
Maxime Amblard · Philippe de Groote
Sylvain Pogodalla · Christian Retoré (Eds.)

 123

LN
CS

 1
00

54

9th International Conference, LACL 2016
Nancy, France, December 5–7, 2016
Proceedings

Logical Aspects
of Computational
Linguistics
Celebrating 20 years of LACL (1996–2016)

Lecture Notes in Computer Science 10054

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison, UK Takeo Kanade, USA
Josef Kittler, UK Jon M. Kleinberg, USA
Friedemann Mattern, Switzerland John C. Mitchell, USA
Moni Naor, Israel C. Pandu Rangan, India
Bernhard Steffen, Germany Demetri Terzopoulos, USA
Doug Tygar, USA Gerhard Weikum, Germany

FoLLI Publications on Logic, Language and Information
Subline of Lectures Notes in Computer Science

Subline Editors-in-Chief

Valentin Goranko, Stockholm University, Sweden

Michael Moortgat, Utrecht University, The Netherlands

Subline Area Editors

Nick Bezhanishvili, University of Amsterdam, The Netherlands

Anuj Dawar, University of Cambridge, UK

Philippe de Groote, Inria Nancy, France

Gerhard Jäger, University of Tübingen, Germany

Fenrong Liu, Tsinghua University, Beijing, China

Eric Pacuit, University of Maryland, USA

Ruy de Queiroz, Universidade Federal de Pernambuco, Brazil

Ram Ramanujam, Institute of Mathematical Sciences, Chennai, India

More information about this series at http://www.springer.com/series/7407

http://www.springer.com/series/7407

Maxime Amblard • Philippe de Groote
Sylvain Pogodalla • Christian Retoré (Eds.)

Logical Aspects
of Computational
Linguistics
Celebrating 20 Years of LACL
(1996–2016)

9th International Conference, LACL 2016
Nancy, France, December 5–7, 2016
Proceedings

123

Editors
Maxime Amblard
Campus Scientifique
LORIA (UMR 7503) – Sémagramme
Campus Scientifique

Vandœuvre-lès-Nancy
France

Philippe de Groote
Inria Nancy
Villers-lès-Nancy
France

Sylvain Pogodalla
Inria Nancy
Villers-lès-Nancy
France

Christian Retoré
LIRMM, Université de Montpellier
Montpellier
France

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-662-53825-8 ISBN 978-3-662-53826-5 (eBook)
DOI 10.1007/978-3-662-53826-5

Library of Congress Control Number: 2016956486

LNCS Sublibrary: SL1 – Theoretical Computer Science and General Issues

© Springer-Verlag GmbH Germany 2016
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer-Verlag GmbH Germany
The registered company address is: Heidelberger Platz 3, 14197 Berlin, Germany

This 20th anniversary LACL volume is dedicated to the memory of
Alexander Dikovsky, chair of LACL 2012,

and of
Joachim Lambek, invited speaker at LACL 1997,

who both passed away in 2014.

Foreword

The ninth edition of LACL (Logical Aspect of Computational Linguistics) that took
place in 2016 in Nancy, marked the 20th anniversary of the conference.

The first edition of the conference that I launched in 1996 was also held in Nancy,
and then as now, I had the pleasure of coorganizing it with my friend Philippe de
Groote, who at that time headed our Calligramme research group.

What a pleasure to see that, 20 years later, there is still a need for such a conference on
the relation between formal logic and computational linguistics, or perhaps we should
say between formal linguistics and computational logic—since nowadays “computa-
tional linguistics” hardly evokes “logic”. Not only did the LACL field keep on devel-
oping since 1996, but today it encompasses new triggering questions between logic,
linguistics and computer science that we had no idea in 1996. This anniversary took
place at LORIA, which was the first venue not only for that reason: LORIA includes an
important department of computational linguistics where the two other editors of this
volume, Maxime Amblard and Sylvain Pogodalla, former PhD students of mine, hold a
position in Philippe de Groote’s Sémagramme research group, the continuation of
Calligramme.

I would like to thank Philippe, Sylvain, and Maxime, in the order with which they
started making contributions to the Logical Aspects of Computational Linguistics, for
organising in Nancy this beautiful LACL anniversary.

September 2016 Christian Retoré
Program Chair of LACL 1996 and 2016

(first and ninth editions)

Preface

We are pleased to provide the proceedings of the 9th International Conference on
Logical Aspects of Computational Linguistics, LACL 2016, which was held in Nancy,
France, during December 5–7, 2016. LACL aims to be a forum for the exchange of
ideas involving all aspects of formal logic within computational linguistics, from
syntactic parsing to formal semantics and discourse interpretation.

Previous LACL conferences where held in Nancy (1996, 1997), Grenoble (1998),
Le Croisic (2001), Bordeaux (2005), Montpellier (2011), Nantes (2012), and Toulouse
(2014).

The proceedings of this ninth edition comprise four invited contributions, by Maria
Aloni (Universiteit van Amsterdam, The Netherlands), Johan Bos (Rijksuniversiteit
Groningen, The Netherlands), Shalom Lappin (Göteborgs Universitet, Sweden), and
Louise McNally (Universita Pompeu Frabra, Barcelona, Spain), 19 contributed papers,
and six short abstracts selected from 39 submissions. Each paper received three
reviews, and sometimes more, provided by the Program Committee and additional
reviewers, listed herein.

We would like to thank all those who submitted papers for consideration at LACL,
the four invited speakers, and all conference participants. We want to thank our
international team of reviewers, who often gave extensive comments to authors. We
very much hope that these comments will be of use to those who submitted papers for
their future research.

We are also grateful to our institutional sponsors and supporters: the Association for
Logic, Language and Information (FoLLI), the computer science laboratory in Nancy
(LORIA), the French National Institute for Computer Science and Applied Mathe-
matics (Inria), the National Center for Scientific Research (CNRS), the University of
Lorraine, the Région Lorraine, and the Communauté Urbaine du Grand Nancy. We
would also like to express our gratitude to the Organizing Committee and all the people
whose efforts made this meeting possible.

September 2016 Maxime Amblard
Philippe de Groote
Sylvain Pogodalla
Christian Retoré

Organization

Organizing Committee

Maxime Amblard LORIA, Université de Lorraine, Nancy, France
Anne-Lise Charbonnier Inria Nancy, France
Philippe de Groote LORIA, Inria Nancy, France
Sylvain Pogodalla LORIA, Inria Nancy, France

Program Committee

Maxime Amblard LORIA, Université de Lorraine, Nancy, France
Nicholas Asher IRIT, CNRS and Université Paul Sabatier, Toulouse,

France
Denis Béchet LINA, University of Nantes, France
Daisuke Bekki Ochanomizu University, Japan
Raffaella Bernardi University of Trento, Italy
Gemma Boleda Universitat Pompeu Fabra, Barcelona, Spain
Heather Burnett CNRS, Université de Paris 7, France
Wojciech Buszkowski Adam Mickiewicz University, Poznań, Poland
Stergios Chatzikyriakidis University of Gothenburg, Sweden
Robin Cooper University of Gothenburg, Sweden
Philippe de Groote LORIA, Inria Nancy, France
Valeria De Paiva Nuance Communications, Cupertino, USA
Markus Egg Humboldt-Universität Berlin, Germany
Annie Foret IRISA, University of Rennes 1, France
Nissim Francez Technion, Haifa, Israel
Makoto Kanazawa National Institute of Informatics, Japan
Greg Kobele University of Chicago, USA
Marcus Kracht Universität Bielefeld, Germany
Hans Leiß Universität München, Germany
Robert Levine The Ohio State University, USA
Zhaohui Luo Royal Holloway College, University of London, UK
Alda Mari IJN, CNRS, Paris and University of Chicago, USA
Michael Moortgat Utrecht Institute of Linguistics - OTS, The Netherlands
Richard Moot CNRS (LaBRI) and Bordeaux University, France
Glyn Morrill Universitat Politècnica de Catalunya, Spain
Larry Moss University of Indiana, USA
Sylvain Pogodalla LORIA, Inria Lorraine, France
Carl Pollard The Ohio State University, USA
Jean-Philippe Prost LIRMM, Université Montpellier 2, France

Myriam Quatrini Institut de Mathématiques de Luminy, Aix-Marseille
Université, France

Christian Retoré LIRMM, Université de Montpellier, France
Mehrnoosh Sadrzadeh Queen Mary College, University of London, UK
Serguei Soloviev IRIT, Université de Toulouse-3, France
Stephanie Solt Zentrum für Allgemeine Sprachwissenschaft, Berlin,

Germany
Edward Stabler UCLA and Nuance Communications, Cupertino, USA
Mark Steedman University of Edinburgh, UK
Jakub Szymanik University of Amsterdam, The Netherlands
Isabelle Tellier Lattice, Université Paris 3, France
Laure Vieu IRIT, CNRS, Toulouse, France
Marek Zawadowski University of Warsaw, Poland

Additional Reviewers

Bonfante, Guillaume LORIA, Université de Lorraine, Nancy, France
Grudzinska, Justyna Institute of Philosophy, University of Warsaw, Poland
Perrier, Guy LORIA, Université de Lorraine, Nancy, France
Valentin, Oriol Universitat Politècnica de Catalunya, Spain

XII Organization

Abstracts of Invited Talks

FC Disjunction in State-Based Semantics

Maria Aloni

Institute for Logic, Language, and Computation, University of Amsterdam,
Amsterdam, The Netherlands

In a state-based semantics sentences are interpreted with respect to states (defined as
sets of possible worlds) rather than single possible worlds. This feature makes
state-based semantics particularly suitable to capture the inherent epistemic and/or
alternative-inducing nature of disjunctive words in natural language. In the first part
of the talk, I will discuss three notions of disjunction that have been proposed in a
state-based semantics with emphasis on their potential to account for Free Choice (FC)
inferences when combined with a possibility modal:

(1) FC inferences

a. Wide scope: �a ∨ �b |= �a ∧ �b

b. Narrow scope: �(a ∨ b) |= �a ∧ �b

The first notion _1 corresponds to disjunction in classical logic; the second notion
_2 has been independently proposed by Yang and Väänänen [5] and Hawke and
Steinert-Threlkeld [3]; the third notion _3 corresponds to inquisitive disjunction as in
Ciardelli and Roelofsen [2] (see also Kit Fine’s truthmaker semantics). Team/assertion
logic _2 in combination with a context-sensitive notion of modality à la Veltman [4]
derives wide scope FC inference (as discussed in [3]). Inquisitive/truthmaker _3 com-
bined with Aloni’s [1] alternative-sensitive notion of modality derives narrow scope FC

inference. Neither combinations however can account for both wide scope and narrow
scope FC. Furthermore, when free choice inducing sentences occur embedded under
negation, both systems predict weaker readings than attested in ordinary language use.
In the second part of the talk, I will present a third state-based system, adopting _2,
which derives both wide scope and narrow scope FC while solving the negation
problem. Merits and shortcomings of this novel system will be discussed as well as its
potential to be extended to account for free choice indefinites.

References

1. Aloni, M.: Free choice, modals and imperatives. Nat. Lang. Sem. 15, 65–94 (2007)
2. Ciardelli, I., Roelofsen, F.: Inquisitive logic. J. Philos. Logic 40(1), 55–94 (2011)
3. Hawke, P., Steinert-Threlkeld, S.: Informational dynamics of ‘Might’ assertions. In: van der

Hoek, W., Holliday, W., Wang, W. (eds.) Proceedings of Logic, Rationality, and Interaction
(LORI-V), pp. 143–155 (2015)

4. Veltman, F.: Defaults in update semantics. J. Philos. Logic 25, 221–261 (1996)
5. Yang, F., Väänänen, J.: Propositional team logics (2016, submitted)

The Parallel Meaning Bank: A Large Corpus
of Translated Texts Annotated with Formal

Meaning Representations

Johan Bos

University of Groningen, Groningen, The Netherlands

Several large corpora annotated with meaning representations are nowadays available
such as the Groningen Meaning Bank [4], the AMR Corpus [1], or Treebank Semantics
[5]. These are usually resources for a single language. In this paper I present a project
with the aim to develop a meaning bank for translations of texts — in other words, a
parallel meaning bank. The languages involved are English, Dutch, German and Italian.
The idea is to use language technology developed for English and project the outcome
of the analyses to the other languages. There are five steps of processing:

– Tokenisation: segmentation of words, multi-word expressions and sentences, using
Elephant, a statistical tokenizer [7];

– Semantic Tagging: mapping word tokens to semantic tags (abstracting over tradi-
tional part-of-speech tags and named entities and a bit more);

– Symbolisation: assigning appropriate non-logical symbols to word tokens (com-
bining lemmatization and normalisation);

– Syntactic Parsing: based on Combinatorial Categorial Grammar [6, 9];
– Semantic Parsing: based on Discourse Representation Theory, using the semantic

parser Boxer [3];

The first aim of the project is to provide appropriate compositional semantic
analyses for the aforementioned language taking advantage of the translations. The
second aim is to study the role of meaning in translations: even though you would
expect that meaning is preserved in translations, human translators often perform little
tricks involving meaning shifts and changes to arrive at better translations [2, 8].

References

1. Banarescu, L., Bonial, C., Cai, S., Georgescu, M., Grifftt, K., Hermjakob, U., Knight, K.,
Koehn, P., Palmer, M., Schneider, N.: Abstract meaning representation for sembanking. In:
Proceedings of the 7th Linguistic Annotation Workshop and Interoperability with Discourse,
pp. 178–186 (2013)

2. Bos, J.: Semantic annotation issues in parallel meaning banking. In: Proceedings of the Tenth
Joint ACL-ISO Workshop on Interoperable Semantic Annotation (ISA-10), Reykjavik, Ice-
land, pp. 17–20 (2014)

3. Bos, J.: Open-domain semantic parsing with boxer. In: Megyesi, B. (ed.) Proceedings of the
20th Nordic Conference of Computational Linguistics (NODALIDA 2015), pp. 301–304
(2015)

4. Bos, J., Basile, V., Evang, K., Venhuizen, N., Bjerva, J.: The Groningen meaning bank. In:
Ide, N., Pustejovsky, J. (eds.) The Handbook of Linguistic Annotation. Springer, Berlin
(2017)

5. Butler, A.: The Semantics of Grammatical Dependencies, vol. 23. Emerald Group Publishing
Limited (2010)

6. Curran, J.R., Clark, S., Bos, J.: Linguistically motivated large-scale NLP with c&c and boxer.
In: Proceedings of the ACL 2007 Demo and Poster Sessions, Prague, Czech Republic, pp. 33–
36 (2007)

7. Evang, K., Basile, V., Chrupala, G., Bos, J.: Elephant: sequence labeling for word and
sentence segmentation. In: Proceedings of the 2013 Conference on Empirical Methods in
Natural Language Processing (EMNLP 2013), Seattle, Washington, pp. 1422–1426 (2013)

8. Langeveld, A.: Vertalen wat er staat. Synthese, De arbeiderspers (1986)
9. Lewis, M., Steedman, M.: A* ccg parsing with a supertag-factored model. In: Proceedings

of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP),
pp. 990–1000. Association for Computational Linguistics, Doha, Qatar, October 2014

The Parallel Meaning Bank: A Large Corpus XVII

Bayesian Inference in a Probabilistic
Type Theory

Shalom Lappin1,2,3

1 Department of Philosophy, Linguistics, and Theory of Science,
University of Gothenburg, Gothenburg, Sweden

2 Department of Philosophy, King’s College, London, UK
3 School of Electronic Engineering and Computer Science,

Queen Mary University of London, London, UK
shalom.lappin@gu.se

Classical semantic theories [8], as well as dynamic [7] and underspecified frameworks
[5] use categorical type systems. A type T identifies a set of possible denotations for
expressions in T. The theory specifies combinatorial operations for deriving the
denotation of an expression from the values of its constituents. These theories cannot
represent the gradience of semantic properties that is pervasive in speakers’ judgements
concerning truth, predication, and meaning relations.

There is a fair amount of evidence indicating that language acquisition in general
crucially relies on probabilistic learning [2]. It is not clear how a reasonable account of
semantic learning could be constructed on the basis of the categorical type systems that
either classical or revised semantic theories assume. Such systems do not appear to be
efficiently learnable from the primary linguistic data (with weak learning biases). There
is little (or no) psychological data to suggest that classical categorical type systems
provide biologically determined constraints on semantic learning.

A semantic theory that assigns probability rather than truth conditions to sentences
is in a better position to deal with gradience and learning. Gradience is intrinsic to the
theory by virtue of the fact that values are assigned to sentences in the continuum of
real numbers [0, 1], rather than Boolean values in {0, 1}. A probabilistic account of
semantic learning is facilitated if the target of learning is a probabilistic representation
of meaning. Both semantic interpretation and semantic learning are characterised as
reasoning under uncertainty.

[4] propose a probabilistic re-formulation of [3]’s Type Theory with Records
(TTR). They specify a rich type theory, ProbTTR, in which probability is distributed
over situation types [1]. An Austinian proposition is a judgement that a situation is of a
particular type, and we treat it as probabilistic. It expresses a subjective probability in
that it encodes the belief of an agent concerning the likelihood that a situation is of that
type. The core of an Austinian proposition is a type judgement of the form s : T, which
is expressed probabilistically as pðs : TÞ ¼ r;where r 2 ½0; 1�. ProbTTR provides the
basis for a compositional probabilistic semantics of natural language.

Joint work with Robin Cooper, Simon Dobnik, and Staffan Larsson, University of Gothenburg.

We specify a Bayesian learning and inference component for ProbTTR. We for-
mulate Bayes’ theorem in type theoretic terms and use it to develop a Naive Bayesian
Classifier for learning basic predicate types from observation and mentor led instruc-
tion. We extend this component to a type theoretic version of Bayesian Networks [6, 9,
10], which we propose as a framework for semantic learning.

The basic types and type judgements at the foundation of our probabilistic type
system correspond to perceptual judgements concerning objects and events in the
world, rather than to entities in a model, and set theoretic constructions defined on
them. We incorporate a theory of learning and inference with Bayesian Networks into
ProbTTR. Our account grounds meaning in learning how to make observational
judgements concerning the likelihood of situations obtaining in the world.

References

1. Barwise, J., Perry, J.: Situations and Attitudes. Bradford Books, MIT Press, Cambridge
(1983)

2. Clark, A., Lappin, S.: Linguistic Nativism and the Poverty of the Stimulus. Wiley-Blackwell,
Chichester, West Sussex, Malden (2011)

3. Cooper, R.: Type theory and semantics in flux. In: Kempson, R., Asher, N., Fernando, T.
(eds.) Handbook of the Philosophy of Science. Philosophy of Linguistics, vol. 14. Elsevier
(2012). General editors: Dov M. Gabbay, Paul Thagard and John Woods

4. Cooper, R., Dobnik, S., Lappin, S., Larsson, S.: Probabilistic type theory and natural lan-
guage semantics. Linguist. Issues Lang. Technol. 10, 1–43 (2015)

5. Fox, C., Lappin, S.: Expressiveness and complexity in underspecified semantics. Linguist.
Anal., Festschrift for Joachim Lambek 36, 385–417 (2010)

6. Halpern, J.: Reasoning About Uncertainty. MIT Press, Cambridge (2003)
7. Kamp, H., Reyle, U.: From Discourse to Logic: Introduction to Modeltheoretic Semantics of

Natural Language, Formal Logic and Discourse Representation Theory. Kluwer, Dordrecht
(1993)

8. Montague, R.: Formal Philosophy: Selected Papers of Richard Montague. Yale University
Press, New Haven (1974). Ed. and with an introduction by Richmond H. Thomason

9. Murphy, K.: A brief introduction to graphical models and bayesian networks, University of
British Columbia (2001). http://www.cs.ubc.ca/*murphyk/Bayes/bnintro.html

10. Pearl, J.: Bayesian decision methods. In: Shafer, G., Pearl, J. (eds.) Readings in Uncertain
Reasoning, pp. 345–352. Morgan Kaufmann (1990)

Bayesian Inference in a Probabilistic Type Theory XIX

http://www.cs.ubc.ca/~murphyk/Bayes/bnintro.html

Combining Formal and Distributional
Semantics: An Argument from the Syntax

and Semantics of Modification

Louise McNally

Universitat Pompeu Fabra, Barcelona, Spain

The lexical semantics of content words has historically generated comparatively little
interest among formal semanticists, except when a class of content words proves to be
sensitive to some sort of logical or grammatical phenomenon, as has happened, for
example, with verbal aspect and with gradability. In contrast, the “distributional turn”
in computational semantics has focused primarily on the content word lexicon and has
had a varied and arguably difficult relationship with logical approaches to meaning,
including the semantics of function words like and or the (see [1] for a recent over-
view). How the insights and benefits of these two approaches can be combined, if at all,
is currently a matter of active research (see e.g. [4] and research reported on there).

In this talk, I reflect on my experience when I turned to distributional models in an
effort to better address the interaction of lexical and compositional semantics. After
considering the possibility of a full-blown distributional semantics for both content and
function words, I have opted to explore a mixed model based on Discourse Repre-
sentation Theory (DRT, [11]), perhaps most similar in spirit to the recent mixes of
formal and distributional semantics found in [10, 12, 13] (though the latter do not use
DRT), but motivated and implemented a bit differently.

Specifically, I argue that certain kinds of modification constructions, including
(broadly) noun incorporation, point to a well-established distinction in natural language
between productive compositional operations that combine descriptive contents
unmediated by reference, resulting in complex kind- or type-level descriptions, and
composition operations that are crucially mediated by tokenlevel reference (see [6] on
the notion of kind; see e.g. [5, 15, 18], for the relevance of the type/token distinction in
nominal modification). I propose, building on the results of a distributional study in [3],
that compositional distributional methods can provide interesting complex type-level
descriptions, and show, following [14, 16], how these can be represented and put to use
in a semantics based on DRT.

I gratefully acknowledge my co-authors on the papers that have most directly inspired this work:
Gemma Boleda, Berit Gehrke, Marco Baroni, Alexandra Spalek, Scott Grimm, and Nghia Pham.
I also thank Carla Umbach and the participants in the 2016 ESSLLI Workshop ‘Referential Semantics
One Step Further: Incorporating Insights from Conceptual and Distributional Approaches to Meaning
(RefSemPlus)’ and the FloSS and Meaning in Context groups for discussion of the larger issues. This
research was supported by Spanish MINECO grants FFI2010-09464-E and FFI2013-41301-P,
AGAUR grant 2014SGR698, and an ICREA Academia award.

I close by arguing that this mixed approach sheds light on the often-reported but
never explained observation that incorporation constructions, such as the Hindi example
in (1) from [8], often carry steoreotypicality implications that non-incorporated coun-
terparts do not (see [7] on the relevance of the type/token distinction for this phe-
nomenon; see [9] for discussion and analysis of related examples such as the contrast in
(2) and (3), from Catalan).

(1) anu sirf puraanii kitaab becegii
Anu only old book sell-FUT
‘Anu will only sell old books.’

(2) Té una parella.
has a partner
‘S/he has a partner.’

(3) Té parella.
has partner
‘S/he has a partner.’ (so, s/he’s married/can now dance/…)

I also suggest more speculatively that the mixed distributional/DRT approach
promotes rethinking the analysis of certain function words as “instructions” in the spirit
of the Procedural/Conceptual Meaning distinction in Relevance Theory (see e.g. [2])
and ideas that have long informed the literature on information structure and dialog (see
e.g. [17]).

References

1. Baroni, M., Bernardi, R., Zamparelli, R.: Frege in space. Linguist. Issues Lang. Technol.
9(6), 5–110 (2014)

2. Blakemore, D.: Semantic Constraints on Relevance. Blackwell, Oxford (1987)
3. Boleda, G., Baroni, M., Pham, N.T., McNally, L.: Intensionality was only alleged: On

adjective-noun composition in distributional semantics. In: Proceedings of IWCS 2013.
Potsdam (2013)

4. Boleda, G., Herbelot, A.: Formal distributional semantics: Introduction to the introduction to
a proposed special issue of Computational Linguistics on Formal Distributional Semantics
(2016, special issue)

5. Bouchard, D.: Sèriation des adjectifs dans le sn et formation de concepts. Recherches
Linguistiques de Vincennes 34, 125–142 (2005)

6. Carlson, G.N.: Reference to kinds in English. Ph.D. thesis, University of Massachusetts at
Amherst (1977)

7. Carlson, G.N.: Weak indefinites. In: Coene, M., D’Hulst, Y. (eds.) From NP to DP: On the
Syntax and Pragma-Semantics of Noun Phrases, vol. 1, Benjamins, pp. 195–210 (2003)

8. Dayal, V.: Hindi pseudo-incorporation. Nat. Lang. Linguist. Theory 29, 123–167 (2011)
9. Espinal, M.T., McNally, L.: Bare singular nominals and incorporating verbs in Spanish and

Catalan. J. Linguist. 47, 87–128 (2011)
10. Garrette, D., Erk, K., Mooney, R.: Integrating logical representations with probabilistic

information using Markov logic. In: Proceedings of IWCS 2011 (2011)

Combining Formal and Distributional Semantics XXI

11. Kamp, H.: A theory of truth and semantic representation. In: Groenendijk, J., Janssen, T.,
Stokhof, M. (eds.) Formal Methods in the Study of Language, vol. 1, pp. 277–322. Math-
ematisch Centrum, Amsterdam (1981)

12. Lenci, A.: “going dynamic” in distributional semantics. Presented at the ESSLLI 2016
Workshop “Referential Semantics One Step Further: Incorporating Insights from Conceptual
and Distributional Approaches to Meaning” (2016)

13. Lewis, M., Steedman, M.: Combined distributional and logical semantics. Trans. Assoc.
Comput. Linguist. 1(179–192) (2013)

14. McNally, L.: Kinds, descriptions of kinds, concepts, and distributions (2015), ms.,
Universitat Pompeu Fabra

15. McNally, L., Boleda, G.: Relational adjectives as properties of kinds. In: Bonami, O.,
Cabredo Hofherr, P. (eds.) Empirical Issues in Syntax and Semantics, vol. 5, pp. 179–196
(2004). http://www.cssp.cnrs.fr/eiss5/mcnally-boleda/mcnally-boleda-eiss5.pdf

16. McNally, L., Boleda, G.: Conceptual vs. referential affordance in concept composition. In:
Winter, Y., Hampton, J. (eds.) Concept Composition and Experimental
Semantics/Pragmatics. Springer, Berlin (to appear)

17. Vallduví, E.: The informational component. Garland Press, New York (1992)
18. Zamparelli, R.: Layers in the determiner phrase. Ph.D. thesis, U. Rochester (1995)

XXII L. McNally

http://www.cssp.cnrs.fr/eiss5/mcnally-boleda/mcnally-boleda-eiss5.pdf

Contents

Language Games . 1
Nicholas Asher and Soumya Paul

Polysemy and Coercion – A Frame-Based Approach Using LTAG
and Hybrid Logic . 18

William Babonnaud, Laura Kallmeyer, and Rainer Osswald

Categorial Dependency Grammars with Iterated Sequences. 34
Denis Béchet and Annie Foret

Implementing Variable Vectors in a CCG Parser. 52
Daisuke Bekki and Ai Kawazoe

On Classical Nonassociative Lambek Calculus . 68
Wojciech Buszkowski

Proof Assistants for Natural Language Semantics . 85
Stergios Chatzikyriakidis and Zhaohui Luo

Compositional Event Semantics in Pregroup Grammars 99
Gabriel Gaudreault

A Compositional Distributional Inclusion Hypothesis. 116
Dimitri Kartsaklis and Mehrnoosh Sadrzadeh

Strong and Weak Quantifiers in Focused NLCL. 134
Wen Kokke

Type Reconstruction for k-DRT Applied to Pronoun Resolution 149
Hans Leiß and Shuqian Wu

A Computable Solution to Partee’s Temperature Puzzle 175
Kristina Liefke and Sam Sanders

Actuality Entailments: When the Modality is in the Presupposition 191
Alda Mari

Non-crossing Tree Realizations of Ordered Degree Sequences 211
Laurent Méhats and Lutz Straßburger

On the Logic of Expansion in Natural Language. 228
Glyn Morrill and Oriol Valentín

http://dx.doi.org/10.1007/978-3-662-53826-5_1
http://dx.doi.org/10.1007/978-3-662-53826-5_2
http://dx.doi.org/10.1007/978-3-662-53826-5_2
http://dx.doi.org/10.1007/978-3-662-53826-5_3
http://dx.doi.org/10.1007/978-3-662-53826-5_4
http://dx.doi.org/10.1007/978-3-662-53826-5_5
http://dx.doi.org/10.1007/978-3-662-53826-5_6
http://dx.doi.org/10.1007/978-3-662-53826-5_7
http://dx.doi.org/10.1007/978-3-662-53826-5_8
http://dx.doi.org/10.1007/978-3-662-53826-5_9
http://dx.doi.org/10.1007/978-3-662-53826-5_10
http://dx.doi.org/10.1007/978-3-662-53826-5_10
http://dx.doi.org/10.1007/978-3-662-53826-5_11
http://dx.doi.org/10.1007/978-3-662-53826-5_12
http://dx.doi.org/10.1007/978-3-662-53826-5_13
http://dx.doi.org/10.1007/978-3-662-53826-5_14

Context Update for Lambdas and Vectors . 247
Reinhard Muskens and Mehrnoosh Sadrzadeh

XMG 2: Describing Description Languages . 255
Simon Petitjean, Denys Duchier, and Yannick Parmentier

Minimalist Grammar Transition-Based Parsing . 273
Miloš Stanojević

A Compositional Semantics for ‘If Then’ Conditionals 291
Mathieu Vidal

Automatic Concepts and Automata-Theoretic Semantics
for the Full Lambek Calculus . 308

Christian Wurm

Abstracts of Short Talks

Graded Hyponymy for Compositional Distributional Semantics. 327
Dea Bankova, Bob Coecke, Martha Lewis, and Dan Marsden

Minimization of Finite State Automata Through Partition Aggregation. 328
Johanna Björklund and Loek Cleophas

Inferring Necessary Categories in CCG . 329
Jacob Collard

Sitting and Waiting: An Idle Meaning of an English Posture Verb. 330
Katherine Fraser

Types and Meaning of Relative Pronouns in Tupled Pregroup Grammars. . . . 332
Aleksandra Kiślak-Malinowska

Dependent Event Types . 333
Zhaohui Luo and Sergei Soloviev

Author Index . 335

XXIV Contents

http://dx.doi.org/10.1007/978-3-662-53826-5_15
http://dx.doi.org/10.1007/978-3-662-53826-5_16
http://dx.doi.org/10.1007/978-3-662-53826-5_17
http://dx.doi.org/10.1007/978-3-662-53826-5_18
http://dx.doi.org/10.1007/978-3-662-53826-5_19
http://dx.doi.org/10.1007/978-3-662-53826-5_19
http://dx.doi.org/10.1007/978-3-662-53826-5
http://dx.doi.org/10.1007/978-3-662-53826-5
http://dx.doi.org/10.1007/978-3-662-53826-5
http://dx.doi.org/10.1007/978-3-662-53826-5
http://dx.doi.org/10.1007/978-3-662-53826-5
http://dx.doi.org/10.1007/978-3-662-53826-5

Language Games

Nicholas Asher and Soumya Paul(B)

Institut de Recherche en Informatique de Toulouse, Toulouse, France
nicholas.asher@irit.fr, soumya.paul@gmail.com

Abstract. In this paper we summarize concepts from earlier work and
demonstrate how infinite sequential games can be used to model strategic
conversations. Such a model allows one to reason about the structure
and complexity of various kinds of winning goals that conversationalists
might have. We show how to use tools from topology, set-theory and logic
to express such goals. Our contribution in this paper is to offer a detailed
examination of an example in which a player ‘defeats himself’ by going
inconsistent, and to introduce a simple yet revealing way of talking about
unawareness. We then demonstrate how we can use ideas from epistemic
game theory to define various solution concepts and justify rationality
assumptions underlying a conversation.

Keywords: Strategic reasoning · Conversations · Dialogues · Infinite
games · Epistemic game theory

1 Introduction

A strategic conversation involves (at least) two people (agents) who have oppos-
ing interests concerning the outcome of the conversation. A debate between
two political candidates is an instance. Each candidate has a certain number of
points she wants to convey to the audience, and each wants to promote her own
position and damage that of her opponent or opponents. In other words, each
candidate wants to win. To achieve these goals each participant needs to plan for
anticipated responses from the other. Debates are thus a sequence of exchange of
messages at the end of which an agent may win, lose or draw. Similar strategic
reasoning about what one says is a staple of board room or faculty meetings,
bargaining sessions, etc.

It is therefore natural to model such conversations as games. Attempts to this
end have been made in the past with the most notable of them being the use of
signaling games [24] and the closely related persuasion games [15]. In a signaling
game one player with a knowledge of the actual state sends a signal and the
other player who has no knowledge of the state chooses an action, usually upon
an interpretation of the received signal. The standard setup supposes that both
players have common knowledge of each other’s preference profiles as well as their
own over a set of commonly known set of possible states, actions and signals.

The authors thank ERC grant 269427 for supporting this research.

c© Springer-Verlag GmbH Germany 2016
M. Amblard et al. (Eds.): LACL 2016, LNCS 10054, pp. 1–17, 2016.
DOI: 10.1007/978-3-662-53826-5 1

2 N. Asher and S. Paul

However for modeling non-cooperative strategic contexts of sequential dynamic
games, signaling games suffer from many drawbacks. Some of them can be sum-
marised as follows (see [4] for a more comprehensive discussion):

– A game that models a non-cooperative setting, that is a setting where the
preferences of the players are opposed, must be zero-sum. However, it has been
shown [11] that under the zero-sum criterion, in equilibrium, the sending and
receiving of any message has no effect on the receiver decision.

– In order to use games as part of a general theory of meaning, one has to make
clear how to construct the game-context, which includes providing an inter-
pretation of the game’s ingredients (types, messages, actions). Franke [13]
extended the setting of signaling games to that of interpretation games to
address this issue. Such games encode a ‘canonical context’ for an utterance,
in which relevant conversational implicatures may be drawn. The game struc-
ture is determined by the set of ‘sender types’. Interpretation games model
the interpretation of the messages and actions of a signaling game in a co-
operative context for ‘Gricean agents’ quite well. But in the non-cooperative
setting, things are much more intricate and problems remain (again see [4]).

– Signaling games are one-shot and fail to capture the dynamic nature of a
strategic conversation. One can attempt to encode a sequence of moves of
a particular player as a single message m sent by that player but then one
runs into the problem of assigning correct utilities for m because such utilities
depend again on the possible set of continuations of m.

– Finally, there is an inherent asymmetry associated with the setting of a sig-
naling game - one player is informed of the state of the world but the other is
not; one player sends a message but the other does not. Conversations (like
debates), on the other hand, are symmetric - all participants should (and
usually do) get equal opportunities to get their messages across.

Strategic conversations are thus special and have characteristics unique to
them which have not been captured by previous game-theoretic models. Some
of these important characteristics are as follows.

– Conversations are sequential and dynamic and inherently involve a ‘turn-
structure’ which is important in determining the merit of a conversation to
the participants. In other words, it is important to keep track of “who said
what”.

– A ‘move’ by a player in a linguistic game typically carries more semantic
content than usually assumed in game theory. What a player says may have
a set of ‘implicatures’, may be ‘ambiguous’, may be ‘coherent/incoherent’ or
‘consistent/inconsistent’ to what she had said earlier in the conversation. She
may also ‘acknowledge’ other people’s contributions or ‘retract’ her previous
assertions. These features too have important consequences on the existence
and complexity of winning strategies.

– Conversations typically have a ‘Jury’ who evaluates the conversation after it
has ended and determines if one or more of the players have reached their
goals – determines the winner. Players will spin the description of the game to

Language Games 3

their advantage and so may not present an accurate view of what happened.
The Jury can be a concrete or even a hypothetical entity who acts as a ‘passive
player’ in the game. For example, in a courtroom situation there is a physical
Jury who gives the verdict, whereas in a political debate the Jury is the
audience or the citizenry in general. This means that the winning conditions
of the players are affected by the Jury in that, they depend on what they
believe that the Jury expects them to achieve.

– Epistemic elements thus naturally creep into such games. In particular, the
players and the Jury have ‘types’. In addition the players also have ‘beliefs’
about the types of the other players and that of the Jury. They strategize
based on their beliefs and also update their beliefs after each turn.

– Lastly but most importantly, conversations do not have a ‘set end’. When
two people or a group of people engage in a conversation they do not know
at the outset how many turns it will last or how many chances each player
will get to speak (if at all). Sure in a ‘conducted’ conversation such as a
political debate or a courtroom debate, there is usually a moderator whose
job is to ensure that each player receives his or her fair chance to put their
points across but even such a moderator does not know at the outset how the
conversation will unfold and how many turns each player will receive. Players
thus cannot strategize for a set horizon while starting a conversation. This
rules out backward induction reasoning for both the players and we analysts.

With the above aspects in mind, [4] model conversations as infinite games
over a countable ‘vocabulary’ V which they call Message Exchange games (ME
games). In this paper, we first summarize the main results of [4] in a compact
fashion but also add some new remarks concerning first order definability of con-
versational goals. We then add a more nuanced analysis of a particular dialogue
excerpt (our example 4) and prove a theorem beyond the scope of [4], showing
how unexpected moves can complicate the search for winning strategies. Finally
in Sect. 3, we break new ground and add an epistemic layer to ME games.

Let’s now turn to the basics of ME games. The intuitive idea behind an ME
game is that a conversation proceeds in turns where in each turn one of the
players ‘speaks’ or plays a string of letters from her own vocabulary. However,
the player does not play just any sequence of arbitrary strings but sentences or
sets of sentences that ‘make sense’. To ensure this, the vocabulary V should have
an exogenous semantics built-in. In order to achieve this, we exploit a semantic
theory for discourse, SDRT [1]. SDRT develops a rich language to character-
ize the semantics and pragmatics of moves in dialogue. This means that we
can exploit the notion of entailment associated with the language of SDRSs to
track commitments of each player in an ME game. In particular, the language
of SDRT features variables for dialogue moves that are characterized by contents
that the move commits its speaker to. Crucially, some of this content involves
predicates that denote rhetorical relations between moves—like the relation of
question answer pair (qap), in which one move answers a prior move character-
ized by a question. The vocabulary V of an ME game thus contains a count-
able set of discourse constituent labels DU = {π, π1, π2, . . .}, and a finite set of

4 N. Asher and S. Paul

discourse relation symbols R = {R,R1, . . .Rn}, and formulas φ, φ1, . . . from some
fixed language for describing elementary discourse move contents. V consists of
formulas of the form π : φ, where φ is a description of the content of the dis-
course unit labelled by π in a logical language like the language of higher order
logic used, e.g., in Montague Grammar, and R(π, π1), which says that π1 stands
in relation R to π. One such relation R is qap. Thus, each discourse relation
symbolized in V comes with constraints as to when it can be coherently used in
context and when it cannot.

2 Message Exchange Games

In this section we formally define Message Exchange games and state some of
their properties and their use in modeling strategic conversations as explored
at length in [4]. For simplicity, we shall develop the theory for the case of con-
versations that involve two participants, which we shall denote by Player 0 and
Player 1. It will be straightforward to generalize it to the case where there are
more than two players. Thus, in what follows, we shall let i range over the set
of players {0, 1}. Furthermore, Player −i will always denote Player (1 − i), the
opponent of Player i.

We first define the notion of a ‘Jury’. As noted in Sect. 1, a Jury is any entity
or a group of entities that evaluates a conversation and decides the winner.
A Jury thus ‘groups’ instances of conversations as being winning for Player 0 or
Player 1 or both.

For any set A let A∗ be the set of all finite sequences over A and let Aω

be the set of all countably infinite sequences over A. Let A∞ = A∗ ∪ Aω and
A+ = A∗ \ {ε}. Now, let V be a vocabulary as defined at the end of Sect. 1 and
let Vi = V × {i}. This is to make explicit the ‘turn-structure’ of a conversation
as alluded to in the introduction.

Definition 1. A Jury J over (V0 ∪ V1)ω is a tuple J = (win1,win2) where
wini ⊆ (V0 ∪ V1)ω is the winning condition or winning set for Player i.

Given the definition of a Jury over (V0 ∪V1)ω we define a Message Exchange
game as:

Definition 2. A Message Exchange game (ME game) G over (V0 ∪ V1)ω is a
tuple G = ((V0 ∪ V1)ω,J) where J is a Jury over (V0 ∪ V1)ω.

Formally the ME game G is played as follows. Player 0 starts the game by
playing a non-empty sequence in V +

0 . The turn then moves to Player 1 who plays
a non-empty sequence from V +

1 . The turn then goes back to Player 0 and so on.
The game generates a play ρn after n (≥0) turns, where by convention, ρ0 = ε
(the empty move). A play can potentially go on forever generating an infinite
play ρω, or more simply ρ. Player i wins the play ρ iff ρ ∈ wini. G is zero-sum if
wini = (V0 ∪ V1)ω \ win−i and is non zero-sum otherwise. Note that both player
or neither player might win a non zero-sum ME game G. The Jury of a zero-sum

Language Games 5

ME game can be denoted simply as win where by convention win = win0 and
win1 = (V0 ∪ V1)ω \ win.

Plays are segmented into rounds—a move by Player 0 followed by a move by
Player 1. A finite play of an ME game is (also) called a history, and is denoted
by ρ. Let Z be the set of all such histories, Z ⊆ (V0 ∪ V1)∗, where ε ∈ Z is the
empty history and where a history of the form (V0 ∪ V1)+V +

0 is a 0-history and
one of the form (V0 ∪ V1)+V +

1 is a 1-history. We denote the set of i-histories by
Zi. By convention ε ∈ Z1. Thus Z = Z0 ∪ Z1. For ρ ∈ Z, turns(ρ) denotes the
total number of turns (by either player) in ρ. A strategy σi of Player i is thus
a function from the set of −i-histories to V +

i . That is, σi : Z−i → V +
i . A play

ρ = x0x1 . . . of an ME game G is said to conform to a strategy σi of Player i if
for every prefix ρj of ρ, j = i(mod 2) implies ρj+1 = ρjσi(ρj). A strategy σi is
called winning for Player i if ρ ∈ wini for every play ρ that conforms to σi.

Given how we have characterized the vocabulary (V0 ∪ V1), we can assumed
a fixed meaning assignment function from EDUs to formulas the describe their
contents. Then, a sequence of conversational moves can be represented as a
graph (DU, E, �), where DU is the set of vertices each representing a discourse
unit, E ⊆ DU × DU a set of edges representing links between discourse units
that are labeled by � : E → R with discourse relations.1

Example 1. To illustrate this structure of conversations, consider the following
example taken from [2] from a courtroom proceedings where a prosecutor is
querying the defendant. We shall return to this example later on for a strategic
analysis.

a. Prosecutor: Do you have any bank accounts in Swiss banks, Mr. Bronston?
b. Bronston: No, sir.
c. Prosecutor: Have you ever?
d. Bronston: The company had an account there for about six months, in Zurich.
e. Prosecutor: Thank you Mr. Bronston.

Example 2. We can view the conversation in Example 1 as an ME game
as in Fig. 1. The figure shows a weakly connected graph, which represents
a fully coherent conversation, with a set of discourse constituent labels
DU = {πbank, π¬bank, πbank−elab, πcompany, πack, . . .} and a set of relations R =
{qap, q − followup, ack, . . .}. The arrows depict the individual relation instances
between the DUs.

ME game messages come with a conventionally associated meaning in virtue
of the constraints enforced by the Jury; an agent who asserts a content of a
message commits to that content, and it is in virtue of such commitments that
other agents respond in kind. While SDRT has a rich language for describing

1 We note that this is a simplification of SDRT which also countenances complex
discourse units (cdus) and another set of edges in the graph representation, linking
cdus to their simpler constituents. These edges represent parthood, not rhetorical
relations. We will not, however, appeal to cdus here.

6 N. Asher and S. Paul

Fig. 1. An example ME game

dialogue moves, it is not explicit about how dialogue moves explicitly affect the
commitments of the agents who make the moves or those who observe the moves.
[25,26] link the semantics of the SDRT language with commitments explicitly
(in two different ways). They augment the SDRT language with formulas that
describe the commitments of dialogue participants, using a simple propositional
modal syntax. Thus for any formula φ in the language of Montague Grammar
that describes the content of a label π ∈ DU, they add: ¬φ | φ1 ∨ φ2 | Ciφ, i ∈
{0, 1} | C∗φ, with the derived operators ∧, =⇒ ,
,⊥ are defined as usual,
providing a propositional logic of commitments over the formulas that describe
labels. Of particular interest are the commitment operators Ci and C∗. If φ is
a formula for describing a content, Ciφ is a formula that says that Player i
commits to φ and C∗φ denotes ‘common commitment’ of φ. Commitment is
modeled as a Kripke modal operator via an alternativeness relation in a pointed
model with a distinguished (actual) world w0. This allows them to provide a
semantics for discourse moves that links the making of a discourse move by an
agent to her commitments: i’s assertion of a discourse move φ, for instance, we
will assume, entails a common commitment that i commits to φ, written C∗Ciφ.
They show how each discourse move φ defines an action, a change or update on
the model’s commitment structure; in the style of public announcement logic viz.
[6,7]. For instance, if agent i asserts φ, then the commitment structure for the
conversational participants is updated such so as to reflect the fact that C∗Ciφ.
Finally, they define an entailment relation |= that ensures that φ |= C∗Ciφ. This
semantics is useful because it allows us to move from sequences of discourse moves
to sequences of updates on any model for the discourse language. See [25,26] for
a detailed development and discussion.

ME games resemble infinite games that have been used in topology, set theory
[19] and computer science [16] to study the descriptive complexity of different
infinite sets. We can leverage some of the results from these areas to talk about
the general ‘shape’ of conversations or to analyse the complexity of the winning

Language Games 7

conditions of the players. This has been extensively explored in [4]. We give a
flavor of some of the applications here.

To do that we first need to define an appropriate topology on (V0 ∪ V1)ω

which will allow us to characterize the descriptive complexity of the winning
sets win0 and win1. We proceed as follows. We define the topology on (V0 ∪V1)ω

by defining the open sets to be sets of the form A(V0∪V1)ω where A ⊆ (V0∪V1)∗.
Such an open set will be often denoted as O(A). When A is a singleton set {x}
(say), we abuse notation and write O({x}) as O(x). The Borel sets are defined as
the sigma-algebra generated by the open sets of this topology. The Borel sets can
be arranged in a natural hierarchy called the Borel hierarchy which is defined as
follows. Let Σ0

1 be the set of all open sets. Π0
1 = Σ0

1 , the complement of the set
of Σ0

1 sets, is the set of all closed sets. Then for any α > 1 where α is a successor
ordinal, define Σ0

α to be the countable union of all Π0
α−1 sets and define Π0

α to
be the complement of Σ0

α. Δ0
α = Σ0

α ∩ Π0
α.

Definition 3 [19]. A set A is called complete for a class Σ0
α (resp. Π0

α) if A ∈
Σ0

α \ Π0
α (resp. Π0

α \ Σ0
α) and A /∈ (Σ0

β ∪ Π0
β) for any β < α.

The Borel hierarchy represents the descriptive or structural complexity of the
Borel sets. A set higher up in the hierarchy is structurally more complex than
one that is lower down. Complete sets for a particular class of the hierarchy
represent the structurally most complex sets of that class. We can use the Borel
hierarchy and the notion of completeness to capture the complexity of winning
conditions in conversations. For example, two typical sets in the fist level of the
Borel hierarchy are defined as follows. Let A ⊆ (V0 ∪ V1)+, then

reach(A) = {ρ ∈ (V0 ∪ V1)ω | ρ = xyρ′, y ∈ A}, safe(A) = (V0 ∪ V1)ω \ reach(A)

A little thought convinces us that reach(A) ∈ Σ0
1 and safe(A) ∈ Π0

1 . Let reach-
ability be the class of sets of the form reach(A) and safety be the class of sets of
the form safe(A).

Example 3. Returning to our example of Bronston and the Prosecutor, let us
consider what goals the Jury expects each of them to achieve. The Jury will
award its verdict in favor of the Prosecutor: (i) if he can eventually get Bronston
to admit that (a) he had an account in Swiss banks, or (b) he never had an
account in Swiss banks, or (ii) if Bronston avoids answering the Prosecutor
forever. In the case of (i)a, Bronston is incriminated, (i)b, he is charged with
perjury and (ii), he is charged with contempt of court. Bronston’s goal is the
complement of the above, that is to avoid either of the situations (i)a, (i)b
and (ii). We thus see that the Jury winning condition for the Prosecutor is a
Boolean combination of a reachability condition and the complement of a safety
condition, which is in the first level of the Borel hierarchy.

Conversations, to be meaningful, must also satisfy certain natural constraints
which the Jury might impose throughout the course of a play. Below we define
some of these constraints and then go on to study the complexity of the sets
satisfying them.

8 N. Asher and S. Paul

Let ρ = x0x1x2 . . . be a play of an ME game G where x0 = ε and xj ∈
V +
((j−1) mod 2) is the sequence played by Player ((j − 1) mod 2) in turn j. For

every i define the function dui : V +
i → ℘(DU) such that dui(xj) gives the set

of contributions (in terms of DUs) of Player i in the jth turn. By convention,
dui(xj) = ∅ for xj ∈ V +

−i.

Definition 4. Let G = ((V0 ∪ V1)ω,J) be an ME game over (V0 ∪ V1)ω. Let
ρ = x0x1x2 . . . be a play of G. Then

Consistency: ρ is consistent for Player i if the set {dui(xj)}j>0 is consistent.
Let CONSi denote the set of consistent plays for Player i in G.

Coherence: Player i is coherent on turn j > 0 of play ρ if for all π ∈ dui(xj)
there exists π′ ∈ (dui(xk) ∪ du−i(xk−1)) where k ≤ j such that there exits
R ∈ R such that (π′Rπ ∨πRπ′) holds. Let COHi denote the set of all coherent
plays for Player i in G.

Responsiveness: Player i is responsive on turn j > 0 of play ρ if there exists
π ∈ dui(xj) such that there exits π′ ∈ du−i(xj−1) such that π′Rπ for some
R ∈ R. Let RESi denote the set of responsive plays for Player i in G. xj (or
abusing notation, π) will be sometimes called a response move.

Rhetorical-cooperativity: Player i is rhetorically-cooperative in ρ if she is both
coherent and responsive in every turn of hers in ρ. ρ is rhetorically-cooperative
if both the players are rhetorically-cooperative in ρ. Let RCi denote the set of
rhetorically-cooperative plays for Player i in G and let RC be the set of all
rhetorically-cooperative plays.

To define the constraints NEC and CNEC we need first the definition of an
‘attack’ and a ‘response’. Thus

Definition 5. Let G = ((V0 ∪ V1)ω,J) be an ME game over (V0 ∪ V1)ω. Let
ρ = x0x1x2 . . . be a play of G. Then

Attack: attack(π′, π) on Player −i holds at turn j of Player i just in case π ∈
dui(xj), π′ ∈ du−i(xk) for some k ≤ j, there is an R ∈ R such that π′Rπ and:
(i) π′ entails that −i is committed to φ for some φ, (ii) φ entails that ¬φ holds.
In such a case, we shall often abuse notation and denote it as attack(k, j).
Furthermore, xj or alternatively π shall be called an attack move. An attack
move is relevant if it is also a response move. attack(k, j) on −i is irrefutable
if there is no move x� ∈ V−i in any turn � > j such that attack(j, �) holds
and x0x1 . . . x� is consistent for −i.

Response: response(π′, π) on Player −i holds at turn j of Player i if there exits
π′′ ∈ dui(x�), π′ ∈ du−i(xk) and π ∈ dui(xj) for some � ≤ k ≤ j, such that
attack(π′′, π′) holds at turn k of Player −i, there exists R ∈ R such that π′Rπ
and π implies that (i) one of i’s commitments φ attacked in π′ is true or (ii)
one of −i’s commitments in π′ that entails that i was committed to ¬φ is
false. We shall often denote this as response(k, j).

We can now define the constraints NEC and CNEC as follows.

Language Games 9

Definition 6. Let G = ((V0 ∪ V1)ω,J) be an ME game over (V0 ∪ V1)ω. Let
ρ = x0x1x2 . . . be a play of G. Then

NEC: NEC holds for Player i in ρ on turn j if for all �, k, � ≤ k < j, such that
attack(�, k), there exists m, k < m ≤ j, such that response(k,m). NEC holds
for Player i for the entire play ρ if it holds for her in ρ for infinitely many
turns. Let NECi denote the set of plays of G where NEC holds for player i.

CNEC: CNEC holds for Player i on turn j of ρ if there are fewer attacks on i
with no response in ρj than for −i. CNEC holds for Player i over a ρ if in
the limit there are more prefixes of ρ where CNEC holds for i than there are
prefixes ρ where CNEC holds for −i. Let CNECi be the set of all plays of G
where CNEC holds for i.

For a zero-sum ME game G, the structural complexities of most of the
above constraints can be derived from another constraint which we call rhetorical
decomposition sensitivity (RDS) which is defined as follows.

Definition 7. Given a zero sum ME game G = ((V0 ∪V1)ω,win), win is rhetor-
ically decomposition sensitive (RDS) if for all ρ ∈ win and for all finite prefixes
ρj of ρ, ρj ∈ Z1 implies there exists x ∈ V +

0 such that O(ρjx) ∩ win = ∅.
[4] show that if Player 0 has a winning strategy for an RDS winning condition

win then win is a Π0
2 complete set. Formally,

Proposition 1 [4]. Let G = ((V0 ∪V1)ω,win) be a zero-sum ME game such that
win is RDS. If Player 0 has a winning strategy in G then win is Π0

2 complete for
the Borel hierarchy.

In the zero-sum setting, CONS0, RES0, COH0, NEC0 are all RDS and it is
easy to observe that Player 0 has winning strategies in all these constraints
(considered individually). Hence, as an immediate corollary to Proposition 1 we
have

Corollary 1. CONS0, RES0, COH0, NEC0 are Π0
2 complete for the Borel hier-

archy for a zero sum ME game.

CNEC, on the other hand, is a structurally more complex constraint. This
is not surprising because CNEC can be intuitively viewed as a limiting case of
NEC. Indeed, this was formally shown in [4].

Proposition 2 [4]. CNECi is Π0
3 complete for the Borel hierarchy for a zero

sum ME game.

The above results have interesting consequences in terms of first-order defin-
ability. Note that certain infinite sequences over our vocabulary (V0 ∪V1) can be
coded up using first-order logic over discrete linear orders (N, <), where N is the
set of non-negative natural numbers. Indeed, for every i and for every a ∈ Vi, let
ai
0 be a predicate such that given a sequence x = x0x1 . . . , xj ∈ (V0 ∪ V1)

10 N. Asher and S. Paul

for all j ≥ 0, x |= ai
0(j) iff xj = a. Closing under finite Boolean opera-

tions and ∀,∃, we obtain the logic FO(<). Now for any formula ϕ ∈ FO(<)
and for any play ρ of an ME game G, ρ |= ϕ can be defined in the standard
way. Thus every formula ϕ ∈ FO(<) gives a set of plays ρ(ϕ) of G defined as:
ρ(ϕ) = {ρ ∈ (V0 ∪ V1)ω| ρ |= ϕ}. A set A ⊆ (V0 ∪ V1)ω is said to be FO(<)
definable if there exists a FO(<) formula ϕ such that A = ρ(ϕ). The following
result is well-known.

Theorem 1 [21]. A ⊆ (V0 ∪ V1)ω is FO(<) definable iff A ∈ (Σ0
2 ∪ Π0

2).

Thus FO(<) cannot define sets that are higher than the second level of the Borel
hierarchy in their structural complexity. Thus as a corollary of Proposition 2 and
Corollary 1, we have

Corollary 2. CONS0, RES0, COH0, NEC0 are FO(<) definable but not CNECi.

This agrees with our intuition because as we observed, CNECi is a limit
constraint and FO(<), being local [14], lacks the power to capture it. To define
CNECi one has to go beyond FO(<) and look at more expressive logics. One
such option is to augment FO(<) with a counting predicate cnt which ranges
over (N ∪ {∞}) [20]. Call this logic FO(<, cnt). One can write formulas of the
type ∃∞xϕ(x) in FO(<, cnt) which says that “there are infinitely many x’s such
that ϕ(x) holds.” Note that it is straightforward to write a formula in FO(<, cnt)
that describes CNECi. Another option is to consider the logic Lω1ω(FO,<)
which is obtained by closing FO(<) under infinitary boolean connectives

∨
j

and
∧

j . We can define a strict syntactic subclass of Lω1ω(FO,<), denoted
L ∗

ω1ω(FO,<), where every formula is of the form OpOq . . . Otϕpq...t, where, for
k ∈ {p, q, . . . , t − 1}, Ok =

∨
k iff Ok+1 =

∧
k+1 and each ϕpq...t is an (FO,<)

formula, p, q, . . . , t ∈ N. That is, in every formula of L ∗
ω1ω(FO,<), the infinitary

connectives are not nested and occur only in the beginning. We can then show
that L ∗

ω1ω(FO,<) can express sets in any countable level of the Borel hierarchy.
We do not go into further details here.

We now turn to strategic analyses of actual conversations. Consider this
example, an excerpt from the 1988 Dan Quayle-Lloyd Bentsen Vice-Presidential
debate which has exercised us now for several years, from the perspective of the
theory of ME games developed above.

Example 4. Quayle (Q), a very junior and politically inexperienced Vice-
Presidential candidate, was repeatedly questioned about his experience and his
qualifications to be President. Till a point in the debate both of them were
going neck to neck. But then to rebut doubts about his qualifications, Quayle
compared his experience with that of the young John (Jack) Kennedy. To that,
Bentsen (BN) made a discourse move that Quayle apparently did not anticipate.
We give the relevant part of the debate below:

a. Quayle: ... the question you’re asking is, “What kind of qualifications does Dan Quayle have
to be president”, [...] I have far more experience than many others that sought the office of vice
president of this country. I have as much experience in the Congress as Jack Kennedy did when
he sought the presidency.

Language Games 11

b. Bensten: Senator, I served with Jack Kennedy. I knew Jack Kennedy. Jack Kennedy was a
friend of mine. Senator, you’re no Jack Kennedy.

c. Quayle: That was unfair, sir. Unfair.
d. Bensten: You brought up Kennedy, I didn’t.

Example (4) is an example of how a player can go inconsistent in a debate,
which has disastrous consequences, if the Jury enforces consistency as a necessary
component of any winning condition. But the analysis depends on the semantics
of discourse relations. It would seem that Quayle was unaware that (Example 4b.)
was a possible move for Bentsen in a strategy of countering his commitments
(we shall talk more about unawareness shortly). However, note that Quayle’s
commitments in (Example 4a.) are not innocuous in the first place. He brings up
as a comparison one of the most revered Presidents in contemporary American
history; and while it is true that John F. Kennedy, like Quayle, was a relatively
inexperienced junior senator when he ran for President in 1960, Quayle could
have chosen many other figures for comparison—for instance, Richard Nixon’s
credentials prior to his taking the post of Vice-President in 1952 were also com-
parable to Quayle’s. But by choosing JFK as a reference and by referring to
him with his nickname ’Jack’ used by his advisors and friends, Quayle made the
suggestion or weak-implicature, that perhaps he would be comparable in other
ways to JFK. It certainly put Quayle’s experience or lack thereof in a favorable
light.

Notice too that Quayle did not come out with a bald assertion of this impli-
cature in (Example 4a.). He did not say

a’. I have as much experience in the Congress and as much Presidential potential as Jack Kennedy
did when he sought the presidency.

He sensed this would be a dangerous move, opening him up to attack and perhaps
even ridicule, either from his opponent or at least in the minds of the Jury. So
instead, he couched his message in an implicit form.

Our intuition is that Quayle did not anticipate a direct attack on the implica-
ture he was drawing out. Perhaps he was not even aware that he was making such
an implicature, though our discussion of alternatives suggests that something like
that implicature is there and the result of a choice of Quayle’s comparison. In
any case, Quayle had no real counter-move or strategy prepared, we feel.

So what happened with Quayle’s response? (Example 4d.) in discourse the-
ory terms is a ‘commentary’ on Bentsen’s attack move. Commentaries carry with
them a commitment by their speaker to the content they are commenting on.
Now if the commentary’s target is the content of what Bentsen said, then this
is devastating for Quayle. By saying Quayle is no Kennedy, Bentsen is impli-
cating something stronger, that Quayle is not of Presidential material. With
commentary on the content, Quayle then commits to that content. In so doing
he commits to his not being of Presidential stature when precisely his winning
condition was to constantly come back to that commitment and reaffirm it. His
commitments are now inconsistent, and inconsistency can be a game-losing prop-
erty in a conversation. Moreover, this was an inconsistency involving an intrinsic
property of Quayle’s winning condition.

12 N. Asher and S. Paul

There is an alternative interpretation of the commentary move (Example 4d.)
by Quayle. The commentary move is not about the content of Bensten’s move but
rather about the fact that Bensten made this move. This seems more plausible
and it commits Quayle on the face of it only to the fact that Bentsen made a
particular discourse move. But by not counter-attacking Bensten, Quayle sends a
message that is terrible for him. First, he commits that the attack is coherent and
responsive. Second, by not replying he concedes and commits to the proposition
that the content of Bensten’s move and its implicatures are not attackable. That
is, Quayle implicates he has no means to refute the content of the attack. But
this in turn implies that he implicitly must commit to their content. Hence, his
non-reply makes his commitments look inconsistent.

Example 4 also lends itself to an analysis from the perspective of ‘unaware-
ness’ of moves available to one player by the other player. What happens when
Player 0 thinks that an ME game G is being played over a vocabulary (V0 ∪ V1)
whereas Player 1 actually has moves available to him from a larger vocabulary
W1 � V1? That is G = ((V0 ∪ W1)ω,J). To answer this question, we make use
of the following result.

Proposition 3. Let V and W be countable vocabularies such that V � W .
Then, a Σ1

0 complete set in Xω jumps to Δ0
2 in Y ω, and all other sets stay in

the same level.

To preserve the continuity of the text, we give the proof in the appendix.
Proposition 3 thus implies that a winning set win which is Σ0

1 in an ME game
G = ((V0 ∪ V1)ω,J) might be Δ0

2 in an ME game G′ = ((V0 ∪ W1)ω,J) where
W1 � V1. win is hence more complex structurally in G′. The result of this might
be that even if Player 0 had a winning strategy σ0 in G, σ0 might not be winning
for her in G′.

Coming back now to Example 4, Quayle believed that if he just made his
comparison with John F. Kennedy, to whom he refers by his colloquial nickname
used by friends and members of JFK’s cabinet, no matter what the response
Bentsen made, that is the responses of which he was aware in V1 would hurt
his chances. He had a simple goal, which we could characterize as a Σ0

1 goal:
mentioning this comparison. As such, he also had a simple winning strategy for
achieving this goal. However, in the larger set of discourse moves, W1 Bentsen
had an attack that floored Quayle. In fact, we can easily show that Quayle had no
winning strategy for keeping to his winning condition over strings in (V0 ∪V1)ω;
given that his winning strategy depended on his opponent’s use of moves in V1,
all that Bentsen had to do to defeat Quayle was to use a coherent move in W1

to upset Quayle’s strategy. This is a simple-minded yet insightful analysis of the
interesting and deep notion of unawareness which we wish to fully explore in
our future work. To fully understand this phenomenon, one has to appeal to the
theory of epistemic games, to which we now turn.

Language Games 13

3 Imperfect Information and Epistemic Considerations

So far we have shown how to model strategic conversations as infinite sequential
games and how to reason about the complexity of certain commonly used win-
ning goals in such conversations in terms of both their topological and logical
complexities. A couple of issues that we have not addressed are:

– Yes, a conversation at the outset can be potentially infinite. But still in real
life, the Jury does end the game after a finite amount of time, after a finite
number of turns. By doing so, how can it be sure that it has correctly deter-
mined the outcome of the conversation? In other words, how does the Jury,
at any point in a conversation gauge how the players are faring and when
does it decide to call it a day?

– How does the Jury determine the winning conditions win0 and win1? Surely,
it does not come up with a arbitrary subset of (V0 ∪ V1)ω with an arbitrary
Borel complexity.

To address the above questions [3] introduced the model of ‘weighted ME games’
or WME games. A WME game is similar to a ME game except that the Jury
instead of specifying the winning sets wini as subsets of (V0 ∪ V1)ω, determines
them on-the-fly. It does so by evaluating every move of each player by assigning
a ‘weight’ or a ‘score’. The cumulative weight of a conversation ρ is then the
discounted sum of these individual weights. [3] also showed that given an ε > 0
there exists a number nε such that the Jury can stop the game after nε turns
and determine the winner, being sure that no player could have done more than
ε better than what they had already done. We do not go into the details here
but refer the interested reader to that paper.

In this section, we study the exact information structure implicit in the
strategic reasoning in conversations by extending framework of ME games
with epistemic notions. We use the well-established theory of type-structures,
first introduced in [17] and widely studied since. We assume that each player
i ∈ ({0, 1} ∪ {J }) has a (possibly infinite) set of types Ti. With each type
ti of Player i is associated a (first-order) belief function βi(ti) which assigns
to ti a probability distribution over the types of the other players. That is,
βi : Ti → Δ(

∏
j �=i Tj). βi(ti) represents the ‘beliefs’ of type ti of Player i about

the types of the other players and the Jury. The higher-order beliefs can be
defined in a standard way by iterating the functions βi. We assume that each
type ti of each Player i starts the game with an initial belief βi(ti) ∈ Δ(

∏
j �=i Tj),

called the ‘prior belief’. The players take turns in making their moves and after
every move, all the players dynamically update their beliefs through Bayesian
updates. The notions of ‘optimal strategies’, ‘best-response’, ‘rationality’, ‘com-
mon belief in rationality’ etc. can then be defined in the standard way (see [12]).

Having imposed the above epistemic structure on ME games, we can now rea-
son about the ‘rationality’ of the players’ strategies. In order to justify or predict
the outcome of games, many different solution concepts viz., Nash equilibrium,
iterated removal of dominated strategies, correlated equilibrium, rationalizabil-
ity etc. have been proposed [5,10,22]. Most of them have also been characterized

14 N. Asher and S. Paul

in terms of the exact belief structure and strategic behavior of the players (see
[12] for an overview). We can borrow results from this rich literature to predict
or justify outcomes in strategic conversations. The details of the above is on-
going work and we leave it to an ensuing paper. However, let us apply the above
concepts and analyze our original example of Bronston and the Prosecutor.

To illustrate the power of types, let us return to Example 1. One conversa-
tional goal of the Prosecutor in Example 1 is to get Bronston to commit to an
answer eventually (and admit to an incriminating fact) or to continue to refuse
to answer (in which case he will be charged with contempt of court). Under such
a situation, the response (1d.) of Bronston is clearly a clever strategic move.
Bronston’s response (1d.) was a strategic move aimed to ‘misdirect’ the Jury J .
He believed that J was of a type that would be convinced by his ambiguous
response and neither incriminate him nor charge him with perjury nor of con-
tempt of court. His move was indeed rational, given his belief about the Jury
type. It turns out that while the jury of a lower court J1 was not convinced
of Bronston’s arguments and charged him with perjury, a higher court J2 over-
turned the verdict and released him. Thus his belief agreed with J2 but not J1.

Powerful as the above techniques are, one has to exercise caution and define
the moves, states and the types of the players carefully. Having too rich a
type space can lead to inexistence results. For example, consider the following
situation.

Example 5. Two philosophers Michael and Brian must occupy a panel discussion
before an audience. They both have an extremely good opinion of themselves.
Each philosopher’s goal is to prove that he is better than the other by talking
highly of himself. They exchange dialogues where in every turn a philosopher can
boast of himself as long as he wants to but eventually has to stop and concede
the turn to the other philosopher. The audience, unlike the philosophers, can
become impatient and decide at any moment to stop the discussion, give its
verdict and leave. It offers the win to the one who has spoken ‘more’ of himself.

Clearly, the above game does not have an equilibrium pair of strategies. To
see this, suppose without loss of generality that Michael speaks first. He has to
concede the turn to Brian after saying m1 points in his own favour (say). Brian
plays next and he says b1 points in his own favour. Now suppose the audience
decides to stop the conversation after k sentences have been uttered by both
the players. We can always find a k such that neither Michael nor Brian has a
winning strategy. Indeed, if b1 > m1 and k = b1 + m1 then Michael cannot win.
However, if k < 2p1 Brian cannot win. Thus, both Michael and Brian could have
done better by having said a ‘bit more’ about themselves in their corresponding
turns. Without equilibria, it is unclear what our speakers should do in such a
situation. Such examples pose a challenge to a fundamental assumption amongst
linguists and philosophers that conversation is a rational activity with optimal
strategies for achieving speakers’ goals.

Our example in fact follows from a general result by [18], which says that if the
space of types is not a separable set then there always exists a game with no equi-
librium. In the above game, associating the types of a player with possible subsets

Language Games 15

of her strategies, we see that the space of types is a set with a large cardinality
(> ℵ1) and hence we lose separability.

Conversationalists are aware implicitly of the dangers of such cases and
debates have exogenous means of ensuring that there are optimal strategies for
the speakers to follow. For instance, in debates there is usually a ‘moderator’
who ensures that all the participants get a fair chance to speak. She might inter-
rupt a speaker and pass the turn on to another speaker. Note that this variant
of our example game (Example 5) restores the presence of an equilibrium: each
philosopher keeps speaking about himself till he is interrupted by the moderator
- that is the best he can do anyway since he does not know in advance when he
will be interrupted. More generally, we can restore separability (and hence the
existence of equilibria) by limiting the set of types. One way is to require that
each type (and hence each winning condition that players might countenance) be
expressible in some language with a limited complexity. As long as the language
is countable, separability can be restored for type spaces, and then by [18] any
such game must have an equilibrium. Another way is to simply restrict the space
of types to a strict subset of the entire space [8,9]. Thus not all possible subsets
of the conversational space define rational or rationalizable conversational goals.
In the case of our example (Example 5) this means that our philosophers should
limit the set of types that they consider possible. For example, they might expect
each turn to last for a maximum of 20 min (say) so that their belief closed set is
restricted to types of players who speak for a maximum of 20 min in each turn.
This ensures the presence of an equilibrium.

4 Conclusion

We believe that the work summarized and extended in this paper is the start
of a novel yet powerful approach to study strategic conversations. We have but
scratched the surface here and there are many directions into which we would
like to delve deeper in the future. One such direction, as we already mentioned, is
to work out the epistemic theory of ME games in full detail. That is our current
work in progress. Another is that in the present work we have considered the
Jury as a ‘passive’ entity - it simply evaluates the play and determines the
winner. However, in real life situations, the Jury can be an ‘active’ member of
the conversation itself. It can ‘applaud’ or ‘criticize’ moves of the players. Thus,
the Jury can be seen as making these moves in the game. Based on what the
players observe about the Jury, they may update or change their beliefs and
vice-versa. Incorporating this into our ME games requires a modification of the
current framework where the Jury is another player making moves from its own
set of vocabulary. We plan to explore this in future work.

Finally, in addition to the Jury, debates usually also have a moderator whose
job is to conduct the debate and assign turns to the players. The moderator may
also actively ‘pass comments’ about the moves of the players. A fair moderator
gives all the players equal opportunity to speak and put their points across.
However, if the moderator is unfair, he may ‘starve’ a particular player by not

16 N. Asher and S. Paul

letting her enough chance to speak, respond to attacks and so on. Exploring the
effects the inclusion of a moderator in such conversations is another interesting
topic which we leave for future work.

A Appendix

To prove Proposition 3 we shall refer to a result from [23].

Proposition 4 [23]. If V is an infinite vocabulary, the subsets of V ω of the form
AV ω, where A is a set of words of bounded length of V ∗ are clopen.

We now prove Proposition 3.

Proof. First, we show that the set V ω is closed but not open in the space Wω.
That is, V ω ∈ (Π0

1 \ Σ0
1) in Wω. Indeed, we have

V ω =
⋂

n≥0

V nWω

For every n ≥ 0 we have that V n is a set of words of bounded length of V ∗ and
hence by Proposition 4 we have that V nWω is clopen. Thus V ω is closed. Also,
V ω is not open by the definition of open sets.

Now let X ⊂ V ω be (Σ0
1 \ Π0

1) in V ω. By definition, we know that X is of
the form AV ω where A ⊂ V ∗ Thus

X = AV ω = AWω ∩ V ω

Then since AWω is open (Σ0
1) in Wω and V ω, as we just showed, is closed

(Π0
1 \ Σ0

1) in Wω, their intersection is a Δ0
2 set.

Next let Y ⊂ Xω be (Π0
1 \ Σ0

1) in V ω. We show that Y is also closed in
Wω. Indeed, because the complement of Y in V ω is of the form BV ω for some
B ⊂ V ∗. Hence, the complement of Y in Wω is

Wω \ Y = BWω ∪ W ∗(W \ V)Wω

which is open.

References

1. Asher, N., Lascarides, A.: Logics of Conversation. Cambridge University Press,
Cambridge (2003)

2. Asher, N., Lascarides, A.: Strategic conversation. Semant. Pragmat. 6(2), 1–62
(2013). http://dx.doi.org/10.3765/sp.6.2

3. Asher, N., Paul, S.: Evaluating conversational success: weighted message exchange
games. In: Hunter, J., Stone, M. (eds.) 20th workshop on the semantics and Prag-
matics of Dialogue (SEMDIAL), New Jersey, USA, July 2016 (To appear)

4. Asher, N., Paul, S., Venant, A.: Message exchange games in strategic conversations.
J. Philos. Log. (2016, in press)

http://dx.doi.org/10.3765/sp.6.2

Language Games 17

5. Aumann, R.: Subjectivity and correlation in randomized strategies. J. Math. Econ.
1, 67–96 (1974)

6. Baltag, A., Moss, L.S.: Logics for epistemic programs. Synthese 139(2), 165–224
(2004)

7. Baltag, A., Moss, L.S., Solecki, S.: The logic of public announcements, common
knowledge and private suspicions. Technical report SEN-R9922, Centrum voor
Wiskunde en Informatica (1999)

8. Battigalli, P.: Rationalizability in infinite dynamic games with incomplete infor-
mation. Res. Econ. 57(1), 1–38 (2003)

9. Battigalli, P., Siniscalchi, M.: Rationalization and incomplete information. B.E. J.
Theoret. Econ. 3, 1–46 (2003)

10. Bernheim, B.D.: Rationalizable strategic behaviour. Econometrica 52(4), 1007–
1028 (1984)

11. Crawford, V., Sobel, J.: Strategic information transmission. Econometrica 50(6),
1431–1451 (1982)

12. Dekel, E., Siniscalchi, M.: Epistemic game theory (chapter 12). In: Aumann, R.J.,
Hart, S. (eds.) Handbook of Game Theory with Economic Applications, vol. 4, pp.
619–702. Elsevier Publications, Cambridge (2015)

13. Franke, M.: Semantic meaning and pragmatic inference in non-cooperative conver-
sation. In: Icard, T., Muskens, R. (eds.) ESSLLI 2008-2009. LNCS (LNAI), vol.
6211, pp. 13–24. Springer, Heidelberg (2010). doi:10.1007/978-3-642-14729-6 2

14. Gaiffman, H.: On local and non-local properties. In: Proceedings of Herbrand Sym-
posium, Logic Colloquium 1981. North Holland (1982)

15. Glazer, J., Rubinstein, A.: On optimal rules of persuasion. Econometrica 72(6),
119–123 (2004)

16. Grädel, E., Thomas, W., Wilke, T. (eds.): Automata, Logics, and Infinite Games:
A Guide to Current Research [Outcome of a Dagstuhl Seminar, February 2001].
LNCS, vol. 2500. Springer, Heidelberg (2002)

17. Harsanyi, J.C.: Games with incomplete information played by Bayesian players,
parts i-iii. Manag. Sci. 14, 159–182 (1967)

18. Hellman, Z., Levy, Y.: Bayesian games with a continuum of states. Technical report,
Bar Ilan University (2013)

19. Kechris, A.: Classical Descriptive Set Theory. Springer, New York (1995)
20. Libkin, L.: Elements of Finite Model Theory. Springer, New York (2004)
21. McNaughton, R., Papert, S.: Counter-free automata. In: Research Monograph, vol.

65. MIT Press, Cambridge (1971)
22. Nash, J.: Non-cooperative games. Ann. Math. 54(2), 286–295 (1951)
23. Perrin, D., Pin, J.E.: Infinite Words - Automata, Semigroups, Logic and Games.

Elsevier, Cambridge (1995)
24. Spence, A.M.: Job market signaling. J. Econ. 87(3), 355–374 (1973)
25. Venant, A., Asher, N.: Dynamics of public commitments in dialogue. In: Proceed-

ings of 11th International Conference on Computational Semantics, pp. 272–282.
Association for Computational Linguistics, London, April 2015

26. Asher, N., Venant, A.: Ok or not ok? In: Semantics and Linguistic Theory 25.
Cornell University Press (2015)

http://dx.doi.org/10.1007/978-3-642-14729-6_2

Polysemy and Coercion – A Frame-Based
Approach Using LTAG and Hybrid Logic

William Babonnaud1, Laura Kallmeyer2, and Rainer Osswald2(B)

1 ENS Cachan, Université Paris-Saclay, Cachan, France
william.babonnaud@ens-cachan.fr

2 Heinrich-Heine-Universität, Düsseldorf, Germany
{kallmeyer,osswald}@phil.uni-duesseldorf.de

Abstract. In this article, we propose an analysis of polysemy and coer-
cion phenomena using a syntax-semantics interface which combines Lex-
icalized Tree Adjoining Grammar with frame semantics and Hybrid
Logic. We show that this framework allows a straightforward and explicit
description of selectional mechanisms as well as coercion processes. We
illustrate our approach by applying it to examples discussed in Gener-
ative Lexicon Theory [23,25]. This includes the modeling of dot objects
and associated coercion phenomena in our framework, as well as cases of
functional coercion triggered by transitive verbs and adjectives.

Keywords: Systematic polysemy · Coercion · Lexical semantics ·
Frame semantics · Hybrid logic · Lexicalized tree adjoining gram-
mars · Hole semantics · Underspecification · Syntax-semantics interface ·
Generative lexicon theory

1 Introduction

Any compositional model of the syntax-semantics interface has to cope with
polysemy and coercion phenomena. Well-known examples of inherent systematic
polysemy are the varying sortal characteristics of physical carriers of information
such as book : Books can be bought, read, understood, put away, and remembered,
and thus can refer to physical objects or abstract, informational entities, depend-
ing on the context of use. The question is then how to represent such potential
meaning shifts in the lexicon and how to integrate the respective meaning com-
ponents compositionally within the given syntagmatic environment. A different
but related phenomenon in selectional polysemy [25], where an apparent selec-
tional mismatch is resolved by coercion mechanisms that go beyond referential
shifts provided by lexical polysemy. Examples are given by expressions like Mary

This work was supported by the CRC 991 “The Structure of Representations in
Language, Cognition, and Science” funded by the German Research Foundation
(DFG). The first author was financially supported during his stay in Düsseldorf by
ENS Cachan, Université Paris-Saclay. We would like to thank the three anonymous
reviewers for their helpful comments.

c© Springer-Verlag GmbH Germany 2016
M. Amblard et al. (Eds.): LACL 2016, LNCS 10054, pp. 18–33, 2016.
DOI: 10.1007/978-3-662-53826-5 2

Polysemy and Coercion – A Frame-Based Approach 19

began the book and John left the party, where the aspectual verb begin selects
for an event argument (here, an activity with the book as an undergoer), and
leave selects for an argument of type location.

There is a considerable body of work on the compositional treatment of pol-
ysemy and coercion. One important strand of research in this domain is the dot
type and qualia structure approach as part of Generative Lexicon Theory devel-
oped by James Pustejovsky and his colleagues [6,22,23,25,26]. A more recent
development in this direction is Type Composition Logic [3–5,7], which intro-
duces an elaborate system of complex types and rules for them. The approach
presented in the following takes a model-oriented perspective in that it asks for
the semantic structures in terms of semantic frames that underlie the phenomena
in question. We propose a compositional framework in which syntactic operations
formulated in Lexicalized Tree Adjoining Grammar drive the semantic compo-
sition. On the semantic side, we use underspecified Hybrid Logic formulas for
specifying the associated semantic frames.

The rest of the paper is structured as follows: Sect. 2 introduces the general
model of the syntax-semantics interface adopted in this paper. Its main compo-
nents are a formal model of semantic frames, a slightly adapted version of Hybrid
Logic for describing such frames, and a version of Lexicalized Tree Adjoining
Grammar which combines elementary trees with underspecified Hybrid Logic
formulas. Section 3 shows how this framework can be fruitfully employed for a
detailed modeling of systematic polysemy and coercion phenomena. It is shown
how dot objects can be represented in frame semantics and how various cases
of argument selection and coercion can be formally described. Section 4 gives a
brief summary and lists some topics of current and future research.

2 The Formal Framework

We follow [16] in adopting a framework for the syntax-semantics interface that
pairs a Tree Adjoining Grammar (TAG) with semantic frames. More concretely,
every elementary syntactic tree is paired with a frame description formulated in
Hybrid Logic (HL) [2]. In the following, we briefly introduce this framework; see
[14,16] for more details.

2.1 Frames

Frames [8,10,18] are semantic graphs with labeled nodes and edges, as in Fig. 1,
where nodes correspond to entities (individuals, events, . . .) and edges to (func-
tional or non-functional) relations between these entities. In Fig. 1 all relations
except part-of are meant to be functional.

Frames can be formalized as extended typed feature structures [15,21] and
specified as models of a suitable logical language. In order to enable quantifica-
tion over entities or events, [16] propose to use Hybrid Logic, an extension of
modal logic.

20 W. Babonnaud et al.

n0

motion
n1

man

path

walking

n2

house

agent

mover

pathmanner

endp at-regionpart-of

goal

Fig. 1. Frame for the meaning of the man walked to the house (adapted from [15])

2.2 Hybrid Logic and Semantic Frames

Before giving the formal definition of Hybrid Logic (HL) as used in this paper,
let us illustrate its use for frames with some examples. Consider the frame in
Fig. 1. The types in frames are propositions holding at single nodes, the formula
motion, for instance, is true at the node n0 but false at all other nodes of our
sample frame. Furthermore, we can talk about the existence of an attribute for a
node. This corresponds to stating that there exists an outgoing edge at this node
using the ♦ modality in modal logic. In frames, there may be several relations,
hence several modalities, denoted by 〈R〉 with R the name of the relation. For
example, 〈agent〉man is true at the motion node n0 in our frame because there
is an agent edge from n0 to some other node where man holds. (Note that HL
does not distinguish between functional and non-functional edge labels. That
is, functionality has to be enforced by additional constraints.) Finally, we can
have conjunction, disjunction, and negation of these formulas. E.g., motion ∧
〈manner〉walking ∧ 〈path〉〈endp〉� is also true at the motion node n0.

HL extends this with the possibility to name nodes in order to refer to them,
and with quantification over nodes. We use a set of nominals (unique node
names), and a set of node variables. n0 is such a nominal, the node assigned
to it is the motion node in our sample frame. x, y, ... are node variables. The
truth of a formula is given with respect to a specific node w in a frame, an
assignment V from nominals to nodes in the frame and an assignment g which
maps variables to nodes in the frame.

There are different ways to state existential quantifications in HL, namely
Eφ and ∃x.φ. Eφ is true at w if there exists a node w′ at which φ holds. In other

words, we move to some node w′ in the frame and there φ is true. For instance,
Ehouse is true at any node in our sample frame. As usual, we define

A

φ ≡ ¬ E(¬φ)
and φ → ψ ≡ ¬φ∨ψ. In contrast to Eφ, ∃x.φ is true at w if there is a w′ such that
φ is true at w under an assignment of x to w′. In other words, there is a node
that we name x but for the evaluation of φ, we do not move to that node. E.g.,
the formula ∃x.〈path〉〈endp〉〈part-of 〉(x∧ region)∧ E(house∧〈at-region〉x) is
true at the motion node in our sample frame.

Besides quantification, HL also allows us to use nominals or variables to
refer to nodes via the @ operator: @nφ specifies the moving to the node w
denoted by n before evaluating φ. n can be either a nominal or a variable.

Polysemy and Coercion – A Frame-Based Approach 21

The ↓ operator allows us to assign the current node to a variable: ↓ x.φ is true
at w if φ is true at w under the assignment gxw. I.e., we call the current node x,
and, under this assignment, φ is true at that node. E.g., 〈path〉〈endp〉〈part-of 〉(↓
x.region ∧ E(house ∧ 〈at-region〉x)) is true at the motion node in our frame.

To summarize this, our HL formulas have the following syntax: Let Rel =
Func ∪ PropRel be a set of functional and non-functional relation symbols, Type
a set of type symbols, Nom a set of nominals (node names), and Nvar a set of
node variables, with Node = Nom ∪ Nvar. Formulas are defined as:

(1) Forms :: = � | p | n | ¬φ | φ1 ∧ φ2 | 〈R〉φ | Eφ | @nφ | ↓x.φ | ∃x.φ

where p ∈ Type, n ∈ Node, x ∈ Nvar, R ∈ Rel and φ, φ1, φ2 ∈ Forms. For more
details and the formal definition of satisfiability as explained above see [14,16].

2.3 LTAG and Hybrid Logic

A Lexicalized Tree Adjoining Grammar (LTAG; [1,12]) consists of a finite set of
elementary trees. Larger trees are derived via substitution (replacing a leaf with
a tree) and adjunction (replacing an internal node with a tree). An adjoining
tree has a unique foot node (marked with an asterisk), which is a non-terminal
leaf labeled with the same category as the root of the tree. When adjoining such
a tree to some node n of another tree, in the resulting tree, the subtree with
root n from the original tree is attached at the foot node of the adjoining tree.

The non-terminal nodes in LTAG are usually enriched with feature struc-
tures [27]. More concretely, each node has a top and a bottom feature structure
(except substitution nodes, which have only a top). Nodes in the same elemen-
tary tree can share features. Substitutions and adjunctions trigger unifications
in the following way: In a substitution step, the top of the root of the new tree
unifies with the top of the substitution node. In an adjunction step, the top of
the root of the adjoining tree unifies with the top of the adjunction site and the
bottom of the foot of the adjoining tree unifies with the bottom of the adjunc-
tion site. Furthermore, in the final derived tree, top and bottom must unify in
all nodes.

Our framework for the syntax-semantics interface follows previous LTAG
semantics approaches in pairing each elementary tree with a semantic repre-
sentation that consists of a set of HL formulas, which can contain holes and
which can be labeled. In other words, we apply hole semantics [9] to HL and
link these underspecified formulas to the elementary trees. Composition is then
triggered by the syntactic unifications arising from substitution and adjunction,
using interface features on the syntactic trees, very similar to [11,13,17].

As a basic example consider the derivation given in Fig. 2 where the two NP
trees are substituted into the two argument slots in the ate tree. The interface
features i on the NP nodes make sure that the contributions of the two arguments
feed into the agent and theme nodes of the frame. Furthermore, an interface
feature mins is used for providing the label of the E(eating...) formula as minimal
scope to a possible quantifier. The unifications lead to identities 1 = i, 2 = x and

22 W. Babonnaud et al.

Fig. 2. Derivation of John ate pizza

4 = l1, triggered by the feature unifications on the syntactic tree. As a result,
when collecting all formulas, we obtain the underspecified representation

(2) @i(person∧〈name〉John), l1 : E(eating∧〈agent〉i∧〈theme〉x), E(↓x.pizza∧ 3),
3 �∗ l1

The relation �∗ links holes to labels: h�∗ l signifies that the formula labeled l is a
subformula of h or, to put it differently, is contained in h. In (2), the E(eating...)
formula, labeled l1, has to be part of the nuclear scope of the quantifier, which is
given by the hole 3 . Disambiguating such underspecified representations consists
of “plugging” the labeled formulas into the holes while respecting the given
constraints. Such a plugging amounts to finding an appropriate bijection from
holes to labels. (2) has a unique disambiguation, namely 3 → l1. This leads to
(3), which is then interpreted conjunctively.

(3) @i(person ∧ 〈name〉John), E(↓x.pizza ∧ E(eating ∧ 〈agent〉i ∧ 〈theme〉x))

3 Application to Coercion

3.1 Dot Objects in Frames Semantics

In order to capture the full complexity of concepts while modeling them, we
need a way to represent the phenomenon of inherent polysemy, that is, the phe-
nomenon that certain concepts integrate two or more different and apparently
contradictory senses. Consider for instance the following two sentences:

(4) a. The book is heavy.
b. The book is interesting.

Both sentences use book in the common way, but while in (4a) the adjective heavy
applies to a physical object, the adjective interesting in (4b) requires its object
to be an information. It thus appears that book carries two different aspects,
which are arguably incompatible. However, this contradiction reveals an under-
lying structure in which these aspects are linked to each other. This structure
appears in Pustejovsky’s work [23] under the name of dot object. Following this
approach, our frame definition of book encodes the lexical structure proposed by

Polysemy and Coercion – A Frame-Based Approach 23

Pustejovsky by taking two nodes with types information and phys-obj respec-
tively, to represent both aspects, and defining an explicit relation between them,
which is quite similar to what Pustejovsky calls the formal component of the
concept. In the traditional definition of frames, one node should be marked as
the referential, or central one, the others being connected to it by functional
edges (see e.g. [21]). The necessity of fixing a referent for sense determination
was also proposed in [19]. We have therefore chosen to take the physical aspect
of book as the referential node; and since its two aspects are linked by the “has
information content” relation, we define a content attribute to connect the
physical object to the information it carries.1 We thus get the following formula
to express the semantics for book :

(5) book ∧ 〈content〉information

To ensure that the type book is permitted where a phys-obj is required, we assume
general constraints which, among other things, express that books are entities
of type phys-obj. Furthermore, we introduce a type info-carrier for information
carrying physical objects, and therefore build our constraints in two steps:

(6) a.

A

(book → info-carrier)
b.

A

(info-carrier → phys-obj ∧ 〈content〉information)

The purpose of the type info-carrier is to provide a stage between specific types
like book and more general ones like phys-obj, to which other concepts can be
linked. For instance, a complex word like newspaper should have a type which
implies the type info-carrier [6,20,24]. Note that we can easily deduce the fol-
lowing constraint from (6a) and (6b):

(7)

A

(book → phys-obj)

This constraint will be very useful to simplify formulas where the type book is
involved.

3.2 Coercion, Selection and Dot Objects

Let us start with the case of read, which has been described in [23]. The verb read
allows for the direct selection of the dot object book as complement, as illustrated
in (8a), but also enables coercion of its complement from type information in (8b)
as well as from type phys-obj in (8c). The distinction between all these concepts
can be explained as follows: although books and stories are informational in
1 One of the reviewers raised the question on what grounds phys-obj is preferred over
information as the primary lexical meaning facet of book and, more importantly, of
how to decide this question for related terms like novel and for dot types in gen-
eral. We regard this as an empirical issue which falls ultimately into the realm of
psycholinguistic research. As a first approximation, we tend to rely on the informa-
tion provided by monolingual dictionaries. For instance, the Longman Dictionary of
Contemporary English tells us that a book is “a set of printed pages that are held
together in a cover”.

24 W. Babonnaud et al.

nature, a story does not need a physical realisation, whereas a book does, and
although books and blackboards are physical objects, a blackboard does not
necessarily contain information. The constraints for the associated types are
defined in (9).

(8) a. John read the book.
b. John read the story.
c. John read the blackboard.

(9) a.

A

(story → information)
b.

A

(blackboard → phys-obj)
c.

A

(phys-obj ∧ information → ⊥)

The semantics for read has to encode the direct selection of a dot object as
a complement. In [23], the verb read is analysed with two distinct events linked
by a complex relation expressing the fact that the reader first sees the object
before reaching its informational content. We want to keep a similar analysis
here; we build our semantic definition of read by taking an event node of type
reading with two attributes, namely perceptual-component and mental-
component, whose values are respectively of type perception and comprehen-
sion.2 These nodes are meant to represent the decomposition of the activity
of reading into two subevents, the action of looking at a physical object (the
perception) and the action of processing the provided information (the com-
prehension). These two events are linked by a non-functional temporal relation
inspired from the one proposed by Pustejovsky: we call it ordered-overlap, and it
expresses the fact that the perception starts before the comprehension and that
these two subevents (typically) overlap. For the sake of simplicity, we encode the
central part of this semantics into the definition of reading with the following
constraint:

A

(reading → ∃x.〈perc-comp〉(perception ∧ 〈ordered-overlap 〉x)
∧ 〈ment-comp〉(comprehension ∧ x))

(10)

Moreover, the perception node has an attribute stimulus describing the role
of its object, which has to be of type phys-obj, and the comprehension node has
an attribute content which refers to the information that was read. We also
explicitly add in our semantics the requirement that the value of stimulus has
a content attribute, whose value is the same for the content attribute from
the comprehension node. Furthermore, since the argument contributed by the
object can be either the stimulus of the perception (phys-obj) or its content,
we add a disjunction of these two possibilities. We therefore obtain the formula
represented in Fig. 3, with the associated elementary tree.3 In this formula, 1 is
2 In the following, we will abbreviate these attributes by perc-comp and ment-comp,

respectively.
3 The constraint (10) should be applied here, but for reasons of space, we do not list

all the conjuncts contributed by it.

Polysemy and Coercion – A Frame-Based Approach 25

Fig. 3. Semantics and elementary tree for read

Fig. 4. Derivation for (8a)

intended to unify with a node variable when the direct object gets inserted (i.e.,
1 is provided as value of the feature i in the object node associated lexicalized
tree for read), and the process of rewriting and simplifying the final formula will
allow us to identify either x or y with the variable of the direct object, depending
on whether this is of type phys-obj or information.

We can now use this elementary tree-frame pair to achieve a derivation for
(8a), which is represented in Fig. 4. The HL formula coming with read is now
labeled and its label is provided as potential minimal scope for quantifiers at
the NP slots. Concerning the entry of the, we simplify here and treat is as
an existential quantifier, disregarding the presuppositions it carries. The book
formula is also labeled, and the label is made available via an interface feature p
(for “proposition”).4 Due to the two scope constraints, this proposition will be
part of the restriction of the quantifier (i.e., part of the subformula at 4) while
the read formula will be part of the nuclear scope, i.e., part of the subformula

4 Note that in Fig. 4, we have already applied (6).

26 W. Babonnaud et al.

at 5 . Substitutions and adjunctions lead to the unifications 0 = i, 1 = z, 2 =
l0 and 3 = l1 on the interface features. As a result, we obtain the following
underspecified representation:

@i(person ∧ 〈name〉John), E(↓z. 4 ∧ 5),

l0 : ∃x.∃y. E(reading ∧ 〈agent〉i
∧ 〈perc-comp〉〈stimulus〉x ∧ 〈ment-comp〉〈content〉y
∧ @x(phys-obj ∧ 〈content〉(information ∧ y))
∧ (z ↔ x ∨ z ↔ y)),

l1 : book ∧ 〈content〉information,

4 �∗ l1, 5 �∗ l0

(11)

The only solution for disambiguating the representation in (11) is the mapping
4 �→ l1, 5 �→ l0, which leads to (12):

@i(person ∧ 〈name〉John),
E(↓z.book ∧ 〈content〉information
∧ ∃x.∃y. E(reading ∧ 〈agent〉i

∧ 〈perc-comp〉〈stimulus〉x ∧ 〈ment-comp〉〈content〉y
∧ @x(phys-obj ∧ 〈content〉(information ∧ y))
∧ (z ↔ x ∨ z ↔ y))),

(12)

Furthermore, due to the constraint (7) and due to the incompatibility of informa-
tion and phys-obj (9c), we can deduce that z ↔ x and ¬(z ↔ y). Consequently, we
can simplify our formulas by omitting the ∃x quantification and replacing every x
with z. Putting these things together leads to the representation (13):

@i(person ∧ 〈name〉John),
E(↓z.book ∧ 〈content〉information
∧ ∃y. E(reading ∧ 〈agent〉i ∧ 〈perc-comp〉〈stimulus〉z

∧ 〈ment-comp〉〈content〉y
∧ @z(phys-obj ∧ 〈content〉(information ∧ y)))

(13)

The frame shown in Fig. 5 is a minimal model for (13) which also takes (10) into
account, i.e., it is the smallest frame graph satisfying (13) and (10).

The semantic representations of (8b) and (8c) can be derived in a similar way,
except that for (8b), the variable z introduced by the quantifier will be equivalent
to the information variable y in the contribution of read. The interesting point
in these cases is that the final semantic formula involves a node which reflects
respectively that there is an implicit material on which the story is written
(8b) and that implicit contents are written on the blackboard (8c). The analysis
of (8a) differs from that of (8c) in that the semantics of book always brings a

Polysemy and Coercion – A Frame-Based Approach 27

reading

i

personJohn
perception book

comprehension

information

agent

name
perc-comp

stimulus

ment-comp content

contentordered-
overlap

Fig. 5. Frame for (8a) John read the book

content attribute of type information, which is merged with the constraints
contributed by the semantics of read. In (8c), by contrast, the content attribute
of the blackboard is contributed solely by the verb.

It is also worth asking how to handle cases where the verb does not select
a dot object as for read, but rather a simple type. Indeed, although the dot
object book has the properties of physical objects and of information, there
are some verbs which do not allow book as a complement but select a pure
informational argument. These verbs actually provide no possibilities of coercion:
their argument has to be of the specified type to allow a direct selection. This
kind of selection is referred to as passive selection, in opposition to the active
selection which enables coercion and type accommodation [23]. To understand
this phenomenon, consider the following sentences (those in (15) are taken from
[23]):

(14) a. Mary believed the story.
b. Mary believed the book.

(15) a. Mary told the story.
b. *Mary told the book.

The verbs believe and tell both require their argument to be of type information;
however, the verb believe accepts the dot object book as its argument whereas
tell does not: the sentence (15b) seems to be incorrect. Thus the examples in
(14) illustrate a case of active selection, with a coercion of the complement in
(14b), and those in (15) show a case of passive selection.

With our semantics for read, the way to build the semantics for these two
verbs is quite straightforward. In comparison to read, we only need in each case
a single node to represent the activity, respectively of believing and of telling.
But the really interesting point is about the selection of the variable provided
by the semantics of the argument. In the case of read, we had the subformula
1 ↔ x ∨ 1 ↔ y, with 1 to be unified with the variable contributed by the
direct object, regardless of its type. For believe, we need a similar subformula
that allows for the object variable to be either of type information, or to have a
content attribute with a value of type information; cf. (16a). For tell, however,
the object variable has to be unified directly with the theme of telling, which is
of type information; cf. (16b).

28 W. Babonnaud et al.

(16) a. ∃x. E(believing ∧ 〈agent〉 0 ∧ 〈theme〉(information ∧ x)
∧ (1 ↔ x ∨ @ 1 (〈content〉x)))

b. E(telling ∧ 〈agent〉 0 ∧ 〈theme〉(information ∧ 1))

In this way, active and passive selections differ in that in the case of active
selection, we have an additional subformula that handles coercion possibilities.5

3.3 Other Cases of Coercion

Coercion is not limited to dot objects: it can occur for many other concepts
with a simple type. We will discuss here a few more examples of coercion, and
present ways to handle them within our framework. We will thus show that many
different cases of coercion can be solved in similar ways. We start here with a
sentence taken from [25]:

(17) John left the party.

The verb leave requires its object to be of type location while in (17), the noun
party is provided, which is of type event and does not carry a dot type. Here,
the coercion relies on the fact that party, like every event, has an associated
location, which is basically where the party takes place. The application of leave
to the party therefore involves a transfer of meaning from the direct sense to
a related one. This phenomenon is referred to as attribute functional coercion
[25,26] because it operates on concepts which can serve as types as well as
attributes.

Our framework is capable of handling such cases without problems. Indeed,
the basis of frame semantics is to work with attribute-value descriptions, and
the coercion which occurs here shifts from one sense to another by following an
attribute to get to the required concept type. Hence we naturally define a type
location and an attribute location to represent the dual nature of the concept
of location. As previously for book, we need to assume the general constraints in
(18) to link party with these new elements:

(18) a.

A

(party → event)
b.

A

(event → 〈location〉location)
c.

A

(event ∧ location → ⊥)

It remains to define the semantics for leave in such a way that it enables
coercion to the value of the attribute location when the given argument is not
of the required type. This can be done in a similar way to what we did in the
case of believe in (16a), leading to the formula in Fig. 6, where 1 is intended to
be unified with the node variable from the direct object argument. By following
the steps described in Sect. 3.2, we can easily produce a derivation for (17).

5 As pointed out by one of the reviewers, having the attribute content in the disjunc-
tion in (16a) imposes specific constraints on the semantic structure of the argument.
We leave it as a question for future research whether constraints of this type are
overly restrictive when moving from selected examples to large-scale applications.

Polysemy and Coercion – A Frame-Based Approach 29

Fig. 6. Semantics and elementary tree for leave

As a starting point, we consider the yield of the syntactic unifications and the
mapping of holes to formulas, which gives the following result:

@i(person ∧ 〈name〉John),
E(↓z.party ∧ ∃x. E(leaving ∧ 〈agent〉i ∧ 〈theme〉(location ∧ x)

∧ (z ↔ x ∨ @z(〈location〉x))))
(19)

With the constraints in (18), we can conclude that ¬(z ↔ x) and consequently,
we obtain the following semantics for (17):

@i(person ∧ 〈name〉John),
E(↓z.party ∧ ∃x. E(leaving ∧ 〈agent〉i ∧ 〈theme〉(location ∧ x)

∧ @z(〈location〉x)))
(20)

There is only a slight difference between functional coercion of the kind just
described and the treatment of dot objects shown before: frame semantics allows
us to process both types of coercion phenomena in a similar way because of
the underlying attribute-value structure. A further example is given by the dot
object speech, which combines the types event and information [25]. Speech has
the two attributes content and location, among others. More precisely, the
dot type speech is characterized by the constraint in (21a), which, together with
(18b) repeated here as (21b) gives rise to the constraint in (21c). Note that the
latter constraint makes no difference between the two attributes – although they
have different “levels” of origin, as content is a direct consequence of speech
whereas location is implied by the type event, which is entailed by speech.

(21) a.

A

(speech → event ∧ 〈content〉information)
b.

A

(event → 〈location〉location)
c.

A

(speech → 〈content〉information ∧ 〈location〉location)

Two further examples, adapted from [6], are considered in (22) below. Their
purpose is to show how adjectival modification which enables coercion can be
handled in our framework.

(22) a. Mary mastered the heavy book on magic.
b. Mary broke every readable screen.

30 W. Babonnaud et al.

In (22a), both heavy and on magic act as modifiers of of book, but the for-
mer modifier acts on the phys-obj component of the dot object while the latter
modifier acts on the information component. In (22b), on the other hand, the
adjective readable coerces screen from the simple type phys-obj to a dot type,
with a new informational component.

Fig. 7. Derivation for heavy book on magic

Let us start with the sentence in (22a). The most interesting parts of its
derivation are represented in Fig. 7. We define the semantics of heavy by assum-
ing that it selects directly a physical object (and so voluntarily keeping any other
meaning aside). The semantics of magic is simply regarded as sortal for the pur-
poses of the present example. As for on, its semantic representation includes
a disjunction to allow for the identification with a node of the required type,
using a similar technique as in the representation of believe above.6 Moreover,
we introduce a type knowledge, which is intended to be a subtype of information,
and which has a topic attribute describing what field the knowledge is about.
That is, we have the constraint in (23).

(23)

A

(knowledge → information ∧ 〈topic〉�)

The substitutions and adjunctions in Fig. 7 trigger unifications 1 = l1, 2 = l0
and 3 = l3, which leads to the HL formula in (24):

book ∧ 〈content〉information ∧ phys-obj ∧ 〈weight〉heavy
∧ ∃x.(x ∨ 〈content〉x) ∧ @x(knowledge ∧ 〈topic〉magic)

(24)

6 The given semantic representation for on is considerably simplified. A more precise
representation should include a selection between two effects depending on the type
of the argument of on (unified with 3 on Fig. 7), as the preposition can also occur
in phrases like the book on the table where a physical object is involved: in this
case, a more elaborated subformula with a location attribute would replace the
subformula knowledge ∧ 〈topic〉 3 .

Polysemy and Coercion – A Frame-Based Approach 31

Formula (24) can be simplified due to the fact that book and knowledge are incom-
patible; therefore the first element of the disjunction x ∨ 〈content〉x (which is
evaluated in the book node) cannot be true. Consequently, we reduce the dis-
junction to 〈content〉x.

It is also worth noticing that the verb master seems to require an object of
type knowledge and not merely information. Indeed, the use of this verb with
another subtype of information as in sentences (25b) seems unacceptable, while
(25a) involving a pure knowledge concept is fully acceptable. The sentence in
(25c) shows that master is able to coerce at least certain types of arguments.

a. John mastered the theorem.
b. *John mastered the story.
c. John mastered the book.

(25)

The selectional mechanism is therefore more complex for this verb. Neverthe-
less, as the type knowledge provided by on magic overwrites the information
value in the relevant example (22a), book has already a coerced type for its con-
tent in this case, which allows us to leave a more general analysis of master
for future work and to assume for now the same behavior for this verb as for
believe. A derivation for the sentence in (22a) leads thus, after unification and
simplification, to the following semantic representation:

@i(person ∧ 〈name〉Mary),
E(↓z.book ∧ 〈content〉information ∧ phys-obj ∧ 〈weight〉heavy
∧ 〈content〉(knowledge ∧ 〈topic〉magic)
∧ ∃y. E(mastering ∧ 〈agent〉i

∧ 〈theme〉(knowledge ∧ y) ∧ @z(〈content〉y)))

(26)

The case in (22b) is very similar to the coercion of blackboard to a dot object
by read. The semantics of the adjective readable does nothing else than adding a
content attribute with an information value to a physical object. This trans-
lates into the logical formula in (27a). Moreover, screen is considered as a sub-
type of phys-obj, and we assume here a simple semantics for break, given in (27b).
Finally, (27c) recalls the semantics for every.7

a. 0 ∧ phys-obj ∧ 〈content〉information
b. E(breaking ∧ 〈agent〉 1 ∧ 〈theme〉 2)
c.

A

(↓x. 3 → 4)
(27)

The derivation for (22b) therefore leads to:

@i(person ∧ 〈name〉Mary)

∧ A

(↓x.screen ∧ 〈content〉information
→ E(breaking ∧ 〈agent〉i ∧ 〈theme〉x))

(28)

7 Lack of space prevents us from showing the associated elementary syntactic trees.

32 W. Babonnaud et al.

The foregoing examples have shown that our formal framework allows us to solve
a large variety of coercion problems in similar ways, building on constraint-based
semantic representations combining frames and HL.

4 Conclusion

In this paper, we presented a model of coercion mechanisms for the case of verbs
and adjectives which select nominal arguments within a syntax-semantics inter-
face based on frames semantics using LTAG and HL. We also provided a frame-
semantic representation of Pustejovsky’s dot objects which keeps the notion of
referential meaning and explicitly includes the relations between the different
aspects of a concept. Frame semantics is well-suited to handle such mechanisms
since type shifting can simply be modeled by moving along an attribute relation
from a given meaning to the coerced one. Furthermore, the approach with HL
and holes semantics in the composition process allows us to implement precisely
the argument selection mechanisms into the model, using a disjunction of type
shifting possibilities in the logical representation of a predicate.

Another interesting point of this model is the fact that it is able to han-
dle different cases of coercion in similar ways, thus avoiding the requirement of
more complex structures when involving polysemous concepts. We also think
that coercion phenomena in sentences like Mary began the book, in which aspec-
tual verbs with a nominal argument are involved, could be modeled using the
same kind of representation. Indeed, in Pustejovsky’s analysis the underspecified
information has been encoded into the lexicon by a qualia structure, where qualia
are partial functions describing the roles that a concept can have [23]. As such, it
seems possible to represent these qualia by attribute-value pairs, and modeling
this kind of coercion would therefore follow the way presented in this paper.
Moreover, the general constraints in HL that are used in our framework could
be extended by contextual constraints as well: we would be able to change the
intended qualia of a word depending on the context, and also to handle cases
of metaphoric readings by adding some temporary constraints if the previous
selection mechanism fails.

References

1. Abeillé, A., Rambow, O.: Tree adjoining grammar: an overview. In: Abeillé, A.,
Rambow, O. (eds.) Tree Adjoining Grammars: Formalisms, Linguistic Analysis and
Processing, pp. 1–68. CSLI Press, Stanford (2000)

2. Areces, C., ten Cate, B.: Hybrid logics. In: Blackburn, P., Benthem, J.V., Wolter,
F. (eds.) Handbook of Modal Logic, pp. 821–868. Elsevier, Amsterdam (2007)

3. Asher, N.: A Web of Words: Lexical Meaning in Context. Cambridge University
Press, Cambridge (2011)

4. Asher, N.: Types, meanings and coercions in lexical semantics. Lingua 157, 66–82
(2015)

5. Asher, N., Luo, Z.: Formalization of coercions in lexical semantics. In: Proceedings
of Sinn und Bedeutung, vol. 17, pp. 63–80 (2012)

Polysemy and Coercion – A Frame-Based Approach 33

6. Asher, N., Pustejovsky, J.: Word meaning and commonsense metaphysics. Semant.
Arch. (2005). http://semanticsarchive.net/

7. Asher, N., Pustejovsky, J.: A type composition logic for generative lexicon. J. Cogn.
Sci. 6, 1–38 (2006)

8. Barsalou, L.W.: Frames, concepts, and conceptual fields. In: Lehrer, A., Kittay,
E.F. (eds.) Frames, Fields, and Contrasts, pp. 21–74. Lawrence Erlbaum, Mahwah
(1992)

9. Bos, J.: Predicate logic unplugged. In: Dekker, P., Stokhof, M. (eds.) Proceedings
of the 10th Amsterdam Colloquium, pp. 133–142 (1995)

10. Fillmore, C.J.: Frame semantics. In: Linguistics in the Morning Calm, pp. 111–137.
Hanshin Publishing Co., Seoul (1982)

11. Gardent, C., Kallmeyer, L.: Semantic construction in feature-based TAG. In: Pro-
ceedings of the 10th Meeting of the European Chapter of the Association for Com-
putational Linguistics (EACL), pp. 123–130 (2003)

12. Joshi, A.K., Schabes, Y.: Tree-adjoning grammars. In: Rozenberg, G., Salomaa,
A.K. (eds.) Handbook of Formal Languages, vol. 3, pp. 69–123. Springer, Heidel-
berg (1997)

13. Kallmeyer, L., Joshi, A.K.: Factoring predicate argument and scope semantics:
underspecified semantics with LTAG. Res. Lang. Comput. 1(1–2), 3–58 (2003)

14. Kallmeyer, L., Lichte, T., Osswald, R., Pogodalla, S., Wurm, C.: Quantification in
frame semantics with hybrid logic. In: Cooper, R., Retoré, C. (eds.) Proceedings
of the ESSLLI 2015 Workshop on Type Theory and Lexical Semantics, Barcelona,
Spain (2015)

15. Kallmeyer, L., Osswald, R.: Syntax-driven semantic frame composition in lexical-
ized tree adjoining grammars. J. Lang. Model. 1(2), 267–330 (2013)

16. Kallmeyer, L., Osswald, R., Pogodalla, S.: Progression and iteration in event
semantics - an LTAG analysis using hybrid logic and frame semantics. In: Pinón,
C. (ed.) Empirical Issues in Syntax and Semantics, vol. 11 (2016)

17. Kallmeyer, L., Romero, M.: Scope and situation binding in LTAG using semantic
unification. Res. Lang. Comput. 6(1), 3–52 (2008)

18. Löbner, S.: Evidence for frames from human language. In: Gamerschlag, T., Ger-
land, D., Osswald, R., Petersen, W. (eds.) Frames and Concept Types. Applications
in Language and Philosophy, pp. 23–67. Springer, Heidelberg (2014)

19. Nunberg, G.: The non-uniqueness of semantic solutions: polysemy. Linguist. Philos.
3(2), 143–184 (1979)

20. Nunberg, G.: Transfers of meaning. J. Seman. 12(2), 109–132 (1995)
21. Petersen, W.: Representation of concepts as frames. In: The Baltic International

Yearbook of Cognition, Logic and Communication, vol. 2, pp. 151–170 (2006)
22. Pustejovsky, J.: The Generative Lexicon. MIT Press, Cambridge (1995)
23. Pustejovsky, J.: The semantics of lexical underspecification. Folia Linguistica 32(3–

4), 323–348 (1998)
24. Pustejovsky, J.: A survey of dot objects. Manuscript (2005)
25. Pustejovsky, J.: Coercion in a general theory of argument selection. Linguistics

49(6), 1401–1431 (2011)
26. Pustejovsky, J., Rumshisky, A.: Mechanisms of sense extension in verbs. In: de

Schryver, G.-M. (ed.) A Way with Words: Recent Advances in Lexical Theory and
Analysis, pp. 67–88. Menha Publishers, Kampala (2010)

27. Vijay-Shanker, K., Joshi, A.K.: Feature structures based tree adjoining grammar.
In: Proceedings of the 12th International Conference on Computational Linguistics
(COLING), pp. 714–719 (1988)

http://semanticsarchive.net/

Categorial Dependency Grammars with Iterated
Sequences

Denis Béchet1(B) and Annie Foret2(B)

1 LINA UMR CNRS 6241, Université de Nantes, Nantes, France
Denis.Bechet@univ-nantes.fr

2 IRISA, Université de Rennes 1, Rennes, France
Annie.Foret@irisa.fr

Abstract. Some dependency treebanks use special sequences of depen-
dencies where main arguments are mixed with separators. Classical Cat-
egorial Dependency Grammars (CDG) do not allow this construction
because iterative dependency types only introduce the iterations of the
same dependency. An extension of CDG is defined here that introduces a
new construction for repeatable sequences of one or several dependency
names. The learnability properties of the extended CDG when grammars
are infered from a dependency treebank is also studied. It leads to the
definition of new classes of grammars that are learnable in the limit from
dependency structures.

Keywords: Categorial grammar · Dependency grammar · Iterated
dependencies · Computational linguistics · Dependency treebanks ·
Grammatical inference · Incremental learning

1 Introduction

Dependency grammars and dependency treebanks do not always use a unique
linguistic model for lists of elements. Some of them define an enumeration as
a linked list of elements. Other grammars define a list as a set of dependencies
that link the same word, the head of the list, to the elements of the list.

Categorial Dependency Grammars [5] (CDG) allow the second model with
iterated dependency types. This construction introduces a list of dependen-
cies with the same name and the same governor. The dependency structures
(DS) in Fig. 1 shows a dependency A that is iterated on the left and on the
right five times. A CDG compatible with the example could assign the type
[N\A\S/A∗/L/A∗] to the word ran. The dependency name A appears three
times, two times as the iterative dependency type A∗. With this type, other DS
are also possible: Each A∗ may introduce none, one or several arguments linked
to ran by a dependency A.

However, iterated dependency types cannot be used when a list of elements
needs to be mixed with a separator like the example of Fig. 2 from corpus
Sequoia [4] “Les cyclistes et vététistes peuvent se réunir ce matin, à 9h, place
c© Springer-Verlag GmbH Germany 2016
M. Amblard et al. (Eds.): LACL 2016, LNCS 10054, pp. 34–51, 2016.
DOI: 10.1007/978-3-662-53826-5 3

Categorial Dependency Grammars with Iterated Sequences 35

Fig. 1. A dependency structure with five dependencies A

Fig. 2. A dependency structure with a list of modifiers separated by commas

Jacques-Bailleurs, à l’occasion d’une sortie d’entrâınement.” (fr. the cyclists and
ATB bikers may meet themselves this morning, at 9, at Jacques-Bailleurs square,
for a training ride)1.

In this example, several modifiers alternate with a punctuation sign. The verb
réunir may have type [aff\obj : obj/mod/ponct/mod/ponct/mod/ponct/mod].
A regular expression for the part that corresponds to the modifiers and commas
would be mod(punctmod)∗ or (mod punct)∗mod. It is not an iterative choice
between mod and ponct like the regular expression (mod‖ponct)∗ but a repeat-
able sequence of mod and ponct. In order to formalize such structures, we propose
to extend CDG types with a new construction that introduces finite sequences
of dependencies. The system is an extension of classical CDG because iterated
dependency types can be seen as sequence iterations where the sequence has a
length of one dependency name.

We also study the learnability properties of CDG with sequence iteration
when the grammar has to be infered from a dependency treebank. This concept
of identification in the limit is due to Gold [7]. Learning from strings refers to
hypothetical grammars generated from finite sets of strings. More generally, the
hypothetical grammars may be generated from finite sets of structures defined
by the target grammar. This kind of learning is called learning from structures.
Both concepts were intensively studied (see excellent surveys in [2,8,9]). This
concept lead for CDG with sequence iterations to a new class of grammar that
is learnable from positive examples of dependency structures (DS).

The plan of the paper is as follows. Section 2 introduces Categorial Depen-
dency Grammars with sequence iteration and studies their parsing properties
and expressive power. The section also presents the links with linear logic,
noncommutative logic and Lambek Calculus. Section 3 studies the learnability
properties of such grammars from positive examples of dependency structures
and defines new classes of such grammars that are learnable in this context.
Section 4 presents experimental studies of sequence iterations in existent DS
corpora. Section 5 concludes the paper.

1 See talc2.loria.fr/deep-sequoia/sequoia-7.0/html/annodis.er 00060.html.

http://talc2.loria.fr/deep-sequoia/sequoia-7.0/html/annodis.er_00060.html

36 D. Béchet and A. Foret

2 CDG with Sequence Iterations

2.1 Classical Categorial Dependency Grammars

Categorial dependency grammars can be seen as an assignment to words of first
order dependency types of the form: t = [Lm\ . . . \L1\g/R1/ . . . /Rn]P . Intu-
itively, w �→ [α\d\β]P means that the word w has a left subordinate through
dependency d (similar for the right part [α/d/β]P). Similarly w �→ [α\d∗\β]P

means that w may have 0, 1 or several left subordinates through dependency d.
The head type g in w �→ [α\g/β]P means that w is governed through dependency
g. The assignment of Example 1 determines the projective DS in Fig. 3.

Example 1.
in �→ [c copul/prepos−l]
the �→ [det]
beginning �→ [det\prepos−l]
was �→ [c copul\S/@fs/pred]
word �→ [det\pred]
. �→ [@fs]

The intuitive meaning of part P , called potential, is that it defines discon-
tinuous dependencies of the word w. P is a string of polarized valencies, i.e.
of symbols of four kinds: ↙ d (left negative valency d), ↘ d (right negative
valency d), ↖ d (left positive valency d), ↗ d (right positive valency d). Intu-
itively, v =↖d requires a subordinate through dependency d situated somewhere
on the left, whereas the dual valency v̆ =↙ d requires a governor through the
same dependency d situated somewhere on the right. So together they describe
the discontinuous dependency d. Similarly for the other pairs of dual valencies.
For negative valencies ↙ d,↘ d are provided a special kind of types #(↙ d),
#(↘d). Intuitively, they serve to check the adjacency of a distant word subor-
dinate through discontinuous dependency d to a host word. The dependencies
of these types are called anchor. For instance, the assignment of Example 2
determines the non-projective DS in Fig. 4.

Fig. 3. Projective dependency structure.

Categorial Dependency Grammars with Iterated Sequences 37

(fr. ∗she itg=fem to him has given)

Fig. 4. Non-projective dependency structure.

Example 2.

elle �→ [pred]
la �→ [#(↙clit−a−obj)]↙clit−a−obj

lui �→ [#(↙clit−3d−obj)]↙clit−3d−obj

a �→ [#(↙clit−3d−obj)\#(↙clit−a−obj)\pred\S/@fs/aux−a−d]
donnée �→ [aux−a−d]↖clit−3d−obj↖clit−a−obj

. �→ [@fs]

Definition 1 (CDG dependency structures). Let W = a1 . . . an be a list of
words and {d1, . . . , dm} be a set of dependency names, with their dependency
nature that can be either local, discontinuous or anchor. A graph D = (W,E)
with labeled arcs is a dependency structure (DS) of W if it has a root, i.e. a
node ai ∈ W such that (i) for any node a ∈ W, a
= ai, there is a path from ai to
a and (ii) there is no arc (a′, d, ai).2 An arc (a, d, a′) ∈ E is called dependency
d from a to a′. a is called a governor of a′ and a′ is called a subordinate of a
through d. The linear order on W is the precedence order on D.

Definition 2 (CDG types). Let C be a set of local dependency names and
V be a set of valency names.

The expressions of the form ↙ v, ↖ v, ↘ v, ↗ v, where v ∈ V, are called
polarized valencies. ↖ v and ↗ v are positive, ↙ v and ↘ v are negative; ↖ v
and ↙ v are left, ↗ v and ↘ v are right. Two polarized valencies with the
same valency name and orientation, but with the opposite signs are dual. An
expression of one of the forms #(↙ v), #(↘ v), v ∈ V, is called anchor type
or just anchor. An expression of the form d∗ where d ∈ C, is called iterated
dependency type. Local dependency names, iterated dependency types and anchor
types are primitive types.

An expression of the form t = [Lm\ . . . \L1\H/R1 . . . /Rn] in which m,n ≥ 0,
L1, . . . , Lm, R1, . . . , Rn are primitive types and H is either a local dependency

2 Evidently, every DS is connected and has a unique root.

38 D. Béchet and A. Foret

name or an anchor type, is called a basic dependency type. L1, . . . , Lm and
R1, . . . , Rn are respectively left and right argument types of t. H is called the
head type of t.

A (possibly empty) string P of polarized valencies sorted using the standard
lexicographical order <lex compatible with the polarity order ↖ < ↘ < ↙ < ↗,
is called a potential. A dependency type is an expression BP in which B is a
basic dependency type and P is a potential. CAT(C,V) will denote the set of
all dependency types over C and V.

CDG are defined using the following calculus of dependency types.3 These
rules are relativized with respect to the word positions in the sentence, which
allows to interpret them as rules of construction of DS. Namely, when a type
Bv1...vk is assigned to the word in a position i, we encode it using the state
(B, i)(v1,i)...(vk,i). In these rules, types must be adjacent.

Definition 3 (Relativized calculus of dependency types).
Ll. Γ1 ([C], i1)P1([C\β], i2)P2Γ2 � Γ1 ([β], i2)P1P2Γ2

Il. Γ1 ([C], i1)P1([C∗\β], i2)P2Γ2 � Γ1 ([C∗\β], i2)P1P2Γ2

Ωl. Γ1 ([C∗\β], i)PΓ2 � Γ1 ([β], i)PΓ2

Dl. Γ1 αP1(↙C,i1)P (↖C,i2)P2Γ2 � Γ1 αP1PP2Γ2,
if the potential (↙C, i1)P (↖C, i2) satisfies the following pairing rule FA
(first available) and where, moreover, i1 < i2 (non-internal constraint).4

FA : P has no occurrences of (↙C, i) or (↖C, i), for any i

Ll is the classical elimination rule. Eliminating the argument type C
= #(α)
it constructs the (projective) dependency C and concatenates the potentials.
C = #(α) creates anchor dependencies. Il derives k > 0 instances of C. Ωl

serves in particular for the case k = 0. Dl creates d iscontinuous dependencies. It
pairs and eliminates dual valencies with name C satisfying the rule FA to create
the discontinuous dependency C.

Now, in this relativized calculus, for every proof ρ represented as a sequence
of rule applications, we may define the DS DSx(ρ) constructed in this proof.
Namely, let us consider the calculus relativized with respect to a sentence x with
the set of word occurrences W . Then DSx(ε) = (W, ∅) is the DS constructed in
the empty proof ρ = ε. Now, let (ρ,R) be a nonempty proof with respect to x
and (W,E) = DSx(ρ). Then DSx((ρ,R)) is defined as follows:
If R = Ll or R = Il, then DSx((ρ,R)) = (W,E ∪ {(ai2 , C, ai1)}). When C is a
local dependency name, the new dependency is local. In the case where C is an
anchor, this is an anchor dependency.
If R = Ωl, then DSx((ρ,R)) = DSx(ρ).
If R = Dl, then DSx((ρ,R)) = (W,E ∪ {(ai2 , C, ai1)}) and the new dependency
is discontinuous.

Definition 4 (CDG). A categorial dependency grammar (CDG) is a system
G = (W,C,V, S, λ), where W is a finite set of words, C is a finite set of local
3 We show left-oriented rules. The right-oriented are symmetrical.
4 This disallows internal primitive loops (the rule Dl cannot apply to a single word).

Categorial Dependency Grammars with Iterated Sequences 39

dependency names containing the selected name S (an axiom), V is a finite set
of discontinuous dependency names and λ, called lexicon, is a finite substitution
on W such that λ(a) ⊂ CAT(C,V) for each word a ∈ W . λ is extended on
sequences of words W ∗ in the usual way.5

For G = (W,C,V, S, λ), a DS D and a sentence x, let G[D,x] denote the
relation:

D = DSx(ρ)
where ρ is a proof of (t1, 1) · · · (tn, n) � (S, j)
for some n, j, 0 < j ≤ n and t1 · · · tn ∈ λ(x).

Then the language generated by G is the set L(G)=df {w || ∃D G[D,w]} and the
DS-language generated by G is the set Δ(G)=df {D || ∃w G[D,w]}. D(CDG)
and L(CDG) will denote the families of DS-languages and languages generated
by these grammars.

Example 3. The proof in Fig. 5 shows that the DS in Fig. 4 belongs to the DS-
language generated by a grammar containing the type assignments shown above
for the French sentence Elle la lui a donnée (the word positions are not shown
on types).

CDG are very expressive. Evidently, they generate all CF-languages. They can
also generate non-CF languages.

Example 4. The following CDG generates the language {anbncn | n > 0} [6]:6

a �→ #(↙ A)↙A, [#(↙ A)\#(↙ A)]↙A

b �→ [B/C]↖A, [#(↙ A)\S/C]↖A

c �→ [C], [B\C]

2.2 CDG with Sequences and Sequence Iterations

The extended system introduced here defines sequences and sequence itera-
tions. An extended type [α\(C1 • · · · • Cn)\β]P is viewed as a type that con-
tains a sequence of n primitive types. It is equivalent to [α\Cn\ · · · \C1\β]P

(the sequence appears in the reverse order). The starred version of a sequence
[α\(C1 • · · · • Cn)∗\β]P is handled as a sequence of n primitive types that can
be repeated none, once or several times. This construction with n > 1 is not
possible with classical CDG which allows only iteration of a primitive type (the
case n = 1). This type is equivalent to an infinite list of types:

[α\β]P ,
[α\(C1 • · · · • Cn)\β]P ≡ [α\Cn\ · · · \C1\β]P ,
[α\(C1 • · · · • Cn • C1 • · · · • Cn)\β]P ≡ [α\Cn\ · · · \C1\Cn\ · · · \C1\β]P ,
etc.

Definition 5. We call sequence iteration types the expressions BP where
P is a potential, B = [Lm\ · · · \L1\H/ · · · /R1 · · · /Rn], H is either a local depen-
dency name or an anchor type and Lm, . . . L1, R1 . . ., Rn are either anchor types,
5 λ(a1 · · · an) = {t1 . . . tn || t1 ∈ λ(a1), . . . , tn ∈ λ(an)}.
6 One can see that a DS is not always a tree.

40 D. Béchet and A. Foret

[p
r e
d
]

[#
(↙

cl
it

−a
−o

bj
)]

↙c
li
t−

a−
o
b
j

[#
(↙

cl
it

−3
d
−o

bj
)]

↙c
li
t−

3
d−

o
b
j
[#

(↙
cl
it

−3
d
−o

bj
)\

#
(↙

cl
it

−a
−o

bj
)\
p
re
d
\S

/
a
u
x
−a

−d
]
(L

l)
[#

(↙
cl
it

−a
−o

bj
)\
p
re
d
\S

/
a
u
x
−a

−d
]↙c

li
t−

3
d−

o
b
j

(L
l)

[p
re
d
\S

/
a
u
x
−a

−d
]↙c

li
t−

a−
o
b
j
↙c

li
t−

3
d−

o
b
j

(L
l)

[S
/
a
u
x
−a

− d
]↙c

li
t−

a −
o
b
j
↙c

li
t−

3
d−

o
b
j

[a
u
x
−a

−d
]↖c

li
t−

3
d−

o
b
j
↖c

li
t−

a−
o
b
j

(L
r
)

[S
]↙c

li
t−

a−
o
b
j
↙c

li
t −

3
d −

o
b
j
↖ c

li
t−

3
d−

o
b
j
↖ c

li
t−

a−
o
b
j

(D
l
×

2
)

S

F
ig
.
5
.
D

ep
en

d
en

cy
st

ru
ct

u
re

co
rr

ec
tn

es
s

p
ro

o
f.

Categorial Dependency Grammars with Iterated Sequences 41

local dependency names, sequences of local dependency names or sequence iter-
ations of local dependency names (a sequence of one local dependency name is
identified to a local dependency name).

Rules for CDG with sequences and sequence iterations:
Ll. Γ1 ([C], i1)P1([C\β], i2)P2Γ2 � Γ1 ([β], i2)P1P2Γ2

Cl. Γ1 ([(α)∗\β], i)PΓ2 � Γ1 ([α\(α)∗\β], i)PΓ2 (α)∗ is a sequence iteration
Wl. Γ1 ([(α)∗\β], i)PΓ2 � Γ1 ([β], i)PΓ2 (α)∗ is a sequence iteration
Sl. Γ1 ([(α • C)\β], i)PΓ2 � Γ1 ([C\α\β], i)PΓ2 (α • C) is a sequence
Dl. Γ1 αP1(↙C,i1)P (↖C,i2)P2Γ2 � Γ1 αP1PP2Γ2,

if the potential (↙C, i1)P (↖C, i2) satisfies FA and if i1 < i2

2.3 Links with Noncommutative Logic and Lambek Calculus

From a logical point of view, a CDG type BP consists of a projective part B
and a potential P . B can be seen as a logical formula in a resource sensible logic
like linear logic. Because the order of formulas is also important, B can be seen
either as a formula in noncommutative logic [1] or a formula in Lambek calculus
[10].

In Lambek calculus, a sequence of primitive types is the product of primitive
types. In the same perspective, a sequence iteration of primitive types has no
equivalent in Lambek calculus.

In noncommutative logic, a type B = [Lm\ · · · \L1\H/ · · · /R1 · · · /Rn] can
be seen as the linear type Lm −◦ · · · −◦ L1 −◦ H ◦− R1 · · · ◦− Rn where −◦ and
◦− are the left and right linear implications. The sequence of primitive types
(C1 • · · · • Cn) is the multiplicative noncommutative product (C1 � · · · � Cn).
The following implications are valid in noncommutative logic. They justify the
rules for CDG sequences:

(C1 � · · · � Cn) −◦ β � Cn −◦ · · · −◦ C1 −◦ β

Cn −◦ · · · −◦ C1 −◦ β � (C1 � · · · � Cn) −◦ β

The sequence iteration of primitive types (C1 • · · · • Cn)∗ corresponds to ?(C1 �
· · ·�Cn): An iteration is seen as the dual of the exponential of the multiplicative
product of the primitive types. The following provable sequents justify the rules
for CDG sequence iterations:

?(C1 � · · · � Cn) −◦ β � (C1 � · · · � Cn � ?(C1 � · · · � Cn)) −◦ β

?(C1 � · · · � Cn) −◦ β � β

Thus, it is possible to interpret the projective part of CDG types as a formula
of noncommutative logic. The search for a valid analysis of a sentence becomes
the proof search in noncommutative logic of a sequent where the formulae are
one of the possible lists of types of the words through the lexicon of a grammar.
This interpretation gives automatically a compositional semantic interpretation
à la Montague.

42 D. Béchet and A. Foret

2.4 Parsing and Expressive Power

Sequences can be seen as syntactic sugar for types. Thus, they don’t change the
parsing properties of languages and the expressive power of grammars. From
a formal point of view, sequence iterations do not introduce new languages of
string with respect to classical CDG. In fact, it is possible to emulate a sequence
iteration by a simple iteration where each dependent corresponds to an element
of the sequence (for instance the leftmost element of the sequence) and gov-
erns the other elements of the sequence. In contrast, sequence iterations intro-
duce a new construction that is very common on DS corpora. For instance,
the treebank Sequoia [4] models a list of elements as the alternative of an ele-
ment and a punctuation mark. The introduction presents an example where the
modifiers of the verb réunir alternate with commas: “Les cyclistes et vététistes
peuvent se réunir ce matin, à 9h, place Jacques-Bailleurs, à l’occasion d’une sor-
tie d’entrâınement.” (fr. the cyclists and ATB bikers may meet themselves this
morning, at 9, at Jacques-Bailleurs square, for a training ride).

The parsing of CDG with sequence iterations is not very different from the
parsing of classical CDG (i.e. with iterated dependency type). A sequence iter-
ation at the leftmost position of a type [(d1 • · · · • dn)∗\L1 · · · \H/R1/ · · ·]P2 is
rewritten into [dn−1\ · · · \d1\(d1•· · ·•dn)∗\L1 · · · \H/R1/ · · ·]P1P2 when the type
[dn]P1 is on its left (potentials P1P2 may generate non-projective dependencies).

3 Learnability Results

The section studies the learnability properties of CDG with sequence iterations
from positive examples of dependency structures (because sequences can be seen
as syntactic sugar, the grammar are supposed to contain no sequence). It ends
with the definition of a new family of classes of such grammars that are learnable
in this context.

3.1 Inference Algorithm

A vicinity corresponds for a word to the part of a type that is used in a DS.

Definition 6 (Vicinity). Given a DS D, the incoming and outgoing dependen-
cies of a word w can be either local, anchor or discontinuous. For a discontinuous
dependency d on a word w, we define its polarity p (↖,↘,↙,↗), according to
its direction (left, right) and as negative if it is incoming to w, positive otherwise.

Let D be a DS in which an occurrence of a word w has: the incoming projective
dependency or anchor H (or the axiom S), the left projective dependencies or
anchors Lk, . . . , L1 (in this order), the right projective dependencies or anchors
R1, . . . , Rm (in this order), and the discontinuous dependencies d1, . . . , dn ∈ V
with their respective polarities p1, . . . , pn.

Then the vicinity of w in D is the type

V (w,D) = [L1\ · · · \Lk\H/Rm/ · · · /R1]P ,

Categorial Dependency Grammars with Iterated Sequences 43

in which P is a permutation of p1d1, . . . , pndn in the standard lexicographical
order <lex compatible with the polarity order ↖ < ↘ < ↙ < ↗.

For instance, donnée in Fig. 4 has the vicinity [aux−a−d]↖clit−a−obj↖clit−3d−obj .
This vicinity is nearly the same as the type of donnée in the lexicon because this
type doesn’t have a sequence iteration (or an iterated dependency type). The
difference comes from the order of the polarized valencies ↖ clit−a−obj and
↖clit−3d−obj that appear in a different order. The vicinity of the verb réunir
in Fig. 2 is [aff\obj:obj/mod/ponct/mod/ponct/mod/ponct/mod]. A type that is
compatible with this vicinity could be [aff\obj:obj/(ponct • mod)∗/mod]. In this
case, the type in the lexicon and the vicinity are different.

Definition 7 (Algorithm). Figure 6 presents an inference algorithm
TGE(K)

J−seq which, for every next DS in a training sequence, transforms the
observed local, anchor and discontinuous dependencies of every word into a type
with repeated local dependency sequences by introducing a sequence iteration for
each group of at least K consecutive identical sequences of local dependencies.
J indicates the maximum internal length of the sequences that are transformed
into sequence iterations.

Definition 8 (Generalization). The notation TGen
(K)
J−seq(tw), that applies

the inner loop algorithm in Fig. 6 to a type tw, is extended to sets of types, lexi-
cons and grammars, in a usual way, such that each assignment w �→ t becomes
w �→ TGen

(K)
J−seq(t)

Ambiguities. Note that this process may be ambiguous. For instance, for
K = J = 2, the generalization of [a\b\a\b\a\b\a\H] could be [(b • a)∗\a\H]
or [a\(a • b)∗\H]. With the same conditions on K and J , the generalization
of [b\a\a\a\a\a\H] could be [b\a∗\H] or [b\(a • a)∗\a\H]. There are several
ways to overcome this, such as: [ALL mode] adds all such types in the internal
loop; or [LML mode] adds only the type corresponding to a leftmost longest
sequence iteration with the shortest pattern. We could also consider different
limiting neighbourhood conditions around the repeating pattern.

Definition 9 (LML mode). We consider three parameters of the repeated
sequence: the start position, the pattern length, the total length. In the [LML
mode], the three parameters have the priorities in that order: We consider first
the leftmost position as the start position, then the smallest pattern length, then
the maximal number of repetitions.

This mode is detailed by the following examples.

– TGen
(2)
2−seq([a\b\a\b\a\b\a\H]) = [(b • a)∗\a\H] and not [b\(a • b)∗\H]

because the leftmost repeated sequences for K = J = 2 start with the leftmost
a of [a\b\a\b\a\b\a\H]

44 D. Béchet and A. Foret

Fig. 6. Inference algorithm TGE
(K)
J−seq; the inner loop defines TGen

(K)
J−seq(tw) on types.

– TGen
(2)
2−seq([H/a/a/a/a/a]) = [H/a∗] and not [H/(a • a)∗] because the

sequences for a∗ and (a • a)∗ both start with the leftmost a in [H/a/a/a/a/a]
but the pattern length of a∗ is one (the smallest) and the pattern length of
(a • a)∗ is two.

– TGen
(2)
2−seq([H/a/b/a/b/a/b/a]) = [H/(b • a)∗/a] and not [H/(b • a)∗/a/b/a]

because for K = J = 2 even if there are two repeated sequences starting
at the leftmost a with a pattern length of two (b • a) that are a/b/a/b and
a/b/a/b/a/b, the maximal number of repetitions is three and corresponds to
a/b/a/b/a/b.

3.2 Algorithm Properties

Some Terminology. The following definitions are introduced for ease of writing.

Categorial Dependency Grammars with Iterated Sequences 45

Definition 10 (argument-form). By an argument-form we mean a part of
a type with the form Lm\ . . . \L1\ or the form /R1 . . . /Rn where each Li, Ri

is a possible argument in a CDG type (in short an argument-form is a writing
fragment on one side in a CDG type).

Definition 11 (Component). By a star-component in a type or an argument-
form t, we mean any x∗\ or /x∗ occurring in the writing of t. By a primitive
component in a type or an argument-form t, we mean any x∗\, /x∗, d\, or /d
where d is a local dependency name or an anchor type, occurring in the writing
of t. These notions are extended to the form without \ or /.

Definition 12 (Parallel Decomposition). If t′ is the result of the algorithm
TGen

(K)
J−seq on t = [L1\ · · · \H/ · · · /R1]P in the LML mode, we can decompose in

parallel: t = [α1 · · · H · · · αN]P and t′ = [β1 · · · H · · · βN]P
′
where P ′ = sort(P),

each αi is an argument-form, βi is a primitive component and:
β1 = TGen

(K)
J−seq(α1) . . .βj = TGen

(K)
J−seq(αj) . . .and βN = TGen

(K)
J−seq(αN)

The pair (α1 . . . αN , β1 . . . βN) defines the parallel decomposition of (t, t′) in the
LML mode; we call (αi, βi) a block and we say that each index i selects block
(αi, βi) in the decomposition.

Construction and Key Lemmas

Definition 13 (Expansion). For any type t, we define its full expansion FE(t)
as the set of types obtained from t by erasing or by replacing its star-components
x∗ (d∗ or (d1 • d2)∗ when J = 2) by any successive repetitions of x.

Note. This set is infinite when there is at least one star-component, but is used
as an intermediate for proofs. It corresponds to the possible vicinities that can
be associated to a word in a DS.

Definition 14 (Expansion of Rank K ′). For any t, type or argument-form,
we define its full expansion of rank K ′, FEK′

(t), as the set of types obtained
from t by erasing or by replacing all its star-components x∗ by any successive
repetitions of x not more than K ′ times.

Lemma 1. Let K > 1, J = 1 or 2 and K ′ ≥ K + 1. For any type t:

TGen
(K)
J−seq(FEK′

(t)) = TGen
(K)
J−seq(FEK+1(t)) (1)

Proof. We show (1). Obviously TGen
(K)
J−seq(FEK+1(t)) ⊆ TGen

(K)
J−seq

(FEK′
(t)). We show the converse for J = 2 (J = 1 is a subcase of J = 2).

Suppose t1 ∈ FEK′
(t0), let t2 = TGen

(K)
J−seq(t1) and let αj , βj , for 1 ≤ j ≤ N

denote the parallel decomposition of (t1, t2) in the LML mode. We discuss by
induction on the construction of t0, considering the parallel decomposition.

We consider the leftmost star-component x∗ in t0 repeated more than K + 1
times in t1. We show that we can replace it by t′1 with only K + 1 repetitions of
this pattern instead (unchanged elsewhere).

46 D. Béchet and A. Foret

- If |x| = 1, then x∗ of t0 corresponds to d\d\ · · · d\ or /d/d\ · · · d in t1.
(1.1) If this argument-form of t1 (and x∗ of t0) corresponds to a unique block
i in the parallel decomposition of (t1, t2), then αi contains more than K + 1 x
and βi = x∗; in that case, we define t′1 by replacing in αi all the repetition of x
with only K + 1 repetitions of x. In this case, x∗ of t0 corresponds to K + 1 x
in t′1 and the algorithm yields the same type.
(1.2) If the argument-form corresponds to several adjacent blocks in the parallel
decomposition of (t1, t2), the leftmost x is the end of a block i with βi = (x•d1)∗

and the others are in the block i+1 with βi+1 = x∗. αi+1 contains at least K x.
We define t′1 by replacing in αi+1 all the repetition of x by only K repetitions
of x. In this case, x∗ of t0 corresponds to K + 1 x in t′1 which yields the same
type (algorithm output).
- If |x| = 2, then x is the succession of d1 and d2 (x = d2 • d1 and it corresponds
to d1\d2\d1 · · · \d1\d2\ or /d1/d2/d1 · · · /d1/d2):
(2.1) If x∗ of t0 corresponds to a unique block i, in that case, as in (1.1), we
define t′1 by replacing in αi the repetition of d1 and d2 with K + 1 repetitions of
d1 and d2. In this case, x∗ of t0 corresponds to K + 1 x in t′1 which yields the
same type (algorithm output).
(2.2) if d1
= d2 and x∗ corresponds to several adjacent blocks in the parallel
decomposition of (t1, t2) starting at block i, this means that in the LML mode the
leftmost d1 corresponds to the end of block i, the rightmost d2 correspond to the
beginning of block i+2 and the other local dependency names d2, d1, d2 . . . , d2, d1
correspond to block i+1 with βi+1 = (d2 •d1)∗. We define t′1 by replacing in αi+1

the repetition of d2 and d1 with K repetitions of d2 and d1. In this case, x∗ of t0
corresponds to K + 1 x in t′1 which yields the same type (algorithm output).
(2.3) if d1 = d2, we have the same cases as in (1.1) and (1.2) but with more than
2K + 2 local dependency names.

We can repeat this process until no expansion is made more than K + 1
times, hence the converse inclusion.

For example, if t0 = a\a\(b • a)∗\b\b\H, with J = 2,K = 2,K ′ = 4: the
decomposition for t1 = a\a\a\b\a\b\a\b\a\b\b\b\H (with K ′ = K + 2 repe-
titions) can be compared to that of t′1 = a\a\a\b\a\b\a\b\b\b\H with K + 1
repetitions (we recall that the display order is reverted for internal sequence as
arguments):

α1 = a\a\a\ α2 = b\a\b\a\b\a\ α3 = b\b\b\ t1

TGen
(2)
2−seq β1 = a∗ β2 = (a • b)∗ β3 = b∗ t2

α1 = a\a\a\ α2 = b\a\b\a\ α3 = b\b\b\ t′1
TGen

(2)
2−seq β1 = a∗ β2 = (a • b)∗ β3 = b∗ t2

Note that a\a\a\b\a\b\b\b\, with K repetitions only, yields a different decom-
position.

Corollary 1. Let K > 1 and J = 1 or 2. For any type t the result of the
algorithm TGen

(K)
J−seq on the full extension of t is a finite set and is the same

set as the result of this algorithm on FEK+1(t).

Categorial Dependency Grammars with Iterated Sequences 47

The definitions of FEK and FEK+1 are extended to sets, lexicons and gram-
mars in the usual way.

Lemma 2. Let K > 1 and J = 1 or 2. Let G be a CDG with sequence iterations.
We have:

(1) all vicinities of words in DS of Δ(G) belong to some FE(t), where t is
assigned by G.

(2) if σ is a finite sequence in Δ(G), then Δ(TGE
(K)
J−seq(σ)) ⊆ Δ(G′) where G′

is TGE
(K)
J−seq on FEK+1(G)

Proof. If G generates D ∈ σ where a word w occurs with a vicinity tw, for which
G uses the assignment w �→ t in the derivation, then tw must be in FE(t).
Finally, we use Corollary 1 relating FE(t) to FEK+1(t).

Theorem 1 (Convergence). Let K > 1 and J = 1 or 2. Let G be any CDG.
The algorithm TGE

(K)
J−seq stabilizes on every training sequence in Δ(G) to a

grammar with assignments in TGE
(K)
J−seq on (FEK+1(G)).

Proof. We have (1) TGE
(K)
J−seq(σ[i]) ⊆ TGE

(K)
J−seq(σ[i+1]) ⊆ ... As observed in

Lemma 2, the vicinities for the words of the DS in σ belong to FE(G). If we
had an infinite chain of types t′i = TGE

(K)
J−seq(ti), with assignments wi �→ t′i

in TGE
(K)
J−seq(σ[i]), but not in TGE

(K)
J−seq(σ[i − 1]) (we could consider one such

chain concerning a same word w as the lexicon of G is finite) ; now all ti also
belong to some FEKi(G), then if K ′ > K + 1, there exists t′′i in FEK+1(G),
such that t′i = TGE

(K)
J−seq(t

′′
i), we can thus view the set of t′i as the result of

TGE
(K)
J−seq on a subset of FEK+1(G) ; obviously FEK+1(G) is finite, we would

then have a contradiction.

Therefore for any G and any K > 1:
∃N,∀N ′ ≥ N TGE

(K)
J−seq(σ[N ′]) = TGE

(K)
J−seq(σ[N])

Furthermore, if w �→ t′ ∈ TGE
(K)
J−seq(σ[N]) there exists w �→ t′′ ∈ FEK+1(G),

such that t′ = TGE
(K)
J−seq(t

′′): in that sense the assignments in TGE
(K)
J−seq(σ[N])

are in TGE
(K)
J−seq on (FEK+1(G)).

Proposition 1. Let K > 1 and J = 1 or 2.
If G is a CDG and σ is a sequence in Δ(G) then

(1) TGE
(K)
J−seq(σ[i]) ⊆ TGE

(K)
J−seq(σ[i + 1]) monotonicity/incrementality

(2) σ[i] ⊆ Δ(TGE
(K)
J−seq(σ[i])) expansivity

(3) Δ(TGE
(K)
J−seq(σ[i])) ⊆ Δ(G′) where G′ is TGE

(K)
J−seq on FEK+1(G)

Proof. (1) holds by definition of the algorithm (that expands the lexicon); (2)
can be shown by adapting the derivation ; (3) follows from a preceeding lemma.

48 D. Béchet and A. Foret

3.3 A Family of Learnable Classes

Definition 15. Two grammars are said strongly equivalent if they generate the
same dependency structure language. The strong equivalence criterion:

(i) G is strongly equivalent to TGE
(K)
J−seq on FEK+1(G) defines the subclass

written CCDGK
J−seq of grammars satisfying (i).

Theorem 2. Let K > 1 and J = 1 or 2. The algorithm TGE
(K)
J−seq learns the

class of CDG satisfying the strong equivalence criterion (i), from labelled depen-
dency structures.

Proof. From Proposition 1(1): TGE
(K)
J−seq(σ[i]) ⊆ TGE

(K)
J−seq(σ[i+1]) ⊆ ...

The stabilization property holds (Theorem 1):
∃N,∀N ′ ≥ N TGE

(K)
J−seq(σ[N ′]) = TGE

(K)
J−seq(σ[N])

Then by Proposition 1(2): Δ(G) ⊆ Δ(TGE
(K)
J−seq(σ[N])),

and using (i) and Proposition 1(3): Δ(G) ⊆ Δ(TGE
(K)
J−seq(σ[N])) ⊆ Δ(G).

Therefore for any grammar, such that (i) we get the convergence to a grammar
generating the same structure language.

Observe that this class does not impose a bound on the number of types
associated to a word (in contrast to k-valued grammars). The learnability for
J = 1 was studied in [3], with a special case of our algorithm.

4 Extended CDG and Dependency Treebanks

From Dependency Treebanks to Vicinities. Our workflow applies to data in the
Conll format7. The CDG potentials in this section are considered as empty8.

For each governor unit in each corpus we have computed (using
MySQL and Camelis9): (1) its vicinity in the root simplified form
[l1\ . . . \ln\root/rm/ . . . /r1] (where l1 to ln on the left and r1 to rm on the
right are the successive dependency names from that governor), then (2) its gen-
eralization as star-vicinity, replacing consecutive repetitions of dk on a same side
with d∗

k; and (3) its generalization as vicinity 2seq following the LML mode of
the algorithm in Fig. 6 for J = K = 2.

Our development allows to mine repetitions and to call several kinds of view-
ers: we use the item/word description interactive viewer camelis and the sen-
tence parse conll viewer [11] or grew10.

Figure 7 on its left, shows the root simplified vicinities computed on corpus
Sequoia; the resulting file has been loaded as an interactive information context,
in Camelis; this tool manages three synchronised windows: the current query is
on the top, selecting the objects on the right, their properties can be browsed in
the multi-facets index on the left.
7 http://universaldependencies.org/format.html.
8 this complies with Sequoia data, but may be a simplification for some other corpora.
9 www.irisa.fr/LIS/softwares.

10 http://talc2.loria.fr/grew/.

http://universaldependencies.org/format.html
www.irisa.fr/LIS/softwares
http://talc2.loria.fr/grew/

Categorial Dependency Grammars with Iterated Sequences 49

F
ig
.
7
.
S
im

p
li
fi
ed

v
ic

in
it

ie
s

co
m

p
u
te

d
o
n

co
rp

u
s

S
eq

u
o
ia

50 D. Béchet and A. Foret

Results on the French corpus Sequoia. We consider a version of corpus Sequoia
[4] that defines dependency structures. The study uses only the surface syntax
dependency tree. Sequoia is not validated by a dependency grammar in the sense
of Mel’čuk and does not have to follow the repeatable principle.

The process yields 530 distinct star-vicinities having repetition(s) (a star),
among 2660 distinct vicinities (on 67038 units, among which 37883 governors).
For example the form “notables”11 with postag “NC” has:

vicinity det\root/mod/mod/dep/dep and star-vicinity det\root/mod*/dep* .
We observe that:12 consecutive repeatable dependencies d1.d1 on the left are:

aff, dep, det, mod, ponct; consecutive repeatable dependencies on the right are:
coord, dep (+ dep.coord), mod (+ mod.app), obj:obj+obj.p, p obj.o, ponct

The most frequent vicinity star is "det\root/mod*" (204 units), the most
frequent vicinity 2seq is "\root/(mod . ponct)*" (25 units), 166 units corre-
spond to a repetition "(mod . ponct)*". Several repeated sequences of length 2
occur, either on the left or on the right, these patterns always include a ponct
dependency: (suj . ponct) (ponct . suj) (ponct . obj.p) (ponct . obj) (ponct . mod.voc) (ponct .

mod.rel) (ponct . mod.app) (ponct . mod) (ponct . dep.coord) (ponct . dep) (ponct . coord) (p obj.o

. ponct) (obj.p . ponct) (obj . ponct) (obj.cpl . ponct) (mod.voc . ponct) (mod . ponct) (mod.app .

ponct) (dep . ponct) (dep.coord . ponct) (de obj . ponct) (coord . ponct) (ats . ponct)

Repeated sequences of length 3, with three distinct dependencies seem to be rare.
We found one sentence13 illustrating this case: “Ils ont vidé les supermarchés de
nourriture, les pharmacies de médicaments, les usines de matériel médical, ils
ont cambriolé les maisons et torturé des voisins et des amis.”, with vicinity:

"aux.tps\\suj\\root/ponct/mod/ponct/de_obj/obj/ponct/de_obj/obj/ponct/de_obj/obj"

Other corpus. Our development can handle other treebanks in the conll format.
Table 4 summarizes some observations on two corpus, with the number of units
corresponding to repetition patterns.

Treebank sentences units governors J=1 J=2 J=3, left

sequoia 3099 67038 37883 1667 378 0

fr-ud-train 3312 74979 33568 1942 220 0

Fig. 8. Dependency repetitions, for K = 2 and sequence length J

In the fr-ud-train corpus, the most frequent vicinity star is "det\root/adpmod*"
(194 units), the most frequent vicinity 2seq is "\root/(p . conj)*" ; 45 units
correspond to a repetition (adpmod . p)*. The 18 repeating patterns are: (p .

parataxis) (p . nsubj) (p . mwe) (p . dep) (p . conj) (p . compmod) (parataxis . p) (p . appos) (p

. advmod) (p . adpmod) (nmod . p) (conj . p) (compmod . p) (cc . conj) (aux . neg) (amod . p)

(advmod . p) (adpmod . p)

11 talc2.loria.fr/deep-sequoia/sequoia-7.0/html/frwiki 50.1000 00315.html.
12 bold denotes the frequent ones.
13 talc2.loria.fr/deep-sequoia/sequoia-7.0/html/frwiki 50.1000 00091.html.

http://talc2.loria.fr/deep-sequoia/sequoia-7.0/html/frwiki_50.1000_00315.html
http://talc2.loria.fr/deep-sequoia/sequoia-7.0/html/frwiki_50.1000_00091.html

Categorial Dependency Grammars with Iterated Sequences 51

5 Conclusion

In this paper, we have extended classical Categorial Dependency Grammars with
a new construction to handle repeatable sequences of several dependencies. The
work was motivated by the observation of such patterns. We have proposed
a learning algorithm. A version of this algorithm has been implemented and
applied to some treebanks (in Conll). Some design and computational variants
are possible depending on the repetition principle reading. On the formal side,
further analysis could consider richer patterns. On the experimental side, other
treebanks could be explored as well. It would also be interesting to reconsider
these notions in other formalisms or application domains.

References

1. Abrusci, V., Ruet, P.: Non-commutative logic i: the multiplicative fragment. Ann.
Pure Appl. Logic 101(1), 29–64 (1999)

2. Angluin, D.: Inductive inference of formal languages from positive data. Inf. Con-
trol 45, 117–135 (1980)

3. Béchet, D., Dikovsky, A., Foret, A.: Two models of learning iterated dependencies.
In: Groote, P., Nederhof, M.-J. (eds.) FG 2010-2011. LNCS, vol. 7395, pp. 17–32.
Springer, Heidelberg (2012). doi:10.1007/978-3-642-32024-8 2

4. Candito, M., Perrier, G., Guillaume, B., Ribeyre, C., Fort, K., Seddah, D., de la
Clergerie, E.: Deep syntax annotation of the sequoia french treebank. In: Proceed-
ings of LREC, pp. 2298–2305. European Language Resources Association (ELRA),
May 2014

5. Dekhtyar, M., Dikovsky, A., Karlov, B.: Categorial dependency grammars. Theoret.
Comput. Sci. 579, 33–63 (2015)

6. Dikovsky, A.: Dependencies as categories. In: Kruijff, G.J.M., Duchier, D. (eds.)
COLING 2004 Recent Advances in Dependency Grammar, pp. 82–89. COLING,
Geneva, Switzerland, 28 August 2004. http://aclweb.org/anthology/W04-1512

7. Gold, E.M.: Language identification in the limit. Inf. Control 10, 447–474 (1967)
8. de la Higuera, C.: Grammatical Inference: Learning Automata and Grammars.

Cambridge University Press, New York (2010)
9. Kanazawa, M.: Learnable Classes of Categorial Grammars. Studies in Logic, Lan-

guage and Information. FoLLI & CSLI, Stanford (1998)
10. Lambek, J.: On the calculus of syntactic types. In: Jakobson, R. (ed.) Structure

of Languages and its Mathematical Aspects, pp. 166–178. American Mathematical
Society, Providence (1961)

11. Rosa, R.: Terminal-based CoNLL-file viewer (2014). http://hdl.handle.net/11234/
1-1456, LINDAT/CLARIN digital library at Institute of Formal and Applied Lin-
guistics, Charles University in Prague

http://dx.doi.org/10.1007/978-3-642-32024-8_2
http://aclweb.org/anthology/W04-1512
http://hdl.handle.net/11234/1-1456
http://hdl.handle.net/11234/1-1456

Implementing Variable Vectors in a CCG Parser

Daisuke Bekki1,2,3,4(B) and Ai Kawazoe4

1 Faculty of Core Research, Ochanomizu University,
2-1-1 Ohtsuka, Bunkyo-ku, Tokyo 112-8610, Japan

bekki@is.ocha.ac.jp
2 CREST, Japan Science and Technology Agency (JST),

4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
3 National Institute of Advanced Industrial Science and Technology (AIST),

1-1-1 Higashi, Tsukuba, Ibaraki 305-8561, Japan
4 National Institute of Informatics (NII),

2-1-2 Hitotsubashi, Chiyoda-ku, Tokyo 101-8430, Japan

Abstract. This article addresses problems that arise from the use of
category variables T in combinatory categorial grammars (CCGs), in
particular, that they require extension of semantic languages with vari-
able vectors in a form such as λx.M or Mx. As a solution to such prob-
lems, we introduce a technique for implementing variable vectors within
the context of lightblue, a Japanese CCG parser implemented within the
Haskell programming language with a dependent type semantics (DTS)
representation.

Keywords: Combinatory categorial grammar · Variable vectors

1 Introduction

1.1 Category Variables T and Variable Vectors λx or Mx

Type-raising rules in combinatory categorial grammars (CCGs) typically intro-
duce category variables, often represented by a bold letter T together with an
index i (i ∈ N) to distinguish between category variables (Steedman 2000).

(1) X : a =⇒>T T i /(T i \X) : λp.pa

X : a =⇒<T T i \(T i /X) : λp.pa

The theoretical status of the type-raising rules can be understood in at least
two different ways. The first perspective is that the two rules in (1) are not,
themselves, rules; rather, they are rule schema, with T being meta-level vari-
ables. Instantiating T with an actual syntactic category then defines a countably

My sincere thanks to Koji Mineshima and Ribeka Tanaka for many helpful discus-
sions. I also thank the developers of JUMAN++ and KNP, in particular, Sadao
Kurohashi, Daisuke Kawahara, Hajime Morita and Yuta Hayashibe, for sharing
information. I also thank the anonymous reviewers of LACL2016 for many insightful
comments. This research is partially supported by JST, CREST.

c© Springer-Verlag GmbH Germany 2016
M. Amblard et al. (Eds.): LACL 2016, LNCS 10054, pp. 52–67, 2016.
DOI: 10.1007/978-3-662-53826-5 4

Implementing Variable Vectors in a CCG Parser 53

infinite set of rules. Let us call this perspective, in which T is not an object-level
expression, category variable as meta-variable. The second, category variable as
type variable, understands the whole syntactic calculus of CCG as a weak poly-
morphic type theory (i.e., polymorphism without quantification over T), where
category variables T are object-level expressions.

Under either view, T may be instantiated by, for example, a functional cate-
gory with an arbitrary number of arguments, but their semantic representation
in (1), λp.pa, is invariant. This is because only p’s first argument, which is to be
filled with a, matters; the number of other argument slots is irrelevant.

However, there are two situations where the invariance of semantic repre-
sentation for T cannot be maintained. Those cases require the use of lambda
calculus with terms whose argument slots are both “expandable” and “shrink-
able.” Variable vectors x that appear in terms of the form λx.M or Mx are typ-
ical tools for this purpose (Steedman 2000). The first situation is coordination
between type-raised NPs. A typical lexical entry for quantifier NPs in English,
such as every N and some N (with the accusative case), has the syntactic cat-
egory T\(T/NP), and these entries participate in the coordinated structure in
the following way.

(2) T\(T/NP) : f CONJ : ∧ T\(T/NP) : g

T\(T/NP) : λx.(fx ∧ gx)
〈Φ〉

The resulting semantic representation, λx.(fx ∧ gx), shows the two usages
of, and the necessity of, a variable vector x; when used with λ in the form of
λx.M , it is a function that takes an arbitrary number of arguments, enough that
the corresponding syntactic category becomes S. When used with a function f
(or g), in the form fx (or gx), it is a result of applying a sequence of arguments
taken by the corresponding binder λx, and the sequence preserves the order of
arguments.

The reason why variable vectors are needed in (2), unlike in (1), is that ∧
is a truth function that conjoins only propositions. In (2), fx and gx are safely
conjoined by the truth function ∧ because the corresponding category for fx
and gx is S, and this ensures that their semantic type is proposition. However,
the number of arguments needed for f and g to become propositions depends on
the syntactic category that instantiates T . Therefore, we need a variable vector
x for semantic representations in cases where we want to not specify the number
of arguments. For example, the following two CCG derivations instantiate (1),
which uniformly describes the coordination calculus therein.

(3) John
NP : j

S\NP\(S\NP/NP)
: λp.pj

<T
and

CONJ
: ∧

Mary
NP : m

S\NP\(S\NP/NP)
: λp.pm

<T

S\NP\(S\NP/NP)

:
λp.λx.(((λp.pj)p)x ∧ ((λp.pm)p)x)
�β λp.λx.(pjx ∧ pmx)

〈Φ〉

54 D. Bekki and A. Kawazoe

The example (3) shows a coordinated structure between two direct objects
in English, for which both T ≡ S\NP and x ≡ (p, x); namely, λx. ≡ λp.λx. and
fx ≡ ((fp)x).

(4) John
NP : j

S\NP/NP\(S\NP/NP/NP)
: λp.pj

<T
and

CONJ
: ∧

Mary
NP : m

S\NP/NP\(S\NP/NP/NP)
: λp.pm

<T

S\NP/NP\(S\NP/NP/NP)

:
λp.λy.λx.((((λp.pj)p)y)x ∧ (((λp.pm)p)y)x)
�β λp.λy.λx.(pjyx ∧ pmyx)

〈Φ〉

The example (4) shows a coordinated structure between two indirect objects
in English, for which both T ≡ S\NP/NP and x ≡ (p, y, x); namely, λx. ≡
λp.λy.λx., fx ≡ (((fp)y)x).

The second situation in which variable vectors are needed is semantic repre-
sentation of quantifiers.

(5) every � T\(T/NP)/N : λn.λp.∀x.nx → (px)x
some � T\(T/NP)/N : λn.λp.∃x.nx ∧ (px)x

Since truth functions → and ∧ conjoin only propositions, (px)x must be a
propositional term. However, the number of arguments needed to make p into a
proposition depends on the instantiation of the syntactic category T/NP , and
thus must be underspecified, as seen in (5).

1.2 Problem of Variable Vectors

A more precise definition of x (λx and Mx) could be given as follows:1

Definition 1 (Variable vectors).

λx.M [. . . fx . . .]
def≡

{
M [. . . f . . .]
λx.λx.M [. . . (fx)x . . .] where x
∈ fv (M [. . . fx . . .])

The problem with this pseudo-definition is that it is “defined” in non-
deterministic style but the choice is determined by the form of the correspond-
ing syntactic category. For example, in (2), the value of |x| (namely, how many
arguments are needed for f and g) depends on the instantiation of T . In (5),
|x| (how many arguments are needed for px) again depends on the instantiation
of T . The strategy adopted here is that one should take the second choice in
Definition 1 n times when |x| = n, but this determination requires a reference to
the corresponding syntactic category.

The fact that the definition of variable vectors depends on the corresponding
syntactic category is problematic when trying to situate the definition within

1 In the literature, Bekki (2010) defines variable vectors as in Definition 1 (which is
slightly adapted for this article), among others. M [. . . N . . .] indicates a term M
that contains N as a subterm.

Implementing Variable Vectors in a CCG Parser 55

the formal theory of CCG. Moreover, implementation is complicated by the
definition because variable vectors are not a notion that can be defined entirely
within the pure lambda calculus.

Another problem that arises with variable vectors is that they are not sub-
terms from the perspective of a lambda calculus without them. In (4), for exam-
ple, x ≡ (p, y, x), namely, λx. ≡ λp.λy.λx. and fx ≡ (((fp)y)x); however, nei-
ther λp.λy.λx. nor pyx is a subterm from the viewpoint of the syntax of lambda
calculus.

Thus, translation from lambda calculus extended to include variable vectors
to lambda calculus without them is no longer possible by simple substitution
of variable vectors with a lambda term. Instead, translation requires transfor-
mation of a syntactic tree of lambda calculus. In other words, variable vectors
underspecify the syntactic structure that surrounds them.

1.3 Previous Work on Category Variables

Presently available implementations of CCG parsers, such as the C&C parser
(Clark and Curran 2004), EasyCCG (Lewis and Steedman 2014), and Jigg (Noji
and Miyao 2016), have avoided implementation of category variables.

As is well-known, a näive top-down CCG parser is not guaranteed to termi-
nate, because of the existence of the following (infinite) path:

...
S/X1/X2

>
X2

S/X1

>
X1

S
>

Likewise, a näive bottom-up CCG parser with type-raising rules would not
terminate for the following infinite path.2

X

T 1 /(T 1 \X)
>T

T 2 /(T 2 \(T 1 /(T 1 \X)))
>T

...
>T

Linguistically, adopting type-raising rules allows the extraction of wh-phrases
from complex NP islands (Ozaki and Bekki 2012). When regarding CCG as a

2 Another issue concerning the introduction of category variables is the need for uni-
fication between syntactic categories, which tends to be slow. We will not discuss
how to avoid this in the implementation of lightblue, as such discussion is beyond
the scope of this article.

56 D. Bekki and A. Kawazoe

substructural combinatory logic, the type-raising rules correspond to the C∗-
combinator and thus strengthen the deduction theorem (i.e., extractability).3

Thus, there are both computational and linguistic motivations for not adopt-
ing the type-raising rules, and category variables in CCG parsers.

However, this is not sufficient reason to annihilate category variables alto-
gether, since a categorial grammar may employ category variables without adopt-
ing the type-raising rules. This is a reasonable choice, particularly because cate-
gory variables are useful for packing ambiguous but syntactically similar lexical
items. Moreover, the computational effect of lexical packing is evident in some
languages, such as Japanese, in which all arguments appear on the left-hand side
of predicates (and thus, any quantificational NP can be given a single lexical item
by using variable vectors).

1.4 Lightblue: A Robust CCG Parser with DTS

Lightblue is a wide-coverage CCG parser for Japanese, implemented in the
Haskell programming language, which outputs semantic representations in terms
of dependent type semantics (DTS; Bekki (2014), Bekki and Mineshima (2016)).

DTS is a proof-theoretic discourse semantics of natural language based on
dependent type theory ((Martin-Löf (1984), Nordström et al. (1990)), which
extends TTG (Ranta 1994) with underspecified terms (notation @A

i), through
which anaphora resolution and presupposition binding are calculated via type
checking and proof search in dependent type theory.

There are few Japanese parsers, other than lightblue, that yield (logical)
semantic representations. Exceptions are Haruniwa (Tsaiwei et al. 2014) and
ccg2lambda (Mart́ınez Gómez et al. 2016). Both separate syntactic and seman-
tic parsing; the former yields syntactic trees as output and the latter transforms
them into semantic representations. However, since their lexicons are automati-
cally obtained from large-scale corpora, they do not allow a semantics developer
to add, delete, or modify a single lexical item, which is a standard way to improve
lexicalized grammar, during the process of grammar development.

Parser development in lightblue is purely lexicalized; the data type for a lexical
entry is a triple of a phonetic form, a CCG syntactic category, and a DTS preterm,
so a semantics developer has direct access to each lexical entry. The lightblue lex-
icon has about 994,416 lexical entries for open words obtained from the dictio-
nary of JUMAN, a part-of-speech tagger and morphological analyzer (Morita et
al. 2015), which is automatically obtained (and distilled) from the world wide web,
plus 758 lexical entries for closed words excerpted from Bekki (2010).

The CCG part of lightblue can make use of category variables, and the DTS
part can make use of variable vectors, which significantly reduces the number of
items in lexicons. Lightblue can also use empty categories, which gives it more
flexibility, but that will be discussed elsewhere, and not in this paper.
3 Evaluation of strengthened extractability in CCG depends on whether the complex
NP constraint is inherently syntactic or arises from choices made about parsing or
other extra-syntactic processes. Our discussion here assumes the former. However,
if one assumes the latter, then adopting type-raising rules or a categorial grammar
with stronger extractability would be essential.

Implementing Variable Vectors in a CCG Parser 57

2 DTS with Variable Vectors in de Bruijn Notation

As a semantic theory, lightblue employs DTS in de Bruijn notation, in order to
avoid variable name clash or, alternatively, α conversion everywhere. The stan-
dard implementation of lambda calculus in de Bruijn notation is widely known
from Pierce (2005), the techniques of which can be naturally extended to DTS.

2.1 Syntax and Reduction

The syntax of DTS with variable names extended with two constructors for
variable vectors is given as follows4, where the constructors λx.M and Mx give
binders and bindees of variable vectors, respectively.

Definition 2 (Syntax of DTS with variable names).

Λ :: = x | c | type | kind | (x:Λ) → Λ | λx.Λ | ΛΛ

|
[
x:Λ
Λ

]

| (Λ,Λ) | πi(Λ) | @Λ
i | λx.Λ | Λx

In de Bruijn notation, a variable name is replaced with a non-negative integer
i, which is bound by the ith binder that takes scope over it. The syntax is defined
as described below, where j ∈ {1, 2}.

Definition 3 (Syntax of DTS in de Bruijn notation).

Λ :: = i | c | type | kind | Λ → Λ | λΛ | ΛΛ

|
[
Λ
Λ

]

| (Λ,Λ) | πj(Λ) | @Λ
i | λΛ | Λi

The syntax of Definition 3 is naturally implemented by the following Haskell
data type.

data Preterm =

Var Int | -- ^ Variables

Con Text | -- ^ Constant symbols

Type | -- ^ The sort \"type\"

Kind | -- ^ The sort \"kind\"

Pi Preterm Preterm | -- ^ Dependent function types (or Pi types)

Lam Preterm | -- ^ Lambda abstractions

App Preterm Preterm | -- ^ Function Applications

Sigma Preterm Preterm | -- ^ Dependent product types (or Sigma types)

Pair Preterm Preterm | -- ^ Pairs

Proj Selector Preterm | -- ^ (First and second) Projections

Asp Int Preterm | -- ^ The asperand terms (or underspecified terms)

Lamvec Preterm | -- ^ Lambda abstractions of a variable vector

Appvec Int Preterm | -- ^ Function applications with a variable vector

4 The full version of lightblue employs, besides those constructors given in Definition 3,
the intensional equality type, the natural number type, and the enumeration types
in Nordström et al. (1990). For brevity, these are omitted.

58 D. Bekki and A. Kawazoe

Semantic representations of (a nominative version of) quantifiers every and
some in DTS are given as follows (Bekki and Mineshima 2016):

(6) λn.λp.λx

(

u:
[
x:entity
nx(λx.�)

])

→ p(π1(u))x

(7) λn.λp.λx

⎡

⎣u:
[
x:entity
nx(λx.�)

]

p(π1(u))x

⎤

⎦

With the data type Preterm, these representations are described in Haskell
code as follows.

(8) (Lam (Lam (Lamvec (Pi (Sigma (Con "entity’") (App (App (Var
3) (Var 0)) (Lam Top))) (Appvec 1 (App (Var 2) (Proj Fst
(Var 0))))))))

(9) (Lam (Lam (Lamvec (Sigma (Sigma (Con "entity") (App (App
(Var 3) (Var 0)) (Lam Top))) (Appvec 1 (App (Var 2) (Proj
Fst (Var 0))))))))

The definitions of free variables and substitution for Preterm are obtained by
extending their standard lambda calculus definitions, from Pierce (2005), with
Pi, Sigma, Asp, Lamvec, and Appvec. The form subst m l i is understood as
m[l/i], that is, the preterm m in which an index i is substituted by a preterm l.

subst :: Preterm -> Preterm -> Int -> Preterm

subst preterm l i = case preterm of

Var j -> if i == j then l else Var j

Pi a b -> Pi (subst a l i) (subst b (shiftIndices l 1 0) (i+1))

Lam m -> Lam (subst m (shiftIndices l 1 0) (i+1))

App m n -> App (subst m l i) (subst n l i)

Sigma a b -> Sigma (subst a l i) (subst b (shiftIndices l 1 0) (i+1))

Pair m n -> Pair (subst m l i) (subst n l i)

Proj s m -> Proj s (subst m l i)

Asp j m -> Asp j (subst m l i)

Lamvec m -> Lamvec (subst m (shiftIndices l 1 0) (i+1))

Appvec j m -> Appvec j (subst m l i)

m -> m

The essence of the definition of subst lies in the use of the shiftIndices
function. The form shiftIndices m d i appears in the cases of Pi, Lam, Sigma,
and Lamvec above and executes d-place shift (Pierce 2005). Namely, it adds d
to every index within m that is greater than i, whose role is to accommodate all
indices to the new environment in which m is placed. The shiftIndices function
is recursively defined as follows.

shiftIndices :: Preterm -> Int -> Int -> Preterm

shiftIndices preterm d i = case preterm of

Var j -> if j >= i

then Var (j+d)

else Var j

Pi a b -> Pi (shiftIndices a d i) (shiftIndices b d (i+1))

Lam m -> Lam (shiftIndices m d (i+1))

Implementing Variable Vectors in a CCG Parser 59

App m n -> App (shiftIndices m d i) (shiftIndices n d i)

Sigma a b -> Sigma (shiftIndices a d i) (shiftIndices b d (i+1))

Pair m n -> Pair (shiftIndices m d i) (shiftIndices n d i)

Proj s m -> Proj s (shiftIndices m d i)

Asp j m -> Asp j (shiftIndices m d i)

Lamvec m -> Lamvec (shiftIndices m d (i+1))

Appvec j m -> if j >= i

then Appvec (j+d) (shiftIndices m d i)

else Appvec j (shiftIndices m d i)

m -> m

For example, (λM)[L/i] reduces to (λ(M[shiftIndices L 1 0/i+1]),
adding 1 to all indices greater than or equal to 0 (i.e., all indices) in L, since L,
a preterm to replace, is going though one λ.

The reason for the restriction “greater than or equal to 0” is that indices
in L that are bound within L must stay intact. For example, L, a preterm to
replace, goes through two λs, then indices less than or equal to i+1 should
remain unchanged.

(λλM)[L/i] = λ((λM)[shiftIndices L 1 0/i+1]

= λλ(M[shiftIndices (shiftIndices L i 0) 1 0/i+2]

Note that the definitions of Pi and Sigma add 1 only in the nuclear scope
part (not in the restriction part). This reflects that in constructions such as

(x:A) → B and
[
x:A
B

]

, A is outside the scope of x.

The above definition of subst is then used to define beta reduction of
preterms as follows, which also uses the shiftIndice function.

betaReduce :: Preterm -> Preterm

betaReduce preterm = case preterm of

Pi a b -> Pi (betaReduce a) (betaReduce b)

Lam m -> Lam (betaReduce m)

App m n -> case betaReduce m of

Lam v -> betaReduce (shiftIndices (subst v (shiftIndices n 1 0) 0) (-1) 0)

e -> App e (betaReduce n)

Sigma a b -> Sigma (betaReduce a) (betaReduce b)

Pair m n -> Pair (betaReduce m) (betaReduce n)

Proj s m -> case betaReduce m of

Pair x y -> case s of

Fst -> x

Snd -> y

e -> Proj s e

Asp i m -> Asp i (betaReduce m)

Lamvec m -> Lamvec (betaReduce m)

Appvec i m -> Appvec i (betaReduce m)

m -> m

2.2 Expanding and Shrinking of Variable Vectors

The expanding and shrinking operations of variable vectors consist of the three
primitive functions addLambda, deleteLambda, and replaceLambda.

60 D. Bekki and A. Kawazoe

addLambda i m works on the form Appvec j f (within m), which is bound by
the ith binder from the position of the addLambda i m (= the jth binder from the
position of Appvec j f), and replaces it with Appvec j (App (addLambda i m) (Var
(j+1))). In the second choice in Definition 1, this operation is used for replacing
M [. . . fx . . .] with M [. . . (fx)x . . .] when we replace λx with λx.λx5.

addLambda :: Int -> Preterm -> Preterm

addLambda i preterm = case preterm of

Var j | j > i -> Var (j+1)

| j < i -> Var j

| otherwise -> Error

Pi a b -> Pi (addLambda i a) (addLambda (i+1) b)

Lam m -> Lam (addLambda (i+1) m)

App m n -> App (addLambda i m) (addLambda i n)

Sigma a b -> Sigma (addLambda i a) (addLambda (i+1) b)

Pair m n -> Pair (addLambda i m) (addLambda i n)

Proj s m -> Proj s (addLambda i m)

Asp j m -> Asp j (addLambda i m)

Lamvec m -> Lamvec (addLambda (i+1) m)

Appvec j m | j > i -> Appvec (j+1) (addLambda i m)

| j < i -> Appvec j (addLambda i m)

| otherwise -> Appvec j (App (addLambda i m) (Var (j+1)))

m -> m

deleteLambda i m works on the form Appvec j f (within m, under the same
conditions as addLambda), and replaces it with deleteLambda i m. In other
words, deleteLambda deletes the occurrence(s) of a corresponding variable vec-
tor from m.

deleteLambda :: Int -> Preterm -> Preterm
deleteLambda i preterm = case preterm of

Var j | j > i -> Var (j-1)
| j < i -> Var j
| otherwise -> Error

Pi a b -> Pi (deleteLambda i a) (deleteLambda (i+1) b)
Lam m -> Lam (deleteLambda (i+1) m)
App m n -> App (deleteLambda i m) (deleteLambda i n)
Sigma a b -> Sigma (deleteLambda i a) (deleteLambda (i+1) b)
Pair m n -> Pair (deleteLambda i m) (deleteLambda i n)
Proj s m -> Proj s (deleteLambda i m)
Asp j m -> Asp j (deleteLambda i m)
Lamvec m -> Lamvec (deleteLambda (i+1) m)
Appvec j m | j > i -> Appvec (j-1) (deleteLambda i m)

| j < i -> Appvec j (deleteLambda i m)
| otherwise -> deleteLambda i m

m -> m
5 The Error is used here for simplifying the exposition. It is a constant symbol that
represent an error in the actual code of lightblue.

Implementing Variable Vectors in a CCG Parser 61

replaceLambda i m works on the form Appvec j f (within m, under the
same conditions as addLambda and deleteLambda), and replaces it with App
(replaceLambda i m) (Var j). Namely, it replaces the occurrence(s) of a cor-
responding variable vector with a variable.

replaceLambda :: Int -> Preterm -> Preterm
replaceLambda i preterm = case preterm of

Pi a b -> Pi (replaceLambda i a) (replaceLambda (i+1) b)
Lam m -> Lam (replaceLambda (i+1) m)
App m n -> App (replaceLambda i m) (replaceLambda i n)
Sigma a b -> Sigma (replaceLambda i a) (replaceLambda (i+1) b)
Pair m n -> Pair (replaceLambda i m) (replaceLambda i n)
Proj s m -> Proj s (replaceLambda i m)
Asp j m -> Asp j (replaceLambda i m)
Lamvec m -> Lamvec (replaceLambda (i+1) m)
Appvec j m | i == j -> App (replaceLambda i m) (Var j)

| otherwise -> Appvec j (replaceLambda i m)
m -> m

Using these three functions gives the following definition of variable vectors.

λx.M [. . . fx . . .]
def≡

{
M [. . . f . . .]
λx.λx.M [. . . (fx)x . . .]

can be represented by the following (pseudo-)Haskell code:

Lamvec M[. . . Appvec j f . . .]
def≡

{
deleteLambda 0 M
Lam (Lamvec (addLambda 0 M))

Here, fx in M [. . . fx . . .] is replaced with f by deleteLambda 0 M, and is
replaced with (fx)x by addLambda 0 M. Note that a condition that x
∈
fv (M [. . . fx . . .]) in Definition 1 is no longer necessary under de Bruijn nota-
tion.

2.3 Interaction Between Category and Lambda Terms

The remaining task is to provide a function that takes a pair comprising a
syntactic category and a preterm in DTS and returns a preterm within which
variable vectors are expanded or shrunk as needed. The transvec function,
defined as follows, does this job, transforming variable vectors within a given
preterm by adjusting the preterm’s number of arguments using the tree functions
of the last section.

transvec :: Cat -> Preterm -> Preterm

transvec c preterm = case c of

SL x _ -> case preterm of

Lam m -> Lam (transvec x m)

Lamvec m -> Lam (transvec x (Lamvec (addLambda 0 m)))

62 D. Bekki and A. Kawazoe

m -> m -- Var, Con, App, Proj, Asp, Appvec

BS x _ -> case preterm of

Lam m -> Lam (transvec x m)

Lamvec m -> Lam (transvec x (Lamvec (addLambda 0 m)))

m -> m -- Var, Con, App, Proj, Asp, Appvec

NP _ -> case preterm of

Lamvec m -> deleteLambda 0 m

m -> m

S _ -> case preterm of

Lam (Lamvec m) -> Lam (deleteLambda 0 m)

Lamvec (Lam m) -> deleteLambda 0 (Lam m)

Lamvec m -> Lam (replaceLambda 0 m)

m -> m

N -> case preterm of

Lam (Lam (Lamvec m)) -> Lam (Lam (deleteLambda 0 m))

Lam (Lamvec (Lam m)) -> Lam (deleteLambda 0 (Lam m))

Lamvec (Lam (Lam m)) -> deleteLambda 0 (Lam (Lam m))

Lamvec (Lam m) -> Lam (replaceLambda 0 (Lam m))

Lam (Lamvec m) -> Lam (Lam (replaceLambda 0 m))

Lamvec m -> Lam (Lam (replaceLambda 0 (addLambda 0 m)))

m -> m

_ -> preterm

By using transvec functions, we can implement a CCG parser with category
variables in the syntax and variable vectors in the semantics.

3 Some Examples

Let us demonstrate some parse results of lightblue. The first example is a
Japanese verb phrase consisting of a quantifier (in the object position) and a
transitive verb.

(10) subete-no
every

ningen
man

-ni
cm-DAT

aw
meet

-u
PRES

(lit.) ‘meet every man’

The following derivation is an output of lightblue given the phrase subete-
no ningen-ni (except for a minor modification that replaces names of constant
symbols in Japanese with equivalents in English).

subete-no

T 1
S
v :5 :k|v :5 :s|+: 2

neg|cont|+: 3

±t: 4 ,±p: 5 ,±n: 6

/(T 1
S
v :5 :k|v :5 :s|+: 2

neg|cont|+: 3

±t: 4 ,±p: 5 ,±n: 6

\NPnc)/N

: λx0.λx1.λx2.

(
u3:

[
x4:entity
x0(x4) (λx5.�)

])
→ x1 (π1 (u3))x2

(534)

ningen

N

: λx0.λx1.

⎡
⎣s2:state[

u3:man (s2, x0)
x1(s2)

]
⎤
⎦

(CN)

T 1
S
v :5 :k|v :5 :s|+: 2

neg|cont|+: 3

±t: 4 ,±p: 5 ,±n: 6

/(T 1
S
v :5 :k|v :5 :s|+: 2

neg|cont|+: 3

±t: 4 ,±p: 5 ,±n: 6

\NPnc)

: λx0.λx1.

⎛
⎝u2:

⎡
⎣x3:entity[

s4:state
man (s4, x3)

]
⎤
⎦
⎞
⎠→ x0 (π1 (u2))x1

>

Implementing Variable Vectors in a CCG Parser 63

subete-no ningen

T 1
S
v :5 :k|v :5 :s|+: 2

neg|cont|+: 3

±t: 4 ,±p: 5 ,±n: 6

/(T 1
S
v :5 :k|v :5 :s|+: 2

neg|cont|+: 3

±t: 4 ,±p: 5 ,±n: 6

\NPnc)

: λx0.λx1.

⎛
⎝u2:

⎡
⎣x3:entity[

s4:state
man (s4, x3)

]
⎤
⎦
⎞
⎠→ x0 (π1 (u2))x1

(above)
ni

T 1
S
v :5 :k|v :5 :s|+: 2

neg|cont|+: 3

±t: 4 ,±p: 5 ,±n: 6

/(T 1
S
v :5 :k|v :5 :s|+: 2

neg|cont|+: 3

±t: 4 ,±p: 5 ,±n: 6

\NPni)\NPnc

: λx0.λx1.x1(x0)

(524)

T 1
S
v :5 :k|v :5 :s|+: 2

neg|cont|+: 3

±t: 4 ,±p: 5 ,±n: 6

/(T 1
S
v :5 :k|v :5 :s|+: 2

neg|cont|+: 3

±t: 4 ,±p: 5 ,±n: 6

\NPni)

: λx0.λx1.

⎛
⎝u2:

⎡
⎣x3:entity[

s4:state
man (s4, x3)

]
⎤
⎦
⎞
⎠→ x0 (π1 (u2))x1

>

In the above derivation, T is a category variable. The upper scripts of T ,
such as 1 , indicate that structure sharing is taking place, and each of their scopes
is local. Namely, 1 within the phrase subete-no and 1 within the phrase ni do
not share their structures with each other. The lower script of T shows the
“final-output category” of T . For example, TS must be unified with a function
category that ends as S, or S itself (TS is equal to S|$ in the standard CCG
notation).

The lower script attached to syntactic categories other than T shows their
syntactic features. For example, NPni is an NP with ni -feature (i.e., an NP
marked with the dative case), and NPnc is an NP with no case. A feature such
as v : 5 : k shows that it is a verb that belongs to the conjugation series 5k.
The symbol | is a disjunction (or a union) between syntactic features so that
unification between syntactic categories returns their intersection if it is not
empty. Features such as neg|cont show conjugation forms (i.e., the negation form
or the continuous form). Binary features ±t,±p,±n represent past/nonpast,
polite/non-polite, and negated/non-negated, respectively. Details of these syn-
tactic features in Japanese are described in Bekki (2010). The number on the
right-hand side of a lexical item corresponds to an entry number in Bekki (2010).

The notation of DTS that lightblue adopts follows that of Bekki and
Mineshima (2016). Although the internal representations of DTS preterms are
in de Bruijn notation, they are transformed into DTS preterms with variable
names when visualized. The point of the above derivation lies in the last step,
where function application takes place: the left node is every man, a quanti-
fier NP. How many arguments it would take after merging with a predicate is
underspecified by T , and thus its semantic representation contains a variable
vector. Meanwhile, ni is a dative case marker (which is semantically various)
whose whole syntactic category T/(T\NPni)\NPnc unifies with the T\NPnc

part of the quantifier NP. As a result, beta reduction between their semantic
representations ends up with the following preterm.

⎛

⎝λx0.λx1.

⎛

⎝u2:

⎡

⎣
x3:entity[
s4:state
man (s4, x3)

]
⎤

⎦

⎞

⎠ → x0 (π1(u2)) x1

⎞

⎠ (λx0.λx1.x1(x0))

64 D. Bekki and A. Kawazoe

�β λx1.

⎛

⎝u2:

⎡

⎣
x3:entity[
s4:state
man (s4, x3)

]
⎤

⎦

⎞

⎠ → (λx0.λx1.x1(x0)) (π1(u2)) x1

�β λx1.

⎛

⎝u2:

⎡

⎣
x3:entity[
s4:state
man (s4, x3)

]
⎤

⎦

⎞

⎠ → (λx1.x1(π1(u2)))x1

This is a Lamvec construction, and the number of arguments that it would
take is underdetermined. However, since its corresponding syntactic category
(which could be read off from the derivation) is T/(T\NPni), we can tell that it
takes at least one more argument (of syntactic category T\NPni) and then would
take an arbitrary number of arguments. Thus, the variable vector should be
expanded one step and become λx.λx1. . . . , and the inner x1 should be replaced
with the sequence (x0, x1). The transvec function ensures this behavior. First,
the form of syntactic category T/(T\NPni) and the preterm match the following
line of transvec.

SL x _ -> case preterm of
Lamvec m -> Lam (transvec x (Lamvec (addLambda 0 m)))

Here, m corresponds to the following subterm.
⎛
⎝u2:

⎡
⎣

x3:entity[
s4:state
man (s4, x3)

]
⎤
⎦
⎞
⎠→ (λx1.x1(π1(u2)))x1

for which addLambda 0 m is evaluated, adding a variable x0 at the position of x.
⎛

⎝u2:

⎡

⎣
x3:entity[
s4:state
man (s4, x3)

]
⎤

⎦

⎞

⎠ → ((λx1.x1(π1(u2)))x0)x1

This beta-reduces to the following preterm.
⎛

⎝u2:

⎡

⎣
x3:entity[
s4:state
man (s4, x3)

]
⎤

⎦

⎞

⎠ → x0(π1(u2))x1

In the case where this form is again a Lamvec construction, the transvec
function recursively applies the transvec function to it, making reference to the
syntactic category T , which does not do anything for this case. After that, one
more lambda operator is added to the top (which binds x0), and the whole result
is wound up with the following form.

λx0.λx1.

⎛

⎝u2:

⎡

⎣
x3:entity[
s4:state
man (s4, x3)

]
⎤

⎦

⎞

⎠ → x0 (π1 (u2)) x1

This subterm will then merge with the transitive verb aw-u (“meet”). The
number of arguments of aw-u is two (a nominative NP and a dative NP). Thus,
the final syntactic category becomes S\NPga , as shown below.

Implementing Variable Vectors in a CCG Parser 65

[subete-no ningen]-ni

T 1
S
v :5 :k |v :5 :s|+: 2
neg|cont|+: 3
±t: 4 ,±p: 5 ,±n: 6

/(T 1
S
v :5 :k |v :5 :s|+: 2
neg|cont|+: 3
±t: 4 ,±p: 5 ,±n: 6

\NPni)

: λx0.λx1.

⎛

⎝u2:

⎡

⎣
x3:entity[
s4:state
man (s4, x3)

]
⎤

⎦

⎞

⎠ → x0 (π1 (u2)) x1

aw
Sv :5 :w
stem

\NPga\NPni

: λx0.λx1.λx2.

⎡

⎣
e3:event[
u4:meet (e3, x1, x0)
x2(e3)

]
⎤

⎦

(JCon) u
Sv :5 :w |v :5 :TOW : 1
term|attr

\Sv :5 :w |v :5 :TOW : 1
stem

: λx0.x0

(130)

Sv :5 :w : 1
term|attr

\NPga\NPni

: λx0.λx1.λx2.

⎡

⎣
e3:event[
u4:meet (e3, x1, x0)
x2(e3)

]
⎤

⎦

<B2

Sv :5 :w : 1
term|attr : 4

\NPga

: λx0.λx1.

⎛

⎝u2:

⎡

⎣
x3:entity[
s4:state
man (s4, x3)

]
⎤

⎦

⎞

⎠ →
⎡

⎣
e3:event[
u4:meet (e3, x0, π1 (u2))
x1(e3)

]
⎤

⎦

>

The point here is that T\NPni on the left-hand side unifies with
S\NPga\NPni on the right-hand side. Therefore, T , the result of this merge
operation, must be S\NPga, with two more arguments (one for NPni and
another for a continuation). This tells the transvec function to transform λx1 in
the semantic representation into two λs, by the replacelambda function. First,
β-reduction proceeds as follows:

⎛

⎝λx0.λx1.

⎛

⎝u2:

⎡

⎣
x3:entity[
s4:state
man (s4, x3)

]
⎤

⎦

⎞

⎠ → x0 (π1 (u2)) x1

⎞

⎠

⎛

⎝λx0.λx1.λx2.

⎡

⎣
e3:event[
u4:meet (e3, x1, x0)
x2(e3)

]
⎤

⎦

⎞

⎠

�β λx1.

⎛

⎝u2:

⎡

⎣
x3:entity[
s4:state
man (s4, x3)

]
⎤

⎦

⎞

⎠ →
⎛

⎝λx0.λx1.λx2.

⎡

⎣
e3:event[
u4:meet (e3, x1, x0)
x2(e3)

]
⎤

⎦

⎞

⎠ (π1 (u2)) x1

�β λx1.

⎛

⎝u2:

⎡

⎣
x3:entity[
s4:state
man (s4, x3)

]
⎤

⎦

⎞

⎠ →
⎛

⎝λx1.λx2.

⎡

⎣
e3:event[
u4:meet (e3, x1, (π1 (u2)))
x2(e3)

]
⎤

⎦

⎞

⎠ x1

Then, a pair S\NPga and the above preterm match the following line of the
transvec function, in the same way as the previous example.

SL x _ -> case preterm of
Lamvec m -> Lam (transvec x (Lamvec (addLambda 0 m)))

Applying addLambda 0 and putting Lamvec on top yields the following
preterm.

λx1.

⎛
⎝u2:

⎡
⎣

x3:entity[
s4:state

man (s4, x3)

]
⎤
⎦
⎞
⎠→

⎛
⎝λx1.λx2.

⎡
⎣

e3:event[
u4:meet (e3, x1, (π1 (u2)))

x2(e3)

]
⎤
⎦
⎞
⎠x0x1

�β λx1.

⎛
⎝u2:

⎡
⎣

x3:entity[
s4:state

man (s4, x3)

]
⎤
⎦
⎞
⎠→

⎛
⎝λx2.

⎡
⎣

e3:event[
u4:meet (e3, x0, (π1 (u2)))

x2(e3)

]
⎤
⎦
⎞
⎠x1

This is sent to the recursive call of transvec, making reference to the corre-
sponding syntactic category S. This time, it matches with the following line of
transvec.

S _ -> case preterm of
Lamvec m -> Lam (replaceLambda 0 m)

Application of the replaceLambda function replaces the variable vector x1

with a variable x1, and putting another λ on top yields the following preterm,
as expected.

66 D. Bekki and A. Kawazoe

λx0.λx1.

⎛

⎝u2:

⎡

⎣
x3:entity[
s4:state
man (s4, x3)

]
⎤

⎦

⎞

⎠ →
⎛

⎝λx2.

⎡

⎣
e3:event[
u4:meet (e3, x0, (π1 (u2)))
x2(e3)

]
⎤

⎦

⎞

⎠ x1

�β λx0.λx1.

⎛

⎝u2:

⎡

⎣
x3:entity[
s4:state
man (s4, x3)

]
⎤

⎦

⎞

⎠ →
⎡

⎣
e3:event[
u4:meet (e3, x0, (π1 (u2)))
x1(e3)

]
⎤

⎦

4 Conclusion and Future Work

While the use of category variables in CCG offers advantages such as packing
ambiguous syntactic candidates during parsing, we have also seen that it requires
semantic language to be extended with variable vectors, whose formalization and
implementation have not been straightforward so far.

In this article, we introduced lightblue, a Japanese CCG parser implementa-
tion equipped with variable vectors and a mechanism for expanding and shrink-
ing them, according to the corresponding syntactic categories. Since the seman-
tic language of lightblue is DTS, which is based on dependent type theory, a
natural extension of simply typed lambda calculus, its implementation by a
functional programming language is straightforward and natural. The imple-
mentation consists of three primitive functions, addLambda, deleteLambda, and
replaceLambda, that expand and shrink variable vectors, together with the
transvec function that transforms a preterm, making reference to a correspond-
ing syntactic category, by choosing and applying an appropriate definition in
Definition 1 according to the number of arguments that the category anticipates.

Although the formalism and implementation of variable vectors in lightblue
provides a solution to the problems that we addressed, some issues remain to
be pursued. For example, future research should prove a version of completeness
of the transvec function regarding how the normal form is defined for typed
lambda calculus or dependent type theory with variable vectors. In each step
of applying combinatory rules, does the transvec function always transform a
given preterm to a normal form? Does the transvec function terminate, and
under what conditions? These remain as open issues, which we believe provides
an attractive research topic regarding syntactic–semantic transparency in com-
binatory (or other) categorial grammar(s).

References

Bekki, D.: Nihongo-Bunpoo-no Keisiki-Riron - Katuyootaikei, Toogohantyuu, Imigoo-
sei - (trans. ‘Formal Japanese Grammar: the conjugation system, categorial syntax,
and compositional semantics’). Kuroshio Publisher, Tokyo (2010)

Bekki, D.: Representing anaphora with dependent types. In: Asher, N., Soloviev, S.V.
(eds.) LACL 2014. LNCS, vol. 8535, pp. 14–29. Springer, Heiderburg (2014)

Bekki, D., Mineshima, K.: Context-passing and underspecification in dependent type
semantics. In: Chatzikyriakidis, S., Luo, Z. (eds.) Type-Theoretical Semantics: Cur-
rent Perspectives. Springer, Heidelberg (2016)

Implementing Variable Vectors in a CCG Parser 67

Clark, S., Curran, J.R.: Parsing the WSJ using CCG and log-linear models. In: The
Proceedings of the 42nd Annual Meeting on Association for Computational Linguis-
tics, pp. 103–110. Association for Computational Linguistics (2004)

Lewis, M., Steedman, M.: A* CCG parsing with a supertag-factored model. In: The
Proceedings of the 2014 Conference on Empirical Methods in Natural Language
Processing (EMNLP), Doha, Qatar, pp. 990–1000. Association of Computational
Linguistics (2014)

Martin-Löf, P.: Intuitionistic Type Theory, vol. 17. Bibliopolis, Naples (1984). Sambin,
G. (ed.)

Mart́ınez Gómez, P., Mineshima, K., Miyao, Y., Bekki, D.: ccg2lambda: a computa-
tional semantics system. In: The Proceedings of the Association of Computational
Linguistics (ACL 2016), Berlin, pp. 85–90 (2016)

Morita, H., Kawahara, D., Kurohashi, S.: Morphological analysis for unsegmented lan-
guages using recurrent neural network language model. In: The Proceedings of Con-
ference on Empirical Methods in Natural Language Processing (EMNLP 2015), pp.
2292–2297 (2015)

Noji, H., Miyao, Y.: Jigg: a framework for an easy natural language processing pipeline.
In: The Proceedings of the 54th Association of Computational Linguistics, pp. 103–
108 (2016)

Nordström, B., Petersson, K., Smith, J.: Programming in Martin-Löf’s Type Theory.
Oxford University Press, Oxford (1990)

Ozaki, H., Bekki, D.: Extractability as the deduction theorem in subdirectional com-
binatory logic. In: Béchet, D., Dikovsky, A. (eds.) LACL 2012. LNCS, vol. 7351, pp.
186–200. Springer, Heidelberg (2012). doi:10.1007/978-3-642-31262-5 13

Pierce, B.C.: Advanced Topics in Types and Programming Languages. The MIT Press,
Cambridge (2005)

Ranta, A.: Type-Theoretical Grammar. Oxford University Press, Oxford (1994)
Steedman, M.J.: The Syntactic Process (Language, Speech, and Communication). The

MIT Press, Cambridge (2000)
Tsaiwei, F., Butler, A., Yoshimoto, K.: Parsing Japanese with a PCFG treebank gram-

mar. In: The Proceedings of the Twentieth Meeting of the Association for Natural
Language Processing, Sapporo, pp. 432–435 (2014)

http://dx.doi.org/10.1007/978-3-642-31262-5_13

On Classical Nonassociative Lambek Calculus

Wojciech Buszkowski(B)

Faculty of Mathematics and Computer Science,
Adam Mickiewicz University, Poznań, Poland

buszko@amu.edu.pl

Abstract. CNL, intoduced by de Groote and Lamarche [11], is a conser-
vative extension of Nonassociative Lambek Calculus (NL) by a De Mor-
gan negation ∼, satisfying A∼/B ⇔ A\B∼. [11] provides a fine theory
of proof nets for CNL and shows cut elimination and polynomial decid-
ability. Here the purely proof-theoretic approach of [11] is enriched with
algebras and phase spaces for CNL. We prove that CNL is a strongly
conservative extension of NL, CNL has the strong finite model prop-
erty, the grammars based on CNL (also with assumptions) generate the
context-free languages, and the finitary consequence relation for CNL is
decidable in polynomial time.

Keywords: Lambek calculus · Phase space · Sequent system · Type
grammar

1 Introduction

NL, due to Lambek [13], admits formulas built from variables and the connectives
⊗, \, /. The axioms and the rules are as follows.

(NL-id) A ⇒ A

(⊗ ⇒) Γ [(A,B)]⇒C
Γ [A⊗B]⇒C (⇒ ⊗) Γ⇒A Δ⇒B

(Γ,Δ)⇒A⊗B

(\ ⇒) Γ [B]⇒C Δ⇒A
Γ [(Δ,A\B)]⇒C (⇒ \) (A,Γ)⇒B

Γ⇒A\B

(/ ⇒) Γ [A]⇒C Δ⇒B
Γ [(A/B,Δ)]⇒C (⇒ /) (Γ,B)⇒A

Γ⇒A/B

(NL-cut) Γ [A]⇒B Δ⇒A
Γ [Δ]⇒B

This is a sequent system for NL. Sequents are of the form Γ ⇒ A, where A is a
formula and Γ is a formula structure. Formula structures are defined recursively:
(i) all formulas are formula structures, (ii) if Γ and Δ are formula structures,
then (Γ,Δ) is a formula structure. Formula structures represent the elements of
the free groupoid generated by formulas. A context Γ [] is a formula structure

c© Springer-Verlag GmbH Germany 2016
M. Amblard et al. (Eds.): LACL 2016, LNCS 10054, pp. 68–84, 2016.
DOI: 10.1007/978-3-662-53826-5 5

On Classical Nonassociative Lambek Calculus 69

containing one special formula x. Γ [Δ] denotes the substitution of Δ for x in
Γ []. We reserve A,B,C,D for formulas and Γ,Δ,Θ for formula structures.

NL is strongly complete with respect to residuated groupoids (see Sect. 2 for
the definition). Recall that a logic (in the form of a sequent system) is strongly
complete with respect to a class of (ordered) algebras C, if the following equiva-
lence holds: Γ ⇒ A is provable in this logic from the set of sequents Φ if and only
if, for any algebra from C and any valuation μ, Γ ⇒ A is true for μ whenever all
sequents from Φ are true for μ. The right-hand side of this equivalence expresses
the semantic entailment: Γ ⇒ A follows from Φ in C. For systems considered
here, Γ ⇒ A is true for μ, if μ(Γ) ≤ μ(A).

NL1 is NL admitting empty antecedents of sequents and containing the con-
stant 1, the axiom (a-1) ⇒ 1 and the rules:

(1 ⇒)
Γ [Δ] ⇒ A

Γ [(1,Δ)] ⇒ A
,

Γ [Δ] ⇒ A

Γ [(Δ, 1)] ⇒ A
.

NL1 is strongly complete with respect to residuated unital groupoids.
Classical Nonassociative Lambek Calculus (CNL) can be presented as an

extension of NL with negation ∼, admitting the axioms A∼∼ ⇔ A, A∼/B ⇔
A\B∼ and the transposition rule:

A ⇒ B

B∼ ⇒ A∼ .

Here A ⇔ B replaces two sequents: A ⇒ B and B ⇒ A. In [11], CNL is
presented as a Schütte style (i.e. one-sided) sequent system in language ⊗,⊕,∼,
where A⊕B is equivalent to (B∼⊗A∼)∼. So ⊕ corresponds to the operation ‘par’
in linear logics. We do not follow the popular notation of Girard [10], but replace
it with a notation used in substructural logics [9]. CNL is a nonassociative variant
of Cyclic Noncommutative MALL [15], but it lacks the multiplicative units.

In Sect. 2 we define CNL-algebras, i.e. the ordered algebras corresponding to
CNL. We also define phase spaces, appropriate for nonassociative logics without
units. We show that CNL-algebras arise from symmetric phase spaces, satisfying
a compatibility condition.

In Sect. 3 we present CNL as a dual Schütte style system, which seems closer
to the syntax of NL and the framework of type grammars. We discuss the strong
completeness of CNL with respect to CNL-algebras and phase spaces. In par-
ticular, we outline a model-theoretic proof of cut elimination, similar to those
for different substructural logics (see [9] for a discussion). Theorem 2 states that
CNL is a strongly conservative extension of NL; we give a model-theoretic proof.
At the end we briefly discuss analogous results for related logics: CNL1, i.e. CNL
with constants 1 and 0, CNL and CNL1 with ∨,∧, and others.

In Sect. 4 we prove an interpolation lemma for CNL (with assumptions),
analogous to the interpolation lemma for NL [4,8]. Using this lemma, we prove
the strong finite model property (SFMP) for CNL (see [9] for the definition), the
context-freeness of the languages generated by CNL-grammars and the polyno-
mial time decidability of the consequence relation for CNL. These results remain
true for CNL1. At the end, we discuss their status for other logics.

70 W. Buszkowski

The size limits do not allow us to study CNL−, i.e. the variant of CNL
with two negations ∼,−, satisfying A∼− ⇔ A, A−∼ ⇔ A, A∼/B ⇔ A\B− and
the transposition rules. CNL− is a nonassociative variant of Noncommutative
MALL [1], also called Classical Bilinear Logic in [14]; again it lacks units. The
corresponding algebras are briefly discussed in Sect. 2. We only note here that
CNL− does not have SFMP. A∼ ⇒ A− entails A− ⇒ A∼ in finite CNL−-
algebras, since a∼ < a− enforces the infinite chain a < a∼∼ < a∼∼∼∼ < . . .;
there exist infinite CNL−-algebras such that a∼ < a−, for some element a.

2 Algebras and Phase Spaces

The algebraic models of NL are residuated groupoids M = (M,⊗, \, /,≤) such
that (M,≤) is a nonempty poset and ⊗, \, / are binary operations on M ,
satisfying:

(RES) a ⊗ b ≤ c iff b ≤ a\c iff a ≤ c/b ,

for all a, b, c ∈ M . The models of NL1 are residuated unital groupoids, i.e.
residuated groupoids containing the unit element for ⊗ (denoted by 1). It follows
that 1\a = a, a/1 = a.

A pair ∼,− of unary operations on a poset (P,≤) is called an involutive pair
of negations, if for all a, b ∈ P the following conditions are satisfied:

(TR) if a ≤ b then b∼ ≤ a∼ and b− ≤ a−,
(DN) a−∼ = a, a∼− = a;

if ∼ equals −, then ∼ is called a De Morgan negation (then a∼∼ = a).
The models of CNL are residuated groupoids M with a De Morgan negation

∼ satisfying the compatibility condition:

(COM) for all a, b, c ∈ M , if a ⊗ b ≤ c then c∼ ⊗ a ≤ b∼.

We refer to these algebras as CNL-algebras. Unital CNL-algebras (i.e. with the
unit for ⊗) are called CNL1-algebras.

In any CNL-algebra the following conditions are equivalent: a⊗b ≤ c, c∼⊗a ≤
b∼, b ⊗ c∼ ≤ a∼. On the basis of other axioms, (COM) is equivalent to:

(TR’) a\b∼ = a∼/b for all a, b ∈ M ,

and either of the following transposition laws: a\b = a∼/b∼, a/b = a∼\b∼.
In any CNL-algebra one defines the dual product : a ⊕ b = (b∼ ⊗ a∼)∼. The

following equations hold:

a\b = a∼ ⊕ b, a/b = a ⊕ b∼.

Consequently, ⊕, \, / are definable in terms of ⊗,∼.
In any CNL1-algebra one defines: 0 = 1∼. Then, 1 = 0∼, 0 is the unit for ⊕,

and a∼ = a\0 = 0/a.
CNL−-algebras are residuated groupoids M with an involutive pair of nega-

tions, satisfying:

On Classical Nonassociative Lambek Calculus 71

(COM−) for all a, b, c ∈ M , if a ⊗ b ≤ c then c− ⊗ a ≤ b− and b ⊗ c∼ ≤ a∼.

Unital CNL−-algebras are referred to as CNL1−-algebras. In any CNL−-algebra
the three conditions in (COM−) are equivalent. (COM−) is equivalent to:

(TR”) a∼/b = a\b−, for all a, b ∈ M .

Hence in any CNL1−-algebra, 1∼ = 1−. One defines 0 = 1∼ and obtains: a∼ =
a\0, a− = 0/a.

CNL−-algebras (resp. CNL-algebras) are term equivalent to (resp. cyclic)
involutive p.o. groupoids [9].

The equation (a− ⊗ b−)∼ = (a∼ ⊗ b∼)− is valid in CNL−-algebras. One
defines a ⊕ b = (b− ⊗ a−)∼ and obtains:

a\b = a∼ ⊕ b, a/b = a ⊕ b−.

Consequently, ⊕, \, / are definable in terms of ⊗,∼ ,−.
These algebras can be constructed from phase spaces, i.e. structures (M, ·, R)

such that (M, ·) is a groupoid and R ⊆ M2. We focus on symmetric phase spaces
(R is symmetric).

A closure operation on a poset (P,≤) is a map C : P �→ P , satisfying:
(C1) x ≤ C(x), (C2) if x ≤ y then C(x) ≤ C(y), (C3) C(C(x)) ≤ C(x), for
all x, y ∈ P . A nucleus on a p.o. groupoid (M, ·,≤) is a closure operation C on
(M,≤), satisfying: (C4) C(x)·C(y) ≤ C(x·y). If M is a residuated groupoid, then
C is a nucleus on (M, ·,≤) iff C is a closure operation on (M,≤) and satisfies:
(C4’) x\y and y/x are C-closed for any x ∈ M and any C-closed y ∈ M . Recall
that x is C-closed, if C(x) = x.

Let R ⊆ M2. For X ⊆ M , one defines:

X∼ = {a ∈ M : ∀b∈XR(b, a)}, X− = {a ∈ M : ∀b∈XR(a, b)}.

The maps ∼,− are a Galois connection on P(M): X ⊆ Y ∼ iff Y ⊆ X−. Con-
sequently, X ⊆ Y entails Y ∼ ⊆ X∼ and Y − ⊆ X−. The maps φR(X) = X−∼

and ψR(X) = X∼− are closure operations on (P(M),⊆). It follows that X is
φR−closed (resp. ψR−closed) iff X = Y ∼ (resp. X = Y −) for some Y .

Proposition 1. The following conditions are equivalent. (i) X∼ = X− for all
X ⊆ M , (ii) R is symmetric: R(a, b) entails R(b, a), for all a, b ∈ M .

Let (M, ·, R) be a symmetric phase space. Then, φR = ψR. By MR we denote
the family of φR-closed subsets of M . Clearly ∼ is a De Morgan negation on
(MR,⊆).

Let (M, ·, R) be a phase space. For X,Y ⊆ M , one defines: X · Y = {a · b :
a ∈ X, b ∈ Y }, X\Y = {y ∈ M : X · {y} ⊆ Y }, X/Y = {x ∈ M : {x} · Y ⊆ X}.
P(M) with ·, \, /,⊆ is a residuated groupoid. Let C be a nucleus on (P(M), ·,⊆).
Then, (MC ,⊗C , \C , /C ,⊆) is a residuated groupoid, where MC is the family of
C−closed subsets of M , X ⊗C Y = C(X ·Y), and \, / are the operations defined
on P(M), restricted to MC . If · is associative (resp. commutative), then ⊗C is

72 W. Buszkowski

associative (resp. commutative). If 1 is the unit for · in M, then C({1}) is the
unit for ⊗C (see e.g. [9]).

By a phase space for CNL we mean a symmetric phase space (M, ·, R), sat-
isfying the compatibility condition:

(COM-R) for all a, b, c ∈ M , R(a · b, c) iff R(a, b · c).

Phase spaces for CNL− are defined in a similar way except that the symmetry
of R is replaced with φR = ψR.

Proposition 2. For any phase space, (COM-R) holds if and only if, for all
X,Y,Z ⊆ M , X · Y ⊆ Z∼ iff Z · X ⊆ Y −.

Proof. We show (⇒). X ·Y ⊆ Z∼ is equivalent to ∀x∈X∀y∈Y ∀z∈ZR(z, x ·y), and
Z · X ⊆ Y − to iff ∀z∈Z∀x∈X∀y∈Y R(z · x, y). Both statements are equivalent, by
(COM-R). For (⇐), take X = {b}, Y = {c}, Z = {a}. Now {b} · {c} ⊆ {a}∼ iff
R(a, b · c), and {a} · {b} ⊆ {c}− iff R(a · b, c). ��
Corollary 1. For any phase space, (COM-R) holds if and only if, for all Y,Z ⊆
M , Z∼/Y = Z\Y −.

Theorem 1. Let (M, ·, R) be a phase space for CNL. Then MR, ordered by ⊆,
with operations ⊗φR and \, /,∼, restricted to MR, is a CNL-algebra.

Proof. First, we show that φR satisfies (C4’). Using (COM-R), we show that
{a}\{b}∼ = {b · a}∼ and {a}∼/{b} = {b · a}∼ for all a, b ∈ M . We have:
c ∈ {a}\{b}∼ iff a · c ∈ {b}∼ iff R(b, a · c) iff R(b ·a, c) iff c ∈ {b ·a}∼. The second
equation is proved similarly (use the symmetry of R). This yields X\Y ∼ =
(Y ·X)∼ and X∼/Y = (Y ·X)∼, for all X,Y ⊆ M , by the well-known distribution
laws: · distributes over infinite joins in both arguments, \ (resp. /) distributes
over infinite meets in the second (resp. first) argument and converts joins into
meets in the first (resp. second) argument, and ∼ converts joins into meets. So
for X = {ai}i∈I , Y = {bj}j∈J we have:

X\Y ∼ =
⋂

i∈I

⋂

j∈J

{ai}\{bj}∼ =
⋂

i∈I

⋂

j∈J

{bj · ai}∼ = (Y · X)∼.

Let X ⊆ M , Z ∈ MR. Then Z = Y ∼ for some Y . Hence X\Z = (Y · X)∼

belongs to MR, and similarly for Z/X.
Since φR is a nucleus on (P(M), ·,⊆), then MR with ⊗φR , \, /,⊆ is a residu-

ated groupoid. Since R is symmetric, ∼ is a De Morgan negation on MR. (TR’)
X\Y ∼ = X∼/Y , for X,Y ∈ MR, has been shown in the preceding paragraph;
(TR’) also follows from Corollary 1. ��

If (M, ·, R) is a phase space for CNL, then the CNL-algebra constructed above
is referred to as the complex algebra of the phase space. Worthy of noting, every
CNL-algebra M is isomorphic to a subalgebra of the complex algebra of the
phase space (M,⊗, R), where R is defined by: R(a, b) iff a ≤ b∼. Let [a]↓ denote

On Classical Nonassociative Lambek Calculus 73

the principal downset in (M,≤) generated by a, i.e. [a]↓ = {x ∈ M : x ≤ a}.
Then, [a]↓ = {a∼}∼. (Here ∼ is used in two meanings: the inner one as an
operation in M, the outer one as an operation on P(M).) The so-defined R is
symmetric and [a]↓ ∈ MR. The map h(a) = [a]↓ is the required isomorphism.
We omit the proof.

Remark 1. In fact, for any symmetric phase space (M, ·, R), (COM-R) holds
if and only if φR is a nucleus and (TR’) (equivalently (COM)) holds in the
complex algebra.

A unital phase space is a structure (M, ·, 1, R) such that (M, ·, 1) is a uni-
tal groupoid and R ⊆ M2. A phase space for CNL1 is a unital phase space
(M, ·, 1, R) such that (M, ·, R) is a phase space for CNL. The analogue of
Theorem 1 remains true. Now φR({1}) is the unit for ⊗φR in the complex algebra.

For unital phase spaces, (COM-R) implies:

(Eq-R) R(a, b) iff R(1, a · b) iff R(a · b, 1).

R can be represented by a set O ⊆ M , satisfying:

(COM-O) for all a, b, c ∈ M , a · (b · c) ∈ O iff (a · b) · c ∈ O.

For R ⊆ M2, we define OR = {a ∈ M : R(1, a)}, and for O ⊆ M , we define
RO = {(a, b) ∈ M2 : a · b ∈ O}. By (Eq-R), ROR

= R and ORO
= O. Fur-

thermore, R satisfies (COM-R) iff OR satisfies (COM-O). So there is a one-one
correspondence between relations R ⊆ M2 satisfying (COM-R) and sets O ⊆ M
satisfying (COM-O). Therefore, unital phase spaces, satisfying (COM-R), can
also be defined as structures (M, ·, 1, O) such that (M, ·, 1) is a unital groupoid
and O ⊆ M satisfies (COM-O). This resembles the standard definitions of phase
spaces for linear logics [1,10,15].

Remark 2. If 1 is not present, then we can define OR = {a · b : R(a, b)}
and RO as above, but this only yields the inclusions: R ⊆ ROR

and ORO
⊆

O. O satisfies (COM-O) iff RO satisfies (COM-R). On the other hand, if OR

satisfies (COM-O), then R satisfies (COM-R), but the converse implication fails.
If, however, (M, ·) is a free groupoid, then there is a one-one correspondence
between relations R ⊆ M2 and sets O ⊆ M such that each element of O is of
the form x · y, for some x, y ∈ M . Also R satisfies (COM-R) iff OR satisfies
(COM-O).

Let (M, ·, 1, O) be a unital phase space. The symmetry of RO is equivalent
to the cyclic law for O:

(Cy) for all a, b ∈ M , if a · b ∈ O then b · a ∈ O.

Accordingly, a phase space for CNL1 can be defined as a unital phase space
(M, ·, 1, O), satisfying (COM-O) and (Cy). Observe that X∼ = X\O = O/X,
for any X ⊆ M . We denote φO = φRO

, and similarly for ψO, MO. O is φO-closed,
since O = {1}∼. So O ∈ MO; also O∼ is the unit for ⊗φO and O is the unit for
the dual product. If M does not contain 1, then O, even satisfying (COM-O)
and (Cy), need not belong to MO.

74 W. Buszkowski

Example 1. Consider the phase space (M, ·, O) such that M = Σ+, · is the
concatenation of strings, and O is the set of all strings of length 1. Clearly O
satisfies (COM-O) and (Cy). So the complex algebra of (M, ·, RO) is a CNL-
algebra. We have ∅∼ = Σ+ and X∼ = ∅ for X �= ∅. Therefore MO = {∅, Σ+}
and O �∈ MO.

Example 2. We construct a phase space (M,+, R) such that (M,+) is a
commutative semigroup, R ⊆ M2 is symmetric and satisfies (COM-R), but
R �= RO, for any O ⊆ M . Let M consist of all pairs of positive integers. For
a, b ∈ M , a = (a1, a2), b = (b1, b2), we set a + b = (a1 + b1, a2 + b2). Let R
consist of all (a, b) ∈ M2 such that neither a, nor b is of the form x + y, for
any x, y ∈ M . Clearly R is symmetric and satisfies (COM-R). Assume R = RO

for some O ⊆ M . Since R((1, 2), (2, 1)), then (3, 3) ∈ O. We have (3, 3) =
(1, 1) + (2, 2), which yields R((1, 1), (2, 2)). This contradicts the definition of R,
since (2, 2) = (1, 1) + (1, 1). ��

This example shows that the notion of a phase space with a relation R is
essentially wider than that with a set O for the non-unital spaces, even based on
(commutative) semigroups. Therefore the former may also be useful in the theory
of associative linear logics with no multiplicative units (not only in language,
but in the corresponding algebras). Clearly (COM-O) (resp. (Cy)) holds for any
O ⊆ M , if · is associative (resp. commutative).

3 Logics

We present a dual Schütte style system for CNL. Formulas are built from vari-
ables p, q, . . ., negated variables p∼, q∼, . . ., and connectives ⊗,⊕. A,B,C,D
range over formulas. By S we denote the free groupoid generated by all formu-
las. Γ,Δ,Θ range over elements of S. These elements are represented as formula
structures. The groupoid operation is: Γ · Δ = (Γ,Δ).

In CNL, sequents are formula-structures, containing at least two formulas; the
set of all sequents is denoted by S(2). So the distinction between quasi-sequents
and sequents in [11] corresponds to our distinction between formula-structures
and sequents. In axioms and rules of our systems (and after the provability
symbol �) we omit outer parentheses, e.g. we write � Γ,Δ for � (Γ,Δ). The
axioms and the rules of CNL are as follows.

(id) p, p∼

(r-⊗) (A,B),Γ
A⊗B,Γ (r-⊕) A,Γ B,Δ

A⊕B,(Δ,Γ)

(r-sym) Γ,Δ
Δ,Γ (r-com)

(Γ,Δ),Θ

Γ,(Δ,Θ)

(r-⊗), (r-⊕) are the introduction rules for connectives, and (r-sym), (r-com)
are the structural rules (expressing the symmetry of R and the condition (COM-
R) in phase spaces for CNL).

On Classical Nonassociative Lambek Calculus 75

We write Γ ∼ Δ, if Δ can be derived from Γ by finitely many applications
of (r-sym), (r-com). Clearly ∼ is an equivalence relation (but not a congruence
in S).

Proposition 3. For any sequent Γ ′ ∈ S(2), containing one marked formula A,
there exists a unique Δ′ ∈ S such that Γ ′ ∼ (A,Δ′).

Proof. We describe an algorithm which reduces Γ ′ to some sequent (A,Δ′). We
underline the substructure containing A. The reduction rules are as follows.

(R1) (Γ,Δ) → (Δ,Γ)
(R2) ((Γ ,Δ), Θ) → (Γ , (Δ,Θ))
(R3) ((Γ,Δ), Θ) → (Δ, (Θ,Γ))

Each reduction step can be executed by applying at most three instances of
(r-sym), (r-com). This procedure is deterministic. If we run it on a sequent Γ ′ ∈
S(2), then the algorithm terminates in finitely many steps and yields (A,Δ′).

The uniqueness of Δ′, satisfying Γ ′ ∼ (A,Δ′), follows from the fact:

(F1) if Γ ′ reduces to (A,Δ′) and Θ′ ∼ Γ ′, then Θ′ reduces to (A,Δ′).

The proof of (F1) has two parts: (I) one proves it for Θ′ resulting from Γ ′ by
one application of (r-sym) or (r-com), (II) one proves (F1) by induction on the
number of applications of (r-sym), (r-com) leading from Γ ′ to Θ′. We skip details.

Now assume that Γ ′ ∼ (A,Δ) and Γ ′ ∼ (A,Δ′). Then (A,Δ) ∼ (A,Δ′). By
(F1), (A,Δ) reduces to (A,Δ′). Since the algorithm stops on sequents of this
form, then Δ = Δ′. ��

Example 3. Take Γ ′ = ((B, (C ′, A)), (C,D)). The reduction looks as follows:

Γ ′ →R3 ((C ′, A), ((C,D), B)) →R3 (A, (((C,D), B), C ′)).

Due to Proposition 3, the introduction rules can be restricted to the left-most
occurrences of formulas in sequents, as above.

We say that a reduction of Γ ′ to (A,Δ′) preserves a substructure Θ of Γ ′,
if Θ can be replaced by a variable in the whole reduction. The reduction in
Example 3 preserves (C,D).

Lemma 1. Assume that Γ ′ reduces to (A,Δ′) and Θ is a substructure of Γ ′,
which does not contain A. Then, the reduction preserves Θ.

Proof. Let Γ1 result from Γ ′ after one has replaced Θ by a new variable p. By
Proposition 3, Γ1 reduces to a sequent (A,Δ1). Now we substitute Θ for p in the
whole reduction, which yields the reduction of Γ ′ to a sequent (A,Δ). We have
Δ = Δ′, since the algorithm is deterministic. Consequently, the reduction of Γ ′

to (A,Δ′) preserves Θ. ��

76 W. Buszkowski

Let M be a CNL-algebra. A valuation in M is a homomorphism of the free
algebra of CNL-formulas into M such that μ(p∼) = μ(p)∼, for any (non-negated)
variable p. The valuation μ is extended for sequents, by setting: μ((Γ,Δ)) =
μ(Γ)⊗μ(Δ). The sequent (Γ,Δ) is true for μ in M, if μ(Γ) ≤ μ(Δ)∼. A sequent
is valid in M, if it is true for all valuations in M.

The above system of CNL is weakly complete: the provable sequents are
precisely the sequents valid in all CNL-algebras. Since the system is cut-free, its
weak completeness entails the cut-elimination theorem (see below). Soundness
is easy. The proof of completeness is a routine modification of similar proofs
for different substructural logics, tracing back to Lafont [12]; see [9] for a wider
discussion. Since for CNL and its variants no proof can be found in the literature,
we give some details. We write � Γ if Γ is provable in CNL.

In metalanguage, one defines A∼ for any formula A:

(p∼)∼ = p

(A ⊗ B)∼ = B∼ ⊕ A∼ (A ⊕ B)∼ = B∼ ⊗ A∼

By formula induction, one proves A∼∼ = A and μ(A∼) = μ(A)∼, for any
formula A and any valuation μ in M. Also � A,A∼, for any A.

It is convenient to write Γ ⇒ A for the sequent (Γ,A∼); due to (r-sym),
it is deductively equivalent to (A∼, Γ). Clearly Γ ⇒ A is true for μ in M, if
μ(Γ) ≤ μ(A). We define [A] = {Γ ∈ S :� Γ ⇒ A}.

We consider the phase space (M, ·, R) such that (M, ·) = (S, ·) and R =
{(Γ,Δ) ∈ S2 :� Γ,Δ}. Since (M, ·) is a free groupoid, R can be replaced by the
set OR = {(Γ,Δ) ∈ S : R(Γ,Δ)} (see Remark 2 in Sect. 2). Due to (r-com), (r-
sym), R is symmetric and satisfies (COM-R). By Theorem 1, MR with inclusion
and ⊗φR , \, /,∼ is a CNL-algebra. For any formula A, we have: [A] = {A∼}∼. So
[A] is φR-closed for any formula A.

We define a valuation μ in MR:

μ(p) = [p] = {p∼}∼, μ(p∼) = μ(p)∼ . (1)

By formula induction, one proves:

A ∈ μ(A) ⊆ [A], for any formula A. (2)

We only consider the case: A ⊗ B. Since A ∈ μ(A), B ∈ μ(B), then (A,B) ∈
μ(A) · μ(B) ⊆ μ(A ⊗ B). We use the fact:

(F2) if (A,B) ∈ X and X is φR-closed then A ⊗ B ∈ X.

Let X = Y ∼, (A,B) ∈ X. Then, for all Γ ∈ Y , � (A,B), Γ , hence � A ⊗ B,Γ ,
by (r-⊗). So A ⊗ B ∈ X. Consequently A ⊗ B ∈ μ(A ⊗ B).

We show μ(A ⊗ B) ⊆ [A ⊗ B]. Since [A ⊗ B] is φR-closed, it suffices to show
μ(A) · μ(B) ⊆ [A ⊗ B]. Let Γ ∈ μ(A), Δ ∈ μ(B). Then, Γ ∈ [A], Δ ∈ [B], hence
� A∼, Γ , � B∼,Δ. By (r-⊕), � (A ⊗ B)∼, (Γ,Δ), which yields (Γ,Δ) ∈ [A ⊗ B].

On Classical Nonassociative Lambek Calculus 77

Now assume �� Γ,Δ. By Proposition 3, there exists a sequent (A,Θ) ∼ (Γ,Δ).
Then �� A,Θ, hence Θ �∈ [A∼]. By (2), Θ �∈ μ(A∼) and Θ ∈ μ(Θ). Consequently
(A,Θ) is not true for μ in the complex algebra of (M, ·, R). It follows that (Γ,Δ)
is not true, since the set of true sequents is invariant under ∼. This finishes the
proof of weak completeness.

The sequents valid in CNL-algebras are closed under the cut rule:

(cut)
Γ [A] A∼,Δ

Γ [Δ]
.

Therefore (cut) is admissible in the cut-free system of CNL. By Proposition 3,
this rule can also be formulated in the form:

(cut’)
A,Γ A∼,Δ

Δ, Γ
.

The system of CNL with (cut’) is strongly complete with respect to CNL-
algebras: the sequents provable from a set of assumptions Φ are precisely those
which follow from Φ in CNL-algebras.

Let f(Γ) be the formula arising from Γ after one has replaced each comma by
⊗. Every sequent (Γ,Δ) is deductively equivalent to (f(Γ), f(Δ)). This is easy
to prove with applying (cut); for the cut-free system one can use the reversibility
of (r-⊗). Therefore, without lost of generality, we assume that all sequents in Φ
are of the form (A,B).

In the proof of strong completeness, one constructs the complex algebra of
(S, ·, R), where R = {(Γ,Δ) ∈ S : Φ � Γ,Δ}. Now [A] = {Γ ∈ S : Φ � Γ ⇒ A},
and μ is defined by (1).

In the presence of (cut’), the inclusion in (2) can be replaced by μ(A) = [A];
so A ∈ μ(A) may be omitted. We use the fact:

(F3) if X is φR-closed, A ∈ X and Φ � Γ ⇒ A, then Γ ∈ X.

This is needed to prove that all sequents from Φ are true for μ in the complex
algebra. Let (A,B) ∈ Φ. Then, A ∈ [B∼], hence [A] ⊆ [B∼], by (F3). Conse-
quently μ(A) ⊆ μ(B∼) = μ(B)∼.

Remark 3. We have shown in Sect. 2 that not every phase space (M, ·, R) can
be replaced by (M, ·, O). The above proof shows that CNL is strongly complete
with respect to phase spaces of the latter form, satisfying (COM-O) and (Cy)
(even based on free groupoids). It follows that every CNL-algebra is isomorphic
to a subalgebra of the complex algebra of some space (M, ·, O) such that (M, ·)
is a free groupoid.

The connectives \, / can be defined by: A\B = A∼⊕B, A/B = A⊕B∼. Each
NL-sequent Γ ⇒ A can be treated as a CNL-sequent Γ ⇒ A, i.e. (A∼, Γ). We
prove that CNL with (cut’) is a strongly conservative extension of NL with (NL-
cut). The weak conservativeness was proved in [11] by proof-theoretic methods.

Theorem 2. Let Φ be a set of NL-sequents (of the form C ⇒ D), and let Γ ⇒ A
be an NL-sequent. Then, Φ �NL Γ ⇒ A iff Φ �CNL Γ ⇒ A.

78 W. Buszkowski

Proof. The only-if part is easy. The easiest proof uses the strong completeness,
hence soundness, of NL with respect to residuated groupoids and the strong
completeness of CNL with respect to CNL-algebras. We prove the if-part.

We consider the free groupoid (M, ·) generated by all NL-formulas and for-
mally negated NL-formulas A∼, i.e. A with superscript ∼. The elements of M
are represented as formula-structures, as above. We define O ⊆ M as the small-
est set which contains all (A∼, Γ) such that Φ �NL Γ ⇒ A and is closed under
(r-sym), (r-com). Clearly each element of O contains at least two formulas and
exactly one negated formula.

We consider the complex algebra MO, i.e. MR for R = RO. Since O satisfies
(COM-O) and (Cy), MO is a CNL-algebra, by Theorem 1.

For any NL-formula A, we define [A] = {Γ : Φ �NL Γ ⇒ A}. We show
[A] = {A∼}∼. Clearly [A] ⊆ {A∼}∼, by the definition of O. We prove {A∼}∼ ⊆
[A]. Let Γ ∈ {A∼}∼. Then (A∼, Γ) ∈ O. By the definition of O, there exists
a NL-sequent Δ ⇒ A such that Φ �NL Δ ⇒ A and (A∼, Γ) ∼ (A∼,Δ). By
Proposition 3, Γ = Δ (take A∼ as the marked formula). Consequently Γ ∈ [A].

So all sets [A] are φO-closed. We define μ by (1). By formula induction we
show μ(A) = [A] for any NL-formula A. This is obvious for p.

The cases A\B, A/B are treated in the same way as in analogous proofs
for NL. Let us consider A\B. Assume Γ ∈ μ(A\B). Since A ∈ μ(A), then
(A,Γ) ∈ μ(B). So (A,Γ) ∈ [B], which yields Γ ∈ [A\B], by (⇒ \). Assume
Γ ∈ [A\B]. By the reversibility of (⇒ \) in NL, (A,Γ) ∈ [B]. Let Δ ∈ μ(A).
Then Δ ∈ [A], which yields (Δ,Γ) ∈ [B], by (NL-cut). So (Δ,Γ) ∈ μ(B) for any
Δ ∈ μ(A), and consequently Γ ∈ μ(A\B).

The case A ⊗ B needs (F2), (F3), which remain true for NL-formulas. We
prove (F2). Let X = Y ∼, (A,B) ∈ X. Then, (Γ, (A,B)) ∈ O for any Γ ∈ Y .
We fix Γ ∈ Y . Let C∼ be the only negated formula in Γ ; we treat C∼ as the
marked formula. By Proposition 3, there is a unique Δ such that (Γ, (A,B)) ∼
(C∼,Δ). By the construction of O, Φ �NL Δ ⇒ C. By Lemma 1, the reduction
of (Γ, (A,B)) to (C∼,Δ) preserves (A,B), hence Δ = Θ[(A,B)]. Accordingly
Φ �NL Θ[A⊗B] ⇒ C, by (⊗ ⇒), hence (C∼, Θ[A⊗B]) ∈ O. Clearly (Γ,A⊗B) ∼
(C∼, Θ[A⊗B]). Consequently (Γ,A⊗B) ∈ O. This yields A⊗B ∈ X. (F3) can
be proved in a similar way (� in (F3) means �NL).

We prove [A ⊗ B] ⊆ μ(A ⊗ B). Since A ∈ μ(A), B ∈ μ(B), then (A,B) ∈
μ(A) ·μ(B) ⊆ μ(A⊗B). By (F2), A⊗B ∈ μ(A⊗B). Hence [A⊗B] ⊆ μ(A⊗B),
by (F3). We prove μ(A ⊗ B) ⊆ [A ⊗ B]. Since [A ⊗ B] is φO-closed, it suffices to
show μ(A) · μ(B) ⊆ [A ⊗ B], which amounts to [A] · [B] ⊆ [A ⊗ B]. This holds,
by (⇒ ⊗).

Now assume Φ ��NL Γ ⇒ A. Then Γ ∈ μ(Γ), Γ �∈ [A] = μ(A), and con-
sequently Γ ⇒ A is not true for μ. Let C ⇒ D ∈ Φ. μ(C) ⊆ μ(D) follows
from [C] ⊆ [D]. Therefore Γ ⇒ A does not follow from Φ in CNL-algebras.
Consequently Φ ��CNL Γ ⇒ A. ��

The results of this section can be extended for several richer logics. Proofs
are similar, and we omit them.

On Classical Nonassociative Lambek Calculus 79

First, we consider CNL with ∼ in the language. So formulas are built from
variables and ⊗,⊕,∼. One adds the rules:

(r-∼∼) A,Γ
A∼∼,Γ

(r-⊗∼) A∼,Γ B∼,Δ
(A⊗B)∼,(Γ,Δ) (r-⊕∼) (B∼,A∼),Γ

(A⊕B)∼,Γ .

This system is equivalent to the former one in a strong sense. Every formula
with ∼ can be translated into a formula without ∼ (except its occurrences at
variables), using the metalanguage definition of ∼, given above. The translation
can be extended for sequents and sets of sequents. Γ is provable from Φ in CNL
with ∼ if and only if the translation of Γ is provable from the translation of Φ
in CNL without ∼.

CNL1 is obtained by adding the constants 1, 0, treated as atomic formulas,
and:

(a-0) 0, (r-1)
Γ

1, Γ
.

The new axiom (a-0) introduces a sequent containing only one formula. We
define sequents as all elements of S. The set of formula-structures is defined as
the free unital groupoid S1 = S ∪ {λ}, where λ satisfies Γ · λ = Γ = λ · Γ . One
may imagine λ as the ‘empty structure’. Γ and Δ may be empty in (r-⊗), (r-⊕).

For CNL1 without ∼, the metalanguage negation is defined as above, with:
1∼ = 0, 0∼ = 1. Given a CNL1-algebra and a valuation μ, one sets μ(λ) = 1.
A sequent Γ ∈ S is said to be true for μ, if μ(Γ) ≤ 0. For sequents (Γ,Δ) this
amounts to the former definition of a true sequent.

CNL1 (in both versions) admits cut elimination, since the cut-free system
is weakly complete with respect to CNL1-algebras. With (cut’) it is strongly
complete. CNL1 is a strongly conservative extension of NL1.

CNL∗ is obtained from CNL1 by dropping 1 and 0. Since CNL∗ is strongly
complete with respect to CNL1-algebras, then CNL1 is a strongly conservative
extension of CNL∗. Notice that CNL∗ is stronger than CNL; p ⊗ p∼ is prov-
able in CNL∗, by (id) and (r-⊗), but not in CNL. In CNL1-algebras this law
expresses a ⊗ a∼ ≤ 0, which lacks sense in CNL-algebras without 0. The axiom
(id) expresses a ≤ a, which holds in all ordered algebras.

In the completeness proofs, the underlying unital groupoid is (S1, ·, λ) and
O consists of all provable sequents. Then O satisfies (COM-O) and (Cy), hence
the complex algebra is a CNL1-algebra. (1) is extended by: μ(0) = O, μ(1) =
φO({λ}).

If C is a closure operation on a complete lattice, then the C-closed sets
are closed under infinite meets. So they form a complete lattice. The results of
this section can be extended to CNL and CNL1 with lattice connectives ∨,∧,
satisfying the lattice laws. These logics may be called Full CNL and Full CNL1
(FCNL and FCNL1) by analogy with FNL, i.e. NL with ∨,∧. FCNL (resp.
FCNL1) is a strongly conservative extension of FNL (resp. FNL1).

80 W. Buszkowski

For FCNL, the connectives are ⊗,⊕,∨,∧. One adds three new rules.

(r-∧)
A,Γ

B ∧ A,Γ

A, Γ

A ∧ B,Γ
(r-∨)

A,Γ B, Γ

A ∨ B,Γ

In the complex algebra of (M, ·, R) (an arbitrary phase space) one defines:
X ∧ Y = X ∩ Y , X ∨ Y = φR(X ∪ Y). With these operations the complex
algebra of a phase space for CNL is a lattice-ordered CNL-algebra. We refer to
these algebras as FCNL-algebras. FCNL1-algebras are defined in a similar way.

These results remain true for associative and/or commutative CNL-algebras
and CNL1-algebras. The associative FCNL1-algebras are the algebras of Cyclic
Noncommutative MALL [15]; the commutative and associative FCNL1-algebras
are the algebras of MALL [10]. The completeness results were proved in these
papers. The fact that Cyclic Noncommutative MALL is a (weakly) conservative
extension of FL1 was proved in Abrusci [2] by a tedious proof-theoretic argument.
This can be proved like Theorem2, which yields the strong conservativeness.

4 Main Results

We need an extended subformula property for Φ �CNL Γ . Let T be a set of
formulas. ST consists of all Γ ∈ S such that every formula in Γ belongs to T .
A T -sequent is a sequent Γ ∈ S2 ∩ ST . A T -proof is a formal proof from Φ in
CNL which consists of T -sequents only. We write Φ �T

CNL Γ , if there exists a
T -proof of Γ from Φ in CNL. We write � for �CNL and �T for �T

CNL. We define
[A]T = {Γ ∈ ST : Φ �T Γ ⇒ A}.

Lemma 2. Let T be a set of formulas, closed under subformulas and ∼. Let Φ
be a set of T -sequents of the form (A,B). For any T -sequent Γ0, Φ � Γ0 if and
only if Φ �T Γ0.

Proof. The if-part is obvious. For the only-if part, we consider the phase space
(M, ·, R) such that M = ST , · is defined as in Sect. 3, and R = {(Γ,Δ) ∈ (ST)2 :
Φ �T Γ,Δ}. Clearly R is symmetric and satisfies (COM-R). So the complex
algebra of (M, ·, R) is a CNL-algebra. We define: μ(p) = [p]T = {p∼}∼ for
p ∈ T ; the values of μ for p �∈ T may be arbitrary. One proves: μ(A) = [A]T for
any A ∈ T , by the same argument as in Sect. 3. Consequently, if Φ �T Γ0 does
not hold, then Γ0 is not true for μ, but all sequents in Φ are true for μ. Therefore
Φ � Γ0 does not hold. ��
Corollary 2. Let T be the smallest set of formulas, containing all formulas
occurring in Φ or Γ and being closed under subformulas and ∼. If Φ � Γ , then
Φ �T Γ .

We prove an interpolation lemma for CNL: every proper substructure Δ of
a provable sequent Γ can be replaced by a formula (an interpolant) from a
finite set.

On Classical Nonassociative Lambek Calculus 81

Lemma 3. Let T, Φ, Γ0 be as in Lemma 2, and let Δ0 be a substructure of Γ0,
Δ0 �= Γ0. We write Γ0 = Θ0[Δ0]. If Φ �T Γ0, then there exists D ∈ T such that
Φ �T D∼,Δ0 and Φ �T Θ0[D].

Proof. Assume Φ �T Γ0. We proceed by induction on T -proofs from Φ. If Δ0 is
a formula, then D = Δ0. So the thesis holds, if Γ0 is an axiom (id) or belongs
to Φ. We assume that Δ0 is not a formula.

Case: (r-⊗). Then D is the same as in the premise.
Case: (r-⊕). 1◦. Δ0 = (Δ,Γ). Then D = (A ⊕ B)∼. 2◦. Δ0 is a substructure

of Γ or Δ. Then D is as in the appropriate premise.
Cases: (r-sym). D is as in the premise.
Case: (r-com) downwards. If Δ0 = (Δ,Θ), then D = D∼

1 , where D1 is the
interpolant of Γ in the premise. Otherwise D is the interpolant of Δ0 in the
premise. (r-com) upwards is treated in a similar way.

Case: (cut’). D is as in the appropriate premise. ��
There are two important consequences of Lemma 3.

Theorem 3. CNL has the strong finite model property (SFMP).

Proof. Let Φ be a finite set of sequents of the form (A,B). We show that for any
sequent Γ , if Φ �CNL Γ does not hold, then there exist a finite CNL-algebra M
and a valuation μ in M such that all sequents from Φ are true for μ, but Γ is
not true for μ.

Assume Φ �� Γ . Let T be defined as in Corollary 2. Clearly T is finite and
Φ ��T Γ . Let M be the complex algebra constructed in the proof of Lemma 2,
and let μ be defined as there. It suffices to show that M is finite, this means:
there are only finitely many φR-closed sets, i.e. sets of the form X∼, for X ⊆ ST .
We have X∼ =

⋂
Γ∈X{Γ}∼. So it suffices to show that there are only finitely

many sets of the form {Γ}∼.
Let Δ ∈ {Γ}∼. Then, Φ �T Γ,Δ. By Lemma 3, Φ �T Γ,D, for some D ∈ T

such that Φ �T D∼,Δ. We have: D ∈ {Γ}∼ and Δ ∈ [D]T . By (F3) (precisely:
its version for T -sequents and T -proofs), [D]T ⊆ {Γ}∼. Consequently, {Γ}∼ is
the union of some family of sets [D]T , for D ∈ T . There are only finitely many
sets [D]T such that D ∈ T , which yields our claim. ��

By a CNL-grammar we mean a triple G = (Σ, I,A0) such that Σ is a non-
empty, finite alphabet, I is a map from Σ to the family of finite sets of CNL-
formulas, and A0 is a CNL-formula. For any Γ ∈ S, we define a sequence of
formulas s(Γ): s(A) = A, s((Γ,Δ)) = s(Γ)s(Δ), i.e. the concatenation of s(Γ)
and s(Δ). We say that G assigns A to the string a1 . . . an (ai ∈ Σ), if there
exists Γ ∈ S such that (A∼, Γ) is provable, s(Γ) = A1 . . . An and Ai ∈ I(ai) for
i = 1, . . . , n. Here ‘provable’ means ‘provable in CNL’. We also consider gram-
mars based on CNL augmented with finitely many assumptions; then ‘provable’
means ‘provable from Φ in CNL’, where Φ is the set of assumptions. The language
of G is the set of all x ∈ Σ+ such that G assigns A0 to x.

82 W. Buszkowski

Theorem 4. Let Φ be a finite set of sequents. Let G be a CNL-grammar based
on CNL augmented with the assumptions from Φ. Then, the language of G is a
context-free language.

Proof. Fix a grammar G = (Σ, I,A0). Let T be the smallest set of formulas
which contains A0 and all formulas appearing in Φ, I and is closed under sub-
formulas and ∼. Clearly T is finite. Let (A∼

0 , Γ) be provable, Γ ∈ ST . Let (A,B)
be a substructure of Γ ; so Γ = Θ[(A,B)]. By Lemma 3, there exists D ∈ T
such that (D∼, (A,B)) and (A∼

0 , Θ[D]) are provable. Accordingly, every Γ ∈ ST

such that (A∼
0 , Γ) is provable can be derived (as a derivation tree) from A0 by

means of context-free rules: A �→ B (resp. A �→ B,C) such that A,B,C ∈ T
and B ⇒ A (resp. (B,C) ⇒ A) is provable. The language of G is generated by
the context-free grammar with the terminal alphabet Σ, the nonterminal alpha-
bet T , the start symbol A0, and the production rules as above plus A �→ a for
A ∈ I(a). ��

Conversely, every ε-free context-free language is generated by some CNL-
grammar (without assumptions). This follows from Theorem2 and the fact that
every ε-free context-free language is generated by an NL-grammar [3].

Theorem 3 implies the decidability of the finitary consequence relation for
CNL. We prove that it is decidable in polynomial time. [11] shows the polynomial
time decidability of CNL.

Theorem 5. The relation Φ � Γ , for finite sets Φ and Γ ∈ S(2), is decidable in
polynomial time.

Proof. A sequent Γ ∈ S(2) is said to be restricted, if it is of the form (A,B),
(A, (B,C)) or ((A,B), C). So (id) and all sequents from Φ are restricted. Fix a
finite set Φ and Γ0 ∈ S(2). Let T be defined as in Corollary 2 (for Γ = Γ0).

By CNLT
r we denote the system whose axioms and rules are those of CNL

with (cut’), limited to restricted T -sequents. Clearly there are finitely many
restricted T -sequents. All sequents provable in CNLT

r from Φ can be determined
in polynomial time (in the size of Φ ∪ {Γ0}).

By CNLT
Φ we denote the system whose axioms are all sequents provable in

CNLT
r from Φ and the only inference rule is (cut) (now admitting unrestricted

T -sequents). Notice that (cut) is not the same as (cut’). Observe that every
restricted T−sequent provable in CNLT

Φ must be provable in CNLT
r from Φ (if

the conclusion of (cut) is restricted, then the premises are restricted; also (cut)
limited to restricted T -sequents is derivable in CNLT

r). We prove:

Φ �T
CNL Γ iff Γ is provable in CNLT

Φ .

(⇐) is obvious. For (⇒), we observe that CNLT
Φ has the interpolation prop-

erty: if Θ0[Δ0] is provable and Δ0 �= Θ0[Δ0], then there exists D ∈ T such that
(D∼,Δ0) and Θ0[D] are provable.

First, one proves this property for CNLT
r with the assumptions from Φ in the

same way as Lemma 3. For rules (r-⊕), (r-com) one uses the fact that (A,A∼),
for A ∈ T , is provable in CNLT

r .

On Classical Nonassociative Lambek Calculus 83

Second, one shows this property for CNLT
Φ by induction on derivations based

on (cut), which is easy. The only interesting case is the following: Θ0[Θ1[Δ]] arises
by (cut) from A∼,Δ and Θ0[Θ1[A]], and Δ0 = Θ1[Δ]. Then, the interpolant of
Δ0 equals the interpolant of Θ1[A] in Θ0[Θ1[A]].

Third, one shows that all rules of CNL, restricted to T -sequents, are admis-
sible in CNLT

Φ . We only consider (r-sym). Let (Γ,Δ) be provable in CNLT
Φ . By

interpolation, there exist C ∈ T , D ∈ T such that (C,D), (C∼, Γ), (D∼,Δ)
are provable in CNLT

Φ . Since (C,D) is provable in CNLT
r from Φ, then (D,C)

is provable in CNLT
r from Φ, and consequently, (Δ,Γ) is provable in CNLT

Φ , by
two applications of (cut). This yields (⇒).

By Lemma 2, Φ �CNL Γ0 if and only if Γ0 is provable in CNLT
Φ . In particular,

for a restricted Γ0, Γ0 is provable in CNL from Φ if and only if Γ0 is provable in
CNLT

r . ��
We have noted in Sect. 1 that CNL− does not have SFMP. The status of

Theorems 4 and 5 for CNL− remains an open problem. They are true for the
pure CNL− (i.e. Φ = ∅); the proof will be given in another paper.

Chvalovsky [7] proves that the consequence relation for FNL is undecidable.
Since FCNL is a strongly conservative extension of FNL, then the consequence
relation for FCNL is undecidable (hence SFMP fails). On the other hand, the
analogues of Theorems 3 and 4 hold for DFCNL, i.e. FCNL admitting the dis-
tributive laws for ∨,∧, like for DFNL and its variants [5,6].

References

1. Abrusci, V.M.: Phase semantics and sequent calculus for pure noncommutative
classical linear propositional logic. J. Symb. Log. 56, 1403–1451 (1991)

2. Abrusci, V.M.: Classical conservative extensions of Lambek calculus. Stud. Logica.
71, 277–314 (2002)

3. Buszkowski, W.: Generative capacity of nonassociative Lambek calculus. Bull. Pol.
Acad. Sci. Math. 34, 507–516 (1986)

4. Buszkowski, W.: Lambek calculus with nonlogical axioms. In: Casadio, C., Scott,
P.J., Seely, R. (eds.) Language and Grammar. Studies in Mathematical Linguistics
and Natural Language, pp. 77–93. CSLI Publications, Stanford (2005)

5. Buszkowski, W.: Interpolation and FEP for logics of residuated algebras. Log. J.
IGPL 19, 437–454 (2011)

6. Buszkowski, W., Farulewski, M.: Nonassociative Lambek calculus with additives
and context-free languages. In: Grumberg, O., Kaminski, M., Katz, S., Wintner, S.
(eds.) Languages: From Formal to Natural. LNCS, vol. 5533, pp. 45–53. Springer,
Heidelberg (2009). doi:10.1007/978-3-642-01748-3 4

7. Chvalovsky, K.: Undecidability of consequence relation in full nonassociative Lam-
bek calculus. J. Symb. Log. 80, 567–576 (2015)

8. Farulewski, M.: Finite embeddability property for residuated groupoids. Rep.
Math. Log. 43, 25–42 (2008)

9. Galatos, N., Jipsen, P., Kowalski, T., Ono, H.: Residuated Lattices: An Algebraic
Glimpse at Substructural Logics. Elsevier, Amsterdam (2007)

10. Girard, J.-Y.: Linear logic. Theoret. Comput. Sci. 50, 1–102 (1987)

http://dx.doi.org/10.1007/978-3-642-01748-3_4

84 W. Buszkowski

11. de Groote, P., Lamarche, F.: Classical non-associative Lambek calculus. Stud. Log-
ica. 71, 355–388 (2002)

12. Lafont, Y.: The finite model property of various fragments of linear logic. J. Symb.
Log. 62, 1202–1208 (1997)

13. Lambek, J.: On the calculus of syntactic types. In: Jakobson, R. (ed.) Structure of
Language and Its Mathematical Aspects, pp. 166–178. AMS, Providence (1961)

14. Lambek, J.: Cut elimination for classical bilinear logic. Fundamenta Informaticae
22, 53–67 (1995)

15. Yetter, D.N.: Quantales and (non-commutative) linear logic. J. Symb. Log. 55,
41–64 (1990)

Proof Assistants for Natural Language Semantics

Stergios Chatzikyriakidis1,2(B) and Zhaohui Luo3

1 Department of Philosophy, Linguistics and Theory of Science,
University of Gothenburg, Gothenburg, Sweden

stergios.chatzikyriakidis@gu.se
2 Open University of Cyprus, Nicosia, Cyprus

3 Department of Computer Science, Royal Holloway,
University of London, London, UK

zhaohui@hotmail.ac.uk

Abstract. In this paper we discuss the use of interactive theorem
provers (also called proof assistants) in the study of natural language
semantics. It is shown that these provide useful platforms for NL seman-
tics and reasoning on the one hand, and allow experiments to be per-
formed on various frameworks and new theories, on the other. In par-
ticular, we show how to use Coq, a prominent type theory based proof
assistant, to encode type theoretical semantics of various NL phenom-
ena. In this respect, we can encode the NL semantics based on type
theory for quantifiers, adjectives, common nouns, and tense, among oth-
ers, and it is shown that Coq is a powerful engine for checking the for-
mal validity of these accounts as well as a powerful reasoner about the
implemented semantics. We further show some toy semantic grammars
for formal semantic systems, like the Montagovian Generative Lexicon,
Type Theory with Records and neo-Davidsonian semantics. It is also
explained that experiments on new theories can be done as well, test-
ing their validity and usefulness. Our aim is to show the importance of
using proof assistants as useful tools in natural language reasoning and
verification and argue for their wider application in the field.

Keywords: Type theory · Proof assistants · Reasoning · Formal
semantics · Coq

1 Introduction

Interactive theorem provers (also called proof assistants) have come a long way
since they were first introduced in the late 60’s as tools to formalise mathematics
(cf., the AUTOMATH project [3]). Today, a number of state-of-the-art proof
assistants exist and their uses have been proven fruitful both in formalisation

S. Chatzikyriakidis—Partially supported by Centre for Linguistic Theory and Stud-
ies in Probability, University of Gothenburg.
Z. Luo—Partially supported by EU COST Action CA15123 and CAS/SAFEA Inter.
Partnership Program.

c© Springer-Verlag GmbH Germany 2016
M. Amblard et al. (Eds.): LACL 2016, LNCS 10054, pp. 85–98, 2016.
DOI: 10.1007/978-3-662-53826-5 6

86 S. Chatzikyriakidis and Z. Luo

of mathematics and software verification, among other things; see, for example,
[13] for the proof of the four colour theorem in the proof assistant Coq1. The
importance and usefulness of proof assistants have also been further proven by
some recent research projects, including the very attractive research on Univalent
Foundations [28] that aims to develop alternative foundations of mathematics,
where the proof assistants Coq and Agda [1] play a crucial role to the whole
endeavour (see [34] for an example of formalization of part of the project in
Coq).

The use of constructive type theories for the study of NL semantics has also
seen a revival in the last decade.2 A number of approaches that directly employ
constructive type theories or are inspired by them have been put forth by various
researchers in the recent years and have provided interesting accounts on classic
problems of formal semantics (see [2,9,16,23,26,30,33] for examples, although
this is not a complete list). In this context, it is worth noting the following:

– Some of the proof assistants, like Coq and Agda, implement constructive type
theories;

– The proof assistants are extremely powerful reasoning engines; and
– Constructive type theories have been shown to be a nice alternative to the

simple type theory usually in formal semantics.

It seems that the time is right to look at the combination of these three in
order to use proof assistants as natural language reasoners and as checkers of
the formal validity of formal semantics accounts. Indeed, we have taken the first
step in this direction and have used Coq as a natural language reasoner [5,6]. In
this paper, we extend this work and create a number of small Coq libraries to
show that proof assistant like Coq can provide useful platforms for:

– Formalising NL semantics and, based on it, formally describe various NL phe-
nomena, including co-predication, individuation, common nouns, adjectives
and tense, among others. (These libraries are based on earlier theoretical
work using Luo’s Type Theory with Coercive Subtyping (TTCS for short)
[20,21,23].)

– Experimenting with various semantic frameworks: we show how to use Coq to
formalise them by implementing some small examples in Rétore’s Montagovian
Generative Lexicon [30], Cooper’s Type Theory with Records (TTR) [9], and
neo-Davidsonian event semantics [27].

– Experimenting with new theories: we formalise in Coq a newly developed the-
ory [8] of predicational forms to give semantics to negative sentences and con-
ditionals in constructive type theory. We also look at the issue of individuation
and its interaction with copredication from the same perspective.

1 The proof assistant Coq implements a constructive type theory in the tradition of
Martin-Löf. The type theory is an impredicative type theory called the Calculus of
Inductive Constructions (pCIC) [11], which is similar to the type theory UTT (or
TTCS as called in this paper) [18].

2 The use of constructive type theories has been initiated by the pioneering work of
Aarne Ranta [29].

Proof Assistants for Natural Language Semantics 87

The current paper is structured as follows: in Sect. 2, we provide an intro-
duction to TTCS and the implementation of some of the ideas casted in TTCS
with respect to NL semantics in the Coq proof assistant, especially its use in
formalising NL semantics in TTCS. In Sect. 3, we present several small libraries:
first the one based on our work in type theory, introducing the relevant formal
features of TTCS when needed, then several small libraries for other semantic
frameworks and, finally, the library for the theory of predicational forms and
individuation criteria. In the conclusion, some future work is discussed.

2 Type Theoretical Semantics for NL in Coq

In this section, we shall first introduce formal semantics in a constructive type
theory and then how we will discuss the use of Coq to implement the semantics
for various features in natural language.

2.1 Formal Semantics in Type Theory with Coercive Subtyping

Type Theory with Coercive Subtyping (TTCS) is a constructive type theory
based on Luo’s UTT [18] with the addition of an effective subtyping mechanism,
that of coercive subtyping [19,26]. TTCS has been effectively used in the study
of NL semantics for a range of phenomena including common nouns, adjectives,
adverbs and belief intensionality among other things [5,7,20,21,23]. TTCS is
a dependent type theory with rich type structures which are exploited for the
study of NL semantics. We will refer to this type of semantics in this paper as
Modern Type Theoretical (MTT) semantics.3 In MTT-semantics, some of the
major linguistic categories and their interpretation are shown below:

1. A common noun (CN) can be interpreted as a type.
2. A verb (IV) can be interpreted as a predicate over the type D that interprets

the domain of the verb (i.e., a function of type D → Prop, where Prop is the
type of logical propositions

3. An adjective (ADJ) can be interpreted as a predicate over the type that
interprets the domain of the adjective (i.e., a function of type D → Prop).

4. Modified common nouns (MCNs) can be interpreted by means of Σ-types,
types of (dependent) pairs.

5. A sentence (S) is interpreted as a proposition of type Prop.

See Fig. 1 for a summary with examples.

3 The formal semantics based on Modern Type Theories such as Martin-Löf’s type
theory or TTCS is usually called MTT-semantics. In the current paper, we shall still
talk about MTT-semantics although, if taken seriously, it means formal semantics
in TTCS because the Coq implementation of the NL semantics is based on TTCS.

88 S. Chatzikyriakidis and Z. Luo

Example Montague semantics Semantics in TTCS

CN man, human [[man]], [[human]] : e → t [[man]], [[human]] : Type

IV talk [[talk]] : e → t [[talk]] : [[human]] → Prop

ADJ handsome [[handsome]] : (e → t) → (e → t) [[handsome]] : [[man]] → Prop

MCN handsome man [[handsome]]([[man]]) Σm : [[man]] . [[handsome]](m) : Type

S A man talks ∃m : e. [[man]](m)& [[talk]](m) ∃m : [[man]] . [[talk]](m) : Prop

Fig. 1. Examples in formal semantics.

2.2 NL Semantics in Coq

Coq [11] implements pCIC, a type theory whose major part is essentially4 TTCS
(UTT with coercive subtyping), based on which the formal semantics briefly
described in the previous subsection has been implemented. The encoding of NL
semantics based on TTCS is quite straightforward in most of the cases. Let us
see some basics of how this can be done.

Starting with the type of logical propositions, nothing needs to be encoded,
since Coq already involves a universe of logical propositions, Prop. The next
step, is to see what the universe of entities would be taken to be. In MG, a
coarse-grained type of entities exists, i.e. the type e of all entities. In MTT-
semantics, the common nouns constitute a universe, denoted as cn; the type
cn contains the (interpretations of) CNs, each of which is further interpreted
as a type that contains entities belonging to them. CNs are interpreted as types
rather than predicates. However, since universe construction (i.e., defining new
universes) is not an option in Coq, we equate cn with Coq’s predefined universe
Set.

Σ-types (types of dependent pairs), which are used to give semantics to some
modified common nouns among other things, are encoded using Coq’s depen-
dent record type mechanism5 and adjectives and verbs are defined as predicates
(objects of type A → Prop). Subsective adjectives like large are encoded as
polymorphic predicates (see [4]), extending over the universe cn.6 Subtyping
is encoded using Coq’s coercion mechanism and the proper names are given
suitable domain types: e.g., John is assumed to be of type Man.

The Coq codes for this basic set up are as follows.

Definition CN := Set.
Parameters Man Woman Human Animal Object : CN.
Axiom mh : Man->Human. Coercion mh : Man >-> Human.
Axiom wh : Woman->Human. Coercion wh : Woman >-> Human.
Axiom ha : Human-> Animal. Coercion ha : Human>->Animal.
Axiom ao : Animal->Object. Coercion ao : Animal>->Object.
Parameter Black : Object->Prop.

4 Coq has co-inductive types which are not present in TTCS.
5 Coq’s record types are just Σ-types with global names associated with them.
6 This is encoded using Π-types as follows: [[Adjsubs]] : ΠA : cn. A → Prop. The ‘forall’

part in the code corresponds to Π.

Proof Assistants for Natural Language Semantics 89

Parameter Large : forall A:CN, A->Prop.
Parameter walked: Human->Prop.
Parameter John : Man.

Quantifiers can be given polymorphic types as well: a quantifier takes a CN
argument A : cn and returns a function of type (A → Prop) → Prop. Thus, if
A is Man the type for the quantified NP will be (Man → Prop) → Prop and,
if A is Object, it is of type (Object → Prop) → Prop, and so on. As examples,
we define the quantifiers some, all, no as follows:

Definition some := fun A:CN => fun P:A->Prop => exists x:A, P(x).

Definition all := fun A:CN => fun P:A->Prop => forall x:A, P(x).

Definition no := fun A:CN => fun P:A->Prop => forall x:A, not(P(x)).

Note that the typing is the one we have been describing, taking an A : cn
argument, an A → Prop argument and returning a proposition.

Now, let us see how one can exploit Coq in order to reason with NL sentences
based on the implemented semantics. First of all, if one wants to check typing,
the command Check followed by the element we want to check can be used.
Note that Coq is a strongly typed language, so by definition ill-typed constructs
cannot be defined, since they will be blocked by Coq. Let us see an NL reasoning
example, the one shown below:

(1) John walked ⇒ Some man walked

Formalizing this example in Coq, we consider the following ‘theorem’ whose
name is JOHN (to be proved):

Theorem JOHN : walked John -> (some Man) walked.

This will put Coq into proof-mode. We unfold the definition for some using cbv
and use the tactic intro, which will introduce the antecedent as a hypothesis:7

JOHN < cbv. intro. subgoal
H : walked John
============================
exists x : Man, walked x

What we need to do is substitute John for x and using the tactic assumption,
which matches a goal in case there is an identical premise in the context of the
proof, the proof is completed and we can save the proof using Qed. The whole
proof then consists of the steps:

1. cbv (unfolding definitions (in our case the one for some))8

2. intro (moving the antecedent as a hypothesis)
7 The tactic cbv performs all possible reductions.
8 In general the tactic cbv performs all possible reductions. For more information, see

[11].

90 S. Chatzikyriakidis and Z. Luo

3. exists John (substituting x for John)
4. assumption (matching the goal with a hypothesis)

Remark 1. The MTT-semantics has proved to be a viable alternative to Mon-
tague Grammar, with several notable advantages. Here, we think it is worth
mentioning one of them: that is, MTT-semantics is both model-theoretic and
proof-theoretic, as argued in [24]. It is model-theoretic because, in an MTT-
semantics, an MTT is employed as a representational language and it can do
so because of its rich representational structures as well as its internal logic.
Therefore, it has a wide coverage of linguistic features and can be compared to
Montague semantics in this respect. It is also proof-theoretic, in the sense of
[14], because MTTs are specified proof-theoretically and the meanings of MTT-
judgements, that are used to give semantics to NL sentences, can be understood
by means of their inferential roles. Therefore, reasoning with NL can be directly
performed in proof assistants like Coq that implement MTTs. This is unique
for MTTs and MTT-semantics: such a possibility of having a semantics which is
both model-theoretic and proof-theoretic is not available to us until we have the
MTT-semantics (for example, if one considers the traditional model-theoretic
semantics in set theory, we simple would not have a proof-theoretic representa-
tional language: set theory is not proof-theoretic.)

3 Libraries for NL Semantics

We have created a number of small libraries in Coq, encoding NL semantics.
They may be classified as follows:

– MTT-semantics and reasoning : We have studied various NL phenomena using
MTT-semantics and formalised them in Coq.

– Platform for other semantic frameworks: We have looked at several seman-
tic frameworks and provided some examples including, for example, Rétore’s
Montagovian Generative Lexicon [30], Cooper’s Type Theory with Records
(TTR) [9], and a toy semantic grammar for neo-Davidsonian event semantics
[27].

– Experiments on new semantic theories: We have done interesting experiments
in Coq about some new semantic theories, including that about predicational
forms in MTT-semantics [8], as reported here.

The libraries can be found at https://github.com/StergiosCha/CoqLACL.

3.1 MTT Semantics for NL in Coq

The main file for MTT-semantics is MainCoq.v. This includes the Coq imple-
mentation of a number of ideas in MTT-semantics. The universe CN includes
a number of types (e.g., Man,Human,Delegate,Woman,Animal,Object) and
subtyping relations between them. Synonym relations are encoded via the let-
command in Coq. Adjectives are defined in the way specified in the previous

https://github.com/StergiosCha/CoqLACL

Proof Assistants for Natural Language Semantics 91

section and sometimes some added lexical semantics are inserted. For example,
small is defined as the opposite of large, and both are polymorphically defined
as follows:

Parameter Large Normalsized: forall A:CN, A->Prop.
Definition Small :=

fun A:CN => fun a:A => not (Large A a) /\ not (Normalsized A a).

Basically the idea here is that small is defined as being not large but furthermore
not of normal size. This reflects the idea that something which is not large is not
necessarily small.9 This is needed in order to get the relevant inferences right
(see [5]).

In MTT-semantics, there is also a widespread use of Σ-types for factive verbs,
adverbs and comparatives. We have not the space here to go in full detail but
the idea can be briefly described as follows, taking the case of veridical sentence
adverbs as an example. What we need to capture is that the proposition without
the adverb is implied by the proposition including the adverb. In order to do
this, we first define an auxiliary object:

Parameter ADVS : forall (v:Prop), sigT (fun p:Prop => p->v).

This basically takes a proposition v and returns a pair whose first component is
a proposition p and whose second component is the proposition that p implies v.
Then, veridical sentence adverbs (we use fortunately as an example) are defined
as the first projection of this auxiliary pair:

Definition fortunately := fun v:Prop => projT1 (ADVS v).

Similar uses of Σ-types can be found for VP adverbs, comparatives as well as
factive verbs in the library (see [5] for more details.)

For comparatives, we introduce indexed types for common nouns; for exam-
ple, humans of type Human may be indexed by a height parameter. Then, a
comparative adjective takes two Humani arguments with i : : Height.

Inductive HUMAN : nat->Type := HUMAN1:forall n:nat,HUMAN n.

A simple model of tense is defined and an attempt to deal with some aspects
of tense exists. There is a type Time and a date is defined as triple, taking year,
month and day arguments and returning a result in Time. A default date is
defined which consists of the defaults for year, month and day. Then, verbs are
defined with an extra time argument. Present, past and future are then defined
using the precedes relation with respect to the default time. For example, an
adverb like currently is defined as identifying the time argument with the default
time:

Definition currently := fun P : Time -> Prop => P default_t.

9 The level of fine-grainedness with respect to size, i.e. whether sizes between these
proposed three will be used, will not bother us here.

92 S. Chatzikyriakidis and Z. Luo

The next file is adjectives.v, which involves some more fine-grained issues
in adjectival semantics. In particular it deals with multidimensional adjectives
and introduces a hack in order to take care of the fact that Coq does not allow
subtyping to propagate through constructors (as it is the case in TTCS).10 Mul-
tidimensional adjectives do not just involve one dimension (e.g., the dimension
of height in the case of tall), but more than one. Classical cases are the adjectives
like healthy and sick or even adjectives like big. The idea is that an adjective like
healthy quantifies over a number of dimensions, e.g., blood pressure, cholesterol
etc. [32]. Similarly, big may involve different dimensions like height, width etc.
For an adjective like healthy, we define health as an enumerated type including
all the relevant dimensions. Then, Healthy is defined as taking an argument of
type Human and assuming that this human is healthy in all dimensions. For
sick, the assumption is that the argument is not healthy w.r.t. to at least one
dimension. This follows the ideas set out in [32]:

Inductive Health:CN:=Heart|Blood|Cholesterol.
Parameter Degree:R. Parameter healthy:Health->Human->Prop.
Definition Sick:=fun y:Human=>~(forall x:Health,healthy x y).
Definition Healthy:=fun y:Human=>forall x:Health,healthy x y.

The files FracasCoq.v and test.v are meant to be used in conjunction. Actu-
ally FracasCoq loads test.v. FracasCoq.v contains a number of FraCaS test suite
examples formalized in Coq along with their proofs. The FraCaS Test Suite
[10] arose out of the FraCaS Consortium, a huge collaboration with the aim to
develop a range of resources related to computational semantics. The FraCaS
test suite is specifically designed to reflect what an adequate theory of NL infer-
ence should be able to capture. It comprises NLI examples formulated in the
form of a premise (or premises) followed by a question and an answer. Here is a
typical example from the suite:

(2) Some Irish delegates finished the survey on time.
Did any delegate finish the report on time [Yes, FraCaS 055]

The modified CN Irish delegates is defined as a Σ type. Given that π1 is
defined as a coercion, the inference will go through easily. Please see [5] for more
details and the code for the actual.

3.2 Other Semantic Frameworks

Proof assistants can be used as platforms to experiment with different semantic
frameworks. In this respect, there are three files that have some very small toy

10 Some remark on subtyping propagation in Coq is needed. If A < B, then we should
have Σ(A, C) < Σ(B, C) (which follows in TTCS). But this does not follow in Coq.
In order to remedy this we have introduced a sort of a hack by overloading the type
using unit types (see the actual code and consult [21] for the use of unit types).

Proof Assistants for Natural Language Semantics 93

semantic grammars of other frameworks that have been used in the study of lin-
guistic semantics. Note that these implementations are shallow implementations
in the sense that no deep implementation of the underlying formal systems is
done. In other words, we are not doing a faithful implementation of a seman-
tic framework; instead, we emphasize the quick return so that examples can be
done. For instance, Retoré’s Generative Montagovian Lexicon [30] is based on
system F [12,31], but no implementation of system F is done on our part.

In MontagovianLexiconToy.v, we encode some of the ideas in presented in
Generative Montagovian Lexicon as presented in [30]. Note that the idea that,
representing the interpretation of a common noun, each type has its correspond-
ing predicate cannot be implemented since it is not clear how such correspon-
dence will be formally defined.11 We, however, encode the idea that a word like
book has a principal lambda term and then a number of coercions that take care
of its dot-type status. This is done by using type overloading via unit types.
We further formalize the polymorphic conjunction of [30] and prove that it is
equivalent to the semantics of regular conjunction. For example, the definition
of polymorphic conjunction is given as follows:

Definition PAND := fun a:e => fun b:e => fun P:a->t => fun Q:b->t =>

fun x:e => fun y:x => fun f:x->a => fun g:x->b =>

and (P(f(y))) (Q(g(y))).

Records.v has some very simple experimentations on encoding ideas from
Cooper’s TTR [9]. For example, the record for a man owns a donkey is encoded
as:

Record amanownsadonkey : Type :=
mkamanownsadonkey{ x : Ind;

c1 : man x;
y : Ind;
c2 : donkey y;
c3 : own x y}.

From this record type in Coq, one can prove any of the individual fields. For
example, one can show that a man exists, that a donkey exists (man and donkey
are defined here as predicates), and that the man owns the donkey.

Lastly, Davidson.v contains a typed neo-Davidsonian toy semantic gram-
mar. It has some simple examples and the welcoming inferential properties of
neo-Davidsonian semantics where each modifier adds a conjunct. The grammar
presents a typed version of neo-Davidsonian semantics12. Similarly, a transitive
verb like stabs is defined as taking an event argument e and two arguments x

11 For example, one can define both a type book and a predicate book∗ but linking the
two and defining such a process for every common noun is something that we do not
know how can be done, without leading to formal difficulties such as undecidability
of type-checking [8]. There is not a formal proposal on how to do this in [30] either.

12 See [25] for a theory of dependent event types which extends Church’s simple type
theory with dependent event types. This is an initial step towards a theory of events
with dependent types.

94 S. Chatzikyriakidis and Z. Luo

and y of type Ind and returning a proposition which specifies that there is a
stabbing event e1 such that stabs(x)(y)(e1), x is the agent, y is the theme and
e = e1. This toy semantic grammar can take care of inferences like the following
(proofs are in the file):

(3) Brutus stabbed Caesar with a knife in Rome ⇒ Brutus stabbed Caesar with
a knife

(4) Brutus stabbed Caesar with a knife in Rome ⇒ Brutus stabbed Caesar
(5) Brutus stabbed Caesar with a knife in Rome ⇒ the agent of the stabbing

was Brutus

Remark 2. As we have already mentioned, the above implementations are shal-
low implementations of fragments of other semantic theories.13 Coq implements
an MTT, which in itself is a very powerful language to represent NL semantics.
In a sense, one way of using Coq would be to use this very powerful language
in order to embed different semantic theories as kind of modules within Coq’s
MTT. For example, one might want to define a Natural Logic component (as for
example [17] has done), or a neo-Davidsonian fragment as we have very briefly
done here. We believe that this is a nice way of looking at how the systems like
Coq can be used for NL semantics. Different comparisons can then be performed
as regards the different frameworks based e.g. on the predictions they make as
regards inference.

3.3 Experiments with New Semantic Theories

Systems like Coq can play a useful role in verifying newly proposed theories in
semantics. Here, we consider two cases. The first concerns the theory of pred-
icational forms as studied in [8]. The theory is to deal with negated sentences
or conditionals in a type theory where some CNs are interpreted as types in a
multi-sorted type system (e.g., the MTT-semantics) and the file predhyp.v con-
tains the experiments done in Coq that formalizes the theory of predicational
forms and considered many relevant examples.

Consider the simplest example, where (7) is the (judgemental) interpretation
of (6):

(6) John is a man.
(7) j : Man

Note that j : Man is a judgment and not a proposition. How do we give
semantics to its negation like (8)?

(8) John is not a man.

13 See [15] for an informal explanation of shallow and deep embeddings.

Proof Assistants for Natural Language Semantics 95

Similarly, a negated sentence like (9) needs to be given semantics, but it would
be simply negating the semantics of ‘Tables talk’ since the latter is meaningless
(i.e., ill-typed)14.

(9) Tables do not talk.

Also, some conditionals correspond to hypothetical judgements and require
a treatment as well (we omit the details here).

The theory of predicational forms [8] is a logical theory to deal with the above
issues. Based on it, suitable semantic interpretations can be given to negated
sentences and conditionals as intended.

The formalisation of the theory (and examples) can be found in predhyp.v.15

For instance (just showing one example), the following sentences and inferences
have been done:

(10) It is not the case that John is not a man.
(11) It is not the case that every human is a logician
(12) Some red tables do not talk ⇒ Some tables do not talk

Another theory is to consider how to deal with inferences concerning CNs.
Individuation.v contains an account of how individuation criteria should be
decided within an MTT. The general idea is that every common noun is associ-
ated with its own identity criteria (IC) which can be inherited by other common
nouns (see [22] for the theory on this and more detailed discussions on ICs.)
For example, one can assume that Man inherits its IC from Human. Given this
assumption, common nouns are not simple types but setoids whose first compo-
nent is a type (the domain of the CN), in DomCN (which is the old cnuniverse)
and whose second component is its IC. So under this view, the common noun
Human will be represented by the following (we use capitals to denote the new
formalization and retain the first letter with uppercase notation to denote the
type in DomCN):

(13) HUMAN = Σ(Human,=H)

Several IC criteria are defined for different common nouns and dot.types like
book are given two different IC criteria depending on whether their physical or
informational aspect is individuated. Thus, we have:

14 Note that it is not given false as in MG.
15 The files FracasCoq.v and test.v are meant to be used in conjunction. Actually

FracasCoq loads test.v. FracasCoq.v contains a number of FraCaS test suite examples
formalized in Coq along with their proofs.

96 S. Chatzikyriakidis and Z. Luo

(14) BOOK1 = Σ(Book,=P)
(15) BOOK2 = Σ(Book,=I)

A number of proofs then follow including, for example, a proof of the following:

(16) John picked up and mastered three books ⇒
John picked up three physical objects and mastered three informational
objects

Remark 3. One issue that is worth mentioning here, is that of automation. Coq
is an interactive theorem prover, which means that the user guides the prover
to the proof. However, Coq has a very powerful tactic language that can be
used in order to construct composite tactics that can automate part of or whole
proofs. We have defined a number of tactics that can automate proofs. The
interested reader can check for example the automated tactic AUTO in the
files Davidson.v (for example BRUTUS1 to BRUTUS4 are proven using AUTO
only) and MontagovianLexicon.v. AUTO can prove all theorems in these two
files. A more advanced automatic tactic is needed for the proofs found in the
FracasCoq.v file. Such a tactic is AUTOa (this tactic also solves all the goals in
the previous files solved by AUTO) [5,6]. All proofs can be automated with this
tactic except one that is semiautomated (see FracasCoq.v file).

4 Conclusions and Future Work

In this paper, we have argued for the use of the proof assistant technology for nat-
ural language semantics. In particular, we have argued, that the time is mature
for such an endeavor given the progress made in both the proof technology itself
as well as the use of constructive type theories for natural language semantics.
We have prepared a number of small libraries for NL semantics using the proof
assistant Coq based on Luo’s TTCS and have shown the benefits of such an
endeavor by exemplifying the use of proof assistants as natural language rea-
soners or as checkers of the formal validity of proposals in formal semantics. We
have lastly shown how experiments with semantic accounts proposed in several
semantic frameworks can also be implemented in Coq.

As future work, we are envisaging the extension of work as regards infer-
ence by endorsing a system where a tight correspondence between syntax and
semantics exists, in the same way such a correspondence is found in categorial
grammar. This builds on theoretical work of second author, where a proposal
for extending the Lambek calculus with dependent types can be found. Given
such a development one can then define a parser based on this extended Lambek
calculus with dependent types, which will automatically give us MTT-semantics
as output. These semantics will then be used by Coq to perform reasoning tasks.
The ultimate goal is to develop a wide-coverage, robust parser that will then be

Proof Assistants for Natural Language Semantics 97

able to output semantics for larger pieces as well as open text. Similar work
using multi-modal categorial grammars or combinatory categorial grammar has
been shown to be feasible. If this is the case, this is a great chance of using
a more structured semantic framework as well as a specific purpose reasoning
device (Coq) in order to deal with NLI.

References

1. Agda proof assistant (2008). http://appserv.cs.chalmers.se/users/ulfn/wiki/agda.
php

2. Bekki, D.: Representing anaphora with dependent types. In: Asher, N., Soloviev,
S. (eds.) LACL 2014. LNCS, vol. 8535, pp. 14–29. Springer, Heidelberg (2014)

3. de Bruijn, N.: A survey of the project AUTOMATH. In: Hindley, J., Seldin, J., To,
H.B. (eds.) Curry: Essays on Combinatory Logic, Lambda Calculus and Formalism.
Academic Press, Cambridge (1980)

4. Chatzikyriakidis, S., Luo, Z.: Adjectives in a modern type-theoretical setting. In:
Morrill, G., Nederhof, M.-J. (eds.) FG 2012–2013. LNCS, vol. 8036, pp. 159–174.
Springer, Heidelberg (2013). doi:10.1007/978-3-642-39998-5 10

5. Chatzikyriakidis, S., Luo, Z.: Natural language inference in Coq. J. Log. Lang. Inf.
23(4), 441–480 (2014)

6. Chatzikyriakidis, S., Luo, Z.: Natural language reasoning using proof-assistant
technology: rich typing and beyond. In: Proceedings of EACL 2014 (2014)

7. Chatzikyriakidis, S., Luo, Z.: Using signatures in type theory to represent situa-
tions. In: Logic and Engineering of Natural Language Semantics 11, Tokyo (2014)

8. Chatzikyriakidis, S., Luo, Z.: On the interpretation of common nouns: types v.s.
predicates. In: Chatzikyriakidis, S., Luo, Z. (eds.) Modern Perspectives in Type
Theoretical Semantics. Studies of Linguistics and Philosophy, Springer, Heidelberg
(2016, to appear)

9. Cooper, R.: Records and record types in semantic theory. J. Log. Comput. 15(2),
99–112 (2005)

10. Cooper, R., Ginzburg, J.: A compositional situation semantics for attitude reports.
In: Selignmann, J., Westerstahl, D. (eds.) Logic, Language and Computation, CSLI
(1996)

11. The Coq Team: The Coq Proof Assistant Reference Manual (Version 8.1). Inria,
Rennes (2007)

12. Girard, J.Y.: Interprétation fonctionelle et élimination des coupures de
l’arithmétique d’ordre supérieur. Ph.D. thesis, Université Paris VII (1972)

13. Gonthier, G.: A computer-checked proof of the Four Colour Theorem (2005).
http://research.microsoft.com/∼gonthier/4colproof.pdf

14. Kahle, R., Schroeder-Heister, P. (eds.): Proof-Theoretic Semantics. Special Issue
of Synthese 148(3), 503–743 (2006)

15. Keller, C., Werner, B.: Importing HOL light into Coq. In: Kaufmann, M., Paulson,
L.C. (eds.) ITP 2010. LNCS, vol. 6172, pp. 307–322. Springer, Heidelberg (2010).
doi:10.1007/978-3-642-14052-5 22

16. Krahmer, E., Piwek, P.: Presupposition projection as proof construction. In: Bunt,
H., Muskens, R. (eds.) Computing Meaning. SLP, vol. 73, pp. 281–300. Springer,
Dordrecht (1999)

17. Lungu, G.E., Luo, Z.: Monotonicity reasoning in formal semantics based on modern
type theories. In: Asher, N., Soloviev, S. (eds.) LACL 2014. LNCS, vol. 8538, pp.
138–148. Springer, Heidelberg (2014)

http://appserv.cs.chalmers.se/users/ulfn/wiki/agda.php
http://appserv.cs.chalmers.se/users/ulfn/wiki/agda.php
http://dx.doi.org/10.1007/978-3-642-39998-5_10
http://research.microsoft.com/~gonthier/4colproof.pdf
http://dx.doi.org/10.1007/978-3-642-14052-5_22

98 S. Chatzikyriakidis and Z. Luo

18. Luo, Z.: Computation and Reasoning: A Type Theory for Computer Science.
Oxford University Press, Oxford (1994)

19. Luo, Z.: Coercive subtyping in type theory. In: Dalen, D., Bezem, M. (eds.) CSL
1996. LNCS, vol. 1258, pp. 275–296. Springer, Heidelberg (1997). doi:10.1007/
3-540-63172-0 45

20. Luo, Z.: Type-theoretical semantics with coercive subtyping. In: Semantics and
Linguistic Theory 20 (SALT20), Vancouver (2010)

21. Luo, Z.: Contextual analysis of word meanings in type-theoretical semantics. In:
Pogodalla, S., Prost, J.-P. (eds.) LACL 2011. LNCS (LNAI), vol. 6736, pp. 159–174.
Springer, Heidelberg (2011). doi:10.1007/978-3-642-22221-4 11

22. Luo, Z.: Common nouns as types. In: Béchet, D., Dikovsky, A. (eds.) LACL
2012. LNCS, vol. 7351, pp. 173–185. Springer, Heidelberg (2012). doi:10.1007/
978-3-642-31262-5 12

23. Luo, Z.: Formal semantics in modern type theories with coercive subtyping. Lin-
guist. Philos. 35(6), 491–513 (2012)

24. Luo, Z.: Formal semantics in modern type theories: is it model-theoretic, proof-
theoretic, or both? In: Asher, N., Soloviev, S. (eds.) LACL 2014. LNCS, vol. 8535,
pp. 177–188. Springer, Heidelberg (2014)

25. Luo, Z., Soloviev, S.: Dependent event types (abstract). In: LACL 2016 (2016)
26. Luo, Z., Soloviev, S., Xue, T.: Coercive subtyping: theory and implementation. Inf.

Comput. 223, 18–42 (2012)
27. Parsons, T.: Events in the Semantics of English. MIT Press, Cambridge (1990)
28. The Univalent Foundations Program: Homotopy type theory: univalent founda-

tions of mathematics. Technical report, Institute for Advanced Study (2013)
29. Ranta, A.: Type-Theoretical Grammar. Oxford University Press, Oxford (1994)
30. Retoré, C.: The montagovian generative lexicon Tyn: a type theoretical framework

for natural language semantics. In: Matthes, R., Schubert, A. (eds.) 19th Interna-
tional Conference on Types for Proofs and Programs (TYPES 2013), vol. 26, pp.
202–229 (2013)

31. Reynolds, J.C.: Towards a theory of type structure. In: Robinet, B. (ed.) Program-
ming Symposium. LNCS, vol. 19, pp. 408–425. Springer, Heidelberg (1974). doi:10.
1007/3-540-06859-7 148

32. Sassoon, G.: A typology of multidimensional adjectives. J. Semant. 30(3), 335–380
(2013)

33. Tanaka, R., Mineshima, K., Bekki, D.: Factivity and presupposition in dependent
type semantics. In: Type Theories and Lexical Semantics Workshop (2015)

34. Voevodsky, V.: Experimental library of univalent formalization of mathematics.
Math. Struct. Comput. Sci. 25, 1278–1294 (2015)

http://dx.doi.org/10.1007/3-540-63172-0_45
http://dx.doi.org/10.1007/3-540-63172-0_45
http://dx.doi.org/10.1007/978-3-642-22221-4_11
http://dx.doi.org/10.1007/978-3-642-31262-5_12
http://dx.doi.org/10.1007/978-3-642-31262-5_12
http://dx.doi.org/10.1007/3-540-06859-7_148
http://dx.doi.org/10.1007/3-540-06859-7_148

Compositional Event Semantics in Pregroup
Grammars

Gabriel Gaudreault(B)

Concordia University, Montreal, Canada
gabriel.gaudreault@gmail.com

Abstract. A derivational approach to event semantics using pregroup
grammars as syntactic framework is defined. This system relies on three
crucial components: the explicit introduction of event variables which are
linked to the basic types of a lexical item’s grammatical type; the uni-
fication of event variables following a concatenation of two expressions
and the associated type contraction; and the correspondence between
pregroup orderings and the change of the available event variables asso-
ciated to a lexical item, which the meaning predicates take scope over.

Keywords: Pregroup grammars · Formal semantics · Conjunctivism

1 Introduction

This project aims at studying implicit event variables over which meaning predi-
cates take scope and their interaction throughout syntactic derivations. A deriva-
tional system will be put in place around the pre-existing pregroup grammar
framework to handle these variables compositionally using a unification process,
while at the same time providing for a very natural semantics for pregroup
grammars.

More concretely, it will be shown how by extending the usual pregroup frame-
work with a semantic layer and by assigning explicit event variables to the syn-
tactic categories of an expression, we can get semantic extraction from pregroup
derivations without too many complications. The resulting meaning will be neo-
davidsonian and conjunctivist in form, that is, the meaning will be analysed in
terms of events, and a single logical operator will be used during the combina-
tion of meanings: the conjunction ∧. This is in opposition to the more traditional
approach of logical analysis called Functionalism that treats semantic composi-
tion as function application: a sentence such as (1a) will not have corresponding
logical form (1b) but instead have the form (1c) where what are usually treated
as arguments to the verb — John, Mary — are instead related to it by the
thematic role they play in the event that the verb characterizes.

(1) a. John likes Maria
b. [[John likes Maria]] = like(John)(Maria)
c. [[John likes Maria]]

= ∃e.Agent(e) = John ∧ like(e) ∧ Theme(e) = Maria

c© Springer-Verlag GmbH Germany 2016
M. Amblard et al. (Eds.): LACL 2016, LNCS 10054, pp. 99–115, 2016.
DOI: 10.1007/978-3-662-53826-5 7

100 G. Gaudreault

Using conjunctions as sole mean of meaning combination makes it harder at
first to analyse certain constructions, but this is a small price to pay for the
level of generality and overall derivational simplicity that will be obtained in the
end by equating syntactic combination (pregroup contractions) with meaning
conjunction.

2 Pregroup Grammars

The syntactic framework that will be used for this project is called Pregroup
Grammars and is a recent descendant of the original syntactic calculus which
arose from the study of resource sensitive logics [2,8,9]. They are called as such
because their syntactic types form a special mathematical structure called a
pregroup. The semantic system defined later could be worked out independently
of the pregroup framework, though they seem to work well together for multiple
reasons.

A pregroup [9] P = (P,→,r ,l , ·, 1) is a partially ordered monoid on a set of
elements P , the set of basic types, in which to every element a ∈ P corresponds
a right and a left adjoint — ar ∈ P and al ∈ P respectively — subject to

a · ar → 1 → ar · a al · a → 1 → a · al

The left sides of the relations are called contractions and the right sides,
expansions. More precisely, the types forming a pregroup satisfy the following
properties:

– Existence of an identity element 1: a · 1 = 1 · a = a, for any a ∈ P

– Associativity of type concatenation: a · (b · c) = (a · b) · c, for a, b, c ∈ P

– Reflexivity of the ordering: a → a, for any a ∈ P

– Antisymmetry of the ordering: if a → b and b → a then a = b, for a, b ∈ P

– Transitivity of the ordering: if a → b and b → c then a → c, for a, b, c ∈ P

The set of types closed under the r and l adjoint operations is called the set
of simple types.

A pregroup grammar G = (Σ,P,→,r ,l , 1,T) consists of a lexicon Σ and
a typing relation T ⊆ Σ × F between the alphabet and the pregroup freely
generated by the simple types of P and the ordering relation →. This simply
means that each element of the lexicon is associated with one or more strings of
simple types. For instance, (want, iφl) will be used in a sentence like (2a) and
(want, ij̄l) in (2b).

(2) a. You want for Mark to lead a happy life
b. You want to eat ice cream

Here are common basic types:
s: declarative sentences s2: declarative sentence in the past tense
N : proper nouns i: infinitives of intransitive verbs
n: common nouns n̄: complete noun phrases
π: subjects/nominative noun phrases o: objects/accusative noun phrases

and an example derivation:

Compositional Event Semantics in Pregroup Grammars 101

(3)
He likes her

π3 · (πr
3 · s · ol) · o

→ π3 · πr
3 · s · ol · o → 1 · s · 1 → s

The fact that the structure is partially ordered also allows us to set a specific
ordering of grammatical types such as

n̄ → π3 → π s1 → s

where α → β means that α could also be used as β, e.g. a plural noun n2 such as
cats could be used as an object o or plural subject π2, but not as a third person
singular subject π3, i.e. n2 → π2, but n2 �→ π3.

Using the orderings we can now analyse more complex sentences

(4)
John wants for the cat that dogs fear to live

N πr
3sφ

l φj̄lol n̄nl n nrnollsl n2 πr
3so

l j̄il i
→ π3 πr

3sφ
l φj̄lol onl n nrnollsl π3 πr

3so
l j̄il i → s

Note the use of the ordering relations n̄ → o, n2 → n̄ → π3 and N → π3.
As pregroup types are merely concatenation of types, the order of contrac-

tions does not really matter. What really matters in this kind of grammar are
the derivation links that tell us how the different lexical items combine with
eachother in a given sentence:

(5)

πr s il i ir i il i ol nnnln̄

s

will dance to save humanitymanA

3 Problems with Semantics in Pregroup Grammars

One of the major inconveniences of using pregroup grammars to do semantics
is that complex types can often be contracted in multiple ways, as we’ve seen
above. For instance, consider the possible types that could be assigned to the
subject position quantifier every in different grammatical formalisms:

(6) a. Traditional Categorial Grammars: (S/(N \ S))/N
b. Minimalist Grammars[18]: =N D -CASE

c. Pregroup Grammars: s(πrs)lnl

In the first two cases, the order in which the types or features are used is
well-defined and unique:

– Traditional Categorial Grammars: Type-elimination follows nestedness,
i.e. the quantifier must be joined to a noun phrase, then to a verb phrase

102 G. Gaudreault

– Minimalist Grammars: Feature-checking is from left to right, i.e. the quan-
tifier must be joined to a noun phrase, after which it could be used as a deter-
miner and finally moved by being selected by a higher node with a selectional
case feature

On the other hand, pregroup types aren’t ordered: any basic type present in
a type could theoretically be contracted at any point if it appears on the edge
of the type. For instance, in the following sentence, every has the possibility to
contract with either of its neighbours, John knows that or boy.

(7)
John knows that every boy dances

ss̄l s(πrs)lnl n πrs

The very liberal type structure of pregroups is essentially the reason why
traditional approaches to semantics do not work in that framework. For instance,
consider the type of a finite transitive verb

(8) kicked
πrsol

In Montagovian semantics [10,12], such a verb would correspond to a relation
between two entities, and would get assigned meaning:

(9) λx.λy.kicked(y, x) : e → e → t

The order in which the subject and object get passed to the verb are very
important, as a situation where I kick someone is very different from a situation
where I get kicked by someone. But pregroup grammars cannot, in this sense,
place constraints on which type gets contracted first, at least without introducing
unwanted complexity to the system.

Note that there are already established approaches to doing semantics with
pregroup grammars, see [4,6,14,15]. The aim with this project is simply to show
that other approaches are also possible, that might also be simpler when doing
event semantics from a derivational point-of-view than using the λ-calculus as
semantic framework.

4 Quick Overview of Event Semantics and Conjunctivism

Conjunctivism [13] is the idea that as smaller expressions concatenate, their
meanings simply conjoin. This approach is somewhat controversial, as for the last
hundred years formal semanticists have instead related semantic combination
with function application. To understand why and how this idea came to be,
it is useful to have an understanding of two of the major developments of this
branch of semantics: Davidson’s characterization of action sentences in terms of
events [5] and Parsons’ subatomic analysis of events [11].

The traditional way of looking at a verb of action such as kiss is as a logical
function that takes in two arguments – the subject and the object – and returns
a truth value.

Compositional Event Semantics in Pregroup Grammars 103

(10) kiss(x, y) = � ⇐⇒ x kisses y ⇐⇒ (x, y) ∈ kissext

Here kissext is the set of pairs of people kissing.
For instance, if the extension of the verb kiss were kissext = {(J,M)} then

we could say that the only kissing happening is between John and Mary, John
being the kisser and Mary the kissee.

The values of the following sentences could then be found by translating them
into the appropriate logical form and checking if the membership conditions hold:

(11) [[John kisses Mary]] = kiss(J,M) = (J,M) ∈ kissext = �
but [[John kisses Paola]] = ⊥, as (J, P) �∈ kissext.

Another possible analysis would be in terms of events.

(12) John kisses Mary ⇐⇒ there is an event in which John kisses Mary

i.e. [[John kisses Mary]] = ∃e.kiss(e, J,M).
Letting the verb take an implicit event argument makes it then much easier to

deal with questions such as verb arity and sentential adjuncts, as constructions
like temporal, locative and manner adjuncts can now be redefined as independent
predicates over events. For instance,

(13) a. [[John danced at the ball]] = ∃e.danced(e, John) ∧ Location(e, the ball)

b. [[John danced yesterday]] = ∃e.danced(e, John) ∧ yesterday(e)

This kind of representation makes it also easier to analyse certain cases of
entailment relations: it is as simple as using ∧-elimination on the denotation of
a sentence with adjunct, to get its meaning without adjunct.

(14) danced(e, John) ∧ With(e,Michael) � danced(e, John)

It is also possible to go even further [11] and treat subjects and objects not as
arguments of the verb, but in a way similar to how adjuncts are handled using
conjunctions. One can do so by introducing predicates standing for thematic
relations between events and entities, that share the event with the verb:

(15) [[John kissed Julia]] = ∃e.Agent(e, John)∧kissed(e)∧Theme(e, Julia)

Having verbs take in event arguments and no other grammatical argument
also mirrors the way nouns and adjectives interact; instead of sharing an entity
of some sort they are instead sharing an event or a state.

(16) a. [[big grey cat]] = big(x) ∧ grey(x) ∧ cat(x)
b. [[intense dance]] = intense(x) ∧ dance(x)
c. [[dance intensely]] = dance(e) ∧ intense(e)
d. [[rain violently in Atlanta]] = rain(e) ∧ violent(e) ∧ in atlanta(e)

Cases of embedded sentences can also be treated similarly by letting the event
of the embedded sentence be treated as object and letting meaning predicates
associated to the lexical items be independent of one another:

104 G. Gaudreault

(17) [[John saw that Maria lied]] = ∃.e.Agent(e, John)∧ see(e)∧Past(e)∧
∃.e′.Theme(e, e′) ∧ lie(e′) ∧ Past(e′) ∧ Agent(e′,Maria)

The next logical step in our will to generalize even more how the mean-
ing of each lexical item can be seen as a piece of information that simply adds
constraints to the overall meaning of an expression, is to try to only have the
conjunction as mean of combination, and this is what Paul Pietroski brought
with Conjunctivism [13], inspired in part by the work of Schein [16,17] on plu-
rality. Pietroski’s proposal is that the semantics of any expression in natural
language consists in a finite conjunction of the meaning of its parts.

Connectives other than the conjunction are often used though in formal
semantics, and it is still not clear how sentences that seem to require them could
be modelled without. The crux of Pietroski’s argument relies on using a different
logic for sentential interpretation, namely, plural logic [1]. Plural quantification
is an interpretation of monadic second-order logic, similar to a two-sorted logic,
in which the monadic predicate variable is not interpreted as a set of things, but
instead as taking multiple values.

(18) x ≺ X := x is one of the X’s

The choice of this logic comes from the need to model plurality in cleaner
ways than with first-order logic. It has also a greater descriptive power and can
model meanings not accessible with first-order logic [1].

For instance, some predicates such as dance or boy are said to be singular and
require that the input is a singular value for it to be evaluated. The reasoning
behind this is that when someone asks of a group of people if they are boys,
they are not asking whether that group as a whole is a boy, but rather, whether
each person of that group is a boy. Therefore, singular predicates evaluate plural
values by evaluating the singular values it is composed of.

This allows us to represent an expression such as two blue cats as

(19) ∃X.two(X) ∧ blue(X) ∧ cat(X) ∧ Plural(X)

which is then interpreted as:

– There is a (perhaps) plural entity
– This plural entity has two values
– The values of the plural entity are blue
– The values of the plural entity are cats
– The entity has to be plural, i.e. has more than one value

Using this logic is a key component of Conjunctivism, as it also allows one
to model cases that seem to require extra logical tools like implication →, dis-
junction ∨ or universal quantification ∀. For instance, the quantified sentence
every cat sleep can be represented as:

(20) ∃E.∃X.Every Ag(E,X) ∧ cat(X) ∧ sleep(E)

The reason why this works lies in the way each predicate contributes a specific
condition to the global meaning of the expression:

Compositional Event Semantics in Pregroup Grammars 105

– Every Ag(E,X): are the values of X precisely the agents of the events E?
– cat(X): is every value of X a cat?
– sleep(E): is every event of E an event of sleeping?

The goal here is not to defend Conjunctivism as a valuable approach to
semantics, but only to show that, although it might not look like much at first,
it is powerful enough to handle interesting non-trivial cases.

5 Derivational Event Semantics Using Pregroup
Grammars

In this section, it will be shown how one could use the implicit event variables
instantiated by a lexical item’s corresponding meaning predicate to derive the
right neo-davidsonian representation of an expression. The idea is that those
variables can be turned into explicit objects that can be unified over as the
expressions are combined. To structure the derivations, pregroup grammars will
be used as the syntactic framework on top of which will be added the truth-
conditional semantic layer and another layer where interaction between event
variables take place.

The general process of unifying event variables is not required to take place in
the pregroup framework, or even categorial framework, though pregroup gram-
mars do offer some advantages over other syntactic frameworks for this type
of analysis, especially since their types are non-functional and some syntactic
relations are already defined in the system through type ordering, e.g. N → π3.

It would also be possible to adapt this framework to a montagovian one
where denotations are λ-terms and where the syntactic types are functional (see
[3,7,20] for inspiration), but the end goal is really to show that the full power
of the λ-calculus is not needed to get a good compositional semantics. We aim
to get something that really highlights how events relate to each other and how
simple meaning composition can really be. Simplicity is the key here.

The focal point of the analysis will also be different, in a sense, from what
is seen in more traditional approaches to semantics, as instead of focusing on
ways to combine expressions’ truth conditions and passing around predicates
to predicates, the event variables will themselves be the ones moving around
the syntactic trees, as they are the main shareable pieces of information in this
framework. On the other hand, the semantics predicates’ main role will be to
constrain the possibility of events to occur by restraining the possible values the
event and entity variables can take.

5.1 Motivation

Let’s start by looking at the event analysis of a simple sentence.

(21) [[John dances]] = ∃e.Agent(e, John) ∧ dance(e)

106 G. Gaudreault

In this case, a single event e is shared by both lexical items. We want to com-
positionally explain how to get to that denotation so that one could define a
derivational system that takes words as input and outputs conjunctivist values.

(22)
John dances

∃e.Agent(e, John) ∧ dance(e)

John
α(e1)

dances
β(e2)

In the above case, both α and β stand for the meaning of their respective
expressions and take as argument event variables e1 and e2. Leaving aside for a
moment the question of what the exact values α and β stand for, an important
question to answer is: Where does e come from?

The main property of variables is their mutability, they can take any values
assigned to them. One does not have to know from the start what value they will
be taking at the end. In the following functional example, x does not have any
intrinsic value at the beginning, its raison d’être is to take the value of whatever
term gets passed to the expression.

(23)
dance(John)

λx.dance(x) John

Now, looking back at the event translation, neither the subject John nor
dances know what they will be taking scope over when the derivation ends. For
instance, in a sentence such as

(24) John knows that Sara dances

they would not have the same event as argument: the subject John is related to
a first event of knowing, while dances predicates over a totally different event
where Sara is the agent instead of John. The goal is to figure out what they
could have started with so that they end up with the right argument assignment.
Assuming that they start for instance with values Agent(e, John) and dance(e),
over the same event e, does not solve the problem: how did they know that they
both take the exact same event as argument? Getting the right variables in the
right place will be achieved by using unification on the variables.

Here is how the derivation of the logical form ∃e.Agent(e, John) ∧ dance(e)
will take place:

1. Distinct variables are instantiated by john and dances’s semantic predicates,
to be taken as arguments: Agent(e1, John) and dance(e2)

2. Lexical items are concatenated, from which it follows that the variables asso-
ciated with the syntactic categories that allowed the concatenation to take
place are unified. In this case, e1 and e2 are unified, i.e. e1 = e2.

Compositional Event Semantics in Pregroup Grammars 107

(25)
John dances

Agent(e1, John) ∧ dance(e2) ∧ e1 = e2

John
Agent(e1, John)

dances
dance(e2)

3. A final process then takes place that binds the instantiated variables

To improve readability, values of the form A[e1, e2] ∧ e1 = e2 will be auto-
matically replaced by A[e1, e2/e1].

Note that actually keeping the two variables as distinct and binding each
one — hence binding twice instead of once — does not actually make any dif-
ference in the meaning:

(26) ∃x.∃y.A(x) ∧ B(y) ∧ x = y ⇐⇒ ∃x.A(x) ∧ B(x)

Now let’s have look at the sentence the cat dances, whose derivation tree
looks something like:
(27) The cat dances

the cat

the cat

dances

It would be nice to have the derivation process be similar to the one described
above, but that poses a problem, as doing so exactly the same way would give
us this kind of logical form:

(28) ∃e.the(e) ∧ cat(e) ∧ Agent(e, e) ∧ dances(e)

The variable taken by the determiner phrase as argument should be a completely
different one from the one taken by the verb. The relation between those two
variables seems to be exactly what Agent(e, x) is defining: the variable from the
determiner phrase is the agent of the variable taken by the verb phrase.

This problem could be approached through two different angles. The first
way (see 29), following Pietroski [13] is to assume that the type of the deter-
miner and noun compound contains a unique implicit variable x it can refer to,
which, through a transformation from determiner phrase to subject – or by being
assigned case – gets a new semantic constraint Agent(e, x) added to its meaning
and a new event variable: the verb phrase can now only access e, which is fresh,
and not x anymore. In other words, a new grammatical role is now synonymous
with a change of available implicit variable and a closure of the old variable.
This solution has the advantage of being more theoretically motivated, but also
has its downsides when used in a syntactic framework like PG, which does not
restrict compounding of expressions as much as other frameworks.

108 G. Gaudreault

e

e

(29) x

the cat

dances

e

(30) x

e x
the

x
cat

e
dances

The second way (30) this could be dealt with is by assigning different vari-
ables to the syntactic categories that form the type of the, so that when it first
concatenates with cat, the syntactic category that allows for the operation to
happen will be linked to x, and the one corresponding to the second concatena-
tion will contain a different variable, e.

The variable over which two branches unify is represented in the node.
Looking back at the previous tree, one see that e dominates it and might

wonder what it implies. For simplicity, it can be assumed that this node, which
is the final one in the tree, is of a basic category, e.g. s or C as opposed to
a concatenation of categories, and so that this category corresponds to a single
variable, or has a single variable available for further concatenation, e in this case.
The reason is that if one were to use this expression within another expression
or if one wanted to concatenate extra lexical items to it, what would be shared
between the two would be the event variable e, and in no case the entity variable
x — assuming the internal structure of that subtree is not modified.
(31) e′

e′

I think

e

that e

x

the cat

dances

(32) e

e

x

the cat

dances

today

On the left, the sentence is included in the tree as an embedded clause, which
semantically would be represented as the variable e now being the theme of
e′, the event over which I and think take place. On the right, the expression
is concatenated with an adjunct, which shows that the event e is still possibly
accessible from the expression the cat dances.

In a way, no matter how that constituent — the cat dances — is used, the
main information that will be shared and that could be quantified over, seems to
be the event. This is similar to the way syntactic categories behave, in the sense
that no matter how long an expression gets, if its syntactic category is A, it will
always be possible to use it anywhere where an expression of category A could
be used, no matter what other constituents it might contain. It does not mean
that the embedded subtree is completely opaque, but simply that its access is
more restricted.

Compositional Event Semantics in Pregroup Grammars 109

5.2 Semantic Pregroup Types

It will be now shown how to transpose that approach into the pregroup frame-
work.

To stay in the categorial state-of-mind, the system will be as general and
require as few rules as possible when it comes to generating the logical form:
systematic combination rules will be defined, but constraints as to when and
to what lexical items these rules can be applied is mostly left to the lexical
items themselves, by carefully specifying their syntactic types. No complexity
is added to the syntactic layer from the addition of this new semantic layer,
which means that the structure of derivations is no different than that of regular
pregroup derivations. This means that the usual parsing algorithms for pregroup
grammars can also be used, as long as clauses are added to handle semantics.

Note that the final representation of the meaning one will get at the end
of a derivation can be qualified as raw, as some aspects of the meaning of a
sentence cannot be reached simply by predicate combination, especially since no
pre-derivational thematic assignments are assumed to have taken place. Con-
cretely, this means that one might end up with the representation (33a) for
the sentence (33b) but then that extra semantic information could be reached
through meaning postulates such as (33c) as thematic roles depend on multiple
factors such as voice, grammatical functions and the nature of the verb itself.

(33) a. ∃e.Subject(e, John) ∧ Passive(e) ∧ Past(e) ∧ Kick(e) ∧ Time(e,Monday)

b. John was kicked on Monday

c. Subject(e,A) ∧ Passive(e) ∧ Kick(e) � Patient(e,A)

The most direct way of building a system to account for the kind of semantics
just seen above is to pair lexical items with a syntactic type, a set of available
variables and a truth-conditional meaning predicate, which scopes over different
values and variables. Those variables will be assumed to be instantiated when
the lexical item is first used, and their value will change through the derivation
depending on the way types contract.

The full value of a lexical item is then a tuple of the form:

(34) ((a1, x1) · (a2, x2) · ... · (an, xn), A)

where ai is a basic pregroup type, xi an available implicit variable, and A a
logical formula that stands for the expression’s meaning.

For instance, the relative pronoun whom, will have the form (35a) which will
be rewritten as (35b) for clarity, and could be read as: the variable associated
with the sentential and subject type is possibly different from the one associated
to the noun types. This comes from the fact that whom is usually used as theme
predicate over 2 distinct variables, one corresponding to an event and another
corresponding to an entity.

(35) a. (nr, x) · (n, x) · (sl, e) · (π3, e)
b. nr

xnxsleπ3,e

110 G. Gaudreault

This is a good example of why having only one available variable per lexical
item does not work well with pregroup types: both the event and entity variable
have to appear within its meaning predicate at some point of the derivation,
but starting with either and trying to introduce the other at a later point brings
many complications. Not to say that it is impossible, just much more painful.

(36) a. the cat whom Caesar stabbed
b. ∃x.i(e, x) ∧ cat(x) ∧ ∃e.Theme(e, x) ∧ Agent(e, Caesar) ∧ stabbed(e)

In this case, whom will have semantic value Theme(e, x), sharing the variable e
on the right with Caesar stabbed and x, on the left with cat.

Note that the kind or type of the variables is irrelevant in this system. There is
no real difference between x, e, or any other variable, and only the constraints put
on a variable can say something about it. Using specific characters to represent
variables such as x and e only makes reading descriptions easier.

It is tempting to use, for instance, entity types and event types and try to
copy what is done in Montagovian semantics, but in the end the types that would
end up being required would be very different from the Montagovian ones. For
instance, there is not going to be any boolean type passed around.

The reason is simply that the boundaries between entities and events are
very blurry: is the crash in The crash was brutal an event or entity? Similarly,
differentiating between activities, accomplishments and other eventualities [19]
does not seem necessary: it will be assumed that the kind of eventualities is
simply the result of the interplay between features or predicates, e.g.

(37) a. I built the house for 10 hours : build(e) ∧ for(e) � activity(e)
b. I built the house in 10 hours : build(e) ∧ in(e) � accomplishment(e)

5.3 Semantic Combinations

This section outlines a method of combining lexical items’ meanings given the
new tuple types defined above. As previously mentioned, the Conjunctivist app-
roach is followed here and the meaning of an expression takes the form of a
conjunction of the meaning of the parts, scoping over given event variables.

To get the right variables at the right place, the variables will have to get
unified over the contraction links. What this means is that whenever two syntac-
tic types contract, their contained variables are forced to take the same value.
This also affects the distribution of the other variables contained in those types.
Here is a simple example to show how it works:

(38)
big cat → big cat

nxnl
x ny → nx

big(x) cat(y) → big(x) ∧ cat(y) ∧ x = y

While contracting the types, the constraint that x = y is added to the global
meaning. The variables could also be replaced automatically.

Compositional Event Semantics in Pregroup Grammars 111

What is nice about this is that a derivation can now be represented as seman-
tic predicates linked to each other by the variables they share, which also corre-
sponds to the contraction links. Put another way, the contraction links can be
labelled using the contained event and entity variables.

(39)

John
π3,e

Agent(e, John)

e���� ����
��

likes
πr
3,es3ole
like(e)

e��� ���
��

the
oenl

x

Theme(e, x) ∧ the(e, x)

x

��

big
nxnl

x

big(x)

x

��

cat
nx

cat(x)

5.4 Syntactic/Semantic Hierarchy

Let’s have a look back at example (27) that was discussed at the very beginning
of this chapter.

(40) [[The cat dances[] = ∃e.∃x.the(x) ∧ cat(x) ∧ Agent(e, x) ∧ dances(e)

Underlyingly, the variables are layered in this kind of way:

(41) e

x

the cat

dances

The task at hand now is to find a way of going from the variable that is
shared between the and cat to a fresh one that would then get unified with the
one coming from dances. There is actually a very simple way of relating this to
another pregroup operation and that is by extending the pregroup orderings, or
syntactic hierarchy, to take into account semantic constructions.

To remind the reader, since pregroups are ordered structures, some gram-
matical relations can be explicitly defined as orders. For instance,

n̄ → o a determiner phrase can be used as object
j̄ → π3 an infinitive verb phrase can be used as subject

A relation such as n̄ → π3 could then be rewritten to include information
about the variables present in the types and about the extra semantic relation
they now play under this new syntactic type:

(42)
n̄x π3,e

A[x] ⇒ Agent(e, x) ∧ A[x]

which is to be interpreted as: using a determiner phrase as a third person subject
means having its available entity variable used as the agent of the event specified
by the verb it will combine with.

(43)
He knows the person whom John likes
πe0 πr

e1se1o
l
e1 n̄x0n

l
x0

nx1 nl
x2

nx2(so
l)le2 Njohn πr

e3se3o
l
e3

Agent(e0, he) know(e1) the(x0) person(x1) Theme(e2, x2) � likes(e3)

112 G. Gaudreault

πe0

Agent(e0, he)
e0

��

πr
e0se0o

l
e0

know(e0)
oe0n

l
x0

Theme(e0, x0) ∧ the(x0)
e0

��

nx0

person(x0)
x0

��

nl
x0

nx0(so
l)le1

Theme(e0, x0)

x0

��

πe1

Agent(e1, John)
e1

��

πr
e1se1o

l
e1

likes(e1)

e1

��

In this case, the rule used on the proper name John was:

(44)
Nx π3,e

John(x) ⇒ Agent(e, x) ∧ John(x)

Note that it is not always necessary to go through a transformation of vari-
able, as potentially distinct variables could be attached to the basic types of an
expression, just like for the above case of the relative pronoun whom, or in a
case like (45) where all pieces naturally combine and the variables over which
expressions are unified varies as the concatenation takes place

(45) [[He danced at school]] = Agent(e, he)∧danced(e)∧Loc(e, x)∧school(x)

(46)
se
e

e
se

πe

he
πr
ese

danced

x
srese

sresen
l
x

at
nx

school

In this case the variable at the top of a branching represents the variable that
was unified.

5.5 Existential-Closure

Existential-closure is not as straight-forward to implement in this system and
will only be glossed over in this article. The main problem with trying to adapt
the kind of semantic system that researchers like Pietroski uses is that syntactic
types in pregroup grammars can combine in any order they want as long as they
are on the edge of the type. This is problematic, as more mainstream syntactic
systems usually does not work this way, and a lot of ordering is constrained by the
encoding of the grammatical categories, for instance by using internal/external
argument relations.

A simple example is how thematic relation assignment is usually dealt with.
A generative way of representing how the phrase my cat can play the role of
an agent could be as positing a covert agent-node that takes in the clause and
changes its domain of predication from an entity to an event

(47) [[Agent [my cat]]](e) = ∃x.Agent(e, x) ∧ [[my cat]](x)

Compositional Event Semantics in Pregroup Grammars 113

This way, if something is under the scope of agent, it will only have access to
x and not e, and on the other hand, x is bound inside the agent-node, hence if
one is working outside of it, they will not have access to x, but only to e. By
letting the determiner phrase be taken as an argument, the syntactic parsing is
also restricted, as the concatenation of my and cat is something that can only
happen lower in the tree, than the assignment of the agent role.

In pregroup grammars, the derivation could take multiple forms.

(48)
πnl n n̄

n̄nl n

π

On the left, the ordering is used first on n̄ → π, which corresponds, in a
sense, to combining a covert agent node with the determiner, before the latter
combines with the noun. On the right, the combination of the determiner and
noun takes place before the expression takes on the role of an agent, which is
equivalent to the unique generative representation discussed above.

This much more flexible way of combining expressions is the reason it is
harder to structure existential closure and is the reason multiple variables per
type are needed, as some of those operations take place in parallel, and sometimes
multiple variables have to be accessible at the same time. More precisely, in
this case, closing the variable as n̄ goes to π before contracting the types (left
path) blocks the entity variable coming from the noun to be unified with the
determiner, which is dramatic. Restricting the order in which pregroup types
could combine is also out of the question here.

Two possible alternatives to ∃-closure would be:

– Closing a variable after a contraction of one of the basic types it is present
in, only if it does not appear in any other basic type of the complex type it is
part of.

– Closing every variable instantiated at the end of a derivation, similarly to the
way ∃-introduction is used in logic. This works since the only logical symbols
we are working with are the conjunction and the existential quantifier.

Here is a complete table of the correspondence between the syntactic and the
semantic structures:

Syntax Semantics

Concatenation of basic types Conjunction of logical predicates

Contraction of types Unification on available event variables

Syntactic type ordering Conjunction of new semantic predicate

Variable disappears from the types ∃-closure

114 G. Gaudreault

6 Conclusion

The compositional semantic system defined in this article is an elegant and
natural way of defining a semantics for pregroup grammars which relies on light
machinery and intuitive operations, which are clearly its key characteristics.

Many questions are left to be answered, especially when it comes to the
internal structure of the events and how this kind of system might relate to the
typed λ-calculus, which seems to be much more powerful and to have a greater
control on how predicates can be moved around and reorganized. The descriptive
adequacy of Conjunctivism is also an interesting question to investigate in the
future, which was only briefly addressed in this paper.

References

1. Boolos, G.: To be is to be the value of a variable (or to be some values of some
variables). J. Philos. 81, 430–449 (1984)

2. Buszkowski, W.: Lambek calculus and substructural logics. Linguist. Anal. 36(1),
15–48 (2003)

3. Champollion, L.: Quantification and negation in event semantics. In: Barbara
Partee, M.G., Skilters, J. (eds.) Baltic International Yearbook of Cognition,
Logic and Communication, vol. 6, pp. 1–23. New Prairie Press, Manhattan (2010)

4. Clark, S., Coecke, B., Sadrzadeh, M.: Mathematical foundations for a composi-
tional distributional model of meaning. Linguist. Anal. 36 (2010)

5. Davidson, D.: The logical form of action sentences. Synthese (1967)
6. Gaudreault, G.: Bidirectional functional semantics for pregroup grammars. In:

Kanazawa, M., Moss, L.S., de Paiva, V. (eds.) Third Workshop on Natural Lan-
guage and Computer Science, NLCS 2015. EPiC Series in Computer Science, vol.
32, pp. 12–28 (2015)

7. de Groote, P., Winter, Y.: A type-logical account of quantification in event
semantics. In: Murata, T., Mineshima, K., Bekki, D. (eds.) JSAI-isAI 2014.
LNCS (LNAI), vol. 9067, pp. 53–65. Springer, Heidelberg (2015). doi:10.1007/
978-3-662-48119-6 5

8. Lambek, J.: Type grammar revisited. In: Lecomte, A., Lamarche, F., Perrier, G.
(eds.) LACL 1997. LNCS (LNAI), vol. 1582, pp. 1–27. Springer, Heidelberg (1999).
doi:10.1007/3-540-48975-4 1

9. Lambek, J.: From Word to Sentence: A Computational Algebraic Approach to
Grammar. Polimetra, Koper (2008)

10. Montague, R.: Formal Philosophy: Papers of Richard Montague. Yale University
Press, New Haven (1974). Ed. by R.H. Thomason

11. Parsons, T.: Events in the Semantics of English. The MIT Press, Cambridge (1990)
12. Partee, B. (ed.): Montague Grammar. Academic Press, New York (1976)
13. Pietroski, P.: Events and Semantic Architecture. Oxford University Press, Oxford

(2005)
14. Preller, A.: Toward discourse representation via pregroup grammars. J. Logic Lang.

Inform. 16(2), 173–194 (2007)
15. Preller, A., Sadrzadeh, M.: Semantic vector models and functional models for pre-

group grammars. J. Logic Lang. Inform. 20(4), 419–443 (2011)
16. Schein, B.: Plurals and Events. MIT Press, Cambridge (1993)

http://dx.doi.org/10.1007/978-3-662-48119-6_5
http://dx.doi.org/10.1007/978-3-662-48119-6_5
http://dx.doi.org/10.1007/3-540-48975-4_1

Compositional Event Semantics in Pregroup Grammars 115

17. Schein, B.: Events and the semantic content of thematic relations. In: Peter, G.P.G.
(ed.) Logical Form and Language, pp. 263–344. Oxford University Press, Oxford
(2002)

18. Stabler, E.: Derivational minimalism. In: Retoré, C. (ed.) LACL 1996. LNCS, vol.
1328, pp. 68–95. Springer, Heidelberg (1997). doi:10.1007/BFb0052152

19. Vendler, Z.: Verbs and times. Philos. Rev. 66, 143–160 (1957)
20. Winter, Y., Zwarts, J.: Event semantics and abstract categorial grammar. In:

Kanazawa, M., Kornai, A., Kracht, M., Seki, H. (eds.) MOL 2011. LNCS
(LNAI), vol. 6878, pp. 174–191. Springer, Heidelberg (2011). doi:10.1007/
978-3-642-23211-4 11

http://dx.doi.org/10.1007/BFb0052152
http://dx.doi.org/10.1007/978-3-642-23211-4_11
http://dx.doi.org/10.1007/978-3-642-23211-4_11

A Compositional Distributional Inclusion
Hypothesis

Dimitri Kartsaklis and Mehrnoosh Sadrzadeh(B)

School of Electronic Engineering and Computer Science,
Queen Mary University of London, London, UK

{d.kartsaklis,mehrnoosh.sadrzadeh}@qmul.ac.uk

Abstract. The distributional inclusion hypothesis provides a pragmatic
way of evaluating entailment between word vectors as represented in a
distributional model of meaning. In this paper, we extend this hypothesis
to the realm of compositional distributional semantics, where meanings
of phrases and sentences are computed by composing their word vectors.
We present a theoretical analysis for how feature inclusion is interpreted
under each composition operator, and propose a measure for evaluating
entailment at the phrase/sentence level. We perform experiments on four
entailment datasets, showing that intersective composition in conjunc-
tion with our proposed measure achieves the highest performance.

Keywords: Computational linguistics · Artificial intelligence · Nat-
ural language processing · Textual entailment · Inclusion hypothesis ·
Compositionality · Distributional models

1 Introduction

Distributional models of meaning, where words are represented by vectors of
co-occurrence frequencies gathered from corpora of text, provide a successful
model for representing meanings of words and measuring the semantic similarity
between them [22]. A pragmatic way for applying these models to entailment
tasks is developed via the distributional inclusion hypothesis [8,9,11], which
states that a word u entails a word v if whenever u is used so can be v. In
distributional semantics terms, this means that contexts of u are included in
contexts of v. For example, whenever ‘boy’ is used, e.g. in the sentence ‘a boy
runs’, so can be ‘person’; thus boy � person. By projecting this hypothesis onto
a truth theoretical model, one may say that u and v stand in an entailment
relation if by replacing u with v in a sentence presumed to be true, we produce
a new sentence preserving that truth. For example, if the sentence ‘a boy runs’
is presumed to be true, so is the sentence ‘a person runs’, obtained by replacing
‘boy’ by ‘person’.

M. Sadrzadeh – Support by EPSRC for Career Acceleration Fellowship EP/J002
607/1 and AFOSR International Scientific Collaboration Grant FA9550-14-1-0079 is
gratefully acknowledged.

c© Springer-Verlag GmbH Germany 2016
M. Amblard et al. (Eds.): LACL 2016, LNCS 10054, pp. 116–133, 2016.
DOI: 10.1007/978-3-662-53826-5 8

A Compositional Distributional Inclusion Hypothesis 117

One problem with distributional models of meaning is that they do not scale
up to larger text constituents, such as phrases or sentences. The reason is that
these do not frequently occur in corpora of text, thus the process of collecting
reliable statistics to represent them as vectors does not witness the distributional
hypothesis. This problem is usually addressed with the provision of a composition
operator, the purpose of which is to produce vectors for phrases and sentences
by combining their word vectors. Compositional distributional models of this
form generally fall into three categories: models based on simple element-wise
operations between vectors, such as addition and multiplication [19]; tensor-
based models in which relational words such as verbs and adjectives are multi-
linear maps acting on noun (and noun-phrase) vectors [3,7,10]; and models in
which the compositional operator is implemented as part of some neural network
architecture [12,21].

The purpose of this paper is to investigate, both theoretically and exper-
imentally, the application of the distributional inclusion hypothesis on phrase
and sentence vectors produced in a variety of compositional distributional mod-
els. We provide interpretations for the features of these vectors and analyse the
effect of each compositional operator on the inclusion properties that hold for
them. We further discuss a number of measures that have been used in the
past for evaluating entailment at the lexical level. Based on the specificities
introduced by the use of a compositional operator on word vectors, we propose
an adaptation of the balAPinc measure [14]—which is currently considered a
state-of-the-art in measuring entailment at the lexical level—for compositional
distributional models.

The theoretical discussion is supported by experimental work. We evaluate
entailment relationships between simple intransitive sentences, verb phrases, and
transitive sentences, on datasets specifically created for the purposes of this work.
We also present results on the AN � N task of [2], where the goal was to evaluate
the extent to which an adjective-noun compound entails its noun. Our findings
suggest that the combination of our newly proposed measure with intersective
compositional models achieves the highest discriminating power when evaluating
entailment at the phrase/sentence level.

Outline. Sections 2 and 3 provide an introduction to compositional distributional
semantics and to distributional inclusion hypothesis, respectively; Sect. 4 studies
the inclusion properties of features in a variety of compositional distributional
models, while Sect. 5 discusses the adaptation of the balAPinc measure to a
compositional setting; Sects. 6 and 7 deal with the experimental part; and finally,
in Sect. 8 we briefly discuss our findings.

2 Compositional Distributional Semantics

Compositional distributional semantics represents meanings of phrases and sen-
tences by combining the vectors of their words. In the simplest case, this is done
by element-wise operations on the vectors of the words [19]. Specifically, the
vector representation of a sequence of words w1, . . . , wn is defined to be:

118 D. Kartsaklis and M. Sadrzadeh

∑

i

−→w i or
⊙

i

−→w i (1)

where � denotes element-wise multiplication.
A second line of research follows a more linguistically motivated approach and

treats relational words as linear or multi-linear maps. These are then applied to
the vectors of their arguments by following the rules of the grammar [3,7,10].
For example, an adjective is treated as a map N → N , for N a basic noun space
of the model. Equivalently, this map can be represented as a matrix living in the
space N ⊗ N . Similarly, a transitive verb is a map N × N → S, or equivalently,
a “cube” or a tensor of order 3 in the space N ⊗ N ⊗ S, for S a basic sentence
space of the model. Composition takes place by tensor contraction, which is a
generalization of matrix multiplication to higher order tensors. For the case of
an adjective-noun compound, this simplifies to matrix multiplication between
the adjective matrix and the vector of its noun, while for a transitive sentence
it takes the form: −→svo = (verb × −→

obj) × −−→
subj (2)

where verb is a tensor of order 3. Compared to element-wise vector operations,
note that tensor-based models adhere to a much stricter notion of composition,
where the transition from grammar to semantics takes place via a structure-
preserving map [7].

Finally, deep learning architectures have been applied to the production of
phrase and sentence vectors, tailored for use in specific tasks. These methods
have been very effective and their resulting vectors have shown state-of-the-art
performances in many tasks. The main architectures usually employed are that of
recursive or recurrent neural networks [5,21] and convolutional neural networks
[12]. Neural models are “opaque” for our purposes, in the sense that their non-
linear multi-layer nature does not lend itself to be reasoned about in terms of
the feature inclusion properties of the distributional inclusion hypothesis, and
for this reason we do not deal with them in this paper.

3 The Distributional Inclusion Hypothesis

The distributional inclusion hypothesis (DIH) [8,9,11] is based on the fact that
whenever a word u entails a word v, then it makes sense to replace instances
of u with v. For example, ‘cat’ entails ‘animal’, hence in the sentence ‘a cat is
asleep’, it makes sense to replace ‘cat’ with ‘animal’ and obtain ‘an animal is
asleep’. On the other hand, ‘cat’ does not entail ‘butterfly’, and indeed it does
not make sense to do a similar substitution and obtain the sentence ‘a butterfly
is asleep’.

This hypothesis has inherent limitations, the main one being that it only
makes sense in contexts that contain no logical words. For instance, the substi-
tution of u for v would not work for sentences that have negations or quantifiers
such as ‘all’ and ‘none’. As a result, one cannot replace ‘cat’ with ‘animal’ in
sentences such as ‘all cats are asleep’ or ‘a cat is not asleep’. Despite this, the

A Compositional Distributional Inclusion Hypothesis 119

DIH has been subject to a good amount of study in the distributional semantics
community and its predictions have been empirically validated to a good extent
[9,14].

Formally, if word u entails word v, then the set of features of u are included
in the set of features of v. In the context of a distributional model of meaning,
the term feature refers to a non-zero dimension of the distributional vector of a
word. This makes sense since, according to DIH, word v subsumes the meaning
of word u. Throughout this paper, we denote the features of a distributional
vector −→v by F(−→v), hence we have:

u � v whenever F(−→u) ⊆ F(−→v) (3)

The research on the DIH can be categorised into two classes. In the first class,
the degree of entailment between two words is based on the distance between
the vector representations of the words. This distance must be measured by
asymmetric means, since entailment is directional. Examples of measures used
here are entropy-based measures such as KL-divergence [4]. Abusing the notation
and taking −→u and −→v to also denote their underling probability distributions,
this is defined as follows:

DKL(−→v ‖−→u) =
∑

i

vi(ln vi − ln ui) (4)

KL-divergence is only defined when the support of −→v is included in the
support of −→u . In order to overcome this restriction, a variant referred to by
α-skew [15] has been proposed. This is defined in the following way:

sα(−→u ,−→v) = DKL(−→v ‖α−→u + (1 − α)−→v) (5)

where α ∈ (0, 1] serves as a smoothing parameter. Representativeness is another
way of normalising KL-divergence; it is defined as follows:

RD(−→v ‖−→u) =
1

1 + DKL(−→v ||−→u)
(6)

Representativeness turns KL-divergence into a number in the unit interval
[0, 1]. As a result we obtain 0 ≤ RD(−→v ‖−→u) ≤ 1, with RD(−→v ‖−→u) = 0 when the
support of −→v is not included in the support of −→u and RD(−→v ‖−→u) = 1, when −→u
and −→v represent the same distribution.

The research done in the second class attempts a more direct measurement
of the inclusion of features, with the simplest possible case returning a binary
value for inclusion or lack thereof. Measures developed by [6,23] advance this
simple methods by arguing that not all features play an equal role in representing
words and hence they should not be treated equally when it comes to measuring
entailment. Some features are more “pertinent” than others and these features
have to be given a higher weight when computing inclusion. For example, ‘cat’
can have a non-zero coordinate on all of the features ‘mammal, miaow, eat,
drink, sleep’. But the amount of these coordinates differ, and one can say that,

120 D. Kartsaklis and M. Sadrzadeh

for example, the higher the coordinate the more pertinent the feature. Pertinence
is computed by various different measures, the most recent of which is balAPinc
[14], defined as follows:

balAPinc(u, v) =
√
LIN(u, v) · APinc(u, v) (7)

where LIN is Lin’s similarity [16] and APinc is an asymmetric measure defined
as below:

APinc(u, v) =
∑

r

[
P (r) · rel′(fr)

]

|F(−→u)| (8)

APinc applies the DIH via the idea that features with high values in F(−→u)
must also have high values in F(−→v). In the above formula, fr is the feature
in F(−→u) with rank r; P (r) is the precision at rank r; and rel′(fr) is a weight
computed as follows:

rel′(f) =

{
1 − rank(f,F(−→v))

|F(−→v)|+1
f ∈ F(−→v)

0 o.w.
(9)

where rank(f,F(−→v)) shows the rank of feature f within the entailed vector. In
general, APinc can be seen as a version of average precision that reflects lexical
inclusion.

We will return to the topic of entailment measures in Sect. 5, where we pro-
pose variations on APinc and balAPinc that are more appropriate for entailment
in compositional distributional models.

4 A Compositional Distributional Inclusion Hypothesis

In the presence of a compositional operator, features of a phrase/sentence adhere
to some set-theoretic properties. In what follows, we present these properties for
a number of operators in various compositional distributional models.

4.1 Element-Wise Composition

For simple additive and multiplicative models, the set of features of the
phrase/sentence are easily derived from the set of features of their words using
the set-theoretic operations of union and intersection:

F(−→v1 + · · · + −→vn) = F(−→v1) ∪ · · · ∪ F(−→vn) (10)
F(−→v1 � · · · � −→vn) = F(−→v1) ∩ · · · ∩ F(−→vn) (11)

The features of a tensor product of vectors consists of tuples of same-indexed
features, taken from their cartesian product:

F(−→v1 ⊗ · · · ⊗ −→vn) = {(v1
i , · · · , vn

i) | vj
i ∈ F(−→vj)} (12)

A Compositional Distributional Inclusion Hypothesis 121

where vj
i refers to the ith element of the jth vector. Point-wise minimum and

maximum of vectors act inline with intersection and union respectively, providing
a feature inclusion behaviour identical to addition and point-wise multiplication.

F(max(−→v1 , · · · ,−→vn)) = F(−→v1) ∪ · · · ∪ F(−→vn) (13)
F(min(−→v1 , · · · ,−→vn)) = F(−→v1) ∩ · · · ∩ F(−→vn) (14)

In order to see this, let us consider the max case. In the linear expansion
notation, we have:

max(−→v1 , · · · ,−→vn) =
∑

i

max(v1
i , v2

i , · · · , vn
i)−→a i

where {−→ai}i is an orthonormal basis of space V where vectors −→vi live. For
any arbitrary dimension −→aj , it is the case that −→aj ∈ F(max(−→v1, · · · ,−→vn)) iff
max(v1

j , v2
j , · · · , vn

j) �= 0. For this to happen, it suffices that one of the vi
j ’s is

nonzero, that is v1
j �= 0 or v2

j �= 0 or · · · or vn
j �= 0, which is equivalent to saying

that −→aj ∈ F(−→v1) ∪ · · · ∪ F(−→vn). The case for min is similar, with the difference
that or is replaced with and, hence the set theoretic operation ∪ with ∩.

Element-wise composition has certain desirable properties in relation to the
DIH. Firstly, it lifts naturally from the word level to phrase/sentence level;
specifically, for two sentences s1 = u1 . . . un and s2 = v1 . . . vn for which
ui � vi, ∀i ∈ [1, n], it is always the case that s1 � s2. This is a special case
of a theorem proved in [1] for general tensor-based models. As an example, con-
sider two intransitive sentences “subj 1 verb1” and “subj 2 verb2”, for which we
have F(

−−→
subj1) ⊆ F(

−−→
subj2) and F(

−−→
verb1) ⊆ F(

−−→
verb2); then, it is the case that:

F(
−−→
subj1) ∩ F(

−−−→
verb1) ⊆ F(

−−→
subj2) and F(

−−→
subj1) ∩ F(

−−−→
verb1) ⊆ F(

−−→
verb2)

and consequently:

F(
−−→
subj1) ∩ F(

−−→
verb1) ⊆ F(

−−→
subj2) ∩ F(

−−→
verb2)

A similar reasoning holds for the union-based case, since we have:

F(
−−→
subj1) ⊆ F(

−−→
subj2) ∪ F(

−−−→
verb2) and F(

−−→
verb1) ⊆ F(

−−→
subj2) ∪ F(

−−−→
verb2)

thus F(
−−→
subj1) ∪ F(

−−→
verb1) ⊆ F(

−−→
subj2) ∪ F(

−−→
verb2). For the case of intersective

composition, the above makes clear another DIH property that holds in contexts
without logical words; that a phrase can be replaced with each one of its words,
i.e. red car can be replaced with car and with red. Note, however, that in this
case the same is not true for union-based composition, since the inclusion order
becomes reversed, which is clearly unwanted.

4.2 Holistic Phrase/Sentence Vectors

In the ideal (but not so feasible) presence of a text corpus sufficiently large to
provide co-occurrence statistics for phrases or even sentences, one could directly

122 D. Kartsaklis and M. Sadrzadeh

create vectors for larger text segments using the same methods as if they were
words. This idea has been investigated in the context of entailment by [2], who
present promising results for short adjective-noun compounds. Holistic vectors of
this sort are interesting since they can be seen as representing (at least for short
text segments) some form of idealistic distributional behaviour for text segments
above the word level. For this reason, we briefly examine the relationship of these
models with the compositional models of Sect. 4.1, with regard to their feature
inclusion properties.

We consider the case of intersective composition. For a two-word phrase w1w2

with a holistic vector −−−→w1w2, we start by noticing that F(−−−→w1w2) is always a subset
of F(−→w1)∩F(−→w2) and specifically the subset referring to cases where w1 and w2

occur together in the same context, that is:

F(−−−→w1w2) = [F(−→w1) ∩ F(−→w2)]|w1,w2 ⊆ F(−→w1) ∩ F(−→w2)

with the set equality to hold only when w1 and w2 occur exclusively in the
same contexts, i.e. the presence of w1 always signifies that w2 is around and vice
versa. The relationship between holistic vectors and intersective composition
can be leveraged to the phrase/sentence level. Recall the intransitive sentence
example of Sect. 4.1; denoting the holistic vectors of the two sentences as −−→s1v1

and −−→s2v2, it is the case that:

F(−−→s1v1) ⊆ F(−−→s2v2) ⊆ F(−→s2) ∩ F(−→v2)

In other words, intersective composition preserves any entailment relation
that holds at the holistic vector level, providing a faithful approximation of the
holistic distributional behaviour. Note that for the case of union-based compo-
sition this approximation will be much more relaxed, and thus less useful in
practice.

4.3 Tensor-Based Models

For tensor-based models, one needs a different analysis. These models lie some-
where between intersective and union-based models. Consider the simple case of
a matrix multiplication between a m×n matrix M and a n× 1 vector −→v , given
below: ⎛

⎜
⎜
⎜
⎝

w11 · · · w1n

w21 · · · w2n

...
...

wm1 · · · wmn

⎞

⎟
⎟
⎟
⎠

×

⎛

⎜
⎝

v1

...
vn

⎞

⎟
⎠

The matrix M can be seen as a list of column vectors (−→w1,
−→w2, · · · ,−→wn), where−→wi = (w1i, · · · , wmi)T. Then the result of the matrix multiplication becomes a

combination of scalar multiplications of element vi of the vector −→v with its
corresponding vectors −→wi of the matrix M, as follows:

v1
−→w1 + v2

−→w2 + · · · + vn
−→wn

A Compositional Distributional Inclusion Hypothesis 123

By looking at matrix multiplication M×−→v in this way, we are able to describe
the features of F(M × −→v) in terms of the features of −→v and the features of the−→wi’s of M. This is as follows:

F(w × −→v) =
⋃

vi �=0

F(−→wi) (15)

Generalizing slightly and calling vi a feature whenever it is non-zero, the
above can be written down in the following equivalent form:

⋃

i

F(−→wi) |F(vi) (16)

which means we collect features of each −→wi vector but only up to “featureness”
of vi, that is up to vi being non-zero.

The above procedure can be extended to tensors of higher order; a tensor of
order 3, for example, can be seen as a list of matrices, a tensor of order 4 as
a list of “cubes” and so on. For the case of this paper, we will not go beyond
matrix multiplication and cube contraction. The concrete constructions of these
matrices and cubes, presented in the next section, will make the above analysis
more clear.

Concrete Tensor-Based Constructions. While the feature inclusion prop-
erties of a tensor-based model follow the generic analysis above, their exact form
depends on the concrete constructions of their underlying tensors. In this section,
we go over a few different methods of tensor construction and derive their feature
inclusion properties.

We start by the construction presented in [10], which builds a tensor from the
properties of the vectors of its arguments. For example, an intransitive verb gets
assigned the vector

∑
i

−−→
Sbji, a verb phrase the vector

∑
i

−−→
Obji, and a transitive

verb the matrix
∑

i

−−→
Sbji ⊗ −−→

Obji. Here, Sbji/Obji are the subjects/objects of
the verb across the corpus. The features of the phrases vo and sentences sv, svo
(where s/o are the subject/object of the phrase/sentence) are as follows:

F(−→sv) =
⋃
i

F(
−−→
Sbji) ∩ F(−→s) F(−→vo) =

⋃
i

F(
−−→
Obji) ∩ F(−→o)

F(−→svo) =
⋃
i

F(
−−→
Sbji ⊗ −−→

Obji) ∩ F(−→s) ⊗ F(−→o)

The disadvantage of this model and a number of other models based on
this methodology, e.g. [13,18], is that their resulting representations of verbs
have one dimension less than what their types dictate. According to the type
assignments, an intransitive verb has to be a matrix and a transitive verb a cube,
where as in the above we have a vector and a matrix. We remedy this problem
by arguing that the sentence/phrase space should be spanned by the vectors of
the arguments of the verb across the corpus. In order to achieve this, we create

124 D. Kartsaklis and M. Sadrzadeh

verb matrices for intransitive sentences and verb phrases by taking the outer
product of the argument vectors with themselves, hence obtaining:

vitv :=
∑
i

−−→
Sbji ⊗ −−→

Sbji vvp :=
∑
i

−−→
Obji ⊗ −−→

Obji (17)

When these verbs are composed with some subject/object to form a
phrase/sentence, each vector in the spanning space is weighted by its similarity
(assuming normalized vectors) with the vector of that subject/object, that is:

−→sv = −→s × vitv =
∑

i

〈−−→Sbji|−→s 〉−−→Sbji (18)

−→vo = vvp × −→o =
∑

i

〈−−→Obji|−→o 〉−−→Obji (19)

We call this model projective. For the case of a transitive verb (a function of
two arguments), we define the sentence space to be spanned by the average of
the argument vectors, obtaining:

vtrv :=
∑
i

−−→
Sbji⊗

(−−→
Sbji +

−−→
Obji

2

)
⊗ −−→

Obji (20)

−→svo =
∑
i

〈−→s | −−→
Sbji〉

(−−→
Sbji +

−−→
Obji

2

)
〈−−→Obji | −→o 〉

Feature-wise, the above translate to the following:

F(−→sv) =
⋃
i

F(
−−→
Sbji) |F(〈−−→

Sbji|−→o 〉
) F(−→vo) =

⋃
i

F(
−−→
Obji) |F(〈−−−→

Obji|−→o 〉
)

F(−→svo) =
⋃
i

(
F(

−−→
Sbji) ∪ F(

−−→
Obji)

)
|F(〈−→s |−→Sbji〉)F(〈−→

Obji|−→o 〉)

Informally, we can think of the terms following the | symbol as defining
a restriction on feature inclusion based on how well the arguments of the
phrase/sentence fit to the arguments of the verb. We close this section by noting
that in Sect. 6.2 we briefly present a statistical approach for creating the verb
matrices based on holistic phrase vectors, along the lines of [3].

5 Measuring the CDIH

When computing entailment at the lexical level, balAPinc (Eq. 7) has been found
to be one of the most successful measures [14]. However, the transition from
words to phrases or sentences introduces extra complications, which we need to
take into account. Firstly, in a compositional distributional model, the practice
of considering only non-zero elements of the vectors as features becomes too
restrictive and thus suboptimal for evaluating entailment; indeed, depending on
the form of the vector space and the applied compositional operator (especially
in intersective models), an element can get very low values without however

A Compositional Distributional Inclusion Hypothesis 125

ever reaching zero. This blurring of the notion of “featureness”— in which zero
can be seen as a lower bound in a range of possible values—is in line with the
quantitative nature of these models. In this paper we exploit this to the limit by
letting F(−→w) to include all the dimensions of −→w .

Secondly, we further exploit the continuous nature of distributional models
by providing a stronger realization of the idea that u � v whenever v occurs in
all the contexts of u. Let f

(u)
r be a feature in F(−→u) with rank r and f

(v)
r the

corresponding feature in F(−→v), we remind that Kotlerman et al. consider that
feature inclusion holds at rank r whenever f

(u)
r > 0 and f

(v)
r > 0; we strengthen

this assumption by requiring that f
(u)
r ≤ f

(v)
r . Incorporating these modifications

in the APinc measure, we redefine P (r) and rel′(fr) in Eq. 8 as:

P (r) =

∣
∣{f

(u)
r |f (u)

r ≤ f
(v)
r , 0 < r ≤ |−→u |}∣∣
r

(21)

rel′(fr) =
{

1 f
(u)
r ≤ f

(v)
r

0 o.w.
(22)

Note that the new relevance function essentially subsumes the old one (Eq. 9),
since by definition high-valued features in F(−→u) must be even higher in F(−→v).
We now re-define APinc at the phrase/sentence level to be the following:

SAPinc(u, v) =
∑

r

[
P (r) · rel′(fr)

]

|−→u | (23)

where P (r) and rel′(fr) are as defined in Eqs. 21 and 22, respectively, and |−→u |
is the number of dimensions of −→u . We further notice that when using SAPinc,
a zero vector vacuously entails every other vector in the vector space, and it is
entailed only by itself, as is the case for logical entailment.

We now proceed to examine the balanced APinc version, to which Kotlerman
et al. refer as balAPinc (Eq. 7). This is the geometric average of an asymmet-
ric measure (APinc) with a symmetric one (Lin’s similarity). The rationale of
including a symmetric measure in the computation was that APinc tends to
return unjustifyingly high scores when the entailing word is infrequent, that is,
when the feature vector of the entailing word is very short; the purpose of the
symmetric measure was to penalize the result, since in this case the similarity
of the narrower term with the broader one is usually low. However, now that
all feature vectors have the same length, such a balancing action is unnecessary;
even more importantly, it introduces a strong element of symmetry in a measure
that is intended to be strongly asymmetric. To cope with these issues, we propose
to replace Lin’s similarity with representativeness on KL-divergence (Eq. 6), and
define a sentence-level version of balAPinc between two word vectors −→u and −→v
as follows:

SBalAPinc(u, v) =
√

RD(−→u ‖−→v) · SAPinc(−→u ,−→v) (24)

Recall that RD(p‖q) is asymmetric, measuring the extent to which q repre-
sents (i.e. is similar to) p. So the term RD(−→u ‖−→v) in the above formula measures

126 D. Kartsaklis and M. Sadrzadeh

how well the broader term v represents the narrower one u; as an example, we
can think that the term ‘animal’ is representative of ‘cat’, while the reverse is
not true. The new measure aims at: (i) retaining a strongly asymmetric nature;
and (ii) providing a more fine-grained element of evaluating entailment.

6 Experimental Setting

We evaluate the compositional models and the entailment measures presented
above in four different tasks. Specifically, we measure upward-monotone entail-
ment between (a) intransitive sentences; (b) verb phrases; (c) transitive sen-
tences; and (d) adjective-noun compounds and nouns. The first three evaluations
are based on datasets specifically created by us for the purposes of this paper,
while for the adjective-noun task we use the dataset of [2]. In all cases, we first
apply a compositional model to the phrases/sentences of each pair in order to
create vectors representing their meaning, and then we evaluate the entailment
relation between the phrases/sentences by using these composite vectors as input
to a number of entailment measures. The goal is to see which combination of
compositional model/entailment measure is capable of better recognizing strictly
directional entailment relationships between phrases and sentences.

In all the experiments, we used a 300-dimensional PPMI vector space trained
on the concatenation of UKWAC and Wikipedia corpora. The context was
defined as a 5-word window around the target word.

6.1 Datasets

In this section we briefly describe the process we followed in order to cre-
ate datasets for deciding entailment between subject-verb, verb-object, and
subject-verb-object phrases and sentences. Our goal was to produce pairs of
phrases/sentences that stand in an upward-monotone entailment relationship to
each other. When entailing and entailed phrases have exactly the same structure,
as is in our case, one way to achieve that is to ensure that every word in the
entailed phrase is a hypernym of the corresponding word in the entailing phrase.
We achieved this by using hyponym-hypernym relationships taken by WordNet
as follows.

Firstly, we extracted from the concatenation of UKWAC and Wikipedia cor-
pora all verbs occurring at most 2.5 million times and at least 5000 times.
Then, each verb was paired with a hypernym of its main synset, creating a
list of 4800 pairs of verbs that stand in a hyponym-hypernym relation. Each
verb was associated with a list of argument nouns; for the intransitive task this
list contained nouns occurring in the corpus as subjects of the verbs, for the
verb phrase nouns in an object relationship, and for the transitive task sub-
ject/object pairs. Starting from the most frequent cases, each argument of an
entailing verb was paired with an argument of the corresponding entailed verb
based a number of constraints (for example, each noun could occur at most 3
times as part of an entailing phrase, and a specific phrase can only occur once as

A Compositional Distributional Inclusion Hypothesis 127

entailing phrase).1 We went through the phrase/sentence pairs manually and dis-
carded any instance where we judged to be nonsensical. This process resulted in
135 subject-verb pairs, 218 verb-object pairs, and 70 subject-verb-object pairs,
the phrases/sentences of which stand in a fairly clear entailment relationship.
Each dataset was extended with the reverse direction of the entailments as neg-
ative examples, creating three strictly directional entailment datasets of 270
(subject-verb), 436 (verb-object) and 140 (subject-verb-object) entries. Table 1
presents a sample of positive entailments from each dataset.2

6.2 Compositional Models

We tested the additive and multiplicative compositional operators, as defined
in Eq. 1, a point-wise minimum model as discussed in Sect. 4.1, and a variation
on the tensor-based model introduced via Eqs. 17–20. In relation to this latter
model, informal experimentation showed that by taking into account directly
the features of the distributional vector of the verb, the results improve. Let the
distributional vector of the verb be −→v and the verb tensor be vx, as computed in
Eqs. 17–20, for x ∈ {itv, vp, trv}. Then a new tensor is computed via the formula
ṽx := −→v � vx, the feature inclusion behaviour of which is derivable as follows:

F(ṽx) = F(−→v) ∩ F(vx)

For the experiments on the intransitive and the verb-phrase datasets, we also
use a least-squares fitting model for approximating the distributional behaviour
of holistic vectors (see discussion in Sect. 4.2), along the lines of [3]. For each
verb, we compute analytically an estimator for predicting the ith element of the
resulting vector as follows:

−→wi = (XTX)−1XT−→yi

Here, the rows of matrix X are the vectors of the subjects (or objects) that occur
with our verb, and −→yi is a vector containing the ith elements of the holistic phrase
vectors across all training instances; the resulting −→wi’s form the rows of our verb
matrix. Finally, a non-compositional baseline, where the phrase is represented
by the vector (or tensor) of its head verb, is also evaluated where appropriate.

6.3 Measures and Evaluation

We present results for a variety of entailment measures, including SAPinc and
SBalAPinc as introduced in Sect. 5. KL-divergence is applied on smoothed vec-
tors, as suggested by [4]. For α-skew, we use α = 0.99 which in the past has showed
the best reporting results [14]. WeedsPrec refers to the precision measure intro-
duced by [23], while ClarkeDE denotes the degree of entailment measure of [6].

1 These constraints were much more relaxed for the transitive task, because of data
sparsity problems.

2 The datasets will become available at http://compling.eecs.qmul.ac.uk/resources/.

http://compling.eecs.qmul.ac.uk/resources/

128 D. Kartsaklis and M. Sadrzadeh

Table 1. Positive entailments from the three tasks at phrase and sentence level.

Subject-verb Verb-object

Evidence suggest � information express Develop skill � create ability

People believe � group think Solve problem � understand difficulty

Paper present � material show Sign contract � write agreement

Station serve � facility meet Reduce number � decrease amount

Survey reveal � work show Publish book � produce publication

Student develop � person create Sing song � perform music

Company operate � organization manage Rejoin army � join force

Player play � contestant compete Gain experience � obtain education

Study demonstrate � examination show Serve purpose � meet goal

News come � message travel Identify area � determine location

Summer finish � season end Promote development � support event

Report note � document state Suffer injury � experience condition

Book offer � product supply Undertake research � initiate investigation

Tree mature � plant grow Drive car � handle vehicle

Subject-verb-object

Report describe result � document explain process

Report outline progress � document describe change

Value suit budget � number meet standard

Book present account � work show evidence

Woman marry man � female join male

Author retain house � person hold property

Report highlight lack � document stress need

Public trust reference � people accept message

Study demonstrate importance � work show value

Police fight crime � force compete activity

Experiment test hypothesis � research evaluate proposal

University publish paper � body produce research

Brochure outline feature � booklet explain concept

Widow sell estate � woman exchange property

We also use strict feature inclusion as a baseline; in this case, entailment holds
only when F(

−−−−→
phrase1) ⊆ F(

−−−−→
phrase2). After composition, all phrase/sentence vec-

tors are normalized to unit length.
Regarding evaluation, since the tasks follow a binary classification objective

and our models return a continuous value, we report area under curve (AUC).
This reflects the generic discriminating power of a binary classifier by evaluating
the task at every possible threshold.

A Compositional Distributional Inclusion Hypothesis 129

7 Results

7.1 Phrase and Sentence Entailment

Table 2 presents the results for the phrase and sentence entailment experiments.
As the numbers show, in all three tasks the highest performance is delivered
by a combination of SBalAPinc or SAPinc with element-wise vector multiplica-
tion. Furthermore, it is interesting to note that SBalAPinc clearly outperforms
balAPinc in every compositional model and every task. The ability of the pro-
posed measure to better discriminate between positive and negative entailments
is further demonstrated in Fig. 1, where we examine the distributions of the two
classes when using balAPinc (left) and SBalAPinc (right) in conjunction with
multiplicative composition for the verb-object task.

Table 2. AUC scores for the three phrase and sentence entailment tasks. Verb is a non-
compositional baseline based on comparing only the verb vectors of the two phrases,
	 is element-wise vector multiplication, + vector addition, ⊗ tensor-based composi-
tion, and LstSqr a least-square fitting model approximating the holistic distributional
behaviour of the phrases.

Subject-verb Verb-object Subject-verb-object

Measure Verb � MIN + ⊗ LstSqr Verb � MIN + ⊗ LstSqr Verb � MIN + ⊗ LstSqr

Inclusion 0.59 0.54 0.54 0.63 0.59 0.50 0.58 0.52 0.52 0.64 0.58 0.50 0.61 0.55 0.55 0.58 0.64 –

KL-div 0.59 0.66 0.68 0.57 0.59 0.59 0.62 0.64 0.66 0.61 0.60 0.58 0.61 0.65 0.71 0.54 0.60 –

αSkew 0.63 0.75 0.72 0.74 0.65 0.62 0.65 0.74 0.70 0.75 0.66 0.57 0.66 0.74 0.74 0.71 0.70 –

WeedsPrec 0.67 0.75 0.75 0.65 0.67 0.59 0.67 0.70 0.71 0.68 0.67 0.56 0.69 0.79 0.78 0.59 0.69 –

ClarkeDE 0.57 0.66 0.63 0.62 0.59 0.56 0.58 0.67 0.63 0.63 0.60 0.53 0.58 0.67 0.63 0.60 0.61 –

APinc 0.69 0.78 0.78 0.72 0.70 0.60 0.69 0.75 0.75 0.74 0.70 0.56 0.74 0.76 0.77 0.65 0.74 –

balAPinc 0.65 0.72 0.71 0.70 0.67 0.58 0.66 0.70 0.69 0.71 0.67 0.55 0.67 0.71 0.71 0.64 0.70 –

SAPinc 0.65 0.81 0.74 0.72 0.71 0.63 0.62 0.82 0.74 0.72 0.68 0.58 0.59 0.80 0.73 0.67 0.75 –

SBalAPinc 0.65 0.81 0.75 0.72 0.69 0.64 0.66 0.79 0.74 0.73 0.68 0.59 0.63 0.80 0.76 0.67 0.76 –

Fig. 1. The distributions of positive and negative entailments when using balAPinc
(left) and SBalAPinc (right) in combination with multiplicative composition on the
verb-object task. The dashed red lines indicate the means, while the thick black lines
correspond to the thresholds that optimize informedness—equivalent to AUC sub-
tended by the highest operating point [20].

130 D. Kartsaklis and M. Sadrzadeh

7.2 Adjective-Noun Compounds

In this last experiment, we reproduce the AN � N task of [2], the goal of which
is to assess the extent to which an adjective-noun compound (such as ‘red car’)
entails the noun of the compound (‘car’). The dataset contains 2450 pairs of
AN � N entailments, half of which are negative examples that have been cre-
ated by random permutation of the nouns at the right-hand side. We use this
task as a proof of concept for the theory detailed in Sect. 4, since when using
element-wise composition this sort of entailment always holds. The results, pre-
sented in Table 3, confirm the above in the most definite way. SBalAPinc achieves
almost perfect classification when combined with multiplicative composition,
while SAPinc shows top performance for union-based composition.

Table 3. AUC scores for the AN
 N task.

Measure 	 MIN +

Inclusion 1.00 1.00 0.50

KL-divergence 1.00 1.00 0.87

αSkew 0.96 0.97 1.00

WeedsPrec 1.00 1.00 0.85

ClarkeDE 1.00 1.00 0.95

APinc 0.94 0.94 0.84

balAPinc 0.99 0.99 0.84

SAPinc 0.91 0.12 0.97

SBalAPinc 0.99 0.74 0.93

8 Discussion

The experimental work presented in Sects. 6 and 7 provides evidence that the
measures introduced in this paper are appropriate for evaluating feature inclusion
at the sentence level, especially in relation to element-wise vector multiplication
as a compositional operator. This form of intersective composition seems to show
a consistently high performance across all tested measures—an observation that
is in line with the desired theoretical properties of these models as discussed in
Sect. 4. This implies that the intersective composition is especially suitable for
sentence entailment evaluation based on the CDIH. The reason may be the fea-
ture filtering methods applied by these models. The intersective filtering avoids
generation of very dense vectors and thus facilitates entailment judgements based
on the CDIH. On the other hand, union-based compositional models, such as
vector addition, produce dense vectors for even very short sentences (Fig. 2). In
this case, entailment is better handled by information theoretic measures, and

A Compositional Distributional Inclusion Hypothesis 131

Fig. 2. Feature inclusion on the first million sentences of Wikipedia for three vector-
based compositional models (using vectors of 300 dimensions). For sentence lengths
greater than 5 words, additive composition produces dense vectors with all elements
greater than zero. The feature inclusion behaviour of the two intersective models (vector
multiplication and MIN) is identical, showing a polynomial decrease on the number of
features for longer sentences.

specifically the α-skew measure (Table 2), without however reaching the perfor-
mance of intersective models and feature inclusion.

The tensor-based model presented in Sect. 4.3 can be seen as a combination
of a union-based model (between the features of the arguments of the verb) and
an intersective model (between the features of the distributional vector of the
verb and the features of the vector of the verb phrase). While this idea does
not seem to work very well in practice—as it returns results lower than those
of the vector-based counterparts—the model outperforms the other full tensor
model, that is the least-square fitting model. One reason is that tensor-based
constructions similar to the ones in Eqs. 17–20 are more robust against data
sparsity problems than statistical models based on holistic vectors of phrases
and sentences.

In general, while intersective element-wise vector composition seems to be
more aligned with a CDIH, tensor-based models, similar to the one presented
in Sect. 4.3, provide an abundance of conceptual options, depending on how one
creates the verb tensors. At the same time, the tensor-based models preserve
the grammatical structure. Hence they can serve as an interesting test-bed for
reasoning on entailment relations at the phrase or sentence level.

9 Conclusion and Future Work

In this paper we investigated the application of the distributional inclusion
hypothesis on evaluating entailment between phrase and sentence vectors pro-
duced by compositional operators. We showed how the popular balAPinc measure

132 D. Kartsaklis and M. Sadrzadeh

for evaluating entailment at the lexical level can be lifted to a new measure SBal-
APinc for use at the phrase/sentence level. Our results showed that intersective
composition with SBalAPinc achieves the best performance. Experimenting with
different versions of tensor models for entailment is an interesting topic that we
plan to address in a future paper. Furthermore, the extension of word-level entail-
ment to phrases and sentences provides connections with natural logic [17], a topic
that is worth a separate treatment and constitutes a future direction.

References

1. Balkır, E., Kartsaklis, D., Sadrzadeh, M.: Sentence entailment in compositional dis-
tributional semantics. In: Proceedings of the International Symposium on Artificial
Intelligence and Mathematics (ISAIM). Fort Lauderdale, FL., (January 2016)

2. Baroni, M., Bernardi, R., Do, N.Q., Shan, C.C.: Entailment above the word level in
distributional semantics. In: Proceedings of the 13th Conference of the European
Chapter of the Association for Computational Linguistics, pp. 23–32. Association
for Computational Linguistics, Avignon, France, April 2012. http://www.aclweb.
org/anthology/E12-1004

3. Baroni, M., Zamparelli, R.: Nouns are vectors, adjectives are matrices: represent-
ing adjective-noun constructions in semantic space. In: Proceedings of the 2010
Conference on Empirical Methods in Natural Language Processing, pp. 1183–1193.
Association for Computational Linguistics, Cambridge, MA, October 2010. http://
www.aclweb.org/anthology/D10-1115

4. Chen, S.F., Goodman, J.: An empirical study of smoothing techniques for language
modeling. In: Proceedings of the 34th Annual Meeting on Association for Compu-
tational Linguistics, ACL 1996, pp. 310–318. Association for Computational Lin-
guistics, Stroudsburg, PA, USA (1996). http://dx.doi.org/10.3115/981863.981904

5. Cheng, J., Kartsaklis, D.: Syntax-aware multi-sense word embeddings for deep
compositional models of meaning. In: Proceedings of the 2015 Conference on
Empirical Methods in Natural Language Processing, pp. 1531–1542. Association
for Computational Linguistics, Lisbon, Portugal, September 2015. http://aclweb.
org/anthology/D15-1177

6. Clarke, D.: Context-theoretic semantics for natural language: an overview. In: Pro-
ceedings of the Workshop on Geometrical Models of Natural Language Semantics,
pp. 112–119. Association for Computational Linguistics, Athens, Greece, March
2009. http://www.aclweb.org/anthology/W09-0215

7. Coecke, B., Sadrzadeh, M., Clark, S.: Mathematical foundations for a composi-
tional distributional model of meaning. Linguist. Anal. 36, 345–384 (2010)

8. Dagan, I., Lee, L., Pereira, F.C.N.: Similarity-based models of word cooccurrence
probabilities. Mach. Learn. 34(1–3), 43–69 (1999). doi:10.1023/A:1007537716579

9. Geffet, M., Dagan, I.: The distributional inclusion hypotheses and lexical entail-
ment. In: Proceedings of the 43rd Annual Meeting of the Association for Com-
putational Linguistics (ACL 2005), pp. 107–114. Association for Computational
Linguistics, Ann Arbor, Michigan, June 2005. http://www.aclweb.org/anthology/
P05-1014

10. Grefenstette, E., Sadrzadeh, M.: Experimental support for a categorical compo-
sitional distributional model of meaning. In: Proceedings of the Conference on
Empirical Methods in Natural Language Processing, pp. 1394–1404. Association
for Computational Linguistics (2011)

http://www.aclweb.org/anthology/E12-1004
http://www.aclweb.org/anthology/E12-1004
http://www.aclweb.org/anthology/D10-1115
http://www.aclweb.org/anthology/D10-1115
http://dx.doi.org/10.3115/981863.981904
http://aclweb.org/anthology/D15-1177
http://aclweb.org/anthology/D15-1177
http://www.aclweb.org/anthology/W09-0215
http://dx.doi.org/10.1023/A:1007537716579
http://www.aclweb.org/anthology/P05-1014
http://www.aclweb.org/anthology/P05-1014

A Compositional Distributional Inclusion Hypothesis 133

11. Herbelot, A., Ganesalingam, M.: Measuring semantic content in distributional vec-
tors. In: Proceedings of the 51st Annual Meeting of the Association for Computa-
tional Linguistics, vol. 2, pp. 440–445. Association for Computational Linguistics
(2013)

12. Kalchbrenner, N., Grefenstette, E., Blunsom, P.: A convolutional neural network
for modelling sentences. In: Proceedings of the 52nd Annual Meeting of the Asso-
ciation for Computational Linguistics, vol. 1, pp. 655–665. Association for Com-
putational Linguistics, Baltimore, Maryland, June 2014. http://www.aclweb.org/
anthology/P14-1062

13. Kartsaklis, D., Sadrzadeh, M., Pulman, S.: A unified sentence space for categori-
cal distributional-compositional semantics: theory and experiments. In: COLING
2012, 24th International Conference on Computational Linguistics, Proceedings of
the Conference: Posters, 8–15 December 2012, Mumbai, India, pp. 549–558 (2012)

14. Kotlerman, L., Dagan, I., Szpektor, I., Zhitomirsky-Geffet, M.: Directional distri-
butional similarity for lexical inference. Nat. Lang. Eng. 16(04), 359–389 (2010)

15. Lee, L.: Measures of distributional similarity. In: Proceedings of the 37th Annual
Meeting of the Association for Computational Linguistics on Computational Lin-
guistics, pp. 25–32 (1999)

16. Lin, D.: An information-theoretic definition of similarity. In: Proceedings of the
International Conference on Machine Learning, pp. 296–304 (1998)

17. MacCartney, B., Manning, C.D.: Natural logic for textual inference. In: ACL Work-
shop on Textual Entailment and Paraphrasing. Association for Computational Lin-
guistics (2007)

18. Milajevs, D., Kartsaklis, D., Sadrzadeh, M., Purver, M.: Evaluating neural word
representations in tensor-based compositional settings. In: Proceedings of the 2014
Conference on Empirical Methods in Natural Language Processing (EMNLP), pp.
708–719. Association for Computational Linguistics, Doha, Qatar, October 2014.
http://www.aclweb.org/anthology/D14-1079

19. Mitchell, J., Lapata, M.: Composition in distributional models of semantics. Cogn.
Sci. 34(8), 1388–1439 (2010)

20. Powers, D.M.: Evaluation: from precision, recall and f-measure to ROC, informed-
ness, markedness and correlation. J. Mach. Learn. Technol. 2(1), 37–63 (2011)

21. Socher, R., Huval, B., Manning, C.A.N.: Semantic compositionality through recur-
sive matrix-vector spaces. In: 2012 Conference on Empirical Methods in Natural
Language Processing (2012)

22. Turney, P.D., Pantel, P.: From frequency to meaning: vector space models of seman-
tics. J. Artif. Intell. Res. 37(1), 141–188 (2010)

23. Weeds, J., Weir, D., McCarthy, D.: Characterising measures of lexical distributional
similarity. In: Proceedings of the 20th International Conference on Computational
Linguistics, no. 1015. Association for Computational Linguistics (2004)

http://www.aclweb.org/anthology/P14-1062
http://www.aclweb.org/anthology/P14-1062
http://www.aclweb.org/anthology/D14-1079

Strong and Weak Quantifiers in Focused
NLCL

Wen Kokke(B)

Institute for Logic, Language and Computation, University of Amsterdam,
Amsterdam, Netherlands

wen.kokke@gmail.com

Abstract. We propose an improvement of Barker and Shan’s [4] NLCL

for which derivability is decidable, which has a normal-form for proof
search, can analyse scope islands, and distinguish between strong and
weak quantifiers.

Keywords: Categorial grammar · Focusing · Scope Islands ·
Indefinite scope

1 Introduction

In 2014, Kiselyov and Shan [11] published a paper in which they presented an
elegant approach to the anaysis of various scope-related phenomena using, what
they call, the continuation hierarchy. The phenomena they cover are scope ambi-
guity, scope islands and strong and weak quantifiers. They cover these phenom-
ena using a mechanism which works on the sentence’s semantics, independent
of whatever form of grammar is used.

At around the same time, Barker and Shan [4] published a book containing
their findings on NLλ and NLCL, a pair of grammar logics, both with the ability
to analyse scope ambiguity using a strictly syntactic mechanism. In addition,
these logics can analyse “parastic scope” [3,4] and a quantifier which change the
result type of the expressions they take scope over. However, neither of these
logics is capable of analysing scope islands or strong and weak quantifiers.

In this paper, we rework NLCL to a calculus which can analyse both scope
islands and strong and weak quantifiers, without losing the ability to analyse
parasitic scope or changing result types. For this, we base ourselves on work
by Moortgat [13] and Moortgat and Moot [14]. This approach requires a strict
focusing regime. Therefore, as an added bonus, adopting it results in the elimi-
nation of spurious ambiguity, and greatly enhances the efficiency of proof search
when compared to Barker and Shan’s [4] NLCL.

We will start our discussion by giving several examples of each of the afore-
mentioned phenomena. The following sentences are examples of scope ambigu-
ity, scope islands and weak quantifiers, respectively. They are given together
with their expected semantics, and are based on examples by Szabolcsi [16, p.
608,622].
c© Springer-Verlag GmbH Germany 2016
M. Amblard et al. (Eds.): LACL 2016, LNCS 10054, pp. 134–148, 2016.
https://doi.org/10.1007/978-3-662-53826-5_9

Strong and Weak Quantifiers in Focused NLCL 135

(1) “Someone read every book.”
a. ∃x.person(x) ∧ ∀y.book(y) ⊃ read(x, y)
b. ∀y.book(y) ⊃ ∃x.person(x) ∧ read(x, y)

(2) “Someone said Kurt wrote every book.”
a. ∃x.person(x) ∧ say(x,∀y.book(y) ⊃ wrote(kurt, y))

(3) “Everyone said [Kurt dedicated a book to Mary].”
a. ∀x.person(x) ⊃ say(x,∃y.book(y) ∧ dedicate(kurt,mary, y))
b. ∀x.person(x) ⊃ ∃y.book(y) ∧ say(x,dedicate(kurt,mary, y))
c. ∃y.book(y) ∧ ∀x.person(x) ⊃ say(x,dedicate(kurt,mary, y))

The first of these examples is a canonical example of scope ambiguity.
Example (2) demonstrates a scope island: there is no reading in which “every
book” scopes out of the embedded clause, as this reading would imply that
there was potentially a different speaker for each book—“Alex said Kurt wrote
Slaughterhouse-Five”, “Jules said Kurt wrote Cat’s Cradle”, “Sam said Kurt
wrote. . . ” Example (3) shows that indefinites can scope out of scope islands.

We add two more sentences, which are examples of a quantifier which changes
the result type, and of parasitic scope, respectively. These examples based on
those given by Barker and Shan’s [4, p. 208] and Kiselyov [10].

(4) “John read a book [the author of which] feared the ocean.”
a. ∃x.book(x) ∧ fear(ι(λy.of(y,author, x)), ι(ocean)) ∧ read(john, x)

(5) “Everyone feared the same ocean.”
a. ∃z.∀y.fear(y, ι(λx.ocean(x) ∧ x = z))

These last two examples will play a less important role, as NLCL is already
capable of analysing both. However, in order to demonstrate that we have not
lost that capability, we will provide analyses of both near the end of this paper.

2 Background

In this section, we will briefly discuss NLCL and its sibling, NLλ. NLCL is an
extension to the non-associative Lambek calculus [12, NL;]. The history behind
NLCL is somewhat intricate, but helpful to understanding, so we will briefly go
over it. The initial idea comes from the practice of encoding quantifier movement
as a tree transformation which introduces a binder [9]:

everyonelikes

john ←→

xlikes

john

λx.

everyone

136 W. Kokke

To implement this idea in type-logical grammar, Barker and Shan add a struc-
tural λ-construct to NL, and added the following structural postulate:1

Σ[Γ] ←→ Γ ◦ λx.Σ[x] (λ)

As can be seen, the (λ) postulate uses a new connective: the ◦ (hollow product).
This connective is part of a new residuated family {�, ◦,� }, which starts out
as a copy of {\, •, /}. However, the addition of the (λ) postulate allows you to
raise any constituent to the top-left2 position in the structure, where—if it has
the right type—it can be “resolved” against the top-level type as follows:

Σ[A] 	 B
(λ)

A ◦ λx.Σ[x] 	 B
R�

λx.Σ[x] 	 A � B C 	 D
L�

C� (A � B) ◦ λx.Σ[x] 	 D
(λ)

Σ[C� (A � B)] 	 D

Barker and Shan call resulting system NLλ. While NLλ fulfils the promise of
allowing a syntactic analysis of quantifier raising, scope ambiguity and parasitic
scope, it has some problems. Most notably, the system is hard to formalise and
to reason about, largely due to the presence of a binding construct in the syntax
of structures. While it is not impossible to formalise, the (λ) postulate greatly
complicates meta-logical proofs.

To address this issue, and to ease their own investigation of the formal prop-
erties of NLλ, Barker and Shan [4, ch. 17] introduce NLCL. This system uses
the fact that λ-terms can be represented as combinators in combinatory logic,
which removes the need for a binding construct. Barker and Shan use a variant
of Schönfinkel’s mapping to encode the linear λ-construct as applications of the
combinators I, B and C:3,4

Ix = x, Bxyz = x(yz), Cxyz = xzy

The resulting system is presented in Fig. 1.5

Using the system in Fig. 1, we can do quantifier raising in much the same
way as we did with the (λ) postulate—although, as we now have to raise the
quantifier one step at a time, the proofs are much longer:

1 It is important to note that this construct is purely structural, and that it is not
accompanied by some implicit form of computation (e.g. β, η-conversions).

2 It should be noted that the decision to raise quantifiers to the top-left position, as
opposed to the top-right, is a stylistic choice made by Barker and Shan [4]. It is
entirely possible to use the mirrored versions of the IBC-rules together with the
(B� A) � C type for quantifiers.

3 One can easily verify that the λ-construct introduced by (λ) is linear.
4 When comparing these equations to the IBC-rules in Fig. 1, note that • encodes

function application, but ◦ encodes flipped function application.
5 In Fig. 1, and for the remainder of this paper, the letters Γ and Δ are reserved for

structures, whereas the Σ is used for contexts.

Strong and Weak Quantifiers in Focused NLCL 137

Fig. 1. NLCL as presented by Barker and Shan [4]. (When reading this figure, be wary
of the difference between the combinators B,C and the formulas B, C.)

...
john • likes • np 	 s

I
john • likes • np ◦ I 	 s

B
john • np ◦ (B • likes) • I 	 s

B
np ◦ (B • john) • (B • likes) • I 	 s

�R
(B • john) • (B • likes) • I 	 np � s s 	 s

� L
everyone ◦ (B • john) • (B • likes) • I 	 s

B
john • everyone ◦ (B • likes) • I 	 s

B
john • likes • everyone ◦ I 	 s I
john • likes • everyone 	 s

The labels john, likes and everyone abbreviate the types np, (np\s)/np and
s� (np � s), respectively. For a more detailed account of the relation between
NLλ and NLCL, see Barker and Shan [4]. For a more detailed account of various
encodings of combinatorial logic in structural rules, amongst which the encoding
of the linear lambda construct used by Barker and Shan, see Finger [8].

3 Scope Islands for NLCL

Our aim for this section is to present an extension to NLCL which will allow us
to analyse scope islands, and therefore example (2).

To analyse scope islands, we need some way to block quantifier movement. If
you look at the IBC-rules in Fig. 1, you will notice that they allow constituents
attached to (the left of) a hollow product to move past solid products. This leads
us to suggest a fairly simple solution: insert anything that is not solid product.
For this, we use a residuated pair of unary connectives, ♦ and � [13,15]. The
relevant rules are presented in Fig. 2.

Fig. 2. Scope Islands for NLCL.

138 W. Kokke

Using these connectives, we can assign ‘said’ the type (np\s)/♦s. Instead of tak-
ing a sentence-argument from the right, ‘said’ now takes a closed-off sentence—a
scope island. Have a look at the derivation for example (2) given below:

...
Kurt • wrote • every • book 	 s ♦R〈Kurt • wrote • every • book〉 	 ♦s

...
someone • (np \ s) 	 s

/L
someone • said • 〈Kurt • wrote • every • book〉 	 s

As long as the scope island (written 〈·〉) is in place, ‘every•book’ cannot be
raised past it, for there is no rule which allows anything to move past a diamond.
But in order to remove the scope island, it has to be eliminated against the ♦s
argument of ‘said’, and doing so isolates the embedded clause in its own branch
of the proof.6

4 Strong and Weak Quantifiers

In the previous section, we presented an extension to NLCL which enabled us
to analyse scope islands. This extension blocks all quantifier movement out of
scope islands. Example (3) demonstrates that this is too coarse an approach.
Specifically, we would like to allow weak quantifiers, such as indefinites, to scope
out of scope islands.

We could approach this issue as a syntactic problem, and encode it using
structural rules, as we did with quantifier movement and scope islands.7 However,
Szabolcsi [16] writes that “indefinites acquire their existential scope in a manner
that does not involve movement and is essentially syntactically unconstrained.”
Therefore, we feel that a syntactic approach would be out of place.

How do we approach the problem of weak quantifiers as a semantic prob-
lem? The solution is to use continuation-passing style (CPS). But how? Early
attempts, such as the work by [2], often works by applying a CPS translation
directly to the semantic terms. Such approaches, however, face a fundamental
dilemma. Because the CPS translation is applied to a solitary semantic term, a
deterministic translation cannot introduce scope ambiguity—or any ambiguity,
for that matter. However, making the CPS translation sufficiently nondetermin-
istic without causing spurious ambiguity is an arduous task. When Barker makes
the translation ambiguous, in order to capture scope ambiguity, this leads to the
number of introduced ambigous interpretations growing exponentially with the
sentence length. More recent approaches, such as the work by Kiselyov and Shan
[11], are much more sophisticated. Their approach allows for the creation of quan-
tifiers of different strengths (e.g. everyone1, everyone2, . . .) essentially reducing
6 The presence of the structural diamond in the endsequent may seem problematic, but

recall that from the perspective of backward-chaining search we assign semantics to
a known sentence structure. If we switch to forward-chaining search, i.e. to parsing,
the need for a scope island will be inferred from the type of ‘said’.

7 For instance, we could split the family �, ◦,� into two separate families, �w, ◦w,� w

and �s, ◦s,� s, each with their own copies of the IBC-rules, and add a structural
rule which selectively allows weak quantifiers to move past scope islands.

Strong and Weak Quantifiers in Focused NLCL 139

scope ambiguity to lexical ambiguity. As a linguistic standpoint, this feels wrong.
Furthermore, their framework was engineered to be able to analyse phenomena
such as scope islands and weak quantifiers. This makes it too expressive (and
intricate) for the task at hand.

Instead, we base our CPS semantics on the approach of Moortgat and Moot
[14] and Bastenhof [6], who manage to elegantly integrate CPS semantics into
their grammar logic. Moortgat and Moot set up a calculus which enforces one
crucial property: every proof in the grammar logic is associated with unique,
normal-form semantics. In the context of scope ambiguity, this means that each
way to interpret a sentence with ambiguous scope corresponds to exactly one
proof in the grammar logic.

Focused NLCL. Moortgat and Moot [14, Sect. 3.1] define a normal-form calcu-
lus for the Lambek-Grishin calculus (LG). They refer to this calculus as fLG—for
focused LG, after the technique, pioneered by Andreoli [1], which they use in
their calculus. Their version of focusing, however, is more general than that
of Andreoli, as they allow for the arbitrary assignment of polarities to atoms.
Andreoli’s [1] schema can be recovered by assigning all atomic formulas negative
polarity.

As NL is a fragment of LG, we can trivially extract a normal-form calculus
for NL from their work. We will, in their style, refer to this calculus as fNL.

It is important to note that they develop their calculus within the framework
of display calculus [7]. One advantage of this framework is that we can freely
add structural rules, without fear that we will lose the cut-elimination property.
Barker and Shan’s [4] extension of NL, NLCL, consists solely of a copy of an exist-
ing modality (�, ◦,�) and a number of structural rules. Therefore, by applying
these same changes, we can extend fNL to focsed NLCL—or fNLCL. The result is
presented in Fig. 3, together with the focused version of the extension for scope
islands from Sect. 3.

Equivalence between fNLCL and NLCL can likely be proven using an inter-
mediate system: display NLCL. One can trivially obtain this system from the
focused system in Fig. 3 by dropping the focus marker “ ” and the focusing
and unfocusing rules. Equivalence between the display and focused variants of
a system was proven for classical NL by Bastenhof [5]. This proof can likely be
adapted for NLCL.

However, it is important to realise that, even in the absence of a formal proof
of equivalence between NLCL and fNLCL, the second remains a logical system
which can analyse all phenomena which Barker and Shan [4] show NLCL can
analyse.8

Decidable Proof Search. At this point, fNLCL still has a problem, which
it shares with NLCL: we do not have a decidable procedure for proof search.
Since it is a grammar logic, this means that we do not have a procedure for

8 Throughout the remainder of the paper, whenever we discuss one of the phenomena
discussed in Sect. 1, we will give an example proof in fNLCL. In this way, by the end
of this paper, this claim will be backed up by evidence.

140 W. Kokke

Fig. 3. NLCL reworked as a focused display calculus.

parsing. An easy way to obtain such a procedure is to change the system in such
a way that backward-chaining search becomes decidable. The reason this is not
decidable in NLCL is because of the I-rule, which does not obey the substructure
property.9

Admittedly, there are other rules which do not obey the substructure prop-
erty: the residuation rules and the B and C rules do not enjoy it. However, the
residuation rules still enjoy a weak form this property: they do not increase the
size of the structure. This means that we can use loop checking to filter out
problematic branches of the search. More interestingly, the B and C rules have
the property that “whatever goes up, must come down.” At some point, the
quantifier will reach the top of the expression, and at that point, there are only
two things to do: (1) resolve the quantifier against the top-level type, thereby
eliminating a connective and breaking out of any loop; or (2) go back down along
9 In the case of NLCL, this is the subformula property.

Strong and Weak Quantifiers in Focused NLCL 141

the same path. Yet when searching for a proof with the I-rule, we can always
introduce another I.

We will address this issue by restricting access to the I-rule using a license.
This license will be a new unary connective, written QA. Semantically, this
logical connective corresponds to a hollow product with a right-hand I (i.e.
A ◦ I). However, as we want neither hollow products, nor the unit I, on the
logical level, we capture these in a single connective. We remove the I-rule, and
add the following three rules to the calculus in Fig. 3:

·A · ◦ I 	 Δ IL·QA · 	Δ

Γ 	 B
IR

Γ ◦ I 	 QB

Γ 	 Δ
I−

Γ ◦ I 	 Δ

The first two of these rules are the display calculus rules for right-hand products.
The third is the remaining direction of the original I-rule. With this change,
quantifier raising is restricted to expressions of the form Q(C� (A � B)), and
proof search becomes decidable.

One problem which remains is that the B and C rules cause a huge amount
of spurious ambiguity. To see why, note that when raising multiple quantifiers, it
is possible to intersperse the various applications of the B and C rules in many
different ways. To solve this, we will take some inspiration from Barker and
Shan [4, ch. 17.6], who solve this issue, albeit in a convoluted way. They show
that NLλ can be embedded in NLCL, using a variant of Schönfinkel’s mapping
from λ-terms to combinatory logic. Later, they show that a pair of derived
rules, � Lλ and �Rλ, can serve as a normal-form for the structural rules of
NLCL. However, these derived rules employ the structural λ which, in the context
of NLCL, is presumably immediately translated using Schönfinkel’s mapping.
Instead of employing this two-step process, we exploit the similarities between
single-hole contexts and linear λ-terms to derive a variant of the λ-rule which
directly uses Schönfinkel’s mapping (written ·) [cf. [4], ch. 17.5]:

� = I

Σ • Γ = ((C • Σ) • Γ)

Γ • Σ = ((B • Γ) • Σ)

·A · ◦ Σ 	 Δ ↑↓
Σ[·QA·] 	 Δ

We can use this mapping in the definition of a derived rule: the ↑↓-rule, written
as ↑ or ↓, depending on the direction in which it is applied.10 We can derive the
this rule using three lemmas:

Q/I:
Σ[·A · ◦ I] 	 Δ

Q/I
Σ[·QA·] 	 Δ

I−′:
Σ[Γ] 	 Δ

I−′
Σ[Γ ◦ I] 	 Δ

↑↓′:
Γ ◦ Σ[Γ ′] 	 Δ ↑↓′
Σ[Γ ◦ Γ ′] 	 Δ

Using these lemmas, we can derive the two directions of ↑↓ as follows:

↑:
·A · ◦ Σ 	 Δ ↑↓′

Σ[·A · ◦ I] 	 Δ
Q/I

Σ[·QA·] 	 Δ

↓:

Σ[·A·] 	 Δ
I−′

Σ[·A · ◦ I] 	 Δ ↑↓′
·A · ◦ Σ 	 Δ

10 These correspond to Barker and Shan’s [4, p. 201] expansion and reduction rules,
respectively.

142 W. Kokke

The lemmas themselves can be derived by induction on the structure of the
context Σ. The derivation of Q/I and I−′ is done as follows:

�: ·A · ◦ I 	 Δ IL·QA · 	Δ
Σ • Γ :

Σ[·A · ◦ I] • Γ 	 Δ
Res/•

Σ[·A · ◦ I] 	 Δ / Γ
Q/I

Σ[·QA·] 	 Δ / Γ
Res/•

Σ[·QA·] • Γ 	 Δ

Γ • Σ:

Γ • Σ[·A · ◦ I] 	 Δ
Res\•

Σ[·A · ◦ I] 	 Γ \ Δ
Q/I

Σ[·QA·] 	 Γ \ Δ
Res\•

Γ • Σ[·QA·] 	 Δ

�: ·A · 	Δ
I−

·A · ◦ I 	 Δ
Σ • Γ :

Σ[·A·] • Γ 	 Δ
Res/•

Σ[·A·] 	 Δ / Γ
I−′

Σ[·A · ◦ I] 	 Δ / Γ
Res/•

Σ[·A · ◦ I] • Γ 	 Δ

Γ • Σ:

Γ • Σ[·A·] 	 Δ
Res\•

Σ[·A·] 	 Γ \ Δ
I−′

Σ[·A · ◦ I] 	 Γ \ Δ
Res\•

Γ • Σ[·A · ◦ I] 	 Δ

These rules simply introduce or eliminate the unit I under some context Σ.
The actual movement takes place in the definition of ↑↓′. In this proof, the base
case is simply the identity, as no movement is required to move out of the empty
context:

Σ • Γ :

Γ ◦ ((C • Σ[Γ ′]) • Γ ′′) 	 Δ
C

(Γ ◦ Σ[Γ ′] • Γ ′′ 	 Δ
Res/•

Γ ◦ Σ[Γ ′] 	 Δ / Γ ′′
↑↓′

Σ[Γ ◦ Γ ′] 	 Δ / Γ ′′
Res/•

Σ[Γ ◦ Γ ′] • Γ ′′ 	 Δ

Γ • Σ:

Γ ◦ ((B • Γ ′′) • Σ[Γ ′]) 	 Δ
B

Γ ′′ • (Γ ◦ Σ[Γ ′]) 	 Δ
Res\•

Γ ◦ Σ 	 Γ ′′ \ Δ ↑↓′
Σ[Γ ◦ Γ ′] 	 Γ ′′ \ Δ

Res\•
Γ ′′ • Σ[Γ ◦ Γ ′] 	 Δ

Note that the ↑-rule eliminates a logical connective—the Q—and therefore
has the subformula property. In addition, the ↓-rule, on the other hand, elimi-
nates the trail of Bs and Cs, and thus has the substructure property. Because
of this, proof search with these rules is decidable.

Furthermore, proof search with the ↑↓-rule is complete. Briefly, this is true
because the IBC-rules can do nothing but move a constituent up, or down
along an existing path—the ↑↓-rule mere captures this more succintly. A formal
proof of this can be given by implementing a normalisation function using the
commutative conversions for the B and C rules: one can move the applications of
the B and C rules around until they form a continuous sequence (interspersed
with residuation rules) starting (or ending) with an application of the I-rule.
This sequence of applications can then be replaced by a single application of the
↑↓-rule. Therefore, proof search using the ↑↓-rule is complete with repsect to the
IBC-rules.

We follow Barker and Shan [4], and derive rules corresponding to the �Lλ-
and �Rλ-rules. These rules combine an application of ↑↓-rule with an application
of� L or �R. We name them qL and qR, to signify that they no longer employ
a structural λ, and because they can be composed to implement Moortgat’s [13]
q-connective:

Strong and Weak Quantifiers in Focused NLCL 143

qL:

Σ 	 A � B C 	 Δ
� L

C� (A � B) 	 Δ� Σ
FocL

·C� (A � B) · 	Δ� Σ
Res� ◦

·C� (A � B) · ◦ Σ 	 Δ ↑
Σ[·Q(C� (A � B))·] 	 Δ

qR:

Σ[·A·] 	 ·B· ↓
·A · ◦ Σ 	 ·B· Res◦�
Σ 	 ·A · � · B·

�R
Σ 	 ·A � B·

As these rules eliminate at least one logical connective each, they still enjoy the
subformula property, so proof search with these rules is decidable. In fact, it is
slightly more efficient than with the ↑↓-rule. The reason for this is that after
raising a quantifier, the only course of action is applying the� L-rule anyway—
and likewise for qR.11

Henceforth, if we refer to proof search for fNLCL, we are referring to search
using the logical and residuation rules for \, •, /, �, ◦,� and ♦,�, and the qL
and qR rules.12

Continuation Semantics for NLCL. A normal-form calculus for proof search
is a great improvement, but we were really after Moortgat and Moot’s [14, Sect.
3.1] CPS semantics. As with the calculus itself, we can trivially restrict their
translation function to fNL, and then extend it to cover fNLCL. In Fig. 4, we
present the translation on types and sequents.

We extend the translation on types to a translation on structures as follows:
we translate all structural constants (I,B,C) as units, forget all unary structural
connectives (♦,�), and translate all binary structural connectives as products.
Atomic structures ·A· are translated as �A�− or �A�+, depending on the polarity
of the structure ·A·.

Fig. 4. CPS semantics for focused NLCL.

11 This can be proven using a variant of Barker and Shan’s [4, ch. 17.6 and 17.7] proof
of equivalence between NLλ and NLCL.

12 In fact, no proof will ever explicitly use the logical or residuation rules for �, ◦,� ,
leading to a question of whether it is really necessary for � and � to be fully resid-
uated logical implications. But this is a matter for another paper.

144 W. Kokke

In this particular CPS translation, all function applications and abstractions
are contained within the focusing and unfocusing rules, which are translated as
follows:

x : �Δ� 	 M : �A�−
FocL

k : �A�+ 	 (λx.k M) : �Δ�R

x : �A�+ 	 M : �Δ�R

UnfL
y : �Δ� 	 (λx.M y) : �A�−

x : �Γ � 	 M : �A�+

FocR

x : �Γ � 	 (λk.k M) : �A�−R

x : �Γ � 	 M : �A�−R

UnfR
x : �Γ � 	 (λy.M y) : �A�+

The other rules are translated either as axioms (AxL, AxR), identities (\R, /R,
�R,� R and all rules for ♦, �) or permutations (the rest). For instance,

x : �Γ � 	 M : �A�+ y : �Δ� 	 N : �B�−
\L

z : �Γ � × �Δ� 	 (M [π1z/x], N [π2z/y]) : �A�+ × �B�−

An exception to this are the I-rules. Because we would like to be able to
simply forget the Q-connective upon translation, so that we do not have to store
unnecessary units in our lexicon, we have to insert or remove the units upon
using these rules.

Using these semantics, we can assign the indefinite article the type np / n.13

This will result in two interpretations for (2), and three interpretations for (3),
as required. Let us consider the important steps in the derivation of (3):

1. the quantifier movement and scope taking of “everyone”;
2. the collapsing of the scope island, isolating the clause “[S Kurt .. Mary]” in

its own branch of the derivation;
3. the collapsing of “a book”, with the indefinite taking scope at the top-level.

If these steps are taken [1,2,3], we obtain interpretation (3a); if they are taken
[1,3,2], we obtain (3b); and if they are taken [3,1,2], we obtain (3c).14

5 Examples

In this section, we will present a number of analyses of the examples presented
in Sect. 1. In the interest of brevity, we will summarise numerous applications of
the residuation rules, beginning or ending with focusing or unfocusing rules with
‘dp’, for display postulate. In addition, we will leave out uninteresting subproofs.

First off, we present an analysis of (1), resulting in interpretation (1b).
The quantifier every is assigned the type Q(s� (np � s)) / n, and someone
is assigned the type of a “strong” quantifier—that is to say, Q(s� (np � s)).

13 Quantifiers such as “someone” should be assigned the type np / n ⊗ n, which means
we must also extend NLCL with logical products.

14 The normal-form requires that 1 occurs before 2, so this list is exhaustive.

Strong and Weak Quantifiers in Focused NLCL 145

AxR

book 	 n

...
·np · •read • ·np · 	 · s·

qR
� • read • ·np· 	 ·np � s·

UnfR

� • read • ·np· 	 np � s
AxL

s 	 ·s·
qL

someone • read • ·np · 	 · s·
qR

someone • read • � 	 ·np � s·
UnfR

someone • read • � 	 np � s
AxL

s 	 ·s·
someone • read • ·Q(s� (np � s)) · 	 · s·

qL
someone • read • ·Q(s� (np � s)) · 	 · s·

dp
Q(s� (np � s)) 	 read \ (someone \ ·s·)

/L
every 	 (read \ (someone \ ·s·)) / book

dp
someone • read • every • book 	 ·s·

Secondly, we present an analysis of (2), resulting in interpretation (2a)—the only
interpretation.

...
Kurt • wrote • every • book 	 s

♦L
〈Kurt • wrote • every • book〉 	 ♦s

...

np \ s 	 ·np · \ · s·
/L

said 	 (·np · \ · s·) / 〈Kurt • wrote • every • book〉
dp

·np · • said • 〈Kurt • wrote • every • book〉 	 ·s·
qR

� • said • 〈Kurt • wrote • every • book〉 	 ·np � s·
UnfR

� • said • 〈Kurt • wrote • every • book〉 	 np � s
AxL

s 	 ·s·
qL

someone • said • 〈Kurt • wrote • every • book〉 	 ·s·
As a third example, we show that we can analyse ‘a’ as a weak quantifier, using
the type np / n. We give an analysis of (3), resulting in the interpretation where
the indefinite takes wide scope—(3b). The quantifier ‘a’ takes scope when it is
combined with book.

AxR
book 	 ·n·

...
everyone • said • 〈Kurt • dedicated • ·np · • to • mary〉 	 ·s·

dp
np 	 (dedicated \ (Kurt \ [(said \ (everyone \ ·s·))])) / (to • mary)

/L
a 	 ((dedicated \ (Kurt \ [(said \ (everyone \ ·s·))])) / (to • mary)) / book

dp
everyone • said • 〈Kurt • dedicated • a • book • to • mary〉 	 ·s·

Lastly, we present analyses of examples (4) and (5). We demonstrate changing
result types using the word ‘which’, which we assign the type

Q(((n \ n) / (np \ s)� (np � np))).

In the second, for parasitic scope, we deviate slightly from Barker’s [3] treatment
of parasitic scope. We assign ‘same’ (and ‘different’) the type

Q(s� (Q(np � s� ((n� n) � np � s)) � s)).

146 W. Kokke

F
ig
.
5
.
A

n
a
ly

si
s

o
f
ex

a
m

p
le

s
(4

)
a
n
d

(5
).

Strong and Weak Quantifiers in Focused NLCL 147

What this type does is quantify over an expression twice—once normally, to plant
its top-level quantifier, and once parasitically. Using this type, we can obtain the
semantics advocated by Kiselyov [10]. The proofs for these two examples can be
found in Fig. 5.

6 Conclusion

We presented an improvement over Barker and Shan’s [4] NLCL for which deriv-
ability is decidable, and which has a normal-form for proof search. In addition, it
can analyse scope islands, and distinguish between strong and weak quantifiers,
shown by the ability to analyse examples (1–5). Of these examples, (1–3) are
representative examples of scope islands and strong and weak quantifiers, for
which Kiselyov and Shan [11] provides a purely semantic analysis. The remain-
ing examples, (4) and (5), are examples from the work by Barker and Shan [4]
which motivated us to start from their syntactic approach.

References

1. Andreoli, J.: Focussing and proof construction. Ann. Pure Appl. Logic 107(1–3),
131–163 (2001)

2. Barker, C.: Continuations and the nature of quantification. Nat. Lang. Semant.
10(3), 211–242 (2002)

3. Barker, C.: Parasitic scope. Linguist. Philos. 30(4), 407–444 (2007)
4. Barker, C., Shan, C.: Continuations and Natural Language. Oxford Studies in

Theoretical Linguistics, vol. 53. Oxford University Press, Oxford (2014)
5. Bastenhof, A.: Polarized classical non-associative lambek calculus and formal

semantics. In: Pogodalla, S., Prost, J.-P. (eds.) LACL 2011. LNCS (LNAI), vol.
6736, pp. 33–48. Springer, Heidelberg (2011). doi:10.1007/978-3-642-22221-4 3

6. Bastenhof, A.: Categorial symmetry. http://dspace.library.uu.nl/handle/1874/
273870

7. Belnap, N.D.: Display logic. J Philos. Logic 11(4), 375–417 (1982)
8. Finger, M.: Computational solutions for structural constraints. In: Moortgat, M.

(ed.) LACL 1998. LNCS (LNAI), vol. 2014, pp. 11–30. Springer, Heidelberg (2001).
doi:10.1007/3-540-45738-0 2

9. Heim, I., Kratzer, A.: Semantics in Generative Grammar, vol. 13. Blackwell Oxford,
Oxford (1998)

10. Kiselyov, O.: Compositional semantics of same, different, total. In: Proceedings for
ESSLLI 2015 Workshop ‘Empirical Advances in Categorial Grammar’, pp. 71–81
(2015)

11. Kiselyov, O., Shan, C.-C.: Continuation hierarchy and quantifier scope. In:
McCready, E., Yabushita, K., Yoshimoto, K. (eds.) Formal Approaches to Seman-
tics and Pragmatics, pp. 105–134. Springer, Heidelberg (2014)

12. Lambek, J.: Observation of strains. Infect Dis. Ther. 3(1), 35–43 (2011). On the
calculus of syntactic types. Structure of language and its mathematical aspects,
166: C178(1961)

13. Moortgat, M.: In situ binding: a modal analysis. In: Dekker, P., Stokhof, M. (eds)
Proceedings of the Tenth Amsterdam Colloquium, pp. 539–549. Institute for Logic,
Language and Computation (ILLC) (1996)

http://dx.doi.org/10.1007/978-3-642-22221-4_3
http://dspace.library.uu.nl/handle/1874/273870
http://dspace.library.uu.nl/handle/1874/273870
http://dx.doi.org/10.1007/3-540-45738-0_2

148 W. Kokke

14. Moortgat, M., Moot, R.: Proof nets for the Lambek-Grishin calculus. In: Compo-
sitional Methods in Physics and Linguistics, volume abs/1112.6384 (2011)

15. Morrill, G.: Type Logical Grammar - Categorial Logic of Signs. Kluwer, Alphen
aan den Rijn (1994)

16. Szabolcsi, A.: The syntax of scope. In: The Handbook of Contemporary Syntactic
Theory, pp. 607–633. Wiley-Blackwell (2000)

Type Reconstruction for λ-DRT Applied
to Pronoun Resolution

Hans Leiß(B) and Shuqian Wu

Centrum Für Informations- und Sprachverarbeitung,
Ludwig-Maximilians-Universität München, München, Germany

leiss@cis.uni-muenchen.de

Abstract. λ-DRT is a typed theory combining simply typed λ-calculus
with discourse representation theory, used for modelling the semantics of
natural language. With the aim of type-checking natural language texts
in the same vein as is familiar from type-checking programs, we propose
untyped λ-DRT with automatic type reconstruction. We show a princi-
pal types theorem for λ-DRT and how type reconstruction can be used
to make pronoun resolution type-correct, i.e. the inferred types of a pro-
noun occurrence and its antecedent noun phrase have to be compatible,
thereby reducing the number of possible antecedents.

Keywords: Pronoun resolution · Discourse representation theory ·
λ-DRT · Type reconstruction · Principal types

1 Introduction

In order to give a compositional semantics for discourse, [2] have extended the
non-compositional and first-order approach of Discourse Representation Theory
(DRT, [10]) by adding λ-abstraction and functional application. As is familiar
from Montague-semantics, the meaning of an expression can then be defined
bottom-up, by abstracting from the meaning contribution of the context; func-
tion application is then used to combine this meaning with those of expressions
from the context.

While DRT uses discourse representation structures, i.e. pairs of variables
and quantifier-free formulas, and avoids higher-order logic on its way to trans-
late natural language to first-order logic, Montague-grammar and λ-DRT make
heavy use of higher order types and are commonly expressed in a simply typed
language.

Our first goal is to have a type-free notation of λ-DRS-terms, such that
meanings can be written without types, but checked for typeability by “recon-
structing” suitable types from types of built-in constants (polymorphic function
words and monomorphic content words in the lexicon) and the context of occur-
rence. For this, we will show that most general types exist and can be inferred
automatically. The second goal is to integrate the type reconstruction into a pro-
gram for pronoun resolution. We want to be able to type-check when a pronoun
c© Springer-Verlag GmbH Germany 2016
M. Amblard et al. (Eds.): LACL 2016, LNCS 10054, pp. 149–174, 2016.
DOI: 10.1007/978-3-662-53826-5 10

150 H. Leiß and S. Wu

resolution (i.e. the unification of the discourse variable of a pronoun with the
discourse referent of an antecedent) is type-correct, and moreover, we want to
use the type reconstruction for unresolved pronouns to filter possible antecedents
by their types and the type of the unresolved pronoun.

2 λ-DRT

Where [18] uses meanings like a �→ λPλQ∃x(P x ∧ Qx), man �→ λx.man(x)
and walks �→ λx.walk(x) and combines these by application to a man walks �→
∃x(man(x) ∧ walk(x)), in λ-DRT of [2], one uses somewhat different lexical
entries

λPλQ(
x ⊗ P x ⊗ Qx), λx

man(x)
, λx

walk(x)

and an operation ⊗ of merging discourse representation structures as in

x ⊗
man(x)

⊗
walk(x)

=
x
man(x), walk(x)

.

In general, two discourse structures are merged by appending their (disjoint)
lists of discourse referents (variables) and formulas, respectively:

x1, . . . , xm

ϕ1, . . . , ϕk
⊗ y1, . . . , yn

ψ1, . . . , ψp
=

x1, . . . , y1, . . .
ϕ1, . . . , ψ1, . . .

Since a variable in the referent list is seen as a binding, a binder of each merge-
factor can bind free variable occurrences in the formulas of both merge-factors.
In a discourse A man walks. He talks., the meanings of the sentences have to be
combined. The pronoun he in the second sentence introduces a new discourse
referent y with the appropriate property. The combination of the meanings of
the sentences is the merging

x
man(x), walk(x)

⊗ y
talk(y)

of their discourse structures, followed by pronoun resolution: the referent y of
the anaphoric pronoun is resolved against some previously introduced discourse
referent, here x. This can be implemented by adding an equational constraint
x = y to the merged DRS, or by unifying the variables.

If one assumes some co-indexing of pronouns and antecedent noun phrases
as a result of syntactic analysis, one can use the referent of the antecedent noun
phrase as referent of the anaphoric pronoun. Then, the binding is dynamic, i.e.
the scope extends beyond sentence boundaries as the discourse goes on:

x
man(x), walk(x)

⊗
talk(x)

.

Type Reconstruction for λ-DRT Applied to Pronoun Resolution 151

With type reconstruction for λ-DRT, one could just check the type-soundness
of pronoun resolution, i.e. that the semantic type of the pronoun occurrence fits
the semantic type of the referent of its antecedent. However, we want to use type
reconstruction to help pronoun resolution. To do so, we mark discourse referents
as anaphors or possible antecedents, use type reconstruction for λ-DRT to infer
types for the discourse referents, and then do pronoun resolution with typed
referents. Our typing rules for DRSs and DRT’s accessibility relation are closely
related.

2.1 Untyped λ-DRS-Terms

We use four kinds of raw expressions: terms, formulas, discourse representation
structures, and discourses:

Term: s, t := x (x ∈ V ar)

| c (c ∈ Const)

λ-DRS: D := x (x ∈ V ar)

| λxD

| (D1 · D2)

| 〈[], ϕ〉
| 〈x,D〉
| (D1 ⊗ D2)

Formula: ϕ,ψ :=

| R(t1, . . . , tn)

| t1=̇t2

| (ϕ ∧ ψ)

| ¬D

| (D1 ⇒ D2)

| (D1 ∨ D2)

Discourse: D := ε

| D ; D

All terms are atomic. Formulas are built from atomic formulas by conjunction
of formulas and (non-conjunctive) Boolean combinations of λ-DRSs.

A box or value-DRS D is a pair 〈[x1, . . . , xn], ϕ〉 of a list [x1, . . . , xn] of
variables and a formula ϕ, recursively defined by

〈[x1, x2, . . . , xn], ϕ〉 :=
{ 〈[], ϕ〉, n = 0,

〈x1, 〈[x2, . . . , xn], ϕ〉〉, else.

Two DRSs D1 and D2 may be merged to a DRS (D1 ⊗ D2). So far, the merge-
operator ⊗ is just a constructor. We will later add reduction rules which provide
the intended meaning of the merge of two value-DRSs (with disjoint variable
lists) as

〈[x1, . . . , xn], ϕ〉 ⊗ 〈[y1, . . . , ym], ψ〉 →∗ 〈[x1, . . . , xn, y1, . . . , ym], (ϕ ∧ ψ)〉.

Finally, we want to have abstraction and application of λ-DRSs. Note: We use
the pair notation 〈s, t〉 not for arbitrary terms s, t. Likewise for the types σ × τ :
the intention is that σ is an individual type, τ a DRS-type.

152 H. Leiß and S. Wu

The toplevel referents and the free variables of D are defined by

top(x) = ∅
top(λxD) = ∅

top(D1 · D2) = ∅
top(〈[], ϕ〉) = ∅
top(〈x,D〉) = {x} ∪ top(D)

top(D1 ⊗ D2) = top(D1) ∪ top(D2)

free(x) = {x}
free(λxD) = free(D) \ {x}

free(D1 · D2) = free(D1) ∪ free(D2)

free(〈[], ϕ〉) = free(ϕ)

free(〈x,D〉) = free(D) \ {x}
free(D1 ⊗ D2) = (free(D1) ∪ free(D2))

\ top(D1 ⊗ D2)

For formulas built from DRSs, we put

free(¬D) = free(D)
free((D1 ⇒ D2)) = free((D1 ∨ D2))

= free(D1) ∪ (free(D2) \ top(D1))

This is motivated by considering free variables of D2 (representing pronouns) as
bound by toplevel referents of D1 (their antecedents). However, these notions
are not stable under β-reduction →: for example, for D1 = λy〈[x], ϕ〉 · y and
D′

1 = 〈[x], ϕ〉 we have D1 → D′
1, but top(D1) = ∅ �= top(D′

1), and so (D1 ⇒ D2)
may bind less variables of D2 than (D′

1 ⇒ D2). Hence these definitions make
sense for expressions in β-normal form only.1

In Sect. 5 we define the meaning of application · by β-reduction, i.e. by reduc-
ing an application (t · s) to the substitution t[x/s] of free occurrences of x in t
by s. Some care is needed to avoid variable capture.

We treat toplevel referents of a merge-factor as binders with scope over all
factors. Hence, when substituting a free occurrence of x in (D1 ⊗ D2) by s, we
have to α-rename the top-level referents of D1 and D2 to avoid capturing free
variables of s. But we also have to rename toplevel referents of s when applying
[x/s] to (D1 ⊗ D2), since s might become a merge-factor, as for D1 = x, and
then its toplevel referents would capture free variables of D2. Since D1,D2, s
might have toplevel referents after some reductions, we define t[x/s] in such a
way that all bound variables and referents of t and s are renamed to fresh ones
before the free occurrences of x are replaced.2

1 In Sect. 6.2, the DRSs are computed bottom-up along the syntax tree, and at each
syntactic construction, the DRS resulting from a combination of the constituents’
DRSs is reduced.

2 Our implementation actually does the renaming only when applications are involved,
so λP ((P ·x)⊗(P ·y)) ·λzD copies λzD to get (λzD ·x)⊗(λzD ·y) and then renames
referents in D when treating the applications as (D[z/x] ⊗ D[z/x]). Thus, merge-
factors have disjoint reference lists, provided the lexical entries have.

Type Reconstruction for λ-DRT Applied to Pronoun Resolution 153

An essential clause in the definition of D[x/s] is:

(D1 ⊗ D2)[x/s] = (D′
1[x/s′] ⊗ D′

2[x/s′′]),

where D′
i is Di with top(D1⊗D2)∩free(s) renamed, and s′, s′′ are s with bound(s)

renamed. Similar clauses are needed to treat (D1 ⇒ D2)[x/s] and (D1∨D2)[x/s].
For example, if P is not in ϕ, then in

(〈[x], ϕ〉 ⊗ (P · x))[P/λxD] = (〈[x′], ϕ[x/x′]〉 ⊗ (P · x′)[P/λxD′])
= (〈[x′], ϕ[x/x′]〉 ⊗ D′[x/x′]),

D′ is D with toplevel referents renamed and hence does not bind free variables
of ϕ.

3 Typing Rules

Montague-semantics and λ-DRT usually come with base types e for entities and
t for truth values. As boxes are pairs 〈x , ϕ〉 of a list of individual variables and
a formula, it seems natural to give them the pair type e∗ × t, where e∗ is the
type of lists of entities. Instead, all boxes have another base type in [2], and the
type s → (s → t) of binary relations between situations s (resp. assignments of
entities to discourse referents) in [19]).

For the kind of semantic checking of texts we want to do, a more fine-grained
typing of DRSs is needed. One should distinguish between entities of different
kinds, i.e. replace the base type e by a family 〈ei〉i∈I of base types or sorts. The
type of a box 〈x , ϕ〉 then becomes a pair e × t, so that, essentially, a typed DRS
〈x , ϕ〉 : e × t is a pair of a type environment x : e and a formula ϕ : t.

The type e × t of a merge-DRS D1 ⊗ D2 then ought to be related to the
types e1 × t and e2 × t of the constituents D1 and D2 in that e is obtained by
appending e1 and e2, so e = append(e1, e2). However, since ⊗ is just a DRS-
constructor, we will likewise introduce a type constructor ⊗ and use a constraint
e = e1 ⊗e2 in the type reconstruction process. Since the length of referent- and
type-lists have to match –even if we had only a single sort of entities–, we cannot
use the list type constructor ∗, but build type lists by consing a type ei to a list
e of types, ei × e , beginning with the type 11 for the empty list paired with a
truth value.

Types:

σ, τ := α (type variables)
| ei (atomic types of individuals) | (σ × τ) (DRSs with non-empty ref-list)
| t (truth values) | (σ ⊗ τ) (merge-DRSs)
| 11 (DRSs with empty ref-list) | (σ → τ) (functions)

We call a type a drs-type, if it is of the forms α, 11, ei ×τ , or σ⊗τ with drs-types
σ and τ . We write σ×τ ×11 for (σ×(τ ×11)) and [σ1, . . . , σn] for σ1× . . .×σn ×11.

154 H. Leiß and S. Wu

Typing rules:

Typing variables (and constants),
abstractions and applications

x : σ, Γ � x : σ
(var1)

x �≡ y Γ � x : σ

y : τ, Γ � x : σ
(var2)

x : ρ, Γ � t : τ

Γ � λxt : (ρ → τ)
(abs)

Γ � t : σ → τ Γ � s : σ

Γ � (t · s) : τ
(app)

Using a typed DRS as a type context

Γ � x : σ

〈[], ϕ〉 : 11, Γ � x : σ
(var3)

y : ρ, D : τ, Γ � x : σ

〈y,D〉 : ρ × τ, Γ � x : σ
(var4)

D : ρ,E : σ, Γ � x : τ

(D ⊗ E) : (ρ ⊗ σ), Γ � x : τ
(var5)

Γ � x : τ

(D1 · D2) : σ, Γ � x : τ
(var6)

Γ � x : τ

λyD : σ, Γ � x : τ
(var7)

An assumption D : σ can only be used when D is a variable, a value-DRS,
or a merged DRS. The rules (var3) and (var4) amount to a typing rule

x1 : σ1, . . . , xn : σn, Γ � x : σ

〈[x1, . . . , xn], ϕ〉 : [σ1, . . . , σn], Γ � x : σ
(var+)

which says that a typed DRS as assumption is used as a list of typing assump-
tions of its top-level discourse referents. By (var5), assuming a typed merged
DRS amounts to assuming suitably typed merge-factors. By (var6) and (var7),
assumptions for typed applications and abstractions can be ignored.

We need typed DRSs as assumptions to type merge-DRSs, disjunctions,
implications and discourses (rules (⊗), (impl), (disj), (;)), where part of the DRS
to be typed contains top-level referents whose types have to be assumed to type
the rest of the DRS.

Typing value DRSs and merged DRSs

Γ � ϕ : t
Γ � 〈[], ϕ〉 : 11

(drs+1)
x : σ, Γ � D : τ

Γ � 〈x,D〉 : (σ × τ)
(drs+2)

D2 : τ2, Γ � D1 : τ1 D1 : τ1, Γ � D2 : τ2
Γ � (D1 ⊗ D2) : (τ1 ⊗ τ2)

(⊗)

Notice that in (drs+2) a variable is removed from the context and built into a
DRS. Hence, 〈x,D〉 corresponds to a binding operator, written δx.D in Kohlhase
e.a. [13] But in (⊗) a typed DRS is used like a type context to type another DRS,
whereby the scope of 〈x,D〉 : σ is extended to terms outside of D. This is what
Kohlhase e.a. [13] call “dynamic” binding of variables in D2 by binding operators
of D1.

Type Reconstruction for λ-DRT Applied to Pronoun Resolution 155

Typing formulas

Γ � t1 : τ1 . . . Γ � tn : τn

Γ � R : τ1 → (. . . → (τn → t) . . .)
Γ � R(t1, . . . , tn) : t

(rel)

Γ � t1 : e Γ � t2 : e

Γ � t1=̇t2 : t
(eqn)

Γ � ϕ : t Γ � ψ : t
Γ � (ϕ ∧ ψ) : t

(conj)

Γ � D : σ

Γ � ¬D : t
(neg)

Γ � D1 : σ1

D1 : σ1, Γ � D2 : σ2

Γ � (D1 ∨ D2) : t
(disj)

Γ � D1 : σ1

D1 : σ1, Γ � D2 : σ2

Γ � (D1 ⇒ D2) : t
(impl)

Discourses are sequences of sentences; to type the sequence of their DRSs,
each DRS is typed in the context extended by the previous DRSs. (Thereby we
can resolve pronouns anaphoric ally, to referents in the left textual context.)

Typing discourses

Γ � D1 : τ1 D1 : τ1, Γ � D2 : τ2
· · · Dn : τn, . . . , D1 : τ1, Γ � Dn+1 : τn+1

Γ � (D1 ; D2 ; . . . ; Dn+1) : ((. . . (τ1 ⊗ τ2) . . .) ⊗ τn+1)
(;)

In typing a term, a typed assumption D : σ can only be used by decomposing
it to the typed top-level discourse referents of D, using (var3) to (var5). This
cannot be done if D is a variable, application, or abstraction. We ignore assumed
typed abstractions by (var7), which is harmless since they cannot evaluate to
boxes, but (var6), ignoring assumed typed applications, is not: they may reduce
to a box containing x as a top-level discourse referent and thus block an assump-
tion x : τ in Γ . We need to restrict (var6) to have a form of subject-reduction,
see Sect. 5.

By induction on the structure of terms, formulas and λ-DRSs t, we obtain:

Lemma 1. Suppose for all x ∈ free(t) and all types σ, Γ � x : σ iff Δ � x : σ.
Then Γ � t : τ iff Δ � t : τ .

Corollary 1. 1. If Γ, 〈[], ϕ〉 : 11,Δ � s : σ, then Γ,Δ � s : σ.
2. If x : ρ,E : τ, Γ � s : σ and x is not a top-level referent of E, then

E : τ, x : ρ, Γ � s : σ.

4 Type Reconstruction

We want to extend Hindley’s well-known “principal types”-theorem from (simply
typed) λ-calculus to λ-DRT. The theorem says that the set of typings Γ � t : τ
of a term t is the set of instances SΓ0 � t : Sτ0 of a single typing Γ0 � t : τ0,

156 H. Leiß and S. Wu

where S : TyVar → Ty are the assignments of types to type variables. Then
Γ0 � t : τ0 is a most general or principal typing of t. A (principal) typing of t
modulo Γ is a (principal) typing SΓ � t : σ for some type substitution S and
type σ.

It is not hard to see that instances of a DRS-typing are also typings of the
DRS.

Lemma 2. If Γ � D : σ and S : TyVar → Ty, then SΓ � D : Sσ.

More work is needed to show the existence of principal typings.

Theorem 1. There is an algorithm W that, given a type context Γ and a term
t, either returns a pair (U, τ) of a type substitution U : TyVar → Ty and a type
τ such that UΓ � t : τ is a most general typing of t modulo Γ , or returns ‘fail’,
if there is no (U, τ) such that UΓ � t : τ .

The algorithm W has an easy modification which, on input (Γ, e) where e has a
type in some instance of Γ , not only delivers (U, τ) such that UΓ � e : τ , but
also a variant e′ of e where variable bindings are annotated with types.

Proof. The proof is an extension of the proof of [6,9]. We only consider the cases
of variables and terms that are new in λ-DRT over the λ-calculus. Define W as
follows:

W (Γ, x) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(Id, τ), Γ = x : τ, Γ ′ for some Γ ′,
W ((D : σ,E : τ, Γ ′), x), Γ = (D ⊗ E) : (σ ⊗ τ), Γ ′,
W ((z : σ,D : τ, Γ ′), x) Γ = 〈z,D〉 : σ × τ, Γ ′,
W (Γ ′, x), Γ = s : σ, Γ ′, else,
fail, else

W (Γ, 〈x,D〉) = Sα × Sτ, if W ((x : α, Γ),D) = (S, τ) for fresh TyVar α

W (Γ, (D1 ⊗ D2)) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(US2S1, (US2τ1 ⊗ Uτ2)),
if for some τ1, τ2 and freshα2

W ((D2 : α2, Γ),D1) = (S1, τ1),
W ((D1 : τ1, S1Γ),D2) = (S2, τ2),
and U = mgu(τ2, S2S1α2) �= fail

fail, else

By induction on t, we want to show that for all Γ, S, τ :

(i) W (Γ, t) terminates.
(ii) If W (Γ, t) = fail, then there is no typing of t modulo Γ .
(iii) If W (Γ, t) = (S, τ), then SΓ � t : τ is a principal typing of t modulo Γ .

Type Reconstruction for λ-DRT Applied to Pronoun Resolution 157

Case t = x: (i) W (Γ, x) searches the type context from left to right, unpacking
boxes and merge-DRSs to lists of typed referents, and applies (var1) to the first
assumption x : τ found. Clearly, this terminates. (ii) If W (Γ, x) = fail, then
no assumption x : τ is found in the (unpacked) context, so x is untypeable,
since (var1) cannot be applied to x. (iii) If W (Γ, x) = (S, τ), then S = Id and
Γ = x : τ, Γ ′ for some Γ ′. Suppose RΓ � x : ρ is a typing of x modulo Γ . Then
RΓ = x : Rτ,RΓ ′, and hence ρ = Rτ by (var1). So RΓ � x : ρ is obtained
from SΓ � x : τ by instantiating with R.

Case t = (D1 ⊗ D2):

(i) W (Γ, (D1 ⊗ D2)) terminates, since by induction, W ((D2 : α, Γ),D1) ter-
minates, for each (S1, τ1), W ((D1 : τ1, S1Γ),D2) terminates, and for each
(S2, τ2), mgu(τ2, S2S1α) terminates.

(ii) Suppose there is a typing of (D1 ⊗ D2) modulo Γ . For some S, τ1, τ2, the
typing derivation ends in

D2 : τ2, SΓ � D1 : τ1 D1 : τ1, SΓ � D2 : τ2

SΓ � (D1 ⊗ D2) : (τ1 ⊗ τ2)
(⊗).

Thus there is a typing of D1 modulo D2 : α2, Γ , whence, by induc-
tion, W ((D2 : α2, Γ),D1) �= fail, and there is a most general typing
D2 : S1α2, S1Γ � D1 : σ1 of D1 modulo (D2 : α2, Γ). Since it is most
general, there is a type substitution T1 such that

D2 : τ2, SΓ � D1 : τ1 ≡ D2 : T1S1α2, T1S1Γ � D1 : T1σ1.

There is also a typing of D2 modulo

(D1 : τ1, SΓ) ≡ (D1 : T1σ1, T1S1Γ),

hence a typing of D2 modulo (D1 : σ1, S1Γ). Therefore, by induc-
tion, W ((D1 : σ1, S1Γ),D2) �= fail, and there is a most general typing
D1 : S2σ1, S2S1Γ � D2 : σ2 of D2 modulo (D1 : σ1, S1Γ). Since it is most
general, there is a type substitution T2 such that

D1 : τ1, SΓ � D2 : τ2 ≡ D1 : T1σ1, T1S1Γ � D2 : τ2

≡ D1 : T2S2σ1, T2S2S1Γ � D2 : T2σ2.

So we have T2σ2 = τ2 = T1S1α2, and on the type variables of S1Γ and
σ1, T1 = T2S2. On type variables β of S1α2 which are not in S1Γ or σ1,
we have S2β = β as S2 is idempotent. We can assume that β is not in the
support of T2 and put T2β := T1β, obtaining T1β = T2S2β. Then from
T2σ2 = τ2 = T1S1α2 = T2S2S1α2, we know that σ2 and S2S1α2 unify,
so mgu(σ2, S2S1α2) �= fail. By the definition of W , it then follows that
W (Γ, (D1 ⊗ D2)) �= fail.

(iii) Suppose W (Γ, (D1 ⊗ D2)) = (US2S1, (US2σ1 ⊗ Uσ2)) with U, S1, S2, σ1, σ2

as in the definition of W . Then with fresh α2, W ((D2 : α2, Γ),D1) =
(S1, σ1), W ((D1 : σ1, S1Γ),D2) = (S2, σ2), and U = mgu(σ2, S2S1α2) �=
fail. By induction, we know that

158 H. Leiß and S. Wu

(a) D2 : S1α2, S1Γ � D1 : σ1 is a principal typing of D1 modulo (D2 :
α2, Γ),

(b) D1 : S2σ1, S2S1Γ � D2 : σ2 is a principal typing of D2 modulo (D1 :
σ1, S1Γ).

By specializing the typing in (a) with US2 and the one in (b) with U , one
obtains

D2 : US2S1α2, US2S1Γ � D1 : US2σ1,

and D1 : US2σ1, US2S1Γ � D2 : Uσ2.

Since US2S1α2 = Uσ2, we can apply the rule (⊗) and obtain a typing

US2S1Γ � (D1 ⊗ D2) : (US2σ1 ⊗ Uσ2)

of (D1 ⊗ D2) modulo Γ . It remains to be shown that this is a most general
typing.

So suppose (D1 ⊗ D2) has a typing modulo Γ . The last step in the typing
derivation is

D2 : τ2, SΓ � D1 : τ1, D1 : τ1, SΓ � D2 : τ2

SΓ � (D1 ⊗ D2) : (τ1 ⊗ τ2)
(⊗).

For the left subderivation of D2 : τ2, SΓ � D1 : τ1 we may assume τ2 = Sα2

for some fresh type variable α2. So D1 has a typing (S, τ1) modulo D2 :
α2, Γ . By a) there is a type substitution T1 such that (S, τ1) = (T1S1, T1σ1),
whence

D2 : τ2, SΓ � D1 : τ1 ≡ D2 : T1S1α2, T1S1Γ � D1 : T1σ1.

Now the right subderivation D1 : τ1, SΓ � D2 : τ2 is a derivation of

D1 : T1σ1, T1S1Γ � D2 : T1S1α2,

which is a typing of D2 modulo (D1 : σ1, S1Γ). By b), there is a type
substitution T2 with

D1 : τ1, SΓ � D2 : τ2 ≡ D1 : T2S2σ1, T2S2S1Γ � D2 : T2σ2.

It follows that

SΓ � (D1 ⊗ D2) : (τ1 ⊗ τ2) ≡ &T2S2S1Γ � (D1 ⊗ D2) : (T2S2σ1 ⊗ T2σ2).

To show that this is an instance of the typing

US2S1Γ � (D1 ⊗ D2) : (US2σ1 ⊗ Uσ2),

we need a type substitution R such that T2 = RU on the type variables of
S2S1Γ , S2σ1 and σ2. We have T2σ2 = T1S1α2. As in (ii), T1 = T2S2 on the
type variables of S1α2, so T2τ2 = T2S2S1α, and since U = mgu(τ2, S2S1α2),
T2 = RU on the type variables of τ2 and S2S1α2. On other type variables
β, we have Uβ = β = Rβ and can redefine Rβ := T2β, to obtain T2 = RU
on all type variables of S2S1Γ , S2σ1 and σ2.

Type Reconstruction for λ-DRT Applied to Pronoun Resolution 159

The remaining cases of t can be treated similarly.

Example 1. The lexicon entry for the indefinite article a in λ-DRT of [13] is

λPλQ(δxi
 ⊗ P (̂ xi) ⊗ Q(̂ xi)) : (d, t), ((d, t), t)

where d is the type of individual concepts and t the type of DRSs. Simplify-
ing this to the extensional case and using the DRS-notation from above, type
reconstruction yields the principal typing

� λPλQ(〈[x],
〉 ⊗ Px ⊗ Qx) : (α → γ) → (α → δ) → [α] ⊗ γ ⊗ δ.

Instead of the basic type t for DRSs in [13], we have infinitely many types
[σ1, . . . , σn]. Moreover, we have the principal typing

man′ : e → t � λx〈[],man′ x〉 : e → 11.

The unreduced meaning term for a man therefore is

λPλQ(〈[x],
〉 ⊗ Px ⊗ Qx) · λx〈[],man′ x〉
and has the principal type (e → δ) → [e] ⊗ 11 ⊗ δ.

For the kind of semantic checking of natural language text that we are inter-
ested in, we need to distinguish between different sorts of individuals. Lexical
entries should assign different base types to the arguments of content words, in
particular verbs and nouns. It is then useful, if not imperative, to have a lexicon
with polymorphic types for the functional words like the indefinite article above,
rather than be forced to put into the lexicon all the instance types needed for a
specific application.

The type-checking in texts is slightly different from the one in programs: in
programs, we need to check that in applications f(a1, . . . , an), the type of the
arguments equal (or are subtypes of) the argument types of the function, while
in texts, in predications v(np1, . . . , npk) the types of the (generally quantified)
argument noun phrases have to be related by type-raising to the argument types
of the verb.

But in principle, we want to have the same phase distinction between type
checking and evaluation: we want to build meaning terms according to the syn-
tactic structure, then check if the meaning is typable, and only then perform
semantic evaluation. Thus, evaluation only needs to be defined on typed expres-
sions, and type checking would be pointless if evaluation would not preserve the
type of expressions.

5 Reduction

We assume the familiar β-reduction and congruence rules of λ-calculus,

(λxD · s) → D[x/s]
(β)

D → D′

λxD → λxD′ ,

D → D′

(D · E) → (D′ · E)
,

E → E′

(D · E) → (D · E′)
.

160 H. Leiß and S. Wu

The intended meaning of the merge (D1⊗D2) of two value-DRSs with disjoint
referent lists, D1 = 〈[x1, . . . , xn], ϕ〉 and D2 = 〈[y1, . . . , ym], ψ〉, is the value-DRS

〈[x1, . . . , xn, y1, . . . , ym], (ϕ ∧ ψ)〉.

We therefore define the reduction (resp. evaluation) of DRS-expressions by the
following δ-reduction rules:

〈[], ϕ〉 ⊗ 〈[], ψ〉 → 〈[], (ϕ ∧ ψ)〉 (δ1), 〈[], ϕ〉 ⊗ 〈y,E〉 → 〈y, 〈[], ϕ〉 ⊗ E〉 (δ2),

〈x,D〉 ⊗ E → 〈x,D ⊗ E〉 (δ3).

From these, the intended meaning for the merge of value-DRSs follows:

〈[x1, . . . , xn], ϕ〉 ⊗ 〈[y1, . . . , ym], ψ〉 →∗ 〈[x1, . . . , xn, y1, . . . , ym], (ϕ ∧ ψ)〉.

In order to use (δ1) - (δ3), by reductions we must achieve that arguments of
⊗ are value-DRSs. Hence we also need congruence rules for δ = 〈·, ·〉 and ⊗:

D → E

〈x,D〉 → 〈x,E〉 (δ4),
D → D′

(D ⊗ E) → (D′ ⊗ E)
(δ5),

E → E′

(D ⊗ E) → (D ⊗ E′)
(δ6),

so that reductions can be performed in subterms of 〈x,D〉, (D ⊗ E) as well as
λxD and (D1 · D2). Then the following reduction rules are derivable:

E →∗ E′

〈[], ϕ〉 ⊗ 〈y,E〉 →∗ 〈y, 〈[], ϕ〉 ⊗ E′〉 (δ+2),
D →∗ D′, E →∗ E′

〈x,D〉 ⊗ E →∗ 〈x,D′ ⊗ E′〉 (δ+3).

Normalization

It is obvious that applications of the δ-reduction rules do not lead to new occur-
rences of β-redexes. Therefore, expressions can be reduced by first performing
β-reductions as long as possible, and only then apply δ-reduction rules. If we start
with a typed expression, then from the strong normalization property for simply
typed λ-calculus the first will terminate. It is also clear that the δ-reduction rules
cannot lead to infinite reduction sequences.

Notice that on value-DRSs with disjoint top-level referents, ⊗ is associative,
if we consider formula conjunction to be associative, i.e. use list [ϕ1, . . . , ϕn] of
formulas, as we do in Sect. 6.2.

We would like to show that in a derivable typing statement Γ � s : σ,
where the “predicate” σ applies to the “subject” s, we may reduce the subject
and still the predicate σ applies. However, this is not quite true: when we reduce
a merge-DRS, the type constructor × is interpreted as a cons of a referent and
a referent list, and ⊗ is interpreted as an append of referent lists, and since the
type of a DRS mirrors its construction, we need to cons resp. append the lists
of types of the referents.

Type Reconstruction for λ-DRT Applied to Pronoun Resolution 161

We use the following type reductions, which amount to a recursive definition
of append (⊗) in terms of the empty list (11) and cons (×):

11 ⊗ 11 ⇀ 11
(δ′

1) 11 ⊗ (σ × ρ) ⇀ σ × (11 ⊗ ρ)
(δ′

2)

(σ × ρ) ⊗ τ ⇀ σ × (ρ ⊗ τ)
(δ′

3)

Moreover, type reduction may operate on embedded type expressions:

σ ⇀ σ′

σ × τ ⇀ σ′ × τ
(×′)

τ ⇀ τ ′

σ × τ ⇀ σ × τ ′ (×′′)

σ ⇀ σ′

σ ⊗ τ ⇀ σ′ ⊗ τ
(⊗′)

τ ⇀ τ ′

σ ⊗ τ ⇀ σ ⊗ τ ′ (⊗′′)

σ ⇀ σ′

(σ → τ) ⇀ (σ′ → τ)
(→′)

τ ⇀ τ ′

(σ → τ) ⇀ (σ → τ ′)
(→′′)

Example 1. (continued) Reducing the above term

λPλQ(〈[x],
〉 ⊗ Px ⊗ Qx) · λx〈[],man′ x〉
by β-reductions gives λQ(〈[x],
〉 ⊗ 〈[],man′ x〉 ⊗ Qx) and reducing further by
δ-reductions leads to

λQ(〈[x],
 ∧ man′ x〉 ⊗ Qx).

Its principal type (e → δ) → [e] ⊗ δ is obtained from the one of the unreduced
term by applications of (⊗′), (δ′

3), and (δ′
1) that simplify [e] ⊗ 11 ⊗ δ to [e] ⊗ δ.

Since our types of DRSs closely reflect the construction of their top-level
referent lists, in order to have a subject reduction property we need to consider
types equivalent when they get equal by interpreting ⊗ as append, × as cons,
and 11 as the empty list.

A more serious obstacle to subject-reduction is the typing rule (var6) which
permits us to ignore assumptions (D1 · D2) : σ. In fact, the subject-reduction
property does not hold in general.

Example 2. Consider the application of

D2 : τ2, Γ � D1 : τ1 D1 : τ1, Γ � D2 : τ2

Γ � (D1 ⊗ D2) : (τ1 ⊗ τ2)
(⊗)

Suppose (D1 ⊗ D2) → (D′
1 ⊗ D2) via D1 → D′

1. As we have seen above, we may
have x ∈ top(D′

1)\ top(D1). In the left subderivation D1 : τ1, Γ � D2 : τ2, a free
occurrence of x in D2 gets its type from Γ , while in the context D′

1 : τ1, Γ , it gets
its type from D′

1 : τ1. Hence, it may be impossible to obtain D′
1 : τ1, Γ � D2 : τ2.

(For example, take D1 : τ1 = λy〈x,E〉 · a : (σ × τ), D2 : τ2 = 〈[], Px〉 : 11.) Thus,
Γ � (D1 ⊗ D2) : (τ1 ⊗ τ2) does not imply Γ � (D′

1 ⊗ D2) : (τ1 ⊗ τ2).

162 H. Leiß and S. Wu

The problem similarly arises for (D1 ⇒ D2), (D1 ∨ D2), or (D1 ; D2), where
D1 may β-reduce to a DRS with a new top-level referent occurring free in D2.
This is a defect of λ-DRT terms which admit the binding part D1 of such expres-
sions to arise from a β-redex like (λzz · D1).

We will sidestep this problem for the application to pronoun resolution below
by assuming

1. all λ-DRS-expressions used as meanings of lexical entries are closed and in
normal form,

2. in substitution t[x/s], bound variables (including referents) in t are renamed
to make them distinct from free variables of s,

3. in t[x/s], s is in normal form, and referents of s are renamed at each occurrence
of x in t (in merge-factors, so that their scope does not extend).3

4. all bound variables are pairwise distinct; in particular, no referent is used
twice as a binding variable.

In particular, we will use a call-by-value strategy when computing the meaning
of phrases: if the meaning of a phrase is an application λxt · s, we will have λxt
and s in normal form, and deliver a normal form nf (t[x/s]) of t[x/s] as value,
see the computation rules in Sect. 6.2. We think that the following weak form of
the subject reduction property holds under the above assumptions:

Conjecture 1. If t and s are in normal form, and Γ � (λxt · s) : τ , then there
is τ ′ with τ ⇀∗ τ ′ and Γ � nf (t[x/s]) : τ ′.

However, we do not make use of that in the following; termination of reduction
suffices.

6 Application to Pronoun Resolution

There are two possible ways to combine type reconstruction and pronoun res-
olution. Either one applies a pronoun resolution algorithm and then uses type
reconstruction to check if the resolution is type-correct, or one first applies type
reconstruction and then does pronoun resolution by exploiting the type infor-
mation.

6.1 Type Informed Pronoun Resolution

The second way has been implemented [22]. It roughly proceeds as follows:

– Step 1: for each pronoun occurrence, introduce a fresh discourse referent x and
extend the DRS by an anaphor-declaration like anp(x, fem, sg). For the dis-
course referent y of each noun phrase that is not a pronoun, add an antecedent-
declaration like ant(y,masc, sg) to the DRS.

3 Notice that λP (P ⊗ P) · 〈[z], [ϕ]〉 then reduces to (〈[z1], [ϕ(z/z1)]〉 ⊗ 〈[z2], [ϕ(z/z2)]〉,
and further to 〈[z1, z2], [ϕ(z/z1), ϕ(z/z2)]〉, like turning (∃zϕ∧∃zϕ) into prenex form
∃z1∃z2(ϕ1(z/z1) ∧ ϕ(z/z2)).

Type Reconstruction for λ-DRT Applied to Pronoun Resolution 163

– Step 2: apply type reconstruction to get a most general typing for the dis-
course, including individual types ei for discourse referents x as inferred from
the occurrence context of the pronoun.

– Step 3: “resolve” an anaphoric (or cataphoric) pronoun by unifying its typed
discourse referent x : α with some discourse referent y : β of a possible
antecedent of the same type, observing the grammatical properties of gender
and number in the corresponding declarations anp(x, gx, nx) and ant(y, gy, ny).

A more detailed description is best obtained by explaining the relevant parts of
the Prolog-program of [22].

A parse tree is represented as a list [Root|Subtrees] where the root is
the syntactic category of the parsed expression. A discourse is either empty,
with tree [d], or the extension of a discourse by a sentence, and then has tree
[d,S,D] where S is the parse tree of the final sentence and D the parse tree of the
initial discourse.4 For each parse tree, sem(+Tree,-DRS) computes a number of
meanings. If the tree is a discourse, each meaning is a typed λ-DRS, otherwise
an untyped λ-DRS in normal form.

% sem(+ParseTree,-DRS); for a discourse, DRS is typed

...

sem([d], drs([],[])) :- !.

sem([d,S,D], Sem) :-

!, sem(S,SemS), sem(D,SemD), resolve(SemS,SemD,Sem).

Having computed a typed meaning SemD for the initial discourse and an untyped
meaning SemS for the final sentence, we try to resolve anaphors of SemS, using
SemD as accessible DRS for possible antecedents.

% resolve(+SemS,+SemD,-Sem)

resolve(SemS,SemD,Sem) :-

type([],SemS,SemSTy,_TypS),

resolve_drs([SemSTy,SemD],[DrsS,DrsD]),

mergeTerm(DrsD + DrsS, Sem).

First, type reconstruction type/4 is applied to SemS; as pronouns get fresh dis-
course referents in SemS, we can use the empty type context to find a princi-
pal type TypS for the DRS SemS. Actually, we use a modification of the type
reconstruction algorithm that also returns a typed version SemSTy of SemS,
which has type annotations at variable bindings (including referents in refer-
ent lists). This typed DRS SemSTy is resolved with SemD as accessible DRS,
using resolve drs/2; the modifications DrsS and DrsD are finally merged by
appending the referents and formulas of DrsS to those of DrsD.

To resolve a DRS drs(Refs,Fmls) with respect to a stack Ds1 of partially
resolved accessible DRSs, we go through the formulas, which may contain unre-
solved DRSs, resolve these, and construct a resolved form of drs(Refs,Fmls)
on top of the stack:
4 To prevent Prolog’s top-down parsing strategy from diverging for left-recursive gram-
mar rules d -> d, s., we use a right-recursive rule d --> s, d. for discourses and
reverse the sequence of input sentences before parsing.

164 H. Leiß and S. Wu

% resolve_drs(+DRSs, -resolvedDRSs)

resolve_drs([drs(Refs,Fmls)|Ds1],RDs):-

resolve_fml(Fmls,[drs(Refs,[])|Ds1],RDs).

If a formula is built from DRSs, like (D1 ⇒ D2), (D1∨D2), or ¬D, the component
DRSs are resolved in term, respecting the accessibility conditions of DRT, and
the formula built form the resolved component DRSs is added to the result-DRS
under construction, before the remaining formulas are processed:

% resolve_fml(+Fmls,[?resultDRS|+accessDRSs],-resolvedDRSs)

resolve_fml([(D1 => D2)|Fmls],Ds,RDs):-

!, resolve_drs([D1|Ds],[D1r|Dsr]),

resolve_drs([D2,D1r|Dsr],[D2R,D1R,drs(R,F)|Ds3]),

resolve_fml(Fmls,[drs(R,[(D1R => D2R)|F])|Ds3],RDs).

...

If the formula is an anaphor anp(Ref,Gen,Num) with typed(!) referent Ref and
gender and number information, one tries to find a suitable antecedent in the
result-DRS under construction (i.e. in the pronoun’s left textual context in the
current sentence) or the accessible DRSs, or in the remaining formulas of the
DRS currently under process:

resolve_fml([anp(Ref,Gen,Num)|Fmls], [drs(R,F)|Ds1], RDs) :-

!, ((% in sentence prefix or previous sentences

resolve_anp(Ref,Gen,Num,[drs(R,F)|Ds1])

; % in sentence suffix

resolve_anp(Ref,Gen,Num,[drs(R,Fmls)])

),

delete_ref(Ref,R,NewR), % omit duplicates of Ref

NewD = drs(NewR,F) % omit anp(Ref,..) in the result DRS

; NewD = drs(R,[anp(Ref,Gen,Num)|F]) % or: fail, to

), % exclude unre-

resolve_fml(Fmls,[NewD|Ds1],RDs). % solved anaphors

Possessive pronouns are handled by looking for antecedents in their left context
only.

To find a suitable antecedent, simply choose some of the accessible DRSs and
some antecedent among its formulas that can be unified with the referent:

% resolve_anp(+Ref,+Gen,+Num,+DRSs)

resolve_anp(Ref,Gen,Num,Ds):-

member(drs(_Refs,Fs),Ds),

member(ant(Ref,Gen,Num),Fs).

By using the same variables Ref, Gen, Num, Prolog unifies a typed anaphor R:Ty
with a typed antecedent R′:Ty′ of the same number and gender features.

Atomic formulas can just be transferred to the result-DRS under construc-
tion, and when all formulas of the DRS are processed, the sequence of resolved
formulas is reversed to its expected order:

Type Reconstruction for λ-DRT Applied to Pronoun Resolution 165

resolve_fml([Fml|Fmls],[drs(R,F)|Ds1],RDs):-

!, resolve_fml(Fmls,[drs(R,[Fml|F])|Ds1],RDs).

resolve_fml([],[drs(R,F)|Ds],[drs(R,Frev)|Ds]):-

!, reverse(F,Frev).

The stack of resolved DRSs with a resolved form of the DRS drs(Refs,Fmls)
on top is returned.

6.2 Example

We assume that nouns N and relational nouns RN are classified according to
gender g ∈ {m, f, n} (masculine, feminine, neuter), and implicitly inflect for
number n ∈ {sg, pl} and case c. (We use gender m as in the corresponding
German nouns and pronouns to get more possible antecedents below.)

1. Content words are assigned a meaning and a type in the lexicon, for example:

expression meaning type
Galilei : PN galilei h

Jupiter : PN jupiter s

astronomer : N λx〈[], [ant(x,m, sg), astronomer(x)]〉 h → 11
star : N λx〈[], [ant(x,m, sg), star(x)]〉 s → 11

moon : RN λxλy〈[], [ant(x,m, sg),moon(x, y)]〉 s → (s → 11)
shine : V λx〈[], [shine(x)]〉 s → 11

observe : TV λxλy 〈[], [observe(x, y)]〉 h → (s → 11)
discover : TV λxλy 〈[], [discover(x, y)]〉 h → (s → 11)

Pronouns inflect for number, gender, and case, if we consider person fixed
to 3rd person. Like determiners, pronouns have polymorphic type; i.e. from
their untyped λ-DRS-meaning we reconstruct their most general (schematic)
type.

expression meaning principal type
he : Pron λP (〈[x], [anp(x,m, sg)]〉 ⊗ P x) (α → β) → [α] ⊗ β

she : Pron λP (〈[x], [anp(x, f, sg)]〉 ⊗ P x) (α → β) → [α] ⊗ β

his : PossPron λRλP (〈[x, y], [anposs(y,m, sg)]〉
⊗(R xy ⊗ P x))

(α → β → γ)
→ (α → δ)
→ [α, β] ⊗ γ ⊗ δ

who : RelPron λPλx (P x) (α → β) → (α → β)
a : Det λNλP (〈[x], []〉 ⊗ (N x ⊗ P x)) (α → β) → (α → γ)

→ [α] ⊗ β ⊗ γ

every : Det λNλP 〈[], [(〈[x], []〉 ⊗ N x) ⇒ P x]〉 (α → β) → (α → γ)
→ 11

eq λxλy.eq(x, y) α → (α → t)

166 H. Leiß and S. Wu

Each use of a personal, relative, or possessive pronoun uses a new referent x.
Moreover, eq, anp, anposs, ant have polymorphic lexical (not reconstructed)
type.

2. Compound expressions are built according to grammar rules; each grammar
rule is accompanied by one or several meaning computation rules. Some exam-
ples are:

p : PNg

p : NP
(S 1)

p′

λP (〈[x], [ant(x, g, sg),
eq(x, p′)]〉 ⊗ P · x)

(C 1)

p : Prong,n

p : NP
(S 2)

p′

p′ (C 2)

d : Det n : N

d n : NP
(S 3)

d′ n′

nf (d′ · n′)
(C 3)

p : PossPron r : RN

p r : NP
(S 4)

p′ r′

nf (p′ · r′)
(C 4)

np1 : NP v : TV np2 : NP

np1 v np2 : S
(S 5)

np′
1 v′ np′

2

nf (np′
1 · λx(np′

2 · λy(v′ · x · y)))
(C 5)

ε : D (S 6) 〈[], []〉 (C 6)

d : D s : S

d ; s : D (S 7)
d′ s′

(d′′ ⊗ s′′)
(C 7)

An additional computation rule (C 5′) for sentences np1 v np2 : S might
give np2 wide scope. In (C 7), d′′ and s′′ are obtained by pronoun-resolution
from most general typings of d′ and s′ in the empty type context, i.e.
resolve(s′, d′, d′′ ⊗ s′′) by the resolution algorithm explained above.

3. Let us consider the sample discourse Galilei observed a star. He discovered
his moon. The first sentence is constructed with (S 1), (S 3), and (S 5). We
compute the meaning of the subject as

np′
1 = λP (〈[x], [ant(x,m, sg), eq(x, galilei)]〉 ⊗ P · x),

the meaning of the object as

np′
2 = nf (λNλP (〈[x], []〉 ⊗ (N x ⊗ P x)) · λx〈[], [ant(x,m, sg), star(x)]〉)

= nf (λP (〈[x], []〉 ⊗ (〈[], [ant(x,m, sg), star(x)]〉 ⊗ P x)))
= λP (〈[x], [ant(x,m, sg), star(x)]〉 ⊗ P x)

and from those obtain the sentence meaning by the computation rule for
(S 5) as

Type Reconstruction for λ-DRT Applied to Pronoun Resolution 167

s′
1 = nf (np′

1 · λx(np′
2 · λy(v′ · x · y)))

= nf (np′
1 · λx(np′

2 · λy(〈[], [observe(x, y)]〉)))
= nf (np′

1 · λx.(〈[x], [ant(x,m, sg), star(x)]〉⊗P x)[P/λy〈[], [observe(x, y)]〉])
= nf (np′

1 · λx(〈[x̃], [ant(x̃,m, sg), star(x̃)]〉 ⊗ 〈[], [observe(x, x̃)]〉))
= nf (np′

1 · λx〈[y], [ant(y,m, sg), star(y), observe(x, y)]〉)
= nf ((〈[x], [ant(x,m, sg), eq(x, galilei)]〉 ⊗ P x)[P/λx〈[y], [ant(. . .), . . .]〉])
= nf ((〈[x], [ant(x,m, sg), eq(x, galilei)]〉 ⊗ 〈[y], [ant(y,m, sg), . . .]〉))
= 〈[x, y], [ant(x,m, sg), eq(x, galilei), ant(y,m, sg), star(y), observe(x, y)]〉

From the type assumptions for nouns and verbs (and eq), type reconstruction
can annotate the bound variables of s′

1 as

〈[x : h, y : s], [ant(x : h,m, sg), eq(x, galilei), ant(y : s,m, sg), . . .]〉
and return a most general type 〈[h, s], t〉. In the second sentence, the subject
he has meaning

np′
1 = λP (〈[x], [anp(x,m, sg)]〉 ⊗ P x),

which receives the following annotation and principal type:

λP : (α → β)(〈[x : α], [anp(x : α,m, sg)]〉 ⊗ P x) : (α → β) → [α] ⊗ β.

The object his moon gets the meaning5

np′
2 = nf (λRλP (〈[x, y], [anposs(y,m, sg)]〉 ⊗ (R xy ⊗ P x))

·λxλy〈[], [ant(x,m, sg),moon(x, y)]〉)
= λP (〈[x, y], [anposs(y,m, sg), ant(x,m, sg),moon(x, y)]〉 ⊗ P x),

which type reconstruction annotates to

λP : (s → α)(〈[x : s, y : s], [anposs(y : s,m, sg),
ant(x : s,m, sg),moon(x, y)]〉⊗P x)

and to which it assigns a most general type (s → α) → [s, s] ⊗ α. By the
computation rule for (S 5), the meaning of the second sentence is

s′
2 = nf (np′

1 · λx(np′
2 · λy(v′ · x · y)))

= nf (np′
1 · λx(np′

2 · λy〈[], [discover(x, y)]〉))
= nf (np′

1 · λx〈[x̃, y], [anposs(y,m, sg), ant(x̃,m, sg),moon(x̃, y),
discover(x, x̃)]〉)

= nf ((〈[x], [anp(x,m, sg)]〉 ⊗ P x)[P/λx〈[x̃, y], [anposs(y,m, sg), . . . ,]〉)
= 〈[x, x̃, y], [anp(x,m, sg), anposs(y,m, sg),

ant(x̃,m, sg),moon(x̃, y), discover(x, x̃)]〉.
5 By an additional reduction D1 ⊗ (D2 ⊗ D3) → (D1 ⊗ D2) ⊗ D3 when D1, D2 are
value-DRSs.

168 H. Leiß and S. Wu

If several computation rules can be applied, a sentence can get several untyped
meanings this way. As normalisation has to return fresh bound variables, we
write

s′
2 = 〈[u, v, z], [anp(u,m, sg), anposs(z,m, sg),

ant(v,m, sg),moon(v, z), discover(u, v)]〉.
4. Pronoun resolution for the discourse ε ; s1 ; s2 proceeds as follows.

(a) The most general typing of the meaning 〈[], []〉 of ε in the empty context
is � 〈[], []〉 : 11.

(b) Type reconstruction is applied to the first sentence, followed by pro-
noun resolution with 〈[], []〉 : 11. As no pronoun occurred in s1, the type-
annotated version of s′

1 is returned:

s′′
1 = 〈[x : h, y : s], [ant(x : h,m, sg), eq(x, galilei),

ant(y : s,m, sg), star(y), observe(x, y)]〉
= 〈[], []〉 ⊗ s′′

1 .

(c) Type reconstruction is applied to (each of) the meaning(s) of the next sen-
tence, followed by pronoun resolution with s′′

1 . Here type reconstructions
just returns

s′′
2 = 〈[u : h, v : s, z : s], [anp(u : h,m, sg), anposs(z : s,m, sg),

ant(v : s,m, sg),moon(v, z), discover(u, v)]〉,
where the types of u, v, z are derived from the argument types of nouns
and verbs whose argument positions they occupy. The anaphor u : h
has no antecedent in the current sentence, as v : s has different type.
Assuming that possessives have to be resolved in their left context, the
possessive anaphor z : s also cannot be resolved against v : s.

(d) Pronouns of s2 may also be resolved against antecedents in the type-
annotated left context, s′′

1 . For each typed anaphor, we search for a suit-
ably typed antecedent, unify the referents and remove the anaphor ref-
erent in the DRS of the current sentence, s′′

2 . For the anaphor anp(u :
h,m, sg), the only type-compatible antecedent in s′′

1 is ant(x : h,m, sg),
so we unify u with x (i.e. rename u by x in s′′

2), remove x : h from its
referent list and anp(x : h,m, sg) from its formulas, getting a partially
resolved DRS

〈[v : s, z : s], [anposs(z : s,m, sg), ant(v : s,m, sg),
moon(v, z), discover(x, v)]〉.

The next formula is a possessive anaphor anposs(z : s,m, sg). As we want
these to be resolved in their left context only, z : s cannot be resolved
against v : s. But it can be resolved against ant(y : s,m, sg) in s′′

1 , which
leads to

r(s′′
2) = 〈[v : s], [ant(v : s,m, sg),moon(v, y), discover(x, v)]〉

as the resolved”‘result”’-DRS of s′′
2 .

Type Reconstruction for λ-DRT Applied to Pronoun Resolution 169

(e) Finally, the resolved version of s′′
2 is merged with s′′

1 , yielding

s′′
1 ⊗ r(s′′

2) = 〈[x : h, y : s, v : s],
[ant(x : h,m, sg), eq(x, galilei), ant(y : s,m, sg), star(y),
observe(x, y), ant(v : s,m, sg),moon(v, y), discover(x, v)]〉

as the typed meaning of the discourse d = ε ; s1 ; s2.

6.3 Type Reconstruction for Bach-Peters-Sentences

One of the motivations for the symmetric merge-operator ⊗ was hinted at, but
not elaborated in [13, p. 480]: the potential to treat Bach-Peters-sentences “in
which two phrases are connected by both an anaphor and a cataphor”, like [The
boy who deserved ity]x got [the prize hex wanted]y. We use variants of (S 2),
(S 5) and (C 2), (C 5) as syntax and computation rules for relative clauses

p : RelPron

p : RelNP
(S 2′)

p′

p′ (C 2′)

np1 : RelNP np2 : NP v : TV

np1 np2 v : RelS
(S 5′)

np′
1 v′ np′

2

nf (np′
1 · λx(np′

2 · λy(v′ · x · y)))
(C 5′)

d : Det n : N s : RelS

d n s : NP
(S 8)

d′ n′ s′

nf (d′ · λx(n′ x ∧ s′ x))
(C 8)

Omitting the grammatical features and the uniqueness conditions for the definite
article, the untyped meaning of a boy who deserves it gets the prize he wanted
is obtained via

λP (

x, y
ant(x)
boy(x)
anp(y)
deserve(x, y)

⊗ P x) · λz

x′, y′

ant(y′)
prize(y′)
anp(x′)
want(x′, y′)
get(z, y′)

→β

x, y
ant(x)
boy(x)
anp(y)
deserve(x, y)

⊗

x′, y′

ant(y′)
prize(y′)
anp(x′)
want(x′, y′)
get(x, y′)

.

From suitable type assumptions for nouns and verbs in the lexicon, with a type
h of humans and e of objects, type reconstruction would infer types x : h, y :
e, x′ : h, y′ : e, and hence type-respecting pronoun resolution could only resolve
x′ against x and y against y′, as expected.

The typing rule for ⊗-DRSs was designed for merge-DRSs whose factors are
linked through resolving cataphors and anaphors by type-independent “coindex-
ing” or referent unification. Type-checking a DRS 〈[x], ϕ(x, y)〉⊗ 〈[y], ψ(x, y)〉 of
this kind leads to a typing problem of the form

x : α, y : β � ϕ(x, y) : t

...

y : β, x : α � ψ(x, y) : t

...
� 〈[x], ϕ(x, y)〉 ⊗ 〈[y], ψ(x, y)〉 : [α] ⊗ [β]

170 H. Leiß and S. Wu

The type variables α, β get instantiated when the two typing problems in the
premise are solved. As we perform merging of value-DRSs during normalization,
we need the typing rule (⊗) only when a merge-factor is not a value-DRS, not
for Bach-Peters-sentences.

6.4 Supporting Pronoun Translation

To translate between natural languages, we need to resolve pronouns in order to
translate them correctly: the gender of the translated pronoun is generally not
the gender of the source language pronoun, but the gender of the antecedent
noun phrase in the target language, which in turn depends on the antecedent
of the pronoun in the source sentence. For example, Google translates the Eng-
lish text The child opened the box. It contained a pen. into the German Das
Kind öffnete die Schachtel. Es enthielt einen Stift., where neuter es should be
feminine sie. A type difference between humans h and things e and the verb
type contain/enthalten : e → e → t shows that it at position of type e cannot
refer to the child : (h → t) → t at position of type h. But only if it is resolved
to the box : (e → t) → t, the gender for the German pronoun er/sie/es can be
inferred to be the gender of the translation die Schachtel of the box, i.e. feminine.

6.5 Related Work

On the practical side, discourse representation structures are used as intermedi-
ate representation of meaning when translating texts from natural language to
first-order logic. This is done for large-scale processing of newspaper texts by the
C&C/Boxer program6 [5] and for mathematical texts by the Naproche system
[4].

The Groningen Meaning Bank [3] (GMB) is a large collection of English
texts for which C&C computes syntactic analyses in categorial grammar and
Boxer turns them into DRSs and first-order formulas. By using referents for
individuals, events and times and predicates for thematic roles, Boxer covers
far more of discourse representation theory than we do. In the examples of the
GMB, nouns are classified according to animacy (human, non-concrete, etc.),
which can be seen as type assignments. But, apparently, these classifications
are not related to the meaning of verbs and hence not used in the pronoun
resolution process. For example, in Ein Mann füttert einen Hund; wenn er ihn
beißt, schlägt er ihn., our system correctly resolves the four pronouns in the
only type-compatible way (the first er to Hund, the second to Mann etc.), if we
provide types h for humans, a for animals and typings for nouns Mann : h → t,
Hund : a → t and verbs füttern, schlagen : h → a → t and beißen : a → h → t.
The C&C/Boxer program, when we use masculine pronouns in the English
input A man feeds a dog. If he bites him, he beats him., resolves both subject

6 Since the link provided in [5] did not work, we were only able to access C&C/Boxer
via its demo version gmb.let.rug.nl/webdemo/demo.php of the Groningen Meaning
Bank.

Type Reconstruction for λ-DRT Applied to Pronoun Resolution 171

pronouns he to the man and both object pronouns to the dog (as one can infer
from the logical formula). Thus, if the argument slots of verbs of the GMB were
annotated with animacy, too, its pronoun resolution and meaning translation
could be improved by using our type-respecting resolution procedure. As type
distinctions are easier to make in mathematics than for natural language, a
similar improvement can be expected for the anaphora resolution in systems
using DRS-like proof representations like [4,8].

On the theoretical side, there is a growing amount of work (cf. [1,14,17,20])
that uses constructive type theory to develop semantic representations for nat-
ural language. In this setting, the notion of type is extended (from simple types,
i.e. intuitionistic propositional formulas) to first-order formulas, and proofs of
the formulas are the objects of these types. In particular, proofs of existential
statements ∃xϕ consist of pairs (t, p) where t is a term denoting an individ-
ual and p a proof of ϕ[x/t]. Such terms t may then be used to resolve anaphoric
expressions. For example, Mineshima [17] uses constructive type theory enriched
by ε-terms to treat definite descriptions; the use of an ε-term has to be justified
by an existential sentence, whose proof object then contains a referent for the
description. Instead of ε-terms, Bekki [1] has terms (@ : γ → e)(c) of unknown
choice functions @ applied to contexts c to select suitable referents of type e;
by instantiating γ and constructing an object of type γ → e from proof objects
in the typing environment Γ , this amounts to “anaphora resolution by proof
search and type checking”. Clearly, the contexts Γ used in constructive type
theory provide a more general domain to search for referents than the typed
DRS of the textual left context in our system; for example, one can have back-
ground assumptions that do not arise from translation of the textual left context,
which is useful to handle bridging anaphora [14]. However, the formulation of
background knowledge may often be unfeasible, and proof search in constructive
type theory seems more complex that type reconstruction by unification from
simple type annotations in the lexicon.

7 Open Problems

Extension to generalized quantifiers and plural pronouns. In [16], we
have shown that type reconstruction for Montague grammar with plural noun
phrases can be used to resolve some plural ambiguities. The idea is that plural
noun phrases in general have several types, for distributive, reciprocal and collec-
tive readings, but argument types of predicates only unify with one of those. The
type reconstruction program of [16] has been changed in [22] to type reconstruc-
tion for λ-DRT and extended to type-respecting pronoun resolution for singular
pronouns. So far, type reconstruction for plurals is not adapted to λ-DRT yet.
To interpret She introduced the guests to each other, for example, we would need
discourse referents X for sets of individuals and apply the symmetric predicate
distributively to any 2-element subset of X. As our system admits second-order
discourse referents X, it seems possible to add type-respecting pronoun reso-
lution for plural pronouns. For this, one should consider if the treatment of

172 H. Leiß and S. Wu

plurals and generalised quantifiers via “duplex conditions” [10] can be given a
formulation that allows for principal types and type reconstruction.
First-order λ-DRT. In contrast to typed versions of λ-DRT, our untyped ver-
sion is a kind of “higher-order” DRT: there is no demand that discourse referents
have individual type. So we can type some expressions which, from a traditional
point of view, should be untypable. For example,

P : σ → t � (
x
Px

⊗ x) : [σ] ⊗ σ

is a most general typing, using σ both as a referent-type and as a drs-type. To
avoid such defects, we could introduce different kinds of types, notice when a
type variable must be instantiated by an individual resp. by a drs-type, and
forbid to equate types of different kinds. But in realistic cases, conditions of a
DRS express properties of referents using predicates with individual argument
type, which makes a formal restriction to first-order referents unnecessary.
Principal typings for pronoun resolved discourses. Does type-respecting
pronoun resolution as suggested above “preserve principal types”? More pre-
cisely, in a merge-DRS D1 ⊗ D2 of two typed DRSs with disjoint toplevel refer-
ent lists and principal types, we unify referents x : σ of D1 and x′ : σ′ of D2 by
substituting x for y in D2 and removing x′ : σ′ from its referent list. Applying
the most general unifier U of x : σ and x′ : σ′ gives a typed DRS UD1 ⊗ UD2.
Can one prove that UD1 ⊗UD′

2 corresponds to the principal typing of D̃1 ⊗ D̃′
2,

where D′
2 is the modification of D2 by the pronoun resolution, and D̃1 resp. D̃′

2

are the untyped versions of D1 and D′
2?

Semantics. A semantics for typed λ-DRT is given in [13,15], with a composi-
tional meaning for the symmetric ⊗. The relational interpretation of [19] for the
unsymmetric merge (;) is not sufficient for our purposes. The Dynamic lambda
calculus DLC of [11,12] claims to give a typed semantics for a system subsum-
ing typed λ-DRT, but we found their types involving individual variables fairly
incomprehensible. In order to show that the typing and reduction rules given here
are correct, we ought to interprete typings Γ � t : τ in a suitable domain-model
of the untyped λ-calculus, like the one in [21], and handle free type variables as
universally quantified. We have not yet tried to do so.

8 Conclusion

Our aim was to use semantic type information from the lexicon to reduce the
number of possible antecedents of an anaphor to type-compatible ones. For this,
a single type e of entities is too crude. Many verbs and nouns in natural language
can only be applied to facts/propositions, inanimate physical objects, animals,
or humans, respectively. Candidates for pronoun resolution can be reduced with
these types quite reasonably in many situations. Of course, in a discourse about
humans only, the reduction in candidates may be minimal.

The basic idea is simple: a pronoun gets a type from its occurrence as an
argument of a verb, and a noun phrase gets a type from its head noun and the

Type Reconstruction for λ-DRT Applied to Pronoun Resolution 173

verb argument type of its occurrence; hence, one can filter the set of possible
antecedents of a pronoun by comparing their types. To do this efficiently, we
prefer a system of simple types with schematic types for function words like
determiners, in which complex expressions have principal types that can easily be
reconstructed from type assumptions for content words. (A complex expression
can have a principal type for each choice of types of its words.)

Using DRSs provides us with DRTs [10] notion of possible “accessible”
antecedent noun phrases. Our typing rules for λ-DRT expressions closely reflect
the accessibility conditions of DRT; this is to be expected, as the antecedent
noun phrase provides a type assumption for its discourse referent, which in turn
corresponds to the pronoun occurrences referring to the antecedent. However,
the peculiarities of λ-DRT concerning the subject-reduction property might be
a good reason to consider a mathematically “cleaner” language for expressing
the dynamics of discourse, such as simply typed λ-calculus with continuation
semantics [7]. But in contrast to [7], we are not assuming pronoun resolution
via some oracles, but rather integrate a type reconstruction algorithm into a
pronoun resolution algorithm – in a particularly simple way.

Acknowledgement. We thank the referees for a number of critical remarks and ques-
tions that helped to improve the presentation.

References

1. Bekki, D.: Representing anaphora with dependent types. In: Asher, N., Soloviev,
S. (eds.) LACL 2014. LNCS, vol. 8535, pp. 14–29. Springer, Heidelberg (2014)

2. Bos, J., Mastenbroek, E., McGlashan, S., Millies, S., Pinkal, M.: A compositional
DRS-based formalism for NLP-applications. In: Proceedings of International Work-
shop on Computational Semantics, Tilburg, pp. 21–31 (1994)

3. Bos, J., Basile, V., Evang, K., Venhuizen, N., Bjerva, J.: The Groningen Mean-
ing Bank. In: Ide, N., Pustejovsky, J. (eds.) Handbook of Linguistic Annotation.
Springer, Berlin (2017, to appear). http://gmb.let.rug.nl

4. Cramer, M., Fisseni, B., Koepke, P., Kühlwein, D., Schröder, B., Veldman, J.:
The Naproche project controlled natural language proof checking of mathematical
texts. In: Fuchs, N.E. (ed.) CNL 2009. LNCS (LNAI), vol. 5972, pp. 170–186.
Springer, Heidelberg (2010). doi:10.1007/978-3-642-14418-9 11

5. Curran, J.R., Clark, S., Bos, J.: Linguistically motivated large-scale NLP with C&C
and boxer. In: Proceedings of ACL, Prague, June 2007, pp. 33–36. Association for
Computational Linguistics (2007)

6. Damas, L., Milner, R.: Principal type-schemes for functional programs. In: Pro-
ceedings of 9th ACM Symposium on Principles of Programming Languages, pp.
207–212 (1982)

7. de Groote, P.: Towards a Montagovian account of dynamics. In: Gibson, M., Howell,
J. (eds.) Proceedings of SALT XVI, vol. 16 (2006)

8. Ganesalingam, M.: The Language of Mathematics. LNCS, vol. 7805. Springer,
Heidelberg (2013)

9. Hindley, R.: The principal type-scheme of an object in combinatory logic. Trans.
Am. Math. Soc. 146, 29–60 (1969)

http://gmb.let.rug.nl
http://dx.doi.org/10.1007/978-3-642-14418-9_11

174 H. Leiß and S. Wu

10. Kamp, H., Reyle, U.: From Discourse to Logic. Kluwer, Dordrecht (1993)
11. Kohlhase, M., Kuschert, S.: Towards a dynamic type theory. Technical report,

Universität des Saarlands (1996)
12. Kohlhase, M., Kuschert, S.: Dynamic lambda calculus. In: Proceedings of 5th Con-

ference on the Mathematics of Language, Schloß Dagstuhl (1997)
13. Kohlhase, M., Kuschert, S., Pinkal, M.: A type-theoretic semantics for λ-DRT. In:

Dekker, P., Strokhof, M. (eds.) Proceedings of 10th Amsterdam Colloquium, pp.
479–498 (1996)

14. Krahmer, E., Piwek, P.: Presupposition projection as proof construction. In: Bunt,
H., Muskens, R. (eds.) Computing Meanings: Current Issues in Computational
Semantics. Kluwer, Dordrecht (1999)

15. Kuschert, S.: Eine Erweiterung des λ-Kalküls um Diskursrepräsentationsstru-
kturen. Master’s thesis, Universität Saarbrücken (1995)

16. Leiß, H.: Resolving plural ambiguities by type reconstruction. In: Groote, P., Neder-
hof, M.-J. (eds.) FG 2010-2011. LNCS, vol. 7395, pp. 267–286. Springer, Heidelberg
(2012). doi:10.1007/978-3-642-32024-8 18

17. Mineshima, K.: A presuppositional analysis of definite descriptions in proof the-
ory. In: Satoh, K., Inokuchi, A., Nagao, K., Kawamura, T. (eds.) JSAI 2007.
LNCS (LNAI), vol. 4914, pp. 214–227. Springer, Heidelberg (2008). doi:10.1007/
978-3-540-78197-4 20

18. Montague, R.: The proper treatment of quantification in ordinary English (chapter
8). In: Thomason, R. (ed.) Formal Philosophy, pp. 247–270. Yale University Press,
New Haven (1974)

19. Muskens, R.: Combining montague semantics and discourse representation. Lin-
guist. Philos. 19, 143–186 (1996)

20. Ranta, A.: Type-Theoretical Grammar. Clarendon Press, Oxford (1994)
21. Ruhrberg, P.: Simultaneous abstraction and semantic theories. Ph.D. thesis, Uni-

versity of Edinburgh (1996)
22. Wu, S.: Getypte Lambda-Diskursrepräsentationsstrukturen - Typrekonstruktion

für die λ-Diskursrepräsentationstheorie. Master’s thesis, Centrum für Informations-
und Sprachverarbeitung, Universität München (2012)

http://dx.doi.org/10.1007/978-3-642-32024-8_18
http://dx.doi.org/10.1007/978-3-540-78197-4_20
http://dx.doi.org/10.1007/978-3-540-78197-4_20

A Computable Solution to Partee’s
Temperature Puzzle

Kristina Liefke1(B) and Sam Sanders1,2

1 Munich Center for Mathematical Philosophy, Ludwig-Maximilians-University
Munich, Geschwister-Scholl-Platz 1, 80539 Munich, Germany

K.Liefke@lmu.de
2 Department of Mathematics, Ghent University,

Krijgslaan 281 – Building S22, B9000 Ghent, Belgium
sasander@me.com

Abstract. This paper presents a computable solution to Partee’s tem-
perature puzzle which uses one of the standard tools of mathematics and
the exact sciences: countable approximation. Our solution improves upon
the standard Montagovian solution to the puzzle (i) by providing com-
putable natural language interpretations for this solution, (ii) by lowering
the complexity of the types in the puzzle’s interpretation, and (iii) by
acknowledging the role of linguistic and communicative context in this
interpretation. These improvements are made possible by interpreting
natural language in a model that is inspired by the Kleene-Kreisel model
of countable-continuous functionals. In this model, continuous function-
als are represented by lower-type objects, called the associates of these
functionals, which only contain countable information.

Keywords: Temperature puzzle · Individual concepts · Associates ·
Continuous functionals · Computability

1 Partee’s Puzzle and Montague’s Solution

Partee’s temperature puzzle [33, p. 267] is a touchstone for any formal semantics
for natural language. This puzzle regards the incompatibility of our intuitions
about the validity of the inference from (1) (i.e. invalid) with predictions about
the validity of this inference in extensional semantics (cf. [8,32]) (i.e. valid).

a. The temperature is ninety.
b. The temperature rises.xxw
c. Ninety rises.

(1)
/ / / / / / / / /

We would like to thank three anonymous referees for LACL 2016, Hans Leiss, and
Christian Retoré for their valuable comments and suggestions. The research for this
paper has been supported by the German Research Foundation (via Kristina Liefke’s
grant LI 2562/1-1), by the Alexander von Humboldt Foundation (via Sam Sanders’
postdoctoral research fellowship), and by LMU Munich’s Institutional Strategy
LMUexcellent within the framework of the German Excellence Initiative.

c© Springer-Verlag GmbH Germany 2016
M. Amblard et al. (Eds.): LACL 2016, LNCS 10054, pp. 175–190, 2016.
DOI: 10.1007/978-3-662-53826-5 11

176 K. Liefke and S. Sanders

∃c se
(∀c se

1 [temp (se)t(c1) ↔ c = c1] ∧ c (@s) = ninety e
)

∃c se
(∀c se

1 [temp (se)t(c1) ↔ c = c1] ∧ rise(se)t(c)
)

xxxxx

rise(se)t(ninetyse)

(2)
/ / / / / / / / / / / / / /

Montague-style formal semantics (e.g. [13,17,29,33]) solve this puzzle by distin-
guishing two readings of the DP the temperature: a function-reading (cf. (1b)),
on which the DP is interpreted as an individual concept (i.e. as a function from
indices/world-time pairs to individuals; type1 se), and a value-reading (cf. (1a)),
on which the DP is interpreted as the extension of this concept at the cur-
rent index, @ (i.e. as an individual ; type e). The different readings prevent the
replacement of the occurrence of the DP the temperature from (1b) by the name
ninety (s.t. the conclusion of (1) cannot be derived from the premises) (cf. (2)).2

2 Problems with Montague’s Solution

Montague’s solution to the temperature puzzle is inspired by Carnap’s theory
of intensions (cf. [7]) and is supported by the fact that Montague semantics
already uses indices in the semantic analysis of declarative sentences, which are
interpreted as functions from indices to truth-values (cf. also [26]). Because of its
ready availability, Montague’s solution has been adopted by many contemporary
theories of formal semantics.3 However, there are a number of problems with
this solution. These include the non-computability of natural language inter-
pretations in this solution, (ii) the high type-complexity of natural language
interpretations in this solution, and (iii) the disregard of relevant contextual
parameters in this solution. The latter are described below:

2.1 Problem 1: Non-Computability of NL Interpretations

Intensional (or ‘possible world’) semantics – which include Montague-style formal
semantics – fail to provide computable (or ‘effective’) interpretations of natural
language expressions. This is due to the non-computability of models of possible
world semantics and the impossibility of finitely describing the set of possible
worlds that provides the meaning of a sentence in the absence of the sentence’s
translating/intermediate formula (cf. [34]). As a result of these facts, intensional

1 For brevity, we use a short notation for types, where se corresponds to the arrow type
s → e and to Montague’s type 〈s, e〉. We will hereafter indicate types in superscript.

2 In (2), we assume that ninety is s.t. ∀is(ninety(i) = ninety).
3 These theories include hyperintensional theories (e.g. [16,39]), which do not adopt an

atomic type for indices, and relational theories (e.g. [35,48]), which only accept non-
atomic types with range Bool. To accommodate the intensionality of DPs like the
temperature in (1b), hyperintensional theories introduce an atomic type for individual
concepts. Relational theories code individual concepts as binary relations between
indices and individuals.

Computable Temperature Puzzle 177

semantics are unable to compute the semantic representation of a given sentence.
However, given the need to explain the human ability to form and understand
new complex expressions (cf. [9,15,37,44]), such an effective semantics is clearly
desirable.

2.2 Problem 2: High-Rank Typing

The interpretation of DPs as individual concepts increases the complexity of the
types of natural language interpretations. On Montague’s interpretation, proper
names and common nouns are expressions of rank 1 (i.e. se) resp. 2 ((se)t),
rather than of rank 0 (e) resp. 1 (et), as in extensional semantics. Montague
semantics even interprets transitive verbs – which have rank 3 (i.e. ((et)t)(et))
in extensional semantics – in rank 4 (i.e. (((se)t)t)((se)t)). But this complicates
the type of the interpretations of linguistic expressions analogously to the (much-
criticized) treatment of referential DPs as generalized quantifiers (cf. [19,27,38]).
Further, while formal semanticists and theoretical computer scientists are used to
working with rank-4 (or higher-rank) objects, such objects are highly uncommon
in the natural sciences and even in most parts of mathematics.

2.3 Problem 3: Context-Invariance

Montague’s solution further neglects the salient role of context in the interpre-
tation of the verb rise (cf. [10]): Intuitively, for different DPs, rise will assert the
DP referent’s rising over different-length intervals. Thus, in (1b), rise will be
interpreted with respect to a shorter interval (e.g. minutes, or hours) than in the
CP The oil price rises (e.g. weeks, or months). Even when applied to the same
DP, rise is often interpreted with respect to different-length intervals. For exam-
ple, in the context of global climate development, (1b) will be taken to make a
claim about a longer interval than in the context of the local weather forecast.
Since Montague semantics analyzes intensional intransitive verbs as characteris-
tic functions of sets of individual concepts (which send all occurrences of a DP
to the same truth-value), it does not capture this context-sensitivity.

3 Solving the Problems

We solve the above problems by interpreting natural language in a model4

that is inspired by the Kleene-Kreisel model of countable-continuous functionals
[21,25] (cf. [30, Ch. 2.3.1]). In this model, continuous functionals are represented
by lower-type objects called associates.

Following Kleene [21] and Kreisel [25], we hereafter use finite types over the
natural numbers. The latter are the smallest set of strings that contains the type
for natural numbers, 0, and the types for function spaces over natural numbers,

4 To enable a compositional interpretation of the sentences from (1) (cf. Sect. 4), this
model extends the Kleene-Kreisel model (which only contains natural numbers and
functions over natural numbers) to objects of higher type.

178 K. Liefke and S. Sanders

(ρ → τ) (with ρ, τ finite types) (cf. [36]). To ease notation, we abbreviate the
type for functions over natural numbers, (0 → 0), as ‘1’, abbreviate the type
for functionals over sequences of natural numbers, ((0 → 0) → 0) (≡ (1 → 0)),
as ‘2’, and abbreviate (n → 0) as ‘n + 1’. Our considerations will make special
use of coded finite sequences of natural numbers (type 0). To distinguish natural
numbers which do from natural numbers which do not code such sequences, we
denote the former by ‘0∗’.

Our solution to the temperature puzzle briefly works as follows: By represent-
ing the DP the temperature from (1b) as (a code for) a finite sequence of natural
numbers (type 0∗) and by approximating the continuous functional denoted by
rise by an associate of type 1 ≡ (0∗ → 0), we ‘lower’ the types of many expres-
sions from (1) (cf. Problem 2). In particular, our solution interprets the DP’s
occurrence from (1a) as a natural number (type 0) and the DP’s occurrence from
(1b) as a (coded) sequence of natural numbers (type 0∗). Since distinguishing
between types 0 and 0∗ is decidable, we obtain a computable solution to the tem-
perature puzzle (cf. Problem 1). Because associates are introduced through the
use of a context-dependent variable, the domain of application of the verb rise is
restricted to a specific, contextually salient, temporal interval (cf. Problem 3).
As to the computability of our solution, it suffices for now to point out that the
Kleene-Kreisel model can be defined inside Martin-Löf type theory and has been
implemented in the associated programming language Agda [14,45–47].

Note the integrative nature of our solution to the above problems: Since
associates are computable, lower-type representations of continuous functionals
that approximate these functionals with regard to a contextually determined
parameter, our solution(s) to the above problems are all sides of the same
(three-sided) coin. This contrasts with other solutions to the temperature puz-
zle (e.g. [3,20,27,41]) which still assume more complex types, are not effective,
and/or rely on the use of other methods to render the interpretation of the
sentences from (1) context-sensitive.

We describe our solution in some detail below. To this end, we first show
how the Montagovian interpretation of the verb rise corresponds to a continuous
functional (in Sect. 3.1). Following the informal introduction of associates (in
Sect. 3.2), we then outline our associates-approach to the temperature puzzle (in
Sect. 3.3). This approach receives a compositional implementation in Sect. 4. The
empirical domain of our associates-approach and the computational properties
of associates are discussed in Sects. 5 and 3.4.

3.1 Continuity and the Temperature Puzzle

Our solution to the temperature puzzle starts from the observation that the
interpretation of rise from (2) corresponds to a continuous functional, ϕrise,
in the space N

N → N. The correspondence between rise and ϕrise is based
on the possibility of representing individual concepts as sequences over natural
numbers (assuming a fixed starting index/world-time pair 〈w, t〉 and a discrete
unit of time measurement; cf. [27]). The latter enables the representation of the
individual concept ‘the temperature’ from (3) as the sequence from (4), and the
representation of sets of individual concepts as sets of such sequences.

Computable Temperature Puzzle 179

〈w, t0〉
→ 89, 〈w, t1〉
→ 90, 〈w, t2〉
→ 91, . . . , 〈w, tn〉
→ 89 + n (3)
89, 90, 91 . . . , 89 + n (4)

With this representation in mind, the temperature as given by γ1 = (T0, T1, . . .)
(where T0, T1, etc. are the values of some temperature measurement) rises,
i.e. rise(γ), iff ϕrise(γ) = 1. The temperature as given by γ does not rise iff
ϕrise(γ) = 0.

The continuity of the functional ϕrise is suggested by (i) the ‘finite relevance’
of input sequences for ϕrise and (ii) the equivalence of sequences which are iden-
tical up to some point in time.

Ad (i): Intuitively, after having observed a rise in the values of some tem-
perature measurement for a certain finite period of time, even the most ardent
skeptic will agree that the values are, in fact, rising. Thus, if the temperature
as given by γ = (T0, T1, . . .) is rising, i.e. if ϕrise(γ) = 1, we will agree to this
fact after having observed the temperature up to some point in time n, i.e. by
considering (T0, . . . , Tn).

Ad (ii): If the temperature as given by the values of some other measure-
ment β = (T ′

0, T ′
1, . . .) is further exactly γ up to the point in time n, we will

agree that ϕrise(β) = 1, i.e. that the temperature as given by β is also rising.
The functional ϕrise is thus continuous in the usual mathematical sense (cf. [30,
Ch. 2.3.1]).

Continuity is defined below:

Definition 1 (Continuity of type-2 functionals). A type-2 functional ϕ is
continuous (on the Baire5 space) if

∀γ1∃n0 ∀β1
(
γn = βn → ϕ(γ) = ϕ(β)

)
, (5)

where γn = (T0, T1, . . . , Tn) and βn = (T ′
0, T

′
1, . . . , T

′
n) (both type 0∗) are the

initial segments (up to n) of γ and β.

Above, the point n (for ϕrise: a point in time at which everyone agrees that the
temperature is rising) is called a point of continuity of ϕ (at γ). Obviously, this
point may be different for different sequences. We will use this fact in Sect. 3.2 to
explain the dependence of interpretations on the expressions’ linguistic context.

The correspondence of the interpretation of rise to the continuous functional
ϕrise gives rise to the following ‘continuous functional’-version of (2):

∃γ1
(∀β1[temp2(β) ↔ γ = β] ∧ now2(γ) = ninety0

)

∃γ1
(∀β1[temp2(β) ↔ γ = β] ∧ ϕ2

rise(γ) = 1
)

xxxxi

ϕ2
rise(ninetyninetyninety1) = 1

(6)
/ / / / / / / / / / / /

5 The Baire space is usually defined as the set of all infinite sequences of natural
numbers with a certain topology. This space has many alternative characterisations
(up to isomorphism) as explored in, e.g., [31, Ch. I].

180 K. Liefke and S. Sanders

In (6), ninetyninetyninety denotes the sequence which is constant ninety (s.t. ninetyninetyninety
serves the function of ninetyse from (2)). The constant now denotes a func-
tional that takes as input non-coded sequences of natural numbers (type 1) and
produces as output the value-at-@ in these sequences. The introduction of this
constant is made necessary by the absence of indices in (the variant of) our
preferred model of countable-continuous functionals (cf. Sect. 4) in which we
interpret Partee’s temperature puzzle.

We close this section with a remark on the ‘coding’ of finite sequences as is
done in mathematics and computer science (cf. e.g. [6, p. 92]):

Remark 1 (Coding). Finite sequences of natural numbers can be represented
(or ‘coded’) by a single natural number using pairing functions. The most widely
known of these functions, due to Cantor, is defined as follows:

π(n,m) := 1
2 (n + m)(n + m + 1) + m

Notably, not all natural numbers necessarily code finite sequences (given a cer-
tain fixed pairing function).

The coding and the associated decoding of finite sequences has been imple-
mented in most of the common programming languages. In particular, there is
a computable function IsCodeForSeq(n) of comparatively low complexity which
outputs ‘1’ if it is indeed the case that the input n codes some finite sequence
(T0, T1, . . . , Tm), and ‘0’ otherwise.

As is common in mathematics and computer science, we assume below that
a particular coding and decoding function has been fixed (e.g. Gödel numbers
as in [6, p. 92]). This assumption allows us to treat finite sequences (type 1) as
natural numbers (type 0). We further assume that ninety from (6) is a number
which does not6 code a finite sequence. We will see below that this property of
pairing functions is essential in our solution to Partee’s temperature puzzle (in
Sect. 3.3).

This completes our discussion of the interpretation of the verb rise as a con-
tinuous functional. We next introduce the notion of associate and discuss its role
in our solution to the temperature puzzle.

3.2 Associates and the Temperature Puzzle

Intuitively, associates of continuous functionals are countable approximations
(or representations) of these functionals which uniquely determine the value of
these functionals for every (represented) argument. The Kleene-Kreisel model of
countable-continuous functionals is defined in terms of associates (cf. [30, §8.2.1]).
Associates are formally defined as follows:

Definition 2 (Associates [21,25]). An associate, αϕ, of a continuous type-2
functional ϕ is a sequence of natural numbers (i.e. type 1 ≡ (0∗ → 0)) such that

∀γ1 ∃n0 ∀N0 ≥ n
[
αϕ(γN) = ϕ(γ) + 1 ∧ (∀i < n)αϕ(γi) = 0

]
. (7)

6 For the coding from [6, p. 92], there exist numbers which do not code finite sequences.

Computable Temperature Puzzle 181

The associate αϕ thus enumerates7 the values of ϕ at all γn, where n is a point
of continuity for γ. In particular, the first conjunct of (7) identifies the value
of the associate of ϕ for any initial segment of γ up to at least n (here: the
value of αϕ(γN)) with the value +1 of ϕ for γ. As a result of the identification
of αϕ(γN) and ϕ(γ) + 1, a continuous functional and its associate contain the
same information: Beyond the point of continuity n, ϕ remains constant, i.e. no
new information can be learned.

The ‘+1’ in the first conjunct of (7) expresses a kind of partiality: If the
input sequence, γk, of αϕ is ‘too short’ (i.e. if k is less than the least point of
continuity, n, for γ), αϕ(γk) cannot provide any information about ϕ(γ). The
second conjunct from (7) captures this possibility by returning the value 0, which
is not a possible value for ϕ(γ) + 1.

The above yields the following intuitive picture for an associate, αrise, of ϕrise.
Below, γ denotes a temperature-representing sequence (type-1, as in Sect. 3.1);
m is a natural number:

αrise(γm) =

⎧
⎪⎨

⎪⎩

0 if γm is too short to judge if the temperature is rising;
1 if ϕrise(γ) = 0 by (7), i.e. the temperature is not rising;
2 if ϕrise(γ) = 1 by (7), i.e. the temperature is rising.

We close this section with an observation about associates and context-
dependence:

The variation of the point n in (7) with different input sequences reflects
the role of linguistic context in the interpretation of verbs like rise and fall:
While some occurrences of these verbs only consider comparatively short initial
segments of sequences in order to judge whether the sequence rises or falls, others
consider longer (or even countably infinite) initial segments of these sequences.
Consider the application of the associates-interpretation of fall to the type-0∗

interpretations of the DPs the water drop and the pitch drop: To confirm that
the water drop is, in fact, falling, it suffices to observe its behavior for a short
period of time (i.e. for a few (milli-)seconds). In contrast, to confirm that the
pitch drop is falling, we need to observe its behavior for a rather long period of
time (i.e. for several years).

The (possible) existence of multiple points of continuity for the same
sequence – and the attendant need to choose a particular point up to which
we consider this sequence – further reflects the dependence of the above verbs
on the salient communicative context. For example, for the sentence The tem-
perature rises (cf. (1b)), we will choose a larger n in the context of global climate
development than in the context of the local weather forecast.

7 Note that it is impossible to enumerate the space N
N. Since we can, thus, not enu-

merate the values of a discontinuous type-2 functional, our approach breaks down
for discontinuous functionals. We will identify a promising solution to this problem
in Sect. 7.

182 K. Liefke and S. Sanders

3.3 The Associates-Solution to the Temperature Puzzle

We are now ready to present our associates-solution to the temperature puzzle.
In particular, we can reformulate (6) using the associate, αrise, of ϕrise as follows:

∃γ1
(∀β1[temp2(β) ↔ β = γ] ∧ now2(γ) = ninety0

)

∃γ1
(∀β1[temp2(β) ↔ β = γ] ∧ ∃n0[α1

rise(γn) = 2]
)

∃m0
(
α1
rise(ninetyninetyninety m) = 2

)
(8)

/ / / / / / / / / / / /

We next show that the inference from (8) indeed does not go through:
Montague semantics solves Partee’s temperature puzzle by interpreting the

occurrences of the DP the temperature from (1a) and (1b) as an individual (cf. the
constant ninety in (2)) resp. as an individual concept (cf. the variable c in (2)).
Our solution works analogously, but – thanks to the presence of αrise – with lower
types. In our solution, the different occurrences of the DP from (1a) and (1b) are
interpreted as a natural number which does not code a finite sequence of natural
numbers (by the assumption following Remark 1) (cf. the constant ninety in (8))
and as a natural number, k, which codes the finite sequence γn from (8). The
information whether ninety and k do or do not code a sequence of natural num-
bers is obtained by applying the function IsCodeForSeq(n) from Remark 1. The
different types of ninety and k (i.e. 0 resp. 0∗) – and the subsequent impossibility
of replacing the occurrence of γn in the second premise of (8) by the constant
ninety – blocks the temperature puzzle.

In conclusion: the introduction of the associate, αrise, of ϕrise allows us
to block the inference from (8) while lowering the types of many expressions
from (1).

3.4 Computability and the Temperature Puzzle

We have suggested in Sect. 2.1 that our associates-solution to the temperature
puzzle is computable. To support this claim, we now discuss the computational
properties of associates that are relevant for our solution.

An obvious conceptual question about associates is whether every continuous
functional has an associate and, if this is the case, whether this associate is
computable. We provide three partial answers to this question:

1. Kohlenbach has shown in [24, Sect. 4] that the statement every continuous
functional of type (1 → 1) has an associate carries no significant logical
strength. Thus, as a special case, we may safely assume the existence of an
associate for every continuous type-2 functional.

2. In general, there is no computable functional which takes as input a continuous
type-2 functional and produces as output an associate (cf. [24,25]).

3. However, every primitive recursive functional (in the sense of Gödel’s system
T) has a canonical associate which can be computed via the procedure from
[42, p. 139]. Since the class of primitive recursive functionals is rather large,
it captures essentially any functional ‘occurring in practice’.

Computable Temperature Puzzle 183

A second question about associates regards the computability of the asso-
ciate’s point of continuity n. We here provide two partial answers:

1. There is no computable functional which returns a point of continuity on
input a continuous type-2 functional and a sequence (cf. [25]).

2. However, the fan functional returns a point of (uniform) continuity on input
a continuous type-2 functional and a sequence in a fixed compact space. The
fan functional is present in the Kleene-Kreisel model and has a computable
associate (cf. [30, Sect. 8], [47]).

Since temperature measurements come with upper and lower bounds dictated by
physics (s.t. they are part of a compact space), a point of continuity of ϕrise can
always be computed for αrise and a sequence of temperature measurements γ.

This completes our presentation of the associates-approach to Partee’s tem-
perature puzzle. We next show that this approach can be implemented in a
compositional semantics for natural language.

4 Compositional Implementation

To obtain our associates-solution to the temperature puzzle, we compositionally
interpret natural language in a model, inspired by the Kleene-Kreisel model
of countable-continuous functionals, which contains continuous functionals and
their associates. This interpretation proceeds via the translation of the relevant
subset of the linguistic fragment from [33] into the language of the simply typed
lambda logic λλλ0

→([8]; cf. [36, Ch. 1.1]). This is a logic with a single atomic type,
0, from which all other types are built up through the type constructor → (see
the definition of finite types from Sect. 3). The language and models of λλλ0

→are
specified in [2,8].

To identify the λλλ0
→-interpretation of the sentences from (1), we first specify

the particular language Lλλλ0
→ (abbreviated ‘L’) and frame Fλλλ0

→ (abbreviated ‘F ’)
whose elements translate resp. interpret the syntactic constituents of these sen-
tences. The members of L are specified in Table 1. Our conventions for the use
of λλλ0

→variables are introduced in Table 2.
In the list of non-logical λλλ0

→constants, αrise enables the translation of the
verb rise as an associate of the continuous functional denoted by rise (formerly,
ϕrise).

Table 1. L constants.

Constant λλλ0
→Type

ninety 0

ninetyninetyninety, αrise 1

now, temp, rise 1 → 0

Table 2. L variables.

Variable λλλ0
→Type

m, n, N, x 0

β, γ 1

P, Q 1 → 0

184 K. Liefke and S. Sanders

The interpretation function IF : L → F respects the way in which different
content words are conventionally related. Thus, this function identifies the inter-
pretation of the generalized λλλ0

→-translation, λP.P (ninetyninetyninety), of the DP ninety as
a subset of the interpretation of the λλλ0

→ translation, λP∃γ.temp(γ) ∧ P (γ), of
the DP a temperature (s.t. ninety is a temperature under this interpretation). To
ensure the ‘right’ interpretation of the syntactic constituents of (1a) to (1c), we
demand that the function IF further satisfies a number of semantic constraints.

Definition 3 (Constraints on L constants). The function IF satisfies the
following semantic constraints:

(C1) now(ninetyninetyninety) = ninety;

(C2) ∀γ1∃n0∀β1
(
γn = βn → rise(γ) = rise(β)

)
;

(C3) ∀γ1∃n0∀N0 ≥ n
[
αrise(γN) = rise(γ) + 1 ∧ (∀i < n)αrise(γi) = 0

]

The constraint (C1) demands that the interpretation of the type-0 constant
ninety be the output of the functional now on input ninetyninetyninety (cf. [33, rule T1.(d),
MP1]). The constraints (C2) and (C3) demand that the constant rise be inter-
preted as a continuous functional (cf. (C2)) resp. that αrise behaves as an asso-
ciate of this functional (cf. (C3)).

Admittedly, (C2) and (C3) are additional requirements on our semantic mod-
els which are not postulated for the models of Montague’s Intensional Logic
(cf. [33]). However, since these requirements reflect natural assumptions about
the domain of interpretation of the verb rise (cf. Sect. 3.1) – and since contin-
uous functionals can be represented via their associates (cf. Sect. 3.2) –, these
requirements are rather innocent.

This completes our specification of the interpretation function IF . We next
turn to the compositional translation of Partee’s temperature puzzle: To enable
this translation, we first translate the lexical elements of the sentences from (1).
In these translations, � is the smallest relation between syntactic trees and
λλλ0

→terms which conforms to the rules from [22]:

Definition 4 (Basic λλλ0
→translations). The lexical elements of (1a) to (1c)

are translated into the following λλλ0
→terms:

ninety � ninetyninetyninety

temperature � temp
rise � λβ∃n

(
αrise(βn) = 2

)

is � λβλγ
(
now(γ) = now(β)

)

the � λQλP ∃γ
(∀β[Q(β) ↔ γ = β] ∧ P (γ)

)

As expected, Definition 4 specifies the translation of the verb rise as an associate
of the continuous functional denoted by the λλλ0

→constant rise (cf. (C2), (C3)). The
translations of the copula is, of the DP ninety, and of the definite determiner

Computable Temperature Puzzle 185

follow the translations of these expressions from [33, cf. rules T1.(b), (d), T2].8

In particular, our translation of is follows Montague’s translation of the copula
as the designator of a relation between the extensions of (generalized quantifiers
over) individual concepts (here: as the designator of a relation between natural
numbers, rather than between sequences of numbers).

The above translations enable the compositional λλλ0
→translation of the sen-

tences from (1). We start with the translation of (1a):

1. [vp[cpis][dpninety]] � λγ
(
now (γ) = now (ninetyninetyninety)

)
(9)

= λγ(now (γ) = ninety)

2. [dp[detthe][ntemperature]] � λP ∃γ
(∀β [temp(β) ↔ γ = β] ∧ P (γ)

)

3. [s[dp[detthe][ntemperature]][vp[cpis][dpninety]]]

� ∃γ
(∀β [temp(β) ↔ γ = β] ∧ (now (γ) = ninety)

)

Sentences (1b) and (1c) are translated as follows:

[s[dp[detthe][ntemperature]][vp[ivrises]]] (10)

� λP∃γ
(∀β [temp(β) ↔ γ = β] ∧ P (γ)

)(
λδ∃n[αrise(δn) = 2]

)

= ∃γ
(∀β[temp(β) ↔ γ = β] ∧ ∃n[αrise(γn) = 2]

)

[s[dpninety][ivrises]] � ∃m
(
αrise(ninetyninetyninety m) = 2

)
(11)

The resulting λλλ0
→formulas are exactly the formulas from (8).

We next discuss the empirical scope of our associates-approach and the rela-
tion of this approach to other solutions to the temperature puzzle.

5 Domain and Scope

Our previous discussion has been restricted to the example of the verb rise.
However, the associates-approach generalizes to all degree achievement verbs
and change-of-state verbs ([28]; cf. [1,5,11]) whose interpretation corresponds to
a continuous functional. The latter constitute a sizable9 class of verbs with the
following members:

1. verbs of continuous calibratable change of state (cf. [28, pp. 247–248]): decline,
drop, grow, increase, plummet, plunge, rocket, rise, soar, surge, . . .

2. verbs of entity-specific continuous change of state (cf. [28, pp. 246–247]):
blush, blossom, burn, ferment, molt, rust, sprout, swell, . . .

3. other verbs of continuous state-change (cf. [28, pp. 240–246]): abate, advance,
age, clog, compress, condense, degrade, distend, mature; in particular:

8 We simplify Montague’s translation of the copula to a translation that takes as its
first argument the designator of a type-1 object (instead of a generalized quantifier
over type-1 objects).

9 For example, Levin [28] lists 369 members of classes 1 to 4.

186 K. Liefke and S. Sanders

(a) break-/bend-verbs: crack, shatter, split, tear; crumple, fold, wrinkle, . . .
(b) adjective-related verbs: blunt, clear, cool, dry, empty, narrow, quiet, . . .
(c) change-of-color verbs: blacken, brown, gray, redden, tan, whiten, . . .
(d) -en verbs: darken, flatten, harden, ripen, sharpen, strengthen, . . .
(e) -ify verbs: acidify, humidify, magnify, nitrify, petrify, purify, solidify, . . .
(f) -ize verbs: crystallize, fossilize, pressurize, pulverize, stabilize, . . .
(g) -ate verbs: accelerate, coagulate, degenerate, detonate, evaporate, . . .

4. (continuous) directed motion verbs (cf. [28, pp. 263–264]): arrive, ascend,
descend, drop, enter, fall, pass, rise, . . .

5. accomplishment verbs (cf. [43]): run a mile, draw a circle, build a house, eat
a sandwich, play a game of go; grow up, recover from illness, . . .

The above-listed verbs all take individual concepts as their arguments (i.e. they
are co-classified with the verb rise) (cf. [10]). The intensional interpretation of
these verbs is motivated by their particular, non-instantaneous, evaluation pro-
cedure: To judge whether John is blushing (cf. class 2), it does not suffice to
observe his red face at a particular point in time.10 Instead, we need to observe
John’s facial complexion at different neighboring points in time. We can only
conclude that John is blushing if he has a normal (non-red) skin color at the
earliest observed time-point and an increasingly redder complexion at the later
time-points (cf. [27]).

Note that, in contrast to their counterparts from class 1, the ‘continuous
functional’-interpretations of the verbs from classes 2 to 5 are not restricted
to input sequences of natural numbers (see blush), may describe non-temporal
change [10,18] (see the extent reading of verbs like narrow and darken)11, and
do not presuppose an established scale or unit of measurement (i.e. they describe
non-discrete change). For example, in contrast to rising, blushing and narrowing
are not properties of sequences of numbers, but of sequences of temporal states
of an individual (viz. of his/her face) resp. of spatial states of an object. Further,
there is no established unit of measurement of a person’s facial redness (or of a
window cracking, a storm arriving, a person recovering from illness, etc.).

The above-described absence of a numerical/measurement structure does not
compromise the applicability of our associates-approach to the verbs from clas-
ses 2 to 5. This is due to the possibility of labelling temporal stages of individuals
(or of other physical objects) by natural numbers, of identifying a contextually
salient unit and scale (here: dominant wavelength or visible change in hue) for
the measurement of the relevant property, and of selecting the value of the mea-
surement (under the selected scale and unit of measurement) of the individual’s
relevant attribute for that property. In particular, the continuous functional-
interpretation, blush, of the verb blush will return ‘1’ on input a given sequence

10 Maybe John simply suffers from high blood pressure which causes his constant facial
redness.

11 E.g. in The trail narrowed at the summit [10, p. 98] and His skin darkens on his right leg
near the femoral artery [10, p. 99]. We thank an anonymous reviewer for reminding
us of examples of spatial change.

Computable Temperature Puzzle 187

of temporal ‘John’-stages if the values of the measurement (under the contextu-
ally presupposed measurement unit) of John’s facial complexion at these stages
are increasing, and will return ‘0’ otherwise.

We next discuss the relation of our associates-approach to existing work on
the temperature puzzle.

6 Relation to Existing Work

Our associates-approach distinguishes itself from existing solutions to the tem-
perature puzzle. This is due to the proximity of our approach to Montague’s
original solution from [33] (cf. Sect. 3.3) and to its focus on improving the com-
putational properties of this solution (cf. Sect. 2.2):

Firstly, in contrast to the solutions from [3,20,41], and to solutions from event
semantics, our solution is not based on an alternative interpretation of (1a) that
uses a locative interpretation of the copula (i.e. ‘is at ninety’), a measurement-
explicit interpretation of the DP ninety (i.e. ‘is ninety degrees Fahrenheit ’), or
an event-based interpretation of the verb rise (s.t. ‘rise’ describes a rising event).

Secondly, in contrast to the solutions from [12,27,29,40], our solution is not
directed at a variant of the temperature puzzle (i.e. Gupta’s problem; cf. (12))
that arises from the double index-dependence of intensional nouns like tempera-
ture; viz. from the dependence of temperature-values on the index-argument of a
particular individual concept [i.e. inner index-dependence] and the dependence
of noun-interpretations on the index of evaluation12 [i.e. outer index-dependence]
(cf. [40]). As a result of this double dependence, Montague semantics blocks the
intuitively valid inference from (12):

a. Necessarily, the temperature of the air in my refrigerator is
the same as the temperature of the air in your refrigerator.

b. The temperature of the air in my refrigerator is rising.
c. The temperature of the air in your refrigerator is rising.

(12)

It should come as no surprise that the different solutions to Gupta’s problem
can be integrated into our associates-approach to Partee’s temperature puzzle.
However, our approach even provides its own solution to the puzzle, which also
involves computability considerations. We will detail this solution in a sequel to
this paper.

7 Conclusion and Outlook

We have presented a computable, low-type, context-sensitive solution to Par-
tee’s temperature puzzle which uses the countable approximation of continuous
functionals via their associates. The success of our solution is challenged by the

12 As a result of this dependence, rise may denote a different set of individual concepts
at different indices.

188 K. Liefke and S. Sanders

restriction of associates to continuous functionals. This restriction prevents the
application of our approach to expressions that are traditionally interpreted as
discontinuous functionals (e.g. mostly above 90).

Its exclusion of discontinuous intensional verbs hampers the generality of
the presented approach. However, in natural language, discontinuous expres-
sions are rather rare: of the 369 intensional intransitive verbs listed in [28] (see
Sect. 5 for a selection), only 5 are discontinuous. Their scarcity notwithstand-
ing, discontinuous verbs can be accommodated in Bezem’s model M of strongly
majorizable functionals (cf. [23, Ch. 3, 11]). The weak continuity functional
([4, Sect. 5, p. 171]) in this model serves a similar role to the fan functional
in the Kleene-Kreisel model: it produces a lower-type correlate of its input func-
tional. However, whereas the associate of a continuous functional is an accurate
representation of the continuous functional (in the sense that no information is
lost), the output of the weak continuity functional only partially represents the
input functional in Bezem’s model. The detailed development of this account is
a project for future work.

References

1. Abusch, D.: On Verbs and Time. Doctoral dissertation, University of Massa-
chusetts, Amherst (1985)

2. Barendregt, H., Dekkers, W., Statman, R.: Lambda Calculus with Types. Perspec-
tives in Logic. Cambridge University Press and ASL, Cambridge (2010)

3. Bennett, M.R.: Some Extensions of a Montague Fragment of English. Indiana
University Linguistics Club (1975)

4. Berger, U., Oliva, P.: Modified bar recursion. Math. Struct. Comput. Sci. 16(2),
163–183 (2006)

5. Bertinetto, P.M., Squartini, M.: An attempt at defining the class of ‘gradual com-
pletion verbs’. In: Bianchi, V., Higginbotham, J., Squartini, M. (eds.) Temporal
Reference: Aspect and Actionality. Semantic and Syntactic Perspectives, vol. 1.
Rosenberg and Sellier (1995)

6. Buss, S.R.: An Introduction to Proof Theory. In: Handbook of Proof Theory. Stud-
ies in Logic and the Foundations of Mathematics, vol. 137, pp. 1–78. North-Holland
Publishing Co. (1998)

7. Carnap, R.: Meaning and Necessity: A Study in Semantics and Modal Logic. Uni-
versity of Chicago Press, Chicago (1988)

8. Church, A.: A formulation of the simple theory of types. J. Symb. Logic 5(2),
56–68 (1940)

9. Davidson, D.: Truth and meaning. Synthese 17, 304–323 (1967)
10. Deo, A., Francez, I., Koontz-Garboden, A.: From change to value difference in

degree achievements. In: Snider, T. (ed.) Proceedings of SALT 23. University of
California, Santa Cruz (2013)

11. Dowty, D.R.: Word Meaning and Montague Grammar: The Semantics of Verbs
and Times in Generative Semantics and in Montague’s PTQ. Synthese Language
Library, vol. 7. D. Reidel Publishing Company (1979)

12. Dowty, D.R., Wall, R.E., Peters, S.: Introduction to Montague Semantics. Studies
in Linguistics and Philosophy, vol. 11. Kluwer Academic Publishers, Berlin (1981)

Computable Temperature Puzzle 189

13. van Eijck, J., Unger, C.: Computational Semantics with Functional Programming.
Cambridge University Press, Cambridge (2010)

14. Escardó, M.H., Xu, C.: A constructive manifestation of the Kleene-Kreisel contin-
uous functionals. Ann. Pure Appl. Logic (to appear)

15. Fodor, J.A.: Language, thought, and compositionality. Mind Lang. 16(1), 1–15
(2001)

16. Fox, C., Lappin, S., Pollard, C.: A higher-order fine-grained logic for intensional
semantics. In: Proceedings of the 7th International Symposium on Logic and Lan-
guage (2002)

17. Gamut, L.T.F.: Intensional Logic and Logical Grammar. Logic, Language, and
Meaning, vol. 2. University of Chicago Press, Chicago (1991)

18. Gawron, M.: The lexical semantics of extent verbs. San Diego State University
(2009)

19. Hendriks, H.: Flexible Montague Grammar. ITLI Prepublication Series for Logic,
Semantics and Philosophy of Language, vol. 08 (1990)

20. Jackendoff, R.: How to keep ninety from rising. Linguist. Inq. 10(1), 172–177 (1979)
21. Kleene, S.C.: Countable functionals. In: Heyting, A. (ed.) Constructivity in Math-

ematics. North-Holland, Amsterdam (1959)
22. Klein, E., Sag, I.: Type-driven translation. Linguist. Philos. 8(2), 163–201 (1985)
23. Kohlenbach, U.: Applied Proof Theory. Springer, Heidelberg (2008)
24. Kohlenbach, U.: Foundational and mathematical uses of higher types. In: Reflec-

tions on the Foundations of Mathematics. LNCS, vol. 15, pp. 92–116. Association
for Symbolic Logic, Natick (2002)

25. Kreisel, G.: Interpretation of analysis by means of constructive functionals of finite
types. In: Heyting, A. (ed.) Constructivity in Mathematics. North-Holland, Ams-
terdam (1959)

26. Kripke, S.A.: Semantical considerations on modal logic. Acta Philos. Fennica 16,
83–94 (1963)

27. Lasersohn, P.: The temperature paradox as evidence for a presuppositional analysis
of definite descriptions. Linguist. Inq. 36(1), 127–134 (2005)

28. Levin, B.: English Verb Classes and Alternations: A Preliminary Investigation. The
University of Chicago Press, Chicago (1993)

29. Löbner, S.: Intensional verbs and functional concepts: more on the “rising temper-
ature” problem. Linguist. Inq. 12(3), 471–477 (1981)

30. Longley, J., Normann, D.: Higher-Order Computability. Springer, Heidelberg
(2015)

31. Kechris, A.S.: Classical Descriptive Set Theory. Graduate Texts in Mathematics,
vol. 156. Springer, Heidelberg (1995)

32. Montague, R.: English as a formal language. In: Thomason, R.H. (ed.) Formal
Philosophy: Selected Papers of Richard Montague. Yale University Press (1976)

33. Montague, R.: The proper treatment of quantification in ordinary English. In:
Formal Philosophy: Selected Papers of Richard Montague. Yale University Press
(1976)

34. Moot, R., Retoré, C.: Natural language semantics and computability. Manuscript
(2016)

35. Muskens, R.: A relational formulation of the theory of types. Linguist. Philos.
12(3), 325–346 (1989)

36. Normann, D.: Recursion on the Countable Functionals. Lecture Notes in Mathe-
matics, vol. 811. Springer, Heidelberg (1980)

190 K. Liefke and S. Sanders

37. Partee, B.: Compositionality. In: Landman, F., Veltman, F. (eds.) Varieties of
Formal Semantics: Proceedings of the 4th Amsterdam Colloquium. Groningen-
Amsterdam Studies in Semantics, vol. 3 (1984)

38. Partee, B.: Noun phrase interpretation and type-shifting principles. In: Groe-
nendijk, J., de Jong, D., Stokhof, M. (eds.) Studies in Discourse Representation
Theory and the Theory of Generalized Quantifiers. Foris Publications (1987)

39. Pollard, C.: Hyperintensions. J. Logic Comput. 18(2), 257–282 (2008)
40. Schwager, M.: Bodyguards under cover: the status of individual concepts. In: Fried-

man, T., Gibson, M. (eds.) Proceedings of SALT XVII (2007)
41. Thomason, R.H.: Home is where the heart is. In: French, P.A., Uehling, T.E.,

Wettstein, H.K. (eds.) Contemporary Perspectives in the Philosophy of Language
(1979)

42. Troelstra, A.S.: Metamathematical Investigation of Intuitionistic Arithmetic and
Analysis. Lecture Notes in Mathematics, vol. 344. Springer, Heidelberg (1973)

43. Vendler, Z.: Verbs and times. Philos. Rev. 66(2), 143–160 (1957)
44. Werning, M.: Right and wrong reasons for compositionality. In: Werning, M., Mach-

ery, E., Schurz, G. (eds.) The Compositionality of Meaning and Content: Volume
I: Foundational issues. Ontos Verlag (2005)

45. Xu, C.: A continuous computational interpretation of type theories. Ph.D. thesis,
University of Birmingham (2015)

46. Xu, C.: A continuous computational interpretation of type theories, developed in
Agda (2015). http://cj-xu.github.io/ContinuityType/

47. Xu, C., Escardó, M.: A constructive model of uniform continuity. In: Hasegawa,
M. (ed.) TLCA 2013. LNCS, vol. 7941, pp. 236–249. Springer, Heidelberg (2013).
doi:10.1007/978-3-642-38946-7 18

48. Zalta, E.N.: A comparison of two intensional logics. Linguist. Philos. 11(1), 59–89
(1988)

http://cj-xu.github.io/ContinuityType/
http://dx.doi.org/10.1007/978-3-642-38946-7_18

Actuality Entailments: When the Modality
is in the Presupposition

Alda Mari(B)

Institut Jean Nicod, CNRS/ENS/EHESS, Paris, France
alda.mari@ens.fr

Abstract. In natural language, modals are not implicative. However,
when the modality is combined with the perfective, it shows an implica-
tive (or factive) behavior. This phenomenon is called ‘actuality entail-
ment’. We show that actuality entailments arise with goal-oriented
modality only and endorse Belnap’s view of that goal-oriented modals
use historical accessibility with a fixed past and an open future. This
modal-theoretic assumption allows us to spell out the precise modal-
temporal configuration in which the actuality entailment arises and our
predictions are borne out by the data, cross-linguistically. We also show
that, when any assumption about the identity of worlds at branching
point is leveled - which appears to be the case with generic deontic and
opportunity modals, the actuality entailments disappear. We also pre-
dict that the entailment disappears with prospectivity. Finally, we argue
that modal sentences giving rise to actuality entailments are informative,
insofar as the contribution of the modality survives as a presupposition
that the modal base is non-homogeneous.

Keywords: Modality · Presupposition · Actuality entailments · Goal ·
Intentionality · Implicative verbs

1 Introduction

Modals in natural language are not implicative.1 This is observed for existential
(e.g. ‘might’) and universal (e.g. ‘must’) modals, both epistemic ((1-b), (1-d))
and deontic ((1-a), (1-c)).

(1) a. He is allowed to go to school. �→ He goes to school.
b. He might be sick. �→ He is sick.
c. He must go to school. �→ He goes to school.
d. It must be raining. �→ It rains.

1 Special thanks to Anastasia Giannakidou for the long discussions on several aspects
of this work. I am also grateful to Chris Kennedy, Itamar Francez, Malte Willer,
Guillaume Thomas and the three anonymous reviewers for comments and sugges-
tions. This research was funded by ANR-10- LABX-0087 IEC and ANR-10-IDEX-
0001-02 PSL. This paper was written during my stay at the University of Chicago
2014–2016. We also gratefully thank the CNRS-SMI 2015.

c© Springer-Verlag GmbH Germany 2016
M. Amblard et al. (Eds.): LACL 2016, LNCS 10054, pp. 191–210, 2016.
DOI: 10.1007/978-3-662-53826-5 12

192 A. Mari

However, as observed by [4], in some modal-temporal combinations the modality
is implicative. In the specific context of the study of modality in interaction with
time this phenomenon has been called actuality entailment [4] and maintain here
this terminology.

Actuality entailments were immediately observed as arising when the modal
is in the perfective. Bhatt’s observation has been replicated across a variety of
languages (see, e.g. for French, [19,21,29]; for Italian, [28]; for Greek [17] a.o).2

In French, the language studied in this paper, the actuality entailment arises
with the passé composé3.

(2) Jean
John

a
has

pu
can.pp

prendre
take

le
the

train,
train,

#mais
#but

il
he

ne
not

l’a
that-has

pas pris.
taken.

Intended: ‘John managed to move the table, #but he did not do it.’

The imparfait cancels the actuality entailment in French (a contrario, see
[9,17]).

(3) John
John

pouvait
can.impf

prendre
take

le
the

train,
train,

mais
but

il
he

ne
not

l’a
that-has

pas pris.
taken.

‘John could have taken the train, but he did not take it.’

Bhatt (ibid.) proposes that the modal is ambiguous and that in addition to
a non-implicative can1, there is an implicative can2 that behaves just like the
implicative manage to. Bhatt also argues that the imperfective conveys generic
information, which prevents the actuality entailment from arising. [29] observe
that imperfectivity cannot cancel the implication with implicative verbs like
‘arriver à’ (manage to) and thus that the modality cannot be implicative to
begin with.

With the aim to provide a unified theory for modals, theoreticians have built
on the assumption that modals in natural language are non-implicative. The
debate has been very active since [4] and, most prominently, [19], and various
proposals have sought to maintain the non-implicativity of the modals.4

The major challenge faced by any theory of actuality entailments is dis-
tinguishing between modal statements giving rise to the entailment ((4-a) and
(4-b)) and non-modal statements (4-c). In this paper, we focus on existential
modals, since the entailment of actuality is unexpected under any approach of
possibility modals.

(4) a. Jean
John

a
has

pu
can.pp

prendre
take

le
the

train.
train.

‘John managed to take the train.

2 Several authors do not subscribe to an aspectual analysis, though, and some of them
argue that aspect does not play a role at all (see e.g., [17]).

3 In the glosses pp is for ‘past participle’, and impf for ‘imperfective’.
4 For a discussion of available accounts, see a draft version of this paper at http://

ling.auf.net/lingbuzz/002634.

http://ling.auf.net/lingbuzz/002634
http://ling.auf.net/lingbuzz/002634

Actuality Entailments: When the Modality is in the Presupposition 193

b. Jean
John

a
has

dû
must.pp

prendre
take

le
the

train.
train.

‘John had to take the train (and he took it).
c. Jean

John
a
has

pris
taken

le
the

train.
train.

‘John took the train.’

All existing approaches ([19,21,29]) derive the entailment via complex calculi,
begging the question of why the speaker would choose such a complex interpre-
tation to ultimately entail p, rather than asserting a non modal statement to
begin with.

Likewise, since ♦p is asymmetrically entailed by p, the question should be
posed of how the Gricean Maxim of Quality would be respected in the case where
the modal is implicative.

On the assumption that truth of modal statements is evaluated with respect
to a set of possible worlds, the modal base, we propose that the following axiom
(informally, for now), holds for all modals in natural language (see [8,12,15,28])5.

(5) Non-Homogeneity Axiom of modals - [15]
Modal bases triggered by a modal are non-homogeneous, i.e. they contain
p and non-p worlds.

In order to disentangle modal from non-modal statements in the passé com-
posé, we need to show how the non-homogeneity conditions of the modals is
fulfilled when the actuality entailment arises.

Our claim is that this condition survives as a presuppositions of those sen-
tences in which the modal gives rise to the entailment.

The paper is structured as follows. We discuss new data in Sect. 2, present
the analysis in Sect. 3 and discuss remaining questions in Sect. 4.

2 Goals and Expectations: New Facts

With [5,19], we observe that the actuality entailment arises with abilitative (6),
teleological (7) and non-generic6 deontic (8) modality in the passé composé.

(6) Jean
John

a
has

pu
can.pp

déplacer
move

la
the

table,
table,

#mais
#but

il
he

ne
not

l’a
that-has

pas

déplacée.
move.pp.fem.
‘John managed to move the table, #but he did not move it.’

(7) Jean
John

a
has

pu
can.pp

prendre
take

le
the

train,
train,

#mais
#but

il
he

ne
not

l’a
that-has

pas pris.
taken.

‘John managed to take the train, #but he did not take it.’
5 For more discussion on the notion of non-homogeneity, see also [13,16].
6 For generic deontic modality and the distinction between generic and goal-oriented

deontic modality, see [28].

194 A. Mari

(8) Jean
John

a
has

pu
can.pp

rentrer
enter

à
to

la
the

piscine
swimming-pool

grâce
thanks

au
to-the

nouveau
new

règlement,
rules,

#mais
#but

il
he

n’est
not-is

pas rentré.
enter.pp.masc.

‘John could enter (and did enter) to the swimming-pool thanks to the
new rules, #but he did not enter.’

Most importantly, common to the cases in which the entailment arises is the fact
that the entity denoted by the subject7 pursues a goal. None of the sentences
above can be continued by ‘but he did not want it.’ (note that ‘manage to’ does
not trigger this intentionality component). For space limitations, we observe this
generalization only for (6).

(9) Jean a pu déplacer la table, #mais il ne voulait pas la déplacer.
John managed to move the table, but he did not want to move it.

Note also, that (10) is felicitous only if John has the intention of being liked (see
[25,26]).

(10) John
John

a
has

pu
can.pp

plâıre.
be liked.

‘John managed to being liked.’

This intentionality feature is absent from the meaning of the implicative ‘arriver
à’ (‘manage to’). When we contrast past modals triggering the actuality entail-
ment with the implicative verb arriver à (‘manage to’), we see that there is
intentionality with the modal sentence but not with arriver à. The English sen-
tence ‘He managed to be dumped’ can be translated in two different ways (11-a)
and (11-b).

(11) a. Jean
Gianni

est
is

arrivé
arrive.pp

à
to

se
refl

faire
make

quitter.
dump.

(no intentionality)

b. Jean
Gianni

a
has

pu
can.pp

se
refl

faire
make

quitter.
dump.

(intentionality)

‘He managed to be dumped’.

In (11-a), John plays the role of the victim who has been dumped by his girl-
friend. In (11-b), his girlfriend is the victim, as the sentence conveys that John
had the goal of being dumped.

This leads us consider the abilitative, teleological and deontic modalities in
(6), (7) and (8), as instances of goal-oriented modality. Portner [33] uses the term
‘dynamic modality’ to subsume these three types of goal-oriented modals and
dedicates the term ‘goal-oriented modal’ for one subtype of dynamic modality.
The term goal-oriented modality which we maintain here will help us recall that
across the instances of goal-oriented modality, agents and entities have goals.

7 It can also be a contextually relevant entity, like the captain of a boat in ‘Le navire
a pu rentrer au port’ (The boat managed to enter into the harbor).

Actuality Entailments: When the Modality is in the Presupposition 195

Another key factor enhancing the emergence of the entailment (gone unno-
ticed in the literature – see [25] though) is that the modal giving rise to the
entailment can only be used only if the participants in the conversation expect
that the goal cannot be fulfilled. This expectation, as we now show, is a presup-
position.

Consider the following scenario. As is well-known, Usain Bolt is the fastest
runner in the world, who can run 100 meters in 9.58 seconds.

(12) Usain
Usain

Bolt
Bolt

a
has

pu
can.pp

battre
break

le
the

record
record

du
of-the

monde
world

des
of-the

100
100

mètres
meters

grâce
thanks

à
to

son
his

entranement.
training.

‘Usain bolt managed to break the 100-meter world record thanks to his
training.’

Breaking the world record is never granted, and the possibility that even
Usain Bolt does not break it is open at a time prior to the race. The sentence
is felicitous. Sentence (14), instead, is infelicitous in Context 1 and felicitous in
Context 2 described in (13).

(13) a. Context 1 : Usain Bolt is in his best shape and at the climax of his
career.

b. Context 2 : Usain Bolt is recovering from a long cold and is far from
his highest standards.

(14) (#)Usain
Usain

Bolt
Bolt

a
has

pu
can.pp

courir
run

100
100

mètres
meters

en
in

15
15

secondes
seconds

aujourd’hui.
today.
‘Usain Bolt managed to run 100 meters in 15 seconds today.’

Consider context (13-a), in which sentence (14) is infelicitous. Since Usain
Bolt can run 100 meters in 9.58 seconds, it is taken for granted that, in his best
shape, he can run 100 meters in fifteen seconds, and the possibility that he does
not run 100 meters in fifteen seconds was not even considered.

Sentence (14) is instead felicitous in context 2 (13-b), where Usain Bolt is
recovering from a very bad cold. In this context, running 100 meters in fifteen
seconds is not granted; the possibility of ¬p was expected to be realized.

The un-modalized sentence (15) is felicitous in both contexts (13-a) and
(13-b), instead. It does not require that ¬p was expected.

(15) Usain
Usain

Bolt
Bolt

a
has

couru
run.pp

100
100

mètres
meters

en
in

15
15

secondes.
seconds.

‘Usain Bolt has run 100 meters in 15 seconds.’

Importantly, such expectation triggered by past goal-oriented modals must be
part of the utterance context prior to utterance, and encodes what the partic-
ipants take for granted (on this property of presuppositions, see e.g. [35,37]),

196 A. Mari

as the ‘wait a minute’ test (designed to detect presuppositions – [10]) shows.
Consider the following scenario. My mother has to take the train to her home
in the south of the country. She generally goes there every weekend, and she
phones my husband or me to tell us that she has arrived. She generally phones
me on Saturday. My husband comes home and asks whether she has arrived (see
(16)).

(16) Est-ce que ta
your

mère
mother

est
is

arrivée?
arrived?

‘Did your mother arrive?

If I reply (17), and my husband is not aware that it was not granted that my
mother would take the train, he would be entitled to ask (18).

(17) Oui,
Yes,

elle
she

a
has

pu
can.pp

prendre
take

le
the

train.
train.

‘Yes, she managed to take the train.’

(18) Attends,
Wait,

il
it

y
there

avait
have.3sg.impf

un
a

problème?
problem?

‘Wait a minute, there was a problem?’

This shows that both participants must know that prior to the time at which p
is realized, there was a time t′′ such that ¬p was expected to be realized. If this
presupposition is not met, the sentence is infelicitous.

The following family of sentences also reveals that we are dealing with a pre-
suppositions. Again, (19)-(20)-(21) are felicitous only in contexts implying that
not running 100 meters in fifteen seconds is expected (Usain Bolt is recovering
from a cold – see Context 2 in (13-b)).

(19) (#)Est-ce qu’ il
He

a
has

pu
can.pp

courir
run

100
100

mètres
meters

en
in

15
15

secondes,
seconds,

aujourd’hui?
today?
‘Did he manage to run 100 meters in 15 seconds?’

(20) (#)Il
It

est
is

possible
possible

qu’il
that-he

ait
has.3sg.subj

pu
can.pp

courir
run

100
100

mètres
meters

en
in

15
15

secondes.
seconds.
‘It is possible that he managed to run 100 meters in 15 seconds’.

(21) (#)S’il
If-he

a
has

pu
can.pp

courir
run

100
100

mètres
meters

en
in

15
15

secondes,
seconds,

alors
then

il
he

va
go.3sg.pres

bient
soon

ôt
refl

se
be-fine.

remettre.

‘If he managed to run 100 meters in 15 seconds, then he is going to be
fine soon.’

Actuality Entailments: When the Modality is in the Presupposition 197

In view of these data, we can conclude that the modal contributes meaning
by introducing a meaning component conveying ‘expectation.’

3 Analysis

3.1 Representing Goal-Oriented Modality

[2] is the first to propose an analysis of goal-oriented modality within a branching
time framework [36].8 We endorse this model theoretical framework for goal-
oriented modality in French as well. As we show, this choice will allows us to
derive a variety of predictions, cross-linguistically.

The Modal-Temporal Skeleton. Thomason’s world-time model uses W × T
frames. A branching structure is generated. Each branching point determines an
equivalence class of worlds with a unique past and present and an open future.
A three-place relation � on T × W × W is defined such that (i) for all t ∈ T , �t

is an equivalence relation; (ii) for any w,w′ ∈ W and t, t′ ∈ T , if w′ �t′ w and t
precedes t′, then w′ �t w (we use the symbols ≺ and � for temporal precedence
and succession, respectively). In words, w and w′ are historical alternatives at
least up to t′ and thus differ only, if at all, in what is future to t′.

Figure 1 depicts two equivalence classes of worlds, determined at t1 and t2.

(22) a. w0 �t1 w1 �t1 w2 �t1 w3 �t1 w4 (historical alternatives at t1).
b. w0 �t2 w2 �t2 w3 (historical alternatives at t2).

w0

t1 w1

w4

t2

w2

w3

Fig. 1. Equivalence classes of worlds

For any time t ∈ T , on can define the historical alternatives I as the set of
worlds that are identical to the actual world w0 at least up to and including t.

8 See [8,22,27] for discussion of this framework in the linguistic literature.

198 A. Mari

(23) I(w0)(t) := {w | w �t w0}
Figure 2 depicts the historical alternatives, determined at time t.

(24) I(w0)(t) = {w1, w2, w0, w3, w4}

t

w0

w1

w2

w3

w4

Fig. 2. I(t)

3.2 Calculating the Asserted Meaning

Let us work through the compositional semantics of the sentence in (25).

(25) John a pu [prendre le train]
John managed to take the train.

Following previous analysis, we treat the passé composé as a past. As repeatedly
observed, in fact, the actuality entailment arises with the simple past as well [28].
We use ACC for the accessibility relation function, which we further elaborate
later in the paper. (From now on, we call the proposition p (‘prendre le train’ in
(25)), the prejacent.)

We assume the decomposition that follows:

(26) PAST(MOD(VP))

As standard, we are going to assume that s is the type for worlds, i the type of
times and t the type for truth values.

The meaning of the operators is in (27).

(27) a. MOD = λps→〈i→t〉λwsλti∃w′[w′ ∈ ACC(w)(t) ∧ p(w′)(t)]
b. PAST = λps→〈i→t〉λwsλti∃t′[t′ ≺ t ∧ p(w)(t′)]
c. VP = λwsλtip(w)(t)

(28) Composition.
a. MOD(VP) = λws λts.∃w′[w′ ∈ ACC(w)(t)∧ [λws λti.p(w)(t)](w′)(t)] =

λws λti.∃w′[w′ ∈ ACC(w)(t) ∧ p(w′)(t)]

Actuality Entailments: When the Modality is in the Presupposition 199

b. PAST(MOD(VP)) = λws λti.∃t′[t′ ≺ t ∧ [λws λts.∃w′[w′ ∈ ACC
(w)(t) ∧ p(w′)(t)](w)(t′)]] =
λws λti.∃t′[t′ ≺ t ∧ ∃w′[w′ ∈ ACC(w)(t′) ∧ p(w′)(t′)]]

c. t is fixed as tu and w is the world of evaluation
Truth conditions: ∃t′[t′ ≺ tu ∧ ∃w′[w′ ∈ ACC(w)(t′) ∧ p(w′)(t′)]]
Paraphrase: there is a past time at which there is a world accessible
from the world of evaluation, at which p is true (e.g. John takes the
train).

Past fixes both the time of evaluation of the modal and of the prejacent (in
absence of a tense that fixes the time of evaluation of the prejacent independently
of the time of evaluation of the modal, cf. infra). [18] refers to this phenomenon
by stating that the tense of the embedded proposition is anaphoric to the higher
tense. In other terms, the time of evaluation of the prejacent (the time at which
e.g. John takes the train) and the time of the evaluation of the modal (i.e. the
time at which the possibility of taking the train occurs) are the same. Note that
this is parallel to what happens with implicative verbs. For a sentence ‘John
managed to take the train’ the time at which John takes the train and the time
at which John manages to take the train, are the same.

Interpreting the sentence in a branching time framework allows us to explain
why the actuality entailment arises when the time t′ at which the quantificational
domain of the modal coincides with the time at which the prejacent is evaluated.
In such a past time there is just one world, the actual one. In this configuration
this is the only world of evaluation (Fig. 3).

w0

tu

w′

p

ACC(w)(t’)

t′

Fig. 3. The domain of quantification of the goal-oriented modality in the past.

Our model theoretic assumptions also allow us to predict that the actuality
entailment disappears with prospectivity (PROSP or FUT in the literature, see
e.g., [1,31]), that this to say, in the configuration where the time of evaluation
of the prejacent follows the time of evaluation of the modality. The actuality
entailment, under our hypothesis, does not arise when there is prospectivity
because the prejacent lies in possibilities that are not actual, as seen from the
time at which the alternatives (the branches) are determined (as we show in
Sect. 3.3 this prediction is borne out).

There is no overt mark of prospective aspect in the French language. However,
we can demonstrate ex absurdo that if prospective aspect were present when the

200 A. Mari

modal is in the passé composé, we would predict the licit use of forward-shifting
temporal adverbs like ‘tomorrow’. This type of temporal adverb is incompatible
with the modal in the past (29) [21].

(29) #Hier
Yesterday

il
he

a
has

pu
can.pp

rendre
return

son
his

devoir
homework

demain.
tomorrow.

‘#Yesterday, Pierre managed to return his homework tomorrow.’

We thus assume that prospectivity is absent when the modal is in the passé
composé, and because we do not have a past either (past on the infinitive of
the embedded predicate is overt in French), we hold that the time at which the
modal and the prejacent are evaluated are the same and are fixed by the higher
past operator. In this configuration, the entailment arises.

3.3 Prospectivity and the Absence of Entailment of Actuality

The major predictions that we are able to make in adopting the branching
time framework, is that the entailment does not arise with prospectivity. This
prediction is borne out by cross-linguistic evidence.

Gitksan [31] offers an overt prospective aspect marker dim, which suppresses
the actuality entailments.

In Gitksan, modals are lexically restricted with respect to the modal bases
they allow: da’akxw is the circumstantial modal.

With dim (which in fact is obligatory with non-epistemic modals) the actu-
ality entailment does not arise.

(30) da’akxw[-i]-’y
POSSIBILITY[-tra]-1sg.II

dim
PROSP

ayee=hl
go.fast=CN

bax-’y
run-1sg.II

‘I can run fast’.
Rejected in context: ‘You were a fast runner, but you’ve become perma-
nently paralyzed.’

In other terms, as predicted, since the modal has future orientation, the
actuality entailment does not arise.

The French ‘imparfait’ features a variety of modal uses that include the
counterfactual, as well as the progressive (e.g. [24]). Some (if not all) of these uses
have been argued to involve a modal component. [4,20] propose that when the
modal is in the imperfective, the modal GEN levels the entailment of actuality.

With [1], for French, we assume that in the counterfactual use of the imperfec-
tive, PAST is combined with FUT (here PROSP) - for previous discussion about
the counterfactual interpretation of the imperfective, see [3]. (31) is analyzed as
in (32) along the lines of ([31]).

(31) Jean pouvait prendre le train (mais il ne l’a pas pris).
John can.3sg.impf take the train (but he not that-has taken).
‘John could take the train (but he did not take it).’

(32) PAST(MOD(PROSP(VP))

Actuality Entailments: When the Modality is in the Presupposition 201

On the assumption that PROSP has the semantics in (33), we obtain the
truth-conditions in (34-d) for (31). Let tu be the time of utterance.

(33) PROSP = λps→〈i→t〉λwsλti∃t′′[t′′ ∈ [t,∞) ∧ p(w)(t′′)]

(34) Composition.
a. PROSP(VP) = λws λti.∃t′′[t′′ ∈ [t,∞) ∧ [λws λti.p(w)(t)](w)(t′′)]

= λws λti.∃t′′[t′′ ∈ [t,∞) ∧ p(w)(t′′)]
b. MOD(PROSP(VP)) = λws λti.∃w′[w′ ∈ ACC(w)(t) ∧ [λws λti.

∃t′′[t′′ ∈ [t,∞) ∧ p(w)(t′′)]](w′)(t)] =
λws λti.∃w′[w′ ∈ ACC(w)(t) ∧ ∃t′′[t′′ ∈ [t,∞) ∧ p(w′)(t′′)]]

c. PAST(MOD(PROSP(VP))) = λws λti.∃t′[t′ ≺ t∧[λws λti.∃w′[w′ ∈
ACC(w)(t) ∧ ∃t′′[t′′ ∈ [t,∞) ∧ p(w′)(t′′)]]](w)(t′)] =
λws λti.∃t′[t′ ≺ t ∧ ∃w′[w′ ∈ ACC(w)(t′) ∧ ∃t′′[t′′ ∈ [t′,∞) ∧
p(w′)(t′′)]]]

d. t is fixed as tu and w is the world of evaluation.
Truth conditions: ∃t′[t′ ≺ tu ∧ ∃w′[w′ ∈ ACC(w)(t′) ∧ ∃t′′[t′′ ∈
[t′,∞) ∧ p(w′)(t′′)]]]
Paraphrase: There is a past time t′ such that there is a world w′

accessible from the actual world at t′ such that there is a time t′′

future with respect to t′ such that p is true at t′′ in w′.

Since the truth of the prejacent is calculated at a time that follows the
time at which the possibilities are projected, given a branching time framework,
the actuality entailment does not arises. The prejacent lies in possibilities that
are not actual from the perspective of the branching point at which they are
projected.

Again, we do not have an overt marking of prospective aspect in French.
However, prospectivity is detectable in (35), where forward-shifting temporal
adverbs locate the time of the truthiness of the prejacent with the resulting
future temporal orientation of the modal.

(35) Hier il pouvait rendre son devoir demain.
Yesterday he can.3sg.impf return his homework tomorrow.
‘Yesterday, Pierre could return his homework tomorrow.’

3.4 Accounting for the Contribution of the Modal

In our account so far, the modal turns out to be trivialized in the assertion, as
its domain of quantification contains only one world, the actual one.

We must now implement the contribution of the modal, in order to be able
to distinguish between the semantics of bare assertions and modalized assertion
in the passé composé. We also elaborate on the constraints on the branches.

Let t′′ be a contextually determined time. We define what follows:9

9 We use here the aristotelian notion of telos, which includes both goals and tendecies
of natural entities, although here we do not discuss the case of this type of entities.

202 A. Mari

(36) MB(w0)(t′′) =
{w ∈ I(w0)(t′′) : a relevant entity has a telos in w at t′′ }

Note from the outset that having the telos does not imply actualization of
the telos.10 We posit a condition on the modal space, namely that it is not
homogeneous and contains both p and ¬p continuations: p worlds are worlds in
which the telos is achieved and ¬p worlds are worlds in which the telos is not
achieved.

(37) Non-homogeneity of the historical modal base (to be revised):
∃t′ � t′′

(
∃w′ ∈ MB(w0)(t

′′)
(
p(t′)(w′)

))∧(∃w′′ ∈ MB(w0)(t
′′)
(¬p(t′)(w′′)

))

Here, the time at which the truthiness of the prejacent is evaluated (t′)
follows the time at which the alternatives - including p and ¬p worlds - are
projected (t′′).

This is not sufficient. As we have shown in the data section, it is not only
the case that ¬p was metaphysically possible at a time prior to the realization
of p (this is always trivially the case, given a metaphysical space). ¬p, instead,
was the possibility expected to get realized.

We add ordering sources to restrict the metaphysical space, which, recall, con-
tains worlds in which the subject entity has a certain telos. Recall also that the
abilitative, deontic and teleological modal are instances of goal-oriented modal-
ity. In our account these flavors of goal-oriented modality are implemented as
ordering sources.

Second, in order to implement the notion of expectation, we use a secondary
ordering source, which is epistemic [23,33]. We conceive an expectation as an
epistemic object: the speaker selects those worlds among the metaphysical acces-
sible ones that better conform to his/her own beliefs [14].

Following [33], we define ordering of worlds and Best worlds as follows.

(38) Ordering of worlds - [33]
For any set of propositions X and any worlds w, v : w �X v iff for all
p ∈ X, if v ∈ p, then w ∈ p.

(39) For any set of propositions X, Best worlds as per X.
BestX : {w′ : ∀q ∈ X(w′ ∈ q)}

B,D, A are, respectively the doxastic, deontic and abilitative ordering sources.
These are set of propositions that better conforms to the belief of the speaker
(including stereotypicality conditions) (B), the orders and the permissions
received (D), and the abilities A (we will not use A here).

Let us consider the following example, where permissions (hence a deontic
ordering source is considered).

10 The only exceptions to this are natural entities, whose telos (final cause) - e.g.,
the final cause of the wind is to blow - is necessarily in acto. For space reasons, we
do not consider natural entities here.

Actuality Entailments: When the Modality is in the Presupposition 203

(40) Jean a pu rentrer à la piscine.
John could enter in the swimming pool (and he did enter, in virtue of a
permission).

Ordering sources restrict the set of worlds to be taken into consideration.
From the entire metaphysical modal base M (in our case, this is MB(w0)(t′′)),
first the deontic ordering source applies.

(41) BestD: {w′ ∈ M : ∀q ∈ D(w′ ∈ q)}
The doxastic ordering source, if any, then further restricts BestD.

(42) BestB: {w′ ∈BestD : ∀q ∈ B(w′ ∈ q)}
Let us consider the case of deontically flavored goal-oriented modality (40).11

Again, recall that the metaphysical modal space is already restricted to the
worlds in which a relevant entity has a telos (namely we are dealing with goal
oriented modality), D restricts the initial domain in which a goal is being pur-
sued. Our final analysis is as follows.

We can now modify the lexical entry for MOD in (27-a), as in (43), where X
is an ordering source.

(43) MOD = λps→〈i→t〉λwsλtt.∃w′[w′ ∈BestX ∧ p(w′)(t)]

(44) a. [[PAST(MOD(VP))]] is defined if and only if
there is a contextually determined past time t′′ s.t.
(i) MB(w0)(t′′) =
{w ∈ I(w0)(t′′) : a relevant entity has a telos p in w at t′′ }¸
(ii) ∃t′ � t′′

(
∃w′ ∈BestD

(
p(t′)(w′)

))∧
(
∃w′′ ∈BestD

(¬p(t′)(w′′)
))

(iii) ∀w′′ ∈BestB
(
p(t′)(w′)

)

b. If defined, [[PAST(MOD(VP))]] = 1 iff
t′ defined in (a.-ii.) is such that: t′ ≺ tu such that ∃w′[w′ ∈BestD ∧
p(w′)(t′)]

The presupposition (44-a) can be paraphrased as follows: there is a contextually
determined time at which a certain entity has a telos (John intends to go at the
swimming pool). There is a world compatible with the laws such that p is true
and a world compatible with the laws such that p is not true, these are the BestD
worlds (note that the time of evaluation of p and ¬p follows the time at which
alternatives are projected). In all worlds compatible with the expectations (i.e.
in the BestB), p is not true.

The sentence asserts (44-b) that at a time t′ that precedes tu and follows t′′,
there is a world compatible with the laws such that p is realized there.

We thus obtain the configuration depicted in Fig. 4. The actual world is the
domain of quantification of the modal dq, determined at the time t′.

11 For abilitative modality the ordering source A would have been used, instead.

204 A. Mari

w0

tu

w′

p

DQ

t′t′′

BestB ¬p

BestD

Fig. 4. Domain of quantification dq, deontic modal base D and expectations B

Let us add two comments. First we can now provide the final non-
homogeneity condition on the deontic flavored goal-oriented modality. This is
condition (44-a)-(ii). Generalizing for a set of propositions X ∈ {D,A}, we
obtain:

(45) Non-homogeneity of the modal base for past modals (final).
Let t′′ be a contextually determined past time.
∃t′t′�t′′

(
∃w′ ∈BestX ∧ (

p(t′)(w′)
))∧

(
∃w′′ ∈BestX ∧ (¬p(t′)(w′′)

))

As shown in Fig. 4, we can now clearly distinguish between the domain of
quantification of the modal from the modal base (this is not a peculiarity of
modals giving rise to the entailment, but it is also a well-studied feature of
number of modals across languages, see e.g. [15,38]). The domain of quantifi-
cation contains just one world, the actual one. In the assertion, the modalized
and the non-modalized statement are equivalent. However, the modal statement
contributes meaning in the presupposition. By adding this layer of meaning,
the informativity of the modal sentence becomes higher than the one of the
non-modalized sentence, and the Gricean Quality maxim is fulfilled.

To conclude the discussion, let’s consider what happens with negation, con-
sidering the case in (46).

(46) Jean n’a pas pu rentrer à la piscine.
John could not enter in the swimming pool (and he did not enter).

(46) states both that (i) the permission is denied and (ii) John did not enter. By
negating (44-b), our analysis is as follows.

Actuality Entailments: When the Modality is in the Presupposition 205

(47) a. Presupposition. As above.
b. (47) is true iff ¬t′(t′ ≺ tu) such that ∃w′ ∈BestD ∧ (p(t′)(w′))

The condition in (47-b) states that there is no time at which a world com-
patible with the laws is accessed and p is true. This amounts to stating that the
permission is not given. Moreover, since there is just one world, the actual one,
we conclude that p is not true there.

Note that the presuppositonal content remains unchanged. There are worlds
compatible with the permissions and p is true, and worlds compatible with the
permission and in which p is not true. Moreover, the expectation that p would
not be true is also maintained. As for the non-homogeneity conditions, it will
hold in the metaphysical modal base only (see [8]).

This concludes our discussion of modality giving rise to the actuality entail-
ments. Universal modals will use universal quantification on the entire deontic
space, projected at a contextually determined time, preceding the time at which
p becomes true.

4 Further Discussion

4.1 Anchoring to Times and Opportunity Reading: The Role of the
Adverbs

We now consider another interpretation of past modals in French that [29] have
labeled as the ‘opportunity’ reading. This reading typically arises when temporal
boundaries at which the possibility holds are overtly specified via a temporal
adverb. In these cases, the actuality entailment does not arise.

(48) Jean
John

a
has

pu
can.pp

entrer
enter

entre
between

3
3

heures
hours

et
and

5
5

heures,
hours,

mais
but

il
he

n’est
did

pas
not

entré.
enter.

‘John had the opportunity to enter between 3 and 5, but he did not
enter.

We are aware of no formal analysis that addresses the opportunity reading.
We propose that the opportunity reading of modals is obtained by anchoring
the modal to the time introduced by the adverb. The opportunity reading is
not parametric to teloi ; thus, it does not appeal to the historical accessibility
relation.

An opportunity can be thought of as a state of affairs that holds over a certain
period of time in a certain location. Such states of affairs are indeed what we
usually call ‘circumstances’. The modal base of the opportunity reading uses
circumstantial similarity: it contains those worlds in which the circumstances
that obtain in the actual world at the time denoted by the adverb, also obtain,
and are such that p is true there.

Leveling the assumption about the identity of worlds and about a settled
past and present that the historical accessibility relation introduces allows one

206 A. Mari

to capture the opportunity. In (49), MBcirc returns the set of worlds circum-
stantially accessible from w0 at t′ (having leveled the constraint on identity of
worlds, these are not identical to w0 up to t′). (49) states that there is at least
one accessible world in which p is true at the time provided by the adverb.

(49) [[(48)]] = 1 iff
∃w′ ∈ MBcirc(w0)(between 3 and 5 pm)(p(between 3 and 5 pm)(w′))]

Without further constraints, the actuality entailment does not obtain as
expected.

4.2 Generic Deontic Modality

We now consider more closely the difference between addressee-oriented deontic
modality and generic deontic modality in relation to actuality entailments.

In French, deontic modality can be both present and past-oriented (pace
[32]).

(50) Pour
To

entrer
get-in

tu
you

dois
must.2SG

avoir
have

acheté
bought

les
the

billets.
tickets.

‘You must have bought the tickets to get in.’

(51) Tu
You

dois
must.2SG

être
be

un
a

homme
male

pour
to

pouvoir
can

utiliser
use

ces
this

toilettes.
restroom.

‘You must be a male to use this restroom.’

In our account, the present is settled and represented as a branching point,
the time of the utterance. It is predicted under our account that the actuality
entailment is obtained in (50) and (51) as well. This conclusion would prove our
account wrong, as in (50), it is not entailed that my addressee has bought the
tickets, nor that my addressee is a man in (51).

This criticism rests on the unwarranted premise that all instances of deontic
modality are instances of goal-oriented modality.

Deontic modality in the present can be interpreted in at least two different
ways (see discussion in [33]). First, it can be addressee-oriented. In this case,
(50) is felicitous if the addressee still has time to buy the tickets (see [22]) and
the speaker is urging him to do so. In other terms, the addressee must be able
to make p true. In this context, the buying of the tickets lies at a past time tl
of a future time, such that tl is in the future of the time of the utterance. The
actuality entailment is not obtained because p lies in the future of tu, and there
is not yet an actual future after tu.

Deontic modality can also have a generic interpretation (see [34]). Consider
now (50) in the context in which the hearer does not have time to buy the tickets,
but the speaker is uttering a general rule, independent of the possible exceptions
or correct implementations of the rule. There is no action that the addressee
can take to fulfill the rule. We can replicate the observation with (51). Consider
a context in which the addressee is a woman. There is no way for the female
addressee to change sex instantaneously and become a man. The speaker is thus

Actuality Entailments: When the Modality is in the Presupposition 207

uttering a rule without expecting the hearer to fulfill it or to have it fulfilled.
The same sentence can also be uttered at a male addressee. The addressee can
then choose whether or not he wants to use the bathroom. The rule for using
the bathroom is provided, but the addressee is not urged to use it.

(52) a. Male addressee: Est-ce que je peux utiliser ces toilettes?
‘Can I use this restroom?’

b. Speaker: Oui, tu dois être un homme pour pouvoir les utiliser.
‘Yes, you must be a male to use it.’

Here, deontic modality is being used in a generic sentence, where the present
tense introduces GEN (see discussion and proposal in [34], ibid). In these cases,
the accessibility relation is not historical, and there is not an actual telos being
pursued. We would rather use a circumstantial accessibility relation, without any
constraints on the identity of worlds (unlike with goal-oriented modality), and
a deontic ordering source (D) that ranks as best those worlds in which the rules
are obeyed. Given the presence of GEN, one might also want to add normality
ordering sources (N). A bouletic ordering source (B) might also be used to take
into account the role of personal choices in connection with deontic modality.
We do not provide here a full analysis of generic deontic modality. (53) reveal
the spirit of it (see [34] for an extended discussion). (D, N and B are each a set
of propositions).

(53) [[GEN(MODdeontic)(p)]] = 1 iff
∀w′ ∈BestD∩BestN ∩BestB ∩ (MBcirc(w0)(tu))(p(tu)(w′))

Since we are not assuming historical accessibility here, the actuality entailment
does not arise.12

4.3 Past-Oriented Abilitative Modality? A Final Note

To conclude the discussion about past orientation, we would like to raise a poten-
tial final concern about whether there are instances of past-oriented abilitative
modality and add a brief note. We have argued that goal-oriented modals (includ-
ing abilitative modality) are inherently future oriented (the time of evaluation
of the prejacent is evaluated at a time that follows the time at which the modal
base is determined. Note that this is the case in Fig. 4). Pouvoir cannot have an
abilitative interpretation when past oriented.

(54) Jean
John

peut
can

avoir
have

déplacé
moved

la
the

table.
table.

(epistemic only)

‘John might have move the table.’

Our theory seems thus to deliver a correct prediction.
However, extending it beyond pouvoir and devoir, one can observe that être

capable de (be able to) can have past orientation (the time of evaluation of the

12 For an overview about the interpretations of GEN, see [30].

208 A. Mari

prejacent is evaluated in the past with respect to the time at which the modal
base is determined). Scenario: Mary has been found dead in her bed.

(55) Jean
John

est
is

capable
able

de
of

l’avoir
her-have

tuée.
killed.

‘John might have killed her.’

One might want to propose that être capable de is the dedicated expression of
abilitative modality. This attempt, however, to confine the coverage of être capa-
ble de to abilitative modality is deemed to fail. Several differences exist between
the English be able to and its Romance equivalents. In a very recent study of
Spanish, [6,7] show that one of the peculiarities of ser capaz is its ambiguity
between an abilitative and an epistemic interpretation. The new data presented
can be straightforwardly duplicated in French - we do not replicate them here for
space reasons (see [6] for discussion), and (55) qualify as an epistemic reading of
être capable. Note that, for (55), we have set up a scenario in which the speaker
must infer who the murderer is. The use of this type of contexts is the hallmark
of epistemic modality (see [11,15,33]).

In French, être capable thus shows the same versatility as pouvoir, which,
when past oriented, features an epistemic interpretation. As a result, we can
conclude that even être capable, just like pouvoir, can have an abilitative inter-
pretation only when future oriented.

5 Conclusion

In this paper we have shown that modals in the past give rise to actuality entail-
ments and that this is an unexpected phenomenon given the non-implicative
behavior of modals in natural language. We have also show that actuality entail-
ments arise with goal-oriented modality only. We have endorsed the view of [2]
that goal-oriented modals use historical accessibility with a fixed past and an
open future. These model theoretic assumptions have allowed us to spell out the
precise modal-temporal configuration in which the actuality entailment arises
and our predictions are borne out by the data, cross-linguistically. We have also
shown that, when such an assumption about the identity of worlds at branch-
ing point is leveled - which appears to be the case with generic deontic and
opportunity modals, the actuality entailments disappear.

Finally, we have also shown that modal sentences giving rise to actuality
entailments are informative, insofar as the contribution of the modality survives
as a presupposition that the modal base is non-homogeneous.

References

1. Anand, P., Hacquard, V.: The role of the imperfect in Romance counterfactuals. In:
Prinzhorn, M., Schmitt, V., Zobel, S. (eds.) Proceedings of Sinn und Bedeutung,
vol. 14, pp. 37–50 (2010)

Actuality Entailments: When the Modality is in the Presupposition 209

2. Belnap, N.D.: Backwards and forwards in the modal logic of agency. Philos. Phe-
nomenol. Res. 51, 777–807 (1991)

3. Berthonneau, A.-M., Kleiber, G.: Sur l’imparfait contrefactuel. Travaux de linguis-
tique 53, 7–65 (2006)

4. Bhatt, R.: Covert modality in non-finite contexts. Ph.D. thesis, Philadelphia, Uni-
versity of Pennsylvania (1999)

5. Borgonovo, C., Cummins, S.: Tensed modals. In: Eguren, L., Fernandez, S.O. (eds.)
Coreference, Modality, and Focus, pp. 1–18. John Benjamins Publishing Company,
Amsterdam/Philadelphia (2007)

6. Castroviejo, E., Oltra-Massuet, I.: On capacities and their epistemic extensions.
In: Selected Papers from LSRL 42, John Benjamins, Dordrecht (to appear)

7. Castroviejo, E.: What does be capable tell us about capacities? An answer from
Romance. Dispositions Workshop, Stuttgart (2015)

8. Condoravdi, C.: Temporal interpretation of modals: modals for the present and
for the past. In: Beaver, D., Kaufmann, S., Clark, B., Casillas, L. (eds.) The Con-
struction of Meaning, pp. 59–88. CSLI, Stanford (2002)

9. Davis, H., Louie, M., Matthewson, L., Paul, I., Reis Silva, A., Peterson, T.: Perfec-
tive aspect and actuality entailments: a cross-linguistic approach. In: Proceedings of
SULA 5: The Semantics of Under-Represented Languages in the Americas. GLSA,
Amherst (2010)

10. von Fintel, K.: Would you believe it? The king of France is back! Presuppositions
and truth-value intuitions. In: Reimer, M., Bezuidenhout, A. (eds.) Descriptions
and Beyond. Oxford University Press, Oxford (2004)

11. von Fintel, K., Gillies, A.: Must.. stay.. strong!. Nat. Lang. Semant. 18, 351–383
(2010)

12. Giannakidou, A.: Affective dependencies. Linguist. Philos. 22, 367–421 (1999)
13. Giannakidou, A., Mari, A.: The future of Greek and Italian: an evidential analysis.

In: Proceedings of Sinn und Bedeutung, vol. 17, pp. 255–270 (2013)
14. Giannakidou, A., Mari, A.: A unified analysis of the future as epistemic modality:

the view from Greek and Italian. Ms. University of Chicago and Institut Jean
Nicod (2015)

15. Giannakidou, A., Mari, A., Epistemic future, epistemic MUST: nonveridicality, evi-
dence, and partial knowledge. In: Blaszack, J., et al. (ed.) Tense, Mood, and Modal-
ity: New Perspectives on Old Questions. University of Chicago Press, Chicago (in
press)

16. Giannakidou, A., Mari, A.: Emotive-factive and the puzzle of the subjunctive. In:
2015 Proceeding of CLS, vol. 51, pp. 181–195 (2016)

17. Giannakidou, A., Staraki, E.: Ability, action and causation: from pure ability to
force. In: Mari, A., Beyssade, C., Del Prete, F. (eds.) Genericity, pp. 250–275. OUP,
Oxford (2012)

18. Grano, T.: Control and restructuring at the syntax-semantic interface. Ph.D. Uni-
versity of Chicago (2012)

19. Hacquard, V.: Aspects of modality. Ph.D. thesis, MIT, Cambridge, MA (2006)
20. Hacquard, V.: On the interaction of aspect and modal auxiliaries. Linguist. Philos.

32, 279–315 (2009)
21. Homer, V.: French modals and perfective: a case of aspectual coercion. In: Pro-

ceedings of WCCFL, vol. 28, pp. 106–114 (2010)
22. Kaufmann, M.: Interpreting Imperatives. Springer, Dordrecht (2012)
23. Kratzer, A.: Modality. In: von Stechow, A., Wunderlich, D. (eds.) Semantics:

An International Handbook of Contemporary Research, pp. 639–650. de Gruyter,
Berlin (1991)

210 A. Mari

24. Ippolito, M.: Imperfect modality. In: Guéron, J., Lecarme, J. (eds.) The Syntax of
Time, pp. 359–387. MIT Press, Cambridge (2004)

25. Mari, A.: Temporal reasoning and modality. Invited talk at temporality: typology
and acquisition, University of Paris VIII (2010)

26. Mari, A.: Pouvoir au passé composé: effet épistémique et lecture habilitative. In: de
Saussure, L., Rhis, A. (eds.) Etudes de sémantique et de pragmatique Françaises,
pp. 67–99. Peter Lang, Geneva (2012)

27. Mari, A.: Each other, asymmetry and reasonable futures. J. Semant. 31(2), 209–
261 (2014)

28. Mari, A.: Modalités et Temps. Des modèles aux données. Peter Lang AG, Bern
(2015)

29. Mari, A., Martin, F.: Tense, abilities and actuality entailment. In: Aloni, M.,
Dekker, P., Roelofsen, F. (eds.) Proceedings of the XVI Amsterdam Colloquium,
pp. 151–156. ITLI, University of Amsterdam, Amsterdam (2007)

30. Mari, A., Beyssade, C., Del Prete, F.: Introduction. In: Mari, A., Beyssade, C.,
Del Prete, F. (eds.) Genericity, pp. 1–92. Oxford University Press, Oxford (2012)

31. Matthewson, L.: On the (non)-future orientation of modals. In: Proceedings of Sinn
und Bedeutung, vol. 16, pp. 431–446 (2012)

32. Niñán, D.: Two puzzles about deontic necessity. In: Gajewski, J., Hacquard, V.,
Nickel, B., Yalcin, S. (eds.) New Work on Modality, MIT Working Papers in Lin-
guistics, vol. 51, pp. 149–178. MIT, Cambridge (2005)

33. Portner, P.: Modality. Oxford University Press, Oxford (2009)
34. Saint Croix, C., Thomason, R.H.: Chisholm’s paradox and conditional oughts.

In: Cariani, F., Grossi, D., Meheus, J., Parent, X. (eds.) DEON 2014. LNCS
(LNAI), vol. 8554, pp. 192–207. Springer, Heidelberg (2014). doi:10.1007/
978-3-319-08615-6 15

35. Schlenker, P.: Local contexts. Semant. Pragmat. 2, 1–78 (2009)
36. Thomason, R.: Combinations of tense and modality. In: Gabbay, D.M., Guenthner,

F. (eds.) Handbook of Philosophical Logic: Extensions of Classical Logic, vol. II,
pp. 136–165. Reidel, Dordrecht (1984)

37. Tonhauser, J., Beaver, D., Roberts, C., Simons, M.: Toward a taxonomy of projec-
tive content. Language 89(1), 66–109 (2013)

38. Werner, T.: Future and non-future modal sentences. Nat. Lang. Semant. 14, 235–
255 (2006)

http://dx.doi.org/10.1007/978-3-319-08615-6_15
http://dx.doi.org/10.1007/978-3-319-08615-6_15

Non-crossing Tree Realizations of Ordered
Degree Sequences

Laurent Méhats1 and Lutz Straßburger2(B)

1 Collège de Guinette, Étampes, France
2 Inria Saclay, Palaiseau, France
lutz.strassburger@inria.fr

Abstract. We investigate the enumeration of non-crossing tree realiza-
tions of integer sequences, and we consider a special case in four parame-
ters, that can be seen as a four-dimensional tetrahedron that generalizes
Pascal’s triangle and the Catalan numbers. This work is motivated by
the study of ambiguities in categorial grammars.

Keywords: Proof nets · Non-crossing trees · Integer sequences ·
Catalan’s triangle · Pascal-Catalan-tetrahedron

1 Introduction

A non-crossing tree t is a labeled tree on a sequence of vertices 〈v0, v1, . . . , vn〉
drawn in counterclockwise order on a circle, and whose edges are straight line
segments that do not cross. For any index 0 ≤ i ≤ n, let di stand for the number
of edges incident with vi (that is the degree of vi). Then as any other tree on n+1
vertices, t satisfies

∑n
i=0 di = 2n. Thus, the sequence 〈d0, d1, . . . , dn〉 defines a

composition of 2n into n + 1 positive summands (two sequences of integers that
differ only in the order of their elements define distinct compositions of the same
integer). Stated otherwise, t is a non-crossing tree realization of the composition
〈d0, d1, . . . , dn〉.

For any composition c = 〈d0, d1, . . . , dn〉 of 2n into n+1 positive summands,
let nct(c) stand for the number of non-crossing tree realizations of c, that is the
number of non-crossing trees on n + 1 vertices 〈v0, v1, . . . , vn〉 such that vertex
vi has degree di for any index 0 ≤ i ≤ n (there always exists at least one, see
Proposition 2.3). We aim at computing nct. Note that here the input is more
specific than the degree partition, as for example in [5].

From Proof Nets to Non-crossing Trees. Our interest for these non-crossing
tree realizations comes from linguistics and proof theory. The starting point for
this work was the following linguistic problem: How many different readings can
an ambiguous sentence at most have? Particularly, which sentence of a given
length has the most different readings? When using categorial grammars based
on the Lambek calculus [9] or related systems, a parse tree is a formal proof in a

c© Springer-Verlag GmbH Germany 2016
M. Amblard et al. (Eds.): LACL 2016, LNCS 10054, pp. 211–227, 2016.
DOI: 10.1007/978-3-662-53826-5 13

212 L. Méhats and L. Straßburger

deductive system. Thus, our questions become: How many different formal proofs
can a formula have? Particularly, which formula of a given length has the most
different formal proofs? In category theoretical terms these questions come down
to the cardinality of the Hom-sets in a free non-commutative star-autonomous
category [2]. The corresponding logic is a variant of non-commutative intuition-
istic linear logic [8,17] for which formal proofs can be represented as planar proof
nets. It would go too far beyond the scope of this paper to go into the details
of this correspondence. However, to give the reader an idea, we have shown in
Fig. 1 the transformation of a parse tree into a proof net. The first step trans-
forms the parse tree into a formal proof according to Lambek’s work [9]. In the
second step, this proof is embedded into a one-sided multiple conclusion system
using the binary connectives � and � [17]. In order not to lose the informa-
tion on positive and negative positions in the formulas we use polarities (see,
e.g., [8] for details). The final three steps show how this one-sided sequent proof
is translated into a proof net by simply drawing the flow graph on the atoms
appearing in the proof (for more details, see [3,8,15]). It is a well-known fact of
linear logic that such a graph G does indeed correspond to a sequent proof if
and only if every switching (that is, every graph obtained from G by removing
for each �-node one of the two edges that it to its children) is a connected and

Fig. 1. From parse trees via proof trees to proof nets

Non-crossing Tree Realizations of Ordered Degree Sequences 213

acyclic graph [4]. If G does not contain any �-nodes, as in our example, then
G itself has to be connected and acyclic. Furthermore, we have that G is planar
if and only if the sequent proof does not contain the exchange rule, as it is the
case for the Lambek calculus [17].

To summarize, a sentence corresponds to a sequent, and a parsing of the
sentence to a planar proof net for the sequent. Thus, our question of how many
readings does a sentence have becomes:

(i) How many different planar proof nets can at most be defined over a given
sequent?

Particularly, if we are interested in sentences that are as ambiguous as possible
we have to ask:

(ii) Over which sequent of a given length can the most different planar proof nets
be defined?

In that respect, we can ignore the names of the atoms, and only �-free sequents
are of interest: on the one hand, occurrences of � lying above an occurrence of
� can moved down by the transformations

which preserve correctness without affecting linkings (see [6,7]); on the other
hand, root occurrences of � are irrelevant and can be removed. Hence, for every
sequent Γ there is a �-free sequent Γ ′, such that for Γ ′ exist at least as many
different planar proof nets as for Γ .

Finally, up to the associativity of �, planar �-free proof nets are in bijection
with non-crossing trees as shown in Fig. 2.

• ◦ •
⊗

◦ •
⊗

◦

⊗

• ◦
1

2

1

3

1

↔
v0

1

v1

2

v2

3

v3

1

v4

1

↔ v0

v1

v2

v3 v4

Fig. 2. Planar �-free proof nets as non-crossing trees

Unfortunately, we were not able to find a closed formula for nct〈d0, d1, . . . , dn〉
depending only on the input composition 〈d0, d1, . . . , dn〉, which would be needed
to give a clear answer to Question (i) above. When investigating Question (ii),
we found through experiments that at least up to n = 25, nct is maximized for
compositions of the shape

214 L. Méhats and L. Straßburger

1, 2, 2, . . . , 2
︸ ︷︷ ︸

p summands

, 1, 3, 1, 3, . . . , 1, 3
︸ ︷︷ ︸
2q summands

, 1, 2, 2, . . . , 2
︸ ︷︷ ︸

r summands

, 1, 3, 1, 3, . . . , 1, 3
︸ ︷︷ ︸
2s summands

(1)

which we write as 12p(13)q12r(13)s and are the first step of our study (composi-
tions maximizing nct for higher values of n may be of a different shape or involve
summands higher then 3). The input is now reduced to four parameters p, q, r
and s such that n + 1 = 1 + p + 2q + 1 + r + 2s. We write nct〈12p(13)q12r(13)s〉
as Np,q,r,s, and we are interested in computing Np,q,r,s.

A Four-Dimensional Generalization of Pascal’s and Catalan’s Trian-
gles. Recall that Pascal’s triangle Pp,r =

(
p+r
p,r

)
can be generated recursively

by:

Pp,r =

{
1 if p = 0 or r = 0
Pp,r−1 + Pp−1,r if p > 0 and r > 0

(2)

The first few values are shown below (see [14, A007318]):

r

���
��

��p

����
��

�

1
1

1
1

1
1

1

1
2

3
4

5
6

1
3

6
10

15

1
4

10
20

1
5

15
1

61

(3)

The Catalan numbers Cq = 1
q+1

(
2q
q,q

)
are generated recursively by C0 = 1 and

Cq+1 =
∑q

j=0 Cj ·Cq−j . A combination of Pascal’s triangle and the Catalan num-
bers is known as Catalan’s triangle Qp,q = p+1

p+q+1

(
p+2q
p+q,q

)
which can be generated

recursively by:

Qp,q =

⎧
⎪⎨

⎪⎩

1 if q = 0
Cq if p = 0
Qp+1,q−1 + Qp−1,q if p, q > 0

(4)

The first few values are shown below (see [14, A009766]):

q

���
��

��p

����
��

�

1
1

2
5

14
42

132

1
2

5
14

42
132

1
3

9
28

90

1
4

14
48

1
5

20
1

61

(5)

http://www.research.att.com/~njas/sequences/A007318
http://www.research.att.com/~njas/sequences/A009766

Non-crossing Tree Realizations of Ordered Degree Sequences 215

It is also possible to generalize the recursive formula of the Catalan numbers
into a triangle Rq,s generated by (assuming that C−1 = 0):

Rq,s =

{
1 if q = s = 0
∑q

j=0

∑s
l=0 Cj+l−1 · Rq−j,s−l if q + s > 0

(6)

The first few values are shown below:

s

���
��

��q

����
��

�

��
��

��
��

��
��

�

��
��

��
��

��

��
��

��
��

��
��

�

1
1

2
5

14
42

132

1
3

9
28

90
297

2
9

34
123

440

5
28

123
497

��
��

��
��

��

14
90

440
42

297132

(7)

As an example,

R3,2 = 123
= C0 · (28 + 34) + C1 · (5 + 9 + 9) + C2 · (2 + 3 + 2) + C3 · (1 + 1) + C4 · 1

We shall establish that Np,q,r,s is a four-dimensional “tetrahedron” that gener-
alizes the three triangles P , Q and R above, insofar as:

Np,0,r,0 = Nr,0,p,0 = Pp,r, (8)
Np,q,0,0 = N0,0,p,q = Qp,q, (9)
N0,q,0,s = N0,s,0,q = Rq,s. (10)

Outline. The organization of this paper is as follows: First, in Sect. 2, we study
the general case of enumerating non-crossing tree realizations of integer compo-
sitions. Then, in Sects. 3, 4, 5, 6 and 7, we concentrate on the four-parameter
case. In particular, we will prove identities (8)–(10) in Sects. 4 and 5. Finally, we
will provide the generating function for Np,q,r,s in Sect. 7.

Missing proofs can be found in the technical report [10].

2 General Case

Any labeled tree on a sequence of vertices can be drawn in such a way that its
vertices lie in counterclockwise order on a circle and its edges are straight line
segments lying inside that circle. In that case, of course, some of its edges may
cross each other. Let us call such a labeled tree a crossing tree. The order of
summands in a composition does not matter regarding the number of its labeled
tree realizations (there are six for any composition of 2 · 4 into 4 + 1 summands
in the multiset {1, 1, 2, 2, 2}). But it does as soon as we distinguish between non-
crossing and crossing realizations. As an example, there are one non-crossing

216 L. Méhats and L. Straßburger

v0

v1

v2

v3 v4

v0

v1

v2

v3 v4

v0

v1

v2

v3 v4

v0

v1

v2

v3 v4

v0

v1

v2

v3 v4

v0

v1

v2

v3 v4
Non-crossing trees Crossing trees

Fig. 3. The six labeled tree realizations of 〈1, 2, 1, 2, 2〉

and five crossing realizations of 〈1, 1, 2, 2, 2〉, while there are three non-crossing
and three crossing realizations of 〈1, 2, 1, 2, 2〉 (these are shown on Fig. 3).

Remark 2.1. A proof of Cayley’s formula (see e.g., [1]), which asserts that the
number of labeled trees on n+1 vertices is (n+1)n−1 (see [14, A000272]) relies
on:

∑

〈d0,d1,...,dn〉

(
n − 1

d0 − 1, d1 − 1, . . . , dn − 1

)

= (n + 1)n−1 (11)

where the sum ranges over the
(
2n−1
n,n−1

)
compositions of 2n into n + 1 posi-

tive summands. Noy established in [11, Corollary 1.2] that the number of non-
crossing trees on n + 1 vertices is 1

2n+1

(
3n

2n,n

)
(see [14, A001764]). Recall that

nct〈d0, d1, . . . , dn〉 stands for the number of non-crossing tree realizations of the
composition nct〈d0, d1, . . . , dn〉. Then

∑

〈d0,d1,...,dn〉
nct〈d0, d1, . . . , dn〉 =

1
2n + 1

(
3n

2n, n

)

(12)

where the sum ranges over the
(
2n−1
n,n−1

)
compositions of 2n into n + 1 positive

summands.

The image under rotation of a non-crossing tree t on vertices 〈v0, v1, . . . , vn〉
is a non-crossing tree on vertices 〈vk+1, . . . , vn, v0, . . . , vk〉 for some k ≤ n.
Moreover, t realizes a composition 〈d0, d1, . . . , dn〉 iff its image under rotation
realizes the composition 〈dk+1, . . . , dn, d0, . . . , dk〉. Thus, for any composition
〈d0, d1, . . . , dn〉 and any k ≤ n,

nct〈d0, d1, . . . , dn〉 = nct
〈
dk+1, . . . , dn, d0, . . . , dk

〉
. (13)

We shall refer to this property as stability under rotation.1

1 In that respect, we may focus on necklace-compositions, i.e., compositions that are
lexicographically minimal under rotation [13].

http://www.research.att.com/{~}njas/sequences/A000272
http://www.research.att.com/{~}njas/sequences/A001764

Non-crossing Tree Realizations of Ordered Degree Sequences 217

In the same way, the mirror image of a non-crossing tree t on vertices
〈v0, v1, . . . , vn〉 is a non-crossing tree on vertices 〈vn, vn−1, . . . , v0〉, and t real-
izes a composition 〈d0, d1, . . . , dn〉 iff its mirror image realizes the composition
〈dn, dn−1, . . . , d0〉. Thus, for any composition 〈d0, d1, . . . , dn〉,

nct〈d0, d1, . . . , dn〉 = nct〈dn, dn−1, . . . , d0〉. (14)

We shall refer to this property as stability under mirror image.2

We will now establish that for any positive integer n and any composition c
of 2n into n + 1 positive summands, there exists a non-crossing tree realization
of c (Proposition 2.3).

Lemma 2.2. For any positive integer n and any sequence 〈1, d1, . . . , dn, dn+1〉
of n + 2 positive integers such that 1 +

∑n+1
i=1 di < 2(n + 1), there is an index

1 ≤ k < n + 1 such that 1 +
∑k

i=1 di = 2k.

Proof. For any index 1 ≤ l ≤ n + 1, let Sl stand for 1 +
∑l

i=1 di. We prove the
following implication by induction on l: if there is no index 1 ≤ k < l such that
Sk = 2k, then Sl ≥ 2l. Since by hypothesis Sn+1 < 2(n+1), there must exist an
index 1 ≤ k < n + 1 such that Sk = 2k.
Base. Since d1 ≥ 1, S1 = 1+d1 ≥ 2 ·1 and the stated implication holds trivially.
Induction. Assume that the stated implication holds for l (IH), and that there
exists no index 1 ≤ k < l + 1 such that Sk = 2k. We reformulate the latter
hypothesis as: (i) there exists no index 1 ≤ k < l such that Sk = 2k, and
(ii) Sl �= 2l. By (IH) we get from (i), that Sl ≥ 2l, and from (ii), that Sl > 2l,
i.e., Sl ≥ 2l + 1. Since dl+1 ≥ 1, Sl+1 = Sl + dl+1 ≥ 2(l + 1). 	

Proposition 2.3. For any positive integer n and any composition c of 2n into
n + 1 positive summands, there exists a non-crossing tree realization of c.

Proof. We proceed by induction on n.
Base. The unique composition 〈1, 1〉 of 2 · 1 into 1 + 1 positive summands is
realized by the unique (trivially non-crossing) tree on 1 + 1 vertices.
Induction. Assume that the stated property holds for any positive integer up to
n (IH), and let 〈d0, d1, . . . , dn+1〉 be a composition of 2(n+1) into n+2 positive
summands. Since n is a positive integer, 2(n + 1) > n + 2 and there must
exist at least one summand dk > 1. By stability under rotation, we can assume
without loss of generality that d0 is such a summand, i.e. that d0 > 1. Then
1 +

∑n+1
i=1 di < 2(n + 1) and by Lemma 2.2, there exists an index 1 ≤ k < n + 1

such that 1 +
∑k

i=1 di = 2k. By difference, (d0 − 1) +
∑n+1

i=k+1 di = 2(n − k + 1).
Then by (IH):

2 In that respect, we may focus on bracelet-compositions, i.e., necklace-compositions
that are lexicographically minimal under mirror image [12].

218 L. Méhats and L. Straßburger

– there exists a non-crossing tree on vertices 〈t0, t1, . . . , tk〉 realizing the compo-
sition 〈1, d1, . . . , dk〉 of 2k into k + 1 positive summands,

– there exists a non-crossing tree on vertices 〈u0, u1, . . . , un−k+1〉 realizing the
composition 〈d0 − 1, dk+1, . . . , dn+1〉 of 2(n − k + 1) into n − k + 2 positive
summands.

Let T and U stand for the respective edge sets of these non-crossing trees (where
edges are defined as couples of vertices). We “merge” t0 and u0 into a single
vertex v0 to get a tree on vertices 〈v0, v1, . . . , vn+1〉 which edge set is defined as

{{vi, vj} | {ti, tj} ∈ T
}

∪ {{v0, vj+k} | {u0, uj} ∈ U
}

∪ {{vi+k, vj+k} | {ui, uj} ∈ U, i > 0, j > 0
}

(15)

This tree is non-crossing and it realizes the composition 〈d0, d1, . . . , dn, dn+1〉 of
2(n + 1) into n + 2 positive summands (see Fig. 4 for an example). 	

t0t1

t2

u0

u1

u2

u3

→
v0

→

v0

v1

v2

v3

v4

v5

(16)

Fig. 4. Merging two non-crossing trees into a single one

The previous proof suggests a recursive definition of nct:

– The unique composition 〈1, 1〉 of 2 · 1 into 1 + 1 positive summands is realized
by the unique non-crossing tree on 1 + 1 vertices. Thus,

nct〈1, 1〉 = 1. (17)

– Let n be strictly greater than 1 and 〈d0, d1, . . . , dn〉 be a composition of 2n
into n + 1 positive summands. Let k be the smallest index such that dk > 1
(there exists at least one). By stability under rotation,

nct〈1, . . . , 1, dk, . . . , dn〉 = nct〈dk, . . . , dn, 1, . . . , 1〉. (18)

Thus we can assume that d0 > 1. In that case,

nct〈d0, d1, . . . , dn〉 =
∑

k

(
nct〈1, d1, . . . , dk〉 · nct〈d0 − 1, dk+1, . . . , dn〉) (19)

where the sum ranges over the set of indices 1 ≤ k < n such that 1+
∑k

i=1 di =
2k (there exists at least one).

Non-crossing Tree Realizations of Ordered Degree Sequences 219

Remark 2.4. Applying the recursive formula in a row to d0, d0−1, . . . , 1, we get

nct〈d0, d1, . . . , dn〉 =
∑

〈k0,...,kd0 〉

d0∏

j=1

nct〈1, dkj−1+1, . . . , dkj
〉 (20)

where the sum ranges over the set of sequences 〈k0, . . . , kd0〉 of d0 + 1 indices
such that 0 = k0 < · · · < kd0 = n and such that for all 0 < j ≤ d0,

1 +
kj∑

i=kj−1+1

di = 2(kj − kj−1). (21)

Remark 2.5. The construction in the proof of Proposion 2.3 is similar to the
proof of the sequentialization theorem of linear logic using the splitting tensor.
It is then easy to see that every non-crossing tree can be obtained this way as
a merging of smaller ones, as indicated in Fig. 4. However, it is not clear how
this insight can be used for counting non-crossing trees since there is no unique
decomposion for a given tree.

3 The Four Parameters Case

We focus now on the special case where compositions 〈d0, d1, . . . , dn〉 are of the
shape

1, 2, 2, . . . , 2
︸ ︷︷ ︸

p

, 1, 3, 1, 3, . . . , 1, 3
︸ ︷︷ ︸

2q

, 1, 2, 2, . . . , 2
︸ ︷︷ ︸

r

, 1, 3, 1, 3, . . . , 1, 3
︸ ︷︷ ︸

2s

(22)

which we write as 12p(13)q12r(13)s. For the following, recall that Np,q,r,s stands
for nct〈12p(13)q12r(13)s〉.
Lemma 3.1. For any p, q, r and s, Np,q,r,s = Nr,q,p,s = Np,s,r,q.

Proof. This follows from stability under rotation and mirror image. We give
the formal calculations here in full, because we use similar arguments later on
without showing them explicit.

Np,q,r,s = nct〈12p(13)q12r(13)s〉 by definition of N

= nct〈2p(13)q12r(13)s1〉 by stability under rotation
= nct〈2p1(31)q2r1(31)s〉 by reparenthesizing
= nct〈(13)s12r(13)q12p〉 by stability under mirror image
= nct〈12r(13)q12p(13)s〉 by stability under rotation
= Nr,q,p,s by definition of N .

The same way, Np,q,r,s = Np,s,r,q. 	

According to Lemma 3.1, so as to get a recursive definition of Np,q,r,s, we

need to consider only N0,0,0,0 on the one hand, Np+1,q,r,s and Np,q,r,s+1 on the
other hand.

220 L. Méhats and L. Straßburger

Proposition 3.2. For any p, q, r and s,

N0,0,0,0 = 1 (23)

Np+1,q,r,s = N0,0,0,0 · Np,q,r,s +
q∑

j=1

(
N0,j,0,0 · Np,q−j,r,s

)

+
r∑

k=1

(
N0,q,k,0 · Np,0,r−k,s

)
+

s∑

l=1

(
N0,q,r,l · Np,0,0,s−l

)
(24)

Np,q,r,s+1 = N0,0,0,0 · N1+p,q,r,s +
p∑

i=1

(
Ni,0,0,0 · N1+p−i,q,r,s

)

+
q∑

j=1

(
Np,j,0,0 · N1,q−j,r,s

)
(25)

Proof. We have N0,0,0,0 = nct〈120(13)0120(13)0〉 = 1 by definition of N and (17).
Next we have Np+1,q,r,s = nct〈12p2(13)q12r(13)s〉 = nct〈21(31)q2r(13)s12p〉 by
definition of N , reparenthesizing and stability under rotation. Applying (19)
we get

Np+1,q,r,s = nct〈11〉 · nct〈1(31)q2r(13)s12p〉
+

∑q
j=1

(
nct〈11(31)j〉 · nct〈1(31)q−j2r(13)s12p〉)

+
∑r

k=1

(
nct〈11(31)q2k〉 · nct〈12r−k(13)s12p〉)

+
∑s

l=1

(
nct〈11(31)q2r(13)l〉 · nct〈1(13)s−l12p〉).

Notice that there is no other way to “split” 〈21(31)q2r(13)s12p〉 into two com-
positions such that the first one is of the form 〈1, d1, . . . , dk〉 and satisfies
1 +

∑k
i=1di = 2k. Then we get (24) by reparenthesizing and stability under

rotation. A similar argument applies to the proof of (25). 	

We have the following immediate consequences.

Corollary 3.3. For any p and s,

Np,0,0,0 = 1 (26)
N0,0,0,s = Cs (27)

N0,0,r,s+1 = N1,0,r,s (28)

where Cs stands for the s-th Catalan number.

Proof. Both (26) and (27) are easily proved by induction, and (28) follows
from (25) and (26). 	

Non-crossing Tree Realizations of Ordered Degree Sequences 221

4 Pascal’s and Catalan’s Triangles

In this section we are going to establish identities (8) and (9) mentioned in the
introduction. First, recall Pascal’s second identity

b∑

k=0

(
a + k

a, k

)

=
(

a + 1 + b

a + 1, b

)

(29)

and as a consequence for all a, b, and c

b∑

k=c+1

(
a + k

a, k

)

=
(

a + 1 + b

a + 1, b

)

−
(

a + 1 + c

a + 1, c

)

. (30)

Proposition 4.1. For all p, r and s,

Np,0,r,0 =
(

p + r

p, r

)

= Pp,r (31)

Np,0,0,s =
(

p + 2s

p + s, s

)

− s

p + s + 1

(
p + 2s

p + s, s

)

(32)

=
p + 1

p + s + 1

(
p + 2s

p + s, s

)

= Qp,s (33)

Np,0,r,s =
(

p + r + 2s

p + s, r + s

)

− s

p + r + s + 1

(
p + r + 2s

p + r + s, s

)

(34)

A proof can be found in [10]. The triangles defined by Np,0,r,0 and Np,0,0,s

are known as Pascal ’s triangle and Catalan’s triangle respectively (A007318,
A009766).

Remark 4.2. We may have deduced (27) from (34). Indeed, by (34)

N0,0,0,s =
(

2s

s, s

)

− s

s + 1

(
2s

s, s

)

=
1

s + 1

(
2s

s, s

)

= Cs

5 A Triangular Catalan Recurrence

In this section we establish the identity (10) from the introduction. We need the
following lemma:

Lemma 5.1. For any t and u,

t∑

i=0

u∑

j=0

Ci · Cj · C(t−i)+(u−j) = Ct+u+1. (35)

http://www.research.att.com/{~}njas/sequences/A007318
http://www.research.att.com/{~}njas/sequences/A009766

222 L. Méhats and L. Straßburger

Proof. By induction on u (the base case is the usual recurrence for Catalan
numbers). 	

Proposition 5.2. (A recurrence for N0,q,0,s). For any q and s,

N1,q,0,s =
q∑

j=0

s∑

l=0

Cj+l · N0,q−j,0,s−l (36)

N2,q,0,s =
q∑

j=0

s∑

l=0

Cj · Cl · N1,q−j,0,s−l (37)

=
q∑

j=0

s∑

l=0

Cj+l+1 · N0,q−j,0,s−l (38)

N0,q+1,0,s+1 = N1,q+1,0,s + N1,q,0,s+1 − N2,q,0,s (39)

N0,q,0,s =

{
1 if q = s = 0
∑q

j=0

∑s
l=0 Cj+l−1 · N0,q−j,0,s−l if q + s > 0

(40)

Hence N0,q,0,s = Rq,s.

6 Triangles and Tetrahedra

The value of Np,q,r,s depends on four parameters p, q, r, s. If we fix two of them,
we can obtain triangles. For example, for q = s = 0 we get Pascal’s triangle (3),
and for r = s = 0 we get the Catalan triangle (5) (which should more precisely be
called Pascal-Catalan triangle). If we let p = r = 0, then we get the triangle (7),
which could also be called Catalan triangle.

If we fix only one parameter, we obtain a tetrahedron. For example, let s = 0,
and let us define Tp,q,r = Np,q,r,0. Then we get from (34) and Lemma 3.1:

Tp,q,r =
(

p + r + 2q

p + q, r + q

)

− q

p + r + q + 1

(
p + r + 2q

p + r + q, q

)

(41)

This defines a tetrahedron where one side is Pascal’s triangle and the other two
sides are the Catalan triangle. Thus we can call it the Pascal-Catalan tetrahedron.
We have the following recursive identities:

Proposition 6.1. For all p, q, and r, we have

Tp+1,q+1,r+1 = Tp+1,q+1,r + Tp,q+1,r+1 + T(p+1)+(r+1),q,0 (42)
Tp+1,q,r+1 = Tp,q+1,r + T(p+1)+(r+1),q,0 (43)
Tp+1,q+1,r = Tp+2,q,r + Tp,q+1,r (44)

Proof. Easy calculation using (41). 	

Non-crossing Tree Realizations of Ordered Degree Sequences 223

For r = 0, we get the tetrahedron Vp,q,s = Np,q,0,s, which we can call the
Catalan tetrahedron, because two of its sides are the Catalan triangle (5) and
the third side is the new Catalan triangle (7). Unfortunately, we could not find a
closed formula for Vp,q,s. However, in Sect. 7 we will give the generating function.
We also have the following:

Proposition 6.2. For all p, q, and s, we have:

p+2∑

i=2

Vi,q,s =
q∑

j=0

Cj · Vp,q+1−j,s (45)

Observe that identities (42)–(44) establish close relationships among the tri-
angles with s = 0 (or q = 0), i.e., the triangles that live inside the tetrahe-
dron Tp,q,r. For example, from (43) we can get Np+1,q,7,0 = Np,q+1,6,0+Np+8,q,0,0.

Below, we exhibit some identities between triangles where q �= 0 and s �= 0.

N1,q,1,s = N0,q,0,s+1 + N0,q+1,0,s (46)
N1,q,2,s = N0,q+1,0,s+1 (47)

N1,q+1,2,s+1 = N2,q,2,s + N1,q,1,s+2 + N1,q+2,1,s (48)
N1,q+1,0,s+1 = N0,q+1,0,s+1 + N3,q,1,s (49)
N1,q+1,1,s+1 = N2,q+1,0,s+1 + N2,q,0,s (50)

Np,q,0,1 =
p+2∑

i=2

Ni,q,0,0 (51)

They can all be proved by using Lemma 3.1, (24) and (25) by easy but tedious
calculations.

Now we can derive another recurrence for the triangle in (7), i.e., different
from the one given in (6):

Proposition 6.3. For all q and s, we have

Rq,s+2 =
q∑

j=0

Cj+1 · (
Rq−j,s+1 + Rq+1−j,s

)
(52)

To see an example for (52) consider again the triangle (7):

s

���
��

��

��
��

��
��

��

q

����
��

�

1
1

2
5

14
42

132

1
3

9
28

90
297

2
9

34
123

440

5
28

123
497

14

����������
90

440
42

297132

(53)

We have 123 = C1 · (28 + 34) + C2 · (9 + 9) + C3 · (3 + 2).

224 L. Méhats and L. Straßburger

Remark 6.4. In the next section we will make use of the following identity:

N2,q,0,s =
q∑

j=0

N0,j,0,0 · N0,q+1−j,0,s =
s∑

l=0

N0,0,0,l · N0,q,0,s+1−l (54)

It is a special case of (45), but it can also be shown directly: By (37), we have

N2,q,0,s =
q∑

j=0

s∑

l=0

Cj · Cl · N1,q−j,0,s−l

Then (54) follows immediately by (25) and (27).

In the remainder of this section we derive a closed formula for the tetrahedron
s = 1. We need the following observation:

Lemma 6.5. For any p, r, s and t,

Np,0,r,s+t + Np+r+t,0,t,s = Np+t,0,r+t,s + Np+r,0,0,s+t (55)

Proof. Easy calculation, using (34). 	

For any t and n, let Ut(n) be defined as

Ut(n) =
1

t + 2n

(
t + 2n

t + n, n

)

. (56)

Notice that for any t,

tUt(0) =
t

t

(
t

t, 0

)

= 1. (57)

The following two identities are called Rothe’s identities (see [16, identities 14–
15, p. 329]).

n∑

k=0

Ut(k) · Uu(n − k) =
t + u

tu
Ut+u(n) (58)

and
n∑

k=0

kUt(k) · Uu(n − k) =
n

u
Ut+u(n). (59)

As a consequence, we get

n∑

k=0

(t + k)Ut(k) · uUu(n − k) = (t + u + n)Ut+u(n). (60)

Non-crossing Tree Realizations of Ordered Degree Sequences 225

Lemma 6.6. For any p, r and s,

Np,0,r,s = (p + s + 1)Up−r+1(r + s) − sUp+r+1(s) (61)
Np,0,0,s = (p + 1)Up+1(s) (62)

Proof. The identity (61) follows immediately from (34) and (56). The iden-
tity (62) is a special case of (61). 	

Lemma 6.7. For any p, r, s and t,

s∑

l=0

Np,0,r,l · Nt,0,0,s−l = Np+t+1,0,r,s

−
r−1∑

l=0

(p − r + 1 + l)Up−r+1(l) · (t + 1)Ut+1(r + s − l)

(63)

Now we can give a closed formula for the Np,q,r,1 tetrahedron.

Proposition 6.8. For all p, q and r,

Np,q,r,1 = Tp,q+1,r + Tp+r+1,q+1,0 − T0,q+1,r − Tp,q+1,0 (64)
= Tp+1,q,r+1 + Tp+r,q,1 − T1,q,r − Tp,q,1 (65)

7 Generating Functions

We can use the identities (24) and (54) for calculating the generating function
for Np,q,r,s. Recall that we use the following abbreviations:

Pp,r = Np,0,r,0 Cq = N0,q,0,0

Qp,q = Np,q,0,0 Tp,q,r = Np,q,r,0

Rq,s = N0,q,0,s Vp,q,s = Np,q,0,s

(66)

Theorem 7.1. We have

(i) C(y) =
∑

q

Cqy
q =

1 − √
1 − 4y

2y

(ii) P (x, z) =
∑

p,r

Pp,rx
pzr =

1
1 − x − z

(iii) Q(x, y) =
∑

p,q

Qp,qx
pyq =

C(y)
1 − x · C(y)

(iv) R(y, w) =
∑

q,s

Rq,sy
qws =

C(y) · C(w) · (w − y)
w · C(y) − y · C(w)

(v) T (x, y, z) =
∑

p,q,r

Tp,q,rx
pyqzr =

(1 − x − z − x · z · C(y)) · C(y)
(1 − x · C(y)) · (1 − z · C(y)) · (1 − x − z)

= P (x, z) · (1 + y · Q(x, y) · Q(z, y)
)

226 L. Méhats and L. Straßburger

(vi) V (x, z, w) =
∑

p,q,s Vp,q,sx
pyqws

=
C(y) · C(w) · (

w − y − x · (
w · C(y) − y · C(w)

))

(
w · C(y) − y · C(w)

) · (
1 − x · C(y)

) · (
1 − x · C(w)

)

= Q(x, y) · Q(x,w) ·
(

R(y, w)
C(y) · C(w)

− x

)

(vii) N(x, y, z, w) =
∑

p,q,r,s

Np,q,r,sx
pyqzrws

=
C(y)C(w)((1 − x − z)(w − y) + (wC(y) − yC(w))((1 − x − z)(xz(C(y) + C(w)) − x − z) + x2z2C(y)C(w)))

(1 − xC(y))(1 − xC(w))(1 − zC(y))(1 − zC(w))(1 − x − z)(wC(y) − yC(w))

= Q(x, y)Q(x, y)Q(x, y)Q(x, y)
(

R(y, w)
C(y)2 · C(w)2

+ x2z2P (x, z) − x

C(w)Q(z, y)
− z

C(y)Q(x,w)

)

Proof. The formulas in (i) and (ii) are well-known. For the others, the calculation
can be found in [10]. 	

Acknowledgments. We thank Mireille Bousquet-Mélou, Christian Retoré, and Gilles
Schaeffer for fruitful and instructive discussions, and the anonymous referees for helpful
comments for improving the paper.

References

1. Aigner, M., Ziegler, G.M.: Proofs from the Book, 3rd edn. Springer, Heidelberg
(2003)

2. Barr, M.: Non-symmetric *-automomous categories. Theoret. Comput. Sci. 139,
115–130 (1995)

3. Blute, R.: Linear logic, coherence and dinaturality. Theoret. Comput. Sci. 115,
3–41 (1993)

4. Danos, V., Regnier, L.: The structure of multiplicatives. Ann. Math. Logic 28,
181–203 (1989)

5. Flajolet, P., Noy, M.: Analytic combinatorics of non-crossing configurations. Dis-
crete Math. 204(1–3), 203–229 (1999). doi:10.1016/S0012-365X(98)00372-0

6. Guglielmi, A.: A system of interaction and structure. ACM Trans. Comput. Logic
8(1), 1 (2007)

7. Guglielmi, A., Straßburger, L.: Non-commutativity and MELL in the calculus of
structures. In: Fribourg, L. (ed.) CSL 2001. LNCS, vol. 2142, pp. 54–68. Springer,
Heidelberg (2001). doi:10.1007/3-540-44802-0 5

8. Lamarche, F., Retoré, C.: Proof nets for the Lambek-calculus – an overview. In:
Michele Abrusci, V., Casadio, C., (eds.) Proceedings of the Third Roma Workshop
“Proofs and Linguistic Categories”, pp. 241–262. CLUEB, Bologna (1996)

9. Lambek, J.: The mathematics of sentence structure. Am. Math. Mon. 65, 154–169
(1958)

10. Méhats, L., Straßburger, L.: Non-crossing tree realizations of ordered degree
sequences. Technical report, Inria (2009). https://hal.inria.fr/hal-00649591

11. Noy, M.: Enumeration of noncrossing trees on a circle. Discrete Math. 180(1–3),
301–313 (1998). doi:10.1016/S0012-365X(97)00121-0

http://dx.doi.org/10.1016/S0012-365X(98)00372-0
http://dx.doi.org/10.1007/3-540-44802-0_5
https://hal.inria.fr/hal-00649591
http://dx.doi.org/10.1016/S0012-365X(97)00121-0

Non-crossing Tree Realizations of Ordered Degree Sequences 227

12. Sawada, J.: Generating bracelets in constant amortized time. SIAM J. Comput.
31(1), 259–268 (2001)

13. Sawada, J.: A fast algorithm to generate necklaces with fixed content. Theoret.
Comput. Sci. 301(1–3), 477–489 (2003)

14. Sloane, N.J.A.: The On-Line Encyclopedia of Integer Sequences (2010). https://
oeis.org/

15. Straßburger, L.: Proof nets and the identity of proofs. Research report 6013, INRIA,
10 2006. Lecture notes for ESSLLI 2006

16. Strehl, V.: Identities of Rothe-Abel-Schläfli-Hurwitz-type. Discrete Math. 99(1–3),
321–340 (1992). doi:10.1016/0012-365X(92)90379-T

17. Yetter, D.N.: Quantales and (noncommutative) linear logic. J. Symbolic Logic
55(1), 41–64 (1990)

https://oeis.org/
https://oeis.org/
http://dx.doi.org/10.1016/0012-365X(92)90379-T

On the Logic of Expansion in Natural Language

Glyn Morrill(B) and Oriol Valent́ın(B)

Departament of Computer Science,
Universitat Politècnica de Catalunya, Barcelona, Spain

{morrill,ovalentin}@cs.upc.edu

Abstract. We consider, for intuitionistic categorial grammar, an iter-
ation modality with a rule of Mingle and an infinitary left rule, simi-
lar to infinitary action logic. Newly, we give Curry-Howard labelling for
the iteration modality, in terms of lists, and we prove soundness and
completeness of displacement calculus with additives and this modal-
ity, for phase semantics. This result has as a corollary semantic Cut-
elimination. We review linguistic application of the iteration modality
to unbounded addicity iterated coordination, and we present an appli-
cation of a calibrated version of the iteration modality to an unbounded
addicity respectively construction, this being to our knowledge the first
account of respectively taking care of cases n > 2.

Keywords: Expansion · Exponentials · Iterated coordination · Mingle ·
Phase semantics · Respectively construction · Semantic Cut-elimination

1 Introduction

In standard logic information does not have multiplicity. Thus where + is the
notion of addition of information and ≤ is the notion of inclusion of information
we have x+x ≤ x and x ≤ x+x; together these two properties amount to
idempotency: x+x = x. These properties are expressed by the rules of inference
of Contraction and Expansion:

(1)
Δ(A,A) ⇒ B

Contraction
Δ(A) ⇒ B

Δ(A) ⇒ B
Expansion

Δ(A,A) ⇒ B

In general linguistic resources do not have these properties: grammaticality is
not often preserved under addition or removal of copies of expressions. However,
there are some constructions manifesting something similar. In this paper we
investigate categorial logic and expansion.

Iterated coordination has a kind of expansion, of unbounded addicity:

(2) John likes, Mary dislikes, . . . and Bill loves London.

Likewise an unbounded addicity respectively construction:

(3) Tom, Dick, . . . and Harry walk, talk, . . . and sing respectively.

c© Springer-Verlag GmbH Germany 2016
M. Amblard et al. (Eds.): LACL 2016, LNCS 10054, pp. 228–246, 2016.
DOI: 10.1007/978-3-662-53826-5 14

On the Logic of Expansion in Natural Language 229

That is, in logical grammar a controlled use of expansion is motivated. Girard [4]
introduced exponentials for control of structural rules. For the use of nonlinearity
for iterated coordination in categorial grammar see Morrill [13] and Morrill and
Valent́ın [11].

The iteration modality is closely related to the Kleene star modality of the
infinitary action logic of Buszkowski and Palka [2].1 Our new results include the
Curry-Howard annotation of the iteration modality, with (non-empty) lists, com-
bination with the full displacement calculus, and a strong completeness result à
la Okada [14], namely soundness and completeness with respect to phase seman-
tics (Girard [4]), and as a by product of this there is a semantic proof of Cut-
elimination, which differs from the syntactic Cut-elimination of Palka [15]. Lin-
guistic applications include for the first time in categorial grammar syntactic
and semantic analysis of an unbounded addicity respectively construction.2

In Sect. 2 we define a displacement calculus DA? with additives, and an
existential exponential with a Mingle structural rule (Kamide [5]) and an infini-
tary left rule, which entail expansion. In Sect. 3 we give a sound and complete
phase semantics for DA?. The completeness has as a corollary semantic Cut-
elimination. In Sect. 4 we present a calibrated version of the Mingle modal-
ity and present a linguistic fragment including iterated coordination and the
respectively construction with analyses generated by a version of the categorial
parser/theorem-prover CatLog2.3

2 The Categorial Logic

The multiplicative basis is the displacement calculus of Morrill et al. [12]; in addi-
tion there are additives, and the existential exponential. The syntactic types of
the categorial logic are sorted according to the number of points of discontinu-
ity their expressions contain. Each type predicate letter has a sort and an arity
which are naturals, and a corresponding semantic type. Assuming ordinary terms
to be already given, where P is a type predicate letter of sort i and arity n and
t1, . . . , tn are terms, Pt1 . . . tn is an (atomic) type of sort i of the corresponding
semantic type. Compound types are formed by connectives as in Fig. 1.4

For a type A, its sort s(A) is the i such that A ∈ Fi. Tree-based sequent
calculus is as follows. Configurations are defined by:5

1 We can define the Kleene star modality ∗ in terms of our modality? by: A∗ = I⊕?A.
2 In the type logical literature iteration has been considered in Bechet et al. [1]

who propose syntactic pregroup analyses but without enjoying intuitionistic Curry-
Howard labelling, nor algebraic models.

3 https://www.cs.upc.edu/∼morrill/CatLog/CatLog2/index.php.
4 Observe that the iteration modality ? only applies to types of sort 0 because otherwise

expansion would not preserve the equality of antecedent and succedent sorts.
5 Note that the colons in the fourth clause of the definition punctuate the list of con-

figurations intercalating the points of discontinuity of Fi>0 of sort i; this is entirely
distinct from (the standard) use of colons in type assignments made later.

https://www.cs.upc.edu/~morrill/CatLog/CatLog2/index.php

230 G. Morrill and O. Valent́ın

(4) O ::= Λ
O ::= 1,O
O ::= F0,O
O ::= Fi>0{O : . . . : O︸ ︷︷ ︸

i O’s

},O

For a configuration Δ we define the type-equivalent Δ•, which is a type which
has the same algebraic meaning as Δ. Via the BNF formulation of O in (4) one
defines recursively Δ• as follows:

(5) Λ•def
= I

(1, Γ)•def
= J • Γ •

(A, Γ)•def
= A • Γ •, if s(A) = 0

(A{Δ1 : . . . : Δs(A)}, Γ)•def
=

((· · · (A �1 Δ•
1) · · ·) �1+s(Δ1)+···+s(Δs(A))

Δ•
s(A)) • Γ •, if s(A) > 0

For a configuration Γ , its sort s(Γ) is |Γ |1, i.e. the number of metalinguistic
separators 1 which it contains. A sequent Γ ⇒ A comprises an antecedent con-
figuration Γ and a succedent type A such that s(Γ) = s(A). The figure

−→
A of a

type A is defined by:

(6)
−→
A =

⎧
⎨

⎩

A if sA = 0
A{1 : . . . : 1︸ ︷︷ ︸

sA 1’s

} if sA > 0

Where Γ is a configuration of sort i and Δ1, . . . ,Δi are configurations, the fold
Γ ⊗〈Δ1 : . . . : Δi〉 is the result of replacing the successive 1’s in Γ by Δ1, . . . ,Δi

respectively. Where Δ is a configuration of sort i > 0 and Γ is a configuration,
the kth metalinguistic wrap Δ |k Γ , 1 ≤ k ≤ i, is given by

(7) Δ |k Γ =df Δ ⊗ 〈1 : . . . : 1︸ ︷︷ ︸
k−1 1’s

: Γ : 1 : . . . : 1︸ ︷︷ ︸
i−k 1’s

〉

i.e. the kth metalinguistic wrap Δ |k Γ is the configuration resulting from replac-
ing by Γ the kth separator in Δ.

Fig. 1. Categorial logic types of DA?

On the Logic of Expansion in Natural Language 231

Fig. 2. Multiplicative rules of DA?

Where the notation Ξ(Ω) signifies a configuration Ξ with a distinguished
subconfiguration Ω, the notation Δ〈Γ 〉 abbreviates Δ0(Γ ⊗ 〈Δ1 : . . . : Δn〉), i.e.
a configuration with a potentially discontinuous distinguished subconfiguration
Γ with external context Δ0 and internal context Δ1, . . . ,Δn.

The semantically annotated identity axiom id and Cut rule are:

(8) id , P atomic
P :x ⇒ P :x

Γ ⇒ A: φ Δ〈−→A : x〉 ⇒ B:β
Cut

Δ〈Γ 〉 ⇒ B:β{φ/x}
The semantically annotated multiplicative rules of DA? are given in Fig. 2.

The semantically annotated additive and exponential rules are given in Fig. 3.6

6 Notice that although the sequent calculus is infinitary and has possibly infinite
proofs, the proveable sequents are always finite. The system is undecidable by a
result of Buszkowski and Palka [2] but a linguistically sufficient fragment, without
antedent iteration modalities, is decidable.

The expansion rule with iteration modalities is derivable by the following reason-
ing. Given an arbitrary type A of sort 0, for every i > 0 and a fixed index j0 > 0,

232 G. Morrill and O. Valent́ın

Fig. 3. Additive and exponential rules of DA?

3 Phase Semantics

DA? incorporates the useful language-theoretic concept of iteration. This is
done by means of an (existential) exponential modality, notated ? which licenses
the structural rule of Mingle, which entails expansion.

Let i, j and k range over the set of natural numbers ω. Where A is a type of
sort 0, and i > 0, Ai denotes A, . . . , A

︸ ︷︷ ︸
i times

. A0 is the empty string Λ.

3.1 Semantic Interpretation

In the following, we describe the phase space machinery in order to give a result
of strong completeness in the style of Okada [14]. Phase spaces from linear logic
(Girard [4]) are based on (commutative) monoids. Likewise, the proper algebras
for the displacement calculus D are the so-called displacement algebras (DA

by one application of ?R and a finite number of applications of the Mingle rule we
get the infinite provable sequents indexed by i (i > 0) Ai, Aj0 ⇒ ?A. We can then
apply the ?L rule, obtaining ?A, Aj0 ⇒ ?A. Since j0 is a positive natural, we have
that for every j > 0, ?A, Aj ⇒ ?A. We can apply again then the ?R rule, whence
?A, ?A ⇒ ?A. This proves the expansion rule.

On the Logic of Expansion in Natural Language 233

for short) (see Valent́ın [17]) which can be seen as a generalisation of (non-
commutative) monoids where the operations of k-th intercalation in a punc-
tuated string are incorporated. In Valent́ın [17] it is proved that DAs can be
axiomatised; see Fig. 4). We can define the class of residuated DAs (Valent́ın
[18]), and therefore models.

Given a mapping v : Pr → A where A is a residuated DA, there exists a
unique ω-sorted homomorphism v̂ which extends v as follows: v̂ : Tp → A
and v̂ (p) = v(p) for any primitive type. Needless to say, since we are working
in an ω-sorted setting, equations, inequations and mapping and so on, are to be
understood modulo sorting; in order to give a smoother reading of formulas we
always avoid if possible the explicit reference to sorts.

Fig. 4. Axiomatisation of a DA

A subset B of the carrier set A of a DA is called a same-sort subset iff there
exists an i ∈ ω such that for every a ∈ B, s(a) = i. Notice that ∅ vacuously
satisfies the same-sort condition. P(A) is in fact an ω-sorted subset (P(A)i)i∈ω

where for every i, P(A)i = {X : X is a same-sort subset of sort i}.

Definition 1. A displacement phase space P = (A,Closed) is a structure par-
tially ordered by the relation of subset inclusion such that:

1. A is a DA.
2. Closed = (Closedi)i is a set of subsets such that Closedi ⊆ P(A)i,

Closedi ∩ Closedj = {∅} iff i �= j, and:
(a) For every F ∈ Closedi, F is called a closed subset.
(b) Closed is closed by intersections of arbitrary families of same-sort sub-

sets. In particular, the intersection of the empty family of closed subsets
of sort i is Ai which belongs to Closedi.

234 G. Morrill and O. Valent́ın

(d) For all F ∈ Closedi, and for all x ∈ Aj:

x\F ∈ Closedi−j F/x ∈ Closedi−j

F↑kx ∈ Closedi−j+1 x↓kF ∈ Closedi−j+1

Closed is also called (an ω-sorted) closure system.
Where F, G denote subsets of A of sort i, we define the ω-sorted closure

operator cli:

(9) cli(G)
def
=

⋂{F ∈ Closedi : G ⊆ F}

We write G
i

for cli(G). If the context is clear we omit the subscript.
Where F and G are same-sort subsets, it is readily seen that:

(i) F is the least closed set of sort s(F) such that F ⊆ F .
(ii) cl(·) is extensive, i.e.: G ⊆ G .
(iii) cl(·) is monotone, i.e.: if G1 ⊆ G2 then G1 ⊆ G2 .
(iv) cl(·) is idempotent, i.e.: cl2(G) = cl(G).

We define the following operators at the level of same-sort subsets:

– F◦G
def
= {f + g : f ∈ F and g ∈ G}

– F◦iG
def
= {f ×i g : f ∈ F and g ∈ G}

– f◦G
def
= {f}◦G and F◦g

def
= F◦{g}

– f◦iG
def
= {f}◦iG and F◦ig

def
= F◦i{g}

– G//F
def
= {h : ∀f ∈ F, h + f ∈ G} and similarly for F\\G

– G↑↑iF
def
= {h : ∀f ∈ F, h ×i f ∈ G} and similarly for F↓↓iG

– G//f
def
= G//{f} and similarly for f\\G

– G↑↑if
def
= G↑↑i{f} and similarly for f↓↓iG

The following basic properties for ω-sorted closure operators are evident:

Lemma 1.

• F◦G ⊆ H iff F ⊆ H//G iff G ⊆ F\\H.
• F◦iG ⊆ H iff F ⊆ H↑↑iG iff G ⊆ F↓↓iH.
• By construction, F is the least closed subset such that F ⊆ F . Hence:
• If A ⊆ F and F = F then A ⊆ F .

Lemma 2. If A is closed, then:

• A//F, F\\A, A↑↑iF, and F↓↓iA are closed.
Proof: A↑↑iF =

⋂
x∈F A↑↑ix, whence A↑↑iF is closed. �	

• Similarly for the other implicative operations.
• cl(F)◦cl(G) ⊆ cl(F◦G). Similarly, cl(F)◦icl(G) ⊆ cl(F◦iG)

• Hence, F ◦ G ⊆ F◦G , and F ◦i G ⊆ F◦iG

On the Logic of Expansion in Natural Language 235

• It follows that cl(cl(F)◦cl(G)) = cl(F◦G) and cl(cl(F)◦icl(G)) = cl(F◦iG)

Proof: Let us see the case of ◦i.F◦iG ⊆ F◦iG . By residuation, F ⊆ F◦iG ↑↑iG.

F◦iG ↑↑iG is a closed subset (see previous proof). Hence, F ⊆ F◦iG ↑↑iG.

Applying again residuation, we have F ◦iG ⊆ F◦G

We repeat the process with G, obtaining G ⊆ F ↓↓i F◦iG . It follows that:

F ◦i G ⊆ F◦iG . Hence, F ◦i G ⊆ F◦iG

We see now operations on closed subsets which return values into the set of
closed subsets. This paves the way to the definition of valuations from the set of
types into phase spaces, concretely into the set of closed sets. Given F,G closed
sets:

(10) F◦G
def
= F◦G

F◦iG
def
= F◦iG

F&G
def
= F ∩ G. In general we write F ∩ G.

F∪G
def
= F ∪ G .

G↑↑iF
def
= G↑↑iF. In general we write ↑↑i avoiding the use of ↑↑i.

Similarly for the other implications.

I
def
= {0} .

J
def
= {1} .

Valuations in phase spaces are mappings between the set of types into the
set of closed sets. More concretely, given a valuation v : Pr → Closed, where
P = (A,Closed) is a phase space, we see the interpretation of v and its recursive
extension v̂ w.r.t. any type in the set of primitive types by using the closed
operation on the set of closed subsets defined in (10):7

– v(p) is a closed subset of Ai where p is primitive of sort i.
We extend recursively v to v̂ :

– v̂ (B↑iA)
def
= v̂ (B)↑↑iv̂ (A). Similarly for the other implications.

– v̂ (A • B)
def
= v̂ (A)◦v̂ (B). v̂ (A �i B)

def
= v̂ (A)◦iv̂ (B).

– v(A ⊕ B)
def
= v(A)∪v(B). v(A&B)

def
= v(A) ∩ v(B).

– v̂ (I)
def
= I. v̂ (J)

def
= J.

Notice that for any type A, v(A) is a closed subset.

3.2 The Semantics of the Iteration Connective

Given a phase space model (P, v), we define v̂ (?A) as:

(11) v̂ (?A)
def
=

⋃
i>0 v̂ (A)i

7 The semantic interpretation of a configuration Δ (for a given valuation v) is

v̂(Δ)
def
= v̂(Δ•).

236 G. Morrill and O. Valent́ın

Lemma 3. Where (Fi)i∈ω ⊆ P, F,G ⊆ P, and A is a type of sort 0
We have:⋃

i∈ω Fi =
⋃

i∈ω Fi

Proof. ⊆ is obvious.

⊇ For every k ∈ ω, Fk ⊂ ⋃
i∈ω Fi . Hence, Fk ⊂ ⋃

i∈ω Fi for every k. Therefore,
⋃

i∈ω Fi ⊆ ⋃
i∈ω Fi . Taking closure, we obtain

⋃
i∈ω Fi ⊆ ⋃

i∈ω Fi . ��
Let (P, v) be a phase space model. We know that Δ〈Γ 〉 abbreviates

Δ0|k(Γ⊗〈Δ1; . . . ;Δs(Γ)〉) for a certain Δ0, Δi, and k > 0. We recall that

v̂ (Γ⊗〈Δ1; . . . ;Δs(Γ)〉) def
= v̂ (Γ) ×1 v̂ (Δ1) . . . ×1+s(Δ1)+...+s(Δs(Γ)) v̂ (Δs(Γ)).

(12) v̂ (Γ⊗〈Δ1; . . . ;Δs(Γ)〉) def
= (. . . (v̂ (Γ) ×1 v̂ (Δ1)) . . .) ×1+s(Δ1)+...+s(Δs(Γ))

v̂ (Δs(Γ))

The rhs of (12) is abbreviated overloading the symbol ⊗, i.e.:

v̂ (Γ⊗〈Δ1; . . . ;Δs(Γ)〉)def
= v̂ (Γ) ⊗ 〈v̂ (Δ1); . . . ; v̂ (Δ)〉.

In order to prove soundness for phase semantics it is useful to directly com-
pute configurations w.r.t. valuations without the use of type-equivalence. We
have:

(13) v̂ (Λ)
def
= v̂ (I)

v̂ (1, Γ)
def
= v̂ (J)◦v̂ (Γ)

v̂ (A,Γ)
def
= v̂ (A)◦v̂ (Γ), if s(A) = 0

v̂ (A{Δ1 : . . . : Δs(A)}, Γ)
def
=

((· · · (v̂ (A)◦1Δ1) · · ·)◦1+s(Δ1)+···+s(Δs(A)
Δs(A)v̂ (Δs(A))◦v̂ (Γ), if s(A)>0

But how do we interpret Δ〈Γ 〉? As said before, Δ〈Γ 〉 abbreviates Δ0〈Γ ⊗
〈Δ1; . . . ;Δs(Γ)〉〉. Γ ⊗ 〈Δ1; . . . ;Δs(Γ)〉 is a configuration. We have:

(14) v̂ (Γ ⊗ 〈Δ1; . . . ;Δs(Γ)〉)def
= (· · · (v̂ (A)◦1Δ1) · · ·)◦1+s(Δ1)+···+s(Δs(A)

Δs(A)v̂ (Δs(Γ))

=by Lemma 2= (· · · (v̂ (A)◦1Δ1) · · ·)◦1+s(Δ1)+···+s(Δs(A)Δs(A)
v̂ (Δs(A))

We abbreviate (14) as v̂ (Γ)⊗ 〈v̂ (Δ1); . . . ; v̂ (Δs(Γ)〉 and by Lemma 2 as

v̂ (Γ) ⊗ 〈v̂ (Δ1); . . . ; v̂ (Δs(Γ)〉 . So v̂ (Δ〈Γ 〉) = v̂ (Δ0)◦k (v̂ (Γ) ⊗ 〈v̂ (Δ1);

. . . ; v̂ (Δs(Γ))〉) = v̂ (Δ0)◦k(v̂ (Γ) ⊗ 〈v̂ (Δ1); . . . ; v̂ (Δs(Γ))〉) , for a certain k >
0, and where the last equality is due to Lemma 2. We abbreviate v̂ (Δ〈Γ 〉) as
v̂ (Δ)(v̂ (Γ)). By simple tonicity properties we have that if v̂ (Γ1) ⊆ v̂ (Γ2) then
v̂ (Δ)(v̂ (Γ)1) ⊆ v̂ (Δ)(v̂ (Γ2)).

Theorem 1. DA? is sound w.r.t. phase semantics.

Proof. By induction on the derivation of DA? sequents. For reasons of space
we omit the proof cases of the remaining multiplicative and additive connec-
tives, and units, and we only prove a representative case of the discontinuous
implicative extract connective, and the case of the iteration connective.

Case of ↑kL k > 0 (similar for the ↓k connective) we have:

On the Logic of Expansion in Natural Language 237

(15)
Γ ⇒ A Δ〈−→B 〉 ⇒ C ↑kL

Δ〈−−−→
C↑kB|kΓ 〉 ⇒ C

By induction hypothesis (i.h.), v̂ (Γ) ⊆ v̂ (A). We have v̂ (
−−−→
B↑kA|kΓ) =

v̂ (
−−−→
B↑kA)◦kv̂ (Γ) ⊆ v̂ (B). Hence v̂ (Δ)(v̂ (

−−−→
B↑kA|kΓ)) ⊆ v̂ (Δ)(v̂ (

−→
B) ⊆ v̂ (C),

where the last equality follows from the i.h.
Let us see rule ?L. By i.h. for every i > 0 v̂ (Δ〈Ai〉) ⊆ v̂ (B). v̂ (Δ〈Ai〉) =

v̂ (Δ)◦kv̂ (A)i , for a certain k > 0. v̂ (Δ)◦kv̂ (A)i ⊆ v̂ (Δ)◦kv̂ (A)i . Hence⋃
i>0 v̂ (Δ)◦kv̂ (A)i ⊆ v̂ (B). But

⋃
i>0 v̂ (Δ)◦kv̂ (A)i = v̂ (Δ)◦k

⋃
i>0 v̂ (A)i.

Taking closure v̂ (Δ)◦k

⋃
i>0 v̂ (A)i =lemma 3= v̂ (Δ)◦k

⋃
i>0 v̂ (A)i =

v̂ (Δ)◦kv̂ (?A) = v̂ (Δ(?A)) ⊆ v̂ (B).
Rule ?R soundness is due to the fact that by i.h. v̂ (Δ) = v̂ (A) ⊆⋃

i>0 v̂ (A)i = v̂ (?A).
Finally, let us see the Mingle rule ?M :

(16)
Γ1 ⇒ A Γ2 ⇒ ?A

?M
Γ1, Γ2 ⇒ ?A

By i.h v̂ (Γ1) ⊆ A and v̂ (Γ2) ⊆ v̂ (?A). v̂ (Γ1)◦v̂ (Γ2) ⊆ v̂ (A)◦ ⋃
i>0 v(A)i ⊆

⋃
i>0 v(A)i. Taking closure we obtain v̂ (Γ1)◦v̂ (Γ2) ⊆ ⋃

i>0 v(A)i =
⋃

i>0 v(Ai) = v̂ (?A). ��
Let us use the following notation:

(17) For any type A, [A]
def
= {Δ ∈ O : Δ ⇒ −A}

where ⇒ − means provability without Cut

The strategy of the proof of strong completeness is to construct a canonical
model which we call the syntactic phase space. Its underlying DA is the DA
of configurations O with its operations of concatenation and intercalation, so
that we define the phase space (M, cl) where M = (O, conc, (interci)i>0, Λ, 1).
cl is the least ω-sorted closure system such that it is generated by the fam-
ily ([D])D∈Tp. The condition (2.d) from Definition 1 is satisfied (by way of
example we prove it only for one discontinuous implication): Let F be a
closed set and Γ be a configuration. Let us see that F↑↑iΓ is a closed
set. By definition there exists a same-sort family of types G such that
F =

⋂
D∈G [D]. We have Δ ∈ F↑↑iΓ iff Δ|iΓ ∈ F iff for any D ∈

G Δ|iΓ ∈ [D] iff D ∈ G Δ|iΓ • ∈ [D] iff for any D ∈ G Δ ∈ [D↑iΓ
•]. Therefore

since F↑↑iΓ is the intersection of a same-sort family of sets, it is a closed set.

Lemma 4. Let v be the valuation v : Pr → cl such that v(p)
def
= [p] for any

primitive type p. There holds:

(18)
−→
A ∈ v̂ (A) ⊆ [A] for any type A

Proof. By induction on the structure of type A:

238 G. Morrill and O. Valent́ın

– If A = p where p is a primitive type, we have by definition v(A) = [A]. Hence,−→
A ∈ v(A) ⊆ [A].

– Case A = J (the discontinuous unit). By the JR rule, 1 ∈ [J], i.e. {1} ⊆ [J].
Applying closure v̂ (J) = {1} ⊆ [J].
On the other hand v̂ (J) =

⋂
D∈G for a certain family G. 1 ∈ v̂ (J), i.e., for

every D ∈ G, 1 ∈ [D]. By JL rule,
−→
J ∈ [D]. Therefore

−→
J ∈ v̂ (J).

– Suppose A = B �i C. v(B)◦iv(C) = {ΓB |iΓC : ΓB ∈ v̂ (B), and ΓC ∈
v̂ (C)}. By i.h. v(B) ⊆ [B] and v̂ (C) ⊆ [C]. Hence, by application of �iL
v̂ (B)◦iv̂ (C) ⊆ [B �i C]. Hence, v̂ (B)◦iv̂ (C) ⊆ [B �i C]. This proves
v̂ (B �i C) ⊆ [B �i C]. On the other hand, v̂ (B �i C) =

⋂
D∈G [D] for a

certain G. By i.h.
−→
B ∈ v̂ (B) and

−→
C ∈ v̂ (C). Hence

−→
B |i−→C ∈ v̂ (B)◦iv̂ (C) ⊆

v̂ (B �i C). Then, for every D ∈ G −→
B |i−→C ∈ [D]. By application of �iL,−−−−→

B �i C ∈ [D]. Hence,
−−−−→
B �i C ∈ v̂ (B �i C).

– Suppose A = C↑iB. The case for the other implicative connectives is
completely similar. Let Γ ∈ v(C)↑↑iv(B). By i.h.,

−→
B ∈ v(B). We have

Γ |i−→B ⇒ v(C) and v(C) ⊆ [C] by i.h. Hence, Γ |i−→B ⊆ [C], and by applica-
tion of ↑iR, Γ ∈ [C↑iB].

– v(C) =
⋂

D∈G [D] for some G. By i.h.,
−→
C ∈ v(C). Applying ↑iL, we get−−−→

C↑iB|iΓB ∈ [D] for all ΓB ∈ v̂ (B) (by i.h. v̂ (B)[B]). We have then that−−−→
C↑iB◦iv̂ (B) ⊆ [D] for all D ∈ G, whence

−−−→
C↑iB◦iv̂ (B) ⊆ v̂ (C). By applying

residuation,
−−−→
C↑iB ∈ v̂ (C)↑↑iv̂ (B) = v̂ (C↑iB).

– Case A = B ⊕ C. By i.h. v(B) ⊆ [B] and v(C) ⊆ [C]. Hence, v(B) ∪ v(C) ⊆
cl([B] ∪ [C]) ⊆ [B ⊕ C]. The first inclusion is due to the monotony property
and properties of cl. In fact, we have [B] ∪ [C] ⊆ [B ⊕ C]. For, [B] ⊆ [B ⊕ C]
and [C] ⊆ [B⊕C] by ⊕iR (i = 1, 2). It follows that cl(v(B)∪v(C)) ⊆ [B⊕C].

– On the other hand, v(B ⊕ C) =
⋂

D∈G [D] for a certain G. By i.h
−→
B ∈ v(B).

Hence,
−→
B ⊆ cl(v(B) ∪ v(C)). Similarly,

−→
C ⊆ cl(v(B) ∪ v(C)). Therefore, for

any D ∈ G,
−→
B ∈ [D] and

−→
C ∈ [D]. By ⊕L we get

−−−−→
B ⊕ C ∈ [D]. It follows that−−−−→

B ⊕ C ⊆ v(B ⊕ C).
– Case C = ?A

(19)

Γ1 ⇒ A

Γi−1 ⇒ A

Γi ⇒ A
?R

Γi ⇒ ?A
?M

...
?M

Γ2, . . . , Γi ⇒ ?A
?M

Γ1, . . . , Γi ⇒ ?A

The proof above shows that for every i > 0 v̂ (A)i ⊆ [?A]. We have then
⋃

i>0 v̂ (A)i ⊆ [?A]. Applying the closure map we get
⋃

i>0 v̂ (A)i ⊆ [?A],
whence v̂ (?A) ⊆ [?A].

We prove now ?A ∈ v̂ (?A). We know that v̂ (?A) =
⋂

D∈G [D], for a certain
family of closed sets G. By i.h. A ∈ v̂ (A). It follows that for every i > 0
Ai ∈ v̂ (Ai), whence Ai ∈ ⋃

k>0 v̂ (Ai) ⊆ v̂ (?A). We have therefore:

On the Logic of Expansion in Natural Language 239

For every i > 0Ai ∈ v̂ (?A) iff For every i > 0, and for every D ∈ G, Ai ∈ [D]
iff For every D ∈ G, ?A ∈ [D], by application of ?R
iff ?A ∈ v̂ (?A)

��
Theorem 2 (Strong Completeness à la Okada). Let Δ ⇒ A be such that
for every (P, v), (P, v) |= Δ ⇒ B. It follows that Δ ⇒ −B.

Proof. In particular, this sequent holds in the syntactic phase displacement
model. By the previous lemma, for any A,

−→
A ∈ v̂ (A). Hence Δ ∈ v̂ (Δ). By

soundness, for every (P, w) ŵ (Δ) ⊆ ŵ (B). Therefore we have that v̂ (Δ) ⊆
v̂ (B). Since Δ ∈ v̂ (Δ), Δ ∈ v̂ (A), which entails (by the truth lemma) that
Δ ∈ [A], i.e. Δ ⇒ −A. ��

By the previous theorem Δ ⇒ A is provable without Cut, whence:

Corollary 1 (Cut admissibility). The Cut rule is admissible. ��

4 CatLog2 Analyses

In Fig. 5 we give a mini-lexicon for a fragment. The heart of the analysis of
iterated coordination is the assignment to a coordinator of types of the form
(?A\A)/A. For a respectively construction we employ in conjunction with dis-
placement connectives a calibrated version ?n of the Mingle exponential as fol-
lows, with list Curry-Howard labelling:

Δ(A1: x1, . . . , An: xn) ⇒ B:ψ([x1, . . . , xn])
?nL

Δ(?nA: z) ⇒ B:ψ(z)

Γ ⇒ A: φ
?nR

Γ ⇒ ?1A: [φ]

Γ ⇒ A: φ Δ ⇒ ?nA: φ′
?nM

Γ,Δ ⇒ [φ|φ′]: ?n+1A

A crucial aspect of what makes the respectively construction work here is
the information sharing between two ?A connectives in the type assignment to
respectively—an implicit quantification over the natural A in the type: i.e. a kind
of dependent type.

The output of a version of CatLog2 for some examples is as follows:

4.1 Iterated Coordination

To express the lexical semantics of (iterated) coordination, including iterated
coordination and various arities (zeroary e.g. sentence, unary e.g. verb phrase,
binary e.g. transtive verb, . . .), we use combinators: a non-empty list map apply
α+, a non-empty list list apply β+, and a non-empty list map Φn combinator
Φn+.8

8 For the list map apply cf. Schiehlen [16]. The combinator Φ is such that Φ x y z w =
x (y w) (z w) (Curry and Feys [3]).

240 G. Morrill and O. Valent́ın

Fig. 5. Lexicon

The non-empty list map apply combinator α+ is as follows:

(20) (α+ [x] y) = [(x y)]
(α+ [x, y|z] w) = [(x w)|(α+ [y|z] w)]

The non-empty list list apply combinator α+ is as follows:

(21) (α+ [x] [y]) = [(x y)]
(α+ [x|y] [z|w]) = [(x z)|(α+ y w)]

The non-empty list map Φn combinator Φn+ is thus:

(22) (((Φn+ 0 and) x) [y]) = [y ∧ x]
(((Φn+ 0 and) x) [y, z|w]) = [y ∧ (((Φn+ 0 and) x) [z|w])]
((((Φn+ (s n) c) x) y) z) = (((Φn+ n c) (x z)) (α+ y z))

These equations mean that in semantic evaluation any subterm of the form on
the left is to be replaced by that on the right, successively.

On the Logic of Expansion in Natural Language 241

The first example is of iterated sentence coordination:

(23) John+walks+Mary+talks+and+Bill+sings : Sf

Lexical lookup yields the following annotated sequent:

Nt(s(m)) : j , Nt(s(A))\Sf : walk , Nt(s(f)) : m, Nt(s(B))\Sf : talk , (?Sf\Sf)/
Sf : (Φn+ 0 and), Nt(s(m)) : b, Nt(s(C))\Sf : sing ⇒ Sf

The derivation is given in Fig. 6. This delivers semantics:

Fig. 6. Derivation of John walks, Mary talks, and Bill sings

[(walk j) ∧ [(talk m) ∧ (sing b)]]
The second example is of iterated verb phrase coordination:

(24) John+walks+talks+and+sings : Sf

Lexical lookup yields:

Nt(s(m)) : j , Nt(s(A))\Sf : walk , Nt(s(B))\Sf : talk ,
(?(NC\Sf)\(NC\Sf))/(NC\Sf) : (Φn+ (s 0) and), Nt(s(D))\Sf : sing ⇒
Sf

The derivation is given in Fig. 7. This delivers semantics:
[(walk j) ∧ [(talk j) ∧ (sing j)]]

Fig. 7. Derivation of John walks, talks, and sings

242 G. Morrill and O. Valent́ın

The next example is of iterated transitive verb coordination, with a non-
standard constituent in the right hand conjunct:

(25) John+praised+likes+and+will+love+London : Sf

Lexical lookup yields:

Nt(s(m)) : j , (NA\Sf)/NB : λCλD(Past ((praise C)D)), (Nt(s(E))\Sf)/NF :

like, (?((NG\Sf)/NH)\((NG\Sf)/NH))/((NG\Sf)/NH) :

(Φn+ (s (s 0)) and), (NI\Sf)/(NI\Sb) : λJλK(Fut (J K)), (NL\Sb)/NM :

love, �Nt(s(n)) : l ⇒ Sf

The derivation is given in Fig. 8. This delivers semantics:

[(Past ((praise l) j)) ∧ [((like l) j) ∧ (Fut ((love l) j))]]

Finally we have an example of iterated coordination with right node raising:

(26) John+praised+Bill+likes+and+Mary+will+love+London : Sf

Lexical lookup yields:

Nt(s(m)) : j , (NA\Sf)/NB : λCλD(Past ((praise C) D)), Nt(s(m)) : b, (Nt

(s(E))\Sf)/NF : like, (?(Sf/NG)\(Sf/NG))/(Sf/NG) : (Φn+ (s 0) and), Nt(s(f)) :

m, (NH\Sf)/(NH\Sb) : λIλJ(Fut (I J)), (NK\Sb)/NL : love, �Nt(s(n)) : l ⇒ Sf

There is the derivation in Fig. 9. This delivers semantics:

[(Past ((praise l) j)) ∧ [((like l) b) ∧ (Fut ((love l) m))]]

4.2 The Respectively Construction

Kubota and Levine [6] provide a type logical account of binary respectively con-
structions using empty operators. By contrast we account here for unbounded
addicity respectively constructions, without empty operators.

Our first example synchronises parallel pairs of items:

(27) Bill+and+Mary+danced+and+sang+respectively : Sf

Lexical lookup yields:

Nt(s(m)) : b, ?ANB\((SC↑(ND\SC))↑(NE•?A(NF\SC))){Nt(s(f)) : m, NJ\Sf :

λK(Past (dance K)) : NL\Sf : λM(Past (sing M))} :

λGλHλI(((Φn+ 0 and) (I π1H)) (β+ π2H G)) ⇒ Sf

There is the derivation given in Fig. 10. This delivers semantics:

[(Past (dance b)) ∧ (Past (sing m))]

Our other example of the respectively construction synchronises parallel
triples of items:

On the Logic of Expansion in Natural Language 243

F
ig

.
8
.
D

er
iv

a
ti

o
n

fo
r
J
o
h
n
p
ra
is
ed
,
li
ke
s,

a
n
d
w
il
l
lo
ve
,
L
o
n
d
o
n

244 G. Morrill and O. Valent́ın

F
ig

.
9
.
D

er
iv

a
ti

o
n

fo
r
J
o
h
n
p
ra
is
ed
,
B
il
l
li
ke
s,

a
n
d
M
a
ry

w
il
l
lo
ve
,
L
o
n
d
o
n

On the Logic of Expansion in Natural Language 245

Fig. 10. Derivation for Bill and Mary danced and sang respectively

(28) John+Bill+and+Mary+laughed+danced+and+sang+
respectively : Sf

Lexical lookup yields the following:

Nt(s(m)) : j , Nt(s(m)) : b, ?ANB\((SC↑(ND\SC))↑(NE•?A(NF\SC))){Nt(s(f)) :

m, NJ\Sf : λK(Past (laugh K)), NL\Sf : λM(Past (dance M)) : NN\Sf :

λO(Past (sing O))} : λGλHλI(((Φn+ 0 and) (I π1H)) (β+ π2H G)) ⇒ Sf

There is the derivation given in Fig. 11. This delivers semantics:

Fig. 11. Derivation for John, Bill, and Mary laughed, danced, and sang, respectively

[(Past (laugh j)) ∧ [(Past (dance b)) ∧ (Past (sing m))]]

Interestingly, our account syntactically blocks examples of the kind John and
Peter walk, talk, and sing, respectively since the calibrated numbers of occur-
rences are not equal. A variation of our account with uncalibrated modalities
would need to appeal to a semantic anomaly in relation to the combinators.

Acknowlegements. Research partially supported by an ICREA Acadèmia 2012
to the alphabetically first author, and SGR2014-890 (MACDA) of the Generalitat
de Catalunya and MINECO project APCOM (TIN2014-57226-P). We thank anony-
mous LACL referees for valuable comments and suggestions. All errors are our own.

246 G. Morrill and O. Valent́ın

References

1. Béchet, D., Dikovsky, A., Foret, A., Garel, E.: Optional and iterated types for
pregroup grammars. In: Mart́ın-Vide, C., Otto, F., Fernau, H. (eds.) LATA
2008. LNCS, vol. 5196, pp. 88–100. Springer, Heidelberg (2008). doi:10.1007/
978-3-540-88282-4 10

2. Buszkowski, W., Palka, E.: Infinitary action logic: complexity, models and gram-
mars. Stud. Logica. 89(1), 1–18 (2008)

3. Curry, H.B., Feys, R.: Combinatory Logic, vol. I. North-Holland, Amsterdam
(1958)

4. Girard, J.-Y.: Linear logic. Theor. Comput. Sci. 50, 1–102 (1987)
5. Kamide, N.: Substructural logics with mingle. J. Logic Lang. Inf. 11(2), 227–249

(2002)
6. Kubota, Y., Levine, B.: The syntax-semantics interface of respective predication:

a unified analysis in hybrid type-logical categorial grammar. Nat. Lang. Linguist.
Theor. 34(3), 911–973 (2016)

7. Lambek, J.: On the calculus of syntactic types. In: Jakobson, R. (ed.) Structure of
Language and its Mathematical Aspects. Proceedings of the Symposia in Applied
Mathematics XII, pp. 166–178. American Mathematical Society, Providence (1961)

8. Lambek, J.: Categorial and categorical grammars. In: Oehrle, R.T., Bach, E.,
Wheeler, D. (eds.) Categorial Grammars and Natural Language Structures. Studies
in Linguistics and Philosophy, vol. 32, pp. 297–317. D. Reidel, Dordrecht (1988)

9. Lambek, J.: The mathematics of sentence structure. Am. Math. Mon. 65, 154–170
(1958)

10. Morrill, G.: Grammar and logical types. In: Stockhof, M., Torenvliet, L. (eds)
Proceedings of the Seventh Amsterdam Colloquium, pp. 429–450. University of
Amsterdam, Amsterdam (1990)

11. Morrill, G., Valent́ın, O.: Computational coverage of TLG: nonlinearity. In:
Kanazawa, M., Moss, L.S., de Paiva, V., (eds.) Proceedings of NLCS 2015, Third
Workshop on Natural Language and Computer Science, Kyoto. EPiC, vol. 32, pp.
51–63 (2015). Workshop affiliated with Automata, Languages and Programming
(ICALP) and Logic in Computer Science (LICS)

12. Morrill, G., Valent́ın, O., Fadda, M.: The displacement calculus. J. Logic Lang.
Inf. 20(1), 1–48 (2011)

13. Morrill, G.V.: Type Logical Grammar: Categorial Logic of Signs. Kluwer Academic
Publishers, Dordrecht (1994)

14. Okada, M.: Phase semantic Cut-elimination and normalization proofs of first- and
higher-order linear logic. Theor. Comput. Sci. 227(1–2), 333–396 (1999)

15. Palka, E.: An infinitary sequent system for the equational theory of *-continuous
action lattices. Fundam. Inf. 78(2), 295–309 (2007)

16. Schiehlen, M.: The role of lists in a categorial analysis of coordination. In:
Dekker, P., Franke, M (eds.) Proceedings of the 15th Amsterdam Colloquium,
pp. 221–226 (2005)

17. Valent́ın, O.: Theory of discontinuous Lambek calculus. Ph.D. thesis, Universitat
Autònoma de Barcelona, Barcelona (2012)

18. Valent́ın, O.: Models for the displacement calculus. In: Foret, A., Morrill, G.,
Muskens, R., Osswald, R., Pogodalla, S. (eds.) FG 2015-2016. LNCS, vol. 9804,
pp. 147–163. Springer, Heidelberg (2016). doi:10.1007/978-3-662-53042-9 9

http://dx.doi.org/10.1007/978-3-540-88282-4_10
http://dx.doi.org/10.1007/978-3-540-88282-4_10
http://dx.doi.org/10.1007/978-3-662-53042-9_9

Context Update for Lambdas and Vectors

Reinhard Muskens1(B) and Mehrnoosh Sadrzadeh2

1 Department of Philosophy, Tilburg University, Tilburg, The Netherlands
r.a.muskens@gmail.com

2 School of Electronic Engineering and Computer Science,
Queen Mary University of London, London, UK

mehrnoosh.sadrzadeh@qmul.ac.uk

Abstract. Vector models of language are based on the contextual
aspects of words and how they co-occur in text. Truth conditional mod-
els focus on the logical aspects of language, the denotations of phrases,
and their compositional properties. In the latter approach the denota-
tion of a sentence determines its truth conditions and can be taken to
be a truth value, a set of possible worlds, a context change potential, or
similar. In this short paper, we develop a vector semantics for language
based on the simply typed lambda calculus. Our semantics uses tech-
niques familiar from the truth conditional tradition and is based on a
form of dynamic interpretation inspired by Heim’s context updates.

Keywords: Vector semantics · Simply typed lambda calculus · Context
update · Context change potential · Compositionality

1 Introduction

Vector semantic models, otherwise known as distributional models, are based on
the contextual aspects of language, the company each word keeps, and patterns
of use in corpora of documents. Truth conditional models focus on the logical
and denotational aspects of language, sets of objects with certain properties and
application and composition of functions. Vector semantics and truth conditional
models are based on different philosophies; in recent years there has been much
effort to bring them together under one umbrella, see for example [1–3,8,9].

In a recent abstract [14], we sketched an approach to semantics that assigned
vector meanings to linguistic phrases using a simply typed lambda calculus in
the tradition of [10]. Our previous system was guided by a truth conditional
interpretation and provided vector semantics very similar to the approaches of
[1–3,8,9]. The difference was that the starting points of these latter approaches
are categorial logics such as Pregroup Grammars and Combinatorial Categorial
Grammar (CCG). Our reasoning for the use of lambda calculus was that it
directly relates our semantics to higher order logic and makes standard ways of

Support by EPSRC for Career Acceleration Fellowship EP/J002607/1 is gratefully
acknowledged by M. Sadrzadeh.

c© Springer-Verlag GmbH Germany 2016
M. Amblard et al. (Eds.): LACL 2016, LNCS 10054, pp. 247–254, 2016.
DOI: 10.1007/978-3-662-53826-5 15

248 R. Muskens and M. Sadrzadeh

treating long distance dependencies and coordination accessible to vector-based
semantics. In this short account, we follow the same lines as in our previous
work. But whereas in previous work we worked with a static interpretation of
distributions, here, we focus on a dynamic interpretation.

The lambda calculus approach we use is based on the Lambda Grammars
of [11,12], which were independently introduced as Abstract Categorial Gram-
mars (ACGs) in [5]. The theory developed here, however, can be based on any
syntax-semantics interface that works with a lambda calculus based semantics.
Our approach is agnostic as to the choice of a syntactic theory. Lambda Gram-
mars/ACGs are just a framework for thinking about type and term homomor-
phisms and we are using them entirely in semantics here. In a longer paper we
will show in more detail how lambda logical forms (the abstract terms) can be
obtained: (1) from standard linguistic trees with the help of a procedure that
is essentially that of Heim and Kratzer [7]; (2) from LFG f-structures by means
of a ‘glue logic’; (3) from Lambek proofs by means of semantic recipes; (4) and
from CCG derivations by means of using the combinators associated with CCG
rules.

The dynamic interpretation we work with here is the “context change poten-
tial” of [6]. We believe other dynamic approaches, such the update semantics of
[16] and the continuation-based semantics of [4], can also be used; we aim to do
these in future.

2 Heim’s Files and Distributional Contexts

Heim describes her contexts as files that have some kind of information written
on (or in) them. Context changes are operations that update these files, e.g. by
adding or deleting information from the files. Formally, a context is taken to be
a set of sequence-world pairs, in which the sequences come from some domain
DI of individuals, as follows:

ctx ⊆ {(g, w) | g : N → DI , w a possible world}

(We follow Heim [6] here in letting the sequences in her sequence-world-pairs be
infinite, although they are best thought of as finite.)

Sentence meanings are context change potentials (CCPs) in Heim’s work,
functions from contexts to contexts. A sentence S comes provided with a
sequence of instructions that, given any context ctx, updates its information
so that a new context denoted as

ctx + S

results. The sequence of instructions that brings about this update is derived
compositionally from the constituents of S.

In distributional semantics, contexts are words somehow related to each other
via their patterns of use, e.g. by co-occurring in a neighbourhood word window
of a fixed size or via a dependency relation. In practice, one builds a context

Context Update for Lambdas and Vectors 249

matrix M over R
2, with rows and columns labeled by words from a vocabulary

Σ and with entries taking values from R, for a full description see [15]. M can
be seen as the set of its vectors:

{−→v | −→v : Σ → R}

where each −→v is a row or column in M .
If we take Heim’s domain of individuals DI be the vocabulary of a distribu-

tional model of meaning, that is DI := Σ, then a context matrix can be seen as
a so-called quantized version of a Heim context:

{(−→g , w) | −→g : Σ → R, w a possible world}

Thus a distributional context matrix is obtainable by endowing Heim’s contexts
with R. In other words, we are assuming that not only a file has a set of indi-
viduals, but also that these individuals take some kind of values, e.g. from reals.

The role of possible worlds in a distributional semantics is arguable, as vec-
tors retrieved from a corpus are not naturally truth conditional. Keeping the
possible worlds in the picture provides a machinery to assign a proposition to
a distributional vector by other means and can become very useful. But for the
rest of this abstract, we shall deprive ourselves from this advantage and only
work with the following set as our context:

{−→g | −→g : Σ → R,−→g ∈ M}

Distributional versions of Heim’s CCP’s can be defined based on the intuitions
and definitions of Heim. In what follows we pan out how these instructions let
contexts thread through vectorial semantics in a compositional manner.

3 Vectors, Matrices, Lambdas

Lambda Grammars of [11,12] were independently introduced as Abstract Cate-
gorial Grammars (ACGs) in [5]. An ACG generates two languages, an abstract
language and an object language. The abstract language will simply consist of
all linear lambda terms (each lambda binder binds exactly one variable occur-
rence) over a given vocabulary typed with abstract types. The object language
has its own vocabulary and its own types. It results from (1) specifying a type
homomorphism from abstract types to object types and (2) specifying a term
homomorphism from abstract terms to object terms. The term homomorphism
must respect the type homomorphism. For more information about the proce-
dure of obtaining an object language from an abstract language, see the papers
mentioned or the explanation in [13].

Let the basic abstract types of our setting be D (for determiner phrases), S
(for sentences), and N (for nominal phrases). Let the basic object types be I
and R. The domain DI corresponding to I can be thought of as a vocabulary,
DR models the set of reals R. The usual operations on R can be defined using

250 R. Muskens and M. Sadrzadeh

Tarski’s axioms (in full models that satisfy these axioms DR = R will hold; in
generalised models we get what boils down to a first-order approximation of R).
Objects of type I → R are abbreviated to IR; these are identified with vectors
with a fixed basis.

We will associate simple words like names, nouns and verbs with vectors, i.e.
with objects of type IR and will denote these with constants like −−−−→woman,

−−−→
smoke,

etc. The typed lambda calculus will be used to build certain functions with the
help of these vectors that will then function as the meanings of those words. The
meanings of content words will typically be functions that are completely given
by some vector, but they will not (necessarily) be identified with vectors (see
also Table 1 below).

Sentences will be context change potentials. A context for us is a matrix, thus
it has type I2R. A sentence takes the type (I2R)(I2R). We abbreviate IR as V ,
I2R as M and the sentence type MM as U (for ‘update’). Verbs take a vector
for each of their arguments, plus an input context, and return a context as their
output. For instance, an intransitive verb takes a vector for its subject plus a
context and returns a modified context. Thus it takes type V MM = V U . A
transitive verb takes a vector for its subject, a vector for its object and a context
and returns a context. Thus it has type V V U . Nouns are essentially treated as
vectors (V), but, since they must be made capable of dynamic behaviour, they
are ‘lifted’ to the higher type (V U)U . Our dynamic type homomorphism ρ is
defined by letting ρ(N) = (V U)U , ρ(D) = V and ρ(S) = U . Some consequences
of this definition can be found in Table 1.

Table 1. Some abstract constants a typed with abstract types τ and their term
homomorphic images H(a) typed by ρ(τ) (where ρ is a type homomorphism, i.e.
ρ(AB) = ρ(A)ρ(B)). Here Z is a variable of type V U , Q is of type (V U)U , v of type
V , c of type M , and p and q are of type U . The functions F , G, I, and J are explained
in the main text. In the schematic entry for and, we write ρ(α) for ρ(α1) · · · ρ(αn), if
α = α1 · · · αn.

a τ H(a) ρ(τ)

Anna (DS)S λZ.Z−−→anna (V U)U

woman N λZ.Z−−−−→woman (V U)U

tall NN λQZ.Q(λvc.ZvF (
−→
tall, v, c)) ((V U)U)(V U)U

smokes DS λvc.G(
−−−→
smoke, v, c) V U

loves DDS λuvc.I(
−−→
love, u, v, c) V V U

knows SDS λpvc.pJ(
−−−→
know, v, c) UV U

every N(DS)S λQ.Q ((V U)U)(V U)U

who (DS)NN λZ′QZ.Q(λvc.Zv(QZ′c)) (V U)((V U)U)(V U)U

and (αS)(αS)(αS) λR′λRλXλc.R′X(RXc) (ρ(α)U)(ρ(α)U)(ρ(α)U)

Context Update for Lambdas and Vectors 251

4 Context Update for Lambda Binders

Object terms corresponding to a content word a may update a context matrix
c with the information in −→a and the information in the vectors of arguments of
a. The result is a new context matrix c′, with different value entries.

⎛
⎜⎜⎜⎝

m11 · · · m1k

m21 · · · m2k

...
mn1 · · · mnk

⎞
⎟⎟⎟⎠+ −→a , u, v, · · · =

⎛
⎜⎜⎜⎝

m′
11 · · · m′

1k

m′
21 · · · m′

2k

...
m′

n1 · · · m′
nk

⎞
⎟⎟⎟⎠

An example of a set of elementary update instructions may be as follows.

– The function denoted by λvc.G(
−−−→
smoke, v, c) increases the value entry of mij

of c, for i and j indices of smoke and its subject v.
– The function denoted by λuv.λc.I(

−−→
love, u, v, c) increases the value entries of mij ,

mjk, and mik of c, for i, j, k indices of loves, its subject u and its object v.
– The function denoted by λvc.F (

−→
tall, v, c) increases the value entry of mij of c,

for i and j indices of tall and its modified noun v. The entry for tall in Table 1
uses this function, but allows for further update of context.

– The function denoted by λvc.J(
−−−→
know, v, c) increases the value entry of mij of

c, for i and j indices of know and its subject v. The updated matrix is made
the input for further update (by the context change potential of the sentence
that is known) in Table 1.

Logical words such as every and and are often treated as noise in distributional
semantics and not included in the context matrix. We have partly followed this
approach here by treating every as the identity function (the noun already has
the required ‘quantifier’ type (V U)U). To see this, note that the entry for ‘every’,
λQ.Q, is the identity function; it takes a Q and then spits it out again. The
alternative would be to have an entry along the lines of that of ‘tall’, but this
would not make a lot of sense. It is the content words that seem to be important
in a distributional setting, not the function words.

The word and does have a function here though—it is treated as a generalised
form of function composition. The entry for the word in Table 1 is schematic,
as and does not only conjoin sentences, but also other phrases of any category.
So, the type of the abstract constant connected with the word is (αS)(αS)(αS),
in which α can be any sequence of abstract types. Ignoring this generalisation
for the moment, we obtain SSS as the abstract type for sentence conjunction,
with a corresponding object type UUU , and meaning λpqc.p(qc), which is just
function composition. This is defined in a way such that the context updated
by and ’s left argument will be further updated by its right argument. So ‘Sally
smokes and John eats bananas’ will, given an initial matrix c, first update c to
G(Sally, smoke, c), which is a matrix, and then update this further with ‘John
eats bananas’ to I(eat, John, bananas, G(smoke,Sally, c)).

252 R. Muskens and M. Sadrzadeh

This treatment is easily extended to coordination in all categories. For exam-
ple, the reader may check that and admires loves (which corresponds to loves and
admires) has λuvc.I(

−−−−→
admire, u, v, I(

−−→
love, u, v, c)) as its homomorphic image.

The update instructions fall through the semantics of phrases and sentences
compositionally. The sentence every tall woman smokes, for example, will be
associated with the following lambda expression:

(every tall woman)λζ.(smokes ζ)

This in its turn has a term homomorphic image that is β-equivalent with the
following:

λc.G
(−−−→
smoke,−−−−→woman, F (

−→
tall,−−−−→woman, c)

)

which describes a distributional context update for it. This term describes a
first update of the context c according to the rule for the constant tall, and then
a second update according to the rule for the constant smokes. As a result of
these, the value entries at the crossings of 〈tall, woman〉 and 〈woman, smokes〉 get
increased. Much longer chains of context updates can be ‘threaded’ in this way.

In the following we give some examples. In each case the a. sentence is fol-
lowed by an abstract term in b. which captures its syntactic structure. The
update potential that follows in c. is the homomorphic image of this abstract
term.

(1) a. Sue loves and admires a stockbroker
b. (a stockbroker)λξ.Sue(and admires loves ξ)

c. λc.I(
−−−−→
admire,

−−−−−−−→
stockbroker,−→sue, I(

−−→
love,

−−−−−−−→
stockbroker,−→sue, c))

(2) a. Bill admires but Anna despises every cop
b. (every cop)λξ.and(Anna(despise ξ))(Bill(admire ξ))

c. λc.I(
−−−−→
despise,−→cop,−−→anna, I(

−−−−→
admire,−→cop,−→bill, c))

(3) a. The witch who Bill claims Anna saw disappeared
b. the(who(λξ.Bill(claims(Anna(saw ξ))))witch)disappears

c. λc.G(
−−−−−−→
disappear,

−−−→
witch, I(−→see,−−−→

witch,−−→anna, J(
−−−→
claim,

−→
bill, c)))

5 Conclusion and Future Directions

In previous work, we showed how a static interpretation of the lambdas will
provide vectors for phrases and sentences of language. There, the object type of
the vector of a word depended on its abstract type and could be an atomic vector,
a matrix, or a cube, or a tensor of higher rank. Means of combinations thereof
then varied based on the tensor rank of the type of each word. For instance one
could take the matrix multiplication of the matrix of an intransitive verb with
the vector of its subject, whereas for a transitive verb the sequence of operations
were a contraction between the cube of the verb and the vector of its object
followed by a matrix multiplication between the resulting matrix and the vector

Context Update for Lambdas and Vectors 253

of the subject. A toolkit of functions needed to perform these operations was
defined in previous work. That toolkit can be restated here for the type I2R,
rather than the previous IR, to provide means of combining matrices and their
updates, if needed.

In this work, we show how a dynamic interpretation of the lambdas will
also provide vectors for phrases and sentences of language. Truth conditional
and vector models of language follow two very different philosophies. The vector
models are based on contexts, the truth models on denotations. The dynamic
interpretations of language, e.g. the approach of Heim, are also based on context
update, hence these seem a more appropriate choice. In this paper, we showed
how Heim’s files can be turned into vector contexts and how her context change
potentials can be used to provide vector interpretations for phrases and sen-
tences. Our context update instructions were defined such that they would let
contexts thread through vector semantics in a compositional manner.

Amongst the things that remain to be done in a long paper is to develop a
vector semantics for the lambda terms obtained via other syntactic models, e.g.
CCG, LFG, and Lambek Grammars, as listed at the end of the introduction
section. We also aim to work with other update semantics, such as continuation-
based approaches. One could also have a general formalisation wherein both the
static approach of previous work and the dynamic one of this work cohabit. This
can be done by working out a second pair of type-term homomorphisms that
will also work with Heim’s possible world part of the contexts. In this setting,
the two concepts of meaning: truth theoretic and contextual, each with its own
uses and possibilities, can work in tandem.

Acknowledgements. We wish to thank the anonymous referees for excellent
feedback.

References

1. Baroni, M., Bernardi, R., Zamparelli, R.: Frege in space: a program for composi-
tional distributional semantics. Linguist. Issues Lang. Technol. 9, 5–110 (2014)

2. Coecke, B., Sadrzadeh, M., Clark, S.: Mathematical foundations for distributed
compositional model of meaning. Lambek Festschrift. Linguist. Anal. 36, 345–384
(2010)

3. Grefenstette, E., Sadrzadeh, M.: Concrete models and empirical evaluations for
the categorical compositional distributional model of meaning. Comput. Linguist.
41, 71–118 (2015)

4. de Groote, P.: Towards a Montagovian account of dynamics. In: Proceedings of
16th Semantics and Linguistic Theory Conference (SALT 2016), pp. 1–16 (2006)

5. de Groote, P.: Towards abstract categorial grammars. association for computa-
tional linguistics. In: Proceedings of the Conference on 39th Annual Meeting and
10th Conference of the European Chapter, pp. 148–155. ACL, Toulouse (2001)

6. Heim, I.: On the projection problem for presuppositions. In: Portner, P., Partee,
B.H. (eds.) Formal Semantics - The Essential Readings, pp. 249–260. Blackwell,
Hoboken (1983)

254 R. Muskens and M. Sadrzadeh

7. Heim, I., Kratzer, A.: Semantics in Generative Grammar. Blackwell Textbooks in
Linguistics. Blackwell Publishers, Cambridge (1998)

8. Krishnamurthy, J., Mitchell, T.M.: Vector space semantic parsing: a framework
for compositional vector space models. In: Proceedings of 2013 ACL Workshop on
Continuous Vector Space Models and their Compositionality (2013)

9. Maillard, J., Clark, S., Grefenstette, E.: A type-driven tensor-based semantics for
CCG. In: Proceedings of EACL 2014 Type Theory and Natural Language Seman-
tics Workshop (2014)

10. Montague, R.: The proper treatment of quantification in ordinary English. In:
Thomason, R. (ed.) Formal Philosophy. Selected Papers of Richard Montague, pp.
247–270. Yale University Press, New Haven (1974)

11. Muskens, R.A.: Categorial grammar and lexical-functional grammar. In: Butt, M.,
King, T.H. (eds.) Proceedings of LFG 2001 Conference, University of Hong Kong,
pp. 259–279. CSLI Publications, Stanford (2001). http://tinyurl.com/jrc3nnw

12. Muskens, R.A.: Language, lambdas, and logic. In: Kruijff, G.J., Oehrle, R. (eds.)
Resource Sensitivity in Binding and Anaphora. Kluwer, Studies in Linguistics and
Philosophy, vol. 80, pp. 23–54. Springer, Dordrecht (2003)

13. Muskens, R.: New directions in type-theoretic grammars. J. Log. Lang. Inf. 19(2),
129–136 (2010)

14. Muskens, R., Sadrzadeh, M.: Lambdas and vectors. In: Workshop on Distributional
Semantics and Linguistic Theory (DSALT), 28th European Summer School in
Logic, Language and Information (ESSLLI). Free University of Bozen, Bolzano,
August 2016

15. Rubenstein, H., Goodenough, J.: Contextual correlates of synonymy. Commun.
ACM 8(10), 627–633 (1965)

16. Veltman, F.: Defaults in update semantics. J. Philos. Log. 25(3), 221–261 (1996)

http://tinyurl.com/jrc3nnw

XMG2: Describing Description Languages

Simon Petitjean1, Denys Duchier2, and Yannick Parmentier2(B)

1 Heinrich-Heine-Universität Düsseldorf, Universitaetsstr. 1,
D-40225 Düsseldorf, Germany
simon.petitjean@hhu.de

2 LIFO – Université d’Orléans, 6, Rue Léonard de Vinci, F-45067 Orléans, France
{denys.duchier,yannick.parmentier}@univ-orleans.fr

Abstract. This paper introduces XMG2, a modular and extensible tool
for various linguistic description tasks. Based on the notion of meta-
compilation (that is, compilation of compilers), XMG2 reuses the main
concepts underlying XMG, namely logic programming and constraint
satisfaction, to generate on-demand XMG-like compilers by assembling
elementary units called bricks. This brick-based definition of compilers
permits users to design description languages in a highly flexible way.
In particular, it makes it possible to support several levels of linguistic
description (e.g. syntax, morphology) within a single description lan-
guage. XMG2 aims to offer means for users to easily define description
languages that fit as much as possible the linguistic intuition.

Keywords: Formal grammar · Meta-grammar · Compilation · Logic
programming

1 Introduction

Various NLP tasks such as Automatic Summarization, Machine Translation or
Dialogue Systems benefit from precision linguistic resources (e.g. grammars, lexi-
cons, semantic representations). Alas these can hardly be obtained automatically
without any loss of quality (in terms of supported linguistic phenomena or struc-
tural correctness), and building hand-crafted precision resources is a very costly
task. As an illustration, let us consider syntax. Building resources describing the
syntax of natural languages such as French or English (that is, electronic gram-
mars) can take many person-years (see e.g. [1,25]). A common way to reduce
this cost consists in using description languages to semi-automatically gener-
ate these precision grammars. These description languages provide users (e.g.
linguists) with means to define abstractions over linguistic structures in order
to capture redundancy. Users thus no longer have to describe actual linguistic
structures (e.g. grammar rules), but abstractions over these. Such abstractions
are then processed automatically to generate the full set of redundant structures.

Many description languages were successfully used over the past decades to
generate linguistic resources ranging from small-size lexicons to real-size gram-
mars (see e.g. [5,10,21,23,24]). Each of these description languages was tailored
c© Springer-Verlag GmbH Germany 2016
M. Amblard et al. (Eds.): LACL 2016, LNCS 10054, pp. 255–272, 2016.
DOI: 10.1007/978-3-662-53826-5 16

256 S. Petitjean et al.

for handling specific linguistic objects. For instance, LKB [5] was designed for
describing typed feature-structures, while LexOrg [24] was designed for repre-
senting syntactic trees. Furthermore, description languages were extended with
features specific of a target grammar formalism (e.g. HPSG’s Head Feature Prin-
ciple [19] for LKB) making these languages formalism-dependent. Users end up
with plethora of specific description languages (and corresponding implementa-
tions, i.e. compilers).

These description languages often support a single linguistic framework (e.g.
grammar formalism)1 and a limited number of levels of description (mainly syn-
tax). Depending on the target linguistic objects, the user chooses the most ade-
quate tool (which provides a description language together with a compiler for
this language), and uses it to describe and produce an actual precision linguistic
resource. The consequences of this are in particular that (i) there is little infor-
mation sharing between precision linguistic resources (can abstractions defined
for a given target formalism be applied to other formalisms?), and (ii) should
several levels of description be needed (e.g. syntax and morphology for mor-
phologically rich languages), several tools have to be learned and combined (if
possible) or a single tool has to be tinkered with.

The work presented here aims at changing this by offering a common frame-
work which would make it possible for users to define description languages in
a modular and extensible way. We built on previous work on modularity made
within the eXtensible MetaGrammar (XMG) description language [6]. The paper
is organized as follows. In Sect. 2, we introduce XMG and show how it laid down
the bases for extensible and customizable description languages. In Sect. 3, we
present (i) the concept of assembling description languages underlying XMG2,
and (ii) a compilation architecture based on logic programming and which per-
mits a modular and extensible description (and meta-compilation)2 of descrip-
tion languages (called hereafter Domain Specific Languages, DSL, for the sake
of coherency with the terminology used in Compilation theory). In Sect. 4, we
show how to use XMG2 to dynamically assemble the original XMG language
while adding a morphological layer so that it can be used to generate not only
syntactic trees or flat semantic representations but also morphological represen-
tations (i.e. inflected forms). Finally, in Sect. 5, we compare our approach with
related work and in Sect. 6 we conclude and present future work.

2 Compiling Extensible Metagrammars

In this section, we present the eXtensible MetaGrammar (XMG) framework [6],
on which this work builds. XMG refers to both a description language used to
describe tree grammars and a compiler for this language. In the XMG approach,
the description of the linguistic grammar is seen as a formal grammar. XMG

1 A few attempts at multi-formalism within grammar generation have been proposed
such as [4] but only focused on toy implementations, see Sect. 5 on related work.

2 Meta-compilation is meant as the compilation of compilers for description languages.

XMG2: Describing Description Languages 257

users thus describe grammar rules by writing a formal grammar (so-called meta-
grammar). The metagrammar is in our case a Definite Clause Grammar (DCG)
[17] (i.e. a logic program), which is compiled and executed by the XMG com-
piler to produce an actual tree grammar (i.e. a set of trees). Let us briefly define
what an XMG metagrammar is, and explain how it is processed (compiled) to
generate syntactic trees.

Metagrammars as Logic Programs. Intuitively, an XMG metagrammar consists
of (conjunctive and/or disjunctive) combinations of reusable tree fragments.
Hence the XMG language provides means to define abstractions over tree frag-
ments along with operators to combine these abstractions conjunctively or dis-
junctively. These 3 concepts (abstraction, conjunction, disjunction) are already
available within DCGs, which are formally defined as follows:

Clause ::= Name → Goal (1)
Goal ::= Description | Name | Goal ∨ Goal | Goal ∧ Goal (2)

Indeed, clauses allow to associate goals (e.g. descriptions) with names, hence pro-
viding abstraction. Goals can be made of conjunctions or disjunctions of goals.
In DCG, descriptions usually refer to facts. In our case, descriptions correspond
to formulas of a tree description logic (TDL) defined as follows:

Description ::= x → y | x →∗ y | x ≺ y | x ≺+ y | x[f :E]

where x, y range over node variables, → represents immediate dominance, →∗

its reflexive transitive closure, ≺ immediate precedence, and ≺+ its transitive
closure. x[f :E] constrains feature f on node x.

Finally, axioms of the DCG indicate clauses which correspond to complete
tree descriptions:

Axiom ::= Name

Grammars as Logic Program Executions. The compilation of the input meta-
grammar is summarized below:

The metagrammar is first tokenized, then it is parsed to produce an abstract syn-
tax tree (AST). This AST is processed to unfold the statements composing the
metagrammar and produce flat structures (instructions for a kernel language).
These flat structures are then interpreted by a code generator to produce instruc-
tions for a virtual machine (in our case code for a Prolog interpreter). The code
is finally executed by the interpreter to produce terms. These terms are accu-
mulations of descriptive constraints. More precisely, code execution outputs sets
of conjunctions of input TDL formulas (where logic variables have been unified
according to the clause instantiations defined in the metagrammar). There is one
such set per derivation of the axiom of the metagrammar. To get actual trees
instead of tree description logic formulas, the latter need to be solved using a
tree description solver such as [8]. The interpreter is thus enriched with such

258 S. Petitjean et al.

a solver as a post-processor. The result of this metagrammar compilation and
execution is, for each axiom, a set of trees (minimal models of the input tree
description).

The architecture above makes it possible to define declarative and concise
descriptions of tree grammars. Still, it supports a single level of description,
namely syntax. In order to allow users to describe other levels such as semantics,
the XMG language has been extended by using DCGs with multiple accumula-
tors (so-called Extended Definite Clause Grammar, EDCG [22]). In (2) above,
Description is replaced with:

<Dimension>{ Description }

Depending on the dimension being used, there are two distinct description lan-
guages : one for describing syntactic trees (dimension syn) and one for describing
semantic predicate structures (dimension sem).

XMG thus offers some extensibility in so far as it supports two distinct lev-
els of description.3 Still XMG does not allow users to describe other linguistic
structures than trees or predicates. Nevertheless, XMG’s modular architecture
and the multiple accumulators provided by EDCG offer an adequate backbone
for on-demand composition of description languages by assembling elementary
description languages (called hereafter language bricks).

In the next section, we will present the concept of assembling language bricks
and show how to extend the XMG architecture so that users can define their
own description language (or Domain Specific Language, DSL) and compile the
corresponding compiler. The output of this meta-compilation is a metagrammar
compiler4 (i) whose architecture follows XMG’s architecture introduced above,
and (ii) which can be used by linguists to describe actual language resources.

3 Assembling a Domain Specific Language

It is the foundational philosophy of XMG2 that the tool should be easily cus-
tomizable to the user’s specific requirements in expressivity rather than the user
be forced to cast her intuitions in terms of a rigidly predefined framework not
necessarily well suited to the task.

Thus XMG2 aims at facilitating the definition of DSLs for building linguistic
resources such as grammars or lexicons. Typically a DSL allows for describing
some data structure using a concrete syntax. However, even if the same data
structure may be used, under the hood, for different applications, different DSLs
may still be desirable: for example, a decorated tree is a very versatile data
structure and could potentially be used for tree-based description of syntax and
for representing agglutinative morphology; yet the two tasks have quite different
requirements and attempt to capture intuitions and generalizations of dissimilar
nature.
3 Actually, XMG supports three levels of description: syn, sem and dyn for specifying

dynamic interfaces between syn and sem (i.e., shared unification variables).
4 Also called meta-executor since it both compiles a metagrammar and executes it.

XMG2: Describing Description Languages 259

3.1 Defining a Modular DSL by Assembling Bricks of Language

Our approach is predicated on assembling DSLs by composing bricks from an
extensible library. A brick binds together a fragment of context-free syntax with
some underlying data structure and some processing instructions to operate
on it.

A brick can be viewed as a module: it exports a non-terminal which is the
axiom of its language fragment, and it defines sockets which are non-terminals
for which rules may be provided by other bricks.

Let us illustrate this brick-based description of linguistic resources by con-
sidering feature structures. Feature structures are elements that are used in
many grammatical formalisms. The rules describing feature structures would
consequently be added to the context free grammar of all DSLs that would be
designed to describe these formalisms. This would lead to some redundancy as
CFG rules would be repeated several times.

To avoid this redundancy, we propose to divide description languages into
reusable and composable fragments called language bricks. For example, fea-
ture structures (also called Attribute-Value Matrices, AVM for short) use the
following concrete syntax:

AVM ::= [Feats] (3)
Feats ::= Feat | Feat,Feats (4)
Feat ::= id = V alue (5)

The axiom of this brick is the non-terminal AVM. Note that the brick provides
no production for the non-terminal Value: this is what we call an external non-
terminal and serves as the socket mentioned earlier. A production for Value is
obtained by plugging the axiom of another brick into this socket. To this end,
let us consider a Value brick:

Value ::= id | bool | int | string | Else (6)

The external non-terminal Else makes it possible to plug in additional kinds of
values. Now we can plug the Value axiom into the AVM brick’s Value socket
(to define admissible feature values) and the AVM brick’s axiom into the Value
brick’s Else socket (to allow for recursive AVMs, that is, AVMs whose feature
values can be AVMs). Plugging an axiom into a socket is realized by adding a
production of the following form:

V alue ::= Value
Else ::= AVM

An external non-terminal may have any number of connections, including none.
One production is added for each connection: if there are many, then the external
non-terminal has alternative expansions; if there are none, then it has no expan-
sion and does not contribute to the generated language. This process can be illus-
trated graphically as follows (only bricks’ axioms and sockets are displayed):

260 S. Petitjean et al.

There is a cycle in this graph because we have assembled the concrete syntax for
an inductively defined type. It is possible to create several instances of the same
brick and to connect each instance differently. The method that we propose to
instantiate and connect bricks is concretely based on a configuration file using
the YAML5 syntax. For our last example, the configuration file would contain
the following code:

avm :
_Value : value

value :
_Else : avm

where avm and value are instances of the language bricks presented earlier
(multiple instances can be distinguished using a suffix). For each one, we give
the list of connections, as defined above. The context free grammar generated
by this construction is the following:

AVM ::= [Feats]
Feats ::= Feat | Feat,Feats
Feat ::= id = V alue

V alue ::= id | bool | int | string | Else

Else ::= AV M

3.2 Meta-Compiling a Modular DSL

Now that we have defined a way to assemble a DSL from a single configuration
file, let us see how to assemble the whole processing chain for this DSL from
this file.

Let us first have a look at XMG2’s architecture, which is given in Fig. 1.
XMG2 can be used by three different types of users (hereafter called pro-

files). The first profile, called User on Fig. 1, corresponds to a linguist, whose
aim is to write a description of a linguistic resource (that is, a metagrammar)

5 YAML Ain’t Markup Language. See e.g. http://yaml.org.

http://yaml.org

XMG2: Describing Description Languages 261

Fig. 1. Architecture of XMG2.

and feed it to a metagrammar compiler (so-called Meta Executor). This tool
compiles and executes the input metagrammar to generate the corresponding
linguistic resource. Concretely, XMG 1 is an instance of Meta Executor.

A new step towards modularity is that new instances of Meta Executors
can be easily assembled, by an Assembler. This type of user writes simple spec-
ifications using reusable bricks as shown previously, and a tool called Meta
Compiler automatically produces the whole processing chain (that is, the Meta
Executor) for the corresponding assembled DSL.

Bricks used for this assembly are picked from a brick library, which can be
extended by a Programmer. This profile is the only one which requires program-
ming skills. Creating a new brick consists in giving the context free grammar of
the DSL and implementing the processing chain for it.

Let us now see how brick assembly and meta-compilation work in practice. As
shown on Fig. 1, the processing chain is divided in two main parts, compilation
and generation (performed by the executor), for which we will now detail the
modular construction.

Assembling the Compiler. The type of compilers we want to assemble aims
at transforming a program written in a DSL into a logic program. The processing
chain has the following shape:

262 S. Petitjean et al.

This chain is closely related to XMG’s architecture introduced in Sect. 2. The
process starts with lexical and syntactic analysis of the metagrammar (tokenizer
and parser), creating its abstract syntax tree (AST). Then, unlike XMG, a type-
inferrer ensures the consistency of the data types inside this AST. The next step,
accomplished by the unfolder, rewrites the metagrammar using a minimal set of
flat instructions of our kernel language. Finally, these instructions are translated
into the target language (Prolog) by the code generator. To sum up, the compiler
deals with three different languages: the DSL is used for the input, the kernel
language for the output of the unfolder, and Prolog for the output of the code
generator.

We will now see how to create these five modules for each brick assembly.
As we will see, the tokenizer and parser can be automatically generated using
standard compilation techniques. For the three other modules, we will see how
treatments can be distributed over the bricks. But first, let us present two devices
of which we make heavy use, both in the code written for the bricks and in the
generated one, namely extended DCG and attributed variables.

Extended DCG. In a compiler, global and modifiable data structures are neces-
sary (e.g. tables modeling the context). This is problematic here because Prolog
does not offer such structures. The classic way to address this need in logic
programming is to use additional pairs of arguments inside predicates, one to
represent the structure before the application of the predicate, the other one
to represent it after the application. Such pairs are usually called an accumula-
tor. DCGs offer syntactic sugar to make handling accumulators easier. In case
an arbitrary number of accumulators is needed, one can use Extended DCG
[22]. This is what is done in XMG2, which contains a library based on EDCG
where one can declare accumulators, associate them with predicates, and trigger
actions on the accumulations inside these predicates.

Accumulators are accessible by their identifier, and are manipulated by the
application of the operations defined for them. For example, acc::add(H)
applies the operation add with the argument H to the accumulator acc: the
element H is added to the structure acc.

Attributed Variables. In Prolog, manipulated terms have a fixed arity, which is
a limit in our case: we wish to manipulate structures that can be constrained
incrementaly during compilation. It is for instance the case for feature structures,
whose size can be augmented by open unification. For this reason, the feature
structures brick includes a module containing a dedicated library. This library
uses the concept of attributed variables [14], which allow to associate a Prolog
variable with a set of attributes, and to design a dedicated unification algorithm
over these attributes when two variables of the same type are unified.

XMG2: Describing Description Languages 263

In practice, to handle attributed variables, we use the YAP6 library atts,
which provides two predicates to modify the attribute of a variable or to
consult it (put atts and get atts). Two other predicates are defined
by the user: verify attributes, which is called during unification, and
attribute goal, which converts an attribute into a goal. In our module for
feature structures, a variable is associated to an attribute, this attribute being
the list of attribute-value pairs composing the structure.

Lexical and Syntactic Analyses. Every brick used to build a DSL includes a file
named lang.def, which contains context free rules as those previously shown.
Each such rule is associated with a semantic action. This semantic action specifies
which Prolog term will be built when this rule is parsed. For instance, the brick
for feature structures comes with the following lang.def file:

AVM : ’[’ (Feat // ’,’)* ’]’ {$$=avm:avm($2)};
Feat : id ’=’ _Value {$$=avm:feat($1,$3)};

The second line means that when a Feat is parsed, an avm:feat/2 term is
created, its two arguments being the result of the parsing of id and the one of
Value. The parser for the DSL can be created from the lang.def file similarly
to what is done by the parser generator Yacc, where the rules for a LALR parser
are inferred from the language definition. The tokenizer for the language is also
created by extending a generic tokenizer with the punctuation and keywords
specific to the brick.

Type Inference. The type inference of the DSL program has to cope with the par-
ticular context of our tools, that is to say constrained data structures (structures
with partial information). A central problem is the typing of feature structures,
for which we follow the ideas of [16] for the typing of records, adapting it for
variable arity. The modular type inference of XMG2 is based on two predi-
cates, xmg:type stmt(Stmt,Type) and xmg:type expr(Expr,Type). A
brick needs to provide new clauses for these two predicates, for all of their local
constructors.

As an illustration, the following clause is given by the brick for AVMs:

xmg:type_expr(avm:feat(Attr,Value),Type):--
feat_type(Attr,UAttr,Type,TypeAttr),
type_def(TypeAttr,TypeDef),
value_type(Value,TypeDef),
extend_type(Type,UAttr,TypeDef),
!.

where avm:feat is a constructor of the AVM brick, Attr and Value are
variables representing a feature name and value respectively. TypeDef is the
type of the feature, which is used to check the corresponding value. The predicate

6 http://www.dcc.fc.up.pt/∼vsc/yap/.

http://www.dcc.fc.up.pt/~vsc/yap/

264 S. Petitjean et al.

extend type updates the feature type (for instance in case it refers to an
AVM).

Unfolding. The kernel language is a minimal set of flat instructions (terms of
depth one), which will be easily translated into the target language of compila-
tion. The unfolder rewrites abstract syntax trees (terms of arbitrary depth) into
instructions of the kernel language. The modularity is given in the same way
as for the type checker, thanks to two predicates, xmg:unfold stmt(Stmt)
and xmg:unfold expr(Expr,Var), for which every brick has to provide new
clauses. The following clause gives the support for the unfolding of the avm
constructor, as provided by the avm brick:

xmg:unfold_expr(avm:avm(Coord, Feats), Target) :--
constraints::enq((Target,avm:avm(Coord))),
unfold_feats(Feats, Target).

where Target is the variable which will represent the feature structure,
constraints is the accumulator where the instructions are accumulated, enq
is the enqueuing operation on this accumulator, and unfold feats a local
predicate handling the unfolding of the features.

Code Generation. We follow the same pattern for code generation. A brick
must provide clauses of the predicate xmg:generate instr(Instr) for every
instruction of its kernel language. This predicate triggers the accumulation of
prolog code. The following example shows the implementation of the code gen-
eration rules for feature structures:

xmg:generate_instr((v(T),avm:avm(Coord))) :--
decls::tget(T,Var),
code::enq(xmg_brick_avm_avm:avm(Var,[])),
!.

where decls is the table associating every variable identifier in the kernel lan-
guage with a Prolog variable, tget is the operation allowing to access variables
in this table, and code::enq is the accumulation operation for the generated
instructions.

Assembling the Executor. As shown on Fig. 1, the execution phase is handled
by three components: the Generator, which transforms Prolog code into a lin-
guistic resource and runs thanks to Prolog’s base virtual machine (VM).
The Specific VM extends the base VM to fit the linguistic description task
(e.g. performing additional treatments when solving linguistic descriptions).

Concretely, the non-deterministic program created by the Compiler is first
executed. Each successful execution of this program produces a set of accumu-
lations of constraints inside the dimensions. For each dimension which requires
solving the accumulated descriptions to obtain linguistic structures, the task
of the executor is to extract all valid models described in the corresponding
accumulation.

XMG2: Describing Description Languages 265

Note that for a given execution, each accumulation (that is dimension) is
handled by a specific solver. The solving may produce zero, one or more solu-
tions for each execution. The solutions, expressed as terms, are given to the
externalizer (still specific to the dimension) where they are translated into the
target language (XML or JSON) for storage or display.

Solving. Solving descriptions relies on the following sub processing chain:

Each accumulation created by the execution is given to the preparer, which
transforms the accumulation into a constraint satisfaction problem. The set of
constraints is then translated into executable code (Prolog code with bindings
to the C++ Gecode library7) by the solver. The extractor computes all the
solutions to the problem and translates them into a term.

Note that solvers are also packaged in bricks (but these do not provide a
lang.def file since the input language they deal with is the language of con-
straints which can be accumulated in a dimension). Note also that these solvers
can be extended by defining plug-ins to apply specific constraints on the models
being computed (e.g. natural language-dependent constraints such as clitic order
in French).

4 Application: Designing a Language to Describe Syntax,
Semantics and/or Morphology

As an illustration of the DSL assembly and meta-compilation techniques intro-
duced above, let us see how the XMG language [6] presented in Sect. 2 can be
assembled and enriched with another level of description, namely morphology, so
that one can use the same framework to describe various dimensions of language.

4.1 Defining Language Bricks for Describing Tree Grammars

As mentioned above, XMG was designed to describe tree grammars such as
Feature-Based Tree-Adjoining Grammars (FB-TAG) (see e.g. [11]). Basically,
a FB-TAG is made of elementary trees whose nodes are labelled with feature-
structures. These feature-structures associate features with either values or uni-
fication variables. The latter can be shared between syntactic and semantic
representations.

Recall from (1) and (2) defined on page 3, that an XMG description is made of
clauses containing either (i) Descriptions or (ii) conjunctive or disjunctive combi-
nations of these Descriptions. In our case, Descriptions belong to a Dimension
which is either syntax or semantics. Syntactic descriptions are tree fragments
(defined as formulas of a tree description logic), and semantic descriptions for-
mulas of a predicate logic.
7 The bindings to Gecode have been developed for the needs of XMG2.

266 S. Petitjean et al.

Descriptions. Let us first define a language brick syn for defining syntactic
descriptions (that is, syntactic statements). Such a brick contains both the def-
inition of the syntax of the language (that is, a CFG), and instructions for
processing (compiling) statements belonging to this language.

SynStmt ::= node id | node id AV M

| id -> id | id ->* id | id < id | id <+ id

A syntactic statement (SynStmt) is either the definition of a node (identified
by the value id), the definition of a node labelled with some feature-structure
(AVM), or the definition of a relation between node identifiers (-> for dom-
inance, < for precedence)8. An AVM is described using the bricks defined by
(3), (4), (5) and (6) page 5. Finally, semantic descriptions are defined using the
following brick sem:

SemStmt ::= �:p(id, . . . , id) | id << id

where p refers to a predicate, id to unification variables representing p’s argu-
ments, � to a predicate label (these are all identifiers), and << to a scope
constraint.9

Combinations. Combinations of descriptions are realized by means of a parame-
terized brick constructor DimX defined as follows (X is a lexical keyword, here
syn or sem):

DimX ::= <X>{Stmt}

This brick constructor is used to instantiate bricks of the following form:10

Stmt ::= Stmt | Stmt ; Stmt | Stmt || Stmt

which allow to describe conjunctive or disjunctive combinations of statements.
The external non-terminal Stmt makes it possible to connect either syntactic
or semantic statements (which are thus accumulated separately):

Dimsyn. Stmt ::= SynStmt
Dimsem. Stmt ::= SemStmt

4.2 Assembling Language Bricks for Describing Tree Grammars

From the language bricks defined above, it is possible to assemble the XMG
compiler. Concretely, this amounts to defining the needed assembly (that is, to

8 The + refers to the relation’s transitive closure and * to its transitive and reflexive
closure.

9 See [12] for more details about flat semantic representations.
10 In our concrete syntax, ; refers to the logical operator AND, and || to XOR.

XMG2: Describing Description Languages 267

writting the YAML configuration file where is defined which bricks to load and
how these interact).

The YAML file (named compiler.yaml) defining how to automatically
assemble the XMG compiler is given below:

mg:
_Stmt: combination

combination:
_Stmt: dim_syn dim_sem

avm:
_Value: value

value:
_Else: avm

dim_syn:
tag: "syn"
solver: "tree"
_Stmt: syn

syn:
_AVM: avm

dim_sem:
tag: "sem"
_Stmt: sem

Concretely, what this YAML file says is the following. The target metagram-
matical DSL (that is, the XMG language) corresponds to a brick named mg where
statements are defined in the brick combination. The brick combination
contains statements of type either dim syn or dim sem (these are parameters
of the combination brick). The dim syn brick contains statements defined
in the brick syn, introduced by the keyword (tag) "syn", and solved using a
solver named "tree". Statements of the brick dim sem are introduced by the
keyword "sem" and defined in the brick sem. Semantic statements do not need
to be solved (hence the absence of any solver feature). The brick syn contains
AVMs defined in the brick avm and expressions defined in value. The brick
avm is parameterized by value and vice versa, as mentioned in Sect. 3.

4.3 Adding a Morphological Layer

So far, we showed how to assemble the DSL corresponding to XMG from a library
of language bricks using a configuration file in YAML format. From this file, the
XMG compiler is automatically built. Let us now see how to add morphological
descriptions to this DSL (and recompile the corresponding meta-executor).

The morphological descriptions we will consider here are inspired by work on
Ikota, a Bantu language spoken in Gabon [7]. The idea is to describe inflected
verbal forms as (i) concatenations of ordered morphological fields (namely sub-
ject, tense, root, aspect, active and proximal) and (ii) morphological features
associated with these fields (e.g. person, number, tense, verbal class, etc.).

The metagrammar of verbal forms contains for each field alternative possible
realizations (that is, a disjunction of elementary descriptions). A verb is then
described as the conjunction of all morphological fields. The metagrammar com-
piler will compute all combinations of values of these fields (that is, all elements
of the cartesian product subject × tense × root × aspect × active × proximal)
and keep those where there is no unification failure between morphological fea-
tures. As an illustration, consider the successful combination for the inflected

268 S. Petitjean et al.

form (you will eat) below, where fields are numbered from 1
to 6.11

Verb → Subject(1) ∧ Tense(2) ∧ Root(3) ∧ Aspect(4) ∧ Active(5) ∧ Proximal(6)

→ 1 ← ò
[p = 2,
n = sg]

∧ 2 ← é
[tense = f]

∧ 3 ← Ã
[vclass = g1]

∧ 4 ← ÀK
[tense = f,
prog = -]

∧ 5 ← À
[active = +,
prog = -]

∧ 6 ← nÁ
prox = day]

→ 1 ← ò 2 ← é 3 ← Ã 4 ← ÀK 5 ← À 6 ← nÁ
[p = 2, prog = -, tense = f, vclass = g1,
n = sg, active = +, prox = day]

To extend the DSL defined above with such descriptions, we need a language
brick allowing to define morphological fields, to associate them with a lexical
form (and potentially also features), and to order them:

MorphStmt ::= field id id | field id id AV M | id >> id

Note that this brick reuses the avm and value (e.g. for identifiers) bricks already
defined above. To assemble this DSL, the YAML configuration file from Sect. 4.2
needs to be extended as illustrated below:

Basically, combinations no longer only contain syntactic or semantic state-
ments, but also statements defined in the brick dim morph. These statements
are introduced by the keyword "morph" and are of type morph. Finally, AVMs
contained in morphological statements are of type avm. From this extended
compiler.yaml file, a new XMG-like meta-executor can be compiled. This
tool can be used to describe (within the same metagrammar or not) not only
tree grammars with flat semantic representations, but also inflected forms.

Note that the DSL assembly and meta-compilation techniques introduced
here do not have as a main goal to provide users with means to design meta-
grammatical DSLs which would fit several dimensions of language at once (even
if it may be technically possible). This extension of the XMG DSL is given for
illustration purposes. The motivation underlying XMG2 is that, depending on
the target linguistic resource, one should be able to easily define and use appro-
priate DSLs. XMG2 should thus provide users with means to easily assemble
and build compilers for such DSLs (no matter which and how many of these are
needed).

11 Note that this verbal form does not correspond to the final surface form. A post-
processing is applied to (i) replace lexical A with a and K with k, and (ii) to delete

vowels to finally obtain the expected form .

XMG2: Describing Description Languages 269

5 Related Work

The meta-compilation architecture presented here exhibits two particularly
interesting properties in the context of linguistic resource engineering, namely
modularity and extensibility. It is inspired by previous work on compilation,
illustrated by systems such as LISA [13], JastAdd [9], or Neverlang [3]. All these
systems allow users to relatively easily extend compilers by defining modules.

Still, their methodology differ from ours. They all aim at offering software
designers with means to develop their own DSL by defining formal language
specifications. These specifications are often complex (for instance, in Never-
lang, assembling elementary bricks requires to solve graph dependencies), while
XMG2 allows for easy configuration using the YAML format.

Furthermore, these systems are used to extend or recreate existing substantial
compilers. As an illustration, both JastAdd and Neverlang were used to build
extensible Java Virtual Machines. We are mainly interested in providing users
with easy-to-assemble dedicated specific languages. XMG2’s philosophy is to
provide adequate DSLs, that fit the linguistic description tasks. In particular,
users should be able to reconfigure their DSL according to their needs, without
having to support a large machinery.

Also, as mentioned above, XMG2 provides three user profiles which make it
different from other approaches. Indeed, the expected JastAdd, LISA or Never-
lang users are skilled programmers. In XMG2, contributing to an assembly of
language bricks is such an easy task that users who do not know programming
can define their own DSL.

Finally, unlike previous approaches, XMG2 is based on logic programming,
which makes it particularly appropriate for describing linguistic structures since
these often use unification variables.

Apart from these approaches, to our knowledge, there are very few attempts
(in particular in the NLP community) at providing users with such an extensi-
ble and modular linguistic description framework. One may cite work on cross-
formalism language description by [4]. In their approach, the authors use a meta-
grammar compiler primarily designed for Tree-Adjoining Grammars (TAG) to
derive both TAG and Lexical-Functional Grammar (LFG) rules from a single lin-
guistic description. Their work was made possible by the fact that TAG and LFG
both relies on syntactic trees. Should users be interested in describing less related
structures within the same framework, their approach would not permit this.

Another interesting approach is that of Grammatical Framework (GF) [18].
GF is a system for designing grammars for various languages. It is based on an
abstract syntax which can be mapped to several concrete syntaxes (hence lan-
guages). A GF grammar is modular, and can be interpreted by the GF system to
parse or generate sentences. That is, GF provides a modular and extensible way
to design a specific type of linguistic resources (multi-lingual morpho-syntactic
grammars), while XMG2 tries to its best to remain agnostic regarding the lin-
guistic structures it describes.

270 S. Petitjean et al.

6 Conclusion

In this paper, we showed how to design Domain Specific Languages for describ-
ing linguistic resources, by assembling elementary language bricks. We then
presented how to concretely implement a meta-compiler which would take as
input a library of language bricks together with a configuration file defining how
to assemble a given DSL, and would produce automatically the corresponding
compiler.

This meta-compilation from a DSL specification has been used for instance to
produce a Prolog version of the XMG compiler. The resulting compiler was suc-
cessfully used to (re)compile existing large scale tree grammars for French, Eng-
lish and German [6] (the generated resources are identical to the ones produced
by the original XMG). The development of new syntactic resources was also ini-
tiated using XMG2’s modular architecture (including works on São Tomense
[20] and Arabic [2]).

XMG2’s extensibility made it possible to create new language bricks, and
thus new compilers. These were used for various description tasks, including the
development of morphological resources (lexicon of inflected forms) for Ikota [7],
the definition of new syntax-semantics and morpho-semantics interfaces (see e.g.
[15]). This work paved the way for new uses of description languages. Future work
includes extending the library of language bricks (and corresponding solvers) to
support these new uses.

Several paths remains to be explored in the context of this work, both on
the theoretical and on the practical side. First, the expressive power of certain
types of DSL needs to be further studied. As an example, we saw that DSLs
are used to describe tree-based grammars in the TAG formalism. In our case,
formulas of a dominance-based tree description logic are used and solved using
Constraint Satisfaction techniques. Alternatively formulas of a monadic second
order (MSO) logic could be considered and solved using automaton-based tech-
niques. More generally, the link between the input metagrammatical description
language (DSL) and the target grammar formalism requires more attention.
Interesting questions include the definition of the class of grammar formalisms
(resp. of formal languages) which can be captured by XMG-like metagrammat-
ical descriptions.

Second, on the practical side this approach to linguistic resource production
made the relation between software engineering and linguistic resource design
clearer. Designing precision resource is very close to designing software (one has
to deal with relatively complex formal statements and expressions) and should
thus benefit from the same kind of integrated development environments. Future
work on metagrammar meta-compilation must take this analogy into account by
providing user with facilities such as debuggers, regression tests, etc.

XMG2: Describing Description Languages 271

References

1. Abeillé, A., Candito, M., Kinyon, A.: FTAG: current status and parsing scheme.
In: Proceedings of Vextal-1999, Venice, Italy (1999)

2. Ben Khelil, C., Duchier, D., Parmentier, Y., Zribi, C., Ben Fraj, F.: ArabTAG: from
a handcrafted to a semi-automatically generated TAG. In: Proceedings of 12th
International Workshop on Tree Adjoining Grammars and Related Formalisms
(TAG+12), Düsseldorf, Germany, pp. 18–26. (2016). http://aclweb.org/anthology/
W16-3302

3. Cazzola, W.: Domain-specific languages in few steps. In: Gschwind, T., Paoli, F.,
Gruhn, V., Book, M. (eds.) SC 2012. LNCS, vol. 7306, pp. 162–177. Springer,
Heidelberg (2012). doi:10.1007/978-3-642-30564-1 11

4. Clément, L., Kinyon, A.: Generating parallel multilingual LFG-TAG grammars
from a MetaGrammar. In: Proceedings of 41st Annual Meeting of the Association
for Computational Linguistics, Sapporo, Japan, pp. 184–191 (2003). http://dx.doi.
org/10.3115/1075096.1075120

5. Copestake, A., Sanfilippo, A., Briscoe, T., de Paiva, V.: The ACQUILEX LKB:
an introduction. In: Briscoe, T., de Paiva, V., Copestake, A. (eds.) Inheritance,
Defaults, and the Lexicon, pp. 148–163. Cambridge University Press, Cambridge
(1993)

6. Crabbé, B., Duchier, D., Gardent, C., Le Roux, J., Parmentier, Y.:
XMG: eXtensible MetaGrammar. Comput. Linguist. 39(3), 1–66 (2013).
http://dx.doi.org/10.1162/COLI a 00144

7. Duchier, D., Magnana Ekoukou, B., Parmentier, Y., Petitjean, S., Schang, E.:
Describing morphologically-rich languages using Metagrammars: a look at verbs in
Ikota. In: Workshop on “Language Technology for Normalisation of Less-resourced
Languages”, pp. 55–60. LREC, Istanbul (2012)

8. Duchier, D., Niehren, J.: Dominance constraints with set operators. In: Lloyd, J.,
et al. (eds.) CL 2000. LNCS (LNAI), vol. 1861, pp. 326–341. Springer, Heidelberg
(2000). doi:10.1007/3-540-44957-4 22

9. Ekman, T., Hedin, G.: The JastAdd system modular extensible compiler construc-
tion. Sci. Comput. Program. 69(13), 14–26 (2007). http://dx.doi.org/10.1016/
j.scico.2007.02.003

10. Evans, R., Gazdar, G.: DATR: a language for lexical knowledge representation.
Comput. Linguist. 22(2), 167–216 (1996). http://www.aclweb.org/anthology/
J/J96/J96-2002.pdf

11. Gardent, C.: Integrating a unification-based semantics in a large scale lexicalised
tree adjoining grammar for French. In: Proceedings of 22nd International Confer-
ence on Computational Linguistics (Coling 2008), Manchester, UK, pp. 249–256
(2008). http://www.aclweb.org/anthology/C08-1032

12. Gardent, C., Kallmeyer, L.: Semantic construction in FTAG. In: EACL 2003, 10th
Conference of the European Chapter of the Association for Computational Linguis-
tics, pp. 123–130. Budapest, Hungary (2003). http://dx.doi.org/10.3115/1067807.
1067825

13. Henriques, P.R., Pereira, M.J.V., Mernik, M., Lenic, M., Gray, J., Wu, H.: Auto-
matic generation of language-based tools using the LISA system. IEE Proc. Softw.
152(2), 54–69 (2005). http://dx.doi.org/10.1049/ip-sen:20041317

14. Holzbaur, C.: Metastructures vs. attributed variables in the context of extensible
unification. In: Bruynooghe, M., Wirsing, M. (eds.) PLILP 1992. LNCS, vol. 631,
pp. 260–268. Springer, Heidelberg (1992). doi:10.1007/3-540-55844-6 141

http://aclweb.org/anthology/W16-3302
http://aclweb.org/anthology/W16-3302
http://dx.doi.org/10.1007/978-3-642-30564-1_11
http://dx.doi.org/10.3115/1075096.1075120
http://dx.doi.org/10.3115/1075096.1075120
http://dx.doi.org/10.1162/COLI_a_00144
http://dx.doi.org/10.1007/3-540-44957-4_22
http://dx.doi.org/10.1016/j.scico.2007.02.003
http://dx.doi.org/10.1016/j.scico.2007.02.003
http://www.aclweb.org/anthology/J/J96/J96-2002.pdf
http://www.aclweb.org/anthology/J/J96/J96-2002.pdf
http://www.aclweb.org/anthology/C08-1032
http://dx.doi.org/10.3115/1067807.1067825
http://dx.doi.org/10.3115/1067807.1067825
http://dx.doi.org/10.1049/ip-sen:20041317
http://dx.doi.org/10.1007/3-540-55844-6_141

272 S. Petitjean et al.

15. Lichte, T., Petitjean, S.: Implementing semantic frames as typed feature struc-
tures with XMG. J. Lang. Model. 3(1), 185–228 (2015). http://dx.doi.org/10.
15398/jlm.v3i1.96

16. Ohori, A.: A polymorphic record calculus and its compilation. ACM Trans.
Program. Lang. Syst. 17(6), 844–895 (1995). http://doi.acm.org/10.1145/
218570.218572

17. Pereira, F., Warren, D.: Definite clause grammars for language analysis – a survey
of the formalism and a comparison to augmented transition networks. Artif. Intell.
13, 231–278 (1980). http://dx.doi.org/10.1016/0004-3702(80)90003-X

18. Ranta, A.: Modular grammar engineering in GF. Res. Lang. Comput. 5(2), 133–
158 (2007). http://dx.doi.org/10.1007/s11168-007-9030-6

19. Sag, I., Wasow, T.: Syntactic Theory. A Formal Introduction. CSLI Publications,
Stanford (1999)

20. Schang, E., Duchier, D., Magnana Ekoukou, B., Parmentier, Y., Petitjean, S.:
Describing São tomense using a tree-adjoining meta-grammar. In: 11th Interna-
tional Workshop on Tree Adjoining Grammars and Related Formalisms (TAG+11),
Paris, France, pp. 82–89 (2012). http://www.aclweb.org/anthology/W12-4610

21. Shieber, S.M.: The design of a computer language for linguistic information. In:
10th International Conference on Computational Linguistics (COLING) and 22nd
Annual Meeting of the Association for Computational Linguistics (ACL), pp. 362–
366 (1984). http://aclweb.org/anthology/P84-1075

22. Van Roy, P.: Extended DCG notation: a tool for applicative programming in pro-
log. Technical report UCB/CSD 90/583, UC Berkeley (1990). http://www2.eecs.
berkeley.edu/Pubs/TechRpts/1990/5471.html

23. Villemonte De La Clergerie, É.: Building factorized TAGs with meta-grammars.
In: The 10th International Conference on Tree Adjoining Grammars and Related
Formalisms - TAG+10, pp. 111–118. New Haven (2010). http://www.aclweb.org/
anthology/W10-4414

24. Xia, F.: Automatic grammar generation from two different perspectives. Ph.D.
thesis, University of Pennsylvania (2001)

25. XTAG Research Group: A lexicalized tree adjoining grammar for English. Techni-
cal report IRCS-01-03, IRCS, University of Pennsylvania (2001)

http://dx.doi.org/10.15398/jlm.v3i1.96
http://dx.doi.org/10.15398/jlm.v3i1.96
http://doi.acm.org/10.1145/218570.218572
http://doi.acm.org/10.1145/218570.218572
http://dx.doi.org/10.1016/0004-3702(80)90003-X
http://dx.doi.org/10.1007/s11168-007-9030-6
http://www.aclweb.org/anthology/W12-4610
http://aclweb.org/anthology/P84-1075
http://www2.eecs.berkeley.edu/Pubs/TechRpts/1990/5471.html
http://www2.eecs.berkeley.edu/Pubs/TechRpts/1990/5471.html
http://www.aclweb.org/anthology/W10-4414
http://www.aclweb.org/anthology/W10-4414

Minimalist Grammar Transition-Based Parsing

Miloš Stanojević(B)

Institute for Logic, Language and Computation, University of Amsterdam,
Amsterdam, The Netherlands

m.stanojevic@uva.nl

Abstract. Current chart-based parsers of Minimalist Grammars exhibit
prohibitively high polynomial complexity that makes them unusable in
practice. This paper presents a transition-based parser for Minimalist
Grammars that approximately searches through the space of possible
derivations by means of beam search, and does so very efficiently: the
worst case complexity of building one derivation is O(n2) and the best
case complexity is O(n). This approximated inference can be guided
by a trained probabilistic model that can condition on larger context
than standard chart-based parsers. The transitions of the parser are very
similar to the transitions of bottom-up shift-reduce parsers for Context-
Free Grammars, with additional transitions for online reordering of words
during parsing in order to make non-projective derivations projective.

Keywords: Minimalist Grammars · Shift-reduce parsing · Transition-
based parsing · Swap transition · Two-stack automata

1 Introduction

Minimalist Grammar (MG) [14] is a formalization of Chomsky’s Minimalist Pro-
gram (MP) [4]. MG is one of the several grammar formalisms that go beyond
Context-Free Grammars (CFG) in their expressive power (both in terms of weak
and strong generative capacity). The main characteristic of MG is that con-
stituents do not only combine to make bigger constituents, but they also can
move during the course of derivation.

A standard derivation in Minimalist Program (and Minimalist Grammar)
roughly looks like this: first we enumerate the words that are going to be used
in the sentence with operation select; second, we combine operations merge
and move in building the derivation bottom-up. The operation merge (some-
times called external merge) takes two constituents and puts them together. The
move operation (sometimes called internal merge) takes a subtree and moves it
upwards to the specifier position. So even though the words enter the derivation
process in one order, by the end of the derivation they might form a completely
different word order. This resembles the distinction between deep structure and
surface structure from the early days of Generative Grammar [3]. The distinction
between deep word order and surface word order does not exist in the Minimal-
ist approach, but we will nevertheless adopt it here because it simplifies talking
about some concepts.
c© Springer-Verlag GmbH Germany 2016
M. Amblard et al. (Eds.): LACL 2016, LNCS 10054, pp. 273–290, 2016.
DOI: 10.1007/978-3-662-53826-5 17

274 M. Stanojević

Even though intuitively it might sound simple to build a recognizer (or
parser) for a formalism that contains only two simple functions such as merge
and move it turned out to be quite a difficult task. Early approaches [6,16] are
based on bottom-up chart parsing which does an exhaustive search trough the
space of all possible derivations. Because chart parsing is based on dynamic pro-
gramming, such search is formally tractable in the sense of being polynomial.
However, the polynomial complexity of chart parsing is still too high–O(n4m+4)
where n is the number of words in the sentence and m is the number of unique
movement licensees present in the lexicon.

Transition-based parsers are an alternative to chart-based parsers.
Transition-based parsers build the derivation step by step by using a set of well
defined transitions that lead from one parsing state to the next one. Because they
usually do not use dynamic programming, they cannot explore the full search
space and that is why only approximate inference is possible. However, this did
not stop transition-based parsers from matching and outperforming their chart-
based counterparts in the area of CFG, CCG and dependency parsing both in
terms of accuracy and in terms of speed [2,11,20]. Part of the reason for that is
that dynamic programming in chart-based parsers requires from the probabilistic
scoring model to condition only on the local context, while the transition-based
parsers allow conditioning on any part of the derivation that was built. So giving
up on exact inference allows us not only to gain in terms of speed but also it
allows replacing weak probabilistic models with a much more powerful ones.

The top-down MG parser of Stabler [9,15] can be considered as an instantia-
tion of transition-based parsing. It builds a minimalist derivation from top clause
node c by un-merging and un-moving the nodes in the derivation recursively.
Adding new operations to this parser requires finding a top-down equivalent of
the minimalist operations that are traditionally defined in a bottom-up manner.

This paper presents a transition-based parser that is bottom-up, thus it does
not require any changes in the definition or order of application of MG opera-
tions. It is similar to shift-reduce transition-based parsers, especially those that
use a swap transition [8,11]. Just like majority of transition-based parsers, it
employs no dynamic programming and employs approximate beam search of the
space of derivations.

The main idea that motivates creation of this parser is based on observing
that all MG derivation trees are projective trees with respect to the “deep word
order”. The displacement in the surface word order is a result of applying move
operation. So if we would reorder the words in “the right way” then parsing
should be projective and almost as easy as CFG parsing.

In the next three sections we present some background material for the
transition-based bottom-up MG parser which covers definition of Minimalist
Grammars, description of the existing chart parser for MGs and description
of transition-based shift-reduce bottom-up parser for Context-Free Grammars.
After that we fully specify the deductive system of the transition-based bottom-
up minimalist parser and show some formal properties of it.

Minimalist Grammar Transition-Based Parsing 275

2 Minimalist Grammars

Here we describe a simple version of Minimalist Grammar as presented in [18]
and [7]. This simple version does not deal with adjunction and head movement,
but these extensions can easily be added to our parser and they do not influence
the weak generative capacity of the MG [17].

A minimalist grammar G is a tuple (Σ,Sel, Lic, Types, Lex, c,F), where

Σ �= ∅ is an alphabet

Sel are “selecting features”

Lic are “licensing features”

Syn are “syntactic features” defined using Sel and Lic as a union of:
selectors = {=f |f ∈ Sel}
selectees = { f |f ∈ Sel}
licensors = {+f |f ∈ Lic}
licensees = {−f |f ∈ Lic}

Types = {::, :} are the lexical type and the derived/phrasal type

C = Σ∗ × Types × Syn∗ are “chains”

Lex ⊆ C+ is a finite subset of chains with form Σ∗ × {::} ×
(selectors ∪ licensors)∗ × selectees × licensees∗

E = C+ are expressions

c ∈ Sel is the feature used to define the complete expression s : c

F = {merge,move} are partial generating functions from E∗ to E

merge: (E×E) → E is a union of the following three functions, for s, t ∈ Σ∗, · ∈
{:, ::}, f ∈ Sel , γ ∈ Syn∗, δ ∈ licensees+, and chains α1, . . . , αk, ι1, . . . , ιl(0 ≤
k, l):

merge1
s :: =f γ t · f, α1, . . . , αk

st : γ, α1, . . . , αk

merge2
s : =f γ, α1, . . . , αk t · f, ι1, . . . , ιl

ts : γ, α1, . . . , αk, ι1, . . . , ιl

merge3
s ·=f γ, α1, . . . , αk t · f δ, ι1, . . . , ιl

s : γ, α1, . . . , αk, t : δ, ι1, . . . , ιl

An illustration of these functions is presented in Fig. 1. In the figure expres-
sions are represented as tree structures and on top of them is the list of unchecked
features of the first chain. Chains that are waiting to move are represented as
subtrees.

276 M. Stanojević

=f γ f
γ

s t

t s

=f γ f
γ

s t
s t

=f γ f δ
γ

s t

s t

δ

+f γ

s t

−f

+f γ

s t

−f δ

γ

s t

δ

t

γ

s

merge1

merge2

merge3

move1

move2

phrasal

lexical

Fig. 1. Illustrations of Minimalist Grammar generating functions.

Minimalist Grammar Transition-Based Parsing 277

merge1 is combining the lexical head and its complement. The result is a
new string in which string of the head s and the string of the complement t are
concatenated and represented with st.

merge2 is combining a phrase that contains the head with the phrase that
will be its specifier. Since specifier always comes on the left side, the resulting
string is ts.

merge3 is combining phrases whose strings are not concatenated because the
licensees δ will cause the phrase to move in the later steps of the derivation.

move: E → E is the union of the following two functions, for s, t ∈ Σ∗,
f ∈ Lic, γ ∈ Syn∗, δ ∈ licensees+, and chains α1, . . . , αk, ι1, . . . , ιl(0 ≤ k, l) and
SMC constraint defined bellow:

move1
s : +f γ, α1, . . . , αi−1, t : −f, αi+1, . . . , αk

ts : γ, α1, . . . , αi−1, αi+1, . . . , αk

move2
s : +f γ, α1, . . . , αi−1, t : −f δ, αi+1, . . . , αk

s : γ, α1, . . . , αi−1, t : δ, αi+1, . . . , αk

SMC is a simple version of “shortest move condition” [4]. It constrains the
domain of move by not allowing any of α1, . . . , αi−1, αi+1, . . . , αk to have licensee
−f as its first feature.

move1 is handling the movement of a subtree with yield t into a specifier of
the current tree. Because move1 moves subtree that is landing (it is not going
to move any more) we can safely concatenate strings into ts.

move2 is handling the movement of a subtree that will continue moving in
the later steps of the derivation because it has unchecked licensees δ, thus there
is no need for concatenating strings s and t.

CL(G) is a set of expressions generated by taking the closure over Lex and
generating functions in F .

yield(e) is defined only over complete expressions (s · c) and is an alphabet
component of the only chain in the expression e.

The language defined by the grammar G is L(G) = {s | ∃e ∈ CL(G)∧e is s·c}.
In other words, a language defined by G is the set of yields of all complete
expressions that are part of the closure of G.

3 Chart-Based Parser for MG

The first recognizers for MG were chart-based recognizers of Harkema [6] and
Stabler [16]. The parsing strategy is presented in the form of deductive rules.
These rules could be used as part of some closure computation engine, such as
the ones based on “parsing as deduction” [13], in order to get efficient inference
by using dynamic programming.

The general idea of “parsing as deduction” [13] is that we are trying to
prove that the sentence that is parsed is part of the language defined by the
grammar. We start with some claims that do not require proving i.e. axioms (for
example “from position i till position i+1 there is a word wi), and after that we

278 M. Stanojević

apply deductive rules recursively until we prove the goal statement (for example
“sentence with words w0, . . . , wn−1 has only c as an unchecked feature”) or until
we exhaust all possibilities without managing to prove that the sentence is part
of the language.

The statements that the deduction engine is working with are encoded in the
form of “items”. At any step of the parsing process, all the items can be divided
in two groups: items that can trigger further deduction and items that are proved
but they do not trigger future deduction. Items of the first group are stored in
a queue called agenda and the items of the second group are stored in a data
structure for efficient retrieval that is called chart. With this terminology we can
say that the parsing process starts with putting axiomatic items in agenda and
applying deduction rules on all of them in order. If the result of a deduction rule
can trigger future deduction, it is added both to the chart and to the agenda,
otherwise it is added only to the chart.

Items of the minimalist chart parser are essentially encodings of MG expres-
sions which instead of using strings of alphabet use ranges of covered words in
the sentence. So for example, item (2, 5) :=n v can be read as “this is a phrase
with features =n and v and it covers continuous span of words from positions 2
until position 5 in the observed word order”.

With that interpretation the following deduction rules have been proven to
be sound and complete [6], where n is the length of the sentence, wi is word at
position i and i can go between 0 and n:

axiom (i, i + 1) :: α s.t. wi :: α ∈ Lex

axiomEpsilon (i, i) :: α s.t. ε :: α ∈ Lex

goal (0, n) · c

merge1
(a, b) :: =f γ (b, c) · f, α1, . . . , αk

(a, c) : γ, α1, . . . , αk

merge2
(b, c) : =f γ, α1, . . . , αk (a, b) · f, ι1, . . . , ιl

(a, c) : γ, α1, . . . , αk, ι1, . . . , ιl

merge3
(a, b) · =f γ, α1, . . . , αk (c, d) · fδ, ι1, . . . , ιl

(a, b) : γ, α1, . . . , αk, (c, d) : δ, ι1, . . . , ιl

move1
(b, c) : +f γ, α1, . . . , αi−1, (a, b) : −f, αi+1, . . . , αk

(a, c) : γ, α1, . . . , αi−1, αi+1, . . . , αk

move2
(a, b) : +f γ, α1, . . . , αi−1, (c, d) : −f δ, αi+1, . . . , αk

(a, b) : γ, α1, . . . , αi−1, (c, d) : δ, αi+1, . . . , αk

Naturally, move is subject to SMC constraint.

4 Transition-Based Bottom-Up Parser for CFG

Before we move to the formal description of the transition-based Minimal-
ist parser, we will make a small digression and informally present a type of

Minimalist Grammar Transition-Based Parsing 279

shift-reduce parser for CFG in Chomsky Normal Form (CNF) similar to the one
presented in [10,12]. This algorithm is used as a basis on which the Minimalist
transition-based parser is built.

The state of the transition based parser is usually called configuration. A
configuration consists of two data structures: stack σ and buffer (usually imple-
mented as a queue) β. For CFG in CNF the initial configuration is an empty
stack and the buffer filled with words of the sentence that is parsed. Shift action
removes the first word in the current buffer and puts its POS tag on top of
the stack. Reduce operation takes the two elements from top of the stack and
produces a new element that goes back to the stack if there is a grammar rule
that allows that.

The deduction rules are shown bellow, where [] represents an empty stack or
an empty buffer, σ represents a stack, σ|x represents a stack that is the result of
pushing element x on top of stack σ, β represents buffer, x|β represents a buffer
(queue) with head x and tail β, G represents a CFG in CNF, w is a variable
representing any word, X,Y,Z are variables representing any non-terminal, and
S is the root non-terminal of the grammar G.

axiom
〈
[], [w1, . . . , wn]

〉

goal
〈
[S], []

〉

shift{X}
〈
σ,w|β〉

〈
σ|X,β

〉 X→w ∈ G

reduce

〈
σ|X|Y, β

〉

〈
σ|Z, β

〉 Z→XY ∈ G

Deriving the goal configuration can be done in several ways. One of them
is by using a chart-based algorithm that would compute a full closure of these
deduction rules over the axiomatic configuration. Another is a transition-based
approach where the algorithm would treat each deduction rule as a transition
and only a predefined number of high probability sequence of transitions will
be explored. The computational complexity of the transition-based algorithm is
O(n) because the number of shift transitions is not bigger than the number of
words in the sentence, and the same holds for the number of reduce transitions.
This nice property of transition-based shift-reduce parsing has caused its wide
adoption in the natural language processing community which produced many
extensions and implementations of the transition systems for semantic parsing
[19], CCG parsing [2], non-projective constituency parsing [8] and non-projective
dependency parsing [11].

5 Transition-Based Bottom-Up Parser for MG

It is striking how many of the operations and structures from transition-based
shift-reduce parsing have their counterparts in Minimalist Syntax, as described in
[4] and formalized in [5]. The stack plays a similar role to a minimalist workspace,

280 M. Stanojević

a buffer looks similar to a lexical array, a configuration is like a stage in the
minimalist derivation, shift behaves as a select operation and reduce behaves
like merge.

A big part of Shift-Reduce parser can easily be modified to give support
for Minimalist Grammars. Out of 5 rules of Minimalist Grammars, 4 are triv-
ial to integrate: move1 and move2 are essentially unary feature simplification
transitions, and merge1 and merge2 are operations that put two consecutive con-
stituents together in almost the same way as CFG does. The only complicated
cases are merge3 and empty string terminals.

5.1 Handling Discontinuities with Online Reordering

Operation merge3 causes complications because it merges discontinuous ele-
ments. To account for that, we introduce the possibility to reorder the elements
on the stack so that the constituents that are not neighbouring can be merged.
However, that is not enough because the non-head argument of merge3 will later
trigger one of the move operations that needs to satisfy neighbouring conditions.
To be able to easily check if the moving constituent satisfies this constraint, the
representations of the constituent that is used is the same as the representation
of the constituent in the chart parser: spans and their associated chains.

5.2 Explicit Generation of Empty Strings

The problem of empty strings is mostly specific to Minimalist Grammars, since
many grammar formalisms that do not have empty categories, for example CCG,
do not need to account for it. Empty string terminals are introduced just like the
non-empty string terminals by using an operation similar to shift, except that
the buffer is not influenced by the transition. The representation of the shifted
empty terminal is similar to the one in chart based parser, except that for the
span we use wildcard symbols (∗, ∗) – what that means is that the constituent
with this span is not a subject to the linear ordering constraints imposed by
merge1 , merge2 and move1 , but only to the feature matching constraints. The
interpretation of the wildcard (∗, ∗) can depend on the operation that is being
used in. For example, if we have a head with span (2, 5) and it selects the
empty constituent with span (∗, ∗) by using merge1 then we can treat the empty
constituent as if it is positioned at (5, 5) (in the gap between 4th and 5th word).
Note that the size of the span (∗, ∗) can never be bigger than 0 because it
represents only empty elements.

Being able to explicitly generate empty strings can also cause the parser to
generate empty strings ad infinitum, casing the parser to get stuck in the infinite
loop. To prevent that we can define upper number of empty strings that can be
generated for the sentence of length n which we allow to be any linear function
of n. Knowing ahead of time which linear function correctly predicts the number
of empty elements in a sentence is impossible because there might be no function
that does that (there can be infinite number of empty strings). However, for the

Minimalist Grammar Transition-Based Parsing 281

actual natural languages the number of empty strings is not infinite. A heuristic
that can be used to determine the maximal number of empty strings is the one
which assumes that: (1) empty strings appear only with function words, (2) there
is a some constant of maximal number of function projections per clause (for
example based on hierarchy of projections [1]) and (3) every clause contains at
least one pronounced word. In that case the maximal number of empty strings is
the product of the maximal number of clauses (which is the number of observed)
and the maximal number of function projections per clause. Clearly this method
is too conservative about the upper bound of the number of empty strings, so
in practice maybe a better approach would be to estimate the number on a
treebank on which the parser is trained.

5.3 Parser Description

The basic units of the minimalist transition based parser are lexical items (LI)
and minimalist items (MI). Lexical items are just indices of the words in the
sentence that is being parsed. Minimalist items are the same as the items in
the chart-based parser that was presented in Sect. 3. For clarity we surround
minimalist items with braces.

The main control structures are two stacks σ1 and σ2 and one buffer β (imple-
mented as a queue). Buffer β represents the sequence of lexical items waiting
to be selected for building the derivation. Stacks are sequences of already built
syntactic objects i.e. minimalist items. The first stack σ1 is the main stack that
is used for actual building of syntactic objects by application of merge, move and

Fig. 2. Deduction system for MG transition-based parser

282 M. Stanojević

variants of select operations. The second stack σ2 is the auxiliary stack that is
used for reordering minimalist items in σ1 (it will be explained later how). The
configuration (parser state) consists of σ1, σ2, β and an integer k that represents
the count of ε transitions (transitions that generate empty strings) that led to
that configuration.

The deduction system of the minimalist transition based parser is shown in
Fig. 2. The starting configuration of the parser is a configuration with empty
stacks (no syntactic object is built so far), buffer filled with indices of words in
the sentence and the count of ε transitions set to 0. The goal configuration that
the parser tries to get to is the one in which all elements of the buffer would be
used, there would be no elements on hold in the auxiliary stack and the main
stack has only one MI which is the complete MI (as defined for the chart parser).

The select{γ} transition takes the first LI in the buffer and puts it on top
of the main stack in the form of MI with γ chain. That happens iff there is an
entry in the lexicon where word represented by LI has chain γ. That can be done
only for non-ε entries in the lexicon because these are the only entries that can
be directly observed in the buffer. The ε entries in the lexicon are handled by
selectEpsilon{γ} transition which does not influence the buffer, but does increase
the count of the empty strings and must respect the constraint that count should
not be above some prespecified number e.

Naturally, we need a transition tmerge that uses minimalist operation merge
and transition tmove that uses the minimalist operation move. These transitions
are applied only if the logical expressions represented by the MI on top of the
main stack fall in the domain of the functions merge and move (as defined in
the chart-based parser).

Discontinuity can be achieved by reordering the words in the sentence in
such a way that the sentence becomes contiguous. We illustrate this with the
derivations of the sentence “Phong likes what Roki draws” with the following
Minimalist Grammar:

ε :: = vc

ε :: = v + whc

likes :: = c = d v

draws :: = d = d v

Phong :: d

Roki :: d

what :: d − wh

The derived tree for this sentence is shown in Fig. 3a. The leaf nodes in this tree
are ordered in the same way as is the surface word order of the sentence. The
head for each constituent is marked with an arrow-like label, which points to
the constituent which contains the head. In this derived tree it is not possible to
see in which order and where the operations merge and move were applied. In
order to see this we need a derivation tree like the one presented in Fig. 3b. In

Minimalist Grammar Transition-Based Parsing 283

Fig. 3. Trees for sentence “Phong likes what Roki draws”

this tree, the merge operation is marked with • and the move operation with ◦.
The derivation tree is a rooted unordered binary branching tree. The ordering of
nodes does not matter because merge is a commutative operation. Hence, both
Fig. 3b and c represent the same derivation tree which produces the derived tree
in Fig. 3a.

If the words in the sentence that is being parsed were ordered the way leaves
are ordered in Fig. 3b or c then parsing would be projective and the deduction
rules we defined so far would suffice. There can be exponentially many permu-
tations of the words that would make the parsing projective and it is enough if
the parser finds only one of them. We call these orderings “deep word orders”.

To achieve this reordering of the elements that are participating in parsing
we introduce two transitions to the parser: swap and takeBack . The transition
swap takes the 2nd top MI from the σ1 and puts it on top of the auxiliary σ2.
The transition takeBack returns these MI back to the main stack. By combining
swap and takeBack we can derive any permutation of the minimalist items of
the main stack. To prevent cycles of swap and takeBack there is a constraint
that starting positions of the MIs that are being swapped are in the original
word order.

A full transition sequence for the example sentence and example grammar is
given in Fig. 4. This is only one of the possible transition sequences. We could
have chosen some other sequence of swap and takeBack transitions that would
produce the same derivation tree. The key part of this example are transitions
swap and takeBack . These two transitions swap the order of minimalist items
for the words “what” and “Roki” and in this way make parsing projective.

284 M. Stanojević

F
ig
.
4
.
P
a
rt

1
o
f
ex

a
m

p
le

tr
a
n
si

ti
o
n

se
q
u
en

ce

Minimalist Grammar Transition-Based Parsing 285

Fig. 5. Part 2 of example transition sequence

286 M. Stanojević

6 Soundness, Completeness and Complexity

Here we give sketches of the proofs for soundness, completeness and complex-
ity of the transition-based algorithm. The proofs rely in big part on proofs of
soundness and complexity of Harkema’s Minimalist chart parser [6] (presented
in Sect. 3) because the transition-based parser and Harkema’s parser have iso-
morphic structure of items and operations over them.

6.1 Soundness

Proving soundness is trivial. The only part of our system that gives logical
claims about the sentence are minimalist items and they have the same form and
semantics as items in Harkema’s chart parser. All the transitions that modify
these MIs have their equivalent in Harkema’s parser. The transitions select{γ}
and selectEpsilon{γ} bijectivelly map to axiomatic rules of Harkema’s parser
while transitions tmerge and tmove directly call the corresponding Harkema’s
definitions of merge and move that were presented in Sect. 3. The transitions
swap and takeBack do not modify the mini-items so they do not influence the
soundness of the algorithm.

The deduction system presented in this paper is isomorphic to that of
Harkema’s parser. Consequently, every item reachable by the transition-based
parser is also reachable by Harkema’s parser. Since all items generated by
Harkema’s parser are sound, it follows that all of the items generated by the
transition-based parser are sound too.

6.2 Completeness and Construction of an Oracle

Even though the deduction systems are isomorphic in terms of items and opera-
tions over them, that does not entail that the set of items that can be generated
is equivalent. Harkema’s parser is proven to be complete – it can generate all the
possible sound items by starting with the axiom and then applying the deduc-
tion rules until no new items can be generated. However, the transition-based
parser has three major constraints.

The first one is that it is approximate – it will explore only the part of
the search space that is considered the most probable by the scoring model.
Obviously, this depends on the quality of the scoring model, thus for the sake
of the proof, we will assume the parser has a beam of unbounded size. In other
words, let us assume an exhaustive search where no item is pruned however
poorly scored. Our goal is to prove that with the perfect scoring model the right
derivation will be found by the transition system.

The second main difference is that operations can be applied only to the top
elements of the main stack, unlike Harkema’s parser which can apply operations
to any two items that have been derived (it has global access to its “workspace”,
which is a chart). The main question is then whether this limits the set of items
that can be deduced using the transition-based system. Given that Harkema’s
parser is complete and that all functions of Harkema’s parser are present in

Minimalist Grammar Transition-Based Parsing 287

the transition-based parser, we just need to show that for any derivation tree
there is a sequence of transitions that would derive it. This conversion of a MG
derivation to the sequence of transitions can be interpreted as a construction of
the oracle sequence of transitions. The oracle is used often in transition-based
parsing as a sequence of transitions on which the probabilistic parsing model is
trained. There are many possible oracles for any MG tree so in the probabilistic
setting all these oracles should ideally be treated as latent variables. However,
experience from other grammar formalisms shows that using just one oracle
seems to be good enough for most of the parsers.

The third difference is that all empty strings are explicitly generated in the
transition-based parser while in the chart-based parser infinite number of empty
strings can be compactly represented thanks to the dynamic programming. Since
the maximal number of empty strings that can be generated is limited by some
predefined constant e, any proof of completeness is limited to the trees that have
less than e empty strings. Here we will assume that e is infinite. In other words,
we show that for a sufficiently large e any MG derivation can be generated.

First, we cover the case in which the words of the sentence are in one of the
many possible “deep word orders” (word orders in which the derivation tree is
projective). In this case extracting the sequence of transitions is easy: we just
need to traverse the derivation tree in the post-order traversal (the “order” of the
subtrees is based on the deep order of words). Every time we encounter a leaf in
the derivation tree, it will cause a select{γ} or selectEpsilon{γ} transition. Every
time we encounter a binary branching node, it will be a tmerge transition and
every time we encounter a unary branching node, it will be a tmove transition.
So, if the words are processed in the projective “deep order” there is always a
transition sequence that will produce any projective derivation tree.

Now we show that even if the words are in non-projective word order that
they could still be processed in a projective order. Let us say that the next LI
that should come on the main stack is on the mth position in the buffer. What
we need to do is m select{γ} transitions, followed by m − 1 swap transitions.
The alternative situation is that the next element is on the mth positions in the
auxiliary stack σ2. The process is the same except that instead of invoking m
select{γ} transitions we invoke m takeBack transitions, followed by m − 1 swap
transitions.

Given that we can find transitions for any derivation in projective word order,
and that any non-projective derivation can be traversed in projective order, it
follows that we can find a transition sequence for any non-projective derivation.
This, together with Harkema’s proof of the completeness of the basic functions
merge and move that the transition-based parser uses, makes the transition-
based parser complete.

6.3 Computational Complexity

Because the transition-based parser does not pack its derivations by using
dynamic programming, its complexity with unbounded beam will be exponen-
tial in sentence length. However, since transition-based parsers are never used

288 M. Stanojević

to search trough the full space of derivations, but always with a limited beam,
we will here focus on the complexity of constructing a single derivation.

The complexity can be determined by estimating the maximal number of
times each transition type will be used. The number of transitions select{γ} is n
because it will be used only once and for each of the observed words. By design,
the transition selectEpsilon{γ} will be used maximally e times which is a linear
function of n. The maximal number of tmerge transitions is equivalent to the
maximal number of binary nodes in a binary branching tree over a n + e words
which is n+e−1. The maximal number of tmove operations is equivalent to the
number of all the licensees in the sentence. If the maximal number of licensees
that the lexicon has per entry is some constant m, then the maximal number
of licensees in the sentence is m ∗ (n + e). The number of swap operations is
equivalent to the number of takeBack operations. In the best case there will
be no swapping (all the words are in one of the possible deep word orders),
and in the worst case there will be in, asymptotic notations, O(n2) swaps and
takeBacks. Since m is constants we can say that for all operations the asymptotic
complexity is O(n), except for swapping transitions that can be between O(n)
and O(n2). So, the total complexity of building one derivation is dependent on
the swap and takeBack transitions making this parser’s worst case complexity
O(n2) and best case complexity O(n).1

7 Parsing of Finite-State Automaton

The minimalist transition-based parser can easily be extended to parse not only
sentences, but also regular sets of sentences encoded in a finite-state automa-
ton (FSA). All that needs to be modified are representations of buffer and the
select{γ} transition since it is the only transition that changes the buffer. The
buffer would now instead of a queue be an FSA that is being parsed and it would
additionally contain the pointer to the current state up until which the input
was consumed. The new select{γ} transition would pick one of the outgoing arcs
of the current state, consume the arc’s label (the same way it used to consume
the word in the buffer) and change the current state to the target state of the
selected arc. The initial (axiom) configuration would be with empty stacks and
with buffer FSA that has its current state set to its initial state. The goal config-
uration would be the same as before, except for having the additional condition
that the current state in an FSA is the final state of an FSA.

The simplicity of doing discontinuous parsing of FSAs can be crucial is some
cases when the input is ambiguous. Take for instance morphologically rich lan-
guages: doing morphological segmentation in these languages is difficult and the
selection of the right segmentation can be done only during the syntactic process-
ing because of different forms of agreement. Now instead of parsing a potentially
bad 1-best guess of the morphological analyser, we can take a full lattice that
1 Interestingly, Nivre shows that the number of swap transitions in the real dataset

for dependency parsing is very small which makes the transition-based parser run in
expected linear time [11]. Hopefully, this will also be true for Minimalist Grammars.

Minimalist Grammar Transition-Based Parsing 289

would encode many hypotheses of the possible segmentation and then let the
parser decide which one is the best. Another use case of FSA parsing is process-
ing the ambiguous output of the speech recognizer which is often encoded in
lattices.

8 Conclusion and Future Work

The transition-based parser presented in this paper, if supported by a good prob-
abilistic scoring model, could handle even the longest sentences very efficiently.
The very small computational complexity of building one derivation makes the
transition-based parser for Minimalist Grammars as fast as its counterparts for
CCG, dependency and constituency parsing.

The usual motivation for using simpler formalisms such as dependency and
context-free grammars is their efficiency. However, given that the presented
parser is asymptotically as fast as the approximate parsers for the simpler for-
malisms, the natural language processing community can start considering Min-
imalist Grammars as a possible more expressive alternative. In order for this
transition to become a reality, a necessary next step is creation of the scoring
model, as well as the creation of a Minimalist treebank on which the scoring
model would be trained.

Acknowledgments. I would like to thank Raquel G. Alhama, Joachim Daiber, Phong
Le, Wilker Aziz and Khalil Sima’an for useful discussions and comments on the early
versions of this paper. I am also grateful to the three anonymous reviewers for their
insightful comments. This work was supported by STW grant nr. 12271.

References

1. Adger, D.: Core Syntax: a Minimalist Approach, vol. 33. Oxford University Press,
Oxford (2003)

2. Ambati, B.R., Deoskar, T., Johnson, M., Steedman, M.: An incremental algorithm
for transition-based CCG parsing. In: Proceedings of 2015 Conference of the North
American Chapter of the Association for Computational Linguistics: Human Lan-
guage Technologies. Association for Computational Linguistics (2015)

3. Chomsky, N.: Syntactic Structures. Mouton & Co., The Hague (1957)
4. Chomsky, N.: The Minimalist Program, vol. 1765. Cambridge University Press,

Cambridge (1995)
5. Collins, C., Stabler, E.: A formalization of minimalist syntax. Syntax 19(1), 43–78

(2016)
6. Harkema, H.: A recognizer for minimalist languages. In: Bunt, H., Carroll, J.,

Satta, G. (eds.) New Developments in Parsing Technology. TSLT, vol. 23, pp.
251–268. Springer, Dordrecht (2005)

7. Hunter, T., Dyer, C.: Distributions on Minimalist Grammar derivations. In: Pro-
ceedings of 13th Meeting on the Mathematics of Language (MoL 2013), pp. 1–11.
Association for Computational Linguistics, Sofia, August 2013

290 M. Stanojević

8. Maier, W.: Discontinuous incremental shift-reduce parsing. In: Proceedings of 53rd
ACL (Long Papers), vol. 1, pp. 1202–1212. Association for Computational Linguis-
tics, Beijing, July 2015

9. Mainguy, T.: A probabilistic top-down parser for Minimalist Grammars (2010).
CoRR arXiv:abs/1010.1826

10. Mi, H., Huang, L.: Shift-reduce constituency parsing with dynamic programming
and POS tag Lattice. In: Proceedings of 2015 Conference of the North Ameri-
can Chapter of the Association for Computational Linguistics: Human Language
Technologies, pp. 1030–1035. Association for Computational Linguistics, Denver,
May–June 2015

11. Nivre, J.: Non-projective dependency parsing in expected linear time. In: Proceed-
ings of Joint Conference of the 47th Annual Meeting of the ACL and the 4th
International Joint Conference on Natural Language Processing of the AFNLP,
pp. 351–359 (2009)

12. Sagae, K., Lavie, A.: A classifier-based parser with linear run-time complexity. In:
Proceedings of 9th International Workshop on Parsing Technology, Parsing 2005,
pp. 125–132. Association for Computational Linguistics., Stroudsburg (2005)

13. Shieber, S.M., Schabes, Y., Pereira, F.C.N.: Principles and implementation of
deductive parsing. J. Log. Program. 24, 3–36 (1995)

14. Stabler, E.: Derivational minimalism. In: Retoré, C. (ed.) LACL 1996. LNCS, vol.
1328, pp. 68–95. Springer, Heidelberg (1997). doi:10.1007/BFb0052152

15. Stabler, E.: Top-down recognizers for MCFGs and MGs. In: Proceedings of 2nd
Workshop on Cognitive Modeling and Computational Linguistics, pp. 39–48. Asso-
ciation for Computational Linguistics, Portland, June 2011

16. Stabler, E.P.: Minimalist Grammars and recognition. In: Rohrer, C.,
Rossdeutscher, A., Kamp, H. (eds.) Linguistic Form and Its Computa-
tion, pp. 389–440. CSLI Publications, Stanford (2001)

17. Stabler, E.P.: Recognizing head movement. In: de Groote, P., Morrill, G.,
Retoré, C. (eds.) LACL 2001. LNCS (LNAI), vol. 2099, pp. 245–260. Springer,
Heidelberg (2001). doi:10.1007/3-540-48199-0 15

18. Stabler, E.P., Keenan, E.L.: Structural similarity within and among languages.
Theoret. Comput. Sci. 29, 345–363 (2003). Algebraic Methods in Language
Processing

19. Titov, I., Henderson, J., Merlo, P., Musillo, G.: Online graph planarisation for
synchronous parsing of semantic and syntactic dependencies. In: Proceedings of
21st International Joint Conference on Artifical Intelligence, IJCAI 2009 (2009)

20. Zhang, Y., Clark, S.: Syntactic processing using the generalized perceptron and
beam search. Comput. Linguist. 37(1), 105–151 (2011)

http://arxiv.org/abs/abs/1010.1826
http://dx.doi.org/10.1007/BFb0052152
http://dx.doi.org/10.1007/3-540-48199-0_15

A Compositional Semantics for ‘If Then’
Conditionals

Mathieu Vidal1,2(B)

1 Cognitions Humaine et Artificielle (CHArt), Université Paris 8, Paris, France
math.vidal@laposte.net

2 Philosophie, Pratiques & Langages (PPL),
Université Grenoble Alpes, Grenoble, France

Abstract. This paper presents the first compositional semantics for if
then conditionals. The semantics of each element are first examined sep-
arately. The meaning of if is modeled according to a possible worlds
semantics. The particle then is analyzed as an anaphoric word that places
its focused element inside the context settled by a previous element. Their
meanings are subsequently combined in order to provide a formal seman-
tics of if A then C conditionals, which differs from the simple if A, C
form. This semantics has the particularity of validating contraposition for
the first type but invalidating it for the second type. Finally, a detailed
examination of the sentences presented in the literature opposing this
schema of reasoning shows that these counterexamples do not generally
concern if then conditionals but, rather, even if conditionals and that
contraposition is therefore a valid means of reasoning with regard to if
then conditionals in natural language, as this system predicts.

Keywords: Conditional logic · If · Then · Contraposition

Introduction

[16] has observed that the addition of then to even if conditionals is unsuitable:

(1) Even if John is drunk, Bill will vote for him.
(2) # Even if John is drunk, then Bill will vote for him.

This example clearly dispels the misconception whereby the addition of then to
a conditional does not change its meaning. [1,19,30] and their followers have
implicitly adopted this position in their theories, according to which no formal
distinction is made between the if A, C, the even if A, C, and the if A then
C forms. In this paper, I shall try to overcome this limitation by providing a
compositional analysis of the meaning of if then conditionals. More precisely,

M. Vidal—I would like to thank Philippe Schlenker for suggesting to develop the
ideas from [37] in a compositional way, the referees and Denis Perrin for their help
to improve the paper, and the editors for the publication of these proceedings.

c© Springer-Verlag GmbH Germany 2016
M. Amblard et al. (Eds.): LACL 2016, LNCS 10054, pp. 291–307, 2016.
DOI: 10.1007/978-3-662-53826-5 18

292 M. Vidal

I will present a formal semantics for both if and then, ultimately showing that
their combination leads to a particular semantics for the if then form.

This article is the first formal attempt to provide a compositional analysis
of the formal semantics of the if then conditional in terms of the elements if
and then. Indeed, previous explanations of the meaning of then, such as those
proposed by [16,20] were pragmatic. On the contrary, I argue for a formal analy-
sis because the mathematical description it employs provides a more precise
explanation. Furthermore, its treatment can often be automated on a computer.
Finally, by having a different semantics, the various conditionals validate differ-
ent forms of reasoning.

This theory concerns both indicative and subjunctive conditionals. Indeed,
a similar problem occurs in counterfactuals, such as in the following examples:

(3) Even If John had been drunk, Bill would vote for him.
(4) # Even If John had been drunk, then Bill would vote for him.

As the difference between the indicative and the subjunctive has no impact on
this issue, I shall refrain from examining the moods used in conditionals in this
paper. I will also not be dealing with embedded conditionals (as if A then if
B then C) and chains of conditionals (as if A then B and if B then C). These
forms of reasoning display dynamic features, so, for the sake of simplicity, I will
limit my analysis to a static approach in this initial presentation of the theory.

This article is divided into four parts. Section 1 presents the semantics for
if. Section 2 introduces the formal semantics for then, for cases both inside and
outside conditionals. Section 3 deals with the compositional semantics obtained
by combining if and then and details the main schemas of reasoning that are
valid for this approach. Section 4 focuses on contraposition in order to show that
its validity, which the theory predicts, dovetails the facts observed in natural
language, contrary to what is usually argued in the field.

1 If

A conditional is a linguistic expression composed of two clauses. One clause,
called the protasis or the antecedent, states the conditions under which the other
clause, called the apodosis or the consequent, is considered true. The marking of
conditional sentences differs greatly between natural languages. However, accord-
ing to [5], the general strategy is to mark the protasis using a lexical element,
a particular inflectional morphology, or a purely syntactic means. If we take
English as our reference language, the simplest syntactic form of a conditional
is if A, C, with A being the protasis, C the apodosis, and if the marker of
conditionality.

For the semantics of the if, I will draw upon [38]’s proposal. The semantics
presented in that paper were already successfully combined with the semantics
of even in order to provide the meaning of the even if conditional. The other
advantage of this approach is that it can be seen as a refined version of Stalnaker’s
semantics, in which the problem of unconnected conditionals is resolved. For

A Compositional Semantics for ‘If Then’ Conditionals 293

Stalnaker, a conditional if A, C is true in a possible world w if the closest
A-world of w is also a C-world. [7] refined this semantics in order to select
not only one world, but a set of possible worlds as the closest worlds in which
the antecedent is true. That is the version I shall discuss here. Since w is the
closest world to itself in this semantics, as soon as the antecedent is true in
the initial world, this initial world is also the world in which the consequent is
evaluated.1 The unfortunate result of this is that, if the consequent is also true
in the initial world, the whole conditional is true, regardless of the links between
the antecedent and the consequent. For instance, the sentence “if Mickey Mouse
has four fingers per hand, Mickey Mouse has big ears” is automatically true,
despite the lack of connection between its components. The associated schema
of inference is called Conjuctive Sufficiency (CS): A,C � A ⇀ C.2 This inference
of a conditional from a conjunction has already been criticized from an intuitive
point of view by [22] and the psychological experiments conducted in [21] and
[29] show that it is also not endorsed by ordinary subjects.

To resolve this issue, Vidal proposes breaking the process of evaluation down
into two parts. Prior to this evaluation, the subject can hold one of three positions
concerning the antecedent: it is either believed to be true, believed to be false,
or believed to be neither true nor false. During the first step of evaluation,
the antecedent is inhibited. This means that it is no longer believed to be true
or false. The position concerning the antecedent is now neutral (neither true
nor false). The first advantage of this inhibition is that, if the antecedent was
previously believed to be false, it can now be added to the stock of beliefs
without leading to a contradiction. The second advantage of this inhibition is
that, if the antecedent was previously believed to be true, its addition can be now
accomplished with slight variations. This addition to the stock of beliefs occurs
during the second step of the evaluation, the antecedent being reconstructed in
several different ways. If the consequent is obtained in all of the reconstructions
of the antecedent, the conditional is declared true.

These ideas can be turned into a formal semantics. In the present paper,
I will only expose the main elements. The reader is referred to Appendix A of
[38] for all the technical details. A stock of beliefs is represented by a set of
possible worlds. In our case and to put it simply, the initial beliefs are rendered
by a unique possible world. As some sentences are no longer believed to be true
or false during the judgment, some of the possible worlds of this semantics are
trivalent. The step of inhibition is modeled through what is called a neutraliza-
tion function, noticed n. The step of reconstruction is modeled through what is
called an expansion function, noticed e. There are limits on the possible recon-
structions of the antecedent. Some of them are too absurd or too improbable
to be considered. Hence, only a part of them is envisaged, and they are con-
strained by what is called a universe of projection. An important aspect of this

1 According to Chellas’s semantics, the following condition holds: if w ∈ [A], then
fw(A) = {w}.

2 The symbol ⇀ stands for the if A, C conditional.

294 M. Vidal

Fig. 1. Basic semantics of the conditional

universe of projection is that, at the end of the judgment, the antecedent and
the consequent are either true or false in each possible reconstruction envisaged.

This semantics for the conditional “if A, C” is depicted in Fig. 1, in which
w stands for the starting world of evaluation and the square for the universe of
projection.

More formally, the meaning of the word if is the following:

Definition 1 (Meaning of If). Let w be a possible world, λ the lambda abstrac-
tor, X and Y some sentences, [X] and [Y] their truth-sets, n a neutrality function
and e an expansion function both governed by the universe of projection U used
to evaluate the conditional at hand. Then, the meaning of if is

[(if X) Y] =

{
1 if λXλY nw(X) �= ∅ ∧ enw(X)(X) ⊆ [Y]
0 if λXλY nw(X) = ∅ ∨ enw(X)(X) � [Y]

We obtain the following truth-conditions for the sentence if A, C.

Theorem 1 (Truth-Conditions of If).
�w (if A) C iff in the associated universe of projection U

(i) nw(A) �= ∅
(ii) enw(A)(A) ⊆ [C]

Proof (Truth-conditions of if A, C).
[if] = λXλY nw(X) �= ∅ ∧ enw(X)(X) ⊆ [Y]
[if A] = λY nw(A) �= ∅ ∧ enw(A)(A) ⊆ [Y]
[if A, C] = nw(A) �= ∅ ∧ enw(A)(A) ⊆ [C] ��

The first condition says that the inhibition of the antecedent must be success-
ful, meaning it does not lead to an empty set of worlds. The second condition
says that, by starting from this state of inhibition and by reconstructing the
antecedent, all of the possible reconstructions are worlds in which the conse-
quent is also true. In this semantics, the schema CS is no longer valid. Indeed,
several reconstructions of the antecedent are considered. Hence, if the antecedent
and the consequent are true in the initial world, this initial world is only one
of the possibilities envisaged for the whole evaluation of the conditional. Other
possibilities in which the antecedent is true but the consequent is false can also
be obtained. This constraint is represented by a weaker semantic condition, com-
pared to the one used in Chellas’s system.3

3 If w ∈ [A] and nw(A) �= ∅, then w ∈ enw(A)(A).

A Compositional Semantics for ‘If Then’ Conditionals 295

Fig. 2. Invalidity of the strengthening of the antecedent

An important consequence of this semantics is the non-monotonic behavior
of the conditional. Indeed, the neutralization of two different sets of sentences
can potentially lead to two different universes of projection. This feature is the
main mechanism behind the invalidation of the strengthening of the antecedent:
A ⇀ C � (A ∧ B) ⇀ C. Consider the oft-used example “If Tweety is a bird,
Tweety flies.” For the premise, the conditional can be declared true because the
most well-known type of bird is envisaged, meaning a flying bird. However, in
the consequence “If Tweety is a bird and Tweety is a penguin, Tweety flies,”
the addition of a new antecedent forces us to reconsider a few assumptions, thus
calling into question the hypothesis that we were talking about a flying bird. This
mechanism is illustrated in Fig. 2 in which different sets of neutralized sentences
lead to different expansion sets and ultimately to different truth-values.

Notice that this feature also explains that contraposition is invalid in this sys-
tem: A ⇀ C � ¬C ⇀ ¬A. Indeed, the set of neutralized sentences is {A} for the
premise and {¬ C} for the consequence, implying that the two set relationships
occur within two different universes of projection and are therefore not related.
For that same reason, transitivity is also invalid: A ⇀ B,B ⇀ C � A ⇀ C. Since
the two premises respectively have {A} and {B} as inhibited sentences, their set-
theoretic relationships again occur within two different universes of projection
and cannot be combined to deduce the consequence. The invalidation of these
three last schemas of reasoning is in line with the conditionals logics proposed
by [19,30].

2 Then

I would now like to examine the semantics of then. It generally means at that
time, at that place, or in that case, depending on the temporal, spatial, and logical
interpretation. It embeds a phrase and relates it to a previous one. The preced-
ing phrase can be either explicit such as the sentence that came just before or
implicit. Hence, then is an anaphoric word that picks up the context of a prior
element in order to place the subsequent element in this context. The refereed ele-
ment is made redundant in order to say that the subsequent element occurs during
or just after these circumstances or this place. Consider the following example.

296 M. Vidal

(5) We went to the beach. Then, we went to the museum.

The excursion to the sea is the first phase. Then indicates that the museum
visit occurred just after. The succession of the two events is made explicit by
the particle then. Without it, the temporal order between them would be left
undefined, such as in “We went to the beach. We went to the museum.”

The temporal relationship is not necessarily one of succession, but sometimes
one of cotemporality, such as in “I remember when I was young. Life was easier
then.” In this case, the fact that life was easier is true within the stretch of time
described as the narrator’s youth. The same ambiguity does not occur when
spatial relationships are considered. The sentence “Standing beside my mother
is my father, then my sister” suggests a relationship of succession, in which each
person stands next to the other. But when we want to express a colocation
between two elements, the particle there is preferred over the particle then, such
as in the sentence “I remember this hill. A magnificent oak was standing there.”

Among the researchers who are interested in the semantics of then, some
focus on the use of then inside conditional sentences and do not really consider
the other cases (see [10,16,28]). Furthermore, they wait it to be combined with
the conditional before giving a precise definition of its meaning. Their solution is
therefore not sufficiently general to be satisfactory. I will examine their proposals
in detail later on.

I shall now give a formal definition, remaining at the most general level
of abstraction. As usual for the study of natural language, this definition is
contextual. The precise elements on which then focuses depend on the situation.
Furthermore, the precise result depends on the kind of reasoning, be it temporal,
spatial, or logical.

Definition 2 (Meaning of Then). The meaning of then is a function noted
g[then]CX ,Y which takes two elements CX and Y as inputs. CX is the set of
circumstances linked to the first element X. Y is simply the second element. The
value of g[then]CX ,Y is CX,Y . This means that Y is placed in the circumstances
initially linked to X.

Hence, the meaning of then is a function that incorporates the focused phrase
into the context stated by the preceding discourse.

I would like to examine how this semantics applies to (5). The first sentence
expresses that a group to which the narrator belongs went to the beach in the
past. The circumstances here are temporal. The past circumstances can be noted
by P and the sentence “We go to the beach” by X. Hence, the first input element
is PX . The second input element is Y, referring to the fact that the group went
to the museum. The application of then results in the final relationship PX,Y .
More explicitly, Y led to X in the past.

This definition involves the following consequence. The first input, of which
the constituents are the circumstances, must precede then. Indeed, in order to
be anaphoric, the refereed element must have already occurred in the discourse.
Concerning conditionals, the preceding clause is the antecedent. That explains

A Compositional Semantics for ‘If Then’ Conditionals 297

why then can only be used when the protasis precedes the apodosis (6), and not
in the opposite order (7), contrary to an if A, C conditional (8–9):

(6) If it’s sunny, then I’m happy.
(7) # Then I’m happy, if it’s sunny.
(8) If it’s sunny, I’m happy.
(9) I’m happy if it’s sunny.

This constraint does not generally hold for the second input. Sometimes, it can
be asserted before then, for instance in “Weather was milder then.” But it can
also appear afterward, such as in sentence (5). Another consequence of this
definition is that the first input cannot be absent. Indeed, it is very difficult to
randomly begin a discourse using the word then. Without an element to refer
to, its presence would be deemed odd or cumbersome. I am not saying that it
is totally impossible. One could choose to use it for rhetorical reasons. From
a logical point of view, however, this missing element would render the usual
function of then inapplicable. Similarly, the second input is generally present. If
a speaker ends a sentence without providing this element, it forces the listener
to guess it. For instance, it can be used to scare a disobedient child, such as in
“Be careful! If you do that, THEN . . . ” The consequences are such a frightening
prospect that they cannot be uttered.

Then is primarily used temporally and logically. The acquisition of these
two different forms of reasoning must in some way be linked. [18] sums up the
studies of the developmental acquisition of conditionals in the following way.
Young children interpret them as conjunctions, older children as biconditionals,
and adults as conditionals. Notice that the meaning of a logical conjunction
does not include a relationship of succession because A ∧ B is equivalent with
B ∧ A. The biconditional is also a relationship of equivalence between A ≡ B
and B ≡ A. This symmetry does not hold for the conditional, and this part
of its meaning is probably acquired through the relationship of succession in
temporal reasoning. Jean Piaget’s four stages of cognitive development confirm
this relationship between both types of reasoning (see [23]). According to Piaget,
during the concrete operational stage, which occurs from ages 7 to 11, the child
learns to use several operations and classify elements among them. At the end
of this stage, the child acquires the spatio-temporal system of common-sense
reasoning. During the final stage, known as the formal operational stage, which
occurs starting at the age of 12, the adolescent is able to reason abstractly and,
in particular, to perform hypothetical reasoning. Hence, the temporal meaning
of then is probably learned before it is applied to conditional reasoning.

This might explain why several researchers in linguistics, such as [15,27,33]
favor the temporal meaning over other uses of the word. Their main discovery is
that the signification of then depends on its position. In a clause-initial position,
then entails a reading of succession. In a clause-final position, it is understood
as having a cotemporal meaning. Thompson tries to explain this dichotomy by
using the difference between the event time and the reference time used by [26] to
describe the temporal discourse. She argues that, in a final position, then focuses
on the Verb Phrase and links its event time with the event time of the preceding

298 M. Vidal

clause. Both event times are therefore cotemporal. On the contrary, when then
is in an initial position, it focuses on the Inflectional Projection and links its
reference time to the reference time of the preceding clause. In this case, both
event times are not linked and are therefore not cotemporal, but ordered. The
weakness of this argument lies in this last inference. As soon as two event times
are not linked by then, there is no reason why any temporal ordering should occur
between them and why this ordering should be a relationship of succession. The
exact mechanism allowing the cotemporal or the ordered reading, depending on
the position of the adverb, is at best described although not explained in this
setting.

The difference in the meaning of the temporal then can be more easily
explained in the following way. The ordering of the words in the discourse is
similar to the temporal ordering of the events referred by the words. With then
in an initial position comes the following form: A then B. Because then is an
anaphoric word of the preceding clause, the ordering of these elements is there-
fore: A A B. In this case, B clearly occurs after A and succeeds to it. On the
contrary, when then is in the final position, the pattern is as follows: A, B then.
Again, as then has an anaphoric function, the exact ordering of the elements
is: A B A. The element B is flanked by two elements A, both of which are
therefore cotemporal. This iconic explanation is based on the similarity between
the ordering in the discourse and the temporality of events and is simpler than
Thompson’s attempt.

3 If Then

We arrive now to the main objective of this paper: obtaining a compositional
meaning for if then conditionals, based on the definitions given for the meaning
of if and then in the two preceding sections. Considering the combination of if
and then, it becomes clear that the association between the particle if and the
antecedent constitutes the base for the set of circumstances that is the first input
of the semantics of the particle then. It is also clear that the consequent is the
second input of this function. However, this compositional semantics leads to the
following question: what exactly are these circumstances that constitute the first
input? I argue that, in this case, the set of circumstances is constituted by the
possibilities representing the inhibition of the antecedent, which occurs during
the first phase of evaluation of a conditional. For the record, this inhibition is also
called neutralization and is represented by the function n in the formal semantics.
The first reason for this choice is that, just before the assertion of the then, only
the antecedent has been uttered. This means that only the inhibition phase can
be completed at this time. Indeed, the reconstruction phase is always missing
the consequent to be proceeded. The second reason for this adoption is that
the neutralization can be considered as the context determining the universe
of projection in which the final evaluation will be conducted. Indeed, in this
semantics, a different set of inhibited sentences leads to a different universe of
projection. Being the context of a conditional, the set of possibilities envisaged

A Compositional Semantics for ‘If Then’ Conditionals 299

at the end of the inhibition phase is therefore the first input of the meaning
function of the then.

Definition 3 (First Input of Then when applied to If). For a conditional,
the first input of the meaning function of then is the set nw(A) with n being the
neutrality function, w the starting world of the evaluation, and A the antecedent
of the conditional.

With this definition, placing the second element within the context of the first
element means that the consequent is also among the set of inhibited sentences.
It is added to the antecedent to form the set of sentences that are explicitly
neutralized. Thus, the conditional if A then C receives the following meaning.

Theorem 2 (Truth-conditions of if then).
�w if A then C iff

(i) nw(A,C) �= ∅
(ii) enw(A,C)(A) ⊆ [C]

Proof (Truth-conditions of if A then C).
[if] = λXλY nw(X) �= ∅ ∧ enw(X)(X) ⊆ [Y]
[if A] = λY nw(A) �= ∅ ∧ enw(A)(A) ⊆ [Y]
[if A then] = λY nw(A, Y) �= ∅ ∧ enw(A,Y)(A) ⊆ [Y]
[if A then C] = nw(A,C) �= ∅ ∧ enw(A,C)(A) ⊆ [C] ��

The addition of then modifies the basic semantics by incorporating the con-
sequent into the set of inhibited sentences. In the simple if A, C form, this
neutralization was optional. It now becomes mandatory with the presence of
then. This means that if the consequent reappears in each world in which the
antecedent is true, both of them are linked in a stronger way. Indeed, in the
if A, C form, the consequent was not necessarily inhibited. Its presence in the
A-worlds can therefore be explained by a potential non-inhibition, which has
nothing to do with the presence of the antecedent. With the if A then C form,
the consequent is no longer believed to be true or false at the end of the inhi-
bition phase. If the conditional is true, the reappearance of the consequent in
each A-world means that its occurrence is in one way or another linked to the
occurrence of the antecedent. Their copresence can no longer be fortuitous.

I would like now to review the differences between this proposal and the most
well-known approaches to the meaning of if then conditionals. The only really
formal predecessor to this theory is the one proposed by [2], who argues for
a compositional analysis, but one that is restricted to counterfactuals. Indeed,
Alonso-Ovalle surprisingly chooses the consequent and more precisely its inner
would item as bearing the main meaning of conditionality. However, an extension
of this analysis to the indicative case seems doomed to fail because this mood
does not contain such an auxiliary modal verb. Furthermore, this choice does not
dovetail with the general strategy present in most natural languages (particularly
in English), which is to modify the antecedent and not the consequent by using
the word if in order to signal a conditional sentence [5].

300 M. Vidal

The biconditional approach is defended by [8], who argue that then locates
the obtainment of the consequent in the event associated with the antecedent. By
contrast, this obtainment does not hold in other alternatives. As a consequence
(see p. 145), “then allows for the ‘∼P,∼Q’ inference precisely because it is a
deictic referent for a mental space. It consequently both brings up the idea that
P is the unique mental space in which Q is ‘located’ and explicitly marks the
relevant connection between P and Q as causal and/or sequential.” Dancygier
and Sweetser adopt both the “P, Q” and the “∼P,∼Q” inferences, thus defending
a biconditional interpretation of the if then conditional. This position has some
problems. First, when the biconditional is explicitly asserted in natural language,
it is with a different form: if and only if. There is no reason why these two
forms, which differ syntactically, are equivalent from a semantic point of view.
This equivalence would at least need to be justified. Another problem with a
biconditional interpretation is that the occurrence of the consequent entails the
occurrence of the antecedent, as in the following inference: A iff C, C. Thus A.
But this inference is not always valid for the if then form. For instance, speaking
about tennis, I could say, “This is a match point. If she wins the next point,
then she wins the match.” But subsequently knowing that she won the match,
I cannot conclude that she won this match point precisely because she perhaps
needed some others. For both of these reasons, the biconditional interpretation
is implausible.

The last important approach that I would like to examine is defended by
[10,16,28], with some variations. For them, the if then conditional carries the fol-
lowing implicature: there are some cases in which the negation of the antecedent
is present with the negation of the consequent. As Iatridou says, “Then ‘carries
the presupposition’ that ‘∼p is compatible with ∼q’, which is weaker that ‘∼p
implies ∼q’.” This approach has the advantage of not implying a biconditional
interpretation. In Schlenker’s version, then is a strong pronoun, and “in the case
of then in if p, then q, the implicature is that some non-p worlds are non-q
worlds.” This is Iatridou’s idea expressed in a possible world semantics.

While this idea works in a lot of cases, there are counterexamples. For
instance, I can say, “All these sweets are green. If they are green, then they are
peppermint candies.” In that case, the speaker knows perfectly well that there
are no non-green candies in the bag. The implicature is therefore implausible.
However, the main problem of this approach is its direct usage of the negation
in the implicature. When then is used outside conditionals, the negation is not
a part of its meaning. Its import for the implicature is therefore completely arti-
ficial. If we again take our example (5) “We went to the beach. Then, we went
to the museum,” we see that the temporal interpretation only carries the idea of
succession. If we also consider then in isolation, it is simply an anaphoric word,
the meaning of which does not contain the idea of negation. To sum it up, the
issue faced by this approach is that the use of negation for conditional cases
cannot be derived from a more general theory of then.

On the contrary, the theory I am proposing in this paper makes it possible
to formally derive a particular property for if then conditionals, without refer-
ring to any additional implicature or other pragmatic principle. As Iatridou and

A Compositional Semantics for ‘If Then’ Conditionals 301

Schlenker argued, along with Dancygier and Sweetser, this effect concerns the rela-
tionship entertained by the negation of the antecedent and the negation of the
consequent, but this relationship is not exactly what they proposed. Indeed, the
new schema of reasoning that is introduced in this semantics is contraposition:
from “If A, then C”, we can immediately deduce “If not C, then not A”.

(10) If I have money, then I buy bread.
(11) If do not buy bread, then I have no money.

Hence, what is predicted is that all the cases in which the consequent is
false are cases in which the antecedent is false. There is therefore no bicondi-
tional interpretation. Furthermore, there is no obligation for such cases to exist.
Intuitively, the validity of contraposition is obtained in the following way. The
truth-conditions obtained for “if A then C” implies that the inhibition of A and
C was successful. Inhibiting sentence A leads to no longer believing it to be true
or false. Hence, the inhibition of a sentence is equivalent to the inhibition of its
negation. Therefore, the inhibition of A and C is equivalent to the inhibition of
¬C and ¬A. They define the same context of evaluation. Inside this universe of
projection, all the A-worlds are C-worlds. As all these worlds are bivalent con-
cerning the antecedent and the consequent, all the ¬C-worlds are ¬A-worlds.
This therefore makes it possible to conclude that “if ¬C then ¬A” is true.4

4 A Defense of Contraposition for If Then Conditionals

The idea that contraposition is a valid schema of reasoning for if then condi-
tionals goes against what is usually argued in the related literature, which is
why I shall now present a detailed defense of this position. Some authors, such
as [13,14,32,35,36], reject the usual counterexamples to contraposition by using
pragmatic principles. They argue that these counterexamples are conversation-
ally infelicitous and cannot be counted against their theories. They also apply the
same mechanism to reject counterexamples to other patterns of inferences such
as the strengthening of the antecedent or transitivity. I adopt a different position
by considering the counterexamples to these different schemas of reasoning to
be generally correct and that they should not be removed by a call to pragmatic
principles. In particular, the invalidity of the strengthening of the antecedent
shows that the conditional is a non-monotonic connective, and this invalidity
should be kept in a correct theory of hypothetical reasoning. Furthermore, there
is nothing to say against most of the counterexamples to contraposition, except
that they do not apply to the if then form.

I would like to illustrate this point using a concrete case. [4] gives the fol-
lowing definition of a conditional early on in his study (see p. 3): “An item is
4 More formally, in the settings defined in Appendix A by [38], from if A then C,

we have nw(A, C) �= ∅ and enw(A,C)(A) ⊆ [C]. From nw(A, C) �= ∅ and (neut), we
obtain nw(A, C) = nw(¬C, ¬A) and nw(¬C, ¬A) �= ∅. By enw(A,C)(A) ⊆ [C] and set-
theoretic equivalence in the universe of projection U, we obtain enw(¬C,¬A)(¬C) ⊆
[¬A].

302 M. Vidal

a conditional if it is expressed by an English sentence consisting of ‘If’ followed
by an English sentence followed by ‘then’ followed by an English sentence.”
However, when it later comes time to give a counterexample to contraposition
(see p. 172), he makes the following curious choice: “(Even) if the British and
Israelis had not attacked the Suez Canal in 1956, the Soviets would (still) have
invaded Hungary later in the year.” Hence, Bennett considers conditionals to
be part of the if then form but uses a concessive conditional (an even if form)
to provide a counterexample to contraposition. This surprising choice can be
explained by considering that most theories of conditionals do not provide a
different semantics when the if is enriched by additional particles such as even
and then. However, as soon as an analysis takes into account these additional
particles, the assimilation between the even if and the if then forms cannot be
maintained. Furthermore, if the validity of contraposition differs for these two
forms in natural language, a formal theory not taking this level of analysis into
account misses an essential point. It is therefore primordial to check whether
the invalidity of contraposition for if then conditionals is a reality in everyday
reasoning. To do so, I would like to give an overview of the related literature to
see whether a convincing counterexample to this schema can be found.

4.1 Cases Not Using the If Then Form

Almost all the counterexamples to contraposition found in books or articles on
the subject do not concern if then conditionals. As seen in [4], the majority of
them concern concessive conditionals. Indeed, they can be reformulated along
the “even if” pattern without their meaning being modified, as shown below by
adding parentheses around the word even when needed.5

(12) (Even) if Boris had gone to the party, Olga would still have gone.
(13) (Even) if it rains tomorrow there will not be a terrific cloudburst.
(14) My car would still be white even if the maple tree in my front yard died.
(15) (Even) if Goethe hadn’t died in 1832, he would still be dead now.
(16) (Even) if you open the refrigerator, it will not explode.

Notice that these sentences are taken from some of the most famous works in
the field. Furthermore, some of their authors - for instance Lewis or Adams -
were primarily uninterested in even if conditionals, and their usage precisely
at this point is rather suspicious. If these authors did not find any sufficiently
convincing counterexample to the if then form and were forced to use an even
if form, it is surely because such a sentence is not so easily found.

A variant of this dismissal of the contraposition uses relevant conditionals
(also referred to as “biscuit” conditional or “nonconditional” conditional). The
following are some examples of this type sentences, taken from [3], [12] and [17]
respectively.

5 (10) to (14) are respectively from [1,19,24], Kratzer cited in [11] and [20].

A Compositional Semantics for ‘If Then’ Conditionals 303

(17) If you are hungry, there are biscuits on the table.
(18) If you don’t mind, I’m trying to read.
(19) If you had needed some money, there was some in the bank.

Again, these sentences cannot constitute counterexamples to the if then form
because the particle then cannot be added to them felicitously. Furthermore, it is
widely agreed that relevance conditionals deserve their own particular treatment.

4.2 Simple Cases of the If Then Form

To my knowledge, there are only two counterexamples to contraposition that
adopt the if then form in the literature.6 The first one, given by [30], is well
known because it was published in the first article that presented a possible world
semantics for conditionals invalidating contraposition. However, this example
has not been reused in later works by other authors, showing that it is certainly
deficient. The sentence is as follows:

(20) If the U.S. halts the bombing, then North Vietnam will not agree to nego-
tiate.

The sentence sounds odd and is difficult to understand. It can be explained
by recalling what happened during the Vietnam War. The speaker does not
mean that as long as the U.S. continues the bombing, North Vietnam will agree
to negotiate and that this will change if the U.S. takes the opposite stand.
Negotiations between the U.S. and North Vietnam took place in 1973, after ten
years of intense bombing and only once the U.S. was considered to have lost
the war, as far as public opinion was concerned. Here, the speaker wants to
offer another meaning: bringing a halt to the bombing is a favorable factor for
sparking negotiation, but is on its own insufficient for bringing North Vietnam to
the negotiating table. A felicitous expression of this relationship would be “Even
if the U.S. halts the bombing, North Vietnam will not agree to negotiate.”

Stalnaker thus makes a grammatical error using an if then form when the
correct formulation requires an even if form. Some could consider it completely
licit to use the if then form to carry the meaning of a concessive conditional.
Indeed, language is governed not by explicit rules, but by practice. As soon
as the audience is able to decipher the intended meaning, the exact syntactic
form used is unimportant. In this case, this argument does not hold. Indeed,
the psychological experiment presented by [9] shows that, when an antecedent
is deemed as not presenting evidence for the consequent (the concessive mean-
ing), almost all subjects do not accept the if then form as a correct assertion.
Both expressions therefore differ in meaning and cannot be freely exchanged in
a conversation without running the risk that most listeners will not understand
the exact meaning or will simply reject the utterance. Stalnaker, surely knowing

6 There are only two counterexamples in the major works. The literature on condi-
tionals is so huge that nobody can claim to have read all the articles or books on
this subject.

304 M. Vidal

his counterexample to be deficient, adopts another one in a later book on con-
ditionals. In his [31] study, the example becomes “If my dog were a purebred,
his father would be a mutt,” but as Stalnaker himself acknowledges, “One could
reject the counterexample on the grounds that the conditional contraposed is an
‘even if’ conditional.” I completely agree with Stalnaker here.

[25] presents another counterexample to contraposition, although without
defining any clear context.

(21) If we take the car then it won’t break down en route.

The first problem with this pseudo-counterexample is that it is easy to imagine a
context in which the contraposition is valid. Imagine that two groups can take the
car to drive on a very difficult trail and that only the group to whom the speaker
belongs has a sufficiently good driver to do this safely. Learning that there was
an accident, the following deduction is possible: “If the car broke down en route,
then you didn’t take it. The driver was a member of the other group.” Priest per-
haps had another context in mind, in which there is only one group of people. But
now, if they do not take the car, it is certain that it will not also break down en
route because the vehicle safely remains parked in the garage. The conditional
relationship that the speaker wants to express is now a concessive one that would
be better expressed using an even if : “Even if we take the car, it won’t break down
en route”. The same problem as in Stalnaker’s case therefor arises. The use of the
if then form is deficient because the speaker wants to carry a concessive meaning.
The counterexample therefore cannot be retained.

4.3 Cases with Modals

The last possibility for invalidating contraposition for if then conditionals is to
incorporate modals. The following sentence is a slight modification of an example
against the modus tollens initially presented in [39].

(22) If there is a break-in, then the alarm always sounds.

From the hypothesis that the alarm does not always sound, we cannot conclude
that there is no break-in. Hence, the contraposition is invalid in this case. How-
ever, this invalidation is incorrect because it is based on an ambiguity. Since the
consequent is the main clause of the whole sentence, the association between
an adverb and its verb can result in two different scopes of application. The
word “always” can be considered as either applying only to the consequent (“If
there is a break-in, then always the alarm sounds”) or to the whole conditional
(“Always, if there is a break-in, then the alarm sounds”). In most cases, the
correct interpretation is to allow the adverb to apply to the whole sentence. For
sentence (22) and with a large scope of application for the adverb, the contra-
position now becomes “Always, if the alarm does not sound, then there is no
break-in,” which is perfectly correct. Yalcin’s counterexample is therefore defi-
cient because it is based on a narrow scope of interpretation for the adverb, for
which a large scope of interpretation is necessary. This issue is well known in
modal logic referred to as the (conditional) Modal Fallacy by [6]. It is usually

A Compositional Semantics for ‘If Then’ Conditionals 305

presented with explicitly modal adverb, such as in the following reformulation
of (22):

(22’) If there is a break-in, then the alarm necessary sounds.

The correct formal translation of (22’) is �(A → C) and not A → �C, with �
the symbol for necessity and → the symbol for the if then conditional.

4.4 Advantages

From this examination of earlier attempts, I have shown that, in order to be
successful, a counterexample to contraposition for if then conditionals should
involve two things: components that are sufficiently simple to not embed modals
and an antecedent and a consequent of which the relationship is not concessive
or one of relevance. I cannot prove that such a counterexample is impossible
because new sentences are invented everyday in natural language. But the fact
that, after fifty years of investigation in conditional logic, no convincing if then
conditional sentence has been found to invalidate this reasoning leads me to think
that this is a hopeless task. However, even if I am wrong on this point, the present
semantics has its own merits. This theory is the first possible worlds semantics
that manages to separate the validity of contraposition and strengthening of the
antecedent. Contraposition is therefore not a non-monotonic reasoning, as argued
by [11] for instance. Indeed, a non-monotonic inference involves a modification
of context because a new sentence changing the initial situation is introduced.
For instance, in the strengthening of the antecedent A → C � (A ∧ B) → C, the
new hypothesis B makes the interpretation of the hypothesis A different between
the premise and the consequence. In the transitivity B → C,A → B � A → C,
the second premise contains A, which is new and changes the context in which
the sentence B must be interpreted compared to the first premise. Hence, the
link between the two premises is impossible. There is no such introduction of
a new sentence in contraposition. Between the premise and the conclusion, the
only new element is the introduction of the negation and this cannot produce a
new context. On the contrary, this only entails the consideration of the negatives
cases in the initial context.

[31] argues that the validity of contraposition always entails the reintroduc-
tion of the strengthening of the antecedent. The proof is as follows:

(23) A → C (hypothesis).
(24) ¬C → ¬A (From 23 by contraposition)
(25) ¬C → (¬A ∨ ¬B) (From 24 by expansion of the consequent)
(26) (A ∧ B) → C (From 25 by contraposition)

This proof needs an additional principle: the expansion of the consequent. How-
ever, this last inference is not valid in our system: A → B � A → (B ∨C). Since
the conditional in the consequence contains more sentences than the conditional
in the premise, the consequence needs the inhibition of a larger set of sentences,
and its final evaluation is done in another context compared to the premise. My

306 M. Vidal

semantics thus introduces a principle of relevance between the antecedent and
the consequent. Each part of the consequent must be related in some way to at
least one part of the antecedent to make the conditional true. This choice makes
it possible to explain why if then is the privileged form used to express causal
reasoning and why the following sentence sounds false in this context:

(27) If I’m hungry, then I eat a banana or Asia is the biggest continent.

My hunger and the size of Asia are not causally linked. As a consequence, most
people would consider sentence (27) to be wrong or odd for describing a causal
relationship. However, notice that with the simple if A, C form, the reasoning is
correct. The relationship being more tenuous, the schema A ⇀ B � A ⇀ (B∨C)
is valid.

The last advantage of the admission of contraposition is that it is now possible
to understand why the particle then cannot be added in some conditionals.
Indeed, when the contraposition fails, the addition of then is infelicitious. This
is the case for relevance (biscuit) conditionals. The same rule also holds for
conditionals in which the antecedent exhausts the universe, such as in [16]’s
proposal “If John is dead or alive, Bill will find him.” In this case, the negation
of the antecedent cannot be envisaged because it corresponds to an empty set
of worlds, and there is no reason to utter contraposition. Finally, contraposition
is not valid for concessive conditionals which explains the initial enigma of this
paper: how come an even if conditional cannot contain the particle then.

References

1. Adams, E.W.: The Logic of Conditionals. D. Reidel Publishing Co., Dordrecht
(1975)

2. Alonso-Ovalle, L.: Alternatives in the disjunctive antecedents problem. In:
Chang, C.B., Haynie, H.J. (eds.) Proceedings of 26th West Coast Conference on
Formal Linguistics, Sommerville, MA, Cascadilla Proceedings Project (2008)

3. Austin, J.L.: Ifs and cans. In: Urmson, J.O., Warnock, G.J. (eds.) Philosophical
Papers, pp. 153–180. Oxford University Press, Oxford (1961)

4. Bennett, J.: A Philosophical Guide to Conditionals. Clarendon Press, Oxford
(2003)

5. Bhatt, R., Pancheva, R.: Conditionals. In: Everaert, M., Van Riemsdijk, H. (eds.)
The Blackwell Companion to Syntax, pp. 638–687. Wiley, Hoboken (2006)

6. Bradley, R., Swartz, N.: Possible Worlds: An Introduction to Logic and Its Philos-
ophy. B. Blackwell, Oxford (1979)

7. Chellas, B.: Basic conditional logic. J. Philos. Log. 4(2), 133–154 (1975)
8. Dancygier, B., Sweetser, E.: Mental Spaces in Grammar: Conditional Construc-

tions. Cambridge University Press, Cambridge (2005)
9. Douven, I., Verbrugge, S.: Indicatives, concessives, and evidential support. Think.

Reason. 18(4), 480–499 (2012)
10. von Fintel, K.: Restrictions on quantifier domains. Ph.D. thesis, University of

Massachusetts, Amherst, MA (1994)
11. von Fintel, K.: Counterfactuals in a dynamic context. In: Kenstowicz, M. (ed.) Ken

Hale: a Life in Language, pp. 123–152. The MIT Press, Cambridge (2001)

A Compositional Semantics for ‘If Then’ Conditionals 307

12. Geis, M.L., Lycan, W.G.: Nonconditional conditionals. Philos. Top. 21(2), 35–56
(1993)

13. Gillies, A.S.: Epistemic conditionals and conditional epistemics. Noûs 38(4), 585–
616 (2004)

14. Gillies, A.S.: On truth-conditions for if (but not quite only if). Philos. Rev. 118(3),
325–349 (2009)

15. Glasbey, S.R.: Distinguishing between events and times: some evidence from the
semantics of then. Nat. Lang. Seman. 1(3), 285–312 (1993)

16. Iatridou, S.: On the contribution of conditional ‘then’. Nat. Lang. Seman. 2(3),
171–199 (1994)

17. Johnson-Laird, P.N.: Conditionals and mental models. In: Traugott et al. [34], pp.
55–76

18. Johnson-Laird, P.N., Byrne, R.M.: Conditionals: a theory of meaning, pragmatics,
and inference. Psychol. Rev. 109(4), 646–678 (2002)

19. Lewis, D.K.: Counterfactuals. Harvard University Press, Cambridge (1973)
20. Lycan, W.G.: Real Conditionals. Oxford University Press, Oxford (2001)
21. Matalon, B.: Etude Génétique de l’Implication. In: Piaget, J. (ed.) Etudes

d’Epistémologie Génétique XVI. PUF, Paris (1962)
22. Nute, D.: Topics in Conditional Logic. Reidel, Dordrecht (1980)
23. Piaget, J., Gruber, H., Vonèche, J.: The Essential Piaget. J. Aronson, New York

(1977)
24. Pollock, J.L.: Subjunctive Reasoning. D. Reidel Publishing Co., Dordrecht (1976)
25. Priest, G.: An Introduction to Non-classical Logic: From If to Is. Cambridge

University Press, Cambridge (2008)
26. Reichenbach, H.: Elements of Symbolic Logic. Dover Publications, Mineola (1947).

Republished 1980
27. Schiffrin, D.: Anaphoric then: aspectual, textual, and epistemic meaning. Linguis-

tics 20, 753–792 (1992)
28. Schlenker, P.: Conditionals as definite descriptions (a referential analysis). Res.

Lang. Comput. 2(3), 417–462 (2004)
29. Skovgaard-Olsen, N., Singmann, H., Klauer, K.C.: The relevance effect and condi-

tionals. Cognition 150, 26–36 (2016)
30. Stalnaker, R.C.: A theory of conditionals. In: Rescher, N. (ed.) Studies in Logical

Theory, pp. 98–112. Basil Blackwell Publishers, Oxford (1968)
31. Stalnaker, R.C.: Inquiry. The MIT Press, Cambridge (1984)
32. Starr, W.: A uniform theory of conditionals. J. Philos. Log. 43(6), 1019–1064 (2014)
33. Thompson, E.: The temporal structure of discourse: the syntax and semantics of

temporal then. Nat. Lang. Linguist. Theor. 17, 123–160 (1998)
34. Traugott, E., ter Meulen, A., Reilly, J., Ferguson, C. (eds.): On Conditionals.

Cambridge University Press, Cambridge (1986)
35. Veltman, F.: Logics for conditionals. Ph.D. dissertation, University of Amsterdam,

Amsterdam (1985)
36. Veltman, F.: Data Semantics and the pragmatics of indicative conditionals. In:

Traugott et al. [34], pp. 147–167
37. Vidal, M.: Conditionnels et Connexions. Ph.D. dissertation, Institut Jean Nicod,

E.H.E.S.S., Paris (2012)
38. Vidal, M.: A Compositional semantics for ‘even if’ conditionals. Logic and Logical

Philosophy (in press)
39. Yalcin, S.: A counterexample to modus tollens. J. Philos. Log. 41, 1001–1024 (2012)

Automatic Concepts and Automata-Theoretic
Semantics for the Full Lambek Calculus

Christian Wurm(B)

Universität Düsseldorf, Düsseldorf, Germany
cwurm@phil.uni-duesseldorf.de

Abstract. We introduce a new semantics for the (full) Lambek calculus,
which is based on an automata-theoretic construction. This automata-
theoretic semantics combines languages and relations via closure opera-
tors which are based on automaton transitions. We establish the strong
completeness of this semantics for the full Lambek calculus via an iso-
morphism theorem for the syntactic concepts lattice of a language and
a construction for the universal automaton recognizing the same lan-
guage. Automata-theoretic semantics is interesting because it connects
two important semantics of the Lambek calculus, namely the relational
and the language-theoretic. At the same time, it establishes a strong rela-
tion between two canonical constructions over a given language, namely
its syntactic concept lattice and its universal automaton.

Keywords: Syntactic concept lattice · Full Lambek calculus · Universal
automaton · Finite automata

1 Introduction

The main contributions of this article are the following: we extend some estab-
lished completeness results for the Full Lambek calculus FL⊥ and its fragments
for syntactic concept lattices (SCL) to regular languages and finite algebras.
(Throughout this article, we use completeness in the sense of strong complete-
ness with respect to the internal consequence relation, that is, the semantics
models the set of sequents which are derivable in the logical calculus.) We then
present a new kind of semantics we call “automata-theoretic”, where closure
operators relate strings with transitions they induce in an automaton (we call
the resulting structure automatic concept lattice). We prove its completeness for
FL⊥ by showing that the syntactic concept lattice of a language is isomorphic to
the automatic concept lattice of the universal automaton recognizing the same
language (for the universal automaton, consider [14]; completeness for syntactic
concept lattices has been established in [19]).

The semantics of binary relations and composition is usually associated with
a “dynamic” interpretation of formulas as computations in programs (see [18]),
whereas the language-semantics of stringsets and concatenation is a more “sta-
tic” interpretation of formulas. Completeness (in our sense) of relational seman-
tics has been shown by Brown & Gurr in [1], who use relational quantales and
c© Springer-Verlag GmbH Germany 2016
M. Amblard et al. (Eds.): LACL 2016, LNCS 10054, pp. 308–323, 2016.
DOI: 10.1007/978-3-662-53826-5 19

Automatic Concepts and Automata-Theoretic Semantics 309

prove results for a wide variety of substructural logics (or put differently, non-
commutative linear logics). An even stronger result has been obtained by Pentus
in [16], who also proved completeness of language (L-)models for the Lambek
calculus. Automata-theoretic semantics shows how we can link language and
relation models via a Galois connection.

The article is structured as follows: Sect. 2 presents established results on
the full Lambek calculus and its semantics; Sect. 3 strengthens these results to
regular languages, and Sect. 4 introduces the automata-theoretic semantics and
proves (among other results) its completeness.

2 The Logics L, L1, FL, FL⊥ and their Models

2.1 The Logics L, L1, FL and FL⊥

The Lambek calculus L was introduced in [11]. L1 is a proper extension of L,
and FL,FL⊥ are each conservative extensions of L1 and the preceding one. Let
Pr be a set, the set of primitive types, and C be a set of constructors, which
is, depending on the logics we use, CL := {/, \, •}, or CFL := {/, \, •,∨,∧}. By
TpC(Pr) we denote the set of types over Pr, which is defined as the smallest
set, such that: 1. Pr ⊆ TpC(Pr), and if α, β ∈ TpC(Pr), � ∈ C, then α � β ∈
TpC(Pr). As there is usually no danger of confusion regarding the primitive
types and constructors, we also simply write Tp for TpC(Pr). We now present
the inference rules corresponding to these constructors. We call an inference of
the form Γ � α a sequent, for Γ ∈ Tp∗, α ∈ Tp, where by Tp∗ we denote the
set of all (possibly empty) sequences over Tp, which are concatenated by ‘,’.

In general, uppercase Greek letters range as variables over sequences of types,
lowercase Greek letters range over single types. In the inference rules for L,
premises of ′ �′ (that is, left hand sides of sequents) must be non-empty; in L1
they can be empty as well; besides this, the calculi are identical. In FL and FL⊥
we also allow for empty sequents. Below, we present the standard rules of the
Lambek calculus L (and L1).

(ax) α � α

(I − /)
Γ, α � β

Γ � β/α (I − \)
α, Γ � β

Γ � α\β

(/ − I)
Δ,β,Θ � γ Γ � α

Δ, β/α, Γ,Θ � γ (\ − I)
Δ,β,Θ � γ Γ � α

Δ,Γ, α\β,Θ � γ

(• − I)
Δ,α, β, Γ � γ

Δ,α • β, Γ � γ (I − •)
Δ � α Γ � β

Δ, Γ � α • β

These are the standard rules of L and L1 (roughly as in [11]). We now
add the two additional connectives ∨ and ∧. These are not present in L/L1,
have however been considered as extensions as early as in [12], and have been
subsequently studied by [10].

310 C. Wurm

(∧ − I 1)
Γ, α,Δ � γ

Γ, α ∧ β,Δ � γ (∧ − I 2)
Γ, β,Δ � γ

Γ, α ∧ β,Δ � γ

(I − ∧)
Γ � α Γ � β

Γ � α ∧ β (∨ − I)
Γ, α,Δ � γ Γ, β,Δ � γ

Γ, α ∨ β,Δ � γ

(I − ∨ 1)
Γ � α

Γ � α ∨ β (I − ∨ 2)
Γ � β

Γ � α ∨ β

(1 − I)
Γ,Δ � α

Γ, 1,Δ � α (I − 1) � 1

This gives us the logic FL. This slightly deviates from standard terminology,
because usually, FL has an additional constant 0. In our formulation, 0 and 1
coincide. In order to have logical counterparts for the bounded lattice elements
� and ⊥, we introduce two logical constants, which are denoted by the same
symbol.

(⊥ −I) Γ,⊥,Δ � α (I − �) Γ � �

This gives us the calculus FL⊥. From a logical point of view, all these extensions
of L are quite well-behaved: they are conservative, and also allow us to preserve
the important result of [11], namely admissibility of the cut-rule:

(cut)
Δ,β,Θ � α Γ � β

Δ, Γ,Θ � α

We say that a sequent Γ � α is derivable in a calculus, if it can be derived by
its rules of inference; we then write �L Γ � α, �L1 Γ � α, �FL Γ � α etc.,
depending on which calculus we use.

2.2 Interpretations of L1, FL and FL⊥

The standard model for L1 is the class of residuated monoids, which are struc-
tures (M, ·, \, /, 1,≤) such that (M, ·, 1) is a monoid, (M,≤) is a partial order,
and ·, /, \ satisfy the law of residuation: for m,n, o ∈ M ,

m ≤ o/n ⇔ m · n ≤ o ⇔ n ≤ m\o.

This implies that · respects the order ≤. The standard model for FL is the class
of residuated lattices, and for FL⊥, the class of bounded residuated lattices (for
background on residuated lattices, see [9]). A residuated lattice is a structure
(M, ·,∨,∧, \, /, 1), where in addition to the previous requirements, (M,∨,∧) is
a lattice; the lattice order ≤ need not be stated, as it can be induced by ∨ or ∧:
for a, b ∈ M , a ≤ b is a shorthand for a ∨ b = b. A bounded residuated lattice

Automatic Concepts and Automata-Theoretic Semantics 311

is a structure (M, ·,∨,∧, \, /, 1,�,⊥), where (M, ·,∨,∧, \, /, 1) is a residuated
lattice, � is the maximal element of the lattice order ≤ and ⊥ is its minimal
element.

We call the class of residuated monoids RM , the class of residuated lattices
RL, the class of bounded residuated lattices RL⊥. We now give a semantics for
the calculi above. We start with an interpretation σ : Pr → M which interprets
elements in Pr as elements of the algebra, and extend σ to σ by defining it
appropriately for 1,�,⊥, and extending it inductively over our type constructors
C := {/, \, •,∨,∧} by

1. σ(α) = σ(α) ∈ M , if α ∈ Pr
2. σ(�) = �
2’ σ(�) is an arbitrary m ∈ M such that for all α ∈ TpC(Pr), σ(α) ≤ m.
3. σ(⊥) =⊥
3’ σ(⊥) is an arbitrary m ∈ M such that for all α ∈ TpC(Pr), m ≤ σ(α).
4. σ(1) = 1
5. σ(α • β) := σ(α) · σ(β)
6. σ(α/β) := σ(α)/σ(β)
7. σ(α\β) := σ(α)\σ(β)
8. σ(α ∨ β) := σ(α) ∨ σ(β)
9. σ(α ∧ β) := σ(α) ∧ σ(β)

Note that there are two alternative interpretations for �,⊥: one which interprets
them as the upper/lower bound of the lattice, which is the standard interpreta-
tion, and one which just interprets them as arbitrary elements which only have
to be larger/smaller than the interpretation of any other formula. The latter will
be called the non-standard interpretation and play some role in the sequel, but
only for technical reasons.

What we interpret next is the sequents of the form Γ � α. We say that a
sequent γ1, ..., γi � α is true in a model M under assignment σ, in symbols:
M, σ |= γ1, ..., γi � α, if and only if σ(γ1 • ... • γi) ≤ σ(α) holds in M. That is,
we interpret the ‘,’, which denotes concatenation in sequents, as · in the model,
and � as ≤. For derivable sequents with no antecedent, we have the following
convention: M, σ |= � α, iff 1 ≤ σ(α), where 1 is the unit element of M (this
case does not arise in L).

More generally, for a given class of (bounded) residuated lattices (monoids,
semigroups) C, we say that a sequent is valid in C, in symbols, C |= γ1, ..., γi � α,
if for all M ∈ C and all interpretations σ, M, σ |= γ1, ...γi � α (here we have to
distinguish between standard and non-standard interpretations).

2.3 Syntactic Concepts and Galois Connections

We now present a language-theoretic semantics for FL⊥ which is based on clo-
sure operators, namely syntactic concepts. Syntactic concept lattices form a
particular case of what is well-known as formal concept lattice (or formal con-
cept analysis, FCA) in computer science (see [7]). In linguistics, they have been

312 C. Wurm

introduced by Sestier in [17]. They were brought back to attention and enriched
with residuation by Clark in [4] (see also [6]), as they turn out to be useful
representations for language learning (see [5,13]).

Let ℘(−) denote the powerset. Given a language L ⊆ Σ∗, we define two maps:
a map � : ℘(Σ∗) → ℘((Σ∗)2), and : ℘((Σ∗)2) → ℘(Σ∗), which are defined as
follows:

for M ⊆ Σ∗, M� := {(x, y) : ∀w ∈ M,xwy ∈ L}(1)
for C ⊆ (Σ∗)2, C� := {w : ∀(x, y) ∈ C, xwy ∈ L}(2)

So a set of strings which is mapped to the set of contexts in which all of its
elements can occur. The dual function maps a set of contexts to the set of strings
which can occur in all of them. This results in a Galois connection between the
two ⊆-ordered structures of closed sets and contexts, see [4,19]. For extension
of these maps to larger tuples, consider [20]). Importantly, all these are special
applications of the general theory of Galois connections; for background, see [9].
Obviously, [−]� and [−]� are only defined with respect to a given language L,
otherwise they are meaningless. As long as it is clear about which language (if
any particular language) we are speaking, we will omit however any reference to
it, to keep notation perspicuous. Regardless of the underlying objects, the two
compositions of the maps, [−]�� and [−]��, form closure operators. Note also
that for any set of strings M and contexts C, M� = M��� and C� = C���. A
set M is closed, if M�� = M etc. The closure operator � gives rise to a lattice
(BL,≤), where the elements of BL are the sets M ⊆ Σ∗ such that M = M��,
and ≤ is interpreted as ⊆. The same can be done with the set of closed contexts.
Given these two lattices, [−]� and [−]� form a Galois connection between the
two (see [7] for more background), that is:

(1) M ≤ N ⇔ M� ≥ N�, and
(2) C ≤ D ⇔ C� ≥ D�.

A syntactic concept is usually defined to be an ordered pair, consisting of a
closed set of strings, and a closed set of contexts, so it has the form (S,C), such
that S� = C and C� = S; S� is the set of all contexts in which all strings in S can
occur; inversely for C�. For our purposes, we mostly need to consider only the
left component, so we suppress the contexts and only consider the stringsets of
the form M��. An exception to this convention is Sect. 4, where we will make use
of concepts as pairs (M,C) with M = C�, C = M�, as it will increase readability
in this case. For all operations we define below, it can be easily seen that the
resulting structures are isomorphic. So when we refer to a concept, we only mean
a [−]�� closed set of strings (with the exception of Sect. 4), the concept in the
classical sense being easily reconstructible.

Definition 1. For [−]�� defined with respect to L ⊆ Σ∗, let BL denote the set
of [−]��-closed subsets of Σ∗. This set forms a bounded lattice (BL,∧,∨,�,⊥),
where � = Σ∗, ⊥= ∅��, and for M,N ∈ BL, M ∧ N = M ∩ N , M ∨ N =
(M ∪ N)��.

Automatic Concepts and Automata-Theoretic Semantics 313

It is also easy to verify that this forms a complete lattice, as infinite joins are
defined by (closure of) infinite unions, infinite meets by infinite intersections.

2.4 Monoid Structure and Residuation for Syntactic Concepts

The set of concepts of a language forms a lattice. In addition, we can also give
it the structure of a monoid: for concepts M,N , we define M ◦ N := (M · N)��,
where M · N = {wv : w ∈ M,v ∈ N}. We usually write MN for M · N ,
if M,N are sets of strings. ‘◦’ is associative on concepts: for M,N,O ∈ BL,
M ◦(N ◦O) = (M ◦N)◦O. This follows from the associativity of ·-concatenation
and the fact that [−]�� is a nucleus, that is, it is a closure operator and in
addition it satisfies M��N�� ⊆ (MN)��.

It is easy to see that the neutral element of ‘◦’ is {ε}�� (which need not be
{ε}). The monoid operation respects the partial order of the lattice, that is, for
X,Y,Z,W ∈ BL, if X ≤ Y , then W ◦ X ◦ Z ≤ W ◦ Y ◦ Z. A stronger property
is the following: ◦ distributes over infinite joins, that is, we have

∨
Z∈Z(X ◦ Z ◦ Y) = X ◦ ∨

Z ◦ Y

Here ≤ follows algebraically (◦ respects the order ⊆), and ≥ follows from the
fact that 1.

⋃
distributes over · (infinite unions distribute over concatenation),

and 2. [−]�� is a nucleus. We can thus also conceive of syntactic concepts with∨
, ◦, 1 as quantales, and in quantales we can easily define residuals as follows:

Definition 2. Let X,Y be concepts. We define the right residual X/Y :=
∨{Z :

Z ◦ Y ≤ X}, the left residual Y \X :=
∨{Z : Y ◦ Z ≤ X}.

Note that this is an entirely abstract definition which does not make reference
to any underlying structure. It works because of the well-known fact that for
any complete lattice with a monoid operation distributing over infinite joins,
residuals defined as above, we have Y ≤ X\Z iff X ◦ Y ≤ Z iff X ≤ Z/Y .

Definition 3. The syntactic concept lattice of a language L is defined as
SCL(L) := (BL, ◦,∧,∨, /, \, 1,�,⊥), where BL,∧,∨,�,⊥ are defined as in
Definition 1, 1 = {ε}��, and ◦, /, \ are as defined above.

The syntactic concept lattice thus is a residuated lattice (see [4]). We will
denote by SCL the class of all lattices of the form SCL(L) for some language
L, without any further requirement regarding L. We can apply the definition of
interpretations to SCL, so it is clear how FL⊥ is interpreted in SCL.

The algebraic notion corresponding to the notion of a fragment in logic is
the notion of a reduct. A reduct of an algebra is the same algebra with only a
proper subset of connectives; the notion easily extends to classes. We let SCLFL

be the class of SCL reducts with operators {◦, /, \,∨,∧} without the constants �
and ⊥, and SCLL1 be the class of SCL reducts with {◦, /, \}, which all specify
a unit. So it is clear how the logical fragments FL,L1 are interpreted in the
reducts appropriate reducts.

314 C. Wurm

2.5 Completeness: Previous Results

There are a number of completeness results for the logics we have considered
here. We quickly present the ones which will be important in the sequel.

Theorem 4. 1. RM |= Γ � α if and only if �L1 Γ � α
2. RL |= Γ � α if and only if �FL Γ � α
3. RL⊥ |= Γ � α if and only if �FL⊥ Γ � α

For reference on Theorem 4, see [2,3,9]. These completeness results can actu-
ally be strengthened to the finite model property. A logic, equipped with a class
of models and interpretations, is said to have finite model property if it is com-
plete in the finite, that is, Theorem4 remains valid if we restrict ourselves to
finite models.

Theorem 5. 1. L1 has finite model property
2. FL has finite model property
3. FL⊥ has finite model property

For the first and second claim, consider [8]; the third and forth has been
established in [15]. Theorem 5 is crucial to show that completeness for syntactic
concept lattices and their reducts also holds if we restrict ourselves to languages
over finite alphabets. The following results have been proved in [19].

Theorem 6. 1. SCL |= Γ � α if and only if �FL⊥ Γ � α
2. SCLFL |= Γ � α if and only if �FL Γ � α
3. SCLL1 |= Γ � α if and only if �L1 Γ � α

L requires some additional considerations, as L1 is not a conservative exten-
sion of it. The soundness directions follow a fortiori from Theorem 4. We will
now strengthen the completeness result to syntactic concept lattices over regular
languages, for which we have to provide a sketch of the original completeness
proof.

3 Regular Languages and SCL(REG)

Let B = (B, ·,∨,∧, /, \, 1,�,⊥) be a bounded residuated lattice. We denote the
partial order of B by ≤B , equality by =B . Define Σ′ := {b : b ∈ B}, and put
Σ = B ∪ Σ′. Let SI∗

B := {b1...bi : b1 · ... · bi ≤B 1} be the set of sub-identity
words over B. We define the language LB ⊆ Σ∗ as the set of strings

LB := {b1b2...bnbw : b1 · b2 · ... · bn ≤B b, w ∈ SI∗
B}.

For a string w = b1...bn ∈ B∗, by w• we denote the term b1 · ... · bn; we put
ε• = 1. By w ∼L v, we mean that xwy ∈ L iff xvy ∈ L. It is easy to prove that
w• =B v• iff w ∼LB

v (see [19]).

Proposition 7. For every bounded residuated lattice B, there is an faithful
embedding ψ : B → SCL(LB), such that

Automatic Concepts and Automata-Theoretic Semantics 315

1. ψ(�) = B∗, ψ(⊥) = {⊥}��.
2. ψ(1) = {ε}��.

For proof of this fact, consider [19,20]. Note that ψ(⊥) is not the ⊥-element
of SCL(LB), as we can never substitute b with ⊥. Note also that ψ(�) is not
maximal in SCL(LB), as ψ(�) = B∗

� Σ∗.
From here, it is easy to complete the proof of Theorem 6: just use the faithful

embedding to perform the usual contraposition, where from ��FL⊥ Γ � α and
algebraic completeness then follows SCL �|= Γ � α. This completes the proof of
Theorem 6.1. Note however that the resulting interpretation is non-standard: we
have ψ(�) = B∗ �= Σ∗, and ⊥ (⊥) = {⊥}�� �= ∅��.

An important feature of our proof is that it works for all reducts of bounded
residuated lattices (a reduct is the same algebra with a proper subset of connec-
tives); and hence it allows to prove completeness for all logics L for which FL⊥
is a conservative extension (this holds for L1 and FL; L and its fragments do
not satisfy this requirement). Hence we also have a proof for the other parts of
Theorem 6.

By REG we denote the class of regular languages. Given an equivalence
relation ∼ over Σ∗, we put [w]∼ = {v : w ∼ v}, and Σ∗

∼ = {[w]∼ : w ∈ Σ∗}. So
Σ∗

∼L
denotes the set of ∼L-congruence classes over Σ∗. Recall that a language

L ⊆ Σ∗ is regular if and only if Σ∗
∼L

= {[w]∼L
: w ∈ Σ∗} is finite. The next

lemma follows easily (see also [6]):

Lemma 8. SCL(L) is finite if and only if L is regular.

Let B be an arbitrary algebra equipped with a semigroup operation and a
partial order respecting it, so we can define LB as above (this covers all algebras
we consider in this paper). Then for w, v ∈ B∗, we have w ∼L v iff w• =B v•.
But recall that B � Σ in this case!

Lemma 9. B is a finite algebra if and only if LB is a regular language.

Proof. ⇐ Contraposition: if B is infinite, there is an infinite sequence of =B-
distinct objects (w1)•, (w2)•, ... ∈ B, so there are w1, w2, ... which are not ∼L-
equivalent.

⇒ We construct L′
B =

⋃
b∈B{wb : w• ≤B b}. Assume a language {wb : w• ≤B

b} is not regular. Then Σ∗
∼L

is infinite, and there is an infinite sequence of words
w1, w2, ..., such that if i �= j, then wi �∼L wj . So there is an infinite sequence of
objects (w1)•, (w2)•, ... ∈ B, such that if i �= j, then (wi)• �=B (wj)•. Thus B is
infinite – contradiction. Hence {wb : w• ≤B b} is regular, and as B is finite, L′

B

is a finite union of regular languages, which is still regular. Finally, SI∗
B is regular

for the same reason as above, and so LB = L′
B · SI∗

B is also regular. �
Let C be a class of languages; then by SCL(C) we denote the class of struc-

tures SCL(L) : L ∈ C. So SCL(REG) equals the class of finite syntactic con-
cept lattices. As we have said, a finite algebra B entails a language LB over a
finite alphabet; the last lemma shows us that it also entails that LB is regular.
Moreover, as L1,FL,FL⊥ have the finite model property, for completeness it is

316 C. Wurm

sufficient to consider only finite algebras, and consequently we can strengthen
Theorem 6 to the following:

Corollary 10. 1. SCL(REG) |= Γ � α if and only if �FL⊥ Γ � α.
2. SCLFL(REG) |= Γ � α if and only if �FL Γ � α.
3. SCLL1(REG) |= Γ � α if and only if �L1 Γ � α.

4 Automata-Theoretic Semantics

4.1 Automata-Theoretic Preliminaries

We now introduce a new class of bounded residuated lattices, the automatic
concept lattices. It is very similar to SCL in that it is based on a Galois
connection which, provided the certain conditions, gives rise to a nucleus. As
we will learn from the main result of this section, the isomorphism theorem, if
we consider structures only up to isomorphism, then automatic concept lattices
form a proper generalization of syntactic concept lattices (in fact, in general they
are not even residuated lattices1).

One can present automata in many different ways, the most standard one
being probably the following: an automaton as state-transition system is a tuple
A = (Σ,Q, δ, F, I), where Σ is a finite input alphabet, Q a set of states, δ ⊆
Q×Σ×Q a transition relation, F ⊆ Q a set of accepting states, I ⊆ Q the set of
initial states. This notation of automata is somewhat clumsy in connection with
the techniques we use later on, so we will choose a slightly different presentation
which we call relational. This is a notional change we adopt for convenience. We
define a semi-automaton as a tuple 〈Σ,φ〉, where φ is a map φ : Σ → ℘(Q×Q),
mapping letters in Σ onto relations over Q, where we use Q is an arbitrary (finite
or infinite) carrier set. It is extended to strings by interpreting concatenation as
relation composition ‘,’, where R,R′ = {(x, y) : (x, z) ∈ R, (z, y) ∈ R′}. So
we have φ(aw) = φ(a), φ(w), and φ is a homomorphism from the free monoid
Σ∗ into a relation monoid over Q, and a word w ∈ Σ∗ then induces a relation
φ(w) ⊆ Q×Q. Defining φ as a homomorphism, we should take care of φ(ε), which
we simply define by φ(ε) = idQ := {(q, q) : q ∈ Q}.2 To get a full automaton,
we still need an accepting relation. One usually specifies a set of initial and
accepting states, yielding an accepting relation I × F . As for us, acceptance
will only play a minor role, we will take a slightly more general convention and
assume that automata specify an accepting relation FR ⊆ Q × Q. Thus a
full automaton is a tuple 〈Σ,φ, FR〉. We define the language recognized by an
automaton A = 〈Σ,φ, FR〉 by L(A) := {w ∈ Σ∗ : φ(w) ∩ FR �= ∅}.

1 Thanks to an anonymous reviewer for pointing this out!
2 But in principle, nothing prevents us from having (x, y) ∈ φ(ε) with x �= y – we just
have to make sure that for all a ∈ Σ, we have φ(ε), φ(a) = φ(a) = φ(a), φ(ε).

Automatic Concepts and Automata-Theoretic Semantics 317

4.2 Automatic Concepts

In what is to follow, we will take the “canonical view” on formal concepts, that
is: concepts are not simply [−]��-closed sets, but pairs (M,C) such that M� = C,
C� = M (this entails that both are closed). Henceforth, we will use the maps
[−]�, [−]� for syntactic concepts only. Given a semi-automaton 〈Σ,φ〉, M ⊆ Σ∗,
R ⊆ Q × Q, we define the two polar maps

M� =
⋂

w∈M

φ(w)(3)

R� = {w : φ(w) ⊇ R}(4)

It is easy to see that these maps establish a Galois connection and their composi-
tions [−]��, [−]�� are closure operators. An automatic concept is then a pair
(M,R) with M� = R, R� = M (of course, the underlying (semi-)automaton
is understood as given). We denote the set of automatic concepts, given an
automaton A, by AA. Importantly, the map [−]�� does not form a nucleus on
Σ∗, and in general, [−]��-closed concatenation does not distribute over infinite
joins. Consequently, we cannot simply define a residuated lattice of concepts in
the usual fashion. Rather, we have to restrict our attention to a certain class of
automata.

Definition 11. A (semi-)automaton 〈Σ,φ(, FR)〉 is nuclear, if for all M,N ⊆
Σ∗, (

⋂
w∈M φ(w)), (

⋂
v∈N φ(w)) =

⋂
wv∈MN φ(wv).

Note that ⊆ always holds. The equality ensures that [−]�� is a nucleus on Σ∗,
because if w ∈ M��, v ∈ N��, then φ(w) ⊇ M�, φ(v) ⊇ N�. Hence φ(wv) =
φ(w), φ(v) ⊇ M�, N� = (MN)�, and hence wv ∈ M��. So being nuclear boils
down to composition distributing over (infinite) intersections of closed sets. We
will later see that for every automaton there is a nuclear automaton recognizing
the same language.

We define (M,R) ∧ (N,S) = (M ∩ N, (R ∪ S)��), (M,R) ∨ (N,S) =
((M ∪ N)��, R ∩ S), and (M,R) ◦ (N,S) = ((MN)��, (MN)�). It is easy
to see that ∧,∨ can be extended to the infinitary operators

∧
,
∨

(as they are
based on sets). Moreover, in case the underlying automaton is nuclear, ◦ dis-
tributes over infinite joins (because it is a nuclear operation), so the residu-
als are easily defined in the usual fashion by M/N =

∨{X : X ◦ N ≤ M},
N\M =

∨{X : N ◦ X ≤ M}. We put � = (Σ∗, (Σ∗)�), ⊥= (∅��, ∅�), where
by convention we put ∅� =

⋃
w∈Σ∗ φ(w). Finally, we put 1 = ({ε}��, φ(ε))

(recall that φ(ε) = idC by definition). So given a nuclear automaton A, we have
the complete bounded residuated lattice (AA, ◦,∧,∨, /, \, 1,�,⊥), which is the
automatic concept lattice of A, for short ACL(A). As is easy to see, accep-
tance does not play a role for the automatic concept lattice, so it is sufficient to
refer to semi-automata. By ACL we denote the class of all ACL(A) for A an
arbitrary nuclear (semi-)automaton, and we define the reducts ACLFL, ACLL1

in the same way we did for SCL.

318 C. Wurm

We will refer to the straightforward interpretation of FL⊥ and its frag-
ments into automatic concept lattices as automata-theoretic semantics, and
write ACL |= Γ � α in the usual sense that for all nuclear semi-automata A,
interpretations σ into ACL(A), we have σ(Γ) ≤ACL(A) σ(α); same for reducts
ACLFL, ACLL1 etc.

For ACL(〈φ,Σ, FR〉), FR is irrelevant. Still, FR is useful because it links
automata to languages, which in turn is necessary to establish the relation
between ACL and SCL. For what is to follow, the phrase “automaton recogniz-
ing L” could be exchanged with “semi-automaton 〈φ,Σ〉 for which there is FR

such that L(〈φ,Σ, FR〉) = L”, which however is clumsy to repeat. As automata
are related to languages, there should be thus a relation between ACL(A) and
SCL(L), provided that L(A) = L. In particular, one knows that in this case,
if w �∼L v, then φ(w) �= φ(v) – otherwise, the automaton could not distin-
guish acceptance of words containing the two substrings. The inverse direction
is obviously incorrect, that is, φ(w) �= φ(v) does not imply anything for w, v in
L, as the automaton can make as many (unnecessary) distinctions as it desires
(this is related to the issue of minimality of automata). From this, we can for
example conclude the following: if L(A) = L, then for (M,C) ∈ BL, there are
(Mi, Ri) ∈ AA for i ∈ I, such that M =

⋃
i∈I Mi. However, this does not entail

(as one might conjecture) that we have M = (
⋃

i∈I Mi)��, which by complete-
ness of the lattice would entail that there is an automatic concept (M,R) ∈ AA.3

In general, there is no homomorphic relation between the two structures, so there
is no trivial way to extend completeness for SCL to completeness for automata-
theoretic semantics via embeddings; instead, we have to recur to a peculiar
automata-theoretic construction.

4.3 The Universal Automaton

There are always infinitely many distinct automata recognizing a language (even
modulo a labelled-graph based notion of automaton-isomorphism). We will now
consider a particular automaton type which is uniquely specified for every lan-
guage and which allows us to connect syntactic concepts to automatic concepts.
This is the so-called universal automaton (see [14]). The observation that
there is some connection between syntactic concepts and the universal automa-
ton is due to A.Clark and has been elaborated in [6]. However, the direct cor-
relation we establish here is new to my knowledge. The universal automaton is
based on the notion of a factorization of a language. (X,Y) is a factorization
of L, iff

3 Imagine the following situation: for every w ∈ M , there is (rw, r′
w) ∈ φ(m), such

that φ(x) ◦ {(rw, r′
w)} ◦ φ(y) ∩ F �= ∅, but (rw, r′

w) /∈ M� . So every w ∈ M has its
own peculiar pair which makes sure xwy ∈ L. Obviously, for

∨
w∈M ({w}�� , φ(w)) =

(N, R), we have N ⊇ M . Still there can be v ∈ N , v /∈ M , because φ(v) ⊇ R, but
φ(v) does not contain any of the pairs which ensure that xMy ⊆ L, and in fact
xvy /∈ L.

Automatic Concepts and Automata-Theoretic Semantics 319

1. XY ⊆ L, and
2. if X ⊆ X ′, Y ⊆ Y ′ and X ′Y ′ ⊆ L, then X = X ′, Y = Y ′.

We denote the set of L-factorizations with fact(L). So a factorization is a max-
imal decomposition of L into two factors. We denote the (unique) universal
automaton for a language L by U(L). The factorizations of L form the set of
states of U(L). We define I, the set of initial factorizations and F , the set of
final factorizations as follows: I = {(X,Y) ∈ fact(L) : ε ∈ X}, F = {(X,Y) ∈
fact(L) : ε ∈ Y }. Then for L ⊆ Σ∗, one defines the universal automaton
U(L) := (Σ, fact(L), I, F, δ), where for a ∈ Σ, ((X,Y), a, (X ′, Y ′)) ∈ δ iff
Xa ⊆ X ′ iff Y ⊇ aY ′. The latter bi-implication is easy to see: if Xa ⊆ X ′,
then XaY ′ ⊆ L, and so aY ′ ⊆ Y (same for the other direction). The results
of this subsection can be found in [14]; we present them as they are necessary
for the proof of the isomorphism theorem, but we omit the proofs. Until now,
we have given the “normal” presentation of universal automata. To proceed,
we quickly need to bring the universal automaton into our “relational form”
for automata: we put U(L) = 〈Σ,φ, I × F 〉, where for all a ∈ Σ, we have
φ(a) = {((X,Y), (X ′, Y ′)) : (X,Y), (X ′, Y ′) ∈ fact(L) and Xa ⊆ X ′}. We define
the maps [−]→, [−]← by

M→ = {w : Mw ⊆ L}(5)
M← = {w : wM ⊆ L}(6)

The compositions [−]→←, [−]←→ are closure operators, and [−]→, [−]← establish
a Galois connection between closed sets of strings (see [6] for the connection of
[−]→ and [−]� etc.). A factorization is then exactly a pair of sets (M,N) such
that M→ = N , N← = M (this entails M = M→←, N = N←→). Depending on
L, there might be trivial factorizations (Σ∗, ∅), (∅, Σ∗).

Lemma 12. For (X,Y), (X ′, Y ′) ∈ fact(L), W ⊆ Σ∗, the following are
equivalent:
1. XW ⊆ X ′

2. WY ′ ⊆ Y
3. XWY ′ ⊆ L.

Lemma 13. For every L ⊆ Σ∗, w ∈ Σ∗, for U(L) we have ((X,Y), (X ′, Y ′)) ∈
φ(w) iff Xw ⊆ X ′ iff wY ′ ⊆ Y iff XwY ′ ⊆ L.

Lemma 14. L(U(L)) = L.

That is, the universal automaton of L recognizes L. It is a straightforward
consequence of the Myhill-Nerode theorem that fact(L) is finite if and only if L
is regular. This entails the following:

Lemma 15. U(L) is a finite automaton if and only if L is regular.

320 C. Wurm

4.4 An Isomorphism Theorem for ACL and SCL

We have said that there is no homomorphic (or in fact, any simple structural)
relation between SCL(L) and ACL(A) for all A such that L(A) = L. This
is despite the fact that A must make the relevant distinctions between strings
distinct modulo ∼L. Things change if we look at the universal automaton instead
of automata in general. For two algebras B,B′, we write B ∼= B′ if there is an
isomorphism from one to the other, that is a bijection which preserves all results
of all operations. We can establish the following, surprisingly strong connection:

Theorem 16. (Isomorphism theorem) ACL(U(L)) ∼= SCL(L)

That is, the automatic concept lattice for the universal automaton over L is
isomorphic to the syntactic concept lattice of L. The following generalization of
Lemma 13 is quite simple, but will be very helpful in the proof of the isomorphism
theorem. Let [−]�, [−]� below be defined with respect to U(L).

Lemma 17. For (X,Y), (X ′, Y ′) ∈ fact(L), ((X,Y), (X ′, Y ′)) ∈ M� if and
only if XMY ′ ⊆ L.

Proof. If : Assume XMY ′ ⊆ L. Then for every w ∈ M , we have XwY ′ ⊆ L,
hence ((X,Y), (X ′, Y ′)) ∈ φ(w), hence ((X,Y), (X ′, Y ′)) ∈ M�.

Only if : Assume ((X,Y), (X ′, Y ′)) ∈ M�. Then for all w ∈ M , we have
((X,Y), (X ′, Y ′)) ∈ φ(w). Hence for all w ∈ M , XwY ′ ⊆ L, so XMY ′ ⊆ L. �

We can now show that universal automata are nuclear, so they provide a
sound semantics for the full Lambek calculus.

Lemma 18. Let [−]�, [−]� we defined with respect to U(L) for some language
L. Then M�, N� = (MN)�. Hence for every language L, U(L) is nuclear.

Proof. ⊆ Holds in general, by set-theoretic properties.
⊇ Assume ((X,Y ′), (X ′, Y)) ∈ (MN)�. Then XMNY ⊆ L.
Firstly, we have ((X,Y ′), ((NY)←, (NY)←→) ∈ M�: we have (X,Y ′) ∈

fact(L) by assumption, ((NY)←, (NY)←→) ∈ fact(L) by definition of [−]←,
[−]→, and since XMNY ⊆ L, we also have XM(NY)←→ ⊆ L. So the claim
follows from Lemma 17.

Secondly, we have (((NY)←, (NY)←→), (X ′, Y)) ∈ N�: (X ′, Y) ∈ fact(L)
by assumption, and we have ((NY)←NY ⊆ L by definition of [−]←, hence the
claim follows again from Lemma 17.

Consequently, by definition of ;, we have ((X,Y ′), (X ′, Y)) ∈ M�, N�. �
In the sequel, [−]�, [−]� refer to SCL-closure w.r.t. to some fixed L ⊆ Σ∗,

[−]�, [−]� to ACL-closure w.r.t. to U(L) (referring to the same language!). Now
comes the crucial lemma for the isomorphism theorem:

Lemma 19. For all M ⊆ Σ∗, M�� = M��.

Proof. M�� ⊆ M��. Assume w ∈ M��. Then whenever xMy ⊆ L, then
xwy ∈ L. If ((X,Y), (X ′, Y ′)) ∈ M�, then XMY ′ ⊆ L (by Lemma 17).

Automatic Concepts and Automata-Theoretic Semantics 321

However, if XMY ′ ⊆ L, then XwY ′ ⊆ L, hence (by the equivalence in
Lemma 12) Xw ⊆ X ′, wY ′ ⊆ Y . Hence we have ((X,Y), (X ′, Y ′)) ∈ φ(w) for all
((X,Y), (X ′, Y ′)) ∈ M�. Hence we have w ∈ M��.

M�� ⊆ M��. Assume w ∈ M��, and take an arbitrary (x, y) ∈ M�. Put
X = (My)←, Y = (XM)→. It is easy to see that 1. x ∈ X, y ∈ Y (obvious),
and 2. ((X,X→), (Y ←, Y)) ∈ M� (by Lemma 17). Since w ∈ M��, we have
M� ⊆ φ(w), and so ((X,X→), (Y ←, Y)) ∈ φ(w), which holds iff XwY ⊆ L,
entailing xwy ∈ L. Hence w ∈ M�� �

This already entails that the operations and constants in the respective lat-
tices yield the same result, because they are based on the same underlying
set-operations, of which we simply take the (same) closure. We denote oper-
ations in SCL(L) as usual; the operation in ACL(U(L)) corresponding to � in
SCL(L) will be denoted by �′. We distinguish the constants of different struc-
tures by subscripts �SCL(L) etc. As concepts are tuples, we write, for tuples
(X1,X2), (Y1, Y2), (X1,X2) =1 (Y1, Y2) iff X1 = Y1, that is, if their first compo-
nents are identical.

Corollary 20. 1. For � ∈ {∧,∨, ◦, /, \}, � defined w.r.t. SCL(L), �′ defined
w.r.t. ACL(U(L)), (M,M�) � (N,N�) =1 (M,M�) �′ (N,N�).

2. �SCL(L) =1 �ACL(U(L))

3. ⊥SCL(L)=1⊥ACL(U(L))

4. 1SCL(L) =1 1ACL(U(L))

Now it is easy to construct an isomorphism i : SCL(L) → ACL(U(L)):
for every (M,C) ∈ BL, we put i(M,C) = (M,M�). This completes the proof
of Theorem 16. The isomorphism theorem thus establishes a surprisingly strong
connection between the syntactic concept lattice and the universal automaton
of a language.

We now consider the consequences of the isomorphism theorem for our
investigations into the semantics of substructural logics. Automata-theoretic
semantics is richer than simple language-theoretic semantics, because there is
a many-one relationship of recognition between automata and languages. In
order to ensure soundness, we already have to restrict interpretations to nuclear
automata; then it follows from more general results. To obtain completeness, the
isomorphism theorem can be applied in a straightforward fashion: just compose
the SCL-interpretation of FL⊥ (or its fragments) with the isomorphism from
SCL(L) into ACL(U(L)), and we are done.

Theorem 21. (Completeness of automata-theoretic semantics)

1. ACL |= Γ � α iff �FL⊥ Γ � α
2. ACLFL |= Γ � α iff �FL Γ � α
3. ACLL1 |= Γ � α iff �L1 Γ � α

It is obvious how to further strengthen these results: let ACL(FIN)
denote the class of automatic concept lattices over finite nuclear automata

322 C. Wurm

(i.e. nuclear automata with finite state set).4 We can depart from complete-
ness for SCL(REG): for ��FL⊥ Γ � α we find a countermodel SCL(L)
where L ∈ REG. By the isomorphism theorem, we also have a countermodel
ACL(U(L)) which is finite. Thus we have the following:

Theorem 22. (Completeness for finite automata)

1. ACL(FIN) |= Γ � α iff �FL⊥ Γ � α
2. ACLFL(FIN) |= Γ � α iff �FL Γ � α
3. ACLL1(FIN) |= Γ � α iff �L1 Γ � α

5 Conclusion

We have presented a new complete semantics for the full Lambek calculus and
its various fragments, the so-called automata-theoretic semantics. It is based
on an automata-theoretic construction we introduced, the automatic concept
lattice. What is peculiar to this semantics is that it is both language-theoretic
and relational, and thus brings together two prominent types of semantics for
substructural logics. Our results are based on the construction of Galois connec-
tions, closure operators and nuclei: these allow us to give rather simple proofs
for completeness. This illustrates (once more) the usefulness of Galois connec-
tions in the context of substructural logics and formal language theory. Another
important result concerns finiteness of models, which corresponds to regularity
of languages. We showed that our completeness results can be extended to this
case.

As an outlook, we hope that we can use the results established in this paper
to strengthen some of the canonical completeness results regarding L-models and
relational models to regular languages and/or finite relations.

Acknowledgements. I would like to thank the anonymous reviewers – one in partic-
ular – for their extremely helpful comments.

References

1. Brown, C., Gurr, D.: Relations and non-commutative linear logic. J. Pure Appl.
Algebra 105(2), 117–136 (1995)

2. Buszkowski, W.: Completeness results for Lambek syntactic calculus. Math. Logic
Q. 32(1–5), 13–28 (1986)

3. Buszkowski, W.: Algebraic structures in categorial grammar. Theor. Comput. Sci.
1998(1–2), 5–24 (1998)

4. Clark, A.: A learnable representation for syntax using residuated lattices. In:
Groote, P., Egg, M., Kallmeyer, L. (eds.) FG 2009. LNCS (LNAI), vol. 5591, pp.
183–198. Springer, Heidelberg (2011). doi:10.1007/978-3-642-20169-1 12

4 This class is strictly smaller than the class of automata recognizing regular languages,
as obviously there are infinite automata recognizing regular languages.

http://dx.doi.org/10.1007/978-3-642-20169-1_12

Automatic Concepts and Automata-Theoretic Semantics 323

5. Clark, A.: Learning context free grammars with the syntactic concept lattice. In:
Sempere, J.M., Garćıa, P. (eds.) ICGI 2010. LNCS (LNAI), vol. 6339, pp. 38–51.
Springer, Heidelberg (2010). doi:10.1007/978-3-642-15488-1 5

6. Clark, A.: The syntactic concept lattice: another algebraic theory of the context-
free languages? J. Log. Comput. 25(5), 1203–1229 (2015)

7. Davey, B.A., Priestley, H.A.: Introduction to Lattices and Order, 2nd edn. Cam-
bridge University Press, Cambridge (1991)

8. Farulewski, M.: On finite models of the Lambek calculus. Stud. Logica. 80(1),
63–74 (2005)

9. Galatos, N., Jipsen, P., Kowalski, T., Ono, H.: Residuated Lattices: An Algebraic
Glimpse at Substructural Logics. Elsevier, Amsterdam (2007)

10. Kanazawa, M.: The Lambek calculus enriched with additional connectives. J. Logic
Lang. Inf. 1, 141–171 (1992)

11. Lambek, J.: The mathematics of sentence structure. Am. Math. Mon. 65, 154–169
(1958)

12. Lambek, J.: On the calculus of syntactic types. In: Jakobson, R. (ed.) Structure of
Language and its Mathematical Aspects, pp. 166–178. Providence (1961)

13. Leiß, H.: Learning context free grammars with the finite context property: a correc-
tion of A. Clark’s algorithm. In: Morrill, G., Muskens, R., Osswald, R., Richter, F.
(eds.) Formal Grammar 2014. LNCS, vol. 8612, pp. 121–137. Springer, Heidelberg
(2014). doi:10.1007/978-3-662-44121-3 8

14. Lombardy, S., Sakarovitch, J.: The universal automaton. In: Flum, J., Grädel, E.,
Wilke, T. (eds.) Logic, Automata: History and Perspectives [in Honor of Wolfgang
Thomas]. Texts in Logic and Games, vol. 2, pp. 457–504. Amsterdam University
Press (2008)

15. Okada, M., Terui, K.: The finite model property for various fragments of intuition-
istic linear logic. J. Symb. Logic 64(2), 790–802 (1999)

16. Pentus, M.: Models for the Lambek calculus. Ann. Pure Appl. Logic 75, 179–213
(1995)

17. Sestier, A.: Contributions à une théorie ensembliste des classifications linguis-
tiques. (Contributions to a set-theoretical theory of classifications). In: Actes du
Ier Congrès de l’AFCAL, Grenoble, pp. 293–305 (1960)

18. van Benthem, J.: Language in Action: Categories, Lambdas and Dynamic Logic.
Studies in Logic and the Foundations of Mathematics, vol. 130. North-Holland,
Amsterdam (1991)

19. Wurm, C.: Completeness of full Lambek calculus for syntactic concept lattices. In:
Morrill, G., Nederhof, M.-J. (eds.) FG 2012-2013. LNCS, vol. 8036, pp. 126–141.
Springer, Heidelberg (2013). doi:10.1007/978-3-642-39998-5 8

20. Wurm, C.: On some extensions of syntactic concept lattices: completeness and
finiteness results. In: Foret, A., Morrill, G., Muskens, R., Osswald, R., Pogodalla,
S. (eds.) FG 2015-2016. LNCS, vol. 9804, pp. 164–179. Springer, Heidelberg (2016).
doi:10.1007/978-3-662-53042-9 10

http://dx.doi.org/10.1007/978-3-642-15488-1_5
http://dx.doi.org/10.1007/978-3-662-44121-3_8
http://dx.doi.org/10.1007/978-3-642-39998-5_8
http://dx.doi.org/10.1007/978-3-662-53042-9_10

Abstracts of Short Talks

Graded Hyponymy for Compositional
Distributional Semantics

Dea Bankova, Bob Coecke, Martha Lewis(B), and Dan Marsden

University of Oxford, Oxford, UK
{coecke,marlew,daniel.marsden}@cs.ox.ac.uk

1 Introduction

The categorical compositional distributional model of natural language provides
a conceptually motivated procedure to compute the meaning of a sentence, given
its grammatical structure and the meanings of its words. This approach has
outperformed other models in mainstream empirical language processing tasks,
but needs further development towards the crucial feature of lexical entailment.

We address this challenge by exploiting the freedom in our abstract categori-
cal framework to change our choice of semantic model. This allows us to describe
hyponymy as a graded order on meanings, using models of partial information
used in quantum computation. Quantum logic embeds in this graded order.

2 Results

We describe how the semantics of the categorical compositional distributional
model can be lifted from vector spaces to density matrices, providing a richer
environment for meaning representation.

We introduce a general setting for approximate entailment that can be built
on any commutative monoid. When applied to the category of positive operators
and completely positive maps, this framework generates a novel robust graded
order that captures the hyponymy strength between concepts.

A procedure is given for determining the hyponymy strength between any
pair of phrases of the same overall grammatical type. The pair of phrases can
have differing lengths and even include words that are not upwardly monotonic.
For example, we can determine the extent to which ‘John’s joyful cousin’ is a
hyponym of ‘unhappy chaps’. This is possible because within categorical com-
positional semantics, phrases of each type are reduced to one common space
according to their type, and can be compared within that space.

Finally, we show that, in the case of positive sentences, hyponymy strength
lifts compositionally to the phrase level, giving a lower bound on phrase
hyponymy. This means that in certain contexts, we can predict the hyponymy
strength between phrases based on the hyponymy strengths of the words within
each phrase. We provide numerous examples for different sentences and noun
phrases, and indicate of how these can be applied within an NLP setting.

This abstracts the paper ‘Graded Entailment for Compositional Distributional
Semantics’, available at: http://arxiv.org/abs/1601.04908.

c© Springer-Verlag GmbH Germany 2016
M. Amblard et al. (Eds.): LACL 2016, LNCS 10054, p. 327, 2016.
DOI: 10.1007/978-3-662-53826-5

http://arxiv.org/abs/1601.04908

Minimization of Finite State Automata
Through Partition Aggregation

Johanna Björklund1(B) and Loek Cleophas1,2

1 Department of Computing Science, Ume̊a University, Ume̊a, Sweden
johanna@cs.umu.se

2 Department of Information Science, Stellenbosch University,
Stellenbosch, South Africa

loek@fastar.org

We present a minimization algorithm for finite state automata that finds and
merges bisimulation-equivalent states, identified through partition aggregation.
In terms of applicability, the algorithm is a generalisation of an earlier one by
Watson and Daciuk for deterministic devices. We show the algorithm to be
correct and run in quadratic time in the number of states and the maximal
out-degree of the transition graph, and in linear time in the size of the input
alphabet. The algorithm is slower than those based on partition refinement, but
has the advantage that intermediate solutions are also language equivalent to
the input automaton M. Furthermore, the algorithm essentially searches for the
maximal model of a characteristic formula for M, so many of the optimisation
techniques used to gain efficiency in SAT solvers are likely to apply.

c© Springer-Verlag GmbH Germany 2016
M. Amblard et al. (Eds.): LACL 2016, LNCS 10054, p. 328, 2016.
DOI: 10.1007/978-3-662-53826-5

Inferring Necessary Categories in CCG

Jacob Collard(B)

Cornell University, Ithaca, NY, USA
jacob@thorsonlinguistics.com

It is possible to infer the category of unknown lexical items in categorial gram-
mars given a two-word sentence in which one word is known. However, inferring
the possible categories of words in longer sentence is a non-trivial problem that
is much more difficult to solve in a general, cross-linguistic manner. I propose a
probabilistic method which uses the standard combinatory rules for combinatory
categorial grammars (CCGs) to learn sentences in a target language by assign-
ing probabilities to possible categories for a given word based on the likelihood
that the given category will be necessary to provide a complete grammar of the
language. This algorithm is semi-supervised; it requires a seed lexicon in order
to begin learning, and can then infer the categories of new words in a corpus
of unannotated sentences. At no point does the algorithm require annotations
such as proof nets or derivations; instead it learns primarily from strings, making
it relatively naturalistic. The algorithm is sensitive to the order of sentences in
the corpus, preferring shorter sentences early on before it has built up a large
enough base lexicon to learn longer sentences.

As an unsupervised algorithm, the learner that I present is quite difficult to
test, as it does not necessarily learn the same analysis that is presented in the
test set if more than one analysis is possible. It can, however, be shown to derive
reasonable analyses for small, well-understood datasets.

Because the algorithm uses generalizable algebraic structures to define its
inference rules, it may be possible to extend it to other formalisms, so long as
certain properties are maintained.

c© Springer-Verlag GmbH Germany 2016
M. Amblard et al. (Eds.): LACL 2016, LNCS 10054, p. 329, 2016.
DOI: 10.1007/978-3-662-53826-5

Sitting and Waiting

An Idle Meaning of an English Posture Verb

Katherine Fraser(B)

Universität Stuttgart, Stuttgart, Germany
fraserk4@gmail.com

Posture verbs describe spatial configuration, prototypically of humans in “at-
rest” states [3]. However, it has been observed that the semantic network of
these verbs is more diverse, and that the literal uses are less common than the
metaphorical extensions [2]. In English, the semantic coverage of one such verb,
sitting, includes a contingent state lacking a posture entailment and where a
negative judgement of this state is particularly salient (1). In this short talk, I
will provide both empirical evidence of the distribution of sitting ’s expressive
use, as well as a proposed compositional model, utilising Gutzmann’s [1] use-
conditional framework for the analysis. This investigation gives insight not only
on posture verbs in general, but also on how multi-dimensional meaning can be
formally addressed.

(1) {A secretary had prepared a contract to hire a new employee.}
a. The contract was sitting on the CEO’s desk, ready to be signed.
b. ?The contract sat on the CEO’s desk, ready to be signed.

(2) #The contract was sitting on the CEO’s desk but he shouldn’t sign it.

The contract in (1) is inanimate, not in a relevant posture, and judged to be
in an unused state. Interestingly, the most salient part is the negative evaluation:
this idle state of the object is undesired; when the unwanted aspect is negated,
the sentence becomes infelicitous (2). The additional layer of meaning disappears
in (1-b), where the progressive is exchanged for the simple past. The oddness
of (1-b) improves with the addition of a secondary predicate like for four days,
which eludicates the bounded interval of the idle state.

In this talk, I will describe how sitting’s expressive meaning can be formalised
with use-conditional theory [1]. The analysis proposed makes use of an bouletic
mood operator which maps propositions onto emotional predicates, and which
takes the entire descriptive proposition as its argument. As this function includes
a set of use-conditional bouletic evaluator predicates, it enables the integration
of a negative evaluation into the semantics, an essential aspect of the expressive
meaning. By changing the modal operator, e.g., to be epistemic, the analysis can
be extended to other posture verbs’ expressive meaning.

References

1. Gutzmann, D.: Use-Conditional Meaning. Studies in Multidimensional Semantics.
Oxford Studies in Semantics and Pragmatics, vol. 6. Oxford University Press,
Oxford (2015)

c© Springer-Verlag GmbH Germany 2016
M. Amblard et al. (Eds.): LACL 2016, LNCS 10054, pp. 330–331, 2016.
DOI: 10.1007/978-3-662-53826-5

Sitting and Waiting 331

2. Lemmens, M.: The semantic network of dutch posture verbs. In: Newman, J. (ed.)
The Linguistics of Sitting, Standing, and Lying, pp. 103–139. John Benjamins
Publishing Company (2002)

3. Newman, J.: A cross-linguistic overview of the posture verbs ‘sit’, ‘stand’ and ‘lie’.
In: Newman, J. (ed.) The Linguistics of Sitting, Standing, and Lying, pp. 1–24.
John Benjamins Publishing Company (2002)

Types and Meaning of Relative Pronouns in
Tupled Pregroup Grammars

Aleksandra Kíslak-Malinowska(B)

University of Warmia and Mazury, Olsztyn, Poland
akis@uwm.edu.pl

Pregroup grammars were introduced by Lambek [3] as an algebraic tool for syn-
tactic analysis of natural languages. The main focus in our study is placed on an
extension of pregroup grammars—tupled pregroup grammars (TPG), proposed
by Stabler [5]—and its application for a widely considered grammar issue: rela-
tive pronouns in English. We discuss the former approaches to that phenomenon
proposed by several authors and compare them. Additionally, we consider expres-
sions with relative pronouns not only from syntactical point of view (checking
whether they are well formed according to grammar rules) but also go further
and explore their deeper structure, creating automatically some logical forms,
representing their meaning.

References

1. Buszkowski, W.: Lambek grammars based on pregroups. In: de Groote, P., Morrill,
G., Retoré, C. (eds.) LACL 2001. LNCS, vol. 2099, pp. 95–109. Springer, Heidelberg
(2001)

2. Kíslak-Malinowska, A.: Extended pregroup grammars applied to natural languages.
Logic Log. Philos. 21, 229–252 (2012)

3. Lambek, J.: Type grammar revisited. In: Lecomte, A., Lamarche, F., Perrier, G.
(eds.) LACL 1997. LNCS, vol. 1582, pp. 1–27. Springer, Heidelberg (1999)

4. Lambek J.: From word to sentence, Polimetrica (2008). ISBN 978-88-7699-117-2
5. Stabler E.: Tupled pregroup grammars. In: Lambek, J., Casadio, C. (eds.) Compu-

tational Algebraic Approaches to Natural Language, pp. 23–52, Polimetrica (2008).
ISBN 978-88-7699-125-7

c© Springer-Verlag GmbH Germany 2016
M. Amblard et al. (Eds.): LACL 2016, LNCS 10054, p. 332, 2016.
DOI: 10.1007/978-3-662-53826-5

Dependent Event Types

Zhaohui Luo1(B) and Sergei Soloviev2

1 Royal Holloway, University of London, London, UK
zhaohui.luo@hotmail.co.uk

2 IRIT, Toulouse, France
Sergei.Soloviev@irit.fr

Employing dependent types for a refined treatment of event types provides a nice
improvement to Davidson’s event semantics [3, 7]. We consider dependent event
types indexed by thematic roles and show that subtyping between them plays an
essential role in semantic interpretations. It is also shown that dependent event
types give a natural solution to the event quantification problem in combining
event semantics with the Montague semantics [1, 4, 8].

For instance, EvtA(a) is the dependent type of events whose agents are a :
Agent. The dependent event types abide by subtyping relationships:

EvtAP (a, p) ≤ EvtA(a) ≤ Event and EvtAP (a, p) ≤ EvtP (p) ≤ Event,

where a : Agent, p : Patient andEvent is the type of all events. With such depen-
dent event types, subtyping is crucial. Consider John talked loudly: its David-
sonian event semanticswould be∃e : Event. talk(e)& loud(e)& agent(e, j), where
talk, loud : Event → t. With dependent event types, the semantics would be
∃e : EvtA(j). talk(e) & loud(e), in which the terms such as talk(e) are only well-
typed because EvtA(j) ≤ Event.

It has been argued that there is some incompatibility between
(neo-)Davidsonian event semantics and the traditional compositional semantics,
as the event quantification problem shows: the following two possible interpreta-
tions of No dog barks are both well-formed formulas, although (2) is incorrect:

(1) ¬∃x : e. dog(x) & ∃e : Event. bark(e) & agent(e, x)
(2) (#) ∃e : Event. ¬∃x : e. dog(x) & bark(e) & agent(e, x)

To exclude such incorrect interpretations, various informal solutions have
been proposed [1, 8]. With dependent event types, this problem is solved natu-
rally and formally—the incorrect semantic interpretations such as (4) below are
excluded because they are ill-typed, while the correct one (3) is well-typed.

(3) ¬∃x : e. (dog(x) & ∃e : EvtA(x). bark(e))
(4) (#) ∃e : EvtA(x). ¬∃x : e. dog(x) & bark(e)

The underlying formal system Ce is the extension of Church’s simple type
theory [2], as used in the Montague semantics, with dependent event types and
the subtyping relations. Ce can be faithfully embedded into UTT[C], i.e., the type
theory UTT [5] extended with coercive subtyping in C [6], where C contains the
c© Springer-Verlag GmbH Germany 2016
M. Amblard et al. (Eds.): LACL 2016, LNCS 10054, pp. 333–334, 2016.
DOI: 10.1007/978-3-662-53826-5

334 Z. Luo and S. Soloviev

subtyping judgements that correspond to the above subtyping relations between
dependent event types. Since UTT[C] has nice meta-theoretic properties such as
normalisation and logical consistency, so does Ce.

The paper is available online at http://www.cs.rhul.ac.uk/home/zhaohui/
DET.pdf.

References

1. Champollion, L.: The interaction of compositional semantics and event semantics.
Linguist. Philos. 38, 31–66 (2015)

2. Church, A.: A formulation of the simple theory of types. J. Symb. Log. 5(1) (1940)
3. Davidson, D.: The logical form of action sentences. In: Rothstein, S. (ed.). The

Logic of Decision and Action. University of Pittsburgh Press (1967)
4. de Groote, P., Winter, Y.: A type-logical account of quantification in event seman-

tics. Logic Eng. Nat. Lang. Semant. 11 (2014)
5. Luo, Z.: Computation and Reasoning: A Type Theory for Computer Science.

Oxford University Press (1994)
6. Luo, Z., Soloviev, S., Xue, T.: Coercive subtyping: theory and implementation.

Inform. Comput. 223, 18–42 (2012)
7. Parsons, T.: Events in the Semantics of English. MIT Press (1990)
8. Winter, Y., Zwarts, J.: Event Semantics and Abstract Categorial Grammar. In:

Kanazawa, M., Kornai, A., Kracht, M., Seki, H. (eds.) MOL 12. LNCS, pp. 174–
191. Springer, Heidelberg (2011)

http://www.cs.rhul.ac.uk/home/zhaohui/DET.pdf
http://www.cs.rhul.ac.uk/home/zhaohui/DET.pdf

Author Index

Asher, Nicholas 1

Babonnaud, William 18
Bankova, Dea 327
Béchet, Denis 34
Bekki, Daisuke 52
Björklund, Johanna 328
Buszkowski, Wojciech 68

Chatzikyriakidis, Stergios 85
Cleophas, Loek 328
Coecke, Bob 327
Collard, Jacob 329

Duchier, Denys 255

Foret, Annie 34
Fraser, Katherine 330

Gaudreault, Gabriel 99

Kallmeyer, Laura 18
Kartsaklis, Dimitri 116
Kawazoe, Ai 52
Kiślak-Malinowska, Aleksandra 332
Kokke, Wen 134

Leiß, Hans 149
Lewis, Martha 327
Liefke, Kristina 175
Luo, Zhaohui 85, 333

Mari, Alda 191
Marsden, Dan 327
Méhats, Laurent 211
Morrill, Glyn 228
Muskens, Reinhard 247

Osswald, Rainer 18

Parmentier, Yannick 255
Paul, Soumya 1
Petitjean, Simon 255

Sadrzadeh, Mehrnoosh 116, 247
Sanders, Sam 175
Soloviev, Sergei 333
Stanojević, Miloš 273
Straßburger, Lutz 211

Valentín, Oriol 228
Vidal, Mathieu 291

Wu, Shuqian 149
Wurm, Christian 308

	Foreword
	Preface
	Organization
	Abstracts of Invited Talks
	fc Disjunction in State-Based Semantics
	The Parallel Meaning Bank: A Large Corpus of Translated Texts Annotated with Formal Meaning Representations
	Bayesian Inference in a Probabilistic Type Theory
	Combining Formal and Distributional Semantics: An Argument from the Syntax and Semantics of Modification
	Contents
	Language Games
	1 Introduction
	2 Message Exchange Games
	3 Imperfect Information and Epistemic Considerations
	4 Conclusion
	A Appendix
	References

	Polysemy and Coercion -- A Frame-Based Approach Using LTAG and Hybrid Logic
	1 Introduction
	2 The Formal Framework
	2.1 Frames
	2.2 Hybrid Logic and Semantic Frames
	2.3 LTAG and Hybrid Logic

	3 Application to Coercion
	3.1 Dot Objects in Frames Semantics
	3.2 Coercion, Selection and Dot Objects
	3.3 Other Cases of Coercion

	4 Conclusion
	References

	Categorial Dependency Grammars with Iterated Sequences
	1 Introduction
	2 CDG with Sequence Iterations
	2.1 Classical Categorial Dependency Grammars
	2.2 CDG with Sequences and Sequence Iterations
	2.3 Links with Noncommutative Logic and Lambek Calculus
	2.4 Parsing and Expressive Power

	3 Learnability Results
	3.1 Inference Algorithm
	3.2 Algorithm Properties
	3.3 A Family of Learnable Classes

	4 Extended CDG and Dependency Treebanks
	5 Conclusion
	References

	Implementing Variable Vectors in a CCG Parser
	1 Introduction
	1.1 Category Variables T and Variable Vectors x or Mx
	1.2 Problem of Variable Vectors
	1.3 Previous Work on Category Variables
	1.4 Lightblue: A Robust CCG Parser with DTS

	2 DTS with Variable Vectors in de Bruijn Notation
	2.1 Syntax and Reduction
	2.2 Expanding and Shrinking of Variable Vectors
	2.3 Interaction Between Category and Lambda Terms

	3 Some Examples
	4 Conclusion and Future Work
	References

	On Classical Nonassociative Lambek Calculus
	1 Introduction
	2 Algebras and Phase Spaces
	3 Logics
	4 Main Results
	References

	Proof Assistants for Natural Language Semantics
	1 Introduction
	2 Type Theoretical Semantics for NL in Coq
	2.1 Formal Semantics in Type Theory with Coercive Subtyping
	2.2 NL Semantics in Coq

	3 Libraries for NL Semantics
	3.1 MTT Semantics for NL in Coq
	3.2 Other Semantic Frameworks
	3.3 Experiments with New Semantic Theories

	4 Conclusions and Future Work
	References

	Compositional Event Semantics in Pregroup Grammars
	1 Introduction
	2 Pregroup Grammars
	3 Problems with Semantics in Pregroup Grammars
	4 Quick Overview of Event Semantics and Conjunctivism
	5 Derivational Event Semantics Using Pregroup Grammars
	5.1 Motivation
	5.2 Semantic Pregroup Types
	5.3 Semantic Combinations
	5.4 Syntactic/Semantic Hierarchy
	5.5 Existential-Closure

	6 Conclusion
	References

	A Compositional Distributional Inclusion Hypothesis
	1 Introduction
	2 Compositional Distributional Semantics
	3 The Distributional Inclusion Hypothesis
	4 A Compositional Distributional Inclusion Hypothesis
	4.1 Element-Wise Composition
	4.2 Holistic Phrase/Sentence Vectors
	4.3 Tensor-Based Models

	5 Measuring the CDIH
	6 Experimental Setting
	6.1 Datasets
	6.2 Compositional Models
	6.3 Measures and Evaluation

	7 Results
	7.1 Phrase and Sentence Entailment
	7.2 Adjective-Noun Compounds

	8 Discussion
	9 Conclusion and Future Work
	References

	Strong and Weak Quantifiers in Focused NLCL
	1 Introduction
	2 Background
	3 Scope Islands for NLCL
	4 Strong and Weak Quantifiers
	5 Examples
	6 Conclusion
	References

	Type Reconstruction for -DRT Applied to Pronoun Resolution
	1 Introduction
	2 -DRT
	2.1 Untyped -DRS-Terms

	3 Typing Rules
	4 Type Reconstruction
	5 Reduction
	6 Application to Pronoun Resolution
	6.1 Type Informed Pronoun Resolution
	6.2 Example
	6.3 Type Reconstruction for Bach-Peters-Sentences
	6.4 Supporting Pronoun Translation
	6.5 Related Work

	7 Open Problems
	8 Conclusion
	References

	A Computable Solution to Partee's Temperature Puzzle
	1 Partee's Puzzle and Montague's Solution
	2 Problems with Montague's Solution
	2.1 Problem 1: Non-Computability of NL Interpretations
	2.2 Problem 2: High-Rank Typing
	2.3 Problem 3: Context-Invariance

	3 Solving the Problems
	3.1 Continuity and the Temperature Puzzle
	3.2 Associates and the Temperature Puzzle
	3.3 The Associates-Solution to the Temperature Puzzle
	3.4 Computability and the Temperature Puzzle

	4 Compositional Implementation
	5 Domain and Scope
	6 Relation to Existing Work
	7 Conclusion and Outlook
	References

	Actuality Entailments: When the Modality is in the Presupposition
	1 Introduction
	2 Goals and Expectations: New Facts
	3 Analysis
	3.1 Representing Goal-Oriented Modality
	3.2 Calculating the Asserted Meaning
	3.3 Prospectivity and the Absence of Entailment of Actuality
	3.4 Accounting for the Contribution of the Modal

	4 Further Discussion
	4.1 Anchoring to Times and Opportunity Reading: The Role of the Adverbs
	4.2 Generic Deontic Modality
	4.3 Past-Oriented Abilitative Modality? A Final Note

	5 Conclusion
	References

	Non-crossing Tree Realizations of Ordered Degree Sequences
	1 Introduction
	2 General Case
	3 The Four Parameters Case
	4 Pascal's and Catalan's Triangles
	5 A Triangular Catalan Recurrence
	6 Triangles and Tetrahedra
	7 Generating Functions
	References

	On the Logic of Expansion in Natural Language
	1 Introduction
	2 The Categorial Logic
	3 Phase Semantics
	3.1 Semantic Interpretation
	3.2 The Semantics of the Iteration Connective

	4 CatLog2 Analyses
	4.1 Iterated Coordination
	4.2 The Respectively Construction

	References

	Context Update for Lambdas and Vectors
	1 Introduction
	2 Heim's Files and Distributional Contexts
	3 Vectors, Matrices, Lambdas
	4 Context Update for Lambda Binders
	5 Conclusion and Future Directions
	References

	XMG2: Describing Description Languages
	1 Introduction
	2 Compiling Extensible Metagrammars
	3 Assembling a Domain Specific Language
	3.1 Defining a Modular DSL by Assembling Bricks of Language
	3.2 Meta-Compiling a Modular DSL

	4 Application: Designing a Language to Describe Syntax, Semantics and/or Morphology
	4.1 Defining Language Bricks for Describing Tree Grammars
	4.2 Assembling Language Bricks for Describing Tree Grammars
	4.3 Adding a Morphological Layer

	5 Related Work
	6 Conclusion
	References

	Minimalist Grammar Transition-Based Parsing
	1 Introduction
	2 Minimalist Grammars
	3 Chart-Based Parser for MG
	4 Transition-Based Bottom-Up Parser for CFG
	5 Transition-Based Bottom-Up Parser for MG
	5.1 Handling Discontinuities with Online Reordering
	5.2 Explicit Generation of Empty Strings
	5.3 Parser Description

	6 Soundness, Completeness and Complexity
	6.1 Soundness
	6.2 Completeness and Construction of an Oracle
	6.3 Computational Complexity

	7 Parsing of Finite-State Automaton
	8 Conclusion and Future Work
	References

	A Compositional Semantics for `If Then' Conditionals
	1 If
	2 Then
	3 If Then
	4 A Defense of Contraposition for If Then Conditionals
	4.1 Cases Not Using the If Then Form
	4.2 Simple Cases of the If Then Form
	4.3 Cases with Modals
	4.4 Advantages

	References

	Automatic Concepts and Automata-Theoretic Semantics for the Full Lambek Calculus
	1 Introduction
	2 The Logics L, L1, FL, FL and their Models
	2.1 The Logics L, L1, FL and FL
	2.2 Interpretations of L1, FL and FL
	2.3 Syntactic Concepts and Galois Connections
	2.4 Monoid Structure and Residuation for Syntactic Concepts
	2.5 Completeness: Previous Results

	3 Regular Languages and SCL(REG)
	4 Automata-Theoretic Semantics
	4.1 Automata-Theoretic Preliminaries
	4.2 Automatic Concepts
	4.3 The Universal Automaton
	4.4 An Isomorphism Theorem for ACL and SCL

	5 Conclusion
	References

	Abstracts of Short Talks
	Graded Hyponymy for Compositional Distributional Semantics
	1 Introduction
	2 Results

	Minimization of Finite State Automata Through Partition Aggregation
	Inferring Necessary Categories in CCG
	Sitting and Waiting
	References

	Types and Meaning of Relative Pronouns in Tupled Pregroup Grammars
	References

	Dependent Event Types
	References

	Abstracts of Short Talks
	Author Index

