
Martin Hirt
Adam Smith (Eds.)

LN
CS

 9
98

6

14th International Conference, TCC 2016-B
Beijing, China, October 31 – November 3, 2016
Proceedings, Part ll

Theory
of Cryptography

 123

Lecture Notes in Computer Science 9986

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Zurich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbrücken, Germany

More information about this series at http://www.springer.com/series/7410

http://www.springer.com/series/7410

Martin Hirt • Adam Smith (Eds.)

Theory
of Cryptography
14th International Conference, TCC 2016-B
Beijing, China, October 31 – November 3, 2016
Proceedings, Part II

123

Editors
Martin Hirt
Department of Computer Science
ETH Zurich
Zurich
Switzerland

Adam Smith
Pennsylvania State University
University Park, PA
USA

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-662-53643-8 ISBN 978-3-662-53644-5 (eBook)
DOI 10.1007/978-3-662-53644-5

Library of Congress Control Number: 2016954934

LNCS Sublibrary: SL4 – Security and Cryptology

© International Association for Cryptologic Research 2016
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer-Verlag GmbH Germany
The registered company address is: Heidelberger Platz 3, 14197 Berlin, Germany

Preface

The 14th Theory of Cryptography Conference (TCC 2016-B) was held October 31 to
November 3, 2016, at the Beijing Friendship Hotel in Beijing, China. It was sponsored
by the International Association for Cryptographic Research (IACR) and organized in
cooperation with State Key Laboratory of Information Security at the Institute of
Information Engineering of the Chinese Academy of Sciences. The general chair was
Dongdai Lin, and the honorary chair was Andrew Chi-Chih Yao.

The conference received 113 submissions, of which the Program Committee (PC)
selected 45 for presentation (with three pairs of papers sharing a single presentation slot
per pair). Of these, there were four whose authors were all students at the time of
submission. The committee selected “Simulating Auxiliary Inputs, Revisited” byMaciej
Skórski for the Best Student Paper award. Each submission was reviewed by at least
three PC members, often more. The 25 PC members, all top researchers in our field,
were helped by 154 external reviewers, who were consulted when appropriate. These
proceedings consist of the revised version of the 45 accepted papers. The revisions were
not reviewed, and the authors bear full responsibility for the content of their papers.

As in previous years, we used Shai Halevi’s excellent Web review software, and are
extremely grateful to him for writing it and for providing fast and reliable technical
support whenever we had any questions. Based on the experience from the last two
years, we used the interaction feature supported by the review software, where PC
members may directly and anonymously interact with authors. The feature allowed the
PC to ask specific technical questions that arose during the review process, for
example, about suspected bugs. Authors were prompt and extremely helpful in their
replies. We hope that it will continue to be used in the future.

This was the third year where TCC presented the Test of Time Award to an out-
standing paper that was published at TCC at least eight years ago, making a significant
contribution to the theory of cryptography, preferably with influence also in other areas
of cryptography, theory, and beyond. The Test of Time Award Committee consisted of
Tal Rabin (chair), Yuval Ishai, Daniele Micciancio, and Jesper Nielsen. They selected
“Indifferentiability, Impossibility Results on Reductions, and Applications to the Ran-
dom Oracle Methodology” by Ueli Maurer, Renato Renner, and Clemens Holenstein—
which appeared in TCC 2004, the first edition of the conference—for introducing
indifferentiability, a security notion that had “significant impact on both the theory of
cryptography and the design of practical cryptosystems.” Sadly, Clemens Holenstein
passed away in 2012. He is survived by his wife and two sons. Maurer and Renner
accepted the award on his behalf. The authors delivered a talk in a special session at
TCC 2016-B. An invited paper by them, which was not reviewed, is included in these
proceedings.

The conference featured two other invited talks, by Allison Bishop and Srini Devadas.
In addition to regular papers and invited events, there was a rump session featuring short
talks by attendees.

We are greatly indebted to many people who were involved in making TCC 2016-B a
success. First of all, our sincere thanks to the most important contributors: all the authors
who submitted papers to the conference. There were many more good submissions than
we had space to accept. We would like to thank the PC members for their hard work,
dedication, and diligence in reviewing the papers, verifying their correctness, and dis-
cussing their merits in depth. We are also thankful to the external reviewers for their
volunteered hard work in reviewing papers and providing valuable expert feedback in
response to specific queries. For running the conference itself, we are very grateful to
Dongdai and the rest of the local Organizing Committee. Finally, we are grateful to the
TCC Steering Committee, and especially Shai Halevi, for guidance and advice, as well
as to the entire thriving and vibrant theoretical cryptography community. TCC exists for
and because of that community, and we are proud to be a part of it.

November 2016 Martin Hirt
Adam Smith

VI Preface

TCC 2016-B

Theory of Cryptography Conference

Beijing, China
October 31 – November 3, 2016

Sponsored by the International Association for Cryptologic Research and organized in
cooperation with the State Key Laboratory of Information Security, Institute of Information
Engineering, Chinese Academy of Sciences.

General Chair

Dongdai Lin Chinese Academy of Sciences, China

Honorary Chair

Andrew Chi-Chih Yao Tsinghua University, China

Program Committee

Masayuki Abe NTT, Japan
Divesh Aggarwal NUS, Singapore
Andrej Bogdanov Chinese University of Hong Kong, Hong Kong
Elette Boyle IDC Herzliya, Israel
Anne Broadbent University of Ottawa, Canada
Chris Brzuska TU Hamburg, Germany
David Cash Rutgers University, USA
Alessandro Chiesa University of California, Berkeley, USA
Kai-Min Chung Academia Sinica, Taiwan
Nico Döttling University of California, Berkeley, USA
Sergey Gorbunov University of Waterloo, Canada
Martin Hirt (Co-chair) ETH Zurich, Switzerland
Abhishek Jain Johns Hopkins University, USA
Huijia Lin University of California, Santa Barbara, USA
Hemanta K. Maji Purdue University, USA
Adam O’Neill Georgetown University, USA
Rafael Pass Cornell University, USA
Krzysztof Pietrzak IST Austria, Austria
Manoj Prabhakaran IIT Bombay, India
Renato Renner ETH Zurich, Switzerland
Alon Rosen IDC Herzliya, Israel
abhi shelat Northeastern University, USA
Adam Smith (Co-chair) Pennsylvania State University, USA

John Steinberger Tsinghua University, China
Jonathan Ullman Northeastern University, USA
Vinod Vaikuntanathan MIT, USA
Muthuramakrishnan

Venkitasubramaniam
University of Rochester, USA

TCC Steering Committee

Mihir Bellare UCSD, USA
Ivan Damgård Aarhus University, Denmark
Shafi Goldwasser MIT, USA
Shai Halevi (Chair) IBM Research, USA
Russell Impagliazzo UCSD, USA
Ueli Maurer ETH, Switzerland
Silvio Micali MIT, USA
Moni Naor Weizmann Institute, Israel
Tatsuaki Okamoto NTT, Japan

External Reviewers

Hamza Abusalah
Shashank Agrawal
Shweta Agrawal
Joël Alwen
Prabhanjan Ananth
Saikrishna

Badrinarayanan
Marshall Ball
Raef Bassily
Carsten Baum
Amos Beimel
Fabrice Benhamouda
Itay Berman
Nir Bitansky
Alexander R. Block
Tobias Boelter
Zvika Brakerski
Brandon Broadnax
Ran Canetti
Andrea Caranti
Nishanth Chandran
Yi-Hsiu Chen
Yilei Chen
Yu-Chi Chen
Seung Geol Choi

Michele Ciampi
Aloni Cohen
Ran Cohen
Angelo Decaro
Jean Paul Degabriele
Akshay Degwekar
Itai Dinur
Léo Ducas
Tuyet Duong
Andreas Enge
Antonio Faonio
Oriol Farras
Pooya Farshim
Sebastian Faust
Omar Fawzi
Max Fillinger
Nils Fleischhacker
Eiichiro Fujisaki
Peter Gaži
Satrajit Ghosh
Alexander Golovnev
Siyao Guo
Divya Gupta
Venkatesan Guruswami
Yongling Hao

Carmit Hazay
Brett Hemenway
Felix Heuer
Ryo Hiromasa
Dennis Hofheinz
Justin Holmgren
Pavel Hubáček
Tsung-Hsuan Hung
Vincenzo Iovino
Aayush Jain
Chethan Kamath
Tomasz Kazana
Raza Ali Kazmi
Carmen Kempka
Florian Kerschbaum
Dakshita Khurana
Fuyuki Kitagawa
Susumu Kiyoshima
Saleet Klein
Ilan Komargodski
Venkata Koppula
Stephan Krenn
Mukul Ramesh Kulkarni
Tancrède Lepoint
Kevin Lewi

VIII TCC 2016-B

Wei-Kai Lin
Helger Lipmaa
Feng-Hao Liu
Vadim Lyubashevsky
Mohammad Mahmoody
Giulio Malavolta
Alex J. Malozemoff
Daniel Masny
Takahiro Matsuda
Christian Matt
Patrick McCorry
Or Meir
Peihan Miao
Eric Miles
Pratyush Mishra
Ameer Mohammed
Payman Mohassel
Tal Moran
Kirill Morozov
Pratyay Mukherjee
Hai H. Nguyen
Ryo Nishimaki
Maciej Obremski
Miyako Ohkubo
Jiaxin Pan
Omkant Pandey
Omer Paneth
Valerio Pastro

Christopher Peikert
Oxana Poburinnaya
Bertram Poettering
Antigoni Polychroniadou
Christopher Portmann
Srini Raghuraman
Samuel Ranellucci
Vanishree Rao
Mariana Raykova
Joseph Renes
Leonid Reyzin
Silas Richelson
Mike Rosulek
Guy Rothblum
Ron Rothblum
Sajin Sasy
Alessandra Scafuro
Dominique Schröder
Karn Seth
Vladimir Shpilrain
Mark Simkin
Nigel Smart
Pratik Soni
Bing Sun
David Sutter
Björn Tackmann
Stefano Tessaro
Justin Thaler

Aishwarya
Thiruvengadam

Junnichi Tomida
Rotem Tsabary
Margarita Vald
Prashant Vasudevan
Daniele Venturi
Damien Vergnaud
Jorge L. Villar
Dhinakaran

Vinayagamurthy
Madars Virza
Ivan Visconti
Hoeteck Wee
Eyal Widder
David Wu
Keita Xagawa
Sophia Yakoubov
Takashi Yamakawa
Avishay Yanay
Arkady Yerukhimovich
Eylon Yogev
Mohammad Zaheri
Mark Zhandry
Hong-Sheng Zhou
Juba Ziani

TCC 2016-B IX

Contents – Part II

Delegation and IP

Delegating RAM Computations with Adaptive Soundness and Privacy 3
Prabhanjan Ananth, Yu-Chi Chen, Kai-Min Chung, Huijia Lin,
and Wei-Kai Lin

Interactive Oracle Proofs . 31
Eli Ben-Sasson, Alessandro Chiesa, and Nicholas Spooner

Adaptive Succinct Garbled RAM or: How to Delegate Your Database. 61
Ran Canetti, Yilei Chen, Justin Holmgren, and Mariana Raykova

Delegating RAM Computations . 91
Yael Kalai and Omer Paneth

Public-Key Encryption

Standard Security Does Not Imply Indistinguishability Under Selective
Opening. 121

Dennis Hofheinz, Vanishree Rao, and Daniel Wichs

Public-Key Encryption with Simulation-Based Selective-Opening Security
and Compact Ciphertexts . 146

Dennis Hofheinz, Tibor Jager, and Andy Rupp

Towards Non-Black-Box Separations of Public Key Encryption and One
Way Function. 169

Dana Dachman-Soled

Post-Quantum Security of the Fujisaki-Okamoto and OAEP Transforms 192
Ehsan Ebrahimi Targhi and Dominique Unruh

Multi-key FHE from LWE, Revisited . 217
Chris Peikert and Sina Shiehian

Obfuscation and Multilinear Maps

Secure Obfuscation in a Weak Multilinear Map Model 241
Sanjam Garg, Eric Miles, Pratyay Mukherjee, Amit Sahai,
Akshayaram Srinivasan, and Mark Zhandry

http://dx.doi.org/10.1007/978-3-662-53644-5_1
http://dx.doi.org/10.1007/978-3-662-53644-5_2
http://dx.doi.org/10.1007/978-3-662-53644-5_3
http://dx.doi.org/10.1007/978-3-662-53644-5_4
http://dx.doi.org/10.1007/978-3-662-53644-5_5
http://dx.doi.org/10.1007/978-3-662-53644-5_5
http://dx.doi.org/10.1007/978-3-662-53644-5_6
http://dx.doi.org/10.1007/978-3-662-53644-5_6
http://dx.doi.org/10.1007/978-3-662-53644-5_7
http://dx.doi.org/10.1007/978-3-662-53644-5_7
http://dx.doi.org/10.1007/978-3-662-53644-5_8
http://dx.doi.org/10.1007/978-3-662-53644-5_9
http://dx.doi.org/10.1007/978-3-662-53644-5_10

Virtual Grey-Boxes Beyond Obfuscation: A Statistical Security Notion
for Cryptographic Agents . 269

Shashank Agrawal, Manoj Prabhakaran, and Ching-Hua Yu

Attribute-Based Encryption

Deniable Attribute Based Encryption for Branching Programs from LWE . . . 299
Daniel Apon, Xiong Fan, and Feng-Hao Liu

Targeted Homomorphic Attribute-Based Encryption 330
Zvika Brakerski, David Cash, Rotem Tsabary, and Hoeteck Wee

Semi-adaptive Security and Bundling Functionalities Made Generic
and Easy . 361

Rishab Goyal, Venkata Koppula, and Brent Waters

Functional Encryption

From Cryptomania to Obfustopia Through Secret-Key Functional
Encryption . 391

Nir Bitansky, Ryo Nishimaki, Alain Passelègue, and Daniel Wichs

Single-Key to Multi-Key Functional Encryption with Polynomial Loss 419
Sanjam Garg and Akshayaram Srinivasan

Compactness vs Collusion Resistance in Functional Encryption 443
Baiyu Li and Daniele Micciancio

Secret Sharing

Threshold Secret Sharing Requires a Linear Size Alphabet 471
Andrej Bogdanov, Siyao Guo, and Ilan Komargodski

How to Share a Secret, Infinitely . 485
Ilan Komargodski, Moni Naor, and Eylon Yogev

New Models

Designing Proof of Human-Work Puzzles for Cryptocurrency and Beyond. . . 517
Jeremiah Blocki and Hong-Sheng Zhou

Access Control Encryption: Enforcing Information Flow
with Cryptography . 547

Ivan Damgård, Helene Haagh, and Claudio Orlandi

Author Index . 577

XII Contents – Part II

http://dx.doi.org/10.1007/978-3-662-53644-5_11
http://dx.doi.org/10.1007/978-3-662-53644-5_11
http://dx.doi.org/10.1007/978-3-662-53644-5_12
http://dx.doi.org/10.1007/978-3-662-53644-5_13
http://dx.doi.org/10.1007/978-3-662-53644-5_14
http://dx.doi.org/10.1007/978-3-662-53644-5_14
http://dx.doi.org/10.1007/978-3-662-53644-5_15
http://dx.doi.org/10.1007/978-3-662-53644-5_15
http://dx.doi.org/10.1007/978-3-662-53644-5_16
http://dx.doi.org/10.1007/978-3-662-53644-5_17
http://dx.doi.org/10.1007/978-3-662-53644-5_18
http://dx.doi.org/10.1007/978-3-662-53644-5_19
http://dx.doi.org/10.1007/978-3-662-53644-5_20
http://dx.doi.org/10.1007/978-3-662-53644-5_21
http://dx.doi.org/10.1007/978-3-662-53644-5_21

Contents – Part I

TCC Test-of-Time Award

From Indifferentiability to Constructive Cryptography (and Back) 3
Ueli Maurer and Renato Renner

Foundations

Fast Pseudorandom Functions Based on Expander Graphs 27
Benny Applebaum and Pavel Raykov

3-Message Zero Knowledge Against Human Ignorance 57
Nir Bitansky, Zvika Brakerski, Yael Kalai, Omer Paneth,
and Vinod Vaikuntanathan

The GGM Function Family Is a Weakly One-Way Family of Functions 84
Aloni Cohen and Saleet Klein

On the (In)Security of SNARKs in the Presence of Oracles 108
Dario Fiore and Anca Nitulescu

Leakage Resilient One-Way Functions: The Auxiliary-Input Setting 139
Ilan Komargodski

Simulating Auxiliary Inputs, Revisited . 159
Maciej Skórski

Unconditional Security

Pseudoentropy: Lower-Bounds for Chain Rules and Transformations. 183
Krzysztof Pietrzak and Maciej Skórski

Oblivious Transfer from Any Non-trivial Elastic Noisy Channel via Secret
Key Agreement. 204

Ignacio Cascudo, Ivan Damgård, Felipe Lacerda,
and Samuel Ranellucci

Simultaneous Secrecy and Reliability Amplification for a General Channel
Model . 235

Russell Impagliazzo, Ragesh Jaiswal, Valentine Kabanets,
Bruce M. Kapron, Valerie King, and Stefano Tessaro

http://dx.doi.org/10.1007/978-3-662-53641-4_1
http://dx.doi.org/10.1007/978-3-662-53641-4_2
http://dx.doi.org/10.1007/978-3-662-53641-4_3
http://dx.doi.org/10.1007/978-3-662-53641-4_4
http://dx.doi.org/10.1007/978-3-662-53641-4_5
http://dx.doi.org/10.1007/978-3-662-53641-4_6
http://dx.doi.org/10.1007/978-3-662-53641-4_7
http://dx.doi.org/10.1007/978-3-662-53641-4_8
http://dx.doi.org/10.1007/978-3-662-53641-4_9
http://dx.doi.org/10.1007/978-3-662-53641-4_9
http://dx.doi.org/10.1007/978-3-662-53641-4_10
http://dx.doi.org/10.1007/978-3-662-53641-4_10

Proof of Space from Stacked Expanders. 262
Ling Ren and Srinivas Devadas

Perfectly Secure Message Transmission in Two Rounds. 286
Gabriele Spini and Gilles Zémor

Foundations of Multi-Party Protocols

Almost-Optimally Fair Multiparty Coin-Tossing with Nearly
Three-Quarters Malicious . 307

Bar Alon and Eran Omri

Binary AMD Circuits from Secure Multiparty Computation 336
Daniel Genkin, Yuval Ishai, and Mor Weiss

Composable Security in the Tamper-Proof Hardware Model Under Minimal
Complexity . 367

Carmit Hazay, Antigoni Polychroniadou,
and Muthuramakrishnan Venkitasubramaniam

Composable Adaptive Secure Protocols Without Setup Under Polytime
Assumptions. 400

Carmit Hazay and Muthuramakrishnan Venkitasubramaniam

Adaptive Security of Yao’s Garbled Circuits . 433
Zahra Jafargholi and Daniel Wichs

Round Complexity and Efficiency of Multi-party Computation

Efficient Secure Multiparty Computation with Identifiable Abort. 461
Carsten Baum, Emmanuela Orsini, and Peter Scholl

Secure Multiparty RAM Computation in Constant Rounds 491
Sanjam Garg, Divya Gupta, Peihan Miao, and Omkant Pandey

Constant-Round Maliciously Secure Two-Party Computation in the RAM
Model . 521

Carmit Hazay and Avishay Yanai

More Efficient Constant-Round Multi-party Computation from BMR
and SHE . 554

Yehuda Lindell, Nigel P. Smart, and Eduardo Soria-Vazquez

Cross and Clean: Amortized Garbled Circuits with Constant Overhead 582
Jesper Buus Nielsen and Claudio Orlandi

XIV Contents – Part I

http://dx.doi.org/10.1007/978-3-662-53641-4_11
http://dx.doi.org/10.1007/978-3-662-53641-4_12
http://dx.doi.org/10.1007/978-3-662-53641-4_13
http://dx.doi.org/10.1007/978-3-662-53641-4_13
http://dx.doi.org/10.1007/978-3-662-53641-4_14
http://dx.doi.org/10.1007/978-3-662-53641-4_15
http://dx.doi.org/10.1007/978-3-662-53641-4_15
http://dx.doi.org/10.1007/978-3-662-53641-4_16
http://dx.doi.org/10.1007/978-3-662-53641-4_16
http://dx.doi.org/10.1007/978-3-662-53641-4_17
http://dx.doi.org/10.1007/978-3-662-53641-4_18
http://dx.doi.org/10.1007/978-3-662-53641-4_19
http://dx.doi.org/10.1007/978-3-662-53641-4_20
http://dx.doi.org/10.1007/978-3-662-53641-4_20
http://dx.doi.org/10.1007/978-3-662-53641-4_21
http://dx.doi.org/10.1007/978-3-662-53641-4_21
http://dx.doi.org/10.1007/978-3-662-53641-4_22

Differential Privacy

Separating Computational and Statistical Differential Privacy
in the Client-Server Model . 607

Mark Bun, Yi-Hsiu Chen, and Salil Vadhan

Concentrated Differential Privacy: Simplifications, Extensions,
and Lower Bounds . 635

Mark Bun and Thomas Steinke

Strong Hardness of Privacy from Weak Traitor Tracing 659
Lucas Kowalczyk, Tal Malkin, Jonathan Ullman, and Mark Zhandry

Author Index . 691

Contents – Part I XV

http://dx.doi.org/10.1007/978-3-662-53641-4_23
http://dx.doi.org/10.1007/978-3-662-53641-4_23
http://dx.doi.org/10.1007/978-3-662-53641-4_24
http://dx.doi.org/10.1007/978-3-662-53641-4_24
http://dx.doi.org/10.1007/978-3-662-53641-4_25

Delegation and IP

Delegating RAM Computations with Adaptive
Soundness and Privacy

Prabhanjan Ananth1(B), Yu-Chi Chen2, Kai-Min Chung2, Huijia Lin3,
and Wei-Kai Lin4

1 Center for Encrypted Functionalities,
University of California Los Angeles, Los Angeles, USA

prabhanjan@cs.ucla.edu
2 Academia Sinica, Taipei, Taiwan

{wycchen,kmchung}@iis.sinica.edu.tw
3 University of California, Santa Barbara, USA

rachel.lin@cs.ucsb.edu
4 Cornell University, Ithaca, USA

wklin@cs.cornell.edu

Abstract. We consider the problem of delegating RAM computations
over persistent databases. A user wishes to delegate a sequence of com-
putations over a database to a server, where each computation may read
and modify the database and the modifications persist between computa-
tions. Delegating RAM computations is important as it has the distinct
feature that the run-time of computations maybe sub-linear in the size
of the database.

We present the first RAM delegation scheme that provide both sound-
ness and privacy guarantees in the adaptive setting, where the sequence
of delegated RAM programs are chosen adaptively, depending potentially
on the encodings of the database and previously chosen programs. Prior
works either achieved only adaptive soundness without privacy [Kalai
and Paneth, ePrint’15], or only security in the selective setting where all
RAM programs are chosen statically [Chen et al. ITCS’16, Canetti and
Holmgren ITCS’16].

Our scheme assumes the existence of indistinguishability obfuscation
(iO) for circuits and the decisional Diffie-Hellman (DDH) assumption.
However, our techniques are quite general and in particular, might be
applicable even in settings where iO is not used. We provide a “security
lifting technique” that “lifts” any proof of selective security satisfying
certain special properties into a proof of adaptive security, for arbitrary
cryptographic schemes. We then apply this technique to the delegation
scheme of Chen et al. and its selective security proof, obtaining that their
scheme is essentially already adaptively secure. Because of the general
approach, we can also easily extend to delegating parallel RAM (PRAM)
computations. We believe that the security lifting technique can poten-
tially find other applications and is of independent interest.

This paper was presented jointly with “Adaptive Succinct Garbled RAM, or How To
Delegate Your Database” by Ran Canetti, Yilei Chen, Justin Holmgren, and Mariana
Raykova. The full version of this paper is available on ePrint [2]. Information about
the grants supporting the authors can be found in “Acknowledgements” section.

c© International Association for Cryptologic Research 2016
M. Hirt and A. Smith (Eds.): TCC 2016-B, Part II, LNCS 9986, pp. 3–30, 2016.
DOI: 10.1007/978-3-662-53644-5 1

4 P. Ananth et al.

1 Introduction

In the era of cloud computing, it is of growing popularity for users to outsource
both their databases and computations to the cloud. When the databases are
large, it is important that the delegated computations are modeled as RAM
programs for efficiency, as computations maybe sub-linear, and that the state
of a database is kept persistently across multiple (sequential) computations to
support continuous updates to the database. In such a paradigm, it is imperative
to address two security concerns: Soundness (a.k.a., integrity) – ensuring that
the cloud performs the computations correctly, and Privacy – information of
users’ private databases and programs is hidden from the cloud. In this work,
we design RAM delegation schemes with both soundness and privacy.

Private RAM Delegation. Consider the following setting. Initially, to out-
source her database DB , a user encodes the database using a secret key sk, and
sends the encoding D̂B to the cloud. Later, whenever the user wishes to delegate
a computation over the database, represented as a RAM program M , it encodes
M using sk, producing an encoded program M̂ . Given D̂B and M̂ , the cloud runs
an evaluation algorithm to obtain an encoded output ŷ, on the way updating
the encoded database; for the user to verify the correctness of the output, the
server additionally generates a proof π. Finally, upon receiving the tuple (ŷ, π),
the user verifies the proof and recovers the output y in the clear. The user can
continue to delegate multiple computations.

In order to leverage the efficiency of RAM computations, it is important that
RAM delegation schemes are efficient: The user runs in time only proportional
to the size of the database, or to each program, while the cloud runs in time
proportional to the run-time of each computation.

Adaptive vs. Selective Security. Two “levels” of security exist for delega-
tion schemes: The, weaker, selective security provides guarantees only in the
restricted setting where all delegated RAM programs and database are chosen
statically, whereas, the, stronger, adaptive security allows these RAM programs
to be chosen adaptively, each (potentially) depending on the encodings of the
database and previously chosen programs. Clearly, adaptive security is more
natural and desirable in the context of cloud computing, especially for these
applications where a large database is processed and outsourced once and many
computations over the database are delegated over time.

We present an adaptively secure RAM delegation scheme.

Theorem 1 (Informal Main Theorem). Assuming DDH and iO for circuits,
there is an efficient RAM delegation scheme, with adaptive privacy and adaptive
soundness.

Our result closes the gaps left open by previous two lines of research on RAM del-
egation. In one line, Chen et al. [20] and Canetti and Holmgren [16] constructed
the first RAM delegation schemes that achieve selective privacy and selective
soundness, assuming iO and one-way functions; their works, however, left open
security in the adaptive setting. In another line, Kalai and Paneth [35], build-
ing upon the seminal result of [36], constructed a RAM delegation scheme with

Delegating RAM Computations with Adaptive Soundness and Privacy 5

adaptive soundness, based on super-polynomial hardness of the LWE assump-
tion, which, however, does not provide privacy at all.1 Our RAM delegation
scheme improves upon previous works — it simultaneously achieves adaptive
soundness and privacy. Concurrent to our work, Canetti, Chen, Holmgren, and
Raykova [15] also constructed such a RAM delegation scheme. Our construction
and theirs are the first to achieve these properties.

1.1 Our Contributions in More Detail

Our RAM delegation scheme achieves the privacy guarantee that the encodings
of a database and many RAM programs, chosen adaptively by a malicious server
(i.e., the cloud), reveals nothing more than the outputs of the computations. This
is captured via the simulation paradigm, where the encodings can be simulated
by a simulator that receives only the outputs. On the other hand, soundness
guarantees that no malicious server can convince an honest client (i.e., the user)
to accept a wrong output of any delegated computation, even if the database
and programs are chosen adaptively by the malicious server.

Efficiency. Our adaptively secure RAM delegation scheme achieves the same
level of efficiency as previous selectively secure schemes [16,20]. More specifically,

– Client delegation efficiency: To outsource a database DB of size n,
the client encodes the database in time linear in the database size, n poly(λ)
(where λ is the security parameter), and the server merely stores the encoded
database. To delegate the computation of a RAM program M , with l-bit out-
puts and time and space complexity T and S, the client encodes the program
in time linear in the output length and polynomial in the program description
size l × poly(|M |, λ), independent of the complexity of the RAM program.

– Server evaluation efficiency: The evaluation time and space complexity
of the server, scales linearly with the complexity of the RAM programs, that
is, T poly(λ) and S poly(λ) respectively.

– Client verification efficiency: Finally, the user verifies the proof from
the server and recovers the output in time l × poly(λ).

The above level of efficiency is comparable to that of an insecure scheme (where
the user simply sends the database and programs in the clear, and does not verify
the correctness of the server computation), up to a multiplicative poly(λ) over-
head at the server, and a poly(|M |, λ) overhead at the user.2 In particular, if the
run-time of a delegated RAM program is sub-linear o(n), the server evaluation
time is also sub-linear o(n) poly(λ), which is crucial for server efficiency.

1 Note that here, privacy cannot be achieved for free using Fully Homomorphic Encryp-
tion (FHE), as FHE does not directly support computation with RAM programs,
unless they are first transformed into oblivious Turing machines or circuits.

2 We believe that the polynomial dependency on the program description size can be
further reduced to linear dependency, using techniques in the recent work of [5].

6 P. Ananth et al.

Technical Contributions. Though our RAM delegation scheme relies on the
existence of iO, the techniques that we introduce in this work are quite general
and in particular, might be applicable in settings where iO is not used at all.

Our main theorem is established by showing that the selectively secure RAM
delegation scheme of [20] (CCC+ scheme henceforth) is, in fact, also adaptively
secure (up to some modifications). However, proving its adaptive security is
challenging, especially considering the heavy machinery already in the selective
security proof (inherited from the line of works on succinct randomized encoding
of Turing machines and RAMs [10,17]). Ideally, we would like to have a proof
of adaptive security that uses the selective security property in a black-box
way. A recent elegant example is the work of [1] that constructed an adaptively
secure functional encryption from any selectively secure functional encryption
without any additional assumptions.3 However, such cases are rare: In most
cases, adaptive security is treated independently, achieved using completely new
constructions and/or new proofs (see examples, the adaptively secure functional
encryption scheme by Waters [44], the adaptively secure garbled circuits by [34],
and many others). In the context of RAM delegation, coming up with a proof
of adaptive security from scratch requires at least repeating or rephrasing the
proof of selective security and adding more details (unless the techniques behind
the entire line of research [16,20,37] can be significantly simplified).

Instead of taking this daunting path, we follow a more principled and general
approach. We provide an abstract proof that “lifts” any selective security proof
satisfying certain properties — called a “nice” proof — into an adaptive security
proof, for arbitrary cryptographic schemes. With the abstract proof, the task of
showing adaptive security boils down to a mechanic (though possibly tedious)
check whether the original selective security proof is nice. We proceed to do so
for the CCC+ scheme, and show that when the CCC+ scheme is plugged in
with a special kind of positional accummulator [37], called history-less accum-
mulator, all niceness properties are satisfied; then its adaptive security follows
immediately. At a very high-level, history-less accummulators can statistically
bind the value at a particular position q irrespect of the history of read/write
accesses, whereas positional accumulators of [37] binds the value at q after a
specific sequence of read/write accesses.

Highlights of techniques used in the abstract proof includes a stronger version
of complexity leveraging—called small-loss complexity leveraging—that have
much smaller security loss than classical complexity leveraging, when the secu-
rity game and its selective security proof satisfy certain “niceness” properties, as
well as a way to apply small-loss complexity leveraging locally inside an involved
security proof. We provide an overview of our techniques in more detail in Sect. 2.

Parallel RAM (PRAM) Delegation. As a benefit of our general approach, we
can easily handle delegation of PRAM computations as well. Roughly speaking,
PRAM programs are RAM programs that additionally support parallel (random)

3 More generally, they use a 1-query adaptively secure functional encryption, which
can be constructed from one-way functions by [32].

Delegating RAM Computations with Adaptive Soundness and Privacy 7

accesses to the database. Chen et al. [20] presented a delegation scheme for
PRAM computations, with selective soundness and privacy. By applying our
general technique, we can also lift the selective security of their PRAM delegation
scheme to adaptive security, obtaining an adaptively secure PRAM delegation
scheme.

Theorem 2 (Informal — PRAM Delegation Scheme). Assuming DDH
and the existence of iO for circuits, there exists an efficient PRAM delegation
scheme, with adaptive privacy and adaptive soundness.

1.2 Applications

In the context of cloud computing and big data, designing ways for delegating
computation privately and efficiently is important. Different cryptographic tools,
such as Fully Homomorphic Encryption (FHE) and Functional Encryption (FE),
provide different solutions. However, so far, none supports delegation of sub-
linear computation (for example, binary search over a large ordered data set,
and testing combinatorial properties, like k-connectivity and bipartited-ness, of
a large graph in sub-linear time). It is known that FHE does not support RAM
computation, for the evaluator cannot decrypt the locations in the memory to be
accessed. FE schemes for Turing machines constructed in [7] cannot be extended
to support RAM, as the evaluation complexity is at least linear in the size of the
encrypted database. This is due to a refreshing mechanism crucially employed in
their work that “refreshes” the entire encrypted database in each evaluation, in
order to ensure privacy. To the best of our knowledge, RAM delegation schemes
are the only solution that supports sub-linear computations.

Apart from the relevance of RAM delegation in practice, it has also been
quite useful to obtain theoretical applications. Recently, RAM delegation was
also used in the context of patchable obfuscation by [6]. In particular, they
crucially required that the RAM delegation satisfies adaptive privacy and only
our work (and concurrently [15]) achieves this property.

1.3 On the Existence of IO

Our RAM delegation scheme assumes the existence of IO for circuits. So far, in
the literature, many candidate IO schemes have been proposed (e.g., [9,14,26])
building upon the so called graded encoding schemes [23–25,29]. While the secu-
rity of these candidates have come under scrutiny in light of two recent attacks
[22,42] on specific candidates, there are still several IO candidates on which
the current cryptanalytic attacks don’t apply. Moreover, current multilinear
map attacks do not apply to IO schemes obtained after applying bootstrap-
ping techniques to candidate IO schemes for NC1 [8,10,18,26,33] or special sub-
class of constant degree computations [38], or functional encryption schemes for
NC1 [4,5,11] or NC0 [39]. We refer the reader to [3] for an extensive discussion
of the state-of-affairs of attacks.

8 P. Ananth et al.

1.4 Concurrent and Related Works

Concurrent and independent work: A concurrent and independent work achiev-
ing the same result of obtaining adaptively secure RAM delegation scheme is by
Canetti et. al. [15]. Their scheme extends the selectively secure RAM delegation
scheme of [16], and uses a new primitive called adaptive accumulators, which
is interesting and potentially useful for other applications. They give a proof of
adaptive security from scratch, extending the selective security proof of [16] in a
non-black-box way. In contrast, our approach is semi-generic. We isolate our key
ideas in an abstract proof framework, and then instantiate the existing selective
security proof of [20] in this framework. The main difference from [20] is that
we use historyless accumulators (instead of using positional accumulators). Our
notion of historyless accumulators is seemingly different from adaptive accumu-
lators; its not immediately clear how to get one from the other. One concrete
benefit our approach has is that the usage of iO is falsifiable, whereas in their
construction of adaptive accumulators, iO is used in a non-falsifiable way. More
specifically, they rely on the iO-to-differing-input obfuscation transformation
of [13], which makes use of iO in a non-falsifiable way.

Previous works on non-succinct garbled RAM: The notion of (one-time, non-
succinct) garbled RAM was introduced by the work of Lu and Ostrovsky [40],
and since then, a sequence of works [28,30] have led to a black-box construction
based on one-way functions, due to Garg, Lu, and Ostrovsky [27]. A black-box
construction for parallel garbled RAM was later proposed by Lu and Ostro-
vsky [41] following the works of [12,19]. However, the garbled program size here
is proportional to the worst-case time complexity of the RAM program, so this
notion does not imply a RAM delegation scheme. The work of Gentry, Halevi,
Raykova, and Wichs [31] showed how to make such garbled RAMs reusable based
on various notions of obfuscations (with efficiency trade-offs), and constructed
the first RAM delegation schemes in a (weaker) offline/online setting, where in
the offline phase, the delegator still needs to run in time proportional to the
worst case time complexity of the RAM program.

Previous works on succinct garbled RAM: Succinct garbled RAM was first stud-
ied by [10,17], where in their solutions, the garbled program size depends on the
space complexity of the RAM program, but does not depend on its time com-
plexity. This implies delegation for space-bounded RAM computations. Finally,
as mentioned, the works of [16,20] (following [37], which gives a Turing machine
delegation scheme) constructed fully succinct garbled RAM, and [20] addition-
ally gives the first fully succinct garbled PRAM. However, their schemes only
achieve selective security. Lifting to adaptive security while keeping succinctness
is the contribution of this work.

1.5 Organization

We first give an overview of our approach in Sect. 2. In Sect. 3, we present our
abstract proof framework. The formal definition of adaptive delegation for RAMs

Delegating RAM Computations with Adaptive Soundness and Privacy 9

is then presented in Sect. 4. Instantiation of this definition using our abstract
proof framework is presented in the full version.

2 Overview

We now provide an overview of our abstract proof for lifting “nice” selective
security proofs into adaptive security proofs. To the best of our knowledge, so far,
the only general method going from selective to adaptive security is complexity
leveraging, which however has (1) exponential security loss and (2) cannot be
applied in RAM delegation setting for two reasons: (i) this will restrict the
number of programs an adversary can choose and, (ii) the security parameter
has to be scaled proportional to the number of program queries. This means
that all the parameters grow proportional to the number of program queries.

Small-loss complexity leveraging: Nevertheless, we overcome the first limi-
tation by showing a stronger version of complexity leveraging that has much
smaller security loss, when the original selectively secure scheme (including
its security game and security reduction) satisfy certain properties—we refer
to the properties as niceness properties and the technique as small-loss com-
plexity leveraging.

Local application: Still, many selectively secure schemes may not be nice, in
particular, the CCC+ scheme. We broaden the scope of application of small-
loss complexity leveraging using another idea: Instead of applying small-loss
complexity leveraging to the scheme directly, we dissect its proof of selective
security, and apply it to “smaller units” in the proof. Most commonly, proofs
involve hybrid arguments; now, if every pair of neighboring hybrids with
indistinguishability is nice, small-loss complexity leveraging can be applied
locally to lift the indistinguishability to be resilient to adaptive adversaries,
which then “sum up” to the global adaptive security of the scheme.

We capture the niceness properties abstractly and prove the above two steps
abstractly. Interestingly, a challenging point is finding the right “language” (i.e.
formalization) for describing selective and adaptive security games in a general
way; we solve this by introducing generalized security games. With this language,
the abstract proof follows with simplicity (completely disentangled from the
complexity of specific schemes and their proofs, such as, the CCC+ scheme).

2.1 Classical Complexity Leveraging

Complexity leveraging says if a selective security game is negl(λ)2−L-secure,
where λ is the security parameter and L = L(λ) is the length of the information
that selective adversaries choose statically (mostly at the beginning of the game),
then the corresponding adaptive security game is negl(λ)-secure. For example,
the selective security of a public key encryption (PKE) scheme considers adver-
saries that choose two challenge messages v0, v1 of length n statically, whereas

10 P. Ananth et al.

Fig. 1. Left: Selective security of PKE. Right: Adaptive security of PKE.

adaptive adversaries may choose v0, v1 adaptively depending on the public key.
(See Fig. 1.) By complexity leveraging, any PKE that is negl(λ)2−2n-selectively
secure is also adaptively secure.

The idea of complexity leveraging is extremely simple. However, to extend
it, we need a general way to formalize it. This turns out to be non-trivial, as the
selective and adaptive security games are defined separately (e.g., the selective
and adaptive security games of PKE have different challengers CH s and CH a),
and vary case by case for different primitives (e.g., in the security games of RAM
delegation, the adversaries choose multiple programs over time, as opposed to
in one shot). To overcome this, we introduce generalize security games.

2.2 Generalized Security Games

Generalized security games, like classical games, are between a challenger CH
and an adversary A, but are meant to separate the information A chooses sta-
tically from its interaction with CH . More specifically, we model A as a non-
uniform Turing machine with an additional write-only special output tape, which
can be written to only at the beginning of the execution (See Fig. 2). The special
output tape allows us to capture (fully) selective and (fully) adaptive adversaries
naturally: The former write all messages to be sent in the interaction with CH
on the tape (at the beginning of the execution), whereas the latter write arbi-
trary information. Now, selective and adaptive security are captured by running
the same (generalized) security game, with different types of adversaries (e.g.,
see Fig. 2 for the generalized security games of PKE).

Now, complexity leveraging can be proven abstractly: If there is an adaptive
adversary A that wins against CH with advantage negl(λ), there is a selective
adversary A′ that wins with advantage negl(λ)/2L, as A′ simply writes on its
tape a random guess ρ of A’s messages, which is correct with probability 1/2L.

With this formalization, we can further generalize the security games in two
aspects. First, we consider the natural class of semi-selective adversaries that
choose only partial information statically, as opposed to its entire transcript of
messages (e.g., in the selective security game of functional encryption in [26] only
the challenge messages are chosen selectively, whereas all functions are chosen
adaptively). More precisely, an adversary is F -semi-selective if the initial choice
ρ it writes to the special output tape is always consistent with its messages
m1, · · · ,mk w.r.t. the output of F , F (ρ) = F (m1, · · · ,mk). Clearly, complexity
leveraging w.r.t. F -semi-selective adversaries incurs a 2LF -security loss, where
LF = |F (ρ)|.

Delegating RAM Computations with Adaptive Soundness and Privacy 11

Fig. 2. Left: A generalized game. Middle and Right: Selective and adaptive security of
PKE described using generalized games.

Second, we allow the challenger to depend on some partial information G(ρ)
of the adversary’s initial choice ρ, by sending G(ρ) to CH , after A writes to its
special output tape (See Fig. 3)—we say such a game is G-dependent. At a first
glance, this extension seems strange; few primitives have security games of this
form, and it is unnatural to think of running such a game with a fully adaptive
adversary (who does not commit to G(ρ) at all). However, such games are preva-
lent inside selective security proofs, which leverage the fact that adversaries are
selective (e.g., the selective security proof of the functional encryption of [26]
considers an intermediate hybrid where the challenger uses the challenge mes-
sages v0, v1 from the adversary to program the public key). Hence, this extension
is essential to our eventual goal of applying small-loss complexity leveraging to
neighboring hybrids, inside selective security proofs.

Fig. 3. Three levels of adaptivity. In (ii) G-selective means G(m1 · ·mk) = G(m′
1 · ·m′

k).

2.3 Small-loss Complexity Leveraging

In a G-dependent generalized game CH , ideally, we want a statement that
negl(λ)2−LG -selective security (i.e., against (fully) selective adversaries) implies
negl(λ)-adaptively security (i.e., against (fully) adaptive adversaries). We stress
that the security loss we aim for is 2LG , related to the length of the information
LG = G(ρ) that the challenger depends on,4 as opposed to 2L as in classical

4 Because the challenger CH depends on LG-bit of partial information G(ρ) of the
adversary’s initial choice ρ, we do not expect to go below 2−LG -security loss unless
requiring very strong properties to start with.

12 P. Ananth et al.

complexity leveraging (where L is the total length of messages selective adver-
saries choose statically). When L � LG, the saving in security loss is significant.
However, this ideal statement is clearly false in general.

1. For one, consider the special case where G always outputs the empty string,
the statement means negl(λ)-selective security implies negl(λ)-adaptive secu-
rity. We cannot hope to improve complexity leveraging unconditionally.

2. For two, even if the game is 2−L-selectively secure, complexity leveraging does
not apply to generalized security games. To see this, recall that complexity
leveraging turns an adaptive adversary A with advantage δ, into a selective
one B with advantage δ/2L, who guesses A’s messages at the beginning. It
relies on the fact that the challenger is oblivious of B’s guess ρ to argue
that messages to and from A are information theoretically independent of ρ,
and hence ρ matches A’s messages with probability 1/2L (see Fig. 3 again).
However, in generalized games, the challenger does depend on some partial
information G(ρ) of B’s guess ρ, breaking this argument.

To circumvent the above issues, we strengthen the premise with two nice-
ness properties (introduced shortly). Importantly, both niceness properties
still only provide negl(λ)2−LG -security guarantees, and hence the security loss
remains 2LG .

Lemma 1 (Informal, Small Loss Complexity Leveraging). Any G-
dependent generalized security games with the following two properties for
δ = negl(λ)2−LG are adaptively secure.

– The game is δ-G-hiding.
– The game has a security reduction with δ-statistical emulation property to a

δ-secure cryptographic assumption.

We define δ-G-hiding and δ-statistical emulation properties shortly. We prove
the above lemma in a modular way, by first showing the following semi-selective
security property, and then adaptive security. In each step, we use one niceness
property.

δ-semi-selective security: We say that a G-dependent generalized security
game CH is δ-semi-selective secure, if the winning advantage of any G-semi-
selective adversary is bounded by δ = negl(λ)2−LG . Recall that such an
adversary writes ρ to the special output tape at the beginning, and later
choose adaptively any messages m1, · · · ,mk consistent with G(ρ), that is,
G(m1, · · · ,mk) = G(ρ) or ⊥ (i.e., the output of G is undefined for m1, · · · ,mk).

Step 1 – From Selective to G-semi-selective Security. This step encounters
the same problem as in the first issue above: We cannot expect to go from
negl(λ)2−LG -selective to negl(λ)2−LG -semi-selective security unconditionally,
since the latter is dealing with much more adaptive adversaries. Rather, we

Delegating RAM Computations with Adaptive Soundness and Privacy 13

consider only cases where the selective security of the game with CH is proven
using a black-box straight-line security reduction R to a game-based intractability
assumption with challenger CH ′ (c.f. falsifiable assumption [43]). We identify the
following sufficient conditions on R and CH ′ under which semi-selective security
follows.

Recall that a reduction R simultaneously interacts with an adversary A (on
the right), and leverages A’s winning advantage to win against the challenger
CH ′ (on the left). It is convenient to think of R and CH ′ as a compound machine
CH ′↔R that interacts with A, and outputs what CH ′ outputs. Our condition
requires that CH ′↔R emulates statistically every next message and output of
CH . More precisely,

δ-statistical emulation property: For every possible G(ρ) and partial tran-
script τ = (q1,m1, · · · , qk,mk) consistent with G(ρ) (i.e., G(m1, · · · ,mk) =
G(ρ) or ⊥), condition on them (G(ρ), τ) appearing in interactions with CH
or CH ′↔R, the distributions of the next message or output from CH or
CH ′↔R are δ-statistically close.

We show that this condition implies that for any G-semi-selective adversary, its
interactions with CH and CH ′↔R are poly(λ)δ-statistically close (as the total
number of messages is poly(λ)), as well as the output of CH and CH ′. Hence,
if the assumption CH ′ is negl(λ)2−LG -secure against arbitrary adversaries, so is
CH against G-semi-selective adversaries.5

Further discussion: We remark that the statistical emulation property is a
strong condition that is sufficient but not necessary. A weaker requirement would
be requiring the game to be G-semi-selective secure directly. However, we choose
to formulate the statistical emulation property because it is a typical way how
reductions are built, by emulating perfectly the messages and output of the
challenger in the honest games. Furthermore, given R and CH ′, the statistical
emulation property is easy to check, as from the description of R and CH ′, it is
usually clear whether they emulate CH statistically close or not.

Step 2 – From G-semi-selective to adaptive security we would like to apply com-
plexity leveraging to go from negl(λ)2−LG -semi-selective security to adaptive
security. However, we encounter the same problem as in the second issue above.
To overcome it, we require the security game to be G-hiding, that is, the chal-
lenger’s messages computationally hides G(ρ).

δ-G-hiding: For any ρ and ρ′, interactions with CH after receiving G(ρ) or
G(ρ′) are indistinguishable to any polynomial-time adversaries, except from
a δ distinguishing gap.

Let’s see how complexity leveraging can be applied now. Consider again using an
adaptive adversary A with advantage 1/poly(λ) to build a semi-selective adver-
sary B with advantage 1/poly(λ)2LG , who guesses A’s choice of G(m1, · · · ,mk)
5 Technically, we also require that CH and CH ′ have the same winning threshold, like

both 1/2 or 0.

14 P. Ananth et al.

later. As mentioned before, since the challenger in the generalized game depends
on B’s guess τ , classical complexity leveraging argument does not apply. How-
ever, by the δ-G-hiding property, B’s advantage differ by at most δ, when moving
to a hybrid game where the challenger generates its messages using G(ρ), where
ρ is what A writes to its special output tape at the beginning, instead of τ .
In this hybrid, the challenger is oblivious of B’s guess τ , and hence the classi-
cal complexity leveraging argument applies, giving that B’s advantage is at least
1/poly(λ)2LG . Thus by G-hiding, B’s advantage in the original generalized game
is at least 1/poly(λ)2LG − δ = 1/poly(λ)2LG . This gives a contradiction, and
concludes the adaptive security of the game.

Summarizing the above two steps, we obtain our informal lemma on small-
loss complexity leveraging.

2.4 Local Application

In many cases, small-loss complexity leveraging may not directly apply, since
either the security game is not G-hiding, or the selective security proof does
not admit a reduction with the statistical emulation property. We can broaden
the application of small-loss complexity leveraging by looking into the selective
security proofs and apply small loss complexity leveraging on smaller “steps”
inside the proof. For our purpose of getting adaptively secure RAM delegation,
we focus on the following common proof paradigm for showing indistinguishabil-
ity based security. But the same principle of local application could be applied
to other types of proofs.

A common proof paradigm for showing the indistinguishability of two games
Real0 and Real1 against selective adversaries is the following:

– First, construct a sequence of hybrid experiments H0, · · · ,H�, that starts from
one real experiment (i.e., H0 = Real0), and gradually morphs through inter-
mediate hybrids Hi’s into the other (i.e., H� = Real1).

– Second, show that every pair of neighboring hybrids Hi,Hi+1 is indistinguish-
able to selective adversaries.

Then, by standard hybrid arguments, the real games are selectively indistin-
guishable.

To lift such a selective security proof into an adaptive security proof, we first
cast all real and hybrids games into our framework of generalized games, which
can be run with both selective and adaptive adversaries. If we can obtain that
neighboring hybrids games are also indistinguishable to adaptive adversaries,
then the adaptive indistinguishability of the two real games follow simply from
hybrid arguments. Towards this, we apply small-loss complexity leveraging on
neighboring hybrids. More specifically, Hi and Hi+1 are adaptively indistinguish-
able, if they satisfy the following properties:

– Hi and Hi+1 are respectively Gi and Gi+1-dependent, as well as δ-(Gi||Gi+1)-
hiding, where Gi||Gi+1 outputs the concatenation of the outputs of Gi and
Gi+1 and δ = negl(λ)2−LGi

−LGi+1 .

Delegating RAM Computations with Adaptive Soundness and Privacy 15

– The selective indistinguishability of Hi and Hi+1 is shown via a reduction
R to a δ-secure game-based assumption and the reduction has δ-statistical
emulation property.

Thus, applying small-loss complexity leveraging on every neighboring hybrids,
the maximum security loss is 22Lmax , where Lmax = max(LGi

). Crucially, if every
hybrid Hi have small LGi

, the maximum security loss is small. In particular, we
say that a selective security proof is “nice” if it falls into the above framework
and all Gi’s have only logarithmic length outputs — such “nice” proofs can be
lifted to proofs of adaptive indistinguishability with only polynomial security
loss. This is exactly the case for the CCC+ scheme, which we explain next.

2.5 The CCC+ Scheme and Its Nice Proof

CCC+ proposed a selectively secure RAM delegation scheme in the persistent
database setting. We now show how CCC+ scheme can be used to instantiate
the abstract framework discussed earlier in this Section. We only provide with
relevant details of CCC+ and refer the reader to the full version for a thorough
discussion.

There are two main components in CCC+. The first component is storage
that maintains information about the database, and the second component is the
machine component that involves executing instructions of the delegated RAM.
Both the storage and the machine components are built on heavy machinery.
We highlight below two important building blocks relevant to our discussion.
Additional tools such as iterators and splittable signatures are also employed in
their construction.

– Positional Accumulators: This primitive offers a mechanism of producing a
short value, called accumulator, that commits to a large storage. Further,
accumulators should also be updatable – if a small portion of storage changes,
then only a correspondingly small change is required to update the accumula-
tor value. In the security proof, accumulators allow for programming the para-
meters with respect to a particular location in such a way that the accumulator
uniquely determines the value at that location. However, such programming
requires to know ahead of time all the changes the storage undergoes since
its initialization. Henceforth, we refer to the hybrids to be in Enforce-mode
when the accumulator parameters are programmed and the setting when it is
not programmed to be Real-mode.

– “Puncturable” Oblivious RAM: Oblivious RAM (ORAM) is a randomized
compiler that compiles any RAM program into one with a fixed distribution of
random access pattern to hide its actual (logic) access pattern. CCC+ relies on
stronger “puncturable” property of specific ORAM construction of [21], which
roughly says the compiled access pattern of a particular logic memory access
can be simulated if certain local ORAM randomness is information theoret-
ically “punctured out,” and this local randomness is determined at the time

16 P. Ananth et al.

the logic memory location is last accessed. Henceforth, we refer to the hybrids
to be in Puncturing-mode when the ORAM randomness is punctured out.

We show that the security proof of CCC+ has a nice proof. We denote the set
of hybrids in CCC+ to be H1, . . . , H�. Correspondingly, we denote the reduc-
tions that argue indistinguishability of Hi and Hi+1 to be Ri. We consider the
following three cases depending on the type of neighboring hybrids Hi and Hi+1:

1. ORAM is in Puncturing-mode in one or both of the neighboring
hybrids: In this case, the hybrid challenger needs to know which ORAM
local randomness to puncture out to hide the logic memory access to location
q at a particular time point t. As mentioned, this local randomness appears
for the first time at the last time point t′ that location q is accessed, possibly
by a previous machine. As a result, in the proof, some machine components
need to be programmed depending on the memory access of later machines.
In this case, Gi or Gi+1 need to contain information about q, t and t′, which
can be described in poly(λ) bits.

2. Positional Accumulator is in Enforce-mode in one or both of the
neighboring hybrids: Here, the adversary is supposed to declare all its
inputs in the beginning of experiment. The reason being that in the enforce-
mode, the accumulator parameters need to be programmed. As remarked
earlier, programming the parameters is possible only with the knowledge of
the entire computation.

3. Remaining cases: In remaining cases, the indistinguishability of neighboring
hybrids reduces to the security of other cryptographic primitives, such as,
iterators, splittable signatures, indistinguishability obfuscation and others.
We note that in these cases, we simply have Gi = Gi+1 = null, which outputs
an empty string.

As seen from the above description, only the second case is problematic for
us since the information to be declared by the adversary in the beginning of
the experiment is too long. Hence, we need to think of alternate variants to
positional accumulators where the enforce-mode can be implemented without
the knowledge of the computation history.

History-less Accumulators. To this end, we introduce a primitive called history-
less accumulators. As the name is suggestive, in this primitive, programming the
parameters requires only the location being information-theoretically bound to
be known ahead of time. And note that the location can be represented using
only logarithmic bits and satisfies the size requirements. That is, the output
length of Gi is now short. By plugging this into the CCC+ scheme, we obtain a
“nice” security proof.

All that remains is to construct history-less accumulators. The construction
of this primitive can be found in the full version.

Delegating RAM Computations with Adaptive Soundness and Privacy 17

3 Abstract Proof

In this section, we present our abstract proof that turns “nice” selective secu-
rity proofs, to adaptive security proofs. As discussed in the introduction, we use
generalized security experiments and games to describe our transformation. We
present small-loss complexity leveraging in Sect. 3.3 and how to locally apply
it in Sect. 3.4. In the latter, we focus our attention on proofs of indistinguisha-
bility against selective adversaries, as opposed to proofs of arbitrary security
properties.

3.1 Cryptographic Experiments and Games

We recall standard cryptographic experiments and games between two parties,
a challenger CH and an adversary A. The challenger defines the procedure and
output of the experiment (or game), whereas the adversary can be any proba-
bilistic interactive machine.

Definition 1 (Canonical Experiments). A canonical experiment between
two probabilistic interactive machines, the challenger CH and the adversary A,
with security parameter λ ∈ N, denoted as Exp(λ,CH , A), has the following form:

– CH and A receive common input 1λ, and interact with each other.
– After the interaction, A writes an output γ on its output tape. In case A aborts

before writing to its output tape, its output is set to ⊥.
– CH additionally receives the output of A (receiving ⊥ if A aborts), and outputs

a bit b indicating accept or reject. (CH never aborts.)

We say A wins whenever CH outputs 1 in the above experiment.
A canonical game (CH , τ) has additionally a threshold τ ∈ [0, 1). We say A

has advantage γ if A wins with probability τ + γ in Exp(λ,CH , A).

For machine � ∈ {CH , A}, we denote by Out�(λ,CH , A) and View�(λ,CH , A)
the random variables describing the output and view of machine � in
Exp(λ,CH , A).

Definition 2 (Cryptographic Experiments and Games). A cryptographic
experiment is defined by an ensemble of PPT challengers CH = {CH λ}. And a
cryptographic game (CH, τ) has additionally a threshold τ ∈ [0, 1). We say that
a non-uniform adversary A = {Aλ} wins the cryptographic game with advantage
Advt(�), if for every λ ∈ N, its advantage in Exp(λ,CH λ, Aλ) is τ + Advt(λ).

Definition 3 (Intractability Assumptions). An intractability assumption
(CH, τ) is the same as a cryptographic game, but with potentially unbounded
challengers. It states that the advantage of every non-uniform PPT adversary A
is negligible.

18 P. Ananth et al.

3.2 Generalized Cryptographic Games

In the literature, experiments (or games) for selective security and adaptive
security are often defined separately: In the former, the challenger requires the
adversary to choose certain information at the beginning of the interaction,
whereas in the latter, the challenger does not require such information.

We generalize standard cryptographic experiments so that the same experi-
ment can work with both selective and adaptive adversaries. This is achieved by
separating information necessary for the execution of the challenger and infor-
mation an adversary chooses statically, which can be viewed as a property of the
adversary. More specifically, we consider adversaries that have a special output
tape, and write information α it chooses statically at the beginning of the exe-
cution on it; and only the necessary information specified by a function, G(α),
is sent to the challenger. (See Fig. 3.)

Definition 4 (GeneralizedExperiments). A generalized experiment between
a challenger CH and an adversary A with respect to a function G, with security
parameter λ ∈ N, denoted as Exp(λ,CH , G,A), has the following form:

1. The adversary A on input 1λ writes on its special output tape string α at the
beginning of its execution, called the initial choice of A, and then proceeds as
a normal probabilistic interactive machine. (α is set to the empty string ε if A
does not write on the special output tape at the beginning.)

2. Let A[G] denote the adversary that on input 1λ runs A with the same security
parameter internally; upon A writing α on its special output tape, it sends out
message m1 = G(α), and later forwards messages A sends, m2,m3, · · ·

3. The generalized experiment proceeds as a standard experiment between CH and
A[G], Exp(λ,CH , A[G]).

We say that A wins whenever CH outputs 1.
Furthermore, for any function F : {0, 1}∗ → {0, 1}∗, we say that A is F -

selective in Exp(λ,CH , G,A), if it holds with probability 1 that either A aborts or
its initial choice α and messages it sends satisfy that F (α) = F (m2,m3, · · ·). We
say that A is adaptive, in the case that F is a constant function.

Similar to before, we denote by Out�(λ,CH , G,A) and View�(λ,CH , G,A) the
random variables describing the output and view of machine � ∈ {CH , A} in
Exp(λ,CH , G,A). In this work, we restrict our attention to all the functions G
that are efficiently computable, as well as, reversely computable, meaning that
given a value y in the domain of G, there is an efficient procedure that can
output an input x such that G(x) = y.

Definition 5 (Generalized Cryptographic Experiments and F-Selective
Adversaries). A generalized cryptographic experiment is a tuple (CH,G), where
CH is an ensemble of PPT challengers {CH λ} and G is an ensemble of efficiently
computable functions {Gλ}. Furthermore, for any ensemble of functions F = {Fλ}
mapping {0, 1}∗ to {0, 1}∗, we say that a non-uniform adversary A is F-selective
in cryptographic experiments (CH,G) if for every λ ∈ N, Aλ is Fλ-selective in
experiment Exp(λ,CH λ, Gλ, Aλ).

Delegating RAM Computations with Adaptive Soundness and Privacy 19

Similar to Definition 2, a generalized cryptographic experiment can be extended
to a generalized cryptographic game (CH,G, τ) by adding an additional threshold
τ ∈ [0, 1), where the advantage of any non-uniform probabilistic adversary A is
defined identically as before.

We can now quantify the level of selective/adaptive security of a generalized
cryptographic game.

Definition 6 (F-Selective Security). A generalized cryptographic game
(CH,G, τ) is F-selective secure if the advantage of every non-uniform PPT F-
selective adversary A is negligible.

3.3 Small-loss Complexity Leveraging

In this section, we present our small-loss complexity leveraging technique to
lift fully selective security to fully adaptive security for a generalized crypto-
graphic game Π = (CH,G, τ), provided that the game and its (selective) security
proof satisfies certain niceness properties. We will focus on the following class
of guessing games, which captures indistinguishability security. We remark that
our technique also applies to generalized cryptographic games with arbitrary
threshold (See Remark 1).

Definition 7 (Guessing Games). A generalized game (CH , G, τ) (for a secu-
rity parameter λ) is a guessing game if it has the following structure.

– At beginning of the game, CH samples a uniform bit b ← {0, 1}.
– At the end of the game, the adversary guesses a bit b′ ∈ {0, 1}, and he wins if

b = b′.
– When the adversary aborts, his guess is a uniform bit b′ ← {0, 1}.
– The threshold τ = 1/2.

The definition extends naturally to a sequence of games Π = (CH,G, 1/2). Our
technique consists of two modular steps: First reach G-selective security, and then
adaptive security, where the first step applies to any generalized cryptographic
game.

Step 1: G-Selective Security. In general, a fully selectively secure Π may
not be F-selective secure for F �= Fid, where Fid denotes the identity func-
tion. We restrict our attention to the following case: The security is proved by
a straight-line black-box security reduction from Π to an intractability assump-
tion (CH′, τ ′), where the reduction is an ensemble of PPT machines R = {Rλ}
that interacts simultaneously with an adversary for Π and CH′, the reduction
is syntactically well-defined with respect to any class of F-selective adversary.
This, however, does not imply that R is a correct reduction to prove F-selective
security of Π. Here, we identify a sufficient condition on the “niceness” of reduc-
tion that implies G-selective security of Π. We start by defining the syntax of a
straight-line black-box security reduction.

20 P. Ananth et al.

Standard straight-line black-box security reduction from a cryptographic
game to an intractability assumption is a PPT machine R that interacts simulta-
neously with an adversary and the challenger of the assumption. Since our gen-
eralized cryptographic games can be viewed as standard cryptographic games
with adversaries of the form A[G] = {Aλ[Gλ]}, the standard notion of reduc-
tions extends naturally, by letting the reductions interact with adversaries of
the form A[G].

Definition 8 (Reductions).Aprobabilistic interactivemachine R is a (straight-
line black-box) reduction from a generalized game (CH , G, τ) to a (canonical) game
(CH ′, τ ′) for security parameter λ, if it has the following syntax:

– Syntax: On common input 1λ, R interacts with CH ′ and an adversary A[G]
simultaneously in a straight-line—referred to as “left” and “right” interac-
tions respectively. The left interaction proceeds identically to the experiment
Exp(λ,CH ′, R↔A[G]), and the right to experiment Exp(λ,CH ′↔R,A[G]).

A (straight-line black-box) reduction from an ensemble of generalized crypto-
graphic game (CH,G, τ) to an intractability assumption (CH′, τ ′) is an ensemble
of PPT reductions R = {Rλ} from game (CH λ, Gλ, τ) to (CH ′

λ, τ ′) (for security
parameter λ).

At a high-level, we say that a reduction is μ-nice, where μ is a function, if it
satisfies the following syntactical property: R (together with the challenger CH ′

of the assumption) generates messages and output that are statistically close to
the messages and output of the challenger CH of the game, at every step.

More precisely, let ρ = (m1, a1,m2, a2, · · · ,mt, at) denote a transcript of
messages and outputs in the interaction between CH and an adversary (or in the
interaction between CH ′↔R and an adversary) where m = m1,m2, · · · ,mt−1

and mt correspond to the messages and output of the adversary (mt = ⊥ if the
adversary aborts) and a = a1, a2, · · · , at−1 and at corresponds to the messages
and output of CH (or CH ′↔R). A transcript ρ possibly appears in an interaction
with CH (or CH ′↔R) if when receiving m, CH (or CH ′↔R) generates a with
non-zero probability. The syntactical property requires that for every prefix of
a transcript that possibly appear in both interaction with CH and interaction
with CH ′↔R, the distributions of the next message or output generated by CH
and CH ′↔R are statistically close. In fact, for our purpose later, it suffices to
consider the prefixes of transcripts that are G-consistent: A transcript ρ is G-
consistent if m satisfies that either mt = ⊥ or m1 = G(m2,m3, · · · ,mt−1); in
other words, ρ could be generated by a G-selective adversary.

Definition 9 (Nice Reductions). We say that a reduction R from a general-
ized game (CH , G, τ) to a (canonical) game (CH ′, τ) (with the same threshold)
for security parameter λ is μ-nice, if it satisfies the following property:

– μ(λ)-statistical emulation for G-consistent transcripts:
For every prefix ρ = (m1, a1,m2, a2, · · · ,m�−1, a�−1,m�) of a G-consistent

Delegating RAM Computations with Adaptive Soundness and Privacy 21

transcript of messages that possibly appears in interaction with both CH and
CH ′↔R, the following two distributions are μ(λ)-close:

Δ(DCH ′↔R(λ, ρ), DCH (λ, ρ)) ≤ μ(λ)

where DM (λ, ρ) for M = CH ′↔R or CH is the distribution of the next mes-
sage or output a� generated by M(1λ) after receiving messages m in ρ, and
conditioned on M(1λ) having generated a in ρ.

Moreover, we say that a reduction R = {Rλ} from a generalized cryptographic
game (CH,G, τ) to a intractability assumption (CH′, τ) is nice if there is a neg-
ligible function μ, such that, Rλ is μ(λ)-nice for every λ.

When a reduction is μ-nice with negligible μ, it is sufficient to imply G-selective
security of the corresponding generalized cryptographic game. We defer the
proofs to the full version.

Lemma 2. Suppose R is a μ-nice reduction from (CH , G, τ) to (CH ′, τ) for
security parameter λ, and A is a deterministic G-semi-selective adversary that
wins (CH , G, τ) with advantage γ(λ), then R↔A[G] is an adversary for (CH ′, τ)
with advantage γ(λ) − t(λ) · μ(λ), where t(λ) is an upper bound on the run-time
of R.

By a standard argument, Lemma2 implies the following asymptotic version
theorem.

Theorem 3. If there exists a nice reduction R from a generalized cryptographic
game (CH,G, τ) to an intractability assumption (CH′, τ), then (CH,G, τ) is
G-selectively secure.

Step 2: Fully Adaptive Security. We now show how to move from G-selective
security to fully adaptive security for the class of guessing games with security
loss 2LG(λ), where LG(λ) is the output length of G, provided that the chal-
lenger’s messages hide the information of G(α) computationally. We start with
formalizing this hiding property.

Roughly speaking, the challenger CH of a generalized experiment (CH , G)
is G-hiding, if for any α and α′, interactions with CH receiving G(α) or G(α′)
at the beginning are indistinguishable. Denote by CH (x) the challenger with x
hardcoded as the first message.

Definition 10 (G-hiding). We say that a generalized guessing game (CH , G, τ)
is μ(λ)-G-hiding for security parameter λ, if its challenger CH satisfies that for
every α and α′, and every non-uniform PPT adversary A,

|Pr[OutA(λ,CH (G(α)), A) = 1] − Pr[OutA(λ,CH (G(α′)), A) = 1]| ≤ μ(λ)

Moreover, we say that a generalized cryptographic guessing game (CH,G, τ) is
G-hiding, if there is a negligible function μ, such that, (CH λ, Gλ, τ(λ)) is μ(λ)-
Gλ-hiding for every λ.

22 P. Ananth et al.

The following lemma says that if a generalized guessing game (CH , G, 1/2) is
G-selectively secure and G-hiding, then it is fully adaptively secure with 2LG

security loss. Its formal proof is deferred to the full version.

Lemma 3. Let (CH , G, 1/2) be a generalized cryptographic guessing game for
security parameter λ. If there exists a fully adaptive adversary A for (CH , G, 1/2)
with advantage γ(λ) and (CH , G, 1/2) is μ(λ)-G-hiding with μ(λ) ≤ γ/2LG(λ)+1,
then there exists a G-selective adversary A′ for (CH , G, 1/2) with advantage
γ(λ)/2LG(λ)+1, where LG is the output length of G.

Therefore, for a generalized cryptographic guessing game (CH,G, τ), if G has
logarithmic output length LG(λ) = O(log λ) and the game is G-hiding, then its
G-selective security implies fully adaptive security.

Theorem 4. Let (CH,G, τ) be a G-selectively secure generalized cryptographic
guessing game. If (CH,G, τ) is G-hiding and LG(λ) = O(log λ), then (CH,G, τ)
is fully adaptively secure.

Remark 1. The above proof of small-loss complexity leveraging can be extended
to a more general class of security games, beyond the guessing games. The chal-
lenger with an arbitrary threshold τ has the form that if the adversary aborts,
the challenger toss a biased coin and outputs 1 with probability τ . The same
argument above goes through for games with this class of challengers.

3.4 Nice Indistinguishability Proof

In this section, we characterize an abstract framework of proofs—called “nice”
proofs—for showing the indistinguishability of two ensembles of (standard) cryp-
tographic experiments. We focus on a common type of indistinguishability proof,
which consists of a sequence of hybrid experiments and shows that neighboring
hybrids are indistinguishable via a reduction to a intractability assumption. We
formalize required nice properties of the hybrids and reductions such that a
fully selective security proof can be lifted to prove fully adaptive security by
local application of small-loss complexity leveraging technique to neighboring
hybrids. We start by describing common indistinguishability proofs using the
language of generalized experiments and games.

Consider two ensembles of standard cryptographic experiments RL0 and
RL1. They are special cases of generalized cryptographic experiments with a
function G = null : {0, 1}∗ → {ε} that always outputs the empty string, that is,
(RL0, null) and (RL1, null); we refer to them as the “real” experiments.

Consider a proof of indistinguishability of (RL0, null) and (RL1, null) against
fully selective adversaries via a sequence of hybrid experiments. As discussed
in the overview, the challenger of the hybrids often depends non-trivially on
partial information of the adversary’s initial choice. Namely, the hybrids are
generalized cryptographic experiments with non-trivial G function. Since small-
loss complexity leveraging has exponential security loss in the output length of G,
we require all hybrid experiments have logarithmic-length G function. Below, for

Delegating RAM Computations with Adaptive Soundness and Privacy 23

convenience, we use the notation Xi to denote an ensemble of the form {Xi,λ},
and the notation XI with a function I, as the ensemble {XI(λ),λ}.

1. Security via hybrids with logarithmic-length G function: The proof
involves a sequence of polynomial number (�) of hybrid experiments. More
precisely, for every λ ∈ N, there is a sequence of (λ)+1 hybrid (generalized)
experiments (H0,λ, G0,λ), · · · (H�(λ),λ, G�(λ),λ), such that, the “end” experi-
ments matches the real experiments,

(H0,G0) = ({H0,λ}, {G0,λ}) = (RL0, null)
(H�,G�) = ({H�(λ),λ}, {G�(λ),λ}) = (RL1, null),

Furthermore, there exists a function LG(λ) = O(log λ) such that for every λ
and i, the output length of Gi,λ is at most LG(λ).

We next formalize required properties to lift security proof of neighboring
hybrids. Towards this, we formulate indistinguishability of two generalized cryp-
tographic experiments as a generalized cryptographic guessing game. The fol-
lowing is a known fact.

Fact. Let (CH0,G0) and (CH1,G1) be two ensembles of generalized crypto-
graphic experiments, F be an ensemble of efficiently computable functions, and
CF denote the class of non-uniform PPT adversaries A that are F-selective
in (CHb,Gb) for both b = 0, 1. Indistinguishability of (CH0,G0) and (CH1,G1)
against (efficient) F-selective adversaries is equivalent to F-selective security
of a generalized cryptographic guessing game (D,G0||G1, 1/2), where G0||G1 =
{G0,λ||G1,λ} are the concatenations of functions G0,λ and G1,λ, and the chal-
lenger D = {Dλ[CH 0,λ,CH 1,λ]} proceeds as follows: For every security parame-
ter λ ∈ N, D = Dλ[CH 0,λ,CH 1,λ], Gb = Gb,λ, CH b = CH b,λ, in experiment
Exp(λ,D,G0||G1, �),

– D tosses a random bit b
$← {0, 1}.

– Upon receiving g0||g1 (corresponding to gd = Gd(α) for d = 0, 1 where α is the
initial choice of the adversary), D internally runs challenger CH b by feeding
it gb and forwarding messages to and from CH b.

– If the adversary aborts, D output 0. Otherwise, upon receiving the adversary’s
output bit b′, it output 1 if and only if b = b′.

By the above fact, indistinguishability of neighboring hybrids (Hi,Gi) and
(Hi+1,Gi+1) against F-selective adversary is equivalent to F-selective secu-
rity of the generalized cryptographic guessing game (Di,Gi||Gi+1, 1/2), where
Di = {Di,λ[Hi,λ,Hi+1,λ]}. We can now state the required properties for every
pair of neighboring hybrids:

2. Indistinguishability of neighboring hybrids via nice reduction: For
every neighboring hybrids (Hi,Gi) and (Hi+1,Gi+1), their indistinguishability
proof against fully selective adversary is established by a nice reduction Ri

from the corresponding guessing game (Di,Gi||Gi+1, 1/2) to some intractabil-
ity assumption.

24 P. Ananth et al.

3. Gi||Gi+1-hiding: For every neighboring hybrids (Hi,Gi) and (Hi+1,Gi+1),
their corresponding guessing game (Di,Gi||Gi+1, 1/2) is Gi||Gi+1-hiding.

In summary,

Definition 11 (Nice Indistinguishability Proof). A “nice” proof for the
indistinguishability of two real experiments (RL0, null) and (RL1, null) is one
that satisfy properties 1, 2, and 3 described above.

It is now straightforward to lift security of nice indistinguishability proof by local
application of small-loss complexity leveraging for neighboring hybrids. Please
refer to the full version for its proof.

Theorem 5. A “nice” proof for the indistinguishability of two real experiments
(RL0, null) and (RL1, null) implies that these experiments are indistinguishable
against fully adaptive adversaries.

4 Adaptive Delegation for RAM Computation

In this section, we introduce the notion of adaptive delegation for RAM computa-
tion (DEL) and state our formal theorem. In a DEL scheme, a client outsources
the database encoding and then generates a sequence of program encodings.
The server will evaluate those program encodings with intended order on the
database encoding left over by the previous one. For security, we focus on full
privacy where the server learns nothing about the database, delegated programs,
and its outputs. Simultaneously, DEL is required to provide soundness where the
client has to receive the correct output encoding from each program and current
database.

We first give a brief overview of the structure of the delegation scheme. First,
the setup algorithm DBDel, which takes as input the database, is executed. The
result is the database encoding and the secret key. PDel is the program encoding
procedure. It takes as input the secret key, session ID and the program to be
encoded. Eval takes as input the program encoding of session ID sid along with a
memory encoding associated with sid. The result is an encoding which is output
along with a proof. Along with this the updated memory state is also output. We
employ a verification algorithm Ver to verify the correctness of computation using
the proof output by Eval. Finally, Dec is used to decode the output encoding.

We present the formal definition below.

4.1 Definition

Definition 12 (DEL with Persistent Database). A DEL scheme with per-
sistent database, consists of PPT algorithms DEL = DEL.{DBDel,PDel,Eval,
Ver,Dec}, is described below. Let sid be the program session identity where 1 ≤
sid ≤ l. We associate DEL with a class of programs P.

Delegating RAM Computations with Adaptive Soundness and Privacy 25

– DEL.DBDel(1λ,mem0, S) → (m̃em
1
, sk): The database delegation algorithm

DBDel is a randomized algorithm which takes as input the security parameter
1λ, database mem0, and a space bound S. It outputs a garbled database m̃em

1

and a secret key sk.
– DEL.PDel(1λ, sk, sid, Psid) → ˜Psid: The algorithm PDel is a randomized algo-

rithm which takes as input the security parameter 1λ, the secret key sk, the ses-
sion ID sid and a description of a RAM program Psid ∈ P. It outputs a program
encoding ˜Psid.

– DEL.Eval
(

1λ, T, S, ˜Psid, m̃em
sid

)

→
(

csid, σsid, m̃em
sid+1

)

: The evaluating algo-
rithm Eval is a deterministic algorithm which takes as input the security para-
meter 1λ, time bound T , space bound S, a garbled program ˜Psid, and the database
m̃em

sid. It outputs (csid, σsid, m̃em
sid+1) or ⊥, where csid is the encoding of the

output ysid, σsid is a proof of csid, and (ysid,memsid+1) = Psid(memsid).
– DEL.Ver(1λ, sk, csid, σsid) → bsid ∈ {0, 1}: The verification algorithm takes as

input the security parameter 1λ, secret key sk, encoding csid, proof σsid and returns
bsid = 1 if σsid is a valid proof for csid, or returns bsid = 0 if not.

– DEL.Dec(1λ, sk, csid) → ysid: The decoding algorithmDec is a deterministic algo-
rithm which takes as input the security parameter 1λ, secret key sk, output encod-
ing csid. It outputs ysid by decoding csid with sk.

Associated to the above scheme are correctness, (adaptive) security, (adaptive)
soundness and efficiency properties.

Correctness. A delegation scheme DEL is said to be correct if both verification
and decryption are correct: for all mem0 ∈ {0, 1}poly(λ), 1 ≤ sid ≤ , Psid ∈ P,
consider the following process:

– (m̃em
1
, sk) ← DEL.DBDel(1λ,mem0, S);

– ˜Psid ← DEL.PDel(1λ, sk, sid, Psid);
– (csid, σsid, m̃em

sid+1) ← DEL.Eval(1λ, T, S, ˜Psid, m̃em
sid);

– bsid = DEL.Ver(1λ, sk, csid, σsid);
– ysid = DEL.Dec(1λ, sk, csid);
– (y′

sid,memsid+1) ← Psid(memsid);

The following holds:

Pr [(ysid = y′
sid ∧ bsid = 1) ∀sid, 1 ≤ sid ≤ l] = 1.

Adaptive Security (full privacy). This property is designed to protect the pri-
vacy of the database and the programs from the adversarial server. We formalize
this using a simulation based definition. In the real world, the adversary is sup-
posed to declare the database at the beginning of the game. The challenger
computes the database encoding and sends it across to the adversary. After this,
the adversary can submit programs to the challenger and in return it receives
the corresponding program encodings. We emphasize the program queries can
be made adaptively. On the other hand, in the simulated world, the simulator

26 P. Ananth et al.

does not get to see either the database or the programs submitted by the adver-
sary. But instead it receives as input the length of the database, the lengths of
the individual programs and runtimes of all the corresponding computations.6

It then generates the simulated database and program encodings. The job of the
adversary in the end is to guess whether he is interacting with the challenger
(real world) or whether he is interacting with the simulator (ideal world).

Definition 13. A delegation scheme DEL = DEL.{DBDel, PDel,Eval, Ver,Dec}
with persistent database is said to be adaptively secure if for all sufficiently large
λ ∈ N, for all total round l ∈ poly(λ), time bound T , space bound S, for every
interactive PPT adversary A, there exists an interactive PPT simulator S such
that A’s advantage in the following security game Exp-Del-Privacy(1λ,DEL,A,S)
is at most negligible in λ.

Exp-Del-Privacy(1λ,DEL,A,S)

1. The challenger C chooses a bit b ∈ {0, 1}.
2. A chooses and sends database mem0 to challenger C.
3. If b = 0, challenger C computes (m̃em

1
, sk) ← DEL.DBDel(1λ,mem0, S). Oth-

erwise, C simulates (m̃em
1
, sk) ← S(1λ, |mem0|), where |mem0| is the length of

mem0. C sends m̃em
1 back to A.

4. For each round sid from 1 to l,
(a) A chooses and sends program Psid to C.
(b) If b = 0, challenger C sends ˜Psid ← DEL.PDel(1λ, sk, sid, Psid) to A. Other-

wise, C simulates and sends ˜Psid ← S(1λ, sk, sid, 1|Psid|, 1|csid|, T, S) to A.
5. A outputs a bit b′. A wins the security game if b = b′.

We notice that an unrestricted adaptive adversary can adaptively choose RAM
programs Pi depending on the program encodings it receives, whereas a restricted
selective adversary can only make the choice of programs statically at the begin-
ning of the execution.

Adaptive Soundness. This property is designed to protect the clients against
adversarial servers producing invalid output encodings. This is formalized in
the form of a security experiment: the adversary submits the database to the
challenger. The challenger responds with the database encoding. The adversary
then chooses programs to be encoded adaptively. In response, the challenger
sends the corresponding program encodings. In the end, the adversary is required
to submit the output encoding and the corresponding proof. The soundness
property requires that the adversary can only submit a convincing “false” proof
only with negligible probability.

6 Note that unlike the standard simulation based setting, the simulator does not receive
the output of the programs. This is because the output of the computation is never
revealed to the adversary.

Delegating RAM Computations with Adaptive Soundness and Privacy 27

Definition 14. A delegation scheme DEL is said to be adaptively sound if for
all sufficiently large λ ∈ N, for all total round l ∈ poly(λ), time bound T , space
bound S, there exists an interactive PPT adversary A, such that the probability
of A win in the following security game Exp-Del-Soundness(1λ,DEL,A) is at
most negligible in λ.

Exp-Del-Soundness(1λ,DEL,A)

1. A chooses and sends database mem0 to challenger C.
2. The challenger C computes (m̃em

1
, sk) ← DEL.DBDel(1λ,mem0, S). C sends

m̃em
1 back to A.

3. For each round sid from 1 to l,
(a) A chooses and sends program Psid to C.
(b) C sends ˜Psid ← DEL.PDel(1λ, sk, sid, Psid) to A.

4. A outputs a triplet (k, c∗
k, σ∗

k). A wins the security game if 1 ←
DEL.Ver(1λ, sk, c∗

k, σ∗
k) and c∗

k �= ck for the k-th round, where ck is generated
as follows: for sid = 1, . . . , k, (csid, σsid, m̃em

sid+1) ← DEL.Eval(1λ, T, S, ˜Psid,

m̃em
sid).

Efficiency. For every session with session ID sid, we require that DBDel and PDel
execute in time poly(λ, |mem0|) and poly(λ, |Psid|) respectively. Furthermore we
require that Eval run in time poly(λ, t∗sid), where t∗sid denotes the running time
of Psid on memsid. We require that both Ver and Dec run in time poly(λ, |ysid|).
Finally, the length of csid, σsid should depend only on |ysid|.

A construction of adaptive delegation is provided in the full version [2] with
its security proof.

Theorem 6. Assuming the existence of iO for circuits and DDH, there exists
an efficient RAM delegation scheme DEL with persistent database with adaptive
security and soundness.

Acknowledgements. We thank Yael Kalai for insightful discussions in the early
stages of this project.

This work was done in part while the authors were visiting the Simons Insti-
tute for the Theory of Computing, supported by the Simons Foundation and by the
DIMACS/Simons Collaboration in Cryptography through NSF grant CNS-1523467.

Prabhanjan Ananth is supported in part by grant #360584 from the Simons Foun-
dation and supported in part from a DARPA/ARL SAFEWARE award, NSF Frontier
Award 1413955, NSF grants 1228984, 1136174, 1118096, and 1065276. This material
is based upon work supported by the Defense Advanced Research Projects Agency
through the ARL under Contract W911NF-15-C-0205. The views expressed are those
of the author and do not reflect the official policy or position of the Department of
Defense, the National Science Foundation, or the U.S. Government.

Kai-Min Chung was partially supported by Ministry of Science and Technology,
Taiwan, under Grant no. MOST 103-2221-E-001-022-MY3.

Huijia Lin was partially supported by NSF grants CNS-1528178 and CNS-1514526.

28 P. Ananth et al.

References

1. Ananth, P., Brakerski, Z., Segev, G., Vaikuntanathan, V.: From selective to
adaptive security in functional encryption. In: Gennaro, R., Robshaw, M. (eds.)
CRYPTO 2015. LNCS, vol. 9216, pp. 657–677. Springer, Heidelberg (2015). doi:10.
1007/978-3-662-48000-7 32

2. Ananth, P., Chen, Y.-C., Chung, K.-M., Lin, H., Lin, W.-K.: Delegating RAM
computations with adaptive soundness and privacy. Cryptology ePrint Archive,
Report 2015/1082 (2015). http://eprint.iacr.org/2015/1082

3. Ananth, P., Jain, A., Naor, M., Sahai, A., Eylon Y.: Universal obfuscation and
witness encryption: boosting correctness and combining security. In: CRYPTO
(2016)

4. Ananth, P., Jain, A.: Indistinguishability obfuscation from compact functional
encryption. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9215,
pp. 308–326. Springer, Heidelberg (2015). doi:10.1007/978-3-662-47989-6 15

5. Ananth, P., Jain, A., Sahai, A.: Achieving compactness generically: indistinguisha-
bility obfuscation from non-compact functional encryption. IACR Cryptology
ePrint Archive 2015:730 (2015)

6. Ananth, P., Jain, A., Sahai, A.: Patchable obfuscation. IACR Cryptology ePrint
Archive 2015:1084 (2015)

7. Ananth, P., Sahai, A.: Functional encryption for turing machines. In: Kushilevitz,
E., Malkin, T. (eds.) TCC 2016. LNCS, vol. 9562, pp. 125–153. Springer, Heidelberg
(2016). doi:10.1007/978-3-662-49096-9 6

8. Applebaum, B.: Bootstrapping obfuscators via fast pseudorandom functions. In:
Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014. LNCS, vol. 8874, pp. 162–172.
Springer, Heidelberg (2014). doi:10.1007/978-3-662-45608-8 9

9. Barak, B., Garg, S., Kalai, Y.T., Paneth, O., Sahai, A.: Protecting obfuscation
against algebraic attacks. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT
2014. LNCS, vol. 8441, pp. 221–238. Springer, Heidelberg (2014). doi:10.1007/
978-3-642-55220-5 13

10. Bitansky, N., Garg, S., Lin, H., Pass, R., Telang, S.: Succinct randomized encodings
and their applications. In: STOC (2015)

11. Bitansky, N., Vaikuntanathan, V.: Indistinguishability obfuscation from functional
encryption. In: IEEE 56th Annual Symposium on Foundations of Computer Sci-
ence, FOCS 2015, Berkeley, CA, USA, 17–20 October 2015, pp. 171–190 (2015)

12. Boyle, E., Chung, K.-M., Pass, R.: Oblivious parallel RAM and applications.
In: Kushilevitz, E., Malkin, T. (eds.) TCC 2016. LNCS, vol. 9563, pp. 175–204.
Springer, Heidelberg (2016). doi:10.1007/978-3-662-49099-0 7

13. Boyle, E., Chung, K.-M., Pass, R.: On extractability obfuscation. In: Lindell, Y.
(ed.) TCC 2014. LNCS, vol. 8349, pp. 52–73. Springer, Heidelberg (2014). doi:10.
1007/978-3-642-54242-8 3

14. Brakerski, Z., Rothblum, G.N.: Virtual black-box obfuscation for all circuits via
generic graded encoding. In: Lindell, Y. (ed.) TCC 2014. LNCS, vol. 8349, pp.
1–25. Springer, Heidelberg (2014). doi:10.1007/978-3-642-54242-8 1

15. Canetti, R., Chen, Y., Holmgren, J., Raykova, M.: Succinct adaptive garbled RAM.
In: TCC 2016-B

16. Canetti, R., Holmgren, J.: Fully succinct garbled RAM. In: ITCS (2016)
17. Canetti, R., Holmgren, J., Jain, A., Vaikuntanathan, V.: Indistinguishability obfus-

cation of iterated circuits and RAM programs. In: STOC (2015)

http://dx.doi.org/10.1007/978-3-662-48000-7_32
http://dx.doi.org/10.1007/978-3-662-48000-7_32
http://eprint.iacr.org/2015/1082
http://dx.doi.org/10.1007/978-3-662-47989-6_15
http://dx.doi.org/10.1007/978-3-662-49096-9_6
http://dx.doi.org/10.1007/978-3-662-45608-8_9
http://dx.doi.org/10.1007/978-3-642-55220-5_13
http://dx.doi.org/10.1007/978-3-642-55220-5_13
http://dx.doi.org/10.1007/978-3-662-49099-0_7
http://dx.doi.org/10.1007/978-3-642-54242-8_3
http://dx.doi.org/10.1007/978-3-642-54242-8_3
http://dx.doi.org/10.1007/978-3-642-54242-8_1

Delegating RAM Computations with Adaptive Soundness and Privacy 29

18. Canetti, R., Lin, H., Tessaro, S., Vaikuntanathan, V.: Obfuscation of probabilistic
circuits and applications. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015. LNCS, vol.
9015, pp. 468–497. Springer, Heidelberg (2015). doi:10.1007/978-3-662-46497-7 19

19. Chen, B., Lin, H., Tessaro, S.: Oblivious parallel RAM: improved efficiency and
generic constructions. In: Kushilevitz, E., Malkin, T. (eds.) TCC 2016. LNCS, vol.
9563, pp. 205–234. Springer, Heidelberg (2016). doi:10.1007/978-3-662-49099-0 8

20. Chen, Y.-C., Chow, S.S.M., Chung, K.-M., Lai, R.W.F., Lin, W.-K., Zhou, H.-S.:
Cryptography for parallel RAM from indistinguishability obfuscation. In: ITCS
(2016)

21. Chung, K.-M., Pass, R.: A simple ORAM. IACR Cryptology ePrint Archive
2013:243 (2013)

22. Coron, J.-S., Gentry, C., Halevi, S., Lepoint, T., Maji, H.K., Miles, E., Raykova,
M., Sahai, A., Tibouchi, M.: Zeroizing without low-level zeroes: new MMAP
attacks and their limitations. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO
2015. LNCS, vol. 9215, pp. 247–266. Springer, Heidelberg (2015). doi:10.1007/
978-3-662-47989-6 12

23. Coron, J.-S., Lepoint, T., Tibouchi, M.: Practical multilinear maps over the inte-
gers. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8042, pp.
476–493. Springer, Heidelberg (2013). doi:10.1007/978-3-642-40041-4 26

24. Coron, J.-S., Lepoint, T., Tibouchi, M.: New multilinear maps over the integers. In:
Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9215, pp. 267–286.
Springer, Heidelberg (2015). doi:10.1007/978-3-662-47989-6 13

25. Garg, S., Gentry, C., Halevi, S.: Candidate multilinear maps from ideal lattices.
In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp.
1–17. Springer, Heidelberg (2013). doi:10.1007/978-3-642-38348-9 1

26. Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.: Candidate
indistinguishability obfuscation and functional encryption for all circuits. In: FOCS
(2013)

27. Garg, S., Lu, S., Ostrovsky, R.: Black-box garbled RAM. In: FOCS (2015)
28. Garg, S., Lu, S., Ostrovsky, R., Scafuro, A.: Garbled RAM from one-way functions.

In: STOC (2015)
29. Gentry, C., Gorbunov, S., Halevi, S.: Graph-induced multilinear maps from lat-

tices. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015. LNCS, vol. 9015, pp. 498–527.
Springer, Heidelberg (2015). doi:10.1007/978-3-662-46497-7 20

30. Gentry, C., Halevi, S., Lu, S., Ostrovsky, R., Raykova, M., Wichs, D.: Garbled RAM
revisited. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol.
8441, pp. 405–422. Springer, Heidelberg (2014). doi:10.1007/978-3-642-55220-5 23

31. Gentry, C., Halevi, S., Raykova, M., Wichs, D.: Outsourcing private RAM compu-
tation. In: FOCS (2014)

32. Gorbunov, S., Vaikuntanathan, V., Wee, H.: Functional encryption with bounded
collusions via multi-party computation. In: Safavi-Naini, R., Canetti, R. (eds.)
CRYPTO 2012. LNCS, vol. 7417, pp. 162–179. Springer, Heidelberg (2012).
doi:10.1007/978-3-642-32009-5 11

33. Goyal, V., Ishai, Y., Sahai, A., Venkatesan, R., Wadia, A.: Founding cryptography
on tamper-proof hardware tokens. In: Micciancio, D. (ed.) TCC 2010. LNCS, vol.
5978, pp. 308–326. Springer, Heidelberg (2010). doi:10.1007/978-3-642-11799-2 19

34. Hemenway, B., Jafargholi, Z., Ostrovsky, R., Scafuro, A., Wichs, D.: Adaptively
secure garbled circuits from one-way functions. In: Robshaw, M., Katz, J. (eds.)
CRYPTO 2016. LNCS, vol. 9816, pp. 149–178. Springer, Heidelberg (2016). doi:10.
1007/978-3-662-53015-3 6

http://dx.doi.org/10.1007/978-3-662-46497-7_19
http://dx.doi.org/10.1007/978-3-662-49099-0_8
http://dx.doi.org/10.1007/978-3-662-47989-6_12
http://dx.doi.org/10.1007/978-3-662-47989-6_12
http://dx.doi.org/10.1007/978-3-642-40041-4_26
http://dx.doi.org/10.1007/978-3-662-47989-6_13
http://dx.doi.org/10.1007/978-3-642-38348-9_1
http://dx.doi.org/10.1007/978-3-662-46497-7_20
http://dx.doi.org/10.1007/978-3-642-55220-5_23
http://dx.doi.org/10.1007/978-3-642-32009-5_11
http://dx.doi.org/10.1007/978-3-642-11799-2_19
http://dx.doi.org/10.1007/978-3-662-53015-3_6
http://dx.doi.org/10.1007/978-3-662-53015-3_6

30 P. Ananth et al.

35. Kalai, Y.T., Paneth, O.: Delegating RAM computations. IACR Cryptology ePrint
Archive 2015: 957 (2015)

36. Kalai, Y.T., Raz, R., Rothblum, R.D.: How to delegate computations: the power
of no-signaling proofs. In: STOC (2014)

37. Koppula, V., Bishop Lewko, A., Waters, B.: Indistinguishability obfuscation for
turing machines with unbounded memory. In: STOC (2015)

38. Lin, H.: Indistinguishability obfuscation from constant-degree graded encoding
schemes. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9665,
pp. 28–57. Springer, Heidelberg (2016). doi:10.1007/978-3-662-49890-3 2

39. Lin, H., Vaikuntanathan, V.: Indistinguishability obfuscation from ddh-like
assumptions on constant-degree graded encodings. Cryptology ePrint Archive,
Report 2016/795 (2016). http://eprint.iacr.org/2016/795

40. Lu, S., Ostrovsky, R.: How to garble RAM programs? In: Johansson, T., Nguyen,
P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 719–734. Springer, Heidel-
berg (2013). doi:10.1007/978-3-642-38348-9 42

41. Lu, S., Ostrovsky, R.: Black-box parallel garbled RAM. Cryptology ePrint Archive,
Report 2015/1068 (2015). http://eprint.iacr.org/2015/1068

42. Miles, E., Sahai, A., Zhandry, M.: Annihilation attacks for multilinear maps: crypt-
analysis of indistinguishability obfuscation over GGH13. In: CRYPTO (2016)

43. Naor, M.: On cryptographic assumptions and challenges. In: Boneh, D. (ed.)
CRYPTO 2003. LNCS, vol. 2729, pp. 96–109. Springer, Heidelberg (2003). doi:10.
1007/978-3-540-45146-4 6

44. Waters, B.: A punctured programming approach to adaptively secure functional
encryption. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9216,
pp. 678–697. Springer, Heidelberg (2015). doi:10.1007/978-3-662-48000-7 33

http://dx.doi.org/10.1007/978-3-662-49890-3_2
http://eprint.iacr.org/2016/795
http://dx.doi.org/10.1007/978-3-642-38348-9_42
http://eprint.iacr.org/2015/1068
http://dx.doi.org/10.1007/978-3-540-45146-4_6
http://dx.doi.org/10.1007/978-3-540-45146-4_6
http://dx.doi.org/10.1007/978-3-662-48000-7_33

Interactive Oracle Proofs

Eli Ben-Sasson1, Alessandro Chiesa2(B), and Nicholas Spooner3

1 Technion, Haifa, Israel
eli@cs.technion.ac.il

2 UC Berkeley, Berkeley, USA
alexch@berkeley.edu

3 University of Toronto, Toronto, Canada
spooner@cs.toronto.edu

Abstract. We initiate the study of a proof system model that naturally
combines interactive proofs (IPs) and probabilistically-checkable proofs
(PCPs), and generalizes interactive PCPs (which consist of a PCP fol-
lowed by an IP). We define an interactive oracle proof (IOP) to be an
interactive proof in which the verifier is not required to read the prover’s
messages in their entirety; rather, the verifier has oracle access to the
prover’s messages, and may probabilistically query them. IOPs retain
the expressiveness of PCPs, capturing NEXP rather than only PSPACE,
and also the flexibility of IPs, allowing multiple rounds of communication
with the prover. IOPs have already found several applications, including
unconditional zero knowledge [BCGV16], constant-rate constant-query
probabilistic checking [BCG+16], and doubly-efficient constant-round
IPs for polynomial-time bounded-space computations [RRR16].

We offer two main technical contributions. First, we give a compiler
that maps any public-coin IOP into a non-interactive proof in the ran-
dom oracle model. We prove that the soundness of the resulting proof is
tightly characterized by the soundness of the IOP against state restora-
tion attacks, a class of rewinding attacks on the IOP verifier that is
reminiscent of, but incomparable to, resetting attacks.

Second, we study the notion of state-restoration soundness of an IOP:
we prove tight upper and lower bounds in terms of the IOP’s (standard)
soundness and round complexity; and describe a simple adversarial strat-
egy that is optimal, in expectation, across all state restoration attacks.

Our compiler can be viewed as a generalization of the Fiat–Shamir
paradigm for public-coin IPs (CRYPTO ’86), and of the “CS proof” con-
structions of Micali (FOCS ’94) and Valiant (TCC ’08) for PCPs. Our
analysis of the compiler gives, in particular, a unified understanding of
these constructions, and also motivates the study of state restoration
attacks, not only for IOPs, but also for IPs and PCPs.

Parts of this paper appear in the third author’s master’s thesis (April 2015) in the
Department of Computer Science at ETH Zurich, supervised by Alessandro Chiesa
and Thomas Holenstein. Independent of our work, [RRR16] introduce the notion
of Probabilistically Checkable Interactive Proofs, which is the same as our notion of
Interactive Oracle Proofs.

c© International Association for Cryptologic Research 2016
M. Hirt and A. Smith (Eds.): TCC 2016-B, Part II, LNCS 9986, pp. 31–60, 2016.
DOI: 10.1007/978-3-662-53644-5 2

32 E. Ben-Sasson et al.

When applied to known IOP constructions, our compiler implies, e.g.,
blackbox unconditional ZK proofs in the random oracle model with qua-
silinear prover and polylogarithmic verifier, improving on a result of
[IMSX15].

1 Introduction

The notion of proof is central to modern cryptography and complexity theory.
The class NP, for example, is the set of languages whose membership can be
decided by a deterministic polynomial-time verifier by reading proof strings of
polynomial length; this class captures the traditional notion of a mathematical
proof. Over the last three decades, researchers have introduced and studied proof
systems that generalize the above traditional notion, and investigations from
these points of view have led to breakthroughs in cryptography, hardness of
approximation, and other areas. In this work we introduce and study a new
model of proof system.

1.1 Models of Proof Systems

We give some context by recalling three of the most well-known among alterna-
tive models of proof systems.

Interactive Proofs (IPs). Interactive proofs were introduced by Goldwasser,
Micali, and Rackoff [GMR89]: in a k-round interactive proof, a probabilistic
polynomial-time verifier exchanges k messages with an all-powerful prover, and
then accepts or rejects; IP[k] is the class of languages with a k-round inter-
active proof. Independently, Babai [Bab85] introduced Arthur–Merlin games:
a k-round Arthur–Merlin game is a k-round public-coin interactive proof (i.e.,
the verifier messages are uniformly and independently random); AM[k] is the
class of languages with a k-round Arthur–Merlin game. Goldwasser and Sipser
[GS86] showed that the two models are equally powerful: for polynomial k,
IP[k] ⊆ AM[k+2]. Shamir [Sha92], building on the “sum-check” interactive proof
of Lund, Fortnow, Karloff, and Nisan [LFKN92], proved that interactive proofs
correspond to languages decidable in polynomial space: IP[poly(n)] = PSPACE.
(Also see [Bab90].)

Multi-prover Interactive Proofs (MIPs). Multi-prover interactive proofs
were introduced by Ben-Or, Goldwasser, Kilian, and Wigderson [BGKW88]: in a
k-round p-prover interactive proof, a probabilistic polynomial-time verifier inter-
acts k times with p non-communicating all-powerful provers, and then accepts or
rejects; MIP[p, k] is the class of languages that have a k-round p-prover interac-
tive proof. In [BGKW88], the authors show that two provers always suffice (i.e.,
MIP[p, k] = MIP[2, k]), and that all languages in NP have perfect zero knowledge
proofs in this model. Fortnow, Rompel, and Sipser [FRS88] show that interaction
with two provers is equivalent to interaction with one prover plus oracle access to
a proof string, and from there obtain that MIP[poly(n),poly(n)] ⊆ NEXP; Babai,

Interactive Oracle Proofs 33

Fortnow and Lund [BFL90] show that NEXP has 1-round 2-prover interactive
proofs, thus showing that MIP[2, 1] = NEXP.

Probabilistically Checkable Proofs (PCPs). Probabilistically check-
able proofs were introduced by [FRS88,BFLS91,AS98,ALM+98]: in a
probabilistically-checkable proof, a probabilistic polynomial-time verifier has
oracle access to a proof string; PCP[r, q] is the class of languages for which
the verifier uses at most r bits of randomness, and queries at most q loca-
tions of the proof (note that the proof length is at most 2r). The above
results on MIPs imply that PCP[poly(n),poly(n)] = NEXP. Later works “scaled
down” this result to NP: Babai, Fortnow, Levin and Szegedy [BFLS91] show
that NP = PCP[O(log n),poly(log n)]; Arora and Safra [AS98] show that
NP = PCP[O(log n), O(

√
log n)]; and Arora, Lund, Motwani, Sudan, and Szegedy

[ALM+92] show that NP = PCP[O(log n), O(1)]. This last is known as the PCP
Theorem.

Researchershavestudiedothermodelsofproof systems,andherewenameonlya
few: linear IPs [BCI+13], no-signaling MIPs [IKM09,Ito10,KRR13,KRR14], lin-
ear PCPs [IKO07,Gro10,Lip12,BCI+13,GGPR13,PGHR13,BCI+13,SBW11,
SMBW12,SVP+12,SBV+13], interactive PCPs [KR08,KR09,GIMS10].

We introduce interactive oracle proofs (IOPs), a model of proof system
that combines aspects of IPs and PCPs, and also generalizes interactive PCPs
(which consist of a PCP followed by an IP). Our work focuses on cryptographic
applications of this proof system, as we discuss next.

1.2 Compiling Proof Systems into Argument Systems

The proof systems mentioned so far share a common feature: they make no
assumptions on the computational resources of a (malicious) prover trying to
convince the verifier. Instead, many proof systems make “structural” assump-
tions on the prover: MIPs assume that the prover is a collection of non-
communicating strategies (each representing a “sub-prover”); PCPs assume that
the prover is non-adaptive (the answer to a message does not depend on previous
messages); linear IPs assume that the prover is a linear function; and so on.

In contrast, in cryptography, one often considers argument systems [BC86,
BCC88,Kil92,Mic00]: these are proof systems where soundness holds only
against provers that have a bound on computational resources (e.g., provers
that run in probabilistic polynomial time). The relaxation from statistical sound-
ness to computational soundness allows circumventing various limitations of IPs
[BHZ87,GH98,GVW02,PSSV07], while also avoiding “structural” assumptions
on the prover, which can be hard to enforce in applications.

Constructing Argument Systems. A common methodology to construct
argument systems with desirable properties (e.g., sublinear communication com-
plexity) follows these two steps: (1) give a proof system that achieves these prop-
erties in a model with structural restrictions on (all-powerful) provers; (2) use
cryptographic tools to compile that proof system into an argument system, i.e.,
one where the only restriction on the prover is that it is an efficient algorithm.

34 E. Ben-Sasson et al.

Thus, the compilation trades any structural assumptions for computational ones.
This methodology has been highly productive.

Proofs in the Random Oracle Model. An idealized model for studying
computationally-bounded provers is the random oracle model [FS86,BR93],
where every party has access to the same random function. A protocol proved
secure in this model can potentially be instantiated in practice by replacing
the random function with a concrete “random-looking” efficient function. While
this intuition fails in the general case [CGH04,BBP04,GK03,BDG+13], the ran-
dom oracle model is nonetheless a useful testbed for cryptographic primitives.
In this paper we focus on proof systems in this model for which the proof con-
sists of a single message from the prover to the verifier. A non-interactive
random-oracle argument (NIROA) for a relation R is a pair of probabilistic
polynomial-time algorithms, the prover P and verifier V, that satisfy the follow-
ing. (1) Completeness: for every instance-witness pair (�,�) in the relation R,
Pr[Vρ(�,Pρ(�,�)) = 1] = 1, where the probability is taken over the random ora-
cle ρ as well as any randomness of P and V. (2) Soundness: for every instance �
not in the language of R and every malicious prover P̃ that asks at most a poly-
nomial number of queries to the random oracle, it holds that Pr[Vρ(�, P̃ρ) = 1]
is negligible in the security parameter.

Prior NIROAs and Our Focus. Prior work uses the above 2-step method-
ology to obtain NIROAs with desirable properties. For example, the Fiat–
Shamir paradigm maps 3-message public-coin IPs to corresponding NIROAs
[FS86,PS96]; when invoked on suitable IP constructions, this yields efficient
zero knowledge non-interactive proofs. As another example, Micali’s “CS proof”
construction, building on [Kil92], transforms PCPs to corresponding NIROAs;
Valiant [Val08] revisits Micali’s construction and proves that it is a proof of
knowledge; when invoked on suitable PCPs, these yield non-interactive argu-
ments of knowledge that are short and easy to verify. In this work we study the
question of how to compile IOPs (which generalize IPs and PCPs) into NIROAs;1

our work ultimately leads to formulating and studying a game-theoretic prop-
erty of IOPs, which in turn motivates similar questions for IPs and PCPs. We
now discuss our results.

1.3 Results

We present three main contributions: one is definitional and the other two are
technical in nature.

1 We do not study the question of avoiding assuming random oracles: this is not our
focus. Reducing assumptions when compiling constant-round IPs is the subject of
much research, obtaining arguments with non-programmable random oracles and a
common random string [Lin15,CPSV16], obfuscation [KRR16,MV16], and others.
Extending such ideas to IOPs is an interesting direction.

Interactive Oracle Proofs 35

Interactive Oracle Proofs A New Proof System Model. We introduce a
new proof system model: interactive oracle proofs (IOPs).2 This model naturally
combines aspects of IPs and PCPs, and also generalizes IPCPs (see comparison
in Remark 1 below); namely, an IOP is a “multi-round PCP” that generalizes an
interactive proof as follows: the verifier has oracle access to the prover’s messages,
and may probabilistically query them (rather than having to read them in full).
In more detail, a k-round IOP comprises k rounds of interaction. In the i-th
round of interaction: the verifier sends a message mi to the prover, which he
reads in full; then the prover replies with a message fi to the verifier, which he
can query, as an oracle proof string, in this and all later rounds. After the k
rounds of interaction, the verifier either accepts or rejects.

Like the PCP model, two fundamental measures of efficiency in the IOP
model are the proof length p, which is the total number of bits in all of the
prover’s messages, and the query complexity q, which is the total number of
locations queried by the verifier across all of the prover’s messages. Unlike the
PCP model, another fundamental measure of efficiency is the round complexity
k; the PCP model can then be viewed as a special case where k = 1 (and the
first verifier message is empty).

We show that IOPs characterize NEXP (like PCPs); both sequential and
parallel repetition of IOPs yield (perfect) exponential soundness error reduction
(like IPs); and any IOP can be converted into a public-coin one (like IPs). These
basic complexity-theoretic properties confirm that our definition of IOP is a
natural way to combine aspects of PCPs and IPs, and to generalize IPCPs.

Motivation: Efficiency. IOPs extend IPs, by treating the prover’s messages as
oracle strings, and PCPs, by allowing for more than 1 round. These additional
degrees of freedom enable IOPs to retain the expressive power of PCP while also
allowing for additional efficiency, as already demonstrated in several works.

For example, [BCGV16] obtain unconditional zero knowledge via a 2-round
IOP with quasilinear proof length; such a result is not known for PCPs (or even
IPCPs [KR08]). Moreover, when combined with our compiler (see next contribu-
tion) we obtain blackbox unconditional zero-knowledge with quasilinear prover
and polylogarithmic verifier in the random-oracle model, improving prover run-
time of [IMSX15, Sect. 2.3];

As another example, [BCG+16] obtain 3-round IOPs for circuit satisfiability
with linear proof length and constant query complexity, while for PCPs prior work
only achieves sublinear query complexity [BKK+13]. To do so, [BCG+16] show
that sumcheck [LFKN92,Sha92] and proof composition [AS98] (used in many
PCP constructions such as [ALM+98,HS00,BGH+04]) have more efficient “IOP
analogues”, which in turn imply a number of probabilistic checking results that
are more efficient than corresponding ones that only rely on PCPs. We briefly
sketch the intuition for why interactive proof composition, via IOPs, is more
efficient. In a composed proof, the prover first writes a part π0 of the proof (e.g.,
in [ALM+98] π0 is an evaluation of a low-degree multivariate polynomial, and
2 Independent of our work, [RRR16] introduce Probabilistically Checkable Interactive
Proofs, which are equivalent to our IOPs.

36 E. Ben-Sasson et al.

in [BS08] it is an evaluation of a low-degree univariate polynomial). Then, to
demonstrate that π0 has certain good properties (e.g., it is low degree), the prover
also appends a (long) sequence of sub-proofs, where each sub-proof allegedly
demonstrates to the verifier that a subset of entries of π0 is “good”. Afterwards,
in another invocation of the recursion, the prover appends to each sub-proof a
sequence of sub-sub-proofs, and so on. A crucial observation is that the verifier
typically queries locations of only a small number of such sub-proofs; moreover,
once the initial proof π0 is fixed, soundness is not harmed if the verifier randomly
selects the set of sub-proofs he wants to see and tells this to the prover. In sum,
in many PCP constructions (including the aforementioned ones), the proof length
can be greatly reduced via interaction between the prover and verifier, via an IOP.

As yet another example, [RRR16] use IOPs to obtain doubly-efficient
constant-round IPs for polynomial-time bounded-space computations. The result
relies on an “amortization theorem” for IOPs that states that, for a so-called
unambiguous IOPs, batch verification of multiple statements can be more effi-
cient than simply running an independent IOP for each statement.

Remark 1 (comparison with IPCP). Kalai and Raz [KR08] introduce and study
interactive PCPs (IPCPs), a model of proof system that also combines aspects of
IPs and PCPs, but in a different way: an IPCP is a PCP followed by an IP, i.e.,
the prover sends to the verifier a PCP and then the prover and verifier engage in
an interactive proof. An IPCP can be viewed as a special case of an IOP, i.e., it
is an IOP in which the verifier has oracle access to the first prover message, but
must read in full subsequent prover messages. The works of [KR08,GKR08] show
that boolean formulas with n variables, size m, and depth d have IPCPs where
the PCP’s size is polynomial in d and n and the communication complexity of
the subsequent IP is polynomial in d and log m. This shows that even IPCPs
give efficiency advantages over both IPs and PCPs given separately.

From Interactive Oracle Proofs to Non-interactive Random-Oracle
Arguments. We give a polynomial-time transformation that maps any public-
coin interactive oracle proof (IOP) to a corresponding non-interactive random-
oracle argument (NIROA). We prove that the soundness of the output proof is
tightly characterized by the soundness of the IOP verifier against state restora-
tion attacks, a class of rewinding attacks on the verifier that we now describe.

At a high level, a state restoration attack against an IOP verifier works as
follows: the malicious prover and the verifier start interacting, as they normally
would in an IOP; at any moment, however, the prover can choose to set the
verifier to any state at which the verifier has previously been, and the verifier
then continues onwards from that point with fresh randomness. Of course, if
the prover could restore the verifier’s state an unbounded number of times, the
prover would eventually succeed in making the verifier accept. We thus only
consider malicious provers that interact with the verifier for at most a certain
number of rounds: for b ∈ N, we say a prover is b-round if it plays at most
b rounds during any interaction with any verifier. Then, we say that an IOP
has state restoration soundness ssr(�, b) if every b-round state-restoring prover

Interactive Oracle Proofs 37

cannot make the IOP verifier accept an instance � (not in the language) with
probability greater than ssr(�, b). This notion is reminiscent of, but incomparable
to, the notion of resettable soundness [BGGL01]; see Remark 2 below.

Informally, our result about transforming IOPs into NIROAs can be stated
as follows.

Theorem 1 (IOP → NIROA). There exists a polynomial-time transforma-
tion T such that, for every relation R, if (P, V) is a public-coin interactive oracle
proof system for R with state restoration soundness ssr(�, b), then (P,V) := T (P,
V) is a non-interactive random-oracle argument system for R with soundness

ssr(�,m) + O(m22−λ) ,

where m is an upper bound on the number of queries to the random oracle that a
malicious prover can make, and λ is a security parameter. The aforementioned
soundness is tight up to small factors. (Good state restoration soundness can be
obtained, e.g., via parallel repetition as in Remark 4.)

Moreover, we prove that the transformation T is benign in the sense that it
preserves natural properties of the IOP. Namely, (1) the runtimes of the NIROA
prover and verifier are linear in those of the IOP prover and verifier (up to a
polynomial factor in λ); (2) the NIROA is a proof of knowledge if the IOP is a
proof of knowledge (and the extractor strategy straight-line, which has desirable
properties [BW15]); and (3) the NIROA is (malicious-verifier) statistical zero
knowledge if the IOP is honest-verifier statistical zero knowledge.3 See Theorem 3
for the formal statement; the statement employs the notion of restricted state
restoration soundness as it allows for a tighter lower bound on soundness.

An immediate application is obtained by plugging the work of [BCGV16]
into our compiler, thereby achieving a variant of the black-box ZK results of
[IMSX15, Sect. 2.3] where the prover runs in quasilinear (rather than merely
polynomial) time.

Corollary 1 (informal). There is a blackbox non-interactive argument sys-
tem for NP, in the random-oracle model, with unconditional zero knowledge,
quasilinear-time prover, and polylogarithmic-time verifier.

Our compiler can be viewed as a generalization of the Fiat–Shamir paradigm
for public-coin IPs [FS86,PS96], and of the “CS proof” constructions of Micali
[Mic00] and Valiant [Val08] for PCPs. Our analysis of the compiler gives, in
particular, a unified understanding of these constructions, and motivates the
study of state restoration attacks, not only for IOPs, but also for IPs and PCPs.
(Indeed, we are not aware of works that study the security of the Fiat–Shamir

3 Security in the random oracle model sometimes does not imply security when the
oracle is substituted with a hash function, e.g., when applying the Fiat–Shamir
paradigm to zero-knowledge proofs/arguments [HT98,DNRS03,GOSV14]. However,
our transformation T only assumes that the IOP is zero knowledge against the honest
verifier, seemingly avoiding the above limitations.

38 E. Ben-Sasson et al.

paradigm, in the random oracle model, applied to a public-coin IP with arbitrary
number of rounds; the analyses that we are aware of focus on the case of 2
rounds.)

Our next contribution is a first set of results about such kinds of attacks, as
described in the next section.

Remark 2 (resetting, backtracking). We compare state restoration soundness
with other soundness notions:

– State restoration attacks are reminiscent of, but incomparable to, resetting
attacks [BGGL01]. In the latter, the prover invokes multiple verifier incar-
nations with independent randomness, and may interact multiple times with
each incarnation; also, this notion does not assume that the verifier is public-
coin. Instead, in a state restoration attack, the verifier must be public-coin
and its randomness is not fixed at the start but, instead, a new fresh random
message is sampled each time the prover restores to a previously-seen state.

– State restoration is closely related to backtracking [BD16] (independent work).
The two notions differ in that: (1) backtracking “charges” more for restoring
verifier states that are further in the past, and (2) backtracking also allows the
verifier to restore states of the prover (as part of the completeness property
of the protocol); backtracking soundness is thus polynomially related to state
restoration soundness.
Bishop and Dodis [BD16] give a compiler from a public-coin IP to an error-
resilient IP, whose soundness is related to the backtracking soundness of the
original IP; essentially, they use hashing techniques to limit a malicious prover
impersonating an adversarial channel to choosing when to backtrack the pro-
tocol. Their setting is a completely different example in which backtracking,
and thus state restoration, plays a role.

Remark 3 (programmability). As in most prior works, soundness and proof of
knowledge do not rely on programming the random oracle. As for zero knowl-
edge, the situation is more complicated: there are several notions of zero knowl-
edge in the random oracle model, depending on “how programmable” the ran-
dom oracle is (see [Wee09]). The notion that we use is zero knowledge in the
explicitly-programmable random oracle (EPRO) model; the stronger notion in
the non-programmable random oracle model is not achievable for NIROAs. Such
a limitation can sometimes be avoided by also using a common random string
[Lin15,CPSV16], and extending such techniques to the setting of IOPs is an
interesting problem.

State Restoration Attacks on Interactive Oracle Proofs. The analysis of
our transformation from public-coin IOPs to NIROAs highlights state restoration
soundness as a notion that merits further study. We provide two results in this
direction. First, we prove tight upper and lower bounds on state restoration
soundness in terms of the IOP’s (standard) soundness and round complexity.

Interactive Oracle Proofs 39

Theorem 2. For any relation R, public-coin k-round IOP for R, and instance
� not in the language of R,

∀ b ≥ k(�) + 1,
⌊

b

k(�) + 1

⌋

s(�)(1 − o(1)) ≤ ssr(�, b) ≤
(

b

k(�) + 1

)

s(�) ,

4where ssr(�, b) is the state restoration soundness of IOP and s(�) its (standard)
soundness for the instance �. Also, the bounds are tight: there are IOPs that
meet the lower bound and IOPs that meet the upper bound.

Remark 4 (good state restoration soundness). A trivial way to obtain state
restoration soundness 2−λ in the general case is to apply r-fold parallel repetition
to the IOP with r = Ω(k log b+λ

log s(�)); note that r is polynomially bounded for natural
choices of k, b, λ. This choice of r is pessimistic, because for IOPs that do not meet
the upper bound (i.e., are “robust” against such attacks) a smaller r suffices. This
use of parallel repetition is analogous to its use in achieving the incomparable
notion of resettable soundness [PTW09,COPV13].

Second, we study the structure of optimal state restoration attacks: we prove
that, for any public-coin IOP, there is a simple state restoration attack that has
optimal expected cost, where cost is the number of rounds until the prover wins.
This result relies on a correspondence that we establish between IOP verifiers and
certain games, which we call tree exploration games, pitting one player against
Nature. We go in more detail about this result in later sections (see Sect. 1.4 and
full version [BCS16].). A better understanding of state restoration soundness
may enable us to avoid trivial soundness amplification (see Remark 4) for IOPs
of interest.

1.4 Techniques

We summarize the techniques that we use to prove our technical contributions.

The Transformation. Our transformation maps any public-coin IOP to a cor-
responding NIROA, and it generalizes two transformations that we now recall.

The first transformation is the Fiat–Shamir paradigm [FS86,PS96], which
maps any public-coin IP to a corresponding NIROA, and it works as follows. The
NIROA prover runs the interaction between the IP prover and the IP verifier
“in his head”, by setting the IP verifier’s next message to be the output of the
random oracle on the query that equals the transcript of previously exchanged
messages. The NIROA prover sends a non-interactive proof that contains the
final transcript of interaction; the NIROA verifier checks the proof’s validity
by checking that all the IP verifier’s messages are computed correctly via the
random oracle.
4 We note that [BGGL01] prove an analogous upper bound for the incomparable notion

of resettable soundness (see Remark 2). Also, [BD16] prove an analogous, weaker
upper bound on the related notion of backtracking soundness (see Remark 2). Neither
of the two studies lower bounds, or tightness of bounds.

40 E. Ben-Sasson et al.

The second transformation is the “CS proof” construction of Micali [Mic00]
and Valiant [Val08], which maps any PCP to a corresponding NIROA, and it
works as follows. The NIROA prover first commits to the PCP via a Merkle tree
[Mer89a] based on the random oracle, then queries the random oracle with the
root of this tree to obtain randomness for the PCP verifier, and finally sends a
non-interactive proof that contains the root as well as authentication paths for
each query by the PCP verifier to the PCP; the NIROA verifier checks the proof’s
validity by checking that the PCP verifier’s randomness is computed correctly
through the random oracle, and that all authentication paths are valid. (The
transformation can be viewed as a non-interactive variant of Kilian’s protocol
[Kil92,BG08] that uses ideas from the aforementioned Fiat–Shamir paradigm.)

Our transformation takes as input IOPs, for which both IPs and PCPs are
special cases, and hence must support both (i) multiple rounds of interaction
between the IOP prover and IOP verifier, as well as (ii) oracle access by the IOP
verifier to the IOP prover messages. Given an instance �, the NIROA prover
thus uses the random oracle ρ to run the interaction between the IOP prover
and the IOP verifier “in his head” in a way that combines the aforementioned
two approaches, as follows. First, the NIROA prover computes an initial value
σ0 := ρ(�). Then, for i = 1, 2, . . . , it simulates the i-th round by deriving the
IOP verifier’s i-th message mi as ρ(�‖σi−1), compressing the IOP prover’s i-th
message fi via a Merkle tree to obtain the root rti, and computing the new value
σi := ρ(rti‖σi−1). The values σ0, σ1, . . . are related by the Merkle–Damg̊ard
transform [Dam89,Mer89b] that, intuitively, enforces ordering between rounds.
If there are k(�) rounds of interaction, then ρ(�‖σk(�)) is used as randomness for
the queries to f1, . . . , fk(�). The NIROA prover provides in the non-interactive
proof all the roots rti, the final value σk(�), the answers to the queries, and an
authentication path for each query. This sketch omits several details; see Sect. 5.

Soundness Analysis of the Transformation. We prove that the soundness
of the NIROA produced by the above transformation is tightly characterized
by the state restoration soundness of the underlying IOP. This characterization
comprises two arguments: an upper bound and a lower bound on the NIROA’s
soundness. We only discuss the upper bound here: proving that the soundness
(error) of the NIROA is at most the soundness (error) of the IOP against state
restoration attacks, up to small additive factors.

The upper bound essentially implies that all that a malicious prover P̃ can
do to attack the NIROA verifier is to conduct a state restoration attack against
the underlying IOP verifier “in his own head”: roughly, P̃ can provide multiple
inputs to the random oracle in order to induce multiple fresh samples of verifier
messages for a given round so to find a lucky one, or instead go back to previous
rounds and do the same there.

In more detail, the proof itself relies on a reduction: given a malicious prover P̃
against the NIROA verifier, we show how to construct a corresponding malicious
prover P̃ that conducts a state restoration attack against the underlying IOP
verifier. We prove that the winning probability of P̃ is essentially the same as that
of P̃; moreover, we also prove that the reduction preserves the resources needed

Interactive Oracle Proofs 41

for the attack in the sense that if P̃ asks at most m queries to the random oracle,
then P̃ plays at most m rounds during the attack.

Intuitively, the construction of P̃ in terms of P̃ must use some form of
extraction: P̃ outputs a non-interactive proof that contains only (i) the roots
that (allegedly) are commitments to underlying IOP prover’s messages, and (ii)
answers to the IOP verifier’s queries and corresponding authentication paths; in
contrast, P̃ needs to actually output these IOP prover’s messages. In principle,
the malicious prover P̃ may not have “in mind” any underlying IOP prover, and
we must prove that, nevertheless, there is a way for P̃ to extract some IOP prover
message for each round that convince the verifier with the claimed probability.

Our starting point is the extractor algorithm of Valiant [Val08] for the “CS
proof” construction of Micali [Mic00]: Valiant proves that Micali’s NIROA con-
struction is a proof of knowledge by exhibiting an algorithm, let us call it
Valiant’s extractor, that recovers the underlying PCP whenever the NIROA
prover convinces the NIROA verifier with sufficient probability. (In particular,
our proof is not based on a “forking lemma” [PS96].) Our setting differs from
Valiant’s in that the IOP prover P̃ obtained from the NIROA prover P̃ needs to
be able to extract multiple times, “on the fly”, while interacting with the IOP
verifier; this more complex setting can potentially cause difficulties in terms of
extractor size (e.g., if relying on rewinding the NIROA prover) or correlations
(e.g., when extracting multiple times from the same NIROA prover). We tackle
the more complex setting in two steps.

First, we prove an extractability property of Valiant’s extractor and state it
as a property of Merkle trees in the random oracle model (see Sect. A.1). Infor-
mally, we prove that, except with negligible probability, whenever an algorithm
with access to a random oracle outputs multiple Merkle tree roots each accom-
panied with some number of (valid) authentication paths, it holds that Valiant’s
extractor run separately on each of these roots outputs a decommitment that
is consistent with each of the values revealed in authentication paths relative to
that root. We believe that distilling and proving this extractability property of
Valiant’s extractor is of independent interest.

Second, we show how the IOP prover P̃ can interact with an IOP verifier, by
successively extracting messages to send, throughout the interaction, by invoking
Valiant’s extractor multiple times on P̃ relative to different roots. The IOP prover
P̃ does not rely on rewinding P̃, and its complexity is essentially that of a single
run of P̃ plus a small amount of work.

Preserving Proof of Knowledge. We prove that the above soundness analysis
can be adapted so that, if the underlying IOP is a proof of knowledge, then we
can construct an extractor to show that the resulting NIROA is also a proof of
knowledge. Moreover, the extractor algorithm only needs to inspect the queries
and answers of one execution of P̃ if the underlying IOP extractor does not
use rewinding (known IOP constructions are of this type [BCGV16,BCG+16]);
such extractors are known as straight line [Pas03] or online [Fis05], and have
very desirable properties [BW15].

42 E. Ben-Sasson et al.

Preserving Zero Knowledge. We prove that, if the underlying IOP is honest-
verifier statistical zero knowledge, then the resulting NIROA is statistical zero
knowledge (i.e., is a non-interactive statistical zero knowledge proof in the
explicitly-programmable random oracle model). This is because the transfor-
mation uses a Merkle tree with suitable privacy guarantees (see Sect.A.2) to
construct the NIROA. Indeed, the authentication path for a leaf in the Merkle
tree reveals the sibling leaf, so one must ensure that the sibling leaf does not
leak information about other values; this follows by letting leaves be commit-
ments to the underlying values. A Merkle tree with privacy is similarly used by
[IMS12,IMSX15], along with honest-verifier PCPs, to achieve zero knowledge in
modifications of Kilian’s [Kil92,BG08] and Micali’s [Mic00] constructions. (Note
that the considerations [HT98,DNRS03,GOSV14] seem to only apply to compi-
lation of malicious-verifier IOPs, which neither [IMS12,IMSX15] nor we require.)

Understanding State Restoration Attacks. We prove tight upper and lower
bounds to state restoration soundness in terms of the IOP’s (standard) soundness
and round complexity k. The upper bound takes the form of a reduction: given a
b-round state-restoring malicious prover P̃sr that makes the IOP verifier accept
with probability ssr, we construct a (non state-restoring) malicious prover P̃ that
makes the IOP verifier accept with probability at least

(

b
k+1

)−1
ssr. Informally,

P̃ internally simulates P̃sr, while interacting with the “real” IOP verifier, as
follows: P̃ first selects a random subset S of {1, . . . , b} with cardinality k + 1,
and lets S[i] be the i-th smallest value in S; then, P̃ runs P̃sr and simulates its
state restoration attack on a “virtual” IOP verifier, executing round j (a) by
interacting with the real verifier if j = S[i] for some i; (b) by sampling fresh
randomness otherwise. While this reduction appears wasteful (since it relies on
S being a good guess), we show that there are IOPs for which the upper bound
is tight. In other words, the sharp degradation as a function of round complexity
(for large b,

(

b
k+1

) ≈ bk+1/(k + 1)!) is inherent for some choices of IOPs; this
also gives a concrete answer to the intuition that compiling IOPs with large
round complexity to NIROAs is “harder” (i.e., incurs in a greater soundness
loss) than for IOPs with small round complexity. As for the lower bound on
state restoration soundness, it takes the form of a universal state restoration
attack that always achieves the lower bound; this bound is also tight.

While state restoration soundness may be far, in the worst case, from (stan-
dard) soundness for IOPs with large round complexity, it need not always be
far. We thus investigate state restoration soundness for any particular IOP, and
derive a simple attack strategy (which depends on the IOP) that we prove has
optimal expected cost, where cost is the number of rounds until the prover wins.
To do so, we “abstract away” various details of the proof system to obtain a
simple game-theoretic notion, which we call tree exploration games, that pits a
single player against Nature in reaching a node of a tree with label 1. Informally,
such a game is specified by a rooted tree T and a predicate function φ that maps
T ’s vertices to {0, 1}. The game proceeds in rounds: in the i-th round, a subtree
Si−1 ⊆ T is accessible to the player; the player picks a node v ∈ Si−1, and Nature
randomly samples a child u of v; the next accessible subtree is Si := Si−1 ∪ {u}.

Interactive Oracle Proofs 43

The initial S0 is the set consisting of T ’s root vertex. The player wins in round
r if there is v ∈ Sr with φ(v) = 1.

We establish a correspondence between state restoration attacks and strate-
gies for tree exploration games, and then show a simple greedy strategy for such
games with optimal expected cost. Via the correspondence, a strategy’s cost
determines whether the underlying IOP is strong or weak against sate restora-
tion attacks.

2 Preliminaries

2.1 Basic Notations

We denote the security parameter by λ. For f : {0, 1}∗ → R, we define f̂ : N → R

as f̂(n) := maxx∈{0,1}n f(x).

Languages and Relations. We denote by R a relation consisting of pairs
(�,�), where � is the instance and � is the witness, and by Rn the restriction
of R to instances of size n. We denote by L (R) the language corresponding to
R. For notational convenience, we define L̄ (Rn) := {� ∈ {0, 1}n | � /∈ L (R)}.

Random Oracles. We denote by U(λ) the uniform distribution over all func-
tions ρ : {0, 1}∗ → {0, 1}λ (implicitly defined by the probabilistic algorithm that
assigns, uniformly and independently at random, a λ-bit string to each new
input). If ρ is sampled from U(λ), then we write ρ ← U(λ) and say that ρ is a
random oracle. Given an oracle algorithm A, NumQueries(A, ρ) is the number of
oracle queries that Aρ makes. We say that A is m-query if NumQueries(A, ρ) ≤ m
for any ρ ∈ U(λ) (i.e., for any ρ in U(λ)’s support).

Statistical Distance. The statistical distance between two discrete random
variables X and Y with support V is Δ(X;Y) := 1

2

∑

v∈V |Pr[X = v] − Pr[Y =
v]|. We say that X and Y are δ-close if Δ(X;Y) ≤ δ.

Remark 5. An oracle ρ ∈ U(λ) outputs λ bits. Occasionally we need ρ to output
more than λ bits; in such cases (we point out where), we implicitly extend ρ’s
output via a simple strategy, e.g., we set y := y1‖y2‖ · · · where yi := ρ(i‖x) and
prefix 0 to all inputs that do not require an output extension.

2.2 Merkle Trees

We use Merkle trees [Mer89a] based on random oracles as succinct commit-
ments to long lists of values for which one can cheaply decommit to particu-
lar values in the list. Concretely, a Merkle-tree scheme is a tuple MERKLE =
(MERKLE.GetRoot,MERKLE.GetPath,MERKLE.CheckPath) that uses a random
oracle ρ sampled from U(λ) and works as follows.

– MERKLE.GetRootρ(v) → rt. Given input list v = (vi)n
i=1, the root generator

MERKLE.GetRoot computes, in time Oλ(n), a root rt of the Merkle tree over v.

44 E. Ben-Sasson et al.

– MERKLE.GetPathρ(v, i) → ap. Given input list v and index i, the authenti-
cation path generator MERKLE.GetPath computes the authentication path ap
for the i-th value in v.

– MERKLE.CheckPathρ(rt, i, v, ap) → b. Given root rt, index i, input value v, and
authentication path ap, the path checker MERKLE.CheckPath outputs b = 1
if ap is a valid path for v as the i-th value in a Merkle tree with root rt; the
check can be carried out in time Oλ(log2 n).

We assume that an authentication path ap contains the root rt, position i,
and value v; accordingly, we define Root(ap) := rt, Position(ap) := i, and
Value(ap) := v.

Merkle trees are well known, so we do not review their construction. Less
known, however, are the hiding and extractability properties of Merkle trees
that we rely on in this work; we describe these in AppendixA.

2.3 Non-interactive Random-Oracle Arguments

A non-interactive random-oracle argument system for a relation R with sound-
ness s : {0, 1}∗ → [0, 1] is a tuple (P,V), where P,V are (oracle) probabilistic
algorithms, that satisfies the following properties.

1. Completeness. For every (�,�) ∈ R and λ ∈ N,

Pr
[

V
ρ(�, π) = 1

∣

∣

∣

∣

ρ ← U(λ)
π ← P

ρ(�,�)

]

= 1 .

2. Soundness. For every � /∈ L (R), m-query P̃, and λ ∈ N,

Pr
[

V
ρ(�, π) = 1

∣

∣

∣

∣

ρ ← U(λ)
π ← P̃

ρ

]

≤ s(�,m, λ) .

Complexity Measures. Beyond soundness, we consider other complexity mea-
sures. Given p : {0, 1}∗ → N, we say that (P,V) has proof length p if π has length
p(�, λ). Given tprv, tver : {0, 1}∗ → N, we say that (P,V) has prover time com-
plexity tprv and verifier time complexity tver if Pρ(�,�) runs in time tprv(�, λ)
and V

ρ(�, π) runs in time tver(�, λ). In sum, we say that (P,V) has complexity
(s, p, tprv, tver) if (P,V) has soundness s, proof length p, prover time complexity
tprv, and verifier time complexity tver.

Proof of Knowledge. Given e : {0, 1}∗ → [0, 1], we say that (P,V) has proof
of knowledge e if there exists a probabilistic polynomial-time algorithm E (the
extractor) such that, for every �, m-query P̃, and λ ∈ N,

Pr
[
(�,�) ∈ R

∣∣∣ � ← E
P̃(�, 1m, 1λ)

]
≥ Pr

[
V

ρ(�, π) = 1

∣∣∣∣
ρ ← U(λ)

π ← P̃
ρ

]
− e(�, m, λ) .

Interactive Oracle Proofs 45

The notation E
P̃(�, 1m, 1λ) means that E receives as input (�, 1m, 1λ) and may

obtain an output of P̃ρ for choices of oracles ρ, as we now describe. At any time,
E may send a λ-bit string z to P̃; then P̃ interprets z as the answer to its last
query to ρ (if any) and then continues computing until it reaches either its next
query θ or its output π; then this query or output is sent to E (distinguishing
the two cases in some way); in the latter case, P̃ goes back to the start of its
computation (with the same randomness and any auxiliary inputs). Throughout,
the code, randomness, and any auxiliary inputs of P̃ are not available to E.

Zero Knowledge. Given z : {0, 1}∗ → [0, 1], we say that (P,V) has z-statistical
zero knowledge (in the explicitly-programmable random oracle model) if there
exists a probabilistic polynomial-time algorithm S (the simulator) such that, for
every (�,�) ∈ R and unbounded distinguisher D, the following two probabilities
are z(�, λ)-close:

Pr
[

Dρ[μ](π) = 1
∣

∣

∣

∣

ρ ← U(λ)
(π, μ) ← S

ρ(�)

]

and Pr
[

Dρ(π) = 1
∣

∣

∣

∣

ρ ← U(λ)
π ← P

ρ(�,�)

]

.

Above, ρ[μ] is the function such that, given an input x, equals μ(x) if μ is defined
on x, or ρ(x) otherwise.

3 Interactive Oracle Proofs

We first define interactive oracle protocols and then interactive oracle proof
systems.

3.1 Interactive Oracle Protocols

A k-round interactive oracle protocol between two parties, call them Alice and
Bob, comprises k rounds of interaction. In the i-th round of interaction: Alice
sends a message mi to Bob, which he reads in full; then Bob replies with a
message fi to Alice, which she can query (via random access) in this and all
later rounds. After the k rounds of interaction, Alice either accepts or rejects.

More precisely, let k be in N and A,B be two interactive probabilistic algo-
rithms. A k-round interactive oracle protocol between A and B, denoted 〈B,A〉,
works as follows. Let rA, rB denote the randomness for A,B and, for nota-
tional convenience, set f0 := ⊥ and state0 := ⊥. For i = 1, . . . , k, in the
i-th round: (i) Alice sends a message mi ∈ {0, 1}ui , where (mi, statei) :=
Af0,...,fi−1(statei−1; rA) and ui ∈ N; (ii) Bob sends a message fi ∈ {0, 1}�i ,
where fi := B(m1, . . . ,mi; rB) and
i ∈ N. The output of the protocol is
mfin := Af0,...,fk(statek; rA), and belongs to {0, 1}.

The accepting probability of 〈B,A〉 is the probability that mfin = 1 for a
random choice of rA, rB ; this probability is denoted Pr[〈B,A〉 = 1] (leaving
rA, rB implicit). The query complexity of 〈B,A〉 is the number of queries asked
by A to any of the oracles during the k rounds. The proof complexity of 〈B,A〉 is
the number of bits communicated by Bob to Alice (i.e.,

∑k
i=1
i). The view of A

46 E. Ben-Sasson et al.

in 〈B,A〉, denoted View〈B,A〉(A), is the random variable (a1, . . . , aq, rA) where
aj denotes the answer to the j-th query.

Public Coins. An interactive oracle protocol is public-coin if Alice’s messages
are uniformly and independently random and Alice postpones any query to after
the k-th round (i.e., all queries are asked when running Af0,...,fk(statek; rA)). We
can thus take the randomness rA to be of the form (m1, . . . ,mk, r), where r is
additional randomness that A may use of to compute mfin after the last round.

3.2 Interactive Oracle Proof Systems

An interactive oracle proof system for a relation R with round complexity
k : {0, 1}∗ → N and soundness s : {0, 1}∗ → [0, 1] is a tuple (P, V), where P, V
are probabilistic algorithms, that satisfies the following properties.

1. Completeness. For every (�,�) ∈ R, 〈P (�,�), V (�)〉 is a k(�)-round inter-
active oracle protocol with accepting probability 1.

2. Soundness. For every � /∈ L (R) and P̃ , 〈P̃ , V (�)〉 is a k(�)-round interactive
oracle protocol with accepting probability at most s(�).

Message Lengths. We assume the existence of polynomial-time functions that
determine the message lengths. Namely, for any instance � and malicious prover
P̃ , when considering the interactive oracle protocol 〈P̃ , V (�)〉, the i-th messages
mi (from V (�)) and fi (to V (�)) lie in {0, 1}ui(�) and {0, 1}�i(�) respectively.

Complexity Measures. Beyond round complexity and soundness, we consider
other complexity measures. Given p, q : {0, 1}∗ → N, we say that (P, V) has
proof length p and query complexity q if the proof length and query complexity
of 〈P̃ , V (�)〉 are p(�) and q(�) respectively. (Note that q(�) ≤ p(�) and p(�) =
∑k(�)

i=1
i(�).) Given tprv, tver : {0, 1}∗ → N, we say that (P, V) has prover time
complexity tprv and verifier time complexity tver if P (�,�) runs in time tprv(�)
and V (�) runs in time tver(�). In sum, we say that (P, V) has complexity (k, s, p,
q, tprv, tver) if (P, V) has round complexity k, soundness s, proof length p, query
complexity q, prover time complexity tprv, and verifier time complexity tver.

Proof of Knowledge. Given e : {0, 1}∗ → [0, 1], we say that (P, V) has
proof of knowledge e if there exists a probabilistic polynomial-time oracle algo-
rithm E (the extractor) such that, for every � and P̃ , Pr[(�, EP̃ (�)) ∈ R] ≥
Pr[〈P̃ , V (�)〉 = 1] − e(�). 5 The notation EP̃ (�) means that E receives as input
� and may interact with P̃ via rewinding, as we now describe. At any time,
E may send a partial prover-verifier transcript to P̃ and then receive P̃ ’s next

5 Proof of knowledge e implies soundness s := e. The definition that we use is equiv-
alent to the one in [BG93, Section 6] except that: (a) we use extractors that run in
strict, rather than expected, probabilistic polynomial time; and (b) we extend the
condition to hold for all �, rather than for only those in L (R), so that proof of
knowledge implies soundness.

Interactive Oracle Proofs 47

message (which is empty for invalid transcripts) in the subsequent computation
step; the code, randomness, and any auxiliary inputs of P̃ are not available to E.

Honest-Verifier Zero Knowledge. Given z : {0, 1}∗ → [0, 1], we say that (P,
V) has z-statistical honest-verifier zero knowledge if there exists a probabilistic
polynomial-time algorithm S (the simulator) such that, for every (�,�) ∈ R,
S(�) is z(�)-close to View〈P (�,�),V (�)〉(V (�)).

Public Coins. We say that (P, V) is public-coin if the underlying interactive
oracle protocol is public-coin.

4 State Restoration Attacks on Interactive Oracle Proofs

We introduce state restoration attacks on interactive oracle proofs.
In an interactive oracle proof, a malicious prover P̃ works as follows: for each

round i, P̃ receives the i-th verifier message mi and then sends to the verifier
a message fi computed as a function of his own randomness and all the verifier
messages received so far, i.e., m1, . . . ,mi.

For the case of public-coin interactive oracle proof systems, we also consider
a larger class of malicious provers, called state-restoring provers. Informally, a
state-restoring prover receives in each round a verifier message as well as a com-
plete verifier state, and then sends to the verifier a message and a previously-seen
complete verifier state, which sets the verifier to that state; this forms a state
restoration attack on the verifier.

More precisely, let (P, V) be a k-round public-coin interactive proof system
(see Sect. 3.2) and � an instance. A complete verifier state cvs of V (�) takes
one of three forms: (1) the symbol null, which denotes the “empty” complete
verifier state; (2) a tuple of the form (m1, f1, . . . ,mi), with i ∈ {1, . . . , k(�)},
where each mj is in {0, 1}uj(�) and each fj is in {0, 1}�j(�); (3) a tuple of the
form (m1, f1, . . . ,mk(�), fk(�), r) where each mj and fj is as in the previous case
and r is the additional randomness of the verifier V (�).

The interaction between a state-restoring prover P̃ and the verifier V (�) is
mediated through a game:

1. The game initializes the list SeenStates to be (null).
2. Repeat the following until the game halts and outputs:

(a) The prover chooses a complete verifier state cvs in the list SeenStates.
(b) The game sets the verifier to cvs.
(c) If cvs = null: the verifier samples a message m1 in {0, 1}u1(�) and sends

it to the prover; the game appends cvs′ := (m1) to the list SeenStates.
(d) If cvs = (m1, f1, . . . , mi−1) with i ∈ {2, . . . , k(�)}: the prover out-

puts a message fi−1 in {0, 1}�i−1(�); the verifier samples a message mi

in {0, 1}ui(�) and sends it to the prover; the game appends cvs′ :=
cvs‖fi−1‖mi to the list SeenStates.

(e) If cvs = (m1, f1, . . . , mk(�)): the prover outputs a message fk(�) in

{0, 1}�k(�)(�); the verifier samples additional randomness r; the game
appends cvs′ := cvs‖fk(�)‖r to the list SeenStates.

48 E. Ben-Sasson et al.

(f) If cvs = (m1, f1, . . . , mk(�), fk(�), r): the verifier computes his deci-
sion b := V f0,...,fk(�)(�, statek(�); rV) where statek(�) := ∅ and rV :=
(m1, . . . , mk, r); then the game halts and outputs b.

Note that there are two distinct notions of a round. Verifier rounds are the
rounds played by the verifier within a single execution, as tracked by a complete
verifier state cvs; the number of such rounds lies in the set {0, . . . , k(�)+1} (the
extra (k(�)+1)-th round represents the verifier V sampling r after receiving the
last prover message). Prover rounds are all verifier rounds played by the prover
across different verifier executions; the number of such rounds is the number of
states in SeenStates above. Accordingly, for b ∈ N, we say a prover is b-round if
it plays at most b prover rounds during any interaction with any verifier.

Also note that the prover is not able to set the verifier to arbitrary states
but only to previously-seen ones (starting with the empty state null); naturally,
setting the verifier multiple times to the same state may yield distinct new states,
because the verifier samples his message afresh each time. After being set to a
state cvs, the verifier does one of three things: (i) if the number of verifier rounds
in cvs is less than k(�) (see Step 2c and Step 2d), the verifier samples a fresh
next message; (ii) if the number of verifier rounds in cvs is k(�) (see Step 2e), the
verifier samples his additional randomness r; (iii) if cvs contains a full protocol
execution (see Step 2f), the verifier outputs the decision corresponding to this
execution. The second case means that the prover can set the verifier even after
the conclusion of the execution (after r is sampled and known to the prover).
The game halts only in the third case.

The above game between a state-restoring prover and a verifier yields cor-
responding notions of soundness and proof of knowledge. Below, we denote by
Pr[〈P̃ , V (�)〉sr = 1] the probability that the state-restoring prover P̃ makes V
accept � in this game.

Definition 1. Given ssr, esr : {0, 1}∗ → [0, 1], a public-coin interactive oracle
proof system (P, V) has

– State restoration soundness ssr if, for every � /∈ L (R) and b-round
state-restoring prover P̃ , Pr[〈P̃ , V (�)〉sr = 1] ≤ ssr(�, b).

– State restoration proof of knowledge esr if there exists a probabilistic
polynomial-time algorithm Esr (the extractor) such that, for every � and b-
round state-restoring prover P̃ , Pr[(�, EP̃

sr(�)) ∈ R] ≥ Pr[〈P̃ , V (�)〉sr = 1] −
esr(�, b).

Due to space limitations, our bounds on state restoration and our results on
the corresponding tree exploration games are in the full version [BCS16].

5 From IOPs to Non-interactive Random-Oracle
Arguments

We describe a transformation T such that if (P, V) is a public-coin interactive
oracle proof system for a relation R then (P,V) := T (P, V) is a non-interactive

Interactive Oracle Proofs 49

random-oracle argument system for R. The transformation T runs in polynomial
time: given as input code for P and V , it runs in time polynomial in the size of
this code and then outputs code for P and V.

Notation. For convenience, we split the random oracle ρ into two random ora-
cles, denoted ρ1 and ρ2, as follows: ρ1(x) := ρ(1‖x) and ρ2(x) := ρ(2‖x). At
a high level, we use ρ1 for the verifier’s randomness, and ρ2 for Merkle trees
and other hashing purposes. When counting queries, we count queries to both
ρ1 and ρ2.

Construction of P. The algorithm P, given input (�,�) and oracle access to ρ:
1. Set k := k(�), q := q(�), f0 := ⊥, and σ0 := ρ2(�).
2. Start running P (�,�) and, for i = 1, . . . , k:

(a) Compute the verifier message mi := ρ1(�‖σi−1).
(b) Give mi to P (�,�) to obtain fi.
(c) Compute the Merkle-tree root rti := MERKLE.GetRootρ2(fi).
(d) Compute the “root hash” σi := ρ2(rti‖σi−1).

3. Set statek := ∅ and rV := (m1, . . . , mk, r), where r := ρ1(�‖σk).
4. Run V f0,...,fk(�, statek; rV) and compute an authentication path for each

query. Namely, for j = 1, . . . , q: if the j-th query is to the xj-th bit
of the yj-th oracle, then compute apj := MERKLE.GetPathρ2(fyj , xj).
(If MERKLE.GetRoot is probabilistic, then give the same randomness to
MERKLE.GetPath as well.)

5. Set π :=
(
(rt1, . . . , rtk), (ap1, . . . , apq), σk

)
. That is, π comprises the Merkle-

tree roots, an authentication path for each query, and the final root hash.
6. Output π.

Construction of V. The algorithm V, given input (�, π̃) and oracle access to ρ:

1. Set k := k(�), q := q(�), f0 := ⊥, and σ0 := ρ2(�).
2. Parse π̃ as a tuple

(
(r̃t1, . . . , r̃tk), (ãp1, . . . , ãpq), σ̃k

)
.

3. For i = 1, . . . , k:
(a) Compute mi := ρ1(�‖σi−1).
(b) Compute σi := ρ2(r̃ti‖σi−1).

4. Set statek := ∅ and rV := (m1, . . . , mk, r), where r := ρ1(�‖σk).
5. Compute mfin := V f0,...,fk (�, statek; rV), answering the j-th query with the

answer aj in the path ãpj .
6. If σk �= σ̃k, halt and output 0.
7. For j = 1, . . . , q: if the j-th query is to the xj-th bit of the yj-th oracle and

MERKLE.CheckPathρ2(rtyj , xj , aj , ãpj) �= 1, halt and output 0.
8. Output mfin.

6 Analysis of the Transformation T

The theorem below specifies guarantees of the transformation T , described in
Sect. 5.

50 E. Ben-Sasson et al.

Theorem 3. (IOP → NIROA). For every relation R, if (P, V) is a public-
coin interactive oracle proof system for R with

round complexity k(�)
restricted state restoration soundness s̄sr(�, b)

proof length p(�)
prover time tver(�)
verifier time tprv(�)

then (P,V) := T (P, V) is a non-interactive random-oracle argument system for
R with

soundness s′(�,m, λ) := s̄sr(�,m) + 3(m2 + 1)2−λ

proof length p′(�, λ) :=
(

k(�) + q(�) · (�log2 p(�)� + 2) + 1
) · λ 9

prover time t′prv(�, λ) := Oλ(k(�) + p(�)) + tprv(�) + tver(�)

verifier time t′ver(�, λ) := Oλ(k(�) + q(�)) + tver(�)

By construction, if 〈P (�,�), V (�)〉 has accepting probability δ, then the prob-
ability that Vρ(�,Pρ(�,�)) accepts is δ. The complexities p′, t′prv, t

′
ver above also

directly follow from the construction. Therefore, we are left to discuss soundness.
Due to space limitations, the discussion of the soundness lower bound, as well
as proof of knowledge and zero knowledge, are left to the full version [BCS16].

Let � /∈ L (R) and let P̃ be an m-query prover for the non-interactive
random-oracle argument system (P,V). We construct a prover P̃ (depending
on � and P̃) for the interactive oracle proof system (P, V), and show that P̃ ’s
ability to cheat in a (restricted) state restoration attack is closely related to P̃’s
ability to cheat.

Construction of P̃ . Given no inputs or oracles, the prover P̃ works as follows.

1. Let ρ1, ρ2 be tables mapping {0, 1}∗ to {0, 1}λ, and let α be a table mapping
λ-bit strings to verifier states. The tables are initially empty and are later
populated with suitable values, during the simulation of P̃. Intuitively, ρ1, ρ2
are used to simulate P̃’s access to a random oracle, while α is used to keep
track of which verifier states P̃ has “seen in his mind”.

2. Draw σ0 ∈ {0, 1}λ at random, and define ρ2(�) := σ0 (i.e., the oracle ρ2
replies the query � with the answer σ0). After receiving V ’s first message m1,
also define ρ1(�‖σ0) := m1 and α(σ0) := (m1).

3. Begin simulating P̃
ρ and, for i = 1, . . . ,m:

(a) Let θi be the i-th query made by P̃
ρ.

(b) If θi is a query to a location of ρ1 that is defined, respond with ρ1(θi).
Otherwise (if θi to an undefined location of ρ1), draw a string in {0, 1}λ

at random and respond with it. Then go to the next iteration of Step 3.
(c) If θi is a query to a location of ρ2 that is defined, respond with ρ2(θi);

then go to the next iteration of Step 3. Otherwise (if θi is to an undefined
location of ρ2), draw a string σ′ ∈ {0, 1}λ at random and respond with
it; then continue as follows.

Interactive Oracle Proofs 51

(d) Let rt be the first λ bits of θi, and σ be the second λ bits. (If the length
of θi is not 2λ bits, go to the next iteration of Step 3.) If α(σ) is defined,
let cvs := α(σ) and let j be the number of verifier rounds in the state cvs.
If α(σ) is not defined, go to the next iteration of Step 3 .

(e) Find the query θi� whose result is rt. If this query is not unique, or there is
no such query, then answer the verifier V with some dummy message (e.g.,
an all zero message of the correct length) and skip to Step 3g. Otherwise,
note the index i� and continue.

(f) Compute f := VEρ2(P̃,
j(�), i�, i); if VE aborts, set f := 0�j(�). Recall
that
j(�) is the length of the prover message in the j-th verifier round,
and VE is Valiant’s extractor (see Sect. A.1). Also note that VE does
not query ρ2 on any value outside the table, because we have already
simulated the first i queries of P̃ (see Remark 6).

(g) Send the message f to the verifier and tell the game to set the verifier to
the state cvs. (Whether cvs lies in the set SeenStates is a matter of analysis
further below.) If the game is not over, the verifier replies with a new
message m′. (If j = k(�) + 1, for the purposes of the proof, we interpret
m′ as the additional randomness r.) The game adds cvs′ := cvs‖f‖m′ to
SeenStates. The prover defines ρ1(�‖σ′) := m′ and α(σ′) := cvs′.

Analysis of P̃ . We now analyze P̃ . We first prove a simple lemma, and then
discuss P̃ ’s ability to cheat.

Lemma 1. Let A be an m-query algorithm. Define:

1. E1 to be the event that Aρ2 outputs � ∈ {0, 1}n, rt1, . . . , rtk(�) ∈ {0, 1}λ, and
σk(�) ∈ {0, 1}λ that satisfy the recurrence σ0 = ρ2(�) and σi = ρ2(rti‖σi−1)
for all i ∈ {1, . . . , k(�)};

2. E2 to be the event that Aρ2 queries ρ2 at �, rt1‖σ0, . . . , rtk(�)‖σk(�)−1 (in order)
and, if any rti is the result of a query, this query first occurs before rti‖σi−1.

Then
Pr [(¬E1) ∨ E2 | ρ2 ← U(λ)] ≥ 1 − (m2 + 1)2−λ .

Proof. Let rt0 be � and σ−1 be the empty string. Suppose, by contradiction,
that E1 occurs and E2 does not. Then there exists i ∈ {0, . . . , k(�)} for which at
least one of the following holds: (i) Aρ2 does not query rti‖σi−1; (ii) Aρ2 queries
rti+1‖σi before it queries rti‖σi−1; (iii) rti is the result of a query but this query
first occurs after rti‖σi−1. Consider the largest index i for which one of the above
holds.

In case (i), the behavior of Aρ2 is independent of ρ2(rti‖σ̃i−1). If i = k(�),
then the output σk(�) of Aρ2 equals ρ2(rtk(�)‖σk(�)−1) with probability 2−λ. If
i < k(�), then there is a sequence of queries rti+1‖σ̃i, . . . , rtk(�)‖σ̃k(�)−1 for which
σ̃i = ρ2(rti‖σ̃i−1) for i = 1, . . . , k(�) − 1 and ρ2(rtk(�)‖σ̃k(�)−1) = σk(�). If this
sequence is not unique, then Aρ2 has found a collision. Otherwise, the unique
sequence has σ̃i = σi for each i, which occurs with probability at most 2−λ.

In cases (ii) and (iii), Aρ2 has found a collision, since σi = ρ2(rti‖σi−1).
The fraction of oracles ρ2 for which Aρ2 finds a collision is at most m22−λ.

52 E. Ben-Sasson et al.

Overall, the probability that E2 does not occur and E1 does is, by the union
bound, at most (m2 + 1)2−λ.

We now state and prove the lemma about the soundness s′ as stated in
Theorem 3.

Lemma 2. Define ε := Pr
[

V
ρ(�, π) = 1

∣

∣

∣

∣

ρ ← U(λ)
π ← P̃

ρ

]

. Then there exists b ∈ N

with b ≤ m such that P̃ is a b-round state-restoring prover that makes V accept
with probability at least ε − 3(m2 + 1)2−λ.

Proof. We first note that P̃ described plays no more than m rounds, because P̃
sends a message to the verifier V only in response to P̃ making a query. Next, we
define some useful notions, and use them to prove three claims which together
imply the lemma.

Definition 4. We say ρ ∈ U(λ) is good if

1. The verifier accepts relative to ρ, i.e., Vρ(�, π) = 1 where π ← P̃
ρ.

2. Parsing π as
(

(r̃t1, . . . , r̃tk(�)), (ãp1, . . . , ãpq), σ̃k(�)

)

and setting σ0 := �, for
each i ∈ {1, . . . , k(�)}, where σi := ρ2(r̃ti‖σi−1), there exist indices 1 ≤ j1 <
· · · < jk ≤ m such that:
(a) P̃

ρ’s ji-th query is to ρ2 at r̃ti‖σi−1;
(b) if rti is the result of a query, this query first occurs before ji;
(c) if P̃ρ queries ρ1 at �‖σi, then this query occurs after query ji;
(d) if there exists l such that Root(ãpl) = r̃ti, there is a unique (up to dupli-

cate queries) ai ∈ {0, . . . , ji} such that ρ2(θai
) = r̃ti and, for every

imax ∈ {ai, . . . , ji}, v := VEρ2(A,
i, ai, imax) is such that, for all l with
Root(ãpl) = r̃ti, Value(ãpl) equals the Position(ãpl)-th value in v; we say
v is extracted at i if this holds.

3. σ̃k(�) = σk(�).

Definition 5. We say that P̃ chooses ρ ∈ U(λ) if for every query θ made by P̃
ρ

to its oracle, P̃ supplies it with ρ(θ) (ignoring whether this response comes from
P̃ itself or the messages sent by V ; this choice is fixed for a given ρ).

Claim 6. (P̃ , V) chooses ρ ∈ U(λ) uniformly at random.

Whenever the simulation of P̃ makes a query, P̃ responds consistently, either
with a uniformly randomly drawn string of its own, or the uniform randomness
provided by V . This is equivalent in distribution to drawing ρ uniformly at
random at the beginning of the protocol. �

Claim 7. For any choice of randomness such that P̃ chooses a good ρ, P̃ makes
V (�) accept with a state restoration attack.

We begin by defining a property of the map α.

Interactive Oracle Proofs 53

Definition 8. For i = 0, . . . , k, we say that α is correct at i if, immediately
before P̃’s ji+1-th query is simulated (for i = k, at the end of the simulation), it
holds that α(σi) = (ρ1(�‖σ0), f1, . . . , ρ1(�‖σi)) , where for each l ∈ {1, . . . , i},
fl is extracted at l (see Condition 2d above), and α(σi) ∈ SeenStates.

We show by induction that α is correct at i for every i ∈ {0, . . . , k}.
First, α is correct at 0 since α(σ0) = (ρ1(�‖σ0)) by construction. Suppose
that α is correct at i − 1. When P̃

ρ queries r̃ti‖σi−1 (i.e., query θji
), P̃

restores α(σi−1) ∈ SeenStates. By Condition 2d, fi is extracted at i. In Step 3g,
ρ1(�‖σi) is set to the message (or, similarly, internal randomness) sent by V in
this round, which is possible by Condition 2c. The newly stored state is then
α(σi) = (ρ1(�‖σ0), f1, . . . , ρ1(�‖σi−1), fi, ρ1(�‖σi)) ∈ SeenStates. This state is
stored before query ji+1 by Condition 2a, and so α is correct at i.

Hence P̃ sends a state α(σk) = (ρ1(�‖σ1), f1, . . . , ρ1(�‖σk)) ∈ SeenStates.
Since V’s simulation of V accepts with this state, so does the real V when
interacting with P̃. �

Claim 9. The probability that ρ ∈ U(λ) is good is at least ε − 3(m2 + 1)2−λ.

By assumption, the density of oracles satisfying Condition 1 is ε. Lemma 1 implies
that the density of oracles satisfying Condition 1 but not satisfying Condition 2a,
Condition 2b, and Condition 3 is at most (m2 + 1)2−λ.6 The density of oracles
failing to satisfy Condition 2c is at most m22−λ, since this implies a ‘collision’
(in the sense of Lemma 3) between ρ1 and ρ2. Finally, the density of oracles
satisfying Condition 1, Condition 2a, and Condition 2b, but not Condition 2d is
at most (m2 + 1)2−λ, by Lemma 3 and Condition 2b (where Condition 2b allows
us to restrict the possible values for ai to 0 ≤ ai < ji).

By the union bound, the density of good oracles ρ is at least ε−3(m2 +1)2−λ. �
Combining the claims, we deduce that P̃ makes V accept with probability at
least ε − 3(m2 + 1)2−λ with a state restoration attack. Finally, note that this
state restoration attack is restricted because P̃ never requests to set V to the
empty verifier state null.

A Extractability and Privacy of Merkle Trees

We describe the specific extractability and privacy properties of Merkle trees
that we rely on in this work.

A.1 Extractability

We rely on a certain extractability property of Merkle trees: there is an efficient
procedure for extracting the committed list in a Merkle-tree scheme. We call the

6 More precisely, we apply Lemma 1 to an algorithm P̃ that does not itself output
� but this does not affect the lemma’s validity because we can substitute into the
definition of the event E1 the fixed instance �.

54 E. Ben-Sasson et al.

procedure Valiant’s extractor, and denote it by VE, because it is described in
[Val08]. Our presentation of the extractor and its guarantee differs from [Val08]
because our use of it in this work requires “distilling” a more general property;
see Lemma 3 below.

The Extractor. For any oracle algorithm A, integers
, i�, imax > 0 with
i� ∈ {1, . . . , imax}, and ρ sampled from U(λ), the procedure VE, given input
(A,
, i�, imax) and with oracle access to ρ, works as follows.

1. Run Aρ until it has asked imax unique queries to ρ (and abort if Aρ asks
fewer than imax). Along the way, record the queries θ1, . . . , θimax and answers
ρ(θ1), . . . , ρ(θimax), in order and omitting duplicates.

2. Parse each query θi as θ0i ‖θ1i where θ0i are the first λ bits of θi and θ1i the
second λ bits. For brevity, we write z ∈ θi if z = θ0i or z = θ1i . (If a query has
length not equal to 2λ, then z /∈ θi for all z.)

3. If there exist indices i, j such that i �= j and ρ(θi) = ρ(θj), abort.
4. If there exist indices i, j such that i ≤ j and ρ(θj) ∈ θi, abort.
5. Construct a directed graph G with nodes V = {θ1, . . . , θimax} and edges E =

{(θi, θj) : ρ(θj) ∈ θi}. Note that G is acyclic, every node has out-degree ≤ 2,
and θ1, . . . , θimax is a (reverse) topological ordering.

6. Output v, the string obtained by traversing in order the first
 leaf nodes of
the depth-�log2
� binary tree rooted at θi� and recording the first bit of each
node. If any such node does not exist, set this entry to 0.

A sample execution of the extractor is depicted in Fig. 1.

Remark 6. The queries to ρ asked by VEρ(A,
, i�, imax) equals the first imax

queries to ρ asked by Aρ (provided that A does not ask fewer than imax queries).
Later on we use this fact.

The Extractor’s Guarantee. We interpret A’s output as containing a (possi-
bly empty) list of tuples of the form (rt, i, v, ap), where rt is a root, i an index,
v a value, and ap an authentication path.7 We define the following events:

(i) E1 is the event that, for each tuple (rt, i, v, ap) output by Aρ,
MERKLE.CheckPath(rt, i, v, ap) = 1;

(ii) E2 is the event that, for each rt ∈ {0, 1}λ, there exists
rt ∈ N such that if
Aρ outputs a tuple of the form (rt, ·, ·, ap) then ap is an authentication path
having the correct length for a
rt-leaf Merkle tree;

(iii) E3 is the event that, for every rt ∈ {0, 1}λ such that Aρ outputs some
tuple of the form (rt, ·, ·, ·), there is a unique jrt ∈ {0, . . . ,NumQueries(A, ρ)}
such that ρ(θjrt) = rt and, for every imax ∈ {jrt, . . . ,NumQueries(A, ρ)},
v := VEρ(A,
rt, jrt, imax) is such that v’s i-th entry equals vi for any tuple
of the form (rt, i, v, ap) output by Aρ.

The extractability property that we rely on is the following.
7 Note that A’s output may contain additional information not of the above form; if

so, we simply ignore it for now.

Interactive Oracle Proofs 55

Lemma 3. Let Aρ be a m-query algorithm. Then

Pr [(¬(E1 ∧ E2)) ∨ E3 | ρ ← U(λ)] ≥ 1 − (m2 + 1)2−λ .

Proof. Observe the following.

– By the union bound, the probability that there exist indices i, j such that
(i �= j) ∧ (ρ(θi) = ρ(θj)) or (i ≤ j) ∧ (ρ(θj) ∈ θi) is at most m22−λ. If this
occurs, we say that Aρ has found a collision.

– The probability that, for a tuple (rt, i, v, ap) output by Aρ such that
MERKLE.CheckPath(rt, i, v, ap) = 1, the authentication path ap contains a
node with no corresponding query is at most 2−λ, since this would mean that
Aρ has ‘guessed’ the answer to the query. In other words, no matter what
strategy A uses to generate the result, if it does not query the oracle on this
input then it can perform no better than chance.

Now suppose that E1 ∧ E2 occurs with probability δ. Then, with probability at
least δ − (m2 + 1)2−λ: (a) for each root rt output by Aρ there is a unique query
θi� such that ρ(θi�) = rt; (b) for each root rt output by Aρ, if an authentication
path ap claims to have root rt then ap appears in the tree rooted at θi� in G;
and (c) the condition in the VE’s Step 3 or Step 4 does not hold. In such a case
we may take jrt := i�, and then VEρ(A,
rt, jrt, imax) outputs a list v with the
desired property. Hence, Pr[E1 ∧ E2 ∧ E3] ≥ δ − (m2 + 1)2−λ. The predicate is
also satisfied if ¬(E1 ∧ E2) occurs, which is the case with probability 1 − δ and
is disjoint from E1 ∧ E2 ∧ E3. The lemma follows.

Fig. 1. A diagram of an execution of Valiant’s extractor VE, with input parameters
� = 2, i� = 4, and imax = 6.

A.2 Privacy

We rely not only on the fact that the root rt of a Merkle tree is hiding, but
also on the fact that an authentication path ap reveals no information about
values other than the decommitted one. The latter property can be ensured via
a slight tweak of the standard construction of Merkle trees: when committing to
a list v = (vi)n

i=1, the i-th leaf is not vi but, instead, is a hiding commitment

56 E. Ben-Sasson et al.

Fig. 2. A diagram of the data structure of a Merkle tree with privacy. An authentication
path for v2 is shaded; the corresponding truncated authentication path is the same
minus r2 and v2.

to vi. In our case, we will store the value ρ(vi‖ri) in the i-th leaf, where ri ∈
{0, 1}2λ is drawn uniformly at random; see Fig. 2. (An authentication path for vi

then additionally includes ri, and path verification is modified accordingly.) In
what follows, we regard ρ(vi‖ri) as a leaf, rather than vi; moreover, a truncated
authentication path ap′

i is identical to api except that it does not contain ri or
vi, and the truncated Merkle tree for v is T ′

v := (ap′
i)1≤i≤n. Note that the same

randomness r ∈ {0, 1}2λn is used by MERKLE.GetRoot and MERKLE.GetPath
(to be “in sync”).

We summarize the privacy property of Merkle trees as above via the following
definition and lemma.

Definition 2. A Merkle-tree scheme has z(n, λ)-statistical privacy if there exists
a probabilistic polynomial-time simulator S such that, for every list v = (vi)n

i=1

and unbounded distinguisher D, the following two probabilities are z(n, λ)-close:

Pr
r

⎡

⎢

⎢

⎣

I ⊆ {1, . . . , n}
Dρ(rt, (api)i∈I) = 1

∣

∣

∣

∣

∣

∣

∣

∣

ρ ← U(λ)
rt ← MERKLE.GetRootρ(v; r)

I ← Dρ

∀ i ∈ I , api ← MERKLE.GetPathρ(v, i; r)

⎤

⎥

⎥

⎦

and

Pr

⎡

⎣

I ⊆ {1, . . . , n}
Dρ(rt, (api)i∈I) = 1

∣

∣

∣

∣

∣

∣

ρ ← U(λ)
I ← Dρ

(rt, (api)i∈I) ← Sρ(n, (i, vi)i∈I)

⎤

⎦ .

We make no assumption on the power of the distinguisher D in the definition
above. In particular, D may query the random oracle ρ at every input, and use
the information to attempt to learn vi for some i /∈ I. For example, for some
ρ, it is the case that Prr[v = 1 | ρ(v‖r) = x] � Prr[v = 0 | ρ(v‖r) = x] for
x = ρ(v2‖r2), in which case D can determine v2 from ap1 with good accuracy.
The next (easy to prove) lemma shows that the probability that D gains a
significant statistical advantage in this way (or otherwise) is negligible in λ.

Lemma 4. There exists a Merkle-tree scheme having z(n, λ)-statistical privacy
with z(n, λ) := n2−λ/4+2.

Interactive Oracle Proofs 57

References

[ALM+92] Arora, S., Lund, C., Motwani, R., Sudan, M., Szegedy, M.: Proof verifica-
tion and hardness of approximation problems (1992)

[ALM+98] Arora, S., Lund, C., Motwani, R., Sudan, M., Szegedy, M.: Proof verifica-
tion and the hardness of approximation problems. JACM 45(3), 501–555
(1998)

[AS98] Arora, S., Safra, S.: Probabilistic checking of proofs: a new characterization
of NP. JACM 45(1), 70–122 (1998)

[Bab85] Babai, L.: Trading group theory for randomness. In: STOC 1985 (1985)
[Bab90] Babai, L.: E-mail and the unexpected power of interaction. Technical

report, University of Chicago, Chicago, IL, USA (1990)
[BBP04] Bellare, M., Boldyreva, A., Palacio, A.: An uninstantiable random-oracle-

model scheme for a hybrid-encryption problem. In: Cachin, C., Camenisch,
J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 171–188. Springer,
Heidelberg (2004). doi:10.1007/978-3-540-24676-3 11

[BC86] Brassard, G., Crépeau, C.: Non-transitive transfer of confidence: a perfect
zero-knowledge interactive protocol for SAT and beyond. In: FOCS 1986
(1986)

[BCC88] Brassard, G., Chaum, D., Crépeau, C.: Minimum disclosure proofs of
knowledge. J. Comput. Syst. Sci. 37(2), 156–189 (1988)

[BCG+16] Ben-Sasson, E., Chiesa, A., Gabizon, A., Riabzev, M., Spooner, N.: Short
interactive oracle proofs with constant query complexity, via composition
and sumcheck (2016). Crypto ePrint 2016/324

[BCGV16] Ben-Sasson, E., Chiesa, A., Gabizon, A., Virza, M.: Quasilinear-size zero
knowledge from linear-algebraic PCPs. In: TCC 2016-A (2016)

[BCI+13] Bitansky, N., Chiesa, A., Ishai, Y., Ostrovsky, R., Paneth, O.: Succinct
non-interactive arguments via linear interactive proofs. In: TCC 2013
(2013)

[BCS16] Ben-Sasson, E., Chiesa, A., Spooner, N.: Interactive oracle proofs, 2016.
Crypto ePrint 2016/116

[BD16] Bishop, A., Dodis, Y.: Interactive coding for interactive proofs. In:
Kushilevitz, E., Malkin, T. (eds.) TCC 2016. LNCS, vol. 9563, pp. 352–366.
Springer, Heidelberg (2016). doi:10.1007/978-3-662-49099-0 13

[BDG+13] Bitansky, N., Dachman-Soled, D., Garg, S., Jain, A., Kalai, Y.T.,
López-Alt, A., Wichs, D.: Why ”Fiat-Shamir for proofs” lacks a proof.
In: TCC 2013 (2013)

[BFL90] Babai, L., Fortnow, L., Lund, C.: Nondeterministic exponential time has
two-prover interactive protocols. In: SFCS 1990 (1990)

[BFLS91] Babai, L., Fortnow, L., Levin, L.A., Szegedy, M.: Checking computations
in polylogarithmic time. In: STOC 1991 (1991)

[BG93] Bellare, M., Goldreich, O.: On defining proofs of knowledge. In: Brickell,
E.F. (ed.) CRYPTO 1992. LNCS, vol. 740, pp. 390–420. Springer, Heidel-
berg (1993). doi:10.1007/3-540-48071-4 28

[BG08] Barak, B., Goldreich, O.: Universal arguments and their applications.
SIAM J. Comput. 38(5), 1661–1694 (2008)

[BGGL01] Barak, B., Goldreich, O., Goldwasser, S., Lindell, Y.: Resettably-sound
zero-knowledge and its applications. In: FOCS 2001 (2001)

[BGH+04] Ben-Sasson, E., Goldreich, O., Harsha, P., Sudan, M., Vadhan, S.: Robust
PCPs of proximity, shorter PCPs and applications to coding. In: STOC
2004 (2004)

http://dx.doi.org/10.1007/978-3-540-24676-3_11
http://dx.doi.org/10.1007/978-3-662-49099-0_13
http://dx.doi.org/10.1007/3-540-48071-4_28

58 E. Ben-Sasson et al.

[BGKW88] Ben-Or, M., Goldwasser, S., Kilian, J., Wigderson, A.: Multi-prover inter-
active proofs: how to remove intractability assumptions. In: STOC 1988
(1988)

[BHZ87] Boppana, R.B., H̊astad, J., Zachos, S.: Does co-NP have short interactive
proofs? Inf. Process. Lett. 25(2), 127–132 (1987)

[BKK+13] Ben-Sasson, E., Kaplan, Y., Kopparty, S., Meir, O., Stichtenoth, H.: Con-
stant rate PCPs for circuit-SAT with sublinear query complexity. In: FOCS
2013 (2013)

[BR93] Bellare, M., Rogaway, P.: Random oracles are practical: a paradigm for
designing efficient protocols. In: CCS 1993 (1993)

[BS08] Ben-Sasson, E., Sudan, M.: Short PCPs with polylog query complexity.
SIAM J. Comput. 38(2), 551–607 (2008)

[BW15] Bernhard, D., Warinschi, B.: On limitations of the Fiat-Shamir transfor-
mation. ePrint 2015/712 (2015)

[CGH04] Canetti, R., Goldreich, O., Halevi, S.: The random oracle methodology,
revisited. JACM 51(4), 557–594 (2004)

[COPV13] Chung, K.-M., Ostrovsky, R., Pass, R., Visconti, I.: Simultaneous resetta-
bility from one-way functions. In: FOCS 2013 (2013)

[CPSV16] Ciampi, M., Persiano, G., Siniscalchi, L., Visconti, I.: A transform for
NIZK almost as efficient and general as the Fiat-Shamir transform without
programmable random oracles. In: TCC 2016-A (2016)

[Dam89] Damg̊ard, I.B.: A design principle for hash functions. In: Brassard, G. (ed.)
CRYPTO 1989. LNCS, vol. 435, pp. 416–427. Springer, Heidelberg (1990).
doi:10.1007/0-387-34805-0 39

[DNRS03] Dwork, C., Naor, M., Reingold, O., Stockmeyer, L.J.: Magic functions.
JACM 50(6), 852–921 (2003)

[Fis05] Fischlin, M.: Communication-efficient non-interactive proofs of knowledge
with online extractors. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol.
3621, pp. 152–168. Springer, Heidelberg (2005). doi:10.1007/11535218 10

[FRS88] Fortnow, L., Rompel, J., Sipser, M.: On the power of multi-prover inter-
active protocols (1988)

[FS86] Fiat, A., Shamir, A.: How to prove yourself: practical solutions to identi-
fication and signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986.
LNCS, vol. 263, pp. 186–194. Springer, Heidelberg (1987). doi:10.1007/
3-540-47721-7 12

[GGPR13] Gennaro, R., Gentry, C., Parno, B., Raykova, M.: Quadratic span programs
and succinct NIZKs without PCPs. In: Johansson, T., Nguyen, P.Q. (eds.)
EUROCRYPT 2013. LNCS, vol. 7881, pp. 626–645. Springer, Heidelberg
(2013). doi:10.1007/978-3-642-38348-9 37

[GH98] Goldreich, O., H̊astad, J.: On the complexity of interactive proofs with
bounded communication. Inf. Process. Lett. 67(4), 205–214 (1998)

[GIMS10] Goyal, V., Ishai, Y., Mahmoody, M., Sahai, A.: Interactive locking, zero-
knowledge PCPs, and unconditional cryptography. In: Rabin, T. (ed.)
CRYPTO 2010. LNCS, vol. 6223, pp. 173–190. Springer, Heidelberg
(2010). doi:10.1007/978-3-642-14623-7 10

[GK03] Goldwasser, S., Kalai, Y.T.: On the (in)security of the Fiat-Shamir para-
digm. In: FOCS 2003 (2003)

[GKR08] Goldwasser, S., Kalai, Y.T., Rothblum, G.N.: Delegating computation:
interactive proofs for Muggles. In: STOC 2008 (2008)

[GMR89] Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of inter-
active proof systems. SIAM J. Comput. 18(1), 186–208 (1989)

http://dx.doi.org/10.1007/0-387-34805-0_39
http://dx.doi.org/10.1007/11535218_10
http://dx.doi.org/10.1007/3-540-47721-7_12
http://dx.doi.org/10.1007/3-540-47721-7_12
http://dx.doi.org/10.1007/978-3-642-38348-9_37
http://dx.doi.org/10.1007/978-3-642-14623-7_10

Interactive Oracle Proofs 59

[GOSV14] Goyal, V., Ostrovsky, R., Scafuro, A., Visconti, I.: Black-box non-black-
box zero knowledge. In: STOC 2014 (2014)

[Gro10] Groth, J.: Short pairing-based non-interactive zero-knowledge arguments.
In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 321–340.
Springer, Heidelberg (2010). doi:10.1007/978-3-642-17373-8 19

[GS86] Goldwasser, S., Sipser, M.: Private coins versus public coins in interactive
proof systems. In: STOC 1986 (1986)

[GVW02] Goldreich, O., Vadhan, S., Wigderson, A.: On interactive proofs with a
laconic prover. Comput. Complex. 11(1–2), 1–53 (2002)

[HS00] Harsha, P., Sudan, M.: Small PCPs with low query complexity. Comput.
Complex. 9(3–4), 157–201 (2000)

[HT98] Hada, S., Tanaka, T.: On the existence of 3-round zero-knowledge proto-
cols. In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS, vol. 1462, pp. 408–423.
Springer, Heidelberg (1998). doi:10.1007/BFb0055744

[IKM09] Ito, T., Kobayashi, H., Matsumoto, K.: Oracularization and two-prover
one-round interactive proofs against nonlocal strategies. In: CCC 2009
(2009)

[IKO07] Ishai, Y., Kushilevitz, E., Ostrovsky, R.: Efficient arguments without short
PCPs. In: CCC 2007 (2007)

[IMS12] Ishai, Y., Mahmoody, M., Sahai, A.: On efficient zero-knowledge PCPs.
In: Cramer, R. (ed.) TCC 2012. LNCS, vol. 7194, pp. 151–168. Springer,
Heidelberg (2012). doi:10.1007/978-3-642-28914-9 9

[IMSX15] Ishai, Y., Mahmoody, M., Sahai, A., Xiao, D.: On zero-knowledge
PCPs: limitations, simplifications, and applications (2015). http://www.
cs.virginia.edu/mohammad/files/papers/ZKPCPs-Full.pdf

[Ito10] Ito, T.: Polynomial-space approximation of no-signaling provers. In:
ICALP 2010 (2010)

[Kil92] Kilian, J.: A note on efficient zero-knowledge proofs and arguments. In:
STOC 1992 (1992)

[KR08] Kalai, Y., Raz, R.: Interactive PCP. In: ICALP 2008 (2008)
[KR09] Kalai, Y.T., Raz, R.: Probabilistically checkable arguments. In: Halevi, S.

(ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 143–159. Springer, Heidelberg
(2009). doi:10.1007/978-3-642-03356-8 9

[KRR13] Kalai, Y., Raz, R., Rothblum, R.: Delegation for bounded space. In: STOC
2013 (2013)

[KRR14] Kalai, Y.T., Raz, R., Rothblum, R.D.: How to delegate computations: the
power of no-signaling proofs. In: STOC 2014 (2014)

[KRR16] Kalai, Y.T., Rothblum, G.N., Rothblum, R.D.: From obfuscation to the
security of Fiat-Shamir for proofs. ePrint 2016/303 (2016)

[LFKN92] Lund, C., Fortnow, L., Karloff, H.J., Nisan, N.: Algebraic methods for
interactive proof systems. JACM 39(4), 859–868 (1992)

[Lin15] Lindell, Y.: An efficient transform from sigma protocols to NIZK with
a CRS and non-programmable random oracle. In: Dodis, Y., Nielsen,
J.B. (eds.) TCC 2015. LNCS, vol. 9014, pp. 93–109. Springer, Heidelberg
(2015). doi:10.1007/978-3-662-46494-6 5

[Lip12] Lipmaa, H.: Progression-free sets and sublinear pairing-based non-
interactive zero-knowledge arguments. In: Cramer, R. (ed.) TCC 2012.
LNCS, vol. 7194, pp. 169–189. Springer, Heidelberg (2012). doi:10.1007/
978-3-642-28914-9 10

http://dx.doi.org/10.1007/978-3-642-17373-8_19
http://dx.doi.org/10.1007/BFb0055744
http://dx.doi.org/10.1007/978-3-642-28914-9_9
http://www.cs.virginia.edu/mohammad/files/papers/ZKPCPs-Full.pdf
http://www.cs.virginia.edu/mohammad/files/papers/ZKPCPs-Full.pdf
http://dx.doi.org/10.1007/978-3-642-03356-8_9
http://dx.doi.org/10.1007/978-3-662-46494-6_5
http://dx.doi.org/10.1007/978-3-642-28914-9_10
http://dx.doi.org/10.1007/978-3-642-28914-9_10

60 E. Ben-Sasson et al.

[Mer89a] Merkle, R.C.: A certified digital signature. In: Brassard, G. (ed.) CRYPTO
1989. LNCS, vol. 435, pp. 218–238. Springer, Heidelberg (1990). doi:10.
1007/0-387-34805-0 21

[Mer89b] Merkle, R.C.: One way hash functions and DES. In: Brassard, G. (ed.)
CRYPTO 1989. LNCS, vol. 435, pp. 428–446. Springer, Heidelberg (1990).
doi:10.1007/0-387-34805-0 40

[Mic00] Micali, S.: Computationally sound proofs. SIAM J. Comput. 30(4), 1253–
1298 (2000)

[MV16] Mittelbach, A., Venturi, D.: Fiat-shamir for highly sound protocols is
instantiable. ePrint 2016/313 (2016)

[Pas03] Pass, R.: On deniability in the common reference string and random oracle
model. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 316–337.
Springer, Heidelberg (2003). doi:10.1007/978-3-540-45146-4 19

[PGHR13] Parno, B., Gentry, C., Howell, J., Raykova, M.: Pinocchio: nearly practical
verifiable computation. In: Oakland 2013 (2013)

[PS96] Pointcheval, D., Stern, J.: Security proofs for signature schemes. In EURO-
CRYPT ’96, 1996

[PSSV07] Pavan, A., Selman, A.L., Sengupta, S., Vinodchandranm, N.V.:
Polylogarithmic-round interactive proofs for coNP collapse the exponential
hierarchy. Theoret. Comput. Sci. 385(1), 167–178 (2007)

[PTW09] Pass, R., Tseng, W.-L.D., Wikström, D.: On the composition of public-
coin zero-knowledge protocols. In: Halevi, S. (ed.) CRYPTO 2009.
LNCS, vol. 5677, pp. 160–176. Springer, Heidelberg (2009). doi:10.1007/
978-3-642-03356-8 10

[RRR16] Reingold, O., Rothblum, R., Rothblum, G.: Constant-round interactive
proofs for delegating computation. In: STOC 2016 (2016)

[SBV+13] Setty, S., Braun, B., Victor, V., Blumberg, A.J., Parno, B., Walfish, M.:
Resolving the conflict between generality and plausibility in verified com-
putation. In: EuroSys 2013 (2013)

[SBW11] Setty, S., Blumberg, A.J., Walfish, M.: Toward practical and unconditional
verification of remote computations. In: HotOS 2011 (2011)

[Sha92] Shamir, A.: IP = PSPACE. JACM 39(4), 869–877 (1992)
[SMBW12] Setty, S., McPherson, M., Blumberg, A.J., Walfish, M.: Making argument

systems for outsourced computation practical (sometimes). In: NDSS 2012
(2012)

[SVP+12] Setty, S., Victor, V., Panpalia, N., Braun, B., Blumberg, A.J., Walfish, M.:
Taking proof-based verified computation a few steps closer to practicality.
In: Security 2012 (2012)

[Val08] Valiant, P.: Incrementally verifiable computation or proofs of knowledge
imply time/space efficiency. In:Canetti,R. (ed.)TCC2008.LNCS, vol. 4948,
pp. 1–18. Springer, Heidelberg (2008). doi:10.1007/978-3-540-78524-8 1

[Wee09] Wee, H.: Zero knowledge in the random oracle model, revisited. In: Matsui,
M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 417–434. Springer,
Heidelberg (2009). doi:10.1007/978-3-642-10366-7 25

http://dx.doi.org/10.1007/0-387-34805-0_21
http://dx.doi.org/10.1007/0-387-34805-0_21
http://dx.doi.org/10.1007/0-387-34805-0_40
http://dx.doi.org/10.1007/978-3-540-45146-4_19
http://dx.doi.org/10.1007/978-3-642-03356-8_10
http://dx.doi.org/10.1007/978-3-642-03356-8_10
http://dx.doi.org/10.1007/978-3-540-78524-8_1
http://dx.doi.org/10.1007/978-3-642-10366-7_25

Adaptive Succinct Garbled RAM
or: How to Delegate Your Database

Ran Canetti1,2(B), Yilei Chen1, Justin Holmgren3, and Mariana Raykova4

1 Boston University, Boston, USA
{canetti,chenyl}@bu.edu

2 Tel Aviv University and CPIIS, Tel Aviv, Israel
3 MIT, Cambridge, USA

holmgren@mit.edu
4 Yale University and SRI, New Haven, USA

mariana.raykova@yale.edu

Abstract. We show how to garble a large persistent database and then
garble, one by one, a sequence of adaptively and adversarially chosen
RAM programs that query and modify the database in arbitrary ways.
The garbled database and programs reveal only the outputs of the pro-
grams when run in sequence on the database. Still, the runtime, space
requirements and description size of the garbled programs are propor-
tional only to those of the plaintext programs and the security parameter.
We assume indistinguishability obfuscation for circuits and somewhat-
regular collision-resistant hash functions. In contrast, all previous gar-
bling schemes with persistent data were shown secure only in the static
setting where all the programs are known in advance.

As an immediate application, we give the first scheme for efficiently
outsourcing a large database and computations on the database to an
untrusted server, then delegating computations on this database, where
these computations may update the database.

Our scheme extends the non-adaptive RAM garbling scheme of
Canetti and Holmgren [ITCS 2016]. We also define and use a new primi-
tive of independent interest, called adaptive accumulators. The primitive
extends the positional accumulators of Koppula et al. [STOC 2015] and
somewhere statistical binding hashing of Hubáček and Wichs [ITCS 2015]
to an adaptive setting.

1 Introduction

Database delegation. Alice is embarking on a groundbreaking experiment that
involves collecting huge amounts of data over several months and then query-
ing and running analytics on the data in ways to be determined as the data
accumulates. Alas she does not have sufficient storage and processing power.

This paper was presented jointly with “Delegating RAM Computations with Adap-
tive Soundness and Privacy” by Prabhanjan Ananth, Yu-Chi Chen, Kai-Min Chung,
Huijia Lin and Wei-Kai Lin.

c© International Association for Cryptologic Research 2016
M. Hirt and A. Smith (Eds.): TCC 2016-B, Part II, LNCS 9986, pp. 61–90, 2016.
DOI: 10.1007/978-3-662-53644-5 3

62 R. Canetti et al.

Eve, who runs a large competing lab, offers servers for rent, but charges propor-
tionally to storage and computing time. Can Alice make use of Eve’s offer while
being guaranteed that Eve does not learn or modify Alice’s data and algorithms?
Can she do it at a cost that’s reasonably proportional to the size of the actual
data and resource requirements?

The rich literature on verifiable delegation of computation, e.g. [4,12,20,24,
25,31,34], provides Alice with ways to guarantee the correctness of the results
on her weak machines, while paying Eve only a relatively moderate cost. In par-
ticular, with [24] the cost is proportional only to the unprotected database size,
the complexity of her unprotected queries and the security parameter. However,
these schemes do not provide secrecy for Alice’s data and computations. Search-
able encryption schemes such as [6,26,32] provide varying levels of secrecy at a
reasonable cost, but no verifiability.

So Alice turns to delegation schemes based on garbling. Such schemes, start-
ing with [16], can indeed provide both verifiability and privacy. Here the client
garbles its input and program (along with some authentication information) and
hands them to the server, who evaluates the garbled program on the garbled
input and returns the result to the client. In Alice’s case the garbling scheme
should be persistent, namely it should be possible to garble multiple programs
that operate on the same garbled data, possibly updating the data over time.
Alice would also like the scheme to be succinct, in the sense that the overhead
of garbling each new query should be proportional to the description size of that
query as a RAM program, independently of on the size of the database. Further-
more, the evaluation process should be efficiency preserving, namely it should
preserve the RAM efficiency of the underlying computation.

Gennaro et al. [16] use the original Yao circuit-garbling scheme [33,35], which
is neither succinct, efficiency-preserving, nor persistent. [15,17,18,29] describe
garbling schemes that operate on persistent memory, improve on efficiency, but
haven’t yet achieved succinctness. Succinct, efficiency-preserving and persistent
garbling schemes, based on indistinguishability obfuscation for circuits and one
way functions are constructed in [9,11], building on techniques from [5,10,28].

However, the security of these schemes is only analyzed in a static setting,
where all the queries and data updates are fixed beforehand. Given the dynamic
and on-going character of Alice’s research, a static guarantee is hardly adequate.
Instead, Alice needs to consider a setting where new queries and updates may
depend on the public information released so far. The dependence may be arbi-
trary and potentially adversarially influenced. Adaptive security is considered in
[3,20,22] in the context of one-time, non-succinct garbling. An adaptive garbling
scheme for Turing machines is constructed in [2]. Still, adaptive security has not
been achieved in the pertinent setting of succinct and persistent RAM garbling.

1.1 This Work

We construct an adaptively secure, efficiency-preserving, succinct and persistent
garbling scheme for RAM programs. That is, the scheme allows its user to garble
an initial memory, and then garble RAM programs that arrive one by one in

Adaptive Succinct Garbled RAM (How to Delegate Your Database) 63

sequence. The machines can read from and update the memory, and also have
local output. It is guaranteed that:

(1) Running the garbled programs one after another in sequence on the garbled
memory results in the same sequence of outputs as running the plaintext
machines one by one in sequence on the plaintext memory.

(2) The view of any adversary that generates a database and programs and
obtains their garbled versions is simulatable by a machine that sees only
the initial database size and sequence of outputs of the plaintext programs
when run in sequence on the plaintext database. This holds even when the
adversary chooses new plaintext programs adaptively, based on the garbled
memory and garbled programs seen so far.

(3) The time to garble the memory is proportional to the plaintext memory.
Up to polynomial factors in the security parameter, the garbling time and
size of the garbled program are proportional only to the size of the plaintext
RAM program. The runtime and space usage of each garbled machine are
comparable to those of the plaintext machine.

Given such a scheme, constructing a database delegation scheme as specified
above is straightforward: Alice sends Eve a garbled version of her database. To
delegate a query, she garbles the program that executes the query. To guaran-
tee (public) verifiability Alice can use the following technique from [18]: Each
program signs its outputs using an embedded signing key, and Alice publishes
the corresponding public key. To hide the query results from the server, the pro-
gram encrypts its output under a secret key known to Alice. We provide herein
a more complete definition (within the UC framework), as well as an explicit
construction and analysis.

1.2 Overview of the Construction

Our starting point is the statically-secure garbling scheme of Canetti and
Holmgren [9]. We briefly sketch their construction, and then explain where the
issues with adaptivity come up and how we solve them.

Statically-secure garbling scheme for RAMs - an overview. The Canetti-
Holmgren construction consists of four main steps. They first build a fixed-
transcript garbling scheme, i.e. a garbling scheme which guarantees indistin-
guishability of the garbled machines and inputs as long as the entire transcripts
of the communication with the external memory, as well as the local states kept
between the RAM computation steps are the same in the two computations. In
other words, if the computation of machine M1 on input x1 has the same tran-
script as that of M2 on input x2, then the garbled machines M̃1, M̃2 and the gar-
bled inputs x̃1, x̃2 are computationally indistinguishable: (M̃1, x̃1) ≈ (M̃2, x̃2).
This step closely follows the scheme of Koppula, Lewko and Waters [28] for
garbling of Turing machines. The garbled program is essentially an obfuscated
RAM/CPU-step circuit, which takes as input a local state and a memory symbol,
and outputs an updated local state, as well as a memory operation. The main

64 R. Canetti et al.

challenge here is to guarantee the authenticity and freshness of the values read
from the memory. This is done using a number of mechanisms, namely splittable
signatures, iterators and positional accumulators.

The second step extends the construction to fixed-access garbling scheme,
which allows the intermediate local states of the two transcripts to differ while
everything else stays the same. This is achieved by encrypting the state in an
obfuscation-friendly way. The third step is to obtain a fixed-address garbling
scheme, namely a scheme that guarantees indistinguishability of the garbled
machines as long as only the sequence of addresses of memory accesses is the
same in the two computations. Here they apply the same type of encryption
used for the local state also to the memory content. The final step is to use
an obfuscation-friendly ORAM in order to hide the program’s memory access
pattern. (Specifically, they use the ORAM of Chung and Pass [13].)

The challenge of adaptive security. The first (and biggest) challenge has to
do with the positional accumulator, which is an iO-friendly variant of a Merkle-
hash-tree built on top of the memory. That is, the contents of the memory is
hashed down until a short root (called the accumulator value ac) is obtained.
Then this value is signed together with the current local state by the CPU and
is kept (in memory) for subsequent verification of database accesses. Using the
accumulator, the evaluator is later able to efficiently convince the CPU that the
contents of a certain memory location L is v. We call this operation “opening” the
accumulator value ac to contents v at location L. Intuitively, the main security
property is that it should be computationally infeasible to open an accumulator
to an incorrect value.

However, to be useful with indistinguishability obfuscation, the accumulator
needs an additional property, called enforceability. In [28], this property allows
to generate, given memory location L∗ and symbol v∗, a “rigged” public key for
the accumulator along with a “rigged” accumulator value ac∗. The rigged public
key and accumulator look indistinguishable from honestly generated public key
and accumulator value, and also have the property that there does not exist a
way to open ac∗ at location L∗ to any value other than v∗.1

The fact that the special values v∗, L∗, and ac∗ are encoded in the rigged pub-
lic key forces these values to be known before the adversary sees the public key.
1 To get an idea of why enforceability is needed, consider two programs C0 and C1,

such that C0(L
∗, v∗) = C1(L

∗, v∗), but whose functionality may differ elsewhere,
and let C′

i(L, v) be the program “if L, v are consistent with ac∗ then run Ci, else
output ⊥”. Let iO be an indistinguishability obfuscator, i.e. it is guaranteed that
iO(A) ≈ iO(B) whenever equal sized programs A, B have the same functionality
everywhere. We would like to argue that iO(C′

0) ≈ iO(C′
1); however, we cannot do

it directly using a plain Merkle hash tree, since collisions exist and so C′
0 and C′

1

have very different functionalities. Positional accumulators get around this difficulty:
Using enforceability it is possible to argue that, when C′

0 and C′
1 use the rigged public

key for the accumulator, the two programs have exactly the same functionality,
and so indistinguishability holds. Due to the indistinguishability of rigged public
accumulator keys from honest ones, indistinguishability holds even for the case of
non-rigged accumulator keys.

Adaptive Succinct Garbled RAM (How to Delegate Your Database) 65

This suffices for the case of static garbling, since the special values depend only
on the underlying computation, and this computation is fixed in advance and
does not depend on adversary’s view. However, in the adaptive setting, this is
not the case. This is so since the adversary can choose new computations — and
thus new special values v∗, L∗ — depending on its view so far, which includes
the public key of the accumulator.

Adaptive Accumulators. We get around this problem by defining and con-
structing a new primitive, called adaptive accumulators, which are an adaptive
alternative to positional accumulators. In our adaptive accumulators there are
no “rigged” public keys. Instead, correctness of an opening of a hash value at
some location is verified using a verification key which can be generated later.
In addition to the usual computational binding guarantees, it should be pos-
sible to generate, given a special accumulator value ac∗, value v∗ and location
L∗, a “rigged” verification key vk∗ that looks indistinguishable from an honestly
generated one, and such that vk∗ does not verify an opening of ac∗ at location
L∗ to any value other than v∗. Furthermore, it is possible to generate multiple
verification keys, that are all rigged to enforce the same accumulator value ac∗

to different values v∗ at different locations L∗, where all are indistinguishable
from honest verification keys.

We then use adaptive accumulators as follows: There is a single set of pub-
lic parameters that is posted together with the garbled database and is used
throughout the lifetime of the system. Now, each new garbled machine is given
a different, independently generated verification key. This allows us, at the proof
of security, to use a different rigged verification key for each machine. Since the
key is determined only when a machine is being garbled (and its computation
and output values are already fixed), we can use a rigged verification key that
enforces the correct values, and obtain the same tight security reduction as in
the static setting.

Adaptively accumulators from adaptive puncturable hash functions.
We build adaptive accumulators from a new primitive called adaptively punc-
turable (AP) hash function ensembles. In this primitive a standard collision
resistant hash function h(x) is augmented with three algorithms Verify, GenVK,
GenBindingVK. GenVK generates a verification key vk, which can be later used
in Verify(vk, x, y) to check that h(x) = y. GenBindingVK(x∗) produces a binding
key vk∗ such that Verify(vk∗, x, y = h(x∗)) accepts only if x = x∗. Finally, we
require that real and binding verification keys should be indistinguishable even
for the adversary which chooses x∗ adaptively after seeing h.

The construction of adaptive accumulators from AP hash functions proceeds
as follows. The public key is an AP hash function h, and the initial accumulator
value ac0 is the root of a Merkle tree on the initial data store (which can be
thought of as empty, or the all-0 string) using h. We maintain the invariant that
at every moment the root value ac is the result of hashing down the memory
store. In order to write a new symbol v to a position L the evaluator recomputes
all hashes on the path from the root to L. The “opening information” for v at
L is all hashes of siblings on the path from the root to L.

66 R. Canetti et al.

The verification key is a sequence of d = log |S| (honest) verification keys for
h - one for each level of the tree. The “rigged” verification key for accumulator
value ac∗ and value v∗ at location L∗ consists of a sequence of d rigged verification
keys for the AP hash, where each key forces the opening of a single value along
the path from the root to leaf L∗. Security of the adaptive accumulator follows
from the security of the AP hash via standard reduction.

Constructing AP hash. We construct adaptively puncturable hash func-
tion ensembles from indistinguishability obfuscation for circuits, plus collision-
resistant hash functions with the property that any image has at most polynomi-
ally many preimages. (This implies that the CRHF shrinks at most logarithmically
many bits). We say that a hash function is c-bounded if the number of preimages
for any image is no more than c. To be usable in the Merkle-Damg̊ard construction,
we will also need that the hash functions have domain {0, 1}λ and range {0, 1}λ′

for some λ′ < λ. For simplicity we focus on the setting where λ = λ′ + 1. We
construct 4-bounded CRHFs assuming hardness of discrete log and 64-bounded
CRHFs assuming hardness of factoring.

Our construction of an AP hash ensemble can be understood in two steps.

1. First we construct a c-bounded AP hash ensemble from any c-bounded hash
ensemble {hk}. This is done as follows: The public key is a hash function hk.
A verification key vk is iO(V), where V is the program that on input x, y
outputs 1 if hk(x) = y. A “rigged” verification key vk∗ that is binding for
input x∗ is iO(Vx∗) where Vx∗ is the program that on input (x, y) does the
following:
– if y = fhk

(x∗), it accepts if and only if x = x∗;
– otherwise it accepts if and only if y = hk(x).
Since hk is c-bounded, the functionality of V and Vx∗ differ only on poly-
nomially many inputs. Therefore, the real and “rigged” verification keys are
indistinguishable following the diO-iO equivalence for circuits with polyno-
mially many differing inputs [7].

2. Next we construct AP hash functions which are length halving (and are thus
not polynomially bounded) from bounded AP hashing. This is done in the
natural way by extending the hash function’s domain using Merkle-Damg̊ard.
Suppose we start with a function h′ : {0, 1}λ+1 → λ, and build h : {0, 1}2λ →
{0, 1}λ. A verification key vk for h is an obfuscated circuit C which takes x
and y, and directly checks that h(x) = y.

The proof of security involves a sequence of hybrids, in which C is modified
to contain a verification key for h′. This implies that in the real world, C must
also be padded to this same size. In other words, the verification key vk must be
as large as twice-obfuscated circuit computing h′. We note that it is possible to
avoid this overhead by instead distributing λ different verification keys for h′,
but we avoid this approach for conceptual simplicity.

From adaptive accumulators to adaptively secure fixed-transcript gar-
bling. We return to the challenges encountered when trying to use the [9]
construction in our adaptive setting. With adaptive accumulators in hand, the

Adaptive Succinct Garbled RAM (How to Delegate Your Database) 67

additional modifications made on the use of iterator and splittable signatures
are relatively local. Since these primitives do not access the long-lived shared
memory, it suffices to generate a fresh instance of each primitive for each new
query.

Adaptively secure fixed-access and fixed-address garbling. Next we
upgrade the next two layers in the [9] construction, namely the fixed-access and
fixed-address garbling schemes, to adaptively secure ones. This is done with rel-
atively local changes from the original construction. Specifically we include the
index and time step in the domain of puncturable PRF that is used to derive
the randomness of the one-time-pad-like encryption on the state and memory.
The technical details can be found in the main construction.

Adaptive full garbling. Recall that in [9] full garbling is achieved by applying
an Oblivious RAM scheme on top of the fixed-access garbling. The randomness
for the ORAM accesses is sampled using a PRF. This leads to a situation where
a PRF key is first used inside a program Mi for some execution i. Later, the
key needs to be punctured at a point that may depend on the PRF values. This
leads to another adaptivity problem.

We get around this problem by noticing that the Chung-Pass ORAM has a
special property which allows us to guess which points to puncture with only
polynomial security loss. This property, which we call strong localized random-
ness, is sketched as follows. Let R be the randomness used by the ORAM. Let
Ai = ai1, . . . ,aim be a set of locations accessed by the ORAM during emula-
tion of access i. The strong localized randomness property guarantees that there
exists a set of intervals I11, . . . , ITm, Iij ⊂ [1, |R|], such that:

1. Each aij depends only on RIij
, i.e., the part of the randomness R indexed

with Iij ; furthermore, aij is efficiently computable from Iij ;
2. All Iij are mutually disjoint;
3. All Iij are efficiently computable given the sequence of memory operations.

To see that the Chung-Pass ORAM has strong localized randomness, observe
that in its non-recursive form, each virtual access of addr touches two paths: one
is the path used for the eviction, which is purely random, and the other is deter-
mined by the randomness chosen in the previous virtual access of addr. Therefore,
the set of accessed locations is determined by two randomness intervals. When
the ORAM is applied recursively, each virtual access consists of O(log S) phases,
each of whose physical addresses are determined by two randomness intervals.
Since the number of intervals in the range [1, . . . , |R|] is only polynomial in the
security parameter, the reduction can guess the intervals for a phase (and there-
fore the points to puncture at) with only polynomial security loss.

In contrast, the localized randomness property used in [9] differs in property
1 above, requiring only that each Ai depends on polylogarithmically many bits
of R. This does not suffice for us, because there are superpolynomially many
possible dependencies, and so the reduction cannot guess correctly with any
non-negligible probability.

68 R. Canetti et al.

Concurrent and independent work. A potential alternative to our adaptive
positional accumulators is to build on the somewhere statistically binding (SSB)
hash of Hubáček and Wichs [23] or Okamoto et al. [30]. SSB hashes have a similar
flavor to positional accumulators, but they allow rigging to be statistically bind-
ing at a hidden location L∗. However it turns out that SSB hashes alone do not
suffice for positional accumulators, even in the non-adaptive case! In concurrent
and independent work, Ananth et al. [1] give a stronger definition of SSBs which
does suffice, and then show that a known construction [30] satisfies this stronger
property. Their reduction can then be made adaptive by guessing L∗, at the price
of reducing the reduction’s winning probability by a factor proportional to the
database size. In all, their construction uses a somewhat stronger assumption
than ours (DDH vs. discrete log) and their security reduction is somewhat less
efficient than ours.

Organization. The rest of the paper is organized as follows. Section 2 provides
definitions of RAM and adaptively secure garbled RAM. Section 3, 4 and 5 define
and construct bounded hashing, adaptively puncturable hashing and adaptively
secure positional accumulator. Sections 6, 7, 8 and 9 provide the definitions
and constructions of fixed-transcript, fixed-access, fixed-address, and fully secure
garbling. Section 10 includes the definition of secure database delegation within
the UC framework and our construction and proof.

Due to the page limitation, some missing details are only available in the full
version of this paper [8]. Those missing details include (1) The other primitives
used in our work; (2) The proofs of fixed-transcript, fixed-access, fixed-address
and fully secure garbling; (3) A construction of a (stateful) reusable GRAM with
persistent data.

2 Definitions

RAM Programs. A RAM M is defined as a tuple (Σ,Q, Y,C), where Σ is
the set of memory symbols, Q is the set of possible local states, Y is the output
space, and C is the transition function.

Memory Configurations. A memory configuration on alphabet Σ is a function
s : N → Σ ∪ {ε}, where ε denotes the contents of an empty memory cell. Let
‖s‖0 denote |{a : s(a) �= ε}| and, in an abuse of notation, let ‖s‖∞ denote
max({a : s(a) �= ε}), which we will call the length of the memory configuration.
A memory configuration s can be implemented (say with a balanced binary
tree) by a data structure of size O(‖s‖0), supporting updates to any index in
O(log ‖s‖∞) time.

We can naturally identify a string x = x1 . . . xn ∈ Σ∗ with the memory
configuration sx, where sx(i) = xi if i ≤ |x| and sx(i) = ε, otherwise. Looking
ahead, efficient representations of sparse memory configurations (in which ‖s‖0 <
‖s‖∞) are convenient for succinctly garbling computations where the space usage
is larger than the input length.

Adaptive Succinct Garbled RAM (How to Delegate Your Database) 69

Execution. A RAM M = (Σ,Q, Y,C) is executed on an initial memory s0 ∈ ΣN

to obtain M(s0) by iteratively computing (qi, ai, vi) = C(qi−1, si−1(ai−1)), where
a0 = 0, and defining si(a) = v if a = ai and si(a) = si−1 otherwise.

When M(s0) �= ⊥, it is convenient to define the following functions:

Time(M, s0): runtime of M on s0, i.e., the number of iterations of C.
Space(M, s0): space usage of M on s0, i.e., maxt−1

i=0(‖si‖∞).
T (M, s0): execution transcript of M on s0 defined as ((q0, a0, v0), . . . ,
(qt−1, at−1, vt−1), y).
Addr(M, s0): addresses accessed by M on s0, i.e., (a0, . . . , at−1).
NextMem(M, s0): resultant memory configuration st after executing M on s0.

Garbled RAM
Syntax. A garbling scheme for RAM programs is a tuple of p.p.t. algorithms
(Setup,GbPrg,GbMem,Eval).

Setup(1λ, S) takes the security parameter λ in unary and a space bound S,
and outputs a secret key SK.
GbMem(SK, s) takes a secret key SK and a memory configuration s, and
then outputs a memory configuration s̃.
GbPrg(SK,Mi, Ti, i) takes a secret key SK, a RAM machine Mi, a running
time bound Ti, and a sequence number i, and outputs a garbled RAM machine
M̃i.
Eval(M̃, x̃): takes a garbled RAM M̃ and gabled input x̃ and evaluates the
machine on the input, which we denote M̃(x̃).

Remark 1. The index number i given as input to GbPrg enforces defines a fixed
order, so that M1, . . . ,M� cannot be executed in any other order.

We are interested in garbling schemes which are correct, efficient, and secure.

Correctness. A garbling scheme is said to be correct if for all p.p.t. adversaries
A and every t = poly(λ)

Pr

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

M̃t(s̃t−1) = Mt(st−1)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(s0, S) ← A(1λ)
SK ← Setup(1λ, S)
s̃0 ← GbMem(SK, s0)
for i = 1, . . . , t

Mi, Ti ← A(s̃0, M̃1, . . . M̃i−1)
M̃i ← GbPrg(SK,Mi, Ti, i)
si = NextMem(Mi, si−1)
s̃i = NextMem(M̃i, s̃i−1)

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

≥ 1 − negl(λ),

where

–
∑

Ti ≤ poly(λ), |s0| ≤ S ≤ poly(λ);
– Space(Mi, si−1) ≤ S and Time(Mi, si−1) ≤ Ti for each i.

70 R. Canetti et al.

Efficiency. A garbling scheme is said to be efficient if:

1. Setup, GbPrg, and GbMem are probabilistic polynomial-time algorithms. Fur-
thermore, GbMem runs in time linear in ‖s0‖. We require succinctness for
the garbled programs, which means that the size of a garbled program M̃
is linear in the description length of the plaintext program M . The bounds
Ti and S are encoded in binary, so the time to garble does not significantly
depend on either of these quantities.

2. With M̃i and s̃i defined as above, it holds that Space(M̃i, s̃i−1) = Õ(S) and
Time(M̃i, s̃i−1) = Õ(Time(Mi, si−1)) (hiding polylogarithmic factors in S).

Security. We define the security property of GRAM as follows.

Definition 1. Let GRAM = (Setup,GbMem,GbPrg) be a garbling scheme. We
define the following two experiments, where each Mi is a program with time
and space complexity bounded byTi and S. We denote yi = Mi(si−1), si =
NextMem(Mi, si−1), and ti = Time(Mi, si−1).

Experiment REALA(1λ) Experiment IDEALA(1λ)

(s0, S) ← A(1λ) (s0, S) ← A(1λ)

SK ← Setup(1λ, S), s̃0 ← GbMem(SK, s0) s̃0 ← Sim(1λ, ‖s0‖0)
(M1, 1T1) ← A(s̃0) (M1, 1T1) ← A(s̃0)

M̃1 ← GbPrg(SK,M1, T1, 1) M̃1 ← Sim(y1, |M1|, t1)
for i = 1 to � = poly(λ) for i = 1 to � = poly(λ)

(Mi+1, 1Ti+1) ← A(M̃[i,...,1], s̃0) (Mi+1, 1Ti+1) ← A(M̃[i,...,1], s̃0)

M̃i+1 ← GbPrg(SK,Mi+1, Ti+1, i + 1) M̃i+1 ← Sim(yi+1, |Mi+1|, ti+1)

Output : b ← A(M̃, s̃0) Output : b′ ← A(M̃, s̃0)

The garbling scheme GRAM is ε(·)-adaptively secure if
∣

∣Pr[1 ← REALA(1λ)] − Pr[1 ← IDEALA(1λ)]
∣

∣ < ε(λ).

3 c-Bounded Collision-Resistant Hash Functions

We say that a hash function ensemble H = {Hλ}λ∈N with Hλ = {hk : Dλ →
Rλ}k∈Kλ

is c(·)-bounded if

Pr h←Hλ
[∀y ∈ Rλ,#{x : h(x) = y} ≤ c(λ)] ≥ 1 − negl(λ)

That is, with high probability, every element in the codomain of h has at most
c(λ) pre-images. In our adaptively secure garbling scheme, we need c(·) to be

Adaptive Succinct Garbled RAM (How to Delegate Your Database) 71

any polynomial (smaller is better for the security reduction), and we need Dλ =
{0, 1}λ′

and Rλ = {0, 1}λ′−1 for some λ′ = poly(λ). For both of the constructions
in this section, we obtain constant c(·).

The starting point for our constructions is the construction of [14], using a
claw-free pair of permutations (π0, π1) on a domain Dλ, where for some fixed
y0, the hash h(x) is defined as (πx0 ◦ · · · ◦ πxn

)(y0). Unfortunately, while this
construction allows an arbitrarily-compressing hash function, it in general may
not be poly(n)-bounded even if n = log |Dλ| + O(1).

However, a slight modification of this construction allows us to take any
injective functions ιin : {0, 1}n ↪→ Dλ and ιout : Dλ ↪→ {0, 1}m, and produce a
2k-bounded collision-resistant function mapping {0, 1}n+k → {0, 1}m. As long
there is such injections exist with m−n = O(log λ), this yields a poly(λ)-bounded
collision-resistant hash family.

Theorem 1. If for a random λ-bit prime p, it is hard to solve the discrete log
problem in Z

∗
p, then there exists a 4-bounded CRHF ensemble H = {Hλ}λ∈N

where Hλ consists of functions mapping {0, 1}λ+1 → {0, 1}λ.

Proof. Let p be a random λ-bit prime, and let g and h be randomly chosen
generators of Z∗

p. Our hash function is keyed by p, g, h. It is well-known that the
permutations π0(x) = gx and π1(x) = gxh are claw-free. It is easy to see there
is an injection ιin : {0, 1}λ−1 → Z

∗
p and an injection ιout : Z∗

p → {0, 1}λ. Define
a hash function

f : {0, 1}λ−1 × {0, 1} × {0, 1} → {0, 1}λ

a, b, c �→ ιout(πc(πb(ιin(a))))

Clearly given x �= x′ such that f(x) = f(x′), one can find a claw (and therefore
find logg h), so f is collision-resistant. Also for any given image, there is at most
one corresponding pre-image per choice of b, c, so f is 4-bounded.

Theorem 2. If for random λ-bit primes p and q, with p ≡ 3 (mod 8) and q ≡ 7
(mod 8), it is hard to factor N = pq, then there exists a 64-boundedCRHF ensemble
H = {Hλ}λ∈N where Hλ consists of functions mapping {0, 1}2λ+1 → {0, 1}2λ.

Proof. First, we construct injections ι0 : {0, 1}2λ−4 → [N/6] and ι1 : [N/6] →
Z

∗
N ∩ [N/2], using the fact that for sufficiently large p and q, for any integer x ∈

[N/6], at least one of 3x, 3x+1, and 3x+2 is relatively prime to N . ι1(x) is therefore
well-defined as the smallest of {3x, 3x + 1, 3x + 2} ∩ Z

∗
n. Let ιin : {0, 1}2λ−4 →

Z
∗
N ∩ [N/2] denote ι1 ◦ ι0. Let ιout denote an injection from Z

∗
N → {0, 1}2λ.

Next, following [21], we define the claw-free pair of permutations π0(x) = x2

(mod N) and π1(x) = 4x2 (mod N), where the domain of π0 and π1 is the set
of quadratic residues mod N .

Now we define the hash function

f : {0, 1}2λ−4 × {0, 1}5 → {0, 1}2λ

f(x, y) = (ιout ◦ πy5 ◦ · · · ◦ πy1)(ιin(x)2 mod N)

72 R. Canetti et al.

This is 64-bounded because for any given image, there is at most one pre-
image under ιout ◦πy5 ◦· · ·◦πy1 per possible y value. This accounts for a factor of
32. The remaining factor of 2 comes from the fact that every quadratic residue
has four square roots, two of which are in [N/2] (the image of ιin). The collision
resistance of x �→ ιin(x)2 (mod N) follows from the fact that the two square
roots are nontrivially related, i.e., neither is the negative of the other, so given
both it would be possible to factor N .

Notation. For a function h : {0, 1}λ+1 → {0, 1}λ, we let h0 denote the identity
function and for k > 0 inductively define

hk : {0, 1}λ+k → {0, 1}λ

hk(x) = h(x1‖hk−1(x2‖ · · · ‖xλ+k))

4 Adaptively Puncturable Hash Functions

We say that an ensemble H is adaptively puncturable if there are algorithms
Verify, GenVK, and ForceGenVK such that:

Correctness
For all x, y, and h ∈ H, Verify(vk, x, y) = 1 iff y = h(x), where vk ←
GenVK(1λ, h).

Forced Verification
For all x∗ and h ∈ H, let y∗ = h(x∗). Verify(vk, x, y∗) = 1 iff x = x∗, where
vk ← ForceGenVK(1λ, h, x∗).

Indistinguishability
For all p.p.t. A1, A2

Pr

⎡

⎢

⎢

⎢

⎢

⎣

A2(s, vkb) = b

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

h ← Hλ

x∗, s ← A1(1λ, h)
vk0 ← GenVK(1λ, h)
vk1 ← ForceGenVK(1λ, h, x∗)
b ← {0, 1}

⎤

⎥

⎥

⎥

⎥

⎦

≤ 1
2

+ negl(λ)

Theorem 3. If iO exists and there is a poly(λ)-bounded CRHF ensemble map-
ping {0, 1}λ′+1 → {0, 1}λ′

, then there is an adaptively puncturable hash function
ensemble mapping {0, 1}2λ′

to {0, 1}λ′
.

Let H = {Hλ} be a poly(λ)-bounded CRHF ensemble, where Hλ is a family
of functions mapping {0, 1}λ+1 → {0, 1}λ. We define an adaptively puncturable
hash function ensemble F = {Fλ}, where Fλ is a family of functions mapping
{0, 1}2λ → {0, 1}λ.

Setup
The key space for Fλ is the same as the key space for Hλ.

Evaluation
For a key h ∈ Hλ and a string x ∈ {0, 1}2λ, we define

fh(x) = hλ(x)

Adaptive Succinct Garbled RAM (How to Delegate Your Database) 73

Verification
GenVK(1λ, fh) outputs an iO-obfuscation of a circuit which directly com-
putes

x, y �→
{

1 if fh(x) = y

0 otherwise

ForceGenVK(1λ, fh, x∗) outputs an iO-obfuscation of a circuit which directly
computes

x, y �→

⎧

⎪

⎨

⎪

⎩

1 if y �= fh(x∗) ∧ y = fh(x)
1 if (x, y) = (x∗, fh(x∗))
0 otherwise

Verify(vk, x, y) simply evaluates and outputs vk(x, y).

Claim. No p.p.t. adversary which adaptively chooses x∗ after seeing h can dis-
tinguish between GenVK(1λ, h) and ForceGenVK(1λ, h, x∗).

Proof. We present λ + 1 hybrid games H0, . . . , Hλ. In each game h is sampled
from Hλ, but the circuit given by the challenger to the adversary depends on
the game and on x∗. In hybrid Hi, the challenger computes y∗ = hλ(x∗) and
yλ−i = hλ−i(x∗

i+1‖ · · · ‖x∗
2λ). The challenger then sends iO(Ci) to the adversary,

where Ci has y∗, yλ−i, and x∗
1, . . . , x

∗
i hard-coded and is defined as

Ci(x, y) =

⎧

⎨

⎩

1 if y �= y∗ ∧ y = hλ(x)

1 if y = y∗ ∧ x1 = x∗
1 ∧ · · · ∧ xi = x∗

i ∧ hλ−i(xi+1‖ · · · ‖x2λ) = yλ−i

0 otherwise

The challenger sends iO(Ci) to the adversary.
It is easy to see that C0 is functionally equivalent to the circuit produced by

GenVK, and Cλ is functionally equivalent to the circuit produced by ForceGenVK.
So we only need to show that Hi ≈ Hi+1 for 0 ≤ i < λ. We give a sequence of
indistinguishable changes to the challenger, by which we transform the circuit
C given to the adversary from Ci to Ci+1.

1. We first change C so that when y = y∗, it computes the intermediate value
y′ = hλ−i−1(xi+2‖ · · · ‖x2λ) and outputs 1 if:
– h(xi+1‖y′) = yλ−i

– For all 1 ≤ j ≤ i, xi = x∗
i .

When y �= y∗, the behavior of C is unchanged.
This change preserves functionality (we only introduced a name y′ for an
intermediate value in the computation) and hence is indistinguishable by iO.

2. Now we change C so that instead of directly checking whether h(xi+1‖y′) =
yλ−i, it uses a hard-coded helper circuit Ṽ = iO(V), where

V : {0, 1} × {0, 1}λ × {0, 1}λ → {0, 1}
V (a, b, c) =

{

1 if c = h(a‖b)
0 otherwise

This is functionally equivalent and hence indistinguishable by iO.

74 R. Canetti et al.

3. Now we change V . The challenger computes yλ−i−1 = hλ−i−1(x∗
i+2‖ · · · ‖x∗

2λ)
and yλ−i = h(x∗

i+1‖yλ−i−1), and define

V (a, b, c) =

⎧

⎪

⎨

⎪

⎩

1 if c �= yλ−i ∧ c = h(a‖b)
1 if (a, b, c) = (x∗

i+1, yλ−i−1, yλ−i)
0 otherwise

,

with yλ−i, yλ−i−1, and x∗
i+1 hard-coded. The old and new Ṽ ’s are indistin-

guishable because:
– By the collision-resistance of h, it is difficult to find an input on which they

differ.
– Because Hλ is poly(λ)-bounded, they differ on only polynomially many

points.
– iO is equivalent to diO for circuits which differ on polynomially many

points.
4. C is now functionally equivalent to Ci+1 and hence is indistinguishable by iO.

5 Adaptively Secure Positional Accumulators

In this section we define and construct adaptive positional accumulators (APA).
We use this primitive for memory authentication in our garbling construction.
A garbled program will be an obfuscated functionality where one input is a
succinct commitment ac to some memory contents, another is a piece of data v
allegedly resulting from a memory operation op, and another is a commitment
ac′, allegedly to the resulting memory configuration. Informally, APAs provide a
way for the garbled program to check the consistency of v and ac′ with ac (given
a short proof),

As described so far, Merkle trees satisfy our needs, and indeed our construc-
tion is built around a Merkle tree. However, we require more. As in the positional
accumulators of [28], we need a way to indistinguishably “rig” the public para-
meters so that for some ac and op, there is exactly one (ac′, v) with any accepting
proof. We differ from [27] by separating the parameters used for proof verification
from those used for updating the accumulator, and allowing the rigged (ac, op)
to be chosen adaptively as an adversarial function of the update parameters.

We now formally define the algorithms of the APA primitive.

SetupAcc(1λ, S) → PP, ac0, store0
The setup algorithm takes as input the security parameter λ in unary and a
bound S (in binary) on the memory addresses accessed. SetupAcc produces
as output public parameters PP, an initial accumulator value ac0, and an
initial data store store0.

Update(PP, store, op) → store′, ac′, v, π
The update algorithm takes as input the public parameters PP, a data store
store, and a memory operation op. Update then outputs a new store store′,
a memory value v, a succinct accumulator ac′, and a succinct proof π.

Adaptive Succinct Garbled RAM (How to Delegate Your Database) 75

Verify(vk, ac, op, ac′, v, π) → {0, 1}
The verification algorithm takes as inputs a verification key vk, an initial
accumulator value ac, a memory operation op, a resulting accumulator ac′, a
memory value v, and a proof π. Verify then outputs 0 or 1. Intuitively, Verify
checks the following statement:

π is a proof that the operation op, when applied to the memory config-
uration corresponding to ac, yields a value v and results in a memory
configuration corresponding to ac′.

Verify is run by a garbled program to authenticate the memory values that
the evaluator gives it.

SetupVerify(PP) → vk
SetupVerify generates a regular verification key for checking Update’s proofs.
This is the verification key that is used in the “real world” garbled programs.

SetupEnforceVerify(PP, (op1, . . . , opk)) → vk
SetupEnforceVerify takes a sequence of memory operations, and generates a
verification key which is perfectly sound when verifying the action of opk

in the sequence (op1, . . . , opk). This type of verification key is used in the
hybrid garbled programs in our security proof.

An adaptive positional accumulator must satisfy the following properties.

Correctness
Let op0, . . . , opk be any arbitrary sequence of memory operations, and let
v∗

i denote the result of the ith memory operation when (op0, . . . , opk−1) are
sequentially executed on an initially empty memory.
Correctness requires that, when sampling

PP, ac0, store0 ← SetupAcc(1λ, S)
vk ← SetupVerify(PP)
For i = 0, . . . , k :
storei+1, aci+1, vi, πi ← Update(PP, storei, opi)
bi ← Verify(vk, aci, opi, aci+1, vi, πi)

it holds (with probability 1) that for all j ∈ {0, . . . , k}, vj = v∗
j and bj = 1

Enforcing
Enforcing requires that for all space bounds S, all sequences of operations
op0, . . . , opk−1, when sampling

PP, ac0, store0 ← SetupAcc(1λ, S)
vk ← SetupEnforceVerify(PP, (op0, . . . , opk−1))
For i = 0, . . . , k − 1
storei+1, aci+1, vi, πi ← Update(PP, storei, opi)

it holds (with probability 1) that for all accumulators âc, all values v̂, and
all proofs π̂, if Verify(vk, ack−1, opk−1, âc, v̂, π̂) = 1, then (v̂, âc) = (vk−1, ack)

Indistinguishability of Enforcing Verify
Now we require that the output of SetupVerify(PP) is indistinguish-
able from the output of SetupEnforceVerify(PP, (op1, . . . , opk)), even when
(op1, . . . , opk) are chosen adaptively as a function of PP.

76 R. Canetti et al.

More formally, for all p.p.t. A1 and A2,

Pr

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

A2(s, vkb) = b

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

PP, ac0, store0 ← SetupAcc(1λ, S)
(op0, . . . , opk−1), s ← A1(1λ,PP)
vk0 ← SetupVerify(PP)
vk1 ← SetupEnforceVerify(PP,

(op0, . . . , opk−1))
b ← {0, 1}

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

≤ 1
2

+ negl(λ)

Efficiency
In addition to all the algorithms being polynomial-time, we require that:
–The size of an accumulator is poly(λ).
–The size of proofs is poly(λ, log S).
–The size of a store is O(S)

Theorem 4. If there is an adaptively puncturable hash function ensemble H =
{Hλ}λ∈N with Hλ = {Hk : {0, 1}2λ → {0, 1}λ}k∈Kλ

, then there exists an adap-
tive positional accumulator.

Proof. We construct an adaptive positional accumulator in which stores are low-
depth binary trees, each node of which contains a λ-bit value. The accumulator
corresponding to a given store is the value held by the root node. The public
parameters for the accumulator consist of an adaptively puncturable hash h :
{0, 1}2λ → {0, 1}λ, and we preserve the invariant that the value in any internal
node is equal to the hash h applied to its children’s values. It will be convenient
for us to assume the existence of a ⊥, which is represented as a λ-bit string not
in the image of h. Without loss of generality, h can be chosen to have such a
value.

Setup(1λ, S) → PP, ac0, store0
Setup samples h ← Hλ, and sets PP = h, ac0 = h(⊥‖⊥), and store0 to be a
root node with value h(⊥‖⊥).

Update(h, store, op) → store′, ac′, v, π
Suppose op is ReadWrite(addr �→ v′). There is a unique leaf node in store
which is indexed by a prefix of addr. Let v be the value of that leaf, and let
π be the values of all siblings on the path from the root to that leaf.
Update adds a leaf node indexed by the entirety of addr to store if no such
node already exists, and sets the value of the leaf to v′. Then Update updates
the value of ancestor of that leaf to preserve the invariant.

SetupVerify(h) → vk
For i = 1, . . . , log S, SetupVerify samples

vki ← GenVK(1λ, h)

and sets vk = (vk1, . . . , vklog S).

Adaptive Succinct Garbled RAM (How to Delegate Your Database) 77

Verify((vk1, . . . , vklog S), ac, op, ac′, v, (w1, . . . , wd)) → {0, 1}
Define zd := v. Let b1 · · · bd′ denote the bit representation of the address on
which op acts. For 0 ≤ i < d, Verify computes

zi =

{

h(wi+1‖zi+1) if bi+1 = 1
h(zi+1‖wi+1) otherwise

For all i such that bi = 1, Verify checks that vki(wi+1‖zi+1, zi) = 1. For all i
such that bi = 0, Verify checks that vki(zi+1‖wi+1, zi) = 1. If all these checks
pass, then Verify outputs 1; otherwise, Verify outputs 0.

SetupEnforceVerify(h, (op1, . . . , opk)) → vk
Computes the storek−1 which would result from processing op1, . . . , opk−1.
Suppose opk accesses address addrk ∈ {0, 1}log S . Then there is a unique leaf
node in storek−1 which is indexed by a prefix of addrk; write this prefix as
b1 · · · bd.
For each i ∈ {1, . . . , d}, define zi as the value of the node indexed by b1 · · · bi,
and let wi denote the value of that node’s sibling. If bi = 0, sample

vki ← ForceGenVK(1λ, h, zi‖wi).

Otherwise, sample

vki ← ForceGenVK(1λ, h, wi‖zi).

For i ∈ {d + 1, . . . , log S}, just sample vki ← GenVK(1λ, h).
Finally we define the total verification key to be (vk1, . . . , vklog S).

All the requisite properties of this construction are easy to check.

6 Fixed-Transcript Garbling

Next we present the first step in our construction, a garbling scheme that pro-
vides adaptive security for RAM programs that have the same transcript. The
notion extends the first stage of Canetti-Holmgren scheme into the adaptive set-
ting, and the construction employs the adaptive positional accumulators plus
local changes in the other primitives.

We define fixed-transcript security via the following game.

1. The challenger samples SK ← Setup(1λ, S) and b ← {0, 1}.
2. The adversary sends a memory configuration s to the challenger. The chal-

lenger sends back GbMem(SK, s).
3. The adversary repeatedly sends pairs of RAM programs (M0

i ,M1
i) along with

a time bound Ti, and the challenger sends back M̃ b
i ← GbPrg(SK,M b

i , Ti, i).
Each pair (M0

i ,M1
i) is chosen adaptively after seeing M̃ b

i−1.
4. The adversary outputs a guess b′.

78 R. Canetti et al.

Let ((M0
1 ,M1

1), . . . , (M0
� ,M1

�)) denote the sequence of pairs of machines output
by the adversary. The adversary is said to win if b′ = b and:

– Sequentially executing M0
1 , . . . ,M0

� on initial memory configuration s yields
the same transcript as executing M1

1 , . . . ,M1
� .

– Each M b
i runs in time at most Ti and space at most S.

– For each i, |M0
i | = |M1

i |.
Definition 2. A garbling scheme is fixed-transcript secure if for all p.p.t.
algorithms A, there is a negligible function negl so that A’s probability of winning
the game is at most 1

2 + negl(λ).

Theorem 5. Assuming the existence of indistinguishability obfuscation and an
adaptive positional accumulator, there is a fixed-transcript secure garbling scheme.

Proof. Our construction follows closely the fixed-transcript garbling scheme of
[9], using our adaptive positional accumulator in place of [28]’s positional accu-
mulator. We also rely on puncturable PRFs (PPRFs), splittable signatures and
cryptographic iterators defined in the full version.

Setup(1λ, S) → SK: sample (Acc.PP, acinit, storeinit) ← Acc.Setup(1λ, S), a PPRF
F. Set SK = (Acc.PP, acinit, storeinit, Itr.PP, itrinit,F), and (Itr.PP, itrinit) ←
Itr.Setup(1λ).

GbMem(SK, s) → s̃ : GbMem updates the APA (acinit, storeinit) to set the under-
lying memory to s (via a sequence of calls to Update) and let ac0, store0
denote the result. It then generates (sk, vk) ← Spl.Setup(1λ; F(1, 0)), where
(1, 0) represents the initial index number i and initial time-step number 02.
Finally, GbMem computes σ0 ← Spl.Sign(sk, (⊥,⊥, ac0,ReadWrite(0 �→ 0))).
Here the first ⊥ represents an initial local state q0 for M1, and the second ⊥
represents an initial iterator value itr0. GbMem outputs s̃ = (σ0, ac0, store0).

GbPrg(SK,Mi, Ti, i) → M̃i: GbPrg first transforms Mi so that its initial state is
⊥. Note this can be done without loss of generality by hard-coding the “real”
initial state in the transition function. GbPrg then computes C̃i ← iO(Ci),
where Ci is described in Algorithm 1.
Finally, GbPrg defines and outputs a RAM machine M̃i, which has C̃i hard-
coded as part of its transition function, such that M̃i does the following:
1. Reads (ac0, σ0) from memory. Define op0 = ReadWrite(0 �→ 0), q0 = ⊥,

and itr0 = ⊥.
2. For t = 0, 1, 2, . . .:

(a) Compute storet+1, act+1, vt, πt ← Acc.Update(Acc.PP, storet, opt).
(b) Compute outt ← C̃i(t, qt, itrt, act, opt, σt, vt, act+1, πt).
(c) If outt parses as (y, σ), then write (act+1, σ) to memory, output y,

and terminate.
(d) Otherwise, parse outt as (qt+1, itrt+1, act+1, opt+1), σt+1 or terminate

if outt is not of this form.
2 Looking ahead, all the intermediate (sk, vk) key pairs are generated by applying F

to the (index, time-step) tuple.

Adaptive Succinct Garbled RAM (How to Delegate Your Database) 79

Input: Time t, state q, iterator itr, accumulator ac, operation op, signature σ,
memory value v, new accumulator ac′, proof π

Data: Puncturable PRF F, RAM machine Mi with transition function δi,
Accumulator verification key vkAcc, index i, iterator public parameters
Itr.PP, time bound Ti

1 (sk, vk) ← Spl.Setup(1λ;F(i, t));
2 if t > Ti or Spl.Verify(vk, (q, itr, ac, op), σ) = 0 or

Acc.Verify(vkAcc, ac, op, ac
′, v, π) = 0 then return ⊥;

3 out ← δi(q, v);
4 if out ∈ Y then

5 (sk′, vk′) ← Spl.Setup(1λ;F(i + 1, 0));
6 return out, Sign(sk′, (⊥, ⊥, ac′,ReadWrite(0 	→ 0))

7 else
8 Parse out as (q′, op′);
9 itr′ ← Itr.Iterate(Itr.PP, (q, itr, ac, op));

10 (sk′, vk′) ← Spl.Setup(1λ;F(i, t + 1));
11 return (q′, itr′, ac′, op′), Sign(sk′, (q′, itr′, ac′, op′))

Algorithm 1: Transition function for Mi, with memory verified by a signed
accumulator.

We note that GbPrg can efficiently produce M̃i from C̃i and Acc.PP. This
means that later, when we prove security, it will suffice to analyze a game in
which the adversary receives C̃i instead of M̃i.

Eval(M̃, s̃) The evaluation algorithm runs M̃ on the garbled memory s̃, and
outputs M̃(s̃).

Correctness and efficiency are easy to verify. For the proof of security we refer
the readers to the full version.

7 Fixed-Access Garbling

Fixed-access security is defined in the same way as fixed-transcript security,
but the left and right machines produced by A do not need to have the same
transcripts for A to win - they may not have the same intermediate states, but
only need to perform the same memory operations.

Definition 3 (Fixed-access security)
We define fixed-access security via the following game.

1. The challenger samples SK ← Setup(1λ, S) and b ← {0, 1}.
3. The adversary sends a memory configuration s to the challenger. The chal-

lenger sends back GbMem(SK, s).
4. The adversary repeatedly sends pairs of RAM programs (M0

i ,M1
i) to the

challenger, together with a time bound 1Ti , and the challenger sends back
M̃ b

i ← GbPrg(SK,M b
i , Ti, i). Each pair (M0

i ,M1
i) is chosen adaptively after

seeing M̃ b
i−1.

5. The adversary outputs a guess b′.

80 R. Canetti et al.

Let ((M0
1 ,M1

1), . . . , (M0
� ,M1

�)) denote the sequence of pairs of machines output
by the adversary. The adversary is said to win if b′ = b and:

– Sequentially executing M0
1 , . . . ,M0

� on initial memory configuration s yields
the same transcript as executing M1

1 , . . . ,M1
� , except that the local states can

be different.
– Each M b

i runs in time at most Ti and space at most S.

A garbling scheme is said to have fixed-access security if all p.p.t. adversaries A
win in the game above with probability less than 1/2 + negl(λ).

To achieve fixed-access security, we adapt the exact same technique from [9]:
xoring the state with a pseudorandom function applied on the local time t. The
PRF keys used in different machines are sampled independently.

Theorem 6. If there is a fixed-transcript garbling scheme, then there is a fixed-
access garbling scheme.

Proof. From a fixed-transcript garbling scheme (Setup′,GbMem′,GbPrg′,Eval′),
we construct a fixed-access garbling scheme (Setup,GbMem,GbPrg,Eval).

Setup(1λ, S) samples SK ′ ← Setup′(1λ, S), sets it as SK.
GbMem(SK, s) outputs s̃′ ← GbMem′(SK ′, s).
GbPrg(SK,Mi, Ti, i) samples a PPRF Fi, outputs M̃ ′

i ← GbPrg′(SK ′,M ′
i , Ti, i),

where M ′
i is defined as in Algorithm 2. If Mi’s initial state is q0, the initial

state of M ′
i is (0, q0 ⊕ Fi(0)).

Eval(M̃, s̃) outputs Eval′(M̃ ′, s̃′).

Input: State (t, cq), memory symbol σ
Data: RAM machine Mi, puncturable PRF Fi

1 q ← cq ⊕ Fi(t);
2 out ← Mi(q, σ);
3 if out ∈ Y then return out;
4 Parse out as (q′, op);
5 return ((t + 1, q′ ⊕ Fi(t + 1)), op);

Algorithm 2: M ′
i , the modified version of Mi which encrypts its state.

For the proof that this construction satisfies the requisite security, we refer
the readers to the full version.

8 Fixed-Address Garbling

Fixed-address security is defined in the same way as fixed-access security, but the
left and right machines produced by A do not need to make the same memory
operations for A to win - their memory operations only need to access the same
addresses. Additionally, the adversary A now provides not only a single mem-
ory configuration s0, but two memory configurations s00 and s10. The challenger
returns GbMem(SK, sb

0). In keeping with the spirit of fixed-address garbling, we
require s00 and s10 to have the same set of addresses storing non-ε values.

Adaptive Succinct Garbled RAM (How to Delegate Your Database) 81

Definition 4 (Fixed-address security). We define fixed-address security via
the following game.

1. The challenger samples SK ← Setup(1λ, S) and b ← {0, 1}.
2. The adversary sends the initial memory configurations s00, s10 to the chal-

lenger. The challenger sends back s̃b
0 ← GbMem(SK, sb

0).
3. The adversary repeatedly sends pairs of RAM programs (M0

i ,M1
i) to the

challenger, together with a time bound 1Ti , and the challenger sends back
M̃ b

i ← GbPrg(SK,M b
i , Ti, i). Each pair (M0

i ,M1
i) is chosen adaptively after

seeing M̃ b
i−1.

4. The adversary outputs a guess b′.

Let ((s00, s
1
0), (M

0
1 ,M1

1), . . . , (M0
� ,M1

�)) denote the sequence of pairs of memory
configurations and machines output by the adversary. The adversary is said to
win if b′ = b and:

– {a : s00(a) �= ε} = {a : s10(a) �= ε}.
– The sequence of addresses accessed and the outputs during the sequential exe-

cution of M0
1 , . . . ,M0

� on initial memory configuration s00 are the same as when
executing M1

1 , . . . ,M1
� on s10.

– Each M b
i runs in time at most Ti and space at most S.

– For each i, |M0
i | = |M1

i |.
A garbling scheme is said to have fixed-address security if all p.p.t. adver-

saries A win in the game above with probability less than 1/2 + negl(λ).

Our construction of fixed-address garbling is almost the same with the two-
track solution in [9], with a slight modification at the way to “encrypt” the
memory configuration. In [9], the memory configurations are xored with different
puncturable PRF values in the two tracks, where the PRFs are applied on the
time t and address a. In this work, the PRFs are applied on the execution index
i and time t, not on the address a. This is enough for our purpose, because in
each execution index i and step t, the machine only writes on a single address
(for the initial memory configuration, the index is assigned as 0, and different
timestamps will be assigned on different addresses). By this modification, we are
able to prove adaptive security based on selective secure puncturable PRF, and
adaptively secure fixed-access garbling.

We note that, even if the address a is included in the domain of PRF, as in
[9], the construction is still adaptively secure if the underlying PRF is based on
GGM’s tree construction. Here we choose to present the simplified version which
suffices for our purpose.

Construction 7. Suppose (Setup′,GbMem′,GbPrg′,Eval′) is a fixed-access gar-
bling scheme, we construct a fixed-address garbling scheme (Setup,GbMem,
GbPrg,Eval):

Setup(1λ, S) samples SK ′ ← Setup′(1λ, S) and puncturable PRFs FA and FB .

82 R. Canetti et al.

GbMem(SK, s) outputs s̃′
0 ← GbMem′(SK ′, s′

0), where

s′
0(a) =

{

(0,−a, FA(0,−a) ⊕ s0(a), FB(0,−a) ⊕ s0(a)) if s0(a) �= ε

ε otherwise

GbPrg(SK,Mi, Ti, i) outputs M̃ ′
i ← GbPrg′(SK ′,M ′

i , Ti, i), where M ′
i is defined

as in Algorithm 3. If the initial state of Mi was q0, the initial state of M ′
i is

(0, q0, q0).
Eval(M̃, s̃) outputs Eval′(M̃ ′, s̃′

0).

Input: State (tq, qA, qB), memory symbol (iin, tin, cA, cB)
Data: RAM machine Mi, puncturable PRFs FA, FB

1 out ← Mi(qA, FA(iin, tin) ⊕ cA);
2 if out ∈ Y then return out;
3 Parse out as (q′,ReadWrite(addr′ 	→ v′));
4 op′ := ReadWrite(addr′ 	→ (i, tq, FA(i, tq) ⊕ v′, FB(i, tq) ⊕ v′);
5 return (tq + 1, q′, q′), op′;

Algorithm 3: M ′
i : Modified version of Mi which encrypts its memory twice

in parallel.

Theorem 8. If (Setup′,GbMem′,GbPrg′) is a fixed-access garbling scheme, then
Construction 7 is a fixed-address garbling scheme.

Proof. For the proof of security we refer the readers to the full version.

9 Full Garbling

In order to construct a fully secure garbling scheme, we will need to make use of
an oblivious RAM (ORAM) [19] to hide the addresses accessed by the machine.

9.1 Oblivious RAMs with Strong Localized Randomness

We require that the ORAM has a strong localized randomness property3, which
is satisfied by the ORAM construction of [13]. Below we give a brief definition
of ORAM and the property we need.

An ORAM is a probabilistic scheme for memory storage and access that
provides obliviousness for access patterns with sublinear access complexity. It is
convenient for us to model an ORAM scheme as follows. We define a determin-
istic algorithm OProg so that for a security parameter 1λ, a memory operation
op, and a space bound S, OProg(1λ, op, S) outputs a probabilistic RAM machine
Mop. More generally, for a RAM machine M , we can define OProg(1λ,M, S) as
the (probabilistic) machine which executes OProg(1λ, op, S) for every operation
op output by M .

3 This notion is similar but stronger to the “localized randomness” defined in [9].

Adaptive Succinct Garbled RAM (How to Delegate Your Database) 83

We also define OMem, a procedure for making a memory configuration obliv-
ious, in terms of OProg, as follows: Given a memory configuration s with n
non-empty addresses a1, . . . , an, all less than or equal to a space bound S,
OMem(1λ, s, S) iteratively samples

s′
0 ← εN

and
s′

i = NextMem(OProg(1λ,ReadWrite(ai �→ s(ai)), S), s′
i−1)

and outputs s′
n.

Security (Strong Localized Randomness). Informally, we consider obliv-
iously executing operations op1, . . . , opt on a memory of size S, i.e. execut-
ing machines Mop1 ; . . . ;Mopt

using a random tape R ∈ {0, 1}N. This yields a
sequence of addresses A = a1‖ · · · ‖at. There should be a natural way to decom-
pose each ai (in the Chung-Pass ORAM, we consider each recursive level of the
construction) such that we can write ai = ai,1‖ · · · ‖ai,m. Our notion of strong
localized randomness requires that (after having fixed op1, . . . , opt), each ai,j

depends on some small substring of R, which does not influence any other ai′,j′ .
In other words:

– There is some αi,j , βi,j ∈ N such that 0 < βi,j − αi,j ≤ poly(log S) and such
that ai,j is a function of Rαi,j

, . . . , Rβi,j
.

– The collection of intervals [αi,j , βi,j] for i ∈ {1, . . . , t}, j ∈ {1, . . . , m} is pair-
wise disjoint.

Formally, we say that an ORAM with multiplicative time overhead η has
strong localized randomness if:

– For all λ and S, there exists m and τ1 < τ2 < · · · < τm with τ1 = 1 and
τm = η(S, λ)+1, and there exist circuits C1, . . . , Cm, such that for all memory
operations op1, . . . , opt, there exist pairwise disjoint intervals I1, . . . , Im ⊂ N

such that:
• If we write

A1‖ · · · ‖At ← addr(MR1
op1

; . . . ;MRt
opt

, εN)

where R = R1‖ · · · ‖Rt denotes the randomness used by the oblivi-
ous accesses and each Ai denotes the addresses accessed by MRi

opi
, then

(At)[τj ,τj+1) = Cj(RIj
) with high probability over R. Here RIj

denotes the
contiguous substring of R indexed by the interval Ij ⊂ [|R|].

• With high probability over the choice of RN\Ij
, A1, . . . ,At−1 does not

depend on RIj
as a function.

– τj and the circuits Cj are computable in polynomial time given 1λ, S, and j.
– Ij is computable in polynomial time given 1λ, S, op1, . . . , opt, and j.

A full exposure, including the full definition and proof that Chung-Pass
ORAM satisfies the strong localized randomness property can be found in the
full version.

84 R. Canetti et al.

9.2 Full Garbling Construction

Theorem 9. If there is an efficient fixed-address garbling scheme, then there is
an efficient full garbling scheme.

Proof. Given a fixed-address garbling scheme (Setup′,GbMem′,GbPrg′,Eval′)
and an oblivious RAM OProg with space overhead ζ and time overhead η. We
construct a full garbling scheme (Setup,GbMem,GbPrg,Eval).

Setup(1λ, T, S) samples SK ′ ← Setup′(1λ, η(S, λ) · T, ζ(S, λ) · S) and samples a
PPRF F : {0, 1}λ ×{0, 1}λ → {0, 1}�R , where �R is the length of randomness
needed to obliviously execute one memory operation. We will sometimes
think of the domain of F as [22λ].

GbMem(SK, s0) outputs s̃′
0 ← GbMem′(SK′,OMem(1λ, s0, S)).

GbPrg(SK,Mi, i) outputs M̃ ′
i ← GbPrg′(SK′,OProg(1λ,Mi, S)F(i,·), i).

Eval(M̃, s̃) outputs Eval′(M̃ ′, s̃′
0).

Simulator To show security of this construction, we define the following simu-
lator.

1. The adversary provides S, and an initial memory configuration s0. Say that
s0 has n non-ε addresses. The simulator is given S and n, and samples
SK ′ ← Setup′(1λ, ζ(S, λ) · S) and sends GbMem′(SK ′,OMem(1λ, 0n, S)) to
the adversary.

2. When the adversary makes a query Mi, 1Ti , the simulator is given yi =
Mi(si−1) and ti = Time(Mi, si−1), where si = NextMem(Mi, si−1), and out-
puts GbPrg′(SK ′,Di, η(S, λ) · Ti, i), where Di is a “dummy program”. As
described in Algorithm 4, Di independently samples addresses to access for ti
steps, and then outputs yi.

Data: Underlying running time ti, output value yi, PPRF Gi, circuits
C1, . . . , Cm guaranteed by localized randomness

1 for t = 1, . . . , ti do
2 for k = 1, . . . , m do
3 rk ← Gi(t, k);
4 Access addresses given by Ck(rk)

5 return yi.

Algorithm 4: Pseudocode for a dummy RAM machine which simulates
pseudorandom addresses to access using the circuits C1, . . . , Cm given in
the definition of localized randomness, and then outputs yi.

We refer the readers to the full version for the proof.

Adaptive Succinct Garbled RAM (How to Delegate Your Database) 85

10 Database Delegation

We define security for the task of delegating a database to an untrusted server.
Here we have a database owner that wishes to keep the database on a remote
server. Over time, the owner wishes to update the database and query it. Further-
more, the owner wishes to enable other parties to do so as well, perhaps under
some restrictions. Informally, the security requirements from the scheme are:

Verifiability: The data owner should be able to verify the correctness of the
answers to its queries, relative to the up-to-date state of the database fol-
lowing all the updates made so far.

Secrecy of database and queries: For queries made by the database owner
and honest third parties, the adversary does not learn anything other than
the size of the database, the sizes and runtimes of the queries, and the sizes
of the answers. This holds even if the answers to the queries become partially
or fully known by other means.
For queries made by adversarially controlled third parties, the adversary
learns in addition only the answers to the queries.
(We stress that the secrecy requirement for the case of a corrupted third
party is incomparable to the secrecy requirement in the case of an honest
third party. In particular, the case of corrupted third parties guarantees
secrecy even when the entire evaluation and verification processes are com-
pletely exposed.)

More precisely, a database delegation scheme (or, protocol) consists of the fol-
lowing algorithms:

DBDelegate: Initial delegation of the database. Takes as input a plain database,
and outputs an encrypted database (to be sent to the server), public verifi-
cation key vk and private master key msk to be kept secret.

Query: Delegation of a query or database update. Takes a RAM program and
the master secret key msk, and outputs a delegated program to be sent to
the server and a secret key skenc that allows recovering the result of the
evaluation from the returned response.

Eval: Evaluation of a query or update. Takes a delegated database D̃ and a
delegated program M̃ , runs M̃ on D̃. Returns a response value a and an
updated database D̃′.

AnsDecVer: Local processing of the server’s answer. Takes the public verification
key vk, the private decryption key skenc and outputs either an answer value
or ⊥.

Security. The security requirement from a database delegation scheme S =
(DBDelegate,Query,Eval,AnsDecVer) is that it UC-realize the database delega-
tion ideal functionality Fdd defined as follows. (For simplicity we assume that
the database owner is uncorrupted, and that the communication channels are
authenticated.)

86 R. Canetti et al.

1. When activated for the first time, Fdd expects to obtain from the activating
party (the database owner) a database D. It then records D and discloses
‖D‖0 to the adversary.

2. In each subsequent activation by the owner, that specifies a program M and
party P , run M on D, obtain an answer a and a modified database D′, store
D′ and disclose |M |, the running time of M , and the length of a to the
adversary. If the adversary returns ok then output (M,a) to P .

To make the requirements imposed by Fdd more explicit, we also provide
an alternative (and equivalent) formulation of the definition in terms of a dis-
tinguishability game. Specifically, we require that there exists a simulator Sim
such that no adversary (environment) A will be able to distinguish whether it
is interacting with the real or the ideal games as described here:

Real game REALA(1λ):

1. A provides a database D, receives the public outputs of DBDelegate(D).
2. A repeatedly provides a program Mi and a bit that indicates either honest

or dishonest. In response, Query is run to obtain ski
enc and M̃i. A obtains

M̃i, and in the dishonest case also the decryption key ski
enc.

3. In the honest case A provides the server’s output outi for the execution
of Mi, and obtains in response the result of AnsDecVer(vk, skenc, outi).

Ideal game IDEALA(1λ):

1. A provides a database D, receives the output of Sim(‖D‖0).
2. A repeatedly provides a program Mi and either honest or dishonest. In

response, Mi runs on the current state of the database D to obtain output
a and modified database D′. D′ is stored instead of D. In the case of
dishonest, A obtains Sim(a, s, t), where s is the description size of M and
t is the runtime of M . In the case of honest, A obtains Sim(s, t).

3. In the honest case A provides the server’s output outi for the execution
of Mi, and obtains in response Sim(outi), where here Sim(outi) can take
one out of only two values: either a or ⊥.

Definition 5. A delegation scheme S = (DBDelegate,Query,Eval,AnsDecVer)
is secure if it UC-realizes Fdd. Equivalently, it is secure if there exists a simu-
lator Sim such that no A can guess with non-negligible advantage whether it is
interacting in the real interaction with S or in the ideal interaction with Sim.

Theorem 10. If there exist adaptive succinct garbled RAMs with persistent
memory, unforgeable signature schemes and symmetric encryption schemes with
pseudorandom ciphertexts, then there exist secure database delegation schemes
with succinct queries and efficient delegation, query preparation, query evalua-
tion, and response verification.

Proof. Let (Setup,GbMem,GbPrg,Eval) be an adaptively secure garbling scheme
for RAM with persistent memory. We construct a database delegation scheme
as follows:

Adaptive Succinct Garbled RAM (How to Delegate Your Database) 87

DBDelegate(1λ): Run SK ← Setup(1λ,D) and D̃ ← GbMem(SK,D, |D|). Gen-
erate signing and verification keys (vksign, sksign) for the signature scheme.
Set msk ← (SK, sksign) and vk ← vksign.

Query(Mi,msk, pk): Generate a symmetric encryption key skenc. Generate the
extended version of M ′

i of Mi as in Algorithm 5.
Output M̃ ← GbPrg(SK,M ′

i [sksign, skenc], i)

Input: State q, memory value v
Data: RAM program Mi with transition function δi and output space Y , and

signing and encryption keys sksign, skenc
1 out ← δi(q, v);
2 if out ∈ Y then
3 ctout ← Enc(skenc, out)
4 σout ← Sign(sksign, ctout‖i)
5 return (ctout, σout);

6 return out

Algorithm 5: M ′
i : modified version of Mi which encrypts and signs its

final output

Eval: Run M̃ on D̃ and return the output value a and an updated database D̃′.
AnsDecVer(i, out, vk, sk): Parse out = (ct, σ). If Verify(vk, ct‖i, σ) �= 1, output ⊥.

Else output Dec(sk, ct).

We construct a simulator Sim for the delegation scheme as follows:

– DBDelegate: Sim generates signing and verifications keys sksign, vksign. Sim runs
the simulator SimGRAM for a GRAM scheme to obtain a simulated garbled
database D̃. It provides D̃ and vksign as output to the adversary A.

– Query: If Sim is executed with inputs (a, s, t) on the i-th iteration, it gen-
erates symmetric encryption key skenc. It computes ct = Enc(skenc, a), σ ←
Sign(sksign, ct‖i) and runs the simulator SimGRAM with inputs (ct‖i, σ) to obtain
simulated garbled RAM M̃i. It returns M̃i and skenc to A.
If Sim is executed with inputs (s, t) on the i-th iteration, it generates a random
value ct, computes σ ← Sign(sksign, ct‖i) and runs the simulator SimGRAM with
inputs (ct‖i, σ) to obtain simulated garbled RAM M̃i. It returns M̃i to A.

– AnsDecVer: If Sim executes on input outi then it outputs AnsDecVer(vk, skenc,
outi).

To show validity of Sim, we construct the following hybrids.

H0: This is the real world execution.
H1: In this hybrid we start using the simulator for the GRAM SimGRAM to

generate simulated database D̃′. We generate the signature scheme keys
(vksign, sksign) honestly. We also use SimGRAM to generate the garbling for the
programs M ′

i given inputs cti ← Enc(pkenc, out)‖i , σi ← Sign(sksign, cti) and
out is the result of the evaluation of Mi with the memory state after the
previous i − 1 evaluations.

88 R. Canetti et al.

The indistinguishability of H0 and H1 follows from the simulation security
of the GRAM scheme.

H2: In this hybrid for all honest executions for machines Mi where the adver-
sary A does not get skenc, we run SimGRAM to generate the garbling for
the programs M ′

i with inputs cti ← r, where r is a random value, and
σi ← Sign(sksign, cti‖i).
The indistinguishability of H1 and H2 follows from the pseudorandom prop-
erty of symmetric encryption ciphertexts.
Now, consider the event where, in execution H2, the adversary provides a
value outi such that AnsDecVer(vk, skenc, outi) = a′ and a �= a′ �=⊥, where a
is the correct answer for the i-th query in this execution. We argue that:
• Conditioned on this event not happening, A’s view of H2 is identical to

its view in the ideal interaction.
• The event happens with at most negligible probability. Otherwise A can

be used to break the unforgeability of the signature scheme. To see this
consider an interaction between A and Sim that is the same as H2 except
that Sim queries the signature scheme challenger C to obtain verification
key vksign and signatures σi for the values cti. Then outi, which A returns,
contains a signature of a message that Sim has not queried. Hence, Sim
breaks the unforgeability property of the signature scheme.

Acknowledgments. We would like to thank Oxana Poburinnaya. Although she pre-
ferred not to co-author this paper, her constructive suggestions and criticisms played
an essential role throughout the creation of this work.

This work is supported by US NSF grants 1413920, 1218461, 1012798, 1012910,
1421102, 1562888, 1565208, 1633282, ISF grant 1523/14, and DARPA SafeWare
W911NF-15-C-0236. Part of the research by Y.C. was conducted while at SRI funded
by the NSF grant 1421102.

References

1. Ananth, P., Chen, Y.-C., Chung, K.-M., Lin, H., Lin, W.-K.: Delegating ram com-
putations with adaptive soundness and privacy. Cryptology ePrint Archive, Report
2015/1082 (2015)

2. Ananth, P., Sahai, A.: Functional encryption for turing machines. IACR Cryptol-
ogy ePrint Archive 2015, p. 776 (2015)

3. Bellare, M., Hoang, V.T., Rogaway, P.: Adaptively secure garbling with applica-
tions to one-time programs and secure outsourcing. In: Wang, X., Sako, K. (eds.)
ASIACRYPT 2012. LNCS, vol. 7658, pp. 134–153. Springer, Heidelberg (2012).
doi:10.1007/978-3-642-34961-4 10

4. Bitansky, N., Canetti, R., Chiesa, A., Goldwasser, S., Lin, H., Rubinstein, A.,
Tromer, E.: The hunting of the SNARK. IACR Cryptology ePrint Archive 2014,
p. 580 (2014)

5. Bitansky, N., Garg, S., Lin, H., Pass, R., Telang, S.: Succinct randomized encod-
ings and their applications. In: Rubinfeld, R. (ed.) Symposium on the Theory of
Computing (STOC) (2015)

6. Bösch, C.T., Hartel, P.H., Jonker, W., Peter, A.: A survey of provably secure
searchable encryption. ACM Comput. Surv. 47(2), 18:1–18:51 (2014)

http://dx.doi.org/10.1007/978-3-642-34961-4_10

Adaptive Succinct Garbled RAM (How to Delegate Your Database) 89

7. Boyle, E., Chung, K.-M., Pass, R.: On extractability obfuscation. In: Lindell, Y.
(ed.) TCC 2014. LNCS, vol. 8349, pp. 52–73. Springer, Heidelberg (2014). doi:10.
1007/978-3-642-54242-8 3

8. Canetti, R., Chen, Y., Holmgren, J., Raykova, M.: Succinct adaptive garbled ram.
Cryptology ePrint Archive, Report 2015/1074 (2015)

9. Canetti, R., Holmgren, J.: Fully succinct garbled ram. In: ITCS (2016)
10. Canetti, R., Holmgren, J., Jain, A., Vaikuntanathan, V.: Indistinguishability obfus-

cation of iterated circuits and ram programs. Cryptology ePrint Archive, Report
2014/769 (2014)

11. Chen, Y.-C., Chow, S.S., Chung, K.-M., Lai, R.W., Lin, W.-K., Zhou, H.-S.:
Computation-trace indistinguishability obfuscation and its applications. IACR
Cryptology ePrint Archive (2015)

12. Chung, K.-M., Kalai, Y., Vadhan, S.: Improved delegation of computation using
fully homomorphic encryption. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol.
6223, pp. 483–501. Springer, Heidelberg (2010). doi:10.1007/978-3-642-14623-7 26

13. Chung, K.-M., Pass, R.: A simple ORAM. IACR Cryptology ePrint Archive 2013,
p. 243 (2013)

14. Damg̊ard, I.B.: Collision free hash functions and public key signature schemes. In:
Chaum, D., Price, W.L. (eds.) EUROCRYPT 1987. LNCS, vol. 304, pp. 203–216.
Springer, Heidelberg (1988). doi:10.1007/3-540-39118-5 19

15. Garg, S., Steve, L., Ostrovsky, R., Scafuro, A.: Garbled ram from one-way func-
tions. In: STOC (2015)

16. Gennaro, R., Gentry, C., Parno, B.: Non-interactive verifiable computing: out-
sourcing computation to untrusted workers. In: Rabin, T. (ed.) CRYPTO
2010. LNCS, vol. 6223, pp. 465–482. Springer, Heidelberg (2010). doi:10.1007/
978-3-642-14623-7 25

17. Gentry, C., Halevi, S., Lu, S., Ostrovsky, R., Raykova, M., Wichs, D.: Garbled RAM
revisited. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol.
8441, pp. 405–422. Springer, Heidelberg (2014). doi:10.1007/978-3-642-55220-5 23

18. Gentry, C., Halevi, S., Raykova, M., Wichs, D.: Outsourcing private ram compu-
tation. In: FOCS (2014)

19. Goldreich, O., Ostrovsky, R.: Software protection and simulation on oblivious rams.
J. ACM 43(3), 431–473 (1996)

20. Goldwasser, S., Kalai, Y.T., Rothblum, G.N.: One-time programs. In: Wagner, D.
(ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 39–56. Springer, Heidelberg (2008).
doi:10.1007/978-3-540-85174-5 3

21. Goldwasser, S., Micali, S., Rivest, R.L.: A digital signature scheme secure against
adaptive chosen-message attacks. SIAM J. Comput. 17(2), 281–308 (1988)

22. Hemenway, B., Jafargholi, Z., Ostrovsky, R., Scafuro, A., Wichs, D.: Adaptively
secure garbled circuits from one-way functions

23. Hubáček, P., Wichs, D.: On the communication complexity of secure function eval-
uation with long output. In: ITCS (2015)

24. Kalai, Y.T., Paneth, O.: Delegating ram computations. Cryptology ePrint Archive,
Report 2015/957 (2015)

25. Kalai, Y.T., Raz, R., Rothblum, R.D.: How to delegate computations: the power
of no-signaling proofs. In: Symposium on Theory of Computing, STOC 2014, New
York, NY, USA, May 31 - June 03, 2014, pp. 485–494 (2014)

26. Kamara, S.: Encrypted search. ACM Crossroads 21(3), 30–34 (2015)
27. Koppula, V., Lewko, A.B., Waters, B.: Indistinguishability obfuscation for turing

machines with unbounded memory. Cryptology ePrint Archive, Report 2014/925
(2014)

http://dx.doi.org/10.1007/978-3-642-54242-8_3
http://dx.doi.org/10.1007/978-3-642-54242-8_3
http://dx.doi.org/10.1007/978-3-642-14623-7_26
http://dx.doi.org/10.1007/3-540-39118-5_19
http://dx.doi.org/10.1007/978-3-642-14623-7_25
http://dx.doi.org/10.1007/978-3-642-14623-7_25
http://dx.doi.org/10.1007/978-3-642-55220-5_23
http://dx.doi.org/10.1007/978-3-540-85174-5_3

90 R. Canetti et al.

28. Koppula, V., Lewko, A.B., Waters, B.: Indistinguishability obfuscation for turing
machines with unbounded memory. In: STOC (2015)

29. Lu, S., Ostrovsky, R.: How to garble RAM programs? In: Johansson, T., Nguyen,
P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 719–734. Springer, Heidelberg
(2013). doi:10.1007/978-3-642-38348-9 42

30. Okamoto, T., Pietrzak, K., Waters, B., Wichs, D.: New realizations of somewhere
statistically binding hashing and positional accumulators. IACR Cryptology ePrint
Archive 2015, p. 869 (2015)

31. Papamanthou, C., Tamassia, R., Triandopoulos, N.: Optimal verification of opera-
tions on dynamic sets. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp.
91–110. Springer, Heidelberg (2011). doi:10.1007/978-3-642-22792-9 6

32. Popa, R.A., Redfield, C., Zeldovich, N., Balakrishnan, H.: Cryptdb: protecting
confidentiality with encrypted query processing. In: SOSP 2011, Cascais, Portugal,
October 23–26, 2011, pp. 85–100 (2011)

33. Rogaway, P.: The round complexity of secure protocols. Ph.D. thesis, Massachusetts
Institute of Technology (1991)

34. Walfish, M., Blumberg, A.J.: Verifying computations without reexecuting them.
Commun. ACM 58(2), 74–84 (2015)

35. Yao, A.C.-C.: How to generate and exchange secrets. In: FOCS, pp. 162–167 (1986)

http://dx.doi.org/10.1007/978-3-642-38348-9_42
http://dx.doi.org/10.1007/978-3-642-22792-9_6

Delegating RAM Computations

Yael Kalai1(B) and Omer Paneth2

1 Microsoft Research, Redmond, USA
yael@microsoft.com

2 Boston University, Boston, USA

Abstract. In the setting of cloud computing a user wishes to delegate
its data, as well as computations over this data, to a cloud provider.
Each computation may read and modify the data, and these modifica-
tions should persist between computations. Minding the computational
resources of the cloud, delegated computations are modeled as RAM pro-
grams. In particular, the delegated computations’ running time may be
sub-linear, or even exponentially smaller than the memory size.

We construct a two-message protocol for delegating RAM compu-
tations to an untrusted cloud. In our protocol, the user saves a short
digest of the delegated data. For every delegated computation, the cloud
returns, in addition to the computation’s output, the digest of the mod-
ified data, and a proof that the output and digest were computed cor-
rectly. When delegating a T-time RAM computation M with security
parameter k, the cloud runs in time poly(T, k) and the user in time
poly(|M | , logT, k).

Our protocol is secure assuming super-polynomial hardness of the
Learning with Error (LWE) assumption. Security holds even when the
delegated computations are chosen adaptively as a function of the data
and output of previous computations.

We note that RAM delegation schemes are an improved variant of
memory delegation schemes [Chung et al. CRYPTO 2011]. In memory
delegation, computations are modeled as Turing machines, and therefore,
the cloud’s work always grows with the size of the delegated data.

1 Introduction

In recent years, with the growing popularity of cloud computing platforms, more
and more users store data and run computations on the cloud. This raises many
concerns. As cryptographers, our first concern is that of secrecy: users may wish
to hide their confidential data and computations from the cloud. But perhaps a
more fundamental concern is that of integrity: ensuring that the cloud is doing
what it is supposed to do. In this paper we focus on the latter.

We ask the following question: how can a cloud provider convince a user that a
delegated computation was performed correctly? We believe that the adoption of

O. Paneth—Supported by the Simons award for graduate students in theoretical
computer science and an NSF Algorithmic foundations grant 1218461.

c© International Association for Cryptologic Research 2016
M. Hirt and A. Smith (Eds.): TCC 2016-B, Part II, LNCS 9986, pp. 91–118, 2016.
DOI: 10.1007/978-3-662-53644-5 4

92 Y. Kalai and O. Paneth

cloud computing services depends on the existence of such mechanisms. Indeed,
even if not every computation is explicitly checked, the mere ability to check
computations may be desirable.

RAM Delegation. We model the above problem as follows. Initially the user owns
some memory D containing the data it wishes to delegate. In order to verify the
correctness of future computations over this memory, the user must save some
short digest of the memory D. We therefore allow the user to pre-process the
memory once, before delegating it, and compute a digest d. We also allow the
cloud to pre-process the memory before storing it. During this pre-processing
the cloud can compute auxiliary information that will be stored together with
the memory and used to construct proofs efficiently.

To compute on the memory, the user specifies a program M and sends its
description to the cloud. We model the program M as a RAM program. We
believe that this is the most realistic choice when the outsourced memory is very
large and the computation may not access it all.1 The cloud sends back to the
user the output y of the program M when executed on the memory D. The user
can delegate multiple computations sequentially where each computation may
modify the memory. We require that the state of the memory persists between
computations. Therefore, after every computation, the cloud sends back to the
user, together with the output y, the new digest dnew corresponding to the new
digest of the memory.

The cloud also provides a proof that the output y and the new digest dnew are
correct with respect to the program M and the digest d of the original memory.
We require that this proof proceeds in two messages, namely, together with the
program M , the user sends a challange ch, and together with y and dnew, the
cloud sends a proof pf. Thus, the proof of correctness does not require additional
rounds of interaction. We refer to such a protocol as a two-message delegation
scheme for RAM computations.

1.1 Our Results

We construct a two-message delegation scheme for RAM computations based on
the Learning with Errors (LWE) assumption.

Efficiency. For security parameter k and for initial memory of size n such that
n < 2k, the user’s and the cloud’s pre-processing time is n · poly(k), and the
digest is of size poly(k). If the running time of the delegated RAM program is
T (we assume that T < 2k), then the running time of the cloud is T3 · poly(k).
The communication complexity of the proof, and the time it takes the user to
generate a challenge and verify a proof are poly(k), and are independent of the
computation time.

1 For example, consider the setting where the user wishes to simply retrieve an element
from the outsourced database D. We would like the runtime of the user in this case
to be proportional to log |D|, as opposed to proportional to D.

Delegating RAM Computations 93

Adaptive Soundness. The soundness of our scheme holds even if the adversary
(acting as the cloud) can choose the program to be delegated adaptively depend-
ing on the memory and on the outcome of previously delegated computations.
This feature is especially important in applications where the pre-processing step
is performed once and then used and reused to delegate many computations over
time. We emphasize that our protocol may not be sound if the adversary chooses
the program adaptively depending on the user’s challenge ch.

Public Pre-processing. In a two-message delegation scheme for RAM computa-
tions the user must pre-process the memory before delegating it. In our scheme
the pre-processing step is public – it does not require any secret randomness. In
particular, the user is not required to keep any secret state between computa-
tions. This feature also allows a single execution of the pre-processing step to
serve multiple users, as long as they all trust the generated memory digest.2

Security with Adversarial Digest. We prove that our scheme is sound even in
the setting where the pre-processing step is executed by an untrusted party. In
this setting honest users cannot be sure that the digest they hold corresponds
to some “correct” memory, or even that it is indeed the digest of any memory
string. The soundness we require is that an adversary cannot prove that the
same computation with the same digest leads to two different outcomes. We
note that soundness for digests that are honestly computed follows from this
stronger formulation.

Efficient Pre-processing. Another feature of our scheme is that the efficiency of
the pre-processing step only depends on the initial memory size and does not
depend on the amount of memory required to execute future computations. In
particular, if there is no initial memory to delegate, the pre-processing step can
be skipped.3

Informal Theorem 1.1. There exists a two-message delegation scheme for
RAM computations, with efficiency, adaptive soundness and public pre-
processing, as described above, assuming the existence of a collision resistant
hash family that is sub-exponentially secure and assuming that the LWE problem
(with security parameter k) is hard to break in time quasi-polynomial in T, where
T is an upper bound on the running time of the delegated computations.

We note that the existence of a sub-exponentially secure collision resistant hash
family follows from the sub-exponential hardness of the LWE problem.

2 When different users delegate different computations that may change the memory,
there should be an external mechanism to synchronize these computations, and make
sure that every computation is verified with respect to the most recent digest of the
memory.

3 In fact, we can always replace the pre-processing step with an initial delegation
round where the user delegates a program that initializes the memory.

94 Y. Kalai and O. Paneth

On the Necessity of Cryptographic Assumptions. Since the user does not store
its memory locally, and only stores a short digest, we cannot hope to get
information-theoretic soundness. An all powerful malicious cloud can always
cheat by finding a fake memory D′ with the same digest as the original memory,
and perform computations using the fake memory. Therefore, the soundness of
our scheme must rely on some hardness assumption (such as the hardness of
finding digest collisions).

On Delegation with Secrecy. Our delegation protocol does not achieve secrecy.
That is, it does not hide the user’s data and computations from the cloud.
One method for achieving secrecy is to execute the entire delegation protocol
under fully-homomorphic encryption. However, this method is not applicable
when delegating RAM computations, since it increases the cloud’s running time
proportionally to the size of the entire memory.

1.2 Previous Work

We compare our result with previous results on delegating computation in vari-
ous models based on various computational assumptions.

Delegating Non-deterministic Computations. Previous works constructed
delegation schemes for non-deterministic computations in the random oracle
model or based on strong “knowledge” assumptions. As we observe in this work
(see Sect. 1.3), any delegation scheme for non-deterministic computations, com-
bined with a collision-resistant hash function, can be used to delegate RAM
computations.

The Random Oracle Model. Based on the interactive arguments of Kilian [Kil92],
Micali [Mic94] gave the first construction of a non-interactive delegation scheme
in the random oracle model. Micali’s scheme supports non-deterministic com-
putations and can therefore be used to delegate RAM computations assuming
also the existence of a collision-resistant hash family.4 The main advantage of
Micali’s scheme over the scheme presented in this work is that it is completely
non-interactive (it requires one message rather than two). In particular, Micali’s
scheme is also publicly verifiable. However, our scheme can be proven secure in
the standard model based on standard cryptographic assumptions.

Knowledge Assumptions. In a sequence of recent works, non-interactive (one mes-
sage) delegation schemes in the common reference string (CRS) model, were con-
structs based on strong and non-standard “knowledge” assumptions such as vari-
ants of the Knowledge of Exponent assumption [Gro10,Lip12,DFH12,GGPR13,

4 The solution described in Sect. 1.3 makes non-black-box use of the collision-resistant
hash function, and therefore we cannot replace the hash function with the random
oracle.

Delegating RAM Computations 95

BCI+13,BCCT13,BCC+14]. These schemes support non-deterministic compu-
tations and can therefore be used to delegate RAM computations. Some of the
above schemes are also publicly verifiable (the user does not need any secret trap-
door on the CRS). The main advantage of our scheme is that it can be based on
standard cryptographic assumptions.

Indistinguishability Obfuscation. Several recent results construct non-
interactive (one message) delegation schemes for RAM computations in the CRS
model based on indistinguishability obfuscation [GHRW14,BGL+15,CHJV15,
CH15,CCC+15]. Next we compare our scheme to the obfuscation based schemes.

The advantage of their schemes is that they achieve secrecy. In fact, they
construct stronger objects such as garbling and obfuscation schemes for RAM
computations. In addition, their schemes are publicly verifiable. The advantages
of our scheme, compared to the obfuscation based schemes, are the following:

Assumptions. Our scheme is based on the hardness of the LWE problem – a
standard and well studied cryptographic assumption. In particular, the LWE
problem is known to be as hard as certain worst-case lattice problems.

Adaptivity. In our scheme security holds even against an adaptive adversary
that chooses the delegated computations as a function of the delegated mem-
ory. In contrast, the obfuscation based schemes only have static security. That
is, in the analysis all future delegated computations must be fixed before the
memory is delegated. We note that using complexity leveraging and sub-
exponential hardness assumptions it is possible to prove that obfuscation
based schemes are secure against a bounded number of adaptively chosen
computations, where the bound on the number of computations depends on
the size of the CRS.

Security with adversarial digest. In our scheme the pre-processing step is
public and soundness holds even in the setting where the pre-processing step
is executed by an untrusted party. In the obfuscation based schemes however,
the pre-processing step requires private randomness and if it is not carried
out honestly the cloud may be able to prove arbitrary statements.

Following our work, Canetti et al. [CCHR15] and Ananth et al. [ACC+15]
gave a delegation scheme for RAM computations from indistinguishability obfus-
cation that satisfies the same notion of adaptivity as our scheme. These construc-
tions do not have public digest and they are not secure with adversarial digest.

Learning with Errors. We review existing delegation protocols based on the
hardness of the LWE problem. These protocols are less efficient than our dele-
gation protocols for RAM computations.

Deterministic Turing Machine delegation. The work of [KRR14] gives a two-
message delegation scheme for deterministic Turing machine computations based
on the quasi-polynomial hardness of the LWE problem. The main differences
between delegation of RAM computations and delegation of deterministic Turing
machine computations are as follows:

96 Y. Kalai and O. Paneth

1. In deterministic Turing machine delegation, the user needs to save the entire
memory (thought of as the input to the computation), while in RAM delega-
tion, the user only needs to save a short digest of the memory.

2. In deterministic Turing machine delegation, the cloud’s running time depends
on the running time of the computation when described as a Turing machine,
rather than a RAM program. In particular, the cloud’s running time always
grows with the memory size, even if the delegated computation does not
access the entire memory.

We mention that our scheme has better asymptotic efficiency than the scheme
of [KRR14] even for Turing machine computations. For delegated computations
running in time T and space S the cloud’s running time in our scheme is T3 ·
poly(k) instead of (T · S)3 · poly(k) as in [KRR14].

Memory Delegation. As mentioned in [KRR14], the techniques of Chung
et al. [CKLR11] can be used to convert the [KRR14] scheme into a memory dele-
gation scheme that overcomes the first difference above, but not the second one.

Fully-Homomorphic Signatures. The work of Gorbunov et al. [GVW15] on fully-
homomorphic signatures gives a non-interactive, publicly verifiable protocol in
the CRS model, overcoming both differences above. However, while their protocol
has small communication, the user’s work is still proportional to computation’s
running time. Additionally, their protocol does not support computations that
write to the memory.

Proofs of Proximity. Finally, we mention a recent line of works on proofs of prox-
imity [RVW13,GR15,KR15,GGR15]. These proofs can be verified much faster
than the size of the memory, however, unlike in RAM delegation, in their model
the user does not get to pre-process the memory. Instead the user has oracle
access to the memory during proof verification. In proofs of proximity the user
is only convinced that the computation output is consistent with some mem-
ory that is close to the real memory. Additionally, in proofs of proximity the
verification takes time at least Ω(

√
n) where n is the memory size [KR15].

1.3 Technical Overview

We start with a high level description of our scheme.

Pre-processing. In the pre-processing step, the user computes a hash-tree [Mer87]
over the memory D and saves the root of this tree as the digest d. The cloud
also pre-processes the delegated memory D by computing the same hash-tree
and stores the entire tree. The hash-tree allows the cloud to efficiently access the
memory in an “authenticated” way. Specifically, the cloud performs the following
operations:

1. Read a bit from memory.
2. Write a bit to memory, update the hash tree, and obtain a new digest.

Delegating RAM Computations 97

The cloud can then compute a short certificate (in the form of an authenticated
path), authenticating the value of the bit read or the value of the updated digest.
The time required to access the memory and compute the certificate depends
only logarithmically on the memory size.

Emulated Computations and their Transcript. When the user delegates a compu-
tation given by a RAM program M , the cloud starts by emulating the execution
of M on the memory D as described in [BEG+91]: whenever M accesses the
memory, the cloud performs an authenticated memory access via the hash tree.
When the emulation of M terminates, the cloud obtains the program output
y and the updated memory digest dnew. The cloud also compiles a transcript
of the memory accessed during the computation. This transcript contains an
ordered list of M ’s memory accesses. For every memory access, the transcript
contains the memory location, the bit that was read or written, the new memory
digest (in case the memory changed), and the certificate of authenticity. This
transcript allows to “re-execute” the computation of the program M and obtain
y and dnew, without accessing the memory D directly. Moreover, it is computa-
tionally hard to find a valid transcript (containing only valid certificates) that
yields the wrong output or digest (y′, d′

new) �= (y, dnew). For security parameter
k and a RAM program M executing in time T ≤ 2k, the time to generate the
transcript and to re-execute the program based on the transcript is T · poly(k).

Proof of Correctness. After emulating the execution of M , the cloud sends the
output y and the new digest dnew to the user. The cloud also proves to the user
that it knows a valid computation transcript which is consistent with y and
dnew. More formally, we consider a non-deterministic Turing machine TVer that
accepts an input tuple (M, d, y, dnew) if and only if there exists a valid transcript
Trans with respect to d such that the emulation of the program M with Trans
produces the output y and the digest dnew.

Proving knowledge of a witness Trans that makes TVer accept (M, d, y, dnew)
requires a delegation scheme supporting non-deterministic computations. The
problem with this approach is that currently, two-message delegation schemes
for non-deterministic computations are only known in the random oracle model
or based on strong knowledge assumptions (see Sect. 1.2). However, it turns
out that for the specific computation TVer, we can construct a two-message
delegation scheme based on standard cryptographic assumptions.

Re-purposing the KRR Proof System. Our solution is based on the delegation
scheme of Kalai et al. [KRR14]. While in general, their proof system only sup-
ports deterministic computations, we extend their security proof so it also applies
to non-deterministic computations of a certain form.

We start with a brief overview of the [KRR14] proof system and explain why
it does not support general non-deterministic computations. Then we describe
the extended security proof and the type of non-deterministic computations it
does support.

98 Y. Kalai and O. Paneth

The [KRR14] proof system can be used to prove that a deterministic Turing
machine M is accepting. The soundness proof of [KRR14] has two steps. In the
first step M is translated into a 3-SAT formula φ that is satisfiable if and only if
M is accepting. The analysis of [KRR14] shows that if the cloud convinces the
user to accept, then the formula φ satisfies a relaxed notion of satisfiability called
local satisfiability (See [KRR14, Lemma 7.29]). In the second step, the specific
structure of the formula φ is exploited to prove that if φ is locally satisfiable it
must also be satisfiable.

The work of Paneth and Rothblum [PR14] further abstracts the notion of
local satisfiability, redefining it in a way that is independent of the protocol of
[KRR14]. Based on this abstraction, they separate the construction of [KRR14]
into two steps. In the first step, the main part of the [KRR14] proof system
is converted into a protocol for proving local satisfiability of formulas. In the
second step, the cloud uses this protocol to convince the user that the formula
φ is locally satisfiable. As before, the structure of the formula φ is exploited to
prove that φ is satisfiable.

Local Satisfiability. Unlike full-fledged satisfiability, the notion of local satisfia-
bility only considers assignments to � variables at a time, where � is a locality
parameter that may be much smaller than the total number of variables in the
formula. Formally, we say that a 3-SAT formula φ is �-locally satisfiable if for
every set Q of � variables there exists a distribution DQ over assignments to the
variables in Q such that the following conditions are satisfied:

Everywhere local consistency . For every set Q of � variables, a random
assignment in DQ satisfies all local constraints in φ over the variables in
Q with high probability.

No-signaling. For every set Q of � variables and for every subset Q′ ⊆ Q, the
distribution of an assignment sampled from DQ restricted to the variables in
Q′ is independent of the other variables in Q \ Q′.

From Local Satisfiability to Full-Fledged Satisfiability. In the [KRR14] proof
system, � is a fixed polynomial in the security parameter, independent of the size
of the formula φ (the communication complexity of the proof grows with �). In
this setting, local satisfiability does not generally imply full-fledged satisfiability.
However, the analysis of [KRR14] exploits the specific structure of φ to go from
local satisfiability to full-fledged satisfiability. The proof of this step crucially
relies on the fact that the formula φ describes a deterministic computation. We
show how to extend this proof for non-deterministic computations of a specific
form.

Roughly, we require that (computationally) there exists a unique “correct”
witness that can be verified locally. Namely, for any proposed witness (that
can be found efficiently) and any bit of this proposed witness, it is possible to
verify that the value of this bit agrees with the correct witness in time that is
independent of the running time of the entire computation.

Delegating RAM Computations 99

More on the Analysis of KRR. We describe the argument of [KRR14] and explain
why it fails for non-deterministic computations. To go from local satisfiability to
full-fledged satisfiability, the proof of [KRR14] relies on the fact that the formula
φ describing an accepting deterministic computation has a unique satisfying
assignment. We call this the correct assignment to φ. The rest of the proof uses
the fact that the variables of φ can be partitioned into “layers” such that variables
in the i-th layer correspond to the computation’s state immediately before the i-
th computation step. The proof proceeds by induction over the layers. In the
inductive step we assume that local assignments to any � variables in the i-th
layer are correct (agrees with the correct assignment) with high probability and
prove that the same holds for the (i+1)-st layer. Indeed, if the local assignment
to some set of � variables in the (i + 1)-st layer is correct with a significantly
lower probability, the special structure of φ and the no-signaling property of the
assignments can be used to argue that there must exist a set of � variables whose
assignment violates φ’s local constraints with some significant probability.

Non-deterministic Computations. The above argument does not extend to non-
deterministic computations, since the notion of a “correct” assignment is not
well defined in this setting. Moreover, even if there is a unique witness that
makes the computation accept, and we consider the correct assignment defined
by this witness, the above argument still fails. The issue is that even if every
local assignment to any set of variables in the i-th layer is correct, there could
still be more than one assignment to variables in the (i + 1)-st layer satisfying
all of φ’s local constraints.

We show how to overcome this problem for non-deterministic computations
where (computationally) there exists a unique “correct” witness that can be
verified locally, as described above. Consider for example the computation of
the Turing machine TVer on input (M, d, y, dnew) where d is the digest of the
initial memory D. The (computationally) unique witness for this computation
is a transcript of the program execution that can be verified locally – one step
at a time.

In more details, let Trans be the correct transcript defined by the execu-
tion of M on memory D. Let φ be the formula describing the computation of
TVer(M, d, y, dnew). We prove that any accepting local assignment to variables
of φ must agree with the global correct assignment to φ defined by the execution
of TVer with the (well defined) transcript Trans. As in the case of deterministic
computations, we partition φ’s variables into layers. In the i-th inductive step
we assume that local assignments to any � variables in the i-th layer are correct
with high probability. If the local assignment to some set of � variables in the
(i + 1)-th layer is correct with a significantly lower probability then we prove
that the assignment must describe an incorrect transcript. Since both the cor-
rect transcript and the incorrect one contain valid certificates, we can use these
certificates to break the security of the hash tree.

Multi-prover Arguments. The presentation of the construction in [KRR14], as
well as the presentation in the body of this work, goes through the intermediate

100 Y. Kalai and O. Paneth

step of constructing a no-signaling multi-prover proof-system. In more details,
[KRR14] first construct a no-signaling multi-prover interactive proof for local-
satisfiability. They then leverage local-satisfiability to prove full-fledged satisfi-
ability, resulting in a no-signaling multi-prover interactive proof (with uncon-
ditional soundness) for deterministic computations. Finally, they transform any
no-signaling multi-prover interactive proof into a delegation scheme assuming
fully-homomorphic encryption.

Our construction follows the same blueprint. We first construct a no-signaling
multi-prover interactive argument for RAM computations, and then transform it
into a delegation scheme. (Due to space limitations, we do not describe the trans-
formation from a multi-prover interactive argument into a delegation scheme
which can be found in the full version of this work [KP15].) Unlike in [KRR14],
the soundness of our multi-prover arguments is conditional on the existence of
collision-resistent hashing. We note that for RAM delegation, computational
assumptions are necessary even in the multi-prover model.

2 Tools and Definitions

2.1 Notation

For sets B,S, we denote by BS the set of vectors of elements in B indexed by
the elements of S. That is, every vector a ∈ BS is of the form a = (ai ∈ B)i∈S .
For a vector a ∈ BS and a subset Q ⊆ S, we denote by a[Q] ∈ BQ the vector
that contains only the elements in a with indices in Q, that is, a[Q] = (ai)i∈Q.

2.2 RAM Computation

We consider the standard model of RAM computation where a program M can
access an initial memory string D ∈ {0, 1}n. For an input x, we denoted by
MD(x) an execution of the program M with input x and initial memory D.
For a bit y ∈ {0, 1} and for a string Dnew ∈ {0, 1}n we also use the notation
y ← M (D→Dnew)(x) to denote that y is the output of the program M on input x
and initial memory D, and Dnew is the final memory string after the execution.
For simplicity we think only of RAM programs that output a single bit.5 The
computation of M is carried out one step at a time by a CPU algorithm STEP.
STEP is a polynomial-time algorithm that takes as input a description of a
program M , an input x, a state of size O(log n), and a bit that was supposedly
read from memory, and it outputs a quadruple

(statenew, ir, iw, bw) ← STEP(M,x, state, br),

where statenew is the updated state, ir denotes the location in memory to be
read next, the location iw denotes the location in memory to write to next,

5 A program that outputs multiple bits can be simulated by executing several programs
in parallel, or by writing the output directly to the memory.

Delegating RAM Computations 101

and the bit bw denotes the bit to be written in location iw. The execution MD(x)
proceeds as follows. The program starts with some empty initial state state1. By
convention we set the first memory location read by the program to be ir1 = 1.
Starting from j = 1, the j-th execution step proceeds as follows:

1. Read from memory the bit brj ← D[irj].
2. Compute (statej+1, i

r
j+1, i

w
j+1, b

w
j+1) ← STEP(M,x, statej , b

r
j).

3. Write a bit to memory D[iwj+1] ← bwj+1. (If iwj+1 = ⊥ no writing is performed
in this step.)

The execution terminates when the program STEP outputs a special terminating
state. We assume that the terminating state includes the value of the output bit
y. Note that after the last step was executed and an output has been produced,
the memory is written to one last time. We say that a machine M is read only,
if for every (x, state, br), STEP(M,x, state, br) outputs (statenew, ir, iw, bw) where
iw = ⊥.

Remark 2.1 (Space complexity of STEP). We assume without loss of generality
that the RAM program M reads the input x once and copies it to memory.
Therefore the space complexity of the algorithm STEP is polylog(n).

2.3 Hash Tree

Let D ∈ {0, 1}n be a string. Let k be a security parameter such that n < 2k.
A hash-tree scheme consists of algorithms:

(HT.Gen,HT.Hash,HT.Read,HT.Write,HT.VerRead,HT.VerWrite),

with the following syntax and efficiency:

– HT.Gen(1k) → key:
A randomized polynomial-time algorithm that outputs a hash key, denoted
by key.

– HT.Hash(key,D) → (tree, rt):
A deterministic polynomial-time algorithm that outputs a hash tree denoted
by tree, and a hash root rt of size poly(k) (we assume that both strings tree
and rt include key).

– HT.Readtree(ir) → (br, pf):
A deterministic read-only RAM program that accesses the initial memory
string tree, runs in time poly(k), and outputs a bit, denoted by br, and a
proof, denoted by pf.

– HT.Writetree(iw, bw) → (rtnew, pf):
A deterministic RAM program that accesses the initial memory string tree,
runs in time poly(k), and outputs a new hash root, denoted by rtnew, and a
proof, denoted by pf.

– HT.VerRead(rt, ir, br, pf) → b:
A deterministic polynomial-time algorithm that outputs an acceptance bit b.

102 Y. Kalai and O. Paneth

– HT.VerWrite(rt, iw, bw, rtnew, pf) → b:
A deterministic polynomial-time algorithm that outputs an acceptance bit b.

Definition 2.1 (Hash-Tree). A hash-tree scheme

(HT.Gen,HT.Hash,HT.Read,HT.Write,HT.VerRead,HT.VerWrite),

satisfies the following properties.

– Completeness of Read. For every k ∈ N and for every D ∈ {0, 1}n such that
n ≤ 2k, and for every ir ∈ [n]

Pr

⎡

⎣

1 = HT.VerRead(rt, ir, br, pf)
D[ir] = br

∣

∣

∣

∣

∣

∣

key ← HT.Gen(1k)
(tree, rt) ← HT.Hash(key,D)
(br, pf) ← HT.Readtree(ir)

⎤

⎦ = 1.

– Completeness of Write. For every k ∈ N and for every D ∈ {0, 1}n such that
n ≤ 2k, for every iw ∈ [n], bw ∈ {0, 1}, and for Dnew ∈ {0, 1}n that is equal to
the string D except that Dnew[iw] = bw

Pr

⎡
⎢⎢⎣
1 = HT.VerWrite(rt, iw, bw, rt′new, pf)

rt′new = rtnew

∣∣∣∣∣∣∣∣

key ← HT.Gen(1k)

(tree, rt) ← HT.Hash(key, D)

(treenew, rtnew) ← HT.Hash(key, Dnew)

(rt′new, pf) ← HT.Writetree(iw, bw)

⎤
⎥⎥⎦ = 1.

– Soundness of Read. For every polynomial size adversary Adv there exists a
negligible function μ such that for every k ∈ N

Pr

⎡

⎣

(b′, pf ′) �= (b, pf)
1 = HT.VerRead(rt, i, b, pf)
1 = HT.VerRead(rt, i, b′, pf ′)

∣

∣

∣

∣

∣

∣

key ← HT.Gen(1k)
(rt, i, b, pf, b′, pf ′) ← Adv(key)

⎤

⎦ ≤ μ(k).

– Soundness of Write. For every poly-size adversary Adv there exists a negligible
function μ such that for every k ∈ N

Pr

⎡

⎣

(rt′new, pf ′) �= (rtnew, pf)
1 = HT.VerWrite(rt, i, b, rtnew, pf)
1 = HT.VerWrite(rt, i, b, rt′new, pf ′)

∣

∣

∣

∣

∣

∣

key ← HT.Gen(1k)
(rt, i, b, rtnew, pf, rt′new, pf ′) ← Adv(key)

]

≤ μ(k).

We say that the hash-tree scheme is (S, ε)-secure, for a function S(k) and a
negligible function ε(k), if for every constant c > 0, the soundness of read and
soundness of write properties hold for every adversary of size S(k)c with probabil-
ity at most ε(k)c. We say that the hash-tree scheme has sub-exponential security
if it is (2kδ

, 2−kδ

)-secure for some constant δ > 0.

Delegating RAM Computations 103

Remark 2.2 (Unique proofs in Definition 2.1). In the soundness properties of
Definition 2.1 we make the strong requirement that it is hard to find two different
proofs for any statement (even a correct one). This strong requirement simplifies
the proof of Theorem 4.1, however the proof can be modified to rely on a weaker
soundness requirement.

Theorem 2.1 ([Mer87]). A hash-tree scheme satisfying Definition 2.1 can be
constructed from any family of collision-resistant hash functions. Moreover, the
hash-tree scheme is sub-exponentially secure if the underlying collision-resistant
hash family is sub-exponentially secure.

2.4 Delegation for RAM Computations

Let M be a T-time RAM program, let x ∈ {0, 1}m be an input to the program,
and let D ∈ {0, 1}n be some initial memory string. Let k be a security para-
meter such that |M |,T(m), n < 2k. A two-message delegation scheme for RAM
computations consists of algorithms:

(ParamGen,MemGen,QueryGen,Output,Prover,Verifier),

with the following syntax and efficiency:

– ParamGen(1k) → pp:
A randomized polynomial-time algorithm that outputs public parameters pp.

– MemGen(pp,D) → (dt, d):
A deterministic polynomial-time algorithm that outputs the processed mem-
ory dt, and a digest of the memory d of size poly(k).

– QueryGen(1k) → (q, st):
A randomized polynomial-time algorithm that outputs a query q and a secret
state st.

– Outputdt(1T(m), n,M, x) → (y, dnew,Trans):
A deterministic RAM program running in time T(m) · poly(k) that accesses
the processed memory dt, and outputs the output bit y, and a new digest dnew
of size poly(k) and a computation transcript Trans.

– Prover((M,x,T(m), d, y, dnew),Trans, q) → pf:
A deterministic algorithm running in time poly(T(m), k) that outputs a proof
pf of size poly(k).

– Verifier((M,x,T(m), d, y, dnew), st, pf) → b:
A deterministic algorithm running in time m · poly(k) that outputs an accep-
tance bit b.

Remark 2.3 (Statement-independent queries). In the above, the queries gener-
ated by the algorithm QueryGen are independent of the program, the input and
the memory digest. We could consider a more liberal definition that allows such
a dependency, however, in our construction this is not needed.

104 Y. Kalai and O. Paneth

Remark 2.4 (Verifier efficiency). We note that the dependence of the verification
time on the input length m can be improved. In particular, in our construction,
given oracle access to a low-degree extension encoding of the input x, the verifier’s
running time is poly(k).

Remark 2.5 (The Output algorithm). In the above interface we separated the
prover computation into two algorithms. The first algorithm, Output, accesses
the memory, carries out the computation, and produces the output as well as
a transcript of the computation. This transcript may include all the memory
accessed during the RAM computation or any other information. We only restrict
the size of the transcript to be related to the running time of the RAM compu-
tation. The second algorithm, Prover, is given the transcript and the challenge
query and outputs the proof. This separation ensures that the memory locations
accessed by the prover are independent of the challenge query. This property is
used in the transformation from no-signaling multi-prover arguments to delega-
tionin [KP15].

Definition 2.2 (Two-Message Argument for RAM computations).
A two-message delegation scheme (ParamGen,MemGen,QueryGen,Prover,

Verifier) for RAM computations satisfies the following properties.

– Completeness. For every security parameter k ∈ N, every T-time RAM pro-
gram M , every input x ∈ {0, 1}m, every D ∈ {0, 1}n, and every (y,Dnew) such
that T(m), n ≤ 2k and y ← M (D→Dnew)(x)

Pr
[

1 = Verifier((M,x,T(m), d, y, dnew), st, pf)
(dtnew, dnew) = MemGen(pp,Dnew)

∣

∣

∣

∣

pp ← ParamGen(1k)
(dt, d) ← MemGen(pp,D)
(q, st) ← QueryGen(1k)
(y, dnew,Trans) ← Outputdt→dtnew(1T(m), n,M, x)
pf ← Prover((M,x,T(m), d, y, dnew),Trans, q)

⎤

⎥

⎥

⎥

⎥

⎦

= 1.

– Soundness. For every pair of polynomial-size adversaries (Adv1,Adv2) there
exists a negligible function μ such that for every k ∈ N

Pr

⎡

⎣

(y, dnew) �= (y′, d′
new)

1 = Verifier((M,x,T, d, y, dnew), st, pf)
1 = Verifier((M,x,T, d, y′, d′

new), st, pf ′)

∣

∣

∣

∣

∣

∣

pp ← ParamGen(1k)
(M,x, 1T, d, y, dnew, y′, d′

new) ← Adv1(1k, pp)
(q, st) ← QueryGen(1k)
(pf, pf ′) ← Adv2(1k, pp, q)

⎤

⎥

⎥

⎦

≤ μ(k).

We say that the delegation scheme is (S, ε)-secure, for a function S(k) and a
negligible function ε(k), if for every constant c > 0, the soundness property holds
for every pair of adversaries of size S(k)c with probability at most ε(k)c.

Delegating RAM Computations 105

2.5 Multi-prover Arguments for RAM Computations

Let � be a polynomial, M be a T-time RAM program, let x ∈ {0, 1}m be an
input to the program, and let D ∈ {0, 1}n be some initial memory string. Let k
be a security parameter such that |M |,T(m), n < 2k. An �-prover argument for
RAM computations consists of algorithms:

(ParamGen,MemGen,QueryGen,Output,Prover,Verifier),

with the following syntax and efficiency:

– ParamGen(1k) → pp:
A randomized polynomial-time algorithm that outputs public parameters pp.

– MemGen(pp,D) → (dt, d):
A deterministic polynomial-time algorithm that outputs the processed mem-
ory dt and a digest of the memory d of size poly(k).

– QueryGen(1k) → ((q1, . . . , q�), st):
A randomized polynomial-time algorithm that outputs a set of � = �(k) queries
(q1, . . . , q�), and a secret state st.

– Outputdt(1T(m), n,M, x) → (y, dnew,Trans):
A deterministic RAM program running in time T(m) · poly(k) that accesses
the processed memory dt, and outputs the output bit y, a new digest dnew of
size poly(k), and a computation transcript Trans.

– Prover((M,x,T(m), d, y, dnew),Trans, q) → a:
A deterministic algorithm running in time poly(T(m), k) that outputs an
answer a of size poly(k) to a single query q.

– Verifier((M,x,T(m), d, y, dnew), st, (a1, . . . , a�)) → b:
A deterministic algorithm running in time m · poly(k) that outputs an accep-
tance bit b.

Remark 2.6 (Statement-independent queries). In the above, the queries gener-
ated by the algorithm QueryGen are independent of the program, the input and
the memory digest. We could consider a more liberal definition that allows such
a dependency, however, in our construction this is not needed.

Remark 2.7 (Verification efficiency). We note that the dependence of the ver-
ification time on the input length m can be improved. In particular, in our
construction, given oracle access to a low-degree extension encoding of the input
x, the verifier’s running time is poly(k).

Remark 2.8 (The Output algorithm). In the above interface we separated the
prover computation into two algorithms. The first algorithm, Output, accesses
the memory, carries out the computation, and produces the output as well as
a transcript of the computation. This transcript may include all the memory
accessed during the RAM computation or any other information. We only restrict
the size of the transcript to be related to the running time of the RAM com-
putation. The second algorithm, Prover, is given the transcript and a challenge
query and outputs an answer. This separation ensures that the memory locations

106 Y. Kalai and O. Paneth

accessed by the prover are independent of the challenge queries. This property
is used in the transformation from no-signaling multi-prover arguments to dele-
gationin [KP15].

Definition 2.3 (Multi-Prover Argument for RAM computations).
Let � = �(k) be a polynomial in the security parameter. An �-prover argument

system (ParamGen,MemGen,QueryGen,Output,Prover,Verifier) for RAM compu-
tations satisfies the following properties.

– Completeness. For every security parameter k ∈ N, every T-time RAM pro-
gram M , every input x ∈ {0, 1}m, every D ∈ {0, 1}n, and every (y,Dnew),
such that T(m), n ≤ 2k and y ← M (D→Dnew)(x)

Pr
[

1 = Verifier((M,x,T(m), d, y, dnew), st, (a1, . . . , a�))
(dtnew, dnew) = MemGen(pp,Dnew)

∣

∣

∣

∣

pp ← ParamGen(1k)
(dt, d) ← MemGen(pp,D)
((q1, . . . , q�), st) ← QueryGen(1k)
(y, dnew,Trans) ← Outputdt→dtnew(1T(m), n,M, x)
∀i ∈ [�] : ai ← Prover((M,x,T(m), d, y, dnew),Trans, qi)

⎤

⎥

⎥

⎥

⎥

⎦

= 1.

– Soundness. For every pair of polynomial-size adversaries (Adv1,Adv2) there
exists a negligible function μ such that for every k ∈ N and for � = �(k)

Pr

⎡

⎣

(y, dnew) �= (y′, d′
new)

1 = Verifier((M,x,T, d, y, dnew), st, (a1, . . . , a�))
1 = Verifier((M,x,T, d, y′, d′

new), st, (a′
1, . . . , a

′
�))

∣

∣

∣

∣

∣

∣

pp ← ParamGen(1k)
(M,x, 1T, d, y, dnew, y′, d′

new) ← Adv1(1k, pp)
((q1, . . . , q�), st) ← QueryGen(1k)
∀i ∈ [�] : (ai, a

′
i) ← Adv2(1k, pp, qi)

⎤

⎥

⎥

⎦

≤ μ(k).

We say that the argument system is (S, ε)-secure, for a function S(k) and a
negligible function ε(k), if for every constant c > 0, the soundness property holds
for every pair of adversaries of size S(k)c with probability at most ε(k)c.

2.6 No-Signaling Multi-prover Arguments for RAM Computations

No signaling multi-prover arguments are multi-prover arguments, where the
cheating provers are given extra power. In multi-prover arguments (or proofs),
each prover answers its own query locally, without knowing anything about the
queries that were sent to the other provers.

In the no-signaling model we allow the malicious provers’ answers to depend
on all the queries, as long as for any subset Q ⊂ [�] and for every two query
vectors q1 = (q11, . . . , q

1
�) and q2 = (q21, . . . , q

2
�), such that q1[Q] = q2[Q], the

corresponding vectors of answers a1,a2 (as random variables) satisfy that a1[Q]

Delegating RAM Computations 107

and a2[Q] are identically distributed. Intuitively, this means that the answers
of the provers in the set Q do not contain information about the queries to the
provers outside Q, except for the information that is already found in the queries
to the provers in Q.

Definition 2.4. For a set B and for � ∈ N, we say that a pair of vectors of
correlated random variables

q = (q1, . . . , q�),a = (a1, . . . , a�) ∈ B[�].

is no-signaling if for every subset Q ⊂ [�] and every two vectors q1,q2 in the
support of q such that q1[Q] = q2[Q], the random variables a[Q] conditioned on
q = q1 and a[Q] conditioned on q = q2 are identically distributed.

If these random are not identical, but rather, the statistical distance between
them is at most δ, we say that the pair (q,a) is δ-no-signaling.

Definition 2.5. An �-prover argument system (ParamGen,MemGen,QueryGen,
Output,Prover,Verifier) for RAM computations is said to be sound against δ-
no-signaling strategies (or provers) if the following (more general) soundness
property is satisfied:

For every pair of polynomial-size adversaries (Adv1,Adv2) satisfying a δ-no-
signaling condition (specified below), there exists a negligible function μ such that
for every k ∈ N and for � = �(k):

Pr

⎡

⎣

(y, dnew) �= (y′, d′
new)

1 = Verifier((M,x,T, d, y, dnew), st, (a1, . . . , a�))
1 = Verifier((M,x,T, d, y′, d′

new), st, (a′
1, . . . , a

′
�))

∣

∣

∣

∣

∣

∣

pp ← ParamGen(1k)
(M,x, 1T, d, y, dnew, y′, d′

new) ← Adv1(1k, pp)
((q1, . . . , q�), st) ← QueryGen(1k)
((a1, a′

1), . . . , (a�, a
′
�)) ← Adv2(1k, pp, (q1, . . . , q�))

⎤

⎥

⎥

⎦

≤ μ(k).

where (Adv1,Adv2) satisfy the δ-no-signaling condition if the random variables
(q1, . . . , q�) and
((a1, a′

1), . . . , (a�, a
′
�)) are δ-no-signaling.

We say that the argument system is (S, ε)-secure against δ-no-signaling
strategies, for a function S(k) and a negligible function ε(k), if for every constant
c > 0, the soundness property holds with probability at most ε(k)c for every pair
of adversaries of size S(k)c satisfying the δ-no-signaling condition.

3 Local Satisfiability

In this section we introduce the notion of local satisfiability for formulas, and
state a result of [KRR14] providing a no-signaling multi-prover argument for the
local satisfiability of any non-deterministic Turing machine computation. This
presentation is based on an abstraction of [PR14].

108 Y. Kalai and O. Paneth

We start by describing, for every non-deterministic Turing machine M and
input x, a formula ϕM,x of a specific structure that is satisfiable if and only if M
accepts x. Then we define the notion of local satisfiability for formulas. Finally
we state a result of [KRR14] providing a no-signaling multi-prover argument for
the local satisfiability of formulas of the form ϕM,x.

3.1 A Formula Describing Non-Deterministic Computations

The machine M . Let M be a T-time S-space non-deterministic Turing machine.
We can think of M as a two-input machine, such that M accepts the input
x if and only if there exists a witness w such that M(x,w) accepts. In what
follows, we consider a machine M and an input x such that |x| is smaller than
the machine’s space S. Therefore, we can assume that M copies the entire input
x to its work tape. However, the witness w we consider may be such that |w|
is much larger than S and therefore w must be given on a separate read-only
read-once witness tape.

The Machine’s State. For i ∈ [T] let sti ∈ {0, 1}O(S) denote the state of the
computation M(x,w) immediately before the i-th step. The state sti includes:

– the machine’s state.
– the entire content of the work tape, including the reading head’s location.
– the reading head’s location j on the witness tape, and the witness bit wj .

Note that sti does not include the entire content of the witness tape which may
be much longer than S.

The following theorem states that the decision of whether a non-deterministic
Turing machine M accepts an inputs x can be converted into a 3-CNF formula
ϕM,x of a specific structure. Loosely speaking, the variables of ϕM,x correspond
to the entire tableau of the computation of M(x,w), and the formula verifies
the consistency of all the states of this computation. Thus, ϕM,x can be sepa-
rated into sub-formulas, where each sub-formula verifies the consistency of two
adjacent states of the computation. This intuition is formalized in the following
theorem.

Theorem 3.1. For any T-time S-space non-deterministic Turing machine M
and any input x there exists a 3-CNF Boolean formula ϕM,x of size O(T · S)
such that the following holds:

1. ϕM,x is satisfiable if and only if M accepts x. Moreover, given a witness
for the fact that M accepts x there is an efficient way to find a satisfying
assignment to ϕM,x.

2. The formula ϕM,x can be written as

ϕM,x =
∧

i∈[T−1]

ϕi
M,x,

Delegating RAM Computations 109

and the set of the input variables of ϕM,x, denoted by V , can be divided into
subsets

V =
⋃

i∈[T]

Vi,

such that each formula ϕi
M,x is over the variables Vi ∪ Vi+1, and each Vi ⊆ V

is of size S′ = O(S).
3. There exists an efficient algorithm State such that given an assignment to

the variables Vi, outputs a state sti of the computation of M(x) immediately
before the i-th step,

sti = State(a[Vi]).

The algorithm State satisfies the following properties:
– For every i ∈ [T − 1] and for every assignment a ∈ {0, 1}Vi∪Vi+1 , if

ϕi
M,x(a) = 1 then the states

sti = State(a[Vi]), sti+1 = State(a[Vi+1])

are consistent with the program M .
– For every assignment a ∈ {0, 1}V1∪V2 , if ϕ1

M,x(a) = 1 then the state

st1 = State(a[V1])

is the initial state of the machine M with the input x.
– For every assignment a ∈ {0, 1}VT−1∪VT , if ϕT−1

M,x(a) = 1 then the state

stT = State(a[VT])

is an accepting state.

Remark 3.1 (On the formula size). It is well known that there exists a formula
of size only Õ(T) (independent of S) that is satisfiable if and only if M accepts
x. Such a formula can be obtained by first making the machine M oblivious
[PF79]. However such a formula will not have the desired structure described in
Theorem 3.1.

3.2 Definition of Local Satisfiability

In this section we define the notion of local satisfiability for formulas.

Definition 3.1 (Local Assignment Generator [PR14]). Let ϕ be a 3-CNF
formula over a set of variables V . An (�, ε, δ)-local assignment generator Assign
for ϕ is a probabilistic algorithm running in time poly(|V |) that takes as input a
set of at most � queries Q ⊆ V, |Q| ≤ �, and outputs an assignment a ∈ {0, 1}Q,
such that the following two properties hold.

– Everywhere Local Consistency. For every set Q ⊆ V, |Q| ≤ �, with proba-
bility 1 − ε over a draw

a ← Assign(Q),

the assignment is locally consistent with the formula ϕ. That is, for every
variables q1, q2, q3 ∈ Q, every clause in ϕ over the variables q1, q2, q3 is satisfied
by the assignment a[{q1, q2, q3}].

110 Y. Kalai and O. Paneth

– No-signaling. For every (all powerful) distinguisher D and every pair of sets
Q,Q′ such that Q′ ⊆ Q ⊆ V, |Q| ≤ �:

∣

∣

∣

∣

Pr
a←Assign(Q)

[D(a[Q′]) = 1] − Pr
a′←Assign(Q′)

[D(a′) = 1]
∣

∣

∣

∣

≤ δ.

Remark 3.2 (On ordered queries). In [PR14], the notion of local satisfiability is
formalized using an ordered vector of queries. In Definition 3.1 however, the
queries are given as an unordered set. We note that these formulations are
equivalent.

3.3 No-Signaling Multi-prover Arguments for Local Satisfiability

To obtain our results we use a multi-prover proof system satisfying a no-signaling
local soundness property (see Theorem 3.2 below). Such a proof system was
constructed in [KRR14].

Let k be the security parameter and let � = �(k) be a polynomial. Let M be a
non-deterministic Turing machine running in time T and space S, let x ∈ {0, 1}m

be an input to M such that T(m) < 2k and let w be a witness. We consider
an �-prover proof system (LS.QueryGen, LS.Prover, LS.Verifier) with the following
syntax and efficiency:

– LS.QueryGen(1k) → ((q1, . . . , q�), st):
A randomized polynomial-time algorithm that outputs a set of � = �(k) queries
(q1, . . . , q�), and a secret state st.

– LS.Prover(1T(m),M, x,w, q) → a:
A deterministic algorithm running in time (T(m)·S(m))3 ·poly(k) that outputs
an answer a to a single query q where |a| = O(log(k)).

– LS.Verifier(M,x, st, (a1, . . . , a�)) → b:
A deterministic algorithm running in time m ·poly(k), that outputs an accep-
tance bit b.

The completeness and no-signaling local soundness properties of the above
proof system are given by Theorem 3.2 proved in [KRR14].6

Theorem 3.2 ([KRR14]). There exists a polynomial �0, such that for every
polynomial �′ and for � = �0 · �′ there exists an �-prover proof system
(LS.QueryGen, LS.Prover, LS.Verifier) that satisfies the following properties.

– Completeness. For every T-time (two input) Turing machine M , every input
x ∈ {0, 1}m and witness w such that M(x,w) = 1, every k ∈ N such that
T(m) < 2k, and for � = �(k),

Pr [1 = LS.Verifier(M,x, st, (a1, . . . , a�)) |
((q1, . . . , q�), st) ← LS.QueryGen(1k)
∀i ∈ [�] : ai ← LS.Prover(1T(m),M, x,w, qi)

]

= 1.

6 The proof of Theorem 3.2 follows by combining Lemmas 14.1, 6.1 and 7.29 in
[KRR14] together with the fact that all the claims and lemmas in Sects. 7.1–7.5
hold for arbitrary setting of parameters, and in particular for any ε and δ.

Delegating RAM Computations 111

– No-Signaling Local Soundness. There exists a probabilistic polynomial-time
oracle machine Assign such that the following holds. For every T-time (two
input) Turing machine M , every input x ∈ {0, 1}m, every security parameter
k ∈ N such that T(m) < 2k and � = �(k), every ε = ε(k), every δ = δ(k), and
every δ-no-signaling cheating prover Prover∗ such that

Pr

[
1 = LS.Verifier(M, x, st, (a1, . . . , a�))

∣∣∣∣
((q1, . . . , q�), st) ← LS.QueryGen(1k)

(a1, . . . , a�) ← Prover∗(q1, . . . , q�)

]
≥ ε,

AssignProver
∗

is an (�′, δ′, ε′)-local assignment generator for the 3-CNF formula
ϕM,x given by Theorem 3.1, with

δ′ =
δ · 2k·polylog(T(m))

ε
, ε′ =

δ · polylog(T(m))
ε

.

As before, we say that Prover∗ is δ-no-signaling if the random variables
(q1, . . . , q�) and (a1, . . . , a�) are δ-no-signaling.

Remark 3.3. The oracle machine Assign constructed in [KRR14] has a super-
polynomial runtime.7 However, by carefully observing the proof, it is easy to see
that this super-polynomial blowup is unnecessary. This was formally proved in
a followup work of [BHK16].

4 No-Signaling Multi-prover Arguments for RAM
Computations

4.1 Verifying RAM Computations via Local Satisfiability

In this section we translate any RAM computation into a non-deterministic
Turing machine such that the RAM computation is correct if and only if the
Turing machine’s computation is locally satisfiable. Consider an execution of a
RAM program M that on input x and initial memory string D outputs y and
results in memory Dnew within time T. Consider also a hash-tree of the initial
memory D rooted at rt and a hash-tree of the final memory Dnew rooted at rtnew.

We describe a Turing machine TVer that takes as input tuples of the form
(M,x,T, rt, y, rtnew), together with a corresponding witness, which is a transcript
of the RAM computation. We start by describing the algorithm TGen which
generates the transcript. Roughly, the transcript contains a hash-tree proof of
consistency for every memory access made by M (the precise structure of the
transcript is described below). We then describe the algorithm TVer. The run-
ning time of TVer and TGen is proportional to the running time of the RAM
computation (up to polynomial factors in the security parameter) and is inde-
pendent of the size of the memory. In terms of soundness we argue that for any
(M,x,T, rt) (even if rt is not computed honestly as the hash-tree root of some
memory) and for every (y′, rt′new) �= (y, rtnew), any cheating prover that passes

7 This blowup is due to the soundness amplification lemma of [KRR14].

112 Y. Kalai and O. Paneth

the no-signaling local soundness criterion for the computation of TVer with both
the input (M,x,T, rt, y, rtnew) and the input (M,x,T, rt, y′, rt′new) can be used to
break the soundness of the hash tree.

Let M be a RAM program, x ∈ {0, 1}m be an input, and D ∈ {0, 1}n be an
initial memory string. Let

(HT.Gen,HT.Hash,HT.Read,HT.Write,HT.VerRead,HT.VerWrite)

be a hash-tree scheme and let

key ← HT.Gen(1k),
(tree, rt) ← HT.Hash(key,D).

The Transcript Generation Program TGen. We start by describing a program
TGen that creates the transcript of the computation MD(x). Let

TGen(tree→treenew)(1k, 1T, n,M, x) → (y, rtnew,Trans)

be the following RAM program. TGen emulates the execution of MD(x) step
by step as described in Sect. 2.2. The emulation begins with the initial memory
containing the hash tree tree1 = tree with the initial root rt1 = rt, the empty
initial state state1 and the read location ir1 = 1. Starting from j = 1, the j-th
emulation step proceeds as follows:

1. Read from the hash tree the bit:

(brj , pf
r
j) ← HT.Readtreej (irj).

2. Compute (statej+1, i
r
j+1, i

w
j+1, b

w
j+1) ← STEP(M,x, statej , b

r
j).

3. If iwj+1 �= ⊥, write a bit to the hash tree:

(rtj+1, pf
w
j+1) ← HT.Write(treej→treej+1)(iwj+1, b

w
j+1).

The program M terminates after T emulation steps were completed with the
terminating state stateT+1, which contains the output bit y. TGen then outputs
y, rtnew = rtT+1 and the transcript:

Trans =
((

irj , b
r
j , pf

r
j

)

,
(

iwj+1, b
w
j+1, rtj+1, pf

w
j+1

))

j∈[T]
.

The running time of the program TGen is T · poly(k).
The transcript verification program TVer. Let

TVer((M,x,T, rt, y, rtnew),Trans) → b

be the following Turing machine. TVer verifies the emulation of MD(x) based
on the transcript:

Trans =
((

irj , b
r
j , pf

r
j

)

,
(

iwj+1, b
w
j+1, rtj+1, pf

w
j+1

))

j∈[T′] ,

produced by TGen. The program first verifies that T′ = T Then, starting from
the initial root ˜rt1 = rt, the empty initial state state1, the read location ˜ir1 = 1,
and from j = 1, the j-th verification step proceeds as follows:

Delegating RAM Computations 113

1. Verify that ˜irj = irj and that

1 = HT.VerRead(˜rtj , irj , b
r
j , pf

r
j).

2. Compute (statej+1, ˜irj+1,
˜iwj+1,

˜bwj+1) ← STEP(M,x, statej , b
r
j).

3. Verify that (˜iwj+1,
˜bwj+1) = (iwj+1, b

w
j+1).

4. If iwj+1 = ⊥ then verify that ˜rtj = rtj+1. Else, verify that

1 = HT.VerWrite(˜rtj , iwj+1, b
w
j+1, rtj+1, pf

w
j+1).

5. If j = T verify that rtT+1 = rtnew and that stateT+1 is terminating and
includes the output y.

6. r̃tj+1 ← rtj+1.

The program outputs 1 if and only if all the verifications were successful. The
running time of the program TVer is T · poly(k) and its space complexity is
poly(k) · polylog(n) = poly(k) (see Remark 2.1).

Additional structure of TVer. In order to prove Theorem 4.1 below, we make
additional assumptions on the structure of the Turing machine TVer. We start
by introducing some notation.

Verification Blocks. We assume that the execution of the machine can be divided
into blocks where the computation in the j-th block is executing the j-th veri-
fication step. This assumption is satisfied by some “natural”implementation of
TVer.

Formally, let b = b(k) ≤ poly(k) be the block size. For every input x̃ =
(M,x,T, rt, y, rtnew) and for every transcript

Trans =
((

irj , b
r
j , pf

r
j

)

,
(

iwj+1, b
w
j+1, rtj+1, pf

w
j+1

))

j∈[T]
,

(not neccessarily such that TVer(x̃,Trans) accepts) let T′ = T · b be the running
time of TVer(x̃,Trans). For i ∈ [T′] let sti be the state of the computation
TVer(x̃,Trans) immediately before the i-th step, and let stT′+1 be the final state
of the computation. The variables sti describe the states of the computation
of the program TVer, as defined by Theorem 3.1. (Note that these states are
different from the local variables statej used by the program TVer to emulate
the RAM computation M .) For j ∈ [T], let Bj be the set of states in the j-th
computation block.

Bj = {sti : (j − 1) · b < i ≤ j · b} .

For notational convenience, we also define the block BT+1 = {stT′+1} which
describes the state of the computation after the final verification stap.

Additional requirements on the structure of TVer. Using the notion of blocks we
formulate some additional requirements on the structure of TVer.

114 Y. Kalai and O. Paneth

1. For every j ∈ [T], the bits of the transcript read in the j-th computation block
contain the j-th entry of the transcript. Formally, there exists an efficient
algorithm TVer.Transcript such that given the set of states Bj , outputs the
j-th entry of the transcript

(

irj , b
r
j , pf

r
j

)

,
(

iwj+1, b
w
j+1, rtj+1, pf

w
j+1

)

= TVer.Transcript(Bj).

We also require that ⊥ = TVer.Transcript(BT+1).
2. For every j ∈ [T], the j-th computation block contains the j-th state in the

emulation of M . Formally, there exists an efficient algorithm TVer.State such
that given the set of states Bj , outputs the state of M , the location of the
next read and the root of the hash-tree before the j-th step of the emulation

(

statej , ˜irj , ˜rtj
)

= TVer.State(Bj).

On the final block BT+1, TVer.State outputs the terminating state of M , the
last read location (TVer never reads the bit in this location), and the root of
the final memory state.

(

stateT+1, ˜irT+1, r̃tT+1

)

= TVer.State(BT+1).

3. When one of the tests performed by TVer fails, the machine transitions into
a “rejecting state”. Once TVer is in a rejecting state, we require that all its
future states are rejecting and TVer rejects. Formally, there exists an effi-
ciently computable predicate Reject such that
(a) If in the j-th verification step test 1, 3 or 4 fails, or if j = T and test 5

fails, then Reject(Bj) = 1.
(b) For every j ∈ [T] if Reject(Bj) = 1 then Reject(Bj+1) = 1.
(c) The computation TVer(x̃,Trans) rejects if and only if Reject(BT+1) = 1.

Theorem 4.1. The machines TGen and TVer satisfy the following properties:

– Completeness. For every k ∈ N, every T-time RAM program M , every input
x ∈ {0, 1}m, every initial memory D ∈ {0, 1}n and every (y,Dnew) such that
T(m), n ≤ 2k and
y ← M (D→Dnew)(x)

Pr
[

1 = TVer((M,x,T(m), rt, y′, rt′new),Trans)
(y′, rt′new) = (y, rtnew)

∣

∣

∣

∣

key ← HT.Gen(1k)
(tree, rt) ← HT.Hash(key,D)
(treenew, rtnew) ← HT.Hash(key,Dnew)
(y′, rt′new,Trans) ← TGen(tree→treenew)(1k, 1T(m), n,M, x)

⎤

⎥

⎥

⎦

= 1.

Delegating RAM Computations 115

– Soundness
Assume HT is an (S, ε)-secure hash-tree scheme for a function S(k) and a
negligible function ε(k). There exists a polynomial �′ such that for every con-
stant c > 0 and every triplet of adversaries (Adv1,Adv2,Adv3) of size S(k)c,
there exist constants c1, c2 > 0 such that for every large enough k ∈ N

Pr

[
(y, rtnew) �= (y′, rt′new)
CHEAT

∣∣∣∣
key ← HT.Gen(1k)

(M, x, 1T, rt, y, rtnew, y′, rt′new) ← Adv1(1k, key)

]
≤ ε(k)c2 ,

where CHEAT is the event that:
• Adv2(key, ·) is an (�′(k), S(k)−c1 , S(k)−c1)-local assignment generator for

the 3-CNF formula ϕTVer,x̃2 where x̃2 = (M,x,T, rt, y, rtnew) and ϕTVer,x̃ is
as defined in Theorem 3.1.

• Adv3(key, ·) is an (�′(k), S(k)−c1 , S(k)−c1)-local assignment generator for
the 3-CNF formula ϕTVer,x̃3 where x̃3 = (M,x,T, rt, y′, rt′new) and ϕTVer,x̃′

is as defined in Theorem 3.1.

The proof of Theorem 4.1 can be found in the full version of this work [KP15].

4.2 The Protocol

In this section we describe our no-signaling multi-prover argument for RAM
computations. The construction uses the following components.

– A hash-tree scheme (HT.Gen,HT.Hash,HT.Read,HT.Write,HT.VerRead,
HT.VerWrite), given by Theorem 2.1.

– The �-prover proof system (LS.QueryGen, LS.Prover, LS.Verifier) for local sat-
isfiability given by Theorem 3.2 in Sect. 3.3, where � = �′ · �0, and �′ is the
polynomial given by Theorem 4.1 and �0 is the polynomial given by Theo-
rem 3.2.

– The transcript generation and verification programs TGen,TVer described in
Sect. 4.1. We only rely on the following facts
• The programs TGen,TVer satisfy Theorem 4.1.
• For security parameter k and for a T-time computation, the running time

of the transcript generation program TGen is T ·poly(k). The running time
of the transcript verification program TVer (on the transcript generated by
TGen) is T · poly(k) and its space complexity is poly(k).

The multi-prover argument is given by the following procedures:

– ParamGen(1k) generates a key for the hash-tree:

key ← HT.Gen(1k),

and outputs pp = key.
– MemGen(pp,D), given pp = key, computes a hash-tree for the memory D:

(tree, rt) ← HT.Hash(key,D),

and outputs (dt, d) = (tree, rt).

116 Y. Kalai and O. Paneth

– QueryGen(1k) executes the query generation algorithm of the local-
satisfiability proof system:

((q1, . . . , q�), st) ← LS.QueryGen(1k),

and outputs ((q1, . . . , q�), st).
– Outputdt(1T, n,M, x), given access to the memory dt = tree, executes the

transcript generation program:

(y, rtnew,Trans) ← TGen(tree→treenew)(1k, 1T, n,M, x),

and outputs (y, dnew,Trans) = (y, rtnew,Trans).
– Prover((M,x,T, d, y, dnew),Trans, q), where (d, dnew) = (rt, rtnew), does the fol-

lowing:
1. Let T′ = T · poly(k) and S′ = poly(k) be the time and space complexity of

the computation
TVer((M,x,T, rt, y, rtnew),Trans).

2. Execute the local-satisfiability prover for the above computation:

a ← LS.Prover(1T
′
,TVer, (M,x,T, rt, y, rtnew),Trans, q).

3. Output a.
– Verifier((M,x,T, d, y, dnew), st, (a1, . . . , a�)), where (d, dnew) = (rt, rtnew), exe-

cutes the local-satisfiability verifier:

b ← LS.Verifier(TVer, (M,x,T, rt, y, rtnew), st, (a1, . . . , a�)),

and outputs b.

Theorem 4.2. Assume HT is an (S, ε)-secure hash-tree scheme for a func-
tion S(k) and a negligible function ε(k). Then (ParamGen,MemGen,QueryGen,
Output,Prover,Verifier) is an �-prover argument system for RAM computations
that is (S, ε)-secure against δ-no-signaling provers for δ(k) = 2−k·polylog(S(k)).

The proof of Theorem 4.2 follows by combining Theorems 3.2 and 4.1 and
can be found in the full version of this work [KP15].

References

[ACC+15] Ananth, P., Chen, Y.-C., Chung, K.-M., Lin, H., Lin, W.-K.: Delegating
RAM computations with adaptive soundness and privacy. IACR Cryptol-
ogy ePrint Archive, 2015:1082 (2015)

[BCC+14] Bitansky, N., Canetti, R., Chiesa, A., Goldwasser, S., Lin, H., Rubinstein,
A., Tromer, E.: The hunting of the SNARK. IACR Cryptology ePrint
Archive, 2014:580 (2014)

[BCCT13] Bitansky, N., Canetti, R., Chiesa, A., Tromer, E.: Recursive composition
and bootstrapping for snarks and proof-carrying data. In: STOC, pp. 111–
120 (2013)

Delegating RAM Computations 117

[BCI+13] Bitansky, N., Chiesa, A., Ishai, Y., Paneth, O., Ostrovsky, R.: Succinct
non-interactive arguments via linear interactive proofs. In: Sahai, A. (ed.)
TCC 2013. LNCS, vol. 7785, pp. 315–333. Springer, Heidelberg (2013).
doi:10.1007/978-3-642-36594-2 18

[BEG+91] Blum, M., Evans, W.S., Gemmell, P., Kannan, S., Naor, M.: Checking the
correctness of memories. In: 32nd Annual Symposium on Foundations of
Computer Science, San Juan, Puerto Rico, 1–4 October 1991, pp. 90–99
(1991)

[BGL+15] Bitansky, N., Garg, S., Lin, H., Pass, R., Telang, S.: Succinct random-
ized encodings and their applications. In: Proceedings of the Forty-Seventh
Annual ACM on Symposium on Theory of Computing, STOC 2015,
Portland, OR, USA, June 14–17, 2015, pp. 439–448 (2015)

[BHK16] Brakerski, Z., Holmgren, J., Kalai, Y.T.: Non-interactive RAM and batch
NP delegation from any PIR. Electron. Colloquium Comput. Complex.
(ECCC) 23, 77 (2016)

[CCC+15] Chen, Y.-C., Chow, S.S.M., Chung, K.-M., Lai, R.W.F., Lin, W.-K., Zhou,
H.-S.: Computation-trace indistinguishability obfuscation and its applica-
tions. IACR Cryptology ePrint Archive,2015:406 (2015)

[CCHR15] Canetti, R., Chen, Y., Holmgren, J., Raykova, M.: Succinct adaptive gar-
bled ram. Cryptology ePrint Archive, Report 2015/1074 (2015). http://
eprint.iacr.org/

[CH15] Canetti, R., Holmgren, J.: Fully succinct garbled RAM. IACR Cryptology
ePrint Archive, 2015:388 (2015)

[CHJV15] Canetti, R., Holmgren, J., Jain, A., Vaikuntanathan, V.: Succinct garbling
and indistinguishability obfuscation for RAM programs. In: Proceedings of
the Forty-Seventh Annual ACM on Symposium on Theory of Computing,
STOC 2015, Portland, OR, USA, June 14–17, 2015, pp. 429–437 (2015)

[CKLR11] Chung, K.-M., Kalai, Y.T., Liu, F.-H., Raz, R.: Memory delegation. In:
Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 151–168. Springer,
Heidelberg (2011). doi:10.1007/978-3-642-22792-9 9

[DFH12] Damg̊ard, I., Faust, S., Hazay, C.: Secure two-party computation with low
communication. In: Cramer, R. (ed.) TCC 2012. LNCS, vol. 7194, pp. 54–
74. Springer, Heidelberg (2012). doi:10.1007/978-3-642-28914-9 4

[GGPR13] Gennaro, R., Gentry, C., Parno, B., Raykova, M.: Quadratic span programs
and succinct NIZKs without PCPs. In: Johansson, T., Nguyen, P.Q. (eds.)
EUROCRYPT 2013. LNCS, vol. 7881, pp. 626–645. Springer, Heidelberg
(2013). doi:10.1007/978-3-642-38348-9 37

[GGR15] Goldreich, O., Gur, T., Rothblum, R.: Proofs of proximity for context-
free languages and read-once branching programs. Electron. Colloquium
Comput. Complex. (ECCC) 22, 24 (2015)

[GHRW14] Gentry, C., Halevi, S., Raykova, M., Wichs, D.: Outsourcing private RAM
computation. In: 55th IEEE Annual Symposium on Foundations of Com-
puter Science, FOCS 2014, Philadelphia, PA, USA, October 18–21, 2014,
pp. 404–413 (2014)

[GR15] Gur, T., Rothblum, R.D.: Non-interactive proofs of proximity. In: Pro-
ceedings of the 2015 Conference on Innovations in Theoretical Computer
Science, ITCS 2015, Rehovot, Israel, January 11–13, 2015, pp. 133–142
(2015)

[Gro10] Groth, J.: Short pairing-based non-interactive zero-knowledge arguments.
In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 321–340.
Springer, Heidelberg (2010). doi:10.1007/978-3-642-17373-8 19

http://dx.doi.org/10.1007/978-3-642-36594-2_18
http://eprint.iacr.org/
http://eprint.iacr.org/
http://dx.doi.org/10.1007/978-3-642-22792-9_9
http://dx.doi.org/10.1007/978-3-642-28914-9_4
http://dx.doi.org/10.1007/978-3-642-38348-9_37
http://dx.doi.org/10.1007/978-3-642-17373-8_19

118 Y. Kalai and O. Paneth

[GVW15] Gorbunov, S., Vaikuntanathan, V., Wichs, D.: Leveled fully homomorphic
signatures from standard lattices. In: Proceedings of the Forty-Seventh
Annual ACM on Symposium on Theory of Computing, STOC 2015,
Portland, OR, USA, June 14–17, 2015, pp. 469–477 (2015)

[Kil92] Kilian, J.: A note on efficient zero-knowledge proofs and arguments. In:
Proceedings of the 24th Annual ACM Symposium on Theory of Comput-
ing, pp. 723–732 (1992)

[KP15] Kalai, Y.T., Paneth, O.: Delegating RAM computations. IACR Cryptology
ePrint Archive, 2015:957 (2015)

[KR15] Kalai, Y.T., Rothblum, R.D.: Arguments of proximity (extended abstract).
In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9216, pp.
422–442. Springer, Heidelberg (2015). doi:10.1007/978-3-662-48000-7 21

[KRR14] Kalai, Y.T., Raz, R., Rothblum, R.D.: How to delegate computations: the
power of no-signaling proofs. In: Symposium on Theory of Computing,
STOC 2014, New York, NY, USA, May 31 - June 03, 2014, pp. 485–494
(2014)

[Lip12] Lipmaa, H.: Progression-free sets and sublinear pairing-based non-
interactive zero-knowledge arguments. In: Cramer, R. (ed.) TCC 2012.
LNCS, vol. 7194, pp. 169–189. Springer, Heidelberg (2012). doi:10.1007/
978-3-642-28914-9 10

[Mer87] Merkle, R.C.: A digital signature based on a conventional encryption func-
tion. In: Pomerance, C. (ed.) CRYPTO 1987. LNCS, vol. 293, pp. 369–378.
Springer, Heidelberg (1988). doi:10.1007/3-540-48184-2 32

[Mic94] Micali, S.: CS proofs (extended abstracts). In’: 35th Annual Symposium
on Foundations of Computer Science, Santa Fe, New Mexico, USA, 20–22
November 1994, pp. 436–453 (1994)

[PF79] Pippenger, N., Fischer, M.J.: Relations among complexity measures. J.
ACM 26(2), 361–381 (1979)

[PR14] Paneth, O., Rothblum, G.N.: Publicly verifiable non-interactive arguments
for delegating computation. Cryptology ePrint Archive, Report 2014/981
(2014). http://eprint.iacr.org/

[RVW13] Rothblum, G.N., Vadhan, S.P., Wigderson, A.: Interactive proofs of prox-
imity: delegating computation in sublinear time. In: Symposium on Theory
of Computing Conference, STOC 2013, Palo Alto, CA, USA, June 1–4,
2013, pp. 793–802 (2013)

http://dx.doi.org/10.1007/978-3-662-48000-7_21
http://dx.doi.org/10.1007/978-3-642-28914-9_10
http://dx.doi.org/10.1007/978-3-642-28914-9_10
http://dx.doi.org/10.1007/3-540-48184-2_32
http://eprint.iacr.org/

Public-Key Encryption

Standard Security Does Not Imply
Indistinguishability Under Selective Opening

Dennis Hofheinz1(B), Vanishree Rao2, and Daniel Wichs3

1 Karlsruhe Institute of Technology, Karlsruhe, Germany
dennis.hofheinz@kit.edu

2 PARC, a Xerox Company, Palo Alto, USA
3 Northeastern University, Massachusetts, USA

Abstract. In a selective opening attack (SOA) on an encryption scheme,
the adversary is given a collection of ciphertexts and she selectively
chooses to see some subset of them “opened”, meaning that the messages
and the encryption randomness are revealed to her. A scheme is SOA
secure if the data contained in the unopened ciphertexts remains hidden.
A fundamental question is whether every CPA secure scheme is necessar-
ily also SOA secure. The work of Bellare et al. (EUROCRYPT’12) gives
a partial negative answer by showing that some CPA secure schemes
do not satisfy a simulation-based definition of SOA security called SIM-
SOA. However, until now, it remained possible that every CPA-secure
scheme satisfies an indistinguishability-based definition of SOA security
called IND-SOA.

In this work, we resolve the above question in the negative and con-
struct a highly contrived encryption scheme which is CPA (and even
CCA) secure but is not IND-SOA secure. In fact, it is broken in a very
obvious sense by a selective opening attack as follows. A random value
is secret-shared via Shamir’s scheme so that any t out of n shares reveal
no information about the shared value. The n shares are individually
encrypted under a common public key and the n resulting ciphertexts are
given to the adversary who selectively chooses to see t of the ciphertexts
opened. Counter-intuitively, by the specific properties of our encryption
scheme, this suffices for the adversary to completely recover the shared
value. Our contrived scheme relies on strong assumptions: public-coin
differing inputs obfuscation and a certain type of correlation intractable
hash functions.

We also extend our negative result to the setting of SOA attacks with
key opening (IND-SOA-K) where the adversary is given a collection of
ciphertexts under different public keys and selectively chooses to see some
subset of the secret keys.

1 Introduction

When it comes to defining the security of encryption schemes, the standard
definitions of chosen-plaintext attack (CPA) and chosen-ciphertext attack (CCA)
security are generally thought of as the gold standard. Nevertheless, there are
c© International Association for Cryptologic Research 2016
M. Hirt and A. Smith (Eds.): TCC 2016-B, Part II, LNCS 9986, pp. 121–145, 2016.
DOI: 10.1007/978-3-662-53644-5 5

122 D. Hofheinz et al.

scenarios in which these notions do not appear to provide sufficient guarantees.
One such scenario is that of selective opening attacks (SOA) [4,11].

Selective Opening Attacks. In a selective opening attack, the adversary gets a
collection of n ciphertexts (ci = Encpk (mi; ri))i∈[n] encrypting messages mi with
randomness ri under a common public key pk . The adversary can adaptively
choose to see some subset I ⊆ [n] of the ciphertexts “opened”, meaning that she
gets (mi, ri)i∈I . For example, this could model a scenario where these ciphertexts
are created by different senders and the adversary adaptively corrupts some
subset of them. Intuitively, a scheme is SOA secure if the data contained in
the unopened ciphertexts remains hidden. Formalizing this notion requires great
care, and several definitions have been proposed.

Simulation-Based SOA Security. Perhaps the strongest notion of SOA secu-
rity is a simulation-based definition, which we denote SIM-SOA. It was originally
proposed for commitments by Dwork et al. [11] and later adapted to encryption
by Bellare et al. [4]. This definition requires that for any n-tuple of messages
m = (m1, . . . ,mn) the view of the adversary in the above SOA scenario is indis-
tinguishable from a simulated view created as follows: the simulator selects a
message subset I, obtains (mi)i∈I , and is then supposed to output a view of
a selective opening attack with ciphertexts, random coins, and an adversary as
above. At when constructing the simulator in a black-box fashion out of a given
adversary, this means that the simulator must initially creates a collection of
simulated ciphertexts c = (c1, . . . , cn) without knowing anything about the mes-
sages. The adversary then gets c and specifies a subset I ⊆ [n] of the ciphertexts
to be opened. At this point, the simulator learns the messages (mi)i∈I and has
to produce simulated openings (mi, ri)i∈I to give to the adversary.

On the positive side, this definition is easy to use in applications and clearly
captures the intuitive goal of SOA security, since the adversary’s view can be
simulated without using any knowledge of the unopened messages. Moreover,
we have constructions that achieve SIM-SOA security from a wide variety of
number theoretic assumptions [4,12,14,18,19,21].

On the negative side, this definition might be overkill in many applications
and therefore also unnecessarily hard to achieve. The work of Bellare et al. [3]
shows that many natural encryption schemes are not SIM-SOA secure, in the
sense that there is no efficient simulator that would satisfy the given definition.
The lack of a simulator already constitutes an attack on SIM-SOA security in
the formal sense. However, these schemes are also not “obviously broken” by a
selective opening attack in the intuitive sense. In particular, it is not clear how
to, e.g., extract an unopened plaintext in a selective opening attack. At the very
least, it remains unclear what exactly can go wrong when using such schemes in
the context of the SOA scenario described above.

Indistinguishability-Based SOA Security. The work of Bellare et al. [4]
also proposes an indistinguishability-based security definition, which we denote
IND-SOA. The definition requires that we have an “efficiently re-samplable”
distribution on n-tuples of messages m = (m1, . . . ,mn) such that for any set

Standard Security Does Not Imply Indistinguishability 123

I ⊆ [n] we can efficiently sample from the correct conditional distribution with
a fixed choice of (mi)i∈I . For any such distribution we consider the SOA scenario
where the adversary initially gets encryptions of the messages m = (m1, . . . ,mn)
chosen from the distribution, and selectively gets to see an opening of a sub-
set I of the ciphertext. At the end of the game the adversary either gets the
initially encrypted message vector m or a freshly re-sampled message vector
m′ = (m′

1, . . . ,m
′
n) conditioned on m′

i = mi matching in the opened positions
i ∈ I. The adversary should not be able to distinguish these two cases.

On the negative side, the definition of IND-SOA security is more complex and
its implications are harder to interpret. However, it can already provide sufficient
security guarantees in many interesting applications and might be significantly
easier to achieve than SIM-SOA security. Prior to this work, we did not know
whether it is the case that every CPA secure encryption scheme is also IND-SOA
secure. The work of Hofheinz and Rupp [20] shows that, if one considers a def-
inition that combines IND-SOA security with CCA security, denoted by IND-
SO-CCA, then there are schemes that are CCA secure but are not IND-SO-CCA
secure. However, this result crucially relies on the embedding of an attack in the
decryption oracle, and does not appear to extend to the standard IND-SOA. In
fact, the same work of [20] gave a partial positive result showing that CPA secu-
rity implies IND-SOA security for a large class of encryption schemes in a generic
group model, but it was unclear what the situation is in the standard model.

More Related Work. The relations between different definitions of SOA secu-
rity have also been investigated by Böhl et al. [6]. It turns out that the notion
of IND-SOA security we consider is the weakest known notion of SOA secu-
rity among the ones studied (and that the “efficient resamplability” condition is
essential for this property). Hazay et al. [17] recently studied SOA for keys (where
the adversary receives secret keys of corresponding chosen subset of ciphertexts)
and showed that the indistinguishability-based security is strictly weaker than
the simulation-based counterpart. Furthermore, there exist several efficient con-
structions of IND-SOA secure encryption schemes that are not known to be
SIM-SOA secure. Most prominently, every lossy encryption scheme is IND-SOA
secure [4], which opens the door for efficient IND-SOA secure schemes from var-
ious computational assumptions [26–28]. In that sense, the notion of IND-SOA
we consider is very attractive from a practical point of view. In an orthogonal
direction, Fuchsbauer et al. [13], recently showed that standard security implies
IND-SOA for certain specific graph-induced distributions; it is interesting to
note that, while we used dependencies of messages to show our negative result,
[13] used the lack of dependencies to show a positive result.

Secret Sharing: A Concrete SOA Scenario. At this point, an intuitive
definition of SOA security might appear elusive, with strong definitions like
SIM-SOA that could be overkill and weaker definitions like IND-SOA that are
hard to interpret. Instead of trying to pin down a general notion of SOA secu-
rity, we will focus on defining a concrete and easy to understand security goal,
which any reasonable definition of SOA security should satisfy. We call this goal

124 D. Hofheinz et al.

secret-sharing selective-opening attack (SecShare-SOA) security, and define it
via the following game.

The challenger chooses a random polynomial F of degree ≤ t and sets mi =
F (i) for i ∈ [n]. We can think of this as a Shamir secret sharing of a random
value F (0) where any t of the n shares preserve privacy. The adversary is given
encryptions of the shares (ci = Encpk (mi; ri))i∈[n] and can selectively choose to
get openings (mi, ri)i∈I for a subset I of the ciphertexts where |I| = t. The
adversary should not be able to predict F (0).

It is easy to show that SecShare-SOA security is implied by IND-SOA (and
therefore also SIM-SOA) security. At first thought, it may seem that SecShare-
SOA security should also follow from standard CPA security. However, upon
some reflection, it becomes clear that natural reductions fail. In particular, there
is no easy way to embed the challenge ciphertext c∗ into a correctly distributed
vector (ci)i∈[n] while maintaining the ability to provide openings for a large
subset of the ciphertexts.

Our Results. In this work, we construct a contrived encryption scheme which is
CPA (and even CCA) secure, but is not SecShare-SOA secure (and therefore also
not IND-SOA secure). In particular, we have an attack against the SecShare-
SOA security of the scheme where the attacker always recovers the shared secret
with probability 1. This is the first example of a CPA secure scheme which is
obviously broken in the SOA setting. As a corollary, this shows that not every
CPA secure scheme is IND-SOA secure.

We also extend our results to selective opening attacks on receiver keys (IND-
SOA-K), also known as selective opening under receiver corruption. In this setting,
the adversary is given a collection of ciphertexts under different public keys and
he can selectively chose to see some subset of the secret keys. We give an analogous
example of a scheme which is CCA secure but is not IND-SOA-K secure.

Our results rely on strong assumptions: public-coin differing inputs obfusca-
tion [23] and a certain type of correlation-intractable hash functions [8].

1.1 Our Techniques

We construct a scheme which is CCA secure but for which there is an attack
on the SecShare-SOA security. For concreteness, we will show an attack on the
SecShare-SOA game using a secret sharing scheme with parameters t = k (degree
of polynomial) and n = 3k (number of shares) where k is the security parameter.

An SOA Helper Oracle. As our starting point, we consider the construction
of Hofheinz and Rupp [20] which gives a CCA secure scheme that is not IND-
SO-CCA secure. Their construction starts with any CCA secure scheme and, as
an implicit first step, defines a (stateful and interactive) “SOA helper oracle”
that has knowledge of the secret key sk of the scheme. The way that the oracle
is defined ensures that the scheme remains CCA secure but is not SecShare-SOA
secure relative to this oracle. They then show how to embed this oracle into the
decryption procedure of the scheme to get a scheme which is not IND-SO-CCA
secure.

Standard Security Does Not Imply Indistinguishability 125

The SOA helper oracle gets as input ciphertexts (ci)i∈[3k] and it randomly
chooses a subset I ⊂ [3k] of size |I| = k of them to open. It then receives the
openings (mi, ri)i∈I and decrypts the remaining ciphertexts using knowledge
of sk . It checks that there is a (unique) degree ≤ k polynomial F such that
F (i) = mi for > 2k of the indices i ∈ [3k] and that this polynomial also satisfies
F (i) = mi for all of the indices i ∈ I. If so, it outputs F (0) and else ⊥.

It is easy to see that this oracle breaks SecShare-SOA security. The harder
part is showing that the scheme remains CPA/CCA secure relative to the oracle.
In particular, we want to show that this oracle will not help the adversary decrypt
some challenge ciphertext c∗. We do so by defining an “innocuous SOA helper
oracle” that functions the same way as the real SOA helper oracle but it never
decrypts c∗. Instead, it just pretends that the decryption of c∗ is ⊥. The only time
that innocuous SOA helper and the real SOA helper give a different answer is
when the ciphertexts (ci)i∈[3k] encrypt messages (mi) such that there is a unique
degree ≤ k polynomial F with F (i) = mi for exactly 2k+1 of the indices i ∈ [3k],
and this polynomial satisfies F (i) = mi for all i ∈ I. Only in this case, there
is a possibility that the SOA helper correctly outputs F while the innocuous
SOA helper outputs ⊥ when the decryption of c∗ is replaced by ⊥. However,
since the set I ⊆ [3k] of size |I| = k is chosen randomly and independently of
(ci), the probability that it is fully contained in the set of 2k + 1 indices for
which F (i) = mi is negligible. Therefore, the SOA helper and the innocuous
SOA helper give the same answer with all but negligible probability, meaning
that the former cannot break CCA security.

Obfuscating the SOA Helper. Our main idea is that, instead of embedding
the SOA helper in the secret-key decryption procedure, we obfuscate the SOA
helper and include the obfuscated code in the public key of the scheme. (We note
that a similar technique of “obfuscating a helper oracle that aids an attacker”
has been used in the key-dependent message setting [24,25].) There are two main
difficulties that we must take care of.

The first difficulty is that the SOA helper is stateful/interactive whereas we
can only obfuscate a stateless program. We squash the interactive helper into
a non-interactive one by choosing the set of indices I ⊆ [3k], |I| = k via a
hash function h applied to the ciphertexts (ci)i∈[3k]. One can think of this as
an analogue of the Fiat-Shamir heuristic which is used to squash a 3 move Σ-
protocol into a non-interactive argument. (We stress, however, that we do not
rely on random oracles, as in the Fiat-Shamir heuristic. Instead, we use a suitable
standard-model hash function.) The squashed SOA helper now expects to get
the ciphertexts (ci)i∈[3k] and the opening (mi, ri)i∈I where I = h((ci)i∈[3k]) in
one shot. Previously, we used the fact that the set I is random to argue that
the SOA helper and the innocuous SOA helper are indistinguishable. We now
instead rely on correlation intractability [8] of the hash function h to argue that
it is hard to find an input on which the two oracles would give a different answer
(even given the entire code and secrets of the oracles).

The second difficulty is how to use reasonable notions of obfuscation to argue
that the obfuscated SOA helper, which contains the decryption key inside it, does

126 D. Hofheinz et al.

not break CPA/CCA security. We rely on public-coin differing inputs obfuscation
(PdiO) [23]. This security notion says that, given two programs represented as
circuits C,C ′, together with all the random coins used to sample them, if it is
hard to find an input x such that C(x) �= C ′(x) then the obfuscations of C and C ′

are indistinguishable. We can rely on public-coin differing-inputs obfuscation and
the correlation intractability of h to replace the obfuscated SOA oracle with an
obfuscated “innocuous SOA oracle” that never decrypts the challenge ciphertext
c∗. However, even the latter oracle still has the secret key sk hard-coded and
therefore it is not clear if an obfuscated version of the innocuous oracle remains
innocuous. To solve this problem, we will need the underlying CCA encryption
scheme to be “puncturable” meaning that we can create a punctured secret key
sk [c∗] which correctly decrypts all ciphertexts other than c∗ but preserves the
semantic security of c∗. Such encryption schemes were constructed in the work
of [9] from indistinguishability obfuscation. With this approach we can argue
that security of the challenge ciphertext c∗ is preserved.

Discussion on our Assumptions. We recall that two of the main assumptions
behind our results are public-coin differing inputs obfuscation and correlation-
intractable hash functions.

The notion of public-coin differing inputs obfuscation (PdiO) is stronger than
indistinguishability obfuscation (iO) but weaker than differing-inputs obfuscation
(diO) [1]. There is some evidence that diO is unachievable in its full generality
[5,16], but no such evidence exists for PdiO. Indeed, at present we do not have
much more evidence for the existence of iO than we do for PdiO. We note that
if PdiO exists, then by the “best-possible” nature of iO, any iO obfuscator (with
sufficient padding) is already also a PdiO obfuscator as well. All that said, we view
it as an intriguing open problem to base our results on iO rather than PdiO.

The correlation intractability assumption that we need is in a parameter
regime with no known counter-examples and has been conjectured to be achiev-
able. As evidence, a recent work [7] constructs such correlation-intractable hash
functions under obfuscation-based assumptions. However, the description of the
hash functions is not public-coin samplable, whereas we need a hash function
that is. We simply conjecture that standard hash function constructions such as
SHA-3 achieve this property. We note that the notion of correlation intractabil-
ity that we need is also a special case of entropy-preserving hashing [2,10] which
is sufficient to guarantee the soundness of the Fiat-Shamir heuristic for all proof
(but not argument) systems and has been conjectured to exist.

On this note, an interesting direction for future work is to re-establish the
results based on weaker assumptions.

2 Preliminaries

General Notation. For n ∈ N we define [n] := {1, . . . , n}. Throughout the
paper, k ∈ N denotes the security parameter. For any function g(·), we let
g(k) = negl(k) denote that g(·) is a negligible function. For any two distributions
D0,D1 parameterized by k, we denote that they are computationally (resp.,

Standard Security Does Not Imply Indistinguishability 127

statistically) indistinguishable by D0 ≈c D1 (resp., D0 ≈s D1); we denote that
they are identical by D0 ≡ D1.

Interpolation, Error Decoding. Let F be the finite field. For pairwise different
Xi ∈ F we let ipol((Xi, Yi)i∈[k+1]) denote the unique degree ≤ k polynomial
F ∈ F[X] with F (Xi) = Yi for all i ∈ [k +1]. We note that ipol can be efficiently
computed, e.g., via Lagrange interpolation. Also, let decck((Xi, Yi)i∈[n]) denote
the the unique degree ≤ k polynomial F ∈ F[X] such that F (Xi) = Yi for
> n − (n − k)/2 of the indices i ∈ [n], or ⊥ if no such polynomial exists.
Evaluating decc amounts to performing error correction for the Reed-Solomon
code with distance d = (n − k) when there are < d/2 errors, which can be done
efficiently. Let SS

� denote the set of all �-sized subsets of S.

PKE Schemes. A public-key encryption (PKE) scheme PKE with message
space M (parameterized by the security parameter k) consists of three PPT
algorithms Gen,Enc,Dec. Key generation Gen(1k) outputs a public key pk and
a secret key sk . Encryption Enc(pk ,m) takes pk and a message m ∈ M, and
outputs a ciphertext c. Decryption Dec(sk , c) takes sk and a ciphertext c, and
outputs a message m. For correctness, we want Dec(sk , c) = m for all m ∈ M,
all (pk , sk) ← Gen(1k), and all c ← Enc(pk ,m).

CCA Security. We recall the standard definition of IND-CCA security from
the literature.

Definition 1 (IND-CCA security.). We say that a scheme PKE is IND-CCA
secure if for all PPT attackers A the advantage

Advind-ccaPKE,A(k) :=
∣

∣

∣

∣

Pr
[

Expind-ccaPKE,A(k) = 1
]

− 1
2

∣

∣

∣

∣

is negligible in the security parameter k, where the experiment Expind-ccaPKE,A is defined
in Fig. 1, and Decc∗(sk , ·) is an oracle that outputs Dec(sk , c) for every input
c �= c∗ and ⊥ for input c∗.

IND-SOA Security. We now recall the definition of indistinguishability-based
SOA security from [4]. By default, we will consider the weakest variant where
the adversary specifies an efficiently re-samplable distribution.

Definition 2 (Efficiently re-samplable). Let n = n(k) > 0, and let D be a
joint distribution over Mn. We say that D is efficiently re-samplable if there is a
PPT algorithm msampD such that for any I ⊆ [n] and any partial vector m′

I :=
(m′

i)i∈I ∈ M|I|, msampD(m′
I) samples from D | m′

I , i.e., from the distribution
m ← D, conditioned on mi = m′

i for all i ∈ I. Note that in particular, msampD()
samples from D.

Definition 3 (IND-SOA Security). For a PKE scheme PKE = (Gen,Enc,
Dec), a polynomially bounded function n = n(k) > 0, and a stateful PPT adver-
sary A, consider the experiment in Fig. 1. We only allow A that always output

128 D. Hofheinz et al.

Fig. 1. IND-CCA and IND-SOA experiments.

re-sampling algorithms as in Definition 2. We call PKE IND-SOA secure if for
all polynomials n and all PPT A, we have

Advind-soaPKE,A(k) :=
∣

∣

∣

∣

Pr
[

Expind-soaPKE,A(k) = 1
]

− 1
2

∣

∣

∣

∣

= negl(k).

Public-Coin Differing-Inputs Obfuscation. In this paper, we require a
strengthening [22,23] of the notion of indistinguishability obfuscation [1,15].

We shall first define the notion of a public-coin differing-inputs sampler.

Definition 4 (Public-Coin Differing-Inputs Sampler). A (circuit) sam-
pling algorithm csamp is an algorithm that takes as input random coins r ∈
{0, 1}�(k) for a suitable polynomial � = �(k), and outputs the description of two
circuits C0 and C1. We call csamp a public-coin differing-inputs sampler for the
parameterized collection of circuits C = {Ck} if the output of csamp is distributed
over Ck × Ck, and for every PPT adversary A, we have

Pr
r

[C0(x) �= C1(x) : (C0, C1) ← csamp(1k; r), x ← A(1k, r)] = negl(k).

Observe that the sampler and the attacker both receive the same random
coins as input. Therefore, csamp cannot keep any “secret” from A. We now
define the notion of a public-coin differing-inputs obfuscator.

Definition 5 (Public-Coin Differing-Inputs Obfuscator). A uniform
PPT algorithm PdiO is a public-coin differing-inputs obfuscator for the para-
meterized collection of circuits C = {Ck} if the following requirements hold:

Correctness: ∀k, ∀C ∈ Ck, ∀x, it is Pr[C ′(x) = C(x) : C ′ ← PdiO(1k, C)] = 1.

Standard Security Does Not Imply Indistinguishability 129

Security: for every public-coin differing-inputs sampler csamp for the collection
C, every PPT (distinguishing) algorithm D, we have

AdvpdioPdiO,D :=
∣∣Pr[D(1k, r, C′) = 1 : (C0, C1) ← csamp(1k; r), C′ ← PdiO(1k, C0)]−
Pr[D(1k, r, C′) = 1 : (C0, C1) ← csamp(1k; r), C′ ← PdiO(1k, C1)]

∣∣ = negl(k)

Correlation-intractable Hash Functions. We begin by reviewing the defin-
ition of correlation-intractable hash function from [8].

Definition 6 (Hash Function Ensembles). A family of functions H = {hs :
Dk → Rk}k∈N,s∈{0,1}�(k) with domain Dk, range Rk, and seed length �(k) is said
to be an efficient hash function ensemble, if there exists a PPT algorithm that
given x ∈ Dk and s, outputs hs(x).

In the sequel, we shall simply denote this computation by hs(x). Furthermore,
we shall often call s the description or the seed of the function hs.

Definition 7 (Binary Relations). A class of efficient binary relations con-
sists of REL = {Relr ⊆ (Dk, Rk)}k∈N,r∈{0,1}�′(k) , where membership in Relr is
testable in polynomial time given r.

The relation REL is said to be evasive if for any r ∈ {0, 1}�′(k), x ∈ Dk we
have:

Pr
y←Rk

[(x, y) ∈ Relr] = negl(k).

Definition 8 (Correlation Intractability). Assume an efficient hash func-
tion ensemble H = {hs : Dk → Rk}k∈N,s∈{0,1}�(k) . Furthermore, let REL =
{Relr ⊆ (Dk, Rk)}k∈N,r∈{0,1}�′(k) be a class of efficient binary relations. We say
that H is correlation intractable with respect to REL if for every PPT A,

Pr
s←{0,1}�(k),r←{0,1}�′(k)

[(x, hs(x)) ∈ Relr : x ← A(s, r)] = negl(k)

The work of [8] showed that no hash function ensemble is correlation-intracta-
ble with respect to all evasive binary relations REL. However, for any fixed
domains/ranges Dk, Rk it is plausible that there is a correlation-intractable hash
function H for all evasive relations over Dk, Rk as long as the seed length �(k)
of the hash function is made sufficiently large relative to Dk, Rk. This would be
sufficient for our needs. For concreteness, we define a specific class of relations
REL for which we need correlation intractability.

Definition 9 (Special Class of Evasive Binary Relations). Let PKE =
(Gen,Enc,Dec) be a PKE scheme with plaintext space F (a field), ciphertext
space C (parametrized by the security parameter k), and which uses �′(k) bits
of randomness in key-generation. We define a special class of binary relations
RELPKE = {Relr ⊆ (C3k,S [3k]

k)}k∈N,r∈{0,1}�′(k) , as follows.

130 D. Hofheinz et al.

– To determine if ((ci)i∈[3k], I) ∈ Relr: Let (pk, sk) = Gen(1k; r), mi =
Dec(sk , ci), F = decck((i,mi)i∈[3k]) and Q = {i ∈ [3k] : F (i) = mi}. The
tuple is in the relation if F �= ⊥, |Q| = 2k + 1 and I ⊆ Q.

Intuitively, the above says that a tuple ((ci)i∈[3k], I) ∈ Relr if the decrypted
messages (mi)i∈[3k] agree with the evaluations of a degree ≤ k polynomial F in
exactly 2k +1 positions and the set I only contains these positions. It is easy to
see that this is an evasive relation as shown below (following [20, Lemma 3.3]).

Lemma 1. The relation RELPKE is evasive. In particular, for any r ∈ {0, 1}�′(k)

any (ci)i∈[3k] ∈ C3k we have PrI←S[3k]
k

[

((ci)i∈[3k], I) ∈ Relr
]

= negl(k).

Proof. Let (pk, sk) = Gen(1k; r), mi = Dec(sk , ci), F = decck((i,mi)i∈[3k]) and
Q = {i ∈ [3k] : F (i) = mi}. If F = ⊥ or |Q| �= 2k +1 then the probability in the
lemma is 0. Otherwise

Pr
I←S[3k]

k

[

((ci)i∈[3k], I) ∈ Relr
]

= Pr
I←S[3k]

k

[I ⊆ Q] =

(

2k+1
k

)

(

3k
k

) ≤
(

5
6

)k

for all k ≥ 2, which proves the lemma.

Special Correlation-intractable Hash Functions. Let RELPKE be a special
class of binary relations for PKE scheme PKE, like in Definition 9. We define spe-
cial correlation-intractable hash functions H = {hs : C3k → S [3k]

k }k∈N,s∈{0,1}�(k)

as a function ensemble that is correlation intractable with respect to the relation
RELPKE. We reiterate that this is a special case of correlation intractability with
respect to all evasive relations, which is conjectured to be possible as long as the
seed length �(k) of the hash function is made sufficiently large relative to the
domain/range. In our case, we allow �(k) to be an arbitrarily large polynomial.

2.1 Puncturable Encryption Schemes

We will rely on the notion of puncturable encryption from [9]. Let PKE =
(Gen,Enc,Dec,Puncture) be a tuple of PPT algorithms. PKE is said to be a
puncturable encryption scheme, if the following holds.

Syntax. (Gen,Enc,Dec) is a PKE scheme with message space M = {Mk}k∈N

and ciphertext space C = {Ck} which are efficiently sampleable.
Correctness. For all m ∈ M it holds that Pr[Dec(sk , c) = m : (pk , sk) ←

Gen(1k), c ← Enc(pk ,m)] = 1.
Puncturability. ∀(pk , sk) in the support of Gen(1k), ∀c0, c1 ∈ C, ∀sk [{c0, c1}]

in the support of Puncture(sk , {c0, c1}), and ∀c /∈ {c0, c1}, it holds that:
Dec(sk [{c0, c1}], c) = Dec(sk , c).

Security. For every PPT adversary A,

Advpunc-ind-ccaPKE,A (k) :=
∣

∣

∣

∣

Pr
[

Exppunc-ind-ccaPKE,A (k) = 1
]

− 1
2

∣

∣

∣

∣

= negl(k)

where the experiment Exppunc-ind-ccaPKE,A (k) is defined in Fig. 2.

Standard Security Does Not Imply Indistinguishability 131

Ciphertext sparseness. ∀(pk , sk) we have

Pr [Dec(sk , c) �= ⊥] = negl(k),

where the probability is over c ← Cpk .

Note that the puncturing algorithm Puncture takes as input a set of two
ciphertexts, so that the distribution of Puncture(sk , {c0, c1}) is identical to that
of Puncture(sk , {c1, c0}).

3 Secret-Sharing Selective Opening Attack
(SecShare-SOA)

We now define a special case of IND-SOA security that we call SecShare-SOA.
It corresponds to the case where the encrypted values are shares in a t-out-of-n
secret sharing scheme.

Secret-sharing Message Distribution. Let F be a field of cardinality p. We
consider a distribution D which chooses a polynomial in F ∈ F[X] of degree at
most t and sets the messages to be mi = F (i) for i ∈ [n]. We let t and n be two
polynomials in the security parameter, such that t < n ≤ p. More formally,

DF,t,n =
{

(F (1), . . . , F (n))
∣

∣ F ∈ F[X] uniformly chosen degree-≤ t polynomial
}

Note that there exists an efficient re-sampling algorithm msamp for the above
distribution. In particular, for any I, msamp can randomly extend its input
(F (i))i∈I to t + 1 evaluation points as necessary and then use polynomial inter-
polation to retrieve F and thus all F (i).

Note that, conditioned on any choice of F (i) for i ∈ I where |I| ≤ t, the
value F (0) is uniformly random.

Definition 10 (SecShare-SOA Security). Let F be a field of size determined
by the security parameter and let PKE = (Gen,Enc,Dec) be a PKE scheme, with
message space M = F. For any polynomials parameters t = t(k), n = n(k) such
that t < n ≤ |F|, consider the experiment in Fig. 2 with a stateful PPT adversary
A. We say that PKE secret-sharing selective opening attack secure if

Advsecsh-soaPKE,A (k) :=
∣

∣

∣

∣

Pr
[

Expsecsh-soaPKE,A (k) = 1
]

− 1
|F|

∣

∣

∣

∣

is negligible for all PPT A.

3.1 IND-SOA Implies SecShare-SOA

Theorem 1. If a PKE scheme PKE is IND-SOA secure, then it is SecShare-
SOA secure.

132 D. Hofheinz et al.

Fig. 2. SecShare-SOA and Punc-IND-CCA experiments.

Proof. Let PKE be a PKE scheme with message space M = F which is a field.
Suppose there exists an adversary A that breaks the SecShare-SOA security of
PKE with probability ε = Advsecsh-soaPKE,A (k). Then we construct an adversary B
that, given access to A, breaks the IND-SOA security of PKE. We describe the
adversary below.
Adversary B. By using A, B interacts with its challenger in the IND-SOA game
as follows. Upon receiving a public key pk , B presents the secret-sharing message
distribution D to its challenger. To recall,

DF,t,n =
{

(F (1), . . . , F (n))
∣

∣ F ∈ F[X] uniformly chosen degree-≤ t polynomial
}

for some t < n. Upon receiving a tuple of ciphertexts c := (ci)i∈[n], B for-
wards (pk , c) to A. Upon receiving I from A, B forwards it to the challenger.
Recall that I ∈ [n] and |I| = t. Upon receiving a message vector m and
the openings (Ri)i∈I of (ci)i∈I to (mi)i∈I , B proceeds as follows. It computes
F = ipol((i,mi)i∈[n]). Thereafter, it forwards the messages and openings just
for i ∈ I; namely, (mi, Ri)i∈I . Let outA be the value output by A. B compares
whether outA = F (0). If so, then it outputs 0, else it outputs 1.
Analysis. We shall now analyze the success probability of B in the IND-SOA
game. Intuitively, B succeeds in the IND-SOA game whenever the A succeeds
in the SSSOA game except when the resampling results in the same message
vector as the original plaintext message. More formally, we have:

Pr
[

Expind-soaPKE,B(k) = 1|b = 0
]

= Pr
[

Expsecsh-soaPKE,A (k) = 1
]

Pr
[

Expind-soaPKE,B(k) = 1|b = 1
]

=
(

1 − 1
|F|

)

Standard Security Does Not Imply Indistinguishability 133

Thus,
∣

∣

∣

∣

Pr
[

Expind-soaPKE,B(k) = 1
]

− 1
2

∣

∣

∣

∣

=
∣

∣

∣

∣

1
2

(

Pr
[

Expsecsh-soaPKE,A (k) = 1
]

+
(

1 − 1
|F|

))

− 1
2

∣

∣

∣

∣

=
1
2

∣

∣

∣

∣

Pr
[

Expsecsh-soaPKE,A (k) = 1
]

− 1
|F|

∣

∣

∣

∣

=
ε

2

which is non-negligible by assumption.

4 CCA Secure, SOA Insecure Encryption

In this section, we describe a PKE scheme that is IND-CCA secure, but not
IND-SOA secure.

4.1 The Scheme

Let PKE′ = (Gen′,Enc′,Dec′,Puncture′) be a puncturable encryption scheme
with message space F for some field of size |F| ≥ 3k and |F| = O(k) and
with ciphertext space C. Let H = {hs : C3k → S [3k]

k }k∈N,s∈{0,1}�(k) be a spe-
cial correlation-intractable hash function ensemble with respect to RELPKE′

and
with seed length �(k). Let PdiO be a public-coin differing-inputs obfuscator.

We construct a scheme PKE = (Gen,Enc,Dec) as follows.

– Gen(1k) : Run (pk ′, sk ′) ← Gen′(1k). Sample s ← {0, 1}�(k) as a seed of the
hash function hs ∈ H. Then construct the program SOA-Helper in Fig. 3. Set
secret key sk = sk ′ and public key pk = (pk ′, s,PdiO(SOA-Helper)).

– Enc(pk ,m) : Parse pk = (pk ′, s,PdiO(SOA-Helper)). Output Enc′(pk ′,m).
– Dec(sk , c) : Output Dec′(sk ′, c).

Fig. 3. Program SOA-Helper

134 D. Hofheinz et al.

4.2 PKE is Not SecShare-SOA Secure

We now formally show that PKE allows for a simple SecShare-SOA attack.

Theorem 2. The PKE scheme PKE from Sect. 4.1 is not SecShare-SOA secure.

Proof. We construct a PPT algorithm A that breaks the SecShare-SOA security
of PKE with non-negligible probability.
Adversary A: Upon receiving a public key pk = (pk ′, s,PdiO(SOA-Helper)) and a
tuple of ciphertexts c := (ci)i∈[3k], A computes I = hs((ci)i∈[3k]). This I is the
subset that A submits to its SecShare-SOA experiment. By the security of PKE′,
we may assume that c′

i �= c′
j for all i �= j, except with some negligible probability

ν(k) (otherwise, an adversary on PKE′ could simply encrypt a challenge message
and hope for a collision).

Upon receiving openings (mi, Ri)i∈I , A runs the program PdiO(SOA-Helper)
on input ((ci)i∈[3k], (mi, Ri)i∈I). By construction of the program, the output is
a polynomial F with mi = F (i) for all i ∈ [3k]. Thus, the adversary can finally
compute F (0) and give it to the challenger.
Analysis: The analysis is pretty straight-forward, as, by design, the output of
the program is exactly what the adversary needs to break the SecShare-SOA
security. Thus, we have that,

Advsecsh-soaPKE,A (k) = 1 − 1
|F| − ν(k),

which is non-negligible by assumption about ν(k).

4.3 PKE is Still IND-CCA Secure

We show that PKE inherits PKE′’s IND-CCA security.

Theorem 3. Suppose that PKE′ is puncturably IND-CCA secure, H is a spe-
cial correlation-intractable hash function ensemble with respect to RELPKE′

, and
PdiO be a secure public-coin differing-inputs obfuscator. Then, the PKE scheme
PKE from Sect. 4.1 is IND-CCA secure.

Proof. Recall that our scheme has polynomial-size message space. We consider a
variation to the IND-CCA game where the challenger himself chooses the pair of
challenge messages. We call this modified game the $-IND-CCA game (defined
formally in Definition 13). The IND-CCA game and the $-IND-CCA game are
polynomially equivalent (as proved in Theorem7) for polynomially-sized message
spaces. Thus, it suffices to show here that our PKE scheme is $-IND-CCA secure.

Assume for contradiction that there exists an adversary A that breaks the $-
IND-CCA security of PKE with some non-negligible advantage ε. We shall arrive
at a contradiction through a sequence of hybrid arguments defined below. Let
us denote the event that a hybrid Hybi outputs 1 by Hybi → 1. The first hybrid
corresponds to the original $-IND-CCA security game.

Standard Security Does Not Imply Indistinguishability 135

– Hyb0: In the first hybrid the following game is played.
• Sample b ← {0, 1}.
• Sample m0,m1 ← M
• Sample s ← {0, 1}�(k).
• Run (pk ′, sk ′) ← Gen′(1k). Let sk = sk ′.
• c∗ ← Enc(pk ,mb)
• Construct the program SOA-Helper in Fig. 3 and obfuscate it to get
PdiO(SOA-Helper).

• Let pk = (pk ′, s,PdiO(SOA-Helper)).
• Give pk ,m0,m1, c

∗ to the adversary, and offer the adversary access to a
decryption oracle Decc∗(sk , ·).

• Finally, let b′ be the output of A. Output 1 if b′ = b and 0 otherwise.

We note here that Exp$-ind-ccaPKE,A (k) ≡ Hyb0.

– Hyb1: This hybrid is the same as Hyb0 with the exception of the following
modifications. Just before generating the program SOA-Helper, sample cr ← C.
Compute sk [{c∗, cr}] ← Puncture(sk , {c∗, cr}). We then make the following
modifications in Step 3 of the program obfuscated, and denote the resulting
program by SOA-Helper2:

3. Decrypt mi = Dec′(sk [{c∗, cr}, c′
i) for i ∈ [3k] \ I and for c′

i �∈ {c∗, cr}.
Use mb and ⊥ as the plaintext values when c′

i = c∗ and c′
i = cr, resp.

Furthermore, we now use the punctured key sk [{c∗, cr}] to answer A’s decryp-
tion queries, and we output ⊥ on inputs c∗, cr.

Claim. Hyb1 ≈c Hyb0.

Proof. We observe that the input/output functionality of the program has not
changed with overwhelming probability (over the choice of cr), thanks to the
puncturability and ciphertext sparseness properties of PKE′. Furthermore, there
is also no change in the functionality of the decryption oracle. Thus, by relying
on the indistinguishability obfuscation security (which follows from public-coin
differing inputs security) of PdiO, we have Hyb1 ≈c Hyb0.

– Hyb2: This hybrid is the same as Hyb1 with the exception of the following mod-
ifications in Step 3 of the program obfuscated. Denote the resulting program
by Program SOA-Helper2.

3. Decrypt mi = Dec′(sk [{c∗, cr}, c′
i) for i ∈ [3k] \ I and for c′

i �∈ {c∗, cr}.
Use ⊥ and ⊥ as the plaintext values when c′

i = c∗ and c′
i = cr, respectively.

Claim. Hyb2 ≈c Hyb1.

Proof. We employ the public-coins differing-inputs obfuscation security of PdiO
and the special correlation intractability of H to prove this claim. More specifi-
cally, consider an algorithm csamp(1k) that generates two circuits SOA-Helper1
and SOA-Helper2.

136 D. Hofheinz et al.

We first show that csamp is a public-coin differing-inputs sampler, by employ-
ing the special correlation intractability of H. Recall the special class of binary
relations RELPKE′

= {Relr}k∈N,r∈{0,1}�′(k) from Definition 9.
Let Z = ((c′

i)i∈[3k], (mi, RI)i∈I) be an input to the two programs. We will
now argue that the only time that SOA-Helper1(Z) �= SOA-Helper2(Z) is if
((c′

i)i∈[3k], I) ∈ Relr where r is the randomness of the key-generation procedure
used to create (pk ′, sk ′) and I = hs((c′

i)i∈[3k]).
In order to do so, let m′

i = Decsk ′(c′
i) for i ∈ [3k] \ I. Now if m′

i �= mi

for some i ∈ I then both programs output ⊥ since the check in line 2 will
fail (by correctness of decryption). Let F1 = decck((i,m′

i)i∈[3k]) and let F2 =
decck((i,m′′

i)i∈[3k]) where m′′
i = m′

i unless c′
i = c∗ and i �∈ I in which case

m′′
i = ⊥. These are the two polynomials that are used in line 3 of the execution

of SOA-Helper1(Z),SOA-Helper2(Z) respectively. Let Q = {i : F1(i) = m′
i}. If

F1 = F2 then both programs have the same output. The only case where this
does not happen is if F1 �= ⊥, |Q| = 2k + 1 and F2 = ⊥. Moreover, even in
this case both programs output ⊥ unless it is the case that I ⊆ Q. Therefore,
the only case where the two programs might produce differing outputs is if
F1 �= ⊥, |Q| = 2k + 1 and I ⊆ Q. This means that ((ci)i∈[3k], I) ∈ Relr where
I = hs((ci)i∈[3k]).

By the special correlation intractability property of H such inputs Z such
that SOA-Helper1(Z) �= SOA-Helper2(Z) are computationally hard to find, even
given all of the random coins used to generate the two programs, including the
hash-seed s and the randomness r used to generate (pk ′, sk ′). In other words
this shows that algorithm csamp that generates two circuits SOA-Helper1 and
SOA-Helper2 defines a public-coin differing-inputs family. We can therefore rely
on the public-coin differing-input security of PdiO to see that Hyb2 and Hyb1 are
indistinguishable.

– Hyb3: This hybrid is the same as Hyb2 with the following exception. Instead
of giving c∗ to the adversary, give cr to the adversary as a challenge.

Claim. Hyb3 ≈c Hyb2.

Proof. Assume that for an adversary A, Pr[Hyb2 → 1] and Pr[Hyb3 → 1] differ
by a non-negligible amount ε. Then we shall construct an adversary B that
breaks the puncturability of PKE′ with probability ε. B behaves the same as the
challenger in Hyb2 and interacts with A except for the following modifications.
It first samples b,m0,m1, and gives mb to its challenger. Upon receiving two
ciphertexts cb̂, c1−b̂, proceed by giving cb̂ to A as the challenge ciphertext. Finally,
output the output of the experiment.

Observe that if b̂ = 0, then we are in Hyb2. Else, we are in Hyb3. Thus,

Advpunc-ind-ccaPKE′,B (k) ≥ ε

– Hyb4: This hybrid is the same as Hyb3 with the exception of the following
modifications in Step 3 of the program obfuscated. Denote the resulting pro-
gram by Program SOA-Helper4.

Standard Security Does Not Imply Indistinguishability 137

3. Decrypt mi = Dec′(sk [{c∗, cr}, c′
i) for i ∈ [3k] \ I and for c′

i �∈ {c∗, cr}.
Use mb and ⊥ as the plaintext values when c′

i = c∗ and c′
i = cr, respec-

tively.

Claim. Hyb4 ≈c Hyb3.

Proof. The modification introduced in Hyb4 is similar to the modification intro-
duced in Hyb2 earlier. Hence, the proof here follows on the same lines as the
proof of Claim 4.3.

– Hyb5: This hybrid is the same as Hyb4 with the following exception. In the
obfuscated program, instead of hardcoding the punctured secret key, we shall
hardcode again the original secret key.

Claim. Hyb5 ≈c Hyb4.

Proof. Note that the input/output functionalities of the programs have not
changed as we moved from Hyb4 to Hyb5. By applying the indistinguishabil-
ity obfuscation security of PdiO, we have that Hyb5 ≈c Hyb4.

Finally, note that in Hyb5, the adversary’s view does not depend on the chal-
lenge bit b anymore: neither the obfuscated circuit SOA-Helper nor the challenge
ciphertext cr depend on b. We get that Hyb5 outputs 1 with probability exactly
1/2. The theorem follows.

5 Extension to Selective Opening of Keys (SOA-K)

We now show how to extend our main result to selective opening of keys (SOA-
K), where the adversary gets ciphertexts under many different public keys and
can selectively request to see some of the secret keys. This corresponds to a
setting where there are multiple receivers and the adversary can corrupt some
subset of them and get their keys (rather than the previous setting where there
were multiple senders and the adversary could corrupt some subset of them and
get their encryption randomness).

For this notion, we will consider PKE schemes where the public/secret key
pairs are generated dependent on some common public parameters. More specif-
ically, in addition to the triple of algorithms (Gen,Enc,Dec), we introduce an
algorithm PGen that takes the security parameter and outputs some public
parameters params ← PGen(1k). All the other algorithms take params as an
additional input. We show how to construct such PKE schemes which are CCA
secure but are IND-SOA-K insecure. We leave it as an open problem to construct
such examples in the setting without public parameters.

SOA-K has been considered before [3,17]; while [3] only treated the the
simulation-based definition, [17] treated the indistinguishability-based definition
that we will also consider in this work.

138 D. Hofheinz et al.

Definition 11 (IND-SOA-K Security). For a PKE scheme PKE = (PGen,
Gen,Enc,Dec), a polynomially bounded function n = n(k) > 0, and a stateful
PPT adversary A, consider the experiment in Fig. 4. We only allow A that always
output re-sampling algorithms as in Definition 2. We call PKE IND-SOA-K (for
“indistinguishable under selective-opening key attacks”) secure if for all PPT A,
we have

Advind-soa-kPKE,A (k) :=
∣

∣

∣

∣

Pr
[

Expind-soa-kPKE,A (k) = 1
]

− 1
2

∣

∣

∣

∣

= negl(k).

Secret Sharing SOA-K Security. We now define the dual of SecShare-SOA-
K security for key corruption. The only difference from the SecShare-SOA-K
security security is that each secret share is encrypted with an independently
sampled public key (instead of one public key being used to encrypt all shares),
and corruption would reveal the corresponding secret keys (instead of the random
coins used to generate the ciphertexts). Details follow.

Definition 12 (SecShare-SOA-K Security). Let F be a field of size deter-
mined by the security parameter and let PKE = (PGen,Gen,Enc,Dec) be a PKE
scheme, with message space M = ([n] × F). For any parameters t, n that are
polynomial in the security parameter, consider the experiment in Fig. 4 with a
stateful PPT adversary A. We say that PKE receiver-corruption secret-sharing
selective opening attack secure if

Advsecsh-soa-kPKE,A (k) :=
∣

∣

∣

∣

Pr
[

Expsecsh-soa-kPKE,A (k) = 1
]

− 1
|F|

∣

∣

∣

∣

is negligible for all PPT A.

Theorem 4. If a PKE scheme PKE is IND-SOA-K secure, then it is SecShare-
SOA-K secure.

The proof of Theorem4 follows with the same argument as Theorem 1.
In this section, we describe a PKE scheme PKE∗ that is IND-CCA secure,

but not IND-SOA-K secure.

5.1 A CCA Secure, SecShare-SOA-K Insecure Encryption

Let PKE′ = (Gen′,Enc′,Dec′) be any encryption scheme that is IND-CPA secure
but is not SecShare-SOA secure (with sender-randomness corruption), and whose
message space is a field F and randomness space is REnc′ . In particular, this can
be the scheme that we constructed in Sect. 4. Let PKE = (Gen,Enc,Dec) be an
IND-CCA secure encryption scheme with message space F×REnc′ . We construct
a PKE scheme PKE∗ = (PGen∗,Gen∗,Enc∗,Dec∗) as follows.

Standard Security Does Not Imply Indistinguishability 139

Fig. 4. The IND-SOA-K and SecShare-SOA-K experiments.

– PGen∗(1k): Sample (pk ′, sk ′) ← Gen′(1k) and set public parameters params =
pk ′.

– Gen∗(1k, params): Run (pk , sk) ← Gen(1k). Output (pk , sk) as the public-key
secret-key pair.

– Enc∗(params, pk ,m): Parse params = pk ′. Sample r ← REnc′ and compute
c′ ← Enc′(pk ′,m; r). Compute c ← Enc(pk , (m, r)). Output the ciphertext
c∗ = (c′, c).

– Dec∗(params, sk , c∗): Parse params = pk ′ and c∗ = (c′, c). Compute (m, r) =
Dec(sk , c). Verify if c′ ← Enc′(pk ′,m; r). If so, then output m, else output ⊥.

PKE∗ is not SecShare-SOA-K secure. We now formally show that PKE∗ allows
for a simple SecShare-SOA-K attack. The idea is straight-forward. An SecShare-
SOA-K adversary, upon learning secret keys can decrypt the ciphertexts and learn
the random coins used to compute the PKE′ part of ciphertexts. This amounts to
an SecShare-SOA attack on PKE′, which is SecShare-SOA insecure.

Theorem 5. If PKE′ is not SecShare-SOA secure then PKE∗ is not SecShare-
SOA-K secure. In particular, if there is a polynomial-time attack with advantage

140 D. Hofheinz et al.

ε against the SecShare-SOA security of PKE′ then there is also a polynomial
time attack with the same advantage ε against the SecShare-SOA-K security of
PKE∗.

Proof. Assume that there exists a PPT adversary A with non-negligible advan-
tage ε against SecShare-SOA security of PKE′. We construct a PPT algorithm
B that breaks the SecShare-SOA-K security of PKE∗ also with probability ε.
Adversary B: Upon receiving params = pk ′, B gives pk ′ to A. Upon receiving
a tuple of public keys pk := (pk1, . . . , pkn) and a tuple of ciphertexts c∗ :=
(c∗

i)i∈[n], where c∗
i = (c′

i, ci), give (c′
1, . . . , c

′
n) to A. When A responds with a

subset I ∈ [n], give I to the challenger. Then, upon receiving (mi, sk i)i∈I ,
compute (mi, ri) = Dec(sk i, ci) for every i ∈ I. Then, give (mi, ri)i∈I to A.
Since this emulates the SecShare-SOA attack on PKE′ to A, A’s output is such
that it breaks SecShare-SOA security of PKE′ with probability ε. In turn, by
outputting A’s output, B also breaks SecShare-SOA-K security of PKE∗ with
probability ε.

PKE∗ is IND-CCA secure. We now show that PKE∗ inherits PKE’s IND-CCA
security.

Theorem 6. Suppose that PKE is an IND-CCA-secure encryption scheme,
PKE′ is an IND-CPA secure encryption scheme. Then, PKE∗ is IND-CCA
secure.

Proof. Assume for contradiction that there exists an adversary A that breaks
the IND-CCA security of PKE∗ with some advantage ε. We shall show that ε is
negligible through a hybrid argument as follows. Let us denote the event that a
hybrid Hybi outputs 1 by Hybi = 1. The first hybrid corresponds to the original
IND-CCA security game.

– Hyb0: In the first hybrid the following game is played.
1. Sample b ← {0, 1}.
2. Sample (pk ′, sk ′) ← Gen′(1k) and set params = pk ′.
3. Sample (pk , sk) ← Gen(1k).
4. Give (params, pk) to A and answer its decryption queries using sk .
5. Upon receiving m0,m1, proceed as follows.
6. Sample r ← REnc′ and compute c̃′ ← Enc′(pk ′,mb; r).
7. Compute c̃ ← Enc(pk , (mb, r)).
8. Give (c̃′, c̃) to A and continue to answer A’s decryption queries using sk .
9. Finally, let b′ be the output of A. Output 1 if b′ = b and 0 otherwise.

– Hyb1: This hybrid is the same as Hyb0, except that all of A’s decryption queries
c∗ = (c′, c) with c = c̃ are automatically rejected.
We note that this change is purely conceptual: any such query would have
been rejected already in Hyb0 (by the decryption check for c′ = Enc(pk ′,m; r),
where (m, r) ← Dec(sk , c)).

Standard Security Does Not Imply Indistinguishability 141

– Hyb2: This hybrid is the same as Hyb1 except for the following modification. In
constructing c̃, instead of using (mb, r) as the plaintext, we use (mb̃, r̃) for an
indendently sampled random bit b̃, and a freshly uniformly sampled random
string r̃.

7. Sample b̃ ← {0, 1} and r̃ ← REnc′ . Compute c̃ ← Enc(pk , (mb̃, r̃)).

Claim. Hyb2 ≈c Hyb1.

Proof. We shall establish this claim by relying on the CCA security of PKE.
Assume for contradiction that |Pr[Hyb2 = 1] − Pr[Hyb1 = 1]| = ε is non-
negligible. Then we construct an adversary B that breaks CCA security of PKE
with advantage ε.
Adversary B. B simultaneously interacts with its CCA challenger for PKE and A
as follows. Upon receiving pk from the challenger, sample (pk ′, sk ′) ← Gen′(1k),
set params = pk ′, and give params, pk to A. Answer A’s decryption queries by
using its own decryption oracle as follows. Upon given a query c∗ = (c′, c) by A,
decrypt c using its own oracle to get (m, r); verify whether c′ ← Enc′(pk ′,m; r).
If so, then give m to A and give ⊥ otherwise. Next, upon receiving (m0,m1) from
A, sample r ← REnc′ and compute c̃′ ← Enc′(pk ′,mb; r). Also sample b̃ ← {0, 1}
and r̃ ← REnc′ . Give (mb, r), (mb̃, r̃) to the challenger. Upon receiving c̃, give
c̃∗ = (c̃′, c̃) to the A. Continue to answer decryption queries in the same manner,
except that all of A’s decryption queries with c = c̃ are automatically rejected.
(Note that B cannot decrypt the corresponding c on its own; however, by our
change from Hyb1, this is not necessary.)
Analysis. Observe that A perfectly simulates Hyb2 or Hyb1, depending on c̃.

– Hyb3: This hybrid is the same as Hyb2 except for the following modification.
In constructing c̃′, instead of encrypting mb as the plaintext, we encrypt mb̃.

6. Sample r ← REnc′ and compute c̃′ ← Enc′(pk ′,mb̃; r).

Claim. Hyb3 ≈c Hyb2.

Proof. We shall establish this claim by relying on the CPA security of PKE′.
Assume for contradiction that |Pr[Hyb3 = 1] − Pr[Hyb2 = 1]| = ε is non-
negligible. Then we construct an adversary B that breaks CPA security of PKE′

with advantage ε.
Adversary B. B simultaneously interacts with its CPA challenger for PKE′ and
A as follows. B behaves the same way as the Hyb2 challenger, except for the
following modification. Instead of generating pk ′ and c̃′ by himself, he uses pk ′

from the challenger and generates c̃′ as follows. Upon A giving (m0,m1), send
(mb,mb̃) to the challenger and use the response as c̃′ in the interaction with A.
Finally, output the output of A.
Analysis. Firstly, we argue that the above description of B is sound: note that
the random coins used in computing c̃′ is not used in any part of B’s interaction
with A. Next, we observe that when c̃′ encrypts 0 then the view of A is identical

142 D. Hofheinz et al.

to that in Hyb2; when c̃′ encrypts 1 then the view of A is identical to that in
Hyb3. Thus, Advind-cpaPKE′,B(k) = ε, a contradiction.

We note here that in Hyb3, A’s view is independent of the challenge bit b,
and thus the theorem follows.

6 Conclusions

In this paper, we show that there are schemes which are CPA and even CCA
secure, but which are clearly insecure in the selective opening scenario. Several
open questions remain. Most importantly, it would be interesting to get such
examples under weaker assumptions. As a first step, one could hope for an exam-
ple that only relies on indistinguihsability obfuscation rather than public-coin
differing-inputs obfuscation and correlation-intractable hash functions. Ideally,
one would get rid of obfuscation altogether. Alternatively, it would be inter-
esting if such examples can lead to surprising positive results or perhaps can
imply (some variant of) obfuscation. Another open question is to construct a
counterexample for SOA-K security without relying on a scheme with common
public parameters.

A IND-CCA Game with Random Challenge Messages

We shall now define a variation of the IND-CCA game. The modification at a
high level is that, in the new game, the challenger himself samples the challenge
message pair uniformly at random.

Definition 13 ($-IND-CCA Secure PKE). Let PKE = (Gen,Enc,Dec) be a
tuple of PPT algorithms. PKE is said to be a $-IND-CCA-secure encryption, if
it for every PPT adversary A,

Adv$-ind-ccaPKE,A (k) :=
∣

∣

∣

∣

Pr
[

Exp$-ind-ccaPKE,A (k) = 1
]

− 1
2

∣

∣

∣

∣

is negligible.

Theorem 7. Let PKE = (Gen,Enc,Dec) is a PKE scheme with polynomial-size
message ciphertext. If PKE is $-IND-CCA secure as per Definition 13, then PKE
is IND-CCA secure.

Proof. Let the message space of PKE be M, with |M| = �(k), for a polynomial
�. Assume for contradiction that there exists an adversary A that breaks the
IND-CCA security of PKE with advantage ε. Then we shall show an adversary
B that breaks the $-IND-CCA security of PKE with advantage ε/�(k)2. With
the help of A, B interacts with its $-IND-CCA challenger as follows (Fig. 5).
Adversary B: Upon receiving pk , (m0,m1), c∗, give pk to A. Let (m′

0,m
′
1) be the

pair of message given in response by A. Check if (m′
0,m

′
1) = (m0,m1). If not,

Standard Security Does Not Imply Indistinguishability 143

Fig. 5. $-IND-CCA experiment.

sample b′ ← {0, 1} and respond to the challenger with b′. Otherwise, give c∗ to
A. Output whatever A outputs.
Analysis: Let ESameChal denote the event that (m′

0,m
′
1) = (m0,m1). Note that,

since m0,m1 are chosen uniformly at random, we have that Pr[ESameChal] = 1
�(k)2 .

Furthermore,

Pr
[

Exp$-ind-ccaPKE,B (k) = 1|¬ESameChal

]

=
1
2

On the other hand,

Pr
[

Exp$-ind-ccaPKE,B (k) = 1|ESameChal

]

=
1
2

+ ε

Putting them together, we have that, Thus,

Adv$-ind-ccaPKE,A (k) =
∣

∣

∣

∣

(

1
2

+ ε

)

1
�(k)2

+
1
2

(

1 − 1
�(k)2

)

− 1
2

∣

∣

∣

∣

=
ε

�(k)2

leading to a contradiction.

References

1. Barak, B., Goldreich, O., Impagliazzo, R., Rudich, S., Sahai, A., Vadhan, S.P.,
Yang, K.: On the (im)possibility of obfuscating programs. J. ACM 59(2), 6 (2012)

2. Barak, B., Lindell, Y., Vadhan, S.P.: Lower bounds for non-black-box zero knowl-
edge. In: Proceedings of 44th Symposium on Foundations of Computer Science,
FOCS 2003, 11–14 October 2003, Cambridge, MA, USA, pp. 384–393. IEEE Com-
puter Society (2003). http://dx.doi.org/10.1109/SFCS.2003.1238212

3. Bellare, M., Dowsley, R., Waters, B., Yilek, S.: Standard security does not imply
security against selective-opening. In: Pointcheval, D., Johansson, T. (eds.) EURO-
CRYPT 2012. LNCS, vol. 7237, pp. 645–662. Springer, Heidelberg (2012). doi:10.
1007/978-3-642-29011-4 38

http://dx.doi.org/10.1109/SFCS.2003.1238212
http://dx.doi.org/10.1007/978-3-642-29011-4_38
http://dx.doi.org/10.1007/978-3-642-29011-4_38

144 D. Hofheinz et al.

4. Bellare, M., Hofheinz, D., Yilek, S.: Possibility and impossibility results for encryp-
tion and commitment secure under selective opening. In: Joux, A. (ed.) EURO-
CRYPT 2009. LNCS, vol. 5479, pp. 1–35. Springer, Heidelberg (2009). doi:10.1007/
978-3-642-01001-9 1

5. Bellare, M., Stepanovs, I., Waters, B.: New negative results on differing-inputs
obfuscation. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol.
9666, pp. 792–821. Springer, Heidelberg (2016). doi:10.1007/978-3-662-49896-5 28

6. Böhl, F., Hofheinz, D., Kraschewski, D.: On definitions of selective opening security.
In: Fischlin, M., Buchmann, J., Manulis, M. (eds.) PKC 2012. LNCS, vol. 7293,
pp. 522–539. Springer, Heidelberg (2012). doi:10.1007/978-3-642-30057-8 31

7. Canetti, R., Chen, Y., Reyzin, L.: On the correlation intractability of obfuscated
pseudorandom functions. IACR ePrint Archive, report 2015/334 (2015). http://
eprint.iacr.org/2015/334

8. Canetti, R., Goldreich, O., Halevi, S.: The random oracle methodology, revisited
(preliminary version). In: Proceedings of STOC 1998, pp. 209–218. ACM (1998)

9. Cohen, A., Holmgren, J., Vaikuntanathan, V.: Publicly verifiable software water-
marking. IACR ePrint Archive, report 2015/373 (2015). http://eprint.iacr.org/
2015/373

10. Dodis, Y., Ristenpart, T., Vadhan, S.: Randomness condensers for efficiently sam-
plable, seed-dependent sources. In: Cramer, R. (ed.) TCC 2012. LNCS, vol. 7194,
pp. 618–635. Springer, Heidelberg (2012). doi:10.1007/978-3-642-28914-9 35

11. Dwork, C., Naor, M., Reingold, O., Stockmeyer, L.J.: Magic functions. In: Pro-
ceedings of FOCS 1999, pp. 523–534. IEEE Computer Society (1999)

12. Fehr, S., Hofheinz, D., Kiltz, E., Wee, H.: Encryption schemes secure against
chosen-ciphertext selective opening attacks. In: Gilbert, H. (ed.) EUROCRYPT
2010. LNCS, vol. 6110, pp. 381–402. Springer, Heidelberg (2010). doi:10.1007/
978-3-642-13190-5 20

13. Fuchsbauer, G., Heuer, F., Kiltz, E., Pietrzak, K.: Standard security does imply
security against selective opening for markov distributions. In: Kushilevitz, E.,
Malkin, T. (eds.) TCC 2016. LNCS, vol. 9562, pp. 282–305. Springer, Heidelberg
(2016). doi:10.1007/978-3-662-49096-9 12

14. Fujisaki, E.: All-but-many encryption - a new framework for fully-equipped uc
commitments. In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014. LNCS, vol. 8874,
pp. 426–447. Springer, Heidelberg (2014). doi:10.1007/978-3-662-45608-8 23

15. Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.: Candidate
indistinguishability obfuscation and functional encryption for all circuits. In: 54th
Annual IEEE Symposium on Foundations of Computer Science, FOCS 2013, 26–
29 October 2013, Berkeley, CA, USA, pp. 40–49. IEEE Computer Society (2013).
http://dx.doi.org/10.1109/FOCS.2013.13

16. Garg, S., Gentry, C., Halevi, S., Wichs, D.: On the implausibility of differing-
inputs obfuscation and extractable witness encryption with auxiliary input. In:
Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014. LNCS, vol. 8616, pp. 518–535.
Springer, Heidelberg (2014). doi:10.1007/978-3-662-44371-2 29

17. Hazay, C., Patra, A., Warinschi, B.: Selective opening security for receivers. In:
Iwata, T., Cheon, J.H. (eds.) ASIACRYPT 2015. LNCS, vol. 9452, pp. 443–469.
Springer, Heidelberg (2015). doi:10.1007/978-3-662-48797-6 19

http://dx.doi.org/10.1007/978-3-642-01001-9_1
http://dx.doi.org/10.1007/978-3-642-01001-9_1
http://dx.doi.org/10.1007/978-3-662-49896-5_28
http://dx.doi.org/10.1007/978-3-642-30057-8_31
http://eprint.iacr.org/2015/334
http://eprint.iacr.org/2015/334
http://eprint.iacr.org/2015/373
http://eprint.iacr.org/2015/373
http://dx.doi.org/10.1007/978-3-642-28914-9_35
http://dx.doi.org/10.1007/978-3-642-13190-5_20
http://dx.doi.org/10.1007/978-3-642-13190-5_20
http://dx.doi.org/10.1007/978-3-662-49096-9_12
http://dx.doi.org/10.1007/978-3-662-45608-8_23
http://dx.doi.org/10.1109/FOCS.2013.13
http://dx.doi.org/10.1007/978-3-662-44371-2_29
http://dx.doi.org/10.1007/978-3-662-48797-6_19

Standard Security Does Not Imply Indistinguishability 145

18. Hemenway, B., Libert, B., Ostrovsky, R., Vergnaud, D.: Lossy encryption: con-
structions from general assumptions and efficient selective opening chosen cipher-
text security. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073,
pp. 70–88. Springer, Heidelberg (2011). doi:10.1007/978-3-642-25385-0 4

19. Hofheinz, D.: All-but-many lossy trapdoor functions. In: Pointcheval, D.,
Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 209–227. Springer,
Heidelberg (2012). doi:10.1007/978-3-642-29011-4 14

20. Hofheinz, D., Rupp, A.: Standard versus selective opening security: separation and
equivalence results. In: Lindell, Y. (ed.) TCC 2014. LNCS, vol. 8349, pp. 591–615.
Springer, Heidelberg (2014). doi:10.1007/978-3-642-54242-8 25

21. Huang, Z., Liu, S., Qin, B.: Sender-equivocable encryption schemes secure against
chosen-ciphertext attacks revisited. In: Kurosawa, K., Hanaoka, G. (eds.) PKC
2013. LNCS, vol. 7778, pp. 369–385. Springer, Heidelberg (2013). doi:10.1007/
978-3-642-36362-7 23

22. Ishai, Y., Pandey, O., Sahai, A.: Public-coin differing-inputs obfuscation and its
applications. IACR ePrint Archive, report 2014/942 (2014). http://eprint.iacr.org/
2014/942

23. Ishai, Y., Pandey, O., Sahai, A.: Public-coin differing-inputs obfuscation and its
applications. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015. LNCS, vol. 9015, pp.
668–697. Springer, Heidelberg (2015). doi:10.1007/978-3-662-46497-7 26

24. Koppula, V., Ramchen, K., Waters, B.: Separations in circular security for arbitrary
length key cycles. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015, Part II. LNCS, vol.
9015, pp. 378–400. Springer, Heidelberg (2015). doi:10.1007/978-3-662-46497-7 15

25. Marcedone, A., Orlandi, C.: Obfuscation ⇒ (IND-CPA security � circular secu-
rity). In: Abdalla, M., Prisco, R. (eds.) SCN 2014. LNCS, vol. 8642, pp. 77–90.
Springer, Heidelberg (2014). doi:10.1007/978-3-319-10879-7 5

26. Naor, M., Pinkas, B.: Efficient oblivious transfer protocols. In: Proceedings of
SODA 2001, pp. 448–457. ACM/SIAM (2001)

27. Peikert, C., Vaikuntanathan, V., Waters, B.: A framework for efficient and com-
posable oblivious transfer. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157,
pp. 554–571. Springer, Heidelberg (2008). doi:10.1007/978-3-540-85174-5 31

28. Peikert, C., Waters, B.: Lossy trapdoor functions and their applications. In: Pro-
ceedings of STOC 2008, pp. 187–196. ACM (2008)

http://dx.doi.org/10.1007/978-3-642-25385-0_4
http://dx.doi.org/10.1007/978-3-642-29011-4_14
http://dx.doi.org/10.1007/978-3-642-54242-8_25
http://dx.doi.org/10.1007/978-3-642-36362-7_23
http://dx.doi.org/10.1007/978-3-642-36362-7_23
http://eprint.iacr.org/2014/942
http://eprint.iacr.org/2014/942
http://dx.doi.org/10.1007/978-3-662-46497-7_26
http://dx.doi.org/10.1007/978-3-662-46497-7_15
http://dx.doi.org/10.1007/978-3-319-10879-7_5
http://dx.doi.org/10.1007/978-3-540-85174-5_31

Public-Key Encryption with Simulation-Based
Selective-Opening Security
and Compact Ciphertexts

Dennis Hofheinz1(B), Tibor Jager2, and Andy Rupp1

1 Karlsruhe Institute of Technology, Karlsruhe, Germany
{dennis.hofheinz,andy.rupp}@kit.edu

2 Ruhr-University Bochum, Bochum, Germany
tibor.jager@rub.de

Abstract. In a selective-opening (SO) attack on an encryption scheme,
an adversary A gets a number of ciphertexts (with possibly related plain-
texts), and can then adaptively select a subset of those ciphertexts. The
selected ciphertexts are then opened for A (which means that A gets to
see the plaintexts and the corresponding encryption random coins), and
A tries to break the security of the unopened ciphertexts.

Two main flavors of SO security notions exist: indistinguishability-
based (IND-SO) and simulation-based (SIM-SO) ones. Whereas IND-SO
security allows for simple and efficient instantiations, its usefulness in
larger constructions is somewhat limited, since it is restricted to special
types of plaintext distributions. On the other hand, SIM-SO security
does not suffer from this restriction, but turns out to be significantly
harder to achieve. In fact, all known SIM-SO secure encryption schemes
either require O(|m|) group elements in the ciphertext to encrypt |m|-
bit plaintexts, or use specific algebraic properties available in the DCR
setting.

In this work, we present the first SIM-SO secure PKE schemes in the
discrete-log setting with compact ciphertexts (whose size is O(1) group
elements plus plaintext size). The SIM-SO security of our constructions
can be based on, e.g., the k-linear assumption for any k.

Technically, our schemes extend previous IND-SO secure schemes
by the property that simulated ciphertexts can be efficiently opened to
arbitrary plaintexts. We do so by encrypting the plaintext in a bitwise
fashion, but such that each encrypted bit leads only to a single ciphertext
bit (plus O(1) group elements that can be shared across many bit encryp-
tions). Our approach leads to rather large public keys (of O(|m|2) group
elements), but we also show how this public key size can be reduced (to
O(|m|) group elements) in pairing-friendly groups.

Keywords: Public-key encryption · Selective-opening security · Lossy
encryption · Matrix assumptions

c© International Association for Cryptologic Research 2016
M. Hirt and A. Smith (Eds.): TCC 2016-B, Part II, LNCS 9986, pp. 146–168, 2016.
DOI: 10.1007/978-3-662-53644-5 6

Public-Key Encryption with Simulation-Based Selective-Opening Security 147

1 Introduction

Selective-opening (SO) attacks. A selective-opening (SO) attack on an
encryption scheme models the adaptive corruption of multiple senders. More
formally, an SO adversary A first receives many ciphertexts c1, . . . , cn for respec-
tive plaintexts m1, . . . ,mn that are jointly sampled (and may thus be related).
A may then ask for the opening of an arbitrary subset of the ci.1 Finally, A is
asked to break the security of the unopened ciphertexts.

Different flavors of SO security notions. Note that it is not entirely clear
what “breaking the security of the unopened ciphertexts” should mean. For
instance, since the plaintexts are related, it is possible that all plaintexts (includ-
ing those from unopened ciphertexts) can be efficiently computed from the
opened plaintexts. Furthermore, to achieve greater generality, usually the joint
distribution from which the m1, . . . ,mn are sampled is adversarially chosen, so
A may already have some a-priori (partial or even full) knowledge about the
unopened mi.

Hence, two different flavors of SO security have developed: simulation-based
(SIM-SO [2,10]) and indistinguishability-based (IND-SO [2,5]) security. Intu-
itively, SIM-SO security requires that the output of A above can be simulated
by a simulator that sees only the opened mi (and no ciphertexts at all). In
particular, all information A can extract about the unopened mi can also be
generated by a simulator from the opened mi alone.

On the other hand, IND-SO security requires that the unopened plaintexts
look indistinguishable from independently sampled plaintexts. Because the plain-
texts may be related, this independent sampling must be conditioned on the
already opened plaintexts to avoid trivial attacks. Hence, if, e.g., the opened
plaintexts already fully determine all plaintexts, conditional sampling will lead
to the originally encrypted plaintexts, and IND-SO security is trivially achieved.

As a consequence, the IND-SO experiment itself is only efficient for plain-
text distributions that are “efficiently (conditionally) re-samplable” in the above
sense. In fact, usually IND-SO security is only considered for such plaintext dis-
tributions [2,18,19], which limits its applicability to scenarios with such distri-
butions; there is no known encryption scheme that is IND-SO secure against
arbitrary (i.e., only efficiently samplable) plaintext distributions.

The difficulty of achieving simulation-based SO security. Hence, from an
application point of view, SIM-SO security is the preferable notion of SO secu-
rity. Unfortunately, while IND-SO security (restricted to efficiently re-samplable
plaintext distributions and in the chosen-plaintext case) is already achieved by
any lossy encryption scheme [2,29], SIM-SO security seems much harder to
obtain. For instance, [1] show (under mild computational assumptions) that there
are encryption schemes that are IND-CPA but not SIM-SO secure. Furthermore,
known constructions of SIM-SO secure encryption schemes follow dedicated

1 In this paper, we consider sender corruptions, in which case the opening of a ci

consists of the plaintext mi and the encryption random coins used to construct ci.

148 D. Hofheinz et al.

(and somewhat nonstandard) design strategies [2,3,12,15,18,19,22]. As a result,
all known SIM-SO secure schemes fall into one of the following two categories:

Large ciphertexts. The SIM-SO secure schemes from [2,3,12,22] have cipher-
texts of O(|m|) group elements, where |m| is the bitsize of the plaintext.

DCR-based. The schemes from [15,18,19]2 have more compact ciphertexts,
but are limited to the decisional composite residuosity (DCR) setting [9,28]
(and rely on its specific algebraic features).

Below, when explaining our technical approach, we will also comment on the
technical obstacles that need to be overcome for SIM-SO security.

Our results. In this work, we offer the first SIM-SO secure encryption schemes
with compact ciphertexts in the discrete-log setting. Specifically, ciphertexts in
our scheme carry O(1) group elements (plus |m| bits, where |m| is the plaintext
bitsize), and SIM-SO security can be proved under any matrix assumption [11]
(thus, in particular under, e.g., the k-linear assumption for any k ≥ 1). Our con-
struction is simple, works in the standard model, and does not require pairings.

The price we pay for these features is a rather large public key size (of O(|m|2)
group elements, and computationally expensive encryption and decryption pro-
cedures. Specifically, our encryption proceeds bitwise, and requires O(|m|) expo-
nentiations for each message bit. (Alternatively, the operation needed to encrypt
one bit could also be viewed as one multi-exponentiation with respect to O(|m|)
fixed bases. So there is room for some small improvements in runtime by a con-
stant factor, e.g., using interleaving multi-exponentiation [23].) Concerning the
key size, we show how a technique of [7] can be used to at least compress the
public key to O(|m|) group elements by using a pairing. Still, in particular in
light of the relatively inefficient encryption and decryption in our scheme, we
view our result mainly as a feasibility result (Table 1).

In the following, we give a brief overview over our approach.

Our starting point. Our starting point is the lossy (and thus IND-SO secure)
PKE scheme of [25] (see also [2,17,29]). In this scheme, public keys and cipher-
texts are of the form

pk = (g, gx, gy, gz) c = (u, v) = (gr+sx, gry+sz · m) (1)

for random exponents x, y, r, s, for z = xy, and a plaintext m. Note that if we
switch z to an independently random value (however with z �= xy), then encryp-
tion becomes lossy: ciphertexts are tuples of random group elements, indepen-
dently of m. Furthermore, such a switch can be justified with the decisional
Diffie-Hellman (DDH) assumption.

Efficient openability. In order to achieve SIM-SO security, we additionally
require a property called “efficient openability” of ciphertexts [2,12]. In a nut-
shell, efficient openability requires that ciphertexts generated under lossy public
keys can be opened to arbitrary messages with a special trapdoor. (Note that
such an arbitrary opening is always possible inefficiently in the lossy case.)
2 In fact, [18] also offers a scheme with large ciphertexts in the discrete-log setting.

Public-Key Encryption with Simulation-Based Selective-Opening Security 149

Table 1. Comparison of our construction with other SO-secure PKE schemes. (We
omit schemes that do not achieve SIM-SO-CPA security in any more efficient way
than the ones mentioned, e.g., because they focus on CCA security [15,18,19] or on
the IBE setting [3].) |G| denotes the description (bit-)size of elements of a group in
the discrete-log setting, and |G| and |GT | denote the corresponding sizes in a pairing-
friendly setting with source group G and target group GT . λ denotes the security
parameter. The entry poly(λ) in the |m| column means that the message size is not
restricted and might be set arbitrarily (and especially independent of the group size).
QR denotes the quadratic residuosity assumption, DCR denotes Paillier’s decisional
composite residuosity assumption, and |N | denotes the length of a suitable composite
number (determining the modulus) for such schemes. TDOWP denotes an arbitrary
trapdoor one-way permutation, and |img| denotes the (bit-)size of elements in the
corresponding image. |c| − |m| denotes the ciphertext overhead (i.e., the bitlength of
the ciphertext minus the plaintext bitlength).

Scheme Security Assumption |pk | |m| |c| − |m|
BHY09 [2] IND-SO-CPA DDH 2× |G| |G| |G|
BHY09 [2] SIM-SO-CPA QR 1× |N | n n(|N | − 1)

BY12 [4]a SIM-SO-CPA DDH 2× |G| 1 2|G| − 1

FHKW10 [12] SIM-SO-CPA TDOWP TDOWP-pk 1 |img| − 1

FHKW10 [12] SIM-SO-CCA DDH 2× |G| poly(λ) 2|m||G|+ |m|λ
HLOV11 [18] SIM-SO-CPA DCR 2× |N | |N | |N |
Ours SIM-SO-CPA DDH (|m|+ 1)2 poly(λ) 1× |G|
Ours SIM-SO-CPA DLIN (|m|+ 2)2 poly(λ) 2× |G|
Ours SIM-SO-CPA k-linear (|m|+ k)2 poly(λ) k × |G|
Ours SIM-SO-CPA BDDH |m| · (4|G|+ |GT |) poly(λ) 1× |GT |

aThis denotes a scheme present in a September 23, 2012 update of the eprint report [4].
This scheme operates bitwise, and the message length n can be chosen arbitrarily.

We note that efficient openability implies SIM-SO security [2]. In fact, all
mentioned SIM-SO secure schemes achieve (a suitable variant of) efficient open-
ability.3 Unfortunately, this strong property is not achieved easily. For instance,
consider the PKE scheme from (1) (with lossy public keys, i.e., with z �= xy).
In order to open a given ciphertext c = (u, v) as an encryption of an externally
given plaintext m, a simulator would have to supply random coins (r, s) satisfy-
ing r + sx = dlogg(u) and ry + sz = dlogg(v) − dlogg(m). Hence, the ability to
open to arbitrary m implies the ability to compute discrete logarithms (which
would seem to require special trapdoors in standard discrete-log groups).4

3 However, it should also be noted that neither efficient openability nor lossiness (in
the sense of [2,29]) may be necessary for SIM-SO security (see [27] for the lossiness
case). Still, our construction is easiest to explain by following this path.

4 One reason why the DCR settings seems much more suitable for SO security is that
certain DCR subgroups allow to easily compute discrete logarithms. Put differently:
in DCR-based encryption schemes [9,18,28], both plaintexts and encryption ran-
dom coins are exponents. Hence, encryption random coins can be computed from
plaintexts (as required for a SIM-SO simulation) much more easily.

150 D. Hofheinz et al.

A bitwise scheme. Our first observation is that the situation changes if only
bits (or messages from a small domain) are encrypted. Concretely, consider the
following slightly modified scheme that encrypts only bits:

pk = (g, gx, gy, gz) c = (u, v) = (gr+sx,H(gry+sz) ⊕ m) (2)

where x, y, z, r, s are as before, H is a universal hash function that maps group
elements to bits, and m ∈ {0, 1}. This scheme allows for an efficient opening
operation (if z �= xy). Namely, to open a ciphertext c = (u, v) (as in (2)) to a
message m, using as trapdoor x, y, z, r, s, simply sample r′, s′ randomly subject
to r′ + s′x = r + sx until H(gr′y+s′z) ⊕ m = v. (On average, it takes 2 such
samplings until suitable r′, s′ are found.) This scheme can be generalized to
messages m ∈ {0, 1}O(log(λ)) (where λ denotes the security parameter), using
hash functions with output length |m|, at the cost of a less efficient opening
algorithm. In the following, however, we will focus on the bitwise processing of
messages for simplicitly.

The scheme from (2) hence achieves efficient openability (and thus SIM-SO
security), but suffers from a small message space. Of course, its message space
can be expanded by concatenating several ciphertexts, which would however
increase the ciphertext size to O(|m|) group elements.

Compressing ciphertexts. Hence, instead of concatenating ciphertexts, we
reuse the value of u across several bit encryptions. Doing so naively (e.g., by
setting u = gr+sx and vi = H(gry+sz

i) ⊕ mi for different generators gi) would
however interfere with our efficient opening strategy. Specifically, it is not obvious
how to efficiently sample r′, s′ as above that would lead to H(gr′y+s′z

i)⊕mi = vi

for all i simultaneously.
We resolve this issue by adding more encryption random coins (and thus

more “degrees of freedom” for our efficient opening procedure). That is, we set

pk = (g, (gxi , gyj)μ
j=1, (g

zi,j)μ
i,j=1)

c = (u, (vi)
μ
i=1) = (gr+

∑μ
j=1 sjxj , (H(gryj+

∑μ
j=1 sjzi,j) ⊕ mi)

μ
i=1)

(3)

for random exponents xi, yj , zi,j , r, sj and zi,j = xiyj , and an μ-bit plaintext
m = (mi)

μ
i=1. Since zi,j = xiyj , knowledge of all xi, yj allows to decrypt. How-

ever, switching to random zi,j �= xiyj (which can be justified with the DDH
assumption) implies that encryption becomes lossy (as with (1) and (2)).

Moreover, in case zi,j �= xiyj , a ciphertext c = (u, (vi)
μ
i=1) can be efficiently

opened as follows. First, select “target exponents” t1, . . . , tμ randomly subject
to H(gti) ⊕ mi = vi for all i. (The ti can be sampled individually, one after the
other, and so this step requires 2μ samplings on average.) Next, solve the system
that consists of the linear equations r′yj +

∑μ
j=1 s′

jzi,j = ti (with 1 ≤ i ≤ μ) and
r′ +

∑μ
j=1 s′

jxj = r +
∑μ

j=1 sjxj for the variables r′, s′
j . (Since the zi,j �= xiyj

are random, this system is solvable using linear algebra with high probability.)
Finally, output (r′, (s′

j)
μ
j=1) as the desired random coins that open c to m.

Extensions and open problems. Inside, we also show how to generalize
this idea to weaker assumptions than DDH (in the same spirit in which [14]

Public-Key Encryption with Simulation-Based Selective-Opening Security 151

generalize the DDH-based lossy trapdoor function of [30]). In particular, we
obtain constructions based on any Matrix Diffie-Hellman (MDDH) assump-
tion [11] (at the price of somewhat larger ciphertexts, but whose overhead is
still independent of |m|, and somewhat larger public keys), including the k-
linear assumption [20,31]. Furthermore, we show how to compress the public
key of our scheme from O(|m|2) to O(|m|) group elements using a pairing-based
technique used to compress the public key of lossy trapdoor functions [7].

In this work, we focus on chosen-plaintext (CPA) security. One interesting
open problem is to extend our techniques to the chosen-ciphertext (CCA) set-
ting to obtain a SIM-SO-CCA secure scheme with compact ciphertexts in the
discrete-log regime. Besides, of course a further compression of the public key in
our schemes or an improvement in computational efficiency would be desirable.

Relation to a scheme of Bellare and Yilek. Our “bitwise” scheme from
(2) above is very similar to a scheme of Bellare and Yilek (from Sect. 5.4 of the
September 23, 2012 update of [4]). (We thank one TCC reviewer for pointing
us to that scheme, which we were not aware of previously.) The main difference
is that we use the use the term H(gry+sz) ⊕ m to hide the message, whereas
Bellare and Yilek use gry+sz) · gm. This entails (conceptually not very significant)
differences in the respective opening algorithms. However, the more important
difference in these schemes is that our scheme from (2) only has one group
element (plus one hidden message bit) in the ciphertext, while Bellare and Yilek
use a whole group element to hide a one-bit message. Hence, our main trick
above (namely, to modify and then reuse the first ciphertext element gry+sz for
many bit encryptions) would not lead to compact ciphertexts when applied to
the scheme of Bellare and Yilek.

SO security against corrupted receivers, and relation to non-
committing encryption. Traditionally, SO security models a setting in which
only senders are corrupted (and thus, an opening only reveals the correspond-
ing encryption random coins). However, some works (e.g., [1,21]) additionally
consider SO security against corrupted receivers (in which case there are many
public keys, and an opening consists of the respective secret key). In this set-
ting, strong impossibility results hold [1], which provide a fixed upper limit the
number of secure encryptions under any given public key. The arising technical
problems are commitment problems, and are very related to the inherent prob-
lems of non-committing encryption (NCE, [8]). Indeed, NCE schemes can be
seen as encryption schemes that are SO secure both against corrupted senders
and corrupted receivers.

In contrast, the more commonly considered notion of SO security against
corrupted senders (which we also consider here) allows for more efficient schemes,
that in particular tolerate an arbitrary number of encryptions and corruptions.
The price to pay here is of course that only corruptions of senders (but not of
receivers) are considered.

Roadmap. After fixing some notation and basic definitions in Sect. 2, we intro-
duce our construction of lossy encryption with efficient weak opening in Sect. 3.

152 D. Hofheinz et al.

The construction is generic and relies on what we call a matrix rank assump-
tion. In Sect. 4, we then instantiate those assumptions with the family of MDDH
assumptions from [11] (and thus in particular with the k-linear assumption).
Finally, Sect. 5 presents a matrix rank assumption with a linear-size representa-
tion which is implied by the BDDH assumption in pairing groups. This results
in a scheme with a public key size that is linear in |m|.

2 Preliminaries

Notation. Throughout the paper, λ ∈ N denotes the security parameter. For a
finite set S, we denote by s ← S the process of sampling s uniformly from S. For
a probabilistic algorithm A, we denote with RA the space of A’s random coins.
y ← A(x;R) denotes the process of running A on input x and with randomness
R ← RA, and assigning y the result. We write y ← A(x) for y ← A(x;R) with
uniform R. If A’s running time is polynomial in λ, then A is called probabilistic
polynomial-time (PPT). We call a positive function η negligible if for every
polynomial p there exists λ0 such that for all λ ≥ λ0 holds η(λ) ≤ 1

p(λ) . We
call η overwhelming if η(λ) ≥ 1 − ν(λ), where ν is a negligible function. The
statistical distance between two random variables X and Y over a finite common
domain D is defined by Δ(X,Y) = 1

2

∑

z∈D |Pr[X = z] − Pr[Y = z]|. We
say that two families X = (Xλ)λ∈N and Y = (Yλ)λ∈N of random variables
are statistically close or statistically indistinguishable, denoted by X ≈s Y , if
Δ(Xλ, Yλ) is negligible in λ.

2.1 Groups and Matrix Assumptions

Prime-order k-linear group generators. We use the following formal defi-
nition of a k-linear prime-order group generator for our constructions.

Remark 1. We stress that our constructions do not require multilinear maps in
the sense of [16]. We rather want to capture both single-group settings and
bilinear group settings in one unified definition, because this will be helpful in
the sequel for the exposition of results that apply to both settings. Hence, one
should have k = 1 or k = 2 in mind in the following definition.

Definition 1. A prime-order k-linear group generator is a PPT algorithm Gk

that on input of a security parameter 1λ outputs a tuple of the form

MGk := (k,G1, . . . , Gk, Gk+1, g1, . . . , gk, e, p) ← Gk(1λ)

where G1, . . . , Gk+1 are descriptions of cyclic groups of prime order p, log p =
Θ(λ), gi is a generator of Gi for 1 ≤ i ≤ k, and e : G1 × . . . × Gk → Gk+1 is a
map which satisfies the following properties:

– k-linearity: For all a1 ∈ G1, . . . , ak ∈ Gk, α ∈ Zp, and i ∈ {1, . . . , k} we have
e(a1, . . . , ai−1, αai, ai+1, . . . , ak) = αe(a1, . . . , ak).

Public-Key Encryption with Simulation-Based Selective-Opening Security 153

– Non-degeneracy: gk+1 := e(g1, . . . , gk) generates Gk+1.

If G1 = . . . = Gk, we call Gk a symmetric k-linear group generator.

Note that Definition 1 captures both ordinary single group generators and
symmetric bilinear group generators:

– In the single-group setting, G1(1λ) would output MG1 := (1, G1, G2, g1, e, p),
where G1 = G2 and e : G1 → G2 is the identity mapping.

– In the symmetric bilinear group setting, G2(1λ) would output MG2 :=
(1, G1, G2, G3, g1, g2, e, p), where G1 = G2 and g1 = g2 and e : G1 × G2 → G3

is a pairing.

Implicit Representation. Following [11], we introduce the notion of implicit
representations. Let Gi be a cyclic group of order p generated by gi. Then by
[a]i := ga

i we denote the implicit representation of a ∈ Zp in Gi. More generally,
we also define such representations for vectors �b ∈ Z

n
p by [�b]i := ([bj]i)j ∈ Gn

i

and for matrices A = (aj,k)j,k ∈ Z
n×�
p by [A]i := ([aj,k]i)j,k ∈ Gn×�

i .

Matrix-vector operations in implicit representation. If a matrix [A] =
[(ai,j)i,j] ∈ Gn×� is known “in the exponent”, and a vector �u = (ui)i ∈ Z

�
p is

known “in clear”, then the product [A · �u] ∈ Gn can be efficiently computed as
[(vi)i] for [vi] =

∏�
j=1[ai,j]uj . Similarly, [A · B] ∈ Gn×k can be computed given

[A] = [(ai,j)i,j] ∈ Gn×� and B ∈ Z
�×k
p . If only [A]1 and [B]2 are known (i.e.,

only “in the exponent”) and a bilinear map e : G1 × G2 → G3 is given, we can
still compute the matrix product [A · B]3 in the target group G3, as [(ci,j)i,j]3
for [ci,j]3 =

∏�
t=1 e([ai,t]1, [bt,j]2).

Matrix distributions and MDDH assumptions. For instantiating our con-
struction we will make use of matrix distributions and the Matrix Diffie-Hellman
assumption family as introduced in [11].

Let n, 	 ∈ N, n > 	. We call Dn,� a matrix distribution if it outputs (in prob-
abilistic polynomial time and with overwhelming probability in log(p)) matrices
A ∈ Z

n×�
p of full rank 	. We define D� := D�+1,�.

Definition 2. We say that the Dn,�-Matrix Diffie-Hellman assumption, or just
Dn,�-MDDH assumption for short, holds in Gi and relative to the k-linear group
generator Gk, if for all PPT adversaries D, we have that

AdvDn,�,Gk
(D) = |Pr[D(MGk, [A]i, [A�w]i) = 1] − Pr[D(MGk, [A]i, [�u]i) = 1]|

is negligible, where the probability is taken over the output

MGk = (k,G1, . . . , Gk, Gk+1, g1, . . . , gk, e, p) ← Gk(1λ),

A ← Dn,�, �w ← Z
�
p, �u ← Z

n
p and the coin tosses of the adversary D.

154 D. Hofheinz et al.

In particular, we will refer to the following examples of matrix distributions,
all for n = 	 + 1:

SC� : A =

⎛

⎜

⎝

s 0 ... 0 0
1 s ... 0 0
0 1 0 0
.
.
.

. . .
. . .

0 0 ... 1 s
0 0 ... 0 1

⎞

⎟

⎠
, L� : A =

⎛

⎜

⎝

s1 0 0 ... 0
0 s2 0 ... 0

.

.

.

.

.

.
. . .

.

.

.
0 0 0 ... s�
1 1 1 ... 1

⎞

⎟

⎠
, U� : A ← Z

(�+1)×�
p ,

where s, si ← Zp. The SC� assumption, introduced in [11], is the 	-symmetric
cascade assumption (-SCasc). The L� assumption is actually the well-known
	-linear assumption (-Lin, [6]) in matrix language (DDH equals 1-Lin), and the
U� assumption is the 	-uniform assumption. Moreover, 	-SCasc, 	-Lin, and the
	-uniform assumption hold in the generic group model [32] relative to a k-linear
group generator if k ≤ 	 [11].

The circulant matrix assumption

C�+d,� : A =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

s1 0

.

.

. s1

sd

.

.

.
. . .

1 sd s1

1
. . .

.

.

.

. . . sd
0 1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

,

has very recently been proposed in [24] as a Dn,�-MDDH assumption with opti-
mal representation size among all assumptions with n > 	 + 1. This assumption
has been shown to hold in the 	-linear generic group model [24]. More generally,
we can also define the Un,� assumption for arbitrary n > 	. Note that the Un,�

assumption is the weakest MDDH assumption (with the worst representation
size) and implied by any other Dn,� assumption [11]. In particular 	-Lin implies
the 	-uniform assumption as shown by Freeman [13].

Bilinear Decisional Diffie-Hellman. We will make use of the bilinear deci-
sional Diffie-Hellman (BDDH) assumption for our construction with linear-size
public keys.

Definition 3. Let MG2 := (2, G1, G2, G3, g1, g2, e, p) ← G2(1λ), where G2 is
a symmetric bilinear group generator (i.e., G1 = G2 and g1 = g2), and let
a, b, c ← Zp, b ← {0, 1}, T0 := abc and T1 ← Zp. We say that the bilinear
decisional Diffie-Hellman (BDDH) assumption holds relative to G2, if

AdvbddhB,G2
(1λ) :=

∣

∣

∣

∣

Pr
[

1 ← B(1λ,MG2, [(a, b, c)]1, [T0]3)
]

− Pr
[

1 ← B(1λ,MG2, [(a, b, c)]1, [T1]3)
]

∣

∣

∣

∣

is a negligible function for all PPT adversaries B.

2.2 Selective-Opening Secure Encryption

Public-Key Encryption. A public-key encryption (PKE) scheme PKE with
message space M consists of three PPT algorithms Gen,Enc,Dec. The key

Public-Key Encryption with Simulation-Based Selective-Opening Security 155

Fig. 1. SIM-SO-CPA security experiments.

generation algorithm Gen(1λ) outputs a public key pk and a secret key sk .
Encryption algorithm Enc(pk ,m) takes pk and a message m ∈ M, and out-
puts a ciphertext c. Decryption algorithm Dec(sk , c) takes sk and a ciphertext
c, and outputs a message m. For correctness, we want Dec(sk ,Enc(pk ,m)) = m
for all m ∈ M and all (pk , sk) ← Gen(1λ).

Simulation-Based Selective Opening Security. We use the definition of
SO-security against chosen-plaintext attacks of Fehr et al. [12], which refines the
definition of [2,4] (by letting the adversary choose the message distribution).

Definition 4 (Simulation-based security against selective opening
attacks). For a PKE scheme PKE = (Gen,Enc,Dec), a polynomially bounded
function n = n(λ) > 0, a function T and a stateful PPT adversary A, consider
the experiments in Fig. 1. We call PKE SIM-SO-CPA secure if for any PPT
adversary A and PPT function T there is a stateful PPT simulator S such that

Advsim-so-cpa
PKE,A (λ) :=

∣

∣

∣Pr
[

Expsim-so-cpa-real
PKE,A,T ,n (λ) = 1

]

− Pr
[

Expsim-so-cpa-ideal
PKE,S ,T ,n (λ) = 1

]∣

∣

∣

is negligible. As usual, we require that the distribution Dso that A outputs is
encoded as a circuit. Since A is PPT, this enforces efficient samplability of Dso.

2.3 Selective Opening Security from Lossy Encryption

In [2,4], Bellare et al. show that any lossy encryption scheme where ciphertexts
can be efficiently opened to arbitrary messages is indeed SIM-SO-CPA secure.
The following definition essentially repeats the definition of lossy encryption
with efficient opening from [4] with one small change: the Opener algorithm may
receive an additional input, the random coins used to generate the ciphertext
(that should now be opened to a different message). We call a scheme satisfying
this definition, a lossy encryption scheme with efficient weak opening.

156 D. Hofheinz et al.

Definition 5 (Lossy encryption with efficient weak opening). A lossy
encryption scheme with efficient weak opening and message space M is a tuple
of PPT algorithms LPKE = (Gen, LGen,Enc,Dec) such that

– Gen(1λ) takes as input the security parameter 1λ and outputs a keypair
(pk , sk). We call pk a real or injective public key.

– LGen(1λ) takes as input the security parameter 1λ and outputs a keypair
(pk , sk). We call pk a lossy public key.

– Enc(pk ,m) takes as input a (real or lossy) public key pk and a message m ∈ M
and outputs a ciphertext c

– Dec(sk , c) takes as input a secret key sk and a ciphertext c and outputs either
a message m ∈ M or ⊥ in case of a failure.

Additionally, LPKE needs to satisfy the following properties:

1. Correctness for real keys: For all λ ∈ N, (pk , sk) ← Gen(1λ), messages m ∈
M, and ciphertexts c ← Enc(pk ,m), it always holds that m ← Dec(sk , c).

2. Indistinguishability of real keys from lossy keys: For any PPT algorithm D
it holds that the advantage

Advind-lossy-keyLPKE,D (λ) :=
∣

∣

∣

∣

Pr[1 ← D(1λ, pk) | (pk , sk) ← Gen(1λ)]
− Pr[1 ← D(1λ, pk) | (pk , sk) ← LGen(1λ)]

∣

∣

∣

∣

is negligible in λ.
3. Lossiness of encryption with lossy keys: Let λ ∈ N. For any (pk , sk) ←

LGen(1λ) and distinct messages m0 �= m1 ∈ M, holds that

(sk ,Enc(pk ,m0)) ≈s (sk ,Enc(pk ,m1))

4. Efficient weak openability: Let REnc denote the space of random coins for
encryption. There exists a PPT algorithm Opener such that for any two mes-
sages m0,m1 ∈ M, the probability that Opener on input of a lossy public
and secret key (pk , sk) ← LGen(1λ), a ciphertext c ← Enc(pk ,m0; r′), where
r′ ← REnc, the corresponding random coins r′, and a message m1, outputs
uniform random coins r from {r ∈ REnc | Enc(pk ,m1; r) = c} is overwhelm-
ing.

Despite our small changes with respect to the definition of lossy encryption
and SIM-SO-CPA compared to the definitions in [4], the following theorem still
follows from the corresponding proof in [4]: It does not matter for the proof if the
message distribution is some arbitrary but fixed distribution (where we quantify
over all efficiently samplable distributions) or if it is the output of the adversary
after seeing the (lossy) public key. Moreover, the simulator which uses the Opener
algorithm knows the encryption randomness of the (dummy) ciphertexts (that
should be opened differently) as it has generated these ciphertexts itself.5

Theorem 1. ([2,4]). If LPKE is a lossy encryption scheme with efficient weak
opening then LPKE is SIM-SO-CPA secure.
5 Note that the los-ind2 adversary C in the proof of Theorem 5.2 in [4] is unbounded

and thus may find the appropriate encryption randomness required for our Opener
algorithm itself.

Public-Key Encryption with Simulation-Based Selective-Opening Security 157

3 Lossy Encryption from Matrix Rank Assumptions

First, we would like to stress that although we use k-linear group generators
Gk in the following definitions and constructions for generality, the existence of
k-linear maps for k > 2 is not required to instantiate our constructions. For
the instantiations based on MDDH assumptions (Sect. 4), an ordinary group
generator G1 or bilinear group generator G2 can be assumed (where the pairing
is not used for encryption). For the instantiation based on the BDDH assumption
(Sect. 5), a bilinear group generator G2 is required where the pairing is needed
in the encryption routine. Hence, for the remainder of this paper, it might be
best to have k = 1 or k = 2 in mind.

In the following, we show how to build efficient lossy encryption with effi-
cient weak opening for multiple bits from rank problems. Roughly speaking,
this problem asks to distinguish a n × n matrix of rank 	 < n chosen accord-
ing to some (not necessarily uniform) distribution from a matrix of full rank
n chosen according to some (not necessarily uniform) distribution, where both
matrices are given in implicit representation. The following definition captures
rank assumptions and additionally allows the considered matrices to be given
in some “compressed form” (which, e.g., can be decompressed efficiently using a
pairing).

Definition 6. Let MGk := (k,G1, . . . , Gk+1, g1, . . . , gk, e, p) ← Gk(1λ) be a k-
linear group generator. A (n,)-indistinguishable matrix constructor MCon for
Gi, where 1 ≤ i ≤ k+1, is a tuple MCon = (SetupNFR,SetupFR,Constr) of PPT
algorithms with the following properties.

Setup of non-full rank matrix description. SetupNFR(MGk) returns a
matrix A ∈ Z

n×n
p of rank 	, where we assume that A’s first 	 rows are linearly

independent, as well as a (compact) description mat ∈ {0, 1}∗ of the implicit
representation [A]i of A.

Setup of full rank matrix description. SetupFR(MGk) returns a matrix
A ∈ Z

n×n
p of rank n as well as a (compact) description mat ∈ {0, 1}∗ of

the implicit representation [A]i of A.6

Reconstruction of matrix from matrix description.
Constr(MGk,mat) returns [A]i ∈ Gn×n

i on input of a matrix description
mat.

Correctness. MCon is called correct relative to Gk if for all λ ∈ N, MGk :=
(k,G1, . . . , Gk+1, g1, . . . , gk, e, p) ← Gk(1λ), and (A,matA) ← SetupNFR
(MGk), (B,matB) ← SetupFR(MGk), the matrices A and B are of rank 	
and of rank n with probability 1, respectively, and [A]i ← Constr(MGk,matA)
and [B]i ← Constr(MGk,matB).

6 This description mat can always be set to [A]i. In some cases (e.g., in case of the �-
linear distribution), however, [A]i has more structure can be represented with fewer
group elements, see also [11].

158 D. Hofheinz et al.

Security. MCon is called secure relative to Gk, if for all PPT algorithms A
and for MGk ← Gk(1λ), (A,mat) ← SetupNFR(MGk), and (A′,mat ′) ←
SetupFR(MGk) holds that the advantage

Advind-matrix-rank
MCon,A (1λ) :=

∣∣Pr[1 ← A(1λ, MGk,mat)] − Pr[1 ← A(1λ, MGk,mat ′)]
∣∣

is negligible in λ.

Construction of the LPKE scheme with efficient weak opening. Apart
from an (n,)-indistinguishable matrix constructor for Gi, we additionally need a
hash function H : Gi → {0, 1} such that H(a), for uniformly random a ← Gi, is
statistically indistinguishable from the uniform distribution on {0, 1}. By writing
H(�b), where �b is a vector of group elements from Gi, we refer to the component-
wise application of the hash function, which results in a (bit-)vector of hash
values of the same length as �b.

Based on these ingredients, we can define a lossy encryption scheme with effi-
cient weak opening LPKE = (Gen, LGen,Enc,Dec) with message space {0, 1}n−�

and ciphertexts consisting of 	 group elements and n−	 bits. Note that the para-
meter 	 reflects the strength of the assumption we are willing to make, the smaller
	, the stronger the underlying assumption. For instance, the assumption that
random rank 	 matrices are indistinguishable from random full rank matrices is
implied by the assumption that random rank 	−1 matrices are indistinguishable
from random full rank matrices. (Furthermore, rank 	 vs. n indistinguishability
is implied by the 	-linear assumption.) Hence, to make ciphertexts as compact
as possible, one would choose 	 = 1 and could, e.g., base security on the 1-linear
assumption which equals DDH.

The idea underlying encryption (with a real key) in our construction is as
follows: a message bit is encrypted using the hash of a randomized linear depen-
dent row vector of A given in implicit representation. Additionally, the linear
independent row vectors of A are randomized the same way and given in implicit
representation as part of the ciphertext. Decryption then boils down to recom-
puting the (implicit representation of the) linear dependent vector from the
(implicit representations of the) linear independent vectors. As all row vectors
are randomized the same way (which is a linear operation), the dependencies
are not changed by the randomization. The details of LPKE are given below.

– Gen(1λ) runs the group generator MGk := (k,G1, . . . , Gk+1, g1, . . . , gk, e, p) ←
Gk(1λ) as well as (A,mat) ← SetupNFR(MGk) to choose a matrix of rank 	.
Let A0 denote the first 	 rows of A and A1 the remaining n − 	 rows. Then
it computes a matrix T ∈ Z

(n−�)×�
p satisfying

TA0 = A1 (4)

As the rows of A1 linearly depend on the rows of A0, T always exists and
can be computed efficiently (e.g., using Gaussian Elimination). The algorithm
returns pk := (MGk,mat) and sk := (MGk,T).

Public-Key Encryption with Simulation-Based Selective-Opening Security 159

– LGen(1λ) runs the group generator MGk := (k,G1, . . . , Gk+1, g1, . . . ,
gk, e, p) ← Gk(1λ) as well as (A,mat) ← SetupFR(MGk) to choose a matrix
of rank n. The algorithm returns pk := (MGk,mat) and sk := (MGk,A).

– Enc(pk , �m) reconstructs the matrix [A]i ← Constr(MGk,mat). Let [A0]i
denote the first 	 rows of [A]i and [A1]i the remaining n − 	 rows. Then
it chooses �w ← Z

n
p , computes

[�c0]i := [A0 �w]i
�c1 := H([A1 �w]i) ⊕ �m

(5)

(using exponentiations with the entries of �w), and returns ciphertext c :=
([�c0]i,�c1) ∈ G�

i × {0, 1}n−�.
– Dec(sk , c) recomputes �m as �m := H([T�c0]i) ⊕ �c1.

We show that LPKE indeed satisfies the four properties of a lossy encryption
scheme with efficient weak opening.

Theorem 2. If MCon is secure and the output of H statistically indistinguish-
able from uniform for random input then LPKE is a lossy encryption scheme
with efficient weak opening.

Proof.

Correctness for real keys. Given a real public key pk := (MGk,mat) and
secret key sk := (MGk,T) returned by Gen(1λ) as well as a ciphertext c :=
([�c0]i,�c1), correctness of decryption follows from the equation

H([T�c0]i) ⊕ �c1 = H([T�c0]i) ⊕ H([A1 �w]i) ⊕ �m
= H([TA0 �w]i) ⊕ H([A1 �w]i) ⊕ �m
= H([A1 �w]i) ⊕ H([A1 �w]i) ⊕ �m

(6)

Indistinguishability of real keys from lossy keys. It follows from the secu-
rity of MCon that a real public key (MGk,mat) generated by Gen(1λ) is indis-
tinguishable from a lossy one (MGk,mat ′) generated by LGen(1λ).

Lossiness of encryption with lossy keys. Consider the matrix [A]i ←
Constr(MGk,mat), where mat is computed by LGen(1λ). This matrix has full
rank, so the linear map defined by A as �w �→ A�w is bijective. Thus, for uniformly
random �w, [�c0]i = [A0 �w]i is uniformly random over G�

i and [A1 �w]i is uniformly
random over Gn−�

i (even when A is given).
Now, since by assumption the output of H is statistically close to uniform

for uniformly random input, H([A1 �w]i) ⊕ �m will also be statistically close to
uniform over {0, 1}n−� for any string �m.

Hence, for uniformly random �w ← Z
n
p , the distributions of

(A, ([A0 �w]i,H([A1 �w]i) ⊕ �m)) and (A, ([A0 �w]i,H([A1 �w]i) ⊕ �m′))

are statistically close for any two distinct message vectors �m �= �m′ ∈ {0, 1}n−�.

160 D. Hofheinz et al.

Efficient weak openability. Let a lossy keypair (pk = (MGk,mat), sk =
(MGk,A)) ← LGen(1λ), message vector �m, a ciphertext c := ([�c0]i,�c1) ←
Enc(pk , �m′; �w′), as well as the corresponding encryption randomness �w′ be given.
Then Opener should efficiently determine some encryption randomness �w such
that Enc(pk , �m; �w) = ([�c0]i,�c1). This can be done by setting up a linear system
of equations in the exponent

A�w = �b, (7)

where the right-hand side vector

�b =
(

�b0
�b1

)

(8)

satisfies �b0 = �c0 and H([�b1]i) ⊕ �c1 = �m.
First, Opener can easily determine �b0 := �c0 ∈ Z

�
p, i.e., the discrete logarithms

of [�c0]i to the base gi, by computing A�w′. Second, it can efficiently find a vector
�b1 ∈ Z

n−�
p satisfying H([�b1]i)⊕�c1 = �m by randomly guessing one component of�b1

after another and verifying the equation for this component. As the output of H
is close to uniform for random input, this will require about 2(n−) steps. After
that, Opener can solve the system of linear equations from Eq. 7 by multiplying
with the inverse of A as this matrix is of full rank.

It is not hard to see that the determined randomness �w has the correct
distribution, i.e., �w is uniformly chosen from

Coins(�m, c) := {�w ∈ Z
n
p | Enc(pk , �m; �w) = c} (9)

Note that each �w ∈ Coins(�m, c) uniquely determines a right-hand side �b in (7),
i.e., a vector from

KENCs(�m, c) :=
{

�b =
(

�b0
�b1

) ∣

∣

∣

�b0 = �c0 ∧ H([�b1]i) ⊕ �c1 = �m
}

(10)

Hence, to uniformly sample �w from Coins(�m, c) it suffices to uniformly sample
�b from KENCs(�m, c) and invert the bijective mapping by computing A−1�b. This
is exactly what Opener does.

4 From MDDH Assumptions to Matrix Rank
Assumptions

We have seen in Sect. 3 that in order to build an (n −)-bit LPKE scheme with
efficient weak opening, it suffices to define a secure (n,)-indistinguishable matrix
constructor. In the following, we first show that such a constructor is generically
given by any Dn,�-MDDH assumption (including DDH, 	-Lin, 	-SCasc, (n,)-
circulant matrix assumption, etc.). Then, we consider the size of the public key
when using different members of MDDH assumption family.

Generic construction from MDDH assumptions. Let Gk be a k-linear
group generator and MGk := (k,G1, . . . , Gk+1, g1, . . . , gk, e, p) ← Gk(1λ). Fur-
thermore, let Dn,� be a matrix distribution over Z

n×�
p , where n > 	. We assume

Public-Key Encryption with Simulation-Based Selective-Opening Security 161

that the first 	 rows of an output of Dn,� forms a regular matrix with overwhelm-
ing probability. A (n,)-indistinguishable matrix constructor MConDn,�-MDDH for
Gi can then be defined based on Dn,�-MDDH as follows:

– SetupNFR(MGk) samples a matrix A′ ← Dn,� of rank 	 according to the given
matrix distribution. If A′ is not of rank 	 the sampling is repeated. (Note that
since Dn,� outputs full rank matrices with overwhelming probability this case
should virtually never happen.) Furthermore, a random matrix R ← Z

�×(n−�)
p

is sampled. Then it computes A := A′(I�||R) = (A′||A′R), where I� is the
	 × 	 identity matrix, and returns (A, [A]i).

– SetupFR(MGk) samples a matrix A′ ← Dn,� of rank 	 (if the rank of A′ is
smaller sampling is repeated). After that, random matrices U ← Z

n×(n−�)
p are

sampled until A := (A′||U) is of full rank n. (Note that A will be of rank
n with overwhelming probability of at least 1 − n−�

pn−� for uniform U.) It then
returns (A, [A]i).

– Constr(MGk,mat) returns mat (as the matrix is not compressed).

Remark 2. Consider the matrix A′ ← Dn,� generated during SetupNFR(MGk).
Let A′

0 denote the first 	 rows of A′ and A′
1 the last n − 	 rows of A′. Then the

transformation matrix T from Eq. 4, which is used as the secret key, can be set
to T := A′

1(A
′
0)

−1. Correctness follows from

TA0 = A′
1(A

′
0)

−1A0

= A′
1(A

′
0)

−1A′
0(I�||R)

= A′
1(I�||R)

= A1

(11)

Correctness. Consider (A,matA) ← SetupNFR(MGk) and (B,matB) ←
SetupFR(MGk). Obviously, A = (A′||A′R) will be of rank 	 as this is the
case for A′. Similarly, B := (B′||U) will be of rank n by construction.
Furthermore, clearly, it holds that [A]i ← Constr(MGk,matA) and [B]i ←
Constr(MGk,matB).

Security. As for security we show

Lemma 1. If the Dn,�-MDDH assumption holds relative to Gk, then the scheme
MConDn,�-MDDH is secure.

Proof. First note that the distribution of A returned by SetupNFR and the
distribution of B returned by SetupFR are statistically indistinguishable from
the distribution of (A′||A′R) and (A′||U), respectively, where A′ ← Dn,�, R ←
Z

�×(n−�)
p , and U ← Z

n×(n−�)
p .

Then considering the latter distributions, the lemma immediately follows
from the Dn,�-Matrix Diffie-Hellman assumption and its random self-reducibility.
More concretely, the Dn,�-MDDH assumption demands that for all PPT adver-
saries D holds that

|Pr[D(MGk, [A′]i, [A′�r]i) = 1] − Pr[D(MGk, [A′]i, [�u]i) = 1]|

162 D. Hofheinz et al.

is negligible, where MGk ← Gk(1λ), A′ ← Dn,�, �r ← Z
�
p and �u ← Z

n
p . Hence,

[A′||A′�r]i is computationally indistinguishable from [A′||�u]i. As any matrix
assumption is random self-reducible (Lemma 1 in [11]), it follows that

|Pr[D(MGk, [A′]i, [A′R]i) = 1] − Pr[D(MGk, [A′]i, [U]i) = 1]|

is negligible, where R ← Z
�×(n−�)
p and U ← Z

n×(n−�)
p . Thus, [A′||A′R]i is

computationally indistinguishable from [A′||U]i.

Concrete instantiations. Let us now consider what we get from different
members of the MDDH assumption family.

1-bit LPKE from standard assumptions. From standard assumptions like
DDH and 	-Lin, we can immediately obtain a one bit lossy encryption scheme
by means of the corresponding indistinguishable matrix constructor. More pre-
cisely, for 	-Lin we would consider the L�+1,� matrix distribution which samples
(+ 1) × 	 matrices of the form

A′ =

⎛

⎜

⎝

s1 0 0 ... 0
0 s2 0 ... 0

.

.

.

.

.

.
. . .

.

.

.
0 0 0 ... s�
1 1 1 ... 1

⎞

⎟

⎠
(12)

Hence, this results in a public key of the form

[A]i =

⎡

⎢

⎣

⎛

⎜

⎝

s1 0 0 ... 0 s1r1
0 s2 0 ... 0

.

.

.

.

.

.
. . .

.

.

.

.

.

.
0 0 0 ... s� s�r�
1 1 1 ... 1 r1+...+r�

⎞

⎟

⎠

⎤

⎥

⎦

i

, (13)

where ri ← Zp, which can be represented using 2(+ 1) group elements.
Multi-bit LPKE from standard assumptions. Note that the number of bits we

can encrypt equals the number of linearly dependent row vectors of A ∈ Z
n×n
p ,

i.e., n−	. Thus, if we had a distribution Dn,� that yields matrices with more than
one linearly dependent vector, i.e., n > 	 + 1, our construction would be able to
encrypt more than one bit. Hence, we could obtain a scheme for multiple bits
from a standard assumption by finding a Dn,�-MDDH assumption with n > 	+1
which is implied by this standard assumption. For instance, the 	-Lin assumption
implies Un,�-MDDH for arbitrary n, where Un,� samples uniform n × 	 matrices
of rank 	 (this follows from Lemma A.1 in [26]). Hence, from DDH, for example,
we can get a scheme for (n − 1)-bit messages with arbitrary n ∈ N by means of
the uniform distribution Un,1 which samples a matrix of the form

A′ =

(

s1

...
sn

)

(14)

and, thus, yields a public key of the form

[A]i =

[(s1 s1r1 ... s1rn−1

...
...

sn snr1 ... snrn−1

)]

i

, (15)

Public-Key Encryption with Simulation-Based Selective-Opening Security 163

where ri ← Zp. Note that the resulting scheme is essentially the DDH-based
scheme sketched in the introduction (with the minor difference that sn is set to
1 instead of being uniformly chosen).

It is interesting to observe that 	-Lin is a family of assumptions which (at
least in the generic group model) become strictly weaker as 	 grows and that we
can get an LPKE scheme for messages of arbitrary size for each member of this
family (by means of Un,�).

On the downside, if make the detour to the Un,� distribution (instead of
directly building on 	-Lin), the public key will consist of n2 group elements to rep-
resent [A]i. Alternatively, we can take a more direct approach and extend a (stan-
dard) D�+1,�-MDDH assumption (like 	-Lin) to the Dn,�-MDDH assumption,
where the first 	+1 rows of A′ ← Dn,� are sampled as by D�+1,� and the remain-
ing n−	−1 are sampled uniformly. In this case, Dn,�-MDDH is implied by D�+1,�-
MDDH [24]. The representation of [A]i will consist of E +(n− 	−1)	+n(n−)
group elements to encrypt n−	 bits, where E is the number of elements required
to represent a matrix sampled by the D�+1,� distribution (e.g., 1 for 	-SCasc).

Multi-bit LPKE from a new Dn,�-MDDH assumption. A Dn,�-MDDH for
n > 	+1 with an optimal representation size has recently been proposed in [24].
The circulant matrix distribution C�+d,� outputs matrices A′ ∈ Z

(�+d)×�
p which

can be represented using d group elements. The assumption has been shown
to hold in the 	-linear generic group model [24]. Plugging this distribution into
our scheme, we obtain a public key consisting of d + (+ d)d group elements
(representing [A]i) to encrypt d bits.

5 From the BDDH Assumption to a Compact Matrix
Rank Assumption

In this section, we show how to leverage the lossy trapdoor function construction
of Boyen and Waters [7] to obtain a (n, 1)-indistinguishable matrix constructor
MConBDDH with a linear-size matrix description mat . This translates to an (n −
1)-bit lossy encryption scheme featuring a linear public key size. (Note that the
size of the secret key is also linear.)

Essentially, the idea is to generate the quadratic number of group elements
in the matrix from a linear number of group elements, by applying a bilinear
map. A technical hurdle is to do this in a way such that matrices computed in
this way have either rank 1 or full rank, in a computationally indistinguishable
way. Here we apply the “linear equations” technique of Boyen and Waters, which
enables an algorithm to re-compute the full matrix by applying the bilinear map,
except for the diagonal. The diagonal entries of the matrix are given additionally
in the matrix description mat , and set-up such that the resulting matrix has
either rank 1 or full rank. Interestingly, the lossy trapdoor function of Boyen
and Waters corresponds to our injective encryption scheme, and vice versa.

Let MG2 := (2, G1, G2, G3, g1, g2, g3, e, p) ← G2(1λ), where G1 = G2 and
g1 = g2, be a symmetric bilinear group generator. Then a (n, 1)-indistinguishable
matrix constructor MConBDDH for G1 can be defined as follows:

164 D. Hofheinz et al.

– SetupNFR(MG2) samples two uniformly random elements h, k ← Z
∗
p, and

two exponent vectors �r = (r1, . . . , rn)� ← (Z∗
p)

n and �u = (u1, . . . , un)� ←
(Z∗

p)
n. Then it sets A := (ai,j) ∈ (Z∗

p)
n×n with ai,j := hriuj . Furthermore, it

computes
• [�s]1 := [(s1, . . . , sn)�]1 ∈ Gn

1 where si := (hi + k)ri

• [�v]1 := [(v1, . . . , vn)�]1 ∈ Gn
1 where vj := (hj + k)uj

• [�d]3 := [(d1, . . . , dn)�]3 ∈ Gn
3 where di := hriui

and sets mat := ([�r]1, [�s]1, [�u]1, [�v]1, [�d]3). It returns (A,mat).
– SetupFR(MG2) samples elements h, k ← Z

∗
p and vectors �r, �u ← (Z∗

p)
n the

same way as SetupNFR. It sets A := (ai,j) ∈ Z
n×n
p with ai,j := hriuj for i �= j

and ai,i := hriui +1. Accordingly, [�s]1 and [�v]1 are defined as in SetupNFR but
di is set to di := hriui + 1. It sets mat := ([�r]1, [�s]1, [�u]1, [�v]1, [�d]3) and returns
(A,mat).

– Constr(MG2,mat) computes [A]3 := ([ai,j]3)i,j for 1 ≤ i, j ≤ n as follows:
• For i �= j, it uses the pairing to compute

[ai,j]3 := e([ri]1, [vj]1)
1/(j−i)e([uj]1, [si]1)

−1/(j−i) = [(ri · vj − uj · si)/(j − i)]3

• For i = j it sets [ai,i]3 := [di]3

Remark 3. The transformation matrix T from Eq. 4 can be set to T :=
(r2/r1, . . . , rn/r1)�.

Correctness. Consider (A,matA) ← SetupNFR(MG2) and (B,matB) ←
SetupFR(MG2). Let A0 be the first row of A and A1 be the remaining n − 1
rows. It is easy to see that TA0 = A1, where T is defined as described above.
Moreover, A cannot be the zero-matrix, because h and all ri and uj are non-zero.
So A is of rank 1.

Note also that by construction of SetupFR we have B = A + In, where A
has rank 1 (as above) and In is the (n × n)-identity matrix. Thus, since A has
rank 1, B is row-equivalent to In, which is equivalent to B having full rank.

To see that for [A′]3 := Constr(MG2,matA) and [B′]3 := Constr(MG2,
matB) we have [A′]3 = [A]3 and [B′]3 = [B]3, first observe that the diago-
nal entries are correct, since [a′

i,i]3 = hriui and [b′
i,i]3 = hriui + 1. Moreover, in

either case we have for i �= j that

[a′
i,j]3 = [b′

i,j]3 = [(rivj − ujsi)/(j − i)]3
= [(ri(hj + k)uj − uj(hi + k)ri)/(j − i)]3
= [(hriujj + kriuj − hriuji − kriuj)/(j − i)]3
= [hriuj(j − i)/(j − i)]3
= [hriuj]3

(16)

Security. Following [7], we prove security under the bilinear decisional Diffie-
Hellman assumption (cf. Definition 3). However, to simplify the security proof of
MConBDDH, we first define the following slightly modified BDDH* assumption,
which is implied by the standard BDDH assumption from Definition 3 by a
straightforward reduction.

Public-Key Encryption with Simulation-Based Selective-Opening Security 165

Definition 7. Let MG2 := (2, G1, G2, G3, g1, g2, e, p) ← G2(1λ), a, b, c ← Z
∗
p,

b ← {0, 1}, T0 := abc and T1 := abc + 1. We say that the BDDH* assumption
holds relative to G2, if

Advbddh∗
B,G2

(1λ) :=
∣

∣

∣

∣

Pr
[

1 ← B(1λ,MG2, [(a, b, c)]1, [T0]3)
]

− Pr
[

1 ← B(1λ,MG2, [(a, b, c)]1, [T1]3)
]

∣

∣

∣

∣

is a negligible function for all PPT adversaries B.

Remark 4. A straightforward reduction allows to show that Advbddh∗
B,G2

(1λ) ≤ 2 ·
AdvbddhB,G2

(1λ) for all PPT algorithms B.

Theorem 3. If the BDDH* assumption holds relative to G2, then MConBDDH is
secure.

Proof. We will show that one can construct an adversary B against the BDDH*
assumption from each adversary A against MCon such that

Advind-matrix-rank
MCon,A (1λ) ≤ n · Advbddh∗

B,G2
(1λ) (17)

To this end, we describe a hybrid argument which consists of n + 1 hybrid
games H0, . . . , Hn. In Hybrid Hδ, δ ∈ {0, . . . , n}, we run A on input mat :=
([�r]1, [�s]1, [�u]1, [�v]1, [�d]3), where all values are computed exactly as in SetupNFR,
except that

di :=

{

hriui + 1 for i < δ

hriui for i ≥ δ

Note that the input mat of A in H0 is identically distributed to the matrix
descriptions computed by (A,mat) ← SetupNFR(MG2). In Hn, A receives a
matrix description mat which is distributed exactly as a matrix description com-
puted by (A,mat) ← SetupFR(MG2).

Let Xδ denote the event that A outputs “1” in Hybrid Hδ. We show that for
each δ ∈ {1, . . . , n} we can construct an adversary B such that

Advbddh∗
B,G2

≥ |Pr[Xδ−1] − Pr[Xδ]| (18)

which proves (17). B receives as input a BDDH*-instance (MG2, [(a, b, c)]1, [T]).
It creates mat = ([�r]1, [�s]1, [�u]1, [�v]1, [�d]3) as follows.

– [�r]1 := [(r1, . . . , rn)�]1, where [rδ]1 := [a]1 and ri ← Z
∗
p for all i ∈ {1, . . . , n}

with i �= δ
– [�u]1 := [(u1, . . . , un)�]1, where [uδ]1 := [b]1 and ui ← Z

∗
p for all i ∈ {1, . . . , n}

with i �= δ
– [h]1 := [c]1 and [k]1 := [−hδ + y] for y ← Zp \ {hδ}
– [�s]1 := [(s1, . . . , sn)�]1, where [si]1 = [(hi + k)ri]1 = [(h(i − δ) + y)ri]1. Note

that all the [si]1 can efficiently be computed by B, due to the above setup of
[h]1, [k]1, [�r]1.

166 D. Hofheinz et al.

– [�v]1 := [(v1, . . . , vn)�]1, where [vj]1 = [(hj + k)uj]1 = [(h(j − δ) + y)uj]1. As
above, all the [vi]1 can efficiently be computed by B, due to the setup of [h]1,
[k]1, [�u]1.

Finally, B sets [�d]3 := [(d1, . . . , dn)�]3, where

[di]3 =

⎧

⎪

⎨

⎪

⎩

[hriui + 1]3 for i < δ

[T]3 for i = δ

[hriui]3 for i > δ

Then it runs A on input (MG2,mat) and outputs whatever A outputs.
Note that if [T]3 = [abc]3 = [hrδuδ]3, then the view of A when interacting

with B is identical to its view in hybrid Hδ−1. Thus, the probability that A
outputs “1” in this case is equal to Pr[Xδ−1]. If [T]3 = [abc + 1]3 = [hrδuδ + 1]3,
then it is identical to Hδ, so that the the probability that A outputs “1” in this
case is equal to Pr[Xδ]. This yields (18) and thus concludes the proof.

Shortcut evaluation. We remark that it is possible to reduce the number of
pairing computations required to compute [A�w]3 for �w ∈ Z

n
p , given mat . In the

näıve approach sketched above, one first has to recompute [A]3 from mat , which
requires O(n2) pairing evaluations, and then [A]3 �w.

Following the “shortcut evaluation” approach described in [7], we note that
the number of pairing evaluations can be reduced to 2n = O(n), by computing
([z1]3, . . . , [zn]3) from mat = ([�r]1, [�s]1, [�u]1, [�v]1, [�d]3) and �w ∈ Z

n
p as

[zj]3 :=

[

∑

i�=j
wiri

j−i

]

1
· [vj]1

[

∑

i�=j
wiui

j−i

]

1
· [sj]1

+ [wjdj]3

Indeed, as shown by Boyen and Waters [7], it is easy to verify that

[zj]3 =

[

n
∑

i=1

riuihwi

]

3

for all j ∈ {1, . . . , n}, and thus it holds that ([z1]3, . . . , [zn]3)� = [A�w]3. Note
that this “shortcut evaluation” takes only two pairing evaluations for each j ∈
{1, . . . , n}, which amounts to only 2n pairing evaluations in total.

References

1. Bellare, M., Dowsley, R., Waters, B., Yilek, S.: Standard security does not imply
security against selective-opening. In: Pointcheval, D., Johansson, T. (eds.) EURO-
CRYPT 2012. LNCS, vol. 7237, pp. 645–662. Springer, Heidelberg (2012). doi:10.
1007/978-3-642-29011-4 38

http://dx.doi.org/10.1007/978-3-642-29011-4_38
http://dx.doi.org/10.1007/978-3-642-29011-4_38

Public-Key Encryption with Simulation-Based Selective-Opening Security 167

2. Bellare, M., Hofheinz, D., Yilek, S.: Possibility and impossibility results for encryp-
tion and commitment secure under selective opening. In: Joux, A. (ed.) EURO-
CRYPT 2009. LNCS, vol. 5479, pp. 1–35. Springer, Heidelberg (2009). doi:10.1007/
978-3-642-01001-9 1

3. Bellare, M., Waters, B., Yilek, S.: Identity-based encryption secure against selec-
tive opening attack. In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 235–252.
Springer, Heidelberg (2011). doi:10.1007/978-3-642-19571-6 15

4. Bellare, M., Yilek, S.: Encryption schemes secure under selective opening attack.
Cryptology ePrint Archive, Report 2009/101 (2009). http://eprint.iacr.org/2009/
101

5. Böhl, F., Hofheinz, D., Kraschewski, D.: On definitions of selective opening security.
In: Fischlin, M., Buchmann, J., Manulis, M. (eds.) PKC 2012. LNCS, vol. 7293,
pp. 522–539. Springer, Heidelberg (2012). doi:10.1007/978-3-642-30057-8 31

6. Boneh, D., Boyen, X., Shacham, H.: Short group signatures. In: Franklin, M. (ed.)
CRYPTO 2004. LNCS, vol. 3152, pp. 41–55. Springer, Heidelberg (2004). doi:10.
1007/978-3-540-28628-8 3

7. Boyen, X., Waters, B.: Shrinking the keys of discrete-log-type lossy trapdoor func-
tions. In: Zhou, J., Yung, M. (eds.) ACNS 2010. LNCS, vol. 6123, pp. 35–52.
Springer, Heidelberg (2010). doi:10.1007/978-3-642-13708-2 3

8. Canetti, R., Feige, U., Goldreich, O., Naor, M.: Adaptively secure multi-party
computation. In: 28th ACM STOC, pp. 639–648. ACM Press, May 1996

9. Damg̊ard, I., Jurik, M.: A generalisation, a simplification and some applications of
paillier’s probabilistic public-key system. In: Kim, K. (ed.) PKC 2001. LNCS, vol.
1992, pp. 119–136. Springer, Heidelberg (2001). doi:10.1007/3-540-44586-2 9

10. Dwork, C., Naor, M., Reingold, O., Stockmeyer, L.J.: Magic functions. In: 40th
FOCS. pp. 523–534. IEEE Computer Society Press, October 1999

11. Escala, A., Herold, G., Kiltz, E., Ràfols, C., Villar, J.: An algebraic framework
for Diffie-Hellman assumptions. In: Canetti, R., Garay, J.A. (eds.) CRYPTO
2013. LNCS, vol. 8043, pp. 129–147. Springer, Heidelberg (2013). doi:10.1007/
978-3-642-40084-1 8

12. Fehr, S., Hofheinz, D., Kiltz, E., Wee, H.: Encryption schemes secure against
chosen-ciphertext selective opening attacks. In: Gilbert, H. (ed.) EUROCRYPT
2010. LNCS, vol. 6110, pp. 381–402. Springer, Heidelberg (2010). doi:10.1007/
978-3-642-13190-5 20

13. Freeman, D.M.: Converting pairing-based cryptosystems from composite-order
groups to prime-order groups. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol.
6110, pp. 44–61. Springer, Heidelberg (2010). doi:10.1007/978-3-642-13190-5 3

14. Freeman, D.M., Goldreich, O., Kiltz, E., Rosen, A., Segev, G.: More construc-
tions of lossy and correlation-secure trapdoor functions. J. Cryptology 26(1), 39–74
(2013)

15. Fujisaki, E.: All-but-many encryption. In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT
2014. LNCS, vol. 8874, pp. 426–447. Springer, Heidelberg (2014). doi:10.1007/
978-3-662-45608-8 23

16. Garg, S., Gentry, C., Halevi, S.: Candidate multilinear maps from ideal lattices.
In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp.
1–17. Springer, Heidelberg (2013). doi:10.1007/978-3-642-38348-9 1

17. Groth, J., Sahai, A.: Efficient non-interactive proof systems for bilinear groups.
In: Smart, N. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 415–432. Springer,
Heidelberg (2008). doi:10.1007/978-3-540-78967-3 24

http://dx.doi.org/10.1007/978-3-642-01001-9_1
http://dx.doi.org/10.1007/978-3-642-01001-9_1
http://dx.doi.org/10.1007/978-3-642-19571-6_15
http://eprint.iacr.org/2009/101
http://eprint.iacr.org/2009/101
http://dx.doi.org/10.1007/978-3-642-30057-8_31
http://dx.doi.org/10.1007/978-3-540-28628-8_3
http://dx.doi.org/10.1007/978-3-540-28628-8_3
http://dx.doi.org/10.1007/978-3-642-13708-2_3
http://dx.doi.org/10.1007/3-540-44586-2_9
http://dx.doi.org/10.1007/978-3-642-40084-1_8
http://dx.doi.org/10.1007/978-3-642-40084-1_8
http://dx.doi.org/10.1007/978-3-642-13190-5_20
http://dx.doi.org/10.1007/978-3-642-13190-5_20
http://dx.doi.org/10.1007/978-3-642-13190-5_3
http://dx.doi.org/10.1007/978-3-662-45608-8_23
http://dx.doi.org/10.1007/978-3-662-45608-8_23
http://dx.doi.org/10.1007/978-3-642-38348-9_1
http://dx.doi.org/10.1007/978-3-540-78967-3_24

168 D. Hofheinz et al.

18. Hemenway, B., Libert, B., Ostrovsky, R., Vergnaud, D.: Lossy encryption: con-
structions from general assumptions and efficient selective opening chosen cipher-
text security. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073,
pp. 70–88. Springer, Heidelberg (2011). doi:10.1007/978-3-642-25385-0 4

19. Hofheinz, D.: All-but-many lossy trapdoor functions. In: Pointcheval, D.,
Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 209–227. Springer,
Heidelberg (2012). doi:10.1007/978-3-642-29011-4 14

20. Hofheinz, D., Kiltz, E.: Secure hybrid encryption from weakened key encapsulation.
In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 553–571. Springer,
Heidelberg (2007). doi:10.1007/978-3-540-74143-5 31

21. Hofheinz, D., Rao, V., Wichs, D.: Standard security does not imply indistinguisha-
bility under selective opening. IACR Cryptology ePrint Archive 2015, 792 (2015).
http://eprint.iacr.org/2015/792

22. Huang, Z., Liu, S., Qin, B.: Sender-equivocable encryption schemes secure against
chosen-ciphertext attacks revisited. In: Kurosawa, K., Hanaoka, G. (eds.) PKC
2013. LNCS, vol. 7778, pp. 369–385. Springer, Heidelberg (2013). doi:10.1007/
978-3-642-36362-7 23

23. Möller, B.: Algorithms for multi-exponentiation. In: Vaudenay, S., Youssef, A.M.
(eds.) SAC 2001. LNCS, vol. 2259, pp. 165–180. Springer, Heidelberg (2001). doi:10.
1007/3-540-45537-X 13

24. Morillo, P., Ràfols, C., Villar, J.L.: Matrix computational assumptions in multi-
linear groups. Cryptology ePrint Archive, Report 2015/353 (2015). http://eprint.
iacr.org/

25. Naor, M., Pinkas, B.: Efficient oblivious transfer protocols. In: Kosaraju, S.R. (ed.)
12th SODA, pp. 448–457. ACM-SIAM, January 2001

26. Naor, M., Segev, G.: Public-key cryptosystems resilient to key leakage. In: Halevi,
S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 18–35. Springer, Heidelberg (2009).
doi:10.1007/978-3-642-03356-8 2

27. Ostrovsky, R., Rao, V., Scafuro, A., Visconti, I.: Revisiting lower and upper bounds
for selective decommitments. In: Sahai, A. (ed.) TCC 2013. LNCS, vol. 7785, pp.
559–578. Springer, Heidelberg (2013). doi:10.1007/978-3-642-36594-2 31

28. Paillier, P.: Public-key cryptosystems based on composite degree residuosity
classes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223–238.
Springer, Heidelberg (1999). doi:10.1007/3-540-48910-X 16

29. Peikert, C., Vaikuntanathan, V., Waters, B.: A framework for efficient and com-
posable oblivious transfer. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157,
pp. 554–571. Springer, Heidelberg (2008). doi:10.1007/978-3-540-85174-5 31

30. Peikert, C., Waters, B.: Lossy trapdoor functions and their applications. In: Ladner,
R.E., Dwork, C. (eds.) 40th ACM STOC, pp. 187–196. ACM Press, May 2008

31. Shacham, H.: The BBG HIBE has limited delegation. Cryptology ePrint Archive,
Report 2007/201 (2007). http://eprint.iacr.org/2007/201

32. Shoup, V.: Lower bounds for discrete logarithms and related problems. In: Fumy,
W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp. 256–266. Springer, Heidelberg
(1997). doi:10.1007/3-540-69053-0 18

http://dx.doi.org/10.1007/978-3-642-25385-0_4
http://dx.doi.org/10.1007/978-3-642-29011-4_14
http://dx.doi.org/10.1007/978-3-540-74143-5_31
http://eprint.iacr.org/2015/792
http://dx.doi.org/10.1007/978-3-642-36362-7_23
http://dx.doi.org/10.1007/978-3-642-36362-7_23
http://dx.doi.org/10.1007/3-540-45537-X_13
http://dx.doi.org/10.1007/3-540-45537-X_13
http://eprint.iacr.org/
http://eprint.iacr.org/
http://dx.doi.org/10.1007/978-3-642-03356-8_2
http://dx.doi.org/10.1007/978-3-642-36594-2_31
http://dx.doi.org/10.1007/3-540-48910-X_16
http://dx.doi.org/10.1007/978-3-540-85174-5_31
http://eprint.iacr.org/2007/201
http://dx.doi.org/10.1007/3-540-69053-0_18

Towards Non-Black-Box Separations of Public
Key Encryption and One Way Function

Dana Dachman-Soled(B)

University of Maryland, College Park, USA
danadach@ece.umd.edu

Abstract. Separating public key encryption from one way functions is
one of the fundamental goals of complexity-based cryptography. Begin-
ning with the seminal work of Impagliazzo and Rudich (STOC, 1989), a
sequence of works have ruled out certain classes of reductions from pub-
lic key encryption (PKE)—or even key agreement—to one way function.
Unfortunately, known results—so called black-box separations—do not
apply to settings where the construction and/or reduction are allowed
to directly access the code, or circuit, of the one way function. In this
work, we present a meaningful, non-black-box separation between public
key encryption (PKE) and one way function.

Specifically, we introduce the notion of BBN− reductions (similar to
the BBNp reductions of Baecher et al. (ASIACRYPT, 2013)), in which
the construction E accesses the underlying primitive in a black-box way,
but wherein the universal reduction R receives the efficient code/circuit
of the underlying primitive as input and is allowed oracle access to the
adversary Adv. We additionally require that the functions describing the
number of oracle queries made to Adv, and the success probability of R
are independent of the run-time/circuit size of the underlying primitive.
We prove that there is no non-adaptive, BBN− reduction from PKE to
one way function, under the assumption that certain types of strong one
way functions exist. Specifically, we assume that there exists a regular
one way function f such that there is no Arthur-Merlin protocol proving
that z /∈ Range(f), where soundness holds with high probability over “no
instances,” y ∼ f(Un), and Arthur may receive polynomial-sized, non-
uniform advice. This assumption is related to the average-case analogue
of the widely believed assumption coNP �⊆ NP/poly.

1 Introduction

Complexity-based cryptography seeks to formalize generic assumptions, such as
the existence of one way functions or trapdoor functions, and then determine

This work is supported in part by an NSF CAREER Award #CNS-1453045 and by
a Ralph E. Powe Junior Faculty Enhancement Award. This work was done in part
while the author was visiting the Simons Institute for the Theory of Computing,
supported by the Simons Foundation and by the DIMACS/Simons Collaboration in
Cryptography through NSF grant #CNS-1523467.

c© International Association for Cryptologic Research 2016
M. Hirt and A. Smith (Eds.): TCC 2016-B, Part II, LNCS 9986, pp. 169–191, 2016.
DOI: 10.1007/978-3-662-53644-5 7

170 D. Dachman-Soled

which cryptographic primitives can be constructed from these assumptions. For
example, it has been shown that the existence of one way functions implies the
existence of pseudorandom generators [24], pseudorandom functions [20], digital
signatures [26,31] and symmetric key encryption. For other primitives, such as
public key encryption, it is believed that stronger assumptions are necessary.
Indeed, a gap between symmetric key and public key encryption schemes also
emerges in practice: Practical symmetric key encryption schemes, such as AES,
are far more efficient and have proven to be less susceptible to attack, than
practical public key encryption schemes, such as RSA. Understanding whether
this gap in security and efficiency is inherent seems tied to determining whether
public key encryption requires stronger complexity assumptions than one way
functions. Unfortunately, even formalizing this question is difficult: We cannot
hope to prove that one way function does not imply public key encryption in
the logical sense, i.e. OWF �→ PKE, since if public key encryption exists then
the logical statement OWF → PKE is always true. Therefore, one approach has
been to ask whether there exists a black-box reduction of public key encryption
to one way function, wherein the construction and security proof (reduction)
only access the one way function in an input/output manner, but cannot make
use of its code. The answer turns out to be negative as shown by the semi-
nal work of Impagliazzo and Rudich [25] (who proved that even key agreement
cannot be black-box reduced to one way function) and, in fact, their oracle
separation technique was subsequently used to rule out black-box reductions
between various primitives such as collision resistant hash functions to one way
functions [34], oblivious transfer to public key encryption [18] and many more.
But what about non-black-box reductions between these primitives, where the
construction/reduction may use the code of the underlying primitive?

Pass et al. [29] initiated a systematic study of this question, ruling out a
type of non-black-box reduction called a Turing-reductions—where the code of
the underlying primitive is used in an arbitrary manner, but the adversary is used
in a black-box manner only—under the assumption that one way functions with
very strong properties exist. Briefly, languages coupled with an efficiently sam-
plable distribution over the no instances are considered to be in Heur1/polyAM if
there exists an AM (constant-round) protocol that accepts the language, with the
relaxation that soundness only needs to hold with high probability over the no
instances. For efficiently computable f , Pass et al. [29] consider the distributional
language Range(f) = {z : ∀x ∈ {0, 1}∗, f(x) �= z} along with the distribution
f(Un) over the “No” instances. Their assumption is that there exists an efficiently
computable function f such that Range(f) /∈ Heur1/polyAM. Pass et al. [29] jus-
tify their assumption by arguing that it is a natural average-case analogue of
the widely believed assumption coNP �⊆ AM. Based on this assumption, [29] rule
out various Turing reductions including, reductions from one-way permutations
to one-way functions. Additionally, based on other newly introduced complexity
assumptions, Pass et al. [29] prove separations among various other primitives.
However, none of their results address the case of constructing key agreement (or
even public key encryption) from one way function. Separating key agreement

Towards Non-Black-Box Separations of Public Key Encryption 171

from one way function is especially significant, since it implies a separation of
public key cryptography from private key cryptography. Indeed, resolving this
question is one of the fundamental goals of complexity-based cryptography.

In order to make progress towards this goal, we seek to formalize a meaning-
ful, non-black-box separation between one way function and public key encryp-
tion (PKE). To the best of our knowledge, the only known separations to date
between one way function and public key encryption (PKE) are oracle separa-
tions. Such separations instantiate the one way function with a random oracle
and so do not apply to settings where the construction and/or reduction are
allowed to access the code of the one way function. We first define Turing reduc-
tions and discuss why it seems hard to rule out all Turing reductions from
PKE to one-way function based on the assumption that there exist (classes of)
one-way functions f for which Range(f) /∈ Heur1/polyAM. We then introduce
and motivate a new, more restricted type of non-black-box reduction, BBN−

reductions, which are related to the BBNp reductions considered in the taxon-
omy of Baecher et al. [3]. Looking ahead, our main theorem will rule out non-
adaptive, BBN− reductions from public key encryption to one-way functions
based on the assumption that there exists a regular one-way-function f such
that Range(f) /∈ Heur1/polyAM

poly, where AMpoly is the non-uniform analogue
of AM (i.e. A is allowed to receive polynomial-sized, non-uniform advice).

1.1 Turing Reductions and the Difficulty of Ruling Them Out

We begin by recalling the definition of a type of non-black-box reduction known
in the literature as a Turing reduction. The formal definition below will be useful
when we define our new class of non-black-box reductions (BBN− reductions)
and compare to the notion of a Turing reduction.

Turing reductions. A Turing reduction from a primitive Q to a primitive P
is a pair of oracle PPT Turing machines (E,R) such that the following two
properties hold:

Construction. For every efficient implementation f of primitive P, E(f) imple-
ments Q.

Reduction. For every efficient implementation f of P, and every (ineffi-
cient) adversary Adv who breaks E(f) with probability ε = ε(n), on secu-
rity parameter n, we have that R

Adv(1n, 1ε, f) breaks f with probability
1/t(max(n, 1/ε(n))) and R

Adv(1n, 11/ε, f) makes at most v(max(n, 1/ε(n)))
oracle queries to Adv, for polynomials t, v.

Difficulty of ruling out Turing reductions. To rule out Turing reductions
from PKE to one-way function based on the assumption that there exist effi-
ciently computable f for which Range(f) /∈ Heur1/polyAM, one must construct
an AM protocol proving z /∈ Range(f) (i.e. that z is “invalid”) for any efficiently
computable f , assuming there exists a Turing reduction from PKE to one-way
function. The following is the natural way to do this: Let R be the assumed

172 D. Dachman-Soled

Turing reduction from PKE to one-way function. The protocol does the follow-
ing: A emulates the reduction R

Adv(f, z), using the all-powerful M to respond
to queries made to the adversary Adv. Queries made to Adv will be of the form
(pk, e) where pk is a public key and e is a ciphertext and in return, M should
return the message m encrypted in e, along with a proof (e.g. the coins for Gen
and Enc showing that this is a correct decryption). If the emulation of R

Adv

outputs a value x such that f(x) = z, then A rejects; otherwise, A accepts. Intu-
itively, the reason this should work, is that if R is a “good” reduction, then R

should invert w.h.p. for most z ∼ f(Un), whereas if z /∈ Range(f), no matter
what R does, it cannot invert.

Of course, there is a huge hole in the above argument: The reduction R may
send queries to Adv, that “look like” valid transcripts (pk, e), but actually do not
correspond to the output of Gen, Enc on any valid input and randomness. So,
we must allow M to claim to A that (pk, e) is invalid, but to prevent M∗ from
cheating, we must also demand a proof of invalidity. But note that whatever
protocol we use to prove that (pk, e) is invalid should not work for proving
z /∈ Range(f) for general one way functions f , since this would contradict our
assumption. On the other hand, since the AM protocol must work for every
construction of PKE from one-way function, it is not clear how to restrict the
class of functions.

Nevertheless, there is a difference between the two settings: When proving
z /∈ Range(f), M∗ knows the “statement,” i.e., the value of z. On the other hand,
during the proof of the statement z /∈ Range(f), A samples (pk, e) by running
the randomized reduction R(f, z) and outputting its queries to Adv. Moreover,
if M∗ cannot distinguish transcripts (pk, e) sampled using the reduction R, from
(pk, e) sampled honestly using Gen and Enc, then M∗ cannot “cheat.” At first
glance, it seems that, indeed, the two distributions must be close, since if R’s
output is far from the output of Gen and Enc, then Adv can always reject (and
thus is useless for inverting f). However, there is a subtle issue here: For Adv to
be useful for breaking f , we only need that the output queries of R(f, f(Un))
(over random variable f(Un)) is close to the output of Gen and Enc; whereas in
order to force M∗ to behave honestly, we need that the output queries of R(f, z),
with fixed input z, are close to the output of Gen and Enc. Thus, in order to force
honest behavior from M∗, we would need to show that with high probability over
choice of z ∼ f(Un), the queries output by R(f, f(Un)) are distributed closely
to the queries outputted by R(f, z). In other words, the queries made by R(f, z)
should be (close to) independent of z. But this seems highly implausible since in
order for R to invert z, given oracle access to Adv, a successful R should embed z
in the transcripts (pk, e) it submits to Adv, and so the queries to Adv will clearly
depend on z!

Unfortunately, we do not know how to get around this problem for the case
of general Turing reductions. However, for the restricted class of non-adaptive,
BBN− reductions, which we introduce next, we will show how to overcome this
apparent contradiction.

Towards Non-Black-Box Separations of Public Key Encryption 173

BBN− reductions. A BBN− reduction from a primitive Q to a primitive P is a
pair of oracle PPT Turing machines (E,R) such that the following two properties
hold1:

Construction. For every implementation f of primitive P, Ef implements Q.
Reduction. There exist polynomials t(·), v(·) such that: For every effi-

cient implementation f of P, and every (inefficient) adversary Adv who
breaks Ef with probability ε = ε(n), on security parameter n, we
have that R

Adv(1n, 1ε, f) breaks f with probability 1/t(max(n, ε(n))) and
R

Adv(1n, 11/ε, f) makes at most v(max(n, ε(n))) oracle queries to Adv.

We remark that an implementation of a primitive is any specific scheme that
meets the requirements of that primitive (e.g., an implementation of a publickey
encryption scheme provides samplability of key pairs, encryption with the public-
key, and decryption with the private key).

In the above definition, the construction E makes only black-box calls to
f , but the reduction R

Adv(f) receives the description of f as input and so is
non-black-box. Allowing only R access to the code of f already thwarts known
techniques (e.g., oracle separations) for proving impossibility results. We also
require that the functions describing the number of oracle queries made to Adv,
and the success probability of R are independent of the run-time/circuit size of f .

1.2 Necessity of the Restrictions

The notion of BBN− reductions is supposed to capture the setting where the
construction is “black-box” in the underlying primitive, but the proof is “non-
black-box” in the underlying primitive but “black-box” in the adversary. This
is a natural subclass of Turing reductions, in which the construction/reduction
may both be “non-black-box” in the underlying primitive, but the reduction is
“black-box” in the adversary.

However, a careful reader will notice that we placed additional restrictions
when defining BBN− reductions (this was why we called our notion “BBN minus”
in that the polynomials t(·), v(·) are independent of the particular function f and
so specifically, the polynomials t(·), v(·) must be independent of the run-time (i.e.
circuit size) of f . Specifically, consider the following alternative definition, which
we call BBN’:

An Alternative Definition BBN’:

Construction. For every implementation f of primitive P, Ef implements Q.
Reduction. For every efficient implementation f of P, and every (inefficient)

adversary Adv who breaks Ef with probability ε = ε(n), on security parame-
ter n, we have that RAdv(1n, 1ε, f) breaks f with probability 1/t(max(n, ε(n)))

1 We may also consider families of primitives—e.g. families of one-way functions F
with uniform generation algorithms. Here, the generation algorithm is represented
as a Turing Machine and each function f ∈ F is represented as a circuit.

174 D. Dachman-Soled

and R
Adv(1n, 11/ε, f) makes at most v(max(n, 1/ε(n))) oracle queries to Adv,

for polynomials t, v.

In the following, we argue that the more restrictive notion of BBN− is nec-
essary in the following sense: If there exists a Turing reduction from PKE to
OWF, then there also exists a BBN’ reduction from PKE to OWF. Therefore,
ruling out BBN’ reductions from PKE to OWF also implies ruling out Turing
reductions from PKE to OWF. Since our goal is to relax the notion of Turing
reduction in a meaningful way, in order to make progress on this fundamental
question, it is necessary to restrict t(·), v(·) as in the definition of BBN−.

Theorem 1 (Informal). If there exists a Turing reduction from PKE to (uni-
form) OWF, then there also exists a BBN’ reduction from PKE to OWF.

We sketch the proof of the above theorem.

Proof of Theorem 1 (Sketch): Assume there exists a Turing reduction (E,R)
from PKE to one way function, then (using the reduction from one way function
to weak one-way function), there also exists a Turing reduction (E,R) from PKE
to weak-one-way-function, where an efficient adversary can invert the one way
function with probability at most 1 − 1/poly(n), where n is security parameter
(i.e. input/output length). We will use this to build a BBN’ reduction (E′,R′)
from PKE to one way function.2 We first define E′: We completely ignore oracle
f and set E′ := E(funiv), where funiv is the “weak” universal one-way function
described in [19]. Namely, on input Turing machine f ′ and string x, funiv(f ′, x)
outputs f ′||f ′|x|2(x), where f ′|x|2(x) denotes the output of f ′ after running on
input x for |x|2 number of steps. Now, we define the reduction R

′: On input (f, y),
where f has (polynomial) running time nc on inputs of length n, and oracle access
to adversary Adv breaking E′f , R′Adv(f, y) does the following: Define the new
one-way-function f ′ that runs in time ñ2 on inputs of length ñ in the following
way: f ′ parses its input as x||a, where x has length ñ1/c and outputs f(x) = y in
time ñ2. R′ then runs RAdv on inputs (funiv, (f ′, y||a)), where a is a dummy string
of length nc − n. Note that the input/output length R

Adv gets run on is now nc.
Since R is a good Turing reduction, R inverts funiv with 1−1/poly(n) probability,
which means that R will return an element in f−1

univ((f ′, y)) with non-negligible
probability. Using this information R

′ can then recover an element in f−1(y)
with non-negligible probability. However, note that the functions describing the
number of times R runs the adversary Adv and the success probability of R

depend on the input/output length of (funiv, (f ′, y||a)), which is nc and thus
depends on the run time of f . This means that the functions describing the
number of times R

′ runs Adv and the success probability of R′ depends on the
runtime of f .
2 Note that the argument also holds in the case that the Turing reduction works for a

family F of one way functions f with a uniform generation algorithm. Specifically,
if Gen is a uniform, public-coin, generation algorithm that samples a circuit f ∈ F ,
then we can construct a single one way function f̃ that on input randomness r and
input x, first runs Gen(r) to select f , then evaluates y = f(x) and then outputs (r, y).

Towards Non-Black-Box Separations of Public Key Encryption 175

1.3 Our Main Result

We are now ready to state our main theorem:

Theorem 2 (Informal). Under the assumption that there exists a regu-
lar one-way function f such that the distributional language Range(f) /∈
Heur1/polyAM

poly, there is no non-adaptive, BBN− reduction from PKE to one
way function.

In the above, Heur1/polyAM
poly is the same as the class Heur1/polyAM, except

that A is allowed to receive polynomial-sized, non-uniform advice. Note that our
result is restricted to non-adaptive reductions R which make v(max(n, 1/ε(n)))
parallel oracle queries to the adversary Adv.

We conjecture that using techniques of Akavia et al. [2], Theorem 2 can
be proven under the assumption that there exists a regular one-way function
f such that the distributional language Range(f) /∈ Heur1/polyAM (i.e. without
requiring the non-uniform advice). The requirement for regularity of f in the
assumption comes from our use of the randomized iterate (see [21]) whose hard-
ness amplification properties only hold for (nearly) regular functions f . Recently,
the analysis of the randomized iterate was extended to a more general class of
functions called “weakly-regular” functions [37]. We conjecture that our results
hold for this broader class of functions as well. Extending our results to general
one-way functions seems tied to the development of security-preserving hardness
amplification techniques for general one-way functions. We leave these as opens
problem for future work.

1.4 Our Techniques

A key insight of our work is the relationship between our newly introduced notion
of BBN− reductions and the problem of instance compression. Instance compres-
sion [7,11,14,23] is the fundamental complexity-theoretic problem of taking an
instance of a hard problem and compressing it into a smaller, equivalent instance,
of the same or different problem.3 The relationship between BBN− reductions
and instance compression is the following: The reduction R takes as input an
instance (y, c), where y is a random image of c, and submits queries to Adv,
which take the form of transcripts (pk, e) where pk is the public key and e is a
ciphertext. Since the public key encryption scheme uses the underlying one-way
function in a black-box manner, the size of the transcript (pk, e) must be a fixed
polynomial in the security parameter n (i.e. the input-output size of the one-way
function). Thus, as long as R (on input security parameter n) does not query Adv
with security parameter ñ that is too large and depends on the circuit size (i.e.

3 [23] showed that strong instance compression algorithms imply a non-black-box con-
struction of public key encryption from one-way function. It was later shown that,
under standard complexity assumptions, instance compression for certain NP-hard
problems is impossible [11,14], indicating that the approach of [23] is unlikely to
succeed.

176 D. Dachman-Soled

runtime) of c, then it must be the case that the total length of the messages sent
from R to Adv is independent of the size of the circuit c. In order to force R to
have this behavior, we instantiate Adv in such a way that queries submitted by R

with security parameter which is too large are “useless” due to the restrictions of
the BBN− reduction. Now, in the AM protocol proving statement z /∈ Range(f),
instead of using (z, f) itself as the input to R, we construct a new one-way func-
tion instance (c, y) (with the same input-output length) using k = k(n) instances
(x1, y1), . . . , (xk, yk). I.e., (c, y) ← Φ(x1, y1), . . . , (xk, yk), where Φ is some ran-
domized function, each (xi, yi) is an input-output pair of f , and one of the yi’s is
set to the common input z. The requirement on (c, y) ← Φ(x1, y1), . . . , (xk, yk) is
that inverting c (i.e. finding x such that c(x) = y) implies inverting yi (i.e. find-
ing xi such that f(xi) = yi) with probability 1/poly(k). By choosing k = k(n)
to be a sufficiently large polynomial, it is possible to ensure that there is not
enough room for all individual instances y1, . . . , yk to be embedded in the inter-
action with Adv. Thus, the reduction R itself which takes as input (c, y) and
produces queries to Adv can be viewed as an instance compression algorithm.
Using techniques of Drucker [11] (similar to techniques that appeared previ-
ously in [30,33]), we will now be able to circumvent the problem with the naive
attempt to rule out Turing reductions discussed above, which was that with high
probability over z ∼ f(Un), the distribution over R(f, f(Un)) will be far from
the distribution over R(f, z). We elaborate further below on the necessary steps
of our proof and in the discussion below, we point out where each restriction we
place on the class of reductions is being used:

Eliminating security parameter blow-up. We construct an adversary Adv
that has the following property: When the one-way function has input/output
length ñ, Adv flips a coin and returns ⊥ with probability 1 − 1/ñ. Note that
this means that we can replace any reduction R that on security parameter n
makes queries to Adv with extremely large security parameter (i.e. input/output
length) greater than ñ := 2 · t(max(n, 1/ε(n))) · v(max(n, 1/ε(n))), with another
reduction R

′ that simulates all answers of Adv to queries with security parameter
greater than ñ with ⊥ without actually making the query. The probability that
the view of R and R

′ differs is at most v(max(n, 1/ε(n)))·1/(2·t(max(n, 1/ε(n)))·
v(max(n, 1/ε(n)))) and thus R

′ should still succeed with probability at least
1/2t(ε(n)). This means that the length of the total output of R′ to Adv depends
only on n, but not on the size (runtime) of c and so R

′ is indeed a compression
function, when we choose appropriate circuit c. Here we use the restriction that
t(), v(), ε() are all independent of the runtime of c.

Designing a circuit-oblivious adversary. The adversary Adv = (Adv1, Adv2,
Adv3) will have the property that Adv1,Adv3 are efficient algorithms, whereas
Adv2 is inefficient but does not require access to the one-way function c. Looking
ahead, M will be used to implement Adv2 only. The fact that Adv2 does not
require access to c is crucial, since otherwise, the size of the interaction would
be at least |c| and there would be no compression. The techniques of [5,25,35]
are crucial for constructing such Adv. Allowing the construction only black-box
access to the underlying one-way function is necessary for this step in the proof,

Towards Non-Black-Box Separations of Public Key Encryption 177

since Adv2 will essentially emulate the adversary from the black-box separation
of OWF and PKE of [5,25,35]. See Sect. 3.

Applying instance compression techniques. For a fixed f , denote by
Φ((x1, y1), . . . , (xk, yk)) the randomized mapping that derives (c, y) from
(x1, y1), . . . , (xk, yk), where yi = f(xi) and view R ◦ Φ as a compression algo-
rithm. For z ∼ f(Un), we would like to embed (xi, yi) = (x, z), where f(x) = z,
for a random position i ∈ [k]. Call this randomized mapping Φz. Using techniques
of Drucker [11], we will choose Φ so that with high probability over z ∼ f(Un),
the distribution over the output of R◦Φz, denoted T (z), where a fixed z is embed-
ded in a random position and the remaining inputs are random, is statistically
close to the distribution over the output of R ◦ Φ, denoted T when all (xi, yi)
are sampled at random. Here also it is crucial to allow the construction only
black-box access to the underlying one-way function since otherwise the length
of the transcript could depend on the size of c, instead of just the input-output
length. We also use here the fact that R’s success probability is independent of
the size/run-time of c. This is because the closeness in distributions that we are
able to show using techniques of [11], will be significantly larger than 1/|c|. If R
only achieved success probability smaller than 1/|c| to begin with, then switching
the distributions as discussed above would lead to a “useless” R, which might
never succeed in inverting the one-way function.

Designing an AM verifier—first stage. Unfortunately, even in the “no case,”
when z ∼ f(Un), A will not be able to sample directly from T (z) since it will not
know a preimage x such that z = f(x). Instead, A will sample from a simulated
distribution, denoted by ˜T (z). We use techniques of Haitner et al. [21] to show
that ˜T (z) and T (z) are somewhat close.

Designing an AM prover. On input an instance z, where z is not in the image
of f , we must provide an AM prover who uses R to prove that z is not in the
image. This will yield a contradiction to the existence of R. To construct the AM
proof, we use the fact that ˜T (z) and T are somewhat close to allow A to run
a rejection sampling protocol with the help of M. This allows A to essentially
output transcripts to M that are sampled as in the “honest” distribution T .
Using techniques of Bogdanov and Trevisan [8] and Akavia et al. [2], we can then
provide A with non-uniform advice in the form of statistics on the distribution
T , which allows him to force M∗ to respond to queries honestly.

Designing an AM verifier—second stage. The above steps guarantee that
on input (c, y), the reduction R

Adv (with M assisting A in the simulation of Adv)
succeeds in recovering x such that c(x) = y with noticeable probability. However,
we must now show that given x, A can also recover x∗ such that f(x∗) = z with
noticeable probability. Since the circuit c output by Φ is a slight modification of
the k-th randomized iterate, defined by Haitner et al. [21], we can now leverage
hardness amplification properties of the k-th randomized iterate to show that
A recovers x∗ with 1/poly probability for most z ∼ f(Un) We must also be
careful since the argument above guarantees that x can be recovered when the
adversary is stateless. It is possible that a stateful M∗ can respond in such a

178 D. Dachman-Soled

way that A recovers x such that c(x) = y, but cannot recover x∗ such that
f(x∗) = z. The key to ruling out such a case is that, because of the nature of
public key encryption wherein ciphertexts encrypt either a 0 or a 1, for almost
all transcripts output to M∗, there is actually a single “correct” response and
we force M∗ to respond with this “correct” response with very high probability
over the transcripts outputted by the reduction.

1.5 Related Work

In their seminal work, Impagliazzo and Rudich [25] ruled out black-box reduc-
tions from key agreement to one-way function. Their oracle separation technique
was subsequently used to rule out black-box reductions between various primi-
tives such as collision resistant hash functions to one way functions [34], oblivious
transfer to public key encryption [18] and many more. The oracle separation tech-
nique cannot be used to rule out non-black-box reductions, since the underlying
primitive is modeled as an oracle with an exponentially large description size.

The meta-reduction technique (cf. [1,6,10,13,15–17,27,28,32]) has been use-
ful for ruling out Turing reductions—reductions where the construction is arbi-
trary, but the reduction must use the adversary in a black-box manner. Often
these techniques are used to give evidence that a construction of primitive P
along with a security proof of the above form is impossible under “standard
assumptions” (e.g. falsifiable assumptions or non-interactive assumptions). This
differs from our setting of separating one-way function from public key encryp-
tion, since in this case we can construct public key encryption from most well-
studied, concrete assumptions for which we can construct one-way functions
(such as factoring, Diffie-Hellman assumptions, and lattice assumptions).

The power of non-black-box usage of the adversary in security reductions
has been well-studied since the seminal work of Barak [4]. In this case it is
well-known that non-black-box techniques are more powerful than black-box
techniques. However, in our work, we are interested in non-black-box use of the
underlying primitive, as opposed to non-black-box use of the adversary. Several
recent works have dealt with the systematic study of the power of non-black-
box reductions in such settings. These include the aforementioned work of Pass
et al. [29] as well as a work of Brakerski et al. [9], which, among other results,
addresses the question of whether zero knowledge proofs can help to construct
key agreement from one-way function. However, the results of Brakerski et al.
hold only in an oracle setting, where an oracle is added to simulate the power
of a zero-knowledge proof. Baecher et al. [3] gave a taxonomy of black-box and
non-black-box reductions. Indeed, the term BBN that we use is borrowed from
Baecher et al. [3], who used BBN to indicate reductions wherein the construction
uses the primitive in a Black-box manner, the reduction uses the adversary in
a Black-box manner, but the reduction uses the primitive in a Non-black-box
manner. Our notion of BBN− differs from the notion of Baecher et al. [3] in that
we require the reduction R to be universal, but allow R to receive the description
of the code/circuit of f as input. Moreover, we allow the query complexity and

Towards Non-Black-Box Separations of Public Key Encryption 179

success probability of R to depend on the success probability of the adversary
Adv, but require it to be independent of the run-time/circuit size of f .

2 Preliminaries and Background

Notation. We use capital letters for random variables, standard letters for vari-
ables and calligraphic letters for sets. We adopt the convention that when the
same random variable appears multiple times in an expression, all occurrences
refer to the same instantiation. Given a distribution X and an event E, we
denote by X | E the conditional distribution over X, conditioned on the event
E occurring. Let X be a random variable taking values in a finite set U . If S is a
subset of U , then x ∼ S means that x is selected according to the uniform distri-
bution on S. We write Un to denote the random variable distributed uniformly
over {0, 1}n and U[0,1] to denote the continuous random variable distributed uni-
formly over [0, 1]. In general, for a finite set S, we denote by US the uniform
distribution over S.

Two distributions X and Y over U are ε close, denoted Δ(X,Y) ≤ ε, if
1
2

∑

x∈U |PrX [x] − PrY [x]| ≤ ε. For a set S ⊆ U , we denote by PrX [S] :=
∑

x∈S PrX [x], i.e. the weight placed on S by the distribution X.
For functions f : {0, 1}n → {0, 1}n and y ∈ {0, 1}n, we denote by f(Un)

the distribution induced by f operating on Un and we denote by f−1(y) the
set f−1(y) := {x ∈ {0, 1}n : f(x) = y}. For a distribution X with (implicit)
sampling algorithm Samp, that takes n coins, we denote by X(r) for r ∈ {0, 1}n,
the output x of Samp(r). For an element x in the support of X, we denote by
X−1(x) the set of random coins r ∈ {0, 1}n such that X(r) = x.

Let C = {Ck,n} be a parametrized collection of uniformly generated
polynomially-sized circuits, indexed by n ∈ N and k = k(n) = poly(n). For
a fixed (n, k) pair, let Ck,n denote the random variable representing the choice
of circuit ck,n ∼ Ck,n, where Ck,n is a family of one-way functions. We require
that with probability 1, Ck,n implements a one-way function.

Definition 1 (BBN− reduction from PKE to OWF). A BBN− reduction
from public key encryption (PKE) to one-way function (OWF) is a pair of oracle
PPT Turing machines (E,R) with the following properties:

Construction. With all but negligible probability over Ck,n, ECk,n(1n) imple-
ments a PKE scheme.

Reduction. There exist polynomials t(·), v(·) such that: For every (inefficient)
adversary Adv who, with probability ε1 = ε1(n) = 1/poly(n) over ck,n ∼ Ck,n,
breaks Eck,n(1n) with probability ε2 = ε2(n) = 1/poly(n), we have:

Pr
ck,n∼Ck,n

[

Pr

[

R
Adv

(1
n

, 1
1

ε2 , ck,n, ck,n(Un)) ∈ c
−1
k,n(ck,n(Un))

]

≥ 1

t(max(n, 1
ε2(n)))

]

≥ ε1,

and R
Adv(1n, 11/ε, ck,n, y) makes at most v(max(n, 1/ε2(n))) oracle queries to

the adversary Adv.

180 D. Dachman-Soled

Definition 2 (BBN− reduction from PKE to (1 − δ/2)-weak one way
function). A BBN− reduction from public key encryption (PKE) to (1−δ)-weak
one-way function (for q = poly(n)) is a pair of oracle PPT Turing machines
(E,R) with the following properties:

Construction. With all but negligible probability over Ck,n, ECk,n(1n) imple-
ments a PKE scheme.

Reduction. There exists a polynomial v(·) such that: For every (inefficient)
adversary Adv who, with probability ε1 = ε1(n) = 1/poly(n) over ck,n ∼ Ck,n,
breaks Eck,n(1n) with probability ε2 = ε2(n) = 1/poly(n), we have:

Pr
ck,n∼Ck,n

[
Pr
[
R

Adv(1n, 11/ε2 , ck,n, ck,n(Un)) ∈ c−1
k,n(ck,n(Un))

]
≥ 1 − δ/2

]
≥ ε1,

and R
Adv(1n, 11/ε2 , ck,n, y) makes at most v(max(n, 1/ε2(n))) oracle queries

to the adversary Adv.

Definition 3 (Non-adaptive Reductions R). The reduction R = (R1,R2) is
non-adaptive if it interacts with the adversary Adv in the following way:

– On input (1n, 11/ε2 , ck,n, y) and random coins, R1 produces a transcript tr
consisting of v(max(n, 1/ε2(n))) parallel queries to Adv, as well as the inter-
mediate state st.

– On input tr, Adv returns responses d1, . . . , dv(max(n,1/ε2(n))). R2(st, d1, . . . ,
dv(max(n,1/ε2(n)))) returns either x such that ck,n(x) = y or returns ⊥.

For fixed (tr, st) pair, we also denote the output of R2 with respect to an oracle
Adv and a fixed (tr, st) output by R1, by R

Adv(c, y, tr, st; r) or R
Adv(c, y, tr, st)

(depending on whether the coins of R2 are explicit or implicit). Note that in the
above, r denotes the coins used by R2 only (and not the coins of R1 or Adv).

Constant-round interactive protocols with advice. An interactive proto-
col with advice consists of a pair of interactive machines 〈P, V 〉, where P is
a computationally unbounded prover and V is a PPT verifier which receive a
common input x and advice string a. Feigenbaum and Fortnow [12] define the
class AMpoly as the class of languages L for which there exists a constant c, a
polynomial p and an interactive protocol 〈P, V 〉 with advice such that for every
n, there exists an advice string a of length p(n) such that for every x of length n,
on input x and advice a, 〈P, V 〉 produces an output after c rounds of interaction
and, for small constant ε′:

– If x ∈ L, then Pr[〈P, V 〉 accepts x with advice a] ≥ 1 − ε′.
– If x /∈ L, then for every prover P ∗, Pr[〈P ∗, V 〉 accepts x with advice a] ≤ ε′.

It was shown by [12] that AMpoly is equal to NP/poly. Thus, coNP ⊆ AMpoly

implies coNP ⊆ NP/poly, which gives Σ3 = Π3 [36]. We use the terms M,
“prover” and P (resp. A, “verifier” and V) interchangeably.

Towards Non-Black-Box Separations of Public Key Encryption 181

Definition 4. A distributional language (L,D) is in Heur1/polyAM
poly if for

every inverse polynomial q, there exists an AM (i.e., constant-round public-coin)
protocol (P, V) where A receives advice of length polynomial in the input length
such that, for small constant ε′:

– Completeness: If x ∈ L, Pr[〈P, V 〉(x) = 1] ≥ 1 − ε′.
– Soundness: For every n ∈ N and every machine P ∗, with probability

1 − q(n), and x ∈ {0, 1}n sampled from Dn conditioned on x /∈ L satisfies
Pr[〈P ∗, V 〉(x) = 1] ≤ ε′.

Our protocols will use the AM protocol RandSampm (the multi-query variant of
RandSamp) with the following properties as a subroutine. RandSamp has been
used extensively in the literature; the formalization below is due to [22].

Lemma 3. Let w = g(r) for a poly(n)-time computable, randomized function g
and random coins r. Assume w has bit length n̂. Then there exists an AM protocol
RandSampm with an efficient verifier V that gets as input a security parameter
1n, δ′ = 1/poly(n) (as the approximation and soundness parameter), s1, . . . , sm

(as size of f−1(w1), . . . , f−1(wm)) such that for all i ∈ [m], si ∈ (1±λ)|f−1(wi)|
(for λ = poly(1/m, 1/(n̂ · m), δ′) and returns (r1, . . . , rm) such that:

– Completeness: There is a prover strategy (the honest prover) s.t. V aborts
with probability at most δ.

– Soundness: For any prover P ∗ either
• 〈P ∗, V 〉 aborts with probability 1 − δ′ OR
• Δ((Uf−1(w1), . . . , Uf−1(wm)), (r1, . . . , rm))) ≤ δ′ + Pr[〈P ∗, V 〉 aborts].

The following fact will be useful when protocol RandSampm is employed:

Fact 4. Let X,Y be random variables distributed over the set S ∪{⊥} such that
Pr[Y = ⊥] = 0 and Δ(X,Y) ≤ Pr[X = ⊥] + δ′. Then for any event T ⊂ S it
holds that:

Pr[X ∈ T] = Pr
x∼X

[x �= ⊥ ∧ x ∈ T] ≤ Pr[Y ∈ T] + δ′.

and so
Pr

x∼X|(x�=⊥)
[x ∈ T] ≤ (Pr[Y ∈ T] + δ′) · 1

Prx∼X [x �= ⊥]
.

Definition 5 (Enhanced Randomized Iterate). Let f : {0, 1}n → {0, 1}n,
let H be a family of pairwise-independent length-preserving hash functions over
strings of length n and let ̂H be a family of p′ · pq(ñ) + p(ñ)-wise independent
length-preserving hash functions (where p′, pq(ñ), p(ñ) are polynomials in n that
will be defined later) over strings of length n. Define the k-th enhanced random-
ized iterate F : {0, 1}n × Hk−1 × ̂H2 → {0, 1}n as

F (x, h,̂h1,̂h2) = ̂h2(f(hk−1(f(hk−2(· · · (f(̂h1(x))) · · ·))))).
We denote by Hj (resp. Ĥb, b ∈ {1, 2}) random variables uniformly distributed
over H (resp. Ĥ).

182 D. Dachman-Soled

Let ck,n = ck,n(·, h = h1, . . . , hk−1,̂h1,̂h2) denote the circuit which has
h,̂h1,̂h2 hardwired and on input x computes y = F (x, h,̂h1,̂h2). Let Ck,n denote
the set of circuits ck,n obtained when taking h1, . . . , hk−1 ∈ H,̂h1,̂h2 ∈ Ĥ. Let
Ck,n be the random variable defined as Ck,n = ck,n(·,H1, . . . , Hk−1, Ĥb, Ĥb).

Lemma 5 [21]. For i ∈ [k], let ci
k,n = ci

k,n(·, h = h1, . . . , hi−1,̂h1) denote the
circuit which has h,̂h1 hardwired and on input x computes yi = Y

i(ck,n, x) =
F i(x, h,̂h1). Let the random variable Ci

k,n denote the distribution over circuits
ci := ci

k,n as above.
Then for any set L ⊆ {0, 1}n × Ci

k,n with

Pr[(Ci
k,n(Un), Ci

k,n) ∈ L] ≥ δ,

it holds that

Pr[(f(Un), Ci
k,n) ∈ L] ≥ δ2

i
.

We now describe a transformation (folklore, formalized by Haitner et al. [21]),
of an arbitrary one-way function into a length-preserving one-way function.

Lemma 6. Let f : {0, 1}n → {0, 1}�(n) be a (T = T (n), ε = ε(n))-OWF and
let H be an efficient family of 2−2n-almost pairwise-independent hash functions
from {0, 1}�(n) to {0, 1}2n. We define f as

f(xa, xb, h) = (h(f(xa)), h),

where xa, xb ∈ {0, 1}n and h ∈ H. Then f is a length-preserving (T − nO(1), ε +
2−n+1)-one-way function.

If the original function f is regular, then the output function f is nearly
regular: There is some fixed s such that with all but negligible probability over
y ∼ f(U2n,H), the number of pre-images of y is exactly s. It turns out that
nearly regular functions are sufficient for all of our results.

3 The Circuit-Oblivious Adversary Adv

Let Ef = (Genf ,Encf ,Decf) be a public key encryption scheme making ora-
cle calls to one-way function f . Assume polynomial pq(n) is an upperbound on
the total number of queries made by Genf , Encf , Decf on input security para-
meter n and message of length n. We consider the following two distributions
corresponding to sampling the function f from two different distributions.

In the following, Fn denotes the set of all functions from {0, 1}n → {0, 1}n.
Note that when c ∼ Ck,n is fixed, we write Ec to denote the distribution EC ,
with a fixed oracle c (whereas C denotes a random variable).

We next describe a modification (folklore and formally proved in [35]) of the
well-known Eve algorithm, which is tailored for breaking public key encryption

Towards Non-Black-Box Separations of Public Key Encryption 183

in the random oracle model. The advantage of this Eve = (Eve1,Eve2,Eve3)
algorithm is that Eve1,Eve3 are polynomial-time and Eve2 is inefficient but does
not require oracle access to O.

Eve runs on transcripts of the form (pk, e), where pk is the public key and
e is the ciphertext. Eve’s goal is to correctly decrypt e. Sotakova [35] proves the
existence of an Eve with the following properties:

Eve1 is an efficient oracle algorithm which takes input pk and outputs QEve:

– Initialize QEve := ∅. Choose p̂ random strings r1, . . . , rp̂ and messages
m1, . . . ,mp̂.

– For 1 ≤ i ≤ p̂, run EncO
pk(m

i; ri). Add all queries and responses to QEve. Let
p(n) = poly(n) be the total number of queries made. p(·) depends only on
pq(n) and the desired success probability 1 − δ/8.

Eve2 takes (pk,QEve) as input and outputs [(Ii, ri)]i∈[p′(n)] (note that Eve2 does
not have oracle access):

– Return p′ number of elements {(I1, r1), . . . , (Ip′ , rp′)} chosen uniformly at
random from the set S(pk,QEve) := {(I, r) | GenI(r) = (∗,pk) ∧ EveI

1 (pk) =
QEve ∧ |I| = pq(n) + p(n)}.4

Eve3 is an efficient oracle algorithm which takes [(Ii, ri, e)]i∈[p′] as input and
outputs a bit d.

– For i ∈ [p′], run GenIi(ri) to generate a (ski,pki)-pair and compute ˜di :=
DecIi,O

sk (e). By this notation we mean that whenever Dec queries the oracle,
if the query is in I, respond according to I. Otherwise, respond according to
O.

– Given the resulting set of decryptions {˜d1, . . . , ˜dp′}, let num0 denote the num-
ber of decryptions equaling 0 and num1 denote the number of decryptions
equaling 1. Let b = 0 if num0 > num1 and b = 1 otherwise.

– If V := num0/p′ ∈ [3/8 + (− 1)/4p′′, 3/8 + (+ 1)/4p′′], return d := 0.
Otherwise, return d := b.

We define parameters p′, p′′, 	 in the full version. The exact setting will depend
on properties of the given BBN− reduction R.

We next turn to proving success of the adversary.
4 I is an ordered set of pq(n) + p(n) length n strings. Whenever Gen or Eve1 make a

query, if the query has not been made before, the next string is used to respond to
the query. If the query has previously been made, the same string is returned.

184 D. Dachman-Soled

Lemma 7 ([35], restated). For (O,m, sk,pk, e) ∼ EO, EveO(pk, e) outputs m
with probability at least 1 − δ/8.

The basic intuition is the following: Given the first message pk sent from
receiver to the sender, w.h.p, the set QEve will contain all queries made by the
sender when computing the second message (the ciphertext e) with probability
greater than some threshold 1/pth(n). Now, we sample a view for the receiver
consistent with (pk,QEve), which will contain a secret key sk and use this secret
key sk to decrypt the real ciphertext e sent by the real sender. Loosely speak-
ing, sk should only decrypt e “incorrectly” if there is a query q to the random
oracle that is answered inconsistently in the sampled receiver’s view and the
real sender’s view. However, note that any individual query q that is made in
the sampled receiver’s view but is not contained in QEve, is made by the real
sender with probability less than 1/pth(n). Now, since we choose pth far larger
than the number of queries contained in the receiver’s view, it is unlikely that
there are any queries in the sampled receiver’s view that were also made by the
sender, but do not appear in QEve. Thus, w.h.p, there are no queries q answered
inconsistently in the sampled receiver’s view and real sender’s view and thus
with high probability, the sampled sk decrypts e correctly.
We now describe the actual adversary Adv = (Adv1,Adv2,Adv3):

– Adv1: On input pk, and oracle access to c, Adv1 computes QEve ← Evec
1(pk),

where Eve’s queries are answered according to c (instead of the random oracle
O). Adv1 outputs QEve.

– Adv2: On input (pk,QEve), Adv2 runs Eve2(pk,QEve) and outputs
[(Ii, ri)]i∈[p′(n)].

– Adv3: On input [(Ii, ri, e)]i∈[p′(n)], Adv3 runs Evec
3([(Ii, ri, e)]i∈[p′(n)]) where

Eve’s queries are answered according to c (instead of the random oracle O).
Adv3 flips a coin and outputs ⊥ with probability 1 − 1/n. With probability
1/n, Adv outputs the same bit d that is outputted by Evec

3.

We purposely “weaken” the adversary, by defining Adv such that it outputs
⊥ with probability 1 − 1/n—where n is the input/output length of the one-
way function—in order to argue that queries made by the reduction, R, to Adv
with security parameter n set too large are “useless.” See Sect. 1.4 for further
discussion. We next turn to proving success of the adversary:

Lemma 8. For (c,m, sk,pk, e) ∼ EC , d computed by Advc(pk, e) is equal to m
with probability at least 1 − δ/4.

Intuitively, Lemma8 holds since Advc makes at most p(n)+ p′ · pq(n) queries
and so since ĥ1, ĥ2 are p(n)+p′·pq(n)-wise independent, the view of the adversary
is nearly the same when interacting with a random oracle O or with the randomly
sampled circuit C. For the full proof, see the full version.

Now, using Markov’s inequality and the fact that Adv3 tosses a coin inde-
pendently of all its other coins to decide whether to output ⊥ at the final stage
with probability 1 − 1/n, we have that:

Towards Non-Black-Box Separations of Public Key Encryption 185

Corollary 9. With probability ε1 := 1 − δ/2 over choice of c ∼ C, we have that
for (m, sk,pk, e) ∼ Ec, the output of Advc(pk, e) is equal to m with probability is
at least ε2 := δ/4n.

4 The Mapping Φ

Instead of sampling c ∼ Ck,n, x ∼ Un, and outputting (c, x, y :=
c(x)), we can alternatively sample (x1, y1), . . . , (xk, yk) ∼ (Un, f(Un)) and
r ∼ {0, 1}∗, set (x, c, y) := Φ((x1, y1), . . . , (xk, yk); r), for Φ defined below:

It is straightforward to see that the two sampling methods described above
induce the same distribution. We additionally introduce the notation Φ2 to
denote the second and third coordinates of the output of Φ (i.e. (c, y)).

5 Useful Distributions

For public key encryption scheme EO = (GenO,EncO,DecO), relative to random
oracle O, the following distribution (Fig. 1) corresponds to sampling a partial
random oracle and running Gen.

Fig. 1. The distribution PKn.

We assume that security parameter n can be determined given the gener-
ated pk. We slightly abuse notation and for a fixed (pk,QEve), we denote by
PK−1(pk,QEve) the set of pairs (I, r) that yield output (pk,QEve) when sam-
pling from PKn, for appropriate n.

For each of the following distributions χ, we refer by χ2 to the marginal
distribution over the final coordinate, the transcript ˜tr. For marginal distrib-
utions (e.g. the marginal distribution over the second, third and sixth coordi-
nates) we use full-length tuples with ∗ symbols in the “don’t care” positions (e.g.

186 D. Dachman-Soled

Fig. 2. The distribution T .

Fig. 3. The distribution T̃ .

(∗, c, y, ∗, ∗, i, ∗, ∗) ∼ T or PrT [(∗, c, y, ∗, ∗, i, ∗, ∗)]). To denote the distribution χ,
conditioned on one of the tuple coordinates fixed to some value v, we write χ | v,
where it is understood from context which coordinate is fixed (e.g. T | c means
that the second coordinate is fixed to constant c). Note that if χ is a distribution
over tuples with t number of coordinates, then χ | v is a distribution over tuples
with t − 1 number of coordinates.

Henceforth, we fix a particular BBN− reduction R with parameters (v(·), t(·))
and use the particular adversary Adv with success probability (ε1 = 1−δ/4, ε2 =
δ) defined in Sect. 3. We denote by v′(·), t′(·) the following polynomials: v′(n) :=
v(max(n, 1/ε2(n)) and t′(n) := t(max(n, 1/ε2(n))).

We next define the distributions T and ˜T in Figs. 2 and 3.
Let numT be the number of random coins to sample from T . Let NT := 2numT .

We additionally define the distribution T i∗
(resp. ˜T i∗

) for i∗ ∈ [k] as the
distribution T (resp. ˜T), conditioned on i := i∗, and the distribution T (z)
(resp. ˜T (z)) for z ∈ Range(f) as the distribution T (resp. ˜T), conditioned on
yi := z. Even when z /∈ Range(f), we still use the notation ˜T (z). This refers to
a distribution which is sampled with the same sampling algorithm as the one
used for ˜T , except yi := z is always fixed to a constant value (not necessarily in
the range of f). Let numT̃ be the number of random coins to sample from T (z).
Let NT̃ := 2numT̃ .

Towards Non-Black-Box Separations of Public Key Encryption 187

6 The AM Protocol

We begin with a high-level overview of the protocol: Recall that we fix a par-
ticular BBN− reduction R with parameters (v(·), t(·)) and use the particular
adversary Adv with success probability (ε1 = 1 − δ/4, ε2 = δ) defined in
Sect. 3. Additionally, recall that we denote by v′(·), t′(·) the following polyno-
mials: v′(n) := v(max(n, 1/ε2(n)) and t′(n) := t(max(n, 1/ε2(n))) and that we
assume WLOG (see discussion in Sect. 1.4) that R never makes calls to Adv with
security parameter ñ > 2 · t′(n) · v′(n). On input z, A constructs many (c, y)
pairs and runs many copies of the BBN− reduction R

Adv(c, y), using Merlin to
help simulate the adversary Adv.

Our AM protocol uses the HidProt and CBC protocols of Akavia et al. [2]
(see also the full version for more details.) and the RandSamp protocol (See
Lemma 3) as subroutines. Parameters ˜δ := (ε′)2/2, λ := 1/k1/11 are both of
order 1/poly(n). For ˜tr sampled from ˜T (z)2, HidProt will be used to determine
the size of the sets ˜T (z)−1

2 (˜tr) and T −1
2 (˜tr). For (pkw,Qw

Eve) ∈ ˜tr, CBC (along
with the non-uniform advice provided to A) will be used to determine the size α
of the set PK−1(pkw,Qw

Eve). Given α, RandSamp will be used to sample preim-
ages from the set PK−1(pkw,Qw

Eve), thus simulating the adversary’s (Adv2’s)
response. Note that soundness of HidProt and CBC only hold under specific con-
ditions (see the full version for more details.). Indeed, a key technical part of
the proof is showing that the necessary conditions hold. The purpose of the
testing for goodness subroutine is the following: We show in the analysis that
w.h.p when z ∼ f(Un), the distribution ˜T (z) is “good,” i.e. somewhat close to
the distribution T , so the rejection sampling procedure can be employed. On
the other hand, if ˜T (z) is not “good” (i.e. very far from T), then A can safely
output ACCEPT. Our AM protocol is presented in Fig. 4. We next state our main
technical result.

Theorem 10. Assume that there exists a non-adaptive, BBN− reduction (E,R)
from PKE to (1 − δ/2)-weak one way function. Then for any efficiently com-
putable, length-preserving, (nearly) regular function f , the above non-uniform
AM protocol Πf has completeness 1 − ε′ and soundness 1 − ε′ (for small con-
stant ε′), for the distributional language Range(f), where soundness holds with
probability 1 − 7δ over z ∼ f(Un).

We note that if f is not length-preserving, it can be made length-
preserving, while (nearly) preserving regularity, via the transformation described
in Lemma 6.

To rule out non-adaptive, BBN− reductions from PKE to one way function,
recall that there is a non-adaptive, black-box reduction from OWF to (1− δ/2)-
weak OWF, where the parameters of the reduction depend only on the input-
output size and on δ. but not on the description size of the function. Therefore,
if there exists a non-adaptive BBN− reduction (E,R) from PKE to OWF, then
for every polynomial q there also exists a non-adaptive, BBN− reduction (E,R)
from PKE to (1 − δ/2)-weak OWF, where δ = 1/7q. By Theorem 10 (and the

188 D. Dachman-Soled

Fig. 4. AM protocol for proving that z is not in the image of f .

Towards Non-Black-Box Separations of Public Key Encryption 189

extension to non-length-preserving f discussed above) this means that that for
every efficiently computable, regular function f and every polynomial q, there
exists a non-uniform AM protocol for proving z /∈ Range(f), where soundness
holds with probability 1 − 7δ = 1 − 1/q over z ∈ f(Un). This contradicts our
assumption that there exists an efficiently computable, (nearly) regular function
f such that Range(f) /∈ Heur1/polyAM

poly.

Theorem 11. Under the assumption that there exists an efficiently computable,
regular function f such that Range(f) /∈ Heur1/polyAM

poly, there is no non-
adaptive, BBN− reduction from PKE to one way function.

It remains to prove Theorem 10, which we defer to the full version.

Acknowledgements. We thank Tal Malkin for insightful discussions on the notion of
BBN− reductions and the anonymous reviewers for TCC B-2016 for their many helpful
comments.

References

1. Abe, M., Groth, J., Ohkubo, M.: Separating short structure-preserving signatures
from non-interactive assumptions. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT
2011. LNCS, vol. 7073, pp. 628–646. Springer, Heidelberg (2011). doi:10.1007/
978-3-642-25385-0 34

2. Akavia, A., Goldreich, O., Goldwasser, S., Moshkovitz, D.: On basing one-way
functions on NP-hardness. In: Kleinberg, J.M. (ed.) 38th Annual ACM Symposium
on Theory of Computing, pp. 701–710. ACM Press, May 2006

3. Baecher, P., Brzuska, C., Fischlin, M.: Notions of black-box reductions, revisited.
In: Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013. LNCS, vol. 8269, pp. 296–315.
Springer, Heidelberg (2013). doi:10.1007/978-3-642-42033-7 16

4. Barak, B.: How to go beyond the black-box simulation barrier. In: 42nd Annual
Symposium on Foundations of Computer Science, pp. 106–115. IEEE Computer
Society Press, October 2001

5. Barak, B., Mahmoody-Ghidary, M.: Merkle puzzles are optimal — an O(n2)-query
attack on any key exchange from a random Oracle. In: Halevi, S. (ed.) CRYPTO
2009. LNCS, vol. 5677, pp. 374–390. Springer, Heidelberg (2009). doi:10.1007/
978-3-642-03356-8 22

6. Bitansky, N., Dachman-Soled, D., Garg, S., Jain, A., Kalai, Y.T., López-Alt, A.,
Wichs, D.: Why “Fiat-Shamir for Proofs” lacks a proof. In: Sahai, A. (ed.) TCC
2013. LNCS, vol. 7785, pp. 182–201. Springer, Heidelberg (2013). doi:10.1007/
978-3-642-36594-2 11

7. Bodlaender, H.L., Downey, R.G., Fellows, M.R., Hermelin, D.: On problems with-
out polynomial kernels. J. Comput. Syst. Sci. 75(8), 423–434 (2009)

8. Bogdanov, A., Trevisan, L.: On worst-case to average-case reductions for NP prob-
lems. In: 44th Annual Symposium on Foundations of Computer Science, pp. 308–
317. IEEE Computer Society Press, October 2003

9. Brakerski, Z., Katz, J., Segev, G., Yerukhimovich, A.: Limits on the power of
zero-knowledge proofs in cryptographic constructions. In: Ishai, Y. (ed.) TCC
2011. LNCS, vol. 6597, pp. 559–578. Springer, Heidelberg (2011). doi:10.1007/
978-3-642-19571-6 34

http://dx.doi.org/10.1007/978-3-642-25385-0_34
http://dx.doi.org/10.1007/978-3-642-25385-0_34
http://dx.doi.org/10.1007/978-3-642-42033-7_16
http://dx.doi.org/10.1007/978-3-642-03356-8_22
http://dx.doi.org/10.1007/978-3-642-03356-8_22
http://dx.doi.org/10.1007/978-3-642-36594-2_11
http://dx.doi.org/10.1007/978-3-642-36594-2_11
http://dx.doi.org/10.1007/978-3-642-19571-6_34
http://dx.doi.org/10.1007/978-3-642-19571-6_34

190 D. Dachman-Soled

10. Coron, J.-S.: Optimal security proofs for PSS and other signature schemes. In:
Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 272–287. Springer,
Heidelberg (2002). doi:10.1007/3-540-46035-7 18

11. Drucker, A.: New limits to classical and quantum instance compression. In: 53rd
Annual Symposium on Foundations of Computer Science, pp. 609–618. IEEE Com-
puter Society Press, October 2012

12. Feigenbaum, J., Fortnow, L.: Random-self-reducibility of complete sets. SIAM J.
Comput. 22(5), 994–1005 (1993)

13. Fischlin, M., Schröder, D.: On the impossibility of three-move blind signature
schemes. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 197–215.
Springer, Heidelberg (2010). doi:10.1007/978-3-642-13190-5 10

14. Fortnow, L., Santhanam, R.: Infeasibility of instance compression and succinct
PCPs for NP. In: Ladner, R.E., Dwork, C. (eds.) 40th Annual ACM Symposium
on Theory of Computing, pp. 133–142. ACM Press, May 2008

15. Fuchsbauer, G., Konstantinov, M., Pietrzak, K., Rao, V.: Adaptive security of
constrained PRFs. In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014. LNCS, vol.
8874, pp. 82–101. Springer, Heidelberg (2014). doi:10.1007/978-3-662-45608-8 5

16. Garg, S., Bhaskar, R., Lokam, S.V.: Improved bounds on security reductions for
discrete log based signatures. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol.
5157, pp. 93–107. Springer, Heidelberg (2008). doi:10.1007/978-3-540-85174-5 6

17. Gentry, C., Wichs, C.: Separating succinct non-interactive arguments from all fal-
sifiable assumptions. In: Fortnow, L., Vadhan, S.P. (eds.) 43rd Annual ACM Sym-
posium on Theory of Computing, pp. 99–108. ACM Press, June 2011

18. Gertner, Y., Kannan, S., Malkin, T., Reingold, O., Viswanathan, M.: The rela-
tionship between public key encryption and oblivious transfer. In: 41st Annual
Symposium on Foundations of Computer Science, pp. 325–335. IEEE Computer
Society Press, November 2000

19. Goldreich, O.: Foundations of Cryptography: Basic Tools, vol. 1. Cambridge Uni-
versity Press, Cambridge (2001)

20. Goldreich, O., Goldwasser, S., Micali, S.: On the cryptographic applications of
random functions. In: Blakley, G.R., Chaum, D. (eds.) CRYPTO 1984. LNCS, vol.
196, pp. 276–288. Springer, Heidelberg (1985). doi:10.1007/3-540-39568-7 22

21. Haitner, I., Harnik, D., Reingold, O.: On the power of the randomized iterate. In:
Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 22–40. Springer, Heidelberg
(2006). doi:10.1007/11818175 2

22. Haitner, I., Mahmoody, M., Xiao, D.: A new sampling protocol and applications to
basing cryptographic primitives on the hardness of NP. In: Proceedings of the 25th
Annual IEEE Conference on Computational Complexity, CCC 2010, 9–12 June
2010, Cambridge, Massachusetts, pp. 76–87 (2010)

23. Harnik, D., Naor, M.: On the compressibility of NP instances and cryptographic
applications. In: 47th Annual Symposium on Foundations of Computer Science,
pp. 719–728. IEEE Computer Society Press, October 2006

24. H̊astad, J., Impagliazzo, R., Levin, L.A., Luby, M.: A pseudorandom generator
from any one-way function. SIAM J. Comput. 28(4), 1364–1396 (1999)

25. Impagliazzo, R., Rudich, S.: Limits on the provable consequences of one-way per-
mutations. In: 21st Annual ACM Symposium on Theory of Computing, pp. 44–61.
ACM Press, May 1989

26. Lamport, L.: Constructing digital signatures from a one-way function. Technical
report SRI-CSL-98, SRI International Computer Science Laboratory, October 1979

http://dx.doi.org/10.1007/3-540-46035-7_18
http://dx.doi.org/10.1007/978-3-642-13190-5_10
http://dx.doi.org/10.1007/978-3-662-45608-8_5
http://dx.doi.org/10.1007/978-3-540-85174-5_6
http://dx.doi.org/10.1007/3-540-39568-7_22
http://dx.doi.org/10.1007/11818175_2

Towards Non-Black-Box Separations of Public Key Encryption 191

27. Paillier, P., Vergnaud, D.: Discrete-log-based signatures may not be equiva-
lent to discrete log. In: Roy, B. (ed.) ASIACRYPT 2005. LNCS, vol. 3788, pp.
1–20. Springer, Heidelberg (2005). doi:10.1007/11593447 1

28. Pass, R.: Limits of provable security from standard assumptions. In: Fortnow, L.,
Vadhan, S.P. (eds.) 43rd Annual ACM Symposium on Theory of Computing, pp.
109–118. ACM Press, June 2011

29. Pass, R., Tseng, W.-L.D., Venkitasubramaniam, M.: Towards non-black-box lower
bounds in cryptography. In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 579–
596. Springer, Heidelberg (2011). doi:10.1007/978-3-642-19571-6 35

30. Raz, R.: A parallel repetition theorem. SIAM J. Comput. 27(3), 763–803 (1998)
31. Rompel, J.: One-way functions are necessary and sufficient for secure signatures.

In: 22nd Annual ACM Symposium on Theory of Computing, pp. 387–394. ACM
Press, May 1990

32. Seurin, Y.: On the exact security of Schnorr-Type signatures in the random Oracle
model. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol.
7237, pp. 554–571. Springer, Heidelberg (2012). doi:10.1007/978-3-642-29011-4 33

33. Shaltiel, R.: Derandomized parallel repetition theorems for free games. In: Pro-
ceedings of the 25th Annual IEEE Conference on Computational Complexity, CCC
2010, 9–12 June 2010, Cambridge, Massachusetts, pp. 28–37 (2010)

34. Simon, D.R.: Finding collisions on a one-way street: can secure hash functions be
based on general assumptions? In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS,
vol. 1403, pp. 334–345. Springer, Heidelberg (1998). doi:10.1007/BFb0054137

35. Sotakova, M.: Breaking one-round key-agreement protocols in the random Oracle
model. Cryptology ePrint Archive, Report 2008/053 (2008). http://eprint.iacr.org/
2008/053

36. Yap, C.-K.: Some consequences of non-uniform conditions on uniform classes. The-
oret. Comput. Sci. 26, 287–300 (1983)

37. Yu, Y., Gu, D., Li, X., Weng, J.: The randomized iterate, revisited - almost linear
seed length PRGs from a broader class of one-way functions. In: Dodis, Y., Nielsen,
J.B. (eds.) TCC 2015. LNCS, vol. 9014, pp. 7–35. Springer, Heidelberg (2015).
doi:10.1007/978-3-662-46494-6 2

http://dx.doi.org/10.1007/11593447_1
http://dx.doi.org/10.1007/978-3-642-19571-6_35
http://dx.doi.org/10.1007/978-3-642-29011-4_33
http://dx.doi.org/10.1007/BFb0054137
http://eprint.iacr.org/2008/053
http://eprint.iacr.org/2008/053
http://dx.doi.org/10.1007/978-3-662-46494-6_2

Post-Quantum Security of the Fujisaki-Okamoto
and OAEP Transforms

Ehsan Ebrahimi Targhi(B) and Dominique Unruh

University of Tartu, Tartu, Estonia
{ehsan.ebrahimi.targhi,unruh}@ut.ee

Abstract. In this paper, we present a hybrid encryption scheme that
is chosen ciphertext secure in the quantum random oracle model. Our
scheme is a combination of an asymmetric and a symmetric encryption
scheme that are secure in a weak sense. It is a slight modification of the
Fujisaki-Okamoto transform that is secure against classical adversaries.
In addition, we modify the OAEP-cryptosystem and prove its security
in the quantum random oracle model based on the existence of a partial-
domain one-way injective function secure against quantum adversaries.

Keywords: Quantum · Random oracle · Indistinguishability against
chosen ciphertext attacks

1 Introduction

The interest in verifying the security of cryptosystems in the presence of a quan-
tum adversary increased after the celebrated paper of Shor [10]. Shor showed
that any cryptosystem based on the factoring problem and the discrete loga-
rithm problem is breakable in the presence of a quantum adversary. Also, many
efficient classical cryptosystems are proved to be secure in the random oracle
model [3] and many of them still lack an equivalent proof in the quantum set-
ting. Therefore, even if we find a cryptographic primitive immune to quantum
attacks, to construct an efficient cryptosystem secure against quantum adver-
saries, we may have to consider its security in the quantum random oracle model
in which the adversary has quantum access to the random oracle.

Fujisaki and Okamoto [8] constructed a hybrid encryption scheme that is
secure against chosen ciphertext attacks (IND-CCA) in the random oracle model.
Their scheme is a combination of a symmetric and an asymmetric encryption
scheme using two hash functions where the symmetric and asymmetric encryp-
tion schemes are secure in a very weak sense. However, their proof of security
works against only classical adversaries and it is not clear how one can fix their
proof in the quantum setting. In the following, we mention the parts of the
classical proof that may not work in the quantum setting.

(a) The classical proof uses the list of all queries made to the random oracles to
simulate the decryption algorithm without possessing the secret key of the

c© International Association for Cryptologic Research 2016
M. Hirt and A. Smith (Eds.): TCC 2016-B, Part II, LNCS 9986, pp. 192–216, 2016.
DOI: 10.1007/978-3-662-53644-5 8

Post-Quantum Security of the Fujisaki-Okamoto and OAEP Transforms 193

asymmetric encryption scheme. In the quantum case, where the adversary
has quantum access to the random oracles and submits queries in superpo-
sitions, such a list is not a well-defined concept.

(b) Also, the classical proof uses the fact that using a random value h∗ instead
of a given random oracle output H(x) cannot be noticed by the adversary,
provided that the adversary never queries x from the random oracle. In
the quantum setting, the adversary may in a certain sense always query all
values x by querying the random oracle on the superposition

∑

x |x〉 of all
values. The situation gets especially difficult since the value x depends in
turn on messages produced by the adversary.

(c) Finally, the classical proof uses the fact that for a randomized encryption
scheme, it is hard to find values x �= x′ such that encrypting a message m
with randomness H(x) or H(x′) leads to the same ciphertext. (Note: this
does not follow directly from the collision resistance of the random oracle H.)

Consequently, the quantum security of the scheme is left as an open problem by
Boneh et al. [6] and Zhandry [17].

We show how to circumvent those problems. Problem (c) is solved by using a
recent result showing the collision resistance of random functions with outputs
sampled from a non-uniform distribution [12]. Problem (b) is solved by the
“one-way to hiding” lemmas from [13,14] which gives us a tool for handling
the reprogramming of the random oracle. Problem (a) remains. In fact, we do
not have a proof for the unmodified Fujisaki-Okamoto scheme. However, we show
how to solve the problem by adding one more hash value H ′(δ) to the ciphertext.
Although in general, it may not be well-defined in the quantum setting what the
list of queries to the random oracle is, we can show it to be well-defined in this
case, using the fact that range and domain of H ′ have the same size. (A similar
idea was used by [15] for the construction of quantum-secure non-interactive
zero-knowledge proofs.)

Bellare and Rogaway [4] proposed another method, named OAEP, for convert-
ing a trapdoor permutation into an encryption scheme. It was believed that the
OAEP-cryptosystem is provable secure in the random oracle model based on one-
wayness of trapdoor permutation, but Shoup [11] showed it is an unjustified belief.
Later, Fujisaki et al. [9] proved IND-CCA security of the OAEP-cryptosystem
based on a stronger assumption, namely, partial-domain one-wayness of the
underlying permutation. As pointed out by [6], the proof of OAEP security uses
preimage awareness (i.e., that the preimage of a random oracle query is well-
defined and known to the algorithm making it), a technique that does not seem
to work in the quantum setting. This problem is the same as problem (a) above,
we show that a similar approach works also in the case of OAEP.

Our Contribution. We modify the hybrid encryption scheme presented by
Fujisaki and Okamoto using an extra hash function H ′. We prove that our scheme
is indistinguishable secure against chosen ciphertext attacks in the quantum

194 E.E. Targhi and D. Unruh

random oracle model. For a message m, the encryption algorithm of our scheme,
Enchy

pk , works as follows:

Enchy
pk(m; δ) =

(

Encasy
pk

(

δ;H
(

δ‖Encsy
G(δ)(m)

)

)

, Encsy
G(δ)(m), H ′(δ)

)

where pk and sk are the public key and the secret key of the asymmetric encryp-
tion scheme. Encasy

pk and Encsy
sk are the asymmetric and symmetric encryption

algorithms respectively and δ is a random element from the message space of the
asymmetric encryption scheme. H, G and H ′ are random oracles. The asymmet-
ric encryption scheme is one-way secure, that is, the adversary can not decrypt
the encryption of a random message. The symmetric encryption scheme is one-
time secure, that is, the adversary can not distinguish between the encryptions
of two messages when a fresh key is used for every encryption. In addition, the
asymmetric encryption scheme is well-spread, i.e. any message can lead to at
least 2ω(log n) potential ciphertexts.

Note that our modification increases the ciphertext size by only a single hash
value H ′(δ) and is computationally inexpensive.

As already mentioned above, the added hash value H ′(δ) solves problem (a)
because given H ′(δ), it is well-defined what δ is. This is because H ′ is chosen
to have the same domain and range size, and hence is indistinguishable from a
permutation [16]. However, in the formal proof, we do not directly use that fact,
instead our proof goes along the following lines: We replace H ′ with a random
polynomial to force the adversary to submit the input that has been used to
obtain the ciphertext. This can be done due to a result by Zhandry [17] that
shows a random oracle is indistinguishable from a 2q-wise independent function
where q is the number of queries that the adversary makes to the oracle function.
In addition, we use the “one way to hiding” lemmas presented in [13,14]. As soon
H ′ is implemented as a polynomial, we can use the fact that roots of a polynomial
can be found in polynomial-time; this allows us to efficiently get all candidates
for δ given H ′(δ).

Also, we modify OAEP-cryptosystem and prove its security in the quantum
random oracle model based on the existence of a partial-domain one-way trap-
door injective function secure against quantum adversaries. This will remain
theoretical until a candidate for a quantum secure partial-domain one-way trap-
door injective function is discovered. The proof follows similar lines as that of
the Fujisaki-Okamoto transform.

A note on superposition queries. Following [6], we use the quantum random
oracle model in which the adversary can make queries to the random oracle in
superposition (that is, given a superposition of inputs, he can get a superposi-
tion of output values). This is necessary since a quantum adversary attacking a
scheme based on a real hash function is necessarily able to evaluate that function
in superposition. Hence the random oracle model must reflect that ability.

However, we do not model superposition queries to the encryption and
decryption oracles. (As was done, for example, in [7].) We do strive to achieve
security for the case where the encryption is used within a classical protocol

Post-Quantum Security of the Fujisaki-Okamoto and OAEP Transforms 195

(this is modeled by the fact that plaintexts and ciphertexts are classical, while
the adversary is quantum), which is probably the most important use case for
post-quantum secure encryption schemes.

In contrast, [7] considers security where an encryption scheme intended for
classical plaintexts is used with a quantum superposition of plaintexts. And [1]
considers the case where an encryption scheme intended for encrypting quantum
data is used.

On the necessity of our modifications. We have slightly modified both
the Fujisaki-Okamoto and the OAEP-cryptosystem by adding one additional
hash to the ciphertexts. Although these additions are not very costly, it is a
natural question whether they are necessary, especially in light of the question
whether existing implementations are post-quantum secure. Although it is clear
that our proof technique strongly relies on these additional hashes, this does not
mean that the original schemes are insecure. However, we urge the reader not
to assume that they are post-quantum secure just because they are classically
secure. For example, in [2] it was shown that (at least relative to a specific oracle)
the Fiat-Shamir transform is insecure in the quantum setting (using quantum
random oracles). Their setting is similar to ours, so while there are no known
attacks on Fujisaki-Okamoto or OAEP, we should not rely on their security until
a security proof is found. We leave finding either an attack or a proof as a (highly
non-trivial) open problem.

Organization. In Sect. 2, we present the required security definitions and other
definitions, as well as various theorems related to random oracles that we import
from the prior works. In Sect. 3, we define our variant of the Fujisaki-Okamoto
transform and prove its security. In Sect. 5, we define our variant of OAEP and
present its security proof.

2 Preliminaries

Let KSP and MSP stand for the key space and the message space respectively.
The notation x

$←− X means that x is chosen uniformly at random from the set
X. A symmetric encryption scheme and an asymmetric encryption scheme are
defined as follows:

A symmetric encryption scheme Π consists of two polynomial time (in the
security parameter n) algorithms, Π = (Enc,Dec), such that:

1. Enc, the encryption algorithm, is a probabilistic algorithm which takes as
input a key k ∈ KSP and a message m ∈ MSP and outputs a ciphertext
c ← Enck(m). The message space can be infinite and may depend on the
security parameter.

2. Dec, the decryption algorithm, is a deterministic algorithm that takes as
input a key k and a ciphertext c and returns message the m := Deck(c).
It is required that decryption algorithm returns the original message, i.e.,
Deck(Enck(m)) = m, for every k ∈ KSP and every m ∈ MSP.

196 E.E. Targhi and D. Unruh

An asymmetric encryption scheme Π consists of three polynomial time (in
the security parameter n) algorithms, Π = (Gen,Enc,Dec), such that:

1. Gen, the key generation algorithm, is a probabilistic algorithm which on input
1n outputs a pair of keys, (pk, sk) ← Gen(1n), called the public key and the
secret key for the encryption scheme, respectively.

2. Enc, the encryption algorithm, is a probabilistic algorithm which takes as
input a public key pk and a message m ∈ MSP and outputs a ciphertext
c ← Encpk(m). The message space, MSP, may depend on pk.

3. Dec, the decryption algorithm, is a deterministic algorithm that takes as input
a secret key sk and a ciphertext c and returns message the m := Decsk(c). It
is required that the decryption algorithm returns the original message, i.e.,
Decsk(Encpk(m)) = m, for every (pk, sk) ← Gen(1n) and every m ∈ MSP.
The algorithm Dec returns ⊥ if ciphertext c is not decryptable.

Let y := Encpk(x;h) be the encryption of message x using the public key pk and
the randomness h ∈ COIN where COIN stands for the coin space of the encryption
scheme. Pr[P : G] is the probability that the predicate P holds true where free
variables in P are assigned according to the program in G.

Definition 1 (γ-spread, Definition 5.2 [8]). An asymmetric encryption
scheme Π = (Gen,Enc,Dec) is γ-spread if for every pk generated by Gen(1n)
and every x ∈ MSP,

max
y∈{0,1}∗

Pr[y = Encpk(x;h) : h
$←− COIN] ≤ 1

2γ
.

Particularly, we say that the encryption scheme Π is well-spread if γ =
ω(log(n)).

Definition 2. We say that a function f : {0, 1}n1 → {0, 1}n2 has min-entropy
k if

− log max
y∈{0,1}n2

Pr[y = f(x) : x
$←− {0, 1}n1] = k.

2.1 Security Definitions

Let negl(n) be any non-negative function that is smaller than the inverse
of any non-negative polynomial p(n) for sufficiently large n. That is,
limn→∞ negl(n)p(n) = 0 for any polynomial p(n). In the following, we present
the security definitions that are needed in this paper. Note that the definitions
are the same as the security definitions in [8], except they have been represented
in the presence of a quantum adversary in this paper. As the following two
security definitions will both be used in the security proof of our scheme, we
differentiate between them by using negl(n)sy and negl(n)asy in the definitions.

Post-Quantum Security of the Fujisaki-Okamoto and OAEP Transforms 197

Definition 3 (One-time secure). A symmetric encryption scheme Π =
(Enc,Dec) is one-time secure if no quantum polynomial time adversary A can
win in the PrivKOT

A,Π(n) game, except with probability at most 1/2 + negl(n)sy:

PrivKPrivKPrivKOTOTOT
A,ΠA,ΠA,Π(n)game :

Key Gen: The challenger picks up a key k from KSP uniformly at random, i.e.,
k

$←− KSP.

Query: The adversary A on input (1n) chooses two messages m0,m1 of the same

length and sends them to the challenger. The challenger chooses b
$←− {0, 1} and

responds with c∗ ← Enck(mb).

Guess: The adversary A produces a bit b′, and wins if b = b′.

Definition 4 (One-way secure). An asymmetric encryption scheme Π =
(Gen,Enc,Dec) is one-way secure if no quantum polynomial time adversary A
can win in the PubKOW

A,Π(n) game, except with probability at most negl(n)asy:

PubKPubKPubKOWOWOW
A,ΠA,ΠA,Π(n)game:

Key Gen: The challenger runs Gen(1n) to obtain a pair of keys (pk, sk).

Challenge Query: The challenger picks a uniformly random x from the mes-
sage space, i.e., x

$←− MSP, and encrypts it using the encryption algorithm Encpk

to obtain the ciphertext y ← Encpk(x), and sends y to the adversary A.

Guess: The adversary A on input (pk, y) produces a bit string x′, and wins if
x′ = x.

In the next definition, we say that the quantum algorithm A has quantum
access to the random oracle H if A can submit queries in superposition and the
oracle H answers to these queries by applying a unitary transformation that
maps |x, y〉 to |x, y ⊕ H(x)〉.
Definition 5 (IND-CCA in the quantum random oracle model). An
asymmetric encryption scheme Πasy = (Gen,Enc,Dec) is IND-CCA secure if
no quantum polynomial time adversary A can win in the PubKCCA−QRO

A,Π (n)
game, except with probability at most 1/2 + negl(n):

PubKPubKPubKCCA−QROCCA−QROCCA−QRO
A,ΠA,ΠA,Π (n) game:

Key Gen: The challenger runs Gen(1n) to obtain a pair of keys (pk, sk) and
chooses random oracles.

Query: The adversary A is given the public key pk and with classical ora-
cle access to the decryption oracle and quantum access to the random oracles
chooses two messages m0,m1 of the same length and sends them to the chal-
lenger. The challenger chooses b

$←− {0, 1} and responds with c∗ ← Encpk(mb).

Guess: The adversary A continues to query the decryption oracle and the ran-
dom oracles, but may not query the ciphertext c∗ in a decryption query. Finally,
the adversary A produces a bit b′, and wins if b = b′.

198 E.E. Targhi and D. Unruh

2.2 Quantum Accessible Random Oracles

In this section, we present some existing results about random oracles that we
need to prove the security of our scheme.

Lemma 1 (One way to hiding (O2H) [14]). Let H : {0, 1}n → {0, 1}m

be a random oracle. Consider an oracle algorithm A1 that makes at most q1
queries to H. Let C be an oracle algorithm that on input x does the following:
pick i

$←− {1, . . . , q1} and y
$←− {0, 1}m, run AH

1 (x, y) until (just before) the
i-th query, measure the argument of the query in the computational basis, and
output the measurement outcome. (When A1 makes less than i queries, C outputs
⊥ /∈ {0, 1}n.)
Let

P 1
A := Pr[b′ = 1 : H

$←− ({0, 1}n → {0, 1}m), x $←− {0, 1}n, b′ ← AH
1 (x,H(x))]

P 2
A := Pr[b′ = 1 : H

$←− ({0, 1}n → {0, 1}m), x $←− {0, 1}n, y
$←− {0, 1}m,

b′ ← AH
1 (x, y)]

PC := Pr[x′ = x : H
$←− ({0, 1}n → {0, 1}m), x $←− {0, 1}n, x′ ← CH(x, i)]

Then
∣

∣P 1
A − P 2

A

∣

∣ ≤ 2q1
√

PC .

Lemma 2 (One way to hiding, adaptive (O2HA) [13]). Let H : {0, 1}∗ →
{0, 1}n be a random oracle. Consider an oracle algorithm A0 that makes at most
q0 queries to H. Consider an oracle algorithm A1 that uses the final state of
A0 and makes at most q1 queries to H. Let C be an oracle algorithm that on
input (j, B, x) does the following: run AH

1 (x,B) until (just before) the j-th query,
measure the argument of the query in the computational basis, and output the
measurement outcome. (When A1 makes less than j queries, C outputs ⊥ /∈
{0, 1}�.)
Let

P 1
A := Pr[b′ = 1 : H

$←− ({0, 1}∗ → {0, 1}n),m ← AH
0 (), x $←− {0, 1}�,

b′ ← AH
1 (x,H(x||m))]

P 2
A := Pr[b′ = 1 : H

$←− ({0, 1}∗ → {0, 1}n),m ← AH
0 (), x $←− {0, 1}�,

B
$←− {0, 1}n, b′ ← AH

1 (x,B))]

PC := Pr[x = x′ ∧ m = m′ : H
$←− ({0, 1}∗ → {0, 1}n),m ← AH

0 (), x $←− {0, 1}�,

B
$←− {0, 1}n, j

$←− {1, · · · , q1}, x′||m′ ← CH(j, B, x)]

Then
∣

∣P 1
A − P 2

A

∣

∣ ≤ 2q1
√

PC + q02−�/2+2.

Post-Quantum Security of the Fujisaki-Okamoto and OAEP Transforms 199

Lemma 3 (Corollary 6 of [12]). Let f : {0, 1}n1 → {0, 1}n2 be a function
with min-entropy k. Let H : {0, 1}∗ → {0, 1}n1 be a random oracle. Then any
quantum algorithm A making q queries to H returns a collision for f ◦ H with
probability at most O

(

q9/5

2k/5

)

.

3 The Hybrid Scheme and Its Security

In this section, we combine an asymmetric encryption scheme with a symmetric
encryption scheme by using three hash functions in order to gain an IND-CCA
secure public encryption scheme Πhy = (Genhy, Enchy,Dechy) in the quantum
random oracle model.

Let Πasy = (Genasy, Encasy,Decasy) be an asymmetric encryption scheme
with the message space MSPasy = {0, 1}n1 and the coin space COINasy = {0, 1}n2 .
Let Πsy = (Encsy,Decsy) be a symmetric encryption scheme where MSPsy and
KSPsy = {0, 1}m are its message space and key space, respectively. The parame-
ters n1, n2 and m depend on the security parameter n. We define three hash
functions:

G : MSPasy → KSPsy, H : {0, 1}∗ → COINasy and H ′ : MSPasy → MSPasy.

These hash functions will be modeled as random oracles in the following.
The hybrid scheme Πhy = (Genhy, Enchy,Dechy) is constructed as follows,

with MSPhy as its message space:

1. Genhy, the key generation algorithm, on input 1n runs Genasy to obtain a
pair of keys (pk, sk).

2. Enchy, the encryption algorithm, on input pk and message m ∈ MSPhy :=
MSPsy does the following:
– Select δ

$←− MSPasy.
– Compute c ← Encsy

a (m), where a := G(δ).
– Compute e := Encasy

pk (δ;h), where h := H(δ‖c).
– Finally, output (e, c, d) as Enchy

pk(m; δ), where d := H ′(δ).
3. Dechy, the decryption algorithm, on input sk and ciphertext (e, c, d) does the

following:
– Compute δ̂ := Decasy

sk (e).
– If δ̂ =⊥: abort and output ⊥.
– Otherwise set ĥ := H(δ̂‖c).
– If e �= Encasy

pk (δ̂; ĥ): abort and output ⊥.
– Else if d = H ′(δ̂):

• Compute â := G(δ̂) and output Decsy
â (c).

– Else output ⊥.

Note that our construction is the same as the Fujisaki-Okamoto construction,
except that we use an extra random oracle H ′. Consequently, the ciphertext
has one more component, the encryption algorithm has an additional instruc-
tion to compute H ′(δ) and the decryption algorithm has an additional check
corresponding to H ′.

200 E.E. Targhi and D. Unruh

Theorem 1. The hybrid scheme Πhy constructed above is IND-CCA secure
in the quantum random oracle model if Πsy is an one-time secure symmet-
ric encryption scheme and Πasy is a well-spread one-way secure asymmetric
encryption scheme.

Proof. Let Ahy be a quantum polynomial time adversary that attacks Πhy in
the sense of IND-CCA in the quantum random oracle model. Suppose that Ahy

makes at most qH , qG and qH′ quantum queries to the random oracles H, G
and H ′, respectively, and qdec classical decryption queries. Set qhy := qH +
qG + qH′ + qdec + 1, i.e., the total number of queries that the adversary Ahy

may make, including the challenge query. Let ΩH , ΩG, ΩH′ be the set of all
function H : {0, 1}∗ → {0, 1}n2 , G : {0, 1}n1 → {0, 1}m and H ′ : {0, 1}n1 →
{0, 1}n1 , respectively. The following game shows the chosen ciphertext attack by
the adversary Ahy in the quantum setting where the adversary Ahy has quantum
access to the random oracles H, G and H ′ and classical access to the decryption
algorithm Dechy.

Game 0:

let H
$←− ΩH , G

$←− ΩG, H ′ $←− ΩH′ , δ∗ $←− MSPasy, (pk, sk) ← Genasy(1n)
let m0,m1 ← AH,G,H′,Dechy

hy (pk)

let b
$←− {0, 1}, c∗ ← Encsy

G(δ∗)(mb), e∗ ← Encasy
pk (δ∗;H(δ∗‖c∗)),

d∗ := H ′(δ∗)
let b′ ← AH,G,H′,Dechy

hy (e∗, c∗, d∗)
return [b = b′]

In order to show that the success probability of Game 0 is at most
1/2+negl(n), we shall introduce a sequence of games and compute the difference
between their success probabilities. For simplicity, we omit the definitions of ran-
dom variables that appear with the same distribution and without any changes
in all of the following games. These random variables are: H

$←− ΩH , G
$←− ΩG,

δ∗ $←− MSPasy, (pk, sk) ← Genasy(1n), and b
$←− {0, 1}.

In the next game, we replace the decryption algorithm Dechy with Dec∗

where Dec∗ on (e, c, d) does the following:

1. If e∗ is defined and e = e∗: abort and return ⊥.
2. Else do:

– Compute δ̂ := Decasy
sk (e).

– If δ̂ =⊥: query H ′(δ∗ ⊕ 1),1 abort and output ⊥.
– Otherwise set ĥ := H(δ̂‖c).
– If e �= Encasy

pk (δ̂; ĥ): query H ′(δ∗⊕1), (see Footnote 1) abort and output ⊥.

1 This extra query is needed later to prove that Game 4 and Game 5 are identical.

Post-Quantum Security of the Fujisaki-Okamoto and OAEP Transforms 201

– Else if d = H ′(δ̂): compute â := G(δ̂) and output Decsy
â (c).

– Else: output ⊥.

Therefore, Game 1 is as follows:

Game 1:

let H ′ $←− ΩH′

let m0,m1 ← A
H,G,H′,Dec∗

hy (pk)
let c∗ ← Encsy

G(δ∗)(mb), e∗ ← Encasy
pk (δ∗;H(δ∗‖c∗))

let b′ ← A
H,G,H′,Dec∗

hy (e∗, c∗,H ′(δ∗))
return [b = b′]

We prove that the probabilities of success in Game 0 and Game 1 have
negligible difference. We can conclude the result by the fact that the asymmetric
encryption scheme is well-spread. We present the proof of the following lemma
in Sect. 4.

Lemma 4. If the asymmetric encryption scheme Πasy is well-spread, then

∣

∣

∣ Pr[1 ← Game 0] − Pr[1 ← Game 1]
∣

∣

∣ ≤ O

(

(qH + qdec + 1)9/5

2ω(log(n))/5

)

=: �(n).

It is clear that �(n) is a negligible function and as a result Game 0 and Game 1
have negligible difference.

We replace G(δ∗) and H ′(δ∗) with random elements in the next game.

Game 2:

let H ′ $←− ΩH′ , a∗ $←− KSPsy, d∗ $←− MSPasy

let m0,m1 ← AH,G,H′,Dec∗
hy (pk)

let c∗ ← Encsy

a∗(mb), e∗ ← Encasy
pk (δ∗;H(δ∗‖c∗))

let b′ ← AH,G,H′,Dec∗
hy (e∗, c∗, d∗)

return [b = b′]

Now, we can prove that Pr[1 ← Game 2] = 1/2+negl(n)sy. This follows from the
one-time security assumption of the symmetric encryption scheme. We postpone
the detailed proof of the following lemma to Sect. 4 in favor of having a simple
proof.

Lemma 5. If the symmetric encryption scheme Πsy is one-time secure, then
Pr[1 ← Game 2] = 1/2 + negl(n)sy.

202 E.E. Targhi and D. Unruh

By using Lemma 5, we only need to show that the difference between the
success probabilities of Game 1 and Game 2 is negligible.

Note that if we were in the classical random oracle setting, we could define
the bad event to be querying G or H ′ on input δ∗ and argue that the two games
are indistinguishable until the bad event happens. However, there is no well-
defined concept for the bad event when the adversary A can query G and H ′ in
superposition and each quantum query can contain δ∗ in some sense. Therefore,
we use the O2H Lemma 1 to obtain an upper bound for

∣

∣

∣Pr[1 ← Game 1] -

Pr[1 ← Game 2]
∣

∣

∣.

Let AG×H′
be an adversary that has quantum access to random oracle

G × H ′
(

where (G × H ′)(δ) :=
(

G(δ),H ′(δ)
)

)

. The adversary AG×H′
on input

(

δ∗, (a∗, d∗)
)

does the following:

The adversary AG×H′(
δ∗, (a∗, d∗)

)

:

let H
$←− ΩH , (pk, sk) ← Genasy(1n), b

$←− {0, 1}
let m0,m1 ← AH,G,H′,Dec∗

hy (pk)
let c∗ ← Encsy

a∗(mb), e∗ ← Encasy
pk (δ∗;H(δ∗‖c∗))

let b′ ← AH,G,H′,Dec∗
hy (e∗, c∗, d∗)

return [b = b′]

Note that the adversary AG×H′
makes at most qo2h := qG + qH′ + 2qdec queries

to the random oracle G × H ′ in order to respond to the Ahy-queries.2

Let C be an oracle algorithm that on input δ∗ does the following: pick
i

$←− {1, . . . , qo2h} and (a∗, d∗) $←− KSPsy × MSPasy, run AG×H′(
δ∗, (a∗, d∗)

)

until
(just before) the i-th query, measure the argument of the G × H ′-query in the
computational basis, output the measurement outcome (when AG×H′

makes less
than i queries, C outputs ⊥ /∈ {0, 1}n1). Note that with this definition we have
P 1

A = Pr[1 ← Game 1] and P 2
A = Pr[1 ← Game 2] where P 1

A and P 2
A are defined

in O2H Lemma 1 for the adversary AG×H′
. Therefore, we will define Game 3

such that PC = Pr[1 ← Game 3] where PC is defined in O2H Lemma 1 for the
adversary CG×H′

. Thus by O2H Lemma 1:
∣

∣

∣ Pr[1 ← Game 1] - Pr[1 ← Game 2]
∣

∣

∣ ≤ 2qo2h

√

Pr[1 ← Game 3].

2 For example, to respond to a query to the random oracle G with input register I
and output register O, the adversary AG×H′

prepares an additional register T (for
the output of H ′) in state | + 〉n1 and invokes UG×H′ on I,O, T . It is easy to verify
that this leaves T unchanged and applies UG to I,O. (This idea was already used in
[18] to ignore part of the output of an oracle.)

Post-Quantum Security of the Fujisaki-Okamoto and OAEP Transforms 203

We define Game 3 as follows:

Game 3:

let H ′ $←− ΩH′ , a∗ $←− KSPsy, d∗ $←− MSPasy, i
$←− {1, . . . , qo2h}

run until i-th query to oracle G × H ′

let m0,m1 ← AH,G,H′,Dec∗
hy (pk)

let c∗ ← Encsy
a∗(mb), e∗ ← Encasy

pk (δ∗;H(δ∗‖c∗))

let b′ ← AH,G,H′,Dec∗
hy (e∗, c∗, d∗)

measure the argument δ̃ of the i-th query to oracle G × H ′

return [δ̃ = δ∗]

In the next game, we replace the random oracle H ′ with a 2(qH′ + qdec)-wise
independent function. Random polynomials of degree 2(qH′ +qdec)−1 over finite
field GF (2n1) are 2(qH′ +qdec)-wise independent. Let Ωwise be the set of all such
polynomials.

Game 4:

let H ′ $←− Ωwise, a∗ $←− KSPsy, d∗ $←− MSPasy, i
$←− {1, . . . , qo2h}

run until i-th query to oracle G × H ′

let m0,m1 ← AH,G,H′,Dec∗
hy (pk)

let c∗ ← Encsy
a∗(mb), e∗ ← Encasy

pk (δ∗;H(δ∗‖c∗))

let b′ ← AH,G,H′,Dec∗
hy (e∗, c∗, d∗)

measure the argument δ̃ of the i-th query to oracle G × H ′

return [δ̃ = δ∗]

Due to a result by Zhandry [17], a 2(qH′ + qdec)-wise independent function H ′

is perfectly indistinguishable from a random function when the adversary makes
at most qH′ + qdec queries to H ′. Therefore, Game 3 and Game 4 are identical.

We replace the decryption algorithm Dec∗ with a new decryption algorithm
Dec∗∗ in Game 5. Dec∗∗ has access to the description (as a polynomial) of H ′.
Dec∗∗ on input (e, c, d) works as follows:

1. If e∗ is defined and e = e∗: output ⊥.
2. Else do:

– Calculate all roots of the polynomial H ′ − d. Let S be the set of those
roots.

– If there exists δ̂ ∈ S \ {δ∗} such that e = Encasy
pk

(

δ̂;H(δ̂‖c)
)

:
• query H ′ on input δ̂.
• compute â := G(δ̂) and return Decsy

â (c).

204 E.E. Targhi and D. Unruh

– Else if e = Encasy
pk

(

δ∗;H(δ∗‖c)
)

:
• If H ′(δ∗) = d, then compute â := G(δ∗) and return Decsy

â (c).
• Else: return ⊥.

– Else: query H ′ on random input δ
$←− (MSPasy \ {δ∗}), and output ⊥.

Note that Dec∗∗ depends on the randomness used in choosing H ′. This is for-
mally unproblematic (it is comparable to Dec∗∗ implicitly depending on secret
key) and appears only in intermediate game within the proof. We emphasis that
finding roots of polynomial H ′ − d is possible in polynomial time [5] and it does
not involve query to the polynomial H ′. (We need that Dec∗∗ as well as all other
parts of our games run in polynomial time because we want to use the one-way
security of the asymmetric encryption scheme in Lemma 6 below.)

Game 5:

let H ′ $←− Ωwise, a∗ $←− KSPsy, d∗ $←− MSPasy, i
$←− {1, . . . , qo2h}

run until i-th query to oracle G × H ′

let m0,m1 ← A
H,G,H′,Dec∗∗

hy (pk)
let c∗ ← Encsy

a∗(mb), e∗ ← Encasy
pk (δ∗;H(δ∗‖c∗))

let b′ ← A
H,G,H′,Dec∗∗

hy (e∗, c∗, d∗)
measure the argument δ̃ of the i-th query to oracle G × H ′

return [δ̃ = δ∗]

In order to show that Game 4 and Game 5 are identical, we need to prove that
the two decryption algorithms Dec∗ and Dec∗∗ return the same output. Also,
note that Game 4 and Game 5 succeed if they measure a query containing the
argument δ∗. Therefore, we have to prove that the total number of queries sub-
mitted to the random oracles G and H ′ are equal in two decryption algorithms
and the number of queries with argument δ∗ are equal and appear at the same
time.

Suppose the adversary submits a decryption query (e, c, d). Let δ̂ :=
Decasy

sk (e). We consider the following cases:

1. If δ̂ =⊥: In this case, both decryption algorithms return ⊥ and query the
random oracle H ′, but not on input δ∗.

2. If δ̂ �=⊥, δ̂ �= δ∗ and H ′(δ̂) �= d: Note that δ̂ �= δ∗ implies that e �= e∗ and
e �= Encasy

pk (δ∗;H(δ∗‖c)). Therefore, there are two subcases:

(a) If e �= Encasy
pk (δ̂;H(δ̂ ‖ c)), then the decryption algorithm Dec∗ queries

the random oracle H ′ on input δ∗ ⊕1 and the decryption algorithm Dec∗∗

queries H ′ on a random element from MSPasy \ {δ∗} since δ̂ �∈ S. Both
algorithms return ⊥.

(b) Else, the decryption algorithm Dec∗ queries random oracle H ′ on input
δ̂ and the decryption algorithm Dec∗∗ queries H ′ on a random element
from MSPasy \ {δ∗} since δ̂ �∈ S. Both algorithms return ⊥.

Post-Quantum Security of the Fujisaki-Okamoto and OAEP Transforms 205

3. If δ̂ �=⊥, δ̂ �= δ∗ and H ′(δ̂) = d: Note that δ̂ �= δ∗ implies that e �= e∗ and
e �= Encasy

pk (δ∗;H(δ∗‖c)). Therefore, there are two subcases:
(a) If e �= Encasy

pk (δ̂;H(δ̂ ‖ c)), then the decryption algorithm Dec∗ queries
the random oracle H ′ on input δ∗ ⊕ 1 and outputs ⊥, and the decryption
algorithm Dec∗∗ queries H ′ on a random element from MSPasy \ {δ∗} and
outputs ⊥.

(b) Else, both decryption algorithms query random oracles G and H ′ on input
δ̂ and output Decsy

G(δ̂)
.

4. If δ̂ = δ∗ and H ′(δ̂) �= d: There are three subcases:
(a) If e∗ is defined and e = e∗: Then both decryption algorithms return ⊥

without any query to the random oracles G and H ′.
(b) Else if e �= Encasy

pk (δ∗;H(δ∗‖c)): Then the decryption algorithm Dec∗

queries the random oracle H ′ on input δ∗ ⊕ 1 and the decryption algo-
rithm Dec∗∗ queries H ′ on a random element from MSPasy \ {δ∗}. Both
decryption algorithms return ⊥.

(c) Else, both decryption algorithms query H ′ on input δ∗ and output ⊥.
5. If δ̂ = δ∗ and H ′(δ̂) = d: There are three subcases:

(a) If e∗ is defined and e = e∗: Then both decryption algorithms return ⊥
without any query to the random oracles G and H ′.

(b) Else if e �= Encasy
pk (δ∗;H(δ∗‖c)): Then the decryption algorithm Dec∗

queries the random oracle H ′ on input δ∗ ⊕ 1 and decryption algorithm
Dec∗∗ queries H ′ on a random element from MSPasy \ {δ∗}. Both decryp-
tion algorithms return ⊥.

(c) Else, both decryption algorithms query random oracles G and H ′ on input
δ∗ and output Decsy

G(δ∗).

Hence, Pr[1 ← Game 4] = Pr[1 ← Game 5].
Note that Dec∗∗ does not use the secret key of the asymmetric encryption

scheme to decrypt the ciphertext. This will allow us below to make use of the
one-way security of Πasy (This is only possible if the secret key is never used).

The next step is to replace the random coins H(δ∗‖c∗) of the asymmetric
encryption scheme by truly random coins from COINasy.

Game 6:

let H ′ $←− Ωwise H ′ $←− ΩH′ , a∗ $←− KSPsy, d∗ $←− MSPasy, i
$←− {1, . . . , qo2h}

run until i-th query to oracle G × H ′

let m0,m1 ← AH,G,H′,Dec∗∗
hy (pk)

let c∗ ← Encsy
a∗(mb), e∗ ← Encasy

pk (δ∗)

let b′ ← AH,G,H′,Dec∗∗
hy (e∗, c∗, d∗)

measure the argument δ̃ of the i-th query to oracle G × H ′

return [δ̃ = δ∗]

206 E.E. Targhi and D. Unruh

Suppose that adversary Ahy makes q0GH′ queries to the random oracle G×H ′

before the challenge query and q1GH′ queries after the challenge query. In order
to obtain an upper bound for

∣

∣

∣Pr[1 ← Game 5] - Pr[1 ← Game 6]
∣

∣

∣, we use

O2HA Lemma 2. Let AH
0 be a quantum adversary that has oracle access to the

random oracle H. The adversary AH
0 does the following:

The adversary AH
0 :

let G
$←− ΩG, H ′ $←− Ωwise, (pk, sk) ← Genasy(1n), b

$←− {0, 1},

a∗ $←− KSPsy, d∗ $←− MSPasy, i
$←− {1, . . . , qo2h}

run until i-th query to oracle G × H ′

let m0,m1 ← AH,G,H′,Dec∗∗
hy (pk)

let c∗ ← Encsy
a∗(mb)

return c∗

Let AH
1 be an adversary that has quantum access to the random oracle H and

can use the final state of AH
0 . Therefore, he can access all the random variables

that are chosen by AH
0 and also he can use the output of AH

0 . The adversary AH
1

on input (δ∗, h∗) does the following:

The adversary AH
1 (δ∗, h∗):

let δ∗ $←− MSPasy

if i > q0GH′ then
run until (i − q0GH′)-th query to oracle G × H ′

let e∗ ← Encasy
pk (δ∗;h∗)

let b′ ← AH,G,H′,Dec∗∗
hy (e∗, c∗, d∗)

measure the argument δ̃ of the i-th query to oracle G × H ′

return [δ̃ = δ∗]

Note that the adversary AH
0 may be stopped before receiving the challenge query

(or when i ≤ q0GH′), in this case the adversary AH
1 measures the argument δ̃

of i-th query to the random oracle G × H ′ and outputs [δ̃ = δ∗]. If i > q0GH′ ,
then the adversary AH

1 continues to run the adversary Ahy till the (i−q0GH′)-th
query to the random oracle G×H ′ and measures the argument δ̃ of i-th query to
the random oracle G×H ′ and outputs [δ̃ = δ∗]. Note that with these definitions
we have P 1

A = Pr[1 ← Game 5] and P 2
A = Pr[1 ← Game 6] where P 1

A and P 2
A

are as in the O2HA Lemma 2 for the random oracle H.
AH

0 makes q0 queries to the random oracle H, and AH
1 makes at most q1

queries to the random oracle H. Let C be an oracle algorithm that on input δ∗

does the following: pick j
$←− {1, . . . , q1} and h∗ $←− {0, 1}n2 , run AH

1

(

δ∗, h∗) until
(just before) the j-th query to the random oracle H, measure the argument of
that query in the computational basis, output the measurement outcome (when

Post-Quantum Security of the Fujisaki-Okamoto and OAEP Transforms 207

AH
1 makes less than j queries, C outputs ⊥ /∈ {0, 1}n). Now, we can introduce

Game 7 such that by O2HA Lemma 2,
∣

∣

∣Pr[1 ← Game 5] - Pr[1 ← Game 6]
∣

∣

∣ ≤ 2q1
√

Pr[1 ← Game 7] + q02−n1/2+2.

Game 7:

let H ′ $←− Ωwise, a∗ $←− KSPsy, d∗ $←− MSPasy, i
$←− {1, . . . , qo2h}

run until i-th query to oracle G × H ′

let m0,m1 ← AH,G,H′,Dec∗∗
hy (pk)

let c∗ ← Encsy
a∗(mb)

let δ∗ $←− MSPasy, j
$←− {1, . . . , q1}

run until j-th query to oracle H
if i > q0GH′ then

run until (i − q0GH′)-th query to oracle G × H ′
let e∗ ← Encasy

pk (δ∗;h∗)

let b′ ← AH,G,H′,Dec∗∗
hy (e∗, c∗, d∗)

measure the argument δ̃ of the i-th query to oracle G × H ′

measure the argument δ̂||ĉ of the j-th query to oracle H

return [δ̂ = δ∗] ∧ [ĉ = c∗]

The next lemma shows that the success probabilities in Game 6 and Game
7 are negligible. We present the proof of the lemma in Sect. 4.

Lemma 6. If the asymmetric scheme Πasy is one-way secure then

Pr[1 ← Game 6] ≤ negl(n)asy and Pr[1 ← Game 7] ≤ negl(n)asy
.

Combining this with the bounds derived above we can conclude that

Pr[1 ← Game 0] ≤ 1
2
+negl(n)sy + O

(

(qH + qdec + 1)9/5

2ω(log(n))/5

)

+ 2qo2h

√

negl(n)asy + 2q1

√

negl(n)asy + q02−n1/2+2.�

4 Deferred Proofs

4.1 Proof of Lemma 4

Proof. We list all the possibilities that the adversary can do to differentiate
between the two games. Suppose that the adversary sends the ciphertext (e, c, d).
Note that if e �= e∗ or e∗ is not defined, then two decryption algorithms Dechy

208 E.E. Targhi and D. Unruh

and Dec∗ return the same output and nothing is left to show. Therefore we
analyze the following cases where e∗ is defined and e = e∗.

1. (e = e∗, c = c∗, d �= d∗) or (e = e∗, c �= c∗, d �= d∗): In these two cases, the two
decryption algorithms return ⊥.

2. (e = e∗, c �= c∗, d = d∗): This means that Encasy
pk (δ∗;H(δ∗‖c)) =

Encasy
pk (δ∗;H(δ∗‖c∗)). This is a collision in the sense of Lemma 3 since δ∗

is chosen randomly and the Encasy
pk (δ∗;H(δ∗‖·)) has min-entropy ω(log(n)).

Therefore, it occurs with probability at most O
(

(qH+qdec+1)9/5

2ω(log(n))/5

)

.
3. (e = e∗, c = c∗, d = d∗). This query never occurs.

We can conclude that:
∣

∣

∣Pr[1 ← Game 0] - Pr[1 ← Game 1]
∣

∣

∣ ≤ O

(

(qH + qdec + 1)9/5

2ω(log(n))/5

)

. �

4.2 Proof of Lemma 5

Proof. Let ε(n) := Pr[1 ← Game 2]. We construct the adversary Asy such that:

Pr[PriKOT
Asy,Πsy = 1] = ε(n).

The adversary Asy on input 1n does the following:

1. Run Genasy(1n) to obtain (pk, sk).
2. Run the adversary Ahy(pk).
3. Use a 2(qH + qdec + 1)-wise independent function, a 2(qG + qdec)-wise inde-

pendent function, and a 2(qH′ + qdec)-wise independent function to answer
the queries submitted to the random oracles H, G and H ′, respectively.

4. Whenever Ahy outputs challenge messages (m0,m1), do the following:

– Select b
$←− {0, 1}, r

$←− COINsy, δ∗ $←− MSPasy, a∗ ← KSPsy, d∗ $←− {0, 1}n1 .
– Set c∗ := Encsy

a∗(mb; r) and e∗ := Encasy
pk (δ∗;H(δ∗, c∗)).

– Send (e∗, c∗, d∗) to the adversary Ahy.
5. Answer the random oracle queries and decryption queries as before.
6. When Ahy returns bit b′, output the same bit b′.

It is obvious that Pr[PriKOT
Asy,Πsy = 1] = ε(n). Therefore, ε(n) ≤ 1/2+

negl(n)sy. �

4.3 Proof of Lemma 6

As the proof for two games is similar we provide the instances for Game 7 in
brackets �. . .� wherever there is a difference.

Post-Quantum Security of the Fujisaki-Okamoto and OAEP Transforms 209

Proof. Let ε(n) := Pr[1 ← Game 6] � := Pr[1 ← Game 7]�. We construct an
adversary Aasy such that:

Pr[PubKOW
Aasy,Πasy = 1] = ε(n).

The adversary Aasy on input (1n, pk, y) does the following:

1. Run the adversary Ahy(pk).
2. Use a 2(qH +qdec)-wise independent function, a 2(qG+qdec)-wise independent

function, and a polynomial of degree 2(qH′ + qdec) − 1 to answer the queries
submitted to random oracles H, G and H ′, respectively.

3. Answer the decryption queries using Dec∗∗.
4. Whenever Ahy outputs challenge messages (m0,m1), do the following:

– Select b
$←− {0, 1}, r

$←− COINsy, a∗ ← KSPsy, d∗ $←− {0, 1}n1 .
– Set c∗ := Encsy

a∗(mb; r) and e∗ := y.
– Send (e∗, c∗, d∗) to the adversary Ahy.

5. Answer the random oracle queries as before and to the decryption queries
using Dec∗∗.

6. When Ahy returns bit b′ and halts, Aasy selects i
$←− {1, · · · , qo2h} �i

$←−
{1, · · · , q1}� and measures the argument δ̂ of i-th � (i + q0)-th � query to
the random oracle G × H ′ �H� and outputs δ̂ (When Ahy makes less than i
queries output ⊥).

It is obvious that Pr[PubKOW
Aasy,Πasy = 1] = ε(n). Therefore, ε(n) ≤ negl(n)asy. �

5 A Variant of OAEP

The following definitions are similar to the definitions presented in [9], except
we define them in the presence of a quantum adversary.

Definition 6 (Quantum partial-domain one-way function). We say a
function f : {0, 1}n+k1 × {0, 1}k0 → {0, 1}m is partial-domain one-way if for
any polynomial time quantum adversary A,

Pr[s̃ = s : s
$←− {0, 1}n+k1 , t

$←− {0, 1}k0 , s̃ ← A(f(s, t))] ≤ negl(n).

Definition 7. Let G : {0, 1}k0 → {0, 1}k−k0 , H : {0, 1}k−k0 → {0, 1}k0 and
H ′ : {0, 1}k → {0, 1}k be random oracles. The Q-OAEP = (Gen,Enc,Dec)
encryption scheme is defined as:

1. Gen: Specifies an instance of the injective function f and its inverse f−1.
Therefore, the public key and secret key are f and f−1 respectively.

2. Enc: Given a message m ∈ {0, 1}n, the encryption algorithm computes

s := m||0k1 ⊕ G(r) and t := r ⊕ H(s),

where r
$←− {0, 1}k0 , and outputs the ciphertext (c, d) :=

(

f(s, t),H ′(s‖t)
)

.

210 E.E. Targhi and D. Unruh

3. Dec: Given a ciphertext (c, d), the decryption algorithm does the following:
– When c /∈ Im f :

(a) If c∗ is defined (where c∗ is the challenge ciphertext), then query the
random oracle H ′ on input (s∗‖t∗) ⊕ 1 (where f(s∗, t∗) = c∗) and
return ⊥.

(b) If c∗ is not defined, then query the random oracle H ′ on a random
input and return ⊥.

– When c ∈ Im f , the decryption algorithm extracts (s, t) = f−1(c). If
H ′(s‖t) �= d it returns ⊥, otherwise it does the following:
(a) query the random oracle H on input s and compute r := t ⊕ H(s).
(b) query the random oracle G on input r and compute M := s ⊕ G(r).
(c) if the k1 least significant bits of M are zero then return the n most

significant bits of M , otherwise return ⊥.

Note that k0 and k depend on the security parameter n.

Note that Dec contains several unnecessary oracle calls (after it already
decided to output ⊥). These obviously do not effect correctness or security,
but make the proof a bit simple to formulate.

Theorem 2. If the underlying injective function is quantum partial-domain
one-way, then the Q-OAEP scheme is IND-CCA secure in the quantum ran-
dom oracle model.

Proof. Since the proof is similar and relatively easier compared to the proof of
Fujisaki-Okamoto transform, we only present the main games in pseudocode and
the intuition of the their negligibility. Let ΩH , ΩG, ΩH′ be the set of all function
H : {0, 1}k−k0 → {0, 1}k0 , G : {0, 1}k0 → {0, 1}k−k0 and H ′ : {0, 1}k → {0, 1}k,
respectively. Let A be a polynomial time quantum adversary that attacks the
OAEP-cryptosystem in the sense of IND-CCA in the quantum random oracle
model and makes at most qH , qG and qH′ queries to the random oracles H, G
and H ′ respectively and qdec decryption queries.

Game 0:

let H
$←− ΩH , G

$←− ΩG, H ′ $←− ΩH′ , r
$←− {0, 1}k0 , (pk, sk) ← Gen(1n)

let m0,m1 ← AH,G,H′,Dec(pk)

let b
$←− {0, 1}, s∗ := mb||0k1 ⊕ G(r), t∗ := r ⊕ H(s∗), c∗ := f(s∗, t∗),

d∗ := H ′(s∗‖t∗)
let b′ ← AH,G,H′,Dec(c∗, d∗)
return [b = b′]

Post-Quantum Security of the Fujisaki-Okamoto and OAEP Transforms 211

Game 1:

let H
$←− ΩH , G

$←− ΩG, H ′ $←− ΩH′ , r
$←− {0, 1}k0 , (pk, sk) ← Gen(1n),

α∗ $←− {0, 1}k−k0

let m0,m1 ← AH,G,H′,Dec(pk)

let b
$←− {0, 1}, s∗ = mb||0k1 ⊕ α∗, t∗ = r ⊕ H(s∗), c∗ = f(s∗, t∗),

d∗ := H ′(s∗‖t∗)
let b′ ← AH,G,H′,Dec(c∗, d∗)
return [b = b′]

The probability of success in Game 1 is 1/2 for the reason that s∗ is a random
element and independent of the bit b.

Game 2:

let H
$←− ΩH , G

$←− ΩG, H ′ $←− ΩH′ , r
$←− {0, 1}k0 , (pk, sk) ← Gen(1n),

α∗ $←− {0, 1}k−k0 , i
$←− {1, . . . , qG + qdec}

run until i-th query to oracle G

let m0,m1 ← AH,G,H′,Dec(pk)

let b
$←− {0, 1}, s∗ := mb||0k1 ⊕ α∗, t∗ := r ⊕ H(s∗), c∗ := f(s∗, t∗),

d∗ := H ′(s∗‖t∗)
let b′ ← AH,G,H′,Dec(c∗, d∗)

measure the argument r̃ of the i-th query to oracle G
return [r̃ = r] (When A makes less than i queries return ⊥)

By O2H Lemma 1,

|Pr[1 ← Game 0] − Pr[1 ← Game 1]| ≤ 2(qG + qdec)
√

Pr[1 ← Game 2].

Game 3:

let H
$←− ΩH , G

$←− ΩG, H ′ $←− ΩH′ , r
$←− {0, 1}k0 , (pk, sk) ← Gen(1n),

α∗ $←− {0, 1}k−k0 , i
$←− {1, . . . , qG + qdec}, β∗ $←− {0, 1}k0

run until i-th query to oracle G

let m0,m1 ← AH,G,H′,Dec(pk)

let b
$←− {0, 1}, s∗ := mb||0k1 ⊕ α∗, t∗ := r ⊕ β∗, c∗ := f(s∗, t∗),

d∗ := H ′(s∗‖t∗)
let b′ ← AH,G,H′,Dec(c∗, d∗)

measure the argument r̃ of the i-th query to oracle G
return [r̃ = r] (When A makes less than i queries return ⊥)

212 E.E. Targhi and D. Unruh

Since t∗ and s∗ are random and independent of r, the probability of success
in Game 3 is 1

2k0
.

Game 4:

let H
$←− ΩH , G

$←− ΩG, H ′ $←− ΩH′ , r
$←− {0, 1}k0 , (pk, sk) ← Gen(1n),

α∗ $←− {0, 1}k−k0 , i
$←− {1, . . . , qG + qdec}, β∗ $←− {0, 1}k0 ,

j
$←− {1, . . . , qH + qdec}

run until j-th query to oracle H
run until i-th query to oracle G

let m0,m1 ← AH,G,H′,Dec(pk)

let b
$←− {0, 1}, s∗ := mb||0k1 ⊕ α∗, t∗ := r ⊕ β∗, c∗ := f(s∗, t∗),

d∗ := H ′(s∗‖t∗)
let b′ ← AH,G,H′,Dec(c∗, d∗)

measure the argument r̃ of the i-th query to oracle G
measure the argument s̃ of the j-th query to oracle H
return [s̃ = s∗] (When A makes less than j queries return ⊥)

By O2H Lemma 1,

|Pr[1 ← Game 2] − Pr[1 ← Game 3]| ≤ 2(qH + qdec)
√

Pr[1 ← Game 4].

Game 5:

let H
$←− ΩH , G

$←− ΩG, H ′ $←− ΩH′ , r
$←− {0, 1}k0 , (pk, sk) ← Gen(1n),

s∗ $←− {0, 1}k−k0 , i
$←− {1, . . . , qG + qdec}, β∗ $←− {0, 1}k0 ,

j
$←− {1, . . . , qH + qdec}, d∗ $←− {0, 1}k

run until j-th query to oracle H
run until i-th query to oracle G

let m0,m1 ← AH,G,H′,Dec(pk)

let b
$←− {0, 1}, s∗ := mb||0k1 ⊕ α∗, t∗ := r ⊕ β∗, c∗ := f(s∗, t∗),

let b′ ← AH,G,H′,Dec(c∗, d∗)
measure the argument r̃ of the i-th query to oracle G

measure the argument s̃ of the j-th query to oracle H
return [s̃ = s∗] (When A makes less than j queries return ⊥)

Post-Quantum Security of the Fujisaki-Okamoto and OAEP Transforms 213

Game 6:

let H
$←− ΩH , G

$←− ΩG, H ′ $←− ΩH′ , r
$←− {0, 1}k0 , (pk, sk) ← Gen(1n),

α∗ $←− {0, 1}k−k0 , i
$←− {1, . . . , qG + qdec}, β∗ $←− {0, 1}k0 ,

j
$←− {1, . . . , qH + qdec}, d∗ $←− {0, 1}k, �

$←− {1, . . . , qH′ + qdec}
run until �-th query to oracle H ′

run until j-th query to oracle H
run until i-th query to oracle G

let m0,m1 ← AH,G,H′,Dec(pk)

let b
$←− {0, 1}, s∗ := mb||0k1 ⊕ α∗, t∗ := r ⊕ β∗, c∗ = f(s∗, t∗)

let b′ ← AH,G,H′,Dec(c∗, d∗)
measure the argument r̃ of the i-th query to oracle G

measure the argument s̃ of the j-th query to oracle H
measure the argument (s̃, t̃) of the �-th query to oracle H ′

return [s̃ = s∗] ∧ [t̃ = t∗] (When A makes less than � queries return ⊥)

By O2H Lemma 1,

|Pr[1 ← Game 4] − Pr[1 ← Game 5]| ≤ 2(qH′ + qdec)
√

Pr[1 ← Game 6].

Therefore, we only need to prove that the probability of success in Game 5 and
Game 6 are negligible. Since a 2q-wise independent function is indistinguishable
from a random oracle provided the adversary makes at most q queries [17], we
replace H ′ in Game 5 and Game 6 with a random polynomials of the proper
degree. Let Ωwise be the set of all such polynomials.

Game 5.b:

let H
$←− ΩH , G

$←− ΩG, H ′ $←− Ωwise, r
$←− {0, 1}k0 , (pk, sk) ← Gen(1n),

α∗ $←− {0, 1}k−k0 , i
$←− {1, . . . , qG + qdec}, β∗ $←− {0, 1}k0 ,

j
$←− {1, . . . , qH + qdec}, d∗ $←− {0, 1}k

run until j-th query to oracle H
run until i-th query to oracle G

let m0,m1 ← AH,G,H′,Dec(pk)

let b
$←− {0, 1}, s∗ := mb||0k1 ⊕ α∗, t∗ := r ⊕ β∗, c∗ = f(s∗, t∗)

let b′ ← AH,G,H′,Dec(c∗, d∗)
measure the argument r̃ of the i-th query to oracle G

measure the argument s̃ of the j-th query to oracle H
return [s̃ = s∗] (When A makes less than j queries return ⊥)

By Zhandry’s result [17]:

Pr[1 ← Game 5] = Pr[1 ← Game 5.b].

214 E.E. Targhi and D. Unruh

Now we define the decryption algorithm Dec∗ that on input (c, d) does as follows:

1. It calculates the roots of polynomial H ′ − d. Let S be the set of all the roots.
2. If there exists (s, t) ∈ S such that f(s, t) = c, then it outputs a message m

using (s, t) and similar to the algorithm Dec. Otherwise it outputs ⊥.

Game 5.c:

let H
$←− ΩH , G

$←− ΩG, H ′ $←− Ωwise, r
$←− {0, 1}k0 , (pk, sk) ← Gen(1n),

α∗ $←− {0, 1}k−k0 , i
$←− {1, . . . , qG + qdec}, β∗ $←− {0, 1}k0 ,

j
$←− {1, . . . , qH + qdec}, d∗ $←− {0, 1}k

run until j-th query to oracle H
run until i-th query to oracle G

let m0,m1 ← AH,G,H′,Dec∗
(pk)

let b
$←− {0, 1}, s∗ := mb||0k1 ⊕ α∗, t∗ := r ⊕ β∗, c∗ = f(s∗, t∗)

let b′ ← AH,G,H′,Dec∗
(c∗, d∗)

measure the argument r̃ of the i-th query to oracle G
measure the argument s̃ of the j-th query to oracle H
return [s̃ = s∗] (When A makes less than j queries return ⊥)

We show that two decryption algorithms Dec and Dec∗ return the same output
with the same number of queries to the random oracle H. For given ciphertext
(c, d):

1. If c /∈ Im f , then both decryption algorithms return ⊥ with no query to the
random oracle H.

2. If c ∈ Im f . Let (ŝ, t̂) := f−1(c). There are two subcases:
– If H ′(ŝ‖t̂) �= d, then both algorithms return ⊥ with no query to the random

oracle H.
– If H ′(ŝ‖t̂) = d, then both decryption algorithms return the same output

and query H on input ŝ for the reason that (ŝ, t̂) ∈ S and f(ŝ, t̂) = c.

As a result:
Pr[1 ← Game 5.b] = Pr[1 ← Game 5.c].

Note that the decryption algorithm Dec∗ does not use the secret key f−1,
therefore we can reduce the success probability of Game 5.c to the partial-domain
one-wayness of function f .

We repeat a similar approach (define Game 6.b and Game 6.c as before) to
prove the success probability of Game 6 is negligible. Note that the decryption
algorithm Dec∗∗ does as follows in the case of Game 6:

1. It calculates the roots of polynomial H ′ − d. Let S be the set of all the roots.
2. If there exists (s, t) ∈ S such that f(s, t) = c, then it queries the random

oracle H ′ on input (s‖t) and outputs a message m using (s, t) and similar to
the algorithm Dec.

Post-Quantum Security of the Fujisaki-Okamoto and OAEP Transforms 215

3. Else:
– If c∗ is defined and c = c∗, then query H ′ on input (s∗‖t∗) and return ⊥.
– If c∗ is defined and c �= c∗, then query H ′ on input (s∗‖t∗) ⊕ 1 and return

⊥.
– If c∗ is not defined then query H ′ on a random input and return ⊥.

We show that two decryption algorithms Dec and Dec∗∗ return the same output
with the same number of queries to the random oracle H ′. For given ciphertext
(c, d):

1. If c /∈ Im f , then both decryption algorithms return ⊥ and query the random
oracle H ′ on a random input or on input (s∗‖t∗) ⊕ 1.

2. If c ∈ Im f and c∗ is defined. Let (ŝ, t̂) := f−1(c). Then:
– If H ′(ŝ‖t̂) = d, then both decryption algorithms return the same output

and query H ′ on input (ŝ‖t̂).
– If H ′(ŝ‖t̂) �= d and c �= c∗, then both algorithms return ⊥ and query the

random oracle H ′ on an input different from (s∗‖t∗).
– If H ′(ŝ‖t̂) �= d and c = c∗, then both algorithms return ⊥ and query the

random oracle H ′ on input (s∗‖t∗).
3. If c ∈ Im f and c∗ is not defined. Let (ŝ, t̂) := f−1(c). Then:

– If H ′(ŝ‖t̂) �= d, then both algorithms return ⊥ and query the random oracle
H ′ on an input.

– If H ′(ŝ‖t̂) = d, then both decryption algorithms return the same output
and query H ′ on input (ŝ‖t̂).

By combining all the inequalities from the proof, we can conclude that:

Pr[1 ← Game 0] ≤ 1/2 + negl(n).

Since our security proof does not depend on the bit padding, the message space
can be extended to the set {0, 1}n+k1 . �

Acknowledgments. This work was supported by the Estonian ICT program 2011-
2015 (3.2.1201.13-0022), the European Union through the European Regional Devel-
opment Fund through the sub-measure “Supporting the development of R&D of info
and communication technology”, by the European Social Fund’s Doctoral Studies and
Internationalisation Programme DoRa, by the Estonian Centre of Excellence in Com-
puter Science, EXCS.

References

1. Alagic, G., Broadbent, A., Fefferman, B., Gagliardoni, T., Schaffner, C., Jules,
M.S.: Computational security of quantum encryption. IACR ePrint 2016/424, April
2016

2. Ambainis, A., Rosmanis, A., Unruh, D.: Quantum attacks on classical proof sys-
tems (the hardness of quantum rewinding). In: FOCS 2014, pp. 474–483. IEEE,
October 2014

216 E.E. Targhi and D. Unruh

3. Bellare, M., Rogaway, P.: Random oracles are practical: a paradigm for designing
efficient protocols. In: Denning, D.E., Pyle, R., Ganesan, R., Sandhu, R.S., Ashby,
V. (eds.) Proceedings of the 1st ACM Conference on Computer and Communica-
tions Security, CCS 1993, 3–5 November 1993, Fairfax, Virginia, USA, pp. 62–73.
ACM (1993)

4. Bellare, M., Rogaway, P.: Optimal asymmetric encryption. In: Santis, A. (ed.)
EUROCRYPT 1994. LNCS, vol. 950, pp. 92–111. Springer, Heidelberg (1995).
doi:10.1007/BFb0053428

5. Ben-Or, M.: Probabilistic algorithms in finite fields. In: 22nd Annual Symposium
on Foundations of Computer Science, 28–30 October 1981, Nashville, Tennessee,
USA, pp. 394–398. IEEE Computer Society (1981)

6. Boneh, D., Dagdelen, Ö., Fischlin, M., Lehmann, A., Schaffner, C., Zhandry,
M.: Random oracles in a quantum world. In: Lee, D.H., Wang, X. (eds.) ASI-
ACRYPT 2011. LNCS, vol. 7073, pp. 41–69. Springer, Heidelberg (2011). doi:10.
1007/978-3-642-25385-0 3

7. Boneh, D., Zhandry, M.: Secure signatures and chosen ciphertext security in
a quantum computing world. In: Canetti, R., Garay, J.A. (eds.) CRYPTO
2013. LNCS, vol. 8043, pp. 361–379. Springer, Heidelberg (2013). doi:10.1007/
978-3-642-40084-1 21

8. Fujisaki, E., Okamoto, T.: Secure integration of asymmetric and symmetric encryp-
tion schemes. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 537–554.
Springer, Heidelberg (1999). doi:10.1007/3-540-48405-1 34

9. Fujisaki, E., Okamoto, T., Pointcheval, D., Stern, J.: RSA-OAEP is secure under
the RSA assumption. J. Cryptology 17(2), 81–104 (2004)

10. Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete loga-
rithms on a quantum computer. SIAM J. Comput. 26(5), 1484–1509 (1997)

11. Shoup, V.: OAEP reconsidered. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol.
2139, pp. 239–259. Springer, Heidelberg (2001). doi:10.1007/3-540-44647-8 15

12. Targhi, E.E., Tabia, G.N., Unruh, D.: Quantum collision-resistance of non-
uniformly distributed functions. In: Takagi, T. (ed.) PQCrypto 2016. LNCS, vol.
9606, pp. 79–85. Springer, Heidelberg (2016). doi:10.1007/978-3-319-29360-8 6

13. Unruh, D.: Quantum position verification in the random oracle model. In: Garay,
J.A., Gennaro, R. (eds.) CRYPTO 2014. LNCS, vol. 8617, pp. 1–18. Springer,
Heidelberg (2014). doi:10.1007/978-3-662-44381-1 1

14. Unruh, D.: Revocable quantum timed-release encryption. In: Nguyen, P.Q.,
Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 129–146. Springer,
Heidelberg (2014). doi:10.1007/978-3-642-55220-5 8

15. Unruh, D.: Non-interactive zero-knowledge proofs in the quantum random oracle
model. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9057,
pp. 755–784. Springer, Heidelberg (2015). doi:10.1007/978-3-662-46803-6 25

16. Yuen, H.: A quantum lower bound for distinguishing random functions from ran-
dom permutations. Quantum Inf. Comput. 14(13–14), 1089–1097 (2014)

17. Zhandry, M.: Secure identity-based encryption in the quantum random oracle
model. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417,
pp. 758–775. Springer, Heidelberg (2012). doi:10.1007/978-3-642-32009-5 44

18. Zhandry, M.: A note on the quantum collision and set equality problems. Quantum
Inf. Comput. 15(7&8), 557–567 (2015)

http://dx.doi.org/10.1007/BFb0053428
http://dx.doi.org/10.1007/978-3-642-25385-0_3
http://dx.doi.org/10.1007/978-3-642-25385-0_3
http://dx.doi.org/10.1007/978-3-642-40084-1_21
http://dx.doi.org/10.1007/978-3-642-40084-1_21
http://dx.doi.org/10.1007/3-540-48405-1_34
http://dx.doi.org/10.1007/3-540-44647-8_15
http://dx.doi.org/10.1007/978-3-319-29360-8_6
http://dx.doi.org/10.1007/978-3-662-44381-1_1
http://dx.doi.org/10.1007/978-3-642-55220-5_8
http://dx.doi.org/10.1007/978-3-662-46803-6_25
http://dx.doi.org/10.1007/978-3-642-32009-5_44

Multi-key FHE from LWE, Revisited

Chris Peikert(B) and Sina Shiehian

Computer Science and Engineering, University of Michigan, Ann Arbor, USA
cpeikert@alum.mit.edu

Abstract. Traditional fully homomorphic encryption (FHE) schemes
only allow computation on data encrypted under a single key.
López-Alt, Tromer, and Vaikuntanathan (STOC 2012) proposed the
notion of multi-key FHE, which allows homomorphic computation on
ciphertexts encrypted under different keys, and also gave a construction
based on a (somewhat nonstandard) assumption related to NTRU. More
recently, Clear and McGoldrick (CRYPTO 2015), followed by Mukherjee
and Wichs (EUROCRYPT 2016), proposed a multi-key FHE that builds
upon the LWE-based FHE of Gentry, Sahai, and Waters (CRYPTO
2013). However, unlike the original construction of López-Alt et al., these
later LWE-based schemes have the somewhat undesirable property of
being “single-hop for keys:” all relevant keys must be known at the start
of the homomorphic computation, and the output cannot be usefully
combined with ciphertexts encrypted under other keys (unless an expen-
sive “bootstrapping” step is performed).

In this work we construct two multi-key FHE schemes, based on LWE
assumptions, which are multi-hop for keys: the output of a homomor-
phic computation on ciphertexts encrypted under a set of keys can be
used in further homomorphic computation involving additional keys, and
so on. Moreover, incorporating ciphertexts associated with new keys is
a relatively efficient “native” operation akin to homomorphic multipli-
cation, and does not require bootstrapping (in contrast with all other
LWE-based solutions). Our systems also have smaller ciphertexts than
the previous LWE-based ones; in fact, ciphertexts in our second con-
struction are simply GSW ciphertexts with no auxiliary data.

1 Introduction

Secure multiparty computation (MPC) is an important and well-studied problem
in cryptography. In MPC, multiple users want to jointly perform a computation
on their respective inputs via an interactive protocol. Informally, the goal is for
the protocol to reveal nothing more than the output of the computation.

C. Peikert—This material is based upon work supported by the National Science
Foundation under CAREER Award CCF-1054495 and CNS-1606362, and by the
Alfred P. Sloan Foundation. The views expressed are those of the authors and do not
necessarily reflect the official policy or position of the National Science Foundation
or the Sloan Foundation.

c© International Association for Cryptologic Research 2016
M. Hirt and A. Smith (Eds.): TCC 2016-B, Part II, LNCS 9986, pp. 217–238, 2016.
DOI: 10.1007/978-3-662-53644-5 9

218 C. Peikert and S. Shiehian

Fully homomorphic encryption (FHE) is a powerful tool for constructing
secure MPC protocols. One approach suggested in Gentry’s seminal work [9],
and later optimized by Asharov et al. [4], is to have an initial phase in which
all parties run a protocol to generate a sharing of an FHE secret key, then use
the public key to encrypt their inputs and publish the ciphertexts. The parties
then locally compute an encryption of the output using homomorphic operations.
Finally, they run a protocol to decrypt the encrypted output, using their secret
key shares. Overall, this approach requires the set of involved parties to be known
in advance, and for them to run interactive protocols both before and after their
local computation.

López-Alt et al. [15] (hereafter LTV) introduced the interesting notion of
on-the-fly MPC, in which the set of parties who contribute inputs to the compu-
tation, and even the computation itself, need not be fixed in advance, and can
even be chosen adaptively. In addition, there is no interaction among the parties
at the outset: any user whose data might potentially be used simply uploads
her encrypted input to a central server in advance, and can then go offline. The
server then uses the uploaded data to compute (or continue computing) a desired
function, and when finished, outputs an encrypted output. Finally, the parties
whose inputs were used in the computation—and only those parties—run an
interactive protocol to jointly decrypt the ciphertext and obtain the output.

Multi-key FHE. Traditional FHE schemes only allow computation on data
encrypted under a single key, and therefore are not suitable for on-the-fly MPC,
where users’ inputs must be encrypted under different keys. As a tool for con-
structing on-the-fly protocols, LTV proposed a new type of FHE scheme, which
they called multi-key FHE (MK-FHE). Such a scheme extends the FHE func-
tionality to allow homomorphic computation on ciphertexts encrypted under
different, independent keys. Decrypting the result of such a computation neces-
sarily requires all of the corresponding secret keys.

In [15], LTV constructed an MK-FHE scheme based on a variant of the NTRU
cryptosystem [13]. Its security was based on a new and somewhat non-standard
assumption on polynomial rings, which, unlike the commonly used learning with
errors (LWE) assumption [20] or its ring-based analogue [16], is not currently
supported by a worst-case hardness theorem.1 (LTV also constructed MK-FHE
based on ring-LWE, but limited only to a logarithmic number of keys and circuit
depth.) Subsequently, Clear and McGoldrick [8] gave an LWE-based construction
for an unlimited number of keys, using a variant of the FHE scheme of Gentry
et al. [11] (hereafter GSW). Later, Mukherjee and Wichs [18] provided another
exposition of the Clear-McGoldrick scheme, and built a two-round (plain) MPC
protocol upon it.

1 Indeed, Albrecht et al. [1], and later Kirchner and Fouque [14], recently gave attacks
on “overstretched” NTRU problems like those used in [15], where the running times
range from slightly subexponential to even polynomial-time, depending on the para-
meterization.

Multi-key FHE from LWE, Revisited 219

Static Versus Dynamic. We observe that the LTV multi-key FHE, to extend
the terminology of [10], is “multi-hop for keys,” or, more concisely, “dynamic:”
one can perform a homomorphic computation on a collection of ciphertexts
encrypted under some set of keys, then use the resulting ciphertext as an input
to further homomorphic computation on ciphertexts encrypted under additional
keys, and so on. (Multi-hop homomorphic computation is naturally supported
by essentially all known single-key FHE schemes as well.) The on-the-fly MPC
protocol of [15] naturally inherits this dynamic flavor, which is very much in
the spirit of “on the fly” computation, since it allows reusing encrypted results
across different computations.

By contrast, it turns out that neither of the MK-FHE constructions
from [8,18] appear to be dynamic, but are instead only static (i.e., single-hop
for keys): once a homomorphic computation has been performed on a collection
of ciphertexts encrypted under some set of keys, the output cannot easily be
used in further computation involving additional keys. Instead, one must restart
the whole computation from scratch (incorporating all the relevant keys from
the very beginning), or perform an expensive “bootstrapping” step, which may
be even more costly.2 This rules out a dynamic computation, since all involved
parties must be known before the computation begins. In summary, existing
constructions of MK-FHE and on-the-fly MPC from standard (worst-case) lat-
tice assumptions still lack basic functionality that has been obtained from more
heuristic assumptions.

1.1 Our Results

In this work we construct two (leveled) multi-key FHE schemes, for any number
of keys, from LWE assumptions. Like the original MK-FHE scheme of [15], and
unlike those of [8,18], both of our schemes are dynamic (i.e., multi-hop for keys),
and hence are suitable for dynamic on-the-fly MPC. Specifically, in our schemes
one can homomorphically compute on ciphertexts encrypted under several keys,
then use the result in further computation on ciphertexts under additional keys,
and so on. Moreover, incorporating ciphertexts associated with new keys into the
computation is a relatively efficient “native” operation, akin to GSW ciphertext
multiplication, which does not require bootstrapping. In addition, our schemes
are also naturally bootstrappable (as usual, under appropriate circular-security
assumptions), and can therefore support unbounded homomorphic computations
for any polynomial number of keys. We now describe our two systems in more
detail, and discuss their different efficiency and security tradeoffs.

Scheme #1: Large Ciphertexts, Standard LWE. The security of our first scheme,
which is described in Sect. 3, is based on the standard n-dimensional decision-
LWE assumption (appropriately parameterized), but has rather large ciphertexts
and correspondingly slow homomorphic operations. Actually, the ciphertexts are

2 Indeed, a recent concurrent and independent work by Brakerski and Perlman [6] fol-
lows this bootstrapping approach; we provide a comparison to our work in Sect. 1.1.

220 C. Peikert and S. Shiehian

Fig. 1. Properties of LWE-based MK-FHE schemes, where all sizes are in bits. Here k
denotes the actual number of secret keys associated with the ciphertext, with a designed
upper bound of K; d denotes the boolean circuit depth the scheme is designed to
homomorphically evaluate (without bootstrapping); and n is the dimension of the
underlying LWE problem used for security. (The Õ notation hides logarithmic factors
in these parameters.) The arrow → for [8,18] denotes the change in size following the
single “hop” from fresh ciphertexts (under single keys) to multi-key ciphertexts.

about an n factor smaller than fresh ciphertexts in the systems from [8,18] (see
Fig. 1), but unlike in those systems, our ciphertexts remain rather large even
after multi-key homomorphic operations. Essentially, this is the price of being
dynamic—indeed, it is possible at any point to “downgrade” our ciphertexts
to ordinary GSW ciphertexts, by giving up the ability to extend ciphertexts to
additional keys.

Scheme #2: Small Ciphertexts, Circular LWE. In our second scheme, which is
described in Sect. 4, ciphertexts are simply GSW ciphertexts, and are therefore
(relatively) small and admit correspondingly efficient homomorphic operations.
This efficiency comes at the price of rather large public keys (which are compa-
rable to fresh ciphertexts in the systems from [8,18]) and a correspondingly slow
algorithm for extending ciphertexts to additional keys. This efficiency profile
seems preferable to our first scheme’s, because applications of MK-FHE would
typically involve many more homomorphic operations than extensions to new
keys. Therefore, we consider this scheme to be our main contribution.

Interestingly, the security of our second scheme appears to require a natural
circular security assumption for LWE. Despite some positive results for circular
security of LWE-based encryption [3], we do not yet see a way to prove secu-
rity under standard LWE. We point out, however, that our assumption is no
stronger than the circular-security assumptions that are used to “bootstrap”
FHE, because any circular-secure FHE is itself fully key-dependent message
secure [9]. So in a context where our system is bootstrapped to obtain unbounded
FHE, we actually incur no additional assumption.

Comparison with [6]. A concurrent and independent work by Brakerski and
Perlman [6], which also constructs (unbounded) dynamic multi-key FHE from
LWE, was posted to ePrint shortly after our original preprint appeared there.
(Both works were submitted to CRYPTO’16, but only [6] was accepted.) The
construction of Brakerski and Perlman follows the “bootstrapping” approach

Multi-key FHE from LWE, Revisited 221

mentioned above, and is focused on minimizing the ciphertext size. Specifi-
cally, their multi-key ciphertexts grow only linearly in the number of secret
keys associated with the ciphertext. In addition, they describe an “on-the-fly”
bootstrapping algorithm that requires only a linear amount of “local” memory
(even though the encrypted secret keys are much larger). However, all this comes
at the cost of needing to perform an expensive bootstrapping operation when-
ever incorporating a ciphertext encrypted under a new key, and also for every
homomorphic multiplication/NAND operation. (Essentially, this is because the
linear-sized ciphertexts are ordinary LWE vectors, not GSW matrices.)

By contrast, our work gives (leveled) dynamic multi-key FHE schemes for
which both homomorphic multiplication and incorporation of new keys are much
more efficient “native” operations, requiring only a few standard GSW-style
matrix operations. This comes at the cost of relatively larger ciphertexts, which
näıvely grow at least quartically in the maximum number of keys (see Fig. 1).
However, we point out that using ordinary bootstrapping, our constructions can
also be made to support an unbounded number of keys, and with ciphertext
sizes that grow only quadratically in the number of associated keys.

1.2 Technical Overview

For context, we start with a brief overview of the prior (single-hop for keys)
MK-FHE constructions of [8,18], and the challenge in making them dynamic.
In these systems, a fresh ciphertext that decrypts under secret key t ∈ Z

n is a
GSW ciphertext C ∈ Z

n×m
q encrypted to the corresponding public key P, along

with an encryption D of the encryption randomness used to produce C from P.
(Specifically, each entry of the randomness matrix is encrypted as a separate
GSW ciphertext.)

To perform a homomorphic computation on fresh ciphertexts (Ci,Di) that
are respectively encrypted under secret keys ti for (say) i = 1, 2, we first extend
each ciphertext to an ordinary GSW ciphertext

Ĉi =
[

Ci Xi

Ci

]

∈ Z
2n×2m
q (1)

that decrypts to the same message under the concatenated key (t1, t2), and then
perform normal GSW homomorphic operations on these extended ciphertexts.
Essentially, extending C1 is done by considering the extra “junk” term (t2−t1) ·
C1 that arises from decrypting C1 under the wrong secret key t2, and cancelling
it out via a ciphertext X1 that “decrypts” under t1 to (the negation of) the
same junk term. To produce X1 we use linearly homomorphic operations on D1

(the encryption of C1’s randomness relative to P1), along with some additional
information about t1 relative to a shared public parameter.

We point out that in the above scheme, it is not clear how to obtain an
encryption of Ĉi’s underlying encryption randomness—indeed, it is not even
clear what composite public key P̂ the ciphertext Ĉi would be relative to, nor
whether valid encryption randomness for Ĉi exists at all! (Indeed, for certain

222 C. Peikert and S. Shiehian

natural ways of combining the public keys Pi, valid encryption randomness is not
likely to exist.) This is what prevents the extended ciphertexts from satisfying
the same invariant that fresh ciphertexts satisfy, which makes the scheme only
single-hop for keys. Moreover, even if we could produce an encryption of the
ciphertext randomness (assuming it exists), it is not clear whether we could
later re-extend an arbitrary ciphertext C ∈ Z

2n×2m
q that decrypts under (t1, t2)

to an additional key t3: the block upper-triangular structure from Eq. (1) would
produce a 4n-by-4m matrix, which is too large.

Our Approach. To overcome the above difficulties, our ciphertexts and/or
public keys consist of different information, whose invariants can be maintained
after extension to additional keys. In particular, we forego maintaining encryp-
tion randomness relative to a varying public key, and instead only maintain
commitment randomness relative to a fixed public parameter, along with an
encryption of that randomness.3 Concretely, this works in two different ways in
our two schemes, as we now explain.

Scheme #1. In our first system (given in Sect. 3), a ciphertext under a secret
key t ∈ Z

kn—which would typically be the concatenation of k ≥ 1 individual
secret keys—consists of three components:

1. a (symmetric-key) GSW ciphertext C ∈ Z
kn×km
q that decrypts under t,

2. a GSW-style homomorphic commitment (à la [12]) F ∈ Z
n×m
q to the same

message, relative to a public parameter, and
3. a special encryption D under t of the commitment randomness underlying F.

To extend such a ciphertext to a new secret key t∗ ∈ Z
n, we simply extend the

GSW ciphertext C to some

C′ =
[

C X
F

]

∈ Z
(k+1)n×(k+1)m
q ,

where X is produced from D (in much the same way as above) to cancel out the
“junk” term that comes from “decrypting” F with t∗. The commitment F and
its encrypted randomness D remain unchanged, except that we need to pad D
with zeros to make it valid under (t, t∗).

Finally, it is not too hard to design homomorphic addition and multiplication
operations for ciphertexts having the above form: as shown in [12], GSW com-
mitments admit exactly the same homomorphic operations as GSW encryption,
so we can maintain a proper commitment. The homomorphic operations also
have a natural, predictable effect on the underlying commitment randomness, so
we can use the encrypted randomness Di along with the GSW ciphertexts Ci

to maintain correct encrypted commitment randomness.

3 We note that the previous constructions from [8,18] also require a public parameter,
so we are not changing the model.

Multi-key FHE from LWE, Revisited 223

Scheme #2. Our second system (given in Sect. 4) works differently from all
the previous ones. In it, ciphertexts are simply GSW ciphertexts, with no extra
components, so they support the standard homomorphic operations. To support
extending ciphertexts to additional keys, each public key contains a commitment
to its secret key t, along with an appropriate encryption under t of the commit-
ment randomness. (This cyclical relation between secret key and commitment
randomness is what leads to our circular-security assumption.) We show how to
combine two public keys to get a ciphertext, under the concatenation of their
secret keys t1, t2, that encrypts the tensor product t1 ⊗ t2 of those keys. By
applying homomorphic operations, it is then fairly straightforward to extend a
ciphertext that decrypts under one of the keys to a ciphertext that decrypts
under their concatenation.

2 Preliminaries

In this work, vectors are denoted by lower-case bold letters (e.g., a), and are
row vectors unless otherwise indicated. Matrices are denoted by upper-case bold
letters (e.g., A). We define [k] := {1, . . . , k} for any non-negative integer k.

Approximations. As in many works in lattice cryptography, we work with “noisy
equations” and must quantify the quality of the approximation. For this purpose
we use the notation ≈ to indicate that the two sides are approximately equal
up to some additive error, and we always include a bound on the magnitude of
this error. For example,

x ≈ y (error E)

means that x = y + e for some e ∈ [−E,E]. In the case of vectors or matrices,
the error bound applies to every entry of the error term, i.e., it is an �∞ bound.

For simplicity of analysis, in this work we use the following rather crude
“expansion” bounds to quantify error growth. (Sharper bounds can be obtained
using more sophisticated tools like subgaussian random variables.) Because ‖x ·
yt‖∞ ≤ ‖x‖∞ · ‖y‖1 and ‖y‖1 ≤ dim(y) · ‖y‖∞, we have implications like

X ≈ Y (error E)
=⇒ X · R ≈ Y · R. (error height (R) · ‖R‖∞ · E)

for any X,Y,R.

Tensor Products. The tensor (or Kronecker) product A ⊗ B of an m1-by-n1

matrix A with an m2-by-n2 matrix B, both over a common ring R, is the m1m2-
by-n1n2 matrix consisting of m2-by-n2 blocks, whose (i, j)th block is ai,j · B,
where ai,j denotes the (i, j)th entry of A.

It is clear that

r(A ⊗ B) = (rA) ⊗ B = A ⊗ (rB)

224 C. Peikert and S. Shiehian

for any scalar r ∈ R. We extensively use the mixed-product property of tensor
products, which says that

(A ⊗ B) · (C ⊗ D) = (AC) ⊗ (BD)

for any matrices A,B,C,D of compatible dimensions. In particular,

(A⊗B) = (A⊗ Iheight(B)) · (Iwidth(A) ⊗B) = (Iheight(A)⊗B) · (A⊗ Iwidth(B)).

2.1 Cryptographic Definitions

Definition 1. A leveled multi-hop, multi-key FHE scheme is a tuple of effi-
cient randomized algorithms (Setup,Gen,Enc,Dec,EvalNAND) having the follow-
ing properties:

– Setup(1λ, 1k, 1d), given the security parameter λ, a bound k on the number of
keys, and a bound d on the circuit depth, outputs a public parameter pp. (All
the following algorithms implicitly take pp as an input.)

– Gen() outputs a public key pk and secret key sk.
– Enc(pk, μ), given a public key pk and a message μ ∈ {0, 1}, outputs a cipher-

text c. For convenience, we assume that c implicitly contains a reference to pk.
– Dec((sk1, sk2, . . . , skt), c), given a tuple of secret keys sk1, . . . , skt and a

ciphertext c, outputs a bit.
– EvalNAND(c1, c2), given two ciphertexts c1, c2, outputs a ciphertext ĉ. For con-

venience, we assume that ĉ implicitly contains a reference to each public key
associated with either c1 or c2 (or both).

These algorithms should satisfy correctness and compactness functionality prop-
erties, as defined below.

We now describe how to homomorphically evaluate a given boolean circuit
composed of NAND gates and having one output wire, which is without loss of
generality. The algorithm Eval(C, (c1, . . . , cN)), given a circuit C having N input
wires, first associates ci with the ith input wire for each i = 1, . . . , N . Then for
each gate (in some topological order) having input wires i, j and output wire k,
it computes ck ← EvalNAND(ci, cj). Finally, it outputs the ciphertext associated
with the output wire.

We stress that the above homomorphic evaluation process is qualitatively
different from the ones defined in [15,18], because when homomorphically evalu-
ating each gate we can only use the key(s) associated with the input ciphertexts
for that gate alone; this is what makes the computation multi-hop. By contrast,
homomorphic evaluation in [15,18] is given all the input ciphertexts and public
keys from the start, so it can (and does, in the case of [18]) use this knowledge
before evaluating any gates.

Definition 2 (Correctness). A leveled multi-hop, multi-key FHE scheme is
correct if for all positive integers λ, k, d, for every circuit C of depth at most d
having N input wires, for every function π : [N] → [k] (which associates each

Multi-key FHE from LWE, Revisited 225

input wire with a key pair), and for every x ∈ {0, 1}N , the following exper-
iment succeeds with 1 − negl(λ) probability: generate a public parameter pp ←
Setup(1λ, 1k, 1d), generate key pairs (pkj , skj) ← Gen() for each j ∈ [k], generate
ciphertexts ci ← Enc(pkπ(i), xi) for each i ∈ [N], let ĉ ← Eval(C, (c1, . . . , cN)),
and finally test whether

Dec((skj), ĉ) = C(x1, . . . , xN),

where Dec is given those secret keys skj corresponding to the public keys refer-
enced by ĉ.

Definition 3 (Compactness). A leveled multi-hop, multi-key FHE scheme is
compact if there exists a polynomial p(·, ·, ·) such that in the experiment from
Definition 2, |ĉ| ≤ p(λ, k, d). In other words, the length of ĉ is independent of C
and N , but can depend polynomially on λ, k, and d.

2.2 Learning with Errors

For a positive integer dimension n and modulus q, and an error distribution χ
over Z, the LWE distribution and decision problem are defined as follows. For an
s ∈ Z

n, the LWE distribution As,χ is sampled by choosing a uniformly random
a ← Z

n
q and an error term e ← χ, and outputting (a, b = 〈s,a〉 + e) ∈ Z

n+1
q .

Definition 4. The decision-LWEn,q,χ problem is to distinguish, with non-
negligible advantage, between any desired (but polynomially bounded) number of
independent samples drawn from As,χ for a single s ← χn, and the same number
of uniformly random and independent samples over Z

n+1
q .4

A standard instantiation of LWE is to let χ be a discrete Gaussian distrib-
ution (over Z) with parameter r = 2

√
n. A sample drawn from this distribution

has magnitude bounded by, say, r
√

n = Θ(n) except with probability at most
2−n. For this parameterization, it is known that LWE is at least as hard as quan-
tumly approximating certain “short vector” problems on n-dimensional lattices,
in the worst case, to within Õ(q

√
n) factors [20]. Classical reductions are also

known for different parameterizations [5,19].
In this work it will be convenient to use a form of LWE that is somewhat

syntactically different from, but computationally equivalent to, the one defined
above. Letting s = (−s̄, 1) ∈ Z

n where s̄ ← χn−1, notice that an LWE sample
b = (a, b = 〈s,a〉 + e) ∈ Z

n
q drawn from As̄,χ is simply a uniformly random

vector satisfying
〈s,b〉 = s · bt = e ≈ 0. (2)

Therefore, decision-LWEn−1,q,χ is equivalent to the problem of distinguishing
samples having the above form (and in particular, satisfying Eq. (2)) from uni-
formly random ones.
4 Notice that in the above definition, the coordinates of s are drawn from the error

distribution χ; as shown in [3], this form of the problem is equivalent to the one
where s ← Z

n
q is drawn uniformly at random.

226 C. Peikert and S. Shiehian

More generally, for s ∈ Z
n as above and some t = poly(n), we will need to

generate uniformly random vectors b ∈ Z
tn
q that satisfy

(It ⊗ s) · b = e ≈ 0,

for some e ← χt. This is easily done by concatenating t independent samples
from As̄,χ; clearly, the result is indistinguishable from uniform assuming the
hardness of decision-LWEn,q,χ.

2.3 Gadgets and Decomposition

Here we recall the notion of a “gadget” [17], which is used for decomposing Zq-
elements—or more generally, vectors or matrices over Zq—into short vectors or
matrices over Z. We also define some new notation that will be convenient for
our application.

For simplicity, throughout this work we use the standard “powers of two”
gadget vector

g = (1, 2, 4, 8, . . . , 2�−1) ∈ Z
�
q, where � = �lg q�.

The “bit decomposition” function g−1 : Zq → {0, 1}� outputs a binary column
vector (over Z) consisting of the binary representation of (the canonical repre-
sentative in {0, 1, . . . , q − 1} of) its argument. As such, it satisfies the identity
g · g−1[a] = a. (This identity explains the choice of notation g−1; we stress
that g−1 is a function, not a vector itself.) Symmetrically, we define the notation

[a]g−t := g−1[a]t,

which outputs a binary row vector and satisfies the identity [a]g−t ·gt = a. (This
identity explains why we place the bracketed argument to the left of g−t.)

More generally, we define the operation denoted by (In⊗g−1)[·], which applies
g−1 entrywise to a height-n vector/matrix, and thereby produces a height-n�
binary output that satisfies the convenient identity

(In ⊗ g) · (In ⊗ g−1)[A] = A.

Similarly, we define [·](In ⊗ g−t) to apply g−t entrywise to a width-n vec-
tor/matrix, thereby producing a width-n� output that satisfies

[A](In ⊗ g−t) · (In ⊗ gt) = A.

For the reader who is familiar with previous works that use gadget techniques,
the matrix In⊗g is exactly the n-row gadget matrix G, and (In⊗g−1)[·] is exactly
the bit-decomposition operation G−1 on height-n vectors/matrices. In this work
we adopt the present notation because we use several different dimensions n,
and because it interacts cleanly with tensor products of vectors and matrices,
which we use extensively in what follows.

Multi-key FHE from LWE, Revisited 227

3 Large-Ciphertext Construction

In this section we describe our first construction of a multi-hop, multi-key FHE,
which has small keys but rather large ciphertexts (although fresh ciphertexts are
still smaller than in prior constructions). For simplicity, we describe the scheme
in the symmetric-key setting, but then note how to obtain a public-key scheme
using a standard transformation.

The system is parameterized by a dimension n, modulus q, and error dis-
tribution χ for the underlying LWE problem; we also let m = �2n log q�. For
concreteness, we let χ be the standard discrete Gaussian error distribution with
parameter 2

√
n; to recall, the samples it produces have magnitudes bounded

by some E = Θ(n) except with exponentially small 2−Ω(n) probability. The
modulus q is instantiated in Sect. 3.3, based on a desired depth of homomorphic
computation and number of distinct keys. The scheme is defined as follows.

– Setup: output a uniformly random A ∈ Z
n×m
q .

– Gen(A): choose t̄ ← χn−1 and define t := (−t̄, 1) ∈ Z
n. Choose e ← χm and

define

b := tA + e

≈ tA ∈ Z
m
q . (errorE) (3)

Output t as the secret key and b as the associated public extension key.
– Enc(t, μ ∈ {0, 1}): do the following, outputting (C,F,D) as the ciphertext.

1. As described in Sect. 2.2, choose an LWE matrix C̄ ∈ Z
n×n�
q that satisfies

tC̄ ≈ 0, and define

C := C̄ + μ(In ⊗ g) ∈ Z
n×n�
q .

Notice that C is simply a GSW ciphertext encrypting μ under secret key t:

tC = tC̄ + μ(t ⊗ 1) · (In ⊗ g) ≈ μ(t ⊗ g). (errorEC) (4)

2. In addition, choose a uniformly random R ∈ {0, 1}m×n� and define

F := AR + μ(In ⊗ g) ∈ Z
n×n�
q . (5)

We view F as a commitment to the message μ under randomness R.
3. Finally, choose (as described in Sect. 2.2) an LWE matrix D̄ ∈ Z

nm�×n�
q

that satisfies

(Im� ⊗ t) · D̄ ≈ 0,

and define D := D̄ + (R ⊗ gt ⊗ et
n), where en ∈ Z

n is the nth standard
basis vector (so t · et = 1). We therefore have

(Im� ⊗ t) · D ≈ R ⊗ gt. (errorED) (6)

We view D as a kind of encryption of the commitment randomness R.

228 C. Peikert and S. Shiehian

– Dec(t, (C,F,D)): this is standard GSW decryption of C under t, which works
due to Eq. (4).

Remark 1. The above scheme is defined in the symmetric-key setting, i.e., Enc
uses the secret key t to generate LWE samples. We can obtain a public-key
scheme using a standard technique, namely, have the encryption algorithm reran-
domize some public LWE samples to generate as many additional samples as
needed. More formally, we define B := A − et

n ⊗ b. Then because t · et
n = 1, we

have

tB ≈ 0. (errorE)

The public-key encryption algorithm then constructs C̄, D̄ by generating fresh
samples as B ·x for fresh uniformly random x ∈ {0, 1}m. It is easy to verify that
t(Bx) ≈ 0 with error m · E. Security follows from a standard argument, using
the LWE assumption to make b (and thereby B) uniformly random, and then
the leftover hash lemma to argue that the distribution of the fresh samples is
negligibly far from uniform.

Theorem 1. The above scheme is IND-CPA secure assuming the hardness of
the decision-LWEn−1,q,χ problem.

Proof. We prove that the view of an attacker in the real game is indistinguishable
from its view in a game in which the public extension key and every ciphertext
are uniformly random and independent of the message; this clearly suffices for
IND-CPA security. We proceed by a considering the following sequence of hybrid
experiments:

Game 0: This is the real IND-CPA game.
Game 1: In this game the public extension key and the C,D components of

every ciphertext are uniformly random and independent (but F is constructed
in the same way). More precisely:
1. Choose uniformly random public parameter A and extension key b, and

give them to the adversary.
2. For each encryption query, choose uniformly random and independent

C ∈ Z
n×n�
q and D ∈ Z

nm�×n�
q , construct F exactly as in Enc, and give

ciphertext (C,F,D) to the adversary.
Game 2: This is the ideal game; the only change from the previous game is

that each F is chosen uniformly at random.

We claim that Games 0 and 1 are computationally indistinguishable under
the LWE hypothesis. To prove this we describe a simulator S that is given an
unbounded source of samples; when they are LWE samples it simulates Game 0,
and when they are uniformly random samples it simulates Game 1. It works as
follows:

– Draw m samples and form a matrix Ā ∈ Z
n×m
q with the samples as its

columns. Choose a uniformly random extension key b ∈ Z
m
q , and let the

public parameter A = Ā + et
n ⊗ b.

Multi-key FHE from LWE, Revisited 229

– On encryption query μ, draw samples to construct matrices C̄ and D̄, and
define C,D from these as in Enc. Also construct F exactly as in Enc.

If the simulator’s input distribution is At̄,χ for some t̄ ← χn−1, then the
first n − 1 rows of Ā are uniformly random, hence A is uniformly random by
construction. Moreover, b ≈ (−t̄, 1) · A has the same distribution as in the
real game. Finally, C̄ and D̄ are constructed exactly as in the real game, so S
perfectly simulates Game 0.

By contrast, if the simulator’s input distribution is uniform, then A and b are
uniformly random and independent. Similarly, because C̄ and D̄ are uniform and
independent of everything else, so are C and D. Therefore, S perfectly simulates
Game 1. This proves the first claim.

Finally, we claim that Games 1 and 2 are statistically indistinguishable. This
follows directly from the leftover hash lemma. This concludes the proof.

3.1 Extending Ciphertexts

We first describe how to extend a ciphertext to an additional secret key t∗,
using the associated public extension key b∗ ≈ t∗A ∈ Z

m
q . More precisely,

suppose we have a ciphertext that encrypts μ under secret key t ∈ Z
n′

. (Here the
dimension n′ can be arbitrary, but typically n′ = nk for some positive integer k,
and t is the concatenation of k individual secret keys, each of dimension n.) The
ciphertext therefore consists of component matrices

C ∈ Z
n′×n′�
q , F ∈ Z

n×n�
q , D ∈ Z

n′m�×n�
q

that satisfy Eqs. (4)–(6) for some short commitment randomness R ∈ Z
m×n�.

(Notice that the dimensions of F and the width of D do not depend on n′.)
Our goal is to extend (C,F,D) to a new ciphertext (C′,F′,D′) that satisfies

Eqs. (4)–(6) with respect to the concatenated secret key t′ = (t, t∗) ∈ Z
n′+n and

some short commitment randomness R′. We do so as follows.

– The commitment and its randomness are unchanged: we define F′ := F and
R′ := R. This clearly preserves Eq. (5).

– Similarly, the encrypted randomness also is essentially unchanged, up to some
padding by zeros: we define

D′ := (Im� ⊗
(

In′

0n×n′

)

) · D ∈ Z
(n′+n)m�×n�
q .

Then Eq. (6) is preserved: (Im� ⊗ t′) · D′ = (Im� ⊗ t) · D ≈ R ⊗ gt = R′ ⊗ gt.
– Lastly, we define

C′ :=
(

C X
F

)

∈ Z
(n′+n)×(n′+n)�
q

where X is defined as follows:

s := [−b∗](Im ⊗ g−t) ∈ {0, 1}m�, (7)

X := (s ⊗ In′) · D ∈ Z
n′×n�
q .

230 C. Peikert and S. Shiehian

We now do the error analysis for ciphertext extension. Notice that by construction,

tX = (1 ⊗ t) · (s ⊗ In′) · D
= (s ⊗ 1) · (Im� ⊗ t) · D
≈ s · (R ⊗ gt) (Eq. (6), error m� · ED)
= −b∗R. (Eq. (7))

Putting everything together, we see that Eq. (4) is preserved:

t′C′ ≈ (

μ(t ⊗ g) tX + t∗F
)

(Eq. (4); error EC)

=
(

μ(t ⊗ g) tX + t∗AR + μ(t∗ ⊗ g)
)

(Eq. (5))

≈ (

μ(t ⊗ g) tX + b∗R + μ(t∗ ⊗ g)
)

(Eq. (3); error m‖R‖∞ · E)
≈ μ(t′ ⊗ g). (error m� · ED)

In total, the error in the new ciphertext C′ is

EC′ = EC + m‖R‖∞ · E + m� · ED.

We remark that the error growth is merely additive, so we can extend to multiple
new keys with only additive error growth per key. This is important for boot-
strapping a multi-key ciphertext, where the first step is to extend the circularly
encrypted secret keys to the keys that the ciphertext is encrypted under.

3.2 Homomorphic Operations

We now describe homomorphic addition and multiplication for the above cryp-
tosystem. Suppose we have two ciphertexts (C1,F1,D1) and (C2,F2,D2) that
respectively encrypt μ1 and μ2, with commitment randomness R1 and R2, under
a common secret key t ∈ Z

n′
. (As in the previous subsection, everything below

works for arbitrary dimension n′ and key t, but typically n′ = nk for some pos-
itive integer k, and t is the concatenation of k individual secret keys.) Recall
that the ciphertext components

Ci ∈ Z
n′×n′�
q , Fi ∈ Z

n×n�
q , Di ∈ Z

n′m�×n�
q

satisfy Eqs. (4)–(6) for some short commitment randomness Ri ∈ Z
m×n�.

– Negation and scalar addition. (These are used to homomorphically com-
pute NAND(μ1, μ2) = 1 − μ1μ2 for μi ∈ {0, 1}.) To homomorphically negate
a message for a ciphertext (C,F,D), just negate each of the components. It
is clear that this has the desired effect, and that the associated commitment
randomness and error terms are also negated. To homomorphically add a con-
stant c ∈ Z to a message, just add c(In′ ⊗g) to both C and F. It is clear that
this has the desired effect, and leaves the commitment randomness and error
terms unchanged.

Multi-key FHE from LWE, Revisited 231

– Addition. To homomorphically add, we simply add the corresponding matri-
ces, outputting

(Cadd,Fadd,Dadd) := (C1 + C2,F1 + F2,D1 + D2).

It is easy to verify that Eqs. (4)–(6) hold for the new ciphertext with message
μadd = μ1 + μ2 and commitment randomness Radd = R1 + R2, where the
errors in the approximations are also added.

– Multiplication. To homomorphically multiply, we define the short matrices

Sc := (In′ ⊗ g−1)[C2] ∈ {0, 1}n′�×n′�, (8)

Sf := (In ⊗ g−1)[F2] ∈ {0, 1}n�×n�, (9)

Sd := (In′m� ⊗ g−1)[D2] ∈ {0, 1}n′m�2×n�, (10)

and output the ciphertext consisting of

Cmul := C1 · Sc

Fmul := F1 · Sf

Dmul := D1 · Sf + (Im� ⊗ C1) · Sd.

The associated commitment randomness is defined as

Rmul := R1 · Sf + μ1R2.

We now show that the ciphertext output by homomorphic multiplication
satisfies Eqs. (4)–(6) for key t, message μmul = μ1μ2, and commitment random-
ness Rmul. We already know that Eq. (4), the GSW ciphertext relation, is satis-
fied by construction of Cmul as the homomorphic product of GSW ciphertexts
C1,C2. Specifically:

tCmult = tC1 · Sc

≈ μ1(t ⊗ g) · Sc (error n′� · EC1)
= μ1tC2 (Eq. (8))
≈ μ1μ2(t ⊗ g). (error μ1EC2)

Similarly, Eq. (5) is satisfied by construction of Fmul as the homomorphic
product of commitments F1,F2:

Fmul = F1 · Sf

= (AR1 + μ1(In ⊗ g)) · Sf

= AR1 · Sf + μ1F2 (Eq. (9))
= AR1 · Sf + μ1AR2 + μ1μ2(In ⊗ g)
= ARmult + μ1μ2(In ⊗ g).

232 C. Peikert and S. Shiehian

Finally, to see that Eq. (6) holds for Dmul, first notice that

(Im� ⊗ t) · D1 · Sf ≈ (R1 ⊗ gt) · (Sf ⊗ 1) (Eqs. (6); error n� · ED1)

= (R1 · Sf) ⊗ gt. (11)

In addition,

(Im� ⊗ t) · (Im� ⊗ C1) · Sd = (Im� ⊗ tC1) · Sd

≈ μ1(Im� ⊗ t ⊗ g) · Sd (Eq. (4); error n′� · EC1)
= μ1(Im� ⊗ t) · D2 (Eq. (10))

≈ (μ1R2) ⊗ gt (Eq. (6); error μ1 · ED2)
(12)

Summing Eqs. (11) and (12) yields

(Im� ⊗ t) · Dmul ≈ Rmul ⊗ gt

with error n� · ED1 + n′� · EC1 + μ1 · ED2 as desired.

3.3 Instantiating the Parameters

We now bound the worst-case error growth when homomorphically evaluating
a depth-d circuit of NAND gates for up to k individual keys. As above, let
n′ = nk. For a ciphertext (C,F,D) with commitment randomness R, define the
“max error”

E∗ := max(EC, ED, E · ‖R‖∞).

By the bounds from the previous subsection, for two ciphertexts with max error
at most E∗, their homomorphic NAND has max error at most (n(k + 1)� +
1) · E∗ = poly(n, k, �) · E∗. Similarly, when we extend a ciphertext with max
error at most E∗, the result has max error at most (m(� + 1) + 1) · E∗ =
poly(n, �) · E∗. Therefore, for any depth-d homomorphic computation on fresh
ciphertexts encrypted under k keys, the result has max error at most

poly(n, k, �)k+d.

The GSW decryption algorithm works correctly on a ciphertext as long as its
error is smaller than q/4, hence it suffices to choose a modulus q that exceeds
the above quantity by a factor of four. Recalling that � = Θ(log q) = Õ(k + d),
this corresponds to a worst-case approximation factor of poly(n, k, d)k+d for n-
dimensional lattice problems.

We also remark that when bootstrapping a k-key ciphertext, we first extend
the circularly encrypted secret keys to the k relevant keys, incurring only additive
poly(n, k, �) error growth, then we run the bootstrapping algorithm. Using an
algorithm from [2,7] that incurs only additive poly(n, k, �) error growth, we can
use a modulus q that is as small as slightly super-polynomial q = nω(1) and still
support any polynomial number of keys.

Multi-key FHE from LWE, Revisited 233

4 Smaller-Ciphertext Construction

In this section we describe a multi-hop, multi-key FHE having smaller cipher-
texts and more efficient homomorphic operations than the one in Sect. 3. Indeed,
ciphertexts in this system are simply GSW ciphertexts (with no additional
information), which admit the usual homomorphic operations. These efficiency
improvements come at the cost of larger public extension keys, as well as a
circular-security assumption.

Recall that in the scheme from the previous section, a ciphertext includes a
commitment to the message, along with a special encryption of the commitment
randomness. By contrast, in the scheme described below, the extension key con-
tains a commitment to the secret key, along with an encryption (under the secret
key) of the commitment randomness. (Using the commitment randomness to hide
the secret key, and using the secret key to hide the commitment randomness, is
what leads to a circular-security assumption.) We show how to combine two exten-
sion keys to get an encryption, under the concatenation of the secret keys, of the
tensor product of those keys; this in turn lets us extend a ciphertext encrypted
under one of the keys to their concatenation. We now describe the construction.

As in the previous section, the scheme is parameterized by LWE parameters n
and q, the standard error distribution χ (which is E-bounded for E = Θ(n)),
and m = �2n log q�. The system is defined as follows.

– Setup: output a uniformly random A ∈ Z
n×m
q .

– Gen(A): do the following, outputting t as the secret key and (b,P,D) as the
public extension key.
1. Choose t̄ ← χn−1 and define t := (−t̄, 1) ∈ Z

n. Choose e ← χm and define

b := tA + e

≈ tA ∈ Z
m
q . (error E)

2. Choose a uniformly random R ← {0, 1}m×n2� and define

P := AR + (In ⊗ t ⊗ g) ∈ Z
n×n2�
q .

3. As described in Sect. 2.2, choose an LWE matrix D̄ ∈ Z
nm�×n2�
q that sat-

isfies (Im� ⊗ t) · D̄ ≈ 0 (with error E), and define D := D̄+ (R⊗gt ⊗ et
n),

where en ∈ {0, 1}n denotes the nth standard basis vector. Notice that,
because t · et

n = 1, we have

(Im� ⊗ t) · D ≈ R ⊗ gt. (error E)

– Enc(t, μ ∈ {0, 1}): This is standard GSW encryption. Specifically, as described
in Sect. 2.2, choose an LWE matrix C̄ ∈ Z

n×n�
q that satisfies tC̄ ≈ 0, and

output the ciphertext C := C̄ + μ(In ⊗ g). Notice that t, C satisfy the GSW
relation

tC = tC̄ + μ(t ⊗ 1) · (In ⊗ g) ≈ μ(t ⊗ g). (error EC)

– Dec(t,C): this is standard GSW decryption.

234 C. Peikert and S. Shiehian

We again stress that ciphertexts in the above system are just GSW cipher-
texts (with no auxiliary information), so homomorphic addition and multiplica-
tion work as usual (and as in Sect. 3). Therefore, we only need to show how to
extend ciphertexts to new keys, which we do below in Sect. 4.1.

For security, we rely on the following circular hardness assumption: that
LWE samples for secret t̄ ← χn are indistinguishable from uniform, even given
(b,A,P,D) as constructed by Setup and Gen (using secret t̄). We remark that
this assumption is “circular” because D computationally hides (but statistically
determines) R under t̄, and P hides t̄ using R.

The proof of the following theorem follows immediately from the assumption.

Theorem 2. The above scheme is IND-CPA secure under the above circular-
security assumption.

Proof. The proof follows immediately from the assumption: in the real IND-
CPA game, the adversary gets the public information (b,A,P,D) along with
ciphertexts generated from LWE samples with secret t̄. In the ideal world, these
samples are instead uniformly random, and hence perfectly hide the encrypted
messages. Indistinguishability of the two worlds follows directly from the circular-
security assumption.

4.1 Extending a Ciphertext to a New Key

We now show how to extend a (potentially multi-key) ciphertext to an additional
key, so as to preserve the GSW relation for the concatenation of the secret keys.
Specifically, suppose we have a ciphertext C ∈ Z

n′×n′�
q that encrypts μ under a

key t ∈ Z
n′

, i.e.,

tC ≈ μ(t ⊗ g). (error EC)

In this setting, n′ = nk for some positive integer k ≥ 1, and t = (t1, . . . , tk)
is the concatenation of k individual secret keys ti ∈ Z

n for which we know the
associated vector bi ≈ tiA ∈ Z

m
q (with error E) from the public extension key.

(We will not need the extension key’s other components P, D.)
We wish to extend C to an additional secret key t∗ for which we know the

associated matrices P∗, D∗ from the public extension key (we will not need the
associated b∗). More precisely, we want to generate a ciphertext C′ that encrypts
μ under t′ = (t, t∗) ∈ Z

n(k+1), i.e., we want

t′C′ ≈ μ(t′ ⊗ g) = μ
(

t ⊗ g t∗ ⊗ g
)

.

To do this, we output

C′ :=
(

C X
X∗

)

(13)

where X′ =
(

X
X∗

)

is as defined below. Notice that by construction,

t′C′ ≈ (

μ(t ⊗ g) t′X′) . (error EC)

Multi-key FHE from LWE, Revisited 235

Below we show how to satisfy

t′X′ = tX + t∗X∗ ≈ μ(t∗ ⊗ g) (14)

with error
EX′ = (n2 · (k� + 1)2 · m + EC) · E,

which yields t′C′ ≈ μ(t′⊗g) with error EC′ = max{EC, EX′} = EX′ , as desired.

Remark 2. While the error bound EC′ = EC · E + poly(n, k, �) is multiplica-
tive in the original error EC, we can still extend to multiple new keys while
incurring just one factor-of-E increase in the error. This is important for boot-
strapping a multi-key ciphertext, where the first step is to extend the circularly
encrypted secret keys to all the keys that the ciphertext is encrypted under. The
method works by naturally generalizing Eq. (13) to a matrix with blocks along
the diagonal and top row only.

Constructing X′. We construct X′ in two steps:

1. Using just the bi and P∗, D∗ (but not the ciphertext C), we construct Y′ =
(

Y
Y∗

)

that satisfies

t′Y′ = tY + t∗Y∗ ≈ (t ⊗ t∗ ⊗ g) (15)

with error EY′ = (k� + 1) · m · E. This construction is described below.
2. We then obtain X′ by multiplying Y′ by a certain binary matrix that is

derived from the ciphertext C. Essentially, this step just replaces t with μg
in the right-hand side of Eq. (15), while consuming the existing g.
Let C̄ := C · (et

n ⊗ I�) ∈ Z
nk×�
q consist of the last � columns of C, so that

tC̄ ≈ μ(t ⊗ g) · (et
n ⊗ I�) = μg. (error EC) (16)

Define the binary matrix

S := (Ink ⊗ In ⊗ g−1)
[

C̄ ⊗ In

] ∈ {0, 1}n2k�×�, (17)

and observe that

t′Y′ · S ≈ (t ⊗ t∗ ⊗ g) · S (Eq. (15); error n2k� · EY′)
= (t ⊗ t∗) · (C̄ ⊗ In) (Eq. (17))
= (tC̄) ⊗ t∗

≈ μ(g ⊗ t∗). (Eq. (16), ‖t∗‖∞ ≤ E, so error EC · E) (18)

Notice that the right-hand side of Eq. (18) is exactly the desired right-
hand side of Eq. (14), but permuted (because the arguments of the Kro-
necker product are swapped). So let Π be the permutation matrix for which
(g ⊗ t∗)Π = (t∗ ⊗ g) for any t∗, and define

X′ := Y′ · S · Π,

which by the above satisfies Eq. (14), as desired.

236 C. Peikert and S. Shiehian

Constructing Y′. We now describe the construction of Y′ =
(

Y
Y∗

)

to satisfy
Eq. (15). To do this we use the public matrices P∗,D∗ associated with t∗, which
by construction satisfy

P∗ = AR∗ + (In ⊗ t∗ ⊗ g)

(Im� ⊗ t∗) · D∗ ≈ R∗ ⊗ gt (error E) (19)

for some binary matrix R∗ ∈ {0, 1}m×n2�. Recalling that t ∈ Z
nk is the con-

catenation of k individual secret keys ti ∈ Z
n, we also define b ∈ Z

mk
q to be the

concatenation of the associated bi ≈ tiA ∈ Z
m
q (all with error E), so

b ≈ t · (Ik ⊗ A). (error E) (20)

First, we define

Y := Ik ⊗ P∗ = (Ik ⊗ AR∗) + (Ink ⊗ t∗ ⊗ g).

Observe that

tY = t · (Ik ⊗ AR∗) + (t ⊗ 1 ⊗ 1) · (Ink ⊗ t∗ ⊗ g)
= t · (Ik ⊗ A) · (Ik ⊗ R∗) + (t ⊗ t∗ ⊗ g)
≈ b · (Ik ⊗ R∗) + (t ⊗ t∗ ⊗ g). (Eq. (20); error m · E.)

Therefore, in order to satisfy Eq. (15), it suffices to construct Y∗ to satisfy

t∗Y∗ ≈ −b · (Ik ⊗ R∗).

with error km� · E. To do this, we define

s := −[b](Ik ⊗ Im ⊗ g−t) ∈ {0, 1}km� (21)
Y∗ := (s ⊗ In) · (Ik ⊗ D∗).

Then observe that

t∗Y∗ = (1 ⊗ t∗) · (s ⊗ In) · (Ik ⊗ D∗)
= (s ⊗ 1) · (Ikm� ⊗ t∗) · (Ik ⊗ D∗)

≈ s · (Ik ⊗ R∗ ⊗ gt) (Eq. (19); error km� · E)
= −b · (Ik ⊗ R∗) (Eq. (21))

as desired. This completes the construction and analysis.

4.2 Instantiating the Parameters

We now bound the worst-case error growth when homomorphically evaluating
a depth-d circuit of NAND gates for up to k individual keys. As above, let
n′ = nk. For two ciphertexts with error bounded by E∗, their homomorphic

Multi-key FHE from LWE, Revisited 237

NAND has error bounded by (n′� + 1) · E∗ = poly(n, k, �) · E∗. Similarly, when
we extend a ciphertext with error bounded by E∗, the result has error bounded
by (n2 ·(k�+1)2 ·m+E∗)·E = poly(n, k, �)·E∗. Therefore, for any depth-d homo-
morphic computation on fresh ciphertexts encrypted under k keys, the result has
error bounded by poly(n, k, �)k+d. Therefore, it suffices to choose a modulus q
that exceeds four times this bound. Recalling that � = Θ(log q) = Õ(k + d),
this corresponds to a worst-case approximation factor of poly(n, k, d)k+d for n-
dimensional lattice problems.

We also remark that when bootstrapping a k-key ciphertext, we first extend
the circularly encrypted secret keys to the k relevant keys, incurring only a
single factor-of-E plus additive poly(n, k, �) error growth, then we run the boot-
strapping algorithm. Using an algorithm from [2,7] that incurs only additive
poly(n, k, �) error growth, we can use a modulus q that is as small as slightly
super-polynomial q = nω(1) and still support any polynomial number of keys.

References

1. Albrecht, M., Bai, S., Ducas, L.: A subfield lattice attack on overstretched NTRU
assumptions. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS, vol. 9814,
pp. 153–178. Springer, Heidelberg (2016). doi:10.1007/978-3-662-53018-4 6

2. Alperin-Sheriff, J., Peikert, C.: Faster bootstrapping with polynomial error. In:
Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014. LNCS, vol. 8616, pp. 297–314.
Springer, Heidelberg (2014). doi:10.1007/978-3-662-44371-2 17

3. Applebaum, B., Cash, D., Peikert, C., Sahai, A.: Fast cryptographic primitives
and circular-secure encryption based on hard learning problems. In: Halevi, S.
(ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 595–618. Springer, Heidelberg (2009).
doi:10.1007/978-3-642-03356-8 35

4. Asharov, G., Jain, A., López-Alt, A., Tromer, E., Vaikuntanathan, V., Wichs,
D.: Multiparty computation with low communication, computation and interac-
tion via threshold FHE. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT
2012. LNCS, vol. 7237, pp. 483–501. Springer, Heidelberg (2012). doi:10.1007/
978-3-642-29011-4 29

5. Brakerski, Z., Langlois, A., Peikert, C., Regev, O., Stehlé, D.: Classical hardness
of learning with errors. In: STOC, pp. 575–584 (2013)

6. Brakerski, Z., Perlman, R.: Lattice-based fully dynamic multi-key FHE with short
ciphertexts. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS, vol. 9814, pp.
190–213. Springer, Heidelberg (2016). doi:10.1007/978-3-662-53018-4 8

7. Brakerski, Z., Vaikuntanathan, V.: Lattice-based FHE as secure as PKE. In: ITCS,
pp. 1–12 (2014)

8. Clear, M., McGoldrick, C.: Multi-identity and multi-key leveled FHE from learning
with errors. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9216,
pp. 630–656. Springer, Heidelberg (2015). doi:10.1007/978-3-662-48000-7 31

9. Gentry, C.: A fully homomorphic encryption scheme. PhD thesis, Stanford Uni-
versity (2009). http://crypto.stanford.edu/craig

10. Gentry, C., Halevi, S., Vaikuntanathan, V.: i-hop homomorphic encryption and
rerandomizable Yao circuits. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223,
pp. 155–172. Springer, Heidelberg (2010). doi:10.1007/978-3-642-14623-7 9

http://dx.doi.org/10.1007/978-3-662-53018-4_6
http://dx.doi.org/10.1007/978-3-662-44371-2_17
http://dx.doi.org/10.1007/978-3-642-03356-8_35
http://dx.doi.org/10.1007/978-3-642-29011-4_29
http://dx.doi.org/10.1007/978-3-642-29011-4_29
http://dx.doi.org/10.1007/978-3-662-53018-4_8
http://dx.doi.org/10.1007/978-3-662-48000-7_31
http://crypto.stanford.edu/craig
http://dx.doi.org/10.1007/978-3-642-14623-7_9

238 C. Peikert and S. Shiehian

11. Gentry, C., Sahai, A., Waters, B.: Homomorphic encryption from learning with
errors: conceptually-simpler, asymptotically-faster, attribute-based. In: Canetti,
R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8042, pp. 75–92. Springer,
Heidelberg (2013). doi:10.1007/978-3-642-40041-4 5

12. Gorbunov, S., Vaikuntanathan, V., Wichs, D.: Leveled fully homomorphic signa-
tures from standard lattices. In: STOC, pp. 469–477 (2015)

13. Hoffstein, J., Pipher, J., Silverman, J.H.: NTRU: A ring-based public key cryp-
tosystem. In: Buhler, J.P. (ed.) ANTS 1998. LNCS, vol. 1423, pp. 267–288.
Springer, Heidelberg (1998). doi:10.1007/BFb0054868

14. Kirchner, P., Fouque, P.-A.: Comparison between subfield and straightforward
attacks on NTRU. Cryptology ePrint Archive, Report 2016/717 (2016). http://
eprint.iacr.org/2016/717

15. López-Alt, A., Tromer, E., Vaikuntanathan, V.: On-the-fly multiparty computation
on the cloud via multikey fully homomorphic encryption. In: STOC, pp. 1219–1234
(2012)

16. Lyubashevsky, V., Peikert, C., Regev, O.: On ideal lattices, learning with errors
over rings. J. ACM 60(6), 43:1–43:35 (2013). Preliminary version in Eurocrypt
2010

17. Micciancio, D., Peikert, C.: Trapdoors for lattices: simpler, tighter, faster, smaller.
In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237,
pp. 700–718. Springer, Heidelberg (2012). doi:10.1007/978-3-642-29011-4 41

18. Mukherjee, P., Wichs, D.: Two round multiparty computation via multi-key FHE.
In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9666, pp.
735–763. Springer, Heidelberg (2016). doi:10.1007/978-3-662-49896-5 26

19. Peikert, C.: Public-key cryptosystems from the worst-case shortest vector problem.
In: STOC, pp. 333–342 (2009)

20. Regev, O.: On lattices, learning with errors, random linear codes, and cryptogra-
phy. J. ACM 56(6), 1–40 (2009). Preliminary version in STOC 2005

http://dx.doi.org/10.1007/978-3-642-40041-4_5
http://dx.doi.org/10.1007/BFb0054868
http://eprint.iacr.org/2016/717
http://eprint.iacr.org/2016/717
http://dx.doi.org/10.1007/978-3-642-29011-4_41
http://dx.doi.org/10.1007/978-3-662-49896-5_26

Obfuscation and Multilinear Maps

Secure Obfuscation in a Weak Multilinear
Map Model

Sanjam Garg1(B), Eric Miles2, Pratyay Mukherjee1, Amit Sahai2,
Akshayaram Srinivasan1, and Mark Zhandry3,4

1 University of California, Berkeley, USA
{sanjamg,pratyay85,akshayaram}@berkeley.edu

2 UCLA and Center for Encrypted Functionalities, Los Angeles, USA
{enmiles,sahai}@cs.ucla.edu

3 MIT, Cambridge, USA
4 Princeton University, Princeton, USA

mzhandry@princeton.edu

Abstract. All known candidate indistinguishability obfuscation (iO)
schemes rely on candidate multilinear maps. Until recently, the strongest
proofs of security available for iO candidates were in a generic model that
only allows “honest” use of the multilinear map. Most notably, in this
model the zero-test procedure only reveals whether an encoded element
is 0, and nothing more.

However, this model is inadequate: there have been several attacks on
multilinear maps that exploit extra information revealed by the zero-test
procedure. In particular, Miles, Sahai and Zhandry (Crypto’16) recently
gave a polynomial-time attack on several iO candidates when instan-
tiated with the multilinear maps of Garg, Gentry, and Halevi (Euro-
crypt’13), and also proposed a new “weak multilinear map model” that
captures all known polynomial-time attacks on GGH13.

In this work, we give a new iO candidate which can be seen as a small
modification or generalization of the original candidate of Garg, Gentry,

This paper is a merged version of [GMS16,MSZ16b].
S. Garg, P. Mukherjee and A. Srinivasan—Research supported in part from a
DARPA/ARL SAFEWARE award, AFOSR Award FA9550-15-1-0274, NSF CRII
Award 1464397 and an Okawa Foundation Research Grant. The views expressed are
those of the authors and do not reflect the official policy or position of the funding
agencies.
E. Miles and A. Sahai—Research supported in part from a DARPA/ARL SAFE-
WARE award, NSF Frontier Award 1413955, NSF grants 1228984, 1136174, 1118096,
and 1065276, a Xerox Faculty Research Award, a Google Faculty Research Award,
an equipment grant from Intel, and an Okawa Foundation Research Grant. This
material is based upon work supported by the Defense Advanced Research Projects
Agency through the ARL under Contract W911NF-15-C-0205. The views expressed
are those of the author and do not reflect the official policy or position of the Depart-
ment of Defense, the National Science Foundation, or the U.S. Government.
M. Zhandry—Supported in part by the Defense Advanced Research Projects Agency
(DARPA) and the U.S. Army Research Office under contract number W911NF-15-
C-0226.

c© International Association for Cryptologic Research 2016
M. Hirt and A. Smith (Eds.): TCC 2016-B, Part II, LNCS 9986, pp. 241–268, 2016.
DOI: 10.1007/978-3-662-53644-5 10

242 S. Garg et al.

Halevi, Raykova, Sahai, and Waters (FOCS’13). We prove its security in
the weak multilinear map model, thus giving the first iO candidate that
is provably secure against all known polynomial-time attacks on GGH13.
The proof of security relies on a new assumption about the hardness of
computing annihilating polynomials, and we show that this assumption
is implied by the existence of pseudorandom functions in NC1.

1 Introduction

Candidates for multilinear maps [GGH13a,CLT13,GGH15,CLT15,Hal15], also
called graded encoding schemes, have formed the substrate for achiev-
ing the important goal of general-purpose indistinguishability obfuscation
(iO) [BGI+01,BGI+12]. Several iO candidates have appeared in the literature
starting with the work of [GGH+13b]. However, all known proofs of security for
candidate obfuscation schemes have relied on assumptions that are justified only
in a generic multilinear group model, where, informally speaking, the adversary
is limited to using the multilinear map only in an honest manner. Most notably,
this model allows the adversary to submit encodings for a zero test, and in the
model the adversary only learns whether the encoding is an encoding of zero or
not, and nothing more.

Unfortunately this last aspect of the modeling of multilinear maps has proven
extremely elusive to achieve in multilinear map candidates: zero testing seems
to reveal quite a bit more than just whether an encoded element is zero or
not. Indeed, all candidate constructions of multilinear maps have been shown
to suffer from “zeroizing” attacks [GGH13a,CHL+15,BWZ14,CGH+15,HJ15,
BGH+15,Hal15,CLR15,MF15,MSZ16a] that show how to exploit the additional
information leaked by zero testing to attack various schemes constructed on
top of multilinear maps. In particular, a work by Miles, Sahai, and Zhandry
[MSZ16a] gave the first polynomial-time attack on several candidate construc-
tions of iO [BR14,BGK+14,PST14,AGIS14,MSW14,BMSZ16] when those con-
structions are instantiated using the original multilinear map candidate due to
Garg, Gentry, and Halevi [GGH13a]. Thus, these attacks show that our model-
ing of multilinear map candidates is insufficient, even as a heuristic for arguing
security.

The work of Badrinarayanan et al. [BMSZ16] explicitly addressed the ques-
tion of whether a weaker model of security of multilinear maps can suffice for
proving the security of iO. In particular, such a model of weak multilinear maps
must take into account known attacks on the candidate multilinear map — that
is, all known polynomial-time attacks must be allowable in the model. While
there are several long-standing iO candidates that are not known to be broken
(see, e.g., [AJN+16, Appendix A]), until recently there has not been any model
for justifying their security. The work of [BMSZ16] gave the first such positive
result, and showed that in one such weak multilinear map model, obfuscation for
evasive functions can be proven secure with only minor modifications to exist-
ing iO candidates. [MSZ16a] posited another, more specific, weak multilinear

Secure Obfuscation in a Weak Multilinear Map Model 243

map model that captured all known polynomial-time attacks in the context of
the GGH13 multilinear map candidate. However, that work did not answer the
question of whether one can construct an iO candidate for general programs that
is provably secure in this model.

Our Contribution. In this work we answer this question in the affirmative,
showing a new construction of an iO candidate, which can be seen as a small
modification or generalization of the original iO candidate of [GGH+13b], and
we prove its security in the weak multilinear map model of [MSZ16a].

We prove the security of our candidate under a new assumption about the
hardness of computing annihilating polynomials (cf. Definition 4), and we show
that this assumption is implied by the existence of pseudorandom functions
(PRF) in NC1. Interestingly, if our assumption is true because a PRF exists
and can be computed by a matrix branching program of size t(n), then our
construction will only depend on this size bound t(n), and not on any other
details of the PRF! Indeed, our construction will just need to be padded to have
size at least roughly t(n), and no modification will be necessary at all if the
program being obfuscated is already larger than t(n).

Philosophically, this is reminiscent of the recent work on time-lock puzzles
of [BGJ+15], where their construction of a puzzle needs to be padded to have
the size of some program that computes a long non-parallelizable computation.
Technically, however, our methods appear to be completely unrelated.

We now give an overview of the GGH13 multilinear map candidate. Follow-
ing that, we describe an objective that is common to all known polynomial-time
attacks on the GGH13 multilinear map, and use this to explain the weak multi-
linear map model of [MSZ16a]. We then present some starting intuition followed
by an outline of the proof that our new candidate is secure against all known
polynomial-time attacks on GGH13 (including [MSZ16a]).

1.1 Overview of GGH13

For GGH13 [GGH13a] with k levels of multilinearity, the plaintext space is a
quotient ring Rg = R/gR where R is the ring of integers in a number field and
g ∈ R is a “small element” in that ring. The space of encodings is Rq = R/qR
where q is a “big integer”. An instance of the scheme relies on two secret elements,
the generator g itself and a uniformly random denominator z ∈ Rq. A small
plaintext element α is encoded “at level one” as u = [e/z]q where e is a “small
element” in the coset of α, that is e = α + gr for some small r ∈ R.

Addition/subtraction of encodings at the same level is just addition in Rq,
and it results in an encoding of the sum at the same level, so long as the numera-
tors do not wrap around modulo q. Similarly multiplication of elements at levels
i, i′ is a multiplication in Rq, and as long as the numerators do not wrap around
modulo q the result is an encoding of the product at level i + i′.

The scheme also includes a “zero-test parameter” in order to enable test-
ing for zero at level k. Noting that a level-k encoding of zero is of the form
u = [gr/zk]q, the zero-test parameter is an element of the form pzt = [hzk/g]q

244 S. Garg et al.

for a “somewhat small element” h ∈ R. This lets us eliminate the zk in the
denominator and the g in the numerator by computing [pzt · u]q = h · r, which
is much smaller than q because both h, r are small. If u is an encoding of a
non-zero α, however, then multiplying by pzt leaves a term of [hα/g]q which
is not small. Testing for zero therefore consists of multiplying by the zero-test
parameter modulo q and checking if the result is much smaller than q.

Note that above we describe the “symmetric” setting for multilinear maps
where there is only one z, and its powers occur in the denominators of encodings.
More generally, there is an “asymmetric” setting where there are multiple zi.

1.2 Overview of the Model

To motivate our model (which is essentially that of [MSZ16a] with some clarifica-
tions), we note that all known polynomial-time attacks [GGH13a,HJ15,MSZ16a]
on the GGH13 graded encoding scheme share a common property. As men-
tioned above, these attacks work by using information leaked during zero testing.
More precisely, these attacks compute a set of top-level 0-encodings via algebraic
manipulations on some set of initial encodings, then apply the zero test to each
top level encoding, and then perform an algebraic computation on the results of
the zero testing to obtain an element in the ideal 〈g〉. In particular, the latter
computation is agnostic to the particular value of g and to the randomization
values r chosen for each initial encoding.

After obtaining a set of elements from 〈g〉, the prior attacks then use these in
various different ways to mount attacks on different cryptographic constructions
built on top of GGH13. However, those details are not important to us. In our
model (as suggested in [MSZ16a]), if the adversary succeeds in just generating
an element in the ideal 〈g〉, we will say that the adversary has won.

Our model captures the type of attack described above as follows. Like the
standard ideal graded encoding model, our model M is an oracle that maintains a
table mapping generic representations called “handles” to encodings of elements
ai ∈ Zp � R/〈g〉. However, rather than just storing each value ai (along with its
level), we store the formal Zp-polynomial ai + g · ri, where g is a formal variable
common to all encodings and ri is a “fresh” formal variable chosen for each ai.
Then, an adversary may use the handles to perform any set of level-respecting
algebraic computations on the initial set of encodings. The result of any such
computation is an encoding f which is represented as a Zp-polynomial in the
variables g and {ri}.

When the adversary submits a handle to a top-level encoding f for zero-
testing, M checks whether f ’s constant term is 0 (which corresponds to a 0-
encoding in the standard ideal model). If so, M returns a handle to the formal
polynomial f/g (corresponding to the result of the GGH13 zero-testing proce-
dure), and otherwise M responds “not zero.”

Finally, the adversary may submit a post-zero-test polynomial Q of degree at
most 2o(λ), where throughout the paper λ is the security parameter. M checks
whether Q, when evaluated on the set of zero-tested encodings {f/g} the adver-
sary has created, produces a non-zero polynomial in which every monomial is

Secure Obfuscation in a Weak Multilinear Map Model 245

divisible by g; i.e., it checks whether Q produces a non-zero polynomial that is
zero mod g. If so, M outputs “WIN”, indicating that the adversary’s attack was
successful. Note that any such Q is an annihilating polynomial (Definition 4) for
the set {f/g mod g}.

On the Degree Bound. The bound deg(Q) ≤ 2o(λ) for efficient adversaries may
seem somewhat artificial. Indeed, arithmetic circuits of size poly(λ) can have
arbitrary exponential degree.

However, using the GGH13 graded encoding scheme, such high-degree poly-
nomials appear difficult to compute in the non-idealized setting. This is because,
in all known polynomial-time attacks on GGH13, the post-zero-test computa-
tions cannot be performed modulo the GGH13 parameter q while maintaining
the correctness of the attack. Indeed, there is no modulus M known with respect
to which the computations can be performed while still maintaining correctness
of attacks, unless the modulus M is so large that working modulo M results in
computations that are identical to the computations over Z.

Let us explore the intuition behind why this seems to be the case. Let d be
the dimension of the ring R over Z. Recall that the goal of the attacker in our
model is to recover an element of the ideal 〈g〉. In order to safely work modulo
M , it needs to be the case that MZ

d is a sublattice of the ideal lattice 〈g〉. But
g is a secret parameter of the GGH13 scheme. Until the adversary finds out
something about g, it cannot be sure that any modulus M it chooses will be safe
(and indeed if the computation overflows with respect to M , almost certainly
any information relevant to g will be lost). But the only way we know to learn
anything about g is to find an element in 〈g〉, which was the goal of the attack
to begin with.

Therefore, multiplication of two elements potentially doubles the size of the
elements, and an element of exponential degree will likely have exponential
size. It seems difficult even to perform post-zero-test computations of super-
polynomial degree.

At a technical level, we need to restrict to degree 2o(λ) due to our use of the
Schwartz-Zippel lemma, which ceases to give useful bounds when Q has larger
degree.

1.3 Intuition: Obfuscation Using an Explicit NC1 PRF

To build intuition, we first describe a construction assuming an explicit PRF in
NC1. Later we will show that simply the existence of an NC1 PRF (in fact, a
more general assumption that is implied by the existence of such PRF) suffices
for our purpose.

Consider an obfuscator that, given a matrix branching program A, first turns
each matrix Ai,b into a block-diagonal matrix

Pi,b =
(

Ai,b

RK
i,b

)

246 S. Garg et al.

where the RK
i,b form an “auxiliary” branching program which, on input x, com-

putes a value ρx · g where ρx is the output1 of an NC1 PRF on input x.
The Pi,b matrices are then randomized as in previous works using Kilian

randomization [Kil88] plus independent scalars for each matrix, and encoded as
in previous works using [GGH13a] multilinear maps and the “straddling set”
level structure from [BGK+14]. Thus, the only deviation from the “standard
recipe” for obfuscation are the auxiliary matrices Ri,b matrices described above.
Note that an honest evaluation of P on input x results in roughly the following
evaluation:

P (x) = A(x) + g · ρx.

The proof of security for this obfuscator starts with the analysis of [BGK+14,
BMSZ16], which decomposes each top-level 0-encoding produced by the adver-
sary into a linear combination of “honest evaluation” polynomials fx1 , . . . , fxm

over the obfuscated branching program, for some poly(λ)-size set of inputs
x1, . . . , xm on which the BP evaluates to 0. Thus, we can view any post-zero-
test polynomial Q (produced by the adversary) as a polynomial in {fxj

/g}j∈[m].
For each xj , we can write

fxj
= f (0)

xj
+ g · f (1)

xj
+ g2 · f (2)

xj
+ . . .

where f
(0)
xj , f

(1)
xj , . . . are polynomials over just the randomness {ri} of the GGH13

graded encoding (i.e. they do not contain the variable g). Since the “main branch-
ing program” A evaluates to 0 on each xj , we can show that f

(0)
xj is the 0 poly-

nomial, which means that fxj
/g = f

(1)
xj + g · f

(2)
xj + · · · . Thus by algebraic inde-

pendence, if Q annihilates {fxj
/g}j∈[m] mod g, it must in particular annihilate

{f
(1)
xj }j∈[m].
We can further decompose the structure of each such f

(1)
xj by writing it as

f (1)
xj

= ̂f (1)
xj

+ ρxj

where ρxj
is the pseudorandom multiplier of g produced via the PRF compu-

tation RK(xj) (which is independent of the {ri} values). Intuitively, if Q anni-
hilates the polynomials f

(1)
xj , then by algebraic independence it must annihilate

{ρx1 , ρx2 , . . . ρxm
} as formal polynomials. However, since for a PPT attacker such

variables are pseudorandom in a large field of size p > 2λ, Q cannot exist except
with negligible probability (as otherwise it could be used to efficiently distinguish
between the PRF and a random function).

1.4 Overview of the Security Proof

We now give an overview of our proof of security, building on the above intuition.
Given a branching program A, our obfuscator first transforms each matrix Ai,b

again into a block-diagonal matrix
1 For simplicity we abuse notations of branching programs, in that it outputs a ring

element instead of a bit. It is straightforward to embed multiple branching programs
into one to achieve this effect.

Secure Obfuscation in a Weak Multilinear Map Model 247

(

Ai,b

Bi,b

)

where, in contrast to the intuition presented above, each auxiliary Bi,b is simply
a uniform random matrix over Zp. (As mentioned above, this can be seen as a
generalization of [GGH+13b], where this same block-diagonal structure was used
but the Bi,b matrix was a random diagonal matrix. Note that we choose Bi,b

to be completely random instead.) Note that this obfuscator does not hard-wire
into it a branching program for a PRF, or for any other specific function aside
from the branching program A that is being obfuscated.

The proof of security follows the argument presented above, up to the point
of showing that a “successful” post-zero-test polynomial Q must in particular
annihilate the polynomials {f

(1)
xj }j∈[m]. Unlike in the hardwired-PRF construc-

tion however, each f
(1)
xj now does not contain an explicit PRF output. Still, each

can be viewed a polynomial in the entries of the original branching program A,
the randomization values chosen by the obfuscator (including the Bi,b matrices),
and the randomization values ri in the GGH13 encodings.

The core of our proof shows that if Q annihilates the set {f
(1)
xj }j∈[m], then it

must also annihilate a corresponding set of “generic BP evaluation polynomials”

exj
:= β0 ×

�
∏

i=1

βi,(xj)inp(i) × β�+1

where {βi,b}j∈[�],b∈{0,1} (resp. β0, β�+1) are matrices (resp. vectors) of indepen-
dent variables, corresponding to the Bi,b matrices. This uses the Schwartz-Zippel
lemma, and two additional techniques. The first is that if Q annihilates a set of
polynomials {pi = p′

i + u · p′′
i }i where the variable u appears in no p′

i, then by
algebraic independence Q must also annihilate {p′

i}i. The second is that if a set
of polynomials {qi}i can be obtained from another set of polynomials {pi}i via
a change of variables, and Q annihilates {pi}i, then Q also annihilates {qi}i.

Our main assumption (Assumption 1) states that annihilating a poly-size
subset of {ex}x∈{0,1}n is not possible. We observe in Theorem2 that, in partic-
ular, this assumption is implied by the existence of PRF in NC1. However, we
believe the above assumption to be quite plausible independent of the fact that
a PRF in NC1 would imply its validity.

1.5 Extensions

Single-Input vs Dual-Input Branching Programs. Our obfuscator, following
Barak et al. [BGK+14], uses dual-input branching programs, which allows us
to prove VBB security in the weak multilinear map model. The obfuscator
of [BGK+14] can also be modified to use single-input branching programs,
though then only iO security is proved in the plain generic model. Unfortunately,
we are unable to prove iO security for a single-input variant of our construction.
The problem is that a post-zero-test encoding can now consist of elements coming

248 S. Garg et al.

from exponentially many inputs. This means that an annihilating polynomial Q
may annihilate an exponential set of “generic BP evaluation polynomials.” This
prevents us from embedding Assumption 1 into the security proof.

However, if the input domain of the obfuscated program is polynomial-sized
instead of exponential, then there are only a polynomial number of possible BP
evaluation polynomials. Thus, we are able to embed Assumption 1. Therefore, in
the case of polynomial-sized domain, the single input version of our obfuscator
achieves iO security.

Order Revealing Encryption. Our techniques can also be applied to the order-
revealing encryption scheme of [BLR+15]. Order-revealing encryption is a sym-
metric encryption scheme that lets one publicly compare the order of plaintexts,
but no information beyond the order of the plaintexts is revealed.

In the scheme of [BLR+15], ciphertexts are generated by encoding branching
program matrices analagous to how they are encoded in obfuscation — Kilian
randomize and multiply by a random scalar. The branching program arises from
the state transition matrices of the finite automata for comparing two integers.

We note that their scheme was shown to be insecure in the weak multilinear
map model by [MSZ16a]. To protect against these attacks, we similarly extend
the branching program matrices into a block diagonal matrix with the new block
being a random matrix, before applying Kilian randomization.

Security readily follows from our analysis, using a “base-B” version of
Assumption 1, where B is the number of ciphertexts the adversary sees. That is,
we can consider a version of our assumption where the matrix branching pro-
grams have inputs that are represented base B, and each layer of the branching
program reads a single digit, selecting one of B matrices for that layer. Such a
base-B assumption follows from the standard binary version of Assumption 1 by
decomposing each digit into log B bits.

Model Variations. In Sect. 5, we consider a variant of our model that more closely
reflects the GGH13 encodings. Here, the ri used to encode are no longer treated
as formal variables, but are instead treated as actual ring elements sampled from
some distribution. In GGH13, the distribution on ri depends on the ring element
ai — in our model, we therefore allow the ri to have arbitrary correlations with
the ai, as long as the conditional min-entropy of ri given ai is high. This min-
entropy requirement is satisfied by GGH13 encodings. We note that switching to
ri being ring elements makes the adversary’s winning condition easier, as there
are now fewer constraints on the post-zero-test polynomial Q.

We show that, with a small modification to the proof, our obfuscator is also
secure in this variant model. If the ri were uniformly random in some fixed subset
of the ring, the Schwartz-Zippel lemma would suffice for adapting our original
security proof to this setting. However, as we allow the ri to be non-uniform
and potentially come from different distributions, we need a new variant of the
Schwartz-Zippel lemma for more general distributions. We prove this variant,
which may be of independent interest, in Lemma 2.

Secure Obfuscation in a Weak Multilinear Map Model 249

Organization. In Sect. 2 we formally define our model. In Sect. 3 we give the
details of our obfuscator, and in Sect. 4 we give the proof of security and discuss
our assumption. In Sect. 5, we prove security in the alternative model discussed
above.

2 The Model

In this section, we define our model for weak graded encoding schemes. The
model is inspired by [CGH+15, Appendix A], and is essentially the same as the
model given in [MSZ16a] except for some details that we clarify here.

Recall that in a graded encoding scheme, there is a universe set U, and a value
a can be encoded at a level S ⊆ U, denoted by [a]S . Addition, subtraction, and
multiplication of encodings are defined provided that the levels satisfy certain
restrictions, as follows.

– For any S ⊆ U: [a1]S ± [a2]S := [a1 ± a2]S .
– For any S1, S2 ⊆ U such that S1 ∩ S2 = ∅: [a1]S1 · [a2]S2 := [a1 · a2]S1∪S2 .

Further, an encoding [a]U at level U can be zero-tested, which checks whether
a = 0.

In the standard ideal graded encoding model, a stateful oracle maintains a
table that maps encodings to generic representations called handles. Each handle
explicitly specifies the encoding’s level, but is independent of the encoding’s
value. All parties have access to these handles, and can generate new handles by
querying the oracle with arithmetic operations that satisfy the above restrictions.
In addition, all parties may perform a zero-test query on any handle whose level
is U, which returns a bit indicating whether the corresponding value is 0.

Our model also implements these features, but adds new features to more
closely capture the power that an adversary has in the non-idealized setting. The
most important new feature is that a successful zero test returns a handle to a ring
element that can further be manipulated, as opposed to just returning a bit.

We now formally describe the interfaces implemented by the oracle M that
defines our model. For concreteness, we define M to explicitly work over the
GGH13 ring R = Z[X]/(Xη + 1) and the field Zp � R/〈g〉 for an appropriate
g ∈ R.

Initialize Parameters. The first step in interacting with M is to initialize it with
the security parameter λ ∈ N. (Jumping ahead, this will be done by the obfus-
cator.) M defines the ring R = Z[X]/(Xη + 1), where η = η(λ) is chosen as in
[GGH13a]. Then, M chooses g ∈ R according to the distribution in [GGH13a],
and outputs the prime p := |R/〈g〉| > 2λ. After initializing these parameters, M
discards the value of g, and treats g as a formal variable in all subsequent steps.

Initialize Elements. After the parameters have been initialized, M is given a
universe set U and a set of initial elements {[ai]Si

}i where ai ∈ Zp and Si ⊆ U

for each i. For each initial element [ai]Si
, M defines the formal polynomial

250 S. Garg et al.

fi := ai + g · zi over Zp. Here g is a formal variable that is common to all fi,
while zi is a “fresh” formal variable2 chosen for each fi. Then M generates a
handle hi (whose representation explicitly specifies Si but is independent of ai),
and stores the mapping “hi → (fi, Si)” in a table that we call the pre-zero-test
table. Finally, M outputs the set of handles {hi}i.

Note that storing the formal polynomial fi strictly generalizes the standard
ideal model which just stores the value ai. This is because ai can always be
recovered as the constant term of fi, and this holds even for subsequent polyno-
mials that are generated from the initial set via the algebraic operations defined
next.

The above two initialization interfaces are each executed once, in the order
listed; any attempt to execute them out of order or more than once will fail. M
also implements the following algebraic interfaces.

Pre-zero-test Arithmetic. Given two input handles h1, h2 and an operation ◦ ∈
{+,−, ·}, M first locates the corresponding polynomials f1, f2 and level sets
S1, S2 in the pre-zero-test table. If h1 and h2 do not both appear in this table,
the call to M fails. If the expression is undefined (i.e., S1 �= S2 for ◦ ∈ {+,−},
or S1 ∩ S2 �= ∅ for ◦ ∈ {·}), the call fails. Otherwise, M computes the formal
polynomial f := f1 ◦ f2 and the level set S := S1 ∪ S2, generates a new handle
h, and stores the mapping “h → (f, S)” in the pre-zero-test table. Finally, M
outputs h.

Zero-Testing. Given an input handle h, M first locates the corresponding poly-
nomial f and level set S in the pre-zero-test table. If h does not appear in this
table, or if S �= U, the call to M fails. If f ’s constant term is non-zero (recall that
this term is an element of Zp), M outputs the string “non-zero”. If instead f ’s
constant term is 0, note that f must be divisible by the formal variable g, i.e. g
appears in each of f ’s monomials. M computes the formal polynomial f ′ := f/g
over Zp, generates a new handle h′, and stores the mapping “h′ → f ′” in a table
that we call the post-zero-test table. Finally, M outputs h′.

Post-zero-test Arithmetic. Given a set of input handles h′
1, . . . , h

′
m and an m-

variate polynomial Q over Z (represented as an arithmetic circuit), M first
locates the corresponding polynomials f ′

1, . . . , f
′
m in the post-zero-test table. If

any h′
i does not appear in this table, the call to M fails. Otherwise, M checks

whether Q(f ′
1, . . . , f

′
m) is non-zero as a polynomial over Zp which is zero modulo

the variable g. In other words, M checks that Q(f ′
1, . . . , f

′
m) contains at least

one monomial whose coefficient is not zero modulo p, and that g appears in all
such non-zero monomials.3 If this check passes, M outputs “WIN”, otherwise it
outputs ⊥.
2 Here and for the remainder of the paper, we use zi rather than ri to denote the

randomization values in GGH13 encodings, to avoid conflicting with the random
matrices R chosen by the obfuscator. We will not need to work with the GGH13
level denominators, which were previously denoted by zi.

3 Note that this corresponds to finding a non-trivial element in the ideal 〈g〉.

Secure Obfuscation in a Weak Multilinear Map Model 251

Definition 1. A (possibly randomized) adversary interacting with the model M
is efficient if it runs in time poly(λ), and if each Q submitted in a post-zero-test
query has degree 2o(λ). Such an adversary wins if it ever submits a post-zero-test
query that causes M to output “WIN”.

3 The Obfuscator

Our obfuscator for matrix branching programs is closely related to that of
Badrinarayanan et al. [BMSZ16]. The main difference is that, before random-
izing and encoding, each matrix Ai,b is first transformed into a block-diagonal
matrix

(

Ai,b

Bi,b

)

where each Bi,b is uniformly random.
We now describe our obfuscator O. O is instantiated with two parameters,

t = t(n, λ) and s = s(n, λ), that correspond to those in Assumption 1.

Input. O takes as input a dual-input matrix branching program4 BP of length
m, width w, and input length n. Such a matrix branching program consists
of an input-selection function inp : [m] → [n] × [n], 4m matrices {Ai,b1,b2 ∈
{0, 1}w×w}i∈[m];b1,b2∈{0,1}, and two “bookend” vectors A0 ∈ {0, 1}1×w and
Am+1 ∈ {0, 1}w×1. BP is evaluated on input x ∈ {0, 1}n by checking whether

A0 ×
∏

i∈[m]

Ai,x(i) × Am+1

is zero or non-zero, where we abbreviate x(i) := (xinp(i)1 , xinp(i)2). We make three
requirements on BP (cf. [BMSZ16, Sect. 3]).

1. It is forward non-shortcutting, defined below.
2. For each i ∈ [m] : inp(i)1 �= inp(i)2.
3. For each pair j �= k ∈ [n], there exists i ∈ [m] such that inp(i) ∈ {(j, k), (k, j)}.

Definition 2 ([BMSZ16]). A branching program A0, {Ai,b}i∈[�],b∈{0,1}, A�+1 is
forward (resp. reverse) non-shortcutting if, for every input x, the vector

A0 ×
∏

i∈[�]

Ai,x(i)

⎛

⎝resp.
∏

i∈[�]

Ai,x(i) × A�+1

⎞

⎠

is non-zero. It is non-shortcutting if it is both forward and reverse non-
shortcutting.

4 These can be constructed from any NC1 formula with m = poly(n) and w = 5 by
Barrington’s theorem [Bar86]. Obfuscating NC1 formulas is sufficient to obfuscate
all polynomial-size circuits [GGH+13b,BR14,App14].

252 S. Garg et al.

Step 0: Initialize Model. O first sends the security parameter λ to the model M,
and receives back a prime p.

Step 1: Pad BP. O’s first modification to BP is to pad it with identity matri-
ces (if necessary) so that it contains a set of t layers i1 < . . . < it such that
(inp(i1)1, . . . , inp(it)1) cycles t/n times through [n]. This choice of inp is specifi-
cally to allow a branching program of the form in Assumption 1 to be transformed
into one with input selection function inp(·)1. We use � ≤ t + m to denote the
length of the padded branching program.

Step 2: Extend Matrices. Next, O extends the matrices as mentioned above. To
do this, it selects 4� uniformly random matrices {Bi,b1,b2 ∈ Z

s×s
p }i∈[�];b1,b2∈{0,1}

and one uniformly random vector B�+1 ∈ Z
s×1
p , and defines the following matri-

ces and vectors.

A′
0 := (A0 0s) A′

i,b1,b2 :=
(

Ai,b1,b2

Bi,b1,b2

)

A′
�+1 :=

(

A�+1

B�+1

)

Note that this satisfies

A′
0 ×

∏

i∈[�]

A′
i,x(i) × A′

�+1 = A0 ×
∏

i∈[�]

Ai,x(i) × A�+1

for every input x ∈ {0, 1}n.

Step 3: Randomize. Next, O generates uniformly random non-singular matrices
{Ri}i∈[�+1] and uniformly random non-zero scalars α0, {αi,b1,b2}i∈[�];b1,b2∈{0,1},
α�+1. Then it computes the randomized branching program, denoted ̂BP , as
follows.

̂A0 := α0A
′
0 × Radj

1 Âi,b1,b2 := αi,b1,b2Ri × A′
i,b1,b2 × Radj

i+1

Â�+1 := α�+1R�+1 × A′
�+1

Here Radj
i denotes the adjugate matrix of Ri that satisfies Radj

i ×Ri = det(Ri)·I.
It is easy to see that ̂BP computes the same function as BP , i.e.

̂A0 ×
∏

i∈[�]

Âi,x(i) × Â�+1 = 0 ⇔ A0 ×
∏

i∈[�]

Ai,x(i) × A�+1 = 0

for every input x ∈ {0, 1}n.

Step 4: Encode. Finally, O initializes M with the elements of the ̂A matrices.
To do this, it uses the level structure in [BGK+14] constructed from so-called
straddling sets. We defer the details to AppendixA, but we remark that this
level structure has the property that each “honest evaluation” ̂BP (x) = ̂A0 ×
∏

i Âi,x(i) × Â�+1 results in an encoding at level U. This, in combination with
the zero-test procedure, allows the obfuscated program to be evaluated.

Secure Obfuscation in a Weak Multilinear Map Model 253

M’s pre-zero-test table can now be viewed as containing the variables
Y0, {Yi,b1,b2}i∈[�];b1,b2∈{0,1}, Y�+1 of the following form.

Y0 = ̂A0 + gZ0 Yi,b1,b2 = Âi,b1,b2 + gZi,b1,b2 Y�+1 = Â�+1 + gZ�+1

Here g is a formal variable and each Z matrix is a matrix of formal variables,
while the ̂A matrices contain Zp-elements.

The final branching program ̂BP = O(BP) has length � (satisfying t ≤ � ≤
m+ t) and width w + s. In the proof of Theorem 3, we will use the fact that any
branching program of the form in Assumption 1 can be transformed (by padding
with identity matrices) into one with length � whose input selection function is
the same as inp(·)1.
Definition 3. O is secure in the model M of Sect. 2 if, for every BP matching
O’s input specification and every efficient adversary A interacting with M, Pr[A
wins] < negl(λ) when M is initialized by O(BP). (Here the probability is over
the randomness of O and A.)

4 Security of Our Obfuscator

We first state two definitions, and then state the assumption under which we
will prove security. After that, we prove our security theorem.

Definition 4. Let f1, . . . , fm be a set of polynomials over some common set of
variables. Then an m-variate polynomial Q annihilates {fi}i∈[m] if Q(f1, . . . , fm)
is zero as a formal polynomial.

Definition 5. A matrix branching program BP is L-bounded for L ∈ N if every
intermediate value computed when evaluating BP on any input is at most L. In
particular all of BP ’s outputs and matrix entries are ≤ L.

Our assumption essentially states that no efficiently computable polynomial
can annihilate every branching program’s evaluation polynomials on some effi-
ciently computable set of inputs. (The assumption is parameterized by the length
t and width s of the branching program.) In the assumption, we implicitly use
a more general notion of how a branching program computes a function than
was used in the previous section. Namely, the function computed can have range
[2λ] (rather than {0, 1}) by taking the output to be the value resulting from
multiplying the appropriate vectors and matrices (rather than a bit indicating
whether this value is 0).

Assumption 1 The (t, s)-branching program un-annihilatability
(BPUA) assumption. Let t = poly(n, λ) and s = poly(n, λ) be parameters. Let
A denote a PPT that, on input (1n, 1λ), outputs a poly(λ)-size set X ⊆ {0, 1}n

and a poly(λ)-size, 2o(λ)-degree polynomial Q over Z.
For all n and for sufficiently large λ, all primes 2λ < p ≤ 2poly(λ), and

all such A, there exists a (single-input) 2λ-bounded matrix branching program

254 S. Garg et al.

BP : {0, 1}n → [2λ] of length t and width s, whose input selection function
iterates over the n input bits t/n times, such that

Pr [Q ({BP (x)}x∈X) = 0 (mod p)] < negl(λ)

where the probability is over A’s randomness.

We observe that Assumption 1 is in particular implied by the existence of
PRF in NC1 secure against P/poly (with t, s related to the size of such PRF).

Theorem 2. Let t and s be as in Assumption 1. If there exists a PRF Fk :
{0, 1}n → [2λ] that

– is computable by a length-t/n, width-s, 2λ-bounded matrix branching program
BPk, and

– is secure against non-uniform, polynomial-time adversaries (i.e. secure against
P/poly)

then Assumption 1 holds.

Note that we take BPk’s matrix entries to be computed as a function of the
PRF key k.

Proof. Assume that Assumption 1 is false, and fix a PPT A and a prime p such
that

Pr [Q ({BP (x)}x∈X) = 0 (mod p)] ≥ 1/poly(λ)

for every BP of the form in Assumption 1. We give a PPT A′ with oracle access
to O that distinguishes with probability ≥ 1/poly(λ) whether O implements BPk

for a uniform k or implements a uniform function F : {0, 1}n → [2λ]. We note
that hardwiring p into A′ is the only place where non-uniformity is needed.

A′ simply runs A to get Q and X , and computes d := Q(O(x)x∈X) (mod
p). Note that A′ runs in time poly(λ) because Q and p both have this size.
If O implements BPk, then d = 0 with probability ≥ 1/poly(λ). To see this,
note that BPk can be transformed (by padding with identity matrices) into an
equivalent branching program of the form in Assumption 1 due to the input
selection function there.

On the other hand, if O implements a random function, then since p > 2λ

and deg(Q) = 2o(λ), d = 0 with probability < negl(λ) by the Schwartz-Zippel
lemma.

For further discussion on our assumption, including the plausibility of PRF
necessary for Theorem 2, see Sect. 4.2.

4.1 Our Main Theorem

Theorem 3. Let O be the obfuscator from Sect. 3 with parameters t and s. If
the (t, s)-BPUA assumption holds, O is secure in the model M of Sect. 2.

Secure Obfuscation in a Weak Multilinear Map Model 255

We note that this theorem also implies that O achieves VBB security in the
model from Sect. 2. To see this, first note that the initialization, pre-zero-test
arithmetic, and zero-test interfaces can be simulated with error negl(λ) exactly as
in the proof of [BMSZ16, Theorem 5.1]. Further, a simulator can simply respond
to every post-zero-test query with ⊥, and the additional error introduced by this
is bounded by negl(λ) due to Theorem 3.

Proof. Fix a PPT adversary A and assume for contradiction that, with proba-
bility ε ≥ 1/poly(λ), A obtains a set of valid post-zero-test handles h′

1, . . . , h
′
m

and constructs a size-poly(λ), degree-2o(λ), m-variate polynomial Q over Z such
that the post-zero-test query (Q,h′

1, . . . , h
′
m) causes M to output “WIN”. By

the definition of M, each handle h′
j must then correspond to a polynomial f ′

j

such that fj := g · f ′
j is a level-U polynomial in M’s pre-zero-test table with

constant term 0.
Recall that M is initialized with the set of Zp values {ai}i from the branch-

ing program ̂BP created by O(BP), and that for each such value M stores a
polynomial ai +g ·zi with formal variables g, zi. Thus each fj is a Zp-polynomial
with variables g, {zi}i. In the following, we use fj to denote the polynomial over
the set of M’s initial elements such that fj({ai + g · zi}i) = fj .

Decomposing fj . For any input x, let fx denote the matrix product polynomial
that corresponds to evaluating ̂BP (x), and note that fx({ai}i) = 0 (mod p) ⇔
̂BP (x) = 0 ⇔ BP (x) = 0. The results of [BGK+14,BMSZ16] (summarized in
Lemma 1 following this proof) show that, with probability 1 − negl(λ) over the
randomness of O, for each j ∈ [m] there is a poly(λ)-size set Xj such that: (1)
fj is a linear combination of the polynomials {fx}x∈Xj

, and (2) BP (x) = 0 for
every x ∈ Xj . (Note that the conditions of the lemma are satisfied, as we can
assume wlog that the post-zero-test query we are analyzing is the first to which
M has responded with “WIN”.)

The set Xj and the coefficients in the linear combination depend only on
the structure of fj , and not on O’s randomness. So, more precisely, Lemma 1
says that if fj is not a linear combination of {fx}x∈Xj

for some Xj that satisfies
∧

x∈Xj
(BP (x) = 0), then fj = fj({ai + g · zi}i) has constant term 0 with proba-

bility < negl(λ) over the randomness of O. Thus, we condition on the event that
each fj is decomposable in this way, which has probability 1 − negl(λ).

Structure of fx. Let X :=
⋃

j∈[m] Xj , and consider the polynomial fx := fx({ai+
g · zi}i) for any x ∈ X . This is a Zp-polynomial with variables g, {zi}i, so we can
“stratify” by g, writing

fx = f (0)
x + g · f (1)

x + g2 · f (2)
x (1)

where g does not appear in the polynomials f
(0)
x and f

(1)
x , i.e. they are polyno-

mials in just the variables {zi}i. From the analysis above, we know that f
(0)
x is

256 S. Garg et al.

the identically 0 polynomial; if not, we would not have fx({ai}i) = 0 (mod p),
and thus would not have BP (x) = 0. So, we can write

fx/g = f (1)
x + g · f (2)

x . (2)

The fact that the post-zero-test query (Q,h′
1, . . . , h

′
m) causes M to output

“WIN” implies that Q(f ′
1, . . . , f

′
m) = Q(f1/g, . . . , fm/g) is not identically zero as

a polynomial in variables g and {zi}i, but is identically zero modulo the variable
g. Let Lj denote the linear polynomial such that fj = Lj({fx}x∈Xj

). Then for
each j ∈ [m], we can write

fj = fj ({ai + g · zi}i) = Lj

(

{

fx ({ai + g · zi})i)
}

x∈Xj

)

= Lj

({fx}x∈Xj

)

.

Since eachLj is linear,we thenobtain an |X |-variate polynomialQ′, withdeg(Q′)=
deg(Q), such that Q′({fx/g}x∈X) = Q({fj/g}j∈[m]). Then, using (2) and the fact
that Q({fj/g}j∈[m]) is identically zero modulo the variable g, we must have that
Q′({f

(1)
x }x∈X) is the identically zero polynomial. In other words, Q′ annihilates

the set of polynomials {f
(1)
x }x∈X .

We now analyze the structure of the f
(1)
x to show that such a Q′ violates the

(t, s)-BPUA assumption, which will complete the proof.

Structure of f
(1)
x . Recalling the notation from Sect. 3, each fx is a polynomial in

the entries of Y0, {Yi,b1,b2}i∈[�];b1,b2∈{0,1}, Y�+1. Specifically, it is the polynomial

fx = Y0 ×
∏

i∈[�]

Yi,x(i) × Y�+1

where we abbreviate x(i) := (xinp(i)1 , xinp(i)2). Notice that fx is the polynomial
obtained from fx after making the following substitution.

Y0 = ̂A0+gZ0 Yi,b1,b2 = Âi,b1,b2 +gZi,b1,b2 Y�+1 = Â�+1+gZ�+1

Then, because f
(1)
x is the coefficient of g in fx (see (1)) and the ̂A matrices are

of the form

̂A0 = α0A
′
0 × Radj

1 Âi,b1,b2 = αi,b1,b2Ri × A′
i,b1,b2 × Radj

i+1

Â�+1 = α�+1R�+1 × A′
�+1

we can expand the ̂A matrices to write f
(1)
x = dx + α0 · d′

x, where

dx := Z0R1

(

�
∏

i=1

αi,x(i)A
′
i,x(i)

)

α�+1A
′
�+1ρ0

and d′
x is another polynomial. Here we denote ρ0 :=

∏�+1
i=2 det(Ri), which arises

from the fact that Ri × Radj
i = det(Ri) · I. Below, we will use the fact that α0

does not appear in dx.

Secure Obfuscation in a Weak Multilinear Map Model 257

Now recall that the A′ matrices are constructed as

A′
0 := (A0 0s) A′

i,b1,b2 :=
(

Ai,b1,b2

Bi,b1,b2

)

A′
�+1 :=

(

A�+1

B�+1

)

where the A matrices are the original branching program input to O. We consider
two cases: either

– Q′ annihilates
{

f
(1)
x

}

x∈X
when considered as polynomials in variables Z, R,

B, and α (i.e. when only the A matrices are taken to be Zp-values), or
– it does not, but with probability ε ≥ 1/poly(λ) over the distribution on R, B,

and α, Q′ annihilates the set
{

f
(1)
x

}

x∈X
when considered as polynomials in

variables Z.

Here and throughout the remainder of the proof, we use the phrase “variables
Z” to refer to the set of all variables arising from the Z matrices, and similarly
for R, B, and α.

We now show that the first case contradicts the (t, s)-BPUA assumption,
while the second case is ruled out by the Schwartz-Zippel lemma.

Case 1: Q′ annihilates
{

f
(1)
x

}

x∈X
as polynomials in variables Z, R, B, and α.

Because we can write f
(1)
x = dx +α0 ·d′

x, where dx does not contain the variable
α0, if Q′ annihilates

{

f
(1)
x

}

x∈X
as polynomials in variables Z, R, B, and α, it

must also annihilate {dx}x∈X .
Next, we perform the following change of variables: we set each R matrix to

be the identity matrix (which in particular induces ρ0 = 1), we set each α scalar
to 1, and we set Z0 = (uV B0) for a new variable u and new vectors of variables
V,B0 which have lengths w and s respectively (recall that the A and B matrices
have dimensions w and s respectively). Applying this change of variables to dx,
we obtain the polynomial ex + u · e′

x, where

ex := B0 ×
∏

i∈[�]

Bi,x(i) × B�+1

and e′
x is another polynomial. Because ex + u · e′

x was obtained from dx via
a change of variables, if Q′ annihilates {dx}x∈X then it must also annihilate
{ex + u · e′

x}x∈X . Further, since the variable u does not appear in ex, Q′ must
also annihilate {ex}x∈X .

However, this contradicts the (t, s)-BPUA assumption: by construction of
inp and � in Sect. 3, any branching program of the form in Assumption 1 can be
embedded into the B matrices, and thus there is an efficiently computable distri-
bution on degree-2o(λ) polynomials that annihilates all such branching programs
with probability ≥1/poly(λ).

258 S. Garg et al.

Case 2: PrR,B,α

[

Q′annihilates
{

f
(1)
x

}

x∈X
as polynomials in variables Z

]

≥
1/poly(λ). If Case 1 does not hold, then Q′({f

(1)
x }x∈X) must contain some non-

zero monomial. View this monomial as being over the variables g and Z, whose
coefficient is a non-zero polynomial γ of degree 2o(λ) in variables R, B, and α.
(The degree bound on γ comes from the fact that Q′ has degree 2o(λ) and each
f
(1)
x has degree poly(λ).)

If Case 2 holds, we must have PrR,B,α [γ(R,B, α) = 0] ≥ 1/poly(λ). How-
ever, this contradicts the Schwartz-Zippel lemma, because we are working over
the field Zp with p > 2λ, and the distribution on the variables R,B, α is 2−Ω(λ)-
close to each being uniform and independent. Indeed, the distributions on the
B variables are uniform over Zp, the distributions on the α variables are uni-
form over Zp\{0}, and the distributions on the R variables are uniform over Zp

conditioned on each matrix Ri being non-singular.

We now prove the lemma that was used in the proof of Theorem 3. We will
need the following result from [BMSZ16]. Recall that fx denotes the matrix
product polynomial that corresponds to evaluating ̂BP (x).

Theorem 4 ([BMSZ16]). Fix x ∈ {0, 1}n, and consider the following matrices
from Sect. 3: A′

i := A′
i,x(i), ̂Ai := ̂Ai,x(i), and Ri. Consider also a polynomial

f in the entries of the ̂A matrices in which each monomial contains at most
one variable from each ̂Ai. Let f ′ be the polynomial derived from f after making
the substitution ̂Ai = Radj

i−1 × A′
i × Ri, and suppose that f ′ is identically 0 as a

polynomial over the Ri.
Then either f is identically zero as a polynomial over its formal variables

(namely the ̂Ai), or else f is a constant multiple of the matrix product polynomial
fx = ̂A0 × · · · × Â�+1.

We remark that the proof of this theorem requires that the A′ matrices form
a non-shortcutting branching program (see Definition 2), and that for us this is
implied by the distribution on the B matrices and the fact that A is forward
non-shortcutting.

Lemma 1. Let BP be any forward-non-shortcutting branching program, and let
the model M from Sect. 2 be initialized by the obfuscator O(BP) with parameters
t, s as described in Sect. 3.

Let A be an efficient adversary interacting with M, and let {hj}j∈[m] be the
set of all handles A has received that map to a level-U polynomial with constant
term 0 in M’s pre-zero-test table; denote these polynomials by {fj}j∈[m]. Assume
that A has not received “WIN” in response to any post-zero-test query.

Then with probability 1 − negl(λ) over the randomness of O, there exist
poly(λ)-size sets X1, . . . ,Xm such that: (1) for each j ∈ [m], fj is a linear com-
bination of the polynomials {fx}x∈Xj

, and (2) for each j ∈ [m] and each x ∈ Xj,
BP (x) = 0.

Secure Obfuscation in a Weak Multilinear Map Model 259

Proof. The proof follows the analysis of [BMSZ16, Theorem 5.1], which builds
on [BGK+14]. We assume that the lemma’s conclusion holds for f1, . . . , fm−1,
and prove that it holds for fm with probability 1 − negl(λ). This inductively
implies the lemma.

As in the proof of Theorem 3, let fm be the polynomial over the set of M’s
initial elements such that fm = fm({ai + g · zi}). Because fm is at level U, we
can use the procedure given by [BGK+14, Sect. 6] (cf. [BMSZ16, Lemma 5.3])
to decompose it as

fm =
∑

x∈Xm

fm,x

with equality as formal polynomials, where Xm is a poly(λ)-size set given by
the decomposition, and each fm,x is a non-identically-zero polynomial at level
U that only has variables from matrices in ̂BP that correspond to input x.

Notice that fm has constant term 0 iff fm({ai}i) = 0. Then following the
[BGK+14, Sect. 6] analysis, the independence of the αi,b1,b2 randomization vari-
ables along with the fact that fm({ai}i) = 0 implies Pr[∃x ∈ Xm : fm,x({ai}i) �=
0] < negl(λ), where the probability is over O’s randomness. Assume for the
remainder that fm,x({ai}i) = 0 for all x ∈ Xm, which occurs with probability
1 − negl(λ).

Consider the moment just before A submits the handle hm (corresponding
to fm) for zero-testing. At this point, since we assume the lemma’s conclu-
sion holds for f1, . . . , fm−1 and that A has never received “WIN” in response
to any post-zero-test query, A’s view can be completely derived from the set
{BP (x) | x ∈ ⋃

j∈[m−1] Xj}. In particular, A’s view is independent of the ran-
domness generated by O.

Now fix some x ∈ Xm. The values {ai}i are generated by O from the origi-
nal branching program BP by choosing the randomization matrices R and the
other randomization values α,B, and performing the computation described in
Sect. 3. We can thus view fm,x as a polynomial f ′

m,x over the R variables whose
coefficients are polynomials in the variables α,B. Then because fm,x only has
variables from matrices corresponding to input x and is not identically zero,
Theorem 4 implies that either fm,x is a constant multiple of fx, or else f ′

m,x is
not the identically zero polynomial.

Because we assume fm,x({ai}i) = 0 for the particular sample of {ai}i gen-
erated by O, if f ′

m,x is not identically zero, then one of two things must have
occurred. Either every coefficient of f ′

m,x became 0 after the choice of α,B, or
some choice of α,B yields a fixed Zp-polynomial that evaluated to 0 on the choice
of the R matrices. However, both of these events have probability 1 − negl(λ)
by the Schwartz-Zippel lemma. Thus, since A’s view (and in particular f ′

m,x) is
independent of O’s randomness, we conclude that with probability 1 − negl(λ),
fm,x is a constant multiple of fx.

Finally, note that if fm,x is a (non-zero) constant multiple of fx and if
fm,x({ai}i) = 0, then fx({ai}i) = 0, which is equivalent to BP (x) = 0.

260 S. Garg et al.

4.2 Further Discussion of Our Assumption

We first note that PRFs such as those in the statement of Theorem 2 can be
constructed from any boolean NC1 PRF, provided s ≥ 5λ and t is a sufficiently
large polynomial. The idea is to take λ copies of a width-5, length-t boolean PRF
(constructed via [Bar86]), scale the ith copy by 2i for i = 0, . . . , λ − 1, and put
them into a block-diagonal BP of width 5λ with appropriate bookend vectors to
sum the scaled copies.

We note that for complicated programs whose length is already larger than t,
the overhead for protecting against zeroizing attacks is mainly due to increasing
the width by s. The multiplicative overhead is thus (w + s)2/w2 where w is
the original width of the branching program. Thus, for many applications, it is
likely best to minimize s, potentially at the expense of a slightly larger t. Next,
we describe how to modify the above idea to obtain a branching program of
constant width.

Making the PRF Computation have Constant Width. We now explain that the
width s can actually be taken to be a constant. There are many ways to accom-
plish this. Perhaps the simplest is the following. Ben Or and Cleve [Cle88] show
how to convert any arithmetic formula into a matrix branching program consist-
ing of 3 × 3 matrices, where the matrix product gives

⎛

⎝

1 f(x) 0
0 1 0
0 0 1

⎞

⎠

Then the output f(x) can be selected by multiplying by the appropriate bookend
vectors.

For any invertible constant c in the ring, by left- and right- multiplying the
branching program by the constant matrices

⎛

⎝

c 0 0
0 1 0
0 0 1

⎞

⎠ and

⎛

⎝

c−1 0 0
0 1 0
0 0 1

⎞

⎠ ,

the product of the branching program matrices becomes
⎛

⎝

1 cf(x) 0
0 1 0
0 0 1

⎞

⎠

Next, by concatenating the branching programs for f1 and f2, the result of the
matrix product is

⎛

⎝

1 f1(x) + f2(x) 0
0 1 0
0 0 1

⎞

⎠

Secure Obfuscation in a Weak Multilinear Map Model 261

Let f0, . . . , fλ−1 be independent formulas for computing a pseudorandom bit.
It is therefore possible to construct a matrix branching program whose matrix
product is

⎛

⎝

1
∑λ−1

i=1 2ifi(x) 0
0 1 0
0 0 1

⎞

⎠

By multiplying by the appropriate bookend vectors, the result is
∑λ−1

i=1 2ifi(x).
By the pseudorandomness of the fi, this is a pseudorandom value in [0, 2λ − 1].

Varying the Assumption Strength. We also note that, based on whether we wish
t, s to be polynomial, logarithmic, or constant, we can obtain assumptions of
varying strength. For example, we can have the following.

Assumption 5 (The poly/poly-BPUA Assumption). There exist polynomi-
als t, s such that the (t, s)-BPUA assumption holds.

Assumption 6 (The poly/const-BPUA Assumption). There exists polyno-
mial t and constant s such that the (t, s)-BPUA assumption holds.

Assumption 7 (The polylog/const-BPUA Assumption). There exists poly-
logarithmic t and constant s such that the (t, s)-BPUA assumption holds.

We can thus get a trade-off between efficiency and assumption strength -
stronger assumptions (those with smaller s and t) very naturally correspond to
more efficient obfuscators.

Dual Input Assumptions. We could have similarly made dual-input versions of
the above assumptions. However, we observe that the single input and dual input
variants are equivalent, up to constant factors in t and s.

In particular, any single input branching program of length t and width s
can be turned into a dual input program of length t/2 and width s by pre-
multiplying branching program matrices. That is, set A′

i,b0,b1
= A2i−1,b0 · A2i,b1

and inpb(i) = inp(2i − b).
Moreover, any dual input branching program of length t and width s can be

converted into a single input branching program of length 2t and width 2s via
the following transformation:

A′
2i−1,b =

(

Ai,b,0 Ai,b,1

0s×s 0s×s

)

A′
2i,b =

(

(1 − b)Is 0s×s

bIs 0s×s

)

inp(i) =

{

inp0((i + 1)/2) if i is odd
inp1(i/2) if i is even

Notice that A′
2i−1,b0

· A′
2i,b1

=
(

Ai,b0,b1 0s×s

0s×s 0s×s

)

.

262 S. Garg et al.

5 Security in an Alternative Model

In this section, we define a second model for weak multilinear maps, and we show
that the proof of Theorem3 can be modified to give security in this model as
well. The main difference as compared to the model in Sect. 2 is that this model
no longer treats the zi as formal variables, but instead considers zi sampled in
some fashion by the encoding procedure.

We now formally describe the interfaces implemented by the oracle M that
defines our model. For concreteness, we define M to explicitly work over the
GGH13 ring R = Z[X]/(Xη + 1) and the field Zp � R/〈g〉 for an appropriate
g ∈ R.

M is parameterized by a family of distributions {Dp,{ai}i∈[n]
} for prime p and

sets of integers {ai}i∈[n] ⊆ Zp of size n. Each Dp,{ai}i∈[n]
is a product distribution

D1 × · · · × Dn where the Di are distributions over Zp.

Initialize Parameters. This is identical to the model of Sect. 2. The first step in
interacting with M is to initialize it with the security parameter λ ∈ N. (Jumping
ahead, this will be done by the obfuscator.) M defines the ring R = Z[X]/(Xη +
1), where η = η(λ) is chosen as in [GGH13a]. Then, M chooses g ∈ R according
to the distribution in [GGH13a], and outputs the prime p := |R/〈g〉| > 2λ. After
initializing these parameters, M discards the value of g, and treats g as a formal
variable in all subsequent steps.

Initialize Elements. After the parameters have been initialized, M is given a
universe set U and a set of initial elements {[ai]Si

}i where ai ∈ Zp and Si ⊆ U

for each i. M then samples a set of ring elements {zi} from Dp,{ai}.
M defines the formal polynomial fi := ai + g · zi over Zp. Here g is a for-

mal variable that is common to all fi. Then M generates a handle hi (whose
representation explicitly specifies Si but is independent of ai), and stores the
mapping “hi → (fi, Si)” in a table that we call the pre-zero-test table. Finally,
M outputs the set of handles {hi}i.

The above two initialization interfaces are each executed once, in the order
listed; any attempt to execute them out of order or more than once will fail.
The only difference with the model in Sect. 2 is that the zi are no longer formal
variables, but are now actual ring elements.

M also implements the following algebraic interfaces.

Pre-zero-test Arithmetic. Given two input handles h1, h2 and an operation ◦ ∈
{+,−, ·}, M first locates the corresponding polynomials f1, f2 and level sets
S1, S2 in the pre-zero-test table. If h1 and h2 do not both appear in this table,
the call to M fails. If the expression is undefined (i.e., S1 �= S2 for ◦ ∈ {+,−},
or S1 ∩ S2 �= ∅ for ◦ ∈ {·}), the call fails. Otherwise, M computes the formal
polynomial f := f1 ◦ f2 and the level set S := S1 ∪ S2, generates a new handle
h, and stores the mapping “h → (f, S)” in the pre-zero-test table. Finally, M
outputs h.

Secure Obfuscation in a Weak Multilinear Map Model 263

Zero-Testing. Given an input handle h, M first locates the corresponding poly-
nomial f and level set S in the pre-zero-test table. If h does not appear in this
table, or if S �= U, the call to M fails. If f ’s constant term is non-zero (recall that
this term is an element of Zp), M outputs the string “non-zero”. If instead f ’s
constant term is 0, note that f must be divisible by the formal variable g, i.e. g
appears in each of f ’s monomials. M computes the formal polynomial f ′ := f/g
over Zp, generates a new handle h′, and stores the mapping “h′ → f ′” in a table
that we call the post-zero-test table. Finally, M outputs h′.

Post-zero-test Arithmetic. Given a set of input handles h′
1, . . . , h

′
m and an m-

variate polynomial Q over Z (represented as an arithmetic circuit), M first
locates the corresponding polynomials f ′

1, . . . , f
′
m in the post-zero-test table. If

any h′
i does not appear in this table, the call to M fails. Otherwise, M checks

whether Q(f ′
1, . . . , f

′
m) is non-zero as a polynomial over Zp which is zero modulo

the variable g. In other words, M checks that the constant term of Q(f ′
1, . . . , f

′
m)

is 0, but that some other coefficient is non-zero. If this check passes, M outputs
“WIN”, otherwise it outputs ⊥.

Definition 6. A (possibly randomized) adversary interacting with the model M
is efficient if it runs in time poly(λ), and if each Q submitted in a post-zero-test
query has degree 2o(λ). Such an adversary wins if it ever submits a post-zero-test
query that causes M to output “WIN”.

Definition 7. Let O = {Op} be a (family of) distributions over initial ele-
ments {[ai]Si

}i∈[n]. Consider model M parameterized by distribution family
{Dp,{ai}i∈[n]

}. M satisfies the unpredictability probability relative to O if the
following holds. For each i ∈ [n], the expected guessing probability of zi drawn
from Dp,{ai}i∈[n]

(where the expectation is over the choice of {ai}i∈[n]) is at most
2−Ω(λ).

The above definition captures the fact that in GGH13 encodings, the zi ele-
ments are chosen with min-entropy at least Ω(λ), yielding a guessing probability
of 2−Ω(λ). This holds even in the “low noise” variants, due to the large dimen-
sional space that the zi are drawn from. As required by GGH13, our definition
allows the zi to depend on ai; however we allow for an even more general condi-
tion where the zi can depend on all of the {aj}. Moreover, we only require the
guessing probability to be small on average.

5.1 A New Variant of the Schwartz-Zippel Lemma

We now prove a generalization of the Schwartz-Zippel lemma, which will allow
us to prove security in the alternative model described above. The standard
Schwartz-Zippel lemma applies to variables chosen independently and uniformly
from some (possibly restricted) set. Here, we instead allow the variables to be
chosen from arbitrary distributions with sufficient min-entropy, and we even
allow some correlations among the variables.

264 S. Garg et al.

Let F be a finite field, and let P ∈ F[x1, . . . , xn] be an arbitrary polynomial
of degree at most d. Let X1, . . . , Xn be potentially correlated random variables
over F. Let pi(x1, . . . , xi−1) be the guessing probability of Xi conditioned on
Xj = xj for each j < i. That is,

pi(x1, . . . , xi−1) = max
xi∈F

Pr[Xi = xi|Xj = xj∀j < i]

Let pi be the expectation of pi(x1, . . . , xi−1) when xj are drawn from Xj :
pi = E[pi(X1, . . . , Xi−1)]. Let pmax = maxi pi be the maximum of the pi.

Lemma 2. Let F, d, n, P,X1, . . . , Xn, pmax be as above. Then

Pr
X1,...,Xn

[P (X1, . . . , Xn) = 0] ≤ d · pmax.

Proof. The proof will be by induction on n. The case n = 1 follows from the
fact that a degree d polynomial has at most d roots. Assume the lemma holds
up to n − 1. Let dn be the maximum degree of xn in P . Consider first sam-
pling X1, . . . , Xn−1. Plugging into P , we get a polynomial PX1,...,Xn−1(xn) =
P (X1, . . . , Xn−1, xn) in xn of degree at most dn. Then consider sampling Xn

conditioned on the outcome of X1, . . . , Xn−1. P gives zero if and only if one of
two conditions are met:

– PX1,...,Xn−1 is identically zero. Let e0 be the probability of this event. Let
e�=0 = 1 − e0 be the probability that PX1,...,Xn−1 is not identically zero

– PX1,...,Xn−1 is not identically zero, and Xn is a root of PX1,...,Xn−1 .

Let q0 be the expectation of pn(X1, . . . , Xn−1) conditioned on PX1,...,Xn−1

being identically 0, and let q �=0 be the expectation conditioned on PX1,...,Xn−1

not being identically 0. Note that pn = e0q0+e�=0q �=0. Also, not that q0, q �=0 ≥ 0.
Therefore, e�=0q �=0 ≤ pn.

The coefficient of xdn
n in PX1,...,Xn−1 is a polynomial of total degree at most

d−dn in X1, . . . , Xn−1. If dn = d, the coefficient is actually a constant and must
be non-zero (with probability 1). In the case dn < d, we can apply the inductive
hypothesis to bound the probability that this coefficient is 0 by (d − dn)pmax.
Thus, in either case, the probability e0 that PX1,...,Xn−1 is identically 0 is at
most (d − dn)pmax.

We now bound the probability that PX1,...,Xn−1 is not identically zero, and
Xn is a root of PX1,...,Xn−1 . Since PX1,...,Xn−1 is not identically 0 and has degree
at most dn, there are at most dn roots. Thus, the probability that Xn is a root is
at most dnpn(X1, . . . , Xn−1). Taking the expectation conditioned on PX1,...,Xn−1

being not identically 0, we get a bound of dnq �=0 on the probability that P = 0
conditioned on PX1,...,Xn−1 being identically 0. The joint probability is therefore
at most e�=0dnq �=0 ≤ dnpn ≤ dnpmax.

Putting everything together, the probability that P = 0 is at most (d −
dn)pmax + dnpmax = dpmax.

Secure Obfuscation in a Weak Multilinear Map Model 265

5.2 Security in the Alternative Model

Security in the alternative model is given by the following theorem. We note that,
analagously to Sect. 4, this theorem also implies that O achieves VBB security
in the alternative model.

Theorem 8. Let O be the obfuscator from Sect. 3 with parameters t and s.
Let M be the model defined above, parameterized by some distribution family
{Dp,{ai}i∈[n]

}. If the (t, s)-BPUA assumption holds, and if M satisfies the unpre-
dictability property relative to the elements outputted by O, then O is secure in
the model M.

The proof of Theorem 8 follows the proof of Theorem3 almost exactly, with
the only difference being that, when analyzing Case 2, we apply Lemma 2 instead
of the standard Schwartz-Zippel lemma. We omit further details.

A Straddling Set Level Structure

Here we describe the level structure for the graded encoding scheme that is used
by the obfuscator O when initializing the model M with the values of ̂BP (see
Sect. 3). This construction is due to Barak et al. [BGK+14], and was used in
several subsequent works. It relies on the following notion of a straddling set
system.5

Definition 8. A straddling set system with n entries is a universe set U and a
collection of subsets S = {Si,b ⊆ U}i∈[n],b∈{0,1} such that

1.
⋃

i∈[n] Si,0 =
⋃

i∈[n] Si,1 = U, and
2. for any distinct C,D ⊆ S such that

⋃

S∈C S =
⋃

S∈D S, there exists b ∈ {0, 1}
such that C = {Si,b}i∈[n] and D = {Si,1−b}i∈[n].

For any n, the following is a straddling set system with n entries over the
universe U = {1, . . . , 2n − 1} (for a proof see [BGK+14, Appendix A]).

S1,0 = {1}, S2,0 = {2, 3}, . . . , Si,0 = {2i − 2, 2i − 1}, . . . , Sn,0 = {2n − 2, 2n − 1}

S1,1 = {1, 2}, . . . , Si,1 = {2i−1, 2i}, . . . , Sn−1,1 = {2n−3, 2n−2}, Sn,1 = {2n−1}
We now describe the level structure that is used to encode ̂BP . For each

input index i ∈ [n], let ri denote the number of layers in which bit i is read, and
create a straddling set system with ri entries. We denote the universe set of this
straddling set system by U

(i), and its subsets by {S
(i)
j,b}j∈[ri],b∈{0,1}. The overall

universe set is then U :=
⋃

i∈[n] U
(i) ∪{L,R}, where we assume that the U

(i) are
pairwise disjoint, and L and R are new symbols that don’t appear in any U

(i).

5 For the analysis that we borrow from [BGK+14,BMSZ16], namely Lemma 1, we will
not need the strong straddling set systems due to [MSW14].

266 S. Garg et al.

Then, for each matrix Âj,b1,b2 in ̂BP , each entry of this matrix is encoded at
level

S
(inp(j)1)
k1,b1

∪ S
(inp(j)2)
k2,b2

where k1, k2 are defined such that layer j is the k1-th layer in which input bit
inp(j)1 is read and the k2-th layer in which input bit inp(j)2 is read. Finally,
each entry of ̂A0 is encoded at level {L}, and each entry of Â�+1 is encoded at
level {R}.

References

[AGIS14] Ananth, P., Gupta, D., Ishai, Y., Sahai, A.: Optimizing obfuscation: avoid-
ing Barrington’s theorem. In: Proceedings of the 2014 ACM SIGSAC Con-
ference on Computer and Communications Security, pp. 646–658 (2014)

[AJN+16] Ananth, P., Jain, A., Naor, M., Sahai, A., Yogev, E.: Universal con-
structions and robust combiners for indistinguishability obfuscation and
witness encryption. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016.
LNCS, vol. 9815, pp. 491–520. Springer, Heidelberg (2016). doi:10.1007/
978-3-662-53008-5 17

[App14] Applebaum, B.: Bootstrapping obfuscators via fast pseudorandom func-
tions. In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014. LNCS,
vol. 8874, pp. 162–172. Springer, Heidelberg (2014). doi:10.1007/
978-3-662-45608-8 9

[Bar86] Mix Barrington, D.A.: Bounded-width polynomial-size branching pro-
grams recognize exactly those languages in NC1. In: STOC (1986)

[BGH+15] Brakerski, Z., Gentry, C., Halevi, S., Lepoint, T., Sahai, A., Tibouchi, M.:
Cryptanalysis of the quadratic zero-testing of GGH. Cryptology ePrint
Archive, Report 2015/845 (2015). http://eprint.iacr.org/

[BGI+01] Barak, B., Goldreich, O., Impagliazzo, R., Rudich, S., Sahai, A., Vadhan,
S., Yang, K.: On the (im)possibility of obfuscating programs. In: Kilian,
J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 1–18. Springer, Heidelberg
(2001). doi:10.1007/3-540-44647-8 1

[BGI+12] Barak, B., Goldreich, O., Impagliazzo, R., Rudich, S., Sahai, A., Vadhan,
S.P., Yang, K.: On the (im)possibility of obfuscating programs. J. ACM
59(2), 6 (2012)

[BGJ+15] Bitansky, N., Goldwasser, S., Jain, A., Paneth, O., Vaikuntanathan, V.,
Waters, B.: Time-lock puzzles from randomized encodings. Cryptology
ePrint Archive, Report 2015/514 (2015). http://eprint.iacr.org/

[BGK+14] Barak, B., Garg, S., Kalai, Y.T., Paneth, O., Sahai, A.: Protecting obfus-
cation against algebraic attacks. In: Nguyen, P.Q., Oswald, E. (eds.)
EUROCRYPT 2014. LNCS, vol. 8441, pp. 221–238. Springer, Heidelberg
(2014). doi:10.1007/978-3-642-55220-5 13

[BLR+15] Boneh, D., Lewi, K., Raykova, M., Sahai, A., Zhandry, M., Zimmerman,
J.: Semantically secure order-revealing encryption: multi-input functional
encryption without obfuscation. In: Oswald, E., Fischlin, M. (eds.) EURO-
CRYPT 2015. LNCS, vol. 9057, pp. 563–594. Springer, Heidelberg (2015).
doi:10.1007/978-3-662-46803-6 19

http://dx.doi.org/10.1007/978-3-662-53008-5_17
http://dx.doi.org/10.1007/978-3-662-53008-5_17
http://dx.doi.org/10.1007/978-3-662-45608-8_9
http://dx.doi.org/10.1007/978-3-662-45608-8_9
http://eprint.iacr.org/
http://dx.doi.org/10.1007/3-540-44647-8_1
http://eprint.iacr.org/
http://dx.doi.org/10.1007/978-3-642-55220-5_13
http://dx.doi.org/10.1007/978-3-662-46803-6_19

Secure Obfuscation in a Weak Multilinear Map Model 267

[BMSZ16] Badrinarayanan, S., Miles, E., Sahai, A., Zhandry, M.: Post-zeroizing
obfuscation: new mathematical tools, and the case of evasive circuits. In:
Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9666, pp.
764–791. Springer, Heidelberg (2016). doi:10.1007/978-3-662-49896-5 27

[BR14] Brakerski, Z., Rothblum, G.N.: Virtual black-box obfuscation for all
circuits via generic graded encoding. In: Lindell, Y. (ed.) TCC 2014.
LNCS, vol. 8349, pp. 1–25. Springer, Heidelberg (2014). doi:10.1007/
978-3-642-54242-8 1

[BWZ14] Boneh, D., Wu, D.J., Zimmerman, J.: Immunizing multilinear maps
against zeroizing attacks. Cryptology ePrint Archive, Report 2014/930
(2014). http://eprint.iacr.org/

[CGH+15] Coron, J.-S., et al.: Zeroizing without low-level zeroes: new MMAP attacks
and their limitations. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015.
LNCS, vol. 9215, pp. 247–266. Springer, Heidelberg (2015). doi:10.1007/
978-3-662-47989-6 12

[CHL+15] Cheon, J.H., Han, K., Lee, C., Ryu, H., Stehlé, D.: Cryptanalysis of the
multilinear map over the integers. In: Oswald, E., Fischlin, M. (eds.)
EUROCRYPT 2015. LNCS, vol. 9056, pp. 3–12. Springer, Heidelberg
(2015). doi:10.1007/978-3-662-46800-5 1

[Cle88] Cleve, R.: Computing algebraic formulas with a constant number of regis-
ters. In: Proceedings of the Twentieth Annual ACM Symposium on The-
ory of Computing, STOC 1988, pp. 254–257. ACM, New York (1988)

[CLR15] Cheon, J.H., Lee, C., Ryu, H.: Cryptanalysis of the new CLT multilinear
maps. Cryptology ePrint Archive, Report 2015/934 (2015). http://eprint.
iacr.org/

[CLT13] Coron, J.-S., Lepoint, T., Tibouchi, M.: Practical multilinear maps
over the integers. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013.
LNCS, vol. 8042, pp. 476–493. Springer, Heidelberg (2013). doi:10.1007/
978-3-642-40041-4 26

[CLT15] Coron, J.-S., Lepoint, T., Tibouchi, M.: New multilinear maps over
the integers. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015.
LNCS, vol. 9215, pp. 267–286. Springer, Heidelberg (2015). doi:10.1007/
978-3-662-47989-6 13

[GGH13a] Garg, S., Gentry, C., Halevi, S.: Candidate multilinear maps from ideal
lattices. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013.
LNCS, vol. 7881, pp. 1–17. Springer, Heidelberg (2013). doi:10.1007/
978-3-642-38348-9 1

[GGH+13b] Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.:
Candidate indistinguishability obfuscation and functional encryption for
all circuits. In: FOCS, pp. 40–49 (2013)

[GGH15] Gentry, C., Gorbunov, S., Halevi, S.: Graph-induced multilinear maps
from lattices. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015. LNCS,
vol. 9015, pp. 498–527. Springer, Heidelberg (2015). doi:10.1007/
978-3-662-46497-7 20

[GMS16] Garg, S., Mukherjee, P., Srinivasan, A.: Obfuscation without the vulnera-
bilities of multilinear maps. Cryptology ePrint Archive, Report 2016/390
(2016). http://eprint.iacr.org/

[Hal15] Halevi, S.: Graded encoding, variations on a scheme. IACR Cryptology
ePrint Archive, 2015:866 (2015)

[HJ15] Hu, Y., Jia, H.: Cryptanalysis of GGH map. IACR Cryptology ePrint
Archive, 2015:301 (2015)

http://dx.doi.org/10.1007/978-3-662-49896-5_27
http://dx.doi.org/10.1007/978-3-642-54242-8_1
http://dx.doi.org/10.1007/978-3-642-54242-8_1
http://eprint.iacr.org/
http://dx.doi.org/10.1007/978-3-662-47989-6_12
http://dx.doi.org/10.1007/978-3-662-47989-6_12
http://dx.doi.org/10.1007/978-3-662-46800-5_1
http://eprint.iacr.org/
http://eprint.iacr.org/
http://dx.doi.org/10.1007/978-3-642-40041-4_26
http://dx.doi.org/10.1007/978-3-642-40041-4_26
http://dx.doi.org/10.1007/978-3-662-47989-6_13
http://dx.doi.org/10.1007/978-3-662-47989-6_13
http://dx.doi.org/10.1007/978-3-642-38348-9_1
http://dx.doi.org/10.1007/978-3-642-38348-9_1
http://dx.doi.org/10.1007/978-3-662-46497-7_20
http://dx.doi.org/10.1007/978-3-662-46497-7_20
http://eprint.iacr.org/

268 S. Garg et al.

[Kil88] Kilian, J.: Founding cryptography on oblivious transfer. In: STOC, pp.
20–31 (1988)

[MF15] Minaud, B., Fouque, P.-A.: Cryptanalysis of the new multilinear map over
the integers. Cryptology ePrint Archive, Report 2015/941 (2015). http://
eprint.iacr.org/

[MSW14] Miles, E., Sahai, A., Weiss, M.: Protecting obfuscation against arithmetic
attacks. IACR Cryptology ePrint Archive, 2014:878 (2014)

[MSZ16a] Miles, E., Sahai, A., Zhandry, M.: Annihilation attacks for multilinear
maps: cryptanalysis of indistinguishability obfuscation over GGH13. In:
Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS, vol. 9815, pp. 629–
658. Springer, Heidelberg (2016). doi:10.1007/978-3-662-53008-5 22

[MSZ16b] Miles, E., Sahai, A., Zhandry, M.: Secure obfuscation in a weak multilin-
ear map model: a simple construction secure against all known attacks.
Cryptology ePrint Archive, Report 2016/588 (2016). http://eprint.iacr.
org/2016/588

[PST14] Pass, R., Seth, K., Telang, S.: Indistinguishability obfuscation from
semantically-secure multilinear encodings. In: Garay, J.A., Gennaro, R.
(eds.) CRYPTO 2014. LNCS, vol. 8616, pp. 500–517. Springer, Heidelberg
(2014). doi:10.1007/978-3-662-44371-2 28

http://eprint.iacr.org/
http://eprint.iacr.org/
http://dx.doi.org/10.1007/978-3-662-53008-5_22
http://eprint.iacr.org/2016/588
http://eprint.iacr.org/2016/588
http://dx.doi.org/10.1007/978-3-662-44371-2_28

Virtual Grey-Boxes Beyond Obfuscation:
A Statistical Security Notion
for Cryptographic Agents

Shashank Agrawal1(B), Manoj Prabhakaran2, and Ching-Hua Yu2

1 University of Texas at Austin, Austin, USA
sagrawal@cs.utexas.edu

2 University of Illinois at Urbana-Champaign, Champaign, USA
{mmp,cyu17}@illinois.edu

Abstract. We extend the simulation-based definition of Virtual Grey
Box (VGB) security – originally proposed for obfuscation (Bitansky and
Canetti 2010) – to a broad class of cryptographic primitives. These
include functional encryption, graded encoding schemes, bi-linear maps
(with über assumptions), as well as unexplored ones like homomorphic
functional encryption.

Our main result is a characterization of VGB security, in all these
cases, in terms of an indistinguishability-preserving notion of security,
called Γ∗-s-IND-PRE security, formulated using an extension of the
recently proposed Cryptographic Agents framework (Agrawal et al. 2015).
We further show that this definition is equivalent to an indistinguisha-
bility based security definition that is restricted to “concentrated” dis-
tributions (wherein the outcome of any computation on encrypted data
is essentially known ahead of the computation).

A result of Bitansky et al. (2014), who showed that VGB obfuscation
is equivalent to strong indistinguishability obfuscation (SIO), is obtained
by specializing our result to obfuscation. Our proof, while sharing various
elements from the proof of Bitansky et al., is simpler and significantly
more general, as it uses Γ∗-s-IND-PRE security as an intermediate notion.
Our characterization also shows that the semantic security for graded
encoding schemes (Pass et al. 2014), is in fact an instance of this same
definition.

We also present a composition theorem for Γ∗-s-IND-PRE security. We
can then recover the result of Bitansky et al. (2014) regarding the exis-
tence of VGB obfuscation for all NC1 circuits, simply by instantiating
this composition theorem with a reduction from obfuscation of NC1 cir-
cuits to graded encoding schemas (Barak et al. 2014) and the assumption
that there exists an Γ∗-s-IND-PRE secure scheme for the graded encoding
schema (Pass et al. 2014).

1 Introduction

Many recent advances in theoretical cryptography deal with obfuscation, multi-
linear maps, various forms of functional encryption and more generally, tools that
c© International Association for Cryptologic Research 2016
M. Hirt and A. Smith (Eds.): TCC 2016-B, Part II, LNCS 9986, pp. 269–296, 2016.
DOI: 10.1007/978-3-662-53644-5 11

270 S. Agrawal et al.

enable computation on encrypted data. These tools are relatively new (compared
to say, encryption, signatures and secure multi-party computation): for instance,
the first formal definitions of obfuscation appeared only at the turn of the century
[4,16]. As such our understanding of these tools and their security properties is
relatively limited, and continues to generate steady interest within the field.

In this paper, we further push the boundaries of what we know regarding the
security notions for these emerging cryptographic objects. To illustrate our find-
ings, consider defining a new primitive, called Homomorphic Functional Encryp-
tion (HFE): HFE requires a private-key for encryption and decryption, but allows
public homomorphic operations — for concreteness, addition — on ciphertexts,
and also lets one use the private-key to generate function-keys that can be used
to securely evaluate functions on ciphertexts (the function-key may reveal the
function associated with it). Note that this allows a user with a collection cipher-
texts (c1, · · · , cn) and a key for a function f , to evaluate f(

∑

i∈S xi), where xi is
the plaintext of ci and S ⊆ [n]. We study two possible security notions for HFE,
stated roughly below:

– A simulation-based security definition s-SIM,1 in which a set of ciphertexts and
function-keys can be simulated by a computationally unbounded simulator
which is allowed to query f(

∑

i∈S xi) for only polynomially many subsets S.
– An indistinguishability based definition IND-CON, in which it is enough that,

given a key for a function f , the ciphertexts for two “concentrated” distrib-
utions over plaintexts are indistinguishable. A pair of plaintext distributions
(D0,D1) is said to be concentrated for f if there is a function F such that for
all S ⊆ [n], f(

∑

i∈S xi) = F (S), with high probability over (x1, · · · , xn) ← Db

for both b = 0 and b = 1 (i.e., the outcome is predictable just from the subset).

IND-CON is a fairly basic requirement: if the plaintext distribution is promised
to be such that the function reveals virtually no information about the plain-
texts (as the outcome of every function evaluation is known a priori), then the
ciphertexts and function keys should hide which exact distribution the plaintexts
were drawn from. On the other hand, the simulation-based definition requires
the security to hold irrespective of the input distribution. The simulator needs
to fool only an adversary who makes polynomially many queries, but no matter
which of the exponentially many subset queries the adversary evaluates using
the simulated ciphertexts and function keys, the outcome should match what
the actual evaluation would have given. Remarkably,

our result implies that these two definitions are equivalent to each other.

This is a significant generalization of a similar surprising result by Bitansky
et al. [9], who studied the problem of obfuscation of circuits with boolean out-
puts. There it was shown that virtual grey-box (VGB) obfuscation and strong-
indistinguishability obfuscation (SIO) are equivalent. In this work, we abstract
out the fundamental properties underlying this equivalence and show that it
covers a much wider spectrum of primitives beyond obfuscation, including HFE,
1 s stands for statistical, indicating that the simulator is computationally unbounded.

VGB Beyond Obfuscation: A Statistical Security Notion 271

(function-hiding) functional encryption, graded encoding schemes (with seman-
tic security [19]), bi-linear maps (with über assumptions similar to the ones in
[2]), etc.

Our main tool for establishing this equivalence is an intermediate security
definition, which we cast in the recently formulated framework of Cryptographic
Agents [2]. The Cryptographic Agents framework unifies several disparate cryp-
tographic objects, akin to how the universal composition framework [11] unifies
the study of protocols like oblivious-transfer, commitment and zero-knowledge
proofs. Perhaps more significantly, it provides a definitional framework that,
unlike the universal composition framework and the constructive cryptogra-
phy framework [17], is based on indistinguishability-preservation (IND-PRE). We
extend this security property, as well as introduce a new “test family” (which
specifies the nature of the environment in which the security property should
hold) as follows:

– we introduce the notion of statistical indistinguishability preserving
(s-IND-PRE) security;

– we formulate a non-interactive test family Γ∗, which provides arbitrary
auxiliary information about the objects being encoded, but — being non-
interactive — prevents the adversary from adaptively influencing their choice.

We show that the resulting security definition of Γ∗-s-IND-PRE is equivalent to
both the s-SIM and IND-CON definitions sketched above. These two definitions
are formulated to apply to all primitives in the framework: when applied to
obfuscation they yield the same definitions as in the equivalence result of [9],
namely VGB obfuscation and SIO, respectively, thereby recovering the main
result of [9] as a corollary.

We emphasize that our result is not about a particular primitive like obfusca-
tion or HFE, but about the framework itself. Thus, for any primitive which can be
modeled in the Cryptographic Agents framework, this equivalence holds.2 For
example, we observe that the “semantic-security” notion for graded encoding
schemes introduced by Pass et al. [19] (or more precisely, its strengthening, as
used in [9]) corresponds to Γ∗-s-IND-PRE security, and hence is also equivalent
to corresponding s-SIM and IND-CON security definitions.

A New Composition Theorem for Cryptographic Agents. Another
important component in our extension of the agents framework is a compo-
sition theorem. Given that our security definition involves a computationally
unbounded adversary in the ideal world, the original composition theorem of
[2] breaks down. However, we present a new information-theoretic variant of

2 We point out that for certain primitives, like simple functional encryption and fully-
homomorphic encryption, for which the number of ideal computations that a user
can make — given a set of (evaluation or decryption) keys and ciphertexts — is only
polynomially large, this equivalence is easier to establish. This is because, then a
simulator can make all possible ideal queries that the user can ever make, and use
plaintexts consistent with their results to generate the simulated ciphertexts.

272 S. Agrawal et al.

the notion of reduction — statistical reduction — between two schemas, to re-
establish a composition theorem. Specifically, we show that

a statistical reduction from a schema Σto another schema Σ∗can be com-
bined with a secure scheme for Σ∗, to obtain a secure scheme for Σ,

where security refers to Γ∗-s-IND-PRE security.
An illustrative application of this composition theorem is to recover another

result of [9] regarding the existence of VGB obfuscation for all NC1 circuits.
Indeed, once cast in our framework, this result is natural and immediate: [5]
gave (using a different terminology) a reduction from obfuscation of NC1 circuits
to graded encoding schemas, and [9,19] put forth the assumption that there
exists a Γ∗-s-IND-PRE secure scheme for the graded encoding schema. Under
this assumption, our composition theorem immediately yields the result that
VGB obfuscation exists for all NC1 circuits.

Our Contributions. Below we summarize the contributions discussed above:

– We extend the cryptographic agents framework [2] to include the notion of
statistical hiding and a new security definition called s-IND-PRE. Specifically,
we consider Γ∗-s-IND-PRE security, where Γ∗ is a family of computationally
unbounded tests, which do not accept messages from the user. We also present
two security definitions, IND-CON (indistinguishability for concentrated dis-
tributions) and s-SIM (statistical simulation security) for all schemas, which
generalize the notions of SIO and VGB obfuscation to all schemas.

– Our main result is that all the above definitions are equivalent (for any
schema). For the case of obfuscation, this result was proven in [9].

– We define a notion of statistical reductions and prove a composition theorem
for Γ∗-s-IND-PRE security and statistical reductions. In particular, this can
be used to reprove the existence of Γ∗-s-IND-PRE secure obfuscation for all of
NC1, assuming “strong-sampler semantically-secure” graded encoding schemes
[9,19], and relying on an interpretation of a construction in [5] as a statistical
reduction from the obfuscation schema to the graded encoding schema.

The above results clarify and significantly generalize the results in a small but
influential collection of recent works on the foundations of security definitions
for cryptographic objects [2,8,9,19]. Specifically,

our results generalize the notion of “Virtual Grey-Box security” beyond
the realm of obfuscation.

In particular, they help us better understand the security notions for graded
encoding schemes. Also, they give concrete ways to prove VGB security for future
constructions of homomorphic functional encryption, function-hiding functional
encryption, etc.: a composition theorem that can be directly used if the construc-
tion uses VGB secure components, and an equivalence with IND-CON security,
which would typically be easier to prove from scratch.

Finally, our results also enrich the nascent framework of Cryptographic
Agents. We consider this an important contribution, as this framework can play

VGB Beyond Obfuscation: A Statistical Security Notion 273

a significant role in developing our understanding of the definitional aspects of
emerging cryptographic primitives. Indeed, our result itself illustrates the use-
fulness of this framework, as it allowed us to extend a non-trivial result about
obfuscation to a general result about unbounded simulation.

1.1 Technical Overview

We outline the definitional aspects first, and then present a high-level sketch of
the proof of our main theorem (IND-CON ⇔ Γ∗-s-IND-PRE ⇔ Γ∗-s-SIM), and
the composition theorem.

Security Definitions. Cryptographic agents and IND-PRE security were intro-
duced as a means to define security for a large class of modern cryptographic
primitives — including obfuscation, functional encryption, fully homomorphic-
encryption and graded encoding schemes — avoiding the notion of simulation [2].

A scheme Π (consisting of two algorithms O and E , analogous to the obfusca-
tion and evaluation algorithms, in the case of obfuscation), is said to be IND-PRE
secure for a schema Σ (which is defined by a family of idealized “agents” to which
a user will only have black-box access in an ideal world) if every test in the ideal
world that hides a challenge bit continues to hide the challenge bit in the real
world. A cryptographic primitive is fully defined by the schema Σ as well as the
test family Γ for which the indistinguishability preservation property holds.

We extend this notion naturally to consider statistical hiding in the ideal
world. In s-IND-PRE security, a test in Γ is required to be hiding in the real world
only if it is statistically hiding in the ideal world — i.e., hiding against compu-
tationally unbounded adversaries (who are still limited to making polynomial
number of accesses to the agents uploaded by the test). Further, we introduce
a sharper quantitative notion of s-IND-PRE security, which makes explicit the
(polynomial) gap permitted between the extent of ideal world hiding and real
world hiding.3

We also introduce a new test family denoted by Γ∗, which consists of compu-
tationally unbounded tests, which do not accept any messages from the adver-
sary. Alternately, a test in Γ∗ can be considered as sampling a collection of agents
to upload, and a string of bits to communicate to the adversary (taking only a
challenge bit as input in the experiments).

Combined, the above two elements fully define Γ∗-s-IND-PRE. Next, we
turn our attention to giving two security definitions which are not of the
indistinguishability-preserving genre. Firstly, s-SIM is a statistical simulation
based security notion, which, on the face of it, is a stronger definition than
s-IND-PRE. In s-SIM security, it is required that for every real world adversary

3 In IND-PRE security as defined in [2], it is only required that a negligible distinguish-
ing probability in the ideal world translates to a negligible distinguishing probability
in the real world. The security notion here is tighter in that it requires indistinguisha-
bility to be preserved up to a polynomial loss, even if the original distinguishing
probability in the ideal world is not negligible.

274 S. Agrawal et al.

Adv, there is an ideal world simulator S, which has a similar distinguishing prob-
ability as Adv has in the real world experiment. To be a strong security guarantee,
we require that the simulator cannot depend on the test (but it can depend on
Adv). We instantiate s-SIM security against the test-family Γ∗. This generalizes
the notion of VGB security for obfuscation (see Proposition 1 in Sect. 5).

The other security definition we introduce, called IND-CON (for indistin-
guishability of concentrated distributions) generalizes the notion of SIO intro-
duced by [9] for obfuscation, to all schemas. Here indistinguishability is required
only against tests which upload agents from two distributions which are not
only indistinguishable in the ideal world, but in fact “concentrated” — with
high probability, the outcome of any query strategy4 is already determined.

Equivalence of Security Notions. It is easy to see that Γ∗-s-SIM ⇒ Γ∗-
s-IND-PRE ⇒ IND-CON.5 Our main result is a proof that the reverse implications
hold as well, and hence the three notions are identical.

Our proof could be seen as a simplification and significant generalization
of the proof in [9] that SIO implies VGB obfuscation. We briefly overview the
proof of [9] before explaining our version. There it is shown how to construct a
computationally unbounded simulator which receives access to a single circuit
computing a binary function, makes only polynomially many queries to the cir-
cuit, and learns a sufficiently accurate approximation of the circuit so that it
can simulate it to the given adversary, provided that the obfuscation scheme
is SIO secure. The simulator iteratively narrows down the set of possibilities
for the circuit it is given access to, by making carefully chosen queries. Firstly,
the simulator narrows down the possibilities to a set of circuits R such that
a uniform distribution over R is a concentrated distribution (this is called the
concentration step of the proof). However, the adversary may behave differently
on certain circuits within this set; the computationally unbounded simulator
can identify this subset D6. To determine if the circuit is from D using a small
number of queries, the simulator relies on SIO security: since the adversary can

4 As opposed to the case of obfuscation, for general schemas, a query can typically
depend on previous queries. For example, in a graded encoding schema, it may be
the case that a “zero-test” can be performed only after performing a sequence of
operations on encodings provided by the test. A query-strategy is a polynomially
deep (but exponentially large) tree which fully specifies a (deterministic) choice of
ideal world queries based on the outcomes of the previous queries, and potentially
using the agents generated by those queries.

5 In this chain, we may insert a weaker version of s-SIM, which allows the simulator
to depend on the test as well as the adversary (but not on the challenge bit given to
the test), between Γ∗-s-SIM and Γ∗-s-IND-PRE security. Since all these notions turn
out to be the same, in this paper we avoid defining the weaker simulation. However,
for more general test families, or without the requirement of statistical security, this
notion of a simulation could be of independent interest.

6 More precisely there are two parts of D, corresponding to positive and negative
distinguishing advantage. For simplicity, here we assume that only one such part is
non-empty.

VGB Beyond Obfuscation: A Statistical Security Notion 275

distinguish the obfuscation of each of the circuits in D from the obfuscation of a
random circuit in R (with distinguishing advantage of the same sign), it follows
that it can distinguish the obfuscation of a random circuit in D from a ran-
dom circuit in R. Hence, by SIO security, it must be the case that the uniform
distribution over D is not concentrated around the same majority outcome as
R is (and possibly, not concentrated at all). This is exploited to argue that a
small set of queries can be found to check if the circuit is in D or not (this is
called the majority-separation step). If after making these queries, the simulator
determines that the circuit is not in D, it can obfuscate a random circuit from R
and present it to the adversary. On the other hand, if it is in D, this allows the
simulator to make significant progress, because as D is not concentrated, it must
be a significantly small fraction of R. The simulator iterates the concentration
and majority-separation steps alternately until it determines that the circuit is
not in D. To complete the proof, it is argued that the number of iterations (and
the number of queries within each iteration) is logarithmic in the size of the
space of circuits being obfuscated.

In our proofs, the simulation is required only in showing that Γ∗-s-IND-PRE
security implies Γ∗-s-SIM security. Here, the simulator can rely on the “stronger”
s-IND-PRE security guarantee, and obtain a “separating query” more directly,
without relying on R being concentrated: indeed, if D is distinguishable from
R in the real world, then s-IND-PRE security guarantees that there is a (small-
depth) query strategy that separates the two. Performing this query strategy
either allows D to be significantly shrunk, or allows R to be significantly shrunk
(since otherwise, it will not be a sufficiently separating query strategy). If R
shrinks, then D is redefined with respect to the new R (and may become as
large as the new R). Iterating this procedure makes D empty, with the number
of iterations being logarithmic in the size of the space of agents.

Roughly, the above argument corresponds to the majority-separation step in
the proof of [9]. An analogue of the concentration step appears in the proof that
IND-CON security implies Γ∗-s-IND-PRE security, described below.

A potentially difficult part in proving IND-PREsecurity in general is that it
requires one to show that every ideal-hiding test is real-hiding, and it is not clear
which tests are ideal-hiding. Our proof can in fact be viewed as a characterization
of tests in Γ∗ that are statistically ideal-hiding. A test in Γ∗ can be identified with
a pair of distributions D0 and D1, corresponding to the collection of agents (and
auxiliary information) it generates when the challenge bit is 0 and 1 respectively.
For a test to be ideal hiding, the outcome of any (polynomial depth) query-
strategy must have essentially the same distribution for both D0 and D1, but the
distributions are not necessarily concentrated (which requires the outcome of any
query strategy to be essentially deterministic). We give a simple combinatorial
lemma which shows that

for any distribution D over agents and auxiliary information, there is a
polynomial-depth query strategy that breaks down D into concentrated dis-
tributions (plus negligible mass on an unconcentrated distribution).

276 S. Agrawal et al.

The query strategy reveals which constituent concentrated distribution a col-
lection of agents come from. Hence, if D0 and D1 are ideal-hiding, then both
of them should have essentially the same distribution over concentrated distri-
butions. Now, for each concentrated distribution, IND-CON security guarantees
that the two distributions are real-hiding too.

Simplification and Generalization. We highlight two contributions of our
result, given the prior work of [9]. Technically, it simplifies the proof by changing
a nested iterative construction (used in the simulator), into two separate con-
structions, each with a simple iterative procedure. At a more conceptual level,
seemingly technical details in the proof of [9] — namely, the concentration step
and the majority-separation step — are reflected in two separate concrete con-
cepts (namely, IND-CON ⇒ Γ∗-s-IND-PRE and Γ∗-s-IND-PRE ⇒ Γ∗-s-SIM).

But more importantly our result also ties these results to the new framework
of cryptographic agents. While the development of the notions of VGB obfusca-
tion and SIO were important contributions to our understanding of obfuscation,
our result shows that their equivalence has more to do with certain structural
properties of the security definition (captured in Γ∗-s-IND-PRE security) rather
than obfuscation itself. Indeed, we show that the same security definition, applied
to the graded encoding schema captures the independently developed notion
of “semantic-security” for graded encoding [19].7 More broadly, Γ∗-s-IND-PRE
security can be used to model über assumptions for a variety of cryptographic
encoding schemes (e.g., groups, groups with bi-linear pairings etc.). Our result
shows that in all these cases, there is an equivalent simulation based security
notion as well as a low-level security notion for concentrated distributions.

Composition Theorem. In [2] a notion of reduction was defined and it was
shown that IND-PRE security composes with reductions: if Σ reduces to Σ∗,
and Σ∗ has an IND-PRE secure scheme, then so does Σ. However, this composi-
tion theorem breaks down in the case of s-IND-PRE security, since it involves an
ideal-world adversary who is computationally unbounded. However, if the reduc-
tion is a statistical reduction — i.e., Σ can be information-theoretically securely
constructed based on Σ∗— then we show that the composition theorem holds.
Further, the composition theorem holds even if we restrict to the test family Γ∗.

A consequence of this composition theorem is that we can readily obtain
the result that, if a strong-sampler semantically-secure graded encoding scheme
exists, then there exists a VGB obfuscation scheme for NC1 circuits. We point out
that in obtaining this result, we do not rely on the IND-CON security definition at
all. While [9] crucially used the notion of SIO for obtaining this result, the notion
of Γ∗-s-IND-PRE is sufficient: the proof relies on the fact that Γ∗-s-IND-PRE
is equivalent to VGB security for obfuscation and to strong-sampler semantic

7 The original notion in [19] essentially corresponds to s-IND-PRE security for a test
family which requires the tests to be efficient. Without this requirement, the security
notion is termed strong-sampler semantic-security [9].

VGB Beyond Obfuscation: A Statistical Security Notion 277

security for graded encoding schemes and on the composition theorem for Γ∗-
s-IND-PRE (as well as the existence of a statistical reduction from obfuscation
for NC1 to graded encoding schemes).

1.2 Related Work

A formal study of obfuscation was initiated in the works of Hada [16] and
Barak et al. [4] only about a decade and a half ago. The latter proposed sev-
eral notions of obfuscation: virtual black-box (VBB), differing-inputs obfuscation
(diO), indistinguishability obfuscation (iO), etc., with VBB being the strongest.
Further definitions appeared later [8,14,15]. In particular, Bitansky and Canetti
proposed the definition of Virtual Grey-Box (VGB) obfuscation [8].

Much work has appeared on the definitional front for other primitives like
functional encryption as well [1,3,6,7,10,12,18]. The recent framework of Cryp-
tographic Agents [2] unified many of the concepts underlying the definitions of
obfuscation, functional encryption and other cryptographic objects. Our results
are formulated in this new framework, and hence extends to all primitives that
can be expressed as cryptographic agent schemas.

Recently, Bitansky et al. [9] gave a surprising characterization of VGB obfus-
cation as being equivalent to a seemingly simpler definition of obfuscation, called
strong indistinguishability obfuscation (SIO). Further, based on this, they showed
that under a variant of a semantic-security assumption on graded encoding
schemes (a.k.a. multi-linear maps) [19], any NC1 circuit can be VGB-obfuscated.
Both these results can be obtained as corollaries of our result.

2 Preliminaries

We use κ to denote the security parameter. For two functions f and g, we write
f(g) to denote the function f ◦ g, so that f(g)(x) = f(g(x)). If X = {Xλ}λ∈N

and Y = {Yλ}λ∈N are distribution ensembles over {0, 1}, we write X ≈ Y if
there is a negligible function negl such that |Pr[Xλ = 1]−Pr[Yλ = 1]| ≤ negl(λ).

We work with the same framework of cryptographic agents as was originally
proposed by Agrawal et al. [2], except that we consider statistical hiding in
the ideal world and focus on a new family of tests which are computationally
unbounded and do not receive messages from adversaries. We summarize the
salient features of the framework here, and provide further details in AppendixA
for the sake of self-containment.

Agents and Sessions. Agents are used to model idealizations of entities like
ciphertexts, keys, encodings and obfuscations. An agent is an interactive Turing
Machine, derived from a family of agents all of whose programs are identical,
but may have different contents in a read-only parameter tape (e.g., message
in a ciphertext, the function in a functional-encryption key, or the program in
an obfuscation). Agents may interact with each other (e.g., a ciphertext agent
and a key agent) to produce outputs that a user can access. This is modeled by
sessions. A session consists of a finite ordered set of agents which can interact

278 S. Agrawal et al.

with each other according to their programs (e.g., a ciphertext agent can send
its message to a key agent), and result in updated states for the agents as well
as outputs from each agent in the session. Updated state may be the same as
the original state, and the outputs may be empty.

Ideal world. The ideal system for a schema Σ = (Pauth,Puser), where Pauth and
Puser are agent families, consists of two parties Test and User and a fixed third
party B[Σ] (for “black-box”). Test receives a “secret bit” b as input and User
produces an output bit b′. Test and User can, at any point, choose an agent and
upload it to B[Σ]. Test is allowed to upload agents from Ptest := Pauth ∪ Puser

and User agents from Puser. Whenever an agent is uploaded, B[Σ] sends a unique
handle for that agent to User.

A query is a request for session execution. At any point in time, User
may request an execution of a session, by sending an ordered tuple of han-
dles (h1, . . . , ht) along with their inputs. B[Σ] reports back the outputs from the
session, and also gives new handles corresponding to the configurations of the
agents when the session terminated. (Note that after a session, the old handles
for the agents are not invalidated.)

We define the random variable ideal〈Test(b) | Σ | User〉 to be the output of
User in an execution of the above system, when Test gets b as input. We write
ideal〈Test | Σ | User〉 in the case when the input to Test is a uniformly random
bit. We also define Time〈Test | Σ | User〉 as the maximum number of steps taken
by Test (with a random input), B[Σ] and User in total.

Definition 1 ((Statistical) Ideal world hiding). A Test is η-s-hiding w.r.t.
a schema Σ if, for all unbounded users User who make at most η queries,

|Pr[ideal〈Test(0) | Σ | User〉 = 1] − Pr[ideal〈Test(1) | Σ | User〉 = 1]| ≤ 1
η
.

Real World. A cryptographic scheme consists of programs O and E , where
O is an encoding (or objectification) procedure for agents in Ptest and E is an
execution procedure. The real world execution for a scheme (O, E) consists of
Test, a user that we shall generally denote as Adv, and the encoder O. (E features
as part of an honest user.) Test uploads agents to the encoder O, who encodes
them and sends the resulting cryptographic agents to Adv. (O, E) are generally
memory-less from one invocation to the next, except that E has access to a list
of all objects it ever received. For certain schemes, it is important to let O and
E have access to persistent keys generated during a set-up phase, which is also
incorporated into the model via a public-secret key pair (MPK,MSK) (for details
see Appendix A).

We define the random variable real〈Test(b) | O | Adv〉 to be the output
of Adv in an execution of the above system, when Test gets b as input; as
before, we omit b from the notation to indicate a random bit. Also, as before,
Time〈Test | O | User〉 is the maximum number of steps taken by Test (with a
random input), O and User in total.

VGB Beyond Obfuscation: A Statistical Security Notion 279

Definition 2 (Real world hiding). A Test is η-hiding w.r.t. O if for all adver-
saries Adv who run for at most η time,

|Pr[real〈Test(0) | O | Adv〉 = 1] − Pr[real〈Test(1) | O | Adv〉 = 1]| ≤ 1
η
.

Definition 3 (Admissibility of schemes). A cryptographic agent scheme
Π = (O, E) is said to be an admissible scheme for a schema Σ if the follow-
ing conditions hold.

– Correctness. ∀ PPT User and ∀ Test,

ideal〈Test | Σ | User〉 ≈ real〈Test | O | E ◦ User〉.
If the difference is 0, (O, E) is said to have perfect correctness.

– Efficiency. There exists a polynomial poly such that, ∀ PPT User, ∀ Test,

Time〈Test | O | E ◦ User〉 ≤ poly(Time〈Test | Σ | User〉, κ).

Γ∗ Test Family. This family consists of computationally unbounded tests which
do not accept any messages from the user/adversary. Without loss of generality,
such a test is fully characterized by a distribution over {0, 1}∗ × P∗

test.
8

The first part of a P ∈ {0, 1}∗ × P∗
test, which we denote as P0 ∈ {0, 1}∗,

is a message from test to the user/adversary; the remaining components of the
vector P denote a (possibly empty) collection of agents from Ptest.

We write O(P) to denote a random encoding of P which consists of
(P0,O(P1), · · · ,O(Pi)) (as well as the public-key MPK if O involves a set-up).
We write Adv(O(P)) to denote the random variable corresponding to the bit
output by Adv when given O(P).

Definition 4 (IND-PRE security). An admissible cryptographic agent scheme
Π = (O, E) is said to be a p-Γ∗-s-INDPRE-secure scheme for a schema Σ if for
all κ, all Test ∈ Γ∗, and every polynomial η, if Test is p(η(κ))-s-hiding w.r.t. Σ,
then it is η(κ)-hiding w.r.t. O.

If Π = (O, E) is p-Γ∗-s-INDPRE-secure for some polynomial p, then we simply
refer to it as Γ∗-s-INDPRE -secure scheme.

We also define a simulation-based security notion in the agents framework.

Definition 5 (Simulation-based security). An admissible cryptographic
agent scheme Π = (O, E) is said to be a p-Γ∗-s-SIM-secure scheme for a schema
Σ if for all κ, all polynomials �, η, and any adversary Adv which runs in time at
most �(κ), there exists a computationally unbounded simulator S that makes at
most p(η(κ), �(κ)) queries, such that for all Test ∈ Γ∗,

|Pr[ideal〈Test | Σ | S〉 = 1] − Pr[real〈Test | O | Adv〉 = 1]| ≤ 1
η(κ)

.

8 In proving our results, we can assume an upper-bound on the number of bits com-
municated by the test, as there will be a bound on the running time of an adversary
that it interacts with.

280 S. Agrawal et al.

A cryptographic agent scheme Π = (O, E) is said to be a Γ∗-s-SIM-secure
scheme if it is a p-Γ∗-sSIM-secure scheme for some (bivariate) polynomial p.

We remark that one can consider a weaker notion of simulation where S can
depend on Test. As we shall see, for Γ∗, this weaker notion is no different from
the notion defined above.

2.1 Concentrated Distributions

Recall that in the ideal world, User can make queries — i.e., requests to run
sessions — to B[Σ] and obtain the outcome of the session (and handles for the
updated configurations of the agents involved in the session). User can carry this
out repeatedly, and adaptively. The following definition captures this procedure
(for a deterministic User).

Definition 6 (Query Strategy). A d-query-strategy is a tree of depth at most
d where each internal node u is labeled with a query qu and each outgoing edge
from u is labeled with a different possible outcome of qu. The execution of a
query strategy Q on a P ∈ {0, 1}∗ × P∗

test is a path in this tree starting from
the root node, such that an edge from node u, labeled with an answer ans, is
present in the path if and only if the outcome of running a session on (the
updated configurations of) P with the query qu is ans. The outcome of the entire
execution, denoted by P (Q) is the (concatenated) outcomes of all the queries in
the path. We use the convention that the first query in Q is an empty query and
its answer is the auxiliary information P0 ∈ {0, 1}∗.

We now define concentrated distributions over collections of agents and indis-
tinguishability between them.

Definition 7 (Concentrated distributions). A distribution ensemble D over
{0, 1}�(κ) × ⋃�(κ)

i=0 Pi
test is said to be η-concentrated if for all κ there exists a

function A (called an answer function) which maps query strategies to answers,
such that for all depth η(κ) query strategy Q,

Pr
P←D(κ)

[P (Q) �= A(Q)] ≤ 1
η(κ)

.

A pair of distribution ensembles (D0,D1) is said to be η-concentrated if they
are both η-concentrated with the same answer function.

Definition 8 (Indistinguishability of concentrated distributions). An
admissible scheme Π = (O, E) is q-IND-CON secure for Σ = (Pauth,Puser) if
for all κ, every polynomial η, and any pair of distribution ensembles (D0,D1)
over {0, 1}�(κ) ×⋃�(κ)

i=0 Pi
test which are q(η(κ))-concentrated, we have that for any

PPT adversary Adv with running time at most η(κ),
∣

∣PrP←D0(κ)[Adv(O(P)) = 1] − PrP←D1(κ)[Adv(O(P)) = 1]
∣

∣ ≤ 1
η(κ)

.

A scheme Π = (O, E) is IND-CON secure if it is q-IND-CON secure for some
polynomial q.

VGB Beyond Obfuscation: A Statistical Security Notion 281

A Probability Lemma. The following is a simple lemma which can be used
to relate two distributions with a small statistical difference to a single common
distribution; further, the lemma allows the common distribution to avoid a subset
S of the sample space, provided the given distributions have low mass on it.
Below, Δ (·, ·) denotes the statistical difference between two distributions.

Lemma 1. For any two probability distributions A0, A1 over the same sam-
ple space, and any subset S of the sample space, there exists ε ≤ Δ(A0,A1) +
min{Pra←A0 [a ∈ S],Pra←A1 [a ∈ S]}, a distribution AS over S, and two distri-
butions A′

0,A′
1 such that for each b ∈ {0, 1}, Ab is equal to the distribution of a

in the following experiment:

α ∼ Bernoulli(ε); if α = 0, a ← AS , else a ← A′
b.

Proof. Given distributions A0,A1 over a sample space T and a set S ⊆ T , the
goal is to construct a distribution AS over S such that sampling according to A0

(resp. A1) is the same as sampling according to AS with probability 1 − ε and
according to another distribution A′

0 (resp. A′
1) with probability ε. Intuitively,

AS is the “intersection” of A0 and A1 over S, and A′
0 (resp. A′

1) is the “remaining
distribution” after AS is cut out from A0 (resp. A1).

More formally, define weight functions f, f0, f1 : T → [0, 1] as follows:

f(a) =

{

min{A0(a),A1(a)} if a ∈ S

0 if a ∈ S
and

f0(a) = A0(a) − f(a)
f1(a) = A1(a) − f(a)

where Ab(a) denotes the probability mass on a according to the distribution Ab.
Furthermore, set ε = 1 − ∑

a f(a) =
∑

a f0(a) =
∑

a f1(a). Then, we define the
distributions AS , A′

0, A′
1 as follows:

AS(a) = f(a)/(1 − ε), A0(a) = f0(a)/ε, A1(a) = f1(a)/ε.

(If ε = 1, we let AS be an arbitrary probability distribution; similarly if ε = 0,
A0,A1 are arbitrary.) Then for b ∈ {0, 1}, for all a ∈ T , Ab(a) = (1 − ε)AS(a) +
εA′

b(a), as required by the lemma.
It remains to prove the claimed upper bound on ε. Let g(a) =

min{A0(a),A1(a)} for all a. Note that
∑

a Ab(a) − g(a) = Δ (A0,A1) for
b ∈ {0, 1} and

∑

a g(a)−f(a) ≤ min{Pra←A0 [a ∈ S],Pra←A1 [a ∈ S]}. Hence ε =
∑

a f0(a) =
∑

a A0(a) − g(a) +
∑

a g(a) − f(a) ≤ Δ(A0,A1) + min{Pra←A0 [a ∈
S],Pra←A1 [a ∈ S]}. ��

3 Equivalence of Definitions

In this section we prove our main results (Theorems 1 and 2).

Theorem 1 (Equivalence of IND-CON and s-IND-PRE). A cryptographic
agent scheme Π = (O, E) is a Γ∗-s-IND-PRE-secure scheme for a schema Σ if
and only if it is IND-CON secure for Σ.

282 S. Agrawal et al.

To prove Theorem 1, or more specifically, that IND-CON ⇒ Γ∗-s-IND-PRE,
we rely on the following lemma, which gives a query strategy that can be used
to narrow down a distribution over agents to a concentrated distribution (except
with negligible probability over the choice of the agents). As sketched in Sect. 1.1,
this lemma gives a characterization of hiding tests in terms of concentrated
distributions and is at the heart of proving Theorem 1.

Below, for a distribution D over agent vectors and a query strategy Q,
D|Q→ans denotes the distribution obtained by restricting D to the subset
{P |P (Q) = ans}. Below, when we say that a distribution D|Q→ans is ρ-
concentrated, we consider concentration against depth ρ query-strategies which
can optionally use the handles resulting from the query-strategy Q, as well as
the original handles (this is relevant only for schemas with stateful agents).

Lemma 2. Let Ptest be a set of agents with polynomially long representation.
Then, for any polynomial ρ, there exists a polynomial π such that for any poly-
nomial η, any function ε > 0, and any distribution D over Rη = {0, 1}η × Pη

test,
there is a π(η · log 1

ε)-query strategy Q� such that

Pr
P←D

[D|Q�→P (Q�) not ρ(η)-concentrated] ≤ ε.

Proof. The query strategy can be defined as repeatedly, conditioned on the
previous queries and answers, identifying and carrying out a query strategy
whose answer is not concentrated (i.e., no one answer has probability more than
1 − ρ(η)) until the remaining distribution is ρ(η)-concentrated, or the budget
on the number of queries (depth of the strategy) has been exhausted. We shall
show that this leads to the mass in unconcentrated leaves of the query strategy
tree to be at most ε.

More formally, consider a tree in T which each node v is associated with a
subset Rv ⊆ Rη and (unless it is a leaf node) with a query strategy Qv. The
set at the root of T is the entire set Rη. For R ⊆ Rη, let D|R denote the
distribution D restricted to the set R. A node v in T is a leaf node either if the
distribution D|Rv

is σ := ρ(η)-concentrated or if v is at a depth σ. For every
internal node v, Qv is a query strategy of depth at most σ such that for all ans,
PrP←D|Rv

[P (Qv) = ans] ≤ 1 − 1
σ . Note that such a Qv exists since D|Rv

is not
σ-concentrated (v being an internal node). For each possible answer ans to Qv,
v has a child vans such that Rvans = {P ∈ Rv | P (Qv) = ans}.

Let L� be the set of all nodes at depth � in T . Note that for each v ∈ L�,
|Rv| ≥ 1, whereas

∑

v∈L�
|Rv| ≤ |Rη|. Therefore, |L�| ≤ |Rη|. On the other hand,

note that if u is a child of v in T , then PrP←D[P ∈ Ru | P ∈ Rv] ≤ 1− 1
σ . Thus

for all v ∈ L�, PrP←D[P ∈ Rv] ≤ (1 − 1
σ)�. Hence, PrP←D[P ∈ ⋃

v∈L�
Rv] ≤

(1 − 1
σ)� · |Rη|.

If we choose � = Ω(σ · log(|Rη|/ε)) then PrP←D[P ∈ ⋃

v∈L�
Rv] ≤ ε. Note

that |Rη| = ζη for some polynomial ζ (determined by the size of Ptest) and
σ = poly(η), so that � is polynomial in η · log 1

ε . Our query strategy Q� is
obtained from T by executing the first � query strategies in it. The depth of Q�

is � · σ, again a polynomial in η · log 1
ε . ��

VGB Beyond Obfuscation: A Statistical Security Notion 283

We prove the two directions of Theorem 1 separately. Intuitively, IND-CON
security is a “weaker” notion, and hence the first direction below is easier to see.
The second direction relies on Lemma 2.

Γ∗-s-IND-PRE ⇒ IND-CON: Suppose that for some polynomial q, Π = (O, E)
is a q-Γ∗-s-IND-PRE secure scheme for a schema Σ. We shall show that Π is
q-IND-CON secure for Σ.

Let η be a polynomial, and (D0,D1) be a pair of distribution ensembles which
are q(η)-concentrated. Let A denote the answer function that maps depth q(η)
query strategies to answers, so that for any such query strategy Q, for both
b ∈ {0, 1}, we have PrP←Db

[P (Q) �= A(Q)] ≤ 1
q(η) .

Consider the test Test which on input b ∈ {0, 1}, uploads a sample from the
distribution Db. Observe that Test ∈ Γ∗. Consider any unbounded ideal-world
user User that makes at most q(η) queries. For each setting of the random-tape
of User, its behavior can be identified with a query strategy of depth at most
q(η). For any such strategy Q, irrespective of the bit b, with probability at least
1−1/q(η) User receives the answer A(Q). Thus, for any User which makes at most
q(η) queries |Pr[ideal〈Test(0) | Σ | User〉 = 1] − Pr[ideal〈Test(1) | Σ | User〉 =
1]| ≤ 1/q(η). That is, Test is q(η)-s-hiding w.r.t. Σ.

Then, since Π is a q-Γ∗-s-IND-PRE secure scheme for Σ, we have that Test is
η-hiding w.r.t. O. That is, for any adversary Adv with running time at most η,
|Pr[real〈Test(0) | Σ | User〉 = 1] − Pr[real〈Test(1) | Σ | User〉 = 1]| ≤ 1/η. But
Pr[real〈Test(b) | Σ | User〉 = 1] is simply PrP←Db

[Adv(O(P)) = 1].
Hence, by the definition of IND-CON security, Π is q-IND-CON secure for Σ.

IND-CON ⇒ Γ∗-s-IND-PRE: Suppose Π is an IND-CON secure scheme for Σ.
Then, there is a polynomial q such that it is q-IND-CON secure. We shall show
that Π is p-Γ∗-s-IND-PRE secure, for some polynomial p.

Let Test be an arbitrary test in Γ∗, that is η∗-hiding w.r.t. Σ. We shall
show that Test is η-hiding w.r.t. Π, where η∗ = p(η) (for a polynomial p to be
determined).

We consider the space Rη of all possible agents vector produced by tests, i.e.,
Rη = {0, 1}η × Pη

test.9 Let D0 and D1 be the distributions over Rη, produced
by Test on input b = 0 and b = 1 respectively. Now, we apply Lemma 2 to the
distribution D0, with η as above, ρ(η) := 2q(η/2), and (say) ε = 2−η. Let Q be
the query strategy guaranteed by the lemma. Also, let μ = ρ(η)/2.

Recall that each root-to-leaf path in a query strategy is labeled by a
sequence of responses, ans. We define two subsets of leaves B and C which
correspond to answers that can potentially differentiate between D0 and D1.
Let B = {ans | D0|Q→ans is not 2μ-concentrated}. Also let C = {ans |
D0|Q→ans is 2μ-concentrated around some answer function A, but D1|Q→ans

is not μ-concentrated around A}. For ans �∈ B ∪ C, the pair of distributions
(D0|Q→ans,D1|Q→ans) is μ-concentrated.

9 Note that we truncate the auxiliary information to η(κ) bits, and the number of
agents uploaded by the test to η(κ). This is because, to show that Test is η-hiding
w.r.t. Π, it is enough to consider adversaries who read at most η bits of the messages
from Test.

284 S. Agrawal et al.

We argue, relying on the fact that Test is η∗-hiding, that the mass of B ∪ C
under D0 is O(μ/η∗). Firstly, mass of B under D0 is bounded by Lemma 2 to at
most ε. Next, for each ans ∈ C, let Aans be the answer function that D0|Q→ans is 2μ-
concentrated around. Since D1|Q→ans is not μ-concentrated around Aans, there is
some query strategy Qans with depth at most μ, such that PrP←D1|Q→ans

[P (Qans) �=
Aans(Qans)] > 1/μ. But since D0|Q→ans is 2μ-concentrated around Aans and Qans

has depth less than 2μ, PrP←D0|Q→ans
[P (Qans) �= Aans(Qans)] ≤ 1/(2μ). Now, con-

sider a 2-phase query strategy Q′ that in the first phase carries out Q and at the
end of it, if ans ∈ C is obtained, then follows up with the query strategy Qans.
Q′ is of depth at most π(η2) + μ (which we shall arrange to be less than η∗). We
may write the answer P (Q′) as ans1||ans2, where ans1 and ans2 are the answers to
the first and second phases of queries, respectively (if ans1 �∈ C, then ans2 will be
empty). Then,

Pr
P←D0

[P (Q′) = ans||Aans(Qans) for ans ∈ C] ≥ Pr
P←D0

[P (Q) ∈ C] ·
(

1 − 1
2μ

)

Pr
P←D1

[P (Q′) = ans||Aans(Qans) for ans ∈ C]

< Pr
P←D1

[P (Q) ∈ C] ·
(

1 − 1
μ

)

≤
(

Pr
P←D0

[P (Q) ∈ C] + 1/η∗
)

·
(

1 − 1
μ

)

The difference between these two probabilities is more than PrP←D0 [P (Q) ∈
C] · 1

2μ − 1
η∗ . But as the depth of Q′ is less than η∗ (as we ensure below), and

Test is η∗-hiding, this difference is upper-bounded by 1
η∗ . Hence PrP←D0 [P (Q) ∈

C] ≤ 4μ
η∗ .

Now, we view the test, on each input b, as sampling its agents vector P by first
sampling the answer P (Q), and then sampling P conditioned on this answer.
P (Q) itself is sampled from the distribution Ab = {P (Q)}P←Db

. Now, we invoke
Lemma 1 on the distributions A0 and A1 with the set S = B ∪C. This results in
ε = O(μ

η∗), given the above bound (and since Δ (A0,A1) ≤ 1/η∗). Thus, the test,
with probability 1−ε samples ans �∈ B∪C (from a distribution independent of b)
and then samples P ← Db|Q→ans. (With the remaining ε probability, it samples
P depending on b as appropriate.) Recall that, for ans �∈ B ∪ C, we have that
(D0|Q→ans,D1|Q→ans) is μ-concentrated, where μ = q(η/2). Hence we can apply
the q-IND-CON security to conclude that no adversary can distinguish between
b = 0 and b = 1 in the real experiment with advantage more than ε+(1− ε)η/2.
We shall set ε < η/2 so that this advantage is less than η, as we need to prove.

To finish the proof we need to ensure that η∗ > π(η2) + μ and ε < η/2. This
is satisfied by setting, say, η∗ > π(η2) + q(η/2). Thus, we can set p to be, say,
the polynomial p(η) := π(η2) + q(η/2) + 1.

Theorem 2 (Equivalence of s-IND-PRE and s-SIM). A cryptographic agent
scheme Π = (O, E) is a Γ∗-s-IND-PRE-secure scheme for a schema Σ if and only
if it is Γ∗-s-SIM-secure for the same schema.

VGB Beyond Obfuscation: A Statistical Security Notion 285

Proof. Intuitively, Γ∗-s-IND-PRE security is “weaker” than Γ∗-s-SIM security,
and hence the first direction below is easier to see.

Γ∗-s-SIM ⇒ Γ∗-s-IND-PRE: Suppose Σ = (O, E) is a p-Γ∗-s-SIM secure scheme for
Σ, for some (bivariate) polynomial p. We shall show that Σ is a q-Γ∗-s-IND-PRE
schema for a polynomial q to be determined.

For a Test ∈ Γ∗ and η, suppose there exists a PPT adversary Adv which
runs in at most η time but can distinguish between Test with bit 0 and 1 with
probability at least 1/η. That is,

|Pr[real〈Test(0) | O | Adv〉 = 1] − Pr[real〈Test(1) | O | Adv〉 = 1]| > 1/η.

We need to show that there is an ideal world user User, which makes at most
q(η) queries and achieves a distinguishing advantage of at least 1/q(η).

Since Π is p-Γ∗-s-SIM secure, given Adv which runs in time at most η, there
exists an unbounded simulator S making at most p(3η, η) queries, such that for
all tests (and in particular, for Test) and b ∈ {0, 1}:

|Pr[ideal〈Test(b) | Σ | S〉 = 1] − Pr[real〈Test(b) | O | Adv〉 = 1]| ≤ 1
3η

.

And therefore,

|Pr[ideal〈Test(0) | Σ | S〉 = 1] − Pr[ideal〈Test(1) | Σ | S〉 =1]| >

1
η

− 2
3η

=
1
3η

.

We set q such that q(η) ≥ p(3η, η) and 1
3η ≥ 1

q(η) . For instance, we can set
q(x) = p(3x, x) + 3x.

Note that in the above proof, we could allow S to depend on Test, and
therefore, even the weaker notion of simulation mentioned after Definition 5
implies IND-PRE security.

Γ∗-s-IND-PRE ⇒ Γ∗-s-SIM: Suppose Π = (O, E) is q-Γ∗-s-IND-PRE secure for a
schema Σ. Fix a polynomial η and a PPT adversary Adv whose running time is
upper-bounded by a polynomial �. We shall construct a simulator S for Adv in
the ideal world, which makes at most p(η, �) queries for some polynomial p, and
suffers a simulation error of at most 1/η. Below, we write η to mean max(η, �),
so that we may assume that η ≥ �.

In the ideal world, when a test Test ∈ Γ∗ uploads a ̂P ∈ {0, 1}∗ × P∗
test, S

attempts to learn a sufficiently accurate approximation P † using a polynomial
depth query strategy, and then faithfully simulates O(P †) to Adv. Note that
since Adv’s running time is upper-bounded by the polynomial �, w.l.o.g, the
simulator considers ̂P to be in {0, 1}� × P�′

test, where �′ is the lesser of � and the
actual number of agents uploaded by Test.

S defines Ri ⊆ {0, 1}� ×P�′
test and Di ⊆ Ri inductively as follows, for integers

i ≥ 0, up till i = i∗ such that Di∗ = ∅. It then samples P † ← Ri∗ and uses it to
complete the simulation.

286 S. Agrawal et al.

Below, we write Adv(O(Ri)) to denote the random variable corresponding to
the output of Adv when a random P ← Ri is encoded using O and given to Adv;
also, recall that Adv(O(P)) denotes the similar random variable when the fixed
agent vector P is encoded and given to Adv.

1. Firstly, for each i, we define D∗
i in terms of Ri, as follows. D∗

i = D∗
i,0 ∪ D∗

i,1,
where

D∗
i,b =

{

P ∈ Ri | (−1)b(Pr[Adv(O(P)) = 1] − Pr[Adv(O(Ri)) = 1]) >
1
η

}

.

Below, we shall iteratively define sets Di,0 and Di,1, and let Di := Di,0 ∪Di,1.
We shall maintain the invariant that, for all i ≥ 0, Di,β ⊆ D∗

i,β , and the
uploaded agent vector ̂P ∈ Ri\(D∗

i \Di) (i.e., P ∈ Ri, and if P ∈ D∗
i then

P ∈ Di).
2. R0 = {0, 1}� × P�′

test, D0,0 = D∗
0,0, and D0,1 = D∗

0,1.
3. If Di �= ∅, we define Ri+1 and Di+1 as follows.

Suppose Di,β �= ∅. Then, consider the test Testi,β ∈ Γ∗, which on input b = 0
uploads P ← Di,β , and on input b = 1, uploads P ← Ri.10 Since Di,β is not
empty, we have

|Pr[real〈Testi,β(0) | O | Adv〉 = 1] − Pr[real〈Testi,β(1) | O | Adv〉 = 1]|
= (−1)β 1

|Di,β |
∑

P∈Di,β

(Pr[Adv(O(P)) = 1] − Pr[Adv(O(Ri)) = 1]) >
1
η

because for each P ∈ Di,β ⊆ D∗
i,β , we have (−1)β(Pr[Adv(O(P)) = 1] −

Pr[Adv(O(Ri)) = 1]) > 1
η . That is, Testi,β is not η-hiding (against Adv,

which runs for less than � ≤ η time). Since the scheme Π = (O, E) is Γ∗-
s-IND-PRE-secure, there must exist an ideal world adversary, or equivalently,
a query strategy Qi,β of depth at most q(η) which has advantage of more
than σ := 1/q(η) in distinguishing Testi,β(0) and Testi,β(1).
If Di,β = ∅, Qi,β is taken as the empty query strategy. For each β ∈ {0, 1},
S executes the query strategy Qi,β to obtain an answer ansi,β . It defines
R′

i = {P ∈ Ri | P (Qi,0) = ansi,0,P (Qi,1) = ansi,1}, and D′
i,β = {P ∈

Di,β | P (Qi,β) = ansi,β}. If |R′
i| ≤ (1 − σ)|Ri|, then set Ri+1 = R′

i and
Di+1,β = D∗

i+1,β . Otherwise, set Ri+1 = Ri (and hence D∗
i+1,β = D∗

i,β) and
Di+1,β = D′

i,β .

The above iteration terminates for the least i such that Di = ∅. Then we
have the property that the uploaded agent ̂P ∈ Ri\D∗

i , which means that
∣

∣

∣Pr[Adv(O(̂P)) = 1] − Pr[Adv(O(Ri)) = 1]
∣

∣

∣ ≤ 1
η
.

Thus S completes the simulation by sampling P † ← Ri and giving O(P †) to Adv.
10 Note that Testi,β may be computationally inefficient. This is the only reason we are

not able to prove analogous results for a test-family that is like Γ∗ but restricted to
PPT tests.

VGB Beyond Obfuscation: A Statistical Security Notion 287

Note that if |R′
i| > (1 − σ)|Ri| then |D′

i,β | ≤ (1 − σ)|Di,β |, because otherwise
Qi,β cannot distinguish Testi,β with advantage σ (as, for b = 0 and b = 1, it
receives an answer other than ansi,β with probability less than σ). Therefore,
we make progress in each iteration: either |Ri+1| ≤ (1 − σ)|Ri| (in which case
|Di+1| ≤ |Ri+1|), or |Ri+1| = |Ri| and |Di+1,β | ≤ (1 − σ)|Di,β |. Hence, for
i∗ ≤ log2

1−σ |R0| we have Di = ∅.
The total number of queries made by the simulator above is bounded by

q(η) · log2
1−σ |R0|. Note that log2 |R0| ≤ � + nΣ · �, where nΣ is a (polynomial)

upper-bound on the number of bits required to represent an agent in the schema
Σ. Also,

∣

∣

∣

1
log2(1−σ)

∣

∣

∣ = O(q(η)), so that log2
1−σ |R0| = O((nΣ · � · q(η))2). Hence,

we can set p(η, �) to be q(η) times this polynomial. ��

3.1 Extensions: Limited Agent-Space and Resettable Tests

Firstly, in the above results we can use a test-family which is a subset of Γ∗

as follows. Note that the tests in Γ∗ may upload any number of agents and
send messages of any length (i.e., we considered agents in {0, 1}∗ × P∗

test). But
our proofs go through unchanged if we restrict to a subset of Γ∗ which uses an
arbitrary subset of {0, 1}∗ ×P∗

test. (In this case, IND-CON is suitably modified to
use the same subset.) In particular, we may restrict to the test-family Γ∗

1 ⊆ Γ∗

which uploads a single agent and does not give any auxiliary information. Thus,
every test in this family is fully characterized by a distribution over P∗

test. A
variant of IND-CON, say IND-CON1, can be defined where distribution ensembles
only over Ptest are considered.

Secondly, we consider the possibility of using a test-family that is larger
than Γ∗. Above, the restriction to Γ∗ was crucial in allowing the construction
of a composite query strategy by grafting a query strategy onto the leaves of
another query strategy. However, if the test allowed itself to be treated as an
agent — i.e., allowing a User to access Test from any state in its history — then
the above equivalences would carry over. Thus, we may define a test-family Γreset

consisting of tests which are allowed to accept messages from the user/adversary
and react to them, but also allows the user/adversary to reset it to the beginning
(without changing its random tape). Then the above proofs extend to show that
IND-CON ⇔ Γreset-s-IND-PRE ⇔ Γreset-s-SIM, for all schemas. Note that tests in
Γ∗ are effectively resettable and hence Γreset ⊇ Γ∗. We defer a formal definition
of Γreset to the final version.

4 Reductions and Compositions

A hybrid scheme (O, E)Σ
∗

is a cryptographic agent scheme in which O and E have
access to B[Σ∗], as shown in Fig. 1 (in the middle), where Σ∗ = (P∗

auth,P∗
user).

11 In
general, the honest user would be replaced by an adversarial user Adv. Note that

11 If O has a setup phase (see Appendix A), we require that Ouser uploads agents only
in P∗

user but Oauth can upload any agent in P∗
auth ∪ P∗

user.

288 S. Agrawal et al.

Fig. 1. (O, E) in (b) is a reduction from schema Σ to Σ∗. The security requirement
is that no adversary Adv in the system (a) can distinguish that execution from an
execution of the system in (b) (with Adv taking the place of honest real user). The
correctness requirement is that the ideal User in (b) behaves the same as the ideal User
interacting directly with B[Σ] (as in Fig. 2(a)). (c) shows the composition of the hybrid
scheme (O, E)Σ

∗
with a scheme (O∗, E∗) that s-IND-PRE-securely implements Σ∗.

the output bit ofAdv in such a system is given by the random variable ideal〈Test◦
O | Σ∗ | Adv〉, where Test ◦ O denotes the combination of Test and O.

We introduce a new information-theoretic notion of reduction between
schemata which would allow for composition of Γ∗-s-IND-PRE secure schemes.
When compared to [2], the main difference is that we require the hybrid world
to be secure against unbounded adversaries (who make a polynomial number of
queries). Further, the simulator is allowed to depend on the adversary.

Definition 9 (Statistical Reduction). We say that a (hybrid) cryptographic
agent scheme Π = (O, E) statistically reduces Σ to Σ∗ with respect to ˜Γ, if there
exists a polynomial p such that for all unbounded User who make at most η(κ)
queries for some polynomial η,

1. Correctness: ∀ Test, ideal〈Test | Σ | User〉 ≈ ideal〈Test ◦ O | Σ∗ | E ◦ User〉.
2. Simulation: ∃ a simulator SUser which makes at most p(η(κ)) queries s.t.

∀ Test ∈ ˜Γ, ideal〈Test | Σ | SUser〉 ≈ ideal〈Test ◦ O | Σ∗ | User〉.
If there exists a scheme that reduces Σ to Σ∗, then we say Σ reduces to Σ∗. (Note
that correctness is required for all tests, not just those in ˜Γ.)

Figure 1 illustrates a reduction. It also shows how such a reduction can be
composed with an IND-PRE-secure scheme for Σ∗. We now prove the main result
of this section, in a manner very similar to that of Agrawal et al. [2].

Theorem 3 (Composition). For any two schemata, Σ and Σ∗, if (O, E)
reduces Σ to Σ∗ with respect to Γ∗ and (O∗, E∗) is a Γ∗-s-IND-PRE secure scheme
for Σ∗, then (O ◦ O∗, E∗ ◦ E) is a Γ∗-s-IND-PRE secure scheme for Σ.

Proof. Let (O′, E ′) = (O◦O∗, E∗◦E).Also, letTest′ = Test◦O andUser′ = E◦User.
We first show that for all Test and PPT User, (O′, E ′) is a correct agent scheme for

VGB Beyond Obfuscation: A Statistical Security Notion 289

Σ. We have

real〈Test | O′ | E ′ ◦ User〉 = real〈Test′ | O∗ | E∗ ◦ User′〉
(a)≈ ideal〈Test′ | Σ∗ | User′〉
= ideal〈Test ◦ O | Σ∗ | E ◦ User〉
(b)≈ ideal〈Test | Σ | User〉

where (a) follows from the correctness guarantee of IND-PRE security of (O∗, E∗)
(Definition 3), and (b) follows from the correctness guarantee of (O, E) being a
reduction of Σ to Σ∗ (Definition 9). (Both (a) and (b) hold for all tests.) The other
equalities are by regrouping the components in the system.

It remains toprove that there exists a polynomialp such that for all large enough
κ, all Test ∈ Γ∗, and every polynomial η, if Test is p(η(κ))-s-hiding w.r.t. Σ then
Test is η(κ)-hiding w.r.t. O′.

Suppose that for some polynomial p′, (O∗, E∗) is a p′-Γ∗-s-IND-PRE secure
scheme for Σ∗. We know that since (O, E) is a statistical reduction of Σ to Σ∗ w.r.t.
Γ∗, there exists a polynomial p∗ such that for all unboundedUserwho make at most
μ(κ) queries (for some polynomial μ), there exists a simulator SUser which makes
at most p∗(μ(κ)) queries such that for all Test ∈ Γ∗,

|Pr[ideal〈Test | Σ | SUser〉 = 1]−
Pr[ideal〈Test ◦ O | Σ∗ | User〉 = 1]| ≤ negl(κ). (1)

So let p be a polynomial such that 1/p(x) ≤ max{1/p′(x)−2·negl(x), 1/p∗(p′(x))}
for all x ≥ 0.

Let Test be an arbitrary test in Γ∗, η be any polynomial, and User be any
unbounded user who makes at most p′(η(κ)) queries. We can apply Eq. 1 onTest(b)
and User to get

|Pr[ideal〈Test(b) | Σ | SUser〉 = 1]−
Pr[ideal〈Test(b) ◦ O | Σ∗ | User〉 = 1]| ≤ negl(κ) (2)

for b ∈ {0, 1}. Here the simulator SUser makes at most p∗(p′(η(κ))) ≤ p(η(κ))
queries.

If Test is p(η(κ))-s-hiding w.r.t. Σ, then for all unbounded User′ who make at
most p(η(κ)) queries,

|Pr[ideal〈Test(0) | Σ | User′〉 = 1]−
Pr[ideal〈Test(1) | Σ | User′〉 = 1]| ≤ 1

p(η(κ))
.

(3)

290 S. Agrawal et al.

Recall that Test′ = Test ◦ O and if Test ∈ Γ∗ then Test′ ∈ Γ∗ too. Now by using
Eqs. 2 and 3 with User′ set to SUser, we get

|Pr[ideal〈Test′(0) | Σ∗ | User〉 = 1] − Pr[ideal〈Test′(1) | Σ∗ | User〉 = 1]|
≤ 1

p(η(κ))
+ 2 · negl(κ) ≤ 1

p′(η(κ))
.

Thus Test′ is p′(η(κ))-s-hiding w.r.t. Σ∗. This implies that Test′ is η(κ)-hiding
w.r.t. O∗, and by regrouping the components, we have that Test is η(κ)-hiding
w.r.t. O′. ��

We also have the following result regarding transitivity of reduction.

Theorem 4 (Transitivity of Reduction). For any three schemata, Σ1,Σ2,
Σ3, if Σ1 statistically reduces to Σ2 and Σ2 statistically reduces to Σ3, then Σ1

statistically reduces to Σ3.

Proof. If Π1 = (O1, E1) and Π2 = (O2, E2) are schemes that carry out the
statistical reduction of Σ1 to Σ2 and that of Σ2 to Σ3, respectively, we claim
that the scheme Π = (O1 ◦O2, E2 ◦E1) is a statistical reduction of Σ1 to Σ3. The
correctness of this reduction follows from the correctness of the given reductions.
Further, if S1 and S2 are the simulators associated with the two reductions, we
can define a simulator S for the composed reduction as S2 ◦ S1. ��

5 Applications

In this section we briefly summarize how the above results can be instantiated to
rederive the main results of [9]. We start off by defining the obfuscation schema.

Obfuscation Schema. If F is a family of circuits, we define

Σobf(F) := (∅,F).

That is, in the ideal execution User obtains handles for agents which simple
compute F on their inputs and write the result on to their output tapes. We
shall consider setup-free, IND-PRE secure implementations (O, E) of Σobf(F).

The following propositions which easily follow from the definitions. Below we
refer to the test-family Γ∗

1 from Sect. 3.1.

Proposition 1. For a function family F , a Γ∗
1-s-SIM secure scheme for Σobf(F)

is a VGB obfuscation scheme for F , and vice-versa.

With the modification to IND-CON also to distributions over a single
agent (circuit), which we called IND-CON1 in Sect. 3.1, we have the following
proposition.

Proposition 2. For a function family F , an INDCON1 secure scheme for
Σobf(F) is an SIO scheme for F and vice versa.

VGB Beyond Obfuscation: A Statistical Security Notion 291

These propositions, combined with Theorems 1 and 2 (as extended in
Sect. 3.1), yields the following result of [9] as a corollary.

Corollary 5 An obfuscation scheme is a VGB obfuscation for a function family
F if and only if it is an SIO for F .

Next we describe how the security of the VGB obfuscation construction given
in [9] follows as a corollary of our composition theorem.

Graded Encoding Schema. Following “set-based” graded encoding [5,9,13,
19], we define the graded encoding schema ΣGE = (∅,PGE

user), where PGE
user contains

a single type of agent. The schema is specified by a ring R(+,×) and a subset
S of 2[k] for a level k ∈ N (where [k] = {1, 2, . . . , n}). The persistent state of an
agent P ∈ PGE

user is a pair (x, S) where x ∈ R and S ∈ S, which it maintains on
its work-tape (initially copied from its parameter tape). When invoked without
an input, it sends (x, S) to a peer agent in the session. When invoked with an
input Oper on its input tape, it operates as follows (before entering a blocking
state):

– Oper = + (resp. −): It reads a message (x′, S′) from its incoming communica-
tion tape. If S = S′, it updates its work-tape with (x+x′, S) (resp. (x−x′, S));
otherwise, it writes ⊥ on its output tape.

– Oper = ×: It reads a message (x′, S′) from its incoming communication tape.
If S′ ∈ S and S ∩ S′ = ∅, it updates its work-tape with (x × x′, S ∪ S′);
otherwise, it writes ⊥ on its output tape.

– Oper = Zero−Test: It first checks whether S is the universe set [k]. If not, it
writes ⊥ on its output tape. Otherwise, if x = 0 it writes 1; otherwise, 0.

The following proposition is an immediate consequence of the definition of
strong-sampler semantic security [9].

Proposition 3. A graded encoding scheme is strong-sampler semantically
secure if and only if it is a Γ∗-sIND-PRE secure scheme for the schema ΣGE.

The following is a restatement of a result in [5] (that [9] relies on), formalized
as a statistical reduction.

Proposition 4. For any function family F ∈ NC1, there exists a statistical
reduction from Σobf(F) to ΣGE.

The following result of [9] is then an immediate corollary of the above two
propositions and the composition theorem (Theorem 3) as well as the fact that
a Γ∗-s-IND-PRE secure scheme for Σobf(F) is a VGB obfuscation (from Theorem
2 and Proposition 1).

Corollary 6. If there exists a strong-sampler semantically-secure graded encod-
ing scheme, then there exists a VGB obfuscation scheme for any function family
F ∈ NC1.

292 S. Agrawal et al.

Acknowledgments. This work was supported in part by NSF grant 12-28856. Part
of this work was carried out while the authors were visiting the Simons Institute
for Theoretical Computer Science, supported by the Simons Foundation and by the
DIMACS/Simons Collaboration in Cryptography through NSF grant CNS 15-23467.

Part of this work was done when the first author was at the University of Illinois
at Urbana-Champaign. At University of Texas at Austin, he is supported by NSF
CNS-1228599, CNS-1414082 and DARPA SafeWare.

A Preliminaries

The following description of the Cryptographic Agents model is adapted from
[2], and follows it closely.

A.1 Agents

Definition 10 (Agents and Family of Agents). An agent is an interactive
Turing Machine, with the following modifications:

– There is a special read-only parameter tape, which always consists of a security
parameter κ, and possibly other parameters.

– There is an a priori restriction on the size of all the tapes other than the ran-
domness tape (including input, communication and work tapes), as a function
of the security parameter.

– There is a special blocking state such that if the machine enters such a state,
it remains there if the input tape is empty. Similarly, there are blocking states
which let the machine block if any combination of the communication tape and
the input tape is empty.

An agent family is a maximal set of agents with the same program (i.e., state
space and transition functions), but possibly different contents in their parameter
tapes. We also allow an agent family to be the empty set ∅.

Note that an agent who enters a blocking state can move out of it if its
configuration is changed by adding a message to its input tape and/or commu-
nication tape. However, if the agent enters a halting state, it will not move out
of that state. An agent who never enters a blocking state is called a non-reactive
agent. An agent who never reads or writes from a communication tape is called
a non-interactive agent.

Definition 11 (Session). A session maps a finite ordered set of agents, their
configurations and inputs, to outputs and (updated) configurations of the same
agents, as follows. The agents are initialized with the given inputs on their input
tapes, and then executed together until they are deadlocked.12 The result of apply-
ing the session is defined as the collection of outputs and configurations of the
agents when the session terminates (if it terminates; if not, the result is left
undefined).
12 More precisely, the first agent is executed till it enters a blocking or halting state,

and then the second and so forth, in a round-robin fashion, until all the agents
remain in blocking or halting states for a full round. After each execution of an

VGB Beyond Obfuscation: A Statistical Security Notion 293

We shall be restricting ourselves to collections of agents such that sessions
involving them are guaranteed to terminate. Note that we have defined a session
to have only an initial set of inputs, so that the outcome of a session is well-
defined (without the need to specify how further inputs would be chosen).

Definition 12 (Ideal Agent Schema). A (well-behaved) ideal agent schema
Σ = (Pauth,Puser), or simply schema, is a pair of agent families, such that there
is a polynomial poly such that for any session of agents belonging to Pauth∪Puser

(with any inputs and any configurations, with the same security parameter κ),
the session terminates within poly(κ, t) steps, where t is the number of agents
in the session.

A.2 Security Definitions

We define what it means for a cryptographic agent scheme to securely implement
a given ideal agent schema. Intuitively, the security notion is of indistinguisha-
bility preservation: if two executions using an ideal schema are indistinguishable,
we require them to remain indistinguishable when implemented using a crypto-
graphic agent scheme.

Ideal World. The ideal system for a schema Σ consists of two parties Test and
User and a fixed third party B[Σ] (for “black-box”). All three parties have a
security parameter κ built-in. We shall explicitly refer to their random-tapes as
r, s and t. Test receives a “secret bit” b as input and User produces an output bit
b′. The interaction between User, Test and B[Σ] can be summarized as follows:

– Uploading agents. Let Σ = (Pauth,Puser) where we associate Ptest := Pauth ∪
Puser with Test and Puser with User. Test and User can, at any point, choose
an agent from its agent family and send it to B[Σ]. More precisely, User can
send a string to B[Σ], and B[Σ] will instantiate an agent Puser, with the given
string (along with its own security parameter) as the contents of the parameter
tape, and all other tapes being empty. Similarly, Test can send a string and
a bit indicating whether it is a parameter for Pauth or Puser, and it is used
to instantiate an agent Pauth or Puser, accordingly.13 Whenever an agent is
instantiated, B[Σ] sends a unique handle (a serial number) for that agent to
User; the handle also indicates whether the agent belongs to Pauth or Puser.

– Query. A query is a request for session execution. At any point in time,
User may request an execution of a session, by sending an ordered tuple of
handles (h1, . . . , ht) (from among all the handles obtained thus far from B[Σ])
to specify the configurations of the agents in the session, along with their

agent, the contents of its outgoing communication tape are interpreted as an ordered
sequence of messages to each of the other agents in the session (some or all of them
possibly being empty messages), and copied over to the respective agents’ incoming
communication tapes.

13 In fact, for convenience, we allow Test and User to specify multiple agents in a single
message to B[Σ].

294 S. Agrawal et al.

Fig. 2. The ideal world (on the left) and the real world with an honest user.

inputs. B[Σ] reports back the outputs from the session, and also gives new
handles corresponding to the configurations of the agents when the session
terminated.14 If an agent halts in a session, no new handle is given for that
agent.

Observe that only User receives any output from B[Σ]; the communication
between Test and B[Σ] is one-way. (See Fig. 2.)

Real World. A cryptographic scheme (or simply scheme) consists of a pair of
(possibly stateful and randomized) programs (O, E), where O is an encoding
procedure for agents in Ptest and E is an execution procedure. The real world
execution for a scheme (O, E) consists of Test, a user that we shall generally
denote as Adv and the encoder O. (E features as part of an honest user in the
real world execution: see Fig. 2.) Test remains the same as in the ideal world,
except that instead of sending an agent to B[Σ], it sends it to the encoder O. In
turn, O encodes this agent and sends the resulting cryptographic agent to Adv.

Syntactic Requirements on (O, E). (O, E) may or may not use a “setup”
phase. In the latter case we call it a setup-free cryptographic agent scheme, and
O is required to be a memory-less program that takes an agent P ∈ Ptest as
input and outputs a cryptographic agent that is sent to Adv. If the scheme has a
setup phase, O consists of a triplet of memory-less programs (Osetup,Oauth,Ouser):
in the real world execution, first Osetup is run to generate a secret-public key
pair (MSK,MPK); MPK is sent to Adv. Subsequently, when O receives an agent
P ∈ Pauth it will invoke Oauth(P,MSK), and when it receives an agent P ∈ Puser,
it will invoke Ouser(P,MPK), to obtain a cryptographic agent that is then sent
to Adv.

E is required to be memoryless as well, except that when it gives a handle to
a User, it can record a string against that handle, and later when User requests a

14 Note that if the same handle appears more than once in the tuple (h1, . . . , ht), it
is interpreted as multiple agents with the same configuration (but possibly different
inputs). Also note that after a session, the old handles for the agents are not inval-
idated; so a User can access a configuration of an agent any number of times, by
using the same handle.

VGB Beyond Obfuscation: A Statistical Security Notion 295

session execution, E can access the string recorded for each handle in the session.
There is a compactness requirement that the size of this string is a priori bounded
(note that the state space of the ideal agents are also a priori bounded). If there
is a setup phase, E can also access MPK each time it is invoked.

References

1. Agrawal, S., Agrawal, S., Badrinarayanan, S., Kumarasubramanian, A.,
Prabhakaran, M., Sahai, A.: On the practical security of inner product functional
encryption. In: Katz, J. (ed.) PKC 2015. LNCS, vol. 9020, pp. 777–798. Springer,
Heidelberg (2015). doi:10.1007/978-3-662-46447-2 35

2. Agrawal, S., Agrawal, S., Prabhakaran, M.: Cryptographic agents: towards a uni-
fied theory of computing on encrypted data. In: Oswald, E., Fischlin, M. (eds.)
EUROCRYPT 2015. LNCS, vol. 9057, pp. 501–531. Springer, Heidelberg (2015).
doi:10.1007/978-3-662-46803-6 17

3. Agrawal, S., Gorbunov, S., Vaikuntanathan, V., Wee, H.: Functional encryption:
new perspectives and lower bounds. In: Canetti, R., Garay, J.A. (eds.) CRYPTO
2013. LNCS, vol. 8043, pp. 500–518. Springer, Heidelberg (2013). doi:10.1007/
978-3-642-40084-1 28

4. Barak, B., Goldreich, O., Impagliazzo, R., Rudich, S., Sahai, A., Vadhan, S.,
Yang, K.: On the (im)possibility of obfuscating programs. In: Kilian, J. (ed.)
CRYPTO 2001. LNCS, vol. 2139, pp. 1–18. Springer, Heidelberg (2001). doi:10.
1007/3-540-44647-8 1

5. Barak, B., Garg, S., Kalai, Y.T., Paneth, O., Sahai, A.: Protecting obfuscation
against algebraic attacks. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT
2014. LNCS, vol. 8441, pp. 221–238. Springer, Heidelberg (2014). doi:10.1007/
978-3-642-55220-5 13

6. Barbosa, M., Farshim, P.: On the semantic security of functional encryption
schemes. In: Kurosawa, K., Hanaoka, G. (eds.) PKC 2013. LNCS, vol. 7778, pp.
143–161. Springer, Heidelberg (2013). doi:10.1007/978-3-642-36362-7 10

7. Bellare, M., O’Neill, A.: Semantically-secure functional encryption: possibility
results, impossibility results and the quest for a general definition. In: Abdalla,
M., Nita-Rotaru, C., Dahab, R. (eds.) CANS 2013. LNCS, vol. 8257, pp. 218–234.
Springer, Heidelberg (2013)

8. Bitansky, N., Canetti, R.: On strong simulation and composable point obfusca-
tion. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 520–537. Springer,
Heidelberg (2010). doi:10.1007/978-3-642-14623-7 28

9. Bitansky, N., Canetti, R., Kalai, Y.T., Paneth, O.: On virtual grey box obfuscation
for general circuits. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014. LNCS, vol.
8617, pp. 108–125. Springer, Heidelberg (2014). doi:10.1007/978-3-662-44381-1 7

10. Boneh, D., Sahai, A., Waters, B.: Functional encryption: definitions and challenges.
In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 253–273. Springer, Heidelberg
(2011). doi:10.1007/978-3-642-19571-6 16

11. Canetti, R.: Universally composable security: a new paradigm for cryptographic
protocols. In: Proceedings of the 42nd IEEE Symposium on Foundations of Com-
puter Science. FOCS 2001 (2001)

12. De Caro, A., Iovino, V., Jain, A., O’Neill, A., Paneth, O., Persiano, G.: On the
achievability of simulation-based security for functional encryption. In: Canetti, R.,
Garay, J.A. (eds.) CRYPTO 2013, Part II. LNCS, vol. 8043, pp. 519–535. Springer,
Heidelberg (2013)

http://dx.doi.org/10.1007/978-3-662-46447-2_35
http://dx.doi.org/10.1007/978-3-662-46803-6_17
http://dx.doi.org/10.1007/978-3-642-40084-1_28
http://dx.doi.org/10.1007/978-3-642-40084-1_28
http://dx.doi.org/10.1007/3-540-44647-8_1
http://dx.doi.org/10.1007/3-540-44647-8_1
http://dx.doi.org/10.1007/978-3-642-55220-5_13
http://dx.doi.org/10.1007/978-3-642-55220-5_13
http://dx.doi.org/10.1007/978-3-642-36362-7_10
http://dx.doi.org/10.1007/978-3-642-14623-7_28
http://dx.doi.org/10.1007/978-3-662-44381-1_7
http://dx.doi.org/10.1007/978-3-642-19571-6_16

296 S. Agrawal et al.

13. Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.: Candidate
indistinguishability obfuscation and functional encryption for all circuits. In: FOCS
(2013). http://eprint.iacr.org/

14. Goldwasser, S., Kalai, Y.T.: On the impossibility of obfuscation with auxiliary
input. In: Proceedings of the 46th Annual IEEE Symposium on Foundations of
Computer Science. FOCS 2005 (2005)

15. Goldwasser, S., Rothblum, G.N.: On best-possible obfuscation. In: Vadhan, S.P.
(ed.) TCC 2007. LNCS, vol. 4392, pp. 194–213. Springer, Heidelberg (2007)

16. Hada, S.: Zero-knowledge and code obfuscation. In: Okamoto, T. (ed.) ASI-
ACRYPT 2000. LNCS, vol. 1976, pp. 443–457. Springer, Heidelberg (2000). doi:10.
1007/3-540-44448-3 34

17. Maurer, U.: Constructive cryptography - a new paradigm for security definitions
and proofs. In: Theory of Security and Applications - Joint Workshop, TOSCA
2011, Saarbrücken, Germany, 31 March–1 April 2011, Revised Selected Papers,
pp. 33–56 (2011). http://dx.doi.org/10.1007/978-3-642-27375-9 3

18. O’Neill, A.: Definitional issues in functional encryption. Cryptology ePrint Archive,
Report 2010/556 (2010). http://eprint.iacr.org/

19. Pass, R., Seth, K., Telang, S.: Indistinguishability obfuscation from semantically-
secure multilinear encodings. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO
2014. LNCS, vol. 8616, pp. 500–517. Springer, Heidelberg (2014). doi:10.1007/
978-3-662-44371-2 28

http://eprint.iacr.org/
http://dx.doi.org/10.1007/3-540-44448-3_34
http://dx.doi.org/10.1007/3-540-44448-3_34
http://dx.doi.org/10.1007/978-3-642-27375-9_3
http://eprint.iacr.org/
http://dx.doi.org/10.1007/978-3-662-44371-2_28
http://dx.doi.org/10.1007/978-3-662-44371-2_28

Attribute-Based Encryption

Deniable Attribute Based Encryption
for Branching Programs from LWE

Daniel Apon1(B), Xiong Fan2, and Feng-Hao Liu3

1 University of Maryland, College Park, USA
dapon@cs.umd.edu

2 Cornell University, Ithaca, USA
xfan@cs.cornell.edu

3 Florida Atlantic University, Boca Raton, USA
fenghao.liu@fau.edu

Abstract. Deniable encryption (Canetti et al. CRYPTO ’97) is an
intriguing primitive that provides a security guarantee against not only
eavesdropping attacks as required by semantic security, but also stronger
coercion attacks performed after the fact. The concept of deniability has
later demonstrated useful and powerful in many other contexts, such as
leakage resilience, adaptive security of protocols, and security against
selective opening attacks. Despite its conceptual usefulness, our under-
standing of how to construct deniable primitives under standard assump-
tions is restricted.

In particular from standard lattice assumptions, i.e. Learning with
Errors (LWE), we have only flexibly and non-negligible advantage deni-
able public-key encryption schemes, whereas with the much stronger
assumption of indistinguishable obfuscation, we can obtain at least fully
sender-deniable PKE and computation. How to achieve deniability for
other more advanced encryption schemes under standard assumptions
remains an interesting open question.

In this work, we construct a flexibly bi-deniable Attribute-Based
Encryption (ABE) scheme for all polynomial-size Branching Programs
from LWE. Our techniques involve new ways of manipulating Gaussian
noise that may be of independent interest, and lead to a significantly
sharper analysis of noise growth in Dual Regev type encryption schemes.
We hope these ideas give insight into achieving deniability and related
properties for further, advanced cryptographic systems from lattice
assumptions.

1 Introduction

Deniable encryption, introduced by Canetti et al. [14] at CRYPTO 1997, is an
intriguing primitive that allows Alice to privately communicate with Bob in a
way that resists not only eavesdropping attacks as required by semantic security,
but also stronger coercion attacks performed after the fact. An eavesdropper Eve
stages a cocercion attack by additionally approaching Alice (or Bob, or both)
after a ciphertext is transmitted and demanding to see all secret information:
c© International Association for Cryptologic Research 2016
M. Hirt and A. Smith (Eds.): TCC 2016-B, Part II, LNCS 9986, pp. 299–329, 2016.
DOI: 10.1007/978-3-662-53644-5 12

300 D. Apon et al.

the plaintext, the random coins used by Alice for encryption, and any private
keys held by Bob (or Alice) related to the ciphertext. In particular, Eve can
use this information to “fully unroll” the exact transcript of some deterministic
decryption procedure purportedly computed by Bob, as well as verify that the
exact coins and decrypted plaintext in fact produce the coerced ciphertext. A
secure deniable encryption scheme should maintain privacy of the sensitive data
originally communicated between Alice and Bob under the coerced ciphertext
(instead substituting a benign yet convincing plaintext in the view of Eve), even
in the face of such a revealing attack and even if Alice and Bob may not interact
during the coercion phase.

Historically, deniable encryption schemes have been challenging to construct.
Under standard assumptions, Canetti et al. [14] constructed a sender-deniable1

PKE where the distinguishing advantage between real and fake openings is an
inverse polynomial depending on the public key size. But it was not until 2011
that O’Neill, Peikert, and Waters [35] proposed the first constructions of bi-
deniable PKE with negligible deniability distinguishing advantage: from simu-
latable PKE generically, as well as from Learning with Errors (LWE [36]) directly.

Concurrently, Bendlin et al. [8] showed an inherent limitation: any non-
interactive public-key encryption scheme may be receiver-deniable (resp. bi-
deniable) only with non-negligible Ω(1/size(pk)) distinguishing advantage in the
deniability experiment. Indeed, O’Neill et al. [35] bypass the impossibility result
of [8] by working in the so-called flexible2 model of deniability. In the flexible of
deniability, private keys sk are distributed by a central key authority. In the event
that Bob is coerced to reveal a key sk that decrypts chosen ciphertext ct∗, the
key authority distributes a faking key fk to Bob, which Bob can use to generate
a fake key sk∗ (designed to behave identically to sk except on ciphertext ct∗). If
this step is allowed, then O’Neill et al. demonstrate that for their constructions,
Eve has at most negligible advantage in distinguishing whether Bob revealed an
honest sk or fake sk∗.

A major breakthrough in deniable encryption arrived with the work of Sahai
and Waters [38], who proposed the first sender-deniable PKE with negligible dis-
tinguishing advantage from indistinguishability obfuscation (iO) for P/poly [22].
The concept of deniability has been demonstrated useful in the contexts of
leakage resilience [20], adaptive security for protocols, and as well as deniable
computation (or algorithms) [16,19,23]. In addition to coercion resistance, a
bi-deniable encryption scheme is a non-committing encryption scheme [15], as
well as a scheme secure under selective opening (SOA) attacks [7], which are of
independent theoretical interest.

Very recently, De Caro, Iovino, and O’Neill [17] gave various constructions of
deniable functional encryption. First, they show a generic transformation of any

1 We differentiate between sender-, receiver-, and bi-deniable schemes. A bi-deniable
scheme is both sender- and receiver-deniable.

2 We borrow the name “flexible” from Boneh, Lewi, and Wu [10] as the original term
“multi-distributional” of O’Neill et al. [35] is used to define a slightly different secu-
rity property in the recent work by De Caro et al. [17] than we achieve here.

Deniable Attribute Based Encryption for Branching Programs from LWE 301

IND-secure FE scheme for circuits into a flexibly receiver-deniable FE for cir-
cuits. Second, they give a direct construction of receiver-deniable FE for Boolean
formulae from bilinear maps. Further, in the stronger multi-distributional model
of deniable functional encryption – where there are special “deniable” set-up and
encryption algorithms in addition to the plain ones, and where under coercion,
it may non-interactively be made to seem as only the normal algorithms were
used – De Caro et al. [17] construct receiver-deniable FE for circuits under the
additional (powerful) assumption of different-inputs obfuscation (diO).

De Caro et al. [17] also show (loosely speaking) that any receiver-deniable FE
implies SIM-secure FE for the same functionality. Following [17], we also empha-
size that deniability for functional encryption is a strictly stronger property
than SIM security, since fixed coerced ciphertexts must decrypt correctly and
benignly in the real world. Finally, we mention that in concurrent work, Apon,
Fan, and Liu, in an unpublished work [5], construct flexibly bi-deniable inner
product encryption from standard lattice assumptions. This work generalizes
and thus subsumes the prior results of [5].

Despite the apparent theoretical utility in understanding the extent to which
cryptographic constructions are deniable, our current knowledge of constructing
such schemes from standard lattice assumptions is still limited. From LWE, we
have only flexible and non-negligible advantage deniable encryption schemes (or
IPE from [5]), whereas with the much more powerful assumption of indistinguisha-
bility obfuscation (iO), we can obtain at least fully-secure sender-deniable PKE
and computation [16,19,23], or as mentioned above even a multi-distributional
receiver-deniable FE for all circuits from the even stronger assumption of diO.

1.1 Our Contributions

In this work, we further narrow this gap by investigating a richer primitive –
attribute-based encryption (ABE) [9,28,30,31] – without the use of obfuscation
as a black box primitive. We hope that the techniques developed in this work
can further shed light on deniability for even richer schemes such as functional
encryption [9,12,22,29] under standard assumptions.

– Our main contribution is the construction of a flexibly bi-deniable ABE for
poly-sized branching programs (which can compute NC1 via Barrington’s the-
orem [6]) from the standard Learning with Errors assumption [36].

Theorem 1.1. Under the standard LWE assumption, there is a flexibly bi-
deniable attribute-based encryption scheme for all poly-size branching programs.

Recall that in an attribute-based encryption (ABE) scheme for a family of
functions F : X → Y, every secret key skf is associated with a predicate f ∈ F ,
and every ciphertext ctx is associated with an attribute x ∈ X . A ciphertext
ctx can be decrypted by a given secret key skf to its payload message m only
when f(x) = 0 ∈ Y. Informally, the typical security notion for an ABE scheme is
collusion resistance, which means no collection of keys can provide information
on a ciphertext’s message, if the individual keys are not authorized to decrypt

302 D. Apon et al.

the ciphertext in the first place. Intuitively, a bi-deniable ABE must provide
both collusion and coercion resistance.

Other contributions of this work can be summarized as:

– A new form of the Extended Learning with Errors (eLWE) assumption [2,13,
35], which is convenient in the context of Dual Regev type ABE/FE schemes
that apply the Leftover Hash Lemma [21] in their security proofs.

– An explicit, tightened noise growth analysis for lattice-based ABE for branch-
ing programs. Prior work used the loose l∞ norm to give a rough upper bound,
which is technically insufficient to achieve deniability using our proof tech-
niques. (We require matching upper and lower bounds on post-evaluation
noise sizes.)

The eLWE assumption above is roughly the standard LWE assumption, but
where the distinguisher also receives “hints” on the LWE sample’s noise vector e
in the form of inner products, i.e. distributions

{

A, b = ATs + e,z, 〈z,e〉} where
(intuitively) z is a decryption key in the real system (which are denoted r else-
where). Our contribution here is a new reduction from the standard LWE assump-
tion to our correlated variant of extended-LWE, eLWE+, where the adversary
requests arbitrary correlations (expressed as a matrix R) between the hints, in the
case of a prime poly-size modulus with noise-less hints. We show this by extending
the LWE to eLWE reduction of Alperin-Sheriff and Peikert [2] to our setting.

1.2 Our Approach

At a high level, our work begins with the ABE for branching programs of
Gorbunov and Vinayagamurthy [30]. We will augment the basic ABE-BP =
(Setup, Keygen, Enc, Dec) with an additional suite of algorithms (DenSetup,
DenEnc, SendFake, RecFake) to form our flexibly bi-deniable ABE-BP. Doing
so requires careful attention to the setting of parameters, as we explain in the
sequel.

We remark now that – due to reasons related to the delicateness of our para-
meter setting – the ABE scheme of [30] is particularly suited to being made
bi-deniable, as compared to similar schemes such as the ABE for arithmetic cir-
cuits of Boneh et al. [9]. We will explain this in what follows as well.

Intuition for Our New Deniability Mechanism. As in the work of O’Neill
et al. [35], our approach to bi-deniability relies primarily on a curious property
of Dual Regev type [24] secret keys: by correctness of any such scheme, each
key r is guaranteed to behave as intended for some 1 − negl(n) fraction of the
possible random coins used to encrypt, but system parameters may be set so that
each key is also guaranteed to be faulty (i.e. fail to decrypt) on some negl(n)
fraction of the possible encryption randomness. More concretely, each secret key
vector r in lattice-based schemes is sampled from an m-dimensional Gaussian
distribution, as is the error term e (for LWE public key A ∈ Z

n×m
q). For every

fixed r, with overwhelming probability over the choice of e, the vectors r,e ∈ Z
m
q

Deniable Attribute Based Encryption for Branching Programs from LWE 303

will point in highly uncorrelated directions in m-space. However, if the vector r
and e happen to point in similar directions, the error magnitude will be (loosely)
squared during decryption.

Our scheme is based around the idea that a receiver, coerced on honest key-
ciphertext pair (r, ct∗), can use the key authority’s faking key fk to learn the
precise error vector e∗ used to construct ct∗. Given e∗, r, and fk, the receiver re-
samples a fresh secret key r∗ that is functionally-equivalent to the honest key r,
except that r∗ is strongly correlated with the vector e∗ in ct∗. When the coercer
then attempts to decrypt the challenge ciphertext ct∗ using r∗, the magnitude
of decryption error will artificially grow and cause the decryption to output the
value we want to deny to. Yet, when the coercer attempts to decrypt any other
independently-sampled ciphertext ct, decryption will succeed with overwhelming
probability under r∗ if it would have under r.

We emphasize that to properly show coercion resistance (when extending
this intuition to the case of Dual Regev ABE instead of Dual Regev PKE), this
behavior of r∗ should hold even when ct and ct∗ embed the same attribute x.
(Indeed, the majority of our effort is devoted to ensuring this simple geomet-
ric intuition allows a valid instantiation of the denying algorithms (DenSetup,
DenEnc, SendFake, RecFake) without “damaging” the basic operation of (Setup,
Keygen, Enc, Dec) in the underlying ABE scheme.)

Then, given the ability to “artificially blow-up” the decryption procedure of a
specific key on a ciphertext-by-ciphertext basis, we can employ an idea originally
due to Canetti et al. [14] of translucent sets, but generalized to the setting of ABE
instead of PKE, to construct our new, flexibly bi-deniable ABE-BP scheme out
of the framework provided by the “plain” SIM-secure ABE-BP scheme of [30].

Highlights of the Gorbunov-Vinayagamurthy Scheme. In the ABE for
(width 5) branching programs of [30], bits a are “LWE-encoded” by the vector

ψA,s,a = sT (A + a · G) + e ∈ Z
m
q

where G is the gadget matrix [34].
The ciphertext ct encrypting message μ under BP-input x is given by

ct = (ψ0, ψ
c, {ψi}i∈[�], {ψ0,i}i∈[5], c),

and is composed of a Dual Regev ct-pair of vectors (ψ0, c) encrypting the cipher-
text’s message μ, an encoding ψc representing the (freshly randomized) encoding
of the constant 1, five encodings {ψ0,i}i∈[5] representing a (freshly randomized)
encoding of the initial state of a width-5, length-� branching program BP, and
� encodings {ψi}i∈[�] – one for each step of the branching program’s evaluation,
storing a constant-sized permutation matrix associated with the i-th level of
BP. Note that each “LWE encoding” ψ is performed under a distinct public key
matrix A, Ac, {Ai}, or {A0,i} respectively.

The (key-homomorphic) evaluation procedure takes as input a ciphertext
ct = (ψ0, ψ

c, {ψi}, {ψ0,i}, c) and the public key pk = (A,Ac, {Ai}, {A0,i}), as
well as the cleartext branching program description BP and the BP-input x.

304 D. Apon et al.

It produces the evaluated public key VBP and the evaluated encoding ψBP(x).
Given a short secret key vector r ∈ Z

2m matching (some public coset u of) the
lattice generated by [A|VBP] ∈ Z

n×2m, the encoding vector ψBP(x) (whose Dual
Regev encoding-components (ψ0, c) also match coset u) can be decrypted to the
message μ if and only if BP(x) = accept = 0.

On the Necessity of Exact Noise Control. In order to push the intuition
for our deniability mechanism through for an ABE of the above form, we must
overcome a number of technical hurdles.

The major challenge is an implicit technical requirement to very tightly con-
trol the precise noise magnitude of evaluated ciphertexts. In previous functional
(and homomorphic) encryption schemes from lattices, the emphasis is placed
on upper bounding evaluated noise terms, to ensure that they do not grow too
large and cause decryption to fail. Moreover, security (typically) holds for any
ciphertext noise level at or above the starting ciphertexts’ noises. In short, noise
growth during evaluation is nearly always undesirable.

As with previous schemes, we too must upper bound the noise growth of eval-
uated ciphertexts in order to ensure basic correctness of our ABE. But unlike
previous schemes, we must take the step of also (carefully) lower bounding the
noise growth during the branching program evaluation (which technically moti-
vates deviating from the l∞ norm of prior analyses). This is due to the fact,
highlighted above, that producing directional alignment between a key and error
term can at most square the noise present during decryption. Since coercion resis-
tance requires that it must always be possible to deny any ciphertext originally
intended for any honest key, it must be that, with overwhelming probability,
every honest key and every honest ciphertext produce evaluated error that is no
less than the square root of the maximum noise threshold tolerated.

In a little more detail – as we will later demonstrate in Sect. 4 – in dimension
m there is precisely an expected poly(m) gap in magnitude between the inner
products of (i) two relatively orthogonal key/error vectors r,eBP(x), and (ii)
two highly correlated key/error vectors r∗,eBP(x). The ability to deny is based
around our ability to design r∗ that are statistically indistinguishable from r
in the attacker’s view, but where r∗ “punctures out” decryptions of ciphertexts
with error vectors pointing in the direction of eBP(x) in m-space (error-vector
directions are unique to each honest ct with overwhelming probability).

Crucially, this approach generically forces the use of a polynomial-sized
modulus q in the scheme.3 In particular, when error vectors e may (potentially)
grow to be some superpolynomial magnitude in the dimension m of the pub-
lic/secret keys, we totally lose any efficiently testable notion of “error vector
orientation in m-space” for the purposes of Dual Regev type decryption.

Further, in order to “correctly trace and distinguish” different orientations
throughout the computation of an arbitrary branching program BP, we are

3 One consequence of a poly-size modulus requirement is that the fully key-
homomorphic scheme of Boneh et al. [9], taken verbatim, can only be denied for
up to NC0 functions using our approach. Past this, attempts to produce fake keys in
an identical manner to this work may be detected by a statistical test under coercion.

Deniable Attribute Based Encryption for Branching Programs from LWE 305

required to make careful use of multi-dimensional Gaussian distributions. These
are sampled using covariance matrices Q ∈ Z

m×m that allow us to succinctly
describe the underlying, geometric randomized rotation action on error vector
orientations in m-space with each arithmetic operation of the BP evaluation in
the overall ABE-BP scheme. (We use the geometrically-inspired term “rotation
matrix” to describe our low-norm matrices R for this reason.)

An additional subtlety in our new noise analysis is that we require the individ-
ual multiplications of the ct evaluation procedure to have independently sampled
error vectors in each operand-encoding – and thus be “independently oriented” –
in order for the overall analysis to go through correctly. (While there could in prin-
ciple be some way around this technical obstacle in the analysis, we were unable to
find one.) This appears to a priori exclude a straightforward denying procedure for
all circuits [9], where a gate’s input wires’ preceding sub-circuits may have cross-
wires between them. But it naturally permits denying branching program compu-
tations, where at the i-th time-step, an i-th independently generated ct-component
is merged into an accumulated BP state, as with [30].

Finally, we mention that an inherent limitation in the techniques of Apon
et al. [5], used to construct (the weaker notion of) flexibly bi-deniable inner prod-
uct encryption from LWE, is bypassed in the current work at the cost of supporting
onlyBP computations of an a-priori bounded length �. Namely, it was the case in [5]
that the length � of the attribute vectorw had to be “traded off” against the dimen-
sion m of the public/secret keys. We suppress the details, other than to point out
that this issue can be resolved by artificially boosting the magnitude of the low-
norm matrices used to generate error terms in fresh ciphertexts from {−1, 1} up to
{−Θ(m�), Θ(m�)}-valued matrices. This, of course, requires knowing the length �
of the branching program up front. (Intuitively, this technical change as compared
to [5] allows for a sharp inductive lower bound on theminimum noise growth across
all possible function-input pairs that might be evaluated in a given instance of our
bi-deniable ABE-BP scheme.)

1.3 Future Directions

The next, most natural question is whether bi-deniable functional encryption can
be built out of similar techniques (from only LWE), perhaps by leveraging our
bi-deniable ABE for NC1 computations as a building block. We briefly sketch
one possible approach and the obstacles encountered. Recall that Goldwasser
et al. [27] show to transform the combination of (i) any ABE for a circuit family
C, (ii) fully homomorphic encryption, and (iii) a randomized encoding scheme
(such as Yao’s garbled circuits) into a 1-key (resp. bounded collusion) SIM-secure
functional encryption scheme for C.

If we instantiate the Goldwasser et al. transformation with our deniable ABE,
we get a functional encryption scheme for NC1. We can then boost functional
encryption for shallow circuits to functional encryption for all circuits using the
“trojan method” of Ananth et al. [4]. As it turns out, it is easy to directly prove
flexible receiver-deniability of the final scheme, independently of but matching
the generic results of De Caro et al. [17] for receiver-deniable FE.

306 D. Apon et al.

Unfortunately, we do not know how to prove (even, flexible) sender-
deniability of this final scheme. Roughly speaking, the problem is that each
ciphertext’s attribute in such a scheme contains an FHE ciphertext ctFHE for its
attribute, and this attribute leaks to the attacker (resp. cocercer) on decryptions
that succeed. In particular, there is nothing stopping the coercer from demand-
ing that the sender also provide randomness rS that opens the attribute’s FHE
ciphertext.

We speculate that a possible way around this obstacle would be to use an
adaptively-secure homomorphic encryption scheme for NC1 computations. Note
that adaptively-secure FHE is known to be impossible for circuits with ω(log(n))
depth due to a counting argument lower bound by Katz, Thiruvengadam, and
Zhou [32], but this leaves open the possibility of an NC1-homomorphic encryption
scheme with the necessary properties to re-obtain (flexible) sender deniability for
lattice-based FE. We leave this as an intriguing open problem for future work.

2 Preliminaries

Notations. Let ppt denote probabilistic polynomial time. We use bold upper-
case letters to denote matrices, and bold lowercase letters to denote vectors,
where vectors are by default column vectors throughout the paper. We let λ be
the security parameter, [n] denote the set {1, ..., n}, and |t| denote the number of
bits in a string or vector t. We denote the i-th bit value of a string s by s[i]. We
use [·|·] to denote the concatenation of vectors or matrices, and || · || to denote
the norm of vectors or matrices respectively. We use the �2 norm for all vectors
unless explicitly stated otherwise.

We present necessary background knowledge of branching programs and lat-
tices (such as the LWE assumption and lattice sampling algorithms) in full version.

Randomness Extraction. We will use the following lemma to argue the indis-
tinghishability of two different distributions, which is a generalization of the
leftover hash lemma proposed by Dodis et al. [21].

Lemma 2.1 ([1]). Suppose that m > (n + 1) log q + w(log n). Let R ∈
{−1, 1}m×k be chosen uniformly at random for some polynomial k = k(n). Let
A,B be matrix chosen randomly from Z

n×m
q ,Zn×k

q respectively. Then, for all
vectors w ∈ Z

m, the two following distributions are statistically close:

(A,AR,wTR) ≈ (A,B,wTR)

Learning With Errors. The LWE problem was introduced by Regev [36], who
showed that solving it on the average is as hard as (quantumly) solving several
standard lattice problems in the worst case.

Definition 2.2 (LWE). For an integer q = q(n) ≥ 2, and an error distribution
χ = χ(n) over Zq, the learning with errors problem LWEn,m,q,χ is to distinguish
between the following pairs of distributions:

Deniable Attribute Based Encryption for Branching Programs from LWE 307

{A, b = ATs + e} and {A,u}
where A $← Z

n×m
q , s $← Z

n
q , u

$← Z
m
q , and e

$← χm.

Trapdoors and Sampling Algorithms. We will use the algorithms
TrapGen,SampleLeft,SampleRight,ExtBasis, Invert first proposed in [1,18,24,34]
to sample short vectors from specified lattices. For details of these sampling
algorithms, please refer to the full version.

3 New Definitions and Tools

In this section, we first describe our new notion of flexibly bi-deniable ABE,
which is a natural generalization of the flexibly bi-deniable PKE of [35]. Then
we define the notion of a flexibly attribute-based bi-translucent set (AB-BTS),
which generalizes the idea of bi-translucent set (BTS) in the work [35]. Using
a similar argument as in the work [35], we can show that an AB-BTS suffices
to construct bi-deniable ABE. In the last part of this section, we define a new
assumption called Extended LWE Plus, and show its hardness by giving a reduc-
tion from the standard LWE problem.

3.1 Flexibly Bi-Deniable ABE: Syntax and Deniability Definition

A flexibly bi-deniable key-policy attribute based encryption for a class of Boolean
circuits C : {0, 1}� → {0, 1} consists a tuple of ppt algorithms Π = (Setup,
Keygen,Enc,Dec,DenSetup,DenEnc,SendFake,RecFake). We describe them in
detail as follows:

Setup(1λ): On input the security parameter λ, the setup algorithm outputs pub-
lic parameters pp and master secret key msk.

Keygen(msk, f): On input the master secret key msk and a function f ∈ C, it
outputs a secret key skf .

Enc(pp,x, μ; rS): On input the public parameter pp, an attribute/message pair
(x, μ) and randomness rS , it outputs a ciphertext cx.

Dec(skf , cx): On input the secret key skf and a ciphertext cx, it outputs the
corresponding plaintext μ if f(x) = 0; otherwise, it outputs ⊥.

DenSetup(1λ): On input the security parameter λ, the deniable setup algorithm
outputs pubic parameters pp, master secret key msk and faking key fk.

DenEnc(pp,x, μ; rS): On input the public parameter pp, an attribute/message
pair (x, μ) and randomness rS , it outputs a ciphertext cx.

SendFake(pp, rS , μ, μ′): On input public parameters pp, original random coins
rS , message μ of DenEnc and desired message μ′, it outputs a faked random
coin r′

S .
RecFake(pp, fk, cx, f, μ′): On input public parameters pp, faking key fk, a cipher-

text cx, a function f ∈ C, and desired message μ′, the receiver faking
algorithm outputs a faked secret key sk′

f .

308 D. Apon et al.

Correctness. We say the flexibly bi-deniable ABE scheme described above is
correct, if for any (msk, pp) ← S(1λ), where S ∈ {Setup,DenSetup}, any mes-
sage μ, function f ∈ C, and any attribute vector x where f(x) = 0, we have
Dec(skf , cx) = μ, where skf ← Keygen(msk, f) and cx ← E(pp,x, μ; rS) where
E ∈ (Enc,DenEnc).

Bi-Deniability Definition. Let μ, μ′ be two arbitrary messages, not necessarily
different. We propose the bi-deniability definition by describing real experiment
ExptRealA,μ,μ′(1λ) and faking experiment ExptFakeA,μ,μ′(1λ) regarding adversary A =
(A1,A2,A3) as shown in Fig. 1:

where KG(msk,x∗, ·) returns a secret key skf ← Keygen(msk, f) if f(x∗)
= 0
and ⊥ otherwise.

Fig. 1. Security experiments for bi-deniable ABE

Definition 3.1 (Flexibly Bi-Deniable ABE). An ABE scheme Π is bi-
deniable if for any two messages μ, μ′, any probabilistic polynomial-time adver-
saries A where A = (A1,A2,A3), there is a negligible function negl(λ) such
that

AdvΠ
A,μ,μ′(1λ) = |Pr[ExptRealA,μ,μ′(1λ) = 1] − Pr[ExptFakeA,μ,μ′(1λ) = 1]| ≤ negl(λ)

3.2 Attribute Based Bitranslucent Set Scheme

In this section, we define the notion of a Attribute Based Bitranslucent Set (AB-
BTS), which is an extension of bitranslucent sets (BTS) as defined by O’Neill
et al. in [35]. Our new notion permits a more fine-grained degree of access control,
where pseudorandom samples and secret keys are associated with attributes x,
and the testing algorithm can successfully distinguish a pseudorandom sample
from a truly random one if and only if the attribute of the sample is accepted
under a given secret key’s policy f – i.e. when f(x) = 0. This concept is rem-
iniscent of attribute-based encryption (ABE), and in fact, we will show in the
sequel how to construct a flexibly bi-deniable ABE from an AB-BTS. This is
analogous to the construction of a flexibly bi-deniable PKE from O’Neill et al.’s
BTS. We present the formal definition below.

Let F be some family of functions. An attribute based bitranslucent set
(AB-BTS) scheme for F consists of the following algorithms:

Deniable Attribute Based Encryption for Branching Programs from LWE 309

Setup(1λ): On input the security parameter, the normal setup algorithm outputs
a public parameter pp and master secret key msk.

DenSetup(1λ): On input the security parameter, the deniable setup algorithm
outputs a public parameter pp, master secret key msk and faking key fk.

Keygen(msk, f): On input the master secret key msk and a function f ∈ F , the
key generation algorithm outputs a secret key skf .

P - and U -samplers SampleP(pp,x; rS) and SampleU(pp,x; rS) output some c.
TestP(skf , cx): On input a secret key skf and a ciphertext cx, the P -tester

algorithm outputs 1 (accepts) or 0 (rejects).
FakeSCoins(pp, rS): On input a public parameters pp and randomness rS , the

sender-faker algorithm outputs randomness r∗
S .

FakeRCoins(pp, fk, cx, f): On input a public parameters pp, the faking key fk, a
ciphertext cx and a function f ∈ F , the receiver-faker algorithm outputs a
faked secret key sk′

f .

Definition 3.2 (AB-BTS). We say a scheme Π = (Setup,DenSetup,Keygen,
SampleP,SampleU,TestP,FakeSCoins,FakeRCoins) is an AB-BTS scheme for a
function family F if it satisfies:

1. (Correctness.) The following experiments accept or respectively reject with
overwhelming probability over the randomness.
– Let (pp,msk) ← Setup(1λ), f ∈ F , skf ← Keygen(msk, f). If f(x) =

0 and cx ← SampleP(pp,x; rS), then TestP(skf , cx) = 1; otherwise,
TestP(skf , cx) = 0.

– Let (pp,msk) ← Setup(1λ), f ∈ F , skf ← Keygen(msk, f), c ←
SampleU(pp; rS). Then TestP(skf , c) = 0.

2. (Indistinguishable public parameters.) The public parameters pp generated
by the two setup algorithms (pp,msk) ← Setup(1λ) and (pp,msk, fk) ←
DenSetup(1λ) should be indistinguishable.

3. (Selective bi-deniability.) Let F be a family of functions. We define the follow-
ing two experiments: the real experiment ExptRealA,F (1λ) and the faking exper-
iment ExptFakeA,F (1λ) regarding an adversary A = (A1,A2,A3) as shown in
Fig. 2:
where KG(msk,x∗, ·) returns a secret key skf ← Keygen(msk, f) if f ∈ F and
f(x∗)
= 0; it returns ⊥ otherwise. We also require that f∗ ∈ F .
We say the scheme is selectively bi-deniable for F , if for any probabilistic
polynomial-time adversaries A = (A1,A2,A3), there is a negligible function
negl(λ) such that

AdvΠ
A(1λ) = |Pr[ExptRealA,F (1λ) = 1] − Pr[ExptFakeA,F (1λ) = 1]| ≤ negl(λ)

Remark 3.3. Correctness for the faking algorithms is implied by the bi-
deniability property. In particular, with overwhelming probability over the over-
all randomness, the following holds: let (pp,msk, fk) ← DenSetup(1λ), f ∈ F ,
skf ← Keygen(msk, f), x be a string and cx ← SampleP(pp, x; rS), then

310 D. Apon et al.

Fig. 2. Security experiments for AB-BTS

– SampleU(pp,x;FakeSCoins(pp, rS)) = cx,
– TestP(FakeRCoins(pp, fk, cx, f), cx) = 0
– For any other x′, let c′ ← SampleP(pp, x′; r′

S), then (with overwhelming prob-
ability) we have

TestP (FakeRCoins(pp, fk, cx, f), c′) = TestP(skf , c′).

It is not hard to see that if one of these does not hold, then one can easily
distinguish the real experiment from the faking experiment.

Remark 3.4. Canetti et al. [14] gave a simple encoding technique to construct a
sender-deniable encryption scheme from a translucent set. O’Neill, Peikert, and
Waters [35] used a similar method to construct a flexibly bi-deniable encryption
from a bi-translucent set scheme. Here we further observe that the same method
as well allows us to construct a flexibly bi-deniable ABE scheme from bi-deniable
AB-BTS. We present the construction in Sect. 4.4.

3.3 Extended LWE and Our New Variant

O’Neill et al. [35] introduced the Extended LWE problem, which allows a “hint”
on the error vector x to leak in form of a noisy inner product. They observe a
trivial “blurring” argument shows that LWE reduces to eLWE when the hint-noise
βq is superpolynomially larger than the magnitude of samples from χ, and also
allows for unboundedly many independent hint vectors 〈z,xi〉 while retaining
LWE-hardness.

Definition 3.5 (Extended LWE). For an integer q = q(n) ≥ 2, and an
error distribution χ = χ(n) over Zq, the extended learning with errors problem
eLWEn,m,q,χ,β is to distinguish between the following pairs of distributions:

Deniable Attribute Based Encryption for Branching Programs from LWE 311

{A, b = ATs + e,z, 〈z, b − e〉 + e′} and {A,u,z, 〈z,u − x〉 + e′}

where A $← Z
n×m
q , s $← Z

n
q , u

$← Z
m
q , e, z $← χm and e′ $← Dβq.

Further, Alperin-Sheriff and Peikert [2] show that LWE reduces to eLWE with a
polynomial modulus and no hint-noise (i.e. β = 0), even in the case of a bounded
number of independent hints.

We introduce the following new form of extended-LWE, called eLWE+, which
considers leaking a pair of correlated hints on the same noise vector. Our security
proof of the AB-BTS construction relies on this new assumption.

Definition 3.6 (Extended LWE Plus). For integer q = q(n) ≥ 2,m = m(n),
an error distribution χ = χ(n) over Zq, and a matrix R ∈ Z

m×m
q , the extended

learning with errors problem eLWE+
n,m,q,χ,β,R is to distinguish between the fol-

lowing pairs of distributions:

{A, b = ATs + e,z0,z1, 〈z0, b − e〉 + e, 〈Rz1, b − e〉 + e′} and

{A,u,z0,z1, 〈z0,u − e〉 + e, 〈Rz1,u − e〉 + e′}
where A $← Z

n×m
q , s $← Z

n
q , u

$← Z
m
q , e,z0,z1

$← χm and e, e′ $← Dβq.

Hardness of Extended-LWE+. A simple observation, following prior work, is
that when χ is poly(n)-bounded and the hint noise βq (and thus, modulus q) is
superpolynomial in n, then LWEn,m,q,χ trivially reduces to eLWE+

n,m,q,χ,β,R for
every R ∈ Z

m×m
q so that Rz1 has poly(n)-bounded norm. This is because, for

any r = ω(
√

log n), c ∈ Z, the statistical distance between DZ,r and c + DZ,r is
at most O(|c|/r).

However, our cryptosystem will require a polynomial-size modulus q. So, we
next consider the case of prime modulus q of poly(n) size and no noise on the
hints (i.e. β = 0). Following [2]4, it will be convenient to swap to the “knapsack”
form of LWE, which is: given H ← Z

(m−n)×m
q and c ∈ Z

m−n
q , where either

c = He for e ← χm or c uniformly random and independent of H, determine
which is the case (with non-negligible advantage). The “extended-plus” form
of the knapsack problem also reveals a pair of hints (z0,z1, 〈z0,e〉, 〈Rz1,e〉).
Note the equivalence between LWE and knapsack-LWE is proven in [33] for m ≥
n + ω(log n).

Theorem 3.7. For m ≥ n + ω(log n), for every prime q = poly(n),
for every R ∈ Z

m×m
q , and for every β ≥ 0, AdvLWEn,m,q,χ

BA (1λ) ≥
(1/q2)Adv

eLWE+
n,m,q,χ,β,R

A (1λ).

4 We note that a higher quality reduction from LWE to eLWE is given in [13] in the
case of binary secret keys. However for our cryptosystem, it will be more convenient
to have secret key coordinates in Zq, so we extend the reduction of [2] to eLWE+

instead.

312 D. Apon et al.

Proof. We construct an LWE to eLWE+ reduction B as follows. B receives a
knapsack-LWE instance H ∈ Z

(m−n)×m
q , c ∈ Z

m−n
q . It samples e′,z0,z1 ← χm

and uniform v0,v1 ← Z
m−n
q . It chooses any R ∈ Z

m×m
q , then sets

H′ := H − v0z
T
0 − v1 (Rz1)

T ∈ Z
(m−n)×m
q ,

c′ := c − v0 · 〈z0,e
′〉 − v1 · 〈Rz1,e

′〉 ∈ Z
m−n
q .

It sends (H′, c′, z0, z1, 〈z0,e
′〉, 〈Rz1,e

′〉) to the knapsack-eLWE+ adversary A,
and outputs what A outputs.

Notice that when H, c are independent and uniform, so are H′, c′, in which
case B’s simulation is perfect.

Now, consider the case when H, c are drawn from the knapsack-LWE distri-
bution, with c = Hx for e ← χm. In this case, H′ is uniformly random over the
choice of H, and we have

c′ = Hx − v0 · 〈z0,e
′〉 − v1 · 〈Rz1,e

′〉
=

(

H′ + v0z
T
0 + v1 (Rz1)

T
)

e − v0 · 〈z0,e
′〉 − v1 · 〈Rz1,e

′〉
= H′e + v0 · 〈z0,e − e′〉 + v1 · 〈Rz1,e − e′〉.

Define the event E = [E0 ∧ E1] as

E0
def= [〈z0,e〉 = 〈z0,e

′〉] ,
E1

def= [〈Rz1,e〉 = 〈Rz1,e
′〉] .

If event E occurs, then the reduction B perfectly simulates a pseudorandom
instance of knapsack-eLWE+ to A, as then v0 · 〈z0,e − e′〉 + v1 · 〈Rz1,e − e′〉
vanishes, leaving c′ = H′e for H′ ← Z

(m−n)×m
q and e ← χm as required. Other-

wise since q is prime, the reduction B (incorrectly) simulates an independent and
uniform instance of knapsack-eLWE+ to A, as then either one of v0 · 〈z0,e− e′〉
or v1 · 〈Rz1,e − e′〉 does not vanish, implying that c′ is uniform in Z

m−n
q over

the choice of v0 (resp. v1) alone, independent of the choices of H′ and x.
It remains to analyze the probability that event E occurs. Because e and e′

are i.i.d., we may define the random variable Z0 that takes values 〈z0,e
∗〉 ∈ Zq

and the random variable Z1 that takes values 〈Rz1,e
∗〉 ∈ Zq jointly over choice

of e∗ ← χm, and analyze their collision probabilities independently. Since the
collision probability of any random variable Z is at least 1/|Supp(Z)|, we have
that Pr[E] ≥ min CP [Z0] · min CP [Z1] = 1/q2 = 1/poly(n), and the theorem
follows. ��

4 Flexibly Bi-Deniable Attribute-Based Encryption
(ABE) for Branching Programs

In this section, we present our flexibly bi-deniable ABE for bounded-length
Branching Program. We organize our approach into the following three steps:

Deniable Attribute Based Encryption for Branching Programs from LWE 313

(1) first, we recall the encoding scheme proposed in the SIM-secure ABE-BP
of [30]; (2) Then, we present our flexibly bi-deniable attribute bi-translucent set
(AB-BTS) scheme, as was defined in Definition 3.2. Our AB-BTS construction
uses the ideas of Gorbunov and Vinayagamurthy [30], with essential modifica-
tions that allow us to tightly upper and lower bound evaluated noise terms. As
discussed in the Introduction, this tighter analysis plays a key role in proving
bi-deniability. (3) Finally, we show how to obtain the desired bi-deniable ABE
scheme from our AB-BTS. As pointed out by Canetti et al. [14] and O’Neill
et al. [35], a bitranslucent set scheme implies flexibly bi-deniable PKE. We
observe that the same idea generalizes to the case of an AB-BTS scheme and
flexibly bi-deniable ABE in a straightforward manner.

4.1 Encoding Schemes for Branching Programs

Basic Homomorphic Encoding. Before proceeding to the public key evalua-
tion algorithm, we first described basic homomorphic addition and multiplication
over public keys and encoded ciphertexts based on the techniques in [3,9,25].

Definition 4.1 (LWE Encoding). For any matrix A ← Z
n×m
q , we define an

LWE encoding of a bit a ∈ {0, 1} with respect to a public key A and randomness
s ← Z

n
q as

ψA,s,a = sT (A + a · G) + e ∈ Z
m
q

for error vector e ← χm and the gadget matrix G ∈ Z
n×m
q .

In our construction, all LWE encodings will be encoded using the same LWE
secret s, thus for simplicity, we will simply refer to such an encoding as ψA,a.

For homomorphic addition, the addition algorithm takes as input two encod-
ings ψA,a, ψA′,a′ , and outputs the sum of them. Let A+ = A+A′ and a+ = a+a′

Add(ψA,a, ψA′,a′) = ψA,a + ψA′,a′ = ψA+,a+

For homomorphic multiplication, the multiplication algorithm takes as input
two encodings ψA,a, ψA′,a, and outputs an encoding ψA×,a× , where A× =
−AG−1(A′) and a× = aa′.

Mult(ψA,a, ψA′,a′) = −ψ · G−1(A′) + a · ψ′ = ψA×,a×

Public Key Evaluation Algorithm. Following the notation in [30], we define
a public evaluation algorithm Evalpk. The algorithm takes as input a description
of the branching program BP, a collection of public keys {Ai}i∈[�] (one for each
attribute bit xi), a collection of public keys V0,i for initial state vector and an
auxiliary matrix Ac, and outputs an evaluated public key corresponding to the
branching program BP.

VBP ← Evalpk(BP, {Ai}i∈[�], {V0,i}i∈[5],Ac)

where the auxiliary matrix Ac are used to encoded constant 1 for each input
wire. We also define matrix A′

i = Ac − Ai as a public key used to encode

314 D. Apon et al.

1 − xi. By the definition of branching programs, the output VBP ∈ Z
n×m
q is the

homomorphically generated public key VL,1 at position 1 of the state vector for
the L-th step of the branching program evaluation.

Recall that in the definition of branching programs, BP is represented by
the tuple {var(t), {γt,i,0, γt,i,1}i∈[5]} for t ∈ [L], and the initial state vector is set
to be v0 = (1, 0, 0, 0, 0). Further, for t ∈ [L], the computation is performed as
vt[i] = vt−1[γt,i,0](1 − xvar(t)) + vt−1[γt,i,1] · xvar(t). It is important for the secu-
rity proof (among other reasons) that the evaluated state vector in each step is
independent of the attribute vector.

Encoding Evaluation Algorithm. We define an encoding evaluation algo-
rithm Evalct that takes as input the description of a branching program BP, an
attribute vector x, a set of encodings for the attribute {Ai, ψi := ψAi,xi

}i∈[�],
encodings of the initial state vector {V0,i, ψ0,i := ψV0,iv0[i]}i∈[5] and an encoding
of a constant 1, i.e. ψc := ψAc,1. The algorithm Evalct outputs an encoding of
the result y := BP(x) with respect to the homomorphically derived public key
VBP := VL,1

ψBP ← Evalct(BP,x, {Ai, ψi}i∈[�], {V0,i, ψ0,i}i∈[5], {Ac, ψc})

As mentioned above, in branching program computation, for t ∈ [L], we have
for all i ∈ [5]

vt[i] = vt−1[γt,i,0](1 − xvar(t)) + vt−1[γt,i,1] · xvar(t)

The evaluation algorithm proceeds inductively to update the encoding of the
state vector for each step of the branching program. Next, we need to instantiate
this inductive computation using the homomorphic operations described above,
i.e. Add,Mult. Following the notation used in [30], we define ψ′

i := ψA′
i,(1−xi) =

sT (A′
i +(1−xi)G)+e′

i, where A′
i = Ac −Ai, to denote the encoding of 1−xi.

This encoding can be computed using Add(ψAc
i ,1,−ψAi,xi

). Then assuming at
time t − 1 ∈ [L] we hold encodings of the state vector {ψVt−1,i,vt−1[i]}i∈[5]. For
i ∈ [5], we compute the encodings of new state values as

ψi,t = Add(Mult(ψ′
var(t), ψt−1,γ0),Mult(ψvar(t), ψt−1,γ1))

where γ0 := γt,i,0 and γ1 := γt,i,1. We omit the correctness proof of the encoding
here, which is presented in [30].

The above algorithms suffice for us to describe our construction. To analyze
the scheme, we need to encode a simulated public key and evaluate the simu-
lated key. Due to lack of space, we present details on these simulated encodings
and evaluations, plus some useful lemmas to bound the norm of errors in the
simulation, in full version. As mentioned in the Introduction, these new bounds
play a critical, technical role in our formal proof of flexible bi-deniability.

Deniable Attribute Based Encryption for Branching Programs from LWE 315

4.2 Construction of Flexibly Bi-Deniable ABE for Branching
Programs

In this part, we present our flexibly bi-deniable AB-BTS scheme for bounded-
length Branching Programs. We use a semantically-secure public key
encryption Π = (Gen′,Enc′,Dec′) with message space MΠ = Z

m×m
q and

ciphertext space CΠ. For a family of branching programs of length bounded by
L and input space {0, 1}�, the description of BiDenAB-BTS = (Setup,DenSetup,
Keygen,SampleP,SampleU,TestP,FakeRCoins,FakeSCoins) are as follows:

– Setup(1λ, 1L, 1�): On input the security parameter λ, the length of the branch-
ing program L and length of the attribute vector �,

1. Set the LWE dimension be n = n(λ), modulus q = q(n,L). Choose
Gaussian distribution parameter s = s(n). Let params = (n, q,m, s).

2. Sample one random matrix associated with its trapdoor as

(A,TA) ← TrapGen(q, n,m)

3. Choose � + 6 random matrices {Ai}i∈[�], {V0,i}i∈[5],Ac from Z
n×m
q .

4. Choose a random vector u ∈ Z
n
q .

5. Compute a public/secret key pair (pk′, sk′) for a semantically secure public
key encryption (pk′, sk′) ← Gen′(1λ)

6. Output the public parameter pp and master secret key msk as

pp = (params,A, {Ai}i∈[�], {V0,i}i∈[5],Ac,u, pk′), msk = (TA, sk′)

– DenSetup(1λ, 1L, 1�): On input the security parameter λ, the length of branch-
ing program L and length of attribute vector �, the deniable setup algorithm
runs the same computation as setup algorithm, and outputs

pp = (params,A, {Ai}i∈[�], {V0,i}i∈[5],A
c
,u, pk′

), msk = (TA, sk′
) fk = (TA, sk′

)

– Keygen(msk,BP): On input the master secret key msk and the description of
a branching program BP, BP = (v0, {var(t), {γt,i,0, γt,i,1}i∈[5]}t∈[L]).

1. Homomorphically compute a public matrix with respect to the branching
program BP: VBP ← Evalpk(BP, {Ai}i∈[�], {V0,i}i∈[5],Ac).

2. Sample a low norm vector rBP ∈ Z
2m
q , using

rBP ← SampleLeft(A,TA, (VBP + G),u, sq)

such that rT
BP · [A|VBP + G] = u.

3. Output the secret key skBP for branching program as skBP = (rBP,BP).
– SampleP(pp,x): On input public parameters pp and attribute x,

1. Choose an LWE secret s ∈ Z
n
q uniformly at random.

2. Choose noise vector e ← DZm
q ,α, and compute ψ0 = sTA + e.

3. Choose one random matrices Rc ← {−1, 1}m×m, and let ec = eTRc.
Compute an encoding of constant 1: ψc = sT (Ac + G) + ec.

4. Encode each bit i ∈ [�] of the attribute vector:

316 D. Apon et al.

(a) Choose a random matrix Ri ← {−1, 1}m×m, and let ei = eTRi.
(b) Compute ψi = sT (Ai + xiG) + ei.

5. Encode the initial state vector v0 = (1, 0, 0, 0, 0), for i ∈ [5]
(a) Choose a random matrix R′

0,i ← {−1, 1}m×m, and let R0,i =
ηR′

0,i,e0,i = eTR0,i, where the noise scaling parameter η is set in
Sect. 4.3.

(b) Compute ψ0,i = sT (V0,i + v0[i]G) + e0,i.
6. Compute c = sTu + e, where e ← DZq,s

7. Use PKE to encrypt randomly chosen matrices Rc, {Ri}i∈[�] and
{R0,i}i∈[5]:

Ti ← Enc′(pk′,Ri),Tc ← Enc′(pk′,Rc),T0,i ← Enc′(pk′,R0,i)

8. Output the ciphertext

ctx = (x, ψ0, {ψi}i∈[�], ψ
c, {ψ0,i}i∈[5], c, {Ti}i∈[�],Tc, {T0,i}i∈[5])

– SampleU(pp,x): Output a uniformly random vector ct ∈ Z
m
q × Z

�m
q × Z

�m
q ×

Z
5m
q × Zq × C�

Π × CΠ × C5
Π.

– TestP(skBP, ctx): On input the secret key skBP for a branching program BP and
a ciphertext associated with attribute x, if BP(x) = 0, output ⊥, otherwise,

1. Homomorphically compute the evaluated ciphertext of result BP(x)

ψBP ← Evalct(BP,x, {Ai, ψi}i∈[�], {V0,i, ψ0,i}i∈[5], {Ac
i , ψ

c
i }i∈[�])

2. Then compute φ = [ψ0|ψBP]T · rBP. Accept ctx as a P-sample if |c − φ| <
1/4, otherwise reject.

– FakeSCoins(rS): Simply output the P-sample c as the randomness r∗
S that

would cause SampleU to output cx.
– FakeRCoins(pp, fk, ctx,BP): On input the public parameters pp, the faking key

fk, a ciphertext ctx and description of a branching program BP

1. If BP(x)
= 0, then output skf ← Keygen(fk,BP).
2. Otherwise, parse ciphertext ctx as

ctx = (x, ψ0, {ψi}i∈[�], ψ
c, {ψ0,i}i∈[5], c, {Ti}i∈[�],Tc, {T0,i}i∈[5])

Compute e ← Invert(A,TA, ψ0). Then decrypt ({Ti}i∈[�],Tc, {T0,i}i∈[5])
respectively using Dec(sk′, ·) to obtain {Ri}i∈[�],Rc, {R0,i}i∈[5]. Compute
evaluated error

eBP ← Evalct(BP,x, {Ai,e
TRi}i∈[�], {V0,i,e

TR0,i}i∈[5], {Ac,eTRc})

such that eBP = eTRBP.
3. Homomorphically compute a public matrix with respect to the branching

program BP: VBP ← Evalpk(BP, {Ai}i∈[�], {V0,i}i∈[5], {Ac
i}i∈[�]). Then

sample a properly distributed secret key rBP ∈ Z
2m
q , using

rBP ← SampleLeft(A,TA, (VBP + G),u, s)

Deniable Attribute Based Encryption for Branching Programs from LWE 317

4. Sample correlation vector y0 ← DZm
q ,β2q2Im×m

. Then sample correlation
coefficient μ ← Dγ , and set vector y1 = (μeBP + DZm,Q)q, where

Q = β2Im×m − γ2α2RT
BPRBP (1)

5. Let y = (y0|y1), then sample and output the faked secret key sk∗
BP = r∗

BP

as r∗
BP ← y + D

Λ+rBP−y,
√

s2−β2 , using SampleD(ExtBasis(A,TA,VBP +

G), rBP − y,
√

s2 − β2), where Λ = Λ⊥([A|VBP + G]).

The SampleP algorithm is similar to the ABE ciphertexts in the work [30],
except that we add another scaling factor η to the rotation matrices R0,i’s. This
allows us to both upper and lower bound the noise growth, which is essential to
achieve bi-deniability. Detailed analysis can be found in full version. As we dis-
cussed in the introduction, the FakeRCoins embeds the evaluated noise into the
secret key, so that it will change the decrypted value of the targeted ciphertext,
but not others. Next we present the theorem we achieve and a high level ideas
of the proof. We defer the formal analysis after the proof intuition.

Theorem 4.2. Assuming the hardness of extended-LWEq,β′ , the above algo-
rithms form a secure attribute-based bitranslucent set schemem, as in
Definition 3.2.

Overview of Our Security Proof. At a high level, our security proof begins
at the Fake experiment (cf. Definition 3.1 for a formal description), where first a
ciphertext ct∗ and its associated noise terms e∗ are sampled, then a fake key r∗

is generated that “artificially” fails to decrypt any ciphertext with noise vector
(oriented close to) e∗. In the end, we will arrive at the Real experiment, where
an honest key r is generated that “genuinely” fails to decrypt the honestly gen-
erated, coerced ciphertext ct∗. (Multi-ct coercion security follows by a standard
hybrid argument that repeatedly modifies respective r∗ to r for each coerced ct∗

in order.) In order to transition from Fake to Real, we move through a sequence
of computationally- or statistically-indistinguishable hybrid experiments.

The first set of intermediate experiments (represented by H1 and H2 in our
formal proof) embeds the attribute x of the challenge ciphertext ct∗ in the
public parameters, in a similar fashion to the beginning of every SIM-secure
proof of lattice-based ABE. Indistinguishability follows via the Leftover Hash
Lemma [21]. (Note that the additional hybrid in our proof is used to ensure that
the random rotation matrices R employed by the LHL for public key embed-
ding of x are the exact same matrices R as used to generate the noise terms
of the coerced ct∗, and uses the security of any semantically-secure PKE for
computational indistinguishability.)

The next set of intermediate experiments (given by H3,H4, and H5 in our
formal proof) perform the “main, new work” of our security proof. Specifically,
they “swap the order” of the generation of the pk matrices {A}, the public coset
u (in the public parameters and in the coerced ciphertext), and the error vec-
tor(s) e in the coerced ciphertext components. (An additional hybrid is used to

318 D. Apon et al.

toggle the order of a “correlation vector” y – a random, planted vector used to
allow for a more modular analysis of these steps.) In each case, we give a statis-
tical argument that the adversary’s view in adjacent hybrids is indistinguishable
or identical, using elementary properties of multi-dimensional Gaussians.

In the next step (given by H6), we apply the eLWE+ assumption to (roughly)
change every component of the coerced ciphertext ct∗ to uniform – except for
the final c∗ component used to blind the message μ.

In the final step (given by H7), we transition to the Real experiment by
changing the c∗ component to uniform (in the presence of Dual Regev decryption
under honest z), using our sharper noise analysis as described above to show
statistical indistinguishability of the final decryption output of z on ct∗.

Lemma 4.3. For parameters set in Sect. 4.3, the AB-BTS defined above satis-
fies the correctness property in Definition 3.2.

Proof. As we mentioned in Remark 3.3, the correctness of faking algorithms is
implied by the bi-deniability property. Therefore, we only need to prove the cor-
rectness of normal decryption algorithm. For branching program BP and input
x, such that BP(x) = 1, we compute ψt,i for t ∈ [�] as

ψt,i = Add(Mult(ψ′
var(t), ψt−1,γ0),Mult(ψvar(t), ψt−1,γ1))

= Add

(

[sT (−A′
var(t)G

−1(Vt−1,γ0) + (vt[γ0] · (1 − xvar(t))) · G) + e1],

([sT (−A′
var(t)G

−1(Vt−1,γ1) + (vt[γ1] · xvar(t)) · G) + e2]
)

= sT

[

(− A′
var(t)G

−1(Vt−1,γ0) − A′
var(t)G

−1(Vt−1,γ1)
)

︸ ︷︷ ︸

Vt,i

+
(

vt[γ0] · (1 − xvar(t)) + vt[γ1] · xvar(t)

)

︸ ︷︷ ︸

vt[i]

·G
]

+ et,i

At the end of the ciphertext evaluation, since BP(x) = 1, we can obtain ψBP =
sT (VBP + G) + eBP, where eBP = eTRBP. Recall that the secret key sk = rBP
satisfying [A|VBP + G] · rBP = u. Then for c − [ψ0|ψBP] · rBP, it holds that

c − [ψ0|ψBP]T · rBP = e − eTRBP · rBP
Now we need to compute a bound for the final noise term. By applying analysis
of norm in full version, we obtain that

||eT || · ||RBP|| + 2m1.5�||e|| ≤ (2m1.5� + η
√

m)||e|| ≤ α
√

m(2m1.5� + η
√

m) · sq√m ≤ 1

4

So by setting the parameters appropriately, as in Sect. 4.3, we have that

|c − [ψ0|ψBP]T · rBP| ≤ 1/4

and the lemma follows. ��

Deniable Attribute Based Encryption for Branching Programs from LWE 319

Lemma 4.4. Assuming the hardness of extended-LWEq,β′ , the AB-BTS scheme
described above is bi-deniable as defined in Definition 3.2.

Proof. First, we notice that because SampleU simply outputs its random coins
as a uniformly random ct, we can use ct itself as the coins.

We prove the bi-deniability property by a sequence of hybrids Hi with details
as follows:

Hybrid H0: Hybrid H0 is the same as the view of adversary A in the right-
hand faking experiment in the definition of bi-deniability. We use the fact that
algorithm Invert successfully recovers e from ct with overwhelming probability
over all randomness in the experiment.

Hybrid H1: In hybrid H2, we switch the encryptions of matrices
({Ri}i∈[�], {R0,i}i∈[5],Rc) in the ciphertext to encryptions of zero.
Recall that in hybrid H0, we encrypt the randomness matrices
({Ri}i∈[�], {R0,i}i∈[5],Rc) using semantically secure PKE Π, i.e.

Ti ← Enc′(pk′,Ri), Tc ← Enc′(pk′,Rc), T0,i ← Enc′(pk′,R0,i)

In hybrid H1, we just set

Ti ← Enc′(pk′,0), Tc ← Enc′(pk′,0), T0,i ← Enc′(pk′,0)

to be encryptions of 0 ∈ Z
m×m to replace encryptions of matrices

({Ri}i∈[�], {R0,i}i∈[5],Rc).
Hybrid H2: In hybrid H2, we embed random matrices ({Ri}i∈[�],

{R0,i}i∈[5],Rc) and challenge attribute x∗ in the public parameters pp.
Recall that in hybrid H1 the matrices ({Ai}i∈[�], {V0,i}i∈[5],Ac) are sam-
pled at random. In hybrid H2, we slightly change how these matrices are
generated. Let x∗ = (x∗

1, ..., x
∗
�) be the challenge attribute that the adver-

sary A intends to attack. We sample matrices ({Ri}i∈[�], {R′
0,i}i∈[5],Rc) uni-

formly random from {−1, 1}m×m and set R0,i = ηR′
0,i, which would be used

both in the generation of public parameters and challenge ciphertext. We set
({Ai}i∈[�], {V0,i}i∈[5],Ac) respectively as

Ai = ARi − x∗
iG, V0,i = AR0,i − v0[i]G, Ac = ARc − G

where v0 = [1, 0, 0, 0, 0]. The rest of the hybrid remains unchanged.
Hybrid H3: In hybrid H3, we change the generation of matrix A and vector u

in public parameters pp.
Let A be a random matrix in Z

n×m
q . The construction of matrices

({Ai}i∈[�], {V0,i}i∈[5],Ac) remains the same, as in hybrid H2. Sample error
vectors e that would be used in algorithm SampleP later. Then compute the
error vector

eBP∗ ← Evalct(BP,x, {Ai,e
TRi}i∈[�], {V0,i,e

TR0,i}i∈[5], {Ac,eTRc})

and choose a correlation coefficient μ ← Dγ , and set vector y1 = (μeBP∗ +
DZm,Q)q, where

Q = β2Im×m − γ2α2RT
BP∗RBP∗

320 D. Apon et al.

Then let y = (y0|y1), where y0 ← DZm
q ,β2q2Im×m

. Sample vector rBP∗ ←
y + DZ2m−y,(s2−β2)q2I2m×2m

, and compute matrix

VBP∗ ← Evalpk(BP, {Ai}i∈[�], {V0,i}i∈[5],Ac)

Set vector u in public parameters pp as u = [A|VBP∗] · rBP∗ . Since A is
a random matrix without trapdoor TA to answer key queries, we will use
trapdoor TG to answer queries as follows. Consider a secret key query for
branching program BP such that BP(x∗) = 0. To respond, we do the following
computations:
1. First, we compute

RBP ← EvalSim(BP,x, {Ri}i∈[�], {R0,i}i∈[5],Rc,A)

to obtain a low-norm matrix RBP ∈ Z
m×m
q satisfying ARBP−BP(x∗)G =

VBP.
2. Then, we sample rBP using

rBP ← SampleRight(A,G,RBP,TG,u, sq)

such that
rT
BP · [A|VBP + G] = u

By property of algorithm SampleRight, vector rBP is distributed as
required.

The computation of answering P -sampler query, SampleP is the same as
hybrid H1 with error vectors e, For faking receiver coins, FakeRCoins, simply
output the vector rBP∗ pre-sampled in the generation of vector u before.

Hybrid H4: In hybrid H4, we change the generation order of vector y and error
vector e.
First sample vector y = (y0|y1) ← DZ2m,β2q2I2m×2m

and compute rBP∗ from
y as in previous hybrid. Next, we compute error term e as e = νyT

1 RBP∗/q +
DZm,Q′ , where ν ← Dτ , τ = γα2/β2, and DZm,Q′ is sampled as L′DZm

1 ,Im×m

for
Q′ = L′L′T = α2I − τ2β2RT

BP∗RBP∗ (2)

Additionally, we modify the challenge ciphertext to be

ψ∗
0 = sTA/q + e, ψ∗

i = ψ∗T
0 Ri/q, ψ∗

0,i = ψ∗T
0 R0,i/q, ψ∗c = ψ∗T

0 Rc/q

and c∗ = sTu + DZm,αIm×m
.

Hybrid H5: In hybrid H5, we change the generation order of secret key rBP∗

and vector y.
We first sample matrix rBP∗ from discrete Gaussian distribution
DZ2m,s2q2I2m×2m

, and set vector u in public parameters pp to be u =
[A|VBP∗] · rBP∗ , where

VBP∗ ← Evalpk(BP, {Ai}i∈[�], {V0,i}i∈[5], {Ac
i}i∈[�])

Deniable Attribute Based Encryption for Branching Programs from LWE 321

Then set y = (y0|y1) = rBP∗/2 + DZ2m,(β2−s2/4)q2I2m×2m
. The remainder of

the hybrid remains roughly the same. In particular, the challenge ciphertext
ct∗ is generated in the same manner as Hybrid H4. We break the noise term e

into two terms e = e
(1)
0 +e

(2)
0 +νyT

1 RBP∗/q, where e(1)
0 ← DZm,β′Im×m

,e
(2)
0 ←

DZm,Q′−β′2Im×m
and β′ = α/2.

Hybrid H6: In hybrid H6, we change how the challenge ciphertext is generated
by using the Extended-LWE+ instance.
First sample uniformly random vector b ∈ Z

m and set the challenge ciphertext
as

ψ∗
0 = b/q + e

(2)
0 , ψ∗

i = ψ∗T
0 Ri/q, ψ∗

0,i = ψ∗T
0 R0,i/q, ψ∗c = ψ∗T

0 Rc/q

and c∗ = rT
BP∗ [Im×m|RBP∗](b/q − e

(1)
0) + DZm,αIm×m

.
Hybrid H7: In hybrid H7, we change the challenge ciphertext to be uniformly

random.
In algorithm SampleP, sample uniformly random vectors ct ∈ Z

m
q × Z

�m
q ×

Z
m
q × Z

5m
q × Zq and outputs ct.

Claim 4.5. Assuming the semantic security of PKE Π = (Gen′,Enc′,Dec′),
hybrid H0 and H1 are computationally indistinguishable.

Proof. Observe there is only one difference between hybrids H0 and H1 occurs in
the challenge ciphertext, i.e. the encryption (under PKE Π) of the random matri-
ces Si are replaced by encryption of 0. If a ppt adversary A distinguishes between
the H0-encryptions of ({Ri}i∈[�], {R0,i}i∈[5], {Rc}) and the H1-encryptions of 0
with non-negligible probability, then we can construct an efficient reduction B
that uses A to break the semantic security of PKE Π with similar probability. ��
Claim 4.6. Hybrids H1 and H2 are statistically indistinguishable.

Proof. Observe the only difference between hybrids H1 and H2 is the generation
of matrices

({Ai}i∈[�], {V0,i}i∈[5], {Ac
i}i∈[�])

The random matrices ({Ri}i∈[�], {R0,i}i∈[5], {Rc
i}i∈[�]) are used in the generation

of public parameters pp:

Ai = ARi − x∗
iG, V0,i = AR0,i − v0[i]G, Ac = ARc − G

and the construction of errors in challenge ciphertext

ei = eTRi, ec = eTRc, e0,i = eTR0,i

Then by Leftover Hash Lemma 2.1, the following two distributions are statisti-
cally indistinguishable

(A, {ARi}i∈[�], {AR0,i}i∈[5], {ARc}, ẽ) ≈ (A, {Ai}i∈[�], {V0,i}i∈[5], {Ac}, ẽ)

where ẽ = ({ei}i∈[�], {e0,i}i∈[5], {ec}). Hence, hybrid H0 and H1 are statistically
indistinguishable. ��

322 D. Apon et al.

Claim 4.7. Hybrids H2 and H3 are statistically indistinguishable.

Proof. Observe there are three differences between hybrid H2 and H3: The gen-
eration of matrix A and vector u in pp, challenge secret key skBP∗ and the
computation methods to answer secret key queries. By the property of algo-
rithm TrapGen(q, n,m), the distribution of matrix A in hybrid H2 is statistically
close to uniform distribution, from which matrix A in hybrid H3 is sampled.

For secret key queries regarding branching program BP, in hybrid H2, we
sample vector rBP, using

rBP ← SampleLeft(A,TA, (VBP + G),u, s)

While in hybrid H3, we sample vector rBP, using

rBP ← SampleRight(A,G,RBP,TG,u, sq)

By setting the parameters appropriately as specified in Sect. 4.3, and the proper-
ties of algorithms SampleLeft and SampleRight, the answers to secret key queries
are statistically close.

By Leftover Hash Lemma 2.1, the distribution ([A|VBP∗], [A|VBP∗]·rBP∗) and
([A|VBP∗],u) are statistically close. Hence, hybrid H2 and H3 are statistically
indistinguishable. ��
Claim 4.8. Hybrids H3 and H4 are statistically indistinguishable.

Proof. The only difference between the two experiments is in the choice of y and
e, specifically, the choice of the y1 component of y = (y0|y1). We will show that
the joint distribution of (e,y1) is identically distributed in these two hybrids:

In hybrid H3, y1 is set as y1 = (μeBP∗ + DZm,Q)q, where Q = β2Im×m −
γ2α2RT

BP∗RBP∗ with e ← DZm,α2Im×m
and

eBP∗ ← Evalct(BP,x, {Ai,e
TRi}i∈[�], {V0,i,e

TR0,i}i∈[5], {Ac,eTRc})

Therefore, in hybrid H3, we may write the joint distribution of (e,y1) as T1 ·
DZ2m,I2m×2m

, where T1
def=

(

αIm×m 0m×m

γαqRT
BP∗ qL

)

for Q = LLT ∈ Z
m×m via the

Cholesky decomposition Lemma in full version.
In hybrid H4, vector y = (y0|y1) is sampled as y = (y0|y1) ←

DZ2m,β2q2I2m×2m
. Then e is computed as e = νyT

1 RBP∗/q + DZm,Q′ , where
ν ← Dτ , τ = γα2/β2, and Q′ = α2I − τ2β2RT

BP∗RBP∗ . Then in hybrid
H4, we may write the joint distribution of (e,y1) as T2 · DZ2m,I2m×2m

, where

T2
def=

(

L′ τβRBP∗

0m×m βqIm×m

)

for Q′ = L′L′T ∈ Z
m×m via the Cholesky decompo-

sition Lemma in full version.
We claim equality of the following systems of equations:

T1TT
1 =

(

α2Im×m γα2qRBP∗

γα2qRT
BP∗ γ2α2q2RT

BP∗RBP∗ + q2LLT

)

=
(

L′L′T + τ2β2RBP∗RT
BP∗ τβ2qRBP∗

τβ2qRT
BP∗ β2q2Im×m

)

= T2TT
2 .

Deniable Attribute Based Encryption for Branching Programs from LWE 323

This fact may be seen quadrant-wise by our choice of τ = γα2/β2 and the
settings of Q = LLT and Q′ = L′L′T in Eqs. (1) and (2). It then follows that
(T−1

2 T1)(T−1
2 T1)T = I2m×2m, implying T1 = T2Q∗ for some orthogonal matrix

Q∗. Because the spherical Gaussian DZ2m,I2m×2m
is invariant under rigid trans-

formations, we have T1 ·DZ2m,I2m×2m
= T2Q∗ ·DZ2m,I2m×2m

= T2 ·DZ2m,I2m×2m
,

and the claim follows. ��
Claim 4.9. Hybrids H4 and H5 are statistically indistinguishable.

Proof. Observe the main difference between hybrids H4 and H5 is the order of
generation of vectors y and rBP∗ : In hybrid H4, we first sample y = (y0|y1) ←
DZ2m,β2q2I2m×2m

and set rBP∗ ← y + DZ2m−y,q2(s2−β2)I2m×2m
, while in hybrid

H5, we first sample rBP∗ ← DZ2m,s2q2I2m×2m
and set y = (y0|y1) ← rBP∗/2 +

DZ2m,(β2−s2/4)q2I2m×2m
. By setting parameters appropriately as in Sect. 4.3, these

two distributions are statistically close. ��
Claim 4.10. Assuming the hardness of extended-LWE+

n,m,q,D
Zm,β′ ,R for any

adversarially chosen distribution over matrices R ∈ Z
m×m
q , then hybrids H5

and H6 are computationally indistinguishable.

Proof. Suppose A has non-negligible advantage in distinguishing hybrid H5 and
H6, then we use A to construct an extended-LWE+ algorithm B as follows:

Invocation. B invokes adversary A to commit to a challenge attribute vector
x∗ = (x∗

1, ..., x
∗
�) and challenge branching program BP∗. Then B generates

RBP∗ by first sampling ({Ri}i∈[�], {R0,i}i∈[5], {Rc}) as in the hybrid, and
computes

RBP ← EvalSim(BP,x, {Ri}i∈[�], {R0,i}i∈[5], {Rc},A)

Then it receives an extended-LWE+ instance for the matrix R = RBP∗ as
follows:

{A, b = sTA + e,z0,z1, 〈z0, b − e〉 + e, 〈zT
1 R, b − e〉 + e′}

where A $← Z
n×m
q , s

$← Z
n
q , u

$← Z
m
q , e,z0,z1

$← χn and e, e′ $← χ. Algo-
rithm B aims to leverage adversary A’s output to solve the extended-LWE+

assumption.
Setup. B generates matrices ({Ai}i∈[�], {V0,i}i∈[5], {Ac}) as specified in hybrid

H1. Then, B sets challenge secret key skBP∗ = rBP∗ = (r∗
0|r∗

1) = (z0|z1) from
extended-LWE+ instance and computes vector u as in hybrid H5.

Secret key queries. B answers adversary A’s secret key queries as in
hybrid H2.

Challenge ciphertext. B answers adversary A’s P -sample query by setting

ψ
∗
0 = b/q + e

(2)
0 + νy

T
1 RBP∗ /q, ψ

∗
i = ψ

∗T
0 Ri/q, ψ

∗
0,i = ψ

∗T
0 R0,i/q, ψ

∗c
= ψ

∗T
0 R

c
/q

and c∗ = rT
BP∗ [Im×m|RBP∗](b/q − e(1)) + DZm,αIm×m

.

324 D. Apon et al.

Faking receiver coin query. B answers adversary A’s faking receiver coin
query by outputting the extended-LWE instance’s vector skBP∗ = rBP∗ .

Output. B outputs whatever A outputs.

We can rewrite the expression of c∗′
to be

c∗′
= ([A∗|A∗RBP∗](z0

z1))Ts/q + DZ1,α

= ((z0|z1)(A∗T

RT
BP∗A∗T))s/q + DZ1,α = z0A∗Ts/q + z1RT

BP∗A∗Ts/q + DZ1,α

= 〈z0, b/q − e(1)〉 + 〈zT
1 RBP∗ , b/q − e(1)〉 + DZ1,α

We can see that if the eLWE+ instance’s vector b is pseudorandom, then
the distribution simulated by B is exactly the same as H5. If b is truly random
and independent, then the distribution simulated by B is exactly the same as
H6. Therefore, if A can distinguish H5 from H6 with non-negligible probability,
then B can break the eLWE+

n,m,q,D(α/2)q,α′,Sf∗ problem for some α′ ≥ 0 with
non-negligible probability. ��
Claim 4.11. Hybrids H6 and H7 are statistically indistinguishable.

Proof. Recall the only difference between hybrids H6 and H7 is the generation
of challenge ciphertext. In hybrid H7, we observe if ψ∗

0 is chosen from uniform
distribution, then by Leftover Hash Lemma2.1, it holds

ψ∗
i = ψ∗T

0 Ri/q, ψ∗
0,i = ψ∗T

0 R0,i/q, ψ∗c = ψ∗T
0 Rc/q

is also uniformly random (in their marginal distribution). Therefore, it remains
to show that c∗ is still uniformly random even conditioned on fixed samples of
(ψ∗

0 , {ψ∗
i }i, {ψ∗

0,i}i, {ψc}).
As calculated above, we can unfold the expression of c∗ as

c∗ = 〈z0, b/q − x(1)〉 + 〈zT
1 RBP∗ , b/q − x(1)〉 + DZ1,α

We note that b/q − x(1) = ψ∗
0 − x(1) − x(2) − νRBP∗y1/q, thus if we show that

〈RBP∗z1, νRBP∗y1/q〉

is close to uniform distribution (modulo 1), then c∗ will also be close to the
uniform distribution (modulo 1), as c∗ is masked by this uniformly random
number. Recall in hybrids, we set y1 = z1/2 + (shift), so it is sufficient to
analyze

〈RBP∗z1, νRBP∗y1/q〉 = ν〈RBP∗z1,RBP∗z1/q〉 = ν||R∗
BP∗z1||2/q

By applying analysis of norm inductively on matrix RBP∗ , we can obtain that

||R∗
BP∗z1||2/q ≥ (||R0,jz1|| − Θ(m1.5)�||z1||)2

q

Deniable Attribute Based Encryption for Branching Programs from LWE 325

Table 1. Parameter description and simple example setting

Parameters Description Setting

n, m Lattice dimension n = λ, m = n2 log n

� Length of input to branching program � = n

q Modulus (resp. bit-precision) Smallest prime ≥ n1.5m2.5ω(log n)

α Sampling error terms e, e 1
n2.5 log3 n

β Sampling correlation vector y α/2

γ Sampling correlation coefficient μ 1
n log1.5 n

s Sampling secret key r 3β/2

η Scaling parameter for R0,j Θ(m�)

where R0,j ∈ {−1, 1}m×m. Since vector z1 is sampled from Gaussian with width
sq, so its two-norm is at least

√
m(sq) with overwhelming probability. Then by

analysis of norm, the distribution ν||R∗
BP∗z1||2/q is a Gaussian distribution with

width at least

d = τ
(ηsqm − Θ(m2�)sq)2

q
=

γα2(ηsqm − Θ(m2�)sq)2

β2q

We recall again that ν was sampled from a Gaussian with parameter τ = γα2/β2.
By our setting of parameters, we have d/ω(log(n)) ≥ 1. A Gaussian with such
width is statistically close to uniform in the domain Z1. This completes the
proof of Lemma 4.4. Further, Theorem4.2 follows from Lemmas 4.3 and 4.4. A
(flexibly) bi-deniable ABE from LWE then follows. ��

4.3 Parameter Setting

The parameters in Table 1 are selected in order to satisfy the following con-
straints:

– To ensure correctness in Lemma 4.3, we have αsqm(η
√

m + 2m1.5�) ≤ 1/4.
– To ensure deniability in Hybrid H7, we have d/ω(log(n)) >

γα2(ηsqm−Θ(m2�sq))2

β2qω(log(n)) > 1.

– To ensure large enough LWE noise, we need α ≥ (
√

n log1+δ n)/q.
– To apply the leftover hash lemma, we need m ≥ 2n log(q).
– To ensure that the matrix Q in FakeRCoins is positive definite, we have β ≥

αγ
√

η
√

m + 2m1.5�; To ensure that the matrix Q′ in the security proof is
positive definite, we have α ≥ τβ

√

η
√

m + 2m1.5�. This constraint will also
imply that in the security proof, both Q′ and Q′−β′Im×m are positive definite
(note β′ = α/2).

– To ensure hybrids H3 and H5 are well-defined, we have s > β and β > s/2.
Let s := (3/2)β.

326 D. Apon et al.

Regev [36] showed that for q >
√

m/β′, an efficient algorithm for LWEn,m,q,χ

for χ = Dβ′q (and β′q ≥ √
nω(log(n))) implies an efficient quantum algorithm for

approximating the SIVP and GapSVP problems, to within Õ(n/β′) approxima-
tion factors in the worst case. Our example parameter setting yields a bi-deniable
AB-BTS based on the (quantum) hardness of solving SIVPÕ(n9.5), respectively
GapSVPÕ(n9.5). (We write this term to additionally absorb the (1/q2) loss from
our LWE to eLWE+ reduction.) We leave further optimizing the lattice problem
approximation factor to future work.

4.4 From AB-BTS to Flexible Bi-Deniable ABE

We present the instantiation of a flexible bi-deniable ABE using our AB-
BTS scheme described above. We let Σ′ = (Setup′,DenSetup′,Keygen′,
SampleP′,SampleU′, TestP′,FakeRCoins′,FakeSCoins′) be an AB-BTS scheme.
Then the flexible bi-deniable ABE Σ = (Setup,DenSetup,Keygen,Enc,
DenEnc,Dec,SendFake,RecFake) is:

– Setup(1λ): Run algorithm (pp′,msk′) ← Setup′(1λ) in AB-BTS and set pp =
pp′,msk = msk′.

– DenSetup(1λ): Run algorithm (pp′,msk′, fk′) ← DenSetup′(1λ) in AB-BTS and
set pp = pp′,msk = msk′, fk = (fk′,msk′).

– Keygen(msk, f): Run algorithm sk′
f ← Keygen′(msk, f) in AB-BTS and set

skf = sk′
f .

– Enc(pp,x, μ; (r(1)
S , r

(2)
S)): On input the message μ ∈ {0, 1}, if μ = 0, then

run ci ← SampleU′(pp,x; r(i)
S) for i = 1, 2, otherwise, μ = 1, run c1 ←

SampleU′(pp,x; r(1)
S) and c2 ← SampleP′(pp,x; r(2)

S). Output ctx = (c1, c2).
– DenEnc(pp,x, μ; (r(1)

S , r
(2)
S)): On input the message μ ∈ {0, 1}, then run

ci ← SampleP′(pp,x; r(i)
S) for i = 1, 2, otherwise, μ = 1, run c1 ←

SampleU′(pp,x; r(1)
S) and c2 ← SampleP′(pp,x; r(2)

S). Output ctx = (c1, c2).
– Dec(ctx, skf): If f(x)
= 0, then output ⊥. Otherwise, parse ctx = (c1, c2) and

run bi ← TestP′(skf , ci) for i = 1, 2. Output 0 if the b1 = b2 and 1 if b1
= b2.
– SendFake(pp, rS , μ, μ′): If μ = μ′, return rS . If (μ, μ′) = (0, 1), then run r

∗(2)
S ←

FakeSCoins′(pp, r(2)
S) and return (r(1)

S , r
∗(2)
S). Else if (μ, μ′) = (1, 0), run r

∗(1)
S ←

FakeSCoins′(pp, r(1)
S) and return (r∗(1)

S , r
(2)
S).

– RecFake(pp, fk, ctx, f, μ′): Parse ctx = (c1, c2) and use fk to decrypt the cipher-
text ctx then obtain the plaintext μ. If μ = μ′, then run the honest key
generation of the BTS scheme, i.e. sk′

f ← Keygen′(msk′, f). Otherwise, run
sk′

f ← FakeRCoins′(pp, fk, cμ+1, f). Return sk′
f .

Similar to the work by Canetti et al. [14] and O’Neil et al. [35], the following,
desired theorem can be proven in a straightforward manner.

Theorem 4.12. Assume that Σ′ is a flexible bi-deniable AB-BTS, as in
Definition 3.2. Then Σ is a flexibly bi-deniable ABE, as in Definition 3.1.

Deniable Attribute Based Encryption for Branching Programs from LWE 327

Acknowledgments. We thank anonymous reviewers for their insightful comments.
This work was performed in part under financial assistance award 70NANB15H328

from the U.S. Department of Commerce, National Institute of Standards and Technol-
ogy, and was additionally supported in part by NSF award #1223623, NSF grants CNS-
1314857, CNS-1453634, CNS-1518765, CNS-1514261, a Packard Fellowship, a Sloan
Fellowship, two Google Faculty Research Awards, and a VMWare Research Award.

References

1. Agrawal, S., Boneh, D., Boyen, X.: Efficient lattice (H)IBE in the standard model.
In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 553–572. Springer,
Heidelberg (2010)

2. Alperin-Sheriff, J., Peikert, C.: Circular and KDM security for identity-based
encryption. In: Fischlin, M., Buchmann, J., Manulis, M. (eds.) PKC 2012. LNCS,
vol. 7293, pp. 334–352. Springer, Heidelberg (2012)

3. Alperin-Sheriff, J., Peikert, C.: Faster bootstrapping with polynomial error. In:
Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014, Part I. LNCS, vol. 8616, pp. 297–
314. Springer, Heidelberg (2014)

4. Ananth, P., Brakerski, Z., Segev, G., Vaikuntanathan, V.: From selective to
adaptive security in functional encryption. In: Gennaro, R., Robshaw, M. (eds.)
CRYPTO 2015. LNCS, vol. 9216, pp. 657–677. Springer, Heidelberg (2015)

5. Apon, D., Fan, X., Liu, F.-H.: Bi-deniable inner product encryption from LWE.
IACR Cryptology ePrint Archive, 2015:993 (2015)

6. Barrington, D.A.M.: Bounded-width polynomial-size branching programs recog-
nize exactly those languages in nc1. J. Comput. Syst. Sci. 38(1), 150–164 (1989)

7. Bellare, M., Hofheinz, D., Yilek, S.: Possibility and impossibility results for encryp-
tion and commitment secure under selective opening. In: Joux, A. (ed.) EURO-
CRYPT 2009. LNCS, vol. 5479, pp. 1–35. Springer, Heidelberg (2009)

8. Bendlin, R., Nielsen, J.B., Nordholt, P.S., Orlandi, C.: Lower and upper bounds
for deniable public-key encryption. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT
2011. LNCS, vol. 7073, pp. 125–142. Springer, Heidelberg (2011)

9. Boneh, D., Gentry, C., Gorbunov, S., Halevi, S., Nikolaenko, V., Segev, G.,
Vaikuntanathan, V., Vinayagamurthy, D.: Fully key-homomorphic encryption,
arithmetic circuit ABE and compact garbled circuits. In: Nguyen, P.Q., Oswald,
E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 533–556. Springer, Heidelberg
(2014)

10. Boneh, D., Lewi, K., David, J.W.: Constraining pseudorandom functions privately.
IACR Cryptology ePrint Archive 2015, 1167 (2015)

11. Boneh, D., Roughgarden, T., Feigenbaum, J. (eds.): 45th ACM STOC. ACM Press,
June 2013

12. Boneh, D., Sahai, A., Waters, B.: Functional encryption: definitions and challenges.
In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 253–273. Springer, Heidelberg
(2011)

13. Brakerski, Z., Langlois, A., Peikert, C., Regev, O., Stehlé, D.: Classical hardness
of learning with errors. In: Boneh et al. [11], pp. 575–584 (2013)

14. Canetti, R., Dwork, C., Naor, M., Ostrovsky, R.: Deniable encryption. In: Kaliski
Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 90–104. Springer, Heidelberg
(1997)

328 D. Apon et al.

15. Canetti, R., Feige, U., Goldreich, O., Naor, M.: Adaptively secure multi-party
computation. In: 28th ACM STOC, pp. 639–648. ACM Press, May 1996

16. Canetti, R., Goldwasser, S., Poburinnaya, O.: Adaptively secure two-party com-
putation from indistinguishability obfuscation. In: Dodis, Y., Nielsen, J.B. (eds.)
TCC 2015, Part II. LNCS, vol. 9015, pp. 557–585. Springer, Heidelberg (2015)

17. Angelo De Caro, Vincenzo Iovino, and Adam O’Neill. Deniable functional encryp-
tion. In Public-Key Cryptography - PKC –19th IACR International Conference
on Practice and Theory in Public-Key Cryptography, Taipei, Taiwan, March 6–9,
Proceedings, Part I, pp. 196–222, (2016)

18. Cash, D., Hofheinz, D., Kiltz, E., Peikert, C.: Bonsai trees, or how to delegate
a lattice basis. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp.
523–552. Springer, Heidelberg (2010)

19. Dachman-Soled, D., Katz, J., Rao, V.: Adaptively secure, universally composable,
multiparty computation in constant rounds. In: Dodis, Y., Nielsen, J.B. (eds.) TCC
2015, Part II. LNCS, vol. 9015, pp. 586–613. Springer, Heidelberg (2015)

20. Dachman-Soled, D., Liu, F.-H., Zhou, H.-S.: Leakage-resilient circuits revisited -
optimal number of computing components without leak-free hardware, pp. 131–158
(2015)

21. Dodis, Y., Reyzin, L., Smith, A.: Fuzzy extractors: how to generate strong keys
from biometrics and other noisy data. In: Cachin, C., Camenisch, J.L. (eds.)
EUROCRYPT 2004. LNCS, vol. 3027, pp. 523–540. Springer, Heidelberg (2004)

22. Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.: Candidate
indistinguishability obfuscation and functional encryption for all circuits. In: 54th
FOCS, pp. 40–49. IEEE Computer Society Press, October 2013

23. Garg, S., Polychroniadou, A.: Two-round adaptively secure MPC from indistin-
guishability obfuscation. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015, Part II.
LNCS, vol. 9015, pp. 614–637. Springer, Heidelberg (2015)

24. Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices and new
cryptographic constructions. In: 40th ACM STOC, pp. 197–206. ACM Press, May
2008

25. Gentry, C., Sahai, A., Waters, B.: Homomorphic encryption from learning with
errors: conceptually-simpler, asymptotically-faster, attribute-based. In: Canetti,
R., Garay, J.A. (eds.) CRYPTO 2013, Part I. LNCS, vol. 8042, pp. 75–92. Springer,
Heidelberg (2013)

26. Gilbert, H. (ed.): EUROCRYPT 2010. LNCS, vol. 6110. Springer, Heidelberg
(2010)

27. Goldwasser, S., Kalai, Y.T., Popa, R.A., Vaikuntanathan, V., Zeldovich, N.:
Reusable garbled circuits and succinct functional encryption. In: Boneh et al. [11],
pp. 555–564 (2013)

28. Gorbunov, S., Vaikuntanathan, V., Wee, H.: Attribute-based encryption for cir-
cuits. In: Boneh et al. [11], pp. 545–554 (2013)

29. Gorbunov, S., Vaikuntanathan, V., Wee, H.: Predicate encryption for circuits from
LWE. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9216, pp.
503–523. Springer, Heidelberg (2015)

30. Gorbunov, S., Vinayagamurthy, D.: Riding on asymmetry: efficient ABE for
branching programs. In: Iwata, T., et al. (eds.) ASIACRYPT 2015. LNCS, vol.
9452, pp. 550–574. Springer, Heidelberg (2015). doi:10.1007/978-3-662-48797-6 23

31. Goyal, V., Pandey, O., Sahai, A., Waters, B.: Attribute-based encryption for fine-
grained access control of encrypted data. In: ACM CCS 2006, pp. 89–98. ACM
Press, October/November 2006. Available as Cryptology ePrint Archive Report
2006/309

http://dx.doi.org/10.1007/978-3-662-48797-6_23

Deniable Attribute Based Encryption for Branching Programs from LWE 329

32. Katz, J., Thiruvengadam, A., Zhou, H.-S.: Feasibility and infeasibility of adaptively
secure fully homomorphic encryption. In: Kurosawa, K., Hanaoka, G. (eds.) PKC
2013. LNCS, vol. 7778, pp. 14–31. Springer, Heidelberg (2013)

33. Micciancio, D., Mol, P.: Pseudorandom knapsacks and the sample complexity of
LWE search-to-decision reductions. In: Rogaway [37], pp. 465–484

34. Micciancio, D., Peikert, C.: Trapdoors for lattices: simpler, tighter, faster, smaller.
In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237,
pp. 700–718. Springer, Heidelberg (2012)

35. O’Neill, A., Peikert, C., Waters, B.: Bi-deniable public-key encryption. In: Rogaway
[37], pp. 525–542 (2011)

36. Regev, O.: On lattices, learning with errors, random linear codes, and cryptogra-
phy. In: 37th ACM STOC, pp. 84–93. ACM Press, May 2005

37. Rogaway, P. (ed.): CRYPTO 2011. LNCS, vol. 6841. Springer, Heidelberg (2011)
38. Sahai, A., Waters, B.: How to use indistinguishability obfuscation: deniable encryp-

tion, and more. In: Shmoys, D.B. (eds.) 46th ACM STOC, pp. 475–484. ACM Press,
May/June 2014

Targeted Homomorphic
Attribute-Based Encryption

Zvika Brakerski1(B), David Cash2, Rotem Tsabary1, and Hoeteck Wee3

1 Weizmann Institute of Science, Rehovot, Israel
{zvika.brakerski,rotem.tsabary}@weizmann.ac.il

2 Rutgers University, New Brunswick, USA
david.cash@cs.rutgers.edu

3 ENS, CNRS and Columbia University, Paris, France
wee@di.ens.fr

Abstract. In (key-policy) attribute-based encryption (ABE), messages
are encrypted respective to attributes x, and keys are generated respec-
tive to policy functions f . The ciphertext is decryptable by a key only if
f(x) = 0. Adding homomorphic capabilities to ABE is a long standing
open problem, with current techniques only allowing compact homomor-
phic evaluation on ciphertext respective to the same x. Recent advances
in the study of multi-key FHE also allow cross-attribute homomorphism
with ciphertext size growing (quadratically) with the number of input
ciphertexts.

We present an ABE scheme where homomorphic operations can be
performed compactly across attributes. Of course, decrypting the result-
ing ciphertext needs to be done with a key respective to a policy f
with f(xi) = 0 for all attributes involved in the computation. In our
scheme, the target policy f needs to be known to the evaluator, we call
this targeted homomorphism. Our scheme is secure under the polynomial
hardness of learning with errors (LWE) with sub-exponential modulus-
to-noise ratio.

We present a second scheme where there needs not be a single tar-
get policy. Instead, the decryptor only needs a set of keys representing
policies fj s.t. for any attribute xi there exists fj with fj(xi) = 0. In
this scheme, the ciphertext size grows (quadratically) with the size of
the set of policies (and is still independent of the number of inputs or
attributes). Again, the target set of policies needs to be known at evalua-
tion time. This latter scheme is secure in the random oracle model under
the polynomial hardness of LWE with sub-exponential noise ratio.

For the full and most up-to-date version of this work, see Cryptology ePrint Archive
http://eprint.iacr.org/2016/691.
Z. Brakerski and R. Tsabary—Supported by the Israel Science Foundation (Grant
No. 468/14), the Alon Young Faculty Fellowship, Binational Science Foundation
(Grant No. 712307) and Google Faculty Research Award.
H. Wee—Supported by ERC Project aSCEND (H2020 639554) and NSF Award
CNS-1445424.

c© International Association for Cryptologic Research 2016
M. Hirt and A. Smith (Eds.): TCC 2016-B, Part II, LNCS 9986, pp. 330–360, 2016.
DOI: 10.1007/978-3-662-53644-5 13

http://eprint.iacr.org/2016/691

Targeted Homomorphic Attribute-Based Encryption 331

1 Introduction

Consider a situation where a large number of data items μ1, μ2, . . . is stored
on a remote cloud server. For privacy purposes, the data items are encrypted.
The user, who holds the decryption key, can retrieve the encrypted data and
decrypt it locally. Using fully homomorphic encryption (FHE) [20,34], it can
also ask the server to evaluate a function g on the encrypted data, and produce
an encryption of g(μ1, μ2, . . .) which can be sent back for decryption, all without
compromising privacy. The state of the art homomorphic encryption schemes
can be based on the hardness of the learning with errors (LWE) problem, and
of particular importance to us is the scheme of Gentry et al. [22]. However,
one could consider a case where the data belongs to a big organization, where
different position holders have different access permissions to the data. That is,
every user can only access some fraction of the encrypted items. A trivial solution
would be to duplicate each data item, and encrypt each copy using the public
keys of all permitted users. However, this might be unsatisfactory in many cases.

Attribute-based encryption (ABE) [26,35] is a special type of public-key
encryption scheme that allows to implement access control.1 A (master) pub-
lic key mpk is used for encryption, and users are associated to secret keys skf

corresponding to policy functions f : {0, 1}� → {0, 1}. The encryption of a mes-
sage μ is labeled with a public attribute x ∈ {0, 1}�, and can be decrypted
using skf if and only if f(x) = 0.2 The security guarantee of ABE is collusion
resistance: a coalition of users learns nothing about the plaintext message μ if
none of their individual keys are authorized to decrypt the ciphertext. Goyal
et al. [26] used bilinear maps to construct ABE for log-depth circuits. Gorbunov
et al. [23] showed the first ABE scheme where the policies can be arbitrary (a-
priori bounded) polynomial circuits, based on LWE. A scheme with improved
parameters was presented by Boneh et al. [5].

Using ABE for encrypting our remote data, a user with access permission to a
certain data item can retrieve and decrypt it, but what about private processing
on the server side? This would require homomorphic attribute-based encryption
(HABE). Intuitively, we would like a way for a user to specify a set of data items
for which it has permission, as well as a function g to be applied, such that the
server can evaluate g on those data items. We would like this procedure to be
private, i.e. the server learns nothing about the contents, and compact, i.e. the
size of the evaluated response is independent of the number of inputs and the
complexity of g.

Gentry et al. [22] showed how to achieve this goal in the case where all items
of interest have the same attribute x, but cannot allow any homomorphism across
attributes, even if thedecryptor is allowed to access all of them. It is possible to com-
pose a standard ABE scheme together with multi-key FHE [16,27,31] to achieve
HABE, at the cost of blowing up the ciphertext size with the number of inputs to
the homomorphic function. We provide a proof for this fact in AppendixA.

1 Throughout this work we will consider the flavor known as “key-policy” ABE.
2 In the original formulation, the convention was opposite: that f(x) = 1 allows to

decrypt. However in this work we use f(x) = 0 throughout.

332 Z. Brakerski et al.

1.1 Our Results

We show that under a proper relaxed formulation of the problem, there is a solu-
tion that allows cross-attribute evaluation, with the resulting ciphertext size not
depending on the number of attributes at all. In the motivating example above,
if the remote server holds various encrypted items under various attributes, then
the client must specify which of these ciphertexts are allowed to participate in
the computation. In our formulation, this is done by providing the server with
the policy f associated with the user’s decryption key (note that this is public
information that does not compromise data privacy). The policy is a compact
representation that indicates which attributes are accessible by the user and
which are not, so the server can tell which ciphertexts are to be included. We
call our notion targeted HABE (T-HABE) since the evaluator needs to know
the target policy which will be used to decrypt the homomorphically evaluated
ciphertext. We believe that our formulation can be useful in some situations, as
illustrated by the motivating example above.

So far we discussed the case where the decryptor only has one secret key
corresponding to a single policy, we call this single target (or single policy)
HABE (ST-HABE). We extend this notion and consider multi target (or multi
policy) HABE (MT-HABE), where the decryptor is defined not just by a single
policy f , but rather by a collection of policies F . This means that the decryptor
holds all {skf : f ∈ F} and is thus allowed to decrypt ciphertexts with attribute
x s.t. there exists f ∈ F with f(x) = 0. This can be thought of as a single user
with multiple keys, or as a collection of users who wish to perform homomorphic
computation on the union of their permitted data items. In this setting, target
homomorphism requires F to be known to the homomorphic evaluator. This
notion trivially degenerates to the single-policy variant if F is a singleton set. A
formal definition of T-HABE appears in Sect. 2.

We construct new ST-HABE and MT-HABE schemes as follows. In the single
target setting, our scheme relies on the same hardness assumptions as previous
(standard) ABE candidates [5,23], namely the polynomial hardness of learning
with errors (LWE) with sub-exponential modulus-to-noise ratio. Our scheme is
leveled both for policies and for homomorphic evaluation, which means that
at setup time one can specify arbitrary depth bounds, and once they are set,
all policies f and homomorphicly evaluated functions g must adhere by these
bounds. We note that in terms of assumptions and functionality, our scheme
performs as well as any known ABE for circuits and as well as any known FHE
scheme (without bootstrapping). In fact, using the composition theorem in [17],
we can get non-leveled full homomorphism. However, this requires a non-leveled
MK-FHE as a building block, which is only known to exist under a circular
security assumption (see e.g. [10]). We note that whereas the [17] result is stated
for non-targeted HABE, it applies readily in this setting as well. See an outline
of our construction in Sect. 1.2 below, and the full scheme in Sect. 4.

Our MT-HABE scheme relies on the same assumption but in the random
oracle model, and furthermore the ciphertext size grows quadratically with the
cardinality of the set F (i.e. if more policies are involved, more communication is

Targeted Homomorphic Attribute-Based Encryption 333

needed),3 however the ciphertext size is independent of the number of attributes
and the complexity of g. Interestingly, we use the random oracle in order to
generate a part of the secret key, and we show that security is still maintained.
See an outline of our construction in Sect. 1.2 below, and the full scheme in
Sect. 5.

1.2 Our Techniques

Previous works [11,16,22] observed that known LWE-based ABE schemes have
the following structure. Given the public parameters pp and an attribute x, it is
possible to derive a “designated public key” pkx, which has the same structure
as a public-key for Regev’s famous encryption scheme [33] (more precisely “dual-
Regev”, introduced by Gentry et al. [21]), and indeed the encryption process is
also identical to the dual-Regev scheme. Therefore, since the FHE scheme of
Gentry, Sahai and Waters [22] (henceforth GSW) has the same key distribution
as dual-Regev, one can just substitute the encryption procedure from dual-Regev
to GSW, and single attribute homomorphism follows. To show that the evaluated
ciphertext can be decrypted, GSW notice that the decryption procedure of the
[23] ABE scheme can be seen as a two step process: first skf is preprocessed
together with x to obtained skf,x which is a valid dual-Regev secret key for pkx,
and this key is used for standard dual-Regev decryption. This means that this
key can also be used to decrypt GSW evaluated ciphertexts. This observation
also carries over to the later ABE scheme of Boneh et al. [5]. A similar approach
was used by Clear and McGoldrick [16] in conjunction with their multi-key
homomorphism to achieve a homomorphic IBE (ABE where the policies are only
point functions) where the ciphertext size grows with the number of attributes.

Our starting point is to consider a “dual” two-step decryption process for the
[5] ABE, where given a ciphertext cx relative to an attribute x, it is first pre-
processed together with f to obtain cx,f which can then be decrypted by skf as a
standard dual-Regev ciphertext. This is not a new perspective, in fact this is the
original way [5,23] described their decryption process. We would hope, therefore,
to apply targeted homomorphism by first preprocessing all input ciphertexts to
make them correspond to the same skf , and then apply homomorphic eval-
uation. However, applied naively, preprocessing a GSW ciphertext destroys its
homomorphic features. This is the reason GSW needed to reinterpret the decryp-
tion process in order for their approach to work even in the single input setting.
We show how to modify the encryption procedure so as to allow preprocessing of
a ciphertext for any policy function f without compromising its homomorphic
features, which will allow to achieve targeted homomorphism for single policy
(ST-HABE).

Our multi-target solution relies on the multi-key FHE scheme of [16], and in
particular we use the simplified variant of Mukherjee and Wichs [31]. Recall that
we have a set F of policies, where each attribute x in the computation has at least

3 As in previous works, part of the ciphertext is redundant for decryption and can be
truncated post-evaluation, which will lead to only linear dependence on |F |.

334 Z. Brakerski et al.

one policy f ∈ F that can decrypt it. The basic idea is to group the ciphertexts
according to the f ’s, preprocess them so all ciphertexts that correspond to a given
f are now respective to the same (unknown) secret key skf . After preprocessing,
the situation is equivalent to multi-key FHE with |F | many users, each with
their own key, so it would appear that we are in the clear. However, known LWE-
based multi-key FHE schemes require common public parameters. In particular,
all public keys are matrices which are identical except the last row, all secret keys
are vectors with the last element being equal to 1. However, our preprocessing
does not produce ciphertexts that conform with this requirement. In particular,
our ciphertexts correspond to public keys that all share a prefix, but they differ in
much more than a single row. We show that the [16,31] scheme can be generalized
to the aforementioned case, however a fraction of the secret key needs to be
known at homomorphic evaluation time. Whereas revealing this fraction of the
key does not compromise security, it is generated independently for each policy
f using the master secret key, and there appears to be no compact way to
provide the key fractions for all policies in the public parameters. We resolve
this using the random oracle heuristic, namely we show that we can generate a
fraction of the secret key using the random oracle, which allows the homomorphic
evaluator to learn the allowable part of all relevant keys and perform the multi-
key homomorphism.

1.3 A More Formal Overview

Syntax. As mentioned earlier, in an ABE, ciphertexts are associated with an
attribute x and a message μ, and decryption is possible using skf iff f(x) = 0. In a
single-attribute homomorphic ABE, an evaluator given encryptions of μ1, μ2, . . . ,
under the same attribute x and any circuit g, can compute an encryption of
g(μ1, μ2, . . .) under the same attribute x. In a ST-HABE, an evaluator given
encryptions of μ1, μ2, . . . under different attributes x1, x2, . . ., any circuit g and
a “target” f for which f(x1) = f(x2) = · · · = 0, outputs a ciphertext that
decrypts to g(μ1, μ2, . . .) under skf .

Prior ABE. We recall that in the [5] ABE, the public parameters contain
a matrix A, a vector v and a set of matrices B1, . . . ,B�, where � is the
supported attribute length. For all x ∈ {0, 1}�, we can define Bx = [B1 −
x1G‖ · · · ‖B� − x�G], where G is the special “gadget” matrix, and use dual-
Regev to encrypt messages w.r.t [A‖Bx],v. Namely the ciphertexts are of the
form c ≈ [A‖Bx‖v]T s + yμ, where yμ is some vector that encodes the mes-
sage. Furthermore, given f , B1, . . . ,B� can be preprocessed to obtain a matrix
Bf , and for all f, x s.t. f(x) = 0, there exists a publicly computable low-norm
matrix H = Hf,x,Bx

s.t. Bf = BxH. The secret key is a row vector skf = rf

s.t. rf [A‖Bf]T = −vT . Decryption proceeds by using ̂H = diag(I,H, 1) (i.e. a
diagonal block matrix whose blocks are I,H, 1) to compute cf = ̂HT c so that
cf ≈ [A‖Bf‖v]T s + ̂Hyμ, and then using rf to decrypt.

Targeted Homomorphic Attribute-Based Encryption 335

Warm-Up. Recall that in GSW style FHE, an encryption of μ under a secret key
r is a matrix D+μG where rD ≈ 0T , where G is a gadget matrix of appropriate
dimensions. As a warm-up, suppose we encrypt μ as

C ≈ [A‖Bx‖v]TS + μG.

That is, each column in the new ciphertext is essentially a ciphertext of the
aforementioned ABE scheme (with different y in each column). Observe that
[rf‖1][A‖Bx‖v]TS ≈ 0T , so C is indeed a GSW style encryption of μ under the
secret key [rf‖1].

In order to achieve cross-attribute homomorphism, we would like to replace
the matrix [A‖Bx‖v]TS in C with one that depends only on f and not x.
Towards this goal, observe that

̂HTC ≈ [A‖Bf‖v]TS + μ ̂HTG.

Unfortunately, this is not a GSW style FHE ciphertext as described above
because we have ̂HTG instead of G. In fact, GSW style homomorphic eval-
uation can be still made to work if we can ensure that ̂HTG behaves like a
gadget matrix (e.g. if the matrix ̂HT has a low-norm inverse, which is not true
for a general Hf,x,Bx

); instead, we provide a simpler fix that also yields shorter
ciphertexts.

Our ST-HABE Scheme. Our ST-HABE ciphertext has two components. The
first one is independent of x: C ≈ [A‖B0‖v]TS + μG, where B0 is another
matrix, like the other Bi’s, which is added to the public parameters. The second
one is similar to an ABE encryption of 0, with the same S: Cx ≈ BT

xS. Now,
observe that

Cf := C + [0‖HTCx‖0] ≈ [A‖B0 + Bf‖v]TS + μG,

since HTBT
x = BT

f . Note that Cf is now indeed a GSW FHE ciphertext under
the key [rf‖1], where rf is the modified ABE secret key satisfying

rf [A‖B0 + Bf]T = vT .

The proof of security for the modified ABE scheme is very similar to that of [5]
(in the simulation, we program B0 as AR0). See Sect. 4 for more details.

Our MT-HABE Scheme. For the multi-policy setting, assume for simplicity that
we only have two attributes x, x′ and two policies f, f ′ s.t. f(x) = 0, f ′(x′) = 0
(generalization is straightforward). After applying the transformation as above,
we have Cf ≈ [A‖B0 + Bf‖v]TS + μG and likewise for f ′. In the background
there are the secret keys rf , rf ′ . Let us partition rf = [r1, r2], s.t. r1AT +
r2(B0 + Bf)T = −vT . Likewise rf ′ = [r′

1, r
′
2]. We show that the methods of

[16,31] for achieving multi-key homomorphism generalize fairly straightforwardly
whenever the value of the cross multiplication rf [A‖B0 + Bf ′‖v]T is publicly

336 Z. Brakerski et al.

computable (note that the secret key for f is multiplied by the public key for
f ′, and vice versa). One can verify that if the r2 components of the two keys
are known, then this is indeed the case. Our approach is therefore to achieve
multi-policy homomorphism by releasing the r2 components of the keys. This
approach might seem risky, since information about the secret key is revealed.
To see why this is not a problem, we recall that the key rf is generated using a
trapdoor for A such that rf is distributed like a discrete Gaussian, conditioned
on r1AT + r2(B0 +Bf)T = −vT . One can verify that the marginal distribution
of r2 is Gaussian and completely independent of f (this fact had been utilized
in [1,14]). Therefore there seems to be hope that releasing it might not hurt
security. Another serious problem is that r2 is generated using secret information,
and is not known to the evaluator. Unfortunately, we are only able to resolve
this difficulty in the random oracle model, by generating r2 using the random
oracle. Specifically, we apply the random oracle to (A, f) to obtain r2 for f .
In a nutshell, producing r2 using a random oracle is secure since the security
reduction can always program the response of the random oracle: if the call is on
a function f s.t. f(x∗) = 1 (where x∗ is the challenge attribute) then returning
r2 is similar to answering a key generation query, and if f(x∗) = 0 then a random
value can be returned, since a key generation query to f will never be issued and
therefore no consistency issues arise. However, as described so far, this solution
requires a special random oracle: one that samples from a discrete Gaussian
distribution. We would like to rely on the standard binary random oracle. To
this end, we will set rf = [r1, r2] such that r1 is Gaussian and r2 is binary,
conditioned on r1AT +r2(B0+Bf)T = −vT . This will allow us to use a standard
binary random oracle for the generation of r2.4 In the proof of security, we use
the discrete Gaussian sampler of Lyubashevsky and Wichs [28] instead of the
Gaussian sampler of [2,30]. This sampler, which is based on rejection sampling,
allows to sample from “partially Gaussian” distributions which is exactly what
we need in order for the proof of security to go through. See Sect. 5 for more
details. We note that for the sake of consistency, we also use this distribution of
rf in our single target scheme.

1.4 Other Related Work

Other works on homomorphic ABE include the works of Clear and McGoldrick
[15,17]. In the former, program obfuscation is used to enhance the homomor-
phic ABE of [22] to support evaluating circuits of arbitrary depth. Still, cross-
attribute homomorphism is not addressed. In the latter, it is shown how to use
bootstrapping to leverage cross-attribute homomorphism into evaluating circuits
without a depth bound. This result can be used in conjunction with our con-
struction from Appendix A to achieve a non-compact solution, or in conjunction
with our targeted scheme as explained above.

4 Alternatively we could have shown that the Gaussian random oracle model is implied
by the standard random oracle model. However this requires a fairly involved argu-
ment that we chose to avoid.

Targeted Homomorphic Attribute-Based Encryption 337

Brakerski and Vaikuntanathan [13] show how to extend the [5] ABE scheme
to support attributes of unbounded polynomial length, and to provide semi-
adaptive security guarantee. This was generalized by Goyal et al. [25] to a generic
transformation that does not rely on the specific properties of the ABE scheme.
Whereas the semi-adaptive transformation appears to be applicable here, it is not
clear whether we can support unbounded attribute length using their methods
and still maintain homomorphism. We leave this avenue of research for future
work.

2 Targeted Homomorphic ABE

In this work, we define a notion of homomorphic ABE where the homomorphic
evaluation process depends on the policy (or policies) that are used to decrypt
the resulting ciphertext, we refer to such schemes as Targeted Homomorphic
ABE (T-HABE). We start by defining the syntax of a T-HABE scheme, and
proceed with definitions of correctness and security.

Definition 1 (Targeted Homomorphic ABE). A Targeted Homomorphic
Attribute Based Encryption (T-HABE) scheme is a tuple of ppt algorithms
THABE = (Setup,Enc,Keygen,TEval,Dec) with the following syntax:

– THABE.Setup(1λ) takes as input the security parameter (and possibly in addi-
tion some specification of the class of policies and class of homomorphic oper-
ations supported). It outputs a master secret key msk and a set of public para-
meters pp.

– THABE.Encpp(μ, x) uses the public parameters pp and takes as input a message
μ ∈ {0, 1} and an attribute x ∈ {0, 1}∗. It outputs a ciphertext ct.

– THABE.Keygenmsk(f) uses the master secret key msk and takes as input a
policy f ∈ F . It outputs a secret key skf .

– THABE.TEvalpp(F, ct(1), . . . , ct(k), g) uses the public parameters pp and takes
as input a set F of target policies, k ciphertexts ct(1), . . . , ct(k) and a function
g ∈ G. It outputs a ciphertext ctg.

– THABE.Dec(skF , ctg) takes as input a set of secret keys skF for a set of policies
F , with skF = {skf : f ∈ F}, and a ciphertext ctg. It outputs a message
μ ∈ {0, 1}.
We will also consider a restriction of the above definition to the single-target

setting, where the set F is only allowed to contain a single function. We call this
Single Target HABE (ST-HABE). Explicit reference to the multi target setting
is denoted MT-HABE.

Our correctness guarantee is that given the set of keys for the policy set F , an
evaluated ciphertext decrypts correctly to the intended value.

Definition 2 (Correctness of T-HABE). Let {Fλ}λ∈N be a class of policy
functions and {Gλ}λ∈N be a class of evaluation functions. We say that THABE =
(Setup,Enc,Keygen,TEval,Dec) is correct w.r.t F ,G if the following holds.

338 Z. Brakerski et al.

Let (msk, pp) = THABE.Setup(1λ). Consider a set of functions F ⊆ Fλ

of poly(λ) cardinality, and its matching set of secret keys skF = {skf =
THABE.Keygenmsk(f) : f ∈ F}, a sequence of k ≥ 1 messages and attributes
{(μ(i) ∈ {0, 1}, x(i) ∈ {0, 1}∗)}i∈[k] such that ∀x(i). ∃f ∈ F. f(x(i)) = 0, and the
sequence of their encryptions {ct(i) = THABE.Encpp(μ(i), x(i))}i∈[k].

Then letting g ∈ G for some g ∈ {0, 1}k → {0, 1}, and computing ctg =
THABE.TEval(F, ct(1), . . . , ct(k), g), it holds that

Pr[THABE.Dec(skF , ctg)
= g(μ(1), . . . , μ(k))] = negl(λ),

where the probability is taken over all of the randomness in the experiment.

We note that similarly to the definition of correctness of homomorphic encryp-
tion, we do not require correctness for ciphertexts that did not undergo homo-
morphic evaluation. However, this can be assumed w.l.o.g since the class G will
always contain the identity function which will allow decryption by first evalu-
ating identity and then decrypting.

Security is defined using the exact same experiment as standard ABE.

Definition 3 (Security for ABE/T-HABE). Let THABE be an T-HABE
scheme as above, and consider the following game between the challenger and
adversary.

1. The adversary sends an attribute x∗ to the challenger.
2. The challenger generates (msk, pp) = THABE.Setup(1λ) and sends pp to the

adversary.
3. The adversary makes arbitrarily many key queries by sending functions fi

(represented as circuits) to the challenger. Upon receiving such function, the
challenger creates a key ski = THABE.Keygenmsk(fi) and sends ski to the
adversary.

4. The adversary sends a pair of messages μ0, μ1 to the challenger. The chal-
lenger samples b ∈ {0, 1} and computes ct∗ = THABE.Encpp(μb, x

∗). It sends
ct∗ to the adversary.

5. The adversary makes arbitrarily many key queries as in Step 3 above.
6. The adversary outputs b̃ ∈ {0, 1}.
7. Let legal denote the event where all key queries of the adversary are such that

fi(x∗) = 1. If legal, the output of the game is b′ = b̃, otherwise the output b′

is a uniformly random bit.

The advantage of an adversary A is |Pr[b′ = b] − 1/2|, where b, b′ are gener-
ated in the game played between the challenger and the adversary A(1λ).

The game above is called the selective security game, because the adversary
sends x∗ before Step 2. The scheme THABE is selectively secure if any ppt
adversary A only has negligible advantage in the selective security game.

Stronger notions of security include semi-adaptive security where step 1 only
happens after step 2, and adaptive (or full) security where step 1 only happens
after step 3.

Targeted Homomorphic Attribute-Based Encryption 339

We note that the adversary has no benefit in making key queries for policies
for which f(x∗) = 0 and therefore we can assume w.l.o.g that such queries are
not made (this is obvious for selective and semi-adaptive security and slightly
less obvious for adaptive security).

Negated Policies. We note again that as in previous lattice based ABE construc-
tions, we allow decryption when f(x) = 0 and require that in the security game
all queries are such that f(x∗) = 1.

3 Preliminaries

We denote vectors by lower-case bold letters (e.g. v) and matrices by upper-
case bold letters (e.g. A). The i’th component of a vector v is denoted by vi.
The component in the ith row and the jth column of a matrix A is denoted by
A[i, j]. We denote the security parameter by λ and let negl(λ) denote a negligible
function. Sets and distributions are usually denoted in plain uppercase. If S is
a set, then we also use S to denote the uniform distribution over this set. The
distinction will be clear from the context.

Elements of Zq are represented by the integers in (−q/2, q/2]. In particular
the absolute value of x ∈ Zq is defined as |x| = min{|y| : y ∈ Z, y = x (mod q)}.

As in many previous works relying on the LWE assumption, we rely on
distributions that are supported over a bounded domain. A distribution χ over
Z is said to be B-bounded if it is supported only over [−B,B]. The infinity norm
of a matrix A is defined as ‖A‖∞ = maxi,j |A[i, j]|, and we write

A ≈ B (err: B)

to denote that ‖A − B‖∞ ≤ B.

3.1 Learning with Errors (LWE)

The Learning with Errors (LWE) problem was introduced by Regev [33]. Our
scheme relies on the hardness of its decisional version.

Definition 4 (Decisional LWE(DLWE) [33]). Let λ be the security parame-
ter, n = n(λ) and q = q(λ) be integers and let χ = χ(λ) be a probability distri-
bution over Z. The DLWEn,q,χ problem states that for all m = poly(n), letting
A ← Z

n×m
q , s ← Z

n
q , e ← χm, and u ← Z

m
q , it holds that

(

A, sTA + eT
)

and
(

A,uT
)

are computationally indistinguishable.

In this work we only consider the case where q ≤ 2n. Recall that GapSVPγ

is the (promise) problem of distinguishing, given a basis for a lattice and a
parameter d, between the case where the lattice has a vector shorter than d, and
the case where the lattice doesn’t have any vector shorter than γ · d. SIVP is the
search problem of finding a set of “short” vectors. The best known algorithms for
GapSVPγ ([36]) require at least 2Ω̃(n/ log γ) time. We refer the reader to [32,33]
for more information.

340 Z. Brakerski et al.

There are known reductions between DLWEn,q,χ and those problems, which
allows us to appropriately choose the LWE parameters for our scheme. We sum-
marize in the following corollary (which addresses the regime of sub-exponential
modulus-to-noise ratio).

Corollary 1 ([29,30,32,33]). For all ε > 0 there exist functions q = q(n) ≤
2n, χ = χ(n) and B = B(n) such that χ is B-bounded, q/B ≥ 2nε

and such
that DLWEn,q,χ is at least as hard as the classical hardness of GapSVPγ and the
quantum hardness of SIVPγ for γ = 2Ω(nε).

3.2 The Gadget Matrix

Let g = (1, 2, 4, . . . , 2�log q�−1) ∈ Z
�log q�
q and let N = n · log q�. The gadget

matrix Gn is defined as the diagonal concatenation of g n times. Formally,
Gn = g ⊗ In ∈ Z

n×N
q . We omit the n when the dimension is clear from the

context.
We define the inverse function G−1

n : Z
n×m
q → {0, 1}N×m which expands

each entry a ∈ Zq of the input matrix into a column of size log q� consisting
of the bits of the binary representation of a. We have the property that for any
matrix A ∈ Z

n×m
q , it holds that G · G−1(A) = A.

3.3 Trapdoors and Discrete Gaussians

Let n,m, q ∈ N and consider a matrix A ∈ Z
n×m
q . For all V ∈ Z

n×m′
q and for

any distribution P over Z
m, we let A−1

P (V) denote the random variable whose
distribution is P conditioned on A · A−1

P (V) = V. A P -trapdoor for A is a
procedure that can sample from a distribution within 2−n statistical distance of
A−1

P (V) in time poly(n,m,m′, log q), for any V. We slightly overload notation
and denote a P -trapdoor for A by A−1

P .
The (centered) discrete Gaussian distribution over Z

m with parameter τ ,
denoted DZm,τ , is the distribution over Z

m where for all x, Pr[x] ∝ e−π‖x‖2/τ2
.

When P is the Discrete Gaussian DZm,τ , we denote A−1
P = A−1

τ .
It had been established in a long sequence of works that it is possible to

generate an almost uniform A together with a trapdoor as formalized below (the
parameters are taken from [30] together with the Gaussian sampler of [9,21]).

Corollary 2 (Trapdoor Generation). There exists an efficient procedure
TrapGen(1n, q,m) that outputs (A,A−1

τ0), where A ∈ Z
n×m
q for all m ≥ m0 for

m0 = O(n log q), A is 2−n-uniform and τ0 = O(
√

n log q log n). Furthermore,
given A−1

τ0 , one can obtain A−1
τ for any τ ≥ τ0.

We will also use the “mixed” Gaussian-Binary sampler of Lyubashevsky and
Wichs [28]. The following corollary is a consequence of example 2 in [28, Sect.
3.2], by adjusting the analysis for general R instead of random {−1, 0, 1} entries.

Targeted Homomorphic Attribute-Based Encryption 341

Corollary 3 (Gaussian-Binary Sampler). Let n,m, q be such that m ≥
nlog q�. With all but O(2−n) probability over the choice of A $← Z

n×m
q , for

all R ∈ Z
m×N with N = nlog q�, one can obtain [A‖AR + Gn]−1

P for P =
DZm,τ × {0, 1}N with τ = O(N

√
mn · ‖R‖∞). Furthermore, for all v, it holds

that the marginal distribution of the last N coordinates of [A‖AR + Gn]−1
P (v)

are O(2−n)-uniform in {0, 1}N .

3.4 Homomorphic Evaluation

We define the basic procedure that will be used for homomorphic evaluation of
FHE ciphertexts and also in the ABE scheme [5,22,24].

Definition 5. Let n, q ∈ N. Consider B1, . . . ,B� ∈ Z
n×N
q where N = nlog q�,

and denote �B = [B1‖ · · · ‖B�]. Let f be a boolean circuit of depth d computing
a function {0, 1}� → {0, 1}, and assume that f contains only NAND gates. We
define Bf = Eval(f, �B) recursively: associate B1, . . . ,B� with the input wires of
the circuit. For every wire w in f , let u, v be its predecessors and define

Bw = G − BuG−1(Bv). (1)

Finally Bf is the matrix associated with the output wire.

The properties of Eval are summarized in the following facts.

Fact 1. Consider B1, . . . ,B� ∈ Z
n×N
q and x ∈ {0, 1}�. Denoting �B =

[B1‖ · · · ‖B�] and x�G = [x1G‖ · · · ‖x�G], it holds that there exists an polyno-
mial time algorithm EvRelation s.t. if H = Hf,x,�B = EvRelation(f, x, �B) then
‖H‖∞ ≤ (N + 1)d and furthermore

(Bf − f(x)G)T = HT · [�B − x�G]T

where Bf = Eval(f, �B).
In particular, if Bi = ARi +xiG, i.e. �B = A�R+x�G for �R = [R1‖ · · · ‖R�],

then Bf = ARf + f(x)G for Rf = �R · Hf,x,�B.

To see why the fact holds, note that for the NAND evaluation in Eq. (1), one
can verify that

EvRelation(nand , [xu, xv], [Bu‖Bv]) =
[−G−1(Bv)

−xuI

]

.

Recursive application implies the general statement.

Fact 2. Let r ∈ Z
n
q , C(1), . . . ,C(k) ∈ Z

n×N
q and μ(1), . . . , μ(k) ∈ {0, 1}, be such

that
rTC(i) ≈ μ(i)rTG (err : B).

Let g be a boolean circuit of depth d computing a function {0, 1}k → {0, 1}, and
assume that g contains only NAND gates. Let Cg = Eval(g, �C), then

rTC(i) ≈ g(μ(1), . . . , μ(k))rTG (err : B · (N + 1)d).

342 Z. Brakerski et al.

3.5 Pseudorandom Functions

A pseudorandom function family is a pair of ppt algorithms PRF = (PRF.Gen,
PRF.Eval), such that the key generation algorithm PRF.Gen(1λ) takes as input
the security parameter and outputs a seed σ ∈ {0, 1}λ. The evaluation algorithm
PRF.Eval(σ, x) takes a seed σ ∈ {0, 1}λ and an input x ∈ {0, 1}∗, and returns a
bit y ∈ {0, 1}.

Definition 6. A family PRF as above is secure if for every polynomial time
adversary A it holds that

∣

∣

∣Pr[APRF.Eval(σ,·)(1λ) = 1] − Pr[AO(·)(1λ) = 1]
∣

∣

∣ = negl(λ),

where σ = PRF.Gen(1λ) and O is a random oracle. The probabilities are taken
over all of the randomness of the experiment.

4 A Single Target Homomorphic ABE Scheme

In this section we present our construction of LWE-based Single Target HABE.
As in previous works, a constant ε ∈ (0, 1) determines the tradeoff between the
hardness of the DLWE problem on which security is based, and the efficiency of
the scheme.

The scheme supports any class of policies F�,dF ⊆ {0, 1}� → {0, 1}, and any
class of operations GdG ⊆ {0, 1}∗ → {0, 1}, where dF , dG is the bound on the
depth of the circuit representation of each function in the set F ,G, respectively.
Out scheme works for any �, dF , dG = poly(λ).

– STHABE.Setup(1λ, 1�, 1dF , 1dG). Choose n, q,B, χ,m as described in Sect. 4.1
below. Let m = max{m0, (n+1)log q�+2λ} (where m0 is as in Corollary 2),
N = nlog q� and M = (m + N + 1)log q�.
Generate a matrix-trapdoor pair (A,A−1

τ0) = TrapGen(1n, q,m) (see Corol-
lary 2), where A ∈ Z

n×m
q . Generate matrices B0,B1, . . . ,B�

$← Z
n×N
q and

denote �B = [B1‖ . . . ‖B�]. Generate a vector v $← Z
n
q .

Set msk = A−1
τ0 and pp = (A,B0, �B,v).

– STHABE.Encpp(μ, x), where pp = (A,B0, �B,v), μ ∈ {0, 1} (however, this
procedure is well defined for any μ ∈ Zq which will be useful for our next
scheme) and x ∈ {0, 1}�.
Sample a random matrix S $← Z

n×M
q , an error matrix EA

$← χm×M and an

error row vector ev
$← χM .

Generate � + 1 more error matrices as follows: For all i ∈ [�] and j ∈ [M],
sample Ri,j

$← {0, 1}m×N . Let E0, . . . ,E� be matrices of dimension N × M
defined by Ei[j] = RT

i,jEA[j], where Ei[j], EA[j] denotes the jth column of
Ei,EA respectively. Let

⎡

⎣

CA

C0

cv

⎤

⎦ =

⎡

⎣

AT

BT
0

vT

⎤

⎦ · S +

⎡

⎣

EA

E0

ev

⎤

⎦ + μGm+N+1.

Targeted Homomorphic Attribute-Based Encryption 343

The rest of the ciphertext contains auxiliary information that will allow to
decrypt given a proper functional secret key. For all i ∈ [�] let

Ci = [Bi − xiGn]T · S + Ei.

Denote Cx =

⎡

⎢

⎣

C1

...
C�

⎤

⎥

⎦
and Ex =

⎡

⎢

⎣

E1

...
E�

⎤

⎥

⎦
.

The final ciphertext is ct = (x,CA,C0, cv,Cx).
– STHABE.Keygenmsk(f). Given a circuit f computing a function {0, 1}� →

{0, 1}, the key is generated as follows. Set Bf = Eval(f, �B) (where Eval is
as defined in Sect. 3.4).
Generate a random vector r′

f
$← {0, 1}N . Let rT

f = A−1
τ (−(B0 + Bf)

r′
f

T − vT), where τ = O(m · N� · (N + 1)dF) ≥ τ0 (the enlargement of τ
is needed for the security proof to work). Note that

[rf‖r′
f‖1] · [A‖B0 + Bf‖v]T = 0T .

Output skf = [rf‖r′
f].

– STHABE.ApplyFpp(ct, f). This is an auxiliary function that is used for homo-
morphic evaluation below. It uses the public parameters pp and takes as input
a ciphertext ct = (x,CA,C0, cv,Cx) and a policy f ∈ F , such that f(x) = 0.
It computes and outputs a “functioned”ciphertext ctf as follows.
Compute the matrix H = Hf,x,�B ∈ Z

�N×N
q as H = EvRelation(f, x, �B) (see

Fact 1), define Cf = HTCx and finally set

̂Cf =

⎡

⎣

CA

C0 + Cf

cv

⎤

⎦.

The “functioned”ciphertext is ctf = ̂Cf .
– STHABE.TEvalpp(f, ct(1), . . . , ct(k), g). Given a policy f ∈ F , k ciphertexts
ct(1), . . . , ct(k) and a function g ∈ G. g ∈ {0, 1}k → {0, 1}, for each i ∈ [k]
compute the matrix

̂C(i)
f = STHABE.ApplyFpp(ct

(i), f).

Set ctg = Cg
f = Eval(g, ̂C(1)

f , . . . , ̂C(k)
f) (see Definition 5 in Sect. 3.4).

– STHABE.Dec(skf , ctg). Given skf = [rf‖r′
f] and ctg = Cg

f , compute the vector

c = [rf‖r′
f‖1] · Cg

f . Let uT = (0, . . . , 0, �q/2�) ∈ Z
(m+N+1)
q . Compute μ̃ =

cG−1(u). Output μ′ = 0 if |μ̃| ≤ q/4 and μ′ = 1 otherwise.

4.1 Choice of Parameters

The DLWE parameters n, q,B, χ are chosen according to constraints from the
correctness and security analyses that follow. We require that n ≥ λ, q ≤ 2n and

344 Z. Brakerski et al.

recall that � = poly(λ) ≤ 2λ. We recall that m ≥ m0 where m0 = O(n log q),
N = nlog q� and M = (m + N + 1)log q�, and we require that

2nε ≥ 8 · (N + 1)2dF · (M + 1)dG · �2 · P (m,N,M, log q�)
for P (m,N,M, log q�) = poly(m,N,M, log q�) = nO(1) defined in the correct-
ness analysis below. These constraints can be met by setting n = Õ(λ + dF +
dG)1/ε.

We then choose q, χ,B accordingly based on Corollary 1, and note that it
guarantees that indeed q ≤ 2n. Furthermore, this choice guarantees that

q/B ≥ 2nε ≥ 8 · (N + 1)2dF · (M + 1)dG · �2 · P (m,N,M, log q�).

4.2 Correctness

Lemma 1. The scheme STHABE with parameters �, dF , dG is correct with
respect to policy class F�,dF and homomorphism class GdG .

Proof. Let (msk, pp) = STHABE.Setup(1λ, 1�, 1dF , 1dG). Consider a function
f ∈ F and a matching secret key skf = STHABE.Keygenmsk(f), a sequence
of k ≥ 1 messages and attributes {(μ(i) ∈ {0, 1}, x(i) ∈ {0, 1}�)}i∈[k] such
that {f(x(i)) = 0}i∈[k], and the sequence of their encryptions respectively
{ct(i) = STHABE.Encpp(μ(i), x(i))}i∈[k]. For each ciphertext it holds that

Cx ≈ [�B − x�G] (err: mB)

Consider a function g ∈ G such that g ∈ {0, 1}k → {0, 1}, and let ctg =
STHABE.TEval(f, ct(1), . . . , ct(k), g). Recall that for each ciphertext, during the
execution of STHABE.ApplyF(ct, f) we compute the matrix C(i)

f = H(i)C(i)
x .

By the properties stated at Fact 1, and since for all i ∈ [k]
∥

∥H(i)
∥

∥

∞ ≤
(N + 1)dF and f(x(i)) = 0, for each ciphertext it holds that

Cf = HTCx ≈ [Bf − f(x)G]T · S = BT
f · S (

err: (N + 1)dF · �N · mB
)

and hence

̂Cf ≈ [A‖B0 + Bf‖v]T · S + μG
(

err: mB · (1 + (N + 1)dF · �N)
)

(2)

(Note that Eq. (2) also holds when μ ∈ Zq instead of μ ∈ {0, 1}).
It therefore follows that

[rf‖r′
f‖1] · ̂Cf ≈ μ · [rf‖r′

f‖1] · G
(err:

∥

∥[rf‖r′
f‖1]

∥

∥

∞ · mB · (1 + (N + 1)dF · �N) · (m + N + 1))

Now consider a function g ∈ G such that g ∈ {0, 1}k →
{0, 1}, and consider the execution of STHABE.Decpp(skf , ctg) where ctg =
STHABE.TEval(f, ct(1), . . . , ct(k), g).

Targeted Homomorphic Attribute-Based Encryption 345

By Fact 2, denoting μg = g(μ(1), . . . , μ(k)), we get

c = [rf‖r′
f‖1] · Cg

f ≈ μg · [rf‖r′
f‖1] · G

(

err:
∥

∥[rf‖r′
f‖1]

∥

∥

∞ · mB · (1 + (N + 1)dF · �N) · (m + N + 1) · (M + 1)dG
)

and therefore

μ̃ = cG−1(u) ≈ μg�q/2� (3)(
err:
∥∥[rf‖r′

f‖1]
∥∥

∞ · mB · (1 + (N + 1)dF �N) · (m + N + 1) · (M + 1)dG · �log q�
)

We conclude that we get correct decryption as long as the error in Eq. (3) is
bounded away from q/4. We recall that by the properties of discrete Gaussians
and since r′

f ∈ {0, 1}N , it holds that
∥

∥

∥[rf‖r′
f]

∥

∥

∥

∞
≤ max{‖rf‖∞ , 1} ≤ τ

√
m

with all but 2−(m) = negl(λ) probability, where τ = O(
√

mn · N2� · (N + 1)dF).
Therefore, with all but negligible probability, the error is at most

∥

∥[rf‖r′
f‖1]

∥

∥

∞ · mB · (1 + (N + 1)dF �N) · (m + N + 1) · (M + 1)dG · log q�
≤ O(

√
mn · N2� · (N + 1)dF)

√
m · mB · (1 + (N + 1)dF �N)

· (m + N + 1) · (M + 1)dG · log q�
= B · (N + 1)2dF · (M + 1)dG · �2 · P (m,N,M, log q�).

Since we set B ≤ q/
(

8 · (N + 1)2dF · (M + 1)dG · �2 · P (m,N,M, log q�)), it
holds that the error is less than q/4. Hence,

Pr[STHABE.Decpp(skf , ĉtf)
= g(μ(1), . . . , μ(k))] = negl(λ).

4.3 Security

Lemma 2. Under the DLWEn,q,χ assumption, the scheme STHABE is selec-
tively secure for the function classes F ,G. Moreover, under this assumptions
the scheme has pseudorandom ciphertexts: no polynomial time adversary can
distinguish between the CA,C0, cv,Cx components of ct∗ and a set of uniform
matrices of the same dimension. Furthermore, this is true even if the encryption
algorithm is applied to an arbitrary μ ∈ Zq, and not necessarily μ ∈ {0, 1}.

The security proof is a straightforward extension of the proof of [5]. In fact,
our setup and key generation procedure are identical to the [5] scheme, the only
difference is the setting of the LWE parameters and the sampling of r′

f from the
binary distribution rather than Gaussian. The latter issue only requires a minor
change in the proof, namely replacing the [2,30] Gaussian sampler for matrices
of the form [A‖AR + Gn] with the [28] sampler which allows to sample from a
part Gaussian part binary distribution for matrices of this form.

As for our ciphertexts, they are of the form ˜ATS+˜E+Yμ, where ˜A is derived
from the public parameters, ˜E is noise, and Yμ is a matrix that is determined

346 Z. Brakerski et al.

by the message μ. In [5], the ciphertext is of the form ˜AT s+ ẽ+y′
μ. That is, we

can almost think about our ciphertext as a matrix whose every column is a [5]
ciphertext. The difference is that the encoding of the message y′

μ is different from
our Yμ. However, [5] prove that their ciphertexts are pseudorandom and this
means that they can mask Yμ regardless of its specific definition. The security
of our scheme thus follows. The full proof follows.

Proof. Consider the selective security game as per Definition 3. Recall that in
our scheme, an encryption of a message can be expressed as ct = (x,C), where

C = ˜AT
xS + ˜E + ˜Yμ =

⎡

⎢

⎢

⎣

AT

BT
0

vT

(�B − x�G)T

⎤

⎥

⎥

⎦

S +

⎡

⎢

⎢

⎣

EA

E0

ev

Ex

⎤

⎥

⎥

⎦

+
[

μG
0

]

.

We note that all columns of S are identically and independently distributed
and the same holds for all columns of ˜E. We intend to prove security using a
hybrid on the columns of C. That is, we will consider a modified game which
is identical to the selective security game, except for the challenge phase, where
the adversary gets either c = ˜AT

x∗s + ẽ or a completely uniform vector, and
needs to distinguish the two cases. Specifically, s is a uniform vector, and ẽ =
[eT

A‖eT
0 ‖ev‖eT

1 ‖ · · · ‖eT
�]T , where the entries of eA and ev are sampled from χ

and ei = RT
i eA for R0, . . . ,R� which are uniform in {0, 1}m×N (recall that we

choose the matrices Ri independently for each column of the ciphertext). We will
refer to this game as the column game and denote the advantage of an adversary
A′ in this game as |Pr[b′ = 1|c] − Pr[b′ = 1|uniform]|.

We start by showing that under the DLWE assumption, no polynomial time
adversary can have noticeable advantage against the column game. Afterwards
we will show that this implies the security of the scheme.

Consider an adversary A′ for the column game discussed above, and let
Adv[A′] denote its advantage in the column game. The proof will proceed by a
sequence of hybrids, denote by AdvH[A′] the advantage of A′ in the experiment
described in hybrid H.

Hybrid H0. This is the column game. By definition Adv[A′] = AdvH0 [A′].

Hybrid H1. We now change the way the matrices B0 and �B are generated.
Recall that ẽ = [eT

A‖eT
0 ‖ev‖eT

1 ‖ · · · ‖eT
�]T , where there exist R0, . . . ,R� which are

uniform in {0, 1}m×N s.t. ei = RT
i eA. In this hybrid, we set Bi = ARi + xiGn

instead of generating the Bi matrices uniformly.
Indistinguishability will follow from the extended leftover hash lemma as in

[1, Lemma 13] (also used in [5]), since m ≥ (n + 1)log q� + 2λ.5 We point out

5 We note that they stated their lemma only for prime q, but in fact any q works for us
since Ri have {0, 1} entries and since ±1 are units over any ring Zq. Therefore matrix
multiplication is a universal hash function for any distribution of binary vectors.

Targeted Homomorphic Attribute-Based Encryption 347

that the lemma can be used even though A is not uniform but only statistically
close to uniform, since the argument here is information theoretic.

|AdvH1 [A′] − AdvH0 [A′]| = negl(λ).

We notice that in this hybrid, we now have that �B = A�R + x�G, where
�R = [R1‖ · · · ‖R�].

Hybrid H2. In this hybrid we switch from generating skf using A−1
τ0 to generating

them using R0 and �R. We recall that we are only required to generate keys for
f s.t. f(x∗) = 1, otherwise the adversary loses in the selective security game.

We recall that by definition, skf = [rf‖r′
f] where r′

f
$← {0, 1}N and rf =

A−1
τ (−v− (B0 +Bf)r′T

f). Corollary 3 asserts that this is equivalent to sampling

[rf‖r′
f] $← [A‖B0 + Bf]−1

P (−v) for P = DZm,τ × {0, 1}N , since the marginal
distribution of r′

f is uniform binary, and the conditional distribution of rf given
r′

f is therefore the discrete Gaussian over the appropriate coset of the integer
lattice. Denoting H = Hf,x∗,�B, it holds that

Bf − f(x∗)Gn =
(

�B − x∗ �G
)

H.

Since f(x∗) = 1, we get that

Bf = A�RH + Gn.

It also holds that
AR0 + A�RH = A(R0 + �RH)

Therefore, [A‖B0 + Bf] = [A‖AR0 + A�RH + Gn] = [A‖A(R0 + �RH) + Gn].
By Corollary 3, given R0, �R and the computable matrix H, we can sample from
[A‖B0 + Bf]−1

P , with P = DZm,τ × {0, 1}N for all values of τ ≥ τ ′ for τ ′ =

O
(√

mnN ·
∥

∥

∥(R0 + �RH)
∥

∥

∥

∞

)

. This is true for all but O(2−n) probability for

random A and therefore, since TrapGen produces a distribution on A that is 2−n

uniform, it also holds for such matrices with all but O(2−n) probability. Plugging
in the bounds ‖H‖∞ ≤ (N + 1)dF , ‖Ri‖∞ = 1, we get that

∥

∥

∥R0 + �RH
∥

∥

∥

∞
≤

N� · (N + 1)dF and therefore

τ ′ = O(
√

mn · N2� · (N + 1)dF).

Recall that we need to sample with τ = O(
√

mn ·N2� · (N +1)dF) and therefore,
by appropriately setting τ , we can sample from [A‖B0 + Bf]−1

P up to O(2−n)
statistical distance.

It follows that after changing our method of sampling skf , the view of the
adversary remains unchanged up to statistical distance of poly(λ)·2−n = negl(λ),
since with all but O(2−n) probability, our alternative sampler outputs a proper
sample from a distribution that is within O(2−n) statistical distance of [A‖B0 +

348 Z. Brakerski et al.

Bf]−1
P (−v). Since the number of key queries is at most poly(λ), the result follows.

We conclude that

|AdvH2 [A′] − AdvH1 [A′]| = negl(λ).

We notice that in this hybrid, the challenger does not require A−1
τ0 at all.

Hybrid H3. In this hybrid, we change the distribution of A and sample it uni-
formly from Z

n×m
q rather than via TrapGen. Since TrapGen samples A which is

statistically indistinguishable from uniform, we conclude that the distribution
produced in the two hybrids are statistically indistinguishable as well.

|AdvH3 [A′] − AdvH2 [A′]| = negl(λ).

Hybrid H4. We change the contents of the challenge ciphertext as follows.
We generate s, eA, ev as before, and set d = AT s + eA, dv = vT s + ev.
The components of the vector c can now be expressed in terms of d, dv since
cT = [dT ‖dTR0‖dv‖dTR1‖ · · · ‖dTR�]. This hybrid is in fact identical to the
previous one, only notation had been changed.

AdvH4 [A′] = AdvH3 [A′].

We note that in this hybrid, given d, dv, the challenger does not need to know
the values of s, eA, ev since they are not used directly.

Hybrid H5. We change the distribution of d, dv to be uniform in Z
m
q ,Zq. Indis-

tinguishability follows by definition from the DLWEn,q,χ assumption. We have

|AdvH5 [A′] − AdvH4 [A′]| = negl(λ).

Hybrid H6. Finally, we change the distribution of c to uniform. By the leftover
hash lemma, for all i it holds that (A,dT ,ARi,dTRi) are statistically close to
uniform. Therefore this hybrid is statistically indistinguishable from the previ-
ous. We have that

|AdvH6 [A] − AdvH5 [A]| = negl(λ).

Clearly, in this hybrid the adversary has no advantage in the column game
since c itself is uniform, so there is no difference between the two cases. It follows
therefore that

AdvH6 [A′] = 0,

and therefore
Adv[A′] = negl(λ).

Having established the hardness of the column game, a straightforward hybrid
argument over the columns of the ciphertext shows that no polynomial time
adversary can have non-negligible advantage in a game that is identical to the
selective security game, except ˜AT

x∗S + ˜E in the generation of ct∗ is replaced
with a uniform matrix. Pseudorandomness of the ciphertext, and thus selective
security, follows.

Targeted Homomorphic Attribute-Based Encryption 349

5 A Multi Target Homomorphic ABE Scheme

Using the multi-key FHE technique presented in [16,31], we generalize the
single-target HABE scheme of the previous section to support homomorphic
evaluations targeted to a set of policies instead of just one. In this variant,
homomorphic evaluation is performed with respect to a set of policy functions
F = {f1, . . . , fd} that “covers” all of the participating attributes. That is, any
participating ciphertext’s attribute zeros at least one function in F . The result-
ing ciphertext can be decrypted only with the set of keys corresponding to the
set F .

We start in Sect. 5.1 by presenting a generalization to the [16,31] scheme
that will be useful for our construction. Section 5.2 contains a description of the
scheme, and the choice of parameters is in Sect. 5.3. Correctness and security
analyses appear in Sects. 5.4 and 5.5.

5.1 A Generalized Multi-key FHE

We start with a describing a generalized version of the [16,31] MK-FHE scheme.
Consider matrices A ∈ Z

n×m
q ,B1, . . . ,Bd ∈ Z

n×N
q and a vector v ∈ Z

n
q . For all

j ∈ [d] let rj , r′
j be vectors of dimensions m,N respectively, such that [rj‖r′

j‖1] ·
[A‖Bj‖v]T = 0 and

∥

∥[rj‖r′
j‖1]

∥

∥

∞ ≤ B′.

Let C(1), . . . ,C(k) ∈ Z
(m+N+1)×M
q be GSW-style encryptions of

μ(1), · · · , μ(k) ∈ {0, 1}. That is, for all i ∈ [k] there exists and index j ∈ [d]
and a matrix S(i) ∈ Z

n×M
q for which

C(i) ≈ [A‖Bj‖v]TS(i) + μ(i)G (err: B) (4)

(recall that M = (m + N + 1)log q�).
For all i ∈ [k] let X (i) = {X1,1, . . . ,Xn,M} be a set of GSW-style encryptions

of the entries of S(i) under the same public key [A‖Bj‖v]T . So for all Xa,b ∈ X (i)

we have
Xa,b ≈ [A‖Bj‖v]T ˜S(i)

a,b + S(i)[a, b]G (err: B)

for some matrix ˜S(i)
a,b ∈ Z

n×M
q . Therefore,

[rj‖r′
j‖1] · Xa,b ≈ S(i)[a, b] · [rj‖r′

j‖1] · G (err: B′ · B · (m + N + 1))

Let LComb (X , u) be an algorithm that takes as input X = (X1,1, . . . ,Xn,M)
as defined above and a vector u ∈ Z

n
q , and outputs a matrix X ∈ Z

(m+N+1)×M
q

computed as follows:
For each a ∈ [n], b ∈ [M] define a matrix Za,b ∈ Z

(m+N+1)×M
q consisting of

zeros, where the only non-zero entry is Za,b[m + N + 1, b] = u[a]. Compute and
output

X =
n,M
∑

a,b

Xa,bG−1(Za,b).

350 Z. Brakerski et al.

Lemma 3. Consider the properties states above and let X(i) = LComb
(X (i),, u

)

for some vector u ∈ Z
n
q . Then for all i ∈ [k], it holds that

[rj‖r′
j‖1] · X(i) ≈ uS(i) (err : B′ · B · (m + N + 1) · nM · log q�)

Proof. For all i ∈ [k] It holds that

[rj‖r′
j‖1] · X(i) = [rj‖r′

j‖1] ·
n,N∑
a,b

Xa,bG
−1(Za,b)

≈
n,M∑
a,b

S[a, b] · [rj‖r′
j‖1] · GG−1(Za,b)

=

n,M∑
a,b

S[a, b] · (0, . . . , 0,u[a], 0, . . . , 0) (Whereu[a] is in the bth position).

= uS(i) (err: B′ · B · (m + N + 1) · nM · �log q�)

Denoting params = (A,B1, . . . ,Bd,v), consider the following algorithm:
Expandparams(C,X , (r′

1, . . . , r
′
d), j) uses the parameters params and gets as input

a ciphertext C together with its auxiliary data X (as defined above), a sequence
of vectors r′

1, . . . , r
′
d of dimension N and an index j ∈ [d]. It computes and

outputs an “expanded”ciphertext ̂C as follows:
For all t ∈ [d]\{j} compute Xt = LComb

(X , r′
t(Bt − Bj)T

)

. Construct
and output the expanded matrix ̂C as a d × d block matrix, where each block
̂Ca,b ∈ Z

(m+N+1)×M
q for a, b ∈ [d] is defined as:

̂Ca,b =

⎧

⎨

⎩

C a = b
Xb a = j, b
= j
0 o.w.

Fact 3. Consider the properties stated above. For all i ∈ [k] let j ∈ [d] such
that Eq. (4) holds and let ̂C(i) = Expandparams(C(i),X (i), (r′

1, . . . , r
′
d), j). Let g ∈

{0, 1}k → {0, 1} be a circuit consisting of nand gates of depth at most dG, and
let ̂Cg = Eval(g, ̂C(1), . . . , ̂C(k)). Then denoting r = [r1‖r′

1‖1‖ · · · ‖rd‖r′
d‖1] and

μg = g(μ(1), . . . , μ(k)), it holds that

r · ̂Cg ≈ μg · r · Gd(m+N+1)

(err : B′ · B · (m + N + 1)2 · (1 + nM · log q�) · kdM · (dM + 1)dG)

Proof. For all i ∈ [k] it holds that

̂C(i) ≈ Id ⊗
(

[A‖Bj‖v]TS(i)
)

+

⎡

⎣

0 · · · 0
X1 · · · Xj−1 0 Xj+1 · · · Xd

0 · · · 0

⎤

⎦

(i)

+ μ(i)Gd(m+N+1) (err: B)

Targeted Homomorphic Attribute-Based Encryption 351

where for all t ∈ [d]\{j}, by Lemma 3 we have

[rj‖r′
j‖1] ·X(i)

t ≈ r′
t(Bt −Bj)T · S(i) (err: B′ · B · (m + N + 1) · nM · log q�)

and therefore

[rt‖r′
t‖1] · C(i) + [rj‖r′

j‖1] · X(i)
t ≈ μ(i) · [rt‖r′

t‖1] · G
(err: B′ · B · (m + N + 1) · (1 + nM · log q�))

from which it follows that

r · ̂C(i) ≈ [

μ(i) · [r1‖r′
1‖1] · G‖ . . . ‖μ(i) · [rd‖r′

d‖1] · G]

= μ(i) · r · Gd(m+N+1)

(err: B′ · B · (m + N + 1) · (1 + nM · log q�))

Now let g ∈ {0, 1}k → {0, 1}, where g is of depth dG , and let ̂Cg = Eval(g, ̂C).
By Fact 2 we get

r · ̂Cg ≈ μg · r · G
(err: B′ · B · (m + N + 1)2 · (1 + nM · log q�) · kdM · (dM + 1)dG)

which completes the proof.

5.2 Our Scheme

Our Random Oracle. We consider a uniform random oracle O. Namely, for
every input x ∈ {0, 1}∗, the value O(x) is a random variable that is uniformly
distributed over {0, 1}N . The dimension of the vector N will be specified in the
description of the scheme.

The Scheme. As in the STHABE construction, the scheme is parameterized with
a security vs. efficiency trade-off constant ε ∈ (0, 1), and supports a policies class
F�,dF ⊆ {0, 1}� → {0, 1} and homomorphism class GdG ⊆ {0, 1}∗ → {0, 1}. The
scheme works for any �, dF , dG = poly(λ). We consider a family of pseudorandom
functions PRF with seed length λ.

– THABE.Setup(1λ, 1�, 1dF , 1dG). Choose n, q,B, χ as described in Sect. 5.3
below, and generate A−1

τ0 and A,B0, �B,v as in STHABE.Setup. Generate a
PRF seed σ = PRF.Gen(1λ).
Set msk = (A−1

τ0 , σ) and pp = (A,B0, �B,v).
– THABE.Encpp(μ, x). Let (CA,C0, cv,Cx) ← STHABE.Encpp(μ, x) and denote

S ∈ Z
n×M
q the randomness matrix that was generated in the encryption

process.
We now add an ABE-encryption of each entry of the matrix S, respective to
the attribute x. For all a ∈ [n], b ∈ [M], let

Xa,b ← STHABE.Encpp(S[a, b], x)

352 Z. Brakerski et al.

As pointed out above, STHABE.Encpp is well defined and has some provable
features even for μ /∈ {0, 1}, and indeed here we use it with S[a, b] ∈ Zq.
The final ciphertext is ct = (CA,C0, cv,Cx,X = (X1,1, . . . ,Xn,M)).

– THABE.Keygenmsk(f). Set Bf = Eval(f, �B) and query the random oracle r′
f =

O(A, f) ∈ {0, 1}N .
Let rT

f = A−1
τ

(

−(B0 + Bf)r′
f

T − vT
)

, where τ = O(
√

mn·N2�·(N+1)dF) ≥
τ0 (the enlargement of τ is needed for the security proof to work), such that
the trapdoor function uses PRF.Gen(σ, f) as its randomness. Note that

[rf‖r′
f‖1] · [A‖B0 + Bf‖v]T = 0T .

Output skf = rf .
– THABE.Eval(F, ct(1), . . . , ct(k), g). Denoting F = {f1, . . . , fd}, for every i ∈ [k]

let j ∈ [d] be an index for which fj(x(i)) = 0. Compute

̂C(i)
f = STHABE.ApplyFpp(ct

(i), fj),

X (i)
f = {STHABE.ApplyFpp(X, fj) : X ∈ X (i)}

and for all t ∈ [d] let Bft
= Eval(ft, �B) and r′

t = O(A, ft). Now compute

C(i)
F = Expandparams(̂C(i)

f ,X (i)
f , (r′

1, . . . , r
′
d), j)

where
params = (A, (B0 + Bf1), . . . , (B0 + Bfd

),v) .

Finally, set ctg = Cg
F = Eval(g,CF).

– THABE.Dec(skf1 , . . . , skfd
, ctg). For all j ∈ [d] sample r′

fj
= O(A, fj). Con-

struct the concatenated key rF = [rf1‖r′
f1

‖1‖ · · · ‖rfd
‖r′

fd
‖1] and compute the

vector c = rF · Cg
f .

Let uT = (0, . . . , 0, �q/2�) ∈ Z
d(m+N+1)
q . Compute μ̃ = cG−1(u). Output

μ′ = 0 if |μ̃| ≤ q/4 and μ′ = 1 otherwise.

5.3 Choice of Parameters

The DLWE parameters n, q,B, χ are chosen according to constraints from the
correctness and security analyses that follow. We require that n ≥ λ, q ≤ 2n and
recall that �, d = poly(λ) ≤ 2λ. We recall that m = O(n log q), N = nlog q� and
M = (m + N + 1)log q�, and we require that

2nε ≥ 8 · (N + 1)2dF · (dM + 1)dG · d1.5 · �2 · P (n,m,N,M, log q�)
for P (n,m,N,M, log q�) = poly(n,m,N,M, log q�) = nO(1) defined in the
correctness analysis below. These constraints can be met by setting n = Õ(dF +
λdG)1/ε. We then choose q, χ,B accordingly based on Corollary 1. This choice
guarantees that

q/B ≥ 2nε ≥ 8 · (N + 1)2dF · (dM + 1)dG · d1.5 · �2 · P (n,m,N,M, log q�).

Targeted Homomorphic Attribute-Based Encryption 353

5.4 Correctness

Lemma 4. The scheme THABE with parameters �, dF , dG is correct with respect
to policy class F�,dF and homomorphism class GdG .

Proof. Let (msk, pp) = THABE.Setup(1λ, 1�, 1dF , 1dG). Consider a set of d ≥ 1
functions F = {f1, . . . , fd ∈} ⊆ F along with matching secret keys {skf =
THABE.Keygenmsk(f)}f∈F . Consider a sequence of k ≥ 1 messages and attributes
{(μ(i) ∈ {0, 1}, x(i) ∈ {0, 1}�)}i∈[k], such that

∀i ∈ [k] ∃j ∈ [d] : fj(x(i)) = 0,

and the sequence of their encryptions {ct(i) = THABE.Encpp(μ(i), x(i))}i∈[k]. Let
g ∈ G and consider the execution of THABE.Eval(F, ct(1), . . . , ct(k), g). By Eq.
(2), for all i ∈ [k] the following holds:

– ̂C(i)
f ≈ [A‖B0 + Bfj

‖v]TS(i) + μ(i)G (err: mB · (1 + (N + 1)dF · �N)).

– ∀ Xa,b ∈ X (i)
f ,

Xa,b ≈ [A‖B0 + Bfj
‖v]T ˜S(i)

a,b + S(i)[a, b]G (err: mB · (1 + (N + 1)dF · �N))

for some ˜S(i)
a,b.

– [rfj
‖r′

fj
‖1] · [A‖B0 + Bfj

‖v]T = 0

Therefore, considering THABE.Dec(skf1 , . . . , skfd
, ctg), by Fact 3 it holds that

c = rF · Cg
F ≈ μg · rF · G

(err: ‖rF ‖∞ · mB(1 + (N + 1)dF · �N) · (m + N + 1)2 · (1 + nM · log q�)·
(dM + 1)dG)

and therefore

μ̃ = cG−1(u) ≈ μg�q/2� (5)

(err: ‖rF ‖∞ · mB(1 + (N + 1)dF · �N) · (m + N + 1)2 · (1 + nM · log q�)·
(dM + 1)dG log q�)

We conclude that we get correct decryption as long as the error in Eq. (5) is
bounded away from q/4. We recall that by the properties of discrete Gaussians,
it holds that ‖rF ‖∞ ≤ τ

√
dm with all but 2−dm = negl(λ) probability, where

τ = O(
√

mn ·N2� · (N +1)dF). Therefore, with all but negligible probability, the
error is at most

‖rF ‖∞ · mB(1 + (N + 1)dF · �N) · (m + N + 1)2 · (1 + nM · log q�).
(dM + 1)dG · log q�

≤ O(
√

mn · N2� · (N + 1)dF)
√

dm · mB(1 + (N + 1)dF · �N) · (m + N + 1)2·
(1 + nM · log q�) · (dM + 1)dG · log q�

= B · (N + 1)2dF · (dM + 1)dG · d1.5 · �2 · P (n,m,N,M, log q�).

354 Z. Brakerski et al.

Since we set (see Sect. 5.3)

B ≤ q/
(

8 · (N + 1)2dF · (dM + 1)dG · d1.5 · �2 · P (n,m,N,M, log q�)) ,

it holds that the error is less than q/4. Hence,

Pr[THABE.Decpp(skF , ctg)
= g(μ(1), . . . , μ(k))] = negl(λ).

5.5 Security

Lemma 5. In the random oracle model, under the DLWEn,q,χ assumption the
scheme THABE is selectively secure for the function classes F ,G.

Proof. Consider the selective security game as per Definition 1 and let A be an
adversary with advantage Adv[A] in the selective security game. We start with
a claim on random oracle queries that will be useful down the line. We classify
oracle queries as follows. A query is blind if it is made before x∗ is sent to the
challenger. A query is valid if it is of the form (D, f) with D = A and f(x∗) = 1
(for the matrix A in the public parameters). Let η be the probability that a
blind and valid oracle query is made throughout the experiment. Clearly, since
blind queries are made by the adversary before any information on A is given to
him, the probability of any blind query has D = A is at most q−nm = negl(λ).
Since the total number of queries is poly(λ) it holds that η = negl(λ).

The proof proceeds by a sequence of hybrids. Recall that in the random oracle
model, the challenger needs to also be able to answer oracle queries at all steps
of the security game.

Hybrid H0. In this hybrid, the challenger executes the selective security game
as prescribed. Oracle queries are answered “on the fly”: if the query is made for
the first time, a fresh r is sampled uniformly from {0, 1}N , and if the query had
been made before then a consistent response is returned. By definition Adv[A] =
AdvH0 [A].

Hybrid H1. In this hybrid, the challenger, upon receiving x∗, checks whether any
of the previous oracle calls had been blind and valid. If any such query had been
made, the challenger aborts. Since this happens with negligible probability as
analyzed above, the view of the adversary is statistically indistinguishable from
the previous hybrid.

|AdvH1 [A] − AdvH0 [A]| = negl(λ).

Hybrid H2. In this hybrid, we no longer use the PRF to generate randomness for
the Gaussian sampler in Keygen queries. Instead, the challenger will keep track
of all Keygen queries made so far. Given a Keygen query on a function f that
was made before, it will answer consistently. When a new query is made, a new

Targeted Homomorphic Attribute-Based Encryption 355

random string is generated and used for the Gaussian sampling. The pseudoran-
domness property of the PRF guarantees that this hybrid is indistinguishable
from the previous one.

|AdvH2 [A] − AdvH1 [A]| = negl(λ).

From this point and on, we assume that a Keygen query is not made with the
same f more than once.

Hybrid H3. We now change the way non-blind and valid oracle queries, as well
as Keygen queries, are answered. First, we assume w.l.o.g that any non-blind and
valid oracle query is preceded by a Keygen query to the same function f (this
is allowed since f(x∗) = 1 by definition of a valid query). The Keygen query
itself is answered by using A−1

τ0 to sample [rf‖r′
f] = [A‖B0 +Bf]−1

P (−v) where
P = DZm,τ × {0, 1}N . It then stores r′

f as the answer to the oracle query (A, f)
(which at this point had necessarily not yet been made), and returns rf as the
response to the Keygen(f) query.

Since Corollary 3 implies that the marginal distribution of the r′ compo-
nent of [A‖B0 + Bf]−1

τ (−v) is statistically indistinguishable from uniform over
{0, 1}N , it follows that the view of the adversary in this experiment is statisti-
cally close to the previous hybrid.

|AdvH3 [A] − AdvH2 [A]| = negl(λ).

Hybrid H4. At this point, we notice that the challenger in H3 can be simulated
via black box access to the challenger of our single key scheme described in
Sect. 4. This is because valid and non blind oracle queries are translated into
key generation queries, and all other queries are answered randomly. Since in
the proof of Lemma 2 we show that the encryption is secure even for non binary
messages, we can replace the encryptions of S in the challenge ciphertext with
encryptions of all 0, and asserts that this is indistinguishable to the adversary.

|AdvH4 [A] − AdvH3 [A]| = negl(λ).

Hybrid H5. Now that S is only used for generating the encryption of the message
bit μ, we can again use Lemma 2 to replace this part of the challenge ciphertext
with an encryption of 0.

|AdvH5 [A] − AdvH4 [A]| = negl(λ).

Clearly in this hybrid the adversary has no advantage since its view is inde-
pendent of μb. Therefore AdvH5 [A] = 1/2 and it follows that

|Adv[A] − 1/2| = negl(λ),

which completes the proof of security.

Acknowledgments. We thank Vadim Lyubashevsky for numerous insightful discus-
sions.

356 Z. Brakerski et al.

A A Generic (Non-compact) Homomorphic ABE
Construction

We show how to construct a non-targeted homomorphic ABE (HABE) given
any ABE scheme and Multi-Key FHE scheme as building blocks. The main dis-
advantage of this construction is that the ciphertext’s size grows at least linearly
with the number of participants in the homomorphic evaluation. Interestingly,
our method is very similar to the one presented in [17], despite the difference in
the scheme’s goal. Their construction relies on a leveled homomorphic ABE and
uses it to create a non-leveled HABE scheme.

Below are definitions of ABE, MFHE and HABE, followed by our HABE con-
struction and a brief proof of its correctness and security.

Definition 7 (ABE). An Attribute Based Encryption (ABE) scheme is a tuple
of ppt algorithms ABE = (Setup,Enc,Keygen,Dec) with the following syntax:

– ABE.Setup(1λ) takes as input the security parameter and outputs a master
secret key msk and a set of public parameters pp.

– ABE.Encpp(μ, x) uses the public parameters pp and takes as input a message
μ ∈ {0, 1} and an attribute x ∈ {0, 1}�. It outputs a ciphertext ct.

– ABE.Keygenmsk(f) uses the master secret key msk and takes as input a function
f ∈ F . It outputs a secret key skf .

– ABE.Dec(skf , ct) takes as input a secret key skf for a policy f , and a ciphertext
ct. It outputs a message μ ∈ {0, 1}.

Definition 8 (MK-FHE). A Multi-Key Fully Homomorphic Encryption
(MK-FHE) scheme is a tuple of ppt algorithms MFHE = (Setup,Enc,Keygen,
Eval,Dec) with the following syntax:

– MFHE.Setup(1λ) takes as input the security parameter and generates public
parameters pp.

– MFHE.Keygenpp(1λ) uses the public parameters pp and outputs a pair of public
key and secret key (pk, sk).

– MFHE.Encpp(pk, μ) uses the public parameters pp and takes as input a message
μ ∈ {0, 1} and a public key pk. It outputs a ciphertext ct.

– MFHE.Evalpp((ct(1), . . . , ct(k)), (pk(1), . . . , pk(k)), g) uses the public parameters
pp and takes as input k ciphertexts along with their respective public keys
(pk(1), . . . , pk(k)) and a function g. It outputs a ciphertext ctg.

– MFHE.Decpp(sk(1), . . . , sk(k), ctg) uses the public parameters and takes as input
a sequence of k secret keys sk(1), . . . , sk(k) and a ciphertext ctg. It outputs a
message μ ∈ {0, 1}.

Definition 9 (HABE). An Homomorphic ABE (HABE) scheme is a tuple of
ppt algorithms HABE = (Setup,Enc,Keygen,Eval,Dec) with the following syn-
tax:

– HABE.Setup(1λ) takes as input the security parameter and outputs a master
secret key msk and a set of public parameters pp.

Targeted Homomorphic Attribute-Based Encryption 357

– HABE.Encpp(μ, x) uses the public parameters pp and takes as input a message
μ ∈ {0, 1} and an attribute x ∈ {0, 1}�. It outputs a ciphertext ct.

– HABE.Keygenmsk(f) uses the master secret key msk and takes as input a func-
tion f ∈ F . It outputs a secret key skf .

– HABE.Eval(ct(1), . . . , ct(k), g) takes as input k ciphertexts ct(1), . . . , ct(k) and a
function g ∈ G. It outputs a ciphertext ctg.

– HABE.Dec(skF , ctg) takes as input a set of secret keys skF for a set of policies
F , with skF = {skf : f ∈ F}, and a ciphertext ctg. It outputs a message
μ ∈ {0, 1}.

Correctness. The correctness guarantee is that given a set of keys for a policy set
F and a ciphertext that was evaluated from ciphertexts respective to attributes
covered by F , the ciphertext decrypts correctly to the intended value.

Security. Security is defined using the same experiment as standard ABE (see
Definition 3).

Construction of HABE. Consider an ABE black box and a MFHE black box.
The construction works as follows:

– HABE.Setup(1λ)
Let (ppABE,mskABE) ← ABE.Setup(1λ) and ppMFHE ← MFHE.Setup(1λ). Out-
put pp = (ppABE, ppMFHE),msk = mskABE.

– HABE.Encpp(μ, x). Let (pk, sk) ← MFHE.Keygenpp, where sk ∈ {0, 1}t. Com-
pute ctμ ← MFHE.Encpp(pk, μ) and ctsk = {ctski

= ABE.Encpp(ski, x)}i∈[t].
Output ct = (ctμ, ctsk, pk, x).

– HABE.Keygenmsk(f). Output ABEkf ← ABE.Keygenmsk(f).
– HABE.Eval(ct(1), . . . , ct(k), g)

Let ctg ← MFHE.Evalpp((ct
(1)
μ , . . . , ct

(k)
μ), (pk(1), . . . , pk(k)), g). Output ctg =

(ctg, ct
(1)
sk , . . . , ct

(k)
sk).

– HABE.Dec(ABEkF , ctg).
For all i ∈ [k], j ∈ [t] compute sk

(i)
j = ABE.Decpp(ct

(i)
skj

,ABEkf), where f ∈ F

such that f(x(i)) = 0. Compute and Output MFHE.Decpp(sk(1), . . . , sk(k), ctg).

Correctness Proof Sketch. Consider the execution of HABE.Dec(ABEkF , ctg).
By the correctness of the ABE scheme we get correct decryptions of {sk(i)}i∈[k],
and by the correctness of the MFHE scheme we get a correct decryption of
g(μ(1), . . . , μ(k)).

Security Proof Sketch. Consider the ABE selective security game, and assume
that in HABE.Encpp the challenger generates ABE encryptions of 0s instead of
ABE encryptions of the bits of sk. By the security of the ABE scheme this change
is indistinguishable to the adversarys, therefore in this case the ciphertext gives
no information other than the MFHE encryption of the message μ. Hence by the
security of the MFHE scheme the security of our construction follows.

358 Z. Brakerski et al.

References

1. Agrawal, S., Boneh, D., Boyen, X.: Efficient lattice (H)IBE in the standard model.
In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 553–572. Springer,
Heidelberg (2010)

2. Agrawal, S., Boneh, D., Boyen, X.: Lattice basis delegation in fixed dimension and
shorter-ciphertext hierarchical IBE. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol.
6223, pp. 98–115. Springer, Heidelberg (2010)

3. Ajtai, M.: Generating hard instances of lattice problems (extended abstract). In:
Miller, G.L. (ed.) Proceedings of the Twenty-Eighth Annual ACM Symposium on
the Theory of Computing, Philadelphia, Pennsylvania, USA, 22–24 May 1996, pp.
99–108. ACM (1996)

4. Alperin-Sheriff, J., Peikert, C.: Faster bootstrapping with polynomial error. In:
Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014, Part I. LNCS, vol. 8616, pp. 297–
314. Springer, Heidelberg (2014)

5. Boneh, D., Gentry, C., Gorbunov, S., Halevi, S., Nikolaenko, V., Segev, G.,
Vaikuntanathan,V.,Vinayagamurthy,D.:Fully key-homomorphic encryption, arith-
metic circuitABEand compact garbled circuits. In:Advances inCryptology -EURO-
CRYPT –33rd Annual International Conference on the Theory and Applications of
Cryptographic Techniques, Copenhagen, Denmark, 11–15 May 2014, Proceedings,
pp. 533–556 (2014)

6. Boneh, D., Roughgarden, T., Feigenbaum, J. (eds.): Symposium on Theory of
Computing Conference, STOC 2013, Palo Alto, CA, USA, 1–4 June 2013. ACM
(2013)

7. Brakerski, Z.: Fully homomorphic encryption without modulus switching from clas-
sical GapSVP. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol.
7417, pp. 868–886. Springer, Heidelberg (2012)

8. Brakerski, Z., Gentry, C., Vaikuntanathan, V.: (Leveled) fully homomorphic
encryption without bootstrapping. In: ITCS (2012)

9. Brakerski, Z., Langlois, A., Peikert, C., Regev, O., Stehlé, D.: Classical hardness
of learning with errors. In: Boneh, D., et al. (eds.) [6], pp. 575–584

10. Brakerski, Z., Perlman, R.: Lattice-based fully dynamic multi-key FHE withshort
ciphertexts. IACR Cryptology ePrint Archive, 2016:339 (2016, to appear)

11. Brakerski, Z., Vaikuntanathan, V.: Efficient fully homomorphic encryption from
(standard) LWE. In: FOCS (2011)

12. Brakerski, Z., Vaikuntanathan, V.: Lattice-based FHE as secure as PKE. In: Naor,
M. (ed.) Innovations in Theoretical Computer Science, ITCS 2014, Princeton, NJ,
USA, 12–14 January 2014, pp. 1–12. ACM (2014)

13. Brakerski, Z., Vaikuntanathan, V.: Circuit-abe from LWE: unbounded attribute-
sand semi-adaptive security. IACR Cryptology ePrint Archive, 2016:118 (2016, to
appear)

14. Cash, D., Hofheinz, D., Kiltz, E., Peikert, C.: Bonsai trees, or how to delegate a
lattice basis. J. Cryptology 25(4), 601–639 (2012)

15. Clear, M., McGoldrick, C.: Bootstrappable identity-based fully homomorphic
encryption. In: Gritzalis, D., Kiayias, A., Askoxylakis, I. (eds.) CANS 2014. LNCS,
vol. 8813, pp. 1–19. Springer, Heidelberg (2014)

16. Clear, M., McGoldrick, C.: Multi-identity and multi-key leveled FHE from learning
with errors. In: Gennaro, R., Robshaw, M. (eds.) [19], pp. 630–656

Targeted Homomorphic Attribute-Based Encryption 359

17. Clear, M., McGoldrick, C.: Attribute-based fully homomorphic encryption with
a bounded number of inputs. In: Pointcheval, D., Nitaj, A., Rachidi, T. (eds.)
AFRICACRYPT 2016. LNCS, vol. 9646, pp. 307–324. Springer, Heidelberg (2016).
doi:10.1007/978-3-319-31517-1 16

18. Fischlin, M., Coron, J.-S. (eds.): EUROCRYPT 2016. LNCS, vol. 9666. Springer,
Heidelberg (2016)

19. Gennaro, R., Robshaw, M. (eds.): CRYPTO 2015. LNCS, vol. 9216. Springer,
Heidelberg (2015)

20. Gentry, C.: A fully homomorphic encryption scheme. Ph.D. thesis, Stanford
University (2009)

21. Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices and new
cryptographic constructions. In: Dwork, C. (ed.) Proceedings of the 40th Annual
ACM Symposium on Theory of Computing, Victoria, British Columbia, Canada,
17–20 May 2008, pp. 197–206. ACM (2008)

22. Gentry, C., Sahai, A., Waters, B.: Homomorphic encryption from learning with
errors: conceptually-simpler, asymptotically-faster, attribute-based. In: Canetti,
R., Garay, J.A. (eds.) CRYPTO 2013, Part I. LNCS, vol. 8042, pp. 75–92. Springer,
Heidelberg (2013)

23. Gorbunov, S., Vaikuntanathan, V., Wee, H.: Attribute-based encryption for cir-
cuits. In: Boneh, D., et al. (eds.) [6], pp. 545–554

24. Gorbunov, S., Vaikuntanathan, V., Wichs, D.: Leveled fully homomorphic signa-
tures from standard lattices. In: Servedio, R.A., Rubinfeld, R. (eds.) Proceedings
of the Forty-Seventh Annual ACM on Symposium on Theory of Computing, STOC
2015, Portland, OR, USA, 14–17 June 2015, pp. 469–477. ACM (2015)

25. Goyal, R., Koppula, V., Waters, B.: Semi-adaptive security and bundling function-
alities made generic and easy. Cryptology ePrint Archive, Report 2016/317 (2016).
http://eprint.iacr.org/2016/317

26. Goyal, V., Pandey, O., Sahai, A., Waters, B.: Attribute-based encryption for fine-
grained access control of encrypted data. In: Juels, A., Wright, R.N., di Vimercati,
S.D.C. (eds.) Proceedings of the 13th ACM Conference on Computer and Com-
munications Security, CCS 2006, Alexandria, VA, USA, 30 October–3 November
2006, pp. 89–98. ACM (2006)

27. López-Alt, A., Tromer, E., Vaikuntanathan, V.: On-the-fly multiparty computation
on the cloud via multikey fully homomorphic encryption. In: Karloff, H.J., Pitassi,
T. (eds.) Proceedings of the 44th Symposium on Theory of Computing Conference,
STOC 2012, New York, NY, USA, 19–22 May 2012, pp. 1219–1234. ACM (2012)

28. Lyubashevsky, V., Wichs, D.: Simple lattice trapdoor sampling from a broad class
of distributions. In: Katz, J. (ed.) PKC 2015. LNCS, vol. 9020, pp. 716–730.
Springer, Heidelberg (2015)

29. Micciancio, D., Mol, P.: Pseudorandom knapsacks and the sample complexity of
LWE search-to-decision reductions. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS,
vol. 6841, pp. 465–484. Springer, Heidelberg (2011)

30. Micciancio, D., Peikert, C.: Trapdoors for lattices: simpler, tighter, faster, smaller.
In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237,
pp. 700–718. Springer, Heidelberg (2012)

31. Mukherjee, P., Wichs, D.: Two round multiparty computation via multi-key FHE.
In: Fischlin, M., Coron, J. (eds.) [18], pp. 735–763

32. Peikert, C.: Public-key cryptosystems from the worst-case shortest vector problem:
extended abstract. In: Proceedings of the 41st Annual ACM Symposium on Theory
of Computing, STOC 2009, Bethesda, MD, USA, 31 May – 2 June 2009, pp. 333–
342 (2009)

http://dx.doi.org/10.1007/978-3-319-31517-1_16
http://eprint.iacr.org/2016/317

360 Z. Brakerski et al.

33. Regev, O.: On lattices, learning with errors, random linear codes, and cryptogra-
phy. In: Proceedings of the 37th Annual ACM Symposium on Theory of Comput-
ing, Baltimore, MD, USA, 22–24 May 2005, pp. 84–93 (2005)

34. Rivest, R.L., Adleman, L., Dertouzos, M.L.: On data banks and privacy homomor-
phisms. Found. Secure Comput. (1978)

35. Sahai, A., Waters, B.: Fuzzy identity-based encryption. In: Cramer, R. (ed.) EURO-
CRYPT 2005. LNCS, vol. 3494, pp. 457–473. Springer, Heidelberg (2005)

36. Schnorr, C.: A hierarchy of polynomial time lattice basis reduction algorithms.
Theor. Comput. Sci. 53, 201–224 (1987)

Semi-adaptive Security and Bundling
Functionalities Made Generic and Easy

Rishab Goyal(B), Venkata Koppula, and Brent Waters

University of Texas at Austin, Austin, USA
{rgoyal,kvenkata,bwaters}@cs.utexas.edu

Abstract. Semi-adaptive security is a notion of security that lies
between selective and adaptive security for Attribute-Based Encryption
(ABE) and Functional Encryption (FE) systems. In the semi-adaptive
model the attacker is forced to disclose the challenge messages before it
makes any key queries, but is allowed to see the public parameters.

We show how to generically transform any selectively secure ABE or
FE scheme into one that is semi-adaptively secure with the only addi-
tional assumption being public key encryption, which is already natu-
rally included in almost any scheme of interest. Our technique utilizes a
fairly simple application of garbled circuits where instead of encrypting
directly, the encryptor creates a garbled circuit that takes as input the
public parameters and outputs a ciphertext in the underlying selective
scheme. Essentially, the encryption algorithm encrypts without know-
ing the ‘real’ public parameters. This allows one to delay giving out
the underlying selective parameters until a private key is issued, which
connects the semi-adaptive to selective security. The methods used to
achieve this result suggest that the moral gap between selective and
semi-adaptive security is in general much smaller than that between semi-
adaptive and full security.

Finally, we show how to extend the above idea to generically bundle a
family of functionalities under one set of public parameters. For example,
suppose we had an inner product predicate encryption scheme where the
length of the vectors was specified at setup and therefore fixed to the
public parameters. Using our transformation one could create a system
where for a single set of public parameters the vector length is not apri-
ori bounded, but instead is specified by the encryption algorithm. The
resulting ciphertext would be compatible with any private key generated
to work on the same input length.

1 Introduction

Traditionally, in a public key encryption system a user will encrypt data m under
a second user’s public key to create a ciphertext. A receiver of the ciphertext
can decrypt the data if they possess the corresponding secret key; otherwise,

B. Waters—Supported by NSF CNS-1228599 and CNS-1414082, DARPA SafeWare,
Microsoft Faculty Fellowship, and Packard Foundation Fellowship.

c© International Association for Cryptologic Research 2016
M. Hirt and A. Smith (Eds.): TCC 2016-B, Part II, LNCS 9986, pp. 361–388, 2016.
DOI: 10.1007/978-3-662-53644-5 14

362 R. Goyal et al.

they will learn nothing. Over the last several years there has been a dramatic
re-envisioning of the expressiveness of encryption systems with the introduc-
tion of Identity-Based Encryption (IBE) [12,19,34], Attribute-Based Encryption
(ABE) [32] and culminating in Functional Encryption (FE) [33], which encom-
passes IBE and ABE.

In these systems a setup algorithm produces a master public/secret key pair,
where the master public key is made public and the master secret key is retained
by an authority. Any user can encrypt data m using the public parameters1 to
produce a ciphertext ct. In parallel the authority may issue (any number of
times) to a user a secret key skf that allows the user to learn the output f(m)
of a ciphertext that encrypts data m. The message space M and function space
F allowed depend on the expressiveness of the underlying cryptosystem.

The security of this class of systems is captured by an indistinguishability
based security game between a challenger and an attacker.2 In this game the
challenger will first generate the master public key that it sends to the attacker.
The attacker begins by entering the first key query phase where it will issue
a polynomial number of key queries, each for a functionality f ∈ F . For each
query the attacker receives back a corresponding secret key skf . Next the attacker
submits two challenge messages m0,m1 with the restriction that f(m0) = f(m1)
for all functions f queried on earlier. The challenger will flip a coin b ∈ {0, 1}
and return a challenge ciphertext ct∗ encrypting mb. Next, the attacker will
engage in a second set of private key queries with the same restrictions. Finally,
it will output a guess b′ ∈ {0, 1} and win if b = b′. For any secure scheme the
probability of winning should be negligibly close to 1

2 .
The above game, called full or adaptive security game, captures our intuitive

notion of what an indistinguishability based security game should look like.
Namely, that an attacker cannot distinguish between two messages unless he
receives keys that trivially allow him to — even if the attacker gets to adaptively
choose what the keys and messages are. One issue faced by researchers is that
when striving for a new functionality it is often difficult at first to achieve full
security if we want to restrict ourselves to polynomial loss in the reductions
and avoid relying on sub-exponential hardness assumptions. To ease the initial
pathway people often consider security under a weaker notion of selective [17]
security where the attacker is forced to submit the challenge messages m0,m1

before seeing the public parameters. After gaining this foothold, later work can
circle back to move from selective to adaptive security.

Over the past decade there have been several examples of this process in
achieving adaptive security for IBE, ABE and FE. The first such examples
were the “partitioning” techniques developed by Boneh and Boyen [10] and
Waters [35] in the context of achieving Identity-Based Encryption in the stan-
dard model, improving upon earlier selectively secure realizations [11,17]. While
partitioning methods were helpful in realizing full security for IBE, they did not

1 We use public parameters and master public key interchangeably.
2 There also exists simulation-based notions of security [14,30], but these will not be

a focus of this work.

Semi-adaptive Security and Bundling Functionalities Made Generic 363

generalize to more complex functionalities. To that end a new set of techniques
were developed to move beyond partitioning which include those by Gentry and
Halevi [21,22] and Waters’ Dual System Encryption [36] methodology. The latter
which spawned several other works within that methodology, e.g., [27,29,39].

More recently, Ananth et al. [2], building upon the bootstrapping concepts
of [38], showed how to generically convert an FE scheme that supports arbi-
trary poly-sized circuits from selective security into one that achieves full secu-
rity.3 Their result, however, does not apply to the many ABE or FE schemes
that fall below this threshold in functionality. Moreover meeting this bar might
remain difficult as it has been shown [3,4,9] that achieving functional encryp-
tion for this level of functionality is as difficult as achieving indistinguishability
obfuscation [7,20].

Delaying Parameters and Semi-Adaptive Security. One remarkable feature of
almost all of the aforementioned works is that the security reductions treat the
second key query phase identically to the first. Indeed papers will often simply
describe the proof of Phase 2 key queries as being the same as Phase 1. Lewko and
Waters [28] first departed from this paradigm in a proof where they gave an ABE
scheme with a security reduction handled Phase 1 and Phase 2 keys differently.
Central to their proof was what they called a “delayed parameters” technique
that delayed the release of part of the public parameters in a way that gave a
bridge for building adaptive security proofs utilizing selective type techniques.
These ideas were extended and codified into a framework by Attrapadung [6].

Chen and Wee [18] introduced the definition of semi-adaptive security as a
notion of security where an attacker discloses the challenge messages after it sees
the public parameters, but before it makes any key queries. It is easy to see that
this notion falls somewhere between selective and adaptive in terms of strength.

Most recently, Brakerski and Vaikuntanathan [16] gave an interesting circuit
ABE scheme that was provably secure in the semi-adaptive model from the
Learning with Error assumption [31]. Their cryptosystem and proof of security
build upon the (arithmetic) circuit ABE scheme of Boneh et al. [13] and requires
a somewhat elaborate two level application of these techniques integrated with
a pseudorandom function (we note that some of the complexity is due to their
parallel goal of bundling functionalities; we will return to this). Like the earlier
work of [28], they also apply a “delayed parameter” concept, although its flavor
and execution are significantly different.

1.1 Going from Selective to Semi-adaptive Security Generically

We now arrive at the first goal of this work.

Can we generically transform any selectively secure attribute-based encryption
or functional encryption scheme into one that is semi-adaptively secure?

3 We note that FE for poly-sized circuits is achievable by bootstrapping FE for
NC1 [23].

364 R. Goyal et al.

It turns out that this transformation is possible and moreover that the
method to do so is quite simple. Here is our idea in a nutshell. Instead of
encrypting the data outright, the encryptor will consider a circuit that fixes
the message and randomness for encryption and takes the functional encryption
scheme’s public parameters as input. It then garbles this circuit and encrypts
each pair of input wire values under pairs of standard PKE public keys provided
by the authority. The garbled circuit plus pairs of encrypted wires comprise the
ciphertext. In generating a secret key, the authority will output both the under-
lying functional encryption secret key as well as give one of the PKE secret
keys for each pair corresponding to the underlying selectively secure FE public
parameters. The decryption algorithm will first evaluate the garbled circuit to
obtain the underlying ciphertext and then decrypt using the FE secret key. In
this manner, the core FE parameters are literally not committed to until a key
is given out.

We now elaborate our description. Let FEsel = (Setupsel,Encsel,KeyGensel,
Decsel) be the underlying selectively secure FE scheme. Our semi-adaptively
secure FE setup algorithm generates a master public/secret key pair
(mpksel,msksel) using Setupsel, and chooses 2� public/secret key pairs {pki,b, ski,b}
for a semantically secure PKE scheme, where � = |mpksel|. The public key of FEsel

consists of these 2� PKE public keys {pki,b}, but not the public key mpksel. To
encrypt any message m, the encryptor constructs a circuit that takes as input an
� bit string str and outputs Encsel(str,m; r) – an encryption of m using str as the
public key and r as randomness. The encryptor garbles this circuit and encrypts
each of the 2� garbled circuit input wire keys wi,b under the corresponding pub-
lic key pki,b. The ciphertext consists of the garbled circuit and the 2� encrypted
wire keys. The secret key for any function f consists of three parts — the mas-
ter public key mpksel, � PKE secret keys to decrypt half of the encrypted wire
keys wi,b corresponding to mpksel, and FEsel secret key skf,sel to decrypt the
actual FEsel ciphertext. The key skf,sel is simply generated using the KeyGensel
algorithm, and the � PKE secret keys released correspond to the bits of mpksel.
For decrypting any ciphertext, the decryptor first decrypts the encrypted input
wire keys. Then, these wire keys are used to evaluate the garbled circuit. This
evaluation results in an FEsel ciphertext under mpksel, which can be decrypted
using skf,sel.

The crucial observation here is that the underling FEsel public key mpksel is
information theoretically hidden until any secret key is given out as the encryptor
computes the ciphertext oblivious to the knowledge of mpksel. Therefore, the
semi-adaptive security proof follows from a simple sequence of hybrids. In the
first hybrid, we switch the � encryptions of input wire keys (given out in the
challenge ciphertext) which are never decrypted to encryptions of zeros. Next,
in the following hybrid, we simulate the garbled circuit (given out in the challenge
ciphertext) instead of constructing the actual encryption circuit and garbling it.
After these two indistinguishable hybrid jumps, we could directly reduce the
semi-adaptive security to selective security as the FEsel public key is hidden.
Our construction and security proof is described in detail in Sect. 4.

Semi-adaptive Security and Bundling Functionalities Made Generic 365

The overhead associated with our transformation to semi-adaptive security is
readily apparent. Instead of evaluating the underlying encryption algorithm, the
transformed encryption algorithm will need to garble the encryption circuit. The
ciphertext will grow proportionally to the size of this garbled circuit. Similarly,
the decryption algorithm will first have to evaluate the garbled circuit before
executing the core decryption. In the description above one will replace each bit
of the original public parameters with a pair of PKE public keys. However, if one
optimizes by using IBE instead of PKE for this step, the public parameters could
actually become shorter than the original ones. In many cases our transformation
will incur greater overhead than non-generic techniques designed with knowledge
of the underlying scheme such as [18].

Interpreting Our Result. It is useful to step back and see what light our result can
shed on the relationship between selective, semi-adaptive and adaptive security.
Ideally, we would like to claim that semi-adaptive security gives us a half-way
point between selective and adaptive where the next idea could take us all the
way between the two endpoints. While this might turn out to be the case, the
way in which we delay parameters seems primarily to exploit the closeness of
selective and semi-adaptive security as opposed to crossing a great divide. To us
this suggests that the moral gap between selective and semi-adaptive security
is much smaller than that between semi-adaptive and full security (at least for
functionalities that fall below the threshold needed by [2]). We view illuminating
this relationship as one of the contributions of this paper.

1.2 Bundling Functionalities

We now turn to the second goal of our work. Before doing so, we describe a more
general definition of functional encryption, which will later help us to explain our
idea of bundling functionalities. Any functional encryption scheme is associated
with a message space M and function space F . In many scenarios, the function
space F and message space M themselves consists of a sequence of function
spaces {Fn}n and message spaces {Mn}n respectively, parameterized by the
‘functionality index’ n. In our definition of functional encryption, we assume
that the setup algorithm takes two inputs - the security parameter λ and the
functionality index n. This notation decouples the security of the scheme from the
choice of functionality it provides. We note that such terminology has appeared
in several prior works. For example, Goyal et al. [25] have a setup algorithm
that takes as input the number of attributes along with the security parameter.
Similarly, in the works of Boyen and Waters [15] and Agrawal et al. [1], the setup
algorithms also take the length of vectors as an input. And other works [13,24]
specify the maximum depth of a circuit in an ABE scheme during setup.

Using the above convention, Setup(1λ, 1n) creates a master public/secret key
for message space Mn and function space Fn. For example, in an inner prod-
uct encryption scheme, the setup algorithm fixes the length of vectors to be
encrypted once the master public key is fixed. However, one goal could be to
allow more flexibility after the public key is published. In particular, would it be

366 R. Goyal et al.

possible to have all message and function spaces available even after setup? Con-
tinuing our example, we might want an inner product encryption scheme where
the encryptor/key generator are allowed to encrypt/generate keys for arbitrary
length vectors after the public parameters have been fixed.

Looking more generally, a natural question to ask is — “Can we generically
transform any (standard) functional encryption scheme into one where a single
set of public parameters can support the union of underlying message/function
spaces?” We answer this in the affirmative, and show a generic transformation
using identity based encryption, pseudorandom functions and garbled circuits,
all of which can be realized from standard assumptions. More formally, we show
how to transform an FE scheme with message space {Mn}n and function space
{Fn}n to an FE scheme for message space M = ∪nMn and function space
F = ∪nFn. The key for a function f ∈ Fn can be used with a ciphertext for
message m ∈ Mn to compute f(m). If f and m are not compatible (i.e. f ∈ Fn

and m ∈ Mn′), then the decryption fails.
As a simple instantiation, using our transformation, one can construct an

inner product encryption scheme where the encryption algorithm and the key
generation algorithm can both take arbitrary length vectors as input. However,
given a secret key for vector v and an encryption of vector w, the decryption
algorithm tests orthogonality only if v and w have same length; else the decryp-
tion algorithm fails. Similarly, our transformation can also capture the recent
result of Brakerski and Vaikuntanathan [16]. They give a circuit ABE scheme
where under a single set of parameters an encryptor can encrypt messages for
an attribute of unbounded length. Later if a private key is given out and is tied
to the same attribute length it can decrypt if the circuit matches. In our trans-
formation we would start with a selective scheme for circuit ABE such as [24]
where 1n denotes the number of attributes and then apply our transformation.
We observe that we could even choose to obtain more flexibility where we might
allow both the attribute length and circuit depth to depend on 1n.

Our Transformation for Bundling Functionalities. Our method for achieving
such a transformation follows in a similar line to the selective to semi-adaptive
transformation given above. In addition, it also amplifies to semi-adaptive secu-
rity along the way for free. Recall, in the base scheme, Setupsel takes functionality
index n as input and outputs master public/secret keys. Let �(n) denote the bit-
length of public keys output by Setupsel. In our transformed scheme, the setup
algorithm chooses IBE public/secret keys (mpkIBE,mskIBE) and sets mpkIBE as
the public key. To encrypt a message m ∈ Mn, the encryptor first chooses ran-
domness r. It then constructs a circuit which takes a � = �(n) bit input string str
and outputs Encsel(str,m; r). The encryptor then garbles this circuit, and each
wire key wi,b is encrypted for identity (n, i, b). The final ciphertext consists of the
garbled circuit, together with encryptions of wire keys. Note that � is not fixed
during setup. It is defined (and used) during encryption, and depends on the
functionality index of the message. The idea of using IBE to succinctly handle
an unbounded number of public keys was also present in the work of [16].

Semi-adaptive Security and Bundling Functionalities Made Generic 367

The secret key for a function f ∈ Ft is computed as follows. First, the
key generation algorithm chooses pseudorandom FEsel keys (mpkt,mskt) using
Setupsel(1λ, 1t). Next, it computes IBE secret keys for identities (t, i,mpkt[i]).
Finally, it computes an FEsel secret key for the function f . The decryption pro-
cedure is similar to the one described in Sect. 1.1. Let ct = (C, {cti,b}) and
skf = ({ski}, skf,sel). First, note that it is important that the message underly-
ing the ciphertext, and the function underlying the secret key are compatible.
If so, the decryptor first decrypts cti,b to compute the garbled circuit wire keys.
Next, it evaluates the garbled circuit to get an FEsel ciphertext, which it then
decrypts using skf,sel. The proof of security is along the lines of selective to
semi-adaptive transformation proof.

The overhead involved in this transformation is similar to the overhead in
going from selective to semi-adaptive security, except that the size of the garbled
circuit, and the number of wire keys grows with the functionality index. Overhead
comparisons between our approach and the non-generic approach of [16] are less
clear, since their approach requires increasing the maximum depth of the circuit
to accommodate a PRF evaluation before evaluating the main circuit.

Limits of Bunding Functionalities. One should be careful to point out the limits
of such bundling. The main restriction is that in order for decryption to do
anything useful the functionality index used to encrypt must match that of the
private key; otherwise they simply are not compatible. Suppose FE is a functional
encryption scheme with functionality class {Fn} and message class {Mn}. Then,
using our bundling approach, we get a functional encryption scheme for function
space ∪nFn and message space ∪nMn. However, the secret key for a function f ∈
Fn can only decrypt encryptions of messages in Mn. So such a technique cannot
be used to emulate a functionality such as ABE for DFAs [37] or Functional
Encryption for Turning Machines [5] where the base private key is meant to
operate on ciphertext corresponding to messages/attributes of unrestricted size.
In general, our bundling approach cannot transform an FE scheme where secret
keys decrypt bounded length encryptions to one where secrets keys can decrypt
arbitrary length ciphertexts.

1.3 Encrypt Ahead Functional Encryption

We conclude by discussing a final potential application of our techniques that we
call “Encrypt Ahead Functional Encryption”. Our discussion is at an informal
level and limited to this introduction.

Suppose that we would like to setup a functional encryption system and that
a proper authority has already been identified. Furthermore suppose that several
users have obtained data and are ready to encrypt. The only thing missing is
the small detail that the algorithms comprising the cryptosystem have yet to be
determined. Perhaps we are waiting on a security proof or maybe there is no
reasonable candidate realization what so ever.

Normally, we would think that the lack of a encryption system would be
a complete showstopper and that nothing could be done until it was in place.

368 R. Goyal et al.

However, as it turns out this need not be the case. Using a slight adaptation of
our techniques an authority could publish the scheme’s public parameters and
user’s could begin to encrypt data to create ciphertexts. The main idea is that
the encryption algorithm will create a garbled circuit that takes a functional
encryption scheme’s public parameters (as before) as well as a description of
the encryption algorithm itself. It then encrypts the corresponding input wires
(for both the parameters and scheme description) under pairs of public keys in
a similar manner to what was done above. Later when the actual cryptography
is worked out the secret keys corresponding to the bits of the public parameters
and scheme description can be given out as part of the functional encryption
secret key and these are used to construct the ciphertext before decrypting. We
call this concept “encrypt ahead” as encryption can occur prior to deciding on
a scheme.

There are important caveats to encrypting ahead in this manner. While the
setup and outer encryption algorithm need not know what the eventual core
encryption algorithm is, one has to at least guess and then work with an upper
bound on the core encryption algorithm’s description and running time. If this
guess turns out to be below the resources needed by the eventual scheme, the
ciphertexts created will be unusable. Furthermore, until an actual scheme has
been decided upon, the authority will be unable to create private keys and this
aspect of the system will be stalled.

Paper Organization. We first introduce some preliminaries in Sect. 2. Next, in
Sect. 3, we discuss functional encryption related preliminaries. In Sect. 4, we
present our generic transformation from a selectively secure FE scheme to a semi-
adaptively secure FE scheme. Finally in Sect. 5, we present our transformation
for bundling functionalities.

2 Preliminaries

2.1 Garbled Circuits

Our definition of garbled circuits [40] is based upon the work of Bellare et al.
[8]. Let {Cn}n be a family of circuits where each circuit in Cn takes n bit inputs.
A garbling scheme GC for circuit family {Cn}n consists of polynomial-time algo-
rithms Garble and Eval with the following syntax.

– Garble(C ∈ Cn, 1λ): The garbling algorithm takes as input the security para-
meter λ and a circuit C ∈ Cn. It outputs a garbled circuit G, together with
2n wire keys {wi,b}i≤n,b∈{0,1}.

– Eval(G, {wi}i≤n): The evaluation algorithm takes as input a garbled circuit G
and n wire keys {wi}i≤n and outputs y ∈ {0, 1}.

Correctness: A garbling scheme GC for circuit family {Cn}n is said to be correct
if for all λ, n, x ∈ {0, 1}n and C ∈ Cn, Eval(G, {wi,xi

}i≤n) = C(x), where
(G, {wi,b}i≤n,b∈{0,1}) ← Garble(C, 1λ).

Semi-adaptive Security and Bundling Functionalities Made Generic 369

Security: Informally, a garbling scheme is said to be secure if for every circuit
C and input x, the garbled circuit G together with input wires {wi,xi

}i≤n cor-
responding to some input x reveals only the output of the circuit C(x), and
nothing else about the circuit C or input x.

Definition 1. A garbling scheme GC = (Garble,Eval) for a class of circuits
C = {Cn}n is said to be a secure garbling scheme if there exists a polynomial-
time simulator Sim such that for all λ, n, C ∈ Cn and x ∈ {0, 1}n, the following
holds:
{
Sim
(
1λ, 1n, 1|C|, C(x)

)}
≈c

{(
G, {wi,xi}i≤n

)
:
(
G, {wi,b}i≤n,b∈{0,1}

)← Garble(C, 1λ)
}
.

While this definition is not as general as the definition in [8], it suffices for
our construction.

2.2 Public Key Encryption

A Public Key Encryption (PKE) scheme PKE = (SetupPKE, EncPKE, DecPKE)
with message space M = {Mλ}λ consists of the following polynomial-time algo-
rithms:

– SetupPKE(1λ) → (pk, sk): The setup algorithm is a randomized algorithm
that takes security parameter λ as input and outputs a public-secret key pair
(pk, sk).

– EncPKE(pk,m ∈ Mλ) → ct: The encryption algorithm is a randomized algo-
rithm that takes as inputs the public key pk, and a message m and outputs a
ciphertext ct.

– DecPKE(sk, ct) → Mλ: The decryption algorithm is a deterministic algorithm
that takes as inputs the secret key sk, and a ciphertext ct and outputs a
message m.

Correctness: For correctness, we require that for all λ ∈ N, m ∈ Mλ, and
(pk, sk) ← SetupPKE(1λ),

Pr[DecPKE(sk,EncPKE(pk,m)) = m] = 1.

Security: For security, we require PKE to be semantically secure, i.e. the adver-
sary must not be able to distinguish between encryptions of distinct messages
of its own choosing even after receiving the public key. The notion of semantical
security for PKE schemes is defined below.

Definition 2. A PKE scheme PKE = (SetupPKE,EncPKE,DecPKE) is said to
be semantically secure if there exists λ0 ∈ N such that for every PPT attacker A
there exists a negligible function negl(·) such that for all λ ≥ λ0, AdvPKEA (λ) =
|Pr[Exp-PKE(PKE, λ,A) = 1] − 1/2| ≤ negl(λ), where Exp-PKE is defined in
Fig. 1.

370 R. Goyal et al.

Fig. 1. The PKE and IBE security games. In both the games, we assume that the
adversary A is stateful. And in the IBE security game, we also require that ID∗ is not
queried to the key generation oracle.

2.3 Identity-Based Encryption

An Identity-Based Encryption (IBE) scheme IBE = (SetupIBE, KeyGenIBE,
EncIBE, DecIBE) with message space M = {Mλ}λ and identity space I = {Iλ}λ

consists of the following polynomial-time algorithms:

– SetupIBE(1λ) → (pp,msk): The setup algorithm is a randomized algorithm
that takes security parameter λ as input and outputs (pp,msk), where pp are
public parameters and msk is the master secret key.

– KeyGenIBE(msk, ID ∈ Iλ) → skID: The key generation algorithm is a random-
ized algorithm that takes as inputs the master secret key msk, and an identity
ID and outputs a secret key skID.

– EncIBE(pp,m ∈ Mλ, ID ∈ Iλ) → ct: The encryption algorithm is a randomized
algorithm that takes as inputs the public parameters pp, a message m, and an
identity ID and outputs a ciphertext ct.

– DecIBE(skID, ct) → Mλ ∪ {⊥}: The decryption algorithm is a deterministic
algorithm that takes as inputs the secret key skID, and a ciphertext ct and
outputs a message m or ⊥.

Correctness: For correctness, we require that for all λ ∈ N, m ∈ Mλ, ID ∈ Iλ,
and (pp,msk) ← SetupIBE(1λ),

Pr[DecIBE(KeyGenIBE(msk, ID),EncIBE(pp,m, ID)) = m] = 1.

Security: For security, intuitively, we require that if an adversary has keys for
identities {IDi}i, and ct is a ciphertext for identity ID∗ 	= IDi for all i, then the
adversary must not be able to recover the underlying message. This is formally
defined via the following security game between a challenger and an adversary.

Definition 3. An IBE scheme IBE = (SetupIBE,KeyGenIBE,EncIBE,DecIBE) is
said to be fully secure if there exists λ0 ∈ N such that for every PPT attacker
A there exists a negligible function negl(·) such that for all λ ≥ λ0, AdvIBEA (λ) =
|Pr[Exp-IBE(IBE, λ,A) = 1]−1/2| ≤ negl(λ), where Exp-IBE is defined in Fig. 1.

Semi-adaptive Security and Bundling Functionalities Made Generic 371

3 Functional Encryption

The notion of functional encryption was formally defined in the works of Boneh
et al. [14] and O’Neill [30]. A functional encryption scheme consists of a setup
algorithm, an encryption algorithm, a key generation algorithm and a decryp-
tion algorithm. The setup algorithm takes the security parameter as input and
outputs a public key and a master secret key. The encryption algorithm uses
the public key to encrypt a message, while the key generation algorithm uses
the master secret key to compute a secret key corresponding to a function. The
decryption algorithm takes as input a ciphertext and a secret key, and outputs
the function evaluation on the message.

The Functionality Index: Every functional encryption scheme is associated with
a message space which defines the set of messages that can be encrypted, and
a function space which defines the set of functions for which a secret key can
be generated. In most schemes, the message space M and the function space F
consists of a sequence of message spaces {Mn}n∈N and function spaces {Fn}n,
both parameterized by the functionality index (the special case where Mn = M
and Fn = F for all n ∈ N is discussed in Sect. 3.1).

The Choice of Functionality Index: A minor definitional issue that arises is with
respect to the choice of functionality index. Some works use the security parame-
ter itself to define a message space Mλ and function space Fλ. For example, in
the inner product FE scheme of Katz et al. [26], the message space and function
space are set to be Z

λ
q during setup, where λ is the security parameter and q is

an appropriately chosen modulus.
A more flexible approach is to decouple the security parameter and the func-

tionality index, and allow the setup algorithm to take two inputs - a security
parameter λ and a functionality index n. This additional parameter then defines
the message space for the encryption algorithm and the function space for the
key generation algorithm. Some existing works implicitly assume that the setup
algorithm also receives such a parameter as input. For example, in the work
of Goyal et al. [25], the universe U = {1, 2, . . . , n} is defined as the universe
of attributes for the ABE scheme. Other works, such as the inner product FE
scheme of Agrawal et al. [1] explicitly mention this as an input to the setup
algorithm. We will also use this approach in our formal definition of a functional
encryption scheme.

Formal Definition: Let M = {Mn}n∈N, R = {Rn}n∈N be families of sets, and
F = {Fn} a family of functions, where for all n ∈ N and f ∈ Fn, f : Mn → Rn.
We will also assume that for all n ∈ N, the set Fn contains an empty function
εn : Mn → Rn. As in [14], the empty function is used to capture information
that intentionally leaks from the ciphertext. For instance, in a PKE scheme, the
length of the message could be revealed from the ciphertext. Similarly, in an

372 R. Goyal et al.

attribute based encryption scheme, the ciphertext could reveal the attribute for
which the message was encrypted.

A functional encryption scheme FE for function space {Fn}n∈N and mes-
sage space {Mn}n∈N consists of four polynomial-time algorithms (Setup, Enc,
KeyGen, Dec) with the following syntax.

– Setup(1λ, 1n) → (mpk,msk): The setup algorithm is a randomized algorithm
that takes as input the security parameter λ and the functionality index n,
and outputs the master public/secret key pair (mpk,msk).

– Enc(mpk,m ∈ Mn) → ct: The encryption algorithm is a randomized algorithm
that takes as input the public key mpk and a message m ∈ Mn and outputs
a ciphertext ct.

– KeyGen(msk, f ∈ Fn) → skf : The key generation algorithm is a randomized
algorithm that takes as input the master secret key msk and a function f ∈ Fn

and outputs a secret key skf .
– Dec(skf , ct) → {0, 1,⊥}: The decryption algorithm is deterministic. It takes

as input a ciphertext ct and a secret key skf and outputs y ∈ {0, 1,⊥}.

More General Definitions of Functional Encryption: It is possible to consider
more general definitions for functional encryption. For example, one could con-
sider a definition where the setup algorithm takes as input a security parameter
λ, functionality index n and a depth-index d that bounds the circuit depth of
Fn. For simplicity of notation we avoid such extensions, although we believe that
our results can be generalized for all such extensions.

Correctness: A functional encryption scheme FE = (Setup,Enc,KeyGen,Dec)
is said to be correct if for all security parameter λ and functionality index n,
functions f ∈ Fn, messages m ∈ Mn such that (f,m) are compatible, and
(mpk,msk) ← Setup(1λ, 1n),

Pr [Dec(KeyGen(msk, f),Enc(mpk,m)) = f(m)] = 1.

Security: Informally, a functional encryption scheme is said to be secure if an
adversary having secret keys for functions {fi}i≤k and a ciphertext ct for mes-
sage m learns only {fi(m)}i≤k, and nothing else about the underlying message
m. This can be formally captured via the following ‘indistinguishability based’
security definition.

Definition 4. A functional encryption scheme FE is adaptively secure if there
exists λ0 ∈ N such that for all PPT adversaries A, there exists a negligible
function negl(·) such that for all λ > λ0, n ∈ N, |Pr[Exp-adaptive(FE, λ, n,
A) = 1] − 1/2| ≤ negl(λ), where Exp-adaptive is defined in Fig. 2.

A weaker notion of security is that of selective security, where the adversary
must declare the challenge inputs before receiving the public parameters.

Semi-adaptive Security and Bundling Functionalities Made Generic 373

Fig. 2. Experiments referred in Definitions 4, 5 and 6. We assume that the adversary A
is stateful, εn(m∗

0) = εn(m∗
1), and for all key queries f queried by A to KeyGen oracle,

f ∈ Fn and f(m∗
0) = f(m∗

1).

Definition 5. A functional encryption scheme FE is selectively secure if there
exists λ0 ∈ N such that for all PPT adversaries A, there exists a negligible
function negl(·) such that for all λ > λ0, n ∈ N, |Pr[Exp-selective(FE, λ, n,A) =
1] − 1/2| ≤ negl(λ), where Exp-selective is defined in Fig. 2.

Finally, we have an intermediate notion of security called semi-adaptive secu-
rity, where the adversary must declare the challenge inputs before receiving any
key queries.

Definition 6. A functional encryption scheme FE is semi-adaptively secure if
there exists λ0 ∈ N such that for all PPT adversaries A, there exists a negligible
function negl(·) such that for all λ > λ0, n ∈ N, |Pr[Exp-semi-adp(FE, λ, n,A) =
1] − 1/2| ≤ negl(λ), where Exp-semi-adp is defined in Fig. 2.

3.1 Functional Encryption with Uniform Function and Message
Space

In the previous section, we saw a definition for functional encryption schemes
where the setup algorithm takes the functionality index n as input, and outputs
a master public/secret key pair specific to the functionality index n. As a result,
the encryption algorithm, when using this public key, can only encrypt messages
in the message space Mn. Similarly, the key generation algorithm can only
generate keys in the function space Fn.

However, if there is exactly one message space, and exactly one function
space (that is Mn = M and Fn = F for all n), then we can assume the setup
algorithm takes only the security parameter as input. The remaining syntax,
correctness and security definitions are same as before.

374 R. Goyal et al.

4 Selective to Semi-adaptive Security Generically

In this section, we show how to construct semi-adaptively secure functional
encryption schemes from selectively secure functional encryption schemes,
semantically secure public key encryption schemes, and secure garbled circuits.
At a high-level, the idea is to delay the release of the base FE scheme’s pub-
lic parameters until the adversary makes first key query, and since in a semi-
adaptive security game the adversary must submit its challenge before request-
ing any secret keys, therefore we could hope to invoke the selective security of
the underlying FE scheme after receiving the challenge. However, the simulator
needs to provide enough information to the adversary so that it could still per-
form encryptions before sending the challenge. To get around this problem, the
encryption algorithm is modified to output a garbled circuit which takes as input
the FEsel public parameters and outputs the appropriate ciphertext. Essentially,
the encryption algorithm encrypts without knowing the ‘real’ public parameters.
The encryption algorithm would still need to hide the input wire keys such that
a secret key reveals only half of them. Below we describe our approach in detail.

4.1 Construction

Let FEsel = (Setupsel, KeyGensel, Encsel, Decsel) be a functional encryption
scheme with function space {Fn}n and message space {Mn}n. We use the poly-
nomial �(λ, n) to denote the size of the public key output by the FEsel setup
algorithm, where λ is the security parameter and n is the functionality index.
We will simply write it as � whenever clear from context.

Tools Required for Our Transformation: Let GC = (Garble, Eval) be a garbling
scheme for polynomial sized circuits, and PKE = (SetupPKE, EncPKE, DecPKE)
be a public key encryption scheme.

Our Transformation: We now describe our construction for semi-adaptively
secure functional encryption scheme FE = (Setup, Enc, Dec, KeyGen) with mes-
sage space {Mn}n and function space {Fn}n.

– Setup(1λ, 1n) → (mpk,msk): The setup algorithm first runs the PKE setup to
compute 2� public/secret key pairs

(

pki,b, ski,b

)

i≤�,b∈{0,1} ← SetupPKE(1λ),
independently and uniformly. It also runs FEsel setup algorithm and generates
master public/secret key pair (mpksel,msksel) ← Setupsel(1λ, 1n). It sets mpk =
{

pki,b

}

i≤�,b∈{0,1} and msk =
(

mpksel,msksel, {ski,b}i≤�,b∈{0,1}
)

.

– Enc(mpk,m ∈ Mn) → ct: Let C-Enc-pk�
m,r be the canonical circuit which has

message m and randomness r hardwired, takes an � bit input x and computes
Encsel(x,m; r); that is, it uses the input as a public key for the base FE scheme
and encrypts message m using randomness r.
The encryption algorithm constructs the circuit C-Enc-pk�

m,r using uniform
randomness r, and it computes the garbled circuit as (C, {wi,b}i≤�,b∈{0,1}) ←

Semi-adaptive Security and Bundling Functionalities Made Generic 375

Garble(C-Enc-pk�
m,r, 1

λ). It then encrypts the garbled wire keys by comput-
ing cti,b ← EncPKE(pki,b, wi,b) for i ≤ � and b ∈ {0, 1}, where mpk =
{

pki,b

}

i≤�,b∈{0,1}. Finally, it outputs a ciphertext ct which consists of the
garbled circuit C and the 2� ciphertexts {cti,b}i≤�,b∈{0,1}.

– KeyGen(msk, f ∈ Fn) → skf : Let msk =
(

mpksel,msksel, {ski,b}i≤�,b∈{0,1}
)

.
The key generation algorithm first generates selective FE secret key corre-
sponding to the function f by computing skf,sel ← KeyGensel(mpksel, f). It

outputs skf =
(

mpksel, skf,sel,
{

ski,mpksel[i]

}

i≤�

)

as the key for function f .

– Dec(skf , ct) → {0, 1,⊥}: Let skf =
(

mpksel, skf,sel, {ski}i≤�

)

and cipher-

text ct =
(

C, {cti,b}i≤�,b∈{0,1}
)

. The decryption algorithm first decrypts
the appropriate garbled circuit wires. Concretely, for i ≤ �, it computes
wi = DecPKE(ski, cti,mpksel[i]

). It then uses these � wire keys to evaluate the
garbled circuit as ˜ct = Eval(C, {wi}i≤�). Finally, it uses the secret key skf,sel

to decrypt the ciphertext ˜ct, and outputs Decsel(skf,sel, ˜ct).

Correctness. For all λ, n ∈ N, message m ∈ Mn, base FE keys (mpksel,msksel) ←
Setupsel(1λ, 1n), and 2� PKE keys

(

pki,b, ski,b

) ← SetupPKE(1λ), the ciphertext
corresponding to message m in our FE scheme is (C, {cti,b}), where (C, {wi,b}) ←
Garble(C-Enc-pk�

m,r, 1
λ) and cti,b ← EncPKE(pki,b, wi,b).

For any function f ∈ Fn, the corresponding secret key in our scheme consists
of

(

mpksel, skf,sel,
{

ski,mpksel[i]

})

, where skf,sel ← KeyGensel(msksel, f). The decryp-
tion algorithm first decrypts the encryptions of garbled circuit input wires cor-
responding to the public key mpksel as wi,mpksel[i]

= Decsel(ski,mpksel[i]
, cti,mpksel[i]

).
This follows from correctness of PKE scheme. Next, it computes ciphertext
˜ct = Eval(C, {wi,mpksel[i]

}) which is same as Encsel(mpksel,m; r) due to correctness
of garbling scheme. Finally, the decryption algorithm computes Decsel(skf,sel, ˜ct)
which is equal to f(m) as the base FE scheme is also correct. Therefore, FE
satisfies the functional encryption correctness condition.

Security. We will now show that the scheme described above is semi-adaptively
secure.

Theorem 1. Assuming FEsel = (Setupsel, KeyGensel, Encsel, Decsel) is a
selectively-secure functional encryption scheme with {Fn}n and {Mn}n as func-
tion space and message space satisfying Definition 5, GC = (Garble, Eval) is a
secure garbling scheme for circuit family C = {Cm}m satisfying Definition 1, and
PKE = (SetupPKE, EncPKE, DecPKE) is a semantically secure public key encryp-
tion scheme satisfying Definition 2, then FE forms a semi-adaptively secure func-
tional encryption scheme satisfying Definition 6 for same function space and
message space as the selective scheme.

To formally prove our theorem, we describe the following sequence of games.

376 R. Goyal et al.

Game 1: This is the semi-adaptive security game described in Fig. 2.

1. (Setup Phase) The challenger first runs the PKE setup algorithm and FEsel

setup algorithm to generate public/secret key pairs as
(

pki,β , ski,β

)

i≤�,β∈{0,1}
← SetupPKE(1λ) and (mpksel,msksel) ← Setupsel(1λ, 1n). It sets mpk =
{

pki,β

}

and msk =
(

mpksel,msksel, {ski,β}i≤�,β∈{0,1}
)

, and sends mpk to A.
2. (Challenge Phase)

(a) A sends two challenge messages (m∗
0,m

∗
1) to the challenger such that

εn(m∗
0) = εn(m∗

1), where εn(·) is the empty function.
(b) Challenger chooses a random bit b ← {0, 1}, and computes the garbled

circuit as (C, {wi,β}i≤�,β∈{0,1}) ← Garble(C-Enc-pk�
m∗

b ,r, 1
λ).

(c) It encrypts the wire keys wi,β as ct∗i,β ← EncPKE(pki,β , wi,β).

(d) It sets challenge ciphertext as ct∗ =
(

C,
{

ct∗i,β
}

i≤�,β∈{0,1}

)

, and sends

ct∗ to A.
3. (Key Query Phase)

(a) A queries the challenger on polynomially many functions f ∈ Fn such
that f(m∗

0) = f(m∗
1).

(a) For each queried function f , challenger generates the selective FE secret
key as skf,sel ← KeyGensel(msksel, f). It sets the secret key as skf =
(

mpksel, skf,sel,
{

ski,mpksel[i]

}

i≤�

)

, and sends skf to A.
4. (Guess) Finally, A sends its guess b′ and wins if b = b′.

Game 2: It is same as Game 1, except the way challenge ciphertext is created.
In this game, while creating ct∗, challenger only encrypts garbled circuit wire
keys corresponding to the bits of mpksel and encrypts 0 at all other places.

1. (Setup Phase) The challenger first runs the PKE setup algorithm and FEsel

setup algorithm to generate public/secret key pairs as
(

pki,β , ski,β

)

i≤�,β∈{0,1}
← SetupPKE(1λ) and (mpksel,msksel) ← Setupsel(1λ, 1n). It sets mpk =
{

pki,β

}

i≤�,β∈{0,1} and msk =
(

mpksel,msksel, {ski,β}i≤�,β∈{0,1}
)

, and sends
mpk to A.

2. (Challenge Phase)
(a) A sends two challenge messages (m∗

0,m
∗
1) to the challenger such that

εn(m∗
0) = εn(m∗

1), where εn(·) is the empty function.
(b) Challenger chooses a random bit b ← {0, 1}, and computes the garbled

circuit as (C, {wi,β}i≤�,β∈{0,1}) ← Garble(C-Enc-pk�
m∗

b ,r, 1
λ).

(c) It then encrypts half of the 2� wire keys as ct∗i,β ← EncPKE(pki,β , wi,β)
if β = mpksel[i], and ct∗i,β ← EncPKE(pki,β ,0) otherwise.

(d) It sets challenge ciphertext as ct∗ =
(

C,
{

ct∗i,β
}

i≤�,β∈{0,1}

)

, and sends

ct∗ to A.
3. (Key Query Phase)

Semi-adaptive Security and Bundling Functionalities Made Generic 377

(a) A queries the challenger on polynomially many functions f ∈ Fn such
that f(m∗

0) = f(m∗
1).

(b) For each queried function f , challenger generates the selective FE secret
key as skf,sel ← KeyGensel(msksel, f). It sets the secret key as skf =
(

mpksel, skf,sel,
{

ski,mpksel[i]

}

i≤�

)

, and sends skf to A.
4. (Guess) Finally, A sends its guess b′ and wins if b = b′.

Game 3: It is same as Game 2, except the way challenge ciphertext is created.
In this game, while creating ct∗, challenger simulates the garbled circuit instead
of garbling the actual circuit.

1. (Setup Phase) The challenger first runs the PKE setup algorithm and FEsel

setup algorithm to generate public/secret key pairs as
(

pki,β , ski,β

)

i≤�,β∈{0,1}
← SetupPKE(1λ) and (mpksel,msksel) ← Setupsel(1λ, 1n). It sets mpk =
{

pki,β

}

i≤�,β∈{0,1} and msk =
(

mpksel,msksel, {ski,β}i≤�,β∈{0,1}
)

, and sends
mpk to A.

2. (Challenge Phase)
(a) A sends two challenge messages (m∗

0,m
∗
1) to the challenger such that

εn(m∗
0) = εn(m∗

1), where εn(·) is the empty function.
(b) Challenger chooses a random bit b ← {0, 1}.

It computes ˜ct
∗ ← Encsel(mpksel,m

∗
b) using uniform randomness.

Next, it computes (C,
{

wi,mpksel[i]

}

) ← Sim
(

1λ, 1�, 1k, ˜ct
∗)

(here, k is the

size of the canonical circuit C-Enc-pk�
m,r).

(c) It then encrypts half of the 2� wire keys as ct∗i,β ← EncPKE(pki,β , wi,β) if
β = mpksel[i], and ct∗i,β ← EncPKE(pki,β ,0) otherwise.

(d) It sets challenge ciphertext as ct∗ =
(

C,
{

ct∗i,β
}

i≤�,β∈{0,1}

)

, and sends

ct∗ to A.
3. (Key Query Phase)

(a) A queries the challenger on polynomially many functions f ∈ Fn such
that f(m∗

0) = f(m∗
1).

(b) For each queried function f , challenger generates the selective FE secret
key as skf,sel ← KeyGensel(msksel, f). It sets the secret key as skf =
(

mpksel, skf,sel,
{

ski,mpksel[i]

}

i≤�

)

, and sends skf to A.
4. (Guess) Finally, A sends its guess b′ and wins if b = b′.

Analysis. We now establish via a sequence of lemmas that no PPT adversary
can distinguish between any two adjacent games with non-negligible advantage.
To conclude, we also show that any PPT adversary that wins with non-negligible
probability in the last game breaks the selective security of FEsel scheme.

Let A be any successful PPT adversary against our construction in the semi-
adaptive security game (Fig. 2). In Game i, advantage of A is defined as Advi

A =
|Pr[A wins]−1/2|. We then show via a sequence of claims that if A’s advantage

378 R. Goyal et al.

is non-negligible in Game i, then it has non-negligible advantage in Game i + 1
as well. Finally, in last game, we directly use A to attack the selective security
of underlying FE scheme. Below we describe our hybrid games in more detail.

Lemma 1. If PKE is a semantically secure public key encryption scheme, then
for all PPT A, |Adv1A − Adv2A| ≤ negl(λ) for some negligible function negl(·).
Proof. For proving indistinguishability of Games 1 and 2, we need to sketch �
intermediate hyrbrid games between these two, where � is the length of master
public key mpksel. Observe that in Game 1, ciphertexts ct∗i,β are encryptions of
garbled circuit input wire keys wi,β for both values of bit β; however, in Game 2,
ciphertexts ct∗i,β are encryptions of wi,β if and only if β = mpksel[i], and they are
encryptions of zeros otherwise. The high-level proof idea is to switch cti,β from
encryptions of wi,β to encryptions of 0 one-at-a-time by using semantic security
of PKE scheme. This could be done because the secret key ski,β is revealed
only if β = mpksel[i]. Concretely, ith intermediate hybrid between Game 1 and
2 proceeds same as Game 1 except that the first i ciphertexts ct∗j,β is computed
as ct∗j,β ← EncPKE(pkj,β ,0) if β 	= mpksel[j], i.e. for j ≤ i and β 	= mpksel[j],
ct∗j,β are encryptions of zero, and for j > i or β = mpksel[j], ct∗j,β are encryptions
of wire keys wi,β . For the analysis, Game 1 is regarded as 0th intermediate
hybrid, and Game 2 is regarded as �th intermediate hybrid. Below we show that
A’s advantage in distinguishing any pair of consecutive intermediate hybrid is
negligibly small.

We describe a reduction algorithm B which breaks semantic security of the
PKE scheme, if A distinguishes between intermediate hybrids i − 1 and i with
non-negligible advantage. First, B receives the challenge public key pk∗ from the
PKE challenger. Next, B runs the Step 1 as in Game 1, except instead of running
PKE Setup algorithm to compute public/secret key pair (pki,β , ski,β) when β 	=
mpksel[i], it sets pki,1−mpksel[i]

= pk∗. After A submits its challenge messages
(m∗

0,m
∗
1) to B, the reduction computes garbled circuit C and ciphertexts ct∗i,β

as in the (i − 1)th intermediate hybrid, except to compute ct∗i,1−mpksel[i]
, B sends

wi,1−mpksel[i]
and 0 as its challenge messages to the PKE challenger, and sets

ct∗i,1−mpksel[i]
as the PKE challenge ciphertext. B runs the remaining game as in

Game 1.4 Finally, if A wins (b = b′), then B guesses 0 to indicate that ct∗i,1−mpksel[i]

was encryption of wi,1−mpksel[i]
, else it guesses 1 to indicate that it was encryption

of zeros.
Note that when wi,1−mpksel[i]

is encrypted by the PKE challenger, then B
exactly simulates the view of intermediate hybrid i − 1 to A. Otherwise if 0
is encrypted the view is of intermediate hybrid i. Therefore, A’s advantage in
any two consecutive intermediate hybrids is negligibly close as otherwise PKE
scheme is not semantically secure. Hence, using � intermediate hybrids we have

4 It should be noted that B can still answer the secret key queries during the reduction
because it only needs the secret keys ski,β corresponding to the public key mpksel
(i.e. β = mpksel[i]). Since B chooses all such secret keys, therefore it can answer A’s
secret key queries.

Semi-adaptive Security and Bundling Functionalities Made Generic 379

proved that switching cti,β from encryptions of wi,β to encryptions of 0 for
β 	= mpksel[i] causes at most negligible dip in A’s advantage in Game 1. Therefore
if |Adv1A − Adv2A| is non-negligible, then the PKE scheme is not semantically
secure.

Lemma 2. If GC is a secure garbling scheme, then for all PPT A, |Adv2A −
Adv3A| ≤ negl(λ) for some negligible function negl(·).
Proof. The proof of this lemma follows from the security of our garbling scheme.
First, note that the simulation based definition of garbling security can be viewed
as a game based definition between a challenger and an adversary. An adversary
sends a circuit C ∈ Cm and input x ∈ {0, 1}m. The challenger then either
honestly garbles the circuit, and sends the wire keys corresponding to x, or runs
the simulator to compute the garbled circuit and the wire keys for x.

Suppose there exists an adversary A such that Adv2A −Adv3A is non-negligible
in λ. We will construct a reduction algorithm B that uses A to break the garbling
security. B first chooses 2� public/secret key pairs and sends {pki,β} to the A.
B also chooses the base FE scheme’s master public/secret keys (mpksel,msksel).
Next, A sends challenge messages m∗

0,m
∗
1. The reduction algorithm chooses b ←

{0, 1}, randomness r and computes the circuit ckt = C-Enc-pk�
m∗

b ,r. It then sends
circuit ckt and input mpksel to the garbling challenger, and receives a garbled
circuit C and � wire keys {wi}. The reduction algorithm then computes cti,β ←
EncPKE(pki,β , wi) if β = mpk[i], else cti,β ← EncPKE(pki,β ,0). Finally B sends
(C, {cti,β}) to A as the challenge ciphertext. The key queries are identical in
both Game 2 and Game 3. Finally, the adversary sends its guess b′, and if b = b′,
the reduction algorithm guesses that ckt was honestly garbled, else it guesses
that ckt and wire keys were simulated.

Note that if the garbling challenger honestly garbled circuit ckt, then B
exactly simulates the view of Game 2 to A. Otherwise the view is of Game
3. As a result, if Adv2A −Adv3A is non-negligible in λ, then B breaks the garbling
scheme’s security with non-negligible advantage.

Lemma 3. If FEsel is a selectively-secure functional encryption scheme, then
for all PPT A, Adv3A ≤ negl(λ) for some negligible function negl(·).
Proof. We describe a reduction algorithm B which plays the selective indistin-
guishability based game with FEsel challenger, and simulates Game 3 for adver-
sary A. B runs the Step 1 as in Game 3, except it does not choose FEsel master
public/secret key pair. It only generates 2� PKE public/secret key pairs, sets
mpk =

{

pki,β

}

,msk = {ski,β}, and sends mpk to A. Next, A chooses two chal-
lenge messages (m∗

0,m
∗
1), and sends those to B. Reduction algorithm B forwards

(m∗
0,m

∗
1) to the FEsel challenger as its challenge messages. Note that B is behav-

ing as a selective adversary since it has not queried FEsel challenger for a public
key before sending its challenge messages. Now FEsel challenger chooses a bit
b∗ ← {0, 1}, runs the setup algorithm to compute key pair (mpksel,msksel), com-
putes ˜ct

∗ ← Encsel(mpksel,m
∗
b), and sends public key mpksel and ciphertext ˜ct

∗

to B. B receives mpksel and ˜ct
∗

from the challenger, and it simulates the garbled

380 R. Goyal et al.

circuit (C, {wi}) ← Sim
(

1λ, 1�, 1k, ˜ct
∗)

. Next, it computes ciphertexts ct∗i,mpksel[i]

as encryptions of wi, and remaining ciphertexts as encryptions of 0. B sends the
final challenge ciphertext ct∗ as garbled circuit C and ciphertexts

{

ct∗i,β
}

to
A. After receiving the challenge ciphertext, A is allowed to make polynomially
many secret key queries skf for functions f , which B can answer by requesting
corresponding secret keys skf,sel from FEsel challenger, and releasing

{

ski,mpksel[i]

}

along with skf,sel. Finally, A sends its guess b′ to B, and B sends b′ as its guess
for FEsel challenger’s bit b∗.

Note that B exactly simulates the view of Game 3 to A. Therefore, A’s
advantage in Game 3 is negligibly small as otherwise the underlying FE scheme
is not selectively-secure. Thus if Adv3A is non-negligible, then the FEsel scheme
is not selectively-secure.

5 Bundling Functionalities

In this section, we show how to transform a (standard) FE scheme to one where
the public parameters can support the union of underlying message/function
spaces. This transformation is similar to the one outlined in Sect. 4. The only
difference is that instead of public key encryption, we need to use identity based
encryption for encrypting the garbled circuit wire keys, and the underlying FE
scheme’s master public/secret keys are chosen pseudorandomly during the key
generation phase.

5.1 Construction

Let FEsel = (Setupsel, KeyGensel, Encsel, Decsel) be a functional encryption
scheme with message space {Mn}n and function space {Fn}n, where for each
n ∈ N, f ∈ Fn, the domain of f is Mn. Let �-pk(·, ·) denote the polynomial
representing the size of the public key output by the setup algorithm, �-rs(·, ·)
the randomness required by Setupsel and �-re(·, ·) the randomness used by Encsel.
Here, all the above polynomials take the security parameter as the first input
and functionality index as the second input. For simplicity of notation, we will
drop the dependence of these polynomials on the security parameter.

Tools Required for Our Transformation: Let GC = (Garble,Eval) be a garbling
scheme for circuit family C = {Cn}n such that the wire keys output by Garble
have length �-w(λ), where λ is the security parameter. Let F be a pseudo-
random function family with key space {Kλ}λ, input space {{0, 1}2λ}λ and
output space {0, 1}. Finally, we also use an identity based encryption scheme
IBE = (SetupIBE,EncIBE,KeyGenIBE,DecIBE) with identity space {{0, 1}2λ+1}λ

and message space {{0, 1}�-w(λ)}λ.

Semi-adaptive Security and Bundling Functionalities Made Generic 381

Our Transformation: We will now describe our functional encryption scheme
FE = (Setup, Enc, Dec, KeyGen) with message space M = ∪n{(n,m) : m ∈ Mn}
and function space F = ∪n{(n, f) : f ∈ Fn} ∪ {ε}. Hence, each message in
M and function in F has two components - the first component reveals the
functionality index, and the second component is the actual message/function.
For each func = (n, f) ∈ F and msg = (n′,m) ∈ M, we define func(msg) = f(m)
if n = n′, ⊥ otherwise. The empty function ε is defined as follows: for all messages
msg = (n,m) ∈ M, ε(msg) = (n, εn(m)) (recall εn(·) is the empty function
in Fn).

– Setup(1λ) → (mpk,msk): The setup algorithm first runs the IBE setup to
compute (ppIBE,mskIBE) ← SetupIBE(1λ). Next, it chooses a PRF key K ← Kλ.
It sets mpk = ppIBE and msk = (mskIBE,K).

– Enc(mpk,msg ∈ M) → ct: Let msg = (n,m), t = �-pk(n), and C-Enc-pkt
m,r be

the canonical circuit which has message m, randomness r hardwired, takes a t
bit input x and computes Encsel(x,m; r); that is, it uses the input as a public
key for the base FE scheme and encrypts message m using randomness r.
The encryption algorithm first chooses randomness r ← {0, 1}�-re(n). Next,
it garbles the circuit C-Enc-pkt

m,r by computing (C, {wi,b}i≤t,b∈{0,1}) ←
Garble(C-Enc-pkt

m,r, 1
λ). It then encrypts the garbled wire keys by computing

cti,b ← EncIBE(mpk, wi,b, (n, i, b)). Note that both n and i can be represented
as λ bit strings. The final ciphertext consists of the garbled circuit C and the
2t ciphertexts {cti,b}i≤t,b∈{0,1}.

– KeyGen(msk, func ∈ F) → skfunc: Let func = (n, f), msk = (mskIBE,K),
s = �-rs(n) and t = �-pk(n).
The key generation algorithm computes an s bit pseudorandom string r =
(F (K, (n, 1)), . . . , F (K, (n, s))). Next, it uses r as the randomness to generate
the base FE keys (mpkn,mskn) = Setupsel(1λ, 1n; r). Note that the functional-
ity index used for generating these keys is n, and therefore the size of mpkn is
t = �-pk(n), and the amount of randomness required by Setupsel is s = �-rs(n).
Next, it generates IBE secret keys corresponding to the identities (n, i,mpkn[i])
for i ≤ t. It computes t secret keys ski ← KeyGenIBE(mskIBE, (n, i,mpkn[i])).
Finally, it generates an FE secret key corresponding to function f by comput-
ing skf,sel ← KeyGensel(mskn, f). It outputs (skf,sel,mpkn, {ski}i≤t) as the key
for function f .

– Dec(skf , ct) → {0, 1,⊥}: Let skf = (skf,sel,mpkn, {ski}i≤t) and ciphertext ct =
(C, {cti,b}i≤t,b∈{0,1}). The decryption algorithm first decrypts the appropriate
garbled circuit wires. For i ≤ t, it computes wi = DecIBE(ski, cti,mpkn[i]

).
It then uses these t wire keys to evaluate the garbled circuit. It computes
˜ct = Eval(C, {wi}i≤t). Finally, it uses the secret key skf,sel to decrypt the
ciphertext. The output is Decsel(skf,sel, ˜ct).

Correctness: Fix any λ, message msg = (n,m) ∈ M, function func = (n, f) ∈ F
and IBE keys (mpkIBE,mskIBE). Let (G, {wi,b}) ← Garble(C-Enc-pk�-pk(n)

m,r , 1λ) and
cti,b ← EncIBE(mpkIBE, wi,b, (n, i, b)). The ciphertext corresponding to message
msg in our FE scheme is (G, {cti,b}). Now, let us consider the key for function

382 R. Goyal et al.

func. Let (mpkn,mskn) be the base FE scheme’s keys as computed in the key
generation phase. The secret key for f in our scheme consists of IBE keys {ski ←
KeyGenIBE(mskIBE, (n, i,mpkn[i]))} and FEsel key skf ← KeyGensel(mskn, f).

The decryption algorithm first decrypts the IBE ciphertexts to recover the
garbled circuit’s wire keys {wi,mpkn[i]

}. Next, using Eval(G, {wi,mpkn[i]
}), we can

compute ˜ct = Encsel(mpkn,m; r). Finally, the decryption algorithm computes
Decsel(skf,sel, ˜ct) = f(m).

5.2 Security Proof

We will now prove that the IBE scheme described above is semi-adaptive secure,
as per Definition 6. Our proof consists of a sequence of hybrids. Let n∗ denote the
functionality index of the challenge inputs. The first hybrid corresponds to the
semi-adaptive security game. In the second hybrid, the challenger uses a truly
random function instead of a pseudorandom function. In the third hybrid, we
use the security of the IBE scheme to modify the ciphertexts output as part of
the challenge ciphertext. Instead of encrypting all the garbled circuit wire keys,
the challenger encrypts 0 at positions that do not correspond to the base FE
scheme’s public key. Here, it is crucial that the challenger never outputs IBE keys
corresponding to these ‘off’ positions. In the fourth hybrid, the garbled circuit is
simulated using the challenge ciphertext of the base FE scheme. At this point,
we can use the security of the base FE scheme to complete our argument.

Game 1: This is the semi-adaptive security game described in Fig. 2.

1. (Setup Phase) The challenger first runs the setup algorithm by choosing
(mpkIBE,mskIBE) ← SetupIBE(1λ) and K ← Kλ. It sends mpkIBE to the adver-
sary.

2. (Challenge Phase)
(a) A sends two challenge messages msg0 = (n∗,m0),msg1 = (n∗,m1) such

that ε(msg0) = ε(msg1).
(b) The challenger chooses a random bit b ← {0, 1}, and computes

the garbled circuit and its wire keys as (C, {wi,β}i≤t∗,β∈{0,1}) ←
Garble(C-Enc-pkt∗

mb,r, 1
λ), where t∗ = |�-pk(n∗)|.

(c) It then encrypts the wire keys as cti,β ← EncIBE(mpkIBE, wi,β , (n∗, i, β)).
(d) The challenger sets ct = (C, {cti,β}i≤t∗,β∈{0,1}) and sends ct to A.

3. (Key Query Phase)
(a) A queries the challenger on polynomially many functions func = (n, f) ∈

F such that func(msg0) = func(msg1). Let s = �-rs(n), t = �-pk(n).
(b) The challenger computes r = (F (K, (n, 1)), . . . , F (K, (n, s))) and

(mpkn,mskn) = Setupsel(1λ, 1n; r).
(c) It generates the IBE secret keys as ski ← KeyGenIBE(mskIBE, (n, i,

mpkn[i])) and base FE scheme’s secret key skf,sel ← KeyGensel(mskn, f).
(d) The challenger sets skfunc = (skf,sel,mpkn, {ski}) and sends skfunc to A.

4. (Guess) Finally, A sends its guess b′ and wins if b = b′.

Semi-adaptive Security and Bundling Functionalities Made Generic 383

Game 2: This game is identical to the previous one, except that the challenger
uses a truly random function Frand instead of the pseudorandom function F .

1. (Setup Phase) The challenger first runs the setup algorithm by choosing
(mpkIBE,mskIBE) ← SetupIBE(1λ). It sends mpkIBE to the adversary.

2. (Challenge Phase)
(a) A sends two challenge messages msg0 = (n∗,m0),msg1 = (n∗,m1) such

that ε(msg0) = ε(msg1).
(b) The challenger chooses a random bit b ← {0, 1}, and computes

the garbled circuit and its wire keys as (C, {wi,β}i≤t∗,β∈{0,1}) ←
Garble(C-Enc-pkt∗

mb,r, 1
λ), where t∗ = |�-pk(n∗)|.

(c) It then encrypts the wire keys as cti,β ← EncIBE(mpkIBE, wi,β , (n∗, i, β)).
(d) The challenger sets ct = (C, {cti,β}i≤t∗,β∈{0,1}) and sends ct to A.

3. (Key Query Phase)
(a) A queries the challenger on polynomially many functions func = (n, f) ∈

F such that func(msg0) = func(msg1). Let s = �-rs(n), t = �-pk(n).
(b) The challenger computes r = (Frand(n, 1), . . . , Frand(n, s)) and

(mpkn,mskn) = Setupsel(1λ, 1n; r).
(c) It generates the IBE secret keys as ski ← KeyGenIBE(mskIBE, (n, i,

mpkn[i])) and base FE scheme’s secret key skf,sel ← KeyGensel(mskn, f).
(d) The challenger sets skfunc = (skf,sel,mpkn, {ski}) and sends skfunc to A.

4. (Guess) Finally, A sends its guess b′ and wins if b = b′.

Game 3: This game is identical to the previous one. Here, we are introduc-
ing some syntactical changes. In this game, the challenger chooses the base FE
scheme’s keys mpkn∗ ,mskn∗ immediately after receiving the challenge messages.

1. (Setup Phase) The challenger first runs the setup algorithm by choosing
(mpkIBE,mskIBE) ← SetupIBE(1λ). It sends mpkIBE to the adversary.

2. (Challenge Phase)
(a) A sends two challenge messages msg0 = (n∗,m0),msg1 = (n∗,m1) such

that ε(msg0) = ε(msg1).
(b) The challenger chooses (mpkn∗ ,mskn∗) ← Setupsel(1λ, 1n∗

).
(c) It chooses a random bit b ← {0, 1}, and computes the garbled circuit and

its wire keys as (C, {wi,β}i≤t∗,β∈{0,1}) ← Garble(C-Enc-pkt∗
mb,r, 1

λ), where
t∗ = |�-pk(n∗)|.

(d) It then encrypts the wire keys as cti,β ← EncIBE(mpkIBE, wi,β , (n∗, i, β)).
(e) The challenger sets ct = (C, {cti,β}i≤t∗,β∈{0,1}) and sends ct to A.

3. (Key Query Phase)
(a) A queries the challenger on polynomially many functions func = (n, f) ∈

F such that func(msg0) = func(msg1). Let s = �-rs(n), t = �-pk(n).
(b) The challenger chooses (mpkn,mskn) ← Setupsel(1λ, 1n) (if mskn,mpkn

have already been computed before, then it simply reuses those keys).
(c) It generates the IBE secret keys as ski ← KeyGenIBE(mskIBE, (n, i,

mpkn[i])) and base FE scheme’s secret key skf,sel ← KeyGensel(mskn, f).
(d) The challenger sets skfunc = (skf,sel,mpkn, {ski}) and sends skfunc to A.

4. (Guess) Finally, A sends its guess b′ and wins if b = b′.

384 R. Goyal et al.

Game 4: In this game, the challenger modifies the challenge ciphertext. Instead
of encrypting the garbled circuit wire keys for all i ≤ t, β ∈ {0, 1}, the challenger
encrypts zeroes at positions (i, β) if β 	= mpkn∗ [i].

1. (Setup Phase) The challenger first runs the setup algorithm by choosing
(mpkIBE,mskIBE) ← SetupIBE(1λ). It sends mpkIBE to the adversary.

2. (Challenge Phase)
(a) A sends two challenge messages msg0 = (n∗,m0),msg1 = (n∗,m1) such

that ε(msg0) = ε(msg1).
(b) The challenger chooses (mpkn∗ ,mskn∗) ← Setupsel(1λ, 1n∗

).
(c) It chooses a random bit b ← {0, 1}, and computes the garbled circuit and

its wire keys as (C, {wi,β}i≤t∗,β∈{0,1}) ← Garble(C-Enc-pkt∗
mb,r, 1

λ), where
t∗ = |�-pk(n∗)|.

(d) It encrypts wire keys at half the positions, and zeroes elsewhere.
For each i, if β = mpkn∗ [i], cti,β ← EncIBE(mpkIBE, wi,β , (n∗, i, β)),
else cti,β ← EncIBE(mpkIBE,0, (n∗, i, β)).

(e) It then encrypts the wire keys as cti,β ← EncIBE(mpkIBE, wi,β , (n∗, i, β)).
(f) The challenger sets ct = (C, {cti,β}i≤t∗,β∈{0,1}) and sends ct to A.

3. (Key Query Phase)
(a) A queries the challenger on polynomially many functions func = (n, f) ∈

F such that func(msg0) = func(msg1). Let s = �-rs(n), t = �-pk(n).
(b) The challenger chooses (mpkn,mskn) ← Setupsel(1λ, 1n) (if mskn,mpkn

have already been computed before, then it simply reuses those keys).
(c) It generates the IBE secret keys as ski ← KeyGenIBE(mskIBE, (n, i,

mpkn[i])) and base FE scheme’s secret key skf,sel ← KeyGensel(mskn, f).
(d) The challenger sets skfunc = (skf,sel,mpkn, {ski}) and sends skfunc to A.

4. (Guess) Finally, A sends its guess b′ and wins if b = b′.

Game 5: In this game, the challenger simulates the garbled circuit when com-
puting the challenge ciphertext.

1. (Setup Phase) The challenger first runs the setup algorithm by choosing
(mpkIBE,mskIBE) ← SetupIBE(1λ). It sends mpkIBE to the adversary.

2. (Challenge Phase)
(a) A sends two challenge messages msg0 = (n∗,m0),msg1 = (n∗,m1) such

that ε(msg0) = ε(msg1).
(b) The challenger chooses (mpkn∗ ,mskn∗) ← Setupsel(1λ, 1n∗

).
(c) It first chooses b ← {0, 1}, computes ˜ct ← Encsel(mpkn∗ ,mb).
(d) It then uses ˜ct to simulate the garbled circuit.

It computes (˜C, {wi}) ← Sim
(

1λ, 1t∗
, 1k, ˜ct

)

, where t∗ = |�-pk(n∗)| and

k is the size of the circuit C-Enc-pkt∗
m,r.

(e) It then encrypts the wire keys at half the positions, and zeroes at the
remaining positions.
For each i, if β = mpkn∗ [i], cti,β ← EncIBE(mpkIBE, wi, (n∗, i, β)), else
cti,β ← EncIBE(mpkIBE,0, (n∗, i, β)).

Semi-adaptive Security and Bundling Functionalities Made Generic 385

(f) The challenger sets ct = (C, {cti,β}i≤t∗,β∈{0,1}) and sends ct to A.
3. (Key Query Phase)

(a) A queries the challenger on polynomially many functions func = (n, f) ∈
F such that func(msg0) = func(msg1). Let s = �-rs(n), t = �-pk(n).

(b) The challenger chooses (mpkn,mskn) ← Setupsel(1λ, 1n) (if mskn,mpkn

have already been computed before, then it simply reuses those keys).
(c) It generates the IBE secret keys as ski ← KeyGenIBE(mskIBE, (n, i,

mpkn[i])) and base FE scheme’s secret key skf,sel ← KeyGensel(mskn, f).
(d) The challenger sets skfunc = (skf,sel,mpkn, {ski}) and sends skfunc to A.

4. (Guess) Finally, A sends its guess b′ and wins if b = b′.

Analysis. Let A be any PPT adversary against our construction in the semi-
adaptive security game (Fig. 2) and Advi

A denote the advantage of A in Game i.
We will show that Advi

A − Advi+1
A is negligible in λ for all i.

Lemma 4. Assuming F is a secure pseudorandom function, for any PPT adver-
sary A, |Adv1A − Adv2A| ≤ negl(λ).

Proof. The proof of this lemma follows from a simple reduction to the security
of PRF F . Suppose there exists an adversary A such that |Adv1A − Adv2A| is
non-negligible. We will construct an algorithm B that uses A to break the PRF
security. The reduction algorithm chooses an IBE master public/secret key pair
(mpkIBE,mskIBE) and sends mpkIBE to the adversary. Next, it receives challenge
messages msg0,msg1 with the restriction that ε(msg0) = ε(msg1). It computes
a challenge ciphertext and sends it to A (this step is identical in both Game
1 and Game 2). Next, the adversary queries for secret keys. For each queried
function f , the reduction algorithm first computes the functionality index n and
s = �-rs(n). It then queries the PRF challenger for PRF evaluations at inputs
(n, i) for i ≤ s. It receives string r, which it uses as randomness to compute
FEsel master keys (mpksel,msksel). The remaining steps (computing IBE secret
keys and skf,sel) are identical in both Game 1 and Game 2. It sends skfunc to A,
and A sends its guess b′. If b = b′, B outputs 1, indicating that the oracle was a
pseudorandom function, else it outputs 0, indicating that the oracle was a truly
random function. Clearly, if the PRF challenger used a pseudorandom function,
then A participates in Game 1, else it participates in Game 2. This concludes
our proof.

Lemma 5. For any adversary A, Adv2A = Adv3A.

Proof. The advantage of any adversary A is identical in Game 2 and Game 3.
The only difference between the two games is that the challenger chooses
(mpkn∗ ,mskn∗) immediately after receiving the challenge messages, instead of
waiting for the first key query where the function is in Fn∗ . This does not affect
the adversary’s advantage.

Lemma 6. Assuming IBE is a secure identity based encryption scheme
(Definition 3), for any PPT adversary A, |Adv3A − Adv4A| ≤ negl(λ).

386 R. Goyal et al.

Proof. Suppose there exists an adversary A such that |Adv3A − Adv4A| is non-
negligible. We will construct a reduction algorithm B that uses A to break the
security of IBE. First, B receives the IBE public key mpkIBE, which it forwards
to A. The adversary then sends the challenge messages msg0 = (n∗,m0),msg1 =
(n∗,m1). Let t∗ = �-pk(n∗). B chooses (mpkn∗ ,mskn∗) ← Setupsel(1λ, 1n∗

). It
then chooses b ← {0, 1} and computes garbled circuit C together with wire
keys {wi,β} for message mb. Next, it sends t∗ challenge messages to the IBE
challenger. For i = 0 to t, let β′

i = 1 − mpkn∗ [i]. It sends challenge messages
(wi,β′

i
,0) and challenge identity (n∗, i, β′

i), and receives ciphertext cti,β′
i
. The

reduction algorithm constructs the remaining ciphertexts by itself and sends
(C, {cti,β}) to A.

Next, A sends key queries for functions in F . Let func = (n, f) ∈ F be such
a function. The reduction algorithm needs to sends IBE secret keys as part of
the secret key for func. If n 	= n∗, then B can simply query the IBE challenger
for secret keys. If n = n∗, then the reduction algorithm needs to query the
IBE challenger for keys corresponding to (n∗, i,mpkn∗ [i]) only. In particular, the
reduction does not need to query IBE keys for the challenge identities. After
receiving the IBE secret keys {ski}, B computes skf,sel ← KeyGensel(mskn, f)
and sends skfunc = (skf,sel,mpkn, {ski}) to A. Finally, A sends its guess b′, and
B forwards this guess to the IBE challenger.

Lemma 7. Assuming GC is a secure garbling scheme (Definition 1), for any
PPT adversary A, |Adv4A − Adv5A| ≤ negl(λ).

The proof of this lemma is identical to the proof of Lemma2.

Lemma 8. Assuming FEsel is a selectively secure functional encryption scheme
for function space {Fn}n (Definition 5), for any PPT adversary A, Adv5A ≤
negl(λ).

The proof of this lemma is identical to the proof of Lemma3.

References

1. Agrawal, S., Freeman, D.M., Vaikuntanathan, V.: Functional encryption for inner
product predicates from learning with errors. In: Lee, D.H., Wang, X. (eds.) ASI-
ACRYPT 2011. LNCS, vol. 7073, pp. 21–40. Springer, Heidelberg (2011)

2. Ananth, P., Brakerski, Z., Segev, G., Vaikuntanathan, V.: From selective to
adaptive security in functional encryption. In: Gennaro, R., Robshaw, M. (eds.)
CRYPTO 2015. LNCS, vol. 9216, pp. 657–677. Springer, Heidelberg (2015)

3. Ananth, P., Jain, A.: Indistinguishability obfuscation from compact functional
encryption. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9215,
pp. 308–326. Springer, Heidelberg (2015)

4. Ananth, P., Jain, A., Sahai, A.: Achieving compactness generically: indistinguisha-
bility obfuscation from non-compact functional encryption. IACR Cryptology
ePrint Archive (2015)

Semi-adaptive Security and Bundling Functionalities Made Generic 387

5. Ananth, P., Sahai, A.: Functional encryption for turing machines. In: Kushilevitz,
E., et al. (eds.) TCC 2016-A. LNCS, vol. 9562, pp. 125–153. Springer, Heidelberg
(2016). doi:10.1007/978-3-662-49096-9 6

6. Attrapadung, N.: Dual system encryption via doubly selective security: frame-
work, fully secure functional encryption for regular languages, and more. In:
Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 557–
577. Springer, Heidelberg (2014)

7. Barak, B., Goldreich, O., Impagliazzo, R., Rudich, S., Sahai, A., Vadhan, S.P.,
Yang, K.: On the (Im)possibility of obfuscating programs. In: Kilian, J. (ed.)
CRYPTO 2001. LNCS, vol. 2139, pp. 1–18. Springer, Heidelberg (2001)

8. Bellare, M., Hoang, V.T., Rogaway, P.: Foundations of garbled circuits. In: Pro-
ceedings of the 2012 ACM Conference on Computer and Communications Security,
CCS 2012, pp. 784–796 (2012)

9. Bitansky, N., Vaikuntanathan, V.: Indistinguishability obfuscation from functional
encryption. In: FOCS (2015)

10. Boneh, D., Boyen, X.: Secure identity based encryption without random oracles.
In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 443–459. Springer,
Heidelberg (2004)

11. Boneh, D., Boyen, X.: Efficient selective-ID secure identity-based encryption with-
out random oracles. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004.
LNCS, vol. 3027, pp. 223–238. Springer, Heidelberg (2004)

12. Boneh, D., Franklin, M.: Identity-based encryption from the Weil pairing. In:
Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, p. 213. Springer, Heidelberg
(2001)

13. Boneh, D., Gentry, C., Gorbunov, S., Halevi, S., Nikolaenko, V., Segev, G.,
Vaikuntanathan, V., Vinayagamurthy, D.: Fully key-homomorphic encryption,
arithmetic circuit ABE and compact garbled circuits. In: Nguyen, P.Q., Oswald, E.
(eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 533–556. Springer, Heidelberg
(2014)

14. Boneh, D., Sahai, A., Waters, B.: Functional encryption: definitions and challenges.
In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 253–273. Springer, Heidelberg
(2011)

15. Boyen, X., Waters, B.: Anonymous hierarchical identity-based encryption (without
random oracles). In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 290–307.
Springer, Heidelberg (2006)

16. Brakerski, Z., Vaikuntanathan, V.: Circuit-abe from LWE: unbounded attributes
and semi-adaptive security. IACR Cryptology ePrint Archive (2016)

17. Canetti, R., Halevi, S., Katz, J.: A forward-secure public-key encryption scheme.
In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 255–271. Springer,
Heidelberg (2003)

18. Chen, J., Wee, H.: Semi-adaptive attribute-based encryption and improved delega-
tion for Boolean formula. In: Abdalla, M., De Prisco, R. (eds.) SCN 2014. LNCS,
vol. 8642, pp. 277–297. Springer, Heidelberg (2014)

19. Cocks, C.: An identity based encryption scheme based on quadratic residues. In:
Honary, B. (ed.) Cryptography and Coding 2001. LNCS, vol. 2260, pp. 360–363.
Springer, Heidelberg (2001)

20. Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.: Candidate
indstinguishability obfuscation and functional encryption for all circuits. In: FOCS
(2013)

21. Gentry, C.: Practical identity-based encryption without random oracles. In:
Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 445–464. Springer,
Heidelberg (2006)

http://dx.doi.org/10.1007/978-3-662-49096-9_6

388 R. Goyal et al.

22. Gentry, C., Halevi, S.: Hierarchical identity based encryption with polynomially
many levels. In: Reingold, O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 437–456.
Springer, Heidelberg (2009)

23. Gorbunov, S., Vaikuntanathan, V., Wee, H.: Functional encryption with bounded
collusions via multi-party computation. In: Safavi-Naini, R., Canetti, R. (eds.)
CRYPTO 2012. LNCS, vol. 7417, pp. 162–179. Springer, Heidelberg (2012)

24. Gorbunov, S., Vaikuntanathan, V., Wee, H.: Attribute-based encryption for cir-
cuits. In: STOC (2013)

25. Goyal, V., Pandey, O., Sahai, A., Waters, B.: Attribute-based encryption for fine-
grained access control of encrypted data. In: Proceedings of the 13th ACM Con-
ference on Computer and Communications Security, CCS 2006 (2006)

26. Katz, J., Sahai, A., Waters, B.: Predicate encryption supporting disjunctions, poly-
nomial equations, and inner products. In: Smart, N.P. (ed.) EUROCRYPT 2008.
LNCS, vol. 4965, pp. 146–162. Springer, Heidelberg (2008)

27. Lewko, A., Okamoto, T., Sahai, A., Takashima, K., Waters, B.: Fully secure
functional encryption: attribute-based encryption and (hierarchical) inner prod-
uct encryption. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp.
62–91. Springer, Heidelberg (2010)

28. Lewko, A., Waters, B.: New proof methods for attribute-based encryption: achiev-
ing full security through selective techniques. In: Safavi-Naini, R., Canetti, R. (eds.)
CRYPTO 2012. LNCS, vol. 7417, pp. 180–198. Springer, Heidelberg (2012)

29. Okamoto, T., Takashima, K.: Fully secure functional encryption with general rela-
tions from the decisional linear assumption. In: Rabin, T. (ed.) CRYPTO 2010.
LNCS, vol. 6223, pp. 191–208. Springer, Heidelberg (2010)

30. O’Neill, A.: Definitional issues in functional encryption. Cryptology ePrint Archive,
Report 2010/556 (2010)

31. Regev, O.: On lattices, learning with errors, random linear codes, and cryptogra-
phy. In: STOC 2005

32. Sahai, A., Waters, B.: Fuzzy identity-based encryption. In: Cramer, R. (ed.) EURO-
CRYPT 2005. LNCS, vol. 3494, pp. 457–473. Springer, Heidelberg (2005)

33. Sahai, A., Waters, B.: Slides on functional encryption. PowerPoint presentation
(2008). http://www.cs.utexas.edu/∼bwaters/presentations/files/functional.ppt

34. Shamir, A.: Identity-based cryptosystems and signature schemes. In: Blakely, G.R.,
Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 47–53. Springer, Heidelberg
(1985)

35. Waters, B.: Efficient identity-based encryption without random oracles. In: Cramer,
R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 114–127. Springer, Heidelberg
(2005)

36. Waters, B.: Dual system encryption: realizing fully secure ibe and hibe under simple
assumptions. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 619–636.
Springer, Heidelberg (2009)

37. Waters, B.: Functional encryption for regular languages. In: Safavi-Naini, R.,
Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 218–235. Springer,
Heidelberg (2012)

38. Waters, B.: A punctured programming approach to adaptively secure functional
encryption. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9216,
pp. 678–697. Springer, Heidelberg (2015)

39. Wee, H.: Dual system encryption via predicate encodings. In: Lindell, Y. (ed.) TCC
2014. LNCS, vol. 8349, pp. 616–637. Springer, Heidelberg (2014)

40. Yao, A.: How to generate and exchange secrets. In: FOCS, pp. 162–167 (1986)

http://www.cs.utexas.edu/~bwaters/presentations/files/functional.ppt

Functional Encryption

From Cryptomania to Obfustopia
Through Secret-Key Functional Encryption

Nir Bitansky1(B), Ryo Nishimaki2, Alain Passelègue3, and Daniel Wichs4

1 MIT, Cambridge, USA
nirbitan@csail.mit.edu

2 NTT, Secure Platform Laboratories, Tokyo, Japan
nishimaki.ryo@lab.ntt.co.jp

3 ENS, Paris, France
alain.passelegue@ens.fr

4 Northeastern University, Boston, USA
wichs@ccs.neu.edu

Abstract. Functional encryption lies at the frontiers of current research
in cryptography; some variants have been shown sufficiently powerful to
yield indistinguishability obfuscation (IO) while other variants have been
constructed from standard assumptions such as LWE. Indeed, most vari-
ants have been classified as belonging to either the former or the latter
category. However, one mystery that has remained is the case of secret-
key functional encryption with an unbounded number of keys and cipher-
texts. On the one hand, this primitive is not known to imply anything
outside of minicrypt, the land of secret-key crypto, but on the other
hand, we do no know how to construct it without the heavy hammers in
obfustopia.

In this work, we show that (subexponentially secure) secret-key func-
tional encryption is powerful enough to construct indistinguishability
obfuscation if we additionally assume the existence of (subexponentially
secure) plain public-key encryption. In other words, secret-key functional
encryption provides a bridge from cryptomania to obfustopia.

On the technical side, our result relies on two main components.
As our first contribution, we show how to use secret key functional
encryption to get “exponentially-efficient indistinguishability obfusca-
tion” (XIO), a notion recently introduced by Lin et al. (PKC ’16) as a
relaxation of IO. Lin et al. show how to use XIO and the LWE assump-
tion to build IO. As our second contribution, we improve on this result
by replacing its reliance on the LWE assumption with any plain public-
key encryption scheme.

N. Bitansky—Supported by an IBM DARPA grant and an NJIT DARPA grant.
R. Nishimaki—This work was done in part while the author was visiting Northeast-
ern University.
A. Passelègue—This work was done in part while the author was visiting Northeast-
ern University. Supported in part by the Direction Générale de l’Armement.
D. Wichs—Supported in part by NSF grants CNS-1347350, CNS-1314722, CNS-
1413964.

c© International Association for Cryptologic Research 2016
M. Hirt and A. Smith (Eds.): TCC 2016-B, Part II, LNCS 9986, pp. 391–418, 2016.
DOI: 10.1007/978-3-662-53644-5 15

392 N. Bitansky et al.

Lastly, we ask whether secret-key functional encryption can be used to
construct public-key encryption itself and therefore take us all the way
from minicrypt to obfustopia. A result of Asharov and Segev (FOCS
’15) shows that this is not the case under black-box constructions,
even for exponentially secure functional encryption. We show, through a
non-black box construction, that subexponentially secure-key functional
encryption indeed leads to public-key encryption. The resulting public-
key encryption scheme, however, is at most quasi-polynomially secure,
which is insufficient to take us to obfustopia.

1 Introduction

The concept of functional encryption [17,45] extends that of traditional encryp-
tion by allowing the distribution of functional decryption keys that reveal spec-
ified functions of encrypted messages, but nothing beyond. This concept is
one of the main frontiers in cryptography today. It offers tremendous flexibil-
ity in controlling and computing on encrypted data, is strongly connected to
the holy grail of program obfuscation [3,14,44], and for many problems, may
give superior solutions to obfuscation-based ones [28,29]. Accordingly, recent
years have seen outstanding progress in the study of functional encryption,
both in constructing functional encryption schemes and in exploring differ-
ent notions, their power, and the relationship amongst them (see for instance,
[1,2,4,5,7,11,15,16,20,21,24–26,32–36,40,42,47,49] and many more).

One striking question that has yet to be solved is the gap between public-key
and secret-key functional encryption schemes. In particular, does any secret-key
scheme imply a public-key one?

The answer to this question is nuanced and seems to depend on certain
features of functional encryption schemes, such as the number of functional
decryption keys and number of ciphertexts that can be released. For functional
encryption schemes that only allow the release of an a-priori bounded num-
ber of functional keys (often referred to as bounded collusion), we know that
the above gap is essentially the same as the gap between plain (rather than
functional) secret-key encryption and public-key encryption, and should thus
be as hard to bridge. Specifically, in the secret-key setting, such schemes sup-
porting an unbounded number of ciphertexts can be constructed assuming low-
depth pseudorandom generators (or just one-way functions in the single-key
case) [34,47]. These secret-key constructions are then converted to public-key
ones, relying on (plain) public-key encryption (and this is done quite directly
by replacing invocations of a secret-key encryption scheme with invocations of
a public-key one.) The same state of affairs holds when reversing the roles and
considering a bounded number of ciphertexts and an unbounded number of keys
[34,47]. In other words, in the terminology of Impagliazzo’s complexity worlds
[38], if the number of keys or ciphertexts is a-priori bounded, then symmetric-
key functional encryption lies in minicrypt, the world of one-way functions, and
public-key functional encryption lies in cryptomania, the world of public-key
encryption.

From Cryptomania to Obfustopia Through Secret-Key 393

For functional encryption schemes supporting an unbounded (polynomial)
number of keys and unbounded number of ciphertexts, which will be the default
notion throughout the rest of the paper, the question is far less understood. In
the public-key setting, such functional encryption schemes with subexponential
security are known to imply indistinguishability obfuscation [3,4,14]. In con-
trast, Bitansky and Vaikuntanathan [14] show that their construction of indis-
tinguishability obfuscation using functional encryption may be insecure when
instantiated with a secret-key functional encryption scheme. In fact, secret-key
functional encryption schemes (even exponentially secure ones) are not known
to imply any cryptographic primitive beyond those that follow from one-way
functions. As far as we know the two notions of functional encryption may cor-
respond to opposite extremes of the complexity spectrum: on one side, public-key
schemes correspond to obfustopia, the world where indistinguishability obfusca-
tion exists, and on the other side secret-key schemes may lie in minicrypt where
there is even no (plain) public-key encryption.

One piece of evidence that may support such a view of the world is given by
Asharov and Segev [6] who show that there do not exist fully black-box construc-
tions of plain public-key encryption from secret-key functional encryption, even
if the latter is exponentially secure. Still, while we may hope that such secret-key
schemes could be constructed from significantly weaker assumptions than needed
for public-key schemes, so far no such construction has been exhibited — all known
constructions live in obfustopia.

1.1 Our Contributions

In this work, we shed new light on the question of secret-key vs public-key func-
tional encryption (in the multi-key, multi-ciphertext setting). Our main result
bridges the two notions based on (plain) public-key encryption.

Theorem 1 (Informal). Assuming secret-key functional encryption and plain
public-key encryption that are both subexponentially secure, there exists indistin-
guishability obfuscation, and in particular, also public-key functional encryption.

In the terminology of Impagliazzo’s complexity worlds: secret-key functional
encryption would turn cryptomania, the land of public-key encryption, into
obfustopia. This puts in new perspective the question of constructing such secret-
key schemes from standard assumptions — any such construction would lead to
indistinguishability obfuscation from standard assumptions.

The above result still does not settle the question of whether secret-key
functional encryption on its own implies (plain) public-key encryption. Here
we show that assuming subexponentially-secure secret-key functional encryption
and (almost) exponentially-secure one-way functions, there exists (polynomially-
secure) public-key encryption.

Theorem 2 (Informal). Assuming subexponentially-secure secret-key functio-
nal encryption and 2n/ log log n-secure one-way functions, there exists (poly-
nomially-secure) public-key encryption.

394 N. Bitansky et al.

The resulting public-key encryption is not strong enough to take us to obfustopia.
Concretely, the constructed scheme is not subexponentially secure as required
by our first theorem — it can be quasi-polynomially broken. Nevertheless, the
result does show that the black-box barrier shown by Asharov and Segev [6],
which applies even if the underlying secret-key functional encryption scheme
and one-way functions are exponentially secure, can be circumvented. Indeed,
our construction uses the functional encryption scheme in a non-black-box way
(see further details in the technical overview section below).

1.2 A Technical Overview

We now provide an overview of the main steps and ideas leading to our results.

Key Observation: From SKFE to (Strong) Exponentially-Efficient IO.
Our first observation is that secret-key functional encryption (or SKFE in short)
implies a weak form of indistinguishability obfuscators termed by Lin, Pass, Seth,
and Telang [43] exponentially-efficient indistinguishability obfuscation (XIO).
Like IO, this notion preserves the functionality of obfuscated circuits and guar-
antees that obfuscations of circuits of the same size and functionality are indis-
tinguishable. However, in terms of efficiency the XIO notion only requires that
an obfuscation ˜C of a circuit C : {0, 1}n → {0, 1}m is just mildly smaller than
its truth table, namely | ˜C| ≤ 2γn · poly(|C|), for some compression factor γ < 1,
and a fixed polynomial poly, rather than the usual requirement that the time
to obfuscate, and in particular the size of ˜C, are polynomial in |C|. We show
that SKFE implies a slightly stronger notion than XIO where the time to obfus-
cate C is bounded by 2γn · poly(|C|). We call this notion strong exponentially-
efficient indistinguishability obfuscation (SXIO). (We note that, for either XIO
or SXIO, we shall typically be interested in circuits over some polynomial size
domain, which could be much larger than the circuit itself, e.g., {0, 1}n where
n = 100 log |C|.)
Proposition 1 (Informal).

1. For any constant γ < 1, there exists a transformation from SKFE to SXIO
with compression factor γ.

2. For some subconstant γ = o(1), there exists a transformation from sub-
exponentially-secure SKFE to polynomially-secure SXIO with compression
factor γ.

We add more technical details regarding the proof of the above SXIO proposition
later on. Both of our theorems stated above rely on the constructed SXIO as a
main tool. We next explain, still at a high-level, how the first theorem is obtained.
We then dive into further technical details about the proof of this theorem as
well as the proof of the second theorem.

From SXIO to IO Through Public-key Encryption. Subexponentially-
secure SXIO (or even XIO) schemes with a constant compression factor (as in
Proposition 1) are already shown to be quite strong in [43] — assuming subex-
ponential hardness of Learning with Errors (LWE) [46], they imply IO.

From Cryptomania to Obfustopia Through Secret-Key 395

Corollary 1. (of Proposition 1 and [43]). Assuming SKFE and LWE, both
subexponentially secure, there exists IO.

We go beyond the above corollary, showing that LWE can be replaced with
a generic assumption — the existence of (plain) public-key encryption schemes.
The transformation of [43] from LWE and XIO to IO, essentially relies on LWE
to obtain a specific type of public-key functional encryption (PKFE) with certain
succinctness properties. We show how to construct such PKFE from public-key
encryption and SXIO. More details follow.

Concretely, the notion considered is of PKFE schemes that support a single
decryption key. Furthermore, the time complexity of encryption is bounded by
roughly sβ ·dO(1), where s and d are the size and depth of the circuit computing
the function, and β < 1 is some compression factor. We call such schemes weakly
succinct PKFE schemes. A weakly succinct PKFE for boolean functions (i.e.,
functions with a single output bit) is constructed by Goldwasser et al. [33] from
(subexponentially-hard) LWE; in fact, the Goldwasser et al. construction has no
dependence at all on the circuit size s (namely, β = 0).

Lin et al. [43] then show a transformation, relying on XIO, that extends
the class of functions also to functions with a long output, rather than just
boolean ones. (Their transformation is stated for the case that β = 0 assuming
any constant XIO compression factor γ < 1, but can be extended to also work
for any sufficiently small constant compression factor β for the PKFE.) Such
weakly-succinct PKFE schemes can then be plugged in to the transformations
of [3,14,44] to obtain full-fledged IO.1

We follow a similar blueprint. We first construct weakly-succinct PKFE for
functions with a single output bit based on SXIO and PKE, rather than LWE
(much of the technical effort in this work lies in this construction). We then
bootstrap the construction to deal with multibit functions using (a slightly aug-
mented version of) the transformation from [43].

Proposition 2 (Informal). For any β = Ω(1), assuming PKE and SXIO with
a small enough constant compression factor γ, there exists a single-key weakly-
succinct PKFE scheme with compression factor β (for functions with long output).

1.3 A Closer Look into the Techniques

We now provide further details regarding the proofs of the above Propositions 1
and 2 as well as the proof of Theorem 2.

SKFE to SXIO: The Basic Idea. To convey the basic idea behind the
transformation, we first describe a construction of SXIO with compression
1 The above is a slightly oversimplified account of [43]. They also rely on LWE to

deduce the existence of puncturable PRFs in NC1 and show their transformation
starting from weakly-succinct PKFE for functions in NC1. We avoid the reliance
on puncturable PRFs in NC1 by constructing weakly-succinct PKFE for functions
with no depth restriction, at the expense of allowing the complexity of encryption
to scale polynomially in the depth. This is still sufficient for [14, Sect. 3.2].

396 N. Bitansky et al.

γ = 1/2. We then explain how to extend it to obtain the more general form of
Proposition 1.

Recall that in an SKFE scheme, first a master secret key MSK is generated,
and can then be used to:

– encrypt (any number of) plaintext messages,
– derive (any number of) functional keys.

The constructed obfuscator sxiO is given a circuit C defined on domain {0, 1}n,
where we shall assume for simplicity that the input length is even (this is not
essential), and works as follows:

– For every x ∈ {0, 1}n/2, computes a ciphertext CTx encrypting the circuit
Cx(·) that given input y ∈ {0, 1}n/2, returns C(x, y).

– For every y ∈ {0, 1}n/2, derives a functional decryption key SKy for the func-
tion Uy(·) that given as input a circuit D of size at most maxx |Cx|, returns
D(y).

– Outputs ˜C =
(

{CTx}x∈{0,1}n/2 , {SKy}y∈{0,1}n/2

)

as the obfuscation.

To evaluate ˜C on input (x, y) ∈ {0, 1}n, simply decrypt

Dec(SKy,CTx) = Uy(Cx) = Cx(y) = C(x, y).

Indeed, the required compression factor γ = 1/2 is achieved. Generating each
ciphertext is proportional to the size of the message |Cx| = Õ(|C|) and some
fixed polynomial in the security parameter λ. Similarly the time to generate each
functional key is proportional to the size of the circuit |Uy| = Õ(|C|) and some
fixed polynomial in the security parameter λ. Thus overall, the time to generate
˜C is bounded by 2n/2 · poly(|C|, λ).

The indistinguishability guarantee follows easily from that of the underlying
SKFE. Indeed, SKFE guarantees that for any two sequences m = {mi} and
m ′ = {m′

i} of messages to be encrypted and any sequence of functions {fi}
for which keys are derived, encryptions of the m are indistinguishable from
encryptions of the m ′, provided that the messages are not “separated by the
functions”, i.e. fj(mi) = fj(m′

i) for every (i, j). In particular, any two circuits
C and C ′ that have equal size and functionality will correspond to such two
sequences of messages {Cx}x∈{0,1}n/2 and {C ′

x}x∈{0,1}n/2 , whereas {Uy}y∈{0,1}n

are indeed functions such that Uy(Cx) = C(x, y) = C ′(x, y) = Uy(C ′
x) for all

(x, y). (The above argument works even given a very weak selective security
definition where all messages and functions are chosen by the attacker ahead of
time.)

As said, the above transformation achieves compression factor γ = 1/2. While
such compression is sufficient for example to obtain IO based on LWE, it will not
suffice for our two Theorems 1 and 2 (for the first we will need γ to be a smaller
constant, and for the second we will need it to even be slightly subconstant). To
prove Proposition 1 in its more general form, we rely on a result by Brakerski,

From Cryptomania to Obfustopia Through Secret-Key 397

Komargodski, and Segev [20] that shows how to convert any SKFE into a t-
input SKFE. A t-input scheme allows to encrypt a tuple of messages (m1, . . . ,mt)
each independently, and derive keys for t-input functions f(m1, . . . ,mt). In their
transformation, starting from a multi-key SKFE results in a multi-key t-input
SKFE.

The general transformation then follows naturally. Rather than arranging the
input space in a 2-dimensional cube {0, 1}n/2 ×{0, 1}n/2 as we did before with a
1-input scheme, given a t-input scheme we can arrange it in a (t+1)-dimensional
cube {0, 1}n/(t+1) × · · · × {0, 1}n/(t+1), and we will accordingly get compression
γ = 1/(t + 1). The only caveat is that the BKS transformation incurs a security
loss and blowup in the size of the scheme that can grow doubly exponentially
in t. As long as t is constant the security loss and blowup are fixed polynomials.
The transformation can also be invoked for slightly super-constant t (double
logarithmic) assuming subexponential security of the underlying 1-input SKFE
(giving rise to the second part of Proposition 1).

We remark that previously Goldwasser et al. [32] showed that t-input SKFE
for polynomial t directly gives full-fledged IO. We demonstrate that even when t
is small (even constant), t-input SKFE implies a meaningful obfuscation notion
such as SXIO.

From SXIO and PKE to Weakly Succinct PKFE: Main Ideas. We now
describe the main ideas behind our construction of a single-key weakly succinct
PKFE. We shall focus on the main step of obtaining such a scheme for functions
with a single output bit.2

Our starting point is the single-key PKFE scheme of Sahai and Seyalioglu
[47] based on Yao’s garbled circuit method [50]. Their scheme basically works as
follows (we assume basic familiarity with the garbled circuit method):

– The master public key MPK consists of L pairs of public keys
{

PK0
i ,PK

1
i

}

i∈L

for a (plain) public-key encryption scheme.
– A functional decryption key SKf for a function (circuit) f of size L consists of

the secret decryption keys {SKfi

i }i∈L corresponding to the above public keys,
according to the bits of f ’s description.

– To encrypt a message m, the encryptor generates a garbled circuit ̂Um for
the universal circuit Um that given f , returns f(m). It then encrypts the
corresponding input labels {k0

i , k1
i }i∈L under the corresponding public keys.

– The decryptor in possession of SKf can then decrypt to obtain the labels
{kfi

i }i∈L and decode the garbled circuit to obtain Um(f) = f(m).
2 Extending this to functions with multibit output is then done, based on SXIO, using

a transformation of [43]. Concretely, given an m-bit output function f(x) we consider
a new single bit function gf (x, i) that returns the ith bit of f(x). The function
key is then derived for the boolean function gf . The new encryption algorithm, for
message x, produces an SXIO obfuscation of a circuit that given i ∈ [m] uses the
old encryption scheme to encrypt (m, i), deriving randomness using a puncturable
PRF. The security of the construction is proven as in [43] based on a probabilistic
IO argument [22]. (Mild) efficiency of the encryption then follows from the mild
efficiency of the SXIO and PKFE with related (constant) compression factors.

398 N. Bitansky et al.

Selective security of this scheme (where the function f and all messages are
chosen ahead of time) follows from the semantic security of PKE and the garbled
circuit guarantee which says that ̂Um, {kfi

i }i∈L can be simulated from f(m).
The scheme is indeed not succinct in any way. The complexity of encryption

and even the size of the ciphertext grows with the complexity of f . Nevertheless,
it does seem that the encryption process has a much more succinct represen-
tation. In particular, computing a garbled circuit is a decomposable process —
each garbled gate in ̂Um depends on a single gate in the original circuit Um and
a small amount of randomness (for computing the labels corresponding to its
wires). Furthermore, the universal circuit Um itself is also decomposable — there
exists a small (say, poly(|m| , log L)-sized) circuit that given i can output the i-th
gate in Um along with its neighbours. The derivation of randomness itself can
also be made decomposable using a pseudorandom function. All in all, there
exists a small (poly(|m| , log L, λ)-size, for security parameter λ), decomposition
circuit Ude

m,K associated with a key K ∈ {0, 1}λ for a pseudorandom function
that can produce the ith garbled gate/input-label given input i.

Yet, the second part of the encryption process, where the input labels
{k0

i , k1
i }i∈L are encrypted under the corresponding public keys

{

PK0
i ,PK

1
i

}

i∈L
,

may not be decomposable at all. Indeed, in general, it is not clear how to even
compress the representation of these 2L public-keys. In this high-level exposition,
let us make the simplifying assumption that we have at our disposal a succinct
identity-based-encryption (IBE) scheme. Such a scheme has a single public-key
PK that allows to encrypt a message to an identity id ∈ ID taken from an
identity space ID. Those in possession of a corresponding secret key SKid can
decrypt and others learn nothing. Succinctness means that the complexity of
encryption may only grow mildly in the size of the identity space. Concretely, by
a factor of |ID|γ for some small constant γ < 1. In the body, we show that such
a scheme can be constructed from (plain) public-key encryption and SXIO (the
construction relies on standard “puncturing techniques” and is pretty natural).

Equipped with such an IBE scheme, we can now augment the Sahai-
Seyalioglu scheme to make sure that the entire encryption procedure is decom-
posable. Concretely, we will consider the identity space ID = [L] × {0, 1},
augment the public key to only include the IBE’s public key PK, and provide
the decryptor with the identity keys {SK(i,fi)}i∈L. Encrypting the input labels
{k0

i , k1
i }i∈L will now be done by simply encrypting to the corresponding identi-

ties {(i, 0), (i, 1)}i∈L. This part of the encryption can now also be described by
a small (say Lγ ·poly(λ, log L)-size) decomposition circuit Ede

K,K′,PK that has the
PRF key K to derive input labels, the IBE public key PK, and another PRF key
K ′ to derive randomness for encryption. Given an identity (i, b), it generates the
corresponding encrypted input label.

At this point, a natural direction is to have the encryptor send a compressed
version of the Sahai-Seyalioglu encryption, by first using SXIO to shield the
two decomposition circuits Ede

K,K′,PK, Ude
m,K and then sending the two obfusca-

tions. Indeed, decryption can be done just as before by first reconstructing the
expanded garbled circuit and input labels and then proceeding as before. Also,

From Cryptomania to Obfustopia Through Secret-Key 399

in terms of encryption complexity, provided that the IBE compression factor γ
is a small enough constant, the entire encryption time will scale only sublinearly
in the function’s size |f | = L (i.e., with Lβ for some constant β < 1).

The only question is of course security. It is not too hard to see that if the
decomposition circuits Ede

K,K′,PK, Ude
m,K are given as black-boxes then security is

guaranteed just as before. The challenge is to prove security relying only on the
indistinguishability guarantee of SXIO. A somewhat similar challenge is encoun-
tered in the work of Bitansky et al. [12] when constructing succinct randomized
encodings. In their setting, they obfuscate (using standard IO rather than SXIO)
a decomposition circuit Cde

x,K (analogous to our Ude
m,K) that computes the garbled

gates of some succinctly represented long computation.
As already demonstrated in [12], proving the security of such a construction is

rather delicate. As in the standard setting of garbled circuits, the goal is to grad-
ually transition through a sequence of hybrids, from a real garbled circuit (that
depends on the actual computation) to a simulated garbled circuit that depends
just on the result of the computation. However, unlike the standard setting, here
each of these hybrids should be generated by a hybrid obfuscated decomposition
circuit and the attacker should not be able to tell them apart. As it turns out,
“common IO gymnastics” are insufficient here, and we need to rely on the spe-
cific hybrid strategy used to transition between the different garbling modes is the
proof of security for standard garbled circuits. One feature of the hybrid strategy
which is dominant in this context is the amount of information that hybrid decom-
position circuits need to maintain about the actual computation. Indeed, as the
amount of this information grows so will the size of these decomposition circuits
as will the size of the decomposition circuits in the actual construction (that will
have to be equally padded to preserve indistinguishability).

Bitansky et al. show a hybrid strategy where the amount of information
scales with the space of the computation (or circuit width). Whereas in their
context this is meaningful (as the aim is to save comparing to the time of the
computation), in our context this is clearly insufficient. Indeed, in our case the
space of the computation given by the universal circuit Um and the function f
can be as large as f ’s description. Instead, we invoke a different hybrid strategy
by Hemenway et al. [37] that scales only with the circuit depth. Indeed, this
is the cause for the polynomial dependence on depth in our single-key PKFE
construction. Below, we further elaborate on the Hemenway et al. hybrid strategy
and how it is imported into our setting.

Decomposable Garbling and Pebbling. The work of Hemenway et al. [37]
provided a useful abstraction for proving the security of Yao’s garbled circuits
via a sequence of hybrid games. The goal is to transition from a “real” gar-
bled circuit, where each garbled gate is in “RealGate” mode consisting of four
ciphertexts encrypting the two labels k0

c , k1
c of the output wire c under the labels

of the input wires, to a “simulated” garbled circuit where each garbled gate
is in SimGate mode consisting of four ciphertexts that all encrypt the same
dummy label k0

c . As an intermediate step, we can also create a garbled gate in
CompDepSimGate mode consisting of four ciphertexts encrypting the same label

400 N. Bitansky et al.

k
v(c)
c where v(c) is the value going over wire c during the computation C(x) and

therefore depends on the actual computation.
The transition from a real garbled circuit to a simulated garbled circuit pro-

ceeds via a sequence of hybrids where in each subsequent hybrid we can change
one gate at a time from RealGate to CompDepSimGate (and vice versa) if all of
its predecessors are in CompDepSimGate mode or it is an input gate, or change a
gate from CompDepSimGate mode to SimGate mode (and vice versa) if all of its
successors are in CompDepSimGate or SimGate modes. The goal of Hemenway
et al. was to give a strategy using the least number of gates in CompDepSimGate
mode as possible.3 They abstracted this problem as a pebbling game and show
that for circuits of depth d there exists a sequence of 2O(d) hybrids with at most
O(d) gates in CompDepSimGate mode in any single hybrid.

In our case, we can give a decomposable circuit for each such hybrid game
consisting of gates in RealGate,SimGate,CompDepSimGate modes. In particular,
the decomposable circuit takes as input a gate index and outputs the garbled
gate in the correct mode. We only need to remember which gate is in which
mode, and for all gates in CompDepSimGate mode we need to remember the bit
v(c) going over the wire c during the computation C(x). It turns out that the
configuration of which mode each gate is in can be represented succinctly, and
therefore the number of bits we need to remember is roughly proportional to the
number of gates in CompDepSimGate mode in any given hybrid. Therefore, for
circuits of depth d, the decomposable circuit is of size O(d) and the number of
hybrid steps is 2O(d).

To ensure that the obfuscations of decomposable circuits corresponding to
neighboring hybrids are indistinguishable we also need to rely on standard punc-
turing techniques. In particular, the gates are garbled using a punctured PRF
and we show that in any transition between neighboring hybrids we can even
give the adversary the PRF key punctured only on the surrounding of the gate
whose mode is changed.

From SKFE to PKE: The Basic Idea. We end our technical exposition by
explaining the basic idea behind the construction of public-key encryption (PKE)
from SKFE. The construction is rather natural. Using subexponentially-secure
SKFE and the second part of Proposition 1, we can obtain a poly(λ)-secure
SXIO with a subconstant compression factor γ = o(1); concretely, it can be
for example O(1/ log log λ). We can now think about this obfuscator as a plain
(efficient) indistinguishability obfuscator for circuits with input length at most
log λ · log log λ.

Then, we take a construction of public-key encryption from IO and one-way
functions where the input-size of obfuscated circuits can be scaled down at the
expense of strengthening the one-way functions. For instance, following the basic
witness encryption paradigm in [27], the public key can be a pseudorandom string
PK = PRG(s) for a 2n/ log log n-secure length-doubling pseudorandom generator
3 Their aim was proving adaptive security, which is completely orthogonal to our aim.

However, for entirely different reasons, the above goal is useful in both their work
and ours.

From Cryptomania to Obfustopia Through Secret-Key 401

with seed length n = log λ · log log λ. Here the obfuscator is only invoked for
a circuit with inputs in {0, 1}n. An encryption of m is simply an obfuscation
of a circuit that has PK hardwired, and releases m only given a seed s such
that PK = PRG(s). Security follows essentially as in [27]. Note that in this
construction, we cannot expect more than 2n security, which is quasi-polynomial
in the security parameter λ.

How Does the Construction Circumvent the Asharov-Segev Barrier?
As noted earlier, Asharov and Segev [6] show that even exponentially secure
SKFE cannot lead to public-key encryption through a fully black-box construc-
tion (see their paper for details about the exact model). The reason that our
construction does not fall under their criteria lies in the transformation from
SKFE to SXIO with subconstant compression, and concretely in the Brakerski-
Komargodski-Segev [20] transformation from SKFE to t-input SKFE that makes
non-black-box use in the algorithms of the underlying SKFE scheme.

Organization. In Sect. 2, we provide preliminaries and basic definitions used
throughout the paper. In Sect. 3, we introduce the definition of SXIO and present
our construction based on SKFE schemes. In Sect. 4, we introduce a notion of
decomposable garbling. In Sect. 5, we present our construction of IO from PKE
and SXIO. In Sect. 6, we present a polynomially-secure PKE scheme from SKFE
schemes.

2 Preliminaries

2.1 Standard Computational Concepts

We rely on the standard notions of Turing machines and Boolean circuits.

– We say that a (uniform) Turing machine is PPT if it is probabilistic and runs
in polynomial time.

– A polynomial-size (or just polysize) circuit family C is a sequence of circuits
C = {Cλ}λ∈N

, such that each circuit Cλ is of polynomial size λO(1) and has
λO(1) input and output bits.

– We follow the standard habit of modeling any efficient adversary strategy as
a family of polynomial-size circuits. For an adversary A corresponding to a
family of polysize circuits {Aλ}λ∈N

, we often omit the subscript λ, when it is
clear from the context.

– We say that a function f : N → R is negligible if for all constants c > 0, there
exists N ∈ N such that for all n > N , f(n) < n−c.

– If X (b) = {X
(b)
λ }λ∈N for b ∈ {0, 1} are two ensembles of random variables

indexed by λ ∈ N, we say that X (0) and X (1) are computationally indistin-
guishable if for all polysize distinguishers D, there exists a negligible function
ν such that for all λ, |Pr[D(X(0)

λ) = 1] − Pr[D(X(1)
λ) = 1]| ≤ ν(λ).

402 N. Bitansky et al.

2.2 Functional Encryption

Definition 1. (Multi-input secret-key functional encryption). Let t(λ)
be a function, M = {Mλ = M(1)

λ × · · · × M(t(λ))
λ }λ∈N be a product message

domain, Y = {Yλ}λ∈N
a range, and F = {Fλ}λ∈N

a class of t-input functions
f : Mλ → Yλ. A t-input secret-key functional encryption (t-SKFE) scheme for
M,Y,F is a tuple of algorithms SKFEt = (Setup,KeyGen,Enc,Dec) where:

– Setup(1λ) takes as input the security parameter and outputs a master secret
key MPK.

– KeyGen(MSK, f) takes as input the master secret MPK and a function f ∈ F .
It outputs a secret key SKf for f .

– Enc(MSK,m, i) takes as input the master secret key MPK, a message m ∈
M(i)

λ , and an index i ∈ [t(λ)], and outputs a ciphertext CTi.
– Dec(SKf ,CT1, . . . ,CTt) takes as input the secret key SKf for a function f ∈ F

and ciphertexts CT1, . . . ,CTt, and outputs some y ∈ Y, or ⊥.

Correctness: For all tuples m = (m1, . . . ,mt) ∈ Mλ and any function f ∈ Fλ,
we have that

Pr

⎡

⎣Dec(SKf ,CT1, . . . ,CTt) = f(m) :
MSK ← Setup(1λ),
SKf ← KeyGen(MSK, f),
∀i CTi ← Enc(MSK,m, i)

⎤

⎦ = 1

Definition 2. (Selectively-secure multi-key t-SKFE). We say that a tuple
of algorithms SKFEt = (Setup,KeyGen,Enc,Dec) is a selectively-secure t-input
secret-key functional encryption scheme for M,Y,F , if it satisfies the following
requirement, formalized by the experiment ExptSKFEt

A (1λ, b) between an adversary
A and a challenger:

1. The adversary submits challenge message tuples
{

(m0
i,1,m

1
i,1, i)

}

i∈[t]
, . . . ,

{

(m0
i,q,m

1
i,q, i)

}

i∈[t]
for all i ∈ [t] to the challenger where q is an arbitrary

polynomial in λ.
2. The challenger runs MSK ← Setup(1λ)
3. The challenger generates ciphertexts CTi,j ← Enc(MSK,mb

i,j , i) for all i ∈ [t]
and j ∈ [q], and gives {CTi,j}i∈[t],j∈[q] to A.

4. A is allowed to make q function queries, where it sends a function fj ∈ F to
the challenger for j ∈ [q] and q is an arbitrary polynomial in λ. The challenger
responds with SKfj

← KeyGen(MSK, fj).
5. A outputs a guess b′ for b.
6. The output of the experiment is b′ if the adversary’s queries are valid:

fj(m0
1,j1 , . . . ,m

0
t,jt

) = fj(m1
1,j1 , . . . ,m

1
t,jt

) for all j1, . . . , jt, j ∈ [q].

Otherwise, the output of the experiment is set to be ⊥.

From Cryptomania to Obfustopia Through Secret-Key 403

We say that the functional encryption scheme is selectively-secure if, for all
polysize adversaries A, there exists a negligible function μ(λ), such that

AdvSKFEt

A =
∣

∣

∣Pr
[

ExptSKFEt

A (1λ, 0) = 1
]

− Pr
[

ExptSKFEt

A (1λ, 1) = 1
]∣

∣

∣ ≤ μ(λ).

We further say that SKFEt is δ-selectively-secure, for some concrete negligible
function δ(·), if the above indistinguishability gap μ(λ) is smaller than δ(λ)Ω(1).

We recall the following theorem by Brakerski, Komargodski, and Segev, which
states that one can build selectively-secure t-SKFE from any selectively-secure
1-SKFE. The transformation induces a significant blowup and security loss in
the number of inputs t. This loss is polynomial as long as t is constant, but in
general grows doubly-exponentially in t.

Theorem 3. [20]

1. For t = O(1), if there exists δ-selectively-secure single-input SKFE for P/poly,
then there exists δ-selectively-secure t-input SKFE for P/poly.

2. There exists a constant ε < 1, such that for t(λ) = ε · log log(λ), λ̃ = 2(log λ)ε

,
δ(λ̃) = 2−λ̃ε

, if there exists δ-selectively-secure single-input SKFE for P/poly,
then there exists polynomially-secure selectively-secure t-input SKFE for func-
tions of size at most 2O((log λ)ε). (Here λ̃ is the single-input SKFE security
parameter and λ is the t-input SKFE security parameter.)

Remark 1. (Dependence on circuit size in [20]). The [20] transformation incurs
a (s · λ̃)2

O(t)
blowup in parameters, where s is the size of maximal circuit size

of supported functions, and λ̃ is the security parameter used in the underlying
single-input SKFE. In the main setting of parameters considered there, t = O(1),
the security parameter λ of the t-SKFE scheme can be identified with λ̃ and s
can be any polynomial in this security parameter. (Accordingly, the dependence
on s is implicit there, and the blowup they address is λ2O(t)

.)
For the second part of the theorem, to avoid superpolynomial blowup in λ,

the security parameter λ̃ for the underlying SKFE and the maximal circuit size
s should be set to 2O((log λ)ε).

Definition 3. (Public-key functional encryption). Let M = {Mλ}λ∈N
be

a message domain, Y = {Yλ}λ∈N
a range, and F = {Fλ}λ∈N

a class of functions
f : M → Y. A public-key functional encryption (PKFE) scheme for M,Y,F is
a tuple of algorithms PKFE = (Setup,KeyGen,Enc,Dec) where:

– Setup(1λ) takes as input the security parameter and outputs a master secret
key MSK and master public key MPK.

– KeyGen(MSK, f) takes as input the master secret MSK and a function f ∈ F .
It outputs a secret key SKf for f .

– Enc(MPK,m) takes as input the master public key MPK and a message m ∈
M, and outputs a ciphertext c.

– Dec(SKf , c) takes as input the secret key SKf for a function f ∈ F and a
ciphertext c, and outputs some y ∈ Y, or ⊥.

404 N. Bitansky et al.

Correctness: For any message m ∈ M and function f ∈ F , we have that

Pr

⎡

⎣Dec(SKf , c) = f(m) :
(MSK,MPK) ← Setup(1λ),
SKf ← KeyGen(MSK, f),
c ← Enc(MPK,m)

⎤

⎦ = 1

Definition 4. (Selectively-secure single-key PKFE). We say that a tuple
of algorithm PKFE = (Setup,KeyGen,Enc,Dec) is a selectively-secure single-key
public-key functional encryption scheme for M,Y,F , if it satisfies the following
requirement, formalized by the experiment ExptPKFEA (1λ, b) between an adversary
A and a challenger:

1. A submits the message pair m∗
0,m

∗
1 ∈ M and a function f to the challenger.

2. The challenger runs (MSK,MPK) ← Setup(1λ), generates ciphertext CT∗ ←
Enc(MPK,m∗

b) and a secret key SKf ← KeyGen(MSK, f). The challenger gives
(MPK,CT∗, skf) to A.

3. A outputs a guess b′ for b.
4. The output of the experiment is b′ if f(m∗

0) = f(m∗
1) and ⊥ otherwise.

We say that the public-key functional encryption scheme is selectively-secure if,
for all PPT adversaries A, there exists a negligible function μ(λ), such that

AdvPKFEA =
∣

∣

∣Pr
[

ExptPKFEA (1λ, 0) = 1
]

− Pr
[

ExptPKFEA (1λ, 1) = 1
]∣

∣

∣ ≤ μ(λ).

We further say that PKFE is δ-selectively secure, for some concrete negligible
function δ(·), if for all polysize distinguishers the above indistinguishability gap
μ(λ) is smaller than δ(λ)Ω(1).

We now further define a notion of succinctness for functional encryption
schemes as above.

Definition 5. (Weakly Succinct functional encryption). For a class of
functions F = {Fλ} over message domain M = {Mλ}, we let:

– n(λ) be the input length of the functions in F ,
– s(λ) = maxf∈Fλ

|f | be a bound on the circuit size of functions in Fλ,
– d(λ) = maxf∈Fλ

depth(f) a bound on the depth, and

A functional encryption scheme is

– weakly succinct [14] if the size of the encryption circuit is bounded by sγ ·
poly(n, λ, d), where poly is a fixed polynomial, and γ < 1 is a constant. We
call γ the compression factor.

The following result from [14, Sect. 3.2] states that one can construct an
indistinguishability obfuscator from any single-key weakly succinct public-key
functional encryption scheme.

Theorem 4. ([14]). If there exists a subexponentially secure single-key weakly
succinct PKFE scheme, then there exists an indistinguishability obfuscator.

From Cryptomania to Obfustopia Through Secret-Key 405

2.3 Indistinguishability Obfuscation

Definition 6. (Indistinguishability obfuscator (IO) [8,9]). A PPT
machine iO is an indistinguishability obfuscator for a circuit class {Cλ}λ∈N if
the following conditions are satisfied:

– Functionality: for all security parameters λ ∈ N, for all C ∈ Cλ, for all
inputs x, we have that Pr[C ′(x) = C(x) : C ′ ← iO(C)] = 1.

– Indistinguishability: for any polysize distinguisher D, there exists a negli-
gible function μ(·) such that the following holds: for all security parameters
λ ∈ N, for all pairs of circuits C0, C1 ∈ Cλ of the same size and such that
C0(x) = C1(x) for all inputs x, then

∣

∣Pr
[D(iO(C0)) = 1

] − Pr
[D(iO(C1)) = 1

]∣

∣ ≤ μ(λ) .

We further say that iO is δ-secure, for some concrete negligible function δ(·), if
for all polysize distinguishers the above indistinguishability gap μ(λ) is smaller
than δ(λ)Ω(1).

2.4 Succinct Identity-Based Encryption

We define identity-based encryption (IBE) [48] with a succinctness properties.

Definition 7. (Succinct IBE with γ-compression). Let M be some mes-
sage space and ID be an identity space. A succint IBE scheme with γ-
compression for M, ID is a tuple of algorithms (Setup,KeyGen,Enc,Dec) where:

– Setup(1λ) is takes as input the security parameter and outputs a master secret
key MSK and a master public key MPK.

– KeyGen(MSK, id) takes as input the master secret MSK and an identity id ∈
ID. It outputs a secret key SKid for id.

– Enc(MPK, id,m) takes as input the public-parameter MPK, an identity id ∈
ID, and a message m ∈ M, and outputs a ciphertext c.

– Dec(SKid, c) takes as input the secret key SKid for an identity id ∈ ID and a
ciphertext c, and outputs some m ∈ M, or ⊥.

We require the following properties:

Correctness: For any message m ∈ M and identity id ∈ ID, we have that

Pr

⎡

⎣Dec(SKid, c) = m :
(MSK,MPK) ← Setup(1λ),
SKid ← KeyGen(MSK, id),
c ← Enc(MPK, id,m)

⎤

⎦ = 1

Succinctness: For any security parameter λ ∈ N, identity space ID, the size of
the encryption circuit Enc, for messages of size 	, is at most |ID|γ · poly(λ,).

In this work, we shall consider the following selective-security.

406 N. Bitansky et al.

Definition 8. (Selectively-secure IBE). A tuple of algorithms IBE = (Setup,
KeyGen,Enc,Dec) is a selectively-secure IBE scheme for M, ID if it satisfies
the following requirement, formalized by the experiment ExptIBEA (1λ, b) between
an adversary A and a challenger:

1. A submits the challenge identity id∗ ∈ ID and the challenge messages
(m∗

0,m
∗
1) to the challenger.

2. The challenger runs (MSK,MPK) ← Setup(1λ), generates ciphertext CT∗ ←
Enc(MPK,m∗

b) and gives (MPK,CT∗) to A.
3. A is allowed to query (polynomially many) identities id ∈ ID such that id �=

id∗. The challenger gives SKid ← KeyGen(1λ,MSK, id) to the adversary.
4. A outputs a guess b′ for b. The experiment outputs 1 if b′ = b, 0 otherwise.

We say the IBE scheme is selectively-secure if, for all PPT adversaries A, there
exists a negligible function μ(λ), it holds

AdvIBEA =
∣

∣

∣Pr[ExptIBEA (1λ, 0) = 1] − Pr[ExptIBEA (1λ, 1) = 1]
∣

∣

∣ ≤ μ(λ).

We further say that IBE is δ-selectively secure, for some concrete negligible func-
tion δ(·), if for all polysize distinguishers the above indistinguishability gap μ(λ)
is smaller than δ(λ)Ω(1).

Theorem 5. For any β < γ < 1, assuming there exists a β-compressing
SXIO scheme for P/poly (defined in Sect. 3), a puncturable PRF, and a plain
PKE scheme, there exists a succinct IBE scheme with γ-compression. Moreover,
assuming the underlying primitives are δ-secure so is the resulting IBE scheme.

We omit the proof of this theorem due to the limited space. See the full version
of this paper [13].

We also omit the definition of puncturable PRF and (plain) PKE due to the
limited space. Puncturable PRFs are constructed from OWFs [18,19,31,39]. See
the full version of this paper [13] or references therein.

3 Strong Exponentially-Efficient Indistinguishability
Obfuscation

Lin, Pass, Seth, and Telang [43] propose a variant of IO that has a weak (yet
non-trivial) efficiency, which they call exponentially-efficient IO (XIO). All that
this notion requires in terms of efficiency is that the size of an obfuscated circuit
is sublinear in the size of the corresponding truth table. They also refer to a
stronger notion that requires that also the time to obfuscate a given circuit
is sublinear in the size of the truth table. This notion, which we call strong
exponentially-efficient IO (SXIO), serves as one of the main abstractions in our
work.

From Cryptomania to Obfustopia Through Secret-Key 407

Definition 9 (Strong exponentially-efficient indistinguishability obfus-
cation (SXIO) [43]). For a constant γ < 1, a machine sxiO is a γ-compressing
strong exponentially-efficient indistinguishability obfuscator (SXIO) for a cir-
cuit class {Cλ}λ∈N if it satisfies the functionality and indistinguishability in
Definition 6 and the following efficiency requirements:

Non-trivial Time Efficiency: for any security parameter λ ∈ N and circuit
C ∈ {Cλ}λ∈N with input length n, the running time of sxiO on input (1λ, C) is
at most 2nγ · poly(λ, |C|).

3.1 SXIO from Single-Input SKFE

In this section, we show that we can construct SXIO from any selectively-secure
t-input SKFE scheme. We recall that such a t-SKFE scheme can be constructed
from any selectively-secure 1-SKFE scheme, as stated in Theorem 3.

Theorem 6. For any function t(λ), if there exists δ-selectively-secure t-SKFE
for P/poly, then there exists 1

t+1 -compressing δ-secure SXIO for P/poly.

The idea of the construction of SXIO from SKFE is explained in the introduction.
We immediately obtain the following corollary from Theorems 3 and 6.

Corollary 2. 1. If there exists δ-selectively-secure single-input SKFE for
P/poly, then there exists γ-compressing δ-secure SXIO for P/poly where γ < 1
is an arbitrary constant.

2. Let ε < 1 be a constant and λ̃ = 2(log λ)ε

. If there exists 2−λ̃Ω(1)
-selectively-

secure single-input SKFE for P/poly, then there exists polynomially-secure
SXIO with compression factor γ(λ) = O(1/ log log λ) for circuits of size at
most 2O((log λ)ε). (Here λ̃ is the single-input SKFE security parameter and λ
is the SXIO security parameter.)

3.2 The Construction of SXIO

In what follows, given a circuit C, we identify its input space with [N] =
{1, . . . , N} (so in particular, N = 2n if C takes n-bit strings as input). Let
SKFEt = (Setup,KeyGen,Enc,Dec) be a selectively-secure t-input secret-key
functional encryption scheme.

Construction. We construct an SXIO scheme sxiO as follows.

sxiO(1λ, C): For every j ∈ [N1/(t+1)]:

– let Uj be the t-input universal circuit that given j1, . . . , jt−1 ∈ [N1/(t+1)] and
a t-input circuit D, returns D(j1, . . . , jt−1, j).

– let Cj be the t-input circuit that given j1, . . . , jt ∈ [N1/(t+1)] returns
C(j1, . . . , jt, j).

408 N. Bitansky et al.

1. Generate MSK ← Setup(1λ).
2. Generate CTt,j ← Enc(MSK, Cj , t) for j ∈ [N1/(t+1)].
3. Generate CTi,j ← Enc(MSK, j, i) for i ∈ [t − 1] and j ∈ [N1/(t+1)].
4. Generate SKUj

← KeyGen(MSK, Uj) for j ∈ [N1/(t+1)]
5. sxiO(C) = ({CTi,j}i∈[t],j∈[N1/(t+1)], {SKUj

}j∈[N1/(t+1)])

Eval(sxiO, x): To evaluate the obfuscated circuit, convert x ∈ [N] into (j1, . . . , jt,
jt+1) ∈ [N1/(t+1)](t+1) and output Dec(SKUjt+1

,CT1,j1 , . . . ,CTt,jt
) .

We omit the proof due to the limited space. See the full version [13].

Remark 2 (SXIO from succinct single-key SKFE). To get t-input SKFE as
required above from 1-input SKFE, via the [20] transformation, the original
SKFE indeed has to support an unbounded polynomial number of functional
keys. We note that a similar SXIO construction is possible from a 1-input SKFE
that supports a functional key for a single function f , but is succinct in the sense
that encryption only grows mildly with the complexity of f , namely with |f |β
for some constant β < 1.

In more detail, assume a (1-input) single-key SKFE with succinctness as
above, where the time to derive a key for a function f is bounded by |f |c ·poly(λ)
for some constant c ≥ 1. The SXIO will consist of a single key for the function
f that given as input Cj , as defined above, returns Cj(1), . . . , Cj(N

1
c+1−β), and

encryptions of C1, . . . , CNc−β/c+1−β . Accordingly we still get SXIO with compres-
sion factor γ = 1− 1−β

c+1−β . This does not lead to arbitrary constant compression
(in contrast with the theorem above), since 1

2 ≤ γ < 1. Yet, it already suffices
to obtain IO, when combined with LWE (as in Corollary 1).

4 Yao’s Garbled Circuits Are Decomposable

In this section, we define the notion of decomposable garbled circuits. We can
prove that the classical Yao’s garbled circuit construction satisfies our definition
of decomposability (in some parameter regime) though we omit the details about
the proof due to the limited space. We use a decomposable garbling scheme as
a building block to construct a PKFE scheme in Sect. 5.1.

4.1 Decomposable Garbling

Circuit garbling schemes [10,50] typically consist of algorithms (Gar.CirEn,
Gar.InpEn,Gar.De). Gar.CirEn(C,K) is a circuit garbling algorithm that given
a circuit C and secret key K, produces a garbled circuit ̂C. Gar.InpEn(x,K) is
an input garbling algorithm that takes an input x and the same secret key K,
and produces a garbled input x̂. Gar.De(̂C, x̂) is a decoder that given the garbled
circuit and input decodes the result y.

From Cryptomania to Obfustopia Through Secret-Key 409

In this work, we shall particularly be interested in garbling decomposable
circuits. A decomposable circuit C can be represented by a smaller circuit Cde

that can generate each of the gates in the circuit C (along with pointers to their
neighbours). When garbling such circuits, we shall require that the garbling
process will also be decomposable and will admit certain decomposable security
properties. We next formally define the notion of decomposable circuits and
decomposable garbling schemes.

Definition 10 (Decomposable Circuit). Let C : {0, 1}n → {0, 1} be a
boolean circuit with L binary gates and W wires. Each gate g ∈ [L] has an
associated tuple (f, wa, wb, wc) where f : {0, 1}2 → {0, 1} is the binary function
computed by the gate, wa, wb ∈ [W] are the incoming wires, and wc ∈ [W] is
the outgoing wire. A wire wc can be the outgoing wire of at most a single gate,
but can be used as an incoming wire to several different gates and therefore this
models a circuit with fan-in 2 and unbounded fan-out. We define the predecessor
gates of g to be the gates whose outgoing wires are wa, wb (at most 2 of them).
We define the successor gates of g to be the gates that have wc as an incoming
wire. The gates are topologically ordered and labeled by 1, . . . , L so that if j is a
successor of i then i < j. A wire w is an input wire if it is not the outgoing wire
of any gate. We assume that the wires 1, . . . , n are the input wires. There is a
unique output wire w which is not an incoming wire to any gate.

We say that C is decomposable if there exists a smaller circuit Cde, called
the decomposition circuit, that given a gate label g ∈ [L] as input, outputs the
associated tuple Cde(g) = (f, wa, wb, wc).

Definition 11 (Decomposable Garbling). A decomposable garbling scheme
consists of a tuple of three deterministic polynomial-time algorithms (Gar.CirEn,
Gar.InpEn,Gar.De) that work as follows:

– ̂bi ← Gar.InpEn(i, b;K): takes as an input label i ∈ [n], a bit b ∈ {0, 1}, and
secret key K ∈ {0, 1}λ, and outputs a garbled input bit ̂bi.

– ̂Gg ← Gar.CirEn(Cde, g;K): takes as input a decomposition circuit Cde :
{0, 1}L → {0, 1}∗, a gate label g ∈ [L], and secret key K ∈ {0, 1}λ, and
outputs a garbled gate ̂Gg.

– y ← Gar.De(̂C,̂b): takes as input garbled gates ̂C =
{

̂Gg

}

g∈[L]
, and garbled

input bits ̂b =
{

̂bi

}

i∈[n]
, and outputs y ∈ {0, 1}m.

The scheme should satisfy the following requirements:

1. Correctness: for every decomposable circuit C with decomposition circuit
Cde and any input b1, . . . , bn ∈ {0, 1}n, the decoding procedure Gar.De produces
the correct output y = C(b1, . . . , bn).

2. (σ, τ, δ)-Decomposable Indistinguishability: There are functions
σ(Φ, s, λ), τ(Φ) ∈ N, δ(λ) ≤ 1 such that for any security parameter λ, any
input x ∈ {0, 1}n, and any two circuits (C,C ′) that:

410 N. Bitansky et al.

– have the same topology Φ, and in particular the same size L and input-
output lengths (n,m),

– have decomposition circuits (Cde, C
′
de) of the same size s

– and agree on x: C(x) = C ′(x),
there exist hybrid circuits

{

Gar.HInpEn(t),Gar.HCirEn(t)
∣

∣

∣ t ∈ [τ]
}

, each being
of size at most σ, as well as (possibly inefficient) hybrid functions
{

Gar.HPunc(t)
∣

∣

∣ t ∈ [τ]
}

with the following syntax:

– (K(t)
pun, g

(t)
pun, i

(t)
pun) ← Gar.HPunc(t)(K), given a key K ∈ {0, 1}λ and an

index t ∈ [τ], outputs a punctured key K
(t)
pun, a gate label g

(t)
pun ∈ [L], and

an input label i
(t)
pun ∈ [n].

– ̂Gg ← Gar.HCirEn(t)(g;K), given a gate label g ∈ [L], and a (possibly
punctured) key K, outputs a fake garbled gate ̂Gg.

– ̂bi ← Gar.HInpEn(t)(i, b;K), given an input label i ∈ [n], and a (possibly
punctured) key K, outputs a fake garbled input bit ̂bi.

We require that the following properties hold:
(a) The hybrids transition from C to C ′: For any K ∈ {0, 1}λ, g ∈ [L],

i ∈ [n], b ∈ {0, 1}, we have:
Gar.CirEn(Cde, g;K) = Gar.HCirEn(1)(g;K),
Gar.InpEn(i, b;K) = Gar.HInpEn(1)(i, b;K),
Gar.CirEn(C ′

de, g;K) = Gar.HCirEn(τ)(g;K),
Gar.InpEn(i, b;K) = Gar.HInpEn(τ)(i, b;K).

(b) Punctured keys preserve functionality: For any K ∈ {0, 1}λ, and
t ∈ [τ − 1], and letting (K(t)

pun, g
(t)
pun, i

(t)
pun) = Gar.HPunc(t)(K), it holds that,

for any g �= g
(t)
pun, we have Gar.HCirEn(t)(g;K) = Gar.HCirEn(t)(g;K(t)

pun) =
Gar.HCirEn(t+1)(g,K),
and for any i �= i

(t)
pun and b ∈ {0, 1}, we have Gar.HInpEn(t)(i, b;K) =

Gar.HInpEn(t)(i, b;K(t)
pun) = Gar.HInpEn(t+1)(i, b;K).

(c) Indistinguishability on punctured inputs: For any polysize distin-
guisher D, security parameter λ ∈ N, and circuits (C,C ′) as above,

∣

∣

∣ Pr
[

D
(

ĝ(t)pun, î
(t)
pun,Gar.HPunc

(t)(K)
)

= 1
]

−

Pr
[

D
(

ĝ(t+1)
pun , î(t+1)

pun ,Gar.HPunc(t)(K)
)

= 1
] ∣

∣

∣ ≤ δ(λ) ,

where, for t ≥ 0 we denote by ĝ
(t)
pun the value Gar.HCirEn(t)(g(t)pun;K) and by

î
(t)
pun the value Gar.HInpEn(t)(i(t)pun, xi

(t)
pun

;K), with x being the input on which

the two circuits C and C ′ agree on. The probability is over K ← {0, 1}λ,
and (K(t)

pun, g
(t)
pun, i

(t)
pun) = Gar.HPunc(t)(K).

We show that Yao’s garbled circuit scheme, in fact, gives rise to a decom-
posable garbling scheme where the security loss and size of the hybrid circuits
scales with the depth of the garbled circuits.

From Cryptomania to Obfustopia Through Secret-Key 411

Theorem 7. Let C = {Cλ}λ∈N
be a class of boolean circuits where each C ∈ Cλ

has circuit size at most L(λ), input size at most n(λ), depth at most d(λ), fan-out
at most ϕ(λ), and decomposition circuit of size at most Δ(λ). Then assuming the
existence of δ-secure one-way functions, C has a decomposable garbling scheme
with (σ, τ, δ)-decomposable indistinguishability where the bound on the size of
hybrid circuits is σ = poly(λ, d, log L,ϕ,Δ), the number of hybrids is τ = L ·
2O(d), and the indistinguishability gap is δΩ(1).

The proof is omitted due to the limited space. See the full version [13]. We
rely heavily on the ideas of Hemenway et al. [37] which considered an orthogonal
question of adaptively secure garbling schemes but (for entirely different reasons)
developed ideas that are useful for decomposable garbling.

5 Single-Key Succinct PKFE from SXIO and PKE

This section consists of three subsections. The main part is constructing a weakly
succinct PKFE scheme for boolean functions in Sect. 5.1. In Sect. 5.2, we present
a transformation from weakly succinct PKFE schemes for boolean functions into
ones for non-boolean functions. Lastly, we explain how the pieces come together
to give IO from SKFE in Sect. 5.3.

5.1 Weakly Succinct PKFE for Boolean Functions

We now construct a single-key weakly succinct PKFE scheme for the class of
boolean functions. The construction is based on succinct IBE, decomposable
garbling, and SXIO.

Theorem 8. Let C = {Cλ}λ∈N
be a family of circuits with a single output bit and

let n(λ), s(λ), d(λ) be bounds on their input length, size, and depth (respectively).
For any constants β, γ such that 3β < γ < 1, assuming a δ-secure, β-compressing
SXIO for P/poly, there exists a constant α, such that given any δ-secure, α-
compressing IBE, and δ-secure one-way functions, there exists a 2dsδ-secure
succinct PKFE for C with compression factor γ.

Depth Preserving Universal Circuits. To prove the above theorem, we recall
the existence of depth preserving universal circuits [23]. Concretely, any family of
circuits C as considered in Theorem 8 has a uniform family of universal circuits
{Uλ}λ∈N

with fan-out λ,4 depth O(d), and size s3 · polylog(s), for some fixed
polynomial poly. Each such circuit takes as input a description (f1, . . . , fs) of a
function in C and an input (x1, . . . , xn) and outputs f(x). Furthermore, unifor-
mity here means that each circuit has a decomposition circuit of size polylog(s).

4 The restriction regarding fan-out is not stated explicitly in [23], but can always be
achieved by blowing up the size and depth by a factor of at most O(1).

412 N. Bitansky et al.

Ingredients and Notation Used in the Construction

– We denote by U (x) : {0, 1}s → {0, 1} the universal circuit, with x ∈ {0, 1}n

being a hardwired bitstring, such that on input (f1, . . . , fs), the circuit U (x)

outputs f(x). This circuit has a decomposition circuit of size poly(n, log(s)),
which we denote by U

(x)
de . We also denote by L the number of gates in the

circuit U (x).
– Let sxiO be a δ-secure, β-compressing SXIO scheme.
– Let IBE = (IBE.Setup, IBE.KeyGen, IBE.Enc, IBE.Dec) be δ-secure, succinct,

IBE scheme with α-compression for the identity space being ID = [s]×{0, 1}.
– Let (Gar.CirEn,Gar.InpEn,Gar.De) be a decomposable garbling scheme with

(σ, τ, δ)-decomposable indistinguishability where τ = s2O(d) and σ =
poly(λ, n, d, log(s)). Such schemes are implied by δ-secure one-way functions
(Theorem 7).

– Let PPRF = (PRF.Gen,PRF.Ev,PRF.Punc) be a δ-secure puncturable PRF.
These are implied by δ-secure one-way functions [18,19,31,39].

Construction. The scheme consists of the following algorithms.

PKFE.Setup(1λ):

– Run (MSKibe,MPKibe) ← IBE.Setup(1λ).
– Set MSK = MSKibe, MPK = MPKibe.

PKFE.Key(MSK, f):

– Compute SKi,fi
← IBE.KeyGen(MSKibe, (i, fi)) for i ∈ [s], where f =

(f1, . . . , fs).
– Return SKf = {SKi,fi

}i∈[s].

PKFE.Enc(MPK, x):

– Compute U
(x)
de and pick a garbling key K ← {0, 1}λ and a punctured key

S ← PRF.Gen(1λ);
– Generate an obfuscation ˜IGC = sxiO(1λ, IGC[K,S,MPK]) of the input garbling

circuit defined in Fig. 1;
– Generate an obfuscation ˜GGC = sxiO(1λ,GGC[K,U

(x)
de]) of the gate garbling

circuit defined in Fig. 2;
– Return CTx = (˜IGC, ˜GGC).

PKFE.Dec(SKf ,CTx):

– For i ∈ [s], run ˜IGC(i, fi) to obtain an IBE ciphertext, and decrypt the output
using SKi,fi

to obtain f̂i.
– For all g ∈ [L], run ˜GGC(g), in order to obtain the garbled gate ̂Gg.
– Return y ← Gar.De(̂C, f̂), with ̂C =

{

̂Gg

}

g∈[L]
and f̂ =

{

f̂i

}

i∈[s]
.

We omit the proof of correctness, succinctness, and security due to the limited
space. See the full version for the complete proof of Theorem 8 [13].

From Cryptomania to Obfustopia Through Secret-Key 413

Fig. 1. Circuit IGC[K,S,MPK]

Fig. 2. Circuit GGC[K,U
(x)
de]

5.2 Weakly Succinct PKFE for Non-Boolean Functions

In this section, we give a transformation from weakly succinct PKFE schemes
for boolean functions into ones for non-boolean functions.

Theorem 9. Let C = {Cλ}λ∈N
be a family of circuits (with multiple output

bits) and let n(λ), s(λ), d(λ) be bounds on their input length, size, and depth
(respectively). For any constants β < γ < 1, assuming a β-compressing SXIO
for P/poly, there exists a constant α, such that given any α-compressing weakly
succinct PKFE for boolean functions of size s · polylog(s) and depth O(d), and
one-way functions, there exists a succinct PKFE for C with compression factor γ.
If all primitives are δ-secure so is the resulting scheme.

The transformation is essentially the same transformation presented in [43,
Sect. 4], with the following differences:

– They use XIO rather than SXIO, which results in a PKFE scheme where
only the size of ciphertexts is compressed, whereas the time to encrypt may
be large. They then make an extra step, based on LWE, to make encryption
efficient. Using SXIO directly as we do, allows avoiding this step.

– They start from weakly succinct PKFE for boolean functions where the size
of ciphertexts is completely independent of the size s of the function class

414 N. Bitansky et al.

considered. Due to this, they can start from XIO with any compression factor
β < 1. In our notion of weakly succinct, there is dependence on sα, for some
α < 1, and we need to make sure that β and α are appropriately chosen to
account for this.

– As stated, their notion of weak succinctness for PKFE does not explicitly
scale with the depth of the function class considered. Eventually, they apply
their transformation to function classes in NC1, assuming puncturable PRFs
in NC1 (which exist under LWE). Our succinctness notion allows polynomial
dependence on the depth, which should be roughly preserved through the
transformation.

The transformation and proof of security are almost identical to the ones in
[43] and are omitted due to the limited space. See the full version [13].

5.3 Putting It All Together: From SKFE and PKE to IO

We obtain the following statements from the results proved in this section.

Theorem 10. Let C = {Cλ}λ∈N
be a family of circuits (with multiple output

bits) and let n(λ), s(λ), d(λ) be bounds on their input length, size, and depth
(respectively). Then, for any constant γ < 1, there exists a constant β, such that
given any δ-secure, β-compressing SXIO for P/poly, and δ-secure PKE, there
exists 2dsδ-secure, γ-compressing, weakly succinct PKFE for C.

Combining the above theorem with the result from Sect. 3, we obtain the
following corollary.

Corollary 3. If there exist (1-input) SKFE for P/poly and PKE, both subexpon-
entially-secure, then there exists IO for P/poly.

Remark 3 (The security loss). In order, the known reductions [3,14] of IO to
weakly-succinct PKFE incur a sub-exponential loss. Accordingly, reducing IO
to SKFE based on our results incurs a similar loss. However, when restricting
attention, to the transformation from SKFE to (weakly-succinct) PKFE, then
the loss is poly(2d, λ), for circuits of depth d. In particular, for NC1, our trans-
formation incurs only polynomial security loss. Such a PKFE for NC1, can then
be bootstrapped to all polynomial-size circuits using the transformation of [2],
and assuming also weak PRFs in NC1.

In concurrent work [30,41], it is shown that weakly-succinct single-key PKFE
can then be polynomially reduced to PKFE. In summary, SKFE and PRFs
in NC1 can be polynomially reduced to PKFE for all polynomial-size circuits.

6 Polynomially-Secure PKE from Secret-Key FE

In this section, we construct PKE from SKFE. Our starting point is Corollary 2
that directly follows from Theorems 3 and 6.

We now show how to construct a PKE scheme from such SXIO.

From Cryptomania to Obfustopia Through Secret-Key 415

The Construction. Let
{

PRG : {0, 1}n → {0, 1}2n
}

n∈N
be a length-doubling

pseudorandom generator that is 2−n/ log log n-secure. Let sxiO be a SXIO with
compression factor γ(λ) = O(1/ log log λ) (and poly(λ) security) for circuits of
size at most 2O((log λ)ε).

The scheme PKE = (KeyGen,Enc,Dec) is defined as follows:
KeyGen(1λ):

– Sample a PRG seed s ← {0, 1}log λ/γ(λ).
– Output PK = PRG(s) and SK = s.

Enc(PK, x):

– Construct the circuit WE[x,PK] that takes s′ ∈ {0, 1}log λ/γ(λ) as input and
outputs x if PK = PRG(s′) holds and ⊥ otherwise.

– Output CT = sxiO(WE[x,PK])

Dec(SK,CT):

– Compute x′ = CT(SK).

Proposition 3. PKE is a (polynomially-secure) public-key encryption scheme.

We omit the proof due the limited space. See the full version [13].

Acknowledgements. We thank Vinod Vaikuntanathan and Hoeteck Wee for valuable
discussions.

References

1. Agrawal, S., Gorbunov, S., Vaikuntanathan, V., Wee, H.: Functional encryption:
new perspectives and lower bounds. In: Canetti, R., Garay, J.A. (eds.) CRYPTO
2013. LNCS, vol. 8043, pp. 500–518. Springer, Heidelberg (2013). doi:10.1007/
978-3-642-40084-1 28

2. Ananth, P., Brakerski, Z., Segev, G., Vaikuntanathan, V.: From selective to
adaptive security in functional encryption. In: Gennaro, R., Robshaw, M. (eds.)
CRYPTO 2015. LNCS, vol. 9216, pp. 657–677. Springer, Heidelberg (2015). doi:10.
1007/978-3-662-48000-7 32

3. Ananth, P., Jain, A.: Indistinguishability obfuscation from compact functional
encryption. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9215,
pp. 308–326. Springer, Heidelberg (2015). doi:10.1007/978-3-662-47989-6 15

4. Ananth, P., Jain, A., Sahai, A.: Indistinguishability obfuscation from functional
encryption forsimple functions. Cryptology ePrint Archive, Report 2015/730
(2015). http://eprint.iacr.org/2015/730

5. Ananth, P., Sahai, A.: Functional encryption for turing machines. In: Kushilevitz,
E., Malkin, T. (eds.) TCC 2016. LNCS, vol. 9562, pp. 125–153. Springer, Heidelberg
(2016). doi:10.1007/978-3-662-49096-9 6

6. Asharov, G., Segev, G.: Limits on the power of indistinguishability obfuscation and
functional encryption. In: Guruswami, V. (ed.) 56th FOCS, pp. 191–209. IEEE
Computer Society Press, October 2015

http://dx.doi.org/10.1007/978-3-642-40084-1_28
http://dx.doi.org/10.1007/978-3-642-40084-1_28
http://dx.doi.org/10.1007/978-3-662-48000-7_32
http://dx.doi.org/10.1007/978-3-662-48000-7_32
http://dx.doi.org/10.1007/978-3-662-47989-6_15
http://eprint.iacr.org/2015/730
http://dx.doi.org/10.1007/978-3-662-49096-9_6

416 N. Bitansky et al.

7. Badrinarayanan, S., Gupta, D., Jain, A., Sahai, A.: Multi-input functional encryp-
tion for unbounded arity functions. In: Iwata, T., Cheon, J.H. (eds.) ASIACRYPT
2015. LNCS, vol. 9452, pp. 27–51. Springer, Heidelberg (2015). doi:10.1007/
978-3-662-48797-6 2

8. Barak, B., Goldreich, O., Impagliazzo, R., Rudich, S., Sahai, A., Vadhan, S.,
Yang, K.: On the (Im)possibility of obfuscating programs. In: Kilian, J. (ed.)
CRYPTO 2001. LNCS, vol. 2139, pp. 1–18. Springer, Heidelberg (2001). doi:10.
1007/3-540-44647-8 1

9. Barak, B., Goldreich, O., Impagliazzo, R., Rudich, S., Sahai, A., Vadhan, S.P.,
Yang, K.: On the (im)possibility of obfuscating programs. J. ACM 59(2), 6 (2012)

10. Bellare, M., Hoang, V.T., Rogaway, P.: Foundations of garbled circuits. In: Yu,
T., Danezis, G., Gligor, V.D. (eds.) ACM CCS 2012, pp. 784–796. ACM Press,
October 2012

11. Bellare, M., O’Neill, A.: Semantically-secure functional encryption: possibility
results, impossibility results and the quest for a general definition. In: Abdalla,
M., Nita-Rotaru, C., Dahab, R. (eds.) CANS 2013. LNCS, vol. 8257, pp. 218–234.
Springer, Heidelberg (2013). doi:10.1007/978-3-319-02937-5 12

12. Bitansky, N., Garg, S., Lin, H., Pass, R., Telang, S.: Succinct randomized encodings
and their applications. In: Servedio, R.A., Rubinfeld, R. (eds.) 47th ACM STOC,
pp. 439–448. ACM Press, June 2015

13. Bitansky, N., Nishimaki, R., Passelègue, A., Wichs, D.: From cryptomania to
obfustopia through secret-key functional encryption. IACR Cryptology ePrint
Archive 2016, 558 (2016)

14. Bitansky, N., Vaikuntanathan, V.: Indistinguishability obfuscation from functional
encryption. In: Guruswami, V. (ed.) 56th FOCS, pp. 171–190. IEEE Computer
Society Press, October 2015

15. Boneh, D., Gentry, C., Gorbunov, S., Halevi, S., Nikolaenko, V., Segev, G.,
Vaikuntanathan, V., Vinayagamurthy, D.: Fully key-homomorphic encryption,
arithmetic circuit ABE and compact garbled circuits. In: Nguyen, P.Q., Oswald,
E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 533–556. Springer, Heidelberg
(2014). doi:10.1007/978-3-642-55220-5 30

16. Boneh, D., Lewi, K., Raykova, M., Sahai, A., Zhandry, M., Zimmerman, J.: Seman-
tically secure order-revealing encryption: multi-input functional encryption with-
out obfuscation. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol.
9057, pp. 563–594. Springer, Heidelberg (2015). doi:10.1007/978-3-662-46803-6 19

17. Boneh, D., Sahai, A., Waters, B.: Functional encryption: definitions and challenges.
In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 253–273. Springer, Heidelberg
(2011). doi:10.1007/978-3-642-19571-6 16

18. Boneh, D., Waters, B.: Constrained pseudorandom functions and their applica-
tions. In: Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013. LNCS, vol. 8270, pp.
280–300. Springer, Heidelberg (2013). doi:10.1007/978-3-642-42045-0 15

19. Boyle, E., Goldwasser, S., Ivan, I.: Functional signatures and pseudorandom func-
tions. In: Krawczyk, H. (ed.) PKC 2014. LNCS, vol. 8383, pp. 501–519. Springer,
Heidelberg (2014). doi:10.1007/978-3-642-54631-0 29

20. Brakerski, Z., Komargodski, I., Segev, G.: Multi-input functional encryption in the
private-key setting: stronger security from weaker assumptions. In: Fischlin, M.,
Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9666, pp. 852–880. Springer,
Heidelberg (2016). doi:10.1007/978-3-662-49896-5 30

21. Brakerski, Z., Segev, G.: Function-private functional encryption in the private-key
setting. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015. LNCS, vol. 9015, pp. 306–324.
Springer, Heidelberg (2015). doi:10.1007/978-3-662-46497-7 12

http://dx.doi.org/10.1007/978-3-662-48797-6_2
http://dx.doi.org/10.1007/978-3-662-48797-6_2
http://dx.doi.org/10.1007/3-540-44647-8_1
http://dx.doi.org/10.1007/3-540-44647-8_1
http://dx.doi.org/10.1007/978-3-319-02937-5_12
http://dx.doi.org/10.1007/978-3-642-55220-5_30
http://dx.doi.org/10.1007/978-3-662-46803-6_19
http://dx.doi.org/10.1007/978-3-642-19571-6_16
http://dx.doi.org/10.1007/978-3-642-42045-0_15
http://dx.doi.org/10.1007/978-3-642-54631-0_29
http://dx.doi.org/10.1007/978-3-662-49896-5_30
http://dx.doi.org/10.1007/978-3-662-46497-7_12

From Cryptomania to Obfustopia Through Secret-Key 417

22. Canetti, R., Lin, H., Tessaro, S., Vaikuntanathan, V.: Obfuscation of probabilistic
circuits and applications. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015. LNCS, vol.
9015, pp. 468–497. Springer, Heidelberg (2015). doi:10.1007/978-3-662-46497-7 19

23. Cook, S.A., Hoover, H.J.: A depth-universal circuit. SIAM J. Comput. 14(4), 833–
839 (1985)

24. Caro, A., Iovino, V., Jain, A., O’Neill, A., Paneth, O., Persiano, G.: On the
achievability of simulation-based security for functional encryption. In: Canetti,
R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8043, pp. 519–535. Springer,
Heidelberg (2013). doi:10.1007/978-3-642-40084-1 29

25. Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.: Candidate
indistinguishability obfuscation and functional encryption for all circuits. In 54th
FOCS, pp. 40–49. IEEE Computer Society Press, October 2013

26. Garg, S., Gentry, C., Halevi, S., Zhandry, M.: Functional encryption without obfus-
cation. In: Kushilevitz, E., Malkin, T. (eds.) TCC 2016. LNCS, vol. 9563, pp.
480–511. Springer, Heidelberg (2016). doi:10.1007/978-3-662-49099-0 18

27. Garg, S., Gentry, C., Sahai, A., Waters, B.: Witness encryption and its applications.
In Boneh, D., Roughgarden, T., Feigenbaum, J. (eds.) 45th ACM STOC, pp. 467–
476. ACM Press, June 2013

28. Garg, S., Pandey, O., Srinivasan, A.: Revisiting the cryptographic hardness of find-
ing a nash equilibrium. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS, vol.
9815, pp. 579–604. Springer, Heidelberg (2016). doi:10.1007/978-3-662-53008-5 20

29. Garg, S., Pandey, O., Srinivasan, A., Zhandry, M.: Breaking the sub-exponential
barrier in obfustopia. Cryptology ePrint Archive, Report 2016/102 (2016). http://
eprint.iacr.org/2016/102

30. Garg, S., Srinivasan, A.: Unifying security notions of functional encryption. IACR
Cryptology ePrint Archive 2016:524 (2016)

31. Goldreich, O., Goldwasser, S., Micali, S.: How to construct random functions
(extended abstract). In: 25th FOCS, pp. 464–479. IEEE Computer Society Press,
October 1984

32. Goldwasser, S., Gordon, S.D., Goyal, V., Jain, A., Katz, J., Liu, F.-H., Sahai, A.,
Shi, E., Zhou, H.-S.: Multi-input functional encryption. In: Nguyen, P.Q., Oswald,
E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 578–602. Springer, Heidelberg
(2014). doi:10.1007/978-3-642-55220-5 32

33. Goldwasser, S., Kalai, Y.T., Popa, R.A., Vaikuntanathan, V., Zeldovich, N.:
Reusable garbled circuits and succinct functional encryption. In: Boneh, D.,
Roughgarden, T., Feigenbaum, J. (eds.) 45th ACM STOC, pp. 555–564. ACM
Press, June 2013

34. Gorbunov, S., Vaikuntanathan, V., Wee, H.: Functional encryption with bounded
collusions via multi-party computation. In: Safavi-Naini, R., Canetti, R. (eds.)
CRYPTO 2012. LNCS, vol. 7417, pp. 162–179. Springer, Heidelberg (2012). doi:10.
1007/978-3-642-32009-5 11

35. Gorbunov, S., Vaikuntanathan, V., Wee, H.: Predicate encryption for circuits from
LWE. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9216, pp.
503–523. Springer, Heidelberg (2015). doi:10.1007/978-3-662-48000-7 25

36. Goyal, V., Jain, A., Koppula, V., Sahai, A.: Functional encryption for randomized
functionalities. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015. LNCS, vol. 9015, pp.
325–351. Springer, Heidelberg (2015). doi:10.1007/978-3-662-46497-7 13

37. Hemenway, B., Jafargholi, Z., Ostrovsky, R., Scafuro, A., Wichs, D.: Adaptively
secure garbled circuits from one-way functions. In: Robshaw, M., Katz, J. (eds.)
CRYPTO 2016. LNCS, vol. 9816, pp. 149–178. Springer, Heidelberg (2016). doi:10.
1007/978-3-662-53015-3 6

http://dx.doi.org/10.1007/978-3-662-46497-7_19
http://dx.doi.org/10.1007/978-3-642-40084-1_29
http://dx.doi.org/10.1007/978-3-662-49099-0_18
http://dx.doi.org/10.1007/978-3-662-53008-5_20
http://eprint.iacr.org/2016/102
http://eprint.iacr.org/2016/102
http://dx.doi.org/10.1007/978-3-642-55220-5_32
http://dx.doi.org/10.1007/978-3-642-32009-5_11
http://dx.doi.org/10.1007/978-3-642-32009-5_11
http://dx.doi.org/10.1007/978-3-662-48000-7_25
http://dx.doi.org/10.1007/978-3-662-46497-7_13
http://dx.doi.org/10.1007/978-3-662-53015-3_6
http://dx.doi.org/10.1007/978-3-662-53015-3_6

418 N. Bitansky et al.

38. Impagliazzo, R.: A personal view of average-case complexity. In: Proceedings of the
Tenth Annual Structure in Complexity Theory Conference, Minneapolis, Minnesota,
USA, June 19–22, 1995, pp. 134–147. IEEE Computer Society (1995)

39. Kiayias, A., Papadopoulos, S., Triandopoulos, N., Zacharias, T.: Delegatable
pseudorandom functions and applications. In: Sadeghi, A.-R., Gligor, V.D., Yung,
M. (eds.) ACM CCS 13, pp. 669–684. ACM Press, November 2013

40. Komargodski, I., Segev, G., Yogev, E.: Functional encryption for randomized func-
tionalities in the private-key setting from minimal assumptions. In: Dodis, Y.,
Nielsen, J.B. (eds.) TCC 2015, Part II. LNCS, vol. 9015, pp. 352–377. Springer,
Heidelberg (2015)

41. Li, B., Micciancio, D.: Compactness vs collusion resistance in functional encryption.
IACR Cryptology ePrint Archive 2016:561 (2016)

42. Lin, H.: Indistinguishability obfuscation from constant-degree graded encoding
schemes. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9665,
pp. 28–57. Springer, Heidelberg (2016). doi:10.1007/978-3-662-49890-3 2

43. Lin, H., Pass, R., Seth, K., Telang, S.: Indistinguishability obfuscation with non-
trivial efficiency. In: Cheng, C.-M., Chung, K.-M., Persiano, G., Yang, B.-Y. (eds.)
PKC 2016. LNCS, vol. 9615, pp. 447–462. Springer, Heidelberg (2016). doi:10.
1007/978-3-662-49387-8 17

44. Lin, H., Pass, R., Seth, K., Telang, S.: Output-compressing randomized encodings
and applications. In: Kushilevitz, E., Malkin, T. (eds.) TCC 2016. LNCS, vol. 9562,
pp. 96–124. Springer, Heidelberg (2016). doi:10.1007/978-3-662-49096-9 5

45. O’Neill, A.: Definitional issues in functional encryption. Cryptology ePrint Archive,
Report 2010/556 (2010). http://eprint.iacr.org/2010/556

46. Regev, O.: On lattices, learning with errors, random linear codes, and cryptogra-
phy. In: Gabow, H.N. Fagin, R. (eds.) 37th ACM STOC, pp. 84–93. ACM Press,
May 2005

47. Sahai, A., Seyalioglu, H.: Worry-free encryption: functional encryption with public
keys. In: Al-Shaer, E., Keromytis, A.D., Shmatikov, V. (eds.) ACM CCS 10, pp.
463–472. ACM Press, October 2010

48. Shamir, A.: Identity-based cryptosystems and signature schemes. In: Blakley, G.R.,
Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 47–53. Springer, Heidelberg
(1985). doi:10.1007/3-540-39568-7 5

49. Waters, B.: A punctured programming approach to adaptively secure functional
encryption. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9216,
pp. 678–697. Springer, Heidelberg (2015). doi:10.1007/978-3-662-48000-7 33

50. Yao, A.C.-C.: Protocols for secure computations (extended abstract). In: 23rd
FOCS, pp. 160–164. IEEE Computer Society Press, November 1982

http://dx.doi.org/10.1007/978-3-662-49890-3_2
http://dx.doi.org/10.1007/978-3-662-49387-8_17
http://dx.doi.org/10.1007/978-3-662-49387-8_17
http://dx.doi.org/10.1007/978-3-662-49096-9_5
http://eprint.iacr.org/2010/556
http://dx.doi.org/10.1007/3-540-39568-7_5
http://dx.doi.org/10.1007/978-3-662-48000-7_33

Single-Key to Multi-Key Functional Encryption
with Polynomial Loss

Sanjam Garg(B) and Akshayaram Srinivasan

University of California, Berkeley, USA
{sanjamg,akshayaram}@berkeley.edu

Abstract. Functional encryption (FE) enables fine-grained access to
encrypted data. In a FE scheme, the holder of a secret key FSKf (associ-
ated with a function f) and a ciphertext c (encrypting plaintext x) can
learn f(x) but nothing more.

An important parameter in the security model for FE is the number
of secret keys that adversary has access to. In this work, we give a trans-
formation from a FE scheme for which the adversary gets access to a
single secret key (with ciphertext size sub-linear in the circuit for which
this secret key is issued) to one that is secure even if adversary gets
access to an unbounded number of secret keys. A novel feature of our
transformation is that its security proof incurs only a polynomial loss.

1 Introduction

Functional encryption [SW05,BSW11,O’N10] generalizes the traditional notion
of encryption by providing recipients fine-grained access to data. In a functional
encryption (FE) system, holder of the master secret key MSK can derive secret
key FSKf for a circuit f . Given a ciphertext c (encrypting x) and the secret
key FSKf , one can learn f(x) but nothing else about x is leaked. Functional
encryption emerged as a generalization of several other cryptographic primitives
like identity based encryption [Sha84,BF01,Coc01], attribute-based encryption
[GPSW06,GVW13] and predicate encryption [KSW08,GVW15].

Single-Key vs Multi-Key. Results by Sahai and Seyalioglu [SS10] and
Goldwasser, Kalai, Popa, Vaikuntanathan, and Zeldovich [GKP+13] provided
FE scheme supporting all of P/poly circuits (based on standard assumptions).
However, these constructions provide security only when the adversary is limited
to obtaining a single functional secret key.1 We call such a scheme as a single-
key FE scheme. On the other hand, Garg, Gentry, Halevi, Raykova, Sahai and

This paper was jointly presented with the paper titled “Compactness vs Collu-
sion Resistance in Functional Encryption” by Baiyu Li and Daniele Micciancio.
Research supported in part from a DARPA/ARL SAFEWARE Award, AFOSR
Award FA9550-15-1-0274, NSF CRII Award 1464397 and a research grant from the
Okawa Foundation. The views expressed are those of the author and do not reflect
the official policy or position of the funding agencies.

1 These results could be generalized to support an a priori bounded number of func-
tional secret keys.

c© International Association for Cryptologic Research 2016
M. Hirt and A. Smith (Eds.): TCC 2016-B, Part II, LNCS 9986, pp. 419–442, 2016.
DOI: 10.1007/978-3-662-53644-5 16

420 S. Garg and A. Srinivasan

Waters [GGH+13] construct an FE scheme for P/poly circuits and supporting
security even when the adversary has access to an unbounded (polynomial) num-
ber of functional secret keys. We call such as scheme as a multi-key FE scheme.
However, the work of Garg et al. assumes indistinguishability obfuscation (iO)
[GGH+13].

A single-key FE scheme is said to have weakly compact ciphertexts if the size
of the encryption circuit grows sub-linearly with the circuit for which secret key
is given out. Ananth and Jain [AJ15] and Bitansky and Vaikuntanathan [BV15]
showed that using single-key FE with weakly compact ciphertexts one can con-
struct iO which can then be used to construct multi-key FE [GGH+13,Wat15].
However, this transformation incurs an exponential loss in security reduction.
We ask:

Can we realize multi-key FE from single-key FE with only a polynomial loss in
the security reduction?

1.1 Our Results

In this work, we answer the above question positively. More specifically, we give
a generic transformation from single-key, compact FE to multi-key FE. Below,
we highlight two additional features of our transformation:

1. Our transformation works even if the single key scheme we start with is
weakly selective secure. The selective notion of security considered in litera-
ture restricts the adversary to commit to the challenge messages before see-
ing the public parameters but still allows functional secret key queries to be
adaptively made (after seeing the challenge ciphertext and the public parame-
ters). The weakly selective security (denoted by Sel∗) restricts the adversary
to commit to her challenge messages as well as make all the functional secret
key queries before seeing the public parameters. Nonetheless, the multi-key
scheme that we obtain is selectively secure.

2. For our transformation to work it is sufficient if the single-key scheme has
weakly compact ciphertexts. However, the multi-key scheme resulting from
our transformation has fully compact ciphertexts (independent of the circuit
size).

Comparison with Concurrent and Independent Work. In a concurrent
and independent work, Li and Micciancio [LM16] obtain a result similar to our,
but using very different techniques. Their construction is based on two building
blocks: SUM and PRODUCT constructions. The SUM and PRODUCT construc-
tions take two FE schemes as input with security when q1 and q2 secret keys are
given to the adversary, respectively. These constructions output a FE scheme
with security when q1 + q2 and q1 · q2 secret keys are provided to the adversary,
respectively. Using these two building blocks, they present two constructions
of multi-key FE with different security and efficiency tradeoffs. A nice feature

Single-Key to Multi-Key Functional Encryption with Polynomial Loss 421

of their result is that their construction just uses length doubling pseudoran-
dom generator in addition to FE. However, their resultant multi-key FE scheme
inherits the security and compactness property of the single-key scheme they
start with. In particular, if the starting scheme in their transformation is weakly
selectively secure (resp., weakly compact) then the resulting multi-key scheme is
also weakly selectively secure (resp., weakly compact). On the other hand, our
transformation always yields a selectively secure and fully compact scheme.

1.2 Obtaining Compactness and Adaptivity in FE

Using the transformation of Ananth, Brakerski, Segev and Vaikuntanathan
[ABSV15] we can boost the security of our transformation from selectively to
adaptive (while maintaining a polynomial loss). However, we note this trans-
formation does not preserve compactness. In particular, even if the input to
this transformation is a fully compact scheme, the resulting FE scheme is non-
compact (where the ciphertext size can depend arbitrarily on the circuit size).
In contrast, note that Ananth and Sahai [AS16] do provide an adaptively secure
fully compact FE scheme based on iO. Whether adaptive security with full com-
pactness can be obtained from poly-hard FE is an interesting open problem. Par-
tial progress on this question can be obtained using Hemenway et al. [HJO+15]
who note that using the transformation of Ananth and Sahai [AS16] (starting
with a fully compact selective FE, something that our transformation provides)
along with adaptively secure garbled circuits [BHR12,HJO+15] yields an adap-
tively secure FE scheme whose ciphertext size grows with the on-line complexity
of garbled circuits. The state of the art construction of adaptively secure garbled
circuits [HJO+15] achieves an online-complexity that grows with the width of
the circuit to be garbled. Hence, this yields a FE scheme with width compact

Fig. 1. Relationships between different notions of IND-FE parameterized by
(xx, yy, zz). xx ∈ {1,Unb} denotes the number of functional secret keys. yy ∈
{Sel∗, Sel,Adp} denotes weakly selective, selective or adaptive security. zz ∈
{NC,WC,FC,WidC} denotes the efficiency of the system: NC denotes non-compact
ciphertexts, WC denotes weakly compact ciphertexts, FC denotes fully-compact cipher-
texts and WidC denotes width-compact ciphertexts. Non-trivial relationships are given
by solid arrows, and trivial relationships are given by dashed arrows.

422 S. Garg and A. Srinivasan

ciphertexts (WidC); for which the size of the ciphertext grows with the width
of circuits for which secret-keys are given out. We note that Ananth, Jain and
Sahai [AJS15] and Bitansky and Vaikuntanthan [BV15] provide techniques for
obtaining compactness in FE schemes. However, these results are limited to the
selective security setting. Figure 1 shows known relationship between various
notions of FE and the new relationships resulting from this work.

2 Our Techniques

We now give an overview of the techniques used in constructing multi-key, selec-
tive FE from single-key, weakly selective FE. We first give a description of a multi-
key, selective FE scheme based on indistinguishability obfuscation (iO). Though
this result is not new, our construction is arguably different than the schemes
of Garg et al. [GGH+13] and Waters [Wat15] and makes use of garbled circuits
[Yao86]. Later, using techniques from works of Garg et al. [GPS15,GPSZ16] we
obtain a FE scheme whose security can be based on polynomially hard single-key,
weakly selective FE. The main novelty lies in designing a FE scheme from iO
that is “amenable” to the techniques of Garg et al. [GPS15,GPSZ16] to avoid
exponential loss in security.

iO Based Construction. Recall that a circuit garbling scheme (or randomized
encoding in general) allows to encode an input x and a circuit C to obtain
garbled input labels x̃ and garbled circuit ˜C respectively. Informally, the security
of garbled circuits ensures that given x̃ and ˜C, it is possible to learn C(x) but
nothing else. An additional feature of Yao’s garbled circuits is that it is possible
to encode the input x and the circuit C separately as long as the two encoding
schemes share the same random tape.

At a high level, the ciphertext of our FE scheme corresponds to garbled input
labels and the functional secret key corresponds to the garbled circuit. Intuitively,
from the security of garbled circuits we can deduce that given the FE ciphertext
c (encrypting x) and the functional secret key FSKf it is possible to learn f(x)
but nothing else. But as mentioned before, to enable encoding the input x and
the circuit C separately, the random coins used must be correlated in a certain
way. The main crux of the construction is in achieving this correlation using
indistinguishability obfuscation (iO).

The correlation between the randomness used for garbling the input labels
and the circuit is achieved by deriving the coins pseudorandomly using a PRF
key S. This PRF key S also serves as the master secret key of our FE scheme.
We now give the details of how the public key and the functional secret keys are
derived from the master secret key S.

The public key of our FE scheme is an obfuscation of a program that takes
as input some randomness r and outputs a “token” t = PRG(r) where PRG is
a length doubling pseudorandom generator and a key K = PRF(S, t). The key
K is used for deriving the input labels for the garbled circuit scheme say, that
the two labels of the i-th input wire are given by {PRF(K, i‖b)}b∈{0,1}. The FE
ciphertext encrypting a message m is given by the token t and the input labels

Single-Key to Multi-Key Functional Encryption with Polynomial Loss 423

Fig. 2. Program implementing the public key

Fig. 3. Program implementing the functional secret key for a circuit Cf

corresponding to m i.e. (t, {PRF(K, i‖mi)}i∈[n]). The description of the program
implementing the public key is given in Fig. 2.

The functional secret key for a circuit Cf is an obfuscation of another program
that takes as input the token t and first derives the key K = PRF(S, t). It then
outputs a garbled circuit ˜Cf where the garbled input labels are derived using key
K. In particular, the input labels “encrypted” in the garbled evaluation table
of ˜Cf are given by {PRF(K, i‖b)}i∈[n],b∈{0,1}. The description of the program
implementing the functional secret key is given in Fig. 3. The FE decryption
corresponds to evaluation of this garbled circuit using the input labels given in
the ciphertext. We now argue correctness and security.

The correctness of the above construction follows from having the “correct”
input labels encrypted in the garbled evaluation tables in ˜Cf . It remains to show
that the security holds when the obfuscation is instantiated with iO. To achieve
this, we use the punctured programming approach of Sahai and Waters [SW14].

We now give a high level overview of the security argument. The goal is to
change from a hybrid where the adversary is given a challenge ciphertext encrypt-
ing message mb for some b ∈ {0, 1} to a hybrid where she is given a challenge
ciphertext independent of the bit b. This is accomplished via a hybrid argument.
In the first hybrid, we change the token t in the challenge ciphertext to an uni-
formly chosen random string t∗ relying on the pseudorandomness property of the
PRG. Next, we change the public key to be an obfuscation of a program that has
the PRF key S punctured at t∗ hardwired instead of S. The rest of the program
is same as described in Fig. 2. Intuitively, the indistinguishability follows from iO

424 S. Garg and A. Srinivasan

Fig. 4. Program implementing the functional secret key for a circuit Cf in the security
proof

security as the PRG has sparse images. In the next hybrid, the functional secret
keys are generated as described in Fig. 4 where ˜C∗

f hardwired in the program
is exactly equal to garbled circuit ˜Cf with {PRF(K, i‖bi)}i∈[n],bi∈{0,1} (where
K = PRF(S, t∗)) as the input labels and generated using PRF(Sf , t∗) as the ran-
dom coins. The indistinguishability of the two hybrids follows from iO security
as the two programs described in Figs. 3 and 4 are functionally equivalent. Now,
relying on the pseudorandomness at punctured point property of the PRF we
change the input labels in the challenge ciphertext as well as the random coins
used for generating ˜C∗

f to uniformly chosen random strings. We can now change
the challenge ciphertext to be independent of the bit b by relying on the security
of garbled circuit. To be more precise, we change the input labels in the challenge
ciphertext and ˜C∗

f to be output of the garbled circuit simulator. Notice that we
can still use the security of garbled circuits even if several garbled circuits share
the same input labels. Thus, the above construction achieves security against
unbounded collusions.

Construction from Poly Hard FE. The main idea behind our construction
from polynomially hard, single-key, selectively secure FE is to simulate the effect
of the obfuscation in the above construction using FE. To give a better insight
into our construction we would first recall the FE to iO transformation of Ananth
and Jain [AJ15] and Bitansky and Vaikuntanathan [BV15]. We note that this
reduction suffers an exponential loss in security and we will be modifying this
construction to achieve our goal of relying only on polynomially hard FE scheme.
For this step, we rely on the techniques built by Garg et al. in [GPS15,GPSZ16]
to avoid the exponential loss in security reduction. Parts of this section are
adapted from [GPS15,GPSZ16].

FE to iO Transformation. We describe a modification of iO construction from
FE of Bitansky and Vaikuntanathan [BV15] (Ananth and Jain [AJ15] take a
slightly different route to achieve the same result). We note that the modified
construction is not sufficient to obtain iO security but is “good enough” for our
purposes.

Single-Key to Multi-Key Functional Encryption with Polynomial Loss 425

The “obfuscation” of a circuit C : {0, 1}κ → {0, 1}κ consists of the fol-
lowing components: a FE ciphertext CTφ and κ + 1 functional secret keys
FSK1, · · · ,FSKκ+1 generated using independently sampled master secret keys
MSK1, · · · ,MSKκ+1. CTφ encrypts the empty string φ under the public key PK1.
The first κ functional secret keys FSK1, · · · ,FSKκ implement the bit-extension
functionality. To be more precise, FSKi implements the function Fi that takes
as input an (i − 1)-bit string x and outputs two ciphertexts CTx‖0 and CTx‖1
encrypting x‖0 and x‖1 respectively under PKi+1. The final function secret key
FSKκ+1 implements the circuit C.

Let us discuss how to evaluate the “obfuscated” circuit on an input x =
x1 · · · xκ where xi ∈ {0, 1}. The first step is to decrypt CTφ using FSK1 to
obtain CT0,CT1. Depending on x1 we choose either the left encryption (CT0) or
the right encryption (CT1) and recursively decrypt the chosen ciphertext under
FSK2 and so on. After κ + 1 FE decryptions, we obtain the output of the circuit
on input x1 · · · xκ.

An alternate way to view this evaluation (which would be useful for this
work) is as a traversal along a path from the root to a leaf node of a complete
binary tree. The binary tree has the empty string at the root and traversal
chooses either the left or the right child depending on the bits x1, x2, · · · , xκ i.e.
at level i, bit xi is used to determine whether to go left or right. We would refer
to this binary tree as the evaluation binary tree.

Our Construction. Recall that our main idea is to simulate the effect of obfus-
cation by appropriately modifying the above FE to iO transformation. We first
explain the modifications to the “obfuscation” computing the master public key.

Let Cpk[S] (having S hardwired) be the circuit that implements the public
key of our iO-based construction. Recall that this circuit takes as input some
randomness r, expands it using the PRG to obtain the token t and outputs
(t,PRF(S, t)). The goal is to produce an “obfuscation” of this circuit using FE
to iO transformation explained above. Recall that the FE to iO transformation
has κ+1 functional secret keys FSK1, · · · ,FSKκ+1 and an initial ciphertext CTφ

encrypting the empty string. The final functional secret key FSKκ+1 implements
the circuit Cpk[S]. The first observation is that we cannot naively hardwire
the PRF key in the circuit Cpk. This is because to achieve some “meaningful”
mechanisms of hiding the PRF key (via puncturing) we need to go via the iO
route that incurs an exponential loss in security. Therefore, the first modification
is to change Cpk such that it takes the PRF key S as input instead of having it
hardwired. We now include the PRF key S in the initial ciphertext CTφ i.e. CTφ

is now an encryption of (φ, S). We run into the following problem: the initial
ciphertext now contains the PRF key S whereas we actually need S to be given
as input to the final circuit Cpk that is implemented in FSKκ+1. Therefore, we
need a mechanism to make the PRF key S “available” to the final functional
secret key FSKκ+1 so that it can compute PRF evaluation on the token. In other
words, we need to “propagate” the PRF key S from the root to every leaf.

To propagate the PRF key, we make use of the “puncturing along the path”
idea of Garg, Pandey and Srinivasan [GPS15]. This idea uses a primitive called

426 S. Garg and A. Srinivasan

as prefix puncturable PRF introduced in [GPS15]. Informally, prefix puncturable
PRF allows to puncture the PRF key S at a specific prefix z to obtain Sz. The
correctness guarantee is that given Sz, one can evaluate the PRF on any input x
such that z is a prefix of x. The security guarantee is that as long as any adversary
does not get access to Sz where z is a prefix of x, PRF(S, x) is indistinguishable
from random string. An additional feature is that prefix puncturing can be done
recursively i.e. given Sz one can obtain Sz‖0 and Sz‖1. Additionally, if we need
to puncture the PRF key at an input x it is sufficient to change the distribution
of FE ciphertexts only along the root to the leaf x in the evaluation binary tree.
This gives us hope of basing security on polynomially hard FE. As a result,
if we were to use this primitive, the problem reduces to the following: design a
mechanism wherein the PRF key S prefix punctured at token t is available at the
final functional secret key FSKκ+1 as this can then be used to derive PRF(S, t).

Recall that the circuit Cpk generates the token t as PRG(r) by taking r as
input. If we naively try to combine this circuit with the “puncturing along the
way” trick of Garg et al., we obtain Sr at the final functional secret key. It is
not clear if there is a way of obtaining SPRG(r) from Sr. Garg et al. [GPSZ16]
faced a similar challenge in designing the sampler for trapdoor permutation and
fortunately the solution they provide is applicable to our setting. The solution
given in their work is to consider a different token generation mechanism. To
be more precise, instead of generating the token as an output of a PRG on the
input randomness r, the token now corresponds to a public key of a semantically
secure encryption scheme. To give more details, the circuit Cpk now takes as
input P which is a public key that also functions as the token. The circuit now
computes PRF(S, P) and outputs a public key encryption of PRF(S, P) using P
as the public key.2 We combine this circuit with the “puncturing along the way”
technique of Garg et al. to obtain the “obfuscation” of our public key.

The functional secret key for a function Cf (denoted by FSKf) is constructed
similarly to that of the public key. Recall that the functional secret key takes
as input the token t (which is now given by the public key P) and computes
K = PRF(S, t). It then uses the key K to derive the input garbled labels and
outputs a garbled circuit ˜Cf . FSKf also implements the “puncturing along the
way” trick of Garg et al. to obtain SP (which is the PRF key prefix punctured
at P) which is used by the final circuit to derive the garbled input labels.

Proof Technique: “Tunneling.” We now briefly explain the main proof tech-
nique called as the “tunneling” technique which is adapted from Garg et al.’s
works [GPS15,GPSZ16]. Recall that the proof of our iO based construction relies
on the punctured programming approach of Sahai and Waters [SW14]. We also
follow a similar proof strategy. Let us explain how to “puncture” the master
public key on the token P . At a high level, if we have punctured the PRF key
at P then relying on the security guarantee of prefix punctured PRF to replace
PRF(S, P) with a random string.

2 Notice that if we know the secret key corresponding to the public key P , then we
can recover PRF(S, P) which can then be used to derive the input garbled labels.

Single-Key to Multi-Key Functional Encryption with Polynomial Loss 427

Recall that puncturing the PRF key S at a string P involves “removing” Sz

for every z such that z is a strict prefix of P from the “obfuscation.” To get
better intuition on how the puncturing works it would be helpful to view the
“obfuscation” in terms of the evaluation binary tree. As mentioned before, the
crucial observation that helps us to base security on polynomially hard FE is that
Sz where z is a prefix of P occurs only along the path from the root to the leaf
node P in this tree. Hence, it is sufficient to change the distribution of the FE
ciphertexts only along this path in such a manner that they don’t contain Sz. To
implement this change, we rely on the “Hidden trapdoor mechanism” (also called
as the Trojan method) of Ananth et al. in [ABSV15]. To give more details, every
functional secret key FSKi implements a function Fi that has two “threads” of
operation. In thread-1 or the normal mode of operation, it performs the bit-
extension on input x and the prefix puncturing on input Sx. In thread-2 or the
trapdoor mode, it does not perform any computation on the input (x, Sx) and
instead outputs some fixed value that is hardwired. We change the FE ciphertexts
in such a way that the trapdoor thread is invoked in every functional secret key
when the “obfuscation” is run on input P . Metaphorically, we create a “tunnel”
(i.e. a path from the root to a leaf where the trapdoor mode of operation is
invoked in every intermediate node) from the root to the leaf labeled P in the
complete binary tree corresponding to the obfuscation. Additionally, we change
the FE ciphertexts along the path from root to leaf P such that they do not
contain any prefix punctured keys. A consequence of our “tunneling” is that
along the way we would have removed Sz for every z which is a strict prefix of
P from the “obfuscation.”

3 Preliminaries

λ denotes the security parameter. A function μ(·) : N → R
+ is said to be

negligible if for all polynomials poly(·), μ(λ) < 1
poly(λ) for large enough λ. For a

probabilistic algorithm A, we denote A(x; r) to be the output of A on input x
with the content of the random tape being r. We will omit r when it is implicit
from the context. We denote y ← A(x) as the process of sampling y from the
output distribution of A(x) with a uniform random tape. For a finite set S,
we denote x ← S as the process of sampling x uniformly from the set S. We
model non-uniform adversaries A = {Aλ} as circuits such that for all λ, Aλ is
of size p(λ) where p(·) is a polynomial. We will drop the subscript λ from the
adversary’s description when it is clear from the context. We will also assume
that all algorithms are given the unary representation of security parameter 1λ

as input and will not mention this explicitly when it is clear from the context. We
will use PPT to denote Probabilistic Polynomial Time algorithm. We denote [λ]
to be the set {1, · · · , λ}. We will use negl(·) to denote an unspecified negligible
function and poly(·) to denote an unspecified polynomial. We assume without
loss of generality that all cryptographic randomized algorithms use λ-bits of
randomness. If the algorithm needs more than λ-bit of randomness it can extend
to arbitrary polynomial stretch using a pseudorandom generator (PRG).

428 S. Garg and A. Srinivasan

A binary string x ∈ {0, 1}λ is represented as x1 · · · xλ. x1 is the most sig-
nificant (or the highest order bit) and xλ is the least significant (or the lowest
order bit). The i-bit prefix x1 · · · xi of the binary string x is denoted by x[i]. We
use x‖y to denote concatenation of binary strings x and y. We say that a binary
string y is a prefix of x if and only if there exists a string z ∈ {0, 1}∗ such that
x = y‖z.

Puncturable Pseudorandom Function. We recall the notion of puncturable
pseudorandom function from [SW14]. The construction of pseudorandom func-
tion given in [GGM86] satisfies the following definition [BW13,KPTZ13,BGI14].

Definition 1. A puncturable pseudorandom function PRF is a tuple of PPT
algorithms (KeyGenPRF,PRF,Punc) with the following properties:

– Efficiently Computable: For all λ and for all S ← KeyGenPRF(1λ), PRFS :
{0, 1}poly(λ) → {0, 1}λ is polynomial time computable.

– Functionality is preserved under puncturing: For all λ, for all y ∈
{0, 1}λ and ∀x �= y,

Pr[PRFS{y}(x) = PRFS(x)] = 1

where S ← KeyGenPRF(1λ) and S{y} ← Punc(S, y).
– Pseudorandomness at punctured points: For all λ, for all y ∈ {0, 1}λ,

and for all poly sized adversaries A

|Pr[A(PRFS(y), S{y}) = 1] − Pr[A(Uλ, S{y}) = 1]| ≤ negl(λ)

where S ← KeyGenPRF(1λ), S{y} ← Punc(S, y) and Uλ denotes the uniform
distribution over {0, 1}λ.

Symmetric Key Encryption. A Symmetric-Key Encryption scheme SKE is a
tuple of algorithms (SK.KeyGen,SK.Enc,SK.Dec) with the following syntax:

– SK.KeyGen(1λ): Takes as input an unary encoding of the security parameter
λ and outputs a symmetric key SK.

– SK.EncSK(m): Takes as input a message m ∈ {0, 1}∗ and outputs an encryp-
tion C of the message m under the symmetric key SK.

– SK.DecSK(C): Takes as input a ciphertext C and outputs a message m′.

We say that SKE is correct if for all λ and for all messages m ∈
{0, 1}∗, Pr[SK.DecSK(C) = m] = 1 where SK ← SK.KeyGen(1λ) and C ←
SK.EncSK(m).

Definition 2. For all λ and for all polysized adversaries A,
∣

∣Pr[Expt1λ,0,A = 1] − Pr[Expt1λ,1,A = 1]
∣

∣ ≤ negl(λ)

Single-Key to Multi-Key Functional Encryption with Polynomial Loss 429

where Expt1λ,b,A is defined below:

– Challenge Message Queries: The adversary A outputs two messages m0

and m1 such that |m0| = |m1| for all i ∈ [n].
– The challenger samples SK ← SK.KeyGen(1λ) and generates the challenge

ciphertext C where C ← SK.EncSK(mb). It then sends C to A.
– Output is b′ which is the output of A.

Remark 1. We will denote range of a secret key FSK (denoted by Rangen(SK))
to be {SK.Enc(SK, x)}x∈{0,1}n for a specific n. We will require that for
any two secret keys SK1, SK2 where SK1 �= SK2 we have Rangen(SK1) ∩
Rangen(SK2) = φ with overwhelming probability. We will also require that the
existence of an efficient procedure that checks if a given ciphertext c belongs to
Rangen(SK) for a particular secret key SK. We call such a scheme to be symmet-
ric key encryption with disjoint range. We note that symmetric key encryption
with disjoint ranges can be obtained from one-way functions [LP09].

Public Key Encryption. A public-key Encryption scheme PKE is a tuple of
algorithms (PK.KeyGen,PK.Enc,PK.Dec) with the following syntax:

– PK.KeyGen(1λ): Takes as input an unary encoding of the security parameter
λ and outputs a public key, secret key pair (pk, sk).

– PK.Encpk(m): Takes as input a message m ∈ {0, 1}∗ and outputs an encryption
C of the message m under the public key pk.

– PK.Decsk(C): Takes as input a ciphertext C and outputs a message m′.

We say that PKE is correct if for all λ and for all messages m ∈ {0, 1}∗,
Pr[PK.Decsk(C) = m] = 1 where (pk, sk) ← PK.KeyGen(1λ) and C ←
PK.Encpk(m).

Definition 3. For all λ and for all polysized adversaries A and for all messages
m0,m1 ∈ {0, 1}∗ such that |m0| = |m1|,

|Pr[A(pk,PK.Encpk(m0)) = 1] − Pr[A(pk,PK.Encpk(m1)) = 1]| ≤ negl(λ)

where (pk, sk) ← PK.KeyGen(1λ).

Prefix Puncturable Pseudorandom Functions. We now define the notion of
prefix puncturable pseudorandom function PPRF. We note that the construction
of the pseudorandom function in [GGM86] is prefix puncturable according to the
following definition.

Definition 4. A prefix puncturable pseudorandom function PPRF is a tuple of
PPT algorithms (KeyGenPPRF,PrefixPunc) satisfying the following properties:

– Functionality is preserved under repeated puncturing: For all λ, for
all y ∈ ∪poly(λ)

k=0 {0, 1}k and for all x ∈ {0, 1}poly(λ) such that there exists a
z ∈ {0, 1}∗ s.t. x = y‖z,

Pr[PrefixPunc(PrefixPunc(S, y), z) = PrefixPunc(S, x)] = 1

where S ← KeyGenPPRF.

430 S. Garg and A. Srinivasan

– Pseudorandomness at punctured prefix: For all λ, for all x ∈
{0, 1}poly(λ), and for all poly sized adversaries A

|Pr[A(PrefixPunc(S, x),Keys) = 1] − Pr[A(Uλ,Keys) = 1]| ≤ negl(λ)

where S ← KeyGenPRF(1λ) andKeys = {PrefixPunc(S, x[i−1]‖(1−xi))}i∈[poly(λ)]

where x[0] denotes the empty string.

Remark 2. For brevity of notation, we will be denoting PrefixPunc(S, y) by Sy.

Garbled Circuits. We now define the circuit garbling scheme of Yao [Yao86]
and state the required properties.

Definition 5. A circuit garbling scheme is a tuple of PPT algorithms given by
(Garb.Circuit,Garb.Eval) with the following syntax:

– Garb.Circuit(C): This is a randomized algorithm that takes in the circuit to
be garbled and outputs garbled circuit and the set of garbled input labels:
˜C, {Inpi,bi

}i∈[λ],bi∈{0,1}.
– Garb.Eval(˜C, {Inpi,xi

}i∈[λ]): This is a deterministic algorithm that takes in
{Inpi,xi

}i∈[λ] and ˜C as input and outputs a string y.

Definition 6 (Correctness). We say a circuit garbling scheme is correct if for
all circuits C and for all inputs x:

Pr[Garb.Eval(˜C, {Inpi,xi
}i∈[λ]) = C(x)] = 1

where ˜C, {Inpi,bi
}i∈[λ],bi∈[λ] ← Garb.Circuit(K,C).

Definition 7 (Security). There exists a simulator Sim such that for all cir-
cuits C and input x:

{˜C, {Inpi,xi
}i∈[λ]} c≈ {Sim(1λ, C, C(x))}

Lemma 1 [Yao86,LP09]. Assuming the existence of one-way functions there
exists a circuit garbling scheme satisfying the security notion given in
Definition 7.

4 Functional Encryption: Security and Efficiency

We recall the syntax and security notions of functional encryption [BSW11,
O’N10].

A functional encryption FE with the message space {0, 1}∗ and function space
F is a tuple of PPT algorithms (FE.Setup,FE.Enc,FE.KeyGen,FE.Dec) having the
following syntax:

– FE.Setup(1λ): Takes as input the unary encoding of the security parameter λ
and outputs a public key PK and a master secret key MSK.

Single-Key to Multi-Key Functional Encryption with Polynomial Loss 431

– FE.Enc(PK,m): Takes as input a message m ∈ {0, 1}∗ and outputs an encryp-
tion c of m under the public key PK.

– FE.KeyGen(MSK, f): Takes as input the master secret key MSK and a function
f ∈ F (given as a circuit) as input and outputs the function key FSKf .

– FE.Dec(FSKf , c): Takes as input the function key FSKf and the ciphertext c
and outputs a string y.

Definition 8 (Correctness). The functional encryption scheme FE is correct
if for all λ and for all messages m ∈ {0, 1}∗ and for all f ∈ F ,

Pr

⎡

⎢

⎢

⎣

y = f(m)

∣

∣

∣

∣

∣

∣

∣

∣

(PK,MSK) ← FE.Setup(1λ)
c ← FE.Enc(PK,m)
FSKf ← FE.KeyGen(MSK, f)
y ← FE.Dec(FSKf , c)

⎤

⎥

⎥

⎦

= 1

Security. We now give the formal definitions of the security notions. We start
with the weakest notion of security namely weakly selective security.

Definition 9 (Weakly Selective Security). The functional encryption
scheme is said to be multi-key, weakly selective secure if for all λ and for all
poly sized adversaries A,

∣

∣Pr[ExptSel∗,1λ,0,A = 1] − Pr[ExptSel∗,1λ,1,A = 1]
∣

∣ ≤ negl(λ)

where ExptSel,1λ,b,A is defined below:

– Challenge Message Queries: The adversary A outputs two messages m0,
m1 such that |m0| = |m1| and a set of functions f1, · · · , fq ∈ F to the chal-
lenger. The parameter q is a priori unbounded.

– The challenger samples (PK,MSK) ← FE.Setup(1λ) and generates the chal-
lenge ciphertext c ← FE.Enc(PK,mb). The challenger also computes FSKfi

←
FE.KeyGen(MSK, fi) for all i ∈ [q]. It then sends (PK, c), {FSKfi

}i∈[q] to A.
– If A makes a query fj for some j ∈ [q] to such that for any, fj(m0) �= fj(m1),

output of the experiment is ⊥. Otherwise, the output is b′ which is the output
of A.

Remark 3. We say that the functional encryption scheme FE is single-key,
weakly selectively secure if the adversary A in ExptSel∗,1λ,b,A is allowed to
obtain the functional key for a single function f .

We now give the definition of selectively secure FE.

Definition 10 (Selective Security). The functional encryption scheme is
said to be multi-key, selectively secure FE if for all λ and for all poly sized adver-
saries A,

∣

∣Pr[ExptSel,1λ,0,A = 1] − Pr[ExptSel,1λ,1,A = 1]
∣

∣ ≤ negl(λ)

432 S. Garg and A. Srinivasan

where ExptSel,1λ,b,A is defined below:

– Challenge Message Queries: The adversary A outputs two message vectors
m0, m1 such that |m0| = |m1| to the challenger.

– The challenger samples (PK,MSK) ← FE.Setup(1λ) and generates the chal-
lenge ciphertext c ← FE.Enc(PK,mb). It then sends (PK, c) to A.

– Function Queries: A adaptively chooses a function f ∈ F and sends it to
the challenger. The challenger responds with FSKf ← FE.KeyGen(MSK, f).
The number of function queries made by the adversary is unbounded.

– If A makes a query f to functional key generation oracle such that, f(m0) �=
f(m1), output of the experiment is ⊥. Otherwise, the output is b′ which is the
output of A.

Remark 4. In the adaptive variant, the adversary is allowed to give challenge
messages after seeing the public parameters and functional secret key queries.

Efficiency. We now define the efficiency requirements of a FE scheme.

Definition 11 (Fully Compact). A functional encryption scheme FE is said
to be fully compact if for all λ ∈ N and for all m ∈ {0, 1}∗ the running time of
the encryption algorithm FE.Enc is poly(λ, |m|).
Definition 12 (Weakly Compact). A functional encryption scheme is said
to be weakly compact if the running time of the encryption algorithm FE.Enc is
|F|1−ε.poly(λ, |m|) for some ε > 0 where |F| = maxf∈F |Cf | where Cf is the
circuit implementing f .

A functional encryption scheme is said to have non-compact ciphertexts if
the running time of the encryption algorithm can depend arbitrarily on the
maximum circuit size of the function family.

5 Our Transformation

In this section we describe our transformation from single-key, weakly selective
secure functional encryption with fully compact ciphertexts to multi-key, selec-
tive secure functional encryption scheme. We later (in Sect. 6) show that it is
sufficient for the single-key scheme to have weakly compact ciphertexts. We state
the main theorem below.

Theorem 1. Assuming the existence of single-key, weakly selective secure FE
scheme with fully compact ciphertexts, there exists a multi-key, selective secure
FE scheme with fully compact ciphertexts.

The transformation from single-key, weakly selective secure FE scheme to
multi-key, selective secure FE scheme uses the following primitives that are
implied by single-key, weakly selective secure FE.

Single-Key to Multi-Key Functional Encryption with Polynomial Loss 433

– A single-key, weakly selective FE scheme (FE.Setup,FE.KeyGen,FE.Enc,
FE.Dec).

– A prefix puncturable PRF (PPRF,KeyGenPPRF,PrefixPunc).
– A Circuit garbling scheme (Garb.Circuit,Garb.Eval).
– A public key encryption scheme (PK.KeyGen,PK.Enc,PK.Dec).
– A symmetric key encryption scheme (SK.KeyGen,SK.Enc,SK.Dec) with dis-

joint range.

Notation. λ will denote our security parameter. Let the length of the secret
key output by SK.KeyGen be λ1, let length of the key output by KeyGenPPRF
be λ2. We will denote length of public key output by PK.KeyGen to be κ. The
message space is given by {0, 1}γ and the function space is the set of all poly
sized circuits taking γ-bit inputs.

The output of the transformation is a FE scheme (MKFE.Setup,MKFE.KeyGen,
MKFE.Enc,MKFE.Dec). The formal description our construction appears in Fig. 5.

5.1 Correctness and Security

We first show correctness of our construction

Correctness. Recall that we need to show that if we decrypt a FE cipher-
text encrypting m using a functional secret key for a function f then
we obtain f(m). We first argue that our FE ciphertext is distributed as
(pk, {PRF(Spk, i‖mi)}i∈[κ]). From the correctness of FE decryption, we note that
by iteratively decrypting CTφ under FSK1, · · · ,FSKκ+1 using the bits of pk we
obtain a public key encryption of Spk under public key pk. From the correctness
of public key decryption, we correctly recover Spk. Hence our FE ciphertext is
distributed as (pk, {PRF(Spk, i‖mi)}i∈[κ]).

We now look at the decryption procedure. We notice from the correct-
ness of FE decryption procedure that by iteratively decrypting CTf

φ under

FSKf
1 , · · ·FSKf

κ+1 using the bits of pk, we obtain ˜Cf , {ci,bi
}i∈[γ],bi∈{0,1} where

ci,bi
← SK.Enc(PRF(Spk, i‖mi), Inpi,bi

) for every i ∈ [γ] and bi ∈ {0, 1}. It
follows from the correctness of SK.Dec and the fact that the symmetric key
encryption we use has disjoint ranges, we correctly obtain {Inpi,mi

}i∈[κ]. The
correctness of our MKFE decryption now follows from the correctness of garbled
circuit evaluation.

We note that length of the ciphertexts (and the size of the encryption circuit)
in our MKFE scheme is independent of the circuit size of functions. Hence, the
MKFE scheme has fully compact ciphertexts. We now state the main lemma for
security.

Lemma 2. Assuming single-key, weakly selective security of FE, semantic secu-
rity of SKE, semantic security of PKE, and the security of prefix puncturable
pseudorandom function PPRF, the MKFE construction described in Fig. 5 is
multi-key, selectively secure.

Before we describe the proof of Lemma 2, we first set up some notation.

434 S. Garg and A. Srinivasan

Fig. 5. Transformation from single key to unbounded key secure

Single-Key to Multi-Key Functional Encryption with Polynomial Loss 435

Fig. 6. Auxiliary circuits

Notation. Let x ∈ {0, 1}κ. Let Prefixes(x) denote the set of all prefixes (κ in
number) of the string x. Formally,

Prefixes(x) := {x[i]}i∈[κ]

Let Siblings(x) denote the set of siblings of all prefixes of x. Formally,

Siblings(x) := {y[i−1]‖(1 − yi) : ∀y ∈ Prefixes(x), i ∈ [κ] where |y| = i}

Proof of Lemma 2. The proof proceeds via a hybrid argument.

– Hyb0: In this hybrid, the adversary is given the challenge ciphertext encrypt-
ing the message mb. To be more precise, the challenge ciphertext is given

436 S. Garg and A. Srinivasan

by (pk∗, {Li,(mb)i
}i∈[κ]) where (pk∗, sk∗) ← PK.KeyGen(1κ) and Li,(mb)i

←
PRF(Spk∗ , i‖(mb)i) for all i ∈ [κ]. All key generation queries are generated as
per the construction described in Fig. 5.

– Hyb1: In this hybrid, we are going to “tunnel” through the path from root
to the leaf node labeled pk∗ in the master public key. This step is realized
through a couple of intermediate hybrids.
Let P1 := Prefixes(pk∗) and Q1 = Siblings(pk∗)\P1. For every z ∈ P1 ∪Q1, let
CTz be the result of the iterated decryption procedure on the master public
key with z as input.3 Additionally, let Valpk∗ be the output of the decryption
of CTpk∗ under FSKκ+1. Let

stri = ‖z∈P1∪Q1∧|z|=i(z,CTz)

strλ+1 = (pk∗,Val1pk∗)

We set leni(λ) to be the maximum length of stri over all choices of pk∗. We
pad stri to this size.
• Hyb0,1: In this hybrid we are going to change how Ψi is generated. Instead of

encrypting the all zeroes string of length leni(κ), we encrypt stri. Indistin-
guishability follows from the semantic security of the symmetric key encryp-
tion since the key sk is not needed to simulate Hyb0 or Hyb0,1.

• Hyb0,2: In this hybrid we change how CTφ is generated. Instead of
generating CTφ to be FE.Enc(PK1, (φ, S,Kφ, 0λ1 , 0)), we generate it as
FE.Enc(PK1, (φ, 0λ2 , 0λ2 , sk, 1)). We now argue that Hyb0,2 is indistin-
guishable from Hyb0,1. Notice that output of BitExt1[Ψ1,PK2] is same on
(φ, S,Kφ, 0λ1 , 0) and (φ, 0λ2 , 0λ2 , sk, 1). Also, the choice of the two messages
and the functionality for which the secret key is obtained do not depend on
the public parameters. Hence, it follows from the weakly selective security
of FE scheme under PK1 that Hyb0,1 and Hyb0,2 are indistinguishable.

• Hyb0,3: In this hybrid we are going to tunnel through the path from the root
to the leaf labeled pk∗. To achieve this, we are going to change CTz that is
encrypted in Ψ1 for every z ∈ P1. We don’t change the encryption when z ∈
Q1. In particular, we change CTz = FE.Enc(PK|z|+1, (z, Sz,Kz, 0λ1 , 0);K ′

z)
to FE.Enc(PK|z|+1, (z, 0λ2 , 0λ2 , sk, 1); rz) where rz is chosen uniformly at
random. Notice that as a result Sz for every z that is a strict prefix of pk∗

does not appear in the public key of our MKFE scheme.

We first introduce an ordering of strings in P1. For every string x, y ∈
P1 x ≺ y if and only if |x| < |y|. This induces a partial ordering of
the strings in P1. We let Hyb0,2,x to denote the hybrid where for all
z ≺ x, CTz has been changed from FE.Enc(PK|z|+1, (z, Sz,Kz, 0λ1 , 0);K ′

z)
to FE.Enc(PK|z|+1, (z, 0λ2 , 0λ2 , sk, 1); rz). We prove for any two adjacent
strings x, x′ where x′ ≺ x in ordered P1 that Hyb0,2,x is indistinguishable
to Hyb0,2,x′ . Since |P1| ≤ κ, we get Hyb0,2 is indistinguishable to Hyb0,3

through a series a κ hybrids.
3 By iterated decryption procedure on input z we mean decrypting CTφ under
FSK1, · · · ,FSK|z| using the bits of z.

Single-Key to Multi-Key Functional Encryption with Polynomial Loss 437

∗ Hyb0,2,x′,1: In this hybrid we change CTx to FE.Enc(PK|x|+1, (x, Sx,Kx,

0λ1 , 0); rx) where rx is chosen uniformly at random. Notice that for
all strings y that are prefixes of x, CTy has already been changed to
FE.Enc(PK|y|+1, (y, 0λ2 , 0λ2 , sk, 1); ry) because y ≺ x by our ordering.
For every y that is a prefix of x, Ky is not needed to simulate Hyb0,2,x′

and Hyb0,2,x′,1. It follows from the pseudorandomness at prefix punctured
point property of PRF key Kφ we have Hyb0,2,x′ is indistinguishable to
Hyb0,2,x′,1. Illustration for this hybrid change is given in Fig. 7.

∗ Hyb0,2,x′,2: In this hybrid we change CTx to FE.Enc(PK|x|+1, (x, 0λ2 , 0λ2 ,

sk, 1); rx). Notice that decrypting FE.Enc(PK|x|+1, (x, 0λ2 , 0λ2 , sk, 1); rx))
and FE.Enc(PK|x|+1, (x, Sx,Kx, 0λ2 , 0)) under the secret key FSK|x|+1 has
the same output due to the choice of Ψ∗

|x|+1. Also, the choice of the two
messages and the functionality for which the secret key is obtained do not
depend on the public parameters. Hence, it follows from the weakly selec-
tive security of FE scheme under PK|x|+1 that Hyb0,2,x′,1 and Hyb0,2,x′,2
are indistinguishable.

Notice that Hyb0,2,x′,2 is distributed identically to Hyb0,2,x.
– Hyb2: In this hybrid we are going to change Valpk∗ encrypted in Ψ∗

1 . Notice
that in Hyb2, Valpk∗ is set to be an public key encryption of Spk∗ under the
public key pk∗ (using pseudorandomly generated coins). In this hybrid we are
going to change Valpk∗ to be an public key encryption of all zeroes string (0λ)
under pk∗.

• Hyb1,1: In this hybrid we generate the randomness used for encrypting
Spk∗ under the public key pk∗ uniformly instead of generating it pseudo-
randomly using the key Kpk∗ . Notice that Kz for every z that is a prefix
of pk∗ is not needed to simulate either Hyb1 or Hyb1,1. Therefore, from
the pseudorandomness at prefix punctured point property of PRF under
key Kφ, Hyb1 is indistinguishable from Hyb1,1.

• Hyb1,2: In this hybrid we change Valpk∗ to be an encryption of 0κ under
pk∗. Indistinguishability of Hyb1,1 and Hyb1,2 follows from the semantic
security of public key encryption.

– Hyb3: In this hybrid we are going to tunnel through the paths from the root to
the leaf pk∗ in each function secret key FSKf that is queried by the adversary.
We explain the details for a single function key FSKf and we can extend to all
function secret keys by a standard hybrid argument. The indistinguishability
argument for a single function secret key FSKf is similar to our argument to
show indistinguishability between Hyb0 and Hyb1.
Let P2 := Prefixes(pk∗) and Q2 = Siblings(pk∗). For every z ∈ P2 ∪Q2 let CTf

z

be the result of the iterated decryption procedure on the function secret key
FSKf with z as input. Additionally, let ˜Cf , {ci,bi

}i∈[γ],bi∈{0,1} be the output
of the decryption of CTpk∗ under FSKf

κ+1. Let

strfi = ‖z∈P2∪Q2∧|z|=i(z,CTz)

strfκ+1 = (pk∗, ˜Cf , {ci,bi
}i∈[γ],bi∈{0,1})

438 S. Garg and A. Srinivasan

We set lenf
i (κ) to be the maximum length of strfi over all choices of f . We pad

strfi to this size.
• Hyb2,1: In this hybrid we are going to change how Ψf

i is generated. Instead
of encrypting the all zeroes string of length len′

i(κ) we encrypt strfi . Indistin-
guishability follows from the semantic security of the symmetric key encryp-
tion since the key skf is not needed to simulate Hyb2 or Hyb2,1.

• Hyb2,2: In this hybrid we change how CTf
φ is generated. Instead of

generating CTf
φ to be FE.Enc(PKf

1 , (φ, S,Kf
φ , 0λ1 , 0)) we generate it as

FE.Enc(PKf
1 , (φ, 0λ2 , 0λ2 , skf , 1)). We now argue that Hyb2,2 is indistin-

guishable from Hyb2,1. Notice that output of BitExt1[Ψ∗
f ,PKf

2] is same on
(φ, S,Kf

φ , 0λ1 , 0) and (φ, 0λ2 , 0λ2 , skf , 1). Also, the choice of the two mes-
sages and the functionality for which the secret key is obtained do not
depend on the public parameters. Hence, it follows from the weakly selective
security of FE scheme under PKf

1 that Hyb2,1 and Hyb2,2 are indistinguish-
able.

• Hyb2,3: In this hybrid we are going to tunnel through the paths from
the root to the leaf labeled pk∗ in FSKf . To achieve this we are going
to change CTz that is encrypted in Ψf

i for every z ∈ P2. As before,
we don’t change the encryption when z ∈ Q2. In particular, we
change CTf

z = FE.Enc(PKf
|z|+1, (z, Sz,K

f
z , 0λ1 , 0);K ′f

z) to FE.Enc(PKf
|z|+1,

(z, 0λ2 , 0λ2 , skf ; rz) where rz is chosen uniformly at random. The proof of
indistinguishability between Hyb2,2 and Hyb2,3 is exactly same as the one
between Hyb0,2 and Hyb0,3.

– Hyb4: In this hybrid we are going to change Spk∗ used to generate the challenge
ciphertext to an uniformly chosen random κ-bit string T ∗. We observe that
for z that is a prefix of pk∗, Sz is not needed to simulate either Hyb3 or Hyb4
because we have “tunneled” through from the root to leaf node pk∗ in the
master public key and in all the function secret keys FSKf . Hence from the
pseudorandomness at prefix punctured point property of the PRF under the
key S, Hyb4 is computationally indistinguishable to Hyb3. Notice that this also
implies (from the property of the pseudorandom function) that {Li,bi

} for every
i ∈ [γ] and for every bi ∈ {0, 1} can be changed to uniformly chosen random
strings. This change is made to challenge ciphertext as well as encryption keys
used for generating {ci,bi

}i∈[γ],bi∈{0,1} in Ψf
κ+1 in each functional secret key

FSKf .
– Hyb5: In this hybrid we are going to change to change the randomness used

for generating garbled circuit, the encryptions ci,bi
that are encrypted in Ψf

κ+1

and the randomness used for permuting ci,bi
in each of the function secret

keys FSKf to uniformly chosen random strings. Observe that since we have
“tunneled” through pk∗ in each of the function secret keys it follows from
pseudorandomness of prefix punctured point property of the PRF under the
key Kf

φ , Hyb5 is computationally indistinguishable to Hyb4.
– Hyb6: In this hybrid we are going to change ci,1−(mb)i

to encrypting all zeroes
string instead of encrypting Inpi,1−(mb)i

. This change is made in Ψf
κ+1 in each

Single-Key to Multi-Key Functional Encryption with Polynomial Loss 439

Fig. 7. Illustration for Hyb0,2,x′,1 where x′ = 1 and x = 10. The blackened nodes are
not needed for simulation.

of the function secret keys FSKf . Indistinguishablity of Hyb5 and Hyb6 follows
from the semantic security of secret key encryption under Li,1−(mb)i

.
– Hyb7: In this hybrid we are going to change {Inpi,(mb)i

}i∈[γ], ˜Cf to be output
of the simulator for the garbled circuit. This change is made in Ψf

κ+1 in each
of the function secret keys FSKf . More precisely, we set {Inpi,(mb)i

}i∈[γ], ˜Cf ←
Sim(1κ, Cf , f(m0)) (note that f(m0) = f(mb)). Indistinguishability of Hyb6
and Hyb7 follows from the security of garbled circuits.

In Hyb7, the view of the adversary is independent of the challenge bit b.
Hence the advantage that the adversary has in guessing the bit b is 0 in Hyb7.

6 Efficiency Analysis

In this section we relax the requirement of full compactness from our single-key
selectively secure FE scheme to weakly compact ciphertexts. Parts of this section
are taken verbatim from Bitansky and Vaikuntanathan [BV15].

Recall that a FE scheme with weakly compact ciphertexts has an encryption
circuit whose size grows sub-linearly with the circuit size of functions for which
function secret keys are given.

Let F1, F2, · · · , Fκ+1 be the functionalities implemented by the secret keys
FSKf

1 , · · · ,FSKf
κ+1.

4 Notice that for any i = {1, · · · , κ}, Fi implements the
encryption circuit Ei+1 for the functional encryption scheme under PKi+1, sym-
metric decryption circuit and a prefix puncturing circuit. The size of the func-
tional encryption circuit and the symmetric decryption circuit is bounded by
|Ei+1|.poly(κ) and the size of the prefix puncturing circuit is bounded by poly(κ).
Therefore,

|Fi| ≤ |Ei+1|.poly(κ)

4 We restrict our attention to the functional secret keys of our scheme. The analysis
of the master public key is exactly the same.

440 S. Garg and A. Srinivasan

From our assumption that the underlying FE scheme is weakly compact we get:

|Ei| ≤ |Fi|1−ε.poly(κ)

Notice that:
|Fκ+1| ≤ |Cf |.poly(κ)

Hence we get:

|Ei| ≤ |Fi|1−ε.poly(κ) ≤ |Ei+1|1−ε.(poly(κ))1−ε.poly(κ)

By recursively enumerating we get:

|Ei| ≤ |Cf |1−ε.poly(κ).
κ+2−i
∏

j=1

poly(κ)(1−ε)j

We observe that:

κ+2−i
∏

j=1

poly(κ)(1−ε)j ≤
∞
∏

j=0

poly(κ)(1−ε)j ≤ (poly(κ))
1
ε

Hence, for all i ∈ [κ + 1] we get:

|Ei| ≤ |Cf |1−ε.poly(κ)1+
1
ε

which implies efficiency of our underlying construction.

Acknowledgements. We would like to thank the anonymous TCC reviewers for use-
ful feedback. Additionally, we thank Divya Gupta, Peihan Miao, Omkant Pandey and
Mark Zhandry for insightful discussions.

References

[ABSV15] Ananth, P., Brakerski, Z., Segev, G., Vaikuntanathan, V.: From selec-
tive to adaptive security in functional encryption. In: Gennaro, R., Rob-
shaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9216, pp. 657–677. Springer,
Heidelberg (2015)

[AJ15] Ananth, P., Jain, A.: Indistinguishability obfuscation from compact func-
tional encryption. In: Gennaro, R., Robshaw, M.J.B. (eds.) CRYPTO
2015. LNCS, vol. 9215, pp. 308–326. Springer, Heidelberg (2015)

[AJS15] Ananth, P., Jain, A., Sahai, A.: Achieving compactness generically:
indistinguishability obfuscation from non-compact functional encryption.
IACR Cryptology ePrint Archive, 2015:730 (2015)

[AS16] Ananth, P., Sahai, A.: Functional encryption for turing machines. In:
Kushilevitz, E., et al. (eds.) TCC 2016-A. LNCS, vol. 9562, pp. 125–153.
Springer, Heidelberg (2016). doi:10.1007/978-3-662-49096-9 6

[BF01] Boneh, D., Franklin, M.: Identity-based encryption from the Weil pair-
ing. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213–229.
Springer, Heidelberg (2001)

http://dx.doi.org/10.1007/978-3-662-49096-9_6

Single-Key to Multi-Key Functional Encryption with Polynomial Loss 441

[BGI14] Boyle, E., Goldwasser, S., Ivan, I.: Functional signatures and pseudoran-
dom functions. In: Krawczyk, H. (ed.) PKC 2014. LNCS, vol. 8383, pp.
501–519. Springer, Heidelberg (2014)

[BHR12] Bellare, M., Hoang, V.T., Rogaway, P.: Foundations of garbled circuits.
In: Yu, T., Danezis, G., Gligor, V.D. (eds.) ACM CCS 2012, October
16–18, Raleigh, NC, USA, pp. 784–796. ACM (2012)

[BSW11] Boneh, D., Sahai, A., Waters, B.: Functional encryption: definitions and
challenges. In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 253–273.
Springer, Heidelberg (2011)

[BV15] Bitansky, N., Vaikuntanathan, V.: Indistinguishability obfuscation
from functional encryption. In: Guruswami, V. (ed.) 56th FOCS,
October 17–20, Berkeley, CA, USA, pp. 171–190. IEEE Computer Society
Press (2015)

[BW13] Boneh, D., Waters, B.: Constrained pseudorandom functions and their
applications. In: Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013, Part II.
LNCS, vol. 8270, pp. 280–300. Springer, Heidelberg (2013)

[Coc01] Cocks, C.: An Identity based encryption scheme based on quadratic
residues. In: Honary, B. (ed.) Cryptography and Coding 2001. LNCS,
vol. 2260, pp. 360–363. Springer, Heidelberg (2001)

[GGH+13] Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.:
Candidate indistinguishability obfuscation and functional encryption for
all circuits. In: 54th FOCS, October 26–29, Berkeley, CA, USA, pp. 40–49.
IEEE Computer Society Press (2013)

[GGM86] Goldreich, O., Goldwasser, S., Micali, S.: How to construct random func-
tions. J. ACM 33(4), 792–807 (1986)

[GKP+13] Goldwasser, S., Kalai, Y.T., Popa, R.A., Vaikuntanathan, V., Zeldovich,
N.: Reusable garbled circuits and succinct functional encryption. In: Sym-
posium on Theory of Computing Conference, STOC 2013, June 1–4,
Palo Alto, CA, USA, pp. 555–564 (2013)

[GPS15] Garg, S., Pandey, O., Srinivasan, A.: On the exact cryptographic hard-
ness of finding a nash equilibrium. Cryptology ePrint Archive, Report
2015/1078 (2015). http://eprint.iacr.org/2015/1078

[GPSW06] Goyal, V., Pandey, O., Sahai, A., Waters, B.: Attribute-based encryption
for fine-grained access control of encrypted data. In: Proceedings of the
13th ACM Conference on Computer and Communications Security, CCS
2006, October 30–November 3, Alexandria, VA, USA, pp. 89–98 (2006)

[GPSZ16] Garg, S., Pandey, O., Srinivasan, A., Zhandry, M.: Breaking the sub-
exponential barrier in obfustopia. Cryptology ePrint Archive, Report
2016/102 (2016). http://eprint.iacr.org/2016/102

[GVW13] Gorbunov, S., Vaikuntanathan, V., Wee, H.: Attribute-based encryption
for circuits. In: Boneh, D., Roughgarden, T., Feigenbaum, J. (eds.) 45th
ACM STOC, June 1–4, Palo Alto, CA, USA, pp. 545–554. ACM Press
(2013)

[GVW15] Gorbunov, S., Vaikuntanathan, V., Wee, H.: Predicate encryption for cir-
cuits from LWE. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015.
LNCS, vol. 9216, pp. 503–523. Springer, Heidelberg (2015)

[HJO+15] Hemenway, B., Jafargholi, Z., Ostrovsky, R., Scafuro, A., Wichs, D.:
Adaptively secure garbled circuits from one-way functions. IACR Cryp-
tology ePrint Archive, 2015:1250 (2015)

http://eprint.iacr.org/2015/1078
http://eprint.iacr.org/2016/102

442 S. Garg and A. Srinivasan

[KPTZ13] Kiayias, A., Papadopoulos, S., Triandopoulos, N., Zacharias, T.: Delegat-
able pseudorandom functions and applications. In: ACM SIGSAC Confer-
ence on Computer and Communications Security, CCS 2013, November
4–8, Berlin, Germany, pp. 669–684 (2013)

[KSW08] Katz, J., Sahai, A., Waters, B.: Predicate encryption supporting disjunc-
tions, polynomial equations, and inner products. In: Smart, N.P. (ed.)
EUROCRYPT 2008. LNCS, vol. 4965, pp. 146–162. Springer, Heidelberg
(2008)

[LM16] Li, B., Micciancio, D.: Compactness vs collusion resistance in functional
encryption. Cryptology ePrint Archive, Report 2016/561 (2016). http://
eprint.iacr.org/2016/561

[LP09] Lindell, Y., Pinkas, B.: A proof of security of Yao’s protocol for two-party
computation. J. Cryptol. 22(2), 161–188 (2009)

[O’N10] O’Neill, A.: Definitional issues in functional encryption. IACR Cryptology
ePrint Archive, 2010:556 (2010)

[Sha84] Shamir, A.: Identity-based cryptosystems and signature schemes. In:
Blakely, G.R., Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp.
47–53. Springer, Heidelberg (1985)

[SS10] Sahai, A., Seyalioglu, H.: Worry-free encryption: functional encryption
with public keys. In: Proceedings of the 17th ACM Conference on Com-
puter and Communications Security, CCS 2010, October 4–8, Chicago,
Illinois, USA, pp. 463–472 (2010)

[SW05] Sahai, A., Waters, B.: Fuzzy identity-based encryption. In: Cramer,
R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 457–473. Springer,
Heidelberg (2005)

[SW14] Sahai, A., Waters, B.: How to use indistinguishability obfuscation: deni-
able encryption, and more. In: Shmoys, D.B. (ed.) 46th ACM STOC, May
31–June 3, New York, NY, USA, pp. 475–484. ACM Press (2014)

[Wat15] Waters, B.: A punctured programming approach to adaptively secure
functional encryption. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO
2015. LNCS, vol. 9216, pp. 678–697. Springer, Heidelberg (2015)

[Yao86] Yao, A.C.-C.: How to generate and exchange secrets (extended abstract).
In: 27th FOCS, October 27–29, Toronto, Ontario, Canada, pp. 162–167.
IEEE Computer Society Press (1986)

http://eprint.iacr.org/2016/561
http://eprint.iacr.org/2016/561

Compactness vs Collusion Resistance
in Functional Encryption

Baiyu Li(B) and Daniele Micciancio

University of California, San Diego, USA
{baiyu,daniele}@cs.ucsd.edu

Abstract. We present two general constructions that can be used to
combine any two functional encryption (FE) schemes (supporting a
bounded number of key queries) into a new functional encryption scheme
supporting a larger number of key queries. By using these construc-
tions iteratively, we transform any primitive FE scheme supporting a
single functional key query (from a sufficiently general class of functions)
and has certain weak compactness properties to a collusion-resistant
FE scheme with the same or slightly weaker compactness properties.
Together with previously known reductions, this shows that the com-
pact, weakly compact, collusion-resistant, and weakly collusion-resistant
versions of FE are all equivalent under polynomial time reductions. These
are all FE variants known to imply the existence of indistinguisha-
bility obfuscation, and were previously thought to offer slightly differ-
ent avenues toward the realization of obfuscation from general assump-
tions. Our results show that they are indeed all equivalent, improving
our understanding of the minimal assumptions on functional encryption
required to instantiate indistinguishability obfuscation.

1 Introduction

Indistinguishability obfuscation (iO), first formalized in [7] and further inves-
tigated in [26], is currently one of the most intriguing notions on the crypto-
graphic landscape, and it has attracted a tremendous amount of attention in
the last few years. Since Garg et al. [21] put forward a plausible candidate
obfuscation algorithm, iO has been successfully used to solve a wide range of
complex cryptographic problems, including functional encryption [21], deniable
encryption [32], and much more (e.g., see [8,16].) However, the problem of build-
ing an obfuscator with a solid proof of security is still far from being solved.
The multilinear-map problems [18–20,23] underlying most known candidate iO
constructions [5,6,11,21,24,31] have recently been subject to attacks [15,17],

This paper was presented jointly with the paper titled “Single-Key to Multi-Key
Functional Encryption with Polynomial Loss” by Sanjam Garg and Akshayaram
Srinivasan. Research supported in part by the Defense Advanced Research Projects
Agency (DARPA) and the U.S. Army Research Office (ARO) under contract num-
bers W911NF-15-C-0226 and W911NF-15-C-0236, and the National Science Foun-
dation (NSF) under grant CNS-1528068.

c© International Association for Cryptologic Research 2016
M. Hirt and A. Smith (Eds.): TCC 2016-B, Part II, LNCS 9986, pp. 443–468, 2016.
DOI: 10.1007/978-3-662-53644-5 17

444 B. Li and D. Micciancio

and basing iO on a solid, well-understood standard complexity assumption, has
rapidly emerged as perhaps the single most important open problem in the area
of cryptographic obfuscation.

An alternative path toward the construction of iO from standard assumptions
has recently been opened by Bitansky and Vaikuntanathan [9] and Ananth and
Jain [3], who independently showed that iO can be built from any (subexponen-
tially secure) public key functional encryption scheme satisfying certain compact-
ness requirements. While general constructions of compact functional encryption
(for arbitrary functions) are only known using iO, functional encryption is typ-
ically considered a weaker primitive than general iO, or, at very least, a more
manageable one, closer to what cryptographers know how to build. In fact, sev-
eral functional encryption schemes (for restricted, but still rather broad classes
of functions) are known achieving various notions of security [2,12,14,25,34].
We recall that a (public key) functional encryption scheme [1,10,30,33] is an
encryption scheme with a special type of functional secret decryption keys skf

(indexed by functions f) such that encrypting a message m (using the public
key) and then decrypting the resulting ciphertext using skf produces the output
of the function f(m), without revealing any other information about the mes-
sage. Parameters of interest in the study of functional encryption (in relation to
obfuscation) are the time (or circuit) complexity of the encryption function tEnc

and the number of functional keys skf that can be released without compro-
mising the security of the scheme. (See Sect. 2 for formal definitions and details
about security.) Ideally, we would like the encryption time tEnc to depend (poly-
nomially) only on the message size |m| (irrespective of the complexity of the
functions f computed during decryption), and the scheme to support an arbi-
trary polynomial number q of functional decryption keys skf . Schemes satisfying
these two properties are usually called compact (when tEnc is independent of the
size |f | of the circuit computing the function), and collusion-resistant (when q
can be an arbitrary polynomial).

The class of functions f supported by the scheme is also an important para-
meter, but for simplicity here we will focus on schemes for which f can be any
polynomial sized circuit. Interestingly, [25] gives a functional encryption scheme
(based on standard lattice assumptions) which supports arbitrary functions f .
However, the scheme allows to release only q = 1 decryption key (i.e., it is not
collusion resistant) and the complexity of encryption depends polynomially on
the output size and circuit depth of f (i.e., the scheme is not compact.) It is easy
to see that any number q of functional decryption keys can always be supported
simply by picking q independent public keys. But this makes the complexity of
encryption grow linearly with q. So, technically, the constraint that a scheme
is collusion-resistant can be reformulated by requiring that the complexity of
encryption tEnc is independent of q. One can also consider weaker versions of
both compactness and collusion resistance where the complexity of encryption
tEnc is required to be just sublinear in |f | or q.

Using this terminology, the main result of [3,9] states that any (weakly)
compact (but not necessarily collusion-resistant) functional encryption scheme

Compactness vs Collusion Resistance in Functional Encryption 445

can be used to build an iO obfuscator.1 In an effort to further reduce (or
better understand) the minimal assumptions on functional encryption required
to imply obfuscation, the full version of [9] also gives a polynomial reduction
from weakly compact functional encryption to (non-compact) weakly collusion-
resistant functional encryption. A similar polynomial reduction from compact
functional encryption to (non-compact) collusion-resistant functional encryption
is also given in [4], where it is suggested that non-compact functional encryption
may be easier to achieve, and the reduction is presented as a further step toward
basing obfuscation on standard assumptions. In summary, the relation between
these four variants of functional encryption (all known to imply iO by the results
of [3,9]) is summarized by the solid arrows in the following diagram:

Weakly Compact Compact

Weak Collusion-Resistant Collusion-Resistant

where the horizontal implications are trivial (from stronger to weaker constraints
on the tEnc) and the vertical implications are from [3,9].

1.1 Our Results and Techniques

In this paper we further investigate the relation between these four variants of
functional encryption, and prove (among other things) the following result:

Theorem 1 (Informal). There is a polynomial time reduction from collusion-
resistant functional encryption to weakly compact functional encryption.

This adds precisely the (dotted) diagonal arrow to the previous diagram,
showing (by transitivity) that all four variants are equivalent under polynomial
time reductions. Technically, proving the above theorem requires showing that
any single key (q = 1) functional encryption scheme satisfying some weak com-
pactness requirement can be turned into a scheme supporting an arbitrary large
polynomial number Q of functional key queries. We do so in a modular way,
analyzing two general constructions that can be used to combine two arbitrary
functional encryption schemes, which we call the SUM construction and the
PRODUCT construction.

– The SUM construction takes two functional encryption schemes FE1, FE2

supporting q1 and q2 functional key queries, and combines them into a new
scheme FE1 + FE2 supporting q1 + q2 key queries.

1 The reduction incurs a loss in security that is exponential in the input size, which
can be accounted for by assuming the functional encryption scheme is exponentially
hard to break.

446 B. Li and D. Micciancio

– The PRODUCT construction takes two functional encryption schemes FE1,
FE2 supporting q1 and q2 functional key queries, and combines them into a
new scheme FE1 × FE2 supporting q1 · q2 key queries.

The two constructions can be recursively combined in a number of different
ways, exhibiting various efficiency/security tradeoffs. For example, Theorem 1
corresponds to starting from a scheme FE1 supporting a single key (q1 = 1),
using the SUM construction FE2 = (FE1 + FE1) to support q2 = 2 keys, and
then iterating the PRODUCT construction (FE2 × · · · × FE2) precisely log(Q)
times, where Q is the desired number of key queries in the final scheme. (Here
for simplicity Q is chosen in advance, but our operations are flexible enough to
design a scheme where Q is chosen dynamically by the adversary, and the public
key does not depend on Q.)

Another possible instantiation is given by repeatedly squaring the scheme
FE2, i.e., defining FE4 = FE2 × FE2, FE16 = FE4 × FE4, etc. The squar-
ing operation is repeated log(log((Q)) times, to yield a scheme supporting Q
queries. (Again, we are assuming Q is fixed in advance for simplicity, and our
results are easily extended to dynamically chosen Q.) Interestingly (and per-
haps surprisingly) this produces a different scheme than the iterated product
described before, offering different trade-offs. Specifically, the iterated squaring
scheme is no longer compact, and the complexity of encryption now depends on
Q. However, the dependence is pretty mild, just double-logarithmic log(log(Q)),
as opposed to linear O(Q) as in the trivial construction. This mild dependence on
Q results in different ciphertext lengths: while the iterated product construction
produces a ciphertext of length twice as long as that of the underlying single-key
FE scheme, the iterated squaring construction produces a ciphertext that is a
single encryption of a slightly longer message using the underlying FE scheme.

The methods used by the SUM and PRODUCT constructions are relatively
standard: the SUM construction is essentially a formalization and generalization
of the trivial “repetition” construction to turn a single-key scheme into one sup-
porting q key queries by picking q public keys. The PRODUCT construction is
based on the same type of “chaining” techniques used in many bootstrapping
theorems before this work. The main technical novelty of this work is the general
modular framework to combine the operations, and the detailed analysis of the
efficiency and security of the SUM and PRODUCT construction. We remark
that, even for the trivial construction, a detailed analysis is needed in order to
evaluate the parameters growth when the constructions are applied iteratively an
arbitrary (non-constant) number of times. The details of our SUM and PROD-
UCT constructions are also particularly simple: both constructions combine the
component FE schemes making a simple use of just a length doubling pseudoran-
dom generator. Similar constructions in the literature typically make use of more
complex building blocks, like puncturable pseudorandom function. We consider
the simplicity of the constructions in this work as a positive feature.

Compactness vs Collusion Resistance in Functional Encryption 447

1.2 Other Related Work

In a concurrent and independent work, Garg and Srinivasan [22] present a generic
transformation from a polynomial-hard single-key weakly-compact FE scheme to
a collusion-resistant compact FE scheme. While their work and ours have similar
complexity theoretic implications about the existence of functional encryption
schemes, they are quite different at the technical level, and produce very differ-
ent constructions of (collusion resistant) functional encryption, which may be
of independent interest. At a high level, the construction of [22] is based on
the use of single-key FE schemes to simulate the role of the obfuscation in the
iO-to-FE transformations of [3,9], together with a prefix puncturable pseudoran-
dom function. Our constructions are much more direct, and make use of just
a simple pseudorandom generator. An easy way to see how this leads to very
different schemes is that our FE public keys are just the same as the public keys
of the underlying (single-key) FE scheme, while the public keys of [22] consist of
polynomially many functinal decryption keys from the underlying (single-key)
FE scheme. So, one advantage of our work over [22] is simplicity and, poten-
tially, efficiency.2 On the other hand the construction of [22] produces a compact
FE scheme even while starting from a weakly compact one, while our construc-
tion only preserves the compactness properties, from weakly compact to weakly
compact or from fully compact to fully compact.

Our definition of a SUM and PRODUCT construction, and their combined
use to build different schemes exhibiting a variety of efficiency/security tradeoffs
is somehow similar to the work [28], where sum and product constructions are
used to build forward secure signature schemes supporting an arbitrary number
of updates, starting from regular signatures (i.e., supporting no updates) and
hash functions. However, beside this high level similarity, we deal with com-
pletely different cryptographic primitives. The chaining technique used in our
product construction has been used many times before in previous bootstrap-
ping theorems for functional encryption, but it is most closely related to the
work of [13] where chaining is used in a tree fashion to achieve a hierarchical
functional encryption scheme. Our composition approach can be easily adapted
to that setting to make the construction and analysis of [13] more modular.

2 Background

We first set up the notation and terminology used in our work.

2.1 Functional Encryption

For notational simplicity, we assume that all randomized algorithms (e.g., key
generation and encryption procedure of a cryptosystem) all use precisely κ bits
2 Since the single-key FE schemes underlying [22] and our work lack a known instanti-

ation from standard assumptions, it is hard to make a concrete efficiency comparison
between the two schemes. However, based on the asymptotics of the two construc-
tions, one can easily estimate the public keys of [22] to be larger than our public
keys at least by a factor κ, proportional to the security parameter.

448 B. Li and D. Micciancio

of randomness, where κ is the security parameter. This is without loss of gen-
erality, as κ bits of randomness can be used to generate polynomially many
pseudorandom bits using a pseudorandom generator.

We consider only public key functional encryption schemes in our work, so
from now on we omit “public key” and just say functional encryption. We use
the following syntax for functional encryption schemes, where R = {0, 1}κ.

Definition 1. A Functional Encryption scheme is specified by four sets
M,R, I, F (the message, randomness, index and function spaces) and four algo-
rithms (Setup, Enc, Dec, KeyGen) where
– Setup(sk) = pk is a public key generation algorithm that on input a random

secret key sk ∈ R, produces a corresponding public key pk.
– Enc(pk ,m; r) = c is an encryption algorithm that on input a public key pk,

message m ∈ M and randomness r ∈ R, produces a ciphertext c.
– KeyGen(sk , f, i) = fk is a functional key derivation algorithm that on input a

secret key sk, a function f ∈ F , and an index i ∈ I, produces a functional
decryption key fk associated to f .

– Dec(fk , c) = m′ is a decryption algorithm that on input a functional decryption
key fk and ciphertext c, outputs a plaintext message m′.

The scheme is correct if with overwhelming probability (over the choice of sk , r ∈
R), for any message m ∈ M , function f ∈ F and index i ∈ I, it holds that

Dec(KeyGen(sk , f, i),Enc(Setup(sk),m; r)) = f(m).

Our syntax for functional encryption schemes slightly differs from the stan-
dard one in two respects. First, we identify the randomness used by the public
key generation procedure Setup with the master secret key of the scheme. This
is without loss of generality, but provides a more convenient syntax for our con-
structions. The other is that the functional key derivation algorithm KeyGen
takes an index i as an additional parameter. The only requirement on this index
is that different calls to KeyGen(sk , ·, i) use different values of i. The role of i is
simply to put a bound on the number of calls to the functional key derivation
algorithm. (In particular, the indexes i ∈ I can be used in any order, and the key
derivation algorithm does not need to keep any state.) For example, a functional
encryption scheme supporting the release of a single functional key fk will have
an index space I = {1} of size 1.

Remark 1. We remark that the standard definition of bounded collusion resistant
functional encryption typically allows an arbitrary number of calls to KeyGen,
and imposes a bound only on the number of functional decryption keys that are
released to the adversary. This always requires the set I to have exponential (or,
at least, superpolynomial) size in the security parameter. So, our definition of I-
bounded FE is somehow more restrictive than |I|-bounded collusion resistance.
When the set I has superpolynomial size (e.g., as obtained in the main results
of this paper,) it is easy to make the KeyGen completely stateless and match
the standard FE security definition with only a negligible loss in security, e.g.,
by letting KeyGen pick i ∈ I at random, or setting i = H(f) for some collision
resistant hash function H : F → I.

Compactness vs Collusion Resistance in Functional Encryption 449

Security. Since our work is primarily motivated by the application of FE to
indistinguishability obfuscation [3,9], we will use an indistinguishability security
definition for FE, which is the most relevant one in this context. We follow the
indistinguishability security notions as defined in [10], expressed in the func-
tional/equational style of [27,29]. Security for functional encryption is defined
by a game between a challenger and an adversary. Both the challenger and the
adversary are reactive programs, modeled by monotone functions: the challenger
is a function HFE((m0,m1), {fi}i∈I) = (pk , c, {fk i}i∈I) that receives as input a
pair of message (m0,m1) ∈ M2 and collection of function queries fi ∈ F , and
outputs a public key pk , ciphertext c and collection of functional keys fk i for
i ∈ I. The adversary is a function A(pk , c, {fk i}i∈I) = ((m0,m1), {fi}i∈I , b

′)
that on input a public key pk , ciphertext c and functional keys {fk i}i∈I outputs
a pair of messages (m0,m1), function queries {fi}i∈I and decision bit b′. We
recall that, as reactive programs, H and A can produce some outputs before
receiving all the inputs. (Formally, each of the input or output variable can take
a special undefined value ⊥, subject to the natural monotonicity requirements.
See [29] for details.)

Security for an FE scheme FE is defined using the following challenger HFE
b ,

parameterized by a bit b ∈ {0, 1}:

HFE
b ((m0,m1), {fi}i∈I) = (pk , c, {fk i}i∈I)
where sk ← R, r ← R

pk = Setup(sk)
c = Enc(pk ,mb; r)
For all i ∈ I:

fk i = if (fi(m0) = fi(m1) �= ⊥) then KeyGen(sk , fi, i) else ⊥
By the notation x ← R we mean the operation of selecting an element uniformly
at random from R. Note that, if fi = ⊥ or mj = ⊥, then fi(mj) = ⊥. So, this
challenger corresponds to a non-adaptive security definition where the adversary
cannot get any functional key before choosing the challenge messages (m0,m1).
On the other hand, the public key pk is computed (and given to the adversary)
right away, so the (distribution of the) messages (m0,m1) may depend on the
value of the public key. Alternative definitions can be obtained by setting

– pk = if ((m0,m1) �= ⊥) then Setup(sk) else ⊥, which corresponds to the
selective (i.e., fully non-adaptive) attack where the adversary has to choose
the messages before seeing the public key.

– fk i = KeyGen(sk , fi, i) and c = if (∀i.fi(m0) = fi(m1)) then Enc(pk ,mb; r)
else ⊥, which corresponds to allowing function queries (only) before choosing
the messages (m0,m1).

All our results and constructions are easily adapted to all these different def-
initional variants, as well as fully adaptive settings where message and func-
tion queries can be specified in any order, subject to the natural non-triviality
requirements.

450 B. Li and D. Micciancio

A FE game ExpFE [HFE
(·),A] is defined by the following system of equations:

ExpFE [HFE
(·),A] = (b ?= b′)

where b ← {0, 1}
(pk , c, {fk i}i∈I) = HFE

b ((m0,m1), {fi}i∈I)
((m0,m1), {fi}i∈I , b

′) = A(pk , c, {fk i}i∈I)

The output of the game can be obtained by finding the least fixed point of
[HFE

b ,A], which describes the output when the computation stabilizes. We say
that the adversary A wins the game ExpFE [HFE

(·),A] if the game outputs �, and
we define the advantage of A in breaking the FE scheme FE as

AdvFE[A] =
∣

∣

∣2Pr{ExpFE [HFE
(·),A] = �} − 1

∣

∣

∣ .

Alternatively, we can let the FE game be parameterized by b and output a bit b′:

[HFE
(b),A] = b′

where (pk , c, {fk i}i∈I) = HFE
b ((m0,m1), {fi}i∈I , b

′)
((m0,m1), {fi}i∈I , b

′) = A(pk , c, {fk i}i∈I)

Then the advantage of A in breaking the FE scheme FE can be defined as

AdvFE[A] =
∣

∣Pr{[HFE
0 ,A] = 1} − Pr{[HFE

1 ,A] = 1}∣∣ .

The two formulations are easily seen to be perfectly equivalent.

Definition 2. A functional encryption scheme FE is (q, ε)-non-adaptively (or
selectively/adaptively) secure if |I| = q and for any efficient adversary A there
exists a negligible function δ(κ) such that δ(κ) < ε(κ)Ω(1) and the advantage of A
in the non-adaptive (or selective/adaptive) FE game is bounded by AdvFE[A] ≤
δ(κ).

When ε(κ) is negligible, for simplicity we sometimes omit it and just say a
FE scheme is q-secure, where q = |I| as in the definition above.

Efficiency. For a FE scheme to be useful in the real world applications or in
building other cryptographic constructs, we need to measure its efficiency. Sev-
eral notions have been considered in the literature, and here we mention those
that are used in our work. Let FE be a FE scheme with security parameter κ,
and let n be the length of messages to be encrypted. Then we say

– FE is compact3 if the running time tEnc of the encryption procedure Enc is
polynomial in n and κ, and it is independent of other parameters.

– FE is weakly compact4 if tEnc is sub-linear in |I| and the maximal circuit size
s of functions in F , and it is polynomial in n and κ.

3 Also known as fully (circuit) succinct in [9].
4 Also known as weakly (circuit) succinct in [9].

Compactness vs Collusion Resistance in Functional Encryption 451

– FE is ciphertext-succinct or simply succinct if tEnc is polynomials in n, κ, and
the maximal circuit depth d of functions in F .

– FE is weakly ciphertext-succinct or simply weakly succinct if tEnc is sub-linear
in |I| but is polynomials in n, κ, and d.

The notion of compact FE has been considered in [3,4], and also in [9] under
the name fully circuit succinct. Here we choose the name “compact” to dis-
tinguish other variants of succinctness notions. It was shown in [3,9] that a
1-secure compact FE with sub-exponential security for all circuits implies an
indistinguishability obfuscation for all circuits.

Succinct FE scheme, a weaker notion, was considered in [25], where their def-
inition was based on ciphertext length. They constructed a succinct FE scheme
based on standard sub-exponential lattice assumptions. We note that, although
our definition is stronger due to using the complexity of encryption, the [25] FE
scheme is still ciphertext-succinct with our definition.

Furthermore, one may naturally require a FE scheme to be secure even when
a large number of functional keys are released. We say a FE scheme is collusion-
resistant if it is secure when |I| is any polynomial in κ. When we also allow
sub-linear dependence on |I|, the FE scheme is called weakly collusion-resistant.

2.2 Pseudorandom Generators

Our construction assumes the existence of pseudorandom generators that can
stretch a short random seed to a polynomially long pseudorandom bit-string. In
the following we give its definition and some conventions in using it.

Definition 3. Let G : R → S be a deterministic function that can be computed
in polynomial time. We say that G is a μ(κ)-secure pseudorandom generator of
stretch �(κ) if for all x ∈ R we have |G(x)| = �(|x|), where �(κ) is a polynominal
in κ, and for any efficient adversary A we have

AdvG[A] =
∣

∣

∣ Pr
s←S

{A(s) = 1} − Pr
r←R

{A(G(r)) = 1}
∣

∣

∣ ≤ μ(κ).

The quantity AdvG[A] is the advantage of A in breaking the PRG G.

We write G(r) to denote the output of a pseudorandom generator on input
a (randomly chosen) seed r, with the domain and range of G usually defined
implicitly by the context. We write Gi(r) to denote a specific part of the output,
i.e., G(r) = G0(r)G1(r) . . .Gk(r), where the blocks Gi(r) usually have all the
same length. The assumption is that G(r) is computationally indistinguishable
from a random string of length |G(r)|, i.e., G is μ-secure for some negligible
function μ(κ).

3 The SUM Construction

We describe a simple method to combine two functional encryption schemes FE0

and FE1 with index spaces I0 and I1, into a new scheme FE = FE0 + FE1 with

452 B. Li and D. Micciancio

index space I = I0 + I1 = {(b, i) | b ∈ {0, 1}, i ∈ Ib} given by the disjoint
union of I0 and I1. Let FEb = (Setupb,Encb,Decb,KeyGenb) for b ∈ {0, 1}. Then,
FE = (Setup,Enc,Dec,KeyGen) is defined as

– Setup(sk) = (Setup0(G0(sk)),Setup1(G1(sk)))
– Enc((pk0, pk1),m; r) = (Enc0(pk0,m;G0(r)),Enc1(pk1,m;G1(r)))
– Dec((b, fk), (c0, c1)) = Decb(fk , cb)
– KeyGen(sk , f, (b, i)) = (b,KeyGenb(Gb(sk), f, i))

for all sk , r ∈ R, m ∈ M , b ∈ {0, 1} and i ∈ Ib. Informally, the SUM scheme
works by generating two public keys (one for each component scheme FEb),
and encrypting each message under both public keys. When applied to two
copies of the same scheme FE0 = FE1, this doubles the size of the index space
|I| = 2|Ib| (allowing twice as many functional decryption keys,) but at the cost
of doubling also the public key and ciphertext size. The complexity of decryption
and functional key generation stays essentially the same as that of the component
schemes (no doubling, only a small additive increase for multiplexing), as only
one of the two ciphertexts gets decrypted.

The correctness of the scheme is easily verified by substitution. Security
(proved in the next theorem) is not entirely trivial, as it requires a careful use
of the pseudorandom generator, but it still follows by a fairly standard hybrid
argument. The construction preserves the non-adaptive/selective/adaptive secu-
rity properties. We prove the non-adaptive version, which can be easily adapted
to the other models.

Theorem 2 (SUM construction). If FEi for i ∈ {0, 1} is a succinct (qi, εi)-
non-adaptively secure FE scheme for functions in the class F , with public key
size �k

i and ciphertext length �c
i , and if G is a μ-secure pseudorandom generator,

then FE = FE0 + FE1 is a succinct (q0 + q1, ε0 + ε1 + 4μ)-non-adaptively secure
FE scheme for F with public-key size �k

0 + �k
1 and ciphertext length �c

0 + �c
1.

Moreover, if the algorithms Setupi,Deci,KeyGeni and Enci of FEi run in
time tSetupi ,tDec

i ,tKeyGeni and tEnci (n, κ, di), respectively, where di is the maximum
depth of functions in F , and if G runs in time tG, then the running times of the
algorithms in FE = FE0 + FE1 are:

– Setup: tSetup0 + tSetup1 + tG

– Enc : tEnc0 + tEnc1 + tG

– Dec : max{tDec
0 , tDec

1 }
– KeyGen : max{tKeyGen0 , tKeyGen1 } + tG

Proof. We build 6 hybrids to reduce the security of the SUM construction FE0 +
FE1 to the security of the PRG G and the security of the FE schemes FE0 and
FE1. We denote a hybrid by H(j)

b for b ∈ {0, 1} and an index j. Like the challenger
in a FE game, a hybrid is a monotone function H(j)

b ((m0,m1), {f(h,i)}(h,i)∈I) =
(pk , c, {fk (h,i)}(h,i)∈I), where I = I0 + I1. Proofs of lemmas can be found in
AppendixA.

Compactness vs Collusion Resistance in Functional Encryption 453

H(0)
b : This hybrid is the same as the original challenger HFE

b in the FE game
for the FE scheme FE0 + FE1. For a fixed b ∈ {0, 1}, by expanding the SUM
construction, we get the following definition of H(0)

b :

H(0)
b ((m0,m1), {f(h,i)}) = (pk , c, {fk (h,i)})
where

sk ← R, r ← R
sk0 = G0(sk), sk1 = G1(sk)
pk0 = Setup0(sk0), pk1 = Setup1(sk1), pk = (pk0, pk1)
c0 = Enc0(pk0,mb;G0(r)), c1 = Enc1(pk1,mb;G1(r)), c = (c0, c1)
For all (h, i) ∈ I0 + I1:

fk (h,i) = if (f(h,i)(m0) = f(h,i)(m1) �= ⊥) then (h,KeyGenh(skh, f ; i))

H(1)
b : In this hybrid we replace the PRG outputs by truly random strings. So sk

and r are no longer needed and hence we remove them from the hybrid.

H(1)
b ((m0,m1), {f(h,i)}) = (pk , c, {fk (h,i)})
where

sk0 ← R, sk1 ← R, r0, r1 ← R
pk0 = Setup0(sk0), pk1 = Setup1(sk1), pk = (pk0, pk1)
c0 = Enc0(pk0,mb; r0), c1 = Enc1(pk1,mb; r1), c = (c0, c1)
For all (h, i) ∈ I0 + I1:

fk (h,i) = if (f(h,i)(m0) = f(h,i)(m1) �= ⊥) then (h,KeyGenh(skh, f ; i))

Lemma 1. If G is a μ-secure pseudorandom generator, then for any b ∈ {0, 1}
and adversary A we have |Pr{[H(0)

b ,A] = 1} − Pr{[H(1)
b ,A] = 1}| ≤ 2μ(κ).

H(2)
b : In this hybrid the ciphertext c encrypts both m0 and m1:

H(2)
b ((m0,m1), {f(h,i)}) = (pk , c, {fk (h,i)})
where

sk0 ← R, sk1 ← R, r0, r1 ← R,
pk0 = Setup0(sk0), pk1 = Setup1(sk1), pk = (pk0, pk1)
c0 = Enc0(pk0,m0; r0), c1 = Enc1(pk1,m1; r1), c = (c0, c1)
For all (h, i) ∈ I0 + I1:

fk (h,i) = if (f(h,i)(m0) = f(h,i)(m1) �= ⊥) then (h,KeyGenh(skh, f ; i))

Lemma 2. If FE1 is a (q1, ε1)-non-adaptively secure FE scheme, then for any
adversary A we have |Pr{[H(1)

0 ,A] = 1} − Pr{[H(2)
0 ,A] = 1}| ≤ ε1(κ).

By symmetric argument, we can also obtain the following lemma.

Lemma 3. If FE0 is a (q0, ε0)-non-adaptively secure FE scheme, then for any
adversary A we have |Pr{[H(1)

1 ,A] = 1} − Pr{[H(2)
1 ,A] = 1}| ≤ ε0(κ).

454 B. Li and D. Micciancio

Finally, we observe that the last hybrid H(2)
b does not depend on the bit b, and

therefore Pr{[H(2)
0 ,A] = 1} = Pr{[H(2)

1 ,A] = 1}. It follows by triangle inequality
that the advantage of adversary A in breaking the SUM FE scheme is at most
AdvFE[A] = |Pr{[H(0)

0 ,A] = 1} − Pr{[H(0)
1 ,A] = 1}| ≤ 2μ + ε1 + 0 + ε0 + 2μ =

4μ + ε0 + ε1.
�

4 The PRODUCT Construction

We now define a different method to combine FE0 and FE1 into a new scheme
FE = FE0 × FE1 with index space I0 × I1 equal to the cartesian product of the
index spaces I0, I1 of FE0 and FE1. Let FEb = (Setupb,Encb,Decb,KeyGenb) for
b ∈ {0, 1}. First, for each i ∈ I0, we define a “re-encryption” function ei[c, pk] :
M × R → M , parameterized by c ∈ M and pk ∈ K:

ei[c, pk](m, r̃) =
{

Gi(r̃) ⊕ c if m = ⊥
Enc1(pk ,m;Gi(r̃)) otherwise

Then, FE = (Setup,Enc,Dec,KeyGen) is defined as follows:

– Setup(sk) = Setup0(G0(sk))
– Enc(pk ,m; r) = Enc0(pk , (m,G0(r));G1(r))
– Dec((fk0, fk1), c) = Dec1(fk1,Dec0(fk0, c))
– KeyGen(sk , f, (i, j)) = (fk i

0, fk
i,j
1) where

sk0 = G0(sk)
sk i

1 = Gi(G1(sk))
pk i

1 = Setup1(sk
i
1)

ci = Gi(G2(sk))
fk i

0 = KeyGen0(sk0, ei[ci, pk i
1], i)

fk i,j
1 = KeyGen1(sk

i
1, f, j)

The re-encryption function can work in two modes: in the regular mode
where a message m is given, it computes the FE1 ciphertext of m under a hard-
wired public key pk with pseudo-randomness supplied by a random seed from
input; in the special mode where m is not given (denoted by the special symbol
⊥), it pads a hard-wired ciphertext c with pseudo-randomness derived from the
random seed from input. Note that the special mode is never invoked in a real
world execution of the scheme, but it is only used in security proofs.

Let REFE be the class of functions that include ei[ci, pk i
1](·, ·) defined using

Enc of the FE scheme FE. Then we state the security of our PRODUCT con-
struction as follows. Again, the analysis can be easily adapted to other (e.g.,
selective/adaptive) models.

Compactness vs Collusion Resistance in Functional Encryption 455

Theorem 3 (PRODUCT construction). Assume FE0 and FE1 are succinct
public-key FE which are (q0, ε0)- and (q1, ε1)-non-adaptively secure for functions
in the classes REFE0 and F respectively, whose key sizes are �k

0 and �k
1 , ciphertext

lengths �c
0(n, κ, d0) and �c

1(n, κ, d1), where n is the message length and d0, d1 are
the maximum depth of functions in REFE0 , F , respectively. Also assume G is a
μ-secure pseudorandom generator. Then FE0 × FE1 is a (q0q1, q0ε1 + 2ε0 + 12μ)-
non-adaptively secure succinct public-key FE scheme for F with public-key sizes
�k
0 and ciphertext length �c

0(n + κ, κ, d0).
Moreover, for i ∈ {0, 1}, let tSetupi ,tEnci ,tDec

i ,tKeyGeni be the running times of
algorithms Setupi,Enci,Deci,KeyGeni of FEi, where tEnci = tEnci (n, κ, di), and let
tG be the running time of G. Then the running times of FE are:

– Setup: tSetup0 + tG

– Enc : tEnc1 (n + κ, κ, d0) + tG

– Dec : tDec
0 + tDec

1

– KeyGen : tSetup1 + tKeyGen0 + tKeyGen1 + 3tG

Proof. We build a series of hybrids to reduce the security of FE0 × FE1 to the
security of the PRG and the security of FE schemes FE0 and FE1. We denote
our hybrids by H(h)

b for b ∈ {0, 1} and h an index. Let I = I0 × I1. A hybrid
is a monotone function H(h)

b ((m0,m1), {fi}i∈I) = (pk , c, {fk i}i∈I). An adversary
A wins the game against H(h)

b if b′ = [H(h)
b ,A] = 1, and its advantage over

H(h)
b is Adv[A](h)b = Pr{[H(h)

b ,A] = 1}. Again, proofs of lemmas can be found in
AppendixA.

H(0)
b : This is the same as the original challenger HFE0×FE1

b in the FE game for
the scheme FE0 × FE1. By expanding the PRODUCT construction, we get the
following definition of H(0)

b :

H(0)
b ((m0,m1), {f(i,j)}(i,j)∈I) = (pk , c, {fk (i,j)}(i,j)∈I)
where

sk ← K, r ← R
sk0 = G0(sk), pk = Setup0(sk0)
c = Enc0(pk , (mb,G0(r));G1(r))
For all i ∈ I0, j ∈ I1:

fk i,j = if (fi,j(m0) = fi,j(m1) �= ⊥) then (fk i
0, fk

i,j
1)

where sk i
1 = Gi(G1(sk)), pk i

1 = Setup1(ski
1), ci = Gi(G2(sk))

fk i
0 = KeyGen0(sk0, ei[ci, pk i

1], i)
fk i,j

1 = KeyGen1(sk
i
1, fi,j , j)

H(1)
b : In this hybrid some uses of the PRG G are replaced by truly random

strings. In addition, sk is no longer needed so we remove it from the hybrid.

456 B. Li and D. Micciancio

H(1)
b ((m0,m1), {fi,j}(i,j)∈I) = (pk , c, {fk i,j}(i,j)∈I)
where sk0 ← K, r ← R

pk = Setup0(sk0)
r′ ← K, r′′ ← K, c = Enc0(pk , (mb, r

′); r′′)
For all i ∈ I0, j ∈ I1:

fk i,j = if (fi,j(m0) = fi,j(m1) �= ⊥) then (fk i
0, fk

i,j
1)

where sk i
1 ← K, pk i

1 = Setup1(ski
1), ci ← K

fk i
0 = KeyGen0(sk0, ei[ci, pk i

1], i)
fk i,j

1 = KeyGen1(sk
i
1, fi,j , j)

Lemma 4. If G is a μ-secure pseudorandom generator, then for any b ∈ {0, 1}
and any efficient adversary A, we have |Adv[A](0)b − Adv[A](1)b | ≤ 4μ(κ).

H(2)
b : In this hybrid we slightly modify how ci is generated without changing its

distribution.

H(1)
b ((m0,m1), {fi,j}(i,j)∈I) = (pk , c, {fk i,j}(i,j)∈I)
where sk0 ← K, r ← R

pk = Setup0(sk0)
r′ ← K, r′′ ← K, c = Enc0(pk , (mb, r

′); r′′)
For all i ∈ I0, j ∈ I1:

fk i,j = if (fi,j(m0) = fi,j(m1) �= ⊥) then (fk i
0, fk

i,j
1)

where sk i
1 ← K, pk i

1 = Setup1(ski
1)

si ← K, c̃i
1 = Enc1(pk i

1,mb;Gi(r′)), ci = si ⊕ c̃i
1

fk i
0 = KeyGen0(sk0, ei[ci, pk i

1], i)
fk i,j

1 = KeyGen1(sk
i
1, fi,j , j)

Lemma 5. For any b ∈ {0, 1} and adversary A, we have Adv[A](1)b = Adv[A](2)b .

H(3)
b : In this hybrid we replace the truly random si with a pseudorandom string.

H(3)
b ((m0,m1), {fi,j}(i,j)∈I) = (pk , c, {fk i,j}(i,j)∈I)
where sk0 ← K, r ← R, s ← K

pk = Setup0(sk0)
r′ ← K, r′′ ← K, c = Enc(pk ,mb; r) = Enc0(pk , (mb, r

′); r′′)
For all i ∈ I0, j ∈ I1:

fk i,j = if (fi,j(m0) = fi,j(m1) �= ⊥) then (fk i
0, fk

i,j
1)

where sk i
1 ← K, pk i

1 = Setup1(ski
1)

si = Gi(s), c̃i
1 = Enc1(pk i

1,mb;Gi(r′)), ci = si ⊕ c̃i
1

fk i
0 = KeyGen0(sk0, ei[ci, pk i

1], i)
fk i,j

1 = KeyGen1(sk
i
1, fi,j , j)

Lemma 6. If G is a μ-secure pseudorandom generator, then for any b ∈ {0, 1}
and adversary A, we have |Adv[A](2)b − Adv[A](3)b | ≤ μ(κ).

Compactness vs Collusion Resistance in Functional Encryption 457

H(4)
b : In this hybrid we modify c to encrypt (⊥, s) instead of (mb, r).

H(4)
b ((m0,m1), {fi,j}(i,j)∈I) = (pk , c, {fk i,j}(i,j)∈I)
where sk0 ← K, r ← R, s ← K

pk = Setup0(sk0)
r′ ← K, r′′ ← K, c = Enc0(pk , (⊥, s); r′′)
For all i ∈ I0, j ∈ I1:

fk i,j = if (fi,j(m0) = fi,j(m1) �= ⊥) then (fk i
0, fk

i,j
1)

where sk i
1 ← K, pk i

1 = Setup1(ski
1)

si = Gi(s), c̃i
1 = Enc1(pk i

1,mb;Gi(r′)), ci = si ⊕ c̃i
1

fk i
0 = KeyGen0(sk0, ei[ci, pk i

1], i)
fk i,j

1 = KeyGen1(sk
i
1, fi,j , j)

Lemma 7. If FE0 is a (q0, ε0)-non-adaptive secure FE scheme for functions in
the class REFE0 , then for any b ∈ {0, 1} and any efficient adversary A, we have
|Adv[A](3)b − Adv[A](4)b | ≤ ε0(κ).

H(5)
b : Now we use fresh randomness to generate c̃i instead of sharing a pseudo-

random string.

H(5)
b ((m0,m1), {fi,j}(i,j)∈I) = (pk , c, {fk i,j}(i,j)∈I)
where

sk0 ← K, r ← R, s ← K
pk = Setup0(sk0)
r′′ ← K, c = Enc0(pk , (⊥, s); r′′)
For all fi,j where i ∈ I0, j ∈ I1:

fk i,j = if (fi,j(m0) = fi,j(m1) �= ⊥) then (fk i
0, fk

i,j
1)

where sk i
1 ← K

pk i
1 = Setup1(ski

1)
si = Gi(s), ri ← K, c̃i

1 = Enc1(pk i
1,mb; ri), ci = si ⊕ c̃i

1

fk i
0 = KeyGen0(sk0, ei[ci, pk i

1], i)
fk i,j

1 = KeyGen1(sk
i
1, fi,j , j)

Lemma 8. If G is a μ-secure pseudorandom generator, then for any b ∈ {0, 1}
and any adversary A we have |Adv[A](4)b − Adv[A](5)b | ≤ μ(κ).

Lemma 9. If FE1 is a (q1, ε1)-non-adaptive secure FE scheme, then for any
efficient adversary A we have |Adv[A](5)0 − Adv[A](5)1 | ≤ q0 · ε1(κ).

Finally, by applying previous lemmas, we see that the advantage of any
adversary A to the PRODUCT scheme FE can be bounded by AdvFE[A] =
|Pr{[H(0)

0 ,A] = 1} − Pr{[H(0)
1 ,A] = 1}| ≤ 2(4μ + 0 + μ + ε0 + μ) + q0ε1 =

q0ε1 + 2ε0 + 12μ.
�

458 B. Li and D. Micciancio

5 Compositions Using SUM and PRODUCT
Constructions

SUM and PRODUCT constructions provide ways to build new FE schemes
with larger function spaces. They also have nice efficiency preserving properties.
Using them as building blocks, we propose two composition methods to define
transformations from a FE scheme supporting only one functional key query to
a new FE scheme that supports any polynomially many functional key queries
without losing much security and efficiency guarantees.

Throughout this section, we assume FE0 is a (1, ε0)-secure FE scheme, where
ε0(κ) is negligible, for functions in a class F with some minimal efficiency guar-
antees, for example, succinct. FE0 can be either selective-, non-adaptive-, or
adaptive-secure, and our transformations preserve these security notions. We
also assume G is a μ-secure PRG, for negligible μ(κ). Let tSetup0 ,tEnc0 ,tDec

0 ,tKeyGen0

be the running times of the four algorithms in FE0, and let �k
0 , �c

0, �fk0 be the
lengths of public key, ciphertext, and functional keys of FE0. Since FE0 is suc-
cinct, tEnc0 = tEnc0 (n, κ, d) and �c

0 = �c
0(n, κ, d) are both polynomials in the message

length n, security parameter κ, and the maximal depth d of functions in F . Let
tG be the running time of the PRG G. Our main results are two reductions from
collusion-resistant (weakly) compact FE schemes for F to FE0 assuming F meets
some requirements (more details later).

5.1 Iterated Squaring Composition

Our first transformation can be obtained by repeatedly squaring the previously
composed FE scheme. At the beginning, we use the SUM construction to obtain
FE schemes supporting 2 functional key queries. Then PRODUCT construction
is used on the FE schemes of the previous iteration.

Formally, we can define the iterated squaring composition method by:

FE1 = FE0 + FE0, and for p ≥ 1,FEp+1 = FEp × FEp. (1)

So FE1 supports 2 functional queries, and for p ≥ 1, the FE scheme FEp+1

supports 22
p

functional queries. For any polynomial Q(κ), when p ≥ log log Q,
the FE scheme FEp+1 supports Q(κ) functional queries, and its security and
performance can be characterized as follows.

Security: The advantage of FEp+1 over any efficient adversary A is

AdvFEp+1 [A] = 22
p

ε0 + 22
p

μ = Q · ε0 + Q · μ. (2)

Running times and output lengths:

– Setup: 2tSetup0 + (p + 1)tG = 2tSetup0 + log log Q · tG

– Enc : 2tEnc0 (n + pκ, κ, d) + (p + 1)tG = 2tEnc0 (n + κ log log Q,κ, d) + log log Q · tG
– Dec : 2ptDec

0 = log Q · tDec
0

Compactness vs Collusion Resistance in Functional Encryption 459

– KeyGen : 2(2p − 1)tSetup0 + 2ptKeyGen0 + (
∑p

i=0(p + 2 − i)2i + 2p+1 − 1)tG =
2 log Q · tSetup0 + log Q · tKeyGen0 + 6 log Q · tG

– �k
p+1 = 2�k

0

– �c
p+1 = �c

0(n + pκ, κ, d) = �c
0(n + κ log log Q,κ, d)

– �fkp+1 = 2p�fk0 = log Q · �fk0

Clearly FEp+1 is a secure FE scheme, and the transformation incurs only
linear (in terms of Q) security loss. Since FE0 is succinct, tEnc0 is a polynomial
in n, κ, and d. So tEncp+1 can be bounded by poly(log Q,n, κ, d) for some fixed
polynomial poly, and hence FEp+1 is weakly succinct.

Besides, for the iterated squaring composition to be viable, we must be careful
about the function classes supported in each iteration of the composition. Let
Fh be the class of functions supported by KeyGenh of the FE scheme FEh, for
h ≥ 0. First we have F1 = F0. In the steps using PRODUCT construction on
FEp to derive FEp+1, a functional key fk = (fk0, fk1) for any function f consists
of two keys under FEp: fk0 is for a “re-encryption” function e

(p)
i [c, pk](·, ·), and

fk1 is for f . Hence for the composition to go through, FEp must be capable of
generating functional keys for these two classes of functions, namely

Fp+1 ∪ {e(p)i [c, pk] | c ∈ M, pk ∈ R} ⊆ Fp.

Recall from Sect. 4 that REFEp
is the class containing e

(p)
i [c, pk] for all c ∈

M, pk ∈ R. Let RE
p
FE0

= ∪p
h=1REFEh

. By expanding the above recursion, we
see that to support function class Fp+1 the FE scheme FE0 must be capable of
functional keys for the functions in Fp+1 ∪ RE

p
FE0

and the PRG G.

Theorem 4. Fix any polynomial Q(κ), and let p(κ) = Ω(log log Q(κ)). Assume
FE0 is a succinct (1, ε0)-non-adaptive (or selective/adaptive) secure FE scheme
for the function class F such that RE

p
FE0

⊆ F and G ∈ F , where ε0(κ) is
some negligible function; and assume G is a secure PRG. Then FEp+1 defined in
Eq. 1 is a weakly succinct (Q, ε)-non-adaptive (or selective/adaptive, respectively)
secure FE scheme for F , where ε(κ) is some negligible function.

5.2 Iterated Linear Composition

A drawback of the iterated squaring composition is that the base scheme FE0

must be capable of generating functional keys for the re-encryption functions of
all iteration steps. It is usually hard to check if this condition holds for a concrete
FE scheme. We now present another composition method that only requires the
base scheme is capable of functionals keys for its own encryption function.

The iterated linear composition is defined recursively by

FE1 = FE0 + FE0, and for p ≥ 1,FEp+1 = FE1 × FEp. (3)

Under this composition, FE1 supports 2 functional keys, and for p ≥ 1, FEp+1

supports 2p+1 functional keys. For FEp to achieve Q(κ) functional keys, we need
p ≥ log Q. Then it is straightforward to get the following characteristics of FEp:

460 B. Li and D. Micciancio

Security: The advantage of FEp over any efficient adversary is

AdvFEp [A] = (3 · 2p)ε0 + (12 · 2p)μ = Qε0 + Qμ. (4)

Running times and output lengths:

– Setup: 2tSetup0 + 2tG

– Enc : 2tEnc0 (n + κ, κ, d) + 2tG

– Dec : ptDec
0 = log Q · tDec

0

– KeyGen : ptKeyGen0 +2(p−1)tSetup0 +(6p−5)tG = 2 log Q · tSetup0 +log Q · tKeyGen0 +
6 log Q · tG

– �k
p = 2�k

0

– �c
p = �c

0(n + κ, κ, d) = 2�c
0(n + κ, κ, d)

– �fkp = p�fk0 = log Q · �fk0

The FE scheme FEp is also secure, and this transformation too incurs linear
(in terms of Q) security loss. This time, the running time of the encryption
procedure no longer depends on Q, so FEp is fully succinct.

Again, for this composition method to be viable, we should consider the
functions can be handled at each iteration. Let Fh denote the function class
supported by FEh, for h ≥ 0. As in the squaring composition, we have F1 = F0.
For h ≥ 1, to derive a functional key for any function f in FEh+1, the scheme
FE1 must generate functional keys for the re-encryption function ei[pk , c], and
FEh must be capable of generating functional keys of f . This implies that

Fp ∪ {ei[pk , c] | pk ∈ R, c ∈ M} ⊆ F0.

Since ei[pk , c](·, ·) can be easily built using basic operations on Enc1(pk , ·; ·) and
G(·), it is sufficient to require that FE0 can generate functional keys for these
two classes of functions.

Theorem 5. Assume FE0 is a succinct (1, ε0)-non-adaptive (or selec-
tive/adaptive) secure FE scheme for the class F of functions such that
Enc0(pk , ·; ·),G(·) ∈ F for any pk ∈ R, where ε0(κ) is some negligible func-
tion, and assume G is a secure PRG. Then, for any polynomial Q(κ), the FE
scheme FEp defined in Eq. 3 for p = Ω(log Q) is a succinct (Q, ε)-non-adaptive
(or selective/adaptive, respectively) secure FE scheme for F , for some negligible
function ε(κ).

Comparing with the iterated squaring composition to support Q functional
key queries, one can see that the security loss, the running times, and key lengths
of Setup and KeyGen are about the same, and the iterated linear composition
gives better encryption performance: Enc runs slightly faster. The trade-off is
in the ciphertext length: our linear composition simply doubles the ciphertext
length of the underlying 1-secure FE scheme, while the iterated squaring com-
position produces a ciphertext that encrypts a slightly longer message in the
1-secure FE scheme.

Compactness vs Collusion Resistance in Functional Encryption 461

5.3 On the Implications of Our Reductions

So far we have obtained two transformations from a 1-secure succinct FE scheme
to a (weakly) succinct FE scheme that supports polynomially many functional
key queries. In this subsection we explore the implications of our reductions.

A (Q, ε)-secure FE scheme for F is called weakly collusion-succinct if tEnc

grows sub-linearly in Q but polynomially in n, κ, and the maximum circuit
size of functions in F . If the sub-linear dependence on Q is removed, then the
FE scheme is called collusion-succinct. For succinct FE0, let us consider the
following two cases about the encryption time tEncp+1 of FEp+1 obtained by our
transformations on FE0:

1. If FEp+1 is as in the iterated squaring composition, then p = Ω(log log Q) and
tEncp+1 = tEnc0 (n + κ · log log Q,κ, d) + log log Q · tG(κ). Clearly tEncp+1 is sub-linear
in Q, and thus FEp+1 is weakly collusion-succinct.

2. If FEp+1 is as in the iterated linear composition, then p = Ω(log Q) and
tEncp+1 = 2tEnc0 (n + κ, κ, d) + 2tG(κ), which is independent of Q. So FEp+1 is
succinct (hence collusion-succinct).

Remark 2. Security in Theorems 4 and 5 degrades linearly in Q. So it may
appear that setting the size of the index space to be superpolynomial results
in a superpolynomial security loss. However, a careful analysis shows that The-
orems 4 and 5 hold with Q equal to the number of key queries made by any
efficient adversary, where the index space is just an upper bound on Q. As long
as the adversary runs in polynomial time, the security loss is only polynomial,
even when setting p accordingly to achieve superpolynomial-sized index space.

As we have mentioned in Remark 1, when the index space of FEp+1 has
superpolynomial size, we can eliminate i from the interface of KeyGen to make
it completely stateless. To achieve this, we may set p = ω(log log κ) in our first
transformation, and we may set p = ω(log κ) in our second transformation.
Such conversions incur only a negligible security loss, and they do not affect the
security properties of FEp+1 in either transformation. Moreover, FEp+1 is secure
with any polynomial number of functional key queries, so it is collusion-resistant.
We can state our transformations in terms of standard FE definition:

Theorem 6. 1. If FE0 is a succinct 1-secure FE scheme for a class F of func-
tions such that RE

p
FE0

⊆ F for p = O(log κ) and that G ∈ F , then for some
p = ω(log log κ), FEp+1 as in the iterated squaring composition is a weakly
collusion-succinct and collusion-resistant FE scheme for F ;

2. If FE0 is a succinct 1-secure FE scheme for a class F of functions such that
its encryption function Enc0 satisfies Enc0(pk , ·; ·) ∈ F for any pk ∈ R and
that G ∈ F , then for some p = ω(log κ), FEp+1 as in the iterated linear
composition is a succinct and collusion-resistant FE scheme for F .

Bitansky and Vaikuntanathan [9] described a reduction from any (weakly)
compact Q-secure FE scheme to a (weakly) collusion-succinct Q-secure FE

462 B. Li and D. Micciancio

scheme for the same class of functions. We note that, although in [9] the notion
of collusion-succinct was defined in terms of ciphertext length, their reduction
still holds with our encryption time based definition. By applying their reduction
together with our transformations, we get the following new reductions:

Theorem 7. 1. If there exists a succinct 1-secure FE scheme FE0 for a class
F of functions such that RE

p
FE0

⊆ F for p = O(log κ) and that G ∈ F , then
there exists a weakly compact and collusion-resistant FE scheme for F ;

2. If there exists a succinct 1-secure FE scheme FE0 for a class F of functions
such that its encryption function Enc0 satisfies Enc0(pk , ·; ·) ∈ F for any
pk ∈ R and that G ∈ F , then there exists a compact and collusion-resistant
FE scheme for F .

Notice that a (weakly) compact FE scheme is necessarily (weakly) succinct.
Our results show that weakly compact (non-collusion-resistant) FE schemes
(supporting a sufficiently general class of functions,) imply collusion-resistant
FE schemes. As shown in [3,9], (non-compact) collusion-resistant FE schemes
imply compact FE schemes. So now we can see these variants as equivalent
notions under polynomial time reductions.

One may attempt to instantiate a compact collusion-resistant FE scheme
using our transformations on a succinct 1-secure FE scheme. Based on sub-
exponential lattice assumption, Goldwasser et al. [25] showed that, for any poly-
nomial d(n), there exists a succinct 1-secure FE scheme for the class of functions
with 1-bit output and depth d circuits. However, it is not clear how to efficiently
“upgrade” this FE scheme to be capable of generating a functional key of its
own encryption function so that the assumptions of our transformations can be
met. This is not surprising because any instantiation would immediately give
an indistinguishability obfuscator. We find it very interesting to answer such
question and we leave it for future work.

Acknowledgement. We would like to thank Fuyuki Kitagawa for pointing out a
mistake in an earlier version of this paper, and we thank anonymous TCC reviewers
for useful comments.

A Proofs of Lemmas

Let G : R → S be a μ(κ)-secure PRG. Recall the following well-known facts:

– The function G′(r1 · · · rm) = G(r1) · · ·G(rm) defined by concatenating m
pseudorandom strings generated by G on r1, . . . , rm ∈ R is a mμ(κ)-secure
pseudorandom generator.

– The function G′′(r) = G(Gi(r)), where |Gi(r)| = |r| = n, is a 2μ(κ)-secure
pseudorandom generator.

We will use them to shorten our security proofs.
First we prove lemmas in Sect. 3 that are used to establish security of the

SUM constructions.

Compactness vs Collusion Resistance in Functional Encryption 463

Lemma 1. If G is a μ-secure pseudorandom generator, then for any b ∈ {0, 1}
and adversary A we have |Pr{[H(0)

b ,A] = 1} − Pr{[H(1)
b ,A] = 1}| ≤ 2μ(κ).

Proof. We define the following adversary B using A as an oracle to attack
the PRG G, where H(1)

b [sk0, sk1, r0, r1] is the hybrid obtained by replacing
sk0, sk1, r0, r1 of H(1)

b by the given values. By the notation sk0‖sk1‖r0‖r1 = x
we mean to parse x as a concatenation of four bit-strings sk0, sk1, r0, r1 of appro-
priate lengths.

B(x) = b′

where sk0‖sk1‖r0‖r1 = x

(pk , c, {fk (h,i)}i∈I) = H(1)
b [sk0, sk1, r0, r1]((m0,m1), {f(h,i)}i∈I)

((m0,m1), {f(h,i)}i∈I , b
′) = A(pk , c, {fk (h,i)}i∈I)

Notice that if x is generated by the PRG G then B is running the system
[H(0)

b ,A], and if x is uniformly random then B is running [H(1)
b ,A]. Since in

H(1)
b we replaced two calls to G with truly random seeds, we have |Adv[A](0)b −

Adv[A](1)b | = AdvG[BA] ≤ 2μ(κ).
�
Lemma 2. If FE1 is a (q1, ε1)-non-adaptively secure FE scheme, then for any
adversary A we have |Pr{[H(1)

0 ,A] = 1} − Pr{[H(2)
0 ,A] = 1}| ≤ ε1(κ).

Proof. We define the following adversary B using A as an oracle to attack the
FE scheme FE1.

B(pk1, c1, {fk (1,i)
1 }i∈I1) = ((m0,m1), {f(1,i)}i∈I1)

where
(pk , c, {fk (h,i)}(h,i)∈I) = H(2)

0 [pk1, c1, {fk (1,i)
1 }i∈I1]((m0,m1), {f(h,i)}(h,i)∈I)

((m0,m1), {f(h,i)}(h,i)∈I , b
′) = A(pk , c, {fk (h,i)}(h,i)∈I)

Since A is a valid adversary to FE0+FE1, we must have f(1,i)(m0) = f(1,i)(m1)
for all i ∈ I1; and hence B is valid for FE1. Notice that if the input c1 to B is
an encryption of m0, i.e., c1 = Enc1(pk1,m0; r1) for some random string r1 ∈ R,
then B is running [H(1)

0 ,A]; if c1 = Enc1(pk1,m1; r1) for some r1 ∈ R, then B
is running [H(2)

0 ,A]. Hence the advantage of B in winning the FE game for the
scheme FE1 is AdvFE1 [B] = |Adv[A](1)0 − Adv[A](2)0 | ≤ ε1(κ).
�

Next we prove lemmas that are used to establish security of the PRODUCT
constructions. From now on, hybrids refer to those defined in Sect. 4.

Lemma 4. If G is a μ-secure pseudorandom generator, then for any b ∈ {0, 1}
and any efficient adversary A, we have |Adv[A](0)b − Adv[A](1)b | ≤ 4μ(κ).

Proof. We build an adversary B using A as an oracle to attack the PRG G. As in
previous proofs, by H(1)

b [sk0, r
′, r′′, sk1

1, . . . , sk
q0
1 , c1, . . . , cq0] we mean the hybrid

obtained by substituting sk0, r
′, r′′, sk1

1, . . . , sk
q0
1 , c1, . . . , cq0 with the given val-

ues. The adversary B is defined as:

464 B. Li and D. Micciancio

B(x) = b′

where
sk0‖r′‖r′′‖sk1

1‖ · · · ‖skq0
1 ‖c1‖ · · · ‖cq0 = x

(pk , c, {fk i,j}I) = H(1)
b [sk0, r

′, r′′, {sk i
1}i∈I0 , {ci}i∈I0]((m0,m1), {fi,j}I)

((m0,m1), {fi,j}(i,j)∈I , b
′) = A(pk , c, {fk i,j}(i,j)∈I)

Notice that if x is generated by four calls to G then B is running [H(0)
b ,A],

and if x is truly random then B is running [H(1)
b ,A]. Since G is a μ-secure

pseudorandom generator, we have |Adv[A](0)b − Adv[A](1)b | ≤ 4μ(κ).
�
Lemma 6. If G is a μ-secure pseudorandom generator, then for any b ∈ {0, 1}
and adversary A, we have |Adv[A](2)b − Adv[A](3)b | ≤ μ(κ).

Proof. We build an adversary B using A as an oracle to attack G:

B(x) = b′

where s1‖ · · · ‖sq0 = x

(pk , c, {fk i,j}(i,j)∈I) = H(1)
b [s1, . . . , sq0]((m0,m1), {fi,j}(i,j)∈I)

((m0,m1), {fi,j}(i,j)∈I , b
′) = A(pk , c, {fk i,j}(i,j)∈I)

Notice that if x is chosen uniformly random then B is running [H(2)
b ,A], and

if x is generated by G then B is running [H(3)
b ,A]. Thus we have |Adv[A](2)b −

Adv[A](3)b | ≤ μ(κ).
�
Lemma 7. If FE0 is a (q0, ε0)-non-adaptive secure FE scheme for functions in
the class REFE0 , then for any b ∈ {0, 1} and any efficient adversary A, we have
|Adv[A](3)b − Adv[A](4)b | ≤ ε0(κ).

Proof. We build an adversary B using A as an oracle to attack FE0. For b ∈
{0, 1}, we define B as follows:

B(pk0, c0, {fk i
0}i∈I0) = ((x0, x1), {ei[ci, pk i

1]}i∈I0 , b
′)

where pk = pk0, c = c0
r ← R, r′ ← K, s ← K
x0 = (mb, r

′), x1 = (⊥, s)
For all i ∈ I0, j ∈ I1:

fk i,j = if (fi,j(m0) = fi,j(m1) �= ⊥) then (fk i
0, fk

i,j
1)

where sk i
1 ← K

pk i
1 = Setup1(ski

1)
si = Gi(s), c̃i

1 = Enc1(pk i
1,mb;Gi(r′)), ci = si ⊕ c̃i

1

fk i,j
1 = KeyGen1(sk

i
1, fi,j , j)

((m0,m1), {fi,j}(i,j)∈I , b
′) = A(pk , c, {fk i,j}(i,j)∈I)

We show that B is a valid adversary for the FE game, that is, the functions
ei[ci, pk i

1] appear in B’s queries satisfy ei[ci, pk i
1](x0) = ei[ci, pk i

1](x1) for all
i ∈ I0. Since x0 = (mb, r

′) and x1 = (⊥, s), by definition of ei[ci, pk i
1] we have

Compactness vs Collusion Resistance in Functional Encryption 465

ei[ci, pk i
1](x0) = ei[ci, pk i

1](mb, r
′) = Enc1(pk i

1,mb;Gi(r′)),

ei[ci, pk i
1](x1) = ei[ci, pk i

1](⊥, s) = Gi(s) ⊕ ci = Enc1(pk i
1,mb;Gi(r′)).

So indeed ei[ci, pk i
1](x0) = ei[ci, pk i

1](x1).
Notice that if the input ciphertext c0 is an encryption of m0, i.e., c0 =

Enc0(pk0, (mb, r
′); r′′) for some random string r′′, then B is running [H(3)

b ,A],
and if c0 = Enc0(pk0, (⊥, s); r′′) then B is running [H(4)

b ,A]. Thus the advantage
of B in the FE game is

|2Pr{b′
0 = b0} − 1| = |Pr{b′

0 = 0 | b0 = 0} + Pr{b′
0 = 1 | b0 = 1} − 1|

= |Pr{b′ = 1 | b0 = 0} − Pr{b′ = 1 | b0 = 1}|,

where Pr{b′ = 1 | b0 = 0} = Adv[A](3)b and Pr{b′ = 1 | b0 = 1} = Adv[A](4)b .
Since FE0 is (q0, ε0)-non-adaptively secure, we have that |Adv[A](3)b −Adv[A](4)b | ≤
ε0(κ).
�
Lemma 8. If G is a μ-secure pseudorandom generator, then for any b ∈ {0, 1}
and any adversary A we have |Adv[A](4)b − Adv[A](5)b | ≤ μ(κ).

Proof. We build an adversary B to attack G using A as an oracle.

B(x) = b′

where r1‖ · · · ‖rq0 = x

(pk , c, {fk i,j}(i,j)∈I) = H(1)
b [r1, . . . , rq0]((m0,m1), {fi,j}(i,j)∈I)

((m0,m1), {fi,j}(i,j)∈I , b
′) = A(pk , c, {fk i,j}(i,j)∈I)

Notice that if x is truly random then B is running [H(4)
b ,A], and if x is

generated by G then B is running [H(5)
b ,A]. So we have

Pr{B(x) = 1 | x ← R} − Pr{B(x) = 1 | ∃y.x = G(y)} = |Adv[A](4)b − Adv[A](5)b |.

Since G is μ-secure, |Adv[A](4)b − Adv[A](5)b | ≤ μ(κ).
�
Lemma 9. If FE1 is a (q1, ε1)-non-adaptive secure FE scheme, then for any
efficient adversary A we have |Adv[A](5)0 − Adv[A](5)1 | ≤ q0 · ε1(κ).

Proof. To close the gap between H(5)
0 and H(5)

1 , we build a sequence of q0 hybrids
H(5.h)

0 for h ∈ I0. Suppose I0 = {1, 2, . . . , q0}. Let H(5.0)
0 = H(5)

0 , and for each
h ∈ I0, we obtain H(5.h)

0 from H(5.(h−1))
0 by changing c̃h

1 from encrypting m0 to
encrypting m1. Notice that H(5,q0)

0 is same as H(5)
1 .

For each h ∈ I0, we can build an adversary B to attack the FE scheme FE1

using A as an oracle.

466 B. Li and D. Micciancio

B(pk1, c1, {fkh,j
1 }j∈I1) = ((m0,m1), {fh,j}j∈I1 , b

′)
where

pkh
1 = pk1, c̃h

1 = c1

(pk , c, {fk i,j}(i,j)∈I) = H(5)
b [pkh

1 , c̃h
1 , {fkh,j

1 }j∈I1]((m0,m1), {fi,j}(i,j)∈I)
((m0,m1), {fi,j}(i,j)∈I , b

′) = A(pk , c, {fk i,j}(i,j)∈I)

If c1 = Enc1(pk1,m0; r̃) for some randomness r̃ then B is running
[H(5.(h−1))

0 ,A], and if c1 = Enc1(pk1,m1; r̃) then B is running [H(5.h)
0 ,A]. So the

advantage of B in winning the FE game for the FE1 scheme is |Adv[A](5.(h−1))
0 −

Adv[A](5.h)
0 | ≤ ε1(κ). Since H(5.0)

0 is same as H(5)
0 and H(5.q0)

0 is same as H(5)
1 ,

we get

|Adv[A](5)0 − Adv[A](5)1 | ≤
q0

∑

h=1

|Adv[A](5.(h−1))
0 − Adv[A](5.h)

0 |

= q0 · ε1(κ).

�

References

1. Agrawal, S., Gorbunov, S., Vaikuntanathan, V., Wee, H.: Functional encryption:
new perspectives and lower bounds. In: Canetti, R., Garay, J.A. (eds.) CRYPTO
2013, Part II. LNCS, vol. 8043, pp. 500–518. Springer, Heidelberg (2013)

2. Ananth, P., Brakerski, Z., Segev, G., Vaikuntanathan, V.: From selective to
adaptive security in functional encryption. In: Gennaro, R., Robshaw, M. (eds.)
CRYPTO 2015. LNCS, vol. 9216, pp. 657–677. Springer, Heidelberg (2015)

3. Ananth, P., Jain, A.: Indistinguishability obfuscation from compact functional
encryption. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9215,
pp. 308–326. Springer, Heidelberg (2015)

4. Ananth, P., Jain, A., Sahai, A.: Indistinguishability obfuscation from functional
encryption for simple functions. IACR Cryptology ePrint Archive 2015, 730 (2015).
http://eprint.iacr.org/2015/730

5. Applebaum, B., Brakerski, Z.: Obfuscating circuits via composite-order graded
encoding. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015, Part II. LNCS, vol. 9015,
pp. 528–556. Springer, Heidelberg (2015)

6. Barak, B., Garg, S., Kalai, Y.T., Paneth, O., Sahai, A.: Protecting obfuscation
against algebraic attacks. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014.
LNCS, vol. 8441, pp. 221–238. Springer, Heidelberg (2014)

7. Barak, B., Goldreich, O., Impagliazzo, R., Rudich, S., Sahai, A., Vadhan, S.P.,
Yang, K.: On the (im)possibility of obfuscating programs. J. ACM 59(2), 6 (2012).
(In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 1–18. Springer, Heidelberg
(2001))

8. Bitansky, N., Goldwasser, S., Jain, A., Paneth, O., Vaikuntanathan, V., Waters,
B.: Time-lock puzzles from randomized encodings. In: Innovations in Theoretical
Computer Science, pp. 345–356 (2016)

9. Bitansky, N., Vaikuntanathan, V.: Indistinguishability obfuscation from functional
encryption. In: Foundations of Computer Science, FOCS, pp. 171–190 (2015)

http://eprint.iacr.org/2015/730

Compactness vs Collusion Resistance in Functional Encryption 467

10. Boneh, D., Sahai, A., Waters, B.: Functional encryption: a new vision for public-key
cryptography. Commun. ACM 55(11), 56–64 (2012)

11. Brakerski, Z., Rothblum, G.N.: Virtual black-box obfuscation for all circuits via
generic graded encoding. In: Lindell, Y. (ed.) TCC 2014. LNCS, vol. 8349, pp.
1–25. Springer, Heidelberg (2014)

12. Brakerski, Z., Segev, G.: Function-private functional encryption in the private-key
setting. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015, Part II. LNCS, vol. 9015, pp.
306–324. Springer, Heidelberg (2015)

13. Brakerski, Z., Segev, G.: Hierarchical functional encryption. IACR Cryptology
ePrint Archive 2015, 1011 (2015). http://eprint.iacr.org/2015/1011

14. Chandran, N., Chase, M., Vaikuntanathan, V.: Functional re-encryption and
collusion-resistant obfuscation. In: Cramer, R. (ed.) TCC 2012. LNCS, vol. 7194,
pp. 404–421. Springer, Heidelberg (2012)

15. Cheon, J.H., Han, K., Lee, C., Ryu, H., Stehlé, D.: Cryptanalysis of the multilinear
map over the integers. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015.
LNCS, vol. 9056, pp. 3–12. Springer, Heidelberg (2015)

16. Chung, K.-M., Lin, H., Pass, R.: Constant-round concurrent zero-knowledge from
indistinguishability obfuscation. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO
2015. LNCS, vol. 9215, pp. 287–307. Springer, Heidelberg (2015)

17. Coron, J., Gentry, C., Halevi, S., Lepoint, T., Maji, H.K., Miles, E., Raykova, M.,
Sahai, A., Tibouchi, M.: Zeroizing without low-level zeroes: new MMAP attacks
and their limitations. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS,
vol. 9215, pp. 247–266. Springer, Heidelberg (2015)

18. Coron, J.-S., Lepoint, T., Tibouchi, M.: Practical multilinear maps over the inte-
gers. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part I. LNCS, vol. 8042,
pp. 476–493. Springer, Heidelberg (2013)

19. Coron, J., Lepoint, T., Tibouchi, M.: New multilinear maps over the integers. In:
Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9215, pp. 267–286.
Springer, Heidelberg (2015)

20. Garg, S., Gentry, C., Halevi, S.: Candidate multilinear maps from ideal lattices.
In: Nguyen, P.Q., Johansson, T. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp.
1–17. Springer, Heidelberg (2013)

21. Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.: Candidate
indistinguishability obfuscation and functional encryption for all circuits. In: Foun-
dations of Computer Science, FOCS, pp. 40–49 (2013)

22. Garg, S., Srinivasan, A.: Single-key to multi-key functional encryption with poly-
nomial loss. In: Hirt, M., Smith, A. (eds.) TCC 2016-B, Part II. LNCS, vol. 9986,
pp. 419–442. Springer, Heidelberg (2016). http://eprint.iacr.org/2016/524

23. Gentry, C., Gorbunov, S., Halevi, S.: Graph-induced multilinear maps from lattices.
In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015, Part II. LNCS, vol. 9015, pp. 498–527.
Springer, Heidelberg (2015)

24. Gentry, C., Lewko, A.B., Sahai, A., Waters, B.: Indistinguishability obfuscation
from the multilinear subgroup elimination assumption. In: Foundations of Com-
puter Science, FOCS, pp. 151–170 (2015)

25. Goldwasser, S., Kalai, Y.T., Popa, R.A., Vaikuntanathan, V., Zeldovich, N.:
Reusable garbled circuits and succinct functional encryption. In: Symposium on
Theory of Computing Conference, STOC, pp. 555–564 (2013)

26. Goldwasser, S., Rothblum, G.N.: On best-possible obfuscation. J. Cryptol. 27(3),
480–505 (2014). (In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 194–213.
Springer, Heidelberg (2007))

http://eprint.iacr.org/2015/1011
http://eprint.iacr.org/2016/524

468 B. Li and D. Micciancio

27. Li, B., Micciancio, D.: Equational security proofs of oblivious transfer protocols.
IACR Cryptology ePrint Archive 2016, 624 (2016). http://eprint.iacr.org/2016/
624

28. Malkin, T., Micciancio, D., Miner, S.K.: Efficient generic forward-secure signatures
with an unbounded number of time periods. In: Knudsen, L.R. (ed.) EUROCRYPT
2002. LNCS, vol. 2332, pp. 400–417. Springer, Heidelberg (2002)

29. Micciancio, D., Tessaro, S.: An equational approach to secure multi-party compu-
tation. In: Innovations in Theoretical Computer Science, ITCS 2013, pp. 355–372.
ACM, New York (2013)

30. O’Neill, A.: Definitional issues in functional encryption. IACR Cryptology ePrint
Archive 2010, 556 (2010). http://eprint.iacr.org/2010/556

31. Pass, R., Seth, K., Telang, S.: Indistinguishability obfuscation from semantically-
secure multilinear encodings. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014,
Part I. LNCS, vol. 8616, pp. 500–517. Springer, Heidelberg (2014)

32. Sahai, A., Waters, B.: How to use indistinguishability obfuscation: deniable encryp-
tion, and more. In: Symposium on Theory of Computing, STOC, pp. 475–484
(2014)

33. Waters, B.: Functional encryption: origins and recent developments. In: Kurosawa,
K., Hanaoka, G. (eds.) PKC 2013. LNCS, vol. 7778, pp. 51–54. Springer, Heidelberg
(2013)

34. Waters, B.: A punctured programming approach to adaptively secure functional
encryption. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9216,
pp. 678–697. Springer, Heidelberg (2015)

http://eprint.iacr.org/2016/624
http://eprint.iacr.org/2016/624
http://eprint.iacr.org/2010/556

Secret Sharing

Threshold Secret Sharing Requires
a Linear Size Alphabet

Andrej Bogdanov1(B), Siyao Guo2, and Ilan Komargodski3

1 Chinese University of Hong Kong, Hong Kong, China
andrejb@cse.cuhk.edu.hk

2 New York University, New York, USA
sguo@cims.nyu.edu

3 Weizmann Institute of Science, Rehovot, Israel
ilan.komargodski@weizmann.ac.il

Abstract. We prove that for every n and 1 < t < n any t-out-of-n
threshold secret sharing scheme for one-bit secrets requires share size
log(t + 1). Our bound is tight when t = n − 1 and n is a prime power.
In 1990 Kilian and Nisan proved the incomparable bound log(n− t+2).
Taken together, the two bounds imply that the share size of Shamir’s
secret sharing scheme (Comm. ACM ’79) is optimal up to an addi-
tive constant even for one-bit secrets for the whole range of parameters
1 < t < n.

More generally, we show that for all 1 < s < r < n, any ramp secret
sharing scheme with secrecy threshold s and reconstruction threshold r
requires share size log((r + 1)/(r − s)).

As part of our analysis we formulate a simple game-theoretic relax-
ation of secret sharing for arbitrary access structures. We prove the opti-
mality of our analysis for threshold secret sharing with respect to this
method and point out a general limitation.

1 Introduction

In 1979, Shamir [30] and Blakley [11] presented a method for sharing a piece
of secret information among n parties such that any 1 < t < n parties can
recover the secret while any t − 1 parties learn nothing about the secret. These
methods are called (t, n)-threshold secret sharing schemes. This sharp thresh-
old between secrecy and reconstruction is fundamental in applications where a
group of mutually suspicious individuals with conflicting interests must cooper-
ate. Indeed, threshold secret sharing schemes have found many applications in

A. Bogdanov—Supported by RGC GRF grants CUHK410113 and CUHK14208215.
S. Guo—Part of the work done in the Chinese University of Hong Kong supported
by RGC GRF grants CUHK410112 and CUHK410113.
I. Komargodski—Part of this work done while visiting CUHK, supported by RGC
GRF grant CUHK410113. Supported in part by a Levzion fellowship, by a grant
from the I-CORE Program of the Planning and Budgeting Committee, the Israel
Science Foundation, BSF and the Israeli Ministry of Science and Technology.

c© International Association for Cryptologic Research 2016
M. Hirt and A. Smith (Eds.): TCC 2016-B, Part II, LNCS 9986, pp. 471–484, 2016.
DOI: 10.1007/978-3-662-53644-5 18

472 A. Bogdanov et al.

cryptography and distributed computing; see the extensive survey of Beimel [3]
and the recent book of Cramer et al. [17].

Threshold secret sharing was generalized by Ito et al. [23] to allow more
general structures of subsets to learn the secret, while keeping the secret perfectly
hidden from all other subsets. The collection of qualified subsets is called an
access structure.

A significant goal in secret sharing is to minimize the share size, namely, the
amount of information distributed to the parties. Despite the long history of
the subject, there are significant gaps between lower and upper bounds both for
general access structures and for the special case of threshold structures.

Threshold Access Structures. For (t, n)-threshold access structures (denoted
by THRn

t) and a 1-bit secret, Shamir [30] gave a very elegant and efficient scheme:
the dealer picks a random polynomial of degree t − 1 conditioned on setting the
free coefficient to be the secret, and gives the i-th party the evaluation of the
polynomial at the point i. The computation is done over a field F of size q > n.

The correctness follows because one can recover the unique polynomial from
any t points (and thus recover the secret). Security follows by a counting argu-
ment showing that given less than t points, all possibilities for the free coefficient
are equally likely. The share of each party is an element in the field F that can be
represented using log q ≈ log n bits (all our logarithms are base 2). The efficiency
of this scheme makes it very attractive for applications.

A natural question to ask is whether log n-bit shares are necessary for sharing
a 1-bit secret for threshold access structures. Kilian and Nisan [25]1 showed that
log n bits are necessary when t is not too large. Specifically, they showed a
log(n − t + 2) lower bound on share size for (t, n)-threshold schemes. For large
values of t, especially those close to n, their bound does not rule out schemes
with shares much shorter than log n bits. Their bound leaves open the possibility
that, in particular, (n − 1, n)-threshold schemes with two-bit shares exist.

Ramp schemes are a generalization of threshold schemes that allow for a gap
between the secrecy and reconstruction parameters. In an (s, r, n)-ramp scheme,
we require that any subset of at least r parties can recover the secret, while any
subset of size at most s cannot learn anything about the secret.2 When r = s+1,
an (s, r, n)-ramp scheme is exactly an (r, n)-threshold scheme. Ramp schemes,
defined by Blakley and Meadows [10], are useful for various applications (see e.g.
[15,27,31]) since if r − s is large, they can sometimes be realized with shorter
shares than standard threshold schemes (especially in the case of long secret).

1 Their result is unpublished and independently obtained (and generalized in various
ways) by [14]. The original argument of Kilian an Nisan appears in [14, Appendix
A] and was referenced earlier in [2,4,5].

2 Another common definition (See [20, Definition 2.7] and [21, Example 2.11] for exam-
ples) for a ramp scheme is where the information about the secret increases with the
size of the set. We focus only on the definition in which sets of size below a certain
threshold have no information about the secret, while sets of size larger than some
threshold can recover it.

Threshold Secret Sharing Requires a Linear Size Alphabet 473

Generalizing the lower bound of Kilian and Nisan, Cascudo et al. [14] showed
that log((n − s + 1)/(r − s))-bit shares are necessary to realize an (s, r, n)-ramp
scheme. When s = n − O(1), however, their share size bound is a constant
independent of n. Paterson and Stinson [29] showed that this bound is tight for
specific small values of s.

General Access Structures. For most access structures, the best known secret
sharing schemes require shares of size 2O(n) for sharing a 1-bit secret. Specifically,
viewing the access structure as a Boolean indicator function for qualified subsets,
the schemes of [9,23,24] result with shares of size proportional to the DNF/CNF
size, monotone formula size, or monotone span program size of the function,
respectively. Thus, even for many access structures that can be described by a
small monotone uniform circuit, the best schemes have exponential size shares.3

On the other hand, the best known lower bound on share size for sharing an
�-bit secret is � · n/ log n bits, by Csirmaz [19] (improving on [13]).

Bridging the exponential gap between upper and lower bounds is the major
open problems in the study of secret sharing schemes. While it is widely believed
that the lower bound should be exponential (see e.g. [2,3]), no major progress
has been obtained in the last two decades. Moreover, a non-explicit linear lower
bound is not known, that is, whether there exists an access structure that
requires linear size shares.4

1.1 Our Results

Share Size Lower Bound. We close the gap in share size for threshold secret
sharing up to a small additive constant. We assume for simplicity that all parties
are given equally long shares.

Theorem 1. For every n ∈ N and 1 < t < n, any (t, n)-threshold secret sharing
scheme for a 1-bit secret requires shares of at least log(t + 1) bits.

The assumption 1 < t < n is necessary, as (1, n)-threshold and (n, n)-
threshold secret sharing schemes with share size 1 do exist.

Our bound is tight when t = n − 1 and n is the power of a prime; see
AppendixA. By combining Theorem 1 with the lower bound of Kilian and Nisan,
we determine the share size of threshold schemes up to a small additive constant.
That is, we get that any such scheme requires shares of size

max{log(n − t + 2), log(t + 1)} ≥ log
n + 3

2
. (1)

Theorem 1 is a special case of the following theorem, which applies more
generally to ramp schemes.
3 One such notable example is the directed connectivity access structure: the parties
correspond to edge slots in the complete directed graph and the qualified subsets are
those edges that connect two distinguished nodes s and t.

4 The usual counting arguments do not work here since one needs to enumerate over
the sharing and reconstruction algorithms whose complexity may be larger than the
share size.

474 A. Bogdanov et al.

Theorem 2. For every n ∈ N and 1 ≤ s < r < n, any (s, r, n)-ramp secret
sharing scheme for a 1-bit secret requires shares of at least log((r + 1)/(r − s))
bits.

By combining Theorem 2 with the lower bound of [14], we get that any (s, r, n)-
ramp secret sharing scheme must have share size at least

max
{

log
n − s + 1

r − s
, log

r + 1
r − s

}

≥ log
n + r − s + 2

2 · (r − s)
. (2)

Proof Technique and Limitations. We prove our lower bounds by analyzing
a new game-theoretic relaxation of secret sharing. Here, we focus on threshold
schemes, although our argument also applies to ramp schemes.

Given an access structure A and a real-valued parameter θ > 0 we consider
the following zero-sum game G(A, θ): Alice and Bob pick sets A and B in the
access structure A, respectively, and the payoff is (−θ)|A\B|, where A\B denotes
set difference. We say Alice wins if she has a strategy with non-negative expected
payoff, and Bob wins otherwise.

We show (in Lemma 2) that if Bob wins in the game G(A, 1/(q − 1)), then
no secret sharing scheme with share size log q exists. We prove Theorem 2 by
constructing such a strategy for Bob.

On the negative side, we show that our analysis is optimal for threshold
access structures, so the lower bound in Theorem 1 is tight with respect to this
method:

Theorem 3. For all 1 < t < n and 0 < θ ≤ 1/t, Alice wins in the game
G(THRn

t , θ).

We also show that, for any total access structure A, this method cannot
prove a lower bound exceeding log|min A| ≤ log

(

n
�n/2�

)

= n − Ω(log n), where
min A = {A ∈ A : ∀B ∈ A, B �⊂ A} is the set of min-terms in A.

Theorem 4. For every access structure A and every 0 < θ ≤ 1/(|min A| − 1)
Alice wins in the game G(A, θ).

1.2 Related Work

Known Frameworks for Proving Lower Bounds. The method of Csir-
maz [19] is one of the only previously known general frameworks for proving
lower bounds on share size in various access structures.5 Csirmaz’s framework is
a linear programming relaxation whose variables are the entropies of the joint
distributions of the shares, one for each subset of the parties. Using several Shan-
non information inequalities, Csirmaz was able to prove an n/ log n lower bound
on the entropy of shares (in a specific access structure) which, in turn, imply the
same lower bound on share size (for a 1-bit secret).
5 Some lower bounds were proven using other methods such as counting arguments
and other tools from information theory.

Threshold Secret Sharing Requires a Linear Size Alphabet 475

We note that Csirmaz’s framework does not give any non-trivial lower bounds
on share size for sharing a 1-bit secret for the threshold access structure. Indeed,
Csirmaz’s method gives a lower bound on the information ratio of an access
structure,6 namely on the ratio between the size of the shares and the size of
the secret, and for threshold schemes this ratio is 1 (using Shamir’s scheme for
a long enough secret; see Claim 5). Kilian and Nisan’s [25] proof is the only
known argument for threshold schemes and it does not seem to be useful for
any other access structure, including the (t, n)-threshold access structures with
t being close to n.

Csirmaz [19] showed that his framework cannot be used to show a super-linear
lower bound on share size for any access structure. This claim was strengthened
by Beimel and Orlov [8] who showed that certain additional “non-Shannon type”
information inequalities cannot bypass the linear share size barrier (see [28] for
a follow-up).

Linear Schemes. A secret sharing scheme is linear if the reconstruction proce-
dure is a linear function of the shares (over some abelian group). Most previously
known schemes are linear (see [7,12,26] for exceptions) and super-polynomial
lower bounds for linear schemes were given in [1,6,22] via its equivalence to
monotone span programs [24]. In a very recent work, Cook et al. [16] gave the
first exponential lower bound for linear secret sharing schemes by giving an
exponential lower bound for monotone span programs.

For linear (2, n)-threshold secret sharing schemes for a 1-bit secret, a log n
lower bound on share size was proven by Karchmer and Wigderson [24]. This was
generalized by Cramer et al. [18] (via a duality argument) to get a lower bound
as in Equaiton (1). For linear (s, r, n)-ramp secret sharing schemes, Cramer et al.
obtained a lower bound as in Eq. (2). We emphasize that our lower bounds match
the lower bounds of [18] but are not restricted to linear (ramp) secret sharing
schemes.

2 Access Structures and Secret Sharing

Let P � {1, . . . , n} be a set of n parties. A collection of subsets A ⊆ 2P is
monotone (upward-closed) if for every B ∈ A and B ⊆ C it holds that C ∈ A.
The collection is anti-monotone if for every B ∈ A and C ⊆ B it holds that
C ∈ A.

Definition 1. A (partial) access structure A = (S,R) is a pair of non-empty
disjoint collections of subsets R and S of 2P such that R is monotone and S
is anti-monotone. Subsets in R are called qualified and subsets in S are called
unqualified.

The access structure is total if R and S form a partition of 2P . If A = (S,R)
is total we write R ∈ A for R ∈ R and S �∈ A for S ∈ S. Our work is mostly
about the following two types of access structures:
6 We thank a reviewer for pointing this out.

476 A. Bogdanov et al.

– The threshold access structure THRn
t is a total access structure over n parties

in which any t parties can reconstruct and secrecy is guaranteed against any
subset of t − 1 parties:

S = {S : |S| ≤ t − 1} R = {R : |R| ≥ t}.

– More generally, in the ramp access structure RAMPn
s,r, any r parties can recon-

struct and secrecy is guaranteed against any s parties:

S = {S : |S| ≤ s} R = {R : |R| ≥ r}.

A secret sharing scheme involves a dealer who has a secret, a set of n parties,
and a partial access structure A = (S,R). A secret sharing scheme for A =
(S,R) is a method by which the dealer distributes shares to the parties such
that any subset in R can reconstruct the secret from its shares, while any subset
in S cannot reveal any information on the secret. We restrict our definition to
1-bit secrets.

Definition 2 (Secret sharing). A secret sharing scheme of a 1-bit secret for
a partial access structure A = (S,R) over n parties over share alphabet Σ is a
pair of probability distributions p0 and p1 over Σn with the following properties:

Reconstruction: For every R ∈ R the marginal distributions7 of p0 and p1 on
the set R are disjoint.

Secrecy: For every S ∈ S the marginal distributions of p0 and p1 on the set S
are identical.

An implementation of a secret sharing scheme consists of a sharing algorithm
that samples the shares from the probability distribution p0 or p1 depending on
the value of the secret and of a reconstruction algorithm that recovers the secret
from the joint values of the shares of any qualified subsets of parties. The dis-
jointness requirement ensures that recovery by qualified subsets of parties is
possible with probability 1. The secrecy requirement ensures that unqualified
subsets of parties can extract no information about the secret. Thus, our defini-
tion is equivalent to the ones given, for example, in [2, Definition 3.6] and in [3,
Definitions 2 and 3].

An Alternative Formulation of Secret Sharing. Here is an equivalent for-
mulation of secret sharing. For x ∈ Z

n
q , we use [x] to denote the set of non-zero

entries of x, namely [x] = {i : xi �= 0}, and [x]� for the complementary set of zero
entries. In this notation, [x − y] is the set of coordinates that x and y differ on
and [x−y]� is the set of coordinates that they agree on. A function φS : Zn

q → C

is an S-junta if the value φS(x1, . . . , xn) is determined by the inputs xi : i ∈ S.

7 Given two random variables X and Y whose joint distribution is known, the marginal
distribution of X is the probability distribution of X averaging over all possible values
of Y . Namely, it is Pr[X = x] =

∑
y Pr[X = x, Y = y].

Threshold Secret Sharing Requires a Linear Size Alphabet 477

Lemma 1. A secret sharing scheme of a 1-bit secret for a partial access struc-
ture A = (S,R) over share alphabet Zq exists if and only if there exists a function
f : Zn

q → R that is not identically zero satisfying the following properties:

Reconstruction: For all x, y ∈ Z
n
q such that [x − y]� ∈ R, f(x) · f(y) ≥ 0.

Secrecy: For every S ∈ S and every S-junta φS : Zn
q → C, E[f(x)φS(x)] = 0,

where the expectation is over the uniform probability distribution of x ∈ Z
n
q .

Proof. For a secret sharing scheme p0, p1, we set f(x) = p0(x) − p1(x). The
functions p0 and p1 have disjoint support (otherwise even reconstruction by all
parties is impossible) so f cannot be identically zero. The reconstruction implies
that if [x−y]� ∈ R, then at least one of p0 and p1 must assign zero probability to
both x and y, so f(x) · f(y) equals either p0(x) · p0(y) or (−p1(x)) · (−p1(y)). In
either case f(x) · f(y) ≥ 0. For secrecy, since p0 and p1 have the same marginals
on S ∈ S, E[p0(x)φS(x)] = E[p1(x)φS(x)] so E[f(x)φS(x)] = 0.

In the other direction, let p0(x) = C · max{f(x), 0} and let p1(x) =
C · max{−f(x), 0} for a suitable scaling constant C > 0 that makes p0 and
p1 be valid probability distributions (it exists since f is nonzero). We show
reconstruction by contrapositive: If p0 and p1 did not have disjoint support
on some set R ∈ R, there would exist x, y ∈ Z

n
q such that p0(x) > 0,

p1(y) > 0, and [x − y]� = R, implying f(x) > 0, f(y) < 0, and therefore
f(x) · f(y) < 0. For secrecy, by construction we have f = (p0 − p1)/C, so
E[p0(x)φS(x)] = E[p1(x)φS(x)] for every test function φS that only depends on
coordinates in S ∈ S. Since no φS can distinguish between p0 and p1 on S, the
statistical distance between the marginal distribution of p0 and p1 on S is zero,
so the two are identical.

3 A Zero-Sum Game and Proof of Theorem2

Given a partial access structure A = (S,R) and a real parameter θ > 0 we
define the following zero-sum game G(A, θ) between Alice and Bob. The actions
are a set A �∈ S for Alice and a set B ∈ R for Bob. The payoff of the game is
(−θ)|A\B|. We say Alice wins if she has a strategy with non-negative expected
payoff and we say Bob wins if he has a strategy with negative expected payoff
(the expectations are over the randomness of Alice and Bob, respecively). By
von Neumann’s minimax theorem the game has a unique winner.

Lemma 2. If there exists a secret sharing scheme for A with alphabet size q ∈ N,
then Alice wins in the game G(A, 1/(q − 1)).

Our proof of Lemma 2 uses Fourier analysis, which we briefly recall here. The
characters of the group Z

n
q are the complex-valued functions χa : Zn

q → C, where
a ranges over Z

n
q , defined as χa(x) = ω〈a,x〉, ω = e2πi/q. The characters are

an orthonormal basis with respect to the inner product 〈f, g〉 = Ex[f(x) · g(x)]
with x chosen uniformly from Z

n
q . The characters inherit the group structure:

478 A. Bogdanov et al.

χa · χb = χa+b and χ−1
a = χa = χ−a. Every function f : Zn

q → C can then be
uniquely written as a linear combination f =

∑

a∈Zn
q

f̂(a) · χa with the Fourier

coefficients f̂(a) given by f̂(a) = 〈f, χa〉 = Ex[f(x) · χa(x)].

Proof of Lemma 2. We show that Alice has a winning strategy. That is, we
show that Alice has a strategy such that for every possible action of Bob, the
expected payoff of the game is non-negative.

We identify the alphabet with the elements of the group Zq. Let f : Zn
q → R

be the function f(x) = p0(x) − p1(x). Alice plays set A with probability propor-
tional to

∑

a : [a]=A|f̂(a)|2. By the secrecy part of Lemma 1, E[f(x) · χa(x)] = 0
whenever [a] ∈ S, so Alice’s strategy is indeed supported on sets outside S.

Now let B be an arbitrary set in R. By the reconstruction part of Lemma 1
and the fact that f is real-valued, for every x ∈ Z

q
n and every z ∈ Z

q
n such that

[z]� = B, we have that

f(x) · f(x − z) = f(x) · f(x − z) ≥ 0. (3)

Let x be uniform in Z
n
q and z be uniform in Z

n
q conditioned on [z]� = B.

Averaging over this distribution, we have

Ex,z[f(x) · f(x − z)] =
∑

a,b∈Zn
q

f̂(a) · f̂(b) · Ex,z[χa(x) · χb(x − z)]

=
∑

a

|f̂(a)|2 · Ez[χa(z)]

=
∑

a

|f̂(a)|2 ·
∏

i∈[a]

Ez[ωaizi],

where the first equality follows by writing f(x) and f(x − z) using their Fourier
representation and using linearity of expectation, the second equality follows
since x and z are independent and since Ex[χa(x) ·χb(x)] = 0 for a �= b, and the
last equality follows since z is chosen from a product distribution.

The expression E[ωaizi] evaluates to one when i is in B (since zi is fixed to
zero). Otherwise, zi is uniformly distributed over the set Zq \ {0} and

Ez[ωaizi] =
1

q − 1

∑

zi∈Zq\{0}
ωaizi =

1
q − 1

(

∑

zi∈Zq

ωaizi − 1
)

= − 1
q − 1

.

Therefore,
∏

i∈[a] Ez[ωaizi] = (−1/(q − 1))|[a]\B|, and by Eq. (3)

∑

a

|f̂(a)|2 ·
(−1

q − 1

)|[a]\B|
≥ 0.

Grouping all a’s for which [a] = A, we get that

∑

A

(

∑

a : [a]=A
|f̂(a)|2

)

·
(

− 1
q − 1

)|A\B|
≥ 0 for all B ∈ R.

Threshold Secret Sharing Requires a Linear Size Alphabet 479

Therefore, Alice’s strategy has non-negative expected payoff with respect to
every possible action of Bob. �

Proof of Theorem 2. It is sufficient to prove Theorem 2 in the case n = r +
1: If a secret sharing scheme for RAMPn

s,r existed, then a secret sharing for
RAMPr+1

s,r over the same alphabet can be obtained by discarding the remaining
n − r − 1 parties and their shares.

We now give a winning strategy for Bob in the game G(RAMPr+1
s,r , θ) for any

θ > (r − s)/(s + 1). By Lemma 2 it then follows that no secret sharing scheme
over an alphabet of size (r + 1)/(r − s) exists.

Bob’s strategy is to uniformly choose a set B of size r (which is in R). Then
for every set A �∈ S, either A ⊆ B and then |A \ B| = 0, or A �⊆ B and then
|A \ B| = 1 (since B includes all parties except one). Thus, for every A �∈ S, the
expected payoff is

EB

[

(−θ)|A\B|
]

= 1 · PrB [A ⊆ B] − θ · PrB [A �⊆ B]

= 1 · r + 1 − |A|
r + 1

− θ · |A|
r + 1

≤ r − s

r + 1
− θ · s + 1

r + 1
, (4)

where the inequality follows since |A| ≥ s+1. If θ > (r−s)/(s+1) this expression
is less than zero, i.e., Bob wins. �

It is also possible to deduce Theorem 2 directly from Lemma 2 by showing
the existence of a winning strategy for Bob in the game G(RAMPn

s,r, θ) whenever
θ > (r−s)/(s+1) (rather than for G(RAMPr+1

s,r , θ), as we did above). Let R be a
random subset of r +1 parties. Bob’s strategy has the form B = B0 ∪B1, where
B0 is a uniformly random subset of R of size r and B1 is a random subset of R�

obtained by including each element independently with probability p = θ/(1+θ).
The value of p is chosen so that a random variable that equals 1 with probability
p and −θ with probability 1 − p is unbiased.

Let A, where |A| ≥ s + 1, be any action of Alice. For a fixed choice of R, if
A \ R is nonempty, by our choice of probability p the expected payoff is zero.
Otherwise, A is a subset of R, and by Eq. (4) the expected payoff is at most
−(s + 1) · θ + (r − s) < 0. Since the event A ⊆ R has positive probability the
expected payoff is negative and Bob wins.

4 Limitations of the Game Relaxation

In the case of threshold access structures Theorem 2 shows that Bob has a win-
ning strategy in the game G(THRn

t , θ) whenever θ > 1/t. We now prove Theo-
rem 3, which states that our analysis is optimal: There exists a winning strategy
for Alice when θ ≤ 1/t.

We also prove Theorem 4: For every total access structure A over n parties,
Alice has a winning strategy in G(A, θ) for every θ ≤ 1/(|A| − 1). As the proof

480 A. Bogdanov et al.

of Theorem 4 is simpler we present that one first. We remark Theorem 4 can be
generalized to any partial access structure (S,R) by replacing A by R in the
proof.

Proof of Theorem 4. Alice’s strategy is uniformly random over all minterms
A ∈ min A. Then, for every B ∈ A and θ < 1, it holds that

EA[(−θ)|A\B|] =EA[(−θ)|A\B| | A ⊆ B] · PrA[A ⊆ B]+

EA[(−θ)|A\B| | A �⊆ B] · PrA[A �⊆ B]
≥1 · PrA[A ⊆ B] − θ · PrA[A �⊆ B]
=(1 + θ) · PrA[A ⊆ B] − θ

≥(1 + θ) · 1
|min A| − θ.

This is non-negative when θ ≤ 1/(|min A| − 1). �

Proof of Theorem 3. Let a0, . . . , an be the following sequence of integers:

a0 = · · · = at−1 = 0, at = 1, as = kt · as−1 + · · · + k0 · as−t−1

for t + 1 ≤ s ≤ n, where kj is the coefficient of xj in the formal expansion of
(x + 1)t · (1/θ − x). By expanding this expression according to the Binomial
formula, we see that the numbers k0, . . . , kt are non-negative when θ ≤ 1/t
because

kj =
(

t

j

)(

1
θ

− j

t − j + 1

)

≥ 0

for all 0 ≤ j ≤ t. Therefore as is also non-negative for all s.
Alice plays set A with probability proportional to the number a|A|. We will

prove that this is a winning strategy for Alice. When B = {1, . . . , n}, then
EA[(−θ)|A\B|] = 1 and Alice wins. Now let B ⊆ {1, . . . , n} be any set such that
t ≤ |B| < n. Let

θj =

{

1, if j ∈ B,

−θ, if j �∈ B.

Then,

EA[(−θ)|A\B|] ∝
∑

A

a|A|
∏

j∈A

θj =
n

∑

s=0

asws where ws =
∑

A : |A|=s

∏

j∈A
θj .

The number ws can be represented as the coefficient of zs in the formal expansion
of g0(z) =

∏n
j=1(1 + θjz). Since exactly |B| of the θj ’s equal 1 and the other

n − |B| equal −θ, it follows that

g0(z) = (1 + z)|B| · (1 − θz)n−|B|. (5)

The numbers a0, . . . , an (as defined in the beginning of the proof) are defined by
an order t homogeneous linear degree relation with constant coefficients whose

Threshold Secret Sharing Requires a Linear Size Alphabet 481

characteristic equation is (x + 1)t · (1/θ − x) = 0. This equation has roots −1
(with multiplicity t) and 1/θ (with multiplicity 1). Therefore,

as = C · θ−s +
t−1
∑

i=0

ci · si · (−1)s

where c0, . . . , ct−1 and C are constants determined by the initial conditions on
a0, . . . , at. We can now write

n
∑

s=0

as · ws = C ·
n

∑

s=0

ws · θ−s +
t−1
∑

i=0

ci ·
n

∑

s=0

ws · si · (−1)s.

Recall that g0 is the generating function of ws which means that g0(z) =
∑n

s=0 ws · zs. So, the term
∑n

s=0 ws · θ−s equals g0(1/θ) = 0. To finish the
proof, we show that

∑n
s=0 ws · si · (−1)s = 0 for all i ≤ t − 1 (this implies

that Alice’s strategy has a 0 payoff, which means that she wins the game). Let
gi(z) = z · g′

i−1(z) for 1 ≤ i ≤ t − 1 where g′
i−1 is the derivative of gi−1. On the

one hand, since −1 is a root of g0 of multiplicity t, gi(−1) = 0 for all i ≤ t − 1.
On the other hand, gi(z) has the formal expansion

∑n
s=0 ws · si · zs. Therefore,

∑n
s=0 ws · si · (−1)s must equal zero. �

5 Concluding Remarks

Theorem 1 requires that the shares given to all parties have the same length.
Its proof extends easily to yield the following generalization: For every n, every
1 < t < n, and every (t, n)-threshold secret sharing scheme in which party i
receives a log qi-bit share and q1 ≤ q2 ≤ · · · ≤ qn it must hold that

1
q1

+ · · · +
1

qt+1
≤ 1. (6)

In particular, inequality (6) implies that the average share size must be at least
log (t + 1). We sketch the Proof in AppendixB. Kilian and Nisan [25] prove the
same for (n − t + 1, n)-threshold access structures.

By Theorem 3 our analysis of threshold secret sharing is tight within the
game-theoretic relaxation that we introduce here. As the lower bound of Kilian
and Nisan [25] is incomparable with ours, their analysis cannot be cast in terms
of a winning strategy in our game. It is, however, possible to capture both our
analysis and that of Kilian and Nisan by a single linear program. We performed
computer experiments to investigate the feasibility of one such family of linear
programs, but were unable to obtain better lower bounds on share size.

We do not know what is the best possible lower bound on share size that our
method can give among all access structures on n parties. Theorem 1 shows a
lower bound of log(n−1) is attainable, while Theorem 4 shows that a lower bound
of log

(

n
�n/2�

)

cannot be proved. The best possible bound is the logarithm of

bn = minA max {q : Bob wins inG(A, 1/(q − 1))} ,

482 A. Bogdanov et al.

where the minimum is taken over all access structures A on n parties. We can
prove that if the payoff function is replaced by (−θ)|A	B|, where � is symmetric
set difference, then the quantity analogous to bn is upper bounded by O(n2).

Acknowledgments. We thank Moni Naor for telling us about the work of Kilian and
Nisan. We thank the anonymous reviewers for their useful advice.

A On the Tightness of Theorem2

We show that Theorem 2 is tight when t = n − 1 and n is the power of a
prime. This result is known (see e.g. [17, Theorem 11.13]) and we give it here
for completeness.

Claim 5. For every power of a prime n there exists a (n − 1)-out-of-n secret
sharing scheme for log n-bit secrets with log n-bit shares.

Claim 5 follows by a small optimization of Shamir’s secret sharing scheme.
We give the construction and sketch the correctness proof.

To share a secret s ∈ Fn, let p(x) = sxn−2 + r(x), where r is a random
polynomial of degree n − 3 and all algebra is over the finite field Fn. The shares
are the n values p(x) as x ranges over Fq. Reconstruction is immediate as the
polynomial p can be interpolated from any n − 1 of its values.

For secrecy, we show for any s ∈ Fn and distinct elements x1, . . . , xn−2 ∈
Fn, the vector (p(x1), . . . , p(xn−2)) is uniformly random in F

n−2
n . Since p(x) =

sxn−2 + r(x) it suffices to show that (r(x1), . . . , r(xn−2)) is uniformly random.
This is true because the evaluation map that takes the coefficients of r into its
values r(x1), . . . , r(xn−2) is a full-rank Vandermonde matrix.

B Proof Sketch of Inequality (6)

The proof of inequality (6) is a direct extension of the proof of Theorem1. We
describe the differences. The payoff function in the game G in Lemma 2 becomes
∏

i∈A\B −1/(qi − 1). The generalized lemma can be proved via Fourier analysis
over the product group Zq1 × · · · × Zqn .

As in the proof of Theorem1, it is sufficient to establish inequality (6) in the
special case t = n − 1. Bob then plays set B = {1, . . . , n} \ {i} with probability
proportional to 1 − 1/qi. It can be verified that when

∑n
i=1 1/qi > 1 this is a

winning strategy for Bob.

References

1. Babai, L., Gál, A., Wigderson, A.: Superpolynomial lower bounds for monotone
span programs. Combinatorica 19(3), 301–319 (1999)

2. Beimel, A.: Secure schemes for secret sharing and key distribution. Ph.D. thesis,
Technion - Israel Institute of Technology (1996)

Threshold Secret Sharing Requires a Linear Size Alphabet 483

3. Beimel, A.: Secret-sharing schemes: a survey. In: Chee, Y.M., Guo, Z., Ling, S.,
Shao, F., Tang, Y., Wang, H., Xing, C. (eds.) IWCC 2011. LNCS, vol. 6639, pp.
11–46. Springer, Heidelberg (2011)

4. Beimel, A., Chor, B.: Universally ideal secret-sharing schemes. IEEE Trans. Inf.
Theor. 40(3), 786–794 (1994)

5. Beimel, A., Franklin, M.K.: Weakly-private secret sharing schemes. In: Vadhan,
S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 253–272. Springer, Heidelberg (2007)

6. Beimel, A., Gál, A., Paterson, M.: Lower bounds for monotone span programs.
Comput. Complex. 6(1), 29–45 (1997)

7. Beimel, A., Ishai, Y.: On the power of nonlinear secrect-sharing. In: 16th Annual
IEEE Conference on Computational Complexity, CCC, pp. 188–202 (2001)

8. Beimel, A., Orlov, I.: Secret sharing and non-shannon information inequalities.
IEEE Trans. Inf. Theor. 57(9), 5634–5649 (2011)

9. Benaloh, J.C., Leichter, J.: Generalized secret sharing and monotone functions.
In: Goldwasser, S. (ed.) CRYPTO 1988. LNCS, vol. 403, pp. 27–35. Springer,
Heidelberg (1990)

10. Blakley, G.R., Meadows, C.: Security of ramp schemes. In: Blakely, G.R., Chaum,
D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 242–268. Springer, Heidelberg (1985)

11. Blakley, G.R.: Safeguarding cryptographic keys. Proc. AFIPS Natl. Comput. Conf.
22, 313–317 (1979)

12. Bogdanov, A., Ishai, Y., Viola, E., Williamson, C.: Bounded indistinguishability
and the complexity of recovering secrets. In: Robshaw, M., Katz, J. (eds.) CRYPTO
2016. LNCS, vol. 9816, pp. 593–618. Springer, Heidelberg (2016). doi:10.1007/
978-3-662-53015-3 21

13. Capocelli, R.M., Santis, A.D., Gargano, L., Vaccaro, U.: On the size of shares for
secret sharing schemes. J. Cryptol. 6(3), 157–167 (1993)

14. Cascudo Pueyo, I., Cramer, R., Xing, C.: Bounds on the threshold gap in secret
sharing and its applications. IEEE Trans. Inf. Theor. 59(9), 5600–5612 (2013)

15. Chen, H., Cramer, R.: Algebraic geometric secret sharing schemes and secure multi-
party computations over small fields. In: Dwork, C. (ed.) CRYPTO 2006. LNCS,
vol. 4117, pp. 521–536. Springer, Heidelberg (2006)

16. Cook, S.A., Pitassi, T., Robere, R., Rossman, B.: Exponential lower bounds for
monotone span programs. Electron. Colloq. Comput. Complex. 23, 64 (2016)

17. Cramer, R., Damg̊ard, I., Nielsen, J.B.: Secure Multiparty Computation and Secret
Sharing. Cambridge University Press, Cambridge (2015)

18. Cramer, R., Fehr, S., Stam, M.: Black-box secret sharing from primitive sets in
algebraic number fields. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp.
344–360. Springer, Heidelberg (2005)

19. Csirmaz, L.: The size of a share must be large. J. Cryptol. 10(4), 223–231 (1997)
20. Farràs, O., Hansen, T., Kaced, T., Padró, C.: Optimal non-perfect uniform secret

sharing schemes. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014, Part II.
LNCS, vol. 8617, pp. 217–234. Springer, Heidelberg (2014)

21. Farràs, O., Mollev́ı, S.M., Padró, C.: A note on non-perfect secret sharing. IACR
Cryptology ePrint Archive, p. 348 (2016)

22. Gál, A.: A characterization of span program size and improved lower bounds for
monotone span programs. Comput. Complex. 10(4), 277–296 (2001)

23. Ito, M., Saito, A., Nishizeki, T.: Multiple assignment scheme for sharing secret. J.
Cryptol. 6(1), 15–20 (1993)

24. Karchmer, M., Wigderson, A.: On span programs. In: 8th Annual Structure in
Complexity Theory Conference, pp. 102–111 (1993)

http://dx.doi.org/10.1007/978-3-662-53015-3_21
http://dx.doi.org/10.1007/978-3-662-53015-3_21

484 A. Bogdanov et al.

25. Kilian, J., Nisan, N.: Unpublished (1990). Referenced in [4,2,5,14]
26. Komargodski, I., Naor, M., Yogev, E.: How to share a secret, infinitely. IACR

Cryptology ePrint Archive 2016, 194 (2016)
27. Martin, K.M., Paterson, M.B., Stinson, D.R.: Error decodable secret sharing and

one-round perfectly secure message transmission for general adversary structures.
Crypt. Commun. 3, 65–86 (2011)

28. Mollev́ı, S.M., Padró, C., Yang, A.: Secret sharing, rank inequalities, and informa-
tion inequalities. IEEE Trans. Inf. Theor. 62(1), 599–609 (2016)

29. Paterson, M.B., Stinson, D.R.: A simple combinatorial treatment of constructions
and threshold gaps of ramp schemes. Crypt. Commun. 5, 229–240 (2013)

30. Shamir, A.: How to share a secret. Commun. ACM 22(11), 612–613 (1979)
31. Stinson, D.R., Wei, R.: An application of ramp schemes to broadcast encryption.

Inf. Process. Lett. 69, 131–135 (1999)

How to Share a Secret, Infinitely

Ilan Komargodski(B), Moni Naor, and Eylon Yogev

Weizmann Institute of Science, Rehovot, Israel
{ilan.komargodski,moni.naor,eylon.yogev}@weizmann.ac.il

Abstract. Secret sharing schemes allow a dealer to distribute a secret
piece of information among several parties such that only qualified sub-
sets of parties can reconstruct the secret. The collection of qualified
subsets is called an access structure. The best known example is the
k-threshold access structure, where the qualified subsets are those of size
at least k. When k = 2 and there are n parties, there are schemes where
the size of the share each party gets is roughly log n bits, and this is tight
even for secrets of 1 bit. In these schemes, the number of parties n must
be given in advance to the dealer.

In this work we consider the case where the set of parties is not known
in advance and could potentially be infinite. Our goal is to give the tth

party arriving the smallest possible share as a function of t. Our main
result is such a scheme for the k-threshold access structure where the
share size of party t is (k − 1) · log t + poly(k) · o(log t). For k = 2 we
observe an equivalence to prefix codes and present matching upper and
lower bounds of the form log t + log log t + log log log t + O(1). Finally,
we show that for any access structure there exists such a secret sharing
scheme with shares of size 2t−1.

1 Introduction

640K ought to be enough for anybody

Misattributed to Bill Gates, 1981

Engineering scalable systems is a delicate business: important decisions have
to be made regarding balancing scalability and efficiency when fixing system
parameters (such as the representation size of a date, the number of clients the
system can serve simultaneously, security parameters and more). This inherent
tradeoff between scalability and efficiency has had devastating consequences.
There are many Y2K [34] style horror stories such as losing contact with the
NASA spacecraft “Deep Impact” when its internal clock overflowed, triggering

I. Komargodski, et al.—Research supported in part by grants from the Israel Science
Foundation grant no. 1255/12, BSF and from the I-CORE Program of the Planning
and Budgeting Committee and the Israel Science Foundation (grant no. 4/11). Moni
Naor is the incumbent of the Judith Kleeman Professorial Chair. Ilan Komargodski
is supported in part by a Levzion fellowship.

c© International Association for Cryptologic Research 2016
M. Hirt and A. Smith (Eds.): TCC 2016-B, Part II, LNCS 9986, pp. 485–514, 2016.
DOI: 10.1007/978-3-662-53644-5 19

486 I. Komargodski et al.

an endless series of computer reboots [20], and the IPv4 address exhaustion
problems caused by the limited allocation size for numeric Internet addresses
[33]. Can we design scalable systems without suffering a great deal of efficiency
costs? In this work we investigate methods that do not assume a fixed upper
bound on the number of participants in the area of secret sharing.

Secret sharing is a method by which a secret piece of information can be
distributed among n parties so that any qualified subset of parties can recon-
struct the secret, while every unqualified subset of parties learns nothing about
the secret. The collection of qualified subsets is called an access structure. Secret
sharing schemes are a basic primitive and have found applications in cryptogra-
phy and distributed computing; see the extensive survey of Beimel [2]. A signif-
icant goal in secret sharing is to minimize the share size, namely, the amount of
information distributed to the parties.

Secret sharing schemes were introduced in the late 1970s by Shamir [31] and
Blakley [8] for the k-out-of-n threshold access structures that includes all subsets
of cardinality at least k for 1 ≤ k ≤ n. Their constructions are fairly efficient both
in the size of the shares and in the computation required for sharing and recon-
struction. Ito et al. [22] showed the existence of a secret sharing scheme for every
(monotone) access structure. In their scheme the size of the shares is propor-
tional to the depth 2 complexity of the access structure when viewed as a Boolean
function (and hence shares are exponential for most structures). Benaloh and
Leichter [5] gave a scheme with share size polynomial in the monotone formula
complexity of the access structure. Karchmer and Wigderson [24] generalized
this construction so that the size is polynomial in the monotone span program
complexity.

All of these schemes require that an upper bound on the number of partici-
pants is known in advance. However, in many scenarios this is either unrealistic or
prone to disaster. Moreover, even if a crude upper bound n is known in advance,
it is preferable to have shares as small as possible if the eventual number of
participants is much smaller than this bound on n.

In this work we consider the well motivated, yet almost unexplored1, case
where the set of parties is not known in advanced and could potentially be
infinite. Our goal is to give the tth party arriving the smallest possible share as
a function of t. We require that in each round, as a new party arrives, there
is no communication to the parties that have already received shares, i.e. the
dealer distributes a share only to the new party. We call such access structures
evolving: the parties arrive one by one and, in the most general case, a qualified
subset is revealed to the dealer only when all parties in that subset are present
(in special cases the dealer knows the access structure to begin with, just does
not have an upper bound on the number of parties). For this to make sense, we
assume that the changes to the access structure are monotone, namely, parties
are only added and qualified sets remain qualified.

Our first result is a construction of a secret sharing scheme for any evolving
access structure.

1 But see the work of Csirmaz and Tardos [15] discussed below.

How to Share a Secret, Infinitely 487

Theorem 1. For every evolving access structure there is a secret sharing scheme
for a 1-bit secret where the share size of the tth party is 2t−1.

Then, we construct more efficient schemes for specific access structures. We
focus on the evolving k-threshold access structure for k ∈ N, where at any point
in time any k parties can reconstruct the secret but no k − 1 parties can learn
anything about the secret.

Theorem 2 (Informal). There is a secret sharing scheme for the evolving k-
threshold access structure and a 1-bit secret in which the share size of the tth

party is (k − 1) · log t + poly(k) · o(log t).

For k = 2, we present a construction for the evolving 2-threshold access
structure with slightly better low order terms. In this scheme the share size
of the tth party is log t + log log t + 2 log log log t + O(1).2 To complement this
construction, we prove a matching lower bound showing that our scheme is tight.

Theorem 3. For any constant c ∈ N, there is no secret sharing scheme for the
evolving 2-threshold access structure and a 1-bit secret in which the share size of
the tth party is at most log t + log log t + c.

Finally, we present a tight connection to prefix codes for the integers. A prefix
code is a code in which no codeword is a prefix of any other codeword. These
codes are widely used, for example in country calling codes, the UTF-8 system
for encoding Unicode characters, and more.

Theorem 4. Let σ : N → N. A prefix code for the integers in which the length
of the tth codeword is σ(t) exists if and only if a secret sharing scheme for the
evolving 2-threshold access structure and 1-bit secret in which the share size of
the tth party is σ(t).

1.1 Discussion

Schemes for General Access Structures. In the classical setting of secret
sharing many schemes are known for general access structures, depending on
their representation [5,22,24]. All of these schemes result with shares of expo-
nential size for general access structures. One of the most important open prob-
lems in the area of secret sharing is to prove the necessity of long shares, namely,
find an access structure (even a non-explicit one) that requires exponential size
shares.

Our scheme for general evolving access structures also results with exponen-
tial size shares. Since any access structure can be made evolving, we cannot hope
to obtain anything better than exponential in general (unless we have a major
breakthrough in the classical setting).

Threshold Schemes. In the classical setting there are several different schemes
for the threshold access structure. One of the best such schemes (in terms of the
2 See Sects. 4 and 5 for efficient generalizations that support larger domains of secrets.

488 I. Komargodski et al.

computation needed for sharing and reconstruction and in terms of the share
size) is due to Shamir [31]. In this scheme, to share a 1-bit secret among n
parties, roughly log n bits have to be distributed to each party. It is known that
log n bits are essentially required, so Shamir’s scheme is optimal (see [12] for the
original proof of Kilian and Nisan [25], an improvement, and a discussion of the
history; see also [9]).

Let us review Shamir’s scheme for the k-out-of-n threshold access structure.
The dealer holding a secret bit s, samples a random polynomial p(·) of degree
k − 1 with coefficients over GF(q), where the free coefficient is fixed to be s,
and gives party i ∈ [n] the field element p(i). q is chosen to be the smallest
prime (or a power of a prime) larger than n. Correctness of the scheme follows
by the fact that k points on a polynomial of degree k − 1 completely define the
polynomial and allow for computing p(0) = s. Security follows by a counting
argument showing that given less than k points, both possibilities for the free
coefficient are equally likely. The share of each party is an element in the field
GF(q) that can be represented using log q ≈ log n bits. Notice that the share size
is independent of k.

As a first attempt one might try to adapt this procedure to the evolving
setting. But since n is not fixed, what q should we choose? A natural idea is
to use an extension field. Roughly, we would simulate the dealer for Shamir’s
scheme, sample a random polynomial of degree k − 1 and increase the field size
from which we compute shares as more parties arrive. Ideally, for the share of
the tth party we will use a field of size O(t). This implies that the share size
of party t would be log(O(t)) � log t + log log t for large enough t. The lower
bound in Theorem3 means that no such solution can work!

We take a different path for obtaining efficient schemes. For example, for
k = 2, our scheme results with essentially optimal share size for the tth party:
the first two high order terms are log t+log log t (without hidden constant factors)
and there is an additional lower order term of 2 log log log t+6. See the simplified
scheme in Sect. 4.

Linearity of Our Schemes. In a linear scheme the secret is viewed as an
element of a finite field, and the shares are obtained by applying a linear mapping
to the secret and several independent random field elements. Equivalently, a
linear scheme is defined by requiring that each qualified set reconstructs the
secret by applying a linear function to its shares [1, Sect. 4.1]. Most of the known
schemes are linear (see [3] for an exception). Linear schemes are very useful for
updating and manipulating secret shares (cf. proactive secret sharing [21]) and
have many applications, most notably for secure multi-party computation [4,14].
Our schemes from Theorems 1 and 2 are linear (see Sect. 5.5 for details), whereas
the scheme based on prefix codes from Theorem 4 is non-linear.

1.2 Related Work

Most similar to our setting is the notion of on-line secret sharing of Csirmaz and
Tardos [15]. Csirmaz and Tardos present a scheme for any access structure in

How to Share a Secret, Infinitely 489

which every party participates in at most d qualified sets, where d is an upper
bound known in advance. The share size of every party in this scheme is linear
in d. In addition, Csirmaz and Tardos presented a scheme for the evolving 2-
threshold access structure in which the share size of party t is linear in t. Our
Theorem 2 is an exponential improvement on the latter.

There are numerous areas where systems are designed to work without any
fixed upper bound on the size or the duration they will be used. A few examples
include prefix codes of the integers (a.k.a. prefix-free encodings), such as the
Elias code [17] or the online encoding of Dodis et al. [16], labeling nodes for
testing adjacency in possibly infinite graphs [23], forward-secure signatures with
an unbounded number of time periods [29], and data structures for approximate
set membership (Bloom filters) for sets of unknown size [30].

1.3 Overview of Our Constructions and Techniques

First, we overview our construction for general evolving access structures. Then,
we describe our construction for the evolving 2-threshold access structure. This
serves as a warm-up for our more general construction for k-threshold access
structures. Lastly, we discuss the connection with prefix codes.

General Evolving Access Structures. Let A = A1,A2, . . . be any evolving
access structure with corresponding monotone characteristic functions f1, f2, . . .,
where ft : {0, 1}t → {0, 1}. Note that the dealer does not know A in advance
but is only given At when the tth party arrives. Let s ∈ {0, 1} be the secret
to be shared. The share of party t ∈ N consists of 2t−1 bits, each denoted
by w(b1,...,bt−1,1), where b1, . . . , bt−1 ∈ {0, 1}. The w(b1,...,bt−1,1)’s are generated
as follows: if party t “completes” a minimal qualified set whose indicator vec-
tor is (b1, . . . , bt−1, 1), then the dealer gives party t the bit w(b1,...,bt−1,1) =
w(b1,...,bt−1) ⊕ . . . ⊕ w(b1) ⊕ s (where w(b1,...,bi,0) = 0), so XORing the appro-
priate shares will recover s. Otherwise, if (b1, . . . , bt−1, 1) is unqualified, then the
dealer sets w(b1,...,bt−1,1) ← {0, 1} to be a uniformly random bit. See Sect. 3 for
the exact details.

Evolving 2-Threshold Access Structure. The approach of [15] for the evolv-
ing 2-threshold access structure is to give party t a random bit bt and all bits
s⊕ b1, . . . , s⊕ bt−1. This clearly allows for each pair of parties to reconstruct the
secret and ensures that for every single party the secret remains hidden. The
share size of the tth party in this scheme is t. (Essentially the same scheme also
follows from our general construction in Sect. 3 with a simple efficiency improve-
ment described towards the end of that section.) Generalizing this idea to larger
values of k results with shares of size roughly tk−1.

Whereas the above approach is somewhat naive (and very inefficient in terms
of share size), our construction is more subtle and results with exponentially
shorter shares. Our main building block is a domain reduction technique which
allows us to start with a naive solution and apply it only on a small number of
parties to get an overall improved construction. Details follow.

490 I. Komargodski et al.

We assign each party a generation, where the gth generation consists of 2g

parties (i.e. the generations are of geometrically increasing size). Within each
generation we execute a standard secret sharing scheme for 2-threshold. Notice
that here we know exactly how many parties are in the same generation: party
t is part of generation g = 	log t
 and the size of that generation is size(g) ≤ t.
A standard secret sharing scheme for 2-out-of-t costs roughly log t bits (using
Shamir’s scheme; see Claim 5). This solves the case in which both parties come
from the same generation.

To handle the case where the two parties come from different generations we
use a (possibly naive) scheme for the evolving 2-threshold access structure. For
each generation we generate one share for the evolving scheme and give it to each
party in that generation. Thus, if two parties from different generations come
together they hold two different shares for the evolving scheme that allow them
to reconstruct the secret. Since we generate one share of the evolving scheme
per generation, party t holds the share of the (g = log t)th party of the evolving
scheme!

Summing up, if we start with a scheme in which the share size of the tth

party is σ(t), then we end up with a scheme with share size roughly σ′(t) =
log t + σ(log t). To get our result we start with a scheme in which σ(t) = t
(described above) and iteratively apply this argument to get better and better
schemes.

Evolving k-Threshold Access Structure. There are several ideas underlying
the generalization of the 2-threshold scheme to work for any k. As before, we
assign each party a generation, but now the gth generation is roughly of size
2(k−1)·g. This means that party t is in generation g = 	(log t)/(k − 1)
 that
includes size(g) = t·2k−1 parties. Again, within a generation we apply a standard
k-out-of-size(g) secret sharing scheme. This costs us log(size(g)) ≤ log t+k bits
using Shamir’s scheme. This solves the problem if k parties come from the same
generation.

We are left with the case where the k parties come from at least two dif-
ferent generations. For this we use a (possibly naive) scheme for the evolv-
ing k-threshold access structure. For each generation we generate k − 1 shares
s1, . . . , sk−1 for the evolving scheme and share each si using a standard i-out-of-
size(g) secret sharing scheme. Thus, if � ≤ k − 1 parties from some generation
come together, they can reconstruct s1, . . . , s� which are � shares for the evolving
scheme. Therefore, any k parties (that come from at least two generations) can
reconstruct k shares for the evolving k-threshold scheme that enable them to
reconstruct the secret. Since we generate k − 1 shares of the evolving scheme
per generation, party t holds (roughly) the share of the (log t + k)th party of the
evolving scheme.

The share size needed to share each si is max{log(size(g)), |si|} ≤
max{log t + k, σ(log t + k)} (using Shamir’s scheme; see Claim 5). Summing
up, if we start with a scheme in which the share size of the tth party is σ(t),
then we end up with a scheme with share size roughly σ′(t) = log t + (k − 1) ·

How to Share a Secret, Infinitely 491

max{log t + k, σ(log t + k)}. A small optimization is that sharing s1 costs just
|s1|, as we can give s1 to each party (similarly to what we did in the k = 2 case).

We want to iteratively apply this domain reduction procedure. For this we
have to specify the initial scheme. If we start with the scheme that results from
the construction in Theorem 1 which has share size roughly 2t (or roughly tk

with the optimization described above), then the resulting scheme will have a
factor that depends exponentially on k. This makes the scheme impractical even
for small values of k.

A Formula for the Future. To get around this we present a tailor-made
construction for the evolving k-threshold in which the share size of party t has
almost linear dependence on t and k. Specifically, the share size in this scheme
is kt · log(kt). For this, we construct, at least intuitively, a Boolean monotone
formula for k-threshold that counts to k.3 For this counting to make sense in the
evolving setting we notice that counting to k can be done by summing up the
number of 1’s so far with the number of 1’s that will come in the future. Since
we are counting to k, both of these numbers can be bounded by k, so we have to
prepare only k possibilities for the unknown future. To make this construction
efficient, we combine it with a generation-like mechanism. See Sect. 5 for the full
details.

Prefix Codes and Evolving 2-Threshold. There are several clues that point
to a connection with prefix codes: the construction with the repeated domain
reduction is reminiscent of the Elias code construction; the lower bound on
schemes for the evolving 2-threshold access structure in Theorem 3 uses what is
identical to a Kraft inequality, which is a characterization of prefix codes. We
are able to formalize this tight relationship:

– Given any prefix code in which the length of the tth codeword is σ(t), we
construct a secret sharing scheme for the evolving 2-threshold access structure
in which the share size of the tth party is σ(t). Using the best prefix code
constructions we get a scheme in which the share size is the same as in our
direct construction described above (but it is less efficient for sharing secrets
longer than 1 bit). See Sect. 7 for the transformation.

– On the other hand, any secret sharing scheme for the evolving 2-threshold
access structure in which the share size of the tth party is σ(t), implies the
existence of a prefix code in which the length of the tth codeword is σ(t). This
comes from the fact that the sufficient condition of Kraft’s inequality yields
prefix codes.

3 Even though we can make our construction a monotone formula, our final construc-
tion is not phrased as a formula since we want to optimize share size. To exemplify
this gap notice that the secret sharing scheme that results from the best formula for
k-threshold on n parties has share size poly(k) · log n [10,19], while the scheme of
Shamir has size roughly log n, independently of k.

492 I. Komargodski et al.

2 Model and Definitions

For an integer n ∈ N we denote by [n] the set {1, . . . , n}. We denote by log the
base 2 logarithm and assume that log 0 = 0. For a set X we denote by x ← X
the process of sampling a value x from the uniform distribution over X

We start by briefly recalling the standard setting of (perfect) secret sharing.
Let Pn = {1, . . . , n} be a set of n parties. A collection of subsets A ⊆ 2Pn is
monotone if for every B ∈ A, and B ⊆ C it holds that C ∈ A.

Definition 1 (Access structure). An access structure A ⊆ 2Pn is a monotone
collection of subsets. Subsets in A are called qualified and subsets not in A are
called unqualified.

Definition 2 (Threshold access structure). For every n ∈ N and 1 ≤ k ≤ n,
let (k, n)-thr be the threshold access structure over n parties which contains all
subsets of size at least k.

A (standard) secret sharing scheme involves a dealer who has a secret, a
set of n parties, and an access structure A. A secret sharing scheme for A is
a method by which the dealer distributes shares to the parties such that any
subset in A can reconstruct the secret from its shares, while any subset not in
A cannot reveal any information on the secret.

More precisely, a secret sharing scheme for an access structure A consists
of a pair of probabilistic algorithms (SHARE,RECON). SHARE gets as input a
secret s (from a domain of secrets S) and a number n, and generates n shares
Π

(s)
1 , . . . , Π

(s)
n . RECON gets as input the shares of a subset B and outputs a

string. The requirements are:

1. For every secret s ∈ S and every qualified set B ∈ A, it holds that
Pr[RECON({Π

(s)
i }i∈B , B) = s] = 1.

2. For every unqualified set B /∈ A and every two different secrets s1, s2 ∈ S, it
holds that the distributions ({Π

(s1)
i }i∈B) and ({Π

(s2)
i }i∈B) are identical.

The share size of a scheme is the maximum number of bits each party holds
in the worst case over all parties and all secrets.

The well known scheme of Shamir [31] for the (k, n)-thr access structure
(based on polynomial interpolation) satisfies the following.

Claim 5 ([31]). For every n ∈ N and 1 ≤ k ≤ n, there is a secret sharing
scheme for secrets of length m and the (k, n)-thr access structure in which the
share size is �, where � ≥ max{m, log q} and q > n is a prime number (or a
power of a prime). Moreover, if k = 1 or k = n, then � = m.4

4 Schemes in which the share size is equal to the secret size are known as ideal secret
sharing schemes.

How to Share a Secret, Infinitely 493

2.1 Secret Sharing for Evolving Access Structures

We proceed with the definition of an evolving access structure. Roughly speaking,
the parties arrive one by one and, in the most general case, a qualified subset
is revealed only when all parties in that subset are present (in special cases
the access structure is known to begin with, but there is no upper bound on
the number of parties). To make sense of sharing a secret with respect to such a
sequence of access structures, we require that the changes to the access structure
are monotone, namely, parties are only added and qualified sets remain qualified.

To define evolving access structures we need to define a restriction.

Definition 3 (Restriction). Let A be an access structure on n parties and let
0 < m < n. We denote by A|m the restriction of A to the first m parties. That is,

A|m = {X ∈ A | {m + 1, . . . , n} ∩ X = ∅}.
Due to monotonicity of the access structure, we have the following claim.

Claim 6. If A is an access structure on n parties, then A|m is an access struc-
ture over m parties.

Proof. By definition of A|m, it contains only parties from the set {1, . . . , m}.
Thus, to prove the claim it is enough to show that A|m is a monotone set,
namely, that if B ∈ A|m then for any B ⊆ C ⊆ Pm. Indeed, since A is an access
structure, for B ∈ A|m and B ⊆ C ⊆ Pm ⊆ Pn, we have that B,C ∈ A. By
definition of A|m, it holds that C ∈ A|m.

Definition 4 (Evolving access structure). A (possibly infinite) sequence of
access structures {At}t∈N is called evolving if the following conditions hold:

1. For every t ∈ N, it holds that At is an access structure over t parties.
2. For every t ∈ N, it holds that At|t−1 is equal to At−1.5

This definition naturally gives rise to an evolving variant of threshold access
structures (see Definition 2). Here, we think of k as fixed, namely, independent
of the number of parties.

Definition 5 (Evolving threshold access structure). For every k ∈ N, let
evolving k-thr be the evolving threshold access structure which contains for any
access structure in the sequence all subsets of size at least k.

We generalize the definition of a standard secret sharing scheme to apply
for evolving access structures. Intuitively, in this setting, at any point t ∈ N in
time, there is an access structure At which defines the qualifies and unqualified
subsets of parties.

Definition 6 (Secret sharing for evolving access structures). Let A =
{At}t∈N be an evolving access structure. Let S be a domain of secrets, where
|S| ≥ 2. A secret sharing scheme for A and S consists of a pair of algorithms
(SHARE,RECON). The sharing procedure SHARE and the reconstruction proce-
dure RECON satisfy the following requirements:
5 Recall the definition of a restriction from Definition 3.

494 I. Komargodski et al.

1. SHARE(s, {Π
(s)
1 , . . . , Π

(s)
t−1}) gets as input a secret s ∈ S and the secret shares

of parties 1, . . . , t−1. It outputs a share for the tth party. For t ∈ N and secret
shares Π

(s)
1 , . . . , Π

(s)
t−1 generated for parties {1, . . . , t − 1}, respectively, we let

Π
(s)
t ← SHARE(s, {Π

(s)
1 , . . . , Π

(s)
t−1})

be the secret share of party t.
We abuse notation and sometimes denote by Π

(s)
t the random variable that

corresponds to the secret share of party t generated as above.
2. Correctness: For every secret s ∈ S and every t ∈ N, every qualified subset

in At can reconstruct the secret. That is, for s ∈ S, t ∈ N, and B ∈ At, it
holds that

Pr
[

RECON({Π
(s)
i }i∈B , B) = s

]

= 1,

where the probability is over the randomness of the sharing and reconstruction
procedures.

3. Secrecy: For every t ∈ N, every unqualified subset B /∈ At, and every two
secret s1, s2 ∈ S, the distribution of the secret shares of parties in B gener-
ated with secret s1 and the distribution of the shares of parties in B gener-
ated with secret s2 are identical. Namely, the distributions ({Π

(s1)
i }i∈B) and

({Π
(s2)
i }i∈B) are identical.

The share size of the tth party in a scheme for an evolving access structure
is max |Πt|, namely the number of bits party t holds in the worst case over all
secrets and previous assignments.6

On Choosing the Access Structure Adaptively. One can also consider a
stronger definition in which At is chosen at time t (rather than ahead of time)
as long as the sequence of access structures A = {A1, . . . ,At} is evolving. In
this variant, the RECON procedure gets the access structure At as an additional
parameter. Our construction of a secret sharing scheme for general evolving
access structures in Sect. 3 works for this notion as well.

On the Domain of Secrets. Unless otherwise stated, we usually assume that
the secret is a single bit (either 0 or 1). One can generalize any such scheme to
support longer secrets by secret sharing every bit of the secret independently,
suffering a multiplicative factor in share size that depends on the length of
the secret. When we generalize our schemes to support long secrets, this naive
generalization will be our benchmark.

2.2 Warm-Up: Undirected s-t-Connectivity

We start with a simple warm-up scheme. We show that the standard scheme
for the st-connectivity access structure can be easily adapted to the evolving
6 This means that the share size is bounded, which is almost always the case. An

exception is the scheme (for rational secret sharing) of Kol and Naor [26] in which
the share size does not have a fixed upper bound.

How to Share a Secret, Infinitely 495

setting. In this access structure parties correspond to edges of an undirected
graph G = (V,E). There are two fixed vertices in the graph called s and t
(where s, t ∈ V). A set of parties (i.e. edges) is qualified if and only if they
include a path from s to t. Around 1989 Benaloh and Rudich [6] (see also [2,
Sect. 3.2]) constructed a (standard) secret sharing for this access structure. The
dealer, given a secret s ∈ {0, 1}, assigns with each vertex v ∈ V a label. For v = s
the label is ws = s, for v = t the label is wt = 0 and for the rest of the vertices
the label is chosen independently uniformly at random wv ← {0, 1}. The share
of a party e = (u, v) ∈ E is wu ⊕ wv.

Consider a set of parties that include a path s = v1v2 . . . vk = t from s to t.
To reconstruct the secret, the parties XOR their shares to get

(wv1 ⊕ wv2) ⊕ (wv2 ⊕ wv3) ⊕ · · · ⊕ (wvk−1 ⊕ wvk
) = wv1 ⊕ wvk

= s.

One can observe that this access structure and scheme naturally generalize
to the evolving setting. In this setting, we consider an evolving (possibly infinite)
graph, where the set of nodes and edges are unbounded. At any point in time
an arbitrary set of vertices and edges can be added to the graph. An addition of
an edge corresponds to a new party added to the scheme. The special vertices
s and t are fixed ahead of time and cannot change (this is to ensure the access
structure is evolving).

Initially, the dealer assigns labels for the special vertices s and t, as before
(i.e. it sets ws = s and wt = 0). For the rest of the vertices the dealer assigns
(uniformly random) labels only on demand: When a new edge e = (u, v) is
added to the graph (which corresponds to a new party), the dealer gives the
party corresponding to the edge e the XOR of the labels of the vertices u and v.
Correctness and security of this scheme follow similarly to the correctness and
security of the standard scheme. One can see that the share size of each party
is exactly the size of the secret.

3 A Scheme for General Evolving Access
Structures

We give a construction of a secret sharing scheme for every evolving access
structure. We emphasize that our construction also works in the scenario in
which the access structure is chosen adaptively; see remark after Definition 6.
We focus on the case where the secret is a single bit.

Theorem 7 (Theorem 1 restated). For every evolving access structure there
is a secret sharing scheme where the share size of the tth party is at most 2t−1.

The fact that our construction results with shares of exponential size should
come as no surprise, as the best constructions known for standard secret sharing
schemes for general access structures have shares of exponential size (in the
number of parties). Proving that shares of exponential size are necessary to
realize some evolving access structure is a very interesting open problem.

496 I. Komargodski et al.

Proof of Theorem 7. Let A = {At}t∈N be an evolving access structure.7

Let {ft}t∈N be the sequence of functions, where fi : {0, 1}i → {0, 1} is the
(monotone) characteristic function of Ai.

Let s ∈ {0, 1} be the secret to be shared. We describe what the dealer stores
and how it prepares a share for an arriving party. At time t (before party t
arrives) the dealer maintains a set of bits we denote by w(b1,...,bi) for all i ∈ [t−1]
and b1, . . . , bi ∈ {0, 1}. These bits are defined iteratively. First, the dealer sets
w(1) = s if f1(1) = 1 and it is a uniformly random bit otherwise. Moreover, for
every i ≥ 1, the dealer sets w(b1,...,bi−1,0) = 0. The rest of the bits are defined as
follows.

1. If ft(b1, . . . , bt−1, 1) = 1 and ft−1(b1, . . . , bt−1) = 0, then the dealer sets

w(b1,...,bt−1,1) = w(b1,...,bt−1) ⊕ . . . ⊕ w(b1) ⊕ s.

2. If ft(b1, . . . , bt−1, 1) = 1 and ft−1(b1, . . . , bt−1) = 1, then the dealer sets

w(b1,...,bt−1,1) = 0.

3. If ft(b1, . . . , bt−1, 1) = 0, then the dealer sets

w(b1,...,bt−1,1) ← {0, 1}
to be a uniformly random bit.

The share of party t ∈ N consists of 2t−1 bits w(b1,...,bt−1,1) for all b1, . . . , bt−1 ∈
{0, 1}.

Correctness and Security. We argue correctness and security at time t ∈ N.
Let b = (b1, . . . , bt) ∈ {0, 1}t be an indicator vector of a minimal qualified set
of parties at time t. For every i ∈ [t − 1] such that bi = 1, party i holds the bit
w(b1,...,bi). Party t, by construction, holds the bit w(b1,...,bt−1) ⊕ · · · ⊕ w(b1) ⊕ s,
where w(b1,...,bi,0) = 0 for 0 ≤ i ≤ t − 2. Therefore, by XOR-ing all the shares,
namely, computing

t
⊕

i=1

w(b1,...,bi),

the parties present can compute s.
For security it is instructive to give a simple example that illustrates how the

scheme works and why it is secure. Consider the access structure at time t = 4
that consists of the following qualified sets {{1, 2}, {1, 3}, {1, 4}, {2, 4}} and we
will argue security for the set {3, 4}. Party 1 is unqualified so its share is w(1) is
a uniformly random bit. Party 2 completes a qualified set with party 1 and so
it’s share consists of two bits w(0,1), w(1,1), where w(0,1) is a uniformly random
bit and w(1,1) = w(1) ⊕ s. Similarly, the share of party 3 consists of four bits

7 As mentioned, our construction actually works in the setting where At itself is chosen
at time t (and it is not known at any time t′ < t).

How to Share a Secret, Infinitely 497

w(0,0,1), w(0,1,1), w(1,0,1), w(1,1,1), where w(0,0,1) and w(0,1,1), uniformly random,
w(1,1,1) = 0 since {1, 2} is qualified as well, and w(1,0,1) = w(1) ⊕ s. Finally, the
share of party 4 consists of 8 bits most of which are either 0 or uniformly random,
and the interesting ones are w(1,0,0,1) = w(1) ⊕ s and w(0,1,0,1) = w(0,1) ⊕ s. Let
us assume that the shares given to parties {1, 2, 3} do not reveal s and show that
the shares of party 4 do not reveal it as well. Indeed, all its uniformly random
bits and the zero bits do not help, so we focus on w(1,0,0,1) and w(0,1,0,1). We
observe that since parties 4 and 3 both complete party 1 to be a qualified set,
they both have the same share w(1,0,0,1) = w(1,0,1) = w(1) ⊕ s, so we can ignore
w(1,0,0,1) as well and be left with w(0,1,0,1) = w(0,1) ⊕ s. Now, the point is that
since party 3 does not complete party 2 to get a qualified set, the element w(0,1)

completely masks the secret. More generally, the formal vector space generated
by the share w(0,1,0,1) is linearly independent of all other shares.

We sketch security in the general case by induction. For t = 1 it is immediate
and assume that the scheme is secure for t − 1. For every (b1, . . . , bt) ∈ {0, 1}t,
party t receives a bit w(b1,...,bt−1,1) which is either a uniformly random bit or the
bit w(b1,...,bt−1) ⊕· · ·⊕w(b1) ⊕s, depending on the value of ft(b1, . . . , bt−1, 1). Let
b = (b1, . . . , bt) ∈ {0, 1}t be an indicator vector of an unqualified set of parties
at time t. Assume that bt = 1, as the other case follows immediately from the
induction hypothesis. For every w(b1,...,bt−1,1), the uniformly random bits given
to party t do not give an unqualified set any additional information about the
secret as they are independent of everything else this set posses, so we can ignore
them. Let us consider all the bit of the form w(b′

1,...,b′
i)

⊕ · · · ⊕ w(b′
1)

⊕ s held by
parties in b. If there are two parties i, j such that bi = bj = 1 that complete the
same set, then they posses the same bit so we can ignore one of them. We are
left with the case in which all parties complete different subsets. In this case, one
can see that all the shares are linearly independent and thus the secret remains
hidden. Security follows by the hypothesis.

Share Size. The share size of party t is 2t−1 bits. �

3.1 Efficiency Improvements

In some cases, depending on the access structure, it is possible to reduce the
share size by slightly optimizing the above scheme. The 0 bits that occur due
to Theorem 3, do not have to be remembered as they can be inferred from the
access structure.

At time t, the shares of party t will consists of:

1. A bit for each unqualified subset of [t] that party t participates in. For the
case when the access structure is known ahead of time, the only unqualified
sets to consider our those that can be expanded to a qualified subset using
future parties.

2. A bit for each qualified subset of [t] that party t completes (i.e. is the last
one).

This optimization is useful for access structures in which the number of unqual-
ified sets is small. For example, for the evolving 2-thr access structure, the fact

498 I. Komargodski et al.

that there are only t unqualified sets, implies a scheme in which the share size
of the tth party is exactly t (we use this fact in Sect. 4). More generally, for the
evolving k-thr access structure, there are

∑k−2
i=0

(

t−1
i

)

unqualified sets and
(

t−1
k−1

)

qualified sets which t completes, implying a scheme with share size roughly tk−1.

4 An Efficient Scheme for Evolving 2-Threshold

We now describe the efficient construction for a secret sharing scheme for the
evolving 2-thr access structure. Recall that evolving 2-thr is the sequence of
access structures (2, 1)-thr, (2, 2)-thr, (2, 3)-thr, . . . which allow, at any point
in time, for every pair of parties to learn the secret while disallowing singletons
to learn anything about it. We first focus on the case where the secret is a single
bit and discuss the more general case in Sect. 4.1.

Theorem 8. There is a secret sharing scheme for the evolving 2-thr access
structure in which the share size of the tth party is bounded by

log t + log log t + 2 log log log t + 6.

Recall that in the classical setting of secret sharing, where an upper bound
on the number of parties is known, there is a very efficient scheme for (2, n)-thr
in which the share size of each party is roughly log n (see Claim 5). In Sect. 6 we
show that in the evolving setting, for any c ∈ N, a scheme in which the share
size of the tth party is log t + log log t + c cannot exist. Thus, up to an additive
log log log t term, our scheme is optimal.

Our main technical claim used to prove Theorem8 is given in the following
lemma.

Lemma 1. Assume that there exists a secret sharing scheme for the evolving 2-
thr access structure in which the share size of the tth party is σ(t). Then, there
exists a secret sharing scheme for the evolving 2-thr access structure in which
the share size of the tth party is

log t + σ(log t + 1).

Proof of Theorem 8 Assuming Lemma 1. Recall that in Sect. 3 we con-
structed a secret sharing scheme for any evolving access structure that results
with shares of size 2t−1. However, using the efficiency improvements described
in Sect. 3.1,8 we get a scheme in which the share size of the tth party is

σ(0)(t) = t.

Using Lemma 1 this gives rise to a scheme Π(1) in which the share size of the
tth party is

σ(1)(t) = log t + σ(0)(log t + 1)
= 2 log t + 1.

8 Alternatively, we can use the construction of [15] (see Sect. 1.3) which gives the tth

party a share of size t.

How to Share a Secret, Infinitely 499

Applying Lemma 1 again we get a scheme Π(2) in which the share size of the tth

party is

σ(2)(t) = log t + σ(1)(log t + 1)
≤ log t + 2 log (log t + 1) + 1
≤ log t + 2 log log t + 3.

Applying Lemma1 one last time we get a scheme Π(3) in which the share size
of the tth party is

σ(3)(t) = log t + σ(2)(log t + 1)
≤ log t + log(log t + 1) + 2 log log(log t + 1) + 3
≤ log t + log log t + 2 log log log t + 6.

This proves the theorem.
We note that this bound is tight according to the lower bound in Theorem3

up to the low-order term log log log t.
We note that by applying Lemma1 i times we can improve the share size

for large enough t. This will match the lower bound up to a low order term of
log(i)(t) (See Remark 1). We choose to stop after three applications of Lemma 1
due to aesthetic reasons (but see Sect. 7). �

We are left to prove Lemma 1.

Proof of Lemma 1. Let Π be a construction of a secret sharing scheme for
evolving 2-thr in which the share size of the tth party is σ(t). We construct a
scheme Π ′ for the same access structure in which the share size is log t+σ(log t+
1). We proceed with the description of the scheme.

Let s ∈ {0, 1} be the secret to be shared. Each party, when it arrives, is
assigned to a generation. The generations are growing in size: For g = 0, 1, 2 . . .
the gth generation begins when the 2g-th party arrives. Therefore, the size of the
gth generation, namely, the number of parties that are part of this generation,
is size(g) = 2g and party t ∈ N is part of generation g = 	log t
.

When a generation begins the dealer prepares shares for all parties that are
part of that generation. Let us focus on the beginning of the gth generation and
describe the dealer’s procedure:

1. Split s using a secret sharing scheme for (2, size(g))-thr. Denote the resulting
shares by u

(g)
1 , . . . , u

(g)
size(g).

2. Generate one share using the secret sharing scheme Π given the secret s and
previous shares {v(i)}i∈{0,...,g−1}. Denote the resulting share by v(g).

3. Set the secret share of the jth party in the gth generation (i.e. j ∈ [size(g)])
to be

(

u
(g)
j , v(g)

)

.

500 I. Komargodski et al.

Fig. 1. The shares of parties 1, . . . , 15 from generations 0, . . . , 3.

The output of the scheme is depicted in Fig. 1.

Correctness and Security. Let t1, t2 ∈ N be any two different parties. We show
that the secret s can be computed from their shares. If t1 and t2 are from the
same generation g (i.e. if g = 	log t1
 = 	log t2
), then they can reconstruct the
secret s using the reconstruction procedure of the (2, size(g))-thr scheme using
the corresponding u(g) shares. If they are from different generations g1 �= g2, then
the parties can compute s using the reconstruction procedure of the evolving 2-
thr scheme and the two shares v(g1) and v(g2).

For security consider any single party t ∈ N from generation g. By the security
of the (2, size(g))-thr scheme, the security of the evolving 2-thr scheme, and
the fact that both parts of the share are generated independently, the shares
cannot be used to learn anything about the secret.

Share Size Analysis. We analyze the share size of parties in the scheme Π ′.
Denote by σ(t) the share size of party t in the scheme Π. We bound the size
of each component in the share of party t. The share of party t that is the jth

party of generation g = 	log t
 is (u(g)
j , v(g)).

1. u
(g)
j – generated by secret sharing s using a scheme for (2, size(g))-thr. Since

size(g) = 2g and using Claim 5 we get that

|u(g)
j | ≤ log(size(g)) ≤ 	log t
.

2. v(g) – generated by generating one share of a secret sharing scheme Π for
evolving 2-thr. Recall that g shares were generated for previous generations.

How to Share a Secret, Infinitely 501

Therefore,
|v(g)| = σ(g + 1) = σ(log t
 + 1).

Thus, the total share size in the scheme Π ′ is bounded by

log t + σ(log t + 1).

�

4.1 Generalization to Larger Domains of Secrets

This scheme can be generalized to larger domains of secrets in an efficient way
(in particular, better than sharing each bit independently). Roughly speaking,
this follows since Shamir’s threshold scheme can be used to share a secret longer
than 1 bit without increasing the share size; see Claim5. More generally, sharing
a secret of �-bits long, requires shares of size roughly max{log n, �}, where n is
the number of parties in the scheme.

Let the secret be a string of length �. Using the above feature of Shamir’s
scheme, a slight variant of Lemma 1 still holds (following the same proof).
Namely, given any secret sharing scheme for the evolving 2-thr access struc-
ture and �-bit secrets in which the share size of the tth party is σ(t). Then, there
exists a secret sharing scheme for the evolving 2-thr access structure and �-bit
secrets in which the share size of the tth party is

max{log t, �} + σ(log t + 1).

We have to specify the initial scheme that supports �-bit secrets to start the
recursive composition with. We use our scheme for Theorem 8 by secret sharing
every bit independently. The share size will be σ(0)(t) ≤ � · (log t + log log t +
2 log log log t+6). For large enough t it holds that σ(0)(t) ≤ t and max{log t, �} =
log t. Thus, one can follow the same outline of the proof of Theorem8 and obtain
the same share size as in Theorem 8 for large enough t. (For smaller values of t
one can follow the analysis and obtain a bound as a function of t and �).

5 A Scheme for Evolving k-Threshold

In this section we give a construction for a secret sharing scheme for the
evolving k-thr access structure for general k. As in Sect. 4, we first focus on
the case where the secret is a single bit and discuss the more general case in
Sect. 5.4.

Theorem 9 (Theorem 2 restated). There is a secret sharing scheme for the
evolving k-thr access structure in which the share size of the tth party is at most

(k − 1) · log t + 6k3 · log log t · log log log t + 7k4 · log k.

502 I. Komargodski et al.

As in the case of k = 2 (see the discussion after Theorem 8), the best one
could hope to obtain is a scheme in which the share of the tth party is close
to log t.9 Our construction has a linear dependence on k and we leave open the
question whether this can be improved.

We note that the bound in Theorem9 applies for any t ∈ N and k ≥ 2. For
specific values of t and k it is possible to follow the analysis and obtain a better
bound.

Our approach is to start with some basic scheme that has good dependency
on k but high dependency on t and use a domain reduction technique in order
to obtain better dependency on t.

Our main technical lemma used to prove Theorem9 is a general transforma-
tion where we take any scheme for the evolving k-thr access structure (possibly
with large share size), and convert it into a different scheme with smaller share
size. Formally we prove following lemma.

Lemma 2. Let k ∈ N. Assume that there exists a secret sharing scheme for
the evolving k-thr access structure in which the share size of the tth party is
σ(t). Then, there exists a secret sharing scheme for the evolving k-thr access
structure in which the share size of the tth party is at most

(k − 1) · log t + k · σ(log t + k) + k2.

The proof of Theorem 9 is done via repeated applications of Lemma2, some-
what similarly to the proof of Theorem8. However, naively the resulting parame-
ters are not very good. Specifically, if we start with the scheme for the evolving k-
thr access structure in which the share size is exponential in t or k (which is
what we get using the scheme from Theorem 7; see Sect. 3.1), then by applying
Lemma 2, the share size will eventually depend exponentially on k.

To overcome this, we first present a tailor-made construction for the
evolving k-thr access structure in which the share size of party t has almost
linear dependence on t and k. Using this scheme as a basic building block, we
repeatedly apply Lemma 2 to obtain Theorem 9. The proof of the latter can be
found in Sect. 5.3. The tailor-made construction for the evolving k-thr access
structure appears next in Sect. 5.1. Finally, the proof of Lemma2 appears in
Sect. 5.2.

5.1 The Basic Scheme for Evolving k-Threshold

The main result of this subsection is a construction of a secret sharing scheme
for the evolving k-thr access structure and 1-bit secrets in which the share size
of party t is almost linear in t and k. This scheme will be used later as the basic
building block in our final scheme for evolving k-thr satisfying Theorem9.

Lemma 3. There is a secret sharing scheme for the evolving k-thr access
structure in which the share size of the tth party is bounded by kt · log(kt).
9 Shamir’s scheme for (k, n)-thr results with shares of size roughly log n. In particular,

independent of k.

How to Share a Secret, Infinitely 503

In the construction used to prove Lemma3 we will employ two secret sharing
schemes: (1) Shamir’s threshold scheme and (2) a secret sharing scheme for a
new access structure. The latter access structure C� over 2k parties, where � ≤ k,
is defined via its characteristic monotone function that we denote by C� as well.
Let (x, y) ∈ {0, 1}k ×{0, 1}k be an inputs to C� : {0, 1}k ×{0, 1}k → {0, 1}, where
we think of x and y as unary encoding of two numbers in {0, . . . , k}. Jumping
ahead, the variable x will represent the number of parties present so far and y
will represent the number of parties to come. The access structure contains all
pairs whose sum is at least �. Formally, we define C�(x, y) = 1 if and only if at
least one of the following conditions hold:

1. ∃i, j ∈ [� − 1] such that xi = 1, yj = 1, and i + j = �.
2. y� = 1 or x� = 1.

Claim 10. Let �, k ∈ N such that � ≤ k. There exists a secret sharing scheme
for the access structure C� in which the share size of each party is exactly the
size of the shared secret.

Proof. The following monotone formula computes C�:

C�(x, y) =
�−1
∨

i=1

(xi ∧ y�−1) ∨ (x� ∨ y�).

Notice that this formula is a DNF and every input variable appears exactly
once. This formula gives rise to a simple secret sharing scheme for the access
structure C� using the method of [5]. Since each variable appears at most
once in the formula (x1, . . . , x� and y1, . . . , y� appear once, but x�+1 . . . , xk and
y�+1, . . . , yk do not appear), the share of each party is bounded by the length of
the secret. The theorem follows by padding all shares to be of the same length.

Intuition for the Construction. Our goal is to allow any combination of k
parties to learn s. The main idea is not to consider all possible combinations
of k parties, but to group parties into generations, ignore the identities of the
parties within a generation, and only focus on their quantity. For simplicity, let
us focus on the first and second generation. How many quantities should we
consider? Exactly k, since the presence of i ≤ k parties from the first generation
requires the presence of k − i parties from the second generation. Therefore,
the idea is to generate 2k strings x1, . . . , xk and y1, . . . , yk, such that only a
proper combination of xi and yk−i will recover the secret s (for this we use the
scheme for the access structure Ck). These 2k strings are generated when the
first generation begins and the x’s (the values corresponding to the “present”)
are shared among the parties of that generation in a way that allows any i parties
to learn xi. The y’s (the values corresponding to the “future”) will be shared
among the parties of the second generation in a similar way allowing any k − i
parties to learn yk−i. Together, they will be able to recover s.

To formalize the above intuition and extend it to more generation we need
some notation. For a generation g ≥ 0, we denote by [k]g = {1, . . . , k}g the set

504 I. Komargodski et al.

{1, . . . , k} × . . . × {1, . . . , k}
︸ ︷︷ ︸

g times

. We will be using vectors of the form z = (i1, . . . , ig)

∈ [k]g in our notation. For such a vector z and ig+1 ∈ [k], we denote by (z, ig+1)
the vector (i1, . . . , ig, ig+1) ∈ [k]g+1.

Proof of Lemma 3. Let s ∈ {0, 1} be the secret to be shared. Each party, when
it arrives, is assigned to a generation. Party t ∈ N is assigned to generation
g = 	logk t
. The generations are growing in size: For g = 0, 1, 2 . . . the gth

generation begins when the kg-th party arrives. Therefore, the size of the gth

generation (i.e. the number of parties that are members of this generation), is

size(g) = kg+1 − kg = (k − 1) · kg.

When a generation g begins the dealer prepares shares for all parties that
are members of that generation, and in addition, it generates kg+1 strings
{y

(g+1)
z }z∈[k]g+1 which it remembers for the next generation. Initially, the dealer

sets y
(0)
∅ = s. Let us focus on the beginning of the gth generation and describe

the dealer’s procedure (for consistency of notation we define [k]0 = ∅):

1. (a) If g = 0: Split the string y
(0)
∅ = s using the secret sharing scheme for Ck of

Claim 10. Denote the resulting 2k shares by x
(0)
(1), . . . , x

(0)
(k), y

(1)
(1) , . . . , y

(1)
(k).

(b) If g ≥ 1: For all z = (i1, . . . , ig) ∈ [k]g split the string y
(g)
z using the

secret sharing scheme for Cig
of Claim 10. Denote the resulting 2k shares

by x
(g)
(z,1), . . . , x

(g)
(z,k), y

(g+1)
(z,1) , . . . , y

(g+1)
(z,k) .

The x’s will be shared amongst the parties in the current (gth) genera-
tion, whereas the y’s will be used to generate shares for parties in the next
((g + 1)th) generation.

2. For all z = (i1, . . . , ig+1) ∈ [k]g+1 secret share x
(g)
z using a scheme for

(ig+1, size(g))-thr. Denote the resulting size(g) shares by u
(g)
z,1, . . . , u

(g)
z,size(g).

3. The secret share of the jth party in the gth generation (that is, the tth party
where t = kg + j − 1) is composed of all the strings u

(g)
z,j for any possible z.

Namely, it is the sequence of strings

{u
(g)
z,j}z∈[k]g+1 .

Correctness and Security

Claim 11. Any c ≤ k parties from generation g can compute {x
(g)
(z,i)}z∈[k]g,i∈[c].

Proof. Let j1, . . . , jc ∈ [size(g)] be the indices of parties present from that gen-
eration. Thus, the parties can compute

{u
(g)
z,j1

, . . . , u
(g)
z,jc

}z∈[k]g+1 .

Therefore, all the x values that were shared via a threshold scheme in
which the threshold was at most c can be reconstructed. Namely, the values
{x

(g)
(z,i)}z∈[k]g,i∈[c].

How to Share a Secret, Infinitely 505

Claim 12. Fix a generation g ≥ 0, two numbers c1, c2 ∈ [k] and z =
(i1, . . . , ig) ∈ [k]g. Then, given x

(g)
(z,c1)

and y
(g+1)
(z,c2)

such that c1 + c2 ≥ ig, one

can compute y
(g)
z . Moreover, given x

(g)
(z,c1)

such that c1 ≥ ig, one can compute

y
(g)
z .

Proof. Follows from the correctness of the secret sharing scheme for C�.

Now, let us assume that k parties come together and try to reconstruct s.
Assume that c0 parties come from generation 0, c1 come from generation 1 and
so on. That is, for some generation g it holds that

∑g
i=0 ci = k and without loss

of generality cg > 0. We show that these parties can learn y
(0)
(k) = s, as required.

This is done by applying Claims 11 and 12 iteratively. Details follow.
By Claim 11, using the shares of the ci parties in generation i ∈ {0, . . . , g}

we can compute

x
(0)
(c0)

, {x
(1)
(z,c1)

}z∈[k]1 , . . . , {x
(g)
(z,cg)

}z∈[k]g .

By the second part of Claim 12, using {x
(g)
(z,cg)

}z∈[k]g we can reconstruct

{y(g)
z }z∈[k]g−1×{cg}.

By the first part of Claim 12, using {x
(g−1)
(z,cg−1)

}z∈[k]g−1 with {y
(g)
z }z∈[k]g−1×{cg}

we can reconstruct

{y(g−1)
z }z∈[k]g−2×{cg+cg−1}.

Using the first part of Claim 12 iteratively as above, one can eventually compute
y
(1)

(
∑g

i=1 ci)
. Combining with x

(0)
(c0)

, one can compute y
(0)
∅ = s, as required.

To argue security, fix any set of parties as above where
∑g

i=0 ci < k. We
claim that these parties cannot learn the value y

(0)
∅ = s. From the security of

the scheme for C�, it is enough to show that they cannot learn any value in
y
(1)
(k−c0)

. Applying this logic once again, it is enough to show that they cannot

learn any value in {y
(2)
(z,k−c0−c1)

}z∈[k]. Applying this argument g times, we get

that s cannot be learned if and only if {y
(g+1)

(z,k−∑g
i=0 ci)

}z∈[k]g cannot be learned.
Indeed, these values are independent of the shares of parties up to generation g.

Share Size Analysis. We analyze the share size of parties in the scheme Πk

described above. The share of party t from generation g is composed of kg+1

shares generated via standard threshold schemes over size(g) parties. Thus,
in total, the share size of party t is bounded by kg+1 · log(size(g)). Recall that
g = 	logk t
 and size(g) = (k − 1) · kg. Therefore, the share size is bounded by

k · t · log((k − 1) · t) ≤ kt · log(kt).

�

506 I. Komargodski et al.

5.2 Recursive Composition: Proof of Lemma 2

Let Πk be a construction of a secret sharing scheme for evolving k-thr in which
the share size of the tth party is σk(t). We construct a scheme Π ′

k for the same
access structure in which the share size is σ′

k(t) = log t + (k − 1) + σ(log t + (k −
1)) + (k − 2) · max{log t + (k − 1), σ(log t + (k − 1))}.

Let s ∈ {0, 1} be the secret to be shared. Each party is assigned to a gener-
ation. The generations are growing in size: For g = 0, 1, 2 . . . the gth generation
begins when the 2(k−1)·g-th party arrives. Thus, party t ∈ N is part of generation
g = 	(log t)/(k − 1)
, and the number of parties that are part of generation g, is

size(g) = 2(k−1)·(g+1) − 2(k−1)·g = 2(k−1)·g · (2k−1 − 1) ≤ t · 2k−1.

As in Sect. 5.1, when a generation begins the dealer prepares shares for all parties
that are members of that generation. We focus on the beginning of generation g
and describe the dealer’s procedure:

1. Split s using a secret sharing scheme for (k, size(g))-thr. Denote the resulting
shares by u

(g)
1 , . . . , u

(g)
size(g).

2. Generate k − 1 shares using the secret sharing scheme Πk given the secret
s and previous shares {v

(i)
j }i∈[g−1],j∈[k−1]. Denote the resulting shares by

v
(g)
1 , . . . , v

(g)
k−1.

3. For i ∈ [k − 1], split v
(g)
i using a secret sharing scheme for (i, size(g))-thr.

Denote the resulting shares by {w
(g)
i,1 , . . . , w

(g)
i,size(g)}i∈[k−1].

4. Set the secret share of the jth party in the gth generation (i.e. j ∈ [size(g)])
to be

(

u
(g)
j , w

(g)
1,j , . . . , w

(g)
k−1,j

)

.

Correctness and Security. We show that any k parties can learn the secret.
If all the parties come from the same generation g, then they can use their u(g)

in order to run the reconstruction procedure of the (k, size(g))-thr scheme and
learn s. For k parties that come from at least two generations we show that they
can jointly learn k shares for the evolving k-thr scheme Πk. By correctness of
Πk, using these shares they can reconstruct s. Indeed, assume that c0 parties
come from generation 0, c1 come from generation 1 and so on, where there is
some generation g where

∑g
i=0 ci = k and for all i it holds that ci ≤ k − 1.

Claim 13. Any c ∈ [size(g)] parties from generation g can compute v
(g)
c .

Proof. The c parties hold c shares for (1, size(g))-thr scheme that give v
(g)
1 , c

shares for the (2, size(g))-thr scheme that give v
(g)
2 and so on.

Using this claim we get that the k parties can learn
∑g

i=0 ci = k shares of the
evolving k-thr scheme, as required.

For security consider any set of k − 1 parties. First, the u shares of the
(k, size(g))-thr scheme are independent of the secret. Thus, to complete the

How to Share a Secret, Infinitely 507

proof we need to show that the parties cannot learn any k shares of the
evolving k-thr scheme Πk. Indeed, any c parties from generation g cannot learn
more than c shares v

(g)
1 , . . . , v

(g)
c ; this follows from the security of the schemes

(c+1, size(g))-thr, . . . , (k−1, size(g))-thr. Therefore, in total, the parties can
learn at most

∑g
i=0 ci < k shares.

Share Size Analysis. We bound the size of each component in the share of
party t in the scheme Π ′

k. The share of party t that is the jth party of generation
g = 	(log t)/(k − 1)
 is composed of u

(g)
j and w

(g)
1,j , . . . , w

(g)
k−1,j :

1. u
(g)
j – generated by secret sharing s using a scheme for (k, size(g))-thr. By

Claim 5 it holds that

|u(g)
j | ≤ log(size(g)) ≤ log t + (k − 1)

2. w
(g)
i,j – generated by secret sharing v

(g)
i using a scheme for (i, size(g))-thr.

By Claim 5 for 1 < i ≤ k − 1 it holds that

|w(g)
i,j | ≤ max{log(size(g)), |v(g)

i |} ≤ max{log t + (k − 1), |v(g)
i |}

and for i = 1 it holds that

|w(g)
1,j | = |v(g)

i |.

– v
(g)
i – generated by generating a share of a sharing scheme Πk for

evolving k-thr. Recall that g·(k−1) ≤ log t+(k−1) shares were generated
for previous g generations. Therefore, for all i ∈ [k − 1]

|v(g)
i | ≤ σ(log t + (k − 1)).

Therefore, for 1 < i ≤ k − 1

|w(g)
i,j | ≤ max {log t + (k − 1), σ(log t + (k − 1))}

and for i = 1

|w(g)
1,j | ≤ σ(log t + (k − 1)).

Thus, the total share size in the scheme Π ′
k is bounded by:

log t + (k − 1) + σ(log t + (k − 1)) + (k − 2) · max{log t + (k − 1), σ(log t + (k − 1))}
(1)

≤ log t + (k − 1) + σ(log t + (k − 1)) + (k − 2)(log t + (k − 1) + σ(log t + (k − 1)))

≤ (k − 1) log t + k · σ(log t + k) + k2.

508 I. Komargodski et al.

5.3 Proof of Theorem 9 Assuming Lemma 2

Let k ∈ N be such that k ≥ 2. We use the scheme for evolving k-thr constructed
in Sect. 5.1 in which the share size of the tth party is σ

(0)
k (t) = kt · log(kt). Using

Lemma 2 this gives rise to a scheme Π
(1)
k for evolving k-thr in which the share

size of the tth party is:

σ
(1)
k (t) = (k − 1) · log t + k · σ

(0)
k (log t + k) + k2. (2)

We bound σ
(0)
k (log t + k). If k > log t, then

σ
(0)
k (log t + k) ≤ σ

(0)
k (2k) ≤ 2k2 · log

(

2k2
) ≤ 4k2 · log (2k)

If k ≤ log t then

σ
(0)
k (log t + k) ≤ σ

(0)
k (2 log t)

≤ k · 2 log t · log (k · 2 log t)
≤ 2k · log t · log log t + 2k · log t · log (2k)

≤ 4k · log t · log log t + 4k2 · log (2k) ,

where the last inequality follows since 2k · log t · log (2k) ≤ 2k · log t · log log t +
4k2 · log(2k). Together we get that

σ
(0)
k (log t + k) ≤ max{σ

(0)
k (2 log t), σ

(0)
k (2k)} ≤ 4k · log t · log log t + 4k2 · log (2k) .

Plugging this in Eq. (2), we get that

σ
(1)
k (t) = (k − 1) · log t + k · σ

(0)
k (log t + k) + k2

≤ (k − 1) · log t + 4k2 · log t · log log t + 4k3 · log (2k) + k2

≤ 5k2 · log t · log log t + 5k3 · log k.

Using Lemma 2 again, we get a scheme Π
(2)
k in which the share size of the tth

party is

σ
(2)
k (t) = (k − 1) · log t + k · σ

(1)
k (log t + k) + k2. (3)

We bound σ
(1)
k (log t + k) as follows.

σ
(1)
k (log t + k) ≤ max{σ

(1)
k (2 log t), σ(1)

k (2k)}
≤ 5k2 · log (2 log t) · log log (2 log t) + 5k2 · log (2k) · log log (2k)

+ 5k3 · log k

≤ 6k2 · log log t · log log log t + 6k3 · log k.

How to Share a Secret, Infinitely 509

Plugging this back in Eq. (3), we get that

σ
(2)
k (t) = (k − 1) · log t + k · σ

(1)
k (log t + k) + k2

≤ (k − 1) · log t + 6k3 · log log t · log log log t + 6k4 · log k + k2

≤ (k − 1) · log t + 6k3 · log log t · log log log t + 7k4 · log k.

Remark. As in the proof of Theorem 8, one can iteratively apply Lemma2
again and again to decrease the dependence on log log t · log log log t. However,
the dependence on log t cannot be improved using this method.

5.4 Generalization to Larger Domains of Secrets

Similarly to the generalization of the scheme from Sect. 4 to support larger
domains of secrets (see Sect. 5.4), we generalize the above scheme. Let the secret
be of length �. Following the proof of Lemma2, we obtain that given a scheme
for the evolving k-thr access structure that supports secrets of length � in which
the share size of the tth party is σ(t), there exists a scheme for the same access
structure and same length of secrets in which the share size of the tth party is
bounded by (cf. Eq. (1))

max{log t + (k − 1), �} + σ(log t + (k − 1)) + (k − 2)·
max{log t + (k − 1), σ(log t + (k − 1))}

Notice that for large enough t ∈ N the above bound is the same as the bound we
had in Eq. (1). For the recursive composition step (cf. Sect. 5.2) we start with the
naive generalization of the scheme from Theorem 9 to support several input bits
(i.e. bit by bit). This gives a scheme in which the share size is σ(0)(t) ≤ �·((k−1)·
log t+k ·σ(log t+k)+k2). For large enough t it holds that σ(0)(t) ≤ kt · log(kt).
Thus, one can follow the same outline of the proof of Theorem9 (see Sect. 5.3)
and obtain the same share size as in Theorem 9 for large enough t. (For smaller
values of t one can follow the analysis and obtain a bound as a function of t
and �).

5.5 Linearity of the Scheme

The scheme from Theorem 7 is linear over GF(2). In the scheme from this section
the shares are composed of several different parts each being an element coming
from a different scheme. Consider the scheme from Sect. 5.1 (denoted by Π

(0)
k

in Sect. 5.3). Each share there is a composition of several linear schemes (the
threshold scheme of Shamir and the scheme of Benaloh and Leichter). Since
composition of linear schemes results with a linear scheme, the scheme is linear.
Next, for the basic construction Π

(1)
k in Sect. 5.3, each share is composed of

several parts each being either a share of a linear scheme (Shamir’s scheme) or a
composition of linear schemes (Shamir’s scheme and the scheme Π

(0)
k), resulting

with a linear scheme. The same argument applies for the recursive composition
which eventually gives that the final construction is linear.

510 I. Komargodski et al.

6 A Lower Bound

For general access structures the best standard secret sharing schemes require
exponential-size shares. Instantiating our scheme for n parties, results with the
nth party holding a share of size 2n−1. Thus, any improvement in the share size
on our scheme for general access structures, will imply a non-trivial improvement
for general access structures in the standard setting.

In the case of k-threshold access structures, we do not know if our scheme is
tight. Specifically, for k > 2, using our scheme to implement a standard secret
sharing scheme for k-out-of-n is not tight. Indeed, the most significant term in
the share size in our scheme depends linearly on k − 1, while the best schemes
in the standard setting are independent of k (see Claim 5).

Thus, one may ask whether there exists a secret sharing scheme for the
evolving k-thr in which the share size of the tth party is roughly log t. We show
that such a scheme cannot exist.

Theorem 14 (Theorem 3 restated). For any constant c ∈ N, there is no
secret sharing scheme for the evolving 2-thr access structure in which the share
size of the tth party is at most

log t + log log t + c.

Proof. Assume (towards contradiction) that there is a secret sharing scheme for
the evolving 2-thr access structure in which the share size of the tth party is
at most log t + log log t + c for a constant c ∈ N. We can use this scheme to
implement a standard secret sharing scheme for (2, n)-thr in which the share
size of party t ∈ [n] is mt ≤ log t + log log t + c.

We use the following claim that underlies the lower bound of Kilian and
Nisan. This inequality is the same as Kraft’s (see [13, Chapter 5.2]), a fact that
we use in Sect. 7.

Claim 15. ([25] and [12, Appendix A]). For any n ∈ N, in any secret sharing
scheme for (2, n)-thr, it holds that

n
∑

t=1

1
2mt

≤ 1,

where mt is the share size of the tth party.

Using this claim we get that

1 ≥
n

∑

t=1

1
2mt

≥
n

∑

t=2

1
2log t+log log t+c

=
1
2c

·
n

∑

t=2

1
t · log t

.

To get a contradiction we need to show that
∑n

t=2
1

t·log t > 2c for large enough
n. Indeed, letting n → ∞, we have that

∞
∑

t=2

1
t · log t

≥
∫ ∞

2

1
t · log t

dt = log log t
∣

∣

∣

∞

2
→ ∞.

This completes the proof.

How to Share a Secret, Infinitely 511

Remark 1 (A stronger lower bound). We note that the lower bound can be
strengthened to show that even schemes in which the share size is

∑�
t=1 log(i)(t)+

c cannot exist for any � ∈ N and where log(i)(t) is the i-times repeated log of
t (letting log(0)(t) = t). This follows similarly to the above argument noting
that for every � ∈ N0 it holds that

∫ ∞
1

1∏�
i=0 log(i)(t)

dt = log(�+1) t and using that

log(�+1) t ≥ 2c for any constant c ∈ N and large enough t.
This is reminiscent of bounds in the literature on prefix codes [7,18]. This is

not surprising given the equivalence (in terms of complexity) between prefix codes
and secret sharing for the evolving 2-thr access structures developed in Sect. 7.

7 The Equivalence Between Evolving
2-Threshold and Prefix Codes

We now show the very tight connection between schemes for the evolving 2-thr
access structure and prefix codes.

Theorem 16 (Theorem 4 restated). Let σ : N → N. A prefix code for the
integers in which the length of the tth codeword is σ(t) exists if and only if
a secret sharing scheme for the evolving 2-threshold access structure and 1-bit
secret in which the share size of the tth party is σ(t).

Proof of the “if” Part of Theorem 16. Kraft’s inequality (see [13, Theorem
5.2.2]) gives a necessary and sufficient condition for the existence of a prefix
code for a given set of codeword lengths. The proof of the sufficient direction is
constructive: given the collection of lengths of codewords it is possible to con-
struct the code. Furthermore, we do not need to know the collection of lengths in
advance, i.e. we can create the code on the fly, as long as the demand (

∑

t
1

2mt
)

does not exceed 1. This inequality is the same as the one given in Claim 15 that
must be satisfied by any secret sharing scheme for the evolving 2-thr access
structure. Thus, any secret sharing scheme for the evolving 2-thr access struc-
ture in which the share size of the tth party is σ(t), implies the existence of a
prefix code in which the length of the tth codeword is σ(t). �
Proof of the “only if” Part of Theorem 16. Let Σ : N → {0, 1}∗ be a prefix
code for the integers. That is, for any t1, t2 ∈ N such that t1 �= t2, it holds
that Σ(t1) is not a prefix of Σ(t2). For t ∈ N denote by σ(t) the length of the
codeword Σ(t).

The Scheme. Let s ∈ {0, 1} be the secret to be shared. Let w be an infinite
random binary string. The dealer generates the string as needed: at time t ∈ N

the dealer holds the prefix of length σ(t) of the string w, denoted by w[σ(t)]

(for simplicity we assume that σ(t) is monotonically increasing, but this is not
necessary). The share of party t is a string ut such that:

1. If s = 0, then ut = w[σ(t)].
2. If s = 1, then ut = Σ(t) ⊕ w[σ(t)] (bit-wise XOR).

512 I. Komargodski et al.

Reconstruction. Any two different parties t1 and t2, holding shares u1 and
u2, respectively, where |u1| ≤ |u2|, should check if u1 is a prefix of u2. If it is a
prefix, then they output s = 0 and otherwise, they output s = 1.

Correctness and Security. If s = 0, then since u1 and u2 are both prefixes of
the same string w it holds that u1 is a prefix of u2. On the other hand, if s = 1
then u1 = Σ(t1) ⊕ w[σ(t1)] and u2 = Σ(t2) ⊕ w[σ(t2)], where w[σ(t1)] is a prefix of
w[σ(t2)]. Since Σ is a prefix code, Σ(t1) is not a prefix of Σ(t2), and thus u1 is
not a prefix of u2.

Security follows since for both s = 0 and for s = 1 each single party t holds a
single string ut which is uniformly distributed over {0, 1}σ(t). In case s = 0 this
is true by construction, and in case s = 1 this is true since all the party sees is
the codeword Σ(t) XORed with w[σ(t)] which is uniform.

Share Size. The share size of the tth player in this scheme is σ(t). Using the
best constructions of prefix codes [7,18], we get the share size of Theorem 8.

Generalization to Larger Domains of Secrets. One can support sharing
of longer secrets by sharing every bit independently. Our direct construction
presented in Sect. 4 is more efficient for sharing longer secrets (see Sect. 4.1 for
more details). �
Efficiency Preservation. Note that the transformation from the prefix code to
secret sharing preserves the efficiency of the code, i.e. dealing a share to party t is
as easy as computing Σ(t). However, the other direction, with the construction
based on Kraft’s inequality, does not preserve the efficiency. That is, we cannot
say that encoding the number t, i.e. computing Σ(t), is as easy as dealing a
secret to party t.

8 Further Work and Open Problems

This work suggests several research directions. The most evident one is to inves-
tigate the necessity of the linear dependence on k in the most significant term
in our scheme for the evolving k-thr access structure. In particular, are more
algebraic-oriented constructions possible?

There are several interesting access structures for which we do not have
efficient constructions. For example, a very natural evolving access structure
is the one in which qualified subsets are the ones which form a majority of
the present parties at some point in time. The only scheme that realized this
access structure we are aware of stems from our construction for general access
structures from Sect. 3 which results with very long shares.

When k = 2, we show a tight connection between evolving secret sharing and
prefix codes (see Sect. 7). Is there a generalization of prefix codes that is related
to the evolving k-thr access structure for k > 2?

Secret sharing has had many applications in cryptography and distributed
computing. One of the most notable examples is multi-party computation (MPC).
Can secret sharing for evolving access structures be useful for MPC?

How to Share a Secret, Infinitely 513

We focused on schemes in which correctness and security are perfect. One
can relax correctness to work with high probability and to allow small statisti-
cal error in security. Can these relaxations be used to obtain more interesting
and efficient schemes? Another variant of secret sharing schemes is the compu-
tational one. In these schemes security is required only against computationally
bounded adversaries. Efficient computational schemes for much richer classes of
access structures are known [27,28,32,35]. Is there a meaningful way to define
computationally secure secret sharing schemes for evolving access structures?
Can this be used to obtain efficient schemes for more classes of evolving access
structures? Cachin [11] studied a similar question in a model in which there is a
large public bulletin board.

Other natural variants of secret sharing can be adapted to the evolving set-
ting. For example, verifiable, robust and visual secret sharing. We leave these as
interesting directions for future exploration.

References

1. Beimel, A.: Secure Schemes for Secret Sharing and Key Distribution. Ph.D. thesis,
Technion - Israel Institute of Technology (1996). http://www.cs.bgu.ac.il/beimel/
Papers/thesis.ps

2. Beimel, A.: Secret-sharing schemes: a survey. In: Chee, Y.M., Guo, Z., Ling, S.,
Shao, F., Tang, Y., Wang, H., Xing, C. (eds.) IWCC 2011. LNCS, vol. 6639, pp.
11–46. Springer, Heidelberg (2011)

3. Beimel, A., Ishai, Y.: On the power of nonlinear secrect-sharing. In: 16th Annual
IEEE Conference on Computational Complexity, CCC, pp. 188–202 (2001)

4. Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems for non-
cryptographic fault-tolerant distributed computation (extended abstract). In:
STOC, pp. 1–10 (1988)

5. Benaloh, J.C., Leichter, J.: Generalized secret sharing and monotone functions.
In: Goldwasser, S. (ed.) CRYPTO 1988. LNCS, vol. 403, pp. 27–35. Springer,
Heidelberg (1990)

6. Benaloh, J.C., Rudich, S.: Unpublished, private Communication with Steven
Rudich. (1989)

7. Bentley, J.L., Yao, A.C.: An almost optimal algorithm for unbounded searching.
Inf. Process. Lett. 5(3), 82–87 (1976)

8. Blakley, G.R.: Safeguarding cryptographic keys. In: Proceedings of the AFIPS
National Computer Conference, vol. 22, pp. 313–317 (1979)

9. Bogdanov, A., Guo, S., Komargodski, I.: Threshold secret sharing requires a linear
size alphabet. Electronic Colloquium on Computational Complexity (ECCC) 23,
131 (2016). http://eccc.hpi-web.de/report/2016/131, to appear in TCC 2016B

10. Boppana, R.B.: Threshold functions and bounded depth monotone circuits. J.
Comput. Syst. Sci. 32(2), 222–229 (1986)

11. Cachin, C.: On-line secret sharing. In: Boyd, C. (ed.) Cryptography and Coding
1995. LNCS, vol. 1025, pp. 190–198. Springer, Heidelberg (1995)

12. Pueyo, C.I., Cramer, R., Xing, C.: Bounds on the threshold gap in secret sharing
and its applications. IEEE Trans. Inf. Theory 59(9), 5600–5612 (2013)

13. Cover, T.M., Thomas, J.A.: Elements of Information Theory, 2nd edn. Wiley, New
York (2006)

http://www.cs.bgu.ac.il/beimel/Papers/thesis.ps
http://www.cs.bgu.ac.il/beimel/Papers/thesis.ps
http://eccc.hpi-web.de/report/2016/131

514 I. Komargodski et al.

14. Cramer, R., Damg̊ard, I.B., Maurer, U.M.: General secure multi-party computation
from any linear secret-sharing scheme. In: Preneel, B. (ed.) EUROCRYPT 2000.
LNCS, vol. 1807, pp. 316–334. Springer, Heidelberg (2000)

15. Csirmaz, L., Tardos, G.: On-line secret sharing. Des. Codes Crypt. 63(1), 127–147
(2012)

16. Dodis, Y., Patrascu, M., Thorup, M.: Changing base without losing space. In:
STOC, pp. 593–602 (2010)

17. Elias, P.: Universal codeword sets and representations of the integers. IEEE Trans.
Inf. Theory 21(2), 194–203 (1975)

18. Even, S., Rodeh, M.: Economical encoding of commas between strings. Commun.
ACM 21(4), 315–317 (1978)

19. Friedman, J.: Constructing O(n log n) size monotone formulae for the k-th thresh-
old function of n boolean variables. SIAM J. Comput. 15(3), 641–654 (1986)

20. Geographic, N.: NASA declares end to deep impact comet mission. http://news.
nationalgeographic.com/news/2013/09/130920-deep-impact-ends-comet-mission-
nasa-jpl/. Acccessed 07 Feb 2016

21. Herzberg, A., Jarecki, S., Krawczyk, H., Yung, M.: Proactive secret sharing or: how
to cope with perpetual leakage. In: Coppersmith, D. (ed.) CRYPTO 1995. LNCS,
vol. 963, pp. 339–352. Springer, Heidelberg (1995)

22. Ito, M., Saito, A., Nishizeki, T.: Multiple assignment scheme for sharing secret. J.
Cryptol. 6(1), 15–20 (1993)

23. Kannan, S., Naor, M., Rudich, S.: Implicit representation of graphs. SIAM J. Dis-
crete Math. 5(4), 596–603 (1992)

24. Karchmer, M., Wigderson, A.: On span programs. In: 8th Annual Structure in
Complexity Theory Conference, pp. 102–111 (1993)

25. Kilian, J., Nisan, N.: Unpublished (1990). see [12]
26. Kol, G., Naor, M.: Games for exchanging information. In: STOC, pp. 423–432

(2008)
27. Komargodski, I., Naor, M., Yogev, E.: Secret-sharing for NP. In: Sarkar, P., Iwata,

T. (eds.) ASIACRYPT 2014, Part II. LNCS, vol. 8874, pp. 254–273. Springer,
Heidelberg (2014)

28. Krawczyk, H.: Secret sharing made short. In: Stinson, D.R. (ed.) CRYPTO 1993.
LNCS, vol. 773, pp. 136–146. Springer, Heidelberg (1994)

29. Malkin, T., Micciancio, D., Miner, S.K.: Efficient generic forward-secure signatures
with an unbounded number of time periods. In: Knudsen, L.R. (ed.) EUROCRYPT
2002. LNCS, vol. 2332, pp. 400–417. Springer, Heidelberg (2002)

30. Pagh, R., Segev, G., Wieder, U.: How to approximate a set without knowing its
size in advance. In: 54th Annual IEEE Symposium on Foundations of Computer
Science, FOCS, pp. 80–89 (2013)

31. Shamir, A.: How to share a secret. Commun. ACM 22(11), 612–613 (1979)
32. Vinod, V., Narayanan, A., Srinathan, K., Pandu Rangan, C., Kim, K.: On

the power of computational secret sharing. In: Johansson, T., Maitra, S. (eds.)
INDOCRYPT 2003. LNCS, vol. 2904, pp. 162–176. Springer, Heidelberg (2003)

33. Wikipedia: IPv4 address exhaustion. https://en.wikipedia.org/wiki/IPv4 address
exhaustion. Acccessed 07 Feb 2016

34. Wikipedia: Year 2000 problem. https://en.wikipedia.org/wiki/Year 2000 problem.
Acccessed 07 Feb 2016

35. Yao, A.C.: Unpublished, mentioned in [2]. See also [32]

http://news.nationalgeographic.com/news/2013/09/130920-deep-impact-ends-comet-mission-nasa-jpl/
http://news.nationalgeographic.com/news/2013/09/130920-deep-impact-ends-comet-mission-nasa-jpl/
http://news.nationalgeographic.com/news/2013/09/130920-deep-impact-ends-comet-mission-nasa-jpl/
https://en.wikipedia.org/wiki/IPv4_address_exhaustion
https://en.wikipedia.org/wiki/IPv4_address_exhaustion
https://en.wikipedia.org/wiki/Year_2000_problem

New Models

Designing Proof of Human-Work Puzzles
for Cryptocurrency and Beyond

Jeremiah Blocki1(B) and Hong-Sheng Zhou2

1 Purdue University, West Lafayette, USA
jblocki@purdue.edu

2 Virginia Commonwealth University, Richmond, USA
hszhou@vcu.edu

Abstract. We introduce the novel notion of a Proof of Human-work
(PoH) and present the first distributed consensus protocol from hard Arti-
ficial Intelligence problems. As the name suggests, a PoH is a proof that
a human invested a moderate amount of effort to solve some challenge. A
PoH puzzle should be moderately hard for a human to solve. However, a
PoH puzzle must be hard for a computer to solve, including the computer
that generated the puzzle, without sufficient assistance from a human. By
contrast, CAPTCHAs are only difficult for other computers to solve —
not for the computer that generated the puzzle. We also require that a
PoH be publicly verifiable by a computer without any human assistance
and without ever interacting with the agent who generated the proof of
human-work. We show how to construct PoH puzzles from indistinguisha-
bility obfuscation and from CAPTCHAs. We motivate our ideas with two
applications: HumanCoin and passwords. We use PoH puzzles to con-
struct HumanCoin, the first cryptocurrency system with human miners.
Second, we use proofs of human work to develop a password authentica-
tion scheme which provably protects users against offline attacks.

1 Introduction

The emergence of decentralized cryptocurrencies like Bitcoin [45] has the poten-
tial to significantly reshape the future of distributed interaction. These recent
cryptocurrencies offer several advantages over traditional currencies, which rely
on a centralized authority. At the heart of Bitcoin-like cryptocurrencies is an
efficient distributed consensus protocol that allows for all users to agree on the
same public ledger. When combined with other cryptographic tools like digi-
tal signatures the distributed consensus protocol prevents users from engaging
in dishonest behavior like “double spending” their money or spending another
user’s money. Fundamentally, the applications of a tamper-proof blockchain like
the one in Bitcoin are not limited to cryptocurrency. For example, a tamper
proof blockchain could help us construct secure and fair multiparty computa-
tion protocols [1,7,36,38], develop smart contracts [38,53], and build distributed
autonomous agents, to name a few applications. In this paper we propose a fun-
damentally new technique, Proofs of Human-work (PoH), for constructing a
secure blockchain, and we show that our techniques have several other valuable
applications like password protection and non-interactive bot detection.
c© International Association for Cryptologic Research 2016
M. Hirt and A. Smith (Eds.): TCC 2016-B, Part II, LNCS 9986, pp. 517–546, 2016.
DOI: 10.1007/978-3-662-53644-5 20

518 J. Blocki and H.-S. Zhou

At its core, Bitcoin’s distributed consensus protocol is based on moderately
hard Proofs of Work (PoW) [23]. In Bitcoin the Hashcash [3] PoW puzzles are
used to extend the blockchain, a cryptographic data-structure in which the pub-
lic ledger is recorded. A PoW puzzle should be moderately hard for a computer
to solve, but the PoW solution should be easy for a computer to verify. Cryp-
tocurrencies like Bitcoin require that this hardness parameter of PoW puzzles be
tunable. An adversary would need to control 51% of the computational power
in the Bitcoin network to be able to alter the blockchain and prevent users
from reaching the correct consensus1. While Bitcoin cleverly avoids the Sybil
attack by using PoW puzzles, there are still many undesirable features of this
distributed consensus protocol. For example, constructing the proofs of work is
energy intensive making the mining process in this distributed consensus proto-
col environmentally unfriendly. Furthermore, the mining process is dominated
by a smaller number of professional miners with customized hardware making it
unprofitable for others to join — this raises the natural concern that a few pro-
fessional miners might collude to alter the public ledger [46]. Indeed, the mining
pool GHash.io2 recently exceeded 50% of the computational power in Bitcoin.
While other techniques like Proofs of Space [25,47] or Proofs of Stake [8] have
been proposed to build the blockchain in a distributed consensus protocol each
of these techniques has its own drawbacks. It is clearly desirable to find new
techniques for reaching a stable distributed consensus. In this paper we ask the
following question:

Is it possible to design proof of human-work puzzles that are suitable for a
decentralized cryptocurrency?

We believe that a cryptocurrency based on Proof of Human-work might offer
many advantages over other approaches. First, the mining process would be eco-
friendly. Second, instead of wasting ‘human cycles,’ it might be possible to base
the proofs of human work on activities that are fun [34], educational [33] or even
beneficial to society [35,56]. Third, proofs of human work are fair by nature in
the sense that two individuals will generally perform a comparable amount of
work to produce a proof of human work. Thus, professional or rich miners would
not have an significant advantage over regular users. By contrast, in Bitcoin
the cost of computing the SHA256 hash function on customized hardware is
dramatically less than the cost of computing SHA256 on personal computing3.
Finally, we believe that the cryptocurrency would be less-vulnerable to 51%
attacks by nation states or by a few professional miners. However, we stress
that our purpose is not to enumerate all of the possible social consequences of

1 Technically byzantine agreement is only possible when the adversary has less than
50 % of the hashing power and the network has high synchronicity — otherwise we
need to ensure that the adversary has at most 33.3 % of the hashing power [29].

2 See http://arstechnica.com/security/2014/06/bitcoin-security-guarantee-shattered-
by-anonymous-miner-with-51-network-power/.

3 See https://bitcoinmagazine.liberty.me/bitmain-announces-launch-of-next-
generation-antminer-s7-bitcoin-miner/ (Retrieved 5/4/2016).

http://arstechnica.com/security/2014/06/bitcoin-security-guarantee-shattered-by-anonymous-miner-with-51-network-power/
http://arstechnica.com/security/2014/06/bitcoin-security-guarantee-shattered-by-anonymous-miner-with-51-network-power/
https://bitcoinmagazine.liberty.me/bitmain-announces-launch-of-next-generation-antminer-s7-bitcoin-miner/
https://bitcoinmagazine.liberty.me/bitmain-announces-launch-of-next-generation-antminer-s7-bitcoin-miner/

Designing Proof of Human-Work Puzzles 519

a cryptocurrency based on Proofs of Human-work. As with any new technology
HumanCoin could potentially be used for good or for evil. See the full version [12]
for additional discussions.

1.1 Cryptocurrencies Meet AI: Proof of Human-Work Puzzles

In this work we introduce the novel notion of Proofs of Human-work (PoH) which
would be suitable for cryptocurrencies. Proofs of Human-work are fundamentally
different from standard Proofs of Work. Informally, a PoH puzzle should be mod-
erately hard for a human to solve meaning that it should require modest effort
for a human to produce a valid proof of human work — again we require that this
hardness parameter should be tunable. Furthermore, the puzzles should be easy
for a computer to generate, but they need to be difficult for a computer to solve
without sufficient human assistance — even for the computer that generated the
puzzle. Finally, the puzzles need to be publicly verifiable meaning that it should
be easy for a computer to verify the solution to the puzzle without any human
assistance — even if the computer did not generate the puzzle. We stress that
there is no interaction during the puzzle generation or during the puzzle verifi-
cation process, and there is no trusted server in our distributed setting. Thus, a
computer will need to validate proofs of human-work that were generated and
solved by agents with whom it has never interacted.

Our description of a PoH puzzle might remind the reader of a CAPTCHA
(Completely Automated Public Turing-Test to tell Computers and Humans
Apart) [55]. CAPTCHAs have been widely deployed on the Internet to fight
spam and protect against sybil attacks. Informally, a CAPTCHA is a puzzle
that is easy for a human to solve, but difficult for a computer. CAPTCHAs are
based on the assumption that some underlying artificial intelligence (AI) prob-
lem is hard for computers, but easy for humans (e.g., reading distorted letters).

While we do use CAPTCHAs to construct proofs of human work, we stress
that a CAPTCHA itself cannot achieve our notion of proofs of human-work.
Let (Z, σ) be a CAPTCHA puzzle-solution pair. Verifiers who receive the pair
(Z, σ) would not necessarily be able to check that σ is the correct solution with-
out interacting with a human. More importantly, the computer that generates
the puzzle Z could produce the solution σ without any human effort because
CAPTCHA generation algorithms start by randomly selecting a target solution
σ and then outputting a randomly generated puzzle Z with the solution σ. Thus,
a pair (Z, σ) does not constitute a proof of human work. The PoH verifier would
need to ensure, without interacting with any other human agent or any other
computer agent, that the challenge generator did not already have the answer σ
to the puzzle Z.

We believe that our Proof of Human-work puzzles could also have applica-
tions in many other contexts. For example, to limit spam or prevent phishing
attacks it might useful to verify that some human effort went into producing
a message. When a human user is busy it would be convenient if the com-
puter could validate this proof of human effort automatically without needing
to interact with the sender who may no longer be available when the message

520 J. Blocki and H.-S. Zhou

is received. Similarly, proofs of human-work might be a useful tool for honest
preference elicitation — a challenging problem in mechanism design. A human
could demonstrate that a particular issue or outcome is truly important to him
by producing a proof of human-work.

1.2 AI Meets Obfuscation: Constructing Proof of Human-Work
Puzzles

It is not immediately clear how to construct PoH puzzles. CAPTCHAs allow a
computer to generate puzzles that other computers cannot solve, but how could
a computer generate a puzzle that is meaningful to a human without learning the
answer itself? Even if this were possible how could a puzzle verifier be convinced
that the puzzle(s) was generated honestly (e.g., in a way that does not reveal
the answer) without any interaction? How could the verifier be convinced that
the answer is correct without help from a human? Building PoH puzzles is a
challenging problem.

To address these issues, we need to have a way to generate CAPTCHAs
obliviously in the sense that a computer is able to generate a well-formed puzzle
instance Z without learning the corresponding solution σ. This is feasible by
leveraging recent breakthroughs in indistinguishability obfuscation [30]. At an
intuitive level, we can have a CAPTCHA puzzle Z generated inside an obfusca-
tor, and now the corresponding answer σ remains hidden inside the obfuscated
program. We note that the puzzle solution verification can also take place inside
an obfuscated program, even without having human effort involved.

Once we have the idea of generating a CAPTCHA puzzle obliviously as
mentioned above, we then can mimic the steps of constructing Proof of Work
puzzle in Bitcoin to get a PoH scheme. In PoW, a prover/miner is given a puzzle
instance x. The prover will compute the cryptographic hash H(x, s) for many
distinct witness s until the value H(x, s) is smaller than a target value. In PoH,
the miner uses (x, s) as the input for an obfuscated program, and inside the
obfuscated program, a pseudorandom string r is generated from the input (x, s),
and this r will be used for generating the solution σ and the puzzle instance Z.
The miner obtains Z but has no access to the internal state r and σ.

A human miner is now able to obtain the solution σ from the puzzle Z. As
in PoW, the miner will repeat this process until he finds a witness s so that
H(x, s, σ, Z) is smaller than a target value. We note that, once a successful
miner publishes a valid tuple (x, s, σ, Z), any verifier is able to verify it without
interaction with human: The verifier can reproduce Z inside the obfuscated
program along with a verification tag, tag. While the verification tag allows the
verifier to check whether a given solution σ is correct this value will not expose
the solution σ (e.g., tag might be an obfuscated point function which outputs 1
on input x = σ and 0 on all other inputs).

Our PoH scheme maintains many of the same desirable properties as a PoW.
For example, we can tune the hardness of our PoH puzzle generator by hav-
ing the verifier reject a valid triple (x, s, σ, Z) with probability 1 − 2ω so that
a human would need to generate and solve 2ω on average to produce a valid

Designing Proof of Human-Work Puzzles 521

proof of human-work. Thus, the hardness of the PoH puzzles could be tuned by
adjusting ω.

While the conceptual understanding of our PoH construction is quite simple,
the security analysis is a bit tricky. In the PoW, we sample from a uniform
distribution via random oracle, here we need to sample from a more sophisticated
distribution. We rely on a newly developed tool universal samplers by Hofheinz
et al. [32], which is based on the existence of indistinguishability obfuscation and
one-way functions in the random oracle model. As discussed in [32], we stress
that the random oracle is only used outside of obfuscated programs. There has
been tidal wave of new cryptographic constructions using indistinguishability
obfuscation since the roundbreaking results of Garg et al. [30]. However, to the
best of our knowledge we are the first rigorous paper to explore the connection
between AI and program obfuscation4. We believe that obfuscation is a powerful
new tool that has the potential to fundamentally shape the nature of human-
computer interaction. Could program obfuscation allow for a human to interact
with a computer in fundamentally new ways? We view our work as a first step
towards answering this question.

Remark 1. We view our Proof of Human-work construction as a novel proof of
concept that is not yet practical due to the use of indistinguishability obfuscation.
Since the work of Garg et al. [30] several other candidate indistinguishability
obfuscation schemes have been proposed, but a practical obfuscation scheme
would still be a major breakthrough. We note that PoH puzzles do not necessarily
require general purpose indistinguishability obfuscation. It would be sufficient
to obfuscate a few very simple programs (e.g., a CAPTCHA puzzle generator
and a pseudorandom function). Constructing PoH puzzles without obfuscation
(or without general purpose obfuscation) is an interesting open problem.

Other Applications. The applications of our techniques are not limited to
cryptocurrency. In Sect. 5 we use our ideas to build a password authentication
scheme that provably resists offline attacks even if the adversary breaches the
authentication server. The basic idea to to require a proof of human-work during
the authentication process so that it is not economically feasible for the adversary
to check millions of password guesses. We also show how to develop a non-
interactive bot detection protocol which allows Alice to send a message m to Bob
along with a proof of human-work. Bob is able to verify that human-effort was
used in the production/transmission of the message m without ever interacting
with Alice.

4 Several existing altcoins (e.g., Bytecent, CaptchaCoin) do involve CAPTCHAs,
but they rely on a trusted third party to generate the CAPTCHAs. There
has also been informal discussion on the Bitcoin research chatroom about using
obfuscation to base cryptocurrency on proofs of human labor. For example,
see https://download.wpsoftware.net/bitcoin/wizards/2014-05-29.html or http://
vitalik.ca/files/problems.pdf.

https://download.wpsoftware.net/bitcoin/wizards/2014-05-29.html
http://vitalik.ca/files/problems.pdf
http://vitalik.ca/files/problems.pdf

522 J. Blocki and H.-S. Zhou

1.3 Related Work

While there are many variations of CAPTCHAs [55], they are all based on the
fundamental assumption that some underlying AI problem is hard (e.g., read-
ing garbled text [56], voice recognition with distorted audio [52], image recog-
nition [26] or even motion recognition). While several CAPTCHAs have been
broken (e.g., [16,43,54]) there is still a clear gap between human intelligence
and artificial intelligence. We conjecture that in the foreseeable future we will
continue to have viable CAPTCHA candidates suitable for proofs of human
work. CAPTCHAs have many applications in security: fighting spam [55], mit-
igating Sybil attacks [20], preventing denial of service attacks [57] and even
preventing fully automated man-in-the-middle attackers [24]. As we noted ear-
lier CAPTCHAs alone are not suitable as PoH puzzles. Kumarasubramanian
et al. [39] introduced the notion of human-extractable CAPTCHAs, and used
them to construct concurrent non-malleable zero-knowledge protocols.

Canneti et al. [18] proposed a slight modification of the notion of CAPTCHAs
that they called HOSPs (Human Only Solvable Puzzles) as a defense against
offline attacks on passwords. HOSPs are similar to PoHs in that the puzzles must
be difficult even for the computer that generates them, but HOSP puzzles are not
publicly verifiable by a computer and their construction assumes the existence
of a large centralized storage server filled with unsolved CAPTCHA challenges.
This makes their protocol vulnerable to pre-computation attacks5. By contrast,
in Sect. 5 we present a protocol for password storage that provably protects
users against offline attacks, does not require a large centralized storage server
and is not vulnerable to pre-computation attacks. Blocki et al. [9] introduced
GOTCHAs (Generating panOptic Turing Tests to Tell Computers and Humans
Apart) as a defense against offline dictionary attacks on passwords. However,
GOTCHAs have a high usability cost and are not suitable for cryptocurrency
because the puzzle generation protocol requires interaction with a human and
the solutions are not publicly verifiable by a computer. We refer an interested
reader to the full version [12] for more details about CAPTCHAs and HOSPs.

The problem of designing distributed consensus protocols that work in the
presence of an adversarial (Byzantine) parties has been around for decades [2,
22,40]. Typically distributed consensus requires that 2/3 of the parties are hon-
est [40]. On the Internet this assumption is typically not valid because it is often
possible for a malicious user to register for multiple fake accounts — a Sybil
attack [20]. However, amazing ideas have been proposed in the original Bitcoin
white paper [45] under a pseudo identity ‘Nakamoto’. At its core Bitcoin is based
on an elegant distributed consensus protocol which in turn is based on Proof of
Work puzzles [23] to allow users to agree on a common blockchain. Bitcoin uses
the Hashcash Proof of Work algorithm due to Back [3]. Very recently, the under-
lying consensus protocol in the Bitcoin system have been rigorously analyzed in

5 In particular, the adversary might pay to solve every CAPTCHA challenge on the
server. While expensive, this one-time cost would amortize over the number of users
being attacked.

Designing Proof of Human-Work Puzzles 523

the cryptographic setting [29,48]; intensive analysis has also been given in the
rational setting (e.g. [27,51]).

Since the breakthrough result of Garg et al. [30], demonstrating the first
candidate of indistinguishability obfuscation for all circuits, a myriad of uses
for indistinguishability obfuscation in cryptography have been found. Among
these results, the puncturing methodology by Sahai and Waters [50] has been
found very useful. Hofheinz et al. explored the puncturing technique further
introducing and constructing universal samplers in the random oracle model [32].
Their universal sampler is one of the key building blocks in our construction of
proof of human-work puzzles. We remark that our work is distinct from previous
applications in that we are using obfuscation to develop a new way for humans
to interact with computers.

2 Preliminaries

We adopt the following notational conventions: Given a randomized algorithm
A we use y ← A(x) to denote a random sample from the distribution induced
by an input x. If we fix the random bits r then we will use y := A(x; r) to denote
the deterministic result.

We will consider two types of users: machine-only users and human-machine
users. A machine-only user is a probabilistic polynomial time (ppt) algorithm
who does not interact with a human. In general, when we say “human” user
we mean a “human user equipped with a ppt machine.” Accordingly, we also
consider two types of adversaries: a machine-only adversary A, and a human-
machine adversary BH. The machine-only adversary is a ppt algorithm that
does not get to query a human. The human-machine adversary BH is a ppt
algorithm that gets to interact with a human oracle H which could, for example,
solve CAPTCHA puzzles. We typically restrict the total number of queries that
human-machine adversary can make to the human oracle. We say that an human-
machine adversary BH has m human-work units if it is allowed to query H at
most m times. We intentionally under-specify the behavior of the human oracle
H. At minimum we assume H is capable of solving a CAPTCHA puzzle for
one human-work unit (one query to the oracle). However, the human-machine
adversary may use his queries to ask the human oracle to perform arbitrary
tasks H (e.g., solve basic arithmetic problems, write poetry) so long as each task
takes (approximately) the same amount of human-effort as a single CAPTCHA
puzzle.

2.1 CAPTCHAs

CAPTCHAs are a fundamental building block in our construction of Proof of
Human-work puzzles. Traditionally, a CAPTCHA generator G is defined as a
randomized ppt algorithm that outputs a puzzle Z and a solution σ. In every
CAPTCHA generator that we are aware of the program G first generates a
random target solution σ and then produces a random puzzle Z with solution

524 J. Blocki and H.-S. Zhou

σ (e.g., by distorting the string σ). Given public parameters pp for CAPTCHA
puzzle generation we adopt the syntax (Z, tag) ← G (pp, σ) to emphasize that
the target puzzle Z is generated with complete knowledge of the CAPTCHA
solution. In traditional CAPTCHA applications it is desirable for the agent
who generates a puzzle Z to have knowledge of the corresponding answer σ
so that he can verify another agent’s response to the challenge Z. However,
in our setting this property is problematic since the agent who generates the
puzzle Z is trying to produce a convincing proof of human-work. Thus, we will
need additional tools to obtain proof of human-work puzzles from CATPCHAs.
Formally, a CAPTCHA puzzle-system is defined as follows.

Definition 1 (CAPTCHA). A CAPTCHA puzzle system consists of a tuple
of algorithms (Setup, W, G, CH, Verify), where

– Setup is a randomized system setup algorithm that takes as input 1λ (λ is the
security parameter), and outputs a system public parameter pp ← Setup(1λ),
which includes a puzzle size parameter � = poly(λ);

– W is a randomized sampling algorithm that takes as input the public parameter
pp and outputs a target solution σ ← W(pp) (e.g., a witness) of length �;

– G is a randomized puzzle generation algorithm that takes as input the public
parameter pp and a solution σ, and outputs (Z, tag) ← G(pp, σ) where Z is a
CAPTCHA puzzle and tag is a string that may be used to help verify a solution
to Z;

– Verify is a verification algorithm that takes as input the public parameters
pp, a puzzle Z along with the associated tag and a proposed solution σ′ outputs
a bit b := Verify

(

pp, Z, tag, σ′). We require that b = 1 whenever (Z, tag) ←
G(pp, σ) and σ′ = σ;

– CH is a solution finding algorithm (i.e., human-machine solver) that takes
as input the public parameter pp and a puzzle Z, and outputs a value a ←
CH(·)(pp, Z) as the solution to the puzzle Z. Here, H(·) denotes the human
oracle which takes intermediate human-efficient objects (such as images) as
inputs, and returns machine-efficient values as outputs.

We typically require that Setup, W, G are probabilistic polynomial time algorithms,
and Verify a deterministic polynomial time algorithm. C should be a probabilistic
polynomial time oracle machine.

For example, if we are defining a text based CAPTCHA puzzle-system the
public parameters pp might specify the set of characters Σ, the set of fonts
and a set of font sizes/colors. The public parameters pp would also describe
the length � = |σ| of the target solution (e.g., the number of characters in the
CAPTCHA). In general, larger security parameters λ would imply longer puz-
zles. W is a randomized algorithm that outputs a random string σ ∈ Σ∗ (the
target solution), and G is the randomized algorithm that produces a puzzle Z
along with a tag which may be used for public verification of a potential solution
σ′. We view the solution function CH as a human equipped with a ppt com-
puter. Typically the computer would just be used to display the challenge to the

Designing Proof of Human-Work Puzzles 525

user, but it could also apply a more sophisticated algorithm to post-process the
user’s answer.

Fixing the security parameter λ we define one human work unit to be the
amount of time/energy that it takes a human to solve one honestly generated
CAPTCHA puzzle Z ← G(pp, σ). Any CAPTCHA puzzle-system should be
human usable, meaning that a typical human can consistently solve randomly
generated CAPTCHA puzzles. While we recognize that solving a CAPTCHA
puzzle may require more effort for some people than for others we will use the
term human-work unit to denote the amount of human effort necessary to solve
one CAPTCHA puzzle with security parameter λ.6

Definition 2 (Honest Human Solvability). We say that a human-machine
solver CH controls m human-work units if the machine C can query the
human oracle H(·) at least m times. We say a CAPTCHA puzzle-system
(Setup, W, G, CH, Verify) is honest human solvable if for every polynomial
m = m(λ) and for any human CH who controls m human-work units, it holds
that

Pr

⎡

⎣

pp ← Setup(1λ);∀i ∈ [m]
(

σ∗
i ← W(pp)

)

;
∀i ∈ [m]

(

(Z∗
i , tag∗

i) ← G(pp, σ∗
i)

)

:
(σ∗

1 , . . . , σ
∗
m) ← CH(·)(pp, Z∗

1 , . . . , Z∗
m)

⎤

⎦ ≥ 1 − negl(λ)

Finally, we require that CAPTCHAs are hard for computers to invert. More
concretely, no (known) ppt adversarial machine should be able to find the solu-
tions to m + 1 honestly-generated puzzles given only m-human work units. We
introduce two similar notions of computer uncrackable CAPTCHAs. The first
version states that an adversary with m human-work units cannot find the solu-
tion to m+1 CAPTCHAs with non-negligible probability when he is only given
the puzzles Z∗

1 , . . . , Z∗
n (n > m).

Philosophical Remark. There are two philosophical positions that one could
take regarding CAPTCHA puzzles, the human oracle H and Artificial Intelli-
gence in general. The first view is that for any class of problems that a human
oracle H can solve there exists a (possibly unknown to mankind) ppt computer
algorithm to solve the same class of problems. The second philosophical view is
that there are some tasks that humans can solve that computers will never be
able to solve (i.e., no ppt computer algorithm can consistently/accurately solve
the task).

We will implicitly follow view 1 in our CAPTCHA security definitions. How-
ever, we do not advocate for either view and we stress that our construction
would also work under view 2. Under this second view the class of ppt machine-
human hybrid adversaries is strictly more powerful than the class of ppt adver-
saries. Thus, one would need to make the assumption that the cryptographic

6 In the same way some computers (ASICs) are much faster at evaluating the SHA256
hash function than others. However, we expect this difference to be less extreme for
human users.

526 J. Blocki and H.-S. Zhou

primitives used in our construction (e.g., iO, OWF) are secure against machine-
human hybrids. This assumption is highly plausible7, but also non-standard.

Following view 1 we can avoid such non-standard assumptions about crypto-
graphic primitives. In particular, we assume that the behavior of the human ora-
cle H is fully described by some (unknown) ppt algorithm. We note that because
there exists a ppt algorithm specifying the behavior of H the class pptH (the
class of ppt algorithms with oracle access to H) is no more powerful than the
class ppt. Thus, we do not need to rely on non-standard cryptographic assump-
tions (e.g., iO is secure against adversaries in pptH). How can a CAPTCHA
scheme be secure if there exists some ppt algorithm that accurately solves chal-
lenges without human assistance? We will use the set Discoverable to denote
a subset containing all known turing machines and all turing machines that
mankind might plausibly discover in the near future (e.g., 10–20 years). More
specifically, DiscoverableX = {M |M is a turing machine that mankind will
build within the next X years }. The security of a CAPTCHA scheme relies
on the assumption that no ppt algorithm in DiscoverableX will be able to
accurately solve CAPTCHA puzzles for some reasonably large value of X (e.g.,
10–20 years).

Stating that no ppt algorithm A ∈ DiscoverableX breaks CAPTCHAs is a
statement about human ignorance. While the meaning of this statement is clear
at an intuitive level it is vague in a formal mathematical sense. As Rogaway
observed the same issue arises in the definition of (keyless) collision resistant
hash functions [49]. There is an efficient algorithm to find collisions, but it is
not known to mankind and the hope is that no such algorithm will be known
to mankind for a long time in the future. We will follow the same approach
taken by Rogaway [49] when making security statements about constructions
(e.g., PoH) that rely on CAPTCHAs. For example, we prove that there is an
explicit ppt blackbox reduction (blackbox-constructive form [49]) transforming
an adversary who breaks Proof of Human-work security to an adversary who
breaks CAPTCHAs.

Definition 3 (CAPTCHA Break v1). We say that a ppt adversary A who
has at most m human-work units breaks security of a CAPTCHA puzzle-system
(Setup, W, G, CH, Verify) if if for some polynomials m = m(λ), n = poly(λ) and
μ(λ) when A controls at most m human-work units, it holds that

Pr

⎡

⎢

⎢

⎢

⎢

⎣

pp ← Setup(1λ); ∀i ∈ [n]
(

σ∗
i ← W(pp)

)

;
∀i ∈ [n]

(

(Z∗
i , tag∗

i) ← G(pp, σ∗
i)

)

;
S ← AH(·)(pp, Z∗

1 , . . . , Z∗
n);

∀i ∈ [n]
(

bi ← maxσ∈S Verify(pp, Z∗
i , tag∗

i , σ)
)

:
∑

i∈[n] bi ≥ m + 1

⎤

⎥

⎥

⎥

⎥

⎦

≥ 1
μ(λ)

7 If a cryptographic primitives like iO or one-way functions were not secure against
machine-human hybrids then these primitives would have to be considered broken
in practice.

Designing Proof of Human-Work Puzzles 527

We say that the CAPTCHA puzzle-system is computer uncrackable for the next
X years if for any ppt adversary A ∈ DiscoverableX , A does not break security
of the CAPTCHA puzzle system.

Our second formulation of CAPTCHA security is slightly non-standard due
to the fact that the adversary is given a tag tagi along with each challenge Zi.
In particular, the value tagi allows the adversary to run Verify(pp, Zi, tagi, σ

′
i)

to test different candidate CAPTCHA solutions. While this formulation is non-
standard we argue that we would expect that any CAPTCHA that is secure
under Definition 3 can be transformed into a CAPTCHA that is secure under
Definition 4. For example, tagi might be the cryptographic hash of the solution
σi or we might set tagi = iO(

IZiσi

)

to be the indistinguishability obfuscation of
a point function IZi,σi

(x) = 1 if x =
(

Zi, σi

)

; otherwise IZi,σi
(x) = 08.

It is reasonable to believe that G could produces a tag tagi, which allows us
verify whether or not a solution σ′ is correct without revealing σi. For example,
we might set tagi = iO(

IZiσi

)

to be the indistinguishability obfuscation of a
point function IZi,σi

(x) = 1 if x =
(

Zi, σi

)

; otherwise IZi,σi
(x) = 0. In this case

Verify
(

pp, Zi, tagi, σ
′) would simply output tagi

(

Zi, σ
′).

Definition 4 (CAPTCHA Break v2). We say that a ppt adversary A units
breaks security of a CAPTCHA puzzle-system (Setup, W, G, CH, Verify) if for
some polynomials m = m(λ), n = poly(λ) and μ(λ) when A controls at most m
human-work units, it holds that

Pr

⎡

⎢

⎢

⎢

⎢

⎣

pp ← Setup(1λ); ∀i ∈ [n]
(

σ∗
i ← W(pp)

)

;
∀i ∈ [n]

(

(Z∗
i , tag∗

i) ← G(pp, σ∗
i)

)

;
S ← AH(·) (

pp,
(

Z∗
1 , tag∗

1

)

, . . . ,
(

Z∗
n, tag∗

n

))

;
∀i ∈ [n]

(

bi ← maxσ∈S Verify(pp, Z∗
i , tag∗

i , σ)
)

:
∑

i∈[n] bi ≥ m + 1

⎤

⎥

⎥

⎥

⎥

⎦

≥ 1
μ(λ)

We say that the CAPTCHA puzzle-system is computer uncrackable for the next
X years if for any ppt adversary A ∈ DiscoverableX A does not break security
of the CAPTCHA puzzle-system.

We will require λ to be large enough that a computer cannot reasonably find
a solution by brute force. As Von Ahn et al. [55] observed we can always increase
λ by composing CAPTCHA puzzles. Of course this will increase the amount of
time that it would take to solve a puzzle. Bursztein et al. [17] conducted a large
scale experiment on Amazon’s Mechanical Turk to evaluate human performance
on a variety of different CAPTCHAs. Based on these results we estimate that,
if we define one human work unit to be about two minutes of human effort,
it is plausible to believe that security could be amplified to the extent that

8 Indistinguishability obfuscation provides ‘best case’ obfuscation [31] so it would be
highly surprising if an adversary could use tagi to extract σi as this would immedi-
ately imply that a host of alternative cryptographic techniques (e.g., one way func-
tions, collision resistance hash functions) fail to hide σi. A recent result of Barak
et al. [4] provides evidence that evasive circuit families (e.g., point functions) can be
obfuscated.

528 J. Blocki and H.-S. Zhou

that adversary’s odds of solving the long CAPTCHA challenge correctly (and
without human assistance) is negligible (e.g., 2−100)9. For traditional CAPTCHA
applications like bot detection this would make the solution impracticable due
to the high usability costs. However, for our applications such a delay can be
acceptable (e.g., in Bitcoin the parameters are tuned so that a new block is
mined every 10 min).

While some spammers have paid human workers to solve CAPTCHAs in
bulk [44] we do not consider this an attack on our definition because human
effort was involved to find the solution. A HumanCoin miner could pay users to
solve CAPTCHAs for him, but human users would have incentive to mine their
own HumanCoins if compensation was unfair.

2.2 Universal Samplers

In [32], Hofheinz et al. introduce the notion of universal samplers. The essential
property of a universal sampler scheme is that given the sampler parameters U ,
and given any program d that generates samples from randomness, it should
be possible for any party to use the sampler parameters U and the description
of d to obtain induced samples that look like the samples that d would have
generated given uniform and independent randomness.

Definition 5. A universal sampler scheme consists of algorithms
(Setup, Sample) where

– U ← Setup(1λ) is a randomized algorithm which takes as input a security
parameter 1λ and outputs sampler parameters U .

– pd ← Sample(U, d) takes as input sampler parameters U and a circuit d of
size at most � = poly(λ), and outputs induced samples pd.

In our construction in the next section, we will use a slightly extended version
of universal sampler scheme which allows an additional input. Note that in the
basic version of universal sampler scheme in Definition 5 above, the algorithm
Sample(U, d) receives as input a program d which specifies certain distribution.
In our application the program d will be fixed ahead of time, and Sample takes
an additional input β where β is an index for specifying randomness for the pro-
gram to generate a CAPTCHA puzzle Z with tag. Thus, for the slightly extended
version of universal sampler scheme with an additional input, we will use the
9 Some CAPTCHA candidates have already been “broken” by ppt algorithms (e.g.

[16,19,43,54]). For example, [16] was able to solve reCAPTCHA with accuracy
33.34 %. There are solid guidelines about generating CAPTCHAs that are harder
for a computer to crack (e.g., see [58]). Furthermore, we stress that even apparently
“broken” CAPTCHAs may still be useful in our proof of human work context because
it is acceptable to use CAPTCHA puzzles that take a long time (e.g., 2min) for a
human to solve. By contrast, most deployed CAPTCHAs (e.g., reCAPTCHA) are
meant to be solvable in a few seconds. As long as there is some gap between human
intelligence and artificial intelligence we can use standard hardness amplification
techniques (e.g., parallel repetition) to obtain stronger CAPTCHAs [55].

Designing Proof of Human-Work Puzzles 529

notation Sample(U, d, β) instead of Sample(U, d). This allows us to provide alter-
native and flexible description for a circuit d without changing its functionality.
We note that this slightly extended version has been explored in [32], and it
is straightforward to extend Sample, without requiring a new construction or
security analysis.

The formal security definition of adaptive security for the slightly extended
universal samplers with additional inputs can be found in AppendixA. We briefly
overview the notion of adaptive security here. Intuitively, adaptive security guar-
antees that induced samples are indistinguishable from honestly generated sam-
ples to an arbitrary interactive system of adversarial and honest parties. In
a universal sampler with additional inputs, the program d is fixed, and when
an additional input β is provided, the induced sample can be computed as
pβ ← Sample(U, d, β).

We first consider an “ideal world,” where a trusted party with a fixed program
description d, on input β, simply outputs d(rβ) where rβ is independently chosen
true randomness, chosen once and for all for each given β. In other words, if F
is a truly random function, then the trusted party outputs d(F (β)). In this way,
if any party asks for samples corresponding to a specific value of β, they are all
provided with the same honestly generated value.

In the real world, however, all parties would only have access to the trusted
sampler parameters. Parties would use the sampler parameters to derive induced
samples d(rβ) for any specific inputs β. Now rβ is a pseudo random value corre-
sponding to the randomness index β. We will require that for every real-world
adversary A, there exists a simulator S that can provide simulated sampler
parameters U to the adversary such that these simulated sampler parameters
U actually induce the completely honestly generated samples d(F (β)) created
by the trusted party: in other words, that Sample(U, d, β) = d(F (β)). Note that
since honest parties are instructed to simply compute induced samples, this
ensures that honest parties in the ideal world would obtain these completely
honestly generated samples d(F (β)).

3 Proof of Human-Work Puzzles

In this section, we first define the syntax and security for proof of human-
work puzzles; then we demonstrate a construction using universal samplers and
CAPTCHAs.

3.1 Definitions

In a proof of work (PoW) puzzle, a party (i.e., prover) is allowed to prove to
a bunch of verifiers that he completed some amount of computation/work. In
general, those parities are machines. A typical PoW puzzle scheme consists of
several algorithms: setup algorithm Setup() for generating the global system
parameters and policies, puzzle instance generation algorithm G(), puzzle solu-
tion finding algorithm C(), and solution verification algorithm V(). To enable

530 J. Blocki and H.-S. Zhou

a consensus protocol, the PoW puzzle has to meet the following requirements:
(i) it has to be moderately hard to compute (for machines), and no prover can
create a proof of work in no time; (ii) it has to be easy to verify (for machines),
and all verifiers can efficiently check if a proof is valid; (iii) the difficulty needed
in order to solve the proof has to be adjustable in a linear way; and (iv) it has to
be possible to ensure that proofs of work cannot be reused multiple times, and
the proofs of work should be linked to some public information, e.g., the hash of
the block header in a consensus protocol.

Proof of human-work puzzles are very similar to PoW puzzles, except that we
intend to have the human in the loop for finding the solution. The key difference
is that the prover (problem solver) should not be machine-only. In the above
listed requirements, we therefore expect the PoH puzzle to be moderately hard
to compute for humans, and infeasible to compute for machines. On the other
hand, as in PoW, we expect the verification to be easy for machines10. The
syntax is as follows:

Definition 6 (Proof of Human-work Puzzle). A proof of human-work
puzzle-system consists of a tuple of algorithms (Setup, G, CH, V), where

– Setup is a randomized system setup algorithm that takes as input 1λ (λ is
the security parameter) and 1ω (ω is the difficulty parameter), and outputs a
system public parameter pp ← Setup(1λ, 1ω);

– G is a randomized puzzle generation algorithm that takes as input the public
parameter pp, and outputs puzzle x ← G(pp);

– CH is a solution finding algorithm (i.e., human-machine solver) that takes
as input the public parameter pp and a puzzle x, and outputs value a ←
CH(·)(pp, x) as the solution to the puzzle x. Here, H(·) denotes the human
oracle which takes intermediate human-efficient objects (such as images) as
inputs, and returns machine-efficient values as outputs.

– V is a deterministic puzzle-solution verification algorithm that takes as input
the public parameter pp and a puzzle-solution pair (x, a), and outputs bit b :=
V(pp, x, a) where b = 1 if a is a valid solution to the puzzle x, and b = 0
otherwise.

Following notation of Miller et al. [42] we will let ζ(m,ω) .= 1 − (1 − 2−ω)m.
Intuitively, ζ(m,ω) denotes the probability of finding a valid solution with m
queries to the human-oracle.

Definition 7 (Honest Human Solvability). A PoH puzzle system
(Setup, G, CH, V) is honest human solvable if for every polynomial m = m(λ),
and for any honest human-machine solver CH(·) who controls m human-work
units, it holds that

Pr
[

pp ← Setup(1λ, 1ω); x∗ ← G(pp);
a∗ ← CH(·)(pp, x∗) : V(pp, x∗, a∗) = 1

]

≥ ζ(m,ω) − negl(λ)

10 We remark that, it might also be interesting to consider the variant in which verifi-
cation is easy for human but not for machine-verifiers.

Designing Proof of Human-Work Puzzles 531

Definition 8 (Adversarial Human Unsolvability). We say that a ppt
algorithm B breaks security of the a PoH puzzle system (Setup, G, CH, V) if for
some polynomials m = m(λ) and μ(λ) when B controls at most m human-work
units, it holds that

Pr
[

pp ← Setup(1λ, 1ω); x∗ ← G(pp);
a∗ ← BH(·) (pp, x∗) : V(pp, x∗, a∗) = 1

]

≥ζ(m + 1, ω) +
1

μ(λ)

If no ppt human-machine adversary BH(·) ∈ DiscoverableX breaks security we
say that the PoH puzzle system is adversarial human unsolvable for the next X
years.

Remark 2. We remark that the above definition can be strengthened by provid-
ing the adversarial B additional access to a polynomial number of (xi, ai) pairs,
where xi ← G(pp) and V(pp, xi, ai) = 1. The definition can be further strength-
ened further by providing the adversarial B multiple puzzle instances x∗

1, . . . , x
∗
k,

and asking B to output a valid a∗
j for any j ∈ [k]. Our construction in next

section can achieve these strengthened notions. For simplicity, we focus on the
above simplified notion in this paper.

3.2 Construction

In this subsection, we show how to construct PoH puzzles for cryptocurrency. In
Bitcoin each PoW puzzle instance is specified by the public ledger x. A motivated
miner (i.e., the PoW prover) will produce a PoW by repeatedly querying a
random oracle RO (e.g., the SHA256 hash function) to sample uniformly random
elements in an attempt to produce a “small” output. More concretely, the miner
computes random elements yi = RO(x, si) for different strings si’s. If there exist
i so that yi < Tω, then the corresponding si can be viewed as the PoW solution.
Given a random oracle RO : {0, 1}∗ → {0, 1}n we will use the notation Tω

.= 2n−ω.
Intuitively, this ensures that RO(x, si) < Tω with probability 2−ω.

To have human in the loop, we need to first sample CAPTCHA instances for
human solvers. Those instances are not in uniform distribution, and it is unclear
if we can use a random oracle RO to generate such instances. We here use a
cryptographic tool called “universal sampler” recently developed by Hofheinz
et al. [32] to generate such CAPTCHA instances. Universal sampler can be
viewed as an extended version of RO, which can generate elements in any effi-
ciently samplable distributions. More concretely, we fix d to be a circuit for
computing the CAPTCHA generation function capt.G. Thus, d(r) generates a
CAPTCHA puzzle Zr and a tag tagr from randomness r. Now, the miner begins
by computing (Zi, tagi) = Sample(U, d, β = (x, si)); then the miner solves Zi via
human effort to get the corresponding CAPTCHA solution σi; at this moment,
we can adapt the strategy in the original PoW by computing yi = RO(x, si, σi)
and if yi < Tω and if the CAPTCHA solution σi is correct, then the corre-
sponding pair (si, σi) can be viewed as the PoH solution. We can verify that
the solution is correct by re-sampling (Zi, tagi) ← Sample(U, d, β = (x, si)) and
checking that Verify(Zi, tagi, σi) = 1 and that RO(x, si, σi) < Tω.

532 J. Blocki and H.-S. Zhou

Construction Details. In our proof of human-work puzzle construction, we use
a universal sampler scheme uni = uni.{Setup, Sample}, a CAPTCHA scheme
capt = capt.{Setup, W, G, CH, Verify}, and a hash function G. We will treat G
as a random oracle in our analysis. The constructed PoH puzzle scheme consists
of algorithms poh.{Setup, G, CH, V}. Note that H denotes a human oracle.

– The setup algorithm pp ← poh.Setup(1λ, 1ω): Compute p̃p ←
capt.Setup(1λ); Compute U ← uni.Setup(1λ); Define a program d as follows:
On input randomness r = (r1, r2), compute σ := capt.W(p̃p; r1), (Z, tag) :=
capt.G(p̃p, σ; r2), and output (Z, tag). Set pp :=

(

U, d, p̃p, T = Tω,param
)

where param denotes the instructions of using the system.
– The puzzle generation algorithm x ← poh.G(pp): Parse pp into

(U, d, p̃p, T,param); Based on the description of param, sample x.
– The solution function a ← poh.CH(pp, x): Upon receiving puzzle instance x,

parse pp into (U, d, p̃p, T,param); Randomly choose s ← {0, 1}λ; Compute
CAPTCHA puzzle instance (Z, tag) ← uni.Sample(U, d, β = (x, s)) ; Use the
human oracle H to find a solution to CAPTCHA puzzle instance Z, i.e.,
σ ← capt.CH(p̃p, Z); If G(x, s, σ) < T , then set a := (s, σ). Otherwise set
a := ⊥.

– The puzzle verification algorithm b := poh.V(pp, x, a): Parse a into (s, σ);
Parse pp into (U, d, p̃p, T,param); Compute (Z, tag) ← uni.Sample(U, d, β =
(x, s)); If capt.Verify(p̃p, Z, tag, σ) = 1 and G(x, s, σ) < T , then set b := 1.
Otherwise set b := 0.

It is easy to verify that the PoH scheme is honest human solvable if the under-
lying universal sampler is correct and the CAPTCHA scheme is honest-human
solvable. Next we state a theorem for the security of our PoH scheme, and the
proof can be found in the full version [12]. In our proof we give an explicit
ppt reduction R from CAPTCHA to PoH security. Intuitively, this means that
if mankind finds a ppt algorithm B ∈ DiscoverableX attacking PoH security
then mankind will quickly find a ppt algorithm A breaking CAPTCHA security.
We take this to mean that if B ∈ DiscoverableX then A ∈ DiscoverableX+ε,
where ε is the time necessary to apply a known, efficient blackbox reduction11.

11 In this (informal) line of reasoning we implicitly assume if there is an ppt algo-
rithm breaking PoH is discovered then the reduction R will be quickly imple-
mented by someone because it is publicly known and leads to a very use-
ful result (breaking CAPTCHAs). We stress that we are not claiming that
R(DiscoverableX) ⊂ DiscoverableX+ε for every known, explicit reduction R so
that the set DiscoverableX+ε contains the result of applying every explicit, known
reduction to every machine in the set DiscoverableX . If this was the case then we
could claim that (at minimum) the set DiscoverableX contains all strings of length
X/ε since the reductions R1 = “append 1” and R0 = “append 0” are explicit, known
reductions. In our case we are assuming that the known,explicit reduction R from
CAPTCHAs to PoHs would be implemented because it is known that the reduction
leads to a useful result when we have an algorithm to break PoH security (breaking
CAPTCHAs). By contrast, the reduction “append 1” is unlikely to lead to useful
results when applied to most Turing Machines.

Designing Proof of Human-Work Puzzles 533

Thus, our poh construction is essentially as secure as the underlying construc-
tion. capt is a computer uncrackable CAPTCHA for the next X + ε years
(Definition 4), then the above proof of human-work scheme poh is adversarial
human unsolvable for the next X years. We use ε to denote the time necessary
(e.g., 1 day) to implement the reduction and build the resulting ppt CAPTCHA
solver.

Theorem 1. If uni is an adaptively secure universal sampler then given any
ppt algorithm B that breaks poh security (Definition 8) there is an explicit ppt
blackbox reduction producing a ppt algorithm A that breaks CAPTCHA security
(Definition 4).

Proof (idea). The security of our PoH relies on the security of underlying building
blocks, the universal sampler scheme uni, and the CAPTCHA scheme capt.
We start from the real security game. Based on the security of the universal
sampler scheme uni, we can modify the real security game into a hybrid world
where CAPTCHA puzzle instances are generated independently and based on
uniform randomness. Then we can use the security of capt to argue about the
security of PoH. That is, we can construct a capt attacker Acapt based on
a PoH attacker Apoh. The capt attacker Acapt can simulate an internal copy
of Apoh, and embed his challenge into a simulated hybrid for Apoh. If Apoh

wins with more than specified probability (i.e., ζ(m + 1, ω)) plus non-negligible
probability, then Acapt can also win the computer-unbreakable game with non-
negligible probability.

4 Application 1: HumanCoin

In this section we outline how a new cryptocurrency called HumanCoin could be
built using Proofs of Human-work. At a high level HumanCoin closely follows
the Bitcoin protocol, except that we use PoH puzzles to extend the blockchain
instead of PoW puzzles. We will not attempt to describe HumanCoin in complete
detail. Instead we will focus on the key modifications that would need to be made
to an existing cryptocurrency like Bitcoin to use Proof of Human work puzzles.
In our discussion we will use lowercase bitcoin (resp. humancoin) to denote the
base unit of currency in the Bitcoin (resp. HumanCoin) protocol.

4.1 Bitcoin Background

We begin by highlighting several of the key features of Bitcoin. Our overview
follows the systemization of knowledge paper by Bonneau et al. [14]. However,
our discussion of Bitcoin is overly simplified and this choice is intentional. For
example, we will completely ignore the use of Merkle Trees [41] in Bitcoin to
compress the blockchain even though it is quite useful in practice. We make this
choice so that we can focus on the key differences of HumanCoin (the use of
Merkle Trees [41] in HumanCoin and Bitcoin would be identical). We do include
additional discussion of Bitcoin in the full version, but even this discussion is

534 J. Blocki and H.-S. Zhou

not intended to be complete. We refer interested readers to the excellent lectures
by Narayanan et al. [46] for more details about Bitcoin or the original paper
published under the pseudonym Nakamoto [45].

Blockchain. In Bitcoin all transactions (e.g., “Alice sends Bob 50 bitcoins”) are
published on a public ledger. This public ledger is stored on a cryptographic data
structure called a blockchain b = B0, . . . , Bt. A blockchain b is valid if and only if
all of the blocks Bi (i ≤ t) are valid and an individual block Bi = (txi, si, hi−1) is
valid if and only if three key conditions are satisfied. First, all of the transactions
recorded in the transcript txi must be valid (e.g., each transaction is signed by the
sender and the spender has sufficient funds). Second, the block Bi must contain
the cryptographic hash hi−1 = hash (Bi−1) of the previous block Bi−1

12. Finally,
the block Bi should contain a nonce si which ensures that cryptographic hash
hash (Bi) begins with at least ω leading zeros, where ω is a hardness parameter
that we will discuss later. Finding such a nonce s constitutes a proof of work
in the Hashcash [3] puzzle system. The first property ensures that users cannot
spend money they don’t have and that they cannot spend someone else’s money.
The second property ensures that it is impossible to tamper with blocks Bi

in the middle of the blockchain without creating an entirely new blockchain
b′ = B0, . . . , Bi−1, B

′
i, B

′
i+1, . . . , B

′
t. Finally, the third property ensures that it is

moderately difficult to add new blocks to a blockchain. To incentivize miners to
help validate transactions (i.e. extend the blockchain by finding a valid nonce s)
the miner is allowed to add a special transaction (e.g., “I create 25 new bitcoins
and give them to myself”) to the new block as a reward.

Distributed Consensus Protocol. Bitcoin’s distributed consensus protocol
is simple, yet elegant. An agent should accept a transaction if and only if it is
recorded on a block Bi of a valid blockchain b = B0, . . . , Bt and b is the longest
valid that the agent has seen and i ≤ t − 6. Unless a miner controls at least
25% of the hash power in the network the rational mining strategy is always to
extend the longest blockchain because nobody will accept the Bitcoins they try
to mine in a shorter blockchain (e.g., the special transaction in which a miner
claims 25 bitcoins’ would only be recorded on a shorter blockchain which nobody
accepts) [27]. Assuming that the network has high synchronicity [29] and that
a malicious user controls at most 49% of the computational mining power he
will never be able to tamper with any of the transactions in a block Bi from the
middle of the blockchain because he would need to eventually produce a new
blockchain b′ = B0, . . . , Bi−1, B

′
i, B

′
i+1, . . . , B

′
t that is at least as long as the true

blockchain b and he will fail to accomplish this goal with high probability [45].

4.2 HumanCoin

Similar to Bitcoin all HumanCoin transactions (e.g., “Alice sends Bob 50 human-
coins”) are recorded inside a blockchain b = B0, . . . , Bt, where each block

12 Bitcoin uses the cryptographic hash function hash = SHA256. The function hash is
typically treated as a random oracle in security analysis of Bitcoin.

Designing Proof of Human-Work Puzzles 535

Bi = (txi, ai, hi−1) contains three components: a list of transactions txi, a hash
hi−1 = hash(Bi−1) of the previous block, and a Proof of Human-work which is
encoded by ai. As before all of the transactions in txi must be valid and the block
must contain the hash hi−1 = hash(Bi−1) of the previous block. We additionally
require that the PoH verifier accepts the Proof of Human-Work solution ai. More
formally, suppose that we are given a PoH puzzle system (Setup, G, CH, V) and
that we have already run Setup

(

1λ, 1ω
)

to obtain public parameters pp which
are available to every miner. A valid block Bi must contain a value ai such that
the public verifier V (pp, xi, ai) outputs 1, where xi = G (pp; r = hash(txi, hi−1)).
Given a valid blockchain b = B0, . . . , Bt a miner can earn HumanCoins by find-
ing a valid block Bt+1 = (txt+1, at+1, xt+1, ht) extending b. To find such a block
the human-computer miner would first set r = hash(txt+1, ht) and then sample
x ← G (pp; r). Finally, the human-computer miner can run CH (pp, x) to obtain
a potential solution a. If a = ⊥ then the miner will need to try again. Otherwise,
the miner has found a valid proof of human-work and he can produce a valid
new block Bt+1 = (txt+1, a, ht) by adding inserting the PoH solution a into the
block Bt+1. As before the miner is allowed to insert a special transaction into
the new block (e.g., “I create 25 humancoins and give them to myself”) as a
reward for extending the blockchain.

Parameter Selection. In Bitcoin ω is a public parameter is tuned to ensure
that, on average, miners will add one new block to the blockchain every 10 min [46]
— on average we need 2ω hash evaluations to create one new block. The Bitcoin
protocol would most likely work just fine with a shorter delay (e.g., 5 min) or a
slightly longer delay (e.g., 20 min) between consecutive blocks — there is nothing
magical about the specific target value of 10 min. However, it is clear that there
needs to be some delay to promote stability. If multiple miners find a new block
at the same time then we could end up with competing blockchains resulting in
temporary confusion. Note that if the value of ω remains fixed then the average
time to create one new block would begin to decrease as more miners join Bitcoin,
or as existing miners upgrade their computational resources. Thus, the value of ω
must be adjusted periodically. In Bitcoin the value of ω is adjusted every 2, 016
blocks, which works out to two weeks on average (2 weeks = 2016×10 min), using
the formula ω = ωold − log

(

telapsed

2016×10 min

)

, where telapsed denotes the time span
that it actually took to generate the last 2, 016 blocks [46].

In HumanCoin we adjust ω in exactly the same way. Note that the PoH
hardness parameter Tω = 2n−ω in our PoH construction is a public parameter
pp and can easily be modified as it is not embedded into any of the obfuscated
programs. In HumanCoin we will need to select an initial value of ω that is much
smaller than in Bitcoin if we want ensure that new block are discovered every
10 min. This is because computers can evaluate a hash function hash much faster
than a human can solve a long CAPTCHA puzzle. However, we could still use
the same basic formula to tune the hardness parameter ω of our proof of work
puzzles in the event that many miners join/leave.

536 J. Blocki and H.-S. Zhou

5 Application 2: Password Protection

An adversary who breaches an authentication server is able to mount an auto-
mated brute-force attack by comparing the cryptographic hash of each user’s
password with the cryptographic hashes of likely password guesses. These offline
attacks have become increasingly prevalent and dangerous as password cracking
resources has improved. In particular, the cost of computing a hash function H like
SHA256 or MD5 on an Application Specific Integrated Circuit (ASIC) is orders
of magnitude smaller than the cost of computing H on traditional hardware [21,
46]. Similarly, data from previous breaches allow adversaries to improve their
guessing strategies. Recent security breaches (e.g., Ashley Madison, LastPass,
RockYou, LinkedIn and eBay to name a few13), which have affected millions of
users, highlight the importance of this problem.

Canneti et al. [18] had a clever idea to deter an offline attacker that they
called Human Only Solvable Puzzles. They proposed filling a hard drive with
a dataset of unsolved CAPTCHA puzzles. When a user authenticates he will
be challenged with a pseudorandom CAPTCHA puzzle from the dataset, and
the server will append the solution to the user’s password before computing
the hash value. The choice of the pseudorandom CAPTCHA puzzle becomes
deterministic once the user’s password and username are fixed. Thus, if the user
types in the same password he will receive the exact same CAPTCHA puzzle as
a challenge. If the underlying CAPTCHA system is human usable, then the user
will always be able to authenticate successfully provided that he can remember
his password. If an offline advesary wants to verify a password guess he will
need to find and solve the corresponding CAPTCHA puzzle. The key point is
that each time the adversary tries a new guess he will need to solve a different
CAPTCHA challenge.

Unfortunately, the Human Only Solvable Puzzles solution of [18] has one
critical drawback. There are a finite number of CAPTCHAs on the hard drive,
and the defense will break down once the adversary manages to solve all (or
most) of them. Blocki et al. [9] estimated that it would cost about $106 to solve
all of the CAPTCHAs on an 8 TB hard drive. While this is certainly an expensive
start-up cost it may not be sufficient to deter the adversary because these costs
would amortize over all user accounts. Many password breaches affect millions
of users, and each cracked password has significant value on the black market
(e.g., $4–$30). Blocki et al. [9] introduced their own scheme called GOTCHA
based on inkblot images, but their protocol had higher usability costs and was
based on newer untested AI assumptions.

In this section we introduce a provably secure password authentication
scheme in the Random Oracle model using CAPTCHAs and program obfusca-
tion. Unlike Blocki et al. [9] our solution can be based on standard CAPTCHA

13 See http://www.privacyrights.org/data-breach/ (Retrieved 9/1/2015).

http://www.privacyrights.org/data-breach/

Designing Proof of Human-Work Puzzles 537

assumptions. Unlike Canneti et al. [18] our solution is not vulnerable to pre-
computation attacks14.

5.1 Password Authentication Scheme

We first formalize the notion of a password authentication scheme. Definition 9
formalizes the account creation and authentication algorithms from the perspec-
tive of an authentication server. We note that the server is allowed to interact
with the human user H during the account creation and authentication proto-
cols.

Definition 9. A password authentication scheme consists of a tuple of
algorithms (Setup, CreateAccountH, AuthenticateH) and a random oracle G,
where

– Setup is a randomized system setup algorithm that takes as input 1λ (λ is the
security parameter) and outputs a system public parameter pp ← Setup(1λ);

– CreateAccountH is an account creation algorithm that takes as input the pub-
lic parameter pp, a username u and a password pwd and outputs a tuple (h, s).
Here, s is typically a random bit string (salt) and h is a hash value produced
by the random oracle. We note that CreateAccountH is a human-machine
algorithm and thus the hash value h may include the solution to CAPTCHAs
that the human solves as well as the password pwd and salt s;

– AuthenticateH is the algorithm that is invoked when a user wants to authen-
ticate. The algorithm takes as input the public parameter pp, a username u,
a password pwd, a hash h and a salt value s and outputs a bit b ∈ {0, 1} indi-
cating whether or not the authentication attempt was successful. We note that
AuthenticateH is a human-machine algorithm and thus the human H may
be asked to solve CAPTCHAs as part of the authentication procedure.

Our next definition says what it means for a password authentication scheme
to be costly to crack. The game mimics an offline adversary who has breached
the authentication server and stolen the record (u, h, s) indicating that user u
has an account with salt value s and the salted hash of the user’s password needs
to match h. In our definition we let P denote a distribution over the passwords
{pwd1, . . . , pwdn} that the user u might select and let pi = PrP [pwdi] denote the
probability that the user selects password pwdi. We assume that pi and pwdi

are known to the adversary for all i and for convenience we assume that the
passwords are ordered such that p1 ≥ p2 ≥ . . . ≥ pn. Informally, our definition
states that an adversary with B units of human-work will succeed in cracking
the user’s password with probability at most p1 + . . . + pB + negl(λ).

Definition 10 (Costly to Crack). We say a ppt adversary A breaks
security of a password authentication scheme {Setup, CreateAccountH,

14 Of course the main downside to our approach is the dependence on indistinguisha-
bility obfuscation, which does not have practical solutions at this time.

538 J. Blocki and H.-S. Zhou

AuthenticateH, G} if for some polynomials B = B(λ) and μ(λ) and user
u, whenever A has B human-work units it holds that

Pr

⎡

⎢

⎢

⎣

pp ← Setup(1λ); pwd ← P;
(h, s) ← CreateAccountH(

pp, u, pwd
)

;
pwd′ ← AH(·)(pp, h, s) :

AuthenticateH(

pp, u, pwd′, h, s
)

= 1

⎤

⎥

⎥

⎦

≥ p1 + . . . + pB +
1

μ(λ)

We say that the password authentication scheme is costly to crack for the next X
years if for any ppt adversary A ∈ DiscoverableX A does not break security.
We remark that we do not require the adversary’s success probability to be
negligibly small. Indeed, if the user selects passwords from a distribution with
low entropy (and many users do [13]) then the adversary may have a good
success rate. Thus, the problem is unavoidable as long as users are allowed to
select low-entropy passwords15. We do not focus on helping users to select strong
passwords [10,15], although this is indeed an important direction of research.
Our goal is to provide the best possible protection for the passwords that users
actually select.

The next definition quantifies human usability. Informally, the password
authentication scheme is usable if an honest human user will always be able
to authenticate if he remembers his password. We stress that our definition does
not say anything about how easy it will be to remember the password. While
this is certainly an important consideration it is orthogonal to our work. We are
not focused on how to get users to choose stronger passwords, but rather how to
more effectively protect the passwords that users actually choose. Our definition
merely says that an honest user won’t be locked out of his account as long as he
remembers his password (e.g., because he cannot solve the CAPTCHAs).

Definition 11 (Human Usable). We say that a password authentication
scheme {Setup, CreateAccountH, AuthenticateH, G} is human usable if for
every human user H who controls 1 human-work unit during authentication and
1 human work unit during account creation, it holds that

Pr

⎡

⎣

pp ← Setup(1λ); pwd ← P;
(h, s) ← CreateAccountH(

pp, u, pwd
)

:
AuthenticateH(

pp, u, pwd, h, s
)

= 1

⎤

⎦ ≥ 1 − negl(λ)

5.2 Construction

Construction Details. In our construction we use a universal sam-
pler scheme uni = uni.{Setup, Sample}, a CAPTCHA scheme capt =
capt.{Setup, W, G, CH, Verify}, and a hash function G. We will treat G as a ran-
dom oracle in our analysis. The constructed password authentication scheme con-
sists of algorithms Password.{Setup, CreateAccountH, Authenticate}. Note
that H denotes a human oracle.
15 In addition to their high usability costs [28], policies aimed at forcing users to chose

stronger passwords (e.g., requiring numbers and capital letters) can have the opposite
affect on password strength [11,37].

Designing Proof of Human-Work Puzzles 539

– The setup algorithm pp ← Password.Setup(1λ): Compute p̃p ← capt.
Setup(1λ); Compute U ← uni.Setup(1λ); Define a program d as follows:
On input randomness r = (r1, r2), compute σ := capt.W(p̃p; r1), (Z, tag) :=
capt.G(p̃p, σ; r2), and output Z. Set pp :=

(

U, d, p̃p,param
)

where param
denotes the instructions of using the system.

– The account creation algorithm (h, s) ← Password.CreateAccountH

(pp, u, pwd): Parse pp into (U, d, p̃p,param); randomly choose s ← {0, 1}λ.
Set β = (u, pwd, s) and compute CAPTCHA puzzle instance Z ←
uni.Sample(U, d, β = (u, pwd, s)); Use the human oracle H to find a solu-
tion to CAPTCHA puzzle instance Z, i.e., σ ← capt.CH(p̃p, Z); Compute
h ← G(pwd|σ|s) and output (h, s).

– The authentication algorithm b ← Password.AuthenticateH(pp, u, pwd,
h, s): Parse pp into (U, d, p̃p,param), set β = (u, pwd, s) and compute
CAPTCHA puzzle instance Z ← uni.Sample(U, d, β); Use the human oracle H
to find a solution to CAPTCHA puzzle instance Z, i.e., σ ← capt.CH(p̃p, Z);
Compute h′ ← G(pwd|σ|s). If h′ = h then output b = 1; otherwise output 0.

It is easy to verify that Password is human usable if the underlying CAPTCHA
scheme capt is honest human solvable. At an philosophical level we can
interpret Theorem 2, our main technical result in this section, to say that
the above password authentication scheme Password.{Setup, CreateAccountH,
AuthenticateH} is costly to crack for the next X years as long as the under-
lying CAPTCHA scheme is computer uncrackable for the next X + ε years
(Definition 10). Here, ε denotes the time it takes to implement an explicit (black-
box) ppt reduction from capt to the password scheme (e.g., one day). We stress
that we only need to assume that the underling CAPTCHA scheme is computer
uncrackable in the more traditional sense of Definition 3 (e.g., the adversary is only
given the puzzles Z1, . . . , Zn and not the associated verification tags).

Theorem 2. If uni is an adaptively secure universal sampler then given a ppt
algorithm B that breaks security of our password authentication scheme there is a
ppt, blackbox reduction which produces a ppt algorithm A to break CAPTCHA
security (Definition 3).

Proof (Idea). At a high level we show that we can construct an adversary that
breaks CAPTCHAs (under Definition 3) from an adversary that breaks the
password authentication scheme. To do this we embed challenge CAPTCHAs
Z1, . . . , Zn inside the UniversalSampler uni (we can do this by the security of
the Universal Sampler scheme). Intuitively, in order to check that a password
guess pwdi is correct the adversary will need to query the random oracle G
with the value βi = (pwdi|σi|u), where σi is the correct solution to CAPTCHA
Zi. If the adversary queries G with B + 1 unique solutions then we can win
the CAPTCHA challenge (Definition 3) by simply outputting these B + 1 solu-
tions. If the adversary queries G with at most B unique solutions then we can
show that his success rate is at most p1 + . . . + pB + negl(λ). A formal proof of
Theorem 2 can be found in the full version [12].

540 J. Blocki and H.-S. Zhou

Discussion. We believe that the construction of our secure password authen-
tication scheme might lead to many other useful applications. For example, the
scheme might allow us to use human memorable (i.e., lower entropy) secrets to
secure highly confidential data like secret keys. Let pwdi be the user’s password
and let σi denote the solution to the corresponding CAPTCHA challenge. The
random oracle value Ri = G

(

pwdi, σi, s, 1|i) is completely uncorrelated with
any information that the adversary can obtain without discovering the user’s
password. The random values R1, R2, . . . could be used as a one-time pad to
efficiently encrypt/decrypt information on a hard drive or to (re)derive private
keys for a signature scheme.

We also note that our authentication scheme could potentially be modi-
fied to make the proof of human work safely exportable and that the amount
of human work during authentication can easily be tuned. For example, sup-
pose that Bob wants to protect his passwords, but that he is too busy to solve
CAPTCHAs. During authentication, after Bob enters his password and receives
the CAPTCHA challenge, Bob might like to pay other human(s) to solve the
CAPTCHA challenge for him. However, he wants to make sure that his password
is not exposed if these contracted workers are malicious. For example, we might
replace the hash of the password with an obfuscation of two program PK,pwd

and GK . Here, GK(x, pwd) generates a CAPTCHA puzzle Z using randomness
(r1, r2) = PRFK(x, pwd) in the procedures capt.W and capt.G respectively.
PK,pwd(pwd′, σ, x) outputs 1 if and only if pwd′ = pwd and σ is the correct solu-
tion to the puzzle Z output by GK(x, pwd). During authentication we can obtain
the puzzle Z by running GK(x, pwd′) with a uniformly random string x ∈ {0, 1}λ

which should be discarded immediately after the authentication session finishes.
As long as Bob keeps the value x secret he can safely share the puzzle Z with
other users. However, this modified authentication protocol is merely a heuristic
as we do not have any formal security proof that it is hard for a computer to
solve CAPTCHA puzzles generated by GK when given the obfuscated source
code iO(GK).

As another application we could use the same general framework as a way
to detect bots without interaction! Suppose that we rename the algorithms
CreateAccountH and AuthenticateH to algorithms GenerateVerified
MessageH and VerifyMessageH. The algorithms have essentially the same func-
tionality except for a few minor modifications: 1) the password field pwd is
renamed to denote a message m that a user Alice wishes to send to Bob, 2) we
replace the username u with a pair (u1, u2) where u1 denotes the sender and u2

denotes the intended receiver, and we fix the salt value s = G(u1, u2,m) for a
given message m that a user u1 wishes to send to u2. To send the message m to
Bob Alice would first execute GenerateVerifiedMessageH(pp, (Alice,Bob),m)
and solve the corresponding CAPTCHA to obtain a tuple (h, s). Now Alice sends
the tuple (Alice,Bob,m, h, s) to Bob. At this point Alice is finished with the pro-
tocol. Bob runs VerifyMessageH(

pp, (Alice,Bob),m, h, s
)

and solves the corre-
sponding CAPTCHA to obtain a bit b. If b = 1 then Bob accepts that a human

Designing Proof of Human-Work Puzzles 541

(possibly Alice) spent time and energy to send the him the message m16. If b = 0
then Bob may dismiss the message as potentially being produced by a bot.

6 Future Challenges

While we believe that Proofs of Human Work could have many benefits, we
see three primary challenges for future research. First, because our construc-
tion of PoH puzzles is based on iO HumanCoin is not practical without a large
breakthrough in the design of practical iO schemes. Could we design efficient
targeted obfuscation schemes for specific programs like our PoH algorithms?
Second, because our PoH puzzles rely on the assumption that some underlying
AI problem is hard it is possible that a cryptocurrency like HumanCoin might
have a shorter shelf life (e.g., if it takes 15 years for AI researchers to break
the underlying CAPTCHA then HumanCoin would expire in at most 15 years).
Would it possible for HumanCoin participants to reach a consensus to change the
underlying CAPTCHA in the event of an AI breakthrough? Finally, our Proof
of Human Work construction, and by extension HumanCoin, requires an initial
trusted setup phase for the Proof of Human Work construction. If the Proof of
Human Work system is generated by a malicious party then that party might be
able to insert a trapdoor which would allow him to mine HumanCoins without
any human effort. We note that this concern is not unique to HumanCoin. Other
cryptocurrencies like Zerocash [5] also require an initial trusted setup phase17.
Ben-Sasson et al. [6] proposed to run this trusted setup phase using secure mul-
tiparty computation. As long as at least one of the parties in this computation
are honest it would be impossible for a malicious adversary to insert a backdoor.
Similar techniques could also be used to minimize risks during the HumanCoin
setup phase.

In addition to cryptocurrency we also showed that our PoH techniques could
be applied to protect passwords and to detect bots without interaction. What
other applications are possible?

Acknowledgments. The authors thank paper shepherd Peter Gaži for his very con-
structive feedback which helped us to improve the quality of the paper. In particular,
we are thankful for his suggestions about formalizing security statements involving
hard AI problems.

The authors also thank Andrew Miller, and the PC of ITCS 2016 and TCC 2016B
for their helpful comments.

16 If Bob wanted to additionally verify that Alice was the human that sent the message
Alice and Bob would need to use other cryptographic tools like digital signatures.

17 Arguably, even Bitcoin does require some trust assumptions during setup. For exam-
ple, we need to trust that the cryptographic hash function h = SHA256, which is
modeled as a random oracle in the Bitcoin protocol, does not have any secret back-
doors. A malicious miner with a secret backdoor could easily reverse old transactions.

542 J. Blocki and H.-S. Zhou

A Universal Samplers: Security Definition

Definition 12. Consider efficient algorithms (Setup, Sample) where U ←
SetupRO(1λ), d is the fixed program supporting additional input, and pβ ←
SampleRO(U, d, β). We say (Setup, Sample) is an adaptively-secure universal
sampler scheme for a circuit d, if there exist efficient interactive Turing Machines
SimSetup, SimRO such that for every efficient admissible adversary A, there
exists a negligible function negl() such that the following two conditions hold:

Pr[Real(1λ) = 1] − Pr[Ideal(1λ) = 1] = negl() and Pr[Ideal(1λ) = aborts] < negl()

where admissible adversaries, the experiments Real and Ideal and the notion
of the Ideal experiment aborting, are described below

– An admissible adversary A is an efficient interactive Turing Machine that
outputs one bit, with the following input/output behavior:
• A initially takes input security parameter 1λ and sampler parameters U , as

well as the program d.
• A can send a message (RO, x) corresponding to a random oracle query. In

response, A expects to receive the output of the random oracle on input x.
• A can send a message (sample, β). The adversary does not expect any

response to this message. Instead, upon sending this message, A is required
to honestly compute pβ = Sample(U, d, β), making use of any additional RO
queries, and A appends (β, pβ) to an auxiliary tape.
Remark. Intuitively, (sample, β) messages correspond to an honest party
seeking a sample generated by the fixed program d on input β. Recall that
A is meant to internalize the behavior of honest parties.

– The experiment Real(1λ) is as follows:
• Throughout this experiment, a random oracle RO is implemented by assign-

ing random outputs to each unique query made to RO.
• U ← SetupRO(1λ).
• A(1λ, U, d) is executed; when A sends every message of the form (RO, x),

it receives the response RO(x).
• The output of the experiment is the final output of the execution of A (which

is a bit b ∈ {0, 1}).
– The experiment Ideal(1λ) is as follows:

• Throughout this experiment, a Samples Oracle O is implemented as follows:
On input β, O outputs d(F (β)), where F is a truly random function.

• (U, τ) ← SimSetup(1λ). Here, SimSetup can make arbitrary queries to the
Samples Oracle O.

• A(1λ, U, d) and SimRO(τ) begin simultaneous execution. Messages for A or
SimRO are handled as:
1. Whenever A sends a message of the form (RO, x), this is forwarded to

SimRO, which produces a response to be sent back to A.

Designing Proof of Human-Work Puzzles 543

2. SimRO can make any number of queries to the Samples Oracle O.
3. In addition, after A sends messages of the form (sample, β), the auxil-

iary tape of A is examined until A adds entries of the form (β, pβ) to it.
At this point, if pβ 	= d(F (β)), the experiment aborts and we say that an
“Honest Sample Violation” has occurred. Note that this is the only way
that the experiment Ideal can abort. In this case, if the adversary itself
“aborts”, we consider this to be an output of zero by the adversary, not
an abort of the experiment itself.

• The output of the experiment is the final output of the execution of A (which
is a bit b ∈ {0, 1}).

References

1. Andrychowicz, M., Dziembowski, S., Malinowski, D., Mazurek, L.: Secure multi-
party computations on Bitcoin. In: 2014 IEEE Symposium on Security and Privacy,
pp. 443–458. IEEE Computer Society Press, May 2014

2. Aspnes, J., Jackson, C., Krishnamurthy, A.: Exposing computationally-challenged
Byzantine impostors. Technical report YALEU/DCS/TR-1332, Yale University
Department of Computer Science, July 2005

3. Back, A.: Hashcash – a denial of service counter-measure (2002). http://hashcash.
org/papers/hashcash.pdf

4. Barak, B., Bitansky, N., Canetti, R., Kalai, Y.T., Paneth, O., Sahai, A.: Obfus-
cation for evasive functions. In: Lindell, Y. (ed.) TCC 2014. LNCS, vol. 8349, pp.
26–51. Springer, Heidelberg (2014)

5. Ben-Sasson, E., Chiesa, A., Garman, C., Green, M., Miers, I., Tromer, E., Virza,
M., Zerocash: decentralized anonymous payments from Bitcoin. In: 2014 IEEE
Symposium on Security and Privacy, pp. 459–474. IEEE Computer Society Press,
May 2014

6. Ben-Sasson, E., Chiesa, A., Green, M., Tromer, E., Virza, M.: Secure sampling of
public parameters for succinct zero knowledge proofs. In: 2015 IEEE Symposium
on Security and Privacy, pp. 287–304. IEEE Computer Society Press, May 2015

7. Bentov, I., Kumaresan, R.: How to use Bitcoin to design fair protocols. In: Garay,
J.A., Gennaro, R. (eds.) CRYPTO 2014, Part II. LNCS, vol. 8617, pp. 421–439.
Springer, Heidelberg (2014)

8. Bentov, I., Lee, C., Mizrahi, A., Rosenfeld, M.: Proof of activity: extending Bitcoins
proof of work via proof of stake. In: Proceedings of the ACM SIGMETRICS 2014
Workshop on Economics of Networked Systems, NetEcon (2014)

9. Blocki, J., Blum, M., Datta, A.: GOTCHA password hackers! In: AISec 2013,
Proceedings of the 2013 ACM Workshop on Artificial Intelligence and Security, pp.
25–34 (2013). http://www.cs.cmu.edu/jblocki/papers/aisec2013-fullversion.pdf

10. Blocki, J., Komanduri, S., Cranor, L.F., Datta, A.: Spaced repetition and mnemon-
ics enable recall of multiple strong passwords. In: NDSS 2015. The Internet Society,
February 2015

11. Blocki, J., Komanduri, S., Procaccia, A., Sheffet, O.: Optimizing password compo-
sition policies. In: Proceedings of the Fourteenth ACM Conference on Electronic
Commerce, pp. 105–122. ACM (2013)

12. Blocki, J., Zhou, H.-S.: Designing proof of human-work puzzles for cryptocurrency
and beyond. In: IACR Cryptology ePrint Archive 2016/145 (2016). http://eprint.
iacr.org/2016/145

http://hashcash.org/papers/hashcash.pdf
http://hashcash.org/papers/hashcash.pdf
http://www.cs.cmu.edu/jblocki/papers/aisec2013-fullversion.pdf
http://eprint.iacr.org/2016/145
http://eprint.iacr.org/2016/145

544 J. Blocki and H.-S. Zhou

13. Bonneau, J.: The science of guessing: analyzing an anonymized corpus of 70 million
passwords. In: 2012 IEEE Symposium on Security and Privacy, pp. 538–552. IEEE
Computer Society Press, May 2012

14. Bonneau, J., Miller, A., Clark, J., Narayanan, A., Kroll, J.A., Felten, E.W.: SoK:
research perspectives and challenges for Bitcoin and cryptocurrencies. In: 2015
IEEE Symposium on Security and Privacy, pp. 104–121. IEEE Computer Society
Press, May 2015

15. Bonneau, J., Schechter, S.: Toward reliable storage of 56-bit keys in human memory.
In: Proceedings of the 23rd USENIX Security Symposium, August 2014

16. Bursztein, E., Aigrain, J., Moscicki, A., Mitchell, J.C.: The end is nigh: generic
solving of text-based captchas. In: 8th USENIX Workshop on Offensive Technolo-
gies (WOOT 2014), San Diego, CA, August 2014. USENIX Association (2014)

17. Bursztein, E., Bethard, S., Fabry, C., Mitchell, J.C., Jurafsky, D.: How good are
humans at solving CAPTCHAs? A large scale evaluation. In: 2010 IEEE Sympo-
sium on Security and Privacy, pp. 399–413. IEEE Computer Society Press, May
2010

18. Canetti, R., Halevi, S., Steiner, M.: Mitigating dictionary attacks on password-
protected local storage. In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp.
160–179. Springer, Heidelberg (2006)

19. Chellapilla, K., Simard, P.Y.: Using machine learning to break visual
human interaction proofs (HIPs). In: Neural Information Processing Systems
(NIPS), pp. 265–272 (2004). https://papers.nips.cc/paper/2571-using-machine-
learning-to-break-visual-human-interaction-proofs-hips.pdf

20. Douceur, J.R.: The Sybil attack. In: Druschel, P., Kaashoek, F., Rowstron, A.
(eds.) IPTPS 2002. LNCS, vol. 2429, pp. 251–260. Springer, Heidelberg (2002)

21. Dwork, C., Goldberg, A.V., Naor, M.: On memory-bound functions for fighting
spam. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 426–444. Springer,
Heidelberg (2003)

22. Dwork, C., Halpern, J.Y., Waarts, O.: Performing work efficiently in the presence
of faults. SIAM J. Comput. 27(5), 1457–1491 (1998)

23. Dwork, C., Naor, M.: Pricing via processing or combatting junk mail. In: Brick-
ell, E.F. (ed.) CRYPTO 1992. LNCS, vol. 740, pp. 139–147. Springer, Heidelberg
(1993)

24. Dziembowski, S.: How to pair with a human. In: Garay, J.A., De Prisco, R. (eds.)
SCN 2010. LNCS, vol. 6280, pp. 200–218. Springer, Heidelberg (2010)

25. Dziembowski, S., Faust, S., Kolmogorov, V., Pietrzak, K.: Proofs of space. In:
Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9216, pp. 585–605.
Springer, Heidelberg (2015)

26. Elson, J., Douceur, J.R., Howell, J., Saul, J.: Asirra: a CAPTCHA that exploits
interest-aligned manual image categorization. In: Ning, P., di Vimercati, S.D.C.
Syverson, P.F. (eds.) ACM CCS 2007, pp. 366–374. ACM Press, October 2007

27. Eyal, I., Sirer, E.G.: Majority is not enough: Bitcoin mining is vulnerable. In:
Christin, N., Safavi-Naini, R. (eds.) FC 2014. LNCS, vol. 8437, pp. 431–449.
Springer, Heidelberg (2014)

28. Florêncio, D., Herley, C.: Where do security policies come from. In: Proceedings
of SOUPS, p. 10 (2010)

29. Garay, J., Kiayias, A., Leonardos, N.: The Bitcoin backbone protocol: analysis and
applications. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol.
9057, pp. 281–310. Springer, Heidelberg (2015)

https://papers.nips.cc/paper/2571-using-machine-learning-to-break-visual-human-interaction-proofs-hips.pdf
https://papers.nips.cc/paper/2571-using-machine-learning-to-break-visual-human-interaction-proofs-hips.pdf

Designing Proof of Human-Work Puzzles 545

30. Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.: Candidate
indistinguishability obfuscation and functional encryption for all circuits. In: 54th
FOCS, pp. 40–49. IEEE Computer Society Press, October 2013

31. Goldwasser, S., Rothblum, G.N.: On best-possible obfuscation. In: Vadhan, S.P.
(ed.) TCC 2007. LNCS, vol. 4392, pp. 194–213. Springer, Heidelberg (2007)

32. Hofheinz, D., Jager, T., Khurana, D., Sahai, A., Waters, B., Zhandry, M.: How to
generate and use universal samplers. Cryptology ePrint Archive, Report 2014/507
(2014). http://eprint.iacr.org/2014/507

33. Hwang, K.-F., Huang, C.-C., You, G.-N.: A spelling based CAPTCHA system by
using click. In: 2012 International Symposium on Biometrics and Security Tech-
nologies (ISBAST), pp. 1–8, March 2012

34. Kani, J., Nishigaki, M.: Gamified CAPTCHA. In: Marinos, L., Askoxylakis, I.
(eds.) HAS 2013. LNCS, vol. 8030, pp. 39–48. Springer, Heidelberg (2013)

35. Khot, R.A., Srinathan, K.: iCAPTCHA: image tagging for free. In: Proceedings of
Conference on Usable Software and Interface Design (2009)

36. Kiayias, A., Zhou, H.-S., Zikas, V.: Fair and robust multi-party computation using
a global transaction ledger. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT
2016. LNCS, vol. 9666, pp. 705–734. Springer, Heidelberg (2016). doi:10.1007/
978-3-662-49896-5 25

37. Komanduri, S., Shay, R., Kelley, P., Mazurek, M., Bauer, L., Christin, N.,
Cranor, L., Egelman, S.: Of passwords, people: measuring the effect of password-
composition policies. In: Proceedings of the Annual Conference on Human Factors
in Computing Systems, pp. 2595–2604. ACM (2011)

38. Kosba, A., Miller, A., Shi, E., Wen, Z., Papamanthou, C.: Hawk: the blockchain
model of cryptography and privacy-preserving smart contracts. In: IEEE Sympo-
sium on Security and Privacy (2016)

39. Kumarasubramanian, A., Ostrovsky, R., Pandey, O., Wadia, A.: Cryptography
using captcha puzzles. In: Kurosawa, K., Hanaoka, G. (eds.) PKC 2013. LNCS,
vol. 7778, pp. 89–106. Springer, Heidelberg (2013)

40. Lamport, L., Shostak, R., Pease, M.: The byzantine generals problem. ACM Trans.
Program. Lang. Syst. (TOPLAS) 4(3), 382–401 (1982)

41. Merkle, R.C.: A digital signature based on a conventional encryption function.
In: Pomerance, C. (ed.) CRYPTO 1987. LNCS, vol. 293, pp. 369–378. Springer,
Heidelberg (1988)

42. Miller, A., Kosba, A.E., Katz, J., Shi, E.: Nonoutsourceable scratch-off puzzles to
discourage bitcoin mining coalitions. In: Ray, I., Li, N., Kruegel, C. (eds.) ACM
CCS 15, pp. 680–691. ACM Press, October 2015

43. Mori, G., Malik, J.: Recognizing objects in adversarial clutter: breaking a visual
CAPTCHA. In: IEEE Computer Society Conference on Computer Vision and Pat-
tern Recognition (CVPR), pp. 134–144 (2003)

44. Motoyama, M., Levchenko, K., Kanich, C., McCoy, D., Voelker, G.M., Savage,
S.: Re: CAPTCHAs-understanding CAPTCHA-solving services in an economic
context. In: 19th USENIX Security Symposium, Washington, DC, USA, 11–13
August 2010, Proceedings, pp. 435–462 (2010)

45. Nakamoto, S.: Bitcoin: a peer-to-peer electronic cash system (2008). https://
bitcoin.org/bitcoin.pdf

46. Narayanan, A., Bonneau, J., Felten, E., Miller, A.: Bitcoin and Cryptocurrency
Technology (online course) (2015). https://piazza.com/princeton/spring2015/
btctech/resources

http://eprint.iacr.org/2014/507
http://dx.doi.org/10.1007/978-3-662-49896-5_25
http://dx.doi.org/10.1007/978-3-662-49896-5_25
https://bitcoin.org/bitcoin.pdf
https://bitcoin.org/bitcoin.pdf
https://piazza.com/princeton/spring2015/btctech/resources
https://piazza.com/princeton/spring2015/btctech/resources

546 J. Blocki and H.-S. Zhou

47. Park, S., Pietrzak, K., Kwon, A., Alwen, J., Fuchsbauer, G., Gaži, P.: Spacemint:
a cryptocurrency based on proofs of space. Cryptology ePrint Archive, Report
2015/528 (2015). http://eprint.iacr.org/2015/528

48. Pass, R., Seeman, L.: abhi shelat. Analysis of the blockchain protocol in asynchro-
nous networks. In: Cryptology ePrint Archive, Report 2016/454 (2016). http://
eprint.iacr.org/2016/454

49. Rogaway, P.: Formalizing human ignorance. In: Nguyên, P.Q. (ed.) VIETCRYPT
2006. LNCS, vol. 4341, pp. 211–228. Springer, Heidelberg (2006)

50. Sahai, A., Waters, B.: How to use indistinguishability obfuscation: deniable encryp-
tion, and more. In: Shmoys, D.B. (ed.) 46th ACM STOC, pp. 475–484. ACM Press,
May/June 2014

51. Sapirshtein, A., Sompolinsky, Y., Zohar, A.: Optimal selfish mining strategies in
bitcoin. In: FC (2016). http://arxiv.org/abs/1507.06183

52. Sauer, G., Hochheiser, H., Feng, J., Lazar, J.: Towards a universally usable
CAPTCHA. In: Proceedings of the 4th Symposium on Usable Privacy and Security
(2008)

53. Szabo, N.: Formalizing and securing relationships on public networks. In: First
Monday (1997). http://firstmonday.org/ojs/index.php/fm/article/view/548/469

54. Tam, J., Simsa, J., Hyde, S., Von Ahn, L.: Breaking audio captchas. Advan. Neural
Inf. Process. Syst. 1(4), 1625–1632 (2008)

55. Ahn, L., Blum, M., Hopper, N.J., Langford, J.: CAPTCHA: using hard AI prob-
lems for security. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp.
294–311. Springer, Heidelberg (2003)

56. Von Ahn, L., Maurer, B., McMillen, C., Abraham, D., Blum, M.: reCAPTCHA:
human-based character recognition via web security measures. Science 321(5895),
1465–1468 (2008)

57. Waters, B., Juels, A., Halderman, J.A., Felten, E.W.: New client puzzle outsourcing
techniques for DoS resistance. In: Atluri, V., Pfitzmann, B., Mc-Daniel, P. (eds.)
ACM CCS 2004, pp. 246–256. ACM Press, October (2004)

58. Wilkins, J.: Strong CAPTCHA guidelines v1.2. (2009). http://bitland.net/captcha.
pdf

http://eprint.iacr.org/2015/528
http://eprint.iacr.org/2016/454
http://eprint.iacr.org/2016/454
http://arxiv.org/abs/1507.06183
http://firstmonday.org/ojs/index.php/fm/article/view/548/469
http://bitland.net/captcha.pdf
http://bitland.net/captcha.pdf

Access Control Encryption:
Enforcing Information Flow with Cryptography

Ivan Damg̊ard, Helene Haagh(B), and Claudio Orlandi

Aarhus University, Aarhus, Denmark
{ivan,haagh,orlandi}@cs.au.dk

Abstract. We initiate the study of Access Control Encryption (ACE),
a novel cryptographic primitive that allows fine-grained access control,
by giving different rights to different users not only in terms of which
messages they are allowed to receive, but also which messages they are
allowed to send.

Classical examples of security policies for information flow are the well
known Bell-Lapadula [BL73] or Biba [Bib75] model: in a nutshell, the
Bell-Lapadula model assigns roles to every user in the system (e.g., pub-
lic, secret and top-secret). A users’ role specifies which messages the user
is allowed to receive (i.e., the no read-up rule, meaning that users with
public clearance should not be able to read messages marked as secret or
top-secret) but also which messages the user is allowed to send (i.e., the
no write-down rule, meaning that a malicious user with top-secret clear-
ance should not be able to write messages marked as secret or public). To
the best of our knowledge, no existing cryptographic primitive allows for
even this simple form of access control, since no existing cryptographic
primitive enforces any restriction on what kind of messages one should
be able to encrypt. Our contributions are:
– Introducing and formally defining access control encryption (ACE);
– A construction of ACE with complexity linear in the number of the

roles based on classic number theoretic assumptions (DDH, Paillier);
– A construction of ACE with complexity polylogarithmic in the num-

ber of roles based on recent results on cryptographic obfuscation;

1 Introduction

Traditionally, cryptography has been about providing secure communication over
insecure channels. We want to protect honest parties from external adversaries:
only the party who has the decryption key can access the message. More recently,
more complicated situations have been considered, where we do not want to trust
everybody with the same information: depending on who you are and which keys
you have, you can access different parts of the information sent (this can be done
using, e.g., functional encryption [BSW11]).

However, practitioners who build secure systems in real life are often inter-
ested in achieving different and stronger properties: one wants to control the

Full version: [DHO16].

c© International Association for Cryptologic Research 2016
M. Hirt and A. Smith (Eds.): TCC 2016-B, Part II, LNCS 9986, pp. 547–576, 2016.
DOI: 10.1007/978-3-662-53644-5 21

548 I. Damg̊ard et al.

information flow in the system, and this is not just about what you can receive,
but also about what you can send. As an example, one may think of the first secu-
rity policy model ever proposed, the one by Bell and Lapadula [BL73]. Slightly
simplified, this model classifies users of a system in a number of levels, from
“public” in the bottom to “top-secret” on top. Then two rules are defined: (1)
“no read-up” – a user is not allowed to receive data from higher levels and (2)
“no write-down” – a user is not allowed to send data to lower levels. The idea is
of course to ensure confidentiality: data can flow from the bottom towards the
top, but not in the other direction. Clearly, both rules are necessary, in partic-
ular we need no write-down, since a party on top-secret level may try to send
information she should not, either by mistake or because her machine has been
infected by a virus.

In this paper we study the question of whether cryptography can help in
enforcing such security policies. A first thing to realize is that this problem can-
not be solved without some assumptions about physical, i.e., non-cryptographic
security: if the communication lines cannot be controlled, we cannot prevent a
malicious user from sending information to the wrong place. We therefore must
introduce a party that controls the communication, which we will call the sani-
tizer San. We assume that all outgoing communication must pass through this
party. San can then be instructed to do some specific processing on the messages
it gets.

Of course, with this assumption the problem can be solved: San is told what
the security policy is and simply blocks all messages that should not be sent
according to the policy. This is actually a (simplified) model of how existing
systems work, where San is implemented by the operating system and various
physical security measures.

However, such a solution is problematic for several reasons: users must
securely identify themselves to San so that he can take the correct decisions,
this also means that when new users join the system San must be informed
about this, directly or indirectly. A side effect of this is that San necessarily
knows who sends to whom, and must of course know the security policy. This
means that a company cannot outsource the function of San to another party
without disclosing information on internal activities of the company.

Therefore, a better version of our basic question is the following: can we use
cryptography to simplify the job of San as much as is possible, and also ensure
that he learns minimal information?

To make the goal more precise, note that it is clear that San must process
each message that is sent i.e., we cannot allow a message violating the policy to
pass through unchanged. But we can hope that the processing to be done does
not depend on the security policy, and also not on the identities of the sender
and therefore of the allowed receivers. This way we get rid of the need for users
to identify themselves to San. It is also clear that San must at least learn when
a message was sent and its length, but we can hope to ensure he learns nothing
more. This way, one can outsource the function of running San to a party that
is only trusted to execute correctly.

Access Control Encryption: Enforcing Information Flow with Cryptography 549

Our goal in this paper is therefore to come up with a cryptographic notion
and a construction that reduces the sanitizer’s job to the minimum we just
described. To the best of our knowledge, this problem has not been studied before
in the cryptographic literature, and it is easy to see that existing constructions
only solve “half the problem”: we can easily control which users you can receive
from by selecting the key material we give out (assuming that the sender is
honest). This is exactly what attribute based [GPSW06] or functional encryption
[BSW11] can do. But any such scheme of course allows a malicious sender to
encrypt what he wants for any receiver he wants.

Our Contribution. In this paper we propose a solution based on a new notion
called Access Control Encryption (ACE). In a nutshell ACE works as follows: an
ACE scheme has a key generation algorithm that produces a set of sender keys,
a set of receiver keys and a sanitizer key. An honest sender S encrypts message
m under his sender key and sends it for processing by San using the sanitizer
key. San does not need to know the security policy, nor who sends a message
or where it is going (so a sender does not have to identify himself): San simply
executes a specific randomised algorithm on the incoming ciphertext and passes
the result on to a broadcast medium, e.g., a disk from where all receivers can
read. So, as desired, San only knows when a message was sent and its length.1

An honest receiver R who is allowed to receive from S is able to recover m using
his key and the output from San. On the other hand, consider a corrupt sender
S who is not allowed to send to R. ACE ensures that no matter what S sends,
what R receives (after being processed by San) looks like a random encryption
of a random message. In fact we achieve security against collusions: considering
a subset S of senders and a subset R of receivers, if none of these senders are
allowed to send to any of the receivers, then S cannot transfer any information
to R, even if players in each set work together. We propose two constructions
of ACE: one based on standard number theoretic assumptions (DDH, Pailler)
which achieves complexity linear in the number of roles, and one based on recent
results in cryptographic obfuscation, which achieves complexity polylogarithmic
in the number of roles.

Example. A company is working on a top-secret military project for the govern-
ment. To protect the secrets the company sets up an access policy that deter-
mines which employees are allowed to communicate (e.g., a researcher with top-
secret clearance should not be allowed to send classified information to the intern,
who is making the coffee and only has public clearance). To implement the access
policy, the company sets up a special server that sanitizes every message sent
on the internal network before publishing it on a bulletin board or broadcasting
it. Using ACE this can be done without requiring users to log into the sanitizer.

1 Note that the sanitizer has to send the ciphertext to all receivers – both those who
are allowed to decrypt and those who are not. A sanitizer who could decide whether
a particular receiver is allowed to receive a particular ciphertext would trivially be
able to distinguish between different senders with different writing rights.

550 I. Damg̊ard et al.

Furthermore, if corrupted parities (either inside or outside the company) want
to intercept the communication they will get no information from the sanitizer
server, since it does not know the senders identities and the messages sent over
the network.

In the following sections, we describe ACE in more detail and take a closer
look at our technical contributions.

1.1 Access Control Encryption: The Problem it Solves

Senders and Receivers. We have n (types of) senders S1, . . . , Sn and n (types
of) receivers R1, . . . , Rn.2 There is some predicate P : [n] × [n] → {0, 1}, where
P (i, j) = 1 means that Si is allowed to send to Rj , while P (i, j) = 0 means that
Si is not allowed to send to Rj .

Network Model. We assume that senders are connected to all receivers via a
public channel i.e., a sender cannot send a message only to a specific receiver
and any receiver can see all traffic from all senders (also from those senders they
are not allowed to communicate with).

Requirements. Informally we want the following properties3

1. Correctness: When an honest sender Si sends a message m, all receivers Rj

with P (i, j) = 1 learn m;
2. No-Read Rule: At the same time all receivers Rj with P (i, j) = 0 learn no

information about m;
3. No-Write Rule: No (corrupt) sender Si should be able to communicate any

information to any (possibly corrupt) receiver Rj if P (i, j) = 0

Note that the no-read rule on its own is a simple confidentiality requirement,
which can be enforced using standard encryption schemes. On the other hand
standard cryptographic tools do not seem to help in satisfying the no-write rule.
In particular the no-write rule is very different from the standard authenticity
requirement and e.g., signature schemes cannot help here: had we asked for a
different property such as “a corrupt sender Si should not be allowed to com-
municate with an honest receiver Rj ifP (i, j) = 0” then the problem could be
solved by having Rj verify the identity of the sender (using a signature scheme)
and ignore messages from any sender i with P (i, j) = 0. Instead, we are trying
to block communication even between corrupt senders and corrupt receivers.

The problem as currently stated is impossible to solve, since a corrupt sender
can broadcast m in the clear to all receivers (the corrupt sender might not care
that other receivers also see the message). As mentioned above, we therefore
enhance the model by adding a special party, which we call the sanitizer San.
The sanitizer receives messages from senders, performs some computation on
them, and then forwards them to all receivers. In other words, we allow the
2 The number of senders equals the number of receivers only for the sake of exposition.
3 The security model, formalized in Definitions 2 and 3, is more general than this.

Access Control Encryption: Enforcing Information Flow with Cryptography 551

public channel to perform some computation before delivering the messages to
the receivers. Hence, the output of the sanitizer is visible to all receivers (i.e.,
the sanitizer cannot give different outputs to different receivers). We therefore
add the following requirement to our no-read rule:

2b. The sanitizer should not learn anything about the communication it routes.
In particular, the sanitizer should not learn any information about the
message m which is being transmitted nor the identity of the sender i;

In Sect. 2 we formalize properties 2 and 2b as a single one (i.e., no set of
corrupt receivers, even colluding with the sanitizer, should be able to break the
no-read rule). When considering property 3, we assume the sanitizer not to col-
lude with the corrupt senders and receivers: after all, since the sanitizer controls
the communication channel, there is no way of preventing a corrupt sanitizer
from forwarding messages from corrupt senders to the corrupt receivers.4

We stress that previous work is not sufficient to achieve property 3: Even
encryption schemes with fine-grained decryption capabilities (such as predicate-
and attribute based- encryption [GPSW06,KSW13]) do not offer security guar-
antees against colluding senders and receivers.

1.2 Technical Overview

Linear ACE. The main idea behind our construction of ACE with linear com-
plexity (described in Sect. 3) is the following: we start with an ACE for a single
identity i.e., where n = 1 and P (1, 1) = 1. First we need to make sure that even
a corrupt sender with encryption rights (i.e., i = 1) cannot communicate with
a corrupt receiver with no decrypting right (i.e., with a special identity j = 0).
To prevent this, since the receiver cannot decrypt the ciphertext, it is enough
to use a randomizable public key encryption and let the sanitizer refresh the
ciphertext. This ensures that the outgoing ciphertext is distributed exactly as a
fresh encryption.

The more challenging task is to ensure that a corrupt sender with no rights
(i.e., with a special identity i = 0) cannot transfer any information to a cor-
rupt receiver with decrypting rights (i.e., j = 1), since in this case the receiver
knows the decryption key. Thus, we cannot use the security of the underlying
encryption scheme. We solve the problem using any encryption scheme which is
homomorphic both in the message and in the randomness (such as ElGamal or
Pailler). The main idea is to let the encryption key ek as well as the randomizer

4 Note that it is possible to reduce the trust on the sanitizer in different ways: in a
black-box way, one could imagine several parties emulating the work of the sanitizer
using MPC. In a more concrete way, it is possible to have a chain of sanitizers, where
the senders send their encryptions to sanitizer 1, the receivers receive ciphertexts
from sanitizer n, and sanitizer i + 1 further sanitizes the output of sanitizer i. We
note that all definitions and constructions in this paper can be easily generalized to
this scenario but, to keep the presentation as simple as possible, we do not discuss
this solution further and stick to the case of a single sanitizer.

552 I. Damg̊ard et al.

key rk be some secret value α, and an encryption of a message m being a tuple
(c0, c1) = (E(ek), E(m)). On input such a tuple the sanitizer picks a random s
and outputs c′, a fresh encryption of (ek − rk) · s + m (which can be computed
thanks to the homomorphic properties of E): note that sanitization does not
interfere with honestly generated encryptions (since ek = rk = α), while the
sanitized version of a ciphertext produced by anyone who does not know α is
indistinguishable from a random encryption of a random value.

We then turn this into a scheme for any predicate P : [n] × [n] → {0, 1}
by generating n copies of the single identity ACE scheme. Each receiver j is
given the decryption key for one of the schemes, and each sender i is given the
encryption key for all instances j such that P (i, j) = 1. The resulting scheme
has linear complexity in n, the number of the roles in the system, which makes
our scheme impractical for large predicates.

Polylogarithmic ACE. At first it might seem easy to construct an ACE scheme
with compact ciphertexts using standard tools (such as non-interactive zero-
knowledge proofs). In Sect. 4 we discuss why this is not the case before presenting
our construction of an ACE with complexity polylogarithmic in n. To construct
the scheme we first introduce the notion of a sanitizable functional encryption
(sFE) scheme which is a functional encryption (FE) scheme enhanced with a san-
itization algorithm. Informally we require that given any two ciphertexts c0, c1
that decrypt to the same message and a sanitized ciphertext c′, no one (even
with access to the master secret key), should be able to tell whether c′ is a sani-
tized version of c0 or c1.5 We are able to construct such a scheme by modifying
the FE based on indistinguishability obfuscation of Garg et al. [GGH+13]: in
their scheme ciphertexts consist of two encryptions and a simulation statistically-
sound NIZK proof that they contain the same message. We instantiate their con-
struction with a sanitizable encryption scheme6, and we instruct the sanitizer
to sanitize the two encryptions, drop the original proof and append a proof of
a proof instead (that is, a proof of the fact that the sanitizer saw a proof who
would make the original verifier accept). This preserves the functionality of the
original FE scheme while making the sanitized ciphertext independent of the
randomness used by the sender. We formally define sFE in Sect. 4.1 and present
a construction in Sect. 4.2.

Finally, armed with such a sFE scheme, we construct a polylog ACE scheme
in Sect. 4.3 in the following way: ciphertexts are generated by encrypting tuples of
the form (m, i, y) with y = Feki

(m) for a PRF F (where eki is the the encryption
key of the sender Si), using the sFE scheme. Decryption keys are sFE secret
keys for the function that outputs m only if P (i, j) = 1 (and ignores y). The
sanitizer key is a sFE secret key which outputs 1 only if y is a valid MAC on
5 We note that this is a relaxation of re-randomizability for FE, in the sense that we

do not require sanitized ciphertexts to be indistinguishable from fresh encryptions,
but only independent of the randomness used in the original encryption. However,
to the best of our knowledge, no re-randomizable FE scheme for all circuits exist.

6 Similar to a re-randomizable encryption scheme, where we do not require sanitized
ciphertexts to look indistinguishable from fresh encryptions.

Access Control Encryption: Enforcing Information Flow with Cryptography 553

m for the identity i (note that this can be checked by a compact circuit by e.g.,
generating all the keys eki pseudorandomly using another PRF). This key allows
the sanitizer to check if an encryption contains a valid MAC or not, but without
learning anything about the message nor the identity. Now the sanitizer drops
invalid encryptions (or replaces them with random encryptions of random values
for a special, undecryptable identity i = 0) and forwards valid encryptions (after
having refreshed them).

Open Questions. We identify two major opens questions: the first one is to
construct practically interesting ACE from noisy, post-quantum assumptions
such as LWE – the challenge here is that it always seems possible for a malicious
sender to encrypt with just enough noise that any further manipulation by the
sanitizer makes the decryption fail. This can be addressed using “bootstrapping”
techniques, but this is not likely to lead to schemes with efficiency comparable to
the ones based on DDH or Pailler described above. The second open question is
to design sublinear ACE scheme with practical efficiency even for limited classes
of interesting predicates such as e.g., P (i, j) = 1 ⇔ i ≥ j.

1.3 Related Work

One of the main challenges in our setting is to prevent corrupt senders to
communicate to corrupt receivers using subliminal channels (e.g., by producing
the encryptions with maliciously generated randomness). In some sense we are
trying to prevent steganography [HLA02]. Recent work on cryptographic fire-
walls [MS15,DMS15] also deals with this problem, but in the context of preventing
malicious software implementations to leak information via steganographic tech-
niques. Raykova et al. [RZB12] presented solutions to the problem of access con-
trol on outsourced data, with focus on hiding the access patterns from the cloud
(this is not a concern in our application since all receivers receive all ciphertexts)
and in preventing malicious writers from updating files they are not allowed to
update. However they only guarantee that malicious writers are caught if they
do so, while we want to prevent any communication between corrupt senders
and receivers. Backes and Pfitzmann introduced the notion of probabilistic non-
interference which allows to relate cryptography to the notion of information flow
for both transitive [BP03] and intransitive policies [BP04]. Halevi et al. [HKN05]
address the problem of enforcing confinement in the T10 OSD protocol, in the
presence of a fully trusted manager (which has a role similar to the sanitizer in
our model). Fehr and Fischlin [FF15] study the case of sanitizable signatures in
the context of an intermediate party that sanitizes messages and signatures send
over the channel. The special party learns as little as possible about the messages
and signatures. However, they do not prevent corrupt senders from sending infor-
mation to corrupt receivers. Finally, the problem of hiding policies and creden-
tials in the context of attribute based encryption has been studied by Frikken
et al. [FAL06], Kapadia et al. [KTS07], Müller and Katzenbeisser [MK11], and

554 I. Damg̊ard et al.

Ferrara et al. [FFLW15]. However, they do not consider the case of preventing
corrupt sender from communicating with corrupt receivers (e.g. by sending the
message unencrypted over the channel).

2 Defining ACE

ACE Notation. An access control encryption (ACE) scheme is defined by the
following algorithms:

Setup: The Setup algorithm on input the security parameter κ and a policy
P : [n]× [n] → {0, 1} outputs a master secret key msk and public parameters
pp, which include the message space M and ciphertext spaces C, C′.7

Key Generation: The Gen algorithm on input the master secret key msk, an
identity i ∈ {0, . . . , n+1},8 and a type t ∈ {sen, rec, san} outputs a key k. We
use the following notation for the three kind of keys in the system:

– eki ← Gen(msk, i, sen) and call it an encryption key for i ∈ [n]
– dkj ← Gen(msk, j, rec) and call it a decryption key for j ∈ [n]
– ek0 = dk0 = pp;
– rk ← Gen(msk, n + 1, san) and call it the sanitizer key ;

Encrypt: The Enc algorithm on input an encryption key eki and a message m
outputs a ciphertext c.

Sanitizer: San transforms an incoming ciphertext c ∈ C into a sanitized cipher-
text c′ ∈ C′ using the sanitizer key rk;

Decryption: Dec recovers a message m′ ∈ M ∪ {⊥} from a ciphertext c′ ∈ C′

using a decryption key dkj .

ACE Requirements. We formalize Properties 1–3 from the introduction in the
following way:

Definition 1 (Correctness). For all m ∈ M, i, j ∈ [n] such that P (i, j) = 1:

Pr [Dec (dkj ,San (rk,Enc (eki,m))) 	= m] ≤ negl (κ)

with (pp,msk) ← Setup(1κ, P), eki ← Gen(msk, i, sen), dkj ← Gen(msk, j, rec),
and rk ← Gen(msk, n + 1, san), and the probabilities are taken over the random
coins of all algorithms.

7 We use the convention that all other algorithms take pp as input even if not specified.
Formally, one can think of the pp as being part of msk and all other keys ek, dk, sk.

8 To make notation more compact we define two special identities: i = 0 representing
a sender or receiver with no rights such that P (0, j) = 0 = P (i, 0) for all i, j ∈ [n];
i = n+1 to be the sanitizer identity, which cannot receive from anyone but can send
to all i.e., P (n + 1, j) = 1 ∀j ∈ [n] and P (i, n + 1) = 0 ∀i ∈ [n]

Access Control Encryption: Enforcing Information Flow with Cryptography 555

Definition 2 (No-Read Rule). Consider the following game between a chal-
lenger C and a stateful adversary A:

No-Read Rule

Game Definition Oracle Definition

1. (pp, msk) ← Setup(1κ, P);
2. (m0, m1, i0, i1) ← AOG(·),OE(·)(pp);
3. b ← {0, 1};
4. c ← Enc(Gen(msk, ib, sen), mb);
5. b′ ← AOG(·),OE(·)(c);

OG(j, t):
1. Output k ← Gen(msk, j, t);

OE(i, m):
1. eki ← Gen(msk, i, sen);
2. Output c ← Enc(eki, m);

We say that A wins the No-Read game if b = b′, |m0| = |m1|, i0, i1 ∈ {0, . . . , n}
and one of the following holds:

Payload Privacy: For all queries q to OG with q = (j, rec) it holds that

P (i0, j) = P (i1, j) = 0

Sender Anonymity: For all queries q to OG with q = (j, rec) it holds that

P (i0, j) = P (i1, j) and m0 = m1

We say an ACE scheme satisfies the No-Read rule if for all PPT A

advA = 2 ·
∣

∣

∣

∣

Pr[Awins theNo − Read game] − 1
2

∣

∣

∣

∣

≤ negl(κ)

Definition 2 captures the requirement that only intended receivers should be
able to learn anything about the message (payload privacy) and that no one
(even intended receivers) should learn anything about the identity of the sender
(sender anonymity). Note that the ciphertext c sent by the challenger to the
adversary has not been sanitized and that the adversary is allowed to query
for the sanitizer key rk. This implies that even the sanitizer (even with help
of any number of senders and unintended receivers) should not learn anything.
Note additionally that the adversary is allowed to query for the encryption keys
eki0 , eki1 corresponding to the challenge identities i0, i1, which implies that the
ability to encrypt to a particular identity does not automatically grant the right
to decrypt ciphertexts created with that identity (e.g., a user might be able
to write top-secret documents but not to read them). Note that if ib = 0 for
some b ∈ {0, 1}, then the definition implies that it is possible to create “good
looking” ciphertexts even without having access to any of the senders’ keys. This
is explicitly used in our solution with linear complexity. Furthermore note that if
there exist multiple keys for a single identity (e.g., the output of Gen(msk, i, sen)

556 I. Damg̊ard et al.

is randomized), then our definition does not guarantee that the adversary can ask
the oracle OG for the encryption key used to generate the challenge ciphertext.
The definition can be easily amended to grant the adversary this power but (since
in all our constructions eki is a deterministic function of msk and i) we prefer
to present the simpler definition. Finally, the encryption oracle OE models the
situation that the adversary is allowed to see encrypted messages under identities
for which he does not have the encryption key.

Definition 3 (No-Write Rule). Consider the following game between a chal-
lenger C and a stateful adversary A:

No-Write Rule

Game Definition Oracle Definition

1. (pp, msk) ← Setup(1κ, P);
2. (c, i′) ← AOE(·),OS(·)(pp);
3. eki′ ← Gen(msk, i′, sen);
4. rk ← Gen(msk, n + 1, san);
5. r ← M;
6. b ← {0, 1},
– If b = 0, c′ ← San(rk,Enc(eki′ , r));
– If b = 1, c′ ← San(rk, c);

7. b′ ← AOE(·),OR(·)(c′);

OS(j, t):
1. Output k ← Gen(msk, j, t);

OR(j, t):
1. Output k ← Gen(msk, j, t);

OE(i, m):
1. eki ← Gen(msk, i, sen);
2. c ← Enc(eki, m);
3. Output c′ ← San(rk, c);

Let QS (resp. Q) be the set of all queries q = (j, t) that A issues to OS (resp.
both OS and OR). Let IS be the set of all i ∈ [n] such that (i, sen) ∈ QS and let
J be the set of all j ∈ [n] such that (j, rec) ∈ Q. Then we say that A wins the
No-Write game if b′ = b and all of the following hold:

1. (n + 1, san) 	∈ Q;
2. i′ ∈ IS ∪ {0};
3. ∀i ∈ IS , j ∈ J , P (i, j) = 0;

We say an ACE scheme satisfies the No-Write rule if for all PPT A

advA = 2 ·
∣

∣

∣

∣

Pr[Awins theNo − Write game] − 1
2

∣

∣

∣

∣

≤ negl(κ)

Definition 3 captures the property that any set of (corrupt) senders {Si}i∈I

cannot transfer any information to any set of (corrupt) receivers {Rj}j∈J unless
at least one of the senders in I is allowed communication to at least one of the
receivers in J (Condition 3)9. This is modelled by saying that in the eyes of the

9 Note that the adversary is allowed to ask for any senders’ key in the post-challenge
queries.

Access Control Encryption: Enforcing Information Flow with Cryptography 557

receivers, the sanitized version of a ciphertext coming from this set of senders
looks like the sanitized version of a fresh encryption of a random value produced
by one of these senders (Condition 2). Note that if the adversary does not ask for
any encryption key (i.e., IS = ∅), then the only valid choice for i′ is 0: this implies
that (as described for the no-read rule) there must be a way of constructing “good
looking” ciphertexts using the public parameters only10 and this property is used
crucially in the construction of our linear scheme. Furthermore, we require that
the adversary does not corrupt the sanitizer (Condition 1) which is, as discussed
in the introduction, an unavoidable condition. Finally, the encryption oracle
OE again models the situation that the adversary is allowed to see encrypted
messages under identities for which he do not have the encryption key.

3 Linear ACE from Standard Assumptions

The roadmap of this section is the following: we construct an ACE scheme for
a single identity (i.e., n = 1 and P (1, 1) = 1) from standard number theoretic
assumptions, and then we construct an ACE scheme for any predicate P : [n] ×
[n] → {0, 1} using a repetition scheme. The complexity of the final scheme (in
terms of public-key and ciphertext size) is n times the complexity of the single-
identity scheme.

3.1 ACE for a Single Identity

We propose two constructions of ACE for a single identity (or 1-ACE for short).
The first is based on the DDH assumption and is presented in this section, while
the second is based on the security of Pailler’s cryptosystem and is deferred to
the full version [DHO16]. Both schemes share the same basic idea: the encryption
key ek is some secret value α, and an encryption of a message m is a pair of
encryptions (c0, c1) = (E(α), E(m)). The sanitizer key is also the value α, and
a sanitized ciphertext is computed as c′ = c1 · (c0 · E(−α))s which (thanks
to the homomorphic properties of both ElGamal and Pailler) is an encryption
of a uniformly random value unless c0 is an encryption of α, in which case it
is an encryption of the original message m. The decryption key is simply the
decryption key for the original encryption scheme, which allows to retrieve m
from c′. Note that even knowing the decryption key is not enough to construct
ciphertexts which “resist” the sanitization, since the receiver never learns the
value α.

1-ACE from DDH: Our first instantiation is based on the ElGamal public-key
encryption scheme [Gam85]. The construction looks similar to other double-
strand versions of ElGamal encryption which have been used before in the liter-
ature to achieve different goals (e.g., by Golle et al. [GJJS04] in the context of
universal re-encryption and by Prabhakaran and Rosulek [PR07] in the context
of rerandomizable CCA security).

10 Recall that we defined ek0 = pp.

558 I. Damg̊ard et al.

Construction 1. Let EGACE = (Setup,Gen,Enc,San,Dec) be a 1-ACE scheme
defined by the following algorithms:

Setup: Let (G, q, g) be the description of a cyclic group of prime order q gener-
ated by g. Let (α, x) ← Zq × Zq be uniform random elements, and compute
h = gx. Output the public parameter pp = (G, q, g, h) and the master secret
key msk = (α, x). The message space is M = G and the ciphertext spaces
are C = G4 and C′ = G × G.

Key Generation: Given the master secret key msk, the encryption, decryption
and sanitizer key are computed as follows:

– ek = α;
– dk = −x;
– rk = −α;

Encryption: Given the message m and an encryption key ek, sample random
r1, r2 ∈ Zq and output:

(c0, c1, c2, c3) = (gr1 , gekhr1 , gr2 ,mhr2)

(and encryptions for the identity 0 are random tuples from G4).
Sanitize: Given a ciphertext c = (c0, c1, c2, c3) ∈ C and a sanitizer key rk,

sample uniform random s1, s2 ∈ Zq and output:

(c′
0, c

′
1) = (c2cs1

0 gs2 , c3(grkc1)s1hs2)

Decryption: Given a ciphertext c′ = (c′
0, c

′
1) ∈ C′ and a decryption key dk,

output:

m′ = c′
1(c

′
0)

dk

Lemma 1. Construction 1 is a correct 1-ACE scheme that satisfies the No-
Read Rule and the the No-Write Rule assuming that the DDH assumption holds
in G.

Proof. Correctness: Let c = (c0, c1, c2, c3) be an honestly generated ciphertext,
and let c′ = (c′

0, c
′
1) be a sanitized version of c. We check that (c′

0, c
′
1) is still an

encryption of the original message m:

c′
1(c

′
0)

dk = c3(grkc1)s1hs2(c2cs1
0 gs2)dk

= mhr2(g−αgαhr1)s1hs2(gr2gr1s1+s2)−x

= mhr2+r1s1+s2g−x(r2+r1s1+s2) = m

Thus, the sanitization of a valid ciphertext produces a new valid ciphertext under
the same identity and of the same message.

No-Read Rule: There are three possible cases, depending on which identities the
adversary queries during the game: the case (i0, i1) = (0, 0) is trivial as both

Access Control Encryption: Enforcing Information Flow with Cryptography 559

Enc(ek0,mb) for b ∈ {0, 1} are random ciphertexts; the case (i0, i1) = (1, 1) is
trivial if the adversary asks for the decryption key dk, since in this case it must be
that m0 = m1. The case where the adversary does not ask for the decryption key
and i0 	= i1 implies the case where the adversary does not ask for the decryption
key and (i0, i1) = (1, 1) using standard hybrid arguments (i.e., if Enc(ek,m) is
indistinguishable from a random ciphertext c ← C for all m, then Enc(ek,m0) is
indistinguishable from Enc(ek,m1) for all m0,m1). So we are only left to prove
that honest encryptions are indistinguishable from a random element in C = G4,
which follows in a straightforward way from the DDH assumption. In particular,
since (g, h, gr2 , hr2) is indistinguishable from (g, h, gr2 , hr3) for random r2, r3
we can replace c3 with a uniformly random element (independent of m). Notice
that neither α (the encryption and sanitizer key) nor encryptions from oracle OE

will help the adversary distinguish. Thus, we can conclude that the adversary’s
advantage is negligible, since he cannot distinguish in all three cases.

No-Write Rule: We only need to consider two cases, depending on which keys
the adversary asks for before producing the challenge ciphertext c and identity
i′: (1) the adversary asks for ek before issuing his challenge (c, i′) with i′ ∈ {0, 1}
(and receives no more keys during the distinguishing phase) and (2) the adver-
sary asks for dk before issuing his challenge (c, 0) and then asks for ek during the
distinguishing phase. Case (1) follows directly from the DDH assumption: with-
out access to the decryption key the output of the sanitizer is indistinguishable
from a random ciphertext thanks to the choice of the random s2, in particular
since (g, h, gs2 , hs2) is indistinguishable from (g, h, gs2 , hs3) for random s2, s3 we
can replace (c′

0, c
′
1) with uniformly random elements in G. Case (2) instead has

to hold unconditionally, since the adversary has the decryption key. We argue
that the distribution of San(rk, (c0, c1, c2, c3)) is independent of its input. In
particular, given any (adversarially chosen) (c0, c1, c2, c3) ∈ G4 we can write:

(c0, c1, c2, c3) = (gδ0 , gδ1 , gδ2 , gδ3)

Then the output c′ ← San(rk, c) is

(c′
0, c

′
1) = (c2cs1

0 gs2 , c3(grkc1)s1hs2)

= (gδ2+s1δ0+s2 , gδ3+s1(δ1−α)+s2x)

Which is distributed exactly as a uniformly random ciphertext (gγ0 , gγ1) with
(γ0, γ1) ∈ Zq × Zq since for all (γ0, γ1) there exists (s0, s1) such that:

γ0 = δ2 + s1δ0 + s2 and γ1 = δ3 + s1(δ1 − α) + s2x

This is guaranteed unless the two equations are linearly dependent i.e., unless
α = (δ1 − xδ0) which happens only with negligible probability thanks to the
principle of deferred decisions. The adversary is allowed to see sanitized cipher-
text from the encryption oracle. However, this does not help him distinguish,
since the output of the San algorithm is distributed exactly as a uniform cipher-
text. Thus, we can conclude that the adversary’s advantage is negligible, since
he cannot distinguish in both cases. �

560 I. Damg̊ard et al.

3.2 Construction of an ACE Scheme for Multiple Identities

In this section we present a construction of an ACE scheme for multiple identi-
ties, which is based on the 1-ACE scheme in a black-box manner. In a nutshell,
the idea is the following: we run n copies of the 1-ACE scheme and we give
to each receiver j the decryption key dkj for the j-th copy of the scheme. An
encryption key for identity i is given by the set of encryption keys ekj of the
1-ACE scheme such that P (i, j) = 1. To encrypt, a sender encrypts the same
message m under all its encryption keys ekj and puts random ciphertexts in
the positions for which he does not know an encryption key. The sanitizer key
contains all the sanitizer keys for the 1-ACE scheme: this allows the sanitizer
to sanitize each component independently, in such a way that for all the posi-
tions for which the sender knows the encryption key, the message “survives” the
sanitization, whereas in the other positions the output is uniformly random.

Example. We conclude this informal introduction of our repetition scheme by
giving a concrete example of an ACE scheme for the Bell-LaPadula access control
policy with three levels of access: Level 1: top-secret, level 2: secret, level 3:
public. The predicate of this access control is defined as P (i, j) = 1 ⇔ i ≥ j.
This predicate ensures the property of no write down and no read up as discussed
in the introduction. Table 1 shows the structure of the keys and the ciphertext
for the different levels of access.

Table 1. Access Control Encryption Scheme for Bell-LaPadula access control policy.
c′
2, c

′
3, c

′′
3 are random ciphertexts from C.

i eki dki c

1 {ek1} dk1 (Enc(ek1, m), c′
2, c

′
3)

2 {ek1, ek2} dk2 (Enc(ek1, m),Enc(ek2, m), c′′
3)

3 {ek1, ek2, ek3} dk3 (Enc(ek1, m),Enc(ek2, m),Enc(ek3, m))

Construction 2. Let 1ACE = (Setup,Gen,Enc,San,Dec) be a 1-ACE scheme.
Then we can construct an ACE scheme ACE = (Setup,Gen,Enc,San,Dec) defined
by the following algorithms:

Setup: Let n be the number of senders/receivers specified by the policy P . Then
run n copies of the 1ACE setup algorithm

(pp1ACEi ,msk1ACE
i) ← 1ACE.Setup(1κ) for i = 1, . . . , n

For each of the 1ACE master secret keys run the 1ACE key generation algo-
rithm on each of the three modes. For i ∈ [n] do the following

ek1ACE
i ← 1ACE.Gen(msk1ACE

i , sen)

dk1ACE
i ← 1ACE.Gen(msk1ACE

i , rec)

rk1ACE
i ← 1ACE.Gen(msk1ACE

i , san)

Access Control Encryption: Enforcing Information Flow with Cryptography 561

Output the public parameter pp = {pp1ACEi }i∈[n] and the master secret key
msk := {ek1ACE

i , dk1ACE
i , rk1ACE

i }i∈[n].11

Key Generation: On input an identity i ∈ {0, . . . , n+1}, a mode {sen, rec, san}
and the master secret key msk, output a key depending on the mode

– eki := {ek1ACE
j }j∈S , where S ⊆ [n] is the subset s.t. j ∈ S iff P (i, j) = 1;

– dki := dk1ACE
i ;

– rk := {rk1ACE
j }j∈[n];

Encrypt: On input an encryption key eki and a message m encrypt the message
under each of the 1ACE encryption keys in eki and sample uniform random
ciphertext for each public key not in the encryption key. Thus, for j = 1, . . . , n
do the following

– If ek1ACE
j ∈ eki then compute c1ACEj ← 1ACE.Enc(ek1ACE

j ,m).
– If ek1ACE

j /∈ eki then sample c1ACEj ←$ C1ACE
j .12

Output the ciphertext c :=
(

c1ACE1 , . . . , c1ACEn

)

.
Sanitizer: On input a ciphertext c and a sanitizer key rk, sanitize each of the

n 1ACE ciphertexts as follows

c′
i
1ACE ← 1ACE.San(rk1ACE

i , c1ACEi) for i = 1, . . . , n

Output the sanitized ciphertext c′ := (c′
1
1ACE

, . . . , c′
n
1ACE).

Decryption: On input a ciphertext c and a decryption key dki decrypt the i’th
1ACE ciphertext

m′ ← 1ACE.Dec(dk1ACE
i , c1ACEi)

We can prove that the scheme presented above satisfies correctness as well as
the no-read and the no-write rule, by reducing the properties of the repetition
scheme to properties of the scheme with a single identity using hybrid arguments.
The formal proofs are deferred to the full version [DHO16].

4 Polylogarithmic ACE from iO

In this section, we present our construction of ACE with polylogarithmic com-
plexity in the number of roles n.

At first it might seem that it is easy to construct an ACE scheme with short
ciphertexts by using NIZK and re-randomizable encryption: the sender would
send to the sanitizer a ciphertext and a NIZK proving that the ciphertext is a
well-formed encryption of some message using a public key that the sender is
allowed to send to (for instance, each sender could have a signature on their

11 There exists some encoding function that takes a message m from the message space
of the ACE scheme and encodes it into a message of each of the 1-ACE message
spaces. The ciphertext spaces of the ACE scheme are the crossproduct of all the
1-ACE ciphertext spaces, thus C = C1ACE

1 ×· · ·×C1ACE
n and C′ = C′

1
1ACE ×· · ·×C′

n
1ACE

.
12 Here c1ACEj ←$ C1ACE

j is a shorthand for c1ACEj ← 1ACE.Enc(pp1ACE
j , ⊥).

562 I. Damg̊ard et al.

identity to be able to prove this statement). Now the sanitizer drops the NIZK
and passes on the re-randomized ciphertext. However, the problem is that the
sanitizer would need to know the public key of the intended receiver to be able
to re-randomize (and we do not want to reveal who the receiver is).

As described in the introduction, we build our ACE scheme on top of a FE
scheme which is sanitizable, which roughly means that given a ciphertext it is
possible to produce a new encryption of the same message which is independent
of the randomness used in the original encryption (this is a relaxation of the well-
known re-randomizability property, in the sense that we do not require sanitized
ciphertexts to look indistinguishable from fresh encryptions e.g., they can be
syntactically different). We construct such an FE scheme by modifying the FE
scheme of Garg et al. [GGH+13], and therefore our construction relies on the
assumption that indistinguishability obfuscation exists. We define and construct
sFE in Sect. 4.1 and then construct ACE based on sFE (and a regular PRF) in
Sect. 4.3.

4.1 Sanitizable Functional Encryption Scheme – Definition

A sanitizable functional encryption (sFE) scheme is defined by the following
algorithms:

Setup: The Setup algorithm on input the security parameter κ outputs a master
secret key msk and public parameters pp, which include the message space
M and ciphertext spaces C, C′.

Key Generation: The Gen algorithm on input the master secret key msk and
a function f , outputs a corresponding secret key SKf .

Encrypt: The Enc algorithm on input the public parameters pp and a message
m, outputs a ciphertext c ∈ C

Sanitizer: The San algorithm on input the public parameters pp and a cipher-
text c ∈ C, transforms the incoming ciphertext into a sanitized ciphertext
c′ ∈ C′

Decryption: The Dec algorithm on input a secret key SKf and a sanitized
ciphertext c′ ∈ C′ that encrypts message m, outputs f(m).

For the sake of exposition we also define a master decryption algorithm that
on input c ← Enc(pp,m), returns m ← MDec(msk, c).13 We formally define
correctness and IND-CPA security for an sFE scheme (which are essentially the
same as for regular FE), and then we define the new sanitizable property which,
as described above, is a relaxed notion of the re-randomization property.

Definition 4 (Correctness for sFE). Given a function family F . For all
f ∈ F and all messages m ∈ M:

Pr [Dec(Gen(msk, f),San(pp,Enc(pp,m))) 	= f(m)] ≤ negl(κ)

13 Formally MDec is a shortcut for Dec(Gen(msk, fid), San(pp, c)), where fid is the
identity function.

Access Control Encryption: Enforcing Information Flow with Cryptography 563

where (pp,msk) ← Setup(1κ) and the probabilities are taken over the random
coins of all algorithms.

Definition 5 (IND-CPA Security for sFE). Consider the following game
between a challenger C and a stateful adversary A:

IND-CPA Security

Game Definition Oracle Definition

1. (pp, msk) ← Setup(1κ);
3. (m0, m1) ← AO(·)(pp);
4. b ← {0, 1};
5. c∗ ← Enc(pp, mb)
6. b′ ← AO(·)(c∗);

O(fi):
1. Output SKfi ← Gen(msk, fi);

We say that A wins the IND-CPA game if b = b′, |m0| = |m1|, and that fi(m0) =
fi(m1) for all oracle queries fi. We say a sFE scheme satisfies the IND-CPA
security property if for all PPT A

advA = 2 ·
∣

∣

∣

∣

Pr[A wins the IND − CPA game] − 1
2

∣

∣

∣

∣

≤ negl(κ)

Definition 6 (Sanitization for sFE). Consider the following game between
a challenger C and a stateful adversary A:

Sanitization

Game Definition

1. (pp, msk) ← Setup(1κ);
2. c ← A(pp, msk);
3. b ← {0, 1},
– If b = 0, c∗ ← San(pp, c);
– If b = 1, c∗ ← San(pp,Enc(pp,MDec(msk, c)));

4. b′ ← A(c∗);

We say that A wins the sanitizer game if b = b′. We say a sFE scheme is
sanitizable if for all PPT A

advA = 2 ·
∣

∣

∣

∣

Pr[Awins the sanitizer game] − 1
2

∣

∣

∣

∣

≤ negl(κ)

Note that in Definition 6 the adversary has access to the master secret key.

564 I. Damg̊ard et al.

4.2 Sanitizable Functional Encryption Scheme – Construction

We now present a construction of a sFE scheme based on iO. The construction
is based on the functional encryption construction by Garg et. al [GGH+13]. In
their scheme a ciphertext contains two encryptions of the same message and a
NIZK of this statement, thus an adversary can leak information via the random-
ness in the encryptions or the randomness in the NIZK. In a nutshell we make
their construct sanitizable by:

1. Replacing the PKE scheme with a sanitizable PKE (as formalized in
Definition 7).

2. Letting the sanitizer drop the original NIZK, and append a proof of a proof
instead (i.e., a proof that the sanitizer knows a proof that would make the
original verifier accept). Thanks to the ZK property the new NIZK does not
contain any information about the randomness used to generate the original
NIZK.

3. Changing the decryption keys (obfuscated programs) to check the new proof
instead.

Building Blocks. We formalize here the definition of sanitization for a PKE
scheme. Any re-randomizable scheme (such as Paillier and ElGamal) satisfies
perfect PKE sanitization, but it might be possible that more schemes fit the
definition as well.

Definition 7 (Perfect PKE Sanitization). Let M be the message space and
R be the space from which the randomness for the encryption and sanitization
is taken. Then for every message m ∈ M and for all r, s, r′ ∈ R there exists
s′ ∈ R such that

San(pk,Enc(pk,m; r); s) = San(pk,Enc(pk,m; r′); s′)

Our constructions also uses (by now standard) tools such as pseudo-random
functions (PRF), indistinguishability obfuscation (iO) and statistical simulation-
sound non-interactive zero-knowledge (SSS-NIZK), which are defined for com-
pleteness in Appendix A.

Constructing sFE. We are now ready to present our construction of sFE.

Construction 3. Let sPKE = (Setup,Enc,San,Dec) be a perfect sanitizable
public key encryption scheme. Let NIZK = (Setup,Prove,Verify) be a statistical
simulation-soundNIZK. Let iO be an indistinguishability obfuscator.We construct
a sanitizable functional encryption scheme sFE = (Setup,Gen,Enc,San,Dec) as
follows:

Access Control Encryption: Enforcing Information Flow with Cryptography 565

Setup: On input the security parameter κ the setup algorithm compute the
following
1. (pk1, sk1) ← sPKE.Setup(1κ);
2. (pk2, sk2) ← sPKE.Setup(1κ);
3. crsE ← NIZK.Setup(1κ, RE);
4. crsS ← NIZK.Setup(1κ, RS);
5. Output pp = (crsE , crsS , pk1, pk2) and msk = sk1;

The relations RE and RS are defined as follows: Let xE = (c1, c2) be a
statement and wE = (m, r1, r2) a witness, then RE is defined as

RE = {(xE , wE) | c1 = sPKE.Enc(pk1,m; r1) ∧ c2 = sPKE.Enc(pk2,m; r2)}
Let xS = (c′

1, c
′
2) be a statement and wS = (c1, c2, s1, s2, πE) a witness, then

RS is defined as

RS =
{

(xS , wS)
∣

∣

∣

c′
1 = sPKE.San(pk1, c1; s1) ∧ c′

2 = sPKE.Enc(pk2, c2; s2)
∧NIZK.Verify(crsE , (c1, c2), πE) = 1

}

Key Generation: On input the master secret key msk and a function f output
the secret key SKf = iO(P) as the obfuscation of the following program

Program P

Input: c′
1, c

′
2, πS ;

Const: crsS , f, sk1;

1. If NIZK.Verify(crsS , (c′
1, c

′
2), πS) = 1;

output f(sPKE.Dec(sk1, c
′
1));

2. else output fail;

Encrypt: On input the public parameters pp and a message m compute two
PKE encryptions of the message

c1 ← sPKE.Enc(pk1,m; r1)
c2 ← sPKE.Enc(pk2,m; r2)

with randomness (r1, r2). Then create a proof πE that (xE , wE) ∈ RE with
xE = (c1, c2) and witness wE = (m, r1, r2)

πE ← NIZK.Prove(crsE , xE , wE ; tE)

using randomness tE . Output the triple c = (c1, c2, πE) as the ciphertext.
Sanitizer: On input the public parameter pp and a ciphertext c = (c1, c2, πE) ∈

C compute the following
1. If NIZK.Verify(crsE , xE , πE) = 1 then

c′
1 ← sPKE.San(pk1, c1; s1)

c′
2 ← sPKE.San(pk2, c2; s2)

π2 ← NIZK.Prove(crsS , xS , wS ; tS)
Output c′ = (c′

1, c
′
2, π2)

566 I. Damg̊ard et al.

2. Else
Output c′ ← sFE.San(pp, sFE.Enc(pp,⊥))

with randomness (s1, s2) and tS in the PKE and NIZK respectively. The
generated NIZK is a proof that (xS , wS) ∈ RS with xS = (c′

1, c
′
2) and wS =

(c1, c2, s1, s2, πE).
Decryption: On input a secret key SKf and a ciphertext c′ = (c′

1, c
′
2, πS) ∈ C′,

run the obfuscated program SKf (c′
1, c

′
2, πS) and output the answer.

Lemma 2. Construction 3 is a correct functional encryption scheme.

Proof. Correctness follows from the correctness of the iO, PKE, and SSS-NIZK
schemes, and from inspection of the algorithms. �

Lemma 3. For any adversary A that breaks the IND-CPA security property
of Construction 3, there exists an adversary B for the computational zero-
knowledge property of the NIZK scheme, an adversary C for the IND-CPA secu-
rity of the PKE scheme, and an adversary D for iO such that the advantage of
adversary A is

advsFE,A ≤ 4|M|
(

advNIZK,B + advsPKE,C + q · adviO,C(1 − 2psss)
)

where q is the number of secret key queries adversary A makes during the game,
and psss is the negligible soundness error of the SSS-NIZK scheme.

Proof. This proof follows closely the selective IND-CPA security proof of the FE
construction presented by Garg et. al. [GGH+13]. See the full version [DHO16]
for the complete proof. �

Lemma 4. For any adversary A that breaks the sanitizer property of Construc-
tion 3, there exists an adversary B for the computational zero-knowledge property
of the NIZK scheme such that the advantage of adversary A is

advsFE,A ≤ 2|M|advNIZK,B

Proof. This lemma is proven via a series of indistinguishable hybrid games
between the challenger and the adversary. For the proof to go through we notice
that the challenger needs to simulate the NIZK proof. At a first look it might
seem that the reduction needs to guess the entire ciphertext before setting up
the system parameter, but in fact we show that it is enough to guess the message
beforehand! Thus, we can use a complexity leveraging technique to get the above
advantage. See the full version [DHO16] for the complete proof. �

Access Control Encryption: Enforcing Information Flow with Cryptography 567

4.3 Polylog ACE Scheme

In this section, we present a construction of an ACE scheme for multiple iden-
tities based on sanitizable functional encryption. The idea of the construction
is the following: an encryption of a message m is a sFE encryption of the mes-
sage together with the senders identity i and a MAC of the message based on
the identity. Crucially, the encryption keys for all identities are generated in a
pseudorandom way from a master key, thus it is possible to check MACs for all
identities using a compact circuit. The sanitizer key is a sFE secret key for a
special function that checks that the MAC is correct for the claimed identity.
Then the sanitization consists of sanitizing the sFE ciphertext, and then using
the sanitizer key to check the MAC. The decryption key for identity j is a sFE
secret key for a function that checks that identity i in the ciphertext and iden-
tity j are allowed to communicate (and ignores the MAC). The function then
outputs the message iff the check goes through.

Construction 4. Let sFE = (Setup,Gen,Enc,San,Dec) be a sanitizable func-
tional encryption scheme. Let F1, F2 be pseudorandom functions. Then we can
construct an ACE scheme ACE = (Setup,Gen,Enc,San,Dec) defined by the fol-
lowing algorithms:

Setup: Let K ← {0, 1}κ be a key for the pseudorandom function F1. Run
(ppsFE,msksFE) ← sFE.Setup(1κ). Output the public parameter pp = ppsFE

and the master secret key msk = (msksFE,K)
Key Generation: Given the master secret key msk and an identity i, the

encryption, decryption and sanitizer key are computed as follows:
– eki ← F1(K, i)
– dki ← sFE.Gen(msksFE, fi)
– rk ← sFE.Gen(msksFE, frk)

where the functions fi and frk are defined as follows

Decryption function Sanitizer function

fi(m, j, t):
1. If P (j, i) = 1: output m;
2. Else output ⊥;

frk(m, j, t):
1. ekj = F1(K, j);
2. If t = F2(ekj , m): output 1;
3. Else output 0;

Encryption: On input a message m and an encryption key eki, compute t =
F2(eki,m) and output

c = sFE.Enc(ppsFE, (m, i, t))

Sanitizer: Given a ciphertext c and the sanitizer key rk = SKrk check the
MAC and output a sanitized FE ciphertext
1. c′ = sFE.San(ppsFE, c)
2. If sFE.Dec(SKrk, c′) = 1: output c′

3. Else output San(rk,Enc(ek0,⊥))

568 I. Damg̊ard et al.

Decryption: Given a ciphertext c′ and a decryption key dkj = SKj output

m′ = sFE.Dec(SKj , c
′)

Lemma 5. Construction 4 is a correct ACE scheme

Proof. Let P (i, j) = 1 for some i, j. Let c′ be a honest sanitization of a honest
generated encryption of message m under identity i:

c′ = San(rk,Enc(eki,m)) = sFE.San(ppsFE, sFE.Enc(ppsFE, (m, i, F2(eki,m))))

Given the decryption key dkj = SKj ← sFE.Gen(msk, fj). Then the correct-
ness property of the sFE scheme gives

Pr [Dec(dkj , c
′) = m] = Pr [sFE.Dec(SKj , c

′) = m] ≤ negl(κ)

�

Theorem 1. For any adversary A that breaks the No-Read Rule of Construc-
tion 4, there exists an adversary B for the IND-CPA security of the sanitizable
functional encryption scheme, such that the advantage of A is

advACE,A ≤ advsFE,B

Proof. Assume that any adversary wins the IND-CPA security game of the san-
itizable functional encryption (sFE) scheme with advantage at most ε. Assume
for contradiction that there is an adversary A that wins the ACE no-read game
with advantage greater than ε, then we can construct an adversary B that wins
the IND-CPA security game for the sFE scheme with advantage greater than ε.

B starts by generating K ← {0, 1}κ for some pseudorandom function F1.
Then B receives ppsFE from the challenger and forwards it as the ACE public
parameter to the adversary A. Adversary A then performs some oracle queries
to OG and OE to which B replies as follows:

– B receives (j, sen), then he sends ekj ← F1(K, j) to A.
– B receives (j, rec), then he makes an oracle query O(fj) to the challenger and

gets back SKj . B sends dkj = SKj to A.
– B receives (j, san), then he makes an oracle query O(frk) to the challenger

and gets back SKrk. B sends rk = SKrk to A.
– B receives (i,m), then he computes eki ← F1(K, i) and sends to A

c ← sFE.Enc(ppsFE, (m, i, F2(eki,m)))

Access Control Encryption: Enforcing Information Flow with Cryptography 569

After the oracle queries B receives messages m0,m1 and identities i0, i1 from
adversary A. Then B computes ekil ← F1(K, il) for l ∈ {0, 1} and sends msFE

0

and msFE
1 to the challenger, where msFE

l = (ml, il, F2(ekil ,ml)) for l ∈ {0, 1}.
Then the sFE challenger sends a ciphertext c′, which B forwards to A as the
ACE ciphertext. This is followed by a new round of oracle queries.

If the sFE challenger is in case b = 0, then c′ is generated as an sFE encryption
of message msFE

0 , and we are in the case b = 0 in the no-read game. Similar, if
the sFE challenger is in case b = 1, then we are in the case b = 1 in the no-read
game. Note that our adversary respects the rules of the IND-CPA game, since
frk(msFE

0) = frk(msFE
1) = 1 and fj(msFE

0) = fj(msFE
1) for all j such that SKj was

queried. This follows directly from the payload privacy (the function outputs ⊥)
and sender anonymity (msFE

0 = msFE
1) properties of the no-read rule. Thus, we

can conclude that if A wins the no-read game with non-negligible probability,
then B wins the IND-CPA security game for the sFE scheme. �

Theorem 2. For any adversary A that breaks the No-Write Rule of Construc-
tion 4, there exists an adversary B for the PRF security, an adversary C for
the sanitizer property of the sFE scheme, and an adversary D for the IND-CPA
security of the sFE scheme, such that the advantage of A is

advACE,A ≤ 3 · advPRF,B + advsFE,C + advsFE,D + 2−κ

Proof. This theorem is proven by presenting a series of hybrid games.

Hybrid 0. The no-write game for b = 1

Hybrid 1. As Hybrid 0, except that when the challenger receives a oracle request
(i, sen) he saves the identity: IS = IS ∪ i, and the encryption key eki ← F1(K, i).
When the challenger receives the challenge (c, i′) he uses the sFE master decryp-
tion to get

(m∗, i∗, t∗) ← sFE.MDec(msksFE, c)

If i∗ /∈ IS , then the challenger generates eki∗ honestly. Next, he checks that
t∗ = F2(eki∗ ,m∗). If the check goes through he computes the challenge response
as c∗ ← sFE.San(ppsFE, c), otherwise c∗ ← San(rk,Enc(ek0,⊥)).

Hybrid 2. As Hybrid 1, except that the encryption keys are chosen uniformly at
random: eki ←$ {0, 1}κ for all i, (note that eki∗ is also chosen at random).

Hybrid 3. As Hybrid 2, except that after receiving and master decrypting the
challenge, the challenger check whether i∗ ∈ IS . If this is the case the chal-
lenger checks the MAC t∗ as above, otherwise he compute the response as
c∗ ← San(rk,Enc(ek0,⊥)).

570 I. Damg̊ard et al.

Hybrid 4. As Hybrid 3, except that if the checks i∗ ∈ IS and t∗ = F2(eki∗ ,m∗)
go through, then the challenger computes the response as

c∗ ← sFE.San(ppsFE, sFE.Enc(ppsFE, (m∗, i∗, t∗)))

Hybrid 5. As Hybrid 4, except that the challenge response is computed as

c∗ = San(rk,Enc(eki′ , r))

where r ←$ M and rk ← Gen(msk, n + 1, san).

Hybrid 6. As Hybrid 5, except that the encryption keys are generated honestly:
eki ← F1(K, i) for all i. Observe, this is the no-write game for b = 0.

Now we show that each sequential pair of the hybrids are indistinguishable.

Claim 1. Hybrids 0 and 1 are identical.

Proof. This follows directly from the definition of the sanitization and sanitizer
key rk. �
Claim 2. For any adversary A that can distinguish Hybrid 1 and Hybrid 2, there
exists an adversary B for the security of PRF F1 such that the advantage of A
is advA ≤ advPRF,B .

Proof. Assume that any adversary can break the PRF security with advantage ε,
and assume for contradiction that we can distinguish the hybrids with advantage
greater than ε. Then we can construct an adversary B that breaks the PRF
security with advantage greater than ε.

B starts by creating the public parameters honestly and sends it to the
adversary. All the adversary oracle queries are answered as follows: whenever B
receives (i, sen) from the adversary, he sends i to the PRF challenger, receives
back yi, set eki := yi, and sends eki to the adversary. When B receives the
challenge (i,m) he ask the challenger for the encryption key (as before), and
encrypts m. The rest of adversary’s queries are answered honestly by using the
algorithms of the construction. When B receives (c, i′) from the adversary, he
master decrypts the ciphertext to get (m∗, i∗, t∗). If i∗ /∈ IS , then B creates
eki∗ by sending i∗ to the challenger. B concludes the game by forwarding the
adversary’s guess b′ to the challenger.

Observe that the if yi ← F1(K, i) then we are in Hybrid 1, and if yi is uniform
random, then we are in Hybrid 2. Thus, if adversary A can distinguish between
the hybrids, then B can break the constraint PRF property. �
Claim 3. For any adversary A that can distinguish Hybrid 2 and Hybrid 3, there
exists an adversary B′ for the security of PRF F2 such that the advantage of A

is advA ≤ advPRF,B′
+ 2−κ.

Access Control Encryption: Enforcing Information Flow with Cryptography 571

Proof. Assume that any adversary can break the PRF security with advantage
ε − 2−κ, and assume for contradiction that we can distinguish the hybrids with
advantage greater than ε. Then we can construct an adversary B′ that breaks
the PRF security with advantage greater than ε − 2−κ.

B′ starts by creating the public parameters and sending them to the adver-
sary. The adversary’s oracle queries are answered honestly by using the algo-
rithms of the construction. When C receives the challenge (c, i′) he master
decrypts the ciphertext to get (m∗, i∗, t∗). Then he sends m∗ to the challenger
and receives back t′. If t′ = t∗ then B′ guess that the challenger is using the
pseudorandom function F2, otherwise B′ guess that the challenger is using a
random function.

We evaluate now the advantage of B′ in the PRF game: Observe, if t′ is
generated using F2, then B′ outputs “PRF” with probability exactly ε. In the
case when t′ is generated using a random function, then it does not matter how
t∗ was created, and the probability that t′ = t∗ is 2−κ. Thus, the advantage of
adversary B′ is greater than ε − 2κ. �
Claim 4. For any adversary A that can distinguish Hybrid 3 and Hybrid 4, there
exists an adversary C for the sanitizer property of the sFE scheme such that the
advantage of A is advA ≤ advsFE,C .

Proof. Assume that any adversary wins the sanitizer game for the sFE scheme
with advantage ε, and assume for contradiction that we can distinguish the
hybrids with advantage greater than ε. Then we can construct an adversary C
that wins the sanitizer game with advantage greater than ε.

C starts by receiving the sFE system parameters from the challenger, and he
forwards the public parameters as the ACE public parameters to the adversary.
The adversary’s oracle queries are answered honestly by using the algorithms of
the construction, since C receives the sFE master secret key from the challenger.
When C receives the challenge (c, i′) he master decrypts the ciphertext to get
(m∗, i∗, t∗). Then he checks that i∗ ∈ IS and t∗ = F2(eki∗ ,m∗). If the check goes
through he sends c to the challenger and receives back a sFE sanitized ciphertext
c′. Thus, the challenge response is c∗ = c′. C concludes the game by forwarding
the adversary’s guess b′ to the challenger.

Observe, if c′ = sFE.San(ppsFE, c), then we are in Hybrid 3. On the other
hand, we are in Hybrid 4 if

c′ = sFE.San(ppsFE, sFE.Enc(ppsFE, sFE.MDec(msksFE, c)))

Thus, if adversary A can distinguish between the hybrids, then C can break
the sFE sanitizer property. �
Claim 5. For any adversary A that can distinguish Hybrid 4 and Hybrid 5, there
exists an adversary D for the IND-CPA security of the sFE scheme such that
the advantage of A is advA ≤ advsFE,D.

Proof. Assume that any adversary wins the IND-CPA game for the sFE scheme
with advantage ε, and assume for contradiction that we can distinguish the

572 I. Damg̊ard et al.

hybrids with advantage greater than ε. Then we can construct an adversary D
that wins the IND-CPA game with advantage greater than ε.

D start by receiving the sFE public parameters from the challenger and
forwards it to the challenger. The adversary’s oracle queries are answered by
sending secret key queries to the challenger, and otherwise using the algorithms
of the construction (see the proof of Theorem 1 for more details). When D
receives the challenge (c, i′) he master decrypts the ciphertext to get (m∗, i∗, t∗).
Then he checks that i∗ ∈ IS and t∗ = F2(eki∗ ,m∗). If the check goes through
he set m0 = (m∗, i∗, t∗), otherwise he sets m0 = (⊥, 0,⊥). Then he creates
m1 = (r, i′, F2(eki′ , r)), sends m0 and m1 to the challenger, and receives back
an sFE encryption c′. Next, D creates the response c∗ = sFE.San(ppsFE, c′). D
concludes the game by forwarding the adversary’s guess b′ to the challenger.

If c′ is an encryption of the message m0, then we are in Hybrid 4, and if it is an
encryption of m1, then we are in Hybrid 5. Thus, if adversary A can distinguish
between the hybrids, then D can break the sFE IND-CPA security. �
Claim 6. For any adversary A that can distinguish Hybrid 5 and Hybrid 6, there
exists an adversary B for the security of PRF F1 such that the advantage of A
is advA ≤ advPRF,B .

The proof follow the same structure as the proof for Claim 2.

From these claims we can conclude that for any adversary A that can distin-
guish Hybrid 0 and Hybrid 6, there exists an adversary B for the PRF security,
an adversary C for the sanitizer property of the sFE scheme, and an adversary
D for the IND-CPA security of the sFE scheme, such that the advantage of A is

advACE,A ≤ 3 · advPRF,B + advsFE,C + advsFE,D + 2−κ

�

A Standard Building Blocks

A.1 Pseudorandom Function

Definition 8 (PRF). We say F : {0, 1}κ×{0, 1}∗ → {0, 1}κ is a pseudorandom
function if for all PPT A

advA = 2 · |Pr[AOb(·)(1κ) = b] − 1/2| < negl(κ)

with O0 a uniform random function and O1 = FK .

Access Control Encryption: Enforcing Information Flow with Cryptography 573

A.2 Statistical Simulation-Sound Non-Interactive Zero-Knowledge
Proofs

The content of this subsection is taken almost verbatim from [GGH+13]. Let
L be a language and R a relation such that x ∈ L if and only if there exists a
witness w such that (x,w) ∈ R. A non-interactive proof system [BFM88] for a
relation R is defined by the following PPT algorithms

Setup: The Setup algorithm takes as input the security parameter κ and outputs
common reference string crs.

Prove: The Prove algorithm takes as input the common reference string crs, a
statement x, and a witness w, and outputs a proof π.

Verify: The Verify algorithm takes as input the common reference string crs,
a statement x, and a proof π. It outputs 1 if it accepts the proof, and 0
otherwise.

The non-interactive proof system must be complete, meaning that if R(x,w) = 1
and crs ← Setup(1κ) then

Verify(crs, x,Prove(crs, x, w)) = 1

Furthermore, the proof system must be statistical sound, meaning that no
(unbounded) adversary can convince a honest verifier of a false statement. More-
over, we define the following additional properties of a non-interactive proof
system.

Definition 9 (Computational Zero-Knowledge). A non-interactive proof
NIZK = (Setup,Prove,Verify) is computational zero-knowledge if there exists a
polynomial time simulator Sim = (Sim1,Sim2) such that for all non-uniform
polynomial time adversaries A we have for all x ∈ L that

Pr [crs ← Setup(1κ);π ← Prove(crs, x, w) : A(crs, x, π) = 1]
≈

Pr [(crs, τ) ← Sim1(1κ, x);π ← Sim2(crs, τ, x) : A(crs, x, π) = 1]

where crs is the common reference string, x is the statement, w is the witness,
π is the proof, and τ is the trapdoor.

Thus, the definition states that the proof do not reveal any information about
the witness to any bounded adversary. In the definition this is formalized by the
existence of two simulators, where Sim1 returns a simulated common reference
string together with a trapdoor that enables Sim2 to simulate proofs without
access to the witness.

574 I. Damg̊ard et al.

Definition 10 (Statistical Simulation-Soundness). A non-interactive proof
NIZK = (Setup,Prove,Verify) is statistical simulation-sound (SSS) if for all state-
ments x and all (unbounded) adversaries A we have that

Pr
[

(crs, τ) ← Sim1(1κ, x);π ← Sim2(crs, τ, x) :
∃(x′, π′) : x′ 	= x : Verify(crs, x′, π′) = 1 : x′ /∈ L

]

≤ psss

where psss = negl(κ) is negligible in the security parameter.

Thus, the definition states that it is not possible to convince a honest verifier
of a false statement even if the adversary is given a simulated proof.

Remark 1. If a proof system is statistical simulation-sound then it is also statis-
tical sound. Thus, we can upper bound the negligible probability of statistical
soundness by the negligible probability of the statistical simulation-soundness.

A.3 Indistinguishability Obfuscation

We use an indistinguishability obfuscator like the one proposed in [GGH+13]
such that C̄ ← iO(C) which takes any polynomial size circuit C and outputs an
obfuscated version C̄ that satisfies the following property.

Definition 11 (Indistinguishability Obfuscation). We say iO is an indis-
tinguishability obfuscator for a circuit class C if for all C0, C1 ∈ C such that
∀x : C0(x) = C1(x) and |C0| = |C1| it holds that:

1. ∀C ∈ C,∀x ∈ {0, 1}n, iO(C)(x) = C(x);
2. |iO(C)| = poly(λ|C|)
3. for all PPT A:

advA = 2 · |Pr[A(iO(C0)) = 1] − Pr[A(iO(C1)) = 1]| < negl(λ)

References

[BFM88] Blum, M., Feldman, P., Micali, S.: Non-interactive zero-knowledge and its
applications (extended abstract). In: Proceedings of the 20th Annual ACM
Symposium on Theory of Computing, May 2–4, 1988, Chicago, Illinois,
USA, pp. 103–112 (1988)

[Bib75] Biba, K.J.: Integrity considerations for secure computer systems. No. MTR-
3153-REV-1. MITRE Corp., Bedford, MA (1975)

[BL73] Bell, D.E., LaPadula, L.J.: Secure computer systems: Mathematical foun-
dations. Draft MTR, The MITRE Corporation, 2 (1973)

Access Control Encryption: Enforcing Information Flow with Cryptography 575

[BP03] Backes, M., Pfitzmann, B.: Intransitive non-interference for cryptographic
purpose. In: 2003 IEEE Symposium on Security and Privacy (S&P 2003),
11–14 May 2003, Berkeley, CA, USA, p. 140 (2003)

[BP04] Backes, M., Pfitzmann, B.: Computational probabilistic noninterference.
Int. J. Inf. Sec. 3(1), 42–60 (2004)

[BSW11] Boneh, D., Sahai, A., Waters, B.: Functional encryption: definitions and
challenges. In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 253–273.
Springer, Heidelberg (2011)

[DHO16] Damg̊ard, I., Haagh, H., Orlandi, C.: Access control encryption: enforcing
information flow with cryptography. Cryptology ePrint Archive, Report
2016/106 (2016). http://eprint.iacr.org/2016/106

[DMS15] Dodis, Y., Mironov, I., Stephens-Davidowitz, N.: Message transmission
with reverse firewalls—secure communication on corrupted machines. In:
Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS, vol. 9814, pp. 341–
372. Springer, Heidelberg (2016). doi:10.1007/978-3-662-53018-4 13

[FAL06] Frikken, K., Atallah, M., Li, J.: Attribute-based access control with hidden
policies and hidden credentials. IEEE Trans. Comput. 55(10), 1259–1270
(2006)

[FF15] Fehr, V., Fischlin, M.: Sanitizable signcryption: Sanitization over encrypted
data (full version). IACR Cryptology ePrint Archive, 2015:765 (2015)

[FFLW15] Ferrara, A.L., Fuchsbauer, G., Liu, B., Warinschi, B.: Policy privacy in
cryptographic access control. In: IEEE 28th Computer Security Founda-
tions Symposium, CSF 2015, Verona, Italy, 13–17 July, 2015, pp. 46–60
(2015)

[Gam85] El Gamal, T.: A public key cryptosystem and a signature scheme based on
discrete logarithms. IEEE Trans. Inform. Theory 31(4), 469–472 (1985)

[GGH+13] Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.: Can-
didate indistinguishability obfuscation and functional encryption for all
circuits. In: 54th Annual IEEE Symposium on Foundations of Computer
Science, FOCS 2013, 26–29 October 2013, Berkeley, CA, USA, pp. 40–49
(2013)

[GJJS04] Golle, P., Jakobsson, M., Juels, A., Syverson, P.: Universal re-encryption
for mixnets. In: Okamoto, T. (ed.) CT-RSA 2004. LNCS, vol. 2964, pp.
163–178. Springer, Heidelberg (2004). doi:10.1007/978-3-540-24660-2 14

[GPSW06] Goyal, V., Pandey, O., Sahai, A., Waters, B.: Attribute-based encryption
for fine-grained access control of encrypted data. In: Proceedings of the
13th ACM Conference on Computer and Communications Security, CCS
2006, Alexandria, VA, USA, October 30 - November 3, 2006, pp. 89–98
(2006)

[HKN05] Halevi, S., Karger, P.A., Naor, D.: Enforcing confinement in distributed
storage and a cryptographic model for access control. IACR Cryptology
ePrint Archive 2005:169 (2005)

[HLA02] Hopper, N.J., Langford, J., Ahn, L.: Provably secure steganography. In:
Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 77–92. Springer,
Heidelberg (2002). doi:10.1007/3-540-45708-9 6

[KSW13] Katz, J., Sahai, A., Waters, B.: Predicate encryption supporting disjunc-
tions, polynomial equations, and inner products. J. Cryptology 26(2), 191–
224 (2013)

http://eprint.iacr.org/2016/106
http://dx.doi.org/10.1007/978-3-662-53018-4_13
http://dx.doi.org/10.1007/978-3-540-24660-2_14
http://dx.doi.org/10.1007/3-540-45708-9_6

576 I. Damg̊ard et al.

[KTS07] Kapadia, A., Tsang, P.P., Smith, S.W.: Attribute-based publishing with
hidden credentials and hidden policies. In: Proceedings of the Network
and Distributed System Security Symposium, NDSS 2007, San Diego,
California, USA, 28th February - 2nd March 2007 (2007)

[MK11] Müller, S., Katzenbeisser, S.: Hiding the policy in cryptographic
access control. In: Meadows, C., Fernandez-Gago, C. (eds.) STM 2011.
LNCS, vol. 7170, pp. 90–105. Springer, Heidelberg (2012). doi:10.1007/
978-3-642-29963-6 8

[MS15] Mironov, I., Stephens-Davidowitz, N.: Cryptographic reverse firewalls. In:
Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9057, pp.
657–686. Springer, Heidelberg (2015). doi:10.1007/978-3-662-46803-6 22

[PR07] Prabhakaran, M., Rosulek, M.: Rerandomizable RCCA encryption. In:
Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 517–534. Springer,
Heidelberg (2007). doi:10.1007/978-3-540-74143-5 29

[RZB12] Raykova, M., Zhao, H., Bellovin, S.M.: Privacy enhanced access con-
trol for outsourced data sharing. In: Keromytis, A.D. (ed.) FC 2012.
LNCS, vol. 7397, pp. 223–238. Springer, Heidelberg (2012). doi:10.1007/
978-3-642-32946-3 17

http://dx.doi.org/10.1007/978-3-642-29963-6_8
http://dx.doi.org/10.1007/978-3-642-29963-6_8
http://dx.doi.org/10.1007/978-3-662-46803-6_22
http://dx.doi.org/10.1007/978-3-540-74143-5_29
http://dx.doi.org/10.1007/978-3-642-32946-3_17
http://dx.doi.org/10.1007/978-3-642-32946-3_17

Author Index

Alon, Bar I-307
Agrawal, Shashank II-269
Ananth, Prabhanjan II-3
Apon, Daniel II-299
Applebaum, Benny I-27

Baum, Carsten I-461
Ben-Sasson, Eli II-31
Bitansky, Nir I-57, II-391
Blocki, Jeremiah II-517
Bogdanov, Andrej II-471
Brakerski, Zvika I-57, II-330
Bun, Mark I-607, I-635

Canetti, Ran II-61
Cascudo, Ignacio I-204
Cash, David II-330
Chen, Yi-Hsiu I-607
Chen, Yilei II-61
Chen, Yu-Chi II-3
Chiesa, Alessandro II-31
Chung, Kai-Min II-3
Cohen, Aloni I-84

Dachman-Soled, Dana II-169
Damgård, Ivan I-204, II-547
Devadas, Srinivas I-262

Fan, Xiong II-299
Fiore, Dario I-108

Garg, Sanjam I-491, II-241, II-419
Genkin, Daniel I-336
Goyal, Rishab II-361
Guo, Siyao II-471
Gupta, Divya I-491

Haagh, Helene II-547
Hazay, Carmit I-367, I-400, I-521
Hofheinz, Dennis II-121, II-146
Holmgren, Justin II-61

Impagliazzo, Russell I-235
Ishai, Yuval I-336

Jafargholi, Zahra I-433
Jager, Tibor II-146
Jaiswal, Ragesh I-235

Kabanets, Valentine I-235
Kalai, Yael I-57, II-91
Kapron, Bruce M. I-235
King, Valerie I-235
Klein, Saleet I-84
Komargodski, Ilan I-139, II-471, II-485
Koppula, Venkata II-361
Kowalczyk, Lucas I-659

Lacerda, Felipe I-204
Li, Baiyu II-443
Lin, Huijia II-3
Lin, Wei-Kai II-3
Lindell, Yehuda I-554
Liu, Feng-Hao II-299

Malkin, Tal I-659
Maurer, Ueli I-3
Miao, Peihan I-491
Micciancio, Daniele II-443
Miles, Eric II-241
Mukherjee, Pratyay II-241

Naor, Moni II-485
Nielsen, Jesper Buus I-582
Nishimaki, Ryo II-391
Nitulescu, Anca I-108

Omri, Eran I-307
Orlandi, Claudio I-582, II-547
Orsini, Emmanuela I-461

Pandey, Omkant I-491
Paneth, Omer I-57, II-91
Passelègue, Alain II-391

Peikert, Chris II-217
Pietrzak, Krzysztof I-183
Polychroniadou, Antigoni I-367
Prabhakaran, Manoj II-269

Ranellucci, Samuel I-204
Rao, Vanishree II-121
Raykov, Pavel I-27
Raykova, Mariana II-61
Ren, Ling I-262
Renner, Renato I-3
Rupp, Andy II-146

Sahai, Amit II-241
Scholl, Peter I-461
Shiehian, Sina II-217
Skórski, Maciej I-159, I-183
Smart, Nigel P. I-554
Soria-Vazquez, Eduardo I-554
Spini, Gabriele I-286
Spooner, Nicholas II-31
Srinivasan, Akshayaram II-241, II-419
Steinke, Thomas I-635

Targhi, Ehsan Ebrahimi II-192
Tessaro, Stefano I-235
Tsabary, Rotem II-330

Ullman, Jonathan I-659
Unruh, Dominique II-192

Vadhan, Salil I-607
Vaikuntanathan, Vinod I-57
Venkitasubramaniam, Muthuramakrishnan

I-367, I-400

Waters, Brent II-361
Wee, Hoeteck II-330
Weiss, Mor I-336
Wichs, Daniel I-433, II-121, II-391

Yanai, Avishay I-521
Yogev, Eylon II-485
Yu, Ching-Hua II-269

Zémor, Gilles I-286
Zhandry, Mark I-659, II-241
Zhou, Hong-Sheng II-517

578 Author Index

	Preface
	TCC 2016-B Theory of Cryptography Conference
	Contents -- Part II
	Contents -- Part I
	Delegation and IP
	Delegating RAM Computations with Adaptive Soundness and Privacy
	1 Introduction
	1.1 Our Contributions in More Detail
	1.2 Applications
	1.3 On the Existence of IO
	1.4 Concurrent and Related Works
	1.5 Organization

	2 Overview
	2.1 Classical Complexity Leveraging
	2.2 Generalized Security Games
	2.3 Small-loss Complexity Leveraging
	2.4 Local Application
	2.5 The CCC+ Scheme and Its Nice Proof

	3 Abstract Proof
	3.1 Cryptographic Experiments and Games
	3.2 Generalized Cryptographic Games
	3.3 Small-loss Complexity Leveraging
	3.4 Nice Indistinguishability Proof

	4 Adaptive Delegation for RAM Computation
	4.1 Definition

	References

	Interactive Oracle Proofs
	1 Introduction
	1.1 Models of Proof Systems
	1.2 Compiling Proof Systems into Argument Systems
	1.3 Results
	1.4 Techniques

	2 Preliminaries
	2.1 Basic Notations
	2.2 Merkle Trees
	2.3 Non-interactive Random-Oracle Arguments

	3 Interactive Oracle Proofs
	3.1 Interactive Oracle Protocols
	3.2 Interactive Oracle Proof Systems

	4 State Restoration Attacks on Interactive Oracle Proofs
	5 From IOPs to Non-interactive Random-Oracle Arguments
	6 Analysis of the Transformation T
	A Extractability and Privacy of Merkle Trees
	A.1 Extractability
	A.2 Privacy

	References

	Adaptive Succinct Garbled RAM or: How to Delegate Your Database
	1 Introduction
	1.1 This Work
	1.2 Overview of the Construction

	2 Definitions
	3 c-Bounded Collision-Resistant Hash Functions
	4 Adaptively Puncturable Hash Functions
	5 Adaptively Secure Positional Accumulators
	6 Fixed-Transcript Garbling
	7 Fixed-Access Garbling
	8 Fixed-Address Garbling
	9 Full Garbling
	9.1 Oblivious RAMs with Strong Localized Randomness
	9.2 Full Garbling Construction

	10 Database Delegation
	References

	Delegating RAM Computations
	1 Introduction
	1.1 Our Results
	1.2 Previous Work
	1.3 Technical Overview

	2 Tools and Definitions
	2.1 Notation
	2.2 RAM Computation
	2.3 Hash Tree
	2.4 Delegation for RAM Computations
	2.5 Multi-prover Arguments for RAM Computations
	2.6 No-Signaling Multi-prover Arguments for RAM Computations

	3 Local Satisfiability
	3.1 A Formula Describing Non-Deterministic Computations
	3.2 Definition of Local Satisfiability
	3.3 No-Signaling Multi-prover Arguments for Local Satisfiability

	4 No-Signaling Multi-prover Arguments for RAM Computations
	4.1 Verifying RAM Computations via Local Satisfiability
	4.2 The Protocol

	References

	Public-Key Encryption
	Standard Security Does Not Imply Indistinguishability Under Selective Opening
	1 Introduction
	1.1 Our Techniques

	2 Preliminaries
	2.1 Puncturable Encryption Schemes

	3 Secret-Sharing Selective Opening Attack (SecShare-SOA)
	3.1 IND-SOA Implies SecShare-SOA

	4 CCA Secure, SOA Insecure Encryption
	4.1 The Scheme
	4.2 PKE is Not SecShare-SOA Secure
	4.3 PKE is Still IND-CCA Secure

	5 Extension to Selective Opening of Keys (SOA-K)
	5.1 A CCA Secure, SecShare-SOA-K Insecure Encryption

	6 Conclusions
	A IND-CCA Game with Random Challenge Messages
	References

	Public-Key Encryption with Simulation-Based Selective-Opening Security and Compact Ciphertexts
	1 Introduction
	2 Preliminaries
	2.1 Groups and Matrix Assumptions
	2.2 Selective-Opening Secure Encryption
	2.3 Selective Opening Security from Lossy Encryption

	3 Lossy Encryption from Matrix Rank Assumptions
	4 From MDDH Assumptions to Matrix Rank Assumptions
	5 From the BDDH Assumption to a Compact Matrix Rank Assumption
	References

	Towards Non-Black-Box Separations of Public Key Encryption and One Way Function
	1 Introduction
	1.1 Turing Reductions and the Difficulty of Ruling Them Out
	1.2 Necessity of the Restrictions
	1.3 Our Main Result
	1.4 Our Techniques
	1.5 Related Work

	2 Preliminaries and Background
	3 The Circuit-Oblivious Adversary Adv
	4 The Mapping
	5 Useful Distributions
	6 The AM Protocol
	References

	Post-Quantum Security of the Fujisaki-Okamoto and OAEP Transforms
	1 Introduction
	2 Preliminaries
	2.1 Security Definitions
	2.2 Quantum Accessible Random Oracles

	3 The Hybrid Scheme and Its Security
	4 Deferred Proofs
	4.1 Proof of Lemma 4
	4.2 Proof of Lemma 5
	4.3 Proof of Lemma 6

	5 A Variant of OAEP
	References

	Multi-key FHE from LWE, Revisited
	1 Introduction
	1.1 Our Results
	1.2 Technical Overview

	2 Preliminaries
	2.1 Cryptographic Definitions
	2.2 Learning with Errors
	2.3 Gadgets and Decomposition

	3 Large-Ciphertext Construction
	3.1 Extending Ciphertexts
	3.2 Homomorphic Operations
	3.3 Instantiating the Parameters

	4 Smaller-Ciphertext Construction
	4.1 Extending a Ciphertext to a New Key
	4.2 Instantiating the Parameters

	References

	Obfuscation and Multilinear Maps
	Secure Obfuscation in a Weak Multilinear Map Model
	1 Introduction
	1.1 Overview of GGH13
	1.2 Overview of the Model
	1.3 Intuition: Obfuscation Using an Explicit NC1 PRF
	1.4 Overview of the Security Proof
	1.5 Extensions

	2 The Model
	3 The Obfuscator
	4 Security of Our Obfuscator
	4.1 Our Main Theorem
	4.2 Further Discussion of Our Assumption

	5 Security in an Alternative Model
	5.1 A New Variant of the Schwartz-Zippel Lemma
	5.2 Security in the Alternative Model

	A Straddling Set Level Structure
	References

	Virtual Grey-Boxes Beyond Obfuscation: A Statistical Security Notion for Cryptographic Agents
	1 Introduction
	1.1 Technical Overview
	1.2 Related Work

	2 Preliminaries
	2.1 Concentrated Distributions

	3 Equivalence of Definitions
	3.1 Extensions: Limited Agent-Space and Resettable Tests

	4 Reductions and Compositions
	5 Applications
	A Preliminaries
	A.1 Agents
	A.2 Security Definitions

	References

	Attribute-Based Encryption
	Deniable Attribute Based Encryption for Branching Programs from LWE
	1 Introduction
	1.1 Our Contributions
	1.2 Our Approach
	1.3 Future Directions

	2 Preliminaries
	3 New Definitions and Tools
	3.1 Flexibly Bi-Deniable ABE: Syntax and Deniability Definition
	3.2 Attribute Based Bitranslucent Set Scheme
	3.3 Extended LWE and Our New Variant

	4 Flexibly Bi-Deniable Attribute-Based Encryption (ABE) for Branching Programs
	4.1 Encoding Schemes for Branching Programs
	4.2 Construction of Flexibly Bi-Deniable ABE for Branching Programs
	4.3 Parameter Setting
	4.4 From AB-BTS to Flexible Bi-Deniable ABE

	References

	Targeted Homomorphic Attribute-Based Encryption
	1 Introduction
	1.1 Our Results
	1.2 Our Techniques
	1.3 A More Formal Overview
	1.4 Other Related Work

	2 Targeted Homomorphic ABE
	3 Preliminaries
	3.1 Learning with Errors (LWE)
	3.2 The Gadget Matrix
	3.3 Trapdoors and Discrete Gaussians
	3.4 Homomorphic Evaluation
	3.5 Pseudorandom Functions

	4 A Single Target Homomorphic ABE Scheme
	4.1 Choice of Parameters
	4.2 Correctness
	4.3 Security

	5 A Multi Target Homomorphic ABE Scheme
	5.1 A Generalized Multi-key FHE
	5.2 Our Scheme
	5.3 Choice of Parameters
	5.4 Correctness
	5.5 Security

	A A Generic (Non-compact) Homomorphic ABE Construction
	References

	Semi-adaptive Security and Bundling Functionalities Made Generic and Easy
	1 Introduction
	1.1 Going from Selective to Semi-adaptive Security Generically
	1.2 Bundling Functionalities
	1.3 Encrypt Ahead Functional Encryption

	2 Preliminaries
	2.1 Garbled Circuits
	2.2 Public Key Encryption
	2.3 Identity-Based Encryption

	3 Functional Encryption
	3.1 Functional Encryption with Uniform Function and Message Space

	4 Selective to Semi-adaptive Security Generically
	4.1 Construction

	5 Bundling Functionalities
	5.1 Construction
	5.2 Security Proof

	References

	Functional Encryption
	From Cryptomania to Obfustopia Through Secret-Key Functional Encryption
	1 Introduction
	1.1 Our Contributions
	1.2 A Technical Overview
	1.3 A Closer Look into the Techniques

	2 Preliminaries
	2.1 Standard Computational Concepts
	2.2 Functional Encryption
	2.3 Indistinguishability Obfuscation
	2.4 Succinct Identity-Based Encryption

	3 Strong Exponentially-Efficient Indistinguishability Obfuscation
	3.1 SXIO from Single-Input SKFE
	3.2 The Construction of SXIO

	4 Yao's Garbled Circuits Are Decomposable
	4.1 Decomposable Garbling

	5 Single-Key Succinct PKFE from SXIO and PKE
	5.1 Weakly Succinct PKFE for Boolean Functions
	5.2 Weakly Succinct PKFE for Non-Boolean Functions
	5.3 Putting It All Together: From SKFE and PKE to IO

	6 Polynomially-Secure PKE from Secret-Key FE
	References

	Single-Key to Multi-Key Functional Encryption with Polynomial Loss
	1 Introduction
	1.1 Our Results
	1.2 Obtaining Compactness and Adaptivity in FE

	2 Our Techniques
	3 Preliminaries
	4 Functional Encryption: Security and Efficiency
	5 Our Transformation
	5.1 Correctness and Security

	6 Efficiency Analysis
	References

	Compactness vs Collusion Resistance in Functional Encryption
	1 Introduction
	1.1 Our Results and Techniques
	1.2 Other Related Work

	2 Background
	2.1 Functional Encryption
	2.2 Pseudorandom Generators

	3 The SUM Construction
	4 The PRODUCT Construction
	5 Compositions Using SUM and PRODUCT Constructions
	5.1 Iterated Squaring Composition
	5.2 Iterated Linear Composition
	5.3 On the Implications of Our Reductions

	A Proofs of Lemmas
	References

	Secret Sharing
	Threshold Secret Sharing Requires a Linear Size Alphabet
	1 Introduction
	1.1 Our Results
	1.2 Related Work

	2 Access Structures and Secret Sharing
	3 A Zero-Sum Game and Proof of Theorem2
	4 Limitations of the Game Relaxation
	5 Concluding Remarks
	A On the Tightness of Theorem2
	B Proof Sketch of Inequality (6)
	References

	How to Share a Secret, Infinitely
	1 Introduction
	1.1 Discussion
	1.2 Related Work
	1.3 Overview of Our Constructions and Techniques

	2 Model and Definitions
	2.1 Secret Sharing for Evolving Access Structures
	2.2 Warm-Up: Undirected s-t-Connectivity

	3 A Scheme for General Evolving Access Structures
	3.1 Efficiency Improvements

	4 An Efficient Scheme for Evolving 2-Threshold
	4.1 Generalization to Larger Domains of Secrets

	5 A Scheme for Evolving k-Threshold
	5.1 The Basic Scheme for Evolving k-Threshold
	5.2 Recursive Composition: Proof of Lemma 2
	5.3 Proof of Theorem 9 Assuming Lemma 2
	5.4 Generalization to Larger Domains of Secrets
	5.5 Linearity of the Scheme

	6 A Lower Bound
	7 The Equivalence Between Evolving 2-Threshold and Prefix Codes
	8 Further Work and Open Problems
	References

	New Models
	Designing Proof of Human-Work Puzzles for Cryptocurrency and Beyond
	1 Introduction
	1.1 Cryptocurrencies Meet AI: Proof of Human-Work Puzzles
	1.2 AI Meets Obfuscation: Constructing Proof of Human-Work Puzzles
	1.3 Related Work

	2 Preliminaries
	2.1 CAPTCHAs
	2.2 Universal Samplers

	3 Proof of Human-Work Puzzles
	3.1 Definitions
	3.2 Construction

	4 Application 1: HumanCoin
	4.1 Bitcoin Background
	4.2 HumanCoin

	5 Application 2: Password Protection
	5.1 Password Authentication Scheme
	5.2 Construction

	6 Future Challenges
	A Universal Samplers: Security Definition
	References

	Access Control Encryption: Enforcing Information Flow with Cryptography
	1 Introduction
	1.1 Access Control Encryption: The Problem it Solves
	1.2 Technical Overview
	1.3 Related Work

	2 Defining ACE
	3 Linear ACE from Standard Assumptions
	3.1 ACE for a Single Identity
	3.2 Construction of an ACE Scheme for Multiple Identities

	4 Polylogarithmic ACE from iO
	4.1 Sanitizable Functional Encryption Scheme -- Definition
	4.2 Sanitizable Functional Encryption Scheme -- Construction
	4.3 Polylog ACE Scheme

	A Standard Building Blocks
	A.1 Pseudorandom Function
	A.2 Statistical Simulation-Sound Non-Interactive Zero-Knowledge Proofs
	A.3 Indistinguishability Obfuscation

	References

	Author Index

