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58 Ordinary bending

Beam = straight structural element, length l large compared to
dimensions of the cross section, perpendicular loads.

l
x

z z
x

y

q(x)
F

3.1 3.1 Ordinary bending

nomenclature and assumptions:

• x = axis of cross section centroids; y, z = principal axis of the se-
cond moment of area (moment of inertia).

• kinematic assumption: plane cross sections remain plane

w = w(x) , u = z ψ(x) ,

w = displacement in z-direction,

u = displacement in x-direction,

ψ = rotation angle of cross section.

• stress resultants:

V = Vz = shear force,

M = My = bending moment. w

y, ψ
V

M

x, u

,z

Normal stress

neutral axis

z

x

σmax

zmax

σ(z) =
M

I
z

I = moment of inertia with respect to y-axis,

z = distance to neutral axis (= axis of centroids).

The largest absolute value of the stress occurs in the extreme fibre:

σmax =
M

W
, W =

I

|zmax| = section modulus.
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Shear stress

a) thin-walled, open profile

τ (s) =
V S(s)

I t(s)
,

τ(s)

s

A∗
z

t(s)

y

S(s) = static moment of A∗ with regard to
y-axis,

t(s) = thickness of profile at position s.

b) compact cross section

τ (z) =
V S(z)

I b(z)
.

special case: rectangle

τ =
3

2

Q

A

(
1− 4z2

h2

)
.

h

z

b

τ(z)

x

z

A∗

y

Note: τmax = τ (z=0) =
3

2

Q

bh
is 50% larger than τmean =

Q

bh
.

Shear center M of singly symmetrical cross sections.

moment of V with regard to 0
= moment of distributed shear
stresses with regard to 0:

rMQ =

∫
τ (s) r⊥(s) t(s) ds

Position of centriod C und shear center M for selected profiles:

V τ

rMM

ds

0

r⊥

with slit

M

C

M

C
CM=C

M

0, 273 r

M

r
r

CMC

semi circle
full circle

M=C



60 Differential equation of the deflection curve

Basic equations

equilibrium conditions
dV

dx
= −q ,

dM

dx
= V ,

Hooke’s law, kinematics M = EIψ′

V = GAS(ψ + w′) ,

EI = bending stiffness,

GAS = shear stiffness,

AS = κA = shear area (κ = shear correction factor).

Rigid with respect to shear (Bernoulli beam): If we additionally assume,
that cross sections perpendicular to the undeformed beam axis remain
perpendicular to the deflection curve during the deformation, it follows
from Hooke’s law for the shear force (GAS → ∞)

ψ = −w′ .

Differential equation of the deflection curve for the Bernoulli
beam: Inserting into Hooke’s law for M yields

EIw′′ = −M .

This leads with the equilibrium conditions to

(EIw′′)′′ = q ,

or for EI = const

EIwIV = q .

Temperature induced moment

A linearly, across the height h, varying temperature field (= tempera-
ture gradient) can be treated by a temperature moment :

MT = EIαT
Tb − Tt

h
,

z

h

Tt

Tb

x

αT = coefficient of thermal expansion.

In this case, the differential equation for the deflection curve yields

EIw′′ = −(M +MT ) .
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Table of boundary conditions

support w w′ M V

0 �= 0 0 �= 0

0 0 �= 0 �= 0

�= 0 �= 0 0 0

free end

�= 0 0 �= 0 0

Solution methods

1. For continuous functions of q(x) or M(x), four or two times integra-
tion of the corresponding differential equation yields the deflection
curve w(x). The four or two integration constants are obtained by
the boundary conditions (see table of boundary conditions).

2. For several regions (discontinuities in the loads, deformation, con-
centrated forces or concentrated moments), the integration has to be
performed piecewise. The integration constants are determined from
boundary and matching (continuity) conditions. The computation
can by simplified by using the Macauley bracket (see Engineering
Mechanics 1):

< x− a >n=

⎧
⎨
⎩
0 für x < a ,

(x− a)n für x > a .

3. Statically indeterminate problems can be solved by using superposi-
tion of known deflections and rotations. For this purpose, deflection
and rotations of the most frequent load cases and support situations
can be found in the table on page 62/63.

4. Statically indeterminate problems can also be solved by using the
principle of virtual forces (energy method) (see chapter 5).



62 Table of end rotations

x

lA B

l BA

l

qB

BA

x

x

a

A B
l

a

M0

A
B

F

l

q0

lA

a

x

B

lA

qA

B

x

x

b

b

q0

BA

M0

l

x F

x

no. load case EIw′
A EIw′

B

1
F l2

6
(β − β3) −F l2

6
(α− α3)

2
q0l

3

24
− q0l

3

24

3
7

360
qB l3 − 1

45
qB l3

4
M0l

6
(3β2 − 1)

M0l

6
(3α2 − 1)

5 0
Fa2

2

6 0
q0l

3

6

7 0
qAl

3

24

8 0 M0l

explanations:
ξ =

x

l
, α =

a

l
, β =

b

l
, ( )′ =̂

d

dx
( ) =

1

l

d

dξ
( ) ,
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EIw(x) EIwmax

F l3

6
[βξ(1− β2 − ξ2)+ < ξ − α >3]

F l3

48

for α = β = 1/2

q0l
4

24
(ξ − 2ξ3 + ξ4)

5

384
q0l

4

qB l4

360
(7ξ − 10ξ3 + 3ξ5) see problem 3.13

M0l
2

6
[ξ(3β2 − 1) + ξ3 − 3 < ξ − α >2]

M0l
2

27

√
3

for a = 0

F l3

6
[3ξ2α− ξ3+ < ξ − α >3]

F l3

3

for a = l

q0l
4

24
(6ξ2 − 4ξ3 + ξ4)

q0l
4

8

qAl
4

120
(10ξ2 − 10ξ3 + 5ξ4 − ξ5)

qAl
4

30

M0
x2

2
M0

l2

2

< ξ − α >n =̂ Macauley bracket



64 Biaxial bending

3.2 3.2 Biaxial bending

Mz

v
y

w
z

x

x

Vz

Vy

y

z

x

My

x = axis of centroids,

y, z = arbitrary ortho-

gonal axis.

shear forces Vy , Vz

and

bending moments My , Mz

(positive when positive right-
hand screw at positive intersec-
tion).

Differential equation of the deflection for shear rigid beams:

Ew′′ =
1

Δ
(−MyIz +MzIyz)

Ev′′ =
1

Δ
(MzIy −MyIyz)

Δ = IyIz − I2yz ,

Iy, Iz, Iyz = second order area moments.

Normal stress

σ =
1

Δ
[(MyIz −MzIyz)z − (MzIy −MyIyz)y] .

Special case: If y, z are principal axis (Iyz = 0), then

EIyw
′′ = −My , EIzv

′′ = Mz , σ =
My

Iy
z − Mz

Iz
y .
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P3.1Problem 3.1 A cantilever beam with the
depicted cross section (constant wall thick-
ness t, t 
 a is subjected to a concentra-
ted force F at one end.

Determine the maximum stress in the cross
section at the support.

40a

2a

aa

F

F

2a
t

Solution The distance of the centroid ξC from the top surface is ob-
tained from the sub-areas by using t 
 a

ξC=
ΣξiAi

ΣAi
=

2

II︷ ︸︸ ︷
(2at · a)+2

III︷ ︸︸ ︷
(at · 2a)

2at︸︷︷︸
I

+2 · 2at︸︷︷︸
II

+2 · at︸︷︷︸
III

=
8a2t

8at

=a .

ξC

III

II

I

ξ

C

The second moment of area with regard to the
y-axis is computed by using the parallel-axis
theorem.

Iy =

I︷ ︸︸ ︷
a2 · 2at+2

II︷ ︸︸ ︷{
t(2a)3

12

}
+2

III︷ ︸︸ ︷{
a2 · at} =

16

3
ta3,

Thus we obtain for the section modulus

W =
Iy

zmax
=

16

3
ta3

a
=

16

3
ta2 .

a

III

IIC

z

y

a

I

The stress in the cross section at the support is calculated using the
bending moment at this position

M = −40 aF

to be

σmax =
|M |
W

=
40aF
16

3
ta2

=
30

4

F

at

(the upper fibre is in tension, the lower under compression).
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P3.2 Problem 3.2 A cantilever
beam with the sketched
cross section is loaded by
the force F at point � .

Determine the normal
stresses at point � at the
support.

2a

F

a a
2a

2a

©2

©1

©1

©2

Solution As the neutral axis is passing trough the centroids of the
cross sections, we first determine the position of the centroid:

ξC =
ΣAiξi
ΣAi

=

I︷ ︸︸ ︷
8a2 · a+2

II︷ ︸︸ ︷{
2a2 · 3a}

8a2 + 4a2
=

5

3
a .

The second moment of area with respect to the
y-axis is computed by summing up the contri-
butions of the sub-areas:

Iy =

[
4a(2a)3

12
+

(
2

3
a

)2

8a2

]
+

+2

[
a(2a)3

12
+

(
4

3
a

)2

2a2

]
=

44

3
a4 .

ξC

y
5

3
a

II

IC

ξ

II

IC

z

The following stress resultants are present in the cross section at the
support

N = −F and My = −5

3
aF .

The associated stresses are (σN due to normal force, σM due to bending
moment)

σN =
N

A
= − F

12a2
and σM =

My

Iy
z = −5

3

aFz
44

3
a4

= − 5

44

Fz

a3
.

At point � superposition with z2 = −7

3
a yields

σ = σN + σM (z2) = − F

12a2
+

5

44

F

a3

7

3
a =

2

11

F

a2
.
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P3.3Problem 3.3 The column with
a star-shaped cross section
(t 
 a) is loaded by a force F ,
applied off center.

Determine
a) the maximum absolute value
of the stress,
b) the maximal value of b such
that nowhere in the cross secti-
on tensile stresses occur.

l b

F

F

t

a/2

60◦

Solution to a) Due to the load and the
symmetry of the cross section it is convenient
to introduce the following y, z-coordinate
system. This yields

IyI =
ta3

12
.

The second moments of area for the sub-areas
II and III with respect to the y-axis are
determined by the transformation equations

Iη =
at3

12
, Iζ =

ta3

12
, Iηζ = 0 , ϕ = −30◦ .

Using t 
 a we obtain

I

III

II

z

S

η

y

−ϕ

ξ

y

z

II

IyII = IyIII =
Iη + Iζ

2
+
Iη − Iζ

2
cos 2ϕ+Iηζ sin 2ϕ =

ta3

24
− ta3

24

1

2
=

ta3

48
.

This leads to

Iy = IyI + 2IyII =
ta3

12
+ 2

ta3

48
=

ta3

8
.

Together with the stress resultants N = −F and My = −bF it follows

σ =
N

A
+

My

Iy
z = − F

3at
− 8bF

ta3
z .

The largest stress (compression) occurs at z = a/2:

σmax = −F

at

(
1

3
+ 4

b

a

)
.

to b) Tensile stress occurs first at z = −a/2:

σ(−a

2
) = 0 � − F

3at
+ 4

Fb

ta2
= 0 � b =

a

12
.



68 Inhomogeneous cross section

P3.4 Problem 3.4 A column is clam-
ped at the bottom and is carrying
a vertical load Fv at the center of
the top cross section and a horizon-
tal load Fh in the middle of edge
b. The column is made of 3 layers
with different Young’s moduli.

Determine the normal stress distri-
bution in the cross section at the
clamping.

4E

l

y

h

6

h

6

h

b
zE4E

Fv

Fh

z

©2

x

©1 ©2

Solution We consider the different load cases independently.

to a) With the vertical load Fv, we obtain from

equilibrium σ1A1 + σ2A2 = −Fv ,

Hooke’s law σi = Eiεi

and geometry ε1 = ε2 = ε

the strain

z

σ1

ε

σ2

E1ε1A1 + E2ε2A2 = Eε
2

3
bh+ 4Eε

1

3
bh = −Fv � ε = − Fv

2Ebh
and the associated stresses

σ1 = − Fv

2bh
, σ2 = −2

Fv

bh
.

to b) Fh causes a moment MS = −Fhl at the support. Then geometry
(assume: cross sections remain plane)

u = ψ · z � ε = ψ′ · z ,
Hooke’s law σ(z) = E(z)ε(z)
and

σ(z)

ε(z)
z

M=
∫
σzdA = 2bψ′[E1

h/3∫
0

z2dz +E2

h/2∫
h/3

z2dz]

= 2bψ′E[
1

3
(
h

3
)3 +

4

3
((
h

2
)3 − (

h

3
)3)] =

7

27
bψ′Eh3

lead to (using M = MS)
ψ′ = −27

7

Fhl

Ebh3
.

Finally, the stresses follow as

σ1 = E1ψ
′z = E

27

7

M

Ebh3
z � σ1(

h

3
) = −9Fhl

7bh2
,

σ2 = E2ψ
′z = 4E

27

7

M

Ebh3
z � σ2(

h

2
) = −54Fhl

7bh2
.
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P3.5Problem 3.5 A wooden cantilever

can be assembled from 3 beams
(dimensions of the cross section
b = a and h = 2a) in different
ways.

What is the maximal force F for
the two variants � and � , if the
maximal allowed shear stress in the
bonding layer is given by τallow?

b

h

b

b

y

z

b
b

F

y h

z

b

h

©2©1

Solution With V = F the shear stress in the bonding layer becomes
in general (z = zl)

τ (zl) =
FS(zl)

I b(zl)
.

This yields with τ (zl) = τallow the maximal load Fmax

Fmax =
τallowI b(zl)

S(zl)
.

For variant � we obtain

I =
bh3

12
+ 2

[hb3
12

+
(h
2
+

b

2

)2
bh

]
= 10 a4 ,

b(zl) = b = a ,

S(zl) =

∫

A∗
zdA =

1

2
(h+ b)bh = 3 a3 .

1

2
(h + b)

A∗

zl

z

which leads to the force

F1max = τallow
10a4 · a
3a3

=
10

3
τallow a2 .

Analogously we obtain for variant �

I=
h(3b)3

12
=

9

2
a4 , b(zl) = h = 2a ,

S(zl)=

∫

A∗

zdA = b · bh = 2a3

zl

A∗

b

z

and the force

F2max = τallow
9a4 · 2a
2 · 2a3

=
9

2
τallow a2 .

Note: The shear stresses in the cross section at z = zl and in the
corresponding perpendicular bonding interface are equal (associated
shear stresses!).
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P3.6 Problem 3.6 Determine the shear stress
due to an applied shear resultant force
V in the depicted thin- walled I-profile.

b

h
y

zt1

V

t2

Solution The shear stresses are com-
puted from

τ =
V S(s)

I t(s)

Thus we need to determine the second
moment of area I with regard to the
y-axis. With t1 
 b and t2 
 h we
obtain

I= I1 + I2 = 2 t1b

(
h

2

)2

+ t2
h3

12

=
h2

12
(t2h+ 6t1b) =

h2

12
(A1 + 6A2) .

The static moment of sub-area A∗ for a
position s in the lower sub-area is given
by

S(s) =
h

2
t1s

(
h

2
+ z

)
/2

y

A∗

z

y

s

z
h

2
− z

and for a position z in the second sub-
area it follows

S(z)= 2

(
h

2
t1

b

2

)
+

h

2
+ z

2

(
h

2
− z

)
t2

= A1
h

2
+

t2
8
(h2 − 4z2) .
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These relations yield the shear stress in the upper sub-area

τ1(s) =
V

h

2
t1s

h2

12
(A2 + 6A1)t1

=
V

A2

A2

A1

1 +
A2

6A1

s

h

and in the second sub-area

τ2(z) =

V

[
A1

h

2
+

t2
8
(h2 − 4z2)

]

h2

12
(A2 + 6A1) t2

=
V

A2

1 +
A2

4A1

[
1−

(
2z

h

)2
]

1 +
A2

6A1

.

The maximum shear stress occurs at the center of the profile,

τ2 max = τ2(z = 0) =
V

A2

1 +
A2

4A1

1 +
A2

6A1

,

τ

τ1 max

τ2 maxit depends on the area ratio A2/A1.
The maximum shear stress in the first
sub-area is given by

τ1 max = τG(s = b/2) =
V

A2

A2

A1

1 +
A2

6A1

b

2h
.

For example A1 = A2 and b = h yields τ2 max =
15

14

V

A2
at the center

and τ1 max =
6

14

V

A2
. For this situation the smallest value in the vertical

sub-area

τ2 min = τ2(z = h/2) =
V

A2

1

1 +
A2

6A1

=
12

14

V

A2
,

is only 20% smaller than τ2 max. As a rough estimate we can use the
average shear stress τave = V/A2 in the central sub-area.



72 Stresses

P3.7 Problem 3.7 A composite beam
consists of an upper concrete slab
and a steel I beam. The structure
is loaded by a bending moment M .

Given : M = 1000 kNm

EC= 3.5 · 104 N/mm2

ES= 2.1 · 105 N/mm2

h = 40 cm

AS= h2 / 6

IS = h4 / 18

h

M

b

2h

h

a) Determine the width b of the
concrete slab, such that compres-
sive stresses occur only in the
concrete part, while the tension is
present in the steel part.

b) For this case compute the
stresses in the extreme fibres of the
two materials.

Solution to a) For the case
that compression occurs only in
the concrete and tension only in
the steel sub-area the strain in
the bonding layer has do be zero
(=neutral fibre). With the chosen
coordinate system we have

ε = az ,

where a is not yet determined. The
stresses in steel and concrete are

z
y

zC

CS

CC

zS

σS = ES ε = aES z , σC = EC ε = aEC z .

As the beam is loaded only by a bending moment, the normal force N
has to vanish:

N =

∫

AS

σS dA+

∫

AC

σC dA = 0 � ES

∫

AS

z dA+ EC

∫

AC

z dA = 0 .

With

∫

AS

z dA = zSAS = h
h2

6
=

h3

6
,

∫

AC

z dA = zCAC = − h

2
hb = − h2b

2
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and ES/EC = 6 the required width b is obtained:

6
h3

6
− h2b

2
= 0 � b = 2h = 80 cm .

to b) The unknown factor a follows from the prescribed bending mo-
ment.

From the definitions

M =

∫

AS

z σS dA+

∫

AC

z σC dA = aES

∫

AS

z2dA+ aEC

∫

AC

z2dA .

and the evaluation of the integrals

∫

AS

z2dA= IS + h2AS =
h4

18
+

h4

6
=

2

9
h4

∫

AC

z2dA=
bh3

3
=

2

3
h4

it follows

M =
ah4EC

9

[
2
ES

EC
+ 6

]
= 2ah4EC � a =

M

2h4EC
.

With this result the stresses in the steel and concrete are

σS =
ESM

2ECh4
z = 3

M

h4
z , σC =

M

2h4
z .

For the top extreme fibre in concrete (zt = −h) and the bottom extrem
fibre in steel (zb = 2h) we obtain

σt
C= − M

2h3
= −7.8125 N/mm2 ,

σb
S= 6

M

h3
= 93.75 N/mm2 ,

−7.8125N/mm2

93.75N/mm2
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P3.8 Problem 3.8 Determine the shear
stresses due to a shear force V
for the depicted thin-walled beam
cross section (t 
 a).

V

t

t
2a

C
y

z

a t

2a

Solution At first we compute the cross section area, the location of
the centroid and the second moment of area:

A = 4at+ 2 · 2at+ 2at = 10 at ,

bA = 2a · 2at+ 2a · 2at � b =
4

5
a ,

Iȳ = (2a)22at+ 2
t(2a)3

3
=

40

3
ta3 ,

I = Iy = Iȳ − b2A =
104

15
ta3 .

s3

yb

s1

s2

ȳ

z
II

C

III

I

Due to symmetry of the cross section the
shear stress is symmetric to the z-axis.
Thus only half of the cross section has to be considered. With the
coordinantes s1 to s3 we obtain for the static moments in the sub-areas
I to III

SI = b s1t =
4

5
at s1 ,

SII = b 2at+

(
s2 +

b− s2
2

)
(b− s2) t =

48

25
a2t− 1

2
t s22 ,

SIII = (2a− b)t s3 =
6

5
at s3 .

These relations result in the shear stresses

τI =
QSI

I t
=

3

26

Q

at

s1
a

,

τII =
QSII

I t
=

Q

at

(
18

65
− 15

208

s22
a2

)
,

τIII =
QSIII

I t
=

9

52

Q

at

s3
a

.
τIII

3
26
Q/at

9
52
Q/at

τII

τI

τ

18
65
Q/at

3
13
Q/at
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P3.9Problem 3.9 Locate the shear center
for the depicted thin-walled (t 
 b, h)
box profile with a slit.

h

b

t

Solution We start by computing the
static moments with respect to the
y-axis of the three sub-areas:

SI = t
s21
2

, SII = t
h2

8
+

h

2
ts2 ,

SIII = t
h2

8
+

h

2
bt+ s3t

(
h

2
− s3

2

)
.

Thus the shear stresses become

τI =
Q

I

s21
2

,

τII =
Q

I

(
h2

8
+

h

2
s2

)
,

τIII =
Q

I

(
h2

8
+

h

2
b+

s3
2
(h− s3)

)
.

s2

y

Q

M

IIII

s3 II

τI

τI

τII

0
rM

τIII

s1

τII
The equivalency of moments with re-
spect to 0 provides

Q rM= 2

∫ h/2

0

τIbt ds1 + 2

∫ b

0

τII
h

2
t ds2 =

Qt

I

(
b
h3

24
+

1

8
bh3 +

1

4
h2b2

)

=
Qtbh2

I

(
1

6
h+

1

4
b

)
.

With the second moment of area for the thin-walled profile

I = 2
[ th3

12
+ bt

(h
2

)2]
= th2

(
h

6
+

b

2

)

we obtain the distance rM of the shear center M to the reference point 0

rM =
tbh2

th2

1

6
h+

1

4
b

1

6
h+

1

2
b
= b

2h+ 3b

2h+ 6b
.
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P3.10 Problem 3.10 The cantilever
with thin-walled box cross
section is loaded by two ben-
ding moments My = F l and
Mz = 2F l.

Determine the distribution of
the normal stresses in the
cross section for b = 2h.

Mz

h

b

x

My

t
t � b, h

l

Solution Because of symmetry y and z are principal axes. The stress
distribution is computed from

y

z

σ =
My

Iy
z − Mz

Iz
y .

With

Iy = 2 · th
3

12
+ 2 ·

(h
2

)2

tb =
1

6
th2(h+ 3b) ,

Iz = 2 · tb
3

12
+ 2 ·

( b

2

)2

ht =
1

6
tb2(b+ 3h)

and the given bending moments we find

σ =
F l

1

6
th2 · 7h

z − 2F l
1

6
t 4h2 · 5h

y =
6F l

th3

(z

7
− y

10

)
.

The equation of the neutral axis (line of
zero stress) is computed from σ = 0

z =
7

10
y .

36

35

Fl

th2

σ

neutral axis

y
z

To clarify the representation the stresses
due to the two loading cases are depicted seperately:

21

35

Fl

th2due to Mz

σ

15

35

Fl

th2

due to My
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P3.11Problem 3.11 A beam, simply
supported at both ends, with a
thin-walled profile (t 
 b) is loa-
ded by a force F in the middle.

Determine the stress distributi-
on under the load as well as the
location and value of the maxi-
mum stress.

F

z

2b
S

y

b

t

b

l

2
F

Solution For the unsymmetrical profile the principal axes are not
known. We have to use the equations for biaxial bending. Thus we
obtain for the stresses with Mz = 0

σ =
My

Δ
(Izz + Iyzy) .

The moment due to the load is given by

My = Mmax =
F l

4
.

Together with the geometric quantities of the cross section

Iy =
t(2b)3

12
+ 2 · b2(bt) = 8

3
tb3 , Iz = 2

[ tb3
12

+
( b
2

)2
bt
]
=

2

3
t b3 ,

Iyz = −2 · b · b
2
· bt = −tb3 ,

Δ = IyIz − I2yz =
16

9
t2b6 − t2b6 =

7

9
t2b6

we obtain the stress

σ =
F l

4 · 7
9
t2b6

(
2

3
t b3z − t b3y

)
=

3

28

F l

t b3
(2z − 3y) .

The neutral axis follows from the condition

σ = 0 � z =
3

2
y .

compression

axis
neutral

z

3

2

tension
y

S
The maximal stresses occur at points
with the largest distance to the neutral
axis (y = 0, z = ±b):

σmax = ± 3

14

F l

t b2
.
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P3.12 Problem 3.12 A cantilever beam
with thin-walled profile (t 
 a) is
subjected to a constant line load q0
and a concentrated force F .

Determine the distribution of the nor-
mal stress in the cross section at the
support.

Given: F = 2q0l.

q0

ξC

l
F

z

y C

a
t

aSolution We place a y, z-coordinate system at
the not yet known centroid. By symmetry to
the 45◦-axis the distance ξC to both sub-areas
is identical. As the static moment vanishes with
regard to the symmetry axis, we have

ξC at =
(a

2
− ξC

)
a t � ξC =

a

4
.

With regard to the symmetry axis we find

Iy = Iz =
ta3

12
+

(a
4

)2
a t+

(a
4

)2
a t =

5

24
ta3 ,

Iyz = −a

4

a

4
a t− (−a

4

)(−a

4

)
a t = −1

8
ta3 .

This yields

Δ = IyIz − I2yz =
( 5

24

)2
t2a6 − 1

64
t2a6 =

1

36
t2a6 .

The internal moments at the support are given by

My = − q0l
2

2
and Mz = F l = +2q0l

2 .

Finally we obtain for the stress

σ =
1

Δ
{[MyIz −MzIyz] z − [MzIy −MyIyz] y}

=
36

t2a6

{[
− q0l

2

2

5

24
ta3 − 2q0l

2

(
− ta3

8

)]
z

−
[
2q0l

2 5

24
ta3 +

q0l
2

2

(
− ta3

8

)]
y

}

=
3

4

q0l
2

ta3
(7z − 17y) .
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Alternatively we can describe the stress distribution with respect to
the principal axes y∗, z∗, which we know from symmetry considerati-
ons. The principal values of the second moments of area follow with
Iy = Iz and ϕ = 45◦

I∗y =
Iy + Iz

2
+ Iyz =

5

24
ta3 − 1

8
ta3 =

1

12
ta3 ,

I∗z =
Iy + Iz

2
− Iyz =

5

24
ta3 +

1

8
ta3 =

1

3
ta3 .

Decomposition of the loading in the principal directions yields

M∗
y = − q0l

2

2
cosϕ+ F l sinϕ

= q0l
2

(
2− 1

2

)
1

2

√
2 ,

M∗
z =

q0l
2

2
sinϕ+ F l cosϕ

= q0l
2

(
1

2
+ 2

)
1

2

√
2 ,

My

Mz

ϕ =
π

4

z

y C

y∗ z∗

which leads to the stresses in the principal directions

σ =
M∗

y

I∗y
z∗ − M∗

z

I∗z
y∗ =

3
√
2

4

q0l
2

ta3
(12z∗ − 5y∗) .

To check the result we transform with

z∗=−y sinϕ+ z cosϕ = (z − y)
1

2

√
2 ,

y∗=y cosϕ+ z sinϕ = (z + y)
1

2

√
2

back and find by re-substitution

σ =
3

4

q0l
2

ta3
[12(z − y)− 5(z + y)] =

3

4

q0l
2

ta3
(7z − 17y) .

z

y
tension

neutral axis

compressionThe neutral axis satisfies the equation

z =
17

7
y .



80 Computation of the deflection

P3.13 Problem 3.13 The beam is simply suppor-
ted at both ends. Determine
a) location and value of maximal moment,
b) location and value of maximal deflection,
c) the slope of the deflection curve at both
supports.

q0

l
EI

x

Solution Bending moment and deflection curve can be computed in-
dependently, because the beam is statically determinate.

to a) The given loading provides

q = q0
x

l

by twice integration

V = −q0
x2

2l
+ C1 ,

M = −q0
x3

6l
+ C1x+ C2 .

With the static boundary conditions

M(0) = 0 � C2 = 0 , M(l) = 0 � C1 =
q0l

6

we obtain

V =
q0l

6

[
1− 3

(x
l

)2]
, M =

q0l
2

6

[x
l
− (x

l

)3]
.

Location and value of the maximal moment are determined by the con-
dition M ′ = 0 :

M ′ = V = 0 � 1− 3
(x∗

l

)2
= 0 � x∗ =

1

3

√
3 l = 0, 577 l ,

Mmax = M(x∗) =
1

18

√
3 q0l

2(1− 1

3

)
=

1

27

√
3 q0l

2 .

to b) With the known function of the moment

M =
q0l

2

6

[
x

l
−

(x

l

)3
]

we derive from EI w′′ = −M by twice integration

EI w′= − q0l
2

6

(x2

2l
− 1

4

x4

l3

)
+ C3 ,

EI w = − q0l
2

6

(x3

6l
− 1

20

x5

l3

)
+ C3x+C4 .
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The new integration constants are determined from the geometric boun-
dary conditions

w(0) = 0 � C4 = 0 ,

w(l) = 0 � C3 =
q0l

3

6

(
1

6
− 1

20

)
=

7

360
q0l

3 .

Finally we obtain (cf. table on page 62, load case no. 3)

EI w =
q0l

4

360

[
7
x

l
− 10

(x

l

)3

+ 3
(x

l

)5
]
.

The maximal deflection is computed by using the condition w′ = 0 :

EI w′ = 0 � 7− 30

(
x∗∗

l

)2

+ 15

(
x∗∗

l

)4

= 0

�

(
x∗∗

l

)4

− 2

(
x∗∗

l

)2

+
7

15
= 0 ,

� x∗∗ =

√
1(+)−

√
8

15
l = 0, 519 l .

(The (+)-sign provides an x-value outside of the range of validity.) Thus
we have

wmax = w(x∗∗)=
q0l

4

360EI

√
1−

√
8

15

[
7−10

(
1−

√
8

15

)
+ 3

(
1−

√
8

15

)2]

= 0, 0065
q0l

4

EI
.

to c) The slope of the deflection curve follows as

w′(0) =
C3

EI
=

7

360

q0l
3

EI
,

w′(l) = − q0l
2

6EI

(
l

2
− l

4

)
+

7

360

q0l
3

EI
= − 8

360

q0l
3

EI
.

Note: Maximal moment and maximal deflection occur at different
locations: x∗ �= x∗∗.
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P3.14 Problem 3.14 Determine the func-
tion of the bending moment for the
depicted beam.

q0

EI

x

l

Solution The beam is statically indeterminate. Thus the function of
the moment needs to be computed with help of the deflection curve.
From the differential equation we derive by integration

EI wIV = q = q0 ,

−EI w′′′ = Q = −q0x+ C1 ,

−EI w′′ = M = −q0
x2

2
+ C1x+ C2 ,

EI w′ = q0
x3

6
− C1

x2

2
− C2x+ C3 ,

EI w = q0
x4

24
− C1

x3

6
− C2

x2

2
+C3x+ C4 .

The 4 integration constants follow from the 4 geometric boundary con-
ditions:

w′(0) = 0 � C3 = 0 ,

w(0) = 0 � C4 = 0 ,

w′(l) = 0 �
q0l

3

6
− C1

l2

2
− C2l = 0

w(l) = 0 �
q0l

4

24
− C1

l3

6
− C2

l2

2
= 0

⎫
⎪⎪⎬
⎪⎪⎭

�

C1 =
q0l

2

C2 = − q0l
2

12
.

This yields

M = − q0l
2

12

[
1− 6

x

l
+ 6

(x

l

)2
]
.

M q0l
2

24

q0l
2

12

l

q0l
2

12 x

l√
12
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P3.15Problem 3.15 Determine the deflec-
tion of the depicted beam. The left
end of the beam is elastically sup-
ported by a spring, the right end is
clamped, and the load has the shape
of a quadratic parabola.

l

x q0

EIc

Solution We start by computing the quadratic equation for the line
load. From the general equation q = A+Bx+ Cx2 and

q(0) = 0 � A = 0 ,

q(l) = 0 � Bl +Cl2 = 0 ,

q(
l

2
) = q0 � B

l

2
+ C

l2

4
= q0 ,

⎫⎬
⎭ � C = −B

l
, B = 4

q0
l

it follows q(x) = 4q0
[x
l
− (

x

l
)2
]
.

Four times integration of EI wIV = q yields

−EI w′′′ = V = −4q0
(x2

2l
− x3

3l2

)
+C1 ,

−EI w′′ =M = −4q0
(x3

6l
− x4

12l2

)
+ C1x+ C2 ,

EI w′=4q0
( x4

24l
− x5

60l2

)
− C1

x2

2
− C2x+C3 ,

EI w=4q0
( x5

120l
− x6

360l2

)
− C1

x3

6
−C2

x2

2
+ C3x+C4 .

The boundary conditions provide

M(0) = 0 � C2 = 0 ,

V (0)= c · w(0) � C1 = c
C4

EI
,

w′(l)= 0 �
q0l

3

10
− C1

l2

2
+C3 = 0 ,

w(l)= 0 �
q0l

4

45
− C1

l3

6
+C3l + C4 = 0 .

The 3 equations for C1, C3, and C4 yield with the abbreviation
Δ = 1 + cl3/3EI

C1 =
7

90

c

Δ

q0l
4

EI
, C3 = − q0l

3

10Δ

(
1− 1

18

cl3

EI

)
, C4 =

7

90

q0l
4

Δ

which leads to the final result

w =
q0l

4

10EI

[
1

3

(x
l

)5− 1

9

(x
l

)6− 7

54

cl3

ΔEI

(x
l

)3−
(
1− 1

18

cl3

EI

) 1

Δ

(x
l

)
+

7

9Δ

]
.
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P3.16 Problem 3.16 A cantilever beam is
subjected to a constant distributed
load q0.

Determine the deflection at the free
end.

q0

2a

x1 x2

EI

a

Solution We solve the problem in two different ways.
1st solution: Due to the discontinuity of q(x) we have to consider two
domains:

0 ≤ x1 < 2a q1 = 0 ,

V1 = C1 ,

M1 = C1x1 + C2 ,

EI w′
1 = −C1

x2
1

2
−C2x1 + C3 ,

EI w1 = −C1
x3
1

6
−C2

x2
1

2
+ C3x1 + C4 ,

0 < x2 ≤ a q2 = q0 ,

V2 = −q0x2 + C5 ,

M2 = −q0
x2
2

2
+ C5x2 +C6 ,

EI w′
2 = q0

x3
2

6
− C5

x2
2

2
− C6x2 + C7 ,

EI w2 = q0
x4
2

24
− C5

x3
2

6
− C6

x2
2

2
+ C7x2 + C8 .

The 8 integration constants Ci follow from:

4 boun−
dary
conditons

⎧⎨
⎩
w′

1(0) = 0 � C3 = 0 , w1(0) = 0 � C4 = 0 ,

Q2(a) = 0 � C5 = q0a , M2(a) = 0 � C6 = − q0a
2

2

and 4
contin−
uity
condi−
tions

⎧
⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

M1(2a) = M2(0) �C12a +C2 = C6 ,

w′
1(2a) = w′

2(0) � −C1
(2a)2

2
− C22a+ C3 = C7 ,

w1(2a) = w2(0) = 0 � −C1
(2a)3

6
− C2

(2a)2

2

+C32a+ C4 = C8 = 0

� C1 = −3

8
q0a , C2 =

1

4
q0a

2 , C7 =
1

4
q0a

3 , C8 = 0 .

(For the shear force no continuity condition is available because it expe-
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riences a jump related to the unknown reaction force B). The deflection
at the free end yields

w2(a) =
q0
EI

{
a4

24
− a4

6
+

a4

4
+

a4

4

}
=

3

8

q0a
4

EI
.

2nd solution: Using the Macauley bracket we can describe both do-
mains by a single equation. We introduce x from the left end and have
to consider the jump in the shear resultant at B (assumed to be positive
in upward direction):

q = q0 <x− 2a>0 ,

V = −q0 <x− 2a>1 +B <x− 2a>0 +C1 ,

M = −1

2
q0 <x− 2a>2 +B <x− 2a>1 +C1x+C2 ,

EI w′ =
1

6
q0 <x− 2a>3 −1

2
B <x− 2a>2 −1

2
C1x

2 − C2x+ C3 ,

EI w =
1

24
q0 <x− 2a>4−1

6
B <x− 2a>3−1

6
C1x

3− 1

2
C2x

2+ C3x+ C4.

The 5 unknowns Ci and B follow from

4 boun−
dary condi−
tions and

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

w′(0) = 0 � C3 = 0 ,

w(0) = 0 � C4 = 0 ,

Q(3a) = 0 � −q0a+B + C1 = 0 ,

M(3a) = 0 � −q0
a2

2
+Ba+ C13a+ C2 = 0

1 reaction
condition

{
w(2a) = 0 � −C1

(2a)3

6
− C2

(2a)2

2
+ C32a+ C4 = 0 .

Solving yields:

C1 = −3

8
q0a , C2 =

1

4
q0a

2 , C3 = 0 , C4 = 0 , B =
11

8
q0a .

Thus the deflection at the free end is given by

w(3a) =
q0
EI

[
a4

24
− 11

8
a
a3

6
+

3

8
a
(3a)3

6
− 1

4
a2 (3a)

2

2

]
=

3

8

q0a
4

EI
.

Note: The computation of displacements at designated locations is less
complex with methods discussed in chapter 5.
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P3.17 Problem 3.17 The depicted beam
is loaded on its cantilever part by
a constant line load.

Compute the deflection at the hin-
ge and determine the slope diffe-
rence at the hinge.

q0

EI

a
2

a
2

A

a

x

Solution With the help of the Macauley bracket the entire domain can
be descibed by a single equation. During integration the jump in the
slope Δϕ at the hinge has to be considered separately.

q = q0 − q0 < x− a

2
>0 ,

V = −q0x+ q0 < x− a

2
>1 +A < x− a

2
>0 +C1 ,

M = −q0
x2

2
+

q0
2

< x− a

2
>2 +A < x− a

2
>1 +C1x+ C2 ,

EI w′ = q0
x3

6
− q0

6
< x− a

2
>3 −A

2
< x− a

2
>2 −C1

x2

2
−C2x

+EIΔϕ < x− a >0 +C3 ,

EI w = q0
x4

24
− q0

24
< x− a

2
>4 −A

6
< x− a

2
>3 −C1

x3

6
−C2

x2

2

+EIΔϕ < x− a >1 +C3x+ C4 .

The 4 integration constants Ci, the unknown reaction force A, and the
slope difference Δϕ at the hinge are determined from the following 6
conditions

V (0) = 0 � C1 = 0 , M(0) = 0 � C2 = 0 ,

M(a) = 0 � A =
3

4
q0a , w(

a

2
) = 0 �

1

384
q0a

4 + C3
a

2
+ C4 = 0 ,

w′(2a) = 0 �
4

3
q0a

3 − 27

48
q0a

3 − 27

32
q0a

3 +EIΔϕ+ C3 = 0 ,

w(2a) = 0 �
2

3
q0a

4 − 81

384
q0a

4 − 81

192
q0a

4 + EIΔϕa+ C32a+ C4 = 0.

This yields the solution

C3 = − 5

24
q0a

3 , C4 =
39

384
q0a

4 , EIΔϕ =
9

32
q0a

3 .

Thus we obtain for the deflection at the hinge

wH = w(a) = − 1

12

q0a
4

EI

and for the slope difference
wH

Δϕ

Δϕ =
9

32

q0a
3

EI
.
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P3.18Problem 3.18 A leaf spring with
constant thickness t and variable
width b = b0l/(l + x) is fixed at
one side and loaded at one edge
by F .

Determine the deflection at the
position of the load. F

b
t

E

l

x
b0

Solution The system is statically determinate. Hence the function of
the moment follows from equilibrium considerations:

V = F = const , M = Fx+C .

The condition M(l) = 0 yields C = −F l and thus

M = −F (l − x) .

Use of the differential equation EI w′′ = −M yields with

I(x) = b(x)
t3

12
=

b0t
3

12

l

l + x

and the abbreviation I0 = b0t
3/12 :

w′′ =
F (l − x)(l + x)

EI0l
=

F

EI0l
(l2 − x2) .

By integration we obtain

w′ =
F

EI0l

(
l2x− x3

3
+ C1

)
,

w =
F

EI0l

(
l2
x2

2
− x4

12
+ C1x+ C2

)
.

The boundary conditions

w′(0) = 0 � C1 = 0 , w(0) = 0 � C2 = 0

render the solution

w(l) = wmax =
5

12

F l3

EI0
.

Note: For a beam with constant width b0 the same load results in a
smaller deflection

w(l) =
F l3

3EI0
=

4

12

F l3

EI0
.
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P3.19 Problem 3.19 A cantilever beam with
rectangular cross section (width b,
height h(x)) is subjected to a linear va-
rying load such that the extreme fibre
experiences a stress σ0.

Determine the deflection of the left end.

E
l

x

q0

Solution First we have to compute the unknown cross section height.
Using

σmax =
|M |
W

= σ0

together with

M = − q0x
3

6l
, I =

b h3(x)

12
, W (x) =

I

h/2
=

b h2(x)

6

yields h(x)

h(x) =

√
q0
σ0bl

x3/2 .

This leads to

I(x) =
q0

12σ0l

√
q0
bσ0l

x9/2 .

Integration of EI w′′ = −M provides together with the boundary con-
ditions w′(l) = w(l) = 0 :

w′′ = − M

EI
=

q0x
312σ0l

6lEq0

√
bσ0l

q0
x−9/2 = 2

σ0

E

√
bσ0l

q0
x−3/2 ,

w′ = 2
σ0

E

√
bσ0l

q0

(
−2x−1/2 + 2l−1/2

)
,

w = 2
σ0

E

√
bσ0l

q0

(
−4x1/2 + 2l−1/2x+ 2l1/2

)
.

Evaluation at x = 0 yields the deflection at the left end

w(0) = 4
σ0

E

√
bσ0l2

q0
.

As a test we check the physical dimensions (F =̂force, L=̂length):

[w] =
FL−2

FL−2

√
LFL−2L2

FL−1
= L .
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P3.20Problem 3.20 The depicted beam is
assembled from two parts with diffe-
rent bending stiffness.

Determine the deflection at the free
end. l

II

F

l

2EI EI

I

Solution We use superposition together with the tabulated results on
page 62. First we assume that beam II is fixed at point B and compute
the defection wII . To this we have to add the deflection wI of the left
beam I due to F and M = F l. Finally we have to consider the slope
w′

I , that appears at the left beam. This slop has to be multiplied by
the length l and added as an additional deflection at the right end:

w′
I

F
BI II F lI B

F

wI

f
B

F
II

wII

f = wII + wI + w′
I l = wII + (wIF

+ wIM
) + (w′

IF
+w′

IM
)l .

According to load case no. 5

wII =
F l3

3EI
, wIF

=
F l3

3(2EI)
, w′

IF
=

F l2

2(2EI)

and load case no. 8

wIM
=

(F l)l2

2(2EI)
, w′

IM
=

(F l)l

(2EI)
.

superposition yields the deflection at the end

f =
F l3

3EI

{
1 +

1

2
+

3

4
+

3

4
+

3

2

}
=

3

2

F l3

EI
.
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P3.21 Problem 3.21 Determine the
deflection curve for the depic-
ted beam.

q0

l
EI

A

Solution The beam is statically indeterminate. We free the support
moment at the left end and introduce the unknown moment X:

q0
X=MA

q0

w′
q w′

X

From the table on page 62 we obtain for the slope:

load case no. 2 w′
q =

q0l
3

24EI
,

load case no. 4 (with β = 1) w′
X =

Xl

3EI
.

The total slope at the left support has to vanish. Thus compatibility
provides

w′
q + w′

X = 0 � X = MA = −1

8
q0l

2 .

Superposition of the deflection curves in table on page 62 yields the
deflection curve of the system

EI w = EI(wq + wX)

=
q0l

4

24
(ξ − 2ξ3 + ξ4)− 1

8
q0l

2 l
2

6
(2ξ + ξ3 − 3ξ2)

=
q0l

4

48
(3ξ2 − 5ξ3 + 2ξ4) .
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P3.22Problem 3.22 A pole is clamped at
A and supported at B by an elastic
rope. The pole is subjected to a ho-
rizontal linearily varying load.

Compute the horizontal displace-

ment v at point C for
EI

a2EA
=

1

3
. 2a

B

C

A

EA

EI
a

q0

a

Solution We disconnect rope and pole:

vq

wq

vX

wXX
X

Δa

Compatibility at the connection of the rope requires

wq − wX = Δa , where Δa =
Xa

EA
(see chapter 2) .

With the table on page 62 we obtain:

load case no. 7 wq =
q0(2a)

4

30EI
=

8

15

q0a
4

EI
,

load case no. 5 wX =
X(2a)3

3EI
=

8

3

Xa3

EI
.

Using these values in the compatibility condition provides

8

15

q0a
4

EI
− 8

3

Xa3

EI
=

Xa

EA
� X =

1

5
q0a

1 +
3

8

EI

a2EA

=
8

45
q0a .

The displacement v results from superposition (for the linear varying
load we have to consider the displacement wq and the slope w′

q : vq =
wq + w′

qa):

EI v = EI(vq + vX ) =
q0(2a)

4

30
+

q0(2a)
3

24
a− X(3a)3

6

[
3 · 2

3
− 1 +

(
1

3

)3
]

︸ ︷︷ ︸
load case no. 5 with α = 2/3

=
13

15
q0a

4 − 14

3
Xa3 =

q0a
4

27
.
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P3.23 Problem 3.23 Two parallel beams
(bending stiffness EI , length a) ha-
ve a distance of l and are clamped
at the left support. An elastic bar
(axial rigidity EA) of length l + δ
is force fitted at a/2 between the
two beams.

a) Determine the force in the bar?

b) Compute the change e by which
the distance l at the beam ends is
changed.

ll + δ δ � l

a/2a/2

Solution to a) From geometry (compatibility)

l + 2wX = (l + δ)−Δl

� 2wX +Δl = δ

we obtain (see table on page 62,
load case no. 5)

wX =
X

(a

2

)3

3EI
und Δl =

Xl

EA

and the force in the bar (compression)

wX

X

X

fX
X

X

Δl
w′

X

S = X =
δ

l

EA
+

a3

12EI

= δ
EA

l

1

1 +
a3EA

12 l EI

.

to b) The opening e is computed with help of the table on page 62
from load case no. 5

e = 2 fX = 2
Xa3

6 EI

[
3 · 1 · 1

2
− 1 +

(
1

2

)3
]
=

5

24

a3EA

l EI

δ

1 +
a3EA

12 l EI

.

Note: In the limit case EI → ∞ one obtains S = δ
EA

l
and

e = 0.
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P3.24Problem 3.24 Compute the
reaction forces for the depic-
ted beam.

l/2 l/2

q0

EI

Solution The system is twice statically indeterminate. We treat the
support moment MA = X1 and the reaction force B = X2 as static
redundant quantities and use superposition:

q0
X1

A B C w′
q wq w′

1 w1

w′
2

w2

X2

q0

Considering the (arbitrary chosen) directions yields for the compatibi-
lity

w′
q + w′

1 − w′
2 = 0 ,

wq + w1 − w2 = 0 .

From the table on page 62 (no. 2, 4 and 1) we obtain

q0l
3

24
+

X1l

3
− X2l

2

16
= 0 ,

5

384
q0l

4 +
1

16
X1l

2 − X2l
3

48
= 0 ,

which yields

X1 = − 1

56
q0l

2 , X2 =
4

7
q0l .

The support reactions are determined by superposition of the 3 load
cases

A =
q0
2

− X1

l
− X2

2
=

13

56
q0l ,

B = X2 =
4

7
q0l ,

C =
q0l

2
+

X1

l
− X2

2
=

11

56
q0l ,

MA = X1 = − 1

56
q0l

2 .
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P3.25 Problem 3.25 Determine the
deflection curve for the depic-
ted beam subjected to a tra-
pezoidal load.

q1
q0

l
EIA B

Solution The beam is statically indeterminate. We choose B as the
static redundant quantity and use superposition of 3 load cases (the
trapezoidal load is replaced by an equivalent constant and linearly va-
rying load)

B

q1 q1 − q0

x

The table on page 62 (load case no. 6, 7 and 5) provides

EI w(x) =
q1l

4

24
(6ξ2 − 4ξ3 + ξ4)

− (q1 − q0)l
4

120
(10ξ2 − 10ξ3 + 5ξ4 − ξ5)− Bl3

6
(3ξ2 − ξ3) .

The support condition at B yields the reaction force B

w(l) = 0 � B =
3

8
q1l − (q1 − q0)l

10
.

By recasting the above equations

q1l
4

24
=

(q1 − q0)l
4

24
+

q0l
4

24

we determine the deflection curve

EI w(x) =
q0l

4

24

{
ξ4 − 5

2
ξ3 +

3

2
ξ2
}

+
(q1 − q0)l

4

120

{
ξ5 − 9

2
ξ3 +

7

2
ξ2
}
.
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P3.26Problem 3.26 For the beam with two
domains determine the support reacti-
ons and the deflection at the center of
each domain.

Given: F = 2q0l.

l

2

EI BA C

F

l l

q0

Solution We divide the beam into 2 separate (hinged at both ends)
beams and introduce the moment at the central support as statically
redundant quantity:

A(0)

F

B
(0)
2 A(1)

w
′ (1)
1

X

C(1)B
(1)
2

w
′ (1)
2

w
′ (0)
1 w

′ (0)
2

C(0) B
(1)
1B

(0)
1

Equilibrium yields

A(0) = B
(0)
1 =

1

2
q0l , B

(0)
2 = C(0) =

F

2
,

A(1) = C(1) = −B
(1)
1 = −B

(1)
2 =

X

l
.

The table on page 62 provides

w
′ (0)
1 = − q0l

3

24EI
, w

′ (0)
2 =

F l2

16EI
, w

′ (1)
1 = −w

′ (1)
2 = − Xl

3EI
.

Compatibility can be formulated as

w
′ (0)
1 + w

′ (1)
1 = w

′ (0)
2 + w

′ (1)
2

which yields together with the tabulated results

X = − 1

16
q0l

2 − 3

32
F l = −1

4
q0l

2 = MB .

The support reactions are computed by superposition

A = A(0) +A(1) =
1

2
q0l − 1

4
q0l =

1

4
q0l ,

B = B
(0)
1 +B

(1)
1 +B

(0)
2 +B

(1)
2 = 2q0l ,

C = C(0) + C(1) =
F

2
− 1

4
q0l =

3

4
q0l .

For the deflections at the center of the domains we compute

f1 = f
(0)
1 + f

(1)
1 =

5

384

q0l
4

EI
+

Xl2

6EI

(
1

2
− 1

8

)
= − q0l

4

384 EI
,

f2 = f
(0)
2 + f

(1)
2 =

F l3

48 EI
+

Xl2

6 EI

(
1

2
− 1

8

)
=

5 q0l
4

192 EI
.
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P3.27 Problem 3.27 A beam (rectangular cross
section, width b, height h) that is clam-
ped at both ends is subjected along its
length l to a constant temperature diffe-
rence Tt − Tb.

Determine the defection of the beam and the maximum stresses.

A Tb

Tt

l

x B

Solution The beam is twice statically indeterimante. We choose as
statically redundant quantities the reaction moment X1 = MB and the
reaction force X2 = B. We use superpostion of the three (statically
determinate) systems:

w
(1)
B

“0”-System “1”-System “2”-System

w
(0)
B

B

w
′ (0)
B

MB

w
′ (1)
B w

′ (2)
B

w
(2)
B

The deflection in the “0”-System is computed by the temperature mo-
ment

MΔT = EIαT (Tb − Tt)/h

using the differential equation w′′ (0) = −MΔT /EI and considering the
boundary conditions w(0)(0) = 0, w′ (0)(0) = 0:

w′ (0)(x) = −MΔT

EI
x , w(0)(x) = −MΔT

EI

x2

2
.

Due to the clamping at B compatibility requires

wB = w
(0)
B + w

(1)
B + w

(2)
B = 0 , w′

B = w
′ (0)
B +w

′ (1)
B + w

′ (2)
B = 0 .

From the table on page 62 we obtain

−MΔT

EI
l − MB l

EI
− Bl2

2EI
= 0 , −MΔT

EI

l2

2
− MB l2

2EI
− Bl3

3EI
= 0 ,

with the solution

B = 0 , MB = −MΔT .

As MB = M is constant along the entire length of the beam the deflec-
tion becomes

w′′ = −M +MΔT

EI
= 0 i. e. w ≡ 0 .

The maximum stress is computed with the section modulus W = bh2/6

|σmax| = |M |
W

= 6
MΔT

bh2
.
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P3.28Problem 3.28 Determine the
support reactions for the de-
picted frame.

q0

EI

a a

Solution We free the right support and use B as static redundant
quantity

B

A

q0

q0q0

B

B

q0a
2

2

q0

Ba

B

ϕ

ψ

vB1
ψ

vB

vq2
ϕ

vq1

vB2

vq

vq
vB

The individual displacement components are determined from the table
on page 62 and superposition:

vq = vq1 + vq2 = ϕ · a+ vq2 =
q0a

2

2
· a · a+

q0a
4

8
=

5

8
q0a

4 ,

vB = vB1 + vB2 = ψ · a+ vB2 = Ba · a · a+B
a3

3
=

4

3
Ba3 .

The compatibility at B provides the reaction force B:

vq = vB � B =
15

32
q0a .

The other support reactions follow from equilibrium

A =
17

32
q0a and MA = − 1

32
q0a

2 .
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P3.29 Problem 3.29 An auxiliary bridge,
that is resting on the river banks, is
supported in the middle by an addi-
tional pontoon (block with cross sec-
tion A at the water line). The bridge
is subjected to a constant load q0.

Given: water density ρ, EI/Al3ρg = 1/24 .

Determine the immersion depth f of the pontoon due to q0.

ρ

q0

A

l

EI

l

Solution The system is statically indeterminately supported. We use
the pontoon force as statically redundant force and apply superposition:

wq
X

FA

wXq0 q0

For the immersion of the pontoon we obtain

f = wq − wX .

Archimedes’ principle yields the buoyant force FA that is equal to the
weight of displaced fluid (see also chapter 7), i. e. we have

X = FA = ρgfA � f =
X

ρgA
.

The table on page 62 provides

no. 2 : wq =
5

384

q0(2l)
4

EI
, no. 1 : wX =

X(2l)3

48EI
.

Using the above results

X

ρgA
=

5

384

q016l
4

EI
− X8l3

48EI
� X =

5

24

q0l
4

EI
1

6

l3

EI
+

1

ρgA

= q0l .

the immersion depth is given by

f =
X

ρgA
=

q0l

ρgA

EI

EI

l3

l3
=

1

24

q0l
4

EI
.
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P3.30Problem 3.30 An elastic rope
(length s) is fixed to the wall
and in C frictionless redirected
by a pulley. The pulley is atta-
ched to a beam (axial rigidity
→ ∞),

Determine the displacement of
the load Q.

l

EI
C

Q

ϕ EA

Solution The displacement of Q is computed by the length change

Δs =
Qs

EA

of the rope and a contributions δ of the deflection of the pulley. The
deflection is calculated by the vertical load on the beam

V = Q− S cosϕ = Q(1− cosϕ)

to be

w =
V l3

3EI
=

Q(1− cosϕ)l3

3EI
.

H H
V

Q

S = Qϕ
V

w

The deflection δ of the load Q follows from

δ = w + an − av

= w + (s− bn)− (s− bv)

= w + bv − bn

with

bn − bv = w cosϕ (for w 
 bv) .

Q′

ϕ bv

bn

C

δ

av

an

C ′
w

Q

This leads to the deflection of Q

vQ = δ +Δs = w(1− cosϕ) +
Qs

EA
= Q

[
s

EA
+

l3(1− cosϕ)2

3EI

]
.
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P3.31 Problem 3.31 The depicted struc-
ture consists of a beam and bars
with stiffness ratio α = EI/a2EA.
The structure is loaded by the force
F .

a) Determine the forces in the bars-
for α = 1/8

b) For which value of α vanishes the
force S2?

c) For which α follows MB = 0?

©1

aa a a

√
2EAC

A

F

EI

©1
EA

a

B

©2

Solution The system is statically indeterminate in the interior. We free
the middle bar (basic system):

F

2
F

C

A B

F
C

S
(0)
1S

(0)
1

F

2

Equilibrium in C yields S
(0)
1 =

√
2F/2. The beam is loaded by the

components F/2. With the table on page 62 (load case no. 1) the dis-
placement at A is given by

EI w
(0)
A =

F

2

(4a)3

6

[
3

4
· 1
4

(
1− 9

16
− 1

16

)
+

1

4
· 1
4

(
1− 1

16
− 1

16

)]
=

2

3
Fa3 ,

and at location B

EI w
(0)
B = 2 · F

2

(4a)3

6

1

4
· 1
2

(
1− 1

16
− 1

4

)
=

11

12
Fa3 .

Due to the truss elongation Δl1 point C experiences the displacement

w
(0)
C = Δl1

√
2 =

S1l1√
2EA

√
2 =

1

2

√
2 Fa

√
2

√
2 EA

√
2 =

Fa

EA
.

C

C ′
w

(0)
C

Δl1

Hence the total displacement of C is given by

v
(0)
C = w

(0)
B +w

(0)
C =

2

3

Fa3

EI
+

Fa

EA
.

Now we load the system by the unknown normal force S2 = X and
consider the two load cases independently:
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X

A B
II

A B
I

X X

In sub-system I the deformation is analogous to the basic system, if F
is replaced by −X, i. e.

v
(I)
C = −2

3

Xa3

EI
− Xa

EA
, w

(I)
B = −11

12

Xa3

EI
.

The displacement in sub-system II is again determined from the table
on page 62

w
(II)
B =

X(4a)3

48EI
=

4

3

Xa3

EI
,

v
(II)
C = w

(II)
A =

X(4a)3

6EI

{
1

2

1

4

(
1− 1

4
− 1

16

)}
=

11

12

Xa3

EI
.

Compatibility requires that the difference in the total displacement at
points C und B are equal to the elongation of bar 2:

v
(0)
C + v

(I)
C + v

(II)
C −

[
w

(0)
B +w

(I)
B + w

(II)
B

]
=

Xa

EA

or

2Fa3

3EI
+

Fa

EA
− 2Xa3

3EI
− Xa

EA
+

11Xa3

12EI
−

(11Fa3

12EI
− 11Xa3

12EI
+

4Xa3

3EI

)
=

Xa

EA

� X =
α− 1

4

2α+ 1
6

F .

With this result the answers to the questions are:

to a) X = S2 =

1
8 − 1

4
1
4 + 1

6

F = − 3

10
F, S1 =

1

2

√
2 (F −X) =

13

20

√
2 F,

to b) S2 = X = 0 � α =
1

4
,

to c) MB =
F

2
2a −

(F

2
− X

2

)
a = 0 � X = −F ,

�
α− 1

4

2α+ 1
6

F = −F � α =
1

36
.
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P3.32 Problem 3.32 The two depic-
ted posts have to be connected
by a rope. The rope has to be
fixed at points A and B. The
rope is too short by Δl.

a) Determine the horizontal
force F at the right post
that is required to fix the
rope stress-free.

b) The force F is removed after assembly. Determine the force in
the rope and the moments at both supports.

EI

D

h

EI

F

EAS

B
Δl

A

Solution to a) The force F has to bend the post by Δl to the left.
From the table on page 62 (load case no. 5) we obtain

Δl =
Fh3

3EI
� F =

3EI

h3
Δl .

to b) The length Δl follows from the extension ΔlS of the rope due to
a yet unknown force S in the rope and the deflection fS of both posts
due to the same unknown force S. Compatibility states

Δl = ΔlS + fS + fS

which yields

Δl =
Sl

EAS
+

Sh3

3EI
+

Sh3

3EI
� S =

Δl

l
EAS

1

1 +
2

3

h3EAS

lEI

.

Finally the moments at the support follow from equilibrium

M = hS =
Δl

l
EASh

1

1 +
2

3

h3EAS

lEI

.
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P3.33Problem 3.33 A plane frame
is loaded in C and D by two
forces.

Determine the reciprocative
horizontal displacement Δu of
C und D.

2a

D

F

F

C
EI

2

3
a

2

3
a

a

Solution To apply the table on page 62 we have to separate the defor-
mation of the individual beams and use superposition.

ϕ

ψ

M = F
2

3
a

ϕ

ϕ
2

3
a

M = F
2

3
a

ψ
2

3
a

F

F
w

w

MM

ϕ

C is moved by ϕ · 2
3
a+ ψ · 2

3
a+w to the right,

D is moved by ϕ · 2
3
a+ ψ · 2

3
a+ w to the left.

Thus, the reciprocative displacement follows

Δu = 2

[
ϕ · 2

3
a+ ψ · 2

3
a+w

]
.

With the table on page 62 it follows:

load case no. 2 EI ϕ =
(2

3
Fa

)2a
3

−
(2

3
Fa

)2a
6

=
2

9
Fa2 ,

load case no. 8 EI ψ =
(2
3
Fa

)
a =

2

3
Fa2 ,

load case no. 5 EI w =
F
(2
3
a
)3

3
=

8

81
Fa3 ,

which yields

Δu = 2

(
4

27
+

4

9
+

8

81

)
Fa3

EI
=

112

81

Fa3

EI
.

Note: Due to the antisymmetry of the system the vertical displace-
ments of C and D are the same.
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P3.34 Problem 3.34 The depic-
ted frame is loaded by a
moment M0.

Determine the reciproca-
tive rotation ΔϕH at the
hinge.

M0

l

EI

l

2

l

2

Solution It is reasonable to split the loading into a symmetric and
antisymmetric contribution:

M0/2

M0/2M0 M0/2 M0/2

ψ

M0/2

ψ

The antisymmetric loading causes no
reciprocative rotation at the hinge.
For the symmetric loadign it suffices
to consider half of the frame struc-
ture. The rotation ψ results solely
from the bending of the vertical post
(only a normal force occurs in the ho-
rizontal beam). Thus from the table
on page 62 (load case no. 4 with β = 1
and α = 0) we obtain

ψ =

M0

2
l

3EI
=

M0l

6EI
.

Hence the reciprocative rotation follows

ΔϕH = 2ψ =
M0l

3EI
.
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P3.35Problem 3.35 Determine for the
depicted beam with a thin-walled
profile the displacement at the
point where the load is applied.

x
2a

l

F
t

a

z

y

a

t � aE
F

Solution Due to the unsymmetrical profile oblique bending occurs. The
displacements are computed using the two related differential equati-
ons. The bending moments are given by

My = −F (l− x) , Mz = 0 ,

and the second moments of area for the thin-walled profile follow from

Iy =
t(2a)3

12
+ 2(at)a2 =

8

3
ta3, Iz =

2

3
ta3,

Iyz = −2(ta)a
a

2
= −ta3, Δ = IyIz − I2yz =

7

9
t2a6.

Thus the two differential equations can be integrated for the z-direction

Ew′′ = −MyIz
Δ

=
6

7

F

ta3
(l − x) ,

Ew′ = −3

7

F

ta3 (l − x)2 +C1 ,

Ew =
1

7

F

ta3
(l − x)3 + C1x+C2

and the y-direction

Ev′′ = −MyIyz
Δ

= −9

7

F

ta3 (l − x) ,

Ev′ =
9

14

F

ta3
(l − x)2 + C3 ,

Ev = − 3

14

F

ta3 (l − x)3 + C3x+C4 .

The boundary conditions at the support yield

v′(0) = 0 � C3 = − 9

14

F l2

ta3 , w′(0) = 0 � C1 =
3

7

F l2

ta3 ,

v(0) = 0 � C4 =
3

14

F l3

ta3
, w(0) = 0 � C2 = −1

7

F l3

ta3
.

Thus the displacements at the point, where the load is applied x = l, are

w(l) =
2

7

F l3

Eta3
, v(l) = −3

7

F l3

Eta3
.

Note: Although the load is acting in vertical direction a displacement
in horizontal direction occurs. The profile preferably deforms in
the direction which is related to the smaller second moment of area.
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P3.36 Problem 3.36 The simply
supported beam is loaded by
a constant distributed load.

Determine the displacement
of the centroid of the cross
section in the middle of the
beam (only deformation due
to bending).

Given: l = 2 m ,

E = 2.1 · 105 MPa ,

q0 = 104 N/m .

q0

E
l

130

10

10

ηC

C

z

ζC

y

q0

65
[mm]

x

Solution We compute the geometric quantities of the cross section:

A = 65 · 10 + 120 · 10 = 1850 mm ,

ζC =
(65 · 10) · 5 + (120 · 10) · 70

1850
= 47.16 mm ,

ηC =
(65 · 10) · 32.5 + (120 · 10) · 5

1850
= 14.66 mm ,

Iy =
65 · 103

12
+ (42.16)2(65 · 10) + 10 · 1203

12
+ (22.84)2(10 · 120)

= 322.7 cm4 ,

Iz =
10 · 653

12
+ (17.84)2(65 · 10) + 120 · 103

12
+ (9.66)2(10 · 120)

= 55.8 cm4 ,

Iyz= −(−17.84)(−42.16)(65 · 10) − (22.84)(9.66)(10 · 120)

= −75.4 cm4 ,

Δ = IyIz − I2yz = 12321.5 cm8 .

The loading causes only a moment along the y-axis:

My(x) =
q0l

2
x− q0

x2

2
.
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The basic equations simplify to

Ew′′ = −MyIz
Δ

, Ev′′ = −MyIyz
Δ

.

Integrating twice yields

Ew′ = − Iz
Δ

q0
2

(
l
x2

2
− x3

3
+ C1

)
,

Ew = − Iz
Δ

q0
2

(
l
x3

6
− x4

12
+ C1x+ C2

)
,

Ev′ = − Iyz
Δ

q0
2

(
l
x2

2
− x3

3
+ C3

)
,

Ev = − Iyz
Δ

q0
2

(
l
x3

6
− x4

12
+C3x+ C4

)
.

The boundary conditions

w(0) = 0 � C2 = 0 , v(0) = 0 � C4 = 0 ,

w(l) = 0 � C1 = − l3

12
, v(l) = 0 � C3 = − l3

12

together with the abbreviation ξ =
x

l
yield

Ew =
q0l

4

24

{
ξ4 − 2ξ3 + ξ

} Iz
Δ

,

Ev =
q0l

4

24

{
ξ4 − 2ξ3 + ξ

} Iyz
Δ

.

In the middle of the beam (ξ = 1/2) the curly brackets attain the value
5/16 which leads with the given numerical values (converted to cm) to

fw

C v

w = 102 · 2004 5

384

55.8

12321.5
· 1

2.1 · 107 = 0.45 cm ,

v = 102 · 2004 5

384

−75.4

12321.5
· 1

2.1 · 107 = −0.61 cm ,

f =
√

w2 + v2 = 0.76 cm .
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P3.37 Problem 3.37 In the middle of
a beam the force F is applied.
The thin-walled profile is pro-
duced from an aluminium sheet
of 2 mm thickness.

Compute the deformation at
the point where the force is
applied.

Given: l = 2 m ,

E = 7 · 104 MPa ,

F = 1200 N .
[cm]

x

l

C
y

z

2

10

F 4

4

2

l

2

E

F

Solution The displacement can be determined with regards to the y, z-
axes, or with regard to the principal axes. We want to consider both
possibilities.

1st solution: The position of the centroid is known. With regard to
the y, z-axes we find

Iy=
0.2 · 103

12
+

(0.2 · 103
12

− 0.2 · 63
12

)
+ 2 · 52 · 0.2 · 4 = 69.73 cm4 ,

Iz=
0.2 · 83

12
+ 2 · 42 · 0.2 · 2 = 21.33 cm4 ,

Iyz= −2{5 · 2 · 0.2 · 4 + 4 · 4 · 0.2 · 2} = −28.8 cm4 ,

Δ= IyIz − I2yz = 657.9 cm8 .

With the bending moments My =
F

2
x , Mz = 0 für 0 ≤ x ≤ l/2

(symmetry) the differential equations are given by

Ew′′ = −F Iz
2Δ

x , Ev′′ = −F Iyz
2Δ

x .

After integration and incorporation of the boundary conditions we ob-
tain in the middle of the beam (see also table on page 62):

w =
F l3

48E

Iz
Δ

=
1200 · 2003
48 · 7 · 106 · 21.33

657.9
= 0.93 cm ,

v =
F l3

48E

Iyz
Δ

=
1200 · 2003
48 · 7 · 106 · (−28.8)

657.9
= −1.25 cm ,

f =
√
w2 + v2 = 1.56 cm .
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2nd solution: We refer to the principal axes. The principal directions
and values of the second moment of area are given by

tan 2ϕ∗ =
2Iyz

Iy − Iz
= −1.19 � ϕ∗ = −24.98◦

I1,2 =
91.06

2
±

√
24.22 + 28.82

� I1 = Iη = 83.15 cm4 , I2 = Iζ = 7.91 cm4 .

η

y

ζ
z

ψ∗ = −ϕ∗

Decomposition of the load into principal directions yields

Fζ = F cosψ∗ = 0.906 F , Fη = −F sinψ∗ = 0.422 F ,

and the displacements follow from the table on page 62 (load case no. 1)

fη =
Fηl

3

48EIζ
= −1200 · 0.422 · 2003

48 · 7 · 106 · 7.91 = −1.52 cm ,

fζ =
Fζl

3

48EIη
=

1200 · 0.906 · 2003
48 · 7 · 106 · 83.15 = 0.31 cm ,

f =
√

f2
η + f2

ζ = 1.55 cm .

fη

fζ

η

y

ψ∗

ψ∗

f

ζ

z

v

w

For comparison with the 1st solution we transfer the displacements into
the y, z-coordinate system:

|v| = |fη| cosψ∗ − fζ sinψ
∗ = 1.25 cm ,

w = |fη | sinψ∗ + fζ cosψ
∗ = 0.93 cm .

Note: We used in the computations numerical values up to the second
digit. Thus the numerical value for the total displacement f differs in
the second digit.
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P3.38 Problem 3.38 A beam compo-
sed of two different materials
(a bi-metal beam to measu-
re temperature) is heated uni-
formly by a temperature diffe-
rence ΔT .

Determine the deformation at the free end.

x

h

b

l z

E1, α1

E2, α2 y
h

M1

M2
F2

F1

h

Solution We assume a linear stress distribution in each material and
replace the stresses by a resultant force Fi and a resulting moment Mi.
If we suppose α2 > α1 the lower
part wants expand more. As this
is prevented by the upper part,
the lower part is under compres-
sion, while tension prevails in
the upper part. F1 and F2 cause
a moment in the composite beam which is in equilibrium with M1 and
M2 (no external loads). Thus the following equations hold:

statics N = 0 � F1 = F2 = F ,

M = 0 � Fh = M1 +M2 ,

Hooke’s law w′′
1 = −M1

E1

12

bh3
, w′′

2 = −M2

E2

12

bh3
.

Kinematic compatibility demands

w′′
1 = w′′

2 = w′′ .

Additionally the strains have to match at the interface. They consist of
three contributions: temperature αiΔT , normal force F/EA and ben-
ding M/EW . Considering tension and compression we formulate

α1ΔT +
F

bhE1
+

M16

E1bh2
= α2ΔT − F

bhE2
− M26

E2bh2
.

Eliminating the moments Mi and rearrangement to get w′′ yields

w′′ = − 12E1E2(α2 − α1)ΔT

h(E2
1 + 14E1E2 + E2

2)
= −C .

w

ΔT
Integration, by incorporating the boun-
dary conditions at the left end, provides
the displacement at the free end

w = −C
l2

2
.
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