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Tension and Compression in Bars
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Tensile or compressive loading in bars

Assumptions:

• Length l of the bar is large compared to
characteristic dimensions of the cross sec-
tion A(x).

• Axis of the bar (line connecting centroids
of the cross sections) is a straight line.

• Common line of action (external loads F
and n(x) are aligned with the axis of the
bar).

• Cross section A(x) can only vary slightly.

Stress: Assuming a constant stress σ across
the section A the following relation with the
normal force N holds:

x

A

n

F

, u

l

σ(x) =
N(x)

A(x)
.

Basic equations of a deformable bar:

equilibrium condition
dN

dx
= −n ,

Hooke’s law ε =
σ

E
+ αT ΔT ,

Kinematic relation ε =
du

dx

E = Young’s modulus,

αT = coefficient of thermal expansion,

ΔT = temperature difference with respect to a reference state,

u(x) = displacement of a point x within the bar.

The basic equations lead to a single differential equation for the displa-
cements ( {·}′ := d{·}/dx ):

(EAu′)′ = −n+ (EAαTΔT )′ .
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Elongation of a bar: Δl = u(l)− u(0) =

∫ l

0

ε dx .

special cases:

Δl =

∫ l

0

N

EA
dx (ΔT = 0) ,

Δl =
F l

EA
(N = F = const, EA = const, ΔT = 0),

Δl = αTΔT l (N = 0, EA = const, αTΔT = const).

Superposition: The solution of a statically indeterminate problem can
be achieved by superposition of solutions of associated statically deter-
minate problems considering the compatibility conditions.

u
(0)
B + u

(1)
B = 0 .

“1”-System

A B

X=B

F F

“0”-System u
(0)
B u

(1)
B

Rotating bar: A bar rotating with the angluar velocity ω experiences
an axial loading per unit length of

n = ρA xω2 .

Here ρ is the density and x represents
the distance of the cross section A from
the center of rotation.

ρω A

n
x

Elastic-plastic bar: For an elastic-ideal-plastic material behavior,
Hooke’s law is valid only until a certain
yield limit σY :

σ =

⎧⎨
⎩
E ε , |ε| ≤ εY ,

σY sign(ε) ,|ε| ≥ εY .

σ

σY

−σY

εY ε

System of bars: The displacements are obtained by “disconnecting”
and “reconnecting” of the bars from the nodes using a displacement
diagram.

Note: In areas with rapidly changing cross sections (notches, holes)
the above theory for bars is not applicable.
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P2.1 Problem 2.1 Determine the stresses distri-
bution σ(x) in the homogeneous bar due to
its weight. The bar has constant thickness
and a linear varying width. Furthermore,
identify the location and value of the smal-
lest stress.

g

F

A0

ρ

F

x
h

a

It is reasonable to introduce the x-coordinate at the intersection of the
extended edges of the trapeziod. The x dependent cross section area
follows then as

A(x) = A0x/l .

With the weight

W (x) = ρgV (x) = ρg

∫ x

a

A(ξ)dξ = ρgA0
x2 − a2

2l

of the lower part equilibrium provides

N(x) = F +W (x) = F + ρgA0
x2 − a2

2h
.

W (x)

A(x)
N(x)

F

x

a
ξ

This leads to the stress

σ(x) =
N(x)

A(x)
=

Fh+ ρgA0
2

(
x2 − a2

)

A0x
.

The location x∗ of the minimum is determined by condition σ′ = 0:

σ′ = −Fh

A0

1

x2
+

ρg

2

(
1 +

a2

x2

)
= 0 � x∗ =

√
2Fh

ρgA0
− a2 .

The value of the minimum stress is

σmin = σ(x∗) = ρg

√
2Fh

ρgA0
− a2 = ρgx∗ .

Note:
• For ρg = 0 (“weight-less bar”) no minimum exists. The largest stress

occurs at x = a.
• The minimum will be located within the bar, only if a < x∗ < h or

ρgA0a
2/(2h) < F < ρgA0(h

2 + a2)/(2h) holds.
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P2.2Problem 2.2 The contour of a light-
house with circular thin-walled cross
section follows a hyperbolic equation

y2 − b2 − a2

h2
x2 = a2 .

Determine the stress distribution as a
consequence of weight W of the light-
house head (the weight of the structure
can be neglected).

Given: b = 2a, t 
 a.

W

a

b

h

x
t

y

Solution As the weight W is the only acting external load, the normal
force N is constant (compression):

N = −W .

The cross section area A is changing. It can be approximated by (thin-
walled structure with t 
 y)

A(x) = 2πyt= 2πt

√
a2 +

b2 − a2

h2
x2

= 2πt

√
a2 + 3

a2

h2
x2

= 2πat

√
1 + 3

x2

h2
.

t

y

The stress follows now as

σ(x) =
N

A
= − W

2πat

√
1 + 3 x2

h2

.

Especially at the top and bottom position we get

σ(x = 0) = − W

2πat
bzw. σ(x = h) = − W

4πat
.

Note: The stress at the top is twice as large as the stress at the bottom,
which is a inefficient use of material. This situation changes if the
weight of the thin-walled structure is included in the analysis.
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P2.3 Problem 2.3 Determine the
elongation Δl of the conical
shaft (Young’s modulus E)
under the application of a
tensile force F .

F F
D

l

d

Solution The normal force N = F is constant, while the cross section
area A varies. With σ = N/A the elongation is computed by

Δl =

l∫

0

ε dx =
1

E

l∫

0

σ dx =
1

E

l∫

0

Ndx

A
=

F

E

l∫

0

dx

A(x)
.

To describe the change of the cross section area A(x) we start the x-
axis at the peak of the frustum. Using the intercept theorem and the
auxiliary variable a we obtain for the diameter

δ(x) = d
x

a

and for the area

a

x

d δ

A(x) =
π

4
δ2(x) =

π

4
d2

x2

a2
.

Introducing this in the relation for the elongation, then integration
provides (integration limits!):

Δl =
F

E

a+l∫

a

dx

π
4 d2 x2

a2

=
4Fa2

πE d2

(
− 1

x

)∣∣∣∣
a+l

a

.

With

a+ l

D
=

a

d
� a =

d

D

l

1− d
D

the elongation is

Δl =
4F l

πEDd
.

Test: For D = d (constant cross section) we obtain Δl =
4F l

πEd2
=

F l

EA.
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P2.4Problem 2.4 A homogeneous frustum of
a pyramid (Young’s modulus E) with a
square cross section is loaded on its top
surface by a stress σ0.

Determine the displacement field u(x) of
a cross section at position x.

b

a

h

σ0

x

Solution The normal force N = −σ0a
2 is constant. From the kinema-

tic relation ε = du/dx and Hooke’s law ε = σ/E = N/EA we obtain a
differential equation for the displacement u

EA(x)
du

dx
= −σ0a

2 .

The area A(x) follows from the intercept theorem:

A(x) = [a+ (b− a)
x

h
]2 .

b

h

x

a

(
b− a

h
x+ a

)Thus we have

E
(
a+

b− a

h
x
)2 du

dx
= −σ0a

2 .

Separation of variables yields

du = −σ0a
2

E

dx(
b− a
h

x+ a
)2 �

u(x)∫

u(0)

du = −σ0a
2

E

x∫

0

dξ(
b− a
h

ξ + a
)2 .

Using the substitution z = a+ (b− a) ξ/h, dz = (b− a) dξ/h leads to

u(x)− u(0)= − σ0a
2

E

h

b− a

(
−1

z

)∣∣∣∣
b−a
h

x+a

a

= −σ0a
2

E

h

b− a

(1

a
− 1

b− a
h

x+ a

)
.

The displacement u(0) of the top surface follows from the bounda-
ry condition that the displacement has to vanish on the bottom edge
x = h:

u(h) = 0 � u(0) =
σ0a

2

E

h

b− a

(
1

a
− 1

b

)
=

σ0ah

Eb
.

From this relation the displacement follows

u(x) =
σ0a

2

E

h

b− a

(
− 1

b
+

1
b− a
h

x+ a

)
.
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P2.5 Problem 2.5 The cross section of
a solid helicopter blade (density ρ,
Young’s modulus E) is described by

the equation A(x) = A0e
−αx/l.

Determine the stress distributi-
on σ(x), if the blade is rotating
with a constant angular velocity ω.
Compute the elongation Δl under the assumption a = 0.

x
a

A0/2
A(x)

A0

ω

l

Solution First, the sketched geometry A(l) = A0/2 yields

A0e
−α = A0/2 � eα = 2 � α = ln 2 = 0.693 .

The rotation causes a distributed load per unit length

n = ρω2xA(x) = ρω2A0xe
−αx/l .

The equilibrium condition N ′ = −n provides the normal force by inte-
gration

N = −
∫

ndx = −ρω2A0l
2

α2

[
−αx

l
e−αx/l − e−αx/l + C

]
.

The integration constant C is determined by the boundary condition:

N(l) = 0 � C = (1 + α)e−α = 0.847 .

Introducing the dimensionless coordinate ξ = x/l yields

N(ξ) =
ρ ω2A0l

2

α2
[(1 + αξ)e−αξ − C] ,

and for the stress distribution

σ(ξ) =
N

A
=

ρ ω2l2

α2
[1 + αξ − Ceαξ] .

ξ1

1−C

α2

σmax

σ/(ρω2l2)

ξ0The elongation is calculated from

Δl=

∫ l

0

εdx =
l

E

∫ 1

0

σdξ =
ρω2l3

α2E

[
ξ +

αξ2

2
− C

α
eαξ

]1

0

=
ρω2l3

Eα2

[
1 +

α

2
− C

α
eα +

C

α

]
= 0.258

ρω2l3

E
.

Note: Due to the varying cross section the maximum stress occurs at
the position ξ0 = −(lnC)/α = 0.24 and attains the maximum value
σmax = −(ρω2l2 lnC)/α2 = 0.347 ρω2l2.
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P2.6Problem 2.6 A massive bar (weight W0,
cross section area A, thermal expansion
coefficient αT ) is fixed at x = 0 and just
touches the ground in a stress-free man-
ner.

Determine the stress distribution σ(x) in
the bar after a uniform heating by ΔT .

Which ΔT causes compression everywhe-
re in the bar?

Solution We investigate the ”two load cases”, weight und heating. The
weight causes a a normal force

N(x) = W (x) = W0
h− x

h
= W0

(
1− x

h

)

which is related to the stress distribution

σ1(x) =
N(x)

A
=

W0

A

(
1− x

h

)

x

W0

σ(x)

W (x)

xE

αT

h

The heating produces an additional strain, which is blocked by the sup-
port on the bottom. The relation

ε =
σ2(x)

E
+ αTΔT = 0

yields

σ2(x) = −EαTΔT .

Thus the total stress is computed by

σ(x) = σ1 + σ2 =
W0

A

(
1− x

h

)
− EαTΔT .

Due to the blocked temperature strain, there exists a compressive stress
at the end of the bar (x = h) at all times. As the stress distribution
is linear, the stress will be compressive everywhere, if compression is
present at the top edge. Thus the relation

σ(x = 0) < 0 bzw.
W0

A
− EαTΔT < 0

provides the necessary temperature difference

ΔT >
W0

EAαT
.
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P2.7 Problem 2.7 An initially stress-
free fixed bar (cross section area
A) experiences a temperature
increase varying linearly in x.

Determine the stress and strain
distribution.

x
E , αT

ΔT0 ΔT (x) ΔT1

ΔT

x

l

Solution The bar is supported in a statically indeterminate way. Thus
we use equilibrium, kinematics and Hooke’s law for the solution of the
problem. With n = 0 and σ = N/A these equations read

σ′ = 0 , ε = u′ , ε =
σ

E
+ αTΔT (x)

with

ΔT (x) = ΔT0 + (ΔT1 −ΔT0)
x

l
.

Combining the above relations renders the differential equation for the
displacements

u′′ = αTΔT ′ =
αT

l
(ΔT1 −ΔT0) .

Integrating twice yields

u′=
αT

l
(ΔT1 −ΔT0) x+ C1 ,

u =
αT

l
(ΔT1 −ΔT0)

x2

2
+C1x+ C2 .

The two integration constants follow from the boundary conditions:

u(0) = 0 � C2 = 0 , u(l) = 0 � C1 = −αT

2
(ΔT1 −ΔT0) .

We obtain the displacement field

u(x) =
αT l

2
(ΔT1 −ΔT0)

(x2

l2
− x

l

)

together with the (constant) stress

σ = E(u′ − αTΔT ) = −αT

2
(ΔT1 +ΔT0)E .

Note: With constant heating ΔT1 = ΔT0 the displacement u(x)
vanishes. In this situation the stress is σ = −αTΔT0E.
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P2.8Problem 2.8 A bar with a constant
cross section A is fixed at both ends.
The bar is made of two different
materials, that are joint together at
point C.

a) What are the reaction forces, if an
external force F is applied at point
C ?

C

x

l − a

St Al

AluminiumSteel

a

F
NA NB

F

b) Determine the normal force that is caused by a pure heating by ΔT ?

Given: ESt/EAl = 3, αSt/αAl = 1/2 .

Solution We treat the system as two joint bars with constant normal
forces.

to a)

equilibrium:−NA +NB = F ,

kinematics: ΔlSt +ΔlAl = 0 ,

Hooke’s law:ΔlSt =
NAa

EStA
, ΔlAl =

NB(l − a)

EAlA
.

The 4 equations for the 4 unknowns (NA, NB , ΔlSt, ΔlAl) yield with
the given numerical values

NA = −F
3(l − a)

3l − 2a
, NB = F

a

3l − 2a
.

to b)

equilibrium:NA = NB = N ,

kinematics: ΔlSt +ΔlAl = 0 ,

Hooke’s law:ΔlSt =
N a

EStA
+ αStΔT a ,

ΔlAl =
N(l − a)

EAlA
+ αAlΔT (l − a) .

x

NB

ΔT

St Al

NA

Solving the system of equations for the normal force N yields with the
given numerical values

N = − 2l − a

3l − 2a
ESt αSt AΔT .



40 Static indeterminate

P2.9 Problem 2.9 Solve Problem 2.8 by superposition.

Solution to a)We choose the reaction force NB as statically redundant
quantity.

u(0)

“0”-System “1”-System

u(1)

Al Al
F

NB=X

St St

Hooke’s law provides

u(0) =
Fa

EStA
, u(1) =

X(l − a)

EAlA
+

Xa

EStA
.

As the right edge is fixed compatibility requires

u(0) = u(1) .

This condition yields

NB = X =
Fa

a+ (l − a)EStA
EAlA

= F
a

3l − 2a
.

From equilibrium we have

NA = NB − F = −F
3(l − a)

3l − 2a
.

NA NB

St Al
F

to b) In the free body diagram we choose the normal force N as sta-
tically redundant quantity X. From Hooke’s law

uSt=
Xa

EStA
+ αStΔTa ,

uAl=
X(l − a)

EAlA
+ αAlΔT (l− a)

uAluSt

Al

N=X

St

and the compatibility

uSt + uAl = 0

we obtain

N = X = −αSta+ αAl(l − a)

a
EStA

+
(l − a)
EAlA

= − 2l − a

3l − 2a
ESt αSt AΔT .
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P2.10Problem 2.10 An elastically sup-
ported bar (c1 = 2c2 = EA/2a)
is loaded by a constant axial
load n.

Compute the distribution of the
normal force N(x) in the bar.

N(x)

n

B

c2

EA

c1

n
B

B
n

C

C

a

x

x

Solution Using the free body dia-
gram with the forces B and C at
the ends of the bar, the equilibri-
um conditions can be formulated

B+C = na , N(x) = B−nx .

The elongation/shortening of the
springs is given by

Δu1 =
B

c1
, Δu2 =

C

c2
.

The elongation of the bar is computed from

ΔuSt =

a∫

0

ε dx =

a∫

0

N

EA
dx .

With N=B − nx we obtain

ΔuSt =
Ba

EA
− na2

2EA
.

Finally, the kinematic relation

Δu1 +ΔuSt = Δu2 �
B

c1
+

Ba

EA
− na2

2EA
=

C

c2

with C = −B + na and the given value for c1 and c2 yields

B

(
2a

EA
+

4a

EA
+

a

EA

)
= na

(
a

2EA
+

4a

EA

)
� B =

9

14
na

and the distribution of the normal force follows

N(x) =
9

14
na− nx .

N9

14
na

− 5

14
na
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P2.11 Problem 2.11 Determine the com-
pression ΔlC of a casing C of length
l, if the nut of screw S (lead h) is
turned by one revolution.

Given:
EAC

EAS
=

4

3
.

EAC

EAS S

C

l

Solution After the revolution of the nut we cut the system of screw and
casing and introduce the statically
indeterminate force F between the
two parts.

The casing experiences a compres-
sion

ΔlC =
Xl

EAC
.

For the screw we obtain an elonga-
tion

ΔlS =
Xl

EAS
.

X X

X

l

l − h

The length changes have to be adjusted in such a way that casing and
screw have the same length. Therefore compatibility can be written as

h = ΔlC +ΔlS .

Inserting the length changes yields the force

X =
h

l

1
1

EAC
+ 1

EAS

and the compression of the casing

ΔlC =
Xl

EAC
= h

1

1 + EAC
EAS

= h
1

1 + 4
3

=
3

7
h .

Note: As the axial rigidity of the casing is larger than the one of
the screw, the compression is only 3/7 of the lead. If equal axial
rigidities are present EAC = EAS, the length change of both parts
will be equal, i. e. ΔlC = ΔlS = h/2 .
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P2.12Problem 2.12 A rigid quadratic
plate (weight W , edge length

√
2 a)

is supported on 4 elastic posts. The
posts are of equal length l, but pos-
sess different axial rigidities.

Determine the weight distribution
on the 4 posts?

Determine the displacement f in
the middle of the plate.

Solution The system is statically indeterminate of degree one (a table
on 3 posts rests in a statically determinate way!).
Equilibrium yields

↑ : S1 + S2 + S3 + S4 = W ,
�

I : aS4 = aS1 ,
�

II : aS2 = aS3 .

The displacement f in the middle is obtained from the average value of
the displacements ui (= length change of the posts) at opposite corners
(rigid plate). Accordingly the compatibility reads:

f =
1

2
(u1 + u4) =

1

2
(u2 + u3) .

With Hooke’s law

ui =
Sil

EAi

4EAl

©2

©3 ©4

©1

3EA

2EA
EA

√
2 a

S1

W
S4

III

I II

u1

f u4

u2

u3

S3

S2

and S1 = S4, S2 = S3 we obtain as intermediate result

S1l

EA
+

S1l

4EA
=

S2l

2EA
+

S2l

3EA
�

5

4
S1 =

5

6
S2 .

Inserting this into the first equilibrium condition yields

S1+
3

2
S1+

3

2
S1+S1 = G � S1 = S4 =

1

5
G , S2 = S3 =

3

10
G .

form which the displacement follows:

f =
1

2

(
S1l

EA
+

S1l

4EA

)
=

1

8

Gl

EA
.
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P2.13 Problem 2.13 A column of steel rein-
forced concrete is loaded by a tensile
force F .

What are the stresses in the concre-
te and the steel as well as the height
change Δh of the column, if we assu-
me

a) a perfect bonding between steel
and concrete?
b) the concrete is cracked and does
not carry any load?

Given: ESt/EC = 6, ASt/AC = 1/9.

C

C − C

ESt, ASt

EC , AC

F

C

h

Solution to a) We consider the composite as a system of two ”bars”
of different materials, which experience under load F the same length
change Δl. With this the basic equations of the system are:

equilibrium: NSt +NC = F ,

kinematics: ΔhSt = ΔhC = Δh ,

Hooke’s law:ΔhSt =
NSth

EASt
, ΔhC =

NCh

EAC
.

Solution of the system of equation yields –
with the stiffness ratio EAC/EASt = 3/2
– the normal forces

F

NStNC

NSt = F
1

1 + EAC
EASt

=
2

5
F , NC = F

EAC
EASt

1 + EAC
EASt

=
3

5
F

and the height change

Δh =
Fh

EASt + EAC
i. e. Δh =

Fh

EASt

1

1 + EAC
EASt

=
2

5

F l

EASt
.

The stresses result from A = AC + ASt and ASt = A/10 and AC =
9A/10

σSt =
NSt

ASt
= 4

F

A
, σC =

NC

AC
=

2

3

F

A
.

to b) If only the steel carries load, we will obtain with NSt = F

σSt =
F

ASt
= 10

F

A
, Δh =

Fh

EASt
.
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P2.14Problem 2.14 A laminated bar made
of bonded layers of two different ma-
terials (respective axial rigidities EA1,
EA2 and coefficients of thermal expan-
sion αT1, αT2) is to be replaced by a
bar made of a homogeneous material.

Determine EA and αT such that the
homogeneous bar experiences the sa-
me elongation as the laminated bar
under application of a force and a tem-
perature change ?

©2 ©1

EA, αT

Solution For the laminated bar, subjected to a force F and a tempe-
rature increase ΔT , the basic equation yield

equilibrium:N1 +N2 = F ,

kinematics: Δl1 = Δl2 = Δllam ,

Hooke’s law:Δl1 =
N1l

EA1
+ αT1ΔT l ,

Δl2 =
N2l

EA2
+ αT2ΔT l .

N2

F

N1

EA1, αT1

EA2, αT2

This yields

Δllam =
F l

EA1 +EA2
+

EA1αT1 +EA2αT2

EA1 +EA2
ΔT l .

For a homogeneous bar under identical loading conditions, we have

Δlhom =
F l

EA
+ αTΔT l .

The length changes Δllam and Δlhom agree for arbitrary F and ΔT
only, if

EA = EA1 + EA2 , αT =
EA1αT1 + EA2αT2

EA1 + EA2
.
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P2.15 Problem 2.15 In the depicted support
construction for the rigid body B the
lower support bar is too short by the
length δ. In order to assemble the struc-
ture a force Fa is applied, such that the
end of the bar just touches the ground.
After assembly the force Fa is removed.
The diameters of all bars di are identical.

a) Compute the required assembly force
Fa.

b) Determine the displacement vB of the
body and the forces in the bars after as-
sembly.

steel

a

lSt

lAl

B

δ

aluminium

Fa

a

Given: lAl = 1m, dAl = 2mm, EAl = 0.7 · 105 MPa, lSt = 1.5m,
dSt = 2mm, ESt = 2.1 · 105 MPa, δ = 5mm .

Solution to a) Each aluminium bar carries half of the assembly force
(equilibrium) and elongates by the amount delta δ. This yields

SAl =
Fa

2
, ΔlAl =

SAllAl

EAAl
=

FalAl

2EAAl
= δ ,

� Fa = 2
δ

lAl
EAAl = 2 · 5

1000
· 0, 7 · 105 · π · 12 = 2200N .

to b) After removal of the force Fa new forces SAl and SSt are present.
This leads to the equilibrium condition

SSt = 2SAl ,

Hooke’s law

ΔlAl =
SAllAl

EAAl
, ΔlSt =

SStlSt

EASt

SSt

SAlSAl

and the compatibility condition

ΔlAl +ΔlSt = δ .

Solving the 4 equations yields

SAl =
δ

lAl

EAAl

1 + 2 lSt
lAl

EAAl
EASt

=
5

1000

0, 7 · 105 · π · 12
1 + 2 · 32 · 13

= 550 N ,

SSt = 2SAl = 1100 N , vK = ΔlAl =
SAllAl

EAAl
= 2.5 mm .
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P2.16Problem 2.16 Two rigid beams
are connected by two elastic
bars. The first beams is fixed
at point A, while the second is
simply supported at point B.
Bar 2 is heated by a tempera-
ture ΔT .

Compute the forces in the two
bars.

Solution We cut the system
and use the following free body
diagram to formulate the equili-
brium conditions

�

B : 2aS1 + aS2 = 0 ,

Hooke’s law

Δl1 =
S1a

EA
,

Δl2 =
S2a

EA
+ αTΔT · a

and the compatibility condition

Δl1 = 2Δl2 .

Solving for the unknown forces
in the bars yields

S1

1 2

EA

a

EA, αT

B

S2

S2

S1

Δl2

B

B

a

a
A

a

a

S2

S2

S1

S1

Δl1

S1 =
2

5
EAαTΔT , S2 = −4

5
EAαTΔT .

Note: In the heated bar compressive forces are generated due
to the constrained deformations.
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P2.17 Problem 2.17 In the depicted two bar
system both bars have the same axial
rigidity EA.

Determine the displacement of point C
where the load is applied.

Solution From equilibrium we have

↑ : S2 sin 60◦ = F � S2 =
2

3

√
3 F ,

→: −S1 − S2 cos 60
◦ = 0 � S1 = −1

3

√
3 F .

C

1

l
F

C

2

60◦

F

S2

S1

Thus the elongation and shrinking of the bars follow as

Δl2 =
S2l2
EA

=

2
3

√
3 l
cos 60◦F

EA
=

4
√
3

3

F l

EA
, Δl1 =

S1l1
EA

= −
√
3

3

F l

EA
.

To determine the displacements of
point C we construct the displace-
ment diagram. In this diagram the
length changes are introduced. As the
length changes are small Δli 
 l they
are not drawn to the scale. In this
example Δl1 is a shrinkage (to the
left) and Δl2 an elongation. Consi-
dering that the bars can only rotate
around the hinge points we introdu-
ce the right angles and read off the
displacement diagram:

Δl1
C

Δl2

u

v

C ′

2

1

30◦

u = |Δl1| =
√
3

3

F l

EA
,

v =
Δl2

cos 30◦
+

u

tan 60◦
=

4
√
3

3

F l

EA

1
1
2

√
3
+

√
3

3

F l

EA

1√
3
= 3

F l

EA
.
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P2.18Problem 2.18 A rigid weightless
triangle is supported by 3 bars
with the axial rigidity EA. The
triangle is loaded in point B by
the force F .

a) Determine the forces Si in the
3 bars and their elongations Δli.

b) Compute the displacement of
point C.

D 1

CB

2

3

a a

a

a

F

Solution to a) The system is statically determinately supported. The
forces in the bars follow immediately from the equilibrium conditions:

�

C : aS1 = aF � S1 = F ,

�

E : aS2 = 0 � S2 = 0 ,

↑ : S3 sin 45
◦ + F = 0 � S3 = −√

2 F .

S3

F
S2

C

E

S1

Related to these forces are the following elongations

Δl1 =
S1l1
EA

=
Fa

EA
, Δl2 = 0 ,

Δl3 =
S3l3
EA

= −
√
2 F · √2 a

EA
= −2

Fa

EA
.

Δl3

3

2C

C ′

vC

to b) The displacement of point C is
sketched in the displacement diagram.
As bar 2 experiences no force and thus
no length change, the horizontal dis-
placement vanishes. From the displace-
ment diagram we obtain for the vertical
displacement vC :

vC =
√
2 |Δl3| = 2

√
2

Fa

EA
.
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P2.19 Problem 2.19 In the depicted
truss the members have the axi-
al rigidities EA1, EA2 and the
coefficients of thermal expansion
αT1, αT2.

Determine the axial forces in the
trusses, if the system is heated
by ΔT ?

αT1 αT1

EA1 EA1

C

S1

S2

S1

h

C

EA2

αT2

β β

β β

Solution As the system is statically indeterminate, we have to use all
basic equations. We start
with the equilibrium

2S1 cosβ + S2 = 0

and continue with Hooke’s law

Δl1 =
S1l1
EA1

+ l1αT1ΔT ,

Δl2 =
S2l2
EA2

+ l2αT2ΔT ,

where

l1 =
h

cosβ
, l2 = h .

The compatibility of the displacements is according
to the the displacement diagram:

Δl1 = Δl2 cos β .

β

Δl1

Δl2

2
1

Cβ

1

C ′

Solving the 4 equations for the two truss forces and the two elongations
yields

S1 = EA1
αT2 cos

2 β − αT1

1 + 2 cos3 βEA1
EA2

ΔT , S2 = −2 cosβ S1 .

Note: For cos β =
√

αT1/αT2 we obtain S1 = S2 = 0: the trusses can
than expand without causing forces! (special case αT1 = αT2

� β = 0)
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P2.20Problem 2.20 Truss member 3
was produced too short to be as-
sembled between two identical
trusses.

a) Determine the required as-
sembly force D?
b) Calculate the normal force S3

after the assembly (D = 0)?

Given: EA1 = EA3 = EA, EA2 =
√
2EA.

3δ

a a a

a1 1

2

D D
C

2

Solution to a) The force D has to move point C by δ/2 in horizontal
direction during assembly. From equilibrium

→: S2 cos 45
◦ = D ,

↑ : S1 = S2 cos 45
◦ ,

kinematics (S1 was positively introduced
as compressive force!!) with the prescribed
displacement

uC = Δl1 +Δl2
√
2 , uC =

δ

2
,

and Hooke’s law

Δl1 =
S1a

EA
, Δl2 =

S2a
√
2√

2EA

C

1
C ′

C D

S1 S2

2

Δl1

uC

Δl2

we obtain

D =
1

6

δ

a
EA .

to b) Equlibrium, kinematics and Hooke’s law are as in a), but D has
to be replaced by S3. With the known compatibility condition

S2

S3 C

S1

2uC +Δl3 = δ and Δl3 =
S3a

EA

it follows

S3 =
1

7

δ

a
EA .
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P2.21 Problem 2.21 A centric
loaded rigid beam is sup-
ported by 4 elastic bars of
equal axial rigidity EA.

Determine the forces in the
bars? l

3 4

B

2

30◦ 30◦
a1

F
D

l

Solution a) First, we solve the statically indeterminate system by
applying all basic equations simultaneously. Using equilibrium

B

F

S3 S4S2S1

→: S1 = S2 ,

↑ : (S1 + S2) sin 30
◦ + S3 + S4 = F ,

�

B : lS3 + 2lS4 = lF ,

Hooke’s laws

Δl1 = Δl2 =
S12a

EA
,

Δl3 =
S3a

EA
, Δl4 =

S4a

EA

and the geometry of the deformation

B′

B

D′

B′
v

D

1 2

B

Δl3 Δl4

Δl2Δl1

60◦ v

v =
Δl1

cos 60◦
Δl3 =

1

2
(v +Δl4)

we obtain as solution

S1 = S2 = S4 =
2

9
F , S3 =

5

9
F .
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b) Now, we solve the problem by superposition. The system is divided
into two statically determinate basic systems:

“1”-System“0”-System

C DB

v
(0)
B v

(0)
C v

(0)
D

B C D

v
(1)
B

v
(1)
C v

(1)
D

F

X S
(1)
4S

(0)
1 S

(0)
2

S
(0)
4 S

(1)
1 S

(1)
2

Equilibrium yields

S
(0)
1 = S

(0)
2 = S

(0)
4 =

F

2
, S

(1)
1 = S

(1)
2 = S

(1)
4 =

X

2
.

From geometry and Hooke’s laws it follows

v
(0)
B =

Δl
(0)
1

cos 60◦
=

F 2a

EA
, v

(1)
B =

X 2a

EA
,

v
(0)
D = Δl

(0)
4 =

Fa

2EA
, v

(1)
D =

Xa

2EA
,

v
(0)
C =

1

2

(
v
(0)
B + v

(0)
D

)
=

5

4

Fa

EA
, v

(1)
C =

5

4

Xa

EA
,

Δl
(1)
3 =

Xa

EA
.

The kinematic compatibility requires the total displacement of point C
to coincide with the shortening of truss 3:

v
(0)
C − v

(1)
C = Δl

(1)
3 .

Inserting the displacements yields

X = S3 =
5

9
F

and

S1 = S
(0)
1 − S

(1)
1 =

2

9
F , S4 = S

(0)
4 − S

(1)
4 =

2

9
F .
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P2.22 Problem 2.22 The depicted truss
system (axial rigidity EA) is loaded
by the external force F and additio-
nally pinned at point C.

a) Determine the reaction force at
point C.

b) Calculate the vertical displace-
ment of point C.

Solution to a) Using equilibrium

↓ : F + S2 + S1 cosα = 0 ,

→: C + S1 sinα = 0 ,

Hooke’s laws

Δl1 =
S1l1
EA

, Δl2 =
S2l2
EA

,

and kinematics

Δl1 = Δl2 cosα

1

2

F

l 1

C

α

C

F

Δl2

C ′

S2

S1

C

Δl1
α

2yields

C =
sinα cos2 α

1 + cos3 α
F , S1 = − cos2 α

1 + cos3 α
F , S2 = − 1

1 + cos3 α
F .

to b) Knowing S2 the vertical displacement of point C follows as

vC = Δl2 =
S2l

EA
= − 1

1 + cos3 α

F l

EA
.

In contrast to the displacement diagram, in which tensile forces (elon-
gations) are assumed, compressive force occur in the system. Due to
shortening point C moves in downwards direction.

Test: α = π/2 yields S1 = 0 and S2 = −F .

α = 0 yields S1 = S2 = −F/2.
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P2.23Problem 2.23 A rigid beam is sup-
ported by three bars of elastic-ideal-
plastic material.

a) At what force F el
max and at which

location in the bars is the yield stress
σY reached at first?

b) At what force F pl
max occurs plastic

yielding in all bars of the system?

F

l/2

l/2

F

S1 S2 S3=S1

E,A, σY

Solution to a) The system is statically indeterminate. Using symmetry
equilibrium provides

2S1 + S2 = F

Kinematics is expressed by

Δl1 = Δl2 .

Until plastic yielding Hooke’s law can be used

Δl1 =
S1l

EA
, Δl2 =

S2l

2EA
.

The solution provides forces and stresses in the bars

S1 =
F

4
, S2 =

F

2
� σ1 =

F

4A
, σ2 =

F

2A
.

As the stress in bar 2 is the highest, the yield limit is reached first there
during load increase:

σ2 = σY � F el
max = 2σY A .

to b) For a load increase above F el
max bar 1 and bar 3 still respond

elastically, while bar two undergoes plastic deformation: σ2 = σY . Thus
with Si = σiA it follows from equilibrium

2σ1A+ σY A = F

� σ1 =
F

2A
− σY

2
.

F

S1=σ1A S3=σ1A
S2=σYA

All bars are undego plastic deformation if

σ1 = σY �
F

2A
− σY

2
= σY � F pl

max = 3σY A .
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P2.24 Problem 2.24 In the depicted symme-
tric system all bars are made of the
same elastic-ideal-plastic material, but
have different cross sections.

h

45◦

C F

1 2

45◦

E,A,
σY

E, 2A,
σY

a) At what force F el
max and at which

location in the bars is the yield stress
σY reached at first? Determine the
reaction force at C for this situation.

b) Determine the force F pl
max when both bars deform plastically?

c) Calculate the displacement uel
max of point C for case a)?

Solution to a) Until reaching the force F el
max the system responds

elastically. Therefore the equilibrium conditions are given by

→ :

√
2

2
S1 −

√
2

2
S2 = F , ↑ :

√
2

2
S1 +

√
2

2
S2 = C ,

together with Hooke’s law

Δl1 =
S1

√
2 h

EA
, Δl2 =

S2

√
2h

2EA

and the kinematics (bar 2 will shorten)

Δl1 = −Δl2 .

S1

C

S2

Δl2

u

Δl1

C C ′

21

F

From the above relation we obtain

S1 =

√
2

3
F , S2 = −2

√
2

3
F , C = −F

3
, Δl1 = −Δl2 =

2Fh

3EA

� σ1 =
S1

A
=

√
2

3

F

A
, σ2 =

S2

2A
= −

√
2

3

F

A
.

The absolute value of the stresses is identical in both bars. Yielding
will occur if

σ1 = |σ2| = σY � F el
max =

3

2

√
2 σY A, � Cel

max = −
√
2

2
σY A.

to b) As at F el
max plastic yielding occurs in both bars, we have

F el
max = F pl

max.

to c) Until the yield limit is reached the displacement of C is given by

u =
√
2Δl1 =

2
√
2

3

Fh

EA
, � uel

max = u(F el
max) = 2

σY

E
h .
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