Chapter 2 2

Tension and Compression in Bars



30 Stress
Tensile or compressive loading in bars

Assumptions:

e Length [ of the bar is large compared to  —
characteristic dimensions of the cross sec- { TI’ U
tion A(x). |
e Axis of the bar (line connecting centroids
of the cross sections) is a straight line. N-n
e Common line of action (external loads F I
and n(z) are aligned with the axis of the A
bar). — =
e Cross section A(z) can only vary slightly.

Stress: Assuming a constant stress o across
the section A the following relation with the

normal force N holds: F
N(z
7= Aw)

o . dN
equilibrium condition =-—n,
dz
o
Hooke’s law €= > + ar AT,
d
Kinematic relation €= v
dz
FE = Young’s modulus,
ar = coefficient of thermal expansion,
AT = temperature difference with respect to a reference state,
u(x) = displacement of a point x within the bar.

The basic equations lead to a single differential equation for the displa-

cements ( {-}' :=d{-}/dz ):

(EAY) = —n + (BEAarAT) .
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1
Elongation of a bar: Al =u(l) —u(0) = / edx.
0

special cases:

1
N
Al = AT =
l /OEAda: ( 0),
Fl

Al = EA (N = F = const, EA = const, AT = 0),

Al = ar ATl (N =0, EA = const, arAT = const).

Superposition: The solution of a statically indeterminate problem can

be achieved by superposition of solutions of associated statically deter-

minate problems considering the compatibility conditions.
(0)

(1)

“07-System  up “17-System Uy

F F = ——
— = = — 1+  ——
X=B

u%)) + ug) =0,
Rotating bar: A bar rotating with the angluar velocity w experiences
an axial loading per unit length of

n = pA zw?.
Here p is the density and = represents

the distance of the cross section A from . n
the center of rotation.

Elastic-plastic bar: For an elastic-ideal-plastic material behavior,
Hooke’s law is valid only until a certain
yield limit oy :

Ee ) |E| S gy,

oy sign(e) ,le| > ey .

System of bars: The displacements are obtained by “disconnecting”
and “reconnecting” of the bars from the nodes using a displacement
diagram.

Note: In areas with rapidly changing cross sections (notches, holes)
the above theory for bars is not applicable.
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P2.1 Problem 2.1 Determine the stresses distri- T
bution o(x) in the homogeneous bar due to
its weight. The bar has constant thickness
and a linear varying width. Furthermore,
identify the location and value of the smal- h
lest stress. z

-

S|
—2

It is reasonable to introduce the z-coordinate at the intersection of the
extended edges of the trapeziod. The x dependent cross section area
follows then as

A(a:) = on/l .
With the weight

2 2

v ¥ —a
W(z) = pgV(z) = pg/ A(Q)dE = pgAo
of the lower part equilibrium provides
z% —a?
N(z) =F +W(z) = F + pgAo oh
This leads to the stress

_ N(z) Fh—i—pg’%o (z° — a®)
ofz) = Az) — Aoz :

The location z* of the minimum is determined by condition ¢’ = 0:

, Fh 1 P9 a? . 2Fh
= — 1 = = — a? .
7 Ag x? * 2 + 2 0 ~ = pgAo ¢

The value of the minimum stress is

(=) 2Fh .
Omin — O(X = —a® = T .
PN g o pg

Note:

e For pg = 0 (“weight-less bar”) no minimum exists. The largest stress
occurs at r = a.

e The minimum will be located within the bar, only if a < 2* < h or
pgAoa®/(2h) < F < pgAo(h® + a*)/(2h) holds.
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Problem 2.2 The contour of a light- f—] P2.2
house with circular thin-walled cross W WTF+
section follows a hyperbolic equation s
2—b2_a2x2—a2 "
y B2 =a. .
—\\-— h

Determine the stress distribution as a
consequence of weight W of the light-
house head (the weight of the structure
can be neglected).

Given: b = 2a, t < a.

Solution As the weight W is the only acting external load, the normal
force N is constant (compression):

N=-W.

The cross section area A is changing. It can be approximated by (thin-
walled structure with ¢ < )

A(z) = 2myt= 27rt\/a2 + B2 x?

2
= 27rt\/a2 + 322 2

2 !
= 2mat\[1+3 7, .

The stress follows now as
N _ w

-
27rat\/1+3i2

Especially at the top and bottom position we get

w w
o(xr=0)= ~ gt bzw. o(z=h)= = dmat

Note: The stress at the top is twice as large as the stress at the bottom,
which is a inefficient use of material. This situation changes if the
weight of the thin-walled structure is included in the analysis.
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34 Elongation

Problem 2.3 Determine the
elongation Al of the conical T T
shaft (Young’s modulus F) F .. n I

under the application of a
tensile force F. i l

Solution The normal force N = F' is constant, while the cross section
area A varies. With o = N/A the elongation is computed by

! ! 1 1

1 1 Ndx F dx
Al—/sdm—E/de—E/ A "B AW
0 0 0 0

To describe the change of the cross section area A(z) we start the -
axis at the peak of the frustum. Using the intercept theorem and the
auxiliary variable a we obtain for the diameter

= T
o(x) da }

and for the area -

A(z) =

Introducing this in the relation for the elongation, then integration
provides (integration limits!):

a+l1
A F dx _ 4Fa® [ 1\
T E 7rd2:p2_7rEd2 z/)|,
a 4 a2
With
a+l a - _d l
D ~ a4 ““p,_d
D
the elongation is
4F1
Al = TEDd "

. . 4F1 Fl
Test: For D = d (constant cross section) we obtain Al = TER = EA
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Problem 2.4 A homogeneous frustum of

a0
a pyramid (Young’s modulus E) with a ‘
square cross section is loaded on its top T TZIJ
surface by a stress og.
Determine the displacement field u(x) of h
a cross section at position z. l

— b —f

Solution The normal force N = —ooa® is constant. From the kinema-
tic relation € = du/dz and Hooke’s law ¢ = 0 /E = N/EA we obtain a
differential equation for the displacement u

EA(x) :Z = —opa’.
The area A(x) follows from the intercept theorem:
A@)=la+(-a), " ‘
Thus we have
b— d
E(a+ haar:)2 dZZ—JoaQ. i
Separation of variables yields
u(z)
ooa’ dz
du = — E 5 5 du = — a 2
—a
( LTt a) w(0) 0 &+ a
Using the substitution z =a+ (b —a)&/h, dz = (b— a) d¢/h leads to
we) o) = — 70 B (VY[ ova? G- pa )
N E b—a 2/, N E b—a bﬁaera.

The displacement u(0) of the top surface follows from the bounda-
ry condition that the displacement has to vanish on the bottom edge
x=h:

ooa? h 1 1 ooah
uh) =0 ~ w(0)="p b—a(a_b): B -

From this relation the displacement follows

2
_O’oa h 1 1
u(@) = E b—a<_b+bza )

T+ a

P2.4
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36 Rotating bar

Problem 2.5 The cross section of ¢AO

a solid helicopter blade (density p, o/2¢
Young’s modulus E) is described by w(}b -
the equation A(z) = Age™**/*, L %

Determine the stress distributi- —=|a|=—
on o(x), if the blade is rotating x
with a constant angular velocity w. \ ! |
Compute the elongation Al under the assumption a = 0.

Solution First, the sketched geometry A(l) = Ao/2 yields
Ave” *=Ap/2 ~ €e*"=2 ~ a=1In2=0.693.

The rotation causes a distributed load per unit length

n = pw’rA(z) = pw? Agze >/,
The equilibrium condition N’ = —n provides the normal force by inte-
gration
pw’Aol® [ QT —auyi  —axp
N:—/ndx:— 02 [—le‘” —e +C].

The integration constant C'is determined by the boundary condition:

NI)=0 ~ C=(l+a)e ®=0847.

Introducing the dimensionless coordinate £ = x/l yields

o/ (put?)

Omazx

2 2
N = 2 g~ 0,

and for the stress distribution

o€ =} =" 1+ ag - e

The elongation is calculated from

1 1
l pw?l at?  C aE
A: =
l /Oedac E/o odé = o2E {5—!— 5 T 4t

W23 a C, C puwl3
= B2 {14—2—0((3 +OJ—O.258 >

1

0

Note: Due to the varying cross section the maximum stress occurs at
the position £0 —(In C2) /a = 0.24 and attains the maximum value
Omax = —(pw??In C) /a® = 0.347 pw?I®.
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Problem 2.6 A massive bar (weight Wp, P2.6
cross section area A, thermal expansion l

coefficient ar) is fixed at * = 0 and just = T
touches the ground in a stress-free man- W
ner. h 0

Determine the stress distribution o(x) in ar
the bar after a uniform heating by AT. L |

Which AT causes compression everywhe-
re in the bar?

Solution We investigate the ”two load cases”, weight und heating. The
weight causes a a normal force

_ L s
N =w@=w" T =w(1-7) T T
h h
x o(x)
which is related to the stress distribution
o N(ZE) o WO x Wiz
@) =", _A<1_h) )

The heating produces an additional strain, which is blocked by the sup-
port on the bottom. The relation

€= UQL(;:) +arAT =0

yields
O’Q(l‘) = —EaTAT.

Thus the total stress is computed by
Wo ( 1— x
A h
Due to the blocked temperature strain, there exists a compressive stress
at the end of the bar (x = h) at all times. As the stress distribution
is linear, the stress will be compressive everywhere, if compression is
present at the top edge. Thus the relation

Wo

o(x) =01+ 02 = ) — EarAT.

olx=0)<0 bzw. i EarAT <0
provides the necessary temperature difference
ars Vo

FEAar
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38 Thermal stresses
Problem 2.7 An initially stress- . E,ar
free fixed bar (cross section area
A) experiences a temperature
increase varying linearly in x.

Determine the stress and strain

distribution. AT

T

Solution The bar is supported in a statically indeterminate way. Thus
we use equilibrium, kinematics and Hooke’s law for the solution of the
problem. With n = 0 and 0 = N/A these equations read

o' =0, e=u', szz—l—aTAT(a:)
with

AT(z) = ATy + (AT) — ATO)"; .
Combining the above relations renders the differential equation for the
displacements
ar

l

Integrating twice yields

W' =arAT = " (AT — ATyp).

u'= OélT (ATl — AT(]) z+ C4 s

ar z?
u=" (ATy — ATy) 9 +Ciz+Cs .
The two integration constants follow from the boundary conditions:
w0)=0 ~ Co=0, ul)=0~ C,= —O;T(ATI — ATy) .
We obtain the displacement field

arl 22z
u(e) = 5 AT = ATy (3, - 7)

together with the (constant) stress

o =E® —arAT) = _O‘ZT (AT, + ATH)E.

Note: With constant heating ATy = AT, the displacement wu(x)
vanishes. In this situation the stress is 0 = —ar AT E.
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Problem 2.8 A bar with a constant

cross section A is fixed at both ends. c

The bar is made of two different e O L0y
materials, that are joint together at

pOth C. F ~—a—

a) What are the reaction forces, if an

: . . Steel Alumini
external force F is applied at point o umnu
Cc?

b) Determine the normal force that is caused by a pure heating by AT'?
Given: Fst/Ea =3, ast/aar =1/2 .

Solution We treat the system as two joint bars with constant normal

forces. Ny Np
to a) ~g tF<— Al
equilibrium: —N4 + N = F , P

kinematics: Alst + Ala; =0,

Naa Al — Np(l —a)

EsiA’ AT EagA

The 4 equations for the 4 unknowns (Na, Np, Als:, Ala;) yield with
the given numerical values

Hooke’s law:Alg: =

3(l—a) a
Ny =—-F Np = .
4 31—2a "’ P 3—2a
to b) AT
Ny Np
equilibrium: Ny = Np = N, S I
St Al
kinematics: Als: + Ala; =0, ez
N
Hooke’s law:Alg: = Esj‘l +asiAT a,
N(l —a)
Al = AT (Il —a).
lag EaA + aar (l a)

Solving the system of equations for the normal force N yields with the
given numerical values

20 —a

N=-
3l —2a

ESt QSt A AT .

P2.8
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40 Static indeterminate
Problem 2.9 Solve Problem 2.8 by superposition.

Solution to a) We choose the reaction force Np as statically redundant
quantity.

“0”-System “17-System
]\“rlng
S Al t St Al
) | ‘4>u(~l>
Hooke’s law provides
u(o): Fa u(l):X(l—a) Xa )
Esi A’ EqA EsiA
As the right edge is fixed compatibility requires
w©@ —
This condition yields
Fa a
Np =X = =F .
_ ) EsiA 3l — 2a
a+(l—a) EouA
From equilibrium we have
3(—a) Ny Np
Ny=Np—-F=-F . P ] I
AT 31— 2a stf Al

to b) In the free body diagram we choose the normal force N as sta-
tically redundant quantity X. From Hooke’s law

X
ugr= B aA + astATa N=X
St -
X ) St Al
—a
va= oy + an ATl —a) e
Al Usy UAl

and the compatibility
ust +ua =0

we obtain

asta+ aa(l — a) 2l —a
N=X=— =— E AAT.
(I—a) 31 —2q St

a
EsiA T EnA
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Problem 2.10 An elastically sup- N n RN P2.10
ported bar (c1 = 2co = EA/2a) N - - - \
is loaded by a constant axial NS, PSR
load n. X .
fe— ¢ —

Compute the distribution of the
normal force N(xz) in the bar.

Solution Using the free body dia- \ B C N
gram with the forces B and C' at }\I-’\N\/‘O—> —> N
the ends of the bar, the equilibri- N N
um conditions can be formulated B n C
B+C =na, N(z) = B—nx.

The elongation/shortening of the
springs is given by

B n
<—o——— —» N(2)
B C
Auy = s Aus = . —
C1 Cc2 x

The elongation of the bar is computed from

AUSt:/adx:/&dx.
0 0

With N =B — nz we obtain

Ba _ na’
EFA 2EA°

Finally, the kinematic relation

Augy =

B Ba na? C
A fAuse =Auz > o T opa T g,

with C'= —B + na and the given value for ¢; and ¢y yields

B(2a+4a+a):na(a —|—4a) ~> B:gna

FA FA FA 2FEA FA 14
and the distribution of the normal force follows 5
— na
14
N(a:)zgna—n;r. ; ‘ e
14 ®
9 L~ N

147161
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42 Statically indeterminate problems

Problem 2.11 Determine the com- EAc C
pression Alc of a casing C' of length
[, if the nut of screw S (lead h) is |- - EAg - S ] )
turned by one revolution.
EA 4 | —
Given: EAz =4 | |

Solution After the revolution of the nut we cut the system of screw and
casing and introduce the statically
indeterminate force F' between the

two parts.
The casing experiences a compres- X X
. — |~——
sion
X1
Ale = . | —
= pag f— \
Fpr the screw we obtain an elonga- E < B]]
tion
Xl l—h
Als = : S
® 7 EAs

The length changes have to be adjusted in such a way that casing and
screw have the same length. Therefore compatibility can be written as

h=Alc + Algs .

Inserting the length changes yields the force

h 1
X = 1

l 1
EAc T EAs
and the compression of the casing

Xl 1 1 3
Alc = =h =h = _h.
EA EAc 4 7
c 1+EA5 T+3

Note: As the axial rigidity of the casing is larger than the one of
the screw, the compression is only 3/7 of the lead. If equal axial
rigidities are present FAc = EAg, the length change of both parts
will be equal, i. e. Ale = Alsg = h/2 .
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Problem 2.12 A rigid quadratic
plate (weight W, edge length v/2 ) o
B

is supported on 4 elastic posts. The HiEA 2A
posts are of equal length [, but pos- - 2k
e 3 . BN TS 3

sess different axial rigidities. 3EA l i |_ LEA
Determine the weight distribution |=— v2a ——]

on the 4 posts?

Determine the displacement f in
the middle of the plate.

Solution The system is statically indeterminate of degree one (a table
on 3 posts rests in a statically determinate way!).

Equilibrium yields M __ L
’Sz/f‘—f""”_‘ Sy
T S1+S5+S3+S=W, -1\
~ -
I: aSi=aS1, Ly 8
~ Sy Sy
II: CLSQ = a53 .

The displacement f in the middle is obtained from the average value of
the displacements u; (= length change of the posts) at opposite corners
(rigid plate). Accordingly the compatibility reads:

1 1 g p—— =
f= utu) = (u2+us). /;1{3\,——"" "
With Hooke’s law l ;’ - ///i,,,/————f/”””’//
s 7\,
YT pa,
and S1 = S4, S2 = S3 we obtain as intermediate result
Sil Sil Sol Sal 5, 5
BEA T 4EA T oA T3pa 7 40 T %
Inserting this into the first equilibrium condition yields
54535135, 48 =G ~ Si=Si='G, S=S=>a
1 o1t 51451 = 1=51= .G, 2 =5 = .0

form which the displacement follows:

f—l S1l+S1l _1aGl
T 2\EA 4EA) 8EA°

P2.12
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44 Composite material

Problem 2.13 A column of steel rein- F
forced concrete is loaded by a tensile

force F. Cl LC T

What are the stresses in the concre-
te and the steel as well as the height
change Ah of the column, if we assu-
me -
a) a perfect bonding between steel c-C
and concrete?
b) the concrete is cracked and does
not carry any load?

- _ _ P Ec, Ac
leen. ESt/EC = 6, ASt/AC = 1/9. ESt-,ASf,
Solution to a) We consider the composite as a system of two ”bars”
of different materials, which experience under load F' the same length
change Al. With this the basic equations of the system are:

equilibrium: Ng: + N¢ = F',

kinematics: Ahgi = Ahc = Ah,

Ngih Nch
Hooke’s law: Ahg: = EjltSt , Ahc = E'flc .
Solution of the system of equation yields —
with the stiffness ratio EAc/EAs: = 3/2
— the normal forces

NSt =F 1E'AC = i F, Nc =F
1+ EAg, 1+
and the height change
Fh Fh 1 2 Fl
Ah = i e. Ah = = .
FEAs: + EAc ne EAg 14 FAc 5 EAgy
EAsy

The stresses result from A = Ac + Agsy and Asy = A/10 and Ac =
9A/10

g Nse _ F g Ne _2F
ST Ae T AV T A0 T34

to b) If only the steel carries load, we will obtain with Ng: = F

F F Fh
It = pg, ~ 1040 FAs:
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Problem 2.14 A laminated bar made P2.14
of bonded layers of two different ma-

terials (respective axial rigidities F' A1, @ 0)

E As and coefficients of thermal expan-

sion ar1, arz) is to be replaced by a

bar made of a homogeneous material.

A

Determine FA and ar such that the
homogeneous bar experiences the sa-
me elongation as the laminated bar
under application of a force and a tem-
perature change ? FA, ar

Solution For the laminated bar, subjected to a force F' and a tempe-
rature increase AT, the basic equation yield

equilibrium: Ny + No = I, /EAL_@,”
kinematics: Aly = Aly = Aljam , N ==
Ml
Hooke’s law:Aly = + am AT, F
EA, N, ~=—5F——
N-
Als = Ejilz + ar AT . EA;, ary

This yields
Fl FEAiar + FAsars

Alan = p A, 4 B A, BA +EA,  STE
For a homogeneous bar under identical loading conditions, we have
Fl
Alhom = EA +arATl.

The length changes Aljam and Alnom agree for arbitrary F and AT
only, if

B _ EAiar: + EAsars
EA—EA1+EA2, aT = EA1+EA2
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Problem 2.15 1In the depicted support a a
construction for the rigid body B the - >

lower support bar is too short by the T
length 6. In order to assemble the struc- aluminitim
ture a force F, is applied, such that the Las
end of the bar just touches the ground. Fy
After assembly the force F, is removed. ¢ l

The diameters of all bars d; are identical. |

a) Compute the required assembly force

P steel st
b) Determine the displacement vp of the h il
body and the forces in the bars after as- 0

sembly.

Given: Iy = 1m, da; = 2mm, Ea = 0.7 - 10° MPa, ls; = 1.5m,
ds; = 2mm, Es; = 2.1-10° MPa, § = 5mm .

Solution to a) Each aluminium bar carries half of the assembly force
(equilibrium) and elongates by the amount delta §. This yields

F. _ Salar _ Falar _
Sar= 2’ Alar = EAan  2EAa 9,
1) 5 5 2
Fo=2° EAy=2. 0,7-10° . 7-12 = 2200 N .
~r Las Al 1000 0,7-10° -7 00

to b) After removal of the force F, new forces S4; and Ss: are present.
This leads to the equilibrium condition

SSt - 2SAZ ) fSA, ? SAl
Hooke’s law | |
Saila Sstlst ¢
Aly = Alg, = Ss
A EAa st FEAs: L

and the compatibility condition
Ala + Algt = 6.

Solving the 4 equations yields

) EA 5 0,7-10°-7-12
Sar= IStAlEAAz ~ 1000 37r =50N,
1425 1+2-5-

L=

284 =1100N,  vgx = Aly = Satlar _ o 5 im.

Sst EAu
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Problem 2.16 Two rigid beams P2.16
are connected by two elastic L ¢ -
bars. The first beams is fixed %‘ A‘

at point A, while the second is 4 T
simply supported at point B. EA EA, ar
Bar 2 is heated by a tempera- "A 1 9 '

ture AT. l

Compute the forces in the two ' R_B
bars. — O e @

Solution We cut the system S1¢ S
and use the following free body
diagram to formulate the equili- S, ? S, ?

brium conditions

8%
B : 2aS1+aSQZO,

Hooke’s law

N 54 54
YT EAC ,
Sk SQ?
Al =27 4 ar AT R B
z—EA-i-aT -a Pas

and the compatibility condition

Aly = 2Al, . Al

Solving for the unknown forces
in the bars yields

SlziEAaTAT, Szz—gEAaTAT.

Note: In the heated bar compressive forces are generated due
to the constrained deformations.
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P2.17 Problem 2.17 In the depicted two bar
system both bars have the same axial
rigidity EA.

Determine the displacement of point C' 9
where the load is applied.

60°
C
1
F
e | —=]
Solution From equilibrium we have
2 &
T: S2sin60° = F ~ 52:3\/3F,
o 1 S1
—: =851 — S2c0860° =0~ 51:—3\/3F. F
Thus the elongation and shrinking of the bars follow as
2 l
A= Sl _ 3V3cose0sF _ VB FL Sk __V3 FI
T EA T EA T 3 EA” T'T EA T 3 EAT

To determine the displacements of
point C' we construct the displace-
ment diagram. In this diagram the
length changes are introduced. As the
length changes are small Al; < [ they
are not drawn to the scale. In this
example Al; is a shrinkage (to the
left) and Als an elongation. Consi-
dering that the bars can only rotate
around the hinge points we introdu- u
ce the right angles and read off the c’
displacement diagram:

V3 Fl
u=IALl = gy
Al w43 Fl 1 V3 Fl 1 Fl

Teos30° tan60° 3 EA lyg' 3 BA V3 UEA
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Problem 2.18 A rigid weightless D 1 P2.18
triangle is supported by 3 bars
with the axial rigidity FA. The T
triangle is loaded in point B by

the force F'. ¢F

a) Determine the forces S; in the 2 i
3 bars and their elongations Al;. B C T
b) Compute the displacement of 3 "
point C. i

— a —==—— a —=f

Solution to a) The system is statically determinately supported. The
forces in the bars follow immediately from the equilibrium conditions:

A
C': aSy =aF ~ S1=F,
)

E: aSe =0 ~ Sy=0,
T

: S3s8inds° + F =0~ S3=—v2F.

Related to these forces are the following elongations

_S1l1_FCL o
All_EA_EA, Aly =0,
Al _Sglg__\/2F~\/2a__2Fa

3T BA T EA T YEAC

to b) The displacement of point C' is
sketched in the displacement diagram.
As bar 2 experiences no force and thus
no length change, the horizontal dis-
placement vanishes. From the displace-
ment diagram we obtain for the vertical
displacement vc:

Fa
vo = V2 |Als| = 2v/2 A"
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Problem 2.19 1In the depicted
truss the members have the axi-
al rigidities F A1, FA2 and the
coefficients of thermal expansion
arT, aT2.

Determine the axial forces in the
trusses, if the system is heated
by AT?

Solution As the system is statically indeterminate, we have to use all
basic equations. We start
with the equilibrium

251cosf8+ S22 =0

and continue with Hooke’s law

Sil
Al = l AT
1= g A + liar )
Sala
Aly = l AT
2= p A, + laar2 ,
where
h 1 2 1
L= lo=h. RN
YT cosp ? 3 KCp
The compatibility of the displacements is according Al
to the the displacement diagram:
Al
All = Alg COSﬁ . bol 2

Solving the 4 equations for the two truss forces and the two elongations
yields

23
Sy = BA, 1268 oAl AT Sy =—2cosfB Si.
3 1
1+ 2cos?® EAs
Note: For cos 8 = \/aTl/aTg we obtain S; = S = 0: the trusses can
than expand without causing forces! (special case ari = ar2

~ B=0)
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Problem 2.20 Truss member 3 p«i\oLo P2.20
was produced too short to be as- D D
sembled between two identical > ¢

trusses. 2 2

a) Determine the required as-
sembly force D?

b) Calculate the normal force Ss
after the assembly (D = 0)? — a4 —t=— 4 ——=— a —

Given: FA, = EA3 = EA, EA; = V2 EA.

|[-— o —

Solution to a) The force D has to move point C' by §/2 in horizontal
direction during assembly. From equilibrium

—: Sycos45° =D, C D

T S; = Sscos45°, Sy :52

kinematics (S1 was positively introduced
as compressive force!!) with the prescribed

displacement
1)
uc = All + AZQ\/2, uc = 2 ) A]_)
o C
and Hooke’s law .
N2
Al s
Al = Iy = S20V? o
EA V2EA
we obtain ¢’ e 1 1
16 |
= EA
6 a

to b) Equlibrium, kinematics and Hooke’s law are as in a), but D has
to be replaced by S3. With the known compatibility condition

Sga
2uc + Als = 0 and Als = EA S, c

it follows SlT NS
2
16

= EA.
S 7 a



52 Statically indeterminate

P2.21  Problem2.21 A centric ¢ " 5
loaded 7rigid beam is sup- B )
ported by 4 elastic bars of . ) }
equal axial rigidity EA. 30° 300 3 ‘: 4
Determine the forces in the
bars? }_7 1 4,‘47 1 4,{

Solution a) First, we solve the statically indeterminate system by
applying all basic equations simultaneously. Using equilibrium

L

TS

— 51252,
T: (S1452)sin30° + S5+ Sy = F
A

B: ng+2lS4:lF,

Hooke’s laws

s,

y

o o 512a
Al = Alp = BA
o Sga o S4a
Ala=pa Ala=py
and the geometry of the deformation
B
Aly Al B

B/
Al
" cos 60°
we obtain as solution
2
Si=8=8i="F, Sy=°F.

9 9

Alz =

1
9 (U =+ Al4)
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b) Now, we solve the problem by superposition. The system is divided
into two statically determinate basic systems:

“0”-System “17-System
‘ F

A A
S,§°) / \ fX g

Sil) Sél)

5O g
Equilibrium yields

SO — g _ g0 _

From geometry and Hooke’s laws it follows

2@ — Al§0) _ F2a RO X 2a
B cos 60° EA B EA ’
v = A = 222 ’ vy = 2);?4 ’
W) =1 el
Al = gj .

The kinematic compatibility requires the total displacement of point C'
to coincide with the shortening of truss 3:

vg)) —v(cl) :Alél).

Inserting the displacements yields

5
XznggF

and

2 2
Si=5" -5V = F,  Si=8"-5"=_F.
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Problem 2.22 The depicted truss
system (axial rigidity EA) is loaded

by the external force F' and additio- F
nally pinned at point C. §|:" C
a) Determine the reaction force at T
point C. o
b) Calculate the vertical displace- 1 9 1
ment of point C. l
Solution to a) Using equilibrium 2
b: F+ S+ Sicosa=0, ¢
S1
—: C+ Sisina=0, S,
Hooke’s laws
Sily Sala
Al = Als =
h=pa =g
and kinematics
Al1 = Als cosa
yields BN
C:sinacos?aF’ 5, = cos? o F. Sy—-— 1

1+ cos3 « " 14 cos3a

to b) Knowing S> the vertical displacement of point C follows as

Sal 1 Fl

ve L2 EA 1+ cos*a FA

In contrast to the displacement diagram, in which tensile forces (elon-
gations) are assumed, compressive force occur in the system. Due to
shortening point C' moves in downwards direction.

Test: o =m/2 yields S1 =0 and Sy = —F.
a=0 yields S1 = S2 = —F/2.
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Problem 2.23 A rigid beam is sup- F? P2.23
ported by three bars of elastic-ideal-

plastic material. ' ? T
a) At what force F¢l,, and at which E. Aoy /2
location in the bars is the yield stress o

oy reached at first?

b) At what force FE.,, occurs plastic 1/2

yielding in all bars of the system? 4

Solution to a) The system is statically indeterminate. Using symmetry
equilibrium provides P ?

2514+ S =F
Kinematics is expressed b | * Y
P Y Sl‘ Sy Sy=S51
Aly = Als .
Until plastic yielding Hooke’s law can be used
Sl Sl
Al=pyr Bl=yop,-
The solution provides forces and stresses in the bars
F F F F
1=y E gy ais s T gy

As the stress in bar 2 is the highest, the yield limit is reached first there
during load increase:

1
092 = Oy S F;WIZZO'Y‘A.

to b) For a load increase above Fel.. bar 1 and bar 3 still respond
elastically, while bar two undergoes plastic deformation: oo = oy . Thus

with S; = ;A it follows from equilibrium r ?
200A+oyA=F
- _F _ oy *

Si=014 Sp=ovA Sz=014
All bars are undego plastic deformation if

F oy !
o1 =0y -~ — =0y ~r FY . =30vA.

2A 2
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Problem 2.24 In the depicted symme-
tric system all bars are made of the
same elastic-ideal-plastic material, but
have different cross sections.

a) At what force F¢,, and at which
location in the bars is the yield stress
oy reached at first? Determine the
reaction force at C for this situation.

f— = —»

b) Determine the force F?! . when both bars deform plastically?
c¢) Calculate the displacement ug, . of point C for case a)?

Solution to a) Until reaching the force Fel . the system responds
elastically. Therefore the equilibrium conditions are given by

V2 V2 V2 V2 c
— 251— ZSQ—F, T 2514-252—0, r
together with Hooke’s law S S,
_ S1V2h _ S3V2h
Ab="pa Alz="op4

and the kinematics (bar 2 will shorten)

Al = —Als.

From the above relation we obtain

V2 2v/2 F 2Fh
Si= g b, 5 g £ C 30 Ahb L= 3pa
= S V2 F _ S _ V2F

T= AT 34 PToAT 3 4

The absolute value of the stresses is identical in both bars. Yielding
will occur if

V2

9 oy A.

el 3 el
o1 =|o2| =0y ~ Fmaz:2\/20YA7 ~  Crae = —

to b) As at Fel.. plastic yielding occurs in both bars, we have
Fel — Fpl .
to c¢) Until the yield limit is reached the displacement of C' is given by

2v2 Fh el el oy
masr = Wy, =2 .
3 E 1 ) ~ Umaax ’I,L( maz) h‘

u=\/2Al1: E
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