Chapter 4

Torsion
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Torsion

If an external load causes an internal moment M, along the longitu-
dinal axis, the bar is loaded by torsion (twisting). In the following we
refer to the moment M, as torque or torsional moment Mr.
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Prerequisites, assumptions:

e Warping of the cross sections is not constrained (pure tor-
sion),

e The shape of the cross sections does not change during rotation.

Equilibrium conditions

=—m, m(z) = external moment per unit length.

Differential equation for the angle of twist

dd
GIr, =Mr,
dx
¥ = angle of twist,
GIr = torsional rigidity,

G = shear modulus,

IT = torsional constant.

Twist of end sections
I

AY =9(l / 19' )dz = dz
0

Special case: GIr = const, My = const

Ml
AY = .
GIr

Maximum shear stress

Mt . .
Tmax = W’ Wr = sectional moment of torsion.
T

The location of the maximum shear stress is provided in the following
table.
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Cross section

T ﬂ
N
|
,‘(l

r; = 0 (full circle)

thin-walled, closed profile

t
@a a = const
t = const

thin-walled, open profile

h

ti\«—»

1
i t = const
t; = const
square
= Tmaz — a
a
ellipse /e

Tmazx

It
= Il = ;T(ri —r]
It = ;r?‘i
2

e

Ir = 2wa’t

1
Ir= 3ht3

1
Ir = 5 Ehitf

Ir =0, 141a*
a3b3
Ir=m , b2
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Wr Remarks

The shear stresses are distributed

4 _ 4 . .
Wiy = Ir _ mreg—ri linearly across the cross section:
Pa 2 P My
7(7) = r.
It
T 3 Cross sections remain plane
Wr = _r,

during deformation.

7 is constant across the wall-thickness ¢.
The shear flow
Wr = 2A7 tmin T — 71 — Mr
™= o4r
is constant.

Tmax occurs at the smallest wall-
thickness tmin.

Wr = 27a’t Ar is the area encircled by the central
line of the profile.

I
Wr= r
7 is linearly distributed across the
wall-thickness.
Wy = 1 he2 Tmax Occurs at the largest wall-
thickness tmax.
It
W =
T tmax
e 0.208 o Tmax occurs at in the middle of
T = 0.
the lateral lengths.
W =" ab? Tmax occurs at the ends of the smaller
T =

semi-axis.
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Problem 4.1 A shaft with cir-
cular cross section is clamped
at one end and loaded by a
pair of forces.

Determine F' such that the
admissible shear stress Tadmis
is not exceeded. Compute for
this case the twist of the end
section.

Given: R =200 mm, » =20 mm, [ = 5 m, 7, = 150 MPa,
G = 0.8 - 10° MPa.

Solution The torque (torsional moment)
M7 =2RF

is constant along the bar. The maximum shear stress in the cross section
is given with

Wr = 72TT3

by
__ Mz _4RF
T Wre @

In order not to exceed the admissible shear stress,

3
r
Tmax < Tadmis ~ F < AR Tadmis -
must hold and we obtain
3 . .
Fo = r - 7 - 8000 - 150 —AT12N

4R

For this load the twist (in radians) can be computed using

4200

Ir = 72TT4 and Mg = 2RFmax .

Inserting yields

Mgl 7l 150 -5000

Aﬁ _— =
GIr Gr 0.8-10% - 20

0.47 .

This value is equivalent to an angle of 27°.
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2b
Problem 4.2 A shaft has to carry ©) Q=— P4.2
the torque Mr =12 - 10% Nm. Select a 2%
a cross section from the depicted
group.
Dimension the cross sections such ®

that the admissible shear stress
Tadmis — D0 MPa is not exceeded.
Which cross section is the most effi-
cient in terms of material usage?

Solution The admissble shear stress is reached for

Mr
Tmax — = Tadmis -
Wr

With the section moment for torsion

Wi, = g a®, Wr, = 0.208 -8 b° = 1.664 °
™ 2 ™
Wr, = 2nc’t = 5(:3, Wr, = 3 dt* = 150 d®
we determine with the given numerical values
3 2Mr 3 Mt
“ \/TK’TZul i 1.664 7, i
c:?’\/5MT:72,6mm, d:?’\/15OMT:2Z5.5mm.
T Tzul T Tzul
The cross section areas are
Ay = ma® = 89.8 cm? | Ay = 4b? = 110.0 cm? |

As = gc2 —331cm®, A= gdz —319.4 cm® .

Therefore, the third cross section (i. e. the thin-walled closed profile) is
the most material efficient profile.
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Problem 4.3 Determine the My My
maximum admissible torque ain! ] -
(torsional moment) and the ‘ l ‘
corresponding admissible - o
twist for the closed profile vt yit
and the profile that is slit at 2t 1 2t 2t 2t
A —| |- | |— ] |- .
Given: a = 10 cm, ¢t = 2 mm, gt t oy

Tadmis = 20 MPa, 7 =%

[ =5m,

G =0.8-10° MPa. a

Solution The admissible torque and the admissible twist are computed
for both profiles via

i l Tadmis WTl

M is — Ta mqu Aﬁa mis = Tadmis — S ]

Tadmis TadmisVWW'T , dmis GIT GIT

In the case of the closed profile with ¢ < a it holds
ds a a a

Ar = a? =9 ( ) —3

T=a , 7{ #(s) o + . ;o

2

Ir = 447 _ 4ta3 ’ Wi = 2A0tmi = 2a%t

fio

and we obtain

Mr, ;. = Tadmis2a®t = 800 Nm ,
3Tadmisl N o
Aﬁa ow — =0.01 :1’ .
1 2Ca 0.01875 ( 07°)

If the profile is open (slit at position A), we compute with

1 3, 4,3 o Ir s
JT_Bzijtihi_6ta, W = 3t%a

tmax

the torque and twist

]\47“a = Tadmis3t2a =24 Nm,

dmis

Admis = T‘"‘ngtl =0.3125 (217.9°).

Note: The closed profile is much stiffer with respect to torsion than the
open profile.
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Problem 4.4 A shaft is loaded P4.4
by a pair of forces. The shaft

is assmbled from two different 2b/

thin-walled cross sections (¢t < #

a) of the same material (shear

modulus G). \M
F
Determine in both cases the ad- ~— i F

missible forces and the corre-

T
sponding twist such that the © ! ® ' /\\/Za
shear stress Taamis 1S not excee- m M\
ded. vt f v
i Tt
20—

Solution The torque My = 2bF is constant along the length of the
shaft. Stress and twist are determined from

T_MT_2bF Aﬁ_MTl_2bFl
T Wr o Wr T GIr GIr
The admissible shear stress will not be exeeded for
WTTadmis WTTadmis
< admis F < Fa mis — )
TS Tadmis S gy T T 2

2bl Faamis Tadmis Wl
A admis — = .
Jua Glr Glr

With the values for the two different cross sections

T 9 ds a 5 T 5
@ Ar 5@ ?{t t( + ), Wr =ma*t, Ir 2+7rat,
® Ar =d’ %dsza(2+2¢2) Wr =2d%t, Ir = 2 a’t
’ t ot ’ ’ 1++/2
we obtain
2 2
T a“t a“t
Fa mis; — admis » Fa misg — admis
d 1 9 b Tad d 9 b'rd
2 lamiq lami@
Abgammia, = = L7 1Todmis A iy = (14 v/2) TR

T aG aG

Note: The admissible force is larger for the first profile, while the
admissible twist is larger for the second profile.
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Problem 4.5 The thin-walled box girder
is loaded by a torque Mr.

Determine the warping of the cross section.

Solution The warping u(s) (displacement
in longitudinal direction) is computed from
the shear strain

T 0s T ox
of the wall segments. With

o T o MT
7T G T GArt(s)
81} dv MT
or ~ tdz T TJ‘(S)GIT ’

4-16a* 32 5

AT:4a2, IT a’t

= 4a | 4a ~ 3
t T o

we obtain dv=r ddy

ou  Mr t _37)(3)
0s  8Ga2t [t(s) 4a '

Integration in region @ provides (t(s) = 2t, 7 = a) with u(s=0) =0

(then u vanishes on average)

(s = M {1 3}57 Mr

T8Ga2t |2 4| °T 32642t

Analogously, we obtain in regions @ , ® ;, @

M-
uz(s) = 32G22t[8 — 2a] ,
M-
us(8) = = g9 0q2, 5 ~ 40
ua(s) Mz [s — 6a] .

= 32Ga?t

o -




Problem 4.6 A tube @ is mounted
by heat shrinking on a shaft @
with circular cross section of diffe-
rent material.

Determine the maximum shear
stresses in @ and @ as well as the
twist under the application of a tor-
que Mr.
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My P4.6

Solution First we consider shaft © and pipe @ independently. For the

angle of twist and the stress it yields

M, 1 M,
Y = ! maxq — ! 5
YT, T g
192 = MTQl 5 Tmaxgy = MT2
G21p2 WT2
with

s T
I, = 2R411, Ip, = 2 (R% _R;l) , Wr =

Together with equilibrium
Mr = Mr, + Mr,

and geometric compatibilty

Y =102 =1

we obtain
Gil,
Mz, = M- !
n g Gl]m + GQI:DQ ’
and
MTG17”1
Tmaxi — Tmaxy —

Gl]m + GQIPz ’

9= Ml
Gl]m + GQIPz .

M,

Ipl IP2
= Wr, = .
Rl 9 T2 R2
G2 IP2

=M
4 Gl]m + GQIPz

MTGQTQ
Gl]m + GQIPz ’
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Problem 4.7 A conical shaft

with varying radius is loaded by T r(x) My 5
a torque Mry. da - > I a
Determine the twist and the j/‘
peripheral stress as a function l

of x.

Solution The differential equation for the twist angle is given with

R R C R o)

by

GI, ~ nGa* (2_ %)4

9 = Mt 2M~ 1

Integration with respect to x yields

2M~l 1
Iz) = C.
($) 37rGa4 (2 iE)B +
T
The integration constants are determined from the boundary conditions
_ 2M7l 1
VO =0~ O=—g s s
Thus the twist results in
Myl 1
= - 1
() 12rGa* (1 o )3
21

The peripheral shear stress is computed with

I T T\3
Wr(e) =" = 2“3(1_ z)
as
oy~ Mo 2Mr
= = 3 -
Wr Ta3 (2—?)

Twist and stress have a maximum at = = {:

TMrl 2M-
o= 0 )= ""7

T 127Gat’ mad
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Problem 4.8 The depicted gear-
system consists of two shafts
(lengths 1, l2) of identical mate-
rial, that are connected by two
gear wheels (radii Ri, Rz). The
shaft @ is loaded by an external
torque M;.

a) Determine M, such that
equilibrium is fulfilled.

b) Choose the diameters di and d» such that the admissible shear stress
Tadmis 1S not exceeded?

¢) Compute the angle of twist at position C, if shaft @ is fixed at
position A.

S [ e

Solution to a) Equilibrium of moments

1 LY
My=RF, My=-R:F ﬁ»ﬁ
u u
yields oF
R M. &
My =—"2M, . ——
Ry [] n |

to b) The critical value of the shear stress is reached in each shaft for:

) _aemy o _3\/16M1
maxjy — W1 - ﬂ_d:l; — Tadmis 1= M Todmis 5
|Ms]  Ra 16M, 3\/ Rs
maxsg — - — Tadmis dy = di .
Tmaxa = oy TRy mdd w7 ® R
to ¢) For the twist angle in @ and ® we obtain
LM, 32Mik 32Mosl,
A9 = = AYs = Yo =
YT Gy, T wGdE 2T T rGdd
With the continuity of the rotations
Y1pR1 = =282
and
Yo =i + A b V1B
we compute —U2p

2

32M4 R\ 3
Yo = [ lop .
c Gwd‘%{l-’_(bh) 2}

P4.8
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P4.9 Problem 4.9 A homoge-
neous, graded shaft with
circular cross section is clam-

ped at both ends and loaded B
by the torque M.
Compute the torques at the a b
support positions A and B as L
well as the twist at the point
where My is applied.

_ My © © Mg
Solution The system is sta- ««
tically indeterminate because A c B

the support torques M4 and
Mp cannot be computed
solely from the equilibrium
conditions.

Ma+ Mp = My

By cutting the shaft at C' constant torques are obtained in the regions
@® and @ . This results in the following twists

M Mpb
0y =AY g, = BT
GI,, GI,,
Geometric compatibility requires that the two angles of twist are iden-
tical:
Yo =01 =92 .

Together with

T T
Ip, = 711, Ip, = 13
we obtain
1 1
MA = MO 4 ) MB = MO 4 )
14 M0 14 r1b
rib raa
2Moyab
S 04

= xG (bri+ars)
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Problem 4.10 A shaft is clam- P4.10
ped at both ends and loaded
along part b of its length [
by a constant distributed tor-
que mo.

Determine the function of twist
angle and torque.

Solution The external torque m(z) has a jump at position = = a. We
use the Macauley bracket to incorparate the discontinuous function.
With

m(z) =mo <x—a>"
the differential equation for the twist angle follows

GIrd' = —m(z) = —mo <z —a>° .

Integrating twice yields
GIrd = Mr = —mo <z —a>"+C1
GIrY = —%mo <z—a>>4+Ciz+Cs.

The constants folllow from the boundary conditions
F0)=0 ~ C2=0,

2
I =0 ~ clzém(l)b

Finally we obtain

ke

My bla + 1
() = mob b <z—a>' a ’”0(20]+)
Mr(w) =moby o b ’ ® | N\

x a
quadr.

I
. parabola
I
I
I

L0
Y I :
— 0 _ -
ﬁ(‘”)_zGIT{z b2 } | |

xr
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P4.11 Problem 4.11 The depicted shaft
with ring-shaped cross section is
clamped at one end. At the other end
a rigid beam is attached. The beam
is supported by two springs and “aiow
loaded by the forces P. Determine ¢

!

a) the maximum force Pmax for a
prescribed admissible displacement /2 e I/2 —
Uadmis (In z-direction) at point A,
b) position and value of the maxi-
mum shear stress in the cross section
of the truss for P = Ppax. c=10° N/m

G =8-10" N/m?

Given : Upqmis = 2cm, 1=2m
r=5cm, R=10cm

Solution to a) The system is statically indeterminate. We free the
system at point B leading to the twist of the shaft

/
Mrl GI 7
Ap = Mr= PA 7 —
YT, TOMTT %Y 2 My
with (small twist angles)
P v P
Uadmis M
Ap = =0.2.
L ¢ (N ?
Equilibrium of moments for the beam provides ? B ¢
A
B : Mrp = Puax — lF. , where F. = ¢ Uadmis . ¢ Fe
Eliminating Ay, M7 and F. yields
G1,
Pmax - (2 l3p + C)”admis .
With I, = 7(R*—r*)/2 = 1.47-10"* m* and the given numerical values
we obtain
2.8-10%0.1.47 6 s
Prax = ( 1048 410 ) 2107 = 78.7kN

to b) The shear stress assumes its maximum value at the outer pe-
rimeter of the cross section. The absolute value is computed by

MT = Pmaxl - Cuadmisl
= (78.7 —10% - 0.02) 2 = 117.4kNm

and
MrR 117.4-0.1

max — = = 79.8 MN 2. Tmax
7 I, ~ 147-10-4 /m
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Problem 4.12 The hollow shaft A P4.12

® and the solid shaft @ are joint 7
by a bolt at A. ® GIr, ©)
7 G

Determine the torque M7 and Ir,
the twist angle 8 of the bolt af- a b

ter assembly for the case that

the ends of the shafts have an

angular difference of a in the

[0 [ j
v o
stress-free state. @ ®

Solution In the assembled state both shafts are loaded by the torque
M. We cut the system at position A and determine the angle of twist
of @ and @ separately:

o MT(L MTb

V1 = V2 = :
YT G *7T GIp,

From the geometric compatibility in the assembled state

a— U = /
1)2‘
- ©)
and
M 4
B =1

we obtain for M7 and 8

Mr =G ¢ 1
1+bIT1
alr,
(0%

=9 =

p=h= S
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Problem 4.13 The thin-walled spar with ring-shaped cross section
(length [, shear modulus G, radius r, thickness t < r) is located in
the interior of an airplane wing. It is loaded by a distributed torque
mr(z) with mr(0) = 2mo and mz(l) = mo. The spar is clamped at
the fuselage.

2mg

Determine

a) the torque Mr(z) in the spar,

b) the distribution of the shear stress 7(x) and the maximum shear
stress Tmax due to torsion,

¢) the angle ¥;, by which the end of the wing at x = [ rotates with
regard to the fuselage.

Solution to a) The distributed torque is given by
mr(x) = (2 — i;) mo .
The torque follows by integration

2

Mr(z) = —/mT(:p) doe 4+ C1 = (zl —2x> mo + C1
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which leads with the boundary condition

Mr(l)=0

~ (;—2l)m0+C1:0 ~ Clzgmol

to

2
T T

3
MT(LI}) = (212 — 21 + 2) mol .

to b) For the thin-walled spar cross section the shear stresses are com-
puted using the second moment of area for torsion It = 27wr3t:

Mt mol 22 x 3
= = —2 .
T@) = T g (2z2 Pt 2)

The maximum shear stress occurs at position z = 0 and its value is
given by
3 mol

Tmax = g 2

to ¢) With the second moment of area for torsion It and the shear
modulus GG we obtain for the twist

Mr(z) mol z? x 3
9’ = = —92
@) ="Gr = oGma (212 1o

as well as for the edge rotation
Mol z3 2 3
V@) = ot (612 ot 296) T

The integration constant is determined from the boundary condition
?#(0) = 0 to be C2 = 0. Thus the edge rotation ¥; at the end of the
wing yields (z = 1):

mol? 1 3 mol?
=90 = 5Gmrs (6 S 2) M T gy
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P4.14 Problem 4.14 A shaft with the
depicted thin-walled profile is
loaded by a torque Mry.

a) Determine the shear stress in
different sections of the profile.

b) Compute the maximum
admissible torque, such that
the admissible shear stress
Tadmis 18 not exceeded.

Solution The profile consists
of two parts. For each part the
following holds:

T=r(s) 1) = "
;Mg 1 T
%= G, T 26 A, ?{ g 45
With the given values
AT1 = gaQ s AT2 = 4a2

we obtain by considerating that the shear flux in section S is composed
of the contributions from the torques My, and Mr,:

Ta? 8a?

19/1 1 {]\47"1 ™a |:]\4T1 MT2:| 20,}

T ra2G | ma? t t

9! 1 {MT2 6a []\47*2 MT1:| Qa}
2 .

T 842G | 8a? ¢ 8a2  wa? | t

Inserting this result into the geometric compatibility

9 =9 =0
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yields

]\/.IT1 247

Mr, - 10 + 1755
with
M7t = Mr, + Mr,

the torques

247
16

= Mr =0.254 My, Mr, =0.746 Mr .
12 + 7+ T

Mr,

Now the stresses in the sections A, B and S follow

M M
Ta=_ ' =008 ",
2A1yt a?t My | My
— 0.093
0081, ® 2t
M, Mr [
= =0.093 ,
= 2Am,t a’t ® B @
My My \ \ ,
— _ — 0.012 My
7s =71 — T7a = 0.012 a2t a2t ‘® — 0.093 az;

Equalizing the maximum shear stress with the admissible shear stress

M

T
Tmax — TB = 0.093 a2t = Tadmis ,

provides the maximum admissible torque

2
admis t
Mr, =10—75" dM at
T

Note: Inserting M7, and M, in ¢ determines the second moment
of area for torsion I+ = 13.7a%t. Neglecting the section S, we obtain
I = 13.6 a®t. Thus section S only contributes a small amount to the
torsional rigidity.
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I
P4.15 Problem 4.15 The fixed leaf spring } 1
(t < b) is eccentrically loaded by a N
force F. 3 )
E.G

Compute the deflection at the point
loading. Determine the maximum

"
normal and shear stress. - z t
Y
i B ¥

Solution The leaf spring is subjected to a bending and a torsion load.
Due to bending the deflection is given by the table on page 62.

F3 3
we =10 witn 1= FL

3ET 12 —‘

The constant torque

wp
U,”['*

causes a rotation at the end of the spring

9= Mrlo Ir = ;bt3

and the corresponding displacement wr = 319. The total deflection is
thus obtained by

W= W w _4F?P 1+3Eb2
I o/ 16G12 )

Bending and torsion cause stress in the extreme fibre of the fixed cross
section

op,Tr
M 6lF Mr  3bF —
g = = T = = .
PTwT o T w2 y il\
z oB,Tr
An area element at the top surface (z = —t/2) Tr
T,

is loaded as sketched. Thus the maximum nor-

mal and shear stress follow TiB

O'Bi
w
yT—>
T
x
0B oB\2  , 3FI \/ b2
g = 2+\/(2> P e (THYET g )
o2 2_3Fl\/ b2
Tm“_\/(2> T e VT e
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Problem 4.16 An element of HI—ObH
a bridge is constructed as *F
a thin-walled (¢ < b) box 1
girder. During construction 4
the box girder is eccentrically F
loaded. Y y2t
Determine the location and A
. t t
value of the maximum normal | . |
and shear stress. i
. . . Y
Solution Section properties » 20 -
of the profile are
2b2t+2~b(b-t) 3 5 5
2 2
s = = b, Sy(Zmaz) =bt _b= _b"t
. 8bt 8 v(#maa) =bt g b=
t® tb® 3\° 5\°
I, _2(12 + 64) + 4bt (8b) + 2bt (Sb)
37 .3 2
= ot Y j z
Iq 37 2 Zmazl
W= "Y =""tb
Zmax 15 1
5 C
Wr = 2A7tmin = 4b°t . V -

Using bending moment, torque, shear force in the clamped support

Mp =—10bF, Mp=bF, V.=F

yields for the lower section
oB oB
_Mp 150 F «i T»
BT w T T3 b yI
T P —
_Mr 1F V.8, 15 F o
T wr T 4w 9T Lt st

The largest absolute value for the normal stress and the shear stress
are obtained by 7 = 71 + 7¢ at location C'

_ 0B _ oB\?2 0 F
92T \/(2) TrE= A6,

_ oB\? | 5 _ F
Tmax—\/(Z) + 7 _213bt

P4.16
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a C 2a

Problem 4.17 The depicted ] —— ,
cantilever with thin-walled A4 LB
circular cross section is clam- e I v
ped at both ends and loaded y G/E=3/8
eccentrically at point C'. c
Determine the deflection at -0 %
the point where the load is ap- ‘ .
plied and compute the normal F
stress and the shear stresses 5
due to torsion. a/2

M, F| _aF M,
Solution The cantilever ©) My i ®
is cut at point C. Equili- + * + y {$
brium yields Vi vy, v

1
M2:M3+2aF, Vi=Va+ F.

The deflection, the angle of bending, and the angle of twist are given
at point C by (see table on page 62):

o V1a3 _ ]\41612 o _8V2a3 _ 4M1a2
Yo = gpr ~ opr 0 YT T 3pr T 2Bl
e — Via>  Ma e — +4V2a2 L 2Mia
“t = 9pr  EI’ 9% T 2ErI EI
Mga 2M3a
Yo, = Yo, = — .
(&5 GIr ) Cy GIr
Compatibility demands
we, = wey wlcl = w/CQ , Yo, = Vo,
which renders
20 7 8
= _F =—- _F M, = F
Vil 2=—g B M= ppal,
1 1
MQISGF, M3:—6GF.
The second moments of area and the elasticity constants
G 3

Ir =21 =273t und P



and stress 135

yield the deflection at the point of loading

26Fa®

wWEp = w +a19 =
PR YA T qpr

To compute the stresses, we need the bending moments at A and B:
Ma =M —Via = —gaF

Mg =M1+v22a:—§aF.

The maximum normal stresses due to bending in A, B and C' are given
with the section modulus W =1/r

o _|Ma| _ 4darF o _ 2arF

AT w9 0 7P 91 0
|Mi|  8arF

oc = =

w 271 °

The shear stresse in secion @ or @ are calculated with W = 2W = 2TI :

Mo arF T,M3,‘”"F
T Wy 1210

Wy 61°

T =

The largest stresses occur at the point oA
A. An area element at the top surface «i
(analogously on the bottom surface) is y
loaded as sketched. For the principal  ew—
stress and the maximum shear stress

we obtain
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P4.18 Problem 4.18 The depicted
cantilever is fixed at both
ends and bent by 90°. The
cantilever is loaded at point
C' by the force F.

Compute the deflection at
the point C.

Solution To solve the pro- -
blem we use superposition. N N
We cut the system at point AA

C' and apply symmetry ar- ’ P

guments for the depicted
loading with respect to ben-
ding and torsion. At this sta-
ge the moment M is un-
known. From the table on
page 62 we deduce

w! 7Fa2_Ma Fa? Ma?
© T 4EI EI’ - '
The angle of twist due to torsion at C' is given by

Ma

Do = .
“T aIr

The geometric compatibility

wer = Vo2
yields
Fa GIT
M =
4 EI+GlIr

and the final result

_ Fa® AEI+GlIr
- 24EI EI+GIr ~

wc
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Problem 4.19 The depicted semi- ton view P4.19
circular support is loaded at point P Y F
A by a force F. —
De'terrnine the deflection at the side view ELGIy
point A.
a
F

Solution Equilibrium of moments
provides the bending moment Mp
and the torque Mr ) [1 Mg

Mp(p) = —aFsingp , [B)‘]:[
Mr(p) =a(l+cosp)F . s X

The angle of twist is given by
A9 Mr

ds - GIT
The twist d¥ at position ¢ causes the deflection at A

@ COS P \~ asin g

mit ds = ady .

dwra = asine dv .

Combining the previous results and integration yields the deflection
due to torsion
3

w */dw _ fa
TA = TA—G,IT

The deflection due to bending is follows from

T 3
/sin o(1+ cosp)dp = ZGFIa .
T
0

d*wp d’>wp Fa®
EI =-M = i
ds? B qer T Opr MY
3 3
= st C) L wsle) = T (—sing+ G+ o)
and the boundary conditions
wp(0) =0 ~ Ci=1, wp(0) =0 ~ C2=0.

Using these constants yields
F 3

EI (¥
Finally the total deflection at A is given at position ¢ = 7

wp(p) = —sing) .

Fa? EI
wA:wTA+wB(7F):EI 7r+2GIT .



P4.20

138 Shear stresses

Problem 4.20 A cantilever beam
with the depicted profile is subjec-
ted to an eccentric line load g. De-
termine at the clamped support

a) the largest shear stress due to
the shear force and its position,
b) the shear stress due to torsion.
¢) the distribution of the shear
stresses due to shear force and tor-
sion across the profile. Determine
position and value of the largest
shear stress.

¢ =20kN/m

NN

—

3.5

q h
i

l=6m {

‘1.2

1.2

1.2;

t

.7/0*

)

z

Z(]f ]
C

1.2 T

20

o

o 10 e 35 ——=f 10 |~

[cm)]

Solution We start by computing the stress resultants at the clamped

support:
V.= ql = 20-6
B q l2 B 62
M, = 9 =-20 9

Mr=gql-3.5cm =20-6-0.035

= 120 kN

I

= —360 kNm ,

= 4.2kNm.

With the geometric data of the profile we calculate the position of the

centroid C' and the second moment of area Iy:

Zo
Zy =20 — 2, =11.58 cm ,

bih? 2
IyIZ 12 +ZA121

= -1.2) - 8.422 + 2.
(35 )-8 + 19

20% 1.2

Y zA; 2-(20-1.2)-10+2-(10-1.2) - 20
T S A; T 35-1242-2001.242-10-1.2

+2-(20-1,2)-1.58% +2-(10- 1.2) - 11.58?

=7915.8 cm* .

= 8.42

cm ,
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to a) The shear stress due to the shear force is obtained by

V.S, 120

T =

I,h ~ 79158 -1.2 Sy = 0.01263 5y .

The static moment S, reaches its maximum at z = 0:

35

+ ; 8.4%.1.2 =218.7 cm®>.

From this result the maximum shear stress due to shear force follows

Tv max = 0.01263 - 218.7

~ TV max = 2.76 kN/cm® = 27.6 N/mm? .

to b) The shear stress due to torsion is calculated using the second
moment of area for torsion respectively the torsion modulus of the
profile:

_1 3_1 3 4
IT_SZhiti = ,(35+2:20+2-10) - 1.2° =547 ,em

13 hit] 547 3
=3 e 12 =45.6 cm” .

Wr
With the already calculated torque M7 we obtain

Mr  4.2-10°
Wr 456

TT —

~  7r =921 kN/cm® = 92.1 N/mm” .

to c) The largest shear stress oc-
curs at the position z = 0. It HEITEERXEY
is distributed linearly across the L —
wall thickness with the following .
extreme values:
) . W/(ff
Tinside = 27.6 — 92.1 = —64.5 N/mm?, R
Toutside = 27.6 +92.1 = 119.7 N/mm? A
V4T VU/U/
~ Tmax = 119.9 N/mm? . A
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Problem 4.21 A thin-walled box

girder is loaded by a force of 300 kN. 7;‘;7 ® R

Determine for the cross section at ¢—>1/, 7777
. ;

position @) ~ 10m —=f
20m ———

a) the stress distribution (normal \
and shear stcresses) due to shear for- 300 kN
ce and torsion,

b) the position of the maximum ZQL —
principal stress and Ty 7y 180
¢) the value and direction of the ’\\ ® . BEEE

principal stress at the vertex @ of - 300 , [em)]
the profile.

Remark: Assume for the torsional -
load case a fork bearing at the left i i
end.

Solution The second moment of area is given by

12
The stress resultants at position @) (or directly left of it) are

I, = bihy ,4*2—22’803 2.(1.5-300)-40> = 1.611-10° cm*
y_212+z_ iZi =2 +2-(1.5-300)- = 1.611- cm” .

i

300 _300-20

Vo= ") =150kN, M, ="" """ =1500 kNm,

Mz =300-1.5=450kNm.

to a) The normal stress is linear across the height of the
cross section and reaches in point (@ the value ;’

M, 1500 - 1000 - 1000

a = 4010 = 925 N 2.
Iyz 1.611 - 106 - 104 0-10 = 37.25 N/mm @

37.25 N/mm?

The shear stresses due to V. are determined by the zh-line and Sy-line.

(Ol [ [ T1]60 —9000jg ~
—80° s T7s >80 [ —.
zh — line [cm?] o S, — line [cm®] ) — 10600
b N ; —
[ [T T[] 60 o 12 —
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By using the Sy-line we obtain

VS 150 5y :9.3-10*55}5 kN/cm®.

T Ih T 1611109 A
At position (@) they assume the value 5.6
S i e
TWa = 1.611510- .1%2‘0-01.5 weg v Nt @
= 0.56 kN/cm? = 5.6 N/mm? . B Sf ‘ -

The shear stresses due to torsion are given by
— MT
© 247k

450 - 10 - 10°
224000 - 1.5 - 103

Ar =300 - 80 = 24000 cm”

s
~ TTq =

=6.25 N/mm”.

to b) The maximum shear stresses oc- @
cur at points @@ and (), the maximum

normal stresses at point (@). Thus the w
principal stresses assume the largest @
value at (@).

to c) In point (@ the shear and normal

stresses are: —» Ta
Ta = TVa+Tra = 5.646.25 = 11.85 N/mm?, x
<_l T_>
o = 37.25 N/mm2 . Y
The principal stresses are given by L,T
or="+ \/(02“”)2 + 72 =40.7 N/mm2,

og =% _ \/(‘”)2 + 72 = —3.45 N/mm?.
For the direction of the principal stress o1 we compute

2 o
tan2a0 = | =0.636 ~ ao=16.23°.

Ox
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Problem 4.22 A cantilever beam F
with thin-walled T-profile (t < a) y
is eccentrically loaded by a force F'. .

The clamped support is designed ‘ l }
such that warping is allowed. ‘z

Determine the maximum stresses

due to bending, shear force and tor- ‘F

sion. At which position do they oc- ty b
cur? C T
Given: t = a/10, I =20a yom,

2a
!
= a = a ]

Solution We start by determining the following geometric properties
of the profile:

b= ; :

I = b22at + [t(ig)g +b22at} - éa4, - 3(5/2 = ;a3,
Sc = b2at + ;)C;t = 890 a‘?’7

Ir = ; 220" = 30400 at, Wr = ItT - 330 @

The bending moment reaches its maximum at the clamped support
(z = 0), while shear force and torque are constant along the beam:

Mmax:—lF:—Qan, V:F’ Mpr =al'.

We compute the maximum bending stress (compression, at the lower
surface, at © = 0), the maximum shear stress due to shear force (at the
centroid C'), and the shear stress due to torsion (at the outer boundary
of the flanges):

_ |Muax|  20aF F
Omax = W - éas == 180 a2 5
c_CSo _ Fga® 21F

v It éa4 110(1 4 a2’
Mr aF F
T Wr 330“3 a?

Note: The shear stress due to shear force is small compared to the
shear stress due to torsion.
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