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196 Fluid pressure

Prerequisite: The density ρ (unit: kg/m3) of the fluid is constant.

Pressure: The pressure p (unit: Pa ≡ N/m2) is a force per area, that
is identical for all cross sections and always acts normal to the cross
section (hydrostatic stress state).

Pressure in a fluid under the acti-
on of gravity and a surface pressure
p0 is given by:

p (z) = p0 + � g z .

z

p0

p(z)

The buoyancy force acting on a body (volume V ) immersed in a fluid
is equal to the weight of the displaced fluid volume.
Buoyancy force:

FA = ρ g V .

The line of action related to the
buoyancy force passes through the
center of gravity CF of the displa-
ced fluid volume.

FA

CF

V

Fluid pressure on plane surfaces

hC

y

x
F yC

yD
xC

xD

C

D

A

Resulting force

F = p (yC)A = ρ g hC A .

Center of pressure D

yD=
Ix
Sx

,

xD=− Ixy
Sx

.
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Fluid pressure on curved surfaces

z

A

C∗
dA∗

dA

dF

A∗
ρ

dĀ

α

dV
dFV = pdA cosα = ρ g dV

dFH = pdA sinα = p dA∗

Integration yields

FV = ρ g V ,

FH = pC∗ A∗ .

The resulting horizontal component of the fluid pressure FH is equal
to the product of the vertically projected area A∗ and the pressure pC∗
in the centroid of the projected area.

Stability of a floating body: The equilibrium state is stable if the
meta center M is above the centroid CB of the body:

M

water line

y

z

x

y
CBe
CF

hM

hM =

{
> 0 : stable

< 0 : unstable

with the position of the meta
center

hM =
Ix
V

− e .

Here the following data are used

Ix : second moment of area defined by the water line,

V : volume of the displaced fluid,

e : distance of the centroid of the body centroid CB

from the centroid of the displaced fluid CF .
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P7.1 Problem 7.1 A container is closed
during filling by a ball valve.

Determine the density ρB of the
ball, such that no air remains in
the container when the ball closes
the valve.

Given.: ρF , r1, r2.

r1

r2
ρB

ρF

Solution The ball has to submerge
to a depth that just closes the
opening when the container is full.
The buoyancy force is than ρF g V1,
where V1 is the volume of the
displaced fluid (spherical segment).
The buoyancy force has to be equal
to the weight of the ball

ρF g V1 = ρB g V.

r2
ρB

r1

h

With the volume of a sphere

V =
4

3
π r32

and the spherical section

V1 = π h2 (r2 − h

3
) , h = r2 +

√
r22 − r21

we compute for the density of the ball

ρB = ρF
V1

V
= ρF

π h2 (r2 − h

3
)

4

3
π r32

= ρF
3

4

(
h

r2

)2 (
1− h

3 r2

)
.
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P7.2Problem 7.2 The design of the de-
picted valve of a water basin
ensures that the valve opens if the
water level reaches the hinge at
point B. The flap valve is assumed
to be massless.

Determine z̄ for the valve to func-
tion in the described way.

Given: ρ, a, r.

���
���
���
���

���
���
���
���

B

z̄

a

C
r

z

ρ

Solution The thickness of the flap valve is irrelevant for the following
considerations, as all forces are assumed per unit length.

We compute the resulting horizontal for-
ce from the linear pressure distribution:

FH =
1

2
ρ g (z̄ + a)2

with

z =
2

3
(z̄ + a) .

r

BV

BH

z

FV

FH

C = 0

The vertical buoyancy force can be computed from the weight of the
displaced water by using the area of the dashed region:

FV = ρ g
(
2 a r − π

2
r2

)
.

The flap valve just opens if the reaction force in C vanishes. Equilibrium
of moments with regard to B provides:

�

B : −rFV + zFH = 0

� −ρ g
(
2 a r − π

2
r2

)
r +

1

2
ρ g (z̄ + a)2

2

3
(a+ z̄) = 0 .

The solution of this equation with respect to z̄ yields the water level

z̄ = 3
√

3 (2 a r − π

2
r2 ) r − a .
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P7.3 Problem 7.3 The depicted cross
section of a tunnel is immersed
in water saturated “liquid” sand
(density ρSA). Above resides a layer
of dry sand (density ρS).

Determine the thickness x of the
concrete base (density ρC), such
that a safety factor η = 2 against
lifting is reached. It is assumed that
the weight of the dry sand is acting
on the cross section of the tunnel.

h

x

h

l

SandρS

ρC

ρSA

ri

Given: ρB = 2.5 · 103 kg/m3, ρS = 2.0 · 103 kg/m3,

ρSA = 1.0 · 103 kg/m3, l = 10 m, ri = 4 m, h = 7 m.

Solution The weight (per unit length) of the tunnel cross section and
sand load is given by

G = ρC g
[
x l +

( l
2
− ri

)
2 h+

π

2

( l2
4

− r2i
) ]

+ ρS g l h .

With the buoyancy force (per unit length)

B = ρSA g
[
(h+ x) l +

π

2

l2

4

]

we can determine the height of the concrete base, such that a safety
factor against lifting

η = 2 =
G

B

is achieved. Solving for x yields:

(2ρSA l − ρBl)x = ρS lh+ ρB
[( l
2
− ri

)
2h+

π

2

( l2
4

− r2i
)]

−2 ρSA

(
hl +

π

2

l2

4

)
.

With the given data we get

(20− 25) x = 2 · 70 + 2.5
[
14 +

π

2
(25− 16)

]
− 2

(
70 +

π

2
25

)

� −5x = 210.34 − 218.54

� x = 1.64m .
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P7.4Problem 7.4 A cylindrical plug P (cross sect-
ion AP , length a) is elastically supported and
closes straight with the bottom of a basin for
the water line h0. In this situation the force
vanishes in the rope (length l) to which a
floater S is attached (cross section AS > AP ).

a) Determine the weight GS of the floater.

b) Which maximal water height h1 can be
reached before leaking occurs?

l

c

AP

ρ

a

AS

h0

S

P

Solution to a) The weight GS of the floater
is computed from equilibrium and geometry in
the reference situation:

ρgAS t0 = GS

h0 = l + t0

}
� GS = (h0 − l)ρgAS .

Fp

GS

ρgASt0

GS
t

l

y

cy

ρgASt

S

a

l

t0

h0

h

to b) For a water line h the plug is elevated
by a distance y due to the force in the rope S.
The equilibrium conditions for the floater, for
the plug, and the geometric conditions are

ρgAS t = GS + S , S − Fp = cy ,

h = l + t+ y .

In the equilibrium expression, Fp is the diffe-
rence in the pressure force in the displaced and
the reference situation (the forces due to lateral
pressure are in equilibrium):

Fp = ρg(h−y)Ap−ρgh0Ap = ρg(h−y−h0)Ap .

Eliminating GS , S, Fp, and t yields

h− h0 = y
[
1 +

c

ρg(AS −AP )

]
.

The maximal heighth = h1 is reached, if y = a is attained:

h1 = h0 + a
[
1 +

c

ρg(AS − AP )

]
.
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P7.5 Problem 7.5 A dam of length l has a
surface of parabolic shape with a
horizontal tangent at the bottom of
the water basin.

Determine the force resulting from
the pressure, the position of the point
of action, and the line of action for a
water height h.

Given: h, l, a = h/4, ρ.

h

y

x

a

ρ

Solution The vertical
component of the force
is FV = ρ g V with the
volume V = l A. The area is
determined by the function
y(x) = 16 x2/h of the para-
bola

A =

∫ a

0

(h− y) dx

yF

y

dx

dA

h-y

x

y

FH

F

xF

xA

FVα

=

∫ a

0

(h− 16

h
x2) dx =

[
hx− 16

3h
x3

]a
0
=

h2

6
.

Thus the vertical component of the pressure force becomes:

FV =
1

6
ρ g h2 l.

The vertical force acts at the centroid C of the area

xF =
1

A

∫ a

0

x (h− 16

h
x2) dx =

[
h
x2

2
− 16

h

x4

4

]a
0

=
3

32
h .

The horizontal component of the fluid pressure is computed by the
projected area A∗ = h l and the pressure pS∗ = 1

2
ρ g h in the centroid

of the projected area:

FH =
1

2
ρ g h2 l with yF =

1

3
h .

By the theorem of Pythagoras, we obtain the resulting force, its line of
action passes through the point (xF , yF ) and forms an angle α to the
y-axis:

F =
√

F 2
H + F 2

V =
1

6

√
10 ρ g h2 l, α = arctan

FH

FV
= arctan 3 = 71.5o.
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P7.6Problem 7.6 A prismatic body with
the mass mB, width a, and length l
is floating in the water. Its centroid
CB is in the height hB .

Determine the additional point mass
mA, such that the body floats in a
stable manner. a

mB

mA

ρW

hB

CB

Given: ρW , mB , hSB, l, a.

Solution Stable floating of the body is defined by the position of the
meta center hM = Ix / V − e > 0 . For hM = 0 the limit of the stable
state is reached.

The volume V of the displaced fluid is obtained by equilibrium (buoyan-
cy = weight of the body and added mass):

ρW g V = (mB +mA) g � V =
1

ρW
(mB +mA)

The second mom-
ent of area is

hB

x

a

CB

CC

CF

a

hC

e

hF

l
y

Ix =
l a3

12
.

For e = hC − hF

we need the cen-
ter of gravity hC

of the floating construction and hF of the displaced fluid. They are
determined by

hC (mB +mA) = hB mB � hC = hB
mB

mB +mA
,

V = a l (2hF ) � hF =
mB +mA

2 a l ρW
.

The limit for stable floating is reached if hM = 0:

1− 12hC
mB

l a3 ρW
+

12 (mB +mA)
2

2 l2 a4 ρW 2
= 0 .

Solving for the required additional mass mA yields

mA =
l a2 ρW√

6

√
12hCB

mB

l a3 ρW
− 1 −mB .
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P7.7 Problem 7.7 A cone-shaped floa-
ting device is made of two materials
with densities ρ1 and ρ2.

Determine the diameter d of the
cone, such that it floats stable in a
fluid of density ρF .

Given:

ρ1 =
2

3
ρF , ρ2 =

1

3
ρF ,

h1 = 2 h , h2 = 4 h .

h1

h2

d

ρ2
ρF

g

ρ1

Solution The cone has a stable floating position, if the following con-
ditions are met:

(1) : G = A,

(2) : hM =
Ix
V

− e > 0.

(1) Floating condition:

d

h1 + h2
=

d1
h2

� d1 = d
h2

h1 + h2
=

2

3
d.

h1

h2

d1

d

The force due to weight is

G = V1 ρ1 g + V2 ρ2 g

=
1

12
π h1 (d

2 + dd1 + d21) ρ1 g +
1

12
π h2 d

2
1 ρ2 g

=
23

81
π h d2 ρF g = 0.892 h d2 ρF g .

The immersion depth t and the diameter dT = d t/(h1+h2) of the cone
at the water line of the fluid follows the buoyancy force

A =
1

12
π t d2T ρF g

=
1

432
π

d2

h2
ρF g t3 .
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For G = A we obtain

t3 =
368

3
h3

� t = 4.969 h .

dT

t
(2) Stability condition:

The volume of the displaced fluid is given by

V =
1

432
π

d2

h2
t3 =

23

81
π h d2 = 0.892 h d2 ,

and the second moment of area Ix is

Ix =
d4T π

64
=

(0.828 d)4 π

64
= 0.023 d4 .

The distance of the centroid of the body from the centroid of the dis-
placed fluid is provided by

e = xS − 3

4
t

with

xS =

3

4
(h1 + h2) ρ1

1

16
π d2 (h1 + h2) +

3

4
h2 (ρ2 − ρ1)

1

16
π d21 h2

ρ1
1

16
π d2 (h1 + h2) + (ρ2 − ρ1)

1

16
π d21 h2

=
18 h− 16

9
h

4− 16

27

= 4.761 h

� e = 4.761 h− 3

4
· 4.969 h = 1.034 h .

For the diameter of the cone we finally obtain

hM =
0.023 d4

0.892 h d2
− 1.034 > 0 � d > 6.333 h .
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P7.8 Problem 7.8 A block-shaped iceberg of dimensions a× h× l calves of
a floating ice shelf. It is assumed that a � h. The density of the water
is ρW , the density of the ice ρI = 9

10
ρW .

th

l

a

ρE

ρW

Eisberg Schelfeis

For which length l does the iceberg float in a stable way?

Solution We start by determining the immersion depth t of the iceberg.
Equilibrium between iceberg and buoyancy force renders for the given
density ratio the immersion depth

ρIghla = ρW gtla � t =
9

10
h .

To analyze the floating stability we consider the position hM of the meta
center:

x

z

y
t

a

ρW

ρE
h

l

hM =
Ix
V

− e ,

Ix =
al3

12
,

V = alt =
9

10
alh ,

e =
h

2
− t

2
=

h

20
.

By combining all relations we derive

hM =
5

54

l2

h
− h

20
.

We consider the limit of floating stability (hM = 0). This determines
the length l0 :

l20 =
27

50
h2

� l0 =

√
27

50
h ≈ 0.735h .

In a stable floating state, we must have hM > 0. Thus, the iceberg
floats stable for l > l0. For l < l0 the iceberg tips over.
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P7.9Problem 7.9 A circular shaped hatch
closes the outflow of a tank.

a) Determine the mass m, such
that the hatch opens if m is
attached in the distance c from
the hinge point.

b) Determine the distance by
which the mass m has to be
shifted, for the hatch to open
when the water level reaches
the height b.

Given: a, b, c, d, e, m, ρ.

b
a

e

cSB

45◦

ρ
d

m

Solution zu a) The force acting on the hatch is

S mgB

F

yD −√
2a

F = ρ g AhS = ρ g
π d2

4
(a+ e) .

The point of action of F is determined by

yD = yS +
Iξ

yS A
=

√
2 (a+ e) +

d2

16
√
2 (a+ e)

.

The hatch opens, if B = 0. Equilibrium of moments provides

F ( yD −
√
2 a )−mg c = 0 .

From this we compute the required mass

m = ρ
π d2

4 c
(a+ e)

[√
2 e+

d2

16
√
2 (a+ e)

]
.

to b) For the water level b the force acting on the hatch is

F = ρ g Ahs = ρ g
π d2

4
(b+ e) .

With the point of action

yD =
√
2 (b+ e) +

d2

16
√
2 (b+ e)

of F the equilibrium condition F ( yD − √
2 b ) − mg c = 0 yields the

distance c:

c = ρ
π d2

4
(b+ e)

[√
2 e+

d2

16
√
2 (b+ e)

]
1

m
.
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P7.10 Problem 7.10 A trapezoidal hatch
closes the outflow of the depicted
basin.

Determine the resulting force on
the hatch together with the support
reactions in point B.

Given: ρW = 103
kg

m3
, g = 9.81

m

s2
. C

4m

B

ρW

2m

7m

3m

Solution The area A = 10m2, the
centroid of the hatch

ȳs =
(
5·2, 5+5·2

3
·5
) 1

10
=

35

12
m

and the pressure

p (ȳs) = ρ g

[
9 +

3

5
· 35
12

]
=

43

4
ρ g

are used to compute the resulting
force

F = ρ g Ap (ȳs) = 103·9, 81·10·43
4

= 1.05MN .

ξ

η

5

ȳs

11 1

ȳ

[m]

S

C

B

C

B
F

ȳD

The position of the line of action follows from

Iξ =
53 · 1
12

+5·1
(
35

12
− 2, 5

)2

+2
53 · 1
36

+5·1
(
35

12
− 10

3

)2

= 19.1m4 ,

ys = ȳs + 15m and yD = ȳD + 15m to be

yD =
Ix
Sx

=
y2
s A+ Iξ
ys A

� ȳD = ȳs +
Iξ
ys A

=
35

12
+

19, 1

( 35
12

+ 15) 10

= 3.02m .

The support reaction is determined by equilibrium of moments with
regard to the hinge point C of the hatch

�

C : B · 5− F ( 5− 3, 02 ) = 0

� B = 1, 05
5− 3, 02

5
= 0.415MN .
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P7.11Problem 7.11 A concrete dam
(density ρC) closes a basin
that is filled up to the height
h = 15 m.

Determine

a) the safety factor against
sliding at the bottom (adhesion
coefficient μ0),
b) the safety against tilting,
c) the stress distribution at the
bottom, if it assumed to be a
linear distribution.

3m

12m

3m

ρC

ρW

2m

3m

6m 8m μ0

Given: ρC = 2.5 · 103 kg/m3, ρW = 103 kg/m3, μ0 = 0.5 , g = 10 m/s2

Solution to a) To determine the safety factor against sliding we com-
pute the horizontal forces due to the water pressure and compare them
to the adhesion forces acting at the bottom. The horizontal force due
to water pressure is computed from

FH =
1

2
ρW g hA =

1

2
103 · 10 · 15 · 15 · 1 = 1125 kN/m .

The resulting force due to the weight of the concrete and the water
pressure is

FV = 2.5 ·103 (3 ·2+4 ·18+3 ·8+ 1

2
·12 ·8)+103 (2 ·12) = 3990 kN/m .

Using Coulomb’s friction law we determine the safety factor ηS against
the onset of sliding

ηS =
μ0 FV

FH
=

0.5 · 3990
1125

= 1.77 .

to b) The dam can tilt around
point B. The safety against
tilting is determined by compa-
ring the moment of forces. The
moment of the water pressure
is given by

h

3

FH

B

FV i

xBi

MBW = FH
h

3
= 1125 · 15

3
= 5625 kNm .
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The moment related to the weights is

MBG =
∑
i

FV i xBi

= 2.5 · 103 (3 · 2 · 13 + 4 · 18 · 10 + 3 · 8 · 4

+
1

2
· 12 · 8 · 2

3
· 8) + 103 (2 · 12 · 13) = 31870 kNm .

This results in a safety factor against tilting

ηT =
MBG

MBW
=

31780

5625
= 5.67 .

to c) To compute the stress distribution in the bottom gap of the dam
we determine the excentricity of the resulting force RV =

∑
i FV i. The

vertical component of the force acting in the gap yields, according to
the sketch below,

RV (a− e) = MBG −MBW

� e = a− MBG −MBW

RV
= 7− 31870 − 5625

3990
= 0.422m .

With the introduced coordinate-
system we compute the normal
stresses in the bottom gap (like in
a beam cross section)

σ =
N

A
+

My

Iy
x .

Here we have to insert the fol-
lowing data: A = 14m2, Iy =
1 · 143 / 12 = 288.67m4, N =
−RV = −3990 kN, My = N · e =
−1685 kNm. As a result we obtain
for the stress distribution

σ =
−3990

14
+
−1685

228.67
x = −285− 7.37 x kN/m2 .

σBRV

a = 7 ma = 7 m

x

z

B

e

σC

C

MBW

MBG

For the selected points C and B evaluation yields

σC = −0.23MPa and σB = −0.34MPa .
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P7.12Problem 7.12 A rectangular plate
of width b closes the outlet of a
basin. It is hinged at point D.

a) Determine the water height t,
for which the plate starts to rotate
around point D.

b) Compute the bending moment
at point D for this situation.

Given: b, l, h, ρ.

t
h

l

ρ D

to a) The plate starts to rotate, if the resulting force R of the water
pressure is above point D. In the limit case the resulting force of the
water pressure passes through point D. From this we can determine the
water height

t = 3h .

2a

3

h

R

D

R̄

pD

MD

2a

a

D

MD

to b) To compute the bending moment in the plate we start with the
moment at point D. With the resultant R̄ of the upper plate and the
pressure at point D,

R̄ =
1

2
pD 2 a b , pD = ρ g 2h ,

we obtain

MD = −R̄
2

3
a = −2

3
pD b a2 = −4

3
ρ g (l2 + h2)h b .

The distribution of the bending moment is cubic for a linearly varying
load. The maximum occurs at the hinge point D.
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P7.13 Problem 7.13 The pressure p in gases depends on the density ρ. The
relation between the two state variables is provided by the universal
gas equation p = ρRT (universal gas constant R, temperature T ). E.
g. for air at sea level and at T = 0◦ it holds: p0 = 101325 Pa and
ρ0 = 1.293 kg/m3.

Determine the dependency of air pressure on height for the case of
a constant temperature (barometric height relation).

Solution First, we apply the universal gas law at sea level. This yields

p0 = ρ0RT or RT =
p0
ρ0

.

Equilibrium of an infinitesimal air
column with cross section A and
height dz

↑ : pA− ρgAdz − (p+ dp)A = 0

leads to

dp

dz
= −ρg .

z

dz
ρgA dz

p+ dp

p

Using the universal gas equation yields

dp

dz
= − pg

RT
.

By separation of variables and integration we obtain:

dp

p
=− g

RT
dz �

∫ p

p0

dp̄

p̄
= −

∫ z

0

g

RT
dz̄ � ln

p

p0
= − g

RT
z .

This renders the air pressure as a function of the height

p = p0 e
−

gz

RT .

The air pressure decreases exponentially with the height. From the
relation RT = p0/ρ0 and the gravity constant g = 9.80665 m/s2 we
deduce

p = 101325 Pa e
−

z

7991m .

Note: In a height of 5, 5 km the pressure has dropped to one half of
its original value.
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