Maxime Amblard - Philippe de Groote
Sylvain Pogodalla - Christian Retoré (Eds.)

Logical Aspects
of Computational
Linguistics

Celebrating 20 years of LACL (1996-2016)

9th International Conference, LACL 2016
Nancy, France, December 5-7,2016
Proceedings

LNCS 10054

@ Springer




Lecture Notes in Computer Science 10054
Commenced Publication in 1973

Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison, UK Takeo Kanade, USA

Josef Kittler, UK Jon M. Kleinberg, USA
Friedemann Mattern, Switzerland John C. Mitchell, USA
Moni Naor, Israel C. Pandu Rangan, India
Bernhard Steffen, Germany Demetri Terzopoulos, USA
Doug Tygar, USA Gerhard Weikum, Germany

FoLLI Publications on Logic, Language and Information

Subline of Lectures Notes in Computer Science

Subline Editors-in-Chief

Valentin Goranko, Stockholm University, Sweden
Michael Moortgat, Utrecht University, The Netherlands

Subline Area Editors

Nick Bezhanishvili, University of Amsterdam, The Netherlands

Anuj Dawar, University of Cambridge, UK

Philippe de Groote, Inria Nancy, France

Gerhard Jager, University of Tiibingen, Germany

Fenrong Liu, Tsinghua University, Beijing, China

Eric Pacuit, University of Maryland, USA

Ruy de Queiroz, Universidade Federal de Pernambuco, Brazil

Ram Ramanujam, Institute of Mathematical Sciences, Chennai, India



More information about this series at http://www.springer.com/series/7407


http://www.springer.com/series/7407

Maxime Amblard - Philippe de Groote
Sylvain Pogodalla - Christian Retoré (Eds.)

Logical Aspects
of Computational
Linguistics

Celebrating 20 Years of LACL
(1996-2016)

Oth International Conference, LACL 2016
Nancy, France, December 5-7, 2016
Proceedings

@ Springer



Editors

Maxime Amblard Sylvain Pogodalla

Campus Scientifique Inria Nancy

LORIA (UMR 7503) — Sémagramme Villers-les-Nancy
Campus Scientifique France

l\zfra;rrllctlz(;euvre 1és-Nancy Christian Retoré

LIRMM, Université¢ de Montpellier

Philippe de Groote Montpellier

Inria Nancy France

Villers-lés-Nancy

France

ISSN 0302-9743 ISSN 1611-3349 (electronic)

Lecture Notes in Computer Science

ISBN 978-3-662-53825-8 ISBN 978-3-662-53826-5 (eBook)

DOI 10.1007/978-3-662-53826-5
Library of Congress Control Number: 2016956486
LNCS Sublibrary: SL1 — Theoretical Computer Science and General Issues

© Springer-Verlag GmbH Germany 2016

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.

The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made.

Printed on acid-free paper
This Springer imprint is published by Springer Nature

The registered company is Springer-Verlag GmbH Germany
The registered company address is: Heidelberger Platz 3, 14197 Berlin, Germany



This 20th anniversary LACL volume is dedicated to the memory of
Alexander Dikovsky, chair of LACL 2012,

and of

Joachim Lambek, invited speaker at LACL 1997,

who both passed away in 2014.



Foreword

The ninth edition of LACL (Logical Aspect of Computational Linguistics) that took
place in 2016 in Nancy, marked the 20th anniversary of the conference.

The first edition of the conference that I launched in 1996 was also held in Nancy,
and then as now, I had the pleasure of coorganizing it with my friend Philippe de
Groote, who at that time headed our Calligramme research group.

What a pleasure to see that, 20 years later, there is still a need for such a conference on
the relation between formal logic and computational linguistics, or perhaps we should
say between formal linguistics and computational logic—since nowadays “computa-
tional linguistics” hardly evokes “logic”. Not only did the LACL field keep on devel-
oping since 1996, but today it encompasses new triggering questions between logic,
linguistics and computer science that we had no idea in 1996. This anniversary took
place at LORIA, which was the first venue not only for that reason: LORIA includes an
important department of computational linguistics where the two other editors of this
volume, Maxime Amblard and Sylvain Pogodalla, former PhD students of mine, hold a
position in Philippe de Groote’s Sémagramme research group, the continuation of
Calligramme.

I would like to thank Philippe, Sylvain, and Maxime, in the order with which they
started making contributions to the Logical Aspects of Computational Linguistics, for
organising in Nancy this beautiful LACL anniversary.

September 2016 Christian Retoré
Program Chair of LACL 1996 and 2016
(first and ninth editions)



Preface

We are pleased to provide the proceedings of the 9th International Conference on
Logical Aspects of Computational Linguistics, LACL 2016, which was held in Nancy,
France, during December 5-7, 2016. LACL aims to be a forum for the exchange of
ideas involving all aspects of formal logic within computational linguistics, from
syntactic parsing to formal semantics and discourse interpretation.

Previous LACL conferences where held in Nancy (1996, 1997), Grenoble (1998),
Le Croisic (2001), Bordeaux (2005), Montpellier (2011), Nantes (2012), and Toulouse
(2014).

The proceedings of this ninth edition comprise four invited contributions, by Maria
Aloni (Universiteit van Amsterdam, The Netherlands), Johan Bos (Rijksuniversiteit
Groningen, The Netherlands), Shalom Lappin (Goteborgs Universitet, Sweden), and
Louise McNally (Universita Pompeu Frabra, Barcelona, Spain), 19 contributed papers,
and six short abstracts selected from 39 submissions. Each paper received three
reviews, and sometimes more, provided by the Program Committee and additional
reviewers, listed herein.

We would like to thank all those who submitted papers for consideration at LACL,
the four invited speakers, and all conference participants. We want to thank our
international team of reviewers, who often gave extensive comments to authors. We
very much hope that these comments will be of use to those who submitted papers for
their future research.

We are also grateful to our institutional sponsors and supporters: the Association for
Logic, Language and Information (FoLLI), the computer science laboratory in Nancy
(LORIA), the French National Institute for Computer Science and Applied Mathe-
matics (Inria), the National Center for Scientific Research (CNRS), the University of
Lorraine, the Région Lorraine, and the Communauté Urbaine du Grand Nancy. We
would also like to express our gratitude to the Organizing Committee and all the people
whose efforts made this meeting possible.

September 2016 Maxime Amblard
Philippe de Groote

Sylvain Pogodalla

Christian Retoré
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rC Disjunction in State-Based Semantics

Maria Aloni

Institute for Logic, Language, and Computation, University of Amsterdam,
Amsterdam, The Netherlands

In a state-based semantics sentences are interpreted with respect to states (defined as
sets of possible worlds) rather than single possible worlds. This feature makes
state-based semantics particularly suitable to capture the inherent epistemic and/or
alternative-inducing nature of disjunctive words in natural language. In the first part
of the talk, I will discuss three notions of disjunction that have been proposed in a
state-based semantics with emphasis on their potential to account for Free Choice (Fc)
inferences when combined with a possibility modal:

(1) Fc inferences

a. Wide scope: Ga VvV Ob = Ca A Ob
b. Narrow scope: G(a VvV b) | Ca A Ob

The first notion V; corresponds to disjunction in classical logic; the second notion
V, has been independently proposed by Yang and Viédndnen [5] and Hawke and
Steinert-Threlkeld [3]; the third notion V3 corresponds to inquisitive disjunction as in
Ciardelli and Roelofsen [2] (see also Kit Fine’s truthmaker semantics). Team/assertion
logic V; in combination with a context-sensitive notion of modality a la Veltman [4]
derives wide scope Fc inference (as discussed in [3]). Inquisitive/truthmaker V3 com-
bined with Aloni’s [1] alternative-sensitive notion of modality derives narrow scope FC
inference. Neither combinations however can account for both wide scope and narrow
scope Fc. Furthermore, when free choice inducing sentences occur embedded under
negation, both systems predict weaker readings than attested in ordinary language use.
In the second part of the talk, I will present a third state-based system, adopting V5,
which derives both wide scope and narrow scope Fc while solving the negation
problem. Merits and shortcomings of this novel system will be discussed as well as its
potential to be extended to account for free choice indefinites.

References

1. Aloni, M.: Free choice, modals and imperatives. Nat. Lang. Sem. 15, 65-94 (2007)

2. Ciardelli, 1., Roelofsen, F.: Inquisitive logic. J. Philos. Logic 40(1), 55-94 (2011)
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The Parallel Meaning Bank: A Large Corpus
of Translated Texts Annotated with Formal
Meaning Representations

Johan Bos

University of Groningen, Groningen, The Netherlands

Several large corpora annotated with meaning representations are nowadays available
such as the Groningen Meaning Bank [4], the AMR Corpus [1], or Treebank Semantics
[5]. These are usually resources for a single language. In this paper I present a project
with the aim to develop a meaning bank for translations of texts — in other words, a
parallel meaning bank. The languages involved are English, Dutch, German and Italian.
The idea is to use language technology developed for English and project the outcome
of the analyses to the other languages. There are five steps of processing:

— Tokenisation: segmentation of words, multi-word expressions and sentences, using
Elephant, a statistical tokenizer [7];

— Semantic Tagging: mapping word tokens to semantic tags (abstracting over tradi-
tional part-of-speech tags and named entities and a bit more);

— Symbolisation: assigning appropriate non-logical symbols to word tokens (com-
bining lemmatization and normalisation);

— Syntactic Parsing: based on Combinatorial Categorial Grammar [6, 9];

— Semantic Parsing: based on Discourse Representation Theory, using the semantic
parser Boxer [3];

The first aim of the project is to provide appropriate compositional semantic
analyses for the aforementioned language taking advantage of the translations. The
second aim is to study the role of meaning in translations: even though you would
expect that meaning is preserved in translations, human translators often perform little
tricks involving meaning shifts and changes to arrive at better translations [2, 8].
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Bayesian Inference in a Probabilistic
Type Theory

Shalom Lappin'*?

! Department of Philosophy, Linguistics, and Theory of Science,
University of Gothenburg, Gothenburg, Sweden
2 Department of Philosophy, King’s College, London, UK
3 School of Electronic Engineering and Computer Science,
Queen Mary University of London, London, UK
shalom. lappin@gu.se

Classical semantic theories [8], as well as dynamic [7] and underspecified frameworks
[5] use categorical type systems. A type T identifies a set of possible denotations for
expressions in 7. The theory specifies combinatorial operations for deriving the
denotation of an expression from the values of its constituents. These theories cannot
represent the gradience of semantic properties that is pervasive in speakers’ judgements
concerning truth, predication, and meaning relations.

There is a fair amount of evidence indicating that language acquisition in general
crucially relies on probabilistic learning [2]. It is not clear how a reasonable account of
semantic learning could be constructed on the basis of the categorical type systems that
either classical or revised semantic theories assume. Such systems do not appear to be
efficiently learnable from the primary linguistic data (with weak learning biases). There
is little (or no) psychological data to suggest that classical categorical type systems
provide biologically determined constraints on semantic learning.

A semantic theory that assigns probability rather than truth conditions to sentences
is in a better position to deal with gradience and learning. Gradience is intrinsic to the
theory by virtue of the fact that values are assigned to sentences in the continuum of
real numbers [0, 1], rather than Boolean values in {0, 1}. A probabilistic account of
semantic learning is facilitated if the target of learning is a probabilistic representation
of meaning. Both semantic interpretation and semantic learning are characterised as
reasoning under uncertainty.

[4] propose a probabilistic re-formulation of [3]’s Type Theory with Records
(TTR). They specify a rich type theory, ProbTTR, in which probability is distributed
over situation types [1]. An Austinian proposition is a judgement that a situation is of a
particular type, and we treat it as probabilistic. It expresses a subjective probability in
that it encodes the belief of an agent concerning the likelihood that a situation is of that
type. The core of an Austinian proposition is a type judgement of the form s : 7, which
is expressed probabilistically as p(s : T) = r, where r € [0, 1]. ProbTTR provides the
basis for a compositional probabilistic semantics of natural language.

Joint work with Robin Cooper, Simon Dobnik, and Staffan Larsson, University of Gothenburg.
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We specify a Bayesian learning and inference component for ProbTTR. We for-
mulate Bayes’ theorem in type theoretic terms and use it to develop a Naive Bayesian
Classifier for learning basic predicate types from observation and mentor led instruc-
tion. We extend this component to a type theoretic version of Bayesian Networks [6, 9,
10], which we propose as a framework for semantic learning.

The basic types and type judgements at the foundation of our probabilistic type
system correspond to perceptual judgements concerning objects and events in the
world, rather than to entities in a model, and set theoretic constructions defined on
them. We incorporate a theory of learning and inference with Bayesian Networks into
ProbTTR. Our account grounds meaning in learning how to make observational
judgements concerning the likelihood of situations obtaining in the world.
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Combining Formal and Distributional
Semantics: An Argument from the Syntax
and Semantics of Modification

Louise McNally

Universitat Pompeu Fabra, Barcelona, Spain

The lexical semantics of content words has historically generated comparatively little
interest among formal semanticists, except when a class of content words proves to be
sensitive to some sort of logical or grammatical phenomenon, as has happened, for
example, with verbal aspect and with gradability. In contrast, the “distributional turn”
in computational semantics has focused primarily on the content word lexicon and has
had a varied and arguably difficult relationship with logical approaches to meaning,
including the semantics of function words like and or the (see [1] for a recent over-
view). How the insights and benefits of these two approaches can be combined, if at all,
is currently a matter of active research (see e.g. [4] and research reported on there).

In this talk, I reflect on my experience when I turned to distributional models in an
effort to better address the interaction of lexical and compositional semantics. After
considering the possibility of a full-blown distributional semantics for both content and
function words, I have opted to explore a mixed model based on Discourse Repre-
sentation Theory (DRT, [11]), perhaps most similar in spirit to the recent mixes of
formal and distributional semantics found in [10, 12, 13] (though the latter do not use
DRT), but motivated and implemented a bit differently.

Specifically, 1 argue that certain kinds of modification constructions, including
(broadly) noun incorporation, point to a well-established distinction in natural language
between productive compositional operations that combine descriptive contents
unmediated by reference, resulting in complex kind- or type-level descriptions, and
composition operations that are crucially mediated by tokenlevel reference (see [6] on
the notion of kind; see e.g. [5, 15, 18], for the relevance of the type/token distinction in
nominal modification). I propose, building on the results of a distributional study in [3],
that compositional distributional methods can provide interesting complex type-level
descriptions, and show, following [14, 16], how these can be represented and put to use
in a semantics based on DRT.

I gratefully acknowledge my co-authors on the papers that have most directly inspired this work:
Gemma Boleda, Berit Gehrke, Marco Baroni, Alexandra Spalek, Scott Grimm, and Nghia Pham.
I also thank Carla Umbach and the participants in the 2016 ESSLLI Workshop ‘Referential Semantics
One Step Further: Incorporating Insights from Conceptual and Distributional Approaches to Meaning
(RefSemPlus)’ and the FloSS and Meaning in Context groups for discussion of the larger issues. This
research was supported by Spanish MINECO grants FFI2010-09464-E and FFI2013-41301-P,
AGAUR grant 2014SGR698, and an ICREA Academia award.
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I close by arguing that this mixed approach sheds light on the often-reported but
never explained observation that incorporation constructions, such as the Hindi example
in (1) from [8], often carry steoreotypicality implications that non-incorporated coun-
terparts do not (see [7] on the relevance of the type/token distinction for this phe-
nomenon; see [9] for discussion and analysis of related examples such as the contrast in
(2) and (3), from Catalan).

(1) anu sirf puraanii kitaab becegii
Anu only old book sell-FUT
‘Anu will only sell old books.’
(2) Té una parella.
has a partner
‘S/he has a partner.’
(3) Té¢ parella.
has partner
‘S/he has a partner.’ (so, s/he’s married/can now dance/...)

I also suggest more speculatively that the mixed distributional/DRT approach
promotes rethinking the analysis of certain function words as “instructions” in the spirit
of the Procedural/Conceptual Meaning distinction in Relevance Theory (see e.g. [2])
and ideas that have long informed the literature on information structure and dialog (see
e.g. [17]).
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Abstract. In this paper we summarize concepts from earlier work and
demonstrate how infinite sequential games can be used to model strategic
conversations. Such a model allows one to reason about the structure
and complexity of various kinds of winning goals that conversationalists
might have. We show how to use tools from topology, set-theory and logic
to express such goals. Our contribution in this paper is to offer a detailed
examination of an example in which a player ‘defeats himself’ by going
inconsistent, and to introduce a simple yet revealing way of talking about
unawareness. We then demonstrate how we can use ideas from epistemic
game theory to define various solution concepts and justify rationality
assumptions underlying a conversation.

Keywords: Strategic reasoning - Conversations - Dialogues - Infinite
games + Epistemic game theory

1 Introduction

A strategic conversation involves (at least) two people (agents) who have oppos-
ing interests concerning the outcome of the conversation. A debate between
two political candidates is an instance. Each candidate has a certain number of
points she wants to convey to the audience, and each wants to promote her own
position and damage that of her opponent or opponents. In other words, each
candidate wants to win. To achieve these goals each participant needs to plan for
anticipated responses from the other. Debates are thus a sequence of exchange of
messages at the end of which an agent may win, lose or draw. Similar strategic
reasoning about what one says is a staple of board room or faculty meetings,
bargaining sessions, etc.

It is therefore natural to model such conversations as games. Attempts to this
end have been made in the past with the most notable of them being the use of
signaling games [24] and the closely related persuasion games [15]. In a signaling
game one player with a knowledge of the actual state sends a signal and the
other player who has no knowledge of the state chooses an action, usually upon
an interpretation of the received signal. The standard setup supposes that both
players have common knowledge of each other’s preference profiles as well as their
own over a set of commonly known set of possible states, actions and signals.
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However for modeling non-cooperative strategic contexts of sequential dynamic
games, signaling games suffer from many drawbacks. Some of them can be sum-
marised as follows (see [4] for a more comprehensive discussion):

— A game that models a non-cooperative setting, that is a setting where the
preferences of the players are opposed, must be zero-sum. However, it has been
shown [11] that under the zero-sum criterion, in equilibrium, the sending and
receiving of any message has no effect on the receiver decision.

— In order to use games as part of a general theory of meaning, one has to make
clear how to construct the game-context, which includes providing an inter-
pretation of the game’s ingredients (types, messages, actions). Franke [13]
extended the setting of signaling games to that of interpretation games to
address this issue. Such games encode a ‘canonical context’ for an utterance,
in which relevant conversational implicatures may be drawn. The game struc-
ture is determined by the set of ‘sender types’. Interpretation games model
the interpretation of the messages and actions of a signaling game in a co-
operative context for ‘Gricean agents’ quite well. But in the non-cooperative
setting, things are much more intricate and problems remain (again see [4]).

— Signaling games are one-shot and fail to capture the dynamic nature of a
strategic conversation. One can attempt to encode a sequence of moves of
a particular player as a single message m sent by that player but then one
runs into the problem of assigning correct utilities for m because such utilities
depend again on the possible set of continuations of m.

— Finally, there is an inherent asymmetry associated with the setting of a sig-
naling game - one player is informed of the state of the world but the other is
not; one player sends a message but the other does not. Conversations (like
debates), on the other hand, are symmetric - all participants should (and
usually do) get equal opportunities to get their messages across.

Strategic conversations are thus special and have characteristics unique to
them which have not been captured by previous game-theoretic models. Some
of these important characteristics are as follows.

— Conversations are sequential and dynamic and inherently involve a ‘turn-
structure’ which is important in determining the merit of a conversation to
the participants. In other words, it is important to keep track of “who said
what”.

— A ‘move’ by a player in a linguistic game typically carries more semantic
content than usually assumed in game theory. What a player says may have
a set of ‘implicatures’, may be ‘ambiguous’, may be ‘coherent/incoherent’ or
‘consistent/inconsistent’ to what she had said earlier in the conversation. She
may also ‘acknowledge’ other people’s contributions or ‘retract’ her previous
assertions. These features too have important consequences on the existence
and complexity of winning strategies.

— Conversations typically have a ‘Jury’ who evaluates the conversation after it
has ended and determines if one or more of the players have reached their
goals — determines the winner. Players will spin the description of the game to
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their advantage and so may not present an accurate view of what happened.
The Jury can be a concrete or even a hypothetical entity who acts as a ‘passive
player’ in the game. For example, in a courtroom situation there is a physical
Jury who gives the verdict, whereas in a political debate the Jury is the
audience or the citizenry in general. This means that the winning conditions
of the players are affected by the Jury in that, they depend on what they
believe that the Jury expects them to achieve.

— Epistemic elements thus naturally creep into such games. In particular, the
players and the Jury have ‘types’. In addition the players also have ‘beliefs’
about the types of the other players and that of the Jury. They strategize
based on their beliefs and also update their beliefs after each turn.

— Lastly but most importantly, conversations do not have a ‘set end’. When
two people or a group of people engage in a conversation they do not know
at the outset how many turns it will last or how many chances each player
will get to speak (if at all). Sure in a ‘conducted’ conversation such as a
political debate or a courtroom debate, there is usually a moderator whose
job is to ensure that each player receives his or her fair chance to put their
points across but even such a moderator does not know at the outset how the
conversation will unfold and how many turns each player will receive. Players
thus cannot strategize for a set horizon while starting a conversation. This
rules out backward induction reasoning for both the players and we analysts.

With the above aspects in mind, [4] model conversations as infinite games
over a countable ‘vocabulary’ V' which they call Message Exchange games (ME
games). In this paper, we first summarize the main results of [4] in a compact
fashion but also add some new remarks concerning first order definability of con-
versational goals. We then add a more nuanced analysis of a particular dialogue
excerpt (our example 4) and prove a theorem beyond the scope of [4], showing
how unexpected moves can complicate the search for winning strategies. Finally
in Sect. 3, we break new ground and add an epistemic layer to ME games.

Let’s now turn to the basics of ME games. The intuitive idea behind an ME
game is that a conversation proceeds in turns where in each turn one of the
players ‘speaks’ or plays a string of letters from her own vocabulary. However,
the player does not play just any sequence of arbitrary strings but sentences or
sets of sentences that ‘make sense’. To ensure this, the vocabulary V' should have
an exogenous semantics built-in. In order to achieve this, we exploit a semantic
theory for discourse, SDRT [1]. SDRT develops a rich language to character-
ize the semantics and pragmatics of moves in dialogue. This means that we
can exploit the notion of entailment associated with the language of SDRSs to
track commitments of each player in an ME game. In particular, the language
of SDRT features variables for dialogue moves that are characterized by contents
that the move commits its speaker to. Crucially, some of this content involves
predicates that denote rhetorical relations between moves—Ilike the relation of
question answer pair (qap), in which one move answers a prior move character-
ized by a question. The vocabulary V of an ME game thus contains a count-
able set of discourse constituent labels DU = {m, 7y, m2,...}, and a finite set of
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discourse relation symbols R = {R,Ry,...R,}, and formulas ¢, ¢1, . .. from some
fixed language for describing elementary discourse move contents. V' consists of
formulas of the form 7: ¢, where ¢ is a description of the content of the dis-
course unit labelled by 7 in a logical language like the language of higher order
logic used, e.g., in Montague Grammar, and R(m, 71 ), which says that 7, stands
in relation R to 7. One such relation R is gap. Thus, each discourse relation
symbolized in V' comes with constraints as to when it can be coherently used in
context and when it cannot.

2 Message Exchange Games

In this section we formally define Message Exchange games and state some of
their properties and their use in modeling strategic conversations as explored
at length in [4]. For simplicity, we shall develop the theory for the case of con-
versations that involve two participants, which we shall denote by Player 0 and
Player 1. It will be straightforward to generalize it to the case where there are
more than two players. Thus, in what follows, we shall let i range over the set
of players {0,1}. Furthermore, Player —i will always denote Player (1 — ), the
opponent of Player 1.

We first define the notion of a ‘Jury’. As noted in Sect. 1, a Jury is any entity
or a group of entities that evaluates a conversation and decides the winner.
A Jury thus ‘groups’ instances of conversations as being winning for Player 0 or
Player 1 or both.

For any set A let A* be the set of all finite sequences over A and let A%
be the set of all countably infinite sequences over A. Let A* = A* U A“ and
AT = A*\ {€}. Now, let V be a vocabulary as defined at the end of Sect. 1 and
let V; =V x {i}. This is to make explicit the ‘turn-structure’ of a conversation
as alluded to in the introduction.

Definition 1. A Jury J over (Vo U V1)¥ is a tuple J = (winy,winy) where
win; C (Vo U V4)¥ is the winning condition or winning set for Player i.

Given the definition of a Jury over (Vo UV;)“ we define a Message Exchange
game as:

Definition 2. A Message Exchange game (ME game) G over (Vo U Vi) is a
tuple G = (Vo U V), J) where J is a Jury over (Vo U Vp)«.

Formally the ME game G is played as follows. Player 0 starts the game by
playing a non-empty sequence in V0+. The turn then moves to Player 1 who plays
a non-empty sequence from V;*. The turn then goes back to Player 0 and so on.
The game generates a play p, after n (>0) turns, where by convention, pg = €
(the empty move). A play can potentially go on forever generating an infinite
play p., or more simply p. Player ¢ wins the play p iff p € win;. G is zero-sum if
win; = (Vo U V1) \ win_; and is non zero-sum otherwise. Note that both player
or neither player might win a non zero-sum ME game G. The Jury of a zero-sum
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ME game can be denoted simply as win where by convention win = wing and
wing = (Vo U V7)“ \ win.

Plays are segmented into rounds—a move by Player 0 followed by a move by
Player 1. A finite play of an ME game is (also) called a history, and is denoted
by p. Let Z be the set of all such histories, Z C (VU V})*, where € € Z is the
empty history and where a history of the form (Vo U V4)*V;" is a 0-history and
one of the form (Vo U V;)T VT is a 1-history. We denote the set of i-histories by
Z;. By convention € € Zy. Thus Z = Zy U Z;. For p € Z, turns(p) denotes the
total number of turns (by either player) in p. A strategy o; of Player 4 is thus
a function from the set of —i-histories to V;". That is, o; : Z_; — V7. A play
p = zox1 ... of an ME game G is said to conform to a strategy o; of Player i if
for every prefix p; of p, j = i( mod 2) implies p;j1+1 = p;oi(p;). A strategy o; is
called winning for Player i if p € win; for every play p that conforms to o;.

Given how we have characterized the vocabulary (Vp U V1), we can assumed
a fixed meaning assignment function from EDUs to formulas the describe their
contents. Then, a sequence of conversational moves can be represented as a
graph (DU, E, ¢), where DU is the set of vertices each representing a discourse
unit, £ C DU x DU a set of edges representing links between discourse units
that are labeled by ¢ : E — R with discourse relations.!

Example 1. To illustrate this structure of conversations, consider the following
example taken from [2] from a courtroom proceedings where a prosecutor is
querying the defendant. We shall return to this example later on for a strategic
analysis.

Prosecutor: Do you have any bank accounts in Swiss banks, Mr. Bronston?
Bronston: A\p, sir.

Prosecutor: Have you ever?

Bronston: The company had an account there for about six months, in Zurich.
Prosecutor: Thank you Mr. Bronston.

o0 T

Ezxample 2. We can view the conversation in Examplel as an ME game
as in Fig.1. The figure shows a weakly connected graph, which represents
a fully coherent conversation, with a set of discourse constituent labels
DU = {Tbank, T=bank, Tbank—elabs Tcompany, Tack; - - -} and a set of relations R =
{qap, q — followup, ack, ...}. The arrows depict the individual relation instances
between the DUs.

ME game messages come with a conventionally associated meaning in virtue
of the constraints enforced by the Jury; an agent who asserts a content of a
message commits to that content, and it is in virtue of such commitments that
other agents respond in kind. While SDRT has a rich language for describing

1 'We note that this is a simplification of SDRT which also countenances complex
discourse units (CDUs) and another set of edges in the graph representation, linking
CDUs to their simpler constituents. These edges represent parthood, not rhetorical
relations. We will not, however, appeal to CDUs here.
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(P, Tbank: Do you have any bank accounts in Swiss banks, Mr. Bronston?)

Jaap

g-followup (B, T-bank: No)

(P, Thank—elab: Have you ever?)

aap

(B, Tcompany: The company had an account there for about six months, in Zurich)

lack

(P, Tack: Thank you Mr. Bronston)

- 1 ~
-
- | ~
- ~
- ~

e v S

~

Fig. 1. An example ME game

dialogue moves, it is not explicit about how dialogue moves explicitly affect the
commitments of the agents who make the moves or those who observe the moves.
[25,26] link the semantics of the SDRT language with commitments explicitly
(in two different ways). They augment the SDRT language with formulas that
describe the commitments of dialogue participants, using a simple propositional
modal syntax. Thus for any formula ¢ in the language of Montague Grammar
that describes the content of a label 7 € DU, they add: —¢ | ¢1 V ¢2 | C;0, i €
{0,1} | C*¢, with the derived operators A, = , T, L are defined as usual,
providing a propositional logic of commitments over the formulas that describe
labels. Of particular interest are the commitment operators C; and C*. If ¢ is
a formula for describing a content, C;¢ is a formula that says that Player i
commits to ¢ and C*¢ denotes ‘common commitment’ of ¢. Commitment is
modeled as a Kripke modal operator via an alternativeness relation in a pointed
model with a distinguished (actual) world wg. This allows them to provide a
semantics for discourse moves that links the making of a discourse move by an
agent to her commitments: ¢’s assertion of a discourse move ¢, for instance, we
will assume, entails a common commitment that i commits to ¢, written C*C;e.
They show how each discourse move ¢ defines an action, a change or update on
the model’s commitment structure; in the style of public announcement logic viz.
[6,7]. For instance, if agent i asserts ¢, then the commitment structure for the
conversational participants is updated such so as to reflect the fact that C*C;¢.
Finally, they define an entailment relation = that ensures that ¢ = C*C;¢. This
semantics is useful because it allows us to move from sequences of discourse moves
to sequences of updates on any model for the discourse language. See [25,26] for
a detailed development and discussion.

ME games resemble infinite games that have been used in topology, set theory
[19] and computer science [16] to study the descriptive complexity of different
infinite sets. We can leverage some of the results from these areas to talk about
the general ‘shape’ of conversations or to analyse the complexity of the winning
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conditions of the players. This has been extensively explored in [4]. We give a
flavor of some of the applications here.

To do that we first need to define an appropriate topology on (V5 U V;)¥
which will allow us to characterize the descriptive complexity of the winning
sets wing and winy. We proceed as follows. We define the topology on (Vo U V;)¥
by defining the open sets to be sets of the form A(VoUV;)“ where A C (VoUV)*™.
Such an open set will be often denoted as O(A). When A is a singleton set {z}
(say), we abuse notation and write O({z}) as O(x). The Borel sets are defined as
the sigma-algebra generated by the open sets of this topology. The Borel sets can
be arranged in a natural hierarchy called the Borel hierarchy which is defined as
follows. Let XY be the set of all open sets. ITY = X9, the complement of the set
of X9 sets, is the set of all closed sets. Then for any o > 1 where « is a successor
ordinal, define X9 to be the countable union of all IT0_; sets and define IT0 to
be the complement of X9. A% = 30 N 79,

Definition 3 [19]. A set A is called complete for a class X° (resp. II2) if A €
SN (resp. 1T\ 23) and A ¢ (U3 U IT}) for any 3 < a.

The Borel hierarchy represents the descriptive or structural complexity of the
Borel sets. A set higher up in the hierarchy is structurally more complex than
one that is lower down. Complete sets for a particular class of the hierarchy
represent the structurally most complex sets of that class. We can use the Borel
hierarchy and the notion of completeness to capture the complexity of winning
conditions in conversations. For example, two typical sets in the fist level of the
Borel hierarchy are defined as follows. Let A C (Vp U V7)™, then

reach(A) = {p e Vo UW)¥ | p=ayp’,y € A}, safe(A) = (Vo U V;)¥ \ reach(A)

A little thought convinces us that reach(A) € XY and safe(A) € I19. Let reach-
ability be the class of sets of the form reach(A) and safety be the class of sets of
the form safe(A).

Example 3. Returning to our example of Bronston and the Prosecutor, let us
consider what goals the Jury expects each of them to achieve. The Jury will
award its verdict in favor of the Prosecutor: (i) if he can eventually get Bronston
to admit that (a) he had an account in Swiss banks, or (b) he never had an
account in Swiss banks, or (ii) if Bronston avoids answering the Prosecutor
forever. In the case of (i)a, Bronston is incriminated, (i)b, he is charged with
perjury and (ii), he is charged with contempt of court. Bronston’s goal is the
complement of the above, that is to avoid either of the situations (i)a, (i)b
and (ii). We thus see that the Jury winning condition for the Prosecutor is a
Boolean combination of a reachability condition and the complement of a safety
condition, which is in the first level of the Borel hierarchy.

Conversations, to be meaningful, must also satisfy certain natural constraints
which the Jury might impose throughout the course of a play. Below we define
some of these constraints and then go on to study the complexity of the sets
satisfying them.
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Let p = zoz122... be a play of an ME game G where g = € and z; €
V('G_l) mod 2) 15 the sequence played by Player ((j — 1) mod 2) in turn j. For
every i define the function du; : V;* — p(DU) such that du;(x;) gives the set
of contributions (in terms of DUs) of Player i in the jth turn. By convention,
du;(z;) =0 for z; € V.

Definition 4. Let G = (Vo U V)%, J) be an ME game over (Vo U V1)“. Let
p=xoT1T2 ... be a play of G. Then

Consistency: p is consistent for Player i if the set {du;(z;)};>0 is consistent.
Let CONS; denote the set of consistent plays for Player i in G.

Coherence: Player i is coherent on turn j > 0 of play p if for all m € du;(z;)
there exists @' € (du;(z) Udu_;(xx—1)) where k < j such that there exits
R € R such that (7'Rw VvV «wR7") holds. Let COH; denote the set of all coherent
plays for Player i in G.

Responsiveness: Player © is responsive on turn j > 0 of play p if there exists
7 € du;(z;) such that there exits ' € du_;(xj_1) such that 7'Rm for some
R € R. Let RES; denote the set of responsive plays for Player i in G. x; (or
abusing notation, 7) will be sometimes called a response move.

Rhetorical-cooperativity: Player i is rhetorically-cooperative in p if she is both
coherent and responsive in every turn of hers in p. p is rhetorically-cooperative
if both the players are rhetorically-cooperative in p. Let RC; denote the set of
rhetorically-cooperative plays for Player i in G and let RC be the set of all
rhetorically-cooperative plays.

To define the constraints NEC and CNEC we need first the definition of an
‘attack’ and a ‘response’. Thus

Definition 5. Let G = (Vo U V1)¥,J) be an ME game over (Vo U V1)¥. Let
p=xoT1T2 ... be a play of G. Then

Attack: attack(n’,m) on Player —i holds at turn j of Player i just in case w €
du;(x;), ©’ € du_;(xx) for some k < j, there is an R € R such that 7'Rm and:
(i) 7' entails that —i is committed to ¢ for some ¢, (ii) ¢ entails that —¢ holds.
In such a case, we shall often abuse notation and denote it as attack(k,j).
Furthermore, x; or alternatively m shall be called an attack move. An attack
move is relevant if it is also a response move. attack(k,j) on —i is irrefutable
if there is no move xy € V_; in any turn £ > j such that attack(j,£) holds
and xoxy...xy 18 consistent for —i.

Response: response(n’, 7) on Player —i holds at turn j of Player i if there exits
7" € du;(z), 7" € du_;(x) and ™ € du;(x;) for some £ < k < j, such that
attack(n”, 7’) holds at turn k of Player —i, there exists R € R such that ©'Rm
and w implies that (i) one of i’s commitments ¢ attacked in 7' is true or (ii)
one of —i’s commitments in ' that entails that i was committed to —¢ is
false. We shall often denote this as response(k, j).

We can now define the constraints NEC and CNEC as follows.



Language Games 9

Definition 6. Let G = (Vo U V1), TJ) be an ME game over (Vo U V1)“. Let
p=zoT1T2 ... be a play of G. Then

NEC: NEC holds for Player i in p on turn j if for all .k, £ < k < j, such that
attack(¢, k), there exists m, k < m < j, such that response(k,m). NEC holds
for Player i for the entire play p if it holds for her in p for infinitely many
turns. Let NEC; denote the set of plays of G where NEC holds for player i.

CNEC: CNEC holds for Player i on turn j of p if there are fewer attacks on i
with no response in p; than for —i. CNEC holds for Player i over a p if in
the limit there are more prefizes of p where CNEC holds for i than there are
prefizes p where CNEC holds for —i. Let CNEC; be the set of all plays of G
where CNEC holds for i.

For a zero-sum ME game G, the structural complexities of most of the
above constraints can be derived from another constraint which we call rhetorical
decomposition sensitivity (RDS) which is defined as follows.

Definition 7. Given a zero sum ME game G = ((Vo UV1)¥, win), win is rhetor-
ically decomposition sensitive (RDS) if for all p € win and for all finite prefives
pj of p, p; € Zy1 implies there exists x € V;" such that O(p;z) Nwin = 0.

[4] show that if Player 0 has a winning strategy for an RDS winning condition
win then win is a IT complete set. Formally,

Proposition 1 [4]. Let G = (Vo U V7)Y, win) be a zero-sum ME game such that
win is RDS. If Player 0 has a winning strategy in G then win is I1S complete for
the Borel hierarchy.

In the zero-sum setting, CONSy, RESy, COHy, NECy are all RDS and it is
easy to observe that Player 0 has winning strategies in all these constraints
(considered individually). Hence, as an immediate corollary to Proposition 1 we
have

Corollary 1. CONSy, RESy, COHy, NECq are II9 complete for the Borel hier-
archy for a zero sum ME game.

CNEC, on the other hand, is a structurally more complex constraint. This
is not surprising because CNEC can be intuitively viewed as a limiting case of
NEC. Indeed, this was formally shown in [4].

Proposition 2 [4]. CNEC; is II{ complete for the Borel hierarchy for a zero
sum ME game.

The above results have interesting consequences in terms of first-order defin-
ability. Note that certain infinite sequences over our vocabulary (Vo UV}) can be
coded up using first-order logic over discrete linear orders (N, <), where N is the
set of non-negative natural numbers. Indeed, for every i and for every a € V;, let
aé be a predicate such that given a sequence z = zoz1..., z; € (Vo U W)



10 N. Asher and S. Paul

for all j > 0, z | a)(j) iff z; = a. Closing under finite Boolean opera-
tions and V,3, we obtain the logic FO(<). Now for any formula ¢ € FO(<)
and for any play p of an ME game G, p = ¢ can be defined in the standard
way. Thus every formula ¢ € FO(<) gives a set of plays p(p) of G defined as:
plp) ={p e VoUW pkE ¢}. Aset A C (VoUW is said to be FO(<)
definable if there exists a FO(<) formula ¢ such that A = p(¢). The following
result is well-known.

Theorem 1 [21]. A C (Vo UV4)¥ is FO(<) definable iff A € (X9 U II9).

Thus FO(<) cannot define sets that are higher than the second level of the Borel
hierarchy in their structural complexity. Thus as a corollary of Proposition 2 and
Corollary 1, we have

Corollary 2. CONSg, RESy, COHg, NEC, are FO(<) definable but not CNEC,.

This agrees with our intuition because as we observed, CNEC; is a limit
constraint and FO(<), being local [14], lacks the power to capture it. To define
CNEC; one has to go beyond FO(<) and look at more expressive logics. One
such option is to augment FO(<) with a counting predicate cnt which ranges
over (NU {oo}) [20]. Call this logic FO(<,cnt). One can write formulas of the
type 3*°zp(z) in FO(<, cnt) which says that “there are infinitely many xz’s such
that ¢(z) holds.” Note that it is straightforward to write a formula in FO(<, cnt)
that describes CNEC;. Another option is to consider the logic %, ., (FO, <)
which is obtained by closing FO(<) under infinitary boolean connectives \/
and A;. We can define a strict syntactic subclass of .Z,,.,(FO, <), denoted
Z5 ,(FO, <), where every formula is of the form 0,0, ...Otpp,. .+, where, for
ked{pq....,t =1}, Op =V, iff Op11 = Ao, and each ¢y, is an (FO, <)
formula, p, g, ...,t € N. That is, in every formula of £} (FO, <), the infinitary
connectives are not nested and occur only in the beginning. We can then show
that £ ,(FO, <) can express sets in any countable level of the Borel hierarchy.
We do not go into further details here.

We now turn to strategic analyses of actual conversations. Consider this
example, an excerpt from the 1988 Dan Quayle-Lloyd Bentsen Vice-Presidential
debate which has exercised us now for several years, from the perspective of the
theory of ME games developed above.

Ezample 4. Quayle (Q), a very junior and politically inexperienced Vice-
Presidential candidate, was repeatedly questioned about his experience and his
qualifications to be President. Till a point in the debate both of them were
going neck to neck. But then to rebut doubts about his qualifications, Quayle
compared his experience with that of the young John (Jack) Kennedy. To that,
Bentsen (BN) made a discourse move that Quayle apparently did not anticipate.
We give the relevant part of the debate below:

a. Quayle: ... the question you re asking is, “What Kind of qualifications does Dan Quayle have
to be president”, [...] I have far more experience than many others that sought the office of vice
president of this country. I have as much experience in the Congress as Jack Kennedy did when
he sought the presidency.
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b. Bensten: Senator, I served with Jack Kennedy. I Knew Jack Kennedy. Jack Kennedy was a
friend of mine. Senator, you re no Jack Kennedy.

c. Quayle: That was unfair, sir. Unfair.

d. Bensten: Jou brought up Kennedy, I didn't.

Example (4) is an example of how a player can go inconsistent in a debate,
which has disastrous consequences, if the Jury enforces consistency as a necessary
component of any winning condition. But the analysis depends on the semantics
of discourse relations. It would seem that Quayle was unaware that (Example 4b.)
was a possible move for Bentsen in a strategy of countering his commitments
(we shall talk more about unawareness shortly). However, note that Quayle’s
commitments in (Example 4a.) are not innocuous in the first place. He brings up
as a comparison one of the most revered Presidents in contemporary American
history; and while it is true that John F. Kennedy, like Quayle, was a relatively
inexperienced junior senator when he ran for President in 1960, Quayle could
have chosen many other figures for comparison—for instance, Richard Nixon’s
credentials prior to his taking the post of Vice-President in 1952 were also com-
parable to Quayle’s. But by choosing JFK as a reference and by referring to
him with his nickname ’Jack’ used by his advisors and friends, Quayle made the
suggestion or weak-implicature, that perhaps he would be comparable in other
ways to JFK. It certainly put Quayle’s experience or lack thereof in a favorable
light.

Notice too that Quayle did not come out with a bald assertion of this impli-
cature in (Example 4a.). He did not say

a’. I have as much experience in the Congress and as much Presidential potential as Jack Kennedy

did when he sought the presidency.

He sensed this would be a dangerous move, opening him up to attack and perhaps
even ridicule, either from his opponent or at least in the minds of the Jury. So
instead, he couched his message in an implicit form.

Our intuition is that Quayle did not anticipate a direct attack on the implica-
ture he was drawing out. Perhaps he was not even aware that he was making such
an implicature, though our discussion of alternatives suggests that something like
that implicature is there and the result of a choice of Quayle’s comparison. In
any case, Quayle had no real counter-move or strategy prepared, we feel.

So what happened with Quayle’s response? (Example4d.) in discourse the-
ory terms is a ‘commentary’ on Bentsen’s attack move. Commentaries carry with
them a commitment by their speaker to the content they are commenting on.
Now if the commentary’s target is the content of what Bentsen said, then this
is devastating for Quayle. By saying Quayle is no Kennedy, Bentsen is impli-
cating something stronger, that Quayle is not of Presidential material. With
commentary on the content, Quayle then commits to that content. In so doing
he commits to his not being of Presidential stature when precisely his winning
condition was to constantly come back to that commitment and reaffirm it. His
commitments are now inconsistent, and inconsistency can be a game-losing prop-
erty in a conversation. Moreover, this was an inconsistency involving an intrinsic
property of Quayle’s winning condition.
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There is an alternative interpretation of the commentary move (Example 4d.)
by Quayle. The commentary move is not about the content of Bensten’s move but
rather about the fact that Bensten made this move. This seems more plausible
and it commits Quayle on the face of it only to the fact that Bentsen made a
particular discourse move. But by not counter-attacking Bensten, Quayle sends a
message that is terrible for him. First, he commits that the attack is coherent and
responsive. Second, by not replying he concedes and commits to the proposition
that the content of Bensten’s move and its implicatures are not attackable. That
is, Quayle implicates he has no means to refute the content of the attack. But
this in turn implies that he implicitly must commit to their content. Hence, his
non-reply makes his commitments look inconsistent.

Example4 also lends itself to an analysis from the perspective of ‘unaware-
ness’ of moves available to one player by the other player. What happens when
Player 0 thinks that an ME game G is being played over a vocabulary (Vo U V;)
whereas Player 1 actually has moves available to him from a larger vocabulary
Wy 2 V3?7 That is G = (Vo UW1)¥, J). To answer this question, we make use
of the following result.

Proposition 3. Let V and W be countable vocabularies such that V. C W.
Then, a X§ complete set in X* jumps to AY in Y, and all other sets stay in
the same level.

To preserve the continuity of the text, we give the proof in the appendix.
Proposition 3 thus implies that a winning set win which is ¥y in an ME game
G = ((VoUW)“, J) might be A in an ME game G’ = ((Vo U W1)*,J) where
W1 2 V1. win is hence more complex structurally in G’. The result of this might
be that even if Player 0 had a winning strategy og in G, o¢ might not be winning
for her in G'.

Coming back now to Example4, Quayle believed that if he just made his
comparison with John F. Kennedy, to whom he refers by his colloquial nickname
used by friends and members of JFK’s cabinet, no matter what the response
Bentsen made, that is the responses of which he was aware in V; would hurt
his chances. He had a simple goal, which we could characterize as a XY goal:
mentioning this comparison. As such, he also had a simple winning strategy for
achieving this goal. However, in the larger set of discourse moves, W; Bentsen
had an attack that floored Quayle. In fact, we can easily show that Quayle had no
winning strategy for keeping to his winning condition over strings in (Vo U V)%
given that his winning strategy depended on his opponent’s use of moves in V7,
all that Bentsen had to do to defeat Quayle was to use a coherent move in W;
to upset Quayle’s strategy. This is a simple-minded yet insightful analysis of the
interesting and deep notion of unawareness which we wish to fully explore in
our future work. To fully understand this phenomenon, one has to appeal to the
theory of epistemic games, to which we now turn.
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3 Imperfect Information and Epistemic Considerations

So far we have shown how to model strategic conversations as infinite sequential
games and how to reason about the complexity of certain commonly used win-
ning goals in such conversations in terms of both their topological and logical
complexities. A couple of issues that we have not addressed are:

— Yes, a conversation at the outset can be potentially infinite. But still in real
life, the Jury does end the game after a finite amount of time, after a finite
number of turns. By doing so, how can it be sure that it has correctly deter-
mined the outcome of the conversation? In other words, how does the Jury,
at any point in a conversation gauge how the players are faring and when
does it decide to call it a day?

— How does the Jury determine the winning conditions wing and winy? Surely,
it does not come up with a arbitrary subset of (Vo U V1)¥ with an arbitrary
Borel complexity.

To address the above questions [3] introduced the model of ‘weighted ME games’
or WME games. A WME game is similar to a ME game except that the Jury
instead of specifying the winning sets win; as subsets of (Vp U V1)“, determines
them on-the-fly. It does so by evaluating every move of each player by assigning
a ‘weight’ or a ‘score’. The cumulative weight of a conversation p is then the
discounted sum of these individual weights. [3] also showed that given an € > 0
there exists a number n. such that the Jury can stop the game after n. turns
and determine the winner, being sure that no player could have done more than
€ better than what they had already done. We do not go into the details here
but refer the interested reader to that paper.

In this section, we study the exact information structure implicit in the
strategic reasoning in conversations by extending framework of ME games
with epistemic notions. We use the well-established theory of type-structures,
first introduced in [17] and widely studied since. We assume that each player
i € ({0,1} U {J}) has a (possibly infinite) set of types T;. With each type
t; of Player i is associated a (first-order) belief function (;(¢;) which assigns
to t; a probability distribution over the types of the other players. That is,
Gi Ty — A(Hj# Tj). Bi(t;) represents the ‘beliefs’ of type ¢; of Player i about
the types of the other players and the Jury. The higher-order beliefs can be
defined in a standard way by iterating the functions ;. We assume that each
type t; of each Player i starts the game with an initial belief 3;(t;) € A([];; Tj),
called the ‘prior belief’. The players take turns in making their moves and after
every move, all the players dynamically update their beliefs through Bayesian
updates. The notions of ‘optimal strategies’, ‘best-response’; ‘rationality’, ‘com-
mon belief in rationality’ etc. can then be defined in the standard way (see [12]).

Having imposed the above epistemic structure on ME games, we can now rea-
son about the ‘rationality’ of the players’ strategies. In order to justify or predict
the outcome of games, many different solution concepts viz., Nash equilibrium,
iterated removal of dominated strategies, correlated equilibrium, rationalizabil-
ity etc. have been proposed [5,10,22]. Most of them have also been characterized
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in terms of the exact belief structure and strategic behavior of the players (see
[12] for an overview). We can borrow results from this rich literature to predict
or justify outcomes in strategic conversations. The details of the above is on-
going work and we leave it to an ensuing paper. However, let us apply the above
concepts and analyze our original example of Bronston and the Prosecutor.

To illustrate the power of types, let us return to Example 1. One conversa-
tional goal of the Prosecutor in Example1 is to get Bronston to commit to an
answer eventually (and admit to an incriminating fact) or to continue to refuse
to answer (in which case he will be charged with contempt of court). Under such
a situation, the response (1d.) of Bronston is clearly a clever strategic move.
Bronston’s response (1d.) was a strategic move aimed to ‘misdirect’ the Jury J.
He believed that J was of a type that would be convinced by his ambiguous
response and neither incriminate him nor charge him with perjury nor of con-
tempt of court. His move was indeed rational, given his belief about the Jury
type. It turns out that while the jury of a lower court /; was not convinced
of Bronston’s arguments and charged him with perjury, a higher court J over-
turned the verdict and released him. Thus his belief agreed with J5 but not J;.

Powerful as the above techniques are, one has to exercise caution and define
the moves, states and the types of the players carefully. Having too rich a
type space can lead to inexistence results. For example, consider the following
situation.

Ezxample 5. Two philosophers Michael and Brian must occupy a panel discussion
before an audience. They both have an extremely good opinion of themselves.
Each philosopher’s goal is to prove that he is better than the other by talking
highly of himself. They exchange dialogues where in every turn a philosopher can
boast of himself as long as he wants to but eventually has to stop and concede
the turn to the other philosopher. The audience, unlike the philosophers, can
become impatient and decide at any moment to stop the discussion, give its
verdict and leave. It offers the win to the one who has spoken ‘more’ of himself.

Clearly, the above game does not have an equilibrium pair of strategies. To
see this, suppose without loss of generality that Michael speaks first. He has to
concede the turn to Brian after saying m; points in his own favour (say). Brian
plays next and he says b; points in his own favour. Now suppose the audience
decides to stop the conversation after k sentences have been uttered by both
the players. We can always find a k such that neither Michael nor Brian has a
winning strategy. Indeed, if by > m; and k = b; + m; then Michael cannot win.
However, if k < 2p; Brian cannot win. Thus, both Michael and Brian could have
done better by having said a ‘bit more’ about themselves in their corresponding
turns. Without equilibria, it is unclear what our speakers should do in such a
situation. Such examples pose a challenge to a fundamental assumption amongst
linguists and philosophers that conversation is a rational activity with optimal
strategies for achieving speakers’ goals.

Our example in fact follows from a general result by [18], which says that if the
space of types is not a separable set then there always exists a game with no equi-
librium. In the above game, associating the types of a player with possible subsets
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of her strategies, we see that the space of types is a set with a large cardinality
(> Ry) and hence we lose separability.

Conversationalists are aware implicitly of the dangers of such cases and
debates have exogenous means of ensuring that there are optimal strategies for
the speakers to follow. For instance, in debates there is usually a ‘moderator’
who ensures that all the participants get a fair chance to speak. She might inter-
rupt a speaker and pass the turn on to another speaker. Note that this variant
of our example game (Example5) restores the presence of an equilibrium: each
philosopher keeps speaking about himself till he is interrupted by the moderator
- that is the best he can do anyway since he does not know in advance when he
will be interrupted. More generally, we can restore separability (and hence the
existence of equilibria) by limiting the set of types. One way is to require that
each type (and hence each winning condition that players might countenance) be
expressible in some language with a limited complexity. As long as the language
is countable, separability can be restored for type spaces, and then by [18] any
such game must have an equilibrium. Another way is to simply restrict the space
of types to a strict subset of the entire space [8,9]. Thus not all possible subsets
of the conversational space define rational or rationalizable conversational goals.
In the case of our example (Example 5) this means that our philosophers should
limit the set of types that they consider possible. For example, they might expect
each turn to last for a maximum of 20 min (say) so that their belief closed set is
restricted to types of players who speak for a maximum of 20 min in each turn.
This ensures the presence of an equilibrium.

4 Conclusion

We believe that the work summarized and extended in this paper is the start
of a novel yet powerful approach to study strategic conversations. We have but
scratched the surface here and there are many directions into which we would
like to delve deeper in the future. One such direction, as we already mentioned, is
to work out the epistemic theory of ME games in full detail. That is our current
work in progress. Another is that in the present work we have considered the
Jury as a ‘passive’ entity - it simply evaluates the play and determines the
winner. However, in real life situations, the Jury can be an ‘active’ member of
the conversation itself. It can ‘applaud’ or ‘criticize’ moves of the players. Thus,
the Jury can be seen as making these moves in the game. Based on what the
players observe about the Jury, they may update or change their beliefs and
vice-versa. Incorporating this into our ME games requires a modification of the
current framework where the Jury is another player making moves from its own
set of vocabulary. We plan to explore this in future work.

Finally, in addition to the Jury, debates usually also have a moderator whose
job is to conduct the debate and assign turns to the players. The moderator may
also actively ‘pass comments’ about the moves of the players. A fair moderator
gives all the players equal opportunity to speak and put their points across.
However, if the moderator is unfair, he may ‘starve’ a particular player by not



16 N. Asher and S. Paul

letting her enough chance to speak, respond to attacks and so on. Exploring the
effects the inclusion of a moderator in such conversations is another interesting
topic which we leave for future work.

A Appendix

To prove Proposition 3 we shall refer to a result from [23].

Proposition 4 [23]. If V is an infinite vocabulary, the subsets of V¥ of the form
AV¥ where A is a set of words of bounded length of V* are clopen.

We now prove Proposition 3.

Proof. First, we show that the set V¢ is closed but not open in the space W«.
That is, V« € (1Y \ XY) in W*. Indeed, we have

Ve = m Vrwe

n>0

For every n > 0 we have that V" is a set of words of bounded length of V* and
hence by Proposition 4 we have that V"W is clopen. Thus V¢ is closed. Also,
V“ is not open by the definition of open sets.

Now let X C V¥ be (X9 \ I1¥) in V¥. By definition, we know that X is of
the form AV where A C V* Thus

X =AVY =AW NV

Then since AW* is open (X9) in W and V*, as we just showed, is closed
(I19 \ X9) in W% their intersection is a AY set.

Next let Y C X“ be (II? \ X9) in V¥. We show that Y is also closed in
W<, Indeed, because the complement of Y in V¢ is of the form BV for some
B C V*. Hence, the complement of Y in W* is

W\Y = BWY UW*(W \ V)W¥

which is open.
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Abstract. In this article, we propose an analysis of polysemy and coer-
cion phenomena using a syntax-semantics interface which combines Lex-
icalized Tree Adjoining Grammar with frame semantics and Hybrid
Logic. We show that this framework allows a straightforward and explicit
description of selectional mechanisms as well as coercion processes. We
illustrate our approach by applying it to examples discussed in Gener-
ative Lexicon Theory [23,25]. This includes the modeling of dot objects
and associated coercion phenomena in our framework, as well as cases of
functional coercion triggered by transitive verbs and adjectives.

Keywords: Systematic polysemy - Coercion - Lexical semantics -
Frame semantics - Hybrid logic - Lexicalized tree adjoining gram-
mars - Hole semantics - Underspecification - Syntax-semantics interface -
Generative lexicon theory

1 Introduction

Any compositional model of the syntax-semantics interface has to cope with
polysemy and coercion phenomena. Well-known examples of inherent systematic
polysemy are the varying sortal characteristics of physical carriers of information
such as book: Books can be bought, read, understood, put away, and remembered,
and thus can refer to physical objects or abstract, informational entities, depend-
ing on the context of use. The question is then how to represent such potential
meaning shifts in the lexicon and how to integrate the respective meaning com-
ponents compositionally within the given syntagmatic environment. A different
but related phenomenon in selectional polysemy [25], where an apparent selec-
tional mismatch is resolved by coercion mechanisms that go beyond referential
shifts provided by lexical polysemy. Examples are given by expressions like Mary
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began the book and John left the party, where the aspectual verb begin selects
for an event argument (here, an activity with the book as an undergoer), and
leave selects for an argument of type location.

There is a considerable body of work on the compositional treatment of pol-
ysemy and coercion. One important strand of research in this domain is the dot
type and qualia structure approach as part of Generative Lexicon Theory devel-
oped by James Pustejovsky and his colleagues [6,22,23,25,26]. A more recent
development in this direction is Type Composition Logic [3-5,7], which intro-
duces an elaborate system of complex types and rules for them. The approach
presented in the following takes a model-oriented perspective in that it asks for
the semantic structures in terms of semantic frames that underlie the phenomena
in question. We propose a compositional framework in which syntactic operations
formulated in Lexicalized Tree Adjoining Grammar drive the semantic compo-
sition. On the semantic side, we use underspecified Hybrid Logic formulas for
specifying the associated semantic frames.

The rest of the paper is structured as follows: Sect. 2 introduces the general
model of the syntax-semantics interface adopted in this paper. Its main compo-
nents are a formal model of semantic frames, a slightly adapted version of Hybrid
Logic for describing such frames, and a version of Lexicalized Tree Adjoining
Grammar which combines elementary trees with underspecified Hybrid Logic
formulas. Section 3 shows how this framework can be fruitfully employed for a
detailed modeling of systematic polysemy and coercion phenomena. It is shown
how dot objects can be represented in frame semantics and how various cases
of argument selection and coercion can be formally described. Section4 gives a
brief summary and lists some topics of current and future research.

2 The Formal Framework

We follow [16] in adopting a framework for the syntax-semantics interface that
pairs a Tree Adjoining Grammar (TAG) with semantic frames. More concretely,
every elementary syntactic tree is paired with a frame description formulated in
Hybrid Logic (HL) [2]. In the following, we briefly introduce this framework; see
[14,16] for more details.

2.1 Frames

Frames [8,10,18] are semantic graphs with labeled nodes and edges, as in Fig. 1,
where nodes correspond to entities (individuals, events, ...) and edges to (func-
tional or non-functional) relations between these entities. In Fig. 1 all relations
except part-of are meant to be functional.

Frames can be formalized as extended typed feature structures [15,21] and
specified as models of a suitable logical language. In order to enable quantifica-
tion over entities or events, [16] propose to use Hybrid Logic, an extension of
modal logic.
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AGENT
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motion
@ MOVER
ENDP part-of o AT- REGION
MANNERl PATI path

O
walking

house

Fig. 1. Frame for the meaning of the man walked to the house (adapted from [15])

2.2 Hybrid Logic and Semantic Frames

Before giving the formal definition of Hybrid Logic (HL) as used in this paper,
let us illustrate its use for frames with some examples. Consider the frame in
Fig. 1. The types in frames are propositions holding at single nodes, the formula
motion, for instance, is true at the node ng but false at all other nodes of our
sample frame. Furthermore, we can talk about the existence of an attribute for a
node. This corresponds to stating that there exists an outgoing edge at this node
using the ¢ modality in modal logic. In frames, there may be several relations,
hence several modalities, denoted by (R) with R the name of the relation. For
example, (AGENT)man is true at the motion node ng in our frame because there
is an AGENT edge from ng to some other node where man holds. (Note that HL
does not distinguish between functional and non-functional edge labels. That
is, functionality has to be enforced by additional constraints.) Finally, we can
have conjunction, disjunction, and negation of these formulas. E.g., motion A
(MANNER) walking A (PATH)(ENDP) T is also true at the motion node ny.

HL extends this with the possibility to name nodes in order to refer to them,
and with quantification over nodes. We use a set of nominals (unique node
names), and a set of node variables. ng is such a nominal, the node assigned
to it is the motion node in our sample frame. z,y, ... are node variables. The
truth of a formula is given with respect to a specific node w in a frame, an
assignment V' from nominals to nodes in the frame and an assignment g which
maps variables to nodes in the frame.

There are different ways to state existential quantifications in HL, namely
A¢ and Jx.¢. A¢ is true at w if there exists a node w’ at which ¢ holds. In other
words, we move to some node w’ in the frame and there ¢ is true. For instance,
Jhouse is true at any node in our sample frame. As usual, we define V¢ = —3(—¢)
and ¢ — ¥ = —¢ V1. In contrast to A¢p, Jx.¢ is true at w if there is a w’ such that
¢ is true at w under an assignment of z to w’. In other words, there is a node
that we name x but for the evaluation of ¢, we do not move to that node. E.g.,
the formula Jz.(PATH) (ENDP)(part-of ) (x A region) A A(house A (AT-REGION)x) is
true at the motion node in our sample frame.

Besides quantification, HL also allows us to use nominals or variables to
refer to nodes via the @ operator: @, ¢ specifies the moving to the node w
denoted by n before evaluating ¢. n can be either a nominal or a variable.
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The | operator allows us to assign the current node to a variable: | x.¢ is true
at w if ¢ is true at w under the assignment g;,. Le., we call the current node =z,
and, under this assignment, ¢ is true at that node. E.g., (PATH) (ENDP) (part-of ) (]
x.region A A(house A (AT-REGION)x)) is true at the motion node in our frame.

To summarize this, our HL formulas have the following syntax: Let Rel =
Func U PropRel be a set of functional and non-functional relation symbols, Type
a set of type symbols, Nom a set of nominals (node names), and Nvar a set of
node variables, with Node = Nom U Nvar. Formulas are defined as:

(1)  Forms:= T [p[n|-¢|oAds|(R)$|3¢|Qno| 2.0 320

where p € Type, n € Node, x € Nvar, R € Rel and ¢, ¢1, 3 € Forms. For more
details and the formal definition of satisfiability as explained above see [14,16].

2.3 LTAG and Hybrid Logic

A Lezicalized Tree Adjoining Grammar (LTAG; [1,12]) consists of a finite set of
elementary trees. Larger trees are derived via substitution (replacing a leaf with
a tree) and adjunction (replacing an internal node with a tree). An adjoining
tree has a unique foot node (marked with an asterisk), which is a non-terminal
leaf labeled with the same category as the root of the tree. When adjoining such
a tree to some node n of another tree, in the resulting tree, the subtree with
root n from the original tree is attached at the foot node of the adjoining tree.

The non-terminal nodes in LTAG are usually enriched with feature struc-
tures [27]. More concretely, each node has a top and a bottom feature structure
(except substitution nodes, which have only a top). Nodes in the same elemen-
tary tree can share features. Substitutions and adjunctions trigger unifications
in the following way: In a substitution step, the top of the root of the new tree
unifies with the top of the substitution node. In an adjunction step, the top of
the root of the adjoining tree unifies with the top of the adjunction site and the
bottom of the foot of the adjoining tree unifies with the bottom of the adjunc-
tion site. Furthermore, in the final derived tree, top and bottom must unify in
all nodes.

Our framework for the syntax-semantics interface follows previous LTAG
semantics approaches in pairing each elementary tree with a semantic repre-
sentation that consists of a set of HL formulas, which can contain holes and
which can be labeled. In other words, we apply hole semantics [9] to HL and
link these underspecified formulas to the elementary trees. Composition is then
triggered by the syntactic unifications arising from substitution and adjunction,
using interface features on the syntactic trees, very similar to [11,13,17].

As a basic example consider the derivation given in Fig.2 where the two NP
trees are substituted into the two argument slots in the ate tree. The interface
features 1 on the NP nodes make sure that the contributions of the two arguments
feed into the AGENT and THEME nodes of the frame. Furthermore, an interface
feature MINS is used for providing the label of the 3(eating...) formula as minimal
scope to a possible quantifier. The unifications lead to identities @[ = i, 2@ = = and
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5 l1 : Jeating
/\ A (AGENT)[]
NP[I:, MINS=11] VP A <THEME>

NP[r:i] /\ NP[I:m, MiNs=[1]]

‘ Vv NP[I=A, MINS=l1 ] ‘
‘ pizza

John

¢ A(Jx.pizza AT, B <" @
Q;(person A (NAME).John) are (z.p )

Fig. 2. Derivation of John ate pizza

= [y, triggered by the feature unifications on the syntactic tree. As a result,
when collecting all formulas, we obtain the underspecified representation

(2) @;(person A\ (NAME) John), l1 : 3(eating A (AGENT)i A (THEME)z), 3(|x.pizzaA[),
<t

The relation <1* links holes to labels: h<1*[ signifies that the formula labeled [ is a
subformula of h or, to put it differently, is contained in h. In (2), the 3(eating...)
formula, labeled [y, has to be part of the nuclear scope of the quantifier, which is
given by the hole (. Disambiguating such underspecified representations consists
of “plugging” the labeled formulas into the holes while respecting the given
constraints. Such a plugging amounts to finding an appropriate bijection from
holes to labels. (2) has a unique disambiguation, namely B — I;. This leads to
(3), which is then interpreted conjunctively.

(3) @;(person A (NAME) John), 3(|z.pizza A (eating A (AGENT)i A (THEME)x))

3 Application to Coercion

3.1 Dot Objects in Frames Semantics

In order to capture the full complexity of concepts while modeling them, we
need a way to represent the phenomenon of inherent polysemy, that is, the phe-
nomenon that certain concepts integrate two or more different and apparently
contradictory senses. Consider for instance the following two sentences:

(4) a. The book is heavy.
b. The book is interesting.

Both sentences use book in the common way, but while in (4a) the adjective heavy
applies to a physical object, the adjective interesting in (4b) requires its object
to be an information. It thus appears that book carries two different aspects,
which are arguably incompatible. However, this contradiction reveals an under-
lying structure in which these aspects are linked to each other. This structure
appears in Pustejovsky’s work [23] under the name of dot object. Following this
approach, our frame definition of book encodes the lexical structure proposed by
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Pustejovsky by taking two nodes with types information and phys-obj respec-
tively, to represent both aspects, and defining an explicit relation between them,
which is quite similar to what Pustejovsky calls the formal component of the
concept. In the traditional definition of frames, one node should be marked as
the referential, or central one, the others being connected to it by functional
edges (see e.g. [21]). The necessity of fixing a referent for sense determination
was also proposed in [19]. We have therefore chosen to take the physical aspect
of book as the referential node; and since its two aspects are linked by the “has
information content” relation, we define a CONTENT attribute to connect the
physical object to the information it carries.! We thus get the following formula
to express the semantics for book:

(5) book A (CONTENT)information

To ensure that the type book is permitted where a phys-obj is required, we assume
general constraints which, among other things, express that books are entities
of type phys-obj. Furthermore, we introduce a type info-carrier for information
carrying physical objects, and therefore build our constraints in two steps:

(6) a. V(book — info-carrier)
b.  V(info-carrier — phys-obj A (CONTENT)information)

The purpose of the type info-carrier is to provide a stage between specific types
like book and more general ones like phys-obj, to which other concepts can be
linked. For instance, a complex word like newspaper should have a type which
implies the type info-carrier [6,20,24]. Note that we can easily deduce the fol-
lowing constraint from (6a) and (6b):

(7)  V(book — phys-obj)

This constraint will be very useful to simplify formulas where the type book is
involved.

3.2 Coercion, Selection and Dot Objects

Let us start with the case of read, which has been described in [23]. The verb read
allows for the direct selection of the dot object book as complement, as illustrated
in (8a), but also enables coercion of its complement from type information in (8b)
as well as from type phys-obj in (8c). The distinction between all these concepts
can be explained as follows: although books and stories are informational in

1 One of the reviewers raised the question on what grounds phys-obj is preferred over
information as the primary lexical meaning facet of book and, more importantly, of
how to decide this question for related terms like novel and for dot types in gen-
eral. We regard this as an empirical issue which falls ultimately into the realm of
psycholinguistic research. As a first approximation, we tend to rely on the informa-
tion provided by monolingual dictionaries. For instance, the Longman Dictionary of
Contemporary English tells us that a book is “a set of printed pages that are held
together in a cover”.
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nature, a story does not need a physical realisation, whereas a book does, and
although books and blackboards are physical objects, a blackboard does not
necessarily contain information. The constraints for the associated types are
defined in (9).

(8) John read the book.
John read the story.

c. John read the blackboard.

(9) a. V(story — information)
. VY(blackboard — phys-obj)
c.  V(phys-obj A information — 1)

Sl

The semantics for read has to encode the direct selection of a dot object as
a complement. In [23], the verb read is analysed with two distinct events linked
by a complex relation expressing the fact that the reader first sees the object
before reaching its informational content. We want to keep a similar analysis
here; we build our semantic definition of read by taking an event node of type
reading with two attributes, namely PERCEPTUAL-COMPONENT and MENTAL-
COMPONENT, whose values are respectively of type perception and comprehen-
sion.? These nodes are meant to represent the decomposition of the activity
of reading into two subevents, the action of looking at a physical object (the
perception) and the action of processing the provided information (the com-
prehension). These two events are linked by a non-functional temporal relation
inspired from the one proposed by Pustejovsky: we call it ordered-overlap, and it
expresses the fact that the perception starts before the comprehension and that
these two subevents (typically) overlap. For the sake of simplicity, we encode the
central part of this semantics into the definition of reading with the following
constraint:

(10) V(reading — Jx.(PERC-COMP) (perception A (ordered-overlap )x)
A (MENT-COMP)(comprehension A x))

Moreover, the perception node has an attribute STIMULUS describing the role
of its object, which has to be of type phys-obj, and the comprehension node has
an attribute CONTENT which refers to the information that was read. We also
explicitly add in our semantics the requirement that the value of STIMULUS has
a CONTENT attribute, whose value is the same for the CONTENT attribute from
the comprehension node. Furthermore, since the argument contributed by the
object can be either the stimulus of the perception (phys-obj) or its content,
we add a disjunction of these two possibilities. We therefore obtain the formula
represented in Fig. 3, with the associated elementary tree.? In this formula, [ is

2 In the following, we will abbreviate these attributes by PERC-COMP and MENT-COMP,
respectively.

3 The constraint (10) should be applied here, but for reasons of space, we do not list
all the conjuncts contributed by it.
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A (PERC-COMP) (STIMULUS)z Npi= VP
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Fig. 3. Semantics and elementary tree for read
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Fig. 4. Derivation for (8a)

intended to unify with a node variable when the direct object gets inserted (i.e.,
is provided as value of the feature 1 in the object node associated lexicalized
tree for read), and the process of rewriting and simplifying the final formula will
allow us to identify either = or y with the variable of the direct object, depending
on whether this is of type phys-obj or information.

We can now use this elementary tree-frame pair to achieve a derivation for
(8a), which is represented in Fig.4. The HL formula coming with read is now
labeled and its label is provided as potential minimal scope for quantifiers at
the NP slots. Concerning the entry of the, we simplify here and treat is as
an existential quantifier, disregarding the presuppositions it carries. The book
formula is also labeled, and the label is made available via an interface feature p
(for “proposition”).* Due to the two scope constraints, this proposition will be
part of the restriction of the quantifier (i.e., part of the subformula at @) while
the read formula will be part of the nuclear scope, i.e., part of the subformula

4 Note that in Fig. 4, we have already applied (6).
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at . Substitutions and adjunctions lead to the unifications @ = ¢, @ = z, B =
lop and B = [; on the interface features. As a result, we obtain the following
underspecified representation:

Q@; (person A (NAME)John), 3(| z.@ A G),
lo: Jz.3y.I(reading A (AGENT)
A (PERC-COMP)(STIMULUS)z A (MENT-COMP){CONTENT)Yy
(11) A @, (phys-obj A (CONTENT) (information A y))
Ao zVe e y),
Iy : book A (CONTENT)information,
<, B

The only solution for disambiguating the representation in (11) is the mapping
— 11, B — lg, which leads to (12):

Q;(person A (NAME)John),
3(] z.book A (CONTENT)information
A Jz.3y.I(reading A (AGENT)E
A (PERC-COMP)(STIMULUS)x A (MENT-COMP)(CONTENT)y
A Qg (phys-obj A (CONTENT) (information A y))
ANz o aVzeoy)),

(12)

Furthermore, due to the constraint (7) and due to the incompatibility of informa-
tion and phys-obj (9c), we can deduce that z <> x and —(z < y). Consequently, we
can simplify our formulas by omitting the 3z quantification and replacing every x
with z. Putting these things together leads to the representation (13):

Q;(person A (NAME) John),
3(| z.book A (CONTENT)information
(13) A Jy.A(reading A (AGENT)i A (PERC-COMP) (STIMULUS) 2
A (MENT-COMP)(CONTENT)Y
A @, (phys-obj A (CONTENT) (information A y)))

The frame shown in Fig. 5 is a minimal model for (13) which also takes (10) into
account, i.e., it is the smallest frame graph satisfying (13) and (10).

The semantic representations of (8b) and (8c) can be derived in a similar way,
except that for (8b), the variable z introduced by the quantifier will be equivalent
to the information variable y in the contribution of read. The interesting point
in these cases is that the final semantic formula involves a node which reflects
respectively that there is an implicit material on which the story is written
(8b) and that implicit contents are written on the blackboard (8c). The analysis
of (8a) differs from that of (8c) in that the semantics of book always brings a
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Fig. 5. Frame for (8a) John read the book

CONTENT attribute of type information, which is merged with the constraints
contributed by the semantics of read. In (8c), by contrast, the CONTENT attribute
of the blackboard is contributed solely by the verb.

It is also worth asking how to handle cases where the verb does not select
a dot object as for read, but rather a simple type. Indeed, although the dot
object book has the properties of physical objects and of information, there
are some verbs which do not allow book as a complement but select a pure
informational argument. These verbs actually provide no possibilities of coercion:
their argument has to be of the specified type to allow a direct selection. This
kind of selection is referred to as passive selection, in opposition to the active
selection which enables coercion and type accommodation [23]. To understand
this phenomenon, consider the following sentences (those in (15) are taken from
[23]):

(14) a. Mary believed the story.
b. Mary believed the book.
(15)  a. Mary told the story.

b. *Mary told the book.

The verbs believe and tell both require their argument to be of type information;
however, the verb believe accepts the dot object book as its argument whereas
tell does not: the sentence (15b) seems to be incorrect. Thus the examples in
(14) illustrate a case of active selection, with a coercion of the complement in
(14b), and those in (15) show a case of passive selection.

With our semantics for read, the way to build the semantics for these two
verbs is quite straightforward. In comparison to read, we only need in each case
a single node to represent the activity, respectively of believing and of telling.
But the really interesting point is about the selection of the variable provided
by the semantics of the argument. In the case of read, we had the subformula
<~ x V@ < y, with @ to be unified with the variable contributed by the
direct object, regardless of its type. For believe, we need a similar subformula
that allows for the object variable to be either of type information, or to have a
CONTENT attribute with a value of type information; cf. (16a). For tell, however,
the object variable has to be unified directly with the THEME of telling, which is
of type information; cf. (16b).
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(16)  a. Fz.3(believing A (AGENT)E A (THEME) (information A x)
A (@ < z V Qg((CONTENT)z)))
b.  3(telling A (AGENT)® A (THEME) (information A [))

In this way, active and passive selections differ in that in the case of active
selection, we have an additional subformula that handles coercion possibilities.”

3.3 Other Cases of Coercion

Coercion is not limited to dot objects: it can occur for many other concepts
with a simple type. We will discuss here a few more examples of coercion, and
present ways to handle them within our framework. We will thus show that many
different cases of coercion can be solved in similar ways. We start here with a
sentence taken from [25]:

(17)  John left the party.

The verb leave requires its object to be of type location while in (17), the noun
party is provided, which is of type event and does not carry a dot type. Here,
the coercion relies on the fact that party, like every event, has an associated
location, which is basically where the party takes place. The application of leave
to the party therefore involves a transfer of meaning from the direct sense to
a related one. This phenomenon is referred to as attribute functional coercion
[25,26] because it operates on concepts which can serve as types as well as
attributes.

Our framework is capable of handling such cases without problems. Indeed,
the basis of frame semantics is to work with attribute-value descriptions, and
the coercion which occurs here shifts from one sense to another by following an
attribute to get to the required concept type. Hence we naturally define a type
location and an attribute LOCATION to represent the dual nature of the concept
of location. As previously for book, we need to assume the general constraints in
(18) to link party with these new elements:

(18)  a. V(party — event)
b. V(event — (LOCATION)location)
c. V(event A location — L)

It remains to define the semantics for leave in such a way that it enables
coercion to the value of the attribute LOCATION when the given argument is not
of the required type. This can be done in a similar way to what we did in the
case of believe in (16a), leading to the formula in Fig. 6, where [ is intended to
be unified with the node variable from the direct object argument. By following
the steps described in Sect. 3.2, we can easily produce a derivation for (17).

5 As pointed out by one of the reviewers, having the attribute CONTENT in the disjunc-
tion in (16a) imposes specific constraints on the semantic structure of the argument.
We leave it as a question for future research whether constraints of this type are
overly restrictive when moving from selected examples to large-scale applications.



Polysemy and Coercion — A Frame-Based Approach 29

S
Jz.3(leaving A (AGENT)[™ NP[P
A (THEME) (location A x) T~
A (@ ¢ 2 V Q((LOCATION)z))) Y Npi=t]
leave

Fig. 6. Semantics and elementary tree for leave

As a starting point, we consider the yield of the syntactic unifications and the
mapping of holes to formulas, which gives the following result:

Q; (person A (NAME) John),
(19) (| z.party A x.3(leaving A (AGENT)i A (THEME) (location A x)
A (z < xV @, ((LOCATION)z))))

With the constraints in (18), we can conclude that —(z < x) and consequently,
we obtain the following semantics for (17):

Q; (person A (NAME) John),
(20) 3(] z.party A Jx.3(leaving A (AGENT)i A (THEME) (location A x)
A Q. ({(LOCATION)zx)))

There is only a slight difference between functional coercion of the kind just
described and the treatment of dot objects shown before: frame semantics allows
us to process both types of coercion phenomena in a similar way because of
the underlying attribute-value structure. A further example is given by the dot
object speech, which combines the types event and information [25]. Speech has
the two attributes CONTENT and LOCATION, among others. More precisely, the
dot type speech is characterized by the constraint in (21a), which, together with
(18b) repeated here as (21b) gives rise to the constraint in (21c). Note that the
latter constraint makes no difference between the two attributes — although they
have different “levels” of origin, as CONTENT is a direct consequence of speech
whereas LOCATION is implied by the type event, which is entailed by speech.

(21)  a. V(speech — event A (CONTENT)information)
b. V(event — (LOCATION)location)
c. V(speech — (CONTENT)information A (LOCATION)location)

Two further examples, adapted from [6], are considered in (22) below. Their
purpose is to show how adjectival modification which enables coercion can be
handled in our framework.

(22) a. Mary mastered the heavy book on magic.
b. Mary broke every readable screen.
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In (22a), both heavy and on magic act as modifiers of of book, but the for-
mer modifier acts on the phys-obj component of the dot object while the latter
modifier acts on the information component. In (22b), on the other hand, the
adjective readable coerces screen from the simple type phys-obj to a dot type,
with a new informational component.

NPp—1, I : @A Jx.(z V (CONTENT) )
NP,

=tol /\ AQ, (knowledge

/\ NP g /PP\ A (TOPIC)[])

Adj NP _rmy«
) (=) Prep NP[P:]

‘ NPp—) ‘
heavy | on NPy,
N [l" 3]
lo : M A phys-obj | N
A (WEIGHT) heavy book \
l1 : book A\ (CONTENT)information magic

ls : magic

Fig. 7. Derivation for heavy book on magic

Let us start with the sentence in (22a). The most interesting parts of its
derivation are represented in Fig. 7. We define the semantics of heavy by assum-
ing that it selects directly a physical object (and so voluntarily keeping any other
meaning aside). The semantics of magic is simply regarded as sortal for the pur-
poses of the present example. As for on, its semantic representation includes
a disjunction to allow for the identification with a node of the required type,
using a similar technique as in the representation of believe above.® Moreover,
we introduce a type knowledge, which is intended to be a subtype of information,
and which has a TOPIC attribute describing what field the knowledge is about.
That is, we have the constraint in (23).

(23)  V(knowledge — information A (TOPIC)T)

The substitutions and adjunctions in Fig.7 trigger unifications @ = {1, @ = [
and [) = l3, which leads to the HL formula in (24):

book A (CONTENT)information A phys-obj A (WEIGHT)heavy

24) A Jz.(z V (CONTENT)z) A @, (knowledge A (TOPIC)magic)

5 The given semantic representation for on is considerably simplified. A more precise
representation should include a selection between two effects depending on the type
of the argument of on (unified with B on Fig.7), as the preposition can also occur
in phrases like the book on the table where a physical object is involved: in this
case, a more elaborated subformula with a LOCATION attribute would replace the
subformula knowledge A (TOPIC)EL.
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Formula (24) can be simplified due to the fact that book and knowledge are incom-
patible; therefore the first element of the disjunction x V (CONTENT)x (which is
evaluated in the book node) cannot be true. Consequently, we reduce the dis-
junction to (CONTENT)z.

It is also worth noticing that the verb master seems to require an object of
type knowledge and not merely information. Indeed, the use of this verb with
another subtype of information as in sentences (25b) seems unacceptable, while
(25a) involving a pure knowledge concept is fully acceptable. The sentence in
(25¢) shows that master is able to coerce at least certain types of arguments.

a. John mastered the theorem.
(25) b. *John mastered the story.
c. John mastered the book.

The selectional mechanism is therefore more complex for this verb. Neverthe-
less, as the type knowledge provided by on magic overwrites the information
value in the relevant example (22a), book has already a coerced type for its CON-
TENT in this case, which allows us to leave a more general analysis of master
for future work and to assume for now the same behavior for this verb as for
believe. A derivation for the sentence in (22a) leads thus, after unification and
simplification, to the following semantic representation:

Q; (person A (NAME) Mary),

3(] z.book A (CONTENT)information A\ phys-obj A (WEIGHT) heavy
(26) A (CONTENT) (knowledge A (TOPIC)magic)

A Jy.I(mastering A (AGENT)%
A (THEME) (knowledge A y) A @Q,((CONTENT)y)))

The case in (22b) is very similar to the coercion of blackboard to a dot object
by read. The semantics of the adjective readable does nothing else than adding a
CONTENT attribute with an information value to a physical object. This trans-
lates into the logical formula in (27a). Moreover, screen is considered as a sub-
type of phys-obj, and we assume here a simple semantics for break, given in (27b).
Finally, (27c) recalls the semantics for every.”

a. A phys-obj A (CONTENT)information
(27) b. 3(breaking A (AGENT)I A (THEME)[)
c. V(lzB— o)
The derivation for (22b) therefore leads to:
Q; (person A (NAME) Mary)
(28) AY(] x.screen A (CONTENT)information
— 3A(breaking A (AGENT)i A (THEME)zx))

" Lack of space prevents us from showing the associated elementary syntactic trees.
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The foregoing examples have shown that our formal framework allows us to solve
a large variety of coercion problems in similar ways, building on constraint-based
semantic representations combining frames and HL.

4 Conclusion

In this paper, we presented a model of coercion mechanisms for the case of verbs
and adjectives which select nominal arguments within a syntax-semantics inter-
face based on frames semantics using LTAG and HL. We also provided a frame-
semantic representation of Pustejovsky’s dot objects which keeps the notion of
referential meaning and explicitly includes the relations between the different
aspects of a concept. Frame semantics is well-suited to handle such mechanisms
since type shifting can simply be modeled by moving along an attribute relation
from a given meaning to the coerced one. Furthermore, the approach with HL
and holes semantics in the composition process allows us to implement precisely
the argument selection mechanisms into the model, using a disjunction of type
shifting possibilities in the logical representation of a predicate.

Another interesting point of this model is the fact that it is able to han-
dle different cases of coercion in similar ways, thus avoiding the requirement of
more complex structures when involving polysemous concepts. We also think
that coercion phenomena in sentences like Mary began the book, in which aspec-
tual verbs with a nominal argument are involved, could be modeled using the
same kind of representation. Indeed, in Pustejovsky’s analysis the underspecified
information has been encoded into the lexicon by a qualia structure, where qualia
are partial functions describing the roles that a concept can have [23]. As such, it
seems possible to represent these qualia by attribute-value pairs, and modeling
this kind of coercion would therefore follow the way presented in this paper.
Moreover, the general constraints in HL that are used in our framework could
be extended by contextual constraints as well: we would be able to change the
intended qualia of a word depending on the context, and also to handle cases
of metaphoric readings by adding some temporary constraints if the previous
selection mechanism fails.
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Abstract. Some dependency treebanks use special sequences of depen-
dencies where main arguments are mixed with separators. Classical Cat-
egorial Dependency Grammars (CDG) do not allow this construction
because iterative dependency types only introduce the iterations of the
same dependency. An extension of CDG is defined here that introduces a
new construction for repeatable sequences of one or several dependency
names. The learnability properties of the extended CDG when grammars
are infered from a dependency treebank is also studied. It leads to the
definition of new classes of grammars that are learnable in the limit from
dependency structures.

Keywords: Categorial grammar + Dependency grammar - Iterated
dependencies - Computational linguistics - Dependency treebanks -
Grammatical inference - Incremental learning

1 Introduction

Dependency grammars and dependency treebanks do not always use a unique
linguistic model for lists of elements. Some of them define an enumeration as
a linked list of elements. Other grammars define a list as a set of dependencies
that link the same word, the head of the list, to the elements of the list.

Categorial Dependency Grammars [5] (CDG) allow the second model with
iterated dependency types. This construction introduces a list of dependen-
cies with the same name and the same governor. The dependency structures
(DS) in Fig.1 shows a dependency A that is iterated on the left and on the
right five times. A CDG compatible with the example could assign the type
[N\A\S/A*/L/A*] to the word ran. The dependency name A appears three
times, two times as the iterative dependency type A*. With this type, other DS
are also possible: Each A* may introduce none, one or several arguments linked
to ran by a dependency A.

However, iterated dependency types cannot be used when a list of elements
needs to be mixed with a separator like the example of Fig.2 from corpus
Sequoia [4] “Les cyclistes et vététistes peuvent se réunir ce matin, ¢ 9h, place
© Springer-Verlag GmbH Germany 2016
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A
A A

seemingly John ran slowly alone to_the_station every_morning during_half_an_hour .

Fig. 1. A dependency structure with five dependencies A

vent place Jacaues-Bailleurs . a I' occasion d' une sortie d entrainement

Fig. 2. A dependency structure with a list of modifiers separated by commas

Jacques-Bailleurs, a l’occasion d’une sortie d’entrainement.” (fr. the cyclists and
ATB bikers may meet themselves this morning, at 9, at Jacques-Bailleurs square,
for a training ride)*.

In this example, several modifiers alternate with a punctuation sign. The verb
réunir may have type [aff\obj : obj/mod/ponct/mod/ponct/mod/ponct/mod].
A regular expression for the part that corresponds to the modifiers and commas
would be mod(punct mod)* or (modpunct)*mod. Tt is not an iterative choice
between mod and ponct like the regular expression (mod|ponct)* but a repeat-
able sequence of mod and ponct. In order to formalize such structures, we propose
to extend CDG types with a new construction that introduces finite sequences
of dependencies. The system is an extension of classical CDG because iterated
dependency types can be seen as sequence iterations where the sequence has a
length of one dependency name.

We also study the learnability properties of CDG with sequence iteration
when the grammar has to be infered from a dependency treebank. This concept
of identification in the limit is due to Gold [7]. Learning from strings refers to
hypothetical grammars generated from finite sets of strings. More generally, the
hypothetical grammars may be generated from finite sets of structures defined
by the target grammar. This kind of learning is called learning from structures.
Both concepts were intensively studied (see excellent surveys in [2,8,9]). This
concept lead for CDG with sequence iterations to a new class of grammar that
is learnable from positive examples of dependency structures (DS).

The plan of the paper is as follows. Section 2 introduces Categorial Depen-
dency Grammars with sequence iteration and studies their parsing properties
and expressive power. The section also presents the links with linear logic,
noncommutative logic and Lambek Calculus. Section 3 studies the learnability
properties of such grammars from positive examples of dependency structures
and defines new classes of such grammars that are learnable in this context.
Section4 presents experimental studies of sequence iterations in existent DS
corpora. Section 5 concludes the paper.

1 See talc2.loria.fr/deep-sequoia/sequoia-7.0 /html/annodis.er_00060.html.
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2 CDG with Sequence Iterations

2.1 Classical Categorial Dependency Grammars

Categorial dependency grammars can be seen as an assignment to words of first
order dependency types of the form: ¢t = [L,,\...\L1\g/R1/.../R.]F. Intu-
itively, w + [a\d\B]” means that the word w has a left subordinate through
dependency d (similar for the right part [a/d/B]F). Similarly w — [a\d*\8]"
means that w may have 0,1 or several left subordinates through dependency d.
The head type g in w — [a\g/B]F means that w is governed through dependency
g. The assignment of Example 1 determines the projective DS in Fig. 3.

Ezample 1.
in — [c_copul /prepos—I|
the — [det]
beginning — [det\prepos—I]
was — [c_copul\S/Qfs/pred)
word — [det\pred)
— [Qf 5]

The intuitive meaning of part P, called potential, is that it defines discon-
tinuous dependencies of the word w. P is a string of polarized valencies, i.e.
of symbols of four kinds: , d (left negative valency d), \, d (right negative
valency d), \ d (left positive valency d), / d (right positive valency d). Intu-
itively, v =\_d requires a subordinate through dependency d situated somewhere
on the left, whereas the dual valency v =, d requires a governor through the
same dependency d situated somewhere on the right. So together they describe
the discontinuous dependency d. Similarly for the other pairs of dual valencies.
For negative valencies  d,\, d are provided a special kind of types #(, d),
#(\.d). Intuitively, they serve to check the adjacency of a distant word subor-
dinate through discontinuous dependency d to a host word. The dependencies
of these types are called anchor. For instance, the assignment of Example 2
determines the non-projective DS in Fig. 4.

& In the beginning was the Word

Fig. 3. Projective dependency structure.
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1
X Elle la Ilui a donnée

™
. #Feclit-3d-obj
#v clit-a-obj

(fr. “she itg=fem to him has given)

Fig. 4. Non-projective dependency structure.

Ezample 2.
elle — [pred]
la (/ clit—a—obj)]< clit-aobj

— [#
lui = [#( clit—3d—obj)]<clit-3d—obi
[#
[
[

a — [#(/ clit—3d—obj)\#(/ clit—a—obj)\pred\S/Qfs/aux—a—d]
donnée — aux—a—d] Ncelit—3d—obj\clit—a—obj
= [@f 5]

Definition 1 (CDG dependency structures). Let W = a; ... a, be a list of
words and {dy,...,dn} be a set of dependency names, with their dependency
nature that can be either local, discontinuous or anchor. A graph D = (W, E)
with labeled arcs is a dependency structure (DS) of W if it has a root, i.e. a
node a; € W such that (i) for any node a € W, a # a;, there is a path from a; to
a and (ii) there is no arc (a’,d,a;).? An arc (a,d,a’) € E is called dependency
d from a to a'. a is called a governor of a’ and a’ is called a subordinate of a
through d. The linear order on W is the precedence order on D.

Definition 2 (CDG types). Let C be a set of local dependency names and
V be a set of valency names.

The expressions of the form /v, \ v, \\v, /v, where v € V, are called
polarized valencies. \ v and /v are positive, /v and \, v are negative; \ v
and / v are left, /v and \, v are right. Two polarized valencies with the
same valency name and orientation, but with the opposite signs are dual. An
expression of one of the forms #(, v), #(\\v), v € V, is called anchor type
or just anchor. An expression of the form d* where d € C, is called iterated
dependency type. Local dependency names, iterated dependency types and anchor
types are primitive types.

An expression of the formt = [Ly,\ .. .\L1\H/R; ... /Ry] in which m,n > 0,
Li,...,Ly, Ry,..., R, are primitive types and H is either a local dependency

2 Evidently, every DS is connected and has a unique root.



38 D. Béchet and A. Foret

name or an anchor type, is called a basic dependency type. L1,..., L, and
Ri,..., Ry, are respectively left and right argument types of t. H is called the
head type of t.

A (possibly empty) string P of polarized valencies sorted using the standard
lezicographical order <je,, compatible with the polarity order \ < \, < ,/ < /,
is called a potential. A dependency type is an expression BY in which B is a
basic dependency type and P is a potential. CAT(C, V) will denote the set of
all dependency types over C and V.

CDG are defined using the following calculus of dependency types.® These
rules are relativized with respect to the word positions in the sentence, which
allows to interpret them as rules of construction of DS. Namely, when a type
BV ig assigned to the word in a position ¢, we encode it using the state
(B, i)tk Tn these rules, types must be adjacent.

Definition 3 (Relativized calculus of dependency types).

L'. I ([C],i) " ([C\B], i2) > T2 & I ([B],32) 721

I I ([C), i) ([C*\Blyig) 2 Iy = Iy ([C*\B],iz) 1 P2 1y

QLI ([CH\B, )" = I ((8],4)7 Ty

Dl I P (Ci)P(NCi2) Py v 1y oPIPPe
if the potential (,/C,11)P(N\C,i2) satisfies the following pairing rule FA
(first available) and where, moreover, iy < iz (non-internal constraint).*

FA : P has no occurrences of (,/C,i) or (\NC,1), for any i

L! is the classical elimination rule. Eliminating the argument type C # #(a)
it constructs the (projective) dependency C and concatenates the potentials.
C = #(a) creates anchor dependencies. I! derives k > 0 instances of C. !
serves in particular for the case k = 0. D! creates discontinuous dependencies. It
pairs and eliminates dual valencies with name C satisfying the rule FA to create
the discontinuous dependency C.

Now, in this relativized calculus, for every proof p represented as a sequence
of rule applications, we may define the DS DS (p) constructed in this proof.
Namely, let us consider the calculus relativized with respect to a sentence z with
the set of word occurrences W. Then DS, (¢) = (W, ) is the DS constructed in
the empty proof p = €. Now, let (p, R) be a nonempty proof with respect to x
and (W, E) = DS, (p). Then DS, ((p, R)) is defined as follows:

If R=L'or R=1 then DS,((p,R)) = (W, E U {(ai,,C,a;,)}). When C is a
local dependency name, the new dependency is local. In the case where C' is an
anchor, this is an anchor dependency.

If R = then DS,((p,R)) = DS.(p).

If R = D!, then DS, ((p,R)) = (W, E U {(ai,,C,ai,)}) and the new dependency
is discontinuous.

Definition 4 (CDG). A categorial dependency grammar (CDG) is a system
G = (W,C,V,S8,X), where W is a finite set of words, C is a finite set of local

3 We show left-oriented rules. The right-oriented are symmetrical.
4 This disallows internal primitive loops (the rule D' cannot apply to a single word).
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dependency names containing the selected name S (an axiom), V is a finite set
of discontinuous dependency names and A\, called lexicon, is a finite substitution
on W such that A\(a) C CAT(C,V) for each word a € W. X is extended on
sequences of words W* in the usual way.’

For G = (W,C,V,S,)), a DS D and a sentence z, let G[D,z] denote the

relation: " . Fof (b1.1) - (b 1) b (5.4)
where p is a proof of (t1,1) - (tn,n ) J

D = DS:(p) for somemn,j, 0<j<nandty - -t, € A\(z).
Then the language generated by G is the set L(G)=, {w | 3D G[D,w|} and the
DS-language generated by G is the set A(G)=,{D | Jw G[D,w]}. D(CDG)
and L(CDG) will denote the families of DS-languages and languages generated
by these grammars.

Example 3. The proof in Fig. 5 shows that the DS in Fig.4 belongs to the DS-
language generated by a grammar containing the type assignments shown above
for the French sentence Elle la lui a donnée (the word positions are not shown
on types).

CDG are very expressive. Evidently, they generate all CF-languages. They can
also generate non-CF languages.

Example 4. The following CDG generates the language {a"b"c™ | n > 0} [6]:°

a— #( A H#(S AN\#( A)A
bi— [B/C, [#(,/ A\S/C™
c— [C],[B\C]

2.2 CDG with Sequences and Sequence Iterations

The extended system introduced here defines sequences and sequence itera-
tions. An extended type [a\(C; e --- o C,)\G]F is viewed as a type that con-
tains a sequence of n primitive types. It is equivalent to [a\C,\ ---\C1\B]¥
(the sequence appears in the reverse order). The starred version of a sequence
[@\(C1 ®---0C,)*\B]F is handled as a sequence of n primitive types that can
be repeated none, once or several times. This construction with n > 1 is not
possible with classical CDG which allows only iteration of a primitive type (the
case n = 1). This type is equivalent to an infinite list of types:

[\8]7,

[@\(C1 o+ e CONGIP = [0\C\ - - \C1\AIP,

[0\(Cro-0CyoCro o C\BIT = [a\Co\ - \CI\Ca\ - \C1\AI,

etc.

Definition 5. We call sequence iteration types the expressions BT where
P is a potential, B = [L,,\ ---\L1\H/---/R1---/Ry], H is either a local depen-
dency name or an anchor type and Ly, ... L1, Ry ..., R, are either anchor types,

5 )\(al---an) = {t1 oty I t1 € )\(a1),...,tn € )\(an)}.
5 One can see that a DS is not always a tree.
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local dependency names, sequences of local dependency names or sequence iter-
ations of local dependency names (a sequence of one local dependency name is
identified to a local dependency name).

Rules for CDG with sequences and sequence iterations:
L. I ([C], i) ([C\B),i2) 2 I = I ([B],d2) P21
CL Iy ([()*\B],) I F I (Ja\(a)*\3],i) I, (a)* is a sequence iteration
WL I ([()*\@], )P Iy = Iy ([8],4)F Ty (a)* is a sequence iteration
Sl Iy ([(aeO)\3],)F Iy + Iy ([C\a\@],4) T Iy (cv e C) is a sequence
D! n aPl(/C,il)P(\C,ig)PQFQ 0 aPlPP2F27
if the potential (,/C,i1)P(\C,i2) satisfies FA and if i; < iy

2.3 Links with Noncommutative Logic and Lambek Calculus

From a logical point of view, a CDG type BY consists of a projective part B
and a potential P. B can be seen as a logical formula in a resource sensible logic
like linear logic. Because the order of formulas is also important, B can be seen
either as a formula in noncommutative logic [1] or a formula in Lambek calculus
[10].

In Lambek calculus, a sequence of primitive types is the product of primitive
types. In the same perspective, a sequence iteration of primitive types has no
equivalent in Lambek calculus.

In noncommutative logic, a type B = [L,\---\L1\H/---/R1---/R,] can
be seen as the linear type L,, —o --- —o L; —0o H o— Ry --- o— R,, where —o and

o— are the left and right linear implications. The sequence of primitive types
(Cre---0(C,) is the multiplicative noncommutative product (C; @ --- ® Cy).
The following implications are valid in noncommutative logic. They justify the
rules for CDG sequences:

(C1e--®Cy) oBFC,— -+ —Cy — 3
Cn_o P _OCI_Oﬁl—(CIQ.QCn)_Oﬂ

The sequence iteration of primitive types (Cy e--- e C,)* corresponds to 7(C; ®
-+-®Cy): An iteration is seen as the dual of the exponential of the multiplicative
product of the primitive types. The following provable sequents justify the rules
for CDG sequence iterations:

WLO-0C,) ©ofF(C10---0C,07(C10---0C,)) o8

(C1O---0C,) = BFS

Thus, it is possible to interpret the projective part of CDG types as a formula
of noncommutative logic. The search for a valid analysis of a sentence becomes
the proof search in noncommutative logic of a sequent where the formulae are
one of the possible lists of types of the words through the lexicon of a grammar.
This interpretation gives automatically a compositional semantic interpretation
a la Montague.



42 D. Béchet and A. Foret

2.4 Parsing and Expressive Power

Sequences can be seen as syntactic sugar for types. Thus, they don’t change the
parsing properties of languages and the expressive power of grammars. From
a formal point of view, sequence iterations do not introduce new languages of
string with respect to classical CDG. In fact, it is possible to emulate a sequence
iteration by a simple iteration where each dependent corresponds to an element
of the sequence (for instance the leftmost element of the sequence) and gov-
erns the other elements of the sequence. In contrast, sequence iterations intro-
duce a new construction that is very common on DS corpora. For instance,
the treebank Sequoia [4] models a list of elements as the alternative of an ele-
ment and a punctuation mark. The introduction presents an example where the
modifiers of the verb réunir alternate with commas: “Les cyclistes et vététistes
peuvent se réunir ce matin, a 9h, place Jacques-Bailleurs, a ’occasion d’une sor-
tie d’entrainement.” (fr. the cyclists and ATB bikers may meet themselves this
morning, at 9, at Jacques-Bailleurs square, for a training ride).

The parsing of CDG with sequence iterations is not very different from the
parsing of classical CDG (i.e. with iterated dependency type). A sequence iter-
ation at the leftmost position of a type [(di @ ---ed,)*\Ly---\H/Ry/ -] is
rewritten into [dy, 1\ - -+ \di\(dye---ed,,)*\Ly ---\H/Ry/ - --]F1F2 when the type
[d,]F* is on its left (potentials Py P» may generate non-projective dependencies).

3 Learnability Results

The section studies the learnability properties of CDG with sequence iterations
from positive examples of dependency structures (because sequences can be seen
as syntactic sugar, the grammar are supposed to contain no sequence). It ends
with the definition of a new family of classes of such grammars that are learnable
in this context.

3.1 Inference Algorithm
A vicinity corresponds for a word to the part of a type that is used in a DS.

Definition 6 (Vicinity). Given a DS D, the incoming and outgoing dependen-
cies of a word w can be either local, anchor or discontinuous. For a discontinuous
dependency d on a word w, we define its polarity p (\,\,, ., /), according to
its direction (left, right) and as negative if it is incoming to w, positive otherwise.

Let D be a DS in which an occurrence of a word w has: the incoming projective
dependency or anchor H (or the aziom S), the left projective dependencies or

anchors Ly, ..., Ly (in this order), the right projective dependencies or anchors
Ry, ..., R, (in this order), and the discontinuous dependencies dy,...,d, € V
with their respective polarities p1,...,Dn-

Then the vicinity of w in D is the type

V(w, D) = [Li\ -~ \Li\H/R/ -+ /R1]",
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in which P is a permutation of pidy,...,pnd, in the standard lexicographical
order <je; compatible with the polarity order \ <\, < / < .

For instance, donnée in Fig.4 has the vicinity [aux —a— d] clitaobinelit=3d-obj

This vicinity is nearly the same as the type of donnée in the lexicon because this
type doesn’t have a sequence iteration (or an iterated dependency type). The
difference comes from the order of the polarized valencies N\ clit —a —obj and
N clit—3d—obj that appear in a different order. The vicinity of the verb réunir
in Fig. 2 is [aff\ 0bj:0bj/mod/ponct /mod/ponct/mod/ponct/mod]. A type that is
compatible with this vicinity could be [aff\ 0bj:0bj/(ponct @ mod)* /mod]. In this
case, the type in the lexicon and the vicinity are different.

Definition 7 (Algorithm). Figure 6 presents an inference algorithm

TGEE,IE)Seq which, for every next DS in a training sequence, transforms the
observed local, anchor and discontinuous dependencies of every word into a type
with repeated local dependency sequences by introducing a sequence iteration for
each group of at least K consecutive identical sequences of local dependencies.
J indicates the mazimum internal length of the sequences that are transformed

mto sequence iterations.

Definition 8 (Generalization). The notation TGenE,Ii)Seq(tw), that applies

the inner loop algorithm in Fig. 6 to a type t,,, is extended to sets of types, lexi-
cons and grammars, in a usual way, such that each assignment w — t becomes
w — TGenf,Ii) (t)
seq

Ambiguities. Note that this process may be ambiguous. For instance, for
K = J = 2, the generalization of [a\b\a\b\a\b\a\H] could be [(b e a)*\a\H]
or [a\(a e b)*\H]. With the same conditions on K and J, the generalization
of [b\a\a\a\a\a\H] could be [b\a*\H] or [b\(a e a)*\a\H]. There are several
ways to overcome this, such as: [ALL mode] adds all such types in the internal
loop; or [LML mode] adds only the type corresponding to a leftmost longest
sequence iteration with the shortest pattern. We could also consider different
limiting neighbourhood conditions around the repeating pattern.

Definition 9 (LML mode). We consider three parameters of the repeated
sequence: the start position, the pattern length, the total length. In the [LML
mode], the three parameters have the priorities in that order: We consider first
the leftmost position as the start position, then the smallest pattern length, then
the mazximal number of repetitions.

This mode is detailed by the following examples.

- TGen?,, ([a\b\a\b\a\b\a\H]) = [(b ® a)*\a\H] and not [b\(a e b)*\H]
because the leftmost repeated sequences for K = J = 2 start with the leftmost

a of [a\b\a\b\a\b\a\ H]



44 D. Béchet and A. Foret

Algorithm TGE® (type-generalize-expand):

J—seq
Input: o, a training sequence of length N.
Output: CDG TGEY)_ (o).

J—seq

let GH = (VVH,CH,VH,S7 )\H) where WH = Q); CH = {S}, VH = @; )\H = @;

(loop) for i =1 to N // loop on o
let D such that o[i + 1] = o[i] - D; // the i-th DS of o
let (X, E) = D;
(loop) for every w € X // the order of the loop is not important
Wa = Wy U{w};
let ¢, = V(w, D) // the vicinity of w in D

Cy :=Cpr U{d]|dis a local dependency name of t,, }
Vi :=VgU{d|#(d) or #(\(d) is an anchor type of t,, }
u{d| \d,d, "dor \,dis a polarized valency of ¢, }
/] — computing the generalization of t,,: TGenf,IiLeq(tw)
thy = tw
(loop) while t, = [a\&\ - --\&\B]"
with at least K consecutive occurrences of 6 = d;\---\d1 (j < J),
di,...,dj € Cy,CONDy(a,d) (or a not present) and CON Dy,.(8,9)
tw = [a\(di o0 d;)\5]"
(loop) while t, = [a/6/--- /6/6]"
with at least K consecutive occurrences of 6 =d;/---/d1 (j < J),
di,...,dj € Cag,CONDy(a,6) and COND,(3,8) (or B not present)
th = [a/(dre---ed)) /B]"
// - the final t., defines TGen'S)_ (t.)

J—seq

A (w) = Ag(w) U {t},}; // expansion
end end
where CONDy;(e,0) = « does not end in ¢
COND;,-(3,0) = 8 does not start with 6\
COND;i(a,0) = a does not end in /§
COND,(8,8) = B does not start with ¢

Fig. 6. Inference algorithm TGE(JIi)Seq; the inner loop defines TGen(JIi)Seq(tw) on types.

- TGeny?,, ([H/a/aja/aja)) = [H/a*] and not [H/(a e a)*] because the
sequences for a* and (a e a)* both start with the leftmost a in [H/a/a/a/a/a]
but the pattern length of a* is one (the smallest) and the pattern length of
(a®a)* is two.

- TGenS?,,([H/a/b/a/bja/bja)) = [H/(be a)*/a] and not [H/(b e a)*/a/b/a]
because for K = J = 2 even if there are two repeated sequences starting
at the leftmost a with a pattern length of two (b e a) that are a/b/a/b and
a/b/a/b/a/b, the maximal number of repetitions is three and corresponds to

a/b/a/b/a/b.

3.2 Algorithm Properties

Some Terminology. The following definitions are introduced for ease of writing.
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Definition 10 (argument-form). By an argument-form we mean a part of
a type with the form L.\ ...\L1\ or the form /R;y.../R, where each L;, R;
is a possible argument in a CDG type (in short an argument-form is a writing
fragment on one side in a CDG type).

Definition 11 (Component). By a star-component in a type or an argument-
form t, we mean any x*\ or /x* occurring in the writing of t. By a primitive
component in a type or an argument-form t, we mean any x*\, /x*, d\, or /d
where d is a local dependency name or an anchor type, occurring in the writing
of t. These notions are extended to the form without \ or /.

Definition 12 (Parallel Decomposition). If t’ is the result of the algorithm

TGen(JIi)seq ont=[L;\---\H/---/R1]¥ in the LML mode, we can decompose in
parallel: t = [ay---H---ay|F and t' = [By--- H --- By]F where P! = sort(P),
each «; is an argument-form, [3; is a primitive component and:

b1 = TGenSIi)Seq(al) By = TGenSIi),Seq(aj) ...and BNy = TGenSIi)seq(aN)
The pair (a1 ...an, B1...0n) defines the parallel decomposition of (t,t') in the
LML mode; we call (o, 3;) a block and we say that each index i selects block

(a4, B;) in the decomposition.

Construction and Key Lemmas

Definition 13 (Expansion). For any type t, we define its full expansion F'E(t)
as the set of types obtained from t by erasing or by replacing its star-components
x* (d* or (dy eds)* when J =2) by any successive repetitions of x.

Note. This set is infinite when there is at least one star-component, but is used
as an intermediate for proofs. It corresponds to the possible vicinities that can
be associated to a word in a DS.

Definition 14 (Expansion of Rank K'). For any t, type or argument-form,
we define its full expansion of rank K’, FEX' (t), as the set of types obtained
from t by erasing or by replacing all its star-components z* by any successive
repetitions of x not more than K’ times.

Lemma 1. Let K > 1, J=1 or 2 and K' > K + 1. For any type t:

TGen) (FEX' (1)) = TGen™). (FEXTL(t)) (1)

J—seq J—seq

Proof. We show (1). Obviously TGenSIf)seq(FEK+1(t)) - TGenf]Iileq
(FEX'(t)). We show the converse for J = 2 (J = 1 is a subcase of J = 2).
Suppose t; € FEX (to), let to = TGenffi)seq(tl) and let a;, §;, for 1 < j < N
denote the parallel decomposition of (t1,¢2) in the LML mode. We discuss by
induction on the construction of tg, considering the parallel decomposition.

We consider the leftmost star-component z* in ty repeated more than K + 1
times in ¢;. We show that we can replace it by ] with only K + 1 repetitions of
this pattern instead (unchanged elsewhere).
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- If |z| = 1, then a* of ¢y corresponds to d\d\ ---d\ or /d/d\---din t;.

(1.1) If this argument-form of ¢; (and z* of #) corresponds to a unique block
¢ in the parallel decomposition of (¢1,¢2), then «; contains more than K + 1 x
and 3; = z*; in that case, we define ¢} by replacing in «; all the repetition of x
with only K + 1 repetitions of x. In this case, * of ty corresponds to K + 1 x
in ¢} and the algorithm yields the same type.

(1.2) If the argument-form corresponds to several adjacent blocks in the parallel
decomposition of (¢1,t2), the leftmost x is the end of a block ¢ with 8; = (v ed;)*
and the others are in the block i + 1 with §;11 = z*. «;41 contains at least K .
We define ¢} by replacing in a;41 all the repetition of x by only K repetitions
of z. In this case, z* of ¢y corresponds to K + 1 z in ¢} which yields the same
type (algorithm output).

- If |2| = 2, then z is the succession of dy and dy (z = dy @ d; and it corresponds
to dl\dg\dl cee \dl\dg\ or /dl/dQ/dl s /dl/dg)i

(2.1) If z* of ty corresponds to a unique block 4, in that case, as in (1.1), we
define ] by replacing in «; the repetition of d; and dy with K + 1 repetitions of
dy and ds. In this case, x* of ¢y corresponds to K + 1 z in ¢} which yields the
same type (algorithm output).

(2.2) if di # dg and z* corresponds to several adjacent blocks in the parallel
decomposition of (t1,t2) starting at block 4, this means that in the LML mode the
leftmost d; corresponds to the end of block ¢, the rightmost dy correspond to the
beginning of block i+ 2 and the other local dependency names ds, dy,ds . . ., ds, dy
correspond to block ¢ + 1 with 8,11 = (dy e dy)*. We define t] by replacing in ;11
the repetition of do and d; with K repetitions of do and d;. In this case, x* of g
corresponds to K + 1 z in ] which yields the same type (algorithm output).
(2.3) if d; = da, we have the same cases as in (1.1) and (1.2) but with more than
2K + 2 local dependency names.

We can repeat this process until no expansion is made more than K + 1
times, hence the converse inclusion.

For example, if tg = a\a\(be a)*\D\b\H, with J = 2, K = 2, K’ = 4: the
decomposition for t; = a\a\a\b\a\b\a\b\a\b\b\b\H (with K’ = K + 2 repe-
titions) can be compared to that of t{ = a\a\a\b\a\b\a\b\b\b\H with K + 1
repetitions (we recall that the display order is reverted for internal sequence as
arguments):

a1 = a\a\a\|ag = b\a\b\a\b\a\
pr=a" B2 = (a ®b)*

ag = a\a\a\|az = b\a\b\a\|asz = b\b\b\ ||t}
TGenS) . |61 =a*  |fa=(aeb)* |B3=1b" to

Note that a\a\a\b\a\b\b\b\, with K repetitions only, yields a different decom-
position.

o = B\B\D\
B3 =b*

i1
ta

TGen?

2—seq

Corollary 1. Let K > 1 and J = 1 or 2. For any type t the result of the
algorithm TGen(JIi)Seq on the full extension of t is a finite set and is the same

set as the result of this algorithm on FEX*1(t).
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The definitions of FEX and FEX*! are extended to sets, lexicons and gram-
mars in the usual way.

Lemma 2. Let K > 1 andJ =1 or 2. Let G be a CDG with sequence iterations.
We have:

(1) all vicinities of words in DS of A(G) belong to some FE(t), where t is
assigned by G.

(2) if o is a finite sequence in A(G), then A(TGE(K) (0)) C A(G") where G’

J—seq
is TGEYS), . on FEX+1(G)

Proof. If G generates D € ¢ where a word w occurs with a vicinity t,,, for which
G uses the assignment w — ¢ in the derivation, then t, must be in FE(t).
Finally, we use Corollary 1 relating FE(t) to FEXT1(t).

Theorem 1 (Convergence). Let K >1 and J =1 or 2. Let G be any CDG.

The algorithm TGESIfleq stabilizes on every training sequence in A(G) to a

grammar with assignments in TGESIfleq on (FEETYHQ)).

Proof. We have (1) TGEX) (oli]) C TGE) (oli+1]) C ... As observed in

J—seq J—seq
Lemma 2, the vicinities for the words of the DS in ¢ belong to FE(G). If we

had an infinite chain of types t; = TGEL(,Ifleq(ti), with assignments w; +— t}

in TGEglf)seq(a[i]), but not in TGESIfleq(o[i —1]) (we could consider one such
chain concerning a same word w as the lexicon of G is finite) ; now all ¢; also

belong to some FEXi(G), then if K’ > K + 1, there exists ¢/ in FEX+1(G),

_ (K)
such that ¢, = TGEsteq

TGEY , on a subset of FEX*H(G) ; obviously FEX+!(G) is finite, we would

J—se
then have a contradiction.

(t!), we can thus view the set of ¢, as the result of

Therefore for any G and any K > 1:
AN,VN' > N TGEYS). (o[N']) = TGE(®)_ (c[N])

J—seq J—seq

Furthermore, if w +— t' € TGEL(]IE?%(I(U[N]) there exists w — t" € FEE+L(Q),

such that ¢/ = TGE&IE)Seq(t”): in that sense the assignments in TGEL(]IE)Seq(J[N])

are in TGESIELBQ on (FEX+L(@)).

Proposition 1. Let K > 1 and J =1 or 2.
If G is a CDG and o is a sequence in A(G) then

(1) TGESIE)Seq(a[i]) C TGESIfleq(a[i +1)) monotonicity/incrementality
2) oli| C - olt expansivity
(2) oli] € A(TGESS, (o[i]))

(8) ATGESS), (0li)) C A(G") where G’ is TGES), on FEX+(G)

Proof. (1) holds by definition of the algorithm (that expands the lexicon); (2)
can be shown by adapting the derivation ; (3) follows from a preceeding lemma.
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3.3 A Family of Learnable Classes

Definition 15. Two grammars are said strongly equivalent if they generate the
same dependency structure language. The strong equivalence criterion:

(i) G is strongly equivalent to TGEyfleq on FEXHL(Q) defines the subclass
written CODG.

J—seq

Theorem 2. Let K > 1 and J = 1 or 2. The algorithm TGESIfleq learns the
class of CDG satisfying the strong equivalence criterion (i), from labelled depen-
dency structures.

of grammars satisfying (i).

(K)
J—seq

Proof. From Proposition 1(1): TGESIEleq(U[i]) CTGE

The stabilization property holds (Theorem 1):
AN,VN' > N TGE®)_ (s[N']) = TGEY)_ (o[N))

J—seq J—seq

Then by Proposition 1(2): A(G) C A(TGE(K) (o[N])),

J—seq
and using (i) and Proposition 1(3): A(G) C A(TGESIE)Seq(U[N])) C A(G).
Therefore for any grammar, such that (i) we get the convergence to a grammar

generating the same structure language.

(ofi+1]) C ...

Observe that this class does not impose a bound on the number of types
associated to a word (in contrast to k-valued grammars). The learnability for
J =1 was studied in [3], with a special case of our algorithm.

4 Extended CDG and Dependency Treebanks

From Dependency Treebanks to Vicinities. Our workflow applies to data in the
Conll format”. The CDG potentials in this section are considered as empty®.

For each governor unit in each corpus we have computed (using
MySQL and Camelis”): (1) its wicinity in the root simplified form
[[1\ .. \ln\root/ry,/ ... /r1] (where Iy to I, on the left and r1 to 7, on the
right are the successive dependency names from that governor), then (2) its gen-
eralization as star-vicinity, replacing consecutive repetitions of d; on a same side
with dj; and (3) its generalization as vicinity_2seq following the LML mode of
the algorithm in Fig.6 for J = K = 2.

Our development allows to mine repetitions and to call several kinds of view-
ers: we use the item/word description interactive viewer camelis and the sen-
tence parse conll viewer [11] or grew!.

Figure 7 on its left, shows the root simplified vicinities computed on corpus
Sequoia; the resulting file has been loaded as an interactive information context,
in Camelis; this tool manages three synchronised windows: the current query is
on the top, selecting the objects on the right, their properties can be browsed in
the multi-facets index on the left.

7 http:/ /universaldependencies.org/format.html.
8 this complies with Sequoia data, but may be a simplification for some other corpora.
9 www.irisa.fr /LIS /softwares.
10 ) .
http://talc2.loria.fr/grew/.
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Results on the French corpus Sequoia. We consider a version of corpus Sequoia
[4] that defines dependency structures. The study uses only the surface syntax
dependency tree. Sequoia is not validated by a dependency grammar in the sense
of Mel’¢uk and does not have to follow the repeatable principle.

The process yields 530 distinct star-vicinities having repetition(s) (a star),
among 2660 distinct vicinities (on 67038 units, among which 37883 governors).
For example the form “notables”!! with postag “NC” has:

ViCiIlity det\root/mod/mod/dep/dep and star-vicinity det\root/mod*/dep* .

We observe that:'? consecutive repeatable dependencies d;.d; on the left are:
aff, dep, det, mod, ponct; consecutive repeatable dependencies on the right are:
coord, dep (+ dep.coord), mod (+ mod.app), obj:obj+obj.p, p-obj.o, ponct

The most frequent vicinity star is "det\root/mod*" (204 units), the most

frequent vicinity 2seq is "\root/(mod . ponct)*" (25 units), 166 units corre-
spond to a repetition "(mod . ponct)*". Several repeated sequences of length 2
occur, either on the left or on the right, these patterns always include a ponct
dependency: (suj . ponct) (ponct . suj) (ponct . obj.p) (ponct . obj) (ponct . mod.voc) (ponct .
mod.rel) (ponct . mod.app) (ponct . mod) (ponct . dep.coord) (ponct . dep) (ponct . coord) (p-obj.o
. ponct) (obj.p . ponct) (obj . ponct) (obj.cpl . ponct) (mod.voc . ponct) (mod . ponct) (mod.app .
ponct) (dep . ponct) (dep.coord . ponct) (de-obj . ponct) (coord . ponct) (ats . ponct)
Repeated sequences of length 3, with three distinct dependencies seem to be rare.
We found one sentence'? illustrating this case: “Ils ont vidé les supermarchés de
nourriture, les pharmacies de médicaments, les usines de matériel médical, ils
ont cambriolé les maisons et torturé des voisins et des amis.”, with vicinity:

"aux.tps\\suj\\root/ponct/mod/ponct/de_obj/obj/ponct/de_obj/obj/ponct/de_obj/obj"
Other corpus. Our development can handle other treebanks in the conll format.

Table 4 summarizes some observations on two corpus, with the number of units
corresponding to repetition patterns.

Treebank |[sentences|units ||governors|J=1 [J=2|]J=3, left
sequoia 3099 67038(/37883 1667|378 |0
fr-ud-train||3312 74979||33568 1942{220 |0

Fig. 8. Dependency repetitions, for K = 2 and sequence length J

In the fr-ud-train corpus, the most frequent vicinity_star is "det\root/adpmod*"
(194 units), the most frequent vicinity_2seq is "\root/(p . conj)*" ; 45 units
correspond to a repetition (adpmod . p)*. The 18 repeating patterns are: (p .
parataxis) (p . nsubj) (p . mwe) (p . dep) (p . conj) (p . compmod) (parataxis . p) (p . appos) (p
. advmod) (p . adpmod) (nmod . p) (conj . p) (compmod . p) (cc . conj) (aux . neg) (amod . p)
(advmod . p) (adpmod . p)

1 talc2.loria.fr/deep-sequoia/sequoia-7.0 /html/frwiki_50.1000_00315.html.
12 10ld denotes the frequent ones.
13 talc2.loria.fr/deep-sequoia/sequoia-7.0 /html /frwiki_50.1000_00091.html.
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5

Categorial Dependency Grammars with Iterated Sequences 51

Conclusion

In this paper, we have extended classical Categorial Dependency Grammars with
a new construction to handle repeatable sequences of several dependencies. The
work was motivated by the observation of such patterns. We have proposed
a learning algorithm. A version of this algorithm has been implemented and
applied to some treebanks (in Conll). Some design and computational variants
are possible depending on the repetition principle reading. On the formal side,
further analysis could consider richer patterns. On the experimental side, other
treebanks could be explored as well. It would also be interesting to reconsider
these notions in other formalisms or application domains.
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Abstract. This article addresses problems that arise from the use of
category variables T in combinatory categorial grammars (CCGs), in
particular, that they require extension of semantic languages with vari-
able vectors in a form such as Az.M or MZ. As a solution to such prob-
lems, we introduce a technique for implementing variable vectors within
the context of lightblue, a Japanese CCG parser implemented within the
Haskell programming language with a dependent type semantics (DTS)
representation.

Keywords: Combinatory categorial grammar - Variable vectors

1 Introduction

1.1 Category Variables T' and Variable Vectors Az or MT

Type-raising rules in combinatory categorial grammars (CCGs) typically intro-
duce category variables, often represented by a bold letter T together with an
index [@ (¢ € N) to distinguish between category variables (Steedman 2000).

(1) X:a=-s7 T/(T\X) 2 A\p.pa
X:a=~<r T\(T/X) 2 Ap.pa

The theoretical status of the type-raising rules can be understood in at least
two different ways. The first perspective is that the two rules in (1) are not,
themselves, rules; rather, they are rule schema, with T being meta-level vari-
ables. Instantiating T' with an actual syntactic category then defines a countably
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infinite set of rules. Let us call this perspective, in which T is not an object-level
expression, category variable as meta-variable. The second, category variable as
type variable, understands the whole syntactic calculus of CCG as a weak poly-
morphic type theory (i.e., polymorphism without quantification over T'), where
category variables T are object-level expressions.

Under either view, T may be instantiated by, for example, a functional cate-
gory with an arbitrary number of arguments, but their semantic representation
in (1), Ap.pa, is invariant. This is because only p’s first argument, which is to be
filled with a, matters; the number of other argument slots is irrelevant.

However, there are two situations where the invariance of semantic repre-
sentation for T cannot be maintained. Those cases require the use of lambda
calculus with terms whose argument slots are both “expandable” and “shrink-
able.” Variable vectors T that appear in terms of the form A\Z.M or M= are typ-
ical tools for this purpose (Steedman 2000). The first situation is coordination
between type-raised NPs. A typical lexical entry for quantifier NPs in English,
such as every N and some N (with the accusative case), has the syntactic cat-
egory T\(T/NP), and these entries participate in the coordinated structure in
the following way.

(2) T\(T/NP):f CONJ:A T\(T/NP):g o
T\(T/NP) : \T.(fT A gT)

The resulting semantic representation, AZT.(fT A gT), shows the two usages
of, and the necessity of, a variable vector Z; when used with A in the form of
AZ.M, it is a function that takes an arbitrary number of arguments, enough that
the corresponding syntactic category becomes S. When used with a function f
(or g), in the form fT (or gT), it is a result of applying a sequence of arguments
taken by the corresponding binder AT, and the sequence preserves the order of
arguments.

The reason why variable vectors are needed in (2), unlike in (1), is that A
is a truth function that conjoins only propositions. In (2), fZ and ¢gT are safely
conjoined by the truth function A because the corresponding category for [T
and g7 is S, and this ensures that their semantic type is proposition. However,
the number of arguments needed for f and g to become propositions depends on
the syntactic category that instantiates T'. Therefore, we need a variable vector
T for semantic representations in cases where we want to not specify the number
of arguments. For example, the following two CCG derivations instantiate (1),
which uniformly describes the coordination calculus therein.

(3) John Mary
NP : j 3 and NP :m o
S\NP\(S\NP/NP) CONJ S\NP\(S\NP/NP)
T Ap.pj A : Ap.pm @
S\NP\(S\NP/NP)

. Ap Az (((Ap-pi)p)z A ((Ap-pm)p)z)
" =g Ap.Az.(pjz A pmz)
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The example (3) shows a coordinated structure between two direct objects
in English, for which both T' = S\NP and T = (p, ©); namely, AT. = A\p.A\z. and

fz = ((fp)x).

(4) John Mary
NP : j and NP :m
S\NP/NP\(S\NP/NP/NP) <7 CONJ S\NP/NP\(S\NP/NP/NP) <
: Ap.pj HVA : Ap.pm .
S\NP/NP\(S\NP/NP/NP)

AP Ay Az (((Ap-pi)p)y)e A (Ap-pm)p)y)z)
s Ap Ay Az (piyx A pmyz)

The example (4) shows a coordinated structure between two indirect objects
in English, for which both T = S\NP/NP and T = (p,y,z); namely, A\T. =
ApAy.Az., [T = (((fp)y)z).

The second situation in which variable vectors are needed is semantic repre-
sentation of quantifiers.

(5) every= T\(T/NP)/N : A\n. \pNv.nz — (px)T
somet T\(T/NP)/N : An.A\p.3z.nx A (px)T

Since truth functions — and A conjoin only propositions, (pz)T must be a
propositional term. However, the number of arguments needed to make p into a
proposition depends on the instantiation of the syntactic category T /NP, and
thus must be underspecified, as seen in (5).

1.2 Problem of Variable Vectors
A more precise definition of T (AT and MZ) could be given as follows:!

Definition 1 (Variable vectors).

B - def [ M[...f...]
ATML fT. ] = {/\as.)\x.M[...(fx)x...] where x & fo (M[.. fz...])

The problem with this pseudo-definition is that it is “defined” in non-
deterministic style but the choice is determined by the form of the correspond-
ing syntactic category. For example, in (2), the value of [Z| (namely, how many
arguments are needed for f and g) depends on the instantiation of T'. In (5),
|Z] (how many arguments are needed for px) again depends on the instantiation
of T. The strategy adopted here is that one should take the second choice in
Definition 1 n times when |Z| = n, but this determination requires a reference to
the corresponding syntactic category.

The fact that the definition of variable vectors depends on the corresponding
syntactic category is problematic when trying to situate the definition within

! In the literature, Bekki (2010) defines variable vectors as in Definition 1 (which is
slightly adapted for this article), among others. M[...N...] indicates a term M
that contains N as a subterm.
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the formal theory of CCG. Moreover, implementation is complicated by the
definition because variable vectors are not a notion that can be defined entirely
within the pure lambda calculus.

Another problem that arises with variable vectors is that they are not sub-
terms from the perspective of a lambda calculus without them. In (4), for exam-
ple, T = (p,y, x), namely, A\T. = Ap.A\y.\zx. and fZ = (((fp)y)z); however, nei-
ther Ap.\y.Ax. nor pyz is a subterm from the viewpoint of the syntax of lambda
calculus.

Thus, translation from lambda calculus extended to include variable vectors
to lambda calculus without them is no longer possible by simple substitution
of variable vectors with a lambda term. Instead, translation requires transfor-
mation of a syntactic tree of lambda calculus. In other words, variable vectors
underspecify the syntactic structure that surrounds them.

1.3 Previous Work on Category Variables

Presently available implementations of CCG parsers, such as the C&C parser
(Clark and Curran 2004), EasyCCG (Lewis and Steedman 2014), and Jigg (Noji
and Miyao 2016), have avoided implementation of category variables.

As is well-known, a néive top-down CCG parser is not guaranteed to termi-
nate, because of the existence of the following (infinite) path:

7: >
S/X1/Xs " Xa
S/X, X,
S >

Likewise, a niive bottom-up CCG parser with type-raising rules would not
terminate for the following infinite path.?

X,
TH(ThY)
T/(TEN(T/(THX))

Linguistically, adopting type-raising rules allows the extraction of wh-phrases
from complex NP islands (Ozaki and Bekki 2012). When regarding CCG as a

2 Another issue concerning the introduction of category variables is the need for uni-
fication between syntactic categories, which tends to be slow. We will not discuss
how to avoid this in the implementation of lightblue, as such discussion is beyond
the scope of this article.
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substructural combinatory logic, the type-raising rules correspond to the C*-
combinator and thus strengthen the deduction theorem (i.e., extractability).?

Thus, there are both computational and linguistic motivations for not adopt-
ing the type-raising rules, and category variables in CCG parsers.

However, this is not sufficient reason to annihilate category variables alto-
gether, since a categorial grammar may employ category variables without adopt-
ing the type-raising rules. This is a reasonable choice, particularly because cate-
gory variables are useful for packing ambiguous but syntactically similar lexical
items. Moreover, the computational effect of lexical packing is evident in some
languages, such as Japanese, in which all arguments appear on the left-hand side
of predicates (and thus, any quantificational NP can be given a single lexical item
by using variable vectors).

1.4 Lightblue: A Robust CCG Parser with DTS

Lightblue is a wide-coverage CCG parser for Japanese, implemented in the
Haskell programming language, which outputs semantic representations in terms
of dependent type semantics (DTS; Bekki (2014), Bekki and Mineshima (2016)).

DTS is a proof-theoretic discourse semantics of natural language based on
dependent type theory ((Martin-Lof (1984), Nordstrém et al. (1990)), which
extends TTG (Ranta 1994) with underspecified terms (notation @), through
which anaphora resolution and presupposition binding are calculated via type
checking and proof search in dependent type theory.

There are few Japanese parsers, other than lightblue, that yield (logical)
semantic representations. Exceptions are Haruniwa (Tsaiwei et al. 2014) and
ccg2lambda (Martinez Gémez et al. 2016). Both separate syntactic and seman-
tic parsing; the former yields syntactic trees as output and the latter transforms
them into semantic representations. However, since their lexicons are automati-
cally obtained from large-scale corpora, they do not allow a semantics developer
to add, delete, or modify a single lexical item, which is a standard way to improve
lexicalized grammar, during the process of grammar development.

Parser development in lightblue is purely lexicalized; the data type for a lexical
entry is a triple of a phonetic form, a CCG syntactic category, and a DTS preterm,
so a semantics developer has direct access to each lexical entry. The lightblue lex-
icon has about 994,416 lexical entries for open words obtained from the dictio-
nary of JUMAN; a part-of-speech tagger and morphological analyzer (Morita et
al. 2015), which is automatically obtained (and distilled) from the world wide web,
plus 758 lexical entries for closed words excerpted from Bekki (2010).

The CCG part of lightblue can make use of category variables, and the DTS
part can make use of variable vectors, which significantly reduces the number of
items in lexicons. Lightblue can also use empty categories, which gives it more
flexibility, but that will be discussed elsewhere, and not in this paper.

3 Evaluation of strengthened extractability in CCG depends on whether the complex
NP constraint is inherently syntactic or arises from choices made about parsing or
other extra-syntactic processes. Our discussion here assumes the former. However,
if one assumes the latter, then adopting type-raising rules or a categorial grammar
with stronger extractability would be essential.
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2 DTS with Variable Vectors in de Bruijn Notation

As a semantic theory, lightblue employs DTS in de Bruijn notation, in order to
avoid variable name clash or, alternatively, a conversion everywhere. The stan-
dard implementation of lambda calculus in de Bruijn notation is widely known
from Pierce (2005), the techniques of which can be naturally extended to DTS.

2.1 Syntax and Reduction

The syntax of DTS with variable names extended with two constructors for
variable vectors is given as follows*, where the constructors A\z.M and MT give
binders and bindees of variable vectors, respectively.

Definition 2 (Syntax of DTS with variable names).

A=z c|type| kind | (2:4) = A | Az.A | AA
| {x:/l

H ram e et wa ) ae

In de Bruijn notation, a variable name is replaced with a non-negative integer
1, which is bound by the ith binder that takes scope over it. The syntax is defined
as described below, where j € {1,2}.

Definition 3 (Syntax of DTS in de Bruijn notation).
Auz=i]c|type|kind| A—A|AA| AA

4] ram i ma e R

The syntax of Definition 3 is naturally implemented by the following Haskell
data type.

data Preterm =

Var Int | -- ~ Variables

Con Text | -- 7 Constant symbols

Type | -- ~ The sort \"type\"

Kind | -- ~ The sort \"kind\"

Pi Preterm Preterm | -- ~ Dependent function types (or Pi types)

Lam Preterm | -- 7 Lambda abstractions

App Preterm Preterm | -- 7 Function Applications

Sigma Preterm Preterm | -- ~ Dependent product types (or Sigma types)
Pair Preterm Preterm | -- ~ Pairs

Proj Selector Preterm | -- ~ (First and second) Projections

Asp Int Preterm | -- ~ The asperand terms (or underspecified terms)
Lamvec Preterm | -- 7 Lambda abstractions of a variable vector
Appvec Int Preterm | -- ~ Function applications with a variable vector

4 The full version of lightblue employs, besides those constructors given in Definition 3,
the intensional equality type, the natural number type, and the enumeration types
in Nordstrom et al. (1990). For brevity, these are omitted.
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Semantic representations of (a nominative version of) quantifiers every and
some in DTS are given as follows (Bekki and Mineshima 2016):

(6) AnAPAT (u: [Z;&T%D = plm(u)F

) [m:entity }
(1) AnApAT | | na(Aa.T)
p(mi(u)@

With the data type Preterm, these representations are described in Haskell
code as follows.

(8) (Lam (Lam (Lamvec (Pi (Sigma (Con "entity’") (App (App (Var
3) (Var 0)) (Lam Top))) (Appvec 1 (App (Var 2) (Proj Fst
(Var 0))))))))

(9) (Lam (Lam (Lamvec (Sigma (Sigma (Con "entity") (App (App
(Var 3) (Var 0)) (Lam Top))) (Appvec 1 (App (Var 2) (Proj
Fst (Var 0))))))))

The definitions of free variables and substitution for Preterm are obtained by
extending their standard lambda calculus definitions, from Pierce (2005), with
Pi, Sigma, Asp, Lamvec, and Appvec. The form subst m 1 i is understood as
m[1/i], that is, the preterm m in which an index i is substituted by a preterm 1.

subst :: Preterm -> Preterm -> Int -> Preterm
subst preterm 1 i = case preterm of
Var j -> if i == j then 1 else Var j
Piab -> Pi (subst a 1 i) (subst b (shiftIndices 1 1 0) (i+1))
Lam m -> Lam (subst m (shiftIndices 1 1 0) (i+1))
App m n -> App (subst m 1 i) (subst n 1 i)
Sigma a b -> Sigma (subst a 1 i) (subst b (shiftIndices 1 1 0) (i+1))
Pair mn -> Pair (subst m 1 i) (subst n 1 i)
Proj sm -> Proj s (subst m 1 i)
Asp j m -> Asp j (subst m 1 i)
Lamvec m  -> Lamvec (subst m (shiftIndices 1 1 0) (i+1))
Appvec j m -> Appvec j (subst m 1 i)
m ->m

The essence of the definition of subst lies in the use of the shiftIndices
function. The form shiftIndices m d i appears in the cases of Pi, Lam, Sigma,
and Lamvec above and executes d-place shift (Pierce 2005). Namely, it adds d
to every index within m that is greater than i, whose role is to accommodate all
indices to the new environment in which m is placed. The shiftIndices function
is recursively defined as follows.

shiftIndices :: Preterm -> Int -> Int -> Preterm
shiftIndices preterm d i = case preterm of
Var j =>if j>=1i

then Var (j+d)

else Var j
Piab -> Pi (shiftIndices a d i) (shiftIndices b d (i+1))
Lam m -> Lam (shiftIndices m d (i+1))
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App m n -> App (shiftIndices m d i) (shiftIndices n d i)
Sigma a b -> Sigma (shiftIndices a d i) (shiftIndices b d (i+1))
Pair mn  -> Pair (shiftIndices m d i) (shiftIndices n 4 i)

Proj sm -> Proj s (shiftIndices m d i)

Asp j m -> Asp j (shiftIndices m d i)

Lamvec m  -> Lamvec (shiftIndices m d (i+1))

Appvec j m -> if j >=1i
then Appvec (j+d) (shiftIndices m d i)
else Appvec j (shiftIndices m d i)

m ->m

For example, (AM)I[L/i] reduces to (A(M[shiftIndicesL 1 0/i+1]),
adding 1 to all indices greater than or equal to 0 (i.e., all indices) in L, since L,
a preterm to replace, is going though one A.

The reason for the restriction “greater than or equal to 0” is that indices
in L that are bound within L must stay intact. For example, L, a preterm to
replace, goes through two s, then indices less than or equal to i+1 should
remain unchanged.

(AMM)[L/i] = A((AM) [shiftIndices L 1 0/i+1]
= A\(M[shiftIndices (shiftIndicesL i 0) 1 0/i+2]

Note that the definitions of Pi and Sigma add 1 only in the nuclear scope
part (not in the restriction part). This reflects that in constructions such as

(z:A) — B and {%A] , A is outside the scope of x.

The above definition of subst is then used to define beta reduction of
preterms as follows, which also uses the shiftIndice function.

betaReduce :: Preterm -> Preterm
betaReduce preterm = case preterm of
Piab -> Pi (betaReduce a) (betaReduce b)
Lam m -> Lam (betaReduce m)
App m n -> case betaReduce m of
Lam v -> betaReduce (shiftIndices (subst v (shiftIndices n 1 0) 0) (-1) 0)
e -> App e (betaReduce n)
Sigma a b -> Sigma (betaReduce a) (betaReduce b)
Pair mn  -> Pair (betaReduce m) (betaReduce n)
Proj s m -> case betaReduce m of
Pair x y -> case s of
Fst -> x
Snd -> y
e -> Proj s e
Asp i m -> Asp i (betaReduce m)
Lamvec m -> Lamvec (betaReduce m)

Appvec i m -> Appvec i (betaReduce m)
m ->m

2.2 Expanding and Shrinking of Variable Vectors

The expanding and shrinking operations of variable vectors consist of the three
primitive functions addLambda, deleteLambda, and replaceLambda.
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addLambda i m works on the form Appvec j £ (within m), which is bound by
the ith binder from the position of the addLambda i m (= the jth binder from the
position of Appvec j f), and replaces it with Appvec j (App (addLambda im) (Var
(j+1))). In the second choice in Definition 1, this operation is used for replacing
M]J...fz...] with M[...(fz)Z...] when we replace AT with Az.\Z°.

addLambda :: Int -> Preterm -> Preterm
addLambda i preterm = case preterm of
Var j | j > 1 -> Var (j+1)
| j <1 -> Var j
| otherwise -> Error
Piab -> Pi (addLambda i a) (addLambda (i+1) b)
Lam m -> Lam (addLambda (i+1) m)
App m n -> App (addLambda i m) (addLambda i n)
Sigma a b -> Sigma (addLambda i a) (addLambda (i+1) b)
Pair m n  -> Pair (addLambda i m) (addLambda i n)
Proj sm -> Proj s (addLambda i m)
Asp j m -> Asp j (addLambda i m)
Lamvec m -> Lamvec (addLambda (i+1) m)
Appvec jm | j > i -> Appvec (j+1) (addLambda i m)
| j <i -> Appvec j (addLambda i m)

| otherwise -> Appvec j (App (addLambda i m) (Var (j+1)))
m ->m

deleteLambda i m works on the form Appvec j f (within m, under the same
conditions as addLambda), and replaces it with deleteLambda i m. In other
words, deleteLambda deletes the occurrence(s) of a corresponding variable vec-
tor from m.

deletelambda :: Int -> Preterm -> Preterm
deletelLambda i preterm = case preterm of
Var j | j > i -> Var (j-1)
| j <1 -> Var j
| otherwise -> Error
Pi ab -> Pi (deletelLambda i a) (deleteLambda (i+1) Db)
Lam m -> Lam (deletelLambda (i+1) m)
App m n -> App (deletelLambda i m) (deletelLambda i n)
Sigma a b -> Sigma (deleteLambda i a) (deleteLambda (i+1) b)
Pair m n  -> Pair (deletelLambda i m) (deletelLambda i n)
Proj s m -> Proj s (deleteLambda i m)
Asp j m -> Asp j (deletelLambda i m)
Lamvec m  -> Lamvec (deleteLambda (i+1) m)
Appvec jm | j > i -> Appvec (j-1) (deleteLambda i m)
l j <1 -> Appvec j (deletelLambda i m)

| otherwise -> deletelambda i m
m ->m

The Error is used here for simplifying the exposition. It is a constant symbol that
represent an error in the actual code of lightblue.
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replacelambda i m works on the form Appvec j f (within m, under the
same conditions as addLambda and deleteLambda), and replaces it with App
(replacelambda i m) (Var j). Namely, it replaces the occurrence(s) of a cor-
responding variable vector with a variable.

replacelLambda :: Int -> Preterm -> Preterm
replacelambda i preterm = case preterm of
Pi ab -> Pi (replacelambda i a) (replacelambda (i+1) b)
Lam m -> Lam (replacelambda (i+1) m)
App m n  -> App (replacelambda i m) (replacelambda i n)
Sigma a b -> Sigma (replacelambda i a) (replaceLambda (i+1) b)
Pair m n -> Pair (replacelambda i m) (replacelLambda i n)
Proj s m -> Proj s (replaceLambda i m)
Asp jm -> Asp j (replacelambda i m)
Lamvec m -> Lamvec (replacelLambda (i+1) m)
Appvec jm | 1 ==j -> App (replacelambda i m) (Var j)
| otherwise -> Appvec j (replacelLambda i m)
m ->m

Using these three functions gives the following definition of variable vectors.

_ _def (M. f..]
ATML. fz...] = {Aaz./\z.M[...(fx)x...]

can be represented by the following (pseudo-)Haskell code:

Lamvec M[ Aoovec i f ]déf deleteLambda 0 M
-+ APP J 51 = Y Lam (Lamvec (addLambda 0 M))

Here, fZ in MJ...fT...] is replaced with f by deleteLambda 0 M, and is
replaced with (fz)Z by addLambda O M. Note that a condition that = ¢
fo(M]...fz...]) in Definition1 is no longer necessary under de Bruijn nota-
tion.

2.3 Interaction Between Category and Lambda Terms

The remaining task is to provide a function that takes a pair comprising a
syntactic category and a preterm in DTS and returns a preterm within which
variable vectors are expanded or shrunk as needed. The transvec function,
defined as follows, does this job, transforming variable vectors within a given
preterm by adjusting the preterm’s number of arguments using the tree functions
of the last section.

transvec :: Cat -> Preterm -> Preterm
transvec c preterm = case c of
SL x _ -> case preterm of
Lam m -> Lam (transvec x m)

Lamvec m -> Lam (transvec x (Lamvec (addLambda O m)))
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m ->m -- Var, Con, App, Proj, Asp, Appvec
BS x _ -> case preterm of
Lam m -> Lam (transvec x m)
Lamvec m -> Lam (transvec x (Lamvec (addLambda O m)))
m ->m -- Var, Con, App, Proj, Asp, Appvec
NP _ -> case preterm of
Lamvec m -> deleteLambda O m
m ->m
S _ -> case preterm of

Lam (Lamvec m) -> Lam (deleteLambda O m)
Lamvec (Lam m) -> deleteLambda O (Lam m)
Lamvec m -> Lam (replaceLambda O m)
m ->m

N -> case preterm of
Lam (Lam (Lamvec m)) -> Lam (Lam (deleteLambda O m))
Lam (Lamvec (Lam m)) -> Lam (deletelLambda O (Lam m))
Lamvec (Lam (Lam m)) -> deleteLambda O (Lam (Lam m))
Lamvec (Lam m) -> Lam (replacelLambda O (Lam m))
Lam (Lamvec m) -> Lam (Lam (replacelLambda O m))
Lamvec m -> Lam (Lam (replacelLambda O (addLambda O m)))
m ->m

_ —> preterm

By using transvec functions, we can implement a CCG parser with category
variables in the syntax and variable vectors in the semantics.

3 Some Examples

Let us demonstrate some parse results of lightblue. The first example is a
Japanese verb phrase consisting of a quantifier (in the object position) and a
transitive verb.

(10) subete-no ningen -ni aw  -u
every man  c¢m-DAT meet PRES
(lit.) ‘meet every man’
The following derivation is an output of lightblue given the phrase subete-

no ningen-ni (except for a minor modification that replaces names of constant
symbols in Japanese with equivalents in English).

subete-no (534)
e e NP..)/N :

Sy:5:k|v:5:s| 402 /( Sy:5:k|v:5:5|+{2) \NPne)/ ningen o
neg|cont|+ neg|cont| N (eN)
+t:[4], 5], £n{6] +t:[4],+p5],£n{6]

Zacentit so:state
Aozt AT [ ug: | 1Y Y — x1 (71 (us)) Tz : Azo. Az1. | [us:man (s2,x0)
zo(x4) (Aws.T) 21(5)

neg|cont| neg|cont|+

+4:{4],+p B, £ n{6] +t{4], +p{B], +n6]
zr3:entity
S Az NTT. | ua: [.sz,:state ] — xo (m1 (u2)) ZT1

man (s4, z3)
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subete-no ningen

|
T3 TS NP,
Sy.5: 55| +42) /( Sy 5:k|v:5:s|+2] \ )
cont|

| cont |+ neg
+t:4], £ p: 5l £n 6] +t{4), £ p Bl £n]

z3:entity
: Az0.ATT. | uo: | [sa:state — 20 (m1 (u2)) T1
man (s4, T3)

73 7Z NP,
Sy:5:k|v:5:s| 2] I 5k v:55s|+2] \ )

(524)
T /(

: NPi)\NP e
Syigik|v:5is|+02] \ N

r3:entity
: Az ATT. | uo: | [s4:state — o (m1 (u2)) T1
man (s4,x3)

In the above derivation, T is a category variable. The upper scripts of T,
such as [, indicate that structure sharing is taking place, and each of their scopes
is local. Namely, [1 within the phrase subete-no and [1] within the phrase ni do
not share their structures with each other. The lower script of T shows the
“final-output category” of T'. For example, T's must be unified with a function
category that ends as S, or S itself (T'g is equal to S|$ in the standard CCG
notation).

The lower script attached to syntactic categories other than T shows their
syntactic features. For example, NP,; is an NP with ni-feature (i.e., an NP
marked with the dative case), and NP, is an NP with no case. A feature such
as v : b : k shows that it is a verb that belongs to the conjugation series 5k.
The symbol | is a disjunction (or a union) between syntactic features so that
unification between syntactic categories returns their intersection if it is not
empty. Features such as neg|cont show conjugation forms (i.e., the negation form
or the continuous form). Binary features =+t,+p,+n represent past/nonpast,
polite/non-polite, and negated /non-negated, respectively. Details of these syn-
tactic features in Japanese are described in Bekki (2010). The number on the
right-hand side of a lexical item corresponds to an entry number in Bekki (2010).

The notation of DTS that lightblue adopts follows that of Bekki and
Mineshima (2016). Although the internal representations of DTS preterms are
in de Bruijn notation, they are transformed into DTS preterms with variable
names when visualized. The point of the above derivation lies in the last step,
where function application takes place: the left node is every man, a quanti-
fier NP. How many arguments it would take after merging with a predicate is
underspecified by T, and thus its semantic representation contains a variable
vector. Meanwhile, ni is a dative case marker (which is semantically various)
whose whole syntactic category T /(T\NP,;)\NP,. unifies with the T\ NP,
part of the quantifier NP. As a result, beta reduction between their semantic
representations ends up with the following preterm.

r3:entity
)\xo)\ﬂ Uug: 34:state — X (7T1(U2))£E71 ()\l’o.)\l’l.ifl(fﬂ()))
man (sy, z3)
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[23:entity
—»g ATT. | ug: | [sa:state — (Azg.Az1.21(20)) (m1(u2)) T1
i [man (84, $3):| )

[23:entity
—»g ATT. | ug: | [sa:state — (Az1.21(m (u2)))TT
i [man (84, 1'3):| ]

This is a Lamvec construction, and the number of arguments that it would
take is underdetermined. However, since its corresponding syntactic category
(which could be read off from the derivation) is T'/( T\NP,;), we can tell that it
takes at least one more argument (of syntactic category T\ NP ;) and then would
take an arbitrary number of arguments. Thus, the variable vector should be
expanded one step and become A\z.AT;...., and the inner Z; should be replaced
with the sequence (zg,T1). The transvec function ensures this behavior. First,
the form of syntactic category T'/(T\NP,;) and the preterm match the following
line of transvec.

SL x _ -> case preterm of
Lamvec m -> Lam (transvec x (Lamvec (addLambda O m)))

Here, m corresponds to the following subterm.

r3:entity
(ug: |:{34:state }:| ) — (Az1.z1(m1(u2)))zT
man (s4,3)

for which addLambda O m is evaluated, adding a variable x( at the position of .

[23:entity
ug: | [ s4:state — ((Az1.21(m1(u2)))zo)TT
| [man (s4,73)

This beta-reduces to the following preterm.

rz:entity
Ug: {s;;:state ] — xo(m1(uz))T1

man (sy, z3)

In the case where this form is again a Lamvec construction, the transvec
function recursively applies the transvec function to it, making reference to the
syntactic category T', which does not do anything for this case. After that, one
more lambda operator is added to the top (which binds zg), and the whole result
is wound up with the following form.

x3:entity
ATo.ATT. | ug: | |s4:state — xg (m1 (u2)) T1
man (s4, T3)

This subterm will then merge with the transitive verb aw-u (“meet”). The
number of arguments of aw-u is two (a nominative NP and a dative NP). Thus,
the final syntactic category becomes S\ NP ,,, as shown below.
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aw
NP o \NP,,;

(JCon) u

Su:5 .
s:row D\Su:s

sten

(130)

5:TOW 1]

ez:event

[subete-no ningen|-ni T AT AT AT, hlu:meet (es, mlv17(!>:| : Azg.xg

w3(e3)
7 71 NP,
Sysikfussisied | LS qeg W) oo \NVPya\NP o <
padiny 8

Wz

£ n:{6]

x3:entity
2 Azo AT | uo: [54:state ] — g (11 (u2)) T1 $ A0 AT AT

man (sq, z3)

ez:event
[m:meet (fmzl,;rn)]

@2(e3)

Svswm NPy
term|atitr

r3:entity e3:event
Az ATy . | ug: | [s4:state — | [ugmeet (e3, 29, 71 (u2))
z1(e3)

man (s, 3)

The point here is that T\NP,; on the left-hand side unifies with

S\NP 4,\NP,; on the right-hand side. Therefore, T, the result of this merge

operation, must be S\NPga, with two more arguments (one for NP,; and

another for a continuation). This tells the transvec function to transform \Z7 in

the semantic representation into two As, by the replacelambda function. First,
B-reduction proceeds as follows:

r3:entity ez:event
Ao AT7. | ug: | | s4:state — xo (m1 (u2)) T1 Az AT AT2. | [ug:meet (e3, 21, x0)
man (s4,z3) xo(e3)

z3:entity ez:event
—»3 AT1. | ug: | [s4:state — | Azo.\z1.Az2. | |ug:meet (e3, 1, 20) (m1 (u2)) =1
man (s4, z3) za(e3)

r3:entity ez:event

—g ATT. | ua: [54:state )] — | Az zo. |ju4:meet (es, 21, (T (uz)))ﬂ ) T

man (S4,IL‘3 (L‘2(63)

Then, a pair S\NP,, and the above preterm match the following line of the
transvec function, in the same way as the previous example.

SL x _ -> case preterm of
Lamvec m -> Lam (transvec x (Lamvec (addLambda O m)))

Applying addLambda O and putting Lamvec on top yields the following

preterm.
r3:entity e3:event
| e {systate ] — | Az Ao, [u;;:meet (es, 1, (m1 (ug)))] TOTT
man (s4, z3) z2(e3)

r3:entity es:event
—g AT1. | ug: | [sa:state — | Az2. | [ua:meet (e3, zo, (71 (u2))) 1
[man (s4, Zg)i| {12(53) ]

This is sent to the recursive call of transvec, making reference to the corre-
sponding syntactic category S. This time, it matches with the following line of
transvec.

ATT

—

S _ —-> case preterm of
Lamvec m -> Lam (replacelambda O m)

Application of the replaceLambda function replaces the variable vector T
with a variable z1, and putting another A on top yields the following preterm,
as expected.
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r3:entity ez:event
Avo. AT, | ue: | [s4:state — | Az | |ua:meet (e3, zg, (71 (u2))) 1
man (s4, z3) z2(e3)
r3:entity ez:event

=g AL AT1. | ua: {szystate } — {u;;:meet (e3, o, (m (uz)))]
man (s, T3) x1(es)

4 Conclusion and Future Work

While the use of category variables in CCG offers advantages such as packing
ambiguous syntactic candidates during parsing, we have also seen that it requires
semantic language to be extended with variable vectors, whose formalization and
implementation have not been straightforward so far.

In this article, we introduced lightblue, a Japanese CCG parser implementa-
tion equipped with variable vectors and a mechanism for expanding and shrink-
ing them, according to the corresponding syntactic categories. Since the seman-
tic language of lightblue is DTS, which is based on dependent type theory, a
natural extension of simply typed lambda calculus, its implementation by a
functional programming language is straightforward and natural. The imple-
mentation consists of three primitive functions, addLambda, deleteLambda, and
replacelLambda, that expand and shrink variable vectors, together with the
transvec function that transforms a preterm, making reference to a correspond-
ing syntactic category, by choosing and applying an appropriate definition in
Definition 1 according to the number of arguments that the category anticipates.

Although the formalism and implementation of variable vectors in lightblue
provides a solution to the problems that we addressed, some issues remain to
be pursued. For example, future research should prove a version of completeness
of the transvec function regarding how the normal form is defined for typed
lambda calculus or dependent type theory with variable vectors. In each step
of applying combinatory rules, does the transvec function always transform a
given preterm to a normal form? Does the transvec function terminate, and
under what conditions? These remain as open issues, which we believe provides
an attractive research topic regarding syntactic-semantic transparency in com-
binatory (or other) categorial grammar(s).
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Abstract. CNL, intoduced by de Groote and Lamarche [11], is a conser-
vative extension of Nonassociative Lambek Calculus (NL) by a De Mor-
gan negation ~, satisfying A~ /B < A\B". [11] provides a fine theory
of proof nets for CNL and shows cut elimination and polynomial decid-
ability. Here the purely proof-theoretic approach of [11] is enriched with
algebras and phase spaces for CNL. We prove that CNL is a strongly
conservative extension of NL, CNL has the strong finite model prop-
erty, the grammars based on CNL (also with assumptions) generate the
context-free languages, and the finitary consequence relation for CNL is
decidable in polynomial time.

Keywords: Lambek calculus - Phase space + Sequent system -+ Type
grammar

1 Introduction

NL, due to Lambek [13], admits formulas built from variables and the connectives
®,\, /. The axioms and the rules are as follows.

(NL-id) A = A

I[(A,B)]=C AA
(®=) F[[(A®B)]]:::C (= ©) (1;“2)214%1;

I[B]=C A=A (A[)=B
\=) mmam=e =\ 5o

I[A]=C A=B IB)=A
(/=) famame (=) 5%

(NL-cut) HEZE2=4
This is a sequent system for NL. Sequents are of the form I = A, where A is a
formula and I" is a formula structure. Formula structures are defined recursively:
(i) all formulas are formula structures, (ii) if I" and A are formula structures,
then (I', A) is a formula structure. Formula structures represent the elements of
the free groupoid generated by formulas. A context I'[] is a formula structure

© Springer-Verlag GmbH Germany 2016
M. Amblard et al. (Eds.): LACL 2016, LNCS 10054, pp. 68-84, 2016.
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containing one special formula z. I'[A] denotes the substitution of A for = in
I'[]. We reserve A, B,C, D for formulas and I', A, © for formula structures.

NL is strongly complete with respect to residuated groupoids (see Sect. 2 for
the definition). Recall that a logic (in the form of a sequent system) is strongly
complete with respect to a class of (ordered) algebras C, if the following equiva-
lence holds: I" = A is provable in this logic from the set of sequents @ if and only
if, for any algebra from C and any valuation p, I" = A is true for u whenever all
sequents from @ are true for u. The right-hand side of this equivalence expresses
the semantic entailment: I' = A follows from @ in C. For systems considered
here, I' = A is true for p, if u(I") < p(A).

NL1 is NL admitting empty antecedents of sequents and containing the con-
stant 1, the axiom (a-1) = 1 and the rules:

1 Al = A rjal=A
e (W EY N Y.

NL1 is strongly complete with respect to residuated unital groupoids.

Classical Nonassociative Lambek Calculus (CNL) can be presented as an
extension of NL with negation ™, admitting the axioms A~ < A, A~/B <
A\B™ and the transposition rule:

A=B
B~ = A~

Here A < B replaces two sequents: A = B and B = A. In [11], CNL is
presented as a Schiitte style (i.e. one-sided) sequent system in language ®, ®,™,
where A® B is equivalent to (B~ ®A™)™. So @ corresponds to the operation ‘par’
in linear logics. We do not follow the popular notation of Girard [10], but replace
it with a notation used in substructural logics [9]. CNL is a nonassociative variant
of Cyclic Noncommutative MALL [15], but it lacks the multiplicative units.

In Sect. 2 we define CNL-algebras, i.e. the ordered algebras corresponding to
CNL. We also define phase spaces, appropriate for nonassociative logics without
units. We show that CNL-algebras arise from symmetric phase spaces, satisfying
a compatibility condition.

In Sect. 3 we present CNL as a dual Schiitte style system, which seems closer
to the syntax of NL and the framework of type grammars. We discuss the strong
completeness of CNL with respect to CNL-algebras and phase spaces. In par-
ticular, we outline a model-theoretic proof of cut elimination, similar to those
for different substructural logics (see [9] for a discussion). Theorem 2 states that
CNL is a strongly conservative extension of NL; we give a model-theoretic proof.
At the end we briefly discuss analogous results for related logics: CNL1, i.e. CNL
with constants 1 and 0, CNL and CNL1 with V, A, and others.

In Sect.4 we prove an interpolation lemma for CNL (with assumptions),
analogous to the interpolation lemma for NL [4,8]. Using this lemma, we prove
the strong finite model property (SFMP) for CNL (see [9] for the definition), the
context-freeness of the languages generated by CNL-grammars and the polyno-
mial time decidability of the consequence relation for CNL. These results remain
true for CNL1. At the end, we discuss their status for other logics.
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The size limits do not allow us to study CNL™, i.e. the variant of CNL
with two negations ~,, satisfying A~~ < A, A=~ < A, A~ /B < A\B~ and
the transposition rules. CNL™ is a nonassociative variant of Noncommutative
MALL [1], also called Classical Bilinear Logic in [14]; again it lacks units. The
corresponding algebras are briefly discussed in Sect.2. We only note here that
CNL~ does not have SFMP. A~ = A~ entails A~ = A~ in finite CNL™ -
algebras, since a™~ < a~ enforces the infinite chain a < a™™~ < a™™"™" < ..
there exist infinite CNL™-algebras such that a™ < a™, for some element a.

2 Algebras and Phase Spaces

The algebraic models of NL are residuated groupoids M = (M, ®,\, /, <) such
that (M,<) is a nonempty poset and ®,\,/ are binary operations on M,
satisfying:

(RES) a@b<ciff b<a\ciff a <e¢/b,

for all a,b,c € M. The models of NL1 are residuated unital groupoids, i.e.
residuated groupoids containing the unit element for ® (denoted by 1). It follows
that 1\a = a, a/1 = a.

A pair ~,” of unary operations on a poset (P, <) is called an involutive pair
of negations, if for all a,b € P the following conditions are satisfied:

(TR) if a <bthen b~ <@~ and b~ <a,
(DN) a™~ =a, a™~ = a;

if ~ equals ~, then ™ is called a De Morgan negation (then ™~ = a).
The models of CNL are residuated groupoids M with a De Morgan negation
~ satisfying the compatibility condition:

(COM) for all a,b,c € M, if a®b < ¢ then ¢~ ® a <b™.

We refer to these algebras as CNL-algebras. Unital CNL-algebras (i.e. with the
unit for ®) are called CNL1-algebras.

In any CNL-algebra the following conditions are equivalent: a®b < ¢, ¢~ ®a <
b™~, b® ¢~ < a™. On the basis of other axioms, (COM) is equivalent to:

(TR’) a\b~ =a~ /b for all a,b € M,

and either of the following transposition laws: a\b = a™~ /b~ a/b = a™~\b"™.
In any CNL-algebra one defines the dual product: a b = (b™ ® a™)™~. The
following equations hold:

a\b=a"®b, a/b=a®b™.

Consequently, @, \,/ are definable in terms of ®,”.

In any CNL1-algebra one defines: 0 = 1~. Then, 1 = 07, 0 is the unit for @,
and a™~ = a\0 = 0/a.

CNL™ -algebras are residuated groupoids M with an involutive pair of nega-
tions, satisfying:
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(COM™) for all a,b,ce M,ifa®@b<cthenc ®a<b and b®c~ <a™.

Unital CNL™-algebras are referred to as CNL1 ™ -algebras. In any CNL™-algebra
the three conditions in (COM™) are equivalent. (COM™) is equivalent to:

(TR”) a™~/b=a\b", for all a,b € M.

Hence in any CNL1-algebra, 1~ = 17. One defines 0 = 1~ and obtains: a™ =
a\0, a~ =0/a.

CNL™-algebras (resp. CNL-algebras) are term equivalent to (resp. cyclic)
involutive p.o. groupoids [9)].

The equation (¢~ ® b~)~ = (¢~ ® b™)~ is valid in CNL™-algebras. One
defines a b = (b~ ® a~ )™ and obtains:

a\b=a"®b, a/b=a®db".

Consequently, @, \,/ are definable in terms of ®,~,~.

These algebras can be constructed from phase spaces, i.e. structures (M, -, R)
such that (M, ) is a groupoid and R C M?2. We focus on symmetric phase spaces
(R is symmetric).

A closure operation on a poset (P,<) is a map C : P — P, satisfying:
(C1) z < C(x), (C2) if z < y then C(z) < C(y), (C3) C(C(x)) < C(x), for
all z,y € P. A nucleus on a p.o. groupoid (M, -, <) is a closure operation C' on
(M, <), satisfying: (C4) C(z)-C(y) < C(z-y). If M is a residuated groupoid, then
C'is a nucleus on (M, -, <) iff C is a closure operation on (M, <) and satisfies:
(C4) z\y and y/zx are C-closed for any = € M and any C-closed y € M. Recall
that z is C'-closed, if C(z) = x.

Let R C M?. For X C M, one defines:

X~ ={aeM :VyexR(ba)}, X~ ={a €M :VyexR(a,b)}.

The maps ~,” are a Galois connection on P(M): X C Y~ if Y C X~. Con-
sequently, X C Y entails Y~ C X~ and Y~ C X~. The maps ¢pr(X) =X~
and Yr(X) = X~ are closure operations on (P(M),C). It follows that X is
¢r—closed (resp. ¥wr—closed) iff X = Y™ (resp. X =Y ) for some Y.

Proposition 1. The following conditions are equivalent. (i) X~ = X~ for all
X C M, (i1) R is symmetric: R(a,b) entails R(b,a), for all a,b € M.

Let (M, -, R) be a symmetric phase space. Then, ¢ = 1)r. By M we denote
the family of ¢r-closed subsets of M. Clearly ™~ is a De Morgan negation on
(Mg, Q).

Let (M,-, R) be a phase space. For X,Y C M, one defines: X - Y = {a-b:
aeXbeY} X\Y ={yeM : X - {y}CY}, X)Y={zeM:{z} Y CX}
P(M) with -, \, /, C is a residuated groupoid. Let C be a nucleus on (P(M), -, C).
Then, (Mc, ®9,\%, /¢, C) is a residuated groupoid, where M is the family of
C—closed subsets of M, X @°Y = C(X-Y), and \, / are the operations defined
on P(M), restricted to Mc. If - is associative (resp. commutative), then ®¢ is
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associative (resp. commutative). If 1 is the unit for - in M, then C({1}) is the
unit for ®° (see e.g. [9]).

By a phase space for CNL we mean a symmetric phase space (M, -, R), sat-
isfying the compatibility condition:

(COM-R) for all a,b,c € M, R(a-b,c) iff R(a,b-c).

Phase spaces for CNL™ are defined in a similar way except that the symmetry
of R is replaced with ¢ = YRg.

Proposition 2. For any phase space, (COM-R) holds if and only if, for all
XY ZCM, X-YCZYifZ-XCY~.

Proof. We show (=). XY C Z~ is equivalent to Vye xVyey VoezR(z, z-y), and
Z-XCY toiff V,ezVoexVyey R(z - x,y). Both statements are equivalent, by
(COM-R). For (<), take X = {b}, Y = {c}, Z = {a}. Now {b} - {c} C {a}™ iff
R(a,b-c), and {a} - {b} C {c}™ iff R(a-b,c). O

Corollary 1. For any phase space, (COM-R) holds if and only if, for allY,Z C
M, Z~)Y =Z\Y".

Theorem 1. Let (M, -, R) be a phase space for CNL. Then Mg, ordered by C,
with operations %% and \, /,~, restricted to Mg, is a CNL-algebra.

Proof. First, we show that ¢ satisfies (C4’). Using (COM-R), we show that
{a}\{b}~ = {b-a}~ and {a}~/{b} = {b-a}~ for all a,b € M. We have:
ce{al\{b}~ iff a-ce {b}~ iff R(b,a-c) iff R(b-a,c) iff ¢ € {b-a}™~. The second
equation is proved similarly (use the symmetry of R). This yields X\Y"~ =
(Y- X)~and X~/Y = (Y-X)~, forall X, Y C M, by the well-known distribution
laws: - distributes over infinite joins in both arguments, \ (resp. /) distributes
over infinite meets in the second (resp. first) argument and converts joins into
meets in the first (resp. second) argument, and ~ converts joins into meets. So
for X = {a;}icr, Y = {b;};cs we have:

X\ = () (Mah\ by~ = () ()b - e} = (v - X,
iel jeJ icl jeJ
Let X C M, Z € Mg. Then Z = Y~ for some Y. Hence X\Z = (Y - X)~
belongs to Mg, and similarly for Z/X.

Since ¢g is a nucleus on (P(M), -, C), then Mg with @7\, /, C is a residu-
ated groupoid. Since R is symmetric, ~ is a De Morgan negation on Mg. (TR’)
X\Y~ = X~/Y, for X,Y € Mg, has been shown in the preceding paragraph;
(TR’) also follows from Corollary 1. O

If (M, -, R) is a phase space for CNL, then the CNL-algebra constructed above
is referred to as the complex algebra of the phase space. Worthy of noting, every
CNL-algebra M is isomorphic to a subalgebra of the complex algebra of the
phase space (M, ®, R), where R is defined by: R(a,b) iff a < b™. Let [a]' denote
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the principal downset in (M, <) generated by a, i.e. [a]! = {z € M : z < a}.
Then, [a]' = {a™~}~. (Here ~ is used in two meanings: the inner one as an
operation in M, the outer one as an operation on P(M).) The so-defined R is
symmetric and [a]! € Mg. The map h(a) = [a]’ is the required isomorphism.
We omit the proof.

REMARK 1. In fact, for any symmetric phase space (M, -, R), (COM-R) holds
if and only if ¢ is a nucleus and (TR’) (equivalently (COM)) holds in the
complex algebra.

A unital phase space is a structure (M, -, 1, R) such that (M,-, 1) is a uni-
tal groupoid and R C M?2. A phase space for CNLI is a unital phase space
(M,-,1,R) such that (M,-,R) is a phase space for CNL. The analogue of
Theorem 1 remains true. Now ¢ ({1}) is the unit for @ in the complex algebra.

For unital phase spaces, (COM-R) implies:

(Eq-R) R(a,b) iff R(1,a-b) iff R(a-b,1).
R can be represented by a set O C M, satisfying:
(COM-O) for all a,b,ce M, a-(b-¢c) € Oiff (a-b)-ce O.

For R C M?, we define Ogr = {a € M : R(1,a)}, and for O C M, we define
Ro = {(a,b) € M? : a-b € O}. By (Eq-R), Ro, = R and Og, = O. Fur-
thermore, R satisfies (COM-R) iff Op satisfies (COM-O). So there is a one-one
correspondence between relations R C M? satisfying (COM-R) and sets O C M
satisfying (COM-O). Therefore, unital phase spaces, satisfying (COM-R), can
also be defined as structures (M, -, 1,0) such that (M,-, 1) is a unital groupoid
and O C M satisfies (COM-0O). This resembles the standard definitions of phase
spaces for linear logics [1,10,15].

REMARK 2. If 1 is not present, then we can define Og = {a - b : R(a,b)}
and Rp as above, but this only yields the inclusions: R C Rp, and Ogr, C
0. O satisfies (COM-0) iff Rp satisfies (COM-R). On the other hand, if Og
satisfies (COM-O), then R satisfies (COM-R), but the converse implication fails.
If, however, (M,-) is a free groupoid, then there is a one-one correspondence
between relations R € M2 and sets O € M such that each element of O is of
the form x - y, for some x,y € M. Also R satisfies (COM-R) iff Op satisfies
(COM-O).

Let (M,-,1,0) be a unital phase space. The symmetry of Rp is equivalent
to the cyclic law for O:

(Cy) for all a,b e M,ifa-b€ O thenb-a € O.

Accordingly, a phase space for CNL1 can be defined as a unital phase space
(M,-,1,0), satistying (COM-O) and (Cy). Observe that X~ = X\O = O/X,
for any X C M. We denote ¢po = ¢r,,, and similarly for 1o, Mo. O is ¢po-closed,
since O = {1}™. So O € Mp; also O~ is the unit for ®?° and O is the unit for
the dual product. If M does not contain 1, then O, even satisfying (COM-O)
and (Cy), need not belong to M.
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ExXAMPLE 1. Consider the phase space (M, -, O) such that M = YT, - is the
concatenation of strings, and O is the set of all strings of length 1. Clearly O
satisfies (COM-O) and (Cy). So the complex algebra of (M,-, Rp) is a CNL-
algebra. We have (™~ = X+ and X~ = () for X # 0. Therefore Mo = {0, X}
and O € Mop.

EXAMPLE 2. We construct a phase space (M, +, R) such that (M,+) is a
commutative semigroup, R C M? is symmetric and satisfies (COM-R), but
R # Rp, for any O C M. Let M consist of all pairs of positive integers. For
a,b € M, a = (a1,a2), b = (by,b2), we set a + b = (a1 + by,a2 + ba). Let R
consist of all (a,b) € M? such that neither a, nor b is of the form x + y, for
any z,y € M. Clearly R is symmetric and satisfies (COM-R). Assume R = Rp
for some O C M. Since R((1,2),(2,1)), then (3,3) € O. We have (3,3) =
(1,1) + (2,2), which yields R((1,1),(2,2)). This contradicts the definition of R,
since (2,2) = (1,1) + (1, 1). O

This example shows that the notion of a phase space with a relation R is
essentially wider than that with a set O for the non-unital spaces, even based on
(commutative) semigroups. Therefore the former may also be useful in the theory
of associative linear logics with no multiplicative units (not only in language,
but in the corresponding algebras). Clearly (COM-O) (resp. (Cy)) holds for any
O C M, if - is associative (resp. commutative).

3 Logics

We present a dual Schiitte style system for CNL. Formulas are built from vari-
ables p,q,..., negated variables p™~,q™,..., and connectives ®,®. A, B,C, D
range over formulas. By & we denote the free groupoid generated by all formu-
las. I, A, © range over elements of S. These elements are represented as formula
structures. The groupoid operation is: I" - A = (I, A).

In CNL, sequents are formula-structures, containing at least two formulas; the
set of all sequents is denoted by S®). So the distinction between quasi-sequents
and sequents in [11] corresponds to our distinction between formula-structures
and sequents. In axioms and rules of our systems (and after the provability
symbol F) we omit outer parentheses, e.g. we write - I'| A for - (I, A). The
axioms and the rules of CNL are as follows.

(id) p,p™

.4 2o
(r-sym) Z’F (r-com) =75y

(r-®), (r-®) are the introduction rules for connectives, and (r-sym), (r-com)
are the structural rules (expressing the symmetry of R and the condition (COM-
R) in phase spaces for CNL).
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We write I' ~ A, if A can be derived from I" by finitely many applications
of (r-sym), (r-com). Clearly ~ is an equivalence relation (but not a congruence

in §).

Proposition 3. For any sequent I'" € S@), containing one marked formula A,
there ezists a unique A’ € S such that I ~ (A, A").

Proof. We describe an algorithm which reduces I'"” to some sequent (A4, A’). We
underline the substructure containing A. The reduction rules are as follows.

(R1) (I 4) — (4, 1)
(R2) (L, 4),0) — (L, (4,0))
(R3) ((I,4),0) — (4,(6,1)

Each reduction step can be executed by applying at most three instances of
(r-sym), (r-com). This procedure is deterministic. If we run it on a sequent I'" €
S| then the algorithm terminates in finitely many steps and yields (A4, A").

The uniqueness of A’| satisfying I'" ~ (A4, A’), follows from the fact:

(F1) if I'"" reduces to (A, A’) and @' ~ I''| then O’ reduces to (A, A').

The proof of (F1) has two parts: (I) one proves it for @ resulting from I by
one application of (r-sym) or (r-com), (II) one proves (F1) by induction on the
number of applications of (r-sym), (r-com) leading from I'” to ©’. We skip details.

Now assume that I ~ (A, A) and I"" ~ (A, A”). Then (A, A) ~ (4, 4"). By
(F1), (A, A) reduces to (4, A"). Since the algorithm stops on sequents of this
form, then A = A’. O

EXAMPLE 3. Take I'" = ((B, (C', A)), (C, D)). The reduction looks as follows:

I —R3 ((0174)’ ((C’ D)aB)) 7R3 (Aa (((C,D)>B)7C/>)'

Due to Proposition 3, the introduction rules can be restricted to the left-most
occurrences of formulas in sequents, as above.

We say that a reduction of IV to (A, A’) preserves a substructure © of I,
if @ can be replaced by a variable in the whole reduction. The reduction in
Example 3 preserves (C, D).

Lemma 1. Assume that I reduces to (A, A") and O is a substructure of I"',
which does not contain A. Then, the reduction preserves ©.

Proof. Let I result from I after one has replaced © by a new variable p. By
Proposition 3, I'y reduces to a sequent (A, A;). Now we substitute © for p in the
whole reduction, which yields the reduction of IV to a sequent (A, A). We have
A = A’ since the algorithm is deterministic. Consequently, the reduction of I’
to (A, A’) preserves O. O
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Let M be a CNL-algebra. A valuation in M is a homomorphism of the free
algebra of CNL-formulas into M such that u(p™) = u(p)™, for any (non-negated)
variable p. The valuation p is extended for sequents, by setting: u((I, A)) =
w() @ u(A). The sequent (I, A) is true for pin M, if p(I") < u(A)™~. A sequent
is valid in M, if it is true for all valuations in M.

The above system of CNL is weakly complete: the provable sequents are
precisely the sequents valid in all CNL-algebras. Since the system is cut-free, its
weak completeness entails the cut-elimination theorem (see below). Soundness
is easy. The proof of completeness is a routine modification of similar proofs
for different substructural logics, tracing back to Lafont [12]; see [9] for a wider
discussion. Since for CNL and its variants no proof can be found in the literature,
we give some details. We write - " if I" is provable in CNL.

In metalanguage, one defines A™ for any formula A:

(™)~ =p
(A B> =B~ @ A~ (A®B)~ =B~ ® A~

By formula induction, one proves A~ = A and p(A~) = p(A)™, for any
formula A and any valuation g in M. Also - A, A™, for any A.

It is convenient to write I" = A for the sequent (I, A™); due to (r-sym),
it is deductively equivalent to (A™~,I"). Clearly I' = A is true for p in M, if
w(I) < p(A). We define [A] ={I' € S:+ T = A}

We consider the phase space (M, -, R) such that (M,-) = (S,:) and R =
{(I'A) € 8? :+ I', A}. Since (M, ) is a free groupoid, R can be replaced by the
set Og = {(I,4) € S : R(I', A)} (see Remark 2 in Sect. 2). Due to (r-com), (-
sym), R is symmetric and satisfies (COM-R). By Theorem 1, Mg with inclusion
and ®%%,\, /,~ is a CNL-algebra. For any formula A, we have: [4] = {A~}~. So
[A] is ¢r-closed for any formula A.

We define a valuation p in Mp:

n(p) = pl ={p~}7, w(P™) = pup)™. (1)
By formula induction, one proves:
A € u(A) C [4], for any formula A. (2)

We only consider the case: A® B. Since A € p(A), B € u(B), then (A, B) €
w(A) - u(B) € u(A® B). We use the fact:

(F2) if (A,B) € X and X is ¢p-closed then A® B € X.

Let X =Y, (A,B) € X. Then, forall ' € Y, F (A,B), I, hence - A® B, I,
by (r-®). So A® B € X. Consequently A ® B € u(A ® B).

We show p(A® B) C [A® B]. Since [A® B] is ¢r-closed, it suffices to show
w(A) - u(B) C[A® B]. Let I € u(A), A € u(B). Then, I" € [A], A € [B], hence
F A~ I, F B~ A. By (-®), (A B)~, (I, A), which yields (I’ A) € [A® B.



On Classical Nonassociative Lambek Calculus 77

Now assume t/ I'; A. By Proposition 3, there exists a sequent (A, ©) ~ (I, A).
Then I/ A, 0, hence © ¢ [A™]. By (2), © &€ u(A~) and © € p(0). Consequently
(A, ©) is not true for p in the complex algebra of (M, -, R). It follows that (I, A)
is not true, since the set of true sequents is invariant under ~. This finishes the
proof of weak completeness.

The sequents valid in CNL-algebras are closed under the cut rule:

I'A] A~ A

(cut) 1Al

Therefore (cut) is admissible in the cut-free system of CNL. By Proposition 3,
this rule can also be formulated in the form:

AT A~ A

(cut’) AT

The system of CNL with (cut’) is strongly complete with respect to CNL-
algebras: the sequents provable from a set of assumptions @ are precisely those
which follow from @ in CNL-algebras.

Let f(I") be the formula arising from I" after one has replaced each comma by
®. Every sequent (I, A) is deductively equivalent to (f(I"), f(A)). This is easy
to prove with applying (cut); for the cut-free system one can use the reversibility
of (r-®). Therefore, without lost of generality, we assume that all sequents in @
are of the form (A, B).

In the proof of strong completeness, one constructs the complex algebra of
(S,,R), where R={(I[,A) e S:P+T,A}. Now [A|={"'€S:P+T = A},
and p is defined by (1).

In the presence of (cut’), the inclusion in (2) can be replaced by p(A) = [A];
so A € p(A) may be omitted. We use the fact:

(F3) if X is ¢p-closed, A€ X and @+ I = A, then I' € X.

This is needed to prove that all sequents from @ are true for g in the complex
algebra. Let (A, B) € ¢. Then, A € [B™], hence [A] C [B™], by (F3). Conse-
quently u(A) € u(B~) = pu(B)"~.

REMARK 3. We have shown in Sect. 2 that not every phase space (M, -, R) can
be replaced by (M, -, O). The above proof shows that CNL is strongly complete
with respect to phase spaces of the latter form, satisfying (COM-O) and (Cy)
(even based on free groupoids). It follows that every CNL-algebra is isomorphic
to a subalgebra of the complex algebra of some space (M, -, O) such that (M, -)
is a free groupoid.

The connectives \, / can be defined by: A\B = A~®B, A/B = A®B"~. Each
NL-sequent I" = A can be treated as a CNL-sequent I' = A, i.e. (A~,I"). We
prove that CNL with (cut’) is a strongly conservative extension of NL with (NL-
cut). The weak conservativeness was proved in [11] by proof-theoretic methods.

Theorem 2. Let @ be a set of NL-sequents (of the form C = D), and let ' = A
be an NL-sequent. Then, ®bnp I’ = A iff @ oy ' = A.
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Proof. The only-if part is easy. The easiest proof uses the strong completeness,
hence soundness, of NL with respect to residuated groupoids and the strong
completeness of CNL with respect to CNL-algebras. We prove the if-part.

We consider the free groupoid (M, ) generated by all NL-formulas and for-
mally negated NL-formulas A™, i.e. A with superscript ~. The elements of M
are represented as formula-structures, as above. We define O C M as the small-
est set which contains all (A™~,I") such that @ -y I" = A and is closed under
(r-sym), (r-com). Clearly each element of O contains at least two formulas and
exactly one negated formula.

We consider the complex algebra Mg, i.e. Mg for R = Ro. Since O satisfies
(COM-O) and (Cy), Mo is a CNL-algebra, by Theorem 1.

For any NL-formula A, we define [A] = {I" : & by I' = A}. We show
[A] = {A™}~. Clearly [4] C {A™}™, by the definition of O. We prove {A~}~ C
[A]. Let I' € {A~}~. Then (A~,I") € O. By the definition of O, there exists
a NL-sequent A = A such that & Fyp A = A and (A~,I") ~ (A™,A). By
Proposition 3, I' = A (take A™ as the marked formula). Consequently I" € [A].

So all sets [A] are ¢po-closed. We define p by (1). By formula induction we
show p(A) = [4] for any NL-formula A. This is obvious for p.

The cases A\B, A/B are treated in the same way as in analogous proofs
for NL. Let us consider A\B. Assume I" € u(A\B). Since A € p(A), then
(A, I") € u(B). So (A,I') € [B], which yields I € [A\B], by (= \). Assume
I' € [A\B]. By the reversibility of (= \) in NL, (A4,I') € [B]. Let A € u(A4).
Then A € [A], which yields (A, I') € [B], by (NL-cut). So (A, I") € u(B) for any
A € p(A), and consequently I' € u(A\B).

The case A ® B needs (F2), (F3), which remain true for NL-formulas. We
prove (F2). Let X =Y, (A,B) € X. Then, (I,(A,B)) € O for any I' € Y.
We fix I' € Y. Let C™ be the only negated formula in I'; we treat C™ as the
marked formula. By Proposition 3, there is a unique A such that (I, (A, B)) ~
(C~,A). By the construction of O, ¢ -y, A = C. By Lemma 1, the reduction
of (I, (A, B)) to (C™, A) preserves (A, B), hence A = O[(A4, B)]. Accordingly
Sty O[A®B] = C, by (® =), hence (C™,0[A®B]) € O. Clearly (I, AQ B) ~
(C~,0[A® B]). Consequently (I, A® B) € O. This yields A® B € X. (F3) can
be proved in a similar way (F in (F3) means Fyp).

We prove [A® B] C (A ® B). Since A € p(A), B € pu(B), then (A, B) €
w(A)-u(B) C u(A®B). By (F2), A® B € u(A® B). Hence [A® B] C u(A® B),
by (F3). We prove u(A® B) C [A® B]. Since [A® B] is ¢o-closed, it suffices to
show u(A) - u(B) C [A ® B], which amounts to [A] - [B] C [A ® B]. This holds,
by (= ®).

Now assume @ t/np I’ = A. Then I' € pu(I'), I' ¢ [A] = u(A), and con-
sequently I' = A is not true for u. Let C = D € &. u(C) C u(D) follows
from [C] C [D]. Therefore I' = A does not follow from ¢ in CNL-algebras.
Consequently @ onp I' = A. O

The results of this section can be extended for several richer logics. Proofs
are similar, and we omit them.
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First, we consider CNL with ~ in the language. So formulas are built from
variables and ®, @,~. One adds the rules:

ey AT
(1- )A~~,p

(-0%) Geprry 087 Geper

This system is equivalent to the former one in a strong sense. Every formula
with ™~ can be translated into a formula without ~ (except its occurrences at
variables), using the metalanguage definition of ™, given above. The translation
can be extended for sequents and sets of sequents. I" is provable from @ in CNL
with ™~ if and only if the translation of I" is provable from the translation of &
in CNL without ~.

CNL1 is obtained by adding the constants 1,0, treated as atomic formulas,

and:
r

LT

The new axiom (a-0) introduces a sequent containing only one formula. We
define sequents as all elements of S. The set of formula-structures is defined as
the free unital groupoid &; = S U {\}, where A satisfies I'- A =T = X-TI. One
may imagine A as the ‘empty structure’. I and A may be empty in (r-®), (r-®).

For CNL1 without ™, the metalanguage negation is defined as above, with:
1~ =0, 0~ = 1. Given a CNLI1-algebra and a valuation p, one sets p(A) = 1.
A sequent I' € S is said to be true for p, if u(I") < 0. For sequents (I, A) this
amounts to the former definition of a true sequent.

CNL1 (in both versions) admits cut elimination, since the cut-free system
is weakly complete with respect to CNLI-algebras. With (cut’) it is strongly
complete. CNLL1 is a strongly conservative extension of NL1.

CNL* is obtained from CNL1 by dropping 1 and 0. Since CNL* is strongly
complete with respect to CNL1-algebras, then CNL1 is a strongly conservative
extension of CNL*. Notice that CNL* is stronger than CNL; p ® p™~ is prov-
able in CNL*, by (id) and (r-®), but not in CNL. In CNL1-algebras this law
expresses a ® a™~ < 0, which lacks sense in CNL-algebras without 0. The axiom
(id) expresses a < a, which holds in all ordered algebras.

In the completeness proofs, the underlying unital groupoid is (Si,-, A) and
O consists of all provable sequents. Then O satisfies (COM-O) and (Cy), hence
the complex algebra is a CNLI-algebra. (1) is extended by: u(0) = O, u(1) =
po({A}).

If C' is a closure operation on a complete lattice, then the C-closed sets
are closed under infinite meets. So they form a complete lattice. The results of
this section can be extended to CNL and CNL1 with lattice connectives V, A,
satisfying the lattice laws. These logics may be called Full CNL and Full CNL1
(FCNL and FCNL1) by analogy with FNL, i.e. NL with V,A. FCNL (resp.
FCNLL1) is a strongly conservative extension of FNL (resp. FNLI).

(a-0) 0, (r-1)
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For FCNL, the connectives are ®,®, V, A. One adds three new rules.

AL AT AL BT

(r'A)BAA,F AANB, I (V) AV B, I’

In the complex algebra of (M, -, R) (an arbitrary phase space) one defines:
XAY =XNnY, XVY = ¢r(X UY). With these operations the complex
algebra of a phase space for CNL is a lattice-ordered CNL-algebra. We refer to
these algebras as FCNL-algebras. FCNL1-algebras are defined in a similar way.

These results remain true for associative and/or commutative CNL-algebras
and CNL1-algebras. The associative FCNL1-algebras are the algebras of Cyclic
Noncommutative MALL [15]; the commutative and associative FCNL1-algebras
are the algebras of MALL [10]. The completeness results were proved in these
papers. The fact that Cyclic Noncommutative MALL is a (weakly) conservative
extension of FL.1 was proved in Abrusci [2] by a tedious proof-theoretic argument.
This can be proved like Theorem 2, which yields the strong conservativeness.

4 Main Results

We need an extended subformula property for @ Fonp I'. Let T be a set of
formulas. St consists of all I" € S such that every formula in I" belongs to T
A T-sequent is a sequent I' € S? N Sp. A T-proof is a formal proof from & in
CNL which consists of T-sequents only. We write & FL\, I, if there exists a
T-proof of I" from @ in CNL. We write I for Fonr, and FT for }—ENL. We define
AT ={reSr: o+ I = A}

Lemma 2. Let T be a set of formulas, closed under subformulas and ~. Let &
be a set of T-sequents of the form (A, B). For any T-sequent Iy, & F Iy if and
only if & T I,.

Proof. The if-part is obvious. For the only-if part, we consider the phase space
(M, -, R) such that M = S, - is defined as in Sect. 3, and R = {(I', A) € (S7)? :
& FT' I, A}. Clearly R is symmetric and satisfies (COM-R). So the complex
algebra of (M,-, R) is a CNL-algebra. We define: u(p) = [p|T = {p~}~ for
p € T; the values of p for p ¢ T may be arbitrary. One proves: u(A) = [A]T for
any A € T, by the same argument as in Sect. 3. Consequently, if & F7 I, does
not hold, then I} is not true for u, but all sequents in @ are true for p. Therefore
@ + Iy does not hold. a

Corollary 2. Let T be the smallest set of formulas, containing all formulas
occurring in @ or I' and being closed under subformulas and ~. If @ = I', then
T I

We prove an interpolation lemma for CNL: every proper substructure A of
a provable sequent I' can be replaced by a formula (an interpolant) from a
finite set.
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Lemma 3. Let T,®, Iy be as in Lemma?2, and let Ay be a substructure of I,
Ao # Iy. We write Iy = Oy[Ag]. If =T Iy, then there exists D € T such that
&1 D~ Ay and & =T 6y[D).

Proof. Assume @ T I;. We proceed by induction on T-proofs from @. If Ay is
a formula, then D = Ag. So the thesis holds, if I is an axiom (id) or belongs
to @. We assume that Ag is not a formula.

Case: (r-®). Then D is the same as in the premise.

Case: (1-®). 1°. Ag = (A, I'). Then D = (A@ B)™. 2°. Ay is a substructure
of I' or A. Then D is as in the appropriate premise.

Cases: (r-sym). D is as in the premise.

Case: (r-com) downwards. If Ag = (4, 6), then D = D7, where D is the
interpolant of I in the premise. Otherwise D is the interpolant of Ay in the
premise. (r-com) upwards is treated in a similar way.

Case: (cut’). D is as in the appropriate premise. O

There are two important consequences of Lemma, 3.
Theorem 3. CNL has the strong finite model property (SFMP).

Proof. Let @ be a finite set of sequents of the form (A4, B). We show that for any
sequent I, if @ o ' does not hold, then there exist a finite CNL-algebra M
and a valuation p in M such that all sequents from @ are true for u, but I" is
not true for p.

Assume @ If I'. Let T be defined as in Corollary 2. Clearly T is finite and
& /T I'. Let M be the complex algebra constructed in the proof of Lemma 2,
and let p be defined as there. It suffices to show that M is finite, this means:
there are only finitely many ¢r-closed sets, i.e. sets of the form X~ for X C Sp.
We have X~ = (pcx{I'}™. So it suffices to show that there are only finitely
many sets of the form {I"}~.

Let A € {I'}~. Then, & -7 I/ A. By Lemma3, ® -7 I, D, for some D € T
such that @ T D~, A. We have: D € {I'}" and A € [D]T. By (F3) (precisely:
its version for T-sequents and T-proofs), [D]T C {I"}~. Consequently, {I'}"~ is
the union of some family of sets [D]7, for D € T. There are only finitely many
sets [D]T such that D € T, which yields our claim. O

By a CNL-grammar we mean a triple G = (X, I, Ag) such that X' is a non-
empty, finite alphabet, I is a map from X to the family of finite sets of CNL-
formulas, and Ay is a CNL-formula. For any I € S, we define a sequence of
formulas s(I"): s(A) = A, s((I,4)) = s(I")s(4), i.e. the concatenation of s(I")
and s(A). We say that G assigns A to the string a; ...a, (a; € X), if there
exists I' € S such that (A™~,I") is provable, s(I") = A; ... A, and A; € I(a;) for
t = 1,...,n. Here ‘provable’ means ‘provable in CNL’. We also consider gram-
mars based on CNL augmented with finitely many assumptions; then ‘provable’
means ‘provable from @ in CNL’, where @ is the set of assumptions. The language
of G is the set of all z € YT such that G assigns Ag to x.
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Theorem 4. Let @ be a finite set of sequents. Let G be a CNL-grammar based
on CNL augmented with the assumptions from ®. Then, the language of G is a
context-free language.

Proof. Fix a grammar G = (X1, Ap). Let T be the smallest set of formulas
which contains Ay and all formulas appearing in @, I and is closed under sub-
formulas and ~. Clearly T is finite. Let (Af, I') be provable, I € St. Let (A, B)
be a substructure of I'; so I' = O[(A, B)]. By Lemma 3, there exists D € T
such that (D™, (A, B)) and (Ay, ©[D]) are provable. Accordingly, every I' € St
such that (Ag,I") is provable can be derived (as a derivation tree) from Ag by
means of context-free rules: A — B (resp. A — B,C) such that A,B,C € T
and B = A (resp. (B,C) = A) is provable. The language of G is generated by
the context-free grammar with the terminal alphabet X', the nonterminal alpha-
bet T', the start symbol Ag, and the production rules as above plus A — a for
A€ I(a). O

Conversely, every e-free context-free language is generated by some CNL-
grammar (without assumptions). This follows from Theorem 2 and the fact that
every e-free context-free language is generated by an NL-grammar [3].

Theorem 3 implies the decidability of the finitary consequence relation for
CNL. We prove that it is decidable in polynomial time. [11] shows the polynomial
time decidability of CNL.

Theorem 5. The relation @ - I, for finite sets & and I' € S, is decidable in
polynomial time.

Proof. A sequent I' € S® is said to be restricted, if it is of the form (A, B),
(A,(B,C)) or ((A,B),C). So (id) and all sequents from & are restricted. Fix a
finite set @ and Iy € S®). Let T be defined as in Corollary 2 (for I = I).

By CNLI" we denote the system whose axioms and rules are those of CNL
with (cut’), limited to restricted T-sequents. Clearly there are finitely many
restricted T-sequents. All sequents provable in CNLI from & can be determined
in polynomial time (in the size of @ U {Ip}).

By CNLL we denote the system whose axioms are all sequents provable in
CNLT from @ and the only inference rule is (cut) (now admitting unrestricted
T-sequents). Notice that (cut) is not the same as (cut’). Observe that every
restricted T—sequent provable in CNLL must be provable in CNLI from & (if
the conclusion of (cut) is restricted, then the premises are restricted; also (cut)
limited to restricted T-sequents is derivable in CNLI). We prove:

@ gy T iff I is provable in CNLY.

(<) is obvious. For (=), we observe that CNLZ has the interpolation prop-
erty: if ©g[Ao] is provable and Ag # Og[Ap], then there exists D € T such that
(D™, Ap) and Oy[D] are provable.

First, one proves this property for CN LI with the assumptions from & in the
same way as Lemma 3. For rules (r-®), (r-com) one uses the fact that (4, A™),
for A € T, is provable in CNLZ.
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Second, one shows this property for CNLZ; by induction on derivations based
on (cut), which is easy. The only interesting case is the following: ©y[©;[A]] arises
by (cut) from A™~, A and ©y[O1[4]], and Ay = O1[A]. Then, the interpolant of
Ap equals the interpolant of ©1[A] in Oy[O1[4]].

Third, one shows that all rules of CNL, restricted to T-sequents, are admis-
sible in CNLL. We only consider (r-sym). Let (I, A) be provable in CNLL. By
interpolation, there exist C € T, D € T such that (C,D), (C™~,I"), (D™, A)
are provable in CNLZL. Since (C, D) is provable in CNLI from &, then (D, C)
is provable in CNL? from &, and consequently, (A, I') is provable in CNLZ, by
two applications of (cut). This yields (=).

By Lemma2, & Fony I if and only if I is provable in CNLg. In particular,
for a restricted Iy, Iy is provable in CNL from @ if and only if I is provable in
CNLZI. O

We have noted in Sect.1 that CNL™ does not have SFMP. The status of
Theorems4 and 5 for CNL™ remains an open problem. They are true for the
pure CNL™ (i.e. @ = {)); the proof will be given in another paper.

Chvalovsky [7] proves that the consequence relation for FNL is undecidable.
Since FCNL is a strongly conservative extension of FNL, then the consequence
relation for FCNL is undecidable (hence SFMP fails). On the other hand, the
analogues of Theorems 3 and 4 hold for DFCNL, i.e. FCNL admitting the dis-
tributive laws for Vv, A, like for DFNL and its variants [5,6].
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Abstract. In this paper we discuss the use of interactive theorem
provers (also called proof assistants) in the study of natural language
semantics. It is shown that these provide useful platforms for NL seman-
tics and reasoning on the one hand, and allow experiments to be per-
formed on various frameworks and new theories, on the other. In par-
ticular, we show how to use Coq, a prominent type theory based proof
assistant, to encode type theoretical semantics of various NL phenom-
ena. In this respect, we can encode the NL semantics based on type
theory for quantifiers, adjectives, common nouns, and tense, among oth-
ers, and it is shown that Coq is a powerful engine for checking the for-
mal validity of these accounts as well as a powerful reasoner about the
implemented semantics. We further show some toy semantic grammars
for formal semantic systems, like the Montagovian Generative Lexicon,
Type Theory with Records and neo-Davidsonian semantics. It is also
explained that experiments on new theories can be done as well, test-
ing their validity and usefulness. Our aim is to show the importance of
using proof assistants as useful tools in natural language reasoning and
verification and argue for their wider application in the field.

Keywords: Type theory - Proof assistants - Reasoning - Formal
semantics - Coq

1 Introduction

Interactive theorem provers (also called proof assistants) have come a long way
since they were first introduced in the late 60’s as tools to formalise mathematics
(cf., the AUTOMATH project [3]). Today, a number of state-of-the-art proof
assistants exist and their uses have been proven fruitful both in formalisation
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of mathematics and software verification, among other things; see, for example,
[13] for the proof of the four colour theorem in the proof assistant Coq'. The
importance and usefulness of proof assistants have also been further proven by
some recent research projects, including the very attractive research on Univalent
Foundations [28] that aims to develop alternative foundations of mathematics,
where the proof assistants Coq and Agda [1] play a crucial role to the whole
endeavour (see [34] for an example of formalization of part of the project in
Coq).

The use of constructive type theories for the study of NL semantics has also
seen a revival in the last decade.? A number of approaches that directly employ
constructive type theories or are inspired by them have been put forth by various
researchers in the recent years and have provided interesting accounts on classic
problems of formal semantics (see [2,9,16,23,26,30,33] for examples, although
this is not a complete list). In this context, it is worth noting the following:

— Some of the proof assistants, like Coq and Agda, implement constructive type
theories;

— The proof assistants are extremely powerful reasoning engines; and

— Constructive type theories have been shown to be a nice alternative to the
simple type theory usually in formal semantics.

It seems that the time is right to look at the combination of these three in
order to use proof assistants as natural language reasoners and as checkers of
the formal validity of formal semantics accounts. Indeed, we have taken the first
step in this direction and have used Coq as a natural language reasoner [5,6]. In
this paper, we extend this work and create a number of small Coq libraries to
show that proof assistant like Coq can provide useful platforms for:

— Formalising NL semantics and, based on it, formally describe various NL phe-
nomena, including co-predication, individuation, common nouns, adjectives
and tense, among others. (These libraries are based on earlier theoretical
work using Luo’s Type Theory with Coercive Subtyping (TTCS for short)
[20,21,23].)

— Experimenting with various semantic frameworks: we show how to use Coq to
formalise them by implementing some small examples in Rétore’s Montagovian
Generative Lexicon [30], Cooper’s Type Theory with Records (TTR) [9], and
neo-Davidsonian event semantics [27].

— Experimenting with new theories: we formalise in Coq a newly developed the-
ory [8] of predicational forms to give semantics to negative sentences and con-
ditionals in constructive type theory. We also look at the issue of individuation
and its interaction with copredication from the same perspective.

Jun

The proof assistant Coq implements a constructive type theory in the tradition of
Martin-Lof. The type theory is an impredicative type theory called the Calculus of
Inductive Constructions (pCIC) [11], which is similar to the type theory UTT (or
TTCS as called in this paper) [18].
2 The use of constructive type theories has been initiated by the pioneering work of
Aarne Ranta [29].



Proof Assistants for Natural Language Semantics 87

The current paper is structured as follows: in Sect.2, we provide an intro-
duction to TTCS and the implementation of some of the ideas casted in TTCS
with respect to NL semantics in the Coq proof assistant, especially its use in
formalising NL semantics in TTCS. In Sect. 3, we present several small libraries:
first the one based on our work in type theory, introducing the relevant formal
features of TTCS when needed, then several small libraries for other semantic
frameworks and, finally, the library for the theory of predicational forms and
individuation criteria. In the conclusion, some future work is discussed.

2 Type Theoretical Semantics for NL in Coq

In this section, we shall first introduce formal semantics in a constructive type
theory and then how we will discuss the use of Coq to implement the semantics
for various features in natural language.

2.1 Formal Semantics in Type Theory with Coercive Subtyping

Type Theory with Coercive Subtyping (TTCS) is a constructive type theory
based on Luo’s UTT [18] with the addition of an effective subtyping mechanism,
that of coercive subtyping [19,26]. TTCS has been effectively used in the study
of NL semantics for a range of phenomena including common nouns, adjectives,
adverbs and belief intensionality among other things [5,7,20,21,23]. TTCS is
a dependent type theory with rich type structures which are exploited for the
study of NL semantics. We will refer to this type of semantics in this paper as
Modern Type Theoretical (MTT) semantics.> In MTT-semantics, some of the
major linguistic categories and their interpretation are shown below:

1. A common noun (CN) can be interpreted as a type.

2. A verb (IV) can be interpreted as a predicate over the type D that interprets
the domain of the verb (i.e., a function of type D — Prop, where Prop is the
type of logical propositions

3. An adjective (ADJ) can be interpreted as a predicate over the type that
interprets the domain of the adjective (i.e., a function of type D — Prop).

4. Modified common nouns (MCNs) can be interpreted by means of X-types,
types of (dependent) pairs.

5. A sentence (S) is interpreted as a proposition of type Prop.

See Fig. 1 for a summary with examples.

3 The formal semantics based on Modern Type Theories such as Martin-Lof’s type
theory or TTCS is usually called MTT-semantics. In the current paper, we shall still
talk about MTT-semantics although, if taken seriously, it means formal semantics
in TTCS because the Coq implementation of the NL semantics is based on TTCS.
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Example Montague semantics Semantics in TTCS
CN | man, human [man], [human] : e —t [man], [human] : Type
v talk [talk] :e —t [talk] : [human] — Prop
ADJ handsome | [handsome] : (e — t) — (e — 1) [handsome] : [man] — Prop
MCN| handsome man [handsome] ([man]) Ym : [man] . [handsome](m) : Type
S A man talks | Im:e. [man](m)& [talk](m) Im : [man] . [talk](m) : Prop

Fig. 1. Examples in formal semantics.

2.2 NL Semantics in Coq

Coq [11] implements pCIC, a type theory whose major part is essentially* TTCS
(UTT with coercive subtyping), based on which the formal semantics briefly
described in the previous subsection has been implemented. The encoding of NL
semantics based on TTCS is quite straightforward in most of the cases. Let us
see some basics of how this can be done.

Starting with the type of logical propositions, nothing needs to be encoded,
since Coq already involves a universe of logical propositions, Prop. The next
step, is to see what the universe of entities would be taken to be. In MG, a
coarse-grained type of entities exists, i.e. the type e of all entities. In MTT-
semantics, the common nouns constitute a universe, denoted as CN; the type
CN contains the (interpretations of) CNs, each of which is further interpreted
as a type that contains entities belonging to them. CNs are interpreted as types
rather than predicates. However, since universe construction (i.e., defining new
universes) is not an option in Coq, we equate CN with Coq’s predefined universe
Set.

Y-types (types of dependent pairs), which are used to give semantics to some
modified common nouns among other things, are encoded using Coq’s depen-
dent record type mechanism® and adjectives and verbs are defined as predicates
(objects of type A — Prop). Subsective adjectives like large are encoded as
polymorphic predicates (see [4]), extending over the universe CN.5 Subtyping
is encoded using Coq’s coercion mechanism and the proper names are given
suitable domain types: e.g., John is assumed to be of type Man.

The Coq codes for this basic set up are as follows.

Definition CN := Set.

Parameters Man Woman Human Animal Object : CN.

Axiom mh : Man->Human. Coercion mh : Man >-> Human.
Axiom wh : Woman->Human. Coercion wh : Woman >-> Human.
Axiom ha : Human-> Animal. Coercion ha : Human>->Animal.
Axiom ao : Animal->0bject. Coercion ao : Animal>->0Object.
Parameter Black : Object->Prop.

4 Coq has co-inductive types which are not present in TTCS.

5 Coq’s record types are just X-types with global names associated with them.

5 This is encoded using IT-types as follows: [Adjsups]: ITA: ON. A — Prop. The “forall’
part in the code corresponds to I1.
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Parameter Large : forall A:CN, A->Prop.
Parameter walked: Human->Prop.
Parameter John : Man.

Quantifiers can be given polymorphic types as well: a quantifier takes a CN
argument A: CN and returns a function of type (A — Prop) — Prop. Thus, if
A is Man the type for the quantified NP will be (Man — Prop) — Prop and,
if A is Object, it is of type (Object — Prop) — Prop, and so on. As examples,
we define the quantifiers some, all, no as follows:

Definition some := fun A:CN => fun P:A->Prop => exists x:A, P(x).
Definition all fun A:CN => fun P:A->Prop => forall x:A, P(x).
fun A:CN => fun P:A->Prop => forall x:A, not(P(x)).

Definition no

Note that the typing is the one we have been describing, taking an A : CN
argument, an A — Prop argument and returning a proposition.

Now, let us see how one can exploit Coq in order to reason with NL sentences
based on the implemented semantics. First of all, if one wants to check typing,
the command Check followed by the element we want to check can be used.
Note that Coq is a strongly typed language, so by definition ill-typed constructs
cannot be defined, since they will be blocked by Coq. Let us see an NL reasoning
example, the one shown below:

(1) John walked = Some man walked

Formalizing this example in Coq, we consider the following ‘theorem’ whose
name is JOHN (to be proved):

Theorem JOHN : walked John -> (some Man) walked.

This will put Coq into proof-mode. We unfold the definition for some using cbv
and use the tactic intro, which will introduce the antecedent as a hypothesis:”

JOHN < cbv. intro. subgoal
H : walked John

exists x : Man, walked x

What we need to do is substitute John for x and using the tactic assumption,
which matches a goal in case there is an identical premise in the context of the
proof, the proof is completed and we can save the proof using Qed. The whole
proof then consists of the steps:

1. cbv (unfolding definitions (in our case the one for some))®
2. intro (moving the antecedent as a hypothesis)

" The tactic cbv performs all possible reductions.
8 In general the tactic cbv performs all possible reductions. For more information, see
[11].
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3. exists John (substituting x for John)
4. assumption (matching the goal with a hypothesis)

Remark 1. The MTT-semantics has proved to be a viable alternative to Mon-
tague Grammar, with several notable advantages. Here, we think it is worth
mentioning one of them: that is, MTT-semantics is both model-theoretic and
proof-theoretic, as argued in [24]. Tt is model-theoretic because, in an MTT-
semantics, an MTT is employed as a representational language and it can do
so because of its rich representational structures as well as its internal logic.
Therefore, it has a wide coverage of linguistic features and can be compared to
Montague semantics in this respect. It is also proof-theoretic, in the sense of
[14], because MTTs are specified proof-theoretically and the meanings of MTT-
judgements, that are used to give semantics to NL sentences, can be understood
by means of their inferential roles. Therefore, reasoning with NL can be directly
performed in proof assistants like Coq that implement MTTs. This is unique
for MTTs and MTT-semantics: such a possibility of having a semantics which is
both model-theoretic and proof-theoretic is not available to us until we have the
MTT-semantics (for example, if one considers the traditional model-theoretic
semantics in set theory, we simple would not have a proof-theoretic representa-
tional language: set theory is not proof-theoretic.)

3 Libraries for NL Semantics

We have created a number of small libraries in Coq, encoding NL semantics.
They may be classified as follows:

— MTT-semantics and reasoning: We have studied various NL phenomena using
MTT-semantics and formalised them in Coq.

— Platform for other semantic frameworks: We have looked at several seman-
tic frameworks and provided some examples including, for example, Rétore’s
Montagovian Generative Lexicon [30], Cooper’s Type Theory with Records
(TTR) [9], and a toy semantic grammar for neo-Davidsonian event semantics
[27].

— FExperiments on new semantic theories: We have done interesting experiments
in Coq about some new semantic theories, including that about predicational
forms in MTT-semantics [8], as reported here.

The libraries can be found at https://github.com/StergiosCha/CoqLACL.

3.1 MTT Semantics for NL in Coq

The main file for MTT-semantics is MainCoq.v. This includes the Coq imple-
mentation of a number of ideas in MTT-semantics. The universe CN includes
a number of types (e.g., Man, Human, Delegate, Woman, Animal, Object) and
subtyping relations between them. Synonym relations are encoded via the let-
command in Coq. Adjectives are defined in the way specified in the previous
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section and sometimes some added lexical semantics are inserted. For example,
small is defined as the opposite of large, and both are polymorphically defined
as follows:

Parameter Large Normalsized: forall A:CN, A->Prop.
Definition Small :=
fun A:CN => fun a:A => not (Large A a) /\ not (Normalsized A a).

Basically the idea here is that small is defined as being not large but furthermore
not of normal size. This reflects the idea that something which is not large is not
necessarily small.” This is needed in order to get the relevant inferences right
(see [5]).

In MTT-semantics, there is also a widespread use of X-types for factive verbs,
adverbs and comparatives. We have not the space here to go in full detail but
the idea can be briefly described as follows, taking the case of veridical sentence
adverbs as an example. What we need to capture is that the proposition without
the adverb is implied by the proposition including the adverb. In order to do
this, we first define an auxiliary object:

Parameter ADVS : forall (v:Prop), sigT (fun p:Prop => p->v).

This basically takes a proposition v and returns a pair whose first component is
a proposition p and whose second component is the proposition that p implies v.
Then, veridical sentence adverbs (we use fortunately as an example) are defined
as the first projection of this auxiliary pair:

Definition fortunately := fun v:Prop => projT1 (ADVS v).

Similar uses of X-types can be found for VP adverbs, comparatives as well as
factive verbs in the library (see [5] for more details.)

For comparatives, we introduce indexed types for common nouns; for exam-
ple, humans of type Human may be indexed by a height parameter. Then, a
comparative adjective takes two Human; arguments with ¢ :: Height.

Inductive HUMAN : nat->Type := HUMAN1:forall n:nat,HUMAN n.

A simple model of tense is defined and an attempt to deal with some aspects
of tense exists. There is a type Time and a date is defined as triple, taking year,
month and day arguments and returning a result in Téme. A default date is
defined which consists of the defaults for year, month and day. Then, verbs are
defined with an extra time argument. Present, past and future are then defined
using the precedes relation with respect to the default time. For example, an
adverb like currently is defined as identifying the time argument with the default
time:

Definition currently := fun P : Time -> Prop => P default_t.

9 The level of fine-grainedness with respect to size, i.e. whether sizes between these
proposed three will be used, will not bother us here.
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The next file is adjectives.v, which involves some more fine-grained issues
in adjectival semantics. In particular it deals with multidimensional adjectives
and introduces a hack in order to take care of the fact that Coq does not allow
subtyping to propagate through constructors (as it is the case in TTCS).'0 Mul-
tidimensional adjectives do not just involve one dimension (e.g., the dimension
of height in the case of tall), but more than one. Classical cases are the adjectives
like healthy and sick or even adjectives like big. The idea is that an adjective like
healthy quantifies over a number of dimensions, e.g., blood pressure, cholesterol
etc. [32]. Similarly, big may involve different dimensions like height, width etc.
For an adjective like healthy, we define health as an enumerated type including
all the relevant dimensions. Then, Healthy is defined as taking an argument of
type Human and assuming that this human is healthy in all dimensions. For
sick, the assumption is that the argument is not healthy w.r.t. to at least one
dimension. This follows the ideas set out in [32]:

Inductive Health:CN:=Heart|Blood|Cholesterol.

Parameter Degree:R. Parameter healthy:Health->Human->Prop.
Definition Sick:=fun y:Human=>~(forall x:Health,healthy x y).
Definition Healthy:=fun y:Human=>forall x:Health,healthy x y.

The files FracasCoq.v and test.v are meant to be used in conjunction. Actu-
ally FracasCoq loads test.v. FracasCoq.v contains a number of FraCaS test suite
examples formalized in Coq along with their proofs. The FraCaS Test Suite
[10] arose out of the FraCaS Consortium, a huge collaboration with the aim to
develop a range of resources related to computational semantics. The FraCaS
test suite is specifically designed to reflect what an adequate theory of NL infer-
ence should be able to capture. It comprises NLI examples formulated in the
form of a premise (or premises) followed by a question and an answer. Here is a
typical example from the suite:

(2) Some Irish delegates finished the survey on time.
Did any delegate finish the report on time [Yes, FraCaS 055]

The modified CN Irish delegates is defined as a X type. Given that 7 is
defined as a coercion, the inference will go through easily. Please see [5] for more
details and the code for the actual.

3.2 Other Semantic Frameworks

Proof assistants can be used as platforms to experiment with different semantic
frameworks. In this respect, there are three files that have some very small toy

10 Some remark on subtyping propagation in Coq is needed. If A < B, then we should
have Y (A, C) < X (B, C) (which follows in TTCS). But this does not follow in Cog.
In order to remedy this we have introduced a sort of a hack by overloading the type
using unit types (see the actual code and consult [21] for the use of unit types).
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semantic grammars of other frameworks that have been used in the study of lin-
guistic semantics. Note that these implementations are shallow implementations
in the sense that no deep implementation of the underlying formal systems is
done. In other words, we are not doing a faithful implementation of a seman-
tic framework; instead, we emphasize the quick return so that examples can be
done. For instance, Retoré’s Generative Montagovian Lexicon [30] is based on
system F [12,31], but no implementation of system F is done on our part.

In MontagovianLexiconToy.v, we encode some of the ideas in presented in
Generative Montagovian Lexicon as presented in [30]. Note that the idea that,
representing the interpretation of a common noun, each type has its correspond-
ing predicate cannot be implemented since it is not clear how such correspon-
dence will be formally defined.!! We, however, encode the idea that a word like
book has a principal lambda term and then a number of coercions that take care
of its dot-type status. This is done by using type overloading via unit types.
We further formalize the polymorphic conjunction of [30] and prove that it is
equivalent to the semantics of regular conjunction. For example, the definition
of polymorphic conjunction is given as follows:

Definition PAND := fun a:e => fun b:e => fun P:a->t => fun Q:b->t =>
fun x:e => fun y:x => fun f:x->a => fun g:x->b =>

and (P(£(y))) (Q(g(y))).

Records.v has some very simple experimentations on encoding ideas from
Cooper’s TTR [9]. For example, the record for a man owns a donkey is encoded
as:

Record amanownsadonkey : Type :=
mkamanownsadonkey{ x : Ind;
cl : man x;
y : Ind;
c2 : donkey y;
c3 : own X y}.

From this record type in Coq, one can prove any of the individual fields. For
example, one can show that a man exists, that a donkey exists (man and donkey
are defined here as predicates), and that the man owns the donkey.

Lastly, Davidson.v contains a typed neo-Davidsonian toy semantic gram-
mar. It has some simple examples and the welcoming inferential properties of
neo-Davidsonian semantics where each modifier adds a conjunct. The grammar
presents a typed version of neo-Davidsonian semantics'?. Similarly, a transitive
verb like stabs is defined as taking an event argument e and two arguments x

11 For example, one can define both a type book and a predicate book* but linking the
two and defining such a process for every common noun is something that we do not
know how can be done, without leading to formal difficulties such as undecidability
of type-checking [8]. There is not a formal proposal on how to do this in [30] either.

12 See [25] for a theory of dependent event types which extends Church’s simple type
theory with dependent event types. This is an initial step towards a theory of events
with dependent types.
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and y of type Ind and returning a proposition which specifies that there is a
stabbing event el such that stabs(x)(y)(el), x is the agent, y is the theme and
e = el. This toy semantic grammar can take care of inferences like the following
(proofs are in the file):

(3) Brutus stabbed Caesar with a knife in Rome = Brutus stabbed Caesar with
a knife

(4) Brutus stabbed Caesar with a knife in Rome = Brutus stabbed Caesar

(5) Brutus stabbed Caesar with a knife in Rome = the agent of the stabbing
was Brutus

Remark 2. As we have already mentioned, the above implementations are shal-
low implementations of fragments of other semantic theories.'® Coq implements
an MTT, which in itself is a very powerful language to represent NL semantics.
In a sense, one way of using Coq would be to use this very powerful language
in order to embed different semantic theories as kind of modules within Coq’s
MTT. For example, one might want to define a Natural Logic component (as for
example [17] has done), or a neo-Davidsonian fragment as we have very briefly
done here. We believe that this is a nice way of looking at how the systems like
Coq can be used for NL semantics. Different comparisons can then be performed
as regards the different frameworks based e.g. on the predictions they make as
regards inference.

3.3 Experiments with New Semantic Theories

Systems like Coq can play a useful role in verifying newly proposed theories in
semantics. Here, we consider two cases. The first concerns the theory of pred-
icational forms as studied in [8]. The theory is to deal with negated sentences
or conditionals in a type theory where some CNs are interpreted as types in a
multi-sorted type system (e.g., the MTT-semantics) and the file predhyp.v con-
tains the experiments done in Coq that formalizes the theory of predicational
forms and considered many relevant examples.

Consider the simplest example, where (7) is the (judgemental) interpretation
of (6):

(6) John is a man.
(7) j: Man

Note that j: Man is a judgment and not a proposition. How do we give
semantics to its negation like (8)?

(8) John is not a man.

13 See [15] for an informal explanation of shallow and deep embeddings.
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Similarly, a negated sentence like (9) needs to be given semantics, but it would
be simply negating the semantics of ‘Tables talk’ since the latter is meaningless
(i.e., ill-typed)'*.

(9) Tables do not talk.

Also, some conditionals correspond to hypothetical judgements and require
a treatment as well (we omit the details here).

The theory of predicational forms [8] is a logical theory to deal with the above
issues. Based on it, suitable semantic interpretations can be given to negated
sentences and conditionals as intended.

The formalisation of the theory (and examples) can be found in predhyp.v.!?
For instance (just showing one example), the following sentences and inferences
have been done:

(10) It is not the case that John is not a man.
(11) Tt is not the case that every human is a logician
(12) Some red tables do not talk = Some tables do not talk

Another theory is to consider how to deal with inferences concerning CNs.
Individuation.v contains an account of how individuation criteria should be
decided within an MTT. The general idea is that every common noun is associ-
ated with its own identity criteria (IC) which can be inherited by other common
nouns (see [22] for the theory on this and more detailed discussions on ICs.)
For example, one can assume that Man inherits its IC from Human. Given this
assumption, common nouns are not simple types but setoids whose first compo-
nent is a type (the domain of the CN), in DomCN (which is the old CNuniverse)
and whose second component is its IC. So under this view, the common noun
Human will be represented by the following (we use capitals to denote the new
formalization and retain the first letter with uppercase notation to denote the
type in DomCN):

(13) HUMAN = Y(Human,=g)

Several IC criteria are defined for different common nouns and dot.types like
book are given two different IC criteria depending on whether their physical or
informational aspect is individuated. Thus, we have:

14 Note that it is not given false as in MG.

!5 The files FracasCoq.v and test.v are meant to be used in conjunction. Actually
FracasCoq loads test.v. FracasCoq.v contains a number of FraCasS test suite examples
formalized in Coq along with their proofs.
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(14) BOOK, = X(Book,=p)
(15) BOOK, = X (Book,=r)

A number of proofs then follow including, for example, a proof of the following:

(16) John picked up and mastered three books =
John picked up three physical objects and mastered three informational
objects

Remark 3. One issue that is worth mentioning here, is that of automation. Coq
is an interactive theorem prover, which means that the user guides the prover
to the proof. However, Coq has a very powerful tactic language that can be
used in order to construct composite tactics that can automate part of or whole
proofs. We have defined a number of tactics that can automate proofs. The
interested reader can check for example the automated tactic AUTO in the
files Davidson.v (for example BRUTUS1 to BRUTUS4 are proven using AUTO
only) and MontagovianLexicon.v. AUTO can prove all theorems in these two
files. A more advanced automatic tactic is needed for the proofs found in the
FracasCoq.v file. Such a tactic is AUTOa (this tactic also solves all the goals in
the previous files solved by AUTO) [5,6]. All proofs can be automated with this
tactic except one that is semiautomated (see FracasCoq.v file).

4 Conclusions and Future Work

In this paper, we have argued for the use of the proof assistant technology for nat-
ural language semantics. In particular, we have argued, that the time is mature
for such an endeavor given the progress made in both the proof technology itself
as well as the use of constructive type theories for natural language semantics.
We have prepared a number of small libraries for NL semantics using the proof
assistant Coq based on Luo’s TTCS and have shown the benefits of such an
endeavor by exemplifying the use of proof assistants as natural language rea-
soners or as checkers of the formal validity of proposals in formal semantics. We
have lastly shown how experiments with semantic accounts proposed in several
semantic frameworks can also be implemented in Coq.

As future work, we are envisaging the extension of work as regards infer-
ence by endorsing a system where a tight correspondence between syntax and
semantics exists, in the same way such a correspondence is found in categorial
grammar. This builds on theoretical work of second author, where a proposal
for extending the Lambek calculus with dependent types can be found. Given
such a development one can then define a parser based on this extended Lambek
calculus with dependent types, which will automatically give us MTT-semantics
as output. These semantics will then be used by Coq to perform reasoning tasks.
The ultimate goal is to develop a wide-coverage, robust parser that will then be
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able to output semantics for larger pieces as well as open text. Similar work
using multi-modal categorial grammars or combinatory categorial grammar has
been shown to be feasible. If this is the case, this is a great chance of using
a more structured semantic framework as well as a specific purpose reasoning
device (Coq) in order to deal with NLI.
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Grammars
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Abstract. A derivational approach to event semantics using pregroup
grammars as syntactic framework is defined. This system relies on three
crucial components: the explicit introduction of event variables which are
linked to the basic types of a lexical item’s grammatical type; the uni-
fication of event variables following a concatenation of two expressions
and the associated type contraction; and the correspondence between
pregroup orderings and the change of the available event variables asso-
ciated to a lexical item, which the meaning predicates take scope over.

Keywords: Pregroup grammars + Formal semantics -+ Conjunctivism

1 Introduction

This project aims at studying implicit event variables over which meaning predi-
cates take scope and their interaction throughout syntactic derivations. A deriva-
tional system will be put in place around the pre-existing pregroup grammar
framework to handle these variables compositionally using a unification process,
while at the same time providing for a very natural semantics for pregroup
grammars.

More concretely, it will be shown how by extending the usual pregroup frame-
work with a semantic layer and by assigning explicit event variables to the syn-
tactic categories of an expression, we can get semantic extraction from pregroup
derivations without too many complications. The resulting meaning will be neo-
davidsonian and conjunctivist in form, that is, the meaning will be analysed in
terms of events, and a single logical operator will be used during the combina-
tion of meanings: the conjunction A. This is in opposition to the more traditional
approach of logical analysis called Functionalism that treats semantic composi-
tion as function application: a sentence such as (1a) will not have corresponding
logical form (1b) but instead have the form (1c) where what are usually treated
as arguments to the verb — John, Mary — are instead related to it by the
thematic role they play in the event that the verb characterizes.

(1) a. John likes Maria
b. [John likes Maria] = like(John)(Maria)
c. [John likes Maria]
= Je.Agent(e) = John A like(e) A Theme(e) = Maria
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DOI: 10.1007/978-3-662-53826-5_7



100 G. Gaudreault

Using conjunctions as sole mean of meaning combination makes it harder at
first to analyse certain constructions, but this is a small price to pay for the
level of generality and overall derivational simplicity that will be obtained in the
end by equating syntactic combination (pregroup contractions) with meaning
conjunction.

2 Pregroup Grammars

The syntactic framework that will be used for this project is called Pregroup
Grammars and is a recent descendant of the original syntactic calculus which
arose from the study of resource sensitive logics [2,8,9]. They are called as such
because their syntactic types form a special mathematical structure called a
pregroup. The semantic system defined later could be worked out independently
of the pregroup framework, though they seem to work well together for multiple
reasons.

A pregroup [9] P = (P,—.,",!,- 1) is a partially ordered monoid on a set of
elements P, the set of basic types, in which to every element a € P corresponds
a right and a left adjoint — a” € P and a' € P respectively — subject to

l

a-a" —1—a -a ad-a—1—a-d

The left sides of the relations are called contractions and the right sides,
expansions. More precisely, the types forming a pregroup satisfy the following
properties:

— Existence of an identity element 1: a-1=1-a=a,forany a eP
— Associativity of type concatenation: a-(b-¢c)=(a-b)-c, fora,bceP
— Reflexivity of the ordering: a — a, for any a € P
— Antisymmetry of the ordering: ifa—band b — athena=0», for a,b €P
— Transitivity of the ordering: ifa— band b — cthen a — ¢, for a,b,c € P

The set of types closed under the " and ! adjoint operations is called the set
of simple types.

A pregroup grammar G = (X, P,—,",' 1, T) consists of a lexicon X and
a typing relation T C X x F between the alphabet and the pregroup freely
generated by the simple types of P and the ordering relation —. This simply
means that each element of the lexicon is associated with one or more strings of
simple types. For instance, (want,i¢') will be used in a sentence like (2a) and
(want,ij') in (2b).

(2) a. You want for Mark to lead a happy life
b. You want to eat ice cream

Here are common basic types:

s: declarative sentences so: declarative sentence in the past tense
N': proper nouns 1: infinitives of intransitive verbs
7n: COMMON NOUnNs f: complete noun phrases

m: subjects/nominative noun phrases o: objects/accusative noun phrases

and an example derivation:
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He likes her
(3) w3 (15 -s-0') -0
—mg-mh-s5-0-0—1-5-1—s

The fact that the structure is partially ordered also allows us to set a specific
ordering of grammatical types such as

n—mg — T S1 — S8

where o — ( means that « could also be used as [, e.g. a plural noun ns such as
cats could be used as an object o or plural subject 72, but not as a third person
singular subject 73, i.e. no — mo, but ny 4 3.

Using the orderings we can now analyse more complex sentences

John wants for the cat  that dogs fear to live
(4) N 7isél ¢jlo nnl n n'nollst ny wisol jit i

— T3 7rs<bl é5lot ont n nTnoltst s wsoljzl i —S

Note the use of the ordering relations 7 — 0, no — 7 — w3 and N — 3.

As pregroup types are merely concatenation of types, the order of contrac-
tions does not really matter. What really matters in this kind of grammar are
the derivation links that tell us how the different lexical items combine with
eachother in a given sentence:

A man will dance to save humanity
n nl n T s 4 ) T
(5) u ‘ \/ U U
s

3 Problems with Semantics in Pregroup Grammars

One of the major inconveniences of using pregroup grammars to do semantics
is that complex types can often be contracted in multiple ways, as we’ve seen
above. For instance, consider the possible types that could be assigned to the
subject position quantifier every in different grammatical formalisms:

(6) a. Traditional Categorial Grammars: (S/(N\S))/N
b. Minimalist Grammars[18]: = D -CASE
c. Pregroup Grammars: s(n"s)int

In the first two cases, the order in which the types or features are used is
well-defined and unique:

— Traditional Categorial Grammars: Type-elimination follows nestedness,
i.e. the quantifier must be joined to a noun phrase, then to a verb phrase
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— Minimalist Grammars: Feature-checking is from left to right, i.e. the quan-
tifier must be joined to a noun phrase, after which it could be used as a deter-
miner and finally moved by being selected by a higher node with a selectional
case feature

On the other hand, pregroup types aren’t ordered: any basic type present in
a type could theoretically be contracted at any point if it appears on the edge
of the type. For instance, in the following sentence, every has the possibility to
contract with either of its neighbours, John knows that or boy.

John knows that every boy dances
(7) <l 1,1

S5 s(7"s)'n' n  w's
The very liberal type structure of pregroups is essentially the reason why
traditional approaches to semantics do not work in that framework. For instance,
consider the type of a finite transitive verb

kicked
8
() 7" s0!
In Montagovian semantics [10,12], such a verb would correspond to a relation
between two entities, and would get assigned meaning:

(9) Az Ay.kicked(y,x):e —e—t

The order in which the subject and object get passed to the verb are very
important, as a situation where I kick someone is very different from a situation
where I get kicked by someone. But pregroup grammars cannot, in this sense,
place constraints on which type gets contracted first, at least without introducing
unwanted complexity to the system.

Note that there are already established approaches to doing semantics with
pregroup grammars, see [4,6,14,15]. The aim with this project is simply to show
that other approaches are also possible, that might also be simpler when doing
event semantics from a derivational point-of-view than using the A-calculus as
semantic framework.

4 Quick Overview of Event Semantics and Conjunctivism

Conjunctivism [13] is the idea that as smaller expressions concatenate, their
meanings simply conjoin. This approach is somewhat controversial, as for the last
hundred years formal semanticists have instead related semantic combination
with function application. To understand why and how this idea came to be,
it is useful to have an understanding of two of the major developments of this
branch of semantics: Davidson’s characterization of action sentences in terms of
events [5] and Parsons’ subatomic analysis of events [11].

The traditional way of looking at a verb of action such as kiss is as a logical
function that takes in two arguments — the subject and the object — and returns
a truth value.
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(10) kiss(z,y) =T <= =z kisses y < (z,y) € kiSSext

Here kissc,: is the set of pairs of people kissing.

For instance, if the extension of the verb kiss were kisseq: = {(J, M)} then
we could say that the only kissing happening is between John and Mary, John
being the kisser and Mary the kissee.

The values of the following sentences could then be found by translating them
into the appropriate logical form and checking if the membership conditions hold:

(11) [John kisses Mary] = kiss(J,M) = (J,M) € kisSezt = T

but [John kisses Paola] = L, as (J, P) & kisSext.
Another possible analysis would be in terms of events.

(12) John kisses Mary <= there is an event in which John kisses Mary

i.e. [John kisses Mary] = Je.kiss(e, J, M).

Letting the verb take an implicit event argument makes it then much easier to
deal with questions such as verb arity and sentential adjuncts, as constructions
like temporal, locative and manner adjuncts can now be redefined as independent
predicates over events. For instance,

(13) a. [John danced at the ball] = Je.danced(e, John) A Location(e, the ball)
b. [John danced yesterday] = Je.danced(e, John) A yesterday(e)

This kind of representation makes it also easier to analyse certain cases of
entailment relations: it is as simple as using A-elimination on the denotation of
a sentence with adjunct, to get its meaning without adjunct.

(14) danced(e, John) A With(e, Michael) b danced(e, John)

It is also possible to go even further [11] and treat subjects and objects not as
arguments of the verb, but in a way similar to how adjuncts are handled using
conjunctions. One can do so by introducing predicates standing for thematic
relations between events and entities, that share the event with the verb:

(15) [John kissed Julia] = Je.Agent(e, John) A kissed(e) A Theme(e, Julia)

Having verbs take in event arguments and no other grammatical argument
also mirrors the way nouns and adjectives interact; instead of sharing an entity
of some sort they are instead sharing an event or a state.

(16) a. [big grey cat] = big(z) A grey(z) A cat(z)
b. [intense dance] = intense(x) A dance(x)
c. [dance intensely] = dance(e) A intense(e)
d. [rain violently in Atlanta] = rain(e) A violent(e) A in_atlanta(e)
Cases of embedded sentences can also be treated similarly by letting the event

of the embedded sentence be treated as object and letting meaning predicates
associated to the lexical items be independent of one another:
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(17) [ John saw that Maria lied | = J.e.Agent(e, John) A see(e) A Past(e) A
J.¢/.Theme(e, ') Alie(e') A Past(e’) A Agent(e’, Maria)

The next logical step in our will to generalize even more how the mean-
ing of each lexical item can be seen as a piece of information that simply adds
constraints to the overall meaning of an expression, is to try to only have the
conjunction as mean of combination, and this is what Paul Pietroski brought
with Conjunctivism [13], inspired in part by the work of Schein [16,17] on plu-
rality. Pietroski’s proposal is that the semantics of any expression in natural
language consists in a finite conjunction of the meaning of its parts.

Connectives other than the conjunction are often used though in formal
semantics, and it is still not clear how sentences that seem to require them could
be modelled without. The crux of Pietroski’s argument relies on using a different
logic for sentential interpretation, namely, plural logic [1]. Plural quantification
is an interpretation of monadic second-order logic, similar to a two-sorted logic,
in which the monadic predicate variable is not interpreted as a set of things, but
instead as taking multiple values.

(18) z < X := = is one of the X's

The choice of this logic comes from the need to model plurality in cleaner
ways than with first-order logic. It has also a greater descriptive power and can
model meanings not accessible with first-order logic [1].

For instance, some predicates such as dance or boy are said to be singular and
require that the input is a singular value for it to be evaluated. The reasoning
behind this is that when someone asks of a group of people if they are boys,
they are not asking whether that group as a whole ¢s a boy, but rather, whether
each person of that group is a boy. Therefore, singular predicates evaluate plural
values by evaluating the singular values it is composed of.

This allows us to represent an expression such as two blue cats as

(19) IX.two(X) Ablue(X) A cat(X) A Plural(X)
which is then interpreted as:

— There is a (perhaps) plural entity

— This plural entity has two values

The values of the plural entity are blue

— The values of the plural entity are cats

— The entity has to be plural, i.e. has more than one value

Using this logic is a key component of Conjunctivism, as it also allows one
to model cases that seem to require extra logical tools like implication —, dis-
junction V or universal quantification V. For instance, the quantified sentence
every cat sleep can be represented as:

(20) JE.3X.EBvery-Ag(E,X) A cat(X) A sleep(E)

The reason why this works lies in the way each predicate contributes a specific
condition to the global meaning of the expression:
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— Bvery_Ag(E, X): are the values of X precisely the agents of the events E?
— cat(X): is every value of X a cat?
— sleep(E): is every event of E an event of sleeping?

The goal here is not to defend Conjunctivism as a valuable approach to
semantics, but only to show that, although it might not look like much at first,
it is powerful enough to handle interesting non-trivial cases.

5 Derivational Event Semantics Using Pregroup
Grammars

In this section, it will be shown how one could use the implicit event variables
instantiated by a lexical item’s corresponding meaning predicate to derive the
right neo-davidsonian representation of an expression. The idea is that those
variables can be turned into explicit objects that can be unified over as the
expressions are combined. To structure the derivations, pregroup grammars will
be used as the syntactic framework on top of which will be added the truth-
conditional semantic layer and another layer where interaction between event
variables take place.

The general process of unifying event variables is not required to take place in
the pregroup framework, or even categorial framework, though pregroup gram-
mars do offer some advantages over other syntactic frameworks for this type
of analysis, especially since their types are non-functional and some syntactic
relations are already defined in the system through type ordering, e.g. N — 3.

It would also be possible to adapt this framework to a montagovian one
where denotations are A-terms and where the syntactic types are functional (see
[3,7,20] for inspiration), but the end goal is really to show that the full power
of the A-calculus is not needed to get a good compositional semantics. We aim
to get something that really highlights how events relate to each other and how
simple meaning composition can really be. Simplicity is the key here.

The focal point of the analysis will also be different, in a sense, from what
is seen in more traditional approaches to semantics, as instead of focusing on
ways to combine expressions’ truth conditions and passing around predicates
to predicates, the event variables will themselves be the ones moving around
the syntactic trees, as they are the main shareable pieces of information in this
framework. On the other hand, the semantics predicates’ main role will be to
constrain the possibility of events to occur by restraining the possible values the
event and entity variables can take.

5.1 Motivation
Let’s start by looking at the event analysis of a simple sentence.

(21) [John dances] = Je.Agent(e, John) A dance(e)
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In this case, a single event e is shared by both lexical items. We want to com-
positionally explain how to get to that denotation so that one could define a
derivational system that takes words as input and outputs conjunctivist values.

(22)
John dances
Jde.Agent(e, John) A dance(e)

John dances

afer) B(e2)

In the above case, both « and (§ stand for the meaning of their respective
expressions and take as argument event variables e; and e;. Leaving aside for a
moment the question of what the exact values a and § stand for, an important
question to answer is: Where does e come from?

The main property of variables is their mutability, they can take any values
assigned to them. One does not have to know from the start what value they will
be taking at the end. In the following functional example, x does not have any
intrinsic value at the beginning, its raison d’étre is to take the value of whatever
term gets passed to the expression.

(23)
dance(John)

TN
Az.dance(z) John

Now, looking back at the event translation, neither the subject John nor
dances know what they will be taking scope over when the derivation ends. For
instance, in a sentence such as

(24) John knows that Sara dances

they would not have the same event as argument: the subject John is related to
a first event of knowing, while dances predicates over a totally different event
where Sara is the agent instead of John. The goal is to figure out what they
could have started with so that they end up with the right argument assignment.
Assuming that they start for instance with values Agent(e, John) and dance(e),
over the same event e, does not solve the problem: how did they know that they
both take the exact same event as argument? Getting the right variables in the
right place will be achieved by using unification on the variables.

Here is how the derivation of the logical form Je.Agent(e, John) A dance(e)
will take place:

1. Distinct variables are instantiated by john and dances’s semantic predicates,
to be taken as arguments: Agent(ey, John) and dance(es)

2. Lexical items are concatenated, from which it follows that the variables asso-
ciated with the syntactic categories that allowed the concatenation to take
place are unified. In this case, e; and ey are unified, i.e. e; = es.
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(25)
John dances
Agent(er, John) A dance(e2) Ae1 = ez

John dances
Agent(e1, John) dance(ez)

3. A final process then takes place that binds the instantiated variables

To improve readability, values of the form Alej,es] A e = ez will be auto-
matically replaced by Aley,ea/eq].

Note that actually keeping the two variables as distinct and binding each
one — hence binding twice instead of once — does not actually make any dif-
ference in the meaning:

(26) Jz.Jy.A(x) ABy) Nz =y < Jz.A(z) A B(x)

Now let’s have look at the sentence the cat dances, whose derivation tree
looks something like:
(27) The cat dances

the cat dances

A~
the cat

It would be nice to have the derivation process be similar to the one described
above, but that poses a problem, as doing so exactly the same way would give
us this kind of logical form:

(28) Je.the(e) A cat(e) A Agent(e,e) A dances(e)

The variable taken by the determiner phrase as argument should be a completely
different one from the one taken by the verb. The relation between those two
variables seems to be exactly what Agent(e, z) is defining: the variable from the
determiner phrase is the agent of the variable taken by the verb phrase.

This problem could be approached through two different angles. The first
way (see 29), following Pietroski [13] is to assume that the type of the deter-
miner and noun compound contains a unique implicit variable x it can refer to,
which, through a transformation from determiner phrase to subject — or by being
assigned case — gets a new semantic constraint Agent(e, z) added to its meaning
and a new event variable: the verb phrase can now only access e, which is fresh,
and not x anymore. In other words, a new grammatical role is now synonymous
with a change of available implicit variable and a closure of the old variable.
This solution has the advantage of being more theoretically motivated, but also
has its downsides when used in a syntactic framework like PG, which does not
restrict compounding of expressions as much as other frameworks.
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€

e
N
T dances (30) x/\e
d
(29) x . g\aj ances
t}@at the cat

The second way (30) this could be dealt with is by assigning different vari-
ables to the syntactic categories that form the type of the, so that when it first
concatenates with cat, the syntactic category that allows for the operation to
happen will be linked to x, and the one corresponding to the second concatena-
tion will contain a different variable, e.

The variable over which two branches unify is represented in the node.

Looking back at the previous tree, one see that e dominates it and might
wonder what it implies. For simplicity, it can be assumed that this node, which
is the final one in the tree, is of a basic category, e.g. s or C' as opposed to
a concatenation of categories, and so that this category corresponds to a single
variable, or has a single variable available for further concatenation, e in this case.
The reason is that if one were to use this expression within another expression
or if one wanted to concatenate extra lexical items to it, what would be shared
between the two would be the event variable e, and in no case the entity variable
r — assuming the internal structure of that subtree is not modified.

(31) 4

/\ (32) e

e e TN
A~ /\ e today
I th’Lle that e /\

P r  dances
Tz dances P
the cat
P
the cat

On the left, the sentence is included in the tree as an embedded clause, which
semantically would be represented as the variable e now being the theme of
€', the event over which I and think take place. On the right, the expression
is concatenated with an adjunct, which shows that the event e is still possibly
accessible from the expression the cat dances.

In a way, no matter how that constituent — the cat dances — is used, the
main information that will be shared and that could be quantified over, seems to
be the event. This is similar to the way syntactic categories behave, in the sense
that no matter how long an expression gets, if its syntactic category is A, it will
always be possible to use it anywhere where an expression of category A could
be used, no matter what other constituents it might contain. It does not mean
that the embedded subtree is completely opaque, but simply that its access is
more restricted.
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5.2 Semantic Pregroup Types

It will be now shown how to transpose that approach into the pregroup frame-
work.

To stay in the categorial state-of-mind, the system will be as general and
require as few rules as possible when it comes to generating the logical form:
systematic combination rules will be defined, but constraints as to when and
to what lexical items these rules can be applied is mostly left to the lexical
items themselves, by carefully specifying their syntactic types. No complexity
is added to the syntactic layer from the addition of this new semantic layer,
which means that the structure of derivations is no different than that of regular
pregroup derivations. This means that the usual parsing algorithms for pregroup
grammars can also be used, as long as clauses are added to handle semantics.

Note that the final representation of the meaning one will get at the end
of a derivation can be qualified as raw, as some aspects of the meaning of a
sentence cannot be reached simply by predicate combination, especially since no
pre-derivational thematic assignments are assumed to have taken place. Con-
cretely, this means that one might end up with the representation (33a) for
the sentence (33b) but then that extra semantic information could be reached
through meaning postulates such as (33c) as thematic roles depend on multiple
factors such as voice, grammatical functions and the nature of the verb itself.

(33) a. Je.Subject(e, John) A Passive(e) A Past(e) A Kick(e) A Time(e, Monday)
b. John was kicked on Monday
c. Subject(e, A) A Passive(e) A Kick(e) - Patient(e, A)

The most direct way of building a system to account for the kind of semantics
just seen above is to pair lexical items with a syntactic type, a set of available
variables and a truth-conditional meaning predicate, which scopes over different
values and variables. Those variables will be assumed to be instantiated when
the lexical item is first used, and their value will change through the derivation
depending on the way types contract.

The full value of a lexical item is then a tuple of the form:

(34) ((al,xl) . ((12,:62) LIPS (an,zn),A)

where a; is a basic pregroup type, z; an available implicit variable, and A a
logical formula that stands for the expression’s meaning.

For instance, the relative pronoun whom, will have the form (35a) which will
be rewritten as (35b) for clarity, and could be read as: the variable associated
with the sentential and subject type is possibly different from the one associated
to the noun types. This comes from the fact that whom is usually used as theme
predicate over 2 distinct variables, one corresponding to an event and another
corresponding to an entity.

(35) a. (n",x)-(n,z)- (s e)-(73,€)

b. ningsims.
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This is a good example of why having only one available variable per lexical
item does not work well with pregroup types: both the event and entity variable
have to appear within its meaning predicate at some point of the derivation,
but starting with either and trying to introduce the other at a later point brings
many complications. Not to say that it is impossible, just much more painful.

(36) a. the cat whom Caesar stabbed
b. Jz.i(e,x) A cat(z) A Je.Theme(e, z) A Agent(e, Caesar) A stabbed(e)

In this case, whom will have semantic value Theme(e, x), sharing the variable e
on the right with Caesar stabbed and x, on the left with cat.

Note that the kind or type of the variables is irrelevant in this system. There is
no real difference between x, e, or any other variable, and only the constraints put
on a variable can say something about it. Using specific characters to represent
variables such as x and e only makes reading descriptions easier.

It is tempting to use, for instance, entity types and event types and try to
copy what is done in Montagovian semantics, but in the end the types that would
end up being required would be very different from the Montagovian ones. For
instance, there is not going to be any boolean type passed around.

The reason is simply that the boundaries between entities and events are
very blurry: is the crash in The crash was brutal an event or entity? Similarly,
differentiating between activities, accomplishments and other eventualities [19]
does not seem necessary: it will be assumed that the kind of eventualities is
simply the result of the interplay between features or predicates, e.g.

(37)  a. I built the house for 10 hours : build(e) A for(e) - activity(e)
b. I built the house in 10 hours : build(e) Ain(e) - accomplishment(e)

5.3 Semantic Combinations

This section outlines a method of combining lexical items’ meanings given the
new tuple types defined above. As previously mentioned, the Conjunctivist app-
roach is followed here and the meaning of an expression takes the form of a
conjunction of the meaning of the parts, scoping over given event variables.

To get the right variables at the right place, the variables will have to get
unified over the contraction links. What this means is that whenever two syntac-
tic types contract, their contained variables are forced to take the same value.
This also affects the distribution of the other variables contained in those types.
Here is a simple example to show how it works:

big cat — big cat
(38) mgnl n, — Ny
big(x) cat(y) — big(x) Acat(y) Nx =y

While contracting the types, the constraint that x = y is added to the global
meaning. The variables could also be replaced automatically.
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What is nice about this is that a derivation can now be represented as seman-
tic predicates linked to each other by the variables they share, which also corre-
sponds to the contraction links. Put another way, the contraction links can be
labelled using the contained event and entity variables.

John likes the big cat
(39) T3¢ ﬂg,essoé oenl, ngnl, o
Agent(e, John) like(e) Theme(e, x) A the(e, ) big(z)  cat(x)
L o 4 L3 S S I |

5.4 Syntactic/Semantic Hierarchy

Let’s have a look back at example (27) that was discussed at the very beginning
of this chapter.

(40) [The cat dances| = Je.3x.the(x) A cat(x) A Agent(e,x) A dances(e)

Underlyingly, the variables are layered in this kind of way:
(41) e

r  dances

P
the cat

The task at hand now is to find a way of going from the variable that is
shared between the and cat to a fresh one that would then get unified with the
one coming from dances. There is actually a very simple way of relating this to
another pregroup operation and that is by extending the pregroup orderings, or
syntactic hierarchy, to take into account semantic constructions.

To remind the reader, since pregroups are ordered structures, some gram-
matical relations can be explicitly defined as orders. For instance,

n — o a determiner phrase can be used as object
j — w3 an infinitive verb phrase can be used as subject

A relation such as n — w3 could then be rewritten to include information
about the variables present in the types and about the extra semantic relation
they now play under this new syntactic type:

Ng T3.e

(42) Alz] = Agent(e,z) A Alz]

which is to be interpreted as: using a determiner phrase as a third person subject
means having its available entity variable used as the agent of the event specified
by the verb it will combine with.

He knows the person whom John  likes

T I 5 l ! 1\l X T 4
(43) 7r€0 ﬂ—el 561031 nzonzg nIl n12n732 (SO )cz N]ohn 7re3 853 063

Agent(eo, he) know(ey) the(zo) person(z1) Theme(ez,z2) T likes(es)



112 G. Gaudreault

Agent(eg,he)  know(eg) Theme(eg, o) Athe(zg) person(xzg) Theme(eg,zg) Agent(er, John) likes(er)

€q e To ‘ el—’r ‘
Lo 1

e ol ol
Tey Ty SeoOcy O¢y M

In this case, the rule used on the proper name John was:

N, T3

(44) John(z) = Agent(e, z) A John(z)

Note that it is not always necessary to go through a transformation of vari-
able, as potentially distinct variables could be attached to the basic types of an
expression, just like for the above case of the relative pronoun whom, or in a
case like (45) where all pieces naturally combine and the variables over which
expressions are unified varies as the concatenation takes place

(45) [He danced at school] = Agent(e, he) Adanced(e) A Loc(e, x) A school (z)

(46)

Se s

™
Te TeSe 525677'3: Ny
he danced gt  school

In this case the variable at the top of a branching represents the variable that
was unified.

5.5 Existential-Closure

Existential-closure is not as straight-forward to implement in this system and
will only be glossed over in this article. The main problem with trying to adapt
the kind of semantic system that researchers like Pietroski uses is that syntactic
types in pregroup grammars can combine in any order they want as long as they
are on the edge of the type. This is problematic, as more mainstream syntactic
systems usually does not work this way, and a lot of ordering is constrained by the
encoding of the grammatical categories, for instance by using internal/external
argument relations.

A simple example is how thematic relation assignment is usually dealt with.
A generative way of representing how the phrase my cat can play the role of
an agent could be as positing a covert agent-node that takes in the clause and
changes its domain of predication from an entity to an event

(47) [ Agent [my cat] |(e) = Jz.Agent(e, x) A [my cat](x)
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This way, if something is under the scope of agent, it will only have access to
z and not e, and on the other hand, x is bound inside the agent-node, hence if
one is working outside of it, they will not have access to z, but only to e. By
letting the determiner phrase be taken as an argument, the syntactic parsing is
also restricted, as the concatenation of my and cat is something that can only
happen lower in the tree, than the assignment of the agent role.

In pregroup grammars, the derivation could take multiple forms.

@ S
N

On the left, the ordering is used first on 7 — m, which corresponds, in a
sense, to combining a covert agent node with the determiner, before the latter
combines with the noun. On the right, the combination of the determiner and
noun takes place before the expression takes on the role of an agent, which is
equivalent to the unique generative representation discussed above.

This much more flexible way of combining expressions is the reason it is
harder to structure existential closure and is the reason multiple variables per
type are needed, as some of those operations take place in parallel, and sometimes
multiple variables have to be accessible at the same time. More precisely, in
this case, closing the variable as 7 goes to m before contracting the types (left
path) blocks the entity variable coming from the noun to be unified with the
determiner, which is dramatic. Restricting the order in which pregroup types
could combine is also out of the question here.

Two possible alternatives to 3-closure would be:

— Closing a variable after a contraction of one of the basic types it is present
in, only if it does not appear in any other basic type of the complex type it is
part of.

— Closing every variable instantiated at the end of a derivation, similarly to the
way J-introduction is used in logic. This works since the only logical symbols
we are working with are the conjunction and the existential quantifier.

Here is a complete table of the correspondence between the syntactic and the
semantic structures:

Syntax Semantics

Concatenation of basic types Conjunction of logical predicates
Contraction of types Unification on available event variables
Syntactic type ordering Conjunction of new semantic predicate
Variable disappears from the types | 3-closure
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6 Conclusion

The compositional semantic system defined in this article is an elegant and
natural way of defining a semantics for pregroup grammars which relies on light
machinery and intuitive operations, which are clearly its key characteristics.

Many questions are left to be answered, especially when it comes to the
internal structure of the events and how this kind of system might relate to the
typed A-calculus, which seems to be much more powerful and to have a greater
control on how predicates can be moved around and reorganized. The descriptive
adequacy of Conjunctivism is also an interesting question to investigate in the
future, which was only briefly addressed in this paper.
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Abstract. The distributional inclusion hypothesis provides a pragmatic
way of evaluating entailment between word vectors as represented in a
distributional model of meaning. In this paper, we extend this hypothesis
to the realm of compositional distributional semantics, where meanings
of phrases and sentences are computed by composing their word vectors.
We present a theoretical analysis for how feature inclusion is interpreted
under each composition operator, and propose a measure for evaluating
entailment at the phrase/sentence level. We perform experiments on four
entailment datasets, showing that intersective composition in conjunc-
tion with our proposed measure achieves the highest performance.

Keywords: Computational linguistics - Artificial intelligence - Nat-
ural language processing * Textual entailment - Inclusion hypothesis -
Compositionality - Distributional models

1 Introduction

Distributional models of meaning, where words are represented by vectors of
co-occurrence frequencies gathered from corpora of text, provide a successful
model for representing meanings of words and measuring the semantic similarity
between them [22]. A pragmatic way for applying these models to entailment
tasks is developed via the distributional inclusion hypothesis [8,9,11], which
states that a word u entails a word v if whenever u is used so can be v. In
distributional semantics terms, this means that contexts of u are included in
contexts of v. For example, whenever ‘boy’ is used, e.g. in the sentence ‘a boy
runs’, so can be ‘person’; thus boy - person. By projecting this hypothesis onto
a truth theoretical model, one may say that u and v stand in an entailment
relation if by replacing u with v in a sentence presumed to be true, we produce
a new sentence preserving that truth. For example, if the sentence ‘a boy runs’
is presumed to be true, so is the sentence ‘a person runs’, obtained by replacing
‘boy’ by ‘person’.
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One problem with distributional models of meaning is that they do not scale
up to larger text constituents, such as phrases or sentences. The reason is that
these do not frequently occur in corpora of text, thus the process of collecting
reliable statistics to represent them as vectors does not witness the distributional
hypothesis. This problem is usually addressed with the provision of a composition
operator, the purpose of which is to produce vectors for phrases and sentences
by combining their word vectors. Compositional distributional models of this
form generally fall into three categories: models based on simple element-wise
operations between vectors, such as addition and multiplication [19]; tensor-
based models in which relational words such as verbs and adjectives are multi-
linear maps acting on noun (and noun-phrase) vectors [3,7,10]; and models in
which the compositional operator is implemented as part of some neural network
architecture [12,21].

The purpose of this paper is to investigate, both theoretically and exper-
imentally, the application of the distributional inclusion hypothesis on phrase
and sentence vectors produced in a variety of compositional distributional mod-
els. We provide interpretations for the features of these vectors and analyse the
effect of each compositional operator on the inclusion properties that hold for
them. We further discuss a number of measures that have been used in the
past for evaluating entailment at the lexical level. Based on the specificities
introduced by the use of a compositional operator on word vectors, we propose
an adaptation of the balAPinc measure [14]—which is currently considered a
state-of-the-art in measuring entailment at the lexical level—for compositional
distributional models.

The theoretical discussion is supported by experimental work. We evaluate
entailment relationships between simple intransitive sentences, verb phrases, and
transitive sentences, on datasets specifically created for the purposes of this work.
We also present results on the AN N task of [2], where the goal was to evaluate
the extent to which an adjective-noun compound entails its noun. Our findings
suggest that the combination of our newly proposed measure with intersective
compositional models achieves the highest discriminating power when evaluating
entailment at the phrase/sentence level.

Outline. Sections 2 and 3 provide an introduction to compositional distributional
semantics and to distributional inclusion hypothesis, respectively; Sect. 4 studies
the inclusion properties of features in a variety of compositional distributional
models, while Sect.5 discusses the adaptation of the balAPinc measure to a
compositional setting; Sects. 6 and 7 deal with the experimental part; and finally,
in Sect. 8 we briefly discuss our findings.

2 Compositional Distributional Semantics

Compositional distributional semantics represents meanings of phrases and sen-
tences by combining the vectors of their words. In the simplest case, this is done
by element-wise operations on the vectors of the words [19]. Specifically, the
vector representation of a sequence of words wy, ..., w, is defined to be:
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Z E’i or @ E’i (1)
7 7

where ® denotes element-wise multiplication.

A second line of research follows a more linguistically motivated approach and
treats relational words as linear or multi-linear maps. These are then applied to
the vectors of their arguments by following the rules of the grammar [3,7,10].
For example, an adjective is treated as a map N — N, for N a basic noun space
of the model. Equivalently, this map can be represented as a matrix living in the
space N ® N. Similarly, a transitive verb is a map N x N — S, or equivalently,
a “cube” or a tensor of order 3 in the space N @ N ® S, for S a basic sentence
space of the model. Composition takes place by tensor contraction, which is a
generalization of matrix multiplication to higher order tensors. For the case of
an adjective-noun compound, this simplifies to matrix multiplication between
the adjective matrix and the vector of its noun, while for a transitive sentence
it takes the form: [

sv0 = (verb x obj) x subj (2)

where verb is a tensor of order 3. Compared to element-wise vector operations,
note that tensor-based models adhere to a much stricter notion of composition,
where the transition from grammar to semantics takes place via a structure-
preserving map [7].

Finally, deep learning architectures have been applied to the production of
phrase and sentence vectors, tailored for use in specific tasks. These methods
have been very effective and their resulting vectors have shown state-of-the-art
performances in many tasks. The main architectures usually employed are that of
recursive or recurrent neural networks [5,21] and convolutional neural networks
[12]. Neural models are “opaque” for our purposes, in the sense that their non-
linear multi-layer nature does not lend itself to be reasoned about in terms of
the feature inclusion properties of the distributional inclusion hypothesis, and
for this reason we do not deal with them in this paper.

3 The Distributional Inclusion Hypothesis

The distributional inclusion hypothesis (DIH) [8,9,11] is based on the fact that
whenever a word u entails a word v, then it makes sense to replace instances
of u with v. For example, ‘cat’ entails ‘animal’, hence in the sentence ‘a cat is
asleep’, it makes sense to replace ‘cat’ with ‘animal’ and obtain ‘an animal is
asleep’. On the other hand, ‘cat’ does not entail ‘butterfly’, and indeed it does
not make sense to do a similar substitution and obtain the sentence ‘a butterfly
is asleep’.

This hypothesis has inherent limitations, the main one being that it only
makes sense in contexts that contain no logical words. For instance, the substi-
tution of u for v would not work for sentences that have negations or quantifiers
such as ‘all’ and ‘none’. As a result, one cannot replace ‘cat’ with ‘animal’ in
sentences such as ‘all cats are asleep’ or ‘a cat is not asleep’. Despite this, the
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DIH has been subject to a good amount of study in the distributional semantics
community and its predictions have been empirically validated to a good extent
[9,14].

Formally, if word u entails word v, then the set of features of u are included
in the set of features of v. In the context of a distributional model of meaning,
the term feature refers to a non-zero dimension of the distributional vector of a
word. This makes sense since, according to DIH, word v subsumes the meaning
of word u. Throughout this paper, we denote the features of a distributional
vector v by F(7'), hence we have:

ulkv whenever F(W)C F(7) (3)

The research on the DIH can be categorised into two classes. In the first class,
the degree of entailment between two words is based on the distance between
the vector representations of the words. This distance must be measured by
asymmetric means, since entailment is directional. Examples of measures used
here are entropy-based measures such as KL-divergence [4]. Abusing the notation
and taking % and 7 to also denote their underling probability distributions,
this is defined as follows:

Dk (V]| W) = Zvi(lnvi — Inwy;) (4)

i

KL-divergence is only defined when the support of @ is included in the
support of . In order to overcome this restriction, a variant referred to by
a-skew [15] has been proposed. This is defined in the following way:

sa(UW, V) = Dxr(V et + (1 - a)v) ()

where « € (0, 1] serves as a smoothing parameter. Representativeness is another
way of normalising KL-divergence; it is defined as follows:

1
= TS Do) ©)

Representativeness turns KL-divergence into a number in the unit interval
[0,1]. As a result we obtain 0 < Rp (7| %) < 1, with Rp(%'||@) = 0 when the
support of ¥ is not included in the support of % and Rp(7'||w) = 1, when o
and U represent the same distribution.

The research done in the second class attempts a more direct measurement
of the inclusion of features, with the simplest possible case returning a binary
value for inclusion or lack thereof. Measures developed by [6,23] advance this
simple methods by arguing that not all features play an equal role in representing
words and hence they should not be treated equally when it comes to measuring
entailment. Some features are more “pertinent” than others and these features
have to be given a higher weight when computing inclusion. For example, ‘cat’
can have a non-zero coordinate on all of the features ‘mammal, miaow, eat,
drink, sleep’. But the amount of these coordinates differ, and one can say that,
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for example, the higher the coordinate the more pertinent the feature. Pertinence
is computed by various different measures, the most recent of which is balA Pinc
[14], defined as follows:

balA Pinc(u,v) = \/LIN(u,v) - APinc(u, v) (7)
where LIN is Lin’s similarity [16] and APinc is an asymmetric measure defined

as below: > [P( ) l’(f )]
TR )

APinc applies the DIH via the idea that features with high values in F ()
must also have high values in F(7'). In the above formula, f, is the feature
in F(W) with rank r; P(r) is the precision at rank r; and rel (f,.) is a weight
computed as follows:

APinc(u,v) =

o rank(f,]—'(?)) —
Tel/(f){(l] [7(v)|+1 fer(w)

9)

o.w.

where rank(f, F (7)) shows the rank of feature f within the entailed vector. In
general, APinc can be seen as a version of average precision that reflects lexical
inclusion.

We will return to the topic of entailment measures in Sect. 5, where we pro-
pose variations on A Pinc and balA Pinc that are more appropriate for entailment
in compositional distributional models.

4 A Compositional Distributional Inclusion Hypothesis

In the presence of a compositional operator, features of a phrase/sentence adhere
to some set-theoretic properties. In what follows, we present these properties for
a number of operators in various compositional distributional models.

4.1 Element-Wise Composition

For simple additive and multiplicative models, the set of features of the
phrase/sentence are easily derived from the set of features of their words using
the set-theoretic operations of union and intersection:

Fi+-+v,)=F(v1)U---UF(vy) (10)
Foi @ 0v,) =F(o1)N---NF(vg) (11)

The features of a tensor product of vectors consists of tuples of same-indexed
features, taken from their cartesian product:
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where vf refers to the ith element of the jth vector. Point-wise minimum and
maximum of vectors act inline with intersection and union respectively, providing
a feature inclusion behaviour identical to addition and point-wise multiplication.

F(max(v1,---,vn)) = F(o1) U---UF(,) (13)
F(min(vr,---,0,)) = F01) NN F(oy) (14)

In order to see this, let us consider the max case. In the linear expansion
notation, we have:

max(vy, -+ ,0p) = Zmax(v},vf, e d
i

where {a;}; is an orthonormal basis of space V where vectors wv; live. For
any arbitrary dimension aj, it is the case that a; € F(max(v7,:--,0,)) iff

max(vi,v7, - ,v}) # 0. For this to happen, it suffices that one of the v}’s is

ARA
nonzero, that is vjl- #0 or ng» # 0 or--- orwv} # 0, which is equivalent to saying
that @; € F(v1) U+ U F(v,). The case for min is similar, with the difference
that or is replaced with and, hence the set theoretic operation U with N.

Element-wise composition has certain desirable properties in relation to the
DIH. Firstly, it lifts naturally from the word level to phrase/sentence level;
specifically, for two sentences s; = wuj...u, and So = wvy...v, for which
u; F v, Vi € [1,n], it is always the case that s; F sy. This is a special case
of a theorem proved in [1] for general tensor-based models. As an example, con-
sider two intransitive sentences “subj; verb,” and “subjs verbs”, for which we

—_— — — —
have F(subj;) C F(subjz) and F(verb;) C F(verbs); then, it is the case that:
— —_ — — — —
F(subji) N F(verby) C F(subjz) and F(subjr) N F(verby) C F(verbs)
and consequently:
— —_— —_— —_—
F(subjr) N F(verby) C F(subjz) N F(verbs)

A similar reasoning holds for the union-based case, since we have:

— B —_ —
F(subj1) C F(subjz) UF(verby) and F(verby) C F(subjz) U F(verbs)

— Ce- — Ce-

thus F(subji) U F(verby) C F(subjz) U F(verbs). For the case of intersective
composition, the above makes clear another DIH property that holds in contexts
without logical words; that a phrase can be replaced with each one of its words,
i.e. red car can be replaced with car and with red. Note, however, that in this
case the same is not true for union-based composition, since the inclusion order
becomes reversed, which is clearly unwanted.

4.2 Holistic Phrase/Sentence Vectors

In the ideal (but not so feasible) presence of a text corpus sufficiently large to
provide co-occurrence statistics for phrases or even sentences, one could directly
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create vectors for larger text segments using the same methods as if they were
words. This idea has been investigated in the context of entailment by [2], who
present promising results for short adjective-noun compounds. Holistic vectors of
this sort are interesting since they can be seen as representing (at least for short
text segments) some form of idealistic distributional behaviour for text segments
above the word level. For this reason, we briefly examine the relationship of these
models with the compositional models of Sect. 4.1, with regard to their feature
inclusion properties.

We consider the case of intersective composition. For a two-word phrase wyws
with a holistic vector wyws, we start by noticing that F (m ) is always a subset
of F(w1) N F(ws) and specifically the subset referring to cases where w; and ws
occur together in the same context, that is:

F(wrws) = [F(w1) N F(w2)]jw, we € F(w1) N F(ws)

with the set equality to hold only when w; and ws occur exclusively in the
same contexts, i.e. the presence of w; always signifies that ws is around and vice
versa. The relationship between holistic vectors and intersective composition
can be leveraged to the phrase/sentence level. Recall the intransitive sentence
example of Sect.4.1; denoting the holistic vectors of the two sentences as 5707
and 5203, it is the case that:

F(5101) € F(5203) C F(53) N F(3)

In other words, intersective composition preserves any entailment relation
that holds at the holistic vector level, providing a faithful approximation of the
holistic distributional behaviour. Note that for the case of union-based compo-
sition this approximation will be much more relaxed, and thus less useful in
practice.

4.3 Tensor-Based Models

For tensor-based models, one needs a different analysis. These models lie some-
where between intersective and union-based models. Consider the simple case of
a matrix multiplication between a m x n matrix M and a n x 1 vector v, given
below:

w11 - Win
U1
W21 -+ W2n
X
Un
Wm1 **° Wmn
. . — — —
The matrix M can be seen as a list of column vectors (w7, ws, - - - , Wy, ), where
w; = (Wi, ,Wms)T. Then the result of the matrix multiplication becomes a

combination of scalar multiplications of element v; of the vector @ with its
corresponding vectors w; of the matrix M, as follows:

— — —
VW1 + Vw2 + -+ Vp Wy
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By looking at matrix multiplication M x ¥ in this way, we are able to describe
the features of F(M x @) in terms of the features of ¥ and the features of the
—, ..

w;’s of M. This is as follows:

Fwxv)= ] Faw) (15)
v;7#0

Generalizing slightly and calling v; a feature whenever it is non-zero, the
above can be written down in the following equivalent form:

U}—(@) |7 (vs) (16)

which means we collect features of each w; vector but only up to “featureness”
of v;, that is up to v; being non-zero.

The above procedure can be extended to tensors of higher order; a tensor of
order 3, for example, can be seen as a list of matrices, a tensor of order 4 as
a list of “cubes” and so on. For the case of this paper, we will not go beyond
matrix multiplication and cube contraction. The concrete constructions of these
matrices and cubes, presented in the next section, will make the above analysis
more clear.

Concrete Tensor-Based Constructions. While the feature inclusion prop-
erties of a tensor-based model follow the generic analysis above, their exact form
depends on the concrete constructions of their underlying tensors. In this section,
we go over a few different methods of tensor construction and derive their feature
inclusion properties.

We start by the construction presented in [10], which builds a tensor from the
properties of the vectors of its arguments. For example, an intransitive verb gets
assigned the vector ), S.bj,-, a verb phrase the vector ), @)?h and a transitive
verb the matrix ), S—bjti ® O_b])l Here, Sbj;/Obj; are the subjects/objects of
the verb across the corpus. The features of the phrases vo and sentences sv, svo
(where s/o are the subject/object of the phrase/sentence) are as follows:

F(s0) = JF(Sti) nF()  F@d) = JF(Obj:) 0 F(7)

F(550) = | F(5bj: © Obji) N F(F) © F(7)

The disadvantage of this model and a number of other models based on
this methodology, e.g. [13,18], is that their resulting representations of verbs
have one dimension less than what their types dictate. According to the type
assignments, an intransitive verb has to be a matrix and a transitive verb a cube,
where as in the above we have a vector and a matrix. We remedy this problem
by arguing that the sentence/phrase space should be spanned by the vectors of
the arguments of the verb across the corpus. In order to achieve this, we create
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verb matrices for intransitive sentences and verb phrases by taking the outer
product of the argument vectors with themselves, hence obtaining:

Uity ::Z‘%@STJE Uup ::ZOTJ';@@ (17)

When these verbs are composed with some subject/object to form a
phrase/sentence, each vector in the spanning space is weighted by its similarity
(assuming normalized vectors) with the vector of that subject/object, that is:

0= x iy = 3 (Sbji| 5)Sbj, (18)
W=, x T = Y (00 [9)00, (19)

We call this model projective. For the case of a transitive verb (a function of
two arguments), we define the sentence space to be spanned by the average of
the argument vectors, obtaining:

_ o STJZ + Obj; porars
Ttro 1= Z Sbji® — 5 |® Obji (20)

Sbj; + Obj
. - N
06 =" (% | Sbj:) (J;J) (Obj, | @)

Feature-wise, the above translate to the following:

FED) =UFE00) gm0 = UFO0) |y (o559

i

=1 -~
F(svo) = (f(Sin) Uf(Oin)) |7 (= 1) F (@ 1))

Informally, we can think of the terms following the | symbol as defining
a restriction on feature inclusion based on how well the arguments of the
phrase/sentence fit to the arguments of the verb. We close this section by noting
that in Sect. 6.2 we briefly present a statistical approach for creating the verb
matrices based on holistic phrase vectors, along the lines of [3].

5 Measuring the CDIH

When computing entailment at the lexical level, balA Pinc (Eq. 7) has been found
to be one of the most successful measures [14]. However, the transition from
words to phrases or sentences introduces extra complications, which we need to
take into account. Firstly, in a compositional distributional model, the practice
of considering only non-zero elements of the vectors as features becomes too
restrictive and thus suboptimal for evaluating entailment; indeed, depending on
the form of the vector space and the applied compositional operator (especially
in intersective models), an element can get very low values without however
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ever reaching zero. This blurring of the notion of “featureness”— in which zero
can be seen as a lower bound in a range of possible values—is in line with the
quantitative nature of these models. In this paper we exploit this to the limit by
letting F(w) to include all the dimensions of .

Secondly, we further exploit the continuous nature of distributional models
by providing a stronger realization of the idea that u - v whenever v occurs in
all the contexts of u. Let fﬁ“) be a feature in .7-"(7) with rank r and f,gv) the
corresponding feature in F (%), we remind that Kotlerman et al. consider that

feature inclusion holds at rank r whenever fT(-u) > 0 and f,»v) > 0; we strengthen
this assumption by requiring that i) < £{*). Incorporating these modifications
in the APinc measure, we redefine P(r) and rel’(f,) in Eq. 8 as:

@) 1) < (0) o < < |7
7n):|{f"" |f7’ _f"' 9 7’_|u‘}| (21)
T

et = {5 < 1, )

0 o.w.

P(

Note that the new relevance function essentially subsumes the old one (Eq. 9)
since by definition high-valued features in (%) must be even higher in F(7')
We now re-define APinc at the phrase/sentence level to be the following:

>, [P(r) - rel ()]

|

)

SAPinc(u,v) = (23)
where P(r) and rel’(f,.) are as defined in Eqs. 21 and 22, respectively, and ||
is the number of dimensions of . We further notice that when using SAPinc,
a zero vector vacuously entails every other vector in the vector space, and it is
entailed only by itself, as is the case for logical entailment.

We now proceed to examine the balanced A Pinc version, to which Kotlerman
et al. refer as balAPinc (Eq.7). This is the geometric average of an asymmet-
ric measure (APinc) with a symmetric one (Lin’s similarity). The rationale of
including a symmetric measure in the computation was that APinc tends to
return unjustifyingly high scores when the entailing word is infrequent, that is,
when the feature vector of the entailing word is very short; the purpose of the
symmetric measure was to penalize the result, since in this case the similarity
of the narrower term with the broader one is usually low. However, now that
all feature vectors have the same length, such a balancing action is unnecessary;
even more importantly, it introduces a strong element of symmetry in a measure
that is intended to be strongly asymmetric. To cope with these issues, we propose
to replace Lin’s similarity with representativeness on KL-divergence (Eq.6), and
define a sentence-level version of balA Pinc between two word vectors @ and o
as follows:

SBalAPinc(u,v) = \/ Ro(@|[7) - SAPinc(W, ) (24)

Recall that Rp(p||q) is asymmetric, measuring the extent to which ¢ repre-
sents (i.e. is similar to) p. So the term Rp(%'||v’) in the above formula measures
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how well the broader term v represents the narrower one u; as an example, we
can think that the term ‘animal’ is representative of ‘cat’, while the reverse is
not true. The new measure aims at: (i) retaining a strongly asymmetric nature;
and (ii) providing a more fine-grained element of evaluating entailment.

6 Experimental Setting

We evaluate the compositional models and the entailment measures presented
above in four different tasks. Specifically, we measure upward-monotone entail-
ment between (a) intransitive sentences; (b) verb phrases; (c) transitive sen-
tences; and (d) adjective-noun compounds and nouns. The first three evaluations
are based on datasets specifically created by us for the purposes of this paper,
while for the adjective-noun task we use the dataset of [2]. In all cases, we first
apply a compositional model to the phrases/sentences of each pair in order to
create vectors representing their meaning, and then we evaluate the entailment
relation between the phrases/sentences by using these composite vectors as input
to a number of entailment measures. The goal is to see which combination of
compositional model/entailment measure is capable of better recognizing strictly
directional entailment relationships between phrases and sentences.

In all the experiments, we used a 300-dimensional PPMI vector space trained
on the concatenation of UKWAC and Wikipedia corpora. The context was
defined as a 5-word window around the target word.

6.1 Datasets

In this section we briefly describe the process we followed in order to cre-
ate datasets for deciding entailment between subject-verb, verb-object, and
subject-verb-object phrases and sentences. Our goal was to produce pairs of
phrases/sentences that stand in an upward-monotone entailment relationship to
each other. When entailing and entailed phrases have exactly the same structure,
as is in our case, one way to achieve that is to ensure that every word in the
entailed phrase is a hypernym of the corresponding word in the entailing phrase.
We achieved this by using hyponym-hypernym relationships taken by WordNet
as follows.

Firstly, we extracted from the concatenation of UKWAC and Wikipedia cor-
pora all verbs occurring at most 2.5 million times and at least 5000 times.
Then, each verb was paired with a hypernym of its main synset, creating a
list of 4800 pairs of verbs that stand in a hyponym-hypernym relation. Each
verb was associated with a list of argument nouns; for the intransitive task this
list contained nouns occurring in the corpus as subjects of the verbs, for the
verb phrase nouns in an object relationship, and for the transitive task sub-
ject/object pairs. Starting from the most frequent cases, each argument of an
entailing verb was paired with an argument of the corresponding entailed verb
based a number of constraints (for example, each noun could occur at most 3
times as part of an entailing phrase, and a specific phrase can only occur once as
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entailing phrase).! We went through the phrase/sentence pairs manually and dis-
carded any instance where we judged to be nonsensical. This process resulted in
135 subject-verb pairs, 218 verb-object pairs, and 70 subject-verb-object pairs,
the phrases/sentences of which stand in a fairly clear entailment relationship.
Each dataset was extended with the reverse direction of the entailments as neg-
ative examples, creating three strictly directional entailment datasets of 270
(subject-verb), 436 (verb-object) and 140 (subject-verb-object) entries. Table 1
presents a sample of positive entailments from each dataset.?

6.2 Compositional Models

We tested the additive and multiplicative compositional operators, as defined
in Eq. 1, a point-wise minimum model as discussed in Sect. 4.1, and a variation
on the tensor-based model introduced via Eqgs. 17-20. In relation to this latter
model, informal experimentation showed that by taking into account directly
the features of the distributional vector of the verb, the results improve. Let the
distributional vector of the verb be ¥ and the verb tensor be 7,, as computed in
Egs. 1720, for = € {itv, vp, trv}. Then a new tensor is computed via the formula

Uy := U O Ty, the feature inclusion behaviour of which is derivable as follows:
F(0,) = F(V)NF(v,)

For the experiments on the intransitive and the verb-phrase datasets, we also
use a least-squares fitting model for approximating the distributional behaviour
of holistic vectors (see discussion in Sect.4.2), along the lines of [3]. For each
verb, we compute analytically an estimator for predicting the ith element of the
resulting vector as follows:

w; = (XTX) " Xy

Here, the rows of matrix X are the vectors of the subjects (or objects) that occur
with our verb, and ; is a vector containing the ith elements of the holistic phrase
vectors across all training instances; the resulting w;’s form the rows of our verb
matrix. Finally, a non-compositional baseline, where the phrase is represented
by the vector (or tensor) of its head verb, is also evaluated where appropriate.

6.3 Measures and Evaluation

We present results for a variety of entailment measures, including SA Pinc and
SBalA Pinc as introduced in Sect. 5. KL-divergence is applied on smoothed vec-
tors, as suggested by [4]. For a-skew, we use a = 0.99 which in the past has showed
the best reporting results [14]. WeedsPrec refers to the precision measure intro-
duced by [23], while ClarkeDE denotes the degree of entailment measure of [6].

! These constraints were much more relaxed for the transitive task, because of data
sparsity problems.
2 The datasets will become available at http://compling.eecs.qmul.ac.uk/resources/.
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Table 1. Positive entailments from the three tasks at phrase and sentence level.

Subject-verb Verb-object

Evidence suggest - information express Develop skill F create ability

People believe F group think Solve problem + understand difficulty
Paper present - material show Sign contract F write agreement
Station serve + facility meet Reduce number F decrease amount
Survey reveal - work show Publish book F produce publication
Student develop F person create Sing song + perform music

Company operate - organization manage | Rejoin army + join force

Player play - contestant compete Gain experience - obtain education

Study demonstrate - examination show | Serve purpose F meet goal

News come - message travel Identify area - determine location
Summer finish - season end Promote development + support event
Report note - document state Suffer injury F experience condition

Book offer F product supply Undertake research F initiate investigation
Tree mature  plant grow Drive car + handle vehicle

Subject-verb-object

Report describe result - document explain process

Report outline progress - document describe change

Value suit budget F number meet standard

Book present account - work show evidence

‘Woman marry man F female join male

Author retain house + person hold property

Report highlight lack - document stress need

Public trust reference F people accept message

Study demonstrate importance = work show value

Police fight crime - force compete activity

Experiment test hypothesis F research evaluate proposal

University publish paper F body produce research

Brochure outline feature - booklet explain concept

Widow sell estate - woman exchange property

We also use strict feature inclusion as a baseline; in this case, entailment holds
only when F(phrase;) C F(phrases). After composition, all phrase/sentence vec-
tors are normalized to unit length.

Regarding evaluation, since the tasks follow a binary classification objective
and our models return a continuous value, we report area under curve (AUC).
This reflects the generic discriminating power of a binary classifier by evaluating
the task at every possible threshold.
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7 Results

7.1 Phrase and Sentence Entailment

Table 2 presents the results for the phrase and sentence entailment experiments.
As the numbers show, in all three tasks the highest performance is delivered
by a combination of SBalA Pinc or SAPinc with element-wise vector multiplica-
tion. Furthermore, it is interesting to note that SBalA Pinc clearly outperforms
balA Pinc in every compositional model and every task. The ability of the pro-
posed measure to better discriminate between positive and negative entailments
is further demonstrated in Fig. 1, where we examine the distributions of the two
classes when using balA Pinc (left) and SBalAPinc (right) in conjunction with
multiplicative composition for the verb-object task.

Table 2. AUC scores for the three phrase and sentence entailment tasks. Verb is a non-
compositional baseline based on comparing only the verb vectors of the two phrases,
® is element-wise vector multiplication, 4+ vector addition, ® tensor-based composi-
tion, and LstSqr a least-square fitting model approximating the holistic distributional
behaviour of the phrases.

Subject-verb Verb-object Subject-verb-object
Measure |Verb| ©® |MIN| + ® |LstSqr|Verb| ® |MIN| + ® |LstSqr|Verb| ® |MIN| + ® |LstSqr
Inclusion | 0.590.540.54|0.63/0.59| 0.50 |0.58|0.52|0.52|0.64/0.58| 0.50 |0.61|0.55|0.55|0.58|0.64 -
KL-div 0.59|0.66|0.68 |0.57|/0.59| 0.59 |0.62|0.64|0.66|0.61/0.60| 0.58 |0.61|0.65|0.71|0.54|0.60
aSkew 0.63]0.75|0.72|0.74|0.65| 0.62 |0.65|0.74/0.70|0.75/0.66| 0.57 |0.66|0.74/0.74|0.71|0.70
WeedsPrec| 0.67 | 0.75|0.75|0.65/0.67| 0.59 |0.67|0.70|0.71|0.68|0.67| 0.56 | 0.69|0.79|0.78|0.59/0.69 —
ClarkeDE | 0.57 | 0.66 | 0.63 |0.62/0.59| 0.56 |0.58|0.67|0.63|0.63/0.60| 0.53 |0.58|0.67|0.63|0.60|0.61 —
APinc 0.69|0.78|0.78|0.72/0.70| 0.60 |0.69|0.75|0.75|0.74/0.70| 0.56 |0.74|0.76|0.77/0.65|0.74 —
balAPinc | 0.65|0.72/0.71/0.70/0.67| 0.58 |0.66|0.70|0.69|0.71/0.67| 0.55 |0.67|0.71|0.71|0.64|0.70 -
SAPinc |0.65|0.81|0.74|0.72|0.71| 0.63 |0.62|0.82|0.740.72|0.68| 0.58 |0.59 |0.80|0.73|0.67/0.75 -
SBalAPinc| 0.650.810.75|0.72|0.69| 0.64 |0.66|0.79|0.74|0.73/0.68| 0.59 |0.63|0.80|0.76|0.67|0.76 -

AUC 0.70 i AUC 0.79
F1  0.68 H F1 074
Acc 0.65 i Acc 0.74

9%

Fig. 1. The distributions of positive and negative entailments when using balA Pinc
(left) and SBalAPinc (right) in combination with multiplicative composition on the
verb-object task. The dashed red lines indicate the means, while the thick black lines
correspond to the thresholds that optimize informedness—equivalent to AUC sub-
tended by the highest operating point [20].
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7.2 Adjective-Noun Compounds

In this last experiment, we reproduce the AN F N task of [2], the goal of which
is to assess the extent to which an adjective-noun compound (such as ‘red car’)
entails the noun of the compound (‘car’). The dataset contains 2450 pairs of
AN F N entailments, half of which are negative examples that have been cre-
ated by random permutation of the nouns at the right-hand side. We use this
task as a proof of concept for the theory detailed in Sect.4, since when using
element-wise composition this sort of entailment always holds. The results, pre-
sented in Table 3, confirm the above in the most definite way. SBalA Pinc achieves
almost perfect classification when combined with multiplicative composition,
while SA Pinc shows top performance for union-based composition.

Table 3. AUC scores for the AN = N task.

Measure ® |MIN| +
Inclusion 1.00 | 1.00 | 0.50
KL-divergence | 1.00 | 1.00 | 0.87
aSkew 0.96 | 0.97 | 1.00
WeedsPrec |1.00| 1.00 | 0.85
ClarkeDE 1.00| 1.00 1 0.95
APinc 0.94| 0.94 1 0.84
balAPinc 0.99 0.99 0.84
SAPinc 0.91] 0.12 | 0.97
SBalAPinc |0.99 0.74 | 0.93

8 Discussion

The experimental work presented in Sects.6 and 7 provides evidence that the
measures introduced in this paper are appropriate for evaluating feature inclusion
at the sentence level, especially in relation to element-wise vector multiplication
as a compositional operator. This form of intersective composition seems to show
a consistently high performance across all tested measures—an observation that
is in line with the desired theoretical properties of these models as discussed in
Sect. 4. This implies that the intersective composition is especially suitable for
sentence entailment evaluation based on the CDIH. The reason may be the fea-
ture filtering methods applied by these models. The intersective filtering avoids
generation of very dense vectors and thus facilitates entailment judgements based
on the CDIH. On the other hand, union-based compositional models, such as
vector addition, produce dense vectors for even very short sentences (Fig.2). In
this case, entailment is better handled by information theoretic measures, and
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Feature inclusion after composition
— Additive ]

300

—  Multipl.
— MIN

250

N
=]
o

Number of features
G
o

-
o
=]

50

Sentence length (in words)

Fig. 2. Feature inclusion on the first million sentences of Wikipedia for three vector-
based compositional models (using vectors of 300 dimensions). For sentence lengths
greater than 5 words, additive composition produces dense vectors with all elements
greater than zero. The feature inclusion behaviour of the two intersective models (vector
multiplication and MIN) is identical, showing a polynomial decrease on the number of
features for longer sentences.

specifically the a-skew measure (Table 2), without however reaching the perfor-
mance of intersective models and feature inclusion.

The tensor-based model presented in Sect. 4.3 can be seen as a combination
of a union-based model (between the features of the arguments of the verb) and
an intersective model (between the features of the distributional vector of the
verb and the features of the vector of the verb phrase). While this idea does
not seem to work very well in practice—as it returns results lower than those
of the vector-based counterparts—the model outperforms the other full tensor
model, that is the least-square fitting model. One reason is that tensor-based
constructions similar to the ones in Eqgs.17-20 are more robust against data
sparsity problems than statistical models based on holistic vectors of phrases
and sentences.

In general, while intersective element-wise vector composition seems to be
more aligned with a CDIH, tensor-based models, similar to the one presented
in Sect. 4.3, provide an abundance of conceptual options, depending on how one
creates the verb tensors. At the same time, the tensor-based models preserve
the grammatical structure. Hence they can serve as an interesting test-bed for
reasoning on entailment relations at the phrase or sentence level.

9 Conclusion and Future Work

In this paper we investigated the application of the distributional inclusion
hypothesis on evaluating entailment between phrase and sentence vectors pro-
duced by compositional operators. We showed how the popular balA Pinc measure
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for evaluating entailment at the lexical level can be lifted to a new measure SBal-
APinc for use at the phrase/sentence level. Our results showed that intersective
composition with SBalA Pinc achieves the best performance. Experimenting with
different versions of tensor models for entailment is an interesting topic that we
plan to address in a future paper. Furthermore, the extension of word-level entail-
ment to phrases and sentences provides connections with natural logic [17], a topic
that is worth a separate treatment and constitutes a future direction.
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Abstract. We propose an improvement of Barker and Shan’s [4] NLcr,
for which derivability is decidable, which has a normal-form for proof
search, can analyse scope islands, and distinguish between strong and
weak quantifiers.
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1 Introduction

In 2014, Kiselyov and Shan [11] published a paper in which they presented an
elegant approach to the anaysis of various scope-related phenomena using, what
they call, the continuation hierarchy. The phenomena they cover are scope ambi-
guity, scope islands and strong and weak quantifiers. They cover these phenom-
ena using a mechanism which works on the sentence’s semantics, independent
of whatever form of grammar is used.

At around the same time, Barker and Shan [4] published a book containing
their findings on NL) and NLcy,, a pair of grammar logics, both with the ability
to analyse scope ambiguity using a strictly syntactic mechanism. In addition,
these logics can analyse “parastic scope” [3,4] and a quantifier which change the
result type of the expressions they take scope over. However, neither of these
logics is capable of analysing scope islands or strong and weak quantifiers.

In this paper, we rework NLcr, to a calculus which can analyse both scope
islands and strong and weak quantifiers, without losing the ability to analyse
parasitic scope or changing result types. For this, we base ourselves on work
by Moortgat [13] and Moortgat and Moot [14]. This approach requires a strict
focusing regime. Therefore, as an added bonus, adopting it results in the elimi-
nation of spurious ambiguity, and greatly enhances the efficiency of proof search
when compared to Barker and Shan’s [4] NLcy..

We will start our discussion by giving several examples of each of the afore-
mentioned phenomena. The following sentences are examples of scope ambigu-
ity, scope islands and weak quantifiers, respectively. They are given together
with their expected semantics, and are based on examples by Szabolcsi [16, p.
608,622].

© Springer-Verlag GmbH Germany 2016
M. Amblard et al. (Eds.): LACL 2016, LNCS 10054, pp. 134-148, 2016.
https://doi.org/10.1007/978-3-662-53826-5_9
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(1) “Someone read every book.”
a. Jz.person(z) A Vy.book(y) D read(z,y)
b. Vy.book(y) D Jx.person(z) A read(zx,y)

(2) “Someone said Kurt wrote every book.”
a. Jx.person(z) A say(z, Vy.book(y) D wrote(kurt, y))

(3) “Everyone said [Kurt dedicated a book to Mary].”
a. Vx.person(z) D say(z, Jy.book(y) A dedicate(kurt, mary,y))
b. Vz.person(z) D Jy.book(y) A say(z, dedicate(kurt, mary, y))
c. Jy.book(y) A Vz.person(z) D say(z, dedicate(kurt, mary, y))

The first of these examples is a canonical example of scope ambiguity.
Example (2) demonstrates a scope island: there is no reading in which “every
book” scopes out of the embedded clause, as this reading would imply that
there was potentially a different speaker for each book—*“Alex said Kurt wrote
Slaughterhouse-Five”, “Jules said Kurt wrote Cat’s Cradle”, “Sam said Kurt
wrote. ..” Example (3) shows that indefinites can scope out of scope islands.

We add two more sentences, which are examples of a quantifier which changes
the result type, and of parasitic scope, respectively. These examples based on
those given by Barker and Shan’s [4, p. 208] and Kiselyov [10].

(4) “John read a book [the author of which] feared the ocean.”
a. dr.book(x) A fear(:(Ay.of (y, author, z)), .(ocean)) A read(john, x)

(5) “Everyone feared the same ocean.”
a. Jz.Vy.fear(y, ((Az.ocean(x) Az = z))

These last two examples will play a less important role, as NL¢y, is already
capable of analysing both. However, in order to demonstrate that we have not
lost that capability, we will provide analyses of both near the end of this paper.

2 Background

In this section, we will briefly discuss NL¢y, and its sibling, NLy. NLcy, is an
extension to the non-associative Lambek calculus [12, NL;]. The history behind
NLc¢y, is somewhat intricate, but helpful to understanding, so we will briefly go
over it. The initial idea comes from the practice of encoding quantifier movement
as a tree transformation which introduces a binder [9]:

everyone
john AT,
likes everyone john

likes x
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To implement this idea in type-logical grammar, Barker and Shan add a struc-
tural A-construct to NL, and added the following structural postulate:!

Y| «— I o Az.X[z] (A)

As can be seen, the (A) postulate uses a new connective: the o (hollow product).
This connective is part of a new residuated family {\, o, /}, which starts out
as a copy of {\,e,/}. However, the addition of the (\) postulate allows you to
raise any constituent to the top-left? position in the structure, where—if it has
the right type—it can be “resolved” against the top-level type as follows:

SIAF B
Aoz X[z|F B R
Ae.E[z]F A\ B CFD
C [ (A\ B) o \z.X[z] - D
X[C J(A\ B)]-D

LJ
o

Barker and Shan call resulting system NL). While NL) fulfils the promise of
allowing a syntactic analysis of quantifier raising, scope ambiguity and parasitic
scope, it has some problems. Most notably, the system is hard to formalise and
to reason about, largely due to the presence of a binding construct in the syntax
of structures. While it is not impossible to formalise, the (A) postulate greatly
complicates meta-logical proofs.

To address this issue, and to ease their own investigation of the formal prop-
erties of NLy, Barker and Shan [4, ch. 17] introduce NL¢p,. This system uses
the fact that A\-terms can be represented as combinators in combinatory logic,
which removes the need for a binding construct. Barker and Shan use a variant
of Schonfinkel’s mapping to encode the linear A-construct as applications of the
combinators I, B and C:34

Iz = x, Bayz = xz(yz), Cryz = x2y

The resulting system is presented in Fig. 1.

Using the system in Fig.1, we can do quantifier raising in much the same
way as we did with the (A) postulate—although, as we now have to raise the
quantifier one step at a time, the proofs are much longer:

! It is important to note that this construct is purely structural, and that it is not
accompanied by some implicit form of computation (e.g. 8, n-conversions).

2 Tt should be noted that the decision to raise quantifiers to the top-left position, as
opposed to the top-right, is a stylistic choice made by Barker and Shan [4]. It is
entirely possible to use the mirrored versions of the IBC-rules together with the
(B [ A)\\ C type for quantifiers.

3 One can easily verify that the A-construct introduced by ()) is linear.

4 When comparing these equations to the IBC-rules in Fig. 1, note that e encodes
function application, but o encodes flipped function application.

5 In Fig. 1, and for the remainder of this paper, the letters I" and A are reserved for
structures, whereas the X' is used for contexts.
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Ara Ax
TFA Y[BJFC AelFB | I'-A LBlFC . TIeArB /R
X['e A\ B]FC \ I'-A\B Y[B/AeIFC / Ir'=B/A
A Y[B]FC Aol'+B I'+A Y[B|FC ToAFB
Y[ oA\ B|FC \ I'-A\ B R ZBfJAolFC J I'=BJA IR
T[AlF B Y[Ae(BoC)|FD Y[(AoB)eC|+D
Y[AoIlFB Y[Bo((BeA)eC)|FD Y[Ao((CeB)eC(C)|+D

Fig. 1. NLcy, as presented by Barker and Shan [4]. (When reading this figure, be wary
of the difference between the combinators B, C and the formulas B, C.)

JOHN @ LIKES @ np ks
JOHN e LIKESenpo It s
JOHN e npo (B e LIKES) e I+ s
npo (B e JOHN) e (B e LIKES) e I s

(B eJOHN) e (BeLIKES) e IFnp\\ s sks

JL

EVERYONE o (B @ JOHN) o (B @ LIKES) e I+ s
JOHN e EVERYONE o (B e LIKES) e It s

JOHN e LIKES ¢ EVERYONEo I F s
JOHN e LIKES @ EVERYONE |- 5

The labels JOHN, LIKES and EVERYONE abbreviate the types np, (np\ s) /np and
s /] (np\\ s), respectively. For a more detailed account of the relation between
NL, and NLcy,, see Barker and Shan [4]. For a more detailed account of various
encodings of combinatorial logic in structural rules, amongst which the encoding
of the linear lambda construct used by Barker and Shan, see Finger [8].

3 Scope Islands for NLcy,

Our aim for this section is to present an extension to NL¢y, which will allow us
to analyse scope islands, and therefore example (2).

To analyse scope islands, we need some way to block quantifier movement. If
you look at the IBC-rules in Fig. 1, you will notice that they allow constituents
attached to (the left of) a hollow product to move past solid products. This leads
us to suggest a fairly simple solution: insert anything that is not solid product.
For this, we use a residuated pair of unary connectives, ¢ and O [13,15]. The
relevant rules are presented in Fig. 2.

Y[AF B (N B YA F B I'+B
X[(OA)+ B r-oB X[0A]+ B (MEOB

OR

Fig. 2. Scope Islands for NLcr.
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Using these connectives, we can assign ‘said’ the type (np\ s)/0s. Instead of tak-
ing a sentence-argument from the right, ‘said’ now takes a closed-off sentence—a
scope island. Have a look at the derivation for example (2) given below:

KURT ¢ WROTE @ EVERY @ BOOK I s :
(KURT ® WROTE ® EVERY ® BOOK) I Os SOMEONE @ (np \ 5) F s

/L
SOMEONE e SAID @ (KURT ¢ WROTE @ EVERY @ BOOK) |- s

As long as the scope island (written (-)) is in place, ‘EVERY e BOOK’ cannot be
raised past it, for there is no rule which allows anything to move past a diamond.
But in order to remove the scope island, it has to be eliminated against the s
argument of ‘said’, and doing so isolates the embedded clause in its own branch
of the proof.%

4 Strong and Weak Quantifiers

In the previous section, we presented an extension to NLgp, which enabled us
to analyse scope islands. This extension blocks all quantifier movement out of
scope islands. Example (3) demonstrates that this is too coarse an approach.
Specifically, we would like to allow weak quantifiers, such as indefinites, to scope
out of scope islands.

We could approach this issue as a syntactic problem, and encode it using
structural rules, as we did with quantifier movement and scope islands.” However,
Szabolcsi [16] writes that “indefinites acquire their existential scope in a manner
that does not involve movement and is essentially syntactically unconstrained.”
Therefore, we feel that a syntactic approach would be out of place.

How do we approach the problem of weak quantifiers as a semantic prob-
lem? The solution is to use continuation-passing style (CPS). But how? Early
attempts, such as the work by [2], often works by applying a CPS translation
directly to the semantic terms. Such approaches, however, face a fundamental
dilemma. Because the CPS translation is applied to a solitary semantic term, a
deterministic translation cannot introduce scope ambiguity—or any ambiguity,
for that matter. However, making the CPS translation sufficiently nondetermin-
istic without causing spurious ambiguity is an arduous task. When Barker makes
the translation ambiguous, in order to capture scope ambiguity, this leads to the
number of introduced ambigous interpretations growing exponentially with the
sentence length. More recent approaches, such as the work by Kiselyov and Shan
[11], are much more sophisticated. Their approach allows for the creation of quan-
tifiers of different strengths (e.g. everyone;, everyone,, ...) essentially reducing

5 The presence of the structural diamond in the endsequent may seem problematic, but
recall that from the perspective of backward-chaining search we assign semantics to
a known sentence structure. If we switch to forward-chaining search, i.e. to parsing,
the need for a scope island will be inferred from the type of ‘said’.

" For instance, we could split the family \, o, / into two separate families, \*, 0%, J*
and \\*,0°, /°, each with their own copies of the IBC-rules, and add a structural
rule which selectively allows weak quantifiers to move past scope islands.
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scope ambiguity to lexical ambiguity. As a linguistic standpoint, this feels wrong.
Furthermore, their framework was engineered to be able to analyse phenomena
such as scope islands and weak quantifiers. This makes it too expressive (and
intricate) for the task at hand.

Instead, we base our CPS semantics on the approach of Moortgat and Moot
[14] and Bastenhof [6], who manage to elegantly integrate CPS semantics into
their grammar logic. Moortgat and Moot set up a calculus which enforces one
crucial property: every proof in the grammar logic is associated with unique,
normal-form semantics. In the context of scope ambiguity, this means that each
way to interpret a sentence with ambiguous scope corresponds to exactly one
proof in the grammar logic.

Focused NLcy,. Moortgat and Moot [14, Sect. 3.1] define a normal-form calcu-
lus for the Lambek-Grishin calculus (LG). They refer to this calculus as fLG—for
focused LG, after the technique, pioneered by Andreoli [1], which they use in
their calculus. Their version of focusing, however, is more general than that
of Andreoli, as they allow for the arbitrary assignment of polarities to atoms.
Andreoli’s [1] schema can be recovered by assigning all atomic formulas negative
polarity.

As NL is a fragment of LG, we can trivially extract a normal-form calculus
for NL from their work. We will, in their style, refer to this calculus as fNL.

It is important to note that they develop their calculus within the framework
of display calculus [7]. One advantage of this framework is that we can freely
add structural rules, without fear that we will lose the cut-elimination property.
Barker and Shan’s [4] extension of NL, NL¢y,, consists solely of a copy of an exist-
ing modality (\,0, /) and a number of structural rules. Therefore, by applying
these same changes, we can extend fNL to focsed NLgp,—or fNLcy,. The result is
presented in Fig. 3, together with the focused version of the extension for scope
islands from Sect. 3.

Equivalence between fNLcy, and NLcp, can likely be proven using an inter-
mediate system: display NLcp. One can trivially obtain this system from the
focused system in Fig.3 by dropping the focus marker “| |” and the focusing
and unfocusing rules. Equivalence between the display and focused variants of
a system was proven for classical NL by Bastenhof [5]. This proof can likely be
adapted for NLcr..

However, it is important to realise that, even in the absence of a formal proof
of equivalence between NLcy, and fNLcy,, the second remains a logical system
which can analyse all phenomena which Barker and Shan [4] show NL¢p, can
analyse.®

Decidable Proof Search. At this point, {NLcy, still has a problem, which
it shares with NLcy,: we do not have a decidable procedure for proof search.
Since it is a grammar logic, this means that we do not have a procedure for

8 Throughout the remainder of the paper, whenever we discuss one of the phenomena
discussed in Sect. 1, we will give an example proof in fNLcy,. In this way, by the end
of this paper, this claim will be backed up by evidence.
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Atom « s=s|n|np|...
Type A, B u:=a|A\B|B/A|A\B|B [JA|(A|OA
Struct™ A=A |T'\A|A/T|T'\NA|A[JTI|[4]
Struct™ I'  u=-A [ Iiely|olx |I|B|C|(I)
Context X =w=0|Y eI |[eX

Pol(s) = —, Pol(n) = +, Pol(np) = +,

ifPol(a):f{ [a]F o Ax" ‘ - Ha] Axf }ifPol(a):+
[A]Fa refA]

L - = R
A-rA Foc TF.A Foc
if Pol(A) = — if Pol(A) = +
IFA AFA
Unf? Unf*
4] i 2

r-[a] [B]ra @ LEANB L re[a]  [B]ra jp LEB A
[A\B]Fr\a I'eA\B [B/A]-a/r I'F-B/A
re[a] [B]ra , LIra\-B \R re[a]  [B]Fa ., LIEB-JA JR
[A\B|Frya r'H-A\B: [Bjalragr I'F-BJA

LE\A nbA/L LELL A NFAJT
2 i Res\e . /L Res/e AR Res\o 1:ﬂzResio
Nelt-A NelFA NolF A TiolbF A
I'tA Ine(Iyol3)FA (Itolx)elsH A
I'olFA Io((Bely)els)FA No((Celb)els)FA
AYEA r+ Al A I'+[B I-a
(4) OL LB g 4 Res0

OR oL
A FA (r)F[0B] [CA]r (4] r'+-0B IFA

Fig. 3. NLcrL reworked as a focused display calculus.

parsing. An easy way to obtain such a procedure is to change the system in such
a way that backward-chaining search becomes decidable. The reason this is not
decidable in NLcy, is because of the I-rule, which does not obey the substructure
property.9

Admittedly, there are other rules which do not obey the substructure prop-
erty: the residuation rules and the B and C rules do not enjoy it. However, the
residuation rules still enjoy a weak form this property: they do not increase the
size of the structure. This means that we can use loop checking to filter out
problematic branches of the search. More interestingly, the B and C rules have
the property that “whatever goes up, must come down.” At some point, the
quantifier will reach the top of the expression, and at that point, there are only
two things to do: (1) resolve the quantifier against the top-level type, thereby
eliminating a connective and breaking out of any loop; or (2) go back down along

9 In the case of NLcy, this is the subformula property.
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the same path. Yet when searching for a proof with the I-rule, we can always
introduce another I.

We will address this issue by restricting access to the I-rule using a license.
This license will be a new unary connective, written QA. Semantically, this
logical connective corresponds to a hollow product with a right-hand I (i.e.
A o I). However, as we want neither hollow products, nor the unit I, on the
logical level, we capture these in a single connective. We remove the I-rule, and
add the following three rules to the calculus in Fig. 3:

Ao I+

The first two of these rules are the display calculus rules for right-hand products.
The third is the remaining direction of the original I-rule. With this change,
quantifier raising is restricted to expressions of the form Q(C J (A\\ B)), and
proof search becomes decidable.

One problem which remains is that the B and C rules cause a huge amount
of spurious ambiguity. To see why, note that when raising multiple quantifiers, it
is possible to intersperse the various applications of the B and C rules in many
different ways. To solve this, we will take some inspiration from Barker and
Shan [4, ch. 17.6], who solve this issue, albeit in a convoluted way. They show
that NLy can be embedded in NLcy,, using a variant of Schonfinkel’s mapping
from A-terms to combinatory logic. Later, they show that a pair of derived
rules, /Ly and Y\ Rj, can serve as a normal-form for the structural rules of
NLcy,. However, these derived rules employ the structural A which, in the context
of NL¢r, is presumably immediately translated using Schoénfinkel’s mapping.
Instead of employing this two-step process, we exploit the similarities between
single-hole contexts and linear A-terms to derive a variant of the A-rule which
directly uses Schonfinkel’s mapping (written *) [cf. [4], ch. 17.5]:

a =1 _
Yel :((C.f).[’) %
T'eY =(Bel)eX) rral-a

We can use this mapping in the definition of a derived rule: the T|-rule, written
as 1 or |, depending on the direction in which it is applied.'® We can derive the
this rule using three lemmas:

Q1 S[A-0IlFA QI . [rrA B . I'oX[I"FA

Z[QAIFA X[oIlFA I ’ S[Col"FA

’

Using these lemmas, we can derive the two directions of T| as follows:

A-oTFA Y JLAIFA -
. X[A-oIlFA . T[AoIFA
1 X Ik QI X 7] L
Z[QAF A A-oXFA

10 These correspond to Barker and Shan’s [4, p. 201] EXPANSION and REDUCTION rules,
respectively.
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The lemmas themselves can be derived by induction on the structure of the
context Y. The derivation of Q/I and I™’ is done as follows:

IFeX[A-oIlFA

Y[A-ol]el'FA
———————Res/e ——————————Res\e
oAolEA o o SAClFA/T 5 SHATErNA o
QA-FA Z[QA|FA/T Z[QAFT\ A
——————Res/e —————Res\e
S[QA]e '+ A e S[QA]F A
S[ALeTEA Lo FeS[ALEA o
AFA B Y[LAlRA)T YLART\ A
0 ———1 Nel 71 T /1  y P teelt A G B
A oIFA S[A-oI]FA/T L[A-oI|FI\ A
——————— Res]/e ——————— Res\e

Y[A-ol]el'A

IFeX[A-oIlFA

These rules simply introduce or eliminate the unit I under some context X.
The actual movement takes place in the definition of T]’. In this proof, the base
case is simply the identity, as no movement is required to move out of the empty
context:

I'o((CeX[I"])eI") A
(FoX[I"eI"EA

o ((BeI")eX[I'])F A
I'"e (o X[I")EF A

Res/e Res\e
Yol FoXrra/r” o IelX: FoXFI"\ A T
S[Col'|FA/T" S[Mol'|FI"\ A
——————Res/e ————TRes\e

X[oI'eI"+ A I'"eX[I'oI"|FA

Note that the T-rule eliminates a logical connective—the Q—and therefore
has the subformula property. In addition, the |-rule, on the other hand, elimi-
nates the trail of Bs and Cs, and thus has the substructure property. Because
of this, proof search with these rules is decidable.

Furthermore, proof search with the T|-rule is complete. Briefly, this is true
because the IBC-rules can do nothing but move a constituent up, or down
along an existing path—the T|-rule mere captures this more succintly. A formal
proof of this can be given by implementing a normalisation function using the
commutative conversions for the B and C rules: one can move the applications of
the B and C rules around until they form a continuous sequence (interspersed
with residuation rules) starting (or ending) with an application of the I-rule.
This sequence of applications can then be replaced by a single application of the
Tl-rule. Therefore, proof search using the T|-rule is complete with repsect to the
IBC-rules.

We follow Barker and Shan [4], and derive rules corresponding to the jLx-
and \\ Rx-rules. These rules combine an application of T]-rule with an application
of JJL or \ R. We name them gL and ¢R, to signify that they no longer employ
a structural A, and because they can be composed to implement Moortgat’s [13]
g-connective:
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vrlays]  [Clra i

CJ(A\B)|FA )T

qL: —— Foc”
CJ(A\B)-FA X Res /o

C J(A\B)-0T+A .
Z[QC (AN B))|FA

S[A]F-B-
Jp Ao TEB gy
THA\-B
TH-A\ B

\R

As these rules eliminate at least one logical connective each, they still enjoy the
subformula property, so proof search with these rules is decidable. In fact, it is
slightly more efficient than with the T]-rule. The reason for this is that after
raising a quantifier, the only course of action is applying the /L-rule anyway—
and likewise for ¢R.!!

Henceforth, if we refer to proof search for fNL¢y,, we are referring to search
using the logical and residuation rules for \,e, /, \\,0, / and {,, and the gL
and ¢R rules.'?

Continuation Semantics for NLcgy,. A normal-form calculus for proof search
is a great improvement, but we were really after Moortgat and Moot’s [14, Sect.
3.1] CPS semantics. As with the calculus itself, we can trivially restrict their
translation function to fNL, and then extend it to cover fNLcy,. In Fig. 4, we
present the translation on types and sequents.

We extend the translation on types to a translation on structures as follows:
we translate all structural constants (I,B,C) as units, forget all unary structural
connectives (¢,0), and translate all binary structural connectives as products.
Atomic structures -A- are translated as [A]~ or [A]T, depending on the polarity
of the structure -A-.

s =t, n* = et, np* =e,
o if Pol(a) =

lf = { o e R @)
[A\B]" = ([A]" x [B]")" [A\B]~  =[A]" x[B]~
[B/AT" =(BI" x[AI")" [B/AI” =I[B]" x[A]"
[oAl* = [A]+ [oAl” = (A" H"
[oAL* = (A" D" oA~ =[A"+
QA" =141" [QAl- =AD"

[PFAl=[rT-[A]  [A]FAl=[AlF[A]-  [FF[A]l=[1TF (AT

Fig. 4. CPS semantics for focused NLcr,.

"1 This can be proven using a variant of Barker and Shan’s [4, ch. 17.6 and 17.7] proof
of equivalence between NL) and NLct,.

2 Tn fact, no proof will ever explicitly use the logical or residuation rules for \,o, /,
leading to a question of whether it is really necessary for / and \\ to be fully resid-
uated logical implications. But this is a matter for another paper.
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In this particular CPS translation, all function applications and abstractions
are contained within the focusing and unfocusing rules, which are translated as
follows:

z: [A] M : [A]~ x: [A]Y - M [A]R

k:[A]" + (Az.k M) : [A]R Foc VT IAlF e ) A UnfL
x: [+ M :[A]* " x: I M:[A]R R
v I (Vb M) : [A]F Foc z: [[]F Ow-My): [A]* Unf?

The other rules are translated either as axioms (Az’, Az®), identities (\R, /R,
\R, /R and all rules for ¢, ) or permutations (the rest). For instance,

z: [I]FM:[A]* y:[AJFN:[B]~
z: [I] x [A] - (M[m2/2], Nlmaz/y]) : [A]" > [B]~

L

An exception to this are the I-rules. Because we would like to be able to
simply forget the Q-connective upon translation, so that we do not have to store
unnecessary units in our lexicon, we have to insert or remove the units upon
using these rules.

Using these semantics, we can assign the indefinite article the type np / n.'3
This will result in two interpretations for (2), and three interpretations for (3),
as required. Let us consider the important steps in the derivation of (3):

1. the quantifier movement and scope taking of “everyone”;

2. the collapsing of the scope island, isolating the clause “[s Kurt .. Mary]” in
its own branch of the derivation;

3. the collapsing of “a book”, with the indefinite taking scope at the top-level.

If these steps are taken [1,2,3], we obtain interpretation (3a); if they are taken
[1,3,2], we obtain (3b); and if they are taken [3,1,2], we obtain (3c).'

5 Examples

In this section, we will present a number of analyses of the examples presented
in Sect. 1. In the interest of brevity, we will summarise numerous applications of
the residuation rules, beginning or ending with focusing or unfocusing rules with
‘dp’, for display postulate. In addition, we will leave out uninteresting subproofs.

First off, we present an analysis of (1), resulting in interpretation (1b).
The quantifier EVERY is assigned the type Q(s // (np\\ s)) / n, and SOMEONE
is assigned the type of a “strong” quantifier—that is to say, Q(s J (np\\ s)).

13 Quantifiers such as “someone” should be assigned the type np / n ® n, which means
we must also extend NLci, with logical products.
14 The normal-form requires that 1 occurs before 2, so this list is exhaustive.
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‘np - eREAD @ -np - - 5+
P P 4R

[J @ READ @ -np- - -n; s+
p- b onp R Unfh

. _ L
DoREADo-np-I— [s]F s Az

SOMEONE @ READ @ -np - - s

qR
SOMEONE e READ @ (1 1, S-
I Unfh

_ L
SOMEONE @ READ e [ - s Az

SOMEONE @ READ @ -Q(s / (np\\ s)) - F - s-

L
SOMEONE @ READ @ -Q(s / (np\\ s)) - F - s- qdp

BOOK I AzH Q(s // (np\\ s)) |- READ \ (SOMEONE \ -s-)
/L

I (READ \ (SOMEONE \ -s+)) / BOOK q
P

SOMEONE @ READ @ EVERY @ BOOK - -s-

Secondly, we present an analysis of (2), resulting in interpretation (2a)—the only
interpretation.

KURT @ WROTE e EVERY @ BOOK

OL :
(KURT ¢ WROTE ® EVERY @ BOOK) | {s np\s|knp-\-s
B
F(np-\-s)/(KURT « WROTE ® EVERY ® BOOK) 4

‘np - @ SAID o (KURT @ WROTE ® EVERY ® BOOK) - -s-

qR
0 e SAID @ (KURT ¢ WROTE @ EVERY @ BOOK) | -np \ s- Unfh
ny
g P — AIL
O e SAID @ (KURT @ WROTE @ EVERY @ BOOK) | np \ s Fes
y

SOMEONE e SAID e (KURT @ WROTE @ EVERY @ BOOK) |- -5-
As a third example, we show that we can analyse ‘a’ as a weak quantifier, using
the type np / n. We give an analysis of (3), resulting in the interpretation where
the indefinite takes wide scope—(3b). The quantifier ‘a’ takes scope when it is
combined with book.

EVERYONE e SAID e (KURT @ DEDICATED @ -np - @ TO @ MARY) I -5+
F (DEDICATED \ (KURT \ [(SAID \ (EVERYONE \ -s-))])) / (TO @ MARY)

- R
BOOKF ;. A%

F ((DEDICATED \ (KURT \ [(SAID \ (EVERYONE \ -s-))])) / (TO ® MARY)) / BOOK B

EVERYONE e SAID @ (KURT @ DEDICATED e A ¢ BOOK ® TO @ MARY) I -5

Lastly, we present analyses of examples (4) and (5). We demonstrate changing
result types using the word ‘which’, which we assign the type

Q(((n\n) / (np\'s) ] (np \ np)))-

In the second, for parasitic scope, we deviate slightly from Barker’s [3] treatment
of parasitic scope. We assign ‘same’ (and ‘different’) the type

Qs 7 (Qnp N\ s [ ((n Jn)\np\ )\ s)).
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1/
dp

‘(g) pue (§) sejdurexe jo sisAjeuy *g *S14q

S+ 4 NVHIDO @ HINVS @ HH.L @ AdUVHA @ HNOAYHTAT

7 s\ (s \du\\ (u/j]u) /] s\ du)py 7 < NVHDO @ [] @ HH.L ® AHHVHI ® ANOAUAAH

fun
¥ , s\ (s N\ du\\ (u ] u)/ s\ du)p- 4 NVEDO @ [] @ HHL  ATU VI @ ANOAIIAT
5 4 -s- 4 NVapO @ (s \ du \\ (u ] w)) /] s\ du)®) e dHL @ ATUVHI ® AINOAUAAL
T
s s\ du |4 nvano e ((s \ du\\ (u ] w)) ] s\ du)®) e dHL e AHUVHI ® []
s\ du- 4 Nvapo e ((s \ du\\ (u ] u)) /] s\ du)p) e IHL @ ATUVHI @ []
Th
-5\ du- 4 I \ du s\ du\\ (u /] u) |4 NVEDO e [] @ THL e AAUVHI @ []
ydun
: s\ du | (u /] w)- 4NVEDO @ [] @ HHL @ AHHVHI @ []
b
q -5 \\ du- { NvEDO® - U /] Uu- @ AHL ® AAUVEI ® []
yb
-§- | NVEDO® - U /] U- @ AHL @ AAUVHIe - du-
ap -5+ 4 NVEDO © THL @ AUV @ (HOIHM @ JO @ YOHLAV e HHL) @ J0OH @ V © AVIY @ NHO[

Nvano / ((((((-s-\ nHOCr) \ avay) \ v) \ 3004) \ (HOIHM e 40 @ HOHLAV @ FHL)) \ aduved)

1/
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b
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1/ -du \\ du- 4[] e 0  HOHLAY @ HHL

s\ du |4 -du- e qIYVHA

E.m../z:om.v/aéi/(Q/xoom;E fun

“du - - du- e 10 @ YOHLAYV e HIHL
s\ du - - du- e aauvad B .

((s-\ nHOP) \ avaw) \ v o

MOo0od
oy L3008 Ty
dp

Y s\ -du - - du- e qauvEd

S {-U-eV edvdH e NHO[
: -§ - - du- e qauvide - du-

4 NVEDO
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What this type does is quantify over an expression twice—once normally, to plant
its top-level quantifier, and once parasitically. Using this type, we can obtain the
semantics advocated by Kiselyov [10]. The proofs for these two examples can be
found in Fig. 5.

6 Conclusion

We presented an improvement over Barker and Shan’s [4] NL¢y, for which deriv-
ability is decidable, and which has a normal-form for proof search. In addition, it
can analyse scope islands, and distinguish between strong and weak quantifiers,
shown by the ability to analyse examples (1-5). Of these examples, (1-3) are
representative examples of scope islands and strong and weak quantifiers, for
which Kiselyov and Shan [11] provides a purely semantic analysis. The remain-
ing examples, (4) and (5), are examples from the work by Barker and Shan [4]
which motivated us to start from their syntactic approach.
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Abstract. A-DRT is a typed theory combining simply typed A-calculus
with discourse representation theory, used for modelling the semantics of
natural language. With the aim of type-checking natural language texts
in the same vein as is familiar from type-checking programs, we propose
untyped A-DRT with automatic type reconstruction. We show a princi-
pal types theorem for A-DRT and how type reconstruction can be used
to make pronoun resolution type-correct, i.e. the inferred types of a pro-
noun occurrence and its antecedent noun phrase have to be compatible,
thereby reducing the number of possible antecedents.

Keywords: Pronoun resolution - Discourse representation theory -
A-DRT - Type reconstruction - Principal types

1 Introduction

In order to give a compositional semantics for discourse, [2] have extended the
non-compositional and first-order approach of Discourse Representation Theory
(DRT, [10]) by adding A-abstraction and functional application. As is familiar
from Montague-semantics, the meaning of an expression can then be defined
bottom-up, by abstracting from the meaning contribution of the context; func-
tion application is then used to combine this meaning with those of expressions
from the context.

While DRT uses discourse representation structures, i.e. pairs of variables
and quantifier-free formulas, and avoids higher-order logic on its way to trans-
late natural language to first-order logic, Montague-grammar and A-DRT make
heavy use of higher order types and are commonly expressed in a simply typed
language.

Our first goal is to have a type-free notation of A\-DRS-terms, such that
meanings can be written without types, but checked for typeability by “recon-
structing” suitable types from types of built-in constants (polymorphic function
words and monomorphic content words in the lexicon) and the context of occur-
rence. For this, we will show that most general types exist and can be inferred
automatically. The second goal is to integrate the type reconstruction into a pro-
gram for pronoun resolution. We want to be able to type-check when a pronoun

© Springer-Verlag GmbH Germany 2016
M. Amblard et al. (Eds.): LACL 2016, LNCS 10054, pp. 149-174, 2016.
DOI: 10.1007/978-3-662-53826-5_10
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resolution (i.e. the unification of the discourse variable of a pronoun with the
discourse referent of an antecedent) is type-correct, and moreover, we want to
use the type reconstruction for unresolved pronouns to filter possible antecedents
by their types and the type of the unresolved pronoun.

2 X-DRT

Where [18] uses meanings like a — APAQ3Iz(Pz A Qx), man — Ax.man(z)
and walks — Az.walk(xz) and combines these by application to a man walks —
Jz(man(x) A walk(x)), in A-DRT of [2], one uses somewhat different lexical
entries

/\P)\Q(®P93®Q:c), Az AT

man(x) walk(x)

and an operation ® of merging discourse representation structures as in

lz
® man(x) © walk(z)|  [man(z), walk(x)|

In general, two discourse structures are merged by appending their (disjoint)
lists of discourse referents (variables) and formulas, respectively:

Liy...yTm ® Yi,-- s Yn _ Tiy--5Y15---
P1,---,Pk wly"'a¢p @17"'7¢17"'

Since a variable in the referent list is seen as a binding, a binder of each merge-
factor can bind free variable occurrences in the formulas of both merge-factors.
In a discourse A man walks. He talks., the meanings of the sentences have to be
combined. The pronoun he in the second sentence introduces a new discourse
referent y with the appropriate property. The combination of the meanings of
the sentences is the merging

x y
man(z), walk(zx) © talk(y)

of their discourse structures, followed by pronoun resolution: the referent y of
the anaphoric pronoun is resolved against some previously introduced discourse
referent, here x. This can be implemented by adding an equational constraint
x =y to the merged DRS, or by unifying the variables.

If one assumes some co-indexing of pronouns and antecedent noun phrases
as a result of syntactic analysis, one can use the referent of the antecedent noun
phrase as referent of the anaphoric pronoun. Then, the binding is dynamic, i.e.
the scope extends beyond sentence boundaries as the discourse goes on:

man(zx), walk(z)

®

talk(z)|
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With type reconstruction for A-DRT, one could just check the type-soundness
of pronoun resolution, i.e. that the semantic type of the pronoun occurrence fits
the semantic type of the referent of its antecedent. However, we want to use type
reconstruction to help pronoun resolution. To do so, we mark discourse referents
as anaphors or possible antecedents, use type reconstruction for A-DRT to infer
types for the discourse referents, and then do pronoun resolution with typed
referents. Our typing rules for DRSs and DRT’s accessibility relation are closely
related.

2.1 Untyped A-DRS-Terms

We use four kinds of raw expressions: terms, formulas, discourse representation
structures, and discourses:

Formula: ¢, :=T
Term: s,t: =2 (x € Var)

R(t1,... tn
| ¢ (c € Const) . (1 )
ADRS: D:==x (x € Var) | (17/\21/})
| AzD 4
| (Dy-Da) P
) (D= Do)
g | (D1V Dy)
| (z,D) .
| (D)@ Ds) Discourse: D :=¢
1 p) DD

All terms are atomic. Formulas are built from atomic formulas by conjunction
of formulas and (non-conjunctive) Boolean combinations of \-DRSs.

A boz or wvalue-DRS D is a pair ([z1,...,2,],¢) of a list [z1,...,2,] of
variables and a formula ¢, recursively defined by

([x1, 22, ..., Ts], ) ::{ma@, n=0,

<J317 <[aj2a s 7$n], (P>>, else.

Two DRSs D; and Dy may be merged to a DRS (D1 ® Ds). So far, the merge-
operator ® is just a constructor. We will later add reduction rules which provide
the intended meaning of the merge of two value-DRSs (with disjoint variable
lists) as

<[x17 s ’xn]790> ® <[y17 s vym]7¢> - <[:U1, sy Ty Y1y - 7ym]v (90 A 1/J)>

Finally, we want to have abstraction and application of A-DRSs. Note: We use
the pair notation (s,t) not for arbitrary terms s, t. Likewise for the types o x 7:
the intention is that ¢ is an individual type, 7 a DRS-type.
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The toplevel referents and the free variables of D are defined by

B free(z) = {x}
t fop(v) - 0 free(AzD) = free(D)\ {z}
op(AxD) =0
_ free(Dy - Dy) = free(D1) U free(Ds)
top(Dq - D2) =0
i, free(l} ) = frel)
free((z, D)) = free(D) \ {x}
top({z, D)) = {w} U top(D) free(D1 ® Dy) = (free(D1) U free(Ds))
top(D1 ® D3) = top(D1) U top(D2)

\ top(D1 @ D2)
For formulas built from DRSs, we put

free(—D) = free(D)
free((Dy = Ds)) = free((D1 V D3))
= free(D1) U (free(D2) \ top(D1))

This is motivated by considering free variables of Dy (representing pronouns) as
bound by toplevel referents of D; (their antecedents). However, these notions
are not stable under B-reduction —: for example, for D1 = Ay([z],¢) - y and
D' = {[z],¢) we have D1 — D!, but top(D1) = () # top(D}), and so (D1 = Ds)
may bind less variables of Dy than (D] = Ds). Hence these definitions make
sense for expressions in A-normal form only.

In Sect. 5 we define the meaning of application - by S-reduction, i.e. by reduc-
ing an application (¢ - s) to the substitution ¢[z/s] of free occurrences of z in ¢
by s. Some care is needed to avoid variable capture.

We treat toplevel referents of a merge-factor as binders with scope over all
factors. Hence, when substituting a free occurrence of x in (D; ® Ds) by s, we
have to a-rename the top-level referents of D; and Dy to avoid capturing free
variables of s. But we also have to rename toplevel referents of s when applying
[x/s] to (D1 ® D3), since s might become a merge-factor, as for D; = z, and
then its toplevel referents would capture free variables of Ds. Since D1, Ds, s
might have toplevel referents after some reductions, we define t[z/s] in such a
way that all bound variables and referents of ¢t and s are renamed to fresh ones
before the free occurrences of z are replaced.?

! In Sect. 6.2, the DRSs are computed bottom-up along the syntax tree, and at each
syntactic construction, the DRS resulting from a combination of the constituents’
DRSs is reduced.

2 Qur implementation actually does the renaming only when applications are involved,
s0 AP((P-z)® (P-y))-AzD copies AzD to get (AzD-z)® (AzD-y) and then renames
referents in D when treating the applications as (D[z/z] ® D[z/z]). Thus, merge-
factors have disjoint reference lists, provided the lexical entries have.
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An essential clause in the definition of D[z/s] is:
(D1 @ Do)lw/s] = (Di[/s') @ Dolw/s"]),

where D} is D; with top(D1® D2)Nfree(s) renamed, and ', s are s with bound(s)
renamed. Similar clauses are needed to treat (D1 = Ds)[z/s] and (D1VDg)[z/s].
For example, if P is not in ¢, then in

({[z], ) ® (P~ 2))[P/AxD] = ({[2'], lz/a]) @ (P - 2')[P/AxD'])
= ([, pla/2]) ® D'[z/2]),

D’ is D with toplevel referents renamed and hence does not bind free variables
of .

3 Typing Rules

Montague-semantics and A-DRT usually come with base types e for entities and
t for truth values. As boxes are pairs (x, ) of a list of individual variables and
a formula, it seems natural to give them the pair type e* x t, where e* is the
type of lists of entities. Instead, all boxes have another base type in [2], and the
type s — (s — t) of binary relations between situations s (resp. assignments of
entities to discourse referents) in [19]).

For the kind of semantic checking of texts we want to do, a more fine-grained
typing of DRSs is needed. One should distinguish between entities of different
kinds, i.e. replace the base type e by a family (e;);cr of base types or sorts. The
type of a box (&, ¢) then becomes a pair e x t, so that, essentially, a typed DRS
(z, ) : e x tis a pair of a type environment x : e and a formula ¢ : t.

The type e x t of a merge-DRS D; ® D, then ought to be related to the
types e; X t and es X t of the constituents D; and Ds in that e is obtained by
appending ey and es, so e = append(eq, e3). However, since ® is just a DRS-
constructor, we will likewise introduce a type constructor ® and use a constraint
e = e ® ey in the type reconstruction process. Since the length of referent- and
type-lists have to match —even if we had only a single sort of entities—, we cannot
use the list type constructor *, but build type lists by consing a type e; to a list
e of types, e; X e, beginning with the type 1 for the empty list paired with a
truth value.

Types:

0,7 := « (type variables)
| e; (atomic types of individuals) | (o x 7) (DRSs with non-empty ref-list)
| t (truth values) | (0 ®@7) (merge-DRSs)
| 1 (DRSs with empty ref-list) | (6 — 7) (functions)

We call a type a drs-type, if it is of the forms «, 1, e; X 7, or 0 ® T with drs-types
o and 7. We write o x 7 x 1 for (o x (7 x 1)) and [o1,...,0,] for o1 X...x 0, x 1.
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Typing rules:

Using a typed DRS as a type context
Typing variables (and constants),

abstractions and applications 'k 2:0
,): 0, x:a(varg)
——— (var
x:o,Fl—x:a( 1 y:p,D:T,Fl—:c:or( )
2y I’I—ac:a( ) <y,D):p><T,FFx:0Uar4
var
y:m, ' x:0o ? D:p,E:o ' F x:7T ( )
z:p, I B t:T (abs) (DRE): (po), [ F z:T vars
abs
'k Xxt:(p—r1) I'E o7 ( )
var
I'-t:o—T1 F}—sza( ) (D1-D9):0, I - x:7 6
a
F"(t-S):T pp I+ o271
(vary)

AMyD:o, I’ b x:7

An assumption D : ¢ can only be used when D is a variable, a value-DRS,
or a merged DRS. The rules (vars) and (vary) amount to a typing rule

T1:01,...,Tn 00,1 F x:0

+
([X1,. -y xn], @) i [o1, .o yon), T F z:0 (var™)
which says that a typed DRS as assumption is used as a list of typing assump-
tions of its top-level discourse referents. By (vars), assuming a typed merged
DRS amounts to assuming suitably typed merge-factors. By (varg) and (vary),
assumptions for typed applications and abstractions can be ignored.

We need typed DRSs as assumptions to type merge-DRSs, disjunctions,
implications and discourses (rules (®), (impl), (disj), (;)), where part of the DRS
to be typed contains top-level referents whose types have to be assumed to type
the rest of the DRS.

Typing value DRSs and merged DRSs

(drsf)

I'F p:t z:o0 ' F D1 4
TR (drsy)

,p): 1 '+ (z,D):(cxT)
DQZTQ,F F D117'1 D127‘1,F F DQZTQ (®)
F l_ (D1®D2)2(T1 ®7’2)

Notice that in (drsj) a variable is removed from the context and built into a
DRS. Hence, (z, D) corresponds to a binding operator, written dx.D in Kohlhase
e.a. [13] But in (®) a typed DRS is used like a type context to type another DRS,
whereby the scope of (z, D) : o is extended to terms outside of D. This is what
Kohlhase e.a. [13] call “dynamic” binding of variables in D5 by binding operators
of D1 .
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Typing formulas
I'-t:mm ... I'F t,:m Fl_D:U(neg)
I R:T1—>(...—>(Tn—>t)...)( ) I' = =D:t
re
' F R(ty,...,tn): t I'F Doy
I'Fti:e Fl—tgze( ) D1101,FFD2102(0%5.)
I + tlitgit eqn I+ (Dl \/Dg)lt J
I'F p:t '+ Y:t . I't Dy:oy
(con)

I'F (pAY): t Dy :01,I' = Dy :o09

T (Dy= Dy it P

Discourses are sequences of sentences; to type the sequence of their DRSs,
each DRS is typed in the context extended by the previous DRSs. (Thereby we
can resolve pronouns anaphoric ally, to referents in the left textual context.)

Typing discourses
F}_DliTl DllTl,Fl_DQZTQ
Dy :7p,...,Dy i1, I’ b Dpyy ot Trg ()
't (D1; Dy o5 Dpgr) i (( (1 ®T2) o) @ Trpr)

In typing a term, a typed assumption D : ¢ can only be used by decomposing
it to the typed top-level discourse referents of D, using (vars) to (vars). This
cannot be done if D is a variable, application, or abstraction. We ignore assumed
typed abstractions by (vary), which is harmless since they cannot evaluate to
boxes, but (varg), ignoring assumed typed applications, is not: they may reduce
to a box containing z as a top-level discourse referent and thus block an assump-
tion z : 7 in I". We need to restrict (varg) to have a form of subject-reduction,
see Sect. 5.

By induction on the structure of terms, formulas and \-DRSs ¢, we obtain:

Lemma 1. Suppose for all x € free(t) and all typeso, I' - z:0 iff A + z:0.
Then I' F t:17iff A F t:T.

Corollary 1. 1. If I'/{[l,¢) : 1,A + s:0, then [, A F s:o.
2. If x:p,E:7,I' + s : o and x is not a top-level referent of E, then
E:rx:p,I' F s:0.

4 Type Reconstruction

We want to extend Hindley’s well-known “principal types”-theorem from (simply
typed) A-calculus to A-DRT. The theorem says that the set of typings I'F¢: 7
of a term t is the set of instances STy -t : Sy of a single typing Iy F ¢ : 19,
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where S : TyVar — Ty are the assignments of types to type variables. Then
It 19 is a most general or principal typing of t. A (principal) typing of ¢
modulo I' is a (principal) typing SI" F ¢ : o for some type substitution S and
type o.

It is not hard to see that instances of a DRS-typing are also typings of the
DRS.

Lemma 2. IfI' v D:o and S : TyVar — Ty, then SI" = D : So.

More work is needed to show the existence of principal typings.

Theorem 1. There is an algorithm W that, given a type context I' and a term
t, either returns a pair (U,T) of a type substitution U : TyVar — Ty and a type
T such that UI' & t: 7 is a most general typing of t modulo I', or returns ‘fail’,
if there is no (U, T) such that UI' + t:T.

The algorithm W has an easy modification which, on input (I, e) where e has a
type in some instance of I', not only delivers (U, ) such that UI' e : 7, but
also a variant €’ of e where variable bindings are annotated with types.

Proof. The proof is an extension of the proof of [6,9]. We only consider the cases
of variables and terms that are new in A-DRT over the A-calculus. Define W as
follows:

(Id,T), I'=x:7,I"forsomel”,

W({(D:o,E:7,I"),x2), '=(D®E):(c@T),I",
W(TI,z) = W({(z:0,D:7,I"),x) I =(z,D):0x7,I",

W(I", ), I'=s5:0,I",else,

fail, else

W(I,{x,D)) =Sax St, it W((z:a,I),D)=(S,1) for fresh TyVar «

(USQSl, (USQTl X UTQ)),
if for some 7, 7 and fresh as
W((Dsy: as,I'),Dy) = (S1,71),
W((Dy : 11,51),Dy) = (S2,72),
and U = mgu(ra, S2S102) # fail

fail, else

W(F’ (Dl & DQ)) =

By induction on ¢, we want to show that for all I", S, 7:

(i) W(I,t) terminates.
(ii) If W(I,t) = fail, then there is no typing of ¢ modulo I".
(iil) If W(I',t) = (S,7), then SI"  ¢: 7 is a principal typing of ¢ modulo I.
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Case t = z: (i) W(I, z) searches the type context from left to right, unpacking

boxes and merge-DRSs to lists of typed referents, and applies (vary) to the first
assumption z : 7 found. Clearly, this terminates. (ii) If W (I, z) = fail, then

no

assumption z : 7 is found in the (unpacked) context, so x is untypeable,

since (vary) cannot be applied to x. (iii) If W(I',z) = (S, 7), then S = Id and
I'=x:7,I" for some I''. Suppose RI' + z: pis a typing of x modulo I". Then

RI

=z : Rr,RI"”, and hence p = R7 by (vary). So R’ + x : p is obtained

from SI' + x: 7 by instantiating with R.

(i)

(i)

(iii)

Case t = (D1 ® Da):

W (I, (Dy ® D)) terminates, since by induction, W((Ds : a, I"), Dy) ter-
minates, for each (S1,7), W((Dy : 71,511"), D) terminates, and for each
(S2,72), mgu(ra, S2S1a) terminates.

Suppose there is a typing of (D; ® Dy) modulo I'. For some S, 71, 72, the
typing derivation ends in

DQI’TQ,SF - D127'1 D1:T17SF }_ DQITQ
SI' = (D1 ®D3): (11 ®T2)

(®).

Thus there is a typing of Dy modulo Ds : «s,I’, whence, by induc-
tion, W((Ds : «ag,I'),D1) # fail, and there is a most general typing
Dy : S100,51 I F Di : o1 of Dy modulo (Ds : ag,I’). Since it is most
general, there is a type substitution 77 such that

D2 : TQ,SF + D1 i T = D2 : TlSlag,TlSlf [ D1 IT10'1.
There is also a typing of Dy modulo
(Dl : Tl,SF) = (D1 . TlUl,Tl;SlF),

hence a typing of Dy modulo (D; : o01,51I"). Therefore, by induc-
tion, W((Dy : 01,511"),D3) # fail, and there is a most general typing
Dy : S501,5251" + Dy : 09 of Dy modulo (D : 01,51T). Since it is most
general, there is a type substitution 75 such that

DliTl,SF F DQITQ = DllTl(Tl,TlSlF F DQZTQ
D1 :TQSQUl,TQSQSlF " D2 : TQO’Q.

So we have Thoy = 7 = 11510, and on the type variables of S1I" and
o1, Ty = T555. On type variables 8 of Sias which are not in S11I" or o1,
we have Sy0 = ( as Sy is idempotent. We can assume that g is not in the
support of To and put Tb8 := T13, obtaining 718 = T5598. Then from
Tooy = 10 = T1S100 = 15555109, we know that oo and S9S7ja0 unify,
so mgu(og, S2S100) # fail. By the definition of W, it then follows that
W(F, (Dl ® Dz)) 7£ fazl

Suppose W (I, (D1 ® D3)) = (US2S51, (US201 ® Uog)) with U, S1, 82, 01,09
as in the definition of W. Then with fresh as, W((D2 : a9,I"),Dq) =
(S1,01), W((Dy : 01,811"), D2) = (S2,02), and U = mgu(oa, S2S102) #
fail. By induction, we know that
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(a) Dy: Sian,S1I" + Dy : o1 is a principal typing of D; modulo (Dy :

a2, F)a
(b) Dy :8901,551 " b Dy:0o is a principal typing of Dy modulo (D; :
g1, Slp)
By specializing the typing in (a) with USs and the one in (b) with U, one
obtains

DQ : USQSla27U5251F + D1 . USQO'l,
and D1 . USQO’l,USQSlF - D2 . UO’Q.

Since US2S1a9 = Uog, we can apply the rule (®) and obtain a typing
US>85 + (Dl (24 Dz) : (USQO’l X UO'Q)
of (D1 ® D3) modulo I'. It remains to be shown that this is a most general

typing.

So suppose (D1 ® D5) has a typing modulo I". The last step in the typing
derivation is

DQITQ,SF = D12T1, DllTl,SF F D22T2
ST + (D1 ®D3): (11 ®T2)

For the left subderivation of Dy : 75, SI" + D; : 7y we may assume 75 = Saq
for some fresh type variable ap. So D; has a typing (S, 71) modulo Dy :
aw, I'. By a) there is a type substitution T} such that (S, ) = (1151, T101),
whence

D2 . TQ,SF F D1 T = D2 : TlSlag,TlSlf H D1 ITl(Tl.
Now the right subderivation Dy : 71, SI" = D5 : 15 is a derivation of
D1 2T10’17T151F F D2 : TlSlag,

which is a typing of Ds modulo (Dy : 01,51"). By b), there is a type
substitution Ty with

Dy:m, ST’ v Dy = Dq:T155001, 15055, + Dy :Thos.
It follows that
SI''F (D1 ®Ds): (1 ®@712) =&T25:51T F (D1 ® Dy) : (TaS5201 @ Thos).
To show that this is an instance of the typing
USyS1 I + (D1 ® Ds) : (US301 @ Uos),

we need a type substitution R such that 75 = RU on the type variables of
S2S1F, SQO’l and 092. We have T20'2 = TllelQ. As in (11), T1 = TQSQ on the
type variables of Sjaa, s0 Tomg = 15551, and since U = mgu(7e, S2S1a2),
T = RU on the type variables of 75 and S5S57as. On other type variables
3, we have UG = 8 = RS and can redefine R := T30, to obtain 7o = RU
on all type variables of S9511", Soo; and os.
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The remaining cases of ¢ can be treated similarly.

Ezample 1. The lexicon entry for the indefinite article a in A-DRT of [13] is

where d is the type of individual concepts and t the type of DRSs. Simplify-
ing this to the extensional case and using the DRS-notation from above, type
reconstruction yields the principal typing

F APAQ({[z], T) @ Pr @ Qx): (a =) = (a =) = [o] @ y® 4.

Instead of the basic type ¢ for DRSs in [13], we have infinitely many types
[61,...,0,]. Moreover, we have the principal typing

man' :e —t F Xx{[],man’ x) : e — 1.
The unreduced meaning term for a man therefore is
APAQ(([z], T) ® Pz ® Qz) - Ax([], man' x)
and has the principal type (e — 0) — [e] ® 1 ® 6.

For the kind of semantic checking of natural language text that we are inter-
ested in, we need to distinguish between different sorts of individuals. Lexical
entries should assign different base types to the arguments of content words, in
particular verbs and nouns. It is then useful, if not imperative, to have a lexicon
with polymorphic types for the functional words like the indefinite article above,
rather than be forced to put into the lexicon all the instance types needed for a
specific application.

The type-checking in texts is slightly different from the one in programs: in
programs, we need to check that in applications f(ai,...,a,), the type of the
arguments equal (or are subtypes of) the argument types of the function, while
in texts, in predications v(np1,...,npx) the types of the (generally quantified)
argument noun phrases have to be related by type-raising to the argument types
of the verb.

But in principle, we want to have the same phase distinction between type
checking and evaluation: we want to build meaning terms according to the syn-
tactic structure, then check if the meaning is typable, and only then perform
semantic evaluation. Thus, evaluation only needs to be defined on typed expres-
sions, and type checking would be pointless if evaluation would not preserve the
type of expressions.

5 Reduction

We assume the familiar S-reduction and congruence rules of A-calculus,

D— D
(AxD - s) — Dlx/s] (8) AxD — \zD"’
D— D E—F

(D-E)— (D"-E)) (D-E)— (D-EY
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The intended meaning of the merge (D;®Ds3) of two value-DRSs with disjoint
referent lists, Dy = ([x1,...,z,], @) and Da = ([y1, . - ., Ym], ¥), is the value-DRS

<[$1,---,xn,yla--wym]a(@/\l/)»-

We therefore define the reduction (resp. evaluation) of DRS-expressions by the
following d-reduction rules:

(51)3

ey o ({[0,%) — ([, (e A )y (92),

(x,D)® E — (z,D® E)

(o) @ (W, E) = (y, ([l9) ® E)
(d3)-

From these, the intended meaning for the merge of value-DRSs follows:

([z1, @) @ (Y ymls ) =7 (s 2n, yns s ymls (0 A ).

In order to use (1) - (d3), by reductions we must achieve that arguments of
® are value-DRSs. Hence we also need congruence rules for § = (-,-) and ®:

D—F 5 D—D 5 E > FE'
(z,D) — (z,E) (04), (D@ E)— (D' ®E) (), (D@ E)— (Do E)

(66)a

so that reductions can be performed in subterms of (z, D), (D ® E) as well as
AzD and (D; - Ds). Then the following reduction rules are derivable:

E _)* El/ (6+) D _)* D/7 E H* E/
o) e wB) =" o) ="  (5D)eb =" (2D eF)

Normalization

(d3)-

It is obvious that applications of the d-reduction rules do not lead to new occur-
rences of (B-redexes. Therefore, expressions can be reduced by first performing
(B-reductions as long as possible, and only then apply d-reduction rules. If we start
with a typed expression, then from the strong normalization property for simply
typed A-calculus the first will terminate. It is also clear that the -reduction rules
cannot lead to infinite reduction sequences.

Notice that on value-DRSs with disjoint top-level referents, ® is associative,
if we consider formula conjunction to be associative, i.e. use list [p1, ..., @] of
formulas, as we do in Sect. 6.2.

We would like to show that in a derivable typing statement I' + s : o,
where the “predicate” o applies to the “subject” s, we may reduce the subject
and still the predicate o applies. However, this is not quite true: when we reduce
a merge-DRS, the type constructor x is interpreted as a cons of a referent and
a referent list, and ® is interpreted as an append of referent lists, and since the
type of a DRS mirrors its construction, we need to cons resp. append the lists
of types of the referents.
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We use the following type reductions, which amount to a recursive definition
of append (®) in terms of the empty list (1) and cons (x):

&) (03)

(93)

11®114]1( 1®(xp) —=ox(1®p)

(exp@T—=0x(pdT)

Moreover, type reduction may operate on embedded type expressions:

o—0o N
oxT oo xr ) ox7ooxr )
! /
N , T N
0®740/®T(®) U®T—\J®T/(®)

/ /
o—0 T—T

7 =)

(=")

(c—=7)—=(c' =7 (c—=71)= (0 =7

Ezample 1. (continued) Reducing the above term
APAQ({f2], T) @ P @ Qz) - A ([}, man’ 2)

by B-reductions gives AQ({[z], T) ® ([], man’ ) ® Qz) and reducing further by
d-reductions leads to

AQ({[x], T Aman’ ) ® Q).

Its principal type (e — §) — [e] ® ¢ is obtained from the one of the unreduced
term by applications of (®'), (8%), and (§7) that simplify [e] ® T ® ¢ to [e] ® J.

Since our types of DRSs closely reflect the construction of their top-level
referent lists, in order to have a subject reduction property we need to consider
types equivalent when they get equal by interpreting ® as append, X as cons,
and 1 as the empty list.

A more serious obstacle to subject-reduction is the typing rule (varg) which
permits us to ignore assumptions (D; - Ds) : 0. In fact, the subject-reduction
property does not hold in general.

Ezxample 2. Consider the application of

DQZTQ,F F D1:T1 DliTl,F H DQITQ
I+ (D1®D2):(7’1®7'2)

(®)

Suppose (D1 ® D3) — (D} ® Ds) via D1 — D). As we have seen above, we may
have = € top(D})\ top(Dy). In the left subderivation Dy : 71,I" = Ds : 7o, a free
occurrence of x in Dy gets its type from I', while in the context D] : 7, I, it gets
its type from D7 : 71. Hence, it may be impossible to obtain D} : 71, " F Da : 7o.
(For example, take Dy : 71 = Ay(z, E) -a: (0 X T), Dy : 7o = ([], Pz) : 1.) Thus,
I' + (D1 ® Ds) : (11 ® T2) does not imply I' + (D] ® D3) : (11 ® 72).
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The problem similarly arises for (D = Ds), (D1 V D3), or (D1 ; Ds), where
D; may B-reduce to a DRS with a new top-level referent occurring free in Ds.
This is a defect of A-DRT terms which admit the binding part D; of such expres-
sions to arise from a (-redex like (Azz - Dy).

We will sidestep this problem for the application to pronoun resolution below
by assuming

1. all A-DRS-expressions used as meanings of lexical entries are closed and in
normal form,

2. in substitution t[z/s], bound variables (including referents) in ¢ are renamed
to make them distinct from free variables of s,

3. int[z/s], s is in normal form, and referents of s are renamed at each occurrence
of z in t (in merge-factors, so that their scope does not extend).?

4. all bound variables are pairwise distinct; in particular, no referent is used
twice as a binding variable.

In particular, we will use a call-by-value strategy when computing the meaning
of phrases: if the meaning of a phrase is an application Azt - s, we will have Azt
and s in normal form, and deliver a normal form nf (¢[x/s]) of t[x/s] as value,
see the computation rules in Sect. 6.2. We think that the following weak form of
the subject reduction property holds under the above assumptions:

Conjecture 1. If t and s are in normal form, and I' F (Azt-s) : 7, then there
is 7/ with 7 —=* 7" and I" + nf(t[z/s]): 7.

However, we do not make use of that in the following; termination of reduction
suffices.

6 Application to Pronoun Resolution

There are two possible ways to combine type reconstruction and pronoun res-
olution. Either one applies a pronoun resolution algorithm and then uses type
reconstruction to check if the resolution is type-correct, or one first applies type
reconstruction and then does pronoun resolution by exploiting the type infor-
mation.

6.1 Type Informed Pronoun Resolution

The second way has been implemented [22]. It roughly proceeds as follows:

— Step 1: for each pronoun occurrence, introduce a fresh discourse referent z and
extend the DRS by an anaphor-declaration like anp(x, fem, sg). For the dis-
course referent y of each noun phrase that is not a pronoun, add an antecedent-
declaration like ant(y, masc, sg) to the DRS.

3 Notice that AP(P ® P) - ([2], [¢]) then reduces to ({[z1], [¢(z/21)]) ® ([z2], [¢(z/22)]),
and further to ([z1, 22], [p(2/21), p(2/22)]), like turning (Fzp AJz¢p) into prenex form
Jz13z2(p1(2/21) A (2] 22)).
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— Step 2: apply type reconstruction to get a most general typing for the dis-
course, including individual types e; for discourse referents = as inferred from
the occurrence context of the pronoun.

— Step 3: “resolve” an anaphoric (or cataphoric) pronoun by unifying its typed
discourse referent x : o with some discourse referent y : § of a possible
antecedent of the same type, observing the grammatical properties of gender
and number in the corresponding declarations anp(z, gz, 1) and ant(y, g,, ny).

A more detailed description is best obtained by explaining the relevant parts of
the Prolog-program of [22].

A parse tree is represented as a list [Root|Subtrees] where the root is
the syntactic category of the parsed expression. A discourse is either empty,
with tree [d], or the extension of a discourse by a sentence, and then has tree
[d,S,D] where S is the parse tree of the final sentence and D the parse tree of the
initial discourse.* For each parse tree, sem(+Tree,-DRS) computes a number of
meanings. If the tree is a discourse, each meaning is a typed A-DRS, otherwise
an untyped A-DRS in normal form.

% sem(+ParseTree,-DRS); for a discourse, DRS is typed

sem([d], drs([],[1)) :- !.
sem([d,S,D], Sem) :-
!, sem(S,SemS), sem(D,SemD), resolve(SemS,SemD,Sem).

Having computed a typed meaning SemD for the initial discourse and an untyped
meaning SemS for the final sentence, we try to resolve anaphors of SemS, using
SemD as accessible DRS for possible antecedents.

% resolve(+SemS,+SemD,-Sem)

resolve(SemS,SemD,Sem) :-
type([],SemS,SemSTy, _TypS),
resolve_drs([SemSTy,SemD], [DrsS,DrsD]),
mergeTerm(DrsD + DrsS, Sem).

First, type reconstruction type/4 is applied to SemS; as pronouns get fresh dis-
course referents in SemS, we can use the empty type context to find a princi-
pal type TypS for the DRS SemS. Actually, we use a modification of the type
reconstruction algorithm that also returns a typed version SemSTy of SemS,
which has type annotations at variable bindings (including referents in refer-
ent lists). This typed DRS SemSTy is resolved with SemD as accessible DRS,
using resolve_drs/2; the modifications DrsS and DrsD are finally merged by
appending the referents and formulas of DrsS to those of DrsD.

To resolve a DRS drs(Refs,Fmls) with respect to a stack Ds1 of partially
resolved accessible DRSs, we go through the formulas, which may contain unre-
solved DRSs, resolve these, and construct a resolved form of drs(Refs,Fmls)
on top of the stack:

4 To prevent Prolog’s top-down parsing strategy from diverging for left-recursive gram-
mar rulesd -> d, s., we use a right-recursive rule d --> s, d. for discourses and
reverse the sequence of input sentences before parsing.
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% resolve_drs(+DRSs, -resolvedDRSs)
resolve_drs([drs(Refs,Fmls) |IDs1],RDs) :—
resolve_fml (Fmls, [drs(Refs, [1) |[Ds1],RDs).

If a formula is built from DRSs, like (D1 = Da), (D1VDz), or =D, the component
DRSs are resolved in term, respecting the accessibility conditions of DRT, and
the formula built form the resolved component DRSs is added to the result-DRS
under construction, before the remaining formulas are processed:

% resolve_fml (+Fmls, [?resultDRS|+accessDRSs],-resolvedDRSs)
resolve_fml([(D1 => D2) |Fmls],Ds,RDs):-
!, resolve_drs([D1|Ds], [Dir|Dsr]),
resolve_drs([D2,D1ir|Dsr], [D2R,D1R,drs(R,F) |Ds3]),
resolve_fml(Fmls, [drs(R, [(D1R => D2R) |F]) |Ds3],RDs).

If the formula is an anaphor anp (Ref,Gen,Num) with typed(!) referent Ref and
gender and number information, one tries to find a suitable antecedent in the
result-DRS under construction (i.e. in the pronoun’s left textual context in the
current sentence) or the accessible DRSs, or in the remaining formulas of the
DRS currently under process:

resolve_fml ([anp(Ref,Gen,Num) |[Fmls], [drs(R,F)|Ds1], RDs) :-
!, ( (% in sentence prefix or previous sentences
resolve_anp (Ref,Gen,Num, [drs(R,F) |Ds1])
; % in sentence suffix
resolve_anp (Ref,Gen,Num, [drs(R,Fmls)])
),
delete_ref (Ref ,R,NewR), 7% omit duplicates of Ref
NewD = drs(NewR,F) J, omit anp(Ref,..) in the result DRS

; NewD = drs(R, [anp(Ref,Gen,Num) |F]) % or: fail, to
), % exclude unre-
resolve_fml (Fmls, [NewD|Ds1],RDs). % solved anaphors

Possessive pronouns are handled by looking for antecedents in their left context
only.

To find a suitable antecedent, simply choose some of the accessible DRSs and
some antecedent among its formulas that can be unified with the referent:

% resolve_anp(+Ref,+Gen,+Num,+DRSs)

resolve_anp (Ref,Gen,Num,Ds) : -
member (drs (_Refs,Fs),Ds),
member (ant (Ref ,Gen,Num) ,Fs) .

By using the same variables Ref, Gen, Num, Prolog unifies a typed anaphor R:Ty
with a typed antecedent R’: Ty’ of the same number and gender features.

Atomic formulas can just be transferred to the result-DRS under construc-
tion, and when all formulas of the DRS are processed, the sequence of resolved
formulas is reversed to its expected order:
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resolve_fml ([Fml|Fmls], [drs(R,F)|Ds1],RDs):-
!, resolve_fml(Fmls, [drs(R, [Fml|F]) |Ds1],RDs).

resolve_fml([], [drs(R,F) IDs], [drs(R,Frev) |Ds]) :-
!, reverse(F,Frev).

The stack of resolved DRSs with a resolved form of the DRS drs (Refs,Fmls)
on top is returned.

6.2 Example

We assume that nouns N and relational nouns RN are classified according to
gender g € {m, f,n} (masculine, feminine, neuter), and implicitly inflect for
number n € {sg,pl} and case c. (We use gender m as in the corresponding
German nouns and pronouns to get more possible antecedents below.)

1. Content words are assigned a meaning and a type in the lexicon, for example:

eTpression meaning type
Galilei : PN galilei h
Jupiter: PN Jupiter S
astronomer: N \x([], [ant(x, m, sg), astronomer(z)]) h—1
star: N Az ([], [ant(x, m, sg), star(x)]) s—1
moon : RN Azy([], [ant(x, m, sg), moon(z,y)]) s— (s — 1)
shine : V' Az ([], [shine(x)]) s— 1
observe : TV Az Ay ([], [observe(x, y)]) h—(s—1)
discover : TV Az Ay ([], [discover(x, y)]) h—(s—1)

Pronouns inflect for number, gender, and case, if we consider person fixed
to 3rd person. Like determiners, pronouns have polymorphic type; i.e. from
their untyped A\-DRS-meaning we reconstruct their most general (schematic)

type.

expression meaning principal type
he : Pron AP(([z], [anp(xz,m, sg)]) ® Pz) (o — ) = [a]®f
she: Pron  AP(([z], [anp(z, f,s9)]) ® Pz) (o — ) —[a]®
his: PossPron ARAP(([z,y], [anposs(y,m, sg)]) (o — B — %)
®(Rry® P1)) — (a— )
— [, Bl@y®0d
who : RelPron APz (P x) (a—=p0)—= (a—0)
a:Det  ANAP((e], ) @ (N2 @ P2)) (a— 8) — (@—7)
—lo]@f®y
every : Det  ANAP{([],[({[z],]) ® Nz) = Pz]) (a = ) — (a — 7)
— 1

eq Az dy.eq(z,y) a— (a—t)
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Each use of a personal, relative, or possessive pronoun uses a new referent x.
Moreover, eg, anp, anposs, ant have polymorphic lexical (not reconstructed)
type.

2. Compound expressions are built according to grammar rules; each grammar
rule is accompanied by one or several meaning computation rules. Some exam-
ples are:

p: PN, /4
S
p: NP (51 AP(([z], [ant(z, g,39),

eq(z,p')]) @ P - )

(1)

/

p: Prong, P
d:Det n:N d n
in:np 03 ICATI R
p: PossPron r:RN p
pr: NP (54) nf (p - 1') (©4)

/

np1: NP v:TV npgzNP(S5) np/l v nplg (C 5)

np1 v npg : S nf (np) - Ax(npl - \y(v' - 2 - y)))
—5 (56 o (C6)

d:D s:8 d s

s 7 @a 7

An additional computation rule (C' 5') for sentences np; v nps : .S might
give npy wide scope. In (C 7), d” and s” are obtained by pronoun-resolution
from most general typings of d’ and s’ in the empty type context, i.e.
resolve(s’,d’',d” ® s") by the resolution algorithm explained above.

3. Let us consider the sample discourse Galilei observed a star. He discovered
his moon. The first sentence is constructed with (S 1), (S 3), and (S 5). We
compute the meaning of the subject as

npy = AP(([z], [ant(z, m, sg), eq(w, galilei)]) @ P - x),
the meaning of the object as

npy = nf ANAP({[z], [I) © (N @ @ Px)) - Ax([], [ant(z, m, sg), star(x)]))
= nf AP (([2], [I) @ ([}, [ant(z,m, sg), star(x)]) @ P x)))
= AP(([z], [ant(x, m, sg), star(x)]) @ Px)

and from those obtain the sentence meaning by the computation rule for
(S5) as
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nf (npy - Ax(nph - Ay(v' -z - y)))

nf (npy - Az (npy - Ay(([], [observe(z, y)]))))

nf (np} - Az.({[2], [ant(z,m, sg), star(z)]) @ P z)[P/Ay([], [observe(z, y)])])

= nf (np} - Ax({[Z], [ant(Z, m, sg), star(Z)]) & ([], [observe(z, T)])))

nf (np] - Ax([y], [ant(y, m, sg), star(y), observe(z,y)]))
nf (({[z], [ant(x, m, s9), eq(x, galilei)]) @ P x)[P/\x([y], [ant(...),...]})])
nf ((([z], [ant(z,m, sg), eq(z, galiled)]) @ ([y], [ant(y, m, sg), .. ])))

([, ], [ant(x, m, s9), eq(x, galilei), ant(y, m, sg), star(y), observe(x, y)])

From the type assumptions for nouns and verbs (and eq), type reconstruction
can annotate the bound variables of s| as

([x: hyy: s], [ant(x : h,m, sg), eq(z, galilei), ant(y : s,m, sg),...])

and return a most general type ([, s, ¢). In the second sentence, the subject
he has meaning

np) = AP({[z], [anp(z, m, sg)]) ® P x),
which receives the following annotation and principal type:
AP (a = B)(([ : o, [anp(x : a,m, sg)]) @ Px) : (a — ) — [a] ® B.
The object his moon gets the meaning®
npl = nf (ARAP({[x, y], [anposs(y,m, sg)]) ® (Rxy @ Px))

Az Ay([], [ant(x, m, sg), moon(z,y)]))
= AP(([z, y], [anposs(y, m, sg), ant(z, m, sg), moon(z, y)]) ® P x),

which type reconstruction annotates to

AP : (s — a)({[x: s,y : ], [ anposs(y : s,m, sg),
ant(zx : s,m, sg), moon(x,y)]) P x)

and to which it assigns a most general type (s — a) — [s,s] ® a. By the
computation rule for (S 5), the meaning of the second sentence is

sy = nf (npy - Az (npy - Ay(v' -z - y)))
= nf (np - Az (npj - My([], [discover(z, y)])))
= nf (np} - Az ([Z, y], [ anposs(y,m, sg), ant(Z,m, sg), moon(Z, y),
discover(x, Z)]))
= nf ((([], [anp(z, m, sg)]) @ P x)[P/\e([Z, y], [anposs(y, m, sg), .- ., ]))
= ([z, 2,y], [anp(z,m, sg), anposs(y, m, sg),
ant(Z, m, sg), moon(&,y), discover(x, T)]).

5 By an additional reduction D; ® (D2 ® D3) — (D1 ® D2) ® D3 when D1, Dy are
value-DRSs.
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If several computation rules can be applied, a sentence can get several untyped
meanings this way. As normalisation has to return fresh bound variables, we
write

(a)
(b)

sy = {[u, v, 2], [ anp(u, m, sg), anposs(z, m, sg),
ant(v, m, sg), moon(v, z), discover(u,v)]).

Pronoun resolution for the discourse €; s;; so proceeds as follows.

The most general typing of the meaning ([],[]) of € in the empty context
is = ([, [): 1.

Type reconstruction is applied to the first sentence, followed by pro-
noun resolution with ([],[]) : 1. As no pronoun occurred in s1, the type-
annotated version of s is returned:

st =([z:h,y:s],[ant(x : h,m, sg), eq(x, galilei),
ant(y : s, m, sq), star(y), observe(z,y)])

= (. ®s7.

Type reconstruction is applied to (each of) the meaning(s) of the next sen-
tence, followed by pronoun resolution with s{. Here type reconstructions
just returns

sy ={([u:h,v:s,z:s],[anp(u: h,m,sg), anposs(z : s,m, sg),
ant(v : s,m, sg), moon(v, z), discover(u,v)]),

where the types of u,v, z are derived from the argument types of nouns
and verbs whose argument positions they occupy. The anaphor u : h
has no antecedent in the current sentence, as v : s has different type.
Assuming that possessives have to be resolved in their left context, the
possessive anaphor z : s also cannot be resolved against v : s.

Pronouns of sy may also be resolved against antecedents in the type-
annotated left context, s{. For each typed anaphor, we search for a suit-
ably typed antecedent, unify the referents and remove the anaphor ref-
erent in the DRS of the current sentence, sj. For the anaphor anp(u :
h,m, sg), the only type-compatible antecedent in s/ is ant(x : h,m, sg),
so we unify u with z (i.e. rename u by z in s}), remove x : h from its
referent list and anp(z : h,m,sg) from its formulas, getting a partially
resolved DRS

([v:s,z:s],[anposs(z : s,m,sqg), ant(v : s, m, sg),
moon(v, z), discover(z,v)]).
The next formula is a possessive anaphor anposs(z : s,m, sg). As we want
these to be resolved in their left context only, z : s cannot be resolved
against v : s. But it can be resolved against ant(y : s,m, sg) in s/, which
leads to

r(sh) = ([v: 8], [ant(v : s,m, sg), moon(v,y), discover(x,v)])

as the resolved” ‘result”’-DRS of 5.
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(e) Finally, the resolved version of s} is merged with sf, yielding

si@r(sy)={z:hy:suv:s],
[ant(x : h,m, sg), eq(z, galilei), ant(y : s, m, sg), star(y),
observe(zx,y), ant(v : s,m, sg), moon(v,y), discover(z,v)])

as the typed meaning of the discourse d = €; s1; 9.

6.3 Type Reconstruction for Bach-Peters-Sentences

One of the motivations for the symmetric merge-operator ® was hinted at, but
not elaborated in [13, p. 480]: the potential to treat Bach-Peters-sentences “in
which two phrases are connected by both an anaphor and a cataphor”, like [The
boy who deserved it,],; got [the prize he, wanted],. We use variants of (S 2),
(S 5) and (C 2), (C 5) as syntax and computation rules for relative clauses

p: RelPron , Y ,
p: RelNP (52) p,(CZ)
. . . / / /
np1: ReINP npy: NP v:TV (S 5) / npy }) npzl (%)
npp npa v : RelS nf (npy - Az(npy - Ay(v' - x - y)))
. . . ! / /
d:Det n: N s.RelS(Sg) d n s (©8)

dns:NP nf(d - dz(n’xz A s x))

Omitting the grammatical features and the uniqueness conditions for the definite
article, the untyped meaning of a boy who deserves it gets the prize he wanted
is obtained via

16/7 y/ {E/, y/
z,y : Y ,
¢ t
o) i) ani(z) st
AP bou(a) @ P gy | e leka) @ )
?lZféfge(x ) want(z’,y) 3?5573“/36(.% ) want(z', y')
- gt y') I | get(z,y)

From suitable type assumptions for nouns and verbs in the lexicon, with a type
h of humans and e of objects, type reconstruction would infer types x : h,y :
e,x’ : h,y : e, and hence type-respecting pronoun resolution could only resolve
7’ against z and y against v/, as expected.

The typing rule for ®-DRSs was designed for merge-DRSs whose factors are
linked through resolving cataphors and anaphors by type-independent “coindex-
ing” or referent unification. Type-checking a DRS ([z], ¢(z,¥)) ® ([y], ¥ (z,y)) of
this kind leads to a typing problem of the form

xioayy: B F oolr,y):t y:Bxia b Pyt

= (2l e(@,y) @ [yl ¥ (2, 9)) : [a] @ [F]
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The type variables «, 3 get instantiated when the two typing problems in the
premise are solved. As we perform merging of value-DRSs during normalization,
we need the typing rule (®) only when a merge-factor is not a value-DRS, not
for Bach-Peters-sentences.

6.4 Supporting Pronoun Translation

To translate between natural languages, we need to resolve pronouns in order to
translate them correctly: the gender of the translated pronoun is generally not
the gender of the source language pronoun, but the gender of the antecedent
noun phrase in the target language, which in turn depends on the antecedent
of the pronoun in the source sentence. For example, Google translates the Eng-
lish text The child opened the box. It contained a pen. into the German Das
Kind dffnete die Schachtel. Es enthielt einen Stift., where neuter es should be
feminine sie. A type difference between humans h and things e and the verb
type contain/enthalten : e — e — t shows that it at position of type e cannot
refer to the child : (h — t) — t at position of type h. But only if it is resolved
to the bozx : (e — t) — t, the gender for the German pronoun er/sie/es can be
inferred to be the gender of the translation die Schachtel of the box, i.e. feminine.

6.5 Related Work

On the practical side, discourse representation structures are used as intermedi-
ate representation of meaning when translating texts from natural language to
first-order logic. This is done for large-scale processing of newspaper texts by the
C&C/Bozer program® [5] and for mathematical texts by the Naproche system
[4].

The Groningen Meaning Bank [3] (GMB) is a large collection of English
texts for which C&C' computes syntactic analyses in categorial grammar and
Bozer turns them into DRSs and first-order formulas. By using referents for
individuals, events and times and predicates for thematic roles, Bozxer covers
far more of discourse representation theory than we do. In the examples of the
GMB, nouns are classified according to animacy (human, non-concrete, etc.),
which can be seen as type assignments. But, apparently, these classifications
are not related to the meaning of verbs and hence not used in the pronoun
resolution process. For example, in Fin Mann fittert einen Hund; wenn er ihn
beifit, schldgt er thn., our system correctly resolves the four pronouns in the
only type-compatible way (the first er to Hund, the second to Mann etc.), if we
provide types A for humans, a for animals and typings for nouns Mann : h — t,
Hund : a — t and verbs fiittern, schlagen : h — a — t and beiffen : a — h — t.
The C&C/Boxer program, when we use masculine pronouns in the English
input A man feeds a dog. If he bites him, he beats him., resolves both subject

6 Since the link provided in [5] did not work, we were only able to access C&C/Bozer
via its demo version gmb.let.rug.nl/webdemo/demo .php of the Groningen Meaning
Bank.
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pronouns he to the man and both object pronouns to the dog (as one can infer
from the logical formula). Thus, if the argument slots of verbs of the GMB were
annotated with animacy, too, its pronoun resolution and meaning translation
could be improved by using our type-respecting resolution procedure. As type
distinctions are easier to make in mathematics than for natural language, a
similar improvement can be expected for the anaphora resolution in systems
using DRS-like proof representations like [4,8].

On the theoretical side, there is a growing amount of work (cf. [1,14,17,20])
that uses constructive type theory to develop semantic representations for nat-
ural language. In this setting, the notion of type is extended (from simple types,
i.e. intuitionistic propositional formulas) to first-order formulas, and proofs of
the formulas are the objects of these types. In particular, proofs of existential
statements Jxp consist of pairs (¢,p) where t is a term denoting an individ-
ual and p a proof of ¢[x/t]. Such terms ¢ may then be used to resolve anaphoric
expressions. For example, Mineshima [17] uses constructive type theory enriched
by e-terms to treat definite descriptions; the use of an e-term has to be justified
by an existential sentence, whose proof object then contains a referent for the
description. Instead of e-terms, Bekki [1] has terms (@ : v — ¢e)(c) of unknown
choice functions @ applied to contexts c¢ to select suitable referents of type e;
by instantiating « and constructing an object of type v — e from proof objects
in the typing environment I', this amounts to “anaphora resolution by proof
search and type checking”. Clearly, the contexts I' used in constructive type
theory provide a more general domain to search for referents than the typed
DRS of the textual left context in our system; for example, one can have back-
ground assumptions that do not arise from translation of the textual left context,
which is useful to handle bridging anaphora [14]. However, the formulation of
background knowledge may often be unfeasible, and proof search in constructive
type theory seems more complex that type reconstruction by unification from
simple type annotations in the lexicon.

7 Open Problems

Extension to generalized quantifiers and plural pronouns. In [16], we
have shown that type reconstruction for Montague grammar with plural noun
phrases can be used to resolve some plural ambiguities. The idea is that plural
noun phrases in general have several types, for distributive, reciprocal and collec-
tive readings, but argument types of predicates only unify with one of those. The
type reconstruction program of [16] has been changed in [22] to type reconstruc-
tion for A-DRT and extended to type-respecting pronoun resolution for singular
pronouns. So far, type reconstruction for plurals is not adapted to A-DRT yet.
To interpret She introduced the guests to each other, for example, we would need
discourse referents X for sets of individuals and apply the symmetric predicate
distributively to any 2-element subset of X. As our system admits second-order
discourse referents X, it seems possible to add type-respecting pronoun reso-
lution for plural pronouns. For this, one should consider if the treatment of
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plurals and generalised quantifiers via “duplex conditions” [10] can be given a
formulation that allows for principal types and type reconstruction.
First-order A-DRT. In contrast to typed versions of A-DRT, our untyped ver-
sion is a kind of “higher-order” DRT: there is no demand that discourse referents
have individual type. So we can type some expressions which, from a traditional
point of view, should be untypable. For example,

P:o—t F ®x ol ®o

is a most general typing, using o both as a referent-type and as a drs-type. To
avoid such defects, we could introduce different kinds of types, notice when a
type variable must be instantiated by an individual resp. by a drs-type, and
forbid to equate types of different kinds. But in realistic cases, conditions of a
DRS express properties of referents using predicates with individual argument
type, which makes a formal restriction to first-order referents unnecessary.
Principal typings for pronoun resolved discourses. Does type-respecting
pronoun resolution as suggested above “preserve principal types’? More pre-
cisely, in a merge-DRS D ® Dy of two typed DRSs with disjoint toplevel refer-
ent lists and principal types, we unify referents = : o of Dy and 2’ : ¢’ of Dy by
substituting = for y in Dy and removing z’ : ¢’ from its referent list. Applying
the most general unifier U of z : o and 2’ : ¢’ gives a typed DRS UD; ® UDs.
Can one prove that UD; ® U D) corresponds to the principal typing of D1 ® f)g,
where D), is the modification of Dy by the pronoun resolution, and Dy resp. ﬁé
are the untyped versions of Dy and D57

Semantics. A semantics for typed \-DRT is given in [13,15], with a composi-
tional meaning for the symmetric ®. The relational interpretation of [19] for the
unsymmetric merge (;) is not sufficient for our purposes. The Dynamic lambda
calculus DLC of [11,12] claims to give a typed semantics for a system subsum-
ing typed A-DRT, but we found their types involving individual variables fairly
incomprehensible. In order to show that the typing and reduction rules given here
are correct, we ought to interprete typings I' F ¢ : 7 in a suitable domain-model
of the untyped A-calculus, like the one in [21], and handle free type variables as
universally quantified. We have not yet tried to do so.

8 Conclusion

Our aim was to use semantic type information from the lexicon to reduce the
number of possible antecedents of an anaphor to type-compatible ones. For this,
a single type e of entities is too crude. Many verbs and nouns in natural language
can only be applied to facts/propositions, inanimate physical objects, animals,
or humans, respectively. Candidates for pronoun resolution can be reduced with
these types quite reasonably in many situations. Of course, in a discourse about
humans only, the reduction in candidates may be minimal.

The basic idea is simple: a pronoun gets a type from its occurrence as an
argument of a verb, and a noun phrase gets a type from its head noun and the
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verb argument type of its occurrence; hence, one can filter the set of possible
antecedents of a pronoun by comparing their types. To do this efficiently, we
prefer a system of simple types with schematic types for function words like
determiners, in which complex expressions have principal types that can easily be
reconstructed from type assumptions for content words. (A complex expression
can have a principal type for each choice of types of its words.)

Using DRSs provides us with DRTs [10] notion of possible “accessible”
antecedent noun phrases. Our typing rules for A-DRT expressions closely reflect
the accessibility conditions of DRT; this is to be expected, as the antecedent
noun phrase provides a type assumption for its discourse referent, which in turn
corresponds to the pronoun occurrences referring to the antecedent. However,
the peculiarities of A-DRT concerning the subject-reduction property might be
a good reason to consider a mathematically “cleaner” language for expressing
the dynamics of discourse, such as simply typed A-calculus with continuation
semantics [7]. But in contrast to [7], we are not assuming pronoun resolution
via some oracles, but rather integrate a type reconstruction algorithm into a
pronoun resolution algorithm — in a particularly simple way.

Acknowledgement. We thank the referees for a number of critical remarks and ques-
tions that helped to improve the presentation.
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Abstract. This paper presents a computable solution to Partee’s tem-
perature puzzle which uses one of the standard tools of mathematics and
the exact sciences: countable approximation. Our solution improves upon
the standard Montagovian solution to the puzzle (i) by providing com-
putable natural language interpretations for this solution, (ii) by lowering
the complexity of the types in the puzzle’s interpretation, and (iii) by
acknowledging the role of linguistic and communicative context in this
interpretation. These improvements are made possible by interpreting
natural language in a model that is inspired by the Kleene-Kreisel model
of countable-continuous functionals. In this model, continuous function-
als are represented by lower-type objects, called the associates of these
functionals, which only contain countable information.

Keywords: Temperature puzzle - Individual concepts - Associates -
Continuous functionals - Computability

1 Partee’s Puzzle and Montague’s Solution

Partee’s temperature puzzle [33, p. 267] is a touchstone for any formal semantics
for natural language. This puzzle regards the incompatibility of our intuitions
about the validity of the inference from (1) (i.e. invalid) with predictions about
the validity of this inference in extensional semantics (cf. [8,32]) (i.e. valid).

a. The temperature is ninety.

b. /T]pe temperature rl)se)s L (1)
/Nirety rises. 7
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