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Patent Classification on Subgroup Level Using
Balanced Winnow

Eva D’hondt, Suzan Verberne, Nelleke Oostdijk, and Lou Boves

Abstract In the past decade research into automated patent classification has
mainly focused on the higher levels of International Patent Classification (IPC) hier-
archy. The patent community has expressed a need for more precise classification
to better aid current pre-classification and retrieval efforts (Benzineb and Guyot,
Current challenges in patent information retrieval. Springer, New York, pp 239–
261, 2011). In this chapter we investigate the three main difficulties associated
with automated classification on the lowest level in the IPC, i.e. subgroup level.
In an effort to improve classification accuracy on this level, we (1) compare flat
classification with a two-step hierarchical system which models the IPC hierarchy
and (2) examine the impact of combining unigrams with PoS-filtered skipgrams on
both the subclass and subgroup levels. We present experiments on English patent
abstracts from the well-known WIPO-alpha benchmark data set, as well as from
the more realistic CLEF-IP 2010 data set. We find that the flat and hierarchical
classification approaches achieve similar performance on a small data set but that
the latter is much more feasible under real-life conditions. Additionally, we find that
combining unigram and skipgram features leads to similar and highly significant
improvements in classification performance (over unigram-only features) on both
the subclass and subgroup levels, but only if sufficient training data is available.

11.1 Introduction

In the last decades, patents have gained an enormous economic importance.
Patent filing rates increase every year, and patent attorneys and examiners of the
various patent offices are straining to deal with the large number of applications
submitted every day. In this situation, automating (part of) the process by which
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incoming applications are processed has great economic value [17]. Automatic
patent classification, that is, automatically assigning relevant category labels from
the International Patent Classification (IPC) taxonomy (see below) to an incoming
document, may be an invaluable asset in both the pre-classification and examination
phases of the patent granting process.

During the pre-classification stage, a patent application is examined by a
person who has a general knowledge about all technological fields and—most
importantly—has expert knowledge of the patent classification system. This expert
then routes the application to the department(s) that specialises in the technical fields
relevant to the invention described in the application [28]. At the European Patent
Office (EPO), there have been attempts to automate this process [17], but due to low
accuracy scores, pre-classification is currently limited to the higher (more abstract)
levels of the IPC taxonomy.

In the examination phase, a patent examiner will perform a high-precision,
interactive search to find documents that describe inventions similar to the one
described in the application, in a bid to determine the existence of prior art for
this invention. Prior art queries usually consist of field-specific terminology with
specialised (low-level) IPC labels as query terms. In this phase, a fine-grained,
consistent and high-quality patent classification is indispensable [27]. The research
presented in this chapter aims to implement, improve and evaluate automated
classification on lower (more specific) levels in the taxonomy, thus allowing for
more specific suggestions during the pre-classification and examination processes.

In most patent offices, incoming patents are categorised and indexed using the
International Patent Classification (IPC) system, a complex hierarchical category
structure which covers all areas of technology. The IPC is a manually constructed
taxonomy, which has been updated and refined over the last 30 years and is used
in the patent offices of over 90 countries. It currently comprises five levels, of
increasingly fine granularity: sections, classes, subclasses, groups and subgroups.
The latest instantiation of the IPC (IPC-2015.01) comprises eight sections, about
130 classes, about 640 subclasses, around 7400 main groups and approximately
64,000 subgroups.

Most of the previous research on automatic patent classification has focused
on classification at the higher levels in the IPC hierarchy, i.e. class and subclass
levels. State-of-the-art classification results are around 62% F1@51 on the subclass
level [22, 23]. With about 130 and about 640 different categories, respectively,
classification at the class and subclass levels is challenging, but computationally
feasible for most classification algorithms.

The more detailed group and subgroup levels are generally deemed extremely
difficult to classify properly for three reasons:

First, the categories on the lower levels generally show a large amount of overlap
[31], and only part of the information in the document is potentially useful in
distinguishing a category from related categories. Let us illustrate this with an

1‘F1@5’ denotes the F1 score evaluated at rank 5.
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example: subclass A47C comprises chairs, sofas, beds, and subclass A47J holds
kitchen equipment. On subgroup level, the differences between categories are more
subtle; they correspond to a small difference in the implementation or use of the
invention, e.g. subgroup A47C 17/12 covers sofas changeable to beds by tilting
or extending the armrests, while subgroup A47C 17/14 holds sofas changeable to
beds by removing parts only. Consequently, the overlap of textual features between
categories is likely to be much larger on the lowest level than on higher levels in the
hierarchy.

The issue of overlapping categories is further complicated by the peculiar
language use in patents. To increase the scope of legal protection, patent attorneys
use obfuscating language to describe the inventions, so that a mundane object like
a pump becomes a fluid transportation device. The abundance of vague terms in the
patent corpora makes it extra hard to distinguish between categories that already
have a high overlap. In previous research, D’hondt et al. [7] found that adding more
precise (phrasal) features such as skipgrams2 to unigram (word) features improves
classification at the IPC class level. It is not known if skipgrams would also capture
the supposedly more subtle differences on the lower levels in the hierarchy.

Second, the large number of categories on lower levels in the IPC results in
a computationally expensive classification task with severe scalability issues [1].
A common approach to deal with a large number of categories in a multi-level
taxonomy, which are characterised by fine-grained distinctions, is a hierarchical
classification method (as opposed to flat classification) [9]. Hierarchical classifiers
can consist of one integrated classifier that is trained with knowledge of the structure
of a taxonomy [2] or a set of classifiers that predict category labels in individual
nodes of a (predefined) taxonomy [26]. Integrated and distributed hierarchical
classifiers can be implemented in many different ways. In this chapter we will
use the most common architecture of a distributed classifier: the ‘local classifier
per parent node approach’ proposed by Silla and Freitas [26]. In this architecture
each parent node in the category hierarchy corresponds with a multi-class classifier,
which is trained to distinguish between the child nodes. The training material for
a classifier is selected through the ‘siblings’ policy: when training a classifier to
distinguish one daughter, e.g. subclass ‘A01B’ from all other daughters (subclasses)
in the same ‘world’, i.e. class ‘A01’, all examples of ‘A01B’ are selected as positive
training material, while the examples with labels ‘A01L’, ‘A01D’, . . . serve as
negative training material.

In the test phase, it is common to use a top-down class-prediction approach: when
a document is classified by a hierarchical system, the output of the classifier at the
parent nodes influences the classification conducted at the child nodes at the next
level of the hierarchy. The classification process can be accelerated substantially if

2‘Skipgrams’ are sequences of N words in a text, in which up to M intervening words may
be deleted. Thus, a 2-skip-2-gram is a sequence of two words (bigram) that are no more
than two words apart in a text. For example, from the example sentence ‘I like to drive.’, the
following set of 2-skip-2-grams can be generated: I_like, I_to, I_drive, like_to,
like_drive, to_drive.
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the procedure at the next lower level is limited to the daughters of the categories
that had the highest probability of being correct at the higher levels. When applied
to the group and subgroup levels in patent classification, where on average a
group comprises 12 subgroups, reducing the classifiers on lower levels to the most
promising mother nodes simplifies the classification procedure substantially, when
compared to the 64,000 subgroups that a flat classifier must distinguish.

Another advantage of a hierarchical classifier may be that, given the different
training sets and the differences in overlap between categories, classifiers on lower
levels might be able to select different and more focused features than classifiers
that operate on a higher level of a taxonomy. Consider a system that needs to
distinguish between ‘clothes’ and ‘gardening tools’ on a higher level and—within
the ‘clothes’ category—between ‘bikinis’ and ‘swimming trunks’ on the lower level.
Terms such as ‘water’, ‘cover’ and ‘texture’will be informative features for the high-
level classifier, but less so for the low-level classifier. We would expect the latter
classifier to select more features that focus on the (smaller) differences between the
categories, such as ‘man’ versus ‘woman’, ‘top’, etc.

A drawback of top-down hierarchical classifier systems is that they are suscep-
tible to the propagation of error problem [18]: an erroneous hard decision at an
upper level will propagate down the hierarchy, making it impossible to arrive at the
correct low-level category label. Several solutions have been proposed to counter the
error propagation, of which the most common is to backtrack when the classification
scores on lower levels become too low. However, as is well known from syntactic
parsing, backtrackingmechanisms quickly become unwieldy. As a consequence it is
claimed that single-level (flat) methods are more efficient than hierarchicalmethods,
but that hierarchical methods are generally more accurate [4].

The third reason classification on group and subgroup levels is generally deemed
too difficult is that the relative sparseness in the number of documents per category
creates training difficulties [11]. Most data sets available for research in text classi-
fication have a certain degree of skewness of their distribution. In the patent domain,
where technological categories move with different evolutionary speed—which
entails shifts in the number of applications per category over time [8]—we found
that a small proportion of the categories comprise the bulk of the documents [7]. The
impact of the skewness of the distribution of documents over categories on a specific
classification task is difficult to predict and may depend on the type of classifier that
is being used.

We hypothesise that the scalability issues mentioned by Benzineb and Guyot [1]
and the large degree of overlap between subgroups mentioned by Widodo [31] can
both be addressed by using hierarchical, rather than flat, classifiers. In this chapter
we examine the impact of flat and hierarchical approaches on the classification of
abstracts of patent applications on the deepest (subgroup) level in the IPC hierarchy.
In addition, we investigate the impact of different text representations (unigrams
versus skipgrams) on the classification performance. By performing experiments
on two data sets of different sizes, we will also address the issues caused by the
skewness of the distributions in data sets that are available for scientific research.
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In concrete terms, this chapter attempts to answer two fundamental questions:

1. How do flat and hierarchical classification methods compare in classifying on the
subgroup level with the WIPO-alpha set? For both methods we use the Balanced
Winnow classification algorithm. Following Chen and Chang [4], we simplify
the five-level hierarchical classification problem in the IPC hierarchy to a two-
level problem: subclass and subgroup. To avoid the problem of the propagation
of error, we do not make a selection of top-n categories on the subclass level, but
we will consider all possible branches in the classification tree. As proposed by
Dumais and Chen [9], we convert classification scores to posterior probabilities
for class membership. The posteriors from the subclass and subgroup levels are
then combined to obtain class membership probabilities at the subgroup level.

2. Can we improve the classification on subgroup level by adding phrasal features to
unigram features? Since previous research [7] indicated that phrasal features are
only effective given a large amount of training data, we conducted this analysis
not only on the (relatively small) WIPO-alpha corpus but also on the larger
CLEF-IP 2010 corpus.

By virtue of the fact that we perform experiments on two data sets of different
sizes, we will be able to shed light on the interaction between, and the relative
importance of, the three problems with patent classification mentioned in the
literature: too large a number of categories, sparseness of documents per category
and high similarity between categories.

11.2 Related Work

For a detailed overview of the literature concerning the impact of different text
representations on patent classification, we refer the reader to [7]. Here, we will
focus on the use of flat or hierarchical classifiers.

An extensive overview of the various methods used for hierarchical classification
in multiple application domains can be found in [26]. In this section we will limit
ourselves to approaches to text classification in the patent domain.

As mentioned in the introduction, methods for hierarchical text classification fall
into two subgroups: (1) methods that consist of one integrated classifier that uses
the (hierarchical) relations between the categories as additional information next to
textual content and (2) a multi-level approach with different sets of classifiers on
different levels in a taxonomy. In Sects. 11.2.1 and 11.2.2, we discuss literature
about applying both types of methods to classification in the patent domain.
In Sect. 11.2.3 we describe an approach for combining classification scores in
hierarchical classification, which has not yet been used in the patent domain before.
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11.2.1 Training One Classifier with Information
from the Hierarchy

Cai and Hofmann [2] propose a hierarchical classification method based on support
vector machines (SVM). Their method does not perform classification in two or
more steps, but encodes the hierarchical information in the description of categories
and then performs flat classification. Cai and Hofmann [2] do this by extending the
multi-class SVM algorithm with the possibility of representing each category with
an attribute vector instead of a single category label. They encode the hierarchical
relationships between the categories as attributes for the categories. They compare
their hierarchical implementation of SVM to standard (flat) SVM in classification on
the main group level for the WIPO-alpha collection. They find that their hierarchical
approach gives similar accuracy to the standard SVM approach, but with the
hierarchical approach the incorrectly assigned categories are closer to the correct
categories in the taxonomy than with the standard approach.

Wang et al. [30] combine a top-down hierarchical classifier (as will be presented
in Sect. 11.2.2) with a meta-classifier to arrive at more balanced rankings on the
lowest level in a hierarchy. The meta-classifier takes meta-samples as features.
These samples are feature vectors that encode information on the ‘path’ through
the hierarchy to arrive at a low-level category, rather than the textual content of that
category. They collect such information as the scores of the related base classifiers,
the number of nodes on a path, the average scores of nodes along a path, etc., in a
sparse vector. Wang et al. [30] evaluate their method on the [18] data set and find
that it achieves a similar accuracy as flat classification systems.

11.2.2 Two-Step Classification

In the NTCIR-6 track, a special task was devoted to the two-level classification
taxonomy used in the Japan Patent Office. The category set in the first level is an
extension of IPC, in the form of a set of thematic categories. For example, the theme
2C088 is about ‘pinball game machines’ [18]. The categories on the second level
denote the ‘viewpoint’ of the invention. Examples of viewpoints are purpose, means,
function and effect. Each theme has a set of viewpoints and each viewpoint may
consist of several elements, which are organised in a tree structure. For example, the
theme 2C088 has a viewpoint AA ‘machine detail’, which has the element AA01
‘vertical pinball machines’ [18]. The viewpoints with their elements are encoded
as so-called F-terms in the patent. Li et al. [18] compared flat classification of
F-terms using SVM to hierarchical classification using a variant of SVM called
H-SVM [3]. They find that their method for hierarchical classification performed
much worse than what they could achieve with flat classification. They suggest that
the hierarchical relations among the classes are too complicated for the H-SVM
algorithm.
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Another branch of hierarchical classification systems explicitly exploits the
hierarchical properties of the IPC taxonomy, either through user interaction or by
combining classification output on different levels to predict labels on subgroup
level.

The myClass classification tool [13] is a neural network implementation of the
Balanced Winnow algorithm and achieved the highest accuracy in the CLEF-IP
2010 classification task (on subclass level) [22]. This tool uses a semi-automatic3

method for classification on subgroup level [12]. A user is asked to select the
correct labels from classification output on an intermediate level, such as subclass
or main group. In a second step, the tool outputs subgroup labels within the selected
(intermediate) categories.

Tikk et al. [28] propose a taxonomy-driven architecture for text classification
called HITEC. They model the tree structure of the class hierarchy as a neural
network. The categorisation of an incoming document is performed from the top
of the hierarchy downwards. Going from top to bottom in the hierarchy, each
level is followed by a so-called authorisation layer. The classifier determines the
classification score of the document for all active category nodes at each level. Based
on this score, the authorisation layer decides which categories on the next level are
activated. In doing so, the authors use a novel relaxed greedy algorithm: Rather
than activating only the category with the highest relevance score at each level, the
system allows multiple categories to be active if their label scores are above a given
threshold and within a given margin of variation from the highest label score. By
thus widening the search, the authors expect to counter the propagation of error.
However, the classification scores from the higher levels are not taken into account
in calculating the classification scores for the lower levels. Consequently, the final
rankings are based solely on the similarities between the test documents and the
category models on the lowest levels, which might suffer from the fact that very
few training documents are available for a large proportion of the categories. Tikk
et al. [28] evaluate their method on the WIPO-alpha set. They classify documents
on three levels: class, subclass and main group. They obtain excellent results with
53.25% accuracy at the subclass level, which is 12 percentage points higher than
the best-scoring setting reported in the reference paper by Fall and Benzineb [11].
On the main group level, Tikk et al. [28] achieve an accuracy of 36.89%.

Chen and Chang [4] extend the work done by Tikk et al. [28] and were—to
our knowledge—the first to classify on subgroup level. They develop a three-phase
classification method which combines flat SVM classifiers at two different levels of
the IPC hierarchy, namely, subclass and subgroup level, with a KNN classifier on the
subgroup level. Their method takes four parameters k1–k4. In the first phase, a test
document is classified on subclass level and a predetermined number of category
labels are returned (variable k1). These subclass categories are then pooled together

3In its latest version myClass offers fully automatic classification on subgroup level [14]. However,
as myClass is proprietary software, a detailed technical description of its current implementation
has not been published.



306 E. D’hondt et al.

to form a large ‘world’ in which a classifier is trained, this time on subgroup level.
In the second phase, a predetermined number of category labels on subgroup level
are returned (variable k2). The classifier that is needed for the first step can be built
beforehand, but the classifier for the second step is variable and must be learned
dynamically after the top-k1 subclasses have been identified. In the third phase of
the algorithm by Chen and Chang [4], each subgroup from the top-k2 of subgroups is
split in k3 clusters of documents using k-means clustering. Then, cosine similarity is
calculated between the test document and themean of each cluster. A KNN classifier
with k D k4 is used to choose the most similar subgroup for the test document, i.e.
the subgroup category with the most occurrences in the k4 most similar document
clusters.

In a pretest phase, Chen and Chang [4] examine ‘almost all combinations’
(p. 11) of the parameters k1–k4 to determine the optimal combination with the
highest accuracy. For this pretest, they use a subset of 400 documents from the
test data. Their best-scoring setting (k1 D 11, k2 D 37, k3 D 5, k4 D 169)
achieves a 36.07% accuracy at the subgroup level.4 Since they did not use a held-
out development set for parameter tuning, these results can be considered an upper
bound for classification performance with their three-phase method. For the sake
of comparison, Chen and Chang [4] also re-implemented the HITEC classifier by
Tikk et al. [28] and, using this system, they achieve 30.2% for the same test set on
subgroup level.

11.2.3 Combining the Classification Scores on Different Levels
in the Hierarchy

As we saw in the previous two subsections, none of the approaches in previous
work on hierarchical patent classification combines the scores of classifiers on
different levels. The common approach is to let the output of the high-level classifier
determine which classifiers on lower levels are activated [28], or what training
material should be selected to train a classifier on the lower level [4]. In both
cases, individual category scores do not have a direct impact on lower levels in
the hierarchical classifier.

If we look outside the patent domain, however, we can find methods that combine
classifier scores from different levels in a hierarchy. An example of this in a text
classification task is [9], who performsWeb page classification on a small two-level
corpus of (summarised) Web pages, which consists of 13 categories on the first
level and 150 categories on the second level. In order to be able to combine scores
from different classifiers, they first derive posterior probabilities from SVM output
scores. They then proceed to compare the impact of (1) thresholding on higher levels
in the hierarchy (effectively minimising the number of categories to be examined

4They also report the accuracy of their algorithm without the third step (k1 D 11; k2 D 1): 20.2%.
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at the lower level) with (2) combining higher- and lower-level probabilities through
multiplication and then thresholding on the final probabilities. Both methods achieve
similar final rankings (of the top N results). Dumais and Chen [9] also compare
the hierarchical systems with a flat (baseline) classification system. They find that
hierarchical methods significantly outperform that baseline system.

11.3 Data Selection and Processing

11.3.1 Data Selection

In this section we describe the two patent corpora used for the experiments presented
in Sects. 11.5 and 11.6. The WIPO-alpha data set is a well-known benchmark
for patent classification, which was first made available by the World Intellectual
Property Organization (WIPO) in 2002. Although it is a clean and often-used
data set, it is fairly small compared to present standards. We therefore opted to
run a second series of experiments on the CLEF-IP 2010 data set, which is more
representative of a real-life patent corpus.

11.3.1.1 WIPO-Alpha Data Set

The English WIPO-alpha collection5 consists of 75,250 patent documents (46,324
for training and 28,926 for testing) with their IPC category labels on subgroup
level.6 The documents were published between 1998 and 2002 and are labelled with
the 7th version of the IPC.

From each patent document, we extracted the abstract section, using the infor-
mation in the XML source. Since some subgroups have little to no training data, we
used the same data selection criteria as [4]7: we only selected subgroups that have
a minimum of seven training documents. This selection step resulted in a corpus of
22,113 documents (12,883 for training and 9230 for testing). The corpus statistics
after document selection in Table 11.1 show that there is a large variation in the
number of documents (abstracts) in the different categories, both on subclass level
and subgroup level. Moreover, 628 of the 1140 categories on subgroup level contain
fewer than ten documents. Having only seven documents as positive examples for
training a classifier is on—or below—the lower bound of what is needed to construct

5The collection can be downloaded at http://www.wipo.int/classifications/ipc/en/ITsupport/
Categorization/dataset/index.html.
6Since IPC labels are hierarchical, i.e. contain information on parent nodes in the label, we can
easily extract subclass labels from the subgroup labels.
7Unlike [4], we used the official training/test split as determined by the EPO. Our category selection
was based on frequency counts over the training set only.

http://www.wipo.int/classifications/ipc/en/ITsupport/Categorization/dataset/index.html
http://www.wipo.int/classifications/ipc/en/ITsupport/Categorization/dataset/index.html
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Table 11.1 Corpus statistics on the WIPO-alpha corpus after sample selection

# of cat av. # doc in cat (stdev) av. # daughters (stdev)

Subclass 339 38.00 (53.19) 3.36a (4.36)

Subgroup 1140 11.30 (7.18) n.a.
a128 subclasses only have one subgroup daughter in the training set

a useful category model. But even with this lenient criterion, we were forced to
discard more than 70% of the documents in the WIPO-alpha collection.

All documents in the WIPO-alpha collection come with one primary (subgroup)
category label (determining the field of application in which the invention is novel)
and may have several secondary categories. In the following experiments, we only
take the primary category labels into account, thus rendering the WIPO-alpha
experiments into a mono-label, multi-class hierarchical classification problem.

11.3.1.2 CLEF-IP 2010 Data Set

The CLEF-IP 2010 data set8 is a subset of the MAREC corpus9 and was released
as part of the CLEF-IP 2010 classification and prior art retrieval tracks. It features
2.6 million patent documents from the European Patent Office (EPO). These three
million documents with content in English, German and French pertain to over one
million patents,10 from 1976 to 2002.

As with the WIPO-alpha corpus, we first extracted all abstracts from the patent
documents and then applied data selection on the corpus. We used more stringent
selection criteria than for the WIPO-alpha set: only subgroups with a minimum
of 50 documents were included in the corpus subset. This cut-off was arbitrarily
chosen to avoid data sparseness in the subgroup categories on the one hand, while
on the other hand minimising the number of one-daughter subclass worlds. The
resulting subset was then divided into training/test corpora with the same ratio as
the WIPO-alpha split (60/40), with the additional criterion that all subgroups in the
training set must contain at least 20 documents. This resulted in a corpus subset of
991,805 documents and a training and test set of 595,080 and 396,725 documents,
respectively. Statistics on the CLEF-IP corpus after sample selection are given in
Table 11.2. It shows that in the fairly large CLEF-IP data set, the distribution is
very skewed. When making the train/test split, we tried to minimise the number
of categories that might suffer from data sparseness. We therefore chose a split
where only 493 of the 19,411 subgroup categories contain fewer than 30 training

8Available at http://www.ifs.tuwien.ac.at/~clef-ip/download/2010/index.shtml#data.
9Available at http://www.ifs.tuwien.ac.at/imp/marec.shtml.
10Unlike the WIPO-alpha data set, the CLEF-IP data set contains documents that refer to the same
patent but in various stages of the granting process. Consequently, some of the extracted abstracts
may be similar to each other.

http://www.ifs.tuwien.ac.at/~clef-ip/download/2010/index.shtml#data
http://www.ifs.tuwien.ac.at/imp/marec.shtml
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Table 11.2 Corpus statistics on the CLEF-IP 2010 subset corpus after sample selection

# of cat av. # doc in cat (stdev) av. # daughters (stdev)

Subclass 575 8028.4 (20,512.2) 33.8a (63.4)

Subgroup 19;441 237.5 (434.8) n.a.
a39 subclasses only have one subgroup daughter in the CLEF-IP 2010 subset

documents. For the CLEF-IP corpus, it also holds that fairly lenient data selection
criteria in designing a classification experiment result in discarding almost 70% of
the documents. Please note the size difference between the two corpora: even after
data selection there is—on average—six times more data available for a category on
subgroup level in the CLEF-IP 2010 corpus than there is for a subclass category in
the WIPO-alpha corpus.

Patent documents in the CLEF-IP 2010 data set may contain multiple labels
and—unlike the WIPO-alpha set—have no information on primary versus sec-
ondary labels. We therefore included all labels, rendering the CLEF-IP experiments
a multi-label, multi-category classification task. In consequence, the similarity
between categories on both levels is likely to be higher since categories may share
some training documents as positive examples during training.

11.3.2 Text Preprocessing and Feature Generation

While the WIPO-alpha corpus is a fairly clean text corpus and requires little
preprocessing effort, the CLEF-IP 2010 corpus contains several data conversion
errors which were solved using regular expressions.

After removing all XMLmarkup from the extracted abstracts, we ran a Perl script
to divide the running text into sentences, by splitting on end-of-sentence punctuation
such as question marks and full stops. In order to minimise incorrect splitting of
the technical texts that contain many acronyms and abbreviations, the Perl script
was supplied with a list of common English abbreviations and a list containing
abbreviations and acronyms that occur frequently in technical texts,11 derived from
the Specialist lexicon.12

The sentences in the WIPO-alpha and the CLEF-IP corpora were then further
processed to generate lemmatised unigrams and skipgrams. In previous research [6,
7], we found that classification accuracy (on class level) is more improved by adding
skipgrams which are filtered for specific parts of speech than by adding bigrams or
dependency triples generated by a parser.

11Both the splitter and abbreviation file can be downloaded from https://sites.google.com/site/
ekldhondt/downloads.
12The lexicon can be downloaded at http://lexsrv3.nlm.nih.gov/Specialist/Summary/lexicon.html.

https://sites.google.com/site/ekldhondt/downloads
https://sites.google.com/site/ekldhondt/downloads
http://lexsrv3.nlm.nih.gov/Specialist/Summary/lexicon.html.
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To generate unigram and skipgram features, the preprocessed sentences were
tagged using an in-house PoS tagger [29].13 The tagger’s statistical languagemodels
have been trained on the annotated subset of the British National Corpus. We opted
for this particular tagger because it is highly customisable to new lexicons and word
frequencies, which is essential when dealing with the patent domain: the language
usage in patent documents can differ greatly from that in other genres. For example,
the past participle said is often used to modify nouns as in ‘for said claim’. While
this usage is very rare and archaic in general English, it is a very typical modifier in
patent language. Consequently, a PoS tagger must be updated to account for these
differences in language use. To this end we adapted the tagger with word frequency
information and associated PoS tags from the AEGIR lexicon.14 We did not retrain
the N-gram language model of the tagger, since no PoS-tagged patent texts are
available for that purpose. The words in the tagged output were also lemmatised
using the AEGIR lexicon.

From the tagged output, we then generated two text representations using the
filtering and lemmatisation procedure described in [6]: PoS-filtered words (only
allowing nouns, verbs and adjectives) and PoS-filtered 2-skip-2-grams (only allow-
ing combinations of nouns, verbs and/or adjectives). In the experiments described
in this chapter, unigrams will refer to the PoS-filtered words only, while unigrams
C skipgrams will refer to the combination of PoS-filtered words and PoS-filtered
2-skip-2-grams.

11.4 Classification Algorithms

In this section we first describe the training algorithm of the classifiers in both
the flat and hierarchical classification approaches. Section 11.4.2 describes our
approach to hierarchical classification on subgroup level in the IPC hierarchy.

11.4.1 Balanced Winnow Algorithm

We opted to use the Balanced Winnow classification algorithm implementation in
the Linguistic Classification System (LCS), because it has been shown in previous
work to be very fast and effective for large-scale text classification problems and to
yield state-of-the-art results on text classification problems with many categories [6,
7, 16].

13Tokenisation was performed by the tagger.
14The AEGIR lexicon is part of the AEGIR parser, a hybrid dependency parser that is designed to
parse technical texts, with a focus on patent text. For more information, see [20].
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Preceding the actual training, there is a two-step term selection phase in which
the most informative terms are selected for each category. In the first step (global
term selection), selection is based on global frequency information, i.e. a term must
appear in at least three documents in the training set and at least twice in those
documents. In the second step (local term selection), we used the LTC algorithm
[25] to calculate TF-IDF scores for the features per category. We then selected the
top 1000 most informative features per category and aggregated them into the initial
category models (a.k.a. class profiles).

(Balanced) Winnow is a mistake-driven learning algorithm, akin to the per-
ceptron algorithm. The effect of learning during training is determined by four
parameters: a promotion parameter ˛, a demotion parameter ˇ and two threshold
parameters �C and ��, which determine a threshold ‘beam’.

In Balanced Winnow, each feature is given two weights (wC and w�), the
sum of which is the Winnow weight. The terms are initialised with their winnow
weights set to their TF-IDF scores. During training the weights wC and w� are only
updated when a mistake occurs in classifying the training documents. The algorithm
distinguishes two types of mistakes: (1) true label is not found and (2) wrong label is
assigned. In the former case, the weights wC of the active features are promoted by
multiplying them with ˛, while the weights w� of the active features are demoted
by multiplying them with ˇ (thus increasing the final Winnow weights of the active
features). In case of error (2), the weights wC of the active features are demoted by
multiplying them with ˇ, and the weights w� are promoted by multiplication with
˛. The ‘beam’ determined by the � parameters delineates an area where correct
labelling is still considered a type 1 error, which leads to more weight updates.

In the test phase, when classifying a document d, the term vector representing
d is checked against each category model, a.k.a. class profile, in the classifier and
assigned a Winnow score for that category. This score is the sum of the Winnow
scores for the individual terms in the term vector. In Sect. 11.4.3, we describe how
we tuned the Winnow parameters.

11.4.2 Hierarchical Classifiers

11.4.2.1 System Architecture of the Hierarchical Classifiers

Following [4], our hierarchical approach to classification operates in a downward
two-level hierarchy: On the first level, there is one classifier trained on a corpus-wide
training set, annotated with IPC subclass information. In the case of theWIPO-alpha
data set, this classifier distinguishes between 339 different (subclass) categories;
for the CLEF-IP 2010 data set, it distinguishes between 575 different (subclass)
categories. Hereafter we will refer to these classifiers as the subclass classifiers.
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Fig. 11.1 Structure of a hierarchical classifier

Fig. 11.2 Structure of a flat classifier

On the second level, for each subclass category a separate classifier is trained,
which differentiates between the subgroup daughters in that subclass world.15 A
subgroup classifier is trained only on the training data available in a particular
subclass world and yields classification scores for the different subgroup categories
in that world. As was shown in Tables 11.1 and 11.2, the number of daughters
in different subclass worlds can vary greatly. In our system the patent documents
are always assigned a label on subgroup level; we do not assign labels on the
intermediate group level. Figures 11.1 and 11.2 illustrate the architectures of a
hierarchical and flat classifier, respectively. Each box in Fig. 11.1 refers to an
individual flat classifier.

11.4.2.2 Normalisation and Converting Scores to Probabilities

During the test phase, a vector representing a test document is first scored by the
subclass classifier and then by each of the subgroup classifiers. To arrive at a final
ranking of subgroup labels, the scores of the classifiers on the two levels must be
combined in a way that takes into account the differences in scoring ranges between
the various classifiers.

We achieve this by transforming the Winnow scores of each document for each
category into an estimate of the posterior probability that the document belongs in
a given category. For that purpose, we used the sigmoid transformation proposed
by Platt [24]. In the case of the subclass classifier for the WIPO-alpha set, each

15Please note that subclass worlds are the default context for training subgroup classifiers. In
Sect. 11.5 we will also report additional experiments where subgroup categories were trained in
larger contexts, i.e. class and section worlds.
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document obtains 339 Winnow scores for as many subclasses, only one of which is
correct. This leads to a substantial imbalance in the data for the logistic regression
(for each relevant ‘1’ score, there are 338 ‘0’ scores) which we accounted for by the
error weighting in [15] which we integrated in the implementation for finding the
sigmoid proposed in [19].

Although the transformation of Winnow scores to probabilities by means of a
continuously non-decreasing function cannot alter the rank order of the subclasses,
it can increase or shrink the distance between the values assigned to subclasses.
This becomes relevant when combining the probability scores derived from the
subclass classifier with the probability scores from the different subgroup classifiers
to achieve a final ranking on subgroup level.

To avoid a bias caused by the differences in score ranges between the subclass
and the various subgroup classifiers—the subclass classifier scores generally span a
wider range than those given by the subgroup classifiers—we decided to normalise
the Winnow scores before transforming them to posterior probabilities. This was
done using Batch Normalisation: for each classifier we calculated a linear function
through which the Winnow scores for the training documents were mapped into
the range Œ0:0; 10:0�. These linear functions were calculated by running a fivefold
cross-validation over the training data available for that classifier and then mapping
the complete set of scores into a range of 0 to 10 with the (original) maximum and
minimumWinnow score in the complete set as anchor values.

A second bias that we wished to avoid is caused by the difference in the amount
of training data on the two different levels: from Tables 11.1 and 11.2, it can be seen
that the average number of documents available for training subclass classifiers is
much larger than the number of documents for training subgroup classifiers. From
this we can conjecture that the subclass classifier and the corresponding sigmoid
function trained on subclass data are potentially better (in)formed than the individual
classifiers and the corresponding sigmoids for the different subclass worlds. This
hypothesis was confirmed by an analysis of the score distributions for categories on
subgroup level. As mentioned above, Winnow scores from the subgroup classifiers
are generally not widespread, and we found that—even after normalisation—the
scores of relevant and irrelevant categories were quite similar. Consequently, the
sigmoids fitted on this data may not yield accurate transformations from Winnow
scores to posterior probabilities. We experimented with different definitions of
the ‘worlds’ for training subgroup classifiers in which more training data was
available, but we did not find significant improvements in the eventual classification
performance.

We therefore decided to fine-tune the balance between the subclass and subgroup
probability estimates to arrive at an optimal final ranking on subgroup level. We
assigned weights by raising the subclass probabilities to power � and the subgroup
probabilities to power ı, respectively. For both data sets, we performed full-grid
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Table 11.3 Winnow
parameters for hierarchical
and flat classifiers for the
WIPO-alpha data set,
determined after fivefold
cross-validation tuning

Subclass (hierar) Subgroup (hierar) Subgroup (flat)

˛ 1:06 1:03 1:06

ˇ 0:91 0:98 0:91

�C 2:0 2:0 2:0

�� 1:0 1:0 1:0

Table 11.4 Winnow
parameters for hierarchical
and flat classifiers for the
CLEF-IP 2010 data set,
determined after fivefold
cross-validation tuning

Subclass (hierar) Subgroup (hierar) Subgroup (flat)

˛ 1:02 1:02 –

ˇ 0:98 0:98 –

�C 2:0 2:0 –

�� 0:5 0:5 –

searches16 on subsets from the cross-validation folds in the training procedure.
Interestingly, similar patterns emerged for both the WIPO-alpha and the CLEF-IP
data sets: To reach optimal ranking, the subclass probabilities should be raised to a
relatively high power, while the subgroup probabilities should be raised to a very
low power.17 We arrived at the optimal balance by raising the subclass probabilities
to the power of 1.5 (� ) and the subgroup probabilities to the power of 0.2 (ı).

11.4.3 Tuning

The classification parameters for the subclass classifiers, the subgroup classifiers
and the flat classifiers were determined individually by tuning through fivefold
cross-validation on a subset of the training data. All subgroup classifiers use the
same parameters. These are the parameters that yielded the best overall results in an
oracle experiment with fivefold cross-validation.18 The resulting parameter settings
are in Tables 11.3 and 11.4.With the exception of ��, the parameters for the subclass
and subgroup classifiers in both corpora are very similar.

Note that we do not report any parameters for a flat subgroup classifier on
the CLEF-IP 2010 data set: as mentioned in the introduction, the complexity
of a 19,441-category (multi-label) classification problem causes severe scalability

16� 2 f0:5; 1:0; 1:5; 2:0; 2:5; 3:0; 3:5; 4:0g, ı 2 f0.1,0.2,0.3,0.4,0.5g. For the WIPO-alpha
hierarchical classifier, we optimised on success@rnk1. In the case of the (multi-label) CLEF-IP
classifier, we optimised on the F1 accuracy score.
17By raising them to a high power, subclass probabilities ‘shrink’, i.e. result in lower probabilities
which increases the distance between the high-scoring and intermediate labels. For the subgroup
classifiers on the other hand, intermediate probabilities (from 0.6 onwards) are transformed into
extremely high scores (between 0.9 and 1.0).
18In an oracle setting, documents are only tested against subgroup classifiers from the relevant
subclass world(s).
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issues [1]. Even on a server with two Intel© Xeon© E5-2660 Processors with 256
GB memory, we were not able to complete this classification task.

11.5 Flat Versus Hierarchical Classification Methods

In this section we investigate which classification approach is best suited to classify
documents on the subgroup level of the IPC. Since we were not able to construct a
flat classifier on subgroup level for the CLEF-IP 2010 data set, our analysis will be
limited to the WIPO-alpha data set. In this section we will only consider unigram
features; the relative merit of the different text representations will be discussed in
Sect. 11.6. For the sake of comparison, we have included the most recently reported
results, i.e. from [4], who also performed a subgroup classification on the WIPO-
alpha set. It should, however, be noted that our train/test split differs slightly from
theirs, which makes direct comparison impossible.

Table 11.5 summarises the success@rank scores for the odd numbers of the
top 11 ranks of both the flat and hierarchical classifiers on the official test set of
the WIPO-alpha corpus. The scores are calculated over the final rankings of 1140
subgroup category labels.

The results show that the flat and hierarchical classifiers achieve similar accuracy.
We determined the significance of the differences from the confidence intervals:
given the sample size, i.e. number of documents in the test set, the 95% confidence
interval for the success@rnk1 is ˙0.95% for both the flat and the hierarchical
classifiers. We find that only from rank 9 onwards, the results do no longer fall
in each other’s confidence intervals, i.e. the differences are significant.

Our two-step classifier outperforms the two-step classifier of [4] by a large
margin. With their additional third step, they reach a higher performance (36.1%).
However, since this result was obtained with a system that was tuned on the test set
(see Sect. 11.2), it cannot be claimed that their three-phase method performs better
than our two-step method. We will return to this finding in the discussion.

Unlike [9], we find similar performance for the flat and hierarchical
approaches—at least until rank 9—while we had expected the hierarchical approach
to outperform its flat counterpart: both approaches suffer from the same problem
with sparse training material on subgroup level, but the flat classifier has a more

Table 11.5 Classification results of hierarchical and flat classifiers on subgroup level for WIPO-
alpha test set using only unigram features

success@rnk 1 3 5 7 9 11

Hierarchical classification (%) 31.5 46.8 54.5 59.5 63.1 65.8

Flat classification (%) 31.8 46.6 53.9 57.9 61.0 63.6

Chen and Chang, two-step classification (%) 20.2

Chen and Chang, with additional 3rd step (%) 36.1
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Table 11.6 success@rnk scores for subclass and subgroup classifiers in the hierarchical classifier
on the WIPO-alpha set

success@rnk 1 3 5 7 9 11

Subclass classifier (%) 50.7 70.0 76.9 80.5 82.7 84.3

Chen and Chang subclass classifiera (%) 43.3 67.5 76.0 81.5 85.8 88.5
aPlease note that these results are reported over a different test set (400 documents) and
consequently are indicative for but not directly comparable to the other reported scores

Table 11.7 success@rnk1 scores for oracle runs on the WIPO-alpha set

Oracle runs success@rnk1 Chance level

All subgroup categories 58:3% 26.9%a

Subgroup categories with 1 sister 87:0% 50:0%

Subgroup categories with 2 sisters 68:6% 33:3%

Subgroup categories with �3 sisters 56:3% 25:0%
aWe calculated the micro-averaged chance level (in an oracle setting) by summing up the chance
level of all documents (in the relevant subclass world) and then averaging over the number of
documents

complex classification task (1140 vs. 11 categories on average for the subgroup
classifiers in the hierarchical approach).

In the remainder of this section, we analyse the performance of the hierarchical
classifier by analysing the performance of its individual components. First, we
consider the subclass classifier on the first level in the hierarchy. This classifier
achieved 50.7% success@rnk1, which is similar to the state-of-the-art classification
results on subclass level reported by Tikk et al. [28] and better than the subclass
classifier of [4] (Table 11.6).

The 339 individual subgroup classifiers are trained on significantly less data than
the subclass classifier on the first level. We evaluated these subgroup classifiers
in ‘oracle runs’, i.e. runs in which the documents were only tested against
subgroup models within the correct subclass world, effectively assuming a perfect
classification on the first level in the hierarchy. The results of these experiments are
given in Table 11.7. Please note that the last three lines show the performance of
different sets of subgroup classifiers, grouped according to the number of daughters
present in the subclass world.

In general, the subgroup classifiers seem to be of good quality and perform quite
well (in an oracle setting). So given the good performance in smaller, contained
worlds, how do we account for the relatively low accuracy (see Table 11.5) when
the subgroup classifiers are used in the hierarchical setting where a document is
scored by all subgroup classifiers?

First, there is the well-known problem of propagation of error: Table 11.6 shows
that for 50% of the test documents, the highest scoring subclass category is the
correct one. For an additional 20% of the test documents, the correct subclass
category can be found at rank 2 or 3, while the correct labels of the remaining
30% lie scattered at lower ranks. Given the difficulties in fitting sigmoids to
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Table 11.8 Corpus statistics for subclass, class and section worlds in the WIPO-alpha training set
after sample selection

av. size (stdev) av. # daughters # of categories with one

# of cat in # doc (stdev) subgroup daughter

Subclass 339 38.00 (53.19) 3.36 (4.36) 128

Class 107 120.40 (179.48) 10.65 (15.08) 18

Section 8 1610.38 (945.85) 142.5 (77.8588) 0

subgroup classifier output (reported in Sect. 11.4.2.2), the probability estimates on
the subgroup level may not be sufficiently powerful to repair the ‘errors’ made by
the subclass classifiers.

Second, there are reasons for doubting whether classification at the subgroup
level is at all feasible: Eisinger et al. [10] point out that in quite some cases
patent documents should have additional labels on the subgroup level and that
the labels that have been manually assigned by the patent examiners are to some
extent arbitrary. Given the inconsistencies in the manually assigned labels on a level
with fine-grained distinctions between categories, it is extremely unlikely that an
automatic system can reproduce the manual labels with 100% accuracy.

Third, our manner of training may have introduced an overlap between the class
profiles19: the analysis of the class profiles of the subgroup categories in the flat and
hierarchical classifiers shows that class profiles in the flat classifier generally contain
more terms and, more specifically, they contain more ‘negative terms’. Terms with
high negativeWinnow weights characterise those unigram features that describe the
rest of the corpus, not the category itself. They are especially useful in countering
the positive weights of features that occur in many documents. Since the subgroup
classifiers are trained in isolation, i.e. each in their own (small) subclass world with
no information on the rest of the corpus, the models often do not contain enough
negative terms to distinguish between categories in the testing phase.

The smaller number of negative terms (compared to positive terms) in the
subgroup profiles for the hierarchical classifier indicates the lack of negative training
material for the subgroup categories in the subclass worlds. Given the high number
of single-daughter worlds (see Table 11.1), this is not surprising. We therefore
hypothesised that training in larger contexts is better for optimal performance
in a hierarchical system. To examine this hypothesis, we performed additional
experiments in which subgroup classifiers were trained in larger ‘worlds’, i.e. the
classifiers for individual subgroup categories were trained against all other subgroup
categories in the same class (C) or section (S) in the IPC hierarchy. Table 11.8 shows
corpus statistics on these larger worlds.

Although the different data selection criteria result in larger class profiles (with
a higher ratio of negative terms compared to positive terms), Table 11.9 only shows

19Class profiles are the category models which comprise the most relevant terms for each category
with their corresponding Winnow weights.
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Table 11.9 Classification results for WIPO-alpha test set after different training data selection

success@rnk 1 3 5 7 9 11

Trained on SC world (%) 31.5 46.8 54.5 59.5 63.1 65.8

Trained on C world (%) 32.0 47.4 55.1 60.0 63.3 66.1

Trained on S world (%) 32.1 48.4 55.9 60.5 63.8 66.4

The first row is the same as the first row of Table 11.5

marginal and non-significant improvements between the different runs. Analysis of
the class profiles of the categories trained in the class and section worlds shows that
the added terms tend to have low Winnow weights and have relatively little impact
on classification performance.

So, even with more negative training data, the hierarchical classifier does not
rise above the performance level of the flat classifier. We must conclude that the
overlap between the categories on the lowest levels and the small number of training
documents in many ‘worlds’ are an insurmountable problem in the WIPO-alpha
training/test set.

It might be argued that the classification at subgroup level should not be
approached by means of a classifier that relies on some kind of training, simply
because of the lack of sufficient amounts of training data. Chen and Chang [4]
obtained a substantial improvement on the subgroup level by using a KNN classifier.
We conducted a large number of experiments in which we used the features
selected for the Winnow classifier in two different KNN classifiers, TiMBL [5] and
sklearn [21]. However, we were not able to obtain a better classification accuracy
than with the Balanced Winnow algorithm.

As mentioned above, the WIPO-alpha set is hardly representative of a real-life
task. The CLEF-IP 2010 corpus is much larger, both in the number of documents
and in the number of categories that must be distinguished on subclass and subgroup
levels. While flat classification on such a set is not feasible for our classification
algorithm, we expect that the hierarchical approach, which is much more scalable,
will yield similar results (as a hypothetical flat one), since that was the case for the
WIPO-alpha corpus. Furthermore, the larger amount of data opens possibilities to
examine the impact of more precise text representations, which might help to solve
the problem of the high overlap between the subgroup categories.

11.6 The Impact of Phrasal Features

In this section we examine the impact of different text representations on classifica-
tion accuracy for different levels of the IPC hierarchy. For this series of experiments,
we used the CLEF-IP 2010 corpus in addition to the WIPO-alpha data set, since
the data sparseness in the WIPO-alpha corpus is especially problematic for the
inherently sparse skipgram features. Furthermore, the CLEF-IP 2010 corpus is
much more representative for the patent classification task than the WIPO-alpha
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benchmark, both in terms of the number of documents and the number of categories
available.

Our goal is twofold: (1) We will examine the (relative) improvements of adding
skipgrams for the subclass and subgroup classifiers. Our hypothesis is that on the
subgroup level, in which the categories tend to overlap more, the more precise
distinctions provided by the phrasal features will have a larger impact than on the
subclass level. (2)We will compare the effects of adding features for both the CLEF-
IP 2010 and the WIPO-alpha set in order to obtain a better understanding of how
much training material is needed for phrasal features to be effective. It should be
noted that in this section we use a different evaluation measure than in the previous
section: up to now we have reported success@rnk for the sake of comparison
with [4]. Since the CLEF-IP 2010 set is a multi-label set with a varying number
of relevant categories per document, this measure is no longer adequate. We will
therefore report our results using the well-known precision, recall and F1-measures.
Relevant output rankings from classification experiments discussed in the previous
section have been (re-)evaluated using these metrics.20

As is shown in Table 11.2, our train/test split for the CLEF-IP 2010 corpus
consists of 595,080 and 396,725 documents, respectively, with 575 categories on
subclass level and 19,441 on subgroup level. Unlike the WIPO-alpha documents,
each document in the CLEF-IP 2010 set may have multiple relevant category labels.
In the case of multi-label classification, the LCS can return a varying number of
categories per document. This is determined by three parameters: (1) a threshold that
puts a lower bound on the classification score (in this case probability) for a class to
be selected, (2) the maximumnumber of classes selected per document (‘maxranks’)
and (3) the minimum number of classes selected per document (‘minranks’). Setting
minranks D 1 assures that each document is assigned at least one category, even if
all categories have a score or probability below the threshold. We used the cross-
validation folds to determine the optimal evaluation configuration, which resulted
in the following setting: minranksD 1, threshold D 0:8 and maxranks D 8 and 20
for the subclass and subgroup classifiers, respectively.

First we study the impact of adding skipgrams on subclass level. Table 11.10
shows the precision, recall and F1 scores for the CLEF-IP 2010 test set (left-hand
side) and WIPO-alpha data set (right-hand side), respectively. Please note that these
scores cannot be directly compared as they are (a) based on different data sets with
a different number of categories to be distinguished and (b) a substantially different
classification problem: classifying theWIPO-alpha set is a mono-label classification
task, while the CLEF-IP 2010 set is multi-label. The scores should rather be seen as
an indication of the difficulty of classifying on a certain level in the IPC hierarchy.

For both the WIPO-alpha and CLEF-IP 2010 test sets, we can see an improve-
ment of classification performance on subclass level when skipgrams are added.

20Since we defined the classification task on the WIPO-alpha set as a mono-label task where
the classifier must return one label, the reported (micro-averaged) scores will always yield equal
precision and recall scores.
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Table 11.10 Classification results of unigrams-only and unigrams+skipgrams classifiers on sub-
class level for the CLEF-IP 2010 corpus and the WIPO-alpha corpus

CLEF-IP WIPO-alpha
P R F1 P D R D F1

Unigrams (%) 63:9 62:3 63:1 50:7

Unigrams C skipgrams (%) 66:6 67:3 66:9 51:9

Table 11.11 Classification results of unigrams-only and unigrams+skipgrams hierarchical classi-
fiers on subgroup level for the CLEF-IP 2010 corpus and the WIPO-alpha corpus

CLEF-IP WIPO-alpha
P R F1 P D R D F1

Unigrams (%) 45:1 27:7 34:3 31:5

Unigrams C skipgrams (%) 52:7 30:3 38:4 32:5

We determined the significance of the differences between the unigrams and
unigrams+skipgrams using the confidence intervals: Given the sample sizes, i.e. the
number of documents in the respective test sets, the 95% confidence interval for
the F1 values is ˙0.15% and ˙1.02% for the CLEF-IP 2010 and the WIPO-alpha
subclass classifiers, respectively. From this we can conclude that adding skipgrams
leads to a significant improvement in the CLEF-IP 2010 set, but not in the WIPO-
alpha set. As there is much more training material per category available in the
CLEF-IP 2010 data set, compared to WIPO-alpha data set, the inherently sparse
skipgram features attain high enough frequencies to aid in the classification process.

Table 11.11 shows the results for the subgroup rankings of the hierarchical
classifiers, also for the CLEF-IP 2010 and WIPO-alpha test sets.

Here too we find a significant improvement for the combined run for the CLEF-IP
2010 set, but not for the WIPO-alpha set (with confidence intervals of˙0.15% and
˙0.95% for the F1 scores of the CLEF-IP 2010 and WIPO-alpha set, respectively).

If we compare the (relative) improvements in F1 scores of the combined runs
with the unigram runs for both the CLEF-IP subclass and subgroup classifiers,
we find a similar improvement (around 4 percentage points) on both levels. We
can therefore conclude that combining unigrams and skipgrams is beneficial for
classification performance on any level in the IPC hierarchy. However, our initial
hypothesis that skipgrams would have a larger impact on lower—and supposedly
more overlapping—levels in the hierarchy is not confirmed. Close analysis of the
class profiles does reveal that on average skipgrams occur at higher ranks in the
subgroup class profiles than in the subclass class profiles. It seems that these
features fill up the feature space when the unigram features are not sufficiently
discriminative. Therefore, the hypothesis that skipgrams are more important on
subgroup than on subclass level cannot be rejected either. It may be that even the
CLEF-IP corpus is too small to allow for a decisive test.

As regards the second research question, the relative improvements between the
classification results for the CLEF-IP 2010 and theWIPO-alpha sets clearly confirm
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our hypothesis that adding phrasal features is only effective when enough training
data is available. For the CLEF-IP set, the skipgrams lead to a highly significant
improvement on subgroup level, despite the fact that there is much less training
material available than on subclass level. This suggests that an average number of
142 training documents per category are enough training data to see an impact of
skipgram features, despite the skewed distribution of the number of documents per
category.

11.7 Conclusion

In this chapter we examined the feasibility of performing classification on subgroup
level of the IPC taxonomy. This task is generally considered extremely difficult
because of three problems reported in the literature: (a) The overlap between
categories is too large, and differences are too subtle to be captured adequately.
(b) The number of categories is exceedingly large, which leads to scalability issues.
(c) The data sparseness (in the number of documents per category) at the lowest
level is too severe to build adequate classification models.

In our research we focused on two main questions which address these difficul-
ties: (1) Can we circumvent the problems of overlap and the number of categories
by using a hierarchical approach to classification on subgroup level and how does it
compare to a flat classification approach? (2) Can we improve the classification on
subgroup level by adding phrasal features, namely, skipgrams, to unigram features
and how does the impact correlate with the granularity of the different levels in
the IPC hierarchy? We performed classification experiments on the WIPO-alpha
benchmark set, as well as on the much larger and more realistic CLEF-IP 2010 data
set.

Our hierarchical approach consisted of a two-step top-down classification system
with a subclass classifier on the top level and a set of subgroup classifiers—each
trained within a subclass world—on the lower tier. The scores of the individual
classifiers were converted to probabilities, which were then combined in a weighted
scheme. To minimise the propagation of error and effectively allow high-scoring
subgroup categories to move up in the final ranking, we did not define any cut-off
thresholds on the subclass level during the testing process.

Regarding the first research question, we found that the flat and hierarchical
approaches achieve similar accuracy scores on the WIPO-alpha set (31.5% and
31.8% success@rnk1, respectively). This shows that when it becomes infeasible
to train a flat (text) classifier because the number of categories that must be
distinguished is too large, a hierarchical classifier might be a good alternative for
classification on the lowest level(s) of a taxonomy. Using a hierarchical approach,
we were able to transform a 19,441-category problem into smaller, manageable sub-
problems and perform subgroup classification for a 900K corpus with encouraging
accuracy.
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Regarding the second research question, we were able to replicate the improve-
ments of combining unigrams with skipgrams which were previously observed in
[6, 7]. We did not observe a difference in the effect size of adding skipgrams to
unigrams between the different IPC levels.

The difference in size between the two WIPO-alpha and CLEF-IP corpora gave
us insight into the problems caused by data sparseness on subgroup level. Our best-
scoring approach (hierarchical approach with unigram+skipgram features) achieved
32.5% F1 accuracy for subgroup classification on the WIPO-alpha set (mono-label)
and 38.4% on the CLEF-IP 2010 set (multi-label). Since skipgrams are inherently
sparse, a sufficiently large amount of training data must be available before phrasal
features attain high enough frequencies to aid in the classification process.We found
that—for classification on subgroup level in the CLEF-IP 2010 set—an average
of 142 documents per category was enough to see a significant impact of adding
skipgram features. We conjecture that with less training material available, case-
based methods such as KNN might be preferred for classification on the lowest
levels of the IPC taxonomy, even if our attempts to use KNN-based subgroup
classifiers in WIPO-alpha data set were not successful.

An interesting pattern that we observed in both the WIPO-alpha and CLEF-IP
hierarchical classifiers was the low weight given to the subgroup probabilities in
the weighting of the probability estimates to reach optimal ranking. The fact that
this occurs independent of the amount of training data available—as described in
Sect. 11.3.1.2 we took care to avoid data sparseness problems when selecting a
subset from the CLEF-IP data set—seems a strong indication that no matter how
much training material is available, (model-based) classification on the subgroup
level is a hazardous undertaking. We suspect, however, that the small numbers
of documents in some subgroups are less of a problem than the reliability and
completeness of the manually assigned labels, which serve both for supervising the
training and as a reference in the evaluation of the classifier output.

As a final recommendation for future work in the patent classification field, we
would like to promote the use of the CLEF-IP sets as future benchmarks: while we
found that the WIPO-alpha set is a clean and usable data set, the CLEF-IP data set
presents a more realistic task,21 both in the number of categories and in the amount
of training data available. Especially the latter is of great importance for further
research focusing on (sub)group levels.

Acknowledgements This chapter is dedicated to the memory of Kees Koster, who was a major
influence on this research.

21An even more realistic data set, called DOCDB, is hosted at the EPO but is not freely available.
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