
tions) between different security notions in the conventional fixed-stretch AE
setting and variable-stretch AE setting. A summary of the relations is depicted
in Fig. 1.

Fig. 1. Relations among notions for nonce-based AE with and without variable stretch.
Previous works: a [36], b [3]. This paper: c (Remark 3, attacks in Sect. 3), d (Remark 3,
Corollary 1), e (Theorem 1, Remark 2), f (Proposition 1), g (Theorem 2), h, i (Remark 4
together with [16]).

Authenticated Encryption with Variable Stretch 401

Organization of the paper. In Sect. 2 we overview some of the prior AE
definitions. Section 3 describes generic forgery attacks showing ineffectiveness of
the heuristic measures of including the tag length in the nonce and/or associated
data of a given nAE scheme to support variable-length tags per key. In Sect. 4
we provide formal definitions for the goal of AE with variable stretch per key,
and Sect. 7 provides some discussions and remarks on the interpretation of the
results of this work. In Sect. 6 we show how to efficiently achieve nvAE.

2 Preliminaries and Prior AE Definitions

Notations. For a set S (either finite, or endowed with a natural definition of
uniform distribution) we denote by a ←$ S sampling an element of S uniformly
at random and storing it in the variable a. All strings are binary strings. We let
|X| denote the length of a string X, and X‖Y the concatenation of two strings
X and Y . We let ε denote the empty string of length 0. We let {0, 1}∗ denote the
set of all strings of arbitrary finite lengths (s.t. ε ∈ {0, 1}∗) and we let {0, 1}n

denote the set of all strings of length n for a positive integer n. We let N denote
the set of all (positive) natural numbers and N0 = N ∪ {0}.

Resource-parameterized adversarial advantage. The insecurity of a
scheme Π in regard to a security property xxx is measured using the resource
parameterized function Advxxx

Π (r) = maxA {Advxxx
Π (A)}, where the maxi-

mum is taken over all adversaries A which use resources bounded by r.

Blockciphers and Tweakable Blockciphers. Let Perm(n) be the set of all
permutations over n-bit strings. Let PermT (n) ⊆ {π̃ : T × {0, 1}n → {0, 1}n} be
the set of all functions, s.t. for every π̃ ∈ PermT (n), π̃(t, ·) is a permutation for
every t ∈ T where T is a set of tweaks. We use π̃t(·) and π̃(t, ·) interchangeably.
Let E : K × {0, 1}n → {0, 1}n be a blockcipher and let Ẽ : K × T × {0, 1}n →
{0, 1}n be a tweakable blockcipher with a non-empty, finite K ⊆ {0, 1}∗. Let D

and D̃ denote the inverses of E and Ẽ respectively. Let EK(·) = E(K, ·) and
Ẽt

K(·) = Ẽ(K, t, ·). Let A be an adversary. Then:

Adv±prp
E (A) = Pr

[
K ←$ K : A EK ,DK ⇒ 1

]
− Pr

[
π ←$ Perm(n) : A π,π−1 ⇒ 1

]

Adv±p̃rp

Ẽ
(A) = Pr

[
K ←$ K : A ẼK ,D̃K ⇒ 1

]
− Pr

[
π̃ ←$ PermT (n) : A π̃,π̃−1⇒ 1

]

The resource parameterized advantage functions are defined accordingly, con-
sidering that the adversarial resources of interest here are the time complexity
(t) of the adversary and the total number of queries (q) asked by the adversary.

In the following we recall the security notions for nonce-based AE (nAE)
schemes with associated data (a.k.a. “AEAD” schemes) [32] and RAE schemes.
We will simply use nAE to refer to any (nonce-based) AEAD scheme as all nAE
schemes must now support associated data processing.

402 R. Reyhanitabar et al.

Syntax. We augment the syntax of original nAE schemes [32] to include a
stretch variable. A scheme for authenticated encryption is a triplet Π = (K, E ,D)
where K ⊆ {0, 1}∗ is the set of keys endowed with a (uniform) distribution and
E : K × N × A × IT × M → C and D : K × N × A × N × C → M ∪ {⊥} are
the encryption and decryption algorithm respectively, both deterministic and
stateless. We call N nonce space, A AD space, M plaintext space, C ciphertext
space, and IT stretch space (i.e. the set of ciphertext expansion values that can
be applied upon encryption) of Π, and we have that N ⊆ {0, 1}∗, M ⊆ {0, 1}∗,
A ⊆ {0, 1}∗, C ⊆ {0, 1}∗ and IT ⊆ N.

We insist that if M ∈ M then {0, 1}|M | ⊆ M (any reasonable AE scheme
would certainly have this property). We additionally limit ourselves to correct
and tidy (defined by Namprempre et al. [26]) schemes with variable stretch.
Namely, the correctness means that for every (K,N,A, τ,M) ∈ K × N × A ×
IT ×M, if E(K,N,A, τ,M) = C then D(K,N,A, τ, C) = M , and tidiness means
that for every (K,N,A, τ, C) ∈ K×N ×A×IT ×C, if D(K,N,A, τ, C) = M 	= ⊥
then E(K,N,A, τ,M) = C. In both cases |C| = |M | + τ where τ denotes the
stretch.

Variations in Syntax. In the case of conventional nAE schemes, the expansion
of ciphertexts is fixed to some constant value τ ; this is equivalent to setting IT =
{τ}. For such schemes, we omit stretch from the list of input arguments of both
the encryption and the decryption algorithm. We sometimes create an ordinary
nonce-based AE scheme Π ′ from a nonce-based AE scheme with variable stretch
Π by fixing the expansion value for all queries to some value τ ∈ IT . We will
denote this as Π ′ = Π[τ].

Two-requirement security definition. The nAE notion was originally for-
malized by a two-requirement (privacy and authenticity) definition [4,32]. The
privacy of a scheme Π is captured by its indistinguishability from a random
strings-oracle in a chosen plaintext attack with non-repeating nonces, while its
authenticity is defined as adversary’s inability to forge a new ciphertext, i.e. issue
a decryption query returning M 	= ⊥. The priv advantage of an adversary A
against Π is defined as Advpriv

Π (A) = Pr[A priv-RΠ ⇒ 1] − Pr[A priv-IΠ ⇒ 1]
and the auth advantage of A as Advauth

Π (A) = Pr[A authΠ forges] where the
corresponding security games are defined in Fig. 2. In the following x ←$ S will
denote sampling an element x from a set S with uniform distribution.

All-in-one security definition. Rogaway and Shrimpton introduced an
alternative, all-in-one approach for defining the nAE security, and proved it
to be equivalent to the two-requirement definition [36]. The all-in-one nae
notion captures AE security as indistinguishability of the real encryption and
decryption algorithms from a random strings oracle and an always-reject ora-
cle in a nonce-respecting, chosen ciphertext attack. The nae advantage of an
adversary A against a scheme Π is defined as Advnae

Π (A) = Pr[A nae-RΠ ⇒
1] − Pr[A nae-IΠ ⇒ 1] where the corresponding security games are defined in
Fig. 3.

Authenticated Encryption with Variable Stretch 403

Fig. 2. Two-requirement definition of nAE security for a scheme Π = (K, E , D)
with ciphertext expansion τ .

Robust AE. As mentioned in Sect. 1, the notion of robust AE (RAE) [16],
aims to capture a very strong security goal. The RAE security is captured as
indistinguishability of a scheme from a particular idealized primitive in an unre-
stricted chosen ciphertext attack. The rae advantage of an adversary A against
a scheme Π is defined as Advrae

Π (A) = Pr[A rae-RΠ ⇒ 1] − Pr[A rae-IΠ ⇒ 1]
where the corresponding security games are defined in Fig. 4.

It is known that the strong RAE security of a scheme implies its nAE security.
This can be easily verified by showing that Advpriv

Π (B) ≤ Advrae
Π (A) and

Advauth
Π (C) ≤ Advrae

Π (A) + qd

2τ for some adversaries B and C with the same
resources as A , qd the number of decryption queries and τ the amount of stretch
in all queries. However, the robustness of RAE comes at the expense of efficiency;
an RAE-secure AE scheme must be inherently “offline”, i.e. it cannot encrypt a
plaintext with constant memory while outputting ciphertext bits with constant
latency, as every bit of the ciphertext must depend on every bit of plaintext.

Stretch (in)dependent advantage. For some of the security notions we
discuss, the adversarial advantage is trivially dependent on the value of stretch.
The advantage for notions that capture integrity of ciphertexts will necessarily
be high whenever stretch τ is low, as there is always a trivial attack that queries
a random ciphertext with probability 2−τ of being successfully decrypted. This
concerns the notions auth and nae. The notions that do not directly capture

404 R. Reyhanitabar et al.

Fig. 3. All-in-one definition of nAE security for a scheme Π = (K, E , D) with cipher-
text expansion τ .

Fig. 4. RAE security. Defining security for a robust AE scheme Π = (K, E , D) with
nonce space N . Inj(τ) denotes the set of all injective, τ -expanding functions from
{0, 1}∗ to {0, 1}≥τ .

integrity of ciphertexts are not inherently impacted by the value of τ . In par-
ticular, no trivial attack with advantage 2−τ exists for the notions priv or rae.
Note that rae captures the integrity property indirectly; the idealized reference
of RAE security itself will still yield to the trivial attack mentioned above.

3 Failure of Inserting Stretch into Nonce And/or AD

Using a generic forgery attack, we show that the recently proposed heuristic mea-
sures, namely, inclusion of the tag length in the nonce [31], in the AD [27] or in
both nonce and AD fail when applied to a large class of nAE schemes (including

Authenticated Encryption with Variable Stretch 405

Fig. 5. Ciphertext translation. The message-only nAE encryption E produces an
intermediate ciphertext CM with τ bits of stretch. The leftmost τ bits of the output
of a keyed hash HK(A) are xored to the rightmost τ bits of CM , forming the final
ciphertext C.

Fig. 6. Ciphertext forgery for a ciphertext translation-based AEAD scheme with
associated data A and message M in presence of variable stretch. Here τ0 = 0.

e.g. GCM and OCB) that follow the “ciphertext translation” design paradigm
of Rogaway [32] which is depicted in Fig. 5. The attack is not completely new,
it is a rather straightforward generalization of the tag-length misusing attack
originally proposed by the Ascon team on a specific algorithm, namely OMD
version 1 [13] which also follows the ciphertext translation method.
The attack. We target a ciphertext translation-based AEAD scheme Π that
supports any amount of stretch from a set IT = {τ1, . . . , τr} with τ1 < τ2 < . . . <
τr. We assume oracle access to encryption and decryption algorithms, such that
the amount of stretch can be chosen for every query independently. The goal is
to forge a ciphertext for A,M expanded by τg ∈ IT bits, with g > 1. The attack
proceeds as in Fig. 6. We let lefti(X) and rightj(X) denote i leftmost bits and j
rightmost bits of a string X respectively.

The hash function HK(·) used to process AD must fulfil some mild conditions
for the attack to work against the described heuristic countermeasures [27,31],
namely:

– In case that the tag length is only injected into the nonce, the attack works
with arbitrary HK(·).

– For inclusion of the tag length in the AD or a combination of this method
and nonce stealing, the attack works if HK(A) = H1K

(A1) ⊕ H2K
(A2) ⊕

· · · ⊕ HmK
(Am), for arbitrary functions HiK

, 1 ≤ i ≤ m, where A =
A1||A2|| · · · ||Am for Aj ∈ {0, 1}n for some positive integer n (this is the case
for both GCM and OCB). In this case, we must ensure that the block of AD
that contains the amount of stretch τ is unchanged between A and A∗.

406 R. Reyhanitabar et al.

Under these conditions, the attack will always succeed: whenever we encrypt a
message M with two different associated data A,A∗, first with τi and then with
τj > τi bits of stretch, then Ci ⊕C∗

i will be a prefix of Cj ⊕C∗
j , as the xor cancels

out the core ciphertext as well as the block of AD that is impacted by τ (if any).
The complexity of the attack in terms of verification queries will be O(2μ)

with μ = max{τ1, τ2 − τ1, . . . , τg − τg−1}. For example, an adversary having
access to the instances of the algorithm with 32-bit, 64-bit, 96-bit and 128-bit
tags under the same key will only need a query complexity O(232) to forge a
message with a 128-bit tag, which is in stark contrast with the expected O(2128)
query complexity.

4 Formalizing Nonce-Based AE with Variable Stretch

Defining a meaningful security notion for AE schemes with variable stretch under
the same key has turned out to be a non-trivial task [24,31,38]. Allowing the
adversary to choose the amount of stretch freely from a set IT = {τmin, . . . , τmax}
will inevitably enable it to produce forgeries with a high probability 2−τmin by
targeting the shortest allowed stretch; a forgery is sure to be found with at most
2τmin verification queries. This is inherent to any AE scheme.

Despite this limit to its global security guarantees, there is a meaningful secu-
rity property which can be expected from an nvAE scheme by a user: the scheme
must guarantee τ bits of security for ciphertexts with τ bits of stretch, regard-
less of adversarial access to other instances with the same key but other (shorter
and/or longer) amount of stretch than τ . For example, forging a ciphertext with
τ -bit stretch should require ≈ 2τ verification queries with τ -bit stretch, regardless
of the number of queries made under other different amounts of stretch.

This non-interference between different instances that use the same key but
different stretch (tag length) is the intuition behind a formal definition for the
notion of nonce-based, variable-stretch AE.

Security Definition. We define a security notion parameterized by the chal-
lenge stretch value τc ∈ IT as a natural extension to the notion of nAE. This is
done in the compact all-in-one definition style of [36].

Let Π = (K, E ,D) be a nvAE scheme whose syntax is defined in Sect. 2.
An nvae(τc) adversary A gets to interact with games nvae(τc)-RΠ (left) and
nvae(τc)-IΠ (right) in Fig. 7, defining respectively the real and ideal behavior of
such a scheme. The adversary has access to two oracles Enc and Dec determined
by these games and its goal is to distinguish the two games.

The adversary must respect a relaxed nonce-requirement ; it must use a unique
pair of nonce and stretch for encryption queries. Compared to the standard
nonce-respecting requirement in nAE schemes, here nonce may be reused pro-
vided that the stretch does not repeat simultaneously.

In the ideal game nvae(τc)IΠ , the encryption and decryption queries with τc-
bit stretch are answered in the same idealized way as in the “ideal” game of nae
notion (Fig. 3 right). However, the queries with stretch other than τc are treated

Authenticated Encryption with Variable Stretch 407

with the real encryption/decryption algorithm. This lets the adversary to issue
arbitrary queries (e.g. repeated forgeries) for any stretch τ 	= τc and leverage the
information thus gathered to attack the challenge expansion. At the same time,
only queries with τc bits of stretch can help the adversary to actually distinguish
the two games, capturing the exact level of security for queries with τc bits of
stretch in presence of variable stretch.

We measure the advantage of A in breaking the nvae(τc) security of Π as
Advnvae(τc)

Π (A) = Pr[A nvae(τc)-RΠ ⇒ 1] − Pr[A nvae(τc)-IΠ ⇒ 1].

Adversarial resources. The adversarial resources of interest for the nvae(τc)
notion are (t,qe,qd,σ), where t denotes the running time of the adversary,
qe = (qτ

e |τ ∈ IT) denotes the vector that holds the number of encryption queries
qτ
e made with stretch τ for every stretch τ ∈ IT , and qd = (qτ

d |τ ∈ IT) denotes
the same for the decryption queries and σ = (στ |τ ∈ IT) denotes the vector
that holds the total amount of data στ processed in all queries with stretch τ
for every τ ∈ IT .

Despite being focused on queries stretched by τc bits, we watch adversarial
resources for every stretch τ ∈ IT in a detailed, vector-based fashion. This
approach appears to be most flexible w.r.t. the security analysis. However, in a
typical case we will be interested in the resources related to τc (i.e. qτc

e , qτc

d , στc)
and cumulative resources of the adversary qe, qd, σ with qe =

∑
τ∈IT

qτ
e , qd =∑

τ∈IT
qτ
d and σ =

∑
τ∈IT

στ .

Remark 1 (Relation to nAE). The notion of nvae(τc) is indeed an extension of
the classical all-in-one security notion for nonce-based AE schemes. If the scheme
Π is secure with some stretch-space IT , then it will be secure for any stretch-
space I ′

T ⊆ IT , in particular for I ′
T = {τc}. If a scheme has a stretch-space

IT = {τc}, then nvae(τc) becomes the classical nae notion. It easily follows,
that nvae(τc) security of a scheme Π tightly implies nae security of Π[τc].

Similar to the nae notion, the nvae(τc) adversarial advantage will be trivially
high if τc is low (due to successful forgeries). Yet, if the nvae(τc) advantage of
a scheme behaves “reasonably”, we will call the scheme secure. We discuss the
interpretation of the nvae(τc) bounds in Appendix 7.

Parameterized CCA security. An nae-secure AE scheme is also ind − cca-
secure. This follows from the equivalence of the all-in-one and dual nAE notions
and a well-known implication priv ∧ auth ⇒ ind − cca established by Bel-
lare and Namprempre [3]. It is natural to ask: Does the nvae(τc)-security also
provide a privacy guarantee against chosen ciphertext attacks? We define a τc-
parameterized extension of the ind − cca security notion and answer this ques-
tion positively.

The parameterized ind − cca(τc) notion captures the exact privacy level
guaranteed by an nvAE scheme for encryption queries stretched by τc bits, in
presence of arbitrary queries with expansions τ 	= τc and reasonable decryption
queries stretched by τc bits. The notion is building on the intuition that privacy
level of τc-expanded queries should not be affected by the adversarial queries
with other amounts of stretch.

408 R. Reyhanitabar et al.

Fig. 7. AE security with variable stretch. Security games for defining AE security
of a nonce-based AE scheme Π = (K, E , D) with variable-stretch.

Security definition. Let Π = (K, E ,D) be an nvAE with syntax defined
in Sect. 2. We let an adversary A interact with the games ind − cca(τc)-RΠ

and ind − cca(τc)-IΠ defined in Fig. 8 and its goal is to distinguish them.
In the “ideal” game ind − cca(τc)-IΠ , the τc-stretched encryption queries are
answered with random strings while the decryption queries are processed with
the real decryption algorithm. A must respect the relaxed nonce-requirement
and is prevented to win the game trivially (i.e. by re-encrypting output of
decryption query with τc bits of stretch and vice-versa). We measure A ’s
advantage in breaking ind − cca(τc) security of Π as Advind−cca(τc)

Π (A) =
Pr

[
A ind−cca(τc)-R ⇒ 1

] − Pr
[
A ind−cca(τc)-I ⇒ 1

]
.

The adversarial resources of interest for the ind − cca(τc) notion are the same
as for the nvae(τc) notion, i.e. (t,qe,qd,σ).

Remark 2 (Relations to ind-cca and nvAE). Similarly as in the case of
nvae(τc) and nae, ind − cca(τc) security with some stretch space IT implies
ind − cca(τc) security with any stretch space I ′

T ⊆ IT , e.g. IT = {τc}. It fol-
lows that ind − cca(τc) security of a scheme Π implies the classical ind − cca
security of Π[τc].

The notions of ind − cca(τc) and nvae(τc) differ mainly in the way the
“ideal” games treat the decryption queries expanded by τc bits. The impact of
this difference is substantial; the ind − cca(τc) notion does not capture integrity
of ciphertexts. E.g. a scheme that concatenates output of a length-preserving,
nonce-based, ind-cca-secure encryption scheme (using encoding of the nonce and
stretch as a “nonce”) and an image of the nonce and stretch under a PRF would
be secure in the sense of ind − cca(τc), but insecure in the sense of nvae(τc).

Authenticated Encryption with Variable Stretch 409

Fig. 8. Parameterized ind-cca security. Games for defining ind − cca(τc) security
of a nonce-based AE scheme with variable-stretch Π = (K, E , D).

We examine the relation between the two notions in the other direction in The-
orem 1. We would like to stress that the result in Theorem 1 holds for any nvAE
scheme, and in particular for any stretch space IT .

Theorem 1 (nvae(τc) ⇒ ind-cca(τc). Let Π = (K, E ,D) be an arbitrary
nonce-based AE scheme with variable stretch. We have that

Advind−cca(τc)
Π (t,qe,qd,σ) ≤ 2 · Advnvae(τc)

Π (t′,qe,qd,σ),

with t′ = t + O(q) and q =
∑

τ∈IT
(qτ

e + qτ
d).

Proof. Let A be an ind − cca adversary with indicated resources. We define
the game ind − cca(τc)-I⊥

Π as an intermediate step in the proof; it is exactly
the same as ind − cca(τc)-IΠ , except that the decryption queries with τc bits
of stretch are always answered with ⊥. We have that
Advind−cca(τc)

Π (A) = Pr[A ind−cca(τc)-RΠ ⇒ 1] − Pr[A ind−cca(τc)-I
⊥
Π ⇒ 1]

+ Pr[A ind−cca(τc)-I
⊥
Π ⇒ 1] − Pr[A ind−cca(τc)-IΠ ⇒ 1].

We start by showing that Pr[A ind−cca(τc)-RΠ ⇒ 1]−Pr[A ind−cca(τc)-I
⊥
Π ⇒ 1] ≤

Advnvae(τc)
Π (B) for an nvae(τc) adversary B with the resources (t′,qe,qd,σ).

The reduction of A to B is straightforward: B simply answers A ’s queries
with its own oracles, making sure that the trivial win-preventing restrictions of

410 R. Reyhanitabar et al.

Fig. 9. Dual nvAE security. Security games for defining AE security of a nonce-
based AE scheme Π = (K, E , D) with variable-stretch.

ind − cca(τc) games are met. At the end of experiment, B outputs whatever A
outputs. This ensures perfect simulation of both games for A .

It remains to show that Pr[A ind−cca(τc)-I
⊥
Π ⇒ 1]−Pr[A ind−cca(τc)-IΠ ⇒ 1] ≤

Advnvae(τc)
Π (C) for an nvae(τc) adversary C with the resources (t′,qe,qd,σ).

We reduce A to C as follows. C answers all A ’s queries directly with its own
oracles (again making sure to enforce all the restrictions of ind − cca(τc) games),
except for encryption queries expanded by τc bits. For those, C ignores its
encryption oracle and answers with |M | + τc random bits if A ’s query has a
fresh nonce-stretch pair an is not a re-encryption. At the end of experiment, C
outputs the inverse of A ’s output. If C interacts with nvae(τc)-RΠ , then it per-
fectly simulates ind − cca(τc)-IΠ for A while if C interacts with nvae(τc)-IΠ ,
then it perfectly simulates ind − cca(τc)-I⊥

Π . ��
No Two-Requirement Notion. The equivalence of the two-requirement (pri-
vacy and authenticity) approach and all-in-one approach for defining AE security
is among the best known results in AE [36]. One may wonder whether such an
equivalence also holds in the setting of variable-stretch AE schemes for natural
τc-parameterized extensions of these notions. Surprisingly, we answer this ques-
tion negatively. We consider the conventional privacy (ind-cpa$) and authenticity
(integrity of ciphertexts) notions for AE schemes [3,32] and define the notions

Authenticated Encryption with Variable Stretch 411

of τc-privacy and τc-authenticity as natural parameterized extensions of their
conventional counterparts.

Let Π = (K, E ,D) be an nvAE scheme with syntax defined in Sect. 2.
An adversary A against τc-privacy of Π interacts with games priv(τc)-RΠ

(real scheme) and priv(τc)-IΠ (ideal behaviour) defined in Fig. 9, and tries
to distinguish them. We measure A ’s advantage in breaking the τc-privacy
of Π in a chosen plaintext attack as Advpriv(τc)

Π (A) = Pr[A priv(τc)-RΠ ⇒
1] − Pr[A priv(τc)-IΠ ⇒ 1].

An adversary A that attacks the τc-authenticity of Π is left to interact with
the game auth(τc)Π defined in Fig. 9 and its goal is to find a valid forgery
(i.e. produce a decryption query returning M 	= ⊥) with the target stretch of
τc bits. We measure the advantage of A in breaking τc-authenticity of Π in a
chosen ciphertext attack by Advauth(τc)

Π (A) = Pr
[
A auth(τc)Π forges with τc

]
.

The adversarial resources of interest for the priv(τc) and auth(τc) notions are
(t,qe,σ) and (t,qe,qd,σ) respectively, defined as for the notion of nvae(τc) in
the current Section.

Remark 3 (Relations with the all-in-one nvAE, priv and auth notions). As
before, if a scheme Π is priv(τc) (auth(τc)) secure with stretch-space IT , then
it will be secure for any stretch-space I ′

T ⊆ IT including I ′
T = {τc}, implying

the priv (auth) security of the scheme Π[τc].
We can easily verify that the nvae(τc) security of a scheme Π implies both

the priv(τc) security and the auth(τc) of Π, by adapting the reductions for
corresponding conventional notions [36] slightly. In Proposition 1, we show that
the converse of this implication does not hold.

Fig. 10. The encryption algorithm of the scheme Π¬cca. 〈·〉 is an efficiently computable,
injective encoding scheme.

Proposition 1. There exists a nonce-based AE scheme with variable stretch,
that is secure in the sense of both the priv(τc) notion and the auth(τc) notion
but insecure in the sense of ind − cca(τc) notion, i.e.

priv(τc) ∧ auth(τc) �ind − cca(τc),

assuming the existence of secure tweakable blockciphers and PRFs.

412 R. Reyhanitabar et al.

Fig. 11. Encryption and decryption algorithms of the nonce-based, variable-stretch AE
scheme Π¬cca = (K¬cca, E¬cca, E¬cca). 〈·〉 is an efficiently computable, injective encoding
scheme.

To support the claim in Proposition 1, we define the nvAE scheme Π¬cca =
(K¬cca, E¬cca,D¬cca) constructed from an ind-cpa secure tweakable blockcipher
B : K1 × N × {0, 1}n → {0, 1}n and two PRFs F : K2 × {0, 1}∗ → {0, 1}n and
F ′ : K3 ×{0, 1}∗ → {0, 1}m. We define K¬cca = K1 ×K2 ×K3, M¬cca = {0, 1}n,
A¬cca = {0, 1}∗, N¬cca = N and the encryption and decryption algorithms
as in Fig. 11. We require that |IT ¬cca| ≥ 2 and that m ≥ max(IT ¬cca). The
encryption algorithm E¬cca is depicted in Fig. 10.

The scheme Π¬cca is by far no real-life AE construction (mainly due to its lim-
ited message space), its purpose is merely to act as a counter example. It can be
verified, that Advauth(τc)

Π¬cca
(t,qe,qd,σ) ≤ AdvPRF

F ′ (t, qe + qd, σ) + qτc

d /2τc ; every
forgery attempt equals to guessing τc bits of an output of F ′, evaluated on a fresh
input.1 For privacy, we have that Advpriv(τc)

Π¬cca
(t,qe,qd,σ) ≤ AdvPRF

F (t, qe, σ)+
AdvPRF

F ′ (t, qe, σ)+Advp̃rp
B (t, qe)+2q2

e/2n. Here qe =
∑

τ∈IT
qτ
e , qd =

∑
τ∈IT

qτ
d

and σ =
∑

τ∈IT
στ .

The term 2q2
e/2n is composed of q2

e/2n that comes from a RP-RF switch
for the tweakable blockcipher and another q2

e/2n that comes from extending
the tweakspace to include stretch, using F (similar to Rogaway’s XE con-
struction [33]). However, we can construct an adversary A¬cca, that achieves
ind − cca(τc) advantage close to 1. The strategy of A¬cca is as follows:

1. ask query Z1‖T1 ← Enc(N1, A1, τc,M1) with arbitrary N1, A1,M1,
2. iterate through T ∗

1 ∈ {0, 1}τmin until M∗
1 ← Dec(N1, A1, τmin, Z1‖T ∗

1) returns
M∗

1 	= ⊥,
3. ask query Z2‖T2 ← Enc(N2, A2, τc,M2) with arbitrary N2, A2,M2,
4. iterate through T ∗

2 ∈ {0, 1}τmin until M∗
2 ← Dec(N2, A2, τmin, Z2‖T ∗

2) returns
M∗

2 	= ⊥,
5. return 1 iff M1 ⊕ M∗

1 = M2 ⊕ M∗
2 (otherwise return 0),

1 Note that τc is an index rather than a power in qτc
d .

Authenticated Encryption with Variable Stretch 413

Fig. 12. Key-equivalent separation by stretch. Games defining kess property of a
nonce-based AE scheme Π = (K, E , D) with variable stretch. Note that the independent
keying for each τ ∈ IT in game kess-IΠ can be done by lazy sampling if needed.

where τmin = min(IT \{τc}). We have that Advind−cca(τc)
Π¬cca

(A¬cca) = 1 − 2−n.
As amount of stretch τ has no effect on the encryption by B, we can verify that

M1 ⊕ F (K2, 〈τc〉) =M∗
1 ⊕ F (K2, 〈τmin〉)

M2 ⊕ F (K2, 〈τc〉) =M∗
2 ⊕ F (K2, 〈τmin〉)

The final conditional statement verified by the adversary is always true for the
real scheme. The probability of the same event in the “ideal” game is 2−n. As a
consequence of Theorem 1 and Proposition 1, we can state Corollary 1.2

Corollary 1. There exists a nonce-based AE scheme with variable stretch, that
is secure in the sense of both the priv(τc) notion and the auth(τc) notion but
insecure in the sense of nvae(τc) notion, i.e.

priv(τc) ∧ auth(τc) �nvae(τc)

Key-equivalent separation by stretch. The notion of nvae(τc) captures
the immediate intuition about the security goal one expects to achieve using
a nonce-based AE scheme with variable stretch. We now introduce a modular
approach to achieving the notion. Assume that an AE scheme is already known
to be secure in the sense of the nAE model. What additional security property
should such a scheme possess (i.e. on top of nAE-security) so that it can achieve
the full aim of being a nvae(τc)-secure scheme? We formalize such a desirable
property, naming it key-equivalent separation by stretch (kess), which captures
the intuition that for each value of stretch the scheme should behave as if keyed
with a fresh, independent secret key.

2 The same attack strategy yields also Adv
nvae(τc)
Π¬cca

(A¬cca) = 1 − 2−n.

414 R. Reyhanitabar et al.

Fig. 13. Security game nvae(τc)-GΠ .

Let Π = (K, E ,D) be an nvAE scheme with the syntax defined in Sect. 2. We
let an adversary A that tries to break kess of Π interact with games defined
in Fig. 12. The goal of the adversary is to distinguish these two games. The
advantage of A in breaking the kess property of the scheme Π is measured by
Advkess

Π (A) = Pr
[
A kess-RΠ ⇒ 1

] − Pr
[
A kess-IΠ) ⇒ 1

]
.

The adversarial resources of interest for the kess notion are (t,qe,qd,σ), as
defined for the nvae(τc) notion in the current Section.
We note that kess on its own says nothing about AE security of a scheme (e.g.
identity “encryption” concatenated with τ zeroes achieves kess, but is far from
nae-secure). However, we show in Theorem 2 that when combined with nae
security, kess implies nvae(τc) security. Informally, the kess notion takes care
of interaction between queries with different values of stretch. Once this is done,
we are free to argue that the queries with τc bits of stretch are “independent” of
those with other values of stretch and will “inherit” the security level of Π[τc].

Theorem 2. (kess ∧ nae ⇒ nvae(τc)). Let Π = (K, E ,D) be a nonce-based
AE scheme with variable stretch. We have that

Advnvae(τc)
Π (t,qe,qd,σ) ≤ Advkess

Π (t′,qe,qd,σ) + Advnae
Π[τc](t

′′, qτc
e , qτc

d , στc),

with t′ = t + O(q) and t′′ = t + O(σ) where q =
∑

τ∈IT
(qτ

e + qτ
d) and σ =∑

τ∈IT
(στ

e + στ
d).

Proof. Let A be an nvae(τc) adversary with the indicated resources. Consider
the security game nvae(τc)-G defined in Fig. 13. We have that
Advnvae(τc)

Π (A) = Pr[A nvae(τc)-RΠ ⇒ 1] − Pr[A nvae(τc)-GΠ ⇒ 1]
+ Pr[A nvae(τc)-GΠ ⇒ 1] − Pr[A nvae-IΠ(τc) ⇒ 1].

We first show that Pr[A nvae(τc)-RΠ ⇒ 1]−Pr[A nvae(τc)-GΠ ⇒ 1] ≤ Advkess
Π (B)

for a kess adversary B with the resources (t′,qe,qd,σ). The nvae(τc) adver-
sary A can be straightforwardly reduced to B. Any query of A is directly
answered with B’s own oracles, except for decryption queries with expansion of
τc bits whose output is trivially known from previous encryption queries; here

Authenticated Encryption with Variable Stretch 415

B returns ⊥ to A . At the end, B outputs whatever A outputs. If B interacts
with kess-RΠ then it perfectly simulates nvae(τc)-RΠ for A . If B interacts
with kess-IΠ then it perfectly simulates nvae(τc)-GΠ .
We next show that Pr[A nvae(τc)-GΠ ⇒ 1]−Pr[A nvae-IΠ(τc) ⇒ 1] ≤ Advnae

Π[τc](C)
for an nae adversary C with resources (t′′, qτc

e , qτc

d , στc). A can be reduced to C
in the following way. When A issues a query with expansion τc, C answers it
with its own oracles. For other amounts of stretch τ 	= τc, C first checks if there
were previous queries with τ bits of stretch. If not, it samples a fresh key Kτ . C
then processes the query with the real (encryption or decryption) algorithm of
Π and the key Kτ , making sure that encryption queries comply with the nonce
requirement and are not re-encryptions. If C interacts with nae-RΠ[τc] then it
perfectly simulates nvae(τc)-GΠ for A . If C interacts with nae-IΠ[τc] then it
perfectly simulates nvae(τc)-IΠ . This yields the desired result. ��
Remark 4. An RAE secure scheme Π will always have the kess property. To
see why, note that replacing Π by a collection of random injections in both the
kess-RΠ and kess-IΠ games will not increase the advantage significantly, as
that would contradict Π’s RAE security. After the replacement, the two games
will be indistinguishable. On the other hand, kess property does not guarantee
RAE security; the scheme OCBv described in Sect. 6 can serve as a counter-
example, because it does not tolerate nonce reuse.

5 A Short Guide to NvAE

Interpretation of the nvAE security advantage. The notion of nvae(τc)
is parameterized by a constant, but arbitrary amount of stretch τc from the
stretch space IT of the AE scheme Π in question. In the nvae(τc)-IΠ security
game, only queries expanded by τc bits will be subjected to “idealization”. For
all other expansions, we give the adversary complete freedom to ask any queries
it wants (except for the nonce-requirement), but their behaviour is the same in
both security games. An nvae(τc) security bound that assumes no particular
value or constraint for τc will therefore tell us, what security guarantees can we
expect from queries stretched by τc bits specifically, for any τc ∈ IT .

Looking at the security bound itself, we are able to tell if there are any
undesirable interactions between queries with different amounts of stretch. This
is best illustrated by revisiting the problems and forgery attack from Sects. 1
and 3 in the nvae(τc) security model.

Attacks in nvAE model. With the formal framework defined, we revisit the
heuristic attacks from Sect. 3 and analyse the advantage they achieve, as well as
the resources they require. Consider the original, unmodified scheme OCB [21],
that produces the tag by truncating an n-bit (with n > τ) to τ bits. In case
of simultaneous use of two (or more) amounts of stretch τ1 < τ2 with the same
key, we can forge a ciphertext stretched by τ1 bits by τ2-bit-stretched ciphertext
truncation. This would correspond to an attack with an nvae(τ1) advantage of
1 and constant resources.

416 R. Reyhanitabar et al.

If the same scheme is treated with the heuristic measures, i.e.nonce-stealing,
and encoding τ in AD, from Sect. 3 (let’s call it hOCB), we consider the forgery
attack from the same Section. Assume that there are four instances of hOCB,
with 32, 64, 96 and 128 bit tags. To make a forgery with 128-bit tag, we have
to find a forgery with 32 bits and then exhaustively search for three 32-bit
extensions of this forgery. This gives us an nvae(128) advantage equal to 1,
requiring 4 encryption queries, 3 ·232 verification queries with stretch other than
128 bits and 232 verification stretched by 128 bits. The effort necessary for such
a forgery is clearly smaller than we could hope for, especially in the amount of
verification queries stretched by the challenge amount of bits (i.e. 128).

“Good” bounds. After seeing examples of attacks, one may wonder: what kind
of nvae(τc) security bound should we expect from a secure nvAE scheme? For
every scheme, it must be always possible to guess a ciphertext with probability
2−τc . Thus the bound must always contain a term of the form c · (qτc

d)α/2τc for
some positive constants c and α, or something similar.

Even though the security level for τc-stretched queries should be independent
of any other queries, it is usually unavoidable to have a gradual increase of
advantage with every query made by the adversary. This increase can generally
depend on all of the adversarial resources, but should not depend on τc itself.

An example of a secure scheme’s nvae(τc) bound can be found in Theorem 4.
It consist of the fraction (qτc

d · 2n−τc)/(2n − 1) ≈ qτc

d /2τc , advantage bounds
for the used blockcipher and a birthday-type term that grows with the total
amount of data processed. We see, that queries stretched by τ 	= τc bits will not
unexpectedly increase adversary’s chances to break OCBv, and that the best
attack strategy is indeed issuing decryption queries with τc bits of stretch.

6 Achieving AE with Variable Stretch

We demonstrate that the security of AE schemes in the sense of nvae(τc) notion
is easily achievable by introducing a practical and secure scheme. Rather than
constructing a scheme from the scratch, we modify an existing, well-established
scheme and follow a modular approach to analyse its security in presence of
variable stretch. The modification we propose is general enough to be applica-
ble to most of the AE schemes based on a tweakable primitive (e.g. tweakable
blockcipher).

OCB mode for tweakable blockcipher. The Offset Codebook mode of
operation for a tweakable blockcipher (ΘCB) is a nonce-based AE scheme
proposed by Krovetz and Rogaway [21] (there are subtle differences from the
prior versions of OCB [33,35]). It is parameterized by a tweakable blockcipher
Ẽ : K×T ×{0, 1}n → {0, 1}n and a tag length 0 ≤ τ ≤ n. The tweak space of Ẽ
is of the form T = N × N0 × {0, 1, 2, 3} ∪ N0 × {0, 1, 2, 3} for a finite set N . The
encryption and the decryption algorithms of ΘCB[Ẽ, τ] are described in Fig. 14.

The security of ΘCB is captured in Lemma 1.

Authenticated Encryption with Variable Stretch 417

Fig. 14. Definition of ΘCB[Ẽ, τ].

Lemma 1 (Lemma 2 [21]). Let Ẽ : K × T × {0, 1}n → {0, 1}n be a tweakable
blockcipher with T = N × N0 × {0, 1, 2, 3} ∪ N0 × {0, 1, 2, 3}. Let τ ∈ {0, . . . , n}.
Then we have that

Advpriv

ΘCB[Ẽ,τ]
(t, qe, σ) ≤Adv±p̃rp

Ẽ
(t′, qp),

Advauth
ΘCB[Ẽ,τ]

(t, qe, qd, σ) ≤Adv±p̃rp

Ẽ
(t′, qa) + qd · 2n−τ

2n − 1
,

where qp ≤ �σ/n� + 2 · qe, and qa ≤ �σ/n� + 2 · (qe + qd), and t′ = t + O(σ).

Thanks to the results of [36,37], we can state as a corollary of Lemma 1 that
Advnae

ΘCB[Ẽ,τ]
(t, qe, qd, σ) ≤ Adv±p̃rp

Ẽ
(t′, (�σ/n� + 2 · (qe + qd))) + qd

2n−τ

2n−1 .

OCB mode with variable-stretch security. We introduce ΘCBv
(variable-stretch-ΘCB), a nonce-based AE scheme with variable stretch,
obtained by slightly modifying ΘCB.

The tweakable blockcipher mode of operation ΘCBv is parameterized only by
a tweakable blockcipher Ẽ : K ×T ×{0, 1}n → {0, 1}n. The tweak T is different
than the one needed for ΘCB; it is of the form T = N ×IT ×N0×{0, 1, 2, 3}∪IT ×
N0 × {0, 1, 2, 3} where IT ⊆ {0, 1, . . . , n} is the desired stretch-space of ΘCBv.

418 R. Reyhanitabar et al.

Fig. 15. Definition of ΘCBv[Ẽ]. Changes from ΘCB highlighted in red.

The encryption and decryption algorithms of ΘCBv are exactly the same as
those of ΘCB, that they now allow incorporate variable stretch and that every
call to Ẽ is now tweaked by τ , in addition to the other tweak components. Both
algorithms are described in Fig. 15. An illustration of the encryption algorithm
is depicted in Fig. 16.

Thanks to Theorem 2, establishing the nvae(τc) security of ΘCBv requires
little effort. The corresponding result is stated in Theorem 3.

Theorem 3. Let Ẽ : K × T × {0, 1}n → {0, 1}n be a tweakable blockcipher with
T = N × IT × N0 × {0, 1, 2, 3} ∪ IT × N0 × {0, 1, 2, 3}. Then we have that

Advnvae(τc)

ΘCBv[Ẽ]
(t,qe,qd,σ) ≤Adv±p̃rp

Ẽ
(t′, q) +

∑

τ∈IT

Adv±p̃rp

Ẽ
(t′, qτ)

+ Adv±p̃rp

Ẽ
(t′, qτc) + qτc

d · 2n−τc

2n − 1
.

where qτ = �στ/n�+2·(qτ
e +qτ

d) for τ ∈ IT , and q =
∑

τ∈IT
qτ , and t′ = t+O(σ)

with σ =
∑

τ∈IT
στ .

Proof. We observe that if we fix the expansion value to τc in all queries, the
nonce-based AE scheme (ΘCBv[Ẽ])[τc] that we get will be identical with the

Authenticated Encryption with Variable Stretch 419

Fig. 16. Illustration of the encryption process of ΘCBv (inspired by [21]) instantiated

with a tweakable blokcipher Ẽ : K × T × {0, 1}n → {0, 1}n. The top half depicts the
encryption of a message with four complete blocks (top) with Sum=

⊕4
i=1 Mi and the

encryption of a message with three complete blocks and an incomplete block (bottom)
with Sum=

⊕3
i=1 ⊕M∗‖10∗. The bottom half of the picture shows processing of asso-

ciated data of three complete blocks (left) or two complete blocks and an incomplete
block (right).

scheme ΘCB[Ẽ, τc]. The result follows from this observation and the results of
Lemmas 1 and 2 and Theorem 2. ��
Lemma 2. Let Ẽ : K × T × {0, 1}n → {0, 1}n be a tweakable blockcipher with
T = N × IT × N0 × {0, 1, 2, 3} ∪ IT × N0 × {0, 1, 2, 3}. Then we have that

Advkess
ΘCBv[Ẽ]

(t,qe,qd,σ) ≤Adv±p̃rp

Ẽ
(t′, q) +

∑

τ∈IT

Adv±p̃rp

Ẽ
(t′, qτ)

where qτ = �στ/n�+2·(qτ
e +qτ

d) for τ ∈ IT , and q =
∑

τ∈IT
qτ , and t′ = t+O(σ)

with σ =
∑

τ∈IT
στ .

420 R. Reyhanitabar et al.

Proof. Let A be a kess adversary with indicated resources. We proceed by
replacing the tweakable blockcipher Ẽ by an ideal one, i.e. we sample an inde-
pendent random tweakable permutation π̃K ←$ PermT (n) for every K ∈ K in
both the kess-R and the kess-I game. The increase of A ’s advantage due to
this replacement in the game kess-R is bounded by Adv±p̃rp

Ẽ
(t, q) by a standard

reduction. To bound the increase of A ’s advantage due to the replacement in
the game kess-I, we observe that the replacement can be done gradually, for
one value of stretch at a time. Thus, by a standard hybrid argument, the cumu-
lative increase of advantage will be bounded by

∑
τ∈IT

Adv±p̃rp

Ẽ
(t, qτ). Once Ẽ

is replaced by a collection of random tweakable permutations in both games, we
observe that in both games, the games will produce identical distributions. This
is because both in kess-R and in kess-I, any two queries with any two unequal
amounts of stretch τ1 and τ2 will be processed by two independent collections of
random permutations (thanks to the separation of queries with different amounts
of stretch by tweaks). ��

Instantiating. Ẽ. In order to obtain a real-world scheme, we need to instantiate
the tweakable blockcipher Ẽ. The scheme OCB uses the XEX construction [33]
that turns an ordinary blockcipher E : K × {0, 1}n → {0, 1}n into a tweakable
blockcipher Ẽ = XEX[E] with Ẽ : K × T × {0, 1}n → {0, 1}n. A call to Ẽ =
XEX[E] is evaluated in two ways, depending on the tweak:

ẼN,i,j
K (X) = EK(X ⊕ ΔN,i,j) ⊕ ΔN,i,j , or Ẽi,j

K (X) = EK(X ⊕ Δi,j).

In each call, the input (and in some cases also the output) of the blockcipher
E is masked with special Δ-values, derived from the tweak and the secret key.
An almost XOR universal hash H : K × {0, 1}<n → {0, 1}n with H(K,N) =
EK(N‖10∗) is used in the computation of the masking values.3 In what follows,
we silently represent binary strings and integers by element of GF(2n) whenever
needed and do the multiplications in this field with some fixed representation.
E.g. 22 ·(0n−2‖10) would return an n-bit string that represents the result of x2 ·x
in GF (2n). The masking Δ-values are computed as follows:

ΔN,0,0 = H(K,N),
ΔN,i+1,0 = ΔN,i,0 ⊕ L(ntz(i + 1)) for i ≥ 0,
ΔN,i,j = ΔN,i,0 ⊕ j · L∗ for j ∈ {0, 1, 2, 3},
Δ0,0 = 0n,
Δi+1,0 = Δi,0 ⊕ L(ntz(i + 1)) for i ≥ 0,
Δi,j = Δi,0 ⊕ j · L∗ for j ∈ {0, 1, 2, 3},

where L∗ = EK(0n), L(0) = 22 · L∗, L() = 2 · L(− 1) for 	 > 0 and ntz(i)
denotes the number of trailing zeros in the binary representation of the integer
i, e.g. ntz(2) = 1.

3 A different AXU is used in the latest version of OCB [21], we opted for EK(·) for
the sake of simplicity.

Authenticated Encryption with Variable Stretch 421

Lemma 3. ([33]) Let E : K × {0, 1}n → {0, 1}n be a blockcipher and T =
N × N0 × {0, 1, 2, 3} ∪ N0 × {0, 1, 2, 3}. Let A be an adversary that runs in time
at most t, asks at most q queries, never asks queries with i-component exceeding
2n−5 and never asks decryption queries with tweaks from N0 × {0, 1, 2, 3}. Then

Adv±p̃rpT

XEX[E](A) ≤ Adv±prp
E (B) +

9.5q2

2n

for an adversary B that makes at most 2q queries and runs in time bounded by
t + O(q).

Extending the tweaks with τ . In order to instantiate ΘCBv, we need to
extend the tweaks of Ẽ with a fourth component: τ . To this end, we propose
XEX′, which is obtained by a slight modification of the XEX construction. Infor-
mally, we expand the domain of the “j-part” of tweaks and represent it as
IT × {0, 1, 2, 3}, compensating for this by decreasing the maximal value of i.

The tweakable blockcipher Ẽ′ = XEX′[E] is defined as follows. We again use
the AXU H(K,N). We uniquely label each element of IT by an integer with a
bijection λ : IT → {0, 1, . . . , |IT |− 1}. We define m = �log2 |IT |�, L∗ = EK(0n),
Lτ = λ(τ) ·22 ·L∗ for τ ∈ IT , L(0) = 22+m ·L∗, and L() = 2 ·L(−1) for 	 > 0.
The masking Δ-values are computed as follows:

ΔN,0,0,0 = H(K,N),
ΔN,τ,0,0 = ΔN,0,0,0 ⊕ Lτ ,
ΔN,τ,i+1,0 = ΔN,τ,i,0 ⊕ L(ntz(i + 1)) for i ≥ 0,
ΔN,τ,i,j = ΔN,τ,i,0 ⊕ j · L∗ for j ∈ {0, 1, 2, 3},
Δτ,0,0 = Lτ ,
Δτ,i+1,0 = Δτ,i,0 ⊕ L(ntz(i + 1)) for i ≥ 0,
Δτ,i,j = Δτ,i,0 ⊕ j · L∗ for j ∈ {0, 1, 2, 3}.

A call to Ẽ′ is evaluated as follows:

Ẽ′N,τ,i,j
K (X) =EK(X ⊕ ΔN,τ,i,j) ⊕ ΔN,τ,i,j , or Ẽ′τ,i,j

K (X) = EK(X ⊕ Δτ,i,j).

The security result for XEX′ construction is stated in Lemma 4.

Lemma 4. Let E : K × {0, 1}n → {0, 1}n be a blockcipher and T = N × IT ×
N0×{0, 1, 2, 3}∪IT ×N0×{0, 1, 2, 3} for some finite, non-empty IT ⊆ N0. Let A
be an adversary that runs in time at most t, asks at most q queries, never asks
queries with i-component exceeding 2n−(5+�log2 |IT |�) and never asks decryption
queries with tweaks from IT × N0 × {0, 1, 2, 3}. Then

Adv±p̃rpT

XEX′[E](A) ≤ Adv±prp
E (B) +

9.5q2

2n

for an adversary B that makes at most 2q queries and runs in time bounded by
t + O(q).

422 R. Reyhanitabar et al.

The treatment of τ -tweak component in XEX′ construction is equivalent to a one
where we would injectively encode τ, j into a single integer j′ = 22τ + j. Similar
approach has been taken by Reyhanitabar et al. [29,30], where it is shown that
the essential properties of the masking values necessary for the security proof
of [33] are preserved. The same arguments apply here, so we omit the proof of
Lemma 4.

OCBv: practical AE with variable stretch We define the blockcipher
mode OCBv, a nonce based AE scheme with variable stretch. OCBv is only
parameterized by a blockcipher E. It is obtained by instantiating the tweakable
blockcipher in ΘCBv by the XEX′ costruction, i.e. OCBv[E] = ΘCBv[XEX′[E]]
and its security is analysed in Theorem 4.

Theorem 4. Let Ẽ : K × {0, 1}n → {0, 1}n be a blockcipher. We have that

Advnvae(τc)
OCBv[E](t,qe,qd,σ) ≤Adv±prp

E (t′, 2q) +
∑

τ∈IT

Adv±prp
E (t′, 2qτ)

+ Adv±prp
E (t′, 2qτc) +

28.5q2

2n
+ qτc

d

2n−τc

2n − 1
,

where qτ = �στ/n� + 2 · (qτ
e + qτ

d) for τ ∈ IT , and q =
∑

τ∈IT
qτ and

t′ = t + O(σ) with σ =
∑

τ∈IT
στ .

If we further assume that the Adv±prp
E is non-decreasing w.r.t. both q and t,

then we can further simplify the bound to the form

Advnvae(τc)
OCBv[E](t,qe,qd,σ) ≤ (|IT | + 2) · Adv±prp

E (t′, 2q) +
28.5q2

2n
+ qτc

d · 2n−τc

2n − 1
.

Proof. The result in Theorem 4 follows from Theorem 3 and Lemma 4 by apply-
ing triangle inequality on the terms that arise from applying Lemma 4. ��
Performance of OCBv. The performance of OCBv can be expected to be
very similar to that of OCB, as the two schemes only differ in the way the mask-
ing Δ-values are computed. In addition to the operations necessary to compute
Δ-offsets in OCB, the computation of the Lτ -values has to be done for OCBv.
However, these can be precomputed at the initialization phase and stored, so the
cost of their computation will be amortized over all queries. The only additional
processing that remains after dealing with Lτ -s is a single xor of a precom-
puted Lτ to a Δ-value, necessary in every query. This is unlikely to impact the
performance significantly.

7 Discussion

Relation between nvAE and kess+nAE. We define the kess property as
useful, albeit strong property that facilitates modular security proofs of nvAE

Authenticated Encryption with Variable Stretch 423

security for AE schemes whose nAE security has already been established. This
is depicted as implication g in Fig. 1 and formally proven in Theorem 2. How-
ever, determining the exact nature of the relation in the reverse direction to
implication g appears not to be straightforward, and we leave it as an open
problem.

Achieving nvAE security. In Sect. 6, we describe OCBv, a modified version
of the OCB scheme for AEAD, that is provably secure in the sense of nvAE,
and retains the desirable properties of OCB. Moreover, our transformation and
analysis are generic enough to be applied to other schemes based on tweakable
blockciphers, or other tweakable primitives (e.g. compression functions), which
represents a large subset of current nAE schemes.

A natural problem to investigate would be to see if there exists a black-box
transformation Γ(·), that would turn any nAE secure scheme Π into an nvAE
secure scheme Γ(Π). A straightforward measure to take would be to derive a
key K ′ used internally with Π from the key K of Γ(Π) as K ′ = H(τ,K) with a
hash function H, as suggested by Struik [40]. This transformation can be easily
proven secure, but only in random oracle model, and it makes the whole design
unnecessarily complex. We leave the formal treatment of this question (in the
standard model) as an open problem.

It is nevertheless possible to describe transformations that are applicable to
large subsets of nAE secure schemes. One example is given in Sect. 6. Another
such transformation is encoding τ in the nonce input of sponge-like modes. These
either process all inputs in a single chain of permutation calls (e.g. Ketje [7], and
Ascon [11]), or they use several such chains in parallel, but initialize all of them
with nonce-dependent values (e.g. Keyak [8], and NORX [2]).

Acknowledgments. This work was partly supported by the EU H2020 TREDISEC
project, funded by the European Commission under grant agreement no. 644412.
Damian Vizár is supported in part by Microsoft Research under MRL Contract No.
2014-006 (DP1061305). We would like to thank the ASIACRYPT reviewers for their
constructive comments. We would also like to thank Phillip Rogaway for an insightful
discussion during CRYPTO 2015.

References

1. Andreeva, E., Bogdanov, A., Luykx, A., Mennink, B., Mouha, N., Yasuda, K.: How
to securely release unverified plaintext in authenticated encryption. In: Sarkar,
P., Iwata, T. (eds.) ASIACRYPT 2014. LNCS, vol. 8873, pp. 105–125. Springer,
Heidelberg (2014). doi:10.1007/978-3-662-45611-8 6

2. Aumasson, J.P., Jovanovic, P., Neves, S.: Norx. https://competitions.cr.yp.to/
round2/norxv20.pdf

3. Bellare, M., Namprempre, C.: Authenticated encryption: relations among notions
and analysis of the generic composition paradigm. In: Okamoto, T. (ed.) ASI-
ACRYPT 2000. LNCS, vol. 1976, pp. 531–545. Springer, Heidelberg (2000). doi:10.
1007/3-540-44448-3 41

http://dx.doi.org/10.1007/978-3-662-45611-8_6
https://competitions.cr.yp.to/round2/norxv20.pdf
https://competitions.cr.yp.to/round2/norxv20.pdf
http://dx.doi.org/10.1007/3-540-44448-3_41
http://dx.doi.org/10.1007/3-540-44448-3_41

424 R. Reyhanitabar et al.

4. Bellare, M., Rogaway, P.: Encode-then-encipher encryption: how to exploit nonces
or redundancy in plaintexts for efficient cryptography. In: Okamoto, T. (ed.) ASI-
ACRYPT 2000. LNCS, vol. 1976, pp. 317–330. Springer, Heidelberg (2000). doi:10.
1007/3-540-44448-3 24

5. Bernstein, D.J.: Cryptographic competitions: CAESAR. http://competitions.cr.
yp.to

6. Bernstein, D.J.: Cryptographic competitions: Disasters. https://competitions.cr.
yp.to/disasters.html

7. Bertoni, G., Daemen, J., Peeters, M., Assche, G.V., Keer, R.V.: Ketje. https://
competitions.cr.yp.to/round1/ketjev11.pdf

8. Bertoni, G., Daemen, J., Peeters, M., Assche, G.V., Keer, R.V.: Keyak. https://
competitions.cr.yp.to/round2/keyakv2.pdf

9. Borisov, N., Goldberg, I., Wagner, D.: Intercepting mobile communications: the
insecurity of 802.11. In: MOBICOM, pp. 180–189 (2001)

10. De Meulenaer, G., Gosset, F., Standaert, F.X., Pereira, O.: On the energy cost of
communication and cryptography in wireless sensor networks. In: 2008 IEEE Inter-
national Conference on Wireless and Mobile Computing, Networking and Commu-
nications, pp. 580–585. IEEE (2008)

11. Dobraunig, C., Eichlseder, M., Mendel, F., Schlaffer, M.: Ascon. https://
competitions.cr.yp.to/round2/asconv11.pdf

12. Egele, M., Brumley, D., Fratantonio, Y., Kruegel, C.: An empirical study of cryp-
tographic misuse in android applications. In: 2013 ACM SIGSAC Conference on
Computer and Communications Security, CCS 2013, Berlin, Germany, 4–8 Novem-
ber 2013, pp. 73–84. ACM (2013)

13. Eichlseder, M.: Remark on variable tag lengths and OMD. crypto-competitions
mailing list, 25 April 2014

14. Fleischmann, E., Forler, C., Lucks, S.: McOE: a family of almost foolproof on-line
authenticated encryption schemes. In: Canteaut, A. (ed.) FSE 2012. LNCS, vol.
7549, pp. 196–215. Springer, Heidelberg (2012). doi:10.1007/978-3-642-34047-5 12

15. Fuhr, T., Leurent, G., Suder, V.: Collision attacks against CAESAR candidates.
In: Iwata, T., Cheon, J.H. (eds.) ASIACRYPT 2015. LNCS, vol. 9453, pp. 510–532.
Springer, Heidelberg (2015). doi:10.1007/978-3-662-48800-3 21

16. Hoang, V.T., Krovetz, T., Rogaway, P.: Robust authenticated-encryption AEZ
and the problem that it solves. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT
2015. LNCS, vol. 9056, pp. 15–44. Springer, Heidelberg (2015). doi:10.1007/
978-3-662-46800-5 2

17. Hoang, V.T., Reyhanitabar, R., Rogaway, P., Vizár, D.: Online authenticated-
encryption and its nonce-reuse misuse-resistance. In: Gennaro, R., Robshaw, M.
(eds.) CRYPTO 2015. LNCS, vol. 9215, pp. 493–517. Springer, Heidelberg (2015).
doi:10.1007/978-3-662-47989-6 24

18. Hotz, G.: Console hacking 2010-ps3 epic fail. In: 27th Chaos Communications
Congress (2010)

19. Iwata, T.: CLOC and SILC will be tweaked. crypto-competitions mailing list, 4
August 2015

20. Katz, J., Yung, M.: Unforgeable encryption and chosen ciphertext secure modes
of operation. In: Goos, G., Hartmanis, J., Leeuwen, J., Schneier, B. (eds.) FSE
2000. LNCS, vol. 1978, pp. 284–299. Springer, Heidelberg (2001). doi:10.1007/
3-540-44706-7 20

21. Krovetz, T., Rogaway, P.: The software performance of authenticated-encryption
modes. In: Joux, A. (ed.) FSE 2011. LNCS, vol. 6733, pp. 306–327. Springer,
Heidelberg (2011). doi:10.1007/978-3-642-21702-9 18

http://dx.doi.org/10.1007/3-540-44448-3_24
http://dx.doi.org/10.1007/3-540-44448-3_24
http://competitions.cr.yp.to
http://competitions.cr.yp.to
https://competitions.cr.yp.to/disasters.html
https://competitions.cr.yp.to/disasters.html
https://competitions.cr.yp.to/round1/ketjev11.pdf
https://competitions.cr.yp.to/round1/ketjev11.pdf
https://competitions.cr.yp.to/round2/keyakv2.pdf
https://competitions.cr.yp.to/round2/keyakv2.pdf
https://competitions.cr.yp.to/round2/asconv11.pdf
https://competitions.cr.yp.to/round2/asconv11.pdf
http://dx.doi.org/10.1007/978-3-642-34047-5_12
http://dx.doi.org/10.1007/978-3-662-48800-3_21
http://dx.doi.org/10.1007/978-3-662-46800-5_2
http://dx.doi.org/10.1007/978-3-662-46800-5_2
http://dx.doi.org/10.1007/978-3-662-47989-6_24
http://dx.doi.org/10.1007/3-540-44706-7_20
http://dx.doi.org/10.1007/3-540-44706-7_20
http://dx.doi.org/10.1007/978-3-642-21702-9_18

Authenticated Encryption with Variable Stretch 425

22. Langley, A.: Apple’s SSL/TLS bug. Imperial Violet (2014)
23. Li, Y., Zhang, Y., Li, J., Gu, D.: iCryptoTracer: dynamic analysis on misuse of

cryptography functions in iOS applications. In: Au, M.H., Carminati, B., Kuo, C.-
C.J. (eds.) NSS 2014. LNCS, vol. 8792, pp. 349–362. Springer, Heidelberg (2014).
doi:10.1007/978-3-319-11698-3 27

24. Manger, J.H.: [Cfrg] Attacker changing tag length in OCB. IRTFCFRGmailing list,
29 May 2013

25. Minematsu, K.: AES-OTR v2. crypto-competitions mailing list, 31 August 2015
26. Namprempre, C., Rogaway, P., Shrimpton, T.: Reconsidering generic composition.

In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp.
257–274. Springer, Heidelberg (2014). doi:10.1007/978-3-642-55220-5 15

27. Nandi, M.: RE: CLOC and SILC will be tweaked. crypto-competitions mailing
list, 5 August 2015

28. Reyhanitabar, R.: OMD version 2: a tweak for the 2nd round.
crypto-competitions mailing list, 27 August 2015

29. Reyhanitabar, R., Vaudenay, S., Vizár, D.: Misuse-resistant variants of the OMD
authenticated encryption mode. In: Chow, S.S.M., Liu, J.K., Hui, L.C.K., Yiu,
S.M. (eds.) ProvSec 2014. LNCS, vol. 8782, pp. 55–70. Springer, Heidelberg (2014).
doi:10.1007/978-3-319-12475-9 5

30. Reyhanitabar, R., Vaudenay, S., Vizár, D.: Boosting OMD for almost free authen-
tication of associated data. In: Leander, G. (ed.) FSE 2015. LNCS, vol. 9054, pp.
411–427. Springer, Heidelberg (2015). doi:10.1007/978-3-662-48116-5 20

31. Rogaway, P.: Re: [Cfrg] Attacker changing tag length in OCB. IRTFCFRG mailing
list, 3 June 2013

32. Rogaway, P.: Authenticated-encryption with associated-data. In: ACM CCS 2002,
pp. 98–107 (2002)

33. Rogaway, P.: Efficient instantiations of tweakable blockciphers and refinements to
modes OCB and PMAC. In: Lee, P.J. (ed.) ASIACRYPT 2004. LNCS, vol. 3329,
pp. 16–31. Springer, Heidelberg (2004). doi:10.1007/978-3-540-30539-2 2

34. Rogaway, P.: Nonce-based symmetric encryption. In: Roy, B., Meier, W. (eds.)
FSE 2004. LNCS, vol. 3017, pp. 348–358. Springer, Heidelberg (2004). doi:10.1007/
978-3-540-25937-4 22

35. Rogaway, P., Bellare, M., Black, J., Krovetz, T.: OCB: a block-cipher mode of
operation for efficient authenticated encryption. In: ACM CCS 2001, pp. 196–205
(2001)

36. Rogaway, P., Shrimpton, T.: A provable-security treatment of the key-wrap prob-
lem. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 373–390.
Springer, Heidelberg (2006). doi:10.1007/11761679 23

37. Rogaway, P., Shrimpton, T.: Deterministic authenticated-encryption: a provable-
security treatment of the key-wrap problem. In: IACR Cryptology ePrint Archive
2006, p. 221 (2006)

38. Rogaway, P., Wagner, D.: A critique of CCM. In: IACR Cryptology ePrint Archive
2003, p. 70 (2003)

39. Struik, R.: AEAD ciphers for highly constrained networks. In: DIAC 2013 presen-
tation, 13 August 2013

40. Struik, R.: Re: [Cfrg] Attacker changing tag length in OCB. IRTFCFRG mailing list,
30 May 2013

41. Wu, H.: The misuse of rc4 in microsoft word and excel. Cryptology ePrint Archive,
Report 2005/007 (2005). http://eprint.iacr.org/2005/007

http://dx.doi.org/10.1007/978-3-319-11698-3_27
http://dx.doi.org/10.1007/978-3-642-55220-5_15
http://dx.doi.org/10.1007/978-3-319-12475-9_5
http://dx.doi.org/10.1007/978-3-662-48116-5_20
http://dx.doi.org/10.1007/978-3-540-30539-2_2
http://dx.doi.org/10.1007/978-3-540-25937-4_22
http://dx.doi.org/10.1007/978-3-540-25937-4_22
http://dx.doi.org/10.1007/11761679_23
http://eprint.iacr.org/2005/007

Block Cipher I

Salvaging Weak Security Bounds
for Blockcipher-Based Constructions

Thomas Shrimpton1,2(B) and R. Seth Terashima1,2

1 Department of Computer and Information Science and Engineering,
University of Florida, Gainesville, USA

teshrim@ufl.edu, setht@qti.qualcomm.com
2 Qualcomm Technologies, Inc., San Diego, USA

Abstract. The concrete security bounds for some blockcipher-based
constructions sometimes become worrisome or even vacuous; for exam-
ple, when a light-weight blockcipher is used, when large amounts of data
are processed, or when a large number of connections need to be kept
secure. Rotating keys helps, but introduces a “hybrid factor” m equal to
the number of keys used. In such instances, analysis in the ideal-cipher
model (ICM) can give a sharper picture of security, but this heuristic
is called into question when cryptanalysis of the real-world blockcipher
reveals weak keys, related-key attacks, etc.

To address both concerns, we introduce a new analysis model, the
ideal-cipher model under key-oblivious access (ICM-KOA). Like the
ICM, the ICM-KOA can give sharp security bounds when standard-
model bounds do not. Unlike the ICM, results in the ICM-KOA are
less brittle to current and future cryptanalytic results on the blockci-
pher used to instantiate the ideal cipher. Also, results in the ICM-KOA
immediately imply results in the ICM and the standard model, giving
multiple viewpoints on a construction with a single effort. The ICM-
KOA provides a conceptual bridge between ideal ciphers and tweakable
blockciphers (TBC): blockcipher-based constructions secure in the ICM-
KOA have TBC-based analogs that are secure under standard-model
TBC security assumptions. Finally, the ICM-KOA provides a natural
framework for analyzing blockcipher key-update strategies that use the
blockcipher to derive the new key. This is done, for example, in the NIST
CTR-DRBG and in the hardware RNG that ships on Intel chips.

1 Introduction

When a secret-key cryptographic primitive E is based upon a blockcipher E,
a security proof for E will typically appeal to the pseudorandom-permutation
(PRP) assumption—namely, that no efficient adversary can distinguish between
the input-output behavior of the secretly (and randomly) keyed blockcipher EK ,
and that of a truly random permutation π with the same domain. When the proof
states that the PRP-security of E is a tight upperbound for the security of E ,
one can derive from it useful messages for practice; e.g., how many calls to the
blockcipher should be allowed before changing its key. When the upperbound
c© International Association for Cryptologic Research 2016
J.H. Cheon and T. Takagi (Eds.): ASIACRYPT 2016, Part I, LNCS 10031, pp. 429–454, 2016.
DOI: 10.1007/978-3-662-53887-6 16

430 T. Shrimpton and R.S. Terashima

is not tight, the usefulness of any such messages can be unclear. In particular,
when there is no known attack on the security of E whose success probabil-
ity approaches the upperbound evidenced in the security proof. Such gaps are
common when the security proof uses a “hybrid argument”.

As an example, consider the following self-rekeying version of counter-mode
encryption. (This is similar to the NIST CTR-DRBG [9] that underlies Intel’s
hardware RNG [11,19].) Let CTR[E]NK(·) denote counter-mode encryption (over
n-bit blockcipher E) under key K and IV N . The scheme is initialized with a
key K1 that is random. To encrypt the i-th plaintext Xi, the scheme computes
ciphertext Ci ← CTR[E]0Ki

(Xi) using key Ki, and then computes a key Ki+1 for
the next encryption call via Ki+1 ← CTR[E]�|Xi|/n�+1

Ki
(0k). The standard proof

would show that the security of this construction is (roughly) upperbounded
by m times the probability violating the PRP-security of E, where m is the
number of strings Xi that are encrypted before the key is reinitialized to a
fresh random, secret value. Such a bound can quickly become vacuous when the
underlying blockcipher is lightweight and cannot be assumed to provide PRP-
security comparable to blockciphers like AES, or in settings where frequent re-
initialization (i.e., resetting to a fresh, random K1) is difficult.

If this construction is analyzed instead in the ideal cipher model (ICM),
the upperbound is considerably tighter, and nearly matched by an attack. This
suggests that the multiplicative factor of m in the standard-model result isn’t
“real”, but rather an artifact of the proof technique. On the other hand ICM
analysis provides only a security heuristic, and seems particularly inappropriate
when the underlying blockcipher is known to have obvious non-ideal behavior
for certain “weak” keys, or to suffer from related-key attacks.

Yet for constructions like this one, the presence of weak blockcipher keys is
unlikely to be a real issue for the security of the construction: intuitively, if the
initial key K is random, then so should be the derived keys that follow it. Analy-
sis in the ICM naturally captures this intuition, as the key Ki is (essentially)
independent of keys K1,K2, . . . ,Ki−1, and of the ciphertexts C1, C2, . . . , Ci that
the construction outputs.

Moreover, observe that the construction doesn’t actually need to know the
value of any of the keys. It could carry out its duties if its access to E was via an
API that restricted it to refer to keys by handles, e.g., ask (i, x, “return”) and
receive EKi

(x) in return, or (i, x, “key”) and cause the value Ki+1 = EKi
(x) to

be stored, receiving nothing in return. We refer to such an API as enforcing key-
oblivious access (KOA) to E, and under this access model it is clear that the
construction leaks nothing about the keys beyond what the blockcipher does.
Said another way, the access model supports the intuition that if the initial
key K1 is secret, it and its successors remain so.

The ICM under key-oblivious access. We formalize all of this in a new model,
the ICM under key-oblivious access (ICM-KOA). The construction has black-
box access to the blockcipher via, roughly, the API just described. On the other
hand, the adversary may query the ideal cipher freely, as in the traditional

Salvaging Weak Security Bounds for Blockcipher-Based Constructions 431

ICM, capturing a real-world attacker’s ability to compute (offline) blockcipher
input-output pairs under any key it likes. Before we give more details about our
formalism, let us explain what benefits it provides.

First, the ICM-KOA retains the power of ICM to give sharper bounds
than those found under the standard-model PRP assumption. It can also
expose important quantitative security distinctions among variants of a given
blockcipher-based construction, where these would be hidden by a standard-
model analysis. This may help to guide implementation decisions in practice.
We also surface in our model the distinction between precomputation queries
to the blockcipher, offline queries made to the blockcipher while attacking the
construction, and online queries made to the construction under its secret keys.

Second, security results in the ICM-KOA imply comparable security results
in the traditional ICM and results in the standard-model. The latter is possible
precisely because the model guarantees that the blockcipher is called on ran-
dom and secret keys. Thus a single effort yields multiple viewpoints on a given
construction.

Third, while security proofs in this model are still heuristics, their value is
more resilient to the discovery of weak keys and related-key attacks on the real
blockcipher that is idealized. In fact, the formalism provides a clear path to
analyzing the security of constructions when the blockcipher is modeled with
explicit non-ideal behaviors. We leave this as interesting future work.

Finally, the ICM-KOA provides a conceptual bridge between ideal ciphers
and tweakable blockciphers (TBC). This is pleasing because, intuitively, the
strong-tweakable-PRP assumption suggests that a secure, secretly keyed TBC
is computationally indistinguishable from an ideal cipher—both provide a set
of random permutations (one permutation for each tweak or key, respectively).
We show that blockcipher-based constructions that are secure in the ICM-KOA
have TBC-based analogs that are secure in the standard model.

Decomposing constructions into modes and schedulers. We want our model to
facilitate results for blockcipher-based constructions that may use many keys.
So the ICM-KOA requires that constructions can be decomposed into two prim-
itives, a mode M and a potentially stateful key-scheduler S. Intuitively, the role
of the mode is to affect the transformation of construction-inputs (e.g., plain-
texts) into construction-outputs (e.g., ciphertexts), and the role of the sched-
uler is to determine what keys the mode must use during its execution. Many
symmetric-key cryptographic primitives can be decomposed in this way, includ-
ing encryption schemes and blockcipher-based PRFs, PRNGs, KDFs and MACs,
whether or not rekeying strategies are applied to them.

Returning to our self-rekeying version of counter-mode encryption, we might
decompose this into a mode M that, on input a key Ki and a string X, computes
C ← CTR[E]0Ki

(X); and a scheduler S that (effectively) computes Ki+1 ←
CTR[E]�|X|/n�+1

Ki
(0k). Each will be forced to be oblivious of the actual key values

by our model.

432 T. Shrimpton and R.S. Terashima

Applying the ICM-KOA to constructions. Given a blockcipher-based construc-
tion that admits decomposition, we define what it means for the construction to
produce outputs that are indistinguishable from some reference-behavior-oracle
in the ICM-KOA. To be clear, we do not claim that this is, on its own, an
intuitive security goal. It is a new tool that provides a means to obtain strong
bounds in the ICM that are backed by a guarantee that keys are kept random
and secret. And because of this guarantee, we gain simultaneous results in the
standard model. We illuminate the usefulness of the ICM-KOA via two case
studies.

First we consider the NIST-CTR-DRBG. As the name suggests, it is a deter-
ministic random-bit generator based on running a blockcipher in CTR mode. A
result by Shrimpton and Terashima [19] shows that the standard-model security
is around q2/2k, where q is the number of calls the construction. For k = 128, this
bound exceeds 2−40 when q = 244. This may seem safe; after all, this amounts to
many terabytes of random bits. But the RNG has extremely high throughput—
Intel reports 800 MB/s, which equates to 50 million queries per second—meaning
the q = 244 limit in a little more than four days.

We analyze this in the ICM-KOA. For very little work, we recover the secu-
rity bound from [19], and also get a much stronger bound in the ICM. The
latter reveals the lack of a matching attack and shows that, barring cryptanaly-
sis of AES under random and secret keys, we can permit on the order of 270

queries before surpassing our 2−40 limit (assuming the adversary has resources
for 280 precomputation and 280 offline queries). This translates to 750,000 years
of runtime, and so is unlikely to be the limiting factor.

Next we consider three rekeying variants of CTR-mode, distinguished by how
they choose IVs following a key change: (1) The IV is set to 0n; (2) the upper bits
of the IV are unique for each key; (3) The IV is chosen randomly. In each case,
we use the same key scheduler that sets Ki ← EK1(i) (for i > 1). In the standard
model, these three schemes all have the same security bound. Our analysis in the
ICM-KOA uncovers significant quantitative differences their security bounds; in
particular, we show how (1) succumbs to precomputation for shorter key lengths
while (2) and (3) resist such attacks.

Addressing hybrid-loss directly in the standard model. Another, arguably more
natural approach to avoiding a factor of m hybrid-loss when analyzing a
blockcipher-based construction that uses m keys is to generalize the PRP notion
to an m-PRP notion [18]. Here the adversary must distinguish between the col-
lection of oracles EK1(·), EK2(·), . . . , EKm

(·) for random keys K1, . . . ,Km, and
the collection π1(·), π2(·), . . . , πm(·) of random permutations. If a construction
uses no more than m blockcipher keys during the time that it is being attacked,
reducing the construction’s security to the blockcipher’s m-PRP security can be
done without a hybrid proof, and therefore does not incur a factor of m loss.

But this may simply sweep problems under the rug: (1) it begs the question
of how the m-PRP security of a given blockcipher relates to its PRP security
(although we note that Hoang and Tessaro [12], building on the work of [18],
have largely answered this question for key-alternating ciphers with independent

Salvaging Weak Security Bounds for Blockcipher-Based Constructions 433

round keys) (2) it doesn’t directly model interesting scenarios where the keys
are themselves derived from the E using prior keys, particularly when, as with
the NIST-RNG, the mode of operation is intertwined with key generation.

We explore this further in the full version of the paper. As one expects, the
simplest result states that the m-PRP security of E falls somewhere between its
PRP-security and m times that value. We go on to show that, under the assump-
tion that a PRP-secure blockcipher E exists: (1) there is a related blockcipher
for which these upper- and lowerbounds on its m-PRP security are tight; and
(2) there is a related blockcipher that is PRP-secure but not m-PRP-secure, for
sufficiently large values of m. (Of course, these distinctions are not binary, but
the quantitative results are reasonable for modest m). These results are mainly
of theoretical importance, as no real blockcipher will resemble the ones used to
prove them.

But we also give a result that sheds some light on how much of a gap exists
between any particular blockcipher’s PRP security and m-PRP security. Given a
PRP-adversary A for blockcipher E, the best m-PRP adversary B[A] (that makes
use of A in a black-box fashion) will have an advantage between Advprp

E (A) and
mAdvprp

E (A); moreover, its location on this continuum can be computed from
Advprp

E (A) and, interestingly, A’s false-positive rate when distinguishing a keyed
instance of E from a random permutation. When A’s false-positive and false-
negative rates are similar, then B[A]’s advantage scales with

√
m, rather than m.

Again, see the full version of this paper for details.

Related Work. Abdalla and Bellare [1] were the first to rigorously study the secu-
rity of rekeyed symmetric-encryption schemes, under various rekeying strategies.
Concretely, they show that CBC-mode over an n-bit blockcipher, consistently
rekeyed after 2n/3 blocks, can have meaningful security bounds up to about
22n/3 total message blocks. (Specifically, they show that 22n/3 one-block mes-
sages can be encrypted.) Our KOA modeling captures their rekeyed encryp-
tion schemes. As one example, they consider a rekeying strategy that computes
(Ki+1, Li+1) = (E(Li, 0), E(Li, 1)); we would say the scheduler S computes this
(Ki+1, Li+1), where Li (resp. Li+1) is the current (resp. next) scheduler state.

There are a number of works that analyaze secretly keyed constructions in
the ICM. Kilian and Rogaway [14] proved that the DESX construction is a secure
SPRP in the ICM. Dai et al. [10] leverage the ICM to prove the security of mul-
tiple encryption. Lee [17] uses the ICM to consider key-length extension offered
by cascade encryption (aka multiple encryption) and xor-cascade encryption (of
which DESX is a simple example). Recently there have been a line of nice papers
on the security of key-alternating ciphers (aka xor-cascade encryption), includ-
ing [2,7,8,15,16], that perform their analysis in the public-random-permutation
model, which is derivative of the ICM. The randomized message-authentication
code RMAC was analyzed in the ICM [13].

The classic “Luby-Rackoff Backwards” paper by Bellare, Krovetz and Rog-
away [4] addresses the construction of beyond birthday-bound secure PRFs from
PRPs, but they are unable to do so in the standard model because of hybrid

434 T. Shrimpton and R.S. Terashima

terms. Thus, their positive security results, which do show beyond-birthday-
bound security of their constructions, are developed in the ICM, despite the
presence of secret keys. It would be interesting to revisit their construction using
the ICM-KOA.

Bellare, Boldyreva and Micali [3] consider multi-key security notions for
public-key encryption, and show that, for left-or-right IND-CPA, the hybrid
loss incurred by reducing from a multi-key instance to a single-key instance
is inherent. Our discussion of the relationship between the PRP and m-PRP
notions takes inspiration from that work, especially the construction of a cipher
for which the bound is tight.

Bellare, Ristenpart and Tessaro [5] consider multi-instance (or multi-key)
security notions, in which the attacker wins only if it breaks all of the instances.
Their notions differ from ours, as it would suffice to break a single instance in
our m-PRP notion.

Recent papers by Mouha and Luykx [18] and Hoang and Tessaro [12] consider
the mutli-key security of key-alternating ciphers, demonstrating (in the random
permutation model) that they do not suffer hybrid-like security losses. This work
complements are own, which provides bounds for modes of operation that employ
blockciphers with idealized behavior under random, secret keys.

Roadmap. Section 2 introduces the ICM with key-oblivious access. The central
theorems are summarized up-front —that constructions (with certain properties)
that are secure in the ICM-KOA are secure in both the ICM and standard
models— and the bulk of the section is concerned with technical matters that
support the formal theorem statements. The section ends by using the ICM-KOA
framework to relate ideal ciphers and tweakable ciphers. Section 3 applies the
results of Sect. 2 to various blockcipher-based constructions, including the NIST
CTR-DRBG. Full proofs of all results are provided. Results on the relationship
between the PRP and m-PRP standard-model notions will appear in the full
version.

2 The ICM with Key-Oblivious Access

In this section, we formalize the notion of decomposing a construction into a
mode (which carries out the cryptographic functionality) and a scheduler (which
creates keys for the mode, as needed). We then define properties of modes and
schedulers sufficient to imply results in both the standard model and the ICM.
Roughly speaking:

– A mode and a scheduler constitute a decomposition of a construction if they
preserve its black-box behavior.

– A mode is compatible with a scheduler if they query the underlying blockcipher
on different points (and thus maintain an independence between keys and, e.g.,
ciphertexts).

Salvaging Weak Security Bounds for Blockcipher-Based Constructions 435

– A decomposition has dispersed inputs if there are limits to how many block-
cipher inputs an adversary can predict in advance.

– We quantify the computational resources consumed by the mode and scheduler
using mode efficiency.

The first item and last items are straightforward, and the need for the second (in
proofs) is intuitive after a moment’s thought. Having dispersed inputs will help
to make clear the impact of precomputation on security bounds. The coarser
granularity of the standard model prevents it from benefiting from dispersed
inputs, and we will demonstrate how this obscures the impact of precomputation.

The central theorems of this section, Theorems 1 and 2, have somewhat
complicated statements. But, informally, they say the following:

Theorems 1 and 2, informally. If a decomposition (1) has these properties
and (2) is difficult to distinguish from an appropriate reference oracle (e.g., an
encryption oracle that returns random bits) when the underlying blockcipher is
replaced by a random function that is inaccessible to the adversary, then the
original construction is likewise hard to distinguish from the reference oracle in
both the standard model and in the ICM.
We note that the “if” portion specifies indistinguishability when the blockcipher
is treated as a random function that is inaccessible to the adversary. This isn’t
sweeping things under the rug: ICM-based proofs typically have to “decouple”
the actual blockcipher used by the construction from the blockcipher available to
the adversary using ad-hoc methods. Our informal theorem statement is merely
surfacing this proof trick, and our model will allow us to enforce it cleanly.

The final significant contribution of this section is a result that uses the
ICM-KOA framework to formalize a relationship between the ICM and TBCs.

2.1 Preliminaries

When X,Y are strings, X ‖ Y is the concatenation of those strings, and X ⊕ Y

is their bitwise exclusive-or. When X is a set, X
$← X means to sample uni-

formly from X and assign the result to X. When A is a randomized algorithm,
then X

$← AO1,O2,...(σ) means to provide A with oracle (black-box) access to
O1,O2, . . . and input σ, and to assign the result of its execution to X. An adver-
sary is a randomized algorithm. The notation AO1,O2,... ⇒ b refers to the event
that an algorithm A, when provided the indicated oracles (if any), ends its exe-
cution with output b.

Fix integers k, n > 0. A function family E : {0, 1}k × {0, 1}n → {0, 1}n is a
blockcipher if, for all K ∈ {0, 1}k, the mapping EK(·) = E(K, ·) is a permutation
over {0, 1}n. We write E−1

K (·) for the inverse of EK(·). The set Perm (n) is the
set of all permutations π : {0, 1}n → {0, 1}n, and the set BC(k, n) is the set of
all blockciphers E : {0, 1}k × {0, 1}n → {0, 1}n.

If G is some game (in the sense of the game-playing framework of Bellare and
Rogaway [6], where an adversary interacts with oracles) and E is some event, the
notation Pr [G; C] denotes the probability that the condition C will hold after
G terminates.

436 T. Shrimpton and R.S. Terashima

Fig. 1. A key-access manager exposes the query and register interfaces shown here.
The oracle M[S, E](KM,KS), to which attackers will have oracle access in security exper-
iments, uses these interfaces and a to implement the mode M of a given decomposition
Ê = (M, S, K). Here, c is initially 1.

2.2 Decompositions and Their Associated Notions

Let E : KE ×D → R be some scheme (e.g., CTR mode) that makes black-box use
of a blockcipher E : {0, 1}k×{0, 1}n → {0, 1}n. We write EE

K for the construction
being keyed by K ∈ KE , with E as a superscript to emphasize black-box access.

Our goal is to break E into a mode of operation and a key scheduler. A
decomposition is a tuple Ê = (M,S,K) of algorithms: a mode M : KM×D → R,
a stateful but deterministic scheduler S : KS → N×{0, 1}n, and a key-generation
algorithm K that outputs values in KM ×KS . The mode M expects two oracles
having the signatures of query and register, which are exposed as part of a key-
access manager in Fig. 1. (Look ahead to World 1 of Fig. 3 for an illustration).
The scheduler S expects oracle access to query, and is invoked by register.

A natural first attempt at defining key-oblivious access to an ideal cipher E
would be to choose set of keys K1,K2, . . . ,Km up front, and then give the mode
M (e.g., CTR mode) being analyzed black-box access to some oracle O(i,X) :=
E(Ki,X) for i ∈ [1..m]. There would be no explicit scheduler, and the keys
themselves would be independent of the blockcipher E. But we want to capture
schemes that do use E to derive the keys. For example, the Intel RNG [11] and
the Abdalla and Bellare [1] constructions mentioned in the introduction. Hence
we surface a key scheduler S as an explicit component of the decomposition, and
must provide it with some kind of access to E. We cannot provide S unfettered
access to E, however. If we did, then we would not be able to argue that E
is queried only under random (and secret) keys. Concretely, suppose S sets
Ki = E(C,E(C,K ⊕ i)), where C is some constant and K is some “master
key”; this may be secure in the ICM, but if we instantiate E with DES and C
is a one of the weak keys for DES, then we would have Ki = K ⊕ i. The keys
used by the mode of operation would be closely related, a scenario we wish to

Salvaging Weak Security Bounds for Blockcipher-Based Constructions 437

Table 1. Symbols used in ICM-KOA security definitions.

Symbol Upperbound for number of. . .

q Adversary queries

m Blockcipher keys used

σ n-bit blocks per adversary query

μ Key aliases used to encipher any given block

ν Blocks enciphered using any given key alias

preclude. Thus we restrict the scheduler’s access to E. Similar abuse from M
must also be prevented.

The oracles in our key-access manager force both S and M to query the
blockcipher via handles, values that are independent of the particular values of
the keys. Moreover, when preparing to have a value assigned to the mth key Km,
the scheduler S can only request outputs of E under keys K1 through K(m−1).
Note that S is not allowed to “know” the resulting value of Km: instead, S
outputs a pair (i,X) and Km is assigned E(Ki,X). We also force M to query
E using handles for keys.

We note that the syntax for both the mode M and the scheduler S provides
them with what appear to be “master” keys KM and KS. This is to capture initial
values (keys, IVs, etc.) provided to the blockcipher-based construction. We will
not assume or demand that KM and KS are independent of each other, but
allowing them to be distinct permits us to capture more general constructions.

Definition 1 (Decompositions of schemes). Let E : KE × D → R and
Ê = (M,S,K) be defined as above. For K ∈ KM × KS , let M[S, E]K : D → R
be the procedure defined in Fig. 1; this procedure combines the mode of operation
M with the key scheduler S and blockcipher E in the natural way. We say Ê is
a faithful decomposition of E if, for any adversary A and any E ∈ BC(k, n),
k = n, Pr

[
AEE

K′ ,E,E−1 ⇒ 1
]

= Pr
[

AM[S,E]K ,E,E−1 ⇒ 1
]
. The probabilities are

over the choice of K ′ $← KE , K
$← K and the coins of A, M, and E.

That is, the black-box behavior of EE
K′ must be identical to the black-box behav-

ior of M[S, E]K (given the above distribution of keys) for any blockcipher E
and computationally unbounded adversaries.

Note that by using blockcipher outputs as keys, this definition assumes for
the sake of simplicity that the key size k is equal to the blocksize n (each key
is the output of the blockcipher at some point). We note that our model could
easily be extended to the case where k 	= n by truncating or concatenating the
keys produced, as required, at the expense of complicating notation. However,
we will use both k and n in our definitions and security bounds in order to
suggest how taking k 	= n would impact our model and results.

Compatible modes. Our key-access manager formalism does not itself prevent
a scheduler S from “cheating” by choosing non-random keys. For example, S

438 T. Shrimpton and R.S. Terashima

Fig. 2. Procedures and oracles for Experiment COMPATΠ
Ê (A), where Ê = (M, S, K).

A mode M is m-compatible with a scheduler S if neither one queries the blockcipher
on a point used to generate one of the first m keys.

could use its query oracle to search for a point (i,X) such that E(Ki,X) ends
in a zero, then output that point.

Informally, a scheduler S is compatible with a mode M if no adversary can
cause either S or M to invoke query at a point (i,X) used to generate a key
Kj = E(Ki,X). This ensures that both the S and M are oblivious to the actual
values of each key.

We’ll show that as long as each key alias i is used significantly fewer than
2n/2 times, it follows that in both the ICM and the standard model there will
be enough (computational) randomness in E(Ki,X) for use as a cryptographic
key. (This restriction results from the birthday paradox: since E is being used to
generate keys, we need it to behave like a random function, rather than random
permutation.)

Definition 2 (Compatible modes). Let Ê = (M,S,K) be a decomposition
over an (k, n)-bit blockcipher, k = n, and set K

$← K. Let m be a positive integer.
Then S is m-compatible with M (with respect to K) if for any keyed function Π :
{0, 1}k ×{0, 1}n → {0, 1}n, and any adversary A, Pr

[
COMPATΠ

Ê (A) ⇒ true
]

=
1, where Experiment COMPAT is defined in Fig. 2.

Note that Π need not be a blockcipher. This generality is required to make some
of our later reductions work, and does not appear to exclude interesting modes.

Some other, arguably more natural definitions fail to capture our goal of
preventing cheating schedulers. For example, suppose we instead query SKS to
obtain keys (K1,K2, . . . ,Km) and require that no adversary with access to E and
E−1 be able to distinguish these keys from truly random values. This definition
proves too strict, as it excludes schedulers that deterministically derive Ki+1

from Ki.

Salvaging Weak Security Bounds for Blockcipher-Based Constructions 439

It may then be tempting to instead allow schedulers to output keys directly
(rather than (i,X) pairs), and task an adversary A to distinguish M[S, E](KM,KS)

from M[$, E]KM,KS, where $ is a special oracle that samples and returns fresh
random strings from {0, 1}k on each invocation. This hides the keys from being
directly observed by A, allowing Ki+1 to depend on Ki deterministically. Such
a definition, however, is too weak—it doesn’t really depart from the familiar
ICM. For example, if SKS sets Ki = KS ⊕ i then the keys are not independent,
yet A is unlikely to be able to exploit this (in the ICM). One of our goals is
that our security definition should imply security in the standard model, so this
candidate also isn’t acceptable.

Dispersed inputs. The next two definitions are used to measure some important
combinatorial properties of decompositions. We will require several symbols to
define the relevant parameters, and so provide Table 1 for reference.

Definition 3 (Dispersed inputs). Let k, n, μ and σ be non-negative inte-
gers, and let ε be positive. Let F be a uniformly random function mapping
{0, 1}k × {0, 1}n to {0, 1}n. A decomposition Ê over an (n, n)-bit blockcipher
has (q, σ, μ, ε)-dispersed inputs if for any adversary A making q queries, each no
longer than σn bits,

Pr
[
COMPATF

Ê (A) ; max
X

|{i | (i,X) ∈ Q}| > μ
]

< ε,

where Experiment COMPAT is defined in Fig. 2, and Q refers to the final value
of the set so named constructed during this experiment (i.e., the set of points
submitted to the query oracle).

The condition states that no single input is evaluated under more than μ key
aliases except with probability ε. Small values of μ and ε limit the effectiveness of
brute-force attacks by putting a cap on how many of the m keys can be attacked
in parallel with a single blockcipher invocation.

Mode efficiency. A final definition is used to bound the computational work
done by M and S given restrictions on an adversary.

Definition 4 (Mode efficiency). Let Ê be a decomposition over an (k, n)-bit
blockcipher E, with k = n. Let COMPAT be the experiment defined in Fig. 2, and
let A be any adversary making q queries, each of length at most σn bits. We say
Ê is (q, σ,m, ν)-efficient if after an execution of COMPATE

Ê (A), c < m and for
each i, |{X | (i,X) ∈ P ∪ Q}| ≤ ν. Here, c, P , and Q refer to the final values of
the random variables constructed in the experiment’s definition.

That is, given such an adversary, the mode and scheduler will query the key
manager using at most m key aliases, and will use each alias to encipher at most
ν blocks.

440 T. Shrimpton and R.S. Terashima

Fig. 3. Here, F is an ideal cipher and E is some cryptographic scheme based on a
(concrete) blockcipher E that should be indistinguishable from some reference oracle
I. For example, E maybe an encryption scheme and I an oracle that returns a random
string. From A’s perspective, World 0 = World 1 if Ê = (M, S, K) is a decomposition of
E ; World 1 ≈ World 2 if Ê has dispersed inputs and E is a PRP; World 2 ≈ World 3 if the
scheduler S is compatible with the mode M; World 3 ≈ World 4 if Ê is indistinguishable
from I in the ICM-KOA.

2.3 Generic Results About IND-KOA-ICM

We can now define what it means for a construction E to be indistinguishable
from a reference oracle I in the ICM-KOA, the ICM, and the standard model.
In general, we’re interested in I that provide the desired idealized behavior of
E . For example, if E is an encryption algorithm, then we may want I to be the
oracle that accepts a plaintext and outputs random bits.

We then show that ICM-KOA indistinguishability implies insecurity in both
the ICM and the standard model, with a loss that is determined by the para-
meters of E ’s decomposition as surfaced by the efficiency and input-dispersion
definitions. Figure 3 provides a graphical overview of how our key-access manager
formalism will be used to argue indistinguishability of E and I.

We emphasize that unlike most security definitions of this form, we do not
claim that ICM-KOA indistinguishability offers an intuitive, compelling security
goal on its own. Instead, it is a means to obtaining strong bounds in the ICM that
are backed by a guarantee that keys are kept random and secret. And because
of this guarantee, we gain simultaneous results in the standard model.

Definition 5 (ICM-KOA indistinguishability). Let Ê = (M,S,K) be a
decomposition over an (k, n)-bit blockcipher, k = n, with M[S, E]K : D → R.
Let I : D → R be some reference scheme. Then the ICM-KOA-I advantage of
an adversary A is

Advkoa-ind-I
Ê (A) = Pr

[
AM[F]K ,E,E−1 ⇒ 1

]
− Pr

[
AI,E,E−1 ⇒ 1

]
.

Salvaging Weak Security Bounds for Blockcipher-Based Constructions 441

Here, F
$← Func(k + n, n) and M[F]K behaves identically to M[S, F]K (as

defined in Fig. 1), except register assigns Kc
$← {0, 1}k instead of Kc ← EKi

(X).

Note that in this definition, the mode M does not interact with E, and so,
without loss of generality, neither does A. ICM-KOA indistinguishability is only
a useful notion for compatible decompositions with dispersed inputs, as these
properties will allow us to “decouple” the ideal cipher used by the mode from
the ideal cipher directly accessible by an adversary when proving results in the
ICM.

Definition 6 (ICM indistinguishability). Let Ê = (M,S,K) be a decom-
position over an (k, n)-bit blockcipher, k = n, where M[S, E]K : D → R. Let
I : D → R be some reference scheme (for example, an encryption algorithm with
D = R = {0, 1}∗). Then the ICM-IND-I advantage of an adversary A is

Advicm-ind-I
Ê (A) = Pr

[
AM[S,E]K ,E,E−1 ⇒ 1

]
− Pr

[
AI,E,E−1 ⇒ 1

]
,

where K
$← K, and E

$← BC(k, n) is an ideal cipher.

Precomputation, offline and online queries. One benefit of the ICM-KOA model
is that it can quantify the effectiveness of precomputation against specific modes.
The following definition is general, but in it we have in mind f2 = E, f3 =
E−1 for some blockcipher E, while f1 is an oracle for some blockcipher-based
construction.

Definition 7 (Precomputation, offline, and online queries). Let Af1,f2,f3

be an adversary. We say A makes qP precomputation queries, qE offline queries,
and q online queries if

– A makes qP combined queries to f2 and f3 before making its first query to f1,
– and afterwards makes a combined qE queries to f2 and f3,
– while interleaving q queries to f1.

Relating the ICM-KOA and the ICM. We now give the first of our two main
model-implication results. Namely, that security in the ICM-KOA implies secu-
rity in the ICM.

Theorem 1 (ICM-KOA indistinguishability implies ICM indistin-
guishability). Let Ê = (M,S,K) be a decomposition over an (k, n)-bit block-
cipher with k = n, and let I be some reference scheme. Fix a positive integer
c. Let A be an adversary making qP precomputation queries, qE offline queries,
and q online queries, the latter of at most σn bits each. Suppose

1. M is compatible with S,
2. Ê is (q, σ,m, ν)-efficient,
3. Ê has (q, σ, μ, ε)-dispersed inputs, and
4. For any adversary B making q queries, Advkoa-ind-I

Ê (B) ≤ δ.

442 T. Shrimpton and R.S. Terashima

Further suppose1 that qE + qP < 2n. Then

Advicm-ind-I
Ê (A) ≤ δ +

2qEcν

2k(2n − qE − qP)
+

(qE + qP)mν

2k+n
+

cmν2

2n

+
qE(2μ + c) + (qP + m)μ

2k
+

mc+1(1 + νc+1)
2nc(c + 1)!

+ 3ε.

Although this general bound is complex, it simplifies substantially for various
modes of operation. We will see this when we apply the general result to real
constructions in Sect. 3. We note that the constant c can be chosen more-or-
less arbitrarily to minimize the bound. This permits the possibility of “beyond
birthday-bound security” when c > 1. (The cmν2/2n term gives a birthday
bound with respect to the amount of data ν processed with a single key, but
mν blocks are enciphered in total.) Before proving this theorem, we give the
following useful lemma.

Lemma 1. (c-wise birthday bound). Let c, q, and n be positive inte-
gers, with c ≤ q. Let X1, . . . , Xq be iid uniformly random n-bit strings. Then
Pr [∃S ⊆ {1, . . . , q} s.t. |S| = c,Xj = Xi for all i, j ∈ S] ≤ qc

2n(c−1)c!
.

Proof. Fix some x ∈ {0, 1}n and some c-sized index set S ⊆ {1, 2, . . . , q}. Then
Pr [∀i ∈ S : x = Xi] = 2−cn. Since there are 2n choices for x and

(
q
c

)
< qc/c!

choices for S, a union bound provides us with the desired upper bound. ��

Proof (Theorem 1). Let F
$← Func(k + n, n). Then Pr

[
AM[F]K ⇒ 1

] −
Pr

[
AI ⇒ 1

] ≤ δ, where K
$← K and M[F]K is defined as Definition 5.

Game G1(A) (Fig. 4), which excludes the boxed statements, faithfully sim-
ulates AM[S,F]K . In this figure, and for the remainder of the proof, F , E, and
E−1 (without subscripts) refer to oracles, while FK and EK (with subscripts)
refer to the lazily-defined functions the game builds to help implement these
oracles. We’ve moved the calls to register to the start of the game, without loss
of generality.

In G1(A), the behavior of F is independent of the behavior of E and E−1.
Consequently, the value of each key Ki is information theoretically hidden from
the adversary; the adversary can at best learn information about whether two
key aliases correspond to the same key.

Recall that the difference between M[F]K and M[S, F]K is that the for-
mer’s register procedure always assigns keys a uniformly random value that is
independent of the other coins in the experiment. Hence, the oracle M[F]K
behaves identically to M[S, F]K until there is some query input (i,X) and some
S output (j,X) with Ki = Kj .

Let us bound the probability of this happening during an execution of
AM[F]K . (The Fundamental Lemma of Game Playing implies that this prob-
ability is equal in both games; we are free to choose whichever best expedites
1 The proof permits us to omit this final restriction by changing the first term in the

bound to 2/2k.

Salvaging Weak Security Bounds for Blockcipher-Based Constructions 443

the proof.) Fix one of the m − 1 pairs (j,X) output by S. As M and S are
compatible, query never receives an input (j,X). Except with probability ε,
there are at most μ aliases i such that query receives an input (i,X). For each
such alias i, Pr [Ki = Kj] = 1/2k; hence, some such alias exists with probabil-
ity at most μ/2k. Taking a union bound over the m − 1 pairs (j,X) gives us
Pr

[
AM[F]K ⇒ 1

] − Pr
[
AM[S,F]K ⇒ 1

] ≤ mμ
2k

+ ε.
In Game G1, the E and E−1 oracles behave independently of the others.

However, in Game G2, which includes the boxed statements, the F and E oracles
have been coupled together (turning F into a blockcipher). So Pr [G2(A) ⇒ 1] =
Pr

[
AM[S,E]K ,E,E−1 ⇒ 1

]
.

We therefore wish to bound Pr [G1(A) ⇒ 1] − Pr [G2(A) ⇒ 1]. The Funda-
mental Lemma of Game Playing allows us to do so by bounding the probability
that one of the boolean “bad flags” of Fig. 4 is set during an execution of G1(A).

Let Cc be the event that for some key K, |{i : Ki = K}| > c. By Lemma 1,
Pr [G1(A) ; Cc] ≤ mc+1

2nc(c+1)! .
Now, in Game G1(A), bad1 is set on a particular query (K,X) to E only if

the initial value for Y is in Rng (FK):

Pr [Y ∈ FK | ¬Cc] =
∑

Ki

Pr [K = Ki | ¬Cc] Pr [Y ∈ FK | K = K ′,¬Cc]

≤
∑

K′

1
2k

|Dom (FK′)|
2n − qE − qP

≤ cν

2k(2n − qE − qP)
.

Hence Pr [G1(A) ; bad1 | ¬Cc] ≤ qEcν
2k(2n−qE−qP)

. A symmetric argument shows
the same bound applies to Pr [G1(A) ; bad3 | ¬Cc].

Similarly, bad2 is set on a particular query (K,X) to E only if X ∈ Dom (FK).
Except with probability ε, There are at most μ key aliases i such that X ∈
Dom (FKi

). Hence, Pr [G1(A) ; bad2] ≤ qEμ
2k

+ ε.
Note that bad4 is only set if the adversary makes a query (K,Y) to E−1 for

some Y ∈ Rng (FK). Over the course of the game, the probability that there will
exist some Y ′ ∈ {0, 1}n with |{(K,X) : FK(X) = Y ′}| > c is at most (mν)c

2n(c−1) ;
i.e., except with this probability, |{K ′ : Y ∈ Rng (FK′)}| ≤ c. (This follows
from the fact that points in the range of each FK are uniform and mutually
independent; see Lemma 1). Thus Pr [G1(A) ; bad4] ≤ qEc

2k
+ (mν)c

2n(c−1) .
To bound Pr [G1(A) ; bad5], consider a query (i,X) to F . We sample a

uniformly random Y
$← {0, 1}n and set bad5 if Y ∈ Rng (EKi

) or Y ∈ Rng (FKi
).

Using an argument similar to that for our bound for bad1, Pr [Y ∈ Rng (EKi
)] ≤

qE+qP
2k+n . Again fix a positive integer c. So as long as no key corresponds to more

than c aliases, Y ∈ Rng (FKi
) with probability at most cν/2n. Taking a union

bound over each of mν queries gives Pr [G1(A) ; bad5 | ¬ Cc] ≤ (qE+qP)mν
2k+n +

cmν2

2n .
Finally, we need to bound Pr [G1(A) ; bad6]. This flag is set only if some E or

E−1 query defines the point EK(X) = Y such that K = Ki and X = X ′, where

444 T. Shrimpton and R.S. Terashima

Fig. 4. In Game G2, A, M, and S access the same blockcipher (directly, through
queryE , and through queryF , respectively). In Game G1, the behavior of queryF is
decoupled from E and queryE , in effect giving the scheduler S it’s own blockcipher.

(i,X ′) is some (future) F -query. Let us first consider a precomputation query
that defines EK(X) = Y . Then bad6 will be triggered by this precomputation
query only if K is one of the at most μ keys under which X is queried. Hence,
the probability that some precomputation query will define a point on E that
triggers bad6 is at most qP μ/2k.

Now let us consider an offline query that defines EK(X) = Y . Except with
probability ε, there are at most μ key aliases i that will be used to encipher
X; the probability that one of these μ keys will be K is at most μ

2k
. Hence,

the probability that some offline query will define a point on E that triggers

Salvaging Weak Security Bounds for Blockcipher-Based Constructions 445

bad6 is at most qEμ/2k. Therefore Pr [G1(A) ; bad6] ≤ μ(qE + qP)/2k + ε. The
Fundamental Lemma of Game-Playing gives us:

Pr [G1(A) ⇒ 1] − Pr [G2(A) ⇒ 1]
≤ Pr [bad1 ∨ bad3 ∨ bad5 | ¬Cc] + Pr [Cc]

+ Pr [bad2 ∨ bad4 ∨ bad6]

≤ 2qEcν

2k(2n − qE − qP)
+

(qE + qP)mν

2k+n
+

cmν2

2n
+

mc+1

2ncc + 1!

+
2qEμ

2k
+

qEc

2k
+

(mν)c

2n(c−1)c!
+

qP με

2k
+ 3ε

=
2qEcν

2k(2n − qE − qP)
+

(qE + qP)mν

2k+n
+

cmν2

2n

+
qE(2μ + c) + qP μ

2k
+

mc+1(1 + νc+1)
2nc(c + 1)!

+ 3ε.

Collecting our results completes the proof. ��

Relating the ICM-KOA to the standard model. We now move on to a standard-
model analogue. The indistinguishability advantage definition is the same, except
now A has an implicit description of E rather than oracle access:

Definition 8 (Standard model indistinguishability). Let E : K × D → R
be a scheme over an (n, n)-bit blockcipher and let I : D → R be some oracle.
Let E be an (n, n)-bit blockcipher. We define standard model indistinguishabil-
ity advantage of an adversary A (with respect to E and I) as: Advind-I

E;E (A) =

Pr
[
AM[S,E]K ⇒ 1

] − Pr
[
AI ⇒ 1

]
, where K

$← K is a random key and E is
an (n, n)-bit blockcipher.

We now give the second of our two main model-implication results. Namely,
that security in the ICM-KOA implies security in the standard model.

Theorem 2 (ICM-KOA indistinguishability implies standard model
indistinguishability). Let E be an (k, n)-bit blockcipher-based scheme, and let
Ê = (M,S,K) be a decomposition of E. Suppose

1. M is compatible with S,
2. Ê is (q, σ,m, ν)-efficient,
3. For any adversary B′ making q queries, Advkoa-ind-I

Ê (B′) ≤ δ.

Then for any adversary A running in time t and making q queries, each at most
σn bits in length, there exists some adversary B running in time t′ ≈ t and
making ν queries such that Advind-I

E;E (A) ≤ mAdvprf
E (B) + m2

2k
+ δ.

This theorem relates ICM-KOA security to the PRF security of the underlying
blockcipher. This implies a relationship between ICM-KOA security and PRP
security via the PRP-PRF switching lemma, at the expense of an additional
mσ2/2n+1 term. This term beats the birthday bound by a factor of m.

446 T. Shrimpton and R.S. Terashima

Fig. 5. Replacing E with a random function R

Proof (Theorem 2). We will use a game-playing proof. First A’s oracle will tran-
sition from M[S, E]K into G, where references to EKi

(X) are replaced with
R(i,X) for some random function R (see Fig. 5).

This transition will itself involve a sequence of games. Define the oracle G�

to be identical M[S;E]K for K
$← K, except that query and register compute

R(i,X) in place of E(Ki,X) when i < �. This gives us

Pr
[

AM[S,E]K ⇒ 1
]

− Pr
[
AG ⇒ 1

]

≤
m−1∑

j=0

(
Pr

[
AGj+1 ⇒ 1

] − Pr
[
AGj ⇒ 1

])
.

Now in Gj+1, we have Kj+1 = R(i,X) for some i ≤ j, where the compatibility
condition ensures that this is the only time R is evaluated at the point (i,X).
Consequently, Kj+1 is uniformly distributed and independent of the other coins
of the experiment. It can therefore be freely discarded and replaced with some
other value draw from this distribution without affecting the black-box behavior
of Gj+1. Therefore from A we can construct a PRF adversary Bj with the
property Advprf

E (Bj) = Pr
[
AGj+1 ⇒ 1

] − Pr
[
AGj ⇒ 1

]
. This is accomplished

by having Bf
j simulate Gj for A, but using its own oracle to set query(j +1, ·) =

f(·). So Bf
j in behaves identically to either Gj (when f is EK) or Gj+1 (when f

is a random function). We note that Bj makes at most ν queries and has roughly
the same running time as A.

Setting B to be the Bj with maximal advantage (1 ≤ j ≤ m) gives us
Pr

[
AM[S,E]K ⇒ 1

] − Pr
[
AG ⇒ 1

] ≤ mAdvprf
E (B).

We observe that the G and M[F] differ in behavior only when Ki = Kj

for some i 	= j, which happens with probability at most m2/2k. Hence,
Pr

[
AG ⇒ 1

] − Pr
[
AM[F] ⇒ 1

]
< m2/2k.

Salvaging Weak Security Bounds for Blockcipher-Based Constructions 447

Finally, by hypothesis Pr
[
AM[F] ⇒ 1

]−Pr
[
AI ⇒ 1

] ≤ δ. Combining these
results provides the desired bound. ��

2.4 Connection to TBC-based Constructions

A tweakable blockcipher Ẽ is a (strong) TPRP if a keyed instance of Ẽ is compu-
tationally indistinguishable from an ideal cipher. This suggests that there ought
to be some formal relationship between TBCs and the ideal cipher model, but
the fact that TBCs are a keyed construction means the two objects cannot be
directly compared. However, the key managers we have introduced are keyed
constructions that mediate access between modes of operation and an under-
lying cipher. They thus offer a means of bridging the conceptual gap between
TBCs and ideal ciphers: specifically, the following theorem states that any mode
of operation secure in the ICM-KOA can be transformed into a TBC-based con-
struction secure in the standard model. In the following theorem statement, ε
denotes the empty string.

Theorem 3 (Decompositions imply TBC-based constructions). Let E be
a scheme over a (k, n)-bit blockcipher, and fix a decomposition Ê = (M,S,K).
Let be Ẽ : {0, 1}k ×T ×{0, 1}n → {0, 1}n be an n-bit TBC. Sample K

$← {0, 1}k

and (KM,KS) $← K.
Define an oracle F〈ẼK〉KM as follows: On input M , the output of F〈ẼK〉KM

is the value returned by the oracle M[S,E](KM,ε)(M) in Fig. 1 when (1) the
register procedure is replaced by a procedure register-nop that does nothing, and
(2) the query procedure is modified so that, on input (i,X), it returns ẼK(i,X).2

(This assumes that the maximum number of key aliases permitted by the mode is
at most |T |.) For any adversary A running in time t and making q queries, each
of length at most σn bits, there exists some adversary B making mν queries and
running in time t′ ≈ t such that

Pr
[

AF〈ẼK〉KM ⇒ 1
]

− Pr
[
AI ⇒ 1

] ≤ Advp̃rp

Ẽ
(B) +

mν2

2n
+

m2

2k
+ δ

where K
$← K.

Proof. Let Π
$← BC(k, n) be an ideal cipher and F

$← Func(k + n, n) be
a random function. By a standard reduction argument, there exists some
adversary B with the stated resources such that Pr

[
AF〈ẼK〉KM ⇒ 1

]
−

Pr
[
AF〈Π〉KM ⇒ 1

] ≤ Advp̃rp

Ẽ
(B). By the m applications of the Switching

Lemma, Pr
[
AF〈Π〉KM ⇒ 1

] − Pr
[
AF〈FK〉KM ⇒ 1

] ≤ mν2/2n. Finally, note that
F〈FK〉KM and F [F](KM,ε) behave identically unless the m random keys gener-
ated by the latter oracle’s register procedure are not pairwise distinct, an event
that happens with probability m2/2k. Collecting results completes the proof. ��
2 With these changes, the parameter E is unused.

448 T. Shrimpton and R.S. Terashima

3 ICM-KOA Analysis of Constructions

We now put the ICM-KOA to work, using it to analyze example blockcipher-
based constructions. We begin with the NIST-CTR-DRBG, as used in Intel’s
recent hardware random-number generator [11], whose standard-model security
bounds [19] can become quite weak when an adversary is co-located on the same
physical machine, due to the rate at which such an adversary can make queries.
The weakness of these bounds is do to a hybrid-factor loss. Our ICM-KOA
analysis yields considerably better bounds, and suggests that the multiplicative
loss in the standard-model isn’t “real”.

Next, we give an example of when the standard-model fails to surface quan-
titative differences between the security of closely related schemes. In partic-
ular, we consider various rekeying and nonce-choice strategies for CTR mode.
Although these schemes yield similar bounds in the standard model, we show
that the best-possible black-box attacks tell quite a different story. These results
are of particular importance when CTR is built over a lightweight blockciphers,
where the standard-model security bounds for all of the strategies suggest that
problems may arise quickly. Our ICM-KOA analysis (and the implied ICM
results) offers a different viewpoint on these concerns, and identifies the best
strategies from among the choices.

3.1 Analysis of NIST CTR-DRBG Generation Algorithm

As the name suggests, CTR-DRBG is a deterministic random-bit generator
based on running a blockcipher in CTR mode. Here, we analyze its generation
algorithm3, specializing for the sake of simplicity to the case where AES-128 is
used (so n = k = 128), and where 128 bits are requested on each invocation.
This case is of special interest because these parameters are used inside of Intel’s
hardware random number generator.

Concretely, we consider the scheme ISK-RNG : {0, 1}2n × {0, 1}0 → {0, 1}n

over an (n, n)-bit blockcipher defined in Fig. 6. The system maintains an ini-
tially random internal state (K, IV), and on each query computes (R,K, IV) ←
(EK(IV), EK(IV + 1), EK(IV + 2)), updating the state, and returns R. In order
to decompose this into a model, we need the mode and scheduler to share the IV
portion of the state. This is accomplished by using the initial IV as part of both
the mode and scheduler key (these keys are not required to be independent).

We define Rand : {0, 1}0 → {0, 1}n to be the oracle that on each query
samples R

$← {0, 1}n and then returns R.

Stronger than standard-model results desirable. A result by Shrimpton and
Terashima [19] shows, as one might expect, that the standard-model security
bound for q queries includes an O(qAdvprp

E (B)) term, where B is an adversary
making three queries. However, B also has time t to run, where t is sufficient
time to evaluate E on 3q inputs. Hence even if B conducts a näıve brute-force
3 The specification also includes algorithms for, e.g., reseeding.

Salvaging Weak Security Bounds for Blockcipher-Based Constructions 449

Fig. 6. The NIST CTR-DRBG decomposes into the mode and scheduler described
above. The key-generation algorithm K ensures KM = KS.

attack, Advprp
E (B) ≈ 3q/2k. So the security bound becomes roughly q2/2k. For

k = 128, this bound exceeds 2−40 when q = 244.
This may seem safe; after all, this amounts to many terabytes of random bits.

But the RNG has extremely high throughput—Intel reports 800 MB/s, which
equates to 50 million queries per second. This means an attacker who shares a
physical machine with his target can reach the q = 244 limit in a little more than
four days.

The following lemma provides a security bound for the ISK-RNG in the ICM-
KOA. For very little work, we recover the security bound of Shrimpton and
Terashima [19], and immediately also get a much stronger bound in the ICM.
The ICM bound reveals the lack of a matching attack, and shows that barring
cryptanalysis of AES under random and secret keys, we can permit on the order
of 270 queries before surpassing our 2−40 limit (assuming the adversary has
resources for 280 precomputation and 280 offline queries). This translates to
750,000 years of ISK-RNG runtime, and so is unlikely to be the limiting factor.

Lemma 2. For any positive integers μ and any adversary A making at most
q online queries, ISK-RNG is (q, 0, q, 3)-efficient, has (q, 0, c, ε)-dispersed inputs,
and Advkoa-ind-Rand

ISK-RNG (A) ≤ δ, where δ = 5q2

22n and ε = δ + (3q)3

22n3! .

Proof. If A makes q queries (0 bits each), the RNG will make three queries using
each of q distinct key aliases. Hence Ê is (q, 0, q, 3)-efficient.

Let R : {0, 1}k × {0, 1}n → {0, 1}n be an oracle that samples and returns
a fresh random string on each query (so R may return different outputs on

450 T. Shrimpton and R.S. Terashima

the same input). Consider Experiment COMPATR
Ê (A). Let (Ki, IVi)

q
i=1 be the

sequence of keys and IVs generated during this experiment. Then the probability
that there exists some string x ∈ {0, 1}n that is enciphered under more than c

key aliases is less than (3q)c+1

2nc(c+1)! .

Let F
$← Func(k+n, n). Then Experiment COMPATF

Ê (A) proceeds identically
to COMPATR

Ê (A) unless an F -query is repeated; i.e., unless there exists i < j
such that Kj = Ki and IVj ∈ {IVi + � : −2 ≤ � ≤ 2}. The probability that this
happens (which is identical in both games, but easier to compute with respect
to the R oracle), is less than q2

2k

(
5
2n

)
. Therefore Ê has (q, 0, c, ε)-dispersed inputs

for ε = 5q2

2k+n + (3q)c+1

2nc(c+1)! .
Finally, we need to bound Pr

[
AM[F]K ⇒ 1

] − Pr
[
ARand ⇒ 1

]
. As before

Pr
[
AM[F]K ⇒ 1

] − Pr
[
AM[R]K ⇒ 1

] ≤ 5q2

2k+n , and Pr
[
AM[R]K ⇒ 1

] −
Pr

[
ARand ⇒ 1

]
= 0. ��

Combining this result with Theorem 2 and immediately gives the following
results:

Corollary 1. Let A be an adversary making q queries and running in time t.
Then there exists an adversary B making 3 queries and running in time t′ ≈ t

such that Advind-Rand
ISK-RNG[E](A) ≤ qAdvprf

E (B) + q2

2n + 5q2

22n .

Note that up to a small constant factor, we’ve recovered, essentially the
security bound from [19]. But we can do better:

Corollary 2. Let A be an adversary making qP precomputation queries, qE

offline queries, and q online queries, where qE + qP < 2n−1. Then

Advicm-ind-Rand
ISK-RNG (A) ≤ 20q2 + 24qE + 3q(qE + qP) + 19q3

22n
+

20q + 6qE + 2qP

2n

Here we have set c = 2 for the sake of notational cleanliness.
Taking qE = qP = 280 allows the upper bound to stay below 2−40 even

when q = 270, a substantial improvement over the previous q = 244 (which
only applied to attackers with qP = 244). This is a significantly stronger result
than we could obtain in the standard model, and it retains the standard model’s
strength of only relying on random, secret keys. A brute-force attack on the key
would obtain about the same success rate.

3.2 Analysis of CTR-mode Variants

We consider three variants on CTR mode, distinguished by how they choose IVs
following a key change: (1) The IV is set to 0n; (2) the upper bits of the IV are
unique for each key; (3) The IV is chosen randomly. In each case, we use the
same key scheduler that sets Ki ← EK1(i) (for i > 1). See Fig. 7. For simplicity,
we consider the case where the key changes with each message. This models a
situation where the counter state is retained between messages with the same

Salvaging Weak Security Bounds for Blockcipher-Based Constructions 451

key. The loss of adaptivity within the lifetime of a given key does not hamper
a chosen-plaintext adversary in this context because the nature of CTR mode
permits him to compute what a ciphertext would have been with a different
plaintext. The variants are distinguished by the choice of iv-gen : N → {0, 1}n,
which on input i outputs some IVi. Define the reference scheme R[iv-gen] to be
the stateful function that on its ith query M , computes IV ← iv-gen(i), samples
C

$← {0, 1}|M |, and returns (IV, C).

Theorem 4. Fix positive integers σ, q, and b with q < σ < 2b and b < n.
Let const(i) = 0n, let unique(i) = 〈i〉b0n−b (where 〈i〉b is a b-bit encoding of i),
and let rand(i) sample and return R

$← {0, 1}n on each invocation. Let A be an
adversary making q online queries, each at most σn bits long, qP precomputation
queries, and qE offline queries. Then:

(1) Advind-R[const]
CTR[const] (A) ≤ 4qEσ

2k(2n − qE − qP)
+

(qE + qP)qσ
2k+n

+
2qσ2

2n

+
2qE(q + 1) + qP q + 2q2

2k
+

q3(1 + σ3)/6
22n

(2) Advind-R[unique]
CTR[unique] (A) ≤ 4qEσ

2k(2n − qE − qP)
+

(qE + qP)qσ
2k+n

+
2qσ2

2n

+
6qE + 2qP + 2q

2k
+

q3(1 + σ3)/6
22n

(3) Advind-R[rand]
CTR[rand] (A) ≤ 4qEσ

2k(2n − qE − qP)
+

(qE + qP)qσ + (qσ)2

2k+n
+

2qσ2

2n

+
6qE + 2qP

2k
+

q3(1 + 4σ3)/6
22n

Proof. Each decomposition is (q, σ, q+1, σ)-efficient. Sample F
$← Func(k+n, n).

Let iv-gen ∈ {const, unique, rand}. Let bad be the event that during an exe-
cution ACTR[iv-gen][F], CTR[iv-gen][F] repeats a query to F . Barring this event,
the outputs of CTR[iv-gen][F] are independent and uniformly random (with the
possible exception of the IV component). Therefore Pr

[
ACTR[iv-gen][F] ⇒ 1

] −
Pr

[
AR[iv-gen] ⇒ 1

] ≤ Pr [bad]. We want to find an upper bound δ for Pr [bad],
and do so for each method of generating the IV. Specifically,

– When iv-gen = const, Pr [bad] ≤ Pr [∃i 	= j : Ki = Kj] ≤ q2/2k

– When iv-gen = unique, Pr [bad] = 0 because regardless of what value the keys
have, the inputs never repeat.

– When iv-gen = rand, any two queries to F collide with probability 1/2k+n

because both keys and IVs are uniform and independent. There are fewer
than (qσ)2 pairs of queries, so Pr [bad] < (qσ)2/2k+n.

452 T. Shrimpton and R.S. Terashima

To apply Theorem 1 (with c = 2), we need to measure how much each variant
disperses its inputs.

– CTR[const] has (q, σ, q + 1, 0)-dispersed inputs because 0n is evaluated under
each of the q + 1 keys.

– CTR[unique] has (q, σ, 2, 0)-dispersed inputs because each input is guaranteed
to be used at most twice (including once by the scheduler).

– CTR[rand] has (q, σ, c, (qσ)c+1/2nc(c + 1)!). The argument here follows that
of Lemma 1, except each that we are interested in the probability that x ∈
{Xi,Xi + 1, . . . , Xi + (σ − 1)}, instead of x = Xi, where Xi plays the role of
IVi.

Plugging these values into Theorem 1 gives us the previously stated bounds. ��

Fig. 7. A general decomposition of CTR parameterized by the IV selection function,
iv-gen.

Interpretation. Assume qP � qE , q. Using the const IV generation function
permits σ = 2n/3, q = 2n/3 (up to constants) as long as 2k−n/3 � qP . This
allows on the order of 22n/3 n-bit blocks of data to be securely encrypted, beating
the birthday bound. However, the constraint on qP may be worrisome for, e.g.,
n = 64, k = 80, which is only secure against adversaries for which qP � 259.
Using a predictable IV amplifies the effectiveness of precomputation because
the adversary knows what precomputations will likely be helpful (in this case,
finding preimages of EK(0n)). On the other hand, unique and rand also permit
σ = q = 2n/3, but the O(qP q/2k) term is now O(qP /2k). Precomputation is no
longer nearly as much of a threat.

Salvaging Weak Security Bounds for Blockcipher-Based Constructions 453

This O(qP q/2k) term for const corresponds to the following attack: Precom-
pute Y = EK(0n) for qP arbitrary keys K, and store each K in a hash table
using Y as the hash table key. Encrypt the string 02n q times, and perform a
hash table lookup of the first n bits of the ciphertext. This recovers the key if it
happened to be one of the qP values used during precomputation. False positives
can be all but eliminated by verifying the second n bits of the ciphertext.

References

1. Abdalla, M., Bellare, M.: Increasing the lifetime of a key: a comparative analy-
sis of the security of re-keying techniques. In: Okamoto, T. (ed.) ASIACRYPT
2000. LNCS, vol. 1976, pp. 546–559. Springer, Heidelberg (2000). doi:10.1007/
3-540-44448-3 42

2. Andreeva, E., Bogdanov, A., Dodis, Y., Mennink, B., Steinberger, J.P.: On the
indifferentiability of key-alternating ciphers. In: Canetti, R., Garay, J.A. (eds.)
CRYPTO 2013, Part I. LNCS, vol. 8042, pp. 531–550. Springer, Heidelberg (2013).
doi:10.1007/978-3-642-40041-4 29

3. Bellare, M., Boldyreva, A., Micali, S.: Public-key encryption in a multi-user setting:
security proofs and improvements. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS,
vol. 1807, pp. 259–274. Springer, Heidelberg (2000). doi:10.1007/3-540-45539-6 18

4. Bellare, M., Krovetz, T., Rogaway, P.: Luby-Rackoff backwards: increasing secu-
rity by making block ciphers non-invertible. In: Nyberg, K. (ed.) EUROCRYPT
1998. LNCS, vol. 1403, pp. 266–280. Springer, Heidelberg (1998). doi:10.1007/
BFb0054132

5. Bellare, M., Ristenpart, T., Tessaro, S.: Multi-instance security and its application
to password-based cryptography. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO
2012. LNCS, vol. 7417, pp. 312–329. Springer, Heidelberg (2012). doi:10.1007/
978-3-642-32009-5 19

6. Bellare, M., Rogaway, P.: The security of triple encryption and a frame-
work for code-based game-playing proofs. In: Vaudenay, S. (ed.) EUROCRYPT
2006. LNCS, vol. 4004, pp. 409–426. Springer, Heidelberg (2006). doi:10.1007/
11761679 25

7. Bogdanov, A., Knudsen, L.R., Leander, G., Standaert, F.-X., Steinberger, J.P.,
Tischhauser, E.: Key-alternating ciphers in a provable setting: encryption using
a small number of public permutations (extended abstract). In: Pointcheval, D.,
Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 45–62. Springer,
Heidelberg (2012). doi:10.1007/978-3-642-29011-4 5

8. Chen, S., Steinberger, J.: Tight security bounds for key-alternating ciphers. In:
Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 327–
350. Springer, Heidelberg (2014). doi:10.1007/978-3-642-55220-5 19

9. Recommendation for random number generation using deterministic random bit
generators. National Institute of Standards and Technology, NIST Special Publi-
cation 800–90A, U.S. Department of Commerce, January 2012

10. Dai, Y., Lee, J., Mennink, B., Steinberger, J.P.: The security of multiple encryp-
tion in the ideal cipher model. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO
2014. LNCS, vol. 8616, pp. 20–38. Springer, Heidelberg (2014). doi:10.1007/
978-3-662-44371-2 2

11. Hamburg, M., Kocher, P., Marson, M.E.: Analysis of Intel’s Ivy Bridge digital ran-
dom number generator (2012). http://www.cryptography.com/public/pdf/Intel
TRNG Report 20120312.pdf

http://dx.doi.org/10.1007/3-540-44448-3_42
http://dx.doi.org/10.1007/3-540-44448-3_42
http://dx.doi.org/10.1007/978-3-642-40041-4_29
http://dx.doi.org/10.1007/3-540-45539-6_18
http://dx.doi.org/10.1007/BFb0054132
http://dx.doi.org/10.1007/BFb0054132
http://dx.doi.org/10.1007/978-3-642-32009-5_19
http://dx.doi.org/10.1007/978-3-642-32009-5_19
http://dx.doi.org/10.1007/11761679_25
http://dx.doi.org/10.1007/11761679_25
http://dx.doi.org/10.1007/978-3-642-29011-4_5
http://dx.doi.org/10.1007/978-3-642-55220-5_19
http://dx.doi.org/10.1007/978-3-662-44371-2_2
http://dx.doi.org/10.1007/978-3-662-44371-2_2
http://www.cryptography.com/public/pdf/Intel_TRNG_Report_20120312.pdf
http://www.cryptography.com/public/pdf/Intel_TRNG_Report_20120312.pdf

454 T. Shrimpton and R.S. Terashima

12. Hoang, V.T., Tessaro, S.: Key-alternating ciphers and key-length extension: exact
bounds and multi-user security. In: Robshaw, M., Katz, J. (eds.) CRYPTO
2016. LNCS, vol. 9814, pp. 3–32. Springer, Heidelberg (2016). doi:10.1007/
978-3-662-53018-4 1

13. Jaulmes, É., Joux, A., Valette, F.: On the security of randomized CBC-MAC
beyond the birthday paradox limit a new construction. In: Daemen, J., Rijmen,
V. (eds.) FSE 2002. LNCS, vol. 2365, pp. 237–251. Springer, Heidelberg (2002).
doi:10.1007/3-540-45661-9 19

14. Kilian, J., Rogaway, P.: How to protect DES against exhaustive key search (an
analysis of DESX). J. Cryptology 14(1), 17–35 (2001)

15. Lampe, R., Patarin, J., Seurin, Y.: An asymptotically tight security analysis of
the iterated even-mansour cipher. In: Wang, X., Sako, K. (eds.) ASIACRYPT
2012. LNCS, vol. 7658, pp. 278–295. Springer, Heidelberg (2012). doi:10.1007/
978-3-642-34961-4 18

16. Lampe, R., Seurin, Y.: Security analysis of key-alternating feistel ciphers. Cryp-
tology ePrint Archive, Report 2014/151 (2014). http://eprint.iacr.org/2014/151

17. Lee, J.: Towards key-length extension with optimal security: cascade encryption
and xor-cascade encryption. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT
2013. LNCS, vol. 7881, pp. 405–425. Springer, Heidelberg (2013). doi:10.1007/
978-3-642-38348-9 25

18. Mouha, N., Luykx, A.: Multi-key security: the even-mansour construction revisited.
In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9215, pp. 209–223.
Springer, Heidelberg (2015). doi:10.1007/978-3-662-47989-6 10

19. Shrimpton, T., Terashima, R.S.: A provable-security analysis of Intel’s secure key
RNG. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9056,
pp. 77–100. Springer, Heidelberg (2015). doi:10.1007/978-3-662-46800-5 4

http://dx.doi.org/10.1007/978-3-662-53018-4_1
http://dx.doi.org/10.1007/978-3-662-53018-4_1
http://dx.doi.org/10.1007/3-540-45661-9_19
http://dx.doi.org/10.1007/978-3-642-34961-4_18
http://dx.doi.org/10.1007/978-3-642-34961-4_18
http://eprint.iacr.org/2014/151
http://dx.doi.org/10.1007/978-3-642-38348-9_25
http://dx.doi.org/10.1007/978-3-642-38348-9_25
http://dx.doi.org/10.1007/978-3-662-47989-6_10
http://dx.doi.org/10.1007/978-3-662-46800-5_4

How to Build Fully Secure Tweakable
Blockciphers from Classical Blockciphers

Lei Wang1,4(B), Jian Guo2, Guoyan Zhang3, Jingyuan Zhao4, and Dawu Gu1

1 Department of Computer Science and Engineering,
Shanghai Jiao Tong University, Shanghai, China
wanglei hb@sjtu.edu.cn, dwgu@sjtu.edu.cn

2 Nanyang Technological University, Singapore, Singapore
guojian@ntu.edu.sg

3 School of Computer Science and Technology, Shandong University, Jinan, China
guoyanzhang@sdu.edu.cn

4 State Key Laboratory of Information Security,
Institute of Information Engineering, Chinese Academy of Sciences,

Beijing 100093, China
jingyuanzhao@live.com

Abstract. This paper focuses on building a tweakable blockcipher from
a classical blockcipher whose input and output wires all have a size of
n bits. The main goal is to achieve full 2n security. Such a tweakable
blockcipher was proposed by Mennink at FSE’15, and it is also the only
tweakable blockcipher so far that claimed full 2n security to our best
knowledge. However, we find a key-recovery attack on Mennink’s pro-
posal (in the proceeding version) with a complexity of about 2n/2 adver-
sarial queries. The attack well demonstrates that Mennink’s proposal
has at most 2n/2 security, and therefore invalidates its security claim. In
this paper, we study a construction of tweakable blockciphers denoted as
Ẽ[s] that is built on s invocations of a blockcipher and additional simple
XOR operations. As proven in previous work, at least two invocations
of blockcipher with linear mixing are necessary to possibly bypass the
birthday-bound barrier of 2n/2 security, we carry out an investigation on
the instances of Ẽ[s] with s ≥ 2, and find 32 highly efficient tweakable

blockciphers Ẽ1, Ẽ2, . . ., Ẽ32 that achieve 2n provable security. Each of
these tweakable blockciphers uses two invocations of a blockcipher, one
of which uses a tweak-dependent key generated by XORing the tweak to
the key (or to a secret subkey derived from the key). We point out the
provable security of these tweakable blockciphers is obtained in the ideal
blockcipher model due to the usage of the tweak-dependent key.

Keywords: Tweakable blockcipher · Full security · Ideal blockcipher ·
Tweak-dependent key

1 Introduction

Tweakable blockcipher, formalized by Liskov et al. [34,35], introduces an addi-
tional parameter called tweak to the classical blockcipher. More formally,
c© International Association for Cryptologic Research 2016
J.H. Cheon and T. Takagi (Eds.): ASIACRYPT 2016, Part I, LNCS 10031, pp. 455–483, 2016.
DOI: 10.1007/978-3-662-53887-6 17

456 L. Wang et al.

a classical blockcipher E : K × M → M is a family of permutations on M
indexed by a secret key k ∈ K. A tweakable blockcipher Ẽ : K ×T ×M → M is
a family of permutations on M, indexed by two functionally distinct parameters:
a key k ∈ K that is secret and used to provide the security, and a tweak t ∈ T
that is public and used to provide the variability. The tweak is assumed to be
known or even controlled by the adversary. Ẽ is considered secure if it with a
secret key k uniformly chosen from the key space K is indistinguishable from an
ideal tweakable blockcipher P̃ : T ×M → M that is a family of random permu-
tations on M indexed by a public tweak t ∈ T . As a more natural primitive for
building modes of operation, tweakable blockcipher has found wide applications.
Examples include encryption schemes [7,16,23,43,49,53], authenticated encryp-
tion [1,34,47,48], and disk encryption [24,25]. Moreover, many candidates of the
ongoing cryptographic competition CAESAR [5] on authenticated encryption
are based on tweakable blockciphers, e.g., Deoxys [29], Joltik [30], Scream [22],
SHELL [51], etc.

There are mainly three approaches to design a tweakable blockcipher. The
first one is from the scratch, including Hasty Pudding Cipher [50], Mercy [12]
and Threefish (used in the hash function SKEIN [19]). Such designs usually have
a drawback of lacking a security proof.

The second approach is to introduce the additional parameter tweak to
generic constructions of blockcipher, including tweaking Luby-Rackoff cipher or
Feistel cipher [20], tweaking Generalized Feistel cipher [44] and tweaking key-
alternating cipher or (iterated) Even-Mansour [9–11,18,21,28,39]. These tweak-
able blockciphers except TWEAKEY framework in [28] are provably secure. In
details, the designs in [11,18,20,39,44] have a provable security up to 2n/2 adver-
sarial queries, often referred to as the birthday-bound security with respect to
the n-bit block size of the underlying blockcipher (that is, the message space
M = {0, 1}n). To bypass the birthday-bound barrier and to achieve a higher
security bound, Jean et al. proposed TWEAKEY framework [28] to construct
ad-hoc tweakable blockciphers from key-alternating ciphers, and specified several
TWEAKEY instances which are conjectured fully 2n secure but lack formal secu-
rity proofs. After that, Cogliati et al. designed several tweakable blockciphers1

by tweaking Even-Mansour ciphers in [9,10], and these proposals are provably
secure up to 22n/3 adversarial queries.

The last and the most common approach is to start from a classical block-
cipher and to use it as a black box to build a tweakable blockcipher, including
LRW1 [34], LRW2 [34], variants and extensions of LRW2 such as XEX and
CLRW2 [6,31,32,40,46,47], Minematsu’s design [41] and Mennink’s design [36].
Early proposals LRW1, LRW2, XEX and their variants [6,34,40,47] are lim-
ited to the birthday-bound security. After that, cryptographers considered the
cascade of LRW2 in order to design tweakable blockciphers achieving beyond-
birthday-bound security. One evaluation of LRW2 contains one invocation of a
blockcipher, one invocation of a universal hash function, and each evaluation

1 These tweakable blockciphers can be regarded as instances of TWEAKEY frame-
work.

How to Build Fully Secure Tweakable Blockciphers 457

of LRW2 in the cascade construction requires an independent secret key. Lan-
decker et al. proposed CLRW2 [32] that makes two evaluations of LRW2 (that
is, two calls to a blockcipher, two invocations of a universal hash function, and
two secret keys), and is proven secure up to 22n/3 adversarial queries.2 Lampe
and Seurin analyzed the general case of the cascade of LRW2 [31]. For such
a tweakable blockcipher making s evaluations of LRW2 (that is, s invocations
of the underlying blockcipher and universal hash function, and s secret keys),
they proved that it has a security up to 2sn/(s+2) queries (against adaptive
chosen-ciphertext adversaries), and also conjectured that its security bound can
be improved to 2sn/(s+1) queries. Therefore by increasing the integer s, these
tweakable blockciphers asymptotically approach full 2n security, but meanwhile
the efficiency gets worse as the necessary number of blockcipher invocations,
universal hash function invocations, and the necessary key size linearly increase
with s. Another direction to design a tweakable blockcipher achieving beyond-
birthday-bound security is to use so-called tweak-dependent key. Roughly speak-
ing, a tweak-dependent key is a key of an invocation of blockcipher in a tweakable
blockcipher that is generated depending on the tweak. Liskov et al. suggested
in [34] that changing the tweak should be less costly than changing the key from
the efficiency concerns. Following it, early proposals of tweakable blockcipher
avoided the usage of the tweak-dependent key. However, recently Jean et al. [28]
pointed out that this suggestion is somewhat counter-intuitive from the security
concern, because the adversary has full control on the tweak, but has very limited
control on the key. They suggested that the tweak and the key should be treated
comparably. In fact even before Jean et al.’s work, Minematsu [41] proposed
a tweakable blockcipher built on two invocations of blockcipher, one of which
uses a tweak-dependent key. His design is proven secure up to max{2n/2, 2n−|t|}
adversarial queries, where |t| is the bit size of the tweak (that is, the tweak space
T = {0, 1}|t|). Hence Minematsu’s design is beyond-birthday-bound secure as
long as the tweak is shorter than n/2 bits. A scheme XTX has been proposed
to extend the tweak-length of any black-box tweakable blockcipher by using
a universal hash function [42]. Recently Mennink [36] proposed two tweakable
blockciphers F̃ [1] and F̃ [2] with the usage of the tweak-dependent key. F̃ [1] con-
sists of one invocation of blockcipher and one finite-field multiplication, and is
proven secure up to 22n/3 adversarial queries. F̃ [2] makes two calls to blockcipher,
and is surprisingly proven secure up to 2n adversarial queries, that is achieving
full security with very high efficiency. On the other hand, the security proof
of Mennink’s designs [36] are in the ideal blockcipher (information-theoretic)
model, while other proposals [6,31,32,34,40,41,47] have security proofs in the
standard (complexity-theoretic) model of assuming the underlying blockcipher
as a pseudorandom permutation.

Our Contributions. In this paper, we focus on constructing tweakable block-
ciphers that achieve full 2n security. This is mainly motivated by the scenarios
where the blockciphers only have 32-, 48- or 64-bit block size, e.g., Simon and
2 A flaw in the original proof was found and fixed by Procter [46].

458 L. Wang et al.

Speck family of blockciphers [3] (refer to Sect. 4.2 for more discussions). As sum-
marized above, so far there is only one tweakable blockcipher F̃ [2] designed by
Mennink [36] that claims full security. As a first contribution, we present a key-
recovery attack on F̃ [2] with a complexity of around 2n/2 adversarial queries,
which invalidates the designer’s security claim in [36]. Our attack has been veri-
fied by the designer [38]. Accordingly Mennink proposed a patch [37] to F̃ [2] of
the proceeding version, which can resist our key-recovery attack.

This paper designs tweakable blockciphers from classical blockciphers in the
black-box way, that is following the above third design approach. We focus on a
construction of tweakable blockcipher (see Fig. 2 as an example) denoted as Ẽ[s] :
K×T ×M → M, which consists of s invocations of a blockcipher E : K×M →
M and extra simple XOR operations. As a second and main contribution, we
carry out a heuristic search to investigate the instances of Ẽ[s], and successfully
find 32 highly efficient tweakable blockciphers Ẽ1, Ẽ2, . . ., and Ẽ32 that achieve
full 2n security. Each of these tweakable blockcipher (see Figs. 6 and 7) makes
two calls to the blockcipher E. In details, the first blockcipher call is to derive a
secret subkey y from the key k such that y = E(k, k), y = E(k, 0) or y = E(0, k).
The second blockcipher call encrypts a plaintext p (or decrypts a ciphertext c)
with a tweak-dependent key, which is generated by XORing the tweak t to the
key k, the subkey y, or k ⊕ y. In particular, we stress that by pre-computing
and storing the subkey y, our tweakable blockciphers just need to make one
blockcipher call for encrypting (t, p) or decrypting (t, c).

A comparison with previous tweakable blockciphers is detailed in Table 1. The
main advantage of our designs is optimal 2n provable security and high efficiency.
From the security view, previous tweakable blockciphers except LRW2[s](with
s → ∞) and the patched F̃ [2] (in ePrint version) have (at most) 22n/3 provable
security. From the efficiency view, LRW2[s] requires s blockcipher calls, and
s universal hash function invocations, and hence the efficiency is significantly
worse. Our designs also have an efficiency advantage compared with the patched
F̃ [2], as our designs require just one blockcipher call for encrypting a plaintext
or decrypting a ciphertext when the subkey is pre-computed and stored.

Organization. The rest of the paper is organized as follows. Section 2 gives
notations and definitions. Section 3 describes a key-recovery attack on Mennink’s
proposal. Section 4 presents the target construction, design goal and search strat-
egy. We then write the search procedure and the found constructions in Sect. 5,
and provide security proofs in Sect. 6. Finally we conclude the paper in Sect. 7.

2 Preliminaries

2.1 Notations

{0, 1}n denotes the set of all n-bit strings. For a, b ∈ {0, 1}n, a ⊕ b denotes
their bitwise exclusive-OR (XOR). For a ∈ {0, 1} and b ∈ {0, 1}b, a · b denotes
the multiplication of a and b, that is equal to b if a = 1, and equal to 0 if

How to Build Fully Secure Tweakable Blockciphers 459

Table 1. Comparison of our designs with previous tweakable blockciphers: if we pre-
compute and store the subkey, Ẽ1, . . . , Ẽ32 require just one blockcipher call for encrypt-
ing a plaintext or decrypting a ciphertext.

tweakable key security cost tdk reference

blockciphers size (log2) E ⊗/h

LRW1 n n/2 1 0 N [34]

LRW2 2n n/2 1 2 N [34]

XEX n n/2 1 0 N [47]

LRW2[2] 4n 2n/3 2 2 N [32]

LRW2[s] 2sn sn/(s + 2) s s N [31]

Min n max{n/2, n − |t|} 2 0 Y [41]

F̃ [1] n 2n/3 1 1 Y [36]

F̃ [2] n n/2 2 0 Y [36]

patched F̃ [2] n n 2 0 Y [37]

Ẽ1, . . . , Ẽ32 n n 2 (1) 0 Y Sect. 5

– ⊗/h stands for multiplications or universal hashes;
– tdk stands for the tweak-dependent key. ‘N’ refers to not using

tdk, and ‘Y’ refers to using tdk;
– |t| stands for the bit length of the tweak;

a = 0. For a finite set X , x
$← X denotes that an element x is selected from X

uniformly at random. |X | denotes the number of the elements in X . Blockcipher
is commonly denoted as E : K × M → M, and tweakable blockcipher as Ẽ :
K × T × M → M, where K is the key space, T is the tweak space, and M
is the message space. Throughout this paper, we fix K = T = M = {0, 1}n.
Let E(k, ·) and E−1(k, ·) be the encryption and the decryption of blockcipher E
with a key k ∈ K respectively. Let E±(k, ·) consist of both E(k, ·) and E−1(k, ·).
Sometimes we denote E(k, ·), E−1(k, ·) and E±(k, ·) as Ek(·), E−1

k (·) and E±
k (·)

respectively. Similarly we define notations Ẽ(k, ·, ·), Ẽ−1(k, ·, ·), and Ẽ±(k, ·, ·)
for tweakable blockcipher Ẽ, which can also be denoted as Ẽk(·, ·), Ẽ−1

k (·, ·)
and Ẽ±

k (·, ·), respectively. An input-output tuple of E is commonly denoted as
(l, u, w) such that w = E(l, u). An input-output tuple of Ẽk with k

$← K is
denoted as (t, p, c) such that Ẽk(t, p) = c. Let Bloc be the set of all blockciphers
with key space K and message space M. A blockcipher E is said to be an ideal
blockcipher if it is selected from Bloc uniformly at random, that is E

$← Bloc.
Let P̃erm be the set of all functions P̃ : T × M → M such that for each t ∈ T ,
P̃ (t, ·) is a permutation on M. A function P̃ is said to be an ideal tweakable
blockcipher if it is selected from P̃erm at random, that is P̃

$← P̃erm. Similarly
we define notations P̃ (·, ·), P̃−1(·, ·) and P̃±(·, ·).

460 L. Wang et al.

2.2 Tweakable Blockcipher and Security Definition

A distinguisher D is an algorithm that is given query access to one (or more)
oracle of being either O or Q, and outputs one bit. Its advantage in distinguishing
these two primitives O and Q is defined as

Adv(D) =
∣
∣Pr

[DO ⇒ 1
] − Pr

[DQ ⇒ 1
]∣
∣

A tweakable blockcipher with key space K, tweak space T and message space
M is a mapping Ẽ : K × T × M → M such that for any key k ∈ K and any
tweak t ∈ T , Ẽ(k, t, ·) is a permutation over M. The security of a tweakable
blockcipher is defined via upper bounding the advantage of distinguisher D in
the following game. D is given query access to oracles (O1, E

±): O1 is either
Ẽ±

k (·, ·) with k
$← K or an ideal tweakable blockcipher P̃ (·, ·) $← P̃erm; E± is an

ideal blockcipher (that is E
$← Bloc) which is used as the underlying blockcipher

of Ẽ. The advantage of D in distinguishing Ẽ and P̃ is defined as

Advs̃prp

Ẽ
(D) =

∣
∣
∣Pr

[
DẼ±

k (·,·),E±(·,·) ⇒ 1
]

− Pr
[
DP̃±(·,·),E±(·,·) ⇒ 1

]∣
∣
∣ ,

where the probabilities are taken over the choices of k
$← K, E

$← Bloc, P̃
$←

P̃erm, and D’s coin (if any).
Throughout the paper, we consider information-theoretic distinguisher D

such that D is computationally unbounded, but sorely limited by the number of
queries to its oracles. We write

Advs̃prp

Ẽ
(q) = maxD{Advs̃prp

Ẽ
(D)},

where the maximum is taken over all distinguisher D that makes at most q
queries to its oracles.

A tweak-dependent key of a tweakable blockcipher is a key of an invocation of
blockcipher which is generated depending on the tweak. In other words, changing
the value of tweak leads to re-keying that blockcipher call. Liskov et al. suggested
in [34] that changing the tweak should be less costly than changing the key.
However, Jean et al. [28] pointed out that this suggestion is counter-intuitive,
because the adversary has full control on the tweak, but has very limited control
on the key. Indeed the tweak and the key should be treated comparably.

2.3 The H-Coefficient Technique

Our proof adopts the H-coefficient Technique [8,45], which is briefly introduced
as follows. This paper considers information-theoretic distinguisher D that is
computationally unbounded. Hence without loss of generality, we always assume
D is deterministic. Suppose D interacts with O and Q, and its advantage is
defined in Sect. 2.2. A view v is the query-response tuples that D receives when
interacting with O or Q. Let X be the probability distribution of the view when

How to Build Fully Secure Tweakable Blockciphers 461

D interacts with O, and Y be the probability distribution of the view when
D interacts with Q. V is defined as the set of all attainable views v while D
interacting with Q, that is V = {v | Pr[Y = v] > 0}.

The H-coefficient technique evaluates the upper bound of Adv(D) as follows.
Firstly, partition V to two disjoint subsets Vgood and Vbad such that V = Vgood ∪
Vbad. Secondly, estimate a real value εvgood with 0 ≤ εvgood ≤ 1 such that for
each view v ∈ Vgood, it has that

Pr [X = v]
Pr [Y = v]

≥ 1 − εvgood .

Moreover, compute the probability of D receiving a view from Vbad when inter-
acting with Q, that is Pr [Y ∈ Vbad]. Finally, conclude that the advantage of D
is upper bounded as

Adv(D) ≤ εvgood + Pr [Y ∈ Vbad] .

3 Key-Recovery Attack on Mennink’s Design [36]

This section presents a key-recovery attack on Mennink’s design in [36], which
is depicted in Fig. 1. Let Ẽk : T × M → M to denote Mennink’s tweakable
blockcipher with a secret key k ∈ K and E : K × M → M to denote its
underlying blockcipher. The key-recovery attacker has query access to Ẽ±

k (·, ·)
and E±(·, ·). The attack procedure is detailed below.

At first step, the attacker recovers the value of E(k, 0) by sending one query
(0, 0) to Ẽ−1

k (·, ·) to receive a plaintext p such that E(k, 0) = p holds. This is
based on an observation for the case of tweak t = 0 and ciphertext c = 0.

• tweak t = 0 implies that the two blockcipher calls in Ẽk shares the same key
value, and hence are identical permutation.

• ciphertext c = 0 implies that the outputs of two blockcipher calls in Ẽk are
equal from c = y1 ⊕ y2 = 0, that is y1 = y2.

When querying (t = 0, c = 0) to Ẽ−1
k (·, ·), it has that x2 = t = 0, and in turn the

received plaintext p = y1⊕x2 = y1, where y1 is computed as y1 = E(k, 0). Hence
the attacker gets the value of E(k, 0) by sending one query (0, 0) to Ẽ−1

k (·, ·).

Fig. 1. Tweakable blockcipher in [36]

462 L. Wang et al.

At second step, the attacker collects and stores a set of E(k⊕ t, const), where
const is a fixed constant, for 2n/2 distinct tweak values t by making 2n/2+1

queries to Ẽk(·, ·). In details, for each tweak t, the attacker starts with recovering
the value of E(k, t) by sending one query (0, E(k, 0) ⊕ t) to Ẽk(·, ·) to receive
ciphertext c and computing E(k, t) = c ⊕ E(k, 0). The reason is as follows. Note
y1 = E(k, 0). It has x2 = (E(k, 0) ⊕ t) ⊕ y1 = t, which implies y2 = E(k, t).
Also from c = y1 ⊕ y2, it has that y2 = c ⊕ y1 = c ⊕ E(k, 0). Hence E(k, t) is
equal to c ⊕ E(k, 0). Next and with a similar reason, the attacker recovers the
value of E(k ⊕ t, const) by sending one query (t, E(k, t) ⊕ const) to Ẽk(·, ·), and
computing E(k ⊕ t, const) = c ⊕ E(k, t). Overall, the attacker is able to recover
the value of E(k ⊕ t, const) for any tweak t, by sending two queries to Ẽk(·, ·).

At third and the last step, the attacker selects 2n/2 distinct values l,
queries (l, const) to E(·, ·) to receive E(l, const), and matches it to the set
{E(k⊕t, const)} stored at second step. If a match is found that is E(k⊕t, const) =
E(l, const), the attacker recovers the secret key k as k = l ⊕ t.

Now we evaluate the complexity and the success probability. The first step
requires one query, the second step requires 2n/2+1 queries and the last step
requires 2n/2 queries. Summing up, the total complexity is less than 2n/2+2

queries. Since there are 2n/2 distinct tweak values t and 2n/2 distinct values l,
the probability of existing a value of t and a value of l such that t ⊕ l = k
is trivially computed as 1 − (1 − 2−n)2

n ≈ 1 − 1/e ≈ 0.63. Hence the success
probability of recovering the key is about 0.63. Overall, the tweakable blockcipher
designed by Mennink in [36] has at most around 2n/2 security, in other words,
birthday-bound security, which is exponentially far lower than the designer’s
claim of full 2n security.

On proof flaw in [36]. In the proof, under the condition that the attacker cannot
guess the key correctly (that is, (12a) defined in [36] is not set), it claimed that
the distribution of output variable of the first blockcipher call, y1 = E(k, t), is
independent from the second blockcipher call y2 = E(k ⊕ t, x2). This is a wrong
claim. When tweak t = 0, both the two blockcipher calls share the same key,
and therefore the distribution of their outputs are highly related.

4 Target Construction, Design Goal and Search Strategy

4.1 Tweakable Blockcipher Ẽ[s]

In this paper, we study a construction of tweakable blockcipher consisting of
blockcipher calls and linear transformations. Furthermore, we restrict linear
transformations to be just simple XOR operations for efficiency benefits. For
a more generic construction of tweakable blockcipher from a classical blockci-
pher, we refer interested readers to [36].

We denote the target tweakable blockcipher as Ẽ[s], which is built on s block-
cipher calls. Let E denote its underlying blockcipher with n-bit block size and
n-bit key size. Let k, t, p and c denote its key, tweak, plaintext and ciphertext,
respectively, which are all n-bit long. Let ai,j and bi,j for 1 ≤ i ≤ s + 1 and

How to Build Fully Secure Tweakable Blockciphers 463

Fig. 2. Graphical view of Ẽ[2] with key k, tweak t, plaintext p, ciphertext c, ai,j ∈ {0, 1}
and bi,j ∈ {0, 1}

Algorithm 1. Encryption of Ẽ[s](·, ·, ·): ‘+’ stands for addition operation in
GF(2n), that is XOR operation.
Input: key k, plaintext p, tweak t, blockcipher E(·, ·), one-bit variables ai,j ’s and bi,j ’s

Output: ciphertext c

1. x1 = b1,1 · k + b1,2 · t + b1,3 · p
2. z1 = a1,1 · k + a1,2 · t
3. for i = 1 to s − 1, do
4. yi = E(zi, xi)

5. xi+1 = bi+1,1 · k + bi+1,2 · t + bi+1,3 · p +
i+3∑

j=4

bi+1,j · yj−3

6. zi+1 = ai+1,1 · k + ai+1,2 · t +
i+2∑

j=3

ai+1,j · yj−2

7.
8. endfor
9. ys = E(zs, xs)

10. c = bs+1,1 · k + bs+1,2 · t + bs+1,3 · p +
s+3∑

j=4

bs+1,j · yj−3

11. return ciphertext c

1 ≤ j ≤ i + 2 be one-bit variables of being 0 or 1. The encryption procedure of
Ẽ[s] is provided in Algorithm 1. Each concrete instantiation of Ẽ[s] is to deter-
mine the values of ai,j ’s and bi,j ’s. Moreover, a graphical view of Ẽ[2] is depicted
in Fig. 2 as an example, which is also useful for next sections. Throughout this
paper, we always assume that all the s blockcipher calls are indeed involved in
the computation of the ciphertext c from the key k, the tweak t and the plaintext
p for Ẽ[s].

A tweakable blockcipher must be invertible, namely plaintext p should be
efficiently decrypted from key k, tweak t and ciphertext c. Such a requirement

464 L. Wang et al.

sets a few constraints on the above construction Ẽ[s]. Firstly, plaintext p should
be involved in exactly one linear transformation.

Constraint 1. For Ẽ[s] to be invertible, there should exist an integer i ∈
{1, 2, . . . , s + 1} such that bi,3 = 1 and bj,3 = 0 for all j ∈ {1, 2, . . . , s + 1}
and j �= i.

Secondly, suppose plaintext p is involved in the linear transformation that out-
puts xi, then the values of both xi and yi depend on plaintext p in the encryption
process. We will call such xi and yi plaintext-dependent variables. Moreover, if
yi is used to compute some variable xj (j > i), then both xj and yj are also
called plaintext-dependent variables. Iteratively, we have the definition below.

Definition 1. For our target construction Ẽ[s], internal variables xi and yi are
said to be plaintext-dependent, if xi is computed depending on plaintext p or a
plaintext-dependent variable yj in the encryption process. Also we include plain-
text p as a plaintext-dependent variable.

A plaintext-dependent variable cannot be used to produce any key value zj .3

Otherwise, the construction is not (efficiently) invertible, since one cannot com-
pute zj without the knowledge of plaintext p.

Constraint 2. For Ẽ[s] to be invertible, if an internal state yi with 1 ≤ i ≤ s is
a plaintext-dependent variable, the values of aj,i+2’s for all j ∈ {i+1, i+2, . . . , s}
must be 0.

Moreover, the linear transformation to produce any internal state xi with 1 ≤
i ≤ s should have at most one input plaintext-dependent variable. Otherwise,
one cannot efficiently inverse such a linear transformation in the decryption,
because there are more than one unknown input variable.

Constraint 3. For Ẽ[s] to be invertible, the linear transformations to produce
internal states xi’s for all i ∈ {1, 2, . . . , s + 1} must have at most one input
variable that is plaintext-dependent.

Summarizing up, an instantiation of Ẽ[s] is efficiently invertible and therefore
a valid tweakable blockcipher, as long as it satisfies the above three constraints.
Nevertheless, additional conditions might be necessary from the concerns of secu-
rity and efficiency. For example, it is important that all s blockcipher invocations
of Ẽ[s] are indeed involved for computing ciphertext c from the key k, the tweak
t and plaintext p. Here we omit such discussions for the general case, but leave
them in next sections for specific case, e.g., the instances of Ẽ[2].

3 Recall that all blockcipher calls are indeed involved in the computation of ciphertext
c from the key k, the tweak t and plaintext p.

How to Build Fully Secure Tweakable Blockciphers 465

Remarks. It is interesting to note that many tweakable blockciphers proposed
previously are instances of our target construction Ẽ[2] in Fig. 2. For example,
LRW1 construction designed by Liskov et al. in [34] is the instance with b1,3 =
a1,1 = b2,4 = b2,2 = a2,1 = b3,5 = 1 and 0 for the other ai,j ’s and bi,j ’s.
Minematsu’s construction in [41] is the instance with b1,2 = a1,1 = b2,3 = a2,3 =
b3,5 = 1 and 0 for the other ai,j ’s and bi,j ’s. Mennink’s construction in [36] is
the instance with b1,2 = a1,1 = b2,4 = b2,3 = a2,1 = a2,2 = b3,5 = b3,4 = 1 and 0
for the other ai,j ’s and bi,j ’s.

4.2 Design Goal

Our first and top-priority goal is full 2n provable security, which has both theoret-
ical and practical interests. A typical blockcipher nowadays such as AES [14] and
SIMON [3] has a block size of 128 bits or 64 bits. In some constrained environ-
ment, the block size of lightweight blockciphers can be even shorter, e.g., SIMON-
48 [3]. Hence tweakable blockcipher constructions with merely a birthday-bound
security may not be suited for various applications. Consequently other con-
structions providing higher security is definitely necessary. Particularly, design-
ing tweakable blockciphers with optimal 2n provable security is indeed a very
interesting research topic.

Our second goal is the minimum number of blockcipher calls, which obviously
comes from the efficiency concern. For our target construction, a blockcipher
call is much more time-consuming than linear transformations which are merely
XOR operations. Therefore the number of blockcipher calls dominates the overall
efficiency of tweakable blockcipher. Besides, we also aim to optimize the efficiency
of linear transformations under the condition of no security sacrifice, i.e., erasing
unnecessary input variables. In fact this is also the reason that we have limited
the linear transformations to simple XORing variables when choosing the target
construction Ẽ[s].

Our third goal is (comparably) high efficiency of changing a tweak, which in
particular should be more efficient than changing a key. It is motivated by the fact
that tweak is changed more frequently than the key in applications. For instance,
in most modes of operation such as OCB [48], tweak is changed for every plain-
text block, while the secret key can be kept the same for up to birthday-bound
number of plaintext blocks. Such a criteria of designing tweakable blockcipher
has been suggested by Liskov et al. [35] and followed by several constructions
in [6,31,32,40,46,47]. However, differently from those constructions, we allow to
use tweak-dependent keys, in other words, changing a tweak leads to re-keying
blockcipher. This is due to the above goals of security and efficiency. Indeed as
shown in [31], without using tweak-dependent keys, an (almost) optimal secure
tweakable blockcipher requires an unrestrained increase of blockcipher calls and
the number of keys.

466 L. Wang et al.

4.3 Search Strategy

In order to achieve the design goals listed in Sect. 4.2, we adopt a heuristic
approach to search among the instances of Ẽ[s].

• For the goal of full 2n security, we should investigate the instances of Ẽ[s]
with s ≥ 2. The reason is that Mennink in [36] proved any instance of Ẽ[1]
(that is with linear mixing) has at most 2n/2 security. It implies that at least 2
blockcipher calls are necessary to possibly bypass birthday-bound barrier and
to reach full 2n security.

• For the goal of minimum number of blockcipher calls, we start with analyzing
the instances of Ẽ[2]. Moreover, we will not move to investigate the instances
of Ẽ[s+1], unless we have examined all the instances of Ẽ[s] and none of them
can achieve 2n security. Once some instance of Ẽ[s] is found with 2n security,
it is not needed to investigate the instances of Ẽ[s′] where s′ > s.

• For the goal of high efficiency of changing a tweak, we should use the minimum
number of tweak-dependent keys. Let i denote the number of tweak-dependent
keys. While searching among the instances of Ẽ[s], we start with those with one
tweak-dependent key. Moreover, we will not move to investigate the instances
with i + 1 tweak-dependent keys, unless we have examined all the instances
with i tweak-dependent keys and none of them can achieve 2n security. Once
some instance of Ẽ[s] with i tweak-dependent keys is found with 2n security,
it is not needed to investigate the instances of Ẽ[s] with i′ tweak-dependent
keys, where i′ > i.

Following the above search strategy, we start with investigating the instances of
Ẽ[2] with one tweak-dependent key, and find 32 such instances achieving full 2n

provable security. The search process is detailed in next section.

5 Search Among Instances of Ẽ[2] with One
Tweak-Dependent Key

To start with, we provide an observation that is used during the search: XORing
tweak t to plaintext p and ciphertext c does not have any impact to the security
of tweakable blockcipher.

Observation 1. For a tweakable blockcipher Ẽ : K × T × M → M, define a
set of tweakable blockcipher Ẽ[bp, bc] : K × T × M → M with bp, bc ∈ {0, 1} as

Ẽ[bp, bc](k, t, p) := Ẽ(k, t, p ⊕ (bp · t)) ⊕ (bc · t),

for all k ∈ K, t ∈ T and p ∈ M. Each tweakable blockcipher Ẽ[bp, bc] provides
the same security level as Ẽ, that is Advs̃prp

Ẽ[bp,bc]
(q) = Advs̃prp

Ẽ
(q). Thus, we do

not use XORing tweak t to plaintext p and ciphertext c for (slight) efficiency
benefit.

How to Build Fully Secure Tweakable Blockciphers 467

Fig. 3. Type I Constructions of Ẽ[2]

The proof of this observation is rather straightforward, and provided in full
version of this paper [52].

Next, according to Constraint 1, we divide the instances of Ẽ[2] into three
types with respect to the place where the plaintext p is injected.

Type I: p is XORed to compute x1, which sets b1,3 = 1, b2,3 = 0 and b3,3 = 0;
Type II: p is XORed to compute x2, which sets b1,3 = 0, b2,3 = 1 and b3,3 = 0;
Type III: p is XORed to compute x3, which sets b1,3 = 0, b2,3 = 0 and b3,3 = 1.

We search the instances of these types independently.

5.1 On the Instances of Type I

Constraint 2 sets a2,3 = 0, since y1 is plaintext-dependent. Observation 1 sets
b1,2 = 0 and b3,2 = 0. We set b3,5 = 1 such that the second blockcipher call is
involved in Ẽ[2].4 Moreover, we set b2,4 = 1 in order to avoid overlap between
the instances of Type I and of Type II, because if b2,4 = 0, the two blockcipher
calls are parallel and indeed those instances are included in Type II. In turn,
it implies that x2 and y2 are plaintext-dependent variables. Then Constraint 3
sets b3,4 = 0, because y2 as a plaintext-dependent variable is already used to
compute c. Putting all these together, the (simplified) construction of Type I is
depicted in Fig. 3.

We investigate all the instances of Type I with one tweak-dependent key,
which are divided into two cases depending on the position of the tweak-
dependent key. More precisely, it depends on the values of a1,2 and a2,2.

Case (1): a1,2 = 1 and a2,2 = 0. z1 is the tweak-dependent key. For these
instances, the computation from internal variable x2 to ciphertext c is that

c = E(a2,1 · k, x2) ⊕ b3,1 · k.

4 Otherwise, only one blockcipher call is actually involved, and such instances have at
most 2n/2 security [36].

468 L. Wang et al.

Hence, for any plaintext-ciphertext pair (t, p, c) and (t′, p′, c′) with (t, p) �= (t′, p′),
it has that

c = c′ =⇒ x2 = x′
2.

Exploiting this property, the attacker mainly focuses on the first blockcipher call
and peels off the second blockcipher call, by using pairs of (t, p, c) and (t′, p′, c′)
with c = c′. Note that such a plaintext-ciphertext pair can be easily obtained
by sending a query (t, p) to Ẽ[2]k(·, ·) to receive c, and then sending a query
(t′, c) to Ẽ[2]−1

k (·, ·) to receive p′.5 Thanks to such plaintext-ciphertext pairs,
the attacker gets to know and even control the internal difference Δy1 = b2,2 ·
(t ⊕ t′). As a result, he can succeed to recover the key k or to distinguish Ẽ[2]
from a random tweakable blockcipher P̃ with a complexity of at most O(2n/2)
adversarial queries. The attack procedure is slightly different depending on the
values of a1,1 and b1,1. Therefore, we further divide this case into four subcases,
and describe the procedure for each subcase separately.

Subcase (1.1): a1,1 = 0 and b1,1 = 0. The key k is not used in the first blockcipher
y1 = E(t, p). Hence the attacker can get the value of y1 by querying (t, p) to
E(·, ·). A distinguisher D is launched as follows. Firstly, D obtain a plaintext-
ciphertext pair (t, p, c) and (t′, p′, c′) with c = c′, and computes Δy1 = b2,2·(t⊕t′).
Secondly, D queries (t, p) and (t′, p′) to E(·, ·) to receive w and w′ respectively,
and computes Δw = w ⊕ w′. Finally, D outputs 1 if Δy1 = Δw, and outputs
0 otherwise. The probability of D outputting 1 is 1 when interacting Ẽ[2], and
is 2−n when interacting with P̃ . Thus, the advantage of D is 1 − 2−n. The
complexity of D is 4 queries.

Subcase (1.2): a1,1 = 0 and b1,1 = 1. The first blockcipher call is y1 = E(t, p⊕k).
Its key z1 is the tweak t, and can be controlled by the attacker. A key-recovery
attack A is launched as follows. Firstly, A fixes a tweak value t and a non-zero
value Δ. Secondly, A collects plaintext-ciphertext pairs (t, p, c) and (t′, p′, c′)
such that t′ = t ⊕ Δ and c′ = c. Each pair has that

p ⊕ p′ = x1 ⊕ x′
1 = E−1(t, y1) ⊕ E−1(t ⊕ Δ, y1 ⊕ b2,2 · Δ).

A stores {(p, p⊕ p′)} for 2n/2 distinct values of p, whose corresponding values of
y1 are also distinct. This needs 2n/2+1 queries. Thirdly, A selects 2n/2 distinct
values w. For each w, he queries (t, w) and (t ⊕ Δ,w ⊕ b2,2 · Δ) to E−1(·, ·) to
receive u and u′ respectively, which has that

u ⊕ u′ = E−1(t, w) ⊕ E−1(t ⊕ Δ,w ⊕ b2,2 · Δ).

A matches u ⊕ u′ to previously stored p ⊕ p′. If a matched is found that implies
x1 = p ⊕ k = u, the attacker computes the key k as k = u ⊕ p. The complexity

5 Of course one may directly query (t, c) and (t, c′ = c) to Ẽ[2]−1
k (·, ·) to obtain such a

pair. But the above approach allows the attacker to control the plaintext p, which
is necessary in our attacks.

How to Build Fully Secure Tweakable Blockciphers 469

of A is around 2n/2+2 adversarial queries, and its success probability can be
trivially computed as 1 − (1 − 2−n)2

n ≈ 1 − 1/e ≈ 0.63, since there are 2n/2

distinct values of y1 and 2n/2 distinct values of w.

Subcase (1.3): a1,1 = 1 and b1,1 = 0. The first blockcipher call is y1 = E(t⊕k, p).
Its input x1 is plaintext p, and can be controlled by the attacker. A key-recovery
attack A is launched as follows. Firstly, A fixes a plaintext value p and a non-
zero value Δ. Secondly, A collects plaintext-ciphertext pairs (t, p, c) and (t′, p′, c′)
such that t′ = t ⊕ Δ and c′ = c. Each pair has that

p′ = E−1(t ⊕ Δ ⊕ k,E(t ⊕ k, p) ⊕ b2,2 · Δ).

A stores {(t, p′)} for 2n/2 distinct values of t, which needs 2n/2+1 queries. Thirdly,
A selects 2n/2 distinct values l. For each l, he queries (l, p) to E(·, ·), receives w,
and then queries (l ⊕ Δ,w ⊕ b2,2 · Δ) to E−1(·, ·) to receive u′, which have that

u′ = E−1(l ⊕ Δ,E(l, p) ⊕ b2,2 · Δ)

A matches u′ to previously stored p′. If a matched is found that implies l = t⊕k,
A computes the key k as k = l ⊕ t. The complexity of A is around 2n/2+2

adversarial queries. Similarly with the above subcases, its success probability
can be computed as 0.63.

Subcase (1.4): a1,1 = 1 and b1,1 = 1. The first blockcipher call is y1 = E(t ⊕
k, p⊕k). XORing its inputs x1 and z1 is x1 ⊕z1 = p⊕ t, which can be controlled
by the attacker. A key-recovery attack A is launched as follows. Firstly, A fixes
a plaintext p and a non-zero value Δ. Secondly, A collects plaintext-ciphertext
pairs (t, p ⊕ t, c) and (t′, p′, c′) with t′ = t ⊕ Δ and c′ = c. Each pair has that

p′ ⊕ t = E−1(t ⊕ Δ ⊕ k,E(t ⊕ k, p ⊕ t ⊕ k) ⊕ b2,2 · Δ) ⊕ k ⊕ t

A stores {(t, p′ ⊕ t)} for 2n/2 distinct values of t, which needs 2n/2+1 queries.
Thirdly, A selects 2n/2 distinct values l. For each l, he queries (l, p⊕ l) to E(·, ·),
receives w, and then queries (l ⊕ Δ,w ⊕ b2,2 · Δ) to E−1(·, ·) to receive u′, which
have that

u′ ⊕ l = E−1(l ⊕ Δ,E(l, p ⊕ l) ⊕ b2,2 · Δ) ⊕ l

A matches u′ ⊕ l to previously stored p′ ⊕ t. f a matched is found that implies
l = t ⊕ k, A computes the key k as k = l ⊕ t. The complexity of A is around
2n/2+2 adversarial queries, and its success probability can be trivially computed
as 0.63 similarly with the above subcases.

Overall, we conclude that all the instances of Case (1) using one tweak-
dependent key have at most around 2n/2 security.

Case (2): a1,2 = 0 and a2,2 = 1. z2 is the tweak-dependent key. The analysis
is highly similar with Case (1), which is written in full version of this paper [52].
In a high level, Case (2) can be regarded as the inverse of Case (1) by analyzing
the decryption oracle Ẽ−1. Here we just provide the conclusion: all the instances
of Case (2) using one tweak-dependent key have at most around 2n/2 security.

470 L. Wang et al.

5.2 On the Instances of Type II

Observation 1 sets b2,2 = 0 and b3,2 = 0. We set b3,5 = 1 such that the second
blockcipher call is involved in Ẽ[2]. The construction of Type II is depicted in
Fig. 4. Similarly we also divide the instances of Type II into two cases depending
on the position of the tweak-dependent key. More precisely, it depends on the
values of a1,2, a2,2, and a2,3 if y1 is computed related to tweak t.

Case (1): a1,2 = 1, a2,2 = 0, a2,3 = 0. z1 is the tweak-dependent key. The
reason of setting a2,3 = 0 is that y1 is computed depending on t as

y1 = E(a1,1 · k ⊕ t, b1,1 · k ⊕ b1,2 · t).

We find the instances of this case have at most 2n/2 security based on the
following observation. The computation from internal variable y1 to ciphertext
c is that

c = E(a2,1 · k, p ⊕ b2,4 · y1 ⊕ b2,1 · k) ⊕ b3,1 · k ⊕ b3,4 · y1,

which is not related to the tweak value. Therefore, for two distinct tweaks t and
t′ colliding on y1 that is

E(a1,1 · k ⊕ t, b1,1 · k ⊕ b1,2 · t) = E(a1,1 · k ⊕ t′, b1,1 · k′ ⊕ b1,2 · t′),

it leads to the same ciphertext for any plaintext, more precisely,

Ẽ[2]k(t, p) = Ẽ[2]k(t′, p), for ∀p ∈ M.

Such a pair of tweaks can be found after trying 2n/2 distinct tweaks. Putting
all together, a distinguisher D can be launched as follows. Firstly, D fixes a
plaintext p. Secondly, he selects 2n/2 distinct tweak values t, queries (t, p) to
Ẽ[2]k(·, ·) to search a collision among received ciphertexts. Let t and t′ denote
the corresponding tweaks for the colliding ciphertexts. Thirdly, D selects another
plaintext p′ with p′ �= p, and queries (t, p′) and (t′, p′) to Ẽ[2]k(·, ·) and receives

Fig. 4. Type II Construction of Ẽ[2]

How to Build Fully Secure Tweakable Blockciphers 471

ciphertexts c′ and c′′ respectively. Finally, D outputs 1 if c′ �= c′′, and outputs 0
otherwise. The complexity of D is around 2n/2 queries. When interacting with
Ẽ[2], D outputs 1, as long as he succeeds to find the colliding ciphertexts at
second step, which has a probability of 1 − (1 − 2−n)2

n−1 ≈ 0.4. When interact-
ing with a random tweakable blockcipher, the probability of D outputting 1 is
obviously 2−n. Therefore, the advantage of D is computed as 0.4 − 2−n ≈ 0.4.

Case (2): a1,2 = 0. We need to further set the values of a2,2 and a2,3 such
that z2 is a tweak-dependent key. There are two possible setting depending on
the value of b1,2. More precisely, if b1,2 = 0, then y1 is computed unrelated to
tweak t, and therefore a2,2 must be 1. Otherwise, as long as one of a2,2 and a2,3

is not zero, z2 is a tweak-dependent key. Accordingly we divide Case (2) to two
subcases.

Subcase (2.1): b1,2 = 0, a2,2 = 1. A graphical view is provided in Fig. 5. Notably
internal variable y1 is computed as y1 = E(a1,1 ·k, b1,1 ·k), which is unrelated to
tweak t. We refer to y1 as a subkey derived from the key k for those instances
with (a1,1, b1,1) �= (0, 0). Moreover, the computation from p to x2 is x2 = p ⊕
b2,1 ·k ⊕ b2,4 ·y1, and hence Δx2 = Δp always holds. Similarly, Δy2 = Δc always
holds. In other words, for any plaintext-ciphertext pair (t, p, c) and (t′, p′, c′), the
internal variable differences Δx2 and Δy2 is known to the attacker. Due to these
properties, we find several conditions on the instances of this subcase in order
to possibly have a security beyond the birthday bound.

• (a1,1, b1,1) �= (0, 0)
If a1,1, b1,1 = (0, 0), it has that y1 = E(0, 0). Then an attacker can query (0, 0)
to E(·, ·), receive the value of y1, and then peel off the first blockcipher call.
As a result, the instances become essentially based on one blockcipher call in
the view of the attacker. As proven in [36], the attacker can distinguish such
instances from a random tweakable blockcipher with a complexity of at most
2n/2 adversarial queries.

• (a2,1, a2,3) �= (0, 0)
If (a2,1, a2,3) = (0, 0), an attacker can fix the tweak t to a constant and

Fig. 5. Subcase (2.1) of Type II of Ẽ[2]

472 L. Wang et al.

regard b2,1 · k ⊕ b2,4 · y1 and b3,1 · k ⊕ b3,4 · y1 as the pre- and post-whitening
keys respectively. As a result, the instances become essentially one-step Even-
Mansour blockcipher [17], and several attack procedures with a complexity of
2n/2 queries have been presented in [4,13,15].

• (b2,1, b2,4) �= (0, 0) and (b3,1, b3,4) �= (0, 0)
If (b2,1, b2,4) = (0, 0), it has x2 = p. Then an attacker gets to know and control
the value of x2. A distinguisher D is launched as follows. Firstly, D fixes two
distinct plaintexts p and p′. Secondly, he selects 2n/2 distinct tweaks t. For
each t, D queries (t, p) and (t, p′) to Ẽ[2]k(·, ·), receives ciphertexts c and c′

respectively, and stores (t, c⊕ c′). Thirdly, D selects 2n/2 distinct values l. For
each l, he queries (l, p) and (l, p′) to E(·, ·), receives w and w′ respectively, and
matches w ⊕ w′ to previously stored c ⊕ c′ at second step. Once a matched is
found, that is

E(a2,1 · k ⊕ t ⊕ a2,3 · y1, p) ⊕ E(a2,1 · k ⊕ t ⊕ a2,3 · y1, p
′) = E(l, p) ⊕ E(l, p′),

D recovers a2,1 ·k⊕b2,3 ·y1 = t⊕ l. Finally, for any plaintext-ciphertext pair of
(t, p, c) and (t′, p′, c′), D can compute internal variables z2 and z′

2, and query
(z2, p) and (z′

2, p
′) to E(·, ·) to recover y2 and y′

2, respectively. D outputs 1
if c ⊕ c′ = y2 ⊕ y′

2, and outputs 0 otherwise. The complexity of D is around
2n/2+2 queries. When interacting with Ẽ[2], D outputs 1 as long as he recovers
a2,1 ·k⊕b2,3 ·y1, which succeeds with a probability 1−(1−2−n)2

n ≈ 1−1/e ≈
0.63. When interacting with a random tweakable blockcipher, D outputs 1 with
a probability 2−n. Therefore the advantage of D is 0.63 − 2−n ≈ 0.63.
(b3,1, b3,4) �= (0, 0) is observed after a very similar analysis. Just the attacker
gets to know and control the value of y2. Accordingly, he fixes two ciphertexts
c and c′, and queries (t, c) and (t, c′) to Ẽ[2]−1

k (·, ·) for distinct tweaks t. We
omit the details.

• (b2,1, b2,4) �= (a2,1, a2,3) and (b3,1, b3,4) �= (a2,1, a2,3)
If (b2,1, b2,4) = (a2,1, a2,3), it has b2,1 · k ⊕ b2,4 · y1 = a2,1 · k ⊕ a2,3 · y1, which is
denoted as g. Then x2 ⊕ z2 = g ⊕ p ⊕ g ⊕ t = p ⊕ t. Hence an attacker gets to
know and control x2 ⊕ z2. A distinguisher D can be launched. Firstly, D fixes
a non-zero Δ. Secondly, he selects 2n/2 distinct tweaks t, queries (t, p = t) and
(t, p′ = t⊕Δ) to Ẽ[2]k(·, ·), receives c and c′ respectively, and stores (t, c⊕ c′).
Thirdly, D selects 2n/2 distinct values l, queries (l, l) and (l, l⊕Δ) to E(·, ·) to
receive w and w′ respectively, and matches w ⊕ w′ to previously stored c ⊕ c′.
If a matched is found, that is

E(g ⊕ t, g ⊕ t) ⊕ E(g ⊕ t, g ⊕ t ⊕ Δ) = E(l, l) ⊕ E(l, l ⊕ Δ),

D recovers g as g = t ⊕ l. Therefore D is able to compute x2 and z2 for any
plaintext-ciphertext, and gets y2 by querying E(·, ·). After that, similarly with
the above analysis, D just needs to make several additional queries. Overall,
the complexity of D is around 2n/2 queries, and has an advantage of 0.63.
(b3,1, b3,4) �= (a2,1, a2,3) is observed after a very similar analysis. Here we omit
the details.

How to Build Fully Secure Tweakable Blockciphers 473

Putting all these conditions together, there are 32 instances of this subcase
left, which are denoted as Ẽ1, Ẽ2, . . ., Ẽ32 and have been depicted in Figs. 6
and 7. After further investigation, we find that these constructions achieve full
2n provable security. The proof is presented in Sect. 6.

Subcase (2.2): b1,2 = 1, (a2,2, a2,3) �= (0, 0). Interestingly, we notice that the
instances of Subcase (2.1) has an efficiency advantage over the instances of Sub-
case (2.2). More precisely, if one pre-computes and stores internal variable y1
as a subkey, an instance of Subcase (2.1) requires just one block-cipher call for
encrypting (t, p) or decrypting (t, c), while the instances of Subcase (2.2) always
need two blockcipher calls. Since we have found instances of Subcase (2.1) achiev-
ing full 2n security, it is unnecessary to search among instances of Subcase (2.2).
Nevertheless, we did investigate the instances of Subcase (2.2), and found 24
instances achieving full 2n provable security. Here we omit the discussion on this
subcase due to the limited space.

5.3 On the Instances of Type III

Clearly, plaintext and ciphertext are linearly related in this type of construction,
and can be trivially distinguished by making two queries to Ẽ[2]k(·, ·) with a fixed
difference in plaintexts, e.g., (t, p) and (t, p ⊕ Δ), and verifying Δc = Δ.

6 Security Proof of Ẽ1, . . . , Ẽ32

Let Ẽ be any tweakable blockcipher of Ẽ1, Ẽ2, . . . , Ẽ32, and E denotes its under-
lying blockcipher. Let P̃ be a random tweakable blockcipher that is P̃

$← P̃erm.
Let (O1,O2) be either (Ẽ±

k (·, ·), E±(·, ·)) with k
$← K or (P̃±(·, ·), E±(·, ·)). Let

D be a distinguisher interacting with (O1,O2) that makes (at most) q queries.
We denote the number of D’s queries to O1 and to O2 as q1 and q2 respectively:
q = q1 + q2. Without loss of generality, we assume that D does not make dupli-
cated queries to O1 or O2. We use views v1 = {(t1, p1, c1), . . . , (tq1 , pq1 , cq1)} and
v2 = {(l1, u1, w1), . . . , (lq2 , uq2 , wq2)} to denote the transcripts, which are lists
of query-responses, created by D interacting with O1 and O2, respectively. At
the end of the interaction with (O1,O2), the distinguisher D obtains a view
v = (v1, v2) before determining the output bit. Since D is computationally
unbounded, without loss of generality we assume that D is deterministic. There-
fore D computes its decision bit deterministically based on the view v. Accord-
ingly, the probability distribution of the decision bit of D solely depends on the
probability distribution of the view v.

Our proof adopts the H-coefficient technique [8,45], which has been intro-
duced in Sect. 2.3. We use X and Y to denote the probability distribu-
tion on views when D interacts with (Ẽ±

k (·, ·), E±(·, ·)) and interacts with
(P̃±(·, ·), E±(·, ·)), respectively. We use V to denote the set of attainable views v

when D interacts with (P̃±(·, ·), E±(·, ·)), that is V = {v | Pr[Y = v] > 0}. Next,

474 L. Wang et al.

Fig. 6. Ẽ1 to Ẽ16 of the 32 efficient constructions: the internal variable y is referred
to as the subkey for these constructions.

How to Build Fully Secure Tweakable Blockciphers 475

Fig. 7. Ẽ17 to Ẽ32 of the 32 efficient constructions: the internal variable y is referred
to as the subkey for these constructions.

476 L. Wang et al.

we partition V to disjoint subsets Vbad and Vgood such that V = Vgood

⋃ Vbad,
and evaluate upper bound of εvgood (defined in Sect. 2.3) for the views v ∈ Vgood

and upper bound of Pr[Y ∈ Vbad].

6.1 Partition of V
In our proof, we disclose the values of the secret key k and the subkey y to
D, after he finishes the interaction with (O1,O2) and before he determines the
output bit. In the case of (P̃±(·, ·), E±(·, ·)) as (O1,O2), we choose the value of
k at random, namely k

$← K, and get the corresponding subkey y by querying
E±. This is without loss of generality since it will only increase the advantage
of D. With the knowledge of k and y, D can easily derive the query-responses
(l, u, w)’s of invocations of E±(·, ·) for each query-response (ti, pi, ci) in view v1.
Therefore D gets all query-responses of blockcipher E during the interaction
with (O1,O2).

For each view v = (v1, v2) ∈ V, we divide the query-responses of blockcipher
E, derived from it thanks to the disclosed values of k and y, into three subsets,
and store them separately in different tables. The first subset consists of a single
query-response of E that generates the subkey y, and is stored in a table T 1 =
{(l11, u

1
1, w

1
1 = y)}. The second subset consists of the other query-responses of

E derived from v1, and is stored in a table T 2 = {(l21, u
2
1, w

2
1), (l

2
2, u

2
2, w

2
2), . . . ,

(l2q1 , u
2
q1 , w

2
q1)}. The last subset consists of all query-responses of E derived from

v2, and is stored in a table T 3 = {(l31, u
3
1, w

3
1), (l

3
2, u

3
2, w

3
2), . . . , (l

3
q2 , u

3
q2 , w

3
q2)}.

Definition of Vbad. We define that Vbad is the set of views which causes the
following bad event, and accordingly define Vgood as Vgood = V\Vbad.

• Bad event : for a view v ∈ V, if there exist (lij , u
i
j , w

i
j) in Table T i and

(li
′
j′ , ui′

j′ , wi′
j′) in Table T i′ such that (lij , u

i
j) = (li

′
j′ , ui′

j′) or (lij , w
i
j) = (li

′
j′ , wi′

j′),
where 1 ≤ i, i′ ≤ 3 and i �= i′, we say v causes a bad event.

The reasoning of the above definition of bad views is to ensure that for any
view v ∈ Vgood, every query-response of D interacting with O1 leads to one
unique query-response of blockcipher E, which is essentially helpful to evaluate
the upper bound of εvgood .

6.2 Upper Bound of εvgood

Firstly, we deal with Pr [X = v]. The random variable X is defined on the prob-
ability space of all possible secret key k and all possible underlying blockcipher
E. We denote by allX the probability space of X, and its cardinality |allX | is
2n · (2n!)2

n

, that is the number of keys times the number of blockciphers. We
write an element π in allX compatible with v if π produces exactly the same
responses for all queries in v. We denote by compX(v) all the elements in allX

How to Build Fully Secure Tweakable Blockciphers 477

compatible with view v. Since k is chosen uniformly at random and E is an ideal
blockcipher, we have that

Pr [X = v] =
|compX(v)|

|allX | .

Similarly, Y is defined on the probability space of the key k, tweakable blockci-
pher P̃ and blockcipher E. Define compY (v) and allY accordingly, and then we
have that

Pr [Y = v] =
|compY (v)|

|allY | .

allY is 2n · (2n!)2
n · (2n!)2

n

, that is the number of keys times the number of
tweakable blockciphers times the number of blockciphers.

Next is to compute |compX(v)| and |compY (v)|. Recall that the view v con-
tains the value of k, which is disclosed to D at the end of interaction, and then
a set of input-outputs of underlying blockcipher E are derived and separately
stored in tables T 1, T 2 and T 3. Let αi and βi denote the number of input-
outputs (l, u, w)’s of E with the value i as the key value (that is l = i) in T 2 and
T 3, respectively, for 0 ≤ i ≤ 2n − 1. Denote it as the tweak value that produces
i as the key value (that is z2 in Fig. 5) for the second blockcipher call in O1,
and denote γit the number of queries to O1 with tweak values as it. Since v is
a good view, there is no element collision between any two tables. Moreover, D
does not make duplicate queries. Hence all input-outputs of E in T 1, T 2 and T 3

are distinct. Therefore, it implies that γit = αi. The query-response (l11, u
1
1, w

1
1)

of E in T 1 has l11 = k or l11 = 0.6 Without loss of generality, we assume l11 = k.
Then, we get that

|compX(v)| = (2n − αk − βk − 1)! ·
k−1∏

i=0

(2n − αi − βi)! ·
2n−1∏

i=k+1

(2n − αi − βi)!,

and

|compY (v)| =

2n−1∏

i=0

(2
n − γit

)! ·
⎛

⎝(2
n − βk − 1)! ·

k−1∏

i=0

(2
n − βi)! ·

2n−1∏

i=k+1

(2
n − βi)!

⎞

⎠

=

2n−1∏

i=0

(2
n − αi)! ·

⎛

⎝(2
n − βk − 1)! ·

k−1∏

i=0

(2
n − βi)! ·

2n−1∏

i=k+1

(2
n − βi)!

⎞

⎠

= (2
n − αk)! · (2n − βk − 1)! ·

k−1∏

i=0

(
(2

n − αi)! · (2n − βi)!
) ·

2n−1∏

i=k+1

(
(2

n − αi)! · (2n − βi)!
)

.

From (2n − α)! · (2n − β)! ≤ (2n − α − β)! · 2n!, we have that

|compY (v)| ≤ (2n − αk − βk − 1)! · (2n!)2
n ·

k−1∏

i=0

(2n − αi − βi)! ·
2n−1∏

i=k+1

(2n − αi − βi)!.

6 More precisely, Ẽ1, . . . , Ẽ10, Ẽ23, . . . , Ẽ32 have l11 = k, and the other tweakable
blockciphers have l11 = 0.

478 L. Wang et al.

Then we compute

|compX(v)|
|compY (v)| ≥

(2n − αk − βk − 1)! ·∏k−1
i=0 (2n − αi − βi)! ·

∏2n−1
i=k+1(2

n − αi − βi)!

(2n − αk − βk − 1)! · (2n!)2
n ·∏k−1

i=0 (2n − αi − βi)! ·
∏2n−1

i=k+1(2
n − αi − βi)!

=
1

(2n!)2
n

Finally, we compute

Pr [X = v]
Pr [Y = v]

=
|compX(v)|
|compY (v)| × |allY |

|allX |

≥ 1
(2n!)2n

× 2n · (2n!)2
n · (2n!)2

n

2n · (2n!)2n
= 1

which give that εvgood = 0.

Note. We highlight that this upper bound of εvgood = 0 is indeed shared by all
these 32 constructions Ẽ1, . . . , Ẽ32. Moreover, as long as every view in Vgood does
not cause the above bad event defined in Sect. 6.1, it always has that εvgood = 0.
Therefore, the advantage of all distinguishers making at most q queries is upper
bounded as

Advs̃prp

Ẽ
(q) ≤ Pr [Y ∈ Vbad] .

Thus, the remaining work is to evaluate Pr [Y ∈ Vbad] for each construction of
Ẽ1, . . . , Ẽ32, separately.

6.3 Upper Bound of Pr[Y ∈ Vbad]

For each construction of Ẽ1 to Ẽ32, we give the exact definition of Vbad according
to the specification, which also defines Vgood = V\Vbad. We must ensure that
every view v ∈ Vgood does not cause the bad event defined in Sect. 6.1, such that
the probability Pr[Y ∈ Vbad] is upper bound of Advs̃prp

Ẽ
(q). Due to the limited

space, in this section we use Ẽ1 as an example, and write the definitions of Vbad

for the other constructions in full version of this paper [52].

Vbad of Ẽ1 is defined as the set of views v = (v1, v2) such that (at least) one of
the following events occur:

(1a). ∃ (lj , uj , wj) ∈ v2 such that lj = k;
(1b). ∃ (ti = 0, pi, ci) ∈ v1 such that pi = y or ci = k;
(1c). ∃ (ti, pi, ci) ∈ v1 and (lj , uj , wj) ∈ v2 such that (lj = k ⊕ ti, uj = pi ⊕ y)

or (lj = k ⊕ ti, wj = ci ⊕ y ⊕ k).

Since both k and y are selected uniformly at random from a set of size at least
2n − q − 1, we have that

How to Build Fully Secure Tweakable Blockciphers 479

Pr [(1a)] ≤ q/(2n − q − 1);
Pr [(1b)] ≤ 2q/(2n − q − 1);

Pr [(1c)] ≤ 2q2/(2n − q − 1)2.

Therefore, we get that

Pr [Y ∈ Vbad] ≤ Pr [(1a)] + Pr [(1b)] + Pr [(1c)]

≤ 3q

2n − q − 1
+

2q2

(2n − q − 1)2

Supposing q < 2n−1, we have that

Pr [Y ∈ Vbad] ≤ 3q

2n−1
+

2q2

(2n−1)2
≤ 5q

2n−1
.

Next, we look into the views in Vgood. A view in Vgood implies that nonce of
the three events (1a), (1b) and (1c) occur. Then we have that

• (1a) does not occur =⇒ the tuple elements in T 1 and in T 3 do not collide;
• (1b) does not occur =⇒ the tuple elements in T 1 and in T 2 do not collide;
• (1c) does not occur =⇒ the tuple elements in T 2 and in T 3 do not collide;

where the notations T 1, T 2 and T 3 are defined in Sect. 6.1. Combining them
together, we can conclude that every view in Vgood does not cause the bad event
in Sect. 6.1. Hence εvgood = 0 holds. Therefore it has that

Advs̃prp

Ẽ1
(q) ≤ 10q

2n

6.4 Provable Security

Putting all together, we obtain the following theorem on the provable security
of Ẽ1, . . . , Ẽ32.

Theorem 1. Let Ẽ be any tweakable blockcipher construction from the set of
Ẽ1, . . . , Ẽ32 depicted in Figs. 6 and 7. Let q be an integer such that q < 2n−1.
Then the following bound holds.

Advs̃prp

Ẽ
(q) ≤ 10q

2n
.

7 Conclusions and Discussions

This paper has proposed 32 tweakable blockcipher constructions that achieve
full provable security via a minimum number of blockcipher calls, in the ideal
blockcipher model. A direction of future work would be to investigate if such
fully secure tweakable blockciphers can be constructed in the standard pseudo-
random-permutation model with a constant number of blockcipher calls.

480 L. Wang et al.

On Key Check Value. As highlighted in [27], ANSI X9.24-1 [2] suggests the
use of the key check value KCV for the integrity verification of the blockcipher
key, which may cause security loss for cryptographic primitives. In details, ANSI
X9.24-1 suggests KCV = Ek(0).7 Moreover, KCV is a public value, and will be
transmitted, sent or stored in clear. In other words, an attacker has chance to
learn the value of KCV. It has a serious security impact to our constructions
Ẽ1, Ẽ2, . . . , Ẽ10, whose subkey y is computed as y = E(k, 0). As we can see,
KCV = y holds, and hence an attacker can get the value of the subkey, and
then is able to recover the key k with a complexity of 2n/2 queries. We propose
alternatives to these tweakable blockciphers when KCV is used: replace 0 by
a non-zero constant const, and derive the subkey y from the key k as y =
E(k, const). On other hand, the usage of KCV has negligible impact to the
security of the other tweakable blockcipher constructions Ẽ11, . . . , Ẽ32.

Acknowledgements. Lei Wang and Dawu Gu are sponsored by the Natural Science
Foundation of Shanghai (16ZR1416400), Major State Basic Research Development Pro-
gram (973 Plan), the National Natural Science Foundation of China (61472250), and
Innovation Plan of Science and Technology of Shanghai (14511100300). Guoyan Zhang
is sponsored by National Natural Science Foundation of China (61602276). Jingyuan
Zhao is sponsored by the National Science Foundation of China (no. 61379139) and
the Strategic Priority Research Program of the Chinese Academy of Sciences (no.
XDA06100701).

References

1. Andreeva, E., Bogdanov, A., Luykx, A., Mennink, B., Tischhauser, E., Yasuda,
K.: Parallelizable and authenticated online ciphers. In: Sako, K., Sarkar, P. (eds.)
ASIACRYPT 2013. LNCS, vol. 8269, pp. 424–443. Springer, Heidelberg (2013).
doi:10.1007/978-3-642-42033-7 22

2. ANSI: Retail Financial Services Symmetric Key Management Part 1: Using Sym-
metric Techniques. ANSI X9.24-1: 2009 (2009)

3. Beaulieu, R., Shors, D., Smith, J., Treatman-Clark, S., Weeks, B., Wingers, L.:
SIMON and SPECK: Block Ciphers for the Internet of Things. Cryptology ePrint
Archive, Report 2015/585 (2015). http://eprint.iacr.org/

4. Biryukov, A., Wagner, D.: Advanced slide attacks. In: Preneel, B. (ed.) EURO-
CRYPT 2000. LNCS, vol. 1807, pp. 589–606. Springer, Heidelberg (2000). doi:10.
1007/3-540-45539-6 41

5. CAESAR Competition. http://competitions.cr.yp.to/caesar.html
6. Chakraborty, D., Sarkar, P.: A General construction of tweakable block ciphers and

different modes of operations. In: Lipmaa, H., Yung, M., Lin, D. (eds.) Inscrypt
2006. LNCS, vol. 4318, pp. 88–102. Springer, Heidelberg (2006). doi:10.1007/
11937807 8

7. Chakraborty, D., Sarkar, P.: HCH: A new tweakable enciphering scheme using the
hash-counter-hash approach. IEEE Trans. Inf. Theory 54(4), 1683–1699 (2008)

7 More precisely, ANSI X9.24-1 suggests to use a few most significant bits of Ek(0) as
KCV.

http://dx.doi.org/10.1007/978-3-642-42033-7_22
http://eprint.iacr.org/
http://dx.doi.org/10.1007/3-540-45539-6_41
http://dx.doi.org/10.1007/3-540-45539-6_41
http://competitions.cr.yp.to/caesar.html
http://dx.doi.org/10.1007/11937807_8
http://dx.doi.org/10.1007/11937807_8

How to Build Fully Secure Tweakable Blockciphers 481

8. Chen, S., Steinberger, J.: Tight security bounds for key-alternating ciphers. In:
Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 327–
350. Springer, Heidelberg (2014). doi:10.1007/978-3-642-55220-5 19

9. Cogliati, B., Lampe, R., Seurin, Y.: Tweaking even-mansour ciphers. In: Gennaro,
R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9215, pp. 189–208. Springer,
Heidelberg (2015). doi:10.1007/978-3-662-47989-6 9

10. Cogliati, B., Seurin, Y.: Beyond-birthday-bound security for tweakable even-
mansour ciphers with linear tweak and key mixing. In: Iwata, T., Cheon, J.H. (eds.)
ASIACRYPT 2015. LNCS, vol. 9453, pp. 134–158. Springer, Heidelberg (2015).
doi:10.1007/978-3-662-48800-3 6

11. Cogliati, B., Seurin, Y.: On the provable security of the iterated even-mansour
cipher against related-key and chosen-key attacks. In: Oswald, E., Fischlin, M.
(eds.) EUROCRYPT 2015. LNCS, vol. 9056, pp. 584–613. Springer, Heidelberg
(2015). doi:10.1007/978-3-662-46800-5 23

12. Crowley, P.: Mercy: A fast large block cipher for disk sector encryption. In: Goos,
G., Hartmanis, J., Leeuwen, J., Schneier, B. (eds.) FSE 2000. LNCS, vol. 1978, pp.
49–63. Springer, Heidelberg (2001). doi:10.1007/3-540-44706-7 4

13. Daemen, J.: Limitations of the even-mansour construction. In: [26], pp. 495–498
14. Daemen, J., Rijmen, V.: The Design of Rijndael: AES - The Advanced Encryption

Standard. Springer, Heidelberg (2002)
15. Dunkelman, O., Keller, N., Shamir, A.: Minimalism in cryptography: the even-

mansour scheme revisited. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT
2012. LNCS, vol. 7237, pp. 336–354. Springer, Heidelberg (2012). doi:10.1007/
978-3-642-29011-4 21

16. Dworkin, M.: Recommendation for Block Cipher Modes of Operation: The XTS-
AES Mode for Condentiality on Storage Devices. NIST Special Publication 800–
38E (2010)

17. Even, S., Mansour, Y.: A construction of a cipher from a single pseudorandom
permutation. In: [26], pp. 210–224

18. Farshim, P., Procter, G.: The related-key security of iterated even-mansour ciphers.
In: [33], pp. 342–363

19. Ferguson, N., Lucks, S., Schneier, B., Whiting, D., Bellare, M., Kohno, T., Callas,
J., Walker, J.: The SKEIN Hash Function Family. NIST SHA-3 Competition (2008)

20. Goldenberg, D., Hohenberger, S., Liskov, M., Schwartz, E.C., Seyalioglu, H.:
On tweaking luby-rackoff blockciphers. In: Kurosawa, K. (ed.) ASIACRYPT
2007. LNCS, vol. 4833, pp. 342–356. Springer, Heidelberg (2007). doi:10.1007/
978-3-540-76900-2 21

21. Granger, R., Jovanovic, P., Mennink, B., Neves, S.: Improved masking for tweak-
able blockciphers with applications to authenticated encryption. In: Fischlin, M.,
Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9665, pp. 263–293. Springer,
Heidelberg (2016). doi:10.1007/978-3-662-49890-3 11

22. Grosso, V., Leurent, G., Standaert, F., Varici, K., Journault, A., Durvaux, F.,
Gaspar, L., Kerckhof, S.: SCREAM Side-Channel Resistant Authenticated
Encryption with Masking V3. CAESAR Competition Candidate (2015). http://
competitions.cr.yp.to/round2/screamv3.pdf

23. Halevi, S.: EME*: Extending EME to handle arbitrary-length messages with
associated data. In: Canteaut, A., Viswanathan, K. (eds.) INDOCRYPT
2004. LNCS, vol. 3348, pp. 315–327. Springer, Heidelberg (2004). doi:10.1007/
978-3-540-30556-9 25

http://dx.doi.org/10.1007/978-3-642-55220-5_19
http://dx.doi.org/10.1007/978-3-662-47989-6_9
http://dx.doi.org/10.1007/978-3-662-48800-3_6
http://dx.doi.org/10.1007/978-3-662-46800-5_23
http://dx.doi.org/10.1007/3-540-44706-7_4
http://dx.doi.org/10.1007/978-3-642-29011-4_21
http://dx.doi.org/10.1007/978-3-642-29011-4_21
http://dx.doi.org/10.1007/978-3-540-76900-2_21
http://dx.doi.org/10.1007/978-3-540-76900-2_21
http://dx.doi.org/10.1007/978-3-662-49890-3_11
http://competitions.cr.yp.to/round2/screamv3.pdf
http://competitions.cr.yp.to/round2/screamv3.pdf
http://dx.doi.org/10.1007/978-3-540-30556-9_25
http://dx.doi.org/10.1007/978-3-540-30556-9_25

482 L. Wang et al.

24. Halevi, S., Rogaway, P.: A tweakable enciphering mode. In: Boneh, D. (ed.)
CRYPTO 2003. LNCS, vol. 2729, pp. 482–499. Springer, Heidelberg (2003). doi:10.
1007/978-3-540-45146-4 28

25. Halevi, S., Rogaway, P.: A parallelizable enciphering mode. In: Okamoto, T. (ed.)
CT-RSA 2004. LNCS, vol. 2964, pp. 292–304. Springer, Heidelberg (2004). doi:10.
1007/978-3-540-24660-2 23

26. Imai, H., Rivest, R.L., Matsumoto, T. (eds.): ASIACRYPT 1991. LNCS, vol. 739.
Springer, Heidelberg (1993). doi:10.1007/3-540-57332-1 17

27. Iwata, T., Wang, L.: Impact of ANSI X9.24-1:2009 key check value on
ISO/IEC 9797-1:2011 MACs. In: Cid, C., Rechberger, C. (eds.) FSE 2014.
LNCS, vol. 8540, pp. 303–322. Springer, Heidelberg (2015). doi:10.1007/
978-3-662-46706-0 16

28. Jean, J., Nikolić, I., Peyrin, T.: Tweaks and keys for block ciphers: the TWEAKEY

framework. In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014. LNCS, vol. 8874,
pp. 274–288. Springer, Heidelberg (2014). doi:10.1007/978-3-662-45608-8 15

29. Jean, J., Nikolic, I., Peyrin, T.: Deoxys v1.3. CAESAR Competition Candidate
(2015). http://competitions.cr.yp.to/round2/deoxysv13.pdf

30. Jean, J., Nikolic, I., Peyrin, T.: Joltik v1.3. CAESAR Competition Candidate
(2015). http://competitions.cr.yp.to/round2/joltikv13.pdf

31. Lampe, R., Seurin, Y.: Tweakable blockciphers with asymptotically optimal
security. In: Moriai, S. (ed.) FSE 2013. LNCS, vol. 8424, pp. 133–151. Springer,
Heidelberg (2014). doi:10.1007/978-3-662-43933-3 8

32. Landecker, W., Shrimpton, T., Terashima, R.S.: Tweakable blockciphers with
beyond birthday-bound security. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO
2012. LNCS, vol. 7417, pp. 14–30. Springer, Heidelberg (2012). doi:10.1007/
978-3-642-32009-5 2

33. Leander, G. (ed.): FSE 2015. LNCS, vol. 9054, pp. 428–448. Springer, Heidelberg
(2015). doi:10.1007/978-3-662-48116-5 21

34. Liskov, M., Rivest, R.L., Wagner, D.: Tweakable block ciphers. In: Yung, M. (ed.)
CRYPTO 2002. LNCS, vol. 2442, pp. 31–46. Springer, Heidelberg (2002). doi:10.
1007/3-540-45708-9 3

35. Liskov, M., Rivest, R.L., Wagner, D.: Tweakable block ciphers. J. Cryptol. 24(3),
588–613 (2011)

36. Mennink, B.: Optimally secure tweakable blockciphers. In: [33], pp. 428–448
37. Mennink, B.: Optimally Secure Tweakable Blockciphers. IACR Cryptology ePrint

Archive 2015 363 (2015). http://eprint.iacr.org/2015/363
38. Mennink, B.: Private communication (2015)
39. Mennink, B.: XPX: Generalized tweakable even-mansour with improved security

guarantees. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS, vol. 9814, pp.
64–94. Springer, Heidelberg (2016). doi:10.1007/978-3-662-53018-4 3

40. Minematsu, K.: Improved security analysis of XEX and LRW modes. In: Biham, E.,
Youssef, A.M. (eds.) SAC 2006. LNCS, vol. 4356, pp. 96–113. Springer, Heidelberg
(2007). doi:10.1007/978-3-540-74462-7 8

41. Minematsu, K.: Beyond-birthday-bound security based on tweakable block cipher.
In: Dunkelman, O. (ed.) FSE 2009. LNCS, vol. 5665, pp. 308–326. Springer,
Heidelberg (2009). doi:10.1007/978-3-642-03317-9 19

42. Minematsu, K., Iwata, T.: Tweak-length extension for tweakable blockciphers. In:
Groth, J. (ed.) IMACC 2015. LNCS, vol. 9496, pp. 77–93. Springer, Heidelberg
(2015). doi:10.1007/978-3-319-27239-9 5

http://dx.doi.org/10.1007/978-3-540-45146-4_28
http://dx.doi.org/10.1007/978-3-540-45146-4_28
http://dx.doi.org/10.1007/978-3-540-24660-2_23
http://dx.doi.org/10.1007/978-3-540-24660-2_23
http://dx.doi.org/10.1007/3-540-57332-1_17
http://dx.doi.org/10.1007/978-3-662-46706-0_16
http://dx.doi.org/10.1007/978-3-662-46706-0_16
http://dx.doi.org/10.1007/978-3-662-45608-8_15
http://competitions.cr.yp.to/round2/deoxysv13.pdf
http://competitions.cr.yp.to/round2/joltikv13.pdf
http://dx.doi.org/10.1007/978-3-662-43933-3_8
http://dx.doi.org/10.1007/978-3-642-32009-5_2
http://dx.doi.org/10.1007/978-3-642-32009-5_2
http://dx.doi.org/10.1007/978-3-662-48116-5_21
http://dx.doi.org/10.1007/3-540-45708-9_3
http://dx.doi.org/10.1007/3-540-45708-9_3
http://eprint.iacr.org/2015/363
http://dx.doi.org/10.1007/978-3-662-53018-4_3
http://dx.doi.org/10.1007/978-3-540-74462-7_8
http://dx.doi.org/10.1007/978-3-642-03317-9_19
http://dx.doi.org/10.1007/978-3-319-27239-9_5

How to Build Fully Secure Tweakable Blockciphers 483

43. Minematsu, K., Matsushima, T.: Tweakable enciphering schemes from hash-
sum-expansion. In: Srinathan, K., Rangan, C.P., Yung, M. (eds.) INDOCRYPT
2007. LNCS, vol. 4859, pp. 252–267. Springer, Heidelberg (2007). doi:10.1007/
978-3-540-77026-8 19

44. Mitsuda, A., Iwata, T.: Tweakable pseudorandom permutation from generalized
feistel structure. In: Baek, J., Bao, F., Chen, K., Lai, X. (eds.) ProvSec 2008. LNCS,
vol. 5324, pp. 22–37. Springer, Heidelberg (2008). doi:10.1007/978-3-540-88733-1 2

45. Patarin, J.: A proof of security in O(2n) for the Xor of two random permutations.
In: Safavi-Naini, R. (ed.) ICITS 2008. LNCS, vol. 5155, pp. 232–248. Springer,
Heidelberg (2008). doi:10.1007/978-3-540-85093-9 22

46. Procter, G.: A Note on the CLRW2 Tweakable Block Cipher Construction. Cryp-
tology ePrint Archive, Report 2014/111 (2014). http://eprint.iacr.org/2014/111

47. Rogaway, P.: Efficient instantiations of tweakable blockciphers and refinements to
modes OCB and PMAC. In: Lee, P.J. (ed.) ASIACRYPT 2004. LNCS, vol. 3329,
pp. 16–31. Springer, Heidelberg (2004). doi:10.1007/978-3-540-30539-2 2

48. Rogaway, P., Bellare, M., Black, J., Krovetz, T.: OCB: a block-cipher mode of
operation for efficient authenticated encryption. In: Reiter, M.K., Samarati, P.,
(eds.) ACM CCS 2001, pp. 196–205. ACM (2001)

49. Sarkar, P.: Efficient tweakable enciphering schemes from (block-wise) universal
hash functions. IEEE Trans. Inf. Theory 55(10), 4749–4760 (2009)

50. Schroeppel, R.: The Hasty Pudding Cipher. NIST AES Proposal (1998)
51. Wang, L.: SHELL v2.0. CAESAR Competition Candidate (2015). http://

competitions.cr.yp.to/round2/shellv20.pdf
52. Wang, L., Guo, J., Zhang, G., Zhao, J., Gu, D.: How to Build Fully Secure Tweak-

able Blockciphers from Classical Blockciphers. Cryptology ePrint Archive, Report
2016/876 (2016). http://eprint.iacr.org/2016/876

53. Wang, P., Feng, D., Wu, W.: HCTR: A variable-input-length enciphering mode.
In: Feng, D., Lin, D., Yung, M. (eds.) CISC 2005. LNCS, vol. 3822, pp. 175–188.
Springer, Heidelberg (2005). doi:10.1007/11599548 15

http://dx.doi.org/10.1007/978-3-540-77026-8_19
http://dx.doi.org/10.1007/978-3-540-77026-8_19
http://dx.doi.org/10.1007/978-3-540-88733-1_2
http://dx.doi.org/10.1007/978-3-540-85093-9_22
http://eprint.iacr.org/2014/111
http://dx.doi.org/10.1007/978-3-540-30539-2_2
http://competitions.cr.yp.to/round2/shellv20.pdf
http://competitions.cr.yp.to/round2/shellv20.pdf
http://eprint.iacr.org/2016/876
http://dx.doi.org/10.1007/11599548_15

Design Strategies for ARX with Provable
Bounds: SPARX and LAX

Daniel Dinu(B), Léo Perrin, Aleksei Udovenko, Vesselin Velichkov,
Johann Großschädl, and Alex Biryukov

SnT, University of Luxembourg, Luxembourg City, Luxembourg
{daniel.dinu,leo.perrin,aleksei.udovenko,vesselin.velichkov,

johann.groszschaedl,alex.biryukov}@uni.lu

Abstract. We present, for the first time, a general strategy for designing
ARX symmetric-key primitives with provable resistance against single-
trail differential and linear cryptanalysis. The latter has been a long
standing open problem in the area of ARX design. The wide-trail design
strategy (WTS), that is at the basis of many S-box based ciphers, includ-
ing the AES, is not suitable for ARX designs due to the lack of S-boxes in
the latter. In this paper we address the mentioned limitation by propos-
ing the long trail design strategy (LTS) – a dual of the WTS that is
applicable (but not limited) to ARX constructions. In contrast to the
WTS, that prescribes the use of small and efficient S-boxes at the expense
of heavy linear layers with strong mixing properties, the LTS advocates
the use of large (ARX-based) S-Boxes together with sparse linear lay-
ers. With the help of the so-called long-trail argument, a designer can
bound the maximum differential and linear probabilities for any number
of rounds of a cipher built according to the LTS.

To illustrate the effectiveness of the new strategy, we propose Sparx –
a family of ARX-based block ciphers designed according to the LTS.
Sparx has 32-bit ARX-based S-boxes and has provable bounds against
differential and linear cryptanalysis. In addition, Sparx is very efficient
on a number of embedded platforms. Its optimized software implemen-
tation ranks in the top 6 of the most software-efficient ciphers along with
Simon, Speck, Chaskey, LEA and RECTANGLE.

As a second contribution we propose another strategy for designing
ARX ciphers with provable properties, that is completely independent
of the LTS. It is motivated by a challenge proposed earlier by Wallén
and uses the differential properties of modular addition to minimize the
maximum differential probability across multiple rounds of a cipher. A
new primitive, called LAX, is designed following those principles. LAX
partly solves the Wallén challenge.

Keywords: ARX · Block ciphers · Differential cryptanalysis · Linear
cryptanalysis · Lightweight · Wide-trail strategy

c© International Association for Cryptologic Research 2016
J.H. Cheon and T. Takagi (Eds.): ASIACRYPT 2016, Part I, LNCS 10031, pp. 484–513, 2016.
DOI: 10.1007/978-3-662-53887-6 18

Design Strategies for ARX with Provable Bounds: Sparx and LAX 485

1 Introduction

ARX, standing for Addition/Rotation/XOR, is a class of symmetric-key algo-
rithms designed using only the following simple operations: modular addition,
bitwise rotation and exclusive-OR. In contrast to S-box-based designs, where the
only non-linear elements are the substitution tables (S-boxes), ARX designs rely
on modular addition as the only source of non-linearity. Notable representatives
of the ARX class include the stream ciphers Salsa20 [1] and ChaCha20 [2], the
SHA-3 finalists Skein [3] and BLAKE [4] as well as several lightweight block
ciphers such as TEA, XTEA [5], etc. Dinu et al. recently reported [6] that the
most efficient software implementations on small processors belonged to ciphers
from the ARX class: Chaskey-cipher [7] by Mouha et al., speck [8] by the Amer-
ican National Security Agency (NSA) and LEA [9] by the South Korean Elec-
tronic and Telecommunications Research Institute.1

For the mentioned algorithms, the choice of using the ARX paradigm was
based on three observations2. First, getting rid of the table look-ups, asso-
ciated with S-Box based designs, increases the resilience against side-channel
attacks. Second, this design strategy minimizes the total number of operations
performed during an encryption, allowing particularly fast software implemen-
tations. Finally, the computer code describing such algorithms is very small,
making this approach especially appealing for lightweight block ciphers where
the memory requirements are the harshest.

Despite the widespread use of ARX ciphers, the following problem has
remained open up until now.

Open Problem. Is it possible to design an ARX cipher that is provably secure
against single-trail differential and linear cryptanalysis by design?

To the best of our knowledge, there has only been one attempt at tackling this
issue. In [10] Biryukov et al. have proposed several ARX constructions for which
it is feasible to compute the exact maximum differential and linear probabilities
over any number of rounds. However, these constructions are limited to 32-bit
blocks. The general case of this problem, addressing any block size, has still
remained without a solution.

More generally, the formal understanding of the cryptographic properties of
ARX is far less satisfying than that of, for example, S-Box-based substitution-
permutation networks (SPN). Indeed, the wide-trail strategy [11] (WTS) and
the wide-trail argument [12] provide a way to design S-box based SPNs with
provable resilience against differential and linear attacks. It relies on bounding
the number of active S-Boxes in a differential (resp. linear) trail and deducing a
lower bound on the best expected differential (resp. linear) probability.

1 Speck and the MAC Chaskey are being considered for standardization by ISO.
2 For Speck, we can only a guess it is the case as the designers have not published

the rationale behind their algorithm.

486 D. Dinu et al.

Our Contribution. We propose two different strategies to build ARX-based block
ciphers with provable bounds on the maximum expected differential and linear
probabilities, thus providing a solution to the open problem stated above.

The first strategy is called the Long Trail Strategy (LTS). It borrows the idea
of counting the number of active S-Boxes from the wide-trail argument but the
overall principle is actually the opposite to the wide-trail strategy as described
in [11]. While the WTS dictates the spending of most of the computational
resources in the linear layer in order to provide good diffusion between small
S-boxes, the LTS advocates the use of large and comparatively expensive S-Boxes
in conjunction with cheaper and weaker linear layers. We formalize this method
and describe the long-trail argument that can be used to bound the differential
and linear trail probabilities of a block cipher built using this strategy.

Using this framework, we build a family of lightweight block ciphers called
Sparx. All three instances in this family can be entirely specified using only three
operations: addition modulo 216, 16-bit rotations and 16-bit XOR. These ciphers
are, to the best of our knowledge, the first ARX-based block ciphers for which the
probability of both differential and linear trails are bounded. Furthermore, while
one may think that these provable properties imply a performance degradation,
we show that it is not the case. On the contrary, Sparx ciphers have very
competitive performance on lightweight processors. In fact, the most lightweight
version – Sparx-64 is in the top 3 for 16-bit micro-controllers according to the
classification method presented in [6].

Finally, we propose the LAX construction, where bit rotations are replaced
with a more general linear permutation. The bounds on the differential proba-
bility are expressed as a function of the branching number of the linear layer.
We note that the key insight behind this construction has been published in [13],
but its realization has been left as a challenge.

Outline. First, we introduce the notations and concepts used throughout the
paper in Sect. 2. In Sect. 3, we describe how an ARX-based cipher with provable
bounds can be built using an S-Box-based approach and how the method used is
a particular case of the more general Long Trail Strategy. Section 4 contains the
specification of the Sparx family of ciphers, the description of its design rationale
and a discussion about the efficiency of its implementation on microcontrollers.
The LAX structure is presented in Sect. 5. Finally, Sect. 6 concludes the paper.

2 Preliminaries

We use F2 to denote the set {0, 1}. Let f : Fn
2 → F

n
2 , (a, b) ∈ F

n
2 ×F

n
2 and x ∈ F

n
2 .

We denote the probability of the differential trail (a d→ b) by Pr[f(x)⊕f(x⊕a) =
b] and the correlation of the linear approximation (a �→ b) by

(
2 Pr[a · x =

b · f(x)] − 1
)

where y · z is the scalar product of y and z.
In an iterated block cipher, not all differential (respectively linear) trails are

possible. Indeed, they must be coherent with the overall structure of the round
function. For example, it is well known that a 2-round differential trail for the

Design Strategies for ARX with Provable Bounds: Sparx and LAX 487

AES with less than 4 active S-Boxes is impossible. To capture this notion, we
use the following definition.

Definition 1 (Valid Trail). Let f be an n-bit permutation. A trail a0 → ... →
ar for r rounds of f is a valid trail if Pr[ai → ai+1] > 0 for all i in [0, r − 1].
The set of all valid r-round differential (respectively linear) trails for f is denoted
Vδ(f)r (resp. V�(f)r).

We use the acronyms MEDCP and MELCC to denote resp. maximum
expected differential characteristic probability and maximum expected linear char-
acteristic correlation – a signature introduced earlier in [14]. The MEDCP of
the keyed function fki

: x �→ f(x⊕ki) iterated over r rounds is defined as follows:

MEDCP(fr) = max
(Δ0→...Δr)∈Vδ(f)r

r−1∏

i=0

Pr[Δi
d→ Δi+1],

where Pr[Δi
d→ Δi+1] is the expected value of the differential probability of Δi

d→
Δi+1 for the function fk when k is picked uniformly at random. MELCC(fr) is
defined analogously. Note that MEDCP(fr) and

(
MEDCP(f1)

)r are not equal.
As designers, we thrive to provide upper bounds for both MEDCP(fr) and

MELCC(fr). Doing so allows us to compute the number of rounds f needed
in a block cipher for the probability of all trails to be too low to be usable. In
practice, we want MEDCP(fr) � 2−n and MELCC(fr) � 2−n/2 where n is
the block size.

While this strategy is the best known, the following limitations must be taken
into account by algorithm designers.

1. The quantities MEDCP(fr) and MELCC(fr) are relevant only if we make
the Markov assumption, meaning that the differential and linear probabilities
are independent in each round. This would be true if the subkeys were picked
uniformly and independently at random but, as the master key has a limited
size, it is not the case.

2. These quantities are averages taken over all possible keys: it is not impossible
that there exists a weak key and a differential trail T such that the probability
of T is higher than MEDCP(fr) for this particular key. The same holds for
the linear probability.

3. These quantities deal with unique trails. However, it is possible that several
differential trails share the same input and output differences, thus leading to
a higher probability for said differential transition. This so-called differential
effect can be leveraged to decrease the data complexity of differential attack.
The same holds for linear attacks where several approximations may form a
linear hull.

Still, this type of bound is the best that can be achieved in a generic fashion (to
the best of our knowledge). In particular, this is the type of bound provided by
the wide-trail argument used in the AES.

488 D. Dinu et al.

3 ARX-Based Substitution-Permutation Network

In this section, we present a general design strategy for building ARX-based
block ciphers borrowing techniques from SPN design. The general idea is to build
a SPN with ARX-based S-boxes instead of with S-boxes based on look-up tables
(LUT). The proofs for the bound on the MEDCP and MELCC are inspired
by the wide-trail argument introduced in the design of the AES [12]. However,
because of the use of large S-Boxes, the method used relies on a different type of
interaction between the linear and non-linear layers. We call the corresponding
design strategy the long trail strategy. It is quite general and could be also applied
in other contexts e.g. for non-arx constructions.

First, we present possible candidates for the ARX-based S-Box and, along
the way, identify the likely reason behind the choice of the rotation constants
in SPECK-32. Then, we describe the long trail strategy in more details. Finally,
we present two different algorithms for computing a bound for the MEDCP
and MELCC of block ciphers built using a LT strategy. We also discuss how to
ensure that the linear layer provides sufficient diffusion.

3.1 ARX-Boxes

Definition 2 (ARX-box). An ARXbox is a permutation on m bits (where m
is much smaller than the block size) which relies entirely on addition, rotation
and XOR to provide both non-linearity and diffusion. An arx-box is a particular
type of S-Box.

Possible constructions for arx-boxes can be found in a recent paper by
Biryukov et al. [10]. A first one is based on the MIX function of Skein [3] and
is called Marx-2. The rotation amounts, namely {1, 2, 7, 3}, were chosen so as
to minimize the differential and linear probabilities. The key addition is done
over the full state. The second construction is called Speckey and consists of
one round of Speck-32 [8] with the key added to the full state instead of only
to half the state as in the original algorithm. The two constructions Marx-2
and Speckey are shown in Fig. 1a and b. The differential and linear bounds
for them are given in Table 1. While it is possible to choose the rotations used
in Speckey in such a way as to slightly decrease the differential and linear
bounds3, such rotations are more expensive on small microcontrollers which only
have instructions implementing rotations by 1 and by 8 (in both directions). We
infer, although we cannot prove it, that the designers of Speck-32 made similar
observations.

3.2 Naive Approaches and Their Limitations

A very simple method to build ARX-based ciphers with provable bounds on
MEDCP and MELCC is to use a SPN structure where the S-boxes are replaced
3 Both can be lowered by a factor of 2 if we choose rotations (9, 2), (9, 5), (11, 7) or

(7, 11) instead of (7, 2).

Design Strategies for ARX with Provable Bounds: Sparx and LAX 489

Fig. 1. Key addition followed by the candidate 32-bit ARX-boxes, Marx-2 and
Speckey. The branch size is 8 bits for Marx-2, 16 bits for Speckey.

Table 1. Maximum expected differential characteristic probabilities (MEDCP) and
maximum expected absolute linear characteristic correlations (MELCC) of Marx-2
and Speckey (log2 scale); r is the number of rounds.

r 1 2 3 4 5 6 7 8 9 10

Marx-2 MEDCP(Mr) −0 −1 −3 −5 −11 −16 −22 −25 −29 −35
MELCC(Mr) −0 −0 −1 −3 −5 −8 −10 −13 −15 −17

Speckey MEDCP(Sr) −0 −1 −3 −5 −9 −13 −18 −24 −30 −34
MELCC(Sr) −0 −0 −1 −3 −5 −7 −9 −12 −14 −17

by ARX operations for which we can compute the MEDCP and MELCC. This
is indeed the strategy we follow but care must be taken when actually choosing
the ARX-based operations and the linear layer.

Let us for example build a 128-bit block cipher with an S-Box layer consist-
ing in one iteration of Speckey on each 32-bit word and with an MDS linear
layer, say a multiplication with the MixColumns matrix with elements in GF (232)
instead of GF (28). The MEDCP bound of such a cipher, computed using a clas-
sical wide-trail argument, would be equal to 1! Indeed, there exists probability
1 differentials for 1-round Speckey so that, regardless of the number of active
S-Boxes, the bound would remain equal to 1. Such an approach is therefore not
viable.

As the problem identified above stems from the use of 1-round Speckey,
we now replace it with 3-round Speckey where the iterations are interleaved
with the addition of independent round keys. The best linear and differential
probabilities are no longer equal to 1, meaning that it is possible to build a
secure cipher using the same layer as before provided that enough rounds are
used. However, such a cipher would be very inefficient. Indeed, the MDS bound
imposes that 5 arx-boxes are active every 2 rounds, so that the MEDP bound
is equal to p

5r/2
d where r is the number of rounds and pd is the best differential

probability of the arx-box (3-rounds Speckey). To push the bound below 2−128

490 D. Dinu et al.

we need at least 18 SPN rounds, meaning 54 parallel applications of the basic
arx-round! We will show that, with our alternative approach, we can obtain the
same bounds with much fewer rounds.

3.3 The Long Trail Design Strategy

Informed by the shortcomings of the naive design strategies described in the
previous section, we devised a new method to build ARX-based primitives with
provable linear and differential bounds. It is based on the following observation.

Observation 1 (Impact of Long Trails). Let d(r) and �(r) be the MEDCP
and MELCC of some arx-box iterated r times and interleaved with the addition
of independent subkeys. Then, in most cases:

d(qr) � d(r)q and �(qr) � �(r)q.

In other words, in order to diminish the MEDCP and MELCC of a construc-
tion, it is better to allow long trails of arx-boxes without mixing.

For example, if we look at Speckey, the MEDCP for 3 rounds is 2−3 and
that of 6 rounds is 2−15 which is far smaller than (2−3)2 = 2−6 (see Table 1).
Similarly, the MELCC for 3 rounds is 2−1 and after 6 rounds it is 2−7 � (2−1)2.

In fact, a similar observation has been made by Nikolić when designing the
CAESAR candidate family Tiaoxin [15]. It was later generalized to larger block
sizes in [16], where Jean and Nikolić present, among others, the AES-based A2

⊕
permutation family. It uses a partial S-Box layer where the S-Box consists of
2 AES rounds and a word-oriented linear layer in such a way that some of the
S-Box calls can be chained within 2-round long trails. Thus, they may use the 4-
round bound on the number of active 8-bit AES S-Boxes, which is 25, rather than
twice the 2-round bound, which would be equal to 10 (see Table 2). Their work
on this permutation can be interpreted as a particular case of the observation
above.

Definition 3 (Long Trail). We call Long Trail (LT) an uninterrupted
sequence of calls to an arx-box interleaved with key additions. No difference
can be added into the trail from the outside. Such trails can happen for two
reasons.

1. A Static Long Trail occurs with probability 1 because one output word of the
linear layer is an unchanged copy of one of its input words.

Table 2. Bound on the number of active 8-bit S-Boxes in a differential (or linear) trail
for the AES.

R 1 2 3 4 5 6 7 8 9 10
Active S-Boxes 1 5 9 25 26 30 34 50 51 55

Design Strategies for ARX with Provable Bounds: Sparx and LAX 491

2. A Dynamic Long Trail occurs within a specific differential trail because one
output word of the linear layer consists of the XOR of one of its input words
with a non-zero difference and a function of words with a zero difference. In
this way the output word of the linear layer is again equal to the input word
as in a Static LT, but here this effect has been obtained dynamically.

Definition 4 (Long Trail Strategy). The Long Trail Strategy is a design
guideline: when designing a primitive with a rather weak but large S-Box (say,
an ARX-based permutation), it is better to foster the existence of long trails
rather than to have maximum diffusion in each linear layer.

This design principle has an obvious caveat: although slow, diffusion is nec-
essary! Unlike the WTS, in this context it is better to trade some of the power
of the diffusion layer in favor of facilitating the emergence of long trails.

The long trail strategy is a method for building secure and efficient ciphers
using a large but weak S-Box S such that we can bound the MEDCP (and
MELCC) of several iterations of x �→ S(x ⊕ k) with independent round keys.
In this paper, we focus on the case where S consists of arx operations but this
strategy could have broader applications such as, as briefly discussed above, the
design of block ciphers operating on large blocks using the AES round function
as a building block.

In a way, this design method is the direct opposite of the wide trail strategy
as it is summarized by Daemen and Rijmen in [11] (emphasis ours):

Instead of spending most of the resources on large S-boxes, the wide trail
strategy aims at designing the round transformation(s) such that there are
no trails with a low bundle weight. In ciphers designed by the wide trail
strategy, a relatively large amount of resources is spent in the linear step
to provide high multiple-round diffusion.

The long trail approach minimizes the amount of resources spent in the linear
layer and does spend most of the resources on large S-Boxes. Still, as discussed
in the next section, the method used to bound the MEDCP and MELCC in the
long trail strategy is heavily inspired by the one used in the wide trail strategy.

A Cipher Structure for the LT Strategy. We can build block ciphers based
on the long trail strategy using the following two-level structure. First, we must
choose an S-Box layer operating on w words in parallel. The composition of a
key addition in the full state and the application of this S-Box layer is called a
round. Several rounds are iterated and then a word-oriented linear mixing layer
is applied to ensure diffusion between the words. The composition of r rounds
followed by the linear mixing layer is called a step4, as described in Fig. 2. The
encryption thus consists in iterating such steps. We used this design strategy to
build a block cipher family, Sparx, which we describe in Sect. 4.

4 This terminology is borrowed from the specification of LED [17] which also groups
several calls of the round function into a step.

492 D. Dinu et al.

Fig. 2. A cipher structure for the LT strategy.

Long Trail-Based Bounds. In what follows we only discuss differential long
trails for the sake of brevity. Linear long trails are treated identically.

Definition 5 (Truncated LT Decomposition). Consider a cipher with a
round function operating on w words. A truncated differential trail is a sequence
of values of {0, 1}w describing whether an S-Box is active at a given round.
The LT Decomposition of a truncated differential trail is obtained by grouping
together the words of the differential trails into long trails and then counting how
many active long trails of each length are present. It is denoted {ti}i≥1 where ti
is equal to the number of truncated long trails with length i.

Example 1. Consider a 64-bit block cipher using a 32-bit S-Box, one round of
Feistel network as its linear layer and 4 steps without a final linear layer. Consider
the differential trail (δL

0 , δR
0) → (δL

1 , δR
1) → (0, δR

2) → (δL
3 , 0) (see Fig. 3 where

the zero difference is dashed). Then this differential trail can be decomposed into
3 long trails represented in black, blue and red: the first one has length 1 and
δR
0 as its input; the second one has length 2 and δL

0 as its input; and the third
one has length 3 and δL

1 as its input so that the LT decomposition of this trail is
{t1 = 1, t2 = 1, t3 = 1}. Using the terminology introduced earlier, the first two
trails are Static LT, while the third one is Dynamic LT.

Theorem 1 (Long Trail Argument). Consider a truncated differential trail
T covering r rounds consisting of an S-Box layer with S-Box S interleaved with
key additions and some linear layer. Let {ti}i≥1 be the LT decomposition of T .
Then the probability pD of any fully specified differential trail fitting in T is
upper-bounded by

pD ≤
∏

i≥1

(
MEDCP(Si)

)ti

where MEDCP(Si) is an upper-bound on the probability of a differential trail
covering i iterations of S.

Proof. Let Δi,s
d→ Δj,s+1 denote any differential trail occurring at the S-Box

level in one step, so that the S-Box with index i at step s sees the transition
Δi,s

d→ Δj,s+1. By definition of a long trail, we have in each long trail a chain of

differential trails Δi0,s0

d→ Δi1,s0+1
d→ ...

d→ Δit,s0+t which, because of the lack

Design Strategies for ARX with Provable Bounds: Sparx and LAX 493

δL0 δR0
S S

L ⊕
δL1 δR1

L

S S

⊕
0 δR2

L

S S

⊕
δL3 0

S S

Fig. 3. An example of active LT decomposition.

of injection of differences from the outside, is a valid trail for t iterations of the S-
Box. This means that the probability of any differential trail following the same
sequence of S-boxes as in this long trail is upper-bounded by MEDCP(St). We
simply bound the product by the product of the bounds to derive the theorem.�	

3.4 Choosing the Linear Layer: Bounding the MEDCP and MELCC
while Providing Diffusion

In order to remain as general as possible, in this section we do not consider the
details of a specific S-Box but instead we focus on fleshing out design criteria
for the linear layer. All the information for the S-Box that is necessary to follow
the explanation is the MEDCP and MELCC of its r-fold iterations including
the key additions e.g. the data provided in Table 1 for our arx-box candidates.

As the linear layers we consider may be weaker than usual designing spn,
it is also crucial that we ensure that ciphers built using such a linear layer are
not vulnerable to integral attacks [18], in particular those based on the divi-
sion property [19]. Incidentally, this gives us a criteria quantifying the diffusion
provided by several steps of the cipher.

In this section, we propose two methods for bounding the MEDCP and
MELCC of several steps of a block cipher. The first one is applicable to any
linear layer but is relatively inefficient, while the second one works only for a
specific subset of linear layers but is very efficient.

When considering truncated differential trails, it is hard to bound the proba-
bility of the event that differences in two or more words cancel each other in the
linear layer i.e. the event that a Dynamic LT occurs. Therefore, for simplicity
we assume that such cancellations happen for free i.e. with probability 1. Due to
this simplification, we expect our bounds to be higher (i.e. looser) than the tight
bounds. In other words, we underestimate the security of the cipher. Note that

494 D. Dinu et al.

we also exclude the cases where the full state at some round has zero difference
as the latter is impossible due to the cipher being a permutation.

Algorithms for Bounding MEDCP and MELCC of a Cipher. In this
sub-section we propose generic approaches that do not depend on the number of
rounds per step. In fact, to fully avoid the confusion between rounds and steps
in what follows we shall simply refer to SPN rounds.

One way to bound the MEDCP and MELCC of a cipher is as follows:

1. Enumerate all possible truncated trails composed of active/inactive S-boxes.
2. Find an optimal decomposition of each trail into long trails (LT).
3. Bound the probability of each trail using the product of the MEDCP (resp.

MELCC) of all active long trails i.e. by applying the Long Trail Argument
(see Theorem 1) on the corresponding optimal trail decomposition.

4. The maximum bound over all trails is the final upper bound.

This approach is feasible only for a small number of rounds, because the
number of trails grows exponentially. The algorithm is based on a recursive
dynamic programming approach and has time complexity O(wr2), where w is
the number of S-Boxes applied in parallel in each S-Box layer and r is the number
of rounds.

As noted, the most complicated step in the above procedure is finding an opti-
mal decomposition of a given truncated trail into long trails. The difficulty arises
from the so-called branching: situation in which a long trail may be extended in
more than one way. Recall that our definition of LT (cf. Definition 3) relies on
the fact that there is no linear transformation on a path between two S-Boxes in
a LT. The only transformations allowed are some XORs. Therefore, branching
happens only when some output word of the linear layer receives two or more
active input words without modifications. In order to cut off the branching effect
(and thus to make finding the optimal decomposition of a LT feasible), we can
put some additional linear functions that will modify the contribution of (some
of) the input words. Equivalently, when choosing a linear layer we simply do
not consider layers which cause branching of LTs. As we will show later, this
restriction has many advantages.

To simplify our study of the linear layer, we introduce a matrix representation
for it. In a block cipher operating on w words, a linear layer may be expressed
as a w × w block matrix. We will denote zero and identity sub-matrices by
0 and 1 respectively and an unspecified (arbitrary) sub-matrices by L. This
information is sufficient for analyzing the high-level structure of a cipher. Using
this notation, the linear layers to which we restrict our analysis have matrices
where each column has at most one 1.

For the special subset of linear layers outlined above, we present an algorithm
for obtaining MEDCP and MELCC bounds, that is based on a dynamic pro-
gramming approach. Since there is no LT branching, any truncated trail consists
of disjoint sequences of active S-Boxes. By Observation 1, we can treat each such

Design Strategies for ARX with Provable Bounds: Sparx and LAX 495

sequence as a LT to obtain an optimal decomposition. Because of this simpli-
fication, we can avoid enumerating all trails by grouping them in a particular
way.

We proceed round by round and maintain a set of best trails up to an equiv-
alence relation, which is defined as follows. For all S-Boxes at the current last
round s, we assign a number, which is equal to the length of the LT that covers
this S-Box, or zero if the S-Box is not active. We say that two truncated trails for
s steps are equivalent if the tuples consisting of those numbers (current round
s and length of LT) are the same for both trails. This equivalence captures the
possibility to replace some prefix of a trail by an equivalent one without breaking
the validity of the trail or its LT decomposition. The total probability, however,
can change. The key observation here is that from two equivalent trails we can
keep only the one with the highest current probability. Indeed, if the optimal
truncated trail for all r rounds is an extension of the trail for s rounds with lower
probability, we can take the first s rounds from the trail with higher probabil-
ity without breaking anything and obtain a better trail, which contradicts the
assumed optimality.

Due to page limit constraints, the pseudo-code for the algorithm is given in
the full version of this paper [20].

This algorithm can be used to bound the probability of linear trails. Propaga-
tion of a linear mask through some linear layer can be described by multiplying
the mask by the transposed inverse of the linear layer’s matrix. In our matrix
notation we can easily transpose the matrix but inversion is harder. However, we
can build the linear trails bottom-up (i.e. starting from the last round): in this
case we need only the transposed initial matrix. Our algorithm does not depend
on the direction, so we obtain bounds on linear trails probabilities by running
the algorithm on the transposed matrix using the linear bounds for the iterated
S-box.

Ensuring Resilience Against Integral Attacks. As illustrated by the struc-
tural attack against SASAS and a recent generalization [21] to ciphers with more
rounds, a spn with few rounds may be vulnerable to integral attacks. This attack
strategy has been further improved by Todo [19] who proposed the so-called divi-
sion property as a means to track which bit should be fixed in the input to have
a balanced output. He also described an algorithm allowing an attacker to easily
find such distinguishers.

We implemented this algorithm to search for division-property-based integral
trails covering as many rounds as possible. With it, for each matrix candidate
we compute a maximum number of rounds covered by such a distinguisher. This
quantity can then be used by the designer of the primitive to see if the level of
protection provided against this type of attack is sufficient or not.

Tracking the evolution of the division property through the linear layer
requires special care. In order to do this, we first make a copy of each word
and apply the required XORs from the copy to the original words. Due to such
state expansion, the algorithm requires both a lot of memory and time. In fact,

496 D. Dinu et al.

it is even infeasible to apply on some matrices. To overcome this issue, we ran
the algorithm with reduced word size. During our experiments, we observed that
such an optimization may only result in longer integral characteristics and that
this side effect occurs only for very small word sizes (4 or 5 bits). In light of this,
we conjecture that the values obtained in these particular cases are upper bounds
and are very close to the values which could be obtained without reducing the
word size.

4 The SPARX Family of Ciphers

In this Section, we describe a family of block ciphers built using the framework
laid out in the previous section. The instance with block size n and key size k is
denoted Sparx-n/k.

4.1 High Level View

The plaintexts and ciphertexts consist of w = n/32 words of 32 bits each and
the key is divided into v = k/32 such words. The encryption consists of ns steps,
each composed of an arx-box layer of ra rounds and a linear mixing layer. In the
arx-box layer, each word of the internal state undergoes ra rounds of Speckey,
including key additions. The v words in the key state are updated once ra arx-
boxes have been applied to one word of the internal state. The linear layers λw

for w = 2, 4 provide linear mixing for the w words of the internal state.
This structure is summarized by the pseudo-code in Algorithm 1. The struc-

ture of one round is represented in Fig. 4, where A is the 32-bit arx-box con-
sisting in one unkeyed Speck-32 round. We also use Aa to denote a rounds of
Speckey with the corresponding key additions (see Fig. 5a).

The different versions of Sparx all share the same definition of A. However,
the permutations λw and Kv depend on the block and key sizes. The different
members of the Sparx-family are specified below. The round keys can either be
derived on the fly by applying Kv on the key state during encryption or they can
be precomputed and stored. The first option requires less RAM, while the second
is faster. The only operations needed to implement any instance of Sparx are:

Fig. 4. A high level view of step s of Sparx.

Design Strategies for ARX with Provable Bounds: Sparx and LAX 497

Algorithm 1. Sparx encryption
Inputs plaintext (x0, ..., xw−1); key (k0, ..., kv−1)
Output ciphertext (y0, ..., yw−1)

Let yi ← xi for all i ∈ [0, ..., w − 1]
for all s ∈ [0, ns − 1] do

for all i ∈ [0, w − 1] do
for all r ∈ [0, ra − 1] do

yi ← yi ⊕ kr

yi ← A(yi)
end for
(k0, ..., kv−1) ← Kv

(
(k0, ..., kv−1)

)
� Update key state

end for
(y0, ..., yw−1) ← λw

(
(y0, ..., yw−1)

)
� Linear mixing layer

end for
Let yi ← yi ⊕ ki for all i ∈ [0, ..., w − 1] � Final key addition
return (y0, ..., yw−1)

– addition modulo 216, denoted �,
– 16-bit exclusive-or (XOR), denoted ⊕, and
– 16-bit rotation to the left or right by i, denoted respectively x ≪ i and x ≫ i.

We claim that no attack using less than 2k operations exists against Sparx-n/k
in neither the single-key nor in the related-key setting. We also faithfully declare
that we have not hidden any weakness in these ciphers. Sparx is free for use
and its source code is available in the public domain5.

4.2 Specification

Table 3 summarizes the different Sparx instances and their parameters. The
quantity minsecure(ns) corresponds to the minimum number of steps for which
we can prove that the MEDCP is below 2−n, that the MELCC is below 2−n/2

for the number of rounds per step chosen and for which we cannot find integral
distinguishers covering this amount of steps.

SPARX-64/128. The lightest instance of Sparx is Sparx-64/128. It operates
on two words of 32 bits and uses a 128-bit key. There are 8 steps and 3 rounds
per step. As it takes 5 steps to achieve provable security against linear and
differential attacks, our security margin is at least equal to 37% of the rounds.
Furthermore, while our long trail argument proves that 5 steps are sufficient to
ensure that there are no single-trail differential and linear distinguishers, we do
not expect this bound to be tight.

The linear layer λ2 simply consists of a Feistel round using L as a Feistel func-
tion. The general structure of a step of Sparx-64/128 is provided in Fig. 5b. The

5 See https://www.cryptolux.org/index.php/SPARX.

https://www.cryptolux.org/index.php/SPARX

498 D. Dinu et al.

Table 3. The different Sparx instances.

Sparx-64/128 Sparx-128/128 Sparx-128/256

State words w 2 4 4
Key words v 4 4 8
Rounds/Step ra 3 4 4
Steps ns 8 8 10
Best Attack (# rounds) 15/24 22/32 24/40
minsecure(ns) 5 5 5

Fig. 5. A high level view of Sparx-64/128. Branches have a width of 16 bits (except
for the keys in the step structure).

128-bit permutation used in the key schedule has a simple definition summarized
in Fig. 6, where the counter r is initialized to 0. It corresponds to the pseudo
code given in Algorithm 2, where (z)L and (z)R are the 16-bit left and right
halves of the 32-bit word z.

The L function is borrowed from Noekeon [22] and can be defined using
16- or 32-bit rotations. It is defined as a Lai-Massey structure mapping a 32-bit
value x||y to x ⊕ (

(x ⊕ y) ≪ 8
)||y ⊕ (

(x ⊕ y) ≪ 8
)
. Alternatively, it can be

seen as a mapping of a 32-bit value z to z ⊕ (z ≪32 8) ⊕ (z ≫32 8) where the
rotations are over 32 bits.

k0 k1 k2 k3

A r + 1

Fig. 6. K64
4 (used in Sparx-64/128).

r ← r + 1
k0 ← A(k0)
(k1)L ← (k1)L + (k0)L mod 216
(k1)R ← (k1)R + (k0)R mod 216
(k3)R ← (k3)R + r mod 216
k0, k1, k2, k3 ← k3, k0, k1, k2

Algorithm 2. Pseudo-code of K64
4

Design Strategies for ARX with Provable Bounds: Sparx and LAX 499

SPARX-128/128 and SPARX-128/256. For use cases in which a larger block
size can be afforded, we provide Sparx instances with a 128-bit block size and
128- or 256-bit keys. They share an identical step structure which is fairly similar
to Sparx-64/128. Indeed, the linear layer relies again on a Feistel function except
that L is replaced by L′, a permutation of {0, 1}64. Both Sparx-128/128 and
Sparx-128/256 use 4 rounds per step but the first uses 8 steps while the last
uses 10.

Fig. 7. The step structure of both Sparx-128/128 and Sparx-128/256.

Fig. 8. The 128-bit permutation K128
4

used in Sparx-128/128.

r ← r + 1
k0 ← A(k0)
(k1)L ← (k1)L + (k0)L mod 216

(k1)R ← (k1)R + (k0)R mod 216

k2 ← A(k2)
(k3)L ← (k3)L + (k2)L mod 216

(k3)R ← (k3)R + (k2)R + r mod 216

k0, k1, k2, k3 ← k3, k0, k1, k2

Algorithm 3. Pseudo-code of K128
4

The Feistel function L′ can be defined as follows. Let a||b||c||d be a 64-bit
word where each a, ..., d is 16-bit long. Let t = (a ⊕ b ⊕ c ⊕ d) ≪ 8. Then
L′(a||b||c||d) = c⊕t || b⊕t || a⊕t || d⊕t. This function can also be expressed using
32-bit rotations. Let x||y be the concatenation of two 32-bit words and L′

b denote
L′ without its final branch swap. Let t =

(
(x ⊕ y) ≫32 8

) ⊕ (
(x ⊕ y) ≪32 8

)
,

then L′
b(x||y) = x ⊕ t||y ⊕ t. Alternatively, we can use L to compute L′

b as
follows: L′

b(x||y) = y ⊕ L(x ⊕ y)||x ⊕ L(x ⊕ y).
These two ciphers, Sparx-128/128 and Sparx-128/256, differ only by their

number of steps and by their key schedule. The key schedule of Sparx-128/128
needs a 128-bit permutation K128

4 described in Fig. 8 and Algorithm 3 while

500 D. Dinu et al.

Fig. 9. The 256-bit permutation K256
8 used in Sparx-128/256.

Algorithm 4. Sparx-128/256 key schedule permutation K256
8 .

r ← r + 1
k0 ← A(k0)
(k1)L ← (k1)L + (k0)L mod 216

(k1)R ← (k1)R + (k0)R mod 216

k4 ← A(k4)
(k5)L ← (k5)L + (k4)L mod 216

(k5)R ← (k5)R + (k4)R + r mod 216

k0, k1, k2, k3, k4, k5, k6, k7 ← k5, k6, k7, k0, k1, k2, k3, k4

Sparx-128/256 uses a 256-bit permutation K256
4 , which is presented in both

Fig. 9 and Algorithm 4.

4.3 Design Rationale

Choosing the ARX-box. We chose the round function of Speckey/Speck-
32 over Marx-2 because of its superior implementation properties. Indeed, its
smaller total number of operations means that a cipher using it needs to do
fewer operations when implemented on a 16-bit platform. Ideally, we would have
used an arx-box with 32-bit operations but, at the time of writing, no such
function has known differential and linear bounds (cf. Table 1) for sufficiently
many rounds.

We chose to evaluate the iterations of the arx-box over each branch rather
than in parallel because such an order decreases the number of times each 32-
bit branch must be loaded in CPU registers. This matters when the number of
registers is too small to contain both the full key and the full internal state of
the cipher and does not change anything if it is not the case.

Mixing Layer, Number of Steps and Rounds per Step. Our main app-
roach for choosing the mixing layer was exhaustive enumeration of all matrices
suitable for our long trail bounding algorithm from Sect. 3.4 and selecting the
final matrix according to various criteria, which we will discuss later.

Design Strategies for ARX with Provable Bounds: Sparx and LAX 501

For Sparx-64/128, there is only one linear layer fulfilling our design criteria:
one corresponding to a Feistel round. For such a structure, we found that the best
integral covers 4 steps (without the last linear layer) and that, with 3 rounds
per step, the MEDCP and MELCC are bounded by 2−75 and 2−38. These
quantities imply that no single trail differential or linear distinguisher exists for
5 or more steps of Sparx-64/128.

For Sparx instances with 128-bit block we implemented an exhaustive search
on a large subset of all possible linear layers. After some filtering, we arrived at
roughly 3000 matrices. For each matrix we ran our algorithm from Sect. 3.4 to
obtain bounds on MEDCP and MELCC for different values of the number of
rounds per step (ra). We also ran the algorithm for searching integral character-
istics described in Sect. 3.4.

Then, we analyzed the best matrices and found that there is a matrix which
corresponds to a Feistel-like linear layer with the best differential/linear bound
for ra = 4. This choice also offered good compromise between other parameters,
such as diffusion, strength of the ARX-box, simplicity and easiness/efficiency of
implementation. It also generalizes elegantly the linear layer of Sparx-64/128.
We thus settled for this Feistel-like function.

For more details on the selection procedure and other interesting candidates
for the linear layer we refer the reader to the full version of this paper [20].

The Linear Feistel Functions. The linear layer obtained using the steps
described above is only specified at a high level, it remains to define the linear
Feistel functions L and L′. The function L that we have chosen has been used
in the Lai-Massey round constituting the linear layer of Noekeon [22]. We
reuse it here because it is cheap on lightweight processors as it only necessitates
one rotation by 8 bits and 3 XORs. It also provides some diffusion as it has
branching number 3. Its alternative representation using 32-bit rotations allows
an optimized implementation on 32-bit processors.

Used for a larger block size, the Feistel function L′ is a generalization of
L: it also relies on a Lai-Massey structure as well as a rotation by 8 bits. The
reason behind these choices are the same as before: efficiency and diffusion.
Furthermore, L′ must also provide diffusion between the branches. While this is
achieved by the XORs, we further added a branch swap in the bits of highest
weight. This ensures that if only one 32-bit branch is active at the input of L′ then
two branches are active in its output. Indeed, there are two possibilities: either
the output of the rotation is non-zero, in which case it gets added to the other
branch and spreads to the whole state through the branch swap. Otherwise, the
output is equal to 0, which means that the two 16-bit branches constituting the
non-zero 32-bit branch hold the same non-zero value. These will then be spread
over the two output 32-bit branches by the branch swap. The permutation L′

also breaks the 32-bit word structure, which can help prevent the spread of
integral patterns.

502 D. Dinu et al.

Key Schedule. The key schedules of the different versions of Sparx have been
designed using the following general guidelines.

First, we look at criteria related to the implementation. To limit code size,
components from the round function of Sparx are re-used in the key-schedule
itself. To accommodate cases where the memory requirements are particularly
stringent, we allow an efficient on-the-fly computation of the key.

We also consider cryptographic criteria. For example, we need to ensure that
the keys used within each chain of 3 or 4 arx-boxes are independent from one
another. As we do not have enough entropy from the master key to generate
truly independent round keys, we must also ensure that the round-keys are as
different as possible from one another. This implies a fast mixing of the master
key bits in the key schedule. Furthermore, in order to prevent slide attacks [23],
we chose to have the round keys depend on the round index. Finally, since the
subkeys are XOR-ed in the key state, we want to limit the presence of high
probability differential pattern in the key update. Diffusion in the key state is
thus provided by additions modulo 216 rather than exclusive-or. While there
may be high probability patterns for additive differences, these would be of little
use because the key is added by an XOR to the state.

As with most engineering tasks, some of these requirements are at odds
against each other. For example, it is impossible to provide extremely fast diffu-
sion while also being extremely lightweight. Our designs are the most satisfying
compromises we could find.

4.4 Security Analysis

Single Trail Differential/Linear Attack. By design and thanks to the long
trail argument, we know that there is no differential or linear trail covering 5
steps (or more) with a useful probability for any instance of Sparx. Therefore,
the 8 steps used by Sparx-64/128 and Sparx-128/128 and the 10 used by
Sparx-128/256 are sufficient to ensure resilience against such attacks.

Attacks Exploiting a Slow Diffusion. We consider several attacks in this
category, namely impossible and truncated differential attacks, meet-in-the mid-
dle attacks as well as integral attacks.

When we chose the linear layers, we ensured that they prevented division-
property-based integral attacks, meaning that they provide good diffusion. Fur-
thermore, the Feistel structure of the linear layer makes it easy to analyse and
increases our confidence in our designs. In the case of 128-bit block sizes, the
Feistel function L′ has branching number 3 in the sense that if only one 32-bit
branch is active then the two output branches are active. This prevents attacks
trying to exploit patterns at the branch level. Finally, this Feistel function also
breaks the 32-bit word structure through a 16-bit branch swap which frustrates
the propagation of integral characteristics.

Design Strategies for ARX with Provable Bounds: Sparx and LAX 503

Meet-in-the-middle attacks are further hindered by the large number of key
additions. This liberal use of the key material also makes it harder for an attacker
to guess parts of it to add rounds at the top or at the bottom of, say, a differential
characteristic.

Best Attacks. The best attacks we could find are integral attacks based on
Todo’s division property. The attack against Sparx-64/128 covers 15/24 rounds
and recovers the key in time 2101 using 237 chosen plaintexts and 264 blocks
of memory. For 22-round Sparx-128/128, we can recover the key in time 2105

using 2102 chosen plaintexts and 272 blocks of memory. Finally, we attack 24-
round Sparx-128/256 in time 2233, using 2104 chosen plaintexts and 2202 blocks
of memory. A description of these attacks as well as the description of some
time/data tradeoffs are provided in the full version of this paper [20].

4.5 Software Implementation

Next we describe how Sparx can be efficiently implemented on three resource
constrained microcontrollers widely used in the Internet of Things (IoT), namely
the 8-bit Atmel ATmega128, the 16-bit TI MSP430, and the 32-bit ARM Cortex-
M3. We support the described optimization strategies with performance figures
extracted from assembly implementations of Sparx-64/128 and Sparx-128/128
using the FELICS open-source benchmarking framework [24]. We use the same
tool to get the most suitable implementations of Sparx for the two IoT-specific
usage scenarios described in [6]. The first scenario uses a block cipher to encrypt
128 bytes of data using CBC mode, while the second encrypts 128 bits of data
using a cipher in CTR mode. The most suitable implementation for a given usage
scenario is selected using the Figure of Merit (FOM) defined in [6]:

FOM(i1, i2, i3) =
pi1,AV R + pi2,MSP + pi3,ARM

3
,

where the performance parameter pi,d aggregates the code size, the RAM con-
sumption, and the execution time for implementation i according to the require-
ments of the usage scenario. The smaller the FOM value of an implementation
in a certain use case, the better (more suitable) is the implementation for that
particular use case. Finally, we compare the results of our implementations with
the results available on the tool’s website.6

Implementation Aspects. In order to efficiently implement Sparx on a
resource constrained embedded processor, it is important to have a good under-
standing of its instruction set architecture (ISA). The number of general-purpose
registers determines whether the entire cipher’s state can be fitted into registers

6 We submitted our implementations of Sparx to the FELICS framework. Up to date
results are available at https://www.cryptolux.org/index.php/FELICS.

https://www.cryptolux.org/index.php/FELICS

504 D. Dinu et al.

Table 4. Performance characteristics of the main components of Sparx

Component AVR MSP ARM
Cycles Registers Cycles Registers Cycles Registers

A 16 4 + 1 9 2 11 1 + 3
A−1 19 4 9 2 12 1 + 3
λ2 – 1-step 24 8 + 1 11 4 + 3 5 2 + 1
λ2 – 2-steps 12 8 7 4 + 1 3 2
λ4 – 1-step 48 16 + 2 36 8 + 1 16 4 + 5
λ4 – 2-steps 24 16 + 2 13 8 + 1 12 4 + 4

or whether a part of it has to be spilled to RAM. Memory operations are gen-
erally slower than register operations, consume more energy and increase the
vulnerability of an implementation to side channel attacks [25]. Thus, the num-
ber of memory operations should be reduced as much as possible. Ideally the
state should only be read from memory at the beginning of the cryptographic
operation and written back at the end. Concerning the three targets we imple-
mented Sparx for, they have 32 8-bit, 12 16-bit, and 13 32-bit general-purpose
registers, which result in a total capacity of 256 bytes, 192 bytes, and 416 bytes
for AVR, MSP, and ARM, respectively.

The Sparx family’s simple structure consists only of three components: the
arx-box A and its inverse A−1, the linear layer λ2 or λ4 (depending on the
version), and the key addition. The key addition (bitwise XOR) does not require
additional registers and its execution time is proportional to the ratio between
the operand width and the target device’s register width. The execution time in
cycles and the number of registers required to perform A, A−1, λ2, and λ4 on
each target device are given in Table 4.

The costly operation in terms of both execution time and number of required
registers is the linear layer. The critical point is reached for the 128-bit linear
layer λ4 on MSP, which requires 13 registers. Since this requirement is above
the number of available registers, a part of the state has to be saved onto the
stack. Consequently, the execution time increases by 5 cycles for each push –
pop instruction pair.

A 2-step implementation uses a simplified linear layer without the most
resource demanding part – the branch swaps. It processes the result of the left
branch after the first step as the right branch of the second step and similarly
the result of the right branch after the first step as the left branch of the second
step. This technique reduces the number of required registers and improves the
execution time at the cost of an increase in code size. The performance gain is
a factor of 2 on AVR, 2.7 on MSP, and 1.3 on ARM.

The linear transformations L and L′ exhibit interesting implementation prop-
erties. For each platform there is a different optimal way to perform them. The

Design Strategies for ARX with Provable Bounds: Sparx and LAX 505

Table 5. Different trade-offs between the execution time and code size for encryption
of a block using Sparx-64/128 and Sparx-128/128. Minimal values are given in bold.

Implementation Block size [bits] AVR MSP ARM

Time Code RAM Time Code RAM Time Code RAM

[cyc.] [B] [B] [cyc.] [B] [B] [cyc.] [B] [B]

1-step rolled 64 1789 248 2 1088 166 14 1370 176 28

1-step unrolled 64 1641 424 1 907 250 12 1100 348 24

2-steps rolled 64 1677 356 2 1034 232 10 1331 304 28

2-steps unrolled 64 1529 712 1 853 404 8 932 644 24

1-step rolled 128 4553 504 11 2809 300 26 3463 348 44

1-step unrolled 128 4165 1052 10 2353 584 24 2784 884 40

2-steps rolled 128 4345 720 11 2593 432 18 3399 620 40

2-steps unrolled 128 3957 1820 10 2157 1004 16 2377 1692 36

optimal way to implement the linear layers on MSP is using the representations
from Figs. 5c and 7b. On ARM the optimal implementation performs the rota-
tions directly on 32-bit values. The function L can be executed on AVR using
12 XOR instructions and no additional registers. On the other hand, the opti-
mal implementation of L′ on AVR requires 2 additional registers and takes 24
cycles.7

The linear layer performed after the last step of Sparx can be dropped
without affecting the security of the cipher, but it turns out that it results in
poorer overall performances. The only case when this strategy helps is when top
execution time is the main and only concern of an implementation. Thus we
preferred to keep the symmetry of the step function and the overall balanced
performance figures.

The salient implementation-related feature of Sparx family of ciphers is
given by the simple and flexible structure of the step function depicted in Fig. 4,
which can be implemented using different optimization strategies. Depending on
specific constraints, such as code size, speed, or energy requirements to name a
few, the rounds inside the step function can be rolled or unrolled; one or two
step functions can be computed at once. The main possible trade-offs between
the execution time and code size are explored in Table 5.

Except for the 1-step implementation of Sparx-128/128 on MSP, which
needs RAM memory to save the cipher’s state, all other RAM requirements
are determined only by the process of saving the context onto the stack at
the begging of the measured function. Thus, the RAM consumption of a pure
assembly implementation would be zero, except for the 1-step rolled and unrolled
implementations of Sparx-128/128 on MSP.

Due to the 16-bit nature of the cipher, performing A and A−1 on a 32-bit
platform requires a little bit more execution time and more auxiliary registers
than performing the same operations on a 16-bit platform. The process of packing

7 For more details please see the implementations submitted to the FELICS framework
(https://www.cryptolux.org/index.php/FELICS).

https://www.cryptolux.org/index.php/FELICS

506 D. Dinu et al.

and unpacking a state register to extract and store back the two 16-bit branches
of A or A−1 adds a performance penalty. The cost is amplified by the fact that
the flexible second operand can not be used with a constant to extract the least or
most significant 16 bits of a 32-bit register. Thus an additional masking register
is required.

The simple key schedules of Sparx-64/128 and Sparx-128/128 can be imple-
mented in different ways. The most efficient implementation turns out to be the
one using the 1-iteration rolled strategy. Another interesting approach is the 4-
iterations unrolled strategy, which has the benefit that the final permutation is
achieved for free by changing the order in which the registers are stored in the
round keys. This strategy increases the code size by up to a factor of 4, while
the execution time is on average 25 % better.

Although we do not provide performance figures for Sparx-128/256, we
emphasize that the only differences with respect to implementation aspects
between Sparx-128/256 and Sparx-128/128 are the key schedules and the dif-
ferent number of steps.

Evaluation and Comparison. We evaluate the performance of our imple-
mentations of Sparx using FELICS in the two aforementioned usage scenarios.
The key performance figures are given in the full version of this paper [20]. The
balanced results are achieved using the 1-step implementations of Sparx-64/128
and Sparx-128/128.

Table 6. Top 10 best implementations in Scenario 1 (encryption key schedule + encryp-
tion and decryption of 128 bytes of data using CBC mode) ranked by the Figure of
Merit (FOM) defined in FELICS. The results for all ciphers are the current ones from
the Triathlon Competition at the moment of submission. The smaller the FOM, the
better the implementation.

Rank Cipher Block size Key size Scenario 1
FOM

1 Speck 64 128 5.0
2 Chaskey-LTS 128 128 5.0
3 Simon 64 128 6.9
4 RECTANGLE 64 128 7.8
5 LEA 128 128 8.0
6 SPARX 64 128 8.6

7 SPARX 128 128 12.9

8 HIGHT 64 128 14.1
9 AES 128 128 15.3
10 Fantomas 128 128 17.2

Design Strategies for ARX with Provable Bounds: Sparx and LAX 507

Then we compare the performance of Sparx with the current results avail-
able on the Triathlon Competition at the time of submission.8 As can be seen
in Table 6 the two instances of Sparx perform very well across all platforms
and rank very high in the FOM-based ranking. The forerunners are the NSA
designs Simon and Speck, Chaskey, RECTANGLE and LEA, but, apart from
RECTANGLE, none of them provides provable bounds against differential and
linear cryptanalysis.

Besides the overall good performance figures in the two usage scenarios, the
following results are worth mentioning:

– the execution time of Sparx-64/128 on MSP is in the top 3 of the fastest
ciphers in both scenarios thanks to its 16-bit oriented operations;

– the code size of the 1-step rolled implementations of Sparx-64/128 and
Sparx-128/128 on MSP is in the top 5 in both scenarios as well as in the
small code size and RAM table for scenario 2;

– the 1-step rolled implementation of Sparx-64/128 breaks the previous mini-
mum RAM consumption record on AVR in scenario 2;

– the execution time of the 2-steps implementation of Sparx-64/128 in scenario
2 is in the top 3 on MSP, in the top 5 on AVR, and in the top 7 on ARM;
it also breaks the previous minimum RAM consumption records on AVR and
MSP.

Given its simple and flexible structure as well as its very good overall rank-
ing in the Triathlon Competition of lightweight block ciphers, the Sparx family
of lightweight ciphers is suitable for applications on a wide range of resource
constrained devices. The absence of look-up tables reduces the memory require-
ments and provides, according to [25], some intrinsic resistance against power
analysis attacks.

5 Replacing Rotations with Linear Layers: The LAX
Construction

In this section we outline an alternative strategy for designing an ARX cipher
with provable bounds against differential and linear cryptanalysis. It is com-
pletely independent from the Long Trail Strategy outlined in the previous sec-
tions and uses the differential properties of modular addition to derive proofs of
security.

5.1 Motivation

In his Master thesis [13] Wallén posed the challenge to design a cipher that uses
only addition modulo-2 and GF(2)-affine functions, and that is provably resis-
tant against differential and linear cryptanalysis [13, Sect. 5]. In this section we
partially solve this challenge by proposing a construction with provable bounds
against single-trail differential cryptanalysis (DC).
8 Up to date results are available at https://www.cryptolux.org/index.php/FELICS.

https://www.cryptolux.org/index.php/FELICS

508 D. Dinu et al.

5.2 Theoretical Background

Definition 6 (xdp+). The XOR differential probability (DP) of addition modulo
2n is defined as:

xdp+(α, β → γ) = 2−2n · #{(x, y) : ((x ⊕ α) + (y ⊕ β)) ⊕ (x + y) = γ} ,

where α, β and γ are n-bit XOR differences and x and y are n-bit values.

The XOR linear correlation of addition modulo 2n (xlc+) is defined in a sim-
ilar way. Efficient algorithms for the computation of xdp+ and xlc+ have been
proposed resp. in [26–29]. These results also reveal the following property. The
magnitude of both xdp+ and |xlc+| is inversely proportional to the number of bit
positions at which the input/output differences (resp. masks) differ. For xdp+,
this fact is formally stated in the form of the following proposition.

Proposition 1 (Bound on xdp+). The differential probability xdp+ is upper-
bounded by 2−k, where k is the number of bit positions, excluding the MSB, at
which the bits of the differences are not equal:

xdp+(α, β → γ) ≤ 2−k : k = #{i : ¬(α[i] = β[i] = γ[i]), 0 ≤ i ≤ w − 2}

Proof. Follows from [26, Alg. 2, Sect. 4].

A similar proposition also holds for |xlc+| (see e.g. [10]). Proposition 1 pro-
vides the basis of the design strategy described in the following section.

5.3 The LAX Construction

LAX is a block cipher construction with 2n-bit block and n-bit words. We
investigate three instances of LAX designated by the block size: LAX-16, LAX-
32 and LAX-64. A brief description of the round function of LAX-2n, shown in
Fig. 10 (left), is given below.

Let L be an n × n binary matrix that is (a) invertible and (b) has branch
number d > 2. With �(x) is denoted the multiplication of the n-bit vector x

xL xR

LL

yL yR

αi−2 βi−2

γi−2

LL

αi−1 βi−1

γi−1

LL

αi βi

γi

LL

Fig. 10. Left: the round function of LAX; Right: three round differential of LAX.

Design Strategies for ARX with Provable Bounds: Sparx and LAX 509

by the matrix L: �(x) = Lx. Note that due to condition (b) it follows that
∀x �= 0 : h(x) + h(�(x)) ≥ d, where h(x) is the Hamming weight of x.

The round function A(·) of LAX-2n maps a pair of n-bit words (xL, xR) to
a pair of n-bit words (yL, yR) as follows (see Fig. 10 (left)):

(yL, yR) = A(xL, xR) = (�(xR), �(xL � xR)) .

The matrix L is chosen as the non-identity part of the generator matrix G
of a systematic [2n, n, d] linear code over GF(2) such that G = [I L]. More
specifically, the matrices L for LAX-16, LAX-32 and LAX-64 are derived from
the following codes respectively: [16, 8, 5], [32, 16, 8] and [64, 32, 10]. Note that
the matrix of LAX-32 is the same as the one used in block cipher ARIA [30].

5.4 Bounds on the Differential Probability of LAX

Lemma 1. For all differences α �= 0, the differential (α, α → α) is impossible.

Proof. Let xdp+(α, β → γ) �= 0 for some differences α, β and γ. The statement of
the lemma follows from the following two properties of xdp+ [26]. First, it must
hold that α[0]⊕β[0]⊕γ[0] = 0. Second, if α[i] = β[i] = γ[i] for some 0 ≤ i ≤ n−2,
then it must hold that α[i + 1] ⊕ β[i + 1] ⊕ γ[i + 1] = α[i]. Since we want that
α = β = γ, from the first property it follows that α[0] = β[0] = γ[0] = 0. Given
that, due to the second property it follows that α[i] = β[i] = γ[i] = 0, ∀i ≥ 1.
Therefore the only value of α for which xdp+(α, β → γ) �= 0 and α = β = γ is
α = 0. �	
Theorem 2 (Differential bound on 3 rounds of LAX-2n). The maximum
differential probability of any trail on 3 rounds of LAX-2n is 2−(d−2), where d
is the branch number of the matrix L.

Proof. Let (αi−1, βi−1, γi−1), (αi, βi, γi) and (αi+1, βi+1, γi+1) be the input/out-
put differences of the addition operations in three consecutive rounds of LAX-
2n and let pk = xdp+(αk, βk → γk) for k ∈ {i − 1, i, i + 1} (see Fig. 10
(right)). We have to show that pi−1pipi+1 ≤ 2−(d−2) or, equivalently, that
log2 pi−1 +log2 pi +log2 pi+1 ≤ −(d−2). Denote with h(x) the Hamming weight
of the word x and with h∗(x) the Hamming weight of x, excluding the MSB.
Note that h∗(x) ≤ h(x) − 1. We consider two cases:

Case 1: βi−1 �= γi−1. By Proposition 1 we have that log2 pi−1 ≤ −h∗(βi−1 ⊕
γi−1) and log2 pi ≤ −h∗(αi ⊕ βi). Since βi = �(γi−1) and αi = �(βi−1) (see
Fig. 10 (right)) and using the linearity of �(·) we have that −h∗(αi ⊕ βi) =
−h∗(�(βi−1 ⊕ γi−1)). As βi−1 �= γi−1 it follows that h∗(βi−1 ⊕ γi−1) �= 0 and
h∗(�(βi−1 ⊕ γi−1)) �= 0. Thus we derive:

log2 pi−1 + log2 pi ≤ −h∗(βi−1 ⊕ γi−1) − h∗(�(βi−1 ⊕ γi−1)).

From the properties of L it follows that −h(βi−1⊕γi−1)−h(�(βi−1⊕γi−1)) ≤ −d
and so −h∗(βi−1 ⊕ γi−1) − h∗(�(βi−1 ⊕ γi−1)) ≤ −(d − 2). Therefore:

log2 pi−1 + log2 pi ≤ −(d − 2).

510 D. Dinu et al.

Case 2: βi−1 = γi−1 �= 0. In this case αi = βi = �(βi−1) = �(γi−1). Due to
Lemma 1 it follows that γi �= βi. Therefore we can apply the argument from
Case 1 on rounds i and i + 1 to derive the statement of the theorem in this
case. �	

5.5 Experimental Results

We have implemented the search algorithm proposed in [10] in order to find the
probabilities of the best differential trails in LAX-16 and LAX-32. In Table 7,
we compare the results to the theoretical bounds computed using Theorem 2.

Table 7. Best differential probabilities and best absolute linear correlations (log2 scale)
for up to 12 rounds of LAX.

Rounds 1 2 3 4 5 6 7 8 9 10 11 12

LAX-16 pbest +0 −2 −4 −7 −8 −11 −13 −16 −18 −20 −23 −25

cbest +0 +0 −1 −2 −3 −5 −5 −7 −8 −9 −10 −11

pbound −3 −6 −9 −12

LAX-32 pbest +0 −2 −6 −9 −11 −16 −18 −20 −24 −28 −29 −34

cbest +0 +0 +0 −4 −4 −8 −8 −8 −8 −12 −12 −16

pbound −6 −12 −18 −24

Clearly the bound from Theorem 2 does not hold for the linear case. The
problem is the “three-forked branch” in the LAX round function that acts as
an XOR when the inputs are linear masks rather than differences. Thus, LAX
only provides differential bounds and the full solution to the Wallén challenge
still remains an open problem.

6 Conclusion

In this paper we presented, for the first time, a general strategy for designing
ARX primitives with provable bounds against differential (DC) and linear crypt-
analysis (LC) – a long standing open problem in the area of ARX design. The
new strategy, called the Long Trail Strategy (LTS) advocates the use of large
and computationally expensive S-boxes in combination with very light linear
layers (the so-called Long Trail Argument). This makes the LTS to be the exact
opposite of the Wide Trail Strategy (WTS) on which the AES (and many other
SPN ciphers) are based. Moreover, the proposed strategy is not limited to ARX
designs and can easily be applied also to S-box based ciphers.

To illustrate the effectiveness of the LTS we have proposed a new family of
lightweight block ciphers, called SPARX, designed using the new approach. The
family has three instances depending on the block and key sizes: Sparx-64/128,
Sparx-128/128 and Sparx-128/256. With the help of the Long Trail Argument

Design Strategies for ARX with Provable Bounds: Sparx and LAX 511

we prove resistance against single-trail DC and LC for each of the three instances
of Sparx. In addition, we analyze the new constructions against a wide range of
attacks such as impossible and truncated differentials, meet-in-the-middle and
integral attacks. Our analysis did not find an attack covering 5 or more rounds
of any of the three instances. The latter ensures a security margin of about 37 %
of Sparx.

Beside (provable) security the members of the Sparx family are also very
efficient. We have implemented them in software on three resource constrained
microcontrollers widely used in the Internet of Things (IoT), namely the 8-bit
Atmel ATmega128, the 16-bit TI MSP430, and the 32-bit ARM Cortex-M3.
According to the FELICS open-source benchmarking framework our implemen-
tations of Sparx-64/128 and Sparx-128/128 rank respectively 6 and 7 in the
list of top 10 most software efficient lightweight ciphers. In addition, the execu-
tion time of Sparx-64/128 on MSP is in the top 3 of this list. To the best of
our knowledge, this paper is the first to propose a practical ARX design that
has both arguments for provable security and competitive performance.

A secondary contribution of the paper is the proposal of an alternative strat-
egy for ARX design with provable bounds against differential cryptanalysis. It is
independent of the LTS and uses the differential properties of modular addition
to derive proofs of security. As an illustration of this approach, the LAX fam-
ily of constructions is described. The provable security of LAX against linear
cryptanalysis is left as an open problem.

Acknowledgements. The work of Daniel Dinu and Léo Perrin is supported by the
CORE project ACRYPT (ID C12-15-4009992) funded by the Fonds National de la
Recherche, Luxembourg. The work of Aleksei Udovenko is supported by the Fonds
National de la Recherche, Luxembourg (project reference 9037104). Vesselin Velichkov
is supported by the Internal Research Project CAESAREA of the University of
Luxembourg (reference I2R-DIR-PUL-15CAES). The authors thank Anne Canteaut
for useful discussions regarding error correcting codes.

References

1. Bernstein, D.J.: New Stream Cipher Designs: The eSTREAM Finalists. LNCS, vol.
4986. Springer, Heidelberg (2008)

2. Bernstein, D.J.: ChaCha, a variant of Salsa20. In: Workshop Record of SASC, vol.
8 (2008)

3. Niels, F., Lucks, S., Schneier, B., Whiting, D., Bellare, M., Kohno, T., Callas, J.,
Walker, J.: The Skein hash function family. Submission to NIST (round 3) (2010)

4. Aumasson, J.P., Henzen, L., Meier, W., Phan, R.C.W.: SHA-3 Proposal BLAKE
(2010). https://131002.net/blake/blake.pdf

5. Needham, R.M., Wheeler, D.J.: Tea extensions. Technical report, Cambridge
University, Cambridge, UK, October 1997

6. Dinu, D.D., Le Corre, Y., Khovratovich, D., Perrin, L., Großschädl, J., Biryukov,
A.: Triathlon of lightweight block ciphers for the internet of things. In: NIST Work-
shop on Lightweight Cryptography 2015, National Institute of Standards and Tech-
nology (NIST) (2015)

https://131002.net/blake/blake.pdf

512 D. Dinu et al.

7. Mouha, N., Mennink, B., Herrewege, A., Watanabe, D., Preneel, B., Verbauwhede,
I.: Chaskey: an efficient MAC algorithm for 32-bit microcontrollers. In: Joux, A.,
Youssef, A. (eds.) SAC 2014. LNCS, vol. 8781, pp. 306–323. Springer, Heidelberg
(2014). doi:10.1007/978-3-319-13051-4 19

8. Beaulieu, R., Shors, D., Smith, J., Treatman-Clark, S., Weeks, B., Wingers, L.:
The SIMON and SPECK Families of Lightweight Block Ciphers. IACR Cryptology
ePrint Archive 2013, 404 (2013)

9. Hong, D., Lee, J.-K., Kim, D.-C., Kwon, D., Ryu, K.H., Lee, D.-G.: LEA: a 128-
bit block cipher for fast encryption on common processors. In: Kim, Y., Lee, H.,
Perrig, A. (eds.) WISA 2013. LNCS, vol. 8267, pp. 3–27. Springer, Heidelberg
(2014). doi:10.1007/978-3-319-05149-9 1

10. Biryukov, A., Velichkov, V., Le Corre, Y.: Automatic search for the best trails in
ARX: application to block cipher Speck. In: Peyrin, T. (ed.) FSE 2016. LNCS, vol.
9783, pp. 289–310. Springer, Heidelberg (2016). doi:10.1007/978-3-662-52993-5 15

11. Daemen, J., Rijmen, V.: The wide trail design strategy. In: Honary, B. (ed.) Cryp-
tography and Coding 2001. LNCS, vol. 2260, pp. 222–238. Springer, Heidelberg
(2001). doi:10.1007/3-540-45325-3 20

12. Daemen, J., Rijmen, V.: The Design of Rijndael: AES-the Advanced Encryption
Standard. Springer, Heidelberg (2002)

13. Wallén, J.: On the Differential and Linear Properties of Addition. Master’s thesis,
Helsinki University of Technology (2003)

14. Keliher, L., Sui, J.: Exact maximum expected differential and linear probability
for 2-round advanced encryption standard. IET Inf. Secur. 1(2), 53–57 (2007)

15. Nikolić, I.: Tiaoxin-346. Submission to the CAESAR competition (2015)
16. Jean, J., Nikolić, I.: Efficient design strategies based on the AES round function.

In: Peyrin, T. (ed.) FSE 2016. LNCS, vol. 9783, pp. 334–353. Springer, Heidelberg
(2016). doi:10.1007/978-3-662-52993-5 17

17. Guo, J., Peyrin, T., Poschmann, A., Robshaw, M.: The LED block cipher. In:
Preneel, B., Takagi, T. (eds.) CHES 2011. LNCS, vol. 6917, pp. 326–341. Springer,
Heidelberg (2011). doi:10.1007/978-3-642-23951-9 22

18. Knudsen, L., Wagner, D.: Integral cryptanalysis. In: Daemen, J., Rijmen, V. (eds.)
FSE 2002. LNCS, vol. 2365, pp. 112–127. Springer, Heidelberg (2002). doi:10.1007/
3-540-45661-9 9

19. Todo, Y.: Structural evaluation by generalized integral property. In: Oswald, E.,
Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9056, pp. 287–314. Springer,
Heidelberg (2015). doi:10.1007/978-3-662-46800-5 12

20. Dinu, D., Perrin, L., Udovenko, A., Velichkov, V., Großschädl, J., Biryukov, A.:
Design Strategies for ARX with Provable Bounds: Sparx and LAX (Full Ver-
sion).Cryptology ePrint Archive, to appear 2016. http://eprint.iacr.org/

21. Biryukov, A., Khovratovich, D.: Decomposition attack on SASASASAS. Cryptol-
ogy ePrint Archive, Report 2015/646 (2015). http://eprint.iacr.org/

22. Daemen, J., Peeters, M., Van Assche, G., Rijmen, V.: Nessie proposal: NOEKEON.
In: First Open NESSIE Workshop, pp. 213–230 (2000)

23. Biryukov, A., Wagner, D.: Slide attacks. In: Knudsen, L. (ed.) FSE 1999. LNCS,
vol. 1636, pp. 245–259. Springer, Heidelberg (1999). doi:10.1007/3-540-48519-8 18

24. Dinu, D.D., Biryukov, A., Großschädl, J., Khovratovich, D., Le Corre, Y.,
Perrin, L.A.: FELICS-fair evaluation of lightweight cryptographic systems. In:
NIST Workshop on Lightweight Cryptography 2015, National Institute of Stan-
dards and Technology (NIST) (2015)

http://dx.doi.org/10.1007/978-3-319-13051-4_19
http://dx.doi.org/10.1007/978-3-319-05149-9_1
http://dx.doi.org/10.1007/978-3-662-52993-5_15
http://dx.doi.org/10.1007/3-540-45325-3_20
http://dx.doi.org/10.1007/978-3-662-52993-5_17
http://dx.doi.org/10.1007/978-3-642-23951-9_22
http://dx.doi.org/10.1007/3-540-45661-9_9
http://dx.doi.org/10.1007/3-540-45661-9_9
http://dx.doi.org/10.1007/978-3-662-46800-5_12
http://eprint.iacr.org/
http://eprint.iacr.org/
http://dx.doi.org/10.1007/3-540-48519-8_18

Design Strategies for ARX with Provable Bounds: Sparx and LAX 513

25. Biryukov, A., Dinu, D., Großschädl, J.: Correlation power analysis of lightweight
block ciphers: from theory to practice. In: Manulis, M., Sadeghi, A.-R., Schneider,
S. (eds.) ACNS 2016. LNCS, vol. 9696, pp. 537–557. Springer, Heidelberg (2016).
doi:10.1007/978-3-319-39555-5 29

26. Lipmaa, H., Moriai, S.: Efficient algorithms for computing differential properties of
addition. In: Matsui, M. (ed.) FSE 2001. LNCS, vol. 2355, pp. 336–350. Springer,
Heidelberg (2002). doi:10.1007/3-540-45473-X 28

27. Wallén, J.: Linear approximations of addition modulo 2n . In: Johansson, T. (ed.)
FSE 2003. LNCS, vol. 2887, pp. 261–273. Springer, Heidelberg (2003). doi:10.1007/
978-3-540-39887-5 20

28. Nyberg, K., Wallén, J.: Improved linear distinguishers for SNOW 2.0. In: Robshaw,
M. (ed.) FSE 2006. LNCS, vol. 4047, pp. 144–162. Springer, Heidelberg (2006).
doi:10.1007/11799313 10

29. Dehnavi, S.M., Rishakani, A.M., Shamsabad, M.R.M.: A more explicit formula for
linear probabilities of modular addition modulo a power of two. Cryptology ePrint
Archive, Report 2015/026 (2015). http://eprint.iacr.org/

30. Kwon, D., Kim, J., Park, S., Sung, S.H., Sohn, Y., Song, J.H., Yeom, Y., Yoon,
E.-J., Lee, S., Lee, J., Chee, S., Han, D., Hong, J.: New block cipher: ARIA. In:
Lim, J.-I., Lee, D.-H. (eds.) ICISC 2003. LNCS, vol. 2971, pp. 432–445. Springer,
Heidelberg (2004). doi:10.1007/978-3-540-24691-6 32

http://dx.doi.org/10.1007/978-3-319-39555-5_29
http://dx.doi.org/10.1007/3-540-45473-X_28
http://dx.doi.org/10.1007/978-3-540-39887-5_20
http://dx.doi.org/10.1007/978-3-540-39887-5_20
http://dx.doi.org/10.1007/11799313_10
http://eprint.iacr.org/
http://dx.doi.org/10.1007/978-3-540-24691-6_32

SCA and Leakage Resilience I

Side-Channel Analysis Protection
and Low-Latency in Action

– Case Study of PRINCE and Midori –

Amir Moradi(B) and Tobias Schneider

Horst Görtz Institute for IT-Security, Ruhr-Universität Bochum, Bochum, Germany
{amir.moradi,tobias.schneider-a7a}@rub.de

Abstract. During the last years, the industry sector showed particular
interest in solutions which allow to encrypt and decrypt data within
one clock cycle. Known as low-latency cryptography, such ciphers are
desirable for pervasive applications with real-time security requirements.
On the other hand, pervasive applications are very likely in control of
the end user, and may operate in a hostile environment. Hence, in such
scenarios it is necessary to provide security against side-channel analysis
(SCA) attacks while still keeping the low-latency feature.

Since the single-clock-cycle concept requires an implementation in a
fully-unrolled fashion, the application of masking schemes – as the most
widely studied countermeasure – is not straightforward. The contribution
of this work is to present and discuss about the difficulties and challenges
that hardware engineers face when integrating SCA countermeasures into
low-latency constructions. In addition to several design architectures,
practical evaluations, and discussions about the problems and potential
solutions with respect to the case study PRINCE (also compared with
Midori), the final message of this paper is a couple of suggestions for
future low-latency designs to – hopefully – ease the integration of SCA
countermeasures.

1 Introduction

The need for integration of side-channel analysis (SCA) [29] countermeasures
into pervasive security-enabled devices is known to both academia and industry.
Such a demand has also been motivated by several practical key-recovery attacks
on commercial applications, e.g., [2,22,31,34,41,54]. From another perspective,
there are several important applications for which a low-latency encryption and
instant response time is highly desirable, such as read/write access to encrypted
memory modules, which should be preferably conducted in a single clock cycle
(initially motivated by [27]). It is also expected that given the ongoing growth
of pervasive computing, there will be many more future embedded systems that
require low-latency encryption, especially applications with real-time require-
ments, e.g., in the automotive domain. Hence, such pervasive applications, where
low-latency cryptography is required, should be protected against SCA threats.

c© International Association for Cryptologic Research 2016
J.H. Cheon and T. Takagi (Eds.): ASIACRYPT 2016, Part I, LNCS 10031, pp. 517–547, 2016.
DOI: 10.1007/978-3-662-53887-6 19

518 A. Moradi and T. Schneider

Here in this work, we present the challenges one may face by integrating SCA
countermeasures into implementations with low-latency target. Insertion of hid-
ing techniques [32] in this scenario is either straightforward (such as noise gen-
eration or dual-rail logic) or ineffective (such as time randomization or shuffling)
due to the fully unrolled architecture of low-latency implementations. Therefore,
our focus is the integration of masking schemes into such designs. In particu-
lar, we concentrate on threshold implementation (TI) [40] as a provably-secure
scheme against first-order SCA attacks. It should be noted that integration of
ad hoc approaches, e.g., random pre-charging of [6], are out of our focus since
we target solutions with provable security.

We should point out that it has previously been supposed that unrolled
circuits – also the case of low-latency concept – are inherently secure against
SCA attacks (see [6]). However, other practical results, e.g., in [36,51], showed
that unrolling may make the attacks complicated since the common hypotheti-
cal power models (Hamming weight/distance) may not fit to the circuit’s leak-
age anymore, but sophisticated yet first-order leakages can be exploited for key
recovery.

As a known case study, PRINCE [13] (particularly designed as a low-latency
cipher) is targeted in our investigations. We demonstrate design architectures
and practical results with respect to the power consumption as well as SCA pro-
tection of different variants of implementations of PRINCE. In addition to several
discussions about the SCA protection versus low-latency concept, we present a
mixture of asynchronous circuit design methodology with threshold implemen-
tation which is expected to realize an SCA-protected self-timed design. Finally,
having the PRINCE case study in mind, we give a couple of suggestions for
the future low-latency cipher designs with the goal of mitigating the challenges,
where SCA protection is desirable.

Furthermore, we consider the cipher Midori [3] which was designed with
the goal of minimizing energy consumption. Since energy consumption and
latency – to some extent – are proportional, we also provide a comparison
between PRINCE and Midori with respect to latency when both are equipped
with similar masking countermeasure.

2 Preliminaries

2.1 PRINCE

PRINCE [13] is a 64-bit block cipher that uses a 128-bit secret key k. The key
expansion divides k into two 64-bit parts as k = (k0||k1), and derives k′

0 from k0
by a linear function as (k0 ≫ 1) ⊕ (k0 � 63). The subkeys k0 and k′

0 are used
as input and output whitening keys respectively, while k1 is used as the round
key for the core block cipher PRINCEcore (see Fig. 1).

Each of the first five round functions Ri consists of S-Layer (by a 4-bit
Sbox), M′-Layer (multiplication with a 64 × 64 matrix M ′), ShiftRows (the
same as the AES one but on 4-bit cells), RCi-add (XORing the state with a
64-bit constant RCi), and k1add (XORing k1 into the 64-bit state).

Side-Channel Analysis Protection and Low-Latency in Action 519

Fig. 1. A schematic view of PRINCE

The last five inverse round functions R−1
i are formed by the inverse of the

corresponding operations. It is noteworthy that M ′ matrix is an involution,
hence the inverse of M′-Layer is itself. Further, due to its underlying FX-
construction [26] as well as the α-reflection, i.e., RCi∈{0,...,11} ⊕RC11−i = α, the
PRINCE encryption can turn to its decryption by swapping the whitening keys
and XORing α to k1,

PRINCEDec
(k0,k′

0,k1) = PRINCEEnc
(k′

0,k0,k1⊕α).

Note that RC0 = 0, and RCi∈{1,...,5} as well as α are derived from the fraction
part of π = 3.141

2.2 Threshold Implementation

Let us denote a 4-bit intermediate value of PRINCE, e.g., the Sbox input, as x =
〈x1, . . . , x4〉. Under the n − 1 order Boolean masking concept, x is represented

by (x1, . . . ,xn), where x =
n⊕

i=1

xi and each xi similarly denotes a 4-bit vector

〈xi
1, . . . , x

i
4〉.

The linear functions, such as M′-Layer, can be simply applied to the shares

of x as L(x) =
n⊕

i=1

L(xi). Clearly, the non-linear functions, e.g., Sbox, cannot be

trivially shared. Following the TI concept [8,40], the minimum number of shares
to realize an Sbox to be secure against first-order attacks is n = t + 1, where t
denotes the algebraic degree of the Sbox. The shared Sbox should provide the
output also in a shared form (y1, . . . ,ym), where m ≥ n when the Sbox is a
bijection. Obviously, to ensure the correctness of the computation, we should

have S(x) = y =
m⊕

i=1

yi.

Each output share yj∈{1,...,m} is given by a component function fj(·) over
a subset of input shares. Defined as non-completeness, for first-order security
each component function fj∈{1,...,m}(·) must be independent of at least one input
share. The security of masking schemes (to some extent) depends on the uniform
distribution of the masks. Therefore, the output of a TI Sbox must be also
uniform, since it supplies other non-linear functions. For example, the Sbox

520 A. Moradi and T. Schneider

output of one PRINCE round is given to the next S-Layer after being processed
by the linear diffusion layers. In case of the bijective PRINCE Sbox (n = m), each
(x1, . . . ,xn) should be mapped to a unique (y1, . . . ,yn) to satisfy the uniformity.
In other words, it is enough to check whether the TI Sbox also forms a bijection
with 4n input (and output) bit length.

The PRINCE Sbox has an algebraic degree of t = 3. Hence, the number
of input and output shares n = m > 3 what directly affects the complexity
of the circuit and its associated area overhead. Therefore, it is preferable to
decompose the Sboxes into smaller non-linear functions each with maximum
algebraic degree of 2, which enables staying with the minimum number of shares
n = m = 3. Note that in this case, registers must be placed between the shared
decomposed functions. Otherwise, the glitches propagate into cascaded shared
non-linear circuits, and violate the non-completeness property. As an example,
the authors of [42] presented a decomposition of the PRESENT [12] Sbox into
two quadratic bijections g and f.

Above we briefly reviewed the TI concept. For detailed information, the inter-
ested reader is referred to the original articles [8,40].

3 Design Architectures

As stated before, PRINCE cipher has been designed with respect to low-latency
feature. The goal was to achieve a short latency when the cipher is imple-
mented in a fully-unrolled fashion. In other words, the implementation contains
no sequential elements, e.g., register/flip-flop, and hence no clock.

In our investigations, in order to synthesize for an ASIC platform, we made
use of Synopsys Design Compiler using the UMCL18G212T3 [49] ASIC stan-
dard cell library, i.e., UMC 0.18µm. As a side note, such a standard library has
not been covered by the original article [13], where Nangate 45 nm, UMC 90 nm,
and UMC 130 nm technologies have been considered. Therefore, the performance
figures which we report here are based on our syntheses. Since the area require-
ment, i.e., Gate Equivalence (GE), of an implementation varies depending on
the desired latency, we give in Fig. 2 a curve of GE of the unrolled PRINCE
implementation over the latency. We should stress that similar to the target of
the seminal work [13], all our design architectures support both encryption and
decryption. For the threshold implementations, the syntheses have been per-
formed by keeping the hierarchy to avoid the combination of different shares
(otherwise, first-order leakage is probable), and for the unrolled (unprotected)
designs the hierarchy is avoided which allows the synthesizer to combine the
cascaded circuits and reach the desired latency.

As stated in Sect. 2.2, in order to realize a masked hardware implementa-
tion, the masked non-linear functions (Sboxes) should be separated from each
other by means of registers to avoid the propagation of glitches. Therefore,
an unrolled architecture can never be properly masked. It is noteworthy that
unrolled architectures already change the leakage characteristics of the device
(see [6,51]). Hence, one may suppose that integration of masking into unrolled

Side-Channel Analysis Protection and Low-Latency in Action 521

Fig. 2. Area versus latency of unrolled PRINCE

Fig. 3. Unrolled TI of PRINCE, only first and last round masked

architectures may complicate the device leakage in such a way that it becomes
unexploitable. However, such a combination would definitely lead to first-order
leakage detectable e.g., by t-test [18,24,44]. As a heuristic-based example, it can
be supposed that masking the first and last rounds of PRINCE should suffice to
protect against SCA attacks1. The PRINCE Sbox is a cubic 4-bit bijection, i.e.,
algebraic degree t = 3, and at least n = m = 4 shares are required. The PRINCE
Sbox belongs to the class C231 (with respect to the category given in [10]), which
needs three decomposition stages to be uniformly shared with 3 as well as 4
shares, while it can be uniformly shared in one stage with n = m = 5 shares. It
has been given in Sect. 2.2 that the uniformity is required because the output
of the shared Sbox feeds the next non-linear functions. Hence, the non-uniform
output of the first cipher round does not play any role, if the second cipher
round is not masked. Therefore, we can stay with n = m = 4 shares and make
the (non-uniform) shared PRINCE Sbox in one stage by direct sharing [11]. We
have implemented such a design, whose block diagram is shown in Fig. 3 and all
the corresponding formulations are given in Appendix A. Further, its timing and

1 In general, it is not a true statement since (i) the unmasking at the end of the
first round (see Fig. 3) would anyway lead to (although hard-to-exploit) first-order
leakage, and (ii) the adversary can set certain plaintext bits to a fixed value and
target the second cipher round.

522 A. Moradi and T. Schneider

area overheads are listed in Table 1. It turned out that this design is 3–6 times
larger than the unprotected unrolled design and 2–3 times slower. We deal with
its practical SCA evaluations in Sect. 3.4. We should emphasize that except for
the first and last (i.e., masked) rounds, the hierarchy is not kept. This allows the
optimization of the middle rounds, while the functions over the shared signals
(in the first and the last rounds) must be kept separate to avoid any combination
over the shares. Otherwise, the design would exhibit first-order leakage at the
first and/or last rounds.

3.1 Round-Based Architecture

Alternatively, we can consider the round-based architecture, although it obvi-
ously needs a fast clock, and the setup- and hold-time of the registers increase
the whole latency. A round-based design has been given in the original arti-
cle [13] which is also depicted in Fig. 4(a). In this design two separate modules
for the Sbox and its inverse are considered. It has been reported in a couple of
works [9,37,42] that shared Sboxes are the most area consuming part. There-
fore, one of our attempts with respect to this issue is to combine these two
modules. Indeed, we have realized that the PRINCE Sbox and its inverse are
affine equivalent. In other words, we can write

∀x, S(x) = A2

(
S−1 (A1 (x))

)
,

with A1 and A2 input- and output-affine transformations. In case of the PRINCE
Sbox, there exists only one pair (A1, A2), and A1 and A2 are the same. Hence,
we can write S = A ◦ S−1 ◦ A, with A: B8A93021EDFC6574 as2

e = 1 + a + b + d, f = 1 + a, g = d, h = 1 + c,

with 〈a, b, c, d〉 the 4-bit input, 〈e, f, g, h〉 the 4-bit output, and a and e the
least significant bits. Based on this findings, we developed another round-based
architecture, shown in Fig. 4(b), where only one S-Layer module is instantiated.

More detailed information about the active data path of our developed round-
based design at each cipher round is given in Appendix B (Fig. 17). Table 1 lists
the differences between these two designs. Note that we constrained the synthe-
ses of both designs with different latencies to obtain both fastest and smallest
designs for fair comparisons. As stated, the objective is to make use of only one
S-Layer, hence our design utilizes more multiplexers compared to the original
round-based design. Further, we optimized the way that whitening keys k0 and
k′
0 are added to the state considering the fact that it should support both encryp-

tion and decryption. Another issue is how to deal with the round constants. As
given in Sect. 2.1, the round constants have been randomly selected, hence a
combinatorial circuit should realize the selection of RCi at each round. We have
examined several cases, and the most optimized design (with respect to area)
has been achieved by employing a multiplexer which selects one of the RC0 to
2 It also holds for S−1 = A′ ◦ S ◦ A′, with A′: 5764FDCE1320B98A.

Side-Channel Analysis Protection and Low-Latency in Action 523

Fig. 4. Round-based designs

RC11 by the round counter. The role of optimization was to assign 0111 as the
round counter to the round number i = 5. Therefore, the order of the round
counter 0010, 0011, . . ., 0111, 1000, . . ., 1100, 1101 can be reversed (required
for decryption) by inverting the round counter bits (see Fig. 4(b)). We should
also point out that in both original and our round-based designs, the state regis-
ter is placed right after the multiplexer. That allows the synthesizer to combine
them and make use of scan flip-flop, which is smaller than a sum of a multiplexer
and a flip-flop [43].

As a side note, our round-based design is not necessarily the most optimized
design. The tricks, that we used in our design, can be also applied in the original
one (Fig. 4(a)). However, since our target is to instantiate one S-Layer to ease
the threshold implementations, we consider our round-based architecture as the
basis of the further designs.

3.2 Uniform Sharing of the Sbox

The uniform sharing of the cubic 4-bit bijection C231, to which the PRINCE
Sbox belongs, with 3 shares can only be achieved by a three-stage quadratic
decomposition [11]. As listed in [11], there exist 5 quadratic classes, Q4, Q12,
Q293, Q294, and Q299, that can be uniformly shared in one stage3. With respect

3 One more quadratic class Q300 exists, but needs two stages for a uniform sharing
with 3 shares.

524 A. Moradi and T. Schneider

to their size, i.e., the number of 2-input AND and XOR gates in their Alge-
braic Normal Form (ANF), Q4, Q294, Q12, Q293, and Q299 are respectively the
smallest to the largest functions. We tried to decompose C231 by a set of the
smallest quadratic functions. Indeed, several decompositions exist (see Table 2
in Appendix C for a complete list). If Q4 is involved in the decomposition, the
other quadratic functions are a combination of (Q293,Q299) or (Q293,Q293) or
(Q299,Q299). None of these combinations lead to a small design since Q293 and
Q299 are amongst the largest classes. Instead, we can do the decomposition by
Q294 in three stages. To this end, we first extracted all affine transformations
A1, A2, and A3 in such a way that

S−1 = A3 ◦ C223 ◦ A2 ◦ Q294 ◦ A1.

There exist 2048 such (A1, A2, A3) triples4, and several solutions exist to decom-
pose C223 (see Appendix C). One of the smallest ones is C223 = A6 ◦ Q294 ◦ A5 ◦
Q294 ◦ A4, and we found 262 144 affine triples (A4, A5, A6) for such a decompo-
sition. At the last step, we combined these two decompositions as

S−1 = A3 ◦ A6︸ ︷︷ ︸
Aout

◦Q294 ◦ A5︸︷︷︸
Am2

◦Q294 ◦ A4 ◦ A2︸ ︷︷ ︸
Am1

◦Q294 ◦ A1︸︷︷︸
Ain

, (1)

and examined all 2048× 262 144 cases5. With respect to the size of the resulting
affines, we considered the number of 2-input XOR gates as well as the Hamming
weight of the constants. The smallest combination has been achieved as

Ain : 8293C6D70A1B4E5F, e = b, f = a, g = c, h = 1 + a + d,

Am1 : C480E6A2D591F7B3, e = d, f = c, g = 1 + b, h = 1 + a,

Am2 : 08C43BF72AE619D5, e = c, f = c + d, g = b, h = a + b,

Aout : 21748BDE6530CF9A, e = a + b, f = 1 + a + c, g = b + d, h = c. (2)

In order to share Q294 : 0123456789BAEFDC as

e = a + bd, f = b + cd, g = c, h = d,

we can follow the direct sharing [11], which has been applied in [38]. The com-
ponent function f i,j

Q294
(〈ai, bi, ci, di〉, 〈aj , bj , cj , dj〉) = 〈e, f, g, h〉 has been defined

in [38] as

e = ai + bidi + dibj + bidj g = ci

f = bi + cidi + dicj + cidj h = di, (3)

and it has been given that the three 4-bit output shares provided by f2,3
Q294

(., .),
f3,1

Q294
(., .) and f1,2

Q294
(., .) make a uniform first-order sharing of Q294.

4 It is the same for S−1 = A3 ◦ Q294 ◦ A2 ◦ C223 ◦ A1.
5 The result is a multiset, i.e., with repeated elements.

Side-Channel Analysis Protection and Low-Latency in Action 525

Fig. 5. Round-based first-order threshold implementation of PRINCE

Since the affine functions applied on all shares do not change the uniformity,
our construction – given in Eq. (1) – in addition to the set of affines (Eq. (2))
and component function fQ294 (Eq. (3)) form a uniform first-order sharing of
the PRINCE Sbox inverse. To the best of our knowledge, this is amongst the
smallest construction which fulfills all the TI properties with n = m = 3 shares.
Note that the shared quadratic functions should be separated by registers to
avoid the propagation of glitches.

3.3 Implementation

Our construction of the first-order TI of PRINCE is depicted in Fig. 5. All oper-
ations except key and constant additions (and the S-Layer) are repeated three
times. It suffices if the constant of the affine functions A, Ain, Am1, Am2, and
Aout are applied on only one share6. The key and the constants are not shared,
which is the same scenario applied in several works, e.g., [7–9,37,42], and is ade-
quate to resist against first-order attacks. Hence, the keys and constant are also
applied on only one share.

Due to the registers integrated into the shared Sbox, the design realizes
a pipeline with three stages. In other words, three consecutive (shared) inputs
(plaintexts/ciphertexts) can be fed into the design, and after 40 clock cycles three
outputs (ciphertexts/plaintexts) are consecutively given out. Thanks to the uni-
form sharing of the Sbox, excluding the masks required to share the input, the
design does not require any fresh randomness during the computations. The per-
formance figures of this design are also given in Table 1 for comparison purposes.

3.4 Practical Evaluations

For the practical investigations – rather than ASIC-based experiments or sim-
ulation – we ported the designs to an FPGA-based platform. We have used a

6 It does not affect either the functionality or the uniformity.

526 A. Moradi and T. Schneider

Fig. 6. Evaluation results, unrolled
unprotected design

Fig. 7. Evaluation results, unrolled TI
design (first and last rounds masked)

SAKURA-X board [1] with a Kintex-7 FPGA, particularly designed for SCA
evaluations. In order to monitor the power consumption, we measured the volt-
age drop over a shunt resistor placed at the Vdd path of the Kintex FPGA. The
power traces have been collected by means of a digital LeCroy oscilloscope at the
sampling rate of 500 MS/s. Because of the low amplitude of the measured sig-
nal (due to the underlying low-power technology of Xilinx 7 series FPGAs), we
employed an AC amplifier ZFL-1000LN+ from Mini-Circuits with 10 dB gain.

For SCA evaluation purposes, we applied the non-specific t-test (also known
as fixed versus random t-test). This test procedure, originally called TVLA, has
been proposed in [18], extended in [44], and [20,21] applied in e.g., [7,8,38]. The
test – which compares the leakages associated to random inputs with that to
a fixed input – can examine the existence of a detectable leakage, but cannot
give any impression whether the leakage is exploitable. Hence, in case the t-test
reports a first-order detectable leakage, we perform a signal-to-noise ratio (SNR)

Side-Channel Analysis Protection and Low-Latency in Action 527

Fig. 8. Evaluation results, round-based TI design

check. In such a check, the variance of the average leakage traces classified by
e.g., the value of a plaintext nibble (divided by the variance of the noise) is
examined [32]. It indeed can give an overview about the dependency of the
average (first-order) leakages to the processed data. Here, we do not show any
attack results, and only discuss about the existence of detectable leakages, and
compare the amount of dependency of the leakages to the processed data.

For the unrolled unprotected design, Fig. 6 shows a sample power trace, the
t-test result as well as the SNR over all 16 plaintext nibbles. Since the design
is not masked, the t-test as expected shows a pretty strong first-order leakage.
Along the same lines, the corresponding SNR exhibit a clear dependency between
the traces and the plaintext nibbles. Hence, a successful key-recovery attack
is expected (e.g., in [51]). We should here note that 23.3 mV power peak is
relatively large7 for this low-power FPGA. Since several gates are packed into one
LUT, the equivalent design in ASIC can be more glitchy, and hence (probably)
more energy consuming8. This may harden the development of fully unrolled
(even low-latency) designs into low-energy, e.g., battery-powered, applications
(see simulation-based results in [3,4]).

We have shown the corresponding results of the unrolled TI design in Fig. 7.
As stated before, only the first and the last rounds are masked by means of four
shares (see Fig. 3). During the measurements, the 4-share input as well as other
3 independent fresh random masks (m1, m2, m3 for the last round) are given
to the Kintex-7 FPGA. The output is also provided in a 4-share masked form.

7 We showed real voltage values, i.e., output of the amplifier divided by 10.
8 This is a guess by the authors and should be examined in practice.

528 A. Moradi and T. Schneider

As discussed before, since the middle rounds are not masked, we expected that
the t-test exhibits first-order leakage. However, the SNR over plaintext nibbles
shows a significant reduction, a factor of about 0.03, compared to the unrolled
unprotected design (Figs. 6(c) vs. 7(c)). It indeed gives an impression that the
first-order attacks on the first round are expect to be challenging. However, if
the attacker fixes certain plaintext parts, he can target the second cipher round,
which is not masked.

Compared to these, the round-based TI design, whose results are depicted
in Fig. 8, exhibits no first-order leakage with 100 million traces confirming the
correctness of our TI construction. We should here emphasize that the design was
operating at a frequency of 6 MHz during the measurements, and we filled the
3-stage pipeline with the same data. In other words, this way we have reduced
the algorithmic noise of the pipeline architecture (see [46]), that allows us to
mitigate the side effects into the evaluations. As expected, the higher-order t-
tests report detectable leakages through higher-order moments. Regardless of
the difference in their SCA-resistance levels, the power peak of the round-based
TI architecture is significantly smaller than that of the unrolled designs, i.e., 10
times and 30 times compared to the unprotected and the TI unrolled designs
respectively.

4 Asynchronous Design

We have already discussed in Sect. 1 that low-latency concept is closely connected
to the unrolled (single-cycle) architecture since the high clock rates (needed to
rapidly run register-based designs) are not available or supported by many sys-
tems. For instance, in many FPGA designs clock rates above 200 MHz are often
difficult to realize. In this settings, asynchronous circuits seem to be an alterna-
tive to this issue. With asynchronous circuit design, also known as self-timed and
clock-less design, it is possible to realize circuits with high performance parame-
ters in terms of their power, throughput, electromagnetic emissions, etc. [39,45].
Asynchronous design is not as well-established and widely-used as synchronous
design methodology. Hence, the standard tools for asynchronous design are not
available, or not widely known, or particularly customized for certain technolo-
gies.

Because the field of asynchronous circuit design covers a wide range, we
focus only on certain concepts which are relevant to our case studies. In terms of
PRINCE, consider the round-based synchronous architecture in Fig. 4(a). The
maximum clock frequency is defined by the longest critical path (most likely
when both Sbox and its inverse are active). However, such a path is not always
active. In other words, in all clock cycles except the middle one the design can be
clocked faster. If this design is realized by asynchronous design methodology, the
end of the computation of one cipher round initiates the start of the next round.
Hence, the design operates at its maximum speed, or let say with its lowest
latency. In this case – similar to the unrolled architectures – the time when the
computations are finished, i.e., the ciphertext is ready to be read, depends on
the given inputs, but the maximum latency can be estimated.

Side-Channel Analysis Protection and Low-Latency in Action 529

Table 1. Performance figures of different PRINCE implementations. For each design,
the first and the second row represents the smallest and the fastest variant respectively.

Design Area

[GE]

Crit.

Path [ns]

Clock # Latency

[ns]

Throughput

[Gbps]

Powera Peak

[mV]

DPA

res.

Unrolled 8 512 13 1 13 4.923 23.3

17 675 9 9 7.111

Unrolled TI 48 012 38 1 38 1.684 59.5 ∼b

77 921 13.2 13.2 4.848

Round-based [13] 2 809 5.6 13 72.8 0.879 1.7c

4 698 1.5 19.5 3.282

Round-based ours 2 286 4.9 14 68.6 0.933 1.5c

4 663 2 28 2.285

Round-based TI 9 292 4 40 160 1.143d 2.3c 21e �
11 275 1.9 76 2.406d

Round-based TI
Asynchronous
(simple Ack)

25 701 11 40 × 2f 800 0.208d 53.7 �

31 936 5.4 432 0.423d

Midori64 Round-
based TI

7 297 4 31 124 1.000g 20.2e �

9 237 1.9 58.9 2.105g

ameasured from the FPGA implementations
bonly at the first and the last rounds
c@ 6MHz
dconsidering the 3-stage pipeline
eby controlled ring-oscillator clock
fdoubled due to pre-charge/evaluation phases
gconsidering the 2-stage pipeline

As shown in Sect. 3, the round-based TI design can provide the first-order
resistance, but it needs a clock with a frequency between 250 MHz and 500 MHz
to achieve the highest throughput (see Table 1). Hence, our objective in this
section is to realize the round-based TI design with an asynchronous design
methodology.

State of the Art. We should emphasize that the asynchronous design has been
previously applied as a sole SCA countermeasure. One of the earlier works [33]
describes a smartcard chip which relies on self-timed circuits to provide pro-
tection against physical attacks. The authors proposed to solely use dual-rail
encoding to reduce the threat of data-dependent power consumption but also
noted the obvious difficulties of this approach, e.g., varying wire lengths. Further-
more, they highlighted the problem of timing leakage of asynchronous circuits
and advise to minimize data dependent gate delays coupled with the insertion
of dummy delays to reduce this leakage. Later in [23] the security of a similar

530 A. Moradi and T. Schneider

self-timed circuit has thoroughly been tested in practice. The authors found that
small imbalances in the dual-rail circuits cause data-dependent leakage which
enables an attacker to perform a successful DPA on the asynchronous circuit.
They showed that their asynchronous design alone is not sufficient to prevent
SCA attacks, and that these imbalances need to be eliminated during the design
process to increase the level of security. This is in line with [30,53] where some
of the difficulties, e.g., no global clock, with respect to performing DPA on asyn-
chronous designs are described.

One of the first clock-less implementation of AES was presented in [52]. It also
relies on power-balancing capability of dual-rail and the absence of a global clock
to thwart DPA. The dual-rail circuits were found to be more secure than the
single-rail one, however this is only based on simulation results and a thorough
practical evaluation is missing.

Another approach to secure AES using clock-less circuits is presented in [14].
It again relies on an asynchronous style called quasi delay insensitive (QDI) which
has a range of supply voltages. The authors noted the above-mentioned limita-
tion of this implementation style with respect to SCA resistance [15]. Therefore,
they proposed to lower the supply voltage to reduce the SNR and thwart DPA.
However, [14] does not include practical experiments related to this approach.
Further techniques [16,17] have been proposed to harden QDI against DPA
based on the introduction of random timing and path swapping. However, their
efficiency was only evaluated using electrical simulations.

More recently, an AES round function in Null Convention logic - another
delay insensitive logic paradigm - has been proposed in [50] in which the SCA
resistance has again been only evaluated with simulations.

It should be noted that in a majority of the aforementioned articles SCA
resistance was not the sole motivation for asynchronous circuits. Other beneficial
properties include a low-power consumption for embedded devices and some form
of an integrated fault tolerant scheme.

What we want to examine here is not the application of asynchronous
design to prevent SCA leakages. In short, we do not aim at e.g., realizing the
round-based unprotected architecture with asynchronous methodology and
examine its SCA resistance. Instead, our goal is to investigate the challenges
and outcomes of implementing a correctly-masked design, e.g., round-based
threshold implementation (Fig. 5), under the concept of asynchronous designs.
Such an investigation is conducted with the goal of achieving a clock-less design
while it is expected to still satisfy the desired first-order SCA protection due to
its underlying uniform TI construction.

4.1 Fundamentals

Different parts of an asynchronous circuit need to communicate with each
other. For example, the finish of one PRINCE round should initiate the next
round. A couple of different handshaking protocols exist to establish such a
communication.

Side-Channel Analysis Protection and Low-Latency in Action 531

Fig. 9. A delay-insensitive 4-phase dual-rail protocol (taken from [45])

Fig. 10. Exemplary circuits to generate the Ack and clk signals (a) and (b) for asyn-
chronous designs, (c) for a synchronous design

The 4-phase dual-rail protocol encodes the data signals into two wires per bit (see
Fig. 9). Each logical ‘1’ or ‘0’ is represented by {1,0} or {0,1} respectively, while
{0,0} is known as “no data” (or “empty”) and {1,1} as invalid. A transition
from one valid coding to another is not allowed, unless an “empty” value is
transmitted in-between, that forms a return-to-zero protocol. This protocol is
very robust; two parties can communicate reliably regardless of delays in the
wires, i.e., it is delay-insensitive [45].

This concept is very similar to the WDDL logic style [48], which has been
designed to mitigate SCA leakages. The underlying dual-rail pre-charge logic is
the same encoding; the valid encodings {0,1} and {1,0} are known as evaluation
phase and the empty value {0,0} as pre-charge phase. A WDDL circuit is usually
a synchronous design, where the evaluation/pre-charge phases are controlled
by the clock signal (the same concept as in Fig. 9 by replacing the Ack signal
with clock). This protocol is familiar to most digital designers, and avoids any
glitches in the circuit hence achieving a low-power construction. However, it has
a disadvantage due to the extra return-to-zero transitions that cost time and
energy.

We can implement the combinatorial parts of a design based on the WDDL
concept, and add extra logic to detect the end of the pre-charge as well as
evaluation phase. This allows us to form the Ack signal (see Fig. 9). As shown in

532 A. Moradi and T. Schneider

Fig. 11. Asynchronous round-based first-order threshold implementation of PRINCE

Fig. 10(a), we can integrate n 2-input NOR gates, each of which for a dual-rail
signal, and by means of an n-input AND and an n-input NOR gate9 we can
generate Ackp and Acke respectively. When all n dual-rail signals are in pre-
charge phase (resp. in evaluation phase), it can be detected by observing Ackp
(resp. Acke). These two signals can drive an SR-latch to generate the desired
Ack signal.

4.2 Asynchronous Round-Based TI

WDDL combinatorial circuits (generally asynchronous circuits) are glitch free,
i.e., each dual-rail signal changes only once at each pre-charge/evaluation phase.
Threshold implementation has been developed mainly for glitchy circuits, and
the registers should be placed between the non-linear shared functions to avoid
the propagation of the glitches [40]. Hence, at the first glance it seems that it is
not essential anymore to instantiate such registers if the circuit is glitch free.

Following this concept, we have implemented the round-based TI design pre-
sented in Fig. 11, and did not integrate registers between the shared Q294 func-
tions. The state register is moved to the end of the round function, and the Ack
signal is generated based on the state register input. By a couple of engineering
tricks the design is mapped to our FPGA platform. We should here empha-
size that Xilinx FPGAs are developed yet only for synchronous designs, and
integration of asynchronous circuits is neither straightforward nor efficient. For
example, each dual-rail WDDL gate should be implemented by a LUT [5].

Our design is a self-timed circuit, i.e., it does not require an external clock,
and once the reset signal goes LO, the circuit starts the first evaluation phase,
which is the first PRINCE round. Controlled by the internally-generated Ack sig-
nal, the end of the evaluation phase triggers the state register to save the cipher
state and simultaneously the start of the pre-charge phase. As stated before, a
disadvantage of such a concept is its required interleaved pre-charge/evaluation
phases. Because we avoided the extra registers within the Sbox, the design does
not form a pipeline anymore. Therefore, a full PRINCE is performed by 14

9 Such large gates are made by cascading the smaller gates.

Side-Channel Analysis Protection and Low-Latency in Action 533

Fig. 12. Evaluation results, asynchronous round-based TI design

(pre-charge, evaluation) cycles. Figure 12 shows a sample power trace of such a
design, where the cipher rounds can be identified. However, the t-test indicates
a pretty strong first-order leakage. Note that the design still realizes a uniform
threshold implementation with 3 shares, and we have not used WDDL as an
SCA countermeasure, rather as a 4-phase dual-rail protocol to enable detection
of the end of the evaluation (and pre-charge) of the combinatorial circuit.

A more careful investigation about the detected first-order leakage clarified
that although the circuit is glitch free, the non-linear circuits are cascaded. One
of the component functions of the second non-linear circuit (the second shared
Q294 in Fig. 11) starts to evaluate when two output shares of the first non-linear
circuit are both evaluated. Further, these two shares depend on all three shares
of the Sbox input. Therefore, the start of the evaluation of the second non-linear
circuit depends on all three input shares of the Sbox. This, which is a non-linear
condition (i.e., when both two output shares of the first non-linear circuit are
evaluated) is the reason for such a detectable first-order leakage (see [23] for a
similar experience on an unmasked design). Although placing registers between
the shared non-linear functions was initially introduced to avoid the propagation
of glitches, it also synchronizes the start of their evaluation to be independent
of the timing of the previous stage. As a result, the shared non-linear functions
should also be isolated from each other even in asynchronous circuits.

If we isolate the shared non-linear circuits by means of registers, and trigger
the registers to store when all 3 shares are evaluated, again the time of triggering
the registers as well as the circuit which generates the Ack signals (Fig. 10(a))
depends on all 3 shares and leak through first-order moments. As a proof of
concept, we have examined this issue by realizing the asynchronous round-based

534 A. Moradi and T. Schneider

Fig. 13. Evaluation results, asynchronous round-based TI design with simple Ack

TI design with registers in the Sbox module where the combinatorial parts are
made by WDDL gates. In this case, the Ack signals are generated by observing
the input of all three registers, i.e., when the pre-charge/evaluation of the entire
circuit – pipeline with 3 stages – is completed. The evaluation of this construction
has also showed detectable first-order leakage. So, we omit the corresponding
results.

As a side note, the early propagation effect [47] of WDDL aggravates this
issue. In the above explained experiments we have used the noEE version [5] of
WDDL (available only for FPGAs), that avoids early propagation only in evalu-
ation phase. We have also made use of its successor, AWDDL [35] (also only for
FPGAs) which avoids early propagation in both phases. Regardless of its double
area requirements, its utilization in our case slightly reduced the first-order leak-
age, but could not avoid it due to the known imbalances between the delay of
dual rails. In other words, the time required for full pre-charge/evaluation phase
of non-linear circuits still depends on three shares and hence on unshared input.

Therefore, the only solution which we could consider for a secure design is to
simplify the Ack generator circuit. It means that if we generate the Ack signal
based on only one share of one of the state registers, the start time of the next
pre-charge/evaluation phase should be independent from the unshared values.
However, such a circuit cannot guarantee that the pre-charge/evaluation of the
other parts of the circuit are also finished. Therefore, we have found a path with
the largest delay and connected the Ack generator circuit accordingly. To ensure
the end of the pre-charge/evaluation of the other circuits, the generated Ack
signal is delayed (see Fig. 10(b)).

Side-Channel Analysis Protection and Low-Latency in Action 535

Fig. 14. Evaluation results, round-based TI design clocked by a controlled ring oscil-
lator

A sample trace as well as the t-test results are shown in Fig. 13, which con-
firms the prevention of first-order leakages. This construction is still a self-timed
asynchronous circuit without external clock, but it is vastly customized. For
instance, it does not operate at its maximum speed, and controlled mainly by a
delayed periodic signal. Hence, we do not benefit from all the features of asyn-
chronous methodology. If we ignore the low-power feature of this construction,
it is not significantly different from the corresponding synchronous design with
a high speed clock. As we listed in Table 1, the asynchronous design is much
larger than its synchronous variant. Further, due to the interleaved (pre-charge,
evaluation) phases, the latency of the asynchronous design is also not convincing.

The interleaved (pre-charge, evaluation) phases of 4-phase dual-rail protocols
(e.g., WDDL which we used here) doubles the latency of the design. Alterna-
tively, one can utilize a 2-phase dual-rail protocol [45], where ‘1’ and ‘0’ values
are encoded as signal transitions. Such protocols lead to faster but much more
complex circuits. We have applied Level-Encoded Dual-Rail (LEDR) [19] concept
and designed and evaluated the corresponding circuit, but due to the similarity
of the results to that of the WDDL, their presentation is omitted. In short, the
design was much bigger than its WDDL variant, but slightly faster. However,
all issues with respect to isolation of non-linear functions as well as the Ack
generator circuit hold true.

In this situation, where the operation of non-linear circuits must be iso-
lated and independent of other non-linear parts, we believe that the synchronous
design is favorable. For the remaining issue, i.e., absence of a fast clock in many
applications where low-latency cryptography is required, we suggest to generate

536 A. Moradi and T. Schneider

such a clock by means of a ring oscillator. Since the energy consumption of large
clock-trees (operated at a high frequency) is not desirable in many applications,
the ring oscillator can be controlled by the start and end of e.g., the encryp-
tion module. A schematic view of an exemplary circuit is depicted in Fig. 10(c).
Obviously the ring oscillator should be adjusted based on the critical path delay
of the circuit.

We have practically evaluated such a construction as well, whose results are
shown by Fig. 14. As expected, higher power consumption peak compared to the
same design operated at 6 MHz (see Fig. 8(a)) is observed. However, the first-
order leakage is still avoided, and more interestingly the higher-order leakages
are mitigated (Figs. 14 vs. 8). The reason is due to the overlap between the
adjacent power peaks, which leads to higher amount of noise, and consecutively
harder higher-order leakages to detect, e.g., in [38].

5 Discussion

We have discussed and shown that SCA-protected designs (by means of mask-
ing) should involve registers even in case of asynchronous designs. Therefore, the
low-latency concept – with a perspective of unrolled architectures – is in con-
tradiction with masking in hardware. As a result, round-based architectures are
the only possible solution for applications, where provably-secure SCA protec-
tion is required. In this scenario, in order to achieve a low latency two parameters
play the most important role: (i) the latency of each cipher round, and (ii) the
number of rounds.

Obviously, the most challenging issue, which we faced, was uniform realiza-
tion of the shared Sbox with 3 shares. In the seminal article [13], 8 different
Sboxes (up to affine equivalent) are suggested for the PRINCE-family. However,
all of them need at least a 3-stage decomposition to be able to uniformly shared
with 3 shares. Such a decomposition, as shown in Sect. 3.3, leads to a pipeline
round-based architecture with 3 stages. This – as stated above – increases the
number of clock cycles required for each cipher round, and negatively affect the
latency.

For the future designs, our first suggestion is to select Sboxes, whose uniform
sharing needs a low number of stages. The extreme case is to apply quadratic
Sboxes, which can be shared in one stage, but such a choice leads to higher
number of rounds (see PrintCipher [28]), which affect the low-latency target as
well. Hence, the trade-off here is to select either a quadratic Sbox, which needs
more number of rounds, or a cubic TI-friendly Sbox which forms a pipeline,
hence more number of clock cycles per round.

The second challenging issue was to deal with round constants. In case of
PRINCE, the round constants have been selected from a semi-random source
(fraction of π = 3.141 . . .). This design decision does not have any performance
penalty in case of unrolled architecture, since a round constant just turns some
XOR gates of the prior AddRoundKey to XNOR, i.e., for free10. However,
10 2-input XOR and XNOR gates need the same area [43].

Side-Channel Analysis Protection and Low-Latency in Action 537

for a round-based design, this leads to a relatively large combinatorial circuit
since each round constant should be selected at each round based on the round
counter11. Hence, it is advisable to systematically generate the round constants,
e.g., by means of an LFSR. Note that if a large LFSR is chosen, the area required
to save its state (by registers) has also a negative impact on the area overhead.

In case of PRINCE, due to its underlying α-reflection structure, encryption
and decryption circuits are very similar. M′-Layer of PRINCE is self-inverse,
and the Sbox is affine equivalent to its inverse, but it consists of two differ-
ent round functions. Such a construction makes the round-based architecture
(required for SCA protection) more complicated as both round functions need
to be implemented (see Fig. 4), which obviously increases the area requirements.
Hence, it is preferred to have a design with a unique round function. In this case,
achieving highly-similar encryption and decryption might be challenging.

5.1 Comparison to Midori

The Midori cipher has been introduced in [3] with the main goal of reducing
the energy consumption. Based on the simulation results and the discussions
given in [3,4], a round-based architecture is targeted to achieve the minimum
energy consumption per bit. Further, it has been shown that the full latency of
a round-based implementation of Midori outperforms that of other considered
ciphers including PRINCE. Therefore, we considered Midori64 for comparison
purposes12.

Midori64 state is a 64-bit block, and its 4-bit Sbox (applied on all state
nibbles) is an involution. Its linear layer includes an involutional MixColumn
operation (made of a couple of XORs), and a ShiftCell which swaps the 4-bit
cells of the state. It consists of 15 rounds, and respectively 15 round constants
(each 16 bits) which are added to the LSB of the state nibbles. The 128-bit key
is divided into two parts which are alternatively added to the sate at each round,
and their XOR is used as a pre- and post-whitening key.

Figure 15 shows a round-based implementation of Midori64, which supports
both encryption and decryption. Note that the authors of [3] proposed to apply
the inverse of the linear operations, i.e., ShiftCell−1 ◦MixColumn, over the round
keys and round constants for the decryption. However, we found our solution
(see Fig. 15) which needs 64 extra 2-input XOR gates, cheaper than the original
suggestion.

In order to realize its threshold implementation, the linear layers are simply
repeated over the 3 shares, and a uniform representation of its Sbox is con-
structed. The Midori64 Sbox is affine equivalent to C266 class [11], which can
be decomposed to two quadratic bijections with uniform TI. Amongst many
possible solutions we selected Q12 × Q12 and found affine functions as

11 In our round-based designs, the selection of the round constant followed by 64-bit
XOR need an area of 265GE.

12 We are aware of the weakness reported in [25], but to be compatible with PRINCE,
i.e., 64-bit block size, we excluded Midori128 in our investigations.

538 A. Moradi and T. Schneider

Fig. 15. Round-based first-order threshold implementation of Midori64

Fig. 16. Evaluation results, round-based TI design of Midori64 clocked by a controlled
ring oscillator

S = Aout ◦ Q12 ◦ Am ◦ Q12 ◦ Ain.

There exist 147 456 such (Ain, Am, Aout) triples, and we selected the following
settings (with respect to the same criteria explained in Sect. 3.2):

Ain : 0A1B82934E5FC6D7, e = b, f = a, g = d, h = a + c,

Am : 84B70C3F95A61D2E, e = b + d, f = b, g = a, h = 1 + a + c,

Aout : 8A02DF57CE469B13, e = c, f = a, g = c + d, h = 1 + b. (4)

The sharing of Q12 : 0123456789CDEFAB with

e = a, f = b + bd + cd, g = c + bd, h = d

Side-Channel Analysis Protection and Low-Latency in Action 539

can be derived by direct sharing [11]. If we define the component function
f i,j

Q12
(〈ai, bi, ci, di〉, 〈aj , bj , cj , dj〉) = 〈e, f, g, h〉 as

e = ai, g = bidi + dibj + bidj ,

f = bi + bidi + dibj + bidj + cidi + dicj + cidj , h = di, (5)

we can form a uniform shared representation of Q12 by f2,3
Q12

(., .), f3,1
Q12

(., .) and
f1,2

Q12
(., .), as shown in Fig. 15.

We have also practically examined its SCA resistance by the FPGA proto-
type. For comparison purposes we considered only a synchronous version, where
the clock is provided by a controlled ring oscillator (with the same number of
inverters as in the corresponding PRINCE design). The results (indicating first-
order resistance and stronger leakage through higher-order moments compared
to its corresponding PRINCE) are shown in Fig. 16, and the performance results
are listed in Table 1.

5.2 Conclusions

We have presented the results of an extensive study on application of mask-
ing, particularly TI, on PRINCE considering its low-latency goal. As given in
Table 1, the asynchronous design is around 2.8 times larger and around 2.6 times
slower than its synchronous variant. Further, an overview about its power con-
sumption (FPGA prototype) shows no advantage, even compared to the case
when the synchronous design operates at a high frequency13. More importantly,
we faced several issues regarding its detectable first-order leakage. Finally, the
design, which could prevent the leakages, was not much structurally different to
a synchronous design, whose clock is internally generated.

Based on Table 1, the fastest synchronous round-based TI needs 11 275 GE
which is in the range of the unprotected unrolled design (8 512 - 17 675 GE).
Although its critical path with 1.9 ns delay is around than 4 times shorter than
that of the fastest unrolled design, its 40 clock cycle latency leads to 76 ns which is
around 8 times more than 9 ns latency of the unrolled design. However, its under-
lying pipeline architecture compensates in terms of throughput to be between 2
and 3 times less than the unprotected unrolled designs.

Compared to the synchronous round-based TI of PRINCE, Midori64 is
smaller and achieves lower latency (58.9 ns vs. 76 ns for the fastest designs), but
their throughput are comparable considering the full capacity of the pipelines.
We should emphasize that most of the suggestions (given above) can be seen in
the design of Midori: (i) the Sbox is an involution and TI friendly, (ii) MixCol-
umn is an involution, (iii) it consists of only one type of round function, and
(iv) the round constants are short (16 bits per round) although they cannot be
generated systematically. However, with respect to [25] our observation is that:
there is still a gap to fill, i.e., a low-latency cipher, which in addition to the
13 Note here the difference between power consumption of equivalent FPGA and ASIC

circuits.

540 A. Moradi and T. Schneider

desired cryptographic strength, can easily deal with the challenges addressed
in this article. In short, the candidate should still achieve a low latency when
fully unrolled as well as in a round-based fashion, and at the same time its
masked (TI) round-based variant is efficient in terms of area and latency for the
applications, where provably-secure SCA protection is required.

Acknowledgment. The authors would like to acknowledge Ventzislav Nikov for his
help with the decomposition process and Alexander Kühn for his help with implemen-
tation of different asynchronous variants of PRINCE on FPGA. The research in this
work was supported in part by the DFG Research Training Group GRK 1817/1.

A Masked Unrolled Design (only First and Last Rounds)

To share the Sbox and its inverse with 4 shares, we represented the Sbox as
S = A2 ◦ C231 ◦ A1 and its inverse as S−1 = A4 ◦ C231 ◦ A3 with
A1 : EF548932AB10CD76, A2 : 08192A3B4C5D6E7F, A3 : 92386DC7F45E0BA1,
A4 : 51736240FBD9C8EA, and C231 : 0123468B59CEDA7F as

e =a + d + ac + ad + bd + abc + bcd

f =b + ac + bc + bd + abd

g =c + d + bc + ad + cd + abd + bcd

h =bc + ad + bd + cd + abd + acd + bcd.

By applying direct sharing on C231 we reach the component function
f i,j,k

C231
(〈ai, bi, ci, di〉, 〈aj , bj , cj , dj〉, 〈ak, bk, ck, dk〉) = 〈e, f, g, h〉 as

e =ai + di + aici + aicj + aick + ajci + aidi + aidj + aidk + ajdi + bidi+

bidj + bidk + bjdi + aibici + aibjck + aibkcj + ajbick + ajbkci+

akbicj + akbjci + aibicj + aibjcj + aibick + aibkck + ajbjci+

ajbici + aibjci + aibkci + ajbicj + bicidi + bicjdk + bickdj+

bjcidk + bjckdi + bkcidj + bkcjdi + bicidj + bicjdj + bicidk+

bickdk + bjcjdi + bjcidi + bicjdi + bickdi + bjcidj

f =bi + aici + aicj + aick + ajci + bici + bicj + bick + bjci + bidi + bidj+

bidk + bjdi + aibidi + aibjdk + aibkdj + ajbidk + ajbkdi + akbidj+

akbjdi + aibidj + aibjdj + aibidk + aibkdk + ajbjdi + ajbidi+

aibjdi + aibkdi + ajbidj

Side-Channel Analysis Protection and Low-Latency in Action 541

g =ci + di + bici + bicj + bick + bjci + aidi + aidj + aidk + ajdi + cidi + cidj+

cidk + cjdi + aibidi + aibjdk + aibkdj + ajbidk + ajbkdi + akbidj+

akbjdi + aibidj + aibjdj + aibidk + aibkdk + ajbjdi + ajbidi + aibjdi+

aibkdi + ajbidj + bicidi + bicjdk + bickdj + bjcidk + bjckdi + bkcidj+

bkcjdi + bicidj + bicjdj + bicidk + bickdk + bjcjdi + bjcidi + bicjdi+

bickdi + bjcidj

h =bici + bicj + bick + bjci + aidi + aidj + aidk + ajdi + bidi + bidj + bidk+

bjdi + cidi + cidj + cidk + cjdi + aibidi + aibjdk + aibkdj + ajbidk+

ajbkdi + akbidj + akbjdi + aibidj + aibjdj + aibidk + aibkdk + ajbjdi+

ajbidi + aibjdi + aibkdi + ajbidj + aicidi + aicjdk + aickdj + ajcidk+

ajckdi + akcidj + akcjdi + aicidj + aicjdj + aicidk + aickdk + ajcjdi+

ajcidi + aicjdi + aickdi + ajcidj + bicidi + bicjdk + bickdj + bjcidk+

bjckdi + bkcidj + bkcjdi + bicidj + bicjdj + bicidk + bickdk + bjcjdi+

bjcidi + bicjdi + bickdi + bjcidj

By implementing four instances of this component function f2,3,4
C231

(., ., .),
f3,4,1

C231
(., ., .), f4,1,2

C231
(., ., .), and f1,2,3

C231
(., ., .) we reach a correct, non-complete, but

non-uniform sharing of C231. Note that the 64-bit masks m1, m2, and m3 required
to share the last input round are independent of the masks used to share the
cipher input.

542 A. Moradi and T. Schneider

B Round-Based Designs

Fig. 17. Detailed active parts of our round-based architecture

Side-Channel Analysis Protection and Low-Latency in Action 543

C Decomposition of C231

Table 2. All possible ways to decompose C231 by selected quadratic bijections in three
stages

C231 C150 C151 C158 C159 C168 C171 C172 C214 C215 C223 C262 C266 C296 C297

Q4 × ×
Q12 × × × × × × × × × × × ×
Q293 × × × × × × × × × × × × ×
Q294 × × × × × × × × × × ×
Q299 × × × × × × × × × × × × ×

C150 : Q12 × Q293

C151 : Q293 × Q12

C158 : Q299 × Q293

C159 : Q293 × Q299

C168 : Q293 × Q293

C171 : Q293 × Q12 Q294 × Q293

C172 : Q12 × Q293 Q293 × Q294

C214 :
Q4 × Q299 Q12 × Q12 Q12 × Q294 Q12 × Q299 Q293 × Q4 Q293 × Q12

Q293 × Q294 Q293 × Q299 Q294 × Q12 Q294 × Q294 Q294 × Q299

C215 :
Q4 × Q293 Q12 × Q12 Q12 × Q293 Q12 × Q294 Q294 × Q12 Q294 × Q293

Q294 × Q294 Q299 × Q4 Q299 × Q12 Q299 × Q293 Q299 × Q294

Q12 × Q299 Q293 × Q293 Q293 × Q294 Q294 × Q293 Q294 × Q294 Q299 × Q12C223 : Q299 × Q299

C262 : Q12 × Q299 Q294 × Q299 Q299 × Q12 Q299 × Q294

C266 : Q12 × Q12 Q294 × Q299 Q299 × Q294 Q299 × Q299

C296 : Q12 × Q299 Q293 × Q293 Q294 × Q12 Q299 × Q294 Q299 × Q299

C297 : Q12 × Q294 Q293 × Q293 Q294 × Q299 Q299 × Q12 Q299 × Q299

References

1. Side-channel attack user reference architecture. http://satoh.cs.uec.ac.jp/
SAKURA/index.html

2. Balasch, J., Gierlichs, B., Verdult, R., Batina, L., Verbauwhede, I.: Power analysis
of atmel cryptomemory – recovering keys from secure EEPROMs. In: Dunkelman,
O. (ed.) CT-RSA 2012. LNCS, vol. 7178, pp. 19–34. Springer, Heidelberg (2012).
doi:10.1007/978-3-642-27954-6 2

3. Banik, S., Bogdanov, A., Isobe, T., Shibutani, K., Hiwatari, H., Akishita, T.,
Regazzoni, F.: Midori: a block cipher for low energy. In: Iwata, T., Cheon, J.H.
(eds.) ASIACRYPT 2015. LNCS, vol. 9453, pp. 411–436. Springer, Heidelberg
(2015). doi:10.1007/978-3-662-48800-3 17

http://satoh.cs.uec.ac.jp/SAKURA/index.html
http://satoh.cs.uec.ac.jp/SAKURA/index.html
http://dx.doi.org/10.1007/978-3-642-27954-6_2
http://dx.doi.org/10.1007/978-3-662-48800-3_17

544 A. Moradi and T. Schneider

4. Banik, S., Bogdanov, A., Regazzoni, F.: Exploring energy efficiency of lightweight
block ciphers. In: Dunkelman, O., Keliher, L. (eds.) SAC 2015. LNCS, vol. 9566,
pp. 178–194. Springer, Heidelberg (2016). doi:10.1007/978-3-319-31301-6 10

5. Bhasin, S., Guilley, S., Flament, F., Selmane, N., Danger, J.: Countering early
evaluation: an approach towards robust dual-rail precharge logic. In: Workshop on
Embedded Systems Security - WESS 2010, p. 6. ACM (2010)

6. Bhasin, S., Guilley, S., Sauvage, L., Danger, J.-L.: Unrolling cryptographic circuits:
a simple countermeasure against side-channel attacks. In: Pieprzyk, J. (ed.) CT-
RSA 2010. LNCS, vol. 5985, pp. 195–207. Springer, Heidelberg (2010). doi:10.1007/
978-3-642-11925-5 14

7. Bilgin, B., Gierlichs, B., Nikova, S., Nikov, V., Rijmen, V.: A more effi-
cient AES threshold implementation. In: Pointcheval, D., Vergnaud, D. (eds.)
AFRICACRYPT 2014. LNCS, vol. 8469, pp. 267–284. Springer, Heidelberg (2014).
doi:10.1007/978-3-319-06734-6 17

8. Bilgin, B., Gierlichs, B., Nikova, S., Nikov, V., Rijmen, V.: Higher-order threshold
implementations. In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014. LNCS, vol.
8874, pp. 326–343. Springer, Heidelberg (2014). doi:10.1007/978-3-662-45608-8 18

9. Bilgin, B., Gierlichs, B., Nikova, S., Nikov, V., Rijmen, V.: Trade-offs for threshold
implementations illustrated on AES. IEEE Trans. CAD Integr. Circ. Syst. 34(7),
1188–1200 (2015)

10. Bilgin, B., Nikova, S., Nikov, V., Rijmen, V., Stütz, G.: Threshold implementa-
tions of All 3×3 and 4×4 S-boxes. In: Prouff, E., Schaumont, P. (eds.) CHES
2012. LNCS, vol. 7428, pp. 76–91. Springer, Heidelberg (2012). doi:10.1007/
978-3-642-33027-8 5

11. Bilgin, B., Nikova, S., Nikov, V., Rijmen, V., Tokareva, N., Vitkup, V.: Threshold
implementations of small S-boxes. Crypt. Commun. 7(1), 3–33 (2015)

12. Bogdanov, A., Knudsen, L.R., Leander, G., Paar, C., Poschmann, A., Robshaw,
M.J.B., Seurin, Y., Vikkelsoe, C.: PRESENT: an ultra-lightweight block cipher.
In: Paillier, P., Verbauwhede, I. (eds.) CHES 2007. LNCS, vol. 4727, pp. 450–466.
Springer, Heidelberg (2007). doi:10.1007/978-3-540-74735-2 31

13. Borghoff, J., Canteaut, A., Güneysu, T., Kavun, E.B., Knezevic, M., Knudsen,
L.R., Leander, G., Nikov, V., Paar, C., Rechberger, C., Rombouts, P., Thomsen,
S.S., Yalçın, T.: PRINCE – a low-latency block cipher for pervasive computing
applications. In: Wang, X., Sako, K. (eds.) ASIACRYPT 2012. LNCS, vol. 7658,
pp. 208–225. Springer, Heidelberg (2012). doi:10.1007/978-3-642-34961-4 14

14. Bouesse, G., Renaudin, M., Witon, A., Germain, F.: A clock-less low-voltage AES
crypto-processor. In: Proceedings of the 31st European Solid-State Circuits Con-
ference, ESSCIRC 2005, pp. 403–406. IEEE (2005)

15. Bouesse, G.F., Renaudin, M., Dumont, S., Germain, F.: DPA on quasi delay insen-
sitive asynchronous circuits: formalization and improvement. In: DATE, pp. 424–
429. IEEE Computer Society (2005)

16. Bouesse, F., Renaudin, M., Sicard, G.: Improving DPA resistance of quasi delay
insensitive circuits using randomly time-shifted acknowledgment signals. In: Reis,
R., Osseiran, A., Pfleiderer, H.-J. (eds.) VLSI-SoC 2005. IIFIP, vol. 240, pp. 11–24.
Springer, Heidelberg (2007). doi:10.1007/978-0-387-73661-7 2

17. Bouesse, F., Sicard, G., Renaudin, M.: Path swapping method to improve DPA
resistance of quasi delay insensitive asynchronous circuits. In: Goubin, L., Matsui,
M. (eds.) CHES 2006. LNCS, vol. 4249, pp. 384–398. Springer, Heidelberg (2006).
doi:10.1007/11894063 30

http://dx.doi.org/10.1007/978-3-319-31301-6_10
http://dx.doi.org/10.1007/978-3-642-11925-5_14
http://dx.doi.org/10.1007/978-3-642-11925-5_14
http://dx.doi.org/10.1007/978-3-319-06734-6_17
http://dx.doi.org/10.1007/978-3-662-45608-8_18
http://dx.doi.org/10.1007/978-3-642-33027-8_5
http://dx.doi.org/10.1007/978-3-642-33027-8_5
http://dx.doi.org/10.1007/978-3-540-74735-2_31
http://dx.doi.org/10.1007/978-3-642-34961-4_14
http://dx.doi.org/10.1007/978-0-387-73661-7_2
http://dx.doi.org/10.1007/11894063_30

Side-Channel Analysis Protection and Low-Latency in Action 545

18. Cooper, J., Demulder, E., Goodwill, G., Jaffe, J., Kenworthy, G., Rohatgi, P.:
Test vector leakage assessment (TVLA) methodology in practice. In: International
Cryptographic Module Conference (2013)

19. Dean, M.E., Williams, T.E., Dill, D.L.: Efficient self-timing with level-encoded 2-
phase dual-rail (LEDR). In: Conference on Advanced Research in VLSI, pp. 55–70.
MIT Press (1991)

20. Ding, A.A., Chen, C., Eisenbarth, T.: Simpler, faster, and more robust t-
test based leakage detection. In: Standaert, F.-X., Oswald, E. (eds.) COSADE
2016. LNCS, vol. 9689, pp. 163–183. Springer, Heidelberg (2016). doi:10.1007/
978-3-319-43283-0 10

21. Durvaux, F., Standaert, F.-X., Del Pozo, S.M.: Towards easy leakage certification.
In: Gierlichs, B., Poschmann, A.Y. (eds.) CHES 2016. LNCS, vol. 9813, pp. 40–60.
Springer, Heidelberg (2016). doi:10.1007/978-3-662-53140-2 3

22. Eisenbarth, T., Kasper, T., Moradi, A., Paar, C., Salmasizadeh, M., Shalmani,
M.T.M.: On the power of power analysis in the real world: a complete break of the
KeeLoq code hopping scheme. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol.
5157, pp. 203–220. Springer, Heidelberg (2008). doi:10.1007/978-3-540-85174-5 12

23. Fournier, J.J.A., Moore, S., Li, H., Mullins, R., Taylor, G.: Security evaluation
of asynchronous circuits. In: Walter, C.D., Koç, Ç.K., Paar, C. (eds.) CHES
2003. LNCS, vol. 2779, pp. 137–151. Springer, Heidelberg (2003). doi:10.1007/
978-3-540-45238-6 12

24. Goodwill, G., Jun, B., Jaffe, J., Rohatgi, P.: A testing methodology for side
channel resistance validation. In: NIST non-invasive attack testing workshop
(2011). http://csrc.nist.gov/news events/non-invasive-attack-testing-workshop/
papers/08 Goodwill.pdf

25. Guo, J., Jean, J., Nikolić, I., Qiao, K., Sasaki, Y., Sim, S.M.: Invariant subspace
attack against full Midori64. Cryptology ePrint Archive, Report 2015/1189 (2015).
http://eprint.iacr.org/

26. Kilian, J., Rogaway, P.: How to protect DES against exhaustive key search.
In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 252–267. Springer,
Heidelberg (1996). doi:10.1007/3-540-68697-5 20

27. Knezevic, M., Nikov, V., Rombouts, P.: Low-latency encryption - Is “Lightweight
= Light + Wait”? In: Prouff, E., Schaumont, P. (eds.) CHES 2012. LNCS, vol.
7428, pp. 426–446. Springer, Heidelberg (2012)

28. Knudsen, L., Leander, G., Poschmann, A., Robshaw, M.J.B.: PRINTcipher:
a block cipher for ic-printing. In: Mangard, S., Standaert, F.-X. (eds.) CHES
2010. LNCS, vol. 6225, pp. 16–32. Springer, Heidelberg (2010). doi:10.1007/
978-3-642-15031-9 2

29. Kocher, P., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M. (ed.)
CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999). doi:10.
1007/3-540-48405-1 25

30. Kulikowski, K.J., Su, M., Smirnov, A.B., Taubin, A., Karpovsky, M.G.,
MacDonald, D.: Delay insensitive encoding and power analysis: a balancing act.
In: ASYNC, pp. 116–125. IEEE Computer Society (2005)

31. Liu, J., Yu, Y., Standaert, F.-X., Guo, Z., Gu, D., Sun, W., Ge, Y., Xie, X.: Small
tweaks do not help: differential power analysis of MILENAGE implementations
in 3G/4G USIM cards. In: Pernul, G., Ryan, P.Y.A., Weippl, E. (eds.) ESORICS
2015. LNCS, vol. 9326, pp. 468–480. Springer, Heidelberg (2015). doi:10.1007/
978-3-319-24174-6 24

32. Mangard, S., Oswald, E., Popp, T.: Power Analysis Attacks: Revealing the Secrets
of Smart Cards. Springer, USA (2007)

http://dx.doi.org/10.1007/978-3-319-43283-0_10
http://dx.doi.org/10.1007/978-3-319-43283-0_10
http://dx.doi.org/10.1007/978-3-662-53140-2_3
http://dx.doi.org/10.1007/978-3-540-85174-5_12
http://dx.doi.org/10.1007/978-3-540-45238-6_12
http://dx.doi.org/10.1007/978-3-540-45238-6_12
http://csrc.nist.gov/news_events/non-invasive-attack-testing-workshop/papers/08_Goodwill.pdf
http://csrc.nist.gov/news_events/non-invasive-attack-testing-workshop/papers/08_Goodwill.pdf
http://eprint.iacr.org/
http://dx.doi.org/10.1007/3-540-68697-5_20
http://dx.doi.org/10.1007/978-3-642-15031-9_2
http://dx.doi.org/10.1007/978-3-642-15031-9_2
http://dx.doi.org/10.1007/3-540-48405-1_25
http://dx.doi.org/10.1007/3-540-48405-1_25
http://dx.doi.org/10.1007/978-3-319-24174-6_24
http://dx.doi.org/10.1007/978-3-319-24174-6_24

546 A. Moradi and T. Schneider

33. Moore, S.W., Mullins, R.D., Cunningham, P.A., Anderson, R.J., Taylor, G.S.:
Improving smart card security using self-timed circuits. In: ASYNC, pp. 211–218.
IEEE Computer Society (2002)

34. Moradi, A., Barenghi, A., Kasper, T., Paar, C.: On the vulnerability of FPGA
bitstream encryption against power analysis attacks: extracting keys from xilinx
Virtex-II FPGAs. In: ACM Conference on Computer and Communications Security
- CCS 2011, pp. 111–124. ACM (2011)

35. Moradi, A., Immler, V.: Early propagation and imbalanced routing, how to dimin-
ish in FPGAs. In: Batina, L., Robshaw, M. (eds.) CHES 2014. LNCS, vol. 8731,
pp. 598–615. Springer, Heidelberg (2014). doi:10.1007/978-3-662-44709-3 33

36. Moradi, A., Mischke, O., Paar, C.: Practical evaluation of DPA countermeasures
on reconfigurable hardware. In: HOST 2011, pp. 154–160. IEEE (2011)

37. Moradi, A., Poschmann, A., Ling, S., Paar, C., Wang, H.: Pushing the limits: a
very compact and a threshold implementation of AES. In: Paterson, K.G. (ed.)
EUROCRYPT 2011. LNCS, vol. 6632, pp. 69–88. Springer, Heidelberg (2011).
doi:10.1007/978-3-642-20465-4 6

38. Moradi, A., Wild, A.: Assessment of hiding the higher-order leakages in hardware.
In: Güneysu, T., Handschuh, H. (eds.) CHES 2015. LNCS, vol. 9293, pp. 453–474.
Springer, Heidelberg (2015). doi:10.1007/978-3-662-48324-4 23

39. Myers, C.J.: Asynchronous Circuit Design. Wiley, New York (2001)
40. Nikova, S., Rijmen, V., Schläffer, M.: Secure hardware implementation of nonlinear

functions in the presence of glitches. J. Cryptology 24(2), 292–321 (2011)
41. Oswald, D., Paar, C.: Breaking mifare desfire MF3ICD40: power analysis and tem-

plates in the real world. In: Preneel, B., Takagi, T. (eds.) CHES 2011. LNCS, vol.
6917, pp. 207–222. Springer, Heidelberg (2011). doi:10.1007/978-3-642-23951-9 14

42. Poschmann, A., Moradi, A., Khoo, K., Lim, C., Wang, H., Ling, S.: Side-channel
resistant crypto for less than 2, 300 GE. J. Cryptology 24(2), 322–345 (2011)

43. Poschmann, A.Y.: Lightweight cryptography: cryptographic engineering for a per-
vasive world. Ph.D. thesis, Ruhr University Bochum (2009)

44. Schneider, T., Moradi, A.: Leakage assessment methodology — a clear roadmap
for side-channel evaluations. In: Güneysu, T., Handschuh, H. (eds.) CHES
2015. LNCS, vol. 9293, pp. 495–513. Springer, Heidelberg (2015). doi:10.1007/
978-3-662-48324-4 25

45. Spars, J., Furber, S.: Principles of Asynchronous Circuit Design: A Systems Per-
spective, 1st edn. Springer Publishing Company, Incorporated, USA (2010)

46. Standaert, F.-X., Örs, S.B., Preneel, B.: Power analysis of an FPGA: implemen-
tation of rijndael: is pipelining a DPA countermeasure? In: Joye, M., Quisquater,
J.-J. (eds.) CHES 2004. LNCS, vol. 3156, pp. 30–44. Springer, Heidelberg (2004).
doi:10.1007/978-3-540-28632-5 3

47. Suzuki, D., Saeki, M.: Security evaluation of DPA countermeasures using dual-rail
pre-charge logic style. In: Goubin, L., Matsui, M. (eds.) CHES 2006. LNCS, vol.
4249, pp. 255–269. Springer, Heidelberg (2006). doi:10.1007/11894063 21

48. Tiri, K., Verbauwhede, I.: A logic level design methodology for a secure DPA
resistant ASIC or FPGA implementation. In: Design, Automation and Test in
Europe - DATE 2004, pp. 246–251. IEEE Computer Society (2004)

49. Virtual Silicon Inc.: 0.18 µm VIP standard cell library tape out ready, Part number:
UMCL18G212T3, Process: UMC Logic 0.18 µm Generic II Technology: 0.18 µm,
July 2004

50. Wu, J., Kim, Y., Choi, M.: Low-power side-channel attack-resistant asynchronous
s-box design for AES cryptosystems. In: ACM Great Lakes Symposium on VLSI,
pp. 459–464. ACM (2010)

http://dx.doi.org/10.1007/978-3-662-44709-3_33
http://dx.doi.org/10.1007/978-3-642-20465-4_6
http://dx.doi.org/10.1007/978-3-662-48324-4_23
http://dx.doi.org/10.1007/978-3-642-23951-9_14
http://dx.doi.org/10.1007/978-3-662-48324-4_25
http://dx.doi.org/10.1007/978-3-662-48324-4_25
http://dx.doi.org/10.1007/978-3-540-28632-5_3
http://dx.doi.org/10.1007/11894063_21

Side-Channel Analysis Protection and Low-Latency in Action 547

51. Yli-Mäyry, V., Homma, N., Aoki, T.: Improved power analysis on unrolled archi-
tecture and its application to PRINCE block cipher. In: Güneysu, T., Leander,
G., Moradi, A. (eds.) LightSec 2015. LNCS, vol. 9542, pp. 148–163. Springer,
Heidelberg (2016). doi:10.1007/978-3-319-29078-2 9

52. Yu, A., Brée, D.S.: A clock-less implementation of the AES resists to power and
timing attacks. In: ITCC (2), pp. 525–532. IEEE Computer Society (2004)

53. Yu, Z.C., Furber, S.B., Plana, L.A.: An investigation into the security of self-timed
circuits. In: ASYNC, pp. 206–215. IEEE Computer Society (2003)

54. Zhou, Y., Yu, Y., Standaert, F.-X., Quisquater, J.-J.: On the need of physical secu-
rity for small embedded devices: a case study with COMP128-1 implementations
in SIM cards. In: Sadeghi, A.-R. (ed.) FC 2013. LNCS, vol. 7859, pp. 230–238.
Springer, Heidelberg (2013). doi:10.1007/978-3-642-39884-1 20

http://dx.doi.org/10.1007/978-3-319-29078-2_9
http://dx.doi.org/10.1007/978-3-642-39884-1_20

Characterisation and Estimation of the Key
Rank Distribution in the Context of Side

Channel Evaluations

Daniel P. Martin1(B), Luke Mather2, Elisabeth Oswald1, and Martijn Stam1

1 Department of Computer Science, University of Bristol,
Merchant Venturers Building, Woodland Road, Bristol BS8 1UB, UK

{dan.martin,elisabeth.oswald,martijn.stam}@bris.ac.uk
2 HP Labs, Bristol, UK
luke.mather@bris.ac.uk

Abstract. Quantifying the side channel security of implementations has
been a significant research question for several years in academia but also
among real world side channel practitioners. As part of security evalua-
tions, efficient key rank estimation algorithms were devised, which in con-
trast to analyses based on subkey recovery, give a holistic picture of the
security level after a side channel attack. However, it has been observed
that outcomes of rank estimations show a huge spread in precisely the
range of key ranks where enumeration could lead to key recovery. These
observations raise the question whether this is because of insufficient
rank estimation procedures, or, if this is an inherent property of the key
rank. Furthermore, if this was inherent, how could key rank outcomes
be translated into practically meaningful figures, suitable to analysing
the risk that real world side channel attacks pose? This paper is a direct
response to these questions. We experimentally identify the key rank
distribution and show that it is independent of different distinguishers
and signal-to-noise ratios. Then we offer a theoretical explanation for the
observed key rank distribution and determine how many samples thereof
are required for a robust estimation of some key parameters. We discuss
how this can be naturally integrated into real world side channel evalu-
ation practices. We conclude our research by connecting non-parametric
order statistics, in particular percentiles, in a practically meaningful way
with business goals.

1 Introduction

To assess the outcome of an attack, researchers traditionally sought to determine
the attack’s success rate (SR). Standaert et al. [20] provided a formal definition
for the SR and hypothesised that there is a link between attack outcomes (the
success rate, assuming a single targeted intermediate value) and the leakage
(measured in information theoretic terms in the same intermediate value). Fur-
ther research aimed at characterising the SR, e.g. [18,21], or finding alternative

The research was carried out whilst L. Mather was employed at the University of
Bristol.

c© International Association for Cryptologic Research 2016
J.H. Cheon and T. Takagi (Eds.): ASIACRYPT 2016, Part I, LNCS 10031, pp. 548–572, 2016.
DOI: 10.1007/978-3-662-53887-6 20

Characterisation and Estimation of the Key Rank Distribution 549

ways to predict differential power analysis (DPA) outcomes, e.g. [8]. These con-
tributions brought much needed clarity about some aspects of the (interactions)
between target functions and leakage models, but (necessarily) had to restrict
themselves to considering attack outcomes for a single subkey only.

In practice however, the effort to reveal the entire secret key is the concern
of most primacy: given a number of traces, and a computational budget for key
enumeration, what is the likelihood to reveal the secret key? This question can be
answered both by a generalised SR (which is closely connected to the key guessing
entropy (GE, see [20]), this line of research has recently been developed further
by Duc et al. [6].) or by computing the rank of the secret key. Consequently, fast
methods to compute the rank of the secret key have become a hot topic [2,3,10,
14,24,25].

It is noteworthy that the first computationally efficient and accurate key esti-
mation algorithm originated from an evaluation lab [10]. Their interest in the
topic explains itself easily: assuming a sufficiently accurate method to estimate
the true rank of the secret key, decisive leakage evaluations could be performed.
However, the existing research brought to light an (unexpected) difficulty along
the way: even though the aforementioned previous works sought to minimise the
estimation error in key rank algorithms, the derived key ranks show a huge spread
in exactly the range of ranks where enumeration is of practical importance. This
opens up the question whether these ranks actually give meaningful informa-
tion? And if so how would key rank computations be integrated in standardised
security evaluations? The potential implication of these recent research results
have prompted JHAS (JIL Hardware-related Attacks Subgroup, this industry
led group essentially defines Common Criteria security evaluation practises for
smart card products) to set up a specific working group that deals with the topic.

Our research offers answers to these questions: after introducing some back-
ground (Sect. 2) we improve the key rank algorithm of Martin et al. [14] to
produce the (to date) most precise key ranking algorithm (Sect. 3). Using this
high-precision ranking algorithm, we focus on the properties of the key rank dis-
tribution: we begin with an experimental exploration of the key rank, which we
accompany and strengthen by a theoretical analysis. Then, drawing from care-
fully designed simulations, we justify some general observations about the key
rank such as the independence of side channel distinguisher and trace character-
istics. We evaluate statistical metrics for the purpose of quantifying the risk from
side-channel attacks through an “evaluation through rank estimation” approach
and relate it to (potential) business goals.

2 Side-Channel Evaluations and Key Rank

This section covers some basic notation related to differential power analysis
(DPA) style attacks on modern blockciphers, as well as surveying the recent
works on computing fast and accurate estimates for the key rank.

We use a bold type face to denote multi-dimensional variables. A key
k can be partitioned into m (independent) subkeys, which we denote as

550 D.P. Martin et al.

k = (k0, . . . , km−1). We assume that all subkeys are of the same size (which
holds in most scenarios in practice) and that each subkey can take one of n pos-
sible values. As an example, for AES-128 typically the 128-bit key is subdivided
in m = 16 subkeys of a byte (n = 256) each. The key to be recovered by the
DPA attack is called the secret key and is denoted sk = (sk0, . . . , skm−1).

2.1 Standard DPA Model

In this paper we consider a standard DPA scenario as in Mangard et al. [13],
which implies the attacks are single order and univariate. (Note that in higher
order attacks the univariate targets still fit a standard DPA attack). An attacker
has N power measurements or traces Ti corresponding to encryptions of N known
plaintexts xi ∈ X , i = 1, . . . , N and wishes to recover the secret key sk.

For each subkey (j = 0, . . . ,m−1) we assume that each trace Ti is condensed
to a single point of interest Pi,j and that this value Pi,j decomposes additively
as Pi,j = Pexp +Pnoise. Here Pexp, called the signal, is a deterministic function of
the value of the subkey skj and the relevant input xi, whereas Pnoise, called the
noise, is drawn at random according to some distribution that does not depend
on any of the input values (including the secret key sk). The signal-to-noise ratio
(SNR) is then defined as the ratio of the variance in the signal (when ranging
over secret keys and plaintexts) divided by the variance in the noise:1

SNR =
V ar(Pexp)

V ar(Pnoise).

The SNR is used to quantify the amount of leakage within a given measurement:
the higher the SNR, the more information within the trace that can be exploited.

A distinguisher Dj against the jth subkey takes as input the vector of con-
densed traces and corresponding plaintexts (Pi,j , xi)i=1,...,N and outputs a dis-
tinguishing vector Dj ∈ R

n, which assigns a score for each possible hypothesis
of the subkey under consideration. Without loss of generality, we will assume
that the higher the score for a subkey hypothesis kj , the more likely the distin-
guisher deems that secret key equals kj . The distinguisher D on the complete
key, simply runs the subkey distinguishers Dj for each subkey and outputs a list
of distinguishing vectors D ∈ R

n×m (namely a distinguishing vector for each
subkey).

2.2 Key Rank

The result of a side channel attack is a set of distinguishing vectors, which hold
the information about subkeys (when studied individually) and the entire key

1 Strictly speaking the SNR is defined relative to a subkey and should be indexed by
j; however when we later refer to the SNR it will be the same for all subkeys. This
is a simplifying assumption we make for our simulated data. It may not hold (nor
do we require it to) on real devices.

Characterisation and Estimation of the Key Rank Distribution 551

(when studied jointly). To judge the potency of an attack, we need suitable
metrics to express how well the distinguishing vectors enable key recovery.

Even though the ultimate goal is full key recovery, historically the emphasis
has been on subkey recovery. The only relevant information in a subkey dis-
tinguishing vector Dj is the order it induces on possible subkey hypothesis, as
a clever adversary would test the subkeys in order of likelihood (ignoring for a
moment how one would test an individual subkey). The only information needed
to identify the true subkey skj in this ordering is its distinguishing score dskj ,j ,
leading to the following definition of subkey rank.

Definition 1 (Subkey rank). Given the distinguishing vector Dj, and the
distinguishing score dskj ,j for subkey skj, count the number of subkeys with score
strictly larger than dskj ,j. We denote this rankj

skj (Dj).

Extending subkey rank to a full key is based on the assumption that the
distinguishing scores for individual subkeys can be added to give a mean-
ingful score for the full score. For instance, given the distinguishing table
D = (D0, . . . ,Dm−1) for the entire key, the score of secret key sk is computed as
W =

∑m−1
j=0 dskj ,j (where the notation dskj ,j identifies the score corresponding

to skj in the distinguishing vector Dj). In this case the actual values in the
(subkey) distinguishing vectors becomes relevant.

Definition 2 (Key rank). Given the distinguishing table D, and the score W
of the secret key sk, count the number of keys with score strictly larger than W .
This is denoted ranksk(D).

Remark 1. If multiple keys have the same score as the secret key, we assume that
the latter is ranked first. This gives a conservative rank for a given distinguishing
vector, as it will be the earliest an adversary would enumerate the key. For
distinguishers that don’t actually distinguish that well (e.g. because they do not
exploit any leakage) this can lead to key ranks that significantly underestimate
the remaining effort to recover the full key.

The key rank ranksk(D) of a single secret key given a specific distinguishing
table is not particularly interesting on its own. To say something meaningful,
we will consider the key rank as a random variable that is the outcome of the
experiment in Fig. 1. Here a random key, random plaintexts, and (implicitly)
random noise in the measurements Ti are chosen, as a result of which the output
of the experiment is a random variable. We will denote this random variable
keyrankD(N), which highlights the dependency on the number of traces N and
the distinguisher D being used; obviously the experiment depends on the primi-
tive under attack, and how it leaks, as well. The random variable keyrankj

D(N)
denotes the rank of the jth subkey (that is, the experiment returns rankj

skj (Dj)
instead).

Definition 3 (Success rate). The success rate of a distinguisher D as a func-
tion of the number of traces N is defined as SRD(N) = Pr[keyrankD(N) = 0],
where the random variable keyrankD(N) is defined by Fig. 1.

552 D.P. Martin et al.

Fig. 1. The key rank experiment leading to random variable keyrankD(N).

The success rate, or first-order success rate, captures how frequently the
secret key sk is deemed (among) the most likely by the distinguisher. Given
that the score for a full key is computed as the sum of its constituent subkey
scores, a full key is deemed the most likely if, and only if, all its constituent
subkeys are the most likely. Thus, when focusing on success rate, it suffices to
look at the (first-order) subkey success rate.

Unfortunately, judging a distinguisher by its success rate only ignores key
recovery attacks that include key enumeration as part of their strategy. One
could look at higher-order success rates, where for the M -th order key recovery,
the M highest ranked key guesses are tested using a known plaintext–ciphertext
pair, though this raises the question for which M (and for realistic but large
M , say M = 250 computing the M -th order success rate is a challenge on its
own). Instead, we suggest to maintain the notion of keyrankD(N) as a random
variable and we will investigate its distribution as a whole. This allows us to
identify those properties of the distribution crucial to a holistic assessment of
the potency of a side channel attack.

Remark 2. While the random variable keyrankD(N) is defined over the random-
ness of key, plaintexts, and the noise in the measurement, we emphasize that it
is really the latter that matters. Indeed, one could equally consider key rank in
a (non-adaptive) chosen plaintext setting and later on we will make the assump-
tion that the randomness of the key is irrelevant (namely that conditioning the
random variable keyrankD(N) on the key sk makes no difference). This does
mean that if the leakage is noise-free, looking at key rank as a random variable
is not that meaningful anymore. Instead, the leakage will allow an adversary to
determine a set (containing sk) of most likely keys it considers equiprobable; the
relevant metric in this case is the size of this set, not the rank as we defined it
(which will default to 0).

2.3 Theoretical Characterization of the Key Rank Distribution

When comparing DPA distinguishers, it is customary to assume a specific leak-
age model (e.g. the Hamming weight of some intermediate value with Gaussian
noise added). When the subkey distinguishing vector is considered as a random

Characterisation and Estimation of the Key Rank Distribution 553

variable (cf. Fig. 1), its distribution is known [18]: it takes the shape of a multi-
variate normal distribution. Using order statistics, this leads to a characterization
of the subkey rank distribution. This distribution is not particularly insightful
in its algebraic form, but it can be numerically evaluated in time proportional
to the n (the size of the subkey space). However, extending this characterization
into one for the full rank is not possible as the subkey rank distribution does
not uniquely determine the full key rank distribution. One could attempt to use
order statistics directly on the full key distinguishing table. However, even if
this were possible, the resulting formulae are likely unwieldy in their algebraic
form; moreover, numerical evaluation would this time be proportional in nm (i.e.
the size of the full key space) which will be infeasible for any cryptosystem of
relevance. This renders a full theoretical derivation of the key rank distribution
moot. Instead, let us concentrate on typical statistics used to describe distrib-
utions, starting with the expected value, or the guessing entropy. Later we will
hypothesise a candidate distribution.

Guessing Entropy. First defined by Massey [15], the guessing entropy captures
the expected number of guesses (with an optimum strategy) to correctly guess
the value of a random variable (in our scenario the secret key). This can be
linked to the key rank by observing that the key rank is the number of guesses
an optimal adversary would take to guess the secret key. Standaert et al. [20]
first made this connection. We use the definition as given by Rivain [18].

Definition 4 (Subkey guessing entropy). The subkey guessing entropy is
defined as the expected value of the subkey rank, namely

GEj
D(N) = E(keyrankj

D(N)).

A key observation is that the guessing entropy is the expected value of the
distribution of the subkey rank. Rivain found that the distribution of a distin-
guishing vector tends to a multivariate Gaussian [18], but the general distribution
of the subkey rank itself has not been thoroughly explored.

Extending the guessing entropy metric into the context of a full key is
simple—we now are required to find the expected value of the key rank.

Definition 5 (Key guessing entropy). The key guessing entropy is
defined as:

GED(N) = E(keyrankD(N)).

Ranking Entropy. In this work we consider adversaries that would employ key
enumeration as part of their attack strategy. This raises the question of how best
to consider the relative strength of two adversaries that have different sized key
enumeration budgets. Most differential attacks are chosen plaintext attacks, and
thus the cost of checking the validity of a single key hypothesis is almost zero—a
single call to an encryption or decryption. Thus, as in classical cryptanalysis,

554 D.P. Martin et al.

it is perhaps more useful to compare enumeration budgets in terms of orders of
magnitude, i.e. consider the logarithm of (a function of) the key rank outcomes.

Recall that the guessing entropy GED(N) is defined as E(keyrankD(N))
To consider the orders of magnitude in relation to the guessing entropy, the
obvious approach would be to consider log(GED(N)) = log(E(keyrankD(N))).
We will later show that this approach is not satisfactory. For that reason, we
introduce here an alternative, which we call the ranking entropy. The ranking
entropy is defined as the expectation of the logarithm of the rank, that is it
equals E(R), where R = log(keyrankD(N)) (for brevity, we will henceforth refer
to keyrankD(N) simply by R). Note that taking logarithms and expectation do
not commute, so in general the ranking entropy will not equal the log of the
guessing entropy.

Calculating either the guessing entropy or the ranking entropy directly
appears to be a hard problem. Instead, for this and other statistics we will
resort to sampling from the distribution by repeatedly running the experiment
of Fig. 1 instead. This requires an algorithm to calculate the key rank.

2.4 Key Rank Estimation

We want to understand the distributional properties of the key rank for different
distinguishers and leakage scenarios. A key tool for our empirical investigation is
an efficient and highly accurate rank estimation algorithm. Finding the rank of a
subkey is trivial after sorting the distinguishing vector. Unfortunately, for the full
key this approach no longer works as sorting the complete distinguishing vector
for the full key is at least as expensive as exhaustive search on the full key. For
instance, in case of a typical attack on AES, the distinguishing table consists of 16
distinguishing vectors of dimension 256 each. A naive (but accurate) algorithm
would be to compute the product distribution (i.e. list all combinations of all
subkeys) in order to compute the rank of the secret key.

There have been a host of more advanced key rank estimation algorithms
that return either an interval containing the actual rank or a point estimate of
the rank. When comparing such algorithms, both the efficiency and the accuracy
are relevant. Accuracy is measured in bits, where b bits of accuracy means that
if an algorithm says the key has rank 2x, the actual rank is in the range 2x±b.
Below we give a brief overview of existing key rank estimation algorithms.2

Veyrat-Charvillon et al. [24] proposed the first non-trivial key rank algo-
rithm. They represent the distinguishing scores in a multi-dimensional space,
where each dimension represents an individual distinguishing vector (sorted in
descending order). This space can naturally be divided into two parts; those
keys with rank higher than the target key and those with a rank lower. Using
the property that the ‘frontier’ between these two halves is convex, the rank of
the key can be estimated to within 10 bits by repeatedly pruning the space.

2 A small technical caveat: we do not make a distinction between worst-case accuracy
and the more fuzzy typical-case accuracy.

Characterisation and Estimation of the Key Rank Distribution 555

Glowacz et al. [10] construct an efficient rank algorithm based on the convo-
lution of histograms. They utilise the property that if H1 is a histogram of S1

and H2 is a histogram of S2 then the convolution of H1 and H2 is a suitable
approximation of S1 + S2 = {x1 + x2|x1 ∈ S1, x2 ∈ S2}. By representing the
distinguishing vectors as histograms and using this property they are able to
estimate the rank of the key to within one bit of accuracy.

Duc et al. [6] propose a similar solution to that of Glowacz et al. [10]. They
repeatedly ‘merge’ each set of data in (similar to the histogram convolution)
and then down-sample the resulting data (this can be seen as the binning step
in creating histograms). Additionally, they down-sample to a fixed number of
samples after each ‘merge’, instead of just on the original data. While Duc
et al. do not explicitly give a bound on the estimation error, the additional
down-sampling implies it will be worse than that of Glowacz et al.’s algorithm.

Bernstein et al. [2] propose two key rank algorithms. The first adds a post-
processing phase to the algorithm by Veyrat-Charvillon et al. [24], which tightens
the accuracy to 5 bits. The second algorithm uses techniques similar to counting
all y-smooth numbers less than x. By having an accuracy parameter they are
able to get the bound arbitrarily tight, at the expense of runtime.

Martin et al. [14] propose a key rank algorithm based on the pseudo-
polynomial time algorithm for the knapsack problem. After mapping the dis-
tinguishing scores to integer weights (such that larger distinguishing scores give
smaller integers), they are able to efficiently count the number of keys with a
weight less than the target key which directly corresponds to the rank of the
key. Varying the size of the resulting integers allows them to make a trade-off
between accuracy and runtime.

All-but-one of these algorithms are essentially interval estimates of the key
rank; the only exception being the algorithm by Martin et al., which provides
a point estimate. Clearly all works emphasised the need of an accurate rank
estimation to ensure that the resulting key ranks are practically meaningful.
In some of these papers, as well as in related work on key enumeration [25],
some observations were made about the seemingly large variation of the key
rank. Poussier et al. [16] compared a number of the interval-based algorithms
to determine to what extent this variation was due to the algorithm being used
(despite the researchers’ best efforts to improve the accuracy of their algorithms,
estimation introduces an error and with it variation). Our interest is not in the
‘algorithmic’ noise, but rather in the intrinsic distributional properties of the
key rank itself.

For our empirical investigation into the key rank distribution, we opted for
Martin et al.’s approach, as we found that it provides the best efficiency/accuracy
tradeoff (it gives better accuracy than the algorithm by Glowacz et al. and is
more efficient than the second algorithm by Bernstein et al.).

2.5 Summary Statistics

To be able to explore the characteristics of the key rank distribution further,
we must sample from R and estimate it—samples for R are calculated by

556 D.P. Martin et al.

applying the logarithm to each sample from R. A first concern is to try to find
the most appropriate estimators for the expected values of R and R. However,
these random variables have characteristics other than their mean (e.g. vari-
ance). To explore these, additional summary statistics—measures of location
and spread—are necessary and we review the potential choices in the following.

Estimates of the mean. To compute the ranking entropy and the log of the
guessing entropy (Sect. 2.3) we must estimate E(R) and E(R). The arithmetic
(or sample) mean of N samples x1, x2, . . . , xN is x̄ = (x1 + x2 + . . . + xN)/N .
The law of large numbers states that the arithmetic mean over a large number
of trials should be close to the expected value, and thus is the correct estimator
for E(R).

When orders of magnitude are of concern, the arithmetic mean may not be
suitable—consider a hypothetical scenario in which a DPA attack is evaluated
1024 times. In 1023 of the occasions, the rank of the key is 1, and in the one
remaining occasion the rank of the key is 232. The arithmetic mean in this case
is (just over) 222, which clearly misrepresents the strength of the attack. In this
case, the geometric mean of N samples x1, x2, . . . , xN may be more appropriate.
It is defined as:

x̃ =

(
N∏

i=1

xi

) 1
N

The logarithm of the geometric mean of R is the arithmetic mean taken on
R (log R̄ = R̃). Consequently, the geometric mean is a suitable estimator for
the ranking entropy E(R). With reference to our prior ‘extreme example’ the
geometric mean would deliver a rank of (just over) 1—a better judgement on an
adversary’s “order of magnitude” ability.

Standard deviation. The estimated standard deviation

ŝX =

√
√
√
√ 1

N

N∑

i=1

(xi − x̄)2

captures the degree of variation in a distribution. From the side-channel evalua-
tion perspective, this will be of concern—if the standard deviation of R is large,
then the adversary has a higher probability of being “lucky” (or “unlucky”). A
similar geometric standard deviation exists, such that the geometric standard
deviation of R is equivalent to the arithmetic standard deviation of R.

Order statistics. An alternative, non-parametric set of order statistics are the
estimated percentiles of the distribution. The P -th percentile is the smallest
value in an ordered sample such that P percent of the data set is less than or
equal to that value. More formally, the index i in the ordered list of N samples is

i =
⌈

P

100
N

⌉

,

with the P -th percentile taken to be sample xi.

Characterisation and Estimation of the Key Rank Distribution 557

The median (or 50th percentile) is a non-parametric measure of central ten-
dency. In the case of our previous hypothetical scenario, the arithmetic mean was
222, despite 99.9 % of the ranks being 1. In the same scenario, the median would
report 1, a much more representative value for the strength of the adversary.
The median (and percentiles in general) have already seen use as descriptive
statistics in the context of key rankings in Veyrat-Charvillion et al. [23].

Finally, the minimum and maximum values observed within a sample may be
important. In the side-channel context, these essentially correspond to estimates
for the best and worst case scenario for the adversary (and vice-versa for the
evaluator). The minimum value could also be associated with an indication of
the min-entropy of the distribution (although we leave this as an avenue for
future exploration).

The order of a set of samples from R is invariant under logarithms, and
thus the minimum, maximum and percentile values from R can be computed by
taking the logarithm of the values for the equivalent samples from R.

3 Accurate Estimation of the Rank Distribution

The ability to characterise the distribution of R hinges on whether a sufficiently
accurate estimation of an individual rank can be achieved. As previously estab-
lished, the rank estimation algorithm of Martin et al. (hereafter, “KRE”) is the
optimal choice from the candidate set of algorithms for our experiments.

3.1 KRE Improvements

The KRE algorithm can be seen as having two components or steps: the first is
a lossy conversation from floating point distinguishing scores to integer weights,
and the second is an accurate counting method.

For the first step, the KRE algorithm takes a precision parameter, which
is a number of bits p. Each of the distinguishing scores produced by a side-
channel attack are then converted to positive integers of size at most 2p. A
typical side-channel attack produces floating-point distinguishing scores which,
assuming the use of a modern CPU, are highly likely to be computed using
64-bit floating point arithmetic. Thus for any p < 64, the conversion from raw
distinguishing scores to integer values is lossy, and can theoretically ‘collide’ two
different distinguishing scores together into the same integer value, losing some
of the information produced by the side-channel attack.

The runtime of KRE is effectively exponential in p; for the same set of dis-
tinguishing vectors, ranking at precision p + 1 will take approximately twice as
long as ranking at precision p. Using a variety of algorithmic and implementation
improvements, we were able to accommodate a large increase in the precision
retained by the algorithm. These improvements enabled us to perform rank cal-
culations approximately 16 times faster than the previous work, allowing us to
run experiments at a precision of up to p = 23 in the order of 1–2 min (depending
on the ‘true’ rank being estimated).

558 D.P. Martin et al.

These improvements included a modification to the first step (the “Map-
ToWeight” function as described in [14]). We applied a linear shift to the integer
weights such that the subkey with the smallest distinguishing score has an inte-
ger weight of 1, and thus typically lowers the integer weight of the correct key
(which affects the run-time linearly). In addition to some optimisations at the
level of the implementation, we also modified the recurrence relation to avoid
all calls to the “left child” function. With these modifications, we were able to
push our implementation to retain up to 23 bits of precision. Full details can be
found in Appendix A.

3.2 KRE Precision

To provide a sanity check of how many bits of precision suffice for computing an
‘exact’ rank (similarly to the brief evaluation in [14]), we simulated a large num-
ber of DPA attacks and used the key rank estimation algorithm to estimate the
rank of each attack using 8 to 23 bits of precision. Table 1 and Fig. 2 illustrate
the average error between our best guess at the true key rank (which is obtained
by taking the estimate at 23 bits) and the rank estimates at each level of pre-
cision. Each additional bit of precision used in the rank estimation algorithm
can only increase accuracy (increasing the number of bits by one approximately
doubles the weight of the target key; this will reduce the number of collisions
when converting the distinguishing scores to integers and can not introduce new
collisions).

As can be observed in the figure and table, the average error rapidly decreases
between 8 and 14 bits of estimation precision. From 17 bits of precision onwards,
the average error is within 3 decimal places, dropping as low as 4 decimal places
at 20 bits of precision, and with each additional bit approximately halving the
average error. Given our available computational budget for all our experiments,
we selected 20 to be the precision used for the KRE algorithm. This allows us to
both very accurately estimate ranks and to run a large amount of experiments.

Table 1. The average error, in bits, for increasing increments of precision used in the
rank estimation algorithm. Average taken using 1091 DPA attacks with ranks spread
across the range 20 to 2128, using the geometric mean.

Precision Av. error (bits) Precision Av. error (bits) Precision Av. error (bits)

8 0.302619 13 0.010231 18 0.000330

9 0.158402 14 0.005343 19 0.000154

10 0.082911 15 0.002756 20 0.000074

11 0.041216 16 0.001473 21 0.000033

12 0.020488 17 0.000641 22 0.000015

Characterisation and Estimation of the Key Rank Distribution 559

Fig. 2. (Left) Average error, in bits, from a ‘true’ rank taken to be the estimate as
evaluated by the rank precision algorithm using 23 bits of precision. Rank estimates
were evaluated using 8 to 22 bits of precision. Repeated DPA attacks were simulated
using a random SNR, and placed into buckets if the estimated rank at 23 bits of pre-
cision was within 1 bit of 216, 232, . . . , 2128. (Right) the same data, with the logarithm
of the log-ranks applied.

4 Initial Exploratory Study

Now we have shown that we can estimate values from R with a high degree of
accuracy, we shift focus to exploring its distribution.

4.1 Visualising the Key Rank Distribution

As a first step we proceed to visualise the distribution of repeated key rank
experiments at various depths. Histograms are an ideal tool for doing this; we
hence run simulated experiments, using correlation power analysis (CPA, see [5])
as a distinguisher for attacking simulated Hamming-weight leakage with additive
Gaussian noise with a low SNR of 2−7.

Figure 3 plots histograms of samples from R across a range of different aver-
age rank values. In the middle range of rank values, the distribution appears to be
appreciably normally distributed. However, we can observe non-normal behav-
iour at either end of the possible rank values, as can be seen in the top-left and
bottom-right histograms. The bottom-right exhibits a much higher frequency
of attacks of rank 0, producing a small additional peak at the left-tail of the
distribution. Similarly, when the average rank is close to the maximum of 2128,
the distribution is no longer symmetric, but is also without the additional peak.
A review of statistical literature suggests that distributions that are ‘clipped’ in
this way are defined as truncated distributions [9].

The x-axis of the histograms is log-scale: if the distribution of the logarithm
of the ranks was indeed normal, then the distribution of the rank values them-
selves would be a log-normal distribution. The large skewness of a log-normal
distribution would support our hypothesis that the arithmetic mean is not a

560 D.P. Martin et al.

Fig. 3. Histograms for attacks with a (geometric) mean rank close to one of several
values. Here the leakage is simulated Hamming-weight with Gaussian noise at an SNR
of 2−7, with the attacker using CPA as a distinguisher.

suitable average, and rather the geometric mean is better suited. Our prediction
of a log-normal distribution is supported by the central limit theorem, which
implies that the product of positive random variables produces a log-normal
distribution.

Given this information we conjecture that we have a delta-log-normal [1] dis-
tribution with truncation [9]. A delta-log-normal distribution is a distribution on
a random variable X such that X is assigned value 0 with probability θ and fol-
lows the log-normal distribution with probability 1−θ. In this particular context
the value of θ would directly correspond to the success rate of an adversary for
full key recovery (without enumeration). The log-normal distribution could then
be parameterised separately using standard methods. Truncation corresponds to
when a random variable can not be assigned a value passed a certain threshold.
It is clear that the rank can only be assigned a value between 0 and 2128 − 1,
and thus must be truncated.

Whilst further research into this characterisation is a promising next-step,
for the purposes of this work we instead pursue two questions of immediate
importance: firstly, whether this shape and scale of distribution is consistent
across the various contributory factors influencing the outcomes of side-channel
attacks, and secondly whether the non-parametric order statistics outlined in

Characterisation and Estimation of the Key Rank Distribution 561

Sect. 2.5 can be used as a simple and efficient method for extracting meaningful
conclusions without making any assumptions about the underlying distribution.

4.2 Is an Accurate Rank Distribution Estimation Viable?

Before further exploration of the candidacy of the summary statistics outlined
in Sect. 2.5, we devised an experiment to determine how many repeat experi-
ments are necessary to reliably estimate them. We kept the leakage model and
SNR, as well as the distinguisher used by the adversary, constant but used ran-
domly generated plaintexts, keys and Gaussian noise. We assumed a CPA attack
using the Hamming-weight power model, and the leakage was simulated on the
AES SubBytes target function, using the Hamming-weight leakage function and
Gaussian noise. In the experiment, each statistic was estimated using increasing
amounts of repeat experiments on simulated data.

The results in Fig. 4 exhibit the behaviour of the statistics. The maximum
key rank values unsurprisingly exhibit the most variability—for key ranks above
80 we observe that the estimated values ‘jump’ at 50, 100, and 200 repeats where
they stabilise. The other key ranks, hence those in the ranges were enumeration
is within practical reach behave much more stable—from 25 repeats on they
produce stable estimates, from 100 repeat experiments onwards the estimates
have converged to the true value. The intuition behind the geometric mean
being a sensible choice is sound, producing a line that is almost identical to that
of the median, as expected under the assumption of a log-normal distribution.
In fact, for all the experiments we pursued in this study, the geometric mean and
median were nearly identical, and for simplicity we do not display it in future
graphs. The unsuitability of the arithmetic mean (given orders of magnitude are
a concern) is clear and consequently from here onwards we no longer calculate it.

Resampling methods. In the previous experiment, which was based on simula-
tions, we were able to efficiently sample independent and mutually exclusive sets
of key rank data. In practice this might not be possible as a single, large data-
set might be available only. This situation is not uncommon and methods such
as bootstrapping, jackknifing and k-fold cross validation are well understood
[4,11,22] and therefore get employed in a variety of contexts. An important
guideline though, irrespective of which resampling approach one chooses, is to
pay attention to randomly selecting subsamples to avoid introducing a bias.

5 Characterising Rank Distributions

To understand whether the properties observed in the exploratory studies of
Sect. 4 are common (or specific to the combination of distinguisher, leakage
model and SNR), and to further explore characteristics of the distribution
of R, we perform further simulated DPA attacks and vary the interesting
parameters.

562 D.P. Martin et al.

Fig. 4. Estimated summary statistics using increasing amounts of DPA attacks. Each
DPA attack used a CPA-HW distinguisher on simulated AES SubBytes leakage using
the Hamming-weight power model and Gaussian noise of an SNR 2−3.

5.1 SNR and Measurement Counts

The starting point of our simulated experiments was to consider whether both
the measurement SNR and the quantity of trace measurements available affects
the rank distribution. These two variables are clearly dependent; a very low SNR
can be overcome by using more measurements, and at high SNR levels a success-
ful attack can be created using fewer trace measurements. As a consequence we
devised a set of experiments for which the rank distribution can be analysed
as both these variables change. We assumed an ‘optimal’ adversary operat-
ing under commonly considered leakage conditions—namely, Hamming-weight
leakage on the AES SubBytes operation with additive Gaussian noise, and where

Characterisation and Estimation of the Key Rank Distribution 563

the adversary launches a CPA attack using the Hamming-weight as a power
model.

We simulated data under a variety of SNRs, beginning with a low-noise sce-
nario of SNR 2−1, up to a high-noise scenario with SNR 2−7. For each unique
SNR, we simulated DPA attacks using increasing amounts of traces, beginning
with a quantity for which the rank was approximately 2128, and increasing the
number of traces until the vast majority of attacks produced a rank of 0. For
each unique number of traces, we ran 1000 repeat attacks, and for each repeat
generated the keys, plaintexts and additive noise at random.

Figure 5 visualises the summary statistics for attacks under the SNRs 2−7,
2−5 and 2−3. The general trends appear similar to those observed in our real
world example. The variance observed is of most interest, both in terms of its
magnitude and its consistency across multiple pairs of SNR and trace quantities.

Three main observations can be made:

1. The distribution appears to be at its widest in the middle range of ranks (e.g.
when the rank is between 240 and 280), and variance minimises for very poor
attacks (rank ≈ 2128) and very good attacks (rank ≈ 20).

2. The maximum variance appears to be very large, with the difference between
(for example) the 10th and 90th percentiles being in the order of up to 40
bits in some cases.

3. The exact level of SNR does not appear to affect the variance or shape of
the distribution in any independent way—assuming the same distinguisher is
used, at any given SNR, given sufficient traces to establish an average rank
of x, the dispersion of the distribution will be very similar to that produced
by attacks at any other SNR that have an average rank close to x.

To confirm these three intuitions, we plotted the estimated geometric stan-
dard deviation against the (geometric) mean rank (or equivalently the arithmetic
mean and standard deviation of samples from R). The results can be seen in
Fig. 6, where each line corresponds to results obtained for seven different SNRs.
The shape and magnitude of each line very closely match, indicating that the
behaviour is indeed consistent across all SNRs. The curves peak at an average
rank of approximately 264, suggesting that it is the ‘true’ rank of the attack that
affects the variance, and not any characteristic of the leakage noise or quantity
of data available (for a fixed key rank).

These three characteristics in tandem present an unfortunate problem for
an evaluator and for the viability of the guessing entropy as a stand-alone met-
ric. Not only is the variance very large, and thus an adversary may with non-
negligible probability produce an attack far out-performing the average attack,
but also the variance is largest in the range of key ranks that are of most interest
to an evaluator. There is a threshold at which an adversary may be considered
unrealistic (e.g. we might be confident that an adversary can enumerate 254 keys,
but not 257), and unfortunately the distribution has the most variance here.

564 D.P. Martin et al.

Fig. 5. (Left) Estimated ranks after 1,000 DPA attacks at SNRs 2−7, 2−5 and 2−3, using
Hamming-weight CPA targeting simulated leakage on the AES SubBytes operation.
(Right) Equivalent box-plots for using the same data as on the left. The central line in
each box is the median, the box defines the inter-quartile range, the whiskers cover all
samples not considered to be outlier values, and outliers are plotted individually.

5.2 Distinguishers and Higher-Order Attacks

A second consideration is whether the choice of distinguisher used by the
adversary can change the characteristics of the rank distribution. Our previous

Characterisation and Estimation of the Key Rank Distribution 565

Fig. 6. A plot of the estimated geometric standard deviation against the geometric
mean of the key rank, taken using 207,000 DPA attacks. Each line represents the
standard deviation for attacks at the seven SNR values 2−7, . . . , 2−1. Each attack used
simulated Hamming-weight leakage with CPA used as the distinguisher.

experiments used CPA as the distinguisher, and so to compare, we launched
two additional types of attacks. Firstly, we tried reduced3 template attacks on
the simulated leakage. Secondly, we launched second-order attacks on a binary
masked implementation of AES: the leakage sample corresponding to the mask
value and the sample corresponding to the masked SubBytes operation were
combined using the ‘centre and multiply’ method (see e.g [17]), and then a stan-
dard Hamming-weight CPA was launched. To enable a direct comparison with
the standard CPA attacks, we ran the template attacks using data with an SNR
of 2−7. For the second order attack, we reduced the SNR to 2−3 to alleviate the
burden of having to use too many traces in the attack.

Fig. 7. Estimated ranks after template and second-order attacks, using simulated leak-
age on the AES SubBytes operation.

3 Reduced in that we did not use multiple points or estimate a covariance matrix.

566 D.P. Martin et al.

Figure 7 shows the results of our attacks. Again, we observe consistent behav-
iour as seen previously; the shape and trend for the percentiles is remarkably
similar. We can observe one interesting discrepancy: the variance of the distri-
bution produced by the template attacks, whilst still very large in the middle
of the distribution and with a consistent shape, does appear to be smaller than
that produced by any attack using correlation as a distinguisher (including the
second-order attacks, which produce very similar rank variance to first-order
ones). The reason for this distinguisher-specific dependency is unclear, and we
leave this observation as an interesting starting-point for future research.

6 Embedding Rank Estimations into Real World Security
Evaluations

In the previous sections we provided conclusive evidence that the key rank is
random variable with inherently large variation. We showed that it is possible
to meaningfully characterise average behaviour and spread using repeat exper-
iments. A crucial questions remains though: how can this be integrated into
practical side channel evaluations? In this section we discuss two radically dif-
ferent propositions for a solution. The first proposition is to employ some recent
suggestions for short-cuts in evaluations; we find that these have limitations
which restrict their practical use. The second proposition is a practical re-use
of measurements for repeat experiments, which leads to practically meaningful
results.

6.1 Bounding the Success Rate of an Adversary with Enumeration

In some recent work, Duc et al. [6] provided some bounds that relate the mutual
information between a subkey and the leakage traces, as a function of the adver-
sary’s success rate, the number of shares (if used within a masking scheme) and
the number of traces used within a side channel attack. They also present a
construction relating the success rate, enumeration effort and number of traces
(for a fixed SNR and number of masks), in the best case for the adversary in
an extended version of their paper [7, Sect. 4.3c, Eq. 24, Algorithm 2]. We can
interpret this as a lower bound on the key rank of the secret key at a given
number of messages, by looking when the success rate first becomes non-zero.

Using code supplied by the authors of [6], we were able to evaluate this success
rate bound in the context of idealised Hamming-weight information leakage. This
data is shown in Fig. 8, re-using the simulated Hamming-weight CPA attack data
under first-order and second-order attack conditions. As can be immediately
seen from the large margin between the SR bound and the estimated ranks,
this is a very loose bound—in the right hand graph, the SR bound is almost
on top of the x- and y-axes. This supports their intuition (hinted at in [6]) that
the theoretical bounds only tighten for a large number of masks, but cannot
realistically approximate the performance of an adversary in the single or zero
mask situation our work explores. Consequently this recent work, which hopes

Characterisation and Estimation of the Key Rank Distribution 567

Fig. 8. Estimated key ranks compared to the success rate metric of Duc et al. [6] using
simulated first and second order CPA attacks on Hamming-weight leakage.

to ‘short-cut’ the effort in evaluations, seems too inaccurate for the kind of
implementations that are of immediate real world interest.

Using a different technique to Duc et al., but with the same intention to short-
cut evaluation efforts somewhat, Ye et al. argue for an algorithm that allows
to estimate the remaining effort of an adversary regarding enumeration and
simultaneously provides the optimal guessing strategy. They suggest that their
algorithm could be run once on a dataset. However, running their algorithm once
can only deliver a single interval estimate of the key rank: repeat experiments
would still produce a large variance which implies that any statement based on
a single run is insufficient to determine the spread.

6.2 Real World Evaluation of a Challenging Target

We utilise an interesting real-world data set provided by Longo et al., which
initially appeared at CHES 2015 [12], to illustrate how to integrate key rank
into practical evaluations. We re-implemented and re-ran one of the attacks
described by Longo et al. at CHES 2015 [12]. They illustrated several standard
DPA attacks on a complex device, and we selected their most challenging one: an
attack on a hardware AES implementation, utilising EM measurements. We refer
the reader to the attack paper for full details, but note that we use an improved
attack strategy communicated to us after correspondence with the authors [12].

The available dataset consisted of approximately one million EM traces.
These were acquired in line of their ‘standard’ assessment approach for cryp-
tographic devices, which as some of the authors are from a well known expert
company, can be regarded as being in line with industry best practice: after ini-
tially identifying the source of the leakage, they gathered as many traces as they
could afford (given some allotted time budget) for a given unknown secret key.

In the previous section of this paper we highlight the fact that estimations
of key rank properties need repeat experiments. However, due to the EIS (Equal
Images under different Subkeys) property that typical block ciphers have [19],
it is not necessary to run these on different keys (since the results will be of

568 D.P. Martin et al.

Fig. 9. Estimated key ranks after repeated DPA attacks on a set of 997,500 traces
acquired from a BeagleBone Black device running AES-128 in hardware.

similar quality). Instead we can divide up any set of experiments into smaller
subset to run repeat experiments, which is how we proceed. To analyse the
distribution of R produced by the attacker4 we ran multiple DPA attacks using
increasing amounts of traces from the data set. Figure 9 plots the trends of the
minimum, maximum, various percentiles and geometric and arithmetic means for
the estimated ranks as the number of traces available to the attacker increases.

The first attack reporting full key recovery uses approximately 45,000 traces,
and we can immediately see from the graph that this should perhaps be consid-
ered a fortunate result for the attacker—at this number of traces, we observed
some attacks of rank up to ≈ 220. Also of interest is that the classical 80-bit
security margin is first broken somewhere between 10,000 and 20,000 traces,
and expected, considerable variance in the rank distribution, with a very large
margin between the minimum and maximum values observed. The line for the
arithmetic mean is again evidence that our intuition of computing statistics on
R is more meaningful—the line corresponding to the geometric mean (of R) is
very close to the median.

The Power of Percentiles. Percentiles are particularly informative statistics
in the evaluation context. Recall that percentiles give the value below which a
specific percentage of observations (among the sampled observations) fall. We
can relate this to business goals such as having no more than a certain percentage
of devices be susceptible to a particular side channel adversary, as we show in
the example below.

Consider our evaluation of the real world data-set before: we sampled from
the rank distribution using repeated attacks for an increasing amount of traces.
4 The attack is a Hamming-distance correlation power analysis on the input and out-

put of the final round of encryption.

Characterisation and Estimation of the Key Rank Distribution 569

Risk can be assessed using these key rank samples. As an example, assume that
the 10th percentile of the estimated rank distribution is 244 (in Fig. 9)—this
indicates that of all the devices of that type sold into a market, 10 % would
succumb to a full key recovery attack by an adversary using around 23,000
traces and with 244 as an enumeration budget. An alternative but equivalent
interpretation would be that 90 % of the devices are only vulnerable once the
adversary’s enumeration budget increases beyond 244 (at 23,000 traces). Instead
of phrasing attack scenarios around how many devices are vulnerable, one can
focus on a single devices but many adversaries. For instance, if a series of fixed
adversaries attacked the same device (using 23,000 traces and enumerating up to
244 keys, then 10 % would succeed).

These examples demonstrate that percentiles are a very efficient and simple
way to assess the spread of the rank distribution and report it in a meaningful
way in business terms. The use of different percentiles then allows the evaluator
to fine-tune these security margins.

7 Conclusion

One of our key findings is that the shape of the distribution of the key rank is
consistent ; these observations hold irrespective of the type of differential attack
used (with the small but interesting observation that template attacks seem
to produce key rank distributions with a slightly smaller variance than similar
correlation based attacks) and SNR. We thereby confirm that it has a large
variance in exactly the range in which the assumed enumeration capability of an
adversary transitions from realistic to unrealistic.

In our efforts to explore suitable statistical measures to capture the practi-
cally important key rank characteristics we observe that the guessing entropy,
defined as the expected value of the key rank, is not always meaningful. As an
average, the guessing entropy cannot quantify any of the very large amounts
of variance we observe. Consequently, additional metrics must be used, and a
natural step is to instead consider non-parametric order statistics, which brings
us to consider the usage of percentiles to connect side channel outcomes with
business goals.

We additionally observe that the rank distribution R follows some flavour of
a truncated delta-log-normal distribution. However, in practice we typically are
concerned with behaviour of adversaries in the log-domain (in R)—an evalua-
tor tends to be more interested in the magnitude of an adversary’s capabilities
and not the exact value. Whilst the logarithm of the guessing entropy can be
appropriately estimated using the geometric mean, it is perhaps easier to switch
to considering guessing entropy defined using the logarithm of the ranks, and
estimated using the arithmetic mean.

With regards to practical impacts, we observed that at least some repeat
experiments are necessary for stable estimates of the geometric mean, median
and percentiles. Whilst this appears to incur an overhead at first glance in terms
of trace measurements, we explain that it is sound to simply ‘split’ any existing

570 D.P. Martin et al.

data set into smaller subsets with which the repeat runs can be conducted.
Finally we show that caution is needed with regards to using short-cut formulas,
and end by illustrating an approach to evaluating the security of a real world
device using repeat rank experiments.

Acknowledgements. We would like to thank the authors of Longo et al. [12] for
giving us access to their data set, and the authors of Duc et al. for giving us a preprint
for their extended version of [6] as well as the corresponding Matlab code.

Dan Martin, Luke Mather, and Elisabeth Oswald were supported in part by EPSRC
via the grants EP/I005226/1 and EP/N011635/1. This work was carried out using the
computational facilities of the Advanced Computing Research Centre, University of
Bristol http://www.bris.ac.uk/acrc/.

A KRE Optimisation

To allow the key rank algorithm of Martin et al. [14] to run with a precision of
up to 23 bits we had to include several implementation and algorithmic tricks
to bring down the runtime of the algorithm.

A.1 Distinguishing Score to Integer Weight Conversion

When the distinguishing scores are converted to integer weights they are done
in such a way that the largest distinguishing score results in value 2p. However
it is possible that this leads to scenarios where the distinguishing scores are
unnecessarily large—for example, if all the distinguishing scores have value 1 they
will end up with value 2p. To counter this we subtract the minimum integer score
from all scores to scale them back. This increases the efficiency of the algorithm
since the runtime is linear in the weight of the key.

Fig. 10. The resulting rank algorithm after adjusting the algorithm of Martin et al. [14]

http://www.bris.ac.uk/acrc/

Characterisation and Estimation of the Key Rank Distribution 571

A.2 Recurrence Relation

One of the major changes to the algorithm was adjust the recurrence relation.
The first step was to use the ‘wide sort’ given in the original paper as it had
the smallest memory footprint. Using a three-dimensional coordinate system to
index the graph, the single loop over the graph was replaced with three for loops,
one for each integer in the representation. Using the combination of the wide
sort and the triple index system, it can be noted given (x, y, z), such that the left
child is not reject, it will always return (x, y + 1, z). This can be used to remove
the majority of the memory copies and access by computing an entire partial
weight within a subkey at once without having to work at an index at a time.
The other advantage of the triple index system is that it greatly reduces the
number of expensive operations required (such as mods) to calculate the child
nodes. The resulting algorithm is given in Fig. 10.

References

1. Aitchison, J.: On the distribution of a positive random variable having a discrete
probability mass at the origin. J. Am. Stat. Assoc. 50(271), 901–908 (1955)

2. Bernstein, D.J., Lange, T., van Vredendaal, C.: Tighter, faster, simpler side-channel
security evaluations beyond computing power. IACR Cryptology ePrint Arch.
2015, 221 (2015)

3. Bogdanov, A., Kizhvatov, I., Manzoor, K., Tischhauser, E., Witteman, M.: Fast
and memory-efficient key recovery in side-channel attacks. IACR Cryptology ePrint
Arch. 2015, 795 (2015)

4. Bradley, E.: The Jackknife, the Bootstrap, and Other Resampling Plans. Society
for Industrial and Applied Mathematics, Philadelphia (1982)

5. Brier, E., Clavier, C., Olivier, F.: Correlation power analysis with a leakage model.
In: Joye, M., Quisquater, J.-J. (eds.) CHES 2004. LNCS, vol. 3156, pp. 16–29.
Springer, Heidelberg (2004). doi:10.1007/978-3-540-28632-5 2

6. Duc, A., Faust, S., Standaert, F.-X.: Making masking security proofs concrete. In:
Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9056, pp. 401–429.
Springer, Heidelberg (2015). doi:10.1007/978-3-662-46800-5 16

7. Duc, A., Faust, S., Standaert, F.: Making masking security proofs concrete - or
how to evaluate the security of any leaking device (extended version). Cryptology
ePrint Archive, Report 2014/119 (2015). http://eprint.iacr.org/

8. Fei, Y., Luo, Q., Ding, A.A.: A statistical model for DPA with novel algorithmic
confusion analysis. In: Prouff, E., Schaumont, P. (eds.) CHES 2012. LNCS, vol.
7428, pp. 233–250. Springer, Heidelberg (2012). doi:10.1007/978-3-642-33027-8 14

9. Finney, D.J.: The truncated binomial distribution. Ann. Eugenics 14(1), 319–328
(1947)

10. Glowacz, C., Grosso, V., Poussier, R., Schüth, J., Standaert, F.-X.: Simpler and
more efficient rank estimation for side-channel security assessment. In: Leander, G.
(ed.) FSE 2015. LNCS, vol. 9054, pp. 117–129. Springer, Heidelberg (2015). doi:10.
1007/978-3-662-48116-5 6

11. Good, P.: Practitioner’s Guide to Resampling Methods. CRC Press, Boca Raton
(2012)

http://dx.doi.org/10.1007/978-3-540-28632-5_2
http://dx.doi.org/10.1007/978-3-662-46800-5_16
http://eprint.iacr.org/
http://dx.doi.org/10.1007/978-3-642-33027-8_14
http://dx.doi.org/10.1007/978-3-662-48116-5_6
http://dx.doi.org/10.1007/978-3-662-48116-5_6

572 D.P. Martin et al.

12. Longo, J., De Mulder, E., Page, D., Tunstall, M.: SoC it to EM: electromagnetic
side-channel attacks on a complex system-on-chip. In: Güneysu, T., Handschuh,
H. (eds.) CHES 2015. LNCS, vol. 9293, pp. 620–640. Springer, Heidelberg (2015).
doi:10.1007/978-3-662-48324-4 31

13. Mangard, S., Oswald, E., Standaert, F.-X.: One for all - all for one: unifying stan-
dard DPA attacks. IET Inf. Secur. 5(2), 100–110 (2011)

14. Martin, D.P., O’Connell, J.F., Oswald, E., Stam, M.: Counting keys in paral-
lel after a side channel attack. In: Iwata, T., Cheon, J.H. (eds.) ASIACRYPT
2015. LNCS, vol. 9453, pp. 313–337. Springer, Heidelberg (2015). doi:10.1007/
978-3-662-48800-3 13

15. Massey, J.L.: Guessing and entropy. In: IEEE International Symposium on Infor-
mation Theory, p. 204 (1994)

16. Poussier, R., Grosso, V., Standaert, F.-X.: Comparing approaches to rank esti-
mation for side-channel security evaluations. In: Homma, N., Medwed, M. (eds.)
CARDIS 2015. LNCS, vol. 9514, pp. 125–142. Springer, Heidelberg (2016). doi:10.
1007/978-3-319-31271-2 8

17. Prouff, E., Rivain, M., Bevan, R.: Statistical analysis of second order differential
power analysis. IEEE Trans. Comput. 58(6), 799–811 (2009)

18. Rivain, M.: On the exact success rate of side channel analysis in the Gaussian
model. In: Avanzi, R.M., Keliher, L., Sica, F. (eds.) SAC 2008. LNCS, vol. 5381,
pp. 165–183. Springer, Heidelberg (2009). doi:10.1007/978-3-642-04159-4 11

19. Schindler, W., Lemke, K., Paar, C.: A stochastic model for differential side channel
cryptanalysis. In: Rao, J.R., Sunar, B. (eds.) CHES 2005. LNCS, vol. 3659, pp.
30–46. Springer, Heidelberg (2005). doi:10.1007/11545262 3

20. Standaert, F.-X., Malkin, T.G., Yung, M.: A unified framework for the analy-
sis of side-channel key recovery attacks. In: Joux, A. (ed.) EUROCRYPT
2009. LNCS, vol. 5479, pp. 443–461. Springer, Heidelberg (2009). doi:10.1007/
978-3-642-01001-9 26

21. Thillard, A., Prouff, E., Roche, T.: Success through confidence: evaluating the
effectiveness of a side-channel attack. In: Bertoni, G., Coron, J.-S. (eds.) CHES
2013. LNCS, vol. 8086, pp. 21–36. Springer, Heidelberg (2013). doi:10.1007/
978-3-642-40349-1 2

22. Tukey, J.: Bias and confidence in not quite large samples. Ann. Math. Stat. 29,
614–623 (1958)

23. Veyrat-Charvillon, N., Gérard, B., Renauld, M., Standaert, F.-X.: An optimal key
enumeration algorithm and its application to side-channel attacks. In: Knudsen,
L.R., Wu, H. (eds.) SAC 2012. LNCS, vol. 7707, pp. 390–406. Springer, Heidelberg
(2013). doi:10.1007/978-3-642-35999-6 25

24. Veyrat-Charvillon, N., Gérard, B., Standaert, F.-X.: Security evaluations beyond
computing power. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT
2013. LNCS, vol. 7881, pp. 126–141. Springer, Heidelberg (2013). doi:10.1007/
978-3-642-38348-9 8

25. Ye, X., Eisenbarth, T., Martin, W.: Bounded, yet sufficient? how to deter-
mine whether limited side channel information enables key recovery. In: Joye,
M., Moradi, A. (eds.) CARDIS 2014. LNCS, vol. 8968, pp. 215–232. Springer,
Heidelberg (2015). doi:10.1007/978-3-319-16763-3 13

http://dx.doi.org/10.1007/978-3-662-48324-4_31
http://dx.doi.org/10.1007/978-3-662-48800-3_13
http://dx.doi.org/10.1007/978-3-662-48800-3_13
http://dx.doi.org/10.1007/978-3-319-31271-2_8
http://dx.doi.org/10.1007/978-3-319-31271-2_8
http://dx.doi.org/10.1007/978-3-642-04159-4_11
http://dx.doi.org/10.1007/11545262_3
http://dx.doi.org/10.1007/978-3-642-01001-9_26
http://dx.doi.org/10.1007/978-3-642-01001-9_26
http://dx.doi.org/10.1007/978-3-642-40349-1_2
http://dx.doi.org/10.1007/978-3-642-40349-1_2
http://dx.doi.org/10.1007/978-3-642-35999-6_25
http://dx.doi.org/10.1007/978-3-642-38348-9_8
http://dx.doi.org/10.1007/978-3-642-38348-9_8
http://dx.doi.org/10.1007/978-3-319-16763-3_13

Taylor Expansion of Maximum Likelihood
Attacks for Masked and Shuffled

Implementations

Nicolas Bruneau1,2(B), Sylvain Guilley1,3, Annelie Heuser1, Olivier Rioul1,
François-Xavier Standaert4, and Yannick Teglia5

1 Institut Mines-Télécom, Télécom ParisTech,
CNRS LTCI Department Comelec, Paris, France

{nicolas.bruneau,sylvain.guilley,annelie.heuser,
olivier.rioul}@telecom-paristech.fr

2 STMicroelectronics, AST Division, Rousset, France
3 Secure-IC S.A.S., Rennes, France

4 ICTEAM/ELEN/Crypto Group, Université catholique de Louvain,
Louvain-la-Neuve, Belgium

5 Gemalto, Security Labs, La Ciotat, France

Abstract. The maximum likelihood side-channel distinguisher of a tem-
plate attack scenario is expanded into lower degree attacks according to
the increasing powers of the signal-to-noise ratio (SNR). By exploiting
this decomposition we show that it is possible to build highly multi-
variate attacks which remain efficient when the likelihood cannot be
computed in practice due to its computational complexity. The shuf-
fled table recomputation is used as an illustration to derive a new attack
which outperforms the ones presented by Bruneau et al. at CHES 2015,
and so across the full range of SNRs. This attack combines two attack
degrees and is able to exploit high dimensional leakage which explains
its efficiency.

Keywords: Template attacks · Taylor expansion · Shuffled table
recomputation

1 Introduction

In order to protect embedded systems against side-channel attacks, countermea-
sures need to be implemented. Masking and shuffling are the most investigated
solutions for this purpose [18]. Intuitively, masking aims at increasing the order
of the statistical moments (in the leakage distributions) that reveal sensitive
information [8,15], while shuffling aims at increasing the noise in the adversary’s

Annelie Heuser is a Google European Fellow in the field of Privacy and is partially
founded by this fellowship.
Y. Teglia—Parts of this work have been done while the author was at STMicroelec-
tronics.

c© International Association for Cryptologic Research 2016
J.H. Cheon and T. Takagi (Eds.): ASIACRYPT 2016, Part I, LNCS 10031, pp. 573–601, 2016.
DOI: 10.1007/978-3-662-53887-6 21

574 N. Bruneau et al.

measurements [14]. As a result, an important challenge is to develop sound tools
to understand the security of these countermeasures and their combination [31].
For this purpose, the usual strategy is to consider template attacks for which
one can split the evaluation goals into two parts: offline profiling (building an
accurate leakage model) and online attack (recovering the key using the leakage
model). As far as profiling is concerned, standard methods range from non-
parametric ones (e.g., based on histograms or kernels) of which the cost quite
highly suffers from the curse of dimensionality (see e.g., [2] for an application
of these methods in the context of non-profiled attacks) to parametric methods,
typically exploiting the mixture nature of shuffled and masked leakage distribu-
tions [16,17,25,27,33], which is significantly easier if the masks (and permuta-
tions) are known during the profiling phase. Our premise in this paper is that
an adversary is able to obtain such a mixture model via one of these means, and
therefore we question its efficient exploitation during the online attack phase.

In this context, a starting observation is that the time complexity of template
attacks exploiting mixture models increases exponentially with the number of
masks (when masking) and permutation length (when shuffling [37]). So typ-
ically, the time complexity of an optimal template attack exploiting Q traces
against an implementation where each n-bit sensitive value is split into Ω shares
and shuffled over Π different positions is in O (

Q · (2n)Ω−1 · Π!
)
, which rapidly

turns out to be intractable. In order to mitigate the impact of this high complex-
ity, we propose a small, well-controlled and principled relaxation of the optimal
distinguisher, based on its Taylor expansion (already mentioned in the field of
side-channel analysis in [6,11]) of degree L. Such a simplification leads to various
concrete advantages. First, when applied to masked implementations, it allows
us to perform the (mixture) computations corresponding to the (2n)Ω factor in
the complexity formula only once (thanks to precomputation) rather than Q
times. Second, when applied to shuffled implementations, it allows us to replace
the Π! factor in this formula by

(
Π

min(�Π
2 �,L)

)
=

(
Π
L

)
, thanks to the bounded

degree L.
Additionally it can be noticed that an attacker will only build, during the

offline profiling, the leakage models needed for the attack. By applying the Taylor
expansion of the optimal distinguisher the complexity of the offline profiling is
significantly reduced. In general the complexity of the offline profiling becomes
equivalent to the complexity of the online attack.

The resulting “rounded template attacks” additionally carry simple intuitions
regarding the minimum degree of the Taylor expansion needed for the attacks to
succeed. Namely, this degree L needs to be at least equal to the security order O
of the target implementation, defined as the smallest statistical moment in the
leakage distributions that are key-dependent.

We then show that these attacks only marginally increase the data complexity
(for a given success rate) when applied against a masked (only) implementation.
More importantly, we finally exhibit that rounded template attacks are especially
interesting in the context of high-dimensional higher-order side-channel attacks,

Taylor Expansion of Maximum Likelihood Attacks 575

and put forward the significant improvement of the attacks against the masked
implementations with shuffled table recomputations from CHES 2015 [7].

Introduction to Shuffled Table Recomputation. Masking the linear parts
of a block cipher is straightforward whereas protecting the non-linear parts is
less obvious. To solve this issue different methods have been proposed. One can
cite algebraic methods [3,30], using Global Look-Up Table (GLUT) [28] and
table recomputation [1,8,10,19]. Table recomputation methods are often used
in practice as they represent a good tradeoff between memory consumption and
execution time since they precompute a masked substitution box (S-Box) that
is stored in a table.

However, some attacks still manage to recover the mask during the table
recomputation [6,36]. As a further protection the recomputation can be shuffled.
This protection uses a random permutation which is drawn over S2n , the set of
all the permutation of Fn

2 . Therefore, some random masks are uniformly drawn
over F

n
2 to ensure the security against first-order attacks.

Contributions. We show that the expansion of the likelihood allows attacks
with a very high computational efficiency, while remaining very effective from
a key recovery standpoint. This means that the expanded distinguisher requires
only little more traces to reach a given success rate, while being much faster to
compute.

We also show how to grasp in a multivariate setting several leakages of differ-
ent orders. In particular, we present an attack on shuffled table recomputation
which succeeds with less traces than [7]. Notice that the likelihood attack cannot
be evaluated in this setting because it is computationally impossible to average
over both the mask and the shuffle (the sole number of shuffles is 2n! ≈ 21684

with n = 8).
Finally, we show that are our rounded version of the maximum likelihood

allows better attacks than the state-of-the-art. Namely, our attack is better than
the classical 2O-CPA and the recent attack of CHES’15 [7] in all noise variance
settings.

Outline. The remainder of the paper is organized as follows. Section 2 provides
the necessary notations and mathematical definitions. The theoretical foundation
of our method is presented in Sect. 3. The case-study (shuffled table recomputa-
tion) is shown in Sect. 4. Section 5 evaluates the complexity of our method. The
performance results are presented in Sect. 6. Conclusions and perspectives are
presented in Sect. 7. Some technical results are deferred to the appendices.

2 Notations

2.1 Parameters

Randomization countermeasures consist in masking and shuffling protections.
When evaluating randomized implementations, there are a number of important
parameters to consider. First, the number of shares and the shuffle length in the

576 N. Bruneau et al.

scheme, next denoted as Ω and Π, are algorithmic properties of the counter-
measure. These numbers generally influence the tradeoff between the implemen-
tation overheads and the security of the countermeasures. Second, the order of
the implementation protected by a randomization countermeasure, next denoted
as O, which is a statistical property of the implementation. It corresponds to the
smallest key-dependent statistical moment in the leakage distributions. When
only masking is applied and the masked implementation is “perfect” (meaning
that the leakage of each share is independent of each other), the order O equals
to Ω at best. Finally, the number of dimensions (or dimensionality) used in
the traces, next denoted as D, is a property of the adversary. In this respect,
adversaries may sometimes be interested by using the lowest possible D (since
it makes the detection of POIs in the traces easier). But from the measurement
complexity point of view, they have a natural incentive to use D as large as
possible. A larger dimension D allows to increase the signal to noise ratio [5].

In summary, our notations are:

– Ω: number of shares in the masking countermeasure,
– Π: length of the shuffling countermeasure,
– O: order of the implementation,
– D: dimensionality of the leakages.

Examples. Existing masking schemes combine these four values in a variety
of manners. For example, in a perfect hardware masked implementation case
with three shares, we may have Ω = 3, O = 3 and D = 1 (since the three
shares are manipulated in parallel). If this implementation is not perfect, we may
observe lower order leakages (e.g. Ω = 3, O = 1 and D = 1, that is a first-order
leakage). And in order to prevent such imperfections, one may use a Threshold
Implementation [24], in which case one share will be used to prevent glitches
(so Ω = 3, O = 2 and D = 1). If we move to the software case, we may then
have more informative dimensions, e.g. Ω = 3, O = 3, D = 3 if the adversary
looks for a single triple of informative POIs. But we can also have a number
of dimensions significantly higher than the order (which usually corresponds to
stronger attacks). Let us also give an example of S-boxes masking with one mask,
where the masking process of the S-box (often called recomputation) is shuffled.
A permutation Φ of Π = 2n values is applied while computing the masked table.
If the attacker ignores the recomputation step, he can carry out an attack on the
already computed table. Hence parameters Ω = 2, O = 2, D = 2 (also known
as “second-order bivariate CPA”). But the attacker can also exploit the shuffled
recomputation of the S-box in addition to a table look-up, as presented in [7];
the setting is thus highly multivariate: Ω = 2, Π = 2n, O = 2, D = 2 · 2n + 1.
Interestingly, the paper [7] shows an attack at degree L = 3 which succeeds in
less traces than attacks at minimal degree L = O = 2.

In general, a template attack based on mixture distributions (often used in
parametric estimation) would require a summation over all random values of the
countermeasure, that is R, which consists in the set of masks and permutations.
One can represent R as the Cartesian product of the set of mask and the set of

Taylor Expansion of Maximum Likelihood Attacks 577

permutations. Let us denote by M the set of mask and S the set of permutations.
Then R = M × S. Therefore, the cardinality of R is 2n(Ω−1)Π!.

Eventually, the security of a masked implementation depends on its order and
noise level. More precisely, the security increases exponentially with the order
(with the noise as basis) [12]. So for the designer, there is always an incentive to
increase the noise and order. And for adversary, there is generally an incentive
to use the largest possible D (given the time constraints of his attack), so that
he decreases the noise.

2.2 Model

We characterize the protection level in terms of the most powerful attacker,
namely an attacker who knows everything about the design, except the masks
and the noise. This means that we consider the case where the templates are
known. How the attacker got the templates is related with security by obscurity,
somehow he will know the model. Of course depending on the learning phase
these estimations can be more or less accurate. For the sake of simplicity we
assume in this paper the better scenario where all the estimations are exact1.

Besides, we assume that the noise is independently distributed over each
dimension. This is the least favorable situation for the attacker (as there is in
this case the most noise entropy). For the sake of simplicity, we assume that
the noise variance is equal to σ2 at each point d = 1, 2, . . . , D. This allows for
a simple theoretical analysis. Let us give an index q = 1, 2, . . . , Q to each trace.
For one trace q, the model is written as:

X = y(t, k∗, R) + N, (1)

where for notational convenience the dependency in q and d has been dropped.
Here X is a leakage measurement; y = y(t, k∗, R) is the deterministic part of
the model that depends on the correct key k∗, some known text (plaintext or
ciphertext) t, and the unknown random values (masks and permutations) R.
Each sample (of index d) of N is a random noise, which follows a Gaussian
distribution pN (z) = 1√

2πσ2 exp
(
− z2

2σ2

)
.

Uppercase letters are generally used for random variables and the correspond-
ing lowercase letters for their realizations. Bold symbols are used to denote vec-
tors that have length Q, the number of measurements. Namely, X denotes a set
of Q random variables i.i.d. with the same law as X. So, X is a Q × D matrix;
R denotes a set of random variables i.i.d. with the same law as R; t denotes the
set of input texts of the measurements X; y(t, k,R) denotes the set of leakage
models, where k is a key guess, k∗ being the correct key value.

Notations Xd and X(q) are used to denote the d-th column and the q-th line
of the matrix X, respectively.

We are interested in attacks where each intermediate data is a n-bit vector.
In particular, we target S-boxes, denoted by S. Regarding the transduction from
1 We recall that, even if the templates are perfectly known, the online attack phase

still requires O(Q · 2n(Ω−1) · Π!) computations.

578 N. Bruneau et al.

the intermediate variable to the real-valued leakage, we take the example of the
Hamming weight wH defined by wH(z) =

∑n
i=1 zi where zi is the ith bit of z.

3 A Generic Log-Likelihood for Masked Implementations

In this section we derive a rounded version of Template Attack. Namely we
expand a particular instantiation of the template attack the so-called optimal
distinguisher using its Taylor Expansion. By rounding this expansion at the Lth
degree we are able to build a rounded version of the optimal distinguisher (later
defined as ROPTL). This attack features two advantages: it allows to combine
different statistical moments and its complexity becomes manageable.

3.1 Maximum Likelihood (ML) Attack

The most powerful adversary knows exactly the leakage model (but the actual
key, the masks, and the noise are unknown during the online step) and computes
a likelihood. In the case of masking the optimal distinguisher which maximize
the success rate is given by [6]:

Theorem 1 (Maximum Likelihood). When the y (t, k,R) are known and the
Gaussian noise N is i.i.d. across the queries (measurements) and independent
across the dimension, then the optimal distinguisher is:

OPT: R
DQ × R

DQ −→ F
n
2

(x, y (t, k, R)) �−→ argmax
k∈F

n
2

Q∑

q=1

logE exp
−‖x(q) − y(t(q), k, R)‖2

2σ2

(2)

where the expectation operator E is applied with respect to the random variable
R ∈ R, and the norm is the Euclidean norm ‖x(q)−y(t(q), k, R)‖2 =

∑D
d=1(x

(q)
d −

yd(t(q), k, R))2.

Proof. It is proven in [6] that the Maximum Likelihood distinguisher is:

argmax
k∈F

n
2

Q∏

q=1

∑

r∈R
P (r) p

(
x(q)|y

(
t(q), k, r

))
.

Applying (1) for Gaussian noise and taking the logarithm yields (2). 	

In the sequel, we denote by LL(q) = logER exp −‖x(q)−y(t(q),k,R)‖2

2σ2 the contribu-
tion of one trace q of the Log-Likelihood full distinguisher LL =

∑Q
q=1 LL(q).

Remark 1. Notice that for each trace q, the Maximum Likelihood distinguisher
involves a summation over #R values, which correspond to #R accesses to
precharacterized templates.

Taylor Expansion of Maximum Likelihood Attacks 579

If D = 1, then the signal-to-noise ratio (SNR) is defined in a natural way as
the ratio between the variance of the model Y and the variance of the noise N .
But when the setup is multivariate, it is more difficult to quantify a notion of
SNR. For this reason, we use the following quantity

γ =
1

2σ2
, (3)

which is actually proportional to an SNR, in lieu of SNR. In practice, we assume
that γ is small. It is indeed a condition for masking schemes to be efficient (see
for instance [12]).

Proposition 1 (Taylor Expansion of Optimal Attacks in Gaussian
Noise). The attack consists in maximizing the sum over all traces q = 1, . . . , Q of

+∞∑

�=1

κ�

�!
(−γ)�, (4)

where κ� is the �th-order cumulant of the random variable ‖x−y(t, k,R)‖2, which
can be found inductively from �th-order moments:

μ� = ER

(‖x − y(t, k,R)‖2�
)
, (5)

using the relation:

κ� = μ� −
�−1∑

�′=1

(
� − 1
�′ − 1

)

κ�′μ�−�′ (� ≥ 1). (6)

Proof. The log-likelihood can be expanded according to the increasing powers
of the SNR as:

logE exp
(−γ‖x − y(t, k,R)‖2) =

+∞∑

�=1

κ�

�!
(−γ)�, (7)

where we have recognized the cumulant generating function [34]. The above
relation (6) between cumulants and moments is well known [39]. 	

Definition 1. The Taylor expansion of the log-likelihood truncated to the Lth
degree LLL in SNR is

LLL =
L∑

�=1

(−1)�κ�
γ�

�!
. (8)

Put differently, we have LL = LLL + o(γL) (using the Landau notation). The
optimal attack can now be “rounded” in the following way:

Definition 2 (Rounded OPTimal Attack of Degree L in γ). The rounded
optimal Lth-degree attack consists in maximizing over the key hypothesis the

580 N. Bruneau et al.

sum over all traces of the Lth order Taylor expansion LLL in the SNR of the
log-likelihood :

ROPTL: R
DQ × R

DQ −→ F
n
2

(x, y (t, k, R)) �−→ argmax
k∈F

n
2

LLL. (9)

Proposition 2. If the degree L is smaller than the order O of the countermea-
sure then the attack fails to distinguish the correct key.

Proof. One can notice that μ� combines (by a product) a most � terms following
the formula:

μ� =
∑

k1+...+kD=�

(
�

k1, . . . , kD

)

E

∏

0<i<D+1

(xi − yi)2·ki ,

with k1 + . . . + kd = �. It implies that it exits at most � different ki > 0 and as a
consequence there are at most � different variables in the expectation. Therefore
by definition of a perfect masking scheme μL does not depend on the key. As a
consequence LLL with L < O neither depends on the key. 	

Theorem 2. Let an implementation be secure at order O. The lowest-degree
successful attack is the one at degree L = O which maximizes LLL. This is
equivalent to summing

μL = ER

(‖x − y(t, k,R)‖2L
)
,

over all traces and

– maximize the result over the key hypotheses, if L is even;
– minimize the result over the key hypotheses, if L is odd.

Proof. Since κ� is independent of k for all � ≤ L, the first sensitive contribution
to the log-likelihood is

(−1)LκL
γL

L!
.

Now, κL = μL+ lower order terms (which do not depend on the key as the
implementation is secure at order O), and removing constants independent of k
the contribution to the log-likelihood reduces to (−1)LμL. 	

Theorem 3 (Mixed Degree Attack). Assuming an implementation secure
at order O, the next degree successful attack is the one at degree L + 1 = O + 1
which maximizes LLL+1. This is equivalent to summing

μL(1 + γμ1) − γ
μL+1

L + 1
,

over all traces and

– maximize the result over the key hypotheses, if L is even;
– minimize the result over the key hypotheses, if L is odd.

Taylor Expansion of Maximum Likelihood Attacks 581

Proof. The (L + 1)th-order term in the log-likelihood becomes

(−1)LκL
γL

L!
+ (−1)L+1 κL+1

(L + 1)!
γL+1.

Now from (6) we have, for L > 0

κL+1 = μL+1 − (L + 1)μLμ1 + lower-order terms.

Removing terms that do not depend on k, we obtain:

(−1)LγL
(
μL − γ(

μL+1

L + 1
− μLμ1)

)
.

Compared to a Lth-degree attack, we see that μL is replaced by a corrected
version:

μL(1 + γμ1) − γ
μL+1

L + 1
,

where μ1 is independent of k. However, μ1 cannot be removed as it scales the
relative contribution of μL and μL+1 in the distinguisher. 	

Remark 2. In contrast to LLL, implementing LLL+1 requires knowledge of the
SNR parameter γ = 1/2σ2.

Remark 3. In general, when L ≥ O the rounded optimal attack ROPTL exploits
all key dependent terms of degree �, where O ≤ � ≤ L, whereas an LO-CPA [8]
or MCP-DPA [22] only exploit the term of degree L.

4 Case Study: Shuffled Table Recomputation

In this section we apply the ROPTL formula of Eq. (9) of Definition 2 to the
particular case of a block cipher with a shuffled table recomputation stage. We
show that in this scenario our new method allows to build a better attack than
that from the state-of-the-art. By combining the second and the third cumulants
we construct an attack which is better than:

– any second-order attack;
– the attack presented at CHES 2015. Following the notations of [7] we denote

this attack by MVATR (which stands for Multi-Variate Attack on Table
Recomputation) in the rest of this article. This is a third-order attack that
achieves better results than 2O-CPA when the noise level σ is below a given
threshold (namely σ2 ≤ 2n−2 − n/2).

4.1 Parameters of the Randomization Countermeasure

In order to validate our results we take as example a first order (O = 2), masking
scheme where the sensitive variables are split into two shares (Ω = 2). The
nonlinear part of this scheme is computed using a table recomputation stage.
This step is shuffled (Π = 2n) for protection against some known attacks [26,36].
The beginning of this combined countermeasure is given in Algorithm 1. The
table is recomputed in a random order from line 3 to line 7.

582 N. Bruneau et al.

Algorithm 1. Beginning of computation of a block cipher masked by table
recomputation in a random order
input : t, one byte of plaintext, and k, one byte of key
output: The application of AddRoundKey and SubBytes on t, i.e.,

S[t ⊕ k]

// Table precomputation protected by shuffling

1 m ←R F
n
2 , m′ ←R F

n
2 // Draw of random input and output masks

2 ϕ ←R F
n
2 → F

n
2 // Draw of random permutation of F

n
2

3 for ϕ(ω) ∈ {ϕ(0), ϕ(1), . . . , ϕ(2n − 1)} do // S-box masking
4 z ← ϕ(ω) ⊕ m // Masked input
5 z′ ← S[ϕ(ω)] ⊕ m′ // Masked output
6 S′[z] = z′ // Creating the masked S-box entry

7 end

// Masked computation ...

8 t ← t ⊕ m // Plaintext masking
9 t ← t ⊕ k // Masked AddRoundKey

10 t ← S′[t] // Masked SubBytes
11 t ← t ⊕ m′ // Demasking
12 return t

We used lower case letter (e.g., m, ϕ) for the realizations of random variables,
written upper-case (e.g., M , Φ). For the sake of simplicity in the rest of this case
study, we assume that m = m′.

An overview of the leakages over time is given in Fig. 1.
We detail below the mathematical expression of these leakages. The ran-

domization consists in one mask M chosen randomly in {0, 1}n, and one shuffle
(random permutation of {0, 1}n) denoted by Φ. Thus, we denote R = (M,Φ),
which is uniformly distributed over the Cartesian product {0, 1}n × S2n (i.e.
M = {0, 1}n and S = S2n), where Sm is the symmetric group of m elements.
We have D = 2n+1 + 2 leakage models, namely:

– X0 = y0 (t, k,R) + N0 with y0 (t, k,R) = wH(M),
– X1 = y1 (t, k,R) + N1 with y1 (t, k,R) = wH(S[T ⊕ k] ⊕ M),
– Xi = yi (t, k,R)+Ni, for i = 2, . . . , 2n+1 with yi (t, k,R) = wH(Φ(i−2)⊕M),
– Xj = yj (t, k,R)+Nj , for j = 2n+2, . . . , 2n+1+1 with yj (t, k,R) = wH(Φ(j−

2n − 2)).

We recall that we assume the noises N are i.i.d. Clearly, there is a second-
order leakage, as the pair (X0,X1) does depend on the key. But there is also a
large multiplicity of third-order leakages, such that (X1,Xi,Xj=i+2n), as will be
analyzed in this case-study.

The following side-channel attacks are applied on a set of Q realizations. Let
us define I and J as I = �2, 2n+1� and J = �2n+2, 2×2n+1�. Then the maximal
dimensionality is D = 2+2×2n, and we denote a sample d as d ∈ {0, 1}∪ I ∪J .
The Q leaks (resp. models) at sample d are denoted as xd and yd = yd(t, k, R).

Taylor Expansion of Maximum Likelihood Attacks 583

Fig. 1. Leakages of the shuffled table recomputation scheme

In order to simplify the notations we introduce

f
(q)
d =

(
x
(q)
d − yd

(
t(q), k, R

))2

, (10)

with d ∈ {0, 1} ∪ I ∪ J . The (q) can be omitted where there is no ambiguity.

4.2 Second-Order Attacks

As any other high order masking scheme, our example can be defeated by High
Order Attacks [8,20,29,38]. As our scheme is a first order masking scheme with
two shares it can be defeated using a second order attack [8,20] which combines
the leakages of the two shares using a combination function [8,20,25] such as the
second order CPA (2O-CPA) with the centered product as combination function.

Using our notation it implies D = 2.

Definition 3 (2O-CPA [29]). We denote by 2O-CPA the CPA using the centered
product as combination function. Namely:

2O-CPA: RQ × R
Q × R

Q −→ F
n
2

(x0,x1,y) �−→ argmax
k∈F

n
2

ρ̂ [x0 ◦ x1,y] , (11)

where y = EM (y0 (t, k, R) ◦ y1 (t, k, R)), ◦ is the element wise product and ρ̂
is an estimator of the Pearson coefficient. It can be noticed that as the terms
y0 (t, k, R) and y1 (t, k, R) only depend on M the expectation is only computed
over M.

584 N. Bruneau et al.

Remark 4. Here we have assumed without loss of generality that the leakages
and the model are centered.

An attacker can restrict himself in order to ignore the recomputation stage.
Since such attacker ignores the table recomputation no random shuffle is
involved. As a consequence the optimal distinguisher restricted to these leak-
ages becomes computable. Nevertheless as we will see in Sect. 6 this approach is
not the best. Indeed a lot of exploitable information is lost by not taking into
account the table recomputation.

Definition 4 (OPT2O Distinguisher — Eq. (2) for D = 2). We define by
OPT2O the optimal attack which targets the mask and the masked sensitive value.

OPT2O: R
2Q × R

2Q& → F
n
2

(xd, yd (t, k, R))d∈{0,1} �→ argmax
k∈F

n
2

Q∑

q=1

logE exp

⎛

⎝−γ
∑

d∈{0,1}
f
(q)
d

⎞

⎠ ,

(12)

with f
(q)
d as defined in Eq. (10).

4.3 Exploiting the Shuffled Table Recomputation Stage

It is known that the table recomputation step can be exploited to build better
attacks than second order attacks [6,36]. Recently a new attack has been pre-
sented which remains better than the 2O-CPA even when the recomputation
step is protected [7]. Let us recall the definition of this attack:

Definition 5 (MVATR [7]). The MultiVariate Attack (MVA) exploiting the
leakage of the table recomputation (TR) is given by the function:

MVATR: RQ(2n+1+1) × R
Q −→ F

n
2

(xd,y)d∈{1}∪I∪J �−→ argmax
k∈F

n
2

ρ̂

⎡

⎣

⎛

⎝−1
2

∑

i∈I,j=i+2n

xi ◦ xj

⎞

⎠ ◦ x1,y

⎤

⎦ ,

(13)

where, like for Definition 3, y = EM (y0 (t, k, R) ◦ y1 (t, k, R)), ◦ is the element
wise product and ρ̂ is an estimator of the Pearson coefficient.

Let us now apply our new ROPTL on a block cipher protected with a shuffled
table recomputation. In this case the lower moments are given by:

μ� = E

[(∑

d

fd

)�
]

= E

⎡

⎢
⎣
(

f0
︸︷︷︸

S[t⊕k]⊕M

+ f1
︸︷︷︸

M

+
∑

i∈I

fi
︸︷︷︸

Φ(ω)⊕M

+
∑

j∈J

fj
︸︷︷︸
Φ(ω)

)�

⎤

⎥
⎦ .

Taylor Expansion of Maximum Likelihood Attacks 585

Proposition 3. The second degree rounded optimal attack on the table recom-
putation is:

ROPT2: R
2Q × R

2Q −→ F
n
2

(xd, yd (t, k, R))d∈{0,1} �−→ argmax
k∈F

n
2

Q∑

q=1

E(f (q)
0 × f

(q)
1). (14)

Proof. Combine Theorem 2 and Eq. (30) of AppendixA.2. 	

Remark 5. The ROPT2 which targets the second order moment happens not to
take into account the terms of the recomputation stage. Naturally the only sec-
ond order leakages are also the ones used by 2O-CPA and OPT2O distinguishers.

Proposition 4. The third degree rounded optimal attack on the table recompu-
tation is:

ROPT3: R
(2n+1+2)Q × R

(2n+1+2)Q −→ F
n
2

(xd, yd (t, k, R))d∈{0,1}∪I∪J �−→ argmax
k∈F

n
2

Q∑

q=1

μ
(q)
2 (1 + γμ

(q)
1) − γ

μ
(q)
3

3
,

(15)

where the values of μ
(q)
1 , μ

(q)
2 and, μ

(q)
3 are respectively provided in Eq. (22) of

AppendixA.1, Eq. (30) of AppendixA.2 and Eq. (33) of AppendixA.3.

Proof. Combining Theorem 2 and AppendixA. 	

Proposition 5. To compute μ1, μ2 and μ3 an attacker does not need to compute
the expectation over S2n .

Proof. Proof given in AppendixA. 	

5 Complexity

In this section we give the time complexity needed to compute OPT and ROPTL.
We also show that when L � D the complexity of ROPTL remains manageable
whereas the complexity of OPT is prohibitive. In this section all the complexities
are computed for one key guess.

5.1 Complexity in the General Case

Let us first introduce an intermediate lemma.

Lemma 1. The complexity of computing μ� (for one trace) is lower than:

O
((

D + � − 1
�

)

· 2(Ω−1)n ·
(

Π

min
(⌈

Π
2

⌉
, �

)

))

. (16)

586 N. Bruneau et al.

Proof. See AppendixB.1. 	

Proposition 6. The complexity of OPT is:

O (
Q · (2n)Ω−1 · Π! · D

)
. (17)

The complexity of ROPTL is lower than:

O
(

Q · L ·
(

D + L − 1
L

)

· 2(Ω−1)n ·
(

Π

min
(⌈

Π
2

⌉
, L

)

))

. (18)

Proof. The proof is given in AppendixB.2. 	

Proposition 6 allows to compare the complexity of the two attacks. One can

notice that there are still terms with Π! or D! in ROPTL such as
(
D+L−1

L

)

or
(

Π
min(�Π

2 �,L)
)
. Nevertheless these two terms can be seen as constants where

L � D. As a consequence we have the following remark.

Important Remark. When the degree L of the attack ROPTL is such that
L � D the complexity of OPT is much higher than the complexity of ROPTL.
Indeed the main term for OPT is Π! whereas the one for ROPTL is 2(Ω−1)n.

Proposition 7. The complexity of ROPTL can be reduced to O
(
Q·L·(D+L−1

L

))

with a precomputation in O
(
L · (

D+L−1
L

) · 2(Ω−1)n · (
Π

min(�Π
2 �,L)

))
.

Proof. See AppendixB.3. 	

This means that for Q large enough i.e. when γ is low enough this compu-

tational “trick” allows a speed-up factor of 2(Ω−1)n
(

Π
min(�Π

2 �,L)
)
. The idea is to

output the values depending on the queries from the computation of the expec-
tations. These expectations only depend on the model which can be computed
only once.

5.2 Complexity of Our Case Study

Let us now compute the complexity of these two distinguishers applied to our
case study. Of course an approach could be to use the formula of the previous
Sect. 5.1. But one can notice that a lot of terms could be independent of the
key and as consequence not needed in an attack. Another approach is to use the
formula of the distinguisher.

Proposition 8. The complexity of OPT is:

O (
Q · (2n) · 2n! · (

2n+1 + 2
))

. (19)

The complexity of ROPT2 is:
O (Q · 2n) . (20)

The complexity of ROPT3 is lower than:

O (
Q · 24n

)
. (21)

Taylor Expansion of Maximum Likelihood Attacks 587

Proof. See AppendixB.4. 	

Remark 6. As already mentioned an attacker can ignore the leakages of the
table recomputation and only target the two shares. In such case the complexity
of OPT2O (Definition 4) is O (Q · (2n)). With the result of Proposition 7 the
complexity of ROPT2 reduces to O (Q).

Remark 7. Using the result of Proposition 7 the complexity of ROPT3 can be
reduced to O (

Q · 22n
)

with a precomputation step of O (
22n

)
.

Remark 8. A summary of the complexity, and the computation time of the dis-
tinguishers are provided in AppendixB.5 in Table 1.

6 Simulation Results

In this section we validate in simulation the soundness of our approach for the
case study described in Sect. 4.1. The results of these simulations are expressed
in success rate (defined in [32] and denoted by SR). All simulations are computed
using the Hamming weight model as a leakage model. As we assume an attacker
with a perfect knowledge, the leakages are the model (denoted by y) plus some
noise. The noise is Gaussian with a standard deviation of σ.

In Subsect. 6.1 we assume that the attacker does not take into account the
table recomputation stage. He only targets the leakages of the mask and the
masked share (the leakage of masked S-Box). Namely the leakages which occurs
in lines 1 and 10 of Algorithm 1. This approach allows to compute the restricted
version of the maximum likelihood. We compare the results of the maximum
likelihood, our rounded version and the high order attacks.

In Subsect. 6.2 we present our main results. In this subsection the attacker
can exploit the leakage of the mask, the masked share and all the leakages of the
table recomputation. In this scenario we show that our rounded version of the
optimal distinguisher outperforms all the attacks of the state-of-the-art.

6.1 Exploiting only Leakage of the Mask and the Masked Share

In this subsection all the attacks are computed using only the leakages of the
line 1 and the line 10 of Algorithm 1.

In this case study we assume a perfect masking scheme with: Y0 = wH(M)
and Y1 = wH(S[T ⊕ k] ⊕ M).

It can be seen in Fig. 2 that even for small noise (σ = 1, Fig. 2a) the 2O-CPA
and ROPT2 are equivalent. Indeed the two curves superimpose almost perfectly
(in order to better highlight a difference, as many as 1000 attacks have been
carried out for the estimation of the success rate). Moreover these two attacks
are nearly equivalent to the optimal distinguisher (we recover here the results
of [6]). We can notice that for both σ = 1 and σ = 2, ROPT4 is not as good as
ROPT2. This means that the noise standard deviation is not large enough for
approximations of higher degrees to be accurate. Indeed when the noise is not

588 N. Bruneau et al.

low enough the weight of each term of the decomposition can be such that some
useful terms vanish due to the alternation of positive and negative terms in the
Taylor expansion.

Let us recall that the decomposition of Eq. (8) is valid only for low γ =
1/(2σ2) i.e. high noise. The error term (o(γL)) in the Taylor expansion gives
the asymptotic evolution of this error when the noise increases but does not
provide information about the error for a fixed value of noise variance. This
means that the noise is too small for ROPT4 to be a good approximation of
OPT although ROPT2 is nearly equivalent to OPT.

For σ = 2 the noise is high enough to have a good approximation of OPT by
ROPT4. For this noise all the attacks are close to OPT (Fig. 2b).

In the context where only the mask and the masked share are used it is
equivalent to compute the 2O-CPA, ROPT2 and OPT. As a consequence in the
rest of this article only the 2O-CPA will be displayed.

To conclude our ROPTL is in this scenario at least as good as the HO-CPA of
order L, which validates the optimality of state-of-the-art attacks against perfect
masking schemes of order O = L.

Fig. 2. Bivariate attacks

6.2 Exploiting the Shuffled Table Recomputation

In this subsection the attacker can target the leakage of the mask, the masked
share and all the leakages occurring during the table recomputation. As a con-
sequence the attacks of Subsect. 6.1 remain possible. It has been shown in [6,33]
that the 2O-CPA with the centered product becomes close to the OPT2O (the
Maximum Likelihood) when the noise becomes high. It is moreover confirmed by
our simulation results as it can be seen in Fig. 2. We choose as attack reference
for the Fig. 3 the 2O-CPA and not the OPT2O because it performs similarly
Fig. 2 and it is much faster to compute (see Table 1) which is mandatory for
attacks with high noise (e.g. for σ = 12) which involve many traces.

Following the formulas provided previously empirical validations have been
done. For σ ≤ 8 the attacks have been redone 1000 times to compute the SR.
For σ > 8 the attacks have been done 250 times. Results are plotted in Fig. 3.

Taylor Expansion of Maximum Likelihood Attacks 589

Fig. 3. Attack on shuffled table recomputation

590 N. Bruneau et al.

In these figures the results of the 2O-CPA, the MVATR and ROPT3 are plotted.
Noticed that the likelihood is not represented because we cannot average over R.

Recall that the cardinality of the support of R is 2n × 2n!. It can be first
noticed that for all the noises ROPT3 is the best attack.

Let us analyze how much better ROPT3 is than 2O-CPA and MVATR. The
comparison with our new attack can be divided in three different categories. For
low noise σ = 3 (see Fig. 3b) the results of ROPT3 are similar to the results of
MVATR. This means that the leakage of the shuffled table recomputation is the
most leaking term in this case. At the opposite when the noise is high (for σ = 12
see Fig. 3g) ROPT3 becomes close to 2O-CPA which means that as expected the
most informative part is the second order term. For medium noise 7 ≤ σ ≤ 9
(see Fig. 3d, e and f) the results of ROPT3 are much better than the result of
2O-CPA and MVATR. Moreover, the gain compared to the second best attack
is maximum when the results of 2O-CPA and MVATR are the same. Indeed for
σ = 7 (see Fig. 3d), ROPT3 needs 35000 traces to reach 80 % of success whereas
MVATR (the second best attack) needs 60000 traces. This represents a gain of
71 %. For σ = 8 (see Fig. 3e), ROPT3 needs 65000 traces to reach 80 % of success
whereas the MVATR and the 2O-CPA needs 120000 traces. This represents a
gain of 85 %. And when the noise increases to σ = 9 (see Fig. 3f), ROPT3 needs
120000 traces to reach 80 % of success whereas 2O-CPA (the second best attack)
needs 200000 traces, which is a gain of 66 %.

These results can be interpreted as follows: The MVATR is a third order
attack which depends on the third order moment. The 2O-CPA is a second
order attack which depends on the second order moment. The new ROPT3

attack combines these two moments. When the noise is low the MVATR and
the ROPT3 performs similarly; this shows that the dominant term in the Taylor
expansion is the third order one. At the opposite when the noise increases the
ROPT3 becomes close to the 2O-CPA which indicates that the important term
in the Taylor expansion is the second order one. As ROPT3 combines the second
and the third order moment weighted by the SNR it is always better than any
attack exploiting only one moment.

7 Conclusions and Perspectives

In this article, we derived new attacks based on the Lth degree Taylor expansion
in the SNR of the optimal Maximum Likelihood distinguisher. We have shown
that this Lth degree truncation allows to target a moment of order L. The new
attack outperforms the optimal distinguisher with respect to time complexity. In
fact as we have theoretically shown, the Taylor approximation can be effectively
computed whereas the fully optimal maximum likelihood distinguisher, was not
computationally tractable.

We have illustrated this property by applying our new method in a complex
scenario of “shuffled table recomputation” and have compared the time complex-
ity of the new attack and the optimal distinguisher. In addition, we have shown
that in this context our attack has a higher success rate than all the attacks of
the state-of-art over all possible noise variances.

Taylor Expansion of Maximum Likelihood Attacks 591

An open question is how to quantify the accuracy of the approximation
LL −→ LL� as a function of the noise. In other words, what is the optimal degree
of the Taylor expansion of the likelihood for a given SNR? Another interesting
extension of this framework would be on hardware devices which are known to
leak at various orders (see the real-world examples in [21–23]).

A Computation of the Moments

A.1 Computation of µ1

There is no computational difficulty:

μ1 = E(f0) + E(f1) +
∑

i∈I

E(fi) +
∑

j∈J

E(fj). (22)

Now, when there is no ϕ in the R.V., then the expectation is only on M
(indeed, 1

2n!

∑
ϕ∈S2n

1 = 1). Thus,

E(f0) =
1
2n

∑

m∈F
n
2

(x0 − wH(S[t ⊕ k] ⊕ m))2 =
1
2n

∑

m∈F
n
2

(x0 − wH(m))2, (23)

which cannot further be simplified (in the simulations, it will be computed by
the computer).

Similarly

E(f1) =
1
2n

∑

m∈F
n
2

(x1 − wH(S[t ⊕ k] ⊕ m))2 =
1
2n

∑

m∈F
n
2

(x1 − wH(m))2. (24)

When there is an expectation on Φ, then at order one, it considers only one
value Φ(ω). It is uniformly distributed, hence one can replace the expectation
on Φ by an expectation on one value of ϕ, we call M ′. For instance:

E(fi) =
1

2n!

∑

ϕ∈S2n

(xi − wH(ϕ(ω)))2

=
1
2n

∑

m′∈F
n
2

(xi − wH(m′))2, (25)

which can thus be computed with the same average method as E(f0).
Lastly, when there is both M and Φ(ω), then whichever variable can absorb

the other one, since both are uniformly distributed on F
n
2 . This means that:

E(fj) =
1
2n

∑

m∈F
n
2

1
2n!

∑

ϕ∈S2n

(xj − wH(ϕ(ω) ⊕ m))2

=
1

22n

∑

m,m′∈F
n
2

(xj − wH(m ⊕ m′))2

592 N. Bruneau et al.

=
1

22n

∑

m̃,m′∈F
n
2

(xj − wH(m̃ ⊕ m′ ⊕ m′))2 where m̃ = m ⊕ m′ (26)

=
1
2n

∑

m̃∈F
n
2

(xj − wH(m̃))2, (27)

which is once again a similar computation as done for computing E(f0).

A.2 Computation of µ2

Recall that only the key dependent terms of μ2 are needed for ROPT2 and
ROPT3.

Notice that the square terms are computed as the non-square terms. For
instance,

E(f2
0) =

1
2n

∑

m∈F
n
2

(x0 − wH(S[t ⊕ k] ⊕ m))4 =
1
2n

∑

m∈F
n
2

(x0 − wH(m))4, (28)

which we drop since it does not depend on k. All in one, the only key-dependent
term is:

E(f0 × f1) =
1
2n

∑

m∈F
n
2

(x0 − wH(S[t ⊕ k] ⊕ m))2(x1 − wH(m))2, (29)

which cannot be further simplified and will be computed by the computer. So,
for the purpose of the attack, we have:

μ2 = E(f0 × f1) + cst. (30)

A.3 Computation of µ3

We shall consider only terms which depend on the key, hence product of three
terms, one of which (at least) is f0. Obviously, E(f3

0) does not depend on k, for
the same reason as given in Eq. (28). But the two terms:

1. E(f2
0 f1) and

2. E(f0f2
1)

Notice that they are present
(
3
2

)
= 3 times each when developing the cube.

Interestingly, those are not the only cases where f0 and f1 are selected.

E(f0f1fj)

=
1

2n

∑

m∈F
n
2

1

2n!

∑

ϕ∈S2n

(x0 − wH(S[t ⊕ k] ⊕ m))2(x1 − wH(m))2(xj − wH(ϕ(ω) ⊕ m))2

=
1

2n

∑

m∈F
n
2

1

2n

∑

m′∈F
n
2

(x0 − wH(S[t ⊕ k] ⊕ m))2(x1 − wH(m))2(xj − wH(m′ ⊕ m))2

=
1

2n

∑

m∈F
n
2

(x0 − wH(S[t ⊕ k] ⊕ m))2(x1 − wH(m))2
1

2n

∑

m′∈F
n
2

(xj − wH(m′ ⊕ m))2

Taylor Expansion of Maximum Likelihood Attacks 593

=
1

2n

∑

m∈F
n
2

(x0 − wH(S[t ⊕ k] ⊕ m))2(x1 − wH(m))2
1

2n

∑

m̃′∈F
n
2

(xj − wH(m̃′))2 (As in
Eq. (26))

= E(f0f1)E(fj).

Similarly, we have:

E(f0f1fi) = E(f0f1)E(fi).

Now, we consider products without f1. Obviously, taking only f0 and fi

is not enough, since: E(f2
0 fi) = E(f2

0)E(fi) and E(f0f2
i) = E(f0)E(f2

i) are key
independent. The same goes for E(f2

0 fj) and E(f0f2
j). We are left with E(f0fifi′),

E(f0fjfj′), and E(f0fifj).
The term E(f0fifi′) = E(f0)E(fifi′)) does not depend on k, because there is

no M in fi.
The term E(f0fjfj′) can also factorize as E(f0)E(fjfj′)), hence it does not

depend on k. The reason is more subtle, so we detail it:

E(f0fjfj′) =
1
2n

∑

m∈F
n
2

(x0 − wH(S[t ⊕ k] ⊕ m))2

× 1
2n(2n − 1)

∑

(m′,m′′)∈F
n
2 ×F

n
2

s.t. m′
=m′′

(xj − wH(m′ ⊕ m))2(xj′ − wH(m′′ ⊕ m))2.

Now, the second sum does not depend on m, as shown below:

1
2n(2n − 1)

∑

(m′,m′′)∈F
n
2 ×F

n
2

s.t. m′
=m′′

(xj − wH(m′ ⊕ m))2(xj′ − wH(m′′ ⊕ m))2 =

1
2n

∑

m′∈F
n
2

(xj − wH(m′ ⊕ m))2
1

2n − 1

∑

m′′∈F
n
2 \{m′}

(xj′ − wH(m′′ ⊕ m))2 =

1
2n

∑

m̃′∈F
n
2

(xj − wH(m̃′))2
1

2n − 1

∑

m′′∈F
n
2 \{m̃′⊕m}

(xj′ − wH(m′′ ⊕ m))2 =

1
2n

∑

m̃′∈F
n
2

(xj − wH(m̃′))2
1

2n − 1

∑

m̃′′∈F
n
2 \{m̃′′������⊕m⊕m}

(xj′ − wH(m̃′′))2.

Consequently, the last case is E(f0fifj). We can subdivide it into two cases:
j = i + 2n and j �= i + 2n. When j = i + 2n, the permutation Φ is evaluated
at the same ω in fi and fj . We denote by M ′ the R.V. Φ(ω), where ω = j − 2.
Hence:

E(f0fifj=i+2n) =
1
2n

∑

m∈F
n
2

(x0 − wH(S[t ⊕ k] ⊕ m))2
1
2n

∑

m′∈F
n
2

(xi − wH(m′))2(xj − wH(m′ ⊕ m))2.

(31)

594 N. Bruneau et al.

These terms (for all j ∈ J) correspond to the MVATR attack published at CHES
2015 [7].

Eventually, there are the terms for j �= i − 2n. They are actually key depen-
dent, hence must be kept. They are equal to:

E(f0fifj
=i+2n) =
1
2n

∑

m∈F
n
2

(x0 − wH(S[t ⊕ k] ⊕ m))2

× 1
2n

1
2n − 1

∑

(m′,m′′)∈F
n
2 ×F

n
2

s.t. m′
=m′′

(xi − wH(m′))2(xj − wH(m′′ ⊕ m))2.

Interestingly, without the constraint m′ �= m′′, this quantity does not depend
on the key. So, the leakage which is exploited here is due to the fact Φ is not
a random function, but a bijection. As, in μ3, we are only interested in non
constant terms, we can rewrite:

E(f0fifj �=i+2n) = cst − 1

2n

∑

m∈F
n
2

(x0 − wH(S[t ⊕ k] ⊕ m))2

× 1

2n

1

2n − 1

∑

(m′,m′′)∈F
n
2 ×F

n
2

s.t. m′=m′′

(xi−wH(m′))2(xj −wH(m′′ ⊕ m))2

= cst − 1

2n

∑

m∈F
n
2

(x0 − wH(S[t ⊕ k] ⊕ m))2

× 1

2n − 1

∑

m′∈F2

(xi − wH(m′))2(xj − wH(m′ ⊕ m))2. (32)

The non-constant term is similar to Eq. (31) provided a scaling by −(2n − 1)/2n

is done.
So, for the purpose of the attack, we have:

μ3 = cst + 3E(f2
0 f1) + 3E(f0f2

1) + 3!E(f0 × f1)

(
∑

i∈I

E(fi) +
∑

j∈J

E(fj)

)

+ 3!
2n+1∑

i=2

E(f0fifj=i+2n) + 3!
2n+1∑

i=2

∑

j∈{2+2n,...,2n+1+1}\{i+2n}
E(f0fifj).

(33)

B Complexity Proofs

B.1 Proof of Lemma 1

In order to prove Lemma 1 let us first introduce a preliminary result.

Lemma 2. The quantity
(
Π
�

)
is increasing if � < �Π/2� and its maximum is

(
Π

�Π
2 �

)
.

Taylor Expansion of Maximum Likelihood Attacks 595

Proof.
(

Π

� + 1

)

=
Π!

(Π − � − 1)!(� + 1)!
=

Π − � − 1
� + 1

(
Π

�

)

,

and the factor Π−�−1
�+1 is strictly greater than 1. Indeed,

Π − � − 1
� + 1

> 1 ⇐⇒ Π > 2(� + 1) ⇐⇒ � < �Π/2� .

	

Finally we can prove Lemma 1.

Proof. Let us first assume that one dimension leaks at most one element of
the permutation. We can thus develop the expression of μ�, and we denote the
complexity under the braces.

μ� = ER

(‖x − y(t, k,R)‖2�
)

=
∑

k1+...+kD=�
︸ ︷︷ ︸

(D+�−1
�)

�!
∏D

d=1 kd!
ER︸︷︷︸

2(Ω−1)n(Π�Π
2 �)

(
D∏

d=1

fkd

d

)

︸ ︷︷ ︸
min(D,�)

As k1 + . . .+kD = � there are at most D indices kd, 1 ≤ d ≤ D such that kd �= 0.
Hence there are at most min (D, �) elements in the product.

Each dimensions which leaks an element of the permutation can also leaks
the masks. The worst case in terms of complexity is when all the permutation
leakages depend also on the masks. Let us denote by i such that 1 ≤ i ≤
min (D, �) the number of those terms. Then the expectation is computed over
2(Ω−1)n Π!

(Π−i)! . Nevertheless by taking into account the commutativity properties

of the product one can only compute 2(Ω−1)n
(
Π
i

)
.

By Lemma 2 we have that is value
(
Π
i

)
is maximum with

(
Π
�

)
when � ≤ ⌈

Π
2

⌉
.

When � > Π
2 + 1 the maximum is

(
Π

�Π
2 �

)
.

Finally as there are
(
D+�−1

�

)
elements in the sum.

The complexity of μ� is lower than O
((

D+�−1
�

)
2(Ω−1)n

(
Π

min(�Π
2 �,�)

))
. 	

B.2 Proof of Proposition 6

In order to prove Lemma 6 let us first introduce a preliminary result.

Lemma 3. The quantity
(
D−1+�

�

)
is increasing with � if D > 1.

Proof. We have that:
(

D − 1 + � + 1
� + 1

)

=
D + �

� + 1

(
D − 1 + �

�

)

,

where ∀�, D+�
�+1 > 1 provided D > 1. 	

596 N. Bruneau et al.

Finally let us prove Prop. 6.

Proof. Complexity of OPT:
Following Eq. (2) we have that the computation for a key guess of OPT is:

Q∑

q=1
︸︷︷︸

Q

log E︸︷︷︸
Π!2n(Ω−1)

exp
−‖x − y(t, k,R)‖2

2σ2
︸ ︷︷ ︸

D

. (34)

We assume that the computation of the log and the exp is constant. As a con-
sequence the complexity of the optimal distinguisher is O (

Q · (2n)Ω−1 · Π! · D
)

Complexity of ROPTL : The computation of ROPTL involves the computation
of the μ� with � ≤ L (Eqs. (2) and (1)). By Lemmas 1 and 3 all these terms have
a complexity lower than O

((
D+L−1

L

) · 2(Ω−1)n · (
Π

min(�Π
2 �,L)

))
(Eq. (16)).

As a consequence the complexity of ROPTL is lower than

O
(

Q · L

(
D + L − 1

L

)

· 2(Ω−1)n ·
(

Π

min
(⌈

Π
2

⌉
, L

)

))

. (35)

	

B.3 Proof of Proposition 7

Proof. Let us develop all the product in the term μ� in order to compute the
expectation in the minimum number of values.

μ� = EM

((D∑

d=1

(xd,q − yd)2
)�

)

=
∑

�1,�2,...,�D∑D
d=1=�

�!∏D
d=1 �d!

EM

(
(x1 − y1)2�1 · · · (xD − yD)2�D

)
.

Moreover (xd − yd(t, k,M))2�d =
∑2�d

i=0

(
2�d

i

)
x2�d−i

d yd(t, k,M)i

μ� =
∑

�1,�2,...,�D∑D
d=1 �d=�

�!∏D
d=1 �d!

EM

(
D∏

d=1

(
2�d∑

i=0

(
2�d

i

)

x2�1−i
d yd(t, k,M)i

))

=
∑

�1,�2,...,�D∑D
d=1 �d=�

�!∏D
d=1 �d!

∑

i1≤2�1
...

iD≤2�D

D∏

d=1

((
2�d

id

)

x2�d−id

d

)

EM

(
D∏

d=1

yd(t, k,M)id

)

︸ ︷︷ ︸
can be precomputed

.

	

Taylor Expansion of Maximum Likelihood Attacks 597

B.4 Proof of Proposition 8

Proof. In our case study the size of the permutation is Π = 2n.
Then the complexity of OPT is given by a straightforward application of

Eq. (17).
From Eq. (14) we have that for ROPT2 the computation for one key guess

and one trace is given by E(f0×f1). In this equation the expectation is computed
over 2n values (Eq. (28)).

From Eq. (15) we have that for ROPT3 the computation for one key guess

and one trace is given by μ
(q)
2 (1 + γμ

(q)
1) − γ

μ
(q)
3
3 . It can be seen in Eqs. (23),

(24), (25) and (27) that the expectation of μ1 is computed over 2n values. The
dominant term in μ3 (Eq. (33)) is :

2n+1∑

i=2

∑

j∈{2+2n,...,2n+1+1}\{i+2n}
︸ ︷︷ ︸

22n

E︸︷︷︸
22n

(f0fifj).

The expectation in this term is computed over 22n values (Eq. (32)). The sum is
computed on less than 22n. 	

B.5 Time and Complexity

The times of the section are expressed in seconds. All the attacks have been run
on Intel Xeon X5660 running at 2.67 GHz. All the implementations are mono-
thread. The model of the simulations is the one describe in Sect. 6. For each
distinguisher the attacks are computed 1000 times on 1000 traces.

Table 1. Time and complexity

Attack Dimension Time (in seconds) Computational complexity

2O-CPA 2 39 O (Q)

ROPT2 2 295 O (Q)

OPT2O 2 9473 O (Q · (2n))

MVATR 2n+1 + 1 130 O (Q · 2n)

ROPT3 2n+1 + 2 2495 O (Q · 22n
)

OPT 2n+1 + 2 Not computable O (Q · (2n) · 2n! · (2n+1 + 2
))

C Analysis of the DPAcontest

Recently an open implementation of a masking scheme with shuffling has been
presented in the DPA contest v4.2 [35]. In this implementation the execution of
the different states is performed in an random order.

598 N. Bruneau et al.

An attacker can target the integrated leakages of the different states in order
to counter the shuffling [9,31].

A better approach is to take into account the possible leakages of the per-
mutation. In this case the optimal distinguisher will be not computable as it
involves an expectation over 16! values. In this case the rounded optimal attack
will reduced this complexity.

Let us defined the leakages of such implementations.

– X0 = y0 (t, k,R) + N0 with y0 (t, k,R) = wH(M),
– X1 = y1 (t, k,R) + N1 with y1 (t, k,R) = wH(S[π (T ⊕ k)] ⊕ M),
– Xi = yi (t, k,R) + Ni, for i = 2, . . . , 18 with yi (t, k,R) = wH(Φ(i − 2)),

Then similarly to the AppendixA we have that:

μ1 = E(f0) + E(f1) +
∑

i∈I

E(fi), (36)

μ2 = E(f0 × f1) + cst. (37)

Additionally as it is a low entropy masking scheme the secret key can leaked
in an univariate high order attack. Depending on the number of masks involve
in the masking scheme it could be at order 2, 3 or more. For simplicity let us
assume it is at order 3. In such cases

μ3 = E(f3
1) + 3E(f2

0 f1) + 3E(f0f2
1) + 3!

2n+1∑

i=2

E(f0f1fi) + cst. (38)

Of course an attacker can additionally exploit all the leakages of the different
states in order to increase the success of the attacks.

In some particular low entropy masking schemes the same masks are reused
several time or are linked by deterministic relations (e.g. the first version of the
DPAcontest). In this context it could be interesting to combine the leakages of
different states [4]. In this case our method could benefit of the multiple possible
points combinations.

References

1. Akkar, M.-L., Giraud, C.: An implementation of DES and AES, secure against
some attacks. In: Koç, Ç.K., Naccache, D., Paar, C. (eds.) CHES 2001. LNCS, vol.
2162, pp. 309–318. Springer, Heidelberg (2001). doi:10.1007/3-540-44709-1 26

2. Batina, L., Gierlichs, B., Prouff, E., Rivain, M., Standaert, F.X., Veyrat-Charvillon,
N.: Mutual information analysis: a comprehensive study. J. Cryptol. 24(2), 269–291
(2011)

3. Blömer, J., Guajardo, J., Krummel, V.: Provably secure masking of AES. In:
Handschuh, H., Hasan, M.A. (eds.) SAC 2004. LNCS, vol. 3357, pp. 69–83.
Springer, Heidelberg (2004). doi:10.1007/978-3-540-30564-4 5

4. Bruneau, N., Danger, J.-L., Guilley, S., Heuser, A., Teglia, Y.: Boosting higher-
order correlation attacks by dimensionality reduction. In: Chakraborty, R.S.,
Matyas, V., Schaumont, P. (eds.) SPACE 2014. LNCS, vol. 8804, pp. 183–200.
Springer, Heidelberg (2014). doi:10.1007/978-3-319-12060-7 13

http://dx.doi.org/10.1007/3-540-44709-1_26
http://dx.doi.org/10.1007/978-3-540-30564-4_5
http://dx.doi.org/10.1007/978-3-319-12060-7_13

Taylor Expansion of Maximum Likelihood Attacks 599

5. Bruneau, N., Guilley, S., Heuser, A., Marion, D., Rioul, O.: Less is more dimen-
sionality reduction from a theoretical perspective. In: Handschuh and Güneysu
[13]

6. Bruneau, N., Guilley, S., Heuser, A., Rioul, O.: Masks will fall off. In: Sarkar,
P., Iwata, T. (eds.) ASIACRYPT 2014. LNCS, vol. 8874, pp. 344–365. Springer,
Heidelberg (2014). doi:10.1007/978-3-662-45608-8 19

7. Bruneau, N., Guilley, S., Najm, Z., Teglia, Y.: Multivariate high-order attacks of
shuffled tables recomputation. In: Handschuh and Güneysu [13]

8. Chari, S., Jutla, C.S., Rao, J.R., Rohatgi, P.: Towards sound approaches to coun-
teract power-analysis attacks. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol.
1666, pp. 398–412. Springer, Heidelberg (1999). doi:10.1007/3-540-48405-1 26

9. Clavier, C., Coron, J.-S., Dabbous, N.: Differential power analysis in the presence
of hardware countermeasures. In: Koç, Ç.K., Paar, C. (eds.) CHES 2000. LNCS,
vol. 1965, pp. 252–263. Springer, Heidelberg (2000). doi:10.1007/3-540-44499-8 20

10. Coron, J.-S.: Higher order masking of look-up tables. In: Nguyen, P.Q., Oswald,
E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 441–458. Springer, Heidelberg
(2014). doi:10.1007/978-3-642-55220-5 25

11. Ding, A.A., Zhang, L., Fei, Y., Luo, P.: A statistical model for higher order DPA
on masked devices. In: Batina, L., Robshaw, M. (eds.) CHES 2014. LNCS, vol.
8731, pp. 147–169. Springer, Heidelberg (2014). doi:10.1007/978-3-662-44709-3 9

12. Duc, A., Faust, S., Standaert, F.-X.: Making masking security proofs concrete. In:
Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9056, pp. 401–429.
Springer, Heidelberg (2015). doi:10.1007/978-3-662-46800-5 16

13. Güneysu, T., Handschuh, H. (eds.): CHES 2015. LNCS, vol. 9293. Springer,
Heidelberg (2015)

14. Herbst, C., Oswald, E., Mangard, S.: An AES smart card implementation resistant
to power analysis attacks. In: Zhou, J., Yung, M., Bao, F. (eds.) ACNS 2006. LNCS,
vol. 3989, pp. 239–252. Springer, Heidelberg (2006). doi:10.1007/11767480 16

15. Ishai, Y., Sahai, A., Wagner, D.: Private circuits: securing hardware against prob-
ing attacks. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 463–481.
Springer, Heidelberg (2003). doi:10.1007/978-3-540-45146-4 27

16. Lemke-Rust, K., Paar, C.: Analyzing side channel leakage of masked imple-
mentations with stochastic methods. In: Biskup, J., López, J. (eds.) ESORICS
2007. LNCS, vol. 4734, pp. 454–468. Springer, Heidelberg (2007). doi:10.1007/
978-3-540-74835-9 30

17. Lemke-Rust, K., Paar, C.: Gaussian mixture models for higher-order side channel
analysis. In: Paillier, P., Verbauwhede, I. (eds.) CHES 2007. LNCS, vol. 4727, pp.
14–27. Springer, Heidelberg (2007). doi:10.1007/978-3-540-74735-2 2

18. Mangard, S., Oswald, E., Popp, T.: Power Analysis Attacks - Revealing the Secrets
of Smart Cards. Springer, Heidelberg (2007)

19. Messerges, T.S.: Securing the AES finalists against power analysis attacks. In:
Goos, G., Hartmanis, J., Leeuwen, J., Schneier, B. (eds.) FSE 2000. LNCS, vol.
1978, pp. 150–164. Springer, Heidelberg (2001). doi:10.1007/3-540-44706-7 11

20. Messerges, T.S.: Using second-order power analysis to attack DPA resistant soft-
ware. In: Koç, Ç.K., Paar, C. (eds.) CHES 2000. LNCS, vol. 1965, pp. 238–251.
Springer, Heidelberg (2000). doi:10.1007/3-540-44499-8 19

21. Moradi, A.: Statistical tools flavor side-channel collision attacks. In: Pointcheval,
D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 428–445.
Springer, Heidelberg (2012). doi:10.1007/978-3-642-29011-4 26

22. Moradi, A., Standaert, F.X.: Moments-correlating DPA. IACR Cryptology ePrint
Archive 2014, p. 409, 2 June 2014

http://dx.doi.org/10.1007/978-3-662-45608-8_19
http://dx.doi.org/10.1007/3-540-48405-1_26
http://dx.doi.org/10.1007/3-540-44499-8_20
http://dx.doi.org/10.1007/978-3-642-55220-5_25
http://dx.doi.org/10.1007/978-3-662-44709-3_9
http://dx.doi.org/10.1007/978-3-662-46800-5_16
http://dx.doi.org/10.1007/11767480_16
http://dx.doi.org/10.1007/978-3-540-45146-4_27
http://dx.doi.org/10.1007/978-3-540-74835-9_30
http://dx.doi.org/10.1007/978-3-540-74835-9_30
http://dx.doi.org/10.1007/978-3-540-74735-2_2
http://dx.doi.org/10.1007/3-540-44706-7_11
http://dx.doi.org/10.1007/3-540-44499-8_19
http://dx.doi.org/10.1007/978-3-642-29011-4_26

600 N. Bruneau et al.

23. Moradi, A., Wild, A.: Assessment of hiding the higher-order leakages in hardware.
In: Güneysu, T., Handschuh, H. (eds.) CHES 2015. LNCS, vol. 9293, pp. 453–474.
Springer, Heidelberg (2015). doi:10.1007/978-3-662-48324-4 23

24. Nikova, S., Rijmen, V., Schläffer, M.: Secure hardware implementation of nonlinear
functions in the presence of glitches. J. Cryptol. 24(2), 292–321 (2011)

25. Oswald, E., Mangard, S.: Template attacks on masking—resistance is futile. In:
Abe, M. (ed.) CT-RSA 2007. LNCS, vol. 4377, pp. 243–256. Springer, Heidelberg
(2006). doi:10.1007/11967668 16

26. Pan, J., Hartog, J.I., Lu, J.: You cannot hide behind the mask: power analysis on
a provably secure S -Box implementation. In: Youm, H.Y., Yung, M. (eds.) WISA
2009. LNCS, vol. 5932, pp. 178–192. Springer, Heidelberg (2009). doi:10.1007/
978-3-642-10838-9 14

27. Peeters, E., Standaert, F.-X., Donckers, N., Quisquater, J.-J.: Improved higher-
order side-channel attacks with FPGA experiments. In: Rao, J.R., Sunar, B. (eds.)
CHES 2005. LNCS, vol. 3659, pp. 309–323. Springer, Heidelberg (2005). doi:10.
1007/11545262 23

28. Prouff, E., Rivain, M.: A generic method for secure SBox implementation. In:
Kim, S., Yung, M., Lee, H.-W. (eds.) WISA 2007. LNCS, vol. 4867, pp. 227–244.
Springer, Heidelberg (2007). doi:10.1007/978-3-540-77535-5 17

29. Prouff, E., Rivain, M., Bevan, R.: Statistical analysis of second order differential
power analysis. IEEE Trans. Comput. 58(6), 799–811 (2009)

30. Rivain, M., Prouff, E.: Provably secure higher-order masking of AES. In: Mangard,
S., Standaert, F.-X. (eds.) CHES 2010. LNCS, vol. 6225, pp. 413–427. Springer,
Heidelberg (2010). doi:10.1007/978-3-642-15031-9 28

31. Rivain, M., Prouff, E., Doget, J.: Higher-order masking and shuffling for soft-
ware implementations of block ciphers. In: Clavier, C., Gaj, K. (eds.) CHES
2009. LNCS, vol. 5747, pp. 171–188. Springer, Heidelberg (2009). doi:10.1007/
978-3-642-04138-9 13

32. Standaert, F.-X., Malkin, T.G., Yung, M.: A unified framework for the analy-
sis of side-channel key recovery attacks. In: Joux, A. (ed.) EUROCRYPT
2009. LNCS, vol. 5479, pp. 443–461. Springer, Heidelberg (2009). doi:10.1007/
978-3-642-01001-9 26

33. Standaert, F.-X., Veyrat-Charvillon, N., Oswald, E., Gierlichs, B., Medwed, M.,
Kasper, M., Mangard, S.: The world is not enough: another look on second-order
DPA. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 112–129. Springer,
Heidelberg (2010). doi:10.1007/978-3-642-17373-8 7

34. Stuart, A., Ord, K.: Kendall’s Advanced Theory of Statistics: Distribution Theory,
6th edn. Wiley-Blackwell, New York (1994). ISBN-10: 0470665300; ISBN-13: 978-
0470665305

35. TELECOM ParisTech SEN research group. DPA Contest, 4th edn., 2013–2014.
http://www.DPAcontest.org/v4/

36. Tunstall, M., Whitnall, C., Oswald, E.: Masking tables—an underestimated secu-
rity risk. In: Moriai, S. (ed.) FSE 2013. LNCS, vol. 8424, pp. 425–444. Springer,
Heidelberg (2014). doi:10.1007/978-3-662-43933-3 22

37. Veyrat-Charvillon, N., Medwed, M., Kerckhof, S., Standaert, F.-X.: Shuffling
against side-channel attacks: a comprehensive study with cautionary note. In:
Wang, X., Sako, K. (eds.) ASIACRYPT 2012. LNCS, vol. 7658, pp. 740–757.
Springer, Heidelberg (2012). doi:10.1007/978-3-642-34961-4 44

http://dx.doi.org/10.1007/978-3-662-48324-4_23
http://dx.doi.org/10.1007/11967668_16
http://dx.doi.org/10.1007/978-3-642-10838-9_14
http://dx.doi.org/10.1007/978-3-642-10838-9_14
http://dx.doi.org/10.1007/11545262_23
http://dx.doi.org/10.1007/11545262_23
http://dx.doi.org/10.1007/978-3-540-77535-5_17
http://dx.doi.org/10.1007/978-3-642-15031-9_28
http://dx.doi.org/10.1007/978-3-642-04138-9_13
http://dx.doi.org/10.1007/978-3-642-04138-9_13
http://dx.doi.org/10.1007/978-3-642-01001-9_26
http://dx.doi.org/10.1007/978-3-642-01001-9_26
http://dx.doi.org/10.1007/978-3-642-17373-8_7
http://www.DPAcontest.org/v4/
http://dx.doi.org/10.1007/978-3-662-43933-3_22
http://dx.doi.org/10.1007/978-3-642-34961-4_44

Taylor Expansion of Maximum Likelihood Attacks 601

38. Waddle, J., Wagner, D.: Towards efficient second-order power analysis. In: Joye,
M., Quisquater, J.-J. (eds.) CHES 2004. LNCS, vol. 3156, pp. 1–15. Springer,
Heidelberg (2004). doi:10.1007/978-3-540-28632-5 1

39. Weisstein, E.W.: Cumulant. From MathWorld A Wolfram Web Resource. http://
mathworld.wolfram.com/Cumulant.html

http://dx.doi.org/10.1007/978-3-540-28632-5_1
http://mathworld.wolfram.com/Cumulant.html
http://mathworld.wolfram.com/Cumulant.html

Unknown-Input Attacks in the Parallel Setting:
Improving the Security of the CHES 2012

Leakage-Resilient PRF

Marcel Medwed1(B), François-Xavier Standaert2, Ventzislav Nikov3,
and Martin Feldhofer1

1 NXP Semiconductors Austria, Gratkorn, Austria
marcel.medwed@gmail.com

2 ICTEAM/ELEN/Crypto Group, Universite Catholique de Louvain,
Louvain-la-Neuve, Belgium

3 NXP Semiconductors Leuven, Leuven, Belgium

Abstract. In this work we present a leakage-resilient PRF which makes
use of parallel block cipher implementations with unknown-inputs. To
the best of our knowledge this is the first work to study and exploit
unknown-inputs as a form of key-dependent algorithmic noise. It turns
out that such noise renders the problem of side-channel key recovery
intractable under very little and easily satisfiable assumptions. That is,
the construction stays secure even in a noise-free setting and indepen-
dent of the number of traces and the used power model. The contribu-
tions of this paper are as follows. First, we present a PRF construction
which offers attractive security properties, even when instantiated with
the AES. Second, we study the effect of unknown-input attacks in paral-
lel implementations. We put forward their intractability and explain it by
studying the inevitable model errors obtained when building templates
in such a scenario. Third, we compare the security of our construction to
the CHES 2012 one and show that it is superior in many ways. That is, a
standard block cipher can be used, the security holds for all intermediate
variables and it can even partially tolerate local EM attacks and some
typical implementation mistakes or hardware insufficiencies. Finally, we
discuss the performance of a standard-cell implementation.

1 Introduction

Countermeasures against side-channel attacks always imply implementation
overheads and rely on physical assumptions. So designing such countermeasures
comes with the equally important goals of maximizing security, while minimiz-
ing the overheads and relying on physical assumptions that are easy to fulfill by
cryptographic engineers. Mainstream masking schemes (i.e. data randomization

F.-X. Standaert—Associate researcher of the Belgian Fund for Scientific Research
(FNRS-F.R.S.). This work has been funded in part by the ERC project 280141
(acronym CRASH) and by the ARC project NANOSEC.

c© International Association for Cryptologic Research 2016
J.H. Cheon and T. Takagi (Eds.): ASIACRYPT 2016, Part I, LNCS 10031, pp. 602–623, 2016.
DOI: 10.1007/978-3-662-53887-6 22

Unknown-Input Attacks in the Parallel Setting 603

based on secret sharing) are a typical example of this tradeoff, where security is
exponential in the number of shares, performances are quadratic in the number
of shares, and implementers need to guarantee that the leakages of the shares are
independent and sufficiently noisy [7,10,15,26]. (Note that the condition of inde-
pendent leakages is typically hard to guarantee, both in software and hardware
implementations [2,8,17,18]). Threshold implementations are a specialization of
masking that reduces the independence requirement (by ensuring that glitches
do not harm the security of the masked implementations) [5,23], which can also
lead to some performance gains with low number of shares [6,22].

At CHES 2012, a quite different tradeoff was introduced. Namely, and start-
ing from the observation that leakage-resilience via re-keying alone is not suf-
ficient to efficiently protect stateless symmetric cryptographic primitives such
as block ciphers (later formalized in [3]), Medwed et al. proposed a tweaked
construction of an AES-based leakage-resilient PRF, inspired from more formal
works such as [1,9,11,28,32], which additionally requires that the AES is imple-
mented in parallel and that its S-boxes have similar leakage models [20]. In this
respect, and while the parallel implementation setting is easy to guarantee (and
can even be emulated thanks to shuffling [14]), the “similar leakage assumption”
turned out to be harder to evaluate. Later results showed that despite not easy
to attack, such a solution may not be best suited the AES [4].

In this paper, we aim to improve the tradeoff between security, performance
and physical assumptions for the CHES 2012 construction. For this purpose,
our main ingredient is to replace the similar leakage assumption by an easier-
to-guarantee requirement of unknown plaintexts. Interestingly, this requirement
can be easily satisfied by exploiting a leakage-resilient stream cipher in order
to generate these plaintexts (we use the efficient construction from [27] for this
purpose). As a result, our contributions are as follows. We first describe our new
construction of a leakage-resilient PRF based on unknown plaintexts. Second, we
analyze its security in front of standard side-channel attacks where the adversary
can observe noisy Hamming weight leakages (and compare it with the CHES
2012 proposal). Third, we evaluate the impact of implementation issues such as
deviations from the Hamming weight leakages and leakages due to transitions
between registers. Finally, we discuss alternative attack paths and put forward
the good performances of our new construction. As part of our investigations, we
also highlight the interesting security guarantees offered by the combination of
unknown cipher inputs and parallel implementations for side-channel resistance,
which is of independent interest.

Note that despite our design is inspired by previous constructions of leakage-
resilient PRFs, the security guarantees we claim for it are significantly less for-
mal/general. First, the only security we claim is key recovery security, as for
the CHES 2012 PRF. This limitation is motivated by the discussions in [21,24],
where it was shown that indistinguishability of the inputs is essentially impos-
sible in a physically observable setting (excepted by artificially excluding some
leakages of the analysis, which then reduces practical relevance). Second, it is
worth emphasizing that our analyzes are only heuristic and based on concrete

604 M. Medwed et al.

attacks. In this respect, the goal of our proposal is not to be proven secure
under a formal model (in parts because it relies on non-standard implementa-
tion assumptions such as parallelism which make formal treatments much more
challenging). By contrast, it is an attempt to implement a building block with
bounded leakage. In other words, it is more an attempt to instantiate a way to
fulfill the basic assumptions of leakage-resilient cryptography than an attempt to
formally analyze a leakage-resilient primitive or functionality. For example, our
unknown-input PRF could be a candidate for the leak-free block cipher required
in [24].

2 Background: The CHES 2012 Leakage-Resilient PRF

We start with the description of the standard GGM PRF [13], depicted in the
left part of Fig. 1, on which the CHES 2012 PRF is based. Let Fk(x) denote the
PRF indexed by k and evaluated on x. Further, let the building blocks Eki(pij)
denote the application of a block cipher E to a plaintext pij under a key ki (the
figure shows the example of E = AES-128 with 1 ≤ i ≤ 128 and 0 ≤ j ≤ 1).
Let also x(i) denote the ith bit of x. The PRF first initializes k0 = k and then
iterates as follows: ki+1 = Eki(pi0) if x(i) = 0 and ki+1 = Eki(pi1) if x(i) = 1.
Eventually, the (n + 1)th intermediate key k128 is the PRF output as Fk(x).

Fig. 1. Leakage-resilient PRFs: straight GGM (left) and efficient alternative (right).

In this basic version, the execution of the PRF guarantees that any side-
channel adversary will at most observe the leakage corresponding to two plain-
texts per intermediate key (pi0 and pi1). This implies 128 executions of the AES-
128 to produce a single 128-bit output. A straightforward solution to trade

Unknown-Input Attacks in the Parallel Setting 605

improved performances for additional leakage is to increase the number of observ-
able plaintexts per intermediate key. If one has Np such plaintexts per stage,
the number of AES-128 executions to produce a 128-bit output is divided by
log2(Np). However, as already discussed in [20], such a tradeoff scales badly
and very rapidly decreases the side-channel security of an implementation (as it
typically allows DPA with Np observable plaintexts).

To avoid this drawback, an efficient alternative (also proposed in [20]) is
illustrated in the right part of Fig. 1. It can be viewed as a GGM construction
with Np = 256, but where the same set of 256 carefully chosen plaintexts is
re-used in each PRF stage, excepted for the last stage where Np = 1. In terms
of efficiency, this proposal reduces the number of stages of a PRF based on the
AES-128 to 17 (i.e. 16 plus one final whitening).

The security of this second construction is based on the combination of paral-
lelism with carefully chosen plaintext values, in order to prohibit the application
of standard divide-and-conquer strategies. For this purpose, plaintexts of the
form pj = {j − 1}Ns , with 1 ≤ j ≤ Np and Np being limited by the S-box
input space were considered. Given that all S-boxes leak in parallel, the effect
of this measure is that in a DPA attack, the predictions corresponding to the
Ns key bytes cannot be distinguished anymore, because these key bytes have to
be targeted at the same time. As a result, and even when increasing Np, not
all the Ns key bytes can be highly ranked by the attack. (We will re-detail this
effect in Sect. 4.1, which is reflected by the higher guessing entropy of the tar-
geted key bytes in Fig. 3). In [20], it was even shown that slight differences in
the implementation – and therefore in the leakage of the Ns S-boxes – are not
easily exploitable. Eventually, if Ns becomes sufficiently large, ordering the Ns

recovered subkeys has a cost of Ns!, meaning that even after seeing all leakages
without noise, the adversary cannot fully recover the key.

Unfortunately, and despite conceptually appealing, this construction has sev-
eral drawbacks which limit its applicability. First, the security parameter Ns is
defined by the number of S-boxes of the underlying block cipher. For some of the
currently standardized block ciphers Ns is not large enough (e.g. Ns = 16 for the
AES-128, which corresponds to an insufficient Ns! ≈ 244). Second, if intermedi-
ate values other than the first round’s S-box outputs are targeted, the leakages
might be sufficiently independent such that divide-and-conquer strategies work
again. While this generally requires more computational power, recent results on
multi-target attack DPA show that it is not out of reach [19]. (This is in fact the
reason why attacks on the ciphertext need to be prevented by the whitening step
in the CHES 2012 proposal). Finally, the size of the S-box defines the maximum
value of Np and hence the maximum throughput.

3 New Leakage-Resilient PRF Construction

We now present a new construction which improves over the one in [20] in terms
of performance and security, at the cost of higher memory requirements. For this
purpose, we introduce a pre-computation step in which we generate Np secret,

606 M. Medwed et al.

Fig. 2. Leakage-resilient PRG used to generate the 2m secret plaintexts.

distinct plaintexts. This step can be seen in Fig. 2. It essentially uses the leakage-
resilient PRG from [27] to generate 2m secret plaintexts p0 . . . p2m−1 as well as an
updated key k′. These secret plaintexts and updated key are then simply used in
a tree-based PRF such as in the right side of Fig. 1. The output whitening step
stays the same. By design, this new construction has the advantage (compared
to the CHES 2012 one) that the plaintexts are secret and of no particular form.
This implies that their number is not bounded by the S-box size, allowing for
smaller trees of depth 128/m + 1. From a security point of view, it also comes
with interesting implications:

1. Since the plaintexts are unknown, a straight-forward unprofiled DPA is ruled
out. Instead, an adversary has to build templates (for instance for the bi-
variate variable made of the plaintext and S-box output leakages).

2. For a similar reason, there is no straightforward way to verify a key candidate:
for this purpose, one would not only need to recover the key but also at
least one secret plaintext. In the worst case where the information leakages
are not sufficient (i.e. if a successful attack requires additional key/plaintext
enumeration [30]) this squares the attack time complexity.

3. As for the CHES 2012 construction using carefully chosen plaintexts, the
adversary has no way of separating the leakages from the different subkeys.
But contrary to this previous work, this feature now applies to any interme-
diate variable within the algorithm (not only to the first round leakages).

4 Security Analysis w.r.t. Basic Side-Channel Attacks

We now detail our security analysis against standard side-channel attacks and
use the following notations. First, k denotes a key, k∗ denotes a key candidate
and kj the jth byte of a key. Next, pi,j is the jth byte of the ith plaintext out of
q ones that are available to an adversary. For p and k, j is assumed to be in the
range 1, . . . , Ns where Ns = 16 for the AES. Further, ti is a trace (aka leakage)
vector, corresponding to the ith plaintext. A trace may contain several leakage
points, denoted by ti,j . L denotes the leakage function, e.g. the Hamming weight
function in our examples below. Finally, L(S(k1 ⊕ p2,1)) denotes the leakage of
the S-box output corresponding to S-box 1 for the 2nd plaintext. The set of all
plaintexts is denoted as P and the set of all traces as T .

Unknown-Input Attacks in the Parallel Setting 607

In a standard DPA attack, the adversary pursues a divide-and-conquer app-
roach. That is, he first computes the correct subkeys as

k̃j = arg max
k∗
j

Pr(k∗
j |p1,j . . . pq,j , t1,j . . . tq,j).

Here, ti,j denotes the sample within trace i which only leaks about kj . Afterwards
he combines these subkeys to k̃. The attack is successful if k̃ = k.1 In a parallel
hardware scenario, ti consists of a single leakage point that we approximate as:

ti,1 =
Ns∑

j=1

L(S(kj ⊕ pi,j)). (1)

Nevertheless, even in this parallel scenario, an adversary can always target a
single key byte at a time by computing:

k̃j = arg max
k∗
j

Pr(k∗
j |p1,j . . . pq,j , t1 . . . tq).

In this case, by just looking at a specific S-box or byte of the key, an adversary
neglects the other key bytes and their contribution to the leakage is interpreted
as (algorithmic) noise, which eventually averages out if plaintexts are uniformly
distributed. As already discussed in [20], for carefully chosen plaintexts, p1,1 =
p1,j for all j = 1 . . . N . Therefore, the equation becomes:

k̃j = arg max
k∗
j

Pr(k∗
j |p1,1 . . . pq,1, t1 . . . tq) (2)

and all k̃j are the same. That is, since the probability condition is no longer
dependent on j, only one joint score vector can be obtained, which contains the
information about all the Ns target key bytes at once. For unknown-plaintext
attacks, an adversary finally faces the problem of finding:

k̃j = arg max
k∗
j

Pr(k∗
j |(t1,1, t1,2) . . . (tq,1, tq,2)), (3)

where he has no direct access to plaintext information, and therefore must extract
this information from the traces as well (reflected by the second sample of the
traces in the equation). We assume that this information is separately available
and that the traces take the form:

(ti,1, ti,2) =

⎛

⎝
Ns∑

j=1

L(pi,j),
Ns∑

j=1

L(S(kj ⊕ pi,j))

⎞

⎠ . (4)

This has the following important implications on the attack:

1 If for some or all values of j k̃j �= kj , one may still find k using key enumeration
techniques in the combination step, given that the bias is sufficiently high [30].

608 M. Medwed et al.

1. The adversary cannot apply a divide-and-conquer brute-force attack anymore.
As in the case of carefully chosen plaintexts, also here the probability’s con-
dition becomes independent of j, which results in only a single score vector
containing the information for all the Ns subkeys.

2. Successful attacks have to be bi-variate ones, in which a second-order moment
of the leakage distribution is exploited. This makes them more sensitive to
noise. Furthermore, as for the CHES 2012 construction as well, Ns − 1 con-
tributors for each leakage point represent key-dependent algorithmic noise,
and cannot be averaged out like in the case of masking (as noted in [3]).2

In the following we present three experiments. In the first one we recap the
security of the CHES 2012 scheme in order to allow for a later comparison. We
do so by estimating the guessing entropy and the subkey rank distribution as
a function of Ns after seeing all possible traces. In the second experiment, we
do the same for our improved proposal. This allows us to highlight the security
improvement. In a third experiment we look at the model errors which are the
reason for the security improvement. All experiments are carried out based on
template attacks as this represents the most powerful side-channel adversary.
We used discrete histograms (instead of continuous distributions) for our tem-
plates since the leakage function (aka power model) used in our experiments is
also discrete and no noise is added. Hence, the number of bins is determined
automatically and the histograms capture all the available information. Finally,
we evaluate our metrics for increasing number of traces (with bounded number
of plaintexts in the case of the CHES 2012 construction).

4.1 Security Based on Carefully Chosen Plaintexts

For the CHES 2012 scheme, the plaintexts are known, the target function is the
AES S-box and the assumed power model is the Hamming weight model. Thus,
the leakages are in the form of Eq. (1). Knowing this, we can generate a template
Di for each of the subkey candidates, assuming the plaintext to be zero. In our
simulations we look at Ns parallel AES S-boxes and the leaking variables are
8-bit valued. Therefore, each template is a histogram with 8·Ns+1 bins, starting
at bin Di(0) which indicates the probability that for a subkey k = i, the leakage
sample has a value of 0. The templates are built according to Algorithm 1.

During the attack phase, the templates have been permuted according to
the plaintext byte, that is, the probability for a certain leakage given a certain
plaintext was calculated as Pr(t1|p1,j , k∗

j) = Dk∗
j ⊕p1,j (t1).

The result of the known plaintext attack can be seen in Fig. 3. The left
plot represents a scenario where the plaintexts were not carefully chosen and
therefore, the S-boxes leak independently. This just serves as a reference for the
right plot, where the actual CHES 2012 scheme with carefully chosen plaintexts
was analyzed. The y-axes represent the average key rank of k1 in log2-scale. A
2 Note, that even if an implementation unintentionally compresses the distribution

to a uni-variate one with an informative first-order moment, exploitations do not
automatically become easier as discussed in Sect. 5.2.

Unknown-Input Attacks in the Parallel Setting 609

Fig. 3. Average guessing entropy after attacks with known plaintexts for Ns = 1 (blue,
s/), 2 (green, dd/c), 4 (red, d/s), 8 (cyan, dd/), 16 (magenta, d/c), and 32 (yellow,
s/s) with {s = solid, d = dashed, dd = dotted dashed}/{c = circle, s = square}. (Color
figure online)

random guess would result in an average key rank of 128 and thus a 7 in log2-
scale indicates that no information was retrieved via the side channel. Zero on
the other hand indicates that the correct key was ranked first and thus it has
been recovered with certainty. The x-axis shows the number of required traces
to reach a certain average key rank, again in log2-scale. The different curves
represent different numbers of parallel S-boxes ranging from 1 to 32 in powers
of two. Each curve has been averaged over 10k attacks. On the right side we
can observe a stagnation of the average rank at approximately (Ns + 1)/2 for
Ns ≤ 8 (in log2 this results in 0, 0.6, 1.3, and 2.2). As the adversary targets all
subkeys at the same time, this is what one would expect intuitively. However,
for 16 and 32 S-boxes, the average rank becomes higher, namely log2(11.2) = 3.5
(instead of 3.1) and log2(27.1) = 4.8 (instead of 4.0). This may look surprising,
since due to the higher probability of collisions (i.e. repetitions within the Ns

subkey values for large values of Ns) the rank could be expected to be below
(Ns + 1)/2. However, as the number of S-boxes increases, the key-dependent
algorithmic noise also increases and starts to dominate, implying that incorrect
keys start to be ranked amongst the most likely ones in this case.

Next to the average guessing entropy, it is also insightful to look at the
rank distribution after seeing all possible leakages. This is done by analyzing the
device’s leakage distribution that we denote as D. For instance, given two S-boxes
and two subkeys k1 and k2, the exact leakage distribution of such device can be
computed as D = conv(Dk1 ,Dk2) (using convolutions reduces the complexity of
computing D for an 8-bit S-box from 28·Ns for the naive approach to (8·Ns+1)2).
The outcome of this experiment for 1000 random keys can be seen in Fig. 4. The
plots show the PMF (in solid blue) and the CDF (in dotted dashed green) for the
rank distribution after seeing all possible traces for Ns = 16 with carefully chosen
plaintexts. The x-axis corresponds to the key ranks and the y-axis corresponds to

610 M. Medwed et al.

Fig. 4. Rank distributions for carefully-chosen plaintexts with Ns = 16. Average rank
of subkey k1 (left), average minimum rank amongst all kj ’s (middle) and average
maximum rank amongst all kj (right).

the probabilities. This figure confirms the previous observations with additional
intuitions. First for the left plot, since the median is at rank ≈8 for each subkey
in this case, an adversary would have a success rate of 0.5 to find the subkey
within the ≈8 most likely candidates. Next, in the middle plot, we show the
distribution of the minimum rank within the 16 subkeys kj . It can be clearly
seen that the subkey ranked first is almost surely one of the correct ones. This is
an important observation and will allow us to construct an advanced attack in
Sect. 6.1. As for the distribution of the maximum rank within the 16 subkeys kj
in the right plot, it can be seen that below rank 16, the success rate is almost zero
since this can only happen (but is not given) if two subkeys are equal. Finally,
in order to have a success rate of 0.5 to see the worst ranked kj (and therefore
also seeing all other correct subkeys), the adversary would need to look at the
first 37 most likely candidates.

4.2 Security Based on Unknown Plaintexts

For the unknown plaintext scenario we targeted leakages in the form of Eq. (4)
and generated the templates as two-dimensional histograms. Each dimension
has 8 · Ns + 1 bins, starting at bin Di(0, 0) which indicates the probability that
for key k = i both leakage samples have a value of 0. The templates are built
according to Algorithm 2.

The left side of Fig. 5 again shows a reference result for independent noise.
Since, in the unknown plaintext scenario, we cannot decouple the noise by simply
randomizing the plaintexts, we had to use a trick. Namely, we only fixed k1 and
randomly drew q different values for each kj with j ∈ 2, . . . , Ns. It can be seen
that a recovery for Ns = 1 S-boxes requires around 28 traces, whereas for Ns = 16
around 227 traces can be expected.

The right side of the figure represents the unknown-plaintext scenario (where
the subkeys are constant over all traces within one instance of the experiment).
It can be seen that key-dependent noise leads to a stagnation of the correct
subkey’s rank. This is similar to the carefully-chosen plaintext case and expected.
However, the important difference compared with the previous experiment is that
the stagnation does not take place at y ≈ log2((Ns + 1)/2) but much earlier. In

Unknown-Input Attacks in the Parallel Setting 611

Fig. 5. Average guessing entropy after attacks with unknown plaintexts for Ns = (blue,
s/), 2 (green, dd/c), 4 (red, d/s), 8 (cyan, dd/), 16 (magenta, d/c). (Color figure online)

Fig. 6. Rank distributions for unknown plaintexts with Ns = 16. Average rank of sub-
key k1 (left), average minimum rank amongst all kj ’s (middle) and average maximum
rank amongst all kj (right)

order to get the full picture, we again look at the rank distributions in Fig. 6.
First, we observe in the left plot that the subkey ranks (from 40 000 experiments)
look close to uniformly distributed (which would be reflected by a straight line),
with a median rank at ≈102 (instead of 128 for the uniform distribution). For the
minimum rank distribution (middle plot), the median rank is at ≈6, which has to
be compared to a value of 10 that would be obtained for a uniform distribution
with Ns = 16. As for the median of the maximum rank, it moved to ≈240
(whereas it would be at 245 for a uniform distribution with Ns = 16). In our
experiments, the lowest maximum rank value found was 110. This essentially
means that with a search complexity of

(
110
16

) · 16! ≈ 2107, the correct key is
found with probability ≈ 1/40000 ≈ 2−15. In fact, already for Ns > 4 and even
when seeing all possible leakages in a noise-free Hamming weight scenario, the
guessing entropy is close to 7 and the rank distribution close to uniform.

612 M. Medwed et al.

4.3 Explaining the Results: Analysis of Model Errors

Both for the carefully-chosen plaintext scenario as well as for the unknown-input
scenario, we are not able to perfectly model the leakage distribution without
knowing the key. This is because, we have no means of marginalizing the distri-
butions for the not-targeted subkeys as explained by Eqs. (2) and (3). In other
words, due to the key-dependent algorithmic-noise, we inevitably build some-
what incorrect templates. In order to further explain our results, we now inves-
tigate how significant our model errors become with large Ns. For the carefully-
chosen plaintext scenario, we saw that for small values of Ns (≤8), the average
rank was at an optimum of (Ns + 1)/2. This suggests that the model errors are
still tolerable, as illustrated in the left and middle plots of Fig. 7. These figures
show the statistical distance between the true leakage distribution D and the
models Dk∗

j for Ns = 4 and Ns = 8. For measuring the distance we computed
one line of the mutual information matrix as defined in [10], corresponding to
one used key. This metric was chosen because it directly reflects what will hap-
pen in a template attack. Namely, the key candidate Dk∗

j which is closest to D
(i.e. has the highest value for the metric) will eventually be rated first (if enough
measurements are exploited). The distances between D and Dkj are marked by
a red x for the Ns correct subkeys. They are indeed maximum in the left and
middle plots, for Ns = 4 and Ns = 8. By contrast, for Ns = 16 in the rightmost
plot, only seven of the 16 correct subkeys are ranked first. Although these plots
only show the effect for a specific set of subkeys, it already confirms that the
average rank has to be higher than (Ns + 1)/2.

In the unknown plaintext scenario, we additionally need to estimate a second-
order moment of a bi-variate distribution. From studies on masking, we know
that such distributions are much more susceptible to noise [29]. Furthermore,
in our case the relation between the leakage samples is not straightforward, as
for affine or multiplicative masking [12]. Both circumstances suggest that the
key dependent noise should cause more severe model errors and indeed, this

Fig. 7. Distance between D and Dk∗
j for carefully-chosen plaintexts. The device holds

the subkeys kj marked by the red x. As the distance is measured by the entries of the
mutual information matrix, a higher value on the y-axis indicates a smaller distance.
From left to right the scenarios for Ns = 4, 8, and 16 are depicted. (Color figure online)

Unknown-Input Attacks in the Parallel Setting 613

Fig. 8. Distance between D and Dk∗
j for unknown plaintexts. From left to right the

scenarios for Ns = 2, 8, and 16 are depicted.

is what can be observed in Fig. 8. Be aware that this time, the leftmost plot
depicts the case for Ns = 2 and even there already none of the correct subkeys
is ranked first. As we move to higher values for Ns, it can also be seen that
the distances themselves become much smaller. As a consequence, measurement
noise (remember that until now all experiments were performed without noise)
and the inability to calculate the templates will make attacks even harder, as
will be discussed in Sect. 5.3.

5 Implementation and Attack Issues

The previous evaluations of our new construction assumed bi-variate noise-free
Hamming weight leakages and perfectly calculated templates. In this section we
want to address the violation of these assumptions in a real world implementa-
tion and attack scenario. We start by analyzing the deviation from Hamming
weight leakages, then discuss the case of transition-based leakages (aka Hamming
distance model), and finally look at the impact of a more realistic (bounded)
template estimation phase.

5.1 Deviations from the Hamming Weight Leakage Function

In this section we show that the previous experiments based on Hamming weight
leakages are appropriate and sufficient to argue about the security of our con-
struction, even if such leakages are not accurately met in a real world application.
We do so by exploring different power models. In particular, we choose power
models with low and high resolution and with low and high non-linearity. As
for the resolution, we choose the leakage functions to be the Hamming weight
function (hw), the Hamming weight function plus quadratic terms (quad), and
as the identity function (id). As for the non-linear leakage function we chose the
Hamming weight function preceded by an AES S-box (nlhw). In addition, we
target two kinds of S-boxes, the AES S-box (AES) and an identity function S-box
(ID8). The latter one would correspond to directly attacking the key addition

614 M. Medwed et al.

Fig. 9. Comparison of different combinations of target functions and power models:
AES+id (yellow, s/s), AES+quad (magenta, d/c), AES+nlhw (cyan, dd/), AES+hw
(blue, s/), ID8+nlhw (green, dd/c), ID8+hw (red, d/s). From left to right the scenarios
for Ns = 2, 4, and 16 are depicted. (Color figure online)

layer of the AES. In Fig. 9 we compare the rank distributions for these various
scenarios and Ns = 2, 4 and 16. For Ns = 2 it can be seen that the non-linearity
of the target function is of higher importance than the one of the leakage func-
tion. The non-linearity of the leakage function only helps significantly for linear
target functions (ID8), while for (AES) the impact is minor. Most importantly,
we see that as soon as Ns increases, the impact of all these combinations of
leakage functions and targets vanishes, confirming our claims.

5.2 Distance-Based Leakages

In practice, a cryptographic implementations can be flawed because an adver-
sary sees leakages which are not covered by the theoretical analysis. This can be
due to glitches, early propagation, or most deadly for Boolean masking, uninten-
tional distance-based leakage [2,8]. That is, a secret shared as (s ⊕ m,m) leaks
via HD(s⊕m,m). Such leakage can occur if a register holding the first share is
overwritten with the second share. Another scenario, where the adversary might
get an advantage is if he can perform a normalized product combining before
summing up the leakage points. This can be the case for a weakly shuffled soft-
ware implementation which handles the key addition and the S-box operations
together. Interestingly, we can show experimentally that none of these implemen-
tation issues represent a threat in the unknown-input case. From Fig. 10 (which
contains the rank distributions of our construction in the context of uni-variate
Hamming weight leakages corresponding to the XOR between the two interme-
diate values of our previous bi-variate distributions) we see that this Hamming
distance case already performs badly for small values of Ns, whereas the nor-
malized product combining still gives a slight advantage due to the reduced
noise impact. Again, the higher the value of Ns becomes, the more forgiving the
scheme becomes w.r.t. implementation weaknesses.

5.3 Bounded Template Estimation

Besides the previously studied key-dependent algorithmic noise, another stan-
dard source of errors for templates is poor estimation. Usually, one exhaustively

Unknown-Input Attacks in the Parallel Setting 615

Fig. 10. Comparison of the rank distribution when attacking a standard bi-variate
(red, d), a Hamming distance-based (green, dd) and a normalized product combining
(blue, s) based leakage distribution. From left to right the scenarios for Ns = 2, 4, and
16 are depicted. (Color figure online)

Fig. 11. Rank distribution for calculated templates with dependent noise (blue, s)
and estimated templates with independent noise. For the dotted dashed green line the
templates were estimated using 226 traces, for the dashed red one using 222 traces.
Ns = 2 in the left plot and Ns = 4 in the right plot. (Color figure online)

acquires traces for all inputs. In practice, this is not possible as the number of
inputs grows exponentially with Ns, but usually good enough if the number of
traces is sufficiently large.3 In Fig. 11 we can see that this is not the case for
unknown-inputs. We compare the rank distribution for an attack with depen-
dent noise to an attack with independent noise but with insufficiently sampled
templates. For the left plot with Ns = 2, 226 traces for template building yield
a smaller error than key dependent noise, but still do not allow to recover the
key with certainty as in the left plot of Fig. 5 where the templates where calcu-
lated. Using only 222 traces already leads to a larger model error than dependent
noise. Finally, for Ns = 4 the calculated templates for dependent noise already
perform best.

3 One could overcome this insufficiency by building the templates for the S-boxes inde-
pendently and afterwards combine them like we did in our simulations. However, the
errors for the Dis will multiply when calculating the overall template and therefore
the overall error will grow exponentially with Ns.

616 M. Medwed et al.

6 Alternative Attack Paths

In this last section, we finally mention two alternative attack paths that could
be considered against our construction. These are iterative DPA attacks (as
they represent the strongest attack against the CHES 2012 construction) and
attacks to recover the plaintexts (as our security is based on their secrecy).
While we leave their detailed analysis as a scope for further research, we provide
concrete arguments showing that they have limited chances of success for realistic
adversaries. Finally, we also discuss localized EM attacks.

6.1 Iterative DPA Attacks and Key Verification

In [20], an iterative attack was described which allows to recover the 16 subkeys
up to their order (the best result one can hope for) by successively removing
the dependent noise in an iterative DPA. In this attack the authors exploited
the fact that the first ranked key was always one of the correct ones and thus
could be used to model the key dependent noise in the next iteration. Thus
virtually, the parameter Ns was reduced by one in each iteration. The complexity
of the iterative DPA is 28 · q · Ns = 220 for AES (28 key candidates and Ns =
16, thus 16 iterations) while assuming that in a noise-free case q = Np = 28

traces. Afterwards, the enumeration costs are 16! ≈ 244. Key verification during
enumeration is straightforward since the plaintexts are known.

In the unknown-input case we could follow a similar strategy. In order to
model the algorithmic noise, induced by already guessed subkeys, we would need
to construct the templates freshly in every iteration. On top of that we cannot
just take the first subkey candidate but need to exhaust the lists up to a certain
threshold.4 To estimate the effort of this, we multiply the medians of the ranks for
the best ranked kj for Ns = 1 . . . 16. The result is that with a probability of 2−16

we recover the correct key set after ≈237 iterations. Each iteration comprises 16
template building and attack operations which in turn has a complexity of ≈228

(at least 220 traces and 28 keys) each. Thus, investing around 237+4+28 = 269

one can recover the subkey bytes up to permutation. Ordering them costs again
16! ≈ 244. Note, that unlike for the carefully-chosen input case, the result of
the iterative DPA is not conclusive and therefore has to be multiplied by the
ordering effort. In fact, it would be even less complex to directly exhaust for the
subkeys rather than the subkey set. Based on the medians for the actual ranks
of kj for j = Ns = 1 . . . 16 this would result in a complexity of 290. Finally,
after going through all this effort, one still has no means of verifying whether
the correct key was found as one needs at least one secret plaintext to verify the
key based on a known answer. As recovering a plaintext is as hard as recovering
a key with the assumed unbounded data complexity and both need to be jointly
verified, the effort squares.

4 Be aware that key enumeration algorithms do not work here since the lists are
dependent and thus no full key sorting according to probabilities is possible.

Unknown-Input Attacks in the Parallel Setting 617

6.2 Attacks on the Plaintexts

Attacks on the key are restricted to Np traces in practice. As the plaintexts need
to be precomputed, Np will take values between 24 and 216. As an adversary
cannot launch a meaningful attack on the key with this restriction, he might
instead target the plaintexts. This can be done by randomizing the PRF input for
all iterations of the tree except for the last one. Hence, in the last iteration the key
will be randomized, but the plaintext will be fixed. This in turn switches the role
of the key and the plaintext in the attack and leads to a virtually unbounded data
complexity. Recovering sufficient plaintexts following this strategy, a standard
DPA on the key could be mounted.

Our previous analysis shows, that even with unlimited data complexity, one
is far from recovering a key or a plaintext. Thus, for the standard DPA, the
plaintext bytes for building the hypotheses are uncertain and have to be guessed.
Let us first assume, that only one subkey byte is targeted. The adversary then
needs to pick the plaintext byte for each trace from a set. Without side-channel
information, this set would have a size of 256. From Fig. 6 we know that with
a 50% probability, the plaintext byte is contained in a set of 240 entries after
an unbounded attack. Thus, overall in an attack where r plaintexts are used,
28 ·240r hypotheses have to be built. Even then, the probability that the correct
plaintext bytes are contained is only 2−r. Therefore, this seems to be a rather
futile attack path.

6.3 Localized EM Attacks

We analyze the impact of localized EM attacks by reducing Ns. The simulation
is performed for the generation of the secret plaintexts (two traces per key) and
the PRF evaluation. For the latter, we look at attacks on the key (16 traces)
and on the secret plaintexts (unlimited traces). Both scenarios are studied for
the Hamming weight and for the ID leakage function.5 Even though the same
information can be extracted from Figs. 3, 5, and 9, we present a, for our purpose,
more representative cross-section of these.

In Fig. 12 it can be seen that attacks on the key during the PRF evaluation
are the least informative ones. Even for ID leakage, two parallel S-boxes are
sufficient to raise the guessing entropy to a value close to seven. For recovering
the secret plaintexts (unlimited traces), the situation is less clear, but remember
from Sect. 6.2 that the complexity of such an attack grows exponentially with the
number of plaintexts that need to be recovered. As a result two parallel S-boxes
are sufficient in the HW case and for the ID case (notably uncommon in practice)
three to four are required. Finally, attacking the plaintext generation seems the
be the most promising strategy. Yet, already with Ns = 2 both scenarios lead
to a considerable guessing entropy close to six. This is a quite positive result as
we cannot do better than touching a key twice and therefore anyway need to

5 As before, the ID leakage experiments were only carried out for up to 4 parallel
S-boxes due to the prohibitive simulation complexity for larger values of Ns.

618 M. Medwed et al.

Fig. 12. Average guessing entropy after attacks with two known plaintexts (blue, s/),
16 unknown plaintexts (green, dd/c), unlimited unknown plaintexts (red, d/s). (Color
figure online)

protect this part sufficiently. Note that, even if we require Ns = 4, this is a much
stronger result than in [20] where Ns ≥ 24 was suggested.

Now this leads us to the question how local EM attacks can be, that is, how
few S-boxes can be targeted at once with an EM micro probe. Unfortunately,
the only work studying such distinguishability so far aimed at a 90 nm FPGA
implementation of a block cipher with 32 4-bit S-boxes [4]. From Fig. 5 in [4] one
can see that the area in which leakage is observed covers approximately 1mm2.
An AES implementation which suits our purposes in 40 nm technology on the
other hand can be expected to cover only 10, 7 kGE∗0.71µm2/GE ≈ 7600µm2.
Given that even in [4], the S-boxes could not be fully separated, we expect such
an attack to be difficult. However, we leave this question to future research.

7 Implementation Figures

In this section we would like to discuss an implementation of the primitive and
its performance. The AES coprocessor has been implemented using a 32-bit
datapath with 4 S-boxes. All 32-bit operations (SubBytes, AddKey, MixCols)
are performed in one cycle per column. ShiftRows and the key schedule are
128-bit operations and have been separated in order to minimize the power
consumption. This results in a cost of 6 cycles per round and 66 in total. In
addition the coprocessor features an IO register which allows to e.g. transfer
data between the IO and the data or the key register within 4 cycles. The
latter one has been implemented for a fast ciphertext to key transfer during the
PRF evaluation. The total area of the coprocessor including the SFR interface
accounts for 10.7 kGE.

Also, thanks to the IO register, loading data from the CPU to the coprocessor
(32 cycles) can be done while the coprocessor is busy and the delay caused
by the CPU between encryptions can be kept low. In total it takes therefore

Unknown-Input Attacks in the Parallel Setting 619

2951 cycles to pre-compute the secret plaintexts and 2775 cycles for a PRF
evaluation including a fault-protected final transformation. As a comparison,
a fault protected AES takes four data operations (load key, load/unload data,
compare) and two cipher operations, thus a total of 250 cycles. Hence, even
though, one PRF evaluation takes 34 AES calls, in our architecture it only
takes 11 times longer than a fault-protected AES. Since symmetric cryptographic
operations are usually not the dominating part in an application, the overhead
decreases with every abstraction layer. That is, when looking at the C function
API level during a mutual authentication based on ISO-9798-4 (MAC based
authentication), the overhead already decreases to a factor of 4. On an OS level
or even transaction level (including communication overheads), the factor would
decrease further.

Security wise, we addressed the need for parallelism against localized EM
attacks in a hybrid way. On the one hand side, we implement a 32-bit datapath,
that is, Ns = 4. On the other hand, we implement a four-fold shuffling, virtually
resulting in Ns = 16. Thanks to this design, even if an adversary would be able to
exploit localization, we still have time randomization as a backup. Furthermore,
attacks on shuffling itself become more unlikely with increasing noise [31], which
we take care of by widening the data path.

8 Conclusions

In this work we presented a leakage-resilient PRF which makes use of parallel
block cipher implementations with unknown-inputs. To the best of our knowl-
edge this is the first work to study and exploit this form of key-dependent algo-
rithmic noise. It turns out that it renders the problem of side-channel key recov-
ery intractable, even in a noise-free setting and independent of the number of
traces and the used power model.

Thanks to this security improvement over the CHES 2012 construction, stan-
dardized algorithms like the AES can be used in our construction. Moreover, our
analysis suggests that even localized EM attacks can be tolerated to some degree.
That is, even if an EM probe would only catch the signal of 8 or 4 S-boxes,
the attack would not suddenly become trivial. On top of that, we showed that
opposed to the previous construction, the strong side-channel resistance holds
throughout the entire algorithm and not only for the first round’s S-box layer.

We also showed that these results hold even if actual implementations show
leakage behaviors that significantly deviate from our experimental conditions.
In fact, the security of our construction essentially relies on secret inputs and
nothing else. Yet, and as usual, it will additionally benefit from any concrete
limitation of the quality of the templates, e.g. due to a bounded number of
traces for profiling and/or electrical noise.

Finally, and from a performance point of view, our new construction allows
to use larger values for Np than the size of the S-box. In practice, it will be
quite application specific whether large values for Np pay off (depending on
the memory available for pre-computations). However, at least for block ciphers
which use small S-boxes, like e.g. PRESENT, the construction should lead to a
significant performance increase over the CHES 2012 one.

620 M. Medwed et al.

A Template building algorithms

In the algorithms below conv(·, ·) refers to the discrete convolution function.

Algorithm 1. Template construction for known inputs
Require: M = 256, Ns

Ensure: Templates
//Build template for each key
for k = 0 . . .M − 1 do

Dk = 0
Dk(L(S(k))) = 1

end for
//Calculate the algorithmic noise contribution of an S-box as the marginal distrib-
ution
H = 0
for k = 0 . . .M − 1 do

H + = Dk/M
end for
//Perform Ns − 1 convolutions with the marginal distribution
for k = 0 . . .M − 1 do

for i = 1 . . . Ns − 1 do
Dk = conv(Dk, H)

end for
end for

Algorithm 2. Template construction for unknown-inputs
Require: M = 256, Ns

Ensure: Templates
//Build template for each key
for k = 0 . . .M − 1 do

for p = 0 . . .M − 1 do
Dk(L(p), L(S(p ⊕ k))) + = 1/M

end for
end for
//Calculate the algorithmic noise contribution of an S-box as the marginal distrib-
ution
H = 0
for k = 0 . . .M − 1 do

H + = Dk/M
end for
//Perform Ns − 1 convolutions with the marginal distribution
for k = 0 . . .M − 1 do

for i = 1 . . . Ns − 1 do
Dk = conv(Dk, H)

end for
end for

Unknown-Input Attacks in the Parallel Setting 621

References

1. Abdalla, M., Beläıd, S., Fouque, P.-A.: Leakage-resilient symmetric encryption via
re-keying. In: Bertoni, G., Coron, J.-S. (eds.) CHES 2013. LNCS, vol. 8086, pp.
471–488. Springer, Heidelberg (2013). doi:10.1007/978-3-642-40349-1 27

2. Balasch, J., Gierlichs, B., Grosso, V., Reparaz, O., Standaert, F.-X.: On the cost
of lazy engineering for masked software implementations. In: Joye and Moradi [16],
pp. 64–81

3. Beläıd, S., Grosso, V., Standaert, F.-X.: Masking and leakage-resilient primitives:
one, the other(s) or both? Crypt. Commun. 7(1), 163–184 (2015)

4. Beläıd, S., De Santis, F., Heyszl, J., Mangard, S., Medwed, M., Schmidt, J.-M.,
Standaert, F.-X., Tillich, S.: Towards fresh re-keying with leakage-resilient PRFs:
cipher design principles and analysis. J. Cryptographic Eng. 4(3), 157–171 (2014)

5. Bilgin, B., Gierlichs, B., Nikova, S., Nikov, V., Rijmen, V.: Higher-order threshold
implementations. In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014. LNCS, vol.
8874, pp. 326–343. Springer, Heidelberg (2014). doi:10.1007/978-3-662-45608-8 18

6. Bilgin, B., Gierlichs, B., Nikova, S., Nikov, V., Rijmen, V.: A more effi-
cient AES threshold implementation. In: Pointcheval, D., Vergnaud, D. (eds.)
AFRICACRYPT 2014. LNCS, vol. 8469, pp. 267–284. Springer, Heidelberg (2014).
doi:10.1007/978-3-319-06734-6 17

7. Chari, S., Jutla, C.S., Rao, J.R., Rohatgi, P.: Towards sound approaches to coun-
teract power-analysis attacks. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol.
1666, pp. 398–412. Springer, Heidelberg (1999). doi:10.1007/3-540-48405-1 26

8. Coron, J.-S., Giraud, C., Prouff, E., Renner, S., Rivain, M., Vadnala, P.K.: Conver-
sion of security proofs from one leakage model to another: a new issue. In: Schindler,
W., Huss, S.A. (eds.) COSADE 2012. LNCS, vol. 7275, pp. 69–81. Springer,
Heidelberg (2012). doi:10.1007/978-3-642-29912-4 6

9. Dodis, Y., Pietrzak, K.: Leakage-resilient pseudorandom functions and side-channel
attacks on feistel networks. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223,
pp. 21–40. Springer, Heidelberg (2010). doi:10.1007/978-3-642-14623-7 2

10. Duc, A., Faust, S., Standaert, F.-X.: Making masking security proofs concrete or
how to evaluate the security of any leaking device (extended version). Cryptology
ePrint Archive, Report 2015/119 (2015). http://eprint.iacr.org/

11. Faust, S., Pietrzak, K., Schipper, J.: Practical leakage-resilient symmetric cryptog-
raphy. In: Prouff and Schaumont [25], pp. 213–232

12. Fumaroli, G., Martinelli, A., Prouff, E., Rivain, M.: Affine masking against higher-
order side channel analysis. In: Biryukov, A., Gong, G., Stinson, D.R. (eds.) SAC
2010. LNCS, vol. 6544, pp. 262–280. Springer, Heidelberg (2011). doi:10.1007/
978-3-642-19574-7 18

13. Goldreich, O., Goldwasser, S., Micali, S.: How to construct random functions. J.
ACM 33(4), 792–807 (1986)

14. Grosso, V., Poussier, R., Standaert, F.-X., Gaspar, L.: Combining leakage-resilient
prfs and shuffling - towards bounded security for small embedded devices. In: Joye
and Moradi [16], pp. 122–136

15. Ishai, Y., Sahai, A., Wagner, D.: Private circuits: securing hardware against prob-
ing attacks. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 463–481.
Springer, Heidelberg (2003). doi:10.1007/978-3-540-45146-4 27

16. Joye, M., Moradi, A. (eds.): CARDIS 2014. LNCS, vol. 8968. Springer, Heidelberg
(2015)

http://dx.doi.org/10.1007/978-3-642-40349-1_27
http://dx.doi.org/10.1007/978-3-662-45608-8_18
http://dx.doi.org/10.1007/978-3-319-06734-6_17
http://dx.doi.org/10.1007/3-540-48405-1_26
http://dx.doi.org/10.1007/978-3-642-29912-4_6
http://dx.doi.org/10.1007/978-3-642-14623-7_2
http://eprint.iacr.org/
http://dx.doi.org/10.1007/978-3-642-19574-7_18
http://dx.doi.org/10.1007/978-3-642-19574-7_18
http://dx.doi.org/10.1007/978-3-540-45146-4_27

622 M. Medwed et al.

17. Mangard, S., Popp, T., Gammel, B.M.: Side-channel leakage of masked CMOS
gates. In: Menezes, A. (ed.) CT-RSA 2005. LNCS, vol. 3376, pp. 351–365. Springer,
Heidelberg (2005). doi:10.1007/978-3-540-30574-3 24

18. Mangard, S., Pramstaller, N., Oswald, E.: Successfully attacking masked AES hard-
ware implementations. In: Rao, J.R., Sunar, B. (eds.) CHES 2005. LNCS, vol. 3659,
pp. 157–171. Springer, Heidelberg (2005). doi:10.1007/11545262 12

19. Mather, L., Oswald, E., Whitnall, C.: Multi-target DPA attacks: pushing DPA
beyond the limits of a desktop computer. In: Sarkar, P., Iwata, T. (eds.) ASI-
ACRYPT 2014. LNCS, vol. 8873, pp. 243–261. Springer, Heidelberg (2014). doi:10.
1007/978-3-662-45611-8 13

20. Medwed, M., Standaert, F.-X., Joux, A.: Towards super-exponential side-channel
security with efficient leakage-resilient PRFs. In: Prouff and Schaumont [25], pp.
193–212

21. Micali, S., Reyzin, L.: Physically observable cryptography (extended abstract). In:
Naor, M. (ed.) TCC 2004. LNCS, vol. 2951, pp. 278–296. Springer, Heidelberg
(2004). doi:10.1007/978-3-540-24638-1 16

22. Moradi, A., Poschmann, A., Ling, S., Paar, C., Wang, H.: Pushing the limits: a
very compact and a threshold implementation of AES. In: Paterson, K.G. (ed.)
EUROCRYPT 2011. LNCS, vol. 6632, pp. 69–88. Springer, Heidelberg (2011).
doi:10.1007/978-3-642-20465-4 6

23. Nikova, S., Rijmen, V., Schläffer, M.: Secure hardware implementation of nonlinear
functions in the presence of glitches. J. Cryptology 24(2), 292–321 (2011)

24. Pereira, O., Standaert, F.-X., Vivek, S.: Leakage-resilient authentication and
encryption from symmetric cryptographic primitives. In: Ray, I., Li, N., Kruegel,
C. (eds.) Proceedings of the 22nd ACM SIGSAC Conference on Computer and
Communications Security, pp. 96–108. ACM, New York (2015)

25. Prouff, E., Schaumont, P. (eds.): CHES 2012. LNCS, vol. 7428. Springer,
Heidelberg (2012)

26. Rivain, M., Prouff, E.: Provably secure higher-order masking of AES. In: Mangard,
S., Standaert, F.-X. (eds.) CHES 2010. LNCS, vol. 6225, pp. 413–427. Springer,
Heidelberg (2010). doi:10.1007/978-3-642-15031-9 28

27. Standaert, F.-X., Pereira, O., Yu, Y.: Leakage-resilient symmetric cryptogra-
phy under empirically verifiable assumptions. In: Canetti, R., Garay, J.A. (eds.)
CRYPTO 2013, Part I. LNCS, vol. 8042, pp. 335–352. Springer, Heidelberg (2013).
doi:10.1007/978-3-642-40041-4 19

28. Standaert, F.-X., Pereira, O., Yu, Y., Quisquater, J.-J., Yung, M., Oswald, E.:
Leakage resilient cryptography in practice. In: Sadeghi, A.-R., Naccache, D. (eds.)
Towards Hardware-Intrinsic Security - Foundations and Practice. Information
Security and Cryptography, pp. 99–134. Springer, Heidelberg (2010)

29. Standaert, F.-X., Veyrat-Charvillon, N., Oswald, E., Gierlichs, B., Medwed, M.,
Kasper, M., Mangard, S.: The world is not enough: another look on second-order
DPA. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 112–129. Springer,
Heidelberg (2010). doi:10.1007/978-3-642-17373-8 7

30. Veyrat-Charvillon, N., Gérard, B., Renauld, M., Standaert, F.-X.: An optimal key
enumeration algorithm and its application to side-channel attacks. In: Knudsen,
L.R., Wu, H. (eds.) SAC 2012. LNCS, vol. 7707, pp. 390–406. Springer, Heidelberg
(2013). doi:10.1007/978-3-642-35999-6 25

http://dx.doi.org/10.1007/978-3-540-30574-3_24
http://dx.doi.org/10.1007/11545262_12
http://dx.doi.org/10.1007/978-3-662-45611-8_13
http://dx.doi.org/10.1007/978-3-662-45611-8_13
http://dx.doi.org/10.1007/978-3-540-24638-1_16
http://dx.doi.org/10.1007/978-3-642-20465-4_6
http://dx.doi.org/10.1007/978-3-642-15031-9_28
http://dx.doi.org/10.1007/978-3-642-40041-4_19
http://dx.doi.org/10.1007/978-3-642-17373-8_7
http://dx.doi.org/10.1007/978-3-642-35999-6_25

Unknown-Input Attacks in the Parallel Setting 623

31. Veyrat-Charvillon, N., Medwed, M., Kerckhof, S., Standaert, F.-X.: Shuffling
against side-channel attacks: a comprehensive study with cautionary note. In:
Wang, X., Sako, K. (eds.) ASIACRYPT 2012. LNCS, vol. 7658, pp. 740–757.
Springer, Heidelberg (2012). doi:10.1007/978-3-642-34961-4 44

32. Yu, Y., Standaert, F.-X.: Practical leakage-resilient pseudorandom objects with
minimum public randomness. In: Dawson, E. (ed.) CT-RSA 2013. LNCS, vol. 7779,
pp. 223–238. Springer, Heidelberg (2013). doi:10.1007/978-3-642-36095-4 15

http://dx.doi.org/10.1007/978-3-642-34961-4_44
http://dx.doi.org/10.1007/978-3-642-36095-4_15

Block Cipher II

A New Algorithm for the Unbalanced
Meet-in-the-Middle Problem

Ivica Nikolić1(B) and Yu Sasaki2

1 Nanyang Technological University, Singapore, Singapore
inikolic@ntu.edu.sg

2 NTT Secure Platform Laboratories, Tokyo, Japan
sasaki.yu@lab.ntt.co.jp

Abstract. A collision search for a pair of n-bit unbalanced functions
(one is R times more expensive than the other) is an instance of the
meet-in-the-middle problem, solved with the familiar standard algorithm
that follows the tradeoff TM = N , where T and M are time and memory
complexities and N = 2n. By combining two ideas, unbalanced interleav-
ing and van Oorschot-Wiener parallel collision search, we construct an
alternative algorithm that follows T 2M = R2N , where M ≤ R. Among
others, the algorithm solves the well-known open problem: how to reduce
the memory of unbalanced collision search.

Keywords: Meet-in-the-middle · Tradeoff · Collision search

1 Introduction

Consider a collision search problem between two n-bit functions f(x) and g(x), in
two similar scenarios. In the first case, assume f(x) and g(x) have the same cost
(in terms of time complexity). In the second case, assume that g(x) is only 2

n
10

times more costly than f(x). The state-of-the-art suggests we use two different
time optimized algorithms for these two similar problems. For the first case we
deploy Floyd’s cycle finding algorithm [7] and produce a collision in 2

n
2 time

and negligible memory. For the second case, we store 2
9n
20 images of g(x), and

with 2
11n
20 evaluations of f(x) find the collision – a process that requires a time

equivalent1 to 2
11n
20 calls to f(x) and a memory of 2

9n
20 . This sudden jump of

memory from negligible to almost 2
n
2 , when the comparative cost of the functions

has increased only by a small factor, indicates that the state-of-the-art algorithm
is inefficient. We eliminate this inefficiency and show an alternative algorithm
that relies on the more logical relation between the comparative cost of g(x)
to f(x) and the memory: the smaller the comparative cost, the less memory is
needed.

In the literature, the above second case is known as the meet-in-the-middle
(MITM) problem, and it is solved with the described standard MITM algorithm.

1 The 2
9n
20 calls to g(x) cost 2

9n
20 + n

10 = 2
11n
20 calls to f(x).

c© International Association for Cryptologic Research 2016
J.H. Cheon and T. Takagi (Eds.): ASIACRYPT 2016, Part I, LNCS 10031, pp. 627–647, 2016.
DOI: 10.1007/978-3-662-53887-6 23

628 I. Nikolić and Y. Sasaki

Many subproblems in cryptography can be modelled as MITM problems. In
general, any collision search between two functions, which not necessary have
the same domain and range, is a MITM problem. In such a form, this makes the
MITM one of the most frequently occurring problems, and the MITM algorithms
that solve the problems, one of the most widely used algorithms in cryptography.

The MITM problem has two instances. The first is the classical MITM as
introduced by Diffie and Hellman [3] used for a key recovery in Double DES. It
is a collision search problem between two functions with a range larger than a
domain. The second instance aims at a collision search between two functions
with a range not larger than a domain, but (usually2) with different weights.
That is, one of the functions requires more time for execution. According to the
previous naming convention, we call this instance an unbalanced MITM. In this
paper we deal only with the unbalanced case. In the sequel, all references to the
MITM problem implicitly assume the unbalanced MITM.

The algorithm that solves the unbalanced MITM allows a simple time-
memory tradeoff. It is described with the curve TM = N , where N = 2n, T
is the time complexity measured in accumulative cost of calls to the functions
f(x) and g(x), while M is the memory measured in blocks of certain size (com-
parable to n). By increasing time and reducing memory, solving certain MITM
problems becomes feasible in practice, as usually, the memory is the bottleneck.
Conversely, most theoretical applications require time optimized solutions, thus
in these cases, the time is reduced and the memory is increased. Note, the time
can be reduced only up to a certain bound, usually3 defined as

√
N . If T goes

below the bound and f(x), g(x) are random mappings, then a collision may not
be found as the total number of pairs is below N .

Our Contribution. In our study of the unbalanced MITM problem, the MITM
algorithms and the resulting tradeoffs, we include as a parameter the ratio R
of costs of the two function (e.g. in the above first scenario R = 1, while in
the second R = 2

n
10). This is essential because R defines how to balance the

number of calls to f(x) and to g(x). In short, f(x) can be evaluated R times
more frequently than g(x), while maintaining the same time complexity.

Our new MITM algorithm relies on a combination of two ideas, both well
known, but never combined together. The first idea is based on a selection func-
tion (we call this method interleaving) from the memoryless collision search of
two functions. Floyd’s algorithm can be used to find a collision between the two
functions, by interleaving the calls to f(x) and g(x) during the detection of the
cycle. That is, Floyd’s algorithm is run for a function F (x) that, based on some
selection function, evaluates either f(x) or g(x) with equal probability. Thus a
collision for F (x) is an actual collision for f(x) and g(x) with a probability 1

2
and consequently, the search has to be repeated twice. Unbalanced interleaving

2 If the functions are balanced, then a collision can be found trivially with Floyd’s
cycle finding algorithm.

3 As shown further, the bound is not universal, but depends on the comparative cost
of the two functions.

A New Algorithm for the Unbalanced Meet-in-the-Middle Problem 629

happens when F (x) evaluates one of the functions more frequently (e.g. R times
more) than the other. Then the collision search has to be repeated R times. The
second idea relies on van Oorschot-Wiener [22] multiple/parallel collision search
based on Hellman’s table. First, Hellman’s table is built by storing the first
and the last points of multiple chains produced from iterative evaluations of a
function F (x). Then, to find one collision, another chain for F (x) is built. With
the right choice of parameters, one chain in Hellman’s table will collide with
the newly constructed chain, which can be detected by the end point. Multiple
collisions can be built by repeating the same process.

We combine these two ideas by constructing Hellman’s table for the function
F (x), which is produced by unbalanced interleaving of f(x) and g(x), such that
f(x) is called R times more often than g(x). Then, the collision search for F (x)
is repeated R times in order to obtain a single collision between f(x) and g(x).
(A full description of the algorithm in a pseudo code is given in Appendix A.)
Our analysis reveals that this new algorithm relies on the tradeoff

T 2M = R2N

where M ≤ R. It follows that, when R tends to 1, then M tends to 1, and T
tends to 2

n
2 . In other words, the closer the costs of the two functions, the less

memory is required (and the time is closer to the case of balanced functions). In
contrast, the standard MITM algorithm relies on the counterintuitive relation:
the closer the costs of the two functions, the more memory is required.

We compare the new algorithm to the standard algorithm and show that the
new is more memory effective and more time effective for certain values of R.
In short, the new algorithm is more time effective when MR2 < N , and more
memory effective when T > R2. A visual comparison of tradeoffs of the two
algorithms is given in Appendix B.

We present a number of cases where the replacement of the standard algo-
rithm with the new will lead either to a lower memory requirement or to a better
time-memory tradeoff. In addition, we point out cases where such replacement
will not work (e.g. known plaintext attacks on block ciphers). Finally, we show
that some balanced collision search problems can be regarded as unbalanced, and
thus with the use of the new algorithm, can be solved more efficiently (usually,
will require less memory).

Related Work. The unbalanced MITM has been mentioned as a subproblem
in a large number of papers. A few result provide an actual memoryless solution
to the problem, for instance, Dunkelman et al. in [5]. The most extensive analysis
in this direction has been done by Sasaki [21], who even considers unbalanced
interleaving and comes to a conclusion that the time complexity of the memory-
less unbalanced MITM is invariant of the interleaving factor. In short, all of the
currently proposed memoryless algorithms for the unbalanced MITM provide
the same time complexity, which is actually the precise point of our tradeoff
curve with M = 1 and thus T = R

√
N .

630 I. Nikolić and Y. Sasaki

Van Oorschot-Wiener multiple collision search [22] has been a fundamen-
tal tool in many research papers as well. Among the latest applications of this
technique, we single out the memory efficient multicollision search by Joux and
Lucks [12], the technique of dissection by Dinur et al. [4], the tradeoffs for the gen-
eralized birthday problem by Nikolić-Sasaki [20] and Khovratovich-Biryukov [1],
the multi-user collisions by Fouque et al. [8], and others.

2 Preliminaries

2.1 Basics

Let n be a positive integer, and N = 2n. Let f(x), g(x) : {0, 1}n → {0, 1}n

be two random functions (the range can be smaller than the domain, without
affecting the presented analysis). Assume that the time Tf required to compute
f(x) is not more than the time Tg required to compute g(x). Let R = 2ρ be
the ratio of the costs of g(x) to f(x), that is, R = 2ρ = Tg

Tf
. Obviously, R ≥ 1.

We measure the time complexity of an algorithm in the number of equivalent
calls/evaluations to f(x). For instance, if an algorithm makes u calls to f(x) and
v calls to g(x), then the time complexity is u + R · v.

The MITM problem for f(x), g(x), also known as the collision search problem
between f(x) and g(x), consists in finding two n-bit values a and b such that
f(a) = g(b). This problem can be solved with the use of the MITM algorithm,
referred further as the standard MITM algorithm or MITM STD. The algorithm
works in two phases. First, in a hash table L it stores 2m pairs (g(bi), bi) indexed
by g(bi), where bi, i = 1, . . . , 2m are random values. Then, it keeps generating
pairs (aj , f(aj)), where aj are random values, until for some j the value of f(aj)
collides with some g(bi) from the table L. As f(x), g(x) are random, a collision
will occur after around 2n−m values of f(aj) have been generated.

The memory complexity of the standard algorithm is M = 2m. It makes 2m

calls to g(x) to create L, and 2n−m calls to f(x) to find the collision. According
to the above notation, the time complexity T of the algorithm is T = R · 2m +
2n−m = 2m+ρ + 2n−m. For convenience, assume that T = max(2m+ρ, 2n−m), as
this reduces the actual time at most by a factor of two.

Let us focus on possible time-memory tradeoffs. When, m + ρ ≤ n − m,
then T = 2n−m, and thus the standard algorithm allows the tradeoff TM =
2n−m2m = 2n = N . On the other hand, when m + ρ > n − m, then T =
2m+ρ, and thus TM = 2m+ρ2m > 2n−m2m = N . Obviously this option is worse
and therefore further we assume that the memory satisfies m + ρ ≤ n − m or
equivalently RM2 ≤ N and focus on the tradeoff

TM = N. (1)

From RM2 ≤ N , it follows that N ≥ RM2 = R(N
T)2, which leads to T ≥ √

RN .

A New Algorithm for the Unbalanced Meet-in-the-Middle Problem 631

2.2 Collisions Search with Interleaving

Let us consider the collision search problem between two n-bit functions f(x) and
g(x). A memoryless approach to this problem is based on alteration of the well-
known Floyd’s cycle-finding algorithm that finds collisions for a single function,
i.e. finds (a, b) such that f(a) = f(b).

In the case of a single function f(x), Floyd’s algorithm picks a random
starting point u, assigns v0 = w0 = u, and iteratively produces values vi =
f(vi−1), wi = f(f(wi−1)) until a collision between vi and wi is reached. This
colliding value belongs to a cycle, and if the random point u was chosen to be
outside the cycle, then with an additional effort, the two colliding values a and
b for f(x) can be found: a will be the value that turns the iteration into a cycle,
while b the value of the cycle. From the properties of random mappings, it follows
that length of the cycle and the length of a chain that leads to a cycle is around
2

n
2 , thus the whole algorithm has a time complexity of around 2

n
2 evaluations

of f(x) and it uses a negligible memory.
In the case of two functions f(x), g(x), Floyd’s algorithm still works and

requires a small alteration. The trick is to interleave the evaluations of f(x) and
g(x) with the use of a selection function σ(x) which maps n-bit values to a single
bit in a random fashion. That is, σ(x) outputs 0 or 1, randomly and with equal
probability. Define a function F (x) as follows:

F (x) =

{
f(x) if σ(x) = 0
g(x) if σ(x) = 1

Then, with Floyd’s algorithm find a colliding pair (a, b) for F (x). Obviously if
σ(a) �= σ(b), then this translates to a collision between f(x) and g(x). Otherwise,
repeat the collision search with another starting value. As a result, a colliding
pair (a, b) for f(x), g(x) is found with around 2

n
2 evaluations of both f(x) and

g(x), and it requires a negligible memory.
We have assumed above that the cost of the two functions is the same, i.e.

R = 1. However, if g(x) is more costly than f(x), then the time complexity
of the above Floyd’s algorithm is around R · 2

n
2 . An alternative way to find a

collision between two unbalanced function is to use unbalanced interleaving as
suggested by Sasaki [21]. That is, the selection function σ(x) outputs 0 around
R times more often than 1. In such a case, a collision for F (x) can be found in
around 2

n
2 calls to f(x) and 2

n
2

R calls to g(x), thus in time equivalent to around
2

n
2 calls to f(x) (recall that we measure the time complexity in calls to f(x)).

However, a collision for F (x) is an actual collision between f(x) and g(x) only
with a probability of 1

R , thus the collision search has to be repeated around R
times. This brings the total time complexity of producing a collision between
f(x) and g(x) to R · 2

n
2 .

2.3 Multiple Collision Search

Consider the problem of finding multiple collisions for a function f(x), i.e. pairs
(a1, b1), . . . , (as, bs) such that f(ai) = f(bi) for i = 1, . . . , s. By running Floyd’s

632 I. Nikolić and Y. Sasaki

cycle finding algorithm s times (each with a different starting point and a differ-
ent reduction function), the required s collisions are found in s ·2n

2 evaluations of
f(x) and with negligible memory. However, if s is sufficiently large, then the par-
allel collisions search algorithm by Van Oorschot and Wiener [22] has favourable
time complexity, but it requires non-negligible memory.

Let M = 2m be the available amount of memory. Van Oorschot-Wiener algo-
rithm (given in a pseudo code in Algorithm1 in Appendix A) starts by building
a hash table Lm that resembles Hellman’s table from the well known time-
memory tradeoffs [9]. Each entry in the table consists of two values: a random
starting value vs, and a value ve produced after 2

n−m
2 iterative applications of

f(x) to vs (i.e. v0 = vs, vi+1 = f(vi), ve = v
2

n−m
2

). The table Lm has 2m such
entries4 indexed by the values ve, and thus it requires 2m memory. It is built in
2m2

n−m
2 = 2

n+m
2 time. Note, collisions between iterations are prevented by the

so-called matrix stopping rule5. It guarantees that if M · l2 ≤ 2n, where l is the
length of an iteration, then the number of collisions is negligible. In the above
case l = 2

n−m
2 , hence M · l2 = 2n, thus the condition is fulfilled.

To find one collision for f(x) with the use of Lm, choose a random value
w0 and build a chain composed of values wi where wi+1 = f(wi) (refer to
Algorithm 2 in Appendix A). Each time a new value of wi+1 is computed, check
in Lm if it coincides with one of ve. If it does, then pick the corresponding
starting value vs and the value w0 and find the colliding pair. The table Lm

covers 2
n+m

2 values. Hence, if the length of the chain is around 2n− n+m
2 = 2

n−m
2 ,

we can expect that some value of the chain will hit a value produced during
the construction of the table. Obviously, such a hit can be detected once one
of the consecutive points of the chain has coincided with some ve from Lm. As
mentioned earlier, the average length of the chain at the moment of hit is 2

n−m
2

and with an additional effort of not more than 2
n−m

2 evaluations6 of f(x) such hit
can be detected. Therefore, a collision can be found in around 2

n−m
2 evaluations

of f(x). The procedure of generating Lm and finding a collision is illustrated in
Fig. 1.

To produce s collisions, van Oorschot-Wiener algorithm requires T = 2
n+m

2 +
s · 2n−m

2 evaluations of f(x). Floyd’s algorithm needs T = s · 2n
2 . Thus, roughly

when the required number of collisions s satisfies s >
√

M , then van Oorschot-
Wiener algorithm has a lower time complexity than Floyd’s algorithm. Con-
versely, if s collisions are required, then it suffices to use M < s2 memory in
order to achieve better algorithm in terms of time complexity. For instance,
when s = 2

n
3 and M = 2

n
3 , then van Oorschot-Wiener algorithm requires only

2
2n
3 time, while Floyd’s algorithm requires 2

n
3 +n

2 = 2
5n
6 time.

4 Each built by starting from a different point vs.
5 The term matrix stopping rule has been introduced by Biryukov-Shamir [2]. In the

original Hellman’s paper [9] on TMTO, this rule was given without any particular
name (see page 403, Remark 1).

6 Because ve is produced from vs in 2
n−m

2 iterations.

A New Algorithm for the Unbalanced Meet-in-the-Middle Problem 633

Fig. 1. Lm generation and collision detection when 2m memory is available. Only vs

and ve are stored in Lm. Blue lines describe a collision detection performed after Lm

is generated. It will hit an intermediate value of one of the chains. By continuing
the computation, it reaches ve, thus the collided chain is identified. The exact colliding
value can be detected after some re-computation of the two chains (refer to Algorithm 2
in Appendix A). (Color figure online)

3 A New Meet-in-the-Middle Algorithm

3.1 The Algorithm

To construct our new meet-in-the-middle algorithm, we combine the concepts of
unbalanced interleaving and multiple collisions search.

Specification of the Algorithm. A description of the complete algorithm in
a pseudo code is given in Algorithm 4 of the Appendix. In short, the algorithm
can be defined as follows:

1. Unbalanced Interleaving: Define a function F (x) as

F (x) =

{
f(x) if σ(x) = 0
g(x) if σ(x) = 1

where the selection function σ(x) : {0, 1}n → {0, 1} outputs 0 around 2ρ

times more frequently than 1. For instance, σ(x) can be defined as7

σ(x) =

{
1 if ρ least significant bits of x are zero
0 otherwise

Hence, F (x) evaluates f(x) around 2ρ times more frequently than g(x).

2. Collision Table: Based on van Oorschot-Wiener algorithm, create a table
Lm with M = 2m entries for the function F (x).

7 With such a definition, we assume that f(x) and g(x) are random.

634 I. Nikolić and Y. Sasaki

3. Multiple Collision Search: With the use of Lm, keep producing collisions
for F (x), until actual collision between f(x) and g(x) occurs.

After around 2ρ collisions for F (x), the required collision between f(x) and g(x)
will appear. Indeed, from the definition of F (x) it follows that the probability
that a collision for F (x) is an actual collision between f(x) and g(x) is 2−ρ.

Time-Memory Tradeoff. Let us find the time complexity of the above algo-
rithm. As stated in the previous section, van Oorschot-Wiener algorithm requires
T1 = 2

n+m
2 evaluations of F (x) to construct the table and T2 = 2ρ · 2

n−m
2 =

2ρ+n−m
2 evaluations to find 2ρ collisions. Hence, the time complexity of our algo-

rithm is T = T1 + T2. To simplify the analysis we assume that T = max(T1, T2)
(we ignore the constant factor of 2). The required memory is M = 2m.

Let us express the values of T1 in terms of calls to f(x) (recall that we
measure the time cost in terms of the lighter function f(x)). In T1, there are
a total of 2

n+m
2 evaluations of F (x), out of which, around 2

n+m
2 are to the

function f(x) and 2
n+m

2 /2ρ = 2
n+m

2 −ρ to g(x) which in turn are equivalent to
2ρ · 2

n+m
2 −ρ = 2

n+m
2 calls to f(x). Thus T1 = 2

n+m
2 calls to f(x). In T2, there

are 2ρ+n−m
2 evaluations of F (x), out of which around 2ρ+n−m

2 are to f(x) and
2ρ+n−m

2 /2ρ = 2
n−m

2 to g(x), which is equivalent to 2ρ+n−m
2 calls to f(x). As

a result, T2 = 2ρ+n−m
2 calls to f(x). Therefore, the total time complexity T

expressed above as number of calls to F (x) can be replaced with calls to f(x).
Further we focus on T = max(T1, T2) = max(2

n+m
2 , 2ρ+n−m

2) and analyze
the two cases:

1. Assume 2
n+m

2 ≤ 2ρ+n−m
2 and thus T = 2ρ+n−m

2 . In this case, we obtain that

T 2M = 22ρ+n−m2m = 22ρ2n2−m2m = R2N (2)

2. Assume 2
n+m

2 ≥ 2ρ+n−m
2 and thus T = 2

n+m
2 . Similarly, we end up with the

tradeoff
T 2 = 2n+m = N · M (3)

At the point 2
n+m

2 = 2ρ+n−m
2 the tradeoffs switch. This point is defined as

n + m

2
= ρ +

n − m

2
(4)

m = ρ (5)

Hence, when the available memory M is not more than R, the time T and
memory M complexity of our meet-in-the-middle follows the tradeoff T 2M =
R2N . On the other hand, when M ≥ R, then our tradeoff follows the curve
T 2 = N · M . In this case, we can see that when the memory increases, the time
increases as well. Therefore this tradeoff is not beneficial and thus further in
our discussion we focus only on the tradeoff T 2M = R2N , where M ≤ R. In

addition, the time is limited to T =
√

R2N
M ≥

√
R2N
2ρ =

√
RN .

A New Algorithm for the Unbalanced Meet-in-the-Middle Problem 635

3.2 Comparison of Tradeoffs

Let us compare the new meet-in-the-middle algorithm MITM NEW to the standard
meet-in-the-middle algorithm MITM STD in terms of time and memory complexi-
ties. A graphical comparison of the two tradeoffs is given in Appendix B.

Time Comparison of the Tradeoffs. Assume MITM NEW and MITM STD use the
same amount of memory M and we want to find the case when our algorithm
has a lower time complexity than the standard. When M ≤ R, then the time

complexity of MITM NEW is T1 = R
√

N
M , while of MITM STD is T2 = N

M and thus

R
N

1
2

M
1
2

= T1 < T2 =
N

M
(6)

RM
1
2 < N

1
2 (7)

R2M < N (8)

From (8) and M ≤ R we can conclude that

Fact 1. Let R be the ratio of costs of g(x) to f(x), M be the available memory,
and let M ≤ R. Then MITMNEW has a lower time complexity than MITMSTD when

M <
N

R2
. (9)

Remark 1 (Necessary Condition). From (9) it follows that the new algorithm
may have a better time complexity only if R < N

1
2 .

Memory Comparison of the Tradeoffs. Similarly, let us compare the mem-
ory complexities of the two algorithms when they use the same amount of time
T . Assume M ≤ R. Then the memory complexity of MITM NEW is M1 = R2N

T 2 ,
while of the MITM STD is M2 = N

T , thus

R2N

T 2
= M1 < M2 =

N

T
(10)

T > R2 (11)

The condition R ≥ M1 = R2N
T 2 is equivalent to T ≥ √

RN . As a result we get

Fact 2. Let R be the ratio of costs of g(x) to f(x), T be the available time, and
let T ≥ √

NR. Then MITMNEW has a lower memory complexity than MITMSTD when

T > R2. (12)

Remark 2 (Necessary condition). From (9) and T < N it follows that the new
algorithm may have a better memory complexity only if R < N

1
2 .

636 I. Nikolić and Y. Sasaki

When used in analysis, often the parameters of the tradeoff are chosen in
a way to minimize the time complexity. That is, the most used point of the
curve in the tradeoff of the standard meet-in-the-middle algorithm is the one
where the time complexity reaches the minimum. As mentioned in Sect. 2.1, this

point is defined as T = 2
n+ρ
2 =

√
NR and M = 2

n−ρ
2 =

√
N
R . As the condition

T ≥ √
NR of Fact 2 is satisfied, it follows that our MITM NEW will always use less

memory than MITM STD as long as T > R2 = T 4

N2 or equivalently, T < N
2
3 . This

leads to

Fact 3. Let T < N
2
3 be the minimal time complexity of MITMSTD, that uses

M2 = N
T memory. Then, with the use of MITMNEW, the memory complexity can be

reduced to M1 = T 2

N .

Proof. From T < N
2
3 it follows that R = T 2

N < N
1
3 and M2 = N

T > N
1
3 . We

choose M1 = R, and use our MITM NEW to achieve M1 = R2N
T 2 = T 4N

N2T 2 = T 2

N <

N
4
3

N = N
1
3 . ��

3.3 Practical Confirmation

We confirm the correctness of the new algorithm and the resulting tradeoff by
implementing it and by running a series of computer experiments. In the exper-
iments, the value of N is in the range of 232 to 240, and the values of R and M
vary (but comply to M ≤ R). For each particular N , R, and M , we run 100
experiments, each with different f(x) and g(x), and measure the time complexity
required to produce a collision between f(x) and g(x).

In Table 1 we report the measured time as the average of the 100 experiments.
It is evident that the experimental time is very close to the expected time and
differs roughly by a factor of four.

3.4 Additional Cases

Besides for the unbalanced MITM, MITM NEW can be used as well to solve a few
other collision problems between balanced functions. Further we describe two
potential applications. In Sect. 4 we provide concrete examples of these applica-
tions.

– Reducing calls to one of the functions. In certain applications, even
though the costs of the two functions are the same (R = 1), it may be beneficial
to reduce the number of calls to one of them. For instance, if g(x) depends on
a secret key k thus is written as g(k, x), then it has to be queried to get the
result. Thus the number of calls to g(x) corresponds to the data complexity
D. If reducing D is the priority, then the collision search becomes unbalanced.

– Reduced domain of one of the functions. So far, we have assumed that
the ranges of the two functions are not larger than their domain. If one of the
balanced functions has a domain smaller than the range, then MITM NEW can be

A New Algorithm for the Unbalanced Meet-in-the-Middle Problem 637

Table 1. Experimental verification of the new tradeoff.

MITM space Ratio Memory Expected time Experimental time

N R M T =
√

R2N/M T

232 28 26 221 222.6

232 24 24 218 220.0

232 212 210 223 225.3

232 212 212 222 224.0

236 210 28 224 226.2

236 210 210 223 224.7

236 212 212 224 225.9

240 26 24 224 226.1

240 26 26 223 224.9

240 28 28 224 225.7

used to find a collision. That is, a collision between f(x) : {0, 1}n → {0, 1}n

and g(x) : {0, 1}m → {0, 1}n, where m < n and f, g are balanced, can be
found with the proposed algorithm.

3.5 Degenerate Cases

MITM NEW in an alternative to the MITM STD, but in some cases it may not be applied
or it may not follow the expected time-memory tradeoff curve. Let us take a
closer look at such degenerate cases.

– The ratio R depends on the available memory. An implicit assumption
used in the above analysis is that the ratio R of costs of the two function
is fixed and invariant of the available memory. This may not always be the
case, and one of the functions (most likely g(x)), may have execution time
that depends on the available memory (the larger the memory, the shorter
the time). In such a situation, the ratio R becomes a function of the memory
M , i.e. R = R(M), and the curve becomes T 2M = R(M)2N . This may limit
the flexibility of choosing M , lead to another tradeoff, or even make the entire
tradeoff invalid (recall that it is valid when M ≤ R, which becomes M ≤ R(M)
– this condition may not have a solution for M > 0).

– Sets instead of functions. MITM NEW makes calls to both f(x) and g(x), thus
the functions must be computable. If one of the function is given as a set, then
the algorithm will not function properly. Note, the naive idea of storing the
set only leads to MITM STD.

– Known plaintext attack. MITM NEW makes adaptive chosen queries to both
f(x) and g(x). Thus attacks on block ciphers that are based on MITM NEW cannot
be known plaintext attacks.

638 I. Nikolić and Y. Sasaki

4 Applications

Further we show applications of the MITM NEW in three different cases: the first is
the standard unbalanced MITM, while the remaining two are for the additional
cases mentioned in Sect. 3.4.

4.1 The Case of Unbalanced Functions

Prior to presenting concrete applications of the MITM NEW, we emphasize two
points. First, MITM NEW can be used to achieve better tradeoffs (for certain val-
ues of M and T) in a lot of cases where MITM STD has been applied. There are
numerous such cases – listing and analyzing them is too tedious, and therefore
we do not mention them. Second, when the amount of memory is not limited,
then both MITM NEW and MITM STD have the same time complexity (both achieve
the minimal possible theoretical time T =

√
RN). Hence, if the user is not con-

cerned about the memory, then he/she can use either MITM STD or MITM NEW. We
are ready now to proceed with concrete applications.

Iwamoto et al. [11] show that in narrow-pipe Merkle-Damg̊ard hash functions,
a collision attack for the compression function can be converted into a limited-
birthday-distinguisher for the corresponding hash function. Recall that a colli-
sion8 for a compression function CF (h,m), where h is the chaining value and m
is the message block, is a tuple (h∗,m,m′) such that CF (h∗,m) = CF (h∗,m′).
On the other hand, a limited-birthday distinguisher for a hash function H(M)
is the following problem: given two sets I,O, find a message M∗ such that
H(M∗ ⊕ δin) ⊕ H(M∗) = δout, where δin ∈ I, δout ∈ O. It can be seen as a
problem of finding a message that follows a certain truncated differential (I,O
are the truncated differences at the input and at the output, respectively).

Iwamoto et al. convert the collision into a limited-birthday distinguisher by
placing the collision at the second block (refer to Fig. 2). That is, they first
find multiple collisions (h1,m1,m

′
1) for the compression function, store all h1,

and from the initial chaining value h0, find a message m0 that will produce
a match with one of the stored h1, i.e. find m0 such that CF (h0,m0) = h1.
The complexity of the limited-birthday distinguisher in part depends on the
complexity of producing collisions for the compression function. Thus, it is a
classical example of an unbalanced MITM problem. Iwamoto et al. essentially
use MITM STD while we will switch to MITM NEW.

Application to LANE-256. LANE-256 is a SHA-3 candidate hash function
designed by Indesteege et al. [10] that has 256-bit state. A collision attack on the
full compression function has been presented by Matusiewicz et al. [14]. Naya-
Plasencia [19] has improved the attack – her collision search requires 280 calls to
the compression function and 266 memory.

8 Sometimes, it is called a semi-free-start collision for the compression function.

A New Algorithm for the Unbalanced Meet-in-the-Middle Problem 639

Fig. 2. Conversion from a collision attack on the compression function into a limited-
birthday-distinguisher on hash function as shown in [11]. The third message block deals
with padding. As the collision occurs on h2, the third block preserves collision.

We use Iwamoto et al. conversion of the collision attack for the compression
function into a limited-birthday distinguisher for the hash function. The result-
ing unbalanced MITM (on which the limited-birthday distinguishers relies on)
consists of the two functions f(x) and g(x), such that f(x) is equivalent to one
compression function call (with a random message block), while g(x) is equiva-
lent to one collision for the compression function (according to Naya-Plasencia
equivalent to 280 calls and 266 memory). Therefore, the ratio of costs is R = 280.

Iwamoto et al. [11] use MITM STD to find the complexity of the limited-birthday
distinguisher for LANE-256. We use MITM NEW and show its advantage. From N =
2256 and R = 280, it follows that MITM NEW can be described as T 2M = 22∗80+256 =
2416. For example, if we set the time complexity to be identical to [11], i.e. T =
2169, then the memory complexity M is reduced to 2416−2∗169 = 278, which
improves the previous 288 by a factor of 210. If we set the memory complexity
to the lowest possible M = 266 (Naya-Plasencia collision attack requires this
much memory), then the previous MITM STD requires T = 2190 (the tradeoff is
TM = 2256), while our MITM NEW requires T = 2175.

Application to AES-Miyaguchi-Preneel. Iwamoto et al. show as well that
in 248 time they can find a collision for the compression function built upon
6-round AES in Miyaguchi-Preneel mode. Therefore, a limited-birthday distin-
guisher for the corresponding Merkle-Damg̊ard hash function, is equivalent to
an unbalanced MITM, where R = 248.

According to Fact 1, with parameters N = 128 and R = 48, MITM NEW has
lower complexity than MITM STD if M < N

R2 = 232,M ≤ R = 248, which reduces
to M < 232. The time complexity of Iwamoto et al. result with M = 248 cannot
be improved. However, 248 memory may be too costly and it may be beneficial
to reduce the time, when the available memory is much smaller. As suggested
by the above condition, when the memory is limited up to 232, MITM NEW gives
better time than MITM STD.

640 I. Nikolić and Y. Sasaki

4.2 The Case of Reduced Calls

Consider a MITM attack between two balanced functions f(x) and g(x), where
f(x) can be computed offline, while g(x) requires oracle queries. Calls to f(x)
are counted as a time complexity, while to g(x) as a data complexity. In practice,
we often want to keep the data complexity low, which results in an unbalanced
MITM. In addition, some schemes (for instance, Chaskey [18]) limit the number
of online queries to less than the birthday bound, and thus are able to prove
beyond-birthday-bound security.

The best example that illustrates the importance of MITM NEW to these cases
would be to use it to answer Dunkelman et al. [5] open problem about mem-
oryless attack on Even-Mansour with T time and D = N

T data. However, this
problem already has been solved partially by Fouque et al. [8]. They provide a
solution that uses M memory and D data, such that M < D and MD2 = N .
Interestingly, their approach also relies on van Oorschot-Wiener algorithm, but
they do not use unbalanced interleaving. With MITM NEW, we can obtain the same
solution (thus we omit it from the paper). However, our approach is more generic
than [8] – we show this by applying MITM NEW to key recovery attacks on tweakable
block cipher constructions9.

Tweakable Block Cipher Mode-of-Operation. The first example is a
Tweak-dependent Rekeying (TDR) mode-of-operation proposed by Minematsu
[17]. Let EK be a block cipher with n-bit state and n-bit key, and let Et

K , where
t < n

2 , be a construction in which the first n − t bits of the plaintext for EK

are fixed to 0, namely the plaintext space is limited to t bits. The TDR mode
converts EK into a tweakable block cipher (uses t-bit tweak) with two EK calls:
the first encrypts a tweak Tw with Et

K , used in the second call as a key:

K ′ ← Et
K(Tw),

C ← EK′(P).

Minematsu proves that the TDR mode achieves O(2
n

2t) security. As t < n
2 , the

TDR mode achieves beyond-birthday-bound security. This bound is tight, as
shown by the following attack that uses MITM STD:

1. Fix P to a randomly chosen value.
2. Choose D random values of Tw, query (P, Tw) to obtain the corresponding

C, and store all C in a table L.
3. Make 2n/D guesses of K ′, compute C ← EK′(P) and look for a match in L.

A match suggests a candidate for K ′. With a negligibly small additional cost,
the correct K ′ can be verified. As the analysis relies on MITM STD, it follows the
tradeoff TD = 2n. The required memory is identical to the data, i.e. M = D.

9 In our understanding, these problems cannot be solved with the algorithm from [8].

A New Algorithm for the Unbalanced Meet-in-the-Middle Problem 641

To find a collision between steps (2) and (3), we can use MITM NEW– as in the
above analysis10, such collision will exist as long as TD = 2n. The memory,
however, can be reduced with MITM NEW. The unbalanced MITM will make T calls
to f(x) and D calls to g(x), if we set R = T

D . In such a case, the tradeoff becomes
T 2M =

(
T
D

)2
2n, which is equivalent to MD2 = 2n. Thus, when the data D

satisfies D > 2
n
3 , the new approach will require less memory. For instance,

if D = 2
3n
7 , then the standard (as given above in steps (2), (3)) will require

M = 2
3n
7 , while the new only M = 2

n
7 memory.

Cryptanalysis on McOE-X. At FSE 2009, Fleischmann et al. [6] propose a
family of online authenticated encryption called McOE. Let EK,Tw be a tweak-
able block cipher under a key K and a tweak Tw. Then, the ciphertext Ci of
the i-th message block Pi of McOE is defined as follows:

ti ← Pi−1 ⊕ Ci−1,

Ci ← EK,ti
(Pi).

McOE-X is an instance of the McOE family, such that EK,Tw = EK⊕Tw.
Mendel et al. [15] show that the key of McOE-X can be recovered in O(2

n
2)

time and data, or more general, in T time and D = 2n

T data, with MITM STD.

1. Fix the message for the second block P1 to a randomly chosen value.
2. Choose D random values of the first message block P0, query P0‖P1 to obtain

the corresponding C0‖C1, and store them in a table L along with P0 ⊕ C0.
3. Make 2n/D guesses of K ⊕ t1, denoted by K ′, and compute C1 ← EK′(P1).

Check for a match with L.

A match suggests that the K can be computed as P0 ⊕ C0 ⊕ K ′.
As in the case of TDR, with the use of MITM NEW we can reduce the memory

requirement of Mendel et al. attack (which currently is M = D), while main-
taining the same time T and data D. Fleischmann et al. instantiate McOE-X
with AES-128 as an underlying block cipher. Thus, according to Fact 3, Mendel
et al. attack will have a lower memory complexity if T < 285.3 and if it relies
on MITM NEW (rather than MITM STD). (Considering that accessing D data requires
some computational cost of about D, limiting T > D is reasonable. Then the
range of T becomes 264 < T < 285.3.) For instance, if T = 270, then D = 258,
and thus Mendel et al. attack will require 258 memory if it uses MITM STD, and
only 212 memory if it relies on MITM NEW. However, note that MITM NEW overweights
MITM STD only if D > 242.7.

4.3 The Case of Reduced Domain

Let us apply MITM NEW to the case of a reduced domain. To do so, we focus on
triple encryption Ek1,k2,k3(P) = Ek3(Ek2(Ek1(P))) = C, where Ek(P) is an
10 We stress out that we are not showing a weakness of the TDR-mode, but a possible

improvement in the memory requirement of the analysis that matches the proved
security bound.

642 I. Nikolić and Y. Sasaki

n-bit cipher with n-bit key k, and provide a key recovery given three pairs of
known plaintext-ciphertext (Pi, Ci), i = 1, 2, 3.

First, let us reduce the key recovery to a collision search problem. For this
purpose, we define two functions (below, || denotes concatenation)

F (k1, k2) = Ek2(Ek1(P1))||Ek2(Ek1(P2)),

G(k3) = E−1
k3

(C1)||E−1
k3

(C2)

Obviously, F : {0, 1}2n → {0, 1}2n and G : {0, 1}n → {0, 1}2n, that is, G has a
reduced domain. A collision between F and G corresponds to a triplet of keys
(k1, k2, k3) such that Ek1,k2,k3(P1) = C1 and Ek1,k2,k3(P2) = C2. We need to
produce 2n such collisions to get the final Ek1,k2,k3(P3) = C3, as on average
there is only a single triplet of keys that encrypts the three plaintexts P1, P2, P3,
into the three ciphertexts C1, C2, C3.

To find a single collision on 2n bits, we use MITM NEW with R = 2
n
2 . This value is

chosen to avoid collisions of chains in the Hellman’s table. Recall that chains have
length

√
22n

M . This ensures that the matrix stopping rule is fulfilled for points
on which F is evaluated: dimension of the domain of F is 2n, each chain has at

most
√

22n

M evaluations of F and thus, M ·
(√

22n

M

)2

≤ 22n. When R = 2
n
2 , then

each chain has
√

22n

M /2
n
2 evaluations of G, thus the matrix stopping rule for G

(with domain of dimension n) is fulfilled as well because M ·
(√

22n

M /2
n
2

)2

≤ 2n.

Therefore, the number of colliding chains is negligible. Note, as the ranges of the
two functions are of dimensions 2n each, while the domain of G has a dimension
of only n, when building the chains, we need to use a reduction function for the
inputs of G, which can be defined simply as a truncation of the 2n-bit value to
n bits.

According to the tradeoff curve of MITM NEW, we can produce a collision with
complexities that follow T 2M = R222n = 23n. The condition of the tradeoff
dictates that M ≤ R, hence given a memory M = 2

n
2 , we can get a collision in

time T1 = 2
5n
4 . To get 2n collisions we repeat 2n times the whole collision search

(rebuild a new Hellman’s table with different reduction function). As a result,
we can recover the whole 3n-bit key in time T = 2

9n
4 and memory M = 2

n
2 .

The standard MITM algorithm on triple encryption by Merkle and
Hellman [16] follows TM = 23n, thus for M = 2

n
2 it requires time T = 2

5n
2 ,

which is larger than our time. In addition, the dissection by Dinur et al. [4] used
for attacks on multiple encryption, applies only when the number of encryption
is at least four. Therefore, MITM NEW leads to the lowest time complexity attack
on triple encryption with M = 2

n
2 .

5 Conclusion

We have shown that one of the most common subproblems in cryptanalysis,
the unbalanced meet-in-the-middle problem, can be solved with an alternative

A New Algorithm for the Unbalanced Meet-in-the-Middle Problem 643

algorithm. The new algorithm relies on combination of two ideas: unbalanced
interleaving and van Oorschot-Wiener multiple collision search. It follows the
tradeoff T 2M = R2N , where R is the ratio of costs of the two functions. It
outperforms the standard algorithm (with the tradeoff TM = N) in terms of
time when MR2 < N , and in terms of memory when T > R2 (in both of the
cases, assume that M ≤ R).

The new algorithm follows a more intuitive relation between the ratio R
and the required memory M : the lower the ratio, the less memory is required.
In fact, the complexity of the balanced collision search between two functions
(solved with the Floyd’s algorithm), can be described as a point of the tradeoff
curve of the new algorithm (R = 1,M = 1 and thus T 2 = N). This is not the
case with the standard algorithm (M = 1 will lead to T = N).

The new algorithm outperforms the standard algorithm in terms of time when

M ≤ R, M ≤
√

N
R and M < N

R2 , and in terms of memory when T ≥ √
RN and

T > R2.
In applications where minimizing the time complexity is the only concern,

both the new and the standard algorithm behave the same (T =
√

RN). How-
ever, once the focus expands to memory as well as time, the new algorithm
may provide significant advantage over the standard. As a general rule of the
thumb, the new algorithm should be considered as the first choice in unbalanced
meet-in-the-middle problems with R < N

1
3 .

A Pseudo Code of Algorithms

Algorithm 1. Construction of table Lm

procedure ConstructL(f(x), n, m)
Lm ← ∅
for i=1 to 2m do

vs
$←− {0, 1}n � Generate random value

ve ←− vs

for j=1 to 2
n−m

2 do � Iteratively apply f(x)
ve ←− f(ve)

end for
Lm ←− Lm ∪ (vs, ve) � Store (vs, ve) in Lm

end for
return Lm

end procedure

644 I. Nikolić and Y. Sasaki

Algorithm 2. Find collision with Lm

procedure FindCollision(Lm, f(x), n, m)

w0
$←− {0, 1}n � Generate random value

wi ←− w0

length ←− 0
do

length ← length + 1
wi ←− f(wi)
vs ← Find(Lm, wi) � Check if wi is in Lm

while vs = ∅
for i=1 to 2

n−m
2 − length do � Align the two chains

vs ← f(vs)
end for
while f(vs) �= f(w0) do � Find the colliding pair

vs ← f(vs)
w0 ← f(w0)

end while
return (vs, w0)

end procedure

Algorithm 3. Definition of F (x)
procedure F(f, g, ρ)

if x % 2ρ = 0 then � Least ρ bits of x are zeros
return g(x) � F (x) = g(x)

else
return f(x) � F (x) = f(x)

end if
end procedure

Algorithm 4. New MITM Algorithm
procedure MITM(n, m, ρ)

Lm ← ConstructL(F(f, g, ρ), n, m)
do

(a, b) ← FindCollision(Lm,F(f, g, ρ), n, m))
while a % 2ρ > 0 and b % 2ρ > 0
return (a, b)

end procedure

B Graphical Comparison of the Tradeoffs

A comparison of our tradeoff T 2M = R2N to the standard tradeoff TM = N is
given in Figs. 3, 4, and 5.

In Fig. 3, we can see that as long as R < 2
n
2 , there is a range of values of M ,

where the time of MITM NEW is lower than the time of MITM STD. For MITM NEW, when
M > R, the time remains the same as for the point M = R (recall the tradeoff
is valid as long as M ≤ R). Note, a similar is true for MITM STD and is denoted

A New Algorithm for the Unbalanced Meet-in-the-Middle Problem 645

Fig. 3. Dependency of time on memory
between MITM STD (in black) and MITM NEW

(coloured), when 2
n
10 ≤ R ≤ 2

n
2 .

Fig. 4. Dependency of memory on time
between MITM STD (in black) and MITM NEW

(coloured), when 2
n
10 ≤ R ≤ 2

n
2 .

with coloured dots on the black line. For instance, when R = 2
n
4 (denoted in

green), MITM STD is valid as long as M ≤ 2
3n
8 . For larger values of M , the standard

tradeoff does not actually follow the black line (the time does not reduce), but
the time remains the same as in the point M = 2

3n
8 .

Similarly, in Fig. 4, we can see a range of values T for which MITM NEW outper-
forms MITM STD in terms of memory. Note, both of the algorithms require minimal
time of T =

√
RN . Therefore, the lines start from the point T =

√
RN .

Fig. 5. Dependency of the memory on the ratio, when the time is minimal (T =
√

RN),
between MITM NEW (in red) and MITM STD (in blue) (Color figure online).

Finally, in Fig. 5, we show the dependency on the memory of the comparative
cost of the two functions, when the time is set to minimal, that is, when T =√

RN . When R = 1, then the Floyd’s algorithm requires no memory to find the
collision (denoted with a yellow circle at the point (0,0)). However, once R > 1,
the memory requirement of MITM STD immediately jumps to almost 2

n
2 (in blue),

whereas the memory of MITM NEW increases gradually (in red).

646 I. Nikolić and Y. Sasaki

References

1. Biryukov, A., Khovratovich, D.: Asymmetric proof-of-work based on the general-
ized birthday problem. IACR Cryptology ePrint Archive 2015, 946 (2015)

2. Biryukov, A., Shamir, A.: Cryptanalytic time/memory/data tradeoffs for stream
ciphers. In: Okamoto, T. (ed.) ASIACRYPT 2000. LNCS, vol. 1976, pp. 1–13.
Springer, Heidelberg (2000). doi:10.1007/3-540-44448-3 1

3. Diffie, W., Hellman, M.E.: Special feature exhaustive cryptanalysis of the NBS
data encryption standard. IEEE Comput. 10(6), 74–84 (1977)

4. Dinur, I., Dunkelman, O., Keller, N., Shamir, A.: Efficient dissection of composite
problems, with applications to cryptanalysis, knapsacks, and combinatorial search
problems. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417,
pp. 719–740. Springer, Heidelberg (2012). doi:10.1007/978-3-642-32009-5 42

5. Dunkelman, O., Keller, N., Shamir, A.: Minimalism in cryptography: the even-
mansour scheme revisited. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT
2012. LNCS, vol. 7237, pp. 336–354. Springer, Heidelberg (2012). doi:10.1007/
978-3-642-29011-4 21

6. Fleischmann, E., Forler, C., Lucks, S.: McOE: A family of almost foolproof on-line
authenticated encryption schemes. In: Canteaut, A. (ed.) FSE 2012. LNCS, vol.
7549, pp. 196–215. Springer, Heidelberg (2012). doi:10.1007/978-3-642-34047-5 12

7. Floyd, R.W.: Nondeterministic algorithms. J. ACM 14(4), 636–644 (1967)
8. Fouque, P.-A., Joux, A., Mavromati, C.: Multi-user collisions: applications to dis-

crete logarithm, even-mansour and PRINCE. In: Sarkar, P., Iwata, T. (eds.) ASI-
ACRYPT 2014. LNCS, vol. 8873, pp. 420–438. Springer, Heidelberg (2014). doi:10.
1007/978-3-662-45611-8 22

9. Hellman, M.E.: A cryptanalytic time-memory trade-off. IEEE Trans. Inf. Theory
26(4), 401–406 (1980)

10. Indesteege, S., Andreeva, E., De Canniere, C., Dunkelman, O., Käper, E., Nikova,
S., Preneel, B., Tischhauser, E.: The LANE hash function, Submission to NIST
(2008)

11. Iwamoto, M., Peyrin, T., Sasaki, Y.: Limited-birthday distinguishers for hash func-
tions: collisions beyond the birthday bound can be meaningful. In: Sako, K., Sarkar,
P. (eds.) ASIACRYPT 2013. LNCS, vol. 8270, pp. 504–523. Springer, Heidelberg
(2013). doi:10.1007/978-3-642-42045-0 26

12. Joux, A., Lucks, S.: Improved generic algorithms for 3-collisions. In: Matsui [13],
pp. 347–363

13. Matsui, M. (ed.): ASIACRYPT 2009. LNCS, vol. 5912. Springer, Heidelberg (2009).
doi:10.1007/978-3-642-10366-7 21

14. Matusiewicz, K., Naya-Plasencia, M., Nikolić, I., Sasaki, Y., Schläffer, M.: Rebound
attack on the full Lane compression function. In: Matsui [13], pp. 106–125

15. Mendel, F., Mennink, B., Rijmen, V., Tischhauser, E.: A simple key-recovery
attack on McOE-X. In: Pieprzyk, J., Sadeghi, A.-R., Manulis, M. (eds.) CANS
2012. LNCS, vol. 7712, pp. 23–31. Springer, Heidelberg (2012). doi:10.1007/
978-3-642-35404-5 3

16. Merkle, R.C., Hellman, M.E.: On the security of multiple encryption. Commun.
ACM 24(7), 465–467 (1981)

17. Minematsu, K.: Beyond-birthday-bound security based on tweakable block cipher.
In: Dunkelman, O. (ed.) FSE 2009. LNCS, vol. 5665, pp. 308–326. Springer,
Heidelberg (2009). doi:10.1007/978-3-642-03317-9 19

http://dx.doi.org/10.1007/3-540-44448-3_1
http://dx.doi.org/10.1007/978-3-642-32009-5_42
http://dx.doi.org/10.1007/978-3-642-29011-4_21
http://dx.doi.org/10.1007/978-3-642-29011-4_21
http://dx.doi.org/10.1007/978-3-642-34047-5_12
http://dx.doi.org/10.1007/978-3-662-45611-8_22
http://dx.doi.org/10.1007/978-3-662-45611-8_22
http://dx.doi.org/10.1007/978-3-642-42045-0_26
http://dx.doi.org/10.1007/978-3-642-10366-7_21
http://dx.doi.org/10.1007/978-3-642-35404-5_3
http://dx.doi.org/10.1007/978-3-642-35404-5_3
http://dx.doi.org/10.1007/978-3-642-03317-9_19

A New Algorithm for the Unbalanced Meet-in-the-Middle Problem 647

18. Mouha, N., Mennink, B., Herrewege, A., Watanabe, D., Preneel, B., Verbauwhede,
I.: Chaskey: An efficient MAC algorithm for 32-bit microcontrollers. In: Joux, A.,
Youssef, A. (eds.) SAC 2014. LNCS, vol. 8781, pp. 306–323. Springer, Heidelberg
(2014). doi:10.1007/978-3-319-13051-4 19

19. Naya-Plasencia, M.: How to improve rebound attacks. In: Rogaway, P. (ed.)
CRYPTO 2011. LNCS, vol. 6841, pp. 188–205. Springer, Heidelberg (2011). doi:10.
1007/978-3-642-22792-9 11

20. Nikolić, I., Sasaki, Y.: Refinements of the k -tree algorithm for the generalized
birthday problem. In: Iwata, T., Cheon, J.H. (eds.) ASIACRYPT 2015. LNCS, vol.
9453, pp. 683–703. Springer, Heidelberg (2015). doi:10.1007/978-3-662-48800-3 28

21. Sasaki, Y.: Memoryless unbalanced meet-in-the-middle attacks: impossible results
and applications. In: Boureanu, I., Owesarski, P., Vaudenay, S. (eds.) ACNS
2014. LNCS, vol. 8479, pp. 253–270. Springer, Heidelberg (2014). doi:10.1007/
978-3-319-07536-5 16

22. van Oorschot, P.C., Wiener, M.J.: Parallel collision search with cryptanalytic appli-
cations. J. Cryptol. 12(1), 1–28 (1999)

http://dx.doi.org/10.1007/978-3-319-13051-4_19
http://dx.doi.org/10.1007/978-3-642-22792-9_11
http://dx.doi.org/10.1007/978-3-642-22792-9_11
http://dx.doi.org/10.1007/978-3-662-48800-3_28
http://dx.doi.org/10.1007/978-3-319-07536-5_16
http://dx.doi.org/10.1007/978-3-319-07536-5_16

Applying MILP Method to Searching Integral
Distinguishers Based on Division Property for 6

Lightweight Block Ciphers

Zejun Xiang1,2, Wentao Zhang1,2(B), Zhenzhen Bao1,2, and Dongdai Lin1,2

1 State Key Laboratory of Information Security, Institute of Information
Engineering, Chinese Academy of Sciences, Beijing, China

{xiangzejun,zhangwentao,baozhenzhen,ddlin}@iie.ac.cn
2 University of Chinese Academy of Sciences, Beijing, China

Abstract. Division property is a generalized integral property proposed
by Todo at EUROCRYPT 2015, and very recently, Todo et al. proposed
bit-based division property and applied to SIMON32 at FSE 2016. How-
ever, this technique can only be applied to block ciphers with block size
no larger than 32 due to its high time and memory complexity. In this
paper, we extend Mixed Integer Linear Programming (MILP) method,
which is used to search differential characteristics and linear trails of
block ciphers, to search integral distinguishers of block ciphers based on
division property with block size larger than 32.

Firstly, we study how to model division property propagations of
three basic operations (copy, bitwise AND, XOR) and an Sbox oper-
ation by linear inequalities, based on which we are able to construct a
linear inequality system which can accurately describe the division prop-
erty propagations of a block cipher given an initial division property.
Secondly, by choosing an appropriate objective function, we convert a
search algorithm under Todo’s framework into an MILP problem, and
we use this MILP problem appropriately to search integral distinguish-
ers. As an application of our technique, we have searched integral distin-
guishers for SIMON, SIMECK, PRESENT, RECTANGLE, LBlock and
TWINE. Our results show that we can find 14-, 16-, 18-, 22- and 26-round
integral distinguishers for SIMON32, 48, 64, 96 and 128 respectively.
Moreover, for two SP-network lightweight block ciphers PRESENT and
RECTANGLE, we found 9-round integral distinguishers for both ciphers
which are two more rounds than the best integral distinguishers in the
literature [22,29]. For LBlock and TWINE, our results are consistent
with the best known ones with respect to the longest distinguishers.

Keywords: MILP · Division property · Integral cryptanalysis ·
SIMON · SIMECK · PRESENT · RECTANGLE · LBlock · TWINE

1 Introduction

Programming problem is a mathematical optimization which aims to achieve the
minimal or maximal value of an objective function under certain constraints, and
c© International Association for Cryptologic Research 2016
J.H. Cheon and T. Takagi (Eds.): ASIACRYPT 2016, Part I, LNCS 10031, pp. 648–678, 2016.
DOI: 10.1007/978-3-662-53887-6 24

Applying MILP Method to Searching Integral Distinguishers 649

it has a wide range of applications from industry to academic community. Mixed
Integer Linear Programming (MILP) is a kind of programming problem whose
objective function and constraints are linear, and all or some of the variables
involved in the problem are restricted to be integers. In recent years, MILP
has found its applications in cryptographic community. Mouha et al. [11] and
Wu et al. [21] applied MILP method to automatically count differential and
linear active Sboxes for word-based block ciphers, which can be used to evalu-
ate the resistance of block ciphers against differential and linear attacks. Later
Sun et al. [13] extended this technique to count active Sboxes of SP-network
block ciphers whose linear layer is a bit permutation.

Recently, this technique was improved [15] to search differential character-
istics and linear trails with a minimal number of active Sboxes. They con-
structed the MILP model by a small number of linear inequalities chosen from
the H-Representation of the convex hull of a set of points which are derived from
the difference distribution (resp. linear approximation) table of Sbox. However,
this method may result in invalid differential characteristics (resp. linear trails).
Moreover, differential characteristic (resp. linear trail) with a minimal number
of active Sboxes does not alway result in differential characteristic (resp. linear
trail) with highest probability. To solve these problems, Sun et al. [14] encoded
the probability of differentials (resp. linear approximations) of Sbox into the
MILP model and they proved that it is always feasible to choose a set L of lin-
ear inequalities from the H-Representation of the convex hull of a set of points A,
such that the feasible solutions of L are exactly the points in A. Thus, by adding
L into the model and setting the probability as objective function, the MILP
optimizer will always return (if the MILP problem can be solved in limited time)
a valid differential characteristic (resp. linear trail) with highest probability.

Division property is a generalized integral property introduced by Todo [18]
at EUROCRYPT 2015 to search integral distinguishers of block cipher struc-
tures which is the core part of integral cryptanalysis [4,7,8,10]. Todo studied
propagation rules of division property through different block cipher operations
and presented generalized algorithms to search integral distinguishers which only
exploits the algebraic degree of nonlinear components of the block cipher. By
using division property, Todo presented 10-, 12-, 12-, 14- and 14-round1 integral
distinguishers for SIMON32, 48, 64, 96 and 128 respectively. For PRESENT
cipher a 6-round integral distinguisher was found. Later at CRYPTO 2015
Todo [17] proposed a full-round integral attack of MISTY1 based on a 6-round
integral distinguisher. Sun et al. [12] revisited division property, and they studied
the property of a set (multiset) satisfying certain division property. At CRYPTO
2016, Boura and Canteaut [6] proposed a new notion which they called parity
set to study division property, based on which they found better integral distin-
guisher for PRESENT cipher.

1 Since the round key is Xored into the state after the round function, we can easily
extend one more round before the distinguisher by using the technique proposed
in [20].

650 Z. Xiang et al.

Very recently, Todo et al. [19] introduced bit-based division property at FSE
2016 which treats each bit independently in order to find better integral distin-
guishers. They applied this technique to SIMON32, and as a result a 14-round
integral distinguisher for SIMON32 was found. However, as pointed out in [19],
searching integral distinguisher by bit-based division property required much
more time and memory. For a block cipher with block size n, the time and mem-
ory complexity is upper bounded by 2n. Thus, bit-based division property can
only apply to block ciphers with block size at most 32. For block ciphers with
a much larger block size, searching integral distinguisher by bit-based division
property under Todo et al.’s framework would be computationally infeasible.
Thus, Xiang et al. [24] proposed a state partition to get a tradeoff between
the time-memory complexity and the accuracy of the integral distinguisher, and
they improved distinguishers of SIMON48 and SIMON64 by one round for both
variants.

1.1 Our Contributions

In this paper, we present a novel technique to search integral distinguishers
based on bit-based division property by using MILP method. First we propose
a new notion that we call division trail to illustrate division property propa-
gation. We show that each division property propagation can be represented
by division trails, furthermore, we have proved that it is sufficient to check the
last vectors of all division trails in order to estimate whether a useful distin-
guisher exists. Based on this observation we construct a linear inequality system
for a given block cipher such that all feasible solutions of this linear inequality
system are exactly all the division trails. Thus, the constructed linear inequal-
ity system is sufficient to describe the division property propagations. Then,
we study the stopping rule in division property propagation. The stopping rule
determines whether the resulting division property can be propagated further
to find a longer integral distinguisher. It is observed that for a division property
propagation, if the resulting vectors for the first time contain all the vectors of
Hamming weight one after propagating r +1 rounds, the propagation procedure
should terminate and an r-round distinguisher can be derived. Hence, we set the
sum of the coordinates of the last vector of r-round division trail as objective
function. By combining this objective function and the linear inequality system
derived from the division trails, we construct an MILP problem and present an
algorithm to estimate whether r-round distinguisher exists given some initial
division property. To illustrate our new technique, we run experiments (all the
MILP problems in our experiments are solved by the openly available software
Gurobi [1]) on SIMON, SIMECK, PRESENT, RECTANGLE, TWINE, LBlock:

1. For SIMON [3] family block ciphers, we first model division property propa-
gations through Copy, And and Xor operations by linear inequalities, since
those operations are the basic operations in SIMON family. By using these
inequalities we construct an MILP problem and serve it in our search algo-
rithm. As a result we found 14-, 16-, 18-, 22- and 26-round integral distin-
guishers for SIMON32, 48, 64, 96 and 128 respectively. For SIMON48, 64,

Applying MILP Method to Searching Integral Distinguishers 651

96 and 128, our results are 2, 1, 1 and 1 more rounds than the previous
results in [27]. SIMECK [25] is a family of lightweight block ciphers whose
round function is very similar to SIMON except the rotation constants. We
applied our search technique to SIMECK and we found 15-, 18- and 21-round
distinguishers for SIMECK32, 48 and 64 respectively.

2. PRESENT [5] and RECTANGLE [28] are two SP-network lightweight block
ciphers whose linear layers are bit permutations. Unlike SIMON, these two
ciphers are Sbox-based block ciphers. In [17,18], Sbox is treated as a whole,
that is for an n-bit Sbox the input value to the Sbox is viewed as a value
of F

n
2 . In this paper we study bit-based division property propagation of

Sbox, and we present an algorithm to compute division trails of Sbox. We
observed that, considering bit-based division property could preserve more
integral property along with division property propagation through Sbox. By
converting division trails of Sbox layer into a set of linear inequalities we
construct MILP models for PRESENT and RECTANGLE, as a result, we
found 9-round distinguishers for both ciphers which are two more rounds
than the best integral distinguishers in the literature.

3. TWINE [16] and LBlock [23] are two generalized Feistel structure block
ciphers. By modeling Sbox, Copy and Xor with linear inequalities, we apply
our technique to these two ciphers and we found 16-round distinguishers which
are in accordance with the results in [26].

Our results are listed in Table 1. All the ciphers explored above except
SIMON32 have a block size larger than 32, and searching integral distinguish-
ers by bit-based division property under Todo’s framework is computationally
infeasible for those ciphers. Note that all our experiments are conducted on a
desktop and the consuming time varies from seconds to minutes which is very
efficient, the details are listed in Table 1. Moreover, by converting the search
algorithm into MILP problems, we can find better integral distinguishers for
SIMON48/64/96/128, SIMECK48/64, PRESENT and RECTANGLE.

The rest of the paper is organized as follows: In Sect. 2 we introduce some
basic background which will be used later. Section 3 studies how to model some
basic operations and components used in block cipher, and to construct a lin-
ear inequality system to accurately describe the division property propagations.
Section 4 studies the stopping rule and a search algorithm will be presented in
this section. Section 5 shows some applications of the technique, and we conclude
in Sect. 6.

2 Preliminaries

2.1 Notations

Let F2 denote the finite field with only two elements and F
n
2 denote the n-bit

string over F2. Let Z and Z
n denote the integer ring and the set of all vectors

whose coordinates are integers respectively. For any a ∈ F
n
2 , let a[i] denote the

i-th bit of a, and the Hamming weight of a is calculated as
∑n−1

i=0 a[i]. For any

652 Z. Xiang et al.

Table 1. Results on some block ciphers.

Cipher Block
size

Round
(Previous)

Round
(Sect. 5)

Data Balanced
bits

time

SIMON32 32 15 [19] 14 31 16 4.1 s

SIMON48 48 14 [27] 16 47 24 48.2 s

SIMON64 64 17 [27] 18 63 22 6.7 m

SIMON96 96 21 [27] 22 95 5 17.4 m

SIMON128 128 25 [27] 26 127 3 58.4 m

SIMECK32 32 15 [19] 15 31 7 6.5 s

SIMECK48 48 12 [18] 18 47 5 56.6 s

SIMECK64 64 12 [18] 21 63 5 3.0 m

PRESENT 64 7 [22] 9 60 1 3.4 m

RECTANGLE 64 7 [28] 9 60 16 4.1 m

LBlock 64 16 [26] 16 63 32 4.9 m

TWINE 64 16 [26] 16 63 32 2.6 m

For SIMON and SIMECK family block ciphers, since the round key is Xored
into the state after the round function, we can add one more round before
the distinguishers using the technique in [20]. The results presented in the
third and fourth columns have been added by one round.

a = (a0, · · · , am−1) ∈ F
n0
2 × · · · × F

nm−1
2 , the vectorial Hamming weight of a is

defined as W (a) = (w(a0), · · · , w(am−1)) where w(ai) is the Hamming weight
of ai. Let k = (k0, k1, · · · , km−1) and k∗ = (k∗

0 , k
∗
1 , · · · , k∗

m−1) be two vectors in
Z
m. Define k � k∗ if ki ≥ k∗

i holds for all i = 0, 1, · · · ,m − 1. Otherwise we
write k � k∗.

Bit Product Function πu(x) and πu(x): For any u ∈ F
n
2 , let πu(x) be a

function from F
n
2 to F2. For any x ∈ F

n
2 , define πu(x) as follows:

πu(x) =
n−1∏

i=0

x[i]u[i]

Let πu(x) be a function from (Fn0
2 ×F

n1
2 ×· · ·×F

nm−1
2) to F2 for all u ∈ (Fn0

2 ×
F
n1
2 ×, · · · ,×F

nm−1
2). For any u = (u0, u1, · · · , um−1),x = (x0, x1, · · · , xm−1) ∈

(Fn0
2 × F

n1
2 ×, · · · ,×F

nm−1
2), define πu(x) as follows:

πu(x) =
m−1∏

i=0

πui
(xi)

2.2 Division Property

Division property [18] is a generalized integral property which can exploit the
properties hidden between traditional integral properties A and B. Thus, by

Applying MILP Method to Searching Integral Distinguishers 653

propagating division property we desire to get some better distinguishers. In
the following we will introduce division property and present some propagation
rules.

Definition 1 (Division Property [17]). Let X be a multiset whose elements
take a value of (Fn

2)m, and k be an m-dimensional vector whose coordinates
take values between 0 and n. When the multiset X has the division property
Dn,m

k(0),k(1),··· ,k(q−1) , it fulfills the following conditions: The parity of πu(x) over
all x ∈ X is always even when

u ∈
{

(u0, u1, · · · , um−1) ∈ (Fn
2)m|W (u) � k(0), · · · ,W (u) � k(q−1)

}

Proposition 1 (Copy [17]). Denote X an input multiset whose elements belong
to F

n
2 , and let x ∈ X. The copy function creates (y0, y1) from x where y0 =

x, y1 = x. Assuming the input multiset has division property Dn
k , let Y be the

corresponding output multiset, then Y has division property Dn,2
(0,k),(1,k−1),··· ,(k,0).

Proposition 2 (Compression by And [24]). Denote X an input multiset
whose elements belong to F

n
2 × F

n
2 , let (x0, x1) ∈ X be an input to the com-

pression function and denote the ouput value by y where y = x0&x1. Let Y be
the corresponding output multiset. If input multiset X has division property Dn,2

k

where k = (k0, k1), then the division property of Y is Dn
k where k = max{k0, k1}.

Proposition 3 (Compression by Xor [17]). Denote X an input multiset
whose elements belong to F

n
2 × F

n
2 , let (x0, x1) ∈ X be an input to the com-

pression function and denote the ouput value by y where y = x0 ⊕ x1. Let Y be
the corresponding output multiset. If input multiset X has division property Dn,2

k

where k = (k0, k1), then the division property of Y is Dn
k0+k1

.

Proposition 4 (Substitution [17]). Denote X an input multiset whose ele-
ments belong to F

n1
2 , let F be a substitution function (Sbox) with algebraic degree

d and F maps an element in F
n1
2 to an element in F

n2
2 , denote Y the correspond-

ing output multiset F (X). Assuming the input multiset has division property Dn1
k ,

then the output multiset has division property Dn2

� k
d�. Moreover, if n1 = n2 and

the substitution function is bijective, assuming the input multiset has division
property Dn1

n1
, then the output multiset has division property Dn1

n1

For more details regarding division property we refer the readers to [17–19].

2.3 Modeling a Subset in {0, 1}n by Linear Inequalities

Convex Hull and H-Representation: The convex hull of a set A of points is
the smallest convex set that contains A, and the H-Representation of a convex
set is a set of linear inequalities L corresponding to the intersection of some
halfspaces such that the feasible solutions of L are exactly the convex set.

In [14,15] Sun et al. treat a differential (xu−1, · · · , x0) → (yv−1, · · · , y0) of
an u × v Sbox as an (u + v)-dimensional vector (xu−1, · · · , x0, yv−1, · · · , y0).

654 Z. Xiang et al.

By computing the H-Representation of the convex hull of all possible input-
output differential pairs of an Sbox, a set of linear inequalities will be returned to
characterize the differential propagation. Moreover, they proved that for a given
subset A of {0, 1}n, it is always feasible to choose a set of linear inequalities L
from the H-Representation of the convex hull of A, such that A represents all
feasible solutions of L restricted in {0, 1}n.

Theorem 1 ([14]). Let A be a subset of {0, 1}n, and denote Conv(A) the convex
hull of A. For any x ∈ {0, 1}n, x ∈ Conv(A) if and only if x ∈ A.

Thus, they first computed a set of vectors A which is composed of all differential
pairs of a given Sbox, and then calculated the H-Representation of the convex
hull of A by using the inequality generator() function in the Sage [2] software,
and this will return a set of linear inequalities L which are the H-presentation of
Conv(A). According to Theorem 1, L is an accurate description of the difference
propagations of the given Sbox, that is, all feasible solutions of L restricted
in {0, 1}n are exactly A. Since L is the H-Representation of Conv(A), each
possible differential characteristic corresponds to a point in A, thus, each possible
differential characteristic satisfies the linear inequalities in L. On the other hand,
for any impossible differential characteristic id, there always exists at least one
linear inequality in L such that id does not satisfy this inequality. Otherwise, if
id satisfies all the inequalities in L which indicates id belongs to Conv(A), and
this is equivalent to id ∈ A.

Since L is an accurate description of A, adding all the linear inequalities
in L into the MILP problem when searching differential characteristics of a
block cipher, it will always return valid differential characteristics. However, the
number of linear inequalities in the H-Representation of Conv(A) is often very
large such that adding all the inequalities into the MILP model will make the
problem computationally infeasible. Thus, Sun et al. [14] proposed a greedy
algorithm (See Algorithm 1) to select a subset of L whose feasible solutions
restricted in {0, 1}n are exactly A. This algorithm can greatly reduce the number
of inequalities required to accurately describe A.

In order to illustrate the procedure of this section, we present a toy example
in Appendix A.

3 Modeling Division Property Propagations of Basic
Operations and Sbox by Linear Inequalities

In [18] Todo introduced division property by using some vectors in Z
m, and the

propagation of division property through a round function of the block cipher
is actually a transition of the vectors. Given an initial division property Dn,m

k ,
let fr denote the round function of a block cipher, the division property of the
state after one round fr can be computed from Dn,m

k by the rules introduced
in [17,18], and denote the division property after one round fr by Dn,m

K
where

K is a set of vectors in Z
m. Thus, the division property propagation through

fr is actually the transition from k to the vectors in K. Traditionally, if two

Applying MILP Method to Searching Integral Distinguishers 655

Algorithm 1. Select a subset of linear inequalities from L
Input : L: the set of all inequalities in the H-Representation of Conv(A) with

A a subset of {0, 1}n

Output: A subset L∗ of L whose feasible solutions restricted in {0, 1}n are A
1 begin
2 L∗ = ∅
3 B = {0, 1}n \ A
4 L̄ = L
5 while B �= ∅ do
6 l ← The inequality in L̄ which maximizes the number of points in B

that do not satisfy this inequality (choose the first one if there are
multiple such inequalities).

7 B∗ ← The points in B that do not satisfy l.
8 L∗ = L∗ ∪ {l}
9 L̄ = L̄ \ {l}

10 B = B \ B∗

11 end
12 return L∗

13 end

vectors k1 and k2 in K satisfying that k1 � k2, then k1 is redundant and will
be removed from K. However, since the redundant vectors do not influence the
division property, in this paper we do not remove redundant vectors in K, that
is for any vector derived from k by using the propagation rules we add this
vector into K. Moreover, for any vector k̄ in K, we call that k can propagate to
k̄ through fr.

Definition 2 (Division Trail). Let fr denote the round function of an iter-
ated block cipher. Assume the input multiset to the block cipher has initial divi-
sion property Dn,m

k , and denote the division property after i-round propagation
through fr by Dn,m

Ki
. Thus, we have the following chain of division property prop-

agations:
{k} def

= K0
fr−→ K1

fr−→ K2
fr−→ · · ·

Moreover, for any vector k∗
i in Ki (i ≥ 1), there must exist an vector k∗

i−1 in
Ki−1 such that k∗

i−1 can propagate to k∗
i by division property propagation rules.

Furthermore, for (k0,k1, · · · ,kr) ∈ K0 × K1 × · · ·×Kr, if ki−1 can propagate to
ki for all i ∈ {1, 2, · · · , r}, we call (k0,k1, · · · ,kr) an r-round division trail.

Proposition 5. Denote the division property of input multiset to an iterated
block cipher by Dn,m

k , let fr be the round function. Denote

{k} def
= K0

fr−→ K1
fr−→ K2

fr−→ · · · fr−→ Kr

the r-round division property propagation. Thus, the set of the last vectors of all
r-round division trails which start with k is equal to Kr.

656 Z. Xiang et al.

Generally, given an initial division property Dn,m
k , and if one would like to

check whether there exists useful integral property after r-round encryption, we
have to propagate the initial division property for r rounds to get Dn,m

Kr
and

check all the vectors in Kr. According to Proposition 5, it is equivalent to find
all r-round division trails which start with k, and check the last vectors in the
division trails to judge if any exploitable distinguisher can be extracted. Based
on this observation, in the following we focus on how to accurately describe all
division trails.

A linear inequality system will be adopted to describe division property prop-
agations, that is we will construct a linear inequality system such that the feasible
solutions represent all division trails. Since division property propagation is a
deterministic procedure, the constructed linear inequality system must satisfy:

– For each division trail, it must satisfy all linear inequalities in the linear
inequality system. That is each division trail corresponds to a feasible solution
of the linear inequality system.

– Each feasible solution of the linear inequality system corresponds to a division
trail. That is all feasible solutions of the linear inequality system do not
contain any impossible division trail.

A linear inequality system satisfying the above two conditions is an accurate
description of division property propagation. In the rest of the paper, we only
consider bit-based division property. We start by modeling bit-based division
property propagation of some basic operations and Sbox in block ciphers.

3.1 Modeling Copy, And and Xor

In this subsection, we show how to model bit-wise Copy, And and Xor operations
by linear inequalities.

Modeling Copy. Copy operation is the basic operation used in Feistel block
cipher. The left half of the input is copied into two equal parts, one of which
is fed to the round function. Since we consider bit-based division property, the
division property propagation of each bit is independent of each other. Thus, we
consider only a single bit.

Let X be an input multiset whose elements take a value of F2. The copy
function creates y = (y0, y1) from x ∈ X where y0 = x and y1 = x. Assuming the
input multiset has division property D1

k, then the corresponding output multiset
has division property D1

(0,k),··· ,(k,0) from Proposition 1. Since we consider bit-
based division property, the input multiset division property D1

k must satisfy
k ≤ 1. If k = 0, the output multiset has division property D1

(0,0), otherwise if

k = 1, the output multiset has division property D1
(0,1),(1,0). Thus, (0)

copy−→ (0, 0)

is the only division trail given the initial division property D1
0, and (1)

copy−→ (0, 1),
(1)

copy−→ (1, 0) are the two division trails given the initial division property D1
1.

Applying MILP Method to Searching Integral Distinguishers 657

Now we are ready to give a linear inequality description of these division
trails. Denote (a)

copy−→ (b0, b1) a division trail of Copy function, the following
inequality2 is sufficient to describe the division propagation of Copy.

{
a − b0 − b1 = 0
a, b0, b1 are binaries

(1)

Apparently, all feasible solutions of the inequalities in (1) corresponding to
(a, b0, b1) are (0, 0, 0), (1, 0, 1) and (1, 1, 0), which are exactly the three division
trails of Copy function described above.

Modeling And. Bit-wise And operation is a basic nonlinear function, it is the
only nonlinear operation for SIMON family. Similar to the modeling procedure
of Copy function, we can express its division property propagation as a set of
linear inequalities.

Let X be an input multiset whose elements take a value of F2 × F2. The
And function creates y = x0&x1 from x = (x0, x1) ∈ X. Assuming the input
multiset has division property D1,2

k where k = (k0, k1), the division property of
the corresponding output multiset is D1

k where k = max{k0, k1} according to
Proposition 2. Since we consider bit-based division property here, k = (k0, k1)
must satisfy 0 ≤ k0, k1 ≤ 1. Thus, there are four division trails for And function
which are (0, 0) Xor−→ (0), (0, 1) Xor−→ (1), (1, 0) Xor−→ (1) and (1, 1) Xor−→ (1). Denote
(a0, a1)

and−→ (b) a division trail of And function, the following linear inequalities
are sufficient to describe this propagation features.

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

b − a0 ≥ 0
b − a1 ≥ 0
b − a0 − a1 ≤ 0
a0, a1, b are binaries

(2)

It is easy to check that all feasible solutions of the inequalities in (2) cor-
responding to (a0, a1, b) are (0, 0, 0), (0, 1, 1), (1, 0, 1) and (1, 1, 1), which are
exactly the four division trails of And function described above.

Modeling Xor. Bit-wise Xor is another basic operation used in block ciphers.
Similarly, a linear inequality system can be constructed to describe the division
property propagation through Xor function.

Let X denote an input multiset whose elements take a value of F2 × F2. The
Xor function creates y = x0 ⊕ x1 from x = (x0, x1) ∈ X. Assuming the input
multiset X has division property D1,2

k where k = (k0, k1), thus, the corresponding
output multiset Y has division property D1

k0+k1
. Since we consider bit-based

2 In this paper we do not make a distinction between equality and inequality, since
the MILP problem use both equalities and inequalities as constraints.

658 Z. Xiang et al.

division property here, k = (k0, k1) must satisfy 0 ≤ k0, k1 ≤ 1. Moreover, the
element of Y takes a value in F2, the division property D1

k0+k1
of Y must satisfy

k0 + k1 ≤ 1. That is, if (k0, k1) = (1, 1), the division property propagation will
abort. Thus, there are three valid division trails: (0, 0) Xor−→ (0), (0, 1) Xor−→ (1) and
(1, 0) Xor−→ (1). Let (a0, a1)

Xor−→ (b) denote a division trail through Xor function,
the following inequality can describe the division trail through Xor function.

{
a0 + a1 − b = 0
a0, a1, b are binaries

(3)

We can check that all the feasible solutions of inequality (3) corresponding to
(a0, a1, b) are (0, 0, 0), (0, 1, 1) and (1, 0, 1), which are exactly the division trails
described above.

3.2 Modeling Sbox

Sbox is an important component of block ciphers, for a lot of block ciphers it is
the only non-linear part. In [17,18], the Sbox is treated as a whole and the divi-
sion property is considered while the element in the input multiset taking a value
in F

n
2 for an n-bit Sbox. In [19] Todo et al. introduced bit-based division prop-

erty, but they only applied their technique to non-Sbox based ciphers SIMON
and SIMECK. In this section, we study bit-based division property propagation
through Sbox.

Assume we are dealing with an n-bit Sbox, the input and output of the Sbox
are elements in (F2)n. Suppose that the input multiset X has division property
D1,n

k where k = (k0, k1, · · · , kn−1), that is for any u ∈ (F2)n the parity of πu(x)
over X is even only if W (u) � k. Note that for bit-based division property it
holds W (u) = u, thus, we do not make a distinction between W (u) and u in
the following. To compute the division property of the output multiset Y, we
first consider a naive approach.

Previous Approach. First by Concatenation function, each element in X can
be converted into an element in F

n
2 . Denote output multiset of Concatenation

function as X
∗, thus, the division property of X

∗ is Dn
k0+k1+···+kn−1

according to
Rule 5 in [17]. Secondly, we pass each element in X

∗ to the Substitution function
Sbox, and denote the output multiset by Y

∗ whose elements take a value of F
n
2 .

According to Proposition 4, the division property of Y
∗ is Dn⌈

k0+k1+···+kn−1
d

⌉

where d is the algebraic degree of the Sbox. At last, for any value y∗ =
y0||y1|| · · · ||yn−1 in Y

∗, a Split function creates y = (y0, y1, · · · , yn−1) from y∗.
Apparently, the output multiset of Split function equals to Y. According to Rule
4 in [17], the division property of Y is D1,n

k0,k1,··· where ki = (ki
0, k

i
1, · · · , ki

n−1)

(i ≥ 0) denote all solutions of x0 + x1 + · · · , xn−1 =
⌈
k0+k1+···+kn−1

d

⌉
.

Applying MILP Method to Searching Integral Distinguishers 659

Example: Take the Sbox used in PRESENT as an example. The PRESENT
Sbox is a 4×4 Sbox with algebraic degree three. Assume that the input multiset
to the Sbox has division property D1,4

(0,1,1,1). To compute the output multiset
division property, we can proceed in three steps as described above: First by
a concatenation function we convert the input multiset into another multiset
X

∗ whose elements take a value in F
4
2, thus the division property of X

∗ is D4
3.

Secondly, make each value in X
∗ pass through the Sbox operation and this will

result in a multiset Y
∗ with division property D4

� 3
3� = D4

1. Finally, we split each

value in Y
∗ into a value in (F2)4, and we will get a multiset Y with division

property D1,4
(0,0,0,1),(0,0,1,0),(0,1,0,0),(1,0,0,0). Thus, we have obtained four division

trails of Sbox: (0, 1, 1, 1) Sbox−→ (0, 0, 0, 1), (0, 1, 1, 1) Sbox−→ (0, 0, 1, 0), (0, 1, 1, 1) Sbox−→
(0, 1, 0, 0) and (0, 1, 1, 1) Sbox−→ (1, 0, 0, 0).

Note that only the algebraic degree is exploited to calculate the division
trails of Sbox in this naive approach. From the example illustrated above, if the
input multiset to the Sbox has division property D1,4

(0,1,1,1), the corresponding
output multiset does not balance on any of the four output bits. However, this is
not actually true. Denote the input to PRESENT Sbox as x = (x3, x2, x1, x0),
and the corresponding output as y = (y3, y2, y1, y0), the algebraic normal form
(ANF) of PRESENT Sbox is listed as follows:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

y3 = 1 ⊕ x0 ⊕ x1 ⊕ x3 ⊕ x1x2 ⊕ x0x1x2 ⊕ x0x1x3 ⊕ x0x2x3

y2 = 1 ⊕ x2 ⊕ x3 ⊕ x0x1 ⊕ x0x3 ⊕ x1x3 ⊕ x0x1x3 ⊕ x0x2x3

y1 = x1 ⊕ x3 ⊕ x1x3 ⊕ x2x3 ⊕ x0x1x2 ⊕ x0x1x3 ⊕ x0x2x3

y0 = x0 ⊕ x2 ⊕ x3 ⊕ x1x2

(4)

Thus,
π(0,0,0,1)((y3, y2, y1, y0)) = y0

and
⊕

x∈X

π(0,0,0,1)((y3, y2, y1, y0))

=
⊕

x∈X

y0

=
⊕

x∈X

(x0 ⊕ x2 ⊕ x3 ⊕ x1x2)

=
⊕

x∈X

π(0,0,0,1)(x) ⊕
⊕

x∈X

π(0,1,0,0)(x) ⊕
⊕

x∈X

π(1,0,0,0)(x) ⊕
⊕

x∈X

π(0,1,1,0)(x)

= 0 + 0 + 0 + 0
= 0

As illustrated above, the least significant bit y0 of the output y is balanced.
Similarly, we can check that y2 and y0y2 are all balanced. Furthermore, it can
be observed that the expressions of y1 and y3 all contain monomial x0x1x2

660 Z. Xiang et al.

whose parity over X is undetermined according to the initial division property
D1,4

(0,1,1,1), thus y1 and y3 are not balanced. Based on these observations, the

division property of Y should be D1,4
(0,0,1,0),(1,0,0,0). In this case we obtain two

division trails of PRESENT Sbox, and what is more important is that y0, y2 and
y0y2 are all balanced under this approach.

Our Improved Approach. Now we present a generalized algorithm to cal-
culate division trails of an Sbox based on bit-based division property. In
Algorithm 2, x = (xn−1, · · · , x0) and y = (yn−1, · · · , y0) denote the input and
output to an n-bit Sbox respectively, and yi is expressed as a boolean function
of (xn−1, · · · , x0).

Algorithm 2. Calculating division trails of an Sbox
Input : The input division property of an n-bit Sbox D1,n

k where
k = (kn−1, · · · , k0)

Output: A set K of vectors such that the output multiset has division
property D1,n

K

1 begin
2 S̄ = {k̄ | k̄ � k}
3 F (X) = {πk̄(x) | k̄ ∈ S̄}
4 K̄ = ∅
5 for u ∈ (F2)

n do
6 if πu(y) contains any monomial in F (X) then
7 K̄ = K̄ ∪ {u}
8 end

9 end
10 K = SizeReduce(K̄)
11 return K

12 end

We explain Algorithm 2 line by line:

Line 2–3 According to input division property D1,n
k , the parity of monomial

πk̄(x) with k̄ � k over X is undetermined, and we store these monomials in
F (X). Thus, the parity of any monomial that does not belong to F (X) is
zero.

Line 4 Initialize K as an empty set.
Line 5–9 For any possible u, if boolean function πu(y) contains any monomial

in F (X), the parity of πu(y) over X is undetermined, and we store all these
vectors in K̄.

Line 10 SizeReduce() function removes all redundant vectors in K̄. Since we
are interested in finding a set K such that for any u ∈ {u|u � k for all k ∈
K}, the parity of πu(y) is zero. Note that for any vector u ∈ (F2)n\K̄,
the parity of πu(y) is zero, thus, we must have {u | u � k for all

Applying MILP Method to Searching Integral Distinguishers 661

k ∈ K} ⊂ (F2)n\K̄, and if we let K= SizeReduce(K̄) it will meet this
condition. Otherwise, if there exists a vector u ∈ {u | u � k for all k ∈ K}
such that u /∈ (F2)n\K̄, thus, we have u ∈ K̄, which meants either u ∈ K or
there exists a vector u∗ ∈ K such that u � u∗ since K = SizeReduce(K̄). In
either case it won’t happen u ∈ {u | u � k for all k ∈ K}, which leads to a
contradiction. Therefore, K is sufficient to characterize the division property
of output multiset.

Line 11 Return K as output.

Given an Sbox and an initial division property D1,n
k , Algorithm 2 returns the

output division property D1,n
K

. Thus for any vector k∗ ∈ K, (k,k∗) is a division
trail of the Sbox. If we try all the 2n possible input multiset division property,
we will get a full list of division trails. Table 4 in Appendix B presents a complete
list of all the 47 division trails of PRESENT Sbox.

Note that bit-based division property of an Sbox is closely related with Boura
and Canteaut’s work [6]. However, Boura and Canteaut’s work is established on
parity set, while our results are directly deduced from bit-based division property.

Representing the Division Trails of Sbox as Linear Inequalities. Each
division trail of an n-bit Sbox can be viewed as a 2n-dimensional vector in
{0, 1}2n ⊂ R

2n where R is the real numbers field. Thus, all division trails form
a subset P of {0, 1}2n. Next, we compute the H-Representation of Conv(P) by
using the inequality generator() function in the Sage [2] software, and this will
return a set of linear inequalities L. However, L contains too many inequalities
which will make the size of corresponding MILP problem too large to solve.
Fortunately, we can select a subset L∗ of L by Algorithm 1 such that the feasible
solutions of L∗ restricted in {0, 1}2n are exactly P .

Example: PRESENT Sbox contains 47 division trails which forms a subset P of
{0, 1}8. By using the inequality generator() function in the Sage software, a set of
122 linear inequalities will be returned. Furthermore, this set can be reduced by
Algorithm 1 and we will get a set L∗ of only 11 inequalities. The 11 inequalities
for PRESENT Sbox are listed in Appendix C. In order to get the solutions of
L∗ restricted in {0, 1}8, we only need to specify that all variables can only take
values in {0, 1}.

So far, we have studied calculating and modeling division trails of basic oper-
ations and Sbox, thus, for block ciphers based on these operations and (or) Sbox,
we can construct a set of linear inequalities which characterize one round divi-
sion property propagation. By repeating this procedure r times, we can get a
linear inequality system L such that all feasible solutions of L are all r-round
division trails.

3.3 Initial Division Property

Integral distinguisher search algorithm often has a given initial division property
D1,n

k . Even though L is able to describe all division trails, we are interested in

662 Z. Xiang et al.

division trails starting from the given initial division property. Thus, we have
to model the initial division property into the linear inequality system. Denote
(a0

n−1, · · · , a0
0) → · · · → (ar

n−1, · · · , ar
0) an r-round division trail, L is thus a

linear inequality system defined on variables aj
i (i = 0, · · · , n − 1. j = 0, · · · , r)

and some auxiliary variables. Let D1,n
k denote the initial input division property

with k = (kn−1, · · · , k0), we need to add a0
i = ki (i = 0, · · · n − 1) into L, and

thus all feasible solutions of L are division trails which start from vector k.

4 Stopping Rule and Search Algorithm

In this section we first study the stopping rule in the search of integral distin-
guishers based on division property, and then we convert this stopping rule into
an objective function of the MILP problem. At last, we propose an algorithm to
determine whether an r-round integral distinguisher exists.

In the division property propagation, we note that only zero vector can prop-
agate to zero vector. Thus if the given initial division property is D1,n

k with k a
non-zero vector, and we denote the division property after r-round propagation
by D1,n

Kr
, then it holds that Kr does not contain zero vector. In the following, we

always assume k �= 0, since k = 0 does not imply any integral property on the
input multiset.

4.1 Stopping Rule

Let’s first consider a set X with division property D1,n
K

. If X does not have any
useful integral property, that is the Xor-sum of X does not balance on any bit,
thus we have

⊕
x∈X

πu(x) is unknown for any unit vector u ∈ (F2)n. Since X

has division property D1,n
K

, there must exist a vector k ∈ K such that u � k.
Note that u is a unit vector, thus u = k, which means K contains all the n unit
vectors. On the other hand, if K contains all the n unit vectors, then for any
0 �= u ∈ (F2)n there must exist a unit vector e ∈ K such that u � e, that is⊕

x∈X
πu(x) is unknown. Thus, X does not have any integral property.

Proposition 6 (Set without Integral Property). Assume X is a multiset
with division property D1,n

K
, then X does not have integral property if and only

if K contains all the n unit vectors.

Denote the output division property after i-round encryption by D1,n
Ki

, and

the initial input division property by D1,n
k

def
= D1,n

K0
. If Kr+1 for the first time

contains all the n unit vectors, the division property propagation should stop
and an r-round distinguisher can be derived from D1,n

Kr
. In this case, Kr does

not contain all n unit vectors, thus we can always find a unit vector e such that
e /∈ Kr. Since e is a unit vector, it holds e � k for all k ∈ Kr. Therefore, the
parity of πe(x) over r-round outputs is even which is a zero-sum property, thus
a balanced bit of the output is found. By repeating this process, all balanced
bits can be found.

Applying MILP Method to Searching Integral Distinguishers 663

Based on this observation, we only need to detect whether Kr contains all
unit vectors. According to Proposition 5, in order to check the vectors in Kr,
it is equivalent to check the last vectors of all r-round division trails. Denote
(a0

n−1, · · · , a0
0) → · · · → (ar

n−1, · · · , ar
0) an r-round division trail, and let L

denote a linear inequality system whose feasible solutions are all division trails
which start with the given initial division property. It is clear that L is a linear
inequality system defined on variables aj

i (i = 0, · · · , n − 1. j = 0, · · · , r) and
some auxiliary variables. Thus, we can set the objective function as:

Obj : Min{ar
0 + ar

1 + · · · ar
n−1} (5)

Now we get a complete MILP problem by setting L as constraints and Obj
as objective function. Note that Ki does not contain zero vector, in this case, the
objective function will never take a value of zero, and the MILP problem will
return an objective value greater than zero (if the MILP problem has feasible
solutions). In the following we show how to determine whether r-round integral
distinguisher exists based on this MILP problem.

4.2 Search Algorithm

Denote L a linear inequality description of all r-round division trails with the
given initial input division property D1,n

k . Let the sum of the coordinates of
the last vector in the division trail be the objective function Obj as in Eq. (5).
Denote M(L, Obj) the MILP problem composed of L and Obj. Algorithm 3 will
return whether r-round integral distinguisher exists.

Our MILP problems are solved by the openly available MILP optimizer
Gurobi [1], Algorithm 3 is presented with some Gurobi syntax. We denote the
set of last vectors of all division trails by Kr.

Line 2 Initialize S as all possible output bit positions.
Line 3–24 For an n-bit block cipher, check how many unit vectors there are in

Kr. Moreover, we remove the bit position marked by the unit vectors in Kr

from S, and return S as the output of the algorithm.
Line 4 Check whether the MILP problem has a feasible solution. Note that

the initial MILP problem always has feasible solutions. However, along with
the execution of the procedure, it will add some constraints (Line 13) in the
model which will possibly make the MILP problem unsolvable.

Line 5 Optimize the MILP problem M by Gurobi.
Line 6–18 M.ObjV al is Gurobi syntax which returns the current value of the

objective function after M has been optimized. M.ObjV al = 1 means we
have found a division trail which ends up with a unit vector e, thus e ∈ Kr.
M.getObjective() is a Gurobi function which returns the objective function
of the model, which is ar

0 + · · · + ar
n−1 in our case. The functionality of Line

8–17 is to choose which variable of (ar
0, · · · , ar

n−1) is equal to one in e and
add a new constraint var = 0 into M , here var denotes the variable taking a
value of one. obj.getV ar(i) is used to return the i-th variable of obj which is

664 Z. Xiang et al.

Algorithm 3. Return whether r-round distinguisher exists
Input : M = M(L, Obj).
Output: A set S of balanced bit positions.

1 begin
2 S = {ar

0, · · · , ar
n−1}

3 for i in range(0,n) do
4 if M has feasible solutions then
5 M.optimize()
6 if M.ObjV al = 1 then
7 obj = M.getObjective()
8 for i in range(0,n) do
9 var = obj.getV ar(i)

10 val = var.getAttr(′x′)
11 if val = 1 then
12 S \ {var}
13 M.addConstr(var = 0)
14 M.update()
15 break

16 end

17 end

18 else
19 return S

20 end

21 else
22 return S

23 end

24 end
25 return S

26 end

ar
i in this case. var.getAttr(′x′) retrieves the value of var under the current

solution. Line 12 removes var from S, since we have found e ∈ Kr whose
nonzero position is var which means var can’t be a balanced bit position.
M.addConstr(var = 0) adds a new constraints var = 0 into M , and this is
used to rule out e from Kr. Line 14 updates the model since we have added
a new constraint.

Line 19 This step returns S, the execution of this step means the objective
value of M is larger than one, that is we can no longer find a division trail
with the last vector being a unit vector. In this case, we have found all unit
vectors in Kr which represent undetermined bit positions, and thus we have
ruled out all unbalanced bits and get an integral distinguisher.

Line 22 M do not have any feasible solutions means we have ruled out all units
vectors of Kr and made Kr an empty set along with the execution. In this
case, we can return S as output since we have checked all vectors.

Line 25 If the for loop do not make the procedure exit, return S as output.
Usually, in this case S is an empty set which means no distinguisher found.

Applying MILP Method to Searching Integral Distinguishers 665

Algorithm 3 always returns a set S indicating balanced bit positions. For
a block cipher with a given initial division property D1,n

k , we can construct an
r-round linear description of division property propagations and use Algorithm 3
to check whether a distinguisher exists. If for the first time the (r + 1)-round
model returns an empty set, then the longest distinguisher for the given initial
division property is r-round.

5 Applications to SIMON, SIMECK, PRESENT,
RECTANGLE, LBlock and TWINE

In this section, we show some applications of our technique. All the source
codes are avaiable at https://github.com/xiangzejun/MILP Division Property.
We applied our algorithm to SIMON, SIMECK, PRESENT, RECTANGLE,
LBlock and TWINE block ciphers. The results are listed in Table 1. The Round
(Previous) column and Round (Sect. 5) column list the number of rounds of the
distinguishers of previous and our results. The Data column represents the num-
ber of active bits of the input pattern of the integral distinguisher, the data com-
plexity of the distinguisher is determined by the initial input division property.
Balanced bits column represents the number of balanced bits of the distinguisher
we found. Time presents the time used by Algorithm 3 for searching the corre-
sponding distinguishers, among which s is short for second and m is short for
minute. All the experiments are conducted on the following platform: Intel Core
i7-2600 CPU @3.40 GHz, 8.00G RAM, 64-bit Windows 7 system. Moreover, the
distinguishes listed in Table 1 are presented in Appendix E. The table shows
that we get improved distinguishers for SIMON48/64/96/128, SIMECK48/64,
PRESENT and RECTANGLE. For SIMECK32, LBlock and TWINE our results
are consistent with the previous best results. The result of SIMON32 is one round
less than the result in [19]. However, we only use bit-based division property here,
the 15-round distinguisher found in [19] for SIMON32 used bit-based division
property using three subset. If bit-based division property is the only technique
adopted, 14-round distinguisher is the longest distinguisher we can find.

5.1 Applications to SIMON and SIMECK

SIMON [3] is a family of lightweight block ciphers published by the U.S. National
Security Agency (NSA) in 2013. SIMON adopts Fesitel structure and it has a
very compact round function which only involves bit-wise And, Xor and circular
shift operations. The structure of one round SIMON encryption is depicted in
Fig. 1 where Si denotes left circular shift by i bits.

1-round Description of SIMON: Denote one round division trail of
SIMON2n by (ai

0, · · · , ai
n−1, b

i
0, · · · , bin−1) → (ai+1

0 , · · · , ai+1
n−1, b

i+1
0 , · · · , bi+1

n−1).
In order to get a linear description of all possible division trails of one
round SIMON, we introduce four vectors of auxiliary variables which are
(ui

0, · · · , ui
n−1), (vi

0, · · · , vi
n−1), (wi

0, · · · , wi
n−1) and (ti0, · · · , tin−1). We denote

https://github.com/xiangzejun/MILP_Division_Property

666 Z. Xiang et al.

Fig. 1. Feistel structure of SIMON round function

(ui
0, · · · , ui

n−1) the input division property of S1. Similarly, denote (vi
0, · · · , vi

n−1)
and (wi

0, · · · , wi
n−1) the input division property of S8 and S2 respectively. Let

(ti0, · · · , tin−1) denote the output division property of bit-wise And operation.
Subsection 3.1 has modeled Copy, And and Xor functions. According to Eq. (1),
the following inequalities are sufficient to model the Copy operation used in
SIMON2n:

L1 : ai
j − ui

j − vi
j − wi

j − bi+1
j = 0 for j ∈ {0, 1, · · · , n − 1}

Since we consider bit-based division property, division property propagation
through circular shift is just a circular shift of the coordinates of the vector. Thus,
the division property of the output of S1 is (ui

1, · · · , ui
n−1, u

i
0). Similarly, the divi-

sion property of the output of S8 and S2 are (vi
8, · · · , vi

6, v
i
7) and (wi

2, · · · , wi
0, w

i
1)

respectively. We can model bit-wise And operation used in SIMON by the fol-
lowing inequalities according to Eq. (2):

L2 :

⎧
⎪⎨

⎪⎩

tij − ui
j+1 ≥ 0 for j ∈ {0, 1, · · · , n − 1}

tij − vi
j+8 ≥ 0 for j ∈ {0, 1, · · · , n − 1}

tij − ui
j+1 − vi

j+8 ≤ 0 for j ∈ {0, 1, · · · , n − 1}

At last, the Xor operations in SIMON2n can be modeled by the following inequal-
ities according to Eq. (3):

L3 : ai+1
j − bij − tij − wi

j+2 = 0 for j ∈ {0, 1, · · · , n − 1}

So far, we have modeled all operations used in SIMON, and get an accurate
description {L1,L2,L3} of 1-round division trails. By repeating this procedure
r times, we can get a linear inequality system L for r-round division prop-
erty propagation. Given some initial division property, we can add the corre-
sponding constrains into L and estimate whether a useful distinguisher exists by
Algorithm 3. The results for SIMON family are listed in Table 1.

Applying MILP Method to Searching Integral Distinguishers 667

For SIMON48/64/96/128, we found the best distinguishers so far. Note
that by using bit-based division property under the framework of [19], it is
computationally impractical to search distinguishers for these versions. Using
Algorithm 3, distinguishers can be searched in practical time.

SIMECK [25] is a family of lightweight block cipher proposed at CHES 2015.
The round function of SIMECK is very like SIMON except the rotation con-
stants. We applied our technique to SIMECK, and 15-, 18- and 21-round dis-
tinguishers are found for SIMECK32, SIMECK48 and SIMECK64 respectively,
which shows that SIMON has better security than SIMECK with respect to
division property based integral cryptanalysis.

We found that the 14-round distinguisher of SIMON32 we found is the same
as the 14-round distinguisher of SIMON32 in [19] based on bit-based division
property. Surprisingly, the 15-round distinguisher for SIMECK32 in [19] is found
by bit-based division property using three subsets, however, we also find the same
distinguisher for SIMECK32 by only using bit-based division property.

In [9], the authors investigated the differential and linear behavior of SIMON
family regarding rotation parameters, and they presented some interesting alter-
native parameters among which (1, 0, 2) is optimal for the differential and linear
characteristics with the restriction that the second rotation parameter is zero. In
this paper, we investigated the integral property of this parameter by our tech-
nique. The results are listed in Table 2 (h in the time column represents hour).
The third column lists the rounds of the distinguishers we found. The results
show that (1, 0, 2) is a very bad choice with respect to division property based
integral cryptanalysis.

Table 2. Results on SIMON(1,0,2).

Cipher Block size Round Data Balanced bits Time

SIMON32(1,0,2) 32 20 31 1 34.1s

SIMON48(1,0,2) 48 28 47 1 3.2m

SIMON64(1,0,2) 64 36 63 1 10.3m

SIMON96(1,0,2) 96 52 95 3 6.4h

SIMON128(1,0,2) 128 68 127 3 24h

5.2 Applications to PRESENT and RECTANGLE

PRESENT [5] and RECTANGLE [28] are two SP-network block ciphers, of
which the linear layers are bit permutations. Figure 2 illustrates one round
encryption of PRESENT.

1-round Description of PRESENT: Denote one round division trail of
PRES-ENT by (ai

63, · · · , ai
0) → (ai+1

63 , · · · , ai+1
0). We first model the division

668 Z. Xiang et al.

Fig. 2. One round SP structure of PRESENT

property propagation of Sbox layer. Denote the division property of the output
of Sbox by (bi63, · · · , bi0). Subsection 3.2 has studied how to calculate the division
trails of Sbox and model those trails by linear inequalities. Appendix C shows
the 11 inequalities of PRESENT Sbox. For each of the 16 Sboxes of PRESENT,
we introduce 11 inequalities and thus the Sbox layer of PRESENT can be mod-
eled by 11 × 16 = 176 inequalities which is denoted by L1. The linear layer of
PRESENT is a bit permutation, thus, the division property propagation through
linear layer is just a permutation of the coordinates of the vector, that is

L2 :

{
ai+1
16j mod 63 = bij j ∈ {0, 1, · · · , 62}

ai+1
j = bij j = 63

Note that L1 is a linear inequality system defined on variables (ai
63, · · · , ai

0) and
(bi63, · · · , bi0), we can use the equalities in L2 to replace the variables (bi63, · · · , bi0)
in L1 in order to save auxiliary variables.

Now we have get a linear inequality system to describe one round divi-
sion propagation of PRESENT. By repeating this procedure, an r-round linear
inequality system can be constructed. For a given initial division property D1,64

k ,
we add this information into the linear inequality system and use Algorithm 3
to estimate whether there exists an integral distinguisher.

The result for PRESENT is listed in Table 1. We found a 9-round integral
distinguisher for PRESENT which is two more rounds than the previous best
results in [22].

The modeling procedure of RECTANGLE is very like to PRESENT, we
only list the result here in Table 1. The previous longest integral distinguisher of
RECTANGLE is found by the designers, and they gave a 7-round distinguisher.
In this paper we find a 9-round distinguisher which is two more rounds.

5.3 Applications to LBlock and TWINE

This subsection applies our technique to two generalized Feistel block cipher
LBlock and TWINE. The round function of these two ciphers are alike, and the
round function composed of Copy, Sbox and Xor operations. We have showed
how to model Copy and Xor operations in SIMON and Sbox in PRESENT,
thus, we omit the details for these two ciphers due to the limit of space. The

Applying MILP Method to Searching Integral Distinguishers 669

number of division trails and linear inequalities required to describe those divi-
sion trails of LBlock and TWINE Sboxes are presented in Table 3. The �{D.C}
column represents the number of division trails of the corresponding Sbox, and
the �{Ine} column represents the number of linear inequalities we found to accu-
rately describe the division trails. Note that we chose the first inequality in the
sixth line of Algorithm 1, however, other choice rather than the first one may
result in different set of inequlities.

Table 3. Sbox properties regrading division trails.

Sbox �{D.C} �{Ine}
PRESENT Sbox 47 11

RECTANGLE Sbox 49 17

LBlock S0 44 11

LBlock S1 44 12

Lblock S2 44 12

LBlock S3 44 11

LBlock S4 44 13

LBlock S5 44 10

LBlock S6 44 12

LBlock S7 44 12

TWINE Sbox 47 11

Our experimental results regarding LBlock and TWINE are listed in Table 1.
The distinguishers found in this paper are the same as the distinguishers found
for these two ciphers in [26].

Experiments. To illustrate the validity of the technique proposed in this paper, we
presented some integral distinguishers found by our technique with a small num-
ber of active bits, and we run experiments on these distinguishers. The exper-
iments are presented at Appendix D. Our experiments showed that the distin-
guishers found by our technique are sound. Moreover, the results on PRESENT
and RECTANGLE illustrate that our technique can find quite accurate distin-
guishers, that is the balanced bits found by Algorithm 3 are exactly in accordance
with experimental results. For PRESENT cipher, we retrieved and improved the
5-round distinguisher found in [22], our technique found all the four balanced
bits of the outputs of the fifth round given the same input pattern as in [22],
while Wu et al. could only prove the balancedness of only one bit.

6 Summary and Discussion

In this paper we introduced a new technique to search integral distinguishers
based on bit-based division property. We first proposed a new notion division

670 Z. Xiang et al.

trail and used this new notion to characterize the division property propagation,
then we showed that it is sufficient to check the last vectors of all r-round division
trails in order to estimate whether an r-round distinguisher exists.

Based on the observations on division trails, we proposed to construct a
linear inequality system to characterize the division property propagations. We
first studied how to model division property propagations of Copy, And and
Xor operations by linear inequalities. For another basic component Sbox used
in block ciphers, we studied the bit-based division property propagations for
the first time, and we proposed an algorithm to compute the division trails
of an Sbox. Moreover, we used those division trails to derive a set of linear
inequalities whose feasible solutions are exactly all division trails. Thus, for a
block cipher we can construct a linear inequality system whose solutions are all
r-round division trails of the cipher, and we used this linear inequality system
as constraints of the MILP problem. Then, the stopping rule in the search of
integral distinguisher were studied and we converted it into an objective function
of an MILP problem. To be specific, we set the sum of the coordinates of the
last vector in an r-round division trail as objective function. Thus, we can get a
complete MILP problem, based on which we presented an algorithm to estimate
whether an r-round integral distinguisher exists by checking how many unit
vectors are contained in the last vectors of all division trails.

We applied our technique to SIMON, SIMECK, PRESENT, RECTANGLE,
LBlock and TWINE. For SIMON48/64/96/128, SIMECK48/64, PRESENT and
RECTANGLE, we get much longer distinguishers than previous results based
on division property in the open literature. Moreover, our results on PRESENT
and RECTANGLE show that we can get better integral distinguishers by using
the algebraic normal form of the Sboxes. Our results show that, by using our
technique, we can search integral distinguishers based on bit-based division prop-
erty in practical time for block ciphers with block size larger than 32, which is
impractical under the traditional framework.

In [19], Todo et al. also introduced bit-based division property using three
subsets, and they found 15-round distinguisher for SIMON32. However, we have
not found a way to model this framework by an MILP problem at present. A
surprising result is, by using our technique we also derived the 15-round dis-
tinguisher of SIMECK32 which are constructed by bit-based division property
using three subsets [19]. We also used our technique on some Sbox-based block
ciphers such as PRESENT and RECTANGLE, note that their linear layers are
all bit permutations. However, this technique can be easily extended to arbitrary
linear layers as pointed out by the reviewers, since any linear layer can be viewed
as bit-level linear layer which can be treated as bit-wise copy and Xor.

Acknowledgements. We are very grateful to the anonymous reviewers. This work
was supported by the National Natural Science Foundation of China (Grant No.
61379138), the “Strategic Priority Research Program” of the Chinese Academy of Sci-
ences (Grant No. XDA06010701).

Applying MILP Method to Searching Integral Distinguishers 671

A An Example

Let’s consider a simple example in this section. Suppose that A =
{(0, 1), (1, 0), (1, 1)} is a subset of {0, 1}2 with three points, and we would like
to get a linear inequality system L such that all feasible solutions of L restricted
in {0, 1}2 are A.

We proceed by using inequality generator() function in the Sage software to
compute the H-Representation of Conv(A). The following is the source code.

Points = [[0 , 1] , [1 , 0] , [1 , 1]]
t r i a n g l e = Polyhedron (v e r t i c e s = Points)
for l in t r i a n g l e . i n e qua l i t y g en e r a t o r () :

print l

As a result, Sage returns three inequalities:

L =

⎧
⎪⎨

⎪⎩

x + y − 1 ≥ 0
−y + 1 ≥ 0
−x + 1 ≥ 0

(6)

It is easy to check that the feasible solutions of L form a triangle with A being
its three vertices, and the set of all feasible solutions of L restricted in {0, 1}2 is
exactly A. Thus, Eq. 6 is a description of A.

However, we can use Algorithm 1 to reduce the number of inequalities
required. We apply Algorithm 1 to this example and we find that only one
inequality is sufficient to accurately describe A:

L∗ = {x + y − 1 ≥ 0} (7)

It is easy to check that all solutions of L∗ restricted in {0, 1}2 are (0, 1) ,(1, 0)
and (1, 1) as expected.

B Division trails of PRESENT and RECTANGLE Sbox

Tables 4 and 5 present the division trails of PRESENT and RECTANGLE
Sboxes respectively.

C Linear inequalities description of PRESENT and
RECTANGLE Sbox

The following inequalities are the 11 inequalities used to describe PRESENT
Sbox whose feasible solutions are exactly the 47 division trails of PRESENT

672 Z. Xiang et al.

Table 4. Division trails of PRESENT Sbox

Input D1,4
k Output D1,4

K

(0,0,0,0) (0,0,0,0)

(0,0,0,1) (0,0,0,1) (0,0,1,0) (0,1,0,0) (1,0,0,0)

(0,0,1,0) (0,0,0,1) (0,0,1,0) (0,1,0,0) (1,0,0,0)

(0,0,1,1) (0,0,1,0) (0,1,0,0) (1,0,0,0)

(0,1,0,0) (0,0,0,1) (0,0,1,0) (0,1,0,0) (1,0,0,0)

(0,1,0,1) (0,0,1,0) (0,1,0,0) (1,0,0,0)

(0,1,1,0) (0,0,0,1) (0,0,1,0) (1,0,0,0)

(0,1,1,1) (0,0,1,0) (1,0,0,0)

(1,0,0,0) (0,0,0,1) (0,0,1,0) (0,1,0,0) (1,0,0,0)

(1,0,0,1) (0,0,1,0) (0,1,0,0) (1,0,0,0)

(1,0,1,0) (0,0,1,0) (0,1,0,0) (1,0,0,0)

(1,0,1,1) (0,0,1,0) (0,1,0,0) (1,0,0,0)

(1,1,0,0) (0,0,1,0) (0,1,0,0) (1,0,0,0)

(1,1,0,1) (0,0,1,0) (0,1,0,0) (1,0,0,0)

(1,1,1,0) (0,1,0,1) (1,0,1,1) (1,1,1,0)

(1,1,1,1) (1,1,1,1)

Table 5. Division trails of RECTANGLE Sbox

Input D1,4
k Output D1,4

K

(0,0,0,0) (0,0,0,0)

(0,0,0,1) (0,0,0,1) (0,0,1,0) (0,1,0,0) (1,0,0,0)

(0,0,1,0) (0,0,0,1) (0,0,1,0) (0,1,0,0) (1,0,0,0)

(0,0,1,1) (0,0,0,1) (0,1,0,0) (1,0,1,0)

(0,1,0,0) (0,0,0,1) (0,0,1,0) (0,1,0,0) (1,0,0,0)

(0,1,0,1) (0,0,1,1) (0,1,0,0) (1,0,0,0)

(0,1,1,0) (0,0,1,1) (0,1,0,0) (1,0,0,0)

(0,1,1,1) (0,0,1,1) (0,1,0,0) (1,0,0,1)

(1,0,0,0) (0,0,0,1) (0,0,1,0) (0,1,0,0) (1,0,0,0)

(1,0,0,1) (0,0,1,1) (0,1,0,1) (0,1,1,0) (1,0,0,0)

(1,0,1,0) (0,0,1,0) (0,1,0,1) (1,0,0,0)

(1,0,1,1) (0,1,1,0) (1,0,1,1) (1,1,0,1)

(1,1,0,0) (0,0,1,1) (0,1,0,0) (1,0,0,0)

(1,1,0,1) (0,1,1,0) (1,0,1,0) (1,1,0,1)

(1,1,1,0) (0,0,1,1) (0,1,0,1) (1,0,0,0)

(1,1,1,1) (1,1,1,1)

Applying MILP Method to Searching Integral Distinguishers 673

Sbox where (a3, a2, a1, a0) −→ (b3, b2, b1, b0) denotes a division trail.

L∗ =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

a3 + a2 + a1 + a0 − b3 − b2 − b1 − b0 ≥ 0
−a2 − a1 − 2a0 + b3 + b1 − b0 + 3 ≥ 0
−a2 − a1 − 2a0 + 4b3 + 3b2 + 4b1 + 2b0 ≥ 0
−2a3 − a2 − a1 + 2b3 + 2b2 + 2b1 + b0 + 1 ≥ 0
−2a3 − a2 − a1 + 3b3 + 3b2 + 3b1 + 2b0 ≥ 0
−b3 + b2 − b1 + b0 + 1 ≥ 0
−2a3 − 2a2 − 2a1 − 4a0 + b3 + 4b2 + b1 − 3b0 + 7 ≥ 0
a3 + a2 + a1 + a0 − 2b3 − 2b2 + b1 − 2b0 + 1 ≥ 0
−4a2 − 4a1 − 2a0 + b3 − 3b2 + b1 + 2b0 + 9 ≥ 0
−2a0 − b3 − b2 − b1 + 2b0 + 3 ≥ 0
a0 + b3 − b2 − 2b1 − b0 + 2 ≥ 0
a3, a2, a1, a0, b3, b2, b1, b0 are binaries

(8)

The following inequalities are the 17 inequalities used to describe RECTAN-
GLE Sbox whose feasible solutions are exactly the 49 division trails of REC-
TANGLE Sbox where (a3, a2, a1, a0) −→ (b3, b2, b1, b0) denotes a division trail.

L∗ =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−a3 − a2 − 2a1 − 3a0 − 2b3 + b1 + 2b0 + 6 ≥ 0
−b3 − b2 + b0 + 1 ≥ 0
a3 + a2 + a1 + a0 − b3 − b2 − b1 − b0 ≥ 0
3a3 + a2 − b3 − 2b2 − b1 − 2b0 + 2 ≥ 0
a2 + a0 − b2 − 2b1 − b0 + 2 ≥ 0
−a2 − a1 − a0 + b3 + 2b2 + 2b0 + 1 ≥ 0
−2a3 − a1 − a0 + b3 + 2b1 + b0 + 2 ≥ 0
−3a3 − a2 − a1 − 2a0 + b3 + 2b2 + 2b1 − b0 + 4 ≥ 0
−a2 − a1 + b3 + b2 + b1 + 1 ≥ 0
−3a3 − a2 − a1 − 2a0 + 3b3 + 2b2 + 2b1 + b0 + 2 ≥ 0
2a2 + 3a1 − 3b3 − b2 − 2b1 − b0 + 3 ≥ 0
−a3 − a2 − a0 + 2b3 + 2b2 + b1 + b0 ≥ 0
−2a2 − a1 − a0 + 3b3 + 4b2 + 2b1 + 2b0 ≥ 0
a3 + a2 + a1 + a0 − 2b3 − 2b0 + 1 ≥ 0
2a0 − b3 − b2 − b1 + 1 ≥ 0
3a3 − 4a2 − a1 − a0 − 2b3 − b2 − 3b1 + 2b0 + 7 ≥ 0
a3 + a1 + a0 + b3 − 3b2 − 2b1 − 2b0 + 3 ≥ 0
a3, a2, a1, a0, b3, b2, b1, b0 are binaries

(9)

D Experiments on PRESENT and RECTANGLE

For SIMON family block ciphers, we found a 14-round distinguisher of SIMON32
which is in accordance with the distinguisher presented in [19]. For Lblock and

674 Z. Xiang et al.

TWINE the distinguisher found in this paper are in accordance with the dis-
tinguishers presented in [26]. Thus, we believe that the distinguishers found for
SIMON, SIMECK, Lblock and TWINE are sound. In the following we only
conduct some experiments on PRESENT and RECTANGLE.

PRESENT : We found the following 5-round distinguisher for PRESENT. If we
fix the left most 60 bits as random constant and vary the right most 4 bits, then
after five round encryption, the four right most bits of the state are balanced.

Input:(ccaaaa)
Output:(??bbbb)

c: constant bit, a: active bit, ?: unknown bit, b: balanced bit

We run experiment on this distinguisher 212 times. The experimental result
returns the four right most bits as balanced bits which is in accordance with our
theoretical result.

Note that in [22] Wu el at. found a 5-round distinguisher for PRESENT which
has the same input pattern with the distinguisher presented here. However, they
only proved that the right most bit is balanced. By using our technique, we can
find all the four balanced bits.

RECTANGLE : We found the following 6-round distinguisher for RECTANGLE.
The input of the distinguisher has 23 active bits, that is the right most six bits
of the first, third and fourth rows, and the five right most bits of the second row
are active. The output of six rounds encryption will be balanced on 40 bits, that
is the first two rows, the two right most bits of the third row and the six left
most bits of the last row.

Input :

⎛

⎜
⎜
⎝

ccccccccccaaaaaa
cccccccccccaaaaa
ccccccccccaaaaaa
ccccccccccaaaaaa

⎞

⎟
⎟
⎠ −→ Output :

⎛

⎜
⎜
⎝

bbbbbbbbbbbbbbbb
bbbbbbbbbbbbbbbb
??????????????bb
bbbbbb??????????

⎞

⎟
⎟
⎠

We run experiment on this distinguisher 210 times. The experimental result
returns 40 balanced bits which is in accordance with our theoretical result.

E Integral Distinguishers listed in Table 1

For SIMON and SIMECK family block ciphers, all distinguisher can be extended
one more round by the technique in [20].

E.1 SIMON32’s 13-Round Distinguisher

Input:(caaaaaaaaaaaaaaa,aaaaaaaaaaaaaaaa)
Output:(????????????????,bbbbbbbbbbbbbbbb)

Applying MILP Method to Searching Integral Distinguishers 675

E.2 SIMON48’s 15-Round Distinguisher

Input:(caaaaaaaaaaaaaaaaaaaaaaa,aaaaaaaaaaaaaaaaaaaaaaaa)
Output:(????????????????????????,bbbbbbbbbbbbbbbbbbbbbbbb)

E.3 SIMON64’s 17-Round Distinguisher

Input:(caaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa,aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa)
Output:(????????????????????????????????,bbbbbbbbbbb?????b?????bbbbbbbbbb)

E.4 SIMON96’s 21-Round Distinguisher

Input:(caaa,
aa)

Output:(??,
b?b????b?????????????????????????????????b????b?)

E.5 SIMON128’s 25-Round Distinguisher

Input:(caaa,
aa)

Output:(??,
b?b???b?)

E.6 SIMECK32’s 14-Round Distinguisher

Input:(caaaaaaaaaaaaaaa,aaaaaaaaaaaaaaaa)
Output:(????????????????,bb???bb???bb???b)

E.7 SIMECK48’s 17-Round Distinguisher

Input:(caaaaaaaaaaaaaaaaaaaaaaa,aaaaaaaaaaaaaaaaaaaaaaaa)
Output:(????????????????????????,b???bb?????????????bb???)

E.8 SIMECK64’s 20-Round Distinguisher

Input:(caaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa,aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa)
Output:(????????????????????????????????,bb???b?????????????????????b???b)

676 Z. Xiang et al.

E.9 PRESENT’s 9-Round Distinguisher

Input:(aacccc)
Output:(???b)

E.10 RECTANGLE’s 9-Round Distinguisher

Input :

⎛

⎜
⎜
⎝

caaaaaaaaaaaaaaa
caaaaaaaaaaaaaaa
caaaaaaaaaaaaaaa
caaaaaaaaaaaaaaa

⎞

⎟
⎟
⎠ −→ Output :

⎛

⎜
⎜
⎝

bbb?b?bbbbbbbbbb
?????????????b?b
????????????????
????????????????

⎞

⎟
⎟
⎠

E.11 LBlock’s 16-Round Distinguisher

Input:(caaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa,aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa)
Output:(????????????????????????????????,bbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb)

E.12 TWINE’s 16-Round Distinguisher

Input:(caaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa,aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa)
Output:(????bbbb????bbbb????bbbb????bbbb,????bbbb????bbbb????bbbb????bbbb)

References

1. http://www.gurobi.com/
2. http://www.sagemath.org/
3. Beaulieu, R., Shors, D., Smith, J., Treatman-Clark, S., Weeks, B., Wingers, L.:

The SIMON and SPECK families of lightweight block ciphers. IACR Cryptology
ePrint Archive 2013, 404 (2013)

4. Biryukov, A., Shamir, A.: Structural cryptanalysis of SASAS. In: Pfitzmann, B.
(ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 395–405. Springer, Heidelberg
(2001). doi:10.1007/3-540-44987-6 24

5. Bogdanov, A., Knudsen, L.R., Leander, G., Paar, C., Poschmann, A., Robshaw,
M.J.B., Seurin, Y., Vikkelsoe, C.: PRESENT: an ultra-lightweight block cipher.
In: Paillier, P., Verbauwhede, I. (eds.) CHES 2007. LNCS, vol. 4727, pp. 450–466.
Springer, Heidelberg (2007). doi:10.1007/978-3-540-74735-2 31

6. Boura, C., Canteaut, A.: Another view of the division property. In: Robshaw, M.,
Katz, J. (eds.) CRYPTO 2016. LNCS, vol. 9814, pp. 654–682. Springer, Heidelberg
(2016). doi:10.1007/978-3-662-53018-4 24

7. Daemen, J., Knudsen, L., Rijmen, V.: The block cipher Square. In: Biham, E. (ed.)
FSE 1997. LNCS, vol. 1267, pp. 149–165. Springer, Heidelberg (1997). doi:10.1007/
BFb0052343

8. Knudsen, L., Wagner, D.: Integral cryptanalysis. In: Daemen, J., Rijmen, V. (eds.)
FSE 2002. LNCS, vol. 2365, pp. 112–127. Springer, Heidelberg (2002). doi:10.1007/
3-540-45661-9 9

http://www.gurobi.com/
http://www.sagemath.org/
http://dx.doi.org/10.1007/3-540-44987-6_24
http://dx.doi.org/10.1007/978-3-540-74735-2_31
http://dx.doi.org/10.1007/978-3-662-53018-4_24
http://dx.doi.org/10.1007/BFb0052343
http://dx.doi.org/10.1007/BFb0052343
http://dx.doi.org/10.1007/3-540-45661-9_9
http://dx.doi.org/10.1007/3-540-45661-9_9

Applying MILP Method to Searching Integral Distinguishers 677

9. Kölbl, S., Leander, G., Tiessen, T.: Observations on the SIMON block cipher fam-
ily. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9215, pp.
161–185. Springer, Heidelberg (2015). doi:10.1007/978-3-662-47989-6 8

10. Lucks, S.: The saturation attack — a bait for twofish. In: Matsui, M. (ed.)
FSE 2001. LNCS, vol. 2355, pp. 1–15. Springer, Heidelberg (2002). doi:10.1007/
3-540-45473-X 1

11. Mouha, N., Wang, Q., Gu, D., Preneel, B.: Differential and linear cryptanalysis
using mixed-integer linear programming. In: Wu, C.-K., Yung, M., Lin, D. (eds.)
Inscrypt 2011. LNCS, vol. 7537, pp. 57–76. Springer, Heidelberg (2012). doi:10.
1007/978-3-642-34704-7 5

12. Sun, B., Hai, X., Zhang, W., Cheng, L., Yang, Z.: New observation on division
property. Science China Information Science (2016). http://eprint.iacr.org/2015/
459

13. Sun, S., Hu, L., Song, L., Xie, Y., Wang, P.: Automatic security evaluation of
block ciphers with S-bP structures against related-key differential attacks. In: Lin,
D., Xu, S., Yung, M. (eds.) Inscrypt 2013. LNCS, vol. 8567, pp. 39–51. Springer,
Heidelberg (2014). doi:10.1007/978-3-319-12087-4 3

14. Sun, S., Hu, L., Wang, M., Wang, P., Qiao, K., Ma, X., Shi, D., Song, L., Fu,
K.: Towards finding the best characteristics of some bit-oriented block ciphers
and automatic enumeration of (related-key) differential and linear characteristics
with predefined properties. Technical report, Cryptology ePrint Archive, Report
2014/747 (2014)

15. Sun, S., Hu, L., Wang, P., Qiao, K., Ma, X., Song, L.: Automatic security evalu-
ation and (Related-key) differential characteristic search: application to SIMON,
PRESENT, LBlock, DES(L) and other bit-oriented block ciphers. In: Sarkar, P.,
Iwata, T. (eds.) ASIACRYPT 2014. LNCS, vol. 8873, pp. 158–178. Springer, Hei-
delberg (2014). doi:10.1007/978-3-662-45611-8 9

16. Suzaki, T., Minematsu, K., Morioka, S., Kobayashi, E.: TWINE : a lightweight
block cipher for multiple platforms. In: Knudsen, L.R., Wu, H. (eds.) SAC
2012. LNCS, vol. 7707, pp. 339–354. Springer, Heidelberg (2013). doi:10.1007/
978-3-642-35999-6 22

17. Todo, Y.: Integral cryptanalysis on full MISTY1. In: Gennaro, R., Robshaw, M.
(eds.) CRYPTO 2015. LNCS, vol. 9215, pp. 413–432. Springer, Heidelberg (2015).
doi:10.1007/978-3-662-47989-6 20

18. Todo, Y.: Structural evaluation by generalized integral property. In: Oswald, E.,
Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9056, pp. 287–314. Springer,
Heidelberg (2015). doi:10.1007/978-3-662-46800-5 12

19. Todo, Y., Morii, M.: Bit-based division property and application to SIMON family.
Cryptology ePrint Archive, Report 2016/285 (2016). http://eprint.iacr.org/

20. Wang, Q., Liu, Z., Varıcı, K., Sasaki, Y., Rijmen, V., Todo, Y.: Cryptanalysis of
reduced-round SIMON32 and SIMON48. In: Meier, W., Mukhopadhyay, D. (eds.)
INDOCRYPT 2014. LNCS, vol. 8885, pp. 143–160. Springer, Heidelberg (2014).
doi:10.1007/978-3-319-13039-2 9

21. Wu, S., Wang, M.: Security evaluation against differential cryptanalysis for block
cipher structures. IACR Cryptology ePrint Archive 2011, 551 (2011)

22. Wu, S., Wang, M.: Integral attacks on reduced-round PRESENT. In: Qing, S.,
Zhou, J., Liu, D. (eds.) ICICS 2013. LNCS, vol. 8233, pp. 331–345. Springer,
Heidelberg (2013). doi:10.1007/978-3-319-02726-5 24

23. Wu, W., Zhang, L.: LBlock: a lightweight block cipher. In: Lopez, J., Tsudik, G.
(eds.) ACNS 2011. LNCS, vol. 6715, pp. 327–344. Springer, Heidelberg (2011).
doi:10.1007/978-3-642-21554-4 19

http://dx.doi.org/10.1007/978-3-662-47989-6_8
http://dx.doi.org/10.1007/3-540-45473-X_1
http://dx.doi.org/10.1007/3-540-45473-X_1
http://dx.doi.org/10.1007/978-3-642-34704-7_5
http://dx.doi.org/10.1007/978-3-642-34704-7_5
http://eprint.iacr.org/2015/459
http://eprint.iacr.org/2015/459
http://dx.doi.org/10.1007/978-3-319-12087-4_3
http://dx.doi.org/10.1007/978-3-662-45611-8_9
http://dx.doi.org/10.1007/978-3-642-35999-6_22
http://dx.doi.org/10.1007/978-3-642-35999-6_22
http://dx.doi.org/10.1007/978-3-662-47989-6_20
http://dx.doi.org/10.1007/978-3-662-46800-5_12
http://eprint.iacr.org/
http://dx.doi.org/10.1007/978-3-319-13039-2_9
http://dx.doi.org/10.1007/978-3-319-02726-5_24
http://dx.doi.org/10.1007/978-3-642-21554-4_19

678 Z. Xiang et al.

24. Xiang, Z., Zhang, W., Lin, D.: On the division property of SIMON48 and
SIMON64. International Workshop on Security (2016)

25. Yang, G., Zhu, B., Suder, V., Aagaard, M.D., Gong, G.: The Simeck fam-
ily of lightweight block ciphers. In: Güneysu, T., Handschuh, H. (eds.) CHES
2015. LNCS, vol. 9293, pp. 307–329. Springer, Heidelberg (2015). doi:10.1007/
978-3-662-48324-4 16

26. Zhang, H., Wu, W.: Structural evaluation for generalized feistel structures
and applications to LBlock and TWINE. In: Biryukov, A., Goyal, V. (eds.)
INDOCRYPT 2015. LNCS, vol. 9462, pp. 218–237. Springer, Heidelberg (2015).
doi:10.1007/978-3-319-26617-6 12

27. Zhang, H., Wu, W., Wang, Y.: Integral attack against bit-oriented block ciphers.
In: Kwon, S., Yun, A. (eds.) ICISC 2015. LNCS, vol. 9558, pp. 102–118. Springer,
Heidelberg (2016). doi:10.1007/978-3-319-30840-1 7

28. Zhang, W., Bao, Z., Lin, D., Rijmen, V., Yang, B., Verbauwhede, I.: Rectangle:
a bit-slice lightweight block cipher suitable for multiple platforms. Sci. China Inf.
Sci. 58(12), 1–15 (2015)

29. Zhang, W., Su, B., Wu, W., Feng, D., Wu, C.: Extending higher-order integral: an
efficient unified algorithm of constructing integral distinguishers for block ciphers.
In: Bao, F., Samarati, P., Zhou, J. (eds.) ACNS 2012. LNCS, vol. 7341, pp. 117–134.
Springer, Heidelberg (2012). doi:10.1007/978-3-642-31284-7 8

http://dx.doi.org/10.1007/978-3-662-48324-4_16
http://dx.doi.org/10.1007/978-3-662-48324-4_16
http://dx.doi.org/10.1007/978-3-319-26617-6_12
http://dx.doi.org/10.1007/978-3-319-30840-1_7
http://dx.doi.org/10.1007/978-3-642-31284-7_8

Reverse Cycle Walking and Its Applications

Sarah Miracle(B) and Scott Yilek

University of St. Thomas, St. Paul, USA
{sarah.miracle,syilek}@stthomas.edu

Abstract. We study the problem of constructing a block-cipher on a
“possibly-strange” set S using a block-cipher on a larger set T . Such con-
structions are useful in format-preserving encryption, where for example
the set S might contain “valid 9-digit social security numbers” while T
might be the set of 30-bit strings. Previous work has solved this problem
using a technique called cycle walking, first formally analyzed by Black
and Rogaway. Assuming the size of S is a constant fraction of the size
of T , cycle walking allows one to encipher a point x ∈ S by applying
the block-cipher on T a small expected number of times and O(N) times
in the worst case, where N = |T |, without any degradation in security.
We introduce an alternative to cycle walking that we call reverse cycle
walking, which lowers the worst-case number of times we must apply
the block-cipher on T from O(N) to O(log N). Additionally, when the
underlying block-cipher on T is secure against q = (1 − ε)N adversarial
queries, we show that applying reverse cycle walking gives us a cipher
on S secure even if the adversary is allowed to query all of the domain
points. Such fully secure ciphers have been the the target of numerous
recent papers.

Keywords: Format-preserving encryption · Small-domain block
ciphers · Markov chains

1 Introduction

Suppose we have sets S and T , with S a subset of T . Typically, in this paper,
the larger set T will be {0, . . . , 2n − 1} for some integer n, while the smaller set
S will be an arbitrary set for which we only assume we know how to efficiently
test membership. The central problem we study in this paper is, given a cipher
with domain T , how can we construct a cipher with domain S.

Format-Preserving Encryption. The above problem arises when construct-
ing format preserving encryption (FPE) [1,2,4] schemes for encrypting credit
cards numbers, social security numbers, and other relatively short data objects.
Suppose we have a customer database containing millions of US social security
numbers (SSNs). SSNs are 9 decimal digit numbers with numerous additional
restrictions (e.g., the first three digits may not be 666). Now suppose we later
decide we need to encrypt the SSNs. One approach would be to use a standard
block cipher like AES, representing the SSN as a 30-bit number and then padding
c© International Association for Cryptologic Research 2016
J.H. Cheon and T. Takagi (Eds.): ASIACRYPT 2016, Part I, LNCS 10031, pp. 679–700, 2016.
DOI: 10.1007/978-3-662-53887-6 25

680 S. Miracle and S. Yilek

with 0 s before encrypting. The resulting ciphertext, however, would have a sig-
nificantly different format from the original, unencrypted numbers. This could
in turn require significant changes to the customer database, as well as to the
hardware and software that process the SSNs. For this reason, it is desirable to
have format-preserving encryption schemes, in which ciphertexts have the same
format as plaintexts. A FPE scheme for SSNs would thus have ciphertexts that
are 9 decimal digit numbers with the same restrictions as unencrypted SSNs.

Cycle Walking. A number of recent works [3,11,16–18] describe efficient,
provably secure small-domain block ciphers for enciphering either bitstrings or,
in most cases, points in the more general domain {0, . . . , N − 1}. This is already
sufficient for many FPE applications. However, if the desired domain for a par-
ticular FPE application is not as simple as bitstrings of some length or integers
up to N , then these ciphers alone are not sufficient. If we only assume that we
can efficiently test membership in our target domain set S,1 then one approach
to the problem is to find a cipher on a larger set T and transform it into a cipher
on the smaller set S. In the case of valid SSNs, for example, we might let the
larger set T be 30-bit strings, since 109 < 230 and we have many block ciphers
that can encipher 30-bit strings. The canonical way to transform a cipher on
the more general set T into a cipher on a subset S while maintaining the same
level of security is to use cycle walking. Cycle walking is a folklore technique first
formally analyzed by Black and Rogaway [4] that works as follows. Suppose π
is a permutation with domain T and we wish to use it to map a point x ∈ S to
another point in S. We first compute π(x) and test if the result is in S. If so,
we map point x to π(x). If the result is not in S, we apply π again, comput-
ing π(π(x)) and again testing whether or not the result is in S. We repeat this
process until we get a point in S. Let CWπ denote this cycle walking algorithm.
Black and Rogaway showed that cycle walking maintains the security of π, and
in particular showed that if cycle walking is applied to a CCA-secure cipher,
then the resulting cipher is also CCA-secure.

If we are unlucky, we may have to apply π numerous times before finally
reaching a point in S.2 In fact, if we consider the worst-case running time of
cycle walking, we might have to evaluate the permutation Θ(N) times. Yet, the
expected running time is much better; if the size of S is at least half the size of
T and if π is a randomly-chosen permutation on T , then the expected number
of times CWπ will need to evaluate π on a particular point is at most 2.

1 If a set has an efficient way to rank and unrank elements, then instead one can
apply the rank algorithm and then a cipher on {0, . . . , |S| − 1}. This is the case, for
example, with regular languages described by a DFA [1]. For other languages, and
even for regular languages described by a regular expression, the situation is more
complicated. See [14,15] for more details. Nevertheless, in the current paper we are
concerned with more general sets where only testing set membership is assumed to
be efficient.

2 We are guaranteed to eventually land back in the set S, since permutations are made
up of cycles and, if we don’t hit another point in S first, we will cycle back around
to the same point we started with.

Reverse Cycle Walking and Its Applications 681

It will be helpful to also examine the cycle structure of CWπ compared to π.
Let S and T be as they were defined above, and let π again be a permutation
on the larger set T . Recall that permutations are made up of disjoint cycles, so
our chosen permutation π is made up of disjoint cycles each with points from T .
Suppose that one of these cycles is (t1 s1 s2 s3 t2 s4 s5 t3 t4), where the s points
are all from S and the t points are from T \S. Now consider what happens
when CWπ(s3) is evaluated. Notice that π(s3) = t2, so we need to evaluate
π(π(s3)) = s4. Thus, CWπ(s3) = s4. In terms of the cycle structure, evaluating
CWπ(s3) corresponds to walking to the right in the cycle from s3 until we hit
another point in S. Similarly, CWπ(s5) = s1, which we can see since walking to
the right from s5 brings us to t3, t4, t1 (after looping around to the front), and
then finally s1. We can thus determine the cycle structure of CWπ simply by
erasing the t points from all of the cycles in π, meaning the cycle above becomes
(s1 s2 s3 s4 s5).

A Closer Look at Expected Time. The small expected running time of
cycle walking makes it an attractive option in practice for FPE. Yet, from a
theoretical perspective, the fact that we do not know how to build permutations
for arbitrary sets with worst-case running time better than Θ(N) is unsatisfying.

Finding alternative algorithms that do not run in expected time is not just
an important theoretical question. From a practical perspective, in addition to
the unpredictability of execution times potentially bothering practitioners, there
is the danger that expected-time cryptographic algorithms can leak timing infor-
mation that can be exploited by an adversary in an attack. Starting with the
work of Kocher [12], there have been numerous examples of how such timing
information can lead to subtle and damaging attacks on cryptographic proto-
cols. Thus, generally, it would seem preferable to have cryptographic algorithms
whose running time does not vary across different inputs.

Somewhat counter to this, Bellare, Ristenpart, Rogaway, and Stegers [1] ana-
lyzed the potential negative effects of the timing information leaked by cycle
walking and concluded that the leakage is not damaging. Yet, their result is in
a specific model where the adversary has access to the ciphertexts in addition
to the number of cycle walking steps needed, which they call the cycle length.3

This, however, does not preclude the possibility of other scenarios in which this
timing information could be useful. As one simple example, suppose an adver-
sary observes the time it takes to encipher and later learns the corresponding
plaintext. If, at a later point, the adversary again observes the time it takes
to encipher a point then this timing information can reveal whether or not the
same point was enciphered without the adversary ever needing to observe any
ciphertexts. Depending on the specific scenario and application, this information
could be damaging.

Reverse Cycle Walking. We now describe our main result: an alternative
to cycle walking with substantially better worst-case running time that does not

3 Specifically, they show that in a PRP security game the adversary gets no benefit
from learning the cycle length in addition to the ciphertext on an encryption query.

682 S. Miracle and S. Yilek

Fig. 1. Example of how one round of reverse 2-cycle walking differs from regular cycle
walking. In this example, T = {0, . . . , 9} and S are the even numbers in T . Left: the
effect regular cycle walking has on the cycle structure of the permutation. Right: the
effect of one round of reverse 2-cycle walking on the cycle structure.

vary based on the input. Towards this, a first attempt might be to try to apply
cycle walking, but somehow “cut-off” the algorithm if it is taking too long, since
often with an expected-time algorithm one can simply stop the algorithm early
and possibly introduce a small error. Unfortunately, it is not clear how to make
this approach work. If we are evaluating CWπ(x) and walking through a long
sequence of points in T \S, we cannot just cut off the algorithm because we need
to construct a permutation, and thus require a unique point in S to map x to.
Because of this difficulty, we introduce an alternative to cycle walking we call
reverse cycle walking.

Let S, T , and π be as they are defined above, and suppose again π has a
cycle (t1 s1 s2 s3 t2 s4 s5 t3 t4). As in traditional cycle walking, under reverse
cycle walking s1 is mapped to s2 and s2 is mapped to s3. Where reverse cycle
walking differs from traditional cycle walking is when a point in S is mapped
outside of S; this is the case for s3, which is mapped under π outside of S to
t2. To determine where s3 should be mapped to, reverse cycle walking walks in
the reverse direction, to the left, until a point outside of S is encountered; the
last point encountered that is in S will be where s3 is mapped. So in the case
of the current cycle, if we wish to know where s3 will be mapped, we walk to
the left to s2 and then finally to s1. Since walking to the left any farther would
result in a point outside of S, reverse cycle walking stops here and maps s3 to
s1. Similarly, s5 would be mapped to s4. The cycle structure that results from
applying reverse cycle walking is thus (s1 s2 s3)(s4 s5).

Notice that reverse cycle walking, as just described, will still have poor worst-
case running time and considerably better expected running time, much like tra-
ditional cycle walking. The main advantage now, though, is that we can consider
variants of reverse cycle walking that “cut-off” the algorithm early and signif-
icantly reduce the worst-case running time. Specifically, when reverse t-cycle
walking is applied to permutation π, any sequence of at most t points from S
that appear consecutively in a cycle of π sandwiched between points from T \S
will become a cycle. Any points in S that do not have this property are simply
mapped to themselves.

For the rest of the paper, we focus on perhaps the simplest version of
this idea, reverse 2-cycle walking. If π has in some cycle (. . . t s s′ t′ . . .),

Reverse Cycle Walking and Its Applications 683

meaning two consecutive points from S sandwiched between points from T \S,
then under reverse 2-cycle walking (denoted RCWπ) (s s′) becomes a cycle,
meaning RCWπ(s) = s′ and RCWπ(s′) = s. When reverse 2-cycle walking is
applied to our example above where π has cycle (t1 s1 s2 s3 t2 s4 s5 t3 t4), the
resulting permutation will have cycles (s1)(s2)(s3)(s4 s5). Notice that because
s1, s2, and s3 represented more than two consecutive points from S, they were
simply mapped to themselves. On the other hand, s4 and s5 were two consecu-
tive points from S sandwiched between points outside of S, so they are swapped.
(For technical reasons, as we will see later in the paper, we will additionally flip
a coin to see if these points are actually swapped or not.) The code of the reverse
2-cycle walking transformation can be found in Fig. 2 in Sect. 3. (Note that the
transformation is an involution.) Another example illustrating how reverse 2-
cycle walking compares to traditional cycle walking can be seen in Fig. 1.

Worst-Case Running Time of Reverse 2-Cycle Walking. In our sce-
nario above, even if π is a random permutation on T , RCWπ will clearly not
be close to a random permutation on S; many points are mapped to themselves
(i.e., RCWπ(x) = x). Thus, with reverse 2-cycle walking, we need to repeat the
procedure for multiple rounds with independently chosen permutations π. The
question then becomes how many rounds of RCW are needed before the resulting
permutation on S is close to random.

To answer this question, we show that when π is a randomly chosen permu-
tation on T and when the size of S is a constant fraction of the size of T , then
reverse 2-cycle walking yields a matching exchange process (MEP), first defined
and analyzed by Czumaj and Kutylowski [9]. A MEP proceeds in rounds to mix
N points, where in each round a random matching of some size is chosen and
then a coin is flipped for each pair in the matching to decide whether its points
should be swapped. Notice that this is exactly how multiple rounds of reverse
2-cycle walking proceed: in any given round, each point in S is either randomly
paired with another point in S, or it is mapped to itself and is not part of the
matching for that round.

To analyze MEPs, Czumaj and Kutylowski used non-Markovian delayed path
coupling, an extension of the well-known path coupling technique [5] in the area
of Markov chains, to show that a matching exchange process will mix N points
in O(log N) rounds. Since we show reverse 2-cycle walking yields a MEP, directly
applying their result gives us a way to construct an almost-random permutation
on an arbitrary set with worst-case running time Θ(t(N) · log N), where t(N)
is the time it takes to apply permutation π on T . Recall that with traditional
cycle walking, we get worst-case running time Θ(t(N) · N), so our result is a
significant improvement.

Since an asymptotic result is of limited practical value in the setting where
cycle walking seems most useful, that of small-domain encryption for FPE, we
also give concrete bounds relating the number or rounds of reverse 2-cycle walk-
ing to the CCA-advantage of an adversary attacking the encryption scheme.
Unfortunately, because the Czumaj and Kutylowski paper targeted asymptotic
results, their proof does not give explicit constants. To overcome this difficulty,

684 S. Miracle and S. Yilek

we give new proofs of two key lemmas from CK’s proof in order to minimize the
constants for our setting where N is perhaps 230.

Full Security from Reverse 2-Cycle Walking. Fully secure block
ciphers, which are block ciphers that look like random permutations even to
an adversary querying all N domain points, have been the target of many recent
papers [10,16,18] on small-domain encryption. While all of these recent results
are based on a recursive shuffling technique from [8], we instead take a different
approach and show that reverse 2-cycle walking can be used to achieve full secu-
rity. In particular, we show that in certain situations we can take a cipher on a
larger set T that is not fully secure and apply reverse 2-cycle walking to get a
fully secure cipher on the smaller set S.

To help explain this result in more detail, suppose we wish to construct a
fully secure block cipher Efull with domain {0, . . . , N − 1} and further suppose
we have another block cipher Epart with a larger domain {0, . . . , 2N − 1} and
which is indistinguishable from a random permutation as long as the adversary
only queries half the domain points. (Swap or Not [11] would be an example of
such a cipher, which we call partially secure.) Notice that Epart, with domain
size 2N , will be secure against N queries, which is the same quantity of queries
we want Efull to be secure against. But how should Efull use Epart to encipher
points in {0, . . . , N −1}? To encipher a point x ∈ {0, . . . , N −1}, we could simply
apply Epart to x. But since Epart has a larger domain, Epart(x) might not be in
{0, . . . , N − 1}. Czumaj [6] recently considered something similar and suggested
using Epart to shuffle all of the points {0, . . . , 2N − 1} and then “remove” the
points outside of {0, . . . , N − 1}. Unfortunately, it’s not clear how to efficiently
implement this “remove” step.

Another idea might be to use traditional cycle walking to always make sure we
can map a point x ∈ {0, . . . , N−1} back into the same set. Unfortunately, proving
this secure appears difficult, since in a reduction each of the N adversarial queries
made while attacking Efull could result in many queries to Epart. Thus, in the
reduction, our adversary attacking Epart would likely need to query nearly all
points in {0, . . . , 2N − 1}, many more queries than Epart is assumed secure
against.

Instead, we propose using reverse 2-cycle walking. Using our set names from
earlier in the introduction, let S = {0, . . . , N − 1} and let T = {0, . . . , 2N − 1}.
Let Epart be a block cipher with domain T . Then reverse 2-cycle walking has
the following key property: if we evaluate Epart on every point x ∈ S, then this
gives us enough information to determine RCWEpart(x) for every x ∈ S. In other
words, we never need to evaluate Epart on any point outside of {0, . . . , N − 1}.
This property allows the reduction to go through, giving us a fully secure cipher.

2 Preliminaries

Notation. For any set X , let Perms(X) be the set of all permutations π : X →
X . For sets X and Y, let Funs(X ,Y) be the set of all functions f : X → Y. For
set X , let x ←$ X denote choosing x uniformly at random from X .

Reverse Cycle Walking and Its Applications 685

Mixing Time. The time a Markov chain M takes to converge to its stationary
distribution μ is measured in terms of the distance between μ and Pt, the distri-
bution at time t. Let Pt(x, y) be the t-step transition probability and Ω be the
state space. The mixing time of M is τM(ε) = min{t : ||Pt′ − μ|| ≤ ε,∀t′ ≥ t},
where ||Pt−μ|| = maxx∈Ω

1
2

∑
y∈Ω |Pt(x, y)−μ(y)| is the total variation distance

at time t.

Block Ciphers and Their Security. A block cipher is a family of functions
E : K×M → M, with K a finite set called the key space and M a finite set called
the domain or message space. For every K ∈ K, the function EK(·) = E(K, ·)
is a permutation. Let E−1 : K × M → M be the inverse block cipher. We will
typically let N denote |M|, the number of elements in the domain. Thus, when
M = {0, 1}n, N = 2n.

We will consider block cipher security against chosen-ciphertext attack
(CCA), often referred to as strong-PRP security. Given block cipher E :
K × M → M and adversary A, the cca-advantage of A against E is defined
to be

Advcca
E (A) = P

(
AE(K,·),E−1(K,·) ⇒ 1

)
− P

(
Aπ(·),π−1(·) ⇒ 1

)
,

where the first probability is over the choice of K and the coins of A, and the
second probability is over the choice of π from Perms(M) and the coins of A. In
words, the adversary A tries to determine which “world” he is in, where he is
either in a world where he is given access to the block cipher and its inverse, or
in a world where he is given access to a random permutation and its inverse. If
an adversary A is given oracle access to an algorithm O and its inverse O−1, we
will sometimes write A±O(·) as shorthand for AO(·),O−1(·).

Pseudorandom Functions. Let F : K × X → Y be a family of functions
with key space K. The prf-advantage of an adversary A against F is defined to
be Advprf

F (A) = P
(
AF (K,·) ⇒ 1

) − P
(
Aρ(·) ⇒ 1

)
, where the first probability

is over the choice of key K and the coins of A, and the second probability is
over the choice of ρ from Funs(X ,Y) and the coins of A. In words, the adversary
tries to determine through oracle queries whether it is interacting with the keyed
function F or a random function chosen from all functions from X to Y.

Cycle Walking. This paper focuses on the problem of using permutations on
a set T to build a permutation on a smaller set S ⊆ T . Specifically, we will be
interested in the scenario where NS = |S| is a constant fraction of NT = |T |
(e.g., 2 · NS = NT). Black and Rogaway [3] analyzed a folklore technique for
this called cycle walking, or cycling. Given a permutation π on T , let the cycle
walking transformation of π with target set S be function CWπ : S → S defined
as follows

Algorithm CWπ(x):
do

x ← π(x)
while (x
∈ S)
Return x

686 S. Miracle and S. Yilek

In words, cycle walking continues to apply permutation π until it finally gets a
point in set S. Cycle walking can also be applied to block ciphers. Notationally,
if E : K × T → T is a block-cipher on T , then we will let Ē : K × S → S be the
block cipher that, on input K and x, computes CWEK

(x).
A key fact about cycle walking, argued by Black and Rogaway, is that if π

is a random permutation on T , then CWπ will be a random permutation on S.
While this is an information-theoretic result, Black and Rogaway also briefly
argued it can be used to show the cycle walking transformation preserves cca
security as well, which we formalize as follows:

Lemma 1 (Black-Rogaway). Let S ⊆ T be such that |S| ≥ (1/2)|T | and let
let E : K × T → T be a block cipher on T , and Ē : K × S → S the block-
cipher resulting from applying cycle walking to E with target set S. Let A be an
adversary making q queries, then

Advcca
Ē (A) ≤ Advcca

E (B)

where adversary B makes at most an expected 2q queries.

As we explained in the introduction, cycle walking has small expected running
time, but it has significantly worse worst-case running time. Additionally, the
theorem above bounds the advantage of an adversary against Ē by the advantage
of an adversary that makes and expected number of oracle queries.

3 Reverse 2-Cycle Walking

We now detail the reverse 2-cycle walking algorithm. Again, for sets S ⊆ T , let
NS = |S|, NT = |T |, and assume NS is a constant fraction of NT ; c · NS = NT

(e.g., 2 · NS = NT). Suppose we have permutation π : T → T with π−1 its
inverse. Also suppose we have a function B : S → {0, 1}. The reverse 2-cycle
walking transformation is a function RCWπ,B : S → S defined in Fig. 2.4

To understand the algorithm it is helpful to consider the cycle structure of
RCWπ,B (a permutation on S) as compared to π. In RCWπ,B, points in S are
mapped to themselves unless they are contained in a cycle (in π) where exactly
two points in S are surrounded by points in T − S. For example, if π contains
the cycle (s1s2t1t2s3s4t4s5) where the si’s are in S and the ti’s are in T − S,
then the resulting permutation on S will contain the cycles (s1)(s2)(s3s4)(s5).
Note that for simplicity of analysis, if π contains the cycle (s1s2) then the result-
ing permutation will contain the cycles (s1)(s2), whereas (s1s2t1) will result in

4 It should be noted that the pseudocode in Fig. 2 is written for ease of understanding
and, if implemented exactly as written, could leak timing information about the
input. An actual implementation would use standard techniques to ensure each path
through the code results in the same number of operations. Additionally, if the
underlying cipher π has different timings in the forward and backward directions,
then both π(y) and π−1(z) would need to be computed regardless of the input
point x.

Reverse Cycle Walking and Its Applications 687

Fig. 2. The reverse 2-Cycle walking algorithm

(s1s2). Additionally, the function B has the effect of only including each 2-cycle
in the final permutation on S with probability 1/2. This is currently necessary
for our analysis but we believe with further work this function can be removed.

When π and B are clear from context, we will sometimes write just RCW(x).
Note that each point x is either mapped to itself (i.e., RCW(x) = x), or is part
of a 2-cycle (i.e., there is a y
= x s.t. RCW(x) = y and RCW(y) = x). Notice
also that the algorithm is its own inverse (an involution).

Given permutations π1, π2, . . . , πk all on T , and functions B1, . . . ,Bk from
S to {0, 1}, we denote by RCWk

(π1,...,πk),(B1,...,Bk)
the composition RCWπ1,B1 ◦

. . . ◦ RCWπk,Bk
. When the permutations πi and functions Bi are clear from the

context, we will often write RCWk. The inverse of RCWk will simply apply the
rounds in reverse order, since the RCW algorithm above is its own inverse.

The rest of the paper focuses on the security of the reverse 2-cycle walking
transformation. The next section gives an information theoretic result, bounding
the mixing time of the Markov chain that results from applying a number of
rounds of reverse 2-cycle walking where in each round we use a randomly chosen
underlying permutation πi and function Bi. In Sect. 5, we analyze the cca security
of reverse 2-cycle walking when the underlying permutations on T are cca-secure
and the round functions are implemented with a pseudorandom function. Finally,
in Sect. 6, we show that reverse 2-cycle walking can be used to build fully secure
block ciphers.

4 Bounding the Mixing Time

Here, we focus on how many rounds of reverse 2-cycle walking are needed before
the resulting permutation on S is “close”to random. We consider the ideal case
where at each round the underlying permutation πi and function Bi are cho-
sen uniformly at random and bound the mixing time of the underlying Markov

688 S. Miracle and S. Yilek

chain. To do this, we use a technique called delayed path coupling, introduced by
Czumaj and Kutylowski [9] to analyze what they call a matching exchange pro-
tocol. They are interested in studying a class of Markov chains for sampling
permutations of N points where at each step a number κ is chosen accord-
ing to some distribution, then a matching of size κ is chosen uniformly from
all matchings of size κ, and finally the points corresponding to each pair in the
matching are each independently swapped (or not) with probability 1/2. Assum-
ing the expected size of the matching at each step is Θ(N) they show that after
Θ(log(N)) steps the variation distance is O(1/N). If you consider the effect of the
RCW algorithm on all elements in NS , a single step of the algorithm is equivalent
to selecting a matching Mi on NS (since we only consider 2-cycles) according
to some distribution and then swapping each pair in the matching with prob-
ability 1/2. Claim 1, which we prove below, implies that RCW is a matching
exchange protocol with E [κ] ≤ (c−1)2NS

c3 , where c = NT /NS . Given this, we can
apply Czumaj and Kutylowski’s results directly to bound the variation distance.
Specifically, their result implies that there exist constants k1, k2 such that for
k = k1 log(NS), ||νrcwk − μs|| ≤ k2

NS
where νrcwk is the distribution after k steps

of the RCW algorithm and μs is the uniform distribution on permutations of
the elements in NS . However, their result does not explicitly compute the con-
stants. Although we use many of the general ideas from their proof we not only
give explicit constants but we provide new proofs of two key lemmas in order to
provide a bound that is reasonable in our context and customized for the RCW
algorithm. Despite these changes, we believe this is just a starting point and a
further reduction of the constants is possible. We begin by providing an overview
of the approach and then give a detailed proof focusing on our modifications.
For additional information on the Markov chain analysis techniques used in this
section please see [13,19].

We will first show that the Markov chain that results from repeatedly apply-
ing RCW is ergodic and it’s stationary distribution is the uniform distribution. In
a single step of the RCW algorithm there is a non-zero probability that we select
any single transposition (i.e., (si, sj)(s1)(s2) . . .). It is well known that transpo-
sitions (swapping any two elements) connect the set of all permutations (see e.g.,
[13]) and thus RCW connects Perms(S) (the set of all permutations on S). Addi-
tionally, RCW is aperiodic since there is a non-zero probability that no changes
are made and thus ergodic. It is also relatively straightforward to see that RCW
is symmetric (i.e., for all pairs of permutations (x, y), P(x, y) = P(y, x), where
P(x, y) is the probability of moving from x to y in one step of RCW). Combining
these implies that the stationary distribution of RCW is the uniform distribution
as desired (see e.g., [13]).

In order to bound the mixing time of the matching exchange process, Czumaj
and Kutylowski use a technique they call delayed path coupling which is an
extension of coupling and path coupling, both well-known techniques in the
Markov chain community. A coupling of a Markov chain M with state space Ω
is a joint Markov process on Ω × Ω such that the marginals each agree with
M and, once the two coordinates coalesce, they move in unison. The coupling

Reverse Cycle Walking and Its Applications 689

time (or expected time until the two coordinates coalesce) can be used to upper
bound the mixing time. Path coupling, introduced by Bubley and Dyer, simplifies
this approach by considering only a subset U of the joint state space Ω × Ω
of a coupling [5]. By considering an appropriate metric Δ on Ω, proving that
the two marginal chains, if in a joint configuration in subset U, get no farther
away in expectation after one iteration is sufficient to give a polynomial bound
on the mixing time. For our argument we will define the distance between two
configurations Δ(X,Y) as the minimum number of transpositions (swapping two
points) needed to go from X to Y and U as the set of all pairs of configurations
that differ by a single transposition Δ(X,Y) = 1. Using this definition of U it is
relatively straightforward to use path coupling to show that the mixing time is
O(NS log NS). However for our application this bound is not sufficient and we
require more complex techniques.

In delayed path coupling we consider the change in distance between two
processes over more than just a single step. We bound the change in distance over
t = Θ(log(NS)) steps and use a non-Markovian coupling, allowing us to delay
the coupling decisions based on future events. We will use the following delayed
path coupling theorem due to Czumaj, Kanarek, Kutylowski and Lorys [7]. Let
M be an ergodic Markov chain with statespace Ω (not necessarily Perms(S))
and mixing time τM(ε) as defined in Sect. 2.

Theorem 1 (Czumaj et al.). Let Δ be a metric defined on Ω × Ω which
takes values in {0, . . . , D}, let U = {(X,Y) ∈ Ω × Ω : Δ(X,Y) = 1} and let
δ be a positive integer. Let (Xt, Yt)t∈N be a coupling for M, such that for every
(Xtδ, Ytδ) ∈ U it holds that E

[
Δ(X(t+1)δ, Y(t+1)δ)

] ≤ β for some real β < 1.
Then,

τM(ε) ≤ δ ·
⌈

ln(D ∗ ε−1)
ln β−1

⌉

.

Czumaj and Kutylowski’s use the distance metric Δ defined above (the minimum
number of transpositions) and define a coupling (Xt, Yt)T

t=0 where Δ(X0, Y0) = 1
(i.e., X0 and Y0 differ by a single transposition). They show that using their
coupling, E [Δ(XT , YT)] ≤ 1/N, for T = Θ(log N) which is sufficient to show
the mixing time is O(log(N)). We will use the same coupling to analyze the
RCW algorithm and provide a brief overview here for completeness. Full details
can be found in their paper [9]. Note that for ease of explanation, the matchings
described here are the matchings actually applied at each step (i.e., the Bi’s are
already incorporated into the description of the matchings). Let M1,M2, . . . MT

be the matchings defined by the coupling for the process X and N1, N2, . . . NT be
the matchings for Y, so that applying these matchings at each step results in the
coupling (Xt, Yt)T

t=0. We begin by choosing the permutations and corresponding
matchings for X at each step, M1,M2, . . . MT , according to the distribution
given by the RCW algorithm thus ensuring that the marginals of X agree with
the RCW algorithm. Next using the matchings chosen for X we will carefully
select the matchings for Y, N1, N2, . . . NT to ensure that by the end of T steps
the two processes will have coupled with probability 1 − 1/NS . Without loss

690 S. Miracle and S. Yilek

of generality, assume that X0 and Y0 differ only by a transposition of points
x and y (recall that Δ(X0, Y0) = 1). If the matching M1 contains the pair (or
edge) (x, y) then if we apply the same matching minus this pair to Y0 then after
one step, the process has coupled (e.g. Δ(X1, Y1) = 0). However the probability
that a matching contains this pair is only Θ(1/NS) and thus not sufficient to
obtain the bound we desire. In order to overcome this Czumaj and Kutylowski
observe that if (x,w) and (y, z) are pairs in the matching M1 then if we let
N1 = M1 − (x,w) − (y, z) + (x, z) + (y, w) then X1 and Y1 differ by a (x, y)
transposition. Conversely if we let N1 = M1 then X1 and Y1 differ by a (w, z)
transposition. Given this, if M2 contains either (x, y) or (w, z) then we can
choose N1, N2 so that N3 = M3 and the process has coupled. As Czumaj and
Kutylowski do, we will call (x, y) and (w, z) good pairs and let GPt denote the
set of good pairs at step t. The general idea behind the argument is to show that
at every step the number of good pairs increases by a constant factor and thus
after Θ(log NS) steps the number of good pairs is Ω(NS). Given this, with high
probability in another Θ(log NS) steps one of the matchings Mt will contain a
good pair and thus we can define corresponding matchings for Y so that the
process couples. We formally define a good pair as follows.

Definition 1 (Czumaj, Kutylowski). Without loss of generality, assume X0

and Y0 differ by a (x, y) transposition and let GP0 = {(x, y)}. For each (x, y) ∈
GPt−1:

1. If neither x or y is part of the matching Mt then (x, y) ∈ GPt.
2. If (x,w) ∈ Mt and y is not part of Mt then (w, y) ∈ GPt.
3. If (y, w) ∈ Mt and x is not part of Mt then (w, x) ∈ GPt.
4. If (x,w), (y, z) ∈ Mt then if neither w or z are part of pairs in GPt then

(w, z) ∈ GPt and (x, y) ∈ GPt. Otherwise (w, z) ∈ GPt.

Using this strategy, Czumaj and Kutylowski formally give a coupling so that if
a pair (x, y) is a good pair at time t and Mt contains (x, y) then XT = YT . We
use this coupling exactly and rely on their proof to show that it is indeed a valid
coupling and the marginal distributions of X and Y agree with those given by
RCW. Given this coupling, it remains to show that after a time t1 the number
of good pairs is large enough so that in the next t2 steps one of the t2 matchings
will contain a good pair. We deviate from Czumaj and Kutylowski’s approach
in this analysis.

We begin by showing that after t1 = Θ(log NS) steps the probability that
there are less than NS/9 good pairs is at most .5N−2

S . Next, we show that after
an additional t2 = Θ(log NS) steps the probability that none of the matchings
during those additional t2 steps includes a good pair is at most .5N−2

S . Combining
these shows that using the given coupling, after t1 + t2 steps, with probability
at most N−2

S , the two processes remain at distance 1 and otherwise they are
at distance 0. Thus, E

[
Δ(X(t+1)δ, Y(t+1)δ)

] ≤ N−2
S for δ = t1 + t2. Given this

we can now apply the delayed path coupling theorem. Since Δ is the minimum
number of transpositions to move from one configuration to another, D (the
maximum distance between two configurations) is at most NS . This is due to

Reverse Cycle Walking and Its Applications 691

the fact that by using a single transposition per point we can put each point in
it’s new location. Combining these and the delayed path coupling theorem gives
the following bound on the mixing time.

Theorem 2. For T ≥ max
(
40 ln(2N2

S), 10 ln(NS/9)
ln(1+.3(c−1)4/c6)

)
+ 36c3 ln(2N2

S)
(c−1)2 and

NS ≥ 210, the mixing time τ of the RCW algorithm satisfies

τ(ε) ≤ T ·
⌈

ln(NS/ε)
ln N2

S

⌉

.

When ε = 1/NS the bound simplifies to τ(1/NS) ≤ T = Θ(ln(NS))

A straightforward manipulation of the bound on the mixing time gives us the
following bound on the variation distance that will be useful in the remainder
of the paper. Notice again that as long as the number of rounds of the RCW
algorithm is at least T = Θ(ln(NS)), the variation distance is less than 1/NS .

Corollary 1. Let T = max
(
40 ln(2N2

S), 10 ln(NS/9)
ln(1+.3(c−1)4/c6)

)
+ 36c3 ln(2N2

S)
(c−1)2 and

NS ≥ 210, then
||νrcwr − μs|| ≤ N

1−2r/T
S ,

where νrcwr is the distribution after r rounds of the RCW algorithm and μs is
the uniform distribution on permutations of the elements in S.

Our theorem does not explicitly condition on E[κ] = Θ(NS) as in Czumaj
and Kutylowski [9]. Instead our theorem applies only to the RCW algorithm and
relies on more specific statements about the chain. For example, a key step in our
analysis is to show that at each step of the RCW algorithm a particular point is
part of a 2-cycle with constant probability (which implies that E[κ] = Θ(NS)).
Let cx be the probability that point x is part of a 2-cycle. We prove the following
claim.

Claim 1.

cx =
(NS − 1) · (NT − NS)2

NT · (NT − 1) · (NT − 2)
≥ (c − 1)2

c3
.

where the probability is over the choice of π and c = NT /NS .

The point x is part of a potential 2-cycle when the algorithm RCW is applied
to x and u and v are set; this happens in either the “if” of “else if” blocks of
the RCW algorithm given in Sect. 3. The bit b then determines whether or not
x and the point it gets paired with actually become part of a 2-cycle. To prove
the claim, we need to consider how u and v can be set in the algorithm. There
are two cases, corresponding to the “if” and “else if” blocks of the algorithm.
First consider the “if” case. We need to determine the probability that π(x) ∈
S ∧ π−1(x)
∈ S ∧ π(π(x))
∈ S and B(x) = 1 for a randomly chosen permutation
π on T and B from S to {0, 1}. There are NS − 1 choices for π(x) (the minus
one is since we don’t want x mapped to itself), NT − NS choices for π−1(x),

692 S. Miracle and S. Yilek

and NT − NS choices for π(π(x)). This fixes three mappings, so there are then
(NT − 3)! choices for how to map the remaining points. Thus, the probability
we end up in the “if” case is

.5(NS − 1) · (NT − NS)2(NT − 3)!
NT !

=
(NS − 1) · (NT − NS)2

NT · (NT − 1) · (NT − 2)
.

The argument for the “else if” case is almost identical, and gives the same
probability. We lower bound the probability as follows.

P (Xi = 1) =
(NS − 1) · (NT − NS) · (NT − NS)

NT · (NT − 1) · (NT − 2)
≥ (c − 1)2

c3
,

where NT = cNS . Note that using linearity of expectations over all points in
NS , this claim implies that the expected number of 2-cycles is ((c − 1)2/c3)NS .

Next, we prove the following lemma which shows that after t1 steps there are
linear number of good pairs.

Lemma 2. Let |GPt| be the number of good pairs at step t, NS ≥ 210 and
t1 = max(40 ln(2N2

S), 10 ln(NS/9)/ ln(1 + .3(c − 1)4/c6) then

P (|GPt1 | < NS/9) ≤ .5N−2
S .

Proof. We start with one good pair at t = 1 and then at each step of the
algorithm we say that a good pair (x, y) splits if it creates a second good pair
(this corresponds to the last case of Definition 1). We begin with bounding the
probability that a good pair splits in the RCW algorithm. First, we assume that
there are less than NS/9 good pairs (if there are more than we’re done). Since
we have assumed that there are less than NS/9 good pairs, there are at most
2NS/9 points in good pairs and at least NS − 2NS/9 = (7/9)NS points not in
good pairs. Good pair (x, y) splits when x and y are both matched to points
that are not already in good pairs of which there are at least (7/9)NS . Using
this we can now extend the proof of Claim 1 to show the following where cp is
the probability that a particular good pair splits:

cp ≥ (79)2(c − 1)4(1 − 2−8)
c6

.

Let (x, y) be a good pair. We want to lower bound that probability that point
x and y are both part of potential 2-cycles (x,w) and (y, z) where w and z
are not in good pairs. Since we are now interested in two points being part of
potential 2-cycles, there are 4 different cases; the first case corresponds to u and
v begin set for both x and y in the “if” block of the RCW algorithm. We need
to determine the probability that π(x) ∈ (S − GP) ∧ π−1(x)
∈ S ∧ π(π(x))
∈ S
and that π(y) ∈ (S − GP) ∧ π−1(y)
∈ S ∧ π(π(y))
∈ S and B(x) = B(y) = 1 for
a randomly chosen permutation π on T and B from S to {0, 1}. Since there are
at least (7/9)NS points not in good pairs, there are (7/9)NS choices for π(x),
NT − NS choices for π−1(x), and NT − NS choices for π(π(x)). Given these

Reverse Cycle Walking and Its Applications 693

mappings, there are (7/9)NS − 1 choices for π(y) (the minus one accounts for
π(x) which is already mapped to a point in S − GP), NT − NS − 1 choices
for π−1(y), and NT − NS − 1 choices for π(π(y)). This fixes six mappings, so
there are then (NT −6)! choices for how to map the remaining points. Thus, the
probability x and y are both mapped to points in S that are not in good pairs
in the “if” block of the algorithm is

.25
(7/9)NS · (NT − NS)2 · ((7/9)NS − 1) · (NT − NS − 1)2

NT · (NT − 1) · (NT − 2) · (NT − 3) · (NT − 4) · (NT − 5)
.

As in Claim 1, the argument for the other three cases is almost identical, and
gives the same probability. We lower bound the probability as follows.

cp ≥ (79NS)(79NS − 1)(NT − NS)2(NT − NS − 1)2

NT (NT − 1)(NT − 2)(NT − 3)(NT − 4)(NT − 5)
≥ (79)2(c − 1)4(1 − 2−8)

c6
,

where NT = cNS and NS ≥ 210. Note that the restriction NS ≥ 210 could easily
be loosened at the expense of a small constant factor in the bound.

By linearity of expectations, if we have |GPt| good pairs at step t, then the
expected number of good pairs at step t + 1 is E [|GPt+1|] = |GPt| + cp|GPt|.
Let Gt = (|GPt+1| − |GPt|)/|GPt| be the fraction of good pairs that split
between time t and t + 1 (the growth rate). Thus, we have that E [Gt] = cp.
Next, define an indicator random variable Zt that is 1 if Gt ≥ E [Gt]/2 =
cp/2 and 0 otherwise. Thus if

∑t1
t=0 Zt ≥ lnn/9

ln(1+cp/2) then |GPt1 | is at least

(1 + cp/2)(lnNS/9)/ ln(1+cp/2) = NS/9. This is due to the fact that each times
Zt is one |GPt| increases at least by a factor of 1 + cp/2.

Next, we will show that for t1 = max(40 ln(2N2
S), 10 lnNS/9

ln(1+cp/2)),

P

(
t1∑

t=0

Zt <
ln NS/9

ln(1 + cp/2)

)

< .5N−2
S

which implies P (|GPt1 | < NS/9) ≤ .5N−2
S . First, using Markov’s inequality we

will show that P (Zt = 0) = P (Gt ≤ E [Gt]/2) ≤ 4/5. Let A = 3E [Gt] − Gt,
then P (Gt ≤ E [Gt]/2) = P (A ≥ (3 − 1/2)E [Gt] = 2.5E [Gt]) . By linearity
of expectations, E [A] = E [3E [Gt] − Gt] = 2E [Gt]. Thus P (Zt = 0) =
P (A ≥ 2.5E [Gt]) ≤ E [A]/2.5E [Gt] = 4/5. Next, we note that the Zi’s are
not independent since the probability Zi is 1 is determined by the number of
good pairs. However, since we are assuming there are always at most NS/9 good
pairs, this process is stochastically lower bounded by a process with independent
variables X1, . . . Xt1 where each variable Xi is 1 with probability 1/5 and 0 with
probability 4/5. In the actual process, especially toward the beginning the Zi’s
are much more likely to be 1 because there are substantially fewer than NS/9
good pairs. However throughout the process the probability is always at least 1/5.
Next, we will apply the Chernoff bound P (X < E [X]/2) < exp(−E [X]/8)

694 S. Miracle and S. Yilek

with X =
∑t1

t=0 Xt and t1 = max(40 ln(2N2
S), 10(ln NS/9)/ ln(1 + cp/2)). Our

choice of t1 implies that E [X] ≥ (1/5)40 ln(2N2
S) = 8 ln(2N2

S). Therefore,

P (X < E [X]/2) < exp(−E [X]/8) <= exp(−8 ln(2N2
S)/8) = .5N−2

S .

Again due to our choice of t1, E [X] ≥ (1/5)10 lnNS/9
ln(1+cp/2) = 2 lnNS/9

ln(1+cp/2) . Com-
bining these gives the desired result,

P
(

X <
ln NS/9

ln(1 + cp/2)

)

< P (X < E [X]/2) < .5N−2
S . ��

Finally, we consider the matchings during the next t2 steps and show the
probability that none of them includes a good pair is at most .5N−2

S . We say
that a pair (x, y) is part of a potential matching if the RCW algorithm maps x
to y regardless of the value of B(x). Specifically, we prove the following lemma.

Lemma 3. Let t2 = 36c3 ln(2N2
S)/(c − 1)2 then conditioned on |GPt1 | ≥ n/9,

the probability that the next t2 potential matchings contain no edges from GPt1

is at most .5N−2
S .

Proof. First, consider a good pair (x, y). We claim that the probability that
x is mapped to y in one step of the RCW algorithm is 2 · (c − 1)2/(c3NS).
Again, there are two cases corresponding to the “if” and “else if” blocks of the
algorithm. Consider the “if” case, we need to determine the probability that
π(x) = y ∧ π−1(x)
∈ S ∧ π(π(x))
∈ S. There is one choice for π(x), NT − NS

choices for π−1(x), and NT −NS choices for π(π(x)). This fixes three mappings,
resulting in (NT − 3)! choices for the remaining points. Thus, the probability x
is mapped to y in the “if” case is

(NT − NS)2 · (NT − 3)!
NT !

=
(NT − NS)2

NT · (NT − 1) · (NT − 2)
≤ (c − 1)2

c3NS
.

Again, the argument for the “else if” case is almost identical giving a factor of
two in the probability that x is mapped to y.

Let Ht be the number of edges in the potential matching at time t that
correspond to good pairs. There are at least NS/9 good pairs at time t1 and
each is in the potential matching with probability at least 2(c − 1)2/(c3NS).
Thus, by linearity of expectations, for t > t1 we have that

E [Ht] ≥ (NS/9)(2(c − 1)2/(c3NS)) = 2(c − 1)2/(9c3).

Since the potential matchings generated at each time step are independent we
can now use a Chernoff bound to show that P

(∑t1+t2
t=t1

Ht < 1
)

< .5N−2
S . Again,

we will use the following form of the Chernoff bound; P (X < E [X]/2) <
exp(−E [X]/8). If we let X =

∑t1+t2
t=t1

Ht where t2 = 36c3 ln(2N2
S)/(c − 1)2

Reverse Cycle Walking and Its Applications 695

then by linearity of expectations E [X] =
∑t1+t2

t=t1
E [Ht] ≥ t2 ·2(c−1)2/(9c3) =

8 ln(2N2
S). Applying the above Chernoff bound gives the following,

P

(
t1+t2∑

t=t1

Ht < 4 ln(2N2
S)

)

< exp(−8 ln(2N2
S)/8) = .5N−2

S

Thus, since P
(∑t1+t2

t=t1
Ht < 1

)
< P

(∑t1+t2
t=t1

Ht < 4 ln(2N2
S)

)
, we have that

P
(∑t1+t2

t=t1
Ht < 1

)
< .5N−2

S , as desired. ��

5 CCA Security

Let S ⊆ T with NS and NT their sizes, respectively. Let r be a positive integer
called the repetition number. Let E : KE ×T → T be a block cipher with domain
T . Let F : KF × {1, . . . , r} × S → {0, 1} be a pseudorandom function family.

We use reverse 2-cycle walking to define a new block cipher Ẽ : K × S → S
as follows. The key space K is Kr

E × KF . Let Fi,K(·) = F (K, i, ·). Then Ẽ, on
input key K and point x, parses its key K as r block cipher keys K1, . . . ,Kr

and a PRF key K ′ and then computes

RCWr
(EK1 ,...,EKr),(F1,K′ ,...,Fr,K′)(x) .

The following theorem establishes the CCA security of block cipher Ẽ.

Theorem 3. Let E, F , and Ẽ be defined as above. Let A be an adversary attack-
ing Ẽ and making q queries. Then,

Advcca
Ẽ

(A) ≤ r · Advcca
E (B) + Advprf

F (C) + Γ ,

with B making 3 · q queries, C making r · q queries, and Γ being the bound on
variation distance from Corollary 1 that depends on r.

Proof. We wish to bound the cca-advantage of an adversary A attacking Ẽ and
making at most q oracle queries. Thus we wish to bound

Advcca
Ẽ

(A) = P
(
A±Ẽ(K,·) ⇒ 1

)
− P

(
A±π(·) ⇒ 1

)
.

We will start with the left term above, where A is given access to oracles for
Ẽ and Ẽ−1, and gradually change the oracles until they are simply random
permutations on S, bounding each oracle change accordingly.

Recall that ±Ẽ(K, ·) is really just a more compact way of writing

±O1(·) = ±RCWr
(EK1 ,...,EKr),(F1,K′ ,...,Fr,K′)(·).

Our first oracle transition, from O1 to O2, replaces all of the block ciphers with
random permutations on the same domain T , turning the oracle into

±O2(·) = ±RCWr
(π1,...,πr),(F1,K′ ,...,Fr,K′)(·) ,

696 S. Miracle and S. Yilek

where each πi is a random permutation on T . We can bound the difference using
a hybrid argument and an adversary B attacking the cca security of E.

The adversary B is given an encryption algorithm and its inverse, which we
denote by OB and O−1

B . Adversary B first chooses a random index i ∈ {1, . . . , r}.
Next, B chooses i − 1 keys K1, . . . ,Ki−1 for block cipher E, and a PRF key K ′.
It then runs adversary A, simulating A’s oracle queries as follows.

On encryption query x from A, B first computes the mapping

x′ = RCWi−1
(EK1 ,...,EKi−1),(F1,K′ ,...,Fr,K′)(x).

In words, B applies i − 1 rounds of the RCW algorithm with the keys B chose
earlier; let the result be x′. B then uses its oracles to determine how x′ should be
mapped in the ith step of RCW. Looking at the RCW algorithm in Sect. 3, we see
that to determine this B will need to query O(x′), O−1(x′), and one of O(O(x′))
and O−1(O−1(x′)) depending on the results of the first two queries. Thus, for
each encryption query A makes, B queries its own oracles three times, making
either two forward and one inverse or one forward and two inverse queries. After
B determines how x′ should be mapped at the ith step (call the result x′′), it
computes how x′′ should be mapped by steps i + 1 through r using the RCW
algorithm with random permutations. To simulate these permutations, B simply
uses tables.

B handles inverse queries from A similarly, except it computes RCWr in the
reverse direction, using the same tables for random permutations in steps i + 1
through r, using its own oracles at step i, and using the keys it chose for steps
1 through i − 1.

From the description of B, we can see that if B is given as oracles a real
block cipher and its inverse under some key, then B simulates for A the oracles
±RCWr

(EK1 ,...,EKi−1 ,EKi
,πi+1,...,πr), while if B is given as oracles a random per-

mutation and its inverse, it simulates for A oracles ±RCWr
(EK1 ,...,EKi−1 ,πi,...,πr).

Thus, it follows that

P
(
A±O1(·) ⇒ 1

)
− P

(
A±O2(·) ⇒ 1

)
≤ r · Advcca

E (B) (1)

where B makes at most 3q oracle queries.
For our next oracle transition, from O2 to O3, we replace the PRF F : KF ×

{1, . . . , r}×S → {0, 1} with a truly random function ρ : {1, . . . , r}×S → {0, 1}.
Similar to how we defined Fi,K(·) = F (K, i, ·), we let ρi(·) = ρ(i, ·). Thus, our
oracle O3 becomes

±O3(·) = ±RCWr
(π1,...,πr),(ρ1,...,ρr)(·).

We can bound the change in advantage by the prf-advantage of an adversary C.
The adversary C, given access to an oracle that is either the real pseudoran-
dom function or a truly random function, runs A and simulates its oracles by
computing RCWr using tables and random sampling to simulate the random
permutations used by RCW, and using its own oracle to compute the bit b used

Reverse Cycle Walking and Its Applications 697

in each round. Since there are r rounds of RCW and A makes q queries, C will
make rq queries to its own oracle. Clearly, if C’s oracle is a real pseudorandom
function, it simulates O2 for A, while if C’s oracle is a truly random function it
simulates O3 for A. Thus,

P
(
A±O2(·) ⇒ 1

)
− P

(
A±O3(·) ⇒ 1

)
≤ Advprf

F (C) (2)

where C makes at most r · q oracle queries.
At this point, we have r rounds of RCW using only ideal components. For

our last oracle transition, O3 to O4, we replace RCW entirely with a random
permutation on S. Thus,

±O4(·) = ±π(·).
We are now in the information theoretic setting, and the maximum advantage
of any adversary in distinguishing between RCWr with ideal components and
a random permutation on S is bounded in Corollary 1 in the previous section.
Thus,

P
(
A±O3(·) ⇒ 1

)
− P

(
A±O4(·) ⇒ 1

)
≤ Γ (3)

where Γ is the value the variation distance is bounded by in the Corollary.
We can thus bound the cca-advantage of A as follows:

Advcca
Ẽ

(A) ≤
(

P
(
A±O1(·) ⇒ 1

)
− P

(
A±O2(·) ⇒ 1

))

+
(

P
(
A±O2(·) ⇒ 1

)
− P

(
A±O3(·) ⇒ 1

))

+
(

P
(
A±O3(·) ⇒ 1

)
− P

(
A±O4(·) ⇒ 1

))

where recall that

O1 = RCWr
(EK1 ,...,EKr),(F1,K′ ,...,Fr,K′)

O2 = RCWr
(π1,...,πr),(F1,K′ ,...,Fr,K′)

O3 = RCWr
(π1,...,πr),(ρ1,...,ρr)

O4 = π

Substituting in Eqs. (1), (2), and (3) gives the bound from the theorem state-
ment. ��

6 Full Security via Reverse Cycle Walking

Let S = {0, . . . , N − 1} and T = {0, . . . , 2N − 1}. Thus, NT = |T | = 2N
and NS = |S| = N . Let r be a positive integer called the repetition number.

698 S. Miracle and S. Yilek

Let E : K × T → T be a block cipher on T and let E−1 be its inverse. Let
F : KF × {1, . . . , r} × S → S be a pseudorandom function family. Let Ẽ be
defined as it was in the previous section, using r rounds of RCW with E and F .
The following theorem states that if E is secure against cca adversaries making
N = (1/2)NT queries, then Ẽ is fully secure (i.e., secure against adversaries
making N = NS queries). In other words, the RCW construction allows us to
build a fully secure cipher out of a partially secure cipher on a larger set.

Theorem 4. Let S, T , E, F , and Ẽ be defined as above. Let A be a cca adver-
sary attacking Ẽ and making N = NS queries. Then

Advcca
Ẽ

(A) ≤ r · Advcca
E (B) + Advprf

F (C) + Γ

where B makes N = (1/2)NT queries to its encryption oracle, C makes N · r
oracle queries, and Γ is the bound on variation distance from Corollary 1 that
depends on r.

Proof. The proof is identical to the proof of Theorem 3 except for how adversary
B answers oracle queries from A in the hybrid argument. As in the proof of
Theorem 3, we let

±O1(·) = ±RCWr
(EK1 ,...,EKr),(F1,K′ ,...,Fr,K′)(·),

and
±O2(·) = ±RCWr

(π1,...,πr),(F1,K′ ,...,Fr,K′)(·).
We then use adversary B attacking E to argue that replacing A’s ±O1 oracles
with ±O2 has little effect.

Let B’s oracles be denoted by OB and O−1
B . As in the previous proof, B

begins by choosing a random index i ∈ {1, . . . , r}, then i − 1 keys K1, . . . ,Ki−1

for E and a PRF key K ′ for F .
This is where we encounter the major change from the adversary in the

previous proof. At this point, adversary B should query its own oracle OB on
all points x ∈ {0, . . . , N − 1}, recording the answers in a table. Specifically, B
sets T[x] = OB(x). B then runs A, answer its oracle queries as follows.

On encryption query x from A, B computes

x′ = RCWi−1
(EK1 ,...,EKi−1),(F1,K′ ,...,Fr,K′)(x).

using the block cipher keys and the PRF key it chose earlier. To determine how
x′ should be mapped with the ith step of RCW, B now has to use the answers
it received from its oracle and stored in table T. Notice that B can evaluate the
boolean conditions in the “if” case of the RCW algorithm as follows: if T[x] ∈ S
and there is no z ∈ S s.t. T[z] = x and T[T[x]]
∈ S. Similarly, B can evaluate the
“else if” as follows: if T[x]
∈ S and there does exist z ∈ S s.t. T[z] = x and there
does not exist w ∈ S s.t. T[w] = z. In other words, the table T contains enough
information to evaluate the RCW algorithm on any point in S.

Reverse Cycle Walking and Its Applications 699

After B computes how x′ is mapped in the ith RCW round, it uses tables
to simulate random permutations for rounds i + 1 through r, just as it did in
the proof of Theorem 3. Inverse queries from A are handled similarly to in that
proof, just with the ith round of RCW computed as above with table T.

The rest of the proof (i.e., bounding the change from using F to using a truly
random function) follows the exact steps as the proof in the previous section. ��

7 Open Questions

There are a number of interesting open questions surrounding reverse cycle walk-
ing. We analyzed the security of reverse 2-cycle walking, but we explained in the
introduction that the algorithm can be generalized to longer cycles. An inter-
esting question is whether reverse t-cycle walking, for t > 2, leads to better
bounds than we were able to prove here. Another interesting question is what is
the optimal worst-case running time for strong pseudorandom permutations on
general sets where only efficient membership testing is assumed. We were able
to show a worst case running time of Θ(t(N) log N), where t(N) is the time to
encipher a point in the larger set T . We conjecture that this is in fact optimal.

Acknowledgements. We thank Tom Ristenpart for his very helpful comments on an
earlier draft of this paper. We also thank the anonymous Asiacrypt reviewers for their
detailed feedback.

References

1. Bellare, M., Ristenpart, T., Rogaway, P., Stegers, T.: Format-preserving encryp-
tion. In: Jacobson, M.J., Rijmen, V., Safavi-Naini, R. (eds.) SAC 2009. LNCS, vol.
5867, pp. 295–312. Springer, Heidelberg (2009). doi:10.1007/978-3-642-05445-7 19

2. Bellare, M., Rogaway, P., Spies, T.: The FFX mode of operation for format-
preserving encryption. Submission to NIST, February 2010

3. Black, J., Rogaway, P.: Ciphers with arbitrary finite domains. In: Preneel, B. (ed.)
CT-RSA 2002. LNCS, vol. 2271, pp. 114–130. Springer, Heidelberg (2002). doi:10.
1007/3-540-45760-7 9

4. Brightwell, M., Smith, H.: Using datatype-preserving encryption to enhance data
warehouse security. In: National Information Systems Security Conference (NISSC)
(1997)

5. Bubley, R., Dyer, M.E.: Faster random generation of linear extensions. In: Karloff,
H.J. (ed.) 9th SODA, January 1998, pp. 350–354. ACM-SIAM (1998)

6. Czumaj, A.: Random permutations using switching networks. In: Servedio, R.A.,
Rubinfeld, R. (eds.) 47th ACM STOC, June 2015, pp. 703–712. ACM Press (2015)

7. Czumaj, A., Kanarek, P., Kutylowski, M., Lorys, K.: Delayed path coupling and
generating random permutations via distributed stochastic processes. In: Tarjan,
R.E., Warnow, T. (eds.) 10th SODA, January 1999, pp. 271–280. ACM-SIAM
(1999)

8. Czumaj, A., Kanarek, P., Kutylowski, M., Lorys, K.: Fast generation of random
permutations via networks simulation. In: European Symposium on Algorithms,
pp. 246–260 (1996)

http://dx.doi.org/10.1007/978-3-642-05445-7_19
http://dx.doi.org/10.1007/3-540-45760-7_9
http://dx.doi.org/10.1007/3-540-45760-7_9

700 S. Miracle and S. Yilek

9. Czumaj, A., Kutylowski, M.: Delayed path coupling and generating random per-
mutations. Random Struct. Algorithms 17, 238–259 (2000)

10. Granboulan, L., Pornin, T.: Perfect block ciphers with small blocks. In: Biryukov,
A. (ed.) FSE 2007. LNCS, vol. 4593, pp. 452–465. Springer, Heidelberg (2007).
doi:10.1007/978-3-540-74619-5 28

11. Hoang, V.T., Morris, B., Rogaway, P.: An enciphering scheme based on a card
shuffle. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417,
pp. 1–13. Springer, Heidelberg (2012). doi:10.1007/978-3-642-32009-5 1

12. Kocher, P.C.: Timing attacks on implementations of diffie-hellman, RSA, DSS, and
other systems. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 104–113.
Springer, Heidelberg (1996). doi:10.1007/3-540-68697-5 9

13. Levin, D.A., Peres, Y., Wilmer, E.L.: Markov Chains and Mixing Times. American
Mathematical Society (2006)

14. Luchaup, D., Dyer, K.P., Jha, S., Ristenpart, T., Shrimpton, T.: LibFTE: a toolkit
for constructing practical, format-abiding encryption schemes. In: Proceedings of
the 23rd USENIX Security Symposium, pp. 877–891 (2014)

15. Luchaup, D., Shrimpton, T., Ristenpart, T., Jha, S.: Formatted encryption beyond
regular languages. In: Ahn, G.J., Yung, M., Li, N. (eds.) ACM CCS 14, November
2014, pp. 1292–1303. ACM Press (2014)

16. Morris, B., Rogaway, P.: Sometimes-recurse shuffle. In: Nguyen, P.Q., Oswald, E.
(eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 311–326. Springer, Heidelberg
(2014). doi:10.1007/978-3-642-55220-5 18

17. Morris, B., Rogaway, P., Stegers, T.: How to encipher messages on a small domain.
In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 286–302. Springer,
Heidelberg (2009). doi:10.1007/978-3-642-03356-8 17

18. Ristenpart, T., Yilek, S.: The mix-and-cut shuffle: small-domain encryption secure
against N queries. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol.
8042, pp. 392–409. Springer, Heidelberg (2013). doi:10.1007/978-3-642-40041-4 22

19. Sinclair, A.: Algorithms for Random Generation and Counting. Progress in Theo-
retical Computer Science. Birkhäuser, Boston (1993)

http://dx.doi.org/10.1007/978-3-540-74619-5_28
http://dx.doi.org/10.1007/978-3-642-32009-5_1
http://dx.doi.org/10.1007/3-540-68697-5_9
http://dx.doi.org/10.1007/978-3-642-55220-5_18
http://dx.doi.org/10.1007/978-3-642-03356-8_17
http://dx.doi.org/10.1007/978-3-642-40041-4_22

Mathematical Analysis II

Optimization of LPN Solving Algorithms

Sonia Bogos(B) and Serge Vaudenay

EPFL, 1015 Lausanne, Switzerland
soniamihaela.bogos@epfl.ch

http://lasec.epfl.ch

Abstract. In this article we focus on constructing an algorithm that
automatizes the generation of LPN solving algorithms from the con-
sidered parameters. When searching for an algorithm to solve an LPN
instance, we make use of the existing techniques and optimize their
use. We formalize an LPN algorithm as a path in a graph G and our
algorithm is searching for the optimal paths in this graph. Our results
bring improvements over the existing work, i.e. we improve the results of
the covering code from ASIACRYPT’14 and EUROCRYPT’16. Further-
more, we propose concrete practical codes and a method to find good
codes.

1 Introduction

The Learning Parity with Noise (LPN) problem can be seen as a noisy system
of linear equations in the binary domain. More specifically, we have a secret s
and an adversary that has access to an LPN oracle which provides him tuples of
uniformly distributed binary vectors vi and the inner product between s and vi

to which some noise was added. The noise is represented by a Bernoulli variable
with a probability τ to be 1. The goal of the adversary is to recover the secret
s. The LPN problem is a particular case of the well-known Learning with Errors
(LWE) [33] problem where instead of working in Z2 we extend the work to a
ring Zq.

The LPN problem is attractive as it is believed to be resistant to quantum
computers. Thus, it can be a good candidate for replacing the number-theoretic
problems such as factorization and discrete logarithm (which can be easily broken
by a quantum algorithm). Also, given its structure, it can be implemented in
lightweight devices. The LPN problem is used in the design of the HB-family
of authentication protocols [10,19,23,24,26,30] and several cryptosystems base
their security on its hardness [1,14–16,20,25].

Previous Work. LPN is believed to be hard. So far, there is no reduction from
hard lattice problems to certify the hardness (like in the case of LWE). Thus, the
best way to assess its hardness is by trying to design and improve algorithms that

Electronic supplementary material The online version of this chapter (doi:10.
1007/978-3-662-53887-6 26) contains supplementary material, which is available to
authorized users.

c© International Association for Cryptologic Research 2016
J.H. Cheon and T. Takagi (Eds.): ASIACRYPT 2016, Part I, LNCS 10031, pp. 703–728, 2016.
DOI: 10.1007/978-3-662-53887-6 26

http://dx.doi.org/10.1007/978-3-662-53887-6_26
http://dx.doi.org/10.1007/978-3-662-53887-6_26

704 S. Bogos and S. Vaudenay

solve it. Over the years, the LPN problem was analyzed and there exist several
solving algorithms. The first algorithm to target LPN is the BKW algorithm [6].
This algorithm can be described as a Gaussian elimination on blocks of bits
(instead on single bits) where the secret is recovered bit by bit. Several improve-
ments appeared afterwards [18,28]. One idea that improves the algorithm is the
use of the fast Walsh-Hadamard transform as we can recover several bits of the
secret at once. In their work, Levieil and Fouque [28] provide an analysis with
the level of security achieved by different LPN instances and propose secure para-
meters. Using BKW as a black-box, Lyubashevsky [29] presents an LPN solving
algorithm useful for the case when the number of queries is restricted to an adver-
sary. The best algorithm to solve LPN was presented at ASIACRYPT’14 [22] and
it introduces the use of the covering codes to improve the performance. Some
problems in the computation of complexities were reported [7,36]. As discussed
by Bogos et al. [7] and in the ASIACRYPT presentation [22], the authors used
a too optimistic approximation for the bias introduced by their new reduction
method, the covering codes. Some complexity terms are further missing (as dis-
cussed in Sect. 2.2) or are not in bit operations. Also, no method to construct
covering codes were suggested. At EUROCRYPT’16, Zhang et al. [36] proposed
a way to construct good codes by concatenating perfect codes and improved the
algorithms. However, some other problem in complexities were reported [9]. The
new LF(4) reduction technique introduced by Zhang et al. [36] was also shown
to be incorrect [9].

For the case when the secret is sparse, i.e. its Hamming weight is small, the
classical Gaussian elimination proves to give better results [7,8,11].

The LPN algorithms consist of two parts: one in which the size of the secret
is reduced and one in which part of the secret is recovered. Once a part of
the secret is recovered, the queries are updated and the algorithm restarts to
recover the rest of the secret. When trying to recover a secret s of k bits, it is
assumed that k can be written as a · b, for a, b ∈ N (i.e. secret s can be seen as
a blocks of b bits). Usually all the reduction steps reduce the size by b bits and
the solving algorithm recovers b bits. While the use of the same parameter, i.e.
b, for all the operations may be convenient for the implementation, we search for
an algorithm that may use different values for each reduction step. We discover
that small variations from the fixed b can bring important improvements in the
time complexity of the whole algorithm.

Our Contribution. In this work we first analyze the existing LPN algorithms
and study the operations that are used in order to reduce the size of the secret.
We adjust the expressions of the complexities of each step (as in some works
they were underestimated in the literature). For instance, the results from Guo
et al. [22] and Zhang et al. [36] are displayed with corrections in Table 1.1

(Details for this computation are provided as an additional material for this
paper.)

Second, we improve the theory behind the covering code reduction and show
the link with perfect and quasi-perfect codes. Using the average bias of covering
1 As for [36], we only reported the results based on LF2 which are better than with
LF1, as the LF(4) operation is incorrect [9].

Optimization of LPN Solving Algorithms 705

Table 1. Time complexity to solve LPN (in bit operations). These complexities are
based on the formulas from our paper with the most favorable covering codes we
constructed from our pool, with adjusted data complexity to reach a failure probability
bounded by 33 %. Originally claimed complexities by [22,36] are under parentheses.

(k, τ) ASIACRYPT’14 [22] EUROCRYPT’16 [36] Our results

(512, 0.125) 286.96(279.9) (proceedings)
281.90(279.7) (presentation)a

280.09(274.73) 278.84

(532, 0.125) 288.62(281.82) 282.17(276.90) 281.02

(592, 0.125) 297.71(288.07) 289.32(283.84) 287.57

ahttp://des.cse.nsysu.edu.tw/asiacrypt2014/doc/1-1 Solving LPN Using Covering
Codes.pdf

codes allows us to use arbitrary codes and even random ones. Using the algo-
rithm to construct optimal concatenated codes based on a pool of elementary
ones allows us to improve complexities. (In Guo et al. [22], only a hypothetical
code was assumed to be close to a perfect code; in Zhang et al. [36], only the
concatenation of perfect codes are used; in Table 1, our computed complexities
are based on the real codes that we built with our bigger pool to have a fair
comparison.)

Third, we optimize the order and the parameters used by the operations that
reduce the size of the secret such that we minimize the time complexity required.
We design a “meta-algorithm” that combines the reduction steps and finds the
optimal strategy to solve LPN. We automatize the process of finding LPN solv-
ing algorithms, i.e. given a random LPN instance, our algorithm provides the
description of the steps that optimize the time complexity. In our formalization
we call such algorithms “optimal chains”. We perform a security analysis of LPN
based on the results obtained by our algorithm and compare our results with
the existing ones. We discover that we improve the complexity compared with
the existing results [7,22,28,36], as shown in Table 1.

Preliminaries and Notations. Given a domain D, we denote by x
U←− D

the fact that x is drawn uniformly at random from D. By Berτ we denote
the Bernoulli distribution with parameter τ . By Berk

τ we denote the binomial
distribution with parameters k and τ . Let 〈·, ·〉 denote the inner product, Z2 =
{0, 1} and ⊕ denote the bitwise XOR. The Hamming weight of a vector v is
denoted by HW(v).

Organization. In Sect. 2 we formally define the LPN problem and describe the
main tools used to solve it. We carefully analyze the complexity of each step and
show in footnote where it differs from the existing literature. Section 3 studies
the failure probability of the entire algorithm and validates the use of the average
bias in the analysis. Section 4 introduces the bias computation for perfect and
quasi-perfect codes. We provide an algorithm to find good codes. The algorithm
that searches the optimal strategy to solve LPN is presented in Sects. 5 and 6.
We illustrate and compare our results in Sect. 7 and conclude in Sect. 8. We

http://des.cse.nsysu.edu.tw/asiacrypt2014/doc/1-1_Solving LPN Using Covering Codes.pdf
http://des.cse.nsysu.edu.tw/asiacrypt2014/doc/1-1_Solving LPN Using Covering Codes.pdf

706 S. Bogos and S. Vaudenay

put in additional material details of our results: the complete list of the chains
we obtain (for Tables 3 and 4), an example of complete solving algorithm, the
random codes that we use for the covering code reduction, and an analysis of
the results from [22,36] to obtain Table 1.

2 LPN

2.1 LPN Definition

The LPN problem can be seen as a noisy system of equations in Z2 where one is
asked to recover the unknown variables. Below, we present the formal definition.

Definition 1 (LPN oracle). Let s
U←− Z

k
2 , let τ ∈]0, 1

2 [be a constant noise
parameter and let Berτ be the Bernoulli distribution with parameter τ . Denote
by Ds,τ the distribution defined as

{(v, c) | v
U←− Z

k
2 , c = 〈v, s〉 ⊕ d, d ← Berτ} ∈ Z

k+1
2 .

An LPN oracle OLPN
s,τ is an oracle which outputs independent random samples

according to Ds,τ .

Definition 2 (Search LPN problem). Given access to an LPN oracle OLPN
s,τ ,

find the vector s. We denote by LPNk,τ the LPN instance where the secret has
size k and the noise parameter is τ . Let k′ ≤ k. We say that an algorithm M
(n, t,m, θ, k′)-solves the search LPNk,τ problem if

Pr[MOLPN
s,τ (1k) = (s1 . . . sk′) | s

U←− Z
k
2] ≥ θ,

and M runs in time t, uses memory m and asks at most n queries from the LPN
oracle.

Remark that we consider here the problem of recovering only a part of the
secret. Throughout the literature this is how the LPN problem is formulated. The
reason for doing so is that the recovery of the first k′ bits dominates the overall
complexity. Once we recover part of the secret, the new problem of recovering a
shorter secret of k − k′ bits is easier.

The LPN problem has a decisional form where one has to distinguish between
random vectors of size k +1 and the samples from the LPN oracle. In this paper
we are interested only in finding algorithms for the search version.

We define δ = 1 − 2τ . We call δ the bias of the error bit d. We have δ =
E((−1)d), with E(·) the expected value. We denote the bias of the secret bits
by δs. As s is a uniformly distributed random vector, at the beginning we have
δs = 0.

Optimization of LPN Solving Algorithms 707

2.2 Reduction and Solving Techniques

Depending on how many queries are given from the LPN oracle, the LPN
solving algorithms are split in 3 categories. With a linear number of queries,
the best algorithms are exponential, i.e. with n = Θ(k) the secret is recov-
ered in 2Θ(k) time [31,35]. Given a polynomial number of queries n = k1+η,
with η > 0, one can solve LPN with a sub-exponential time complexity of
2O(k

log log k) [29]. When τ = 1√
k

we can improve this result and have a complexity

of e
1
2

√
k(ln k)2+O(

√
k ln k) [8]. The complexity improves but remains in the sub-

exponential range with a sub-exponential number of queries. For this category,
we have the BKW [6], LF1, LF2 [28], FMICM [18] and the covering code algo-
rithm [22,36]. All these algorithms solve LPN with a time complexity of 2O(k

log k)

and require 2O(k
log k) queries. In the special case when the noise is sparse, a sim-

ple Gaussian elimination can be used for the recovery of the secret [7,11]. LF2,
covering code or the Gaussian elimination prove to be the best one, depending
on the noise level [7].

All these algorithms have a common structure: given an LPNk,τ instance
with a secret s, they reduce the original LPN problem to a new LPN problem
where the secret s′ is of size k′ ≤ k by applying several reduction techniques.
Then, they recover s′ using a solving method. The queries are updated and the
process is repeated until the whole secret s is recovered. We present here the list
of reduction and solving techniques used in the existing LPN solving algorithms.
In the next section, we combine the reduction techniques such that we find the
optimal reduction phases for solving different LPN instances.

We assume for all the reduction steps that we start with n queries, that
the size of the secret is k, the bias of the secret bits is δs and the bias of the
noise bits is δ. After applying a reduction step, we will end up with n′ queries,
size k′ and biases δ′ and δ′

s. Note that δs averages over all secrets although the
algorithm runs with one target secret. As it will be clear below, the complexity
of all reduction steps only depends on k, n, and the parameters of the steps but
not on the biases. Actually, only the probability of success is concerned with
biases. We see in Sect. 3 that the probability of success of the overall algorithm
is not affected by this approach. Actually, we will give a formula to compute a
value which approximates the average probability of success over the key based
on the average bias.

We have the following reduction steps:

– sparse-secret changes the secret distribution. In the formal definition of LPN, we
take the secret s to be a random row vector of size k. When other reduction
steps or the solving phase depends on the distribution of s, one can trans-
form an LPN instance with a random s to a new one where s has the same
distribution as the initial noise, i.e. s ← Berkτ . The reduction performs the fol-
lowing steps: from the n queries select k of them: (vi1 , ci1), . . . , (vik

, cik
) where

the row vectors vij
, with 1 ≤ j ≤ k, are linearly independent. Construct the

matrix M as M = [vT
i1

· · · vT
ik

] and rewrite the k queries as sM +d′ = c′, where

708 S. Bogos and S. Vaudenay

d′ = (di1 , . . . , dik
). With the rest of n − k queries we do the following:

c′
j = 〈vj(MT)−1, c′〉 ⊕ cj = 〈vj(MT)−1, d′〉 ⊕ dj = 〈v′

j , d
′〉 ⊕ dj

We have n − k new queries (v′
j , c

′
j) where the secret is now d′. In Guo

et al. [22], the authors use an algorithm which is inappropriately called
“the four Russians algorithm” [2]. This way, the complexity should be of
O

(
minχ∈N

(
kn′	 k

χ
 + k3 + kχ2χ
))

.2 Instead, the Bernstein algorithm [4]

works in O
(

n′k2

log2 k−log2 log2 k + k2
)
. We use the best of the two, depending

on the parameters. Thus, we have:

sparse-secret : k′ = k; n′ = n − k; δ′ = δ; δ′
s = δ

Complexity: O
(
minχ∈N

(
n′k2

log2 k−log2 log2 k + k2, kn′	 k
χ
 + k3 + kχ2χ

))

– xor -reduce(b) was first used by the LF2 algorithm. The queries are grouped
in equivalence classes according to the values on b random positions. In each
equivalence class, we perform the xoring of every pair of queries. The size of the
secret is reduced by b bits and the new bias is δ2. The expected new number of
queries is E(

∑
i<j 1vi matches vj on the b-bit block) = n(n−1)

2b+1 which improves
previous results3. When n ≈ 1 + 2b+1, the number of queries are maintained.
For n > 1 + 2b+1, the number of queries will increase.

xor -reduce(b) : k′ = k − b; n′ = n(n−1)
2b+1 ; δ′ = δ2; δ′

s = δs

Complexity: O(k · max(n, n′))

– drop-reduce(b) is a reduction used only by the BKW algorithm. It consists in
dropping all the queries that are not 0 on a window of b bits. Again, these b
positions are chosen randomly. In average, we expect that half of the queries
are 0 on a given position. For b bits, we expect to have n

2b queries that are 0
on this window. The bias is unaffected and the secret is reduced by b bits.

drop-reduce(b) : k′ = k − b; n′ = n
2b ; δ′ = δ; δ′

s = δs

Complexity: O(n(1 + 1
2 + . . . + 1

2b−1))

The complexity of n(1 + 1
2 + . . . + 1

2b−1) = O(n) comes from the fact that we
don’t need to check all the b bits: once we find a 1 we don’t need to continue
and just drop the corresponding query.

– code-reduce(k, k′, params) is a method used by the covering code algorithm pre-
sented in ASIACRYPT’14. In order to reduce the size of the secret, one uses a
linear code [k, k′] (which is defined by params) and approximates the vi vectors
to the nearest codeword gi. We assume that decoding is done in linear time

2 But the k3 + kχ2χ terms is missing in [22].

3 In Bogos et al. [7], the number of queries was approximated to
n
2b

(
n
2b −1

)

2
which is

less favorable.

Optimization of LPN Solving Algorithms 709

for the code considered. (For the considered codes, decoding is indeed based
on table look-ups.) The noisy inner product becomes:

〈vi, s〉 ⊕ di = 〈g′
iG, s〉 ⊕ 〈vi − gi, s〉 ⊕ di

= 〈g′
i, sG

T 〉 ⊕ 〈vi − gi, s〉 ⊕ di

= 〈g′
i, s

′〉 ⊕ d′
i,

where G is the generator matrix of the code, gi = g′
iG, s′ = sGT ∈ {0, 1}k′

and
d′

i = 〈vi − gi, s〉 ⊕ di. We denote bc = E((−1)〈vi−gi,s〉) the bias of 〈vi − gi, s〉.
We will see in Sect. 4 how to construct a [k, k′] linear code making bc as large
as possible.

Here, bc averages the bias over the secret although s is fixed by sparse-secret .
It gives the correct average bias δ over the distribution of the key. We will
see that it allows to approximate the expected probability of success of the
algorithm.

By this transform, no query is lost.

code-reduce(k, k′, params) : k′; n′ = n; δ′ = δ · bc
δ′
s depends on δs and G

Complexity: O(kn)

The way δ′
s is computed is a bit more complicated than for the other types of

reductions. However, δs only plays a role in the code-reduce reduction, and we
will not consider algorithms that use more than one code-reduce reduction.

It is easy to notice that with each reduction operation the number of queries
decreases or the bias is getting smaller. In general, for solving LPN, one tries to
lose as few queries as possible while maintaining a large bias. We will study in
the next section what is a good combination of using these reductions.

After applying the reduction steps, we assume we are left with an LPNk′,δ′

instance where we have n′ queries. The original BKW algorithm was using a final
solving technique based on majority decoding. Since the LF2 algorithm, we use
a better solving technique based on the Walsh Hadamard Transform (WHT).

WHT recovers a block of the secret by computing the fast Walsh Hadamard
transform on the function f(x) =

∑
i 1vi=x(−1)〈vi,s〉⊕di . The Walsh-Hadamard

transform is
f̂(ν) =

∑

x

(−1)〈ν,x〉f(x) =
∑

i

(−1)〈vi,s+ν〉⊕di

For ν = s, we have f̂(s) =
∑

i(−1)di . For a positive bias, we know that most
of the noise bits are set to 0. It is the opposite when the bias is negative. So,
|f̂(s)| is large and we suppose it is the largest value in the table of f̂ . Using again

the Chernoff bounds, we need to have n′ = 8 ln(2k′

θ
)δ′−2 [7] queries in order to

bound the probability of guessing wrongly the k′-bit secret by θ. We can improve
further by applying directly the Central Limit Theorem and obtain a heuristic

710 S. Bogos and S. Vaudenay

bound ϕ(−
√

n′
2δ′−2−1) ≤ 1 − (1 − θ)

1
2k′ −1 , where ϕ(x) = 1

2 + 1
2erf(

x√
2
) and erf is

the Gauss error function. We obtain that
√

n′ ≥ −
√

2δ′−2 − 1 · ϕ−1
(
1 − (1 − θ)

1
2k′ −1

)
. (1)

We can derive the approximation of Selçuk [34] that n′ ≥ 4 ln(2k′

θ
)δ′−2.

We give the details of our results in Sect. 3. Complexity of the WHT(k′) is
O(k′2k′ log2 n′+1

2 + k′n′) as we use the fast Walsh Hadamard Transform4,5.

WHT(k′);

Requires
√

n′ ≥ −√
2δ′−2 − 1 · ϕ−1

(
1 − (1 − θ)

1
2k′ −1

)

Complexity: O(k′2k′ log2 n′+1
2 + k′n′)

Given the reduction and the solving techniques, an LPNk,τ solving algorithm
runs like this: we start with a k-bit secret and with n queries from the LPN oracle.
We reduce the size of the secret by applying several reduction steps and we end
up with n′ queries where the secret has size k′. We use one solving method, e.g.
the WHT, and recover the k′-bit secret with a probability of failure bounded
by θ. We chose θ = 1

3 . We have recovered a part of the secret. To fully recover
the whole secret, we update the queries and start another chain to recover more
bits, and so on until the remaining k − k′ bits are found. For the second part
of the secret we will require for the failure probability to be θ

2 and for the
ith part it will be θ

i. Thus, if we recover the whole secret in i iterations, the
total failure probability will be bounded by θ + θ

2 + · · · + θ
i. Given that we take

θ = 1
3 , we recover the whole secret with a success probability larger than 50%.

Experience shows that the time complexity for the first iteration dominates the
total complexity.

As we can see in the formulas of each possible step, the computations of k′,
n′, and of the complexity do not depend on the secret weight. Furthermore, the
computation of biases is always linear. So, the correct average bias (over the
distribution of the key made by the sparse-secret transform) is computed. Only
the computation of the success probability is non-linear but we discuss about
this in the next section. As it only matters in WHT, we will see in Sect. 3 that
the approximation is justified.

4 The second term k′n′ illustrates the cost of constructing the function f . In cases
where n′ > 2k′

this is the dominant term and it should not be ignored. This was
missing in several works [7,22]. For the instance LPN592,0.125 from Guo et al. [22]
this makes a big difference as k′ = 64 and n′ = 269; the complexity of WHT with
the second term is 275 vs 270 [22]. Given that is must be repeated 213 (as 35 bits of
the secret are guessed), the cost of WHT is 288.

5 Normally, the values f̂(ν) have an order of magnitude of
√

n′ so we have 1
2

log2 n′

bits.

Optimization of LPN Solving Algorithms 711

3 On Approximating the Probability of Success

Approximating n by using Central Limit Theorem. In order to approximate
the number of queries needed to solve the LPN instance we consider when the
Walsh Hadamard Transform fails to give the correct secret. We first assume
that the bias is positive. We have a failure when for another s̄ = s, we have
that f̂(s̄) > f̂(s). Following the analysis from [7], we let y = A′s̄T + c′T and
d′ = A′sT + c′T . We have f̂(s̄) =

∑
i(−1)yi = n′ − 2.HW(y) and similarly,

f̂(s) = n′ −2.HW(d′). So, f̂(s̄) > f̂(s) translates to HW(y) ≤ HW(d′). Therefore

Pr[f̂(s̄) > f̂(s)] = Pr

⎡

⎣
n′

∑

i=1

(yi − d′
i) ≤ 0

⎤

⎦ .

For each s̄, we take y as a uniformly distributed random vector and we let δ′(s)
be the bias introduce with a fixed s for d′

i (we recall that our analysis computes
δ′ = E(δ′(s)) over the distribution of s). Let X1, . . . , Xn′ be random variable
corresponding to Xi = yi − d′

i. Since E(yi) = 1
2 , E(d′

i) = 1
2 − δ′(s)

2 and yi and d′
i

are independent, we have that E(Xi) = δ′(s)
2 and Var(Xi) = 2−δ′(s)2

4 . By using
the Central Limit Theorem we obtain that

Pr[X1 + . . . + Xn′ ≤ 0] ≈ ϕ (Z(s)) with Z(s) = − δ′(s)
√

2 − δ′(s)2
√

n′

where ϕ can be calculated by ϕ(x) = 1
2 + 1

2erf(
x√
2
) and erf is the Gauss error

function. For δ′(s) < 0, the same analysis with f̂(s̄) < f̂(s) gives the same result.
Applying the reasoning for any s′ = s we obtain that the failure probability is

p(s) = 1 − (1 − ϕ(Z(s)))2
k′−1

, if δ′(s) > 0

and p(s) = 1 − 1
2k′ , if δ′(s) ≤ 0.

We deduce the following (for θ < 1
2)

p(s) ≤ θ ⇔
√

n′ ≥ −
√

2δ′(s)−2 − 1ϕ−1
(
1 − (1 − θ)

1
2k′ −1

)
and δ′(s) > 0

As a condition for our WHT step, we adopt the inequality in which we replace
δ′(s) by δ′. We give a heuristic argument below to show that it implies E(p(s)) ≤
θ, which is what we want.

Note that if we use the approximation ϕ (Z) ≈ − 1
Z

√
2π

e− Z2
2 for Z → −∞,

we obtain the condition n′ ≥ 2(2δ′−2 − 1) ln(2k′ −1
θ

). So, our analysis brings an
improvement of factor two over the Hoeffding bound method used by Bogos
et al. [7] that requires n′ ≥ 8δ′−2 ln(2k′

θ
).

712 S. Bogos and S. Vaudenay

On the validity of the using the bias average. The above computation is correct
when using δ′(s) but we use δ′ = E(δ′(s)) instead. If no code-reduce step is used,
δ′(s) does not depend on s and we do have δ′(s) = δ′. However, when a code-reduce
is used, the bias depends on the secret which is obtained after the sparse-secret
step. For simplicity, we let s denote this secret. The bias δ′(s) is actually of form
δ′(s) = δ2x

bc(s) where x is the number of xor -reduce steps and bc(s) is the bias
introduced by code-reduce depending on s. The values of δ′(s), Z(s), and p(s) are
already defined above. We define Z = − δ′√

2−δ′2

√
n′ and p = 1− (1−ϕ(Z))2

k′ −1.
Clearly, E(p(s)) is the average failure probability over the distribution of the
secret obtained after sparse-secret .

Our method ensures that δ′ = E(δ′(s)) over the distribution of s. Since
δ′ is typically small (after a few xor -reduce steps, δ2x

is indeed very small), we
can consider Z(s) as a linear function of δ′(s) and have E(Z(s)) ≈ Z. This is
confirmed by experiment. We make the heuristic approximation that

E

(

1 − (1 − ϕ(Z(s)))2
k′−1

)

≈ 1 − (1 − ϕ(E(Z(s))))2
k′ −1 ≈ 1 − (1 − ϕ(Z))2

k′ −1

So, E(p(s)) ≈ p.6

We did some experiments based on some examples in order to validate our
heuristic assumption. Our results show indeed that E(Z(s)) ≈ Z. There is a
small gap between E(p(s)) and p but this does not affect our results. Actually,
we are in a phase transition region so any tiny change in the value of n′ makes
E(p(s)) change a lot. We include our results in the additional material. Thus,
ensuring that p ≤ θ with the above analysis based on the average bias ensures
that the expected failure probability to be bounded by θ.

We also observed that the reduction code-reduce can introduce problems. More
precisely, what can go wrong is that s can have, with a given probability, a
negative δ′(s) bias or a component in one of the concatenated codes giving a
zero bias, making WHT to fail miserably.

4 Bias of the Code Reduction

In this section we present how to compute the bias introduced by a code-reduce.
Recall that the reduction code-reduce(k, k′) introduces a new noise:

〈vi, s〉 ⊕ di = 〈g′
i, s

′〉 ⊕ 〈vi − gi, s〉 ⊕ di,

where gi = g′
iG is the nearest codeword of vi and s′ = sGT . Note that gi

is not necessarily unique, specially if the code is not perfect. We take gi =
Decode(vi) obtained from an arbitrary decoding algorithm. Then the noise bc
can be computed by the following formula:

6 Note that Zhang et al. [36] implicitly does the same assumption as they use the
average bias as well.

Optimization of LPN Solving Algorithms 713

bc = E((−1)〈vi−gi,s〉) =
∑

e∈{0,1}k

Pr[vi − gi = e]E((−1)〈e,s〉)

=
k∑

w=0

∑

e∈{0,1}k,
HW(e)=w

Pr[vi − gi = e]δw
s = E

(
δHW(vi−gi)
s

)

for a δs-sparse secret. (We recall that the sparse-secret reduction step randomizes
the secret.) So, the probability space is over the distribution of vi and the dis-
tribution of s. Later, we consider bc(s) = E((−1)〈vi−gi,s〉) over the distribution
over vi only. (In the work of Guo et al. [22], only bc(s) is considered. In Zhang
et al. [36], our bc was also considered.) In the last expression of bc, we see that
the ambiguity in decoding does not affect bc as long as the Hamming distance
HW(vi − Decode(vi)) is not ambiguous. This is a big advantage of averaging in
bc as it allows to use non-perfect codes. From this formula, we can see that the
decoding algorithm vi → gi making HW(vi − gi) minimal makes bc maximal. In
this case, we obtain

bc = E
(
δd(vi,C)
s

)
, (2)

where C is the code and d(vi, C) denotes the Hamming distance of vi from C.
For a code C, the covering radius is ρ = maxv d(v, C). The packing radius is

the largest radius R such that the balls of this radius centered on all codewords
are non-overlapping. So, the packing radius is R =

⌊
D−1

2

⌋
where D is the minimal

distance. We further have ρ ≥ ⌊
D−1

2

⌋
. A perfect code is characterized by ρ =

⌊
D−1

2

⌋
. A quasi-perfect code is characterized by ρ =

⌊
D−1

2

⌋
+ 1.

Theorem 1. We consider a [k, k′,D] linear code C, where k is the length, k′

is the dimension, and D is the minimal distance. For any integer r and any
positive bias δs, we have

bc ≤ 2k′−k
r∑

w=0

(
k

w

)

(δw
s − δr+1

s) + δr+1
s

where bc is a function of δs defined by (2). Equality for any δs such that 0 <
δs < 1 implies that C is perfect or quasi-perfect. In that case, the equality is
reached when taking the packing radius r = R =

⌊
D−1

2

⌋
.

By taking r as the largest integer such that
∑r

w=0

(
k
w

)
≤ 2k−k′

(which is the

packing radius R =
⌊

D−1
2

⌋
for perfect and quasi-perfect codes), we can see that

if a perfect [k, k′] code exists, it makes bc maximal. Otherwise, if a quasi-perfect
[k, k′] code exists, it makes bc maximal.

Proof. Let decode be an optimal deterministic decoding algorithm. The formula
gives us that

bc = 2−k
∑

g∈C

∑

v∈decode−1(g)

δHW(v−g)
s

714 S. Bogos and S. Vaudenay

We define decode−1
w (g) = {v ∈ decode−1(g);HW(v − g) = w} and decode−1

>r(g)
the union of all decode−1

w (g) for w > r. For all r, we have
∑

v∈decode−1(g)

δHW(v−g)
s

=
r∑

w=0

(
k

w

)

δw
s +

r∑

w=0

(

#decode−1
w (g) −

(
k

w

))

δw
s +

∑

w>r

δw
s #decode−1

w (g)

≤
r∑

w=0

(
k

w

)

δw
s +

r∑

w=0

(

#decode−1
w (g) −

(
k

w

))

δw
s + δr+1

s #decode−1
>r(g)

≤
r∑

w=0

(
k

w

)

δw
s + δr+1

s

(

#decode−1(g) −
r∑

w=0

(
k

w

))

where we used δw
s ≤ δr+1

s for w > r, #decode−1
w (g) ≤

(
k
w

)
and δw

s ≥ δr+1
s for

w ≤ r. We further have equality if and only if the ball centered on g of radius r
is included in decode−1(g) and the ball of radius r + 1 contains decode−1(g). By
summing over all g ∈ C, we obtain the result.

So, the equality case implies that the packing radius is at least r and the
covering radius is at most r + 1. Hence, the code is perfect or quasi-perfect.
Conversely, if the code is perfect or quasi-perfect and r is the packing radius, we
do have equality. ��

So, for quasi-perfect codes, we can compute

bc = 2k′−k
R∑

w=0

(
k

w

)

(δw
s − δR+1

s) + δR+1
s (3)

with R =
⌊

D−1
2

⌋
. For perfect codes, the formula simplifies to

bc = 2k′−k
R∑

w=0

(
k

w

)

δw
s (4)

4.1 Bias of a Repetition Code

Given a [k, 1] repetition code, the optimal decoding algorithm is the majority
decoding. We have D = k, k′ = 1, R =

⌊
k−1
2

⌋
. For k odd, the code is perfect so

ρ = R. For k even, the code is quasi-perfect so ρ = R + 1. Using (3) we obtain

bc =

⎧
⎪⎨

⎪⎩

∑ k−1
2

w=0
1

2k−1

(
k
w

)
δw
s if k is odd

∑ k
2 −1
w=0

1
2k−1

(
k
w

)
δw
s + 1

2k

(
k

k/2

)
δ

k
2
s if k is even

We give below the biases obtained for some [k, 1] repetition codes.

Optimization of LPN Solving Algorithms 715

[k, 1] Bias

[1, 2] 1
2
δs + 1

2

[3, 1] 3
4
δs + 1

4

[4, 1] 3
8
δ2s + 1

2
δs + 1

8

[5, 1] 5
8
δ2s + 5

16
δs + 1

16

[6, 1] 5
16

δ3s + 15
32

δ2s + 3
16

δs + 1
32

[7, 1] 35
64

δ3s + 21
64

δ2s + 7
64

δs + 1
64

[8, 1] 35
128

δ4s + 7
16

δ3s + 7
32

δ2s + 1
16

δs + 1
128

[9, 1] 63
128

δ4s + 21
64

δ3s + 9
64

δ2s + 9
256

δs + 1
256

[10, 1] 63
256

δ5s + 105
256

δ4s + 15
64

δ3s + 45
512

δ2s + 5
256

δs + 1
512

4.2 Bias of a Perfect Code

In previous work [22,36], the authors assume a perfect code. In this case,
∑R

w=0

(
k
w

)
= 2k−k′

and we can use (4) to compute bc. There are not so many
binary linear codes which are perfect. Except the repetition codes with odd
length, the only ones are the trivial codes [k, k, 1] with R = ρ = 0 and bc = 1,
the Hamming codes [2� −1, 2� −	−1, 3] for 	 ≥ 2 with R = ρ = 1, and the Golay
code [23, 12, 7] with R = ρ = 3.

For the Hamming codes, we have

bc = 2−�
1∑

w=0

(
2� − 1

w

)

δw
s =

1 + (2� − 1)δs

2�

For the Golay code, we obtain

bc = 2−11
3∑

w=0

(
23
w

)

δw
s =

1 + 23δs + 253δ2
s + 1771δ3

s

211

Formulae (2), (3) and (4) for bc are new. Previously [7,22], the value bcw of
bc(s) for any s of Hamming weight w was approximated to

bcw = 1 − 2
1

S(k, ρ)

∑

i≤ρ,

i odd

(
w

i

)

S(k − w, ρ − i),

where w is the Hamming weight of the k-bit secret and S(k′, ρ) is the number of
k′-bit strings with weight at most ρ. Intuitively the formula counts the number of
vi −gi that produce an odd number of xor with the 1’s of the secret. (See [7,22].)
So, Guo et al. [22] assumes a fixed value for the weight w of the secret and
considers the probability that w is not correct. If w is lower, the actual bias is
larger but if w is larger, the computed bias is overestimated and the algorithm
fails.

716 S. Bogos and S. Vaudenay

For instance, with a [3, 1] repetition code, the correct bias is bc = 3
4δs + 1

4
following our formula. With a fixed w, it is of bcw = 1− w

2 [7,22]. The probability
of w to be correct is

(
k
w

)
τw(1 − τ)k−w. We take the example of τ = 1

3 so that
δs = 1

3 .

w bcw Pr[w] Pr[w], τ = 1
3

0 1 (1 − τ)3 0.2963

1 1
2

3τ(1 − τ)2 0.4444

2 0 3τ2(1 − τ) 0.2222

3 − 1
2

τ3 0.0370

So, by taking w = 1, we have δ = bcw = 1
2 but the probability of failure is

about 1
4 . Our approach uses the average bias δ = bc = 1

2 .

4.3 Using Quasi-perfect Codes

If C ′ is a [k−1, k′,D] perfect code with k′ > 1 and if there exists some codewords
of odd length, we can extend C ′, i.e., add a parity bit and obtain a [k, k′] code
C. Clearly, the packing radius of C is at least

⌊
D−1

2

⌋
and the covering radius is

at most
⌊

D−1
2

⌋
+ 1. For k′ > 1, there is up to one possible length for making

a perfect code of dimension k′. So, C is a quasi-perfect, its packing radius is⌊
D−1

2

⌋
and its covering radius is

⌊
D−1

2

⌋
+ 1.

If C ′ is a [k + 1, k′,D] perfect code with k′ > 1, we can puncture it, i.e.,
remove one coordinate by removing one column from the generating matrix. If
we chose to remove a column which does not modify the rank k′, we obtain a
[k, k′] code C. Clearly, the packing radius of C is at least

⌊
D−1

2

⌋ − 1 and the
covering radius is at most

⌊
D−1

2

⌋
. For k′ > 1, there is up to one possible length

for making a perfect code of dimension k′. So, C is a quasi-perfect, its packing
radius is

⌊
D−1

2

⌋ − 1 and its covering radius is
⌊

D−1
2

⌋
.

Hence, we can use extended Hamming codes [2�, 2� − 	 − 1] with packing
radius 1 for 	 ≥ 3, punctured Hamming codes [2� − 2, 2� − 	 − 1] with packing
radius 0 for 	 ≥ 3, the extended Golay code [24, 12] with packing radius 3, and
the punctured Golay code [22, 12] with packing radius 2.

There actually exist many constructions for quasi-perfect linear binary codes.
We list a few in Table 2. We took codes listed in the existing literature [13,
Table 1], [32, p. 122], [21, p. 47], [17, Table 1], [12, p. 313], and [3, Table 1]. In
Table 2, k, k′, D, and R denote the length, the dimension, the minimal distance,
and the packing radius, respectively.

4.4 Finding the Optimal Concatenated Code

The linear code [k, k′] is typically instantiated by a concatenation of elementary
codes for practical purposes. By “concatenation” of m codes C1, . . . , Cm, we

Optimization of LPN Solving Algorithms 717

Table 2. Perfect and quasi-perfect binary linear codes

Name Type [k, k′, D] R Comment Ref.

P [k, k, 1], k ≥ 1 0 [∗, . . . , ∗]
r P [k, 1, k], k odd k−1

2 Repetition code

H P [2� − 1, 2� − � − 1, 3], � ≥ 3, 1 Hamming code

G P [23, 12, 7] 3 Golay code

QP [k, k − 1, 1] 0 [∗, . . . , ∗, 0]

r QP [k, 1, k], k even k
2 − 1 Repetition code

eG QP [24, 12, 8] 3 Extended Golay code

pG QP [22, 12, 6] 2 Punctured Golay code

eH QP [2�, 2� − � − 1, 4], � ≥ 2 1 Extended Hamming code

QP [2� − 1, 2� − �, 1], � ≥ 2, 0 Hamming with an extra word

pH QP [2� − 2, 2� − � − 1, 2], � ≥ 2 0 Punctured Hamming

HxH QP [2 ∗ (2� − 1), 2 ∗ (2� − � − 1)], � ≥ 2 1 Hamming × Hamming [13]

upack QP [2� − 2, 2� − � − 2, 3], � ≥ 3 1 Uniformly packed [13]

2BCH QP [2� − 1, (2� − 1) − (2 ∗ �)], � ≥ 3 2 2-e.c. BCH [13]

Z QP [2� + 1, (2� + 1) − (2 ∗ �)], � > 3

even

2 Zetterberg [13]

rGop QP [2� − 2, (2� − 2) − (2 ∗ �)], � > 3

even

2 Red. Goppa [13]

iGop QP [2�, (2�) − (2 ∗ �)], � > 2 odd 2 Irred. Goppa [13]

Mclas QP [2� − 1, (2� − 1) − 2 ∗ �], � > 2 odd 2 Mclas [13]

S QP [5, 2], [9, 5], [10, 5], [11, 6] 1 Slepian [32]

S QP [11, 4] 2 Slepian [32]

FP QP [15, 9], [21, 14], [22, 15], [23, 16] 1 Fontaine-Peterson [32]

W QP [19, 10], [20, 11], [20, 13], [23, 14] 2 Wagner [32]

P QP [21, 12] 2 Prange [32]

FP QP [25, 12] 3 Fontaine-Peterson [32]

W QP [25, 15], [26, 16], [27, 17], [28, 18],

[29, 19], [30, 20], [31, 20]

1 Wagner [32]

GS QP [13, 7], [19, 12] 1 GS85 [21]

BBD QP [7, 3, 3], [9, 4, 4], [10, 6, 3], [11, 7, 3],

[12, 7, 3], [12, 8, 3], [13, 8, 3],

[13, 9, 3], [14, 9, 3], [15, 10, 3],

[16, 10, 3], [17, 11, 4], [17, 12, 3],

[18, 12, 4], [18, 13, 3], [19, 13, 3],

[19, 14, 3], [20, 14, 4]

1 BBD08 [3]

BBD QP [22, 13, 5] 2 BBD08 [3]

mean the code formed by all gi,1‖ · · · ‖gi,m obtained by concatenating any set
of gi,j ∈ Cj . Decoding v1‖ · · · ‖vm is based on decoding each vi,j in Cj indepen-
dently. If all Cj are small, this is done by a table lookup. So, concatenated codes
are easy to implement and to decode. For [k, k′] we have the concatenation of
[k1, k

′
1], . . . , [km, k′

m] codes, where k1 + · · · + km = k and k′
1 + · · · + k′

m = k′.
Let vij , gij , s

′
j denote the jth part of vi, gi, s

′ respectively, corresponding to
the concatenated [kj , k

′
j] code. The bias of 〈vij − gij , sj〉 in the code [kj , k

′
j]

is denoted by bcj . As 〈vi − gi, s〉 is the xor of all 〈vij − gij , sj〉, the total bias
introduced by this operation is computed as bc =

∏k′

j=1 bcj and the combination
params = ([k1, k

′
1], . . . , [km, k′

m]) is chosen such that it gives the highest bias.
The way these params are computed is the following: we start by computing

the biases for all elementary codes. I.e. we compute the biases for all codes from

718 S. Bogos and S. Vaudenay

Table 2. We may add random codes that we found interesting. (For these, we
use (2) to compute bc.)7 Next, for each [i, j] code we check to see if there is a
combination of [i − n, j − m], [n,m] codes that give a better bias, where [n,m]
is either a repetition code, a Golay code or a Hamming code. We illustrate
below the algorithm to find the optimal concatenated code. This algorithm was
independently proposed by Zhang et al. [36] (with perfect codes only).

Algorithm 1. Finding the optimal params and bias
1: Input: k
2: Output: table for the optimal bias for each [i, j] code, 1 ≤ j < i ≤ k

3: initialize all bias(i, j) = 0
4: initialize bias(1, 1) = 1
5: initialize the bias for all elementary codes
6: for all j : 2 to k do
7: for all i : j + 1 to k do
8: for all elementary code [n, m] do
9: if |bias(i − n, j − m) · bias(n, m)| > |bias(i, j)| then

10: bias(i, j) = bias(i − n, j − m) · bias(n, m)
11: params(i, j) = params(i − n, j − m) ∪ params(n, m)

Using O(k) elementary codes, this procedure takes O(k3) time and we can
store all params for any combination [i, j], 1 ≤ j < i ≤ k with O(k2) memory.

5 The Graph of Reduction Steps

Having in mind the reduction methods described in Sect. 2, we formalize an LPN
solving algorithm in terms of finding the best chain in a graph. The intuition is
the following: in an LPN solving algorithm we can see each reduction step as an
edge from a (k, log2 n) instance to a new instance (k′, log2 n′) where the secret
is smaller, k′ ≤ k, we have more or less number of queries and the noise has a
different bias. For example, a xor -reduce(b) reduction turns an (k, log2 n) instance
with bias δ into (k′, log2 n′) with bias δ′ where k′ = k − b, n′ = n(n−1)

2b+1 and
δ′ = δ2. By this representation, the reduction phase represents a chain in which
each edge is a reduction type moving from LPN with parameters (k, n) to LPN
with parameters (k′, n′) and that ends with an instance (ki, ni) used to recover
the ki-bit length secret by a solving method. The chain terminates by the fast
Walsh-Hadamard solving method.

We formalize the reduction phase as a chain of reduction steps in a graph
G = (V,E). The set of vertices V is composed of V = {1, . . . , k} × L where
L is a set of real numbers. For instance, we could take L = R or L = N. For
efficiency reasons, we could even take L = {0, . . . , η} for some bound η. Every

7 The random codes that we used are provided as an additional material to this paper.

Optimization of LPN Solving Algorithms 719

vertex saves the size of the secret and the logarithmic number of queries; i.e. a
vertex (k, log2 n) means that we are in an instance where the size of the secret is
k and the number of queries available is n. An edge from one vertex to another
is given by a reduction step. An edge from (k, log2 n) to a (k′, log2 n′) has a label
indicating the type of reduction and its parameters (e.g. xor -reduce(k − k′) or
code-reduce(k, k′, params)). This reduction defines some α and β coefficients such
that the bias δ′ after reduction is obtained from the bias δ before the reduction by

log2 δ′2 = α log2 δ2 + β

where α, β ∈ R.
We denote by 	λ
L the smallest element of L which is at least equal to λ

and by �λ�L the largest element of L which is not larger than λ. In general,
we could use a rounding function RoundL(λ) such that RoundL(λ) is in L and
approximates λ.

The reduction steps described in Subsect. 2.2 can be formalized as follows:

– sparse-secret : (k, log2 n) → (k,RoundL(log2 (n − k))) and α = 0, β = 0
– xor -reduce(b): (k, log2 n) → (k − b,RoundL(log2

(
n(n−1)
2b+1

)
)) and α = 2, β = 0

– drop-reduce(b): (k, log2 n) → (k − b,RoundL(log2 (n
2b))) and α = 1, β = 0

– code-reduce(k, k′, params): (k, log2 n) → (k′, log2 n) and α = 1, β = log2 bc
2,

where bc is the bias introduced by the covering code reduction using a [k, k′]
linear code defined by params.

Below, we give the formal definition of a reduction chain.

Definition 3 (Reduction chain). Let

R = {sparse-secret , xor -reduce(b), drop-reduce(b), code-reduce(k, k′, params)}
for k, k′, b ∈ N. A reduction chain is a sequence

(k0, log2 n0)
e1−→ (k1, log2 n1)

e2−→ . . .
ei−→ (ki, log2 ni),

where the change (kj−1, log2 nj−1) → (kj , log2 nj) is performed by one reduction
from R, for all 0 < j ≤ i.

A chain is simple if it is accepted by the automaton from Fig. 1.

Remark: Restrictions for simple chains are modelled by the automaton
in Fig. 1. We restrict to simple chains as they are easier to analyze. Indeed,
sparse-secret is only used to raise δs to make code-reduce more effective. And, so far,
it is hard to analyze sequences of code-reduce steps as the first one may destroy the
uniform and high δs for the next ones. This is why we exclude multiple code-reduce
reductions in a simple chain. So, we use up to one sparse-secret reduction, always
one before code-reduce. And sparse-secret occurs before δ decreases. For convenience,
we will add a state of the automaton to the vertex in V .

Definition 4 (Exact chain). An exact chain is a simple reduction chain for
L = R. I.e. RoundL is the identity function.

720 S. Bogos and S. Vaudenay

Fig. 1. Automaton accepting simple chains

A chain which is not exact is called rounded.
For solving LPN we are interested in those chains that end with a vertex

(ki, log2 ni) which allows to call a WHT solving algorithm to recover the ki-bit
secret. We call these chains valid chains and we define them below.

Definition 5 (Valid reduction chain). Let

(k0, log2 n0)
e1−→ (k1, log2 n1)

e2−→ · · · ei−→ (ki, log2 ni)

be a reduction chain with ej = (αj , βj , .). Let δj be the bias corresponding to the
vertex (kj , log2 nj) iteratively defined by δ0 = δ and log2 δ2

j = αj log2 δ2
j−1 + βj

for j = 1, . . . , i. We say the chain is a θ-valid reduction chain if ni satisfies
(1) from p. 8 for δ′ = δi and n′ = ni.

The time complexity of a chain (e1, . . . , ei) is simply the sum of the com-
plexity of each reduction step e1, e2, . . . , ei and WHT. We further define the
max-complexity of a chain which is the maximum of the complexity of each
reduction step and WHT. The max-complexity is a good approximation of the
complexity. Our goal is to find a chain with optimal complexity. What we achieve
is that, given a set L, we find a rounded chain with optimal max-complexity up to
some given precision.

5.1 Towards Finding the Best LPN Reduction Chain

In this section we present the algorithm that helps finding the optimal valid
chains for solving LPN. As aforementioned, we try to find the valid chain with
optimal max-complexity for solving an LPNk,τ instance in our graph G.

The first step of the algorithm is to construct the directed graph G = (V,E).
We take the set of vertices V = {1, . . . , k}×L×{1, 2, 3, 4} which indicate the size
of the secret, the logarithmic number of queries and the state in the automaton
in Fig. 1. Each edge e ∈ E represents a reduction step and is labelled with the

Optimization of LPN Solving Algorithms 721

following information: (k1, log2 n1, st)
α,β,t→ (k2, log2 n2, st

′) where t is one of the
reduction steps and α and β save information about how the bias is affected by
this reduction step.

The graph has O(k · |L|) vertices and each vertex has O(k) edges. So, the
size of the graph is O(k2 · |L|).

Thus, we construct the graph G with all possible reduction steps and from
it we try to see what is the optimal simple rounded chain in terms of max-
complexity. We present in Algorithm 2 the procedure to construct the graph G
that contains all possible reduction steps with a time complexity bounded by 2η

(As explained below, Algorithm 2 is not really used).
The procedure of finding the optimal valid chain is illustrated in Algorithm 3.

The procedure of finding a chain with upper bounded max-complexity is illus-
trated in Algorithm 4.

Algorithm 2. Construction of graph G
1: Input: k, τ, L, η

2: Output: graph G = (V, E) containing all the reduction steps that have a complexity
smaller than 2η

3: V = {1, . . . , k} × L × {1, . . . , 4}
4: E is the set of all ((i, η1, st), (j, η2, st′)) labelled by (α, β, t) such that there is a st

t−→ st′
transition in the automaton and for

5: t = sparse-secret :
6: for all η : 1 such that lcomp ≤ η do set the edge
7: where i = k, (j, η2) = (i,RoundL(log2(2

η1 − i))), α = 1, β = 0, lcomp =

minx log2(
(2η1−i)i2

log2i−log2log2i
+ i2, i(2η1 − i)� i

2x � + i3 + i2x+2x
)

8: t = xor -reduce:
9: for all (i, η1, b) such that b ≥ 1 and lcomp ≤ η do set the edge

10: where (j, η2) = (i − b,RoundL(η1 − 1 + log2 (2η1

2b − 1))), α = 2, β = 0, lcomp =
log2 i + max(η1, η2)

11: t = drop-reduce:
12: for all (i, η1, b) such that b ≥ 1 and lcomp ≤ η do set the edge
13: where (j, η2) = (i − b,RoundL(η1 − b)), α = 1, β = 0, lcomp = log2 b + η1

14: t = code-reduce:
15: for all (i, η1, j) such that j < i and lcomp ≤ η do set the edge

16: where η2 = η1, α = 1, β = log2 bc
2, lcomp = log2 i+η1, bc is the bias from the optimal

[i, j] code

Algorithm 4 receives as input the parameters k and τ for the LPN instance,
the parameter θ which represents the bound on the failure probability in recov-
ering the secret. Parameter η represents an upper bound for the logarithmic
complexity of each reduction step. Given η, we build the graph G which con-
tains all possible reductions with time complexity smaller than 2η (Step 4). Note
that we don’t really call Algorithm 2. Indeed, we don’t need to store the edges of
the graph. We rather keep a way to enumerate all edges going to a given vertex
(in Step 11) by using the rules described in Algorithm 2.

722 S. Bogos and S. Vaudenay

Algorithm 3. Search for a rounded chain with optimal max-complexity
1: Input: k, τ, θ, precision
2: Output: a valid simple rounded chain in which rounding uses a given precision

3: set found = bruteforce � found is the best found algorithm
4: set increment = k
5: set η = k � 2η is a bound on the max-complexity
6: repeat
7: set increment ← 1

2
increment

8: define L = {0, precision, 2 × precision, . . .} ∩ [0, η − increment]
9: run (out, success) = Search(k, τ, θ, L, η − increment) with Algorithm 4

10: if success then
11: set found = out
12: set η = η − increment

13: until increment ≤ precision
14: output found

For each vertex, we iteratively define Δst and Bestst, the best reduction step
to reach a vertex and the value of the corresponding error bias. The best reduc-
tion step is the one that maximizes the bias. We define these values iteratively
until we reach a vertex from which the WHT solving algorithm succeeds with
complexity bounded by 2η. Once we have reached this vertex, we construct the
chain by going backwards, following the Best pointers.

We easily prove what follows by induction.

Lemma 1. At the end of the iteration of Algorithm 4 for (j, η2, st
′), Δst′

j,η2
is the

maximum of log2 δ2, where δ is the bias obtained by an RoundL-rounded simple
chain from a vertex of form (k, η1, 0) to (j, η2, st

′) with max-complexity bounded
by 2η (Δst′

j,η2
= −∞ if there is no such chain).

Lemma 2. If there exists a simple RoundL-rounded chain c ending on state
(kj , ηj , stj) and max-complexity bounded by 2η, there exists one c′ such that
Δsti

i,ηi
= log2 δ2

i at each step.

Proof. Let c′′ be a simple chain ending on (kj , ηj , stj) with Δstj

jηj
= log2 δ2

j . Let
(kj−1, ηj−1, stj−1) be the preceding vertex in c′′. We apply Lemma 2 on this
vertex by induction to obtain a chain c′′′. Since the complexity of the last edge
does not depend on the bias and α ≥ 0 in the last edge, we construct the chain
c′, by concatenating c′′′ with the last edge of c′′. ��
Theorem 2. Algorithm 4 finds a θ-valid simple RoundL-rounded chain for
LPNk,τ with max-complexity bounded by 2η if there exists one.

Proof. We use Lemma 2 and the fact that increasing δ2 keeps constraint (1)
valid. ��

Optimization of LPN Solving Algorithms 723

Algorithm 4. Search for a best LPN reduction chain with max-complexity
bounded to η
1: Input: k, τ, θ, L, η

2: Output: a valid simple rounded chain with max-complexity bounded to η

3: δ = 1 − 2τ
4: Construct the graph G using Algorithm 2 with parameters k, τ, L, η
5: for all η1 ∈ L do

6: set Δ0
k,η1

= log2 δ2, Best0k,η1
= ⊥

7: set Δst
k,η1

= −∞, Bestst
k,η1

= ⊥ � Δst stores the best bias for a vertex (k, η1, st) in a

chain, and Bestst is the edge ending to this vertex in this chain

8: for j : k downto 1 do � Search for the optimal chain

9: for η2 ∈ L in decreasing order do

10: set Δst
j,η2

= 0, Bestst = ⊥ for all st

11: foreach st’ and each edge e to (j, η2, st′)
12: set (i, η1, st) to the origin of e and α and β as defined by e

13: if αΔst
i,η1

+ β ≥ Δst′
j,η2

then set Δst′
j,η2

= αΔst
i,η1

+ β, Bestst = e

14: end foreach

15: if η2 > 1 − Δst′
j,η2

+ 2 log2

(

−ϕ−1(1 − (1 − θ)
1

2j−1)

)

and j + log2 j ≤ η then

16: Construct the chain c ending by Bestst′
j,η2

and output (c, true)

17: output (⊥, false)

If we used L = R, Algorithm 4 would always find a valid simple chain with
bounded max-complexity when it exists. Instead, we use rounded chains and
hope that rounding still makes us find the optimal chain.

So, we build Algorithm 3. In this algorithm, we look for the minimal η for
which Algorithm 4 returns something by a divide and conquer algorithm. First,
we set η as being in the interval [0, k] where the solution for η = k corresponds
to a brute-force search. Then, we cut the interval in two pieces and see if the
lower interval has a solution. If it does, we iterate in this interval. Otherwise, we
iterate in the other interval. We stop once the amplitude of the interval is lower
than the requested precision. The complexity of Algorithm 3 is of log2

k
precision

calls to Algorithm 4.

Theorem 3. Algorithm 3 finds a θ-valid simple RoundL-rounded chain for
LPNk,τ with parameter precision, with optimal rounded max-complexity, where
the rounding function approximates log2 up to precision if there exists one.

Proof. Algorithm 3 is a divide-and-conquer algorithm to find the smallest η such
that Algorithm 4 finds a valid simple RoundL-rounded chain of max-complexity
bounded by 2η. ��

We can see that the complexity of Algorithm 4 is of O (
k2 · |L|) iterations

as vertices have k possible values for the secret length and |L| possible values
for the logarithmic number of equations. So, it is linear in the size of the graph.
Furthermore, each type of edge to a fixed vertex has O(k) possible origins. The

724 S. Bogos and S. Vaudenay

memory complexity is O (k · |L|), mainly to store the Δk,η and Bestk,η tables.
We also use Algorithm 1 which has a complexity O(k3) but we run it only once
during precomputation. Algorithm 3 sets |L| ∼ k

precision . So, the complexity of

Algorithm 3 is O
(
k3 + k3

precision × log k
precision

)
.

6 Chains with a Guessing Step

In order to further improve our valid chain we introduce a new reduction step
to our algorithm. As it is done in previous works [5,22], we guess part of the
bits of the secret. More precisely, we assume that b bits of the secret have a
Hamming weight smaller or equal to w. The influence on the whole algorithm
is more complicated: it requires to iterate the WHT step

∑w
i=0

(
w
i

)
times. The

overall complexity must further be divided by
∑w

i=0

(
w
i

) (
1−δs

2

)i (
1+δs

2

)w−i
. Note

that this generalized guess-secret step was used in Guo et al. [22].
We formalize this step as following:

– guess-secret(b, w) guesses that b bits of the secret have a Hamming weight
smaller or equal to w. The b positions are chosen randomly. The number
of queries remains the same, the noise is the same and the size of the secret is
reduced by b bits. Thus, for this step we have

guess-secret(b, w) : k′ = k − b; n′ = n; δ′ = δ; δ′
s = δ

Complexity: O(nb) (included in sparse-secret) and
the Walsh transform has to be iterated

∑w
i=0

(
w
i

)
times and

the complexity of the whole algorithm is divided by
∑w

i=0

(
w
i

) (
1−δs

2

)i (
1+δs

2

)w−i

This step may be useful for a sparse secret, i.e. τ is small, as then we reduce
the size of the secret with a very small cost. In order to accommodate this new
step we would have to add a transition from state 3 to state 3 in the automaton
that accepts the simple chains (See Fig. 1).

To find the optimal chain using guess-secret(b, w), we have to make a loop over
all possible b and all possible w. We run the full search O(k2) times. The total
complexity is thus O

(
k5

precision × log k
precision

)
.

7 Results

We illustrate in this section the results obtained by running Algorithm 4 for
different LPN instances taken from Bogos et al. [7]. They vary from taking k = 32
to k = 768, with the noise levels: 0.05, 0.1, 0.125, 0.2 and 0.25. In Table 3 we
display the logarithmic time complexity we found for solving LPN without using
guess-secret .8

8 Complete results are provided as an additional material to this paper.

Optimization of LPN Solving Algorithms 725

Table 3. Logarithmic time complexity on solving LPN without guess-secret

τ k

32 48 64 100 256 512 768

0.05 13.8911.26
0.1 14.5212.94

0.1c 16.0414.43
0.1c 20.4718.46

0.1c 36.7534.45
0.1c 57.7755.09

0.1c 76.6374.03
0.1c

0.1 15.0412.70
0.1 18.5816.43

0.1 21.5819.38
0.1c 27.6125.39

0.1c 46.7544.22
0.1c 73.6870.92

0.1c 98.9796.04
0.1c

0.125 15.6613.52
0.1 19.2917.00

0.1 22.9420.50
0.1 28.9126.30

0.1 49.9047.35
0.1c 78.8576.22

0.1c 105.89103.01
0.1c

0.2 17.0114.80
0.1 21.2519.23

0.1 24.4222.00
0.1 32.0629.75

0.1 56.3153.82
0.1c 89.0486.38

0.1c 121.04118.18
0.1c

0.25 18.4216.30
0.1 22.3420.43

0.1 26.8624.58
0.1 32.9430.75

0.1 59.4756.88
0.1 94.6691.97

0.1c 127.35124.63
0.1c

Entry of form ab
c···: a = log2 complexity, b = log2 max-complexity, c = precision.

Subscript c means that a code-reduce is used.

Table 4. Logarithmic time complexity on solving LPN with guess-secret

τ k

32 48 64 100 256 512 768

0.05 11.8510.90
0.1cg13o 13.0112.52

0.1cg23o 14.4413.74
0.1cg38o 17.2016.19

0.1cg75o 30.1328.02
0.1cg178o 49.5647.29

1cg417o 68.1565.98
1cg682o

0.1 12.4111.65
0.1cg23o 15.2314.25

0.1cg37o 17.7116.76
0.1cg52o 24.0222.14

0.1cg77o 45.9943.49
0.1cg100o 73.6871.09

1cg2 99.2196.34
1cg5

0.125 13.3012.40
0.1cg26o 16.4915.49

0.1cg39o 20.5718.61
0.1cg36o 27.1424.80

0.1cg47o 49.9047.35
0.1c 78.9776.24

1cg1 106.18103.42
1cg4

0.2 17.0114.80
0.1o 21.2519.23

0.1o 24.4222.00
0.1 32.0629.75

0.1 56.3453.82
0.1cg1 89.2886.79

1cg3 121.12118.57
1

0.25 18.4216.30
0.1 22.3420.43

0.1 26.8624.58
0.1 32.9430.75

0.1 59.4756.88
0.1 94.8592.36

1cg2 127.63125.01
1cg3

Entry of form ab
c···: a = log2 complexity, b = log2 max-complexity, c = precision.

Subscript c means that a code-reduce is used.

Subscript o means that a only 1 bit of the secret is found by WHT.

Subscript gb means that a guess-secret(b, ·) is used.

Sequence of chains. If we analyze in more details one of the chains that we
obtained, e.g. the chain for LPN512,0.125, we can see that it first uses a sparse-secret .
Afterwards, the secret is reduced by applying 5 times the xor -reduce and one
code-reduce at the end of the chain. With a total complexity of 279.46 and θ < 33%
it recovers 64 bits of the secret.

(512, 63.3)
sparse-secret−−−−−−→ (512, 63.3)

xor-reduce(59)−−−−−−−→ (453, 66.6)
xor-reduce(65)−−−−−−−→

(388, 67.2)
xor-reduce(66)−−−−−−−→ (322, 67.4)

xor-reduce(66)−−−−−−−→ (256, 67.8)
xor-reduce(67)−−−−−−−→

(189, 67.6) code-reduce−−−−−→ (64, 67.6) WHT−−−→

The code used is a [189, 64] concatenation made of ten random codes: one
instance of a [18, 6] code, five instances of a [19, 6] code, and four instances
of a [19, 7] code. By manually tuning the number of equations without rounding,
we can obtain with n = 263.299 a complexity of 278.84. This is the value from
Table 1.

On the guess-secret reduction. Our results show that the guess-secret step does not
bring any significant improvement. If we compare Table 3 with Table 4 we can
see that in few cases the guess step improves the total complexity. For k ≥ 512,
some results are not better than Table 3. This is most likely due to the lower
precision used in Table 4.

726 S. Bogos and S. Vaudenay

We can see several cases where, at the end of a chain with guess-secret , only
one bit of the secret is recovered by WHT. If only 1 bit of the secret is recovered
by non-bruteforce methods, the next chain for LPNk−1,τ will have to be run
several times, given the guess-secret step used in the chain for LPNk,τ . Thus, it
might happen that the first chain does not dominate the total complexity. So,
our strategy to use sequences of chains has to be revised, but most likely, the
final result will not be better than sequences of chains without guess-secret . So,
we should rather avoid these chains ending with 1 bit recovery.

There is no case where a guess-secret without a chain ending with 1 bit brings
any improvement.

Comparing the results. For practical values we compare our results with the
previous work [7,22,28,36].

From the work of ASIACRYPT’14 [22] and EUROCRYPT’16 [36] we have
that LPN512,0.125 can be solved in time complexity of 279.9 (with more precise
complexity estimates). The comparison was shown in Table 1 in Introduction.
We do better, provide concrete codes and we even remove the guess-secret step
with an optimized use of a code. Thus, the results of Algorithm 4 improve all
the existing results on solving LPN.

8 Conclusion

In this article we have proposed an algorithm for creating reduction chains
with the optimal max-complexity. The results we obtain bring improvements
to the existing work and to our knowledge we have the best algorithm for solv-
ing LPN512,0.125. We believe that our algorithm could be further adapted and
automatized if new reduction techniques would be introduced.

As future works, we could look at applications to the LWE problem. Kirchner
and Fouque [27] improve the LWE solving algorithms by refining the modulus
switching. We could also look at ways to keep track of biases of secret bits
bitwise, in order to allow cascades of code-reduce steps.

References

1. Alekhnovich, M.: More on average case vs approximation complexity. In: Proceed-
ings of the 44th Symposium on Foundations of Computer Science (FOCS 2003),
11–14 October 2003, Cambridge, MA, USA, pp. 298–307. IEEE Computer Society
(2003)

2. Arlazarov, V.L., Dinic, E.A., Kronrod, M.A., Faradzev, I.A.: On economical con-
struction of the transitive closure of a directed graph. Sov. Math. Dokl. 11, 1209–
1210 (1970)

3. Baicheva, T.S., Bouyukliev, I., Dodunekov, S.M., Fack, V.: Binary and ternary
linear quasi-perfect codes with small dimensions. IEEE Trans. Inf. Theory 54(9),
4335–4339 (2008)

4. Bernstein, D.J.: Optimizing linear maps modulo 2. http://binary.cr.yp.to/
linearmod2-20090830.pdf

http://binary.cr.yp.to/linearmod2-20090830.pdf
http://binary.cr.yp.to/linearmod2-20090830.pdf

Optimization of LPN Solving Algorithms 727

5. Bernstein, D.J., Lange, T.: Never trust a bunny. In: Hoepman, J.-H., Verbauwhede,
I. (eds.) RFIDSec 2012. LNCS, vol. 7739, pp. 137–148. Springer, Heidelberg (2013).
doi:10.1007/978-3-642-36140-1 10

6. Blum, A., Kalai, A., Wasserman, H.: Noise-tolerant learning, the parity problem,
and the statistical query model. In: Frances Yao, F., Luks, E.M. (eds.) Proceedings
of the Thirty-Second Annual ACM Symposium on Theory of Computing, 21–23
May 2000, Portland, OR, USA, pp. 435–440. ACM (2000)

7. Bogos, S., Tramèr, F., Vaudenay, S.: On solving LPN using BKW and variants -
implementation and analysis. Crypt. Commun. 8(3), 331–369 (2016)

8. Bogos, S., Vaudenay, S.: How to sequentialize independent parallel attacks? In:
Iwata, T., Cheon, J.H. (eds.) ASIACRYPT 2015. LNCS, vol. 9453, pp. 704–731.
Springer, Heidelberg (2015). doi:10.1007/978-3-662-48800-3 29

9. Bogos, S., Vaudenay, S.: Observations on the LPN Solving Algorithm from Euro-
crypt2016. Cryptology ePrint Archive, Report 2016/451 (2016). https://eprint.
iacr.org/2016/451

10. Bringer, J., Chabanne, H., Dottax, E.: HB++: a lightweight authentication proto-
col secure against some attacks. In: Second International Workshop on Security,
Privacy and Trust in Pervasive and Ubiquitous Computing (SecPerU 2006), 29
June 2006, Lyon, France, pp. 28–33. IEEE Computer Society (2006)

11. Carrijo, J., Tonicelli, R., Imai, H., Nascimento, A.C.A.: A novel probabilistic pas-
sive attack on the protocols HB and HB+. IEICE Trans. 92–A(2), 658–662 (2009)

12. Cohen, G., Honkala, I., Litsyn, S., Lobstein, A.: Covering Codes. North-Holland
Mathematical Library, Elsevier Science, Amsterdam (1997)

13. Cohen, G.D., Karpovsky, M.G., Mattson Jr., H.F., Schatz, J.R.: Covering radius -
survey and recent results. IEEE Trans. Inf. Theory 31(3), 328–343 (1985)

14. Damg̊ard, I., Park, S.: Is public-key encryption based on LPN practical? IACR
Cryptology ePrint Arch. 2012, 699 (2012)

15. Döttling, N., Müller-Quade, J., Nascimento, A.C.A.: IND-CCA secure cryptogra-
phy based on a variant of the LPN problem. In: Wang, X., Sako, K. (eds.) ASI-
ACRYPT 2012. LNCS, vol. 7658, pp. 485–503. Springer, Heidelberg (2012). doi:10.
1007/978-3-642-34961-4 30

16. Duc, A., Vaudenay, S.: HELEN: a public-key cryptosystem based on the LPN
and the decisional minimal distance problems. In: Youssef, A., Nitaj, A., Has-
sanien, A.E. (eds.) AFRICACRYPT 2013. LNCS, vol. 7918, pp. 107–126. Springer,
Heidelberg (2013). doi:10.1007/978-3-642-38553-7 6

17. Etzion, T., Mounits, B.: Mounits.: quasi-perfect codes with small distance. IEEE
Trans. Inf. Theory 51(11), 3938–3946 (2005)

18. Fossorier, M.P.C., Mihaljević, M.J., Imai, H., Cui, Y., Matsuura, K.: An algo-
rithm for solving the LPN problem and its application to security evaluation
of the HB protocols for RFID authentication. In: Barua, R., Lange, T. (eds.)
INDOCRYPT 2006. LNCS, vol. 4329, pp. 48–62. Springer, Heidelberg (2006).
doi:10.1007/11941378 5

19. Gilbert, H., Robshaw, M.J.B., Seurin, Y.: HB#: increasing the security and effi-
ciency of HB+. In: Smart, N. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp.
361–378. Springer, Heidelberg (2008). doi:10.1007/978-3-540-78967-3 21

20. Gilbert, H., Robshaw, M.J.B., Seurin, Y.: How to encrypt with the LPN prob-
lem. In: Aceto, L., Damg̊ard, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir,
A., Walukiewicz, I. (eds.) ICALP 2008. LNCS, vol. 5126, pp. 679–690. Springer,
Heidelberg (2008). doi:10.1007/978-3-540-70583-3 55

21. Graham, R.L., Sloane, N.J.A.: On the covering radius of codes. IEEE Trans. Inf.
Theory 31(3), 385–401 (1985)

http://dx.doi.org/10.1007/978-3-642-36140-1_10
http://dx.doi.org/10.1007/978-3-662-48800-3_29
https://eprint.iacr.org/2016/451
https://eprint.iacr.org/2016/451
http://dx.doi.org/10.1007/978-3-642-34961-4_30
http://dx.doi.org/10.1007/978-3-642-34961-4_30
http://dx.doi.org/10.1007/978-3-642-38553-7_6
http://dx.doi.org/10.1007/11941378_5
http://dx.doi.org/10.1007/978-3-540-78967-3_21
http://dx.doi.org/10.1007/978-3-540-70583-3_55

728 S. Bogos and S. Vaudenay

22. Guo, Q., Johansson, T., Löndahl, C.: Solving LPN using covering codes. In: Sarkar,
P., Iwata, T. (eds.) ASIACRYPT 2014. LNCS, vol. 8873, pp. 1–20. Springer,
Heidelberg (2014). doi:10.1007/978-3-662-45611-8 1

23. Hopper, N.J., Blum, M.: Secure human identification protocols. In: Boyd, C. (ed.)
ASIACRYPT 2001. LNCS, vol. 2248, pp. 52–66. Springer, Heidelberg (2001).
doi:10.1007/3-540-45682-1 4

24. Juels, A., Weis, S.A.: Authenticating pervasive devices with human protocols. In:
Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 293–308. Springer, Heidelberg
(2005). doi:10.1007/11535218 18

25. Kiltz, E., Masny, D., Pietrzak, K.: Simple chosen-ciphertext security from low-
noise LPN. In: Krawczyk, H. (ed.) PKC 2014. LNCS, vol. 8383, pp. 1–18. Springer,
Heidelberg (2014). doi:10.1007/978-3-642-54631-0 1

26. Kiltz, E., Pietrzak, K., Cash, D., Jain, A., Venturi, D.: Efficient authentication
from hard learning problems. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS,
vol. 6632, pp. 7–26. Springer, Heidelberg (2011). doi:10.1007/978-3-642-20465-4 3

27. Kirchner, P., Fouque, P.-A.: An improved BKW algorithm for LWE with applica-
tions to cryptography and lattices. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO
2015. LNCS, vol. 9215, pp. 43–62. Springer, Heidelberg (2015). doi:10.1007/
978-3-662-47989-6 3

28. Levieil, É., Fouque, P.-A.: An improved LPN algorithm. In: Prisco, R., Yung,
M. (eds.) SCN 2006. LNCS, vol. 4116, pp. 348–359. Springer, Heidelberg (2006).
doi:10.1007/11832072 24

29. Lyubashevsky, V.: The parity problem in the presence of noise, decoding random
linear codes, and the subset sum problem. In: Chekuri, C., Jansen, K., Rolim,
J.D.P., Trevisan, L. (eds.) APPROX/RANDOM - 2005. LNCS, vol. 3624, pp. 378–
389. Springer, Heidelberg (2005). doi:10.1007/11538462 32

30. Lyubashevsky, V., Masny, D.: Man-in-the-middle secure authentication schemes
from LPN and weak PRFs. In: Canetti, R., Garay, J.A. (eds.) CRYPTO
2013. LNCS, vol. 8043, pp. 308–325. Springer, Heidelberg (2013). doi:10.1007/
978-3-642-40084-1 18

31. May, A., Meurer, A., Thomae, E.: Decoding random linear codes in Õ(20.054n).
In: Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp. 107–124.
Springer, Heidelberg (2011). doi:10.1007/978-3-642-25385-0 6

32. Peterson, W.W., Weldon, E.J.: Error-Correcting Codes. MIT Press, Cambridge
(1972)

33. Regev, O.: On lattices, learning with errors, random linear codes, and cryptog-
raphy. In: Gabow, H.N., Fagin, R. (eds.) Proceedings of the 37th Annual ACM
Symposium on Theory of Computing, Baltimore, MD, USA, 22–24 May 2005, pp.
84–93. ACM (2005)

34. Selçuk, A.A.: On probability of success in linear and differential cryptanalysis. J.
Cryptology 21(1), 131–147 (2008)

35. Stern, J.: A method for finding codewords of small weight. In: Cohen, G.D., Wolf-
mann, J. (eds.) Coding Theory 1988. LNCS, vol. 388, pp. 106–113. Springer,
Heidelberg (1989). doi:10.1007/BFb0019850

36. Zhang, B., Jiao, L., Wang, M.: Faster algorithms for solving LPN. In: Fischlin, M.,
Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9665, pp. 168–195. Springer,
Heidelberg (2016). doi:10.1007/978-3-662-49890-3 7

http://dx.doi.org/10.1007/978-3-662-45611-8_1
http://dx.doi.org/10.1007/3-540-45682-1_4
http://dx.doi.org/10.1007/11535218_18
http://dx.doi.org/10.1007/978-3-642-54631-0_1
http://dx.doi.org/10.1007/978-3-642-20465-4_3
http://dx.doi.org/10.1007/978-3-662-47989-6_3
http://dx.doi.org/10.1007/978-3-662-47989-6_3
http://dx.doi.org/10.1007/11832072_24
http://dx.doi.org/10.1007/11538462_32
http://dx.doi.org/10.1007/978-3-642-40084-1_18
http://dx.doi.org/10.1007/978-3-642-40084-1_18
http://dx.doi.org/10.1007/978-3-642-25385-0_6
http://dx.doi.org/10.1007/BFb0019850
http://dx.doi.org/10.1007/978-3-662-49890-3_7

The Kernel Matrix Diffie-Hellman Assumption

Paz Morillo1(B), Carla Ràfols2, and Jorge L. Villar1

1 Universitat Politècnica de Catalunya, Barcelona, Spain
{paz.morillo,jorge.villar}@upc.edu

2 Universitat Pompeu Fabra, Barcelona, Spain
carla.rafols@upf.edu

Abstract. We put forward a new family of computational assumptions,
the Kernel Matrix Diffie-Hellman Assumption. Given some matrix A
sampled from some distribution D, the kernel assumption says that it
is hard to find “in the exponent” a nonzero vector in the kernel of A�.
This family is a natural computational analogue of the Matrix Decisional
Diffie-Hellman Assumption (MDDH), proposed by Escala et al. As such
it allows to extend the advantages of their algebraic framework to com-
putational assumptions.

The k-Decisional Linear Assumption is an example of a family of
decisional assumptions of strictly increasing hardness when k grows. We
show that for any such family of MDDH assumptions, the corresponding
Kernel assumptions are also strictly increasingly weaker. This requires
ruling out the existence of some black-box reductions between flexible
problems (i.e., computational problems with a non unique solution).

Keywords: Matrix assumptions · Computational problems · Black-box
reductions · Structure preserving cryptography

1 Introduction

It is commonly understood that cryptographic assumptions play a crucial role
in the development of secure, efficient protocols with strong functionalities. For
instance, upon referring to the rapid development of pairing-based cryptography,
X. Boyen [8] says that “it has been supported, in no small part, by a dizzying
array of tailor-made cryptographic assumptions”. Although this may be a rea-
sonable price to pay for constructing new primitives or improve their efficiency,
one should not lose sight of the ideal of using standard and simple assump-
tions. This is an important aspect of provable security. Indeed, Goldreich [16],
for instance, cites “having clear definitions of one’s assumptions” as one of the
three main ingredients of good cryptographic practice.

There are many aspects to this goal. Not only it is important to use clearly
defined assumptions, but also to understand the relations between them: to see,

Work supported by the Spanish research project MTM2013-41426-R and by a Sofja
Kovalevskaja Award of the Alexander von Humboldt Foundation and the German
Federal Ministry for Education and Research.

c© International Association for Cryptologic Research 2016
J.H. Cheon and T. Takagi (Eds.): ASIACRYPT 2016, Part I, LNCS 10031, pp. 729–758, 2016.
DOI: 10.1007/978-3-662-53887-6 27

730 P. Morillo et al.

for example, if two assumptions are equivalent or one is weaker than the other.
Additionally, the definitions should allow to make accurate security claims. For
instance, although technically it is correct to say that unforgeability of the
Waters’ signature scheme [42] is implied by the DDH Assumption, defining the
CDH Assumption allows to make a much more precise security claim.

A notable effort in reducing the “dizzying array” of cryptographic assump-
tions is the work of Escala et al. [11]. They put forward a new family of decisional
assumptions in a prime order group G, the Matrix Diffie-Hellman Assumption
(D�,k-MDDH). It says that, given some matrix A ∈ Z�×k

q sampled from some
distribution D�,k, it is hard to decide membership in ImA, the subspace spanned
by the columns of A, in the exponent. Rather than as new assumption, it should
be seen as an algebraic framework for decisional assumptions which includes as
a special case the widely used k-Lin family.

This framework has some obvious conceptual advantages. For instance, it
allows to explain all the members of the k-Lin assumption family (and also oth-
ers, like the uniform assumption, appeared previously in [13,14,41]) as a single
assumption and unify different constructions of the same primitive in the lit-
erature (e.g., the Naor-Reingold PRF [36] and the Lewko-Waters PRF [29] are
special cases of the same construction instantiated with the 1-Lin and the 2-Lin
Assumption, respectively). Another of its advantages is that it avoids arbitrary
choices and instead points out to a trade-off between efficiency and security (a
scheme based on any D�,k-MDDH Assumption can be instantiated with many
different assumptions, some leading to stronger security guarantees and others
leading to more efficient schemes). But follow-up work has also illustrated other
possibly less obvious advantages. For instance, Herold et al. [21] have used the
Matrix Diffie-Hellman abstraction to extend the model of composite-order to
prime-order transformation of Freeman [13] and to derive efficiency improve-
ments which were proven to be impossible in the original model.1 We believe
this illustrates that the benefits of conceptual clarity can translate into concrete
improvements as well.

The security notions for cryptographic protocols can be classified mainly
in hiding and unforgeability ones. The former typically appear in encryption
schemes and commitments and the latter in signature schemes and soundness
in zero-knowledge proofs. Although it is theoretically possible to base the hid-
ing property on computational problems, most of the practical schemes achieve
this notion either information theoretically or based on decisional assumptions,
at least in the standard model. Likewise, unforgeability naturally comes from
computational assumptions (typically implied by stronger, decisional assump-
tions). Thus, a natural question is if one can find a computational analogue of
their MDDH Assumption which can be used in “unforgeability type” of security
notions.

1 More specifically, we are referring to the lower bounds on the image size of a pro-
jecting bilinear map of [39] which were obtained in Freeman model [13]. The results
of [21] by-passed this lower bounds allowing to save on pairing operations for pro-
jecting maps in prime order groups.

The Kernel Matrix Diffie-Hellman Assumption 731

Most computational problems considered in the literature are search prob-
lems with a unique solution like the discrete logarithm or CDH. But unforge-
ability actually means the inability to produce one among many solutions to
a given problem (e.g., in many signature schemes or zero knowledge proofs).
Thus, unforgeability is more naturally captured by a flexible computational prob-
lem, namely, a problem which admits several solutions2. This maybe explains
why several new flexible assumptions have appeared recently when considering
“unforgeability-type” security notions in structure-preserving cryptography [2].
Thus a useful computational analogue of the MDDH Assumption should not only
consider problems with a unique solution but also flexible problems which can
naturally capture this type of security notions.

1.1 Our Results

In the following G = (G, q,P), being G some group in additive notation of prime
order q generated by P, that is, the elements of G are Q = aP where a ∈ Zq.
They will be denoted as [a] := aP. This notation naturally extends to vectors
and matrices as [v] = (v1P, . . . , vnP) and [A] = (AijP).

Computational Matrix Assumptions. In our first attempt to design a com-
putational analogue of the MDDH Assumption, we introduce the Matrix Com-
putational DH Assumption, (MCDH) which says that, given a uniform vector
[v] ∈ Gk and some matrix [A], A ← D�,k for � > k, it is hard to extend [v] to
a vector in G� in the image of [A], Im[A]. Although this assumption is natural
and is weaker than the MDDH one, we argue that it is equivalent to CDH.

We then propose the Kernel Matrix DH Assumption (D�,k-KerMDH). This
new flexible assumption states that, given some matrix [A], A ← D�,k for some
� > k, it is hard to find a vector [v] ∈ G� in the kernel of A�. We observe that
for some special instances of D�,k, this assumption has appeared in the litera-
ture in [2,18,19,27,32] under different names, like Simultaneous Pairing, Simul-
taneous Double Pairing (SDP in the following), Simultaneous Triple Pairing,
1-Flexible CDH, 1-Flexible Square CDH. Thus, the new KerMDH Assumption
allows us to organize and give a unified view on several useful assumptions. This
suggests that the KerMDH Assumption (and not the MCDH one) is the right
computational analogue of the MDDH framework. Indeed, for any matrix dis-
tribution the D�,k-MDDH Assumption implies the corresponding D�,k-KerMDH
Assumption. As a unifying algebraic framework, it offers the advantages men-
tioned above: it highlights the algebraic structure of any construction based on
it, and it allows writing many instantiations of a given scheme in a compact way.

The Power of Kernel Assumptions. At Eurocrypt 2015, our KerMDH
Assumptions were applied to design simpler QA-NIZK proofs of membership in

2 In the cryptographic literature we sometimes find the term “strong” as an alternative
to “flexible”, like the Strong RSA or the Strong DDH.

732 P. Morillo et al.

linear spaces [26]. They have also been used to give more efficient constructions
of structure preserving signatures [25], to generalize and simplify the results on
quasi-adaptive aggregation of Groth-Sahai proofs [17] (given originally in [24])
and to construct a tightly secure QA-NIZK argument for linear subspaces with
unbounded simulation soundness in [15]. The power of a KerMDH Assumption is
that it allows to guarantee uniqueness. This has been used by Kiltz and Wee [26],
for instance, to compile some secret key primitives to the public key setting.
Indeed, Kiltz and Wee [26] modify a hash proof system (which is only desig-
nated verifier) to allow public verification (a QA-NIZK proof of membership).
In a hash proof system for membership in some linear subspace of Gn spanned
by the columns of some matrix [M], the public information is [M�K], for some
secret matrix K, and given the proof [π] that [y] is in the subspace, verification
tests if [π] ?= [y�K].

The core argument to compile this to a public key primitive is that given
([A], [KA]), A ← D�,k and any pair [y], [π], the previous test is equivalent to
e([π�], [A]) = e([y�], [KA]), under the D�,k-KerMDH Assumption. Indeed,

e([π�], [A]) = e([y�], [KA]) ⇐⇒ e([π� − y�K], [A]) = [0]
D�,k-KerMDH

=⇒
=⇒ [π] = [y�K]. (1)

That is, although potentially there are many possible proofs which satisfy the
public verification equation (left hand side of Eq. (1)), the D�,k-KerMDH Assump-
tion guarantees that only one of them is efficiently computable, so verification
gives the same guarantees as in the private key setting (right hand side of
Eq. (1)). This property is also used in a very similar way in [15] and also in
the context of structure preserving signatures in [25]. In Sect. 5 we use it to
argue that, of all the possible openings of a commitment, only one is efficiently
computable, i.e. to prove computational soundness of a commitment scheme.
Moreover, some previous works, notably in the design of structure preserving
cryptographic primitives [1–3,31], implicitly used this property for one specific
KerMDH Assumption: the Simultaneous (Double) Pairing Assumption.

On the other hand, we have already discussed the importance of having a
precise and clear language when talking about cryptographic assumptions. This
justifies the introduction of a framework specific to computational assumptions,
because one should properly refer to the assumption on which security is actually
based, rather than just saying “security is based on an assumption weaker than
D�,k-MDDH”. A part from being imprecise, a problem with such a statement
is that might lead to arbitrary, not optimal choices. For example, the signa-
ture scheme of [30] is based on the SDP Assumption but a slight modification
of it can be based on the L2-KerMDH Assumption. If the security guarantee
is “the assumption is weaker than 2-Lin” then the modified scheme achieves
shorter public key and more efficient verification with no loss in security. Fur-
ther, the claim that security is based on the MDDH decisional assumptions when
only computational ones are necessary might give the impression that a certain
tradeoff is in place when this is not known to be the case. For instance, Jutla and

The Kernel Matrix Diffie-Hellman Assumption 733

Fig. 1. Implication and separation results between Matrix Assumptions (dotted arrows
correspond to the new results).

Roy [24] construct constant-size QA-NIZK arguments of membership in linear
spaces under what they call the “Switching Lemma”, which is proven under a
certain Dk+1,k-MDDH Assumption. However, a close look at the proof reveals
that in fact it is based on the corresponding Dk+1,k-KerMDH Assumption3. For
these assumptions, prior to our work, it was unclear whether the choice of larger
k gives any additional guarantees.

Strictly Increasing Families of Kernel Assumptions. An important prob-
lem is that it is not clear whether there are increasingly weaker families of
KerMDH Assumptions. That is, some decisional assumptions families parameter-
ized by k like the k-Lin Assumption are known to be strictly increasingly weaker.
The proof of increasing hardness is more or less immediate and the term strictly
follows from the fact that every two D�,k-MDDH and D�̃,k̃-MDDH problems with

k̃ < k are separated by an oracle computing a k-linear map. For the computa-
tional case, increasing hardness is also not too difficult, but nothing is known
about strictly increasing hardness (see Fig. 1). This means that, as opposed to
the decisional case, prior to our work, for protocols based on KerMDH Assump-
tions there was no-known tradeoff between larger k (less efficiency) and security.

In this paper, we prove that the families of matrix distributions in [11], U�,k,
Lk, SCk, Ck and RLk, as well as a new distribution we propose in Sect. 6, the
circulant family CIk,d, define families of kernel problems with increasing hard-
ness. For this we show a tight reduction from the smaller to the larger problems
in each family. Our main result (Theorem2) is to prove that the hardness of
these problems is strictly increasing. For this, we prove that there is no black-
box reduction from the larger to the smaller problems in the multilinear generic
group model. These new results correspond to the dotted arrows in Fig. 1.

Having in mind that the computational problems we study in the paper are
defined in a generic way, that is without specifying any particular group, the
generic group approach arises naturally as the setting for the analysis of their
hardness and reducibility relations. Otherwise, we would have to rely on specific
properties of the representation of the elements of particular group families, not
captured by the generic model.

3 To see this, note that in the proof of their “Switching Lemma” on which soundness

is based, they use the output of the adversary to decide if f
?∈ ImA, A ← RLk,

by checking whether [f] is orthogonal to the adversary’s output (Eq. (1), proof of
Lemma 1, [24], full version), and where RLk is the matrix distribution of Sect. 2.3.

734 P. Morillo et al.

The proof of Theorem2 requires dealing with the notion of black-box reduc-
tion between flexible problems. A black-box reduction must work for any possible
behavior of the oracle, but, contrary to the normal (unique answer) black-box
reductions, here the oracle has to choose among the set of valid answers in every
call. Ruling out the existence of a reduction implies that for any reduction there
is an oracle behavior for which the reduction fails. This is specially subtle when
dealing with multiple oracle calls. We think that the proof technique we intro-
duce to deal with these issues can be considered as a contribution in itself and
can potentially be used in future work.

Combining the black-box techniques and the generic group model is not new
in the literature. For instance Dodis et al. [10] combine the black-box reductions
and a generic model for the group Z∗

n to show some uninstantiability results for
FDH-RSA signatures.

Theorem 2 supports the intuition that there is a tradeoff between the size
of the matrix—which typically results in less efficiency—and the hardness of
the KerMDH Problems, and justifies the generalization of several protocols to
different choices of k given in [17,24–26].

Applications. The discussion of our results given so far should already highlight
some of the advantages of using the new Kernel family of assumptions and the
power of these new assumptions, which have already been used in compelling
applications in follow-up work in [17,25,26]. To further illustrate the usefulness
of the new framework, we apply it to the study of trapdoor commitments. First,
we revisit the Pedersen commitment [38] to vectors of scalars and its extension
to vectors of group elements of Abe et al. [2] in bilinear groups. We unify these
two constructions and we generalize to commit vectors of elements at each level
Gr, for any 0 ≤ r ≤ m under the extension of KerMDH Assumptions to the
ideal m-graded encodings setting. In particular, when m = 2 we recover in a
single construction as a special case both the original Pedersen and Abe et al.
commitments.

The (generalized) Pedersen commitment maps vectors in Gr to vectors
in Gr+1, is perfectly hiding and computationally binding under any Kernel
Assumption. In Sect. 5.2 we use it as a building block to construct a “group-
to-group” commitment, which maps vectors in Gr to vectors in the same group
Gr. These commitments were defined in [3] because they are a good match to
Groth-Sahai proofs. In [3], two constructions were given, one in asymmetric and
the other in symmetric bilinear groups. Both are optimal in terms of commitment
size and number of verification equations. Rather surprisingly, we show that both
constructions in [3] are special instances of our group-to-group commitment for
some specific matrix distributions.

A New Family of MDDH Assumptions of Optimal Representation Size.
We also propose a new interesting family of Matrix distributions, the circulant
matrix distribution, CIk,d, which defines new MDDH and KerMDH assumptions.
This family generalizes the Symmetric Cascade Distribution (SCk) defined in [11]
to matrices of size � × k, � = k + d > k + 1. We prove that it has optimal

The Kernel Matrix Diffie-Hellman Assumption 735

representation size d independent of k among all matrix distributions of the
same size. The case � > k + 1 typically arises when one considers commit-
ments/encryption in which the message is a vector of group elements instead of
a single group element and the representation size typically affects the size of
the public parameters.

We prove the hardness of the CIk,d-KerMDH Problem, by proving that the
CIk,d-MDDH Problem is generically hard in k-linear groups. Analyzing the hard-
ness of a family of decisional problems (depending on a parameter k) can be
rather involved, specially when an efficient k-linear map is supposed to exist.
This is why in [11], the authors gave a practical criterion for generic hardness
when � = k + 1 in terms of irreducibility of some polynomials involved in the
description of the problem. This criterion was used then to prove the generic
hardness of several families of MDDH Problems. To analyze the generic hardness
of the CIk,d-MDDH Problem for any d, the techniques in [11] are not practical
enough, and we need some extensions of these techniques for the case � > k + 1,
recently introduced in [20]. However, we could not avoid the explicit computation
of a large (but well-structured) Gröbner basis of an ideal associated to the matrix
distribution. The new assumption can be used to instantiate the commitment
schemes of Sect. 5 with shorter public parameters and improved efficiency.

2 Preliminaries

For λ ∈ N, we write 1λ for the string of λ ones. For a set S, s ← S denotes the
process of sampling an element s from S uniformly at random. For an algorithm
A, we write z ← A(x, y, . . .) to indicate that A is a (probabilistic) algorithm
that outputs z on input (x, y, . . .). For any two computational problems P1 and
P2 we recall that P1 ⇒ P2 denotes the fact that P1 reduces to P2, and then ‘P1

is hard’ ⇒ ‘P2 is hard’. Thus, we will use ‘⇒’ both for computational problems
and for the corresponding hardness assumptions.

Let Gen denote a cyclic group instance generator, that is a probabilistic
polynomial time (PPT) algorithm that on input 1λ returns a description G =
(G, q,P) of a cyclic group G of order q for a λ-bit prime q and a generator P of
G. We use additive notation for G and its elements are aP, for a ∈ Zq and will
be denoted as [a] := aP. The notation extends to vectors and matrices in the
natural way as [v] = (v1P, . . . , vnP) and [A] = (AijP). For a matrix A ∈ Z�×k

q ,
ImA denotes the subspace of Z�

q spanned by the columns of A. Thus, Im[A] is
the corresponding subspace of G�.

2.1 Multilinear Maps

In the case of groups with a bilinear map, or more generally with a k-linear map
for k ≥ 2, we consider a generator producing the tuple (ek,G1,Gk, q,P1,Pk),
where G1,Gk are cyclic groups of prime-order q, Pi is a generator of Gi and ek

is a non-degenerate efficiently computable k-linear map ek : Gk
1 → Gk, such that

ek(P1, . . . ,P1) = Pk. We actually consider graded encodings which offer a richer

736 P. Morillo et al.

structure. For any fixed k ≥ 1, let MGenk be a PPT algorithm that on input 1λ

returns a description of a graded encoding MGk = (e,G1, . . . ,Gk, q,P1, . . . ,Pk),
where G1, . . . ,Gk are cyclic groups of prime-order q, Pi is a generator of Gi

and e is a collection of non-degenerate efficiently computable bilinear maps ei,j :
Gi ×Gj → Gi+j , for i+j ≤ k, such that e(Pi,Pj) = Pi+j . For simplicity we will
omit the subindexes of e when they become clear from the context. Sometimes
G0 is used to refer to Zq. For group elements we use the following implicit
notation: for all i = 1, . . . , k, [a]i := aPi. The notation extends in a natural way
to vectors and matrices and to linear algebra operations. We sometimes drop
the index when referring to elements in G1, i.e., [a] := [a]1 = aP1. In particular,
it holds that e([a]i, [b]j) = [ab]i+j .

Additionally, for the asymmetric case, let AGen2 be a PPT algorithm that
on input 1λ returns a description of an asymmetric bilinear group AG2 =
(e,G,H,T, q,P,Q), where G,H,T are cyclic groups of prime-order q, P is a
generator of G, Q is a generator of H and e : G × H → T is a non-degenerate,
efficiently computable bilinear map. In this case we refer to group elements as:
[a]G := aP, [a]H := aQ and [a]T := ae(P,Q).

2.2 A Generic Model for Groups with Graded Encodings

In this section we describe a (purely algebraic) generic model for the graded
encodings functionality, in order to obtain meaningful results about the hard-
ness and separations of computational problems. The model is an adaptation of
Maurer’s generic group model [33,34] including the k-graded encodings, but in
a completely algebraic formulation that follows the ideas in [5,12,20]. Since the
k-graded encodings functionality implies the k-linear group functionality, the
former gives more power to the adversaries or reductions working within the cor-
responding generic model. This in particular means that non-existential results
proven in the richer k-graded encodings generic model also imply the same results
in the k-linear group generic model. Therefore, in this paper we consider the
former model. Due to the space limitations, we can only give a very succinct
description of the model. See the full version of the paper [35] for a detailed and
more formal description.

In a first approach we consider Maurer’s model adapted to the graded encod-
ings functionality, but still not phrased in a purely algebraic language. In this
model, an algorithm A does not deal with proper group elements in [y]a ∈ Ga,
but only with labels (Y, a), and it has access to an additional oracle internally
performing the group operations, so that A cannot benefit from the particular
way the group elements are represented. Namely, on start all the group ele-
ments [x1]a1 , ..., [xα]aα

in the input intended for A are replaced by the labels
(X1, a1), . . . , (Xα, aα). Then, A actually receives as input the set of labels, and
possibly some other non-group elements (i.e., that do not belong to any of the
groups G1, . . . ,Gk), denoted as x̃, and considered as a bit string. For each group
Ga two additional labels (0, a), (1, a), corresponding to the neutral element and
the generator, are implicitly given to A. Then A can adaptively make the fol-
lowing queries to an oracle implementing the k-graded encodings:

The Kernel Matrix Diffie-Hellman Assumption 737

– GroupOp((Y1, a), (Y2, a)): group operation in Ga for two previously issued
labels in Ga resulting in a new label (Y3, a) in Ga.

– GroupInv((Y, a)): similarly for group inversion in Ga.
– GroupPair((Y1, a), (Y2, b)): bilinear map for two previously issued labels in Ga

and Gb, a + b ≤ k, resulting in a new label (Y3, a + b) in Ga+b.
– GroupEqTest((Y1, a), (Y2, a)): test two previously issued labels in Ga for equal-

ity of the corresponding group elements, resulting in a bit (1 = equality).

In addition, the oracle performs the actual computations with the group ele-
ments, and it uses them to answer the GroupEqTest queries. Every badly formed
query (for instance, containing a label not previously issued by the oracle or as
an input to A) is answered with a special rejection symbol ⊥. Following the usual
step in generic group model proofs (see for instance [5,11,20]), we use polynomi-
als as labels to group elements. Namely, labels in Ga are polynomials in Zq[X],
where the algebraic variables X = (X1, . . . , Xα) are just formal representations
of the group elements in the input of A. Now the oracle computes the new labels
using the natural polynomial operations: GroupOp((Y1, a), (Y2, a)) = (Y1+Y2, a),
GroupInv((Y, a)) = (−Y, a) and GroupPair((Y1, a), (Y2, b)) = (Y1Y2, a + b). It is
easy to see that for any valid label (Y, a), deg Y ≤ a.4

The output of A consists only of some labels (Y1, b1), . . . , (Yβ , bβ) (given
at some time by the oracle) corresponding to group elements [y1]b1 , ..., [yβ]bβ

,
along with some non-group elements, denoted as ỹ. Therefore, for any fixed
random tape of A and any choice of the non-group elements x̃, there exist
polynomials Y1, . . . , Yβ ∈ Zq[X] of degrees upper bounded by b1, . . . , bβ respec-
tively, with coefficients known to A. Notice that A itself can predict all answers
given by the oracle except for some GroupEqTest queries. In particular, some
GroupEqTest queries trivially result in 1, due to the group structure (e.g.,
GroupOp((Y, a),GroupInv((Y, a))) is the same as (0, a)), or due to the (known) a
priori constraints in the input group elements (i.e., the definition of the problem
instance given to A). The answers to nontrivial GroupEqTest queries (i.e., queries
that cannot be trivially predicted by A) are the only effective information A can
receive from the generic group oracle.

We now introduce a “purely algebraic” version of the generic model. For
that, we need to assume that the distribution of x can be sampled by eval-
uating a polynomial map f of constant degree at a random point.5 This is
not an actual restriction in our context since all Matrix Diffie-Hellman prob-
lems fulfil this requirement. In the “purely algebraic” model we redefine the
oracle GroupEqTest to answer 1 if and only if A can itself predict the positive
answer. Namely GroupEqTest((Y1, a), (Y2, a)) = 1 if and only if Y1 ◦ f = Y2 ◦ f
as polynomials over Zq. With this change the behavior of A can only differ

4 It clearly holds for the input group elements (since deg Y = 1), and the inequality
is preserved by GroupOp, GroupInv and GroupPair.

5 A formal definition of this notion is given in the full version of the paper.

738 P. Morillo et al.

negligibly from the original,6 meaning that generic algorithms perform almost
equally in Maurer’s model and its purely algebraic version. But now, any
generic algorithm is just modelled by a set of polynomials. As we need to
handle elements in different groups, we will use the shorter vector notation
[x]a = ([x1]a1 , . . . , [xα]aα

) = (x1Pa1 , . . . , xαPaα
) ∈ Ga1 × · · · × Gaα

. Note that
the length of a vector of indices a is denoted by a corresponding Greek letter α.
We will also use a tilde to denote variables containing only non-group elements
(i.e., elements not in any of G1, . . . ,Gk).

Lemma 1. Let A be an algorithm in the (purely algebraic) generic multilinear
group model. Let ([x]a, x̃) and ([y]b, ỹ) respectively be the input and output of A.
Then, for every choice of x̃ and any choice of the random tape of A, there exist
polynomials Y1, . . . , Yβ ∈ Zq[X] of degree upper bounded by b1, . . . , bβ such that
y = Y (x), for all possible x ∈ Zn

q , where Y = (Y1, . . . , Yβ). Moreover, ỹ does
not depend on x.

The proof of the lemma comes from the above discussion.
As usually, the proposed generic model reduces the analysis of the hardness

of some problems to solving a merely algebraic problem related to polynomials.
As an example, consider a computational problem P which instances are entirely
described by some group elements in the base group G1, [x] ← P.InstGen(1λ),
and its solutions are also described by some group elements [y]b ∈ P.Sol([x]). We
also assume that P.InstGen just samples x by evaluating polynomial functions
of constant degree at a random point. Then, P is hard in the purely algebraic
generic multilinear group model if and only if for all (randomized) polynomials
Y1, . . . , Yβ ∈ Zq[X] of degrees upper bounded by b1, . . . , bβ respectively,

Pr([y]b ∈ P.Sol([x]) : [x] ← P.InstGen(1λ), y = Y (x)) ∈ negl(λ)

where Y = (Y1, . . . , Ym) and the probability is computed with respect the ran-
dom coins of the instance generator and the randomized polynomials.7 In a few
words, this means that the set P.Sol([x]) cannot be hit by polynomials of the
given degree evaluated at x.

This model extends naturally to algorithms with oracle access (e.g., black-
box reductions) but only when the oracles fit well into the generic model. Let us
consider the algorithm AO, with oracle access to O. A completely arbitrary oracle
(specified in the plain model) could have access to the internal representation of
the group elements, and then it could leak some information about the group
elements that is outside the generic group model. Thus, we will impose the very
6 As a standard argument used in proofs in the generic group model, the difference

between the original model and its purely algebraic reformulation amounts to a
negligible probability, which is typically upper-bounded by using Schwartz-Zippel
Lemma and the union bound, as shown for instance in [5,12,20].

7 We can similarly deal with problems with non-group elements both in the instance
description and the solution, but this would require a more sophisticated formal-
ization, in which both the polynomials and the non-group elements in the solution
could depend on the non-group elements in the instance, but in an efficient way.

The Kernel Matrix Diffie-Hellman Assumption 739

limiting constraint that the oracles are also “algebraic”, meaning that the oracle’s
input/output behavior respects the one-wayness of the graded encodings, and it
only performs polynomial operations on the input labels.

Definition 1. Let ([u]d, ũ) and ([v]e, ṽ) respectively be a query to an oracle O
and its corresponding answer, where ũ and ṽ contain the respective non-group
elements. The oracle O is called algebraic if for any choice of ũ there exist
polynomials V1, . . . , Vε ∈ Zq[U ,R], R = (R1, . . . , Rρ), of constant degree (in the
security parameter) such that

– for the specific choice of ũ, vi = Vi(u, r), i = 1, . . . , ε, for all u ∈ Zε
q and

r ∈ Zρ
q , where r = (r1, . . . , rρ) are random parameters defined and uniformly

sampled by the oracle,
– ṽ does not depend on u, r (thus, r can only have influence in the group ele-

ments in the answer),
– Vj does not depend on any Ui such that ej < di (in order to preserve the

one-wayness of the graded encodings).

The parameters r capture the behavior of an oracle solving a problem with
many solutions (called here a “flexible” problem). They could be independent or
not across different oracle calls, depending on whether the oracle is stateless or
stateful. For technical reasons we consider only the stateless case with uniform
sampling. Observe that the first two requirements in the definition mean that v
depends algebraically on u, r and no extra information about u, r can be leaked
through ṽ. Removing any of these requirements from the definition results in
that a generic algorithm using such an oracle will no longer be algebraically
generic. Also notice that after a call to an algebraic oracle, there is no guarantee
that labels (Y, a) fulfil the bound deg Y ≤ a.

Although the notion of algebraic oracle looks very limiting (e.g., it excludes a
Discrete Logarithm oracle, as it destroys the one-wayness property of the graded
encodings, but oracles solving CDH or the Bilinear Computational Diffie-Hellman
problem fit well in the definition), it is general enough for our purposes. We will
need the following generalization of Lemma1:

Lemma 2. Let AO be an oracle algorithm in the (purely algebraic) generic mul-
tilinear group model, making a constant number of calls Q to an algebraic oracle
O. Let ([x]a, x̃) and ([y]b, ỹ) respectively be the input and output of A. Then, for
every choice of x̃ and the random tape, there exist polynomials of constant degree
Y1, . . . , Yβ ∈ Zq[X,R1, . . . ,RQ], such that y = Y (x, r1, . . . , rQ), for all possible
inputs, where Y = (Y1, . . . , Yβ), and r1, . . . , rQ are the parameters introduced in
Definition 1 for the Q queries. Moreover, ỹ does not depend on x or r1, . . . , rQ.

The proof of this lemma is given in AppendixA.

2.3 The Matrix Decisional Diffie-Hellman Assumption

We recall here the definition of the decisional assumptions introduced in [11],
which are the starting point of our flexible computational matrix problems.

740 P. Morillo et al.

Definition 2. [11], Let �, k ∈ N with � > k. We call D�,k a matrix distribution if
it outputs (in polynomial time, with overwhelming probability) matrices in Z�×k

q

of full rank k. We denote Dk := Dk+1,k.

Definition 3 (D�,k-MDDH Assumption). [11] Let D�,k be a matrix distrib-
ution. The D�,k-Matrix Diffie-Hellman (D�,k-MDDH) Problem is telling apart
the two probability distributions (G, q,P, [A], [Aw]) and (G, q,P, [A], [z]), where
A ← D�,k,w ← Zk

q ,z ← Z�
q.

We say that the D�,k-Matrix Diffie-Hellman (D�,k-MDDH) Assumption holds
relative to Gen if the corresponding problem is hard, that is, if for all PPT adver-
saries A, the advantage

AdvD�,k,Gen(A) = Pr[A(G, [A], [Aw]) = 1] − Pr[A(G, [A], [z]) = 1] ∈ negl(λ),

where the probability is taken over G = (G, q,P) ← Gen(1λ), A ← D�,k,w ←
Zk

q ,z ← Z�
q and the coin tosses of adversary A.

In the case of asymmetric bilinear groups or symmetric k-linear groups, we
similarly say that the D�,k-MDDH Assumption holds relative to AGen2 or MGenk,
respectively. In the former we specify if the assumption holds in the left (A
receives [A]G, [Aw]G or [z]G), or in the right (A receives [A]H , [Aw]H or [z]H).

Definition 4. A matrix distribution D�,k is hard if the corresponding D�,k-
MDDH problem is hard in the generic k-linear group model.

Many different matrix distributions appear in the literature. Namely, the
cascade Ck and symmetric cascade SCk distributions were presented in [11],
while the uniform U�,k, the linear Lk, the randomized linear RLk and the square
polynomial P�,2 distributions were implicitly used in some previous works. We
give their explicit definitions in AppendixB.

3 The Matrix Diffie-Hellman Computational Problems

In this section we introduce two families of search problems naturally related
to the Matrix Decisional Diffie-Hellman problems. In the first family, given a
matrix [A], where A ← D�,k, and the first k components of a vector [z], the
problem is completing it so that z ∈ ImA.

Definition 5 (D�,k-MCDH). Given a matrix distribution D�,k, such that the
upper k × k submatrix of A ← D�,k has full rank with overwhelming probability,
the computational matrix Diffie-Hellman Problem is given ([A], [z0]), with A ←
D�,k, z0 ← Zk

q , compute [z1] ∈ G�−k such that (z0‖z1) ∈ ImA.

The full-rank condition ensures the existence of solutions to the D�,k-MCDH
problem instance. Thus, we tolerate the existence of a negligible fraction of
unsolvable problem instances. Indeed, all known interesting matrix distributions
fulfil this requirement. Notice that CDH and the computational k-Lin problems

The Kernel Matrix Diffie-Hellman Assumption 741

are particular examples of MCDH problems. Namely, CDH is exactly L1-MCDH
and the computational k-Lin problem is Lk-MCDH. Indeed, the L1-MCDH prob-
lem is given [1], [a], [z1], compute [z2] such that (z1, z2) is collinear with (1, a),
or equivalently, z2 = z1a, which is solving the CDH problem. All MCDH prob-
lems have a unique solution and they appear naturally in some scenarios using
MDDH problems. For instance, the one-wayness of the encryption scheme in [11]
is equivalent to the corresponding MCDH assumption.

There is an immediate relation between any MCDH problem and its decisional
counterpart. Not surprisingly, for any matrix distribution D�,k, D�,k-MDDH ⇒
D�,k-MCDH.

We are not going to study the possible reductions between MCDH problems,
due to the fact that, essentially, any MCDH problem amounts to computing
some polynomial on the elements of A, and it is then equivalent to CDH ([4,23]),
although the tightness of the reduction depends on the degree of the polynomial.

In the second family of computational problems, given a matrix [A], where
A ← D�,k, the problem is finding [x] such that x ∈ kerA�\{0}. It is notable
that some computational problems in the literature are particular cases of this
second family.

Definition 6 (D�,k-KerMDH). Given a matrix distribution D�,k, the Kernel
Diffie-Hellman Problem is given [A], with A ← D�,k, find a nonzero vector
[x] ∈ G� such that x is orthogonal to ImA, that is, x ∈ kerA�\{0}.

Definition 6 naturally extends to asymmetric bilinear groups. There, given
[A]H , the problem is to find [x]G such that x ∈ kerA�\{0}. A solution can be
obviously verified by checking if e([x�]G, [A]H) = [0]T . We can also consider an
extension of this problem in which the goal is to solve the same problem but
giving the solution in a different group Gr, in some ideal graded encoding MGm,
for some 0 ≤ r ≤ min(m, k − 1). The case r = 1 corresponds to the previous
problem defined in a m-linear group.

Definition 7 ((r,m,D�,k)-KerMDH). Given a matrix distribution D�,k over a
m-linear group MGm and r an integer 0 ≤ r ≤ min(m, k − 1), the (r,m,D�,k)-
KerMDH Problem is to find [x]r ∈ G�

r such that x ∈ kerA�\{0}.
When the precise degree of multilinearity m is not an issue, we will write

(r,D�,k)-KerMDH instead of (r,m,D�,k)-KerMDH, for any m ≥ r. We excluded
the case r ≥ k because the problem is easy.

Lemma 3. For all integers k ≤ r ≤ m and for all matrix distributions D�,k, the
(r,m,D�,k)-KerMDH Problem is easy.

The kernel problem is also harder than the corresponding decisional problem,
in multilinear groups.

Lemma 4. In a m-linear group, D�,k-MDDH ⇒ (r,m,D�,k)-KerMDH for any
matrix distribution D�,k and for any 0 ≤ r ≤ m − 1. In particular, for m ≥ 2,
D�,k-MDDH ⇒ D�,k-KerMDH.

The proofs of Lemmas 3, and 4 can be found in the full version of this
paper [35].

742 P. Morillo et al.

3.1 The Kernel DH Assumptions in the Multilinear Maps
Candidates

We have shown that for any hard matrix distribution D�,k the D�,k-KerMDH
problem is generically hard in m-linear groups. We emphasize that all our results
refer to generic, ideal multilinear maps (in fact, to graded encodings, which have
more functionality). Our aim is only to give necessary condition for the assump-
tions to hold in candidate multilinear maps. The status of current candidate
multilinear maps is rather uncertain, e.g. it is described in [28] as “break-and-
repair mode”. Thus, it is hard to argue if our assumptions hold in any concrete
instantiation and we leave this as an open question for further investigation.

3.2 A Unifying View on Computational Matrix Problems

In this section we show how some computational problems in the cryptographic
literature are unified as particular instances of KerMDH problems. Their explicit
definitions are given in AppendixC. It is straightforward to see that Find-Rep [9]
Assumption is just (0,U�,1)-KerMDH, the Simultaneous Double Pairing Assump-
tion (SDP) [2] is RL2-KerMDH, the Simultaneous Triple Pairing [18] Assump-
tion is U2-KerMDH, the Simultaneous Pairing [19] Assumption is P�,2-KerMDH.
The Double Pairing (DP) [18] Assumption corresponds to U1-KerMDH in an
asymmetric bilinear setting. On the other hand, the 1-Flexible Diffie-Hellman
(1-FlexDH) [32] Assumption is C2-KerMDH, the 1-Flexible Square Diffie-Hellman
(1-FlexSDH) [27] Assumption is SC2-KerMDH, and the �-Flexible Diffie-Hellman
(�-FlexDH) [32] Assumption for � > 1 is the only one which is not in the
KerMDH family. However, �-FlexDH ⇒ C�+1-KerMDH. Getting the last three
results requires a bit more work, and they are proven in the full version [35].

4 Reduction and Separation of Kernel Diffie-Hellman
Problems

In this section we prove that the most important matrix distribution families
U�,k, Lk, SCk, Ck and RLk (see Appendix B) define families of KerMDH prob-
lems with strictly increasing hardness, as we precisely state in Theorem 2, at
the end of the section. By ‘strictly increasing’ we mean that (1) there are known
reductions of the smaller problems to the larger problems (in terms of k) within
each family, and (2) there are no black-box reductions in the other way in
the multilinear generic group model. This result shows the necessity of using
D�,k-KerMDH Assumptions for k > 2. A similar result is known for the cor-
responding D�,k-MDDH problems. Indeed, one can easily prove a separation
between large and small decisional problems. Observe that any efficient m-linear
map can efficiently solve any D�,k-MDDH problem with k ≤ m − 1, and there-
fore every two D�,k-MDDH and D�̃,k̃-MDDH problems with k̃ < k are separated
by an oracle computing a k-linear map. However, when dealing with the com-
putational D�,k-KerMDH family, no such a trivial argument is known to exist.

The Kernel Matrix Diffie-Hellman Assumption 743

Actually, a m-linear map does not seem to help to solve any D�,k-KerMDH prob-
lem with k > 1. Furthermore, the m-linear map seems to be useless for any
(reasonable) reduction between KerMDH problems defined over the same group.
Indeed, all group elements involved in the problem instances and their solutions
belong to the base group G, and the result of computing any m-linear map is
an element in Gm, where no efficient map from Gm back to G is supposed to
exist.

4.1 Separation

In this section we firstly show the non-existential part of Theorem2. Namely, we
show that there is no black-box reduction in the generic group model (described
in Sect. 2.2) from D�,k-KerMDH to D�̃,k̃-KerMDH for k > k̃, assuming that the
two matrix distributions D�,k and D�̃,k̃ are hard (see Definition 4). Before proving
the main result we need some technical lemmas and also a new geometrical notion
defined on a family of subspaces of a vector space, named t-Elusiveness.

In the first lemma we show that the natural (black-box, algebraic) reductions
between KerMDH problems have a very special form. Observe that a black-
box reduction to a flexible problem must work for any adversary solving it. In
particular, the reduction should work for any solution given by this adversary,
or for any probability distribution of the solutions given by it. Informally, the
lemma states that the output of a successful reduction can always be computed
in essentially two ways: (1) By just applying a (randomized) linear map to the
answer given by the adversary in the last call. Therefore, all possibly existing
previous calls to the adversary are just used to prepare the last one. (2) By just
ignoring the last call to the adversary and using only the information gathered
in the previous ones.

Let RO be a black-box reduction of D�,k-KerMDH to D�̃,k̃-KerMDH, in the
purely algebraic generic multilinear group model, discussed in Sect. 2.2, for some
matrix distributions D�,k and D�̃,k̃. Namely, RO solves D�,k-KerMDH with a
non-negligible probability by making Q ≥ 1 queries to an oracle O solving
D�̃,k̃-KerMDH with probability one. As we aim at ruling out the existence of
some reductions, we just consider the best possible case any black-box reduction
must be able to handle. Now we split the reduction as RO = (RO

0 ,R1), where
the splitting point is the last oracle call, as shown in Fig. 2. We actually use the
same splitting in the proof of Lemma 2 in AppendixD. More formally, on the
input of [A], for A ← D�,k, and after making Q − 1 oracle calls, RO

0 stops by
outputting the last query to O, that is a matrix [Ã], where Ã ∈ D�̃,k̃, together
with some state information s for R1. Next, R1 resumes the execution from s

and the answer [w] ∈ G�̃ given by the oracle, and finally outputs [v] ∈ G�.
Without loss of generality, we assume that both stages RO

0 and R1 receive the
same random tape, $ (R1 can redo the computations performed by RO

0).

Lemma 5. There exists an algebraic oracle O (in the sense of Definition 1),
that solves the D�,k-KerMDH Problem with probability one.

All the proofs in Sect. 4 are given in AppendixD.

744 P. Morillo et al.

Fig. 2. Splitting of the black-box reduction.

Lemma 2 applied to RO
0 (and using also Lemma 5) implies that only the

group elements in s can depend on A. Indeed, the non-group elements in s can
only depend on the random tape $. Now, from Lemma1 applied to R1, we know
that its output [v] is determined by a polynomial map of total degree at most
one in the input group elements (i.e., Ã and the group elements in s), and the
coefficients of this polynomial can only depend on $, and the non-group elements
in s, which in turn only depend on $. Therefore, splitting the polynomial map
into two parts, for every fixed $ and every fixed oracle behavior in the first Q−1
oracle calls there exists a vector u ∈ Z�

q and a linear map η : Z�̃
q → Z�

q such that
we can write v = u + η(w), where u actually depends on the group elements
in s. The important fact here is that η can only depend on $, but not on A.

Lemma 6. Let RO = (RO
0 ,R1) be a black-box reduction from D�,k-KerMDH to

D�̃,k̃-KerMDH, in the purely algebraic generic multilinear group model, making
Q ≥ 1 calls to an oracle O solving the latter with probability one. If RO succeeds
with a non negligible probability ε then, for every possible behavior of the oracle,
either Pr(η(w) ∈ S′) > negl or Pr(u ∈ S′) > negl , where S′ = kerA�\{0},
[A] is the input of RO, and its output is written as [u + η(w)], for some u only
depending on the state output by RO

0 , [w] is the answer to the Q-th oracle query,
and η : Zl̃

q → Zl
q is a (randomized) linear map that only depends on the random

tape of RO.

The following property of the hard matrix distributions allows us to prove
that indeed in the last lemma Pr(η(w) ∈ S\{0}) ∈ negl .

Definition 8 (t-Elusiveness). A family of subspaces S of a vector space X
over the finite field Zq is called t-elusive for some t < dim X if for all
t-dimensional subspaces F ⊂ X, Pr(F ∩ S �= {0}) ∈ negl , where the proba-
bility is computed with respect to the choice of S ∈ S. A matrix distribution D�,k

is called t-elusive if the family {kerA�}A∈D�,k
is t-elusive.

Lemma 7. If a matrix distribution D�,k is hard (as given in Definition 4) then
D�,k is k-elusive.

The Kernel Matrix Diffie-Hellman Assumption 745

In the next theorem we use the k-elusiveness to prove that Pr(u ∈
kerA�\{0}) > negl for all possible behaviors of the oracle in the first Q − 1
calls. This actually implies that the reduction can directly output u, and only
Q−1 oracle calls are actually needed. Therefore, by the descent method we show
that no successful reduction exists unless D�,k-KerMDH is easy.

Theorem 1. Let D�,k be k-elusive. If there exists a black-box reduction in the
purely algebraic generic multilinear group model from D�,k-KerMDH to another
problem D�̃,k̃-KerMDH with k̃ < k, then D�,k-KerMDH is easy.

Now we consider the contrapositive statement, that directly applies to the
known families of hard matrix distributions.

Corollary 1. If a matrix distribution family {D�,k} is hard then for any D�,k

and D�̃,k̃ in the family with k > k̃ there is no black-box reduction in the generic
group model from D�,k-KerMDH to D�̃,k̃-KerMDH.

Proof. Since all D�,k-MDDH problems in the family are generically hard on a k-
linear group, we know that D�,k is k-elusive by Lemma 7, and also D�,k-KerMDH
is hard in that group (otherwise, any solution to D�,k-KerMDH can be used to
solve D�,k-MDDH). By the above theorem, no black-box reduction in the generic
group model from D�,k-KerMDH to D�̃,k̃-KerMDH can exist for k > k̃.

4.2 Increasing Families of KerMDH Problems

Most matrix distributions, like U�,k, Lk, SCk, Ck and RLk, are indeed families
parameterized by their size k. The negative results in Corollary 1 prevent us
from finding reductions from larger to smaller KerMDH problems. Nevertheless,
we provide here some examples of (tight) reductions going in the other way,
within each of the previous families.

Lemma 8. U�̃,k̃-KerMDH ⇒ U�,k-KerMDH for any k̃ ≤ k, �̃ > k̃ and � > k.

Proof. We divide the proof into two steps: Firstly, assume that �̃ = k̃ +1, k ≥ k̃,
� ≥ k + 1. Given an instance [Ã], with Ã ← Uk̃+1,k̃, we choose a full-rank

matrix L ∈ Z
�×(k+1)
q and compute [A] = L([Ã] ⊕ [I]), where I is the identity

matrix of size (k − k̃) × (k − k̃) and ⊕ operation denotes diagonal block matrix
concatenation. That is

U ⊕ V =
(

U 0
0 V

)

.

Clearly, the probability distribution of the new matrix is statistically close to
the uniform distribution in Z�×k

q . Any vector [x], obtained from a solver of
U�,k-KerMDH, such that x ∈ kerA�\{0} can be transformed into [x̃] such
that x̃ ∈ ker Ã�\{0} with overwhelming probability,8 by just letting [x̃] to

8 Actually, x̃ = 0 depends on the (k̃ + 1)-th column of L which is independent of A.

746 P. Morillo et al.

be the first k̃ + 1 components of L�[x]. Thus, we have built a tight reduction
Uk̃+1,k̃-KerMDH ⇒ U�,k-KerMDH.

The second step, k = k̃, �̃ > � = k̃ + 1, is simpler. Given an instance [Ã],
with Ã ← U�̃,k̃, define the matrix [A] to be the upper k̃ + 1 rows of [Ã]. Clearly

A follows the uniform distribution in Z
(k̃+1)×k̃
q . Now, any vector [x] such that

x ∈ kerA�\{0} can be transformed into [x̃] such that x̃ ∈ ker Ã�\{0}, by
just padding x with �̃ − k̃ − 1 zeros. Thus, U�̃,k̃-KerMDH ⇒ Uk̃+1,k̃-KerMDH. By
concatenating the two tight reductions we obtain the general case.

Lemma 9. For Dk = Lk, SCk, Ck and RLk, Dk-KerMDH ⇒ Dk+1-KerMDH.

Proof. We start with the case Dk = Lk. Observe that given a matrix Ã ← Lk,
with parameters a1, . . . , ak, we can build a matrix A following the distribution
Lk+1, by adding an extra row and column to Ã corresponding to new random
parameter ak+1 ∈ Zq. Moreover, given x = (x1, . . . , xk+2) ∈ kerA�\{0}, the
vector x̃ = (x1, . . . , xk, xk+2) is in ker Ã�\{0} (except for a negligible probability
due to the possibility that ak+1 = 0 and x̃ = 0, while x �= 0). The reduction
consists of choosing a random ak+1, then building [A] from [Ã] as above, and
finally obtaining [x̃] from [x] by deleting the (k + 1)-th coordinate.

Similarly, from a matrix Ã ← SCk, with parameter a, we can obtain a matrix
A following SCk+1 by adding a new row and column to Ã. Now given x =
(x1, . . . , xk+2) ∈ kerA�\{0}, it is easy to see that the vector x̃ = (x1, . . . , xk+1)
is always in ker Ã�\{0}.

Ck-KerMDH ⇒ Ck+1-KerMDH and RLk-KerMDH ⇒ RLk+1-KerMDH are
proven using the same ideas.

By combining Corollary 1 with the explicit reductions given above, we can
now state our main result in this section.

Theorem 2. The matrix distribution families {U�,k}, {Lk}, {SCk}, {Ck} and
{RLk} define families of KerMDH problems with strictly increasing hardness.
Namely, for any D�,k and D�̃,k̃ belonging to one of the previous families, such

that k̃ < k,

1. there exists a tight reduction, D�̃,k̃-KerMDH ⇒ D�,k-KerMDH,
2. there is no black-box reduction in the generic group model in the opposite

direction.

5 Applications

We have already mentioned that the Kernel Matrix Diffie-Hellman Assump-
tions have already found applications in follow-up work, more concretely:
(a) to generalize and improve previous constructions of QA-NIZK proofs for
linear spaces [26], (b) to construct more efficient structure preserving signatures

The Kernel Matrix Diffie-Hellman Assumption 747

starting from affine algebraic MACS [25], (c) to improve and generalize aggre-
gation of Groth-Sahai proofs [17] or (d) to construct a tightly secure QA-NIZK
argument for linear subspaces with unbounded simulation soundness [15].

As a new application, we use our new framework to abstract two construc-
tions of trapdoor commitments. See for instance [3] for the formal definition of
a trapdoor commitment scheme C = (K,Comm,Vrfy,TrapdoorEquiv) and Sect. 6
for a discussion on the advantages of instantiating these commitments with the
new circulant matrix distribution.

5.1 Generalized Pedersen Commments in Multilinear Groups

In a group (G, q,P) where the discrete logarithm is hard, the Pedersen com-
mitment is a statistically hiding and computationally binding commitment to
a scalar. It can be naturally generalized to several scalars. Abe et al. [2] show
how to do similar Pedersen type commitments to vectors of group elements.
With our new assumption family we can write both the Pedersen commitment
and the commitment of [2] as a single construction and generalize it to (ideal)
graded encodings.

– K(1λ, d,m): Let MGm = (e,G1,G2, . . . ,Gm, q,P1, . . . ,Pm) ← MGenm(1λ).
Sample A ← Dk+d,k. Let A be the first k rows of A and A the remaining
d rows and T := AA

−1
(w.l.o.g. we can assume A is invertible). Output

ck := (MGm, [A]1), tk := (T).
– Comm(ck, [v]r): To commit to a vector [v]r ∈ Gd

r , for any r < m, pick s ← Zk
q ,

and output [c]r+1 := e([
(
s� || v�)

]r, [A]1) = [
(
s� || v�)

A]r+1 ∈ Gk
r+1, and

the opening Op = ([s]r).
– Vrfy(ck, [v]r, Op): Given a message [v]r and opening Op = ([s]r), this algo-

rithm outputs 1 if [c]r+1 = e([
(
s� || v�)

]r, [A]1).
– TrapdoorEquiv(ck, tk, [c]r+1, [v]r, Op, [v′]r): On a commitment [c]r+1 ∈ Gk

r+1

to message [v]r with opening Op = ([s]r), compute: [s′]r := [s]r + T�[(v −
v′)]r ∈ Gk

r . Output Op′ = ([s′]r) as the opening of [c]r+1 to [v′]r.

The analysis is almost identical to [2]. The correctness of the trapdoor open-
ing is straightforward. The hiding property of the commitment is unconditional,
while the soundness (at level r) is based on the (r,m,D�,k)-KerMDH Assump-
tion. Indeed, given two messages [v]r, [v′]r with respective openings [s]r, [s′]r, it
obviously follows that [w] := [

(
(s − s′)� || (v − v′)�)

]r is a nonzero element in
the kernel (in Gr) of A�, i.e. e([w�]r, [A]1) = [0]r+1.

Notice that the Pedersen commitment (to multiple elements) is for messages
in G0 and A ← Ud+1,1 and soundness is based on the (0,m,Ud+1,1)-KerMDH.
The construction proposed in [2] is for an asymmetric bilinear group AG2, and in
this case messages are vectors in the group H and the commitment key consists of
elements in G, i.e. ck = (AG2, [A]G), A ← Ud+1,1. Further, a previous version of
the commitment scheme of [2] in symmetric bilinear groups (in [18]) corresponds
to our construction with A ← U2+d,2.

748 P. Morillo et al.

5.2 Group-to-Group Commitments

The commitments of the previous section are “shrinking” because they map a
vector of length d in the group Gr to a vector of length k, for some k independent
of and typically smaller than d. Abe et al. [3] noted that in some applications
it is useful to have “group-to-group” commitments, i.e. commitments which are
defined in the same group as the vector message. The motivation for doing so in
the bilinear case is that these commitments are better compatible with Groth-
Sahai proofs.

There is a natural construction of group-to-group commitments which uses
the generalized Pedersen commitment of Sect. 5.1, which is denoted as Ped.C =
(K̃, C̃omm, Ṽrfy, ˜TrapdoorEquiv) in the following.

– K(1λ, d,m): Run (c̃k, t̃k) ← K̃(1λ,m, d), output ck = c̃k and tk = t̃k.
– Comm(ck, [v]r): To commit to a vector [v]r ∈ Gd

r , for any 0 < r < m, pick
[t]r−1 ← [G]kr−1. Let ([c̃]r, Õp = ([s]r−1)) ← C̃omm(ck, [t]r−1) and output
c := ([t + v]r, [c̃]r) and the opening Op = ([s]r).

– Vrfy(ck, c, [v]r, Op): On input c = ([y]r, [c̃]r), this algorithm computes [c̃]r+1

and outputs 1 if [t]r := [y − v]r satisfies that 1 ← Ṽrfy(ck, [c̃]r+1, [t]r, [s]r),
else it outputs 0.

– TrapdoorEquiv(ck, tk, c, [v]r, Op, [v′]r): On a commitment c = ([y]r, [c̃]r) with
opening Op = ([s]r), if [t]r := [y − v]r and [t′]r := [y − v′]r, this algorithm
computes [c̃]r+1 and runs the algorithm Õp ← ˜TrapdoorEquiv(ck, tk, [c̃]r+1,

[t]r, [s]r, [t′]r), and outputs Õp.

A commitment is a vector of size k + d and an opening is of size k. The
required security properties follow easily from the properties of the generalized
Pedersen commitment.

Theorem 3. C is a perfectly hiding, computationally binding commitment.

Proof. Since the generalized Pedersen commitment is perfectly hiding, then
([t + v]r, C̃omm(c̃k, [t]r−1)) perfectly hides [v]r because [t]r acts as a one-time
pad. Similarly, it is straightforward to see that the computationally binding prop-
erty of C follows from the computationally binding property of the generalized
Pedersen commitment.

Interestingly, this construction explains the two instantiations of “group-to-
group” commitments given in [3] (see the full version [35] for more details).

6 A New Matrix Distribution and Its Applications

Both of our commitment schemes of Sect. 5 base security on some Dk+d,k-
KerMDH assumptions, where d is the length of the committed vector. When
d > 1, the only example of Dk+d,k-MDDH Assumption considered in [11] is
the one corresponding to the uniform matrix distribution Uk+d,k, which is the

The Kernel Matrix Diffie-Hellman Assumption 749

weakest MDDH Assumption of size (k + d) × k. Another natural assumption
for d > 1 is the one associated to the matrix distribution resulting from sam-
pling from an arbitrary hard distribution Dk+1,k (e.g., Lk) and adding d − 1
new random rows. Following the same ideas in the proof of Lemma8, it is easy
to see that the resulting Dk+d,k-MDDH assumption is equivalent to the original
Dk+1,k-MDDH assumption. However, for efficiency reasons, we would like to have
a matrix distributions with an even smaller representation size. This motivates
us to introduce a new family of matrix distributions, the CIk,d family.

Definition 9 (Circulant Matrix Distribution). We define CIk,d as

A =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

a1 0
... a1

ad

...
. . .

1 ad a1

1
. . .

...
. . . ad

0 1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

∈ Z(k+d)×k
q , where ai ← Zq

Matrix A is such that each column can be obtained by rotating one position
the previous column, which explains the name. Notice that when d = 1, CIk,d

is exactly the symmetric cascade distribution SCk, introduced in [11]. It can be
shown that the representation size of CIk,d, which is the number of parameters
d, is the optimal among all hard matrix distributions Dk+d,k defined by linear
polynomials in the parameters. A similar argument shows that the circulant
assumption is also optimal in the sense that it has a minimal number of nonzero
entries among all hard matrix distributions Dk+d,k. It can also be proven that
CIk,d-MDDH holds generically in k-linear groups, which implies the hardness
of the corresponding KerMDH problem. To prove the generic hardness of the
assumption, we turn to a result of Herold [20, Theorem 5.15 and corollaries].
It states that if all matrices produced by the matrix distribution are full-rank,
CIk,d is a hard matrix distribution. Indeed, an algorithm solving the CIk,d-
MDDH problem in the generic k-linear group model must be able to compute
a polynomial in the ideal H ⊂ Zq[a1, . . . , ad, z1, . . . , zk+d] generated by all the
(k + 1)-minors of A‖z as polynomials in a1, . . . , ad, z1, . . . , zk+d. Although this
ideal can actually be generated using only a few of the minors, we need to build
a Gröbner basis of H to reason about the minimum degree a nonzero polynomial
in H can have. We show that, carefully selecting a monomial order, the set of
all (k + 1)-minors of A‖z form a Gröbner basis, and all these minors have total
degree exactly k + 1. Therefore, all nonzero polynomials in H have degree at
least k + 1, and then they cannot be evaluated by any algorithm in the generic
k-linear group model. The full proof of both properties of CIk,d can be found in
the full version [35].

750 P. Morillo et al.

As for other matrix distribution families, we can combine Corollary 1 and the
techniques used in Lemma 9 to show that for any fixed d ≥ 1 the CIk,d-KerMDH
problem family has strictly increasing hardness.

Theorem 4. For any d ≥ 1 and for any k, k̃ such that k̃ < k

1. there exists a tight reduction, CI k̃,d-KerMDH ⇒ CIk,d-KerMDH,
2. there is no black-box reduction in the generic group model in the opposite

direction.

The new assumption gives new instantiations of the commitment schemes of
Sect. 5 with public parameters of size d, independent of k. Further, because the
matrix A ← CIk,d has a many zero entries, the number of exponentiations com-
puted by the Commit algorithm, and the number of pairings of the verification
algorithm is kd—as opposed to k(k +d) for the uniform assumption. This seems
to be optimal—but we do not prove this formally.

Acknowledgements. The authors thank E. Kiltz and G. Herold for improving this
work through very fruitful discussions. Also G. Herold gave us the insight and guidelines
to prove the hardness of the circulant matrix distribution.

A Deferred Proofs from Sect. 2.2

Lemma 2. Let AO be an oracle algorithm in the (purely algebraic) generic mul-
tilinear group model, making a constant number of calls Q to an algebraic oracle
O. Let ([x]a, x̃) and ([y]b, ỹ) respectively be the input and output of A. Then, for
every choice of x̃ and the random tape, there exist polynomials of constant degree
Y1, . . . , Yβ ∈ Zq[X,R1, . . . ,RQ], such that y = Y (x, r1, . . . , rQ), for all possible
inputs, where Y = (Y1, . . . , Yβ), and r1, . . . , rQ are the parameters introduced in
Definition 1 for the Q queries. Moreover, ỹ does not depend on x or r1, . . . , rQ.

Proof. We proceed by induction in Q. The first step, Q = 0, follows immediately
from Lemma 1, because AO is just an algorithm (without oracle access). For
Q ≥ 1, we split AO into two sections AO

0 and A1, separated exactly at the
last query point (see Fig. 3). Let ([z]c, z̃) be the state information (group and
non-group elements) that AO

0 passes to A1, ([u]d, ũ) be the Q-th query to O,
and ([v]d, ṽ) be its corresponding answer. We assume that AO

0 and A1 receive
the same random tape, $, (perhaps introducing some redundant computations
in A1). Observe that the output of AO

0 consists of ([z]c, z̃) and ([u]c, ũ).
By the induction assumption, for any choice of x̃ and $, there exist

some polynomials of constant degree Z1, . . . , Zγ ∈ Zq[X,R1, . . . ,RQ−1] and
U1, . . . , Uδ ∈ Zq[X,R1, . . . ,RQ−1] such that z = Z(x, r1, . . . , rQ−1), where
Z = (Z1, . . . , Zγ), and u = U(x, r1, . . . , rQ−1), where U = (U1, . . . , Uδ), for all
possible x ∈ Zα

q and r1, . . . , rQ−1 ∈ Zρ
q . Moreover, z̃ and ũ only depend on x̃

and $.
Now, the algorithm A1 receives as input ([z]c, z̃) and ([v]e, ṽ). By

Definition 1, v also depend polynomially on u and rQ. Namely, for every choice

The Kernel Matrix Diffie-Hellman Assumption 751

Fig. 3. Splitting of the oracle algorithm in Lemma 2.

of ũ, there exist polynomials of constant degree V1, . . . , Vε ∈ Zq[U ,RQ] such
that v = V (u, rQ), where V = (V1, . . . , Vε), while ṽ only depends on ũ.

Since A1 is just an algorithm without oracle access, by Lemma1, for any
choice of ṽ, z̃ and $, there exist polynomials of constant degree Y1, . . . , Yβ ∈
Zq[V ,Z] such that y = Y (v,z), where Y = (Y1, . . . , Yβ), for all v ∈ Zε

q and
z ∈ Zγ

q , while ỹ only depends on ṽ, z̃ and $. By composition of all the previous
polynomials, we show that y depend polynomially on x and r1, . . . , rQ, where
the polynomials depend only on $ and x̃. Indeed

y = Y (V (U(x, r1, . . . , rQ−1), rQ),Z(x, r1, . . . , rQ−1))

and all the polynomials involved depend only on x̃, z̃, ũ, ṽ and $, but all in turn
only depend on x̃ and $. In addition, for the same reason, ỹ only can depend on
x̃ and $, which concludes the proof.

B Examples of Matrix Distributions

Some particular families of matrix distributions were presented in [11]. Namely,

SCk : A =

⎛

⎜
⎜
⎜
⎜
⎝

a 0

1
. . .
. . . a

0 1

⎞

⎟
⎟
⎟
⎟
⎠

Ck : A =

⎛

⎜
⎜
⎜
⎜
⎝

a1 0

1
. . .
. . . ak

0 1

⎞

⎟
⎟
⎟
⎟
⎠

Lk : A =

⎛

⎜
⎜
⎜
⎝

a1 0
. . .

0 ak

1 · · · 1

⎞

⎟
⎟
⎟
⎠

,

where a, ai ← Zp, and U�,k which is simply the uniform distribution in Z�×k
p . The

SCk-MDDH Assumption is the Symmetric Cascade Assumption, the Ck-MDDH
Assumption is the Cascade Assumption, which were proposed for the first time.
U�,k-MDDH is the Uniform Assumption, which appeared under other names in
[7,37]. Lk-MDDH is the Decisional Linear Assumption [6,22,40]. For instance,

752 P. Morillo et al.

we can consider the case k = 2, in which the L2-MDDH problem is given
([1], [a1], [a2]), tell apart the two distributions ([1], [a1], [a2], [w1a1], [w2a2], [w1 +
w2]) and ([1], [a1], [a2], [z1], [z2], [z3]), where a1, a2, w1, w2, z1, z2, z3 are random.
This is exactly the 2-Lin Problem, since we can always set z1 = w1a1 and
z2 = w2a2. We also give examples of matrix distributions which did not appear
in [11] but that are implicitly used in the problems 2 and 4 in AppendixC. The
Randomized Linear and the Square Polynomial distributions are respectively
given by the matrices

RLk : A =

⎛

⎜
⎜
⎜
⎝

a1 0
. . .

0 ak

b1 · · · bk

⎞

⎟
⎟
⎟
⎠

P�,2 : A =

⎛

⎜
⎜
⎜
⎝

a1 a2
1

a2 a2
2

...
...

a� a2
�

⎞

⎟
⎟
⎟
⎠

where ai ← Zq and bi ← Z×
q . Jutla and Roy [24] referred to RLk-MDDH

Assumption as the k-lifted Assumption.

C Flexible Problems That Fit into the New Framework

In this section we recall some computational problems in the cryptographic liter-
ature that we unify as particular instances of KerMDH problems. These problems
are listed below, as they appear in the cited references. In the following, all para-
meters ai and bi are assumed to be randomly chosen in Zq.

1. Find-Rep [9]: Given ([a1], . . . , [a�]), find a nonzero tuple (x1, . . . , x�) such that
x1a1 + . . . + a�x� = 0.

2. Simultaneous Double Pairing (SDP) [2]: Given the two tuples, ([a1], [b1]) and
([a2], [b2]), find a nonzero tuple ([x1], [x2], [x3]) such that x1b1 + x2a1 = 0,
x1b2 + x3a2 = 0.

3. Simultaneous Triple Pairing [18]: Given the two tuples, ([a1], [a2], [a3]) and
([b1], [b2], [b3]), find a nonzero tuple ([x1], [x2], [x3]) such that x1a1 + x2a2 +
x3a3 = 0, x1b1 + x2b2 + x3b3 = 0.

4. Simultaneous Pairing [19]: Given ([a1], [a2], . . . , [a�]) and ([a2
1], [a

2
2], . . . , [a

2
�]),

find a nonzero tuple ([x1], . . . , [x�]) such that
∑�

i=1 xiai = 0,
∑�

i=1 xia
2
i = 0.

5. 1-Flexible Diffie-Hellman (1-FlexDH) [32]: Given ([1], [a], [b]), find a triple
([r], [ra], [rab]) with r �= 0.

6. 1-Flexible Square Diffie-Hellman (1-FlexSDH) [27]: Given ([1], [a]), find a
triple ([r], [ra], [ra2]) with r �= 0.

7. �-Flexible Diffie-Hellman (�-FlexDH) [32]: Given ([1], [a], [b]), find a (2� +
1)-tuple ([r1], . . . , [r�], [r1a], [r1r2a], . . . , [(

∏�
i=1 ri)a], [(

∏�
i=1 ri)ab]) such that

rj �= 0 for all j = 1, . . . , �.
8. Double Pairing (DP) [18]: In an asymmetric group (G,H,T), given a pair of

random elements ([a1]H , [a2]H) ∈ H2, find a nonzero tuple ([x1]G, [x2]G) such
that [x1a1 + x2a2]T = [0]T .

The Kernel Matrix Diffie-Hellman Assumption 753

D Deferred Proofs from Sect. 4

Lemma 5. There exists an algebraic oracle O (in the sense of Definition 1),
that solves the D�,k-KerMDH Problem with probability one.

Proof. Observe that D�,k only uses group elements both in the instance descrip-
tion and in the solution to the problem. In addition, the problem (input/output
relation) can be described by a polynomial map. Indeed, one can use the k-minors
of A, which are just polynomials of degree k, to obtain a basis of kerA�. Then
the oracle can use parameters r1, . . . , r�−k as the coefficients of an arbitrary
linear combination of the basis vectors. Sampling these parameters uniformly
results in an oracle answer uniformly distributed in kerA�.

Lemma 6. Let RO = (RO
0 ,R1) be a black-box reduction from D�,k-KerMDH to

D�̃,k̃-KerMDH, in the purely algebraic generic multilinear group model, making
Q ≥ 1 calls to an oracle O solving the latter with probability one. If RO succeeds
with a non negligible probability ε then, for every possible behavior of the oracle,
either Pr(η(w) ∈ S′) > negl or Pr(u ∈ S′) > negl , where S′ = kerA�\{0},
[A] is the input of RO, and its output is written as [u + η(w)], for some u only
depending on the state output by RO

0 , [w] is the answer to the Q-th oracle query,
and η : Zl̃

q → Zl
q is a (randomized) linear map that only depends on the random

tape of RO.

Proof. Let us denote S = kerA�, where [A] is the input to RO, and S′ = S\{0}.
Analogously, S̃ = ker Ã�, where [Ã] is the Q-th oracle query, and S̃′ = S̃\{0}.
From the discussion preceding the lemma, we know that u and η are well-defined
and fulfil the required properties. In particular, η depends only on the random
tape, $, of RO. As a black-box reduction, RO is successful means that it is
successful for every possible behavior of the oracle in its Q queries, with a success
probability at least ε. We arbitrarily fix its behavior in the first Q − 1 queries.
Concerning the last one, for all w ∈ S̃′, Pr(u + η(w) ∈ S′) > ε, where the
probability is computed with respect to $ and the randomness of [A]. Now,
defining

pw = Pr(u ∈ S ∧ u + η(w) ∈ S′)

rw = Pr(u /∈ S ∧ u + η(w) ∈ S′)

we have pw+rw > ε. But not all rw can be non-negligible since the corresponding
events are disjoint. Indeed, for any vector w �= 0 and any different α1, α2 ∈ Z×

q ,

u + η(α1w) ∈ S, u + η(α2w) ∈ S ⇒ (α2 − α1)u ∈ S ⇒ u ∈ S

and then
∑

α∈ ×
q

rαw ≤ 1. Thus, there exists αm such that rαmw ≤ 1
q−1 , which

implies pαmw > ε − 1
q−1 . Now, we split pαmw, depending on whether u ∈ S′ or

u = 0,

pαmw = Pr(u = 0 ∧ η(w) ∈ S′) + Pr(u ∈ S′ ∧ u + η(αmw) ∈ S′)
≤ Pr(η(w) ∈ S′) + Pr(u ∈ S′)

754 P. Morillo et al.

and conclude that either Pr(u ∈ S′) > negl or for all nonzero w ∈ S̃′, Pr(η(w) ∈
S′) > negl . However, which one is true could depend on the particular behavior
of the oracle in the first Q − 1 calls.

The next lemma is needed in other subsequent proofs.

Lemma 10. Consider integers l = k + d, l̃ = k̃ + d̃ such that k, d, k̃, d̃ > 0 and
k > k̃. Let η : Zl̃

q → Zl
q be a linear map. Then, there exists a subspace F of Im η

of dimension at most k such that for all d̃-dimensional subspaces S̃ of Zl̃
q, either

S̃ ⊂ ker η or dim F ∩ η(S̃) ≥ 1.

Proof. If rank η ≤ k it suffices to take F = Im η. Indeed, if S̃ �⊂ ker η, i.e.,
η(S̃) �= {0}, then dimF ∩ η(S̃) = dim η(S̃) ≥ 1. Otherwise, rank η > k, let F a
subspace of Im η of dimension k, using the Grassman’s formula,

dim F ∩ η(S̃) = dim F + dim η(S̃) − dim(F + η(S̃)) ≥ k + dim η(S̃) − rank η

≥ k + dim S̃ − dim ker η − rank η = k + d̃ − l̃ = k − k̃ ≥ 1

Lemma 7. If a matrix distribution D�,k is hard (as given in Definition 4) then
D�,k is k-elusive.

Proof. By definition, given a non-k-elusive matrix distribution D�,k, there exists
a k-dimensional vector subspace F ⊂ Z�

q such that PrA←D�,k
(F ∩ kerA� �=

{0}) = ε > negl . F can be efficiently computed from the description of D�,k

with standard tools from linear algebra.
Let M ∈ Zk×�

q be a maximal rank matrix such that ImM� = F .
Then, dim(F ∩ kerA�) = dim(ImM� ∩ kerA�) ≤ dim ker(A�M�) =
dim ker(MA)� = dim ker(MA), as MA is a k × k square matrix. Thus, we
know that

Pr
A←D�,k

(rank(MA) < k) ≥ ε

Now we show how to solve the D�,k-MDDH problem with advantage almost ε on
some k-linear group G, by means of a k-linear map. Let [(A‖z)] be an instance of
the D�,k-MDDH problem. In a ‘real’ instance z = Ax for a uniformly distributed
vector x ∈ Zk

q , while in a ‘random’ instance, z is uniformly distributed Z�
q. A

distinguisher can efficiently compute [MA] and [Mz]. Observe that in a ‘real’
instance rank(MA‖Mz) = rank(MA‖MAx) = rank(MA), while in a ‘random’
instance Mz is uniformly distributed in Zk

q . Therefore, for a ‘random’ instance
there is a non-negligible probability, greater than ε− 1

q , that rank(MA) < k and
rank(MA‖Mz) = rank(MA) + 1, because Mz ∈ Im(MA) occurs only with a
negligible probability < 1

q . Then, the distinguisher can efficiently tell apart the
two cases because with a k-linear map at hand computing the rank of a k × k
or a k × k + 1 matrix can be done efficiently.

Theorem 1. Let D�,k be k-elusive. If there exists a black-box reduction in the
purely algebraic generic multilinear group model from D�,k-KerMDH to another
problem D�̃,k̃-KerMDH with k̃ < k, then D�,k-KerMDH is easy.

The Kernel Matrix Diffie-Hellman Assumption 755

Proof. Let us assume the existence of the claimed reduction, RO = (RO
0 ,R1),

making Q ≥ 1 oracle queries, where Q is minimal, and with a success probability
ε. Then, by Lemma 6, its output can be written as [u+η(w)], where η : Zl̃

q → Zl
q

is a (randomized) linear map that does not depend on the particular choice of the
matrix A in the D�,k-KerMDH input instance, but only on the random tape of
the reduction. Let us denote as above S = kerA�, and S′ = S\{0}. Analogously,
S̃ = ker Ã�, where Ã ← D�̃,k̃ and S̃′ = S̃\{0}.

We now prove that in Lemma 6, for any possible behavior of the oracle in
the first Q − 1 calls, there exists a particular behavior in the last call such
that Pr(η(w) ∈ S′) is negligible. Namely, the Q-th query is answered by O by
choosing a uniformly distributed w ∈ S̃′ (as required to be algebraic, according
to Definition 1). Indeed, Pr(η(w) ∈ S′) = Pr(η(w) ∈ S) − Pr(η(w) = 0). Now,
developing the second term,

Pr(η(w) = 0) = Pr(η(w) = 0 | S̃ ⊂ ker η) Pr(S̃ ⊂ ker η)

+ Pr(η(w) = 0 | S̃ �⊂ ker η) Pr(S̃ �⊂ ker η)

= Pr(S̃ ⊂ ker η) + Pr(w ∈ S̃ ∩ ker η | S̃ �⊂ ker η) Pr(S̃ �⊂ ker η)

= Pr(S̃ ⊂ ker η) + negl

where the last equality uses that the probability that a vector uniformly distrib-
uted in S̃′ belongs to a proper subspace of S̃′ is negligible. Analogously,

Pr(η(w) ∈ S) = Pr(η(w) ∈ S | η(S̃) ⊂ S) Pr(η(S̃) ⊂ S)

+ Pr(η(w) ∈ S | η(S̃) �⊂ S) Pr(η(S̃) �⊂ S)

= Pr(η(S̃) ⊂ S) + Pr(w ∈ S̃ ∩ η−1(S) | η(S̃) �⊂ S) Pr(η(S̃) �⊂ S)

= Pr(η(S̃) ⊂ S) + negl

Thus, Pr(η(w) ∈ S′) = Pr(η(S̃) ⊂ S) − Pr(S̃ ⊂ ker η) + negl . Now, using
Lemma 10, we know that there exists a subspace F of dimension at most k such
that if S̃ �⊂ ker η, then dim F ∩ η(S̃) ≥ 1. Therefore Pr(η(S̃) ⊂ S) − Pr(S̃ ⊂
ker η) ≤ Pr(η(S̃) ⊂ S ∧ dim F ∩ η(S̃) ≥ 1) ≤ Pr(dimF ∩ S ≥ 1). Due to the
k-elusiveness of D�,k, from Lemma 7, the last probability is negligible. Namely,
it is upper bounded by AdvD�,k-MDDH + 1

q , where AdvD�,k-MDDH denotes the
advantage of a distinguisher for the D�,k-MDDH problem. By Lemma 6,

Pr(u ∈ S\{0}) > ε − 1
q − 1

− AdvD�,k-MDDH − 1
q
,

for any possible behavior of the oracle in the first Q − 1 calls. Therefore, we
can modify the reduction R to output u, without making the Q-th oracle call.
The modified reduction is also successful, essentially with the same probability ε,
with only Q−1 oracle calls, which contradicts the assumption that Q is minimal.
In summary, if the claimed reduction exists then there also exists an algorithm
(a “reduction with Q = 0”) directly solving D�,k-KerMDH without the help of
any oracle and with the same success probability.

756 P. Morillo et al.

References

1. Abe, M., Chase, M., David, B., Kohlweiss, M., Nishimaki, R., Ohkubo, M.:
Constant-size structure-preserving signatures: generic constructions and simple
assumptions. In: Wang, X., Sako, K. (eds.) ASIACRYPT 2012. LNCS, vol. 7658,
pp. 4–24. Springer, Heidelberg (2012). doi:10.1007/978-3-642-34961-4 3

2. Abe, M., Fuchsbauer, G., Groth, J., Haralambiev, K., Ohkubo, M.: Structure-
preserving signatures and commitments to group elements. In: Rabin, T. (ed.)
CRYPTO 2010. LNCS, vol. 6223, pp. 209–236. Springer, Heidelberg (2010). doi:10.
1007/978-3-642-14623-7 12

3. Abe, M., Haralambiev, K., Ohkubo, M.: Group to group commitments do not
shrink. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol.
7237, pp. 301–317. Springer, Heidelberg (2012). doi:10.1007/978-3-642-29011-4 19

4. Bao, F., Deng, R.H., Zhu, H.F.: Variations of Diffie-Hellman problem. In: Qing, S.,
Gollmann, D., Zhou, J. (eds.) ICICS 2003. LNCS, vol. 2836, pp. 301–312. Springer,
Heidelberg (2003). doi:10.1007/978-3-540-39927-8 28

5. Barthe, G., Fagerholm, E., Fiore, D., Mitchell, J., Scedrov, A., Schmidt, B.: Auto-
mated analysis of cryptographic assumptions in generic group models. In: Garay,
J.A., Gennaro, R. (eds.) CRYPTO 2014. LNCS, vol. 8616, pp. 95–112. Springer,
Heidelberg (2014). doi:10.1007/978-3-662-44371-2 6

6. Boneh, D., Boyen, X., Shacham, H.: Short group signatures. In: Franklin, M. (ed.)
CRYPTO 2004. LNCS, vol. 3152, pp. 41–55. Springer, Heidelberg (2004). doi:10.
1007/978-3-540-28628-8 3

7. Boneh, D., Halevi, S., Hamburg, M., Ostrovsky, R.: Circular-secure encryption
from decision Diffie-Hellman. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol.
5157, pp. 108–125. Springer, Heidelberg (2008). doi:10.1007/978-3-540-85174-5 7

8. Boyen, X.: The uber-assumption family. In: Galbraith, S.D., Paterson, K.G. (eds.)
Pairing 2008. LNCS, vol. 5209, pp. 39–56. Springer, Heidelberg (2008). doi:10.
1007/978-3-540-85538-5 3

9. Brands, S.: Untraceable off-line cash in wallet with observers. In: Stinson, D.R.
(ed.) CRYPTO 1993. LNCS, vol. 773, pp. 302–318. Springer, Heidelberg (1994).
doi:10.1007/3-540-48329-2 26

10. Dodis, Y., Haitner, I., Tentes, A.: On the instantiability of hash-and-sign RSA
signatures. In: Cramer, R. (ed.) TCC 2012. LNCS, vol. 7194, pp. 112–132. Springer,
Heidelberg (2012). doi:10.1007/978-3-642-28914-9 7

11. Escala, A., Herold, G., Kiltz, E., Ràfols, C., Villar, J.: An algebraic framework
for Diffie-Hellman assumptions. In: Canetti, R., Garay, J.A. (eds.) CRYPTO
2013. LNCS, vol. 8043, pp. 129–147. Springer, Heidelberg (2013). doi:10.1007/
978-3-642-40084-1 8

12. Escala, A., Herold, G., Kiltz, E. et al.: An algebraic framework for Diffie-Hellman
assumptions. J. Cryptol. 1–47 (2015). doi:10.1007/s00145-015-9220-6

13. Freeman, D.M.: Converting pairing-based cryptosystems from composite-order
groups to prime-order groups. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol.
6110, pp. 44–61. Springer, Heidelberg (2010). doi:10.1007/978-3-642-13190-5 3

14. Galindo, D., Herranz, J., Villar, J.: Identity-based encryption with master key-
dependent message security and leakage-resilience. In: Foresti, S., Yung, M.,
Martinelli, F. (eds.) ESORICS 2012. LNCS, vol. 7459, pp. 627–642. Springer,
Heidelberg (2012). doi:10.1007/978-3-642-33167-1 36

15. Gay, R., Hofheinz, D., Kiltz, E., Wee, H.: Tightly CCA-secure encryption without
pairings. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9665,
pp. 1–27. Springer, Heidelberg (2016). doi:10.1007/978-3-662-49890-3 1

http://dx.doi.org/10.1007/978-3-642-34961-4_3
http://dx.doi.org/10.1007/978-3-642-14623-7_12
http://dx.doi.org/10.1007/978-3-642-14623-7_12
http://dx.doi.org/10.1007/978-3-642-29011-4_19
http://dx.doi.org/10.1007/978-3-540-39927-8_28
http://dx.doi.org/10.1007/978-3-662-44371-2_6
http://dx.doi.org/10.1007/978-3-540-28628-8_3
http://dx.doi.org/10.1007/978-3-540-28628-8_3
http://dx.doi.org/10.1007/978-3-540-85174-5_7
http://dx.doi.org/10.1007/978-3-540-85538-5_3
http://dx.doi.org/10.1007/978-3-540-85538-5_3
http://dx.doi.org/10.1007/3-540-48329-2_26
http://dx.doi.org/10.1007/978-3-642-28914-9_7
http://dx.doi.org/10.1007/978-3-642-40084-1_8
http://dx.doi.org/10.1007/978-3-642-40084-1_8
http://dx.doi.org/10.1007/s00145-015-9220-6
http://dx.doi.org/10.1007/978-3-642-13190-5_3
http://dx.doi.org/10.1007/978-3-642-33167-1_36
http://dx.doi.org/10.1007/978-3-662-49890-3_1

The Kernel Matrix Diffie-Hellman Assumption 757

16. Goldreich, O.: On post-modern cryptography. Cryptology ePrint Archive, Report
2006/461 (2006). http://eprint.iacr.org/2006/461

17. González, A., Hevia, A., Ràfols, C.: QA-NIZK arguments in asymmetric groups:
new tools and new constructions. In: Iwata, T., Cheon, J.H. (eds.) ASIACRYPT
2015. LNCS, vol. 9452, pp. 605–629. Springer, Heidelberg (2015). doi:10.1007/
978-3-662-48797-6 25

18. Groth, J.: Homomorphic trapdoor commitments to group elements. Cryptology
ePrint Archive, Report 2009/007 (2009). http://eprint.iacr.org/2009/007

19. Groth, J., Lu, S.: A non-interactive shuffle with pairing based verifiability. In:
Kurosawa, K. (ed.) ASIACRYPT 2007. LNCS, vol. 4833, pp. 51–67. Springer,
Heidelberg (2007). doi:10.1007/978-3-540-76900-2 4

20. Herold, G.: Applications of classical algebraic geometry to cryptography. Ph.D.
thesis, Ruhr-Universität Bochum (2014)

21. Herold, G., Hesse, J., Hofheinz, D., Ràfols, C., Rupp, A.: Polynomial spaces:
a new framework for composite-to-prime-order transformations. In: Garay, J.A.,
Gennaro, R. (eds.) CRYPTO 2014. LNCS, vol. 8616, pp. 261–279. Springer,
Heidelberg (2014). doi:10.1007/978-3-662-44371-2 15

22. Hofheinz, D., Kiltz, E.: Secure hybrid encryption from weakened key encapsulation.
In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 553–571. Springer,
Heidelberg (2007). doi:10.1007/978-3-540-74143-5 31

23. Joux, A., Rojat, A.: Security ranking among assumptions within the uber assump-
tion framework. Cryptology ePrint Archive, Report 2013/291 (2013). http://eprint.
iacr.org/2013/291

24. Jutla, C.S., Roy, A.: Switching lemma for bilinear tests and constant-size NIZK
proofs for linear subspaces. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO
2014. LNCS, vol. 8617, pp. 295–312. Springer, Heidelberg (2014). doi:10.1007/
978-3-662-44381-1 17

25. Kiltz, E., Pan, J., Wee, H.: Structure-preserving signatures from standard assump-
tions, revisited. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol.
9216, pp. 275–295. Springer, Heidelberg (2015). doi:10.1007/978-3-662-48000-7 14

26. Kiltz, E., Wee, H.: Quasi-adaptive NIZK for linear subspaces revisited. In: Oswald,
E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9057, pp. 101–128. Springer,
Heidelberg (2015). doi:10.1007/978-3-662-46803-6 4

27. Laguillaumie, F., Paillier, P., Vergnaud, D.: Universally convertible directed signa-
tures. In: Roy, B. (ed.) ASIACRYPT 2005. LNCS, vol. 3788, pp. 682–701. Springer,
Heidelberg (2005). doi:10.1007/11593447 37

28. Lepoint, T.: Zeroizing attacks on multilinear maps. In: ECRYPT-CSA Work-
shop on Tools for Asymmetric Cryptanalysis (2015). http://cryptool.hgi.rub.de/
program.html

29. Lewko, A.B., Waters, B.: Efficient pseudorandom functions from the decisional
linear assumption and weaker variants. In: Al-Shaer, E., Jha, S., Keromytis, A.D.
(eds.) ACM CCS 2009, pp. 112–120. ACM Press, Chicago (2009)

30. Libert, B., Peters, T., Joye, M., Yung, M.: Linearly homomorphic structure-
preserving signatures and their applications. In: Canetti, R., Garay, J.A. (eds.)
CRYPTO 2013. LNCS, vol. 8043, pp. 289–307. Springer, Heidelberg (2013). doi:10.
1007/978-3-642-40084-1 17

31. Libert, B., Peters, T., Joye, M., Yung, M.: Non-malleability from malleabil-
ity: simulation-sound quasi-adaptive NIZK proofs and CCA2-secure encryption
from homomorphic signatures. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT
2014. LNCS, vol. 8441, pp. 514–532. Springer, Heidelberg (2014). doi:10.1007/
978-3-642-55220-5 29

http://eprint.iacr.org/2006/461
http://dx.doi.org/10.1007/978-3-662-48797-6_25
http://dx.doi.org/10.1007/978-3-662-48797-6_25
http://eprint.iacr.org/2009/007
http://dx.doi.org/10.1007/978-3-540-76900-2_4
http://dx.doi.org/10.1007/978-3-662-44371-2_15
http://dx.doi.org/10.1007/978-3-540-74143-5_31
http://eprint.iacr.org/2013/291
http://eprint.iacr.org/2013/291
http://dx.doi.org/10.1007/978-3-662-44381-1_17
http://dx.doi.org/10.1007/978-3-662-44381-1_17
http://dx.doi.org/10.1007/978-3-662-48000-7_14
http://dx.doi.org/10.1007/978-3-662-46803-6_4
http://dx.doi.org/10.1007/11593447_37
http://cryptool.hgi.rub.de/program.html
http://cryptool.hgi.rub.de/program.html
http://dx.doi.org/10.1007/978-3-642-40084-1_17
http://dx.doi.org/10.1007/978-3-642-40084-1_17
http://dx.doi.org/10.1007/978-3-642-55220-5_29
http://dx.doi.org/10.1007/978-3-642-55220-5_29

758 P. Morillo et al.

32. Libert, B., Vergnaud, D.: Multi-use unidirectional proxy re-signatures. In: Ning, P.,
Syverson, P.F., Jha, S. (eds.) ACM CCS 2008, pp. 511–520. ACM Press, Alexandria
(2008)

33. Maurer, U.M.: Towards the equivalence of breaking the diffie-hellman protocol and
computing discrete logarithms. In: Desmedt, Y.G. (ed.) CRYPTO 1994. LNCS, vol.
839, pp. 271–281. Springer, Heidelberg (1994). doi:10.1007/3-540-48658-5 26

34. Maurer, U.: Abstract models of computation in cryptography. In: Smart, N.P. (ed.)
Cryptography and Coding 2005. LNCS, vol. 3796, pp. 1–12. Springer, Heidelberg
(2005). doi:10.1007/11586821 1

35. Morillo, P., Ràfols, C., Villar, J.L.: Matrix computational assumptions in multi-
linear groups. Cryptology ePrint Archive, Report 2015/353 (2015). http://eprint.
iacr.org/2015/353

36. Naor, M., Reingold, O.: Number-theoretic constructions of efficient pseudo-random
functions. In: 38th FOCS, pp. 458–467. IEEE Computer Society Press, Miami
Beach, Florida, 19–22 October 1997 (1997)

37. Naor, M., Segev, G.: Public-key cryptosystems resilient to key leakage. In: Halevi,
S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 18–35. Springer, Heidelberg (2009).
doi:10.1007/978-3-642-03356-8 2

38. Pedersen, T.P.: Non-interactive and information-theoretic secure verifiable secret
sharing. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 129–140.
Springer, Heidelberg (1992). doi:10.1007/3-540-46766-1 9

39. Seo, J.H.: On the (Im)possibility of projecting property in prime-order setting.
In: Wang, X., Sako, K. (eds.) ASIACRYPT 2012. LNCS, vol. 7658, pp. 61–79.
Springer, Heidelberg (2012). doi:10.1007/978-3-642-34961-4 6

40. Shacham, H.: A cramer-shoup encryption scheme from the linear assumption
and from progressively weaker linear variants. Cryptology ePrint Archive, Report
2007/074 (2007). http://eprint.iacr.org/2007/074

41. Villar, J.L.: Optimal reductions of some decisional problems to the rank problem.
In: Wang, X., Sako, K. (eds.) ASIACRYPT 2012. LNCS, vol. 7658, pp. 80–97.
Springer, Heidelberg (2012). doi:10.1007/978-3-642-34961-4 7

42. Waters, B.: Efficient identity-based encryption without random oracles. In: Cramer,
R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 114–127. Springer, Heidelberg
(2005). doi:10.1007/11426639 7

http://dx.doi.org/10.1007/3-540-48658-5_26
http://dx.doi.org/10.1007/11586821_1
http://eprint.iacr.org/2015/353
http://eprint.iacr.org/2015/353
http://dx.doi.org/10.1007/978-3-642-03356-8_2
http://dx.doi.org/10.1007/3-540-46766-1_9
http://dx.doi.org/10.1007/978-3-642-34961-4_6
http://eprint.iacr.org/2007/074
http://dx.doi.org/10.1007/978-3-642-34961-4_7
http://dx.doi.org/10.1007/11426639_7

Cryptographic Applications of Capacity Theory:
On the Optimality of Coppersmith’s Method

for Univariate Polynomials

Ted Chinburg1(B), Brett Hemenway1, Nadia Heninger1, and Zachary Scherr2

1 University of Pennsylvania, Philadelphia, USA
ted@math.upenn.edu

2 Bucknell University, Lewisburg, USA

Abstract. We draw a new connection between Coppersmith’s method
for finding small solutions to polynomial congruences modulo inte-
gers and the capacity theory of adelic subsets of algebraic curves.
Coppersmith’s method uses lattice basis reduction to construct an aux-
iliary polynomial that vanishes at the desired solutions. Capacity theory
provides a toolkit for proving when polynomials with certain bound-
edness properties do or do not exist. Using capacity theory, we prove
that Coppersmith’s bound for univariate polynomials is optimal in the
sense that there are no auxiliary polynomials of the type he used that
would allow finding roots of size N1/d+ε for any monic degree-d poly-
nomial modulo N . Our results rule out the existence of polynomials of
any degree and do not rely on lattice algorithms, thus eliminating the
possibility of improvements for special cases or even superpolynomial-
time improvements to Coppersmith’s bound. We extend this result to
constructions of auxiliary polynomials using binomial polynomials, and
rule out the existence of any auxiliary polynomial of this form that would
find solutions of size N1/d+ε unless N has a very small prime factor.

Keywords: Coppersmith’s method · Lattices · Polynomial
congruences · Capacity theory · RSA

1 Introduction

Coppersmith’s method [Cop97,Cop01] is a celebrated technique in public-key
cryptanalysis for finding small roots of polynomial equations modulo integers.
In the simplest case, one is given a degree-d monic polynomial f(x) with integer
coefficients, and one wishes to find the integers r modulo a given integer N for
which f(r) ≡ 0 mod N . When N is prime, this problem can be efficiently solved
in polynomial time, but for composite N of unknown factorization, no efficient
method is known in general. In fact, such an algorithm would immediately break

c© IACR 2016. This article is the final version submitted by the author(s) to the
IACR and to Springer-Verlag on 09/07/2016. The version published by Springer-
Verlag is available at DOI.

c© International Association for Cryptologic Research 2016
J.H. Cheon and T. Takagi (Eds.): ASIACRYPT 2016, Part I, LNCS 10031, pp. 759–788, 2016.
DOI: 10.1007/978-3-662-53887-6 28

760 T. Chinburg et al.

the RSA cryptosystem, by allowing one to decrypt ciphertexts c by finding roots
of the polynomial f(x) = xe − c mod N .

While it appears intractable to solve this problem in polynomial time,
Coppersmith showed that one can efficiently find all small integers r such that
f(r) ≡ 0 mod N . More precisely, he proved the following result in [Cop97]:

Theorem 1 (Coppersmith 1996). Suppose one is given a modulus N and a
monic polynomial f(x) = xd + fd−1x

d−1 + · · · + f1x + f0 in Z[x]. One can find
all r ∈ Z such that

|r| ≤ N1/d and f(r) ≡ 0 mod N (1)

in polynomial time in log(N) +
∑

i log |fi|.
The algorithm he developed to prove this result has applications across

public-key cryptography, including cryptanalysis of low public exponent RSA
with fixed-pattern or affine padding [Cop97], the security proof of RSA-OAEP
[Sho01], and showing that the least significant bits of RSA are hardcore [SPW06].
We discuss these applications in more detail in Sect. 2.3. If the exponent 1/d in
the bound in Eq. 1 could be increased, it would have immediate practical impact
on the security of a variety of different cryptosystems.

In followup work, [Cop01, Sect. 4] Coppersmith speculates about possible
improvements of this exponent 1/d. The main conclusion of [Cop01, Sect. 4] is
that “We have tried to abuse this method to obtain information that should
otherwise be hard to get, and we always fail.” We discuss these obstructions in
more detail in Sect. 2.2.

Later, the hardness of finding roots of f(x) of size N1/d+ε for ε > 0 was
formalized as a concrete cryptographic hardness assumption [SPW06].

Coppersmith’s proof of Theorem1 relies on constructing a polynomial h(x)
such that any small integer r satisfying f(r) ≡ 0 mod N is a root of h(x) over
the integers. He finds such an auxiliary polynomial h(x) by constructing a basis
for a lattice of polynomials, and then by using the Lenstra-Lenstra-Lovasz lattice
basis reduction algorithm [LLL82] to find a “small” polynomial in this lattice.
The smallness condition ensures that any small integer r satisfying f(r) ≡ 0
mod N must be a root of h(x). The algorithm then checks which rational roots
r of h(x) have the desired properties.

Our Results. In this paper, our main result is that one cannot increase the expo-
nent 1/d in Coppersmith’s theorem by using auxiliary polynomials of the kind
he considers. We give a formal proof that there do not exist polynomials of the
kind required to extend Coppersmith’s theorem by the same method, regardless
of the polynomial p(x), the modulus N , and the method used to find them. This
is a much more general statement than previous partial results along these lines,
and in particular it applies to the settings of most interest to cryptographers.
This eliminates possible improvements to the method using improvements in
lattice algorithms or shortest vector bounds. We obtain our results by drawing
a new connection between this family of cryptographic techniques and results

Cryptographic Applications of Capacity Theory 761

from the capacity theory of adelic subsets of algebraic curves. We will use funda-
mental results of Cantor [Can80] and Rumely [Rum89,Rum13] about capacity
theory to prove several results about such polynomials.

In particular, we will prove in Theorem 6 a stronger form of the following
result. This result shows that there are no polynomials of the type used by
Coppersmith that could lead to an improvement of the bound in (1) from N1/d

to N1/d+ε for any ε > 0.

Theorem 2 (Optimality of Coppersmith’s Theorem). Let f be a monic
polynomial of degree d. Suppose ε > 0. There does not exist a non-zero polynomial
h(x) ∈ Q[x] of the form

h(x) =
∑

i,j≥0

ai,j xi (f(x)/N)j (2)

with ai,j ∈ Z such that |h(z)| < 1 for all z in the complex disk {z ∈ C : |z| ≤
N (1/d)+ε}. Furthermore, if ε > ln(2)/ ln(N) there is no such h(x) such that
|h(z)| < 1 for all z in the real interval [−N1/d+ε, N1/d+ε].

Note that in order for Coppersmith’s method to run in polynomial time, h(x)
should have degree bounded by a polynomial in ln(N). Theorem 2 says that when
ε > 0 there are no polynomials of any degree satisfying the stated bounds. We
can thus eliminate the possibility of an improvement to this method with even
superpolynomial running time.

In [Cop01], Coppersmith already noted that it did not appear possible to
improve the exponent 1/d in his result by searching for roots in the real interval
[−N1/d+ε, N1/d+ε] instead of in the complex disk of radius N1/d+ε. The last
statement in Theorem 2 quantifies this observation, since ln(2)/ ln(N) → 0 as
N → ∞.

Coppersmith also notes that since the binomial polynomials

bi(x) = x · (x − 1) · · · (x − i + 1)/i!

take integral values on integers, one could replace xi in (2) by bi(x) and
(f(x)/N)j by bj(f(x)/N). Coppersmith observed (backed up by experiments)
that this leads to a small improvement on the size of the root that can be found,
and a speedup for practical computations. The improvement is proportional to
the degree of the auxiliary polynomial h(x) that is constructed, and is thus
limited for a polynomial-time algorithm.

We show that the exponent 1/d in Coppersmith’s theorem still cannot be
improved using binomial polynomials, but for a different reason. Our results
come in two parts. First, we show that the exact analogue of Theorem 2 is false in
the case of integral combinations of binomial polynomials. In fact, there are such
combinations that have all the properties required in the proof of Coppersmith’s
theorem. The problem is that these polynomials have very large degree, and in
fact, they vanish at every small integer, not just the solutions of the congruence.
This is formalized in the following theorem, which is a simplified version of
Theorem 9.

762 T. Chinburg et al.

Theorem 3 (Existence of Binomial Auxiliary Polynomials). Suppose δ
is any positive real number. For all sufficiently large integers N there is a non-
zero polynomial of the form h(x) =

∑
i ai bi(x) with ai ∈ Z such that |h(z)| < 1

for all z in the complex disk {z ∈ C : |z| ≤ N δ}.
Second, we show that the existence of these polynomials still does not permit

cryptographically useful improvements to Coppersmith’s bound beyond N1/d.
This is because if one is able to use binomial polynomials of small degree to
obtain such an improvement, then the modulus N must have a small prime
factor. In that case, it would have been more efficient to factor N and use the
factorization to find the roots. More precisely, we will show in Theorem 11 a
stronger form of the following result:

Theorem 4 (Negative Coppersmith Theorem for Binomial Polynomi-
als). Let f be a monic polynomial of degree d. Suppose ε > 0 and that M and N
are integers with 1.48774N ε ≥ M ≥ 319. If there is a non-zero polynomial h(x)
of the form

h(x) =
∑

0≤i,j≤M

ai,j bi(x) bj(f(x)/N) (3)

with ai,j ∈ Z such that |h(z)| < 1 for z in the complex disk {z ∈ C : |z| ≤
N1/d+ε}, then N must have a prime factor less than or equal to M . In particular,
this will be the case for all large N if we let M = ln(N)c for some fixed integer
c > 0.

Note that the integer M quantifies “smallness” in Theorem 4 in two ways.
First, it is a bound on the degree of the binomial polynomials that are allowed to
be used to create auxiliary polynomials. But then if a useful auxiliary polynomial
exists, then N must have a factor of size less than or equal to M . As a special
case of Theorem 4, if N = pq is an RSA modulus with two large equal sized
prime factors, then any auxiliary polynomial of the form in (3) that can find
roots of size N1/d+ε must involve binomial terms with i or j at least 1.48774N ε.

Note that Coppersmith’s theorem in its original form is not sensitive to
whether or not N has small prime factors. Theorem 4 shows that the existence of
useful auxiliary polynomials does depend on whether N has such small factors.

The paper is organized in the following way. In Sect. 2.1 we begin by recalling
Coppersmith’s algorithm for finding small solutions of polynomial congruences.
In Sect. 2.3 we recall some mathematical hardness assumptions and we discuss
their connection to the security of various cryptosystems and Coppersmith’s
algorithm. In Sect. 3 we review some basic notions from algebraic number the-
ory, and we recall some results of Cantor [Can80] and Rumely [Rum89,Rum13]
on which our work is based. At the end of Sect. 3 we prove Theorem 6, which
implies Theorem 2. We state and prove Theorems 9 and 11 in Sect. 4; these imply
Theorems 3 and 4. One of the goals of this paper is to provide a framework for
using capacity theory to show when these auxiliary polynomials do or do not
exist. We give an outline in Sect. 5 of how one proves these types of results. In
the conclusion we summarize the implications of our results and discuss possible
directions for future research.

Cryptographic Applications of Capacity Theory 763

2 Background and Related Work

Given a polynomial f(x) = xd + fd−1x
d−1 + · · · + f1x + f0 ∈ Z[x] and a prime

p we can find solutions x ∈ Z to the equation

f(x) ≡ 0 mod p (4)

in randomized polynomial time using e.g. Berlekamp’s algorithm or the Cantor-
Zassenhaus algorithm [Ber67,CZ81]. While it is “easy” to find roots of f(x) in
the finite field Z/pZ and over Z as well, there is no known efficient method to
find roots of f(x) modulo N for large composite integers N unless one knows
the factorization of N .

2.1 Coppersmith’s Method

Although finding roots of a univariate polynomial, f(x), modulo N is difficult in
general, if f(x) has a “small” root, then this root can be found efficiently using
Coppersmith’s method [Cop97].

Coppersmith’s method for proving Theorem1 works as follows. We follow
the exposition in [Cop01], which incorporates simplifications due to Howgrave-
Graham [HG97]. Suppose ε > 0 and that f(x) has a root r ∈ Z with |r| ≤
N1/d−ε and f(r) ≡ 0 mod N . He considers the finite rank lattice L of rational
polynomials in Q[x] of the form

hij(x) =
∑

0≤i+dj<t

ai,j xi (f(x)/N)j

where t ≥ 0 is an integer parameter to be varied and all ai,j ∈ Z. Here L is
a finite rank lattice because the denominators of the coefficients of hij(x) are
bounded and hij(x) has degree bounded by t.

If we evaluate any polynomial hij ∈ L at a root r satisfying f(r) ≡ 0 mod N ,
hij(r) will be an integer.

Concretely, one picks a basis for a sublattice of L ∈ Q
t−1 by taking a suitable

set of polynomials {hij(x)}i,j and representing each polynomial by its coefficient
vector. Coppersmith’s method applies the LLL algorithm to this sublattice basis
to find a short vector representing a specific polynomial, hε(x) in L. He shows
that the fact that the vector of coefficients representing hε(x) is short implies
that |hε(x)| < 1 for all x ∈ C with |x| ≤ N1/d−ε, and that for sufficiently large t,
the LLL algorithm will find a short enough vector. Because hε(x) is an integral
combination of terms of the form xi(f(x)/N)j , this forces h(r) ∈ Z because
f(r)/N ∈ Z. But |r| ≤ N1/d−ε forces |hε(r)| < 1. Because 0 is the only integer
less than 1 in absolute value, we see hε(r) = 0. So r is among the zeros of hε(x),
and as discussed earlier, there is an efficient method to find the integer zeros of
a polynomial in Q[x]. One then lets ε → 0 and does a careful analysis of the
computational complexity of this method.

The bound in Theorem 1 arises from cleverly choosing a subset of the possible
{hij} as a lattice basis so that one can bound the determinant of the lattice as
tightly as possible, then using the LLL algorithm in a black-box way on the
resulting lattice basis.

764 T. Chinburg et al.

2.2 Optimality of Coppersmith’s Theorem

Since Coppersmith’s technique uses the LLL algorithm [LLL82] to find the spe-
cific polynomial h(x) in the lattice L, it is natural to think that improvements
in lattice reduction techniques or improved bounds on the length of the shortest
vector in certain lattices might improve the bound N1/d in Theorem 1.

Such an improvement would be impossible in polynomial time for arbitrary
N , since the polynomial f(x) = xd has exponentially many roots modulo N = pd

of absolute value N1/d+ε, but this does not rule out the possibility of improve-
ments for cases of cryptographic interest, such as polynomial congruences modulo
RSA moduli N = pq.

Coppersmith [Cop01] finds “cause for pessimism” in extending his technique.
This pessimism comes from a specific example where the modulus N is equal to
q3 the cube of a prime q. He observes that there are exponentially many small
solutions to the congruence in question for such moduli, so his method cannot be
expected to work in a black box manner for all moduli. He explains “we expect
trouble whenever q2 divides N and p(x) has repeated roots mod q.” Since RSA
moduli are square-free, Coppersmith’s counterexample does not apply to RSA
moduli. In general, Coppersmith’s pessimism comes from examples where the
discriminant of f(x) and N share a prime factor—in which case we can factor
N using a simple GCD calculation. Thus Coppersmith’s counterexamples will
never apply to any hard-to-factor modulus N . Coppersmith left open the pos-
sibility that his method could be improved for the applications of most interest
to cryptographers. More explicitly, after discussing the above examples, he sup-
poses he is not in the “unfavorable situation” in which the discriminant of p(x)
and N have a common factor, and he discusses a “discriminant attack” which
might work in this case. To say that the discriminant of p(x) and N have no
common factor is the same as saying there are integer polynomials D(x) and
E(x) together with an integer F such that D(x)p(x) + E(x)p′(x) + FN = 1.
Coppersmith wrote “Perhaps D,E, F can be incorporated into the construction
of the lattice L, in such a way that the bound B can be improved to N1/d+ε.
But I don’t see how to do it.” Our results show that such an improvement is
impossible.

Aono, Agrawal, Satoh, and Watanabe [AASW12] showed that Coppersmith’s
lattice basis construction is optimal under the heuristic assumption that the
lattice behaves as a random lattice; however they left open whether improved
lattice bounds or a non-lattice-based approach to solving this problem could
improve the N1/d bound.

2.3 Cryptanalytic Applications of Coppersmith’s Theorem

Theorem 1 has many immediate applications to cryptanalysis, particularly the
cryptanalysis of RSA. May [May07] gives a comprehensive survey of crypt-
analytic applications of Coppersmith’s method. In this paper, we focus on
Coppersmith’s method applied to univariate polynomials modulo integers. We
highlight several applications of the univariate case below.

Cryptographic Applications of Capacity Theory 765

The RSA assumption posits that it is computationally infeasible to invert the
map x �→ xd mod N , i.e., it is infeasible to find roots of f(x) = xd − c mod N .
Because of their similar structure, almost all of the cryptographically hard prob-
lems (some of which are outlined below) based on factoring can be approached
using Coppersmith’s method (Theorem1).

Low public exponent RSA with stereotyped messages: A classic example listed
in Coppersmith’s original paper [Cop97] is decrypting “stereotyped” messages
encrypted under low public exponent RSA, where an approximation to the solu-
tion is known in advance. The general RSA map is x �→ xe mod N . For effi-
ciency purposes, e can be chosen to be as small as 3, so that a “ciphertext” is
c0 = x3

0 mod N . Suppose we know some approximation to the message x̃0 to the
message x0. Then we can set

f(x) = (x̃0 + x)3 − c.

Thus f(x) has a root (modulo N) at x = x0 − x̃0. If |x0 − x̃0| < N1/3 then this
root can be found using Coppersmith’s method.

Security of RSA-OAEP: The RSA function x �→ xe mod N is assumed to be
a one-way trapdoor permutation. Optimal Asymmetric Encryption Padding
(OAEP) is a general method for taking a one-way trapdoor permutation and
a random oracle [BR93], and creating a cryptosystem that achieves security
against adaptive chosen ciphertext attacks (IND-CCA security).

Instantiating the OAEP protocol with the RSA one-way function yields RSA-
OAEP, a standard cryptosystem. When the public exponent is e = 3, Shoup used
Coppersmith’s method to show that RSA-OAEP is secure against an adaptive
chosen-ciphertext attack (in the random oracle model) [Sho01].

Hard-core bits of the RSA Function: Repeated iteration of the RSA function
has been proposed as candidate for a pseudo random generator. In particular,
we can create a stream of pseudo random bits by picking an initial “seed”, x0

and calculating the series
xi �→ xi+1

xi �→ xe
i mod N

At each iteration, the generator will output the r least significant bits of xi. For
efficiency reasons, we would like r to be as large as possible while still maintaining
the provable security of the generator.

When we output only 1 bit per iteration, this was shown to be
secure [ACGS88,FS00], and later this was increased to allow the generator to
output any log log(N) consecutive bits [HN04]. The maximum number of bits
that can be safely outputted by such a generator is tightly tied to the approxi-
mation x̃ necessary for recovering x from xe mod N . Thus a bound on our ability
to find small roots of f(x) = (x − x̃)e − c mod N immediately translates into
bounds on the maximum number of bits that can be safely outputted at each
step of the RSA pseudo random generator.

766 T. Chinburg et al.

In order to construct a provably secure pseudo random generator that outputs
Ω(n) pseudo random bits for each multiplication modulo N , [SPW06] assume
there is no probabilistic polynomial time algorithm for solving the

(
1
d + ε, d

)
-

SSRSA problem.

Definition 1 (The (δ, d)-SSRSA Problem [SPW06]). Given a random n bit
RSA modulus, N and a polynomial f(x) ∈ Z[x] with deg(f) = d, find a root x0

such that |x0| < N δ.

Coppersmith’s method solves the
(
1
d , d

)
-SSRSA Problem. Our results show

that Coppersmith’s method cannot be used to solve the
(
1
d + ε, d

)
-SSRSA prob-

lem. Note that our results do not prove that the
(
1
d + ε, d

)
-SSRSA problem

is intractable—doing so would imply there is no polynomial-time algorithm for
factoring—but instead we show that the best available class of techniques cannot
be extended.

Extensions to Coppersmith’s Method. Coppersmith’s original work also
considered the problem of finding small solutions to polynomial equations in
two variables over the integers and applied his results to the problem of factor-
ing RSA moduli N = pq when half of the most or least significant bits of one of
the factors p is known [Cop97]. Howgrave-Graham gave an alternate formulation
of this problem by finding approximate common divisors of integers using sim-
ilar lattice-based techniques, and obtained the same bounds for factoring with
partial information [HG01]. May [May10] gives a unified formulation of Cop-
persmith and Howgrave-Graham’s results to find small solutions to polynomial
equations modulo unknown divisors of integers. Later work by Jutla [Jut98] and
Jochemsz and May [JM06] has generalized Coppersmith’s method to multivari-
ate equations, and Herrmann and May [HM08] obtained results for multivariate
equations modulo divisors.

As we will show in the next section, existing results in capacity theory can
be used to directly address the case of auxiliary polynomials for Coppersmith’s
method for univariate polynomials modulo integers. Adapting these results to
the other settings of Coppersmith’s method listed above is a direction for future
research.

3 Capacity Theory for Cryptographers

In this section, we begin by recalling from [Can80,Rum89,Rum13] some back-
ground about arithmetic capacity theory, which is the tool we will use to prove
our main results.

Classically, capacity theory arose from the following problem in electrostatics.
How will a unit charge distribute itself so as to minimize potential energy if it
is constrained to lie within a compact subset E∞ of C which is stable under
complex conjugation? Define the capacity γ(E∞) to be e−V (E∞), where V (E∞)
is the so-called Robbin’s constant giving the minimal potential energy of a unit
charge distribution on E∞.

Cryptographic Applications of Capacity Theory 767

It was discovered by Fekete and Szegő [Fek23,FS55] that the distribution
of small charges on such an E is related to the possible locations of zeros of
monic integral polynomials. Heuristically, these zeros behave in the same way as
charges that repel one another according to an inverse power law.

The nth transfinite diameter of a set E∞ is

dn(E∞) = sup
z1...zn∈E

∏

i<j

|zi − zj |1/(n
2).

Then we can give a second definition of the capacity of E∞ as follows. It can be
shown that this definition of capacity is equivalent to the definition via electro-
statics.

Definition 2 (Capacity of a Set via the Transfinite Diameter).

γ(E∞) = lim
n→∞ dn(E∞)

Let z1, . . . , zn be the conjugates of a degree-n algebraic integer. Then they
are the roots of the monic irreducible polynomial f(x) =

∏n
i=1(x − zi) ∈ Z[x].

The discriminant of f(x) is the non-zero rational integer Δf(x) =
∏

i<j(zi−zj)2.
Therefore the nth transfinite diameter of a set E∞ that contains the zi satisfies

dn(E∞) ≥
∏

i<j

|zi − zj |
2

n(n−1) = |Δf(x)| 1
n(n−1) ≥ 1

Thus dn(E∞) ≥ 1 if E contains all conjugates of a degree-n algebraic integer.
Since E∞ is bounded, only finitely many algebraic integers of degree n have all
their conjugates in E. Thus if there are infinitely many algebraic integers with
all conjugates in E∞ then γ(E∞) ≥ 1. The restriction that the discriminant of
a monic integral polynomial without multiple zeros must be a non-zero integer
prevents all the zeros from being too close to one another. Since the discriminant
of the polynomial has absolute value at least 1, the potential energy is not
positive.

The capacity can also be defined using the Chebyshev constant. Consider the
set of degree-n polynomials bounded on E∞:

bn = sup
{

|r| | ∃p(x) = rxn + · · · + p0 ∈ R[x] s.t. sup
z∈E∞

|p(z)| ≤ 1
}

.

Definition 3 (Capacity of a set via the Chebyshev Constant).

γ(E∞) = lim
n→∞ b−1/n

n

A final equivalent definition of the capacity is the sectional capacity (see
[Chi91,RLV00]). Consider the set of polynomials with real coefficients whose
evaluations are bounded on E∞:

Fn = {p(x) ∈ R[x] | deg p(x) ≤ n, sup
z∈E

|p(z)| < 1}

Fn is a convex symmetric subset of Rn+1.

768 T. Chinburg et al.

Definition 4 (Sectional Capacity).

log γ(E) = lim
n→∞

−2 log Vol(Fn)
n2

If γ(E) < 1 then for large n, we have log Vol(Fn) ≈ (−n2/2) log γ(E) >
(n+1) log 2. If Vol(Fn) > 2n+1 then by Minkowski’s theorem there must be a non-
zero polynomial p(x) ∈ Fn ∩ Z[x]. Consider again z1, . . . , zn that are conjugates
of some degree-n algebraic integer in E∞. We have |p(z1)|, . . . , |p(zn)| < 1, so
Norm(p(z1)) =

∏
i |p(zi)| < 1, where Norm is the norm from Q(z1) to Q. But

Norm(p(z1)) is a rational integer, so Norm(p(z1)) = 0 and p(z1) = 0. Therefore
the zeros of p(x) include all algebraic integers with conjugates in this set, and
thus p(x) must vanish at all such elements in E.

These intuitions are behind the following striking result of Fekete and Szegő
from [Fek23,FS55].

Theorem 5 (Fekete and Szegő). Let E∞ be a compact subset of C closed
under complex conjugation.

– If γ(E∞) < 1, then there are only finitely many irreducible monic polynomials
with integer coefficients which have all of their roots in E∞.

– Conversely, if γ(E∞) > 1, then for every open neighborhood U of E∞ in
C, there are infinitely many irreducible monic polynomials with integer coeffi-
cients having all their roots in U .

The first case corresponds to the case in which the minimal potential energy
V (E∞) is positive, consistent with the physical intuition.

The work of Fekete and Szegő was vastly generalized by Cantor [Can80] to
adelic subsets of the projective line, and by Rumely [Rum89,Rum13] to adelic
subsets of arbitrary smooth projective curves over global fields. Their methods
are based on potential theory, as in electrostatics. In [Chi91], Chinburg suggested
sectional capacity theory, which applies to arbitrary regular projective varieties
of any dimension and not just to curves. Sectional capacity theory was based
on ideas from Arakelov theory, with the geometry of numbers and Minkowski’s
theorem being the primary tools. In [RLV00], Rumely, Lau and Varley showed
that the limits hypothesized in [Chi91] do exist under reasonable hypotheses;
this is a deep result.

This paper is the first application of capacity theory that we are aware of
to cryptography. We will show that capacity theory is very suited to studying
the kind of auxiliary polynomials used in the proof of Coppersmith’s theorem.
Before we begin, however, we review some number theory.

3.1 p-adic Numbers

For any prime p, and any n ∈ Z, we define the p-adic valuation of n, to be the
supremum of the integers e such that pe|n, i.e.,

vp(n) =
{

max {e ∈ Z : pe | n} if n �= 0
∞ if n = 0

Cryptographic Applications of Capacity Theory 769

This is then extended to rational numbers in the natural way. If a, b ∈ Z and
a, b �= 0, then

vp

(a

b

)
= vp(a) − vp(b).

The p-adic valuation gives rise to a p-adic absolute value | |p : Q → R given by

|x|p =
{

p−vp(x) if x �= 0 ,
0 if x = 0 .

(5)

It is straightforward to check that the p-adic absolute value is multiplicative and
satisfies a stronger form of the triangle inequality:

|xy|p = |x|p · |y|p and |x + y|p ≤ max
(
|x|p , |y|p

)
for x, y ∈ Q. (6)

The p-adic absolute value defines a metric on Q. The p-adic numbers, Qp, are
defined to be the completion of Q with respect to this metric. This is similar
to the construction of R as the completion of Q with respect to the Euclidean
absolute value | | : Q → R.

Elements of Qp are either 0 or expressed in a unique way as a formal infi-
nite sum ∞∑

i=k

aip
i

in which k ∈ Z, each ai lies in {0, 1, . . . , p−1} and ak �= 0. Such a sum converges
to an element of Qp because the sequence of integers {sj}∞

j=k defined by sj =
∑j

i=k aip
i forms a Cauchy sequence with respect to the metric | |p. One can add,

subtract and multiply such sums by treating p as a formal variable, performing
operations in the resulting formal power series ring in one variable over Z, and
by then carrying appropriately. In fact, Qp is a field, since multiplication is
commutative and it is possible to divide elements by non-zero elements of Qp.

A field L is algebraically closed if every non-constant polynomial g(x) ∈ L[x]
has a root in L. This implies that g(x) factors into a product of linear polynomials
in L[x], since one can find in L roots of quotients of g(x) by products of previously
found linear factors. For example, C is algebraically closed, but Q is certainly not.

In general, given a field F there are many algebraically closed fields L con-
taining F . For example, given one such L, one could simply label the elements
of L by the elements of some other set, or one could put L inside a larger alge-
braically closed field. Given one L, the set F of elements α ∈ L which are roots
in L of some polynomial in F [x] is called the algebraic closure of F in L. The
set F is in fact an algebraically closed field. For a given F , the algebraic clo-
sure F will depend on the algebraically closed field L which one chooses in this
construction. But if one were to use a different field L̃, say, then the algebraic
closure of F in L̃ is isomorphic to F by a (non-unique) isomorphism which is
the identity on F . So we often just fix one algebraic closure F of F .

For instance, if F = Q, then L = C is algebraically closed, so we can take Q to
be the algebraic closure of Q in C. The possible field embeddings τ : Q → L = C

come from pre-composing with a field automorphism of Q.

770 T. Chinburg et al.

However, for each prime p, there is another alternative. The field Qp is not
algebraically closed, but as noted above, we can find an algebraically closed field
containing it and then construct the algebraic closure Qp of Qp inside this field.
Now we have Q ⊂ Qp ⊂ Qp, and Qp is algebraically closed. So we could take
L = Qp and consider the algebraic closure Q

′
of Q inside Qp. We noted above

that all algebraic closures of Q are isomorphic over Q in many ways. The possible
isomorphisms of Q (as a subfield of C, for example) with Q

′
(as a subfield of

Qp) correspond to the field embeddings σ : Q → Qp. Each such σ gives an
isomorphism of Q with Q

′
which is the identity map on Q. Note here that Qp is

much larger than Q, since Qp (and in fact Qp as well) is uncountable while Q is
countable.

Each α ∈ Q is a root of a unique monic polynomial mα(x) ∈ Q[x] of minimal
degree, and mα(x) is irreducible. We will later need to discuss the image of such
an α under all the field embeddings τ : Q → C and under all field embeddings
σ : Q → Qp as p varies. The possible values for τ(α) and σ(α) are simply the
different roots of mα(x) in C and Qp, respectively.

Example 1. If α =
√

7 then mα(x) = x2 − 7. The possibilities for τ(α) are the
positive real square root 2.64575... and the negative real square root −2.64575...
of 7. When p = 3, it turns out that x2 − 7 already has two roots α1 and α2 in
the 3-adic numbers Q3 ⊂ Q3. These roots are

α1 = 1 + 1 · 3 + 1 · 32 + 0 · 33 + · · · and α2 = 2 + 1 · 3 + 1 · 32 + 2 · 33 + · · · .

These expansions result from choosing 3-adic digits so that the square of the
right hand side of each equality is congruent to 1 modulo an increasing power
of 3. This is the 3-adic counterpart of finding the decimal digits of the two real
square roots of 7. So the possibilities for σ(α) under all embeddings σ : Q → Q3

are α1 and α2.

Basic facts about integrality and divisibility are naturally encoded using p-
adic absolute values:

Fact 1. As above, let Qp denote an algebraic closure of Qp. There is a unique
extension of | |p : Qp → R to an absolute value | |p : Qp → R for which (6) holds
for all x, y ∈ Qp.

Fact 2. The set Z of algebraic integers is the set of all α ∈ Q for which mα(x) ∈
Z[x]. In fact, Z is a ring, so that adding, subtracting and multiplying algebraic
integers produces algebraic integers. One can speak of congruences in Z by saying
α ≡ β mod γZ if α − β = γ · δ for some δ ∈ Z.

Fact 3. If r ∈ Q then |r|p ≤ 1 for all primes p if and only if r ∈ Z. More
generally, an element α ∈ Q is in Z if and only if for all primes p and all field
embeddings σ : Q → Qp one has |σ(α)|p ≤ 1.

Cryptographic Applications of Capacity Theory 771

Fact 4. Suppose α ∈ Z and |τ(α)| < 1 for all embeddings τ : Q → C. Then in
fact, α = 0. To see why, note that mα(0) ∈ Z is ±1 times the product of the
complex roots of mα(x). These roots all have the form τ(α), so |mα(0)| < 1.
Then mα(0) ∈ Z forces mα(0) = 0. Because mα(x) is monic and irreducible this
means mα(x) = x, so α = 0.

Fact 5. If N = pq for distinct primes p and q, then |N |p = 1
p , |N |q = 1

q , and
|N |p′ = 1 for all other primes p′.

Fact 6. If a, b ∈ Z, then

a|b ⇔ |b|p ≤ |a|p ∀p

Thus a|b is the statement that b is in the p-adic disc of radius |a|p centered at 0
for all p. More generally, if α, β ∈ Z then α divides β in Z if β = δ · α for some
δ ∈ Z. This is so if and only if |σ(β)|p ≤ |σ(α)|p for all primes p and all field
embeddings σ : Q → Qp.

3.2 Auxiliary Functions

The original question Coppersmith considered was this: Given an integer N ≥ 1,
a polynomial f(x), and a bound X, can we find all integers z ∈ Z such that
|z| ≤ X and f(z) ≡ 0 mod N?

When X is sufficiently small in comparison to N , Coppersmith constructed
a non-zero auxiliary polynomial of the form

h(x) =
∑

i,j

ai,jx
i(f(x)/N)j , ai,j ∈ Z (7)

satisfying |h(z)| < 1 for every z ∈ C with |z| ≤ X. As noted in Sect. 2.1, this
boundedness property forces the set of z ∈ Z satisfying |z| ≤ X and f(z) ≡
0 mod N to be among the roots of h(x). In fact, the roots of the h(x) include
all algebraic integers z ∈ Z satisfying

f(z) ≡ 0 mod N · Z and |σ(z)| ≤ X for all embeddings σ : Q → C. (8)

The reason is as follows. For z ∈ Z, the condition that f(z) ≡ 0 mod NZ is
equivalent to the condition that f(z)/N ∈ Z. Therefore, for any h(x) in the form
of Eq. 7, we have h(z) ∈ Z whenever f(z) ≡ 0 mod NZ. If h(x) further satisfies
|h(z)| < 1 for all z ∈ C with |z| ≤ X, then the property that |σ(z)| ≤ X for all
embeddings σ : Q → C, means that |h(σ(z))| < 1 as well. Fact 4 therefore tells
us that h(z) = 0.

Capacity theory can be used for solving the problem of deciding whether
there exist non-zero auxiliary polynomials h(x) which include among its roots
the set of z ∈ Z satisfying Eq. 8. The basic idea, which will be given in detail in
Sect. 3.3, is that capacity theory gives one a way of deciding whether the set of
algebraic integers satisfying Eq. 8 is finite or infinite.

772 T. Chinburg et al.

When this set is infinite then there cannot exist any rational function h(x)
of any kind vanishing on the z ∈ Z satisfying (8), and in particular no h(x) of
the form in (7) will exist satisfying the desired properties. If, on the other hand,
this set is finite then there will exist an auxiliary polynomial h(x) vanishing on
the z ∈ Z satisfying (8), and in fact Coppersmith explicitly constructed such
a polynomial using the LLL algorithm. As we will see, the boundary for finite
versus infinite occurs when X = N1/d where d is the degree of f(x).

3.3 When Do Useful Auxiliary Polynomials Exist?

In this section, we use capacity theory to give a characterization of when auxiliary
polynomials h(x) of the kind discussed in Sect. 3.2 exist. We will use the work
of Cantor in [Can80] to show the following result.

Theorem 6 (Existence of an Auxiliary Polynomial). Let d be the degree
of f(x). Define S(X) to be the set of all algebraic integers z ∈ Z such that

f(z) = 0 mod NZ and |σ(z)| ≤ X for all embeddings σ : Q → C.

There exists a polynomial h(x) ∈ Q[x] whose roots include every element of S(X)
if X < N1/d. If X > N1/d there is no rational function h(x) ∈ Q(x) whose zero
set contains S(X) because S(X) is infinite.

We break the proof into a sequence of steps.

1. Since f(x) ∈ Z[x], and embeddings fix integers, then if z ∈ Z we have f(z) ∈
Z, and σ(f(x)) = f(σ(x)) for all embeddings σ : Q → Qp.

2. Suppose N = pe1
1 · · · pek

k and x ∈ Z, then by Fact 6

f(z) ≡ 0 mod N ⇔ |f(z)|pi
≤

(
1
pi

)ei

∀i ∈ [k]

⇔ |f(z)|pi
≤ |N |pi

∀i ∈ [k]

Similarly, if z ∈ Z then

f(z) = 0 mod NZ ⇔ |σ(f(z))|pi
= |f(σ(z))|pi

≤ |N |pi

for all i ∈ [k] and for all embeddings σ : Q → Qp.
3. For all primes, p, define the set of elements in Qp that solve the congruence

in Eq. 8 p-adically:

Ep
def=

{
z ∈ Qp

∣
∣
∣ |f(z)|p ≤ |N |p

}
= f−1

({
z ∈ Qp

∣
∣
∣ |z|p ≤ |N |p

})
,

and similarly define the set of elements with bounded complex absolute value

E∞
def= {z ∈ C | |z| ≤ X}

Cryptographic Applications of Capacity Theory 773

Let
E

def= E∞ ×
∏

p∈primes

Ep

This specifies the set of p-adic and complex constraints on our solutions.
Furthermore, E satisfies all of the conditions in [Rum89] for E to have a well-
defined capacity γ(E) = γ(E, {∞}) relative to the point ∞ on P

1, and for the
computations below to be valid. Note, one requirement in this case is that for
all but finitely many primes p, Ep is the integral closure Zp of Zp in Qp. We
will compute the capacity of E, a measurement of the size of E.

4. We now define the local capacities γp(Ep) and γ∞(E∞) as well as the global
capacity γ(E). Suppose 0 ≤ r ∈ R. We have p-adic and complex discs of
radius r defined by

Dp(a, r) =
{

z ∈ Qp

∣
∣
∣ |z − a|p ≤ r

}
for a ∈ Qp

and
D∞(a, r) = {z ∈ C | |z − a| ≤ r} for a ∈ C.

Fact 7 (Capacity of a Disc). For v = p and v = ∞, one has local capacity

γv(Dv(a, r)) = r

If v = p, a = 0 and r = |N |p is the p-adic absolute value of an integer N ≥ 1,
then Dv(0, |N |p) ∩ Zp is just NZp. We will need later the fact that the p-adic
capacity of NZp is

γp(NZp) = p−1/(p−1)|N |p
In a similar way, suppose v = ∞. The capacity of the real interval [−r, r] is

γ∞([−r, r]) = r/2

Fact 8 (Capacity of Polynomial Preimage). If f(x) ∈ Z[x] is a monic
degree d polynomial, and S is a subset of Qp if v = p or of C if v = ∞ for which
the capacity γv(S) is well defined, then γv(f−1(S)) is well defined and

γv

(
f−1(S)

)
= γv(S)1/d

Facts 7 and 8 show that

γp(Ep) = γp(Dp(0, |N |p))1/d = |N |1/d
p and γ∞(E∞) = γp(D∞(0,X)) = X.

Fact 9 (Capacity of a Product).

γ(E) = γ∞(E∞) ·
∏

p∈primes

γp(Ep)

So

γ(E) = X ·
∏

p∈primes

|N |1/d
p = X ·

k∏

i=1

p
−ei/d
i = X · N−1/d.

774 T. Chinburg et al.

5. Computing the capacity of our sets of interest tells us whether there exists a
polynomial mapping the components of E into discs of radius 1. This allows
us to apply the following theorem, due to Cantor [Can80], which tells us when
an auxiliary polynomial exists.

Theorem 7 (Existence of an Auxiliary Polynomial). If

E = E∞ ×
∏

p∈primes

Ep

then there exists a non-zero auxiliary polynomial h(x) ∈ Q[x] satisfying

h(Ep) ⊂ Dp(0, 1) ∀p

and
h(E∞) ⊂ {z ∈ C | |z| < 1}

if γ(E) < 1, and no such polynomial exists if γ(E) > 1.

Once we have set up this framework, we are now ready to prove Theorem 6.

Proof (Proof of Theorem6). Suppose first that X < N1/d. Then by Fact 9,
γ(E) < 1. By Fact 7, there exists a polynomial h(x) ∈ Q[x] with |h(z)|p ≤ 1
for all p and z ∈ Ep, and |h(z)| < 1 for all z ∈ E∞. Suppose z ∈ S(X). Then
f(z)/N ∈ Z, so Fact 3 says that for all primes p and embeddings σ : Q → Qp

one has
|σ(f(z)/N)|p ≤ 1

Since f(x) ∈ Z[x] and N ∈ Z, we have σ(f(z)) = f(σ(z)) and σ(N) = N . So

|f(σ(z))|p = |σ(f(z))|p =
∣
∣
∣
∣
σ(f(z))
σ(N)

∣
∣
∣
∣
p

· |σ(N)|p = |σ(f(z)/N)|p · |N |p ≤ |N |p .

Therefore σ(z) ∈ Ep. Hence |h(σ(z))|p ≤ 1, where σ(h(z)) = h(σ(z)) since
h(x) ∈ Q[x]. Because p was an arbitrary prime, this means h(z) is an algebraic
integer, i.e. h(z) ∈ Z by Fact 3. On the other hand, z ∈ S(X) implies |σ(z)| ≤ X
so |σ(h(z))| = |h(σ(z))| < 1 for all σ : Q → C. Thus h(z) is an algebraic integer
such that |σ(h(z))| < 1 for all σ : Q → C, so by Fact 4, h(z) = 0 as claimed.
When X > N1/d, S(X) is infinite by [Can80, Theorem 5.1.1].

To try to prove stronger results about small solutions of congruences, Copper-
smith also considered auxiliary polynomials with absolute value less than 1 on a
real interval which is symmetric about 0. We can quantify his observation that
this does not lead to an improvement of the exponent 1/d in Theorem 1 by the
following result.

Theorem 8. Let S′(X) be the subset of all z ∈ S(X) such that σ(z) lies in R

for every embedding σ : Q → C. There exists a polynomial h(x) ∈ Q[x] whose
roots include every element of S′(X) if X < 2N1/d. If X > 2N1/d there is no
non-zero rational function h(x) ∈ Q(x) whose zero set contains S′(X) because
S′(X) is infinite.

Cryptographic Applications of Capacity Theory 775

Proof (Proof of Theorem 8). To prove the Theorem 8, one just replaces the com-
plex disc E∞ = {z ∈ C : |z| ≤ X} by the real interval E′

∞ = {z ∈ R : |z| ≤ X}.
Letting E

′ =
∏

p Ep × E′
∞, we find γ(E′) = 2 · γ(E) because γ(E′

∞) = 2γ(E∞).
So γ(E′) < 1 if X < 2N1/d and we find as above that there is a polynomial
h(x) ∈ Q[x] whose roots contain every element of S(X)′. If X > 2N1/d then
γ(E′) > 1 and S(X)′ is infinite by the main result of [Rum13], so h(x) cannot
exist.

4 Lattices of Binomial Polynomials

In this section, we will answer the question of whether Coppersmith’s theorem can
be improved using auxiliary polynomials that are combinations of binomial poly-
nomials. The results we proved in Sect. 3 showed that it is impossible to improve
the bounds for auxiliary polynomials of the form h(x) =

∑
i,j≥0 ai,jx

i(f(x)/N)j .
Recall that if i ≥ 0 is an integer, the binomial polynomial bi(x) is

bi(x) = x · (x − 1) · · · (x − i + 1)/i!.

Based on a suggestion by Howgrave-Graham and Lenstra, Coppersmith con-
sidered in [Cop01] auxiliary polynomials constructed from binomial polynomials;
that is, of the form

h(x) =
∑

i,j≥0

ai,jbi(x)bj(f(x)/N). (9)

He found that he was unable to improve the bound of N1/d using this alternate
lattice. In this section we will prove some sharper forms of Theorems 3 and 4
that explain why this is the case.

Following the method laid out in Sect. 3, we find that capacity theory cannot
rule out the existence of such polynomials. One of the key differences is that
monomials send algebraic integers to algebraic integers, while binomial polyno-
mials do not because of the denominators. Therefore, we are no longer able to
use the same sets Ep as in the previous section.

In fact, if one uses the lattice of binomial polynomials of the form (9), then
for any disk in C there do exist auxiliary polynomials that have the required
boundedness properties. This is in contrast to the situation for polynomials
constructed from the monomial lattice. In Theorem 9, we exhibit, for any disk,
an explicit construction of such a polynomial. However, since this polynomial is
constructed with j = 0 in (9), it tells us nothing about the solution to the inputs
to Coppersmith’s theorem.

Theorem 11 shows that even if one manages to find an auxiliary polynomial in
the lattice given by (9) that does give nontrivial information about the solutions
to the inputs to Coppersmith’s theorem, this polynomial will still not be useful.
Either this polynomial must have degree so large that the root-finding step does
not run in polynomial time, or N must have a small prime factor. For this reason,
for N that has only large prime factors, using auxiliary polynomials constructed

776 T. Chinburg et al.

using binomial polynomials will not lead to an improvement in the N1/d bound
in Coppersmith’s method.

Theorem 9 (Existence of Bounded Binomial Polynomials). Suppose δ
is any positive real number. Suppose c > 1. For all sufficiently large integers N ,
there is a non-zero polynomial of the form

h(x) =
∑

0≤i≤cNδ

ai bi(x) (10)

with ai ∈ Z such that |h(z)| < 1 for all z in the complex disk {z ∈ C : |z| ≤ N δ}.
Theorem 10 (Explicit Construction for Theorem 9). Let q0 be the unique
positive real number such that

4arctan(q0/2) = q0

(

2 ln(2) − ln
(

4
q20

+ 1
))

(11)

Suppose c > q0 = 3.80572..., then one can exhibit an explicit h(x) of the kind
in (9) in the following way. Choose any constant c′ with q0 < c′ < c. Then for
sufficiently large N and all integers t in the range c′N δ/2 < t ≤ cN δ/2 − 1/2,
the function

h(x) = b2t+1(x + t)

will have the properties in (i).

Theorem 11 (Negative Coppersmith Theorem for Binomial Polyno-
mials). Suppose ε > 0 and that M and N are positive integers. Suppose further
that

N ε >
∏

p≤M

p1/(p−1) (12)

where the product is over the primes p less than or equal to M . This condition
holds, for example, if 1.48774N ε ≥ M ≥ 319. If there is a non-zero polynomial
h(x) of the form

h(x) =
∑

0≤i,j≤M

ai,j bi(x) bj(f(x)/N) (13)

with ai,j ∈ Z such that |h(z)| < 1 for z in the complex disk {z ∈ C : |z| ≤
N (1/d)+ε}, then N must have a prime factor less than M .

4.1 Proof of Theorems 9 and 10

The proof of Theorem9 comes in several parts. We first use capacity theory to
show that non-zero polynomials of the desired kind exist. This argument does
not give any information about the degree of the polynomials, however. So we
then use an explicit geometry of numbers argument to show the existence of a
non-zero polynomial of a certain bounded degree which is of the desired type.
Finally, we give an explicit construction of an h(x). This h(x) has a somewhat

Cryptographic Applications of Capacity Theory 777

larger degree than the degree which the geometry of numbers argument shows
can be achieved. It would be interesting to see if the LLL algorithm would lead
to a polynomial time method for constructing a lower degree polynomial than
the explicit construction.

In this section we assume the notations of Theorem 9. The criterion that h(x)
be a polynomial of the form

h(x) =
∑

i

aibi(x)

with ai ∈ Z is an extrinsic property, which will be discussed in more detail in
Step 1 of Sect. 5.1. In short, this extrinsic property arises because h(x) must
have a particular form. We need to convert this to an intrinsic criterion, in this
case observing that these polynomials take Zp to Zp. The key to doing so is the
following result of Polya:

Theorem 12 (Polya). The set of polynomials h(x) ∈ Q[x] which have integral
values on every rational integer r ∈ Z is exactly the set of integral combinations∑

i aibi(x) of binomial polynomials bi(x).

Corollary 1. The set of polynomials h(x) ∈ Q[x] which are integral combina-
tions

∑
i aibi(x) of binomial polynomials bi(x) is exactly the set of h(x) such

that |h(z)|p ≤ 1 for all z ∈ Zp and all primes p.

The corollary follows because Z is dense in Zp.
Our main goal in the proof of Theorem9 is to show there are h(x) �= 0 as in

Corollary 1 such that |h(z)| < 1 for z in the complex disk E∞ = {z ∈ C : |z| ≤
N δ}. We break reaching this goal into steps.

Applying Capacity Theory Directly. In view of Corollary 1, the natural
adelic set to consider would be

E =
∏

p

Ep × E∞ with Ep = Zp for all p (14)

However, this choice does not meet the criteria for γ(E) to be well defined,
because it is not true that Ep = Zp for all but finitely many p. However, for all
Y ≥ 2, the adelic set

E
′ =

∏

p≤Y

Zp ×
∏

p>Y

Zp × E∞ (15)

does satisfy the criteria for γ(E) to be well defined. One has

γp(Zp) = p−1/(p−1), γp(Zp) = 1 and γ∞(E∞) = N δ.

So

ln γ(E′) = ln

⎛

⎝
∏

p≤Y

γp(Zp) × γ∞(E∞)

⎞

⎠ = −
∑

p≤Y

ln(p)
p − 1

+ ln(N δ) (16)

778 T. Chinburg et al.

Here as Y → ∞, the quantity −∑
p≤Y

ln(p)
p−1 diverges to −∞. So for all sufficiently

large Y we have γ(E′) < 1. We then find as before that Cantor’s work produces
a non-zero polynomial h(x) ∈ Q[x] such that for all v and all elements z of the
v-component of E′ one has |h(z)|v ≤ 1, with |h(z)| < 1 if v = ∞. In particular,
|h(z)|p ≤ 1 for all primes p and all z ∈ Zp ⊂ Zp. So Corollary 1 shows h(x) is an
integral combination of binomial polynomials such that |h(z)| < 1 if z ∈ C and
|z| ≤ N δ.

Using the Geometry of Numbers to Control the Degree of Auxiliary
Polynomials. Minkowski’s theorem says that if L is a lattice in a Euclidean
space R

n and C is a convex symmetric subset of R
n of volume at least equal

to 2n times the generalized index [L : Zn], there must be a non-zero element
of L ∩ C. To apply this to construct auxiliary polynomials, one takes C to
correspond to a suitably bounded set of polynomials with real coefficients, and
L to correspond to those polynomials with rational coefficients of the kind one
is trying to construct.

In the case at hand, suppose 1 ≤ r ∈ R. Let Z[x]≤r be the set of integral
polynomials of degree ≤ r, and let L≤r be the Z-span of {bi(x) : 0 ≤ i ≤ r, i ∈ Z}.
To show the first statement of Theorem 9, it will suffice to show that if c > 1,
then for sufficiently large r = Nδ > 0, there is a non-zero f(x) ∈ L≤cr such that
|f(z)| < 1 for z ∈ C such that |z| ≤ r.

Let m = �cr� be the largest integer less than or equal to cr. By considering
leading coefficients, we have

ln[L≤m : Z[x]≤m] = ln
m∏

i=0

i! = m2 ln(m)/2 · (1 + o(1))

where o(1) → 0 as m → ∞. Let C be the set of polynomials with real coefficients
of the form

m∑

i=0

qi(x/r)i with |qi| ≤ 1/(m + 2).

We consider C as a convex symmetric subset of Rm+1 by mapping a polynomial
to its vector of coefficients. Then

ln vol(C) = (m + 1) · (ln(2) − ln(m + 2)) −
m∑

i=0

i ln(r) = − ln(r)m2/2 · (1 + o(1)).

Since Z[x]≤m maps to a lattice in R
m+1 with covolume 1, we find

ln vol(C) − ln vol(Rm+1/L≤m) ≥ (ln(m) − ln(r))m2/2 · (1 + o(1)) = ln(c) · m2/2 · (1 + o(1)).

Since ln(c) > 0, for sufficiently large m, the right hand side is greater than
2 ln(m+1). Hence Minkowski’s Theorem produces a non-zero f(x) ∈ L≤m in C.
One has

|f(z)| ≤
m∑

i=0

|z/r|i/(m + 2) < 1

if z ∈ C and |z| < r, so we have proved Theorem 9.

Cryptographic Applications of Capacity Theory 779

An Explicit Construction. Theorem 10 concerns the polynomials b2t+1(x+ t)
when t > 0 is an integer. This polynomial takes integral values at integral x, so
it is an integral combination of the polynomials bi(x) with 0 ≤ i ≤ 2t + 1 by
Polya’s Theorem 12. To finish the proof of Theorem10, it will suffice to show the
following. Let q0 be the unique positive solution of the Eq. (11), and suppose
q > q0. Let D(r) be the closed disk D(r) = {z ∈ C : |z| ≤ r}. We will show that
if r is sufficiently large, then

|b2t+1(z + t)| < 1 if 2t ≥ qr and z ∈ D(r). (17)

We have

b2t+1(z + t) =

∏2t
j=0(z + t − j)

(2t + 1)!
=

∏t
j=−t(z − j)
(2t + 1)!

= ±z · ∏t
j=1(z

2 − j2)
(2t + 1)!

For j ≥ 0 and z ∈ D(r) we have

| − r2 − j2| = r2 + j2 ≥ |z2 − j2|.
So

sup({b2t+t(z + t) : z ∈ D(r)}) =
r · ∏t

j=1(r
2 + j2)

(2t + 1)!
.

Taking logarithms gives

ln sup({b2t+t(z + t) : z ∈ D(r)}) = ln(r) +
t∑

j=1

ln(r2 + j2) − ln((2t + 1)!). (18)

We now suppose t ≥ r, so ξ = r/t ≤ 1. Then

t∑

j=1

ln(r2 + j2) = t ln(t2) + t · 1
t

t∑

j=1

ln(ξ2 + (j/t)2)

= 2t ln(t) + t ·
∫ 1

0

ln(ξ2 + s2)ds + o(t) (19)

as t → ∞. By integration by parts,
∫

ln(ξ2 + s2)ds = s ln(ξ2 + s2) − 2s + 2ξarctan(s/ξ). (20)

By Stirling’s formula,

ln((2t+1)!) = (2t+1) ln(2t+1) − (2t+1) + o(t) = 2t ln(t) + 2t ln(2) − 2t + o(t).
(21)

Since ln(r) = o(t), we get from (18), (20) and (21) that

ln(sup{b2t+t(z+t) : z ∈ D(r)}) = t·(ln(ξ2+1) + 2ξarctan(ξ−1) − 2 ln(2)) + o(t).
(22)

780 T. Chinburg et al.

Writing q = 2t/r = 2/ξ ≥ 2 and multiplying both sides of (22) by q > 0, we see
that if

f(q) = q ln
(

4
q2

+ 1
)

+ 4arctan(q/2) − 2 ln(2)q < 0

then for sufficiently large t the supremum on the left in (18) is negative and we
have the desired bound. Here from q ≥ 2 we have

f ′(q) = ln(1/q2 + 1/4) ≤ ln(1/2) < 0 < f(2) and lim
q→+∞ f(q) = −∞.

So there is a unique positive real number q0 with f(q0) = 0, and f(q) < 0 for
q > q0. This establishes (17) and finishes the proof of part (ii) of Theorem9.

4.2 Proof of Theorem 11

The proof of Theorem 11 uses a feedback procedure. The feedback in this case is
that if N has no small prime factor p, then for all small primes p we can increase
the set Ep. This is described in more detail in Sect. 5.2.

Let M be a positive integer and suppose ε > 0. Suppose that there is a
polynomial of the form

h(x) =
∑

0≤i,j≤M

ai,jbi(x)bj(f(x)/N) (23)

such that ai,j ∈ Z and |h(z)| < 1 for all z ∈ C such that |z| ≤ N1/d+ε. We
show that if M satisfies one of the inequalities involving N in the statement
of Theorem 11, then N must have a prime divisor bounded above by M . We
will argue by contradiction. Thus we need to show that the following hypothesis
cannot hold:

Hypothesis 1. No prime p ≤ M divides N , and either (12) holds or
1.48774N ε ≥ M ≥ 319.

The point of the proof is to show that Hypothesis 1 leads to h(x) having small
sup norms on all components of an adelic set E which has capacity larger than 1.
The reason that the hypothesis that no prime p ≤ M divides N enters into the
argument is that this guarantees that f(z)/N will lie in the p-adic integers Zp

for all z ∈ Zp when p ≤ M . This will lead to being able to take the component
of E at such p to be Zp. The p-adic capacity of Zp is p−1/(p−1), as noted in
Fact 7. This turns out to be relatively large when one applies various results
from analytic number theory to get lower bounds on capacities.

To start a more detailed proof, let p be a prime and suppose 0 ≤ i, j ≤ M .

Lemma 1. If p ≤ M set Ep = Zp. Then |h(z)|p ≤ 1 if z ∈ Ep and the capacity
γp(Ep) equals p−1/(p−1)|N |p.

Cryptographic Applications of Capacity Theory 781

Proof. If p ≤ M and x ∈ Zp, then bi(x) ∈ Zp since Z is dense in Zp and bi(x) ∈ Z

for all x ∈ Z. Furthermore, f(x)/N ∈ Zp for x ∈ Zp since we have assumed N
is prime to p and f(x) ∈ Z[x]. Therefore bj(f(x)/N) ∈ Zp for all j. Since the
coefficients ai,j in (23) are integers, we conclude |h(z)|p ≤ 1. We remarked earlier
in Fact 7 that γp(Zp) = p−1/(p−1). Since p ≤ M , we have supposed that p does
not divide N . So |N |p = 1, and we get γp(Ep) = γ(Zp) = p−1/(p−1)|N |p.
Lemma 2. If p > M set Ep = f−1(NZp). Then |h(z)|p ≤ 1 if z ∈ Ep and
γp(Ep) = |N |−1/p

p .

Proof. We first note that 0 ≤ i, j ≤ M < p implies that |i!|p = |j!|p = 1. Recall
that Zp = {x ∈ Qp : |x|p ≤ 1}. If x ∈ f−1(NZp) then x ∈ Zp since f(x) is monic
with integral coefficients. So

|bi(x)|p =
|x · (x − 1) · · · (x − i + 1)|p

|i!|p ≤ 1

and

|bj(f(x)/N)|p =
|f(x)/N · (f(x)/N − 1) · · · (f(x)/N − j + 1)|p

|j!|p ≤ 1

since x−k and f(x)/N−k lie in Zp for all integers k and |i!|p = |j!|p = 1. Because
the ai,j in (2) are integral, we conclude |h(z)|p ≤ 1 if z ∈ Ep = f−1(NZp). The
capacity γp(Ep) is |N |−1/p

p by Fact 8.

Lemma 3. Set E∞ = {z ∈ C : |z| ≤ N1/d+ε}. Then |h(z)|∞ < 1 if z ∈ E∞ and
γ∞(E∞) = N1/d+ε.

Proof. This first statement was one of our hypotheses on h(x), while γ∞(E∞) =
N1/d+ε by Fact 7.

We conclude from these Lemmas and Fact 9 that when

E =
∏

p

Ep × E∞

we have

γ(E) =

⎛

⎝
∏

p≤M

p−1/(p−1)

⎞

⎠ ×
⎛

⎝
∏

all p

|N |1/d
p

⎞

⎠ × N1/d+ε =

⎛

⎝
∏

p≤M

p−1/(p−1)

⎞

⎠ N ε.

(24)
Here

ln

⎛

⎝
∏

p≤M

p−1/(p−1)

⎞

⎠ = −
∑

p≤M

ln(p)
p − 1

782 T. Chinburg et al.

and it follows from [RS62, Theorem 6, p. 70] that if M ≥ 319 then

−
∑

p≤M

ln(p)
p − 1

= −
∑

p≤M

ln(p)
p

−
∑

p≤M

ln(p)
p(p − 1)

≥ −
∑

p≤M

ln(p)
p

−
∑

p

∞∑

n=2

ln(p)
pn

≥ − ln(M) + γ − 1
ln(M)

(25)

where γ = 0.57721... is Euler’s constant.
Hence (24) gives

ln(γ(E)) = −
∑

p≤M

ln(p)
p − 1

+ ε ln(N) ≥ − ln(M) + γ − 1
ln(M)

+ ε ln(N). (26)

The right hand side is positive if

N ε · eγ−1/ ln(M) > M. (27)

Since we assumed M ≥ 319, we have eγ−1/ ln(M) ≥ 1.497445... and so (27) will
hold if

1.48744 · N ε > M (28)

In any case, if the left hand side of (26) is positive then γ(E) > 1. However, we
have shown that h(x) is a non-zero polynomial in Q[x] such that |h(x)|v ≤ 1 for
all v when x ∈ Ev with strict inequality when v = ∞. By Cantor’s Theorem 7,
such an h(x) cannot exist because γ(E) > 1. The contradiction shows that
Hypothesis 1 cannot hold, and this completes the proof of Theorem11.

5 A Field Guide for Capacity-Theoretic Arguments

The proofs in Sects. 3 and 4 illustrate how capacity theory can be used to show
the nonexistence and existence of polynomials with certain properties. This
paper is a first step toward building a more general framework to apply capacity
theory to cryptographic applications. In this section, we step back and summa-
rize how capacity theory can be used in general to show either that auxiliary
polynomials with various desirable properties do or do not exist.

The procedure for applying capacity theory to such problems allows for feed-
back between the type of polynomials one seeks and the computation of the
relevant associated capacities. If it turns out that the capacity theoretic compu-
tations are not sufficient for a definite conclusion, they may suggest additional
hypotheses either on the polynomials or on auxiliary parameters which would
be useful to add in order to arrive at a definitive answer. They may also suggest
some alternative proof methods which will succeed even when capacity theory
used as a black box does not.

Cryptographic Applications of Capacity Theory 783

5.1 Showing Auxiliary Polynomials Exist

To use capacity theory to show that polynomials h(x) ∈ Q[x] with certain prop-
erties exist, one can follow these steps:

Step 1. State the conditions on h(x) which one would like to achieve. These can
be of an intrinsic or an extrinsic nature.
(a) Intrinsic conditions have the following form:

(i) For each prime p, one should give a subset Ep of Qp. For all but
finitely many p, Ep must be the set Zp.

(ii) One should give a subset E∞ of C.
(iii) The set of polynomials h(x) ∈ Q[x] one seeks are all polynomials

such that |h(z)|p ≤ 1 for all primes p and all z ∈ Ep and |h(w)| < 1
if w ∈ E∞.

(b) To state conditions on h(x) extrinsically, one writes down the type of
polynomial expressions one allows. For example, one might require h(x)
to be an integral combination of integer multiples of specified polyno-
mials, e.g. monomials in x as in Theorem 6. Suppose one uses such an
extrinsic description, and one is trying to show the existence of h(x) of
this form using capacity theory. It is then necessary to come up with an
intrinsic description of the above kind with the property that any h(x)
meeting the intrinsic conditions must have the required extrinsic descrip-
tion. We saw another example of this in Sect. 4 on binomial polynomials;
see also Step 5 below.

Step 2. Suppose we have stated an intrinsic condition on h(x) as in parts (i),
(ii) and (iii) of Step 1(a). One then needs to check that the adelic set E =∏

p Ep×E∞ satisfies certain standard hypotheses specified in [Can80,Rum89,
Rum13]. These ensure that the capacity

γ(E) =
∏

p

γp(Ep) · γ∞(E∞) (29)

is well defined. One then needs to employ [Can80,Rum89,Rum13] to find
an upper bounds the γp(Ep), on γ∞(E∞) and then on γ(E). This may also
require results from analytic number theory concerning the distribution of
primes. When using this method theoretically, there may be an issue concern-
ing the computational complexity of finding such upper bounds. However, if
Ep and E∞ have a simple form (e.g. if they are disks), explicit formulas are
available. Notice that the requirement in part (i) of Step 1 that Ep = Zp

for all but finitely many p forces γp(Ep) = 1 for all but finitely many p. So
the product on the right side of (29) is well defined as long as γ∞(E∞) and
γp(Ep) are for all p.

Step 3. If the computation in Step 2 shows γ(E) < 1, capacity theory guarantees
that there is some non-zero polynomial h(x) ∈ Q[x] which satisfies the bounds
in part (iii) of Step 1. However, one has no information at this point about
the degree of h(x).

784 T. Chinburg et al.

Step 4. Suppose that Step 2 shows γ(E) < 1 and that we want to show there is
an h(x) as in Step 3 satisfying a certain bound on its degree. There are three
levels of looking for such degree bounds.
a. The most constructive method is to present an explicit construction of

an h(x) which one can show works. We did this in the previous section in
the case of integral combinations of binomial polynomials.

b. The second most constructive method is to convert the existence of h(x)
into the problem of finding a short vector in a suitable lattice of polyno-
mials and to apply the LLL algorithm. One needs to show that the LLL
criteria are met once one considers polynomials of a sufficiently large
degree, and that a short vector will meet the intrinsic criteria on h(x).
We will return in later papers to the general question of when γ(E) < 1
implies that there is a short vector problem whose solution via LLL will
meet the intrinsic criteria. This need not always be the case. The reason
is that in the geometry of numbers, one can find large complicated con-
vex symmetric sets which are very far from being generalized ellipsoids.
However, in practice, the statement that γ(E) < 1 makes it highly likely
that the above LLL approach will succeed.

c. Because of the definition of sectional capacity in [Chi91,RLV00], the fol-
lowing approach is guaranteed to succeed by γ(E) < 1. Minkowski’s The-
orem in the geometry of numbers will produce (in a non-explicit manner)
a polynomial h(x) of large degree m which meets the intrinsic criteria.
One can estimate how large m must be by computing certain volumes
and generalized indices. We illustrate such computations in Sect. 4 in the
case of intrinsic conditions satisfied by integral combination of binomial
polynomials.

Step 5. It can happen that the most natural choices for Ep and E∞ in step 1
above do not satisfy all the criteria for the capacity of E =

∏
p Ep ×E∞ to be

well defined. One can then adjust these choices slightly. To obtain more con-
trol on the degrees of auxiliary functions, one can try an explicit Minkowski
argument of the kind use in the proof of the positive result concerning integral
combinations of binomial polynomials in Theorem9 above.

5.2 Showing Auxiliary Polynomials Do Not Exist

To use capacity theory to show that polynomials h(x) ∈ Q[x] with certain prop-
erties do not exist, one can follow these steps:

Step 1. Specify the set of properties you want h(x) to have. Then show that
the following is true for every h(x) with these properties:
(i) For each prime p, exhibit a set Ep of Qp such that |h(z)|p ≤ 1 if z ∈ Ep.

For all but finitely many p, Ep must be the set Zp.
(ii) Exhibit a closed subset E∞ of C such that |h(z)| < 1 if z ∈ E∞.

It is important that h(x) ∈ Q[x] with the desired properties meet the
criteria in (i) and (ii).

Cryptographic Applications of Capacity Theory 785

Step 2. As before, one needs to check that the adelic set E =
∏

p Ep ×E∞ satis-
fies certain standard hypotheses specified in [Can80,Rum89,Rum13]. These
ensure that the capacity

γ(E) =
∏

p

γp(Ep) · γ∞(E∞) (30)

is well defined. One then needs to find a lower bound on γ(E) using lower
bounds on the γp(Ep) and on γ∞(E∞). One may also require information
from analytic number theory, e.g. on the distributions of prime numbers less
than a given bound.

Step 3. If the computation in Step 2 shows γ(E) > 1, capacity theory guarantees
that there is no non-zero polynomial h(x) ∈ Q[x] which satisfies the intrinsic
conditions (i) and (ii) of Step 1. This means there do not exist of polynomials
h(x) having the original list of properties.

Step 4. Suppose that in Step 3, we cannot show γ(E) > 1 due to the fact that
the sets Ep and E∞ in Step 1 are not sufficient large. One can now change the
original criteria on h(x), or take into account some additional information,
to try to enlarge the sets Ep and E∞ for which Step 1 applies. We saw in the
previous section how this procedure works in the case of integral combinations
of certain products of binomial polynomials. For example, if one assumes that
certain other parameters (e.g. the modulus of a congruence) have no small
prime factors, one can enlarge the sets Ep in Step 1 which are associated to
small primes.

6 Conclusion

In this work, we drew a new connection between two disparate research areas:
lattice-based techniques for cryptanalysis and capacity theory. This connection
has benefits for researchers in both areas.

– Capacity Theory for cryptographers: We have shown that techniques
from capacity theory can be used to show that the bound obtained by Cop-
persmith’s method in the case of univariate polynomials is optimal and the
best available class of techniques for solving these types of problems cannot be
extended. This has implications for cryptanalysis, and the tightness of cryp-
tographic security reductions.

– Cryptography for capacity theorists: Capacity theory provides a method
for calculating the conditions under which certain auxiliary polynomials exist.
Coppersmith’s method provides an efficient algorithm for finding these aux-
iliary polynomials. Until this time, capacity theory has not addressed the
computational complexity actually producing auxiliary functions.

We used capacity theory to answer three questions of Coppersmith in [Cop01]

1. Can the exponent 1/d be improved (possibly through improved lattice reduc-
tion techniques)? No, the desired auxiliary polynomial simply does not exist.

786 T. Chinburg et al.

2. Does restricting attention to the real line [−N−1/d, N1/d] instead of the com-
plex disk |z| ≤ N1/d improve the situation? No.

3. Does considering lattices based on binomial polynomials improve the situa-
tion? No, these lattices have the desired auxiliary polynomials, but for RSA
moduli, their degree is too large to be useful.

Since Coppersmith’s method is one of the primary tools in asymmetric crypt-
analysis, these results give an indication of the security of many factoring-based
cryptosystems.

This paper lays a foundation for several directions of future work.
Coppersmith’s study of small integral solutions of equations in two variables and
bivariate equations modulo N [Cop97] is related to capacity theory on curves,
as developed by Rumely in [Rum89,Rum13]. The extension of Coppersmith’s
method to multivariate equations [JM06,Jut98] is connected to capacity the-
ory on higher dimensional varieties, as developed in [Chi91,RLV00,CMBPT15].
Multivariate problems raise deep problems in arithmetic geometry about the
existence of finite morphisms to projective spaces which are bounded on speci-
fied archimedean and non-archimedean sets. Interestingly, Howgrave-Graham’s
extension of Coppersmith’s method to find small roots of modular equations
modulo unknown moduli [HG01,May10] appears to pertain to joint capacities of
many adelic sets, a topic which has not been developed to our knowledge in the
capacity theory literature. It is an intriguing question whether capacity theory
can be extended to help us understand the limitations of these more general
variants of Coppersmith’s method.

Acknowledgements. This material is based upon work supported by the National
Science Foundation under grants CNS-1513671, DMS-1265290, DMS-1360767, CNS-
1408734, CNS-1505799, by the Simons Foundation under fellowship 338379, and a gift
from Cisco.

References

[AASW12] Aono, Y., Agrawal, M., Satoh, T., Watanabe, O.: On the optimality of
lattices for the Coppersmith technique. In: Susilo, W., Mu, Y., Seberry, J.
(eds.) ACISP 2012. LNCS, vol. 7372, pp. 376–389. Springer, Heidelberg
(2012). doi:10.1007/978-3-642-31448-3 28

[ACGS88] Alexi, W., Chor, B., Goldreich, O., Schnorr, C.-P.: RSA and Rabin func-
tions: certain parts are as hard as the whole. SIAM J. Comput. 17(2),
194–209 (1988)

[Ber67] Berlekamp, E.R.: Factoring polynomials over finite fields. Bell Syst. Tech.
J. 46(8), 1853–1859 (1967)

[BR93] Bellare, M., Rogaway, P.: Random oracles are practical: a paradigm for
designing efficient protocols. In: CCS 1993, pp. 62–73. ACM Press (1993)

[Can80] Cantor, D.G.: On an extension of the definition of transfinite diameter
and some applications. J. Reine Angew. Math. 316, 160–207 (1980)

[Chi91] Chinburg, T.: Capacity theory on varieties. Compositio Math. 80(1), 75–
84 (1991)

http://dx.doi.org/10.1007/978-3-642-31448-3_28

Cryptographic Applications of Capacity Theory 787

[CMBPT15] Chinburg, T., Moret-Bailly, L., Pappas, G., Taylor, M.J.: Finite mor-
phisms to projective space and capacity theory. J. fur die Reine und.
Angew. Math. (2015)

[Cop97] Coppersmith, D.: Small solutions to polynomial equations, and low expo-
nent RSA vulnerabilities. J. Cryptology 10(4), 233–260 (1997)

[Cop01] Coppersmith, D.: Finding small solutions to small degree polynomials.
Crypt. Lattices 2146, 20–31 (2001)

[CZ81] Cantor, D.G., Zassenhaus, H.: A new algorithm for factoring polynomials
over finite fields. Math. Comput. 36(154), 587–592 (1981)

[Fek23] Fekete, M.: Über die verteilung der wurzeln bei gewissen algebraischen
gleichungen mit ganzzahligen koeffizienten. Math. Z. 17(1), 228–249
(1923)

[FS55] Fekete, M., Szegö, G.: On algebraic equations with integral coefficients
whose roots belong to a given point set. Math. Z. 63(1), 158–172 (1955)

[FS00] Fischlin, R., Schnorr, C.-P.: Stronger security proofs for RSA and Rabin
bits. J. Cryptology 13(2), 221–244 (2000)

[HG97] Howgrave-Graham, N.: Finding small roots of univariate modular equa-
tions revisited. In: Darnell, M. (ed.) Cryptography and Coding 1997.
LNCS, vol. 1355, pp. 131–142. Springer, Heidelberg (1997). doi:10.1007/
BFb0024458

[HG01] Howgrave-Graham, N.: Approximate integer common divisors. In:
Silverman, J.H. (ed.) CaLC 2001. LNCS, vol. 2146, pp. 51–66. Springer,
Heidelberg (2001). doi:10.1007/3-540-44670-2 6

[HM08] Herrmann, M., May, A.: Solving linear equations modulo divisors: on
factoring given any bits. In: Pieprzyk, J. (ed.) ASIACRYPT 2008.
LNCS, vol. 5350, pp. 406–424. Springer, Heidelberg (2008). doi:10.1007/
978-3-540-89255-7 25

[HN04] H̊astad, J., N̊aslund, M.: The security of all RSA and discrete log bits. J.
ACM (JACM) 51(2), 187–230 (2004)

[JM06] Jochemsz, E., May, A.: A strategy for finding roots of multivariate polyno-
mials with new applications in attacking RSA variants. In: Lai, X., Chen,
K. (eds.) ASIACRYPT 2006. LNCS, vol. 4284, pp. 267–282. Springer,
Heidelberg (2006). doi:10.1007/11935230 18

[Jut98] Jutla, C.S.: On finding small solutions of modular multivariate polynomial
equations. In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp.
158–170. Springer, Heidelberg (1998). doi:10.1007/BFb0054124

[LLL82] Lenstra, H.W., Lenstra, A.K., Lovász, L.: Factoring polynomials with
rational coeficients. Math. Ann. 261(4), 515–534 (1982)

[May07] May, A.: Using LLL-reduction for solving RSA, factorization problems:
a survey. In: Conference Proceedings of the Conference in Honor of the
25th Birthday of the LLL Algorithm, pp. 1–34 (2007)

[May10] May, A.: Using LLL-reduction for solving RSA and factorization problems
the LLL algorithm. In: Nguyen, P.Q., Vallée, B. (eds.) The LLL Algorithm
Information Security and Cryptography, Chap. 10, pp. 315–348. Springer,
Heidelberg (2010)

[RLV00] Rumely, R., Lau, C.F., Varley, R.: Existence of the sectional capacity.
Mem. Am. Math. Soc. 145(690), viii+130 (2000)

[RS62] Rosser, J.B., Schoenfeld, L.: Approximate formulas for some functions of
prime numbers. Ill. J. Math. 6, 64–94 (1962)

[Rum89] Rumely, R.S.: Capacity Theory on Algebraic Curves. LNM, vol. 1378.
Springer, Heidelberg (1989). doi:10.1007/BFb0084525

http://dx.doi.org/10.1007/BFb0024458
http://dx.doi.org/10.1007/BFb0024458
http://dx.doi.org/10.1007/3-540-44670-2_6
http://dx.doi.org/10.1007/978-3-540-89255-7_25
http://dx.doi.org/10.1007/978-3-540-89255-7_25
http://dx.doi.org/10.1007/11935230_18
http://dx.doi.org/10.1007/BFb0054124
http://dx.doi.org/10.1007/BFb0084525

788 T. Chinburg et al.

[Rum13] Rumely, R.: Capacity Theory with Local Rationality. Mathematical Sur-
veys and Monographs, vol. 193. American Mathematical Society, Provi-
dence (2013). The strong Fekete-Szegö theorem on curves

[Sho01] Shoup, V.: OAEP reconsidered. In: Kilian, J. (ed.) CRYPTO 2001.
LNCS, vol. 2139, pp. 239–259. Springer, Heidelberg (2001). doi:10.1007/
3-540-44647-8 15

[SPW06] Steinfeld, R., Pieprzyk, J., Wang, H.: On the provable security of an
efficient RSA-based pseudorandom generator. In: Lai, X., Chen, K. (eds.)
ASIACRYPT 2006. LNCS, vol. 4284, pp. 194–209. Springer, Heidelberg
(2006). doi:10.1007/11935230 13

http://dx.doi.org/10.1007/3-540-44647-8_15
http://dx.doi.org/10.1007/3-540-44647-8_15
http://dx.doi.org/10.1007/11935230_13

A Key Recovery Attack on MDPC with CCA
Security Using Decoding Errors

Qian Guo(B), Thomas Johansson, and Paul Stankovski

Department of Electrical and Information Technology,
Lund University, Lund, Sweden

{qian.guo,thomas.johansson,paul.stankovski}@eit.lth.se

Abstract. Algorithms for secure encryption in a post-quantum world
are currently receiving a lot of attention in the research community,
including several larger projects and a standardization effort from NIST.
One of the most promising algorithms is the code-based scheme called
QC-MDPC, which has excellent performance and a small public key size.
In this work we present a very efficient key recovery attack on the QC-
MDPC scheme using the fact that decryption uses an iterative decoding
step and this can fail with some small probability. We identify a depen-
dence between the secret key and the failure in decoding. This can be
used to build what we refer to as a distance spectrum for the secret key,
which is the set of all distances between any two ones in the secret key. In
a reconstruction step we then determine the secret key from the distance
spectrum. The attack has been implemented and tested on a proposed
instance of QC-MDPC for 80 bit security. It successfully recovers the
secret key in minutes.

A slightly modified version of the attack can be applied on proposed
versions of the QC-MDPC scheme that provides IND-CCA security. The
attack is a bit more complex in this case, but still very much below the
security level. The reason why we can break schemes with proved CCA
security is that the model for these proofs typically does not include the
decoding error possibility.

Keywords: CCA-security · Key-recovery attack · Post-quantum cryp-
tography · QC-MDPC · Reaction attack

1 Introduction

Given the existence of a large quantum computer, cryptosystems based on fac-
toring or discrete logarithm will no longer be secure, as a quantum computer
is able to solve both problems in polynomial time [33]. However, it is not yet
known to what extent a future quantum computer can be used to successfully
solve other types of problems. New algorithms for secure encryption in a post-
quantum world (when large quantum computers exist) are currently receiving

Supported by the Swedish Research Council (Grants No. 2015-04528).
c© International Association for Cryptologic Research 2016
J.H. Cheon and T. Takagi (Eds.): ASIACRYPT 2016, Part I, LNCS 10031, pp. 789–815, 2016.
DOI: 10.1007/978-3-662-53887-6_29

790 Q. Guo et al.

a lot of attention in the research community, including several larger projects
and a standardization effort from NIST [9]. It is often mentioned that the new
schemes could be from one of the areas: lattice-based, code-based, hash-based
and multi-variate [5].

For code-based schemes, the basic construction is the McEliece public-key
cryptosystem (PKC) [28], based on the hardness of decoding a random linear
code. The general idea is to transform polynomially solvable instance of the prob-
lem into something that looks like a random instance. In this case we transform
the generator matrix of a code with simple and efficient decoding to a generator
matrix for a randomly looking code. Not knowing the inverse of this transfor-
mation, the attacker is facing a presumably hard problem, namely, decoding the
random code.

The McEliece PKC has been extensively analyzed over a period of more
than thirty years, and is still regarded secure in its original form using Goppa
codes. Several other underlying codes have been proposed, but many of them
have been broken [30]. A problem with the original McEliece construction is
the size of the public key. McEliece proposed to use the generator matrix of a
linear code as public key. The public key for the originally proposed parameters is
roughly 500Kbits. Although this can be managed today, it has motivated various
attempts to decrease the key sizes but most of them have been unsuccessful.

Recently however, a very interesting version of the McEliece PKC was pro-
posed, the QC-MDPC scheme [29]. This is a McEliece PKC that uses so-called
moderate density parity check codes (MDPC codes) in quasi-cyclic (QC) form.
The quasi-cyclic form allows us to represent a matrix by its first row, which leads
to a small public key. As the MDPC codes have a random component, there is
no need for scrambling and permutation matrices. Instead, the generator matrix
is presented in systematic form. The QC-MDPC proposal with suitable parame-
ters is yet unbroken and it is particularly interesting because of its simplicity
and smaller key size.

An European initiative, PQCRYPTO, sponsored by the European Commis-
sion under its Horizon 2020 Program ICT-645622, is �developing cryptology
that resists the unmatched power of quantum computers�. In September 2015
this group of researchers published a report entitled “Initial Recommendation
of long-term secure post-quantum systems” [1], where they recommended sev-
eral algorithms as being ready for use and several others that warrant further
study and may be recommended in coming years. This report recommends the
QC-MDPC scheme for further study, confirming its competitiveness as a post-
quantum candidate.

Many papers on its implementation have appeared since the introduction
of the QC-MDPC scheme. In [15] and [24], the QC-MDPC McEliece is imple-
mented in hardware using the same parameters that we attack in this paper.
Implementation with side-channel protection is considered in [25].

A Key Recovery Attack on MDPC with CCA Security 791

1.1 Attack Models and Previous Work

In code-based public-key cryptography, one is typically concerned with two types
of attacks: structural attacks and decoding attacks. Structural attacks aim to
recover the secret code - key recovery, while the decoding attacks target an
intercepted ciphertext and tries to recover the transmitted plaintext - message
recovery. The plain versions of code-based schemes are designed to be secure in
the chosen plaintext attack (CPA) model and it is known that chosen ciphertext
attacks (CCA) can break them. To achieve security against adaptive chosen
ciphertext attacks (CCA2), the schemes need to be converted. There are several
standard conversions to achieve CCA2 security from CPA security, [4,21], and
basically the decoding problem is changed in such a way that the noise added in
the encryption is no longer in control by Alice who is encrypting.

The standard attacks on the original McEliece scheme can be applied on
the QC-MDPC scheme. These attacks are decoding attacks using information
set decoding algorithms, typically improved versions of the Stern algorithm [3].
These attacks are message recovery attacks and can be applied in a few different
scenarios, one of them being the “decoding one-out-of-many” [20,32]. The family
of MDPC codes have parity checks of moderate weight (low but not very low).
In a structural attack, one can thus consider the dual code, which is given from
the generator matrix, and search for low weight codewords in the dual code.
This is again done by the same type of algorithms as above. Being well known
attacks, the instantiation of QC-MDPC schemes make sure that the computa-
tional complexity for these attacks are well beyond the selected security limit.
More details can be found in for example [30,31].

For a plain QC-MDPC scheme without CCA2 conversion we can identify
a few attacks that require more than the CPA assumption. Using a partially
known plaintext attack [7], the attacker can reduce the code dimension in the
decoding and thus achieve a lower complexity for the information set decoding.
In a resend attack, Alice is resending the same message twice, or possible two
related messages. Also in this case we can efficiently find the message [6]. A
reaction attack [14] is a weaker version of a chosen ciphertext attack. The attacker
sends an intercepted ciphertext with a modification (for example adding a single
bit) and observes the reaction of the recipient (but not the result of decoding).
Again, one can in certain cases efficiently find the message corresponding to
the intercepted ciphertext. It is worth noting that all these attacks are message
recovery attacks.

As mentioned before, to achieve a stronger security notion, the QC-MDPC
scheme (as any McEliece PKC) can use a CCA2 conversion [21,26]. In this case,
the above attacks are no longer possible. So to summarize the current state-of-
the-art regarding attacks, for the plain schemes we have possibly some message
recovery attacks using the model of reaction attacks. For CCA2 secure versions,
we have no known successful attacks.

792 Q. Guo et al.

1.2 Contributions

Our basic scenario is the following. Bob has publicly announced his public key
and Alice is continuously sending messages to him using the QC-MDPC scheme.
Occasionally, Bob will suffer from a decoding error and will tell Alice, who may
retransmit or simply discard sending that message. After sending a number of
messages, Alice will be able to recover Bob’s secret key using our proposed
attack.

We present a very efficient key recovery attack on the QC-MDPC scheme
using the fact that decryption uses an iterative decoding step and this can fail
with some small probability. We identify a dependence between the secret key
and the failure in decoding. This can be used to build what we call a distance
spectrum for the secret key, which is the set of all distances between any two
ones in the secret key. In a reconstruction step we then determine the secret key
from the distance spectrum. The attack has been implemented and tested on a
proposed instance of QC-MDPC for 80 bit security. It successfully recovers the
secret key in minutes.

A slightly modified version of the attack can be applied on proposed versions
of the QC-MDPC scheme that provides CCA2 security. The attack is a bit more
complex in this case, but still very much below the security level. The reason
why we can break schemes with proved CCA2 security is that the model for
these proofs typically does not include the decoding error possibility. A similar
situation has been identified and analyzed for the lattice-based scheme NTRU
(NTRUEncrypt) [18,19].

The paper is organized as follows. We give some background in Sect. 2 and
describe the QC-MDPC scheme in Sect. 3. We then present an overview of our
new attack in Sect. 4 and give some related analysis in Sect. 5. In Sect. 6 we
consider the case when we have a CCA2 converted version and demonstrate
that a modified version of the attack is still valid. Section 7 presents some results
from implementing the different steps of the attack. Finally, we conclude the
paper in Sect. 8.

2 Background in Coding Theory and Public-Key
Cryptography

Let us start by reviewing some basics from coding theory and how it can be
applied to public-key cryptography through the McEliece PKC.

Definition 1 (Linear codes). An [n, k] linear code C over a finite field Fq is
a linear subspace of Fn

q of dimension k.

Definition 2 (Generator matrix). A k × n matrix G with entries from Fq

having rowspan C is a generator matrix for the [n, k] linear code C.
Equivalently, C is the kernel of an (n − k) × n matrix H called a parity-check
matrix of C. We then have cHT = 0, if and only if c ∈ C, where HT denotes the
transpose of H.

A Key Recovery Attack on MDPC with CCA Security 793

A code C can be represented by different generator matrices. An important
representation is the systematic form, i.e., when each input symbol are in one-
to-one correspondence with a position in the codeword. Then, one can find a
k × k submatrix of G forming the identity matrix. After a row permutation we
can consider G in the form G =

(
I P

)
. If G has the form G =

(
I P

)
, then

H =
(−PT I

)
.

The Hamming weight wH (x) of a vector in x ∈ F
n
q is the number of nonzero

entries in the vector. The minimum (Hamming) distance of the code C is defined
as d

def= minx,y∈C wH (x − y), where x �= y. Continuing, we only consider the
binary case q = 2.

Definition 3 (Quasi-cyclic codes). An [n, k]-quasi-cylic (QC) code C is a
linear block code such that for some integer n0, every cyclic shift by n0 is again
a codeword.

In particular, if n = n0k, then a generator matrix of the form

G =
(
I P0 P1 · · · Pn0−1

)

is a useful way to represent a QC code, where Pi is a k×k cyclic matrix, i.e. the
rows (or columns) of P is obtained by cyclic rotation of the first row one step.
Also, the algebra of k × k binary circulant matrices is isomorphic to the algebra
of polynomials modulo xk + 1 over F2, allowing an alternative description.

Another useful class of codes is the low-density parity-check code (LDPC)
defined as a linear code that admits a sparse parity-check matrix H, where
sparsity means that each row of H has at most w ones, for some small w. This
sparse matrix can be represented in the form of a bipartite graph, that consists of
n−k upper nodes (named “check node”) representing the n−k parity equations
and n lower nodes (named “variable node”) representing the n codeword bits.
A variable node is connected to a check node if the variable is present in that
parity check. Each check node is then connected to w variable nodes. We call
this graph representation a “Tanner” graph, which is a frequently used term in
work on iterative decoding algorithms.

2.1 McEliece Cryptosystem

In 1978 McEliece showed how a public key cryptosystem (PKC) could be
constructed using tools from coding theory. We shortly describe the original
McEliece PKC here. This scheme uses three matrices G,S,P, where G is a
k × n generator matrix of a binary [n, k, 2t + 1] linear code. The original and
still secure proposal in [28] is to use Goppa codes (see [13,23]). Then S a k × k
random binary non-singular matrix (called the scrambling matrix), and P is an
n×n random permutation matrix (called the permutation matrix). As designers
we compute the new k × n matrix G′ = SGP. The scheme works as follows:

– Private Key: (G,S,P).
– Public Key: (G′, t)

794 Q. Guo et al.

– Encryption: A message m is mapped to a ciphertext c by c = mG′+e, where
c is the n-bit ciphertext, m is the k-bit plaintext and e an n-bit error vector
with (Hamming) weight t.

– Decryption: Use an efficient decoding algorithm for Goppa codes to decode c
to find the error eP−1, recover mS and thus m.

Knowing the description of the selected Goppa code allows efficient decoding,
as there are many decoding algorithms for this problem running in polynomial
time. But knowing only the public key, the attacker is facing a decoding problem
for a code that looks like a random code, a presumably difficult problem.

3 The QC-MDPC Public Key Encryption Scheme

In [29] a new version of the McEliece PKC was proposed. It has a surprisingly
simple description and does not use permutation and scrambling matrices as
in the original McEliece construction, as well as in other generalizations [2,22]
proposed. The idea is to use codes that allow iterative decoding. In coding theory,
this usually involves low-density parity check codes, but for an encryption scheme
this is not secure. The reason is that LDPC codes have parity-checks with very
small Hamming weight (like 3-5) and these parity-checks in a given LDPC code
correspond to codewords in the dual code. Since a basis of the dual code can be
computed, it is computationally easy to find low-weight codewords in the dual
code and hence the low-weight parity checks. The solution proposed in [29] is to
increase the weight of the parity checks to a larger value, which is still small in
comparison with the dimension of the code. This makes the task of finding low-
weight codewords in the dual code much more costly. In this way, key-recovery
attacks by algorithms searching for low weight codewords can be avoided.

The family of such codes with increased parity-check weight is called
Moderate-Density Parity-Check codes (MDPC codes), and they can be decoded
with the same decoding algorithms used to decode LDPC codes. The quasi-cyclic
variant of MDPC codes are called QC-MDPC codes. These are of special inter-
est, since the quasi-cyclic property allows us to represent the code to be used,
by a single row of the generator matrix. Since the public key is the generator
matrix, this gives us very compact keys. We will go through the different steps
of the QC-MDPC public key cryptosystem as proposed in [29].

Let r = n − k.

3.1 Generation of Public-Key

1. Choose an [n, n − r] code in the QC-MDPC family described by the parity-
check matrix H ∈ F

r×n
2 , n = n0r, such that

H =
(
H0 H1 · · · Hn0−1

)
,

where each Hi is a circulant r × r matrix with weight wi in each row and
with ŵ =

∑
wi.

A Key Recovery Attack on MDPC with CCA Security 795

2. Generate the public key G ∈ F
(n−r)×n
2 from H as,

G =
(
I P

)
,

where

P =

⎛

⎜
⎜
⎜
⎝

P0

P1

...
Pn0−2

⎞

⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎝

(
H−1

n0−1H0

)T

(
H−1

n0−1H1

)T

...
(
H−1

n0−1Hn0−2

)T

⎞

⎟
⎟
⎟
⎠

.

Again, the QC-MDPC construction has no need for permutation or scrambling
matrices.

Encryption. Let m ∈ F
(n−r)
2 be the plaintext. Multiply m with the public key

G and add noise within the correction radius t of the code, i.e., c = mG +
e, where wH (e) ≤ t. The parameter t is obtained from the error correcting
capability of the decoding algorithm for the MDPC code [29]. The error vector
is uniformly chosen among all binary n-tuples with wH (e) ≤ t.

3.2 Decryption

Let c ∈ F
n
2 be a received ciphertext. Given the secret low-weight parity check

matrix H, a low-complexity decoding procedure is used to obtain the plaintext
m.

The authors of [29] propose a variant of Gallager’s bit-flipping algorithm [12]
as the decoding procedure of MDPC codes. Here some details on this bit-flipping
procedure are presented, which are vital to the proposed key recovery attack in
the next section. The decoding algorithm works as follows:

1. Compute the syndrome, s = cHT . Since mHT = 0, the syndrome is equiva-
lently expressed as s = eHT . Now consider the Tanner graph for H and set
the initial value in each variable node to 0. Create a counter with an initial
value 0 for each variable node.

2. Run through all parity-check equations (rows of H and check nodes in the
graph) and for every variable node connected to an unsatisfied check node,
increase its corresponding counter by one.

3. Run through all variable nodes and flip its value if its counter satisfies a
certain constraint—which usually is that the counter surpasses a threshold.

4. Check if all the equations are satisfied; if not, reset all the counters to 0 and
go to Step 2. The procedure will stop if all the parity-checks are satisfied or
if the limit on the maximum number of iterations is reached.

This iterative decoding algorithm commonly used with LDPC codes has an
error-correction capability that increases linearly with the length of the code.
The good performance of LDPC codes is due to the low-weight parities as the

796 Q. Guo et al.

error-correction capability also decreases linearly with the weight of the parity-
checks. MDPC codes have slightly higher parity-check weight than LDPC codes
and one should anticipate that this influences the error-correction capability.

As expected, the actual performance of this procedure on MDPC codes is
relatively poor compared with that on LDPC codes. Along the path of the
work [29], researchers also proposed other variants [15,27] that reduce the decod-
ing error probability further via changing the flipping threshold or introducing
more rounds to handle the detected decoding errors. The reduced error proba-
bility, however, is still large compared with the corresponding security level1.

3.3 Proposed Parameters

The authors of [29] proposed the parameters found in Table 1 for a QC-MDPC
scheme with 80-bit, 128-bit and 256-bit security level.

Table 1. Some proposed QC-MDPC instances with key size and security level.

Parameters Key size Security
n r ŵ t n0

9602 4801 90 84 2 4801 80
19714 9857 142 134 2 9857 128
65542 32771 274 264 2 32771 256

Results from actual implementations of the QC-MDPC scheme [15,27] and
also a QC-MDPC Niederreiter variant [26] were recently published. They all
demonstrated excellent efficiency in terms of computational complexity and key
sizes for encryption and decryption on constrained platforms such as embedded
micro-controllers and FPGAs using the proposed parameters.

A European initiative, PQCRYPTO, sponsored by the European Commission
under its Horizon 2020 Program ICT-645622, is �developing cryptology that
resists the unmatched power of quantum computers�. In September 2015 this
group of researchers published a report entitled “Initial Recommendation of long-
term secure post-quantum systems”, where they recommended several algorithms
as being ready in 2015 and several others that warrant further study and may be
recommended in coming years. This report recommends the QC-MDPC scheme
for further study, confirming its competitiveness as a post-quantum candidate.

4 A Key-Recovery Attack

In this section we describe our new attack against the plain QC-MDPC scheme
as it has been proposed in [29] and described in the previous section.
1 As in NTRUEncrypt [16,17], a secure approach is to require the decoding error

probability to be less than 2−κ for the κ-bit security.

A Key Recovery Attack on MDPC with CCA Security 797

4.1 Attack Model

The basic scenario for the attack is the following. Alice continuously sends mes-
sages to Bob using the QC-MDPC scheme and Bob’s public key. Occasionally,
a decoding error will occur and Bob will show a different reaction to report
this decoding failure. The information will then be detected and collected. After
repeating the procedure a number of times, Alice will be capable of recovering
Bob’s secret key using our proposed attack.

In terms of a security model definition, the attack is called a reaction
attack. In previous work, resend and reaction attacks on McEliece PKC have
appeared [14]. However, they have targeted message recovery only and there has
been no key recovery attack in this model before.

The McEliece PKCs in their plain form have computational security against
chosen plaintext attacks (CPAs), but are known to be insecure against chosen
ciphertext attacks (CCAs). The reaction attack is an attack model in-between
since it only requires the reaction of the decryption device (whether there was a
decryption error) and not the result of decryption.

4.2 Attack Description

Continuing, we assume that the rate of the code is R = k/n = 1/2, corresponding
to n0 = 2. Also, let w0 = w1 = w. Attacks for other parameters follow in a similar
fashion.

The key-recovery attack on QC-MDPC aims at finding the secret matrix H0,
given only the public-key matrix P. From H0, the remaining part of H can easily
be recovered from P using basic linear algebra. Being a cyclic matrix, recovering
H0 is equivalent to recovering its first row vector, denoted h0.

The key idea is to examine the decoding procedure for different error patterns.
In particular, we will be interested in having Alice pick error patterns from
special subsets. Let Ψd be the set of all binary vectors of length n = 2r having
exactly t ones, where all the t ones are placed as random pairs2 with distance
d in the first half of the vector. The second half of the vector is an all-0 vector.
Formally, we select from the set Ψd, which guarantees repeated ones at distance
d at least t/2 times, where

Ψd = {v = (e, f) | wH (f) = 0, and ∃ distinct s1, s2, . . . , st, s.t. esi
= 1, and

s2i = (s2i−1 + d) mod r for i = 1, . . . ,
t

2
}.

Alice will now send M messages to Bob, using QC-MDPC with the error
selected from the subset Ψd of all possible error vectors of weight t. When there
is a decoding error with Bob, she will record this and after M messages she will
be able to compute an empirical decoding error probability for the subset Ψd.
Furthermore she will do this for d = 1, 2, . . . , U for some suitable upper bound U .
2 We assume that t is an even number for the ease of description; otherwise, we just

pick t−1
2

random pairs and randomly choose another position to fulfill the constraint
on the error weight.

798 Q. Guo et al.

Algorithm 1 – Computing the distance spectrum

Input: parameters n, r, w and t of the underlying QC-MDPC code, number
of decoding trials M per distance.
Output: distance spectrum D(h0).

for all distances d do
Try M decoding trials using the designed error pattern
Perform statistical test to decide multiplicity μ(d)
if μ(d) > 0 then

Add d with multiplicity μ(d) to distance spectrum D(h0)

The main observation of the paper is that there is a strong correlation
between the decoding error probability for error vectors from Ψd and the exis-
tence of a distance d between two ones in the secret vector h0. Namely, if there
exists two ones in h0 at distance d, the decoding error probability is much smaller
than if distance d does not exist between two ones. We will give an explanation
to this in the next section.

So after sending M × U messages, we look at the decoding error probability
for each Ψd and classify each d, d = 1, 2, . . . , U as “does not exist in h0” (called
CASE-0) or “existing in h0” (called CASE-1). This gives us what we call a
distance spectrum for h0, denoted D(h0). It is given as

D(h0) = {d : 1 ≤ d ≤ U, d classified as existing in h0}.

Also, since a distance d can appear many times in the distance spectrum of a
given bit pattern c, we will let the multiplicity of d in c be denoted μc(d) in the
sequel, or simply μ(d) when c is clearly defined from the context.

As an example, for the bit pattern c = 0011001 we have U = 3 and

D(c) = {1, 3} ,

with distance multiplicities μ(1) = 1, μ(2) = 0 and μ(3) = 2.
The procedure for computing the distance spectrum is specified in Algo-

rithm 1.
The final step is to do a reconstruction of h0 from knowing the distance

spectrum D(h0). This is done through an iterative procedure. Start by assigning
the first two ones in a length i0 vector in position 0 and i0, where i0 is the
smallest value in D(h0). Then put the third one in a position and test if the
two distances between this third one and the previous two ones both appear in
the distance spectrum. If they do not, we test the next position for the third
bit. If they do, we move to test the fourth bit and its distances to the previous
three ones, etc. After reconstruction, we have restored h0. The reconstruction
procedure is illustrated in Fig. 1 and detailed in Algorithm 2.

For the above example with bit pattern c = 0011001, the careful reader will
note that this algorithm will reconstruct c as 1100100 – with a rotation. However,
this rotation is a non-issue in practice in our application.

A Key Recovery Attack on MDPC with CCA Security 799

Algorithm 2 – Key recovery from distance spectrum

Input: distance spectrum D(h0), partial secret key h0, current depth l.
Output: recovered secret key h0 or message “No such secret key exists”.
Initial recursion parameters: distance spectrum D(h0), empty set for
secret key, current depth 0.

if l = w then
return h0 /* secret key found */

for all potential key bits i do
for all distances to key bit i exist in D(h0) do

Add key bit i to secret key h0

Make recursive call with parameters D(h0),h0 and l + 1
if recursive call finds solution h0 then

if h0 is the secret key then
return h0 /* secret key found */

Remove key bit i from secret key h0

return “No such secret key exists”

In addition, the reconstruction procedure may also find some key pattern h′

with the same distance spectrum D(h0) as h0. The algorithm will then discard
it and recursively try other key patterns, which provides an exhaustive search
process.

Fig. 1. The reconstruction process. Vertices represent nonzero bit positions in the bit
pattern, solid arrows show the search order from left to right, dotted arrows show that
for a newly determined bit position, its distances to all previous nonzero bit positions
should all be in the distance spectrum.

5 Analysis

In this section we present an intuitive explanation why the proposed attack can
recover the secret key from the decoding errors of a bit-flipping-type iterative
decoder, and we also give some theoretical analysis on this new algorithm.

5.1 An Explanation for the Distinguishing Procedure

The authors in [27] pointed out that the employed iterative bit-flipping variants
will stop in quite a small number of iterations (i.e., around 3 to 5 iterations

800 Q. Guo et al.

on average), and further iterations have little effect on improving the success
probability. Therefore, the behavior of the error variables in the first iteration
plays a vital role in the decoding process: if almost all the variables flip from a
wrong to a right value, the decoder will correct the errors quickly, otherwise it
is more probable to fail.

We thus focus on the flipping behavior of the error bits in the first iteration
for different input error patterns from the sets Ψd, containing random pairs of
ones with distance d.

Table 2. The relation between the number of nonzero hijei’s and that of correctly
changed counters in the first decoding iteration.

(hijei = 1) #(right change) #(wrong change)

0 w 0

1 1 w − 1

2 w − 2 2

3 3 w − 3

...
...

...

First, we present more observations on the first round of the bit-flipping
process. Given the jth parity-check equation, i.e.,

n∑

i=1

hijei = sj ,

for 1 ≤ j ≤ r, this equation will affect w counters corresponding to the error
variables with a nonzero coefficient hij . The value of the syndrome bit sj deter-
mines if the equation is satisfied or not, since value for all the error variables ei’s
are initially set to 0. That is, if sj = 0, then the parity-check equation holds and
no counters are increased for this check node. On the other hand, if sj = 1, all
the w counters for variable nodes included in this parity check are incremented.

Obviously, in the iterative decoding we do not want the counter for an error
variable ei to increment if ei = 0, and vice versa; we do want it to increment
if ei = 1. So we can consider whether the counter is correctly or erroneously
changed.3

As a result, the number of nonzero terms of the form hijei’s in a parity-
check equation determines the number of correctly changed counters in the first
iteration, and the numbers are shown in Table 2. For example, in an equation, if
there is no nonzero terms hijei, then sj = 0 and the initial values of the ei’s in
this check are all correct; But since sj = 0 none of their counters are incremented
and hence all counters are correctly changed.

3 Here “change” means increasing by 1 or preserving the value.

A Key Recovery Attack on MDPC with CCA Security 801

If there is only one nonzero term hijei in the parity check, then sj = 1 and
the equation is unsatisfied. Every counter corresponding to an error variable in
this equation will be increased, but only one variable is actually in error. Hence
we are changing w − 1 counters erroneously and only one correctly. For two
nonzero term hijei in the parity check, sj = 0 and it follows in the same way as
before that w − 2 counters are correctly changed and two of them erroneously,
etc.

According to the above observation, it is desirable to have a small even num-
ber (like 0, 2, . . .) of nonzero terms hijei when evaluating parity-check equations
for having the best chances of success in decoding. We can observe that if we
look at all the r parity checks in H, we will create a total of exactly t ·w nonzero
terms hijei in the parity checks all together. For a randomly selected weight t
error, we can view this as putting t ·w different objects in r buckets and counting
the number of objects in each bucket. An even number of objects in a bucket
will be helpful in decoding, while an odd number of objects will act in opposite.

Now let us consider errors selected from our special error set Ψd. If the secret
vector h0 contains two ones with distance d inbetween (CASE-1), then, due to
the many inserted pairs of distance d in the error vector, we have “artificially”
created a number of (≥ t

2) check equations where we know that we have at
least two nonzero terms hijei in the parity check. This “artificial” creation of
pairs of nonzero terms hijei in the same check equation changes the distribution
of the number of nonzero terms hijei in parity checks. If the secret vector h0

does not contains two ones with distance d inbetween (CASE-0), then the same
phenomenon does not appear.

In Table 3, we present a precise evaluation of the corresponding distributions
of an instance using the suggested QC-MDPC parameters for 80-bit security
where the weight of h0 is assumed to be exactly 45. These results are obtained
by a heavy simulation using 1000 different random keys and 480100 valid error
patterns for each key. In CASE-1, the probability of being 0 is higher and that
of being 1 lower, which are both preferred for the decoding purpose. Also owing
to that the probabilities of being other values larger than 1 are of a similar
magnitude for the both cases, this table verifies the influences of the “artificially”
created pairs.

Table 3. The distinct distributions of the number of nonzero terms hijei’s for the error
patterns from Ψd using the QC-MDPC parameters for 80-bit security and assuming that
the weight of h0 is exactly 45.

(hijei = 1) Probability
CASE-0 CASE-1

0 0.4485 0.4534
1 0.3663 0.3602
≥ 2 0.1852 0.1864

802 Q. Guo et al.

Since this algorithm iterates further and many quite short (e.g., length-4)
cycles4 appear in the corresponding Tanner graph, it is challenging to determine
the variation of the decoding error probability caused by the different distribu-
tions in the first round, via presenting some precise theoretical estimations. On
the other hand, several thousands of parity-check equations (e.g., 4801 equations
in the 80-bit security case) exist, making the overall differences substantial. In
addition, more correct values in the initial round will contribute positively in
the following iterations. These facts explain why some significant differences can
be detected in our experiments, and why they imply a successful key-recovery
attack in real time.

5.2 Complexity Analysis

We now derive a complexity estimation for the key-recovery attacks. Making use
of the obtained experimental results for certain key parameters, we can then
approximate the concrete time complexity (shown in Sect. 7). This complexity
consists of two parts: that of building the distance spectrum and that of recon-
structing the secret polynomial. We analyze separately.

The Complexity for Building the Distance Spectrum. It is shown in
experiments that the error rates for the different distances clearly separate into
intervals according to multiplicity. When these intervals are disjoint, it is possible
to determine the complete distance spectrum of the secret key fully and without
error. In general, for a well-designed error pattern, the error probabilities increase
with decreasing multiplicities, as sketched in Fig. 2a.

The distinguishing procedure involves U groups of decoding tests, each of
them consisting of M decoding trails. Thus, overall U ×M decoding data would
be collected, implying that the complexity is of order O (MU). Here M and U
are two algorithmic parameters that depend on the targeting security parameters
n, r, ŵ, t. A reasonable upper bound for U is

⌊
r
2

⌋
, since this is the number of

possible (modular) distances given the block size r.
On the other hand, it is non-trivial to determine the minimal value of M

that is sufficient to execute a successful distinguishing. The experimental results
suggest that the error rate for the error pattern using a distance d with multiplic-
ity μ(d) can be approximated by a Gaussian distribution with mean mμ(d) and
variance σ2

μ(d); we can thus model this problem as a hypothesis testing problem
determining whether μ(d) is zero or not.

Figure 2, which consists of two sub-figures, describes the approximated distri-
butions of the error probability when performing the proposed reaction attack.
With adequate decoding trials to make the widths of these Gaussian distrib-
utions “narrow” enough, we draw roughly the shape of the probability density
function of the decoding error probability (in Fig. 2a). On the contrary, Fig. 2b
records with the precision in magnitude the empirical distribution when per-
forming the proposed reaction attack on the QC-MDPC parameters for 80-bit
4 See Table 4 for more details.

A Key Recovery Attack on MDPC with CCA Security 803

Fig. 2. Classification of distance multiplicities based on decoding error probability.
(a): Distribution shape in general. (b): Empirical distribution using M = 100, 000
decoding trials for each distance (proposed parameters for 80-bit security with t = 84).

security with error weight 84, where 100, 000 decoding trails are exploited for
each distance d. In this figure, only the groups of multiplicity 0 and multiplicity
1 are depicted as the remaining groups are of a much smaller magnitude. More
data can be found in Table 5.

The Complexity for Reconstruction. We show that the algorithm will
return the correct key soon on average. Since this algorithm builds an enu-
meration tree to search for the possible solutions in a depth-first way, the time
complexity can be represented by its paths to the leaves in the tree. Later we
present a rough estimation of this number.

Suppose ns is the size of the distance spectrum D(h0), nt the number of
possible distances5 required to be tested, and α the ratio between them, i.e.
ns/nt. In the beginning, we chose the smallest distance in the spectrum and
determine two positions 0 and i0; this can be viewed as the root of the tree. Then
we extend the tree to choose another position i1. We know that the distances
i1 and i1 − i0 should be both in the distance spectrum; among the ns possible
distances for i1, thus, we can expect an α fraction of them are valid and there
exist nsα nodes in the first level. Similarly for one node in the first level, there
are nsα

2 child nodes on average in the second level since the distances i2, i2 − i0
and i2 − i1 should be all in the distance spectrum. Etc.

Since the average child number of a node after quite few steps6 (denoting
this number φ + 1) will be less than 1, we can deduce a loose estimation on the
average number of possible paths as
5 A reasonable setting for nt is T , the number of distances bounded by r

2
.

6 The average child number of a node in the lth level drops exponentially in l.

804 Q. Guo et al.

φ∏

i=1

nsα
i = nφ

t α
φ(φ+3)

2 ≤
(r

2

)φ

α
φ(φ+3)

2 . (1)

The above results state that in expectation, the number of paths tested can
be bounded by Eq. (1). In reality, the algorithm may terminate soon if we are
lucky.

6 Debunking the CCA Security Claim

When targeting the CPA security of the MDPC scheme, we were free to choose
the injected error patterns. When we now turn to attack its CCA-secure version,
this freedom of choice is severely limited.

The CCA-secure version of the MDPC scheme is of more importance as in real
applications the error vector will be protected by cryptographic hash functions
after conversions (e.g., [21]) for making the MDPC scheme semantically secure.

The fundamental idea of the attack is as follows. We randomly generate
T plaintext-ciphertext pairs. We then form subsets of those with desired error
patterns. In particular, we will be interested in error patterns that contain occur-
rences of distance d between error bits, where d is a length in the distance spec-
trum to be tested. Our simulations show that these error patterns can be used
to efficiently distinguish whether a certain distance d appears in the distance
spectrum of the targeted secret polynomial.

We present the algorithm in two versions to match different levels of detail.
The high level description is presented as Algorithm 3.

Algorithm 3 – Breaking the CCA security of the converted MDPC scheme.

Input: number T of ciphertexts to generate.
Output: distance spectrum s for the secret key K.

Generate a collection Σ of T ciphertexts
Record decryptability for each c in Σ
s ← storage for distance spectrum of secret key
for all distances d do

Σd ← {c ∈ Σ | μc (d) ≥ 1}
s[d] ← multiplicity classification from decryptability rate in Σd

return s

The description seems to suggest that we need lots of storage for handling
ciphertexts, but this is not the case. An efficient implementation requires virtu-
ally no storage. To see this, consider the alternative description in Algorithm 4.

In Algorithm 4 we successively check the decryptability of ciphertexts and
use these observations to obtain better and better estimates of decoding error
probabilities related to all possible distances in the distance spectrum of the
secret key.

A Key Recovery Attack on MDPC with CCA Security 805

Algorithm 4 – Breaking the CCA security of the converted MDPC scheme.
Detailed description.

Input: number T of ciphertexts to generate.
Output: distance spectrum for the secret key K.

a ← zero-initialized vector of length r
2

/* count decoding failures per distance */

b ← zero-initialized vector of length r
2

/* count total samples per distance */

i ← 0
while i < T do

Generate ciphertext c
serr ← distance spectrum of ciphertext error
� ← decryptability of c /* 0 for successful decryption, 1 for decryption failure */

for all distances d do
if serr[d] ≥ 1 then

a[d] ← a[d] + �
b[d] ← b[d] + 1

i ← i + 1
skey ← vector of length r

2
/* distance spectrum of secret key */

for all distances d do
skey[d] ← multiplicity classification from estimated error rate a[d]

b[d]

return skey

The vector slots of a and b are used to represent the decoding error proba-
bilities, so that a[d]

b[d] is an approximation of the decoding error probability over
all error patterns with distance spectrums containing distance d. This subset of
error patterns is denoted Σd in Algorithm 3.

Each ciphertext updates several entries in a and b, and we need to observe
the decryptability of sufficiently many ciphertexts in order to obtain probability
estimates that are reliable enough for correct multiplicity classification.

For each ciphertext we utilize the nonzero (other thresholds are also possible)
entries in the corresponding distance spectrum. Letting α denote the average
fraction of nonzero entries in such a distance spectrum, one can see that the
total number of iterations in the inner loop (per ciphertext) is about αr

2 .
The output of Algorithm 4 is the distance spectrum of the secret key, so the

careful reader will note that the key recovery method described in Algorithm 2
needs to be applied as a final step for full key recovery. However, in terms of
complexities, this additional step comes for free.

The time complexity of Algorithm 4 is precisely T if we count the number
of observed ciphertexts. If we count low-level operations, as defined by the inner
loop of Algorithm 4, the time complexity is T × r

2 .

6.1 An Explanation of How Sample Collection Works

The precise nature of Algorithm 4 can easily and very conveniently be under-
stood by modeling the sampling procedure as a generalized version of the coupon

806 Q. Guo et al.

collector’s problem. In the original coupon collector’s problem, using the balls-
and-bins paradigm, we randomly throw balls into u bins until all bins are non-
empty. We need to throw around u log u balls before we achieve this goal.

In the generalized problem, we keep throwing balls until all bins each contain
at least b balls. The time complexity for this (see [11]) is

J (u, b) = u (log u + (b − 1) log log u + γ − log (b − 1)! + o (1)) . (2)

It is even possible to arbitrarily bound the probability of failure by adding a
linear number of samples (balls) according to

lim
t→∞Pr

[X(u,b) < u log u + (b − 1)u log log u + tu
]
= e− e−t

(b−1)! ,

where X(u,b) is a statistical variable that represents the number of throws needed
to fill up u bins so that all of them contain at least b balls.

In the CCA case we collect error patterns, but not all error patterns are
useful. Instead, we form different subsets of useful error patterns denoted Σd

in Algorithm 3. We successively check the decryptability of ciphertexts and use
these observations to obtain better and better estimates of decoding error prob-
abilities related to all possible distances in the distance spectrum of the secret
key.

For each ciphertext we then utilize the nonzero (other thresholds are also
possible) entries in the corresponding distance spectrum, and each such nonzero
entry corresponds to a ball. With α denoting the average fraction of nonzero
entries in such a distance spectrum, one can see that the total number of balls
we collect per ciphertext is about αr

2 .
In Algorithm 4, the bins are represented by the vector slots of a and b, so

there are u = r
2 bins. Each observed error pattern generates α balls, and each

ball updates an entry in a and b. We need at least b balls in each bin in order to
obtain probability estimates that are reliable enough for computing the distance
spectrum of the secret key. The value b determines the number T of ciphertexts
that we need to generate, since b and T are strongly related according to

αrT

2
≈ J

(r

2
, b

)
. (3)

It may also be noted that it is not immediately clear how to analytically
derive b or T directly from the security parameters. For our results, we have
determined T explicitly by simulation, as described in Sect. 7.

7 Implementations and Numerical Results

We have conducted several simulation tests to verify the behaviors of the error
rates related to different multiplicities and different error shapes. The following
implementation results are all obtained by employing QC-MDPC with the pro-
posed parameters for 80-bit security [29] and the original Gallager’s bit-flipping
algorithm [12], i.e., Decoder B in [27].

A Key Recovery Attack on MDPC with CCA Security 807

In the CPA case, we consider two different error weights. Error weight t = 84
is what is proposed for 80-bit security, but we also consider the case t = 90 here.
This is motivated by security models that allow injection of more errors, where
additional errors are not explicitly detected. For the CCA case, only results with
t = 84 are stated.

Results for the CPA case are presented in Sect. 7.1, and the results for the
CCA case are presented in Sect. 7.2. A discussion on the employment of other
decoders follows in Sect. 7.3.

Before introducing the main implementation results, we show the probability
distributions for distance multiplicities in the first polynomial when considering
the QC-MDPC scheme with n0 = 2 (see Table 4).

Table 4. Probability distributions for distance multiplicities in the first polynomial (of
two), generated uniformly with total weight t = 84 and t = 90. The polynomial length
is 4801, while the total vector length is 9602.

multiplicity t = 84 t = 90 / key with ŵ = 90

probability accumulated accumulated probability accumulated accumulated

0 0.6955724 0.6955724 1.0000000 0.6589889 0.6589889 1.0000000

1 0.2524958 0.9480683 0.3044275 0.2748075 0.9337965 0.3410106

2 0.0458487 0.9939170 0.0519316 0.0573330 0.9911295 0.0662031

3 0.0055425 0.9994596 0.0060829 0.0079677 0.9990972 0.0088701

4 0.0005018 0.9999614 0.0005403 0.0008287 0.9999260 0.0009024

5 0.0000362 0.9999977 0.0000385 0.0000688 0.9999949 0.0000737

6 0.0000021 0.9999998 0.0000022 0.0000047 0.9999997 0.0000049

7 0.0000001 1.0000000 0.0000001 0.0000002 1.0000000 0.0000002

The vector is of length 9602, and is generated uniformly with weight 84 (or
90). These probability distributions are mainly of importance for the following
two reasons.

– When the vector is viewed as a key vector, the data in the right part (corre-
sponding to t = 90) show the distance multiplicity distributions of a random
key, from which not only the size of its distance spectrum can be estimated,
but some other vital information may also be revealed. For example, since
about 6.6 percent of the distances are of multiplicity 2 or more when t = 90,
quite a few length-4 cycles7 will appear in the Tanner graph corresponding to
the secret key.

– When the vector is viewed as an error vector, these data can be utilized to
simulate the random error obtained from a CCA2-secure QC-MDPC scheme.
We will explain this further in Sect. 7.2.

7 A distance with multiplicity of 2 or more implies that there exists at least one
length-4 cycle.

808 Q. Guo et al.

7.1 CPA Case

As described in Sect. 5.2, the time complexity of attacking the CPA-secure ver-
sion consists of two parts: that of constructing the distance spectrum and of
key reconstruction. From Table 5, we can see that for the MDPC parameters
targeting 80-bit security, it is sufficient to choose M to be 100, 000 to make the
decoding error rates well-separated according to the multiplicity; this value can
be even reduce to 10, 000 if an error with weight t = 90 is allowed to be used.
Setting the number of different groups for decoding test as 2400, we derive that
the time complexity for Alice to know the distance spectrum of the secret key
is bounded by that of calling the decoder about 240, 000, 000 (or 24, 000, 000)
times for solely the information whether the decoding succeeds, when the error
weight t is 84 (or 90). In the security model of a reaction attack, the decoding
results (success or fail) are presumably provided to the adversary; therefore, the
decoding cost is excluded from the time complexity, implying that the time com-
plexity for constructing the distance spectrum can be estimated as 228 (or 225)
operations for t = 84 (or 90).

Table 5. Decoding error rates when using the original Gallager’s bit-flipping algorithm
(Decoder B in [27]) and the designed error pattern Ψd with t = 84 and t = 90. The
number of decoding trials in a group is M = 100, 000 and M = 10, 000, respectively.

multiplicity t = 84 t = 90

error rate σ error rate σ

0 0.0044099 0.00003868 0.415395 0.000830
1 0.0009116 0.00001304 0.248642 0.000729
2 0.0001418 0.00000475 0.121623 0.000529
3 0.0000134 0.00000112 0.048330 0.000299

For the MDPC parameters targeting 80-bit security, the weight of the secret
key is set to be 90. By checking Table 4, therefore, the empirical ratio α can be
approximated as 0.341 and thus φ is 6. We on average test no more than 225.5

paths, costing less than 235 operations since most of the invalid paths will be
detected and removed soon (less than 20 steps). We implemented this algorithm,
which performed quite well in practice — for most of the instances, the algorithm
succeeded in minutes.

7.2 CCA Case

Next in turn is the CCA case and truly uniform error patterns with a certain
weight. We have used Algorithm 4 for our simulation runs. One such simulation
for the QC-MDPC scheme with the proposed parameters for 80-bit security (with
t = 84) can be seen in Figure 3. Here we plot the number of utilized ciphertexts

A Key Recovery Attack on MDPC with CCA Security 809

Fig. 3. CCA algorithm for a QC-MDPC McEliece instance for 80-bit security with
t = 84. The distance spectrum of the key is fully recovered (no errors) after observing
356M ciphertexts. The graph shows the worst case out of ten full simulations.

vs. the fraction of correctly classified distance spectrum entries, resulting in a
simple visualization of the algorithm efficiency.

The simulations suggest that T = 356 million observed ciphertexts are suf-
ficient for fully determining the entire distance spectrum without any errors.
That is, after we have observed 356 million ciphertexts, the distance spectrum
remains stable and correct.

It should be noted that we ran ten independent simulation runs, and the
result presented in Fig. 3 was the worst case simulation result. The 356 million
ciphertexts estimate is therefore a conservative high probability estimate. That
is, in all simulations, the multiplicity classifications were 100% correct and stable
after 356 million ciphertexts. For comparison, the best case yielded full distance
spectrum recovery after 203 million ciphertexts.

The same simulation is shown in Fig. 4, providing a more detailed view of
how the algorithm works. Each dot represents the estimated decoding error
probability for one particular distance, and every possible distance has been
plotted in the same graph.

810 Q. Guo et al.

Fig. 4. Classification intervals for the t = 84 worst-case simulation after 356M cipher-
texts. All 2400 data points plotted.

Now, have a closer look at the classification intervals that have been high-
lighted with a grey background. These intervals span from the minimum to the
maximum estimated decoding error probability per multiplicity.

As Fig. 4 shows the state of affairs at the end of the simulation, we can
see that the distance dots are clearly separated into different and fully disjoint
classification intervals depending on their multiplicity. The classification intervals
are generally overlapping during the earlier parts of the simulation.

We can use the classification intervals and analyze their successive widths
in the simulation. This is very useful, because we are only able to compute
a perfect error-free distance spectrum when all of these intervals are mutually
disjoint. In this way we can derive a reliable estimate for the value T for different
problem instances. The reader may note that there is some (little) room for
improvement here. In the worst case simulation out of the ten we have performed,
the classification intervals became disjoint after 268 million ciphertexts, which
sets a lower bound for error-free distance spectrum recovery. However, this bound
can be lowered even further if we allow errors in the recovered distance spectrum,
or if we tweak the algorithm in other ways, and so on, but such improvements
are out of scope here.

A Key Recovery Attack on MDPC with CCA Security 811

In a live scenario, the distance multiplicities are unknown, so it is not possible
to compute the successive classification intervals and check when they are dis-
joint. Predetermined probability values cannot be used, since the decoding error
probabilities differ significantly between instances (different keys). However, the
general shape of the probability distribution in Fig. 2a is known and represents a
“side view” of Fig. 4, so it can be seen that the multiplicity classification problem
is not very difficult in practice.

The classification procedure we have used in our experiments is quite sim-
plistic. In our simulations, we computed the current (estimated) decoding error
probabilities m0,m1, . . . per multiplicity from the simulation values, and then
computed boundary mid-points m0+m1

2 , m1+m2
2 , . . . and checked when the inter-

vals were fully separated into these mid-point regions. In a live scenario one
could efficiently achieve the same effect by using a simple clustering technique
(counting dots in small intervals) to first accurately estimate m0,m1, . . ., and
then continue as we have done.

To conclude the simulation results, the total time complexity of Algorithm 4
is at most 356 million observed ciphertexts. If we count low-level operations
instead, as specified in Sect. 6, then the total time complexity is about T ×
r
2 = 239.7 for the proposed security parameters for 80-bit security using the
Gallager’s original bit-flipping decoder. Compared with this complexity figure,
the key reconstruction part is negligible.

7.3 Some Discussions

We discuss more about the decoding procedure employed in the implementation.

Using Other Decoding Techniques. The employed decoding algorithm in
implementation is Gallager’s bit-flipping algorithm, which is chosen not only
because its relatively higher error-probability makes the implementation easier,
but also because it is the original iterative decoding algorithm for LDPC settling
the framework and the principle for the later improved decoders [15,27]. Hence,
it is reasonable to assume that replacing the Gallager’s bit-flipping decoder by
another more advanced decoder may increase the attack complexity by a factor
of around 2e, if the error probability is reduced with a factor of 2−e. However,
the attack complexity is still far less than the claimed security level.

For example, the best implementations of bit-flipping-type decoders found
in literature with respect to the decoding performance are the ones from [8,10]
both claiming a decoding error probability less than 10−8 for the 80-bit secure
QC-MDPC parameter set. These decoders improve upon the original Gallager’s
decoder by a factor of about 215.6. Therefore, we might estimate the time com-
plexity for attacking the 80-bit CPA (or CCA2) -secure version as 243.6 (or 255.3)
operations, if these two decoders are instead implemented.

Moreover, some decoders (including the one in [29]) decrease the error prob-
ability by restarting the decoding process in the same decoding framework but
only employing different thresholds, when an error is detected. On one side,

812 Q. Guo et al.

since each calling of the bit-flipping algorithm might contribute to the varia-
tion between CASE-0 and CASE-1, the effects on the distinct decoding error
probabilities may accumulate after more and more decoding rounds, implying
that the estimation in the last paragraph is conservative. On the other hand, via
some side-channel attacks, an adversary might get the information of the initial
errors occurred, thereby reducing the problem to that of using a less powerful
decoder like the one being implemented. It is definitely beneficial to design a
countermeasure to withstand this type of attack.

We conjecture that this attack also works for the MDPC scheme employing
a soft-decision decoding implementation.

Moving to a Higher Security Level. The QC-MDPC scheme using the
suggested 80-bit secure parameter set is frequently discussed and implemented in
literature due to its applications in power-constraint devices, for which we choose
it as a study case. However, for the long-term security purpose, the bottom line
nowadays is to achieve 128-bit security. There is no evidence that the scheme
with the suggested 128-bit secure parameters will be invulnerable to the proposed
reaction attack, and frankly speaking, the situation is even worse due to the
larger gap between the current state-of-the-art implementation8 of bit-flipping-
type decoders and the required decoding performance9 with respect to security.

Higher Error Probability. Another meaningful observation is that when uti-
lizing the designed highly unbalanced error pattern, the error probability is
higher than when harnessing a uniform distribution in the valid set of errors.
This increased error probability jeopardizes the security of the MDPC scheme
by boosting the proposed reaction attack further. Since we employ the same
implementation of Gallager’s bit-flipping decoder as in [15], the enlarged failure
probability is mainly due to the specific error pattern used: all the t error posi-
tions are gathered together in the first part of the error vector. We show the
numerical results in Table 6.

Table 6. The comparison of failure rates among different error patterns using the
QC-MDPC parameters for the 80-bit security.

Error weight All valid errors [15] This work
multiplicity 0 multiplicity 1

84 0.00051 0.00441 0.00091
90 0.24080 0.41539 0.24864

8 With respect to the decoding performance, the best known implementation using
the suggested 80-bit secure parameter set outperforms the one using the suggested
128-bit secure parameters (10−8 in [8,10] vs. 10−7 in [29]).

9 One should decrease the decoding error probability for thwarting the proposed reac-
tion attack within 2128 operations.

A Key Recovery Attack on MDPC with CCA Security 813

8 Conclusions and Future Work

In this paper, we have presented a reaction-type attack against the QC-MDPC
public key encryption scheme. This novel attack exploits the strong correlation
between certain structures in the secret key and the decoding error probability
when errors with arranged patterns are employed. It then rebuilds the secret
polynomial efficiently by executing a reconstruction procedure, therefore break-
ing the QC-MDPC scheme. With a slight modification, it can also be applied
to the CCA2 converted version of the scheme to break its claimed security
level against CCA2 attack. This (weaker) reaction attack can break the proved
(stronger) CCA2 security because the decoding error probability is excluded in
the proof models.

There are several research directions to be further investigated. A natural one
is to design a countermeasure to protect the QC-MDPC scheme against this new
attack. The most secure approach is to amend the employed iterative decoder to
reduce the decoding error probability to be less than 2−κ for κ-bit security. This
is a challenging task due to the large gap between the state-of-the-art and the
desired error levels, and also due to the lack of a precise theoretical error bound
on these iterative algorithms. That is, changing to a more powerful decoder can
enhance its security, but it is doubtful to claim that it can reach a quite high
security level. Moreover, when moving to a decoder with improved performance
via running itself more times with different algorithmic parameters if an error is
detected, some types of side-channel attacks — like timing attacks — should be
useful to know the original errors in the initial round, which can be used for a
faster reaction attack.

Other directions include characterizing the strong and weak keys to resist this
attack, deriving precise bounds on the decoding error probability for various error
patterns given a security parameter, and designing more advanced reconstruction
algorithms to handle more errors in the distance spectrum, etc. It would be
fascinating if one can extend this attack to break the CCA-secure version of
cryptosystems based on the LPN and LWE problems.

References

1. Augot, D., Batina, L., Bernstein, D.J., Bos, J., Buchmann, J., Castryck, W.,
Dunkelman, O., Güneysu, T., Gueron, S., Hülsing, A., et al.: Initial recommenda-
tions of long-term secure post-quantum systems (2015). http://pqcrypto.eu.org/
docs/initial-recommendations.pdf

2. Baldi, M., Chiaraluce, F., Garello, R., Mininni, F.: Quasi-cyclic low-density parity-
check codes in the McEliece cryptosystem. In: Proceedings of IEEE International
Conference on Communications, ICC 2007, Glasgow, Scotland, 24–28, pp. 951–956.
IEEE (2007). http://dx.doi.org/10.1109/ICC.2007.161

3. Becker, A., Joux, A., May, A., Meurer, A.: Decoding random binary linear codes
in 2

n
20 : how 1 + 1 = 0 improves information set decoding. In: Pointcheval, D.,

Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 520–536. Springer,
Heidelberg (2012). doi:10.1007/978-3-642-29011-4_31

http://pqcrypto.eu.org/docs/initial-recommendations.pdf
http://pqcrypto.eu.org/docs/initial-recommendations.pdf
http://dx.doi.org/10.1109/ICC.2007.161
http://dx.doi.org/10.1007/978-3-642-29011-4_31

814 Q. Guo et al.

4. Bellare, M., Desai, A., Pointcheval, D., Rogaway, P.: Relations among notions of
security for public-key encryption schemes. In: Krawczyk, H. (ed.) CRYPTO 1998.
LNCS, vol. 1462, pp. 26–45. Springer, Heidelberg (1998). doi:10.1007/BFb0055718

5. Bernstein, D.J., Buchmann, J., Dahmen, E.: Post-Quantum Cryptography.
Springer, Heidelberg (2009)

6. Berson, T.A.: Failure of the McEliece public-key cryptosystem under message-
resend and related-message attack. In: Kaliski, B.S. (ed.) CRYPTO 1997. LNCS,
vol. 1294, pp. 213–220. Springer, Heidelberg (1997). doi:10.1007/BFb0052237

7. Canteaut, A., Sendrier, N.: Cryptanalysis of the original Mceliece cryptosystem.
In: Ohta, K., Pei, D. (eds.) ASIACRYPT 1998. LNCS, vol. 1514, pp. 187–199.
Springer, Heidelberg (2000). doi:10.1007/3-540-49649-1_16

8. Chaulet, J., Sendrier, N.: Worst case QC-MDPC decoder for McEliece cryp-
tosystem. In: IEEE International Symposium on Information Theory, ISIT 2016,
Barcelona, Spain, 10–15 July 2016, pp. 1366–1370. IEEE (2016). http://dx.doi.
org/10.1109/ISIT.2016.7541522

9. Chen, L., Jordan, S., Liu, Y.K., Moody, D., Peralta, R., Perlner, R., Smith-Tone,
D.: Report on post-quantum cryptography. National Institute of Standards and
Technology Internal Report 8105 (2016)

10. Chou, T.: QcBits: constant-time small-key code-based cryptography. In: Gierlichs,
B., Poschmann, A.Y. (eds.) CHES 2016. LNCS, vol. 9813, pp. 280–300. Springer,
Heidelberg (2016). doi:10.1007/978-3-662-53140-2_14

11. Flajolet, P., Sedgewick, R.: Analytic Combinatorics. Cambridge University Press,
New York (2009)

12. Gallager, R.G.: Low-Density Parity-Check Codes. Ph.D. thesis, MIT Press,
Cambridge (1963)

13. Goppa, V.D.: A new class of linear correcting codes. In: Problemy Peredachi Infor-
matsii vol. 6, pp. 24–30 (1970)

14. Hall, C., Goldberg, I., Schneier, B.: Reaction attacks against several public-key
cryptosystem. In: Varadharajan, V., Mu, Y. (eds.) ICICS 1999. LNCS, vol. 1726,
pp. 2–12. Springer, Heidelberg (1999). doi:10.1007/978-3-540-47942-0_2

15. Heyse, S., Maurich, I., Güneysu, T.: Smaller keys for code-based cryptography: QC-
MDPC McEliece implementations on embedded devices. In: Bertoni, G., Coron,
J.-S. (eds.) CHES 2013. LNCS, vol. 8086, pp. 273–292. Springer, Heidelberg (2013).
doi:10.1007/978-3-642-40349-1_16

16. Hoffstein, J., Pipher, J., Schanck, J.M., Silverman, J.H., Whyte, W., Zhang,
Z.: Choosing Parameters for NTRUEncrypt. Cryptology ePrint Archive, Report
2015/708 (2015). http://eprint.iacr.org/

17. Hoffstein, J., Pipher, J., Silverman, J.H.: NTRU: A ring-based public key cryptosys-
tem. In: Buhler, J.P. (ed.) ANTS 1998. LNCS, vol. 1423, pp. 267–288. Springer,
Heidelberg (1998). doi:10.1007/BFb0054868

18. Howgrave-Graham, N., Nguyen, P.Q., Pointcheval, D., Proos, J., Silverman, J.H.,
Singer, A., Whyte, W.: The impact of decryption failures on the security of NTRU
encryption. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 226–246.
Springer, Heidelberg (2003). doi:10.1007/978-3-540-45146-4_14

19. Howgrave-Graham, N., Silverman, J.H., Singer, A., Whyte, W.: NTRU Cryptosys-
tems: NAEP: Provable Security in the Presence of Decryption Failures. IACR
Cryptology ePrint Archive 2003, 172 (2003)

20. Johansson, T., Jönsson, F.: On the complexity of some cryptographic problems
based on the general decoding problem. IEEE Trans. Inf. Theory 48(10), 2669–
2678 (2002)

http://dx.doi.org/10.1007/BFb0055718
http://dx.doi.org/10.1007/BFb0052237
http://dx.doi.org/10.1007/3-540-49649-1_16
http://dx.doi.org/10.1109/ISIT.2016.7541522
http://dx.doi.org/10.1109/ISIT.2016.7541522
http://dx.doi.org/10.1007/978-3-662-53140-2_14
http://dx.doi.org/10.1007/978-3-540-47942-0_2
http://dx.doi.org/10.1007/978-3-642-40349-1_16
http://eprint.iacr.org/
http://dx.doi.org/10.1007/BFb0054868
http://dx.doi.org/10.1007/978-3-540-45146-4_14

A Key Recovery Attack on MDPC with CCA Security 815

21. Kobara, K., Imai, H.: Semantically secure McEliece public-key cryptosystems -
conversions for McEliece PKC. In: Kim, K. (ed.) PKC 2001. LNCS, vol. 1992, pp.
19–35. Springer, Heidelberg (2001). doi:10.1007/3-540-44586-2_2

22. Löndahl, C., Johansson, T.: A new version of McEliece PKC based on convolutional
codes. In: Chim, T.W., Yuen, T.H. (eds.) ICICS 2012. LNCS, vol. 7618, pp. 461–
470. Springer, Heidelberg (2012). doi:10.1007/978-3-642-34129-8_45

23. MacWilliams, F.J., Sloane, N.J.A.: The Theory of Error Correcting Codes, vol. 16.
Elsevier, Amsterdam (1977)

24. von Maurich, I., Güneysu, T.: Lightweight code-based cryptography: QC-MDPC
McEliece encryption on reconfigurable devices. In: Proceedings of the conference
on Design, Automation & Test in Europe, p. 38. European Design and Automation
Association (2014)

25. von Maurich, I., Güneysu, T.: Towards side-channel resistant implementations
of QC-MDPC McEliece encryption on constrained devices. In: Mosca, M. (ed.)
PQCrypto 2014. LNCS, vol. 8772, pp. 266–282. Springer, Heidelberg (2014). doi:10.
1007/978-3-319-11659-4_16

26. von Maurich, I., Heberle, L., Güneysu, T.: IND-CCA secure hybrid encryption from
QC-MDPC niederreiter. In: Takagi, T. (ed.) PQCrypto 2016. LNCS, vol. 9606, pp.
1–17. Springer, Heidelberg (2016). doi:10.1007/978-3-319-29360-8_1

27. Maurich, I.V., Oder, T., Güneysu, T.: Implementing QC-MDPC McEliece encryp-
tion. ACM Trans. Embed. Comput. Syst. (TECS) 14(3), 44 (2015)

28. McEliece, R.J.: A public-key cryptosystem based on algebraic coding theory. DSN
Prog. Rep. 42–44, 114–116 (1978)

29. Misoczki, R., Tillich, J.P., Sendrier, N., Barreto, P.S.: MDPC-McEliece: New
McEliece variants from moderate density parity-check codes. In: 2013 IEEE Inter-
national Symposium on Information Theory Proceedings (ISIT), pp. 2069–2073.
IEEE (2013)

30. Overbeck, R., Sendrier, N.: Code-based cryptography. In: Bernstein, D.J., Buch-
mann, J., Dahmen, E. (eds.) Post-Quantum Cryptography, pp. 95–145. Springer,
Heidelberg (2009)

31. Repka, M., Zajac, P.: Overview of the Mceliece cryptosystem and its Security.
Tatra Mountains Math. Publ. 60(1), 57–83 (2014)

32. Sendrier, N.: Decoding one out of many. In: Yang, B.-Y. (ed.) PQCrypto
2011. LNCS, vol. 7071, pp. 51–67. Springer, Heidelberg (2011). doi:10.1007/
978-3-642-25405-5_4

33. Shor, P.W.: Algorithms for quantum computation: discrete logarithms and fac-
toring. In: 35th Annual Symposium on Foundations of Computer Science, 20–22
November 1994, Santa Fe, New Mexico, USA, pp. 124–134. IEEE Press (1994)

http://dx.doi.org/10.1007/3-540-44586-2_2
http://dx.doi.org/10.1007/978-3-642-34129-8_45
http://dx.doi.org/10.1007/978-3-319-11659-4_16
http://dx.doi.org/10.1007/978-3-319-11659-4_16
http://dx.doi.org/10.1007/978-3-319-29360-8_1
http://dx.doi.org/10.1007/978-3-642-25405-5_4
http://dx.doi.org/10.1007/978-3-642-25405-5_4

SCA and Leakage Resilience II

A Tale of Two Shares: Why Two-Share
Threshold Implementation Seems
Worthwhile—and Why It Is Not

Cong Chen(B), Mohammad Farmani, and Thomas Eisenbarth

Worcester Polytechnic Institute, Worcester, MA, USA
{cchen3,mfarmani,teisenbarth}@wpi.edu

Abstract. This work explores the possibilities for practical Thresh-
old Implementation (TI) with only two shares in order for a smaller
design that needs less randomness but is still first-order leakage resistant.
We present the first two-share Threshold Implementations of two light-
weight block ciphers—Simon and Present. The implementation results
show that two-share TI improves the compactness but usually further
reduces the throughput when compared with first-order resistant three-
share schemes. Our leakage analysis shows that two-share TI can retain
perfect first-order resistance. However, the analysis also exposes a strong
second-order leakage. All results are backed up by simulation as well as
analysis of actual implementations.

Keywords: Threshold implementation · Paired t-test · Lightweight
cryptography · FPGA

1 Motivation

Protecting cryptographic hardware against side channel analysis is a difficult
task and usually incurs significant area overheads. Especially masking schemes
aimed at hardware have been found to be flawed or prone to implementation
errors that leave the countermeasure at least partially insecure [13,20,23].

Threshold Implementation (TI) has become a popular masking scheme for
hardware implementations in the recent years, due to several advantages over
competing schemes. Unlike secure logic styles [20,32], it does not require a change
of the design flow. TI is fairly simple to apply to a wide range of ciphers, and its
implementation is not very error-prone, if a known set of requirements and best
practices is followed. Another advantage is that TI actually keeps the promise
of reliable first-order side-channel resistance. It also provides good protection
against higher-order attacks [6,24].

However, like most other masking schemes, TI incurs large area and time
overheads, and often consumes huge amounts of randomness for remasking,
which can make practical application cumbersome. So far the best results have
an area overhead of approximately three while consuming at least two times the

c© International Association for Cryptologic Research 2016
J.H. Cheon and T. Takagi (Eds.): ASIACRYPT 2016, Part I, LNCS 10031, pp. 819–843, 2016.
DOI: 10.1007/978-3-662-53887-6 30

820 C. Chen et al.

combined plaintext and key size of randomness per encryption. Such overheads—
the significant increase in area as well as the need for a high-performance random
number generator—make TI an expensive choice, too expensive for a broad range
of practical applications. Reparaz et al. [27] generalized TI to provide protection
against higher-order attacks. The work mentioned the feasibility of reducing the
number of shares to d+1, where d is the desired protection order, suggesting that
two shares are sufficient for first-order side channel protection. A first evaluation
of using d + 1 shares for AES was performed by De Cnudde et al. in [15].

Our contribution. In this work we explore the practical implications of reducing
the number of shares of threshold implementations to only two shares (2-TI).
Such a reduction of shares enables implementations that only incur an area over-
head of two and at the same time can also reduce the need of minimally required
randomness by a factor of two, making the incurred cost more bearable and thus
allowing side channel protection for a much wider range of applications. Reduc-
ing the number of shares is easily possible by applying the non-completeness
requirement of TI at the bit-level rather than the state-level, as done by prevail-
ing implementations.

While the feasibility of this approach has already been discussed in [27]
and recently been practically verified in [15], this work explores the practical
aspects, the benefits—and ramifications—of applying threshold implementation
with only two shares to modern ciphers. Our case study focuses on applying 2-TI
on two lightweight block ciphers, Present [7] and Simon [2]. Lightweight ciphers
are usually a good target for TI, as the algebraic depth of their nonlinear func-
tions is usually low. Low algebraic depth allows for cheap and effective masking
while keeping the need for additional randomness low. In fact, our designs do
not require remasking during the round functions, while a comparable masked
implementation of AES requires more than 8,000 fresh random bits during one
block encryption [15].

Our study shows that two-share TI is first order secure and also reduces the
size of the sequential logic in hardware implementations. The 2-TI-conversion
of nonlinear functions is more cumbersome and usually requires at least one
additional pipeline stage, with negative impact on implementation size and/or
performance. However, we also expose a strong second-order leakage in both of
the designs and argue that this is inherent to two-share TI implementations. We
show that these leakages exist both in the theoretical model and can also be
quickly exposed by leakage detection tests. We validate the exploitability of the
observed leakages by side channel key recovery attacks.

The remaining work is structured as follows: Relevant terminologies and
methods are explained in Sect. 2. The theoretical discussion of two-share TI
is given in Sect. 3 and two practical implementations of Simon and Present are
introduced in Sects. 4 and 5. Sections 6 and 7 present implementation results and
the outcome of the leakage analysis and we conclude at Sect. 8.

A Tale of Two Shares: Why Two-Share Threshold Implementation 821

2 Preliminaries

2.1 Lightweight Cryptography

For many embedded applications, area and hence power or energy minimal imple-
mentations of cryptography are highly desirable. This has led to a rich literature
on hardware-minimal crypto cores, which often rely on the numerous proposed
“lightweight” block cipher designs, such as Present, Katan, or Simon and Speck.
These lightweight ciphers as well as the area-minimal implementations share one
common characteristic: Serialization.

Serialized implementations are very common for minimizing area of hardware
implementations at the expense of increased run time. Area-critical functions are
identified and broken into subfunctions that can be applied repeatedly, in an iter-
ative manner, to achieve the same outcome. A typical example for block ciphers
is the S-box layer, which due to its high nonlinearity usually is difficult to mini-
mize in hardware. A classical area-optimized implementation of an S-box based
cipher only features a single S-box, which is iteratively applied to different parts
of the intermediate state. All modern block ciphers support this vertical type of
serialization by using a single S-box (unlike DES which uses 8 different S-boxes).
Similar techniques are also applied to decrease the size of large S-boxes (or in
general functions of great algebraic complexity), by breaking them into subfunc-
tions that are concatenated. Examples include implementations that compute
the AES S-box by exploiting tower field representations by Canright [9] or the
Present S-box into mappings of algebraic degree 2, which eases side-channel pro-
tection and decreases the size, at the cost of doubling the computation time [26].
We will refer to this serialization as horizontal. While vertical serialization is
determined by the cipher at implementation time (usually determined by the
number of S-boxes), the exploitable horizontal serialization is determined by the
algebraic complexity of the nonlinear layer.

Typical vertical serialization parameters for hardware minimal implementa-
tions are ranging from data path sizes of 8 bit for AES, 4 bit for Present down
to 1 bit for e.g. Simon or Katan. That is, as little as one bit of the cipher state
are updated per cycle. Serial data paths increase the latency of the crypto core
significantly. However, they also allow to reduce the combinational logic of the
crypto core to low single-digit percentages of the entire design [14,29]. That
means, in applications where the latency is not critical, the area of a cipher
is almost entirely determined by the registers storing the key and state. As a
result, significant area-improvements can only be achieved by breaking the mem-
ory barrier, for example by externalizing key storage (cf. Ktantan [14]), or, for
FPGAs, hiding state and key in dedicated bulk memory such as block RAMs [19]
or shift registers [1]. Since the remainder of the work uses Present and Simon for
proof-of-concept implementations, we provide more details on these two ciphers
here.

822 C. Chen et al.

2.2 Present

Present is a hardware-oriented block cipher proposed in 2007, optimized for
low area footprint [7]. It is a substitution-permutation network featuring a 4 ×
4 bit S-box and a permutation layer consisting only of bit shifts, making it low
cost in hardware. It features a block size of 64 bits and a key size of 80 or
128 bits, and has 31 rounds. Present has been optimized for many application
scenarios, but the area-minimal implementations with a 4-bit data-path. It has
also been standardized as a lightweight cryptographic block cipher as ISO/IEC
29192-2:2012. Each round of Present cipher consists of three steps including a
key-addition layer, a substitution layer which is a non-linear function, and a
permutation layer. In the first step, the round key which is consisted of left most
significant 64 bits of the key is xored with the 64-bit current state. In the next
step, the Present S-box is used which is a non-linear 4-bit to 4-bit function shown
in the following table in hexadecimal notation.

x 0 1 2 3 4 5 6 7 8 9 A B C D E F

S(x) C 5 6 B 9 0 A D 3 E F 8 4 7 1 2

The substitution layer can be performed with 16 parallel S-box or using only
one S-box 16 times which depends on the application requirement. In the last
step, the permutation is applied to all the 64-bit data which is just a rewiring.

At the same time, the key is updated in the key schedule part. The key can
be 80-bit or 120-bit; however we use 80-bit key in this paper. In each round the
64 left most bits of the current key, k79k78k77...k17k16, is used in addroundkey.
After using the round key, the 80-bit key register is updated by shifting, using
S-box, and xoring with round-counter. More details about the specification of
the Present is provided in [7].

2.3 Simon

Simon is a lightweight block cipher proposed by NSA in 2013 [2]. Simon imple-
ments a Feistel structure that accepts two n-bit words as input plaintext, with
n ∈ {16, 24, 32, 48, 64}. For each input size 2n, Simon has a set of allowable key
sizes ranging from 64 bits to 256 bits. The number of rounds in Simon ranges
from 32 to 72 rounds. Simon128/128, which can be seen as a drop-in replacement
for AES-128, accepts 128 bits of plaintext at a word size of 64 bits and 128 bits of
key. It generates a ciphertext after 68 rounds. The Simon128/128 parameter set
will be used throughout this work, though the implementation strategies apply
to other parameter sets in a natural way.

We denote the input words of round i as li and ri. Then the output words
are given as:

ri+1 = li

li+1 = ri + l2i + (l1i ∗ l8i) + ki
(1)

A Tale of Two Shares: Why Two-Share Threshold Implementation 823

The upper index in lsi indicates left circular shift by s bits. The addition and
the multiplication are in GF(2) and equivalent to bitwise XOR and AND oper-
ations, respectively. Given the initial key words k0 and k1 (and possibly k2 and
k3, depending on the key size), which are also used as first round keys, the
subsequent round keys are computed as:

ki+2 = ki + k−3
i+1 + k−4

i+1 + ci Two and Three Words

ki+4 = ki + ki+1 + k−1
i+1 + k−3

i+3 + k−4
i+3 + ci Four Words

(2)

where ci is a round constant.

2.4 Masking

Masking is a common technique to prevent side channel leakage [10]. Sensitive
states of a cryptographic implementation are split into shares by adding random-
ness. In an additive masking scheme, a variable x is split into s shares xi with
i ∈ {0, 1, . . . , s − 1} by choosing xi>0 uniformly at random and x0 = x+

∑s−1
i=1 xi.

These shares are then processed separately, ensuring that the sensitive state is
never presented in the system, and—more importantly—that processed states
are independent of the secret.

2.5 Threshold Implementation

Threshold Implementation (TI) was proposed by Nikova et al. [25] as a side-
channel countermeasure to address the common problem of glitches that resulted
in leakage for many other theoretically sound countermeasure techniques when
applied to hardware. The original proposal only deals with protection against
first-order side-channel leakages. Threshold Implementation has found wide-
spread adoption in the academic community: several implementations of sym-
metric [5,6,24,26,31] and even asymmetric crypto algorithms [11,28] have been
successfully protected with TI. Recently, TI has been expanded to protect against
higher-order attacks as well [4], though potential pitfalls of the scheme in the
multivariate setting have been pointed out and fixed in [27].

TI combines a set of three requirements with a constructive description of
how to convert an algorithm into a side-channel resistant implementation in the
presence of glitches. Sensitive states are converted into a shared representation
by applying an additive Boolean masking, i.e., adding randomness. Functions
F (·) are converted meeting the requirements of correctness, uniformity, and non-
completeness.

– Uniformity requires all intermediate states (shares) to be uniformly dis-
tributed. Uniformity is intended to ensures the mean leakages to be state-
independent, a key requirement to thwart first-order DPA. To ensure unifor-
mity in a circuit it suffices to ensure uniformity for the output share of each
function, as well as for the inputs of the circuit.

824 C. Chen et al.

– Non-Completeness requires subfunctions fi of a shared function F to be
independent of at least one input share for first-order SCA resistance. That
is, a function F (x) shall be split into subfunctions fi(xj �=i). This requirement
was updated in [4] to require any d subfunctions to be independent of at
least one input share to achieve d-th order SCA resistance. Non-completeness
ensures that the final circuit is not affected by glitches. Since glitches can only
occur in subfunctions fi, and each subfunction has insufficient knowledge to
reconstruct a secret state (since it has no knowledge of at least one share xi),
no leakage can be caused by glitches.

– Correctness simply states that applying the subfunctions to a valid shared
input must always yield a valid sharing of the correct output.

In the classic approach, a function of algebraic degree t can be implemented
using at least t+1 input shares for first order side-channel resistance, and td+1
for d-th order resistance [4,27]. In practice, virtually all implementations try to
keep the number of shares low, i.e. for first order-protected designs at or close to
3. As a consequence, implementations of algebraically more complex functions
need to be broken into algebraically simpler subfunctions. The described TI
conversion always ensures correctness and non-completeness. Uniformity can be
either achieved by using more input shares or by adding randomness during the
computation. As a result, many of the published implementations, in order to
reduce the size of the circuit, consume lots of randomness, up to thousands of
bits per encrypted block.

2.6 Leakage Detection

A side channel leakage detection method based on Welch’s t-test has been
recently gaining popularity due to its simplicity, efficiency and reliability. The
test procedures have been well studied in [12,30] and is often referred to as Test
Vector Leakage Assesment (TVLA) test. Unlike other attacks or leakage mod-
els used for key recovery, TVLA only returns a confidence level to reject the
leakage-free hypothesis and fail the device under test. Essentially, a t-statistic is
calculated using two sets of leakage samples as:

t =
μA − μB√

(σ2
A/NA) + (σ2

B/NB)
(3)

where A and B denote the two sets and Nj denotes the number of traces in set
j ∈ {A,B}. μj and σj are the sample mean and sample variance respectively.
The two sets of measurements are obtained with either fixed versus random
plaintext (in a non-specific t-test) or random versus random plaintext (in a
specific t-test). In our work we use the non-specific t-test since it does not depend
on any intermediate value and power model. When the value of t exceeds a
certain threshold, the null hypothesis can be rejected with a small Type I error
probability p. In this paper, we follow the threshold of ±4.5 used in [18,22].

A Tale of Two Shares: Why Two-Share Threshold Implementation 825

An improved methodology based on paired t-test was suggested in [16]. The
test uses matched pairs from the two sets of measurements. The advantage of
this methodology is that common noise to both measurements can be rejected,
making the test much more robust to slow changes of operating points in long
measurement campaigns. When n such pairs of measurements are obtained, we
have n difference measurements D = LA − LB where LA is a random variable
representing samples from set A while LB from set B. The paired difference
cancels the noise variation and makes it easier to detect nonzero population
difference. Now, the null hypothesis becomes mean difference μD = 0 instead of
μA = μB . Let D̄ and s2D denote the sample mean and sample variances of the
paired differences D1, ..., Dn. The paired t-test statistic is calculated as:

tp =
D̄

√
s2D
n

, (4)

The null hypothesis of non-leakage is also rejected if |tp| exceeds the threshold
of 4.5.

With respect to higher order leakage detection, the original traces should
be preprocessed as explained in [30]. For example in a second order t-test, the
traces - at each sample points independently - are mean free squared beforehand.
Usually, the global mean of all samples at each time point is used. However, as
suggested in [16], a moving average which is the average of neighboring traces
around each trace is used instead to mitigate the environmental effects. In our
experiments, we apply both tests, the classic TVLA test as well as the paired
T-test, the latter one with moving averages for higher-order analysis.

3 Threshold Implementation with Two Shares

While the constructive approach by Nikova et al. allows to implement any
d-th order algebraic functions in a straightforward way, actual implementations
requiring to share functions of degree greater than 2 have put significant effort
into keeping the number of shares as close as possible to three, which is per-
ceived as the minimum possible to implement nonlinear functions, until [27]1.
In particular, [21] discussed the efficient implementation of 4-bit S-boxes with
three shares. Similarly, the current TIs of AES utilize the algebraic structure of
the AES S-box and four [24] or variable with up to five shares [6] to implement
the S-box on a small area.

A natural question is: Why to stop at three shares? If small area is desirable,
using similar techniques as the ones used by the above papers could enable TIs
with just two shares, further reducing the area footprint as well as the need
for randomness. This approach was already discussed in [27]. The approach is
straightforward for the linear operations of an implementation, and has already

1 It should be noted that [31] also proposed a two-share TI version of Simon, with the
requirement of manually preventing glitches for two parts of the equation.

826 C. Chen et al.

been widely used in several TIs for those parts [3,6,11]. The simplest nonlinear
operation is a simple two-input and: c = ab which can be processed with two
shares as

c0 = a0b0 c1 = a1b1 c2 = a0b1 c3 = a1b0 (5)

This equation is in violation of the common interpretation of the non-
completeness requirement, since c2 and c3 mix inputs from shares with different
indices. However, non-completeness is not violated as long as a and b are statis-
tically independent.

Equation (5) suggests a 4-share output, which is undesirable for a minimal
implementation. To keep the number of shares low, the four shares ci can be
recombined in the next cycle, e.g. c′

0 = c0 + c2 and c′
1 = c1 + c3. However,

since the recombination would violate non-completeness, it must happen after a
register-stage in the next clock cycle. In other words, a pipelining stage becomes
necessary, increasing the register count and the delay of the output. The share
proliferation gets worse for higher-degree algebraic functions, as stated in [27].
However, hardware-minimal implementations break higher-order algebraic func-
tions into degree-minimal building blocks anyway, making share proliferation a
theoretical concern only.

To also ensure uniformity and thus gain an implementable basic nonlinear
building block, we implement z = ab + c in two pipeline stages as

z′
0 = a0b0 + c0 z′

1 = a1b1 + c1 z0 = z′
0 + a0b1 z1 = z′

1 + a1b0 (6)

Note that z′
i and zi are computed in separate cycles. Conveniently, the z′

i and zi
are uniform. Furthermore, this computation order only needs to store 2 interme-
diate states (unlike Eq. (5)). However, this assumes that the inputs are available
in two subsequent clock cycles, which is a valid assumption in many serialized
implementations. Either way, the resulting pipelining of the nonlinear function
increases area overhead of that function, and also introduces a latency according
to the number of pipeline stages needed. Most of this latency can be hidden if
the data path of the implementation is small enough.

3.1 Potential Pitfalls

Share rotation. In [26] it was suggested to rotate the shares in every step to
achieve increased side channel resistance. With two shares, this is highly dan-
gerous: if s0 overwrites s1, the resulting leakage is likely to depend on both
shares, hence has a direct dependence on the secret itself. In general, any regis-
ter updates must be handled with great care.

Increased Higher-order leakage. The observed higher order leakage can be
explained by the significant dependende of the variance on the value of the share
x. For a simple example we compare a 2-sharing S2 and a 3-sharing S3 of a bit
x into S2(x) = 〈x0, x1〉 and S3(x) = 〈x0, x1, x2〉 respectively. We further assume

A Tale of Two Shares: Why Two-Share Threshold Implementation 827

Table 1. Comparison of leakage for a 2-sharing (S2) and 3-sharing (S3) of a bit x in
a Hamming weight model. The 2-sharing (S2) shows a leakage in the variance σ(S2).

x S2(x) S3(x) wt(S2) wt(S3) μ(S2) μ(S3) σ(S2) σ(S3)

0 {00, 11} {000, 011, 101, 110} {0, 2} {0, 2, 2, 2} 1 3/2 2 1

1 {01, 10} {001, 010, 100, 111} {1, 1} {1, 1, 1, 3} 1 3/2 0 1

a Hamming weight (wt(·)) leakage on the shares. Table 1 lists the possible states
and the resulting means and variances for both sharings.

As proper TI sharings of x, the mean leakage μ(Si) is independent of the
value of x. However, the variance of S2 depends on x, in particular var(S2(x =
0)) = 2 �= 0 = var(S2(x = 1)). This is not true for the 3-sharing S3, where
the variances in both cases are identical as well. This is a strong indication why
2-sharings may have a strong second-order leakage. This was also observed for
partial 2-share implementations in [3] and will be demonstrated for full 2-share
implementations in the analysis of our reference implementations in Sect. 7.

4 Application to Simon

Threshold Implementations of Simon with three shares have been proposed in
[31] to counteract first-order side channel attacks. Moreover, their bit-serialized
implementation only consumes 87 slices on Spartan-3 xc3s50 FPGA which ren-
ders it the smallest threshold implementation of a block cipher. The authors also
discussed how the requirement of non-completeness shuts the door on a two-share
hardware implementation of Simon but not on software implementations.

In this section, we at first apply serialization technique in order to realize a
two-share TI Simon on hardware. The leakage detection analysis and implemen-
tation results will be presented in Sects. 6 and 7.

4.1 Simon with Two Shares

We follow the notation used in [31] to describe the cipher. The input plaintext
is initially split into two shares as:

r[a]0 = m[p][1]
l[a]0 = m[p][2]
r[b]0 = m[p][1] + r0

l[b]0 = m[p][2] + l0

(7)

Where r and l represents the two input words, a and b denote two shares of the
variables and subscript i indicates the round of encryption. m[p][1] and m[p][2]
are two fresh random values that mask the plaintext in the very beginning of

828 C. Chen et al.

the algorithm and no more random numbers are needed for the rest operations.
Then, the round function is denoted as:

r[a]i+1 = l[a]i
l[a]i+1 = r[a]i + l[a]2i + l[a]1i ∗ l[a]8i + l[a]1i ∗ l[b]8i + k[a]i
r[b]i+1 = l[b]i
l[b]i+1 = r[b]i + l[b]2i + l[b]1i ∗ l[b]8i + l[b]1i ∗ l[a]8i + k[b]i

(8)

Where the superscripts 1, 2, 8 on l[∗]i represent left circular shift by correspond-
ing numbers of bits. (Notice that both addition and multiplication are in GF(2)).
Obviously, the computations of l[a]i+1 and l[b]i+1, if directly mapped into com-
binational circuits, are not non-complete since the two shares l[a]8i and l[b]8i are
present in the same circuit and glitches may still cause leakage. We can serialize
the above equations by enforcing them being executed in two steps rather than
one. That is, we first compute the intermediate values l[a]i+1,int and l[b]i+1,int

using only half of the terms in the equations as follows:

l[a]i+1,int = r[a]i + l[a]2i + l[a]1i ∗ l[a]8i
l[b]i+1,int = r[b]i + l[b]2i + l[b]1i ∗ l[b]8i

(9)

Then, the round outputs can be further calculated as:

l[a]i+1 = l[a]i+1,int + l[a]1i ∗ l[b]8i + k[a]i
l[b]i+1 = l[b]i+1,int + l[b]1i ∗ l[a]8i + k[b]i

(10)

The serialization not only retains both correctness and uniformity but achieves
non-completeness as well. In Eq. (9), the inputs r[a]i, l[a]2i , r[b]i and l[b]2i are all
uniform and therefore the output intermediates are also uniform. Each function
is independent of one share of every input and hence is non-complete. Similarly,
Eq. (10) also satisfies the three requirements. Correctness can be easily proved by
substituting l[a]i+1,int and l[b]i+1,int with Eq. (9). The uniformity of inputs k[a]i
and k[b]i makes the outputs uniform too. Moreover, each function is independent
of one share of every input and thus the functions are non-complete as well. One
may argue that l[a]1i and l[b]8i (or l[b]1i and l[a]8i) are two shares of li with different
rotations and may leak information of li. However, the multiplication between
them is in GF(2) and is equivalent with bitwise AND operation. Further, in
order to ensure the non-completeness, “Keep Hierarchy” property of synthesize
tool (ISE with XST) is enabled to separate the LUTs for AND.

4.2 Round-Based Implementation

Figure 1 depicts the structure of a FPGA implementation which contains two
copies of the same data-path which consists of two registers Lj and Rj and
the combinational circuits for round functions. Specifically, two clock cycles are
taken to process each round operation. In the first clock cycle, the round inputs

A Tale of Two Shares: Why Two-Share Threshold Implementation 829

Fig. 1. Data-path of the simon with two shares. Solid line: First clock cycle; Dashed
line: Second clock cycle

are evaluated with Eq. (9) and then the intermediates are overwritten back into
the registers as illustrated by the solid lines in the figure. Note that r[j]i+1 = l[j]i
is stored in Rj while l[a]i+1,int is in Lj . Then, in the second clock cycle, Eq. (10)
is evaluated as shown by the dashed line but remember that since l[j]i is now
stored in Rj and hence no extra buffer is needed for it.

The sharing of key schedule is not presented here since it consists of linear
operations only and is trivial to implement.

4.3 Bit-Serialized Implementation

In order to fairly compare with the bit-serialized 3-TI Simon introduced in [31]
and achieve a even smaller size of Simon implementation, a bit-serialized 2-TI
Simon is constructed as depicted in the Fig. 2 (Only one share is shown).

Our design originates from the FIFO-based 3-TI bit-serialized in [31] but
introduces new features in order for a 2-TI architecture.

First of all, the round function is adjusted according to Eqs. 9 and 10. (Note
that both equations are evaluated in bits instead of the whole word in this case.)
Therefore, as shown in the LUT part of Fig. 2, a one-bit register is inserted to
hold the intermediate value l[a]i+1,int so that l[a]8i and l[b]8i will not be combined
to cause leakages mistakenly.

Second, due to the insertion of this register, it will take two clock cycles
for LUT to perform round operation for each bit. However, by using pipeline
technique, the overall throughput will not be scarified too much. In fact, the
2-TI architecture processes all 64 bits within 65 clock cycles which is only one
more than 3-TI in [31]. In order to achieve this, the FIFOs and shifted registers
are designed to work as following.

830 C. Chen et al.

Fig. 2. Data-path of the bit-serialized 2-TI Simon

– Initially, the 128-bit block is stored in register #63, Shifted Registers Up
(SRU) #62 to #55, FIFO 1 and FIFO 2.

– Once Encryption started, the values are right shifted and in the mean time
bits in register #63, #62 and #56 as well as bit 0 in FIFO 2 are fed into LUT
for logic operation.

– The output will be written back to Shifted Registers Down (SRD). Note that
the valid outputs are generated since the second clock cycle. And then, after
64 clock cycles, the first 63 output bits are stored in Shifted Registers Down
(SRD) #62 to #55, FIFO 1 and FIFO 2. In the last (65th) clock cycle, the
final output bit will be written in register #63. Therefore, the whole round
operation is done within 65 clock cycles.

5 Application to Present

In this section, we apply two-share Threshold Implementation to the Present
cipher. In [21], the authors presented the 3-TI Present S-box. To achieve this,
they decomposed the non-linear S-box of degree 3 into the combination of two
quadratic functions—G function—plus some linear functions, and then imple-
ment them with three shares. We follow their idea to use the same decom-
position but then implement them with 2-TI while still retaining uniformity,
non-completeness, and correctness. According to [21], the S-box of Present can
be decomposed as:

S(X) = A(G(G(BX ⊕ c)) ⊕ d) (11)

Where G(.), A, B, and the constant vectors of c, d are given as follows:

G(x, y, z, w) = (g3, g2, g1, g0)
g3 = x + yz + yw

g2 = w + xy

g1 = y

g0 = z + yw

(12)

A Tale of Two Shares: Why Two-Share Threshold Implementation 831

A =

⎡

⎢
⎢
⎣

1 0 1 0
0 1 0 0
1 0 0 0
1 0 1 1

⎤

⎥
⎥
⎦ , B =

⎡

⎢
⎢
⎣

1 1 0 0
0 1 1 0
0 0 1 0
0 1 0 1

⎤

⎥
⎥
⎦ , c =

[
0 0 0 1

]
, d =

[
0 1 0 1

]
(13)

5.1 Present with Two Shares

A 2-sharing scheme of G(.) can be expressed as follows546:

G0(x0, y0, z0, w0, x1, y1, z1, w1) = (g03, g02, g01, g00)
g03 = x0 + y0z0 + y0z1 + y0w0 + y0w1

g02 = w0 + x0y0 + x1y0

g01 = y0

g00 = z0 + y0w0 + y0w1

(14)

G1(x0, y0, z0, w0, x1, y1, z1, w1) = (g13, g12, g11, g10)
g13 = x1 + y1z0 + y1z1 + y1w0 + y1w1

g12 = w1 + x0y1 + x1y1

g11 = y1

g10 = z1 + y1w0 + y1w1

(15)

The above sharing satisfies both correctness and uniformity when the input
shares are uniformly distributed. However, non-completeness is not fulfilled since
two shares of the same inputs are fed into the same functions in some of the above
equations.

As before, we serialize the computations into two steps in order to achieve
non-completeness as illustrated in the following equations.

G1
0(x0, y0, z0, w0) = (g103, g

1
02, g

1
01, g

1
00)

g103 = x0 + y0z0 + y0w0

g102 = w0 + x0y0

g101 = y0

g100 = z0 + y0w0

(16)

G2
0(x1, y0, z1, w1, g

1
03, g

1
02, g

1
01, g

1
00) = (g203, g

2
02, g

2
01, g

2
00)

g203 = g103 + y0z1 + y0w1

g202 = g102 + x1y0

g201 = g101

g200 = g100 + y0w1

(17)

832 C. Chen et al.

G1
1(x1, y1, z1, w1) = (g113, g

1
12, g

1
11, g

1
10)

g113 = x1 + y1z1 + y1w1

g112 = w1 + x1y1

g111 = y1

g110 = z1 + y1w1

(18)

G2
1(x0, y1, z0, w0, g

1
13, g

1
12, g

1
11, g

1
10) = (g213, g

2
12, g

2
11, g

2
10)

g213 = g113 + y1z0 + y1w0

g212 = g112 + x0y1

g211 = g111

g210 = g110 + y1w0

(19)

The superscript indicates the level of the circuit. Until now, we achieved a correct,
non-complete and uniform two-share implementation of G(.). The conversion of
the remaining linear operations is discussed next.

5.2 Hardware Implementation

As depicted in Fig. 3, in order to provide the non-completeness to the design, we
use registers to separate the two parts of the G. The second part of the shares
(G2

0 and G2
1) use not only the outputs of the first part of the shares (G1

0 and
G1

1) but also some of their inputs as well (depicted in Fig. 3). One 6-bit register
and two 4-bit registers are used before the second part of the G module, to store
the inputs x0, x1, z0, z1, w0, and w1; and the outputs of the first part of the G
module, respectively.

In Fig. 4, the S-box architecture is depicted which includes two G modules,
and functions BX+c0 and AX+d0 for the first share as well as functions BX+c1
and AX +d1 for second share in which c0+c1 = c and d0+d1 = d. Furthermore,
due to non-completeness, we use another row of registers in between two G(.)
functions in the S-box. One may argue that registers should also be inserted
between non-linear functions (e.g. G(.)) and linear functions (e.g. AX + d0),
since when they are merged the two shares of certain variables may be combined
again which fails the non-completeness requirement. While this is true in general
cases, our design avoids this problem as G2

0 and G2
1 are both independent of

one share of the inputs and hence any linear combination of g213, g
2
12, g

2
11, g

2
10 or

g203, g
2
02, g

2
01, g

2
00 still satisfies non-completeness.

Figure 5 shows the whole Present cipher with two shares. The design includes
two control inputs namely key load and data load. If key load is high, at
the rising edge of the clock signal, the 80-bit input key shares-Key A and
Key B- are copied to the registers Key A and Key B respectively. When the
data load signal is high, at the rising edge of the clock signal, 64 right-most
significant bits of the input shares (data in A[63:0], data in B[63:0]) are
copied to state registers. It is worth mentioning that when the data load is
set, i.e. loading new two shares of plaintext into the state registers results in a

A Tale of Two Shares: Why Two-Share Threshold Implementation 833

Fig. 3. Hardware architecture of the
2-share G module

Fig. 4. Hardware architecture of the
2-share S-box module

Fig. 5. Hardware architectures of the 2-shares Present Cipher.

reset of the state machine. That why this design does not have a reset signal.
When the two-share keys and two-share plaintexts are loaded, both key load
and data load must be set to zero. After that, it takes 31 rounds in order to
Data out A and Data out B have a valid ciphertexts. In each round, the S-box
and permutation operations respectively operate the inputs to update the state
registers for the next round. Considering the hardware design, each G(.) function
needs one cycle and then every S-box needs four clock cycles to compute table
lookup. According to the Fig. 5, each 64-bit input stored in the State register
needs to use S-box 16 times. Hence, it needs 4 clock cycles for the first S-box due
to its latency, plus 15 clock cycles for other 15 S-boxes in pipeline, also one more
clock cycle for the permutation operation. Therefore, we need 20 cycles for each
round of the Present cipher. Hence, we define another control signal, ‘counter’,

834 C. Chen et al.

Table 2. Implementation results of two-share Simon and Present.

Design Slice (Regs) Slice (LUTs) Max. Frequency

(MHz)

Throughput

(Mbps)

Present on Virtex 5

3-TI Present 466 (3.0x) 715 (3.1x) 397.289 45.567

2-TI Present 370 (2.4x) 742 (3.2x) 490.252 50.61

Present 154 (1x) 234 (1x) 394.563 40.73

Round-based Simon on Virtex 5

3-TI Simon 777 (2.8x) 1302 (2.8x) 414 779

2-TI Simon 520 (1.9x) 1169 (2.5x) 382 360

Simon 272 (1x) 473 (1x) 421 792

Bit-serialized Simon on Spartan 3

3-TI Simon [31] 61 (2.0x) 160 (2.2x) 109.4 3.21

2-TI Simon 55 (1.8x) 135 (1.9x) 91.1 2.64

Simon [1] 30 (1x) 72 (1x) 91.4 2.69

in which it updates the state registers and Key registers after each 20 cycles.
After each cycle of these 20 cycles, the state registers are shifted to the right by
4 bits and the four most significant bits of the state registers are replaced by
the outputs of substitution and permutation network. The Present cipher has 31
rounds, hence a full encryption of a 64-bit input takes 620 clock cycles. We also
design an unprotected Present cipher to show the area overhead of the protected
Present versus unprotected one as well as its impact on maximum frequency and
throughput. The comparison results are shown in Table 2.

6 Implementation Results

Table 2 summarizes the overhead and performance of two-share implementations
of both ciphers. Note that we only implement Simon128/128 and Present64/80
as an example to show the advantage of two-share scheme. All the designs are
implemented in Verilog and synthesized for Virtex-5 (xc5vlx50) or Spartan-3
(xc3s50) using XST.

For round-based Simon, we have three different implementations: unpro-
tected, 2-TI and 3-TI. In terms of slice registers used, two-share TI implemen-
tation costs twice as much as the unprotected one and one third less than the
3-TI implementation. This is not surprising since increasing by one share will
consume one more copy of registers to store the new share. Similarly, number of
LUTs also increases. However, each round operation in 2-TI costs double clock
cycles and therefore the throughput is greatly reduced compared with the other
two designs.

We also implement bit-serialized 2-TI Simon to compare with the currently
smallest block cipher designs for FPGAs, as given in [1], as well as its first-order

A Tale of Two Shares: Why Two-Share Threshold Implementation 835

protected 3-TI version from [31]. As shown in Table 2, our 2-TI design reduces the
area overhead when compared to the 3-TI by about 13 %, i.e., cannot quite reach
the optimal reduction of 33 % due to the pipelining overhead and the unaffected
control logic. Nevertheless, this yields the smallest first-order protected block
cipher design for FPGAs with the same parameters as AES-128.

With respect to Present, we have three implementations: Unprotected, Reg-
ular 3-TI, and the new 2-TI Present. In terms of slice registers used, regular
3-TI implementation used more than three times of the unprotected one. This is
because we should use extra registers to guarantee the non-completeness of first-
order resistant three-share Present cipher. Also, two-share implementation costs
more than two times of unprotected Present because of the same reason men-
tioned before. Moreover, it is worth mentioning that the 2-TI first order resistant
implementation uses less registers than 3-TI. For example, we use extra registers
in G(.) function as explained in Sect. 5. These registers help reducing the critical
path, which explains the speed-up and resulting increase in throughput for 2-TI
Present.

7 Leakage Analysis

In this section, we extend the discussion of a strong second-order leakage of
two-share TI scheme, which was already described in Sect. 3.1, using simulation
based leakage and the measurements from our reference implementations.

7.1 Theoretical Analysis

First we discuss the strong second-order leakage of two-share TI scheme using
two-share Present S-box look-up as a target, namely the key-dependent inter-
mediate value y = S(x ⊕ k) where x, y, k are 4-bit input plaintext, S-box output
and sub-key receptively.

Synthetic samples and leakage model. First, we generate noise free synthetic
leakage samples of the 2-TI Present S-box based on Hamming weight model. As
shown in Sect. 5, a 2-TI S-box processes two shares (4 bits for each share) in
parallel and hence we use the Hamming weight of both output shares (8 bits
in total) as the synthetic leakage samples. Further, in order for a second order
analysis, the synthetic data should be center-and-then-squared. With respect
to the leakage model, we use the Hamming weight of the regular S-box output
which equals the bitwise XOR between the two output shares in the 2-TI S-box.

First-order analysis. We perform first-order non-specific paired t-test on the
synthetic data and attempt to exploit any leakage using classic CPA as well. For
this purpose, 1 million synthetic leakage samples for random input plaintext are
generated as well as another 1 million for fixed inputs. The result of t-test using
the 2 million samples is shown in Fig. 6(a) where the t value is less than 2 as the

836 C. Chen et al.

200k 400k 600k 800k 1M 1.2M 1.4M 1.6M 1.8M 2M
0

1

2

3

4

5

6

Number of Traces

t v
al

ue

(a) 1st order t-test

100k 200k 300k 400k 500k 600k 700k 800k 900k 1M
0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

0.01

Number of Traces

M
ax

im
um

 a
bo

so
lu

te
 c

or
re

la
tio

n

(b) 1st order CPA

Fig. 6. First-order leakage analysis of synthetic data. Left: first-order paired t-test.
Right: first-order CPA; Red line corresponds to the correct key guess

40 80 120 160 200 240 280 320 360 400
0

1

2

3

4

5

6

7

Number of Traces

t v
al

ue

(a) 2nd order t-test

20 40 60 80 100 120 140 160 180 200
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of Traces

M
ax

im
um

 a
bo

so
lu

te
 c

or
re

la
tio

n

(b) 2nd order CPA

Fig. 7. Second-order leakage analysis of synthetic data. Left: second-order paired t-test.
Right: second-order CPA; Red line corresponds to the correct key guess

number of traces (synthetic samples) increases to 2 million. Then, a classic first-
order CPA is performed on the 1 million samples associated with the random
inputs using the above-mentioned leakage model. The results in Fig. 6(b) shows
the correct key cannot be distinguished from the wrong key hypotheses with as
much as 1 million samples and the attacks fail.

Second-order analysis. Then, we proceed with second-order non-specific paired
t-test and CPA. For this purpose, 200 synthetic leakage samples for random
input plaintext are generated as well as another 200 for fixed inputs. Figure 7(a)
shows that t value exceed 4.5 with only a couple of hundreds of samples while
classic CPA can recover the correct key with less than a hundred samples as
shown in Fig. 7(b).

In summary, the theoretical analyses also show the first-order resistance of
2-TI scheme but reveals a strong second-order leakage. This strong second-order
leakage is caused by the differing variances, as pointed out in Sect. 3.1. Note that

A Tale of Two Shares: Why Two-Share Threshold Implementation 837

we use perfect Hamming weight model for synthetic data without adding any
noise. Hence, the CPA with a Hamming weight model can efficiently recover the
key because it captures the leakage well. In fact, CPA on a perfect Hamming
weight leakage is comparable to a profiled attack, in the absence of noise. But in
the real world, actual leakages are more complex and CPA with Hamming weight
model will not be as efficient as in this synthetic scenario. In the following we
will conduct analysis on practical implementations to show this.

7.2 Practical Analysis

Next, we discuss the leakage analysis results for the two-share implementations
of round-based Simon and Present. First, we apply the non-specific paired t-
test method from [16] to detect any data-dependent leakage. Fixed (F) and
random (R) measurements are interleaved using the FRRF pattern. Also, leakage
detection tests are performed on round-based 3-TI Simon in order to compare
with 2-TI and show the first-order leakage resistance of two-share scheme. Then,
classic CPA is performed in order to exploit the second-order leakage detected
by t-test and the results comply with the simulations in Sect. 7.1.

The analyzed implementations are ported into a Virtex-5 xc5vlx50 FPGA on
the SASEBO-GII board clocked at 3 MHz. Measurements are taken using a Tek-
tronix DPO-5104 oscilloscope which collects measurements with sample rate of
100 MS/s. The oscilloscope features a FastFrame functionality that can capture
encryptions in bulk and thus 10 million measurements for each implementation
can be taken in several hours.

Round-based 2-TI Simon. For two-share Simon implementation, 10 million
measurements are collected, yielding 5 million fixed-random pairs. Each mea-
surement contains 5000 time samples, covering the 68 rounds of Simon. The
first-order paired t-test is performed using n = 5000, 10000, 15000, . . . pairs.
Figure 8(a) shows the first order t-test result on the two-share Simon. The maxi-
mum absolute t value across the 5000 time samples remains below the threshold
of 4.5 with 10 million traces. We conclude that the two-share Simon imple-
mentation is resistant against first-order DPA and thus a validly implemented
threshold implementation.

The results of the second order paired t-test are shown in Fig. 8(b). The step
size is reduced to n = 100, 200, . . . to magnify the relevant area: The t value of
the second order analysis grows beyond 4.5 with about 500 traces. That is, a
second order leakage is detectable with just hundreds of traces.

Round-based 3-TI Simon. In order to practically compare the performance
of 2-TI and 3-TI in resisting first-order and second-order leakage, the paired
t-test is also applied to 10 million FRRF measurements from a round-based
3-TI Simon. Figure 9(a) shows similar result as in Fig. 8(a) and the t value is
below the threshold of 4.5. The comparison shows again that the first-order
resistance of 2-TI is solid as a 3-TI. However, 3-TI exhibits resistance against
second-order analysis as shown in Fig. 9(b) and the t value is still below 4.5 with

838 C. Chen et al.

0 1M 2M 3M 4M 5M 6M 7M 8M 9M 10M
2

2.5

3

3.5

4

4.5

5

Number of Traces

M
ax

im
um

 t
va

lu
e

Paired T−test

(a) 1st order t-test

0 200 400 600 800 1000 1200 1400 1600 1800 2000
3

4

5

6

7

8

9

Number of Traces

M
ax

im
um

 t
va

lu
e

Paired T−test

(b) 2nd order t-test

Fig. 8. Leakage detection results for the two-share implementation of Simon for first
order (left) and second order (right) leakage over the number of traces. Note that the
dimensions change for both axes.

0 1M 2M 3M 4M 5M 6M 7M 8M 9M 10M
2

2.5

3

3.5

4

4.5

5

Number of Traces

M
ax

im
um

 t
va

lu
e

(a) 1st order t-test

0 1M 2M 3M 4M 5M 6M 7M 8M 9M 10M
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Number of Traces

M
ax

im
um

 t
va

lu
e

(b) 2nd order t-test

Fig. 9. Leakage detection results for the three-share implementation of Simon for first
order (left) and second order (right) leakage over the number of traces.

10 million traces. That is, given more than 1000x as many measurements as for
the 2-TI case, the leakage is just barely detectable. The results comply with the
simulation analyses in Subsects. 3.1 and 7.1 and validate the weakness of 2-TI.

2-TI Present. As before, 10 million traces are captured for the two-share Present
implementation, and then analyzed using paired t-test. The first order t-statistic
is still below 4.5 with 10 million measurements, as shown in Fig. 10(a). The
second order t-statistics exceeds the threshold with about 6000 traces as shown
in Fig. 10(b). Again, the results suggest that two-share TI holds the promise of
first order resistance, but fares terribly on the second order resistance.

Exploiting the Uncovered Leakages. In order to practically exploit this strong
second-order leakage, a classic CPA [6,8,10] is performed on the measurements
(center-and-then-squared) associated with the 5 million random plaintexts.

A Tale of Two Shares: Why Two-Share Threshold Implementation 839

0 1M 2M 3M 4M 5M 6M 7M 8M 9M 10M
2.5

3

3.5

4

4.5

5

Number of Traces

M
ax

im
um

 t
va

lu
e

Paired T−test

(a) 1st order t-test

0 2k 4k 6k 8k 10k 12k 14k 16k 18k 20k
2

3

4

5

6

7

8

Number of Traces

M
ax

im
um

 t
va

lu
e

Paired T−test

(b) 2nd order t-test

Fig. 10. Leakage detection results for the two-share implementation of Present for first
order (left) and second order (right) leakage over the number of traces. Note that the
dimensions change for both axes.

For 2-TI Simon, the targeted operations occurred in the first clock cycle of the
third round of encryption where shared values in registers La and Lb overwrite Ra

and Rb respectively (see Fig. 1). The leakage model used is Hamming distance
between registers L and R as in a plain or unprotected implementation. The
reason why third round is chosen is because of the weak non-linearity of single
Simon round operation (only one AND) and attacking third round would relieve
the effect of “ghost peaks” [8]. Moreover, in order to reduce the computational
complexity, we follow the divide-and-conquer approach and only attack the most
significant four bits in L and R which are dependent on 10 bits in k0 and 4 bits
in k1. Therefore, 214 key hypotheses are required for the attack. To further
reduce the complexity, we assume the knowledge of the relevant 4 bits in k1 is
known and only 10 bits in k0 are aimed at to recover. Figure 11(a) shows the
max correlation for each key hypothesis over the number of traces. The practical
second-order attack successfully recovers the correct key with more than 3 million
measurements even though ghost keys still exist. Note that these results can be
significantly improved by using a profiled attack, predicting more bits, and by
using a pruning technique as e.g. done in [17], which is always an option for
ciphers with a low algebraic depth per round. Nevertheless, the results validate
the second-order leakage of two-share TI detected by the t-test and it can be
practically exploited.

We also performed the same second-order CPA on 5 million random traces
(center-and-then-squared) on 2-TI Present, targeting at the S-box output to
exploit the leakage. Recall our 2-TI Present in which the 64-bit state registers
are right rotated by 4 bits per clock cycle so that the least significant nibble is
continuously fed into the S-box look-up and output is written back to the most
significant nibble after 4 clock cycles. Therefore, a Hamming distance leakage
occurs between consecutive output nibbles. In this attack, we use the Hamming
distance power model between the first two consecutive S-box outputs which
depends on the least significant key byte and thus 28 key hypotheses are required.

840 C. Chen et al.

1M 2M 3M 4M 5M
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
x 10−3

Number of Traces

M
ax

im
um

 a
bs

ol
ut

e
co

rre
la

tio
n

(a) 2nd-order CPA of two-share Simon

1M 2M 3M 4M 5M
−0.01

−0.008

−0.006

−0.004

−0.002

0

0.002

0.004

0.006

0.008

0.01

Number of Traces

M
ax

im
um

 c
or

re
la

tio
n

(b) 2nd-order CPA of two-share Present

Fig. 11. Second-order CPA. Max correlation for each key hypothesis over the number
of traces.

The max correlations per key hypothesis over number of traces are shown in
Fig. 11(b) and the results show that correct key can be successfully recovered
with more than 1 million traces which demonstrates the practical exploitability
of detected leakage.

The results from both validate our simulation analyses for the idealized case
from Sects. 3.1 and 7.1, which suggests strong second-order leakage. The differ-
ence in sensitivity for the two implementations stems from their differing design
strategies: 2-TI Simon is round based and does not use pipelining. Hence, it max-
imizes the leakage for the fixed-vs-random test: the entire state that is processed
per cycle is constant in the fixed case and varies in the other case. For 2-TI
Present, the implementation is serialized, with a 4-bit datapath, hence, a much
smaller part of the implementation is updated per cycle, making the leakage less
pronounced.

Moreover, unlike the theoretical analysis results in Sect. 7.1 where the number
of traces needed for successful second-order t-test and CPA are of the same order
magnitude, a lot more traces are needed for practical second-order CPA with
Hamming distance model to exploit the leakage detected by t-test with only
hundreds to thousands of traces. This is mainly because: (1) Practical imple-
mentation don’t leak a perfect Hamming weight or Hamming distance leakage;
(2) Noises also render the practical attacks inefficient.

While two-share TI shows potential in preventing first order leakage with less
overhead, its poor performance on second order leakage resistance compared with
three-sharing makes it less worthwhile.

8 Conclusion

This work presents the first practical threshold implementations using only
two shares. We showed that lightweight ciphers have several features making
them good targets for threshold implementations. Furthermore, we explain how
using two shares can actually yield smaller cipher implementations that need

A Tale of Two Shares: Why Two-Share Threshold Implementation 841

less randomness and still show perfect first order resistance. While moving to
two shares makes implementing the nonlinear functions of a cipher more cum-
bersome, resulting in either a loss in throughput, increase in circuit size, or
even both, it allows to reduce the overhead of the sequential part of the imple-
mentation by only doubling the state and key size. Since the area of low-area
crypto implementations usually depends mainly on the sequential part, signif-
icant improvements are possible. In fact, the presented bit-serialized two-share
implementation of Simon is the smallest side-channel protected 128-bit block
cipher implementation for FPGAs. To this end, we presented the first two-share
threshold implementations of Simon and Present, which feature perfect first-
order resistance.

However, these findings are of limited practical impact, as two-share TI fea-
tures strong second-order leakage. Hence, on one hand, the results highlight that
provable resistance against a “low” order of attack might be meaningless in prac-
tice. On the other hand, the previously observed feature that three-share TI not
only keeps the promised first-order resistance, but also fails gracefully for higher
order analysis, is undervalued and may deserve further analysis.

Acknowledgments. This work is supported by the National Science Foundation
under grant CNS-1261399 and grant CNS-1314770.

References

1. Aysu, A., Gulcan, E., Schaumont, P.: SIMON says: break area records of block
ciphers on FPGAs. IEEE Embed. Syst. Lett. 6(2), 37–40 (2014)

2. Beaulieu, R., Shors, D., Smith, J., Treatman-Clark, S., Weeks, B., Wingers, L.:
The SIMON and SPECK families of lightweight block ciphers. IACR Cryptology
ePrint Arch. 2013, 404 (2013)

3. Bilgin, B., Gierlichs, B., Nikova, S., Nikov, V., Rijmen, V.: Trade-offs for threshold
implementations illustrated on AES. IEEE Trans. Comput. Aided Des. Integr.
Circuits Syst. 34(7), 1188–1200 (2015)

4. Bilgin, B., Gierlichs, B., Nikova, S., Nikov, V., Rijmen, V.: Higher-order threshold
implementations. In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014. LNCS, vol.
8874, pp. 326–343. Springer, Heidelberg (2014). doi:10.1007/978-3-662-45608-8 18

5. Bilgin, B., Daemen, J., Nikov, V., Nikova, S., Rijmen, V., Assche, G.: Efficient and
first-order DPA resistant implementations of Keccak. In: Francillon, A., Rohatgi,
P. (eds.) CARDIS 2013. LNCS, vol. 8419, pp. 187–199. Springer, Heidelberg (2014).
doi:10.1007/978-3-319-08302-5 13

6. Bilgin, B., Gierlichs, B., Nikova, S., Nikov, V., Rijmen, V.: A more effi-
cient AES threshold implementation. In: Pointcheval, D., Vergnaud, D. (eds.)
AFRICACRYPT 2014. LNCS, vol. 8469, pp. 267–284. Springer, Heidelberg (2014).
doi:10.1007/978-3-319-06734-6 17

7. Bogdanov, A., Knudsen, L.R., Leander, G., Paar, C., Poschmann, A., Robshaw,
M.J.B., Seurin, Y., Vikkelsoe, C.: PRESENT: an ultra-lightweight block cipher.
In: Paillier, P., Verbauwhede, I. (eds.) CHES 2007. LNCS, vol. 4727, pp. 450–466.
Springer, Heidelberg (2007). doi:10.1007/978-3-540-74735-2 31

http://dx.doi.org/10.1007/978-3-662-45608-8_18
http://dx.doi.org/10.1007/978-3-319-08302-5_13
http://dx.doi.org/10.1007/978-3-319-06734-6_17
http://dx.doi.org/10.1007/978-3-540-74735-2_31

842 C. Chen et al.

8. Brier, E., Clavier, C., Olivier, F.: Correlation power analysis with a leakage model.
In: Joye, M., Quisquater, J.-J. (eds.) CHES 2004. LNCS, vol. 3156, pp. 16–29.
Springer, Heidelberg (2004). doi:10.1007/978-3-540-28632-5 2

9. Canright, D.: A very compact S-Box for AES. In: Rao, J.R., Sunar, B. (eds.)
CHES 2005. LNCS, vol. 3659, pp. 441–455. Springer, Heidelberg (2005). doi:10.
1007/11545262 32

10. Chari, S., Jutla, C.S., Rao, J.R., Rohatgi, P.: Towards sound approaches to coun-
teract power-analysis attacks. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol.
1666, pp. 398–412. Springer, Heidelberg (1999). doi:10.1007/3-540-48405-1 26

11. Chari, S., Jutla, C.S., Rao, J.R., Rohatgi, P.: Towards sound approaches to coun-
teract power-analysis attacks. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol.
1666, pp. 398–412. Springer, Heidelberg (1999). doi:10.1007/3-540-48405-1 26

12. Cooper, J., DeMulder, E., Goodwill, G., Jaffe, J., Kenworthy, G., Rohatgi, P.:
Test vector leakage assessment (TVLA) methodology in practice. In: International
Cryptographic Module Conference (2013). http://icmc-2013.org/wp/wp-content/
uploads/2013/09/goodwillkenworthtestvector.pdf

13. Coron, J.-S., Prouff, E., Rivain, M.: Side channel cryptanalysis of a higher order
masking scheme. In: Paillier, P., Verbauwhede, I. (eds.) CHES 2007. LNCS, vol.
4727, pp. 28–44. Springer, Heidelberg (2007). doi:10.1007/978-3-540-74735-2 3

14. Cannière, C., Dunkelman, O., Knežević, M.: KATAN and KTANTAN — a family
of small and efficient hardware-oriented block ciphers. In: Clavier, C., Gaj, K.
(eds.) CHES 2009. LNCS, vol. 5747, pp. 272–288. Springer, Heidelberg (2009).
doi:10.1007/978-3-642-04138-9 20

15. De Cnudde, T., Reparaz, O., Bilgin, B., Nikova, S., Nikov, V., Rijmen, V.: Masking
AES with d + 1 shares in hardware. In: Gierlichs, B., Poschmann, A.Y. (eds.)
CHES 2016. LNCS, vol. 9813, pp. 194–212. Springer, Heidelberg (2016). doi:10.
1007/978-3-662-53140-2 10

16. Ding, A.A., Chen, C., Eisenbarth, T.: Simpler, Faster, and More Robust T-test
Based Leakage Detection. In: Constructive Side-Channel Analysis and Secure
Design - 7th International Workshop, COSADE 2016, Graz, Austria, April
14–15, 2016, Revised Selected Papers, pp. 163–183. http://dx.doi.org/10.1007/
978-3-319-43283-0 10

17. Eisenbarth, T., Kasper, T., Moradi, A., Paar, C., Salmasizadeh, M., Shalmani,
M.T.M.: On the power of power analysis in the real world: a complete break of the
KeeLoq code hopping scheme. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol.
5157, pp. 203–220. Springer, Heidelberg (2008). doi:10.1007/978-3-540-85174-5 12

18. Goodwill, G., Jun, B., Jaffe, J., Rohatgi, P.: A Testing Methodology
for Sidechannel Resistance Validation. Non-Invasive Attack Testing Work-
shop (2011). http://www.cryptography.com/public/pdf/a-testing-methodology-
for-side-channel-resistance-validation.pdf

19. Kavun, E.B., Yalcin, T.: RAM-based ultra-lightweight FPGA implementation of
PRESENT. In: 2011 International Conference on Reconfigurable Computing and
FPGAs (ReConFig), pp. 280–285. IEEE (2011)

20. Kirschbaum, M., Popp, T.: Evaluation of a DPA-resistant prototype chip. In:
Computer Security Applications Conference, ACSAC 2009, Annual, pp. 43–50,
December 2009

21. Kutzner, S., Nguyen, P.H., Poschmann, A., Wang, H.: On 3-share threshold imple-
mentations for 4-Bit S-boxes. In: Prouff, E. (ed.) COSADE 2013. LNCS, vol. 7864,
pp. 99–113. Springer, Heidelberg (2013). doi:10.1007/978-3-642-40026-1 7

http://dx.doi.org/10.1007/978-3-540-28632-5_2
http://dx.doi.org/10.1007/11545262_32
http://dx.doi.org/10.1007/11545262_32
http://dx.doi.org/10.1007/3-540-48405-1_26
http://dx.doi.org/10.1007/3-540-48405-1_26
http://icmc-2013.org/wp/wp-content/uploads/2013/09/goodwillkenworthtestvector.pdf
http://icmc-2013.org/wp/wp-content/uploads/2013/09/goodwillkenworthtestvector.pdf
http://dx.doi.org/10.1007/978-3-540-74735-2_3
http://dx.doi.org/10.1007/978-3-642-04138-9_20
http://dx.doi.org/10.1007/978-3-662-53140-2_10
http://dx.doi.org/10.1007/978-3-662-53140-2_10
http://dx.doi.org/10.1007/978-3-319-43283-0_10
http://dx.doi.org/10.1007/978-3-319-43283-0_10
http://dx.doi.org/10.1007/978-3-540-85174-5_12
http://www.cryptography.com/public/pdf/a-testing-methodology-for-side-channel-resistance-validation.pdf
http://www.cryptography.com/public/pdf/a-testing-methodology-for-side-channel-resistance-validation.pdf
http://dx.doi.org/10.1007/978-3-642-40026-1_7

A Tale of Two Shares: Why Two-Share Threshold Implementation 843

22. Leiserson, A.J., Marson, M.E., Wachs, M.A.: Gate-level masking under a path-
based leakage metric. In: Batina, L., Robshaw, M. (eds.) CHES 2014. LNCS, vol.
8731, pp. 580–597. Springer, Heidelberg (2014). doi:10.1007/978-3-662-44709-3 32

23. Moradi, A., Mischke, O.: How far should theory be from practice? In: Prouff,
E., Schaumont, P. (eds.) CHES 2012. LNCS, vol. 7428, pp. 92–106. Springer,
Heidelberg (2012). doi:10.1007/978-3-642-33027-8 6

24. Moradi, A., Poschmann, A., Ling, S., Paar, C., Wang, H.: Pushing the limits: a
very compact and a threshold implementation of AES. In: Paterson, K.G. (ed.)
EUROCRYPT 2011. LNCS, vol. 6632, pp. 69–88. Springer, Heidelberg (2011).
doi:10.1007/978-3-642-20465-4 6

25. Nikova, S., Rechberger, C., Rijmen, V.: Threshold implementations against side-
channel attacks and glitches. In: Ning, P., Qing, S., Li, N. (eds.) ICICS 2006. LNCS,
vol. 4307, pp. 529–545. Springer, Heidelberg (2006). doi:10.1007/11935308 38

26. Poschmann, A., Moradi, A., Khoo, K., Lim, C.W., Wang, H., Ling, S.: Side-
Channel resistant crypto for less than 2,300 GE. J. Cryptology 24(2), 322–345
(2011)

27. Reparaz, O., Bilgin, B., Nikova, S., Gierlichs, B., Verbauwhede, I.: Consolidating
masking schemes. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol.
9215, pp. 764–783. Springer, Heidelberg (2015). doi:10.1007/978-3-662-47989-6 37

28. Reparaz, O., Sinha Roy, S., Vercauteren, F., Verbauwhede, I.: A masked ring-LWE
implementation. In: Güneysu, T., Handschuh, H. (eds.) CHES 2015. LNCS, vol.
9293, pp. 683–702. Springer, Heidelberg (2015). doi:10.1007/978-3-662-48324-4 34

29. Rolfes, C., Poschmann, A., Leander, G., Paar, C.: Ultra-lightweight implemen-
tations for smart devices – security for 1000 gate equivalents. In: Grimaud, G.,
Standaert, F.-X. (eds.) CARDIS 2008. LNCS, vol. 5189, pp. 89–103. Springer,
Heidelberg (2008). doi:10.1007/978-3-540-85893-5 7

30. Schneider, T., Moradi, A.: Leakage assessment methodology – a clear roadmap
for side-channel evaluations. In: Güneysu, T., Handschuh, H. (eds.) CHES
2015. LNCS, vol. 9293, pp. 495–513. Springer, Heidelberg (2015). doi:10.1007/
978-3-662-48324-4 25

31. Shahverdi, A., Taha, M., Eisenbarth, T.: Silent simon: a threshold implementation
under 100 slices. In: 2015 IEEE International Symposium on Hardware Oriented
Security and Trust (HOST), pp. 1–6, May 2015

32. Tiri, K., Verbauwhede, I.: A logic level design methodology for a secure DPA
resistant ASIC or FPGA implementation. In: Proceedings of the Conference on
Design, Automation and Test in Europe - vol. 1, DATE 2004, p. 10246 (2004).
http://dl.acm.org/citation.cfm?id=968878.969036

http://dx.doi.org/10.1007/978-3-662-44709-3_32
http://dx.doi.org/10.1007/978-3-642-33027-8_6
http://dx.doi.org/10.1007/978-3-642-20465-4_6
http://dx.doi.org/10.1007/11935308_38
http://dx.doi.org/10.1007/978-3-662-47989-6_37
http://dx.doi.org/10.1007/978-3-662-48324-4_34
http://dx.doi.org/10.1007/978-3-540-85893-5_7
http://dx.doi.org/10.1007/978-3-662-48324-4_25
http://dx.doi.org/10.1007/978-3-662-48324-4_25
http://dl.acm.org/citation.cfm?id=968878.969036

Cryptographic Reverse Firewall via Malleable
Smooth Projective Hash Functions

Rongmao Chen1,2(B), Yi Mu1, Guomin Yang1, Willy Susilo1, Fuchun Guo1,
and Mingwu Zhang3

1 School of Computing and Information Technology, Centre for Computer
and Information Security Research, University of Wollongong, Wollongong, Australia

{rc517,ymu,gyang,wsusilo,fuchun}@uow.edu.au
2 College of Computer, National University of Defense Technology, Changsha, China

3 School of Computers, Hubei University of Technology, Wuhan, China
csmwzhang@gmail.com

Abstract. Motivated by the revelations of Edward Snowden, post-
Snowden cryptography has become a prominent research direction in
recent years. In Eurocrypt 2015, Mironov and Stephens-Davidowitz pro-
posed a novel concept named cryptographic reverse firewall (CRF) which
can resist exfiltration of secret information from an arbitrarily compro-
mised machine. In this work, we continue this line of research and present
generic CRF constructions for several widely used cryptographic proto-
cols based on a new notion named malleable smooth projective hash func-
tion. Our contributions can be summarized as follows.
– We introduce the notion of malleable smooth projective hash func-

tion, which is an extension of the smooth projective hash function
(SPHF) introduced by Cramer and Shoup (Eurocrypt’02) with the
new properties of key malleability and element rerandomizability. We
demonstrate the feasibility of our new notion using graded rings pro-
posed by Benhamouda et al. (Crypto’13), and present an instantia-
tion from the k-linear assumption.

– We show how to generically construct CRFs via malleable SPHFs in
a modular way for some widely used cryptographic protocols. Specif-
ically, we propose generic constructions of CRFs for the unkeyed
message-transmission protocol and the oblivious signature-based enve-
lope (OSBE) protocol of Blazy, Pointcheval and Vergnaud (TCC’12).
We also present a new malleable SPHF from the linear encryption of
valid signatures for instantiating the OSBE protocol with CRFs.

– We further study the two-pass oblivious transfer (OT) protocol and
show that the malleable SPHF does not suffice for its CRF construc-
tions. We then develop a new OT framework from graded rings and
show how to construct OT-CRFs by modifying the malleable SPHF
framework. This new framework encompasses theDDH-basedOT-CRF
constructions proposed by Mironov and Stephens-Davidowitz (Euro-
crypt’15), and yields a new construction under the k-linear assumption.

Keywords: Cryptographic reverse firewall · Malleable smooth projec-
tive hash function · Oblivious signature-based envelope · Oblivious
transfer

c© International Association for Cryptologic Research 2016
J.H. Cheon and T. Takagi (Eds.): ASIACRYPT 2016, Part I, LNCS 10031, pp. 844–876, 2016.
DOI: 10.1007/978-3-662-53887-6 31

Cryptographic Reverse Firewall 845

1 Introduction

In the last couple of years, the revelations of Edward Snowden [18,22] showed
that the intelligence agencies successfully gained access to a massive collection
of user sensitive data by undermining security mechanisms via a broad range of
techniques, e.g., by subverting cryptographic protocols and actively deploying
security weaknesses in the implementations of cryptosystems. The disclosures of
Snowden have reawakened the cryptographic research community to the serious-
ness of the undermining of cryptographic solutions and standards [6–8,13,23,24],
and led to a new research direction known as post-Snowden cryptography. The
research problem could be generally summarized by the following question: “How
to achieve meaningful security for cryptographic protocols in the presence of an
adversary that may arbitrarily tamper with the victim’s machine?”

Cryptographic Reverse Firewall. Motivated by the aforementioned ques-
tion, Mironov and Stephens-Davidowitz [21] recently proposed a novel notion
named cryptographic reverse firewall (CRF) aiming at providing strong security
against inside vulnerabilities such as security backdoors. Informally, a CRF is a
machine that sits at the boundary between the user’s computer and the out-
side world. It plays as the role of an autonomous intermediary that intercepts
and modifies the machine’s incoming and outgoing messages to provide security
protections even if the user’s machine is compromised. A cryptographic protocol
equipped with a correctly implemented CRF can guarantee that its security is
preserved even if it is run on a compromised machine and the CRF could also
resist exfiltration of secret information from the tampered machine. More specif-
ically, Mironov and Stephens-Davidowitz defined three desirable properties for
an honestly implemented CRF:

– Functionality Maintaining. A CRF should not break the functionality (i.e.,
correctness) of an honestly implemented protocol.

– Security Preservation. A protocol with a CRF should provide the same secu-
rity guarantee as the properly implemented protocol regardless of how the
underlying machine behaves.

– Exfiltration Resistance. A CRF should resist exfiltration so that a compromised
implementation cannot leak any information to the outside world.

The above three properties deserve further interpretation. A good crypto-
graphic protocol should be functional and secure regardless of the existence of
the CRF when the protocol implementation is correct. That is, the user does
not rely solely on the CRF for security but only requires it to preserve security.
In particular, the CRF shares no secret with the protocol party, and thus even
if the CRF is not functioning, an honestly implemented protocol would remain
secure. This is one significant difference between the CRF and the prior work.
On the other hand, when the protocol implementation is tampered but the CRF
is implemented correctly, the CRF could provide the user with the desired secu-
rity guarantee. In short, a protocol with CRF satisfies the security requirement

846 R. Chen et al.

as long as either the protocol implementation is not tampered or the CRF is
implemented correctly.

The CRF could be viewed as a modern take on a line of work that received
considerable attention in the 80s and 90s [10,28]. It provides a general framework
for building cryptographic schemes that remain secure when run on a compro-
mised machine. The use of rerandomization to “sanitize” messages by the CRF is
seemingly similar to the prior work, e.g., divertible protocols [10] and collusion-
free protocols [3,19]. As summarized by Mironov and Stephens-Davidowitz in
[21], the CRF is a generalization of these prior notions and models.

Motivations of This Work. In this work, we further explore the construction
of CRFs. Unlike prior work that relies on concrete techniques and thus appears
complicated, our goal is to develop generic paradigms for constructing CRFs in
a conceptually simple and modular way. From a theoretical point of view, a
generic paradigm can modularly explain concrete CRF constructions and their
underlying design principles. From a practical point of view, a generic CRF con-
struction based on abstract building blocks enables more concrete instantiations
to be built for better security and/or efficiency. In fact, our work (partially)
answers an open question raised by Mironov and Stephens-Davidowitz in [21].
Particularly, they stated that “the “holy grail” would be a full characterization
of functionalities and security properties for which reverse firewall exists”.

1.1 Overview of Our Contributions

We introduce the notion of malleable smooth projective hash function, which is
a new extension of the conventional SPHF. A malleable SPHF is a special SPHF
which is of additional properties, namely projection key malleablility and element
re-randomizability. Using this notion, we obtain generic CRF constructions for
some widely used cryptographic protocols. Before we describe our results, we
present an overview of the malleable smooth projective hash function.

Malleable Smooth Projective Hash Function. We first briefly recall the
classical definition of the smooth projective hash function (SPHF) (also known
as hash proof system) introduced by Cramer and Shoup [12].

Classical Definition. An SPHF requires the existence of a domain X and an
underlying NP language L, where elements of L form a subset of X , i.e., L ⊂ X .
The key property of SPHF is that the hash value of any element C ∈ L can be
computed by using either a secret hashing key hk, or a public projection key
hp with the witness to the fact that C ∈ L. However, the projection key gives
almost no information about the hash value of any element in X\L. Moreover,
we say that the subset membership problem is hard if the distribution of L is
computationally indistinguishable from X\L.

New Properties. In addition to the above properties of a regular SPHF, we
define two new properties for a malleable SPHF as follows.

Cryptographic Reverse Firewall 847

– Projection Key Malleability. This property captures that,
• Key Indistinguishability : any projection key hp can be re-randomized to

an independent projection key h̃p using a uniformly chosen randomness
r̃; and

• Projection Consistency : the hash value difference of any element due to
the above key re-randomization is computable using r̃.

– Element Re-randomizability. This property captures that,
• Element Indistinguishability : any element C can be re-randomized to

another independent element C̃ using a uniformly chosen witness w̃; and
• Rerandomization Consistency : the hash value difference between C and C̃

under the same hashing key is computable using the associated projection
key with w̃; and

• Membership Preservation: the re-randomization of an element does not
change its membership (i.e., C̃ ∈ L ⇐⇒ C ∈ L).

A Simple Example. We provide a very simple example of our new notion.
We remark that such a simple example is just for a quick understanding of the
properties captured by our malleable SPHF. The construction would be more
complicated from other assumptions. The basic SPHF below is exactly the one of
Cramer and Shoup for the DDH language in [12]. Let g1, g2 be two generators of a
cyclic group G of prime order p. Let X = G

1×2 and L = {(gr
1, g

r
2) ∈ X | r ∈ Zp}.

The hashing key is hk = (α1, α2)
$← Z

2
p and the associated projection key is

hp = gα1
1 gα2

2 . For any element C = (u1, u2) ∈ X , the hash value under hk is
hv = uα1

1 uα2
2 .

– Choose r̃ = (β1, β2)
$← Z

2
p, and compute h̃p = hp·(gβ1

1 gβ2
2) = gα1+β1

1 gα2+β2
2 . h̃p

is independent from hp and its associated hashing key is h̃k = (α1+β1, α2+β2).
The hash value of element C under h̃k is h̃v = uα1+β1

1 uα2+β2
2 = hv · uβ1

1 uβ2
2 ,

and hence the hash value difference is computable using r̃.
– Choose w̃ = η

$← Zp and compute C̃ = (u1g
η
1 , u2g

η
2). The hash value of C̃

under hk is h̃v = (u1g
η
1)α1(u2g

η
2)α2 = hv · (hp)η, and hence the hash value

difference is computable using w̃ (with hp). One can easily verify that C̃ ∈
L ⇐⇒ C ∈ L.

More Constructions of Malleable SPHFs. To illustrate the feasibility of
our new notion, we propose a generic construction of malleable SPHFs based on
graded rings [9], which could be viewed as a common formalization for cyclic
groups, bilinear groups, and multilinear groups. We rigorously prove that under
some conditions, graded ring implies malleable SPHFs. Particularly, we rely on
Katz and Vaikuntanathan [17] type SPHFs (KV-SPHF) where the projection key
is independent from the element, as in many cases the linkability between the
projection key and the element would make it difficult for a CRF to resist exfil-
tration and meanwhile maintain functionality. We will make this point clearer in

848 R. Chen et al.

our CRF constructions. We then provide a malleable SPHF instantiation of our
generic framework from the k-linear assumption.

Generic CRF Constructions via Malleable SPHFs. We show how to generi-
cally construct CRFs via malleable SPHFs for some widely used protocols. Essen-
tially, our CRF constructions rely on the key indistinguishability and the ele-
ment indistinguishability properties of the underlying malleable SPHF for the
security preservation and exfiltration resistance, and rely on the projection con-
sistency, rerandomization consistency and membership preservation of the mal-
leable SPHF for the functionality maintaining.

Message Transmission Protocol. We first show as a warm up CRF construc-
tions for the unkeyed message-transmission protocol. That is, both the sender
and receiver have neither a shared secret key nor each other’s public key. We
remark that our framework can be seen as a generic construction of semantically
secure public-key encryption scheme (with trusted setup) that is both key mal-
leable and re-randomizable defined in [14], and hence provides a more intuitive
way to build two-round message-transmission protocols with CRFs. The idea we
illustrate via this simple protocol acts as a steppingstone toward other more
complicated protocols.

Oblivious Signature-Based Envelope Protocol. We also study the CRF
constructions for another useful protocol, namely Oblivious Signature-Based
Envelope (OSBE), which was proposed by Li, Du and Boneh [20] and later
enhanced by Blazy, Pointcheval and Vergnaud [11]. An OSBE protocol allows
a user Alice to send an envelope, which encapsulates her private message, to
another user Bob in such a way that Bob will be able to recover the private
message if and only if Bob has possessed a credential, e.g., a signature on an
agreed-upon message from the certification authority. OSBE has been found
useful in a growing number of protocols and applications such as Secret Hand-
shakes [5] and Password-Based Authenticated Key-Exchange [15]. We show that
the SPHF-based construction of OSBE in [11] is CRF-ready if the underlying
SPHF is malleable. Surprisingly, we find that their proposed OSBE instantiation
from linear encryption of Waters signature [25] could be extended to be malleable
for the CRF instantiations. One should note that the extension does not strictly
follow the aforementioned generic framework of constructing malleable SPHF
from graded rings. This also shows more possibilities for constructing malleable
SPHFs.

CRF Constructions for Oblivious Transfer Protocol. Another major con-
tribution of our work is the CRF construction for the oblivious transfer (OT)
protocol, which has been widely adopted as a basic tool by many cryptographic
systems. Although our CRF constructions are inspired by our generic frame-
work of malleable SPHF from graded rings, there is some substantive difference
between them.

In this work, we start with the OT framework of Halevi and Kalai [16], which
relies on a special SPHF. The basic idea is that: (1) the receiver picks and sends
to the sender two elements Cb ∈ L, C1−b ∈ X\L (b ∈ {0, 1} is the choice bit);

Cryptographic Reverse Firewall 849

(2) the sender generates two hashing key pairs and computes the hash values
of C0 and C1 (using the secret hashing keys) to conceal its two message M0

and M1 respectively, and then sends the two concealed messages with projection
keys to the receiver; (3) the receiver recovers Mb by computing the hash value of
Cb (using the projection key with the witness to the fact Cb ∈ L). Noting that
a malicious receiver might choose both Cb and C1−b from the language L, the
underlying SPHF is required to be verifiably smooth such that the sender can
verify at least one of (C0, C1) is not in the language.

Difficulties. It seems that we could extend the underlying SPHF of the HK-OT
construction to be malleable so that the framework could admit CRFs. However,
we found that it is actually not the case and the extension is not trivial at all.

– The required SPHF here is not a classical one as it must be verifiably smooth.
Under the HK-OT framework, this is usually guaranteed by the verifiable
linkability between C0 and C1 chosen by the receiver. However, a tampered
implementation of the receiver may leak secret information to the outside
world via the linkability. A desirable CRF for the receiver should be able to
rerandomize (C0, C1) to a uniform tuple (C̃0, C̃1) to resist exfiltration. How-
ever, the rerandomization would break the linkability of the tuple and lead to
protocol failure.

– The receiver freshly generates the element basis underlying the SPHF at the
beginning of each protocol session, which means we have to deal with an
untrusted setup. Since the element basis (e.g., g1, g2 ∈ G for the DDH tuple
generation) is chosen by the receiver per session, a tampered receiver may
maliciously choose some “bad” basis in order to compromise the security or
leak secret information to the outside. Therefore, the CRF should be able
to rerandomize the element basis to preserve security and resist exfiltration,
while still maintain the protocol functionality. This, unfortunately, could not
be trivially realized by the malleable SPHF.

Our Solution. In order to resolve the problem, we first propose a special OT
construction from graded rings. Particularly, the receiver sends to the sender
only one element, based on which the sender could generate an element pair so
that the verifiable smoothness can be guaranteed by the sender itself. We then
propose CRF constructions for such an OT protocol. Our central idea mainly
follows the generic framework of malleable SPHF from graded rings except that
we require the receiver’s CRF could also rerandomize the element basis chosen by
the receiver. We show that the CRF could still achieve all the properties when the
transformation matrix for rerandomizing the element basis meets some require-
ments. The modified semi-generic framework narrows the possible instantiations
of the HK-OT framework. However, we show that the CRF construction following
our framework not only captures the prior work [21], which is the only known
OT-CRF to date, but also can yield new constructions under weaker assump-
tions. In particular, we present new CRF constructions based on the k-linear
assumption, which is weaker than the DDH assumption underlying the OT-CRF
construction in [21].

850 R. Chen et al.

1.2 Related Work

Comparisons with Other SPHF Variants. SPHF was originally introduced
by Cramer and Shoup [12]. Since its introduction, it has been widely used for
constructions of many cryptographic primitives, including authenticated key
exchange [15,17], oblivious transfer [16], zero-knowledge arguments [1,2,9] and
so on. Here we mainly introduce the work that are closely related to our notion
of malleable SPHF. Hoeteck Wee defined a notion of homomorphic SPHF for
achieving key-dependent message security [26]. That is, the combination of hash
values of two elements equal to the hash value of the combination of these two ele-
ments. One may note that their notion is somewhat similar to the sub-property of
rerandomization consistency captured by the element re-randomizability of our
malleable SPHF. However, their definition is solely based on the secret hashing
key while ours uses the projection key to calculate the hash value difference. We
should clarify that our defined property is not always the case especially for those
SPHFs where the projection key depends on the element. Yang et al. [27] intro-
duced the notion of updatable hash proof system (UHPS) for constructing public
key encryption schemes that are secure against continuous memory attacks. The
UHPS requires that the secret hashing key could be updated homomorphically.
In fact, they mainly consider a special case in which a secret hashing key can be
freshly updated while the associated projection key keeps the same.

Other CRF Constructions. Mironov and Stephens-Davidowitz [21] showed how
to construct CRFs for a 1-out-of-2 oblivious protocol based on the DDH assump-
tion and also proposed a protocol for private function evaluation. They also
provided a generic way to prevent a tampered machine from leaking information
to an eavesdropper via any protocol. Ateniese, Magri, and Venturi [4] continued
the study on signatures and constructed the CRF to protect signatures schemes
against algorithm substitution attacks. Recently, Dodis, Mironov and Stephens-
Davidowitz [14] considered CRF constructions for message-transmission proto-
cols. They proposed a rich collection of solutions that vary in efficiency, security,
and setup assumptions in the classical setting. It is worth noting that the stud-
ied message-transmission protocol in our work belongs to the so-called unkeyed
setting in their work. Our framework can be viewed as a generic construction
of the semantically secure public-key encryption scheme (with a trusted setup)
that is both key malleable and re-randomizable defined in [14].

2 Preliminaries

2.1 Cryptographic Reverse Firewalls

In general, a cryptographic protocol P must satisfy functionality (i.e., correct-
ness) requirement F , which places constraints on the output of the parties exe-
cuting P for particular input, and security requirement S, which places con-
straints on the message distribution conditioned on specific input. Below we
briefly recall the definition of reverse firewalls from [21]. We refer the reader to
[21] for more detailed discussions.

Cryptographic Reverse Firewall 851

Definition 1 (Cryptographic Reverse Firewall (CRF)). A cryptographic
reverse firewall is a stateful algorithm W that takes as input its state and a
message and outputs an updated state and message. For simplicity, we do not
write the state of W explicitly. For a party P and reverse firewall W, we define
W ◦P as the “composed” party where W is applied to the incoming and outgoing
messages of P. When the composed party engages in a protocol, the state of W
is initialized to the public parameters. If W is meant to be composed with a party
P, we call it a reverse firewall for P.

One should note that W has access to all public parameters, but not the
private input or the output of P. In reality, W can be regarded as an “active
router” that sits at the boundary between P’s private network and the outside
world and modifies the messages that P sends and receives. The party P of
course does not want a reverse firewall to ruin its protocol’s functionality when
its internal implementation is correct. Following [21] we require that reverse
firewalls should be “stackable”, which means the composition of multiple reverse
firewalls W◦W◦· · ·◦W◦P should still maintain the functionality of the protocol.
The following definition captures this property.

Definition 2 (Functionality-maintaining CRFs). For any reverse firewall
W and any party P, let W1◦P = W◦P, and for k ≥ 2, let Wk◦P = W◦(Wk−1◦P).
For a protocol P that satisfies some functionality requirements F , we say that a
reverse firewall W maintains F for P in P if Wk ◦ P maintains F for P in P
for any polynomial bounded k ≥ 1. When F ,P,P are clear, we simply say that
W maintains functionality.

Following the notations in [21], we use P to represent arbitrary adversarial
implementations of party P and P̂ to represent the functionality-maintaining
adversarial implementations. For a protocol P with party P, we write PP→P̂ to
represent the protocol where the role of party P is replaced by party P̂.

A reverse firewall should also preserve the security of the underlying protocol,
even in the presence of compromise. The strongest notion requires that the
protocol in which party P is replaced with W◦P for an arbitrarily corrupted party
P still preserves the security while the weaker notion only considers tampered
implementations that maintain functionality. The below definition captures this
property.

Definition 3 (Security-preserving CRFs). For a protocol P that satisfies
some security requirements S and functionality F and a reverse firewall W,

– W strongly preserves S for P in P if the protocol PP→W◦P satisfies S; and
– W weakly preserves S for P in P if the protocol PP→W◦P̂ satisfies S.

When P,F ,S,P are clear, we simple say that W strongly preserves security
or weakly preserves security.

As introduced in [21], we also need the notion of exfiltration resistance. Intu-
itively, a reverse firewall is exfiltration resistant if “no corrupted implementation

852 R. Chen et al.

of P can leak information through the firewall.” We define this notion using the
game LEAK which is presented in Fig. 1. Intuitively, the game asks the adversary
to distinguish between a tampered implementation and an honest implementa-
tion. An exfiltration-resistant reverse firewall therefore prevents an adversary
from even learning whether a party has been compromised, let alone leaking
information.

Fig. 1. LEAK(P,P1,P2, W, �), the exfiltration resistance security game for a reverse
firewall W for party P1 in protocol P against party P2. A is the adversary, � the
security parameter, stP2

the state of P2 after the run of the protocol, I valid input for
P, and T ∗ is the transcript of running protocol PP1→P∗,P2→P2

(I).

The advantage of any adversary A in the game LEAK is defined as

AdvLEAKA,W (�) = Pr[LEAK(P,P1,P2,W, �) = 1] − 1/2.

Definition 4 (Exfiltration-resistant CRFs). For a protocol P that satisfies
functionality F and a reverse firewall W,

– W is strongly exfiltration-resistant for party P1 against party P2 in protocol P
if for any PPT adversary A, AdvLEAKA,W (�) is negligible in the security parameter
�; and

– W is weakly exfiltration-resistant for party P1 against party P2 in protocol P,
if for any PPT adversary A, AdvLEAKA,W (�) is negligible in the security parameter
� provided that P1 maintains F for P1.

When P,F ,P1 are clear, we simple say that W is strongly exfiltration-
resistant against P2 or weakly exfiltration-resistant against P2. In the special case
when P2 is empty, we say that W is exfiltration-resistant against eavesdroppers.

2.2 Smooth Projective Hash Function

An SPHF is based on a domain X and an NP language L, where L contains
a subset of the elements of the domain X , i.e., L ⊂ X . An SPHF system over
a language L ⊂ X , onto a set Y, is defined by the following five algorithms
(SPHFSetup,HashKG, ProjKG,Hash,ProjHash):

Cryptographic Reverse Firewall 853

– SPHFSetup(1�) : The SPHFSetup algorithm takes as input a security parame-
ter �, generates the global parameters param and the description of an NP
language L, outputs pp = (L, param) as the public parameter.

– HashKG(pp) : The HashKG algorithm generates a hashing key hk;
– ProjKG(pp, hk, C) : The ProjKG algorithm derives the projection key hp from

the hashing key hk and possibly an element C;
– Hash(pp, hk, C) : The Hash algorithm takes as input an element C and the

hashing key hk, outputs the hash value hv ∈ Y;
– ProjHash(pp, hp, C, w) : The ProjHash algorithm takes as input the projection

key hp and an element C with the witness w to the fact that C ∈ L, outputs
the hash value hv ∈ Y.

SPHFs could be classified into two types according to whether ProjKG takes
an element as input. The Gennaro and Lindell [15] type (GL-SPHF) allows hp
to depend on C while the Katz and Vaikuntanathan [17] type (KV-SPHF) does
not. As shown later, our proposed new SPHF falls in the KV-SPHF category.

An SPHF should satisfy the following two properties.

Correctness. Formally, for any element C ∈ L with w the witness, we have

Pr

⎡

⎢
⎢
⎣hv 	= hv′ :

pp
$← SPHFSetup(1�);

hk
$← HashKG(pp); hp ← ProjKG(pp, hk);

hv ← Hash(pp, hk, C);
hv′ ← ProjHash(pp, hp, C, w)

⎤

⎥
⎥
⎦ ≤ negl(�).

Smoothness. For any C ∈ X\L, the following two distributions are statistically
indistinguishable,

V1 = {(pp, C, hp, hv)|hv = Hash(hk, C ′)},V2 = {(pp, C, hp, hv)|hv $← Y}.

That is, Advsmooth
SPHF (�) =

∑
v∈Y |PrV1 [hv = v] − PrV2 [hv = v]| ≤ negl(�).

It is required that one could efficiently sample elements from the set X . That
is, one could run a polynomial time algorithm SampYes(pp) to sample an element
(C,w) from L where w is the witness to the membership C ∈ L and another
polynomial time algorithm SampNo(pp) to sample an element C from X\L. The
subset membership problem between L and X is usually required to be difficult,
which is defined as follows.

Definition 5 (Hard Subset Membership Problem). The subset member-
ship problem (SMP) is hard on (X ,L) for an SPHF that consists of (SPHFSetup,
HashKG, ProjKG,Hash, ProjHash), if for any PPT adversary A,

AdvSMP
A,SPHF(�) = Pr

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

b′ = b :

pp
$← SPHFSetup(1�);

hk
$← HashKG(pp); hp ← ProjKG(pp, hk);

b
$← {0, 1}; (C0, w)

$← SampYes(pp);

C1
$← SampNo(pp);

b′ ← A(pp, hk, hp, Cb)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

− 1

2
≤ negl(�).

854 R. Chen et al.

3 Malleable Smooth Projective Hash Function

3.1 Definition

A malleable SPHF is defined by a tuple of algorithms (SPHFSetup,HashKG,
ProjKG,Hash, ProjHash,MaulK, MaulH, ReranE, ReranH) which work as follows:

– SPHFSetup, HashKG, ProjKG,Hash,ProjHash are the same as in the classical
SPHF;

– MaulK(pp, hp, r̃). The MaulK algorithm takes as input a projection key hp and
randomness r̃, outputs a new projection key h̃p;

– MaulH(pp, hp, r̃, C). The MaulH algorithm takes as input a projection key hp,
the randomness r̃ and an element C, outputs the hash value h̃v;

– ReranE(pp,C, w̃). The ReranE algorithm takes as input an element C and the
randomness w̃, outputs a new element C̃;

– ReranH(pp, hp, C, w̃). The ReranH algorithm takes as input the projection key
hp, an element C and the randomness w̃, outputs the hash value h̃v;

We describe two randomness sampling algorithms named SampR and SampW.
One could run SampR(pp) to sample r̃ from the distribution of randomness using
which we generate the hashing key. The algorithm SampW(pp) can be used to
sample w̃ from the witness distribution of the language.

Now we are ready to describe the properties of a malleable SPHF. In addition
to the properties captured by a classical SPHF, a malleable SPHF also satisfies
the following new properties which are essential in our constructions of CRFs.

Definition 6 (Projection Key Malleability). A smooth projective hash
function is projection key-malleable if the following properties hold.

– Key Indistinguishability. For any PPT adversary A = (A1,A2),

AdvKey-IndA,MSPHF(�) = Pr

⎡

⎢
⎢
⎢
⎢
⎣

b′ = b :

pp
$← SPHFSetup(1�);

(hp1, hp2, st) ← A1(pp);

b
$← {0, 1}; r̃

$← SampR(pp);

h̃p ← MaulK(pp, hpb, r̃);

b′ ← A2(pp, st, hp1, hp2, h̃p)

⎤

⎥
⎥
⎥
⎥
⎦

− 1
2

≤ negl(�).

– Projection Consistency. For any element C ∈ X ,

Pr

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

hv 	= hv′ :

pp
$← SPHFSetup(1�);

hk
$← HashKG(pp); hp ← ProjKG(pp, hk);

r̃
$← SampR(pp); h̃p ← MaulK(pp, hp, r̃);

hv ← Hash(pp, h̃k, C);

h̃v ← MaulH(pp, hp, r̃, C);

hv′ ← Hash(pp, hk, C)∗h̃v

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

≤ negl(�).

where h̃k is the associated hashing key of h̃p ← MaulK(pp, hp, r̃) and ∗ denotes
the operation between two hash values in Y.

Cryptographic Reverse Firewall 855

Definition 7 (Element Re-randomizability). A smooth projective hash
function is element-rerandomizable if the followings hold.

– Element Indistinguishability. For any PPT adversary A = (A1,A2),

AdvElement-Ind
A,MSPHF (�) = Pr

⎡

⎢
⎢
⎢
⎢
⎢
⎣

b′ = b :

pp
$← SPHFSetup(1�);

(C1, C2, st) ← A1(pp);

b
$← {0, 1}; w̃ $← SampW(pp);

C̃ ← ReranE(pp, Cb, w̃);
b′ ← A2(pp, st, C1, C2, C̃)

⎤

⎥
⎥
⎥
⎥
⎥
⎦

− 1
2

≤ negl(�).

– Rerandomization Consistency. For any element C ∈ X ,

Pr

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

hv 	= hv′ :

pp
$← SPHFSetup(1�);

hk
$← HashKG(pp); hp ← ProjKG(pp, hk);

w̃
$← SampW(pp); C̃ ← ReranE(pp, C, w̃);

hv ← Hash(pp, hk, C̃);
h̃v ← ReranH(pp, hp, C, w̃);
hv′ ← Hash(pp, hk, C) ∗ h̃v

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

≤ negl(�).

– Membership Preservation. For any element C ∈ X , let C̃ ←
ReranE(pp, C, w̃) where w̃

$← SampW(pp), we have C̃ ∈ L if and only if C ∈ L.
Definition 8 (Malleable SPHF). An SPHF is malleable if it is projection key-
malleable and element-rerandomizable.

3.2 Malleable SPHFs from Graded Rings

In this section, we show that under some conditions, the SPHF framework from
graded rings proposed by Benhamouda et al. [9] could be extended into mal-
leable SPHF. The main goal of this part is to demonstrate the feasibility of
our definition. We remark that malleable SPHFs can be constructed using other
approaches.

Graded Rings. Benhamouda et al. [9] proposed a generic framework for SPHFs
using a new notion named graded rings, which is a common formalization for
cyclic groups, bilinear groups, and even multilinear groups. The graded ring
provides a practical way to manipulate elements of various groups involved in
pairings and more generally, in multi-linear maps. Before describing their SPHF
framework, we briefly recall the notion of graded rings. The notation ⊕ and
correspond to the addition operation and the multiplication operation, respec-
tively. For simplicity, here we focus on cyclic groups and symmetric bilinear
groups. Let G,GT be two multiplicative groups with the same prime order p
with a symmetric bilinear map e : G × G → GT .

856 R. Chen et al.

– For any a, b ∈ Zp, a ⊕ b = a + b, a b = a · b;
– For any u1, v1 ∈ G, u1 ⊕ v1 = u1 · v1, u1 � v1 = u1 · v−1

1 , and for any c ∈ Zp,
c u1 = uc

1;
– For any uT , vT ∈ GT , uT ⊕ vT = uT · vT , uT � vT = uT · v−1

T , and for any
c ∈ Zp, c uT = uc

T ;
– For any u1, v1 ∈ G, u1 v1 = e(u1, v1) ∈ GT .

That is, ⊕ and correspond to the addition and the multiplication of the
exponents. The notations could be extended in a natural way when it comes to
the case of vectors and matrices.

We are now ready to describe the framework of SPHF introduced in [9]. For
a language L which is specified by the parameter aux, suppose there exist two
positive integers m and n, a function Γ : X �−→ G

m×n (for generating the
element basis) and a function Θaux : X �−→ G

1×n, such that for any element
C ∈ X ,

(C ∈ L) ⇐⇒ (∃λ ∈ Z
1×m
p s.t., Θaux(C) = λ Γ (C)).

In other words, C ∈ L if and only if Θaux(C) is a linear combination of the
rows in Γ (C). Here it is required that the one who knows the witness w of the
membership C ∈ L can efficiently compute the above linear combination λ. This
requirement seems somewhat strong but is actually verified by very expressive
languages [9].

With the above notations, the hashing key in an SPHF is a vector hk := α =
(α1, ..., αn)T $← Z

n
p and the projection key for an element C is hp := γ(C) =

Γ (C) α ∈ G
k. Then the hash value computation for an element C is:

Hash(pp, hk, C) := Θaux(C) α, ProjHash(pp, hp, C, w) := λ γ(C).

Intuitively, if C ∈ L with λ, then we have,

Hash(pp, hk, C) = Θaux(C) � α = λ � Γ (C) � α = λ � γ(C) = ProjHash(pp, hp, C, w).

This guarantees the correctness of the SPHF. As for the smoothness property, we
can see that for any element C /∈ L and a projection key hp = γ(C) = Γ (C)α,
the vector Θaux(C) is not in the linear span of Γ (C), and thus its hash value
hv = Hash(pp, hk, C) = Θaux(C) α is independent from hp = Γ (C) α. We
refer the readers to [9] for a more detailed analysis. One can note that if the
function Γ : X �−→ G

m×n is a constant function, the corresponding SPHF is of
KV-SPHF type, otherwise it is of GL-SPHF type.

A Simple Example. We illustrate this framework for the DDH language. Let
g1, g2 be two generators of a cyclic group G of prime order p. Let X = G

1×2

and L = {(u1, u2) | r ∈ Zp, s.t., u1 = gr
1, u2 = gr

2}. For any C = (u1, u2) ∈ L,
Θaux(C) = C, Γ (C) = (g1, g2) and the witness for C ∈ L is w = r and here

λ = w = r. The hashing key is hk = α = (α1, α2)T
$← Z

2
p and the projection key

is hp = γ(C) = Γ (C) α = gα1
1 gα2

2 ∈ G. We then have

Hash(pp, hk, C) = Θaux(C) α = (u1, u2) (α1, α2)T = uα1
1 uα2

2 ,

Cryptographic Reverse Firewall 857

ProjHash(pp, hp, C, w = r) = λ γ(C) = r (gα1
1 gα2

2) = (gα1
1 gα2

2)r.

This is exactly the original SPHF of Cramer and Shoup for the DDH language
in [12].

Generic Construction of Malleable SPHFs. With the above definitions, we
present a generic framework for constructing malleable SPHF based on graded
rings.

– SPHFSetup(1�). Output pp which defines the set X and the language L with
the positive integers m and n, and functions Γ and Θaux.

– HashKG(pp). Sample α
$← Z

n
p and output hk = α.

– ProjKG(pp, hk, C). Output hp = γ(C) = Γ (C) α ∈ G
k.

– Hash(pp, hk, C). Output hv = Θaux(C) α.
– ProjHash(pp, hp, C, w). Output hv = λ γ(C) where λ is derived from w.
– MaulK(pp, hp, r̃). To re-randomize a projection key hp = γ(C) using the ran-

domness r̃, compute and output h̃p as:

Δhp = Γ (C) r̃, h̃p = γ(C) ⊕ Δhp.

– MaulH(pp, hp, r̃, C). Output h̃v = Θaux(C) r̃.
– ReranE(pp, C, w̃). To re-randomize an element C using the random witness w̃,

derive λ̃ from w̃, compute and output C̃ as:

ΔC = λ̃ Γ (C), C̃ = Θaux(C) ⊕ ΔC.

– ReranH(PP, hp, C, w̃). Derive λ̃ from w̃ and output h̃v = λ̃ γ(C).

For the above construction, we have the following theorem.

Theorem 1. The above generic construction is a malleable smooth projective
hash function if the following conditions hold:

a. Θ : X �−→ G
1×n is an identity function; (Diverse Group [12])

b. Γ : X �−→ G
k×n is a constant function; (KV-SPHF type)

c. The subset membership problem between L and X is hard.

Proof. It should be clear that the construction is an SPHF as it is exactly the
graded ring-based SPHF framework proposed in [9]. Below we show that it is
projection key-malleable and element-rerandomizable.

Projection Key Malleability. For any r̃ = (r1, ..., rn)T $← SampR(pp), any
element C ∈ X , we have that

MaulK(pp, hp,r̃) = γ(C) ⊕ (Γ (C) � r̃)

= Γ (C) � α ⊕ (Γ (C) � r̃)

= Γ (C) � (α ⊕ r̃) = h̃p.

858 R. Chen et al.

One can easily notice that the new projection key h̃p is independent of hp, as the
randomness r̃ is uniformly chosen and Γ is a constant function. Therefore, for
any PPT adversary A, we have that AdvKey-IndA,MSPHF(�) is negligible. Moreover, the

associated hashing key of h̃p is h̃k = α̃ = α ⊕ r̃ = (α1 + r1, ..., αn + rn)T ∈ Z
n
p .

Therefore, we have

Hash(pp, h̃k, C) = Θaux(C) � α̃ = Θaux(C) � (α ⊕ r̃)

= Θaux(C) � α ⊕ Θaux(C) � r̃

= Hash(pp, hk, C) ⊕ MaulH(pp, hp, r̃, C).

This shows the projection consistency and thus the projection key is malleable.

Element Re-randomizability. For any randomness w̃, and any element
C ∈ X , we have that, ReranE(pp, C, w̃) = Θaux(C) ⊕ (λ̃ Γ (C)) = C̃. Due
to the uniformly chosen randomness w̃ (which derives λ̃) and the hard subset
membership problem, we have that C̃ is computationally independent of C. Par-
ticularly, λ̃ Γ (C) could be viewed as a random chosen element from L as Γ

is a constant function (i.e., Γ (C) = Γ (C̃)). Therefore, for any PPT adversary
A, if AdvElement-Ind

A,MSPHF (�) is non-negligible, we could use A to break the hard subset
membership problem, which is a contradiction. Noting that here we require Θ

to be an identity function, i.e., Θaux(C̃) = C̃, we have

Hash(pp, hk, C̃) = Θaux(C̃) � α = C̃ � α

= (Θaux(C) ⊕ λ̃ � Γ (C))) � α

= Θaux(C) � α ⊕ λ̃ � Γ (C) � α

= Θaux(C) � α ⊕ λ̃ � γ(C)

= Hash(pp, hk, C) ⊕ ReranH(pp, hp, C, w̃).

The above illustrates the rerandomization consistency. Below we show that the
element rerandomization is also membership-preserving. Given any element C ∈
L with the witness C = λ, for any randomness w̃ that derives λ̃, we have that,

ReranE(pp, C, w̃) = Θaux(C) ⊕ (λ̃ � Γ (C))

= λ � Γ (C) ⊕ (λ̃ � Γ (C))

= (λ ⊕ λ̃) � Γ (C)

= λ′ � Γ (C̃) = Θaux(C̃) = C̃.

The above holds due to the fact that Θ is an identity function, i.e., Θaux(C̃) = C̃

and Γ is a constant function, i.e., Γ (C) = Γ (C̃). The witness to the fact C̃ ∈ L is
λ′ = λ⊕λ̃. For any element C ∈ X\L, the vector Θaux(C) is not in the linear span
of Γ (C). Therefore, for any w̃, let C̃ = ReranE(pp, C, w̃) = Θaux(C)⊕(λ̃Γ (C)),
we trivially have that Θaux(C̃) = C̃ is not in the linear span of Γ (C) and thus
C̃ ∈ X\L.

Cryptographic Reverse Firewall 859

Instantiation from the k-Linear Assumption. We instantiate the above
framework based on the k-Linear (k-Lin) assumption. Let G be a group with
prime order p and g a generator. The k-Lin assumption asserts that gr1+···+rk

k+1

is pseudo-random given g1, · · · , gk+1, g
r1
1 , · · · , grk

k where g1, · · · , gk+1
R←

G, r1, · · · , rk
R← Zp. Note that the DDH assumption is equivalent to the 1-Lin

assumption.
We show how to construct a malleable SPHF from k-Lin assumption. The

language is defined as,

L =
{
(c1, · · · , ck)|∃(r1, · · · , rk) ∈ Z

k
p, s.t., c1 = gr1

1 , · · · , ck = g
rk
k , ck+1 = g

∑k
i=1 ri

k+1)
}
.

For any C = (c1, · · · , ck+1), we have Θaux(C) = C and

Γ (C) =

⎛

⎜
⎜
⎝

g1 1 · · · 1 gk+1

1 g2 · · · 1 gk+1

...
...

. . .
...

...
1 1 · · · gk gk+1

⎞

⎟
⎟
⎠ ∈ G

k×(k+1).

For any C ∈ L with witness λ = w = (r1, · · · , rk), we have, Θaux(C) =

(gr1
1 , · · · , grk

k , g
∑k

i=1 ri

k+1) = λ Γ (C). Let pp = (G, p, g1, · · · , gk+1), r̃ =
(β1, · · · , βk+1)T and λ̃ = w̃ = (η1, · · · , ηk). The instantiation is as follows:

– HashKG(pp) : hk = α = (α1, · · · , αk+1)
T $← Z

k
p;

– ProjKG(pp, hk, C) : hp = γ(C) = Γ (C) � α = (gα1
1 g

αk+1
k+1 , · · · , g

αk
k g

αk+1
k+1)T;

– Hash(pp, hk, C) : hv = (c1, · · · , ck+1) � (α1, · · · , αk+1)
T =
∏k

i=1 cαi
i ;

– ProjHash(pp, hp, C, w) : hv = λ � γ(C) =
∏k

i=1(g
αi
i g

αk+1
k+1)ri ;

– MaulK(pp, hp, r̃) : h̃p = γ(C) ⊕ (Γ (C) � r̃) = (gα1
1 g

αk+1
k+1 , · · · , g

αk
k g

αk+1
k+1)T ⊕

(gβ1
1 g

βk+1
k+1 , · · · , gβk

k g
βk+1
k+1)T =(gα1+β1

1 g
αk+1+βk+1
k+1 , · · · , gαk+βk

k g
αk+1+βk+1
k+1)T;

– MaulH(pp, hp, r̃, C) : h̃v = Θaux(C) � r̃ = (c1, · · · , ck+1) � (β1, · · · , βk+1)
T = cβ1

1 ·
cβ2
2 · · · cβk+1

k+1 =
∏k+1

i=1 cβi
i ;

– ReranE(pp,C, w̃) : C̃ = Θaux(C) ⊕ (λ̃ � Γ (C)) = (c1g
η1
1 , · · · , ckg

ηk
k , ck+1g

∑k
i=1 ηi

k+1);

– ReranH(pp, hp,C, w̃) : h̃v = λ̃ � γ(C) = (η1, · · · , ηd) � (gα1
1 g

αk+1
k+1 , · · · , g

αk
k g

αk+1
k+1)T

=
∏k

i=1(g
αi
i g

αk+1
k+1)ηi .

It is easy to verify that the above instantiation is a malleable SPHF as it
satisfies all the conditions of Theorem 1.

Remark. Note that the function Θaux is required to be an identity function in
our framework. That is, the above generic construction is on diverse groups [12].
However, we remark that such a requirement is not necessary. We will show later
(Sect. 4.2) a concrete malleable SPHF which demonstrates that instantiating
malleable SPHF from graded rings can be done in different ways.

860 R. Chen et al.

4 Generic Construction of CRFs via Malleable SPHFs

4.1 Warm-Up: Message-Transmission Protocol with CRFs

A message transmission protocol (MTP) enables one party, Alice, to securely
communicate a message to another party, Bob. Here we focus on the unkeyed
setting for message transmission. That is, both Alice and Bob have neither a
shared secret key nor each other’s public key. Specifically, the protocol does not
assume a public-key infrastructure. It simply lets Bob send a randomly cho-
sen public key as the first message and thereafter Alice sends an encryption
of her message under Bob’s public key as the second message. Since neither
the sender nor the receiver can be authenticated in this setting, the strongest
security guarantee is semantic security against passive adversaries. That is, the
adversary should not be able to distinguish the protocol transcripts for trans-
ferring two different plaintexts which are chosen by the adversary. We remark
that our framework can be seen as a generic construction of semantically secure
public-key encryption that is both key malleable and re-randomizable defined
in [14], and hence provides a more intuitive way to build two-round message-
transmission protocols with CRFs. We show a two-round MTP constructed using
SPHF in Fig. 2.

Fig. 2. Generic construction of two-round MTP from SPHF

Theorem 2. The construction of MTP in Fig. 2 is correct and semantically
secure.

It should be clear that the protocol functionality is ensured by the correct-
ness of the SPHF and the security is guaranteed by the pseudo-randomness of
the SPHF, which is implied by the smoothness and the hardness of the subset
membership problem.

CRF for the Receiver. In reality, a tampered implementation of Bob (the
receiver) might choose an insecure public key so that an eavesdropper will be
able to read Alice’s plaintext. The key could also act as a channel to leak some

Cryptographic Reverse Firewall 861

secrets to Alice or an eavesdropper. Even assuming that the protocol is semanti-
cally secure, without the CRF, the compromised implementation of Bob can still
leak some secret information to the outside. It is thus desirable for the CRF to
resist exfiltration. Figure 3 shows the reverse firewall for Bob. The idea is that
the CRF re-randomizes the public key chosen by Bob before it is sent to the
outside world. To maintain the protocol functionality, it also intercepts Bob’s
incoming messages and converts Alice’s ciphertext under the re-randomized key
to that under Bob’s original public key. The CRF should also preserve the seman-
tic security of the protocol regardless of how Bob behaves. A computationally
bounded adversary learns nothing about Alice’s input plaintext from the tran-
script between Alice and Bob’s CRF, even when the original public key chosen
by Bob is insecure.

Fig. 3. Bob’s CRF for the protocol shown in Fig. 2

Theorem 3. The CRF for Bob shown in Fig. 3 maintains functionality and
strongly preserves security for Bob, and strongly resists exfiltration against Alice,
provided that the underlying SPHF is projection key-malleable.

Proof. We verify that our construction satisfies the following properties.

Functionality Maintaining. For any ciphertext (C,CT),

C̃T = CT 	 ΔV = CT 	 MaulH(pp, hp, C, r̃)

= M ⊕ ProjHash(pp, h̃p, C, w) 	 MaulH(pp, hp, C, r̃)

= M ⊕ Hash(pp, h̃k, C) 	 MaulH(pp, hp, C, r̃)

= M ⊕ Hash(pp, hk, C).

The above holds due to the projection consistency of the projection key malleabil-
ity in the underlying SPHF. Therefore, Bob is able to recover Alice’s plaintext
by computing M = C̃T � Hash(pp, hk, C).

862 R. Chen et al.

Strong Security Preservation and Strong Exfiltration Resistance. It suffices to
show that the CRF strongly resists exifiltration. Suppose there exists an adver-
sary who has non-negligible advantage AdvLEAKA,W (�) in the game LEAK. We then
show how to build an adversary B to break the key indistinguishability captured
by the projection key malleability of the underlying SPHF by running A. Recall
that in the game LEAK, A would provide two parties (P1,P2) which represent
its chosen tampered implementations of Bob and Alice. B first runs the protocol
between the honest party Bob and P2, and obtains the output of Bob as hp0.
B then runs again the protocol between P1 and P2, and obtains the output of
P1 as hp1. It then sends (hp0, hp1) as the challenge projection keys for the key
indistinguishability game, and receives the challenge re-randomized projection
key h̃p. Finally, it forwards h̃p to A as part of the challenge transcript T ∗ of the
game LEAK and outputs the guess b′ of A as its guess. It is easy to see that the
above behaviours of B are computationally indistinguishable from the real game
LEAK from the view of A. Therefore, we have that AdvKey-IndB,MSPHF(�) ≥ AdvLEAKA,W (�),
which contradicts the projection key malleability of the underling SPHF. This
also trivially implies the strong security preservation of the CRF. �

CRF for the Sender. It is obvious that a CRF cannot prevent an arbitrarily
tampered implementation of Alice from sending Bob some secret besides the
message to be sent. That is, no CRF for Alice can achieve strong exfiltration
resistance against Bob. Therefore, the “best possible” security is against the
corrupted implementations of Alice that maintain the functionality. One should
note that the MTP functionality requires Bob to recover the plaintext message
of Alice. In other words, a functionality-maintaining corruption of Alice can
only send the given input but no other message. Formally, we have the following
theorem for the CRF depicted in Fig. 4.

Fig. 4. Alice’s CRF for the protocol shown in Fig. 2

Theorem 4. The CRF for Alice shown in Fig. 4 maintains functionality and
strongly preserves security for Alice, and weakly resists exfiltration against Bob,
provided that the SPHF is element-rerandomizable.

Cryptographic Reverse Firewall 863

Proof. We verify that our construction satisfies the following properties.

Functionality Maintaining. One could easily have,

C̃T = CT ⊕ ΔV = CT ⊕ ReranH(pp, hp, C, w̃)

= M ⊕ ProjHash(pp, hp, C, w) ⊕ ReranH(pp, hp, C, w̃)

= M ⊕ Hash(pp, hk, C) ⊕ ReranH(pp, hp, C, w̃)

= M ⊕ Hash(pp, hk, C̃).

The above holds by the rerandomization consistency as the underlying SPHF is
element re-randomizable. Bob is thus able to recover Alice’s plaintext by com-
puting M = C̃T � Hash(pp, hk, C̃).

Strong Security Preservation and Weak Exfiltration Resistance. For any tam-
pered implementation of Alice that maintains functionality, suppose there exists
an adversary who has non-negligible advantage AdvLEAKA,W (�) in the game LEAK.
We then show how to build an adversary B to break the element indistinguisha-
bility captured by the element re-randomizability of the underlying SPHF by
running A. Recall that in the game LEAK, A would provide two parties (P1,P2)
which represent its chosen tampered implementations of Alice and Bob. Note
that the tampered implementation of Alice is functionality-maintaining. B first
runs the protocol between honest party Alice and P2, and obtains the output
of Alice as (C0, CT0). B then runs again the protocol between P1 and P2, and
obtains the output of P1 as (C1, CT1). It then sends (C0, C1) as the challenge
elements for the element indistinguishability game, and receives the challenge
re-randomized element C̃. It computes C̃T = M ⊕Hash(pp, hk, C̃) and then for-
wards (C̃, C̃T) to A as part of the challenge transcript T ∗ of the game LEAK and
outputs the guess b′ of A as its guess in the element indistinguishability game.
It is easy to see that the above behaviours of B are computationally indistin-
guishable from the real game LEAK from the view of A. Therefore, we have that
AdvElement-Ind

B,MSPHF (�) ≥ AdvLEAKA,W (�), which contradicts the element re-randomizability
of the underling SPHF. Therefore, the CRF weakly resists exfiltration against Bob
and of course against any eavesdropper. This also trivially implies the security
preservation of the firewall. �

4.2 Oblivious Signature-Based Envelope with CRFs

In this section, we introduce the CRF constructions for the oblivious signature-
based envelope protocol with an instantiation from the language of encryption
of signature. Formally, an OSBE protocol involves: a sender, holding a string P ,
and a receiver holding a credential. The protocol functionality requires that at
the end of protocol, the receiver could receive P if and only if he/she possesses
a certificate/signature on a predefined message M . The security notion asserts
that the sender cannot determine whether the receiver owns the valid credential
(obliviousness) and no other party learns anything about P (semantic security).

864 R. Chen et al.

Fig. 5. Blazy-Pointcheval-Vergnaud OSBE framework [11]

Blazy-Pointcheval-Vergnaud OSBE Framework [11]. Noting that the orig-
inal OSBE requires a secure channel during the execution to protect against
eavesdroppers, Blazy, Pointcheval and Vergaud [11] clarified and enhanced the
security models of OSBE by considering the security for both the sender and the
receiver against the authority. Their new notion, namely semantic security w.r.t.
the authority, requires that the authority who plays as the eavesdropper on the
protocol, learns nothing about the private message of the sender. They showed
how to generically build a 2-round OSBE scheme that can achieve the defined
strong security in the standard model with a Common Reference String (CRS).
We first recall a slightly modified version of their general framework, which is
illustrated in Fig. 5. In particular, without loss of generality, we assume that the
string P is in the hash value space of the underlying SPHF. The main idea of
the BPV-OSBE framework relies on the SPHF from the language defined by the
encryption of valid signatures. Let pp = (PP, ek, vk,M) where PP is the collection
of global parameters for the signature scheme, the encryption scheme and the
SPHF system, ek is the public key of the encryption scheme, vk is the verification
key of the signature scheme and M is the predefined message. Suppose Encrypt
is the encryption algorithm of the encryption scheme and Ver is the verification
algorithm of the signature scheme. The language of the underlying SPHF is then
defined as L = {Cσ | ∃r, σ, s.t., Cσ = Encrypt(pp, σ; r) ∧ Ver(pp, σ,M) = 1} . We
then have that the subset membership problem is hard due to the security of
the encryption scheme. Readers are referred to [11] for the detailed analysis of
protocol correctness and security.

CRF for the Receiver. An tampered implementation of the receiver might
produce a ciphertext Cσ that either enables an eavesdropper to read Alice’s
message P , or acts as a channel to leak some secrets to the outsider (Alice or an
eavesdropper). A CRF for Bob (denoted by WB) should be able to re-randomize
the ciphertext Cσ while still preserves the protocol functionality. It is also a
requirement for WB to preserve the protocol security, i.e., obliviousness, semantic
security and semantic security w.r.t the authority. Regarding exfiltration, WB

Cryptographic Reverse Firewall 865

Fig. 6. Bob’s CRF for the OSBE protocol shown in Fig. 5

should prevent the compromised Bob from using Cσ as a channel to leak secrets.
Figure 6 depicts the firewall WB in the OSBE protocol.

Theorem 5. The CRF for Bob shown in Fig. 6 maintains functionality and
strongly preserves security for Bob, and strongly resists exfiltration against Alice,
provided that the underlying SPHF is element-rerandomizable.

Proof. We verify that our construction satisfies the following properties.
Functionality Maintaining. Due to the rerandomization consistency of the ele-
ment re-randomizability, we have

Q̃ = Q � ΔV

= Q � ReranH(pp, hp, Cσ, w̃)

= P ⊕ Hash(pp, hk, C̃σ) � ReranH(pp, hp, Cσ, w̃)
= P ⊕ Hash(pp, hk, Cσ).

Bob is thus able to recover P by computing P = Q̃ � ProjHash(pp, hk, Cσ, r).

Strong Security Preservation and Strong Exfiltration Resistance. The strong exfil-
tration resistance follows from the fact that C̃σ is independent of the original
ciphertext Cσ chosen by Bob who might be arbitrarily compromised. Precisely,
suppose there exists an adversary who has non-negligible advantage AdvLEAKA,W (�)
in the game LEAK. We then show how to build an adversary B to break the
element indistinguishability captured by the element re-randomizability of the
underlying SPHF by running A. Recall that in the game LEAK, A would pro-
vide two parties (P1,P2) which represent its chosen tampered implementations
of Bob and Alice. B first runs the protocol between the honest party Bob and
P2, and obtains the output of Bob as C0. B then runs again the protocol between
P1 and P2, and obtains the output of P1 as C1. It then sends (C0, C1) as the
challenge elements for the element indistinguishability game, and receives the
challenge re-randomized element C̃σ. Finally, it forwards C̃σ to A as part of
the challenge transcript T ∗ of the game LEAK and outputs the guess b′ of A as

866 R. Chen et al.

its guess in the key indistinguishability game. It is easy to see that the above
behaviours of B are computationally indistinguishable from the real game LEAK
from the view of A. Therefore, we have that AdvElement-Ind

B,MSPHF (�) ≥ AdvLEAKA,W (�), which
contradicts the element-rerandomizability of the underling SPHF. This trivially
implies that the CRF also strongly preserves the protocol security. �

CRF for the Sender. Similar to the message-transmission protocol, it is easy
to see that no CRF for Alice can achieve strong exfiltration resistance against
Bob. The “best possible” security is thus against the corrupted implementations
of Alice that maintain the functionality. We show the CRF for Alice (denoted by
WA) in Fig. 7. Formally, we have the following theorem.

Theorem 6. The CRF for Alice shown in Fig. 7 maintains functionality and
strongly preserves security for Alice, and weakly resists exfiltration against Bob,
provided that the underlying SPHF is projection key-malleable.

Proof. We verify that our construction satisfies the following properties.

Functionality Maintaining. Due to the projection consistency of the projection
key-malleability of the underlying SPHF, we have

Q̃ = Q ⊕ ΔV = Q ⊕ MaulH(pp, hp, Cσ, r̃)
= P ⊕ Hash(pp, hk, Cσ) ⊕ MaulH(pp, hp, Cσ, r̃)

= P ⊕ Hash(pp, h̃k, Cσ).

In the above, h̃k is the associated key of projection key h̃p ← MaulK(pp, hp,r̃). We
can see that Bob can recover P by computing P = Q̃ � ProjHash(pp, h̃p, Cσ, r).

Strong Security Preservation and Weak Exfiltration Resistance. For any tam-
pered implementation of Alice that maintains functionality, suppose there exists
an adversary who has non-negligible advantage AdvLEAKA,W (�) in the game LEAK.
We then show how to build an adversary B to break the key indistinguishability
captured by the projection key-malleability of the underlying MSPHF by running
A. Recall that in the game LEAK, A would provide two parties (P1,P2) which
represent its chosen tampered implementations of Alice and Bob. Note that the
tampered implementation of Alice is functionality-maintaining. B first runs the
protocol between honest party Alice and P2, and obtains the output of Alice as
(hp0, Q0). B then runs again the protocol between P1 and P2, and obtains the
output of P1 as (hp1, Q1). It then sends (hp0, hp1) as the challenge projection key
for the key indistinguishability game, and receives the challenge re-randomized
projection key h̃p. It computes Q̃ = P ⊕ ProjHash(pp, h̃p, Cσ, r), and then for-
wards (h̃p, Q̃) to A as part of the challenge transcript T ∗ of the game LEAK
and outputs the guess b′ of A as its guess in the key indistinguishability game.
It is easy to see that the above behaviours of B are computationally indistin-
guishable from the real game LEAK from the view of A. Therefore, we have that
AdvKey-IndB,MSPHF(�) ≥ AdvLEAKA,W (�), which contradicts the projection key-malleability of
the underling MSPHF. Therefore, the firewall weakly resists exfiltration against

Cryptographic Reverse Firewall 867

Fig. 7. Alice’s CRF for the OSBE protocol shown in Fig. 5

Bob and of course against any eavesdropper. This also trivially implies the secu-
rity preservation of the CRF. �

Instantiation from the Linear Encryption of Valid Signatures. In the
work [11], an efficient OSBE protocol is proposed by combining the linear encryp-
tion scheme, the Waters signature [25] and an SPHF on the language of linear
ciphertexts. Here we show how to extend the instantiated SPHF to be malleable
for the CRF constructions. It is worth noting that the introduced malleable SPHF
here could also be represented by graded ring but does not follow the generic
framework proposed in Sect. 3.2 (i.e., Θaux is not an identity function). We first
recall the SPHF proposed in the work [11]. Let G,GT be two multiplicative
groups with the same prime order p. Let g be the generator of G and I be the
identity element of GT . A symmetric bilinear map is a map e : G × G → GT

such that e(ua, vb) = e(u, v)ab for all u, v ∈ G and a, b ∈ Zp. It is worth noting
that e can be efficiently computed and e(g, g) 	= 1GT

.

Linear Encryption of Waters Signatures. Let h
$← G and u = (u0, ..., uk) $←

G
k+1 which defines the Waters hash of a message M = (M1, ...,Mk) ∈ {0, 1}k

as F(M) = u0

∏k
i=1 uMi

i . The verification key is vk = gz and the associated

signing key is sk = hz where z
$← Zp. The signature on a message M is σ =

(σ1 = sk · F(M)s, σ2 = gs) for some random s
$← Zp. It can be verified by

checking e(g, σ1) = e(vk, h) · e(F(M), σ2). The linear encryption public key is

ek = (Y1 = gy1 , Y2 = gy2) and the secret key is dk = (y1, y2)
$← Z

2
p. The

ciphertext of a Waters signature σ = (σ1, σ2) is Cσ = (c1 = Y r1
1 , c2 = Y r2

2 , c3 =

gr1+r2 · σ1, c4 = σ2), where (r1, r2)
$← Z

2
p.

868 R. Chen et al.

The Instantiated Malleable SPHF. We first interpret the underlying SPHF using
the graded ring. The language is defined as,

L =
{

(c1, c2, c3, c4)|∃(r1, r2) ∈ Z
2
p, (σ1, σ2) ∈ G

2
1, s.t.,

(
c1 = Y r1

1 , c2 = Y r2
2 ,

c3 = gr1+r2 · σ1, c4 = σ2

) ∧(
e(g, σ1) = e(vk, h) · e(F(M), σ2)

)}
.

For any Cσ = (c1, c2, c3, c4), we have

Θaux(Cσ) =
(
c′
1 = e(c1, g), c′

2 = e(c2, g), c′
3 = e(c3, g)/

(
e(vk, h) · e(F(M), c4)

))
,

and Γ (Cσ) =
(

Y1 1 g
1 Y2 g

)

∈ G
2×3. We can see that if Cσ ∈ L with witness

w = (r1, r2), let λ = (gr1 , gr2), we have,

Θaux(Cσ) =
(
e(c1, g), e(c2, g), e(c3, g)/

(
e(vk, h) · e(F(M), c4)

))

=
(
e(Y r1

1 , g), e(Y r2
2 , g), e(gr1+r2 , g)

)

= λ � Γ (Cσ).

Let pp = (G, p, g, Y1, Y2,u), r̃ = (β1, β2, β3)T and λ̃ = w̃ = (η1, η2, η3). The
instantiation is as follows:

– HashKG(pp) : hk = α = (α1, α2, α3)
T $← Z

3
p;

– ProjKG(pp, hk, C) : hp = γ(Cσ) = Γ (Cσ) � α = (Y α1
1 gα3 , Y α2

2 gα3)T;
– Hash(pp, hk, C) : hv = Θaux(Cσ) � α = (c′

1, c
′
2, c

′
3) � (α1, α2, α3)

T = e(c1, g)α1 ·
e(c2, g)α2 ·

(
e(c3, g)/

(
e(vk, h) · e(F(M), c4)

))α3
;

– ProjHash(pp, hp, C, w) : hv = λ � γ(Cσ) = (gr1 , gr2) � (Y α1
1 gα3 , Y α2

2 gα3)T =

e
(
(Y α1

1 gα3)r1 · (Y α2
2 gα3)r2 , g

)
;

– MaulK(pp, hp, r̃) : h̃p = γ(C) ⊕ (Γ (C) � r̃) = γ(Cσ) ⊕ (Γ (Cσ) � Δr) =
(Y α1

1 gα3 , Y α2
2 gα3) ⊕(Y β1

1 gβ3 , Y β2
2 gβ3) = ((Y α1+β1

1 gα3+β3 , Y α2+β2
2 gα3+β3))T;

– MaulH(pp, hp, r̃, C) : h̃v = Θaux(C) � r̃ = (c′
1, c

′
2, c

′
3) � (β1, β2, β3)

T = e(c1, g)β1 ·
e(c2, g)β2 ·

(
e(c3, g)/

(
e(vk, h) · e(F(M), c4)

))β3
;

– ReranE(pp,C, w̃) : C̃ = Cσ ⊕ (Y η1
1 , Y η2

2 , gη1+η2F(M)η3 , gη3) = (c1 · Y η1
1 , c2 · Y η2

2 , c3 ·
gη1+η2F(M)η3 , c4 · gη3);

– ReranH(pp, hp,C, w̃) : h̃v = (gη1 , gη2) � Γ (Cσ) = (gη1 , gη2) � (Y α1
1 gα3 , Y α2

2 gα3) =

e
(
(Y α1

1 gα3)η1 · (Y α2
2 gα3)η2 , g

)
.

Theorem 7. The above construction is a malleable smooth projective hash
function.

Proof. We verify that our construction satisfies the following properties. Note
that the constructions of both MaulK and MaulH follow the framework proposed
in Sect. 3.2. According to Theorem1, we have that our constructed SPHF is pro-
jection key-malleable. Note that in our construction, C ′

σ = Cσ ⊕ (Y η1
1 , Y η2

2 ,

Cryptographic Reverse Firewall 869

gη1+η2F(M)η3 , gη3), one can easily observe the rerandomization is element-
indistinguishable due to the 2-Lin assumption. Particularly, we have that
(Y η1

1 , Y η2
2 , gη1+η2) is a linear tuple w.r.t (Y1, Y2, g). If any adversary can distin-

guish the rerandomized element, we can use it as a subroutine to break the 2-Lin
assumption. We then prove that the element rerandomization is membership-
preserving. Suppose Cσ =

(
c1 = Y r1

1 , c2 = Y r2
2 , c3 = gr1+r2 · σ1, c4 = σ2

) ∈ L.
We have that after it is rerandomized,

C̃σ = Cσ ⊕ (Y η1
1 , Y η2

2 , gη1+η2F(M)η3 , gη3)
= (c1 · Y η1

1 , c2 · Y η2
2 , c3 · gη1+η2F(M)η3 , c4 · gη3)

=
(
Y r1+η1
1 , Y r2+η2

2 , gr1+r2+η1+η2 · σ1 · F(M)η3 , σ2 · gη3
)

def=
(
c̃1, c̃2, c̃3, c̃4

)

Since Γ is a constant function, we know that, Γ (C̃σ) = Γ (Cσ) =(
Y1 1 g
1 Y2 g

)

. Let λ̃ = (gr1+η1 , gr2+η2), we then obtain:

Θaux(C̃σ) =
(
e(c̃1, g), e(c̃2, g), e(c̃3, g)/

(
e(vk, h) · e(F(M), c̃4)

))

=
(
e(Y r1+η1

1 , g), e(Y r2+η2
2 , g),

e(gr1+r2+η1+η2 · σ1 · F(M)η3 , g)

e(vk, h) · e(F(M), σ2 · gη3)

)

=
(
e(Y r1+η1

1 , g), e(Y r2+η2
2 , g), e(gr1+r2+η1+η2 , g)

)

= λ̃ � Γ (C̃σ).

This shows that C̃σ ∈ L. If Cσ /∈ L, we trivially have that C̃σ /∈ L.
We then justify the rerandomization consistency. For any hashing key hk = α

= (α1, α2, α3)T
$← Z

2
p, we have that,

Hash(pp, hk, C̃σ) = Θaux(C̃σ) � α

=
(
e(c̃1, g), e(c̃2, g),

e(c̃3, g)

e(vk, h) · e(F(M), c̃4)

)
� (α1, α2, α3)

T

= (c′
1, c

′
2, c

′
3) � (α1, α2, α3)

T ⊕ (gη1 , gη2) � (Y α1
1 gα3 , Y α2

2 gα3)

= Θaux(Cσ) � α ⊕ e
(
(Y α1

1 gα3)η1 · (Y α2
2 gα3)η2 , g

)

= Hash(pp, hk, Cσ) ⊕ ReranH(pp, hp,Cσ, w̃).

5 Oblivious Transfer with Reverse Firewall

5.1 A New OT Framework from Graded Rings

Oblivious transfer forms a central primitive in modern cryptography. It is a
protocol between the sender, holding two message M0 and M1, and a receiver
holding a choice bit b. The OT functionality requires that at the end of the
protocol, the receiver can learn the message Mb. The security requirement is

870 R. Chen et al.

Fig. 8. Definitions of algortihms SampI,PairG.

Fig. 9. OT Protocols from graded rings.

that the receiver learns nothing about M1−b (sender security), and the sender
learns nothing about the receiver’s choice b (receiver security). We introduce
a variant of the HK-OT [16] framework in the context of graded rings. Essen-
tially, we follow the generic framework of (malleable) SPHF from graded rings
(shown in Sect. 3.2). The modified semi-generic framework narrows the possible
instantiations of the HK-OT framework. However, as we will show later, the
CRF construction following our framework not only captures the prior work [21],
which is the only known OT-CRF to date, but also yields new constructions
under weaker assumptions.

Before introducing our framework, we define two new algorithms SampI,PairG
depicted in Fig. 8. For the sake of clarity, we use λ = λ(w) to represent the
derivation of λ from the witness w. We require Θaux to be an identity function
and Γ to be a constant function. That is, we only consider the KV type SPHF on
diverse groups. As before, the subset membership problem must also be hard.
Note that these are exactly the same conditions (Theorem 1) for our malleable
SPHF construction presented in Sect. 3.2. Our graded ring-based OT framework
is shown in Fig. 9. Suppose the element basis (denoted by Γ = (Γ1, ..., Γn) ∈

Cryptographic Reverse Firewall 871

G
m×n) is chosen by the receiver using the algorithm named SampB. It is worth

noting that for the sake of simplicity, we assume without loss of generality the
receiver (even the tampered implementation) would not trivially choose Γi = 1G

for any i ∈ [1, n], since such an attempt can be easily detected in reality. One
can note that:

– b = 0: C0 ∈ L as C0 = λ(w) Γ and C1 /∈ L as C1 is not a linear span of Γ .
– b = 1: C0 /∈ L as C0 is not a linear span of Γ and C1 ∈ L as C1 = λ(w) Γ .

Formally, we have the following result for the above framework.

Theorem 8. The generic construction of OT shown in Fig. 9 is correct and
secure.

The protocol functionality (correctness) follows from the fact that Cb ∈ L
and the sender security is guaranteed as C1−b /∈ L. The receiver security is due
to the hardness of the subset membership problem.

Fig. 10. Bob’s CRF for the OT protocol in Fig. 9

5.2 Constructions of CRFs

CRF for the Receiver. The construction of the receiver CRF (denoted by WB)
under our OT framework is shown in Fig. 10. The algorithm SampS outputs
a transformation matrix (denoted by S̃ ∈ Z

n×n
p) for the element basis Γ . We

denote the output of PairG(Γ , C̃0) as C̃1 and it should be clear that:

– b = 0: C̃0 = λ(w) � Γ � S̃ ⊕ w̃ � Γ̃ = (λ(w) ⊕ λ(w̃))� Γ̃ . C̃1 = (λ(w) � Γ 	 ΔC) �
S̃ ⊕ w̃ � Γ̃ = (λ(w) ⊕ λ(w̃)) � Γ̃ 	 ΔC � S̃, where ΔC = (0Zp , ..., 0Zp , 1Zp)1×m �
(1G, ...,1G, Γn)1×n.

872 R. Chen et al.

– b = 1: C̃0 = (λ(w) � Γ ⊕ ΔC) � S̃ ⊕ w̃ � Γ̃ = (λ(w) ⊕ λ(w̃)) � Γ̃ ⊕ ΔC � S̃, where

ΔC = (0Zp , ..., 0Zp , 1Zp)1×m � (1G, ...,1G, Γn)1×n. C̃1 = λ(w) � Γ � S̃ ⊕ w̃ � Γ̃ =

(λ(w) ⊕ λ(w̃)) � Γ̃ .

That is, C̃b ∈ L and thus WB maintains the protocol functionality:

C̃Tb = CTb 	 ΔVb

= Mb ⊕ (C̃b � αb

)	 (λ(w̃) � γb

)

= Mb ⊕ (λ(w) ⊕ λ(w̃)) � Γ̃ � αb

)	 (λ(w̃) � Γ̃ � αb

)

= Mb ⊕ (λ(w) � Γ̃ � αb

)

= Mb ⊕ (λ(w) � γb

)
.

Discussions on S̃. It is a trivial observation that WB could strongly resist exfil-
tration if Γ̃ is independent from Γ as this also results in a random element C̃ (by
uniformly sampling w̃). Precisely, let Γ = (Γ1, ..., Γn). An ideal transformation
matrix S̃ should transfer each Γi to another random Γ̃i and for any i, j ∈ [1, n]
and i 	= j, Γ̃i is independent from Γ̃j . To realize such a transformation, one could
either shear and uniformly scale or globally and non-uniformly scale the matrix
Γ as follows:

– Shear and uniform scaling. Choose a column and then independently shear
each other column. Then uniformly scale all the columns. The shearing and
scaling could be in any order. A corresponding transformation matrix for this
type of transformation has the following format (assuming the chosen column
is Γ1):

S̃ = A � B =

⎛

⎜
⎜
⎜
⎝

α 0 · · · 0
0 α · · · 0
...

...
. . .

...
0 0 · · · α

⎞

⎟
⎟
⎟
⎠

�

⎛

⎜
⎜
⎜
⎝

1 β2 · · · βn

0 1 · · · 0
...

...
. . .

...
0 0 · · · 1

⎞

⎟
⎟
⎟
⎠

∈ Z
n×n
p ,

where (α, β2, ..., βn) $← Z
n
p , A is the a scaling matrix and B is the shearing

matrix.
– Globally non-uniform scaling. Independently scale each column. A correspond-

ing transformation matrix for this type of transformation has the following
shape:

S̃ =

⎛

⎜
⎜
⎝

α1 0 · · · 0
0 α2 · · · 0
...

...
. . .

...
0 0 · · · αn

⎞

⎟
⎟
⎠ ∈ Z

n×n
p ,

where (α1, ..., αn) $← Z
n
p .

The first type has been used by Mironov and Stephens-Davidowitz in their OT-
CRF construction [21]. One can note the second type of transformation is more
efficient and thus can improve the efficiency. We will show the details in Sect. 5.3.

Cryptographic Reverse Firewall 873

Fig. 11. Alice’s CRF for the OT protocol in Fig. 9

CRF for the Sender. Figure 11 depicts the construction of CRF for the sender
(denoted by WA). One may note that the construction is exactly part of the
garded ring-based construction of malleable SPHF shown in Sect. 3.2. Therefore,
according to Theorem 1, one could easily see that WA maintains functionality,
weakly resist exfiltration against Bob and strongly resist exfiltration against an
eavesdropper. The composed firewall WB ◦ WA also weakly preservers security
against Bob.

5.3 Instantiations

Due to the space limitation, the hardness assumptions and security analysis are
given in the full version.

Capturing the OT-CRF in [21]. Below we show that our framework indeed
encompasses the construction in [21]. Precisely, in [21] the basis chosen by the
receiver is (g, c) and the chosen element is C0 = (d, h), where d = gy, h = cygb.
We have that.

Γ = (g, c), S̃ =

(
α αx′

0 α

)

, w̃ = y′,

Γ̃ = Γ S̃ = (gα, cαgαx′
), C ′

0 = C0 S̃ = (dα, hαdαx′
),

C = w̃ Γ̃ = (gαy′
, cαy′

gαx′y′
), C̃0 = C ′

0 ⊕ C = (dαgαy′
, hαdαx′

cαy′
gαx′y′

).

One can note that the transformation of Γ adopted here is via shearing and
uniform scaling as:

S̃ =
(

α αx′

0 α

)

=
(

α 0
0 α

)

(

1 x′

0 1

)

.

It is clear that other parts of protocol also follow the above framework.

874 R. Chen et al.

Improving the Efficiency of [21]. As mentioned above, we can construct a
more efficient WB based on the DDH assumption by applying the globally non-
uniform scaling of Γ . Specifically, suppose the element basis provided by the
receiver is (g, c) and the chosen element is C0 = (d, h), where d = gy, h = cycb.
We have

Γ = (g, c) ∈ G
1×2, S̃ =

(
s1 0
0 s2

)

∈ Z
2×2
p , w̃ = y′,

Γ̃ = Γ S̃ = (gs1 , cs2), C ′
0 = C0 S̃ = (ds1 , hs2),

C = w̃ Γ̃ = (gs1y′
, cs2y′

), C̃0 = C ′
0 ⊕ C = (ds1gs1y′

, hs2cs2y′
).

Instantiation from k-Linear Assumption. We now show the construction of
CRF for the above protocol. We only show the construction of WB since WA can
be easily obtained from the k-linear assumption based instantiation of malleable
SPHF shown in Sect. 3.2. Specifically, we have

Γ =

⎛

⎜
⎜
⎝

g1 1 · · · 1 gk+1

1 g2 · · · 1 gk+1

...
...

. . .
...

...
1 1 · · · gk gk+1

⎞

⎟
⎟
⎠ , S̃ =

⎛

⎜
⎜
⎝

s1 0 · · · 0
0 s2 · · · 0
...

...
. . .

...
0 0 · · · sk+1

⎞

⎟
⎟
⎠ ,

Γ̃ = Γ S̃ =

⎛

⎜
⎜
⎝

gs1
1 1 · · · 1 g

sk+1
k+1

1 gs2
2 · · · 1 g

sk+1
k+1

...
...

. . .
...

...
1 1 · · · g

sk
k g

sk+1
k+1

⎞

⎟
⎟
⎠ , C ′

0 = C0S̃ = (cs1
1 , cs2

2 , ..., c
sk+1
k+1),

w̃ = (r′
1, r

′
2, ..., r

′
k+1) ∈ Z

k
p, C = w̃ Γ̃ = (gs1r′

1
1 , g

s2r′
2

2 , ..., g
sk+1

∑k
i=1 r′

i

k+1),

C̃0 = C ′
0 ⊕ C = (cs1

1 g
s1r′

1
1 , cs2

2 g
s2r′

2
2 , · · · , csk

k g
skr′

k

k , c
sk+1
k+1 g

sk+1
∑k

i=1 r′
i

k+1).

6 Conclusion

In this work, we presented generic CRF constructions for several widely used
cryptographic protocols based on a new notion named malleable smooth projec-
tive hash function, which is an extension of the SPHF with new properties. We
showed how to generically construct CRFs via malleable SPHFs in a modular
way. Specifically, we proposed generic constructions of CRFs for the unkeyed
message-transmission protocol and the OSBE protocol. We further studied the
OT protocol and developed a new OT framework from graded rings and showed
how to construct OT-CRFs via a modified version of the malleable SPHF frame-
work.

Acknowledgements. We would like to thank the anonymous reviewers for their
invaluable comments on a previous version of this paper. Dr. Guomin Yang is sup-
ported by the Australian Research Council Discovery Early Career Researcher Award
(Grant No. DE150101116). Dr. Mingwu Zhang is supported by the National Natural
Science Foundation of China (Grant No. 61370224 and Grant No. 61672010).

Cryptographic Reverse Firewall 875

References

1. Abdalla, M., Benhamouda, F., Pointcheval, D.: Disjunctions for hash proof sys-
tems: new constructions and applications. In: Oswald, E., Fischlin, M. (eds.)
EUROCRYPT 2015. LNCS, vol. 9057, pp. 69–100. Springer, Heidelberg (2015).
doi:10.1007/978-3-662-46803-6 3

2. Abdalla, M., Chevalier, C., Pointcheval, D.: Smooth projective hashing for condi-
tionally extractable commitments. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol.
5677, pp. 671–689. Springer, Heidelberg (2009). doi:10.1007/978-3-642-03356-8 39

3. Alwen, J., Shelat, A., Visconti, I.: Collusion-free protocols in the mediated model.
In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 497–514. Springer,
Heidelberg (2008). doi:10.1007/978-3-540-85174-5 28

4. Ateniese, G., Magri, B., Venturi, D.: Subversion-resilient signature schemes. In:
ACM CCS, pp. 364–375 (2015)

5. Balfanz, D., Durfee, G., Shankar, N., Smetters, D.K., Staddon, J., Wong, H.: Secret
handshakes from pairing-based key agreements. In: S&P, pp. 180–196 (2003)

6. Bellare, M., Hoang, V.T.: Resisting randomness subversion: fast deterministic and
hedged public-key encryption in the standard model. In: Oswald, E., Fischlin, M.
(eds.) EUROCRYPT 2015. LNCS, vol. 9057, pp. 627–656. Springer, Heidelberg
(2015). doi:10.1007/978-3-662-46803-6 21

7. Bellare, M., Jaeger, J., Kane, D.: Mass-surveillance without the state: Strongly
undetectable algorithm-substitution attacks. In: ACM CCS, pp. 1431–1440 (2015)

8. Bellare, M., Paterson, K.G., Rogaway, P.: Security of symmetric encryption against
mass surveillance. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014. LNCS, vol.
8616, pp. 1–19. Springer, Heidelberg (2014). doi:10.1007/978-3-662-44371-2 1

9. Benhamouda, F., Blazy, O., Chevalier, C., Pointcheval, D., Vergnaud, D.: New
techniques for SPHFs and efficient one-round PAKE protocols. In: Canetti, R.,
Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8042, pp. 449–475. Springer,
Heidelberg (2013). doi:10.1007/978-3-642-40041-4 25

10. Blaze, M., Bleumer, G., Strauss, M.: Divertible protocols and atomic proxy cryp-
tography. In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp. 127–144.
Springer, Heidelberg (1998). doi:10.1007/BFb0054122

11. Blazy, O., Pointcheval, D., Vergnaud, D.: Round-optimal privacy-preserving
protocols with smooth projective hash functions. In: Cramer, R. (ed.) TCC
2012. LNCS, vol. 7194, pp. 94–111. Springer, Heidelberg (2012). doi:10.1007/
978-3-642-28914-9 6

12. Cramer, R., Shoup, V.: Universal hash proofs and a paradigm for adaptive cho-
sen ciphertext secure public-key encryption. In: Knudsen, L.R. (ed.) EURO-
CRYPT 2002. LNCS, vol. 2332, pp. 45–64. Springer, Heidelberg (2002). doi:10.
1007/3-540-46035-7 4

13. Dodis, Y., Ganesh, C., Golovnev, A., Juels, A., Ristenpart, T.: A formal treat-
ment of backdoored pseudorandom generators. In: Oswald, E., Fischlin, M. (eds.)
EUROCRYPT 2015. LNCS, vol. 9056, pp. 101–126. Springer, Heidelberg (2015).
doi:10.1007/978-3-662-46800-5 5

14. Dodis, Y., Mironov, I., Stephens-Davidowitz, N.: Message transmission with reverse
firewalls—secure communication on corrupted machines. In: Robshaw, M., Katz, J.
(eds.) CRYPTO 2016. LNCS, vol. 9814, pp. 341–372. Springer, Heidelberg (2016).
doi:10.1007/978-3-662-53018-4 13

15. Gennaro, R., Lindell, Y.: A framework for password-based authenticated key
exchange. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 524–543.
Springer, Heidelberg (2003). doi:10.1007/3-540-39200-9 33

http://dx.doi.org/10.1007/978-3-662-46803-6_3
http://dx.doi.org/10.1007/978-3-642-03356-8_39
http://dx.doi.org/10.1007/978-3-540-85174-5_28
http://dx.doi.org/10.1007/978-3-662-46803-6_21
http://dx.doi.org/10.1007/978-3-662-44371-2_1
http://dx.doi.org/10.1007/978-3-642-40041-4_25
http://dx.doi.org/10.1007/BFb0054122
http://dx.doi.org/10.1007/978-3-642-28914-9_6
http://dx.doi.org/10.1007/978-3-642-28914-9_6
http://dx.doi.org/10.1007/3-540-46035-7_4
http://dx.doi.org/10.1007/3-540-46035-7_4
http://dx.doi.org/10.1007/978-3-662-46800-5_5
http://dx.doi.org/10.1007/978-3-662-53018-4_13
http://dx.doi.org/10.1007/3-540-39200-9_33

876 R. Chen et al.

16. Halevi, S., Kalai, Y.T.: Smooth projective hashing and two-message oblivious
transfer. J. Crypt. 25(1), 158–193 (2012)

17. Katz, J., Vaikuntanathan, V.: Round-optimal password-based authenticated key
exchange. In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 293–310. Springer,
Heidelberg (2011). doi:10.1007/978-3-642-19571-6 18

18. Larson, J., Perlroth, N., Shane, S.: Revealed: The NSAs Secret Campaign to Crack,
Undermine Internet Security. Pro-Publica, New York (2013)

19. Lepinski, M., Micali, S., Shelat, A.: Collusion-free protocols. In: Proceedings of the
37th Annual ACM Symposium on Theory of Computing, Baltimore, MD, USA,
22–24 May 2005, pp. 543–552 (2005)

20. Li, N., Du, W., Boneh, D.: Oblivious signature-based envelope. In: PODC, pp.
182–189 (2003)

21. Mironov, I., Stephens-Davidowitz, N.: Cryptographic reverse firewalls. In: Oswald,
E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9057, pp. 657–686. Springer,
Heidelberg (2015). doi:10.1007/978-3-662-46803-6 22

22. Perlroth, N., Larson, J., Shane, S.: NSA Able to Foil Basic Safeguards of Privacy
on Web. The New York Times (2013)

23. Rogaway, P.: The moral character of cryptographic work. IACR Crypt. ePrint
Arch. 2015, 1162 (2015)

24. Russell, A., Tang, Q., Yung, M., Zhou, H.: Cliptography: clipping the power of
kleptographic attacks. IACR Crypt. ePrint Arch. 2015, 695 (2015)

25. Waters, B.: Efficient identity-based encryption without random oracles. In: Cramer,
R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 114–127. Springer, Heidelberg
(2005). doi:10.1007/11426639 7

26. Wee, H.: KDM-security via homomorphic smooth projective hashing. In: Cheng,
C.-M., Chung, K.-M., Persiano, G., Yang, B.-Y. (eds.) PKC 2016. LNCS, vol. 9615,
pp. 159–179. Springer, Heidelberg (2016). doi:10.1007/978-3-662-49387-8 7

27. Yang, R., Xu, Q., Zhou, Y., Zhang, R., Hu, C., Yu, Z.: Updatable hash proof system
and its applications. In: Pernul, G., Ryan, P.Y.A., Weippl, E. (eds.) ESORICS
2015. LNCS, vol. 9326, pp. 266–285. Springer, Heidelberg (2015). doi:10.1007/
978-3-319-24174-6 14

28. Young, A., Yung, M.: The dark side of “Black-Box” cryptography or: should we
trust capstone? In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 89–103.
Springer, Heidelberg (1996). doi:10.1007/3-540-68697-5 8

http://dx.doi.org/10.1007/978-3-642-19571-6_18
http://dx.doi.org/10.1007/978-3-662-46803-6_22
http://dx.doi.org/10.1007/11426639_7
http://dx.doi.org/10.1007/978-3-662-49387-8_7
http://dx.doi.org/10.1007/978-3-319-24174-6_14
http://dx.doi.org/10.1007/978-3-319-24174-6_14
http://dx.doi.org/10.1007/3-540-68697-5_8

Efficient Public-Key Cryptography
with Bounded Leakage and Tamper Resilience

Antonio Faonio1(B) and Daniele Venturi2

1 Department of Computer Science, Aarhus University, Aarhus, Denmark
afaonio@gmail.com

2 Department of Information Engineering and Computer Science,

University of Trento, Trento, Italy

Abstract. We revisit the question of constructing public-key encryption
and signature schemes with security in the presence of bounded leakage
and tampering memory attacks. For signatures we obtain the first con-
struction in the standard model; for public-key encryption we obtain the
first construction free of pairing (avoiding non-interactive zero-knowledge
proofs). Our constructions are based on generic building blocks, and, as
we show, also admit efficient instantiations under fairly standard number-
theoretic assumptions.

The model of bounded tamper resistance was recently put forward
by Damg̊ard et al. (Asiacrypt 2013) as an attractive path to achieve
security against arbitrary memory tampering attacks without making
hardware assumptions (such as the existence of a protected self-destruct
or key-update mechanism), the only restriction being on the number of
allowed tampering attempts (which is a parameter of the scheme). This
allows to circumvent known impossibility results for unrestricted tamper-
ing (Gennaro et al., TCC 2010), while still being able to capture realistic
tampering attacks.

Keywords: Public-key encryption · Signatures · Related-key attacks ·
Tampering · Leakage

1 Introduction

Motivated by the proliferation of memory tampering attacks and fault injec-
tion [11,13,46], a recent line of research—starting with the seminal work of
Bellare and Kohno [8] on the related-key attack (RKA) security of blockciphers—
aims at designing cryptographic primitives that provably resist such attacks.
Briefly, memory tampering attacks allow an adversary to modify the secret key
of a targeted cryptographic scheme, and later violate its security by observing
the effect of such changes at the output. In practice such attacks can be imple-
mented by several means, both in hardware and software.

This paper is focused on designing public-key primitives—i.e., public-key
encryption (PKE) and signature schemes—with provable security guarantees
against memory tampering attacks. In this setting, the modified secret key might
c© International Association for Cryptologic Research 2016
J.H. Cheon and T. Takagi (Eds.): ASIACRYPT 2016, Part I, LNCS 10031, pp. 877–907, 2016.
DOI: 10.1007/978-3-662-53887-6 32

878 A. Faonio and D. Venturi

be the signing key of a certification authority or of an SSL server, or the decryp-
tion key of a user. Informally, security of a signature scheme under tampering
attacks can be cast as follows. The adversary is given a target verification key
vk and can observe signatures of adaptively chosen messages both under the
original secret key sk and under related keys sk ′ = T (sk), derived from sk by
applying efficient tampering functions T chosen by the adversary; the goal of the
adversary is to forge a signature on a “fresh message” (i.e., a message not asked
to the signing oracle) under the original verification key. Tamper resistance of
PKE schemes under chosen-ciphertext attacks (CCA) can be defined similarly,
the difference being that the adversary is allowed to observe decryption of adap-
tively chosen ciphertexts under related secret keys sk ′, and its goal is now to
violate semantic security.

Unrestricted tampering. The best we could hope for would be, of course, to
allow the adversary to make any polynomial number of arbitrary, efficiently
computable, tampering queries. Unfortunately, this type of “unrestricted tam-
pering” is easily seen to be impossible without making further assumptions, as
observed for the first time by Gennaro et al. [29]. The attack of [29] is simple
enough to recall it here. The first tampering attempt defines sk ′

1 to be equal to
sk with the first bit set to zero, so that verifying a signature under sk ′

1 essentially
allows to learn the first bit b1 of the secret key with overwhelming probability.
The second tampering attempt defines sk ′

2 to be equal to sk with the second bit
set to zero, and with the first bit equal to b1, and so on. This way each tamper-
ing attempt can be exploited to reveal one bit of the secret key, yielding a total
security breach after s(κ) queries, where s(κ) is the bit-length of the secret key
as a function of the security parameter.1

A possible way out to circumvent such an attack is to rely on the so-called
self-destruct feature: Find a way how to detect tampering with high probability,
and completely erase the memory or “blow-up the device” whenever tampering
is detected. While this is indeed a viable approach, it has some shortcomings (at
it can, e.g., be exploited for carrying out denial-of-service attacks), and so find-
ing alternatives is an important research question. One natural such alternative
is to simply restrict the power of the tampering functions T , in such a way that
carrying out the above attack simply becomes impossible. This approach led
to the design of several public-key primitives resisting an arbitrary polynomial
number of restricted tampering attempts. All these schemes share the feature
that the secret key belongs to some finite field, and the set of allowed modifi-
cations consist of all linear or affine functions, or all polynomials of bounded
degree, applied to the key [7,10,54].

Bounded tampering. Unfortunately, the approach of restricting the tampering
class only offers a partial solution to the problem; the main reason for this is

1 A similar attack works for PKE schemes, and more generally for a large class of
cryptographic primitives that can be tested for malfunctioning [29]; one can also
make the above attack completely stateless.

Efficient Public-Key Cryptography 879

that it is not a priori clear how the above mentioned algebraic relations capture
realistic tampering attacks (where, e.g., a chip is shot with a laser). Motivated
by this shortcoming, in a recent work, Damg̊ard et al. [18] suggested the model
of bounded tampering, where one assumes an upper-bound τ ∈ N on the total
number of tampering attempts the adversary is allowed to ever make; apart from
this, and from the fact that the tampering functions T should be efficiently com-
putable, there is no further restriction on the adversarial tampering. Arguably,
such form of tamper-proof security is sufficient to capture realistic attacks in
which tampering might anyway destroy the device under attack or it could be
detected by auxiliary hardware countermeasures; moreover, this model allows to
analyze the security of cryptographic primitives already “in the wild,” without
the need to modify the implementation to include, e.g., a self-destruct feature.

An important parameter in the model of bounded tampering is the so-called
tampering rate ρ(κ) := τ(κ)/s(κ) defined to be the ratio between the number
of allowed tampering attempts and the size s(κ) of the secret key in bits. The
attack of Gennaro et al. [29] shows that necessarily ρ(κ) ≤ 1 − 1/p(κ) for some
polynomial p(·). The original work of [18] shows how to obtain signature schemes
and PKE schemes tolerating linear tampering rate ρ(κ) = O(1/κ). However, the
signature construction relies on the so-called Fiat–Shamir heuristic [28], whose
security can only be proven in the random oracle model; the PKE construc-
tion can be instantiated in the standard model, but requires an untamperable
common reference string (CRS), being based on (true simulation-extractable)
non-interactive zero-knowledge (NIZK) [20].

In a follow-up work [19], the same authors show that resilience against
bounded tampering can be obtained via a generic transformation yielding tam-
pering rate ρ(κ) = O(1/

3
√

κ2); however, the transformation only gives a weaker
form of security against non-adaptive (or semi-adaptive [19]) tampering attacks.

1.1 Our Contribution

In this work we improve the current state of the art on signature schemes and
PKE schemes provably resisting bounded memory tampering. In the case of
signatures, we obtain the first constructions in the standard model based on
generic building blocks; as we argue, this yields concrete signature schemes tol-
erating tampering rate ρ(κ) = O(1/κ) under standard complexity assumptions
such as the Symmetric External Diffie-Hellman (SXDH) [12,52] and the Deci-
sional Linear (DLIN) [35,53] assumptions. In the case of PKE, we obtain a direct,
pairing-free, construction based on certain hash-proof systems [17], yielding con-
crete PKE schemes tolerating tampering rate ρ(κ) = O(1/κ) under a particular
instantiation of the Refined Subgroup Indistinguishability (RSI) assumption [45].

More precisely, we show that already existing schemes can be proved secure
against bounded tampering. We do not view this as a limitation of our result, as
it confirms the perspective that the model of bounded tamper resilience allows to
make statements about cryptographic primitives already used “in the wild” (that
might have already been implemented and adopted in applications). Addition-
ally, our security arguments are non-trivial, requiring significant modifications

880 A. Faonio and D. Venturi

Table 1. Comparing known constructions of public-key primitives with security against
related-key attacks (without self-destruct and key updating mechanisms). The value
“∞” under the column “tampering rate” means that the scheme supports an arbitrary
polynomial number of tampering queries. aOnly achieves security against non-adaptive
tampering.

Reference Type Attack class Model Tampering
rate

Assumption

BCM11 [7] Sig./PKE Linear Standard ∞ DDHI [1]

Wee12 [54] PKE Linear Standard ∞ BDDH/LWE

BPT12 [10] Sig./PKE Affine Random
Oracle

∞ BDH

Polynomial Standard ∞ EDBDH

DFMV13 [18] Sig. Any Random
Oracle

O(1/κ) DLOG/Factoring

PKE Any Standard O(1/κ) SXDH/DLIN

BMT14 [9] Sig. Affine Standard ∞ DLOG

Exponentiation Standard ∞ RSA

Addition Standard ∞ LWE

DFMV15 [19] Sig./PKE Any Standarda O(1/
3√

κ2) OWF/TDP

JW15 [37] Sig./PKE Poly-size Circuits Standard ∞ OWF/TDP

QLY+15 [51] Sig./PKE Polynomial Standard ∞ DDH/DCR

Ours Sect. 3 Sig. Any Standard O(1/κ) SXDH/DLIN

Ours Sect. 4 PKE Any Standard O(1/κ) RSI

to the original proofs (more on this below). In what follows we explain our con-
tributions and techniques more in details. We refer the reader to Table 1 for a
summary of our results and a comparison with previous work.

Signatures. We prove that the leakage-resilient signature scheme by Dodis
et al. [20] is secure against bounded tampering attacks. The scheme of [20] sat-
isfies the property that it remains unforgeable even given bounded leakage on
the signing key. The main idea for showing security against bounded tampering,
is to reduce tampering to leakage. Notice that this is non-trivial, because in the
tampering setting the adversary is allowed to see polynomially many signatures
corresponding to each of the tampered secret keys (which are at most τ), and
this yields a total amount of key-dependent information which is much larger
than the tolerated leakage.

We now explain how to overcome this obstacle. The scheme exploits a so-
called leakage-resilient hard relation R; such a relation satisfies the property
that, given a statement y generated together with a witness x, it is unfeasible
to compute a witness x∗ for (x∗, y) ∈ R; moreover the latter holds even given
bounded leakage on x. The verification key of the signature scheme consists of a
random y, while the secret key is equal to x, where (x, y) is a randomly generated
pair belonging to the relation R. In order to sign a message m, one simply outputs

Efficient Public-Key Cryptography 881

a non-interactive zero-knowledge proof of knowledge π of x, where the message
m is used as a label in the proof. Verification of a signature can be done by
verifying the accompanying proof.

In the security proof, by the zero-knowledge property, we can replace real
proofs with simulated proofs. Moreover, by the proof of knowledge property, we
can actually extract a valid witness x∗ for (x∗, y) from the adversarial forgery
π∗; note that, since the forger gets to see simulated proofs, the extractability
requirement must hold even after seeing proofs generated via the zero-knowledge
simulator. Finally, we can transform a successful forger for the signature scheme
into an adversary breaking the underlying leakage-resilient relation; the trick is
that the reduction can leak the statement y′ corresponding to any tampered
witness x′ = T (x), which allows to simulate an arbitrary polynomial number
of signature queries corresponding to x′ by running several independent copies
of the zero-knowledge simulator upon input y′. Thus bounded tamper resilience
follows by bounded leakage resilience.

A subtle technicality in the above argument is that the statement y′ must
be efficiently computable as a function of x′. We call a relation R satisfying
this property a complete relation. As we define it, completeness additionally
requires that any derived witness x′ = T (x) is a witness for a valid statement y′

(i.e., (x′, y′) ∈ R); importantly this allows us to argue that simulated proofs are
always for true statements, which leads to practical instantiations of the scheme.
When we instantiate the signature scheme, of course, we need to make sure that
the underlying relation meets our completeness requirement. Unfortunately, this
is not directly the case for the constructions given in [20], but, as we show,
such a difficulty can be overcome by carefully twisting the instantiation of the
underlying relations.

Public-key encryption. Next, we prove that the PKE scheme by Qin and Liu [49]
is secure against bounded tampering. The scheme is based on a variant of the
classical Cramer-Shoup paradigm for constructing CCA-secure PKE [16,17].
Specifically, the PKE scheme combines a universal hash-proof system (HPS)
together with a one-time lossy filter (OTLF) used to authenticate the cipher-
text; the output of a randomness extractor is then used in order to mask the
message in a one-time pad fashion. Since the OTLF is unkeyed, the secret key
simply consists of the private evaluation key of the HPS, which makes it easier
to analyze the security of the PKE scheme in the presence of memory tamper-
ing. The bulk of our proof is, indeed, to show that HPS with certain parameters
already satisfy bounded tamper resilience.

More in details, every HPS is associated to a set C of ciphertexts and a subset
V ⊂ C of so-called valid ciphertexts, together with (the description of) a keyed
hash function with domain C. The hash function can be both evaluated privately
(using a secret evaluation key) and publicly (on ciphertexts in V, and using a
public evaluation key). The main security guarantee is that for any C ∈ C\V the
output of the hash function upon input C is unpredictable even given the public
evaluation key. In the construction of [49] a ciphertext consists of an element
C ∈ V, from which we derive an hash value K which serves for two purposes:

882 A. Faonio and D. Venturi

(i) To extract a random pad via a seeded extractor, used to mask the plain-
text; (ii) To authenticate the ciphertext by producing an encoding Π of K via
the OTLF. The decryption algorithm first derives the value K using the secret
evaluation key for the HPS, and then it uses this value to unmask the plaintext
provided that the value Π can be verified correctly (otherwise decryption results
in ⊥).

In the reduction, the OTLF encoding will be programmed in such a way
that, for all ciphertexts asked to the decryption oracle, the encoding is an injec-
tive function. This implies that, in order to create a ciphertext with a correct
encoding Π, one has to know the underlying hash value K. To prove (standard)
CCA security, one argues that all decryption queries with values C ∈ V do not
reveal any additional information about the secret key, since the corresponding
value K could be computed via the public evaluation procedure; as for decryp-
tion queries with values C ∈ C \ V, the corresponding value K is unpredictable,
and therefore the decryption oracle will output ⊥ with overwhelming probability
which, again, does not reveal any additional information about the secret key.

The scenario in the case of tampering is more complicated. Consider a decryp-
tion oracle instantiated with a tampered secret key sk ′ = T (sk). A decryption
query containing a value C ∈ V might now reveal some information about the
secret key; however, as we show, this information can be simulated by leaking
the public key pk ′ corresponding to sk ′. Decryption queries containing values
C ∈ C \ V are harder to simulate. This is because the soundness property of the
HPS only holds for a uniformly chosen evaluation key, while sk ′, clearly, is not
uniform. To overcome this obstacle we distinguish two cases:

– In case the value T (sk) has low entropy, such a value does not reveal too
much information on the secret key, and thus, at least intuitively, even if the
decryption does not output ⊥ the resulting plaintext should not decrease the
entropy of the secret key by too much;

– In case the value T (sk) has high entropy, we argue that it is safe to use this
key within the HPS, i.e. we show that the soundness of the HPS is preserved
as long as the secret key hash high entropy (even if it is not uniform).

With the above in mind, the security proof is similar to the ones in [44,49].

Trading tampering and leakage. Since our security arguments essentially reduce
bounded tampering to bounded leakage (by individuating a short secret-key-
dependent hint that allows to simulate polynomially many tampering queries
for a given modified key), the theorems we get show a natural tradeoff between
the obtained bounds for leakage and tamper resistance.

In particular, our results nicely generalizes previous work, in that we obtain
the same bounds as in [20,49] by plugging τ = 0 in our theorem statements.

1.2 Related Work

Bounded leakage. The signature scheme of Dodis et al. [20] generalizes and
improves a previous construction by Katz and Vaikuntanathan [39]. Similarly,

Efficient Public-Key Cryptography 883

the PKE construction by Qin and Liu builds upon the seminal work of Naor and
Segev [44]; the scheme was further improved in [50].

Related-key security. Related-key security was first studied in the context of sym-
metric encryption [2,3,8,30,43]. With time a number of cryptographic primitives
with security against related-key attacks have emerged, including pseudorandom
functions [1,4,6,40], hash functions [31], identity-based encryption [7,10], public-
key encryption [7,10,42,54], signatures [7,9,10], and more [15,37,51].

All the above works achieve security against an unbounded number of
restricted tampering attacks (typically, algebraic relations). Kalai, Kanukurthi,
and Sahai [38], instead, show how to achieve security against unrestricted tam-
pering without self-destruct, by assuming a protected mechanism to update the
secret key of certain public-key cryptosystems (without modifying the corre-
sponding public key).

Non-malleable codes. An alternative approach to achieve tamper-proof secu-
rity of arbitrary cryptographic primitives against memory tampering is to rely
on so-called non-malleable codes. While this solution yields security against an
unbounded number of tampering queries, it relies on self-destruct and more-
over it requires to further assume that the tampering functions are restricted in
granularity (see, e.g., [22,25,41]) and/or computational complexity [5,26,37].

Tamper-proof computation. A related line of work (starting with [27,36]), finally,
aims at constructing secure compilers protecting against tampering attacks tar-
geting the computation carried out by a cryptographic device (typically in the
form of boolean and arithmetic circuits).

2 Preliminaries

2.1 Notation

Notation. For a, b ∈ R, we let [a, b] = {x ∈ R : a ≤ x ≤ b}; for a ∈ N we let
[a] = {1, 2, . . . , a}. If x is a string, we denote its length by |x|; if X is a set,
|X | represents the number of elements in X . When x is chosen randomly in X ,
we write x ←$ X . When A is an algorithm, we write y ←$ A(x) to denote a run
of A on input x and output y; if A is randomized, then y is a random variable
and A(x; r) denotes a run of A on input x and randomness r. An algorithm
A is probabilistic polynomial-time (PPT) if A is randomized and for any input
x, r ∈ {0, 1}∗ the computation of A(x; r) terminates in at most poly(|x|) steps.

Throughout the paper we let κ ∈ N denote the security parameter. We say
that a function ν : N → R is negligible in the security parameter κ if ν(κ) =
κ−ω(1). For two ensembles X = {Xκ}κ∈N and Y = {Yκ}κ∈N, we write X ≡ Y
if they are identically distributed, X ≈s Y to denote that the corresponding
distributions are statistically close, and X ≈c Y to denote that the two ensembles
are computationally indistinguishable.

884 A. Faonio and D. Venturi

Languages and relations. A decision problem related to a language L ⊆ {0, 1}∗

requires to determine if a given string y is in L or not. We can associate to any
NP -language L a polynomial-time recognizable relation R ⊆ {0, 1}∗ × {0, 1}∗

defining L itself, i.e. L = {y : ∃x s.t. (x, y) ∈ R} for |x| � poly(|y|). The string y
is called theorem, and the string x is called a witness for membership of y ∈ L.

Random variables. The min-entropy of a random variable X, defined over a set
X , is H∞(X) := − log maxx∈X P [X = x], and it measures how X can be pre-
dicted by the best (unbounded) predictor. The average conditional min-entropy
of a random variable X given a random variable Y and conditioned on an event
E is defined as H̃∞(X|Y, E) := − log(Ey ←$ Y

[
2−H∞(X|Y=y,E)

]
). We rely on the

following basic facts.

Lemma 1 ([21]). Let X,Y and Z be random variables. If Y has at most 2�

possible values, then H̃∞(X|Y,Z) � H̃∞(X,Y|Z) − � � H̃∞(X|Z) − �.

Lemma 2. Let X,Y,Z be random variables such that Y = f(X,Z) for an
efficiently computable function f . Then H̃∞(X|Y,Z, E) � H̃∞(X|Z, E) − β,
where the event E is defined as {∀z : H∞(Y|Z = z) � β}.
Proof. Let A be the best predictor for X, given Y and Z and conditioned on the
event E. Consider the predictor A′ that upon input Z first samples an indepen-
dent copy X′ of the random variable X and then runs A upon input f(X′,Z).
Note that the event E holds for the inputs given to A′, therefore the probability
that f(X′,Z) = f(X,Z) is bounded above by 2−β . This implies the lemma. ��

2.2 Public-Key Encryption

A public-key encryption (PKE) scheme is a tuple of algorithms PKE = (Setup,
Gen,Enc,Dec) defined as follows. (1) Algorithm Setup takes as input the secu-
rity parameter and outputs public parameters pub ∈ {0, 1}∗; all algorithms are
implicitly given pub as input. (2) Algorithm Gen takes as input the security para-
meter and outputs a public/secret key pair (pk , sk); the set of all secret keys is
denoted by SK and the set of all public keys by PK. (3) The randomized algo-
rithm Enc takes as input the public key pk , a message m ∈ M, and randomness
r ∈ R, and outputs a ciphertext c = Enc(pk ,m; r); the set of all ciphertexts is
denoted by C. (4) The deterministic algorithm Dec takes as input the secret key
sk and a ciphertext c ∈ C, and outputs m = Dec(sk , c) which is either equal to
some message m ∈ M or to an error symbol ⊥.

Correctness. We say that PKE satisfies correctness if for all pub ←$ Setup(1κ)
and (pk , sk) ←$ Gen(1κ) we have that P[Dec(sk ,Enc(pk ,m)) = m] = 1 (where
the randomness is taken over the internal coin tosses of algorithm Enc).

Efficient Public-Key Cryptography 885

Fig. 1. Experiment defining BLT-IND-CCA security of PKE .

BLT Security. We now turn to defining indistinguishability under chosen-cipher-
text attacks (IND-CCA) in the bounded leakage and tampering (BLT) setting.

Definition 1. For κ ∈ N, let � = �(κ) and τ = τ(κ) be parameters. We say that
PKE = (Setup,Gen,Enc,Dec) is (τ, �)-BLT-IND-CCA if for all PPT adversaries
A there exists a negligible function ν : N → [0, 1] such that

∣
∣
∣
∣P

[
Expblt-cca

PKE,A(κ, �, τ) = 1
]

− 1
2

∣
∣
∣
∣ ≤ ν(κ),

where the experiment Expblt-cca
PKE,A(κ, �, τ) is defined in Fig. 1.

A few remarks on the definition are in order. In the specification of the BLT-IND-
CCA security experiment, oracle O�

sk takes as input (arbitrary polynomial-time
computable) functions L : SK → {0, 1}∗, and returns L(sk) for a total of at most
� bits. In a similar fashion, oracle Oτ

sk takes as input (arbitrary polynomial-time
computable) functions T : SK → SK, and defines the i-th tampered secret key
as sk ′

i = T (sk); the oracle accepts at most τ queries. Oracle Dec∗ can be used to
decrypt arbitrary ciphertexts c under the i-th tampered secret key (or under the
original secret key), provided that c is different from the challenge ciphertext.

Notice that A is not allowed to tamper with or leak from the secret key after
seeing the challenge ciphertext. As shown in [18] this restriction is necessary
already for the case (τ, �) = (1, 0). Finally, we observe that in case (τ, �) = (0, 0)
we get, as a special case, the standard notion of IND-CCA security. Similarly,
for τ = 0 and � > 0, we obtain as a special case the notion of “semantic security
against a-posteriori chosen-ciphertext �-key-leakage attacks” from [44].

2.3 Signatures

A signature scheme is a tuple of algorithms SIG = (Setup,Gen,Sign,Vrfy) spec-
ified as follows. (1) Algorithm Setup takes as input the security parameter and
outputs public parameters pub ∈ {0, 1}∗; all algorithms are implicitly given pub

886 A. Faonio and D. Venturi

Fig. 2. Experiment defining BLT-EUF-CMA security of SIG.

as input. (2) Algorithm Gen takes as input the security parameter and outputs
a public/secret key pair (vk , sk); the set of all signing keys is denoted by SK.
(3) The randomized algorithm Sign takes as input the signing key sk , a message
m ∈ M, and randomness r ∈ R, and outputs a signature σ := Sign(sk ,m; r)
on m. (4) The deterministic algorithm Vrfy takes as input the verification key
vk and a pair (m,σ), and outputs a decision bit (indicating whether (m,σ) is a
valid signature with respect to vk).

Correctness. We say that SIG satisfies correctness if for all messages m ∈ M
and for all pub ←$ Setup(1κ) and (vk , sk) ← Gen(1κ), algorithm Vrfy(vk ,m,
Sign(sk ,m)) outputs 1 with all but negligible probability (over the coin tosses of
the signing algorithm).

BLT Security. We now define what it means for a signature scheme to be existen-
tially unforgeable against chosen-message attacks (EUF-CMA) in the bounded
leakage and tampering (BLT) setting.

Definition 2. For κ ∈ N, let � = �(κ) and τ = τ(κ) be parameters. We say that
SIG = (Setup,Gen,Sign,Vrfy) is (τ, �)-BLT-EUF-CMA if for all PPT adver-
saries A there exists a negligible function ν : N → [0, 1] such that

P

[
Expblt-cma

SIG,A (κ, �, τ) = 1
]

≤ ν(κ),

where the experiment Expblt-cma
SIG,A (κ, �, τ) is defined in Fig. 2.

The syntax of oracles O�
sk and Oτ

sk is the same as before. Oracle Sign∗ can
be used to sign arbitrary messages m under the i-th tampered signing key sk ′

i =
T (sk), or under the original signing key sk ; the goal of the adversary is to forge
a signature on a “fresh” message, i.e. a message that was never queried to oracle
Sign∗. Note that for (τ, �) = (0, 0) we obtain the standard notion of existential
unforgeability under chosen-message attacks. Similarly, for τ = 0 and � > 0, we
obtain the definition of leakage-resilient signatures [39].

Efficient Public-Key Cryptography 887

3 Signatures

In this section we give a generic construction of signature schemes with BLT-
EUF-CMA in the standard model. In particular, we show that the construction
by Dodis et al. [20] is already resilient to bounded leakage and tampering attacks.

3.1 The Scheme of Dodis, Haralambiev, Lòpez-Alt, and Wichs

The signature scheme is based on the following ingredients.

Hard relations. A leakage-resilient hard relation [20].

Definition 3. A relation R is an �-leakage-resilient hard relation, with witness
space X and theorem space Y, if the following requirements are met.

Samplability: There exists a PPT algorithm SamR such that for all pairs
(x, y) ←$ SamR(1κ) we have (x, y) ∈ R, with x ∈ X and y ∈ Y.

Verifiability: There exists a PPT algorithm that decides if a given pair (x, y)
satisfies (x, y) ∈ R.

Completeness: There exists an efficient deterministic function ξ that given as
input any x ∈ X returns y = ξ(x) ∈ Y such that (x, y) ∈ R.

Hardness: For all PPT adversaries A there exists a negligible function ν : N →
[0, 1] such that

P

[
(x∗, y) ∈ R : (x, y) ←$ SamR(1κ);x∗ ←$ AO�

x(·)(y)
]

≤ ν(κ),

where the probability is taken over the random coin tosses of SamR and A,
and where oracle O�

x(·) takes as input efficiently computable functions L :
X → {0, 1}∗ and returns L(x) for a total of at most � bits.

NIZK. A true-simulation extractable non-interactive zero-knowledge (tSE
NIZK) argument system NIZK = (I,P,V) for the relation R, supporting
labels [20]. Recall that a NIZK argument system supporting labels has the fol-
lowing syntax: (i) Algorithm I takes as input the security parameter κ ∈ N

and generates a common reference string (CRS) crs ←$ I(1κ). (ii) Algorithm P
takes as input the CRS, a label λ ∈ {0, 1}∗, and some pair (x, y) ∈ R, and
returns a proof π ←$ Pλ(crs, x, y). (iii) Algorithm V takes as input the CRS, a
label λ ∈ {0, 1}∗, and some pair (x, π), and returns a decision bit Vλ(crs, y, π).
Moreover:

Definition 4. We say that NIZK = (I,P,V) is a tSE NIZK for the relation
R, supporting labels, if the following requirements are met.

Correctness: For all pairs (x, y) ∈ R and for all labels λ ∈ {0, 1}∗ we have
that Vλ(crs, y,Pλ(crs, x, y)) = 1 with overwhelming probability over the
coin tosses of P, V, and over the choice of crs ←$ I(1κ).

888 A. Faonio and D. Venturi

Unbounded zero-knowledge: There exists a PPT simulator S := (S1,S2)
such that for all PPT adversaries A the following quantity is negligible:2
∣
∣
∣
∣P

[

b = b′ :
b ←$ {0, 1}; (crs , tk) ←$ S1(1κ); (x, y, λ) ←$ A(crs, tk)

π0 ←$ Pλ(crs, x, y);π1 ←$ Sλ
2 (tk , y); b′ ←$ A(crs, tk , πb)

]

− 1
2

∣
∣
∣
∣ .

True-simulation extractability: There exists a PPT extractor K such that
for all PPT adversaries A the following quantity is negligible:

P

⎡

⎣ (λ∗ �∈ Q) ∧ (Vλ∗
(crs, y∗, π∗) = 1)

∧((x∗, y∗) �∈ R)
:

(crs, tk) ←$ S1(1κ)
(y∗, π∗, λ∗) ←$ AOS2,τ (·,·,·)(crs)

x∗ ←$ Kλ∗
(tk , y∗, π∗)

⎤

⎦,

where oracle OS2,τ takes as input tuples (xi, yi, λi) and returns the same as
Sλi
2 (tk , yi) as long as (xi, yi) ∈ R (and ⊥ otherwise), and Q is the set of all

labels λi asked to oracle OS2,τ .

The signature scheme. Consider now the following signature scheme SIG =
(Setup,Gen,Sign,Vrfy), based on a relation R, and on a non-interactive argument
system NIZK = (I,P,V) for R, supporting labels.

– Setup(1κ) : Sample crs ←$ I(1κ) and return pub := (crs, R). (Recall that all
algorithms implicitly take pub as input.)

– Gen(1κ) : Run (x, y) ←$ SamR(1κ) and define vk := y and sk := x.
– Sign(sk ,m) : Compute π ←$ Pm(crs, x, ξ(x)) and return σ := π; note that the

message m is used as a label in the argument system, and that the value
y = ξ(x) can be efficiently computed as a function of x.

– Vrfy(vk ,m, σ) : Parse (vk , σ) as vk := y and σ := π, and output the same as
Vm(crs, y, π).

Theorem 1. For κ ∈ N, let � := �(κ), �′ := �′(κ), τ := τ(κ), and n := n(κ) be
parameters. Assume that R is an �′-leakage-resilient hard relation with theorem
space Y := {0, 1}n, and that NIZK is a tSE NIZK for R. Then the signature
scheme SIG described above is (�, τ)-BLT-EUF-CMA with � + (τ + 1) · n ≤ �′.

3.2 Security Proof

We consider a sequence of mental experiments, starting with the initial game
Expblt-cma

SIG,A (κ, �, τ) which for simplicity we denote by G0.

Game G0. This is exactly the game of Definition 2, where the signature scheme
SIG is the scheme described in the previous section. In particular, upon input
the i-th tampering query Ti the modified secret key x′

i = Ti(x) is computed.
Hence, the answer to a query (i,m) to oracle Sign∗ is computed by parsing
pub = (crs, R), computing the statement y′

i = ξ(x′
i) corresponding to x′

i, and
outputting σ := π where π ←$ Pm(crs, x′

i, y
′
i).

2 Strictly speaking we should quantify the definition over all adversaries returning
pairs (x, y) ∈ R; alternatively, we can slightly abuse notation and assume that both
P and S2 return ⊥ if that is not the case.

Efficient Public-Key Cryptography 889

Game G1. We change the way algorithm Setup generates the CRS. Namely,
instead of sampling crs ←$ I(1κ) we now run (crs, tk) ←$ S1(1κ) and addi-
tionally we replace the proofs output by oracle Sign∗ by simulated proofs,
i.e., π ←$ S2(tk , y′

i) where y′
i = ξ(x′

i).
Game G2. We change the winning condition of the previous game. Namely,

the game now outputs one if and only if π∗ is valid w.r.t. y (as before) and
additionally (x∗, y) ∈ R where the value x∗ is computed from the proof π∗

running the extractor K of the underlying argument system.

We now establish a series of lemmas, showing that the above games are
computationally indistinguishable. The first lemma states that G0 and G1 are
indistinguishable, down to the unbounded zero-knowledge property of the argu-
ment system.

Lemma 3. For all PPT adversaries A there exists a negligible function ν0,1 :
N → [0, 1] such that |P [G0(κ) = 1] − P [G1(κ) = 1]| ≤ ν0,1(κ).

Proof. We prove a stronger statement, namely that G0(κ) ≈c G1(κ). By con-
tradiction, assume that there exists a PPT distinguisher D0,1 and a polynomial
p0,1(·) such that, for infinitely many values of κ ∈ N, we have that D0,1 dis-
tinguishes between game G0 and game G1 with probability at least 1/p0,1(κ).
Let q ∈ poly(κ) be the number of signature queries asked by D0,1. For an index
j ∈ [q + 1] consider the hybrid game Hj that answers the first j − 1 queries as
in game G0 and all subsequent queries as in game G1. Note that H1 ≡ G1 and
Hq+1 ≡ G0.

By a standard hybrid argument, we have that there exists an index j∗ ∈
[q] such that D0,1 tells apart Hj∗ and Hj∗+1 with non-negligible probability
1/q · 1/p0,1(κ). We build a PPT adversary A0,1 that (using distinguisher D0,1

and knowledge of j∗ ∈ [q]) breaks the non-interactive zero-knowledge property
of the argument system. A formal description of A0,1 follows.

AdversaryA0,1 :
– Receive (crs, tk) from the challenger, where (crs, tk) ←$ S1(1κ).
– Run (x, y) ←$ SamR(1κ), set pub := (crs, R), vk := y, x′

0 ← x, x′
i ← ⊥

for all i ∈ [τ], and send (pub, vk) to D0,1.
– Upon input a leakage query L return L(x) to D0,1; upon input a tam-

pering query T , set x′
i = T (x).

– Upon input the j-th signature query of type (i,m), if i �∈ [0, τ] or x′
i = ⊥,

answer with ⊥. Otherwise, proceed as follows:
• If j ≤ j∗ − 1, return σ ←$ Pm(crs, x′

i, ξ(x
′
i)) to D0,1.

• Else, if j = j∗, forward (x′
i, ξ(x

′
i),m) to the challenger, receiving back

a proof πb; return σ := πb to D0,1.
• Else, if j ≥ j∗ + 1, forward σ ←$ Sm

2 (tk , ξ(x′
i)) to D0,1.

– Output whatever D outputs.

For the analysis, note that the only difference between game Hj∗ and game
Hj∗+1 is on how the j∗-th signature query is answered. In particular, in case

890 A. Faonio and D. Venturi

the hidden bit b in the definition of non-interactive zero-knowledge equals zero,
A0,1’s simulation produces exactly the same distribution as in Hj∗ , and otherwise
A0,1’s simulation produces exactly the same distribution as in Hj∗+1. Hence,
A0,1 breaks the NIZK property with non-negligible advantage 1/q · 1/p0,1(κ), a
contradiction. This concludes the proof. ��

The second lemma states that G1 and G2 are indistinguishable, down to the
true-simulation extractability property of the argument system.

Lemma 4. For all PPT adversaries A there exists a negligible function ν1,2 :
N → [0, 1] such that |P [G1(κ) = 1] − P [G2(κ) = 1]| ≤ ν1,2(κ).

Proof. We prove a stronger statement, namely that G1(κ) ≈c G2(κ). Define
the following “bad event” Bad , in the probability space of game G1: The event
becomes true if the adversarial forgery (m∗, σ∗ := π∗) is valid (i.e., the proof π∗

is valid w.r.t. statement y and label m∗), but running the extractor K(tk , ·, ·) on
(y, π∗) yields a value x∗ such that (x∗, y) �∈ R.

Notice that G1(κ) and G2(κ) are identically distributed conditioning on
Bad not happening. Hence, by a standard argument, it suffices to bound the
probability of provoking event Bad by all PPT adversaries A. By contradiction,
assume that there exists a PPT adversary A1,2 and a polynomial p1,2(·) such
that, for infinitely many values of κ ∈ N, we have that A1,2 provokes event
Bad with probability at least 1/p1,2(κ). We build an adversary A′ that (using
A1,2) breaks true-simulation extractability of the argument system. A formal
description of A′ follows.

AdversaryA′ :
– Receive crs from the challenger, where (crs, tk) ←$ S1(1κ).
– Sample (x, y) ←$ SamR(1κ), set pub := (crs, R), vk := y, x′

0 ← x, x′
i ←

⊥ (for all i ∈ [τ]), and forward (pub, vk) to A1,2.
– Upon input a leakage query L return L(x) to A1,2; upon input a tam-

pering query T , set x′
i = T (x).

– Upon input the j-th signature query of type (i,m), if i �∈ [0, τ] or x′
i =

⊥, answer with ⊥. Otherwise, forward (x′
i, ξ(x

′
i),m) to the challenger

obtaining a proof π as a response, and return σ := π to A1,2.
– Whenever A1,2 returns a pair (m∗, σ∗), define π∗ := σ∗ and output

(y, π∗,m∗).

For the analysis, we note that A′ perfectly simulates signature queries. In
fact, by completeness of the underlying relation, the pair (x′

i, ξ(x
′
i)) is always

in the relation R, and thus the proof π obtained by the reduction is always for
a true statement and has exactly the same distribution as in game G1. As a
consequence, A1,2 will provoke event Bad with probability 1/p1,2(κ), and thus
the pair (y, π∗) output by the reduction violates the tSE property of the non-
interactive argument with non-negligible probability 1/p1,2(κ). This finishes the
proof. ��

Efficient Public-Key Cryptography 891

Finally, we show that the advantage of any PPT adversary in game G2 must
be negligible, otherwise one could violate the hardness of the underlying leakage-
resilient relation.

Lemma 5. For all PPT adversaries A there exists a negligible function ν2 :
N → [0, 1] such that P [G2 = 1] ≤ ν2(κ).

Proof. By contradiction, assume there exists a PPT adversary A2 and a poly-
nomial p2(·) such that, for infinitely many values of κ ∈ N, adversary A2 makes
game G2 output 1 with probability at least 1/p2(κ). We construct a PPT adver-
sary A′′ (using A2) breaking hardness of the leakage-resilient relation R. A
description of A′′ follows.

AdversaryA′′ :
– Receive y from the challenger, where (x, y) ←$ SamR(1κ).
– Sample (crs, tk) ←$ S1(1κ), set pub := (crs, R), y′

i ← ⊥ (for all i ∈ [τ]),
vk := y, and forward (pub, vk) to A2.

– Define the leakage function Lξ(x) := ξ(x) and forward Lξ to the target
leakage oracle O�

x, obtaining a value y′
0.

– Upon input a leakage query L, forward L to the target leakage oracle
O�

x and return to A2 the answer received from the oracle.
– Upon input the i-th tampering query T , define the function LT,ξ(x) :=

ξ(T (x)), and forward LT,ξ to the target leakage oracle O�
x; set the value

y′
i equal to the answer obtained from the oracle.

– Upon input the j-th signature query of type (i,m), if i �∈ [0, τ] or y′
i = ⊥,

answer with ⊥. Otherwise, run π ←$ Sm
2 (tk , y′

i) and return σ := π to A2.
– Whenever A1,2 returns a forgery (m∗, σ∗), define π∗ := σ∗ and output

x∗ such that x∗ ←$ Km∗
(tk , y, π∗).

For the analysis, note that A′′ perfectly simulates signature queries. In fact, for
each tampering query T the reduction obtains the statement y′

i corresponding to
x′

i := T (x) via a leakage query; given this value a signature for key x′
i is computed

by running the zero-knowledge simulator (as defined in G2). Moreover, the total
leakage asked by A′′ equals � (as A2 leaks at most � bits from the secret key)
plus n · τ (as for each tampering function T the reduction leaks n bits, and A2

makes at most τ such queries), plus n bits (as the value y′
0 = ξ(x) is needed for

simulating signature queries w.r.t. the original secret key), and by assumption
�+(τ +1) ·n ≤ �′. Hence, A′′ breaks the hardness of the leakage-resilient relation
with non-negligible probability 1/p2(κ). This concludes the proof. ��
The proof of the theorem follows by combining the above lemmas.

3.3 Concrete Instantiations

We now explain how to instantiate the signature scheme from the previ-
ous section using standard complexity assumptions. We need two ingredients:
(i) A leakage-resilient hard relation R; (ii) A tSE NIZK for the same relation R,

892 A. Faonio and D. Venturi

supporting labels. For the latter component, we rely on the construction due to
Dodis et al. [20] that allows to obtain a tSE NIZK for arbitrary relations, based
on a standard (non-extractable) NIZK for a related relation (see below) and an
IND-CCA-secure PKE scheme supporting labels.

Let PKE = (Setup,Gen,Enc,Dec) be an IND-CCA-secure PKE scheme sup-
porting labels, with message space X . Plugging in the construction from [20] a
signature has the form σ := (c, π), where c ←$ Encλ(pk , x) and π is a standard
NIZK argument for the following derived relation:

R∗ := {((y, c, pk ,m), (x, r)) : (x, y) ∈ R ∧ c = Encm(pk , x; r)} . (1)

Diffie-Hellman Assumptions. In what follows, let G be a group with prime
order q and with generator g. Also, let G1, G2, GT be groups of prime order
q and e : G1 × G2 → GT be a non-degenerate, efficiently computable, bilinear
map.

Discrete Logarithm. Let g ←$ G and x ←$ Zq. The Discrete Logarithm (DL)
assumption holds in G if it is computationally hard to find x ∈ Zq given y =
gx ∈ G.

Decisional Diffie-Hellman. Let g1, g2 ←$ G and x1, x2, x ←$ Zq. The Decisional
Diffie-Hellman (DDH) assumption holds in G if the following distributions are
computationally indistinguishable: (G, g1, g2, g

x1
1 , gx2

2) and (G, g1, g2, g
x
1 , gx

2).

Symmetric External Diffie-Hellman. The Symmetric External Diffie-Hellman
(SXDH) assumption states that the DDH assumption holds in both G1 and G2.
Such an assumption is not satisfied in case G1 = G2, but it is believed to hold
in case there is no efficiently computable mapping between G1 and G2 [12,52].

D-Linear [35,53]. Let D ≥ 1 be a constant, and let g1, . . . , gD+1 ←$ G and
x1, . . . , xD ←$ Zq. We say that the D-linear assumption holds in G if the following
distributions are computationally indistinguishable: (G, gx1

1 , . . . , gxD

D , g
xD+1
D+1) and

(G, gx1
1 , . . . , gxD

D , g
∑D

i=1 xi

D+1). Note that for D = 1 we obtain the DDH assumption,
and for D = 2 we obtain the so-called Linear assumption [53].

Construction Based on SXDH. The first instantiation is based on the SXDH
assumption, working with asymmetric pairing based groups (G1,G2,GT). The
construction below is similar to the one given in [20, Sect. 1.2.2], except that we
had to modify the underlying hard relation, in that the one used by Dodis et al.
does not meet our completeness requirement.3

3 In particular, a pair (x, y) ∈ R is computed by sampling random exponents
r1, . . . , rN ←$ Zq and outputting xi := gri and y :=

∏N
i=1 g

ri
i , where g is a gen-

erator of G2 and g1, . . . , gN are generators of G1; thus, by the SXDH assumption, it
is hard to compute y given only x1, . . . , xN , without knowledge of the randomness
r1, . . . , rN .

Efficient Public-Key Cryptography 893

Hard relation: Let N ≥ 2, and g1, . . . , gN ←$ G1 be generators. The sam-
pling algorithm chooses a random x := (x1, . . . , xN) ←$ G

N
2 and defines

y :=
∏N

i=1 e(gi, xi) ∈ GT . Notice that the relation satisfies completeness,
with mapping function ξ(·) defined by ξ(x) :=

∏N
i=1 e(gi, xi). In the full ver-

sion [24], we argue that this relation is leakage-resilient under the SXDH
assumption.

Lemma 6. Under the SXDH assumption in (G1,G2,GT), the above defined
relation is an �-leakage-resilient hard relation for � ≤ (N − 1) log q.

PKE: We use the Cramer-Shoup PKE scheme in G2 [16], optimized as described
in [20]. The public key consists of random generators (h1, h2, h3,1, . . . ,
h3,N , h4, h5) of G2, and in order to encrypt x = (x1, . . . , xN) ∈ G

N
2 under

label m ∈ {0, 1}∗ we return a ciphertext:

c := (c1, . . . , cN+3) = (hr
1, h

r
2, h

r
3,1 · x1, . . . , h

r
3,N · xN , (h4 · ht

5)
r)

with r ←$ Zq, and where t := H(c1|| · · · ||cN+2||m) is computed using a stan-
dard collision-resistant hash function.

NIZK: We use the Groth-Sahai proof system [32]. In order to prove that a given
pair x∗ := (x, r) and y∗ := (y, c, pk ,m) belongs to the relation of Eq. (1),
we first prove that (x, y) ∈ R. This requires to show satisfiability of a one-
sided pairing product equation, which can be done with a proof consisting of
2N +16 elements in G1 and 2 elements in Zq (under the SXDH assumption).
Next, we prove validity of a ciphertext which requires to show satisfiability
of a system of N +3 one-sided multi-exponentiation equations; the latter can
be done with a proof consisting of (N + 3) + 2N = 3N + 3 group elements
(under the SXDH assumption).

Corollary 1. Let (G1,G2,GT) be asymmetric pairing based groups with prime
order q. Under the SXDH assumption there exists a signature scheme satisfying
BLT-EUFCMA with tampering rate ρ(κ) = O(1/κ). For N ≥ 2, the public key
consists of a single group element, the secret key consists of N group elements,
and a signature consists of 6N + 22 group elements and 2 elements in Zq.

Construction Based on DLIN. The second instantiation is based on the
DLIN assumption, working with symmetric pairing based groups (G,GT). The
construction below is similar to one of the instantiations given in [20, Sect. 1.2.3],
except that we had to modify the underlying hard relation, in that the one used
by Dodis et al. does not meet our completeness requirement.

Hard relation: Let N ≥ 3, and g1, . . . , gN , g′
1, . . . , g

′
N ←$ G be generators.

The sampling algorithm chooses a random x := (x1, . . . , xN) ←$ G and
defines y1 :=

∏N
i=1 e(gi, xi) ∈ GT and y2 :=

∏N
i=1 e(g

′
i, xi). Notice that

the relation satisfies completeness, with mapping function ξ(·) defined by
ξ(x) := (

∏N
i=1 e(gi, xi),

∏N
i=1 e(g

′
i, xi)). In the full version [24], we argue that

this relation is leakage-resilient under the DLIN assumption.

894 A. Faonio and D. Venturi

Lemma 7. Under the DLIN assumption in (G,GT), the above defined relation
is an �-leakage-resilient hard relation for � ≤ (N − 2) log q.

PKE: We use the Linear Cramer-Shoup PKE scheme in G [53], opti-
mized as described in [20]. The public key consists of random genera-
tors (h0, h1, h2, h3,1, . . . , h3,N , h4,1, . . . , h4,N , h5,1, h5,2, h6,1, h6,2) of G, and in
order to encrypt x = (x1, . . . , xN) ∈ G

N under label m ∈ {0, 1}∗ we return a
ciphertext:

c := (c1, . . . , cN+4) = (hr1+r2
0 , hr1

1 , hr2
2 , hr1

3,1 · hr2
4,1 · x1, . . . , h

r1
3,N

· hr2
4,N · xN , (h4,1 · ht

5,1)
r1 · (h4,2 · ht

5,2)
r2)

with r1, r2 ←$ Zq, and where t := H(c1|| · · · ||cN+3||m) is computed using a
standard collision-resistant hash function.

NIZK: We use again the Groth-Sahai proof system. In order to prove that a
given pair x∗ := (x, r) and y∗ := ((y1, y2), c, pk ,m) belongs to the relation of
Eq. (1), we first prove that (x, (y1, y2)) ∈ R. This requires to show satisfia-
bility of two one-sided pairing product equations, which can be done with a
proof consisting of 3N + 42 elements in G and 6 elements in Zq (under the
DLIN assumption). Next, we prove validity of a ciphertext which requires to
show satisfiability of a system of N +4 one-sided multi-exponentiation equa-
tions; the latter can be done with a proof consisting of 2(N+4)+3N = 5N+8
group elements (under the DLIN assumption).

Corollary 2. Let (G,GT) be symmetric pairing based groups with prime order
q. Under the DLIN assumption there exists a signature scheme satisfying BLT-
EUFCMA with tampering rate ρ(κ) = O(1/κ). For N ≥ 3, the public key con-
sists of two group elements, the secret key consists of N group elements, and a
signature consists of 9N + 54 group elements and 6 elements in Zq.

4 Public-Key Encryption

We give a construction of an efficient PKE scheme satisfying BLT-IND-CCA
security in the standard model. In particular, we prove that the PKE scheme of
Qin and Liu [49] is already resilient to bounded leakage and tampering attacks.

4.1 The Scheme of Qin and Liu

The encryption scheme is a twist of the well-known Cramer-Shoup paradigm for
CCA security [17], and is based on the following ingredients.

Hash-proof systems. An ε-universal hash-proof system (HPS) HPS = (Genhps,
Pub,Priv). Recall that a HPS has the following syntax: (i) Algorithm Genhps
takes as input the security parameter, and outputs public parameters pub :=
(aux , C,V,K,SK,PK, Λ(·) : C → K, μ : SK → PK) where aux might contain

Efficient Public-Key Cryptography 895

additional structural parameters, and where Λsk is a hash function and, for any
sk ∈ SK, the function μ(sk) defines the action of Λsk over the subset V of
valid ciphertexts (i.e., Λsk is projective). Moreover the function Λsk is ε-almost
universal:

Definition 5. A projective hash function Λ(·) is ε-almost universal, if for all
pk, C ∈ C \ V, and all K ∈ K, it holds that P [ΛSK(C) = K|PK = pk , C] � ε,
where SK is uniform over SK conditioned on PK = μ(SK).

(ii) Algorithm Pub takes as input a public key pk = μ(sk), a valid ciphertext
C ∈ V, and a witness w for C ∈ V, and outputs the value Λsk (C). (iii) Algorithm
Priv take as input the secret key sk and a ciphertext C ∈ C, and outputs the
value Λsk (C).

Definition 6. A hash-proof system HPS is ε-almost universal if the following
holds:

1. For all sufficiently large κ ∈ N, and for all possible outcomes of Genhps(1κ),
the underlying projective hash function is ε(κ)-almost universal.

2. The underlying set membership problem is hard. Specifically, for any PPT
adversary A the following quantity is negligible:

Advsmp
HPS,A := |P[A(C,V, C0) = 1| C0 ←$ V)]

− P[A(C,V, C1) = 1| C1 ←$ C \ V)]|.
The lemma below directly follows from the definition of hash-proof system and
the notion of min-entropy.

Lemma 8. Let Λ(·) be ε-almost universal. Then for all pk and C ∈ C \ V it
holds that H∞(ΛSK(C)|PK = pk , C) � − log ε where SK is uniform over SK
conditioned on PK = μ(SK).

One-time lossy filters [49]. A One-Time Lossy Filter (OTLF) LF = (Genlf ,
Eval, LTag) is a family of functions LFφ,t(X) indexed by a public key φ and a
tag t. Recall that a OTLF has the following syntax: (i) Algorithm Genlf takes as
input the security parameter, and outputs a public key φ and a trapdoor key ψ.
The public key φ defines a tag space T := {0, 1}∗ ×Tc that contains two disjoint
subsets Tinj and Tloss and a domain space D. (ii) Algorithm Eval takes as input
φ, a tag t = (ta, tc) ∈ T (where we call ta the auxiliary tag and tc the core tag),
and X ∈ D, and outputs LFφ,t(X). (iii) Algorithm LTag takes as input ψ and an
auxiliary tag ta ∈ {0, 1}∗, and outputs a core tag tc such that t = (ta, tc) ∈ Tloss.

Definition 7. We say that LF = (Genlf ,Eval, LTag) is an �lf-OTLF with
domain D if the following proprieties hold:

Lossiness: In case the tag t is injective (i.e., t ∈ Tinj), so is the function
LFφ,t(·) := Eval(φ, t, ·). In case t is lossy (i.e., t ∈ Tloss), then LFφ,t(·) has
image size at most 2�lf .

896 A. Faonio and D. Venturi

Indistinguishability: No PPT adversary A is able to distinguish lossy tags
from random tags, i.e. the following quantity is negligible:

Advind
LF ,A :=

∣
∣P

[
A(φ, (ta, t0c)) = 1

] − P
[
A(φ, (ta, t1c)) = 1

]∣
∣

where (φ, ψ) ←$ Genlf(1κ), ta ←$ A(φ), t0c ←$ Tc and t1c ←$ LTag(ψ, ta).
Evasiveness: No PPT adversary A is able to generate a non-injective tag even

given a lossy tag, i.e. the following quantity is negligible:

Advevasive
LF,A := P

⎡

⎣ (t′a, t′c) �= (ta, tc)
(t′a, t′c) ∈ T \ Tinj

:
(φ, ψ) ←$ Genlf(1κ);

ta ←$ A(φ); tc ←$ LTag(ψ, ta);
(t′a, t′c) ←$ A(φ, (ta, tc))

⎤

⎦.

Randomness extractors. An average-case strong randomness extractor.

Definition 8. An efficient function Ext : X × S → Y is an average-case (δ, ε)-
strong extractor if for all pair of random variables (X,Z), where X is defined
over a set X and H̃∞(X|Z) � δ, we have

(Z,S,Ext(X,S)) ≈ε (Z,S,U),

with S uniform over S and U uniform over Y.

The encryption scheme. Consider now the following PKE scheme PKE = (Setup,
Gen,Enc,Dec) with message space M := {0, 1}m, based on a HPS HPS =
(Genhps,Pub,Priv), on a OTLF LF = (Genlf ,Eval, LTag) with domain K, and on
an average-case strong extractor Ext : K × {0, 1}d → {0, 1}m.

– Setup(1κ) : Sample pubhps := (aux , C,V,K,SK,PK, Λ(·), μ) ←$ Genhps(1κ) and
compute (φ, ψ) ←$ Genlf(1κ). Return pub := (pubhps, φ). (Recall that all algo-
rithms implicitly take pub as input.)

– Gen(1κ) : Choose a random sk ←$ SK, define pk = μ(sk), and return (pk , sk).
– Enc(pk ,M) : Sample C ←$ V (with witness w), S ←$ {0, 1}d, and a core tag

tc ←$ Tc. Compute K := Pub(pk , C, w), Φ := Ext(K,S) ⊕ M , and Π :=
Eval(φ, (ta, tc),K) where ta := (C,S, Φ). Output Ĉ := (C,S, Φ,Π, tc).

– Dec(sk , Ĉ) : Parse Ĉ := (C,S, Φ,Π, tc). Compute K̂ := Priv(sk , C) and check
if Eval(φ, t, K̂) = Π where t := ((C,S, Φ), tc). If the check fails, reject and
output ⊥; else output M := Φ ⊕ Ext(K̂, S).

Theorem 2. Let κ ∈ N be the security parameter. Assume that HPS is ε-
almost universal, LF is an �lf-OTLF with domain K, and Ext is an average-case
(δ, ε′)-strong extractor for a negligible function ε′. Let s = s(κ) and p = p(κ) be
parameters such that s � log |SK| and p � log |PK| for any SK,PK generated
by Genhps(1κ), and define α = − log ε and β = s − α.

For any δ � α − τ(p + β + κ) − �lf − � the PKE scheme PKE described above
is (τ, �)-BLT-IND-CCA with � + τ(p + β + κ) � α − �lf .

Efficient Public-Key Cryptography 897

4.2 Security Proof

We consider a sequence of mental experiments, starting with the initial game
Expblt-cca

PKE,A(κ, �, τ) which for simplicity we denote by G0.

Game G0. This is exactly the game of Definition 1, where PKE is the PKE
scheme described above. In particular, upon input the i-th tampering query
Ti the modified secret key sk ′

i = Ti(sk) is computed (where sk is the original
secret key). Hence, the answer to a query (i, Ĉ) to oracle Dec∗ is computed
by parsing Ĉ := (C,S, Φ,Π, tc), computing K̂ := Priv(sk ′

i, C), and checking
Π = Eval(φ, ((C,S, Φ), tc), K̂); if the check fails the answer is ⊥ and otherwise
the answer is M := Φ ⊕ Ext(K̂, S).

Game G1. We change the way the tag t∗c corresponding to the challenge
ciphertext is computed, namely we now let t∗c ← LTag(ψ, t∗a) (i.e., the tag
t∗ = (t∗a, t∗c) ∈ Tloss is now lossy).

Game G2. We add an extra check to the decryption oracle. Namely, upon input
a decryption query (i, (C,S, Φ,Π, tc)) we check whether ta := (C,S, Φ) and
tc satisfy (ta, tc) = (t∗a, t∗c) (where t∗a and t∗c are the auxiliary and core tag
corresponding to the challenge ciphertext). If the check succeeds, the oracle
returns ⊥. Notice that t∗a and t∗c are initially set to ⊥, and remain equal to
⊥ until the challenge ciphertext is generated.

Game G3. We change the way the challenge ciphertext is computed. Namely,
we now compute the value K∗ as K∗ := Priv(sk, C∗).

Game G4. We change the way the challenge ciphertext is computed. Namely,
we now sample C∗ as C∗ ←$ C \ V.

Game G5. We add an extra check to the decryption oracle; the check is per-
formed only for decryption queries corresponding to tampered secret keys
(i.e., i ≥ 1). At setup, the experiment initializes an additional set Q′ ← ∅.
Denote by V the random variable containing all the answers from the decryp-
tion and leakage oracles, and define the quantity

γi(κ) := H∞(SK′
i|V = v, {SK′

j = sk ′
j}j∈Q′ , {PK′

j = pk ′
j}j∈[τ]∪{0})

where we write SK′
i for the random variable of the i-th tampered secret key

and PK′
i for the random variable of the corresponding public key (by default

pk ′
i = ⊥ if sk ′

i is undefined and pk ′
0 = pk).

Upon input a decryption query (i, (C,S, Φ,Π, tc)) such that i ≥ 1 we proceed
exactly as in G4 but, for all ciphertexts such that C ∈ C \ V, in case the
decryption oracle did not already return ⊥, we additionally check whether
γi(κ) ≤ β(κ) + log2 κ; if that happens, we add the index i to the set Q′ and
otherwise we do not modify Q′ and we additionally answer the decryption
query with ⊥.

Game G6. We change the way decryption queries corresponding to the original
secret key are answered. Namely, upon input a decryption query (0, (C,S,
Φ,Π, tc)) we proceed as in G5 but, in case C ∈ C \ V, we answer the query
with ⊥.

898 A. Faonio and D. Venturi

Game G7. We change the way the challenge ciphertext is computed. Namely,
we now sample Φ∗ ←$ {0, 1}m. Notice that the challenge ciphertext is now
independent of the message being encrypted.

Next, we turn to showing that the above defined games are indistinguishable.
In what follows, given a ciphertext Ĉ = (C,S, Φ,Π, tc), we say that Ĉ is valid if
C ∈ V (i.e., if C is a valid ciphertext for the underlying HPS).

Lemma 9. For all PPT adversaries A there exists a negligible function ν0,1 :
N → [0, 1] such that |P [G0(κ) = 1] − P [G1(κ) = 1]| ≤ ν0,1(κ).

Proof. We prove a stronger statement, namely that G0(κ) ≈c G1(κ). By contra-
diction, assume there exists a PPT distinguisher D0,1 and a polynomial p0,1(·)
such that, for infinitely many values of κ ∈ N, we have that D0,1 distinguishes
between G0 and G1 with probability at least ≥ 1/p0,1(κ). We construct an adver-
sary A0,1 breaking the indistinguishability property of the underlying OTLF LF .
At the beginning, adversary A0,1 receives the evaluation key φ from its own chal-
lenger, and simulates the entire experiment G0 with D0,1 by sampling all other
parameters by itself; notice that this can be done because G0 does not depend on
the secret trapdoor ψ. Whenever D0,1 outputs (M0,M1), adversary A0,1 samples
t∗a as defined in G0 and returns t∗a to its own challenger. Upon receiving a value
t∗c from the challenger, A0,1 embeds t∗c in the challenge ciphertext, and keeps
simulating all queries done by D0,1 as before. Finally, A0,1 outputs the same
as D0,1.

We observe that A0,1 perfectly simulates the decryption oracle (which is
identical in both G0 and G1). Moreover, depending on the challenge tag t∗c
being random or lossy, the distribution of the challenge ciphertext produced by
A0,1 is identical to that of either G0 or G1. Thus, A0,1 retains the same advantage
as that of D0,1. This concludes the proof. ��
Lemma 10. G1 ≡ G2.

Proof. Notice that G1 and G2 only differ in how decryption queries such that
(ta, tc) = (t∗a, t∗c) are answered. Clearly, such queries are answered identically in
the two games for all decryption queries before the generation of the challenge
ciphertext. As for decryption queries after the challenge ciphertext has been
computed, we distinguish two cases: (i) Π = Π∗, and (ii) Π �= Π∗. In case
(i) we get that Ĉ = Ĉ∗, and thus both games return ⊥. In case (ii), note that
G1 checks whether Π = Eval(φ, (t∗a, t∗c),Priv(sk

′
i, C

∗)) and thus it returns ⊥
whenever Π �= Π∗. Hence, the two games are identically distributed. ��
Lemma 11. G2 ≡ G3.

Proof. The difference between G2 and G3 is only syntactical, as Priv(sk , C∗) =
K∗ = Pub(pk , C∗, w) by correctness of the underlying HPS. ��
Lemma 12. For all PPT adversaries A, there exists a negligible function ν3,4 :
N → [0, 1] such that |P [G3(κ) = 1] − P [G4(κ) = 1]| ≤ ν3,4(κ).

Efficient Public-Key Cryptography 899

Proof. We prove a stronger statement, namely that G3(κ) ≈c G4(κ). By contra-
diction, assume there exists a PPT distinguisher D3,4 and a polynomial p3,4(·)
such that, for infinitely many values of κ ∈ N, we have that D3,4 distinguishes
between G3 and G4 with probability at least ≥ 1/p3,4(κ). We construct a PPT
adversary A3,4 solving the set membership problem of the underlying HPS.
A3,4 receives as input pubhps and a challenge C∗ such that either C∗ ←$ V or
C∗ ←$ C \ V. Hence, A3,4 perfectly simulates the challenger for D3,4, by sam-
pling all required parameters by itself, and embeds the value C∗ in the challenge
ciphertext. In case C∗ ←$ V we get exactly the same distribution as in G3, and
in case C∗ ←$ C \ V we get exactly the same distribution as in G4. Hence, A3,4

retains the same advantage as that of D3,4. This finishes the proof. ��

For the j-th query (i, Ĉ) to the decryption oracle, such that Ĉ = (C,S, Φ,Π,
tc), we let Inj j be the event that the corresponding core tag tc is injective. We
also define Inj :=

∧
j∈[q] Inj j where q ∈ poly(κ) is the total number of decryption

queries asked by the adversary.

Lemma 13. For all PPT adversaries A there exists a negligible function ν4 :
N → [0, 1] such that: |P [G4(κ) = 1] − P [G4(κ) = 1|Inj]| ≤ ν4(κ).

Proof. The lemma follows by a simple reduction to the evasiveness property of
the OTLF LF . By contradiction, assume there exists a PPT adversary A4 and
a polynomial p4(·) such that |P [G4(κ) = 1] − P [G4(κ) = 1|Inj]| ≥ 1/p4(κ) for
infinitely many values of κ ∈ N. This implies:

1/p4(κ) ≤ |P [G4(κ) = 1] − P [G4(κ) = 1|Inj]| ≤ P [Inj].

We build a PPT adversary B4 with non-negligible advantage in the evasiveness
game. The adversary B4 receives as input a public key φ for the OTLF and
perfectly simulates a run of game G4 for A4 by sampling all parameters by
itself. After A4 returns (M0,M1), adversary B4 samples t∗a as defined in G4,
and forwards t∗a to its own challenger. Upon receiving t∗c from the challenger, B4

embeds t∗c in the challenge ciphertext for A4.
Let Q be the list of decryption queries made by A4. At the end of the simula-

tion, adversary B4 picks uniformly at random a ciphertext Ĉ = (C,S, Φ, tc) from
the list Q and outputs the tuple (ta := (C,S, Φ), tc). Clearly, the advantage of B4

in the evasiveness game is equal to the probability of event Inj happening times
the probability of guessing one of the ciphertexts containing a non-injective tag.
Let q(κ) ∈ poly(κ) be the total number of decryption queries made by A4. We
have obtained,

Advevasive
LF ,B4

(κ) ≥ P [Inj]/q(κ) ≥ 1/q(κ) · 1/p4(κ),

which is a non-negligible quantity. This concludes the proof. ��
From now on, all of our arguments will be solely information-theoretic, and hence
we do not mind if the remaining experiments will no longer be efficient.

900 A. Faonio and D. Venturi

Lemma 14. For all (possibly unbounded) adversaries A making polynomially
many decryption queries, there exists a negligible function ν4,5 : N → [0, 1] such
that |P [G4(κ) = 1|Inj] − P [G5(κ) = 1|Inj]| ≤ ν4,5(κ).

Proof. Recall that G4 and G5 differ only in the way decryption queries are
handled. In particular, upon input a query (i, (C,S, Φ,Π, tc)) such that i ≥ 1
and C ∈ C \V, the decryption oracle in G5 checks whether γi(κ) � β(κ)+log2 κ.
In case that happens, G5 proceeds identically to G4 and additionally updates
the set Q′ by including the index i; otherwise G5 answers the query with ⊥.
Intuitively, the set Q′ keeps track of the tampered secret keys that did not
return ⊥ upon input an invalid ciphertext; the variable γi(κ), instead, measures
the conditional min-entropy of the i-th tampered secret key conditioned on all
values returned by the decryption and leakage oracles, all tampered secret keys
within the set Q′, and all public keys corresponding to the tampered secret keys
generated so far.

It follows that the distribution of the two games differ only in case the
adversary makes a decryption query (i, (C,S, Φ,Π, tc)) such that: (i) γi(κ) >
β(κ) + log2 κ; (ii) C ∈ C \ V; (iii) Π = Eval(φ, (ta, tc),Priv(sk ′

i, C)). Let Bad be
the event that any (possibly unbounded) adversary makes a decryption query
as above. Clearly,

|P [G4(κ) = 1|Inj] − P [G5(κ) = 1|Inj]| ≤ P [Bad |Inj].

For all j ∈ [q], let Bad j be the event that Bad happens for the j-th decryption
query, which as usual we denote by (i, (C,S, Φ,Π, tc)). Since we are conditioning
on Inj , we have that there exists a unique value K that is the pre-image of Π
under function Eval(φ, (ta, tc), ·). Thus, by averaging over all the possible views
for the adversary, we obtain:

P
[
Badj |Inj

]
= P
[
Priv(SK′

i, C)) = K
]

=
∑

v,pk

P [V = v,PK = pk] · P [Priv(SK′
i, C)) = K|V = v,PK = pk

]

�
∑

v,pk

P [V = v,PK = pk] · 2−H∞(Priv(SK′
i,C)|V=v,PK=pk).

Define the set SK∗
K,C := {sk : Priv(sk , C) = K ∧ pk = μ(sk)}. We can write:

2−H∞(Priv(SK′
i,C)|V=v,PK=pk)

= max
K

P
[
Priv(SK′

i, C) = K|V = v,PK = pk
]

= max
K

P
[
SK′

i ∈ SK∗
K,C |V = v,PK = pk

]

� max
K,sk ′

i

|SK∗
K,C | · P [

SK′
i = sk ′

i|V = v,PK = pk
]

= max
K

|SK∗
K,C | · 2−H∞(SK′

i|V=v,PK=pk)

= max
K

|SK∗
K,C |

|SK| · |SK| · 2−H∞(SK′
i|V=v,PK=pk)

� ε · |SK| · 2−H∞(SK′
i|V=v,PK=pk) � ε · |SK| · 2−β(κ)−log2 κ = 2− log2 κ,

Efficient Public-Key Cryptography 901

where in the last line we used the ε-almost universality of the underlying HPS,
together with the fact that γi(κ) > β(κ) + log2 κ. Finally, by a union bound
over all decryption queries, we obtain that there exists a negligible function
ν4,5 : N → [0, 1] such that P [Bad |Inj] � q · 2− log2 κ ≤ ν4,5(κ), which concludes
the proof of the lemma. ��
Lemma 15. For all (possibly unbounded) adversaries A, there exists a negligible
function ν5,6 : N → [0, 1] such that |P [G5(κ) = 1|Inj] − P [G6(κ) = 1|Inj]| ≤
ν5,6(κ).

Proof. Let Bad be the event that the adversary submits a decryption query
(0, (C,S, Φ,Π, tc)) such that: (i) C ∈ C \ V; (ii) Π = Eval(φ, (ta, tc),Priv(sk , C)).
Similarly to the proof of the previous lemma, it suffices to bound the probability
of the event Bad conditioned on Inj . Denote by (0, (C,S, Φ,Π, tc)) the first
decryption query (w.r.t. the original secret key) that triggers event Bad . Recall
that the view of adversary A in a run of game G5 consists of its own coin tosses,
the public key pk , the answers to all queries to the decryption and leakage
oracles, and the challenge ciphertext Ĉ∗. In what follows, we write L for the
random variable corresponding to the leakage queries; furthermore, for an index
i ∈ [τ], we denote with Di the random variable corresponding to all decryption
queries relative to the i-th tampered secret key. Note that we can partition Di

in two parts: D−
i for all decryption queries (w.r.t. the i-th tampered secret key)

with an invalid ciphertext, and D+
i for all decryption queries (w.r.t. the i-th

tampered secret key) with a valid ciphertext. We also write W for the random
variable corresponding to the overall view in game G5.

As in the previous lemma, since we are conditioning on event Inj , it suffices
to analyze the conditional average min-entropy of Priv(SK, C) conditioned on
the adversarial view.

H̃∞(Priv(SK, C)|W)

� H̃∞(Priv(SK, C)|PK, {Di}i∈[τ],L, Ĉ∗) (2)

� H̃∞(Priv(SK, C)|PK, {Di}i∈[τ]) − �lf − � (3)

= H̃∞(Priv(SK, C)|PK, {D+
i }i∈[τ], {D−

i }i∈Q′ ,Q′) − �lf − � (4)

� H̃∞(Priv(SK, C)|PK, {D+
i }i∈[τ], {SK′

i}i∈Q′ ,Q′) − �lf − �. (5)

Here, Eq. (2) uses the fact that the coin tosses of the adversary are independent
of SK, Eq. (3) follows by the chain rule for conditional average min-entropy (cf.
Lemma 1), Eq. (4) uses the fact that, by definition of G5, all decryption queries
for keys outside Q′ and with an invalid ciphertext are answered with ⊥, and
Eq. (5) follows by the fact that D−

i is a deterministic function of SK′
i.

Let Q′ = {i1, . . . , iq′}, as defined in game G5. Since the fact that sk iq′ ∈ Q′

implies that H∞(SK′
iq′ |W) � β(κ) + log2 κ, we can first apply Lemma 2 and

then Lemma 1 to obtain

H̃∞(Priv(SK, C)|PK, {D+
i }i∈[τ], {SK′

i}i∈Q′ ,Q′)

� H̃∞(Priv(SK, C)|PK, {D+
i }i∈[τ], {SK′

i}i∈Q′′ ,Q′′) − β(κ) − log2 κ − log |Q′|,

902 A. Faonio and D. Venturi

where Q′′ := Q′\{iq′}. Notice to apply Lemma 2 we need to condition on sk iq′ ∈
Q′, however, such condition holds with probability 1 and by conditioning on a
sure event the min-entropy does not change. By iterating the above argument
for each key in Q′:

H̃∞(Priv(SK, C)|PK, {D+
i }i∈[τ], {SK′

i}i∈Q′ ,Q′) (6)

� H̃∞(Priv(SK, C)|PK, {D+
i }i∈[τ]) − τ · (β + log2 κ + log τ),

and relying on the fact that the answer to decryption queries for a valid cipher-
text and w.r.t. index j ∈ [τ] can be computed using the “tampered” projection
key pk ′

i = μ(sk ′
i), we obtain

H̃∞(Priv(SK, C)|PK, {D+
i }i∈[τ]) � H̃∞(Priv(SK, C)|PK, {PK′

i}i∈[τ]) (7)
� α − τ · p,

where Eq. (7) follows by Lemmas 1 and 8. Combining together Eqs. (5), (6) and
(7), yields:

H̃∞(Priv(SK, C)|W) � α − τ · (p + β + log2 κ + log τ) − �lf − �.

It follows that the decryption oracle in game G5 does not reject the first invalid
ciphertext with probability at most ε ·2τ(p+β+log2 κ+log τ)+�lf+�. A generalization
of this argument implies that, for all j ∈ [q], the probability that the decryption
oracle does not reject the j-th decryption query of type (0, ·) containing an
invalid ciphertext is at most 2τ(p+β+log2 κ+log τ)+�lf+�/(1/ε − q(κ)). Finally, by a
union bound over the total number of decryption queries, there exists a negligible
function ν5,6 : N → [0, 1] such that:

P [Bad |Inj] ≤ q · 2τ(p+β+log2 κ+log τ)+�lf+�

1/ε − q

≤ ε · e−qε · 2τ(p+β+log2 κ+log τ)+�lf+�+log q

� 2−(α−qε(κ)−τ(p+β+log2 κ log τ)−�lf−�−log q)

≤ ν5,6(κ).

where the last inequality follows by the fact that α � � + �lf + τ(p + β + κ) and
additionally κ − log2 κ − log τ − log q/τ − qε/τ ∈ ω(log κ). ��
Lemma 16. For all (possibly unbounded) adversaries A, there exists a negligible
function ν6,7 : N → [0, 1] such that |P [G6(κ) = 1|Inj] − P [G7(κ) = 1|Inj]| ≤
ν6,7(κ).

Proof. We analyze the conditional average min-entropy of Priv(SK, C∗) condi-
tioned on the view of the adversary. By a previous argument, we can write:

H̃∞(Priv(SK, C∗)|W) � α − τ · (p + β + log2 κ + log τ) − �lf − �,

and thus the statement follows by our choice of parameters for the strong average-
case extractor. ��

Efficient Public-Key Cryptography 903

The statement of the theorem now follows by combining the above lemmas
together with the fact that in G7 the challenge ciphertext is independent of the
hidden bit b, and thus P [G7(κ)|Inj] = 1/2 for all (even unbounded) adversaries.
This finishes the proof.

4.3 Concrete Instantiations

The ratio α−�−�lf
p+β plays an important role in evaluating the tampering rate of a

given instantiation. Ideally, we would like to have an HPS where α is as big as
possible while p and β = α−s are as small as possible. Below, we give an instan-
tiation based on the Refined Subgroup Indistinguishability (RSI) assumption.

Instantiation based on RSI. Let ξ ∈ N be a parameter. For security parameter
κ ∈ N, let p and q be primes of size respectively κ bits and ξ · κ bits and define
p̄ = 2pq+1. For this choice of parameters, we have that Z∗

p̄ has a unique subgroup
of order N = pq. Denote by QRp̄ the set of quadratic residues modulo p̄; the
group QRp̄ can be decomposed as a direct product of Gp ×Gq where Gp and Gq

are cyclic groups of prime order p and q (respectively).
For random x, y ←$ Z

∗
p̄, one can show that, with overwhelming probability,

g = xq mod p̄ and h = yp mod p̄ are generators of Gp and Gq (respectively). Let
pubrsi := (QRp̄, p̄, g, h). The RSI assumption over QRp̄ states that for all PPT
adversary A the following quantity is negligible in the security parameter:

∣
∣P [A(pubrsi, g

x mod p̄) : x ←$ Zp̄] − P
[
A(pubrsi, y) : y ←$ QRp̄

]∣
∣ .

The RSI assumption over QRp̄ is conjectured to hold if factoring N = pq is hard
[45]. We can derive a HPS as follow. We set C := QRp̄, V := Gp, SK := Zp̄,
and PK := Gp. Given a random secret key sk ←$ SK, the corresponding public
key pk is computed as μ(sk) := gsk mod p̄. Algorithm Pub, upon input C := gw

(where w is the witness for C ∈ V) and pk outputs pkw mod p̄. Algorithm Priv,
upon input C and sk , outputs Λsk (C) := Csk mod p̄. It was shown in [50] that
the above construction defines a 1/q-almost universal HPS based on the RSI
assumption. The work of [50] additionally presents a construction of a OTLF
achieving �lf := log p based on the RSI assumption.

Finally, by instantiating the average-case strong extractor using universal
hash functions as required by the left-over hash lemma [34] we note that the
PKE scheme allows to encrypt messages with bit-length m = O(ξκ−τκ−�−κ).
We obtain the following result:

Corollary 3. Let p̄ be as above. Under the RSI assumption over QRp̄, for any
ξ(κ) = ω(1), there exists a PKE scheme satisfying (τ, �)-BTL-IND-CCA with
tampering rate ρ(κ) = O(1/κ− �

ξ2κ). The size of the secret key is Ω(ξκ), and the
PKE scheme allows to encrypt messages with bit-length m = O(ξκ− τκ− �−κ).

904 A. Faonio and D. Venturi

5 Conclusions and Open Problems

We have shown new constructions of public-key cryptosystems with provable
security guarantees against bounded leakage and tampering attacks. The pro-
posed schemes are in the standard model, and can be instantiated efficiently
under standard complexity assumptions.

There are several interesting problems left open by our work. First, our con-
structions only achieve sub-optimal tampering rate ρ(κ) = O(1/κ), so it would
be interesting to find alternative constructions achieving optimal rate in the
standard model. Second, it would be interesting to combine related-key attacks
with related-randomness attacks [47,48], where the adversary might force a cryp-
tographic scheme to re-use (functions of) its own random coins; a promising idea
in this direction is to combine our leakage-to-tamper reduction to so called fully
leakage-resilient signatures [14,23], where the adversary can additionally leak
on the random coins of the signature algorithm. Third, it remains open how to
obtain CCA security for PKE against “after-the-fact” tampering and leakage,
where both tampering and leakage can still occur after the challenge ciphertext
is generated (in the spirit of [33]). Finally, one could try to come-up with new
hash-proof systems meeting the requirements needed for our PKE instantiation
under alternative hardness assumptions.

Acknowledgments. The authors would like to thank Jesper Buus Nielsen for an
interesting conversation regarding the result in Sect. 4. Antonio Faonio was supported
by European Research Council Starting Grant 279447.

References

1. Abdalla, M., Benhamouda, F., Passelègue, A.: An algebraic framework for pseudo-
random functions and applications to related-key security. In: Gennaro, R.,
Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9215, pp. 388–409. Springer,
Heidelberg (2015). doi:10.1007/978-3-662-47989-6 19

2. Applebaum, B.: Garbling XOR gates “for free” in the standard model. In: Sahai,
A. (ed.) TCC 2013. LNCS, vol. 7785, pp. 162–181. Springer, Heidelberg (2013).
doi:10.1007/978-3-642-36594-2 10

3. Applebaum, B., Harnik, D., Ishai, Y.: Semantic security under related-key attacks
and applications. In: Innovations in Computer Science, pp. 45–60 (2011)

4. Applebaum, B., Widder, E.: Related-key secure pseudorandom functions: the case
of additive attacks. IACR Cryptology ePrint Archive 2014, 478 (2014). http://
eprint.iacr.org/2014/478

5. Ball, M., Dachman-Soled, D., Kulkarni, M., Malkin, T.: Non-malleable codes for
bounded depth, bounded fan-in circuits. In: Fischlin, M., Coron, J.-S. (eds.) EURO-
CRYPT 2016. LNCS, vol. 9666, pp. 881–908. Springer, Heidelberg (2016). doi:10.
1007/978-3-662-49896-5 31

6. Bellare, M., Cash, D.: Pseudorandom functions and permutations provably secure
against related-key attacks. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223,
pp. 666–684. Springer, Heidelberg (2010). doi:10.1007/978-3-642-14623-7 36

7. Bellare, M., Cash, D., Miller, R.: Cryptography secure against related-key attacks
and tampering. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol.
7073, pp. 486–503. Springer, Heidelberg (2011). doi:10.1007/978-3-642-25385-0 26

http://dx.doi.org/10.1007/978-3-662-47989-6_19
http://dx.doi.org/10.1007/978-3-642-36594-2_10
http://eprint.iacr.org/2014/478
http://eprint.iacr.org/2014/478
http://dx.doi.org/10.1007/978-3-662-49896-5_31
http://dx.doi.org/10.1007/978-3-662-49896-5_31
http://dx.doi.org/10.1007/978-3-642-14623-7_36
http://dx.doi.org/10.1007/978-3-642-25385-0_26

Efficient Public-Key Cryptography 905

8. Bellare, M., Kohno, T.: A theoretical treatment of related-key attacks: RKA-PRPs,
RKA-PRFs, and applications. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol.
2656, pp. 491–506. Springer, Heidelberg (2003). doi:10.1007/3-540-39200-9 31

9. Bellare, M., Meiklejohn, S., Thomson, S.: Key-versatile signatures and applications:
RKA, KDM and joint Enc/Sig. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT
2014. LNCS, vol. 8441, pp. 496–513. Springer, Heidelberg (2014). doi:10.1007/
978-3-642-55220-5 28

10. Bellare, M., Paterson, K.G., Thomson, S.: RKA security beyond the linear bar-
rier: IBE, encryption and signatures. In: Wang, X., Sako, K. (eds.) ASIACRYPT
2012. LNCS, vol. 7658, pp. 331–348. Springer, Heidelberg (2012). doi:10.1007/
978-3-642-34961-4 21

11. Biham, E., Shamir, A.: Differential fault analysis of secret key cryptosystems.
In: Kaliski, B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 513–525. Springer,
Heidelberg (1997). doi:10.1007/BFb0052259

12. Boneh, D., Boyen, X., Shacham, H.: Short group signatures. In: Franklin, M. (ed.)
CRYPTO 2004. LNCS, vol. 3152, pp. 41–55. Springer, Heidelberg (2004). doi:10.
1007/978-3-540-28628-8 3

13. Boneh, D., DeMillo, R.A., Lipton, R.J.: On the importance of checking crypto-
graphic protocols for faults. In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS, vol.
1233, pp. 37–51. Springer, Heidelberg (1997). doi:10.1007/3-540-69053-0 4

14. Boyle, E., Segev, G., Wichs, D.: Fully leakage-resilient signatures. J. Cryptology
26(3), 513–558 (2013)

15. Chen, Y., Qin, B., Zhang, J., Deng, Y., Chow, S.S.M.: Non-malleable functions
and their applications. In: Cheng, C.-M., Chung, K.-M., Persiano, G., Yang,
B.-Y. (eds.) PKC 2016. LNCS, vol. 9615, pp. 386–416. Springer, Heidelberg (2016).
doi:10.1007/978-3-662-49387-8 15

16. Cramer, R., Shoup, V.: A practical public key cryptosystem provably secure against
adaptive chosen ciphertext attack. In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS,
vol. 1462, pp. 13–25. Springer, Heidelberg (1998). doi:10.1007/BFb0055717

17. Cramer, R., Shoup, V.: Universal hash proofs and a paradigm for adaptive cho-
sen ciphertext secure public-key encryption. In: Knudsen, L.R. (ed.) EURO-
CRYPT 2002. LNCS, vol. 2332, pp. 45–64. Springer, Heidelberg (2002). doi:10.
1007/3-540-46035-7 4

18. Damg̊ard, I., Faust, S., Mukherjee, P., Venturi, D.: Bounded tamper resilience: how
to go beyond the algebraic barrier. In: Sako, K., Sarkar, P. (eds.) ASIACRYPT
2013. LNCS, vol. 8270, pp. 140–160. Springer, Heidelberg (2013). doi:10.1007/
978-3-642-42045-0 8

19. Damg̊ard, I., Faust, S., Mukherjee, P., Venturi, D.: The chaining lemma and its
application. In: Lehmann, A., Wolf, S. (eds.) ICITS 2015. LNCS, vol. 9063, pp.
181–196. Springer, Heidelberg (2015). doi:10.1007/978-3-319-17470-9 11

20. Dodis, Y., Haralambiev, K., López-Alt, A., Wichs, D.: Efficient public-key
cryptography in the presence of key leakage. In: Abe, M. (ed.) ASIACRYPT
2010. LNCS, vol. 6477, pp. 613–631. Springer, Heidelberg (2010). doi:10.1007/
978-3-642-17373-8 35

21. Dodis, Y., Ostrovsky, R., Reyzin, L., Smith, A.: Fuzzy extractors: how to generate
strong keys from biometrics and other noisy data. SIAM J. Comput. 38(1), 97–139
(2008)

22. Dziembowski, S., Pietrzak, K., Wichs, D.: Non-malleable codes. In: Innovations in
Computer Science, pp. 434–452 (2010)

http://dx.doi.org/10.1007/3-540-39200-9_31
http://dx.doi.org/10.1007/978-3-642-55220-5_28
http://dx.doi.org/10.1007/978-3-642-55220-5_28
http://dx.doi.org/10.1007/978-3-642-34961-4_21
http://dx.doi.org/10.1007/978-3-642-34961-4_21
http://dx.doi.org/10.1007/BFb0052259
http://dx.doi.org/10.1007/978-3-540-28628-8_3
http://dx.doi.org/10.1007/978-3-540-28628-8_3
http://dx.doi.org/10.1007/3-540-69053-0_4
http://dx.doi.org/10.1007/978-3-662-49387-8_15
http://dx.doi.org/10.1007/BFb0055717
http://dx.doi.org/10.1007/3-540-46035-7_4
http://dx.doi.org/10.1007/3-540-46035-7_4
http://dx.doi.org/10.1007/978-3-642-42045-0_8
http://dx.doi.org/10.1007/978-3-642-42045-0_8
http://dx.doi.org/10.1007/978-3-319-17470-9_11
http://dx.doi.org/10.1007/978-3-642-17373-8_35
http://dx.doi.org/10.1007/978-3-642-17373-8_35

906 A. Faonio and D. Venturi

23. Faonio, A., Nielsen, J.B., Venturi, D.: Mind your coins: fully leakage-resilient sig-
natures with graceful degradation. In: Halldórsson, M.M., Iwama, K., Kobayashi,
N., Speckmann, B. (eds.) ICALP 2015. LNCS, vol. 9134, pp. 456–468. Springer,
Heidelberg (2015). doi:10.1007/978-3-662-47672-7 37

24. Faonio, A., Venturi, D.: Efficient public-key cryptography with bounded leakage
and tamper resilience. Cryptology ePrint Archive, Report 2016/529 (2016). http://
eprint.iacr.org/2016/529

25. Faust, S., Mukherjee, P., Nielsen, J.B., Venturi, D.: Continuous non-malleable
codes. In: Lindell, Y. (ed.) TCC 2014. LNCS, vol. 8349, pp. 465–488. Springer,
Heidelberg (2014). doi:10.1007/978-3-642-54242-8 20

26. Faust, S., Mukherjee, P., Venturi, D., Wichs, D.: Efficient non-malleable codes and
key-derivation for poly-size tampering circuits. In: Nguyen, P.Q., Oswald, E. (eds.)
EUROCRYPT 2014. LNCS, vol. 8441, pp. 111–128. Springer, Heidelberg (2014).
doi:10.1007/978-3-642-55220-5 7

27. Faust, S., Pietrzak, K., Venturi, D.: Tamper-proof circuits: how to trade leak-
age for tamper-resilience. In: Aceto, L., Henzinger, M., Sgall, J. (eds.) ICALP
2011. LNCS, vol. 6755, pp. 391–402. Springer, Heidelberg (2011). doi:10.1007/
978-3-642-22006-7 33

28. Fiat, A., Shamir, A.: How to prove yourself: practical solutions to identification
and signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263,
pp. 186–194. Springer, Heidelberg (1987). doi:10.1007/3-540-47721-7 12

29. Gennaro, R., Lysyanskaya, A., Malkin, T., Micali, S., Rabin, T.: Algorithmic
tamper-proof (ATP) security: theoretical foundations for security against hard-
ware tampering. In: Naor, M. (ed.) TCC 2004. LNCS, vol. 2951, pp. 258–277.
Springer, Heidelberg (2004). doi:10.1007/978-3-540-24638-1 15

30. Goldenberg, D., Liskov, M.: On related-secret pseudorandomness. In: Micciancio,
D. (ed.) TCC 2010. LNCS, vol. 5978, pp. 255–272. Springer, Heidelberg (2010).
doi:10.1007/978-3-642-11799-2 16

31. Goyal, V., O’Neill, A., Rao, V.: Correlated-input secure hash functions. In: Ishai,
Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 182–200. Springer, Heidelberg (2011).
doi:10.1007/978-3-642-19571-6 12

32. Groth, J., Sahai, A.: Efficient non-interactive proof systems for bilinear groups.
In: Smart, N. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 415–432. Springer,
Heidelberg (2008). doi:10.1007/978-3-540-78967-3 24

33. Halevi, S., Lin, H.: After-the-fact leakage in public-key encryption. In: Ishai, Y.
(ed.) TCC 2011. LNCS, vol. 6597, pp. 107–124. Springer, Heidelberg (2011). doi:10.
1007/978-3-642-19571-6 8

34. H̊astad, J., Impagliazzo, R., Levin, L.A., Luby, M.: A pseudorandom generator
from any one-way function. SIAM J. Comput. 28(4), 1364–1396 (1999)

35. Hofheinz, D., Kiltz, E.: Secure hybrid encryption from weakened key encapsulation.
In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 553–571. Springer,
Heidelberg (2007). doi:10.1007/978-3-540-74143-5 31

36. Ishai, Y., Prabhakaran, M., Sahai, A., Wagner, D.: Private circuits II: keeping
secrets in tamperable circuits. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS,
vol. 4004, pp. 308–327. Springer, Heidelberg (2006). doi:10.1007/11761679 19

37. Jafargholi, Z., Wichs, D.: Tamper detection and continuous non-malleable codes.
In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015. LNCS, vol. 9014, pp. 451–480.
Springer, Heidelberg (2015). doi:10.1007/978-3-662-46494-6 19

38. Katz, J., Vaikuntanathan, V.: Signature schemes with bounded leakage resilience.
In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 703–720. Springer,
Heidelberg (2009). doi:10.1007/978-3-642-10366-7 41

http://dx.doi.org/10.1007/978-3-662-47672-7_37
http://eprint.iacr.org/2016/529
http://eprint.iacr.org/2016/529
http://dx.doi.org/10.1007/978-3-642-54242-8_20
http://dx.doi.org/10.1007/978-3-642-55220-5_7
http://dx.doi.org/10.1007/978-3-642-22006-7_33
http://dx.doi.org/10.1007/978-3-642-22006-7_33
http://dx.doi.org/10.1007/3-540-47721-7_12
http://dx.doi.org/10.1007/978-3-540-24638-1_15
http://dx.doi.org/10.1007/978-3-642-11799-2_16
http://dx.doi.org/10.1007/978-3-642-19571-6_12
http://dx.doi.org/10.1007/978-3-540-78967-3_24
http://dx.doi.org/10.1007/978-3-642-19571-6_8
http://dx.doi.org/10.1007/978-3-642-19571-6_8
http://dx.doi.org/10.1007/978-3-540-74143-5_31
http://dx.doi.org/10.1007/11761679_19
http://dx.doi.org/10.1007/978-3-662-46494-6_19
http://dx.doi.org/10.1007/978-3-642-10366-7_41

Efficient Public-Key Cryptography 907

39. Katz, J., Vaikuntanathan, V.: Signature schemes with bounded leakage resilience.
In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 703–720. Springer,
Heidelberg (2009). doi:10.1007/978-3-642-10366-7 41

40. Lewi, K., Montgomery, H., Raghunathan, A.: Improved constructions of PRFs
secure against related-key attacks. In: Boureanu, I., Owesarski, P., Vaudenay, S.
(eds.) ACNS 2014. LNCS, vol. 8479, pp. 44–61. Springer, Heidelberg (2014). doi:10.
1007/978-3-319-07536-5 4

41. Liu, F.-H., Lysyanskaya, A.: Tamper and leakage resilience in the split-state model.
In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 517–
532. Springer, Heidelberg (2012). doi:10.1007/978-3-642-32009-5 30

42. Lu, X., Li, B., Jia, D.: Related-key security for hybrid encryption. In: Chow, S.S.M.,
Camenisch, J., Hui, L.C.K., Yiu, S.M. (eds.) ISC 2014. LNCS, vol. 8783, pp. 19–32.
Springer, Heidelberg (2014). doi:10.1007/978-3-319-13257-0 2

43. Lucks, S.: Ciphers secure against related-key attacks. In: Roy, B., Meier, W. (eds.)
FSE 2004. LNCS, vol. 3017, pp. 359–370. Springer, Heidelberg (2004). doi:10.1007/
978-3-540-25937-4 23

44. Naor, M., Segev, G.: Public-key cryptosystems resilient to key leakage. In: Halevi,
S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 18–35. Springer, Heidelberg (2009)

45. Nieto, J.M.G., Boyd, C., Dawson, E.: A public key cryptosystem based on a sub-
group membership problem. Des. Codes Crypt. 36(3), 301–316 (2005)

46. Otto, M.: Fault Attacks and Countermeasures. Ph.D. thesis, University of Pader-
born, Germany (2006)

47. Paterson, K.G., Schuldt, J.C.N., Sibborn, D.L.: Related randomness attacks for
public key encryption. In: Krawczyk, H. (ed.) PKC 2014. LNCS, vol. 8383, pp.
465–482. Springer, Heidelberg (2014). doi:10.1007/978-3-642-54631-0 27

48. Paterson, K.G., Schuldt, J.C.N., Sibborn, D.L., Wee, H.: Security against related
randomness attacks via reconstructive extractors. In: Groth, J. (ed.) IMACC
2015. LNCS, vol. 9496, pp. 23–40. Springer, Heidelberg (2015). doi:10.1007/
978-3-319-27239-9 2

49. Qin, B., Liu, S.: Leakage-resilient chosen-ciphertext secure public-key encryption
from hash proof system and one-time lossy filter. In: Sako, K., Sarkar, P. (eds.)
ASIACRYPT 2013. LNCS, vol. 8270, pp. 381–400. Springer, Heidelberg (2013).
doi:10.1007/978-3-642-42045-0 20

50. Qin, B., Liu, S.: Leakage-flexible CCA-secure public-key encryption: simple con-
struction and free of pairing. In: Krawczyk, H. (ed.) PKC 2014. LNCS, vol. 8383,
pp. 19–36. Springer, Heidelberg (2014). doi:10.1007/978-3-642-54631-0 2

51. Qin, B., Liu, S., Yuen, T.H., Deng, R.H., Chen, K.: Continuous non-malleable
key derivation and its application to related-key security. In: Katz, J. (ed.) PKC
2015. LNCS, vol. 9020, pp. 557–578. Springer, Heidelberg (2015). doi:10.1007/
978-3-662-46447-2 25

52. Scott, M.: Authenticated ID-based key exchange and remote log-in with simple
token and PIN number. IACR Cryptology ePrint Archive 2002, 164 (2002). http://
eprint.iacr.org/2002/164

53. Shacham, H.: A Cramer-Shoup encryption scheme from the linear assumption and
from progressively weaker linear variants. IACR Cryptology ePrint Archive 2007,
74 (2007). http://eprint.iacr.org/2007/074

54. Wee, H.: Public key encryption against related key attacks. In: Fischlin, M.,
Buchmann, J., Manulis, M. (eds.) PKC 2012. LNCS, vol. 7293, pp. 262–279.
Springer, Heidelberg (2012). doi:10.1007/978-3-642-30057-8 16

http://dx.doi.org/10.1007/978-3-642-10366-7_41
http://dx.doi.org/10.1007/978-3-319-07536-5_4
http://dx.doi.org/10.1007/978-3-319-07536-5_4
http://dx.doi.org/10.1007/978-3-642-32009-5_30
http://dx.doi.org/10.1007/978-3-319-13257-0_2
http://dx.doi.org/10.1007/978-3-540-25937-4_23
http://dx.doi.org/10.1007/978-3-540-25937-4_23
http://dx.doi.org/10.1007/978-3-642-54631-0_27
http://dx.doi.org/10.1007/978-3-319-27239-9_2
http://dx.doi.org/10.1007/978-3-319-27239-9_2
http://dx.doi.org/10.1007/978-3-642-42045-0_20
http://dx.doi.org/10.1007/978-3-642-54631-0_2
http://dx.doi.org/10.1007/978-3-662-46447-2_25
http://dx.doi.org/10.1007/978-3-662-46447-2_25
http://eprint.iacr.org/2002/164
http://eprint.iacr.org/2002/164
http://eprint.iacr.org/2007/074
http://dx.doi.org/10.1007/978-3-642-30057-8_16

Public-Key Cryptosystems Resilient
to Continuous Tampering and Leakage

of Arbitrary Functions

Eiichiro Fujisaki(B) and Keita Xagawa

NTT Secure Platform Laboratories, 3-9-11 Midori-cho Musashino-shi,
Tokyo 180-8585, Japan

{fujisaki.eiichiro,xagawa.keita}@lab.ntt.co.jp

Abstract. We present the first chosen-ciphertext secure public-key
encryption schemes resilient to continuous tampering of arbitrary (effi-
ciently computable) functions. Since it is impossible to realize such a
scheme without a self-destruction or key-updating mechanism, our pro-
posals allow for either of them. As in the previous works resilient to
this type of tampering attacks, our schemes also tolerate bounded or
continuous memory leakage attacks at the same time. Unlike the previ-
ous results, our schemes have efficient instantiations, without relying on
zero-knowledge proofs. We also prove that there is no secure digital signa-
ture scheme resilient to arbitrary tampering functions against a stronger
variant of continuous tampering attacks, even if it has a self-destruction
mechanism.

Keywords: Public-key encryption · Digital signature · Continuous tam-
pering attacks · Bounded or continuous memory leakage

1 Introduction

We study the tampering attack security, or equivalently the related-key attack
security, of public-key cryptosystems. The tampering attacks allow an adversary
to modify the secret of a target cryptographic device and observe the effect of the
changes at the output. For instance, the tampering attacks are mounted on the
IND-CCA game of a public-key encryption (PKE) scheme, where an adversary
may tamper with the secret-key and observe the output of the decryption oracle
with the tampered secret.

Theoretical treatment of tampering attack is first considered independently
by Gennaro et al. [23] and Bellare and Kohno [6]. The former treated arbitrary
(efficiently computable) tampering functions, whereas the latter considered a
restricted class of tampering functions.

Since allowing for all tampering functions is very challenging, Gennaro
et al. [23] make a strong compromise that a trusted-third party may publish its
verification key (of a secure digital signature scheme) as a part of public para-
meters where an adversary is not allowed to modify the parameters, and each
c© International Association for Cryptologic Research 2016
J.H. Cheon and T. Takagi (Eds.): ASIACRYPT 2016, Part I, LNCS 10031, pp. 908–938, 2016.
DOI: 10.1007/978-3-662-53887-6 33

Public-Key Cryptosystems Resilient to Continuous Tampering 909

user may obtain a signature on their secrets issued by the trusted-third party.
We call this model the on-line model (called the algorithmic tamper-proof
security model in [23]). On the other hand, Bellare and Kohno [6] assume no
trusted party. However, its subsequent works [4,5,7,22,28,33,35] allow a trusted
party to play a minimum role, where it makes a public parameter, but once it
did, it does nothing. An adversary is not allowed to modify the public parameter.
We call this model the common reference string (CRS) model.

Gennaro et al. [23] suggested that it is impossible to realize chosen-ciphertext
attack (CCA) secure PKE and digital signature schemes resilient to all tamper-
ing functions even in the on-line model. Therefore, they allowed a cryptosys-
tem to self-destruct, meaning that when detecting tampering, a cryptographic
device can erase all internal data, so that an adversary cannot obtain anything
more from the device.

Other known ways to bypass the impossibility result are (1) to use a key-
updating mechanism, i.e., to allow a device to update its inner secret with
fresh randomness [26], and (2) to allow an adversary to submit a bounded number
of tampering queries (the bounded tampering model) [14].

Tampering is further classified into persistent or non-persistent (due to
[25]). In persistent tampering attacks, each tampering is applied to the cur-
rent version of the secret that has been overwritten by the previous tampering
function, i.e., when an adversary queries (φ1, x1) and (φ2, x2) to device G(s, ·) in
this order, it receives G(φ1(s), x1) and G(φ2(φ1(s)), x2), where φ1, φ2 are tamper-
ing functions and x1, x2 are inputs to device G. In non-persistent tampering
attacks, tampering is always applied to the original secret, i.e., an adversary
receives G(φ1(s), x1) and G(φ2(s), x2) when submitting the above queries. We
insist that for PKE and digital signature schemes without a key-update mech-
anism, non-persistent tampering is stronger than persistent tampering, because
an adversary that breaks a cryptosystem in a persistent tampering attack also
breaks the same system in a non-persistent tampering attack. It is not clear in
a cryptosystem with a key-updating mechanism the similar relation holds.

In this paper we focus on the common reference string (CRS) model (as
mentioned above), where we assume a public parameter is generated by a trusted
third party and assume that an adversary is not allowed to modify it. This setting
is common in many prior works, e.g., [4,5,7,14,22,26,28,33,35].

At CRYPTO 2011, Kalai, Kanukurthi, and Sahai [26] considered the con-
tinual tampering and leakage (CTL) model, assuming tampering is persis-
tent, and PKE and digital signature schemes are allowed to have a key-update
algorithm, which updates a secret key with fresh (non-tampered) randomness
between periods of tampering and leakage. This security model is considered
in the CRS model. The proposed PKE scheme is one-bit-message encryption
scheme based on [10] and is only chosen-plaintext attack (CPA) secure. There-
fore, in their CTL security model, an adversary is not allowed to access the
decryption oracle, which means that an adversary cannot observe the effect
of tampering at the output of the decryption oracle. Instead, it can observe
the effect of tampering at the output of the leakage oracle. We note that this

910 E. Fujisaki and K. Xagawa

tampering attack is not trivially implied by a leakage attack, because tampered
secret φ(sk) is updated and the adversary can observe a partial information
on the updated secret, say L(Update(φ(sk))), from the leakage oracle. Their
digital signature scheme (with a key-update mechanism) is constructed based
on their CTL secure PKE scheme with simulation-sound non-interactive zero-
knowledge proofs, which is simply inefficient. They also considered a digital
signature scheme without a key-update mechanism in the so-called continuous
tampering and bounded leakage (CTBL) model. The digital signature scheme
may self-destruct (otherwise, it is impossible to prove the security). They claim
that it is secure against persistent tampering attacks in the CTBL model.
Remember that, if a digital signature scheme does not have a key-update mech-
anism, non-persistent tampering is stronger than persistent tampering. We later
prove that if a digital signature scheme does not have a key-updating mecha-
nism, it is impossible that it is resilient to continuous non-persistent tampering
(even if it can self-destruct).

At ASIACRYPT 2013, Damg̊ard, Faust, Mukherjee, and Venturi [14] pro-
posed the bounded leakage and tampering (BLT) model. This setting
allows a bounded number of non-persistent tampering, as well as bounded
memory leakage, in the CRS model, where PKE has neither self-destructive
nor key-update mechanism. In the BLT model for PKE, in addition to having
access to bounded memory leakage oracle, an adversary is allowed to submit a
bounded number of “pre-challenge”tampering queries (φ,CT) to the decryption
oracle and receive D(φ(sk),CT). It may also access the decryption oracle with
the original secret-key both in the pre-challenge and post-challenge stages, as in
the normal IND-CCA game. They presented a generic construction of IND-CCA
BLT secure PKE scheme from an IND-CPA BLT secure PKE scheme with tSE
NIZK proofs [15]. An instance of an IND-CPA BLT secure PKE scheme is BHHO
PKE scheme [9]. Using the technique of [2], they also consider a variant of the
floppy model [2], called the ι-Floppy model, where each user has individual
secret y different from secret-key sk and is allowed to execute an invisible key
update, i.e., to update their secret key sk using (non-tampered) secret y with
(non-tampered) flesh randomness.

1.1 Our Results

We study continuous tampering of arbitrary functions against PKE and digital
signature schemes, in the presence of bounded or continuous memory leakage.
Due to the impossibility result, we allow PKE and digital signature schemes to
have either self-destructive or key-updating mechanism. There is no IND-CCA
PKE scheme resilient to post-challenge tampering of arbitrary functions [14].
Indeed, one can break any PKE scheme, by observing the output of the decryp-
tion oracle after tampering with the following effciently computable function:

φ(sk) =

{
sk if D(sk,CT∗) = m0, where CT∗ is a challenge ciphertext.
⊥ otherwise.

Public-Key Cryptosystems Resilient to Continuous Tampering 911

This attack is unavoidable even with self-destruction, key-updating, and
bounded persistent/non-persistent tampering in the on-line model (i.e., in the
strongest compromised model). Therefore, we allow tampering queries only in
the pre-challenge stage against a PKE scheme.

We present the first chosen-ciphertext secure PKE schemes secure against con-
tinuous (pre-challenge) tampering of arbitrary functions. At the same time, our
proposals tolerate bounded or continuous memory leakage of arbitrary functions.
Interestingly, by putting some parameters in the common reference string and pro-
viding a self-destructive mechanism to the decryption algorithm, Qin and Liu’s
PKE scheme [31] is CTBL-CCA secure, meaning that it is IND-CCA secure
resilient to continuous tampering and bounded memory leakage. We also propose
the first CTL-CCA secure PKE scheme, meaning that it is IND-CCA secure
resilient to continuous tampering and continual memory leakage. To the best of
our knowledge, this is the first IND-CCA secure PKE scheme resilient to contin-
uous memory leakage without using zero-knowledge, regardless of tampering.

Our security definitions basically model a non-persistent tampering attack,
but it is straightforward to modify it to a persistent one. We show that any PKE
scheme without a key-update mechanism that is CTBL-CCA secure against
non-persistent tampering attacks is still CTBL-CCA secure against persistent
tampering attacks. So is our CTBL-CCA secure PKE scheme. However, it is
not clear that when a PKE scheme has a key-update mechanism, the similar
relation holds.

We show that it is impossible to construct a secure digital signature scheme
resilient to (continuous) non-persistent tampering even if it has a self-destructive
mechanism. If a key-update mechanism should run only when tampering is
detected, any digital signature scheme with a key-update mechanism is inse-
cure, either.

Comparison Among Continuous Tampering Models. Table 1 classifies
security models related to our continuous tampering model. Here b-tamp indi-
cates bounded tampering and c-tamp indicates continuous tampering. Similarly,
b-leak indicates bounded memory leakage and c-tamp indicates continuous mem-
ory leakage. persist indicates persistent tampering and n-persist indicates non-
persistent tampering. per./n-per. indicates that the result in this row is effective
against both persistent and non-persistent tampering. c-tamp− indicates the case
of KKS signature scheme [26], where an adversary is allowed to submit a bounded
number of tampering queries within each time period, although the number of
tampering queries overall is unbounded. Our result is given in the gray area.
Our CTL model imposes a more severe condition in that the scheme is allowed
to update secret keys only when it can detect tampering.

1.2 Other Related Work

Considering a restricted class of tampering functions, we briefly mention two
lines of works.

912 E. Fujisaki and K. Xagawa

Table 1. Comparison: continuous tampering models and results

Primitives Self-dest Key update Tampering Leakage Security Notes Results

PKE w/o w/o b-tamp b-leak CCA per./n-per. DFMV [14]

PKE w/o w c-tamp c-leak CCA ιFloppy DFMV [14]

PKE w w b-tamp - CCA post-tamp Impossible([14])

PKE w/o w/o c-tamp - CCA per./n-per. Impossible ([23])

PKE w/o w c-tamp c-leak CPA persist KKS [26]

PKE w w/o c-tamp b-leak CCA per./n-per. This work

PKE w/o w c-tamp c-leak CCA n-persist This work

Sig w/o w/o c-tamp - CMA per./n-per. Impossible ([23])

Sig w w/o c-tamp b-leak ? persist KKS [26]

Sig w/o w c-tamp− c-leak CMA persist KKS [26]

Sig w w/o c-tamp - CMA n-persist Impossible (This work)

Sig w/o w c-tamp - CMA n-persist Impossible (This work)

One research stream derives from Bellare and Kohno’s [6], who study tamper-
ing (or equivalently related-key) resilient security against specific primitives, such
as pseudo-random function (PRF) families, PKE, and identity-based encryption
(IBE) schemes. By restricting tampering functions, post-challenge tampering
queries can be treated in PKE. Currently, it is known that there is an IBE
scheme (and hence, converted to PKE) resilient to polynomial functions [7] (in
the CRS model). Qin et al. [33] recently claimed a broader class, but it is not cor-
rect [22] (Indeed, there is a counter example [3]). Recently, Fujisaki and Xagawa
proposed an IBE scheme resilient to some kind of invertible functions [22]. In
the above works, non-persistent tampering is considered, and primitives have
neither self-destruction nor key-update mechanism.

The other line of works comes from algebraic manipulation detection (AMD)
codes [11,12] and non-malleable codes (NMC) [19], whose codes can detect tam-
pering of a certain class of functions. Dziembowski, Pietrzak, and Wichs [19]
presented NMC and its application to tamper-resilient security. In their model,
a PKE scheme allows both self-destruction and key-update mechanisms. An
adversary accesses target device G with a tampering query (φ, x) with φ ∈ Φ. If
the decoding fails, i.e., Dec(φ(Enc(s)) = ⊥, then G self-destructs. Otherwise, it
returns G(s, x) and updates Enc(s). Faust, Mukherjee, Nielsen, and Ventrui [21]
considered continuous NMC and apply it to tamper and leakage resilient secu-
rity (in the split-state model). Recently, Jafargholi and Wichs [25] presented
NMCs for a bounded number of any subset of a very broader class of tampering
functions. However, since an adversary must choose the subset before seeing the
parameters of the codes, this result is not effective against continuous tampering
attacks in this paper.

Public-Key Cryptosystems Resilient to Continuous Tampering 913

Independent Work. Independently of us, Faonio and Venturi [20] has recently
showed1 that the digital signature scheme proposed by Dodis et al. [16] and Qin-
Liu PKE scheme [31] are secure in the bounded leakage and tampering (BLT)
model [14], where a bounded number of non-persistent tampering and bounded
memory leakage are allowed in the CRS model. Since we have proved that there
is no digital signature scheme resilient to continuous non-persistent tampering
even if self-destruction is allowed, it is reasonable that the digital signature
scheme is proven only secure against bounded tampering. As for the PKE case
in which Qin-Liu PKE scheme is proven BLT-CCA secure, the proof analysis is
somewhat close to ours, in the sense that it does not use the leakage oracle in a
black box way to simulate the effect of tampering (unlike [14]).

2 Preliminaries

For n ∈ N (the set of natural numbers), [n] denotes the set {1, . . . , n}. We
let negl(κ) to denote an unspecified function f(κ) such that f(κ) = κ−ω(1) =
2−ω(1) log κ, saying that such a function is negligible in κ. We write PPT and
DPT algorithms to denote probabilistic polynomial-time and deterministic poly-
time algorithms, respectively. For PPT algorithm A, we write y ← A(x) to
denote the experiment of running A for given x, picking inner coins r uni-
formly from an appropriate domain, and assigning the result of this experiment
to the variable y, i.e., y = A(x; r). Let X = {Xκ}κ∈N and Y = {Yκ}κ∈N be
probability ensembles such that each Xκ and Yκ are random variables ranging
over {0, 1}κ. The (statistical) distance between Xκ and Yκ is Dist(Xκ : Yκ) �
1
2 · |Prs∈{0,1}κ [X = s] − Prs∈{0,1}κ [Y = s]|. We say that two probability ensem-

bles, X and Y , are statistically indistinguishable (in κ), denoted X
s≈ Y , if

Dist(Xκ : Yκ) = negl(κ). In particular, we denote by X ≡ Y to say that X and
Y are identical. We say that X and Y are computationally indistinguishable
(in κ), denoted X

c≈ Y , if for every non-uniform PPT D (ranging over {0, 1}),
{D(1κ,Xκ)}κ∈N

s≈ {D(1κ, Yκ)}κ∈N.

2.1 Entropy and Extractor

The min-entropy of random variable X is defined as H∞(X) =
− log (maxx Pr[X = x]). We say that a function Ext : {0, 1}�s ×{0, 1}n → {0, 1}m

is an (k, ε)-strong extractor if for any random variable X such that X ∈ {0, 1}n

and H∞(X) > k, it holds that Dist((S,Ext(S,X)), (S,Um)) ≤ ε, where S is uni-
form over {0, 1}ls . Let H = {H} be a family of hash functions H : {0, 1}n →
{0, 1}m. H is called a family of universal hash functions if ∀ x1, x2 ∈ {0, 1}n with
x1
= x2, PrH←H [H(x1) = H(x2)] = 2−m. Then, The Leftover Hash Lemma
(LHL) states the following.

1 Their proposal has been submitted to IACR e-Print archive [20] after the deadline
of ASIACRYPT 2016. So, it is obvious that ours is independent of theirs. We have
recently noticed that it will also appear in ASIACRYPT 2016.

914 E. Fujisaki and K. Xagawa

Lemma 1 (Leftover Hash Lemma). Assume that the family H of functions
H : {0, 1}n → {0, 1}m is a family of universal hash functions. Then for any
random variable X such that X ∈ {0, 1}n and H∞(X) > m,

Dist((H,H(X)), (H,Um)) ≤ 1
2

√
2−(H∞(X)−m),

where H is a random variable uniformly chosen over H and Um is a random
variable uniformly chosen over {0, 1}m.

Therefore, H constructs a (k, 2−(k/2+1))-strong extractor where k = H∞(X)−m.
We use the notion of the average conditional min-entropy defined by Dodis

et al. [18] and its “chain rule”. Define the average conditional min-entropy of
random variable X given random variable Y as

H̃∞(X|Y) � − log (E
y←Y

[max
x

Pr[X = x|Y = y]]) = − log (E
y←Y

[2−H∞(X|Y =y)]).

Lemma 2 (“Chain Rule” for Average Min-Entropy [18]). When random
variable Z takes at most 2r possible values (i.e., #Supp(Z) = 2r) and X,Y are
random variables, then

H̃∞(X|(Y,Z)) ≥ H̃∞((X,Y)|Z) − r ≥ H̃∞(X|Z) − r.

In particular,
H̃∞(X|Z) ≥ H∞(X,Z) − r ≥ H∞(X) − r.

Dodis et al. [18] proved that any strong extractor is an average-case strong
extractor for an appropriate setting of the parameters. As a special case, they
showed any family of universal hash functions is an average-case strong extractor
along with the following generalized version of the leftover hash lemma:

Lemma 3 (Generalized Leftover Hash Lemma [18]). Assume that the
family H of functions H : {0, 1}n → {0, 1}m is a family of universal hash
functions. Then for any random variables, X and Z,

Dist((H,H(X), Z), (H,Um, Z)) ≤ 1
2

√
2−(H̃∞(X|Z)−m),

where H is a random variable uniformly chosen over H and Um is a random
variable uniformly chosen over {0, 1}m.

2.2 Hash Proof Systems

We recall the notion of the hash proof systems introduced by Cramer and
Shoup [13]. Let C,K ,SK , and PK be efficiently samplable sets and let V be
a subset in C. Let Λsk : C → K be a hash function indexed by sk ∈ SK . A
hash function family Λ : SK × C → K is projective if there is a projection
μ : SK → PK such that μ(sk) ∈ PK defines the action of Λsk over subset V.

Public-Key Cryptosystems Resilient to Continuous Tampering 915

That is to say, for every C ∈ V, K = Λsk(C) is uniquely determined by μ(sk)
and C. Λ is called γ-entropic [27] if for all pk ∈ PK , C ∈ C\V, and all K ∈ K ,

Pr[K = Λsk(C)|(pk,C)] ≤ 2−γ ,

where the probability is taken over sk
U← SK with pk = μ(sk). We note that

this Λ is originally called 2−γ-universal1 in [13]. By definition, we note that
H∞(Λsk(C)|(pk,C)) ≥ γ for all pk ∈ PK and C ∈ C\V.

Λ is called ε-smooth [13] if Dist((pk,C,Λsk(C)), (pk,C,K)) ≤ ε, where sk
U←

SK , K
U← K and C

U← C\V are chosen at random and pk = μ(sk).
A hash proof system HPS = (HPS.param, HPS.pub, HPS.priv) consists of three

algorithms such that HPS.param takes 1κ and outputs an instance of params
= (group,Λ,C,V,SK ,PK , μ), where group contains some additional structural
parameters and Λ is a projective hash function family associated with (C,V,SK ,
PK , μ) as defined above. The deterministic public evaluation algorithm HPS.pub
takes as input pk = μ(sk), C ∈ V and a witness w such that C ∈ V and returns
Λsk(C). The deterministic private evaluation algorithm takes sk ∈ SK and
returns Λsk(C), without taking withness w for C (if it exists). A hash proof
system HPS as above is said to have a hard subset membership problem if two
random elements C ∈ C and C ′ ∈ C\V are computationally indistinguishable,
that is, {C |C U← C}κ∈N

c≈ {C ′ |C ′ U← C\V}κ∈N.

2.3 All-But-One Injective Functions

We recall all-but-one injective functions (ABO) [32], which is a simple variant
of all-but-one injective trap-door functions [30].

A collection of (n, �lf)-all-but-one injective functions with branch collection
B = {Bκ}κ∈N is given by a tuple of PPT algorithms ABO = (ABO.gen,ABO.eval)
with the following properties:

– ABO.gen is a PPT algorithm that takes 1κ and any branch b∗ ∈ Bκ, and
outputs a function index iabo and domain X with 2n elements.

– ABO.eval is a DPT algorithm that takes iabo, b, and x ∈ X, and computes
y = ABO.eval(iabo, b, x).

We require that (n, �lf)-all-but-one injective functions given by ABO satisfies
the following properties:

1. For any b
= b∗ ∈ Bκ, ABO.eval(iabo, b, ·) computes an injective function over
the domain X.

2. The number of elements in the image of ABO.eval(iabo, b∗, ·) over the domain
X is at most 2�lf .

3. For any b, b∗ ∈ Bκ, {ABO.gen(1κ, b)}κ∈N

c≈ {ABO.gen(1κ, b∗)}κ∈N.

We note that ABO functions can be efficiently constructed under the DDH
assumption and the DCR assumption (See AppendixB).

916 E. Fujisaki and K. Xagawa

3 Continuous Tampering and Bounded Leakage Resilient
CCA (CTBL-CCA) Secure Public-Key Encryption

A public-key encryption (PKE) scheme consists of the following four algorithms
Π = (Setup,K,E,D): The setup algorithm Setup is a PPT algorithm that takes
1κ and outputs public parameter ρ. The key-generation algorithm K is a PPT
algorithm that takes ρ and outputs a pair of public and secret keys, (pk, sk). The
encryption algorithm E is a PPT algorithm that takes public parameter ρ, public
key pk and message m ∈ M, and produces ciphertext ct ← Eρ(pk,m); Here M is
uniquely determined by pk. The decryption algorithm D is a DPT algorithm that
takes ρ, sk and presumable ciphertext ct, and returns message m = Dρ(sk, ct).
We require for correctness that for every sufficiently large κ ∈ N, it always holds
that Dρ(sk,Eρ(pk,m)) = m, for every ρ ∈ Setup(1κ), every (pk, sk) generated
by K(ρ), and every m ∈ M.

We say that PKE Π is self-destructive if the decryption algorithm can erase
all inner states including sk, when receiving an invalid ciphertext ct. We assume
that public parameter ρ is system-wide, i.e., fixed beforehand and independent
of all users, and the only public and secret keys are subject to the tampering
attacks. This model is justified in the environment where the common public
parameter could be hardwired into the algorithm codes and stored on tamper-
proof hardware or distributed via a public channel where tampering is infeasible
or could be easily detected.

CTBL-CCA Security. For PKE Π and an adversary A = (A1, A2), we
define the experiment Exptctbl-ccaΠ,A,(Φ1,Φ2,λ)(κ) as in Fig. 1. A may adaptively submit
(unbounded) polynomially many queries (φ, ct) to oracle RKDec2, but φ should
be in Φi appropriately. A may also adaptively submit (unbounded) polynomi-
ally many queries L to oracle Leak, before seeing the challenge ciphertext ct∗.
The total amount of leakage on sk must be bounded by some λ bit length. We
note that if Π has the self-destructive property, RKDec does not answer any
further query, or simply return ⊥, after it receives an invalid ciphertext such
that Dρ(φ(sk), ct) = ⊥. We define the advantage of A against Π with respects
(Φ1,Φ2) as

Advctbl-ccaΠ,A,(Φ1,Φ2,λ)(κ) � | 2Pr[Exptctbl-ccaΠ,A,(Φ1,Φ2,λ)(κ) = 1] − 1 |.

We say that Π is (Φ1,Φ2, λ)-CTBL-CCA secure if Advctbl-ccaΠ,A,(Φ1,Φ2,λ)(κ) = negl(κ)
for every PPT A.

We say that Π is CTBL-CCA secure if it is (Φall, {id}, λ)-CTBL-CCA
secure, where Φall is the class of all efficiently computable functions and id denotes
the identity function.

Remark 1. This security definition models non-persistent tampering. How-
ever, it is obvious that the persistent tampering version of CTBL-CCA security
can be similarly defined.
2 A tampering function is called a related-key derivation (RKD) function in [4,6].

Public-Key Cryptosystems Resilient to Continuous Tampering 917

Fig. 1. The experiment of the CTBL-CCA game.

We now state the following fact.

Theorem 1. Suppose a PKE scheme Π without a key-update mechanism
(as defined in Sect. 5) is CTBL-CCA secure against non-persistent tampering
attacks. Then, Π is also CTBL-CCA secure against persistent tampering attacks.

Proof. For a PKE scheme without a key-update mechanism, persistent tamper-
ing queries

(φ1, ct1), (φ2, ct2), . . . , (φ�, ct�)

can be simulated non-persistent tampering queries as

(φ1, ct1), (φ2 ◦ φ1, ct2), . . . , (φ� ◦ · · · ◦ φ1, ct�).

Leakage functions in the persistent tampering attack are also simulated as
L′ = L ◦ φ� · · · ◦ φ1, where φ1, . . . , φ� denote all persistent tampering functions
submitted before leakage function L is submitted. So, if Π is CTBL-CCA secure
against non-persistent tampering attacks, then it is CTBL-CCA secure against
persistent tampering attacks. �

4 The CTBL-CCA Secure PKE Scheme

Let HPS = (HPS.param,HPS.pub,HPS.priv) be a hash proof system (described in
Sect. 2.2). Let ABO = (ABO.gen,ABO.eval) be a collection of all-but-one injective
(ABO) functions (described in Sect. 2.3). Let TCH be a target collision resistant
hash family. Let H = {H|H : {0, 1}n → {0, 1}�m} be a family of universal hash
functions with n = |K |. Let OTSig = (otKGen, otSign, otVrfy) a strong one-time
signature scheme. We assume vk = 0
∈ otKGen.

At ASIACRYPT 2013, Qin and Liu [31] proposed a new framework for con-
structing an IND-CCA secure PKE scheme resilient to bounded memory leak-
age. Assume a PKE scheme based on a hash-proof-system, where an encryption
of m is constructed as CT = (C,H, e) where C ← V with w, H ← H , and

918 E. Fujisaki and K. Xagawa

e = m ⊕ H(HPS.pub(PK,C,w)), whereas the decryption is done by computing
m = e ⊕ H(HPS.priv(SK,C)). Naor and Segev [29] proved that such a PKE
scheme is IND-CPA secure resilient to bounded memory leakage. Qin and Liu
transformed it to IND-CCA secure one resilient to bounded memory leakage, by
using a one-time lossy filter. We describe a slight modification of Qin-Liu PKE
scheme in Fig. 1. The difference is that (1) our construction divides the origi-
nal key generation algorithm into the Setup algorithm and the key generation
algorithm and puts ρ in the common reference string, and (2) replaces a one-
time lossy filter with a combination of a strong one-time signature scheme and
an ABO injective function. (Here (2) is not essential. It is just a matter of our
preference to use an ABO injective function. Any one-time lossy filter suffices
for our purpose.)

We then have the following theorem.

Theorem 2. Let HPS be a γ-entropic hash proof system. Let ABO be (n, �lf)-
all-but-one injective function where n = log |K |. We assume the PKE scheme
in Fig. 2 is self-destructive. Then, it is (Φall, {id}, λ)-CTBL-CCA secure, as
long as λ(κ) ≤ γ − �lf − �m − 2η − log(1/ε) where η(κ) = ω(log κ) and
ε = 2−ω(log κ), and for any PPT adversary A with at most Q queries to RKDec
oracle, Advctbl-ccaΠ,A,(Φall,{id},λ)(κ) ≤

2εtcr + 2εotsig + 4εlossy + 4εSD + 2−η+2 + Q · 2−(γ−η−λ−�lf−�m−1) + 2ε,

where εotsig, εlossy, and εSD denote some negligible functions such that
AdvotOTSig,B(κ) ≤ εotsig, AdvlossyABO,B′(κ) ≤ εlossy, and AdvSDHPS,D(κ) ≤ εSD for any
PPT adversaries, B, B′ and D, respectively.

Proof Idea. Qin-Liu PKE scheme is leakage resilient. So, it is tempting to use
the leakage oracle in the black box way to simulate the RKDec oracle (as in [14]).
However, the strategy does not work for continual tampering, because Qin-Liu
PKE scheme is just bounded leakage resilient. In addition, even simulating the
reply of a single tampering query seems to exceed the leakage bound. So, we
need to analyze the exact leakage from tampering.

Let CT∗ = (C∗, e∗,H∗, vk∗, π∗, σ∗) be the challenge ciphertext and b∗ be the
challenge bit. Let K∗ = ΛSK(C∗) and e∗ = mb∗ ⊕ H∗(K∗). In an early hybrid
game of the proof, we set C∗
∈ V and set T(vk∗) as a lossy branch, as expected.
Since A(T(vk∗), ·) is lossy now, SK (and hence K∗) has large enough entropy
after given CT∗. In the pre-challenge stage, we take care of how much entropy
on K∗ is preserved while answering leakage and tampering queries.

We first observe that when a tampering query (φ,CT), where CT =
(C, e,H, vk, π, σ), is rejected by the decryption oracle, the leaked information
on K∗ is at most log(1/p)-bit where p = Pr[D(φ(SK),CT) = ⊥]. This comes
from the following simple lemma.

Lemma 4. For any random variables, X and Z, H∞(X|Z = z) ≥ H∞(X) −
log

(
1

Pr[Z=z]

)
.

Public-Key Cryptosystems Resilient to Continuous Tampering 919

Fig. 2. The CTBL-CCA secure PKE scheme based on Qin and Liu’s PKE

Proof. For any z ∈ Z,

− log
(
max

x

(
Pr[X = x|Z = z]

))
= − log

(

max
x

(
Pr[X = x ∧ Z = z]

Pr[Z = z]

))

≥ − log
(
max

x

(
Pr[X = x]

))
− log

(1
Pr[Z = z]

)
.

�

By the lemma above, we have

H∞(K∗|D(φ(SK),CT) = ⊥) ≥ H∞(K∗) − log(1/p). (1)

Next, we observe the case that tampering query (φ,CT) is accepted by the
decryption oracle. Since the decryption oracle returns D(φ(SK),CT), it would
apparently reveal more information on K∗ except the fact that CT is a valid
ciphertext with respects to φ(SK)3. However, it is not true. Indeed, when sub-
mitting (φ,CT), the adversary has already fixed D(φ(SK),CT). In other word,
we have

Hsh

(
D(φ(SK),CT) | (D(φ(SK),CT)
= ⊥), (φ,CT), PK

)
= 0, (2)

3 One can always use a “loose” bound such that H̃∞(K∗|D(φ(SK),CT)) ≥ H∞(K∗)−
λ where λ = log

(
D(φ(SK),CT)

)
. However, the bound is too loose for our purpose.

920 E. Fujisaki and K. Xagawa

where Hsh(X) denotes the Shannon entropy of random variable X (i.e.,
Hsh(X) := Ex←X [log 1

Pr[X=x]]). This comes from the fact that A(T(vk), ·) is
injective and π = A(T(vk),Λφ(SK)(C)) is fixed by CT. Therefore, we have

H̃∞(K∗|D(φ(SK),CT), (D(φ(SK),CT)
= ⊥)) ≥ H∞(K∗) − log(1/p′), (3)

where p′ = Pr[D(φ(SK),CT)
= ⊥]. Hence, the leaked information on K∗ in the
“accepted”case is also at most log(1/p′). By definition, p + p′ = 1.

We note that if the adversary submits a tampering query (φ,CT) with p ≤
2−η = negl(κ) and the unlikely event that D(φ(SK),CT) = ⊥ really occurs, the
leakage on K∗ is log(1/p) ≥ η = ω(log κ) bits. The event occurs only with a
negligible probability 2−η. We note that if the event occurs with a probability
more than 2−η, the leakage on K∗ is less than η bits. So, we can say that when
D(φ(SK),CT) = ⊥ occurs, the leakage on K∗ is bounded by η-bit except with a
negligible probability 2−η. By definition, the event D(φ(SK),CT) = ⊥ can occur
only once. The case with p′ ≤ 2−η = negl(κ) is implied in the next analysis.

Since the decryption algorithm self-destructs when rejecting a ciphertext,
the adversary’s best strategy is to submit a sequence of tampering queries with
p′ = non-negl so that the decryption algorithm can accept as long a prefix of the
sequence as possible. Even with this strategy, however, leakage amount on K∗

is bounded by η-bit except with probability 2−η.
We now consider a post-challenge (tampering) query, (id,CT), i.e., a normal

decryption query, where CT = (C, e,H, vk, π, σ). In the post-challenge stage, we
are interested in how to prevent H∗(K∗) from revealing any partial information.
Even one bit leakage would possibly break the system. To achieve the goal, we
need to reject any invalid ciphertext. The probability relies on the entropy of K =
ΛSK(C) (where C
∈ V). Since the underlying hash proof system is γ-entropic,
we can see that the remaining entropy of K is at least γ−λ−η−�lf −�m (with an
overwhelming probability). Here, λ is the leakage amount via leakage oracle in
the pre-challenge stage, 2�lf denotes the number of possible elements of π∗, where
A(T(vk∗), ·) is lossy, and �m is the bit length of H∗(K∗). Then, the probability
that we cannot reject an invalid ciphertext is at most 2−(γ−λ−η−�lf−�m).

To summarize all the above, (a) just after the pre-challenge stage, the remain-
ing entropy of K∗ is at least H∞(K∗) − λ − (η + 1) with an overwhelming prob-
ability. By applying an appropriate universal hash H∗, we obtain H∗(K∗) that
is statistically close to a true uniform �m-bit string. So, CT∗ conceals message
mb∗ in the statistical sense. (b) In the post-challenge stage, H∗(K∗) reveals no
information with an overwhelming probability 1−Q ·2−(γ−λ−η−�lf−�m), where Q
is the total number of decryption queries in the post-challenge stage. Like this,
the proposal is proven CTBL-CCA secure.

Proof of Theorem 2. Here we provide the formal proof of Theorem2 by using
the standard game-hopping strategy. We denote by Si the event that adversary
A wins in Game i.

– Game 0: This game is the original CTBL-CCA game, where CT∗ = (C∗, e∗,
H∗, vk∗, π∗, σ∗) denotes the challenge ciphertext. By definition, Pr[S0] =
Pr[β = β∗] and Advtbl-ccaΠ,A,(Φall,{id},λ)(κ) = |2Pr[S0] − 1|.

Public-Key Cryptosystems Resilient to Continuous Tampering 921

– Game 1: This game is identical to Game 0, except that when we produce
the challenge ciphertext CT∗, we instead computes K∗ = HPS.priv(sk, C∗).
The change is just conceptual and hence, it holds that Pr[S0] = Pr[S1].

– Game 2: This game is identical to Game 1, except that A is regarded as
a defeat, when it submits tampering query (φ,CT) such that T(vk) = T(vk∗)
but σ is still a valid signature on (C, e,H, vk, π), where CT = (C, e,H, vk, π, σ)
(
= CT∗). This happens only when T(vk) = T(vk∗) with vk
= vk∗ or A forges
a signature with respects to vk∗. So, we have Pr[S1] − Pr[S2] ≤ εtcr + εotsig.

– Game 3: This game is identical to Game 2, except that we produce ρ and
CT∗ as follows: Before the step 3 in the set-up Setup, we run (vk∗, otsk∗) ←
otKGen(1κ) and set b∗ = T(vk∗). Then we do the same things in the sub-
sequent steps. We produce the challenge ciphertext CT∗ similarly in Game
2 except that we instead use (vk∗, otsk∗) generated in the set-up phase. The
difference between the probabilities of events, S2 and S3, are close because
of indistinguishability between injective and lossy branches. Indeed, we have
Pr[S2] − Pr[S3] ≤ 2εlossy.

– Game 4: This game is identical to Game 3, except that when producing
CT∗, we instead picks up C∗ U← C\K . We then have Pr[S3] − Pr[S4] ≤ 2εSD.

– Game 5: This game is identical to the previous game, except that A
is regarded as a defeat, when it submits a tampering query (φ,CT) with
p ≤ 2−η where p = Pr[D(φ(SK),CT) = ⊥] and the (unlikely) event that
D(φ(SK),CT) = ⊥ really occurs. We then have Pr[S4] − Pr[S5] ≤ 2−η. With-
out loss of generality, we can assume that A does not make a tampering query
with p > 2−η in the subsequent games.

– Game 6: We say that a sequence of tampering queries made by A is η-
challenging, if there is a prefix of the sequence such that the decryption oracle
accepts the prefix with probability ≤ 2−η. Let RDview be a random variable
of the transcript between adversary A and oracle RKDec in the pre-challenge
stage and let

rdv = {(φ1,CT1,m1), . . . , (φq′ ,CTq′ ,mq′)} where q′ ≤ Q.

be a transcript. If rdv is η-challenging, there is the minimum qmin ≤ q′ such
that

Pr[RDview = rdv] ≤ Pr
[
∧qmin

i=1

(
D(φi(SK),CTi)
= ⊥

)]
≤ 2−η.

Game 6 is identical to the previous game except that RKDec “self-destructs”
at the (qmin + 1)-th tampering query of η-challenging rdv, even if RKDec
accepts the (qmin + 1)-th tampering query. (If it rejects an earlier tampering
query, it self-destructs at the query.) This experiment is just conceptual and is
not required to be executed in a polynomial time. We have Pr[S5] − Pr[S6] ≤
2−η, because the prefix is accepted at most 2−η.

– Game 7: In this game, for all post-challenge (decryption) query (id,CT) of
A, we return ⊥ if C ∈ C\V. This experiment is just conceptual and is not
required to be executed in a polynomial time. We evaluate the min-entropy

922 E. Fujisaki and K. Xagawa

of K = ΛSK(C) derived from the post-challenge tampering query. Let Lview
be the random variable of the transcript between adversary A and oracle Leak
in the pre-challenge stage. When the first post-challenge decryption query is
made, by the “chain rule”of the average-min entropy,

H̃∞(K|(RDview,Lview, π∗,H∗(K∗))) ≥ H̃∞(K|RDview) − λ − �lf − �m,

where 2�lf denotes the number of elements in the image of “lossy” function
π∗ = A(T(vk∗), ·), and �m is the length of H∗(K∗).
By lemma 4, we have

H∞(K|RDview = rdv) ≥ H∞(K) − log
(1

Pr[RDview = rdv]

)
≥ H∞(K) − η.

The second inequality comes from Pr[RDview = rdv] ≥ 2−η, because if rdv is
η-challenging, the adversary cannot make a post-challenge decryption query.
Therefore, for C ∈ C\V,

H̃∞(K|RDview) = − log
(

E
rdv←RDview

[2−H∞(K|RDview=rdv)]
)

≥ γ − η,

because Λ is γ-entropic. Therefore,

H̃∞(K|(RDview,Lview, π∗,H(K∗))) ≥ γ − η − λ − �lf − �m.

Since T(vk∗)
= T(vk),

H̃∞(π|(RDview,Lview, π∗,H(K∗))) = H̃∞(K|(RDview,Lview, π∗,H(K∗))),

where π = AT(vk∗)(T(vk),K) (injective). This means that RKDec accepts CT

with C ∈ C\V only with probability 2−(γ−η−λ−�lf−�m). Assuming that A sub-
mits Q queries to RKDec in total, the probability that RKDec accepts at least
one CT with C ∈ C\V is bounded by Q · 2−(γ−η−λ−�lf−�m). Hence, we have

Pr[S6] − Pr[S7] ≤ Q · 2−(γ−η−λ−�lf−�m).

– Game 8: This is the last game we make. This game is identical to the pre-
vious game except that we replace H∗(K∗) with a uniformly random string
from {0, 1}�m . Then it is clear that Pr[S7] = 1

2 because the view of A is inde-
pendent of β∗. We now show that the advantages in Game 7 and Game
8 are statistically close. Let Reject be the event that D(φ(SK),CT) = ⊥ in
the pre-challenge stage. We note that Pr[Reject] > 2−η, due to Game 5.
In this game, by definition, all post-challenge queries of “invalid”ciphertexts
are rejected. So, the average min-entropy of K∗ even after all post-challenge
queries are made is equivalent to the average min-entropy of K∗ conditioned
on the possible events that appear in the pre-challenge stage. That is,

H̃∞(K∗|(RDview,Reject,Lview, π∗)) ≥ H̃∞(K∗|RDview,Reject) − λ − �lf

≥ γ − 2η − λ − �lf .

Public-Key Cryptosystems Resilient to Continuous Tampering 923

Remember that λ ≤ γ − 2η − �lf − �m − log(1/ε) and H∗ is independent of
the view of the post-challenge decryption. By the generalized left-over hash
lemma, H∗(K∗) is ε-close to the uniform distribution on {0, 1}�m . We then
have Pr[S7] − Pr[S8] ≤ ε.

By summing up the above inequalities, we have

Pr[S0] ≤ 1
2

+ εtcr + εotsig + 2εlossy + 2εSD + 2−η+1 + Q · 2−(γ−η−λ−�lf−�m) + ε,

and conclude the proof of the theorem, with Advctbl-ccaΠ,A,(Φall,{id},λ)(κ) = 2 Pr[S0] − 1. �
An Instantiation of CTBL-CCA Secure PKE with 1 − o(1) Leakage
Rate. We remark that even if we start with a hash proof system resilient to
1 − o(1) leakage rate, we cannot obtain a CTBL-CCA secure PKE scheme
with 1 − o(1) leakage rate in general. To obtain an optimal leakage rate, we
require γ

|SK| = 1 − o(1) for a γ-entropic hash proof system. The cryptosystems
of Boneh et al. [9] and Naor-Segev [29] do not satisfy the condition, although
they are IND-CPA secure resilient to 1 − o(1) leakage rate.

Let n = pq be a composite number of distinct odd primes, p and q, and
1 ≤ d < p, q be a positive integer. It is known that Z

×
nd+1

∼= Znd × (Z/nZ)× and
any element in Z

×
nd+1 is uniquely represented as (1+n)δγnd

(mod nd+1) for some
δ ∈ Znd and γ ∈ (Z/nZ)×. For δ ∈ Znd , we write Edj(δ) to denote a subset in
Z

×
nd+1 such that Edj(δ) = {(1 + n)δγnd | γ ∈ (Z/nZ)×}. It is well known that for

any two distinct δ, δ′ ∈ Znd , it is computationally hard to distinguish a random
element in Edj(δ) from a random element in Edj(δ′) as long as the decision
computational residue (DCR) assumption holds true. Let C = Z

×
nd+1 and V =

Edj(0). Let SK = {0, 1, . . . , nd+1} ⊂ Z. Let g ∈ V and PK = {μ(sk) |μ(sk) =
gsk (mod nd+1) where sk ∈ SK} (= Edj(0)). For C ∈ C, define Λsk(C) = Csk

(mod nd+1). Then, Λ : SK × C → V is projective and d log(n)-entropic and a
hash proof system HPS is constructed on Λ. In addition, leakge bound

the length of secret-key =
d log(n)−ω(log(κ))

(d+1) log(n) = 1 − o(1).

Corollary 1. By applying the DCR-based hash proof system above and the DCR
based instantiation of ABO injective function in AppendixB to the PKE scheme
in Fig. 2, it becomes a CTBL-CCA secure PKE scheme with 1 − o(1) bounded
memory leakage rate under the DCR assumption.

5 Continuous Tampering and Leakage Resilient CCA
(CTL-CCA) Secure Public-Key Encryption

We say that PKE has a key-update mechanism if there is a PPT algo-
rithm Update that takes ρ and sk and returns an “updated” secret key sk′ =
Updateρ(sk). We assume that the key-updating mechanism Update can be
activated only when the decryption algorithm rejects a ciphertext. Therefore, one

924 E. Fujisaki and K. Xagawa

cannot update his secret key unless the decryption algorithm has detected tam-
pering. We require for Π = (Setup,Update,K,E,D) that for every sufficiently
large κ ∈ N and ever I ∈ N, it always holds that Dρ(ski,Eρ(pk,m)) = m, for
every ρ ∈ Setup(1κ), every (pk, sk0) ∈ K(ρ), and every ski ∈ Updateρ(ski−1) for
i ∈ [I], and every m ∈ M.

CTL-CCA Security. For PKE with a key-update mechanism Π′ =
(Setup,Update, K,E,D) and an adversary A = (A1, A2), we define the exper-
iment Exptctl-ccaΠ,A,(Φ1,Φ2,λ)(κ) as in Fig. 3. A may adaptively submit (unbounded)
polynomially many queries (φ, ct) to oracle RKDec, but it should be φ ∈ Φi

appropriately. We remark that secret key sk is updated using (non-tampered)
flesh randomness only when the decryption algorithm rejects a ciphertext. A
may also adaptively submit (unbounded) polynomially many queries L to oracle
Leak, before seeing the challenge ciphertext ct∗. The total amount of leakage on
sk must be bounded by some λ bit length within each one period between the
key-updating mechanism are activated. We define the advantage of A against Π′

with respects to (Φ1,Φ2) as

Advctl-ccaΠ,A,(Φ1,Φ2,λ)(κ) � | 2Pr[Exptctl-ccaΠ,A,(Φ1,Φ2,λ)(κ) = 1] − 1 |.
We say that Π is (Φ1,Φ2, λ)-CTL-CCA secure if Advctl-ccaΠ,A,(Φ1,Φ2,λ)(κ) = negl(κ)
for every PPT A.

Fig. 3. The experiment of the CTL-CCA game.

We say that Π is simply CTL-CCA secure if it is (Φall, {id}, λ)-CTL-CCA
secure, where Φall denotes the class of all efficiently computable functions and id
denotes the identity function.

Remark 2. This security definition models non-persistent tampering. How-
ever, it is obvious that the persistent tampering version of CTL-CCA security
can be similarly defined.

Public-Key Cryptosystems Resilient to Continuous Tampering 925

6 Random Subspace Lemmas

The following random subspace lemma is provided by Agrawal et al. [2], but we
improve the bound using the analysis in Lemma A.1 given by Brakerski et al. [10].

Lemma 5. Let 2 ≤ d < t ≤ n and λ < (d − 1) log(q). Let W ⊂ F
n
q be an

arbitrary vector subspace in F
n
q of dimension t. Let L : {0, 1}∗ → {0, 1}λ be an

arbitrary function. Then, we have

Dist

(
(
A, L(Av)

)
,
(
A, L(u)

)
)

≤
√

2λ

qd−1
,

where A := (a1, . . . ,ad) ← Wd (seen as a n × d matrix), v ← F
d
q , and u ← W.

If A ← F
n×d
q and u ← Fq, then it is equivalent to Lemma A.1 given by

Brakerski et al. [10]. The proof is given in the full version.
The following is an affine version of Lemma 5.

Lemma 6. Let 2 ≤ d < t ≤ n and λ < (d−1) log(q). Let x ∈ F
n
q be an arbitrary

vector. Let W ⊂ F
n
q be an arbitrary vector subspace in F

n
q of dimension t. Let

L : {0, 1}∗ → {0, 1}λ be an arbitrary function. Then, we have

Dist

(
(
A, L(x + Av)

)
,
(
A, L(x + u)

)
)

≤
√

2λ

qd−1
,

where A := (a1, . . . ,ad) ← Wd (seen as a n × d matrix), v ← F
d
q , and u ← W.

Proof. Let W ∈ F
n×t
q be a matrix whose column vectors span W, i.e., W =

span(W). Now, we have

Dist

(
(
A, L(x +Av)

)
,
(
A, L(x + u)

)
)

=Dist

(
(
WRa, L(x +WRav)

)
,
(
Wra , L(x +Wru)

)
)

(where A = WRa u = Wru)

=Dist

(
(
WRa, L

′(Rav)
)
,
(
WRa, L

′(ru)
)
)

(where L′(y) := L(x +Wy))

≤Dist

(
(
Ra, L

′(Rav)
)
,
(
Ra, L

′(ru)
)
)

≤
√

2λ

qd−1
,

where Ra ← F
t×d
q , v ← F

d
q , and ru ← F

t
q.

We further provide the following lemma.

Lemma 7. Let 2 ≤ d ≤ t′ < t ≤ n and λ < (d − 1) log(q). Let W ⊂ F
n
q be an

arbitrary vector subspace in F
n
q of dimension t. Let L : {0, 1}∗ → {0, 1}λ be an

arbitrary function. Then, we have

Dist

(
(
A, L(Av)

)
,
(
A, L(u)

)
)

≤
√

2λ

qd−1
+

√
2λ

qt′−1
,

926 E. Fujisaki and K. Xagawa

where W′ is a random vector subspace in W of dimension t′ (independent of
function L), A := (a1, . . . ,ad) ← W′d (seen as a n × d matrix), v ← F

d
q , and

u ← W.

Proof. Let W ∈ F
n×t
q be a matrix whose column vectors span W, i.e., W =

span(W). Similary, let W′ ∈ F
n×t′
q be a matrix whose column vectors span W′,

i.e., W′ = span(W′). Then, we have

Dist

(
(
A, L(Av)

)
,
(
A, L(u)

)
)

≤Dist

(
(
A, L(Av)

)
,
(
A, L(u’)

)
)

+ Dist

(
(
A, L(u’)

)
,
(
A, L(u)

)
)

(where u’ = W′r’u)

≤ n

2

√
2λ

qd−1
+ Dist

(

L(u’), L(u)

)

(where u = Wru)

=

√
2λ

qd−1
+ Dist

(
L′(R′r’u), L′(ru)

)
(where W′ = WR′, L′(y) := L(Wy))

≤
√

2λ

qd−1
+

√
2λ

qt′−1
,

where R′ ← F
t×t′
q , v ← F

d
q , r’u ← F

t′
q . and ru ← F

t
q. �

Corollary 2. Let 2 ≤ d ≤ t′ < t ≤ n and λ < (d − 1) log(q). Let x ∈ F
n
q be an

arbitrary vector. Let W ⊂ F
n
q be an arbitrary vector subspace in F

n
q of dimension

t. Let L : {0, 1}∗ → {0, 1}λ be an arbitrary function. Then, we have

Dist

(
(
A, L(x + Av)

)
,
(
A, L(x + u)

)
)

≤
√

2λ

qd−1
+

√
2λ

qt′−1
,

where W′ is a random vector subspace in W of dimension t′ (independent of
function L), A := (a1, . . . ,ad) ← W′d (seen as a n × d matrix), v ← F

d
q , and

u ← W.

7 The CTL-CCA Secure PKE Scheme

In this section, we present a CTL-CCA-secure PKE scheme. We first provide
the intuition behind our construction.

Our starting point is a hash proof system based PKE scheme proposed by
Agrawal et al. [2], that is IND-CPA secure resilient to continuous memory leakage
in the so-called Floppy model, where a decryptor additionally owns secret α to
refresh its secret key sk using fresh randomness. The Floppy model assumes
secret α is not leaked. The Agrawal et al. scheme is as follows: pk = (g, gα, f) is
a public key and sk = s is the corresponding secret-key such that f = g<α,s>,
where g is a generator of cyclic group G of prime order q, α, s ∈ (Z/qZ)n.
In addition, the decryptor owns α as the key-update key. The encryption of
message m ∈ G under pk is ct = (gc , e) = (grα,m · fr), while the decryption

Public-Key Cryptosystems Resilient to Continuous Tampering 927

is computed as e · (g<c,sk>)−1. The secret key sk is refreshed between each two
time periods as sk := sk + β where β ← ker(α) is chosen using secret α. Here,
f = g<α,s> = g<α,s+β>, because < α,β >= 0.

We first convert this scheme to an IND-CPA secure PKE scheme that is
resilient to continuous memory leakage in the model of Brakerski et al. [10],
where the key-update is executed without additional secret α. To do so, we pick
up � independent vectors, v1 , . . . , v � ∈ ker(α), where � < n − 1 = dim(ker(α)),
and publish g̃V where V = (v1 , . . . , v �) ∈ (Z/qZ)n×� is n×� matrix with vi as i-
th column. Here we assume asymmetric pairing groups (e,G1,G2,GT) where g, g̃
are generators of G1 and G2, respectively. We then set pk = (g, g̃, gα, g̃V, Y) and
sk = gs such that Y = e(g, g̃)<α,s>. Here, the encryption of message m ∈ GT

under pk is ct = (gc , e) = (grα,m · Y r), while the decryption is computed as
e · K−1, where K = e(gc , sk) = e(g, g̃)<c,s>. The secret key sk is refreshed
between each two time periods as sk := sk · g̃β where β ← span(V) ⊂ ker(α).
We note that random g̃β = g̃Vr’ can be computed using public g̃V with random
vector r’ ∈ F

�
q. This construction is an IND-CPA secure PKE scheme resilient

to continuous memory leakage in the sense of [10] under the extended matrix
d-linear assumption (on G1), which is implied by the SXDH assumption. We
provide the formal description of the scheme as well as the security proof in
AppendixC.

The proposed PKE scheme (as described in Appendix C) is based on a hash
proof system where K = HPS.pub(Y, grα, r) = HPS.priv(grα, sk) = e(g, g̃)<α,s>.
We then filter the hash key K using the one-time lossy filter technique [31] and
finally obtain our CTL-CCA secure construction.

We now describe our full-fledged scheme in Fig. 4.

Asymmetric Pairing. Let GroupG be a PPT algorithm that on input a security
parameter 1κ outputs a bilinear paring (G1,G2,GT , e, q, g, g̃) such that; G1, G2,
and GT are cyclic groups of prime order q, g, g̃ are generators of G1 and G2,
respectively, and a map e : G1 × G2 → GT satisfies the following properties:

– (Bilinear:) for any g ∈ G1, h ∈ G2, and any a, b ∈ Zq, e(ga, hb) = e(g, h)ab,
– (Non-degenerate:) e(g, g̃) has order q in GT , and
– (Efficiently computable:) e(·, ·) is efficiently computable.

Symmetric External Diffie-Hellman (SXDH) Assumption. The sym-
metric external DH assumption (SXDH) (on GroupG) is that the DDH problem
is hard in both groups, G1 and G2. The assumption implies that there is no
efficiently computable mapping between G1 and G2.

We now present our CTL-CCA secure PKE scheme in Fig. 4.

Theorem 3. The PKE scheme in Fig. 4 is (Φall, {id}, λ)-CTL-CCA secure,
as long as λ(κ) < log(q) − �lf − �m − η − ω(log κ) with η(κ) = ω(log κ),
and for any PPT adversary A with at most Q queries to RKDec oracle,

928 E. Fujisaki and K. Xagawa

Fig. 4. Our CTL-CCA secure PKE scheme

Advctl-ccaΠ,A,(Φall,{id},λ)(κ) ≤

2εtcr + 2εotsig + 4εlossy + 4εex + 2−η+2 + Q · 2−(log(q)−η−λ−�lf−�m−1)

+2Q ·
√

2λ

q�−1
+ 2Q ·

√
2λ

qn−1
+

√
2λ

qn−1
,

εotsig, εlossy, and εex denote some negligible functions such that AdvotOTSig,B(κ) ≤
εotsig, Adv

lossy
ABO,B′(κ) ≤ εlossy, and Advex

D (κ) ≤ εex for any PPT adversaries, B,
B′ and D, respectively.

Due to the space limitation, the proof is given in the full version.

An Instantiation of CTL-CCA Secure PKE with 1
4−o(1) Leakage Rate.

We remark that the underlying hash proof system is log(q)-entropic and we have
|sk| = n log(q). By construction, we require 2 ≤ � < n − 1. Hence, the best
parameter for leakage rate is n = 4 and � = 2, where the resulting CTL-CCA
secure PKE scheme has 1

4 − o(1) leakage rate.

Public-Key Cryptosystems Resilient to Continuous Tampering 929

8 Impossibility of Non-Persistent Tampering Resilient
Signatures

We show that there is no secure digital signature scheme resilient to the non-
persistent tampering attacks, if it does not have a key-updating mechanism (See
for definition AppendixD). This fact does not contradict [26] (in which they
claim a tampering resilient digital signature scheme), because the persistent tam-
pering attack is weaker than the non-persistent attack. To prove our claim, we
consider the following adversary. The adversary runs the key-generation algo-
rithm, Gen, and obtains two legitimate pairs of verification and signing keys,
(vk0, sk0) and (vk1, sk1). Then, it sets a set of functions {φi

(sk0,sk1)
}, such that

φi
(sk0,sk1)

(sk) =

{
sk0 if the i-th bit of sk is 0,

sk1 otherwise.

For i = 1, . . . , |sk|, the adversary submit (φi
(sk0,sk1)

,m) to the signing oracle and
receives σi’s. Then the adversary finds bit bi such that Vrfy(vkbi

,m, σi) = 1 for
all i and retrieves the entire secret key sk. This attack is unavoidable because
both sk0 and sk1 are real secret keys and the signing algorithm cannot detect
the tampering attack and cannot self-destruct.

If the key-updating algorithm is allowed to run only when a tampering is
detected (which is the case of our definition), then there is no secure digital signa-
ture scheme resilient to the non-persistent tampering attacks, even if it has both
self-destructive and key-updating mechanisms (See for definition AppendixD).

A Computational Hardness Assumptions

Let G be a PPT algorithm that takes security parameter 1κ and outputs a triplet
G = (G, q, g) where G is a group of prime order q that is generated by g ∈ G.

d-Linear Assumption. The d-linear assumption [24,29] (where d ≥ 1), a gen-
eralization of the linear assumption [8], states that there is a PPT algorithm G
such that the following two ensembles are computationally indistinguishable,

{(

G, g1, . . . , gd, gd+1, g
r1
1 , . . . , grd

d , g
∑d

i=1 ri

d+1

)}

κ∈N

c≈
{(

G, g1, . . . , gd, gd+1, g
r1
1 , . . . , grd

d , g
rd+1
d+1

)}

κ∈N

where G ← G(1κ), and the elements g1, . . . , gd+1 ∈ G and r1, . . . , rd+1 ∈ Z/qZ
are chosen independently and uniformly at random. The DDH assumption (on
G) is equivalent to 1-linear assumption (on G) and these assumptions are pro-
gressively weaker: For every d ≥ 1, the (d + 1)-linear assumption is weaker than
the d-linear assumption.

930 E. Fujisaki and K. Xagawa

Matrix d-Linear Assumption. We denote by Rki(Fm×n
q) the set of all m×n

matrices over Fq with rank i. The matrix d-linear assumption [29] states that
there is a PPT algorithm G such that, for any integers, m and n, and for any
d ≤ i ≤ j ≤ min(m,n), the following two ensembles are computationally indis-
tinguishable,

{
(G, g, gx) | G ← G(1κ); x ← Rki(Fm×n

q)
}

κ∈N

c≈
{

(G, g, gx) | G ← G(1κ); x ← Rkj(Fm×n
q)

}

κ∈N

.

It is known that breaking the matrix d-Linear assumption implies breaking the
d-Linear assumption (on the same G). The following statement holds.

Lemma 8 ([29]). Breaking the matrix d-Linear assumption is at least as hard
as breaking the d-Linear assumption (on the same G).
Extended Matrix d-Linear Assumption. We state a stronger version of the
matrix d-linear assumption, called the extended matrix d-linear assumption [2].
For matrix x ∈ F

n×m
q , we write ker(x) to denote the left kernel of x, i.e.,

ker(x) = {v ∈ F
n
q | vT x = 0 ∈ F

1×m
q }.

Here ker(x) is a subspace in F
n
q of dimension (n − rank(x)). The matrix d-linear

assumption means that it is infeasible to distinguish gxi from gxj , where rank-i
matrix xi and rank-j matrix xi are chosen independently and uniformly for any
d ≤ i < j ≤ min(n,m). Since dim(ker(xi)) = n−i and dim(ker(xj)) = n−j (with
n − j < n − i), the matrix d-linear assumption does not hold if an adversary
additionally receive n − i independent vectors orthogonal to x. However, one
cannot yet distinguish them even if n − j independent vectors orthogonal to x
are given, as long as the matrix d-linear assumption holds true. The extended
matrix d-linear assumption [2] states that there is a PPT algorithm G such that,
for any integers, m and n, for any d ≤ i ≤ j ≤ min(m,n), and for any � ≤ n− j,
the following two ensembles are computationally indistinguishable,

{
(G, g, gx, v1 , . . . , v �) |G ← G(1κ); x ← Rki(F

m×n
q); v1, . . . , v� ← ker(x)

}

κ∈N

c≈
{

(G, g, gx, v1 , . . . , v �) |G ← G(1κ); x ← Rkj(F
m×n
q); v1, . . . , v� ← ker(x)

}

κ∈N

.

The following statement holds.

Lemma 9 ([2,10]). Breaking the extended matrix d-Linear assumption is at
least as hard as breaking the d-Linear assumption (on the same G).

The proof is implicitly in [10].

Public-Key Cryptosystems Resilient to Continuous Tampering 931

Decision Computational Residue (DCR) Assumption. Let n = pq be a
composite number of distinct odd primes, p and q, and 1 ≤ d < p, q be a positive
integer. We say that the DCR assumption holds if for every PPT A, there exists
a parameter generation algorithm Gen such that AdvdcrA (κ) =

Pr[Exptdcr−0
A (κ) = 1] − Pr[Exptdcr−1

A (κ) = 1]

is negligible in κ, where

Exptdcr−0
A (κ) :

n ← Gen(1κ); R
U← Z

×
n2

c = Rn mod n2

return A(n, c).

Exptdcr−1
d,A (κ) :

n ← G(1κ); R
U← Z

×
n2

c = (1 + n)Rn mod n2

return A(n, c).

B Instantiation of ABO Injective Functions

B.1 A Matrix Instantiation Based on DDH

Let G be a PPT algorithm that takes security parameter 1κ and outputs a triplet
G = (G, q, g) where G is a group of prime order q that is generated by g ∈ G.
Let B = {Z/qZ} be a branch collection associated with G = (G, q, g) generated
by G.

– ABO.gen(1κ, b∗) where b∗ ∈ Z/qZ: Pick up a random column vector u =
(ui) ∈ Gμ and a random column vector v = (vj) ∈ Gμ. Compute matrix
A = (Ai,j) ∈ Gμ×μ as

A = (u · vT) � g−(b∗)Iμ =
(
uivjg

−(b∗)δi,j

)
∈ Gμ×μ

where � denotes the componet-wise product of matrices over G, Iμ ∈
(Z/qZ)μ×μ is the identity matrix and δi,j is Kronecker’s delta, i.e., δi,j = 1
if i = j and 0 otherwise. We note that rank(u · vT) = 1 and, at least with
probability 1 − 2μ

q , rank(A) = μ. We let A(b) to denote

A(b) := A � gbIμ =
(
uivjg

(b−b∗)δi,j

)
∈ Gμ×μ.

Finally, output ιabo = A(·).
– ABO.eval(ιabo, b, x): On input matrix X ∈ (Z/qZ)μ×d, output

ABO.eval(ιabo, b, x) = A(b) · X ∈ Gμ×d.

This implementation realizes a collection of (μ · d log(q), (μ − 1)d log(q))-all-
but-one injective functions (under the DDH assumption).

932 E. Fujisaki and K. Xagawa

B.2 DCR Based Instantiation

Let n = pq be a composite number of distinct odd primes, p and q, and 1 ≤
d < p, q be a positive integer. It is known that Z

×
nd+1

∼= Znd × (Z/nZ)× and
any element in Z

×
nd+1 is uniquely represented as (1 + n)δγnd

(mod nd+1) for
some δ ∈ Znd and γ ∈ (Z/nZ)×. For δ ∈ Znd , we write Edj(δ) to denote a
subset in Z

×
nd+1 such that Edj(δ) = {(1 + n)δγnd | γ ∈ (Z/nZ)×}. It is known

that for any two distinct δ, δ′ ∈ Znd , it is computationally hard to distinguish
a random element in Edj(δ) from a random element in Edj(δ′) as long as the
decision computational residue (DCR) assumption holds true.

– ABO.gen(1κ, b∗) where b∗ ∈ {0, 1}dκ: Pick up κ/2-bit distinct odd primes p, q
and compute n = pq. Then choose ιabo ← Edj(−b∗). Output ιabo.

– ABO.eval(ιabo, b, x): On input matrix x ∈ Znd , output

ABO.eval(ιabo, b, x) =
(
ιabo · (1 + n)b

)x

(∈ Edj(b − b∗)x).

This implementation realizes a collection of (d log(n), log((p− 1)(q − 1)))-all-
but-one injective functions (under the DCR assumption).

C The Continuous Leakage Resileint CPA PKE Scheme

We propose an IND-CPA secure PKE scheme resilient to continuous memory
leakage, based on Agrawal et al. scheme [2].

– The Key Generation Algorithm: Choose (G1,G2,GT , e, q, g, g̃) ← GroupG.
Pick up a random column vector α ← (Z/qZ)n. Pick up � independent
column vectors, v1 , . . . , v �, in (Z/qZ)n uniformly from Ker(α) where 2 ≤
� ≤ n − 2. Set n × � matrix V = (v1 , . . . , v �). Set gα := (gα1 , . . . , gαn)T .
Set g̃V := (g̃v1 , . . . , g̃v�). Pick up a random column vector s ← (Z/qZ)n.
Compute g̃s = (g̃s1 , . . . , g̃sn)T . Compute Y = e(gα, g̃s) = e(g, g̃)〈α,s〉. Set
pk := (g, g̃, gα, g̃V, Y) and sk := g̃s . Output (pk, sk).

– The Key Update Algorithm: Take (pk, sk) as input. Choose a random column
vector r’ ← (Z/qZ)� and compute g̃β = g̃Vr′

. Update sk := sk · g̃β = g̃s+β.
Note that β ∈ span(V) ⊂ ker(α). Output sk.

– The Encryption Algorithm: To encrypt m ∈ GT under pk, pick up random
r ← Z/qZ. Compute C = grα and K = Y r. Output CT = (C , e) where
e = m · K.

– The Decryption algorithm: To decrypt ciphertext CT = (gc , e) under sk, com-
pute K = e(gc , sk)(= e(g, g̃)<c,s>). Output m = e · K−1.

We define IND-CPA security of PKE resilient to λ-continuous memory leak-
age [10] as (∅, ∅, λ)-CTL-CCA security of PKE.

Public-Key Cryptosystems Resilient to Continuous Tampering 933

Theorem 4. The above PKE scheme is (∅, ∅, λ)-CTL-CCA secure, as long as
λ(κ) < � log(q) − ω(log κ), and for any PPT adversary A,

Advctl-ccaΠ,A,(∅,∅,λ)(κ) ≤ +4εex + 2Q ·
√

2λ

q�−1
+ 2Q ·

√
2λ

qn−1
+

√
2λ

qn−1
,

where Q denotes the total number of key-updates in the running time of A.

Proof. Here we prove the theorem by using the standard game-hopping strategy.
We denote by Si the event that adversary A wins in Game i.

– Game 0: This game is the original game. We write CT∗ = (gc
∗
, e∗) where

e∗ = mb∗ · K∗ to denote the challenge ciphertext. Let us assume that Q is the
maximum number of the key-updates.
By definition, Pr[S0] = Pr[b = b∗] and Advctl-ccaΠ,A,(∅,∅,λ)(κ) = |2Pr[S0] − 1|.

– Game 1: In this game, we instead produce CT∗ as follows: Compute K∗ =
e(gc

∗
, sk) = e(g, g̃)r〈α,s〉 and set e∗ = mb∗ ·K∗. This change is just conceptual.

Then, Pr[S0] = Pr[S1].
– Game 2: This game is identical to Game 1, except that we choose � inde-

pendent vectors v1 , . . . , v � ← ker(α, c∗) and set V = (v1 , . . . , v �). Since
c∗ = r∗α, ker(α, c∗) = ker(α). Hence, Pr[S1] = Pr[S2].

– Game 3: This game is identical to Game 2, except that when produc-
ing CT∗, we instead pick up random vector c∗ ← F

n
q . We note that since

dim(ker(α, c∗)) = n − 2 ≥ �, we can still choose � independent vec-
tors v1 , . . . , v �. The difference between these two games is bounded by the
extended matrix d-linear assumption.

Lemma 10. Under the extended matrix d-linear assumption in AppendixA, we
have Pr[S2] − Pr[S3] ≤ 2εex.

Proof. Let x ∈ (Z/qZ)n×2 whose columns are α and c, i.e., x = (α, c). Let
v1 , . . . , v � be � independent random column vectors chosen via vi ← ker(x) =
ker(α, c) and set V = (v1 , . . . , v �). Now given gx and V = (v1 , . . . , v �), we can
simulate public and secret keys that the adversary sees during the game, as well
as the challenge ciphertext. In the case that rank(X) = 1, we perfectly simulate
Game 2. In the case that rank(X) = 2, we perfectly simulate Game 3. Then, we
have Pr[S2] − Pr[S3] ≤ 2εex. �

– Game 4 is defined as a sequence of Q + 1 sub-games denoted by Games,
4.0, . . . , 4.Q. For i = 0, . . . , Q, we have

• Game 4.i: This game is identical to Game 4.0, except that at the last i
key-updates, we instead choose β ← ker(α) and update sk := sk · g̃β. We
insist that the first Q− i key-updates, β is chosen from span(V), whereas
in the last i key-updates, it is chosen from ker(α).

Game 4.0 is identical to Game 3. The difference between Games, 4.i and
4.i + 1, is computationally bounded.

934 E. Fujisaki and K. Xagawa

Indeed, by Corollary 2, we have

Dist
(
(V, L(s + Vr’)) : (V, L(s + β))

)
≤

√
2λ

q�−1
+

√
2λ

qm−1
,

where V ←
(
ker(α, c∗)

)�

, r’ ← (Z/qZ)�, and β ← ker(α), with
dim(ker(α, c∗)) = n − 2 and dim(ker(α)) = n − 1. So, we have Pr[S4.i] −
Pr[S4.i+1] ≤

√
2λ

q�−1 +
√

2λ

qm−1 , Therefore Pr[S3] − Pr[S4.Q] ≤ Q
√

2λ

q�−1 +

Q
√

2λ

qm−1 .

– Game 5: This game is identical to Game4.Q, except that we pick up random
k∗ ← Z/qZ and compute K∗ = e(g, g̃)k∗

. This k∗ is statistically close to
< c∗, s + β >. By Lemma 3,

Dist((c∗
, < c

∗
, s + β >, L(s + β), view) : (c

∗
, k

∗
, L(s + β), view)) ≤ 1

2
2

−
√

H̃∞(s+β|L(s+β),view)
,

where view is fixed values containing α,V, and < α, s >. Let us repersent
s = s∗ + r′α such that s∗ ∈ ker(α) and r′ ∈ Z/qZ. Since s∗ and β are only
random variables in the above H̃∞, we have

H̃∞(s + β|L(s + β), view) = H̃∞(s
∗

+ β|L(s + β)) ≥ H∞(s
∗

+ β) − λ = (n − 1) log(q) − λ.

Therefore, we have Pr[S4.Q]−Pr[S5] ≤ 1
2

√
2λ

qn−1 . By construction, Pr[S5] = 1
2 .

To summarize the above, we have Pr[S0] − 1
2 =

2εex + Q ·
√

2λ

q�−1
+ Q ·

√
2λ

qn−1
+

1
2

√
2λ

qn−1
.

�

D Continuos Tampering Secure Signature

A digital signature scheme Σ = (Setup,KGen,Sign,Vrfy) consists four algorithms.
Setup, the set-up algoritm, takes as input security parameter 1k and outputs
public parameter ρ. KGen, the key-generation algorithm, takes as input ρ and
outputs a pair comprising the verification and signing keys, (vk, sk). Sign, the
signing algorithm, takes as input (ρ, sk) and message m and produces signature
σ. Vrfy, the verification algorithm, takes as input verification key vk, message m
and signature σ, as well as ρ, and outputs a bit. For completeness, it is required
that for all ρ ∈ Setup(1κ), all (vk, sk) ∈ KGen(ρ) and for all m ∈ {0, 1}∗, it holds
Vrfyρ(vk,m,Signρ(sk,m)) = 1.

We say that digital signature scheme Σ is self-destructive, if the signing
algorithm can erase all inner states including sk and does not work any more,
when it can detect tampering. We say that digital signature scheme Σ has a
key-updating mechanism if there is a PPT algorithm Update that takes ρ and
sk and returns an “updated” secret key sk′ = Updateρ(sk). We assume that

Public-Key Cryptosystems Resilient to Continuous Tampering 935

the key-updating mechanism Update can be activated only when the signing
algorithm detects tampering.

CTBL-CMA Security. For digital signature scheme Σ and an adversary A,
we define the experiment Exptctbl-cma

Π,A,(Φ,λ)(κ) as in Fig. 5. We define the advantage
of A against Π with respects Φ as

Advctbl-cma
Σ,A,(Φ,λ)(κ) � Pr[Exptctbl-cma

Σ,A,(Φ,λ)(κ) = 1].

A may adaptively submit (unbounded) polynomially many queries (φ,CT)
to oracle RKSign, but it should be φ ∈ Φ. A may also adaptively submit
(unbounded) polynomially many queries L to oracle Leak. Finally, A outputs
(m′, σ′). We say that A wins if Vrfy(vk,m′, σ′) = 1 and m′ is not asked to
RKSign. We note that if Sig has “self-destructive” property, RKSign does not
receive any further query from the adversary or simply returns ⊥. We say that
Σ is (Φ, λ)-CTBL-CMA secure if Advtbl-cma

Σ,A,(Φ,λ)(κ) = negl(κ) for every PPT A.

Fig. 5. The experiment of the CTBL-CMA game.

CTL-CMA Security. For digital signature scheme Σ = (Setup,KGen,Update,
Sign,Vrfy) with a key-updating mechanism and an adversary A, we define the
experiment Exptctl-cma

Σ,A,(Φ,λ)(κ) as in Fig. 6. We define the advantage of A against
Σ with respects Φ as

Advctl-cma
Σ,A,(Φ,λ)(κ) � Pr[Exptctl-cma

Σ,A,(Φ,λ)(κ) = 1].

A may adaptively submit (unbounded) polynomially many queries (φ,CT)
to oracle RKSign, but it should be φ ∈ Φ. A may also adaptively submit
(unbounded) polynomially many queries L to oracle Leak. Finally, A outputs
(m′, σ′). We say that A wins if Vrfy(vk,m′, σ′) = 1 and m′ is not asked to
RKSign. We say that Σ is (Φ, λ)-CTL-CMA secure if Advctl-cma

Σ,A,(Φ,λ)(κ) = negl(κ)
for every PPT A.

936 E. Fujisaki and K. Xagawa

Fig. 6. The experiment of the CTL-CMA game.

References

1. 51th Annual IEEE Symposium on Foundations of Computer Science, FOCS 2010,
IEEE Computer Society (2010)

2. Agrawal, S., Dodis, Y., Vaikuntanathan, V., Wichs, D.: On continual leakage of
discrete log representations. In: Sako and Sarkar [36], pp. 401–420

3. Anonymous. A note on the RKA security of continuously non-malleable key-
derivation function from PKC 2015. Submitted to PKC 2016

4. Bellare, M., Cash, D.: Pseudorandom functions and permutations provably secure
against related-key attacks. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223,
pp. 666–684. Springer, Heidelberg (2010). doi:10.1007/978-3-642-14623-7 36

5. Bellare, M., Cash, D., Miller, R.: Cryptography secure against related-key attacks
and tampering. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol.
7073, pp. 486–503. Springer, Heidelberg (2011). doi:10.1007/978-3-642-25385-0 26

6. Bellare, M., Kohno, T.: A theoretical treatment of related-key attacks: RKA-PRPs,
RKA-PRFs, and applications. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol.
2656, pp. 491–506. Springer, Heidelberg (2003). doi:10.1007/3-540-39200-9 31

7. Bellare, M., Paterson, K.G., Thomson, S.: RKA security beyond the linear bar-
rier: IBE, encryption and signatures. In: Wang, X., Sako, K. (eds.) ASIACRYPT
2012. LNCS, vol. 7658, pp. 331–348. Springer, Heidelberg (2012). doi:10.1007/
978-3-642-34961-4 21

8. Boneh, D., Boyen, X., Shacham, H.: Short group signatures. In: Franklin, M. (ed.)
CRYPTO 2004. LNCS, vol. 3152, pp. 41–55. Springer, Heidelberg (2004). doi:10.
1007/978-3-540-28628-8 3

9. Boneh, D., Halevi, S., Hamburg, M., Ostrovsky, R.: Circular-secure encryption
from decision Diffie-Hellman. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol.
5157, pp. 108–125. Springer, Heidelberg (2008). doi:10.1007/978-3-540-85174-5 7

10. Brakerski, Z., Kalai, Y.T., Katz, J., Vaikuntanathan, V.: Overcoming the hole in
the bucket,: Public-key cryptography resilient to continual memory leakage. In:
FOCS 2010 [1], pp. 501–510

11. Cramer, R., Dodis, Y., Fehr, S., Padró, C., Wichs, D.: Detection of algebraic manip-
ulation with applications to robust secret sharing and fuzzy extractors. In: Smart,
N. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 471–488. Springer, Heidelberg
(2008). doi:10.1007/978-3-540-78967-3 27

http://dx.doi.org/10.1007/978-3-642-14623-7_36
http://dx.doi.org/10.1007/978-3-642-25385-0_26
http://dx.doi.org/10.1007/3-540-39200-9_31
http://dx.doi.org/10.1007/978-3-642-34961-4_21
http://dx.doi.org/10.1007/978-3-642-34961-4_21
http://dx.doi.org/10.1007/978-3-540-28628-8_3
http://dx.doi.org/10.1007/978-3-540-28628-8_3
http://dx.doi.org/10.1007/978-3-540-85174-5_7
http://dx.doi.org/10.1007/978-3-540-78967-3_27

Public-Key Cryptosystems Resilient to Continuous Tampering 937

12. Cramer, R., Padró, C., Xing, C.: Optimal algebraic manipulation detection codes
in the constant-error model. In: Dodis and Nielsen [17], pp. 481–501. http://eprint.
iacr.org/2014/116

13. Cramer, R., Shoup, V.: Universal hash proofs and a paradigm for adaptive cho-
sen ciphertext secure public-key encryption. In: Knudsen, L.R. (ed.) EURO-
CRYPT 2002. LNCS, vol. 2332, pp. 45–64. Springer, Heidelberg (2002). doi:10.
1007/3-540-46035-7 4

14. Damg̊ard, I., Faust, S., Mukherjee, P., Venturi, D.: Bounded tamper resilience: how
to go beyond the algebraic barrier. In: Sako and Sarkar [36], pp. 140–160. http://
eprint.iacr.org/2013/677 and http://eprint.iacr.org/2013/124

15. Dodis, Y., Haralambiev, K., López-Alt, A., Wichs, D.: Cryptography against con-
tinuous memory attacks. In: FOCS 2010 [1], pp. 511–520. http://eprint.iacr.org/
2010/196

16. Dodis, Y., Haralambiev, K., López-Alt, A., Wichs, D.: Efficient public-key
cryptography in the presence of key leakage. In: Abe, M. (ed.) ASIACRYPT
2010. LNCS, vol. 6477, pp. 613–631. Springer, Heidelberg (2010). doi:10.1007/
978-3-642-17373-8 35

17. Dodis, Y., Nielsen, J.B. (eds.): TCC 2015. LNCS, vol. 9014. Springer, Heidelberg
(2015)

18. Dodis, Y., Ostrovsky, R., Reyzin, L., Smith, A.: Fuzzy extractors: how to generate
strong keys from biometrics and other noisy data. SIAM J. Comput. 38(1), 97–139
(2008). Preliminary version in EUROCRYPT 2004

19. Dziembowski, S., Pietrzak, K., Wichs, D.: Non-malleable codes. In: Yao, A.C.C.
(ed.) ICS 2010, Beijing, China, Tsinghua University Press, pp. 434–452 (2010).
http://eprint.iacr.org/2009/608.D

20. Faonio, A., Venturi, D.: Efficient public-key cryptography with bounded leakage
and tamper resilience. IACR Cryptology ePrint Archive 2016, p. 529 (2016)

21. Faust, S., Mukherjee, P., Nielsen, J.B., Venturi, D.: Continuous non-malleable
codes. In: Lindell, Y. (ed.) TCC 2014. LNCS, vol. 8349, pp. 465–488. Springer,
Heidelberg (2014). doi:10.1007/978-3-642-54242-8 20

22. Fujisaki, E., Xagawa, K.: Efficient RKA-Secure KEM and IBE schemes against
invertible functions. In: Lauter, K., Rodŕıguez-Henŕıquez, F. (eds.) LATINCRYPT
2015. LNCS, vol. 9230, pp. 3–20. Springer, Heidelberg (2015). doi:10.1007/
978-3-319-22174-8 1

23. Gennaro, R., Lysyanskaya, A., Malkin, T., Micali, S., Rabin, T.: Algorithmic
tamper-proof (ATP) security: theoretical foundations for security against hard-
ware tampering. In: Naor, M. (ed.) TCC 2004. LNCS, vol. 2951, pp. 258–277.
Springer, Heidelberg (2004). doi:10.1007/978-3-540-24638-1 15

24. Hofheinz, D., Kiltz, E.: Secure hybrid encryption from weakened key encapsulation.
In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 553–571. Springer,
Heidelberg (2007). doi:10.1007/978-3-540-74143-5 31

25. Jafargholi, Z., and Wichs, D.: Tamper detection and continuous non-malleable
codes. In: Dodis and Nielsen [17], pp. 451–480. http://eprint.iacr.org/2014/956

26. Kalai, Y.T., Kanukurthi, B., Sahai, A.: Cryptography with tamperable and leaky
memory. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 373–390.
Springer, Heidelberg (2011). doi:10.1007/978-3-642-22792-9 21

27. Kiltz, E., Pietrzak, K., Stam, M., Yung, M.: A new randomness extraction par-
adigm for hybrid encryption. In: Joux, A. (ed.) EUROCRYPT 2009. LNCS, vol.
5479, pp. 590–609. Springer, Heidelberg (2009). doi:10.1007/978-3-642-01001-9 34

http://eprint.iacr.org/2014/116
http://eprint.iacr.org/2014/116
http://dx.doi.org/10.1007/3-540-46035-7_4
http://dx.doi.org/10.1007/3-540-46035-7_4
http://eprint.iacr.org/2013/677
http://eprint.iacr.org/2013/677
http://eprint.iacr.org/2013/124
http://eprint.iacr.org/2010/196
http://eprint.iacr.org/2010/196
http://dx.doi.org/10.1007/978-3-642-17373-8_35
http://dx.doi.org/10.1007/978-3-642-17373-8_35
http://eprint.iacr.org/2009/608
http://dx.doi.org/10.1007/978-3-642-54242-8_20
http://dx.doi.org/10.1007/978-3-319-22174-8_1
http://dx.doi.org/10.1007/978-3-319-22174-8_1
http://dx.doi.org/10.1007/978-3-540-24638-1_15
http://dx.doi.org/10.1007/978-3-540-74143-5_31
http://eprint.iacr.org/2014/956
http://dx.doi.org/10.1007/978-3-642-22792-9_21
http://dx.doi.org/10.1007/978-3-642-01001-9_34

938 E. Fujisaki and K. Xagawa

28. Liu, F.-H., Lysyanskaya, A.: Tamper and leakage resilience in the split-state model.
In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 517–
532. Springer, Heidelberg (2012). doi:10.1007/978-3-642-32009-5 30

29. Naor, M., Segev, G.: Public-key cryptosystems resilient to key leakage. In: Halevi,
S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 18–35. Springer, Heidelberg (2009).
doi:10.1007/978-3-642-03356-8 2

30. Peikert, C., and Waters, B. Lossy trapdoor functions and their applications. In:
Ladner, R.E., Dwork, C. (eds.) STOC 2008, pp. 187–196. ACM (2008)

31. Qin, B., Liu, S.: Leakage-resilient chosen-ciphertext secure public-key encryption
from hash proof system and one-time lossy filter. In: Sako and Sarkar [36], pp.
381–400

32. Qin, B., Liu, S.: Leakage-flexible CCA-secure public-key encryption: simple con-
struction and free of pairing. In: Krawczyk, H. (ed.) PKC 2014. LNCS, vol. 8383,
pp. 19–36. Springer, Heidelberg (2014). doi:10.1007/978-3-642-54631-0 2

33. Qin, B., Liu, S., Yuen, T.H., Deng, R.H., Chen, K.: Continuous non-malleable
key derivation and its application to related-key security. In: Katz, J. (ed.) PKC
2015. LNCS, vol. 9020, pp. 557–578. Springer, Heidelberg (2015). doi:10.1007/
978-3-662-46447-2 25

34. Qin, B., Liu, S.: Leakage-resilient chosen-ciphertext secure public-key encryption
from hash proof system and one-time lossy filter. In: Sako, K., Sarkar, P. (eds.)
ASIACRYPT 2013. LNCS, vol. 8270, pp. 381–400. Springer, Heidelberg (2013).
doi:10.1007/978-3-642-42045-0 20

35. Wee, H.: Public key encryption against related key attacks. In: Fischlin, M.,
Buchmann, J., Manulis, M. (eds.) PKC 2012. LNCS, vol. 7293, pp. 262–279.
Springer, Heidelberg (2012). doi:10.1007/978-3-642-30057-8 16

http://dx.doi.org/10.1007/978-3-642-32009-5_30
http://dx.doi.org/10.1007/978-3-642-03356-8_2
http://dx.doi.org/10.1007/978-3-642-54631-0_2
http://dx.doi.org/10.1007/978-3-662-46447-2_25
http://dx.doi.org/10.1007/978-3-662-46447-2_25
http://dx.doi.org/10.1007/978-3-642-42045-0_20
http://dx.doi.org/10.1007/978-3-642-30057-8_16

Author Index

Albrecht, Martin I-191
Attrapadung, Nuttapong II-591

Badrinarayanan, Saikrishna II-557
Baldimtsi, Foteini II-902
Bao, Zhenzhen I-648
Bay, Aslı I-354
Bellare, Mihir II-435, II-777
Biryukov, Alex I-484
Blazy, Olivier II-217, II-339
Bogdanov, Andrey I-126
Bogos, Sonia I-703
Boneh, Dan I-220
Bost, Raphael I-333
Boyen, Xavier II-404
Bruneau, Nicolas I-573

Camenisch, Jan II-807
Cao, Zhenfu II-624
Chase, Melissa II-655
Chen, Cong I-819
Chen, Jie II-624
Chen, Ming-Shing II-135
Chen, Rongmao I-844, II-745
Chevalier, Céline II-217, II-339
Chillotti, Ilaria I-3
Chinburg, Ted I-759
Coretti, Sandro II-998
Corrigan-Gibbs, Henry I-220

Dinu, Daniel I-484
Dobraunig, Christoph I-369
Dong, Xiaolei II-624

Eichlseder, Maria I-369
Eisenbarth, Thomas I-819
Enderlein, Robert R. II-807
Ersoy, Oğuzhan I-354

Faonio, Antonio I-877
Farmani, Mohammad I-819
Fauzi, Prastudy II-841
Feldhofer, Martin I-602
Fiore, Dario II-499

Fouque, Pierre-Alain I-159
Fuchsbauer, Georg II-777
Fujisaki, Eiichiro I-908
Fuller, Benjamin I-277

Galbraith, Steven D. I-63
Gama, Nicolas I-3
Garay, Juan II-998
Georgieva, Mariya I-3
Germouty, Paul II-217
Ghosh, Esha II-67
Gong, Junqing II-624
Goyal, Vipul II-531, II-557
Grassi, Lorenzo I-191
Großschädl, Johann I-484
Gu, Dawu I-455
Gueron, Shay I-95
Guilley, Sylvain I-573
Guo, Fuchun I-844, II-745
Guo, Jian I-249, I-455
Guo, Qian I-789

Han, Shuai II-307
Hanaoka, Goichiro II-465, II-937
Hemenway, Brett I-759
Heninger, Nadia I-759
Heuer, Felix II-248
Heuser, Annelie I-573
Hirt, Martin II-998
Hoang, Viet Tung II-278
Hofheinz, Dennis II-715
Hülsing, Andreas II-135

Isobe, Takanori I-126
Izabachène, Malika I-3

Jager, Tibor II-715
Jain, Aayush II-531, II-557
Jing, Jiwu I-307
Johansson, Thomas I-789

Karakoç, Ferhat I-354
Karpman, Pierre I-159

Katsumata, Shuichi II-682
Katz, Jonathan II-278
Kempka, Carmen II-967
Khurana, Dakshita II-715
Kiayias, Aggelos II-902
Kikuchi, Ryo II-967
Kılınç, Handan II-873
Kirchner, Paul I-159
Korak, Thomas I-369
Krenn, Stephan II-807
Küsters, Ralf II-807

Lai, Jianchang II-745
Leander, Gregor II-3
Li, Qinyi II-404
Libert, Benoît II-101, II-373
Lin, Dongdai I-648
Lin, Jingqiang I-307
Ling, San II-101, II-373
Lipmaa, Helger II-841
Liu, Meicheng I-249
Liu, Shengli II-307
Lomné, Victor I-369
Lyu, Lin II-307
Lyubashevsky, Vadim II-196

Ma, Yuan I-307
Maller, Mary II-655
Martin, Daniel P. I-548
Mather, Luke I-548
Matsuda, Takahiro II-465
Medwed, Marcel I-602
Meiklejohn, Sarah II-655
Mendel, Florian I-369
Minaud, Brice I-159
Miracle, Sarah I-679
Mitrokotsa, Aikaterini II-499
Moradi, Amir I-517
Morillo, Paz I-729
Mouha, Nicky I-95
Mouhartem, Fabrice II-101, II-373
Mu, Yi I-844, II-745

Nguyen, Khoa II-101, II-373
Nielsen, Jesper Buus II-1022
Nikolić, Ivica I-627
Nikov, Ventzislav I-602
Nishide, Takashi II-937
Nizzardo, Luca II-499
Nuida, Koji II-937

O’Neill, Adam II-278, II-531
Ohrimenko, Olga II-67
Okamoto, Eiji II-937
Oswald, Elisabeth I-548

Pagnin, Elena II-499
Papadopoulos, Dimitrios II-67
Perrin, Léo I-484
Petit, Christophe I-63
Poettering, Bertram II-248, II-435

Ràfols, Carla I-729
Ranellucci, Samuel II-1022
Rausch, Daniel II-807
Rechberger, Christian I-191
Reyhanitabar, Reza I-396
Reyzin, Leonid I-277
Rijneveld, Joost II-135
Rioul, Olivier I-573
Roy, Arnab I-191
Russell, Alexander II-34

Sahai, Amit II-557, II-715
Samardjiska, Simona II-135
Sanders, Olivier I-333
Sarkar, Palash I-37
Sasaki, Yu I-627, II-3
Scafuro, Alessandra II-777
Schechter, Stuart I-220
Scherr, Zachary I-759
Schneider, Tobias I-517
Schwabe, Peter II-135
Shani, Barak I-63
Shinagawa, Kazumasa II-937
Shrimpton, Thomas I-429
Singh, Shashank I-37
Smith, Adam I-277
Song, Ling I-249
Stam, Martijn I-548
Standaert, François-Xavier I-573, I-602
Stankovski, Paul I-789
Stebila, Douglas II-435
Susilo, Willy I-844, II-745
Suzuki, Koutarou II-967

Tamassia, Roberto II-67
Tanaka, Keisuke II-465
Tang, Qiang II-34
Teglia, Yannick I-573

940 Author Index

Terashima, R. Seth I-429
Ti, Yan Bo I-63
Tiessen, Tyge I-191
Tischhauser, Elmar I-126
Todo, Yosuke II-3
Triandopoulos, Nikos II-67

Udovenko, Aleksei I-484
Unruh, Dominique II-166

Vaudenay, Serge I-396, I-703, II-873
Velichkov, Vesselin I-484
Venturi, Daniele I-877
Villar, Jorge L. I-729
Vizár, Damian I-396

Wang, Huaxiong II-101, II-373
Wang, Lei I-455
Wang, Yuyu II-465
Waters, Brent II-715

Xagawa, Keita I-908
Xiang, Zejun I-648

Yamada, Shota II-682
Yang, Guomin I-844, II-745
Yilek, Scott I-679
Yung, Moti II-34

Zacharias, Thomas II-902
Zaheri, Mohammad II-278
Zając, Michał II-841
Zhandry, Mark II-715
Zhang, Bingsheng II-902
Zhang, Guoyan I-455
Zhang, Mingwu I-844
Zhang, Wentao I-648
Zhang, Zongyang II-465
Zhao, Jingyuan I-455
Zhou, Hong-Sheng II-34
Zhu, Shuangyi I-307
Zhuang, Jia I-307
Zikas, Vassilis II-998

Author Index 941

	Preface
	ASIACRYPT 2016 The 22nd Annual International Conference on Theory and Application of Cryptology and Information Security
	Invited Talks
	Advances in Functional Encryption
	The Reality of Cryptographic Deployments on the Internet
	Contents -- Part I
	Contents -- Part II
	Asiacrypt 2016 Best Paper
	Faster Fully Homomorphic Encryption: Bootstrapping in Less Than 0.1 Seconds
	1 Introduction
	2 Background
	2.1 Learning with Error Problem

	3 Generalization
	3.1 TLWE
	3.2 TGSW

	4 Application: Single Gate Bootstrapping in Less Than 0.1Seconds
	4.1 TLWE to LWE Extraction
	4.2 LWE to LWE Key-Switching Procedure
	4.3 Bootstrapping Procedure
	4.4 Application to Circuits
	4.5 Parameters Implementation and Timings

	5 Leveled Homomorphic Encryption
	5.1 Boolean Circuits Interpretation
	5.2 Deterministic Automata

	6 Practical Security Parameters
	7 Conclusion
	References

	Mathematical Analysis I
	A General Polynomial Selection Method and New Asymptotic Complexities for the Tower Number Field Sieve Algorithm
	1 Introduction
	2 The Set-Up of the Tower Number Field Sieve Algorithm
	2.1 Bounds on Resultants

	3 Using the LLL Algorithm for Polynomial Selection
	4 A New Polynomial Selection Method for TNFS
	5 Non-asymptotic Analysis and Examples
	5.1 Plots of Norm Bounds
	5.2 Examples for Non Prime-Power n
	5.3 Examples for Composite Prime-Power n

	6 Asymptotic Complexity Analysis for the Medium Prime Case
	7 Multiple Number Field Sieve Variant
	8 Conclusion
	References

	On the Security of Supersingular Isogeny Cryptosystems
	1 Introduction
	2 Preliminaries
	2.1 Supersingular Elliptic Curves and Isogenies
	2.2 Hard Problem Candidates Related to Isogenies
	2.3 Jao--De Feo scheme
	2.4 Active Attacks and Validation Methods
	2.5 The Kirkwood et al. Validation Method

	3 Adaptive Attack
	3.1 First Step of the Attack
	3.2 Continuing the Attack
	3.3 Analysis and Complexity of the Attack

	4 Solving the Isogeny Problem When the Endomorphism Ring Is Known
	4.1 The Importance of the Correct Isogeny
	4.2 Reduction of Problem to Computation of Endomorphism Ring
	4.3 Experimental Results

	5 Isogeny Hidden Number Problem
	5.1 Algorithms for the Isogeny Hidden Number Problem
	5.2 Active Attack When Alice Uses a Static Key

	6 Conclusion
	A Number of Isogenies of Degree Smaller Than D
	B Low Order Adaptive Attack
	C The Resultant of G1(xk,yl) and G2(xk,yl)
	References

	AES and White-Box
	Simpira v2: A Family of Efficient Permutations Using the AES Round Function
	1 Introduction
	2 Related Work
	3 Design Rationale of Simpira
	3.1 Design Criteria
	3.2 Design Space Exploration
	3.3 Design Alternatives

	4 Specification of Simpira
	5 Benchmarks
	6 Cryptanalysis
	7 Applications
	8 A Problem with Yanagihara and Iwata's GFS
	9 Invariant Subspace Attacks
	10 Conclusion
	References

	Towards Practical Whitebox Cryptography: Optimizing Efficiency and Space Hardness
	1 Introduction
	1.1 Black Box vs White Box
	1.2 Whitebox Cryptography in the Wild
	1.3 Existing Whitebox Constructions
	1.4 Our Contributions

	2 SPNbox: Efficient Space-Hard Block Ciphers
	2.1 Design Choices
	2.2 Specification
	2.3 SPNbox vs ASASA

	3 Security in the Black Box: Analysis as a Block Cipher
	3.1 General Construction
	3.2 The Underlying Small Block Ciphers
	3.3 Cache Timing Attack

	4 Security in the White Box: Analysis of Space Hardness
	4.1 Key Extraction and Table Decomposition Attacks
	4.2 Existing Notions of Space Hardness
	4.3 Target Construction
	4.4 Adversary Models of Space Hardness
	4.5 Weak Space Hardness
	4.6 On (Partial) Target Plaintext for Weak Space Hardness
	4.7 Strong Space Hardness
	4.8 Tradeoffs Between Strong Space Hardness and Time Complexity
	4.9 Summary of Space Hardness
	4.10 Advanced Side Channel Attacks

	5 Efficient Software Implementations
	5.1 Setting
	5.2 Implementation Characteristics of SPNbox
	5.3 Performance Measurements

	6 Conclusion and Outlook
	References

	Efficient and Provable White-Box Primitives
	1 Introduction
	1.1 White-Box Cryptography
	1.2 Our Contribution
	1.3 Related Work

	2 Models
	2.1 Context
	2.2 Preliminary Groundwork
	2.3 Splitting the Adversaries
	2.4 Weak Incompressibility
	2.5 Strong Incompressibility

	3 Constructions
	3.1 The WhiteBlock Block Cipher
	3.2 The WhiteKey Key Generator

	4 Security Proofs
	4.1 Proofs of Weak Incompressibility
	4.2 Proof of Strong Incompressibility

	5 Implementation
	5.1 PUPPYCIPHER
	5.2 COUREURDESBOIS

	References

	Hash Function
	MiMC: Efficient Encryption and Cryptographic Hashing with Minimal Multiplicative Complexity
	1 Introduction
	2 The MiMC Primitives
	2.1 The Block Cipher
	2.2 The Permutation
	2.3 The Hash Function

	3 Related Designs and Comparison
	3.1 Knudsen-Nyberg Cipher
	3.2 The Pohlig-Hellman Cipher
	3.3 Naor-Reingold PRF
	3.4 Ajtai, SWIFFT, SWIFFTX
	3.5 SPRING
	3.6 Comparison

	4 Design Rationale and Analysis of MiMC
	4.1 Computation Cost Model
	4.2 Security Analysis

	5 Variants
	5.1 MiMC over Prime Fields
	5.2 Larger Keys
	5.3 Different Round Functions

	6 Application and Implementation
	6.1 Verifiable Computation and SNARK
	6.2 Direct Implementation
	6.3 Generic Masking Against Side-Channel Attack

	7 Conclusions
	A SNARK Prover Algorithm
	A.1 Complexity of the Prover Algorithm
	A.2 Parameters for MiMCHash-256

	References

	Balloon Hashing: A Memory-Hard Function Providing Provable Protection Against Sequential Attacks
	1 Introduction
	2 Security Definitions
	2.1 Syntax
	2.2 Memory-Hardness
	2.3 Password-Independent Access Pattern
	2.4 Collision Resistance, etc.

	3 Balloon Hashing Algorithm
	3.1 Algorithm
	3.2 Main Security Theorem

	4 Attacking and Defending Argon2
	4.1 Attack Overview
	4.2 Background on Argon
	4.3 Attack Algorithm

	5 Discussion
	5.1 Memory Hardness Under Parallel Attacks
	5.2 How to Compare Memory-Hard Functions

	6 Experimental Evaluation
	6.1 Experimental Set-Up
	6.2 Authentication Throughput
	6.3 Compression Function

	7 Related Work
	8 Conclusion
	A Details of the Attack on Argon2
	References

	Linear Structures: Applications to Cryptanalysis of Round-Reduced Keccak
	1 Introduction
	2 Definition of Keccak
	2.1 The Sponge Function
	2.2 The Keccak Hash Functions
	2.3 Instances of Keccak and SHA-3

	3 Properties of the Sbox
	3.1 Setting up Linear Equations from the Output of
	3.2 Setting up More Linear Equations
	3.3 Linearizing the Inverse of

	4 The Linear Structures
	4.1 Techniques for Keeping 2 Rounds Being Linear
	4.2 How to Keep 3 Rounds Being Linear

	5 Zero-Sum Distinguishers
	6 Preimage Attacks
	6.1 Preimage Attacks on 2-Round Keccak
	6.2 Preimage Attacks on 3-Round Keccak
	6.3 Preimage Attacks on 3-Round Keccak-384/512 and 4-round Keccak-224/256
	6.4 Improved Preimage Attacks on SHAKE128
	6.5 Preimage Attacks on 4-Round Keccak [r = 1440, C = 160, = 80]

	7 Conclusions
	References

	Randomness
	When Are Fuzzy Extractors Possible?
	1 Introduction
	1.1 Our Techniques
	1.2 Related Settings

	2 Preliminaries
	2.1 Fuzzy Extractors

	3 New Notion: Fuzzy Min-Entropy
	4 Hfuzzt,(W) is Sufficient in the Precise Knowledge Setting
	4.1 Warm-Up for Intuition: Fuzzy Extractor for Flat Distributions
	4.2 Fuzzy Extractor for Arbitrary Distributions

	5 Impossibility of Fuzzy Extractors for Family with Hfuzzt,
	6 Impossibility in the Case of Imperfect Correctness
	7 Stronger Impossibility Result for Secure Sketches
	A Proof of Theorem 1
	B Proof of Theorem2
	C Proof of Theorem3
	D Proof of Theorem 4
	References

	More Powerful and Reliable Second-Level Statistical Randomness Tests for NIST SP 800-22
	1 Introduction
	2 Two-Level Statistical Tests in SP 800-22
	2.1 Statistical Hypothesis Testing for Randomness
	2.2 Two-Level Tests
	2.3 Frequency Test
	2.4 Spectral Test

	3 Incompleteness of P-Value Based Second-Level Tests
	4 Second-Level Tests Based on Q-Value
	4.1 Q-Value
	4.2 Testing Capability on the Drift of Test Statistics
	4.3 Testing Reliability Analysis Based on Actual Distribution

	5 Statistical Tests on PRNGs
	5.1 Experiment Setup
	5.2 Statistical Testing
	5.3 Further Analysis on LCG

	6 Conclusion
	A Statistical Test Results on the Original and Processed BBS Output Sequences
	B Statistical Test Results with the Longer Block Length on the LCG and BBS Output Sequences
	References

	Authenticated Encryption
	Trick or Tweak: On the (In)security of OTR's Tweaks
	1 Introduction
	1.1 Tweakable Blockcipher
	1.2 Our Contribution

	2 Preliminaries
	2.1 Basic Notations
	2.2 Blockciphers and Tweakable Blockciphers
	2.3 Authenticated Encryption
	2.4 Galois Field

	3 Description of OTR
	4 Collision in Masks Polynomials
	4.1 Flaw in OTR's Proof
	4.2 Finding Collisions

	5 Practical Attacks
	5.1 Type-1 Collisions
	5.2 Type-2 Collisions
	5.3 Type-3 Collisions

	6 Practical Security of OTR with 128 Bits Blocks
	6.1 Analytical Collisions
	6.2 Searching for Collisions Exhaustively
	6.3 Probable Collision Before the Birthday Bound

	7 Other Instantiations of Input Masks
	8 Conclusion
	References

	Universal Forgery and Key Recovery Attacks on ELmD Authenticated Encryption Algorithm
	1 Introduction
	2 Brief Description of ELmD
	3 Universal Forgery Attack on ELmD
	3.1 Recovering Internal State Parameter L
	3.2 Forgery

	4 Exploiting the Structure of ELmD
	4.1 2-Multiplicative Pairs: (R1,R2) with 2E(R1)= E(R2)
	4.2 -multiplicative Pairs: (P1,P2) with E(P1)= E(P2)
	4.3 1-Difference Pairs: (R1,R2) with E(R1)= E(R2)1
	4.4 -difference Pairs: (Q1,Q2) with E(Q1)=E(Q2)
	4.5 Querying Decryption Oracle of the Block Cipher

	5 Key Recovery
	6 Conclusion
	References

	Statistical Fault Attacks on Nonce-Based Authenticated Encryption Schemes
	1 Introduction
	2 Background
	2.1 Fault Attacks
	2.2 Statistical Fault Attacks
	2.3 A Generalized Fault Model

	3 Statistical Fault Attacks on Authenticated Encryption
	3.1 Application to the Basic Construction
	3.2 Application to XEX-Like Constructions
	3.3 Application to Modes Based on Tweakable Block Ciphers
	3.4 Summary and Discussion of Results

	4 Practical Verification/Implementation of the Attacks
	4.1 AES Software Implementation on an 8-Bit Microcontroller
	4.2 AES Hardware Co-Processor of a Smartcard Microcontroller
	4.3 AES Co-Processor on a General-Purpose Microcontroller
	4.4 Discussion and Remarks

	5 Conclusion
	A Data of Practical Verification/Implementation
	References

	Authenticated Encryption with Variable Stretch
	1 Introduction
	2 Preliminaries and Prior AE Definitions
	3 Failure of Inserting Stretch into Nonce And/or AD
	4 Formalizing Nonce-Based AE with Variable Stretch
	5 A Short Guide to NvAE
	6 Achieving AE with Variable Stretch
	7 Discussion
	References

	Block Cipher I
	Salvaging Weak Security Bounds for Blockcipher-Based Constructions
	1 Introduction
	2 The ICM with Key-Oblivious Access
	2.1 Preliminaries
	2.2 Decompositions and Their Associated Notions
	2.3 Generic Results About IND-KOA-ICM
	2.4 Connection to TBC-based Constructions

	3 ICM-KOA Analysis of Constructions
	3.1 Analysis of NIST CTR-DRBG Generation Algorithm
	3.2 Analysis of CTR-mode Variants

	References

	How to Build Fully Secure Tweakable Blockciphers from Classical Blockciphers
	1 Introduction
	2 Preliminaries
	2.1 Notations
	2.2 Tweakable Blockcipher and Security Definition
	2.3 The H-Coefficient Technique

	3 Key-Recovery Attack on Mennink's Design [36]
	4 Target Construction, Design Goal and Search Strategy
	4.1 Tweakable Blockcipher E"0365E[s]
	4.2 Design Goal
	4.3 Search Strategy

	5 Search Among Instances of E"0365E[2] with One Tweak-Dependent Key
	5.1 On the Instances of Type I
	5.2 On the Instances of Type II
	5.3 On the Instances of Type III

	6 Security Proof of E1"0365E1, �, E32"0365E32
	6.1 Partition of V
	6.2 Upper Bound of vgood
	6.3 Upper Bound of Pr[Y Vbad]
	6.4 Provable Security

	7 Conclusions and Discussions
	References

	Design Strategies for ARX with Provable Bounds: SPARX and LAX
	1 Introduction
	2 Preliminaries
	3 ARX-Based Substitution-Permutation Network
	3.1 ARX-Boxes
	3.2 Naive Approaches and Their Limitations
	3.3 The Long Trail Design Strategy
	3.4 Choosing the Linear Layer: Bounding the MEDCP and MELCC while Providing Diffusion

	4 The SPARX Family of Ciphers
	4.1 High Level View
	4.2 Specification
	4.3 Design Rationale
	4.4 Security Analysis
	4.5 Software Implementation

	5 Replacing Rotations with Linear Layers: The LAX Construction
	5.1 Motivation
	5.2 Theoretical Background
	5.3 The LAX Construction
	5.4 Bounds on the Differential Probability of LAX
	5.5 Experimental Results

	6 Conclusion
	References

	SCA and Leakage Resilience I
	Side-Channel Analysis Protection and Low-Latency in Action
	1 Introduction
	2 Preliminaries
	2.1 PRINCE
	2.2 Threshold Implementation

	3 Design Architectures
	3.1 Round-Based Architecture
	3.2 Uniform Sharing of the Sbox
	3.3 Implementation
	3.4 Practical Evaluations

	4 Asynchronous Design
	4.1 Fundamentals
	4.2 Asynchronous Round-Based TI

	5 Discussion
	5.1 Comparison to Midori
	5.2 Conclusions

	A Masked Unrolled Design (only First and Last Rounds)
	B Round-Based Designs
	C Decomposition of C231
	References

	Characterisation and Estimation of the Key Rank Distribution in the Context of Side Channel Evaluations
	1 Introduction
	2 Side-Channel Evaluations and Key Rank
	2.1 Standard DPA Model
	2.2 Key Rank
	2.3 Theoretical Characterization of the Key Rank Distribution
	2.4 Key Rank Estimation
	2.5 Summary Statistics

	3 Accurate Estimation of the Rank Distribution
	3.1 KRE Improvements
	3.2 KRE Precision

	4 Initial Exploratory Study
	4.1 Visualising the Key Rank Distribution
	4.2 Is an Accurate Rank Distribution Estimation Viable?

	5 Characterising Rank Distributions
	5.1 SNR and Measurement Counts
	5.2 Distinguishers and Higher-Order Attacks

	6 Embedding Rank Estimations into Real World Security Evaluations
	6.1 Bounding the Success Rate of an Adversary with Enumeration
	6.2 Real World Evaluation of a Challenging Target

	7 Conclusion
	A KRE Optimisation
	A.1 Distinguishing Score to Integer Weight Conversion
	A.2 Recurrence Relation

	References

	Taylor Expansion of Maximum Likelihood Attacks for Masked and Shuffled Implementations
	1 Introduction
	2 Notations
	2.1 Parameters
	2.2 Model

	3 A Generic Log-Likelihood for Masked Implementations
	3.1 Maximum Likelihood (ML) Attack

	4 Case Study: Shuffled Table Recomputation
	4.1 Parameters of the Randomization Countermeasure
	4.2 Second-Order Attacks
	4.3 Exploiting the Shuffled Table Recomputation Stage

	5 Complexity
	5.1 Complexity in the General Case
	5.2 Complexity of Our Case Study

	6 Simulation Results
	6.1 Exploiting only Leakage of the Mask and the Masked Share
	6.2 Exploiting the Shuffled Table Recomputation

	7 Conclusions and Perspectives
	A Computation of the Moments
	A.1 Computation of 1
	A.2 Computation of 2
	A.3 Computation of 3

	B Complexity Proofs
	B.1 Proof of Lemma1
	B.2 Proof of Proposition6
	B.3 Proof of Proposition7
	B.4 Proof of Proposition8
	B.5 Time and Complexity

	C Analysis of the DPAcontest
	References

	Unknown-Input Attacks in the Parallel Setting: Improving the Security of the CHES 2012 Leakage-Resilient PRF
	1 Introduction
	2 Background: The CHES 2012 Leakage-Resilient PRF
	3 New Leakage-Resilient PRF Construction
	4 Security Analysis w.r.t. Basic Side-Channel Attacks
	4.1 Security Based on Carefully Chosen Plaintexts
	4.2 Security Based on Unknown Plaintexts
	4.3 Explaining the Results: Analysis of Model Errors

	5 Implementation and Attack Issues
	5.1 Deviations from the Hamming Weight Leakage Function
	5.2 Distance-Based Leakages
	5.3 Bounded Template Estimation

	6 Alternative Attack Paths
	6.1 Iterative DPA Attacks and Key Verification
	6.2 Attacks on the Plaintexts
	6.3 Localized EM Attacks

	7 Implementation Figures
	8 Conclusions
	A Template building algorithms
	References

	Block Cipher II
	A New Algorithm for the Unbalanced Meet-in-the-Middle Problem
	1 Introduction
	2 Preliminaries
	2.1 Basics
	2.2 Collisions Search with Interleaving
	2.3 Multiple Collision Search

	3 A New Meet-in-the-Middle Algorithm
	3.1 The Algorithm
	3.2 Comparison of Tradeoffs
	3.3 Practical Confirmation
	3.4 Additional Cases
	3.5 Degenerate Cases

	4 Applications
	4.1 The Case of Unbalanced Functions
	4.2 The Case of Reduced Calls
	4.3 The Case of Reduced Domain

	5 Conclusion
	A Pseudo Code of Algorithms
	B Graphical Comparison of the Tradeoffs
	References

	Applying MILP Method to Searching Integral Distinguishers Based on Division Property for 6 Lightweight Block Ciphers
	1 Introduction
	1.1 Our Contributions

	2 Preliminaries
	2.1 Notations
	2.2 Division Property
	2.3 Modeling a Subset in {0,1}n by Linear Inequalities

	3 Modeling Division Property Propagations of Basic Operations and Sbox by Linear Inequalities
	3.1 Modeling Copy, And and Xor
	3.2 Modeling Sbox
	3.3 Initial Division Property

	4 Stopping Rule and Search Algorithm
	4.1 Stopping Rule
	4.2 Search Algorithm

	5 Applications to SIMON, SIMECK, PRESENT, RECTANGLE, LBlock and TWINE
	5.1 Applications to SIMON and SIMECK
	5.2 Applications to PRESENT and RECTANGLE
	5.3 Applications to LBlock and TWINE

	6 Summary and Discussion
	A An Example
	B Division trails of PRESENT and RECTANGLE Sbox
	C Linear inequalities description of PRESENT and RECTANGLE Sbox
	D Experiments on PRESENT and RECTANGLE
	E Integral Distinguishers listed in Table1
	E.1 SIMON32's 13-Round Distinguisher
	E.2 SIMON48's 15-Round Distinguisher
	E.3 SIMON64's 17-Round Distinguisher
	E.4 SIMON96's 21-Round Distinguisher
	E.5 SIMON128's 25-Round Distinguisher
	E.6 SIMECK32's 14-Round Distinguisher
	E.7 SIMECK48's 17-Round Distinguisher
	E.8 SIMECK64's 20-Round Distinguisher
	E.9 PRESENT's 9-Round Distinguisher
	E.10 RECTANGLE's 9-Round Distinguisher
	E.11 LBlock's 16-Round Distinguisher
	E.12 TWINE's 16-Round Distinguisher

	References

	Reverse Cycle Walking and Its Applications
	1 Introduction
	2 Preliminaries
	3 Reverse 2-Cycle Walking
	4 Bounding the Mixing Time
	5 CCA Security
	6 Full Security via Reverse Cycle Walking
	7 Open Questions
	References

	Mathematical Analysis II
	Optimization of LPN Solving Algorithms
	1 Introduction
	2 LPN
	2.1 LPN Definition
	2.2 Reduction and Solving Techniques

	3 On Approximating the Probability of Success
	4 Bias of the Code Reduction
	4.1 Bias of a Repetition Code
	4.2 Bias of a Perfect Code
	4.3 Using Quasi-perfect Codes
	4.4 Finding the Optimal Concatenated Code

	5 The Graph of Reduction Steps
	5.1 Towards Finding the Best LPN Reduction Chain

	6 Chains with a Guessing Step
	7 Results
	8 Conclusion
	References

	The Kernel Matrix Diffie-Hellman Assumption
	1 Introduction
	1.1 Our Results

	2 Preliminaries
	2.1 Multilinear Maps
	2.2 A Generic Model for Groups with Graded Encodings
	2.3 The Matrix Decisional Diffie-Hellman Assumption

	3 The Matrix Diffie-Hellman Computational Problems
	3.1 The Kernel DH Assumptions in the Multilinear Maps Candidates
	3.2 A Unifying View on Computational Matrix Problems

	4 Reduction and Separation of Kernel Diffie-Hellman Problems
	4.1 Separation
	4.2 Increasing Families of KerMDH Problems

	5 Applications
	5.1 Generalized Pedersen Commments in Multilinear Groups
	5.2 Group-to-Group Commitments

	6 A New Matrix Distribution and Its Applications
	A Deferred Proofs from Sect.2.2
	B Examples of Matrix Distributions
	C Flexible Problems That Fit into the New Framework
	D Deferred Proofs from Sect.4
	References

	Cryptographic Applications of Capacity Theory: On the Optimality of Coppersmith's Method for Univariate Polynomials
	1 Introduction
	2 Background and Related Work
	2.1 Coppersmith's Method
	2.2 Optimality of Coppersmith's Theorem
	2.3 Cryptanalytic Applications of Coppersmith's Theorem

	3 Capacity Theory for Cryptographers
	3.1 p-adic Numbers
	3.2 Auxiliary Functions
	3.3 When Do Useful Auxiliary Polynomials Exist?

	4 Lattices of Binomial Polynomials
	4.1 Proof of Theorems 9 and 10
	4.2 Proof of Theorem 11

	5 A Field Guide for Capacity-Theoretic Arguments
	5.1 Showing Auxiliary Polynomials Exist
	5.2 Showing Auxiliary Polynomials Do Not Exist

	6 Conclusion
	References

	A Key Recovery Attack on MDPC with CCA Security Using Decoding Errors
	1 Introduction
	1.1 Attack Models and Previous Work
	1.2 Contributions

	2 Background in Coding Theory and Public-Key Cryptography
	2.1 McEliece Cryptosystem

	3 The QC-MDPC Public Key Encryption Scheme
	3.1 Generation of Public-Key
	3.2 Decryption
	3.3 Proposed Parameters

	4 A Key-Recovery Attack
	4.1 Attack Model
	4.2 Attack Description

	5 Analysis
	5.1 An Explanation for the Distinguishing Procedure
	5.2 Complexity Analysis

	6 Debunking the CCA Security Claim
	6.1 An Explanation of How Sample Collection Works

	7 Implementations and Numerical Results
	7.1 CPA Case
	7.2 CCA Case
	7.3 Some Discussions

	8 Conclusions and Future Work
	References

	SCA and Leakage Resilience II
	A Tale of Two Shares: Why Two-Share Threshold Implementation Seems Worthwhile---and Why It Is Not
	1 Motivation
	2 Preliminaries
	2.1 Lightweight Cryptography
	2.2 Present
	2.3 Simon
	2.4 Masking
	2.5 Threshold Implementation
	2.6 Leakage Detection

	3 Threshold Implementation with Two Shares
	3.1 Potential Pitfalls

	4 Application to Simon
	4.1 Simon with Two Shares
	4.2 Round-Based Implementation
	4.3 Bit-Serialized Implementation

	5 Application to Present
	5.1 Present with Two Shares
	5.2 Hardware Implementation

	6 Implementation Results
	7 Leakage Analysis
	7.1 Theoretical Analysis
	7.2 Practical Analysis

	8 Conclusion
	References

	Cryptographic Reverse Firewall via Malleable Smooth Projective Hash Functions
	1 Introduction
	1.1 Overview of Our Contributions
	1.2 Related Work

	2 Preliminaries
	2.1 Cryptographic Reverse Firewalls
	2.2 Smooth Projective Hash Function

	3 Malleable Smooth Projective Hash Function
	3.1 Definition
	3.2 Malleable SPHFs from Graded Rings

	4 Generic Construction of CRFs via Malleable SPHFs
	4.1 Warm-Up: Message-Transmission Protocol with CRFs
	4.2 Oblivious Signature-Based Envelope with CRFs

	5 Oblivious Transfer with Reverse Firewall
	5.1 A New OT Framework from Graded Rings
	5.2 Constructions of CRFs
	5.3 Instantiations

	6 Conclusion
	References

	Efficient Public-Key Cryptography with Bounded Leakage and Tamper Resilience
	1 Introduction
	1.1 Our Contribution
	1.2 Related Work

	2 Preliminaries
	2.1 Notation
	2.2 Public-Key Encryption
	2.3 Signatures

	3 Signatures
	3.1 The Scheme of Dodis, Haralambiev, Lòpez-Alt, and Wichs
	3.2 Security Proof
	3.3 Concrete Instantiations

	4 Public-Key Encryption
	4.1 The Scheme of Qin and Liu
	4.2 Security Proof
	4.3 Concrete Instantiations

	5 Conclusions and Open Problems
	References

	Public-Key Cryptosystems Resilient to Continuous Tampering and Leakage of Arbitrary Functions
	1 Introduction
	1.1 Our Results
	1.2 Other Related Work

	2 Preliminaries
	2.1 Entropy and Extractor
	2.2 Hash Proof Systems
	2.3 All-But-One Injective Functions

	3 Continuous Tampering and Bounded Leakage Resilient CCA (CTBL-CCA) Secure Public-Key Encryption
	4 The CTBL-CCA Secure PKE Scheme
	5 Continuous Tampering and Leakage Resilient CCA (CTL-CCA) Secure Public-Key Encryption
	6 Random Subspace Lemmas
	7 The CTL-CCA Secure PKE Scheme
	8 Impossibility of Non-Persistent Tampering Resilient Signatures
	A Computational Hardness Assumptions
	B Instantiation of ABO Injective Functions
	B.1 A Matrix Instantiation Based on DDH
	B.2 DCR Based Instantiation

	C The Continuous Leakage Resileint CPA PKE Scheme
	D Continuos Tampering Secure Signature
	References

	Author Index

