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Preface

This collection of problems results from the demand of students for sup-
plementary problems and support in the preparation for examinations.
With the present collection ’Engineering Mechanics 2 - Formulas and
Problems, Mechanics of Materials’ we provide more additional exercise
material.

The subject ’Mechanics of Materials’ is commonly taught in the se-
cond course of Engineering Mechanics classes at universities. The pro-
blems analyzed within these courses use equilibrium conditions and ki-
nematic relations in conjunction with constitutive relations. As we want
concentrate more on basic concepts and solution procedures the focus
lies on linear elastic material behavior and the small strain regime. Ho-
wever, this covers a wide range of elasto-static problems with relevancy
in engineering applications. Special attention is given to structural ele-
ments like bars, beams and shafts as well as plane stress and strain
situations.

Following the warning in the first collection, we would like to make
the reader aware that pure reading and trying to comprehend the pre-
sented solutions will not provide a deeper understanding of mechanics.
Neither does it improve the problem solving skills. Using this collec-
tion wisely, one has to try to solve the problems independently. The
proposed solution should only be considered when experiencing major
problems in solving an exercise.

Obviously this collection cannot substitute a full-scale textbook. If
not familiar with the formulae, explanations, or technical terms the rea-
der has to consider his or her course material or additional textbooks
on mechanics of materials. An incomplete list is provided on page IX.

Darmstadt, Hannover, Stuttgart, Essen and D. Gross
Kaiserslautern, Summer 2016 P. Wriggers

W. Ehlers
J. Schröder
R. Müller
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Notation

The following symbols are used in the solutions to the problems:

↑ : short notation for sum of all forces in the direction of the

arrow equals zero.
�

A : short notation for sum of all moments with reference to

point A equals zero.

� short notation for it follows.
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Stress, Strain, Hooke’s Law



2 Stress

1.1 1.1 Stress, Equilibrium conditions

Stress is related to forces distributed over the
area of a cross section. The stress vector t is
defined as

t =
dF

dA
,

where dF is the force acting on the area ele-
ment dA (unit: 1 Pa = 1 N/m2).

dA
dF

n

Note: The stress vector and its components depend on the orientation
of the area element (with its normal n).

Components of the stress vector:

σ – normal stress (perpendicular to the plane)

τ – shear stress (in plane) n

t
τ

σ

Sign convention: Positive stresses at a positive (negative) face point
in positive (negative) coordinate directions.

Spatial stress state: is uniquely defined
by the components of the stress vectors
in three mutually perpendicular sections.
The stress components are the components
of the stress tensor

σ =

⎛
⎜⎝
σx τxy τxz

τyx σy τyz

τzx τzy σz

⎞
⎟⎠

x

z

τzy

τyz

y

σz

τxy

σy

τyx

τxz

τzx

σx

Equilibrium of moments yields the following relations

τxy = τyx , τxz = τzx , τyz = τzy .

Hence the stress tensor is a symmetric tensor of second order: τij = τji.



Plane stress state 3

Plane stress state: is uniquely defined
by the stress components of two mutual-
ly perpendicular sections. The stress com-
ponents in the third direction (here z-
direction) vanish (σz = τyz = τxz = 0)

σ =

(
σx τxy

τxy σy

)
.

y

η

ϕ∗∗

ϕ∗
1 ϕ∗

2

τyx

τxy

σx

σy

x

σx

τxy

τyx
σy

σx

x

y

ξ

τyx
σy

τxy

τxy=τyx
x

y

y

x

τξη σξ

ϕ

σ2

σ2

σ1

σ0σ0

τmax

σ0

τmax

σ0

σ1

ϕ

Coordinate transformation

σξ=
σx + σy

2
+

σx − σy

2
cos 2ϕ+ τxy sin 2ϕ ,

ση=
σx + σy

2
− σx − σy

2
cos 2ϕ− τxy sin 2ϕ ,

τξη=−σx − σy

2
sin 2ϕ+ τxy cos 2ϕ .

Principal stresses

σ1,2 =
σx + σy

2
±

√(σx − σy

2

)2

+ τ 2
xy

tan 2ϕ∗ =
2τxy

σx − σy

Note: • The shear stresses vanish
in these directions!

• The principal directions are
perpendicular to each other:
ϕ∗

2 = ϕ∗
1 ± π/2.

Maximum shear stresses

τmax =

√(σx − σy

2

)2

+ τ 2
xy , ϕ∗∗ = ϕ∗±π

4
.

In these sections the normal stresses
reach the value σ0 = (σx + σy)/2.

Invariants

Iσ= σx + σy = σξ + ση = σ1 + σ2 ,

IIσ= σxσy − τ 2
xy = σξση − τ 2

ξη = σ1σ2 .



4 Equilibrium conditions

Mohr’s circle

center:

σm = 1
2
(σx + σy) ,

τ = 0

radius:
√(σx − σy

2

)2

+ τ 2
xy

ϕ

σ

ϕ∗

ση

2ϕ∗∗
y

η

σy σm σxσ2 σξ σ1

direction of

σ2

2ϕ∗

τ

τmax

τξητxy

x

ξ

σ1

2ϕ

• The construction of Mohr’s circle is always possible, provided three
independent quantities are known (e. g. σx, σy, τxy or
σx, σy , ϕ

∗).

• The shear stress τxy is plotted over σx (τξη over σξ).

• The angle of transformation ϕ is doubled in the circle (2ϕ) and ori-
ented in opposite direction.

Equilibrium conditions

in space (3D) ∂σx

∂x
+

∂τxy
∂y

+
∂τxz
∂z

+ fx = 0 ,

∂τyx
∂x

+
∂σy

∂y
+

∂τyz
∂z

+ fy = 0 ,

∂τzx
∂x

+
∂τzy
∂y

+
∂σz

∂z
+ fz = 0 ,

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

divσ + f = 0 .

in plane (2D) ∂σx

∂x
+

∂τxy
∂y

+ fx = 0 ,

∂τyx
∂x

+
∂σy

∂y
+ fy = 0 ,

⎫⎪⎪⎬
⎪⎪⎭

divσ + f = 0 .

where

divσ =
∑
i

(
∂σix

∂x
+

∂σiy

∂y
+

∂σiz

∂z

)
ei .
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1.21.2 Strain
The strains describe changes in the edge lengths (stretching) and in the
angles (shearing) of a cubic volume element.

y

P ′

P u

x

z

Displacement vector

u = uex + vey + wez

u, v, w = displacement components

Uniaxial strain state

strain ε =
du

dx
dx du

Biaxial strain state

normal strains shear strains

εx =
∂u

∂x
, εy =

∂v

∂y
, γxy =

∂u

∂y
+

∂v

∂x
.

dx
y

x

dy dy

dx

dy

dx∂u

∂x
dx

∂v

∂y
dy

∂u

∂y
dy

∂v

∂x
dx

Triaxial strain state εx =
∂u

∂x
, εy =

∂v

∂y
, εz =

∂w

∂z
,

strain tensor: ε =

⎛
⎜⎜⎜⎝

εx
1
2
γxy

1
2
γxz

1
2
γyx εy

1
2
γyz

1
2
γzx

1
2
γzy εz

⎞
⎟⎟⎟⎠

γxy = γyx =
∂u

∂y
+

∂v

∂x
,

γyz = γzy =
∂v

∂z
+

∂w

∂y
,

γzx = γxz =
∂w

∂x
+

∂u

∂z
.

Remark:
• The strains are, like the stresses, components of a symmetric tensor
of second order. Thus all properties (coordinate transformation, princi-
pal values etc.) of the stress tensor can be used analogously. σx → εx,
τxy → γxy/2, . . .
• In a plane strain state the following holds: εz = 0, γxz = 0, γyz = 0.



6 Hook’s law

1.3 1.3 Hooke’s law
Hooke’s law describes the experimentally observed linear relation bet-
ween stresses and strains. The validity of Hooke’s law is restricted by
the proportionality limit (uniaxial σp). In elastic-plastic materials this
limit frequently conincides with the yield limit (uniaxial σY ).

Uniaxial stress state (bar, beam)

ε =
σ

E
+ αTΔT .

E – Young’s modulus,

αT – coefficient of thermal expansion,

ΔT – temperature change.

Plane stress state

εx=
1

E
(σx − νσy) + αTΔT ,

εy=
1

E
(σy − νσx) + αTΔT ,

γxy=
1

G
τxy ,

shear modulus: G =
E

2(1 + ν)
, Poisson′s ratio : ν .

Triaxial stress state

εx =
1

E
[σx − ν(σy + σz)] + αTΔT , γxy =

1

G
τxy ,

εy =
1

E
[σy − ν(σz + σx)] + αTΔT , γyz =

1

G
τyz ,

εz =
1

E
[σz − ν(σx + σy)] + αTΔT , γzx =

1

G
τzx .

Selected material data

material E [MPa] ν αT [1/◦C]

steel 2, 1 · 105 0, 3 12 · 10−6

aluminium 0, 7 · 105 0, 3 23 · 10−6

copper 1, 2 · 105 0, 3 16 · 10−6

concrete 0, 3 · 105 0, 15 . . . 0, 3 10 · 10−6

wood 0, 1 · 105 3 . . . 9 · 10−6

Remark: 1MPa = 103kPa = 106Pa , 1Pa = 1N/m2
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P1.1Problem 1.1 In a thin metal sheet
the stresses σx, σy , τxy are given. De-
termine value and direction of the
principal stresses.

Given: σx = 20 MPa, σy = 30 MPa,

τxy = 10 MPa.

x

σx

τxy

τxy

σx

τxy

τxy
σy

σy

y

Solution We start with the analytical method. The principal stresses
are computed by

σ1,2 =
σx + σy

2
±

√(σx − σy

2

)2

+ τ 2
xy = 25±√

25 + 100 = 25± 11.18

leading to

σ1 = 36.18 MPa , σ2 = 13.82 MPa .

For the principal directions, we obtain according to

tan 2ϕ∗ =
2τxy

σx − σy
= −2

the results

ϕ∗
1 = 58.28◦ , ϕ∗

2 = 148.28◦ .

σ2

σ1

σ2

σ1
y

ϕ∗
1

x

To illustrate the results an element loaded by the principal stresses is
sketched.

We can also solve the problem graphically by using Mohr’s circle:

τ

σ

σ1

σ2

2ϕ∗
1σ2 σ1ϕ∗

1

σx

τxy

σy

direction of scale: 10 MPa

We read off the
results:

σ1
∼= 36.5 MPa ,

σ2
∼= 14 MPa ,

ϕ∗
1
∼= 59◦ .



8 Plane

P1.2 Problem 1.2 Determine the stress components, the principal stresses,
and the principal directions, as well as the maximum shear stress in
any cross section for the given special cases of plane stress states :

a) σx = σ0, σy = 0, τxy = 0 (uniaxial tension),

b) σx = σy = σ0, τxy = 0 (biaxial, equal tension),

c) σx = σy = 0, τxy = τ0 (pure shear).

Solution to a) The stress components are obtained for any cross sec-
tion which has the angle ϕ to the x- and y-
direction by inserting σx, σy and τxy into the
transformation relations

σξ = 1
2
(σ0 + 0) + 1

2
(σ0 − 0) cos 2ϕ+ 0 · sin 2ϕ

= 1
2
σ0(1 + cos 2ϕ) ,

ση = 1
2
(σ0 + 0)− 1

2
(σ0 − 0) cos 2ϕ− 0 · sin 2ϕ

= 1
2
σ0(1− cos 2ϕ) ,

τξη=− 1
2
(σ0 − 0) sin 2ϕ+ 0 · cos 2ϕ

= 1
2
σ0 sin 2ϕ .

Due to τxy = 0 the stresses σx, σy are principal
stresses, and the x- as well as y-direction are prin-
cipal directions:

σ1 = σx = σ0, σ2 = σy = 0, ϕ∗
1 = 0, ϕ∗

2 = ±π

2
.

The maximum shear stress and the corresponding
direction is determined by the following relations

τmax =
1

2
|σ1 − σ2| = 1

2
σ0 , ϕ∗∗ = ±π

4
.

ϕ

45◦

x

y

y

σ0

σ0
2

σ0
2

τmax

ση

σ0

τξη

σξ

x

Remark: A plate made from a material that supports only limited shear-
stresses will fail along lines under an angle of ±45◦ to the
x-axis.

to b) Inserting the given values into the coordinate transformation
yields

σξ = σ0 , ση = σ0 , τξη = 0 .
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Therefore the normal stress σ0

is acting in any section, and the
shear stress vanishes. There is
no distinguished principal direc-
tion, any section is a principal
direction:

σ1 = σ2 = σ0 .

σ0

σ0

ϕyσ0

σ0

x

to c) In this case the coordinate transformation yields

σξ = τ0 sin 2ϕ , ση = −τ0 sin 2ϕ , τξη = τ0 cos 2ϕ .

The principal stresses and directions are

σ1 = +τ0 , σ2 = −τ0 , ϕ∗
1 =

π

4
, ϕ∗

2 = −π

4
.

For the maximum shear stress and the correspon-
ding directions we obtain

τmax = τ0 , ϕ∗∗
1 = 0 , ϕ∗∗

2 = π/2 .

y

x

σ1

τ0

σ1=τ0

45◦ |σ2| = τ0

Remark: A plate made from a material that supports limited normal
stresses will fail along lines under an angle of ±45◦ to the
x-axis.

The results of all three stress states can be illustrated by the correspon-
ding Mohr’s circles:

to a) to c)

σσ1=σ2=σ0

τmax

σ

σ1=σ0

σ2=0

τ

τ

σ1=τ0

σ

τ

σ2=−τ0

to b)

Note: In case b) Mohr’s circle degenerates to a single point along
the σ-axis!
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P1.3 Problem 1.3 In a plane section the fol-
lowing principal stresses are present

σ1 = 96 MPa and σ2 = −52 MPa .

a) Determine the stresses in sections
which are inclined by ϕa = 60◦ with
regard to the principal axes?

σ2

σ1

σ1

σ2

b) In which section ϕb does the normal stress vanish? What are the
values of the shear and normal stresses in a direction perpendicular to
the direction ϕb?

c) In which directions do the maximal shear stresses appear, and what
are the corresponding normal stresses?

σx = σ2

τxy=0
y

x

σy=σ1Solution to a) According to the sketch we
use a coordinate system x, y that coincides
with the principal axes. The stresses in the
cross sections inclined by ϕa = 60◦ follow
from the coordinate transformation

σa
ξ =

σ2 + σ1

2
+

σ2 − σ1

2
cos 2ϕa = 22 + 74 · 1

2

= 59 MPa ,

σa
η =

σ2 + σ1

2
− σ2 − σ1

2
cos 2ϕa = 22− 74 · 1

2

= −15 MPa ,

τa
ξη = −σ2 − σ1

2
sin 2ϕa = 74 · 1

2

√
3

= 64.1 MPa .

τaξη
σa
ξ

60◦

σa
ξ

x

σa
η

σa
η

τaξη

to b) For the normal stress σξ to vanish the following must hold

σb
ξ =

σ2 + σ1

2
+

σ2 − σ1

2
cos 2ϕb = 0

� cos 2ϕb =
22

74
= 0.297 � 2ϕb = 72.7◦ � ϕb = 36.35◦ .
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For σb
η and τ b

ξη we obtain

σb
η =

σ2 + σ1

2
− σ2 − σ1

2
cos 2ϕb = 44 MPa ,

τ b
ξη = −σ2 − σ1

2
sin 2ϕb = 74 · 0.955

= 70.7 MPa .

τ bξη

x
36, 35◦

σb
η

τ bξη

τ bξη

σb
η

to c) The maximum shear stress occurs in directions of ±45◦ with
regard to the principal axes. This results in

τmax =
σ1 − σ2

2
= 74 MPa .

The corresponding normal stresses are

σm =
σ1 + σ2

2
= 22 MPa

for the given data. 45◦

σm
σm

τmax

x

τmaxσm σm

All informations can be illustrated by use of Mohr’s circle for the given
stress state

scale: 50 MPa

σa
ξ

∼= 59 MPa ,

σa
η

∼= −15 MPa ,

τa
ξη

∼= 64 MPa ,

ϕb ∼= 37◦ ,

σb
η

∼= 44 MPa ,

τ b
ξη

∼= 71 MPa ,

τmax
∼= 74 MPa ,

σm
∼= 22 MPa .

τ

τaξη

σx=σ2 σa
ξ

2ϕa

τmax

σy=σ1

σ

σmσa
η σb

ξ=0

2ϕb

σb
η

τ bξη
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P1.4 Problem 1.4 The following stresses
are acting in a panel.
σx = 20 MPa, σy = 60 MPa and
τxy = −40 MPa.

Determine analytically and graphical-
ly the principal stresses, the maximum
shear stress, and the corresponding di-
rections. Sketch the related sections.

τxy

τxy
σx

x

y

σy

σy

σx

Solution The principal stresses and their directions are calculated ana-
lytically by

σ1,2=
σx + σy

2
±

√(σx − σy

2

)2

+ τ 2
xy

=40±
√

(20)2 + (40)2 ,

� σ1 = 84.72 MPa , σ2 = −4.72 MPa ,

|σ2|
y

x

σ1

σ1

|σ2|

ϕ∗
2

tan 2ϕ∗ =
2τxy

σx − σy
= 2 � ϕ∗

1 = 121.7◦ , ϕ∗
2 = 31.7◦ .

To determine which principal stress is associated with which direction,
the transformation relations or Mohr’s circle has to be used.

For the maximum stress the following result is
obtained

τmax =

√(σx − σy

2

)2

+ τ 2
xy = 44.72 MPa ,

ϕ∗∗ = ϕ∗ ± 45◦ = 31.7◦ ± 45◦ . σm

σm

σm

τmax

τmax

σm

x
ϕ∗∗The graphic solution by Mohr’s circle is sket-

ched below:

σ1

σ1

τmax

direction of

2ϕ∗∗

τxy

σ2

σ2

σx

σ

τ

ϕ∗
1 2ϕ∗

1

σm σy

scale: 20 MPa

σ1
∼= 85 MPa ,

σ2
∼= −5 MPa ,

τmax
∼= 45 MPa ,

ϕ∗
1

∼= 122◦ ,

ϕ∗∗ ∼= 77◦ .
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P1.5Problem 1.5 A thin-walled tube
is loaded by a bending moment, an
internal pressure, and a torsional
moment. In points A and B the
following stresses occur due to the
loading:

A

B

s

x

σA,B
x = ±50 MPa , σA,B

s = 100 MPa , τA,B
xs = 100 MPa .

Determine value and direction of the principal stresses in the points A
and B.

Solution For point A the principal stresses
are computed by

σ1,2 = 1
2
(σx + σs)±

√
[ 1
2
(σx − σs)]2 + τ 2

xs

= 75±√
(−25)2 + 1002

= 75± 103.08
yielding

σ1 = 178.08 MPa , σ2 = −28.08 MPa . |σ2|

s

x

σs

τxs
σx

σx

σs

τxs

52◦

σ1

σ1

|σ2|

For the principal directions we obtain

tan 2ϕ∗ = 2τxs
σx−σs

= 2·100
50−100

= −4 � ϕ∗
1 = 52.02◦ , ϕ∗

2 = −37.98◦ .

From the coordinate transformation it is obvious that direction ϕ∗
1 is

associated with the principal stress σ1:

σξ=
1
2
(σx + σs) +

1
2
(σx − σs) cos 2ϕ

∗
1 + τxs sin 2ϕ

∗
1

= 75− 25 · (−0.242) + 100 · 0.970
= 178.08 MPa = σ1 .

In an analogous way the principal stresses and
their directions in point B are obtained:

σ1,2 = 25±√
(−75)2 + 1002

= 25± 125

� σ1 = 150 MPa , σ2 = −100 MPa .

tan 2ϕ∗ =
2 · 100

−50− 100
= −1.33

� ϕ∗
1 = 63.4◦ , ϕ∗

2 = −26.6◦ .

|σx|

|σ2|

|σ2|

σs

σs

τxs

s

x

τxs

|σx|

σ1

σ1

63◦
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P1.6 Problem 1.6 In a thin aluminium sheet
(E = 0.7 · 105 MPa , ν = 0.3) the fol-
lowing strains εx = 0.001, εy = 0.0005,
γxy = 0 are experimentally measured in
point P .

What are the principal stresses, the ma-
ximum shear stress, and the stresses in
a sections, that are inclined by ϕ = 30◦

with regard to the principal directions?

η

y

ξ

x
ϕ=30◦

P

Solution In the aluminium sheet a state of plane stress is present. From
Hooke’s law

Eεx = σx − νσy , Eεy = σy − νσx , Gγxy = τxy

the following stresses can be computed

σx =
E

1− ν2
(εx + νεy) =

0.7 · 105
1− 0.09

(0.001 + 0.00015) = 88.5 MPa ,

σy =
E

1− ν2
(εy + νεx) =

0.7 · 105
1− 0.09

(0.0005 + 0.0003) = 61.5 MPa ,

τxy = 0 .

As the shear stress τxy is equal to zero, σx, σy are principal stresses,
and axes x, y are principal axes:

σx = σ1 σy = σ2 .

Therefore, the maximum shear stress is

τmax =
1

2
(σ1 − σ2) =

1

2
(σx − σy) = 13.5 MPa .

For the sections inclined by ϕ = 30◦, the stresses follow with τxy = 0
from the transformation relations

σξ =
σx + σx

2
+

σx − σy

2
cos 2ϕ = 75 + 13.5 cos 60◦ = 81.75 MPa ,

ση =
σx + σy

2
− σx − σy

2
cos 2ϕ = 75− 13.5 cos 60◦ = 68.25 MPa ,

τξη = −σx − σy

2
sin 2ϕ = −13.5 sin 60◦ = −11.69 MPa .
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P1.7Problem 1.7 In a thin sheet the following
plane displacement field was obtained by
measurements:

u(x, y) = 3.5 · 10−3x+ 2 · 10−3y ,

v(x, y) = 1 · 10−3x− 0.5 · 10−3y .

a) Determine the state of strain.

b) What are principal strains, and under which angle to the x-axis do
they appear?
c) What is the maximum shear strain γmax?

y
A u

v

x

A′

Solution to a) The strains are computed by differentiation of the dis-
placement components:

εx =
∂u

∂x
= 3.5 · 10−3 , εy =

∂v

∂y
= −0.5 · 10−3 ,

γxy =
∂u

∂y
+

∂v

∂x
= 2 · 10−3 + 1 · 10−3 = 3 · 10−3 .

The strains are constant in the entire sheet (=homogeneous strain
state).

to b) The principal strains and their corresponding directions are cal-
culated from the relations for the principal stresses by using the repla-
cements (σx → εx, τxy → γxy/2 etc.). This yields the principal strains

ε1,2 =
εx + εy

2
±

√(εx − εy
2

)2

+
(γxy

2

)2

= 1.5 · 10−3 ±
√

(2 · 10−3)2 + (1.5 · 10−3)2 = 1.5 · 10−3 ± 2.5 · 10−3

� ε1 = 4 · 10−3 , ε2 = −1 · 10−3 ,

and the principal directions

tan 2ϕ∗ =
γxy

εx − εy
=

3

4
� ϕ∗

1 = 18.4◦ , ϕ∗
2 = 108.4◦ .

to c) The maximum shear strain is

γmax = ε1 − ε2 = 4 · 10−3 + 1 · 10−3 = 5 · 10−3 .

It occurs at angles, which are inclined by ±45◦ with regard to the
principal directions.
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P1.8 Problem 1.8 An elastic panel A fits in-
to the rigid socket B of height h
(Young’s modulus E, Poisson’s ratio
ν > 0).

Determine the stress σx and the value
of the displacement vR at the top edge
R for a constant pressure p. It is ass-
umed that the elastic panel can move
frictionless in the socket mounting.

Solution In the panel a uniform plane
stress state is present, where the stress
component σy is known: σy = −p. Thus
Hooke’s law yields

Eεx = σx − νσy = σx + νp ,

Eεy = σy − νσx = −p− νσx .

As the panel cannot expand in x-direc-
tion, it holds

εx = 0 .

y

x

vR

A

R

p = −σy

p

p = −σy

B

y
x

h

σx σx

h

Inserting this into Hooke’s law provides the stress σx and the normal
strain in y-direction:

σx = −νp , εy = −p
1− ν2

E
.

Knowing the strain εy we compute the displacement v by integration:

∂v

∂y
= εy � v(y) =

∫
εydy = −p

1− ν2

E
y + C .

The lower edge of the panel does not experience a displacement, i. e.
v(0) = 0, and C = 0. For the value of the displacement at the top edge
we obtain

vR = |v(h)| = 1− ν2

E
ph .
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P1.9Problem 1.9 Two quadratic panels made
of different materials have both the edge
length a in the unloaded state. As sket-
ched, they are inserted into a rigid socket,
which has an opening l, that is smaller
than 2a.

What are the stresses and the changes
of the edge lengths, if it is assumed that
the panel can slide frictionless in the rigid
socket?

Solution After force fitting into the rigid
socket the panels experience a uniform
plane stress state. Equilibrium in vertical
direction yields σy1 = σy2 = σy. Consi-
dering the condition σx1 = σx2 = 0 in
Hooke’s law for both panels provides

©1 E1εy1 = σy , E1εx1 = −ν1σy ,

©2 E2εy2 = σy , E2εx2 = −ν2σy .

With the strain-displacement relation
(constant strains)

x

x

E2 , ν2

©1

a

a

a

y

©2

σy2

σy1

©1

Δu

ya

a

Δv

l

©1

©2

E1 , ν1

©2

εx1 =
Δu1

a
, εy1 =

Δv1
a

, εx2 =
Δu2

a
, εy2 =

Δv2
a

and the kinematic compatibility

(a+Δv1) + (a+Δv2) = l

we obtain for the normal stress in y-direction

σy = −2a− l

a

E1E2

E1 + E2
.

This stress leads to the following length changes

Δv1 = −(2a− l)
E2

E1 + E2
, Δv2 = −(2a− l)

E1

E1 +E2
,

Δu1 = −ν1Δv1 , Δu2 = −ν2Δv2 .
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P1.10 Problem 1.10 A thin-walled diving sphere
(radius r = 500 mm, wall thickness t =
12.5 mm) is submerged 1000 m under the
water surface (pressure pW = 10 MPa).

Compute the stresses in the wall of the
sphere.

Solution We cut the sphere with a section
perpendicular to the surface of the sphere,
resulting in two hemispheres. The equilibri-
um conditions

↑ : σt2πrt+ pW r2π = 0

provide for any section (spherical symme-
try) the stresses

σt = −pW
r

2t
= −10

500

2 · 12, 5 = −200 MPa .

P1.11 Problem 1.11 A spherical steel tank is heated by
a hot gas (ΔT = 300 ◦C) and additionally subjec-
ted to an internal pressure (p = 1.5 MPa).

Compute the change of the radius.

Given: r = 2m, t = 10mm, E = 2.1 · 105 MPa,
ν = 0.3, αT = 12 · 10−6 ◦C−1.

Solution For any cross section perpendicular to
the surface of the sphere equilibrium provides

σt = σϕ = p
r

2t
.

σt σt

p

σt

ϕ

pW

r
t

water

r

t

pW

r

ΔT

t

p

σt
σϕ

The strain is computed by the change of circumference

εt = εϕ =
2π(r +Δr)− 2πr

2πr
=

Δr

r
.

Using Hooke’s law

Eεt = σt − νσϕ +EαTΔT

yields

Δr = r

[
p r(1− ν)

2Et
+ αTΔT

]
= 2000

[
1.5 · 10−3

3
+ 3.6 · 10−3

]
= 8.25 mm .
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P1.12Problem 1.12 A thin-walled cylindrical
pressure vessel made of steel is subjected
to an internal pressure p.

What is the maximum value of the pres-
sure such that the normal stresses in the
central part do not to exceed the limit
stress σlim?

r

t

l

p

Compute for this case the change of radius r and length l.

Given: l = 5 m, r = 1 m, t = 1 cm, E = 2.1 · 105 MPa,
ν = 0.3, σlim = 100 MPa.

Solution The stresses are determined by
equilibrium conditions at suitable sections:

→: pr2π − σx2rπt = 0 � σx = p
r

2t
,

↑ : σϕ2d t− p2rd = 0 � σϕ = p
r

t
.

These stresses are principal stresses, as the
shear stress vanish in these sections. The lar-
gest normal stress exceeds the limit stress for

ϕ

x

p

σx

p
σϕ

d 2r

σϕ ≤ σlim � p ≤ t

r
σlim = 1 MPa � pmax = 1 MPa .

The related hoop strain εϕ results from the circumferential change:

εϕ =
2π(r +Δr)− 2πr

2πr
=

Δr

r
.

Hooke’s law Eεϕ = σϕ − νσt provides

Δr = r
pmaxr

Et

(
1− ν

2

)
= 0.41 mm .

In an analogous way the strain εt = Δl/l and Hooke’s law Eεt =
σt − νσϕ provide the length change

Δl = l
pmaxr

Et

(
1

2
− ν

)
= 0.47 mm .

Note: The caps at the ends of the pressure vessel are excluded-
i. e. the solution for the stresses is only valid in a sufficient distance
from the caps.
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P1.13 Problem 1.13 The rails of a train track are installed at a temperature
of 15◦C such that no internal forces are present.

Determine the stress at a temperature of −25◦C, if it is assumed that
the rails cannot experience any length change?

Given: E = 2.1 · 105 MPa, αT = 12 · 10−6 ◦C−1.

Solution In the rail exists a uniaxial stress state and Hooke’s law
provides

E ε = σ + E αT ΔT .

As displacements are suppressed, ε has to be zero. Using ΔT = −40◦C
yields for the stresses

σ = −E αT ΔT = 2.1 · 105 · 12 · 10−6 · 40 = 100.8 MPa .

Note: In rails the stresses due to temperature changes can become
considerably large.

P1.14 Problem 1.14 A thin copper ring of radius r is heated due to the tem-
perature difference ΔT .

What are the changes in radius and circumference if it is assumed that
the ring can deform freely?

Given: r = 100 mm, αT = 16 · 10−6 ◦C−1, ΔT = 50◦C.

Solution A uniform, stress-free uniaxial strain state exists in the ring
after heating. The strain is determined by the change in circumferencial
direction (change in length) Δl:

ε =
Δl

l
=

2π(r +Δr)− 2πr

2πr
=

Δr

r
.

Using the Hooke’s law for uniaxial states

ε =
σ

E
+ αTΔT

and the stress-free condition σ = 0, leads to

r

Δr

Δr = r αTΔT = 100 · 16 · 10−6 · 50 = 0.08 mm ,

Δl =
l

r
Δr = 2πΔr = 0.50 mm .
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P1.15Problem 1.15 A rectangular plate (a > b)
is inserted into a rigid oversized opening,
such that spacings of size δ are present.
Subsequently the plate is heated. It is as-
sumed, that the plate can move frictionless
along its edges.

a) Which temperature increase ΔTa is re-
quired to just close the spacing on the right?
b) For which temperature increase ΔTb is the upper spacing just clo-
sing? What is the value of σx in this situation?
c) What are the stresses in the plate for ΔT > ΔTb?

y

x

δ

δ

E , ν , αT

a

b

Solution to a) For ΔT < ΔTa the plate expands in a stress-free way.
With σx = σy = 0 Hooke’s law reduces to

εx = εy = αTΔT .

The spacing on the right is closing, if the condition εx = δ/a is met.
Introducing this result yields the temperature increase:

ΔTa =
δ

αT a
.

to b) At a temperature increase ΔTa ≤ ΔT ≤ ΔTb the plate can only
expand freely in y-direction, while the strain in x-direction remains
constant. With σy = 0 and εx = δ/a it follows

δ

a
=

σx

E
+ αTΔT , εy = −ν

σx

E
+ αTΔT .

The upper spacing is closing, if the the condition εy = δ/b is satisfied.
All above relations provide

ΔTb =
δ

αT a

a+ νb

(1 + ν)b
, σx = − E

1 + ν

δ(a− b)

ab
.

to c) For ΔT > ΔTb the strains in both directions remain constant:
εx = δ/a, εy = δ/b. Then

Eεx = σx − νσy + EαTΔT , Eεy = σy − νσx + EαTΔT

provide the stresses

σx = E

[
δ(νa+ b)

(1− ν2)ab
− αTΔT

1− ν

]
, σy = E

[
δ(νb+ a)

(1− ν2)ab
− αTΔT

1− ν

]
.
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P1.16 Problem 1.16 A thin-walled bushing
has to be heated by the temperature
difference ΔT ∗, to be mounted on a
shaft.

What are the stresses in the bushing,
and what is the pressure p between
bushing and shaft after cooling? It is
assumed that the shaft is rigid and
that the displacements of the bushing
in x-directions are blocked by friction.

r
t

rigid
x

E , ν , αT

Solution Before cooling the bushing is stress-free. The stresses after
cooling are obtained by equilibrium, Hooke’s law, and kinematics. The
equilibrium condition provides

p · 2rd = σϕ2t d � σϕ = p
r

t
.

Hooke’s law with ΔT = −ΔT ∗ (coo-
ling!) states

Eεϕ = σϕ − νσx − EαTΔT ∗ ,

Eεx = σx − νσϕ −EαTΔT ∗ .

x
ϕ

σϕ

σϕp

d

During cooling the strains in the bushing (shrinking) are blocked by
the shaft and friction. Thus the kinematic relations are given by

εϕ = 0 , εx = 0 .

Combining the above relations and solving for stresses and pressure
yields

σx = σϕ =
E

1− ν
αTΔT ∗ , p =

t

r

E

1− ν
αTΔT ∗ .

Note: • In the bushing a plane stress state is present with equal nor-
mal stresses: σx = σϕ.

• If the bushing can deform freely in x-direction (no friction,
εx �= 0), then σx = 0 and σϕ = EαTΔT ∗ follow.
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P1.17Problem 1.17 On the thin-walled elastic shaft©1
a pipe©2 will be mounted by heat shrinking. Before

heat shrinking both parts have identical geometri-
cal dimensions, but are made of different materi-
als.

Which temperature difference is required to the

mount pipe©2 on the shaft©1 ?

What is the pressure p between the shaft and the
pipe after cooling, if it is assumed that no stresses
are present in axial direction?

r

r

E2 , αT2

E1

©2

©1

t

t

Solution For the pipe ©2 to be mounted on the shaft ©1 its radius has
to increase by thermal expansion by t. Thus in the heated state, the
hoop strain has to assume the value

εϕ2 =
2π(r + t)− 2πr

2πr
=

t

r

Now Hooke’s law yields with σϕ2 = 0 (the pipe is stress free in the
heated state!)

εϕ2 = αT2ΔT � ΔT =
1

αT2

t

r
.

The pressure after cooling is obtained from the equilibrium equations

σϕ1 = −r

t
p , σϕ2 = +

r

t
p ,

Hooke’s laws,

E1εϕ1 = σϕ1 , E2εϕ2 = σϕ2 ,

the strains

εϕ1 =
Δr1
r

, εϕ2 =
Δr2
r

p
©2

©1

σϕ1

p

σϕ2

and the kinematic compatibility

Δr2 = Δr1 + t .

Combining the above equations yields

p =
E1E2

E1 +E2

(
t

r

)2

.
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P1.18 Problem 1.18 A block is subjected to
a pressure p0 in z-direction by a rigid
press.

Determine the strains and stresses, if

a) the deformations in x- and y-direction are restrained,
b) only the deformation in y-direction is restrained,
c) the deformations in x− and y−direction are not restrained?

x

z

y
E , ν

Solution In the above cases a homogeneous, triaxial stress and strain
state is present in the plate. With σz = −p0 Hooke’s law yields (there
are no shear stresses present!):

Eεx = σx−νσy+νp0, Eεy = σy+νp0−νσx, Eεz = −p0−νσx−νσy.

For case a) we have εax = εay = 0, and from

0 = σa
x − νσa

y + νp0, 0 = σa
y + νp0 − νσa

x, Eεaz = −p0 − νσx − νσy

it follows

εaz = −1− ν − 2ν2

1− ν

p0
E

, σa
x = σa

y = − ν

1− ν
po .

In case b) εby = 0 and σb
x = 0 holds (free deformation, i. e. no stresses

in x-direction). With Hooke’s law

Eεbx = −νσb
y + νp0 , 0 = σb

y + νp0 , Eεz = −p0 − νσb
y

we obtain

εbx = ν(1 + ν)
p0
E

, εbz = −(1− ν2)
p0
E

, σb
y = −ν p0 .

In case c), both σc
x = σc

y = 0, because the deformations in these direc-
tions are not restrained. Therefore Hooke’s law reduces to

Eεcx = ν p0 , Eεcy = ν p0 , Eεcz = −p0 ,

and we have

εcx = εcy = ν
p0
E

, εcz = −p0
E

.

Note: For ν > 0 we have |εaz | < |εbz| < |εcz|. Especially for ν = 1/3 it
follows

εaz = − 6p0/(9E) , εbz = − 8p0/(9E) , εcz = − 9p0/(9E) .

Due to the deformation constraints in x- and y-direction the plate be-
haves rather stiff in case a)!
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P1.19Problem 1.19 In a thick-walled cylinder
with a restrained deformation in longi-
tudinal direction (plane strain state) the
following stresses are present due to loa-
ding by an internal pressure p:

σr = −p
a2

b2 − a2

(
b2

r2
− 1

)
,

σϕ = p
a2

b2 − a2

(
b2

r2
+ 1

)
.

Determine the stress σz and the resulting
force Fz in axial direction of the cylinder.

r

σr

σϕ

σr

σϕ

b

a
ϕ

p

Where does the maximum normal stress occur, and what is its value?

Given: p = 50 MPa, a = 100mm, b = 200mm, ν = 1/3.

Solution As the deformation in axial direction of the cylinder is res-
trained, we have εz = 0. Hooke’s law in this direction provides

Eεz = 0 = σz − ν(σr + σϕ) .

Inserting the known relations yields the stress

σz = ν(σr + σϕ) = 2ν p
a2

b2 − a2
=

2

9
p = 11.1 MPa .

As σz is constant across the section, the resulting force is computed by
multiplication of σz with the cross section area:

Fz = σzπ(b
2 − a2) = 2πν p a2 = 1.05 · 106 N .

The absolute values of the stresses σr and σϕ are maximum at the inner
boundary of the cylinder (r = a). There we have

σr(a) = −p , σϕ(a) =
5

3
p , σz =

2

9
p .

Thus the hoop stress σϕ on the inside is the largest normal stress.
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P1.20 Problem 1.20 A rigid box with
quadratic cross section is filled
with clay (volume V = a2h, den-
sity ρ). The material behavior
of the clay is approximated by
Hooke’s law (Young’s modulus
E, Poisson’s ratio ν).

Determine the settlement Δh
of the clay as a consequence of the
weight of the clay and the horizontal pressure distribution at the box
walls as a function of y.

x

y

z

g

Δh

a

h

a

Solution Due to the given loading situation only normal stresses σx, σy,
and σz are present in the three coordinate directions x, y, and z. Ex-
cept for the strain εy no other strains occur. For σy it holds according
to Hooke’s law with εx=εz=0

σy =
E

1 + ν

(
εy +

ν

1− 2ν
εy

)
=

E

1 + ν

1− ν

1− 2ν
εy .

With the stress distribution

σy = −ρg(h− y)

the settlement Δh is computed by

εy =
dv

dy
.

By integration we obtain Δh:

Δh = v(h) =

∫ h

0

εy dy = −
∫ h

0

ρg(h− y)
(1 + ν)(1− 2ν)

E(1− ν)
dy

= −
[
ρg

(1 + ν)(1− 2ν)

E(1− ν)

(
hy − y2

2

)]h

0

= −1

2

(1 + ν)(1− 2ν)

E(1− ν)
ρgh2.

The horizontal pressure distribution as a function of y follows from
Hooke’s law:

σx = σz =
Eν

(1 + ν)(1− 2ν)
εy , εy = −ρg(h− y)

(1 + ν)(1− 2ν)

E(1− ν)

� σx(y) = σz(y) =
−ν

1− ν
ρg(h− y) .
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P1.21Problem 1.21 In a sheet metal (Young’s
modulus E and Poisson’s ratio ν) the
three strains εA = ε̄, εB = 3 ε̄ und
εC = 2 ε̄ are measured by strain gauges
in the sketched directions.

a) Determine the principal strains ε1
and ε2.
b) Compute the principal stresses σ1 and
σ2 under the assumption of a plane state
of stress.
c) Calculate the principal directions.

B

A

C

30◦

y

x

η

ξ

ϕ = 30◦

Solution to a) We introduce a x, y- and
a ξ, η- coordinate system in direction of
the strain gauges. Then it holds for the
measured strains

εx = ε̄ , εy = 3ε̄ , εξ = 2ε̄ .

To compute the principal strains we have to determine the shear strain
γxy. According to the transformation relations for ϕ = 30◦ we have

εξ =
1

2
(εx + εy) +

1

2
(εx − εy) cos 2ϕ+

1

2
γxy sin 2ϕ

=
1

2
(εx + εy) +

1

4
(εx − εy) +

√
3

4
γxy ,

2ε̄ = 2ε̄ +

(
−1

2

)
ε̄+

√
3

4
γxy .

This yields the result

γxy =
2√
3
ε̄ .

With this at hand, the principal strains can be calculated via

ε1/2 =
εx + εy

2
±

√(εx − εy
2

)2

+

(
1

2
γxy

)2

to be

ε1 = 2

(
1 +

1√
3

)
ε̄ , ε2 = 2

(
1− 1√

3

)
ε̄ .
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to b) Using the assumption of a plane stress state, Hooke’s law formu-
lated in principal directions provides the principal stresses

σ1 =
E

1− ν2
(ε1 + νε2) � σ1 =

2E ε̄

1− ν2

(
1 + ν +

1− ν√
3

)
,

σ2 =
E

1− ν2
(ε2 + νε1) � σ2 =

2E ε̄

1− ν2

(
1 + ν − 1− ν√

3

)
.

to c) The principal directions follow either from the stress or from the
strain components. Here we use the strain components to obtain from
the general formula

tan 2ϕ∗ =
γxy

εx − εy
=

2√
3

−2
= − 1√

3

the solutions

ϕ∗ = −15◦ und ϕ∗ = 75◦ .

In order to decide, which direction corresponds to the principal strain
ε1 or ε2, respectively, we use the angle ϕ∗ = −15◦ in the coordinate
transformation. This yields with the given strain components

εξ =
1

2
(εx + εy) +

1

2
(εx − εy) cos(−30◦) +

1

2
γxy sin(−30◦)

= 2ε̄− ε̄

√
3

2
− ε̄√

3

1

2
= 2

(
1− 1√

3

)
ε̄ = ε2 .

The smallest principal strain ε2 occurs at the angle ϕ∗ = −15◦, while
the largest principal strain ε1 is related to the direction of ϕ∗ = 75◦.
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Tension and Compression in Bars
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Tensile or compressive loading in bars

Assumptions:

• Length l of the bar is large compared to
characteristic dimensions of the cross sec-
tion A(x).

• Axis of the bar (line connecting centroids
of the cross sections) is a straight line.

• Common line of action (external loads F
and n(x) are aligned with the axis of the
bar).

• Cross section A(x) can only vary slightly.

Stress: Assuming a constant stress σ across
the section A the following relation with the
normal force N holds:

x

A

n

F

, u

l

σ(x) =
N(x)

A(x)
.

Basic equations of a deformable bar:

equilibrium condition
dN

dx
= −n ,

Hooke’s law ε =
σ

E
+ αT ΔT ,

Kinematic relation ε =
du

dx

E = Young’s modulus,

αT = coefficient of thermal expansion,

ΔT = temperature difference with respect to a reference state,

u(x) = displacement of a point x within the bar.

The basic equations lead to a single differential equation for the displa-
cements ( {·}′ := d{·}/dx ):

(EAu′)′ = −n+ (EAαTΔT )′ .
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Elongation of a bar: Δl = u(l)− u(0) =

∫ l

0

ε dx .

special cases:

Δl =

∫ l

0

N

EA
dx (ΔT = 0) ,

Δl =
F l

EA
(N = F = const, EA = const, ΔT = 0),

Δl = αTΔT l (N = 0, EA = const, αTΔT = const).

Superposition: The solution of a statically indeterminate problem can
be achieved by superposition of solutions of associated statically deter-
minate problems considering the compatibility conditions.

u
(0)
B + u

(1)
B = 0 .

“1”-System

A B

X=B

F F

“0”-System u
(0)
B u

(1)
B

Rotating bar: A bar rotating with the angluar velocity ω experiences
an axial loading per unit length of

n = ρA xω2 .

Here ρ is the density and x represents
the distance of the cross section A from
the center of rotation.

ρω A

n
x

Elastic-plastic bar: For an elastic-ideal-plastic material behavior,
Hooke’s law is valid only until a certain
yield limit σY :

σ =

⎧⎨
⎩
E ε , |ε| ≤ εY ,

σY sign(ε) ,|ε| ≥ εY .

σ

σY

−σY

εY ε

System of bars: The displacements are obtained by “disconnecting”
and “reconnecting” of the bars from the nodes using a displacement
diagram.

Note: In areas with rapidly changing cross sections (notches, holes)
the above theory for bars is not applicable.
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P2.1 Problem 2.1 Determine the stresses distri-
bution σ(x) in the homogeneous bar due to
its weight. The bar has constant thickness
and a linear varying width. Furthermore,
identify the location and value of the smal-
lest stress.

g

F

A0

ρ

F

x
h

a

It is reasonable to introduce the x-coordinate at the intersection of the
extended edges of the trapeziod. The x dependent cross section area
follows then as

A(x) = A0x/l .

With the weight

W (x) = ρgV (x) = ρg

∫ x

a

A(ξ)dξ = ρgA0
x2 − a2

2l

of the lower part equilibrium provides

N(x) = F +W (x) = F + ρgA0
x2 − a2

2h
.

W (x)

A(x)
N(x)

F

x

a
ξ

This leads to the stress

σ(x) =
N(x)

A(x)
=

Fh+ ρgA0
2

(
x2 − a2

)

A0x
.

The location x∗ of the minimum is determined by condition σ′ = 0:

σ′ = −Fh

A0

1

x2
+

ρg

2

(
1 +

a2

x2

)
= 0 � x∗ =

√
2Fh

ρgA0
− a2 .

The value of the minimum stress is

σmin = σ(x∗) = ρg

√
2Fh

ρgA0
− a2 = ρgx∗ .

Note:
• For ρg = 0 (“weight-less bar”) no minimum exists. The largest stress

occurs at x = a.
• The minimum will be located within the bar, only if a < x∗ < h or

ρgA0a
2/(2h) < F < ρgA0(h

2 + a2)/(2h) holds.
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P2.2Problem 2.2 The contour of a light-
house with circular thin-walled cross
section follows a hyperbolic equation

y2 − b2 − a2

h2
x2 = a2 .

Determine the stress distribution as a
consequence of weight W of the light-
house head (the weight of the structure
can be neglected).

Given: b = 2a, t 
 a.

W

a

b

h

x
t

y

Solution As the weight W is the only acting external load, the normal
force N is constant (compression):

N = −W .

The cross section area A is changing. It can be approximated by (thin-
walled structure with t 
 y)

A(x) = 2πyt= 2πt

√
a2 +

b2 − a2

h2
x2

= 2πt

√
a2 + 3

a2

h2
x2

= 2πat

√
1 + 3

x2

h2
.

t

y

The stress follows now as

σ(x) =
N

A
= − W

2πat

√
1 + 3 x2

h2

.

Especially at the top and bottom position we get

σ(x = 0) = − W

2πat
bzw. σ(x = h) = − W

4πat
.

Note: The stress at the top is twice as large as the stress at the bottom,
which is a inefficient use of material. This situation changes if the
weight of the thin-walled structure is included in the analysis.
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P2.3 Problem 2.3 Determine the
elongation Δl of the conical
shaft (Young’s modulus E)
under the application of a
tensile force F .

F F
D

l

d

Solution The normal force N = F is constant, while the cross section
area A varies. With σ = N/A the elongation is computed by

Δl =

l∫

0

ε dx =
1

E

l∫

0

σ dx =
1

E

l∫

0

Ndx

A
=

F

E

l∫

0

dx

A(x)
.

To describe the change of the cross section area A(x) we start the x-
axis at the peak of the frustum. Using the intercept theorem and the
auxiliary variable a we obtain for the diameter

δ(x) = d
x

a

and for the area

a

x

d δ

A(x) =
π

4
δ2(x) =

π

4
d2

x2

a2
.

Introducing this in the relation for the elongation, then integration
provides (integration limits!):

Δl =
F

E

a+l∫

a

dx

π
4 d2 x2

a2

=
4Fa2

πE d2

(
− 1

x

)∣∣∣∣
a+l

a

.

With

a+ l

D
=

a

d
� a =

d

D

l

1− d
D

the elongation is

Δl =
4F l

πEDd
.

Test: For D = d (constant cross section) we obtain Δl =
4F l

πEd2
=

F l

EA.
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P2.4Problem 2.4 A homogeneous frustum of
a pyramid (Young’s modulus E) with a
square cross section is loaded on its top
surface by a stress σ0.

Determine the displacement field u(x) of
a cross section at position x.

b

a

h

σ0

x

Solution The normal force N = −σ0a
2 is constant. From the kinema-

tic relation ε = du/dx and Hooke’s law ε = σ/E = N/EA we obtain a
differential equation for the displacement u

EA(x)
du

dx
= −σ0a

2 .

The area A(x) follows from the intercept theorem:

A(x) = [a+ (b− a)
x

h
]2 .

b

h

x

a

(
b− a

h
x+ a

)Thus we have

E
(
a+

b− a

h
x
)2 du

dx
= −σ0a

2 .

Separation of variables yields

du = −σ0a
2

E

dx(
b− a
h

x+ a
)2 �

u(x)∫

u(0)

du = −σ0a
2

E

x∫

0

dξ(
b− a
h

ξ + a
)2 .

Using the substitution z = a+ (b− a) ξ/h, dz = (b− a) dξ/h leads to

u(x)− u(0)= − σ0a
2

E

h

b− a

(
−1

z

)∣∣∣∣
b−a
h

x+a

a

= −σ0a
2

E

h

b− a

(1

a
− 1

b− a
h

x+ a

)
.

The displacement u(0) of the top surface follows from the bounda-
ry condition that the displacement has to vanish on the bottom edge
x = h:

u(h) = 0 � u(0) =
σ0a

2

E

h

b− a

(
1

a
− 1

b

)
=

σ0ah

Eb
.

From this relation the displacement follows

u(x) =
σ0a

2

E

h

b− a

(
− 1

b
+

1
b− a
h

x+ a

)
.
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P2.5 Problem 2.5 The cross section of
a solid helicopter blade (density ρ,
Young’s modulus E) is described by

the equation A(x) = A0e
−αx/l.

Determine the stress distributi-
on σ(x), if the blade is rotating
with a constant angular velocity ω.
Compute the elongation Δl under the assumption a = 0.

x
a

A0/2
A(x)

A0

ω

l

Solution First, the sketched geometry A(l) = A0/2 yields

A0e
−α = A0/2 � eα = 2 � α = ln 2 = 0.693 .

The rotation causes a distributed load per unit length

n = ρω2xA(x) = ρω2A0xe
−αx/l .

The equilibrium condition N ′ = −n provides the normal force by inte-
gration

N = −
∫

ndx = −ρω2A0l
2

α2

[
−αx

l
e−αx/l − e−αx/l + C

]
.

The integration constant C is determined by the boundary condition:

N(l) = 0 � C = (1 + α)e−α = 0.847 .

Introducing the dimensionless coordinate ξ = x/l yields

N(ξ) =
ρ ω2A0l

2

α2
[(1 + αξ)e−αξ − C] ,

and for the stress distribution

σ(ξ) =
N

A
=

ρ ω2l2

α2
[1 + αξ − Ceαξ] .

ξ1

1−C

α2

σmax

σ/(ρω2l2)

ξ0The elongation is calculated from

Δl=

∫ l

0

εdx =
l

E

∫ 1

0

σdξ =
ρω2l3

α2E

[
ξ +

αξ2

2
− C

α
eαξ

]1

0

=
ρω2l3

Eα2

[
1 +

α

2
− C

α
eα +

C

α

]
= 0.258

ρω2l3

E
.

Note: Due to the varying cross section the maximum stress occurs at
the position ξ0 = −(lnC)/α = 0.24 and attains the maximum value
σmax = −(ρω2l2 lnC)/α2 = 0.347 ρω2l2.
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P2.6Problem 2.6 A massive bar (weight W0,
cross section area A, thermal expansion
coefficient αT ) is fixed at x = 0 and just
touches the ground in a stress-free man-
ner.

Determine the stress distribution σ(x) in
the bar after a uniform heating by ΔT .

Which ΔT causes compression everywhe-
re in the bar?

Solution We investigate the ”two load cases”, weight und heating. The
weight causes a a normal force

N(x) = W (x) = W0
h− x

h
= W0

(
1− x

h

)

which is related to the stress distribution

σ1(x) =
N(x)

A
=

W0

A

(
1− x

h

)

x

W0

σ(x)

W (x)

xE

αT

h

The heating produces an additional strain, which is blocked by the sup-
port on the bottom. The relation

ε =
σ2(x)

E
+ αTΔT = 0

yields

σ2(x) = −EαTΔT .

Thus the total stress is computed by

σ(x) = σ1 + σ2 =
W0

A

(
1− x

h

)
− EαTΔT .

Due to the blocked temperature strain, there exists a compressive stress
at the end of the bar (x = h) at all times. As the stress distribution
is linear, the stress will be compressive everywhere, if compression is
present at the top edge. Thus the relation

σ(x = 0) < 0 bzw.
W0

A
− EαTΔT < 0

provides the necessary temperature difference

ΔT >
W0

EAαT
.
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P2.7 Problem 2.7 An initially stress-
free fixed bar (cross section area
A) experiences a temperature
increase varying linearly in x.

Determine the stress and strain
distribution.

x
E , αT

ΔT0 ΔT (x) ΔT1

ΔT

x

l

Solution The bar is supported in a statically indeterminate way. Thus
we use equilibrium, kinematics and Hooke’s law for the solution of the
problem. With n = 0 and σ = N/A these equations read

σ′ = 0 , ε = u′ , ε =
σ

E
+ αTΔT (x)

with

ΔT (x) = ΔT0 + (ΔT1 −ΔT0)
x

l
.

Combining the above relations renders the differential equation for the
displacements

u′′ = αTΔT ′ =
αT

l
(ΔT1 −ΔT0) .

Integrating twice yields

u′=
αT

l
(ΔT1 −ΔT0) x+ C1 ,

u =
αT

l
(ΔT1 −ΔT0)

x2

2
+C1x+ C2 .

The two integration constants follow from the boundary conditions:

u(0) = 0 � C2 = 0 , u(l) = 0 � C1 = −αT

2
(ΔT1 −ΔT0) .

We obtain the displacement field

u(x) =
αT l

2
(ΔT1 −ΔT0)

(x2

l2
− x

l

)

together with the (constant) stress

σ = E(u′ − αTΔT ) = −αT

2
(ΔT1 +ΔT0)E .

Note: With constant heating ΔT1 = ΔT0 the displacement u(x)
vanishes. In this situation the stress is σ = −αTΔT0E.
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P2.8Problem 2.8 A bar with a constant
cross section A is fixed at both ends.
The bar is made of two different
materials, that are joint together at
point C.

a) What are the reaction forces, if an
external force F is applied at point
C ?

C

x

l − a

St Al

AluminiumSteel

a

F
NA NB

F

b) Determine the normal force that is caused by a pure heating by ΔT ?

Given: ESt/EAl = 3, αSt/αAl = 1/2 .

Solution We treat the system as two joint bars with constant normal
forces.

to a)

equilibrium:−NA +NB = F ,

kinematics: ΔlSt +ΔlAl = 0 ,

Hooke’s law:ΔlSt =
NAa

EStA
, ΔlAl =

NB(l − a)

EAlA
.

The 4 equations for the 4 unknowns (NA, NB , ΔlSt, ΔlAl) yield with
the given numerical values

NA = −F
3(l − a)

3l − 2a
, NB = F

a

3l − 2a
.

to b)

equilibrium:NA = NB = N ,

kinematics: ΔlSt +ΔlAl = 0 ,

Hooke’s law:ΔlSt =
N a

EStA
+ αStΔT a ,

ΔlAl =
N(l − a)

EAlA
+ αAlΔT (l − a) .

x

NB

ΔT

St Al

NA

Solving the system of equations for the normal force N yields with the
given numerical values

N = − 2l − a

3l − 2a
ESt αSt AΔT .
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P2.9 Problem 2.9 Solve Problem 2.8 by superposition.

Solution to a)We choose the reaction force NB as statically redundant
quantity.

u(0)

“0”-System “1”-System

u(1)

Al Al
F

NB=X

St St

Hooke’s law provides

u(0) =
Fa

EStA
, u(1) =

X(l − a)

EAlA
+

Xa

EStA
.

As the right edge is fixed compatibility requires

u(0) = u(1) .

This condition yields

NB = X =
Fa

a+ (l − a)EStA
EAlA

= F
a

3l − 2a
.

From equilibrium we have

NA = NB − F = −F
3(l − a)

3l − 2a
.

NA NB

St Al
F

to b) In the free body diagram we choose the normal force N as sta-
tically redundant quantity X. From Hooke’s law

uSt=
Xa

EStA
+ αStΔTa ,

uAl=
X(l − a)

EAlA
+ αAlΔT (l− a)

uAluSt

Al

N=X

St

and the compatibility

uSt + uAl = 0

we obtain

N = X = −αSta+ αAl(l − a)

a
EStA

+
(l − a)
EAlA

= − 2l − a

3l − 2a
ESt αSt AΔT .
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P2.10Problem 2.10 An elastically sup-
ported bar (c1 = 2c2 = EA/2a)
is loaded by a constant axial
load n.

Compute the distribution of the
normal force N(x) in the bar.

N(x)

n

B

c2

EA

c1

n
B

B
n

C

C

a

x

x

Solution Using the free body dia-
gram with the forces B and C at
the ends of the bar, the equilibri-
um conditions can be formulated

B+C = na , N(x) = B−nx .

The elongation/shortening of the
springs is given by

Δu1 =
B

c1
, Δu2 =

C

c2
.

The elongation of the bar is computed from

ΔuSt =

a∫

0

ε dx =

a∫

0

N

EA
dx .

With N=B − nx we obtain

ΔuSt =
Ba

EA
− na2

2EA
.

Finally, the kinematic relation

Δu1 +ΔuSt = Δu2 �
B

c1
+

Ba

EA
− na2

2EA
=

C

c2

with C = −B + na and the given value for c1 and c2 yields

B

(
2a

EA
+

4a

EA
+

a

EA

)
= na

(
a

2EA
+

4a

EA

)
� B =

9

14
na

and the distribution of the normal force follows

N(x) =
9

14
na− nx .

N9

14
na

− 5

14
na
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P2.11 Problem 2.11 Determine the com-
pression ΔlC of a casing C of length
l, if the nut of screw S (lead h) is
turned by one revolution.

Given:
EAC

EAS
=

4

3
.

EAC

EAS S

C

l

Solution After the revolution of the nut we cut the system of screw and
casing and introduce the statically
indeterminate force F between the
two parts.

The casing experiences a compres-
sion

ΔlC =
Xl

EAC
.

For the screw we obtain an elonga-
tion

ΔlS =
Xl

EAS
.

X X

X

l

l − h

The length changes have to be adjusted in such a way that casing and
screw have the same length. Therefore compatibility can be written as

h = ΔlC +ΔlS .

Inserting the length changes yields the force

X =
h

l

1
1

EAC
+ 1

EAS

and the compression of the casing

ΔlC =
Xl

EAC
= h

1

1 + EAC
EAS

= h
1

1 + 4
3

=
3

7
h .

Note: As the axial rigidity of the casing is larger than the one of
the screw, the compression is only 3/7 of the lead. If equal axial
rigidities are present EAC = EAS, the length change of both parts
will be equal, i. e. ΔlC = ΔlS = h/2 .
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P2.12Problem 2.12 A rigid quadratic
plate (weight W , edge length

√
2 a)

is supported on 4 elastic posts. The
posts are of equal length l, but pos-
sess different axial rigidities.

Determine the weight distribution
on the 4 posts?

Determine the displacement f in
the middle of the plate.

Solution The system is statically indeterminate of degree one (a table
on 3 posts rests in a statically determinate way!).
Equilibrium yields

↑ : S1 + S2 + S3 + S4 = W ,
�

I : aS4 = aS1 ,
�

II : aS2 = aS3 .

The displacement f in the middle is obtained from the average value of
the displacements ui (= length change of the posts) at opposite corners
(rigid plate). Accordingly the compatibility reads:

f =
1

2
(u1 + u4) =

1

2
(u2 + u3) .

With Hooke’s law

ui =
Sil

EAi

4EAl

©2

©3 ©4

©1

3EA

2EA
EA

√
2 a

S1

W
S4

III

I II

u1

f u4

u2

u3

S3

S2

and S1 = S4, S2 = S3 we obtain as intermediate result

S1l

EA
+

S1l

4EA
=

S2l

2EA
+

S2l

3EA
�

5

4
S1 =

5

6
S2 .

Inserting this into the first equilibrium condition yields

S1+
3

2
S1+

3

2
S1+S1 = G � S1 = S4 =

1

5
G , S2 = S3 =

3

10
G .

form which the displacement follows:

f =
1

2

(
S1l

EA
+

S1l

4EA

)
=

1

8

Gl

EA
.
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P2.13 Problem 2.13 A column of steel rein-
forced concrete is loaded by a tensile
force F .

What are the stresses in the concre-
te and the steel as well as the height
change Δh of the column, if we assu-
me

a) a perfect bonding between steel
and concrete?
b) the concrete is cracked and does
not carry any load?

Given: ESt/EC = 6, ASt/AC = 1/9.

C

C − C

ESt, ASt

EC , AC

F

C

h

Solution to a) We consider the composite as a system of two ”bars”
of different materials, which experience under load F the same length
change Δl. With this the basic equations of the system are:

equilibrium: NSt +NC = F ,

kinematics: ΔhSt = ΔhC = Δh ,

Hooke’s law:ΔhSt =
NSth

EASt
, ΔhC =

NCh

EAC
.

Solution of the system of equation yields –
with the stiffness ratio EAC/EASt = 3/2
– the normal forces

F

NStNC

NSt = F
1

1 + EAC
EASt

=
2

5
F , NC = F

EAC
EASt

1 + EAC
EASt

=
3

5
F

and the height change

Δh =
Fh

EASt + EAC
i. e. Δh =

Fh

EASt

1

1 + EAC
EASt

=
2

5

F l

EASt
.

The stresses result from A = AC + ASt and ASt = A/10 and AC =
9A/10

σSt =
NSt

ASt
= 4

F

A
, σC =

NC

AC
=

2

3

F

A
.

to b) If only the steel carries load, we will obtain with NSt = F

σSt =
F

ASt
= 10

F

A
, Δh =

Fh

EASt
.
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P2.14Problem 2.14 A laminated bar made
of bonded layers of two different ma-
terials (respective axial rigidities EA1,
EA2 and coefficients of thermal expan-
sion αT1, αT2) is to be replaced by a
bar made of a homogeneous material.

Determine EA and αT such that the
homogeneous bar experiences the sa-
me elongation as the laminated bar
under application of a force and a tem-
perature change ?

©2 ©1

EA, αT

Solution For the laminated bar, subjected to a force F and a tempe-
rature increase ΔT , the basic equation yield

equilibrium:N1 +N2 = F ,

kinematics: Δl1 = Δl2 = Δllam ,

Hooke’s law:Δl1 =
N1l

EA1
+ αT1ΔT l ,

Δl2 =
N2l

EA2
+ αT2ΔT l .

N2

F

N1

EA1, αT1

EA2, αT2

This yields

Δllam =
F l

EA1 +EA2
+

EA1αT1 +EA2αT2

EA1 +EA2
ΔT l .

For a homogeneous bar under identical loading conditions, we have

Δlhom =
F l

EA
+ αTΔT l .

The length changes Δllam and Δlhom agree for arbitrary F and ΔT
only, if

EA = EA1 + EA2 , αT =
EA1αT1 + EA2αT2

EA1 + EA2
.
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P2.15 Problem 2.15 In the depicted support
construction for the rigid body B the
lower support bar is too short by the
length δ. In order to assemble the struc-
ture a force Fa is applied, such that the
end of the bar just touches the ground.
After assembly the force Fa is removed.
The diameters of all bars di are identical.

a) Compute the required assembly force
Fa.

b) Determine the displacement vB of the
body and the forces in the bars after as-
sembly.

steel

a

lSt

lAl

B

δ

aluminium

Fa

a

Given: lAl = 1m, dAl = 2mm, EAl = 0.7 · 105 MPa, lSt = 1.5m,
dSt = 2mm, ESt = 2.1 · 105 MPa, δ = 5mm .

Solution to a) Each aluminium bar carries half of the assembly force
(equilibrium) and elongates by the amount delta δ. This yields

SAl =
Fa

2
, ΔlAl =

SAllAl

EAAl
=

FalAl

2EAAl
= δ ,

� Fa = 2
δ

lAl
EAAl = 2 · 5

1000
· 0, 7 · 105 · π · 12 = 2200N .

to b) After removal of the force Fa new forces SAl and SSt are present.
This leads to the equilibrium condition

SSt = 2SAl ,

Hooke’s law

ΔlAl =
SAllAl

EAAl
, ΔlSt =

SStlSt

EASt

SSt

SAlSAl

and the compatibility condition

ΔlAl +ΔlSt = δ .

Solving the 4 equations yields

SAl =
δ

lAl

EAAl

1 + 2 lSt
lAl

EAAl
EASt

=
5

1000

0, 7 · 105 · π · 12
1 + 2 · 32 · 13

= 550 N ,

SSt = 2SAl = 1100 N , vK = ΔlAl =
SAllAl

EAAl
= 2.5 mm .
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P2.16Problem 2.16 Two rigid beams
are connected by two elastic
bars. The first beams is fixed
at point A, while the second is
simply supported at point B.
Bar 2 is heated by a tempera-
ture ΔT .

Compute the forces in the two
bars.

Solution We cut the system
and use the following free body
diagram to formulate the equili-
brium conditions

�

B : 2aS1 + aS2 = 0 ,

Hooke’s law

Δl1 =
S1a

EA
,

Δl2 =
S2a

EA
+ αTΔT · a

and the compatibility condition

Δl1 = 2Δl2 .

Solving for the unknown forces
in the bars yields

S1

1 2

EA

a

EA, αT

B

S2

S2

S1

Δl2

B

B

a

a
A

a

a

S2

S2

S1

S1

Δl1

S1 =
2

5
EAαTΔT , S2 = −4

5
EAαTΔT .

Note: In the heated bar compressive forces are generated due
to the constrained deformations.
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P2.17 Problem 2.17 In the depicted two bar
system both bars have the same axial
rigidity EA.

Determine the displacement of point C
where the load is applied.

Solution From equilibrium we have

↑ : S2 sin 60◦ = F � S2 =
2

3

√
3 F ,

→: −S1 − S2 cos 60
◦ = 0 � S1 = −1

3

√
3 F .

C

1

l
F

C

2

60◦

F

S2

S1

Thus the elongation and shrinking of the bars follow as

Δl2 =
S2l2
EA

=

2
3

√
3 l
cos 60◦F

EA
=

4
√
3

3

F l

EA
, Δl1 =

S1l1
EA

= −
√
3

3

F l

EA
.

To determine the displacements of
point C we construct the displace-
ment diagram. In this diagram the
length changes are introduced. As the
length changes are small Δli 
 l they
are not drawn to the scale. In this
example Δl1 is a shrinkage (to the
left) and Δl2 an elongation. Consi-
dering that the bars can only rotate
around the hinge points we introdu-
ce the right angles and read off the
displacement diagram:

Δl1
C

Δl2

u

v

C ′

2

1

30◦

u = |Δl1| =
√
3

3

F l

EA
,

v =
Δl2

cos 30◦
+

u

tan 60◦
=

4
√
3

3

F l

EA

1
1
2

√
3
+

√
3

3

F l

EA

1√
3
= 3

F l

EA
.
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P2.18Problem 2.18 A rigid weightless
triangle is supported by 3 bars
with the axial rigidity EA. The
triangle is loaded in point B by
the force F .

a) Determine the forces Si in the
3 bars and their elongations Δli.

b) Compute the displacement of
point C.

D 1

CB

2

3

a a

a

a

F

Solution to a) The system is statically determinately supported. The
forces in the bars follow immediately from the equilibrium conditions:

�

C : aS1 = aF � S1 = F ,

�

E : aS2 = 0 � S2 = 0 ,

↑ : S3 sin 45
◦ + F = 0 � S3 = −√

2 F .

S3

F
S2

C

E

S1

Related to these forces are the following elongations

Δl1 =
S1l1
EA

=
Fa

EA
, Δl2 = 0 ,

Δl3 =
S3l3
EA

= −
√
2 F · √2 a

EA
= −2

Fa

EA
.

Δl3

3

2C

C ′

vC

to b) The displacement of point C is
sketched in the displacement diagram.
As bar 2 experiences no force and thus
no length change, the horizontal dis-
placement vanishes. From the displace-
ment diagram we obtain for the vertical
displacement vC :

vC =
√
2 |Δl3| = 2

√
2

Fa

EA
.



50 Deformation

P2.19 Problem 2.19 In the depicted
truss the members have the axi-
al rigidities EA1, EA2 and the
coefficients of thermal expansion
αT1, αT2.

Determine the axial forces in the
trusses, if the system is heated
by ΔT ?

αT1 αT1

EA1 EA1

C

S1

S2

S1

h

C

EA2

αT2

β β

β β

Solution As the system is statically indeterminate, we have to use all
basic equations. We start
with the equilibrium

2S1 cosβ + S2 = 0

and continue with Hooke’s law

Δl1 =
S1l1
EA1

+ l1αT1ΔT ,

Δl2 =
S2l2
EA2

+ l2αT2ΔT ,

where

l1 =
h

cosβ
, l2 = h .

The compatibility of the displacements is according
to the the displacement diagram:

Δl1 = Δl2 cos β .

β

Δl1

Δl2

2
1

Cβ

1

C ′

Solving the 4 equations for the two truss forces and the two elongations
yields

S1 = EA1
αT2 cos

2 β − αT1

1 + 2 cos3 βEA1
EA2

ΔT , S2 = −2 cosβ S1 .

Note: For cos β =
√

αT1/αT2 we obtain S1 = S2 = 0: the trusses can
than expand without causing forces! (special case αT1 = αT2

� β = 0)
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P2.20Problem 2.20 Truss member 3
was produced too short to be as-
sembled between two identical
trusses.

a) Determine the required as-
sembly force D?
b) Calculate the normal force S3

after the assembly (D = 0)?

Given: EA1 = EA3 = EA, EA2 =
√
2EA.

3δ

a a a

a1 1

2

D D
C

2

Solution to a) The force D has to move point C by δ/2 in horizontal
direction during assembly. From equilibrium

→: S2 cos 45
◦ = D ,

↑ : S1 = S2 cos 45
◦ ,

kinematics (S1 was positively introduced
as compressive force!!) with the prescribed
displacement

uC = Δl1 +Δl2
√
2 , uC =

δ

2
,

and Hooke’s law

Δl1 =
S1a

EA
, Δl2 =

S2a
√
2√

2EA

C

1
C ′

C D

S1 S2

2

Δl1

uC

Δl2

we obtain

D =
1

6

δ

a
EA .

to b) Equlibrium, kinematics and Hooke’s law are as in a), but D has
to be replaced by S3. With the known compatibility condition

S2

S3 C

S1

2uC +Δl3 = δ and Δl3 =
S3a

EA

it follows

S3 =
1

7

δ

a
EA .



52 Statically indeterminate

P2.21 Problem 2.21 A centric
loaded rigid beam is sup-
ported by 4 elastic bars of
equal axial rigidity EA.

Determine the forces in the
bars? l

3 4

B

2

30◦ 30◦
a1

F
D

l

Solution a) First, we solve the statically indeterminate system by
applying all basic equations simultaneously. Using equilibrium

B

F

S3 S4S2S1

→: S1 = S2 ,

↑ : (S1 + S2) sin 30
◦ + S3 + S4 = F ,

�

B : lS3 + 2lS4 = lF ,

Hooke’s laws

Δl1 = Δl2 =
S12a

EA
,

Δl3 =
S3a

EA
, Δl4 =

S4a

EA

and the geometry of the deformation

B′

B

D′

B′
v

D

1 2

B

Δl3 Δl4

Δl2Δl1

60◦ v

v =
Δl1

cos 60◦
Δl3 =

1

2
(v +Δl4)

we obtain as solution

S1 = S2 = S4 =
2

9
F , S3 =

5

9
F .
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b) Now, we solve the problem by superposition. The system is divided
into two statically determinate basic systems:

“1”-System“0”-System

C DB

v
(0)
B v

(0)
C v

(0)
D

B C D

v
(1)
B

v
(1)
C v

(1)
D

F

X S
(1)
4S

(0)
1 S

(0)
2

S
(0)
4 S

(1)
1 S

(1)
2

Equilibrium yields

S
(0)
1 = S

(0)
2 = S

(0)
4 =

F

2
, S

(1)
1 = S

(1)
2 = S

(1)
4 =

X

2
.

From geometry and Hooke’s laws it follows

v
(0)
B =

Δl
(0)
1

cos 60◦
=

F 2a

EA
, v

(1)
B =

X 2a

EA
,

v
(0)
D = Δl

(0)
4 =

Fa

2EA
, v

(1)
D =

Xa

2EA
,

v
(0)
C =

1

2

(
v
(0)
B + v

(0)
D

)
=

5

4

Fa

EA
, v

(1)
C =

5

4

Xa

EA
,

Δl
(1)
3 =

Xa

EA
.

The kinematic compatibility requires the total displacement of point C
to coincide with the shortening of truss 3:

v
(0)
C − v

(1)
C = Δl

(1)
3 .

Inserting the displacements yields

X = S3 =
5

9
F

and

S1 = S
(0)
1 − S

(1)
1 =

2

9
F , S4 = S

(0)
4 − S

(1)
4 =

2

9
F .
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P2.22 Problem 2.22 The depicted truss
system (axial rigidity EA) is loaded
by the external force F and additio-
nally pinned at point C.

a) Determine the reaction force at
point C.

b) Calculate the vertical displace-
ment of point C.

Solution to a) Using equilibrium

↓ : F + S2 + S1 cosα = 0 ,

→: C + S1 sinα = 0 ,

Hooke’s laws

Δl1 =
S1l1
EA

, Δl2 =
S2l2
EA

,

and kinematics

Δl1 = Δl2 cosα

1

2

F

l 1

C

α

C

F

Δl2

C ′

S2

S1

C

Δl1
α

2yields

C =
sinα cos2 α

1 + cos3 α
F , S1 = − cos2 α

1 + cos3 α
F , S2 = − 1

1 + cos3 α
F .

to b) Knowing S2 the vertical displacement of point C follows as

vC = Δl2 =
S2l

EA
= − 1

1 + cos3 α

F l

EA
.

In contrast to the displacement diagram, in which tensile forces (elon-
gations) are assumed, compressive force occur in the system. Due to
shortening point C moves in downwards direction.

Test: α = π/2 yields S1 = 0 and S2 = −F .

α = 0 yields S1 = S2 = −F/2.
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P2.23Problem 2.23 A rigid beam is sup-
ported by three bars of elastic-ideal-
plastic material.

a) At what force F el
max and at which

location in the bars is the yield stress
σY reached at first?

b) At what force F pl
max occurs plastic

yielding in all bars of the system?

F

l/2

l/2

F

S1 S2 S3=S1

E,A, σY

Solution to a) The system is statically indeterminate. Using symmetry
equilibrium provides

2S1 + S2 = F

Kinematics is expressed by

Δl1 = Δl2 .

Until plastic yielding Hooke’s law can be used

Δl1 =
S1l

EA
, Δl2 =

S2l

2EA
.

The solution provides forces and stresses in the bars

S1 =
F

4
, S2 =

F

2
� σ1 =

F

4A
, σ2 =

F

2A
.

As the stress in bar 2 is the highest, the yield limit is reached first there
during load increase:

σ2 = σY � F el
max = 2σY A .

to b) For a load increase above F el
max bar 1 and bar 3 still respond

elastically, while bar two undergoes plastic deformation: σ2 = σY . Thus
with Si = σiA it follows from equilibrium

2σ1A+ σY A = F

� σ1 =
F

2A
− σY

2
.

F

S1=σ1A S3=σ1A
S2=σYA

All bars are undego plastic deformation if

σ1 = σY �
F

2A
− σY

2
= σY � F pl

max = 3σY A .
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P2.24 Problem 2.24 In the depicted symme-
tric system all bars are made of the
same elastic-ideal-plastic material, but
have different cross sections.

h

45◦

C F

1 2

45◦

E,A,
σY

E, 2A,
σY

a) At what force F el
max and at which

location in the bars is the yield stress
σY reached at first? Determine the
reaction force at C for this situation.

b) Determine the force F pl
max when both bars deform plastically?

c) Calculate the displacement uel
max of point C for case a)?

Solution to a) Until reaching the force F el
max the system responds

elastically. Therefore the equilibrium conditions are given by

→ :

√
2

2
S1 −

√
2

2
S2 = F , ↑ :

√
2

2
S1 +

√
2

2
S2 = C ,

together with Hooke’s law

Δl1 =
S1

√
2 h

EA
, Δl2 =

S2

√
2h

2EA

and the kinematics (bar 2 will shorten)

Δl1 = −Δl2 .

S1

C

S2

Δl2

u

Δl1

C C ′

21

F

From the above relation we obtain

S1 =

√
2

3
F , S2 = −2

√
2

3
F , C = −F

3
, Δl1 = −Δl2 =

2Fh

3EA

� σ1 =
S1

A
=

√
2

3

F

A
, σ2 =

S2

2A
= −

√
2

3

F

A
.

The absolute value of the stresses is identical in both bars. Yielding
will occur if

σ1 = |σ2| = σY � F el
max =

3

2

√
2 σY A, � Cel

max = −
√
2

2
σY A.

to b) As at F el
max plastic yielding occurs in both bars, we have

F el
max = F pl

max.

to c) Until the yield limit is reached the displacement of C is given by

u =
√
2Δl1 =

2
√
2

3

Fh

EA
, � uel

max = u(F el
max) = 2

σY

E
h .



3Chapter 3

Bending of Beams



58 Ordinary bending

Beam = straight structural element, length l large compared to
dimensions of the cross section, perpendicular loads.

l
x

z z
x

y

q(x)
F

3.1 3.1 Ordinary bending

nomenclature and assumptions:

• x = axis of cross section centroids; y, z = principal axis of the se-
cond moment of area (moment of inertia).

• kinematic assumption: plane cross sections remain plane

w = w(x) , u = z ψ(x) ,

w = displacement in z-direction,

u = displacement in x-direction,

ψ = rotation angle of cross section.

• stress resultants:

V = Vz = shear force,

M = My = bending moment. w

y, ψ
V

M

x, u

,z

Normal stress

neutral axis

z

x

σmax

zmax

σ(z) =
M

I
z

I = moment of inertia with respect to y-axis,

z = distance to neutral axis (= axis of centroids).

The largest absolute value of the stress occurs in the extreme fibre:

σmax =
M

W
, W =

I

|zmax| = section modulus.
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Shear stress

a) thin-walled, open profile

τ (s) =
V S(s)

I t(s)
,

τ(s)

s

A∗
z

t(s)

y

S(s) = static moment of A∗ with regard to
y-axis,

t(s) = thickness of profile at position s.

b) compact cross section

τ (z) =
V S(z)

I b(z)
.

special case: rectangle

τ =
3

2

Q

A

(
1− 4z2

h2

)
.

h

z

b

τ(z)

x

z

A∗

y

Note: τmax = τ (z=0) =
3

2

Q

bh
is 50% larger than τmean =

Q

bh
.

Shear center M of singly symmetrical cross sections.

moment of V with regard to 0
= moment of distributed shear
stresses with regard to 0:

rMQ =

∫
τ (s) r⊥(s) t(s) ds

Position of centriod C und shear center M for selected profiles:

V τ

rMM

ds

0

r⊥

with slit

M

C

M

C
CM=C

M

0, 273 r

M

r
r

CMC

semi circle
full circle

M=C



60 Differential equation of the deflection curve

Basic equations

equilibrium conditions
dV

dx
= −q ,

dM

dx
= V ,

Hooke’s law, kinematics M = EIψ′

V = GAS(ψ + w′) ,

EI = bending stiffness,

GAS = shear stiffness,

AS = κA = shear area (κ = shear correction factor).

Rigid with respect to shear (Bernoulli beam): If we additionally assume,
that cross sections perpendicular to the undeformed beam axis remain
perpendicular to the deflection curve during the deformation, it follows
from Hooke’s law for the shear force (GAS → ∞)

ψ = −w′ .

Differential equation of the deflection curve for the Bernoulli
beam: Inserting into Hooke’s law for M yields

EIw′′ = −M .

This leads with the equilibrium conditions to

(EIw′′)′′ = q ,

or for EI = const

EIwIV = q .

Temperature induced moment

A linearly, across the height h, varying temperature field (= tempera-
ture gradient) can be treated by a temperature moment :

MT = EIαT
Tb − Tt

h
,

z

h

Tt

Tb

x

αT = coefficient of thermal expansion.

In this case, the differential equation for the deflection curve yields

EIw′′ = −(M +MT ) .



Boundary conditions and solution methods 61

Table of boundary conditions

support w w′ M V

0 �= 0 0 �= 0

0 0 �= 0 �= 0

�= 0 �= 0 0 0

free end

�= 0 0 �= 0 0

Solution methods

1. For continuous functions of q(x) or M(x), four or two times integra-
tion of the corresponding differential equation yields the deflection
curve w(x). The four or two integration constants are obtained by
the boundary conditions (see table of boundary conditions).

2. For several regions (discontinuities in the loads, deformation, con-
centrated forces or concentrated moments), the integration has to be
performed piecewise. The integration constants are determined from
boundary and matching (continuity) conditions. The computation
can by simplified by using the Macauley bracket (see Engineering
Mechanics 1):

< x− a >n=

⎧
⎨
⎩
0 für x < a ,

(x− a)n für x > a .

3. Statically indeterminate problems can be solved by using superposi-
tion of known deflections and rotations. For this purpose, deflection
and rotations of the most frequent load cases and support situations
can be found in the table on page 62/63.

4. Statically indeterminate problems can also be solved by using the
principle of virtual forces (energy method) (see chapter 5).



62 Table of end rotations

x

lA B

l BA

l

qB

BA

x

x

a

A B
l

a

M0

A
B

F

l

q0

lA

a

x

B

lA

qA

B

x

x

b

b

q0

BA

M0

l

x F

x

no. load case EIw′
A EIw′

B

1
F l2

6
(β − β3) −F l2

6
(α− α3)

2
q0l

3

24
− q0l

3

24

3
7

360
qB l3 − 1

45
qB l3

4
M0l

6
(3β2 − 1)

M0l

6
(3α2 − 1)

5 0
Fa2

2

6 0
q0l

3

6

7 0
qAl

3

24

8 0 M0l

explanations:
ξ =

x

l
, α =

a

l
, β =

b

l
, ( )′ =̂

d

dx
( ) =

1

l

d

dξ
( ) ,
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EIw(x) EIwmax

F l3

6
[βξ(1− β2 − ξ2)+ < ξ − α >3]

F l3

48

for α = β = 1/2

q0l
4

24
(ξ − 2ξ3 + ξ4)

5

384
q0l

4

qB l4

360
(7ξ − 10ξ3 + 3ξ5) see problem 3.13

M0l
2

6
[ξ(3β2 − 1) + ξ3 − 3 < ξ − α >2]

M0l
2

27

√
3

for a = 0

F l3

6
[3ξ2α− ξ3+ < ξ − α >3]

F l3

3

for a = l

q0l
4

24
(6ξ2 − 4ξ3 + ξ4)

q0l
4

8

qAl
4

120
(10ξ2 − 10ξ3 + 5ξ4 − ξ5)

qAl
4

30

M0
x2

2
M0

l2

2

< ξ − α >n =̂ Macauley bracket



64 Biaxial bending

3.2 3.2 Biaxial bending

Mz

v
y

w
z

x

x

Vz

Vy

y

z

x

My

x = axis of centroids,

y, z = arbitrary ortho-

gonal axis.

shear forces Vy , Vz

and

bending moments My , Mz

(positive when positive right-
hand screw at positive intersec-
tion).

Differential equation of the deflection for shear rigid beams:

Ew′′ =
1

Δ
(−MyIz +MzIyz)

Ev′′ =
1

Δ
(MzIy −MyIyz)

Δ = IyIz − I2yz ,

Iy, Iz, Iyz = second order area moments.

Normal stress

σ =
1

Δ
[(MyIz −MzIyz)z − (MzIy −MyIyz)y] .

Special case: If y, z are principal axis (Iyz = 0), then

EIyw
′′ = −My , EIzv

′′ = Mz , σ =
My

Iy
z − Mz

Iz
y .



Normal stress 65

P3.1Problem 3.1 A cantilever beam with the
depicted cross section (constant wall thick-
ness t, t 
 a is subjected to a concentra-
ted force F at one end.

Determine the maximum stress in the cross
section at the support.

40a

2a

aa

F

F

2a
t

Solution The distance of the centroid ξC from the top surface is ob-
tained from the sub-areas by using t 
 a

ξC=
ΣξiAi

ΣAi
=

2

II︷ ︸︸ ︷
(2at · a)+2

III︷ ︸︸ ︷
(at · 2a)

2at︸︷︷︸
I

+2 · 2at︸︷︷︸
II

+2 · at︸︷︷︸
III

=
8a2t

8at

=a .

ξC

III

II

I

ξ

C

The second moment of area with regard to the
y-axis is computed by using the parallel-axis
theorem.

Iy =

I︷ ︸︸ ︷
a2 · 2at+2

II︷ ︸︸ ︷{
t(2a)3

12

}
+2

III︷ ︸︸ ︷{
a2 · at} =

16

3
ta3,

Thus we obtain for the section modulus

W =
Iy

zmax
=

16

3
ta3

a
=

16

3
ta2 .

a

III

IIC

z

y

a

I

The stress in the cross section at the support is calculated using the
bending moment at this position

M = −40 aF

to be

σmax =
|M |
W

=
40aF
16

3
ta2

=
30

4

F

at

(the upper fibre is in tension, the lower under compression).
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P3.2 Problem 3.2 A cantilever
beam with the sketched
cross section is loaded by
the force F at point � .

Determine the normal
stresses at point � at the
support.

2a

F

a a
2a

2a

©2

©1

©1

©2

Solution As the neutral axis is passing trough the centroids of the
cross sections, we first determine the position of the centroid:

ξC =
ΣAiξi
ΣAi

=

I︷ ︸︸ ︷
8a2 · a+2

II︷ ︸︸ ︷{
2a2 · 3a}

8a2 + 4a2
=

5

3
a .

The second moment of area with respect to the
y-axis is computed by summing up the contri-
butions of the sub-areas:

Iy =

[
4a(2a)3

12
+

(
2

3
a

)2

8a2

]
+

+2

[
a(2a)3

12
+

(
4

3
a

)2

2a2

]
=

44

3
a4 .

ξC

y
5

3
a

II

IC

ξ

II

IC

z

The following stress resultants are present in the cross section at the
support

N = −F and My = −5

3
aF .

The associated stresses are (σN due to normal force, σM due to bending
moment)

σN =
N

A
= − F

12a2
and σM =

My

Iy
z = −5

3

aFz
44

3
a4

= − 5

44

Fz

a3
.

At point � superposition with z2 = −7

3
a yields

σ = σN + σM (z2) = − F

12a2
+

5

44

F

a3

7

3
a =

2

11

F

a2
.
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P3.3Problem 3.3 The column with
a star-shaped cross section
(t 
 a) is loaded by a force F ,
applied off center.

Determine
a) the maximum absolute value
of the stress,
b) the maximal value of b such
that nowhere in the cross secti-
on tensile stresses occur.

l b

F

F

t

a/2

60◦

Solution to a) Due to the load and the
symmetry of the cross section it is convenient
to introduce the following y, z-coordinate
system. This yields

IyI =
ta3

12
.

The second moments of area for the sub-areas
II and III with respect to the y-axis are
determined by the transformation equations

Iη =
at3

12
, Iζ =

ta3

12
, Iηζ = 0 , ϕ = −30◦ .

Using t 
 a we obtain

I

III

II

z

S

η

y

−ϕ

ξ

y

z

II

IyII = IyIII =
Iη + Iζ

2
+
Iη − Iζ

2
cos 2ϕ+Iηζ sin 2ϕ =

ta3

24
− ta3

24

1

2
=

ta3

48
.

This leads to

Iy = IyI + 2IyII =
ta3

12
+ 2

ta3

48
=

ta3

8
.

Together with the stress resultants N = −F and My = −bF it follows

σ =
N

A
+

My

Iy
z = − F

3at
− 8bF

ta3
z .

The largest stress (compression) occurs at z = a/2:

σmax = −F

at

(
1

3
+ 4

b

a

)
.

to b) Tensile stress occurs first at z = −a/2:

σ(−a

2
) = 0 � − F

3at
+ 4

Fb

ta2
= 0 � b =

a

12
.
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P3.4 Problem 3.4 A column is clam-
ped at the bottom and is carrying
a vertical load Fv at the center of
the top cross section and a horizon-
tal load Fh in the middle of edge
b. The column is made of 3 layers
with different Young’s moduli.

Determine the normal stress distri-
bution in the cross section at the
clamping.

4E

l

y

h

6

h

6

h

b
zE4E

Fv

Fh

z

©2

x

©1 ©2

Solution We consider the different load cases independently.

to a) With the vertical load Fv, we obtain from

equilibrium σ1A1 + σ2A2 = −Fv ,

Hooke’s law σi = Eiεi

and geometry ε1 = ε2 = ε

the strain

z

σ1

ε

σ2

E1ε1A1 + E2ε2A2 = Eε
2

3
bh+ 4Eε

1

3
bh = −Fv � ε = − Fv

2Ebh
and the associated stresses

σ1 = − Fv

2bh
, σ2 = −2

Fv

bh
.

to b) Fh causes a moment MS = −Fhl at the support. Then geometry
(assume: cross sections remain plane)

u = ψ · z � ε = ψ′ · z ,
Hooke’s law σ(z) = E(z)ε(z)
and

σ(z)

ε(z)
z

M=
∫
σzdA = 2bψ′[E1

h/3∫
0

z2dz +E2

h/2∫
h/3

z2dz]

= 2bψ′E[
1

3
(
h

3
)3 +

4

3
((
h

2
)3 − (

h

3
)3)] =

7

27
bψ′Eh3

lead to (using M = MS)
ψ′ = −27

7

Fhl

Ebh3
.

Finally, the stresses follow as

σ1 = E1ψ
′z = E

27

7

M

Ebh3
z � σ1(

h

3
) = −9Fhl

7bh2
,

σ2 = E2ψ
′z = 4E

27

7

M

Ebh3
z � σ2(

h

2
) = −54Fhl

7bh2
.



Shear stresses 69

P3.5Problem 3.5 A wooden cantilever

can be assembled from 3 beams
(dimensions of the cross section
b = a and h = 2a) in different
ways.

What is the maximal force F for
the two variants � and � , if the
maximal allowed shear stress in the
bonding layer is given by τallow?

b

h

b

b

y

z

b
b

F

y h

z

b

h

©2©1

Solution With V = F the shear stress in the bonding layer becomes
in general (z = zl)

τ (zl) =
FS(zl)

I b(zl)
.

This yields with τ (zl) = τallow the maximal load Fmax

Fmax =
τallowI b(zl)

S(zl)
.

For variant � we obtain

I =
bh3

12
+ 2

[hb3
12

+
(h
2
+

b

2

)2
bh

]
= 10 a4 ,

b(zl) = b = a ,

S(zl) =

∫

A∗
zdA =

1

2
(h+ b)bh = 3 a3 .

1

2
(h + b)

A∗

zl

z

which leads to the force

F1max = τallow
10a4 · a
3a3

=
10

3
τallow a2 .

Analogously we obtain for variant �

I=
h(3b)3

12
=

9

2
a4 , b(zl) = h = 2a ,

S(zl)=

∫

A∗

zdA = b · bh = 2a3

zl

A∗

b

z

and the force

F2max = τallow
9a4 · 2a
2 · 2a3

=
9

2
τallow a2 .

Note: The shear stresses in the cross section at z = zl and in the
corresponding perpendicular bonding interface are equal (associated
shear stresses!).
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P3.6 Problem 3.6 Determine the shear stress
due to an applied shear resultant force
V in the depicted thin- walled I-profile.

b

h
y

zt1

V

t2

Solution The shear stresses are com-
puted from

τ =
V S(s)

I t(s)

Thus we need to determine the second
moment of area I with regard to the
y-axis. With t1 
 b and t2 
 h we
obtain

I= I1 + I2 = 2 t1b

(
h

2

)2

+ t2
h3

12

=
h2

12
(t2h+ 6t1b) =

h2

12
(A1 + 6A2) .

The static moment of sub-area A∗ for a
position s in the lower sub-area is given
by

S(s) =
h

2
t1s

(
h

2
+ z

)
/2

y

A∗

z

y

s

z
h

2
− z

and for a position z in the second sub-
area it follows

S(z)= 2

(
h

2
t1

b

2

)
+

h

2
+ z

2

(
h

2
− z

)
t2

= A1
h

2
+

t2
8
(h2 − 4z2) .
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These relations yield the shear stress in the upper sub-area

τ1(s) =
V

h

2
t1s

h2

12
(A2 + 6A1)t1

=
V

A2

A2

A1

1 +
A2

6A1

s

h

and in the second sub-area

τ2(z) =

V

[
A1

h

2
+

t2
8
(h2 − 4z2)

]

h2

12
(A2 + 6A1) t2

=
V

A2

1 +
A2

4A1

[
1−

(
2z

h

)2
]

1 +
A2

6A1

.

The maximum shear stress occurs at the center of the profile,

τ2 max = τ2(z = 0) =
V

A2

1 +
A2

4A1

1 +
A2

6A1

,

τ

τ1 max

τ2 maxit depends on the area ratio A2/A1.
The maximum shear stress in the first
sub-area is given by

τ1 max = τG(s = b/2) =
V

A2

A2

A1

1 +
A2

6A1

b

2h
.

For example A1 = A2 and b = h yields τ2 max =
15

14

V

A2
at the center

and τ1 max =
6

14

V

A2
. For this situation the smallest value in the vertical

sub-area

τ2 min = τ2(z = h/2) =
V

A2

1

1 +
A2

6A1

=
12

14

V

A2
,

is only 20% smaller than τ2 max. As a rough estimate we can use the
average shear stress τave = V/A2 in the central sub-area.



72 Stresses

P3.7 Problem 3.7 A composite beam
consists of an upper concrete slab
and a steel I beam. The structure
is loaded by a bending moment M .

Given : M = 1000 kNm

EC= 3.5 · 104 N/mm2

ES= 2.1 · 105 N/mm2

h = 40 cm

AS= h2 / 6

IS = h4 / 18

h

M

b

2h

h

a) Determine the width b of the
concrete slab, such that compres-
sive stresses occur only in the
concrete part, while the tension is
present in the steel part.

b) For this case compute the
stresses in the extreme fibres of the
two materials.

Solution to a) For the case
that compression occurs only in
the concrete and tension only in
the steel sub-area the strain in
the bonding layer has do be zero
(=neutral fibre). With the chosen
coordinate system we have

ε = az ,

where a is not yet determined. The
stresses in steel and concrete are

z
y

zC

CS

CC

zS

σS = ES ε = aES z , σC = EC ε = aEC z .

As the beam is loaded only by a bending moment, the normal force N
has to vanish:

N =

∫

AS

σS dA+

∫

AC

σC dA = 0 � ES

∫

AS

z dA+ EC

∫

AC

z dA = 0 .

With

∫

AS

z dA = zSAS = h
h2

6
=

h3

6
,

∫

AC

z dA = zCAC = − h

2
hb = − h2b

2
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and ES/EC = 6 the required width b is obtained:

6
h3

6
− h2b

2
= 0 � b = 2h = 80 cm .

to b) The unknown factor a follows from the prescribed bending mo-
ment.

From the definitions

M =

∫

AS

z σS dA+

∫

AC

z σC dA = aES

∫

AS

z2dA+ aEC

∫

AC

z2dA .

and the evaluation of the integrals

∫

AS

z2dA= IS + h2AS =
h4

18
+

h4

6
=

2

9
h4

∫

AC

z2dA=
bh3

3
=

2

3
h4

it follows

M =
ah4EC

9

[
2
ES

EC
+ 6

]
= 2ah4EC � a =

M

2h4EC
.

With this result the stresses in the steel and concrete are

σS =
ESM

2ECh4
z = 3

M

h4
z , σC =

M

2h4
z .

For the top extreme fibre in concrete (zt = −h) and the bottom extrem
fibre in steel (zb = 2h) we obtain

σt
C= − M

2h3
= −7.8125 N/mm2 ,

σb
S= 6

M

h3
= 93.75 N/mm2 ,

−7.8125N/mm2

93.75N/mm2
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P3.8 Problem 3.8 Determine the shear
stresses due to a shear force V
for the depicted thin-walled beam
cross section (t 
 a).

V

t

t
2a

C
y

z

a t

2a

Solution At first we compute the cross section area, the location of
the centroid and the second moment of area:

A = 4at+ 2 · 2at+ 2at = 10 at ,

bA = 2a · 2at+ 2a · 2at � b =
4

5
a ,

Iȳ = (2a)22at+ 2
t(2a)3

3
=

40

3
ta3 ,

I = Iy = Iȳ − b2A =
104

15
ta3 .

s3

yb

s1

s2

ȳ

z
II

C

III

I

Due to symmetry of the cross section the
shear stress is symmetric to the z-axis.
Thus only half of the cross section has to be considered. With the
coordinantes s1 to s3 we obtain for the static moments in the sub-areas
I to III

SI = b s1t =
4

5
at s1 ,

SII = b 2at+

(
s2 +

b− s2
2

)
(b− s2) t =

48

25
a2t− 1

2
t s22 ,

SIII = (2a− b)t s3 =
6

5
at s3 .

These relations result in the shear stresses

τI =
QSI

I t
=

3

26

Q

at

s1
a

,

τII =
QSII

I t
=

Q

at

(
18

65
− 15

208

s22
a2

)
,

τIII =
QSIII

I t
=

9

52

Q

at

s3
a

.
τIII

3
26
Q/at

9
52
Q/at

τII

τI

τ

18
65
Q/at

3
13
Q/at
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P3.9Problem 3.9 Locate the shear center
for the depicted thin-walled (t 
 b, h)
box profile with a slit.

h

b

t

Solution We start by computing the
static moments with respect to the
y-axis of the three sub-areas:

SI = t
s21
2

, SII = t
h2

8
+

h

2
ts2 ,

SIII = t
h2

8
+

h

2
bt+ s3t

(
h

2
− s3

2

)
.

Thus the shear stresses become

τI =
Q

I

s21
2

,

τII =
Q

I

(
h2

8
+

h

2
s2

)
,

τIII =
Q

I

(
h2

8
+

h

2
b+

s3
2
(h− s3)

)
.

s2

y

Q

M

IIII

s3 II

τI

τI

τII

0
rM

τIII

s1

τII
The equivalency of moments with re-
spect to 0 provides

Q rM= 2

∫ h/2

0

τIbt ds1 + 2

∫ b

0

τII
h

2
t ds2 =

Qt

I

(
b
h3

24
+

1

8
bh3 +

1

4
h2b2

)

=
Qtbh2

I

(
1

6
h+

1

4
b

)
.

With the second moment of area for the thin-walled profile

I = 2
[ th3

12
+ bt

(h
2

)2]
= th2

(
h

6
+

b

2

)

we obtain the distance rM of the shear center M to the reference point 0

rM =
tbh2

th2

1

6
h+

1

4
b

1

6
h+

1

2
b
= b

2h+ 3b

2h+ 6b
.
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P3.10 Problem 3.10 The cantilever
with thin-walled box cross
section is loaded by two ben-
ding moments My = F l and
Mz = 2F l.

Determine the distribution of
the normal stresses in the
cross section for b = 2h.

Mz

h

b

x

My

t
t � b, h

l

Solution Because of symmetry y and z are principal axes. The stress
distribution is computed from

y

z

σ =
My

Iy
z − Mz

Iz
y .

With

Iy = 2 · th
3

12
+ 2 ·

(h
2

)2

tb =
1

6
th2(h+ 3b) ,

Iz = 2 · tb
3

12
+ 2 ·

( b

2

)2

ht =
1

6
tb2(b+ 3h)

and the given bending moments we find

σ =
F l

1

6
th2 · 7h

z − 2F l
1

6
t 4h2 · 5h

y =
6F l

th3

(z

7
− y

10

)
.

The equation of the neutral axis (line of
zero stress) is computed from σ = 0

z =
7

10
y .

36

35

Fl

th2

σ

neutral axis

y
z

To clarify the representation the stresses
due to the two loading cases are depicted seperately:

21

35

Fl

th2due to Mz

σ

15

35

Fl

th2

due to My
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P3.11Problem 3.11 A beam, simply
supported at both ends, with a
thin-walled profile (t 
 b) is loa-
ded by a force F in the middle.

Determine the stress distributi-
on under the load as well as the
location and value of the maxi-
mum stress.

F

z

2b
S

y

b

t

b

l

2
F

Solution For the unsymmetrical profile the principal axes are not
known. We have to use the equations for biaxial bending. Thus we
obtain for the stresses with Mz = 0

σ =
My

Δ
(Izz + Iyzy) .

The moment due to the load is given by

My = Mmax =
F l

4
.

Together with the geometric quantities of the cross section

Iy =
t(2b)3

12
+ 2 · b2(bt) = 8

3
tb3 , Iz = 2

[ tb3
12

+
( b
2

)2
bt
]
=

2

3
t b3 ,

Iyz = −2 · b · b
2
· bt = −tb3 ,

Δ = IyIz − I2yz =
16

9
t2b6 − t2b6 =

7

9
t2b6

we obtain the stress

σ =
F l

4 · 7
9
t2b6

(
2

3
t b3z − t b3y

)
=

3

28

F l

t b3
(2z − 3y) .

The neutral axis follows from the condition

σ = 0 � z =
3

2
y .

compression

axis
neutral

z

3

2

tension
y

S
The maximal stresses occur at points
with the largest distance to the neutral
axis (y = 0, z = ±b):

σmax = ± 3

14

F l

t b2
.
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P3.12 Problem 3.12 A cantilever beam
with thin-walled profile (t 
 a) is
subjected to a constant line load q0
and a concentrated force F .

Determine the distribution of the nor-
mal stress in the cross section at the
support.

Given: F = 2q0l.

q0

ξC

l
F

z

y C

a
t

aSolution We place a y, z-coordinate system at
the not yet known centroid. By symmetry to
the 45◦-axis the distance ξC to both sub-areas
is identical. As the static moment vanishes with
regard to the symmetry axis, we have

ξC at =
(a

2
− ξC

)
a t � ξC =

a

4
.

With regard to the symmetry axis we find

Iy = Iz =
ta3

12
+

(a
4

)2
a t+

(a
4

)2
a t =

5

24
ta3 ,

Iyz = −a

4

a

4
a t− (−a

4

)(−a

4

)
a t = −1

8
ta3 .

This yields

Δ = IyIz − I2yz =
( 5

24

)2
t2a6 − 1

64
t2a6 =

1

36
t2a6 .

The internal moments at the support are given by

My = − q0l
2

2
and Mz = F l = +2q0l

2 .

Finally we obtain for the stress

σ =
1

Δ
{[MyIz −MzIyz] z − [MzIy −MyIyz] y}

=
36

t2a6

{[
− q0l

2

2

5

24
ta3 − 2q0l

2

(
− ta3

8

)]
z

−
[
2q0l

2 5

24
ta3 +

q0l
2

2

(
− ta3

8

)]
y

}

=
3

4

q0l
2

ta3
(7z − 17y) .
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Alternatively we can describe the stress distribution with respect to
the principal axes y∗, z∗, which we know from symmetry considerati-
ons. The principal values of the second moments of area follow with
Iy = Iz and ϕ = 45◦

I∗y =
Iy + Iz

2
+ Iyz =

5

24
ta3 − 1

8
ta3 =

1

12
ta3 ,

I∗z =
Iy + Iz

2
− Iyz =

5

24
ta3 +

1

8
ta3 =

1

3
ta3 .

Decomposition of the loading in the principal directions yields

M∗
y = − q0l

2

2
cosϕ+ F l sinϕ

= q0l
2

(
2− 1

2

)
1

2

√
2 ,

M∗
z =

q0l
2

2
sinϕ+ F l cosϕ

= q0l
2

(
1

2
+ 2

)
1

2

√
2 ,

My

Mz

ϕ =
π

4

z

y C

y∗ z∗

which leads to the stresses in the principal directions

σ =
M∗

y

I∗y
z∗ − M∗

z

I∗z
y∗ =

3
√
2

4

q0l
2

ta3
(12z∗ − 5y∗) .

To check the result we transform with

z∗=−y sinϕ+ z cosϕ = (z − y)
1

2

√
2 ,

y∗=y cosϕ+ z sinϕ = (z + y)
1

2

√
2

back and find by re-substitution

σ =
3

4

q0l
2

ta3
[12(z − y)− 5(z + y)] =

3

4

q0l
2

ta3
(7z − 17y) .

z

y
tension

neutral axis

compressionThe neutral axis satisfies the equation

z =
17

7
y .
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P3.13 Problem 3.13 The beam is simply suppor-
ted at both ends. Determine
a) location and value of maximal moment,
b) location and value of maximal deflection,
c) the slope of the deflection curve at both
supports.

q0

l
EI

x

Solution Bending moment and deflection curve can be computed in-
dependently, because the beam is statically determinate.

to a) The given loading provides

q = q0
x

l

by twice integration

V = −q0
x2

2l
+ C1 ,

M = −q0
x3

6l
+ C1x+ C2 .

With the static boundary conditions

M(0) = 0 � C2 = 0 , M(l) = 0 � C1 =
q0l

6

we obtain

V =
q0l

6

[
1− 3

(x
l

)2]
, M =

q0l
2

6

[x
l
− (x

l

)3]
.

Location and value of the maximal moment are determined by the con-
dition M ′ = 0 :

M ′ = V = 0 � 1− 3
(x∗

l

)2
= 0 � x∗ =

1

3

√
3 l = 0, 577 l ,

Mmax = M(x∗) =
1

18

√
3 q0l

2(1− 1

3

)
=

1

27

√
3 q0l

2 .

to b) With the known function of the moment

M =
q0l

2

6

[
x

l
−

(x

l

)3
]

we derive from EI w′′ = −M by twice integration

EI w′= − q0l
2

6

(x2

2l
− 1

4

x4

l3

)
+ C3 ,

EI w = − q0l
2

6

(x3

6l
− 1

20

x5

l3

)
+ C3x+C4 .
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The new integration constants are determined from the geometric boun-
dary conditions

w(0) = 0 � C4 = 0 ,

w(l) = 0 � C3 =
q0l

3

6

(
1

6
− 1

20

)
=

7

360
q0l

3 .

Finally we obtain (cf. table on page 62, load case no. 3)

EI w =
q0l

4

360

[
7
x

l
− 10

(x

l

)3

+ 3
(x

l

)5
]
.

The maximal deflection is computed by using the condition w′ = 0 :

EI w′ = 0 � 7− 30

(
x∗∗

l

)2

+ 15

(
x∗∗

l

)4

= 0

�

(
x∗∗

l

)4

− 2

(
x∗∗

l

)2

+
7

15
= 0 ,

� x∗∗ =

√
1(+)−

√
8

15
l = 0, 519 l .

(The (+)-sign provides an x-value outside of the range of validity.) Thus
we have

wmax = w(x∗∗)=
q0l

4

360EI

√
1−

√
8

15

[
7−10

(
1−

√
8

15

)
+ 3

(
1−

√
8

15

)2]

= 0, 0065
q0l

4

EI
.

to c) The slope of the deflection curve follows as

w′(0) =
C3

EI
=

7

360

q0l
3

EI
,

w′(l) = − q0l
2

6EI

(
l

2
− l

4

)
+

7

360

q0l
3

EI
= − 8

360

q0l
3

EI
.

Note: Maximal moment and maximal deflection occur at different
locations: x∗ �= x∗∗.
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P3.14 Problem 3.14 Determine the func-
tion of the bending moment for the
depicted beam.

q0

EI

x

l

Solution The beam is statically indeterminate. Thus the function of
the moment needs to be computed with help of the deflection curve.
From the differential equation we derive by integration

EI wIV = q = q0 ,

−EI w′′′ = Q = −q0x+ C1 ,

−EI w′′ = M = −q0
x2

2
+ C1x+ C2 ,

EI w′ = q0
x3

6
− C1

x2

2
− C2x+ C3 ,

EI w = q0
x4

24
− C1

x3

6
− C2

x2

2
+C3x+ C4 .

The 4 integration constants follow from the 4 geometric boundary con-
ditions:

w′(0) = 0 � C3 = 0 ,

w(0) = 0 � C4 = 0 ,

w′(l) = 0 �
q0l

3

6
− C1

l2

2
− C2l = 0

w(l) = 0 �
q0l

4

24
− C1

l3

6
− C2

l2

2
= 0

⎫
⎪⎪⎬
⎪⎪⎭

�

C1 =
q0l

2

C2 = − q0l
2

12
.

This yields

M = − q0l
2

12

[
1− 6

x

l
+ 6

(x

l

)2
]
.

M q0l
2

24

q0l
2

12

l

q0l
2

12 x

l√
12



by integration 83

P3.15Problem 3.15 Determine the deflec-
tion of the depicted beam. The left
end of the beam is elastically sup-
ported by a spring, the right end is
clamped, and the load has the shape
of a quadratic parabola.

l

x q0

EIc

Solution We start by computing the quadratic equation for the line
load. From the general equation q = A+Bx+ Cx2 and

q(0) = 0 � A = 0 ,

q(l) = 0 � Bl +Cl2 = 0 ,

q(
l

2
) = q0 � B

l

2
+ C

l2

4
= q0 ,

⎫⎬
⎭ � C = −B

l
, B = 4

q0
l

it follows q(x) = 4q0
[x
l
− (

x

l
)2
]
.

Four times integration of EI wIV = q yields

−EI w′′′ = V = −4q0
(x2

2l
− x3

3l2

)
+C1 ,

−EI w′′ =M = −4q0
(x3

6l
− x4

12l2

)
+ C1x+ C2 ,

EI w′=4q0
( x4

24l
− x5

60l2

)
− C1

x2

2
− C2x+C3 ,

EI w=4q0
( x5

120l
− x6

360l2

)
− C1

x3

6
−C2

x2

2
+ C3x+C4 .

The boundary conditions provide

M(0) = 0 � C2 = 0 ,

V (0)= c · w(0) � C1 = c
C4

EI
,

w′(l)= 0 �
q0l

3

10
− C1

l2

2
+C3 = 0 ,

w(l)= 0 �
q0l

4

45
− C1

l3

6
+C3l + C4 = 0 .

The 3 equations for C1, C3, and C4 yield with the abbreviation
Δ = 1 + cl3/3EI

C1 =
7

90

c

Δ

q0l
4

EI
, C3 = − q0l

3

10Δ

(
1− 1

18

cl3

EI

)
, C4 =

7

90

q0l
4

Δ

which leads to the final result

w =
q0l

4

10EI

[
1

3

(x
l

)5− 1

9

(x
l

)6− 7

54

cl3

ΔEI

(x
l

)3−
(
1− 1

18

cl3

EI

) 1

Δ

(x
l

)
+

7

9Δ

]
.
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P3.16 Problem 3.16 A cantilever beam is
subjected to a constant distributed
load q0.

Determine the deflection at the free
end.

q0

2a

x1 x2

EI

a

Solution We solve the problem in two different ways.
1st solution: Due to the discontinuity of q(x) we have to consider two
domains:

0 ≤ x1 < 2a q1 = 0 ,

V1 = C1 ,

M1 = C1x1 + C2 ,

EI w′
1 = −C1

x2
1

2
−C2x1 + C3 ,

EI w1 = −C1
x3
1

6
−C2

x2
1

2
+ C3x1 + C4 ,

0 < x2 ≤ a q2 = q0 ,

V2 = −q0x2 + C5 ,

M2 = −q0
x2
2

2
+ C5x2 +C6 ,

EI w′
2 = q0

x3
2

6
− C5

x2
2

2
− C6x2 + C7 ,

EI w2 = q0
x4
2

24
− C5

x3
2

6
− C6

x2
2

2
+ C7x2 + C8 .

The 8 integration constants Ci follow from:

4 boun−
dary
conditons

⎧⎨
⎩
w′

1(0) = 0 � C3 = 0 , w1(0) = 0 � C4 = 0 ,

Q2(a) = 0 � C5 = q0a , M2(a) = 0 � C6 = − q0a
2

2

and 4
contin−
uity
condi−
tions

⎧
⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

M1(2a) = M2(0) �C12a +C2 = C6 ,

w′
1(2a) = w′

2(0) � −C1
(2a)2

2
− C22a+ C3 = C7 ,

w1(2a) = w2(0) = 0 � −C1
(2a)3

6
− C2

(2a)2

2

+C32a+ C4 = C8 = 0

� C1 = −3

8
q0a , C2 =

1

4
q0a

2 , C7 =
1

4
q0a

3 , C8 = 0 .

(For the shear force no continuity condition is available because it expe-
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riences a jump related to the unknown reaction force B). The deflection
at the free end yields

w2(a) =
q0
EI

{
a4

24
− a4

6
+

a4

4
+

a4

4

}
=

3

8

q0a
4

EI
.

2nd solution: Using the Macauley bracket we can describe both do-
mains by a single equation. We introduce x from the left end and have
to consider the jump in the shear resultant at B (assumed to be positive
in upward direction):

q = q0 <x− 2a>0 ,

V = −q0 <x− 2a>1 +B <x− 2a>0 +C1 ,

M = −1

2
q0 <x− 2a>2 +B <x− 2a>1 +C1x+C2 ,

EI w′ =
1

6
q0 <x− 2a>3 −1

2
B <x− 2a>2 −1

2
C1x

2 − C2x+ C3 ,

EI w =
1

24
q0 <x− 2a>4−1

6
B <x− 2a>3−1

6
C1x

3− 1

2
C2x

2+ C3x+ C4.

The 5 unknowns Ci and B follow from

4 boun−
dary condi−
tions and

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

w′(0) = 0 � C3 = 0 ,

w(0) = 0 � C4 = 0 ,

Q(3a) = 0 � −q0a+B + C1 = 0 ,

M(3a) = 0 � −q0
a2

2
+Ba+ C13a+ C2 = 0

1 reaction
condition

{
w(2a) = 0 � −C1

(2a)3

6
− C2

(2a)2

2
+ C32a+ C4 = 0 .

Solving yields:

C1 = −3

8
q0a , C2 =

1

4
q0a

2 , C3 = 0 , C4 = 0 , B =
11

8
q0a .

Thus the deflection at the free end is given by

w(3a) =
q0
EI

[
a4

24
− 11

8
a
a3

6
+

3

8
a
(3a)3

6
− 1

4
a2 (3a)

2

2

]
=

3

8

q0a
4

EI
.

Note: The computation of displacements at designated locations is less
complex with methods discussed in chapter 5.
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P3.17 Problem 3.17 The depicted beam
is loaded on its cantilever part by
a constant line load.

Compute the deflection at the hin-
ge and determine the slope diffe-
rence at the hinge.

q0

EI

a
2

a
2

A

a

x

Solution With the help of the Macauley bracket the entire domain can
be descibed by a single equation. During integration the jump in the
slope Δϕ at the hinge has to be considered separately.

q = q0 − q0 < x− a

2
>0 ,

V = −q0x+ q0 < x− a

2
>1 +A < x− a

2
>0 +C1 ,

M = −q0
x2

2
+

q0
2

< x− a

2
>2 +A < x− a

2
>1 +C1x+ C2 ,

EI w′ = q0
x3

6
− q0

6
< x− a

2
>3 −A

2
< x− a

2
>2 −C1

x2

2
−C2x

+EIΔϕ < x− a >0 +C3 ,

EI w = q0
x4

24
− q0

24
< x− a

2
>4 −A

6
< x− a

2
>3 −C1

x3

6
−C2

x2

2

+EIΔϕ < x− a >1 +C3x+ C4 .

The 4 integration constants Ci, the unknown reaction force A, and the
slope difference Δϕ at the hinge are determined from the following 6
conditions

V (0) = 0 � C1 = 0 , M(0) = 0 � C2 = 0 ,

M(a) = 0 � A =
3

4
q0a , w(

a

2
) = 0 �

1

384
q0a

4 + C3
a

2
+ C4 = 0 ,

w′(2a) = 0 �
4

3
q0a

3 − 27

48
q0a

3 − 27

32
q0a

3 +EIΔϕ+ C3 = 0 ,

w(2a) = 0 �
2

3
q0a

4 − 81

384
q0a

4 − 81

192
q0a

4 + EIΔϕa+ C32a+ C4 = 0.

This yields the solution

C3 = − 5

24
q0a

3 , C4 =
39

384
q0a

4 , EIΔϕ =
9

32
q0a

3 .

Thus we obtain for the deflection at the hinge

wH = w(a) = − 1

12

q0a
4

EI

and for the slope difference
wH

Δϕ

Δϕ =
9

32

q0a
3

EI
.
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P3.18Problem 3.18 A leaf spring with
constant thickness t and variable
width b = b0l/(l + x) is fixed at
one side and loaded at one edge
by F .

Determine the deflection at the
position of the load. F

b
t

E

l

x
b0

Solution The system is statically determinate. Hence the function of
the moment follows from equilibrium considerations:

V = F = const , M = Fx+C .

The condition M(l) = 0 yields C = −F l and thus

M = −F (l − x) .

Use of the differential equation EI w′′ = −M yields with

I(x) = b(x)
t3

12
=

b0t
3

12

l

l + x

and the abbreviation I0 = b0t
3/12 :

w′′ =
F (l − x)(l + x)

EI0l
=

F

EI0l
(l2 − x2) .

By integration we obtain

w′ =
F

EI0l

(
l2x− x3

3
+ C1

)
,

w =
F

EI0l

(
l2
x2

2
− x4

12
+ C1x+ C2

)
.

The boundary conditions

w′(0) = 0 � C1 = 0 , w(0) = 0 � C2 = 0

render the solution

w(l) = wmax =
5

12

F l3

EI0
.

Note: For a beam with constant width b0 the same load results in a
smaller deflection

w(l) =
F l3

3EI0
=

4

12

F l3

EI0
.
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P3.19 Problem 3.19 A cantilever beam with
rectangular cross section (width b,
height h(x)) is subjected to a linear va-
rying load such that the extreme fibre
experiences a stress σ0.

Determine the deflection of the left end.

E
l

x

q0

Solution First we have to compute the unknown cross section height.
Using

σmax =
|M |
W

= σ0

together with

M = − q0x
3

6l
, I =

b h3(x)

12
, W (x) =

I

h/2
=

b h2(x)

6

yields h(x)

h(x) =

√
q0
σ0bl

x3/2 .

This leads to

I(x) =
q0

12σ0l

√
q0
bσ0l

x9/2 .

Integration of EI w′′ = −M provides together with the boundary con-
ditions w′(l) = w(l) = 0 :

w′′ = − M

EI
=

q0x
312σ0l

6lEq0

√
bσ0l

q0
x−9/2 = 2

σ0

E

√
bσ0l

q0
x−3/2 ,

w′ = 2
σ0

E

√
bσ0l

q0

(
−2x−1/2 + 2l−1/2

)
,

w = 2
σ0

E

√
bσ0l

q0

(
−4x1/2 + 2l−1/2x+ 2l1/2

)
.

Evaluation at x = 0 yields the deflection at the left end

w(0) = 4
σ0

E

√
bσ0l2

q0
.

As a test we check the physical dimensions (F =̂force, L=̂length):

[w] =
FL−2

FL−2

√
LFL−2L2

FL−1
= L .
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P3.20Problem 3.20 The depicted beam is
assembled from two parts with diffe-
rent bending stiffness.

Determine the deflection at the free
end. l

II

F

l

2EI EI

I

Solution We use superposition together with the tabulated results on
page 62. First we assume that beam II is fixed at point B and compute
the defection wII . To this we have to add the deflection wI of the left
beam I due to F and M = F l. Finally we have to consider the slope
w′

I , that appears at the left beam. This slop has to be multiplied by
the length l and added as an additional deflection at the right end:

w′
I

F
BI II F lI B

F

wI

f
B

F
II

wII

f = wII + wI + w′
I l = wII + (wIF

+ wIM
) + (w′

IF
+w′

IM
)l .

According to load case no. 5

wII =
F l3

3EI
, wIF

=
F l3

3(2EI)
, w′

IF
=

F l2

2(2EI)

and load case no. 8

wIM
=

(F l)l2

2(2EI)
, w′

IM
=

(F l)l

(2EI)
.

superposition yields the deflection at the end

f =
F l3

3EI

{
1 +

1

2
+

3

4
+

3

4
+

3

2

}
=

3

2

F l3

EI
.
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P3.21 Problem 3.21 Determine the
deflection curve for the depic-
ted beam.

q0

l
EI

A

Solution The beam is statically indeterminate. We free the support
moment at the left end and introduce the unknown moment X:

q0
X=MA

q0

w′
q w′

X

From the table on page 62 we obtain for the slope:

load case no. 2 w′
q =

q0l
3

24EI
,

load case no. 4 (with β = 1) w′
X =

Xl

3EI
.

The total slope at the left support has to vanish. Thus compatibility
provides

w′
q + w′

X = 0 � X = MA = −1

8
q0l

2 .

Superposition of the deflection curves in table on page 62 yields the
deflection curve of the system

EI w = EI(wq + wX)

=
q0l

4

24
(ξ − 2ξ3 + ξ4)− 1

8
q0l

2 l
2

6
(2ξ + ξ3 − 3ξ2)

=
q0l

4

48
(3ξ2 − 5ξ3 + 2ξ4) .
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P3.22Problem 3.22 A pole is clamped at
A and supported at B by an elastic
rope. The pole is subjected to a ho-
rizontal linearily varying load.

Compute the horizontal displace-

ment v at point C for
EI

a2EA
=

1

3
. 2a

B

C

A

EA

EI
a

q0

a

Solution We disconnect rope and pole:

vq

wq

vX

wXX
X

Δa

Compatibility at the connection of the rope requires

wq − wX = Δa , where Δa =
Xa

EA
(see chapter 2) .

With the table on page 62 we obtain:

load case no. 7 wq =
q0(2a)

4

30EI
=

8

15

q0a
4

EI
,

load case no. 5 wX =
X(2a)3

3EI
=

8

3

Xa3

EI
.

Using these values in the compatibility condition provides

8

15

q0a
4

EI
− 8

3

Xa3

EI
=

Xa

EA
� X =

1

5
q0a

1 +
3

8

EI

a2EA

=
8

45
q0a .

The displacement v results from superposition (for the linear varying
load we have to consider the displacement wq and the slope w′

q : vq =
wq + w′

qa):

EI v = EI(vq + vX ) =
q0(2a)

4

30
+

q0(2a)
3

24
a− X(3a)3

6

[
3 · 2

3
− 1 +

(
1

3

)3
]

︸ ︷︷ ︸
load case no. 5 with α = 2/3

=
13

15
q0a

4 − 14

3
Xa3 =

q0a
4

27
.
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P3.23 Problem 3.23 Two parallel beams
(bending stiffness EI , length a) ha-
ve a distance of l and are clamped
at the left support. An elastic bar
(axial rigidity EA) of length l + δ
is force fitted at a/2 between the
two beams.

a) Determine the force in the bar?

b) Compute the change e by which
the distance l at the beam ends is
changed.

ll + δ δ � l

a/2a/2

Solution to a) From geometry (compatibility)

l + 2wX = (l + δ)−Δl

� 2wX +Δl = δ

we obtain (see table on page 62,
load case no. 5)

wX =
X

(a

2

)3

3EI
und Δl =

Xl

EA

and the force in the bar (compression)

wX

X

X

fX
X

X

Δl
w′

X

S = X =
δ

l

EA
+

a3

12EI

= δ
EA

l

1

1 +
a3EA

12 l EI

.

to b) The opening e is computed with help of the table on page 62
from load case no. 5

e = 2 fX = 2
Xa3

6 EI

[
3 · 1 · 1

2
− 1 +

(
1

2

)3
]
=

5

24

a3EA

l EI

δ

1 +
a3EA

12 l EI

.

Note: In the limit case EI → ∞ one obtains S = δ
EA

l
and

e = 0.
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P3.24Problem 3.24 Compute the
reaction forces for the depic-
ted beam.

l/2 l/2

q0

EI

Solution The system is twice statically indeterminate. We treat the
support moment MA = X1 and the reaction force B = X2 as static
redundant quantities and use superposition:

q0
X1

A B C w′
q wq w′

1 w1

w′
2

w2

X2

q0

Considering the (arbitrary chosen) directions yields for the compatibi-
lity

w′
q + w′

1 − w′
2 = 0 ,

wq + w1 − w2 = 0 .

From the table on page 62 (no. 2, 4 and 1) we obtain

q0l
3

24
+

X1l

3
− X2l

2

16
= 0 ,

5

384
q0l

4 +
1

16
X1l

2 − X2l
3

48
= 0 ,

which yields

X1 = − 1

56
q0l

2 , X2 =
4

7
q0l .

The support reactions are determined by superposition of the 3 load
cases

A =
q0
2

− X1

l
− X2

2
=

13

56
q0l ,

B = X2 =
4

7
q0l ,

C =
q0l

2
+

X1

l
− X2

2
=

11

56
q0l ,

MA = X1 = − 1

56
q0l

2 .
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P3.25 Problem 3.25 Determine the
deflection curve for the depic-
ted beam subjected to a tra-
pezoidal load.

q1
q0

l
EIA B

Solution The beam is statically indeterminate. We choose B as the
static redundant quantity and use superposition of 3 load cases (the
trapezoidal load is replaced by an equivalent constant and linearly va-
rying load)

B

q1 q1 − q0

x

The table on page 62 (load case no. 6, 7 and 5) provides

EI w(x) =
q1l

4

24
(6ξ2 − 4ξ3 + ξ4)

− (q1 − q0)l
4

120
(10ξ2 − 10ξ3 + 5ξ4 − ξ5)− Bl3

6
(3ξ2 − ξ3) .

The support condition at B yields the reaction force B

w(l) = 0 � B =
3

8
q1l − (q1 − q0)l

10
.

By recasting the above equations

q1l
4

24
=

(q1 − q0)l
4

24
+

q0l
4

24

we determine the deflection curve

EI w(x) =
q0l

4

24

{
ξ4 − 5

2
ξ3 +

3

2
ξ2
}

+
(q1 − q0)l

4

120

{
ξ5 − 9

2
ξ3 +

7

2
ξ2
}
.



Superposition 95

P3.26Problem 3.26 For the beam with two
domains determine the support reacti-
ons and the deflection at the center of
each domain.

Given: F = 2q0l.

l

2

EI BA C

F

l l

q0

Solution We divide the beam into 2 separate (hinged at both ends)
beams and introduce the moment at the central support as statically
redundant quantity:

A(0)

F

B
(0)
2 A(1)

w
′ (1)
1

X

C(1)B
(1)
2

w
′ (1)
2

w
′ (0)
1 w

′ (0)
2

C(0) B
(1)
1B

(0)
1

Equilibrium yields

A(0) = B
(0)
1 =

1

2
q0l , B

(0)
2 = C(0) =

F

2
,

A(1) = C(1) = −B
(1)
1 = −B

(1)
2 =

X

l
.

The table on page 62 provides

w
′ (0)
1 = − q0l

3

24EI
, w

′ (0)
2 =

F l2

16EI
, w

′ (1)
1 = −w

′ (1)
2 = − Xl

3EI
.

Compatibility can be formulated as

w
′ (0)
1 + w

′ (1)
1 = w

′ (0)
2 + w

′ (1)
2

which yields together with the tabulated results

X = − 1

16
q0l

2 − 3

32
F l = −1

4
q0l

2 = MB .

The support reactions are computed by superposition

A = A(0) +A(1) =
1

2
q0l − 1

4
q0l =

1

4
q0l ,

B = B
(0)
1 +B

(1)
1 +B

(0)
2 +B

(1)
2 = 2q0l ,

C = C(0) + C(1) =
F

2
− 1

4
q0l =

3

4
q0l .

For the deflections at the center of the domains we compute

f1 = f
(0)
1 + f

(1)
1 =

5

384

q0l
4

EI
+

Xl2

6EI

(
1

2
− 1

8

)
= − q0l

4

384 EI
,

f2 = f
(0)
2 + f

(1)
2 =

F l3

48 EI
+

Xl2

6 EI

(
1

2
− 1

8

)
=

5 q0l
4

192 EI
.
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P3.27 Problem 3.27 A beam (rectangular cross
section, width b, height h) that is clam-
ped at both ends is subjected along its
length l to a constant temperature diffe-
rence Tt − Tb.

Determine the defection of the beam and the maximum stresses.

A Tb

Tt

l

x B

Solution The beam is twice statically indeterimante. We choose as
statically redundant quantities the reaction moment X1 = MB and the
reaction force X2 = B. We use superpostion of the three (statically
determinate) systems:

w
(1)
B

“0”-System “1”-System “2”-System

w
(0)
B

B

w
′ (0)
B

MB

w
′ (1)
B w

′ (2)
B

w
(2)
B

The deflection in the “0”-System is computed by the temperature mo-
ment

MΔT = EIαT (Tb − Tt)/h

using the differential equation w′′ (0) = −MΔT /EI and considering the
boundary conditions w(0)(0) = 0, w′ (0)(0) = 0:

w′ (0)(x) = −MΔT

EI
x , w(0)(x) = −MΔT

EI

x2

2
.

Due to the clamping at B compatibility requires

wB = w
(0)
B + w

(1)
B + w

(2)
B = 0 , w′

B = w
′ (0)
B +w

′ (1)
B + w

′ (2)
B = 0 .

From the table on page 62 we obtain

−MΔT

EI
l − MB l

EI
− Bl2

2EI
= 0 , −MΔT

EI

l2

2
− MB l2

2EI
− Bl3

3EI
= 0 ,

with the solution

B = 0 , MB = −MΔT .

As MB = M is constant along the entire length of the beam the deflec-
tion becomes

w′′ = −M +MΔT

EI
= 0 i. e. w ≡ 0 .

The maximum stress is computed with the section modulus W = bh2/6

|σmax| = |M |
W

= 6
MΔT

bh2
.



Frame 97

P3.28Problem 3.28 Determine the
support reactions for the de-
picted frame.

q0

EI

a a

Solution We free the right support and use B as static redundant
quantity

B

A

q0

q0q0

B

B

q0a
2

2

q0

Ba

B

ϕ

ψ

vB1
ψ

vB

vq2
ϕ

vq1

vB2

vq

vq
vB

The individual displacement components are determined from the table
on page 62 and superposition:

vq = vq1 + vq2 = ϕ · a+ vq2 =
q0a

2

2
· a · a+

q0a
4

8
=

5

8
q0a

4 ,

vB = vB1 + vB2 = ψ · a+ vB2 = Ba · a · a+B
a3

3
=

4

3
Ba3 .

The compatibility at B provides the reaction force B:

vq = vB � B =
15

32
q0a .

The other support reactions follow from equilibrium

A =
17

32
q0a and MA = − 1

32
q0a

2 .
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P3.29 Problem 3.29 An auxiliary bridge,
that is resting on the river banks, is
supported in the middle by an addi-
tional pontoon (block with cross sec-
tion A at the water line). The bridge
is subjected to a constant load q0.

Given: water density ρ, EI/Al3ρg = 1/24 .

Determine the immersion depth f of the pontoon due to q0.

ρ

q0

A

l

EI

l

Solution The system is statically indeterminately supported. We use
the pontoon force as statically redundant force and apply superposition:

wq
X

FA

wXq0 q0

For the immersion of the pontoon we obtain

f = wq − wX .

Archimedes’ principle yields the buoyant force FA that is equal to the
weight of displaced fluid (see also chapter 7), i. e. we have

X = FA = ρgfA � f =
X

ρgA
.

The table on page 62 provides

no. 2 : wq =
5

384

q0(2l)
4

EI
, no. 1 : wX =

X(2l)3

48EI
.

Using the above results

X

ρgA
=

5

384

q016l
4

EI
− X8l3

48EI
� X =

5

24

q0l
4

EI
1

6

l3

EI
+

1

ρgA

= q0l .

the immersion depth is given by

f =
X

ρgA
=

q0l

ρgA

EI

EI

l3

l3
=

1

24

q0l
4

EI
.
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P3.30Problem 3.30 An elastic rope
(length s) is fixed to the wall
and in C frictionless redirected
by a pulley. The pulley is atta-
ched to a beam (axial rigidity
→ ∞),

Determine the displacement of
the load Q.

l

EI
C

Q

ϕ EA

Solution The displacement of Q is computed by the length change

Δs =
Qs

EA

of the rope and a contributions δ of the deflection of the pulley. The
deflection is calculated by the vertical load on the beam

V = Q− S cosϕ = Q(1− cosϕ)

to be

w =
V l3

3EI
=

Q(1− cosϕ)l3

3EI
.

H H
V

Q

S = Qϕ
V

w

The deflection δ of the load Q follows from

δ = w + an − av

= w + (s− bn)− (s− bv)

= w + bv − bn

with

bn − bv = w cosϕ (for w 
 bv) .

Q′

ϕ bv

bn

C

δ

av

an

C ′
w

Q

This leads to the deflection of Q

vQ = δ +Δs = w(1− cosϕ) +
Qs

EA
= Q

[
s

EA
+

l3(1− cosϕ)2

3EI

]
.
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P3.31 Problem 3.31 The depicted struc-
ture consists of a beam and bars
with stiffness ratio α = EI/a2EA.
The structure is loaded by the force
F .

a) Determine the forces in the bars-
for α = 1/8

b) For which value of α vanishes the
force S2?

c) For which α follows MB = 0?

©1

aa a a

√
2EAC

A

F

EI

©1
EA

a

B

©2

Solution The system is statically indeterminate in the interior. We free
the middle bar (basic system):

F

2
F

C

A B

F
C

S
(0)
1S

(0)
1

F

2

Equilibrium in C yields S
(0)
1 =

√
2F/2. The beam is loaded by the

components F/2. With the table on page 62 (load case no. 1) the dis-
placement at A is given by

EI w
(0)
A =

F

2

(4a)3

6

[
3

4
· 1
4

(
1− 9

16
− 1

16

)
+

1

4
· 1
4

(
1− 1

16
− 1

16

)]
=

2

3
Fa3 ,

and at location B

EI w
(0)
B = 2 · F

2

(4a)3

6

1

4
· 1
2

(
1− 1

16
− 1

4

)
=

11

12
Fa3 .

Due to the truss elongation Δl1 point C experiences the displacement

w
(0)
C = Δl1

√
2 =

S1l1√
2EA

√
2 =

1

2

√
2 Fa

√
2

√
2 EA

√
2 =

Fa

EA
.

C

C ′
w

(0)
C

Δl1

Hence the total displacement of C is given by

v
(0)
C = w

(0)
B +w

(0)
C =

2

3

Fa3

EI
+

Fa

EA
.

Now we load the system by the unknown normal force S2 = X and
consider the two load cases independently:
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X

A B
II

A B
I

X X

In sub-system I the deformation is analogous to the basic system, if F
is replaced by −X, i. e.

v
(I)
C = −2

3

Xa3

EI
− Xa

EA
, w

(I)
B = −11

12

Xa3

EI
.

The displacement in sub-system II is again determined from the table
on page 62

w
(II)
B =

X(4a)3

48EI
=

4

3

Xa3

EI
,

v
(II)
C = w

(II)
A =

X(4a)3

6EI

{
1

2

1

4

(
1− 1

4
− 1

16

)}
=

11

12

Xa3

EI
.

Compatibility requires that the difference in the total displacement at
points C und B are equal to the elongation of bar 2:

v
(0)
C + v

(I)
C + v

(II)
C −

[
w

(0)
B +w

(I)
B + w

(II)
B

]
=

Xa

EA

or

2Fa3

3EI
+

Fa

EA
− 2Xa3

3EI
− Xa

EA
+

11Xa3

12EI
−

(11Fa3

12EI
− 11Xa3

12EI
+

4Xa3

3EI

)
=

Xa

EA

� X =
α− 1

4

2α+ 1
6

F .

With this result the answers to the questions are:

to a) X = S2 =

1
8 − 1

4
1
4 + 1

6

F = − 3

10
F, S1 =

1

2

√
2 (F −X) =

13

20

√
2 F,

to b) S2 = X = 0 � α =
1

4
,

to c) MB =
F

2
2a −

(F

2
− X

2

)
a = 0 � X = −F ,

�
α− 1

4

2α+ 1
6

F = −F � α =
1

36
.



102 Superposition principle

P3.32 Problem 3.32 The two depic-
ted posts have to be connected
by a rope. The rope has to be
fixed at points A and B. The
rope is too short by Δl.

a) Determine the horizontal
force F at the right post
that is required to fix the
rope stress-free.

b) The force F is removed after assembly. Determine the force in
the rope and the moments at both supports.

EI

D

h

EI

F

EAS

B
Δl

A

Solution to a) The force F has to bend the post by Δl to the left.
From the table on page 62 (load case no. 5) we obtain

Δl =
Fh3

3EI
� F =

3EI

h3
Δl .

to b) The length Δl follows from the extension ΔlS of the rope due to
a yet unknown force S in the rope and the deflection fS of both posts
due to the same unknown force S. Compatibility states

Δl = ΔlS + fS + fS

which yields

Δl =
Sl

EAS
+

Sh3

3EI
+

Sh3

3EI
� S =

Δl

l
EAS

1

1 +
2

3

h3EAS

lEI

.

Finally the moments at the support follow from equilibrium

M = hS =
Δl

l
EASh

1

1 +
2

3

h3EAS

lEI

.
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P3.33Problem 3.33 A plane frame
is loaded in C and D by two
forces.

Determine the reciprocative
horizontal displacement Δu of
C und D.

2a

D

F

F

C
EI

2

3
a

2

3
a

a

Solution To apply the table on page 62 we have to separate the defor-
mation of the individual beams and use superposition.

ϕ

ψ

M = F
2

3
a

ϕ

ϕ
2

3
a

M = F
2

3
a

ψ
2

3
a

F

F
w

w

MM

ϕ

C is moved by ϕ · 2
3
a+ ψ · 2

3
a+w to the right,

D is moved by ϕ · 2
3
a+ ψ · 2

3
a+ w to the left.

Thus, the reciprocative displacement follows

Δu = 2

[
ϕ · 2

3
a+ ψ · 2

3
a+w

]
.

With the table on page 62 it follows:

load case no. 2 EI ϕ =
(2

3
Fa

)2a
3

−
(2

3
Fa

)2a
6

=
2

9
Fa2 ,

load case no. 8 EI ψ =
(2
3
Fa

)
a =

2

3
Fa2 ,

load case no. 5 EI w =
F
(2
3
a
)3

3
=

8

81
Fa3 ,

which yields

Δu = 2

(
4

27
+

4

9
+

8

81

)
Fa3

EI
=

112

81

Fa3

EI
.

Note: Due to the antisymmetry of the system the vertical displace-
ments of C and D are the same.
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P3.34 Problem 3.34 The depic-
ted frame is loaded by a
moment M0.

Determine the reciproca-
tive rotation ΔϕH at the
hinge.

M0

l

EI

l

2

l

2

Solution It is reasonable to split the loading into a symmetric and
antisymmetric contribution:

M0/2

M0/2M0 M0/2 M0/2

ψ

M0/2

ψ

The antisymmetric loading causes no
reciprocative rotation at the hinge.
For the symmetric loadign it suffices
to consider half of the frame struc-
ture. The rotation ψ results solely
from the bending of the vertical post
(only a normal force occurs in the ho-
rizontal beam). Thus from the table
on page 62 (load case no. 4 with β = 1
and α = 0) we obtain

ψ =

M0

2
l

3EI
=

M0l

6EI
.

Hence the reciprocative rotation follows

ΔϕH = 2ψ =
M0l

3EI
.
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P3.35Problem 3.35 Determine for the
depicted beam with a thin-walled
profile the displacement at the
point where the load is applied.

x
2a

l

F
t

a

z

y

a

t � aE
F

Solution Due to the unsymmetrical profile oblique bending occurs. The
displacements are computed using the two related differential equati-
ons. The bending moments are given by

My = −F (l− x) , Mz = 0 ,

and the second moments of area for the thin-walled profile follow from

Iy =
t(2a)3

12
+ 2(at)a2 =

8

3
ta3, Iz =

2

3
ta3,

Iyz = −2(ta)a
a

2
= −ta3, Δ = IyIz − I2yz =

7

9
t2a6.

Thus the two differential equations can be integrated for the z-direction

Ew′′ = −MyIz
Δ

=
6

7

F

ta3
(l − x) ,

Ew′ = −3

7

F

ta3 (l − x)2 +C1 ,

Ew =
1

7

F

ta3
(l − x)3 + C1x+C2

and the y-direction

Ev′′ = −MyIyz
Δ

= −9

7

F

ta3 (l − x) ,

Ev′ =
9

14

F

ta3
(l − x)2 + C3 ,

Ev = − 3

14

F

ta3 (l − x)3 + C3x+C4 .

The boundary conditions at the support yield

v′(0) = 0 � C3 = − 9

14

F l2

ta3 , w′(0) = 0 � C1 =
3

7

F l2

ta3 ,

v(0) = 0 � C4 =
3

14

F l3

ta3
, w(0) = 0 � C2 = −1

7

F l3

ta3
.

Thus the displacements at the point, where the load is applied x = l, are

w(l) =
2

7

F l3

Eta3
, v(l) = −3

7

F l3

Eta3
.

Note: Although the load is acting in vertical direction a displacement
in horizontal direction occurs. The profile preferably deforms in
the direction which is related to the smaller second moment of area.
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P3.36 Problem 3.36 The simply
supported beam is loaded by
a constant distributed load.

Determine the displacement
of the centroid of the cross
section in the middle of the
beam (only deformation due
to bending).

Given: l = 2 m ,

E = 2.1 · 105 MPa ,

q0 = 104 N/m .

q0

E
l

130

10

10

ηC

C

z

ζC

y

q0

65
[mm]

x

Solution We compute the geometric quantities of the cross section:

A = 65 · 10 + 120 · 10 = 1850 mm ,

ζC =
(65 · 10) · 5 + (120 · 10) · 70

1850
= 47.16 mm ,

ηC =
(65 · 10) · 32.5 + (120 · 10) · 5

1850
= 14.66 mm ,

Iy =
65 · 103

12
+ (42.16)2(65 · 10) + 10 · 1203

12
+ (22.84)2(10 · 120)

= 322.7 cm4 ,

Iz =
10 · 653

12
+ (17.84)2(65 · 10) + 120 · 103

12
+ (9.66)2(10 · 120)

= 55.8 cm4 ,

Iyz= −(−17.84)(−42.16)(65 · 10) − (22.84)(9.66)(10 · 120)

= −75.4 cm4 ,

Δ = IyIz − I2yz = 12321.5 cm8 .

The loading causes only a moment along the y-axis:

My(x) =
q0l

2
x− q0

x2

2
.
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The basic equations simplify to

Ew′′ = −MyIz
Δ

, Ev′′ = −MyIyz
Δ

.

Integrating twice yields

Ew′ = − Iz
Δ

q0
2

(
l
x2

2
− x3

3
+ C1

)
,

Ew = − Iz
Δ

q0
2

(
l
x3

6
− x4

12
+ C1x+ C2

)
,

Ev′ = − Iyz
Δ

q0
2

(
l
x2

2
− x3

3
+ C3

)
,

Ev = − Iyz
Δ

q0
2

(
l
x3

6
− x4

12
+C3x+ C4

)
.

The boundary conditions

w(0) = 0 � C2 = 0 , v(0) = 0 � C4 = 0 ,

w(l) = 0 � C1 = − l3

12
, v(l) = 0 � C3 = − l3

12

together with the abbreviation ξ =
x

l
yield

Ew =
q0l

4

24

{
ξ4 − 2ξ3 + ξ

} Iz
Δ

,

Ev =
q0l

4

24

{
ξ4 − 2ξ3 + ξ

} Iyz
Δ

.

In the middle of the beam (ξ = 1/2) the curly brackets attain the value
5/16 which leads with the given numerical values (converted to cm) to

fw

C v

w = 102 · 2004 5

384

55.8

12321.5
· 1

2.1 · 107 = 0.45 cm ,

v = 102 · 2004 5

384

−75.4

12321.5
· 1

2.1 · 107 = −0.61 cm ,

f =
√

w2 + v2 = 0.76 cm .
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P3.37 Problem 3.37 In the middle of
a beam the force F is applied.
The thin-walled profile is pro-
duced from an aluminium sheet
of 2 mm thickness.

Compute the deformation at
the point where the force is
applied.

Given: l = 2 m ,

E = 7 · 104 MPa ,

F = 1200 N .
[cm]

x

l

C
y

z

2

10

F 4

4

2

l

2

E

F

Solution The displacement can be determined with regards to the y, z-
axes, or with regard to the principal axes. We want to consider both
possibilities.

1st solution: The position of the centroid is known. With regard to
the y, z-axes we find

Iy=
0.2 · 103

12
+

(0.2 · 103
12

− 0.2 · 63
12

)
+ 2 · 52 · 0.2 · 4 = 69.73 cm4 ,

Iz=
0.2 · 83

12
+ 2 · 42 · 0.2 · 2 = 21.33 cm4 ,

Iyz= −2{5 · 2 · 0.2 · 4 + 4 · 4 · 0.2 · 2} = −28.8 cm4 ,

Δ= IyIz − I2yz = 657.9 cm8 .

With the bending moments My =
F

2
x , Mz = 0 für 0 ≤ x ≤ l/2

(symmetry) the differential equations are given by

Ew′′ = −F Iz
2Δ

x , Ev′′ = −F Iyz
2Δ

x .

After integration and incorporation of the boundary conditions we ob-
tain in the middle of the beam (see also table on page 62):

w =
F l3

48E

Iz
Δ

=
1200 · 2003
48 · 7 · 106 · 21.33

657.9
= 0.93 cm ,

v =
F l3

48E

Iyz
Δ

=
1200 · 2003
48 · 7 · 106 · (−28.8)

657.9
= −1.25 cm ,

f =
√
w2 + v2 = 1.56 cm .
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2nd solution: We refer to the principal axes. The principal directions
and values of the second moment of area are given by

tan 2ϕ∗ =
2Iyz

Iy − Iz
= −1.19 � ϕ∗ = −24.98◦

I1,2 =
91.06

2
±

√
24.22 + 28.82

� I1 = Iη = 83.15 cm4 , I2 = Iζ = 7.91 cm4 .

η

y

ζ
z

ψ∗ = −ϕ∗

Decomposition of the load into principal directions yields

Fζ = F cosψ∗ = 0.906 F , Fη = −F sinψ∗ = 0.422 F ,

and the displacements follow from the table on page 62 (load case no. 1)

fη =
Fηl

3

48EIζ
= −1200 · 0.422 · 2003

48 · 7 · 106 · 7.91 = −1.52 cm ,

fζ =
Fζl

3

48EIη
=

1200 · 0.906 · 2003
48 · 7 · 106 · 83.15 = 0.31 cm ,

f =
√

f2
η + f2

ζ = 1.55 cm .

fη

fζ

η

y

ψ∗

ψ∗

f

ζ

z

v

w

For comparison with the 1st solution we transfer the displacements into
the y, z-coordinate system:

|v| = |fη| cosψ∗ − fζ sinψ
∗ = 1.25 cm ,

w = |fη | sinψ∗ + fζ cosψ
∗ = 0.93 cm .

Note: We used in the computations numerical values up to the second
digit. Thus the numerical value for the total displacement f differs in
the second digit.
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P3.38 Problem 3.38 A beam compo-
sed of two different materials
(a bi-metal beam to measu-
re temperature) is heated uni-
formly by a temperature diffe-
rence ΔT .

Determine the deformation at the free end.

x

h

b

l z

E1, α1

E2, α2 y
h

M1

M2
F2

F1

h

Solution We assume a linear stress distribution in each material and
replace the stresses by a resultant force Fi and a resulting moment Mi.
If we suppose α2 > α1 the lower
part wants expand more. As this
is prevented by the upper part,
the lower part is under compres-
sion, while tension prevails in
the upper part. F1 and F2 cause
a moment in the composite beam which is in equilibrium with M1 and
M2 (no external loads). Thus the following equations hold:

statics N = 0 � F1 = F2 = F ,

M = 0 � Fh = M1 +M2 ,

Hooke’s law w′′
1 = −M1

E1

12

bh3
, w′′

2 = −M2

E2

12

bh3
.

Kinematic compatibility demands

w′′
1 = w′′

2 = w′′ .

Additionally the strains have to match at the interface. They consist of
three contributions: temperature αiΔT , normal force F/EA and ben-
ding M/EW . Considering tension and compression we formulate

α1ΔT +
F

bhE1
+

M16

E1bh2
= α2ΔT − F

bhE2
− M26

E2bh2
.

Eliminating the moments Mi and rearrangement to get w′′ yields

w′′ = − 12E1E2(α2 − α1)ΔT

h(E2
1 + 14E1E2 + E2

2)
= −C .

w

ΔT
Integration, by incorporating the boun-
dary conditions at the left end, provides
the displacement at the free end

w = −C
l2

2
.
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Torsion

If an external load causes an internal moment Mx along the longitu-
dinal axis, the bar is loaded by torsion (twisting). In the following we
refer to the moment Mx as torque or torsional moment MT .

A

B
x

MB
y

z

m(x)

MA

l
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Prerequisites, assumptions:

• Warping of the cross sections is not constrained (pure tor-
sion),

• The shape of the cross sections does not change during rotation.

Equilibrium conditions

dMT

dx
= −m , m(x) = external moment per unit length.

Differential equation for the angle of twist

GIT
dϑ

dx
= MT ,

ϑ = angle of twist,

GIT = torsional rigidity,

G = shear modulus,

IT = torsional constant. P´

x

ϑ(x)

z

y
P

Twist of end sections

Δϑ = ϑ(l)− ϑ(0) =

l∫

0

ϑ′(x)dx =

l∫

0

MT

GIT
dx .

Special case: GIT = const, MT = const

Δϑ =
MT l

GIT
.

Maximum shear stress

τmax =
MT

WT
, WT = sectional moment of torsion.

The location of the maximum shear stress is provided in the following
table.
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Cross section IT

IT = Ip =
π

2
(r4a − r4i )

ri = 0 (full circle) IT =
π

2
r4a

thin-walled, closed profile

IT =
4A2

T∮
ds

t(s)

a = const

t = const
IT = 2πa3t

thin-walled, open profile

IT =
1

3

h∫

0

t3(s)ds

t = const IT =
1

3
ht3

ti = const IT =
1

3

∑
hit

3
i

square

IT = 0, 141a4

ellipse

IT = π
a3b3

a2 + b2

τ(r)

τmax

ri

ra

a
t

AT

t(s)

τ(s)

s

ti

h

s
t(s)

hi

τ

t
h

a

τmax a

τmax

τmax

a

b
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WT Remarks

WT =
IT
ra

=
π

2

r4a − r4i
ra

The shear stresses are distributed

linearly across the cross section:

τ (r) =
MT

IT
r .

WT =
π

2
r3a

Cross sections remain plane

during deformation.

WT = 2AT tmin

WT = 2πa2t

τ is constant across the wall-thickness t.

The shear flow

T = τ t =
MT

2AT

is constant.

τmax occurs at the smallest wall-

thickness tmin.

AT is the area encircled by the central

line of the profile.

WT =
IT
tmax

WT =
1

3
ht2

WT =
IT
tmax

τ is linearly distributed across the

wall-thickness.

τmax occurs at the largest wall-

thickness tmax.

WT = 0.208 a3 τmax occurs at in the middle of

the lateral lengths.

WT =
π

2
ab2

τmax occurs at the ends of the smaller

semi-axis.
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P4.1 Problem 4.1 A shaft with cir-
cular cross section is clamped
at one end and loaded by a
pair of forces.

Determine F such that the
admissible shear stress τadmis

is not exceeded. Compute for
this case the twist of the end
section.

l

2r

2R

F

F

x

Given: R = 200 mm, r = 20 mm, l = 5 m, τzul = 150 MPa,
G = 0.8 · 105 MPa.

Solution The torque (torsional moment)

MT = 2RF

is constant along the bar. The maximum shear stress in the cross section
is given with

WT =
π

2
r3

by

τmax =
MT

WT
=

4RF

πr3
.

In order not to exceed the admissible shear stress,

τmax ≤ τadmis � F ≤ πr3

4R
τadmis .

must hold and we obtain

Fmax =
πr3

4R
τallow =

π · 8000 · 150
4 · 200 = 4712 N .

For this load the twist (in radians) can be computed using

IT =
π

2
r4 and MT = 2RFmax .

Inserting yields

Δϑ =
MT l

GIT
=

τzull

Gr
=

150 · 5000
0.8 · 105 · 20 = 0.47 .

This value is equivalent to an angle of 27◦.
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P4.2Problem 4.2 A shaft has to carry
the torque MT = 12 · 103 Nm. Select
a cross section from the depicted
group.

Dimension the cross sections such
that the admissible shear stress
τadmis = 50 MPa is not exceeded.
Which cross section is the most effi-
cient in terms of material usage?

©4

t =
c

10
t =

d

10

a

2b

2b

©1 ©2

©3
c d

Solution The admissble shear stress is reached for

τmax =
MT

WT
= τadmis .

With the section moment for torsion

WT1 =
π

2
a3 , WT2 = 0.208 · 8 b3 = 1.664 b3 ,

WT3 = 2πc2t =
π

5
c3 , WT4 =

2π

3
d t2 =

π

150
d3

we determine with the given numerical values

a = 3
√

2MT

πτzul
= 53.5 mm , b = 3

√
MT

1.664 τzul
= 52.4 mm ,

c = 3
√

5MT

π τzul
= 72, 6 mm , d = 3

√
150MT

π τzul
= 225.5 mm .

The cross section areas are

A1 = πa2 = 89.8 cm2 , A2 = 4b2 = 110.0 cm2 ,

A3 =
π

5
c2 = 33.1 cm2 , A4 =

π

5
d2 = 319.4 cm2 .

Therefore, the third cross section (i. e. the thin-walled closed profile) is
the most material efficient profile.
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P4.3 Problem 4.3 Determine the
maximum admissible torque
(torsional moment) and the
corresponding admissible
twist for the closed profile
and the profile that is slit at
A.

Given: a = 10 cm, t = 2 mm,
τadmis = 20 MPa,
l = 5 m,
G = 0.8 · 105 MPa.

2t

MT

2t2t

l

MT

t
2t

a

a

t

t At

Solution The admissible torque and the admissible twist are computed
for both profiles via

MTadmis = τadmisWT , Δϑadmis =
MTadmis l

GIT
=

τadmisWT l

GIT
.

In the case of the closed profile with t 
 a it holds

AT = a2 ,

∮
ds

t(s)
= 2

( a

2t
+

a

t

)
= 3

a

t
,

IT =
4A2

T∮
ds

t(s)

=
4

3
ta3 , WT = 2AT tmin = 2a2t

and we obtain

MTadmis = τadmis2a
2t = 800 Nm ,

Δϑallow =
3τadmisl

2Ga
= 0.01875 (=̂1, 07◦) .

If the profile is open (slit at position A), we compute with

IT =
1

3

∑
i

t3ihi = 6t3a , WT =
IT
tmax

= 3t2a

the torque and twist

MTadmis = τadmis3t
2a = 24 Nm ,

Δϑadmis =
τadmisl

2Gt
= 0.3125 (=̂17.9◦).

Note: The closed profile is much stiffer with respect to torsion than the
open profile.
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P4.4Problem 4.4 A shaft is loaded
by a pair of forces. The shaft
is assmbled from two different
thin-walled cross sections (t 

a) of the same material (shear
modulus G).

Determine in both cases the ad-
missible forces and the corre-
sponding twist such that the
shear stress τadmis is not excee-
ded.

2b

F
F

l

t

a
t

t

tt

2 a

√
2 a

©1 ©2

Solution The torque MT = 2bF is constant along the length of the
shaft. Stress and twist are determined from

τ =
MT

WT
=

2bF

WT
, Δϑ =

MT l

GIT
=

2bF l

GIT
.

The admissible shear stress will not be exeeded for

τ ≤ τadmis � F ≤ WT τadmis

2b
� Fadmis =

WT τadmis

2b
,

Δϑadmis =
2blFadmis

GIT
=

τadmisWT l

GIT
.

With the values for the two different cross sections

� AT =
π

2
a2 ,

∮
ds

t
=

a

t
(2 + π) , WT = πa2t , IT =

π2

2 + π
a3t ,

� AT = a2 ,

∮
ds

t
=

a

t
(2 + 2

√
2) , WT = 2a2t , IT =

2

1 +
√
2
a3t

we obtain

Fadmis1 =
π

2

a2t

b
τadmis , Fadmis2 =

a2t

b
τadmis ,

Δϑadmis1 =
2 + π

π

lτadmis

aG
, Δϑadmis2 = (1 +

√
2)

lτadmis

aG
.

Note: The admissible force is larger for the first profile, while the
admissible twist is larger for the second profile.
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P4.5 Problem 4.5 The thin-walled box girder
is loaded by a torque MT .

Determine the warping of the cross section.

t
2t

2a

2t

t

z

y

©1
ds

dx s

©3

x

©2

©4

α

α
s

dv = r⊥dϑ

r⊥

dϑ
r

P

P´

x

− MT

32Gat

MT

32Gat

©3

©2

©4

©1

s

Solution The warping u(s) (displacement
in longitudinal direction) is computed from
the shear strain

γ =
∂u

∂s
+

∂v

∂x

of the wall segments. With

γ =
τ

G
=

MT

G2AT t(s)
,

∂v

∂x
= r⊥

dϑ

dx
= r⊥(s)

MT

GIT
,

AT = 4a2 , IT =
4 · 16a4

4a
t + 4a

2t

=
32

3
a3t

we obtain

∂u

∂s
=

MT

8Ga2t

[
t

t(s)
− 3r⊥(s)

4a

]
.

Integration in region � provides (t(s) = 2t, r = a) with u(s=0) = 0
(then u vanishes on average)

u1(s) =
MT

8Ga2t

[
1

2
− 3

4

]
s = − MT

32Ga2t
s .

Analogously, we obtain in regions � , � , �

u2(s) =
MT

32Ga2t
[s− 2a] ,

u3(s) = − MT

32Ga2t
[s− 4a] ,

u4(s) =
MT

32Ga2t
[s− 6a] .
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P4.6Problem 4.6 A tube � is mounted
by heat shrinking on a shaft �
with circular cross section of diffe-
rent material.

Determine the maximum shear
stresses in � and � as well as the
twist under the application of a tor-
que MT .

MT

l

©2
R2

R1

©1

Solution First we consider shaft � and pipe � independently. For the
angle of twist and the stress it yields

ϑ1 =
MT1 l

G1Ip1
, τmax1 =

MT1

WT1

,

ϑ2 =
MT2 l

G2Ip2
, τmax2 =

MT2

WT2

with

Ip1 =
π

2
R4

1 , Ip2 =
π

2

(
R4

2 −R4
1

)
, WT1 =

Ip1
R1

, WT2 =
Ip2
R2

.

Together with equilibrium

MT = MT1 +MT2

and geometric compatibilty

ϑ1 = ϑ2 = ϑ

we obtain

MT1 = MT
G1Ip1

G1Ip1 +G2Ip2
, MT2 = MT

G2Ip2
G1Ip1 +G2Ip2

and

τmax1 =
MTG1r1

G1Ip1 +G2Ip2
, τmax2 =

MTG2r2
G1Ip1 +G2Ip2

,

ϑ =
MT l

G1Ip1 +G2Ip2
.
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P4.7 Problem 4.7 A conical shaft
with varying radius is loaded by
a torque MT .

Determine the twist and the
peripheral stress as a function
of x.

2a

l

MT
4a

x

r(x)

Solution The differential equation for the twist angle is given with

r(x) = a
(
2− x

l

)
, Ip(x) =

π

2
r4 =

π

2
a4

(
2− x

l

)4

by

ϑ′ =
MT

GIp
=

2MT

πGa4

1(
2− x

l

)4
.

Integration with respect to x yields

ϑ(x) =
2MT l

3πGa4

1(
2− x

l

)3
+ C .

The integration constants are determined from the boundary conditions

ϑ(0) = 0 � C = − 2MT l

3πGa4

1

8
.

Thus the twist results in

ϑ(x) =
MT l

12πGa4

⎧⎪⎨
⎪⎩

1(
1− x

2l

)3 − 1

⎫⎪⎬
⎪⎭

.

The peripheral shear stress is computed with

WT (x) =
Ip
r

=
π

2
a3

(
1− x

l

)3

as

τP (x) =
MT

WT
=

2MT

πa3
(
2− x

l

)3 .

Twist and stress have a maximum at x = l:

ϑ(l) =
7MT l

12πGa4
, τP (l) =

2MT

πa3
.
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P4.8Problem 4.8 The depicted gear-
system consists of two shafts
(lengths l1, l2) of identical mate-
rial, that are connected by two
gear wheels (radii R1, R2). The
shaft � is loaded by an external
torque M1.

a) Determine M2 such that
equilibrium is fulfilled.

b) Choose the diameters d1 and d2 such that the admissible shear stress
τadmis is not exceeded?

c) Compute the angle of twist at position C, if shaft � is fixed at
position A.

d2

A B

R2

C

l1

M2

d1 M1R1

l2

©1

©2

F
F

M1

M2

ϑ1BR1

R2

−ϑ2B

Solution to a) Equilibrium of moments

M1 = R1F , M2 = −R2F

yields

M2 = −R2

R1
M1 .

to b) The critical value of the shear stress is reached in each shaft for:

τmax1 =
|M1|
W1

=
16M1

πd31
= τadmis � d1 = 3

√
16M1

πτadmis
,

τmax2 =
|M2|
W2

=
R2

R1

16M1

πd32
= τadmis � d2 = 3

√
R2

R1
d1 .

to c) For the twist angle in � and � we obtain

Δϑ1 =
l1M1

GIT1

=
32M1l1
πGd41

, Δϑ2 = ϑ2B =
32M2l2
πGd42

.

With the continuity of the rotations

ϑ1BR1 = −ϑ2BR2

and

ϑC = ϑ1B +Δϑ1

we compute

ϑC =
32M1

Gπd41

{
l1 +

(
R2

R1

) 2
3

l2

}
.
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P4.9 Problem 4.9 A homoge-
neous, graded shaft with
circular cross section is clam-
ped at both ends and loaded
by the torque M0.

Compute the torques at the
support positions A and B as
well as the twist at the point
where M0 is applied.

2r2

MA

A C B

MB

2r1

BA M0

M0

©2©1

a b

Solution The system is sta-
tically indeterminate because
the support torques MA and
MB cannot be computed
solely from the equilibrium
conditions.

MA +MB = M0

By cutting the shaft at C constant torques are obtained in the regions
� and � . This results in the following twists

ϑ1 =
MAa

GIp1
, ϑ2 =

MBb

GIp2
.

Geometric compatibility requires that the two angles of twist are iden-
tical:

ϑC = ϑ1 = ϑ2 .

Together with

Ip1 =
π

2
r41 , Ip2 =

π

2
r42

we obtain

MA = M0
1

1 + r42a
r41b

, MB = M0
1

1 + r41b
r42a

,

ϑC =
2M0ab

πG (br41 + ar42)
.
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P4.10Problem 4.10 A shaft is clam-
ped at both ends and loaded
along part b of its length l
by a constant distributed tor-
que m0.

Determine the function of twist
angle and torque.

x

m0

a

l

b

Solution The external torque m(x) has a jump at position x = a. We
use the Macauley bracket to incorparate the discontinuous function.
With

m(x) = m0 < x− a >0

the differential equation for the twist angle follows

GITϑ
′′ = −m(x) = −m0 < x− a >0 .

Integrating twice yields

GITϑ
′ = MT = −m0 < x− a >1 +C1

GITϑ = −1
2m0 < x− a >2 +C1x+ C2 .

The constants folllow from the boundary conditions

ϑ(0) = 0 � C2 = 0 ,

ϑ(l) = 0 � C1 =
1

2

m0b
2

l
.

Finally we obtain

parabola

m0b
2

2l

quadr.

x

MT

x

ϑ linear

m0b(a+ l)

2l

a

MT (x) = m0b

{
b

2l
− < x− a >1

b

}
,

ϑ(x) =
1

2

m0b
2

GIT

{
x

l
− < x− a >2

b2

}
.
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P4.11 Problem 4.11 The depicted shaft
with ring-shaped cross section is
clamped at one end. At the other end
a rigid beam is attached. The beam
is supported by two springs and
loaded by the forces P . Determine

a) the maximum force Pmax for a
prescribed admissible displacement
uadmis (in z-direction) at point A,
b) position and value of the maxi-
mum shear stress in the cross section
of the truss for P = Pmax.

Given : uadmis = 2 cm , l = 2 m

r = 5 cm , R = 10 cm

c = 106 N/m

G = 8 · 1010 N/m2

uallow

l

l/2 l/2

c

PP

y

A

c

R

r

x

z

y

z

B

G

MT

Fc

B

MT

Fc

PP

τmax

Solution to a) The system is statically indeterminate. We free the
system at point B leading to the twist of the shaft

Δϕ =
MT l

GIp
� MT =

GIp
l

Δϕ

with (small twist angles)

Δϕ =
uadmis

l/2
= 0.2 .

Equilibrium of moments for the beam provides

�

B : MT = lPmax − lFc , where Fc = c uadmis .

Eliminating Δϕ , MT and Fc yields

Pmax =
(
2
GIp
l3

+ c
)
uadmis .

With Ip = π(R4−r4)/2 = 1.47·10−4 m4 and the given numerical values
we obtain

Pmax =

(
2 · 8 · 1010 · 1.47

104 · 8 + 106
)
2 · 10−2 = 78.7 kN

to b) The shear stress assumes its maximum value at the outer pe-
rimeter of the cross section. The absolute value is computed by

MT = Pmax l − c uadmis l

= (78.7 − 103 · 0.02) 2 = 117.4 kNm

and

τmax =
MTR

Ip
=

117.4 · 0.1
1.47 · 10−4

= 79.8 MN/m2.
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P4.12Problem 4.12 The hollow shaft
� and the solid shaft � are joint
by a bolt at A.

Determine the torque MT and
the twist angle β of the bolt af-
ter assembly for the case that
the ends of the shafts have an
angular difference of α in the
stress-free state.

©1
GIT2

α β

ba

©2GIT1

A

ϑ2

ϑ1

©1

MT

α

©2

MT

Solution In the assembled state both shafts are loaded by the torque
MT . We cut the system at position A and determine the angle of twist
of � and � separately:

ϑ1 =
MTa

GIT1

, ϑ2 =
MT b

GIT2

.

From the geometric compatibility in the assembled state

α− ϑ2 = ϑ1

and

β = ϑ1

we obtain for MT and β

MT = GIT1

α

a

1

1 + b
a
IT1

IT2

,

β = ϑ1 =
α

1 + b
a
IT1

IT2

.
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P4.13 Problem 4.13 The thin-walled spar with ring-shaped cross section
(length l, shear modulus G, radius r, thickness t 
 r) is located in
the interior of an airplane wing. It is loaded by a distributed torque
mT (x) with mT (0) = 2m0 and mT (l) = m0. The spar is clamped at
the fuselage.

r

t

m0

l

x

2m0

Determine
a) the torque MT (x) in the spar,
b) the distribution of the shear stress τ (x) and the maximum shear
stress τmax due to torsion,
c) the angle ϑl, by which the end of the wing at x = l rotates with
regard to the fuselage.

Solution to a) The distributed torque is given by

mT (x) =
(
2− x

l

)
m0 .

The torque follows by integration

MT (x) = −
∫

mT (x) dx+ C1 =

(
x2

2l
− 2x

)
m0 + C1
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which leads with the boundary condition

MT (l) = 0

�

(
l

2
− 2l

)
m0 +C1 = 0 � C1 =

3

2
m0l

to

MT (x) =

(
x2

2l2
− 2

x

l
+

3

2

)
m0l .

to b) For the thin-walled spar cross section the shear stresses are com-
puted using the second moment of area for torsion IT = 2πr3t:

τ (x) =
MT

IT
r =

m0l

2πr2t

(
x2

2l2
− 2

x

l
+

3

2

)
.

The maximum shear stress occurs at position x = 0 and its value is
given by

τmax =
3

4

m0l

πr2t
.

to c) With the second moment of area for torsion IT and the shear
modulus G we obtain for the twist

ϑ′(x) =
MT (x)

GIT
=

m0l

2Gπr3t

(
x2

2l2
− 2

x

l
+

3

2

)

as well as for the edge rotation

ϑ(x) =
mol

2Gπr3t

(
x3

6l2
− x2

l
+

3

2
x

)
+ C2 .

The integration constant is determined from the boundary condition
ϑ(0) = 0 to be C2 = 0. Thus the edge rotation ϑl at the end of the
wing yields (x = l):

ϑl = ϑ(l) =
mol

2

2Gπr3t

(
1

6
− 1 +

3

2

)
� ϑl =

m0l
2

3Gπr3t
.
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P4.14 Problem 4.14 A shaft with the
depicted thin-walled profile is
loaded by a torque MT .

a) Determine the shear stress in
different sections of the profile.

b) Compute the maximum
admissible torque, such that
the admissible shear stress
τadmis is not exceeded.

Solution The profile consists
of two parts. For each part the
following holds:

T = τ (s) · t(s) = MTi

2ATi

,

ϑ′
i =

MTi

GITi

=
1

2GATi

∮

i

T

t
ds .

With the given values

t

t

2a

2a

B

A B

B

MT2

S

MT1

t
t

a

t

©1 ©2

AT1 =
π

2
a2 , AT2 = 4a2

we obtain by considerating that the shear flux in section S is composed
of the contributions from the torques MT1 and MT2 :

ϑ′
1 =

1

πa2G

{
MT1

πa2

πa

t
+

[
MT1

πa2
− MT2

8a2

]
2a

t

}
,

ϑ′
2 =

1

8a2G

{
MT2

8a2

6a

t
+

[
MT2

8a2
− MT1

πa2

]
2a

t

}
.

Inserting this result into the geometric compatibility

ϑ′ = ϑ′
1 = ϑ′

2
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yields

MT1

MT2

=
2 + π

10 + 16
π

with

MT = MT1 +MT2

the torques

MT1 =
2 + π

12 + π + 16
π

MT = 0.254 MT , MT2 = 0.746 MT .

Now the stresses in the sections A, B and S follow

τA =
MT1

2AT1 t
= 0.081

MT

a2t
,

τB =
MT2

2AT2 t
= 0.093

MT

a2t
,

τS = τB − τA = 0.012
MT

a2t
.

0.081
MT

a2t

0.093
MT

a2t

0.093
MT

a2t

0.012
MT

a2t

Equalizing the maximum shear stress with the admissible shear stress

τmax = τB = 0.093
MT

a2t
= τadmis ,

provides the maximum admissible torque

MTadmis = 10− 75
τadmisa

2t

MT
.

Note: Inserting MT1 and MT2 in ϑ′ determines the second moment
of area for torsion IT = 13.7a3t. Neglecting the section S, we obtain
IT = 13.6 a3t. Thus section S only contributes a small amount to the
torsional rigidity.
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P4.15 Problem 4.15 The fixed leaf spring
(t 
 b) is eccentrically loaded by a
force F .

Compute the deflection at the point
loading. Determine the maximum
normal and shear stress.

y
z

l

E,G

bF

tx

F

A
x

F

ϑ

wB

wT

σB , τT

y

x

σBσB

τT

σB, τT

τT

y
z

Solution The leaf spring is subjected to a bending and a torsion load.
Due to bending the deflection is given by the table on page 62.

wB =
F l3

3EI
with I =

bt3

12
.

The constant torque

MT = Fb/2

causes a rotation at the end of the spring

ϑ =
MT l

GIT
with IT =

1

3
bt3

and the corresponding displacement wT = b
2ϑ. The total deflection is

thus obtained by

w = wB + wT =
4F l3

Ebt3

(
1 +

3Eb2

16Gl2

)
.

Bending and torsion cause stress in the extreme fibre of the fixed cross
section

σB =
M

W
=

6lF

bt2
, τT =

MT

WT
=

3bF

2bt2
.

An area element at the top surface (z = −t/2)
is loaded as sketched. Thus the maximum nor-
mal and shear stress follow

σ1 =
σB

2
+

√(σB

2

)2

+ τ 2
T =

3F l

bt2

(
1 +

√
1 +

b2

4l2

)
,

τmax =

√(σB

2

)2

+ τ 2
T =

3F l

bt2

√
1 +

b2

4l2
.
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P4.16Problem 4.16 An element of
a bridge is constructed as
a thin-walled (t 
 b) box
girder. During construction
the box girder is eccentrically
loaded.

Determine the location and
value of the maximum normal
and shear stress.

Solution Section properties
of the profile are

2t

t

t

F

10b

F

b

2b

t

zs

z

zmax

y x

C

τT

τT

σB σB

y

x

zs =
2b2t+ 2 · b2(b · t)

8bt
=

3

8
b , Sy(zmax) = b t

5

8
b =

5

8
b2 t

Iy = 2

(
tb3

12
+

tb3

64

)
+ 4bt

(
3

8
b

)2

+ 2bt

(
5

8
b

)2

=
37

24
tb3 ,

W =
Iy

zmax
=

37

15
tb2 ,

WT = 2AT tmin = 4b2t .

Using bending moment, torque, shear force in the clamped support

MB = −10 b F , MT = bF , Vz = F

yields for the lower section

σB =
MB

W
= −150

37

F

bt
,

τT =
MT

WT
=

1

4

F

bt
, τQ =

Vz Sy

Iy t
=

15

37

F

bt
.

The largest absolute value for the normal stress and the shear stress
are obtained by τ = τT + τQ at location C

σ2 =
σB

2
−

√(σB

2

)2

+ τ 2 = −4.16
F

bt
,

τmax =

√(σB

2

)2

+ τ 2 = 2.13
F

bt
.
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P4.17 Problem 4.17 The depicted
cantilever with thin-walled
circular cross section is clam-
ped at both ends and loaded
eccentrically at point C.

Determine the deflection at
the point where the load is ap-
plied and compute the normal
stress and the shear stresses
due to torsion.

G/E = 3/8

B

F

C

a 2a

a/2

C

x
A

z

r

F

xy

M1 M1
1

2
aF

V1 V2

M2 ©2©1
M3

V2V1

F
Solution The cantilever
is cut at point C. Equili-
brium yields

M2 = M3 +
1

2
aF , V1 = V2 + F .

The deflection, the angle of bending, and the angle of twist are given
at point C by (see table on page 62):

wC1 =
V1a

3

3EI
− M1a

2

2EI
, wC2 = −8V2a

3

3EI
− 4M1a

2

2EI
,

w′
C1

=
V1a

2

2EI
− M1a

EI
, w′

C2
= +

4V2a
2

2EI
+

2M1a

EI
,

ϑC1 =
M2a

GIT
, ϑC2 = −2M3a

GIT
.

Compatibility demands

wC1 = wC2 , w′
C1

= w′
C2

, ϑC1 = ϑC2

which renders

V1 =
20

27
F , 2 = − 7

27
F , M1 =

8

27
aF ,

M2 =
1

3
aF , M3 = −1

6
aF .

The second moments of area and the elasticity constants

IT = 2I = 2πr3t und
G

E
=

3

8
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yield the deflection at the point of loading

wF = wC1 +
a

2
ϑC1 =

26Fa3

81EI
.

To compute the stresses, we need the bending moments at A and B:

MA = M1 − V1a = −4
9aF ,

MB = M1 + V22a = −2
9aF .

The maximum normal stresses due to bending in A, B and C are given
with the section modulus W = I / r

σA =
|MA|
W

=
4arF

9 I
, σB =

2arF

9 I
,

σC =
|M1|
W

=
8arF

27 I
.

The shear stresse in secion � or � are calculated withWT = 2W = 2I
r :

τ1 =
M2

WT
=

arF

6 I
, τ2 =

M3

WT
=

arF

12 I
.

The largest stresses occur at the point
A. An area element at the top surface
(analogously on the bottom surface) is
loaded as sketched. For the principal
stress and the maximum shear stress
we obtain

τ1

τ1

σA σA

y

x

σ1 =
σA

2
+

√(σA

2

)2

+ τ 2
1 =

arF

2 I
,

τmax =

√(σA

2

)2

+ τ 2
1 =

5arF

18 I
.
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P4.18 Problem 4.18 The depicted
cantilever is fixed at both
ends and bent by 90◦. The
cantilever is loaded at point
C by the force F .

Compute the deflection at
the point C.

C
EI,GIT BA

z

yxa a

F

EI,GIT

M

F
2

F
2

©1

M M

©2

M

C

ϑC2

wc

w′
C1

©1 ©2

Solution To solve the pro-
blem we use superposition.
We cut the system at point
C and apply symmetry ar-
guments for the depicted
loading with respect to ben-
ding and torsion. At this sta-
ge the moment M is un-
known. From the table on
page 62 we deduce

w′
C =

Fa2

4EI
− Ma

EI
, wC =

Fa3

6EI
− Ma2

2EI
.

The angle of twist due to torsion at C is given by

ϑC =
Ma

GIT
.

The geometric compatibility

w′
C1 = ϑC2

yields

M =
Fa

4

GIT
EI +GIT

and the final result

wC =
Fa3

24EI

4EI +GIT
EI +GIT

.
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P4.19Problem 4.19 The depicted semi-
circular support is loaded at point
A by a force F .

Determine the deflection at the
point A.

a

EI,GIT

F

F

A

side view

top view

ϕ

a sinϕ

MT

MB

ϕ

a

F

s

MT

MB

a cosϕ

Solution Equilibrium of moments
provides the bending moment MB

and the torque MT

MB(ϕ) = −aF sinϕ ,

MT (ϕ) = a(1 + cosϕ)F .

The angle of twist is given by

dϑ

ds
=

MT

GIT
mit ds = adϕ .

The twist dϑ at position ϕ causes the deflection at A

dwTA = a sinϕ dϑ .

Combining the previous results and integration yields the deflection
due to torsion

wTA =

∫
dwTA =

Fa3

GIT

π∫

0

sinϕ(1 + cosϕ)dϕ =
2Fa3

GIT
.

The deflection due to bending is follows from

EI
d2wB

ds2
= −MB �

d2wB

dϕ2
=

Fa3

EI
sinϕ ,

dwB

dϕ
=

Fa3

EI
(− cosϕ+C1) , wB(ϕ) =

Fa3

EI
(− sinϕ+C1ϕ+C2)

and the boundary conditions

w′
B(0) = 0 � C1 = 1 , wB(0) = 0 � C2 = 0 .

Using these constants yields

wB(ϕ) =
Fa3

EI
(ϕ− sinϕ) .

Finally the total deflection at A is given at position ϕ = π

wA = wTA + wB(π) =
Fa3

EI

(
π + 2

EI

GIT

)
.
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P4.20 Problem 4.20 A cantilever beam
with the depicted profile is subjec-
ted to an eccentric line load q. De-
termine at the clamped support

a) the largest shear stress due to
the shear force and its position,

b) the shear stress due to torsion.

c) the distribution of the shear
stresses due to shear force and tor-
sion across the profile. Determine
position and value of the largest
shear stress.

q = 20 kN/m

x

z

l = 6 m

q

[cm]

C 20

z0y0

1.2

35 1010

1.2

1.2z

1.2

1.2

y

3.5

zu
y

C

z

zo

Solution We start by computing the stress resultants at the clamped
support:

Vz = q l = 20 · 6 = 120 kN ,

My = − q l2

2
= −20 · 6

2

2
= −360 kNm ,

MT = q l · 3.5 cm = 20 · 6 · 0.035 = 4.2 kNm .

With the geometric data of the profile we calculate the position of the
centroid C and the second moment of area Iy:

zo =

∑
ziAi∑
Ai

=
2 · (20 · 1.2) · 10 + 2 · (10 · 1.2) · 20
35 · 1.2 + 2 · 20 · 1.2 + 2 · 10 · 1.2 = 8.42 cm ,

zu = 20− zo = 11.58 cm ,

Iy =
∑ bih

3
i

12
+

∑
Aiz̄

2
i

= (35 · 1.2) · 8.422 + 2 · 20
3 · 1.2
12

+2 · (20 · 1, 2) · 1.582 + 2 · (10 · 1.2) · 11.582

=7915.8 cm4 .
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to a) The shear stress due to the shear force is obtained by

τ =
Vz Sy

Iy h
=

120

7915.8 · 1.2 Sy = 0.01263 Sy .

The static moment Sy reaches its maximum at z = 0:

Sy max = S(z = 0) = 8.4 · 1.2 · 35
2

+
1

2
8.42 · 1.2 = 218.7 cm3 .

From this result the maximum shear stress due to shear force follows

τV max = 0.01263 · 218.7

� τV max = 2.76 kN/cm2 = 27.6 N/mm2 .

to b) The shear stress due to torsion is calculated using the second
moment of area for torsion respectively the torsion modulus of the
profile:

IT =
1

3

∑
hit

3
i =

1

3
(35 + 2 · 20 + 2 · 10) · 1.23 = 54.7 , cm4

WT =
1

3

∑
hit

3
i

tmax
=

54.7

1.2
= 45.6 cm3 .

With the already calculated torque MT we obtain

τT =
MT

WT
=

4.2 · 102
45.6

� τT = 9.21 kN/cm2 = 92.1 N/mm2 .

τV+T

τV

τT

to c) The largest shear stress oc-
curs at the position z = 0. It
is distributed linearly across the
wall thickness with the following
extreme values:

τinside = 27.6− 92.1 = −64.5 N/mm2,

τoutside = 27.6 + 92.1 = 119.7 N/mm2

� τmax = 119.9 N/mm2 .
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P4.21 Problem 4.21 A thin-walled box
girder is loaded by a force of 300 kN.
Determine for the cross section at
position ©A
a) the stress distribution (normal
and shear stresses) due to shear for-
ce and torsion,

b) the position of the maximum
principal stress and

c) the value and direction of the

principal stress at the vertex ©a of
the profile.

Remark: Assume for the torsional
load case a fork bearing at the left
end.

©A

300 kN

10 m

xz

20 m

[cm]300

y

©a z

1.5
2.0

1.5

2.0

300 kN

2 cm

©a
1.5 cm

80

37.25 N/mm2

60

60

−10600
s

Sy − line [cm3]
−80−80

−9000
s

zh− line [cm2]

Solution The second moment of area is given by

Iy =
∑
i

bih
3
i

12
+
∑
i

Aiz̄
2
i = 2· 2 · 803

12
+2·(1.5·300)·402 = 1.611·106 cm4 .

The stress resultants at position ©A (or directly left of it) are

Vz =
300

2
= 150 kN , My =

300 · 20
4

= 1500 kNm ,

MT = 300 · 1.5 = 450 kNm .

to a) The normal stress is linear across the height of the
cross section and reaches in point ©a the value

σx =
My

Iy
za =

1500 · 1000 · 1000
1.611 · 106 · 104 · 40 · 10 = 37.25 N/mm2 .

The shear stresses due to Vz are determined by the zh-line and Sy-line.
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By using the Sy-line we obtain

τV =
VzSy

Iyh
=

150

1.611 · 106
Sy

h
= 9.3 · 10−5 Sy

h
kN/cm2 .

At position ©a they assume the value

τV a =
150 · 9000

1.611 · 106 · 1.5
= 0.56 kN/cm2 = 5.6 N/mm2 .

4.2

5.6

5.6

τV [N/mm2]

4.2

4.9

The shear stresses due to torsion are given by

τT =
MT

2ATh
, AT = 300 · 80 = 24000 cm2

� τTa =
450 · 103 · 103

2 · 24000 · 1.5 · 103 = 6.25 N/mm2 .

to b) The maximum shear stresses oc-

cur at points ©a and ©b , the maximum

normal stresses at point ©a . Thus the
principal stresses assume the largest
value at ©a .

©b

©a

to c) In point ©a the shear and normal
stresses are:

τa = τV a+τTa = 5.6+6.25 = 11.85 N/mm2 ,

σx = 37.25 N/mm2 .

τa

σx

y

x
The principal stresses are given by

σ1 =
σx

2
+

√
(
σx

2
)2 + τ 2

a = 40.7 N/mm2,

σ2 =
σx

2
−

√
(
σx

2
)2 + τ 2

a = −3.45 N/mm2.

For the direction of the principal stress σ1 we compute

tan 2α0 =
2τ

σx
= 0.636 � α0 = 16.23◦ .
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P4.22 Problem 4.22 A cantilever beam
with thin-walled T-profile (t 
 a)
is eccentrically loaded by a force F .
The clamped support is designed
such that warping is allowed.

Determine the maximum stresses
due to bending, shear force and tor-
sion. At which position do they oc-
cur?

Given: t = a/10, l = 20 a

z

x

F

l

F

a

t b

a

t

z
y

C

2a

Solution We start by determining the following geometric properties
of the profile:

b =
a

2
,

I = b22at+

[
t(2a)3

12
+ b22at

]
=

1

6
a4 , W =

I

3a/2
=

1

9
a3 ,

SC = b 2at+
b

2

at

2
=

9

80
a3 ,

IT =
1

3
2(2a)t3 =

4

3000
a4 , WT =

IT
t

=
4

300
a3 .

The bending moment reaches its maximum at the clamped support
(x = 0), while shear force and torque are constant along the beam:

Mmax = −lF = −20aF , V = F , MT = aF .

We compute the maximum bending stress (compression, at the lower
surface, at x = 0), the maximum shear stress due to shear force (at the
centroid C), and the shear stress due to torsion (at the outer boundary
of the flanges):

σmax =
|Mmax|

W
=

20aF
1
9
a3

= 180
F

a2
,

τC
V =

C SC

I t
=

F 9
80
a3

1
6
a4 1

10
a
=

27

4

F

a2
,

τMT
=

MT

WT
=

aF
4

300
a3

= 75
F

a2
.

Note: The shear stress due to shear force is small compared to the
shear stress due to torsion.
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Energy theorem

The work W done by the external forces (moments) during loading of
an elastic body is equal to the strain energy Π stored in the body:

W = Π .

The specific strain energy can be written in index notation for three-
dimensional problems of elastostatics:

Π∗ =
E

2(1 + ν)

[
εik εik +

ν

1− 2ν
ε2ii

]
=

1

2E

[
(1 + ν) σik σik − ν σ2

ii

]

with εik εik :=
3∑

i=1

3∑
k=1

εik εik and εii :=
3∑

i=1

εii .

The following expressions hold for bars and beams:

loading
strain

energy per
length unit

strain-

energy

tension / compression Π∗ =
1
2

N2

EA
Π =

1
2

∫

l

N2

EA
dx

bending Π∗ =
1
2

M2

EI
Π =

1
2

∫

l

M2

EI
dx

shear Π∗ = 1
2

V 2

GAS
Π = 1

2

∫

l

V 2

GAS

dx

torsion Π∗ =
1

2

M2
T

GIT
Π =

1
2

∫

l

M2
T

GIT
dx

Total strain energy (tension + bending + shear + torsion):

Π =

∫

l

N2

2EA
dx+

∫

l

M2

2EI
dx+

∫

l

V 2

2GAS
dx+

∫

l

M2
T

2GIT
dx .

special case: bar (N = const, EA = const): Π =
N2l

2EA
.

special case: truss system Π =
∑
i

S2
i li

2EAi
.
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Remark: For slender beams, the shear contribution can be neglected
compared to the bending contribution.

Principle of virtual forces

The displacement of a point due to tension, bending, shear, and torsion
can be computed from

fi =

∫

l

NN

EA
dx+

∫

l

MM

EI
dx+

∫

l

V V

GAS
dx+

∫

l

MTMT

GIT
dx .

where
fi = displacement (rotation) at position i,

N, M, V, MT = stress resultants due to the external loads,

N, M, V , MT = stress resultants due to a virtual force (mo-
ment) “1”at position i in direction of fi.

Since the shear contributions are usually small compared to the other
contributions, they will be neglected in the following problems.

Special case truss:

fi =
∑
k

SkSk

EAk
lk ,

Special case bending of beams:

fi =

∫

l

MM

EI
dx .

Application to statically determinate problems

To compute the displacement
fi at an arbitrary position i,
the bending moment due to
the external loads (M) and

due to the virtual load (M)
have to be determined.
The integral

∫
MMdx can be

evaluated by resorting to the
tabulated values on page 146.

F

fi

F
i

i

i

M

M

“1′′
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Mk

s

kk

s

k

s

k

Mi

i i

s
sik

1
2
sik

1
2
sik

s

i 1
2
sik

1
3
sik

1
6
sik

s

i1 i2 s
2
(i1 + i2)k

s
6
(i1 + 2i2)k

s
6
(2i1 + i2)k

s

i 2
3
sik

1
3
sik

1
3
sik

s

i 2
3
sik

5
12

sik
1
4
sik

s

i 1
3
sik

1
4
sik

1
12

sikq
u
a
d
ra
ti
c
p
a
ra
b
o
la

s

i 1
4
sik

1
5
sik

1
20

sik

s

i 3
8
sik

11
40

sik
1
10

sik

s

i 1
4
sik

2
15

sik
7
60

sik

cu
b
ic

p
a
ra
b
o
la

Quadratic parabola: –◦– =̂ apex of the parabola,

Cubic parabola: –◦– =̂ root of the linear load q(x).
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quadratic parabola

s

k2k1 k
s

βsαs

s

k

s

k

si
2
(k1 + k2)

1
2
sik

2
3
sik

2
3
sik

si
6
(k1 + 2k2)

1
6
sik(1 + α)

1
3
sik

1
4
sik

s
6
(2i1k1 + i1k2

+2i2k2 + i2k1)

sk
6
[(1 + β)i1

+(1 + α)i2]

sk
3
(i1 + i2)

sk
12

(5i1 + 3i2)

si
3
(k1 + k2)

1
3
sik(1 + αβ) 8

15
sik 7

15
sik

si
12

(3k1 + 5k2)
sik
12

(5− β − β2)
7
15

sik
11
30

sik

si
12

(k1 + 3k2)
sik
12

(1 + α+ α2) 1
5
sik 2

15
sik

si
20

(k1 + 4k2)
sik
20

( 1+α)(1+α2)
2
15

sik
1
12

sik

si
40

(4k1 + 11k2)
sik
10

(1+α+α2−α3

4
)

11
15

sik
29
120

sik

si
60

(7k1 + 8k2)
sik
20

(1+α)(7
3
−α2) 1

5
sik 1

6
sik

Trapezoids: individual i- or k-values can be negative.
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Application to statically indeterminate problems

The statically redundant (un-
known) force X = B is computed
from the kinematic constraint, that
the displacement has to vanish at
point i of X (support):

fi = 0 .

The relation fi =

∫

l

MM

EI
dx

yields with

M = M (0)+X M (1) , M = M (1)

the statical redundant force

X = B = −
∫
M (0)M (1)dx∫
M (1)M (1)dx

.

A

A

F

F

B

X = B

“1′′

F

M (0)

M (1)
x

“0”-System

“1”-System

=

The integrals can be evaluated by resorting to the values tabulated on
page 146.
Remark: In n-fold statically indeterminate problems, n statically red-
undant (unknown) forces/moments Xi occur. They are determined from
n kinematic constraints (e. g. fi = 0).

Method of Castigliano

The derivative of the strain energy with respect to the external force
(moment) Fi is equal to the displacement (rotation) fi in the direction
of the force (moment) at the point where the force (moment) is applied.

fi =
∂Π

∂Fi
.

Reciprocity theorem of Maxwell and Betti

fik = fkifki

F
i

k i

k
F

fik
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P5.1Problem 5.1 The depicted sys-
tem is made of trusses with
identical axial rigidity EA.

Determine the vertical displace-
ment f of the force F .

a a a

a

F

Solution The problem is solved using conservation of energy W = Π .
To assume the value f the force has to do the work W = 1

2
F f . The

strain energy Π is calculated by

Π =
1

2

∑ S2
i li

EAi
=

1

2EA

∑
S2
i li .

Knowing the reaction forces
A = F/3 and B = 2F/3 the
normal forces in the truss sys-
tem can be tabulated

i li Si
S2
i li

F 2a

1
√
2a −√

2F/3 2
√
2/9

2 a F/3 1/9

3 a F/3 1/9

4 a −F/3 1/9

5
√
2a −√

2F/3 2
√
2/9

6 a 2F/3 4/9

7 a F 9/9

8
√
2a −2

√
2F/3 8

√
2/9

9 a 2F/3 4/9∑
S2
i li =

4

9
(5 + 3

√
2)F 2a

3

F BA

1

4

5

2 6 9

7
8

Thus we compute

f =
4

9

(5 + 3
√
2)

EA
Fa .

Alternatively the method of Castigliano can be applied. Using the strain
energy

Π =
1

2

∑ S2
i li

EAi
=

2

9

(5 + 3
√
2)

EA
F 2a

and the condition f = ∂Π/∂F we get

f =
∂Π

∂F
=

4

9

(5 + 3
√
2)

EA
Fa .
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P5.2 Problem 5.2 A beam (flexural rigidity
EI , axial rgidity EA → ∞) is loaded
by the force F and supported by the
inclined rope (axial rigidity EA).

Compute the vertical displacement f
in force direction. EI

EA

a a

a

F

Solution The problem can be solved by using the energy theorem

W = Π .

The work of the external force F is given by

W =
1

2
F f .

The strain energy consists of beam bending and tension in the rope:

Π = ΠS +ΠB .

With

�

A : 2aF −
√
2

2
aS = 0 � S =

4√
2
F

↑ : AV + S

√
2

2
− F = 0 � AV = −F

and

F

aF

B
A

S

M

45◦

x

M(x) = −Fx (0 ≤ x ≤ a)

we obtain for the rope

ΠS =
S2 l

2EA
= 4

√
2
F 2a

EA

and for the beam (using the symmetry of M(x))

ΠB =

∫
M2

2EI
dx = 2

a∫

0

F 2x2

2EI
dx =

1

3

F 2a3

EI
.

Finally, the energy theorem yields

f =
2

3

Fa3

EI
+ 8

√
2
Fa

EA
.

Note: In section AB of the beam exists a compressive normal
force N = −2F . The corresponding contribution to the strain energy
is zero, because the beam is assumed to have infinite axial rigidity.
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P5.3Problem 5.3 In the depicted truss
is loaded by the force F . All
trusses possess the same axial
rigidity EA.

Compute the vertical and hori-
zontal displacement of node III.

1

I

VI

a

F

a a

IV V

II III

3

2
4

5 6

7

8

9

Solution Using the principle of virtual forces the displacements follow
from

f =
∑ SiSi

EAi
li =

1

EA

∑
SiSi li .

As the system is statically determinate,
we can compute the forces in the truss
members Si due to the load F from
equilibrium considerations.
Loading node III by virtual forces “1”
in vertical or horizontal direction, pro-
vides the forces Si

(V ) or Si
(H) in the

truss members, respectively.

Si
(V )

Si
(H)

“1”

“1”

i li Si Si
(V ) SiSi

(V )li Si
(H) SiSi

(H)li

1 a −F −1 Fa 0 0

2
√
2a

√
2F

√
2 2

√
2Fa 0 0

3 a −2F −2 4Fa 0 0

4 a 0 0 0 0 0

5 a F 1 Fa 1 Fa

6 a F 1 Fa 1 Fa

7
√
2a −√

2F −√
2 2

√
2Fa 0 0

8 a 0 0 0 0 0

9 a F 0 0 0 0∑
SiSi

(V )li = (7 + 4
√
2)Fa

∑
SiSi

(H)li = 2Fa

This leads to the vertical and horizontal displacements:

fV = (7 + 4
√
2)

Fa

EA
, fH = 2

Fa

EA
.
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P5.4 Problem 5.4 The depicted plane
frame (flexural rigidity EI) is
subjected to two point forces F .

Compute for the rigid corner C
a) the horizontal displacement,
b) the vertical displacement,
c) the rotation.

A

C

2a

F

2a

B
F

Solution We use the principle of virtual forces, neglecting shear, ten-
sion and torsion contributions:

fi =

∫

l

MM

EI
dx

The bending moment M due to the external forces F is sketched below

F

F M

Fa

F F

to a) Horizontal displacement of the corner: We apply a horizontal
virtual force “1” at the corner C and determine the associated bending
moment.

“1”
2a

M

1

1

1

Using integration in sections together with the tabulated values on page
146 yields:
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fH =
1

EI

∫
MM dx =

2

EI

( a∫

0

MM dx+

2a∫

a

MM dx

)

=
2

EI

(
1

3
(a)(a)(Fa) +

a

2
(a+ 2a)Fa

)

=
11

3

Fa3

EI
.

to b) Vertical displacement of the corner: Application of a vertical
virtual force “1” yields no loading due to bending and thus no displa-
cement:

“1”

1

M M = 0 , fV = 0 .

to c) Rotation of the corner: The virtual moment “1”, applied at corner
C, yields the following bending moment M :

M

1

2a

1

1

2a

“1”

For the rotation ψ of the corner we obtain by use of the table on page
146:

ψ =
1

EI

( a∫

0

MM dx+

2a∫

a

MM dx

)

=
1

EI

(
Fa2

2
(1 +

1

2
) +

1

3
a Fa

1

2

)

=
11

12

Fa2

EI
.
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P5.5 Problem 5.5 Determine the vertical
displacement fB and the rotation ψB

in point B at the end of the frame.

All beams in the frame are rigid in
axial direction EA → ∞.

EI

q0

A

B

a

a

Solution Using the principle of virtual forces we can compute the dis-
placement and the rotation from

f =

∫
MM

EI
dx .

For the original and the auxiliary system we get:

q0 a
2

2 a 1

MVM MW

q0
“1” “1”

Using the table on page 146 we compute

fB =
1

EI

∫
MMV dx =

1

EI

[
a

4
· q0a

2

2
· a+ a · q0a

2

2
· a

]
=

5

8

q0a
4

EI
,

ψB =
1

EI

∫
MMWdx =

1

EI

[
a

3
· q0a

2

2
· 1 + a · q0a

2

2
· 1

]
=

2

3

q0a
3

EI
.
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P5.6Problem 5.6 The depicted frame
is constructed with beams having
identical flexural rigidity EI .

Compute the vertical and hori-
zontal displacement at the loading
point.

b

a
b

F

a

Solution According to the principle of virtual forces the displacements
are obtained from

f =

∫
MM

EI
dx .

The bending moments M due to the load and MV and MH due to the
auxiliary loads are given below:

F

a

b
F

a− b

b
F

“1′′

a

b1

a

b

a

b

“1′′

a− b

b

MHMVM

Fa

Fa
a− b

a

b

a

a

Using the table on page 146 we compute

fV =
1

EI

{
1

3
a(−Fa)(−a) + b(−Fa)(−a) +

1

3
b(Fa)a

}
=

Fa3

3EI

(
1 +

4b

a

)
,

fH =
1

EI

{
1

2
b(−Fa)(−b) +

1

3
b(Fa)a

}
=

Fa2b

3EI

(
1 +

3b

2a

)
.
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P5.7 Problem 5.7 The sketched system
consists of a clamped beam (EA →
∞) with flexural rigidity EI and
two bars of identical axial rigidity
EA.

Compute the vertical and horizon-
tal displacement at the point of load
application.

a

F

A

EI
EA

1

2

a

a

Solution The beam is subjected to bending, while the bars experience
tension or compression. We compute the displacements based on the
principle of virtual forces

f =

∫
MM

EI
dx+

∑
i

SiSi

EAi
li .

As the system is statically determinate, we obtain M and Si from equi-
librium conditions:

aF
MA = aF

F

AV = F

M

S1 =
√
2 F ,

S2 = −F .

The vertical displacement can be calculated by loading the system with
a force “1” in vertical direction. By replacing F by “1”the above results
can be used:

a

MV

S1V =
√
2 ,

S2V = −1 .
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Using the table on page 146 yields

fV =
1

EI

{
a(aF )a+

1

3
a(aF )a

}

+
1

EA

{√
2F ·

√
2 ·

√
2a+ (−F )(−1)a

}

=
4

3

Fa3

EI
+

(1 + 2
√
2)Fa

EA
.

To compute the horizontal displacement we use the following auxili-
ary system:

MA = a

a

“1”

1

2

AV = 0

AH = 1

MH

S1H = 0 ,

S2H = 1 .

The displacement fH follows from evaluation

fH=
1

EI

{
1

2
a(aF )a+ 0

}
+

1

EA
{0 + (−F ) · 1 · a}

=
Fa3

2EI
− Fa

EA
.

Note: For
EI

a2EA
=

1

2
it holds fH = 0. For a rigid beam (EI → ∞)

the load application point moves to the left (fH < 0).
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P5.8 Problem 5.8 Determine the verti-
cal displacement f in the center of
the beam.

a

2

EI
a

2

A C B

q0sinusoidal
load

Solution The principle of virtual forces yields the vertical displacement

f =

∫
MM

EI
dx .

The bending moment M due to the given loading is computed via in-
tegration:

q(x) = q0 sin
(π

a
x
)
, V = q0

a

π
cos

(π

a
x
)
, M = q0

a2

π2
sin

(π

a
x
)
.

For the virtual load “1” it follows:

M =

{
Ax =

1

2
x, x ≤ a/2

B (a− x) =
a− x

2
, x ≥ a/2

C

“1”

BA

x

The vertical displacement ist then obtained

f =

∫
MM

EI
dx =

1

EI

{ a/2∫

0

x

2
M dx+

a∫

a/2

(
a− x

2

)
Mdx

}
.

Integration with
∫

x sin cxdx =
sin cx

c2
− x cos cx

c

renders the result

f =
q0 a

2

2EI π2

⎧
⎪⎨
⎪⎩

⎡
⎢⎣
sin(

π

a
x)

π2

a2

−
x cos(

π

a
x)

π
a

⎤
⎥⎦

a/2

0

+

⎡
⎢⎣−a2

π
cos(

π

a
x)−

sin(
π

a
x)

π2

a2

+
x cos(

π

a
x)

π

a

⎤
⎥⎦

a

a/2

⎫⎪⎪⎬
⎪⎪⎭

=
a4

π4

q0
EI

.
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P5.9Problem 5.9 The sketched arch is
clamped and subjected to a verti-
cal force F .

Compute the vertical and horizon-
tal displacement at the point of
loading. Only deformations due to
bending shall be considered.

Solution We use the principle of
virtual forces. The displacements
are computed from

f =

∫
MM

EI
ds .

The bending moment M is obtai-
ned from equilibrium considerati-
ons

M = −FR cosϕ .

R

EI

F

s

R cos ϕ

F

M
Q

N

R(1− sin ϕ)

ϕ

To determine the vertical displacement we ap-
ply a force “1” in vertical direction. This yields

MV = −R cosϕ

together with ds = R dϕ the displacement

“1”

fV =
R

EI

π/2∫

0

MMV dϕ =
FR3

EI

π/2∫

0

cos2 ϕ dϕ =
πFR3

4EI
.

The auxiliary force in horizontal direction cau-
ses the bending moment

MH = −R(1− sinϕ)

and the displacement

“1”

fH =
R

EI

π/2∫

0

MMHdϕ =
R3F

EI

π/2∫

0

(cosϕ− sinϕ cosϕ) dϕ =
FR3

4EI
.

Note: For the integration the two relations cos2 ϕ = 1
2(1 + cos 2ϕ) and

sinϕ cosϕ = 1
2 sin 2ϕ were used.
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P5.10 Problem 5.10 The depicted
truss is made of members
with identical axial rgidity
EA.

Determine the normal forces
in the truss members and
the vertical displacement
under the load. a a

a

F

2

3

4

6

9

1 5

7

8

A

B C

Solution The support of the truss is statically indeterminate. We use
the reaction force C as statically redundant force and compute its value
from the support constraint

fC =
∑ Si Si li

EAi
=

1

EA

∑
Si Si li = 0 .

Here we only compute the normal forces in the “0”-system. The compu-
tation of these forces in the “1”- and “2”-system follow by an analogous
procedure.

“0”-system: “1”-system:

1

7

6

94

5 83

A

B C

IIII

II

2

“1”F

1

7

6

94

5 83

A

B C

IIII

II

2

0 0

0

0 0

0

0
0

S3

S2

F

S3
F
S1

For example at node I (“0”-system):

↑: S3 = −√
2S5 = −√

2F

→: S2 = F

For example at node B (“0”-System):

↑: S1 = −
√
2

2
S3 = F

With Si = S
(0)
i + C · S(1)

i and Si = S
(1)
i it follows

C = −
∑

S
(0)
i S

(1)
i li∑

S
(1)
i S

(1)
i li

=
3 + 2

√
2

7 + 4
√
2
F .
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i li S
(0)
i S

(1)
i S

(0)
i S

(1)
i li S

(1)
i S

(1)
i li S

(2)
i

1 a F −1 −Fa a 1

2 a F −2 −2Fa 4a 1

3
√
2a −√

2F
√
2 −2

√
2Fa 2

√
2a −√

2

4 a 0 1 0 a 0

5 a F 0 0 0 1

6
√
2a 0 −√

2 0 2
√
2a 0

7 a 0 0 0 0 0

8 a 0 0 0 0 0

9 a 0 1 0 a 0∑
=

(−3− 2
√
2
)
Fa

(
7 + 4

√
2
)
a

From this table we deduct the forces in the truss members

S1 =
4 + 2

√
2

7 + 4
√
2
F , S2 =

1

7 + 4
√
2
F , S3 = −4 + 4

√
2

7 + 4
√
2
F,

S4 = S9 =
3 + 2

√
2

7 + 4
√
2
F , S5 = F , S6 = −4 + 3

√
2

7 + 4
√
2
F, S7 = S8 = 0.

To compute the vertical displacement at the loading point we consider
the system as a statically determinate system loaded by F and C, which
fulfills the support constraint fC = 0. For this situation we know the
forces Si.

“2”-system:

F C

1

7

6

94

5 83

2

“1”

0

0

0 0

0

With the forces Si = S
(2)
i of the auxiliary system “2” we obtain

fF =
1

EA

∑
SiSi li

=
Fa

EA
(
7 + 4

√
2
)
[
(4 + 2

√
2) + 1− (4 + 4

√
2)(−

√
2)
√
2 + (7 + 4

√
2)
]

=
20 + 14

√
2

7 + 4
√
2

Fa

EA
.
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P5.11 Problem 5.11 Determine the ben-
ding moment and the horizontal
displacement fH of the support
B of the depicted frame structure

q0

A

B

EI
EI

2a

a

2a

Solution The system is statically
indeterminate. To determine sup-
port reactions we use the principle of virtual forces, where we consider
the moment X = MA as statical redundant reaction. Thus we obtain
the following bending moments and support reaction in the “0”- and
“1”-system:

“0”-system:

A
(0)
H = 0 ,

A
(0)
V = q0a ,

B(0) = q0a .

M (0)

q0

A
(0)
V

A
(0)
H

1
2
q0a

2

B(0)

“1”-system:

A
(1)
H = 0 ,

A
(1)
V = − 1

2a
,

B(1) =
1

2a
.

1

A
(1)
V

M (1)

B(1)A
(1)
H

“1′′

The condition that the rotation at position A has to vanish

ϕA = 0 =

∫
MM

EI
dx ,

yields with

M = M (0) +X M (1) and M = M (1)
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X = MA = −
∫
M (0)M (1)dx∫
M (1)M (1)dx

= −
1

3
· 2a

(
1

2
q0a

2

)
· 1

1

3
· 2a · 1 · 1 + 2a · 1 · 1

= − q0a
2

8
.

The support reactions and the bending moment follow as

AH = A
(0)
H +X ·A(1)

H = 0 ,

AV = A
(0)
V +X · A(1)

V =
17

16
q0a ,

B = B(0) +X · B(1) =
15

16
q0a .

M

15
16
a1

8
q0a

2

0, 44 q0a
2

To compute the horizontal displacement at B, the frame is considered
as a statically determinate system loaded by q0 and X = MA. At this
system an auxiliary force is applied (“2”-system) rendering the followi-
ng bending moment:

“2”-system:

A

B

2a a

“1”
M (2)

Using

M = M (0) +X ·M (1) and M = M (2)

we compute with the table on page 146

fH =
1

EI

∫
MMdx =

1

EI

{∫
M (0)M (2)dx+X

∫
M (1)M (2)dx

}

=
1

EI

{
2a

3

q0a
2

2
(2a+a)− q0a

2

8

[
1

6
·2a·1·(2 ·2a+ a) +

1

2
·2a·1 · 2a

]}

=
13

24

q0a
4

EI
.



164 Support reactions

P5.12 Problem 5.12 Compute the re-
action forces and the deflection
at points D and G.

Now an additional force of 2F
is applied at D. How does the
deflection at G change?

a a
A

EI

BD G C

F

a

2

a

2

Solution We apply the principle of virtual forces and use the reaction
force B as statically redundant force. Together with the bending mo-
ments in the “0”- and “1”-System

“0”-system:

“1”-system:

F

“1” M (1)

M (0)

B(0) = 2
3
FA(0) = 1

3
F

B(1) = −1
3A(1) = −2

3

1
3
a

2
3
aF

1
3
aF

2
3
a

the kinematic constraint fB = 0 yields the reaction force B:

X = B=−
1

EI

∫
M (0)M (1)dx

1

EI

∫
M (1)M (1)dx

= −
a

3

aF

3

(
−2a

3

)
+

a

6

[
2
aF

3

(
−2a

3

)

a

3

2a

3

2a

3
+

2a

3

2a

3

2a

3

+

aF

3

(
−a

3

)
+ 2

2aF

3

(
−a

3

)
+

2aF

3

(
−2a

3

)]
+

a

3

2aF

3

(
−a

3

)

a

3

2a

3

2a

3
+

2a

3

2a

3

2a

3

=
7

8
F .

Furthermore, we compute

A = A(0) +X · A(1) =
1

3
F − 7

8
F · 2

3
= −F

4
, C =

3

8
F .

To determine the deflection we consider the beam as a statically deter-
minate system loaded by F and B. From the two auxiliary systems

“2”-system:

M (2)
1
3

2
3

“1”

2
3
a

1
3
a
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“3”-system:

5
12
a

5
6

1
6

“1”

M (3) 1
6
a1

3
a

we obtain

fG =
1

EI

∫
[M (0) +X ·M (1)]M (2)dx

=
1

EI

{∫
M (0)M (2)dx+X

∫
M (1)M (2)dx

}

=
1

EI

{
2a

3

2aF

3

2a

3
+

7

8
F

[
a

3

(
−2a

3

)
a

3

+
a

6

(
−4a

3

a

3
− 2a

3

2a

3
− 2a

3

2a

3
− a

3

a

3

)]
+

a

3

2aF

3

2a

3

}

=
5

48

Fa3

EI
,

fD = fDG =
1

EI

∫
[M (0) +X ·M (1)]M (3)dx

=
1

EI

{∫
M (0)M (3)dx+X

∫
M (1)M (3)dx

}
= − 1

64

Fa3

EI
.

The deflection at G due to the additional load 2F is computed from
the reciprocity theorem of Maxwell-
Betti. Based on this theorem the
deflection fDG at D due to the for-
ce F in G is equal to the deflection
fGD at G due to the force F in D.
As a consequence of the force 2F
at D we obtain at G the deflection
2fGD . Thus, the total deflection at
G is given by

F

F

2F

fGD

GD

2fGD=2fDG

G
D

fDG

GD

fGD = fDG

f = fG + 2fDG

=

(
5

48
− 2

1

64

)
Fa3

EI
=

7

96

Fa3

EI
.
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P5.13 Problem 5.13 The depicted
frame is loaded by a constant
line load q0. The frame is
made of beams with identical
flexural rigidityEI .

Determine the reaction forces
in the supports.

Solution The frame is two
times statically indetermina-
te. We consider the reaction
force B and the horizontal
force CH as statically redun-
dant forces to obtain the de-
picted system. The unknown
forces X1 = B and X2 = CH

are computed from the kine-
matic constraints f1 = 0 and
f2 = 0.

a

A B C

a a

f1

f2
A

X1 = B

q0

q0

X2 = CH

Using the principle of virtual forces we construct the following basic
and auxiliary systems :

“0”-system:

A
(0)
V C

(0)
V

1
2
q◦a2

quadr. par.

M (0)

A
(0)
H

q0

A
(0)
V = q0a , A

(0)
H = 0 , C

(0)
V = q0a .

“1”-system:

M (1)

A
(1)
H

A
(1)
V C

(1)
V“1”

1
2
a

A
(1)
V = C

(1)
V = −1

2
, A

(1)
H = 0 .
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“2”-system:

M (2)

A
(2)
H

A
(2)
V C

(2)
V

aa

“1”

A
(2)
V = C

(2)
V = 0 , A

(2)
H = 1 .

From conditions

f1 =
1

EI

∫
[M (0) +X1M

(1) +X2M
(2)]M (1)dx = 0 ,

f2 =
1

EI

∫
[M (0) +X1M

(1) +X2M
(2)]M (2)dx = 0

we obtain by using the table on page 146

∫
M (0)M (1)dx = −2

5a

12

q0a
2

2

a

2
= −5q0a

4

24
,

∫
M (1)M (1)dx =

a3

6
,

∫
M (1)M (2)dx =

a3

2
,

∫
M (0)M (2)dx = −2

3
q0a

4 ,

∫
M (2)M (2)dx = 2

a

3
(−a)(−a) + 2a(−a)(−a) =

8

3
a3

the following two equations

−5q0a
4

24
+X1

a3

6
+X2

a3

2
= 0 , −2q0a

4

3
+X1

a3

2
+X2

8a3

3
= 0 .

The solution is given by

X1 = B =
8

7
q0a , X2 = CH =

1

28
q0a

and the remaining support reactions follow

AV =A
(0)
V +X1A

(1)
V +X2A

(2)
V = q0a− 8

7
q0a · 1

2
+ 0 =

3

7
q0a ,

AH=A
(0)
H +X1A

(1)
H +X2A

(2)
H =

1

28
q0a ,

CV =q0a− 8

7
q0a · 1

2
=

3

7
q0a .
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P5.14 Problem 5.14 An elastic circular arc
is loaded by two opposing forces F .

Determine the bending moment and
the compression in the circular arc.
Assume that the arc is rigid with
respect to an axial deformation.

Solution We cut the arc at the mid
plane (at ϕ = 0, π) and realize that
the system is internally statically
indeterminate (the stress resultants
cannot be determined from equilibrium
conditions). The unknown bending
moment X = MA is computed from

R
ϕ

F

F

F

X = MA

F

2

MA

F

2

A

EI

the fact that the slope at A has to vanish (symmetry!). Use of the prin-
ciple of virtual forces yields:

“0”-system: “1”-system:

F

2

ϕ

F

F

2 “1”“1”

ϕ

M (0) =
1

2
FR(1− cosϕ) , M (1) = 1 .

From

ψA =
1

EI

∫
MMds = 0

we obtain with

M = M (0) +X ·M (1) , M = M (1) , ds = R dϕ

for MA:

X = MA = −
∫
M (0)M (1)ds∫
M (1)M (1)ds

= −
2

π/2∫
0

FR

2
(1− cosϕ)R dϕ

2
π/2∫
0

R dϕ

= −FR

(
1

2
− 1

π

)
.

These intermediate results yield the bending moment in the range 0 ≤
ϕ ≤ π/2

M = M (0) +X ·M (1) =
1

2
FR

(
2

π
− cosϕ

)
.
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To compute the vertical displacement at the loading point we consider
the semicircular arc as being loaded by the force F and the moment MA

and to be simply supported (statically determinate). For this system
the bending moment M is known. Form the related auxiliary system
we obtain

M =
1

2
R(1− cosϕ) . ϕ

1

2

1

2

“1”

With this result the displacement follows

fF = 2
1

EI

π/2∫

0

MMR dϕ =
FR3

2EI

π/2∫

0

(
2

π
− cosϕ

)
(1− cosϕ)dϕ

=
FR3

2EI

[
2

π
ϕ−

( 2

π
+ 1

)
sinϕ+

ϕ

2
+

1

4
sin 2ϕ

]π/2

0

=
FR3

8EI

(
π − 8

π

)
.

The compression of the circular arc yields

Δv = 2fF =
FR3

EI

π2 − 8

4π
.

Using the theorem of Castigliano to solve the problem, we derive with

M =
1

2
FR(1− cosϕ) +MA and Π =

∫
M2

2EI
ds

and by using the fact that the slope at A has to vanish

ψA =
∂Π

∂MA
= 0

the result

∫
M

∂M

∂MA
ds = 0 � 2

π/2∫

0

[
1

2
FR(1− cosϕ) +MA

]
· 1 · R dϕ = 0

� MA = −FR

[
1

2
− 1

π

]
and M =

1

2
FR

(
2

π
− cosϕ

)
.

The displacement fF is computed from

fF =
∂Π

∂F
=

1

EI

∫
M

∂M

∂F
ds

=
2

EI

π/2∫

0

[
FR

2

( 2

π
− cosϕ

)][R
2

( 2

π
− cosϕ

)]
R dϕ=

FR3

8EI

(
π − 8

π

)
.
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P5.15 Problem 5.15 The depicted pi-
pe � is clamped on one side
and supported by the additional
rope � .

Determine the support reac-
tions in A and B, if the pipe is
loaded by the force F .

B

z

l1

y

F

l2

A

EA2

2r

EI1
GIT1

x ©1
©2

Given:
G1

E1
=

3

8
,

EI1l2

EA2l
3
1

=
1

100
,

r

l1
=

1

10
.

Solution The system is statically indeterminate. We choose the reacti-
on force in B as statically redundant force. This leads to the following
“0”- and “1”-system:

“0”-System:

A(0) = F ,

M
(0)
A = −l1F ,

M
(0)
T = rF .

F
F

y
x

x

z

M
(0)
T

A(0)

M
(0)
A

z

©1

M (0) M
(0)
T N (0)

©2
N (0)=0

l1F rF

©1 ©1©1

©2 ©2

“1”-System:

A(1) = −1 ,

M
(1)
A = l1 ,

M
(1)
T = r .

y
x

z

“1” “1”

z

x

M
(1)
T

A(1)

M
(1)
A ©2 ©2©1

M (1) M
(1)
T N (1)

©2

“1”
l1 r

©1 ©1 ©1

©2 ©2
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From the constraint, that the displacement at B has to vanish,

fB = 0 =

∫
MM

EI
dx+

∫
MTMT

GIT
dx+

∫
NN

EA
dx ,

we obtain with

M = M (0) +X ·M (1) , MT = M
(0)
T +X ·M (1)

T ,

N = N (0) +X ·N (1) , M = M (1) , MT = M
(1)
T , N = N (1)

the unknown force X = B

X = B = −

∫
M (0)M (1)

EI1
dx+

∫
M

(0)
T M

(1)
T

GIT1
dx+

∫
N (0)N (1)

EA2
dx

∫
M (1)M (1)

EI1
dx+

∫
M

(1)
T M

(1)
T

GIT1
dx+

∫
N (1)N (1)

EA2
dx

= −
1

EI1

1

3
l1(−l1F )l1 +

1

GIT1
l1(rF )r + 0

1

EI1

1

3
l1 l1 l1 +

1

GIT1
l1r r +

1

EA2
l2 · 1 · 1

.

Using IT1 = 2I1 (circular cross section!) and the given relations leads to

X = B =
96

107
F .

The support reactions at A are given by

A = A(0) +X · A(1) = F − 96

107
F =

11

107
F ,

MA = M
(0)
A +X ·M (1)

A = −l1F +
96

107
l1F = − 11

107
l1F ,

MTA = M
(0)
T +X ·MT (1) = rF − 96

107
rF =

11

107
rF .
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P5.16 Problem 5.16 Determine the second
moment of area Iy for the depicted stati-
cally indeterminate structure, such that
the vertical displacement at point K is
exactly wK = 1 cm.

Given: E = 21 · 107 kN/m2,

a = 3 m,

q = 5 kN/m.

q

K

EA = ∞

a a

a

a

Solution To determine the displacement at point K we first have to
compute the stress resultants in the statically indeterminate system.
For this a hinge is introduced at K.

“0”-system:

4
3
qa

2
3
qa2

5
6
qa2

Q0 M0

q

1
3
qa

2
3
qa

2
3
qa

1
3
qa4

3
qa

“1”-system:

1
a

1
a

1
a

1
a

+1

+1

“1′′

Q1 M1
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The rotations at point K in the “0”- and “1”-system are given by

EIyδ10 =
1

6
a · 1 · 2

3
qa2 +

1

6
a · 1 · 5

6
qa2 +

1

3
a · 1 · 1

8
qa2 =

7

24
qa3 ,

EIyδ11 = 4 ·
(1
3
· a · 12

)
=

4

3
a .

With

δ10 +X1δ11 = 0

we determine the statically
redundant quantity
(bending moment at K)

X1 = − 7

32
qa2 ,

which leads to the total bending moment.

− 7
32
qa2

M2
3
qa2

5
6
qa2

− 7
32
qa2

To compute the displacement of point K we apply in the statically de-
terminate “0”-system a force “1”and compute the bending moments.

1
3

1
3
a

4
3

4
3

2
3
a

1

2
3

M̄

2
3

EIyδ1K = 2 ·
(1

3
a
a

3

2

3
qa2

)
− 1

6
a
a

3

(
− 7

32
qa2

)

+
1

6
a
2a

3

(
− 7

32
qa2

)
+ 2

(1

3
a
2a

3

5

6
qa2

)
+ 2

(1

3
a
2a

3

1

8
qa2

)

= qa4
( 4

27
− 7

576
− 14

576
+

10

27
+

1

18

)

=
929

1728
qa4.

The required second moment of area results from condition δ1K =wK

Iy =
1

EwK

929

1728
qa4 =

1

21 · 103
929

1728

5

100
3004 = 10368 cm4 .
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P5.17 Problem 5.17 The depicted beam with
flexural rigidity EI is statically indeter-
minately supported.

Compute the deflection at the center of
the beam.

q0

A

a

B
x

Solution We regard the reaction force in B as statical redundant force
and use the principle of virtual forces to determine B from the cons-
traint

fB =

∫
MM

EI
dx = 0 .

For the “0”- and “1”-system we obtain:

“0”-system:
q0

1
2
q0a

2

M (0)(x) = − 1
2
q0(a− x)2

“1”-system:

a

“1” M (1)(x) = (a− x)

With the help of the table on page 146 we deduct

X = B = −
∫
M (0)M (1)dx∫
M (1)M (1)dx

=
3

8
q0 a .

To determine the vertical displacement, the beam is considered as a
simply supported beam on two supports. For this situation we compu-
te the bending moment due to the (“2”-system) under a virtual load.

“2”-system: “1”
M

a
4

With M = M (2) and M = M (0) +XM (1) it follows

fV =
1

EI

∫
(M (0) +XM (1))M (2)dx

=
1

EI

∫
(M (0)M (2))dx+

X

EI

∫
(M (1)M (2))dx

=
1

EI

(
− 7

384
q0 a

4 +
X

16
a3

)
=

qa4

192EI
.
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P5.18Problem 5.18 The sketched frame
(axial rigidity EA → ∞, flexural
rigidity EI) is closed by an elastic
truss (axial rigidity EA). The
system is subjected to a constant
line load q0

Compute the force in the truss.
q0

EI

EA

EI

2a

a

Solution The system is internally statically indeterminate. We choose
the force in the truss as statically redundant force. From the principle
of virtual forces follow the basic and auxiliary system:

“0”-system:

1
2
q0a

2

quadr. Par.q0

S(1)=1
“1”

M (0)

M (1)

a

a

a

a

AH=q0a

B=1
4
q0aAV=

1
4
q0a

“1”-System:

From the condition, that difference in the displacement of the frame
and the end of the truss has to vanish,

Δf =
1

EI

∫
MM dx+

SS2a

EA
= 0 ,

follows together with

M = M (0) +X ·M (1) , M = M (1) , S = X , S = S(1) = 1

the force in the truss

X =

− 1

EI

∫
M (0)M (1)dx

1

EI

∫
M (1)M (1)dx+

2a

EA

=−
1

2
2a

(1

2
q0a

2
)
(−a) +

1

4
a
(1

2
q0a

2
)
(−a)

2

[
1

3
a(−a)(−a)

]
+ 2a(−a)(−a) +

2aEI

EA

=
15

64

1

1 +
3EI

4EAa2

q0a .
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P5.19 Problem 5.19 The semicircular arc (fle-
xural rigidity EI) is supported by a bar
(axial rigidity EA) and loaded by a force
F .

Compute the force in the bar and the
deflection at the connection point of bar
and arc.

C

EAa
F

EI

A B

Solution The system is statically indeterminate. We use the principle
of virtual forces and the force in the bar as statically redundant force.
This leads to the following “0”- and “1”-system:

“0”-system:

M (0)(ϕ)=Fa sinϕ ,

S(0)=0 .

a
FϕAH = F

“1”-system:

M (1)(ϕ)=
1

2
a(1− cosϕ) ,

S(1)=1 .

“1′′

“1′′

C(1) = 1
B(1) = 1/2A

(1)
V = 1/2

ϕ

The difference in displacements of arc and bar has to vanish:

Δf =
1

EI

∫
MM dx+

S Sa

EA
= 0 , with

M = M (0) +X ·M (1) , M = M (1) , S = X , S = S(1) = 1 .

This condition provides the force in the bar

S =

− 1

EI

∫
M (0)M (1)dx

1

EI

∫
M (1)M (1)dx+

a

EA

=−
2
Fa

2

π/2∫
0

sinϕ(1− cosϕ)dx

2
a2

4

π/2∫
0

(1− cosϕ)2dx+
aEI

EA

= − 4F

(3π − 8) + 8
EI

EAa2

.

The deflection f of the arc is given by the deformation of the bar:

f = − S a

EA
=

4Fa

(3π − 8)EA+ 8
EI

a2

.
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P5.20Problem 5.20 The depicted frame
(axial rigidity EA → ∞, flexural
rigidity EI) is loaded by a force F .
The bar � has the axial rigidi-
ty EA, while bar � is considered
to be rigid.

Determine the force S2 in bar �
and the vertical displacement vB at
point B. a a a

a

a
EA

EI

EI

A

B

F

rigid

�

�

Solution The system is statically determinate supported, but due to
the rigid truss internally statically indeterminate. To compute the for-
ce S2 in bar � we use the following “0”- and “1”-systems. The reaction
forces and the force in bar � can be determined from equilibrium con-
ditions.

“0”-system:

AV

S1

AH

F

AV = F , AH = F , S1 = F

“1”-system:

ĀH

S̄1

ĀV

“1”

ĀV = ĀH = S̄1 = 0 , S̄2 = 1

The bending moments M0 and M̄1 of both systems are sketched below:

“0”-System:

M0

−2Fa

“1”-System:

M̄1

−
√
2

2
a
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When evaluating the principle of virtual forces we have to consider that
the bar is rigid. This yields

α10 =
1

EI

∫
M0M̄1dx =

1

EI
·1
6
a(−Fa−4Fa)

√
2

2
a(−1)·2 =

5
√
2

6EI
Fa3 ,

α11 =
1

EI

∫
M̄2

1dx =
1

EI
· 1
3
a · 1

2
a2 · 2 =

a3

3EI
,

and for the force in bar � we obtain

S2 = X = −α10

α11
= −5

√
2

6EI
Fa3 · 3EI

a3
= −5

√
2

2
F .

At point B the vertical displacement vB and the force F have the same
direction, hence we can use the energy theorem:

1

2
FvB =

1

2

∫
M2

EI
dx+

1

2

∑
i

S2
i li

EA
.

Its application is based on the bending moment in the total system
M = M0 +XM̄1:

1

2
Fa

−Fa

M

Evaluation the integrals using the bending moment M yields

∫
M2

EI
dx =

1

EI

(
1

3
aF 2a2 +

1

3
· 2
3
aF 2a2 +

1

3
· 1
3
a
1

4
F 2a2

)
·2 =

7

6EI
F 2a3

Furthermore, with the force S1 in the bar (note, bar � is rigid)

∑
i

S2
i li

EA
=

F 2a

EA

we compute the vertical displacement

vB =

(
7a2

6EI
+

1

EA

)
Fa .
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P5.21Problem 5.21 A trapezoidal,
frame (axial rigidity EA,
flexural rigidity EI) with two
bars (axial rigidity EA) is
loaded by a force F .

Compute the horizontal
and vertical displacement at
the loading point. l

2

l

2

l

2

l

2

EAEA

EI

√
3

2
l

F

Solution Since the vertical displacement vF of the load has the same
direction as load F , we can determine vF by the conservation of energy:

1

2
FvF =

1

2

∫
M2

EI
dx+

1

2

∑
i

S2
i li

EAi
.

The structure is statically determinate supported. Thus reaction forces,
stress resultants, and the forces in the bars can be determined from
equilibrium conditions.

F l

4

F l

4

M

S1 = S2 =
F√
3

F

2

1 2

F

F

2

Using the bending moment and the bar forces yields

FvF =
1

EI

[
2
1

3

(
F l

4

)2

l +

(
F l

4

)2

l

]
+

1

EA

[
2

(
F√
3

)2

l

]
.

Thus we compute for the vertical displacement

vF =
11

12

F l3

EI
+

F l

3EA
.
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The horizontal displacement at the loading point follows by loading
with a virtual “1”force in horizontal direction. Bending moment and
forces in the bars are computed from equilibrium conditions.

M̄

S̄1 = 1

S̄2 = −1

√
3

2
l

1

“1′′“1′′

2

Using the “0”- and “1”-system we determine the horizontal displace-
ment

uF =

∫
MM̄

EI
dx+

∑
i

SiS̄ili
EAi

=
1

EI

(
1

3

F l

4

√
3

2
l · l + 1

2

F l

4

√
3

2
l · l

)

with the final result

uF =
5
√
3

48

F l3

EI
.

Note: The deformation of the bars and the right part of the frame
do not contribute to the horizontal displacement.
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The total potential of elastic systems loaded by conservative forces
consists of an external potential Π(e) of the applied forces and the
potential (strain energy) Π(i) of the internal forces:

Π = Π(e) +Π(i) .

In an equilibrium state,

δΠ = 0

holds.
Formal application of the stability conditions for rigid bodies (see
book 1, chapter 7) to elastic systems yields

δ2Π = δ2Π(e) + δ2Π(i)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

> 0 stable equilibrium,

= 0 indifferent equilibrium,

< 0 unstable equilibrium.

The critical load of an elastic system is reached, if the equilibrium is
indifferent . Besides the original equilibrium state, neighboring equili-
brium states exist related to deformation (“buckling”). Critical loads
and associated equilibirum states can be determined from equilibrium
conditions in the deformed state or by investigating δ2Π.

For an elastic bar under compression equilibrium conditions in the de-
formed state provide the differential equation for Euler’s column

x

EI F

w wIV + λ2w′′ = 0 , λ2 =
F

EI

with the general solution

w = A cosλx+B sinλx+ Cλx+D .

The constants A, B, C and D are determined from the boundary condi-
tions for the kinematic and static quantities. Note that these conditions
have to be formulated in the deformed state. For example, under the
assumption of small rotations an elastic support at position x = 0 is
described by
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F x

w(0)
w′(0)c

w′(0)F

Fw′(0)

cw(0)

Q(0)
N

Q(0) = cw(0) − Fw′(0) � EIw′′′(0) + cw(0) − Fw′(0) = 0 ,

M(0) = 0 � EIw′′(0) = 0 .

Four characteristic boundary conditions establish the Euler buckling
cases:

������
��
��
��

��������

�
�
�
�

��
����

��
��
��
��

����
��������

F F F F

l

1. 2. 3. 4.

π2EI
(l/2)2

π2EI
(l/

√
1.43)2

π2EI
l2

Fcrit =
π2EI
(2l)2

Approximate solutions for the critical load can be obtained by
using the ansatz w̃(x) in the energy functional for buckling (Rayleigh-
quotient):

Π =
1

2

l∫

0

(
EIw̃′′2dx− F̃critw̃

′2
)
dx = 0 � F̃crit =

l∫
0

EIw̃′′2dx

l∫
0

w̃′2dx

.

To determine F̃crit, the ansatz w̃(x) has to satisfy the essential (kinema-
tic) boundary conditions (note that the result for F̃crit improves, if w̃(x)
satisfies also the static boundary conditions). The approximate soluti-
on is in general on the unsafe side, because the inequality F̃crit ≥ Fcrit

holds.

Individual springs at position xi are included in the nominator by
c[w̃(xi)]

2, while torsion springs are incorporated by cT [w̃
′(xi)]

2:

������������ �������� ������������ ������������

cT

c

x
F

l

lD
lF

F̃crit =

l∫
0

EIw̃′′2dx+ cT [w̃
′(lD)]2 + c[w̃(lF )]

2

l∫
0

w̃′2dx

.
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P6.1 Problem 6.1 Both depicted
systems consist of rigid bars
supported by elastic springs.

Determine the critical loads
Fcrit.

c c

a

F

a

1)

a

F

c

aa

2)

Solution to 1) We consider
the system in the deflected
state. From equilibrium

F

δϕ
c2aδϕ

caδϕ

2aδϕ

A

�

A : a(caδϕ) + 2a(2caδϕ)− 2aδϕF = 0

we obtain

δϕ(5ca− 2F ) = 0 .

Thus a neighboring equilibrium state (δϕ �= 0) related to the equilibri-
um state ϕ = 0 is only possible for

Fcrit =
5

2
ca .

to 2) Equilibrium conditions
for the defelcted state

BF

G

caδϕ

δϕ

A

aδϕ
aδϕ

©2
δϕ

©1

�

A : a(caδϕ)− 2aB + aδϕF = 0 ,

�
�

G : 2aδϕ F − aB = 0

provide after elimination of B

δϕ(ca− 3F ) = 0 .

This results in the critical force

Fcrit =
ca

3
.
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P6.2Problem 6.2 The depicted frame
consists of four rigid bars connec-
ted by hinges and torsional
springs with stiffness cT .

Determine the critical load qcrit.

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��������

b

2a

cT

cT

cT

cT

q

Solution From the sketched deflected state follows the geometric rela-
tion:

f = b (1− cosϕ) .

Hence the potential energy is given by

Π = Π(i) +Π(a)

= 4
1

2
cT ϕ2 − 2qaf

= 2cT ϕ2 − 2qab(1− cosϕ) . ������������ �
�
�
�

��
��
��
��
��
��
��
��
�
�
�
�

f

ϕ

2aq

The system is in equilibrium, if

δΠ =
dΠ

dϕ
δϕ = (4cTϕ− 2qab sinϕ)δϕ = 0 .

Thus for equilibrium in the deflected state with δϕ �= 0, we must have

4cTϕ− 2qab sinϕ = 0/; .

The trivial equilibrium state is related to ϕ = 0.

Using the second variation of the potential energy we can determine
the type of the equilibrium

δ2Π =
d2Π

dϕ2
(δϕ)2 = (4cT − 2qab cosϕ)(δϕ)2

⎧
⎪⎪⎨
⎪⎪⎩

> 0 stable,

= 0 indifferent,

< 0 unstable

At the trivial equilibrium state (ϕ = 0) the system is indifferent for the
critical load

qcrit =
2cT
a b

.
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P6.3 Problem 6.3 The depicted
system consists of rigid
bars that are elastically
supported.

���������� �������������� ��
��
��
��
�
�
�
�
�
�
�
�
��
��
��
��c c

a a a

F

Determine the critical loads and sketch the associated buckling figures.

Solution The system has
two degrees of freedom.
The equilibrium conditions
in the deflected state are A

G

c(aδϕ1 + aδϕ2)
caδϕ1

δϕ1

aδϕ1

δϕ2 F©2
aδϕ1 + 2aδϕ2

©1

�

A : ca2δϕ1 + 2ca2(δϕ1 + δϕ2)− a(δϕ1 + 2δϕ2)F = 0 ,

�
�

G : ca2(δϕ1 + δϕ2)− 2aδϕ2F = 0 .

Using λ = F/ca we obtain the homogeneous system of equations

(3− λ)δϕ1 + 2(1− λ)δϕ2 = 0 ,

1 · δϕ1 + (1− 2λ)δϕ2 = 0 .

For a non-trivial solution the determinant of the coefficient matrix has
to vanish:
∣∣∣∣∣∣
(3− λ) 2(1− λ)

1 (1− 2λ)

∣∣∣∣∣∣
= 0 � λ2− 5

2
λ+

1

2
= 0 �

λ1 =
5 +

√
17

4
,

λ2 =
5−√

17

4
.

Re-substituting provides

F1 =
5 +

√
17

4
c a , δϕ1 =

3 +
√
17

2
δϕ2

�
�
�
�

��
��
��
��
�
�
�
�
�
�
�
� δϕ1

δϕ2

F1

and

F2 =
5−√

17

4
c a , δϕ1 = −

√
17− 3

2
δϕ2.

������������
F2

δϕ2

δϕ1

The originally straight equilibrium state can buckle into two neigh-
boring states, because the system has two degrees of freedom. Since
F2 < F1, force F2 is the critical load: Fcrit = F2.
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P6.4Problem 6.4 Determine for the
depicted elastic bar the con-
ditions for buckling and the
critical load.

x
l

F EI

Solution From the general solution of the Euler coloumn

w = A cos λx+B sinλx+ Cλx+D , λ2 = F
EI ,

w′ = −Aλ sinλx+Bλ cos λx+ Cλ ,

w′′ = −M/EI = −Aλ2 cos λx−Bλ2 sinλx ,

w′′′ = −Q/EI = Aλ3 sinλx−Bλ3 cos λx

in conjunction with the boundary conditions, we derive

w(0) = 0 : � A+D = 0 � D = −A ,

w′(0) = 0 : � B + C = 0 � C = −B ,

w′(l) = 0 : � −A sinλl +B cos λl + C = 0 ,

Q(l) = 0 : � A sinλl −B cos λl = 0 .

Inserting C = −B yields for the last two equations

A sinλl −B(cosλl − 1) = 0 ,

A sinλl −B cos λl = 0 .

This leads to B = 0, and the condition of buckling is given by

sin λl = 0 � λnl = nπ (n = 1, 2, 3, . . .) .

The smallest eigenvalue λ1l = π provides the critical load

Fcrit = π2EI

l2
.

Inserting the constants and the eigenvalue yields the buckling shape

w = A(cos
πx

l
− 1) ,

where A remains undetermined.

Note: The critical load for the considered case is identical to the
2nd Euler buckling case.
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P6.5 Problem 6.5 The depicted
beam is subjected to axial
compression and is supported
at both ends elastically by
torsional springs.

Given.: EI = l cT .

���������� ����������

cT EI

l

cT

x

F

a) Determine the critical load.

b) Compute with the ansatz w̃1(x) = a(l−x)x and w̃2(x) = a sin(πx/l)
the approximate solution for the critical load via the Rayleigh-quotient.

Solution to a) The general solution of the buckling problem

w = A cosλx+B sinλx+ Cλx+D , λ2 =
F

EI

yields with the boundary conditions

w(0) = 0 , M(0) = −EIw′′(0) = −cTw
′(0) ,

w(l) = 0 , M(l) = −EIw′′(l) = +cTw
′(l)

and with the abbreviation κ = EI/lcT the following system of equations

A+D = 0 ,

κAλ2l = −Bλ− Cλ ,

A cos λl +B sin λl +Cλl +D = 0 ,

κAλ2l cos λl + κBλ2l sinλl = −Aλ sinλl +Bλ cosλl + Cλ .

Elimination of the constants yields an equation for the eigenvalues

2− 2(1 + κλ2l2) cosλl − λl[1− (κλl)2 − 2κ] sinλl = 0 .

For κ = 1 we deduce from this equation (e. g. by a graphical solution
method) the first eigenvalue and the associated critical load

λ1l = 3.67 � Fcrit = λ2
1EI= 13.49

EI

l2
.

Note: We obtain the eigenvalue equations for a beam clamped on both
ends as special case (κ = 0 or cT → ∞)

2− 2 cos λl − λl sinλl = 0 � λl = 2π ,

and similarily for the simply supported beam κ → ∞ or cT → 0)

sinλl = 0 � λl = π .
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to b) To determine the critical load with the first ansatz we need to
compute the derivatives:

w̃1(x) = a (lx− x2), w̃′
1(x) = a (l − 2x), w̃′′

1 (x) = −2a .

Substituting this into the formula of the Rayleigh-quotient yields:

F̃crit 1 =

l∫
0

EI · (−2a)2 dx+ cT [a (l − 0)]2 + cT [a (l − 2l)]2

l∫
0

[a (l − 2x)]2 dx

.

Integration and rearrangement yields

F̃crit 1 =

[
4a2EIx

]l
0
+ cT a

2l2 + cT a2l
2

[
a2l2x− 2a2lx2 +

4

3
a2x3

]l
0

=
4a2lEI + cT a

2l2 + cT a
2l2

a2l3 − 2a2l3 +
4

3
a2l3

.

Inserting lcT = EI leads to the final result

F̃crit 1 = 18
EI

l2
.

Analogously the second ansatz renders step by step

w̃′
2(x) =

π

l
a cos

(π

l
x
)
, w̃′′

2 (x) = −
(π

l

)2

a sin
(π

l
x
)
,

F̃crit 2 =

l∫
0

EI
[−(π

l

)2
a sin

(π
l
x
)]2

dx+ cT
(π
l
a
)2[

cos2
(π
l
0
)
+ cos2

(π
l
l
)]

l∫
0

[π
l
a cos

(π
l
x
)]2

dx

=

EI
(π

l

)2 l∫
0

sin2
(π
l
x
)

dx+ cT
[
cos2(0) + cos2(π)

]

l∫
0

cos2
(π

l
x
)

dx

=

EI
(π
l

)2 [1
2
− 1

4

l

π
sin

(
2
π

l
x
)]l

0

+ 2cT

[
1

2
+

1

4

l

π
sin

(
2
π

l
x
)]l

0

=

EI
(π
l

)2 (1

2
l − 0

)
+ 2cT

1

2
l − 0

,

� F̃crit 2 =
EI

(
π2 + 4

)
l2

= 13.87
EI

l2
.
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P6.6 Problem 6.6 A beam is clamped
at the left end and is elastically
supported at B by a spring (spring
constant c).

Deduce the condition for buckling.

B

c

EI

l
x

F

Solution The general solution for the buckling problem is given by

w = A cosλx+B sinλx+Cλx+D , λ2 = F
EI ,

w′ = −Aλ sinλx+Bλ cosλx+ Cλ ,

w′′ = −M/EI = −Aλ2 cos λx−Bλ2 sinλx ,

w′′′ = −Q/EI = Aλ3 sinλx−Bλ3 cosλx .

The boundary conditions

w(0) = 0 ,

w′(0) = 0 ,

M(l) = 0 ,

Q(l) = −cw(l) + F w′(l)

Q(l)

B

Q(l)

w(l)Fw′(l) N

cw(l)

B w′(l)

lead to the homogeneous system of equations

A+D = 0 ,

B + C = 0 ,

−A cos λl −B sinλl = 0 ,

A cos λl +B sin λl +C(λl − EIλ3/c) +D = 0 .

Eliminating the constants yields the equation for the eigenvalues (buck-
ling condition)

tanλl = λl − (λl)3
EI

cl3
.

tanλl

λl − (λl)3

π

λl

λ1l

tanλl

π/2

2

0

−2

−4

The solution of this transcendental
equation can by obtained graphi-
cally. The special case EI/cl3 = 1
yields the first eigenvalue

λ1l ∼= 1.81 � Fcrit
∼= 3.27

EI

l2
.
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P6.7Problem 6.7 The depicted beam
consists of a rigid and an elastic
part (flexural rigidity EI).

���������� �
�
�
�
�
�
�
�

��
��
��
��
��
��
��
��x

rigid EI

a a

F

Determine the bucking condition and the critical load.

Solution The general solution of the buckling problem is given by

w = A cos λx+B sinλx+ Cλx+D , λ2 =
F

EI
.

From the boundary and transmission conditions

A Bx

w′(0)

ϕa

F

M(0) Q(0)

ϕ = w′(0)

N(0)

w(a) = 0 ,

M(a) = −EIw′′(a) = 0 ,

w(0) = ϕa = w′(0)a ,

Q(0) = Fw′(0)

we derive

A cosλa+B sin λa+ Cλa+D = 0 ,

A cosλa+B sin λa = 0 ,

A+D = Bλa+ Cλa ,

EI Bλ3 = F (Bλ+ Cλ) .

This yields the constants C = 0, D = 0, A = Bλa and the buckling
condition

tanλa
tanλa

π

−3

−2

−1

0

1

−λa

π/2 λ1a

λa

tanλa = −λa .

The graphical (or numerical) solution
renders the first eigenvalue

λ1a ∼= 2.03

and hence the critical load

Fcrit
∼= 4.12

EI

a2
.
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P6.8 Problem 6.8 Consider the sketched half-
frame with different cross section data in the
regions � and � .

Given: l1 = 5.0 m ,

l2 = 1.0 m ,

E = 2.1 · 104 kN/cm2 ,

αT = 1.2 · 10−5 1/K ,

A1 = 50.0 cm2 ,

I1 = 500 cm4 ,

I2 = 10000 cm4 .

How much can region � be heated until
buckling occurs?

��
��
��
��
��
��
��
��

l2

l1 ©1

©2

Solution We choose a substitute system for
region � according to Euler case 2 with
length l1. For this case the buckling load is:

Fb = π2 EI1
l21

= π2 2.1 · 104 · 500
5002

= 414.52 kN .

The displacements of shaft � and beam �
are given by:

f =
Fb l

3
2

3EI2
=

414.52 · 1003
3 · 2.1 · 104 · 104

= 0.658 cm ,

Δl1 = ε1l1 = −Fk l1
EA1

+ αTΔT l1

= −0.1974 + 6 · 10−3ΔT .

�
�
�
�
�
�
�
�

ΔT

−Δl1

f

Fk

l1

Fk

Using compatibility

f = Δl1 � 0.658 = −0.1974 + 6 · 10−3ΔT

we can determine the required temperature difference

ΔT = 142.5 K .
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P6.9Problem 6.9 The depicted sys-
tem consists of bars with diffe-
rent flexural rigidity.

Assign the individual bars to
the corresponding Euler cases
and determine which bar is
first buckling for the ratio
EI2 = 2EI1.

a

aa2a

EI1EI2

EI1

©3
©2 ©1

F

Solution The Euler cases are determined from the table on page 183:

Bar � and bar � correspond to the second Euler buckling mode, be-
cause these bars are hinged at both ends.

Bar � is clamped at the right side and simply supported at the left
side. This corresponds to the third Euler case.

The forces due to the load F are given by

S1 = − F√
2
,

S2 = − F√
2
,

S3 = −F

2
.

S2

S3

S1

F

Thus we obtain the following critical forces

F1 crit√
2

=
π2 EI1
2a2

� F1 crit =
1√
2

π2 EI1
a2

,

F2 crit√
2

=
π2 EI2
2a2

� F2 crit =
√
2
π2 EI1
a2

,

F3 crit

2
= 2.04

π2 EI1
4a2

� F3 crit = 1.02
π2 EI1
a2

.

Because F1 crit < F3 crit < F2 crit, bar � buckles first. Hence force F1 crit

is crucial for the failure of the entire system.
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P6.10 Problem 6.10 The depicted
construction is assmbled from
two bars with double symmetric
profile (Iy = 2Iz for both bars).

Determine the maximal height
a, such that no buckling occurs.

F

x

y
A

A

A

z

y©1
©2

A

a

z

a
a

A

A

Solution Due to the symmetry of the structure and the load the follo-
wing compressive normal forces appear in the two bars

S1 = S2 =
F√
2
.

To investigate the stability behaviour we consider the different support
conditions and the different flexural rigidities. Bar � is simply sup-
ported at the lower end. The upper end is fixed by a rigid slider and
connected to bar � by a hinge. This corresponds to the Euler case no.
3. For buckling along the local y-axis of the profile we compute

S1 =
F√
2
= 2.04

π2 EIy
2a2

� a1 y = 1.20 π

√
EIy
F

and for buckling along the local z-axis with EIz = 0.5EIy

S1 =
F√
2
= 2.04

π2 EIz

2a2 � a1 z = 0.85 π

√
EIy
F

.

follows. Bar � is hinged with one rotation axis in y-direction at the
lower end. With regard to rotation along the x-axis the support is ri-
gid. The support at the upper end is analogous to bar � . Buckling
along the local y-axis corresponds to the third Euler buckling mode.
With S2 = S1 we obtain

a2 y = a1 y .

Buckling along the local z-axis is equivalent to the Euler case no. 4 and
yields with EIz = 0.5EIy

S2 =
F√
2
= 2.04

π2 EIy

2a2
� a2 z = 1.19 π

√
EIy
F

.

Since a1 z is the smallest value, the critical length is given by

acrit = 0.85 π

√
EIy
F

.



7Chapter 7

Hydrostatics



196 Fluid pressure

Prerequisite: The density ρ (unit: kg/m3) of the fluid is constant.

Pressure: The pressure p (unit: Pa ≡ N/m2) is a force per area, that
is identical for all cross sections and always acts normal to the cross
section (hydrostatic stress state).

Pressure in a fluid under the acti-
on of gravity and a surface pressure
p0 is given by:

p (z) = p0 + � g z .

z

p0

p(z)

The buoyancy force acting on a body (volume V ) immersed in a fluid
is equal to the weight of the displaced fluid volume.
Buoyancy force:

FA = ρ g V .

The line of action related to the
buoyancy force passes through the
center of gravity CF of the displa-
ced fluid volume.

FA

CF

V

Fluid pressure on plane surfaces

hC

y

x
F yC

yD
xC

xD

C

D

A

Resulting force

F = p (yC)A = ρ g hC A .

Center of pressure D

yD=
Ix
Sx

,

xD=− Ixy
Sx

.
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Fluid pressure on curved surfaces

z

A

C∗
dA∗

dA

dF

A∗
ρ

dĀ

α

dV
dFV = pdA cosα = ρ g dV

dFH = pdA sinα = p dA∗

Integration yields

FV = ρ g V ,

FH = pC∗ A∗ .

The resulting horizontal component of the fluid pressure FH is equal
to the product of the vertically projected area A∗ and the pressure pC∗
in the centroid of the projected area.

Stability of a floating body: The equilibrium state is stable if the
meta center M is above the centroid CB of the body:

M

water line

y

z

x

y
CBe
CF

hM

hM =

{
> 0 : stable

< 0 : unstable

with the position of the meta
center

hM =
Ix
V

− e .

Here the following data are used

Ix : second moment of area defined by the water line,

V : volume of the displaced fluid,

e : distance of the centroid of the body centroid CB

from the centroid of the displaced fluid CF .
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P7.1 Problem 7.1 A container is closed
during filling by a ball valve.

Determine the density ρB of the
ball, such that no air remains in
the container when the ball closes
the valve.

Given.: ρF , r1, r2.

r1

r2
ρB

ρF

Solution The ball has to submerge
to a depth that just closes the
opening when the container is full.
The buoyancy force is than ρF g V1,
where V1 is the volume of the
displaced fluid (spherical segment).
The buoyancy force has to be equal
to the weight of the ball

ρF g V1 = ρB g V.

r2
ρB

r1

h

With the volume of a sphere

V =
4

3
π r32

and the spherical section

V1 = π h2 (r2 − h

3
) , h = r2 +

√
r22 − r21

we compute for the density of the ball

ρB = ρF
V1

V
= ρF

π h2 (r2 − h

3
)

4

3
π r32

= ρF
3

4

(
h

r2

)2 (
1− h

3 r2

)
.
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P7.2Problem 7.2 The design of the de-
picted valve of a water basin
ensures that the valve opens if the
water level reaches the hinge at
point B. The flap valve is assumed
to be massless.

Determine z̄ for the valve to func-
tion in the described way.

Given: ρ, a, r.

���
���
���
���

���
���
���
���

B

z̄

a

C
r

z

ρ

Solution The thickness of the flap valve is irrelevant for the following
considerations, as all forces are assumed per unit length.

We compute the resulting horizontal for-
ce from the linear pressure distribution:

FH =
1

2
ρ g (z̄ + a)2

with

z =
2

3
(z̄ + a) .

r

BV

BH

z

FV

FH

C = 0

The vertical buoyancy force can be computed from the weight of the
displaced water by using the area of the dashed region:

FV = ρ g
(
2 a r − π

2
r2

)
.

The flap valve just opens if the reaction force in C vanishes. Equilibrium
of moments with regard to B provides:

�

B : −rFV + zFH = 0

� −ρ g
(
2 a r − π

2
r2

)
r +

1

2
ρ g (z̄ + a)2

2

3
(a+ z̄) = 0 .

The solution of this equation with respect to z̄ yields the water level

z̄ = 3
√

3 (2 a r − π

2
r2 ) r − a .
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P7.3 Problem 7.3 The depicted cross
section of a tunnel is immersed
in water saturated “liquid” sand
(density ρSA). Above resides a layer
of dry sand (density ρS).

Determine the thickness x of the
concrete base (density ρC), such
that a safety factor η = 2 against
lifting is reached. It is assumed that
the weight of the dry sand is acting
on the cross section of the tunnel.

h

x

h

l

SandρS

ρC

ρSA

ri

Given: ρB = 2.5 · 103 kg/m3, ρS = 2.0 · 103 kg/m3,

ρSA = 1.0 · 103 kg/m3, l = 10 m, ri = 4 m, h = 7 m.

Solution The weight (per unit length) of the tunnel cross section and
sand load is given by

G = ρC g
[
x l +

( l
2
− ri

)
2 h+

π

2

( l2
4

− r2i
) ]

+ ρS g l h .

With the buoyancy force (per unit length)

B = ρSA g
[
(h+ x) l +

π

2

l2

4

]

we can determine the height of the concrete base, such that a safety
factor against lifting

η = 2 =
G

B

is achieved. Solving for x yields:

(2ρSA l − ρBl)x = ρS lh+ ρB
[( l
2
− ri

)
2h+

π

2

( l2
4

− r2i
)]

−2 ρSA

(
hl +

π

2

l2

4

)
.

With the given data we get

(20− 25) x = 2 · 70 + 2.5
[
14 +

π

2
(25− 16)

]
− 2

(
70 +

π

2
25

)

� −5x = 210.34 − 218.54

� x = 1.64m .
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P7.4Problem 7.4 A cylindrical plug P (cross sect-
ion AP , length a) is elastically supported and
closes straight with the bottom of a basin for
the water line h0. In this situation the force
vanishes in the rope (length l) to which a
floater S is attached (cross section AS > AP ).

a) Determine the weight GS of the floater.

b) Which maximal water height h1 can be
reached before leaking occurs?

l

c

AP

ρ

a

AS

h0

S

P

Solution to a) The weight GS of the floater
is computed from equilibrium and geometry in
the reference situation:

ρgAS t0 = GS

h0 = l + t0

}
� GS = (h0 − l)ρgAS .

Fp

GS

ρgASt0

GS
t

l

y

cy

ρgASt

S

a

l

t0

h0

h

to b) For a water line h the plug is elevated
by a distance y due to the force in the rope S.
The equilibrium conditions for the floater, for
the plug, and the geometric conditions are

ρgAS t = GS + S , S − Fp = cy ,

h = l + t+ y .

In the equilibrium expression, Fp is the diffe-
rence in the pressure force in the displaced and
the reference situation (the forces due to lateral
pressure are in equilibrium):

Fp = ρg(h−y)Ap−ρgh0Ap = ρg(h−y−h0)Ap .

Eliminating GS , S, Fp, and t yields

h− h0 = y
[
1 +

c

ρg(AS −AP )

]
.

The maximal heighth = h1 is reached, if y = a is attained:

h1 = h0 + a
[
1 +

c

ρg(AS − AP )

]
.



202 Fluid pressure

P7.5 Problem 7.5 A dam of length l has a
surface of parabolic shape with a
horizontal tangent at the bottom of
the water basin.

Determine the force resulting from
the pressure, the position of the point
of action, and the line of action for a
water height h.

Given: h, l, a = h/4, ρ.

h

y

x

a

ρ

Solution The vertical
component of the force
is FV = ρ g V with the
volume V = l A. The area is
determined by the function
y(x) = 16 x2/h of the para-
bola

A =

∫ a

0

(h− y) dx

yF

y

dx

dA

h-y

x

y

FH

F

xF

xA

FVα

=

∫ a

0

(h− 16

h
x2) dx =

[
hx− 16

3h
x3

]a
0
=

h2

6
.

Thus the vertical component of the pressure force becomes:

FV =
1

6
ρ g h2 l.

The vertical force acts at the centroid C of the area

xF =
1

A

∫ a

0

x (h− 16

h
x2) dx =

[
h
x2

2
− 16

h

x4

4

]a
0

=
3

32
h .

The horizontal component of the fluid pressure is computed by the
projected area A∗ = h l and the pressure pS∗ = 1

2
ρ g h in the centroid

of the projected area:

FH =
1

2
ρ g h2 l with yF =

1

3
h .

By the theorem of Pythagoras, we obtain the resulting force, its line of
action passes through the point (xF , yF ) and forms an angle α to the
y-axis:

F =
√

F 2
H + F 2

V =
1

6

√
10 ρ g h2 l, α = arctan

FH

FV
= arctan 3 = 71.5o.
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P7.6Problem 7.6 A prismatic body with
the mass mB, width a, and length l
is floating in the water. Its centroid
CB is in the height hB .

Determine the additional point mass
mA, such that the body floats in a
stable manner. a

mB

mA

ρW

hB

CB

Given: ρW , mB , hSB, l, a.

Solution Stable floating of the body is defined by the position of the
meta center hM = Ix / V − e > 0 . For hM = 0 the limit of the stable
state is reached.

The volume V of the displaced fluid is obtained by equilibrium (buoyan-
cy = weight of the body and added mass):

ρW g V = (mB +mA) g � V =
1

ρW
(mB +mA)

The second mom-
ent of area is

hB

x

a

CB

CC

CF

a

hC

e

hF

l
y

Ix =
l a3

12
.

For e = hC − hF

we need the cen-
ter of gravity hC

of the floating construction and hF of the displaced fluid. They are
determined by

hC (mB +mA) = hB mB � hC = hB
mB

mB +mA
,

V = a l (2hF ) � hF =
mB +mA

2 a l ρW
.

The limit for stable floating is reached if hM = 0:

1− 12hC
mB

l a3 ρW
+

12 (mB +mA)
2

2 l2 a4 ρW 2
= 0 .

Solving for the required additional mass mA yields

mA =
l a2 ρW√

6

√
12hCB

mB

l a3 ρW
− 1 −mB .
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P7.7 Problem 7.7 A cone-shaped floa-
ting device is made of two materials
with densities ρ1 and ρ2.

Determine the diameter d of the
cone, such that it floats stable in a
fluid of density ρF .

Given:

ρ1 =
2

3
ρF , ρ2 =

1

3
ρF ,

h1 = 2 h , h2 = 4 h .

h1

h2

d

ρ2
ρF

g

ρ1

Solution The cone has a stable floating position, if the following con-
ditions are met:

(1) : G = A,

(2) : hM =
Ix
V

− e > 0.

(1) Floating condition:

d

h1 + h2
=

d1
h2

� d1 = d
h2

h1 + h2
=

2

3
d.

h1

h2

d1

d

The force due to weight is

G = V1 ρ1 g + V2 ρ2 g

=
1

12
π h1 (d

2 + dd1 + d21) ρ1 g +
1

12
π h2 d

2
1 ρ2 g

=
23

81
π h d2 ρF g = 0.892 h d2 ρF g .

The immersion depth t and the diameter dT = d t/(h1+h2) of the cone
at the water line of the fluid follows the buoyancy force

A =
1

12
π t d2T ρF g

=
1

432
π

d2

h2
ρF g t3 .
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For G = A we obtain

t3 =
368

3
h3

� t = 4.969 h .

dT

t
(2) Stability condition:

The volume of the displaced fluid is given by

V =
1

432
π

d2

h2
t3 =

23

81
π h d2 = 0.892 h d2 ,

and the second moment of area Ix is

Ix =
d4T π

64
=

(0.828 d)4 π

64
= 0.023 d4 .

The distance of the centroid of the body from the centroid of the dis-
placed fluid is provided by

e = xS − 3

4
t

with

xS =

3

4
(h1 + h2) ρ1

1

16
π d2 (h1 + h2) +

3

4
h2 (ρ2 − ρ1)

1

16
π d21 h2

ρ1
1

16
π d2 (h1 + h2) + (ρ2 − ρ1)

1

16
π d21 h2

=
18 h− 16

9
h

4− 16

27

= 4.761 h

� e = 4.761 h− 3

4
· 4.969 h = 1.034 h .

For the diameter of the cone we finally obtain

hM =
0.023 d4

0.892 h d2
− 1.034 > 0 � d > 6.333 h .
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P7.8 Problem 7.8 A block-shaped iceberg of dimensions a× h× l calves of
a floating ice shelf. It is assumed that a � h. The density of the water
is ρW , the density of the ice ρI = 9

10
ρW .

th

l

a

ρE

ρW

Eisberg Schelfeis

For which length l does the iceberg float in a stable way?

Solution We start by determining the immersion depth t of the iceberg.
Equilibrium between iceberg and buoyancy force renders for the given
density ratio the immersion depth

ρIghla = ρW gtla � t =
9

10
h .

To analyze the floating stability we consider the position hM of the meta
center:

x

z

y
t

a

ρW

ρE
h

l

hM =
Ix
V

− e ,

Ix =
al3

12
,

V = alt =
9

10
alh ,

e =
h

2
− t

2
=

h

20
.

By combining all relations we derive

hM =
5

54

l2

h
− h

20
.

We consider the limit of floating stability (hM = 0). This determines
the length l0 :

l20 =
27

50
h2

� l0 =

√
27

50
h ≈ 0.735h .

In a stable floating state, we must have hM > 0. Thus, the iceberg
floats stable for l > l0. For l < l0 the iceberg tips over.
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P7.9Problem 7.9 A circular shaped hatch
closes the outflow of a tank.

a) Determine the mass m, such
that the hatch opens if m is
attached in the distance c from
the hinge point.

b) Determine the distance by
which the mass m has to be
shifted, for the hatch to open
when the water level reaches
the height b.

Given: a, b, c, d, e, m, ρ.

b
a

e

cSB

45◦

ρ
d

m

Solution zu a) The force acting on the hatch is

S mgB

F

yD −√
2a

F = ρ g AhS = ρ g
π d2

4
(a+ e) .

The point of action of F is determined by

yD = yS +
Iξ

yS A
=

√
2 (a+ e) +

d2

16
√
2 (a+ e)

.

The hatch opens, if B = 0. Equilibrium of moments provides

F ( yD −
√
2 a )−mg c = 0 .

From this we compute the required mass

m = ρ
π d2

4 c
(a+ e)

[√
2 e+

d2

16
√
2 (a+ e)

]
.

to b) For the water level b the force acting on the hatch is

F = ρ g Ahs = ρ g
π d2

4
(b+ e) .

With the point of action

yD =
√
2 (b+ e) +

d2

16
√
2 (b+ e)

of F the equilibrium condition F ( yD − √
2 b ) − mg c = 0 yields the

distance c:

c = ρ
π d2

4
(b+ e)

[√
2 e+

d2

16
√
2 (b+ e)

]
1

m
.



208 Fluid pressure

P7.10 Problem 7.10 A trapezoidal hatch
closes the outflow of the depicted
basin.

Determine the resulting force on
the hatch together with the support
reactions in point B.

Given: ρW = 103
kg

m3
, g = 9.81

m

s2
. C

4m

B

ρW

2m

7m

3m

Solution The area A = 10m2, the
centroid of the hatch

ȳs =
(
5·2, 5+5·2

3
·5
) 1

10
=

35

12
m

and the pressure

p (ȳs) = ρ g

[
9 +

3

5
· 35
12

]
=

43

4
ρ g

are used to compute the resulting
force

F = ρ g Ap (ȳs) = 103·9, 81·10·43
4

= 1.05MN .

ξ

η

5

ȳs

11 1

ȳ

[m]

S

C

B

C

B
F

ȳD

The position of the line of action follows from

Iξ =
53 · 1
12

+5·1
(
35

12
− 2, 5

)2

+2
53 · 1
36

+5·1
(
35

12
− 10

3

)2

= 19.1m4 ,

ys = ȳs + 15m and yD = ȳD + 15m to be

yD =
Ix
Sx

=
y2
s A+ Iξ
ys A

� ȳD = ȳs +
Iξ
ys A

=
35

12
+

19, 1

( 35
12

+ 15) 10

= 3.02m .

The support reaction is determined by equilibrium of moments with
regard to the hinge point C of the hatch

�

C : B · 5− F ( 5− 3, 02 ) = 0

� B = 1, 05
5− 3, 02

5
= 0.415MN .
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P7.11Problem 7.11 A concrete dam
(density ρC) closes a basin
that is filled up to the height
h = 15 m.

Determine

a) the safety factor against
sliding at the bottom (adhesion
coefficient μ0),
b) the safety against tilting,
c) the stress distribution at the
bottom, if it assumed to be a
linear distribution.

3m

12m

3m

ρC

ρW

2m

3m

6m 8m μ0

Given: ρC = 2.5 · 103 kg/m3, ρW = 103 kg/m3, μ0 = 0.5 , g = 10 m/s2

Solution to a) To determine the safety factor against sliding we com-
pute the horizontal forces due to the water pressure and compare them
to the adhesion forces acting at the bottom. The horizontal force due
to water pressure is computed from

FH =
1

2
ρW g hA =

1

2
103 · 10 · 15 · 15 · 1 = 1125 kN/m .

The resulting force due to the weight of the concrete and the water
pressure is

FV = 2.5 ·103 (3 ·2+4 ·18+3 ·8+ 1

2
·12 ·8)+103 (2 ·12) = 3990 kN/m .

Using Coulomb’s friction law we determine the safety factor ηS against
the onset of sliding

ηS =
μ0 FV

FH
=

0.5 · 3990
1125

= 1.77 .

to b) The dam can tilt around
point B. The safety against
tilting is determined by compa-
ring the moment of forces. The
moment of the water pressure
is given by

h

3

FH

B

FV i

xBi

MBW = FH
h

3
= 1125 · 15

3
= 5625 kNm .
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The moment related to the weights is

MBG =
∑
i

FV i xBi

= 2.5 · 103 (3 · 2 · 13 + 4 · 18 · 10 + 3 · 8 · 4

+
1

2
· 12 · 8 · 2

3
· 8) + 103 (2 · 12 · 13) = 31870 kNm .

This results in a safety factor against tilting

ηT =
MBG

MBW
=

31780

5625
= 5.67 .

to c) To compute the stress distribution in the bottom gap of the dam
we determine the excentricity of the resulting force RV =

∑
i FV i. The

vertical component of the force acting in the gap yields, according to
the sketch below,

RV (a− e) = MBG −MBW

� e = a− MBG −MBW

RV
= 7− 31870 − 5625

3990
= 0.422m .

With the introduced coordinate-
system we compute the normal
stresses in the bottom gap (like in
a beam cross section)

σ =
N

A
+

My

Iy
x .

Here we have to insert the fol-
lowing data: A = 14m2, Iy =
1 · 143 / 12 = 288.67m4, N =
−RV = −3990 kN, My = N · e =
−1685 kNm. As a result we obtain
for the stress distribution

σ =
−3990

14
+
−1685

228.67
x = −285− 7.37 x kN/m2 .

σBRV

a = 7 ma = 7 m

x

z

B

e

σC

C

MBW

MBG

For the selected points C and B evaluation yields

σC = −0.23MPa and σB = −0.34MPa .
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P7.12Problem 7.12 A rectangular plate
of width b closes the outlet of a
basin. It is hinged at point D.

a) Determine the water height t,
for which the plate starts to rotate
around point D.

b) Compute the bending moment
at point D for this situation.

Given: b, l, h, ρ.

t
h

l

ρ D

to a) The plate starts to rotate, if the resulting force R of the water
pressure is above point D. In the limit case the resulting force of the
water pressure passes through point D. From this we can determine the
water height

t = 3h .

2a

3

h

R

D

R̄

pD

MD

2a

a

D

MD

to b) To compute the bending moment in the plate we start with the
moment at point D. With the resultant R̄ of the upper plate and the
pressure at point D,

R̄ =
1

2
pD 2 a b , pD = ρ g 2h ,

we obtain

MD = −R̄
2

3
a = −2

3
pD b a2 = −4

3
ρ g (l2 + h2)h b .

The distribution of the bending moment is cubic for a linearly varying
load. The maximum occurs at the hinge point D.
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P7.13 Problem 7.13 The pressure p in gases depends on the density ρ. The
relation between the two state variables is provided by the universal
gas equation p = ρRT (universal gas constant R, temperature T ). E.
g. for air at sea level and at T = 0◦ it holds: p0 = 101325 Pa and
ρ0 = 1.293 kg/m3.

Determine the dependency of air pressure on height for the case of
a constant temperature (barometric height relation).

Solution First, we apply the universal gas law at sea level. This yields

p0 = ρ0RT or RT =
p0
ρ0

.

Equilibrium of an infinitesimal air
column with cross section A and
height dz

↑ : pA− ρgAdz − (p+ dp)A = 0

leads to

dp

dz
= −ρg .

z

dz
ρgA dz

p+ dp

p

Using the universal gas equation yields

dp

dz
= − pg

RT
.

By separation of variables and integration we obtain:

dp

p
=− g

RT
dz �

∫ p

p0

dp̄

p̄
= −

∫ z

0

g

RT
dz̄ � ln

p

p0
= − g

RT
z .

This renders the air pressure as a function of the height

p = p0 e
−

gz

RT .

The air pressure decreases exponentially with the height. From the
relation RT = p0/ρ0 and the gravity constant g = 9.80665 m/s2 we
deduce

p = 101325 Pa e
−

z

7991m .

Note: In a height of 5, 5 km the pressure has dropped to one half of
its original value.
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