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Abstract. The notion of Zero Knowledge has driven the field of cryp-
tography since its conception over thirty years ago. It is well established
that two-message zero-knowledge protocols for NP do not exist, and
that four-message zero-knowledge arguments exist under the minimal
assumption of one-way functions. Resolving the precise round complex-
ity of zero-knowledge has been an outstanding open problem for far too
long.

In this work, we present a three-message zero-knowledge argu-
ment system with soundness against uniform polynomial-time cheating
provers. The main component in our construction is the recent delega-
tion protocol for RAM computations (Kalai and Paneth, TCC 2016B
and Brakerski, Holmgren and Kalai, ePrint 2016). Concretely, we rely
on a three-message variant of their protocol based on a key-less collision-
resistant hash functions secure against uniform adversaries as well as
other standard primitives.

More generally, beyond uniform provers, our protocol provides a nat-
ural and meaningful security guarantee against real-world adversaries,
which we formalize following Rogaway’s “human-ignorance” approach
(VIETCRYPT 2006): in a nutshell, we give an explicit uniform reduc-
tion from any adversary breaking the soundness of our protocol to finding
collisions in the underlying hash function.
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1 Introduction

The fascinating notion of zero knowledge, conceived over thirty years ago by
Goldwasser, Micali and Rackoff [GMR89], has been the source of a great many
ideas that revolutionized cryptography, including the simulation paradigm and
passive-to-active security transformations [GMW91,FLS99,Bar01,IKOS09].

A central and persistent open question in the theory of zero knowledge
is that of round complexity (also called message complexity), which refers to
the number of messages that the prover and the verifier must exchange in a
zero-knowledge protocol. The seminal work of Goldreich, Micali and Wigder-
son [GMW91] showed the first computational zero-knowledge proof system for
all of NP. Their protocol required a polynomial (in the security parameter) num-
ber of rounds (in order to achieve an exponentially small soundness error). Feige
and Shamir [FS89] show a four-round computational zero-knowledge argument
system [BCC88] for all of NPbased on algebraic assumptions.1 The assumption
was reduced to the minimal assumption of one-way functions by Bellare, Jakob-
sson and Yung [BJY97].

In terms of lower bounds, Goldreich and Oren [GO94] showed that three
rounds are necessary for non-trivial zero knowledge (arguments as well as proofs)
against non-uniform adversarial verifiers. Zero knowledge in the presence of veri-
fiers with non-uniform advice has by now become the gold standard as it is often
essential for secure composition (see, e.g., [GK96b]).

This state of affairs leaves behind a question that has been open for far too
long:

What is the minimal round-complexity of zero knowledge?

By the works of [FS89,BJY97], the answer is at most 4 while Goldreich and Oren
tell us that the answer is at least 3. So far, all constructions of three-message
computational zero-knowledge argument systems for NPwere based on strong
“auxiliary-input knowledge assumptions” [HT98,BP04b,CD09,BP12,BCC+14].
The plausibility of these assumptions was questioned already around their intro-
duction [HT98] and they were recently shown to be false assuming the existence
of indistinguishability obfuscation [BCPR14,BM14]. In summary, finding a three-
message zero-knowledge argument (under reasonable, falsifiable assumptions)
matching the Goldreich-Oren lower bound remains wide open.

Why is Three-Message Zero Knowledge so Interesting. Aside from its
significance to the theory of zero knowledge, the question of three-message zero
knowledge is also motivated by its connections to two fundamental notions in
cryptography, namely non-black-box security proofs and verifiable computation.

In order to make sense of this, let us tell you the one other piece of the zero
knowledge story. An important dimension of zero-knowledge proofs is whether
the zero-knowledge simulator treats the (adversarial) verifier as a black-box or
1 While zero-knowledge proofs [GMW91] provide soundness against computationally

unbounded cheating provers, zero-knowledge arguments [BCC88] are weaker in that
they provide soundness only against computationally bounded cheating provers.
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not. In all the protocols referenced above (with the exception of the ones based
on “auxiliary-input knowledge assumptions”), the simulator treats the verifier as
a black box. Goldreich and Krawczyk [GK96b] show that in any three-message
zero-knowledge protocol for a language outside BPP, the simulator must make
non-black-box use of the verifier’s code. In other words, any future three-message
zero-knowledge protocol has to “look different” from the ones referenced above.

The pioneering work of Barak [Bar01] demonstrated that barriers of this kind
can sometimes be circumvented via non-black-box simulation. However, Barak’s
technique, and all other non-black-box techniques developed thus far, have only
led to protocols with at least four messages [BP13,COP+14].

A bottleneck to reducing the round-complexity of Barak’s protocol is the
reliance on four-message universal arguments [BG08], a notion that enables fast
verification of NPcomputations. Accordingly, developments in round-efficient
systems for verifiable computation may very well lead to corresponding devel-
opments in three-message zero knowledge. In fact, strong forms of verifiable
computation have recently proven instrumental in producing novel non-black-
box simulation techniques, such as in the context of constant-round concurrent
protocols [CLP13b,CLP15]. It is natural, then, to wonder whether these and
related developments help us construct three-message zero-knowledge argument
systems.

On Uniform (and Bounded Non-uniform) Verifiers. Bitansky, Canetti,
Paneth and Rosen [BCPR14] study three-message protocols satisfying a relaxed
notion of zero knowledge. Instead of requiring the zero knowledge guarantee
against all non-uniform verifiers, they only consider verifiers that have an a-
priori bounded amount of non-uniformity (but may still run for an arbitrary
polynomial time). This includes, in particular, zero-knowledge against uniform
verifiers. They demonstrate a three-message zero-knowledge protocol against
verifiers with bounded non-uniformity based on the verifiable delegation protocol
of Kalai, Raz, and Rothblum [KRR14].

Notably, restricting attention to verifiers with bounded uniformity comes
with a great compromise. For once, the zero knowledge property is not pre-
served under sequential composition. More broadly, such protocols may not
provide a meaningful security guarantee against real-world adversaries. As a
concrete example, the zero knowledge property of the protocol in [BCPR13]
crucially relies on the fact that messages sent by the verifier can be simulated
by a Turing machine with a short description, shorter than the protocol’s com-
munication. However, this assumption may not hold for real-world adversaries,
which can certainly have access to arbitrarily long strings with no apparent short
description.

1.1 Our Results

In this work, we construct a three-message argument for NPthat is zero knowl-
edge against fully non-uniform verifiers and sound against provers with a-priori
bounded (polynomial amount of) non-uniformity. The main component in our
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construction is a verifiable delegation protocol for RAM computations recently
constructed by Kalai and Paneth [KP15] and improved by Brakerski, Holm-
gren and Kalai [BHK16]. Concretely, we rely on a three-message variant of
the [BHK16] protocol based on keyless collision-resistant hash functions secure
against adversaries with bounded non-uniformity and slightly super-polynomial
running time, and a (polynomially-secure) computational private information
retrieval (PIR) scheme, as well as other more standard cryptographic assump-
tions.

In contrast to the setting of verifiers with bounded non-uniformity, our proto-
col remains secure under sequential composition. Furthermore, our protocol pro-
vides a natural and meaningful security guarantee against real-world adversaries,
which we formalize following Rogaway’s “human ignorance approach” [Rog06],
described in greater detail below.

Rogaway’s “Human Ignorance” Approach and Real-World Security. A
more informative way of describing the soundness of our protocol is by the cor-
responding security reduction. We construct a zero-knowledge argument system,
meaning that the soundness of the protocol is computational. That is, any prover
that breaks the soundness of our protocol, regardless of how non-uniform it is,
can be uniformly turned into a collision finder for an underlying hash function.
In other words, there is a uniform algorithm called collision-finder who finds
collisions in the hash function given oracle access to the soundness-breaker.

In our protocol, the hash function must already be determined before the
first message is sent, thus requiring that we rely on a fixed (key-less) func-
tion as opposed to a function family as is normally the case when dealing
with collision-resistant hash functions. Clearly, a fixed hash function cannot be
collision-resistant against non-uniform adversaries (as such an adversary can
have a collision for the function hard-wired as part of its non-uniform advice).
However, as argued by Rogaway, a uniform reduction from finding collisions in
such a function to breaking the security of a protocol is sufficient to argue the
real-world security of the protocol. Briefly, the rationale is that an adversarial
algorithm that breaks the security of the protocol (with or without non-uniform
advice) can be turned into an explicit algorithm that finds collisions in the hash
function (with the same non-uniform advice). Indeed, for common constructions
of hash functions, such as SHA-3, collisions (while they surely exist) are simply
not known.
Our main result can accordingly be stated as follows.

Informal Theorem 1.1 [See Theorem 3.1]. Assuming the existence of a com-
putational private information retrieval (PIR) scheme, a circuit-private 1-hop
homomorphic encryption scheme, and a non-interactive commitment scheme,
there exists a three-message argument for NPwith a uniform reduction R
(described in the proof of Theorem 3.1) running in quasi-polynomial time, such
that, for every non-uniform PPTadversary A, if A breaks the soundness of the
protocol instantiated with a keyless hash function H, then RA outputs a col-
lision in H. The protocol is zero knowledge against non-uniform probabilistic
polynomial-time (PPT) verifiers.
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All the cryptographic primitives (except the key-less hash function) can be
instantiated from the learning with errors (LWE) assumption [Reg09].

Asymptotic Interpretations. As discussed above, implementing our protocol
with a key-less hash function such as SHA-3 guarantees security against “igno-
rant” adversaries that are unable to find hash collisions. This class of adversaries
may include all the adversaries we care about in practice, however, since func-
tions like SHA-3 do not provide any asymptotic security, we cannot use standard
asymptotic terminology to define the class of “SHA-ignorant adversaries”.

We formalize the security of our protocol and hash function in conventional
asymptotic terms. For any asymptotic hash family H = {Hn}n∈N

, we can accord-
ingly think of the class of adversaries that are H-ignorant. Trying to capture
more natural classes of adversaries, we focus on the subclass of adversaries with
bounded non-uniformity. It may be reasonable to assume that an asymptotic
keyless hash function is indeed collision-resistant against this class as long as
the corresponding non-uniform advice is shorter than the hash input length.
Therefore, the result for adversaries with bounded non-uniformity stated above
follows as a corollary of our explicit reduction.

The Global Common Random String Model and Resettable Security.
Another direct corollary of our result is that assuming (the standard notion
of) keyed collision-resistant hash-function families, there is a 3-message zero-
knowledge protocol that is sound against fully non-uniform provers in the global
(or non-programable) common random string model [Pas03,CDPW07] or in the
global hash model [CLP13a]. As observed in [Pas03], both the Goldreich-Oren
lower bound and the Goldreich-Krawczyk black-box lower bound hold even in
these models.

Another property of our protocol is that it can be made resettably sound
[BGGL01] via the (round-preserving) transformation of Barak, Goldreich,
Goldwasser and Lindell [BGGL01]. This holds for the three-message version of
the protocol (against provers with bounded uniformity, or alternatively, against
non-uniform provers in the global random string model).

1.2 Our Techniques

We now give an overview of the main ideas behind the new protocol.

Barak’s Protocol. As explained above, three-message zero-knowledge can only
be achieved via non-black-box simulation (and the Goldreich-Krawczyk lower
bound, in fact, holds even when considering uniform provers). Thus, a nat-
ural starting point is the non-black-box simulation technique of Barak [Bar01],
which we outline next. Following the Feige-Lapidot-Shamir paradigm [FLS99],
the prover and verifier in Barak’s protocol first execute a trapdoor generation
preamble: the verifier sends a key h for a collision-resistant hash function, the
prover responds with a commitment cmt, and then, the verifier sends a random
challenge u. The preamble defines a “trapdoor statement” asserting that there
exists a program Π such that cmt is a commitment to h(Π) and Π(cmt) outputs
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u. Intuitively, no cheating prover is able to commit to a code that predicts the
random u ahead of time, and thus cannot obtain a witness (a program Π) for
the trapdoor statement. In contrast, a simulator that is given the code of the
(malicious) verifier, can commit to it in the preamble and use it as the witness
for the trapdoor statement.

In the second stage of the protocol, the prover and the verifier engage in a
witness-indistinguishable (WI) protocol intended to convince the verifier that
either the real statement or the trapdoor statement is true, without revealing
to the verifier which is the case. Here, since the trapdoor statement corresponds
to a computation Π(cmt) that may be longer than the honest verifier’s run-
time, a standard WI system is insufficient. This difficulty is circumvented using
the 4-message universal arguments mentioned before, where verification time is
independent of the statement being proven.

Overall, Barak’s protocol is executed in six messages. In the first message,
the verifier sends a key for a collision-resistant hash function, which effectively
serves both as the first message (out of three) of the preamble and as the first
message (out of four) of the universal argument to come. Then, the two remaining
messages of the preamble are sent, following by the remaining three messages of
a WI universal argument.2

Squashing Barak’s Protocol. To achieve a three-message protocol, we will
squash Barak’s protocol. Using a keyless hash function, we can eliminate the
first verifier message (which, in Barak’s protocol, consists of a key for a collision-
resistant hash function). It is just this step that restricts our soundness guarantee
to only hold against provers that are unable to find collisions in the key-less hash
function (e.g., provers with bounded non-uniformity). This leaves us with a five-
message protocol, which is still worse than what is achievable using black-box
techniques. The bulk of the technical contribution of this work is devoted to the
task of squashing this protocol into only three messages.

Having eliminated the verifier’s first message, we are now left with a
2-message preamble followed by a 3-message WI universal argument. A nat-
ural next step is to attempt executing the preamble and the WI argument in
parallel. The main problem with this idea is that in Barak and Goldreich’s uni-
versal arguments, the statement must be fixed before the first prover message is
computed. However, in the protocol described, the trapdoor statement is only
fixed once the entire preamble has been executed.

We observe that, paradoxically, while the trapdoor statement is only fixed
after the preamble has been executed, the witness for this statement is fixed
before the protocol even starts! Indeed, the witness for the trapdoor statement
is simply the verifier’s code. It is therefore sufficient to replace Barak and
Goldreich’s universal argument with a 3-message verifiable delegation protocol
that has the following structure: the first prover message depends on the witness
alone, the verifier’s message fixes the statement, and the third and last prover
response includes the proof (which already depends on both the statement and
witness).
2 Barak’s original construction, in fact, consists of seven messages, but can be squashed

into six by using an appropriate WI system (see, e.g., [OV12]).
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Verifiable Memory Delegation. To obtain a verifiable delegation scheme with
the desired structure, we consider the notion of verifiable memory delegation
[CKLR11]. In memory delegation, the prover and verifier interact in two phases.
In the offline phase, the verifier sends a large memory string m to the prover,
saving only a short digest of m. In the online phase, the verifier sends a function
f to the prover and the prover responds with the output f(m) together with a
proof of correctness. The time to verify the proof is independent of the memory
size and the function running time.

In our setting, we think of the memory as the witness and of the delegated
function as verifying that its input is a valid witness for a specified statement
(encoded in the function). One important difference between the settings of ver-
ifiable memory delegation and ours is that in the former, the offline phase is
executed by the verifier, but in our setting, the prover may adversarially choose
any digest (which may not even correspond to any memory string). We there-
fore rely on memory delegation schemes that remain secure for an adversarially
chosen digest. We observe that the verifiable delegation protocols for RAM com-
putations of [KP15,BHK16] yield exactly such a memory delegation scheme, and
when implemented using a keyless hash function this delegation scheme is secure
against the class of adversaries that cannot find collisions in the hash function
(e.g. adversaries with bounded non-uniformity).

Fulfilling the above plan encounters additional hurdles. The main such hur-
dle is the fact that the verifiable delegation schemes of [KP15,BHK16] are not
witness-indistinguishable. We ensure witness-indistinguishability by leveraging
special properties of the Lapidot-Shamir WI protocol [LS90a,OV12], and 1-hop
homomorphic encryption [GHV10] (similar ideas were used in [BCPR14]).

1.3 More Related Work

We mention other related works on round-efficient zero knowledge.

On Zero-Knowledge Proof Systems. In this work we show a 3-message
argument system for NP. If one requires a proof system instead, with sound-
ness against unbounded provers, Goldreich and Kahan [GK96a] showed a
5-round (black-box) zero-knowledge proof system for NP. On the other hand,
Katz [Kat12], extending the result of Goldreich and Krawczyk [GK96b], shows
that, assuming the polynomial hierarchy does not collapse, zero-knowledge pro-
tocols for an NP-complete language require at least 5 rounds if the simulator
only makes black-box use of the verifier’s code. The question of 3-round and
4-round zero-knowledge proof systems for NP(necessarily with non-black-box
simulation) still remains wide open.

On Quasi-Polynomial Time Simulation. Barak and Pass [BP04a] show
a 1-round weak zero-knowledge argument for NPwith soundness against uni-
form polynomial-time provers, based on non-standard assumptions. (One of their
assumptions is the existence of a key-less collision-resistant hash function against
uniform adversaries with sub-exponential running time.) Their notion of weak
zero knowledge allows for a quasi-polynomial-time simulator. The fact that the
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simulator can run longer than (any possible) cheating prover means that the
simulator can (and does) break the soundness of the protocol. This has the
effect that the round-complexity lower bounds referenced above do not apply in
this model. Furthermore, such a protocol may leak information that cannot be
simulated in polynomial time (but only in quasi-polynomial time).

Organization. In Sect. 2, we give the basic definitions used throughout the
paper, including the modeling of adversaries and reductions, the definition of key-
less hash functions, and memory delegation. In Sect. 3, we describe and analyze
the new protocol.

2 Definitions and Tools

In this section, we define the adversarial model we work in, zero-knowledge
protocols against restricted classes of provers (e.g., ones with bounded non-
uniformity), as well as the tools used in our construction.

2.1 Modeling Adversaries, Reductions, and Non-uniformity

In this section, we recall the notion of (black-box) reductions, and address two
general classes of adversaries touched in this paper. Commonly in crypto, we
consider (uniform) polynomial time reductions between different non-uniform
polynomial-time adversaries. In this paper, we will sometimes consider more
general types of reductions, e.g. uniform reductions that run in slightly super-
polynomial time, as well as different classes of adversaries, e.g. uniform PPT
adversaries, or adversaries with bounded non-uniformity. In such cases, we will
be explicit about the concrete classes of reductions and adversaries involved.

Rogaway’s “Human Ignorance” Approach to Reductions. As discussed
in the introduction, the most informative way of describing the soundness of our
protocol is by the corresponding security reduction from collision-resistance to
soundness. Rogaway [Rog06] suggests a framework for formalizing such state-
ments. In this work, however, for the sake of simpler exposition, we do not fully
follow Rogaway’s framework; we explain the differences next.

While Rogaway’s approach gives a meaningful result even for non-asymptotic
hash functions such as SHA-3 in terms of concrete security, our security defi-
nitions are still formalized in asymptotic terms. We parameterize the security
definitions by the class of adversaries. Our main theorem states that for every
class of adversaries A, the soundness of the protocol against adversaries in A

can be reduced to the security of the hash function against the same class of
adversaries.

We note that the security of our protocol is based on other primitives except
keyless collision-resistant hash. In our theorems, we do not emphasize the reduc-
tion to these primitives; rather, we simply restrict our result only to classes
of adversaries that are unable to break the security of these primitives (most
naturally non-uniform polynomial time adversaries).
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Reductions. For two classes of adversaries R,A, we denote by R
A the class of

adversaries RA =
{RAn

n

}
n∈N

where Rn makes calls to An.3

The class P of non-uniform PPT adversaries. A general class of adver-
saries considered in this paper are non-uniform probabilistic polynomial-time
Turing machines, or in short non-uniform PPT, which we denote by P. Any such
adversary A ∈ P is modeled as a sequence {An}n∈N

, where n is the security
parameter, and where the description and running time of An are polynomially
bounded in n.

For a super-polynomial γ(n) = nω(1), we denote by Pγ the class of non-
uniform probabilistic adversaries whose description and running time are poly-
nomial in γ(n).

The class B of PPT adversaries with bounded non-uniformity. We shall
also consider the class Bβ ⊂ P of adversaries with bounded non-uniformity O(β).
Concretely, for a fixed function β(n) ≤ nO(1), the class Bβ consists of all non-
uniform adversaries A ∈ P whose description |An| is bounded by O(β(n)), but
their running time could be an arbitrary polynomial. Abusing notation, we denote
by B0 the class of uniform PPT adversaries.

For a super-polynomial function γ(n) = nω(1), we denote by Bβ,γ the class of
non-uniform probabilistic adversaries whose description is bounded by O(β(n))
(or the class of uniform probabilistic adversaries if β = 0) and running time is
polynomial in γ(n).

2.2 Zero Knowledge Arguments of Knowledge Against Provers
with Bounded Non-uniformity

The standard definition of zero knowledge [GMR89,Gol04] considers general non-
uniform provers (and verifiers). We define soundness (or argument of knowledge)
more generally against provers from a given class A ⊂ P. In particular, we will
be interested in strict subclasses of P, such as adversaries with bounded non-
uniformity.

In what follows, we denote by 〈P � V 〉 a protocol between two parties P
and V . For input w for P , and common input x, we denote by 〈P (w) � V 〉(x)
the output of V in the protocol. For honest verifiers this output will be a single
bit indicating acceptance (or rejection), whereas we assume (without loss of
generality) that malicious verifiers outputs their entire view. Throughout, we
assume that honest parties in all protocols are uniform PPT algorithms.

Definition 2.1. A protocol 〈P � V 〉 for an NP relation RL(x,w) is a zero
knowledge argument of knowledge against provers in class A ⊂ P if it satisfies:

1. Completeness: For any n ∈ N, x ∈ L ∩ {0, 1}n, w ∈ RL(x):

Pr [〈P (w) � V 〉(x) = 1] = 1.

3 In this paper, we shall explicitly address different classes of black-box reductions.
One can analogously define non-black-box reductions.



66 N. Bitansky et al.

2. Computational zero knowledge: For every non-uniform PPT verifier
V ∗ = {V ∗

n }n∈N
∈ P, there exists a (uniform) PPT simulator S such that:

{〈P (w) � V ∗
n (x)〉}(x,w)∈RL

|x|=n

≈c {S(V ∗
n , x)}(x,w)∈RL

|x|=n

.

3. Argument of knowledge: There is a uniform PPT extractor E, such that
for any noticeable function ε(n) = n−O(1), any prover P ∗ = {P ∗

n}n∈N
∈ A,

any security parameter n ∈ N, and any x ∈ {0, 1}n generated by P ∗
n prior to

the interaction:

if Pr [〈P ∗
n � V 〉(x) = 1] ≥ ε(n),

then Pr
[

w ← EP ∗
n (11/ε(n), x)

w /∈ RL(x)

]
= negl(n).

2.3 Collision-Resistant Hashing

We define the notion of a keyless hash function that is collision resistant against
a class A ⊆ Pγ of adversaries. In particular, the definition may be realizable only
for strict subclasses of Pγ , such as the class Bβ,γ of adversaries with bounded
non-uniformity and poly(γ(n)) running time (where the description length of the
adversary, namely β, will be shorter than the length of the input to the hash).

Definition 2.2. Let n < �(n) ≤ nO(1). A polynomial-time computable function

H = {Hn}n∈N
,Hn : {0, 1}�(n) → {0, 1}n,

is collision resistant against adversaries in A if for any A = {An}n∈N
∈ A, and

every n ∈ N

Pr
[

x, y ← An;
Hn(x) = Hn(y)

]
= negl(n).

where the probability is over the coins of An.

Instantiation. Common constructions of keyless hash functions such as SHA-3
have a fixed output length and therefore do not directly provide a candidate for
an asymptotic hash function as in Definition 2.2. One way to obtain candidates
for an asymptotic hash function is to start with a family H′ of (keyed) hash-
functions

H′ =
{H′

n,k

}
n∈N,k∈{0,1}n ,H′

n,k : {0, 1}�(n) → {0, 1}n,

and fix a uniform polynomial time algorithm K that given a security parameter
1n outputs a key k ∈ {0, 1}n. The keyless hash H is then given by

Hn = H′
n,K(1n).

For Hn to be a good candidate collision resistant hash against adversaries in
Bβ , we should make sure that β = o(�), the family H′ is collision resistant, and
the algorithm K behaves “sufficiently like a random oracle”. For example we
can choose an algorithm K that uses a hash function like SHA-3 (or a version
of it that can hash strings of arbitrary length) as a random oracle to output
sufficiently many random bits.
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2.4 Memory Delegation with Public Digest

A two-message memory delegation scheme [CKLR11] allows a client to delegate
a large memory to an untrusted server, saving only a short digest of the mem-
ory. The client then selects a deterministic computation to be executed over
the memory and delegates the computation to the server. The server responds
with the computation’s output as well as a short proof of correctness that can
be verified by the client in time that is independent of that of the delegated
computation and the size of the memory.

The notion of memory delegation we consider differs from that of [CKLR11]
in the following ways.

– Read-only computation. We do not consider computations that update the
memory. In particular, the digest of the delegated memory is computed once
and does not change as a result of the computations.

– Soundness. We define soundness more generally for servers from a given
class A ⊂ P. Whereas soundness is usually required against the class of all
non-uniform PPT adversaries P, we will also be interested in strict subclasses
of P, such as adversaries with bounded non-uniformity.

– Soundness for slightly super-polynomial computations. We require
soundness to hold even for delegated computations running in slightly super-
polynomial time.

– Public digest. We require that the digest of the memory can be computed
non-interactively, and can be made public and used by any client to delegate
computations over the same memory without compromising soundness. In
particular, the client is not required to save any secret state when delegating
the memory.
Importantly, we do not assume that the party computing the digest is honest.
We require that no efficient adversary can produce valid proofs for two different
outputs for the same computation with respect to the same digest, even if the
digest and computation are adversarially chosen.4

– First message independent of function being delegated. The first mes-
sage of the delegation scheme (denoted below by q) depends only on the secu-
rity parameter, and does not depend on the public digest or on the function
being delegated.

Concretely, a two-message memory delegation scheme with public digest consists
of four polynomial-time algorithms:

– d ← Digest(1n,D) is a deterministic algorithm that takes a security parameter
1n and memory D and outputs a digest d ∈ {0, 1}n.

– (q, τ) ← Query(1n) is a probabilistic algorithm that outputs a query q and a
secret state τ . We assume w.l.o.g that the secret state τ is simply the random
coins used by Query.

4 Soundness with respect to an adversarial digest can be defined in a stronger way, for
example, requiring knowledge of the memory corresponding to the digest. However,
this stronger requirement is not necessary for our application.
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– π ← Prov(1t,M,D, q) is a deterministic algorithm that takes a description
of a Turing machine M and a bound t on the running time of M(D) and
outputs a proof π ∈ {0, 1}n.

– b ← Ver(d, τ,M, t, y, π) is a deterministic algorithm that takes a computation
output y and outputs an acceptance bit b.

Definition 2.3 (Memory Delegation with Public Digest). Let γ(n) be a
super-polynomial function such that nω(1) = γ(n) < 2n. A two-message memory
delegation scheme (Digest,Query,Prov,Ver) for γ-time computations with public
digest against provers in a class A ⊂ P satisfies the following.

– Completeness. For every security parameter n ∈ N, every Turing machine
M and every memory D ∈ {0, 1}∗ such that M(D) outputs y within t ≤ 2n

steps:

Pr

⎡

⎣1 = Ver(d, τ,M, t, y, π)

∣
∣
∣
∣
∣
∣

d ← Digest(1n,D)
(q, τ) ← Query(1n)

π ← Prov(1t,M,D, q)

⎤

⎦ = 1.

– Soundness. For every adversary A = {An}n∈N
∈ A, there exists a negligible

function negl(·) such that for every security parameter n ∈ N,

Pr

⎡

⎢
⎢
⎣

t ≤ γ(n)
y 
= y′

1 = Ver(d, τ,M, t, y, π)
1 = Ver(d, τ,M, t, y′, π′)

∣
∣
∣
∣
∣
∣
∣
∣

(M, t, d, y, y′) ← An

(q, τ) ← Query(1n)
(π, π′) ← An(q)

⎤

⎥
⎥
⎦ = negl(n).

Instantiation. A memory delegation scheme satisfying Definition 2.3 can be
obtained based on the delegation schemes for RAM computations of Kalai and
Paneth [KP15] and that of Brakerski, Holmgren and Kalai [BHK16] with slight
adaptations.5 Below we describe the required adaptations. We focus on the
scheme of [BHK16] that can be instantiated based on polynomially-secure PIR.

– Remove public parameters. The scheme of [BHK16] has public parameters
that are generated honestly before the memory is delegated. These parameters
consist of the description of a hash function chosen randomly from a family
of collision-resistant hash functions. Here we remove the public parameters
and instead use a keyless collision resistant hash against adversaries from a
restricted class A. (E.g., A can be the class of adversaries with β-bounded
non-uniformity Bβ .) The security of our modified scheme against provers from
A follows the same argument as in [BHK16], who show a uniform black-box
reduction from a cheating prover to an adversary that finds collisions.

– Soundness for slightly super-polynomial computations. While the
scheme of [BHK16] has completeness even for exponentially long delegated

5 We note that we cannot use here the memory delegation scheme of [CKLR11,KRR14]
since the soundness of their scheme assumes that the digest is honestly generated.
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computations, soundness is only proved when the delegated computation
is polynomial time. Here we require soundness even against slightly super-
polynomial time γ = nω(1). In the [BHK16] reduction the running time of the
adversary breaking the hash is proportional to the running time of the dele-
gated computation. Therefore, soundness for slightly super-polynomial com-
putations follows by the same argument, assuming a slightly stronger collision-
resistance against adversaries from B

A
0,γ who can run in time γ and use A as

a black box.

Recall that B
A
0,γ is the class of uniform probabilistic machines running in time

γ(n)O(1) and given oracle access to an adversary in A. Brakerski, Holmgren and
Kalai prove that there is a γ(n)O(1)-time uniform reduction from breaking the
soundness of their scheme to breaking any underlying hash function, assuming
the existence of a (polynomially secure) computational PIR scheme.

Theorem 2.1 [BHK16]. For any A ⊂ P and (possibly super-polynomial) func-
tion γ(·), assuming collision-resistant hash functions against adversaries in B

A
0,γ

and a computational PIR scheme, there exists a two-message memory delegation
scheme for γ-time computations with public digest against provers in A.

2.5 Witness Indistinguishability with First-Message-Dependent
Instances

We define 3-message WI proofs of knowledge where the choice of statement
and witness may depend on the first message in the protocol. In particular, the
first message is generated independently of the statement and witness. Also,
while we do allow the content of the message to depend on the length � of the
statement, the message length should be of fixed to n (this allows to also deal
with statements of length � > n). The former requirement was formulated in
several previous works (see, e.g., [HV16]) and the latter requirement was defined
in [BCPR14].

Definition 2.4 (WIPOK with first-message-dependent instances). Let
〈P � V 〉 be a 3-message argument for L with messages (wi1,wi2,wi3); we say
that it is a WIPOK with first-message-dependent instances if it satisfies:

1. Completeness with first-message-dependent instances: For any
instance choosing function X, and �, n ∈ N,

Pr

⎡

⎢
⎢
⎢
⎢
⎣

V (x,wi1,wi2,wi3; r′) = 1

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

wi1 ← P (1n, �; r)
(x,w) ← X(wi1)

x ∈ L, w ∈ RL(x)
wi2 ← V (�,wi1; r′)

wi3 ← P (x,w,wi1,wi2; r)

⎤

⎥
⎥
⎥
⎥
⎦

= 1,

where r, r′ ← {0, 1}poly(n) are the randomness used by P and V .
The honest prover’s first message wi1 is of length n, independent of the length
� of the statement x.
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2. Adaptive witness-indistinguishability: For any polynomial �(·), non-
uniform PPT verifier V ∗ = {V ∗

n }n∈N
∈ P and all n ∈ N:

Pr

⎡

⎣V ∗
n (x,wi1,wi2,wi3) = b

∣
∣
∣
∣
∣
∣

wi1 ← P (1n, �(n); r)
x,w0, w1,wi2 ← V ∗

n (wi1)
wi3 ← P (x,wb,wi1,wi2; r)

⎤

⎦ ≤ 1
2

+ negl(n),

where b ← {0, 1}, r ← {0, 1}poly(n) is the randomness used by P , x ∈ L ∩
{0, 1}�(n) and w0, w1 ∈ RL(x).

3. Adaptive proof of knowledge: there is a uniform PPT extractor E such
that for any polynomial �(·), all large enough n ∈ N, and any deterministic
prover P ∗:

if Pr

⎡

⎢
⎢
⎣V (tr; r′) = 1

∣
∣
∣
∣
∣
∣
∣
∣

wi1 ← P ∗

wi2 ← V (�(n),wi1; r′)
x,wi3 ← P ∗(wi1,wi2)
tr = (x,wi1,wi2,wi3)

⎤

⎥
⎥
⎦ ≥ ε,

then Pr

⎡

⎢
⎢
⎣

V (tr; r′) = 1
w ← EP ∗

(11/ε, tr)
w /∈ RL(x)

∣
∣
∣
∣
∣
∣
∣
∣

wi1 ← P ∗

wi2 ← V (�(n),wi1; r′)
x,wi3 ← P ∗(wi1,wi2)
tr = (x,wi1,wi2,wi3)

⎤

⎥
⎥
⎦ ≤ negl(n),

where x ∈ {0, 1}�(n), and r′ ← {0, 1}poly(n) is the randomness used by V .

Instantiation. Protocols with first-message-dependent instances follow directly
from the WIPOK protocol constructed in [BCPR14], assuming ZAPs and non-
interactive commitments (there, the first message is taken from a fixed distrib-
ution that is completely independent of the instance).

Next, we sketch how such a protocol can be constructed without ZAPs, but
assuming keyless collision-resistant hash functions, thus collapsing to an argu-
ment of knowledge against adversaries that cannot break the hash (which will
anyhow be the class of interest in our zero-knowledge protocol in Sect. 3).

The Lapidot-Shamir protocol. As observed in [OV12], the Lapidot-Shamir
variant of the 3-message (honest verifier) zero-knowledge protocol for Hamil-
tonicity [LS90a] is such that the first and second messages only depend on the
size of the instance |x| = �, but not on the instance and witness themselves.
The protocol, in particular, supports instances up to size � that depend on the
prover’s first message. However, the size of the first message wi1 in the protocol
is |wi1| > �. We, on the other hand, would like to allow the instance x to be of
an arbitrary polynomial size in |wi1|, and in particular such that |wi1| < �.

We now sketch a simple transformation from any such protocol where, in
addition, the verifier’s message is independent of the first prover message, into a
protocol that satisfies the required first-message dependence of instances. Indeed,
the verifier message in the Lapidot-Shamir protocol is simply a uniformly random
string, and hence the transformation can be applied here.
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The Transformation. Let �(n) > n be any polynomial function and let H be
a keyless collision-resistant hash function from {0, 1}�(n) to {0, 1}n. In the new
protocol (Pnew, Vnew), the prover computes the first message mes1 for instances of
length �(n). Then, rather than sending mes1 in the clear, the prover Pnew sends
y = Hn(mes1) ∈ {0, 1}n. The verifier proceeds as in the previous protocol (P, V )
(note that mes1 is not required for it to compute mes2). Finally the prover Pnew

answers as in the original protocol, and also sends mes1 in the clear. The verifier
Vnew accepts, if it would in the original protocol and mes1 is a preimage of y
under Hn.

We first note that now the size of the instance � can be chosen to be an
arbitrary polynomial in the length n = |wi1| of the first WI message. In addition,
we note that the protocol is still WI, as the view of the verifier Vnew in the new
protocol can be perfectly simulated from the view of the verifier V in the old
protocol, by hashing the first message on its own.

Finally, we observe that any prover P ∗
new that convinces the verifier in the

new protocol of accepting with probability ε, can be transformed into a prover
P ∗ that convinces the verifier of the original protocol, or to a collision-finder.
Indeed, the prover P ∗ would first run P ∗

new until the last message, i.e., until it
obtains a valid preimage mes1 of y. Then it would proceed interacting with V
using mes1 as its first message, and using P ∗

new to emulate the third message. By
the collision resistance of H the prover P ∗

new indeed cannot make the verifier Vnew

accept with respect to two different perimages mes1,mes′1, except with negligible
probability. Thus the prover P ∗ convinces V with probability ε − negl(n).

2.6 1-Hop Homomorphic Encryption

A 1-hop homomorphic encryption scheme [GHV10] allows a pair of parties to
securely evaluate a function as follows: the first party encrypts an input, the
second party homomorphically evaluates a function on the ciphertext, and the
first party decrypts the evaluation result. (We do not require any compactness
of post-evaluation ciphertexts.)

Definition 2.5. A scheme (Enc,Eval,Dec), where Enc,Eval are probabilistic and
Dec is deterministic, is a semantically-secure, circuit-private, 1-hop homomor-
phic encryption scheme if it satisfies the following properties:

– Perfect correctness: For any n ∈ N, x ∈ {0, 1}n and circuit C:

Pr

⎡

⎣
(ct, sk) ← Enc(x)
ĉt ← Eval(ct, C)
Decsk(ĉt) = C(x)

⎤

⎦ = 1.

where the probability is over the coin tosses of Enc and Eval.
– Semantic security: For any non-uniform PPT A = {An}n∈N

∈ P, every
n ∈ N, and any pair of inputs x0, x1 ∈ {0, 1}poly(n) of equal length,

Pr
b←{0,1}

(ct,·)←Enc(xb)

[An(ct) = b] ≤ 1
2

+ negl(n).
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– Circuit privacy: The randomized evaluation procedure, Eval, should not leak
information on the input circuit C. This should hold even for malformed
ciphertexts. Formally, let E(x) = Supp(Enc(x)) be the set of all legal encryp-
tions of x, let En = ∪x∈{0,1}nE(x) be the set legal encryptions for strings of
length n, and let Cn be the set of all circuits on n input bits.
There exists a (possibly unbounded) simulator S1hop such that:

{C,Eval(c, C)} n∈N,C∈Cn

x∈{0,1}n,c∈E(x)
≈c

{
C,S1hop(c, C(x), 1|C|)

}
n∈N,C∈Cn

x∈{0,1}n,c∈E(x)

{C,Eval(c, C)} n∈N

C∈Cn,c/∈En

≈c

{
C,S1hop(c,⊥, 1|C|)

}
n∈N

C∈Cn,c/∈En

.

Instantiation. 1-hop homomorphic encryption schemes can be instantiated
based on any two-message two-party computation protocol secure against semi-
honest adversaries; in particular, using Yao’s garbled circuits and an appropri-
ate 2-message oblivious transfer protocol, which can be based on the Decisional
Diffie-Hellman assumption, the Quadratic Residuosity assumption, or the learn-
ing with errors assumption [Yao86,GHV10,NP01,AIR01,PVW08,HK12].

3 The Protocol

In this section, we construct a 3-message ZK argument of knowledge based on
2-message memory delegation schemes. More precisely, we show that for any
class of adversaries A ⊆ P, given a delegation scheme that is sound against B

A
1 ,

the protocol is an argument of knowledge against A. For simplicity we focus on
classes A that are closed under uniform reductions; namely B

A
1 ⊆ A. These will

indeed capture the adversary classes of interest for this work. We start by listing
the ingredients used in the protocol, as well as introducing relevant notation.

Ingredients and notation:

– A two-message memory delegation scheme (Digest,Query,Prov,Ver) for
γ-bounded computations, sound against provers in A ⊆ P, for a class A closed
under uniform reductions as in Definition 2.3.

– A semantically secure and circuit-private, 1-hop homomorphic encryption
scheme (Enc,Eval,Dec) as in Definition 2.5.

– A 3-message WIPOK for NPwith first-message-dependent instances as in Def-
inition 2.4. We denote its messages by (wi1,wi2,wi3).

– A non-interactive perfectly-binding commitment scheme Com.
– For some wi1, cmt, denote by Mwi1,cmt a Turing machine that given memory

D = V ∗ parses V ∗ as a Turing machine, runs V ∗ on input (wi1, cmt), parses
the result as (u,wi2, q, ĉtτ ), and outputs u.

– Denote by Vparam a circuit that has the string param hard-coded and operates
as follows. Given as input a verification state τ for the delegation scheme:

• parse param = (wi1, cmt, q, u, d, t, π),
• return 1 (“accept”) if either of the following occurs:
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∗ the delegation verifier accepts: Ver(d, τ,Mwi1,cmt, t, u, π) = 1,
∗ the query is inconsistent: q 
= Query(1n; τ).

In words, Vparam, given the verification state τ , first verifies the proof π that
“Mwi1,cmt(D) = (u, · · · )” where D is the database corresponding to the digest
d. In addition, it verifies that q is truly consistent with the coins τ . If the
query is consistent, but the proof is rejected Vparam also rejects.

– Denote by 1 a circuit of the same size as Vparam that always returns 1.

We now describe the protocol in Fig. 1.

Theorem 3.1. Given a 2-message memory delegation scheme for γ-bounded
computations sound against provers in A, a semantically-secure, circuit-private,

Fig. 1. A 3-message ZK argument of knowledge against prover in A.
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1-hop homomorphic encryption scheme, a 3-message WIPOK with first-
message-dependent instances, and a non-interactive perfectly-binding commit-
ment scheme. The corresponding Protocol 1 (Fig. 1) is a zero-knowledge argu-
ment of knowledge against provers in A.

Overview of proof. For simplicity, let us focus on showing that the protocol
is sound and zero knowledge. (Showing it is an argument of knowledge follows
a similar reasoning.) We start with soundness. Assuming that x /∈ L, in order
to pass the WIPOK with respect to an evaluated cipher ĉt that decrypts to 1,
the prover must know a digest d ∈ {0, 1}n, a time bound t ≤ γ(n), and proof
π ∈ {0, 1}n, such that Vparam(τ) = 1. This, by definition, means that (d, t, π) are
such that the delegation verifier Ver is convinced that the digest d corresponds to
a machine V ∗ such that V ∗(wi1, cmt) = u. Intuitively, this implies that the prover
managed to commit to a program that predicts the random string u before it was
ever sent, which is unlikely. Formally, we show that such a prover can be used to
break the underlying delegation scheme. Here we will also rely on the semantic
security of the encryption scheme to claim that the encrypted verification state
τ is hiding. Since the delegation scheme is sound against provers in A, we shall
only get soundness against such provers.

To show ZK, we construct a non-black-box simulator following the simulator
of Barak [Bar01]. At high-level, the simulator uses the code of the (malicious)
verifier V ∗ as the memory for the delegation scheme, and completes the WIPOK
using the trapdoor branch Ψ2 of the statement Ψ = Ψ1 ∨Ψ2. The trapdoor witness
is basically (d, t, π), where d is the digest corresponding to V ∗, t ≈ |V ∗| and π
is the corresponding delegation proof that V ∗(wi1, cmt) = u, which is now true
by definition. By the perfect completeness of the delegation scheme, we know
that as long as the verifier honestly encrypts some randomness τ as the private
state, and gives a query q that is consistent with τ , the delegation verifier Ver
will accept the corresponding proof. Thus, the circuit privacy of homomorphic
evaluation (which holds also if the verifier produces a malformed ciphertext)
would guarantee indistinguishability from a real proof, where the prover actually
evaluates the constant 1 circuit.

A detailed proof follows. We first prove in Sect. 3.1 that the protocol is an argu-
ment of knowledge. Then we prove in Sect. 3.2 that the protocol is zero knowl-
edge.

3.1 Proving that the Protocol Is an Argument of Knowledge

In this section, we show that the protocol is an argument of knowledge against
provers in A.

Proposition 3.1. Protocol 1 (Fig. 1) is an argument of knowledge against
provers in A.

Proof. We show that there exists a uniform PPT extractor E ∈ B1 and a uniform
PPT reduction R ∈ B1, such that for any prover P ∗ = {P ∗

n}n∈N
∈ A that
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generates xn ∈ {0, 1}n and convinces V of accepting xn with non-negligible
probability ε(n), one of the following holds:

– EP ∗
n (11/ε(n), xn) outputs w ∈ RL(xn) with probability ε(n)2/4 − negl(n),6 or

– RP ∗
n breaks the soundness of the delegation scheme with probability n−O(1).

We start by describing the extractor. Throughout the description (and following
proof), we will often omit n, when it is clear from the context.

The witness extractor EP ∗
n (11/ε(n), xn) operates as follows:

1. Derives from P ∗ a new prover P ∗
wi for the WIPOK as follows. P ∗

wi emu-
lates the role of P ∗ in the WIPOK; in particular, it would (honestly)
sample (τ, (sk, ctτ ), u) on its own to compute the second verifier message
(wi2, q, ctτ , u) that P ∗ receives.

2. Chooses the random coins r for the new prover P ∗
wi, and samples a transcript

tr = (Ψ,wi1,wi2,wi3) of an execution with the honest WIPOK verifier Vwi.
3. Applies the WIPOK extractor Ewi on the transcript tr, with oracle access to

P ∗
wi, and extraction parameter 2/ε. That is, computes w ← EP ∗

wi(r)
wi (12/ε, tr).

4. Outputs w.

Our strategy will be to show the required reduction R, such that if the extrac-
tor fails to extract with the required probability, then the reduction breaks the
underlying delegation scheme. Thus from hereon, we assume that for some notice-
able function η(n) = n−O(1), with probability at most ε2/4 − η the extracted
witness w is in RL(x). Rather than already describing the reduction R, we shall
first establish several claims regarding the extraction procedure and the conse-
quences of extraction failure. These will motivate our concrete construction of
the reduction R.

We start by noting that an execution of P ∗
wi(r) with the honest WIPOK verifier

Vwi induces a perfectly emulated execution of P ∗ with the honest verifier V .
Thus, we know that V , and in particular Vwi, accepts in such an execution with
probability ε(n) ≥ n−O(1).

Good coins r. We say that random coins r for P ∗
wi are good if with probability

at least ε/2 over the coins of the WIPOK verifier Vwi, the induced execution of
P ∗ with V is such that the zero-knowledge verifier V accepts. By a standard
averaging argument, at least an (ε/2)-fraction of the coins r for P ∗

wi are good.
Recall that every execution of Ewi induces a choice r for P ∗

wi, a WIPOK
transcript tr = (Ψ,wi1,wi2,wi3), and values (cmt, q, u, ctτ , ĉt) exchanged in
the induced interaction between the zero-knowledge prover P ∗ and the zero-
knowledge verifier V . These values, in turn, determine the formula

Ψ = Ψ1(x) ∨ Ψ2(wi1, cmt, q, u, ctτ , ĉt).

6 We note that the extraction probability can then be amplified to 1 − negl(n) by
standard repetition.
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We next claim that for any good r, such an extraction procedure outputs a
witness for Ψ and simultaneously the homomorphic evaluation result ĉt decrypts
to one (under the secret key sk sampled together with ctτ ), with non-negligible
probability.

Claim 3.2 (Extraction for good r). For any good r for P ∗
wi, it holds that w

satisfies the induced statement Ψ and Decsk(ĉt) = 1 with probability ε(n)/2 −
negl(n) over a transcript tr, and coins for Ewi.

Proof of Claim 3.2. Fix some good coins r. Since the coins r are good, the
WIPOK verifier Vwi is convinced by P ∗

wi with probability at least ε/2, mean-
ing that Vwi accepts and in addition Decsk(ĉt) = 1. We claim that when this
occurs then, except with probability negl(n), the extractor Ewi, also outputs a
valid witness w for Ψ . This follows directly from the extraction guarantee of the
WIPOK. ��

Now, relying on the fact that overall the extractor fails to output a witness for
x, we deduce that with non-negligible probability, the extracted witness satisfies
the trapdoor statement Ψ2.

Claim 3.3 (Extracting a trapdoor witness). In a random execution of
the extractor, the extracted witness w satisfies the trapdoor statement, namely
Ψ2(wi1, cmt, q, u, ctτ , ĉt), and in addition Decsk(ĉt) = 1, with probability at least
η(n) − negl(n) over the choice of r for P ∗

wi, a transcript tr, and coins for Ewi.

Proof of Claim 3.3. First, by the (ε/2)-density of good r’s and Claim 3.2, we
deduce that in a random execution the extracted w satisfies the statement Ψ =
Ψ1 ∨ Ψ2, and in addition Decsk(ĉt) = 1, with probability at least ε2/4 − negl(n).
Combining this with the fact that w ∈ RL(x) with probability at most ε2/4−η,
the claim follows. ��

Next, recall that by the definition of Ψ2, whenever w is a witness for Ψ2, it
holds that

w = (d, π, t, rcmt) :

d, π ∈ {0, 1}n, t ≤ γ(n)
ĉt = Eval(Vparam, ctτ )
param = (wi1, cmt, q, u, d, t, π)
cmt = Com(d, t; rcmt)

.

Furthermore, by the definition of Vparam and the perfect completeness of the
1-hop homomorphic encryption,

Decsk(ĉt) = Vparam(τ) = Ver(d, τ,Mwi1,cmt, t, u, π).

We can thus deduce that, with probability η, the witness w = (d, π, t, rcmt)
extracted by E is such that: (a) Ver(d, τ,Mwi1,cmt, t, u, π) = 1, and (b) cmt =
Com(d, t; rcmt).

An equivalent experiment that hides the secret verification state τ .
We now consider an augmented extraction procedure Eaug ∈ B1 that behaves
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exactly as the original extractor E , except that, when P ∗
wi emulates P ∗, it does

not sample an encryption ctτ of the secret verification state τ , but rather it
samples an encryption ct0 of 0|τ |. We claim that in this alternative experiment,
the above two conditions (a) and (b) still hold with the same probability up to
a negligible difference.

Claim 3.4 (Convincing probability in alternative experiment). With
probability η − negl(n), the witness w = (d, π, t, rcmt) extracted by Eaug is such
that:
(a) Ver(d, τ,Mwi1,cmt, t, u, π) = 1, and (b) cmt = Com(d, t; rcmt).

Proof sketch of Claim 3.4. This claim follows from the semantic security of
the 1-hop homomorphic encryption scheme. Indeed, if the above was not the
case, we can distinguish between an encryption of τ and one of 0|τ |. For this,
note that the first experiment with ctτ (respectively, the second with ct0) can
be perfectly emulated given τ and the ciphertext ctτ (respectively, ct0), and in
addition the above two conditions (a) and (b) can be tested efficiently. ��
The reduction R to the soundness of delegation. We are now ready to
describe the reduction R that breaks the soundness of the delegation scheme.
In what follows, we view the randomness r for P ∗

wi as split into r = (r1, τ, u, r2),
where r1 is any randomness used to generate the first prover message (wi1, cmt),
τ is the randomness for Query and u is the random string both used to emulate
the second verifier message, and r2 are any additional random coins used by P ∗

wi.
The reduction RP ∗

n (11/ε(n), xn) breaks the delegation scheme as follows:7

1. Samples r∗ = (r∗
1 , τ

∗, u∗, r∗
2) uniformly at random.

2. Runs EP ∗
aug(1

1/ε, x) using r∗ as the randomness for Pwi. Let (cmt∗,wi∗1) be the
corresponding first prover message (which is completely determined by the
choice of r∗

1), and let w∗ = (d∗, π∗, t∗, r∗
cmt) be the witness output by the

extractor.
3. Samples u, u′ ← {0, 1}n uniformly at random.
4. Declares d∗ as the digest, Mwi∗1 ,cmt∗ as the machine to be evaluated over the

memory, t∗ the bound on its running time, and (u, u′) as the two outputs for
the attack.

5. Given a delegation query q, R generates two proofs π and π′ for u and u′

respectively as follows:
(a) Samples r = (r∗

1 ,⊥, u, r2) and r′ = (r∗
1 ,⊥, u′, r′

2), where in both r∗
1 is the

same randomness sampled before, (u, u′) are the random strings sampled
before, and (r2, r′

2) are uniformly random strings.
(b) Runs EP ∗

aug(1
1/ε, x) once with respect to r and another time with respect

to r′, with one exception—the prover P ∗
wi constructed by EP ∗

aug does not
emulate on its own the delegation query in the verifier’s message, but

7 Here we give the reduction (11/ε(n), xn) for the sake of simplicity and clarity of
exposition. Recall that xn is generated by P ∗

n . Also, ε can be approximated by
sampling. Thus the reduction can (uniformly) obtain these two inputs from P ∗.
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rather it uses the external query q that R is given. The two executions of
EP ∗
aug then produce witnesses w = (d, π, t, rcmt) and w′ = (d′, π′, t′, r′

cmt).
(c) Output (π, π′).

We first note that the running time of R is polynomial in n and in the running of
Eaug, which is in turn polynomial in the running time of P ∗ and in 1/ε(n) = nO(1).
Thus it is overall polynomial in n.

To complete the proof, we show that R breaks the scheme with noticeable prob-
ability.

Claim 3.5. u 
= u′ and π and π′ both convince the delegation verifier with
probability Ω(η(n)5).

Proof of Claim 3.5. Throughout, let us denote by G the event that the witness
w = (d, π, t, rcmt) extracted by Eaug is such that: (a) Ver(d, τ,Mwi1,cmt, t, u, π) =
1, and (b) cmt = Com(d, t; rcmt). We will call r∗

1 good1, if with probability η/2
(over all other randomness), G occurs. Then by Claim 3.4 and averaging, with
probability η/2 − negl(n) over a choice of a random r∗

1 , it is good1. Next, for
a fixed r∗

1 and τ , we will say that τ is r∗
1-good, if with probability η/4 over a

choice of random (u, r∗
2), G0 occurs. Then, by averaging, for any good1 r∗

1 , with
probability η/4 − negl(n) over a choice of a random τ , it is r∗

1-good.
We are now ready to lower bound the probability that R breaks the delegation

scheme. This is based on the following assertions:

1. In Step 1, with probability η/2 − negl(n), R samples a good1 r∗
1 .

2. Conditioned on r∗
1 being good1:

(a) In Step 2, with probability η/2, G occurs. In particular, the extracted
(d∗, t∗, r∗

cmt) are valid in the sense that cmt∗ = Com(d∗, t∗; r∗
cmt), cmt∗ is

the commitment generated in the first prover message (determined by the
choice of r∗

1).
(b) In Step 5, with probability η/4 − negl(n), the coins τ chosen by the del-

egation Query algorithm (inducing the query q) are r∗
1-good.

(c) Conditioned on the coins τ of Query being r∗
1-good:

i. In Step 5, with probability η/4, the event G occurs. Thus
the extracted (d, t, rcmt, π) are valid in the sense that cmt∗ =
Com(d, t; rcmt), as well as Ver(d, τ,Mwi∗1 ,cmt∗ , t, u, π) = 1. Recall that
(wi∗1, cmt∗) are generated in the first prover message (and are deter-
mined by the choice of r∗

1).
ii. The same holds independently for the second random output u′.

3. In Step 3, with probability 1 − 2−n, the outputs u, u′ sampled by R are
distinct.

4. If cmt∗ = Com(d∗, t∗; r∗
cmt) = Com(d, t; rcmt) = Com(d′, t′; r′

cmt), then (d, t) =
(d′, t′) = (d∗, t∗).

The first two assertions follow directly from the definitions and averaging argu-
ments made above. The third assertion follows from the collision probability of
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two random strings of length n. The last assertion follows from the fact that the
commitment Com is perfectly binding.

It is left to note that if all of the above occur, then R manages to produce
accepting proofs (π, π′) for two different outcomes (u, u′) with respect to the
same digest d∗ and machine Mwi∗1 ,cmt∗ ; thus, it breaks soundness. This happens
with probability

(η

2
− negl(n)

)
· η

2
·
(η

4
− negl(n)

)
·
(η

4

)2

− 2−n = Ω(η5).

This completes the proof of Claim 3.5. ��
This completes the proof of Proposition 3.1.

3.2 Proving that the Protocol Is Zero Knowledge

In this section, we prove

Proposition 3.2. Protocol 1 (Fig. 1) is ZK against non-uniform PPT verifiers.

Proof. We describe a universal ZK simulator S that given the code of any non-
uniform PPT V ∗ = {V ∗

n }n∈N
, a polynomial bound t(n) = nO(1) on its running

time (or more precisely the time required for a universal machine to run it), and
x ∈ L, simulates the view of V . We shall assume V ∗ is deterministic; this is
w.l.o.g as we can always sample random coins for V ∗ and hardwire them into
its non-uniform description. Throughout, we often omit the security parameter
n when clear from the context.

The simulator S(V ∗
n , t(n), x), where |x| = n, operates as follows:

1. Generates the first message (wi1, cmt) as follows:
(a) Samples a first message wi1 ∈ {0, 1}n of the WIPOK.
(b) Computes a digest d = Digest(1n, V ∗) of the verifier’s code.
(c) Computes a commitment cmt = Com(d, t; rcmt) to the digest d and V ∗’s

running time t, using random coins rcmt ← {0, 1}n. Here t is interpreted
as string in {0, 1}log γ(n). This is possible, for all large enough n, as t(n) =
nO(1) � nω(1) = γ(n).

2. Runs the verifier to obtain (wi2, q, u, ctτ ) ← V ∗(wi1, cmt).
3. Computes the third message (ĉt,wi3) as follows:

(a) Computes a proof π = Prov(1t,Mwi1,cmt, V
∗, q) that the digested code of

V ∗ outputs u.
(b) Samples ĉt ← Eval(Vparam, ctτ ), for param = (wi1, cmt, q, u, d, t, π).
(c) Computes the third WIPOK message wi3 for the statement Ψ = Ψ1(x) ∨

Ψ2(wi1, cmt, q, u, ctτ , ĉt) given by:

{

∃w

∣
∣
∣
∣
∣

(x,w)
∈ RL

}
∨

{

∃d, π, rcmt ∈ {0, 1}n

t ≤ γ(n)

∣
∣
∣
∣
∣

ĉt = Eval(Vparam, ctτ )
param = (wi1, cmt, q, u, d, t, π)
cmt = Com(d, t; rcmt)

}

,

using the witness (d, π, rcmt, t) for the trapdoor statement Ψ2.
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(d) Outputs the view (wi1, cmt, ĉt,wi3) of V ∗.

We now show that the view generated by S is computationally indistinguish-
able from the view of V ∗ in an execution with the honest prover P . We do this
by exhibiting a sequence of hybrids.

Hybrid 1: The view (wi1, cmt, ĉt,wi3) is generated by S.

Hybrid 2: Instead of generating wi3 using the witness (d, π, rcmt, t) for Ψ2, it
is generated using a witness w for Ψ1 = {x ∈ L}. By the adaptive witness-
indistinguishability of the WIPOK system, this hybrid is computationally indis-
tinguishable from Hybrid 1.

Hybrid 3: Instead of generating cmt as a commitment cmt = Com(d, t; rcmt) to
(d, t), it is generated as a commitment to 0n+log γ(n). Note that in this hybrid
the commitment’s randomness rcmt is not used anywhere, but in the generation
of cmt. Thus, by the computational hiding of the commitment, this hybrid is
computationally indistinguishable from Hybrid 2.

Hybrid 4: The view (wi1, cmt, ĉt,wi3) is generated in an interaction of V ∗ with
the honest prover P . The difference from Hybrid 3 is in that ĉt is sampled from
Eval(1, ctτ ) instead of Eval(Vparam, ctτ ). First, note that by the perfect complete-
ness of the delegation scheme, for any τ ∈ {0, 1}n, Vparam(τ) = 1(τ) = 1. Indeed,
by definition we know that

Mwi1,cmt(V ∗) = V ∗(wi1, cmt)[1] = u,

and this output is produced after at most t steps. Thus, assuming that q =
Query(1n; τ), the delegation verifier accepts; namely, Ver(d, τ,Mwi1,cmt, t, u, π) =
1, and by definition Vparam(τ) = 1. Also, if q 
= Query(1n; τ), then Vparam(τ) = 1
by definition.

By the circuit privacy of the 1-hop homomorphic encryption, the above guar-
antees indistinguishability whenever ctτ is a well-formed ciphertext since

Eval(Vparam, ctτ ) ≈c S1hop(ctτ ,Vparam(τ), |Vparam|) ≡
S1hop(ctτ ,1(τ), |1|) ≈c Eval(1, ctτ ).

Also, for any malformed ciphertext ct∗ it holds that

Eval(Vparam, ct∗) ≈c S1hop(ct∗,⊥, |Vparam|) ≡ S1hop(ct∗,⊥, |1|) ≈c Eval(1, ct∗).

It follows that Hybrid 4 is computationally indistinguishable from Hybrid 3.

This completes the proof of Proposition 3.2.
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[BCC88] Brassard, G., Chaum, D., Crépeau, C.: Minimum disclosure proofs of
knowledge. J. Comput. Syst. Sci. 37(2), 156–189 (1988)

[BCC+14] Bitansky, N., Canetti, R., Chiesa, A., Goldwasser, S., Lin, H., Rubinstein,
A., Tromer, E.: The hunting of the SNARK. IACR Cryptology ePrint
Archive, 2014:580 (2014)

[BCPR13] Bitansky, N., Canetti, R., Paneth, O., Rosen, A.: More on the impossibility
of virtual-black-box obfuscation with auxiliary input. IACR Cryptology
ePrint Archive, 2013:701 (2013)

[BCPR14] Bitansky, N., Canetti, R., Paneth, O., Rosen, A.: On the existence of
extractable one-way functions. In: Symposium on Theory of Computing,
STOC 2014, New York, NY, USA, May 31–June 03 2014, pp. 505–514
(2014)

[BG08] Barak, B., Goldreich, O.: Universal arguments and their applications.
SIAM J. Comput. 38(5), 1661–1694 (2008)

[BGGL01] Barak, B., Goldreich, O., Goldwasser, S., Lindell, Y.: Resettably-sound
zero-knowledge and its applications. In: FOCS, pp. 116–125 (2001)

[BHK16] Brakerski, Z., Holmgren, J., Kalai, Y., Non-interactive ram, batch np del-
egation from any pir. Cryptology ePrint Archive, Report 2016/459 (2016).
http://eprint.iacr.org/

[BJY97] Bellare, M., Jakobsson, M., Yung, M.: Round-optimal zero-knowledge argu-
ments based on any one-way function. In: Fumy, W. (ed.) EUROCRYPT
1997. LNCS, vol. 1233, pp. 280–305. Springer, Heidelberg (1997). doi:10.
1007/3-540-69053-0 20

[BM14] Brzuska, C., Mittelbach, A.: Indistinguishability obfuscation versus multi-
bit point obfuscation with auxiliary input. In: Sarkar, P., Iwata, T. (eds.)
ASIACRYPT 2014. LNCS, vol. 8874, pp. 142–161. Springer, Heidelberg
(2014). doi:10.1007/978-3-662-45608-8 8

[BP04a] Barak, B., Pass, R.: On the possibility of one-message weak zero-
knowledge. In: Naor, M. (ed.) TCC 2004. LNCS, vol. 2951, pp. 121–132.
Springer, Heidelberg (2004). doi:10.1007/978-3-540-24638-1 7

[BP04b] Bellare, M., Palacio, A.: The knowledge-of-exponent assumptions and
3-round zero-knowledge protocols. In: Franklin, M. (ed.) CRYPTO 2004.
LNCS, vol. 3152, pp. 273–289. Springer, Heidelberg (2004). doi:10.1007/
978-3-540-28628-8 17

[BP12] Bitansky, N., Paneth, O.: From the impossibility of obfuscation to a new
non-black-box simulation technique. In: FOCS (2012)

[BP13] Bitansky, N., Paneth, O.: On the impossibility of approximate obfuscation
and applications to resettable cryptography. In: STOC, pp. 241–250 (2013)

[CD09] Canetti, R., Dakdouk, R.R.: Towards a theory of extractable functions.
In: Reingold, O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 595–613. Springer,
Heidelberg (2009). doi:10.1007/978-3-642-00457-5 35

[CDPW07] Canetti, R., Dodis, Y., Pass, R., Walfish, S.: Universally composable secu-
rity with global setup. In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392,
pp. 61–85. Springer, Heidelberg (2007). doi:10.1007/978-3-540-70936-7 4

http://dx.doi.org/10.1007/3-540-44987-6_8
http://eprint.iacr.org/
http://dx.doi.org/10.1007/3-540-69053-0_20
http://dx.doi.org/10.1007/3-540-69053-0_20
http://dx.doi.org/10.1007/978-3-662-45608-8_8
http://dx.doi.org/10.1007/978-3-540-24638-1_7
http://dx.doi.org/10.1007/978-3-540-28628-8_17
http://dx.doi.org/10.1007/978-3-540-28628-8_17
http://dx.doi.org/10.1007/978-3-642-00457-5_35
http://dx.doi.org/10.1007/978-3-540-70936-7_4


82 N. Bitansky et al.

[CKLR11] Chung, K.-M., Kalai, Y.T., Liu, F.-H., Raz, R.: Memory delegation. In:
Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 151–168. Springer,
Heidelberg (2011). doi:10.1007/978-3-642-22792-9 9

[CLP13a] Canetti, R., Lin, H., Paneth, O.: Public-coin concurrent zero-knowledge in
the global hash model. In: Sahai, A. (ed.) TCC 2013. LNCS, vol. 7785, pp.
80–99. Springer, Heidelberg (2013). doi:10.1007/978-3-642-36594-2 5

[CLP13b] Chung, K.-M., Lin, H., Pass, R.: Constant-round concurrent zero knowl-
edge from p-certificates. In: FOCS (2013)

[CLP15] Chung, K.-M., Lin, H., Pass, R.: Constant-round concurrent zero-
knowledge from indistinguishability obfuscation. In: Gennaro, R., Rob-
shaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9215, pp. 287–307. Springer,
Heidelberg (2015). doi:10.1007/978-3-662-47989-6 14

[COP+14] Chung, K.-M., Ostrovsky, R., Pass, R., Venkitasubramaniam, M., Visconti,
I.: 4-round resettably-sound zero knowledge. In: Lindell, Y. (ed.) TCC
2014. LNCS, vol. 8349, pp. 192–216. Springer, Heidelberg (2014). doi:10.
1007/978-3-642-54242-8 9

[FLS99] Feige, U., Lapidot, D., Shamir, A.: Multiple noninteractive zero knowledge
proofs under general assumptions. SIAM J. Comput. 29(1), 1–28 (1999)

[FS89] Feige, U., Shamir, A.: Zero knowledge proofs of knowledge in two rounds.
In: Brassard, G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 526–544.
Springer, Heidelberg (1990). doi:10.1007/0-387-34805-0 46

[GHV10] Gentry, C., Halevi, S., Vaikuntanathan, V.: i-Hop homomorphic encryption
and rerandomizable yao circuits. In: CRYPTO, pp. 155–172 (2010)

[GK96a] Goldreich, O., Kahan, A.: How to construct constant-round zero-knowledge
proof systems for NP. J. Cryptol. 9(3), 167–190 (1996)

[GK96b] Goldreich, O., Krawczyk, H.: On the composition of zero-knowledge proof
systems. SIAM J. Comput. 25(1), 169–192 (1996)

[GMR89] Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of inter-
active proof systems. SIAM J. Comput. 18(1), 186–208 (1989)

[GMW91] Goldreich, O., Micali, S., Wigderson, A.: Proofs that yield nothing but
their validity for all languages in NP have zero-knowledge proof systems.
J. ACM 38(3), 691–729 (1991)

[GO94] Goldreich, O., Oren, Y.: Definitions and properties of zero-knowledge proof
systems. J. Cryptol. 7(1), 1–32 (1994)

[Gol04] Goldreich, O.: Foundations of Cryptography: Basic Applications, vol. 2.
Cambridge University Press, New York (2004)

[HK12] Halevi, S., Kalai, Y.T.: Smooth projective hashing and two-message obliv-
ious transfer. J. Cryptol. 25(1), 158–193 (2012)

[HT98] Hada, S., Tanaka, T.: On the existence of 3-round zero-knowledge proto-
cols. In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS, vol. 1462, pp. 408–423.
Springer, Heidelberg (1998). doi:10.1007/BFb0055744

[HV16] Hazay, C., Venkitasubramaniam, M.: On the power of secure two-party
computation. Cryptology ePrint Archive, Report 2016/074 (2016). http://
eprint.iacr.org/

[IKOS09] Ishai, Y., Kushilevitz, E., Ostrovsky, R., Sahai, A.: Zero-knowledge proofs
from secure multiparty computation. SIAM J. Comput. 39(3), 1121–1152
(2009)

[Kat12] Katz, J.: Which languages have 4-round zero-knowledge proofs? J. Cryptol.
25(1), 41–56 (2012)

[KP15] Kalai, Y.T., Paneth, O.: Delegating ram computations. Cryptology ePrint
Archive, Report 2015/957 (2015). http://eprint.iacr.org/

http://dx.doi.org/10.1007/978-3-642-22792-9_9
http://dx.doi.org/10.1007/978-3-642-36594-2_5
http://dx.doi.org/10.1007/978-3-662-47989-6_14
http://dx.doi.org/10.1007/978-3-642-54242-8_9
http://dx.doi.org/10.1007/978-3-642-54242-8_9
http://dx.doi.org/10.1007/0-387-34805-0_46
http://dx.doi.org/10.1007/BFb0055744
http://eprint.iacr.org/
http://eprint.iacr.org/
http://eprint.iacr.org/


3-Message Zero Knowledge Against Human Ignorance 83

[KRR14] Kalai, Y.T., Raz, R., Rothblum, R.D.: How to delegate computations: the
power of no-signaling proofs. In: Symposium on Theory of Computing,
STOC 2014, New York, NY, USA, May 31–June 03 2014, pp. 485–494
(2014)

[LS90a] Lapidot, D., Shamir, A.: Publicly verifiable non-interactive zero-knowledge
proofs. In: Menezes, A.J., Vanstone, S.A. (eds.) CRYPTO 1990.
LNCS, vol. 537, pp. 353–365. Springer, Heidelberg (1991). doi:10.1007/
3-540-38424-3 26

[NP01] Naor, M., Pinkas, B.: Efficient oblivious transfer protocols. In: SODA, pp.
448–457 (2001)

[OV12] Ostrovsky, R., Visconti, I.: Simultaneous resettability from collision resis-
tance. Electronic Colloquium on Computational Complexity (ECCC)
(2012)

[Pas03] Pass, R.: Simulation in quasi-polynomial time, and its application to proto-
col composition. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656,
pp. 160–176. Springer, Heidelberg (2003). doi:10.1007/3-540-39200-9 10

[PVW08] Peikert, C., Vaikuntanathan, V., Waters, B.: A framework for efficient
and composable oblivious transfer. In: Wagner, D. (ed.) CRYPTO 2008.
LNCS, vol. 5157, pp. 554–571. Springer, Heidelberg (2008). doi:10.1007/
978-3-540-85174-5 31

[Reg09] Regev, O.: On lattices, learning with errors, random linear codes, and
cryptography. J. ACM 56(6), 34.1–34.40 (2009)

[Rog06] Rogaway, P.: Formalizing human ignorance. In: Nguyen, P.Q. (ed.) VIET-
CRYPT 2006. LNCS, vol. 4341, pp. 211–228. Springer, Heidelberg (2006).
doi:10.1007/11958239 14

[Yao86] Yao, A.C.-C.: How to generate and exchange secrets (extended abstract).
In: FOCS, pp. 162–167 (1986)

http://dx.doi.org/10.1007/3-540-38424-3_26
http://dx.doi.org/10.1007/3-540-38424-3_26
http://dx.doi.org/10.1007/3-540-39200-9_10
http://dx.doi.org/10.1007/978-3-540-85174-5_31
http://dx.doi.org/10.1007/978-3-540-85174-5_31
http://dx.doi.org/10.1007/11958239_14

	3-Message Zero Knowledge Against Human Ignorance
	1 Introduction
	1.1 Our Results
	1.2 Our Techniques
	1.3 More Related Work

	2 Definitions and Tools
	2.1 Modeling Adversaries, Reductions, and Non-uniformity
	2.2 Zero Knowledge Arguments of Knowledge Against Provers with Bounded Non-uniformity
	2.3 Collision-Resistant Hashing
	2.4 Memory Delegation with Public Digest
	2.5 Witness Indistinguishability with First-Message-Dependent Instances
	2.6 1-Hop Homomorphic Encryption

	3 The Protocol
	3.1 Proving that the Protocol Is an Argument of Knowledge
	3.2 Proving that the Protocol Is Zero Knowledge

	References


