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112 Torsion

Torsion

If an external load causes an internal moment Mx along the longitu-
dinal axis, the bar is loaded by torsion (twisting). In the following we
refer to the moment Mx as torque or torsional moment MT .
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B
x
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y

z
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MA

l
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Prerequisites, assumptions:

• Warping of the cross sections is not constrained (pure tor-
sion),

• The shape of the cross sections does not change during rotation.

Equilibrium conditions

dMT

dx
= −m , m(x) = external moment per unit length.

Differential equation for the angle of twist

GIT
dϑ

dx
= MT ,

ϑ = angle of twist,

GIT = torsional rigidity,

G = shear modulus,

IT = torsional constant. P´

x

ϑ(x)

z

y
P

Twist of end sections

Δϑ = ϑ(l)− ϑ(0) =

l∫

0

ϑ′(x)dx =

l∫

0

MT

GIT
dx .

Special case: GIT = const, MT = const

Δϑ =
MT l

GIT
.

Maximum shear stress

τmax =
MT

WT
, WT = sectional moment of torsion.

The location of the maximum shear stress is provided in the following
table.
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Cross section IT

IT = Ip =
π

2
(r4a − r4i )

ri = 0 (full circle) IT =
π

2
r4a

thin-walled, closed profile

IT =
4A2

T∮
ds

t(s)

a = const

t = const
IT = 2πa3t

thin-walled, open profile

IT =
1

3

h∫

0

t3(s)ds

t = const IT =
1

3
ht3

ti = const IT =
1

3

∑
hit

3
i

square

IT = 0, 141a4

ellipse

IT = π
a3b3

a2 + b2

τ(r)

τmax

ri

ra

a
t

AT

t(s)

τ(s)

s

ti

h

s
t(s)

hi

τ

t
h

a

τmax a

τmax

τmax

a

b
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WT Remarks

WT =
IT
ra

=
π

2

r4a − r4i
ra

The shear stresses are distributed

linearly across the cross section:

τ (r) =
MT

IT
r .

WT =
π

2
r3a

Cross sections remain plane

during deformation.

WT = 2AT tmin

WT = 2πa2t

τ is constant across the wall-thickness t.

The shear flow

T = τ t =
MT

2AT

is constant.

τmax occurs at the smallest wall-

thickness tmin.

AT is the area encircled by the central

line of the profile.

WT =
IT
tmax

WT =
1

3
ht2

WT =
IT
tmax

τ is linearly distributed across the

wall-thickness.

τmax occurs at the largest wall-

thickness tmax.

WT = 0.208 a3 τmax occurs at in the middle of

the lateral lengths.

WT =
π

2
ab2

τmax occurs at the ends of the smaller

semi-axis.
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P4.1 Problem 4.1 A shaft with cir-
cular cross section is clamped
at one end and loaded by a
pair of forces.

Determine F such that the
admissible shear stress τadmis

is not exceeded. Compute for
this case the twist of the end
section.

l

2r

2R

F

F

x

Given: R = 200 mm, r = 20 mm, l = 5 m, τzul = 150 MPa,
G = 0.8 · 105 MPa.

Solution The torque (torsional moment)

MT = 2RF

is constant along the bar. The maximum shear stress in the cross section
is given with

WT =
π

2
r3

by

τmax =
MT

WT
=

4RF

πr3
.

In order not to exceed the admissible shear stress,

τmax ≤ τadmis � F ≤ πr3

4R
τadmis .

must hold and we obtain

Fmax =
πr3

4R
τallow =

π · 8000 · 150
4 · 200 = 4712 N .

For this load the twist (in radians) can be computed using

IT =
π

2
r4 and MT = 2RFmax .

Inserting yields

Δϑ =
MT l

GIT
=

τzull

Gr
=

150 · 5000
0.8 · 105 · 20 = 0.47 .

This value is equivalent to an angle of 27◦.
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P4.2Problem 4.2 A shaft has to carry
the torque MT = 12 · 103 Nm. Select
a cross section from the depicted
group.

Dimension the cross sections such
that the admissible shear stress
τadmis = 50 MPa is not exceeded.
Which cross section is the most effi-
cient in terms of material usage?

©4

t =
c

10
t =

d

10

a

2b

2b

©1 ©2

©3
c d

Solution The admissble shear stress is reached for

τmax =
MT

WT
= τadmis .

With the section moment for torsion

WT1 =
π

2
a3 , WT2 = 0.208 · 8 b3 = 1.664 b3 ,

WT3 = 2πc2t =
π

5
c3 , WT4 =

2π

3
d t2 =

π

150
d3

we determine with the given numerical values

a = 3
√

2MT

πτzul
= 53.5 mm , b = 3

√
MT

1.664 τzul
= 52.4 mm ,

c = 3
√

5MT

π τzul
= 72, 6 mm , d = 3

√
150MT

π τzul
= 225.5 mm .

The cross section areas are

A1 = πa2 = 89.8 cm2 , A2 = 4b2 = 110.0 cm2 ,

A3 =
π

5
c2 = 33.1 cm2 , A4 =

π

5
d2 = 319.4 cm2 .

Therefore, the third cross section (i. e. the thin-walled closed profile) is
the most material efficient profile.
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P4.3 Problem 4.3 Determine the
maximum admissible torque
(torsional moment) and the
corresponding admissible
twist for the closed profile
and the profile that is slit at
A.

Given: a = 10 cm, t = 2 mm,
τadmis = 20 MPa,
l = 5 m,
G = 0.8 · 105 MPa.

2t

MT

2t2t

l

MT

t
2t

a

a

t

t At

Solution The admissible torque and the admissible twist are computed
for both profiles via

MTadmis = τadmisWT , Δϑadmis =
MTadmis l

GIT
=

τadmisWT l

GIT
.

In the case of the closed profile with t 
 a it holds

AT = a2 ,

∮
ds

t(s)
= 2

( a

2t
+

a

t

)
= 3

a

t
,

IT =
4A2

T∮
ds

t(s)

=
4

3
ta3 , WT = 2AT tmin = 2a2t

and we obtain

MTadmis = τadmis2a
2t = 800 Nm ,

Δϑallow =
3τadmisl

2Ga
= 0.01875 (=̂1, 07◦) .

If the profile is open (slit at position A), we compute with

IT =
1

3

∑
i

t3ihi = 6t3a , WT =
IT
tmax

= 3t2a

the torque and twist

MTadmis = τadmis3t
2a = 24 Nm ,

Δϑadmis =
τadmisl

2Gt
= 0.3125 (=̂17.9◦).

Note: The closed profile is much stiffer with respect to torsion than the
open profile.
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P4.4Problem 4.4 A shaft is loaded
by a pair of forces. The shaft
is assmbled from two different
thin-walled cross sections (t 

a) of the same material (shear
modulus G).

Determine in both cases the ad-
missible forces and the corre-
sponding twist such that the
shear stress τadmis is not excee-
ded.

2b

F
F

l

t

a
t

t

tt

2 a

√
2 a

©1 ©2

Solution The torque MT = 2bF is constant along the length of the
shaft. Stress and twist are determined from

τ =
MT

WT
=

2bF

WT
, Δϑ =

MT l

GIT
=

2bF l

GIT
.

The admissible shear stress will not be exeeded for

τ ≤ τadmis � F ≤ WT τadmis

2b
� Fadmis =

WT τadmis

2b
,

Δϑadmis =
2blFadmis

GIT
=

τadmisWT l

GIT
.

With the values for the two different cross sections

� AT =
π

2
a2 ,

∮
ds

t
=

a

t
(2 + π) , WT = πa2t , IT =

π2

2 + π
a3t ,

� AT = a2 ,

∮
ds

t
=

a

t
(2 + 2

√
2) , WT = 2a2t , IT =

2

1 +
√
2
a3t

we obtain

Fadmis1 =
π

2

a2t

b
τadmis , Fadmis2 =

a2t

b
τadmis ,

Δϑadmis1 =
2 + π

π

lτadmis

aG
, Δϑadmis2 = (1 +

√
2)

lτadmis

aG
.

Note: The admissible force is larger for the first profile, while the
admissible twist is larger for the second profile.
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P4.5 Problem 4.5 The thin-walled box girder
is loaded by a torque MT .

Determine the warping of the cross section.

t
2t

2a

2t

t

z

y

©1
ds

dx s

©3

x

©2

©4

α

α
s

dv = r⊥dϑ

r⊥

dϑ
r

P

P´

x

− MT

32Gat

MT

32Gat

©3

©2

©4

©1

s

Solution The warping u(s) (displacement
in longitudinal direction) is computed from
the shear strain

γ =
∂u

∂s
+

∂v

∂x

of the wall segments. With

γ =
τ

G
=

MT

G2AT t(s)
,

∂v

∂x
= r⊥

dϑ

dx
= r⊥(s)

MT

GIT
,

AT = 4a2 , IT =
4 · 16a4

4a
t + 4a

2t

=
32

3
a3t

we obtain

∂u

∂s
=

MT

8Ga2t

[
t

t(s)
− 3r⊥(s)

4a

]
.

Integration in region � provides (t(s) = 2t, r = a) with u(s=0) = 0
(then u vanishes on average)

u1(s) =
MT

8Ga2t

[
1

2
− 3

4

]
s = − MT

32Ga2t
s .

Analogously, we obtain in regions � , � , �

u2(s) =
MT

32Ga2t
[s− 2a] ,

u3(s) = − MT

32Ga2t
[s− 4a] ,

u4(s) =
MT

32Ga2t
[s− 6a] .
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P4.6Problem 4.6 A tube � is mounted
by heat shrinking on a shaft �
with circular cross section of diffe-
rent material.

Determine the maximum shear
stresses in � and � as well as the
twist under the application of a tor-
que MT .

MT

l

©2
R2

R1

©1

Solution First we consider shaft � and pipe � independently. For the
angle of twist and the stress it yields

ϑ1 =
MT1 l

G1Ip1
, τmax1 =

MT1

WT1

,

ϑ2 =
MT2 l

G2Ip2
, τmax2 =

MT2

WT2

with

Ip1 =
π

2
R4

1 , Ip2 =
π

2

(
R4

2 −R4
1

)
, WT1 =

Ip1
R1

, WT2 =
Ip2
R2

.

Together with equilibrium

MT = MT1 +MT2

and geometric compatibilty

ϑ1 = ϑ2 = ϑ

we obtain

MT1 = MT
G1Ip1

G1Ip1 +G2Ip2
, MT2 = MT

G2Ip2
G1Ip1 +G2Ip2

and

τmax1 =
MTG1r1

G1Ip1 +G2Ip2
, τmax2 =

MTG2r2
G1Ip1 +G2Ip2

,

ϑ =
MT l

G1Ip1 +G2Ip2
.
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P4.7 Problem 4.7 A conical shaft
with varying radius is loaded by
a torque MT .

Determine the twist and the
peripheral stress as a function
of x.

2a

l

MT
4a

x

r(x)

Solution The differential equation for the twist angle is given with

r(x) = a
(
2− x

l

)
, Ip(x) =

π

2
r4 =

π

2
a4

(
2− x

l

)4

by

ϑ′ =
MT

GIp
=

2MT

πGa4

1(
2− x

l

)4
.

Integration with respect to x yields

ϑ(x) =
2MT l

3πGa4

1(
2− x

l

)3
+ C .

The integration constants are determined from the boundary conditions

ϑ(0) = 0 � C = − 2MT l

3πGa4

1

8
.

Thus the twist results in

ϑ(x) =
MT l

12πGa4

⎧⎪⎨
⎪⎩

1(
1− x

2l

)3 − 1

⎫⎪⎬
⎪⎭

.

The peripheral shear stress is computed with

WT (x) =
Ip
r

=
π

2
a3

(
1− x

l

)3

as

τP (x) =
MT

WT
=

2MT

πa3
(
2− x

l

)3 .

Twist and stress have a maximum at x = l:

ϑ(l) =
7MT l

12πGa4
, τP (l) =

2MT

πa3
.
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P4.8Problem 4.8 The depicted gear-
system consists of two shafts
(lengths l1, l2) of identical mate-
rial, that are connected by two
gear wheels (radii R1, R2). The
shaft � is loaded by an external
torque M1.

a) Determine M2 such that
equilibrium is fulfilled.

b) Choose the diameters d1 and d2 such that the admissible shear stress
τadmis is not exceeded?

c) Compute the angle of twist at position C, if shaft � is fixed at
position A.

d2

A B

R2

C

l1

M2

d1 M1R1

l2

©1

©2

F
F

M1

M2

ϑ1BR1

R2

−ϑ2B

Solution to a) Equilibrium of moments

M1 = R1F , M2 = −R2F

yields

M2 = −R2

R1
M1 .

to b) The critical value of the shear stress is reached in each shaft for:

τmax1 =
|M1|
W1

=
16M1

πd31
= τadmis � d1 = 3

√
16M1

πτadmis
,

τmax2 =
|M2|
W2

=
R2

R1

16M1

πd32
= τadmis � d2 = 3

√
R2

R1
d1 .

to c) For the twist angle in � and � we obtain

Δϑ1 =
l1M1

GIT1

=
32M1l1
πGd41

, Δϑ2 = ϑ2B =
32M2l2
πGd42

.

With the continuity of the rotations

ϑ1BR1 = −ϑ2BR2

and

ϑC = ϑ1B +Δϑ1

we compute

ϑC =
32M1

Gπd41

{
l1 +

(
R2

R1

) 2
3

l2

}
.
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P4.9 Problem 4.9 A homoge-
neous, graded shaft with
circular cross section is clam-
ped at both ends and loaded
by the torque M0.

Compute the torques at the
support positions A and B as
well as the twist at the point
where M0 is applied.

2r2

MA

A C B

MB

2r1

BA M0

M0

©2©1

a b

Solution The system is sta-
tically indeterminate because
the support torques MA and
MB cannot be computed
solely from the equilibrium
conditions.

MA +MB = M0

By cutting the shaft at C constant torques are obtained in the regions
� and � . This results in the following twists

ϑ1 =
MAa

GIp1
, ϑ2 =

MBb

GIp2
.

Geometric compatibility requires that the two angles of twist are iden-
tical:

ϑC = ϑ1 = ϑ2 .

Together with

Ip1 =
π

2
r41 , Ip2 =

π

2
r42

we obtain

MA = M0
1

1 + r42a
r41b

, MB = M0
1

1 + r41b
r42a

,

ϑC =
2M0ab

πG (br41 + ar42)
.
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P4.10Problem 4.10 A shaft is clam-
ped at both ends and loaded
along part b of its length l
by a constant distributed tor-
que m0.

Determine the function of twist
angle and torque.

x

m0

a

l

b

Solution The external torque m(x) has a jump at position x = a. We
use the Macauley bracket to incorparate the discontinuous function.
With

m(x) = m0 < x− a >0

the differential equation for the twist angle follows

GITϑ
′′ = −m(x) = −m0 < x− a >0 .

Integrating twice yields

GITϑ
′ = MT = −m0 < x− a >1 +C1

GITϑ = −1
2m0 < x− a >2 +C1x+ C2 .

The constants folllow from the boundary conditions

ϑ(0) = 0 � C2 = 0 ,

ϑ(l) = 0 � C1 =
1

2

m0b
2

l
.

Finally we obtain

parabola

m0b
2

2l

quadr.

x

MT

x

ϑ linear

m0b(a+ l)

2l

a

MT (x) = m0b

{
b

2l
− < x− a >1

b

}
,

ϑ(x) =
1

2

m0b
2

GIT

{
x

l
− < x− a >2

b2

}
.
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P4.11 Problem 4.11 The depicted shaft
with ring-shaped cross section is
clamped at one end. At the other end
a rigid beam is attached. The beam
is supported by two springs and
loaded by the forces P . Determine

a) the maximum force Pmax for a
prescribed admissible displacement
uadmis (in z-direction) at point A,
b) position and value of the maxi-
mum shear stress in the cross section
of the truss for P = Pmax.

Given : uadmis = 2 cm , l = 2 m

r = 5 cm , R = 10 cm

c = 106 N/m

G = 8 · 1010 N/m2

uallow

l

l/2 l/2

c

PP

y

A

c

R

r

x

z

y

z

B

G

MT

Fc

B

MT

Fc

PP

τmax

Solution to a) The system is statically indeterminate. We free the
system at point B leading to the twist of the shaft

Δϕ =
MT l

GIp
� MT =

GIp
l

Δϕ

with (small twist angles)

Δϕ =
uadmis

l/2
= 0.2 .

Equilibrium of moments for the beam provides

�

B : MT = lPmax − lFc , where Fc = c uadmis .

Eliminating Δϕ , MT and Fc yields

Pmax =
(
2
GIp
l3

+ c
)
uadmis .

With Ip = π(R4−r4)/2 = 1.47·10−4 m4 and the given numerical values
we obtain

Pmax =

(
2 · 8 · 1010 · 1.47

104 · 8 + 106
)
2 · 10−2 = 78.7 kN

to b) The shear stress assumes its maximum value at the outer pe-
rimeter of the cross section. The absolute value is computed by

MT = Pmax l − c uadmis l

= (78.7 − 103 · 0.02) 2 = 117.4 kNm

and

τmax =
MTR

Ip
=

117.4 · 0.1
1.47 · 10−4

= 79.8 MN/m2.
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P4.12Problem 4.12 The hollow shaft
� and the solid shaft � are joint
by a bolt at A.

Determine the torque MT and
the twist angle β of the bolt af-
ter assembly for the case that
the ends of the shafts have an
angular difference of α in the
stress-free state.

©1
GIT2

α β

ba

©2GIT1

A

ϑ2

ϑ1

©1

MT

α

©2

MT

Solution In the assembled state both shafts are loaded by the torque
MT . We cut the system at position A and determine the angle of twist
of � and � separately:

ϑ1 =
MTa

GIT1

, ϑ2 =
MT b

GIT2

.

From the geometric compatibility in the assembled state

α− ϑ2 = ϑ1

and

β = ϑ1

we obtain for MT and β

MT = GIT1

α

a

1

1 + b
a
IT1

IT2

,

β = ϑ1 =
α

1 + b
a
IT1

IT2

.
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P4.13 Problem 4.13 The thin-walled spar with ring-shaped cross section
(length l, shear modulus G, radius r, thickness t 
 r) is located in
the interior of an airplane wing. It is loaded by a distributed torque
mT (x) with mT (0) = 2m0 and mT (l) = m0. The spar is clamped at
the fuselage.

r

t

m0

l

x

2m0

Determine
a) the torque MT (x) in the spar,
b) the distribution of the shear stress τ (x) and the maximum shear
stress τmax due to torsion,
c) the angle ϑl, by which the end of the wing at x = l rotates with
regard to the fuselage.

Solution to a) The distributed torque is given by

mT (x) =
(
2− x

l

)
m0 .

The torque follows by integration

MT (x) = −
∫

mT (x) dx+ C1 =

(
x2

2l
− 2x

)
m0 + C1
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which leads with the boundary condition

MT (l) = 0

�

(
l

2
− 2l

)
m0 +C1 = 0 � C1 =

3

2
m0l

to

MT (x) =

(
x2

2l2
− 2

x

l
+

3

2

)
m0l .

to b) For the thin-walled spar cross section the shear stresses are com-
puted using the second moment of area for torsion IT = 2πr3t:

τ (x) =
MT

IT
r =

m0l

2πr2t

(
x2

2l2
− 2

x

l
+

3

2

)
.

The maximum shear stress occurs at position x = 0 and its value is
given by

τmax =
3

4

m0l

πr2t
.

to c) With the second moment of area for torsion IT and the shear
modulus G we obtain for the twist

ϑ′(x) =
MT (x)

GIT
=

m0l

2Gπr3t

(
x2

2l2
− 2

x

l
+

3

2

)

as well as for the edge rotation

ϑ(x) =
mol

2Gπr3t

(
x3

6l2
− x2

l
+

3

2
x

)
+ C2 .

The integration constant is determined from the boundary condition
ϑ(0) = 0 to be C2 = 0. Thus the edge rotation ϑl at the end of the
wing yields (x = l):

ϑl = ϑ(l) =
mol

2

2Gπr3t

(
1

6
− 1 +

3

2

)
� ϑl =

m0l
2

3Gπr3t
.
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P4.14 Problem 4.14 A shaft with the
depicted thin-walled profile is
loaded by a torque MT .

a) Determine the shear stress in
different sections of the profile.

b) Compute the maximum
admissible torque, such that
the admissible shear stress
τadmis is not exceeded.

Solution The profile consists
of two parts. For each part the
following holds:

T = τ (s) · t(s) = MTi

2ATi

,

ϑ′
i =

MTi

GITi

=
1

2GATi

∮

i

T

t
ds .

With the given values

t

t

2a

2a

B

A B

B

MT2

S

MT1

t
t

a

t

©1 ©2

AT1 =
π

2
a2 , AT2 = 4a2

we obtain by considerating that the shear flux in section S is composed
of the contributions from the torques MT1 and MT2 :

ϑ′
1 =

1

πa2G

{
MT1

πa2

πa

t
+

[
MT1

πa2
− MT2

8a2

]
2a

t

}
,

ϑ′
2 =

1

8a2G

{
MT2

8a2

6a

t
+

[
MT2

8a2
− MT1

πa2

]
2a

t

}
.

Inserting this result into the geometric compatibility

ϑ′ = ϑ′
1 = ϑ′

2
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yields

MT1

MT2

=
2 + π

10 + 16
π

with

MT = MT1 +MT2

the torques

MT1 =
2 + π

12 + π + 16
π

MT = 0.254 MT , MT2 = 0.746 MT .

Now the stresses in the sections A, B and S follow

τA =
MT1

2AT1 t
= 0.081

MT

a2t
,

τB =
MT2

2AT2 t
= 0.093

MT

a2t
,

τS = τB − τA = 0.012
MT

a2t
.

0.081
MT

a2t

0.093
MT

a2t

0.093
MT

a2t

0.012
MT

a2t

Equalizing the maximum shear stress with the admissible shear stress

τmax = τB = 0.093
MT

a2t
= τadmis ,

provides the maximum admissible torque

MTadmis = 10− 75
τadmisa

2t

MT
.

Note: Inserting MT1 and MT2 in ϑ′ determines the second moment
of area for torsion IT = 13.7a3t. Neglecting the section S, we obtain
IT = 13.6 a3t. Thus section S only contributes a small amount to the
torsional rigidity.
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P4.15 Problem 4.15 The fixed leaf spring
(t 
 b) is eccentrically loaded by a
force F .

Compute the deflection at the point
loading. Determine the maximum
normal and shear stress.

y
z

l

E,G

bF

tx

F

A
x

F

ϑ

wB

wT

σB , τT

y

x

σBσB

τT

σB, τT

τT

y
z

Solution The leaf spring is subjected to a bending and a torsion load.
Due to bending the deflection is given by the table on page 62.

wB =
F l3

3EI
with I =

bt3

12
.

The constant torque

MT = Fb/2

causes a rotation at the end of the spring

ϑ =
MT l

GIT
with IT =

1

3
bt3

and the corresponding displacement wT = b
2ϑ. The total deflection is

thus obtained by

w = wB + wT =
4F l3

Ebt3

(
1 +

3Eb2

16Gl2

)
.

Bending and torsion cause stress in the extreme fibre of the fixed cross
section

σB =
M

W
=

6lF

bt2
, τT =

MT

WT
=

3bF

2bt2
.

An area element at the top surface (z = −t/2)
is loaded as sketched. Thus the maximum nor-
mal and shear stress follow

σ1 =
σB

2
+

√(σB

2

)2

+ τ 2
T =

3F l

bt2

(
1 +

√
1 +

b2

4l2

)
,

τmax =

√(σB

2

)2

+ τ 2
T =

3F l

bt2

√
1 +

b2

4l2
.
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P4.16Problem 4.16 An element of
a bridge is constructed as
a thin-walled (t 
 b) box
girder. During construction
the box girder is eccentrically
loaded.

Determine the location and
value of the maximum normal
and shear stress.

Solution Section properties
of the profile are

2t

t

t

F

10b

F

b

2b

t

zs

z

zmax

y x

C

τT

τT

σB σB

y

x

zs =
2b2t+ 2 · b2(b · t)

8bt
=

3

8
b , Sy(zmax) = b t

5

8
b =

5

8
b2 t

Iy = 2

(
tb3

12
+

tb3

64

)
+ 4bt

(
3

8
b

)2

+ 2bt

(
5

8
b

)2

=
37

24
tb3 ,

W =
Iy

zmax
=

37

15
tb2 ,

WT = 2AT tmin = 4b2t .

Using bending moment, torque, shear force in the clamped support

MB = −10 b F , MT = bF , Vz = F

yields for the lower section

σB =
MB

W
= −150

37

F

bt
,

τT =
MT

WT
=

1

4

F

bt
, τQ =

Vz Sy

Iy t
=

15

37

F

bt
.

The largest absolute value for the normal stress and the shear stress
are obtained by τ = τT + τQ at location C

σ2 =
σB

2
−

√(σB

2

)2

+ τ 2 = −4.16
F

bt
,

τmax =

√(σB

2

)2

+ τ 2 = 2.13
F

bt
.
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P4.17 Problem 4.17 The depicted
cantilever with thin-walled
circular cross section is clam-
ped at both ends and loaded
eccentrically at point C.

Determine the deflection at
the point where the load is ap-
plied and compute the normal
stress and the shear stresses
due to torsion.

G/E = 3/8

B

F

C

a 2a

a/2

C

x
A

z

r

F

xy

M1 M1
1

2
aF

V1 V2

M2 ©2©1
M3

V2V1

F
Solution The cantilever
is cut at point C. Equili-
brium yields

M2 = M3 +
1

2
aF , V1 = V2 + F .

The deflection, the angle of bending, and the angle of twist are given
at point C by (see table on page 62):

wC1 =
V1a

3

3EI
− M1a

2

2EI
, wC2 = −8V2a

3

3EI
− 4M1a

2

2EI
,

w′
C1

=
V1a

2

2EI
− M1a

EI
, w′

C2
= +

4V2a
2

2EI
+

2M1a

EI
,

ϑC1 =
M2a

GIT
, ϑC2 = −2M3a

GIT
.

Compatibility demands

wC1 = wC2 , w′
C1

= w′
C2

, ϑC1 = ϑC2

which renders

V1 =
20

27
F , 2 = − 7

27
F , M1 =

8

27
aF ,

M2 =
1

3
aF , M3 = −1

6
aF .

The second moments of area and the elasticity constants

IT = 2I = 2πr3t und
G

E
=

3

8



and stress 135

yield the deflection at the point of loading

wF = wC1 +
a

2
ϑC1 =

26Fa3

81EI
.

To compute the stresses, we need the bending moments at A and B:

MA = M1 − V1a = −4
9aF ,

MB = M1 + V22a = −2
9aF .

The maximum normal stresses due to bending in A, B and C are given
with the section modulus W = I / r

σA =
|MA|
W

=
4arF

9 I
, σB =

2arF

9 I
,

σC =
|M1|
W

=
8arF

27 I
.

The shear stresse in secion � or � are calculated withWT = 2W = 2I
r :

τ1 =
M2

WT
=

arF

6 I
, τ2 =

M3

WT
=

arF

12 I
.

The largest stresses occur at the point
A. An area element at the top surface
(analogously on the bottom surface) is
loaded as sketched. For the principal
stress and the maximum shear stress
we obtain

τ1

τ1

σA σA

y

x

σ1 =
σA

2
+

√(σA

2

)2

+ τ 2
1 =

arF

2 I
,

τmax =

√(σA

2

)2

+ τ 2
1 =

5arF

18 I
.
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P4.18 Problem 4.18 The depicted
cantilever is fixed at both
ends and bent by 90◦. The
cantilever is loaded at point
C by the force F .

Compute the deflection at
the point C.

C
EI,GIT BA

z

yxa a

F

EI,GIT

M

F
2

F
2

©1

M M

©2

M

C

ϑC2

wc

w′
C1

©1 ©2

Solution To solve the pro-
blem we use superposition.
We cut the system at point
C and apply symmetry ar-
guments for the depicted
loading with respect to ben-
ding and torsion. At this sta-
ge the moment M is un-
known. From the table on
page 62 we deduce

w′
C =

Fa2

4EI
− Ma

EI
, wC =

Fa3

6EI
− Ma2

2EI
.

The angle of twist due to torsion at C is given by

ϑC =
Ma

GIT
.

The geometric compatibility

w′
C1 = ϑC2

yields

M =
Fa

4

GIT
EI +GIT

and the final result

wC =
Fa3

24EI

4EI +GIT
EI +GIT

.
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P4.19Problem 4.19 The depicted semi-
circular support is loaded at point
A by a force F .

Determine the deflection at the
point A.

a

EI,GIT

F

F

A

side view

top view

ϕ

a sinϕ

MT

MB

ϕ

a

F

s

MT

MB

a cosϕ

Solution Equilibrium of moments
provides the bending moment MB

and the torque MT

MB(ϕ) = −aF sinϕ ,

MT (ϕ) = a(1 + cosϕ)F .

The angle of twist is given by

dϑ

ds
=

MT

GIT
mit ds = adϕ .

The twist dϑ at position ϕ causes the deflection at A

dwTA = a sinϕ dϑ .

Combining the previous results and integration yields the deflection
due to torsion

wTA =

∫
dwTA =

Fa3

GIT

π∫

0

sinϕ(1 + cosϕ)dϕ =
2Fa3

GIT
.

The deflection due to bending is follows from

EI
d2wB

ds2
= −MB �

d2wB

dϕ2
=

Fa3

EI
sinϕ ,

dwB

dϕ
=

Fa3

EI
(− cosϕ+C1) , wB(ϕ) =

Fa3

EI
(− sinϕ+C1ϕ+C2)

and the boundary conditions

w′
B(0) = 0 � C1 = 1 , wB(0) = 0 � C2 = 0 .

Using these constants yields

wB(ϕ) =
Fa3

EI
(ϕ− sinϕ) .

Finally the total deflection at A is given at position ϕ = π

wA = wTA + wB(π) =
Fa3

EI

(
π + 2

EI

GIT

)
.
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P4.20 Problem 4.20 A cantilever beam
with the depicted profile is subjec-
ted to an eccentric line load q. De-
termine at the clamped support

a) the largest shear stress due to
the shear force and its position,

b) the shear stress due to torsion.

c) the distribution of the shear
stresses due to shear force and tor-
sion across the profile. Determine
position and value of the largest
shear stress.

q = 20 kN/m

x

z

l = 6 m

q

[cm]

C 20

z0y0

1.2

35 1010

1.2

1.2z

1.2

1.2

y

3.5

zu
y

C

z

zo

Solution We start by computing the stress resultants at the clamped
support:

Vz = q l = 20 · 6 = 120 kN ,

My = − q l2

2
= −20 · 6

2

2
= −360 kNm ,

MT = q l · 3.5 cm = 20 · 6 · 0.035 = 4.2 kNm .

With the geometric data of the profile we calculate the position of the
centroid C and the second moment of area Iy:

zo =

∑
ziAi∑
Ai

=
2 · (20 · 1.2) · 10 + 2 · (10 · 1.2) · 20
35 · 1.2 + 2 · 20 · 1.2 + 2 · 10 · 1.2 = 8.42 cm ,

zu = 20− zo = 11.58 cm ,

Iy =
∑ bih

3
i

12
+

∑
Aiz̄

2
i

= (35 · 1.2) · 8.422 + 2 · 20
3 · 1.2
12

+2 · (20 · 1, 2) · 1.582 + 2 · (10 · 1.2) · 11.582

=7915.8 cm4 .
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to a) The shear stress due to the shear force is obtained by

τ =
Vz Sy

Iy h
=

120

7915.8 · 1.2 Sy = 0.01263 Sy .

The static moment Sy reaches its maximum at z = 0:

Sy max = S(z = 0) = 8.4 · 1.2 · 35
2

+
1

2
8.42 · 1.2 = 218.7 cm3 .

From this result the maximum shear stress due to shear force follows

τV max = 0.01263 · 218.7

� τV max = 2.76 kN/cm2 = 27.6 N/mm2 .

to b) The shear stress due to torsion is calculated using the second
moment of area for torsion respectively the torsion modulus of the
profile:

IT =
1

3

∑
hit

3
i =

1

3
(35 + 2 · 20 + 2 · 10) · 1.23 = 54.7 , cm4

WT =
1

3

∑
hit

3
i

tmax
=

54.7

1.2
= 45.6 cm3 .

With the already calculated torque MT we obtain

τT =
MT

WT
=

4.2 · 102
45.6

� τT = 9.21 kN/cm2 = 92.1 N/mm2 .

τV+T

τV

τT

to c) The largest shear stress oc-
curs at the position z = 0. It
is distributed linearly across the
wall thickness with the following
extreme values:

τinside = 27.6− 92.1 = −64.5 N/mm2,

τoutside = 27.6 + 92.1 = 119.7 N/mm2

� τmax = 119.9 N/mm2 .
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P4.21 Problem 4.21 A thin-walled box
girder is loaded by a force of 300 kN.
Determine for the cross section at
position ©A
a) the stress distribution (normal
and shear stresses) due to shear for-
ce and torsion,

b) the position of the maximum
principal stress and

c) the value and direction of the

principal stress at the vertex ©a of
the profile.

Remark: Assume for the torsional
load case a fork bearing at the left
end.

©A

300 kN

10 m

xz

20 m

[cm]300

y

©a z

1.5
2.0

1.5

2.0

300 kN

2 cm

©a
1.5 cm

80

37.25 N/mm2

60

60

−10600
s

Sy − line [cm3]
−80−80

−9000
s

zh− line [cm2]

Solution The second moment of area is given by

Iy =
∑
i

bih
3
i

12
+
∑
i

Aiz̄
2
i = 2· 2 · 803

12
+2·(1.5·300)·402 = 1.611·106 cm4 .

The stress resultants at position ©A (or directly left of it) are

Vz =
300

2
= 150 kN , My =

300 · 20
4

= 1500 kNm ,

MT = 300 · 1.5 = 450 kNm .

to a) The normal stress is linear across the height of the
cross section and reaches in point ©a the value

σx =
My

Iy
za =

1500 · 1000 · 1000
1.611 · 106 · 104 · 40 · 10 = 37.25 N/mm2 .

The shear stresses due to Vz are determined by the zh-line and Sy-line.
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By using the Sy-line we obtain

τV =
VzSy

Iyh
=

150

1.611 · 106
Sy

h
= 9.3 · 10−5 Sy

h
kN/cm2 .

At position ©a they assume the value

τV a =
150 · 9000

1.611 · 106 · 1.5
= 0.56 kN/cm2 = 5.6 N/mm2 .

4.2

5.6

5.6

τV [N/mm2]

4.2

4.9

The shear stresses due to torsion are given by

τT =
MT

2ATh
, AT = 300 · 80 = 24000 cm2

� τTa =
450 · 103 · 103

2 · 24000 · 1.5 · 103 = 6.25 N/mm2 .

to b) The maximum shear stresses oc-

cur at points ©a and ©b , the maximum

normal stresses at point ©a . Thus the
principal stresses assume the largest
value at ©a .

©b

©a

to c) In point ©a the shear and normal
stresses are:

τa = τV a+τTa = 5.6+6.25 = 11.85 N/mm2 ,

σx = 37.25 N/mm2 .

τa

σx

y

x
The principal stresses are given by

σ1 =
σx

2
+

√
(
σx

2
)2 + τ 2

a = 40.7 N/mm2,

σ2 =
σx

2
−

√
(
σx

2
)2 + τ 2

a = −3.45 N/mm2.

For the direction of the principal stress σ1 we compute

tan 2α0 =
2τ

σx
= 0.636 � α0 = 16.23◦ .
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P4.22 Problem 4.22 A cantilever beam
with thin-walled T-profile (t 
 a)
is eccentrically loaded by a force F .
The clamped support is designed
such that warping is allowed.

Determine the maximum stresses
due to bending, shear force and tor-
sion. At which position do they oc-
cur?

Given: t = a/10, l = 20 a

z

x

F

l

F

a

t b

a

t

z
y

C

2a

Solution We start by determining the following geometric properties
of the profile:

b =
a

2
,

I = b22at+

[
t(2a)3

12
+ b22at

]
=

1

6
a4 , W =

I

3a/2
=

1

9
a3 ,

SC = b 2at+
b

2

at

2
=

9

80
a3 ,

IT =
1

3
2(2a)t3 =

4

3000
a4 , WT =

IT
t

=
4

300
a3 .

The bending moment reaches its maximum at the clamped support
(x = 0), while shear force and torque are constant along the beam:

Mmax = −lF = −20aF , V = F , MT = aF .

We compute the maximum bending stress (compression, at the lower
surface, at x = 0), the maximum shear stress due to shear force (at the
centroid C), and the shear stress due to torsion (at the outer boundary
of the flanges):

σmax =
|Mmax|

W
=

20aF
1
9
a3

= 180
F

a2
,

τC
V =

C SC

I t
=

F 9
80
a3

1
6
a4 1

10
a
=

27

4

F

a2
,

τMT
=

MT

WT
=

aF
4

300
a3

= 75
F

a2
.

Note: The shear stress due to shear force is small compared to the
shear stress due to torsion.
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