
Martin Hirt
Adam Smith (Eds.)

 123

LN
CS

 9
98

5

14th International Conference, TCC 2016-B
Beijing, China, October 31 – November 3, 2016
Proceedings, Part I

Theory
of Cryptography

Lecture Notes in Computer Science 9985

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Zurich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbrücken, Germany

More information about this series at http://www.springer.com/series/7410

http://www.springer.com/series/7410

Martin Hirt • Adam Smith (Eds.)

Theory
of Cryptography
14th International Conference, TCC 2016-B
Beijing, China, October 31 – November 3, 2016
Proceedings, Part I

123

Editors
Martin Hirt
Department of Computer Science
ETH Zurich
Zurich
Switzerland

Adam Smith
Pennsylvania State University
University Park, PA
USA

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-662-53640-7 ISBN 978-3-662-53641-4 (eBook)
DOI 10.1007/978-3-662-53641-4

Library of Congress Control Number: 2016954934

LNCS Sublibrary: SL4 – Security and Cryptology

© International Association for Cryptologic Research 2016
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer-Verlag GmbH Germany
The registered company address is: Heidelberger Platz 3, 14197 Berlin, Germany

Preface

The 14th Theory of Cryptography Conference (TCC 2016-B) was held October 31 to
November 3, 2016, at the Beijing Friendship Hotel in Beijing, China. It was sponsored
by the International Association for Cryptographic Research (IACR) and organized in
cooperation with State Key Laboratory of Information Security at the Institute of
Information Engineering of the Chinese Academy of Sciences. The general chair was
Dongdai Lin, and the honorary chair was Andrew Chi-Chih Yao.

The conference received 113 submissions, of which the Program Committee (PC)
selected 45 for presentation (with three pairs of papers sharing a single presentation slot
per pair). Of these, there were four whose authors were all students at the time of
submission. The committee selected “Simulating Auxiliary Inputs, Revisited” byMaciej
Skórski for the Best Student Paper award. Each submission was reviewed by at least
three PC members, often more. The 25 PC members, all top researchers in our field,
were helped by 154 external reviewers, who were consulted when appropriate. These
proceedings consist of the revised version of the 45 accepted papers. The revisions were
not reviewed, and the authors bear full responsibility for the content of their papers.

As in previous years, we used Shai Halevi’s excellent Web review software, and are
extremely grateful to him for writing it and for providing fast and reliable technical
support whenever we had any questions. Based on the experience from the last two
years, we used the interaction feature supported by the review software, where PC
members may directly and anonymously interact with authors. The feature allowed the
PC to ask specific technical questions that arose during the review process, for
example, about suspected bugs. Authors were prompt and extremely helpful in their
replies. We hope that it will continue to be used in the future.

This was the third year where TCC presented the Test of Time Award to an out-
standing paper that was published at TCC at least eight years ago, making a significant
contribution to the theory of cryptography, preferably with influence also in other areas
of cryptography, theory, and beyond. The Test of Time Award Committee consisted of
Tal Rabin (chair), Yuval Ishai, Daniele Micciancio, and Jesper Nielsen. They selected
“Indifferentiability, Impossibility Results on Reductions, and Applications to the Ran-
dom Oracle Methodology” by Ueli Maurer, Renato Renner, and Clemens Holenstein—
which appeared in TCC 2004, the first edition of the conference—for introducing
indifferentiability, a security notion that had “significant impact on both the theory of
cryptography and the design of practical cryptosystems.” Sadly, Clemens Holenstein
passed away in 2012. He is survived by his wife and two sons. Maurer and Renner
accepted the award on his behalf. The authors delivered a talk in a special session at
TCC 2016-B. An invited paper by them, which was not reviewed, is included in these
proceedings.

The conference featured two other invited talks, by Allison Bishop and Srini Devadas.
In addition to regular papers and invited events, there was a rump session featuring short
talks by attendees.

We are greatly indebted to many people who were involved in making TCC 2016-B a
success. First of all, our sincere thanks to the most important contributors: all the authors
who submitted papers to the conference. There were many more good submissions than
we had space to accept. We would like to thank the PC members for their hard work,
dedication, and diligence in reviewing the papers, verifying their correctness, and dis-
cussing their merits in depth. We are also thankful to the external reviewers for their
volunteered hard work in reviewing papers and providing valuable expert feedback in
response to specific queries. For running the conference itself, we are very grateful to
Dongdai and the rest of the local Organizing Committee. Finally, we are grateful to the
TCC Steering Committee, and especially Shai Halevi, for guidance and advice, as well
as to the entire thriving and vibrant theoretical cryptography community. TCC exists for
and because of that community, and we are proud to be a part of it.

November 2016 Martin Hirt
Adam Smith

VI Preface

TCC 2016-B

Theory of Cryptography Conference

Beijing, China
October 31 – November 3, 2016

Sponsored by the International Association for Cryptologic Research and organized in
cooperation with the State Key Laboratory of Information Security, Institute of Information
Engineering, Chinese Academy of Sciences.

General Chair

Dongdai Lin Chinese Academy of Sciences, China

Honorary Chair

Andrew Chi-Chih Yao Tsinghua University, China

Program Committee

Masayuki Abe NTT, Japan
Divesh Aggarwal NUS, Singapore
Andrej Bogdanov Chinese University of Hong Kong, Hong Kong
Elette Boyle IDC Herzliya, Israel
Anne Broadbent University of Ottawa, Canada
Chris Brzuska TU Hamburg, Germany
David Cash Rutgers University, USA
Alessandro Chiesa University of California, Berkeley, USA
Kai-Min Chung Academia Sinica, Taiwan
Nico Döttling University of California, Berkeley, USA
Sergey Gorbunov University of Waterloo, Canada
Martin Hirt (Co-chair) ETH Zurich, Switzerland
Abhishek Jain Johns Hopkins University, USA
Huijia Lin University of California, Santa Barbara, USA
Hemanta K. Maji Purdue University, USA
Adam O’Neill Georgetown University, USA
Rafael Pass Cornell University, USA
Krzysztof Pietrzak IST Austria, Austria
Manoj Prabhakaran IIT Bombay, India
Renato Renner ETH Zurich, Switzerland
Alon Rosen IDC Herzliya, Israel
abhi shelat Northeastern University, USA
Adam Smith (Co-chair) Pennsylvania State University, USA

John Steinberger Tsinghua University, China
Jonathan Ullman Northeastern University, USA
Vinod Vaikuntanathan MIT, USA
Muthuramakrishnan

Venkitasubramaniam
University of Rochester, USA

TCC Steering Committee

Mihir Bellare UCSD, USA
Ivan Damgård Aarhus University, Denmark
Shafi Goldwasser MIT, USA
Shai Halevi (Chair) IBM Research, USA
Russell Impagliazzo UCSD, USA
Ueli Maurer ETH, Switzerland
Silvio Micali MIT, USA
Moni Naor Weizmann Institute, Israel
Tatsuaki Okamoto NTT, Japan

External Reviewers

Hamza Abusalah
Shashank Agrawal
Shweta Agrawal
Joël Alwen
Prabhanjan Ananth
Saikrishna

Badrinarayanan
Marshall Ball
Raef Bassily
Carsten Baum
Amos Beimel
Fabrice Benhamouda
Itay Berman
Nir Bitansky
Alexander R. Block
Tobias Boelter
Zvika Brakerski
Brandon Broadnax
Ran Canetti
Andrea Caranti
Nishanth Chandran
Yi-Hsiu Chen
Yilei Chen
Yu-Chi Chen
Seung Geol Choi

Michele Ciampi
Aloni Cohen
Ran Cohen
Angelo Decaro
Jean Paul Degabriele
Akshay Degwekar
Itai Dinur
Léo Ducas
Tuyet Duong
Andreas Enge
Antonio Faonio
Oriol Farras
Pooya Farshim
Sebastian Faust
Omar Fawzi
Max Fillinger
Nils Fleischhacker
Eiichiro Fujisaki
Peter Gaži
Satrajit Ghosh
Alexander Golovnev
Siyao Guo
Divya Gupta
Venkatesan Guruswami
Yongling Hao

Carmit Hazay
Brett Hemenway
Felix Heuer
Ryo Hiromasa
Dennis Hofheinz
Justin Holmgren
Pavel Hubáček
Tsung-Hsuan Hung
Vincenzo Iovino
Aayush Jain
Chethan Kamath
Tomasz Kazana
Raza Ali Kazmi
Carmen Kempka
Florian Kerschbaum
Dakshita Khurana
Fuyuki Kitagawa
Susumu Kiyoshima
Saleet Klein
Ilan Komargodski
Venkata Koppula
Stephan Krenn
Mukul Ramesh Kulkarni
Tancrède Lepoint
Kevin Lewi

VIII TCC 2016-B

Wei-Kai Lin
Helger Lipmaa
Feng-Hao Liu
Vadim Lyubashevsky
Mohammad Mahmoody
Giulio Malavolta
Alex J. Malozemoff
Daniel Masny
Takahiro Matsuda
Christian Matt
Patrick McCorry
Or Meir
Peihan Miao
Eric Miles
Pratyush Mishra
Ameer Mohammed
Payman Mohassel
Tal Moran
Kirill Morozov
Pratyay Mukherjee
Hai H. Nguyen
Ryo Nishimaki
Maciej Obremski
Miyako Ohkubo
Jiaxin Pan
Omkant Pandey
Omer Paneth
Valerio Pastro

Christopher Peikert
Oxana Poburinnaya
Bertram Poettering
Antigoni Polychroniadou
Christopher Portmann
Srini Raghuraman
Samuel Ranellucci
Vanishree Rao
Mariana Raykova
Joseph Renes
Leonid Reyzin
Silas Richelson
Mike Rosulek
Guy Rothblum
Ron Rothblum
Sajin Sasy
Alessandra Scafuro
Dominique Schröder
Karn Seth
Vladimir Shpilrain
Mark Simkin
Nigel Smart
Pratik Soni
Bing Sun
David Sutter
Björn Tackmann
Stefano Tessaro
Justin Thaler

Aishwarya
Thiruvengadam

Junnichi Tomida
Rotem Tsabary
Margarita Vald
Prashant Vasudevan
Daniele Venturi
Damien Vergnaud
Jorge L. Villar
Dhinakaran

Vinayagamurthy
Madars Virza
Ivan Visconti
Hoeteck Wee
Eyal Widder
David Wu
Keita Xagawa
Sophia Yakoubov
Takashi Yamakawa
Avishay Yanay
Arkady Yerukhimovich
Eylon Yogev
Mohammad Zaheri
Mark Zhandry
Hong-Sheng Zhou
Juba Ziani

TCC 2016-B IX

Contents – Part I

TCC Test-of-Time Award

From Indifferentiability to Constructive Cryptography (and Back) 3
Ueli Maurer and Renato Renner

Foundations

Fast Pseudorandom Functions Based on Expander Graphs 27
Benny Applebaum and Pavel Raykov

3-Message Zero Knowledge Against Human Ignorance 57
Nir Bitansky, Zvika Brakerski, Yael Kalai, Omer Paneth,
and Vinod Vaikuntanathan

The GGM Function Family Is a Weakly One-Way Family of Functions 84
Aloni Cohen and Saleet Klein

On the (In)Security of SNARKs in the Presence of Oracles 108
Dario Fiore and Anca Nitulescu

Leakage Resilient One-Way Functions: The Auxiliary-Input Setting 139
Ilan Komargodski

Simulating Auxiliary Inputs, Revisited . 159
Maciej Skórski

Unconditional Security

Pseudoentropy: Lower-Bounds for Chain Rules and Transformations. 183
Krzysztof Pietrzak and Maciej Skórski

Oblivious Transfer from Any Non-trivial Elastic Noisy Channel via Secret
Key Agreement. 204

Ignacio Cascudo, Ivan Damgård, Felipe Lacerda,
and Samuel Ranellucci

Simultaneous Secrecy and Reliability Amplification for a General Channel
Model . 235

Russell Impagliazzo, Ragesh Jaiswal, Valentine Kabanets,
Bruce M. Kapron, Valerie King, and Stefano Tessaro

http://dx.doi.org/10.1007/978-3-662-53641-4_1
http://dx.doi.org/10.1007/978-3-662-53641-4_2
http://dx.doi.org/10.1007/978-3-662-53641-4_3
http://dx.doi.org/10.1007/978-3-662-53641-4_4
http://dx.doi.org/10.1007/978-3-662-53641-4_5
http://dx.doi.org/10.1007/978-3-662-53641-4_6
http://dx.doi.org/10.1007/978-3-662-53641-4_7
http://dx.doi.org/10.1007/978-3-662-53641-4_8
http://dx.doi.org/10.1007/978-3-662-53641-4_9
http://dx.doi.org/10.1007/978-3-662-53641-4_9
http://dx.doi.org/10.1007/978-3-662-53641-4_10
http://dx.doi.org/10.1007/978-3-662-53641-4_10

Proof of Space from Stacked Expanders. 262
Ling Ren and Srinivas Devadas

Perfectly Secure Message Transmission in Two Rounds. 286
Gabriele Spini and Gilles Zémor

Foundations of Multi-Party Protocols

Almost-Optimally Fair Multiparty Coin-Tossing with Nearly
Three-Quarters Malicious . 307

Bar Alon and Eran Omri

Binary AMD Circuits from Secure Multiparty Computation 336
Daniel Genkin, Yuval Ishai, and Mor Weiss

Composable Security in the Tamper-Proof Hardware Model Under Minimal
Complexity . 367

Carmit Hazay, Antigoni Polychroniadou,
and Muthuramakrishnan Venkitasubramaniam

Composable Adaptive Secure Protocols Without Setup Under Polytime
Assumptions. 400

Carmit Hazay and Muthuramakrishnan Venkitasubramaniam

Adaptive Security of Yao’s Garbled Circuits . 433
Zahra Jafargholi and Daniel Wichs

Round Complexity and Efficiency of Multi-party Computation

Efficient Secure Multiparty Computation with Identifiable Abort. 461
Carsten Baum, Emmanuela Orsini, and Peter Scholl

Secure Multiparty RAM Computation in Constant Rounds 491
Sanjam Garg, Divya Gupta, Peihan Miao, and Omkant Pandey

Constant-Round Maliciously Secure Two-Party Computation in the RAM
Model . 521

Carmit Hazay and Avishay Yanai

More Efficient Constant-Round Multi-party Computation from BMR
and SHE . 554

Yehuda Lindell, Nigel P. Smart, and Eduardo Soria-Vazquez

Cross and Clean: Amortized Garbled Circuits with Constant Overhead 582
Jesper Buus Nielsen and Claudio Orlandi

XII Contents – Part I

http://dx.doi.org/10.1007/978-3-662-53641-4_11
http://dx.doi.org/10.1007/978-3-662-53641-4_12
http://dx.doi.org/10.1007/978-3-662-53641-4_13
http://dx.doi.org/10.1007/978-3-662-53641-4_13
http://dx.doi.org/10.1007/978-3-662-53641-4_14
http://dx.doi.org/10.1007/978-3-662-53641-4_15
http://dx.doi.org/10.1007/978-3-662-53641-4_15
http://dx.doi.org/10.1007/978-3-662-53641-4_16
http://dx.doi.org/10.1007/978-3-662-53641-4_16
http://dx.doi.org/10.1007/978-3-662-53641-4_17
http://dx.doi.org/10.1007/978-3-662-53641-4_18
http://dx.doi.org/10.1007/978-3-662-53641-4_19
http://dx.doi.org/10.1007/978-3-662-53641-4_20
http://dx.doi.org/10.1007/978-3-662-53641-4_20
http://dx.doi.org/10.1007/978-3-662-53641-4_21
http://dx.doi.org/10.1007/978-3-662-53641-4_21
http://dx.doi.org/10.1007/978-3-662-53641-4_22

Differential Privacy

Separating Computational and Statistical Differential Privacy
in the Client-Server Model . 607

Mark Bun, Yi-Hsiu Chen, and Salil Vadhan

Concentrated Differential Privacy: Simplifications, Extensions,
and Lower Bounds . 635

Mark Bun and Thomas Steinke

Strong Hardness of Privacy from Weak Traitor Tracing 659
Lucas Kowalczyk, Tal Malkin, Jonathan Ullman, and Mark Zhandry

Author Index . 691

Contents – Part I XIII

http://dx.doi.org/10.1007/978-3-662-53641-4_23
http://dx.doi.org/10.1007/978-3-662-53641-4_23
http://dx.doi.org/10.1007/978-3-662-53641-4_24
http://dx.doi.org/10.1007/978-3-662-53641-4_24
http://dx.doi.org/10.1007/978-3-662-53641-4_25

Contents – Part II

Delegation and IP

Delegating RAM Computations with Adaptive Soundness and Privacy 3
Prabhanjan Ananth, Yu-Chi Chen, Kai-Min Chung, Huijia Lin,
and Wei-Kai Lin

Interactive Oracle Proofs . 31
Eli Ben-Sasson, Alessandro Chiesa, and Nicholas Spooner

Adaptive Succinct Garbled RAM or: How to Delegate Your Database. 61
Ran Canetti, Yilei Chen, Justin Holmgren, and Mariana Raykova

Delegating RAM Computations . 91
Yael Kalai and Omer Paneth

Public-Key Encryption

Standard Security Does Not Imply Indistinguishability Under Selective
Opening. 121

Dennis Hofheinz, Vanishree Rao, and Daniel Wichs

Public-Key Encryption with Simulation-Based Selective-Opening Security
and Compact Ciphertexts . 146

Dennis Hofheinz, Tibor Jager, and Andy Rupp

Towards Non-Black-Box Separations of Public Key Encryption and One
Way Function. 169

Dana Dachman-Soled

Post-Quantum Security of the Fujisaki-Okamoto and OAEP Transforms 192
Ehsan Ebrahimi Targhi and Dominique Unruh

Multi-key FHE from LWE, Revisited . 217
Chris Peikert and Sina Shiehian

Obfuscation and Multilinear Maps

Secure Obfuscation in a Weak Multilinear Map Model 241
Sanjam Garg, Eric Miles, Pratyay Mukherjee, Amit Sahai,
Akshayaram Srinivasan, and Mark Zhandry

http://dx.doi.org/10.1007/978-3-662-53644-5_1
http://dx.doi.org/10.1007/978-3-662-53644-5_2
http://dx.doi.org/10.1007/978-3-662-53644-5_3
http://dx.doi.org/10.1007/978-3-662-53644-5_4
http://dx.doi.org/10.1007/978-3-662-53644-5_5
http://dx.doi.org/10.1007/978-3-662-53644-5_5
http://dx.doi.org/10.1007/978-3-662-53644-5_6
http://dx.doi.org/10.1007/978-3-662-53644-5_6
http://dx.doi.org/10.1007/978-3-662-53644-5_7
http://dx.doi.org/10.1007/978-3-662-53644-5_7
http://dx.doi.org/10.1007/978-3-662-53644-5_8
http://dx.doi.org/10.1007/978-3-662-53644-5_9
http://dx.doi.org/10.1007/978-3-662-53644-5_10

Virtual Grey-Boxes Beyond Obfuscation: A Statistical Security Notion
for Cryptographic Agents . 269

Shashank Agrawal, Manoj Prabhakaran, and Ching-Hua Yu

Attribute-Based Encryption

Deniable Attribute Based Encryption for Branching Programs from LWE . . . 299
Daniel Apon, Xiong Fan, and Feng-Hao Liu

Targeted Homomorphic Attribute-Based Encryption 330
Zvika Brakerski, David Cash, Rotem Tsabary, and Hoeteck Wee

Semi-adaptive Security and Bundling Functionalities Made Generic
and Easy . 361

Rishab Goyal, Venkata Koppula, and Brent Waters

Functional Encryption

From Cryptomania to Obfustopia Through Secret-Key Functional
Encryption . 391

Nir Bitansky, Ryo Nishimaki, Alain Passelègue, and Daniel Wichs

Single-Key to Multi-Key Functional Encryption with Polynomial Loss 419
Sanjam Garg and Akshayaram Srinivasan

Compactness vs Collusion Resistance in Functional Encryption 443
Baiyu Li and Daniele Micciancio

Secret Sharing

Threshold Secret Sharing Requires a Linear Size Alphabet 471
Andrej Bogdanov, Siyao Guo, and Ilan Komargodski

How to Share a Secret, Infinitely . 485
Ilan Komargodski, Moni Naor, and Eylon Yogev

New Models

Designing Proof of Human-Work Puzzles for Cryptocurrency and Beyond. . . 517
Jeremiah Blocki and Hong-Sheng Zhou

Access Control Encryption: Enforcing Information Flow
with Cryptography . 547

Ivan Damgård, Helene Haagh, and Claudio Orlandi

Author Index . 577

XVI Contents – Part II

http://dx.doi.org/10.1007/978-3-662-53644-5_11
http://dx.doi.org/10.1007/978-3-662-53644-5_11
http://dx.doi.org/10.1007/978-3-662-53644-5_12
http://dx.doi.org/10.1007/978-3-662-53644-5_13
http://dx.doi.org/10.1007/978-3-662-53644-5_14
http://dx.doi.org/10.1007/978-3-662-53644-5_14
http://dx.doi.org/10.1007/978-3-662-53644-5_15
http://dx.doi.org/10.1007/978-3-662-53644-5_15
http://dx.doi.org/10.1007/978-3-662-53644-5_16
http://dx.doi.org/10.1007/978-3-662-53644-5_17
http://dx.doi.org/10.1007/978-3-662-53644-5_18
http://dx.doi.org/10.1007/978-3-662-53644-5_19
http://dx.doi.org/10.1007/978-3-662-53644-5_20
http://dx.doi.org/10.1007/978-3-662-53644-5_21
http://dx.doi.org/10.1007/978-3-662-53644-5_21

TCC Test-of-Time Award

From Indifferentiability to Constructive
Cryptography (and Back)

Ueli Maurer1(B) and Renato Renner2

1 Department of Computer Science, ETH Zurich, Zurich, Switzerland
maurer@inf.ethz.ch

2 Department of Physics, ETH Zurich, Zurich, Switzerland
renner@phys.ethz.ch

Abstract. The concept of indifferentiability of systems, a generalized
form of indistinguishability, was proposed in 2004 to provide a simpli-
fied and generalized explanation of impossibility results like the non-
instantiability of random oracles by hash functions due to Canetti,
Goldreich, and Halevi (STOC 1998). But indifferentiability is actually
a constructive notion, leading to possibility results. For example, Coron
et al. (Crypto 2005) argued that the soundness of the construction C(f)
of a hash function from a compression function f can be demonstrated
by proving that C(R) is indifferentiable from a random oracle if R is an
ideal random compression function.

The purpose of this short paper is to describe how the indifferentia-
bility notion was a precursor to the theory of constructive cryptography
and thereby to provide a simplified and generalized treatment of indif-
ferentiability as a special type of constructive statement.

1 Introduction

An important abstraction in cryptography, introduced by Bellare et al. [4], is the
so-called random oracle model (ROM). A random oracle is an idealized resource
or system available to all involved parties, with parameters m and n, which
behaves as if it contained a uniformly chosen function table F : {0, 1}m → {0, 1}n

and, for every query x ∈ {0, 1}m from any party, provides the function value
F (x) to that party. Other parties do not see the query x nor the reply F (x).
A random oracle can also be defined for the countably infinite domain {0, 1}∗

of all finite-length input strings, the resource usually meant in cryptography by
the term “random oracle”.

The idea behind the ROM is a natural decomposition idea often arising in
cryptographic reasoning. On one hand one tries to construct, at least approxi-
mately, a random oracle from weaker resources (e.g. a shared random string),
and on the other hand one uses the idealized resource of a random oracle to
design secure protocols. The rationale is that if a well-designed hash function
can be assumed to behave like a random oracle, then a cryptographic protocol
proved secure in the ROM remains secure when the random oracle is replaced

c© International Association for Cryptologic Research 2016
M. Hirt and A. Smith (Eds.): TCC 2016-B, Part I, LNCS 9985, pp. 3–24, 2016.
DOI: 10.1007/978-3-662-53641-4 1

4 U. Maurer and R. Renner

by a hash function, thus composing two steps of reasoning. Analogous reasoning
is, for example, applied if one proves a scheme secure assuming it has access to
a uniformly random value (e.g., a shared secret key), and then argues that the
random value can be replaced by a pseudo-random value without compromising
security.

Two questions arise.

1. What exactly do we mean by composition of steps in the above reasoning
and how can we make it mathematically sound? It turns out, as discussed
in this paper, that the random oracle example requires a different and more
sophisticated reasoning compared to the pseudo-randomness example.

2. Can a random oracle be constructed from a weaker resource, especially one
that can realistically be assumed to be available in a given application con-
text?

An important paper by Canetti et al. [6] showed that the random oracle
model is not instantiable by any hash function. The approach taken in that paper
was to devise a provably secure signature scheme S, which internally makes use
of a secure signature scheme S′ and has access to a random oracle, such that
S is insecure if the random oracle is replaced by any hash function, even one
devised in the future and in full knowledge of the random oracle. Intuitively, the
reason for this impossibility is that the program code p for a hash function can
not contain more entropy than the length of p and that therefore, if one accesses
the random oracle for a number of arguments yielding more entropy than the
length of p, then one can distinguish a black-box containing the random oracle
from one containing the hash function.

This result raises some natural questions which were the starting point for
the research leading to the paper [18] on indifferentiability.

1. How can this simple entropy argument be made precise, in view of the quite
involved original proof of [6], and how can it be generalized?

2. What is a meaningful definition of the possibility (rather than impossibility)
of such a construction, and which concrete constructions are indeed possible?

3. How can the construction notion be generalized to capture other crypto-
graphic settings like encryption or message authentication?

4. How can one design complex cryptographic protocols such that their security
proof follows simply from composition and the (generally simple) security
proofs of the individual construction steps?

The answer to the second question turned out to be useful for the design of
hash functions from a compression function (e.g. see [1,2,7,11,12]).

The third question asks for an understanding of the application of a cryp-
tographic scheme like a symmetric or public-key encryption scheme, a message
authentication scheme, or a digital signature scheme, as a construction of a
resource from other resources. The question then is which resources one should
consider and how cryptographic schemes can be understood as such construc-
tions. Cryptographic resources provide a guarantee to honest parties in view

From Indifferentiability to Constructive Cryptography (and Back) 5

of potentially dishonest parties behaving arbitrarily. Such arbitrary or unspeci-
fied behavior is often called “malicious”. For example, a secure communication
channel guarantees to the honest parties (the sender and the receiver) that an
adversary can learn at most the length of the message. Note that, in the sense
of a specification discussed later, it is not guaranteed that the adversary learns
the message length, only that she does not learn more. For example, symmetric
encryption can be understood as constructing a secure channel from an authen-
ticated channel and a shared secret key, and message authentication can be
understood as constructing an authenticated channel from an insecure channel
and a shared secret key [16,17,19,20]. Similarly, public-key encryption can be
understood as constructing a confidential channel from an insecure channel and
an authenticated channel in the other direction [8].

The above approach to cryptography was proposed in [17], motivated by
earlier approaches to achieving composition in cryptography, most notably
Canetti’s UC framework [5] and the reactive simulatability framework of Backes,
Pfitzmann, and Waidner [3].

The outline of the paper is as follows. In Sect. 2, the general construction
paradigm and composability is discussed. In Sect. 3, we introduce the type of
resources relevant in cryptography. In Sect. 4, the cryptographic construction
notion is introduced and a few simple construction statements are proved. In
Sect. 5, a few impossibility results are proved which imply considerably strength-
ened versions of the impossibility of constructing a random oracle. In Sect. 6, the
positive construction result of Coron et al. [9] is discussed in view of the new
treatment appearing in this paper. In Sect. 7, it is mentioned that the construc-
tion notion of this paper directly leads to construction statements involving
several parties, some of which are honest and some of which are dishonest. In
Sect. 8, the relation of this paper to the original indifferentiability paper [18] is
explained.

A Word About Terminology. The title of the original paper [17] proposing
constructive cryptography was “Abstract cryptography”. Two main aspects of
that paper were (1) the proposal to use top-down abstraction in the spirit of
algebra in cryptography (and more generally in computer science), and (2) to use
the construction paradigm (see Sect. 2) in cryptography. Therefore, depending
on which aspect is stressed, both “abstract cryptography” and “constructive
cryptography” have been used in the literature to refer to this theory. The term
constructive cryptography, which was first used in [16], seems more natural and
captures the goal of the theory better, and we propose to use it from now on to
avoid confusion.

2 The Construction Paradigm

2.1 Specifications and Constructions

In almost every engineering discipline one considers, explicitly or implicitly, the
concept of a specification of an object or resource. Examples include the specifi-

6 U. Maurer and R. Renner

cation of a mechanical part (e.g. by lower and upper bounds on its dimensions,
its weight, and material parameters) and the specification of a software module
M (e.g. by defining the functions that M computes and possibly some accuracy
guarantees and/or some timing guarantees).

A key task in such a discipline is to construct, from an object or resource
satisfying a certain specification R, an object or resource satisfying another
(better or more valuable) specification S. Such a construction is achieved by
means of a constructor or recipe, say γ. One can then write

R γ−→ S.

For example, the designer of a software module N making use of the module M
will provide a specification S which is guaranteed (and proved) to be satisfied
by N , provided the underlying module M satisfies specification R.

As another example, in communication theory and information theory, a
binary symmetric channel (BSC) is a well-known resource specification charac-
terized by a maximal probability p of flipping the transmitted bits (where the
errors for all bits are independent). A good error-correcting code with 2k code-
words of length n can be understood as constructing, from an n-bit BSC with
parameter p, an error-free k-bit communication channel. More precisely, one only
achieves a specification of a channel which is ε-close to an error-free k-bit chan-
nel, for a small ε and a certain measure of closeness, i.e., for a metric on the set
of channels, namely the worst-case (over messages) decoding error probability.

Typically one considers a certain set Γ of constructors, possibly restricted in
terms of efficiency or implementation cost. One is then interested in constructibil-
ity and also in non-constructibility statements, where S is not constructible from
R, denoted R �−→ S, if there exists no constructor γ for which R γ−→ S:

R �−→ S :⇐⇒ ¬∃ γ ∈ Γ : R γ−→ S.

One often wants to use several resources in a construction, i.e., one wants to
consider a tuple of resources, for example a tuple of three resources satisfying
specifications R1, R2, and R3, as a single resource. We denote such a combined
resource specification as [R1,R2,R3].

2.2 Composition

If we assume that constructors can be composed, where the constructor resulting
from applying γ and then γ′ is denoted as γ′◦γ, then a very desirable and natural
property is that the corresponding construction statements can be composed.
Formally, this means that

R γ−→ S ∧ S γ′
−→ T =⇒ R γ′◦γ−→ T .

For example, any construction requiring an error-free channel and resulting in
a yet more useful resource should also be (approximately) correct if, instead of

From Indifferentiability to Constructive Cryptography (and Back) 7

the error-free channel, the channel constructed by an error-correcting code from
an error-prone channel is used. Whether or not this is indeed the case requires
a formalization and a proof.

Another useful property of the construction notion is context-insensitivity:
For any U and V,

R γ−→ S =⇒
[
U1, . . . ,Uk,R,V1, . . . ,V�

] γ−→
[
U1, . . . ,Uk,S,V1, . . . ,V�

]

for any R, S, and U1, . . . ,Uk,V1, . . . ,V�. The understanding here is that γ
“knows” which resource it needs to access.1

We point out that these properties may or may not be satisfied by a con-
struction notion under consideration, and when investigating a concrete such
notion one needs to prove that they are satisfied.

2.3 Sets as Specifications

The notion of a specification is abstract, but often a specification is understood
as the subset of a universe Φ of objects, namely those that satisfy the speci-
fication. For example the specification of a BSC corresponds to the set of all
channels where the bit-flipping probability of each bit is upper bounded by p
but otherwise arbitrary (and the flipping events are independent). As another
example, a software specification may require only an approximative computa-
tion of certain results, and a concrete element of the specification is given by a
fixed function that is within the accuracy bounds.

If a pseudo-metric d on Φ is defined, a particular type of specification by sets
are ε-balls around a given object R, denoted

Rε =
{
R′∣∣ R′ ≈ε R

}
,

where we write R′ ≈ε R for d(R,R′) ≤ ε. More generally,

Rε =
{
R′∣∣ ∃R ∈ R : R′ ≈ε R

}
=

⋃

R∈R
Rε,

A construction statement R γ−→ S becomes stronger the larger the speci-
fication R (i.e., the less needs to be assumed about the given resource), and,
analogously, the statement becomes stronger the smaller the specification S,
i.e., the more specific the guarantee about the constructed resource is. In other
words, we have

R γ−→ S =⇒ R′ γ−→ S ′

if R′ ⊆ R and S ⊆ S ′.

1 Formally, the constructor γ on the right side might involve some scheme for address-
ing the resource specified by R among all resources, and in this case it would have
to be an adequately modified version of γ on the left side (i.e., in R γ−→ S).

8 U. Maurer and R. Renner

The situation is dual for impossibility results, which are a focus of [6,18] and
of this paper. Namely,

R �−→ S =⇒ R′ �−→ S ′

if R ⊆ R′ and S ′ ⊆ S. In other words, the smaller R or the larger S, the stronger
is the impossibility statement. We will pay attention to trying to obtain strong
possibility and impossibility results.

3 Cryptographic Resource Systems and Their Use

In this section we discuss the specific type of resource appearing in cryptographic
statements.

3.1 Systems, Interfaces, Parties

Cryptographic resources can be modelled as systems with several interfaces. One
can think of each interface as allowing one party to connect to the system and
access the functionality provided by it, but this view is not strict. It is also
possible that interfaces capture a more fine-grained capability and that several
interfaces are assigned to the same party. Conversely, one could also consider
several parties as accessing (sub-interfaces of) the same interface.

In a cryptographic context, one considers so-called “honest” and “dishonest”
parties, where often all the dishonest parties are modeled as a single party, called
“the adversary” or Eve.

For the purpose of this paper, it suffices to consider resources with two
interfaces, where all honest parties (sometimes summarized as Alice) access the
resource through the left interface and Eve accesses it from the right side.

More technically, in this paper we consider a specific type of system, namely
discrete resource systems that can (possibly) take an input at any interface and
provide an output at the same interface. Then a system can take another input
at some interface and produce an output at that interface, etc. For this paper,
we will not need a formalization of such discrete systems, but we refer to [15,22].
The metric on the set of discrete systems is naturally defined via the optimal
distinguishing advantage of a certain class of distinguishers.

3.2 Example Resource Systems

An example of such a resource is a uniform random function (URF) {0, 1}m →
{0, 1}n, accessible to all involved parties, which can be specified by considering
a uniformly chosen function table F : {0, 1}m → {0, 1}n that can be accessed by
giving as input a value x and receiving as output the value F (x).

When considering the above URF resource in a cryptographic context, even
when restricted to a single honest party and a single adversary, the above spec-
ification is not adequate as it is on one hand too specific (it guarantees that
the adversary can access the resource, while one does not want to give such a

From Indifferentiability to Constructive Cryptography (and Back) 9

guarantee), and it is on the other hand not sufficiently specific in that one would
want to additionally specify lower and upper bounds on the number of allowed
queries (see later), as well as what is guaranteed to be hidden from the adversary.
There are a number of such specifications which are natural, and we list a few
of them below.

1. Alice can access the URF and Eve has no access to it.
2. Alice can access the URF and Eve has no access to it, but she potentially

sees whenever Alice makes a query.
3. As before, but Eve can potentially also learn the values queried and obtained

by Alice.
4. Alice and Eve can both access the URF and Eve obtains no other information

(e.g. about Alice’s access).
5. As before, but Eve can potentially also learn the values queried and obtained

by Alice.

The fourth example is what is often called a (fixed input-length) random
oracle which is accessible to all parties, whether honest or not, here restricted to
a single honest party. One can also consider such a random oracle resource with
arbitrary input-length, i.e., which for each input in {0, 1}∗ returns a random
value in {0, 1}n. An important question is from which resources a random oracle
can or cannot be constructed. The impossibility result of [6] can be interpreted as
the statement that a random oracle cannot be constructed from a fixed bit-string
(the hash program) which can be probabilistically chosen.

3.3 Converters

A party can use a resource R ∈ Φ by applying to it a so-called converter2 α
which is, for example, a (state-full) protocol engine. A converter can be thought
of as a system, with an inside and an outside interface, which is attached to the
resource system. Application of a converter at interface i transforms a resource
R into another resource which we denote by αiR, with the same set of interfaces
as R.

More formally, we consider a set Σ of objects, called converters. A converter
α, when applied as an interface i of a resource, induces a function3 Φ → Φ :
R → αiR. Moreover, Σ is equipped with a composition operation ◦ satisfying

(β ◦ α)iR = βi(αiR).

The set Σ also contains a special element, the identity converter id ∈ Σ, which
induces the identity function Φ → Φ (for any interface i) and simply stands for
using the resource “as is”. It satisfies

id ◦ α = α ◦ id = α.
2 The term “converter” is used because its application at an interface converts the

interface into an interface with a different behavior.
3 In general, one could consider partial function where the application of a converter

at an interface need not always be defined. For the purpose of this paper there is no
need to consider partial functions.

10 U. Maurer and R. Renner

The set Σ is closed under composition, i.e., Σ ◦ Σ = Σ, where equality holds
because id ∈ Σ.

For two-interface resources as used in this paper, if one (i.e., Alice) applies a
converter α at the left interface of a resource R, the resulting resource is denoted
as

αR.

Similarly, if one (i.e., Eve) applies a converter β at the right interface of a resource
R, the resulting resource is denoted as

Rβ.

A key property we require, and which is typically satisfied, is that application
of converters at the left and the right interface commute, i.e.,

(αR)β = α(Rβ),

which justifies to write αRβ for the resulting resource.
A resource specification is simply a subset of R ⊆ Φ containing those resources

satisfying the specification. When no confusion can arise, we will also use the
term resource for a resource specification. An element of R ∈ Φ can be under-
stood as a singleton specification, i.e., as {R}.

Applying a converter α to a resource specification R is naturally defined as

αR =
{
αR

∣
∣R ∈ R

}
,

and analogously for Rβ and αRβ.

3.4 Some Relevant Resource Specification Relaxations

The purpose of this section is to introduce a few generic types of relaxations
of a resource specification R and to state some simple facts. We have already
discussed ε-balls Rε.

The understanding is that a dishonest party can do something arbitrary, i.e.,
apply an arbitrary converter. For a specification R, the specification capturing
that it is unknown what happens at the right interface is

R∗ := RΣ =
{
Rβ

∣
∣ R ∈ R, β ∈ Σ

}
,

where the symbol ∗ stands for an arbitrary converter. One can prove that

R ⊆ R∗ = (R∗)∗. (1)

One can consider a special converter � which blocks the right interface, i.e.,
the resource R � only has a left interface. More technically speaking, for a
resource R �, a distinguisher sees only the left interface and has no access to
the right interface. A resource R is right-outbound if no converter attached to
the right interface can have an effect at the left interface, i.e., if

R∗ � = R� .

From Indifferentiability to Constructive Cryptography (and Back) 11

This means that no signalling from the right to the left interface of R is possible.
In this paper we do not need the dual left-outbound property.

For a given resource specification R one can consider the set, denoted R[[, of
right-outbound resources S compatible with (a resource in) R (only) at the left
interface:

R[[:=
{
S

∣
∣ S is right-outbound and S � ∈ R�

}
=

{
S

∣
∣ S∗ �= S � ∈ R�

}
.

For example, if R denotes the specification of a random oracle (which hides
Alice’s queries from Eve), then R[[includes all resources that leak partial or all
information about Alice’s queries to Eve. An impossibility result stating that
R[[is not constructible is therefore a significantly stronger statement than that
a standard random oracle is not constructible. One can prove that

R ⊆ R[[= (R[[)[[. (2)

3.5 Modeling Aspects: Resources vs. Converters

The implementation of a converter requires computational resources such as
computing power, memory, and randomness. On one hand, how many resources
an implementation requires seems relevant, and it appears generally better if a
converter can be more efficiently implemented. On the other hand, one often
makes statements that involve a quantification over all converters (e.g. all sim-
ulators), and such a quantification only makes sense if, by definition, the actual
choice is irrelevant.4

In almost every scientific consideration, one intentionally ignores certain
aspects as irrelevant and focuses on the particular ones considered relevant in the
given context. What is relevant or irrelevant is generally a conscious choice. For
example, in a computer science (or more specifically a cryptographic) context,
one may or may not care to model the exact computational power available to a
party. In particular, one may use an asymptotic model and only require that the
number of computational steps is polynomially bounded in a security parameter.

The general guiding principle in constructive cryptography is that everything
that is considered relevant for the analysis one wants to perform is modeled as
part of the resource. In contrast, the choice of a converter is, by definition, irrel-
evant with regard to the entailed cost or complexity. If, for instance, computing
power, memory, or randomness needed for a cryptographic construction is con-
sidered to matter, then it has to be explicitly modeled as part of the resource.
To illustrate this point, we explain a few possible such explicit choices. Each can
be thought of as a particular security model (e.g. computational or information-
theoretic).

1. The term information-theoretic security is usually used when computation
(at least by the adversary) is irrelevant. In such a case the converter set
includes all systems, regardless of the computational complexity of imple-
menting them.

4 For a logical predicate P , the purpose of a statement of the form ∃x P (x) is precisely
to ignore which x makes P (x) true.

12 U. Maurer and R. Renner

2. Even for information-theoretic security one may be interested in making nev-
ertheless the memory requirements explicit (see [10]). In this case, memory is
modeled as part of the resource and the converters are all systems that can
compute arbitrary functions (regardless of the complexity) but cannot keep
state between invocations.5 Ristenpart et al. [23] pointed out an apparent
problem with the indifferentiability notion of [18], but it was shown in [10]
that this problem was only an artefact of the fact that Turing machines come,
by definition, with an arbitrary amount of memory (the tape) and that there-
fore this model is not adequate in a setting, as that considered in [23], where
memory is indeed a relevant resource.

3. If computing power is considered relevant, then one can consider convert-
ers that perform no computation by themselves but only connect systems
and possibly input constants (for example a program). Any computational
resource can be modeled as a (parallel) resource. Such a resource can either
be a specific system with a certain behavior (e.g. a system encrypting mes-
sages), without reference to an implementation on a certain computational
model. Alternatively, it could be a computer resource C in some computa-
tional model, with an upper bound on the available computing power (for
example called complexity), and which can run an arbitrary program up to
that complexity bound. In this case, the converter inputs a program to C, and
we consider it irrelevant (from a resource viewpoint) which program is used.
Possibly, the specification of C could involve an upper bound on the length
of the program. In such a view, converters only route information, without
performing computation.

4. If, for some notion of efficiency, efficient computing power is considered irrel-
evant, then one can consider Σ to be the set of efficiently implementable con-
verter systems. Typically in cryptography, efficient is defined as some form of
polynomial-time notion, which of course, and unfortunately, requires now the
objects to be defined asymptotically in some way. A main reason for using
polynomial-time is that this notion, if properly defined, is closed.6 We point
out that polynomial-time is a specific choice that has its merits but for many
statements need not be fixed.

Clearly, one could consider different converter sets for honest parties and for
dishonest parties. For example, it would be natural to consider a notion of effi-
ciency and a different, larger notion of feasibility, where the converters of honest
parties must be efficiently implementable and the converters of dishonest parties
must only be feasibly implementable. It does not really seem well-justified to use
the same polynomial-time notion for both, except by tradition and possibly by
the set of results one can prove for this choice.

5 In this model, the memory required for a function computation is assumed to be
free. Of course, one could also model this memory as a resource.

6 More formally, converters α and β from this particular set Σ can be composed to a
new converter, say α◦β, and this composition is closed in the sense that the function
Φ → Φ induced by α ◦ β is contained in the class of functions induced by converters
in Σ.

From Indifferentiability to Constructive Cryptography (and Back) 13

4 Cryptographic Constructions for a Fixed Adversary
Interface

4.1 Definition of Constructions and Some Lemmas

If a resource satisfying specification R is available, Alice can apply a converter
π to it, resulting in specification πR. Often one wants to think about πR in
a simpler way, namely in terms of a specification S such that πR ⊆ S. The
guarantee given to Alice by the specification S is generally weaker than the
specification πR, but, in the usual sense of abstraction, this loss of information
is accepted because S is a simpler (to use and work with) specification.

We can then say that a desired resource (specification) S is constructed from
an assumed resource (specification) R by application of the converter π ∈ Σ

(which is the constructor). This is written as R π−→ S.

Definition 1. R π−→ S :⇐⇒ πR ⊆ S.

Lemma 1. This construction notion is composable:

R π−→ S ∧ S π′
−→ T =⇒ R π′◦π−→ T .

Proof. From the first condition πR ⊆ S it follows that π′πR ⊆ π′S. Combining
this with the second condition, π′S ⊆ T , we obtain π′πR ⊆ T , which was to
be proved. ��

The following lemmas assert that the three specification relaxations discussed
in Sect. 3.4 are compatible with the construction notion.

Definition 2. A metric d on Φ is called non-expanding if d(αR,αS) ≤ d(R,S)
for all α and d(Rβ, Sβ) ≤ d(R,S) for all β.

Lemma 2. If the metric on Φ is non-expanding, then, for any ε > 0,

R π−→ S =⇒ Rε π−→ Sε.

Proof. We need to show that if R′ ∈ Rε, i.e., R′ ≈ε R for some R ∈ R, then
πR′ ∈ Sε, i.e., πR′ ≈ε S for some S ∈ S. The condition R π−→ S guarantees that
πR = S for some S ∈ S. For the same S we have πR′ ≈ε S since πR′ ≈ε πR = S
(due to the non-expanding property). This completes the proof. ��

The following lemmas are stated without proofs.

Lemma 3. R π−→ S =⇒ R∗ π−→ S∗.

Lemma 4. R π−→ S =⇒ R[[π−→ S[[.

14 U. Maurer and R. Renner

4.2 Proving Constructions by Simulators

A line of reasoning often arising in cryptography, including [18], can be captured
by the following system equation (see also [17]):

πR ≈ε Sσ, (3)

where the converter σ is usually called a simulator (see discussion in Sect. 4.2).
The usefulness of finding a simulator σ satisfying the equation is that it implies
a construction statement:

Lemma 5. If the metric is non-expanding, then

∃σ ∈ Σ : πR ≈ε Sσ =⇒ R
π−→ (S∗)ε.

Proof. Since σ ∈ Σ we have Sσ ∈ SΣ = S∗. Hence πR ≈ε Sσ implies that
πR ⊆ (Sσ)ε ⊆ (S∗)ε, which is the definition of R

π−→ (S∗)ε. ��

In the literature, the converter σ in Eq. (3) is usually called a simulator. It is
sometimes described as translating what an adversary could do in the real world
(the left side of the equation), say β, into what she needs to do in the ideal world
(the right side of the equation) to achieve the same (or something close to) what
she would achieve in the real world, namely β ◦ σ. Note that πRβ ≈ε Sσβ due
to the non-expanding property of the pseudo-metric.

We point out, however, that in contrast to most of the existing literature,
the actual statement of interest (see Lemma 5) to us is not Eq. (3) itself, but the
construction statement it implies. In particular, the simulator does not appear
in the definition of a construction, and there can be interesting construction
statements proved in different ways than by use of Lemma 5.

In view of Lemma 5, the notion of indifferentiability [18] can be understood
as follows: T is indifferentiable from S, within ε, if T ⊆ (S∗)ε, where this is
proved by demonstrating a simulator σ such that T ≈ε Sσ. If T = πR, this
corresponds to the construction statement R

π−→ (S∗)ε.

4.3 Computational Considerations

Often in cryptography, Σ is the set of polynomial-time implementable converter
systems. If the metric on Φ is chosen as the two-valued computational indistin-
guishability metric, then a polynomial-time converter can be absorbed into a
poly-time distinguisher without leaving the distinguisher class, i.e., the metric
is non-expanding.

In a concrete-security consideration, the efficiency loss of a reduction and
therefore the concrete implementation complexity of σ matters. In other words,
a statement of the form (3) becomes more useful for a more efficient σ. This,
however, does at first not seem to be compatible with the idea that converters
in Σ are considered free (of cost). Either a converter is free, or it is not. Let us
explain how this contradiction is resolved in our approach.

From Indifferentiability to Constructive Cryptography (and Back) 15

More specifically, suppose we use model 3 described in Sect. 3.5, where Σ
are the converters that perform no computation. Suppose furthermore that one
has shown that equality πR = Sβ holds for some system β that requires some
computation, i.e., β �∈ Σ. Then we can give the equation the following meaning.
Let β̄ be a system corresponding to the resource that behaves like β, with inside
and outside interface both available to Eve (only at the right interface). Then
one can rephrase the equation πR = Sβ as

πR = [S, β̄] σ,

where σ is the trivial converter that simply connects β̄ to S, i.e., such that

[S, β̄] σ = Sβ.

In other words, any equation of the type πR = Sβ can be turned into a con-
struction statement of the form

R
π−→

(
[S, β̄]

)∗

which makes the computational resource required for the “simulation” explicit.

5 Impossibility of Constructing a Random Oracle

As an example for an impossibility result, we show that a random oracle cannot
be constructed, even if a source of public randomness is available. To state this
more precisely, we use the following specifications.

– PRk is public randomness of size k. The resource chooses Z uniformly at
random from the set {0, 1}k of k-bit strings.7 Any party can read Z.8

– ROm→n
[q,q′] is a random oracle with input size m and output size n. The resource

chooses F uniformly at random from the set of all functions from {0, 1}m to
{0, 1}n. Any party can submit queries x ∈ {0, 1}m which are answered by
F (x). At least q and at most q′ queries by any party are allowed.

As before, we assume that the set of resources is equipped with a (non-
expanding) distance measure, d, defined as the maximum advantage of any dis-
tinguisher from a class D.9 The results derived below will be valid for any reason-
able distinguisher class D. The only requirement is that the execution of basic
algorithms giving inputs and receiving outputs and performing equality checks,
such as D1 and D2 below, are within the class D.

We start with a basic impossibility result, which asserts that public random-
ness cannot be expanded.
7 To keep the presentation simple we assume that the probability distribution of Z

is uniform; a generalization to arbitrary probability distributions is straightforward.
This includes the case where PRk is a fixed hash function program of length k.

8 One may impose the additional restriction that the string Z can only be read bit-
wise, but this is not relevant for the considerations here.

9 That is, d(R, S) = supD∈D ΔD(R, S), where ΔD(R, S) is the absolute value of the
difference between the probability that D returns 0 when connected to R and the
probability that it returns 0 when connected to S.

16 U. Maurer and R. Renner

Lemma 6. Let k ∈ N and ε < 1
4 . Then

PRk �−→ PRk+1
[[ε

.

Proof. As explained, we regard PRk as a specification of a system with two
interfaces (left and right), which model the access to the resource by the honest
and the dishonest parties, respectively. It suffices to consider two honest parties,
which we label by A and A′, as well as one dishonest party, labelled by E. We
recall that in this two-interface case, any constructor corresponds to a converter
π for the left interface, which can be understood as a pair of converters πA and
πA′ for the two honest parties.

We need to prove that

d(πPRk,R) ≥ 1
4

for any converter π and for any right-outbound resource R with the property
R�⊆ PRk+1�. Because d is non-expanding, it suffices to show that

d(πPRkπ′,Rπ′) ≥ 1
4

(4)

for some converter π′. We take π′ to be πA′ . More precisely, π′ answers a query
by E in the same way as π would answer a query by A′. We then consider a
distinguisher D1 that executes the following simple algorithm and show that it
can tell apart πPRkπ′ and Rπ′ with advantage at least 1

4 .

Distinguisher D1

read the (k + 1)-bit strings ZA and ZA′ from the left interface;
read the (k + 1)-bit string ZE from the right interface;
if ZA �= ZA′ then

return 0; halt ;
else if ZA �= ZE then

return 1; halt ;
return 0

Suppose first that D1 is connected to πPRkπ′. It only returns 1 if ZA =
ZA′ �= ZE . By the definition of π′, the strings ZA′ and ZE are generated by
identical (possibly probabilistic, but independent) procedures. It follows that
the probability of the event ZA = ZA′ �= ZE is upper bounded by

Pr[ZA = ZA′] Pr[ZE �= ZA′] = Pr[ZA = ZA′](1 − Pr[ZA = ZA′]) ≤ 1
4

(since 1
4 is the maximum of the function x → x(1 − x) for 0 ≤ x ≤ 1). Hence D1

returns 0 with probability at least 3
4 .

Conversely, in the case where D1 is connected to Rπ′, ZA = ZA′ holds
by definition of R, and ZA is a uniformly random (k + 1)-bit string, whereas

From Indifferentiability to Constructive Cryptography (and Back) 17

ZE is a (k + 1)-bit string computed by π′. Since π′ behaves by definition like
πA′ and thus takes as input only a k-bit string, ZE depends on a string W of
length at most k. D1 only returns 0 if ZA = ZE . The probability of this event is
upper bounded by the min-entropy of ZA conditioned on W , i.e., Pr[ZA = ZE] ≤
2−Hmin(ZA|W) (cf. Appendix). By (11), the chain rule for the min-entropy, we have
Hmin(ZA|W) ≥ Hmin(ZA) − k = 1, where we used that W consists of at most
k bits. We conclude that Pr[ZA = ZE] ≤ 1

2 . Hence, when connected to Rπ′, D1

returns 0 with probability at most 1
2 . Combining this with the above shows that

the distinguishing advantage is at least 1
4 , which implies (4). ��

Lemma 6 states that public randomness cannot be expanded by a single bit,
even if one would tolerate that Eve may learn something about what happens at
the honest parties’ interface (which is captured by “[[”). This also suggests that
one cannot construct a more powerful public randomness resource that allows
to extract more than k bits:

Corollary 1. Let k ∈ N and ε < 1
4 . Then

PRk �−→ ROm→1
[q,∞]

[[ε

unless m < log2(k + 1) or q ≤ k.

Proof. Suppose that
PRk π−→ ROm→1

[q,∞]

[[ε (5)

holds for some constructor π. Let furthermore π′ be a constructor that simply
outputs the first min(q, 2m) entries of the function table of the random oracle,
and thus achieves

ROm→1
[q,∞]

π′
−→ PRmin(q,2m)

[[
.

Using Lemma 4 as well as (2), this yields

ROm→1
[q,∞]

[[π′
−→ PRmin(q,2m)

[[

and hence, using Lemma 2, also

ROm→1
[q,∞]

[[ε π′
−→ PRmin(q,2m)

[[ε
. (6)

By Lemma 1, the composition of constructions (5) and (6) gives

PRk π′◦π−→ PRmin(q,2m)
[[

ε.

Lemma 6 now implies that min(q, 2m) < k + 1. ��

We now proceed to a substantially stronger impossibility claim. Note that
Corollary 1 only applies to cases where the total entropy that the honest parties
can draw from the random oracle is strictly larger than the number k of public
random bits that are available. Theorem1 below shows that this is not necessary

18 U. Maurer and R. Renner

for the impossibility result to hold. It asserts that even a weak random oracle
that answers only a small number of queries (say, q = 1024), and thus only pro-
vides a small amount of entropy to the honest parties, cannot be constructed.
In addition, the impossibility claim remains valid if one tolerates that the con-
structed random oracle leaks arbitrary information, e.g., about what happens at
the honest parties’ interface, to the adversary.

For simplicity, we restrict the statement to oracles with output size 1 (but it
obviously implies a corresponding impossibility result for random oracles with
larger output size).

Theorem 1. For any k,m, q ∈ N and ε ≤ 1
2

PRk �−→ ROm→1
[q,∞]

[[ε

unless m < min(1 + log2 k, 10) or q < 210.

Proof. Set without loss of generality q = 210 and assume that m ≥ 1 + log2 k
and m ≥ 10. The proof proceeds analogously to that of Lemma 6, i.e., we show
that

d(πPRkπ′,Rπ′) >
1
2
, (7)

where R is a right-outbound resource such that R�= ROm→1
[q,∞] �, and where π′

is again a converter that reproduces the behavior of π for one party. To establish
this inequality we consider a distinguisher D2 defined by the following simple
algorithm and show that it can tell apart πPRkπ′ and Rπ′ with advantage
strictly larger than 1

2 .

Distinguisher D2

choose q different values X1, . . . , Xq at random from the set {0, 1}m ;
for j ∈ {1, . . . , q} do

A and A′ submit query Xj and record the answers ZA,j and ZA′,j ;
if ZA,j �= ZA′,j then return 0; halt ;

end
for j ∈ {1, . . . , q} do

E submits query Xj and records the answer ZE,j ;
if ZA,j �= ZE,j then return 1; halt ;

end
return 0

We first treat the case where D2 is connected to πPRkπ′. D2 only returns 1
if, for some j ∈ {1, . . . , q}, ZA,j �= ZE,j . Following the same reasoning as in
the proof of Lemma 6, we can infer that the probability of this event is upper
bounded by 1

4 . Hence, when connected to πPRkπ′, D2 returns 0 with probability
at least 3

4 .

From Indifferentiability to Constructive Cryptography (and Back) 19

Conversely, if D2 is connected to Rπ′, the answers ZA,j and ZA′,j received
by the honest parties upon any query Xj will agree by definition of R. The
distinguisher thus returns 0 only if they also coincide with the answers ZE,j

received by a dishonest party E. This latter event only occurs if the tuple of
answers Z = (ZA,1, . . . , ZA,q) to all queries X1, . . . , Xq is reproduced by the
output of the converter π′. Since π′ carries out the same computation as π for
one party, this output depends on a string W of length at most k. Because Z can
be regarded as a subset of q bits chosen at random from 2m ≥ 2k uniform bits,
Corollary 2 (see Appendix) asserts that Hmin(Z|X1 · · · XqW) > 2. This implies
that the success probability of any strategy for guessing Z from W is strictly
smaller than 1

4 . Hence, if connected to Rπ′, D2 returns 0 with probability strictly
smaller than 1

4 . Combining this with the above shows that D2 has distinguishing
advantage strictly larger than 1

2 , which establishes (7). ��

6 Construction Results

Coron et al. [9] showed that a random oracle with arbitrary input length and
fixed output length n can be constructed from a compression function with fixed
input length and output length n. The latter is itself modelled as a random
oracle. The following theorem is a variation of this result.10

Theorem 2. For any n, κ, �, q, q′ ∈ N and ε = 2−n+1q′2 there is π such that

ROn+κ+	log2 �
→n
[�q,q′]

π−→
(
(ROn+�κ→n

[q,q′])∗)�ε
. (8)

We are going to provide a proof of Theorem2 based on the following result.

Lemma 7. For any n, a, q, q′ ∈ N and ε = 2−n+1q′2

[
ROa→n

[q,∞], ROn+κ→n
[q,q′]

] π−→
(
(ROa+κ→n

[q,q′])∗)ε
,

where π is the constructor which answers queries (x, y) ∈ {0, 1}a × {0, 1}κ with
Fn+κ→n(F a→n(x), y), where F a→n and Fn+κ→n are the functions defined by
the two random oracles.

Proof. As shown in [9]

d
(
π
[
ROa→n

[q,∞], ROn+κ→n
[q,q′]

]
, ROa+κ→n

[q,q′] σ
)

≤ ε

holds for a simulator σ defined by the following algorithm.

10 The result in [9] corresponding to Theorem 2 is weaker in that the error ε is multiplied
with 	2 rather than 	.

20 U. Maurer and R. Renner

Simulator σ

if query x ∈ {0, 1}a to F a→n then
return random v ∈ {0, 1}n;

else if query (v′, y) ∈ {0, 1}n × {0, 1}κ to Fn+κ→n then
if v′ equals output of F a→n for some previously queried x′ then

return answer of the resource to query (x′, y)
else

return random z ∈ {0, 1}n

The claim of the lemma then follows from Lemma 5. ��

Proof. (of Theorem 2). The construction that gives rise to (8) can be regarded
as the concatenation of several more basic constructions. The first, π0, a simple
domain splitting step, constructs � independent random oracles with identical
domain from a single random oracle, whose input domain consists of �log2 ��
additional bits, i.e.,

ROn+κ+	log2 �
→n
[�q,q′]

π0−→
[
ROn+κ→n

[q,q′] , · · · , ROn+κ→n
[q,q′]︸ ︷︷ ︸

� times

]∗
. (9)

This is achieved by converters which simply answer any query x to the jth
constructed random oracle by submitting the concatenation of x and a binary
encoding of j to the given random oracle and then forwarding its answer.

For the next step, we invoke Lemma 7 with a = n+ jκ, for j ∈ {1, . . . , �−1}.
This lemma, together with Lemmas 2 and 3, the fact that (Rε)∗ ⊆ (R∗)ε, and (1),
implies that there exists a constructor πj such that

[(
(ROn+jκ→n

[q,∞])∗)(j−1)ε
, ROn+κ→n

[q,q′]

] πj−→
(
(ROn+(j+1)κ→n

[q,q′])∗)jε
.

Recursive application of this construction gives
[
(ROn+κ→n

[q,∞])∗, ROn+κ→n
[q,q′] , · · · , ROn+κ→n

[q,q′]︸ ︷︷ ︸
�−1 times

] π�−1◦···◦π1−→
(
(ROn+�κ→n

[q,q′])∗)(�−1)ε
.

Using ROn+κ→n
[q,q′] ⊆ ROn+κ→n

[q,∞] ⊆ (ROn+κ→n
[q,∞])∗ we can substitute the first term

in the above construction statement to obtain
[
ROn+κ→n

[q,q′] , · · · , ROn+κ→n
[q,q′]︸ ︷︷ ︸

� times

] π�−1◦···◦π1−→
(
(ROn+�κ→n

[q,q′])∗)(�−1)ε
.

Similarly to the above, this implies that
[
ROn+κ→n

[q,q′] , · · · , ROn+κ→n
[q,q′]︸ ︷︷ ︸

� times

]∗ π�−1◦···◦π1−→
(
(ROn+�κ→n

[q,q′])∗)(�−1)ε
. (10)

Theorem 2 now follows by composing the constructions (9) and (10). ��

From Indifferentiability to Constructive Cryptography (and Back) 21

7 Generalization to Many Parties

We briefly sketch how the construction notion described in Sect. 4 directly leads
to a construction notion for resources with several honest parties and an adver-
sary, simply by considering the left interface as consisting of a sub-interface
for each honest party and by considering the special type of converter (for
the combined interface) as corresponding to a list of converters, one for each
sub-interface. A typical case is the so-called Alice-Bob-Eve setting as discussed
in [16,17] with two honest parties Alice and Bob. This model allows to capture
many core cryptographic constructions, including the construction of a shared
secret key, of an authenticated channel, and of a secure channel.

One can also capture a setting where various parties could be dishonest. Usu-
ally the terminology used is that a central adversary corrupts some of the parties.
In other words, any party can possibly be honest or dishonest. A protocol is a
tuple of converters, one for each potentially honest party, where the idea is that
an honest party is guaranteed to apply the designated converter (i.e., to “follow
the protocol”). One can then make a collection of construction statements, for
each set of dishonest parties that needs to be considered, where for each such
statements the honest parties’ interfaces can be thought of as being grouped at
the left side and the dishonest parties’ interfaces are grouped at the right side.

8 Conclusions

The goal of this paper was to cover the essential aspects of the original indif-
ferentiability paper [18], but in a more general and more adequate manner,
leading to a general construction notion. The paper [18] contained basic ideas
of constructive cryptography [17], but this is perhaps not apparent since [18]
was mostly written in the tradition of the cryptography literature at the time:
The objects considered were usually asymptotic in a security parameter, and the
usual polynomial-time efficiency notion and the usual negligibility notion were
used. It should be clear from [17] and this paper that fixing such a particular
model is unnecessary. Moreover, indifferentiability was presented in [18] as a gen-
eralized form of indistinguishability, appearing as an intermediate step needed
to define constructions (actually called reductions in [18]).

In view of the general construction notion presented in this paper, the indif-
ferentiability notion corresponds to a specific construction type, for the special
type S∗ of resource specifications, where, moreover, S is right-outbound. Then
T is indifferentiable from S, within ε, if T ⊆ (S∗)ε, where this is proved by
demonstrating a simulator σ (not called simulator in [18]) such that T ≈ε Sσ. If
T = πR, this corresponds to the construction statement R

π−→ (S∗)ε. Demon-
strating a simulator and applying Lemma5 is only one of possibly several ways
of proving construction statements, and simulators should therefore probably
only appear in proofs, not in definitions.

Acknowledgments. We would like to thank the TCC Test-of-Time award committee
for selecting our paper for the award of this instantiation of TCC. Very sadly, our

22 U. Maurer and R. Renner

coauthor Clemens Holenstein passed away in 2012 and could neither receive the award
nor contribute to this paper. Discussions with many people have contributed immensely
to shaping our described viewpoint of cryptography. Of particular help were discussions
with Joël Alwen, Christian Badertscher, Ran Canetti, Sandro Coretti, Grégory Demay,
Yevgeniy Dodis, Peter Gaži, Martin Hirt, Dennis Hofheinz, Daniel Jost, Christian Matt,
Christopher Portmann, Phil Rogaway, Gregor Seiler, Björn Tackmann, Stefano Tessaro,
Daniel Tschudi, Daniele Venturi, Stefan Wolf, and Vassilis Zikas.

Appendix: Min-entropy sampling

The min-entropy of a random variable X conditioned on another random vari-
able Y , Hmin(X|Y), is defined as (see, e.g., [14])

Hmin(X|Y) = − log2 max
f

Pr[X = f(Y)],

where the maximum ranges over all functions f from the alphabet Y of Y to
the alphabet X of X. Note that the expression in the logarithm on the right
hand side can be interpreted as the maximum probability of correctly guessing
X from Y . The min-entropy has several natural properties analogous to the
Shannon entropy. Among them is a chain rule, which implies

Hmin(X|Y) ≥ Hmin(X) − log2 |Y|. (11)

The min-entropy of a sample chosen at random from a min-entropy source
has been studied in [13,21,24]. Roughly speaking, one can show that the min-
entropy of the sample is proportional to the sample size and the min-entropy
of the source. We use a version of this statement due to Wullschleger, which
provides explicit bounds [25].11

Proposition 1. Let X ∈ {0, 1}n and Z be random variables and let T be a
uniformly chosen subset of {1, . . . , n} of size |T |. Then

Hmin(XT |TZ)
|T | ≥ f

(
Hmin(X|Z)

n

)
− 5

|T | ,

where f : [0, 1] → [0, 1] is a monotonically strictly increasing function such that
f(1/2) > 1/144.

Corollary 2. Let X ∈ {0, 1}n be uniformly distributed, let Z ∈ {0, 1}k be an
arbitrary random variable on k ≤ n/2 bits, and let T be a uniformly chosen
subset of {1, . . . , n} of size |T |. Then

Hmin(XT |TZ) >
|T |
144

− 5.

Proof. It follows from the chain rule (11) that conditioning on k bits cannot
decrease the min-entropy by more than k bits, i.e.,

Hmin(X|Z) ≥ Hmin(X) − k = n − k ≥ n/2.

The claim then follows from Proposition 1. ��
11 Proposition 1 is a corollary of Theorem 1 of [25].

From Indifferentiability to Constructive Cryptography (and Back) 23

References

1. Andreeva, E., Mennink, B., Preneel, B.: On the indifferentiability of the Grøstl
hash function. In: Garay, J.A., Prisco, R. (eds.) SCN 2010. LNCS, vol. 6280, pp.
88–105. Springer, Heidelberg (2010). doi:10.1007/978-3-642-15317-4 7

2. Bertoni, G., Daemen, J., Peeters, M., Assche, G.: On the indifferentiability of the
sponge construction. In: Smart, N. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp.
181–197. Springer, Heidelberg (2008). doi:10.1007/978-3-540-78967-3 11

3. Backes, M., Pfitzmann, B., Waidner, M.: A general composition theorem for secure
reactive systems. In: Naor, M. (ed.) TCC 2004. LNCS, vol. 2951, pp. 336–354.
Springer, Heidelberg (2004). doi:10.1007/978-3-540-24638-1 19

4. Bellare, M., Rogaway, P.: Random oracles are practical: a paradigm for design-
ing efficient protocols. In: ACM Conference on Computer and Communications
Security, pp. 62–73 (1993)

5. Canetti, R., Universally composable security: a new paradigm for cryptographic
protocols. In: Proceedings of the 42nd IEEE Annual Symposium on Foundations
of Computer Science, FOCS 2001, pp. 136–145. IEEE Computer Society Press,
October 2001. Full version, http://eprint.iacr.org/2000/067

6. Canetti, R., Goldreich, O., Halevi, S.: The random oracle methodology, revisited.
In: Proceedings of the 30th Annual ACM Symposium on Theory of Computing,
STOC 1998, pp. 209–218. ACM (1998)

7. Chang, D., Nandi, M.: Improved indifferentiability security analysis of chopMD
hash function. In: Nyberg, K. (ed.) FSE 2008. LNCS, vol. 5086, pp. 429–443.
Springer, Heidelberg (2008). doi:10.1007/978-3-540-71039-4 27

8. Coretti, S., Maurer, U., Tackmann, B.: Constructing confidential channels from
authenticated channels—public-key encryption revisited. In: Sako, K., Sarkar, P.
(eds.) ASIACRYPT 2013. LNCS, vol. 8269, pp. 134–153. Springer, Heidelberg
(2013). doi:10.1007/978-3-642-42033-7 8

9. Coron, J.-S., Dodis, Y., Malinaud, C., Puniya, P.: Merkle-Damg̊ard revisited: how
to construct a hash function. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621,
pp. 430–448. Springer, Heidelberg (2005). doi:10.1007/11535218 26

10. Demay, G., Gaži, P., Hirt, M., Maurer, U.: Resource-restricted indifferentiability.
In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp.
664–683. Springer, Heidelberg (2013). doi:10.1007/978-3-642-38348-9 39

11. Dodis, Y., Reyzin, L., Rivest, R.L., Shen, E.: Indifferentiability of permutation-
based compression functions and tree-based modes of operation, with applica-
tions to MD6. In: Dunkelman, O. (ed.) FSE 2009. LNCS, vol. 5665, pp. 104–121.
Springer, Heidelberg (2009). doi:10.1007/978-3-642-03317-9 7

12. Dodis, Y., Ristenpart, T., Steinberger, J., Tessaro, S.: To hash or not to hash again?
(In)Differentiability results for H2 and HMAC. In: Safavi-Naini, R., Canetti, R.
(eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 348–366. Springer, Heidelberg (2012)

13. König, R., Renner, R.: Sampling of min-entropy relative to quantum knowledge.
IEEE Trans. Inf. Theor. 57, 4760–4787 (2011)

14. König, R., Renner, R., Schaffner, C.: The operational meaning of min- and max-
entropy. IEEE Trans. Inf. Theor. 55, 4337–4347 (2009)

15. Maurer, U.: Indistinguishability of random systems. In: Knudsen, L.R. (ed.)
EUROCRYPT 2002. LNCS, vol. 2332, pp. 110–132. Springer, Heidelberg (2002).
doi:10.1007/3-540-46035-7 8

16. Maurer, U.: Constructive cryptography - a new paradigm for security definitions
and proofs. In: Moedersheim, S., Palamidessi, C. (eds.) TOSCA 2011. LNCS, vol.
6993, pp. 33–56. Springer, Heidelberg (2011)

http://dx.doi.org/10.1007/978-3-642-15317-4_7
http://dx.doi.org/10.1007/978-3-540-78967-3_11
http://dx.doi.org/10.1007/978-3-540-24638-1_19
http://eprint.iacr.org/2000/067
http://dx.doi.org/10.1007/978-3-540-71039-4_27
http://dx.doi.org/10.1007/978-3-642-42033-7_8
http://dx.doi.org/10.1007/11535218_26
http://dx.doi.org/10.1007/978-3-642-38348-9_39
http://dx.doi.org/10.1007/978-3-642-03317-9_7
http://dx.doi.org/10.1007/3-540-46035-7_8

24 U. Maurer and R. Renner

17. Maurer, U., Renner, R.: Abstract cryptography. In: Chazelle, B. (ed.) The Second
Symposium on Innovations in Computer Science, ICS 2011, pp. 1–21. Tsinghua
University Press, January 2011

18. Maurer, U., Renner, R., Holenstein, C.: Indifferentiability, impossibility results on
reductions, and applications to the random Oracle methodology. In: Naor, M. (ed.)
TCC 2004. LNCS, vol. 2951, pp. 21–39. Springer, Heidelberg (2004). doi:10.1007/
978-3-540-24638-1 2

19. Maurer, U., Rüedlinger, A., Tackmann, B.: Confidentiality and integrity: a con-
structive perspective. In: Cramer, R. (ed.) TCC 2012. LNCS, vol. 7194, pp. 209–
229. Springer, Heidelberg (2012). doi:10.1007/978-3-642-28914-9 12

20. Maurer, U., Tackmann, B.: On the soundness of authenticate-then-encrypt: formal-
izing the malleability of symmetric encryption. In: Proceedings of the 17th ACM
Conference on Computer and Communication Security (ACM-CCS), pp. 505–515.
ACM, October 2010

21. Nisan, N., Zuckerman, D.: Randomness is linear in space. J. Comput. Syst. Sci.
52, 43–52 (1996)

22. Portmann, C., Matt, C., Maurer, U., Renner, R., Tackmann, B., Boxes,
C.: Quantum information-processing systems closed under composition. eprint,
arXiv:1512.02240 (2016)

23. Ristenpart, T., Shacham, H., Shrimpton, T.: Careful with composition: limita-
tions of the indifferentiability framework. In: Paterson, K.G. (ed.) EUROCRYPT
2011. LNCS, vol. 6632, pp. 487–506. Springer, Heidelberg (2011). doi:10.1007/
978-3-642-20465-4 27

24. Vadhan, S.P.: On constructing locally computable extractors and cryptosystems in
the bounded storage model. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729,
pp. 61–77. Springer, Heidelberg (2003). doi:10.1007/978-3-540-45146-4 4

25. Wullschleger, J.: Bitwise quantum min-entropy sampling and new lower bounds
for random access codes. In: Bacon, D., Martin-Delgado, M., Roetteler, M. (eds.)
TQC 2011. LNCS, vol. 6745, pp. 164–173. Springer, Heidelberg (2014). doi:10.
1007/978-3-642-54429-3 11

http://dx.doi.org/10.1007/978-3-540-24638-1_2
http://dx.doi.org/10.1007/978-3-540-24638-1_2
http://dx.doi.org/10.1007/978-3-642-28914-9_12
http://arxiv.org/abs/1512.02240
http://dx.doi.org/10.1007/978-3-642-20465-4_27
http://dx.doi.org/10.1007/978-3-642-20465-4_27
http://dx.doi.org/10.1007/978-3-540-45146-4_4
http://dx.doi.org/10.1007/978-3-642-54429-3_11
http://dx.doi.org/10.1007/978-3-642-54429-3_11

Foundations

Fast Pseudorandom Functions
Based on Expander Graphs

Benny Applebaum(B) and Pavel Raykov

School of Electrical Engineering, Tel-Aviv University, Tel Aviv, Israel
{bennyap,pavelraykov}@post.tau.ac.il

Abstract. We present direct constructions of pseudorandom function
(PRF) families based on Goldreich’s one-way function. Roughly speak-
ing, we assume that non-trivial local mappings f : {0, 1}n → {0, 1}m

whose input-output dependencies graph form an expander are hard to
invert. We show that this one-wayness assumption yields PRFs with rel-
atively low complexity. This includes weak PRFs which can be computed
in linear time of O(n) on a RAM machine with O(log n) word size, or
by a depth-3 circuit with unbounded fan-in AND and OR gates (AC0
circuit), and standard PRFs that can be computed by a quasilinear size
circuit or by a constant-depth circuit with unbounded fan-in AND, OR
and Majority gates (TC0).

Our proofs are based on a new search-to-decision reduction for
expander-based functions. This extends a previous reduction of the first
author (STOC 2012) which was applicable for the special case of random
local functions. Additionally, we present a new family of highly efficient
hash functions whose output on exponentially many inputs jointly forms
(with high probability) a good expander graph. These hash functions
are based on the techniques of Miles and Viola (Crypto 2012). Although
some of our reductions provide only relatively weak security guarantees,
we believe that they yield novel approach for constructing PRFs, and
therefore enrich the study of pseudorandomness.

1 Introduction

A pseudorandom function (PRF) is a family of efficiently computable functions
with the property that the input-output behavior of a random instance of the
family is “computationally indistinguishable” from that of a truly random func-
tion. Abstractly, such functions provide a “direct access” to an exponentially
long pseudorandom string. Since their discovery by Goldreich, Goldwasser and

A full version of this paper is available in [AR16]. Research supported by the Euro-
pean Union’s Horizon 2020 Programme (ERC-StG-2014-2020) under grant agree-
ment no. 639813 ERC-CLC, ISF grant 1155/11, the Blavatnik Interdisciplinary
Cyber Research Center and by the Check Point Institute for Information Security.
This work was done in part while the first author was visiting the Simons Insti-
tute for the Theory of Computing, supported by the Simons Foundation and by the
DIMACS/Simons Collaboration in Cryptography through NSF grant CNS-1523467.

c© International Association for Cryptologic Research 2016
M. Hirt and A. Smith (Eds.): TCC 2016-B, Part I, LNCS 9985, pp. 27–56, 2016.
DOI: 10.1007/978-3-662-53641-4 2

28 B. Applebaum and P. Raykov

Micali [GGM86], PRFs have played a central role in cryptography and complex-
ity theory. Correspondingly, the question of minimizing the complexity of PRFs
has attracted a considerable amount of attention.

Indeed, apart of being a fundamental object, fast PRFs are strongly moti-
vated by a wide range of applications. Being the core component of symmetric
cryptography, highly-efficient PRFs directly imply highly-efficient implementa-
tions of Private-Key cryptosystems, Message-Authentication Codes, and Iden-
tification Schemes. Fast pseudorandom objects (PRFs and PRGs) can be also
used to speed-up several expensive Cryptomania-type applications. For exam-
ple, secure computation protocols, functional encryption schemes, and program
obfuscators that efficiently support a PRF functionality can be bootstrapped
with relatively minor cost to general functionalities (cf., [DI05,IKOS08,GVW12,
App14]). Interestingly, for these applications parallel-complexity (e.g., circuit
depth) seems to be the main relevant complexity measure (affecting round com-
plexity or the number of multilinear levels), while time (e.g., circuit size) is
secondary. Another somewhat different motivation comes from the theory of
computational complexity. PRFs with low-complexity shed light on the power
of low-complexity functions, and partially explain our inability to analyze them.
For example, the existence of PRFs in a complexity class C can be used to show
that this class is not PAC-learnable [PW88,Val84] and that certain “natural
proof” techniques will fail to prove circuit lower-bounds for functions in C [RR97].
Last, but not least, identifying the simplest construction of PRFs may provide
valuable insights regarding the nature of computational intractability and the
way it is achieved by a sequence of cheap and basic operations. This “magic”
of hardness which arises from highly-efficient computation can be viewed as the
essence of modern cryptography.

Being relatively complicated objects, a considerable research effort has
been made to put PRFs on more solid ground at the form of simpler one-
wayness assumptions (cf. [GGM86,HILL99,NR95,NR97,NRR00,LW09,BMR10,
BPR12]). Annoyingly, the existence of a security reduction seem to incur a cost
in efficiency. Indeed, existing theoretical constructions (either based on general
primitives or on concrete intractability assumptions) are relatively slow com-
pared to “practical constructions” whose security is based on first-order cryptan-
alytic principles rather than on a security reduction. As a concrete example, the-
oretical constructions of PRFs Fk : {0, 1}n → {0, 1}n have super-linear (or even
quadratic) circuit size. In contrast, Miles and Viola [MV12] presented a candidate
PRF which can be computed by a quasilinear circuit of size Õ(n). (The notation
Õ(n) subsumes polylogarithmic factors.) Similarly, Akavia et al. [ABG+14] pro-
posed a candidate for a weak PRF1 which can be computed by a constant-depth
circuit with unbounded fan-in AND, OR and XOR gates, whereas it is unknown
how to construct such a weak PRF based on one-wayness assumption.

Our goal in this paper is to narrow the gap between provably-secure con-
structions and highly-efficient candidates. We present several constructions of

1 A weak PRF is a relaxation of a PRF which is indistinguishable from a random
function for an adversary whose queries are chosen uniformly at random.

Fast Pseudorandom Functions Based on Expander Graphs 29

pseudorandom functions with low-complexity, and show that their security can
be reduced to variants of Goldreich’s one-way function. Before introducing our
constructions, let us present Goldreich’s one-way function. (For more details see
the survey [App15].)

1.1 Goldreich’s One-Way Function

Let n be an input length parameter, m ≥ n be an output length parameter and
d � n be a locality parameter. For a d-local predicate P : {0, 1}d → {0, 1} and
a sequence G = (S1, . . . , Sm) of d-tuples over the set [n] := {1, . . . , n}, we let
fG,P : {0, 1}n → {0, 1}m denote the mapping

z �→ (P (z[S1]), . . . , P (z[Sm])),

i.e., the i-th output bit is computed by applying the predicate P to the input
bits which are indexed by the i-th tuple Si. Goldreich [Gol00] conjectured that
for m = n and possibly small value of d (e.g., logarithmic or even constant),
the function fG,P is one-way as long as the set system (S1, . . . , Sm) is “highly
expanding” and the predicate P is sufficiently “non-degenerate”. We elaborate
on these two requirements.

Expansion. To formalize the expansion property let us think of G = (S1, . . . , Sm)
as a d-uniform hypergraph with m hyperedges (which correspond to the outputs)
over n nodes (which correspond to the inputs). The expansion property essen-
tially requires that every not-too-large subset of hyperedges is almost pair-wise
disjoint. Formally, for a threshold r, the union of every set of � ≤ r hyperedges
Si1 , . . . , Si�

should contain at least (1 − β)d� nodes, i.e., |
⋃�

j=1 Sij
| ≥ (1 − β)d�,

where β is some constant smaller than 1
2 (e.g., 0.1).

Secure Predicates. A noticeable amount of research was devoted to studying
the properties of “secure” predicates accumulating in several algebraic crite-
ria (cf., [Ale03,MST03,ABW10,BQ12,ABR12,OW14,FPV15]). It is known for
example, that in order to support an output length of m = nc the predicate
P must have resiliency of k = Ω(c), i.e., P should be uncorrelated with any
GF(2)-linear combination of at most k of its inputs. Additionally, the predicate
P must have algebraic degree (as a GF(2) polynomial) of at least c. Moreover, P
must have high rational degree in the following sense: any polynomial Q whose
roots cover the roots of P or its complement must have algebraic degree of
Ω(c) [AL15]. An example for such a predicate (suggested in [AL15]) is the d-ary
XOR-MAJd predicate which partitions its input w = (w1, . . . , wd) into two parts
wL = (w1, . . . , w�d/2�) and wR = (w�d/2�+1, . . . , wd), computes the XOR of the
left part and the majority of the right part, and XOR’s the results together.2

This predicate achieves resiliency of d/2 and rational degree of d/4 and therefore
seems to achieve security for m = nΩ(d) outputs.
2 In fact, it seems better to allocate a larger fraction of the inputs to the Majority

part. See [AL15].

30 B. Applebaum and P. Raykov

Security. Intuitively, large expansion (together with high resiliency) provide
security against local algorithms that employ some form of divide-and-conquer
approach. Due to the expansion of the input-output hypergraph, any small
subset of the outputs gives very little information on the global solution x.
High rational degree provides security against more global approaches which
rely on different forms of linearization and algebraic attacks. These intuitions
were formalized and proved for several classes of algorithms in previous works
(cf. [AHI05,ABW10,CEMT14,ABR12,BR13,OW14]). Following these works,
we make the following strong version of Goldreich’s conjecture:

Assumption 1 (Expander-based OWFs (Informal)). For some univer-
sal constant α ∈ (0, 1) and every d-uniform hypergraph G with n nodes and
m < nαd hyperedges which is expanding for sets of size r = nΩ(1), the function
fG,XOR-MAJd

cannot be inverted in polynomial time.3

This assumption is consistent with known attacks. In fact, hardness results
(against limited families of attacks) suggest that inversion is hard even for adver-
saries of complexity exp(r) where r is the expansion threshold. We refer to this
variant as the strong EOWF assumption. We further mention that although
previous works mainly focused on the case where the locality d is constant or
logarithmic in n (which is going to be our main setting here as well), it seems
reasonable to conjecture that the assumption holds even for larger values of d
(e.g., d = nδ for constant δ ∈ (0, 1)). Finally, we note that the expansion require-
ment implicitly puts restrictions on the values of n,m and d. Roughly speaking,
an expansion of r = n1−β requires Θ(1/β2) ≤ d ≤ nΘ(β) and restricts m to be
at most nΘ(dβ2).

1.2 Results and Techniques

We present several constructions of expander-based PRFs.

Weak PRF. Let P be some d-ary predicate (e.g., XOR-MAJd). In our first con-
struction F1, we think of the input x ∈ {0, 1}n as specifying a hypergraph Gx and
let the output y be the value of fGx,P applied to the collection key k ∈ {0, 1}n.
Namely, we think of the data x as specifying a computation that should be
applied to k. The hypergraph Gx is defined in the natural way: Partition x to
(d log n)-size substrings, and view each substring as a d-tuple of elements in [n]
where each element is given in its binary representation. An adversary that makes
q queries x1, . . . , xq essentially sees the value of fG,P (k) where G =

⋃
Gxi

. When

3 In Sect. 2 we provide a more general assumption which allows the hypergraph to be
non-uniform, and is parameterized by an expansion parameter, by a predicate family
P and by a concrete bound on the security of the function in terms of the (circuit)
size of the adversary and its success probability. The above assumption is given here
in a simplified form for ease of presentation.

Fast Pseudorandom Functions Based on Expander Graphs 31

the adversary is allowed to choose the queries, the outcome cannot be pseudo-
random (think of the case where Gx1 and Gx2 share the same hyperedge). How-
ever, when the queries x1, . . . , xq are chosen at random (as in the setting of a
weak PRF), the resulting hypergraph G is a random hypergraph which is likely
to be expanding. At this point, we can employ a search-to-decision reduction
from [App13], which shows that for random hypergraphs G, one-wayness implies
pseudorandomness. It follows that, for a proper choice of parameters (e.g.,
d = Ω(log n)), our assumption implies that the function F1 is a weak PRF.4

This construction can be instantiated with different locality parameters d,
ranging from O(log n) to nδ. In the logarithmic regime, this gives rise to a con-
struction F1 : {0, 1}n → {0, 1}n/ log2 n which is computable in linear time of O(n)
on a RAM machine with O(log n) word size. Additionally, this function can be
computed, for any fixed key k, by a depth-3 circuit with unbounded fan-in AND
and OR gates (i.e., an AC0 circuit).5 To the best of our knowledge this is the
first construction of a weak PRF that achieves such efficiency guarantees.

Concrete Security and Application to Learning. The (strong) EOWF assump-
tion implies that F1 resists almost-exponential size adversaries (computable
by circuits of size t = exp(n1−β) for any β > 0) as long as they make only
q = nO(d) queries to the function. Hence, logarithmic locality provides only
security against a quasi-polynomial number of queries (e.g., exp(polylog(n)).
Similarly, the distinguishing advantage of the adversary is only quasi-polynomial
ε = exp(−polylog(n)). While this setting of parameters may seem too weak for
many cryptographic applications, it provides a useful theoretical insight. The
classical learning algorithm of Linial, Mansour and Nisan [LMN93] shows that
any AC0-computable weak PRF can be broken either with quasipolynomial dis-
tinguishing advantage or by making quasipolynomial number of queries. (In the
computational learning terminology, AC0 functions are PAC-learnable under
the uniform distribution using a quasipolynomial number of samples and time,
or weakly learnable in polynomial-time with advantage 1/polylog(n) over 1

2 .)
The LMN algorithm relies on the Fourier spectrum of AC0 functions, and the
possibility of improving it to a polynomial-time algorithm is considered to be
an important open problem in learning theory. Our construction suggests that
this is impossible even for depth-3 circuits, and so the Fourier-based algorithm
of [LMN93] is essentially optimal. To the best of our knowledge, this is the first
hardness result for learning depth-3 AC0 circuits over the uniform distribu-
tion. Previous hardness results either apply to AC0 circuits of depth d for large
(unspecified) constant depth d [Kha93], to depth-3 arithmetic circuits [KS09], or
to depth-2 AC0 circuits but over a non-uniform distribution [ABW10,DLS14].

4 Formally, Assumption 1 implies that for a random hypergraph G, the function fG,P

is one-way (since such a hypergraph is likely to be expanding). Then, we can apply
the result of [App13].

5 When analyzing parallel-complexity it is common to restrict the attention for the case
where the key is fixed, cf. [NR95,NR97,NRR00,LW09,BMR10,MV12,ABG+14].

32 B. Applebaum and P. Raykov

Reducing the Distinguishing Advantage. Our second construction
attempts to strengthen the distinguishing advantage ε of F1. In F1 the hyper-
graph G =

⋃
Gxi

fails to be expanding with quasipolynomial probability, and in
this case pseudorandomness may be easily violated. As a concrete example note
that, with probability Ω(n−d), the hypergraph G contains a pair of identical
hyperedges Si = Sj , and so the corresponding outputs will be identical, and
distinguishing (with constant advantage) becomes trivial.

Following [CEMT14], we observe that, although expansion is violated with
quasipolynomial small probability, not all is lost, and, except for a tiny (almost
exponentially small) probability, the hypergraph G is almost expanding in the
sense that after removing a small (say sub-linear) amount of hyperedges the
remaining hypergraph is expanding. We use this combinatorial structure to argue
that fG,P (k) can be partitioned into two functions f1 and f2, where the input-
output hypergraph G1 of f1 is highly expanding and the function f2 depends
only on a relatively small (sub-linear) number of inputs. As a result we can show
that, for such an almost-expander G, the distribution fG,P (Un) is pseudoran-
dom except for small number of “bad outputs”.6 In fact, the number of “bad
outputs” is small enough to argue that each block of fG,P (Un) (corresponding
to the i-th query) has a large amount of “pseudoentropy”. Hence, we can get
a pseudorandom output (even for almost expanding hypergraphs) by adding a
postprocessing stage in which a randomness extractor is applied to the output
of F1 (i.e., extraction is performed separately per each block of fG,P (Un)).

Formally, our second construction F2 is keyed by a pair of n-bit strings (k, s),
and for a given input x, we output the value Exts(fGx,P (k)) where Ext is a strong
seeded randomness extractor. Since there are linear-time computable extrac-
tors [IKOS08], the construction can be still implemented by a linear-time RAM
machine. Moreover, since the extractor can be computed by a linear function
(and therefore by a single layer of unbounded fan-in parity gates), the func-
tion F2 can be computed by a constant-depth circuit with unbounded fan-in
AND, OR and XOR gates (or even in MOD2 ◦AC0). We prove that the distin-
guishing advantage of the construction is almost exponentially-small. We do not
know whether F2 provides security against larger (say subexponential) number
of queries, and leave it as an open question.

Handling Non-random Inputs. Our next goal is to move from the weak
PRF setting in which the function is evaluated only over random inputs, to
the standard setting where the queries can be chosen by the adversary.7 It is
natural to try to achieve this goal by introducing a preprocessing mapping M
that maps an input x to a hypergraph M(x) with the property that every set

6 Technically, this requires an extension of our assumption to the case of non-uniform
hypergraphs, and the ability to analyze the function with respect to new predicates
(obtained by restricting some of the inputs of the original predicate).

7 We do not use general transformations from weak PRFs to standard PRFs
(e.g., [NR97]) since they make a linear number of calls to the underlying weak PRF
and therefore incur at least a quadratic overhead in the size of the resulting circuit.

Fast Pseudorandom Functions Based on Expander Graphs 33

of q queries x1 . . . , xq form together a hypergraph G =
⋃

i M(xi) with good
expansion properties. This approach faces two challenges. First, it is not clear at
all how to implement the mapping M (let alone in a very efficient way). Second,
we can no longer rely on the standard search-to-decision reduction from [App13]
since it applies only to randomly chosen hypergraphs (as opposed to arbitrary
expanders).

Search-to-Decision Reduction for Expander-Based Functions. We solve the sec-
ond challenge, by proving a new search-to-decision reduction that applies directly
to expander hypergraphs. Namely, we show that if fG,P is one-way for every
expander hypergraph G (as conjectured by in Assumption 1) then it is also
pseudorandom for every expander hypergraph. Technically, the original reduc-
tion of [App13] shows that if an adversary A can distinguish fG,P (Un) from a
truly random string, then there exists an adversary B that inverts fH,P (Un)
where G and H are random hypergraphs (with polynomially related parame-
ters). This reduction strongly exploits the ability of A to attack many different
hypergraphs G. Roughly speaking, every attack on a hypergraph Gi is translated
into a small piece of information on the input x (i.e., a noisy estimation on some
bit xi), and by accumulating the information gathered from different Gi’s the
input x is fully recovered.8

In contrast, in the new search-to-decision theorem we are given a distinguisher
AG which succeeds only over some fixed expanding hypergraph G. First, we
observe that one can slightly modify G and define, for every index i ∈ [n], a
hypergraph Gi such that given y = fGi

(x) the attacker AG can be used to obtain
an estimation for the i-th bit of x. (This is already implicit in [App13].) One
may therefore try to argue that the function f⋃

i Gi,P (x) = (fG1(x), . . . , fGn
(x))

can be inverted by calling AG for each block separately. This is problematic for
two reasons: (1) inversion may fail miserably since the calls to AG are all over
statistically-dependent inputs (the same x is being used); and (2) the resulting
hypergraph H =

⋃
i Gi is non-expanding (due to the use of almost identical

copies of the same hypergraph G), and so inversion over H does not contradict
the theorem.

Fortunately, both problems can be solved by randomizing each of the Gi’s
(essentially by permuting the names of the inputs). By concatenating the ran-
domized Gi’s, we get a probability distribution D(G) over hypergraphs which
satisfies the following two properties: (1) a random hypergraph H

R← D(G) is
typically a good expander; and (2) Inverting fH,P for a random H

R← D(G)
reduces to inverting fG,P . Since we work in a non-uniform model of adversaries
(circuits), this suffices to prove the theorem. (See Sect. 3 for details.)

Mapping Inputs to Expanders. Going back to the first challenge, we still need to
provide a mapping M(x) which, when accumulated over different inputs, results

8 An analogous use of public randomness appears in the seminal Goldreich-Levin the-
orem [GL89] which can be viewed as search-to-decision reduction for the keyed func-
tion fk(x) = (g(x), 〈x, k〉).

34 B. Applebaum and P. Raykov

in a highly expanding hypergraph. Note that although M operates on n-bit
inputs, it should satisfy a global property that applies to collection of super-
polynomial (or even exponential) number of inputs. Unfortunately, we do not
know how to obtain such a mapping deterministically with a low computational
cost. Instead, we show how to provide a family of mappings Mσ with the prop-
erty that for every fixed sequence of inputs x1, . . . , xq and for a random σ, the
hypergraph G =

⋃
i Mσ(xi) is highly expanding with all but exponentially small

probability. The key idea is to note that in order to guarantee expansion for
r-size sets, it suffices to make sure that each set of r hyperedges of G is (almost)
uniformly distributed. This means that Mσ should satisfy the following form of
pseudorandomness: For a random σ, every subset of R = rd log(n) bits of the
random variable (Mσ(x))x∈{0,1}n should be statistically-close to uniform. This
setting is somewhat non-standard: Efficiency is measured with respect to a single
invocation of Mσ (i.e., the complexity of generating a block of m hyperedges),
but pseudorandomness should hold for any set of r hyperedges (R bits) across
different invocations.

We construct such a mapping Mσ by tweaking a construction of Miles and
Viola [MV12]. We view σ ∈ {0, 1}2n as a pair of GF(2n) elements σ1, σ2, and
map an input x ∈ GF(2n) to the GF(2n)-element (x + σ1)−1 · σ2. (The statisti-
cal analysis of Mσ appears in Sect. 4.3.) The resulting function F3 is keyed by
(k, σ, s) and for an input x it outputs the value Exts(fMσ(x),P (k)) where Mσ(x)
is parsed as a d-uniform hypergraph with m = n/(d log n) hyperedges and d is
treated as a parameter. Due to the high efficiency of M (which consists of a
single multiplication and a single inversion over GF(2n)), the function F3 can
be computed by a quasilinear circuit Õ(n) or by a constant-depth circuit with
unbounded fan-in AND, OR, and Majority gates (i.e., TC0 circuit), for any
choice of the locality parameter d.

The use of keyed mapping, allows us to prove security against a non-adaptive
adversary whose i-th query is independent of the answers for the previous queries.
We do not know whether the construction remains secure for adaptive adver-
saries, however, using the non-adaptive to adaptive transformation of [BH15],
we can turn our function into a standard PRF without increasing the asymp-
totic cost of the construction (in terms of size and depth). We mention that the
parallel complexity (i.e., TC0) seems essentially optimal for PRF and it matches
the complexity of the best known PRF constructions based on number-theoretic
or lattice assumptions [NR95,NR97,NRR00,BPR12].

Concrete Security. Recall that the locality parameter d can vary from logarith-
mic to nδ for some δ ∈ (0, 1). To get an expansion for sets of size n1−β (and
therefore security against exp(n1−β)-size circuits), we must restrict the number
of queries q to be smaller than ndβ2

. In addition, the locality d should satisfy
4/β2 < d < nβ/4. Hence, polynomial locality d = nδ allows to support sub-
exponential number of queries while providing security against sub-exponential
size circuits with respect to sub-exponential distinguishing advantage. Note that
polynomial locality has also some effect on efficiency: The number of output bits
per invocations decreases to Õ(n/d) and so the computational cost per output

Fast Pseudorandom Functions Based on Expander Graphs 35

bit is Õ(d) = Õ(nδ). On the other extreme, a logarithmic value of d achieves
an almost-optimal complexity per bit (i.e., Õ(1)), and provides security against
circuits of almost-exponential size (exp(n1−β) for every β > 0) which make a
quasipolynomial number of queries.

Security Beyond Expansion. We do not know whether our analysis is tight. To
the best of our knowledge, F3 with logarithmic locality may achieve security
even in the presence of sub-exponentially many queries. We remark that our
analysis is somewhat pessimistic since it essentially assumes that the seed s of
the extractor and the seed σ of the preprocessing mapping are both given to
the adversary. Indeed, in this case the adversary sees the underlying hypergraph
and, after sufficiently many queries, it can exploit its non-expanding properties.
In contrast, when s and, more importantly, σ are not given, the adversary does
not get a direct access to the hypergraph. One may assume that as long as M
somewhat hides the hypergraph G, lack of expansion cannot be used to break
the system. The question of identifying the right (and minimal) notion of hiding
remains open for future research.9

1.3 Related Candidate PRFs

It is instructive to compare the structure of our constructions to three somewhat
related candidates for PRFs.

The BFKL Candidate Weak-PRF [BFKL93] Blum et al. conjectured that the
function

fA,B : x �→
(⊕

i∈A

xi

)
⊕

(
MAJj∈B(xj)

)
,

is a weak PRF10, where the key (A,B) is a random pair of logarithmic size sets
A,B ⊆ [n]. That is, the function fA,B takes an n-bit vector x, computes the
parity of the bits of x which are indexed by A and the majority of the bits which
are indexed by B, and outputs the XOR of the two results. This candidate is
essentially dual to our first suggestion. Here the sets A and B are used as a
secret key and the XOR-MAJ predicate is applied to a public random x (the
input to the weak PRF). In contrast, we use x as a key (and keep it private) and
let the input specify the graph structure. Observe that, unlike our construction,
the key of Blum et al. can be described by a string of length nO(log n) and so
it can be broken in quasi-polynomial time and polynomially many samples. In
contrast, we conjecture that, in the presence of polynomially many samples, our
constructions resist attacks of sub-exponential (or even “almost” exponential)
complexity of exp(n1−β).
9 It is not hard to show that if M by itself is a PRF then security holds for F3. The

hope is to get somewhat weaker form of hiding, ideally, one which can be satisfied
by some concrete and highly-efficient mapping M such as the one proposed here.

10 In the terminology of learning theory this means that a random function from the
family is hard to weakly-predict over the uniform distribution.

36 B. Applebaum and P. Raykov

Goldreich’s Suggestion [Gol00]. In the paper which introduced the expander-
based one-way functions (leading to Assumption 1), Goldreich suggested to con-
struct a pseudorandom function by iterating the basic (length-preserving) OWF
fG,P : {0, 1}n → {0, 1}n a logarithmic number of times and letting the (secret)
key specify the sequence of randomly chosen predicates. This construction yields
a candidate PRF of circuit complexity O(n log n) and logarithmic depth. Ana-
lyzing the security of this candidate was left as an interesting open question.

A Suggestion by Gowers [Gow96]. Gowers conjectured that, for sufficiently large
polynomial m(n), a random m(n)-depth Boolean circuit is a PRF. More accu-
rately, each level of the circuit contains n wires and a single gate P : {0, 1}3 →
{0, 1}3. For each level � we select three random indices (i, j, k) ∈ [n] and use
the corresponding wires in the �-th layer as the incoming wires to the �-th gate,
the output values of the gate are connected to the wires (i, j, k) located at the
next level. (All other wires simply copy the previous values to the next layer).
When the gate P computes a permutation (over three bits) the resulting circuits
computes a permutation over n-bits. Letting the key consists of the description
of the circuit (i.e., the wiring of the gates), yields a candidate pseudorandom
permutation. Moreover, Gowers proved that the resulting collection is �-wise
independent after m = poly(n, �) levels. (The polynomial dependency in n and
� was improved by [HMMR05,BH08].)

Unlike the constructions presented in this paper, it is currently unknown how
to base any of the above candidates on a one-wayness assumption. Interestingly,
all the above candidates (as well as the candidates of Miles and Viola [MV12]
and Akavia et al. [ABG+14]) can be naturally viewed as letting the key k specify
a “simple” function Fk which is then applied to the (public) input x. In contrast,
in our construction every public input x specifies a simple function fx that is
applied to the key k. This approach is conceptually similar to the structure of the
classical GGM construction [GGM86] which uses the input x to specify a circuit
(whose building blocks are length-doubling pseudorandom generators) that is
applied to the key.

1.4 Conclusion

We presented several elementary constructions of pseudorandom functions. All
our constructions follow a similar template: The input x is mapped to a hyper-
graph Gx, which represents a simple (essentially single-layered) circuit fGx,P , the
resulting circuit is applied to the key k, and the output is fed through some ran-
domness extractor. We believe that this structure provides a new methodology
for constructing pseudorandom functions which deserves to be further studied.

Following Goldreich, we conjecture that as long as the input-output relations
is expanding the computation is hard to invert. We further show that such one-
wayness leads to pseudorandomness by extending the techniques of [App13].
We believe that understanding this assumption, or more generally, relating the
combinatorial structure of circuits to their cryptographic properties is a key
question, which may eventually lead to faster and highly secure PRFs. Our

Fast Pseudorandom Functions Based on Expander Graphs 37

proofs, which fall short of providing optimal security (in some cases they are
very far from that), should be viewed as a first step in this direction.

Finally, we believe that the tools developed here (e.g., pseudoranodmness
over imperfect expanders, the expander-based search-to-decision reduction, and
the expander-generating hash function M) will turn out to be useful for future
works in the field.

1.5 Organization

We begin with some standard preliminaries along with a basic hypergraph nota-
tion in Sect. 2. In Sect. 3 we give the new search-to-decision reduction that applies
to arbitrary expander hypergraphs. The PRF constructions are described in
Sect. 4.

2 Preliminaries

General Preliminaries. We let [n] denote the set {1, . . . , n}. For a string x ∈
{0, 1}n and i ∈ [n], we let x[i] denote the i bit of x. For a tuple S = (i1, . . . , id),
we let x[S] = x[i1, . . . , id] denote the restriction of x to indices in S, i.e., the string
x[i1] . . . x[id]. For strings x1, . . . , xq we write (xi)

q
i=1 to denote the concatenation

of the strings x1|| · · · ||xq. We write logd n to denote the logarithm of n base d,
if d = 2 we omit writing it explicitly. A function ε(·) is said to be negligible if
ε(n) < n−c for any constant c > 0 and sufficiently large n. We will sometimes
use neg(·) to denote an unspecified negligible function. For a function t(·), we
write t = Õ(n), if t = O(n logk(n)) for some k ∈ N.

Probabilistic Notation. For a probability distribution or random variable X

(resp., set), we write x
R← X to denote the operation of sampling a random x

according to X (resp., sampled uniformly from X). We let Un (resp., US) denote
a random variable uniformly distributed over {0, 1}n (resp., over the set S). We
write supp(X) to denote the support of the random variable X, i.e., supp(X) =
{x | Pr[X = x] > 0}. The statistical distance between two probability distribu-
tions X and Y , denoted Δ(X;Y), is defined as the maximum, over all functions
A, of the distinguishing advantage ΔA(X,Y) := |Pr[A(X) = 1] − Pr[A(Y) = 1]|.
We say that X is ε-statistically indistinguishable from Y if Δ(X;Y) ≤ ε and
write X

s≡ε Y . The random variable X is (t, ε)-computationally indistinguish-
able from Y if for every circuit A of size t, the distinguishing advantage ΔA(X,Y)
is at most ε, and we write X

c≡t,ε Y .

Cryptographic Primitives. A random variable X over n-bit strings is called (t, ε)-
pseudorandom if X

c≡t,ε Un. A function f : {0, 1}n → {0, 1}m is (t, ε) one-way if
for every t-size adversary A it holds that Prx[A(f(x)) ∈ f−1(f(x))] < ε.

38 B. Applebaum and P. Raykov

Definition 1 (PRF). A keyed function f : K × X → Y is called (q, t, ε)-
pseudorandom if for any t-size circuit D(·) aided with q oracle gates, the distin-
guishing advantage

∣
∣
∣
∣
∣

Pr
k

R←K
[Dfk = 1] − Pr

h
R←H

[Dh = 1]

∣
∣
∣
∣
∣
≤ ε,

where H is a set of all functions mapping inputs from X to Y. An adversary is
called non-adaptive if it generates all the queries at the beginning independently
of the received responses from the oracle gates.

A (q, t, ε)-PRF family is a sequence of keyed functions F = {fn : Kn × Xn → Yn}
equipped with an efficient key sampling algorithm and an efficient evaluation
algorithm where each fn is (q(n), t(n), ε(n))-pseudorandom. We say that F is a
(q, t, ε) non-adaptive PRF (resp., weak PRF) if the above holds for non-adaptive
adversaries (resp., for adversaries such that each of their queries is chosen inde-
pendently and uniformly from Xn).

Low-Bias Generators. We employ the following notions of low-bias and bitwise-
independence generators. As in the case of PRFs, we view a two-argument func-
tion f(k, x) as a keyed function whose first argument k serves as a key. We
emphasize this distinction by writing fk(x) for f(k, x).

Definition 2. Let g : {0, 1}κ × {0, 1}m → {0, 1}n be a keyed function. For
x ∈ {0, 1}m, let Y (x) denote the random variable gk(x) induced by k

R← {0, 1}κ,
and let Y denote the random variable (Y (x))x∈{0,1}n where the same random
key is used for all x’s. We say that g is:

– (t, ε)-bitwise independent if every t-bit subset of Y is ε-close to uniform (in
statistical distance), i.e., for every � ≤ t distinct indices i1, . . . , i� we have that

Δ(U�; (Y[ij])�
j=1) ≤ ε.

– (t, ε)-biased over GF(2) if for every � ≤ t distinct indices {i1, . . . , i�}, we have
that ∣

∣
∣
∣
∣
∣
Pr

⎡

⎣
�∑

j=1

Y[ij] = 1

⎤

⎦ − 1
2

∣
∣
∣
∣
∣
∣
≤ ε,

where the sum is computed over GF(2).
– (t, ε)-linear-fooling over GF(2n) if for every t outputs Y (x1), . . . , Y (xt) (parsed

as elements of GF(2n)) of distinct x1, . . . , xt, every t constants b1, . . . , bt from
GF(2n) (that are not all equal to zero), we have that

Δ

(
t∑

i=1

biY (xi) ; UGF(2n)

)

≤ ε.

Fast Pseudorandom Functions Based on Expander Graphs 39

Sources and Extractors. The min-entropy of a random variable X is defined
to be minx∈supp(X) log 1

Pr[X=x] and is denoted by H∞(X). A keyed function
E : S × X → Y is a strong (k, ε)-extractor if for every distribution X over X
with H∞(X) ≥ k, it holds that Δ((s,Exts(x)) ; (s, U(Y))) ≤ ε, where s

R← S ,
x

R← X and Δ(·; ·) stands for statistical distance.
We consider the following notion of random sources that can be viewed as a

convex combination of the traditional bit-fixing sources [CGH+85].

Definition 3 (Generalized Bit-Fixing Source). A distribution X over
{0, 1}n is a generalized k-bit-fixing source if there exist k distinct indices S
such that X[S] is distributed like Uk and X[[n]\S] is independent from X[S].

We use the following simple lemma (whose proof is deferred to the full ver-
sion [AR16]).

Lemma 1. Let Ext be a strong (m − r, δ)-extractor for m-bit sources. Let Z =
Z1|| · · · ||Zq be a generalized (qm−r)-bit-fixing source, where each |Zi| = m. Then
for a uniformly chosen seed s, the random variable (s,Exts(Z1), . . . ,Exts(Zq))
is (q · δ)-statistically indistinguishable from uniform.

Hypergraphs. An (n,m)-hypergraph G is a hypergraph over vertices [n] with m
hyperedges (S1, . . . , Sm) where each hyperedge is viewed as a tuple (i1, . . . , ik),
i.e., it is ordered and may contain duplications. It is sometimes convenient to
think of a hypergraph G as a bipartite graph, where the n vertices represent
the lower layer of the graph, the hyperedges represent the upper layer of the
graph such that each hyperedge S = (i1, . . . , ik) is connected to the vertices
i1, . . . , ik. We say that G is d-uniform (denoted by (n,m, d)-hypergraph) if all
the hyperedges are of the same cardinality d. G is almost d-uniform (denoted by
[n,m, d]-hypergraph) if d/2 < |Si| ≤ d for all i ∈ [m]. We let Gn,m,d denote the
probability distribution over (n,m, d)-hypergraphs in which each of the m hyper-
edges is chosen independently and uniformly at random from [n]d. We say that a
distribution over (n,m, d)-hypergraphs is (k, ε)-random if any k hyperedges are
ε-close (in statistical distance) to the uniform distribution Gn,k,d. A distribution
over hypergraphs is (r, d, ε)-random if any s ≤ r hyperedges S1, . . . , Ss contain
at least sd entries that are ε-close to uniform.

For a set of hyperedges T = {S1, . . . , Sk} we write Γ(T) to denote the union
of tuples S1, . . . , Sk (where the union of tuples is naturally defined to be the set
of all indices occuring in S1, . . . , Sk). Let G\T denote the hypergraph obtained
from G by removing hyperedges T and updating the remaining hyperedges by
deleting from them vertices that belong to Γ(T). A hypergraph G is an (r, c)-
expander if for any set I of hyperedges of size at most r we have Γ(I) ≥ c|I|.
We refer to r as “the expansion threshold” and to c as “the expansion factor”.
A hypergraph G is an rbad-imperfect (r, c)-expander if there exists a subset of
G’s hyperedges Ibad of size |Ibad| ≤ rbad such that G\Ibad is an (r, c)-expander.

It is well known that a random hypergraph is likely to be highly expanding.
The following lemma (whose proof is deferred to the full version [AR16]) gen-
eralizes this fact to the case of (r, d, ε)-random hypergraphs and to the case of

40 B. Applebaum and P. Raykov

imperfect expansion. (Note that the failure probability drops down exponentially
with the size of the imperfectness parameter t.)

Lemma 2. Let β be a constant in (0, 1) and d ∈ N such that 4/β2 ≤ d ≤ nβ/4.
Let r = n1−β and m ≤ ndβ2/4. Let t = t(n) be a non-negative function such
that t ≤ r. Then, a (r + t, d, 2−Ω(n))-random (n,m)-hypergraph G is t-imperfect
(r, (1 − β)d)-expander except with probability n−(t+1)dβ2/10.

The union of an (n,m1)-hypergraph G = (S1, . . . , Sm1) and (n,m2)-
hypergraph H = (R1, . . . , Rm2) is the (n,m1 + m2)-hypergraph J = G ∪ H
whose hyperedges are (S1, . . . , Sm1 , R1, . . . , Rm2). Since union is an associative
operation, the union of q hypergraphs G1 ∪ · · · ∪ Gq is defined unambiguously.

2.1 Expander-Based Functions

For an (n,m)-hypergraph G = (S1, . . . , Sm), a sequence of m predicates P =
(P1, . . . , Pm) where Pi : {0, 1}|Si| → {0, 1}, we let fG,P : {0, 1}n → {0, 1}m

denote the function that takes an input x ∈ {0, 1}n and maps it to the m-
bit string (P1(x[S1]), . . . , Pm(x[Sm])). (If all predicates are identical we simply
write fG,P .) In its most abstract form, our assumption is parameterized by an
expansion parameter β (that quantifies the “expansion loss”), and by a (possibly
infinite) predicate family P. Formally, the Expander-based OWF assumption
(EOWF) and Expander-based PRG assumption (EPRG) are defined as follows.

Definition 4 (EOWF and EPRG). The EOWF(P,m, β, t, ε) assumption asserts
that for every [n,m, d]-hypergraph G = (S1, . . . , Sm) that is (n1−β , (1 − β)d)-
expanding, and every sequence of predicates11 P = (Pi)i∈[m] taken from P,
the function fG,P is (t, ε) one-way. The EPRG(P,m, β, t, ε) is defined similarly
except that fG,P (Un) is (t, ε) pseudorandom.

A considerable amount of research was devoted to studying the properties of
“secure” predicates. (See [App15] and references therein.) These results sug-
gest that for some predicates of logarithmic arity d = Θ(log n), and some
constant β < 1

2 , the EOWF(P,m, β, t, ε) assumption holds for every polyno-
mial m, t and every inverse polynomial ε. We adopt this setting as our main
intractability assumption and abbreviate this assumption by EOWF(P). Simi-
larly, we let EPRG(P) denote the analogous assumption for pseudorandomness.
In fact, known results suggest that for a proper family of predicates P, every
d = d(n) and every β < 1

2 , the assumption holds against adversaries whose
size t and success probability ε are exponential in the expansion threshold, i.e.,
t = exp(Ω(n1−β)) and ε = 1/t, as long as the output length satisfies m < no(d)

or even m < nαd for some constant α. We refer to this variant of the assumption
as the strong EOWF(P) and strong EPRG(P).

11 Here and through the paper, we implicitly assume that for all i ∈ [m] the arity of
the i-th predicate Pi matches the cardinality of the i-th hyperedge Si of G.

Fast Pseudorandom Functions Based on Expander Graphs 41

Concrete Instantiation. A candidate for such a secure predicate (that is sug-
gested in [AL15]) is the d-ary XOR-MAJd predicate which partitions its input
w = (w1, . . . , wd) into two parts wL = (w1, . . . , w�d/2�) and wR = (w�d/2�+1, . . . ,
wd), computes the XOR of the left part and the majority of the right part, and
XOR’s the results together. This predicate satisfies several useful properties such
as high resiliency, high algebraic degree and high rational degree (see Sect. 1.1).
In fact, these properties hold for the more general case of XOR-Threshold pred-
icates defined by:

XOR-THd,α,τ (w1, . . . , wd) =

⎛

⎝
�αd�∑

j=1

wj > τ�αd�

⎞

⎠ ⊕

⎛

⎝
d⊕

i=�αd�+1

wi

⎞

⎠ ,

where the first term evaluates to one if w1 + · · · + w�αd� > τ and to zero oth-
erwise. We define12 XOR-THd = {XOR-THd,α,τ : ∀α, τ ∈ (1/3, 2/3)} and let
XOR-TH =

⋃
d∈N

XOR-THd. We conjecture that strong EOWF holds for this
family predicates.

3 From One-Wayness to Pseudorandomness

In this section, we show that EPRG reduces to EOWF as long as the predicate
family P is sensitive. The latter condition means that every d-ary predicate
P ∈ P can be written as P (w) = wi ⊕ P ′(w) where i is some input variable and
P ′ does not depend on wi. (Namely, the predicate is fully sensitive to one of its
coordinates.)

Theorem 1. Let β be a constant in (0, 1); and d = d(n), m = m(n) and ε =
ε(n) be such that:

4
β

≤ d(1 − β) ≤ nβ/4 and
4nm3 ln n

ε2
≤ n(β2/4)(1−β)d,

and P be a sensitive predicate family. Then, the EPRG(P,m, β, t, ε) assump-
tion follows from the EOWF(P,m′, β′, t′, ε′) assumption where m′ = m ·
O(n ln nm2/ε2), β′ = 3β, t′ = t · O(n ln nm2/ε2) and ε′ = Ω(ε/(mn)).

Note that once d(n) is logarithmic in n, the conditions in the theorem are satisfied
for every polynomial m = poly(n), every inverse polynomial ε(n), and every
constant β. We conclude the following corollary.

Corollary 1. For every sensitive family of predicates P, if EOWF(P) holds then
so does EPRG(P). In particular, this holds for the special case of P = XOR-TH.

Note that if we plug in larger (super logarithmic) values of d in Theorem 1, we
can support larger (super-polynomial) values of m and smaller values of ε (at
the expense of decreasing β to some concrete constant).
12 The constants (1/3, 2/3) in the definition are somewhat arbitrary and it seems that

any constants bounded away from 0 and 1 will do.

42 B. Applebaum and P. Raykov

3.1 Proof of Theorem1

Assume, towards a contradiction, that there exists a t-size adversary that breaks
the pseudorandomness of fG,P with advantage ε for some [n,m, d]-hypergraph
G which is (n1−β , (1−β)d)-expanding and some sequence of sensitive predicates
P = (P1, . . . , Pm) ∈ Pm. Then, due to Yao’s theorem [Yao82], there exists an
adversary AG of similar complexity that predicts some bit of fG,P with advantage
εp = ε/m. To simplify notation, we assume that AG predicts the last bit13 of
fG,P . That is,

Pr
x

R←{0,1}n,y=fG,P (x)

[AG(y[1, . . . , m − 1]) = y[m]] − 1
2

≥ εp. (1)

We will prove the following lemma.

Lemma 3. Let κ = 4 ln n/ε2p, m′ = κ · m · n and P ′ = Pκn = (P1, . . . , Pm)κn.
There exists a distribution D over (n,m′, d)-hypergraphs such that:

1. A hypergraph H sampled from D is (n1−3β , (1 − 3β)d)-expanding with proba-
bility 1 − 1/(n ln n).

2. There exists an adversary B of size t′ = O(κ · n · t) and a set of inputs
Good ⊆ {0, 1}n which contains at least εp/2-fraction of all n-bit strings, such
that for every string x ∈ Good,

Pr
H

R←D
[B(H, fH,P ′(x)) = x] ≥ 1/(2n).

We show that Theorem 1 follows from Lemma 3. Call H good if

Pr
x

R←{0,1}n

[B(H, fH,P ′(x)) = x|x ∈ Good] ≥ 1/(3n).

By a Markov argument, a random H
R← D is likely to be good with probability

Ω(1/n). Combing this with the first item, it follows, by a union bound, that
there exists a good H which is also (n1−3β , (1−3β)d)-expanding. By hardwiring
H to B, we get an adversary BH which inverts fH,P ′ with probability of at least

Pr
x

R←{0,1}n

[x ∈ Good] · Pr
x

R←{0,1}n

[BH(fH,P ′(x)) = x|x ∈ Good] ≥ Ω(εp/n) = Ω(ε/(mn)),

contradicting the EOWF(P,m′, 3β, t′, ε/(mn)) assumption. We move on to prove
Lemma 3.

Proof (Proof of Lemma 3). Before describing the distribution D, we need
some additional notation. For a permutation π : [n] → [n] and a tuple S =
(i1, . . . , id) ⊆ [n]d, let π(S) denote the tuple (π(i1), . . . , π(id)). For an [n,m, d]-
hypergraph G with the hyperedges (S1, . . . , Sm), let π(G) denote a [n,m, d]-
hypergraph with the hyperedges (π(S1), . . . , π(Sm)). For a string x ∈ {0, 1}n,
let π(x) denote the bit-string whose coordinates are permuted under π. We
define the distribution D based on the hypergraph G via the following proce-
dure: (Fig. 1)

Fast Pseudorandom Functions Based on Expander Graphs 43

1. Take [n, m, d]-hypergraph G as an input. Let �∗ ∈ [n] denote the first
index of the last hyperedge of G.

2. Sample a random index τ
R← [n]. For each j ∈ [n], let πj

1, . . . , π
j
κ be

κ = 4 ln n/ε2p random permutations over [n] subject to πj
i (�

∗) = τ .
3. For each j ∈ [n] and i ∈ [κ], let Gj

i be the hypergraph πj
i (G) modified

such that the first entry of its last hyperedge is set to j.
4. The output of D is the hypergraph H = j∈[n],i∈[κ] G

j
i .

Fig. 1. The distribution D

We start by proving the first item of Lemma 3. Consider the distribution D′

resulting from generating κ · n uniform and independent permutations φj
i (j ∈

[n], i ∈ [κ]), and outputting the hypergraph H ′ = ∪i,jH
′
i,j where H ′

i,j = φj
i (G).

Observe that D can be viewed as a two step process in which: (1) H ′ is sampled
from D′; and (2) We modify at most two nodes in every hyperedge of H ′ based
on some random process.14 Since the second step can reduce the expansion of a
set T by at most 2|T |, and since our setting of parameters implies that βd > 2, it
suffices to show that PrH′ [H ′ is (n1−2β , (1 − 2β)d)-expanding] ≥ 1 − 1/(n ln n).

To see this, recall that G is (r, d′ = (1 − β)d)-expanding and therefore, for
every i, j, the random variable φj

i (G) is (r, d′, 0)-random. Moreover, the permuta-
tions φj

i are sampled independently at random, and therefore H ′ =
⋃

i,j φj
i (G) is

a (r, d′, 0)-random (n, κmn)-hypergraph. Observe that our parameters satisfy the
requirements of Lemma 2 (i.e., 4/β2 ≤ d′ ≤ nβ/4 and κmn ≤ nβ2d′/4). By apply-
ing the lemma with t = 0, we conclude that H ′ is (n1−β , (1 − β)2d)-expanding
(and thus also (n1−2β , (1 − 2β)d)-expanding), except with failure probability of
at most n−(β2/4)(1−β)d. The latter quantity is upper-bounded by 1/(n ln n) since
4nm3 lnn

ε2 ≤ n(β2/4)(1−β)d. This completes the proof of the first part of Lemma 3.
We proceed with the proof of the second item of Lemma 3. Let S =

(�∗, i2, . . . , id) be the last hyperedge of G. Let S′ denote the d−1 tuple (i2, . . . , id)
and let Pm : {0, 1}d → {0, 1} be the predicate computed by the last output of
fG,P . We assume (WLOG) that the first input of Pm is sensitive and so it can be
written as Pm(w1, . . . , wd) = w1 ⊕ Q(w2, . . . , wd) for some (d − 1)-ary predicate
Q.

The algorithm B is a variant of the inversion algorithms given in [App13].
The input is a hypergraph H =

⋃
j∈[n],i∈[κ] G

j
i and a string y ∈ {0, 1}κ·n·m

such that y = fH,P ′(x). Let y be parsed as (yj
i)j∈[n],i∈[κ] where each yj

i =
fGj

i ,P (x). For each j ∈ [n] and i ∈ [κ], the algorithm B runs AG on input

13 The choice of the last bit unpredictability is without loss of generality since we can
permute the order of the bits of fG,P (see [App13]).

14 Specifically, sample a random index τ ∈ [n], and for every sub-hypergraph H ′
i,j and

hyperedge S ∈ H ′
i,j swap the node φj

i (�
∗) with the node τ , except for the first entry

in the last hyperedge of Hi,j which φj
i (�

∗) is replaced by j.

44 B. Applebaum and P. Raykov

yj
i [1, . . . , m − 1] and gets a prediction bit ej

i . Let σj
i be the inverse permutation

of πj
i , and xj

i = σj
i (x); then, we get that yj

i = fσi(G
j
i),P

(xj
i). By construction,

this means that yj
i [1, . . . , m−1] = fG,P (xj

i)[1, . . . ,m−1] and so AG attempts to
predict the value Pm(xj

i [S]) = xj
i [�

∗] ⊕ Q(xj
i [S

′]). Note that the bit yj
i [m] equals

to xj
i [σ

j
i (j)] ⊕ Q(xj

i [S
′]), and so

Pm(xj
i [S]) ⊕ yj

i [m] = xj
i [�

∗] ⊕ xj
i [σ

j
i (j)] = x[πj

i (�
∗)] ⊕ x[j] = x[τ] ⊕ x[j].

Assuming that x[τ] is known (indeed, we can either guess it or try both values),
the above equation provides an estimation for x[j]. Since our predictor may err,
this estimation is “noisy”, i.e., it equals to x[j] only with probability 1

2 + Ω(εp).
After collecting κ such votes (and arguing that these votes are “independent
enough”) we eventually recover the input x bit by bit by deciding on the majority
of the votes for each x[j]. We proceed by formally describing the algorithm B
(Fig. 2).

– Input: A hypergraph H = j∈[n],i∈[κ] G
j
i and yj

i = fGj
i ,P (x).

– Initialize v1, . . . , vn to 0.
– For j ∈ [n] and i ∈ [κ]:

1. Compute ej
i := AG(yj

i [1, . . . , m − 1]), and let bj
i = ej

i ⊕ yj
i [m].

2. If bj
i = 1, then increase vj by 1, otherwise decrease vj by 1.

– For j ∈ [n], set zj to 1 if vj > 0, otherwise set it to 0. Let s0 = z1 · · · zn

and s1 = z1 · · · zn.
– Output: s0 if y = fH,P ′(s0) and s1 if y = fH,P ′(s1). Otherwise, output ⊥.

Fig. 2. The inverter B

We now prove that B inverts fH,P ′ well. Let wt(x) be the hamming weight
of x ∈ {0, 1}n and for w ∈ [n], let Xw = {x ∈ {0, 1}n|wt(x) = w}. Call x good if
AG predicts with advantage εp/2 the last bit of fG,P (x′) for x′ R← Xwt(x), i.e.,

Pr
x′ R←Xwt(x),y=fG,P (x′)

[AG(y[1 . . . m − 1]) = y[m]] − 1/2 ≥ εp/2.

We let Good denote the set of good x’s and show that this set is εp/2-dense.

Claim. Pr
x

R←{0,1}n
[x ∈ Good] ≥ εp/2.

Proof. Recall that our predictor AG has an advantage of εp when it is invoked on

fG,P (x′) where x′ R← Un. Note that we can sample a uniform vector x′ R← {0, 1}n

by first selecting x
R← Un and then selecting x′ R← Xwt(x). Hence, the claim follows

from Markov’s inequality. ��

Fast Pseudorandom Functions Based on Expander Graphs 45

Now fix a good x. Let Sn denote the set of all permutations from [n] to [n].
Observe that sampling x′ R← Xwt(x) is equivalent to taking a random permutation

σ
R← Sn and computing x′ = σ(x). Hence, it holds that

Pr
σ

R←Sn,y=fG,P (σ(x))

[AG(y[1 . . . m − 1]) = y[m]] − 1/2 ≥ εp/2.

By an averaging argument, we get that there exists an index τx ∈ [n] such that

Pr
σ

R←{π∈Sn|π(τx)=�∗},y=fG,P (σ(x))

[AG(y[1 . . . m − 1]) = y[m]] − 1/2 ≥ εp/2.

Next, we show that the algorithm B recovers x with probability at least 1
2

when invoked with a good input x and with a hypergraph H generated under
condition that τ = τx. Since τ is generated uniformly at random this implies
that PrH [B(H, fH,P ′(x)) = x] ≥ 1/(2n).

Claim. For every good x, it holds that PrH [B(H, fH,P ′(x)) = x|τ = τx] ≥ 1
2 .

Proof. We assume that x[τ] = 0 and show that, with high probability, s0 is likely
to be x. (A similar argument shows that when x[τ] = 1, s1 is likely to be x). We
prove that for each j ∈ [n] the value zj equals to x[j] with probability 1−1/(2n).
The theorem then follows by applying a union bound over all n indices.

Fix some index j ∈ [n]. Call a vote bj
i good if it is equal to x[j]. Our goal

is to show that with high probability a majority of the votes are good. Observe
that in each iteration i ∈ [κ], the predictor AG is invoked on yj

i [1, . . . , m − 1] =
fG,P (xj

i)[1, . . . ,m − 1] where xj
i = σj

i (x) and that the vote bj
i is good if the

predictor succeeds in predicting Pm(xj
i [S]). Since the permutations σj

i ’s (that are
the inverses of πj

i ’s) are independent and are uniform subject to σj
i (τ) = �∗, and

since x is good, each call to the predictor succeeds independently with probability
1
2 + εp/2. Hence, by an additive Chernoff bound, the majority of the votes are
good except with probability exp(−2κ · (εp/2)2) = exp(−2 ln n) < 1/(2n). ��

This completes the proof of Lemma 3. ��

4 PRF Constructions

We describe a general template for constructing pseudorandom functions. The
template is parameterized with a predicate family P = {Pd} where Pd is a d-
ary predicate15 and two (possibly keyed) algorithms: mapper M and extractor
E. Let n ∈ N denote the security parameter and let d = d(n) be a locality
parameter. Given an input x ∈ {0, 1}n and a uniformly chosen key k ∈ {0, 1}n

we define the output of the function as follows. First, we use the mapper M
to map x to an (n, n/(d log n), d)-hypergraph Gx. Second, given the key k we
15 The construction can be easily generalized to handle non-uniform hypergraphs

and/or different predicates d-ary predicates for each output.

46 B. Applebaum and P. Raykov

compute a pseudorandom string y = fGx,P (k), where P = Pd. Finally, we apply
a randomness extractor E to y in order to produce the final output. (The keys
of E and M are appended to the key k and are treated as part of the key of the
construction.) The main intuition behind this template is that if the hypergraph
Gx has good expanding properties, the string y contains enough pseudoentropy
which once extracted via E looks pseudorandom.

In the following we describe several instantiations of the template by choosing
different M and E.

Notation Switch. Through this section, the symbol x denotes a query to the
PRF while k denotes the PRF’s key. Due to the structure of our construction,
this means that the input to the function fG,P is denoted by k (the key) and
the hypergraph G is computed based on the input x. (Unlike the notation used
in Sect. 3.)

4.1 Instantiation F1

The first instantiation F1 can be seen as a “plain” instantiation of the template,
where the inputs are mapped to the hypergraphs directly and no extractor is
applied in the end (Fig. 3).

– Parameters: Let K = {0, 1}n be the key space, X = {0, 1}n be the input
space, and Y = {0, 1}n/(d log n) be the output space of F1. Let d = Θ(log n)
and let P ∈ P be a d-ary predicate.

– Mapper M : The input x is parsed into n/(log n) indices, then each consec-
utive group of d indices is interpreted as a hyperedge of the hypergraph G.

– Extractor E: No extractor is applied in the end.
– Code of F1: The function F1 : K × X → Y is defined as F1(k, x) :=

fM(x),P (k).

Fig. 3. Instantiation F1

Theorem 2. Let n be the security parameter. For every q = no(log n), every
t(n), ε(n), and every constant β ∈ (0, 1) the function F1 is a (q, t, ε+n−Ω(log n))
weak PRF under assumption EPRG(P, n · q, β, t, ε).

Proof. Fix some constant β and let d = Θ(log n). Let x1, . . . , xq be q = no(log n)

random strings from {0, 1}n asked by the adversary. For i ∈ [q], let Gi = M(xi).
Since the xi’s are uniformly distributed, the hypergraph H :=

⋃q
i=1 Gi is a

(n1−β , 0)-random (n,m, d)-hypergraph with m = qn/(d log n) < ndβ2/4. Hence,
by Lemma 2 (with imperfectness parameter t = 0), H is (n1−β , (1 − β)d)-
expanding except with probability εexp = n−Ω(log n). (The condition 4/β2 ≤
d ≤ nβ/4 required for Lemma 2 holds since β is constant and d = Θ(log n).)

Fast Pseudorandom Functions Based on Expander Graphs 47

The theorem follows by noting that conditioned on H being (n1−β , (1 − β)d)-
expanding, the EPRG(P, n · q, β, t, ε) assumption implies that the random vari-
able V = (F1(k, xi))

q
i=1, induced by a uniformly chosen k ∈ {0, 1}n, is (t, ε)-

pseudorandom.

Remark 1. We note that the theorem extends to the case where logn q + 1 <
β2d/4.

Corollary 2. Suppose that EOWF(XOR-MAJ) holds. Then, there exists a weak
PRF F1 : {0, 1}n × {0, 1}n → {0, 1}n/ log2 n which is computable in linear time
of O(n) on a RAM machine with O(log n) word size, or by a boolean circuit of
size Õ(n). Moreover, for every fixed key k, the function F1(k, ·) can be computed
by a depth-3 AC0 circuit.

Proof. By Corollary 1, EOWF(XOR-MAJ) implies EPRG(XOR-MAJ), which in
turn, implies, by Theorem2, that F1 is a weak PRF.

Observe that the computation of F1 consists of two steps. (1) Access the key k
in the n/ log n addresses specified by the input x and retrieve the corresponding
content. Namely, for 1 ≤ i ≤ � where � = n/ log n, output the bits zi = k[x[(i −
1) log n + 1 : i log n]] where x[i : i + j] denotes the address represented by the
substring (x[i] · · · x[i+j]) under the standard binary representation. (2) Partition
the bits z1, . . . , z� to d-size �/d blocks, and compute for each block 1 ≤ i ≤ �/d
the bit yi = XOR-MAJd(z(i−1)d+1, . . . , zid).

Time. On a RAM machine with log n word size, the first step is implemented
in time O(n) (these are just accesses to an array) and the second step takes
O(n/ log n) time.

Size. In AppendixA we show that the first step can be implemented by a circuit
of quasilinear size O(n log2 n log log n). In the second part, each computation of
zi consists of computing two symmetric functions (XOR and Majority) over d/2-
long inputs. The classical result of [MP75] (see also [Weg87]) shows that every
d-ary symmetric predicate can computed by a linear-size circuit (of size O(d))
and so the overall complexity of the second step is linear in n.

Depth. Fix some key k. Observe that both the first part and the second part
of the computation have logarithmic locality (each bit zi depends on at most
O(log n) bits of x and each yi depends on at most O(log n) bits of the zi’s).
Observe that any such function can be computed by a polynomial size DNF
(OR of AND’s) and a polynomial size CNF (AND of OR’s). Hence, the overall
computation can be naively computed by a depth-4 circuit. In fact, by using
DNF for the first part and CNF for the second part we can collapse the two
middle layers of OR gates and implement F1 by a depth-3 AC0 circuit. ��

We note that, under strong EOWF(XOR-MAJ), F1 achieves security against
adversaries of almost-exponential size (exp(n1−β) for every β > 0) who make
polynomially many queries (or even slightly super-polynomial number of queries

48 B. Applebaum and P. Raykov

q) with quasipolynomial distinguishing advantage of ε = n−Ω(log n). As men-
tioned in the introduction, the quasipolynomial value of ε is inherent for AC0

constructions.
We also remark that one can extend the output length of F1 to {0, 1}n

by stretching the output using a pseudorandom generator G : {0, 1}n/ log n →
{0, 1}n. Using fast constructions of PRGs (e.g., [App13]) one can do this while
keeping the efficiency guarantees stated in the theorem.

4.2 Instantiation F2

The second instantiation F2 is a modification of F1, where an extractor is applied
in the end. As explained in the introduction, this allows us to reduce the distin-
guishing advantage ε (Fig. 4).

– Parameters: Let K = Kf × Ke = {0, 1}n × {0, 1}O(n) be the key space,
X = {0, 1}n be the input space, and Y = {0, 1}n/(2d log n) be the output
space of F2. Let P ∈ P be a d-ary predicate.

– Mapper M : As in F1, M(x) parses x as (n, n/(d log n), d)-hypergraph.
– Extractor: Let Ext : Ke × {0, 1}n/(d log n) → {0, 1}n/(2d log n) be a strong

(�, εExt)-extractor where � = 0.9 · n/(d log n) and εExt = 2−Ω(n)).
– Code of F2: The function F2 : K × X → Y is defined as F2((k, s), x) :=

Exts(fM2(x),P (k)), where (k, s) ∈ Kf × Ke.

Fig. 4. Instantiation F2

Our goal is to provide a tight security reduction from breaking F2 to the EPRG
assumption. For this, we will have to rely on the security of EPRG over a predicate
family Pβ containing all predicates which can be obtained by selecting some d-
ary predicate P ∈ P and arbitrarily fixing at most βd of its inputs. Although
the security of EOWF with respect to Pβ may seem like a strong assumption, we
will later show that natural candidates for EOWF already satisfy it.

Theorem 3. Let n be the security parameter. Let β be a constant in (0, 1),
q = q(n) and d = d(n) such that 4/β2 ≤ d ≤ nβ/4 and q ≤ ndβ2/4−1. Let
t = t(n), ε = ε(n) be arbitrary functions. Then, the function F2 is a (q, t, ε +
n−Ω(dn1−β) + q · 2−Ω(n)) weak PRF, under assumption EPRG(Pβ , n · q, β, t, ε).

Proof. Let x1, . . . , xq be q random strings from {0, 1}n asked by the adversary.
For i ∈ [q], let Gi = M2(xi). Consider the (n,m, d)-hypergraph H :=

⋃q
i=1 Gi

where m = nq/(d log n) < ndβ2/4. Since the Gi’s are random, the hypergraph H
is (2r, 0)-random for r = n1−β . By applying Lemma 2 with t = r = n1−β and d-
uniform hypergraphs, we conclude that, except with probability εexp = n−Ω(dr),
the hypergraph H is r-imperfect (r, (1 − β)d)-expander.

Fast Pseudorandom Functions Based on Expander Graphs 49

From now on we fix a sequence of queries (x1, . . . , xq) which leads to such an
imperfect expander H. It suffices to prove that, for a uniformly chosen (k, s) ∈ K,
the random variable V := (F2((k, s), xi))

q
i=1 is (t, ε + q · εExt)-pseudorandom for

εExt = 2−Ω(n).
By construction, V can be rewritten as Exts(fH,P (k)) where Exts(y1, . . . ,

yq) := (Exts(y1), . . . ,Exts(yq)). First, we show that the distribution of fH,P (k)
is computationally indistinguishable from a generalized bit-fixing source (the
proof is deferred to the full version [AR16]).

Lemma 4. Let G be a [n,m, d]-hypergraph which is n1−β-imperfect (n1−β , (1 −
β)d)-expander for some constant β ∈ (0, 1). Then, given that the assump-
tion EPRG(Pβ ,m, β, t, ε) holds, the random variable fG,P (Un) is (t, ε)-
computationally indistinguishable from a generalized (m−n1−β) bit-fixing source.

It follows that fH,P (k) is (t, ε)-computationally indistinguishable from some
generalized (qn

d log n − r) bit-fixing source Y . We therefore conclude that V =
Exts(fH,P (k)) is (t, ε)-indistinguishable from Exts(Y). By Lemma 1 (Sect. 2),
the latter distribution is (q · εExt)-statistically indistinguishable from uniform.
Hence, conditioned on H being an almost expander, V must be (t, ε + qεExt)-
indistinguishable from uniform. Overall, we conclude that for q random queries,
V is (t, ε + qεExt + εexp)-pseudorandom, as required. ��

Corollary 3. Suppose that strong EPRG(XOR-TH) holds. Then, there exists
a weak PRF F2 : {0, 1}O(n) × {0, 1}n → {0, 1}n/2 log2 n which is (q, t =
exp(n1−β), ε = exp(−n1−β)) for every polynomial q and every constant β, and
can be computed in linear time of O(n) on a RAM machine with O(log n) word
size, and by a boolean circuit of size Õ(n). Moreover, for every fixed key k, the
function F2(k, ·) can be computed by an MOD2 ◦ AC0 circuit.

Proof. Instantiate F2 with P = XOR-MAJ and observe that Pβ = XOR-TH
for sufficiently small β (e.g., every β < 1/6). By Theorem 3, the strong
EPRG(XOR-TH) assumption implies that, for every polynomial q and constant
β > 0, F2 is (q, t = exp(n1−β), ε = exp(−n1−β)) weak PRF.

The efficiency analysis is identical to the analysis of F1 except that we need
to add the complexity of the extractor. Ishai et al. [IKOS08, Theorem 3.3] con-
structed a strong (0.9 · N, 2−Ω(N))-extractor for N -bit sources outputting an
(N/2)-bit string using a seed of length O(N) that can be computed by a lin-
ear function (over the binary field) whose circuit is of size O(N). By employ-
ing this extractor we get a linear-time implementation in the RAM model and
quasilinear-size circuit implementation. Furthermore, since the extractor is a lin-
ear function it can be implemented by a single layer of XOR gates and so the
overall computation is in MOD2 ◦ AC0. ��

4.3 Instantiation F3

The third instantiation, F3, is a modification of F2, where the input x is mapped
to a hypergraph using an (n, 2−Ω(n))-bitwise independent generator M : Km ×

50 B. Applebaum and P. Raykov

– Parameters: Let K = Kf ×Km ×Ke = {0, 1}n ×{0, 1}2n ×{0, 1}n be the
key space, X = {0, 1}n be the input space, and Y = {0, 1}n/(2d log n) be
the output space of F3. Let P be some d-ary predicate chosen from P.

– Mapper M : Let M : Km × X → X be a (n, 2−Ω(n))-biased generator
and let σ

R← Km be its key. We parse the n-bit output of M as an
(n, n/(d log n), d)-hypergraph.

– Extractor: Let Ext : Ke × {0, 1}n/(d log n) → {0, 1}n/(2d log n) be a strong
(0.9 · n/(d log n), 2−Ω(n))-extractor.

– Code of F3: The function F3 : K×X → Y is defined as F3((k, σ, s)), x) :=
Exts(fMσ(x),P (k)).

Fig. 5. Instantiation F3

X → X . An efficient construction of such a (n, 2−Ω(n))-bias generator (with
Km = {0, 1}2n) is presented in Theorem 5 (Fig. 5).

Theorem 4. Let n be the security parameter. Let β be a constant in (0, 1),
q = q(n) and d = d(n) such that 4/β2 ≤ d ≤ nβ/4 and q ≤ ndβ2/4−1. Let
t = t(n), ε = ε(n) be arbitrary functions. Then, the function F3 is a non-adaptive
(q, t, ε+n−Ω(dn1−β) + q ·2−Ω(n))-PRF, under assumption EPRG(Pβ , n · q, β, t, ε).

Proof. Fix a sequence of q distinct non-adaptive queries x1, . . . , xq. For i ∈ [q],
let Gi := Mσ(xi). Since M is (n, 2−Ω(n))-biased, the hypergraph H :=

⋃q
i=1 Gi

is (�, 2−Ω(n))-random hypergraph for � = n/(d log n) ≥ 2n1−β . Recall also that
H has at most n · q ≤ ndβ2/4 hyperedges and d is chosen such that 4/β2 ≤
d ≤ nβ/4. By applying Lemma2 with t = r = n1−β and d-uniform hypergraphs,
we conclude that, except with probability εexp = n−Ω(dr), the hypergraph H is
r-imperfect (r, (1−β)d)-expander (where the probability is taken over σ

R← Km).
From now on we fix a good σ which leads to such an imperfect expander

H. It suffices to prove that, for a uniformly chosen (k, s), the random variable
V := (F3((k, σ, s), xi))

q
i=1 is (t, ε + q · εExt)-pseudorandom for εExt = 2−Ω(n). By

construction, V can be rewritten as Exts(fH,P (k)) where Exts(y1, . . . , yq) stands
for (Exts(y1), . . . ,Exts(yq)). Lemma 4 shows that the random variable fH,P (k)
is (t, ε)-computationally close to some generalized (qn/(d log n) − r) bit-fixing
source Y , and Lemma 1 shows that Exts(Y) is q · εExt-close to uniform. The
theorem follows. ��

In Theorem 5 we show that there exists a (n, 2−Ω(n))-bias generator M :
{0, 1}2n × {0, 1}n → {0, 1}n which can be computed in quasilinear time Õ(n)
or by a TC0 circuit (i.e., a constant-depth circuit with unbounded fan-in AND,
OR and Majority gates). The following corollary follows.

Corollary 4. Suppose that EOWF(XOR-MAJ) holds. Then, there exists a non-
adaptive PRF F3 : {0, 1}3n × {0, 1}n → {0, 1}n/ log2 n which is computable by a

Fast Pseudorandom Functions Based on Expander Graphs 51

boolean circuit of size Õ(n). Moreover, for every fixed key k, the function F3(k, ·)
can be computed by a TC0 circuit.

Proof. Let P = XOR-MAJ and observe that Pβ = XOR-TH for sufficiently
small β (e.g., every β < 1/6). By Corollary 1, EOWF(XOR-TH) implies
EPRG(XOR-TH), which in turn, implies, by Theorem4, that F3 is a non-adaptive
PRF.

The efficiency analysis is identical to the analysis of F2 except that we need
to add the complexity of M which can be computed in quasilinear time Õ(n) or
by a TC0 circuit (See Theorem 5).

Under the strong EPRG(XOR-TH) assumption, a logarithmic d implies that F3

is (q, t = exp(n1−β), ε = exp(−n1−β)) secure for every polynomial q and every
constant β. For polynomial locality d = nδ, for some constant δ > 0, we get
q = exp(nΩ(δ)), t = exp(n1−Ω(δ)) and ε = exp(−n1−Ω(β)).

A Bitwise Independent Generator Construction. We now construct an
efficient generator that is (t, ε)-bitwise independent in the regime of t = n and
negligible ε.

Theorem 5. Let k0, k1 be two keys chosen uniformly from GF(2n). For x ∈
GF(2n), define the generator Vk0,k1(x) := k1

k0+x . Then, V is (d, d · 2d/2+1−n)-
bitwise independent for any d ≤ 2n. Furthermore, the generator V can be com-
puted by a circuit of quasilinear size O(n log2 n log log n) and by a TC0 circuit.

Proof. We observe that in order to prove that V is (d, d · 2d/2+1−n)-bitwise inde-
pendent, it is sufficient to prove that V is (d, d

2n−1)-linear-fooling over GF(2n).
Indeed, we know that (t, ε)-linear-fooling over GF(2n) implies (t, ε)-bias over
GF(2) [Tzu09, Theorem 4.5], which in turn implies (t, 2t/2 · ε)-bitwise indepen-
dence [NN93, Corollary 2.1].

We now turn to showing that V is (d, d
2n−1)-linear-fooling over GF(2n) for any

d ≤ 2n. The proof is based on the work of [MV12, Theorem 3.5]. We prove that V
is (d, d

2n−1)-linear-fooling over GF(2n), i.e., for any distinct a1, . . . , ad ∈ GF(2n),
any d constants b1, . . . , bt from GF(2n) (that are not all equal to zero), we have
that

Δ

(
d∑

i=1

biVk0,k1(ai) ; UGF(2n)

)

≤ d

2n−1
.

After letting p(x) denote the polynomial
∑d

i=1
bi

x+ai
=

∑d
i=1 bi(x + ai)2

n−2, we

get that
∑d

i=1 biVk0,k1(ai) can be rewritten as k1·p(k0). Observe that conditioned
on p(k0) �= 0, we have that k1 ·p(k0) is uniformly distributed over GF(2n). Hence,
it suffices to show that p(x) has at most 2d − 1 distinct roots. First, we define
auxiliary polynomials:

p(x) := p(x) ·
d∏

j=1

(aj + x) =
d∑

i=1

⎡

⎣bi(x + ai)2
n−1

∏

j
=i

(aj + x)

⎤

⎦ ,

52 B. Applebaum and P. Raykov

and

p∗(x) :=
d∑

i=1

bi

∏

j
=i

(aj + x).

Observe that any root y of p(x) is also a root of p(x). Moreover, note that for any
y �∈ {a1, . . . , ad} we have that p(y) = p∗(y) (since y2n−1 = 1 for any non-zero y).
Hence, the only possible roots of p(x) are the roots of p∗(x) and {a1, . . . , ad}.
This means that in order to show that p(x) has at most 2d − 1 distinct roots, it
is sufficient to show that p∗(x) has at most d− 1 distinct roots. Because p∗(x) is
a degree d− 1 polynomial, this will always be the case unless p∗(x) is identically
zero. This is ruled out by observing that p∗(ai) �= 0, where i is chosen such that
bi �= 0. Indeed, p∗(ai) = bi

∏
j
=i(aj + ai) which is non-zero because a1, . . . , ad

are distinct.

(Complexity of V) Finally, we turn to the analysis of the circuit complexity of
V. The complexity of V equals to the complexity of the division and summation
circuits (dividing k1 by k0 + x). As stated in [MV12] this can be done by a
TC0 circuit or by a circuit of size O(n log2 n log log n) using the techniques
of [GvzGPS00].

Acknowledgement. We thank Adam Klivans and Shai Shalev-Shwartz for helpful
discussions.

A Array Multi-access in Quasilinear Time

We consider the following functionality. Given � = n/ log n indices of length log n
each I[1], . . . , I[�] and a data vector K ∈ {0, 1}n output K[I[1]], . . . ,K[I[�]]. We
will show that this can done by O(n log2 n log log n)-size circuit. We assume that
the input indices are sorted which is without loss of generality since t elements
of bit-length b = log n can be sorted by a circuit of size O(b� log �) = O(n log n)
(e.g., using a sorting network [AKS83] where comparison is implemented via Par-
allel Prefix Computation [LF80]). Instead of describing an O(n log2 n log log n)-
size circuit, we describe a Turing Machine M that solves the problem in time
T = O(n log n) using a constant number of tapes. The latter can be simulated
by a circuit of size O(T log T) (e.g., by turning the computation M into an obliv-
ious Turing machine M ′ of complexity O(T log T) [PF79] and then moving to
a circuit of size O(T log T)). We sketch the description of the machine M . The
machine M places the indices I on one tape, the data K on another tape and
places the output on a special output tape. During its run, M maintains two
counters i and j which are initialized to 1. At each step, M checks if the index
I[i] equals to j if this is the case then K[j] is written to the current position in
the output tape. Also, the head of the output tape is moved one step and the
head of the index tape is moved to the next index. In case of inequality, the head
of the data tape is moved forward by one step, and the counter j is increased
by one. Since each step costs O(log n) operations and there are at most n steps,
the overall complexity is O(n log n).

Fast Pseudorandom Functions Based on Expander Graphs 53

References

[ABG+14] Akavia, A., Bogdanov, A., Guo, S., Kamath, A., Rosen, A.: Candidate
weak pseudorandom functions in AC0 MOD2. In: Naor, M. (ed.) Innova-
tions in Theoretical Computer Science, ITCS 2014, Princeton, NJ, USA,
12–14 January 2014, pp. 251–260. ACM (2014)

[ABR12] Applebaum, B., Bogdanov, A., Rosen, A.: A dichotomy for local small-
bias generators. In: Cramer, R. (ed.) TCC 2012. LNCS, vol. 7194, pp.
600–617. Springer, Heidelberg (2012). doi:10.1007/978-3-642-28914-9 34

[ABW10] Applebaum, B., Barak, B., Wigderson, A.: Public-key cryptography from
different assumptions. In: Schulman, L.J. (ed.) Proceedings of the 42nd
ACM Symposium on Theory of Computing, STOC 2010, Cambridge,
Massachusetts, USA, 5–8 June 2010, pp. 171–180. ACM (2010)

[AHI05] Alekhnovich, M., Hirsch, E.A., Itsykson, D.: Exponential lower bounds for
the running time of DPLL algorithms on satisfiable formulas. J. Autom.
Reasoning 35(1–3), 51–72 (2005)

[AKS83] Ajtai, M., Komlós, J., Szemerédi, E.: An o(n log n) sorting network. In:
Johnson, D.S., Fagin, R., Fredman, M.L., Harel, D., Karp, R.M., Lynch,
N.A., Papadimitriou, C.H., Rivest, R.L., Ruzzo, W.L., Seiferas, J.I. (eds.)
Proceedings of the 15th Annual ACM Symposium on Theory of Comput-
ing, Boston, Massachusetts, USA, 25–27 April 1983, pp. 1–9. ACM (1983)

[AL15] Applebaum, B., Lovett, S.: Algebraic attacks against random local func-
tions, their countermeasures. In: Electronic Colloquium on Computa-
tional Complexity (ECCC), STOC 2016, vol. 22, p. 172 (2015, to appear)

[Ale03] Alekhnovich, M.: More on average case vs approximation complexity.
In: 44th Symposium on Foundations of Computer Science (FOCS 2003),
Cambridge, MA, USA, Proceedings, 11–14 October 2003, pp. 298–307.
IEEE Computer Society (2003)

[App13] Applebaum, B.: Pseudorandom generators with long stretch, low locality
from random local one-way functions. SIAM J. Comput. 42(5), 2008–2037
(2013). Preliminary version in STOC 2012

[App14] Applebaum, B.: Bootstrapping obfuscators via fast pseudorandom func-
tions. In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014. LNCS,
vol. 8874, pp. 162–172. Springer, Heidelberg (2014). doi:10.1007/
978-3-662-45608-8 9

[App15] Applebaum, B.: Cryptographic hardness of random local functions - sur-
vey. In: Electronic Colloquium on Computational Complexity (ECCC),
vol. 22, p. 27 (2015)

[AR16] Applebaum, B., Raykov, P.: Fast pseudorandom functions based on
expander graphs. In: Electronic Colloquium on Computational Complex-
ity (ECCC), vol. 23, p. 82 (2016). Full version of this paper

[BFKL93] Blum, A., Furst, M., Kearns, M., Lipton, R.J.: Cryptographic primitives
based on hard learning problems. In: Stinson, D.R. (ed.) CRYPTO 1993.
LNCS, vol. 773, pp. 278–291. Springer, Heidelberg (1994). doi:10.1007/
3-540-48329-2 24

[BH08] Brodsky, A., Hoory, S.: Simple permutations mix even better. Random
Struct. Algorithms 32(3), 274–289 (2008)

[BH15] Berman, I., Haitner, I.: From non-adaptive to adaptive pseudorandom
functions. J. Cryptol. 28(2), 297–311 (2015)

http://dx.doi.org/10.1007/978-3-642-28914-9_34
http://dx.doi.org/10.1007/978-3-662-45608-8_9
http://dx.doi.org/10.1007/978-3-662-45608-8_9
http://dx.doi.org/10.1007/3-540-48329-2_24
http://dx.doi.org/10.1007/3-540-48329-2_24

54 B. Applebaum and P. Raykov

[BMR10] Boneh, D., Montgomery, H.W., Raghunathan, A.: Algebraic pseudoran-
dom functions with improved efficiency from the augmented cascade. In:
Al-Shaer, E., Keromytis, A.D., Shmatikov, V. (eds.) Proceedings of the
17th ACM Conference on Computer and Communications Security, CCS
2010, Chicago, Illinois, USA, 4–8 October 2010, pp. 131–140. ACM (2010)

[BPR12] Banerjee, A., Peikert, C., Rosen, A.: Pseudorandom functions and lat-
tices. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012.
LNCS, vol. 7237, pp. 719–737. Springer, Heidelberg (2012). doi:10.1007/
978-3-642-29011-4 42

[BQ12] Bogdanov, A., Qiao, Y.: On the security of Goldreich’s one-way function.
Comput. Complexity 21(1), 83–127 (2012)

[BR13] Bogdanov, A., Rosen, A.: Input locality and hardness amplification. J.
Cryptol. 26(1), 144–171 (2013)

[CEMT14] Cook, J., Etesami, O., Miller, R., Trevisan, L.: On the one-way function
candidate proposed by Goldreich. ACM Trans. Comput. Theor. 6(3),
1401–1435 (2014)

[CGH+85] Chor, B., Goldreich, O., H̊astad, J., Friedman, J., Rudich, S.,
Smolensky, R.: The bit extraction problem of t-resilient functions (prelim-
inary version). In: 26th Annual Symposium on Foundations of Computer
Science, Portland, Oregon, USA, 21–23 October 1985, pp. 396–407. IEEE
Computer Society (1985)

[DI05] Damg̊ard, I., Ishai, Y.: Constant-round multiparty computation using a
black-box pseudorandom generator. In: Shoup, V. (ed.) CRYPTO 2005.
LNCS, vol. 3621, pp. 378–394. Springer, Heidelberg (2005). doi:10.1007/
11535218 23

[DLS14] Daniely, A., Linial, N., Shalev-Shwartz, S.: From average case complexity
to improper learning complexity. In: Shmoys, D.B. (ed.) Symposium on
Theory of Computing, STOC 2014, New York, NY, USA, 31 May – 03
June 2014, pp. 441–448. ACM (2014)

[FPV15] Feldman, V., Perkins, W., Vempala, S.: On the complexity of random sat-
isfiability problems with planted solutions. In: Servedio, R.A., Rubinfeld,
R. (eds.) Proceedings of the Forty-Seventh Annual ACM on Symposium
on Theory of Computing, STOC 2015, Portland, OR, USA, 14–17 June
2015, pp. 77–86. ACM (2015)

[GGM86] Goldreich, O., Goldwasser, S., Micali, S.: How to construct random func-
tions. J. ACM 33(4), 792–807 (1986)

[GL89] Goldreich, O., Levin, L.A.: A hard-core predicate for all one-way func-
tions. In: Johnson, D.S. (ed.) Proceedings of the 21st Annual ACM Sym-
posium on Theory of Computing, Seattle, Washigton, USA, 14–17 May
1989, pp. 25–32. ACM (1989)

[Gol00] Goldreich, O.: Candidate one-way functions based on expander graphs.
In: Electronic Colloquium on Computational Complexity (ECCC), vol.
7, no. 90 (2000)

[Gow96] Gowers, W.T.: An almost m-wise independent random permutation of
the cube. Comb. Probab. Comput. 5(2), 119–130 (1996)

[GVW12] Gorbunov, S., Vaikuntanathan, V., Wee, H.: Functional encryption
with bounded collusions via multi-party computation. In: Safavi-Naini,
R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 162–179.
Springer, Heidelberg (2012). doi:10.1007/978-3-642-32009-5 11

[GvzGPS00] Gao, S., von Zur Gathen, J., Panario, D., Shoup, V.: Algorithms for
exponentiation in finite fields. J. Symb. Comput. 29(6), 879–889 (2000)

http://dx.doi.org/10.1007/978-3-642-29011-4_42
http://dx.doi.org/10.1007/978-3-642-29011-4_42
http://dx.doi.org/10.1007/11535218_23
http://dx.doi.org/10.1007/11535218_23
http://dx.doi.org/10.1007/978-3-642-32009-5_11

Fast Pseudorandom Functions Based on Expander Graphs 55

[HILL99] H̊astad, J., Impagliazzo, R., Levin, L.A., Luby, M.: A pseudorandom gen-
erator from any one-way function. SIAM J. Comput. 28(4), 1364–1396
(1999). Preliminary versions in STOC 1989 and STOC 1990

[HMMR05] Hoory, S., Magen, A., Myers, S., Rackoff, C.: Simple permutations mix
well. Theor. Comput. Sci. 348(2–3), 251–261 (2005)

[IKOS08] Ishai, Y., Kushilevitz, E., Ostrovsky, R., Sahai, A.: Cryptography with
constant computational overhead. In: Dwork, C. (ed.) Proceedings of the
40th Annual ACM Symposium on Theory of Computing, Victoria, British
Columbia, Canada, May 17–20, 2008, pp. 433–442. ACM (2008)

[Kha93] Kharitonov, M.: Cryptographic hardness of distribution-specific learning.
In: Kosaraju, S.R., Johnson, D.S., Aggarwal, A. (eds.) Proceedings of the
Twenty-Fifth Annual ACM Symposium on Theory of Computing, San
Diego, CA, USA, 16–18 May 1993, pp. 372–381. ACM (1993)

[KS09] Klivans, A.R., Sherstov, A.A.: Cryptographic hardness for learning inter-
sections of halfspaces. J. Comput. Syst. Sci. 75(1), 2–12 (2009)

[LF80] Ladner, R.E., Fischer, M.J.: Parallel prefix computation. J. ACM 27(4),
831–838 (1980)

[LMN93] Linial, N., Mansour, Y., Nisan, N.: Constant depth circuits, fourier trans-
form, and learnability. J. ACM 40(3), 607–620 (1993)

[LW09] Lewko, A.B., Waters, B.: Efficient pseudorandom functions from the deci-
sional linear assumption and weaker variants. In: Al-Shaer, E., Jha, S.,
Keromytis, A.D. (eds.) Proceedings of the 2009 ACM Conference on Com-
puter and Communications Security, CCS 2009, Chicago, Illinois, USA,
9–13 November 2009, pp. 112–120. ACM (2009)

[MP75] Muller, D.E., Preparata, F.P.: Bounds to complexities of networks for
sorting and for switching. J. ACM 22(2), 195–201 (1975)

[MST03] Mossel, E., Shpilka, A., Trevisan, L.: On e-biased generators in NC0.
In: 44th Symposium on Foundations of Computer Science (FOCS 2003),
Cambridge, MA, USA, Proceedings, 11–14 October 2003, pp. 136–145.
IEEE Computer Society (2003)

[MV12] Miles, E., Viola, E.: Substitution-permutation networks, pseudorandom
functions, and natural proofs. In: Safavi-Naini, R., Canetti, R. (eds.)
CRYPTO 2012. LNCS, vol. 7417, pp. 68–85. Springer, Heidelberg (2012).
doi:10.1007/978-3-642-32009-5 5

[NN93] Naor, J., Naor, M.: Small-bias probability spaces: efficient constructions
and applications. SIAM J. Comput. 22(4), 838–856 (1993)

[NR95] Naor, M., Reingold, O.: Synthesizers and their application to the parallel
construction of psuedo-random functions. In: 36th Annual Symposium on
Foundations of Computer Science, Milwaukee, Wisconsin, 23–25 October
1995, pp. 170–181. IEEE Computer Society (1995)

[NR97] Naor, M., Reingold, O.: Number-theoretic constructions of efficient
pseudo-random functions. In: 38th Annual Symposium on Foundations
of Computer Science, FOCS 1997, Miami Beach, Florida, USA, 19–22
October 1997, pp. 458–467. IEEE Computer Society (1997)

[NRR00] Naor, M., Reingold, O., Rosen, A.: Pseudo-random functions and factor-
ing (extended abstract). In: Yao, F.F., Luks, E.M. (eds.) Proceedings of
the Thirty-Second Annual ACM Symposium on Theory of Computing,
Portland, OR, USA, 21–23 May 2000, pp. 11–20. ACM (2000)

[OW14] O’Donnell, R., Witmer, D., Goldreich’s, P.R.G.: Evidence for near-
optimal polynomial stretch. In: IEEE 29th Conference on Computational

http://dx.doi.org/10.1007/978-3-642-32009-5_5

56 B. Applebaum and P. Raykov

Complexity, CCC 2014, Vancouver, BC, Canada, June 11–13, 2014, pp.
1–12. IEEE (2014)

[PF79] Pippenger, N., Fischer, M.J.: Relations among complexity measures. J.
ACM 26(2), 361–381 (1979)

[PW88] Pitt, L., Warmuth, M.K.: Reductions among prediction problems on
the difficulty of predicting automata. In: Proceedings: Third Annual
Structure in Complexity Theory Conference, Georgetown University,
Washington, D.C., USA, 14–17 June 1988, pp. 60–69. IEEE Computer
Society (1988)

[RR97] Razborov, A.A., Rudich, S.: Natural proofs. J. Comput. Syst. Sci. 55(1),
24–35 (1997)

[Tzu09] Tzur, Y.: Notions of weak pseudorandomness and GF(2n)-polynomials.
Master’s thesis, Weizmann Institute of Science (2009)

[Val84] Valiant, L.G.: A theory of the learnable. In: DeMillo, R.A. (ed.) Pro-
ceedings of the 16th Annual ACM Symposium on Theory of Computing,
Washington, DC, USA, 30 April–2 May1984, pp. 436–445. ACM (1984)

[Weg87] Wegener, I.: The Complexity of Boolean Functions. Teubner/Wiley,
Stuttgart (1987)

[Yao82] Yao, A.C.: Theory and applications of trapdoor functions (extended
abstract). In: 23rd Annual Symposium on Foundations of Computer Sci-
ence, Chicago, Illinois, USA, 3–5 November 1982, pp. 80–91. IEEE Com-
puter Society (1982)

3-Message Zero Knowledge Against
Human Ignorance

Nir Bitansky1(B), Zvika Brakerski2, Yael Kalai3, Omer Paneth4,
and Vinod Vaikuntanathan1

1 MIT, Cambridge, USA
nirbitan@csail.mit.edu

2 Weizmann, Rehovot, Israel
3 Microsoft Research, Cambridge, USA

4 Boston University, Boston, USA

Abstract. The notion of Zero Knowledge has driven the field of cryp-
tography since its conception over thirty years ago. It is well established
that two-message zero-knowledge protocols for NP do not exist, and
that four-message zero-knowledge arguments exist under the minimal
assumption of one-way functions. Resolving the precise round complex-
ity of zero-knowledge has been an outstanding open problem for far too
long.

In this work, we present a three-message zero-knowledge argu-
ment system with soundness against uniform polynomial-time cheating
provers. The main component in our construction is the recent delega-
tion protocol for RAM computations (Kalai and Paneth, TCC 2016B
and Brakerski, Holmgren and Kalai, ePrint 2016). Concretely, we rely
on a three-message variant of their protocol based on a key-less collision-
resistant hash functions secure against uniform adversaries as well as
other standard primitives.

More generally, beyond uniform provers, our protocol provides a nat-
ural and meaningful security guarantee against real-world adversaries,
which we formalize following Rogaway’s “human-ignorance” approach
(VIETCRYPT 2006): in a nutshell, we give an explicit uniform reduc-
tion from any adversary breaking the soundness of our protocol to finding
collisions in the underlying hash function.

N. Bitansky—Research supported in part by DARPA Safeware Grant, NSF
CAREER Award CNS-1350619, CNS-1413964 and by the NEC Corporation.
Z. Brakerski—Supported by the Israel Science Foundation (Grant No. 468/14), the
Alon Young Faculty Fellowship, Binational Science Foundation (Grant No. 712307)
and Google Faculty Research Award.
O. Paneth—Supported by the Simons award for graduate students in Theoretical
Computer Science and an NSF Algorithmic foundations grant 1218461.
V. Vaikuntanathan—Research supported in part by DARPA Grant number FA8750-
11-2-0225, NSF CAREER Award CNS-1350619, NSF Grant CNS-1413964 (MACS:
A Modular Approach to Computer Security), Alfred P. Sloan Research Fellowship,
Microsoft Faculty Fellowship, NEC Corporation and a Steven and Renee Finn Career
Development Chair from MIT.

c© International Association for Cryptologic Research 2016
M. Hirt and A. Smith (Eds.): TCC 2016-B, Part I, LNCS 9985, pp. 57–83, 2016.
DOI: 10.1007/978-3-662-53641-4 3

58 N. Bitansky et al.

1 Introduction

The fascinating notion of zero knowledge, conceived over thirty years ago by
Goldwasser, Micali and Rackoff [GMR89], has been the source of a great many
ideas that revolutionized cryptography, including the simulation paradigm and
passive-to-active security transformations [GMW91,FLS99,Bar01,IKOS09].

A central and persistent open question in the theory of zero knowledge
is that of round complexity (also called message complexity), which refers to
the number of messages that the prover and the verifier must exchange in a
zero-knowledge protocol. The seminal work of Goldreich, Micali and Wigder-
son [GMW91] showed the first computational zero-knowledge proof system for
all of NP. Their protocol required a polynomial (in the security parameter) num-
ber of rounds (in order to achieve an exponentially small soundness error). Feige
and Shamir [FS89] show a four-round computational zero-knowledge argument
system [BCC88] for all of NPbased on algebraic assumptions.1 The assumption
was reduced to the minimal assumption of one-way functions by Bellare, Jakob-
sson and Yung [BJY97].

In terms of lower bounds, Goldreich and Oren [GO94] showed that three
rounds are necessary for non-trivial zero knowledge (arguments as well as proofs)
against non-uniform adversarial verifiers. Zero knowledge in the presence of veri-
fiers with non-uniform advice has by now become the gold standard as it is often
essential for secure composition (see, e.g., [GK96b]).

This state of affairs leaves behind a question that has been open for far too
long:

What is the minimal round-complexity of zero knowledge?

By the works of [FS89,BJY97], the answer is at most 4 while Goldreich and Oren
tell us that the answer is at least 3. So far, all constructions of three-message
computational zero-knowledge argument systems for NPwere based on strong
“auxiliary-input knowledge assumptions” [HT98,BP04b,CD09,BP12,BCC+14].
The plausibility of these assumptions was questioned already around their intro-
duction [HT98] and they were recently shown to be false assuming the existence
of indistinguishability obfuscation [BCPR14,BM14]. In summary, finding a three-
message zero-knowledge argument (under reasonable, falsifiable assumptions)
matching the Goldreich-Oren lower bound remains wide open.

Why is Three-Message Zero Knowledge so Interesting. Aside from its
significance to the theory of zero knowledge, the question of three-message zero
knowledge is also motivated by its connections to two fundamental notions in
cryptography, namely non-black-box security proofs and verifiable computation.

In order to make sense of this, let us tell you the one other piece of the zero
knowledge story. An important dimension of zero-knowledge proofs is whether
the zero-knowledge simulator treats the (adversarial) verifier as a black-box or
1 While zero-knowledge proofs [GMW91] provide soundness against computationally

unbounded cheating provers, zero-knowledge arguments [BCC88] are weaker in that
they provide soundness only against computationally bounded cheating provers.

3-Message Zero Knowledge Against Human Ignorance 59

not. In all the protocols referenced above (with the exception of the ones based
on “auxiliary-input knowledge assumptions”), the simulator treats the verifier as
a black box. Goldreich and Krawczyk [GK96b] show that in any three-message
zero-knowledge protocol for a language outside BPP, the simulator must make
non-black-box use of the verifier’s code. In other words, any future three-message
zero-knowledge protocol has to “look different” from the ones referenced above.

The pioneering work of Barak [Bar01] demonstrated that barriers of this kind
can sometimes be circumvented via non-black-box simulation. However, Barak’s
technique, and all other non-black-box techniques developed thus far, have only
led to protocols with at least four messages [BP13,COP+14].

A bottleneck to reducing the round-complexity of Barak’s protocol is the
reliance on four-message universal arguments [BG08], a notion that enables fast
verification of NPcomputations. Accordingly, developments in round-efficient
systems for verifiable computation may very well lead to corresponding devel-
opments in three-message zero knowledge. In fact, strong forms of verifiable
computation have recently proven instrumental in producing novel non-black-
box simulation techniques, such as in the context of constant-round concurrent
protocols [CLP13b,CLP15]. It is natural, then, to wonder whether these and
related developments help us construct three-message zero-knowledge argument
systems.

On Uniform (and Bounded Non-uniform) Verifiers. Bitansky, Canetti,
Paneth and Rosen [BCPR14] study three-message protocols satisfying a relaxed
notion of zero knowledge. Instead of requiring the zero knowledge guarantee
against all non-uniform verifiers, they only consider verifiers that have an a-
priori bounded amount of non-uniformity (but may still run for an arbitrary
polynomial time). This includes, in particular, zero-knowledge against uniform
verifiers. They demonstrate a three-message zero-knowledge protocol against
verifiers with bounded non-uniformity based on the verifiable delegation protocol
of Kalai, Raz, and Rothblum [KRR14].

Notably, restricting attention to verifiers with bounded uniformity comes
with a great compromise. For once, the zero knowledge property is not pre-
served under sequential composition. More broadly, such protocols may not
provide a meaningful security guarantee against real-world adversaries. As a
concrete example, the zero knowledge property of the protocol in [BCPR13]
crucially relies on the fact that messages sent by the verifier can be simulated
by a Turing machine with a short description, shorter than the protocol’s com-
munication. However, this assumption may not hold for real-world adversaries,
which can certainly have access to arbitrarily long strings with no apparent short
description.

1.1 Our Results

In this work, we construct a three-message argument for NPthat is zero knowl-
edge against fully non-uniform verifiers and sound against provers with a-priori
bounded (polynomial amount of) non-uniformity. The main component in our

60 N. Bitansky et al.

construction is a verifiable delegation protocol for RAM computations recently
constructed by Kalai and Paneth [KP15] and improved by Brakerski, Holm-
gren and Kalai [BHK16]. Concretely, we rely on a three-message variant of
the [BHK16] protocol based on keyless collision-resistant hash functions secure
against adversaries with bounded non-uniformity and slightly super-polynomial
running time, and a (polynomially-secure) computational private information
retrieval (PIR) scheme, as well as other more standard cryptographic assump-
tions.

In contrast to the setting of verifiers with bounded non-uniformity, our proto-
col remains secure under sequential composition. Furthermore, our protocol pro-
vides a natural and meaningful security guarantee against real-world adversaries,
which we formalize following Rogaway’s “human ignorance approach” [Rog06],
described in greater detail below.

Rogaway’s “Human Ignorance” Approach and Real-World Security. A
more informative way of describing the soundness of our protocol is by the cor-
responding security reduction. We construct a zero-knowledge argument system,
meaning that the soundness of the protocol is computational. That is, any prover
that breaks the soundness of our protocol, regardless of how non-uniform it is,
can be uniformly turned into a collision finder for an underlying hash function.
In other words, there is a uniform algorithm called collision-finder who finds
collisions in the hash function given oracle access to the soundness-breaker.

In our protocol, the hash function must already be determined before the
first message is sent, thus requiring that we rely on a fixed (key-less) func-
tion as opposed to a function family as is normally the case when dealing
with collision-resistant hash functions. Clearly, a fixed hash function cannot be
collision-resistant against non-uniform adversaries (as such an adversary can
have a collision for the function hard-wired as part of its non-uniform advice).
However, as argued by Rogaway, a uniform reduction from finding collisions in
such a function to breaking the security of a protocol is sufficient to argue the
real-world security of the protocol. Briefly, the rationale is that an adversarial
algorithm that breaks the security of the protocol (with or without non-uniform
advice) can be turned into an explicit algorithm that finds collisions in the hash
function (with the same non-uniform advice). Indeed, for common constructions
of hash functions, such as SHA-3, collisions (while they surely exist) are simply
not known.
Our main result can accordingly be stated as follows.

Informal Theorem 1.1 [See Theorem 3.1]. Assuming the existence of a com-
putational private information retrieval (PIR) scheme, a circuit-private 1-hop
homomorphic encryption scheme, and a non-interactive commitment scheme,
there exists a three-message argument for NPwith a uniform reduction R
(described in the proof of Theorem 3.1) running in quasi-polynomial time, such
that, for every non-uniform PPTadversary A, if A breaks the soundness of the
protocol instantiated with a keyless hash function H, then RA outputs a col-
lision in H. The protocol is zero knowledge against non-uniform probabilistic
polynomial-time (PPT) verifiers.

3-Message Zero Knowledge Against Human Ignorance 61

All the cryptographic primitives (except the key-less hash function) can be
instantiated from the learning with errors (LWE) assumption [Reg09].

Asymptotic Interpretations. As discussed above, implementing our protocol
with a key-less hash function such as SHA-3 guarantees security against “igno-
rant” adversaries that are unable to find hash collisions. This class of adversaries
may include all the adversaries we care about in practice, however, since func-
tions like SHA-3 do not provide any asymptotic security, we cannot use standard
asymptotic terminology to define the class of “SHA-ignorant adversaries”.

We formalize the security of our protocol and hash function in conventional
asymptotic terms. For any asymptotic hash family H = {Hn}n∈N

, we can accord-
ingly think of the class of adversaries that are H-ignorant. Trying to capture
more natural classes of adversaries, we focus on the subclass of adversaries with
bounded non-uniformity. It may be reasonable to assume that an asymptotic
keyless hash function is indeed collision-resistant against this class as long as
the corresponding non-uniform advice is shorter than the hash input length.
Therefore, the result for adversaries with bounded non-uniformity stated above
follows as a corollary of our explicit reduction.

The Global Common Random String Model and Resettable Security.
Another direct corollary of our result is that assuming (the standard notion
of) keyed collision-resistant hash-function families, there is a 3-message zero-
knowledge protocol that is sound against fully non-uniform provers in the global
(or non-programable) common random string model [Pas03,CDPW07] or in the
global hash model [CLP13a]. As observed in [Pas03], both the Goldreich-Oren
lower bound and the Goldreich-Krawczyk black-box lower bound hold even in
these models.

Another property of our protocol is that it can be made resettably sound
[BGGL01] via the (round-preserving) transformation of Barak, Goldreich,
Goldwasser and Lindell [BGGL01]. This holds for the three-message version of
the protocol (against provers with bounded uniformity, or alternatively, against
non-uniform provers in the global random string model).

1.2 Our Techniques

We now give an overview of the main ideas behind the new protocol.

Barak’s Protocol. As explained above, three-message zero-knowledge can only
be achieved via non-black-box simulation (and the Goldreich-Krawczyk lower
bound, in fact, holds even when considering uniform provers). Thus, a nat-
ural starting point is the non-black-box simulation technique of Barak [Bar01],
which we outline next. Following the Feige-Lapidot-Shamir paradigm [FLS99],
the prover and verifier in Barak’s protocol first execute a trapdoor generation
preamble: the verifier sends a key h for a collision-resistant hash function, the
prover responds with a commitment cmt, and then, the verifier sends a random
challenge u. The preamble defines a “trapdoor statement” asserting that there
exists a program Π such that cmt is a commitment to h(Π) and Π(cmt) outputs

62 N. Bitansky et al.

u. Intuitively, no cheating prover is able to commit to a code that predicts the
random u ahead of time, and thus cannot obtain a witness (a program Π) for
the trapdoor statement. In contrast, a simulator that is given the code of the
(malicious) verifier, can commit to it in the preamble and use it as the witness
for the trapdoor statement.

In the second stage of the protocol, the prover and the verifier engage in a
witness-indistinguishable (WI) protocol intended to convince the verifier that
either the real statement or the trapdoor statement is true, without revealing
to the verifier which is the case. Here, since the trapdoor statement corresponds
to a computation Π(cmt) that may be longer than the honest verifier’s run-
time, a standard WI system is insufficient. This difficulty is circumvented using
the 4-message universal arguments mentioned before, where verification time is
independent of the statement being proven.

Overall, Barak’s protocol is executed in six messages. In the first message,
the verifier sends a key for a collision-resistant hash function, which effectively
serves both as the first message (out of three) of the preamble and as the first
message (out of four) of the universal argument to come. Then, the two remaining
messages of the preamble are sent, following by the remaining three messages of
a WI universal argument.2

Squashing Barak’s Protocol. To achieve a three-message protocol, we will
squash Barak’s protocol. Using a keyless hash function, we can eliminate the
first verifier message (which, in Barak’s protocol, consists of a key for a collision-
resistant hash function). It is just this step that restricts our soundness guarantee
to only hold against provers that are unable to find collisions in the key-less hash
function (e.g., provers with bounded non-uniformity). This leaves us with a five-
message protocol, which is still worse than what is achievable using black-box
techniques. The bulk of the technical contribution of this work is devoted to the
task of squashing this protocol into only three messages.

Having eliminated the verifier’s first message, we are now left with a
2-message preamble followed by a 3-message WI universal argument. A nat-
ural next step is to attempt executing the preamble and the WI argument in
parallel. The main problem with this idea is that in Barak and Goldreich’s uni-
versal arguments, the statement must be fixed before the first prover message is
computed. However, in the protocol described, the trapdoor statement is only
fixed once the entire preamble has been executed.

We observe that, paradoxically, while the trapdoor statement is only fixed
after the preamble has been executed, the witness for this statement is fixed
before the protocol even starts! Indeed, the witness for the trapdoor statement
is simply the verifier’s code. It is therefore sufficient to replace Barak and
Goldreich’s universal argument with a 3-message verifiable delegation protocol
that has the following structure: the first prover message depends on the witness
alone, the verifier’s message fixes the statement, and the third and last prover
response includes the proof (which already depends on both the statement and
witness).
2 Barak’s original construction, in fact, consists of seven messages, but can be squashed

into six by using an appropriate WI system (see, e.g., [OV12]).

3-Message Zero Knowledge Against Human Ignorance 63

Verifiable Memory Delegation. To obtain a verifiable delegation scheme with
the desired structure, we consider the notion of verifiable memory delegation
[CKLR11]. In memory delegation, the prover and verifier interact in two phases.
In the offline phase, the verifier sends a large memory string m to the prover,
saving only a short digest of m. In the online phase, the verifier sends a function
f to the prover and the prover responds with the output f(m) together with a
proof of correctness. The time to verify the proof is independent of the memory
size and the function running time.

In our setting, we think of the memory as the witness and of the delegated
function as verifying that its input is a valid witness for a specified statement
(encoded in the function). One important difference between the settings of ver-
ifiable memory delegation and ours is that in the former, the offline phase is
executed by the verifier, but in our setting, the prover may adversarially choose
any digest (which may not even correspond to any memory string). We there-
fore rely on memory delegation schemes that remain secure for an adversarially
chosen digest. We observe that the verifiable delegation protocols for RAM com-
putations of [KP15,BHK16] yield exactly such a memory delegation scheme, and
when implemented using a keyless hash function this delegation scheme is secure
against the class of adversaries that cannot find collisions in the hash function
(e.g. adversaries with bounded non-uniformity).

Fulfilling the above plan encounters additional hurdles. The main such hur-
dle is the fact that the verifiable delegation schemes of [KP15,BHK16] are not
witness-indistinguishable. We ensure witness-indistinguishability by leveraging
special properties of the Lapidot-Shamir WI protocol [LS90a,OV12], and 1-hop
homomorphic encryption [GHV10] (similar ideas were used in [BCPR14]).

1.3 More Related Work

We mention other related works on round-efficient zero knowledge.

On Zero-Knowledge Proof Systems. In this work we show a 3-message
argument system for NP. If one requires a proof system instead, with sound-
ness against unbounded provers, Goldreich and Kahan [GK96a] showed a
5-round (black-box) zero-knowledge proof system for NP. On the other hand,
Katz [Kat12], extending the result of Goldreich and Krawczyk [GK96b], shows
that, assuming the polynomial hierarchy does not collapse, zero-knowledge pro-
tocols for an NP-complete language require at least 5 rounds if the simulator
only makes black-box use of the verifier’s code. The question of 3-round and
4-round zero-knowledge proof systems for NP(necessarily with non-black-box
simulation) still remains wide open.

On Quasi-Polynomial Time Simulation. Barak and Pass [BP04a] show
a 1-round weak zero-knowledge argument for NPwith soundness against uni-
form polynomial-time provers, based on non-standard assumptions. (One of their
assumptions is the existence of a key-less collision-resistant hash function against
uniform adversaries with sub-exponential running time.) Their notion of weak
zero knowledge allows for a quasi-polynomial-time simulator. The fact that the

64 N. Bitansky et al.

simulator can run longer than (any possible) cheating prover means that the
simulator can (and does) break the soundness of the protocol. This has the
effect that the round-complexity lower bounds referenced above do not apply in
this model. Furthermore, such a protocol may leak information that cannot be
simulated in polynomial time (but only in quasi-polynomial time).

Organization. In Sect. 2, we give the basic definitions used throughout the
paper, including the modeling of adversaries and reductions, the definition of key-
less hash functions, and memory delegation. In Sect. 3, we describe and analyze
the new protocol.

2 Definitions and Tools

In this section, we define the adversarial model we work in, zero-knowledge
protocols against restricted classes of provers (e.g., ones with bounded non-
uniformity), as well as the tools used in our construction.

2.1 Modeling Adversaries, Reductions, and Non-uniformity

In this section, we recall the notion of (black-box) reductions, and address two
general classes of adversaries touched in this paper. Commonly in crypto, we
consider (uniform) polynomial time reductions between different non-uniform
polynomial-time adversaries. In this paper, we will sometimes consider more
general types of reductions, e.g. uniform reductions that run in slightly super-
polynomial time, as well as different classes of adversaries, e.g. uniform PPT
adversaries, or adversaries with bounded non-uniformity. In such cases, we will
be explicit about the concrete classes of reductions and adversaries involved.

Rogaway’s “Human Ignorance” Approach to Reductions. As discussed
in the introduction, the most informative way of describing the soundness of our
protocol is by the corresponding security reduction from collision-resistance to
soundness. Rogaway [Rog06] suggests a framework for formalizing such state-
ments. In this work, however, for the sake of simpler exposition, we do not fully
follow Rogaway’s framework; we explain the differences next.

While Rogaway’s approach gives a meaningful result even for non-asymptotic
hash functions such as SHA-3 in terms of concrete security, our security defi-
nitions are still formalized in asymptotic terms. We parameterize the security
definitions by the class of adversaries. Our main theorem states that for every
class of adversaries A, the soundness of the protocol against adversaries in A

can be reduced to the security of the hash function against the same class of
adversaries.

We note that the security of our protocol is based on other primitives except
keyless collision-resistant hash. In our theorems, we do not emphasize the reduc-
tion to these primitives; rather, we simply restrict our result only to classes
of adversaries that are unable to break the security of these primitives (most
naturally non-uniform polynomial time adversaries).

3-Message Zero Knowledge Against Human Ignorance 65

Reductions. For two classes of adversaries R,A, we denote by R
A the class of

adversaries RA =
{
RAn

n

}
n∈N

where Rn makes calls to An.3

The class P of non-uniform PPT adversaries. A general class of adver-
saries considered in this paper are non-uniform probabilistic polynomial-time
Turing machines, or in short non-uniform PPT, which we denote by P. Any such
adversary A ∈ P is modeled as a sequence {An}n∈N

, where n is the security
parameter, and where the description and running time of An are polynomially
bounded in n.

For a super-polynomial γ(n) = nω(1), we denote by Pγ the class of non-
uniform probabilistic adversaries whose description and running time are poly-
nomial in γ(n).

The class B of PPT adversaries with bounded non-uniformity. We shall
also consider the class Bβ ⊂ P of adversaries with bounded non-uniformity O(β).
Concretely, for a fixed function β(n) ≤ nO(1), the class Bβ consists of all non-
uniform adversaries A ∈ P whose description |An| is bounded by O(β(n)), but
their running time could be an arbitrary polynomial. Abusing notation, we denote
by B0 the class of uniform PPT adversaries.

For a super-polynomial function γ(n) = nω(1), we denote by Bβ,γ the class of
non-uniform probabilistic adversaries whose description is bounded by O(β(n))
(or the class of uniform probabilistic adversaries if β = 0) and running time is
polynomial in γ(n).

2.2 Zero Knowledge Arguments of Knowledge Against Provers
with Bounded Non-uniformity

The standard definition of zero knowledge [GMR89,Gol04] considers general non-
uniform provers (and verifiers). We define soundness (or argument of knowledge)
more generally against provers from a given class A ⊂ P. In particular, we will
be interested in strict subclasses of P, such as adversaries with bounded non-
uniformity.

In what follows, we denote by 〈P � V 〉 a protocol between two parties P
and V . For input w for P , and common input x, we denote by 〈P (w) � V 〉(x)
the output of V in the protocol. For honest verifiers this output will be a single
bit indicating acceptance (or rejection), whereas we assume (without loss of
generality) that malicious verifiers outputs their entire view. Throughout, we
assume that honest parties in all protocols are uniform PPT algorithms.

Definition 2.1. A protocol 〈P � V 〉 for an NP relation RL(x,w) is a zero
knowledge argument of knowledge against provers in class A ⊂ P if it satisfies:

1. Completeness: For any n ∈ N, x ∈ L ∩ {0, 1}n, w ∈ RL(x):

Pr [〈P (w) � V 〉(x) = 1] = 1.

3 In this paper, we shall explicitly address different classes of black-box reductions.
One can analogously define non-black-box reductions.

66 N. Bitansky et al.

2. Computational zero knowledge: For every non-uniform PPT verifier
V ∗ = {V ∗

n }n∈N
∈ P, there exists a (uniform) PPT simulator S such that:

{〈P (w) � V ∗
n (x)〉}(x,w)∈RL

|x|=n

≈c {S(V ∗
n , x)}(x,w)∈RL

|x|=n

.

3. Argument of knowledge: There is a uniform PPT extractor E, such that
for any noticeable function ε(n) = n−O(1), any prover P ∗ = {P ∗

n}n∈N
∈ A,

any security parameter n ∈ N, and any x ∈ {0, 1}n generated by P ∗
n prior to

the interaction:

if Pr [〈P ∗
n � V 〉(x) = 1] ≥ ε(n),

then Pr
[

w ← EP ∗
n (11/ε(n), x)

w /∈ RL(x)

]
= negl(n).

2.3 Collision-Resistant Hashing

We define the notion of a keyless hash function that is collision resistant against
a class A ⊆ Pγ of adversaries. In particular, the definition may be realizable only
for strict subclasses of Pγ , such as the class Bβ,γ of adversaries with bounded
non-uniformity and poly(γ(n)) running time (where the description length of the
adversary, namely β, will be shorter than the length of the input to the hash).

Definition 2.2. Let n < �(n) ≤ nO(1). A polynomial-time computable function

H = {Hn}n∈N
,Hn : {0, 1}�(n) → {0, 1}n,

is collision resistant against adversaries in A if for any A = {An}n∈N
∈ A, and

every n ∈ N

Pr
[

x, y ← An;
Hn(x) = Hn(y)

]
= negl(n).

where the probability is over the coins of An.

Instantiation. Common constructions of keyless hash functions such as SHA-3
have a fixed output length and therefore do not directly provide a candidate for
an asymptotic hash function as in Definition 2.2. One way to obtain candidates
for an asymptotic hash function is to start with a family H′ of (keyed) hash-
functions

H′ =
{
H′

n,k

}
n∈N,k∈{0,1}n ,H′

n,k : {0, 1}�(n) → {0, 1}n,

and fix a uniform polynomial time algorithm K that given a security parameter
1n outputs a key k ∈ {0, 1}n. The keyless hash H is then given by

Hn = H′
n,K(1n).

For Hn to be a good candidate collision resistant hash against adversaries in
Bβ , we should make sure that β = o(�), the family H′ is collision resistant, and
the algorithm K behaves “sufficiently like a random oracle”. For example we
can choose an algorithm K that uses a hash function like SHA-3 (or a version
of it that can hash strings of arbitrary length) as a random oracle to output
sufficiently many random bits.

3-Message Zero Knowledge Against Human Ignorance 67

2.4 Memory Delegation with Public Digest

A two-message memory delegation scheme [CKLR11] allows a client to delegate
a large memory to an untrusted server, saving only a short digest of the mem-
ory. The client then selects a deterministic computation to be executed over
the memory and delegates the computation to the server. The server responds
with the computation’s output as well as a short proof of correctness that can
be verified by the client in time that is independent of that of the delegated
computation and the size of the memory.

The notion of memory delegation we consider differs from that of [CKLR11]
in the following ways.

– Read-only computation. We do not consider computations that update the
memory. In particular, the digest of the delegated memory is computed once
and does not change as a result of the computations.

– Soundness. We define soundness more generally for servers from a given
class A ⊂ P. Whereas soundness is usually required against the class of all
non-uniform PPT adversaries P, we will also be interested in strict subclasses
of P, such as adversaries with bounded non-uniformity.

– Soundness for slightly super-polynomial computations. We require
soundness to hold even for delegated computations running in slightly super-
polynomial time.

– Public digest. We require that the digest of the memory can be computed
non-interactively, and can be made public and used by any client to delegate
computations over the same memory without compromising soundness. In
particular, the client is not required to save any secret state when delegating
the memory.
Importantly, we do not assume that the party computing the digest is honest.
We require that no efficient adversary can produce valid proofs for two different
outputs for the same computation with respect to the same digest, even if the
digest and computation are adversarially chosen.4

– First message independent of function being delegated. The first mes-
sage of the delegation scheme (denoted below by q) depends only on the secu-
rity parameter, and does not depend on the public digest or on the function
being delegated.

Concretely, a two-message memory delegation scheme with public digest consists
of four polynomial-time algorithms:

– d ← Digest(1n,D) is a deterministic algorithm that takes a security parameter
1n and memory D and outputs a digest d ∈ {0, 1}n.

– (q, τ) ← Query(1n) is a probabilistic algorithm that outputs a query q and a
secret state τ . We assume w.l.o.g that the secret state τ is simply the random
coins used by Query.

4 Soundness with respect to an adversarial digest can be defined in a stronger way, for
example, requiring knowledge of the memory corresponding to the digest. However,
this stronger requirement is not necessary for our application.

68 N. Bitansky et al.

– π ← Prov(1t,M,D, q) is a deterministic algorithm that takes a description
of a Turing machine M and a bound t on the running time of M(D) and
outputs a proof π ∈ {0, 1}n.

– b ← Ver(d, τ,M, t, y, π) is a deterministic algorithm that takes a computation
output y and outputs an acceptance bit b.

Definition 2.3 (Memory Delegation with Public Digest). Let γ(n) be a
super-polynomial function such that nω(1) = γ(n) < 2n. A two-message memory
delegation scheme (Digest,Query,Prov,Ver) for γ-time computations with public
digest against provers in a class A ⊂ P satisfies the following.

– Completeness. For every security parameter n ∈ N, every Turing machine
M and every memory D ∈ {0, 1}∗ such that M(D) outputs y within t ≤ 2n

steps:

Pr

⎡

⎣1 = Ver(d, τ,M, t, y, π)

∣
∣
∣
∣
∣
∣

d ← Digest(1n,D)
(q, τ) ← Query(1n)

π ← Prov(1t,M,D, q)

⎤

⎦ = 1.

– Soundness. For every adversary A = {An}n∈N
∈ A, there exists a negligible

function negl(·) such that for every security parameter n ∈ N,

Pr

⎡

⎢
⎢
⎣

t ≤ γ(n)
y = y′

1 = Ver(d, τ,M, t, y, π)
1 = Ver(d, τ,M, t, y′, π′)

∣
∣
∣
∣
∣
∣
∣
∣

(M, t, d, y, y′) ← An

(q, τ) ← Query(1n)
(π, π′) ← An(q)

⎤

⎥
⎥
⎦ = negl(n).

Instantiation. A memory delegation scheme satisfying Definition 2.3 can be
obtained based on the delegation schemes for RAM computations of Kalai and
Paneth [KP15] and that of Brakerski, Holmgren and Kalai [BHK16] with slight
adaptations.5 Below we describe the required adaptations. We focus on the
scheme of [BHK16] that can be instantiated based on polynomially-secure PIR.

– Remove public parameters. The scheme of [BHK16] has public parameters
that are generated honestly before the memory is delegated. These parameters
consist of the description of a hash function chosen randomly from a family
of collision-resistant hash functions. Here we remove the public parameters
and instead use a keyless collision resistant hash against adversaries from a
restricted class A. (E.g., A can be the class of adversaries with β-bounded
non-uniformity Bβ .) The security of our modified scheme against provers from
A follows the same argument as in [BHK16], who show a uniform black-box
reduction from a cheating prover to an adversary that finds collisions.

– Soundness for slightly super-polynomial computations. While the
scheme of [BHK16] has completeness even for exponentially long delegated

5 We note that we cannot use here the memory delegation scheme of [CKLR11,KRR14]
since the soundness of their scheme assumes that the digest is honestly generated.

3-Message Zero Knowledge Against Human Ignorance 69

computations, soundness is only proved when the delegated computation
is polynomial time. Here we require soundness even against slightly super-
polynomial time γ = nω(1). In the [BHK16] reduction the running time of the
adversary breaking the hash is proportional to the running time of the dele-
gated computation. Therefore, soundness for slightly super-polynomial com-
putations follows by the same argument, assuming a slightly stronger collision-
resistance against adversaries from B

A
0,γ who can run in time γ and use A as

a black box.

Recall that B
A
0,γ is the class of uniform probabilistic machines running in time

γ(n)O(1) and given oracle access to an adversary in A. Brakerski, Holmgren and
Kalai prove that there is a γ(n)O(1)-time uniform reduction from breaking the
soundness of their scheme to breaking any underlying hash function, assuming
the existence of a (polynomially secure) computational PIR scheme.

Theorem 2.1 [BHK16]. For any A ⊂ P and (possibly super-polynomial) func-
tion γ(·), assuming collision-resistant hash functions against adversaries in B

A
0,γ

and a computational PIR scheme, there exists a two-message memory delegation
scheme for γ-time computations with public digest against provers in A.

2.5 Witness Indistinguishability with First-Message-Dependent
Instances

We define 3-message WI proofs of knowledge where the choice of statement
and witness may depend on the first message in the protocol. In particular, the
first message is generated independently of the statement and witness. Also,
while we do allow the content of the message to depend on the length � of the
statement, the message length should be of fixed to n (this allows to also deal
with statements of length � > n). The former requirement was formulated in
several previous works (see, e.g., [HV16]) and the latter requirement was defined
in [BCPR14].

Definition 2.4 (WIPOK with first-message-dependent instances). Let
〈P � V 〉 be a 3-message argument for L with messages (wi1,wi2,wi3); we say
that it is a WIPOK with first-message-dependent instances if it satisfies:

1. Completeness with first-message-dependent instances: For any
instance choosing function X, and �, n ∈ N,

Pr

⎡

⎢
⎢
⎢
⎢
⎣

V (x,wi1,wi2,wi3; r′) = 1

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

wi1 ← P (1n, �; r)
(x,w) ← X(wi1)

x ∈ L, w ∈ RL(x)
wi2 ← V (�,wi1; r′)

wi3 ← P (x,w,wi1,wi2; r)

⎤

⎥
⎥
⎥
⎥
⎦

= 1,

where r, r′ ← {0, 1}poly(n) are the randomness used by P and V .
The honest prover’s first message wi1 is of length n, independent of the length
� of the statement x.

70 N. Bitansky et al.

2. Adaptive witness-indistinguishability: For any polynomial �(·), non-
uniform PPT verifier V ∗ = {V ∗

n }n∈N
∈ P and all n ∈ N:

Pr

⎡

⎣V ∗
n (x,wi1,wi2,wi3) = b

∣
∣
∣
∣
∣
∣

wi1 ← P (1n, �(n); r)
x,w0, w1,wi2 ← V ∗

n (wi1)
wi3 ← P (x,wb,wi1,wi2; r)

⎤

⎦ ≤ 1
2

+ negl(n),

where b ← {0, 1}, r ← {0, 1}poly(n) is the randomness used by P , x ∈ L ∩
{0, 1}�(n) and w0, w1 ∈ RL(x).

3. Adaptive proof of knowledge: there is a uniform PPT extractor E such
that for any polynomial �(·), all large enough n ∈ N, and any deterministic
prover P ∗:

if Pr

⎡

⎢
⎢
⎣V (tr; r′) = 1

∣
∣
∣
∣
∣
∣
∣
∣

wi1 ← P ∗

wi2 ← V (�(n),wi1; r′)
x,wi3 ← P ∗(wi1,wi2)
tr = (x,wi1,wi2,wi3)

⎤

⎥
⎥
⎦ ≥ ε,

then Pr

⎡

⎢
⎢
⎣

V (tr; r′) = 1
w ← EP ∗

(11/ε, tr)
w /∈ RL(x)

∣
∣
∣
∣
∣
∣
∣
∣

wi1 ← P ∗

wi2 ← V (�(n),wi1; r′)
x,wi3 ← P ∗(wi1,wi2)
tr = (x,wi1,wi2,wi3)

⎤

⎥
⎥
⎦ ≤ negl(n),

where x ∈ {0, 1}�(n), and r′ ← {0, 1}poly(n) is the randomness used by V .

Instantiation. Protocols with first-message-dependent instances follow directly
from the WIPOK protocol constructed in [BCPR14], assuming ZAPs and non-
interactive commitments (there, the first message is taken from a fixed distrib-
ution that is completely independent of the instance).

Next, we sketch how such a protocol can be constructed without ZAPs, but
assuming keyless collision-resistant hash functions, thus collapsing to an argu-
ment of knowledge against adversaries that cannot break the hash (which will
anyhow be the class of interest in our zero-knowledge protocol in Sect. 3).

The Lapidot-Shamir protocol. As observed in [OV12], the Lapidot-Shamir
variant of the 3-message (honest verifier) zero-knowledge protocol for Hamil-
tonicity [LS90a] is such that the first and second messages only depend on the
size of the instance |x| = �, but not on the instance and witness themselves.
The protocol, in particular, supports instances up to size � that depend on the
prover’s first message. However, the size of the first message wi1 in the protocol
is |wi1| > �. We, on the other hand, would like to allow the instance x to be of
an arbitrary polynomial size in |wi1|, and in particular such that |wi1| < �.

We now sketch a simple transformation from any such protocol where, in
addition, the verifier’s message is independent of the first prover message, into a
protocol that satisfies the required first-message dependence of instances. Indeed,
the verifier message in the Lapidot-Shamir protocol is simply a uniformly random
string, and hence the transformation can be applied here.

3-Message Zero Knowledge Against Human Ignorance 71

The Transformation. Let �(n) > n be any polynomial function and let H be
a keyless collision-resistant hash function from {0, 1}�(n) to {0, 1}n. In the new
protocol (Pnew, Vnew), the prover computes the first message mes1 for instances of
length �(n). Then, rather than sending mes1 in the clear, the prover Pnew sends
y = Hn(mes1) ∈ {0, 1}n. The verifier proceeds as in the previous protocol (P, V)
(note that mes1 is not required for it to compute mes2). Finally the prover Pnew

answers as in the original protocol, and also sends mes1 in the clear. The verifier
Vnew accepts, if it would in the original protocol and mes1 is a preimage of y
under Hn.

We first note that now the size of the instance � can be chosen to be an
arbitrary polynomial in the length n = |wi1| of the first WI message. In addition,
we note that the protocol is still WI, as the view of the verifier Vnew in the new
protocol can be perfectly simulated from the view of the verifier V in the old
protocol, by hashing the first message on its own.

Finally, we observe that any prover P ∗
new that convinces the verifier in the

new protocol of accepting with probability ε, can be transformed into a prover
P ∗ that convinces the verifier of the original protocol, or to a collision-finder.
Indeed, the prover P ∗ would first run P ∗

new until the last message, i.e., until it
obtains a valid preimage mes1 of y. Then it would proceed interacting with V
using mes1 as its first message, and using P ∗

new to emulate the third message. By
the collision resistance of H the prover P ∗

new indeed cannot make the verifier Vnew

accept with respect to two different perimages mes1,mes′1, except with negligible
probability. Thus the prover P ∗ convinces V with probability ε − negl(n).

2.6 1-Hop Homomorphic Encryption

A 1-hop homomorphic encryption scheme [GHV10] allows a pair of parties to
securely evaluate a function as follows: the first party encrypts an input, the
second party homomorphically evaluates a function on the ciphertext, and the
first party decrypts the evaluation result. (We do not require any compactness
of post-evaluation ciphertexts.)

Definition 2.5. A scheme (Enc,Eval,Dec), where Enc,Eval are probabilistic and
Dec is deterministic, is a semantically-secure, circuit-private, 1-hop homomor-
phic encryption scheme if it satisfies the following properties:

– Perfect correctness: For any n ∈ N, x ∈ {0, 1}n and circuit C:

Pr

⎡

⎣
(ct, sk) ← Enc(x)
ĉt ← Eval(ct, C)
Decsk(ĉt) = C(x)

⎤

⎦ = 1.

where the probability is over the coin tosses of Enc and Eval.
– Semantic security: For any non-uniform PPT A = {An}n∈N

∈ P, every
n ∈ N, and any pair of inputs x0, x1 ∈ {0, 1}poly(n) of equal length,

Pr
b←{0,1}

(ct,·)←Enc(xb)

[An(ct) = b] ≤ 1
2

+ negl(n).

72 N. Bitansky et al.

– Circuit privacy: The randomized evaluation procedure, Eval, should not leak
information on the input circuit C. This should hold even for malformed
ciphertexts. Formally, let E(x) = Supp(Enc(x)) be the set of all legal encryp-
tions of x, let En = ∪x∈{0,1}nE(x) be the set legal encryptions for strings of
length n, and let Cn be the set of all circuits on n input bits.
There exists a (possibly unbounded) simulator S1hop such that:

{C,Eval(c, C)} n∈N,C∈Cn

x∈{0,1}n,c∈E(x)
≈c

{
C,S1hop(c, C(x), 1|C|)

}
n∈N,C∈Cn

x∈{0,1}n,c∈E(x)

{C,Eval(c, C)} n∈N

C∈Cn,c/∈En

≈c

{
C,S1hop(c,⊥, 1|C|)

}
n∈N

C∈Cn,c/∈En

.

Instantiation. 1-hop homomorphic encryption schemes can be instantiated
based on any two-message two-party computation protocol secure against semi-
honest adversaries; in particular, using Yao’s garbled circuits and an appropri-
ate 2-message oblivious transfer protocol, which can be based on the Decisional
Diffie-Hellman assumption, the Quadratic Residuosity assumption, or the learn-
ing with errors assumption [Yao86,GHV10,NP01,AIR01,PVW08,HK12].

3 The Protocol

In this section, we construct a 3-message ZK argument of knowledge based on
2-message memory delegation schemes. More precisely, we show that for any
class of adversaries A ⊆ P, given a delegation scheme that is sound against B

A
1 ,

the protocol is an argument of knowledge against A. For simplicity we focus on
classes A that are closed under uniform reductions; namely B

A
1 ⊆ A. These will

indeed capture the adversary classes of interest for this work. We start by listing
the ingredients used in the protocol, as well as introducing relevant notation.

Ingredients and notation:

– A two-message memory delegation scheme (Digest,Query,Prov,Ver) for
γ-bounded computations, sound against provers in A ⊆ P, for a class A closed
under uniform reductions as in Definition 2.3.

– A semantically secure and circuit-private, 1-hop homomorphic encryption
scheme (Enc,Eval,Dec) as in Definition 2.5.

– A 3-message WIPOK for NPwith first-message-dependent instances as in Def-
inition 2.4. We denote its messages by (wi1,wi2,wi3).

– A non-interactive perfectly-binding commitment scheme Com.
– For some wi1, cmt, denote by Mwi1,cmt a Turing machine that given memory

D = V ∗ parses V ∗ as a Turing machine, runs V ∗ on input (wi1, cmt), parses
the result as (u,wi2, q, ĉtτ), and outputs u.

– Denote by Vparam a circuit that has the string param hard-coded and operates
as follows. Given as input a verification state τ for the delegation scheme:

• parse param = (wi1, cmt, q, u, d, t, π),
• return 1 (“accept”) if either of the following occurs:

3-Message Zero Knowledge Against Human Ignorance 73

∗ the delegation verifier accepts: Ver(d, τ,Mwi1,cmt, t, u, π) = 1,
∗ the query is inconsistent: q = Query(1n; τ).

In words, Vparam, given the verification state τ , first verifies the proof π that
“Mwi1,cmt(D) = (u, · · ·)” where D is the database corresponding to the digest
d. In addition, it verifies that q is truly consistent with the coins τ . If the
query is consistent, but the proof is rejected Vparam also rejects.

– Denote by 1 a circuit of the same size as Vparam that always returns 1.

We now describe the protocol in Fig. 1.

Theorem 3.1. Given a 2-message memory delegation scheme for γ-bounded
computations sound against provers in A, a semantically-secure, circuit-private,

Fig. 1. A 3-message ZK argument of knowledge against prover in A.

74 N. Bitansky et al.

1-hop homomorphic encryption scheme, a 3-message WIPOK with first-
message-dependent instances, and a non-interactive perfectly-binding commit-
ment scheme. The corresponding Protocol 1 (Fig. 1) is a zero-knowledge argu-
ment of knowledge against provers in A.

Overview of proof. For simplicity, let us focus on showing that the protocol
is sound and zero knowledge. (Showing it is an argument of knowledge follows
a similar reasoning.) We start with soundness. Assuming that x /∈ L, in order
to pass the WIPOK with respect to an evaluated cipher ĉt that decrypts to 1,
the prover must know a digest d ∈ {0, 1}n, a time bound t ≤ γ(n), and proof
π ∈ {0, 1}n, such that Vparam(τ) = 1. This, by definition, means that (d, t, π) are
such that the delegation verifier Ver is convinced that the digest d corresponds to
a machine V ∗ such that V ∗(wi1, cmt) = u. Intuitively, this implies that the prover
managed to commit to a program that predicts the random string u before it was
ever sent, which is unlikely. Formally, we show that such a prover can be used to
break the underlying delegation scheme. Here we will also rely on the semantic
security of the encryption scheme to claim that the encrypted verification state
τ is hiding. Since the delegation scheme is sound against provers in A, we shall
only get soundness against such provers.

To show ZK, we construct a non-black-box simulator following the simulator
of Barak [Bar01]. At high-level, the simulator uses the code of the (malicious)
verifier V ∗ as the memory for the delegation scheme, and completes the WIPOK
using the trapdoor branch Ψ2 of the statement Ψ = Ψ1 ∨Ψ2. The trapdoor witness
is basically (d, t, π), where d is the digest corresponding to V ∗, t ≈ |V ∗| and π
is the corresponding delegation proof that V ∗(wi1, cmt) = u, which is now true
by definition. By the perfect completeness of the delegation scheme, we know
that as long as the verifier honestly encrypts some randomness τ as the private
state, and gives a query q that is consistent with τ , the delegation verifier Ver
will accept the corresponding proof. Thus, the circuit privacy of homomorphic
evaluation (which holds also if the verifier produces a malformed ciphertext)
would guarantee indistinguishability from a real proof, where the prover actually
evaluates the constant 1 circuit.

A detailed proof follows. We first prove in Sect. 3.1 that the protocol is an argu-
ment of knowledge. Then we prove in Sect. 3.2 that the protocol is zero knowl-
edge.

3.1 Proving that the Protocol Is an Argument of Knowledge

In this section, we show that the protocol is an argument of knowledge against
provers in A.

Proposition 3.1. Protocol 1 (Fig. 1) is an argument of knowledge against
provers in A.

Proof. We show that there exists a uniform PPT extractor E ∈ B1 and a uniform
PPT reduction R ∈ B1, such that for any prover P ∗ = {P ∗

n}n∈N
∈ A that

3-Message Zero Knowledge Against Human Ignorance 75

generates xn ∈ {0, 1}n and convinces V of accepting xn with non-negligible
probability ε(n), one of the following holds:

– EP ∗
n (11/ε(n), xn) outputs w ∈ RL(xn) with probability ε(n)2/4 − negl(n),6 or

– RP ∗
n breaks the soundness of the delegation scheme with probability n−O(1).

We start by describing the extractor. Throughout the description (and following
proof), we will often omit n, when it is clear from the context.

The witness extractor EP ∗
n (11/ε(n), xn) operates as follows:

1. Derives from P ∗ a new prover P ∗
wi for the WIPOK as follows. P ∗

wi emu-
lates the role of P ∗ in the WIPOK; in particular, it would (honestly)
sample (τ, (sk, ctτ), u) on its own to compute the second verifier message
(wi2, q, ctτ , u) that P ∗ receives.

2. Chooses the random coins r for the new prover P ∗
wi, and samples a transcript

tr = (Ψ,wi1,wi2,wi3) of an execution with the honest WIPOK verifier Vwi.
3. Applies the WIPOK extractor Ewi on the transcript tr, with oracle access to

P ∗
wi, and extraction parameter 2/ε. That is, computes w ← EP ∗

wi(r)
wi (12/ε, tr).

4. Outputs w.

Our strategy will be to show the required reduction R, such that if the extrac-
tor fails to extract with the required probability, then the reduction breaks the
underlying delegation scheme. Thus from hereon, we assume that for some notice-
able function η(n) = n−O(1), with probability at most ε2/4 − η the extracted
witness w is in RL(x). Rather than already describing the reduction R, we shall
first establish several claims regarding the extraction procedure and the conse-
quences of extraction failure. These will motivate our concrete construction of
the reduction R.

We start by noting that an execution of P ∗
wi(r) with the honest WIPOK verifier

Vwi induces a perfectly emulated execution of P ∗ with the honest verifier V .
Thus, we know that V , and in particular Vwi, accepts in such an execution with
probability ε(n) ≥ n−O(1).

Good coins r. We say that random coins r for P ∗
wi are good if with probability

at least ε/2 over the coins of the WIPOK verifier Vwi, the induced execution of
P ∗ with V is such that the zero-knowledge verifier V accepts. By a standard
averaging argument, at least an (ε/2)-fraction of the coins r for P ∗

wi are good.
Recall that every execution of Ewi induces a choice r for P ∗

wi, a WIPOK
transcript tr = (Ψ,wi1,wi2,wi3), and values (cmt, q, u, ctτ , ĉt) exchanged in
the induced interaction between the zero-knowledge prover P ∗ and the zero-
knowledge verifier V . These values, in turn, determine the formula

Ψ = Ψ1(x) ∨ Ψ2(wi1, cmt, q, u, ctτ , ĉt).

6 We note that the extraction probability can then be amplified to 1 − negl(n) by
standard repetition.

76 N. Bitansky et al.

We next claim that for any good r, such an extraction procedure outputs a
witness for Ψ and simultaneously the homomorphic evaluation result ĉt decrypts
to one (under the secret key sk sampled together with ctτ), with non-negligible
probability.

Claim 3.2 (Extraction for good r). For any good r for P ∗
wi, it holds that w

satisfies the induced statement Ψ and Decsk(ĉt) = 1 with probability ε(n)/2 −
negl(n) over a transcript tr, and coins for Ewi.

Proof of Claim 3.2. Fix some good coins r. Since the coins r are good, the
WIPOK verifier Vwi is convinced by P ∗

wi with probability at least ε/2, mean-
ing that Vwi accepts and in addition Decsk(ĉt) = 1. We claim that when this
occurs then, except with probability negl(n), the extractor Ewi, also outputs a
valid witness w for Ψ . This follows directly from the extraction guarantee of the
WIPOK. ��

Now, relying on the fact that overall the extractor fails to output a witness for
x, we deduce that with non-negligible probability, the extracted witness satisfies
the trapdoor statement Ψ2.

Claim 3.3 (Extracting a trapdoor witness). In a random execution of
the extractor, the extracted witness w satisfies the trapdoor statement, namely
Ψ2(wi1, cmt, q, u, ctτ , ĉt), and in addition Decsk(ĉt) = 1, with probability at least
η(n) − negl(n) over the choice of r for P ∗

wi, a transcript tr, and coins for Ewi.

Proof of Claim 3.3. First, by the (ε/2)-density of good r’s and Claim 3.2, we
deduce that in a random execution the extracted w satisfies the statement Ψ =
Ψ1 ∨ Ψ2, and in addition Decsk(ĉt) = 1, with probability at least ε2/4 − negl(n).
Combining this with the fact that w ∈ RL(x) with probability at most ε2/4−η,
the claim follows. ��

Next, recall that by the definition of Ψ2, whenever w is a witness for Ψ2, it
holds that

w = (d, π, t, rcmt) :

d, π ∈ {0, 1}n, t ≤ γ(n)
ĉt = Eval(Vparam, ctτ)
param = (wi1, cmt, q, u, d, t, π)
cmt = Com(d, t; rcmt)

.

Furthermore, by the definition of Vparam and the perfect completeness of the
1-hop homomorphic encryption,

Decsk(ĉt) = Vparam(τ) = Ver(d, τ,Mwi1,cmt, t, u, π).

We can thus deduce that, with probability η, the witness w = (d, π, t, rcmt)
extracted by E is such that: (a) Ver(d, τ,Mwi1,cmt, t, u, π) = 1, and (b) cmt =
Com(d, t; rcmt).

An equivalent experiment that hides the secret verification state τ .
We now consider an augmented extraction procedure Eaug ∈ B1 that behaves

3-Message Zero Knowledge Against Human Ignorance 77

exactly as the original extractor E , except that, when P ∗
wi emulates P ∗, it does

not sample an encryption ctτ of the secret verification state τ , but rather it
samples an encryption ct0 of 0|τ |. We claim that in this alternative experiment,
the above two conditions (a) and (b) still hold with the same probability up to
a negligible difference.

Claim 3.4 (Convincing probability in alternative experiment). With
probability η − negl(n), the witness w = (d, π, t, rcmt) extracted by Eaug is such
that:
(a) Ver(d, τ,Mwi1,cmt, t, u, π) = 1, and (b) cmt = Com(d, t; rcmt).

Proof sketch of Claim 3.4. This claim follows from the semantic security of
the 1-hop homomorphic encryption scheme. Indeed, if the above was not the
case, we can distinguish between an encryption of τ and one of 0|τ |. For this,
note that the first experiment with ctτ (respectively, the second with ct0) can
be perfectly emulated given τ and the ciphertext ctτ (respectively, ct0), and in
addition the above two conditions (a) and (b) can be tested efficiently. ��
The reduction R to the soundness of delegation. We are now ready to
describe the reduction R that breaks the soundness of the delegation scheme.
In what follows, we view the randomness r for P ∗

wi as split into r = (r1, τ, u, r2),
where r1 is any randomness used to generate the first prover message (wi1, cmt),
τ is the randomness for Query and u is the random string both used to emulate
the second verifier message, and r2 are any additional random coins used by P ∗

wi.
The reduction RP ∗

n (11/ε(n), xn) breaks the delegation scheme as follows:7

1. Samples r∗ = (r∗
1 , τ

∗, u∗, r∗
2) uniformly at random.

2. Runs EP ∗
aug(1

1/ε, x) using r∗ as the randomness for Pwi. Let (cmt∗,wi∗1) be the
corresponding first prover message (which is completely determined by the
choice of r∗

1), and let w∗ = (d∗, π∗, t∗, r∗
cmt) be the witness output by the

extractor.
3. Samples u, u′ ← {0, 1}n uniformly at random.
4. Declares d∗ as the digest, Mwi∗1 ,cmt∗ as the machine to be evaluated over the

memory, t∗ the bound on its running time, and (u, u′) as the two outputs for
the attack.

5. Given a delegation query q, R generates two proofs π and π′ for u and u′

respectively as follows:
(a) Samples r = (r∗

1 ,⊥, u, r2) and r′ = (r∗
1 ,⊥, u′, r′

2), where in both r∗
1 is the

same randomness sampled before, (u, u′) are the random strings sampled
before, and (r2, r′

2) are uniformly random strings.
(b) Runs EP ∗

aug(1
1/ε, x) once with respect to r and another time with respect

to r′, with one exception—the prover P ∗
wi constructed by EP ∗

aug does not
emulate on its own the delegation query in the verifier’s message, but

7 Here we give the reduction (11/ε(n), xn) for the sake of simplicity and clarity of
exposition. Recall that xn is generated by P ∗

n . Also, ε can be approximated by
sampling. Thus the reduction can (uniformly) obtain these two inputs from P ∗.

78 N. Bitansky et al.

rather it uses the external query q that R is given. The two executions of
EP ∗
aug then produce witnesses w = (d, π, t, rcmt) and w′ = (d′, π′, t′, r′

cmt).
(c) Output (π, π′).

We first note that the running time of R is polynomial in n and in the running of
Eaug, which is in turn polynomial in the running time of P ∗ and in 1/ε(n) = nO(1).
Thus it is overall polynomial in n.

To complete the proof, we show that R breaks the scheme with noticeable prob-
ability.

Claim 3.5. u = u′ and π and π′ both convince the delegation verifier with
probability Ω(η(n)5).

Proof of Claim 3.5. Throughout, let us denote by G the event that the witness
w = (d, π, t, rcmt) extracted by Eaug is such that: (a) Ver(d, τ,Mwi1,cmt, t, u, π) =
1, and (b) cmt = Com(d, t; rcmt). We will call r∗

1 good1, if with probability η/2
(over all other randomness), G occurs. Then by Claim 3.4 and averaging, with
probability η/2 − negl(n) over a choice of a random r∗

1 , it is good1. Next, for
a fixed r∗

1 and τ , we will say that τ is r∗
1-good, if with probability η/4 over a

choice of random (u, r∗
2), G0 occurs. Then, by averaging, for any good1 r∗

1 , with
probability η/4 − negl(n) over a choice of a random τ , it is r∗

1-good.
We are now ready to lower bound the probability that R breaks the delegation

scheme. This is based on the following assertions:

1. In Step 1, with probability η/2 − negl(n), R samples a good1 r∗
1 .

2. Conditioned on r∗
1 being good1:

(a) In Step 2, with probability η/2, G occurs. In particular, the extracted
(d∗, t∗, r∗

cmt) are valid in the sense that cmt∗ = Com(d∗, t∗; r∗
cmt), cmt∗ is

the commitment generated in the first prover message (determined by the
choice of r∗

1).
(b) In Step 5, with probability η/4 − negl(n), the coins τ chosen by the del-

egation Query algorithm (inducing the query q) are r∗
1-good.

(c) Conditioned on the coins τ of Query being r∗
1-good:

i. In Step 5, with probability η/4, the event G occurs. Thus
the extracted (d, t, rcmt, π) are valid in the sense that cmt∗ =
Com(d, t; rcmt), as well as Ver(d, τ,Mwi∗1 ,cmt∗ , t, u, π) = 1. Recall that
(wi∗1, cmt∗) are generated in the first prover message (and are deter-
mined by the choice of r∗

1).
ii. The same holds independently for the second random output u′.

3. In Step 3, with probability 1 − 2−n, the outputs u, u′ sampled by R are
distinct.

4. If cmt∗ = Com(d∗, t∗; r∗
cmt) = Com(d, t; rcmt) = Com(d′, t′; r′

cmt), then (d, t) =
(d′, t′) = (d∗, t∗).

The first two assertions follow directly from the definitions and averaging argu-
ments made above. The third assertion follows from the collision probability of

3-Message Zero Knowledge Against Human Ignorance 79

two random strings of length n. The last assertion follows from the fact that the
commitment Com is perfectly binding.

It is left to note that if all of the above occur, then R manages to produce
accepting proofs (π, π′) for two different outcomes (u, u′) with respect to the
same digest d∗ and machine Mwi∗1 ,cmt∗ ; thus, it breaks soundness. This happens
with probability

(η

2
− negl(n)

)
· η

2
·
(η

4
− negl(n)

)
·
(η

4

)2

− 2−n = Ω(η5).

This completes the proof of Claim 3.5. ��
This completes the proof of Proposition 3.1.

3.2 Proving that the Protocol Is Zero Knowledge

In this section, we prove

Proposition 3.2. Protocol 1 (Fig. 1) is ZK against non-uniform PPT verifiers.

Proof. We describe a universal ZK simulator S that given the code of any non-
uniform PPT V ∗ = {V ∗

n }n∈N
, a polynomial bound t(n) = nO(1) on its running

time (or more precisely the time required for a universal machine to run it), and
x ∈ L, simulates the view of V . We shall assume V ∗ is deterministic; this is
w.l.o.g as we can always sample random coins for V ∗ and hardwire them into
its non-uniform description. Throughout, we often omit the security parameter
n when clear from the context.

The simulator S(V ∗
n , t(n), x), where |x| = n, operates as follows:

1. Generates the first message (wi1, cmt) as follows:
(a) Samples a first message wi1 ∈ {0, 1}n of the WIPOK.
(b) Computes a digest d = Digest(1n, V ∗) of the verifier’s code.
(c) Computes a commitment cmt = Com(d, t; rcmt) to the digest d and V ∗’s

running time t, using random coins rcmt ← {0, 1}n. Here t is interpreted
as string in {0, 1}log γ(n). This is possible, for all large enough n, as t(n) =
nO(1) � nω(1) = γ(n).

2. Runs the verifier to obtain (wi2, q, u, ctτ) ← V ∗(wi1, cmt).
3. Computes the third message (ĉt,wi3) as follows:

(a) Computes a proof π = Prov(1t,Mwi1,cmt, V
∗, q) that the digested code of

V ∗ outputs u.
(b) Samples ĉt ← Eval(Vparam, ctτ), for param = (wi1, cmt, q, u, d, t, π).
(c) Computes the third WIPOK message wi3 for the statement Ψ = Ψ1(x) ∨

Ψ2(wi1, cmt, q, u, ctτ , ĉt) given by:

{

∃w

∣
∣
∣
∣
∣

(x,w)
∈ RL

}
∨

{

∃d, π, rcmt ∈ {0, 1}n

t ≤ γ(n)

∣
∣
∣
∣
∣

ĉt = Eval(Vparam, ctτ)
param = (wi1, cmt, q, u, d, t, π)
cmt = Com(d, t; rcmt)

}

,

using the witness (d, π, rcmt, t) for the trapdoor statement Ψ2.

80 N. Bitansky et al.

(d) Outputs the view (wi1, cmt, ĉt,wi3) of V ∗.

We now show that the view generated by S is computationally indistinguish-
able from the view of V ∗ in an execution with the honest prover P . We do this
by exhibiting a sequence of hybrids.

Hybrid 1: The view (wi1, cmt, ĉt,wi3) is generated by S.

Hybrid 2: Instead of generating wi3 using the witness (d, π, rcmt, t) for Ψ2, it
is generated using a witness w for Ψ1 = {x ∈ L}. By the adaptive witness-
indistinguishability of the WIPOK system, this hybrid is computationally indis-
tinguishable from Hybrid 1.

Hybrid 3: Instead of generating cmt as a commitment cmt = Com(d, t; rcmt) to
(d, t), it is generated as a commitment to 0n+log γ(n). Note that in this hybrid
the commitment’s randomness rcmt is not used anywhere, but in the generation
of cmt. Thus, by the computational hiding of the commitment, this hybrid is
computationally indistinguishable from Hybrid 2.

Hybrid 4: The view (wi1, cmt, ĉt,wi3) is generated in an interaction of V ∗ with
the honest prover P . The difference from Hybrid 3 is in that ĉt is sampled from
Eval(1, ctτ) instead of Eval(Vparam, ctτ). First, note that by the perfect complete-
ness of the delegation scheme, for any τ ∈ {0, 1}n, Vparam(τ) = 1(τ) = 1. Indeed,
by definition we know that

Mwi1,cmt(V ∗) = V ∗(wi1, cmt)[1] = u,

and this output is produced after at most t steps. Thus, assuming that q =
Query(1n; τ), the delegation verifier accepts; namely, Ver(d, τ,Mwi1,cmt, t, u, π) =
1, and by definition Vparam(τ) = 1. Also, if q = Query(1n; τ), then Vparam(τ) = 1
by definition.

By the circuit privacy of the 1-hop homomorphic encryption, the above guar-
antees indistinguishability whenever ctτ is a well-formed ciphertext since

Eval(Vparam, ctτ) ≈c S1hop(ctτ ,Vparam(τ), |Vparam|) ≡
S1hop(ctτ ,1(τ), |1|) ≈c Eval(1, ctτ).

Also, for any malformed ciphertext ct∗ it holds that

Eval(Vparam, ct∗) ≈c S1hop(ct∗,⊥, |Vparam|) ≡ S1hop(ct∗,⊥, |1|) ≈c Eval(1, ct∗).

It follows that Hybrid 4 is computationally indistinguishable from Hybrid 3.

This completes the proof of Proposition 3.2.

Acknowledgments. We thank Ran Canetti, Shai Halevi and Hugo Krawczyk for
helpful comments and for pointing out the connection to [Rog06].

3-Message Zero Knowledge Against Human Ignorance 81

References

[AIR01] Aiello, B., Ishai, Y., Reingold, O.: Priced oblivious transfer: how to sell dig-
ital goods. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045,
pp. 119–135. Springer, Heidelberg (2001). doi:10.1007/3-540-44987-6 8

[Bar01] Barak, B.: How to go beyond the black-box simulation barrier. In: FOCS,
pp. 106–115 (2001)

[BCC88] Brassard, G., Chaum, D., Crépeau, C.: Minimum disclosure proofs of
knowledge. J. Comput. Syst. Sci. 37(2), 156–189 (1988)

[BCC+14] Bitansky, N., Canetti, R., Chiesa, A., Goldwasser, S., Lin, H., Rubinstein,
A., Tromer, E.: The hunting of the SNARK. IACR Cryptology ePrint
Archive, 2014:580 (2014)

[BCPR13] Bitansky, N., Canetti, R., Paneth, O., Rosen, A.: More on the impossibility
of virtual-black-box obfuscation with auxiliary input. IACR Cryptology
ePrint Archive, 2013:701 (2013)

[BCPR14] Bitansky, N., Canetti, R., Paneth, O., Rosen, A.: On the existence of
extractable one-way functions. In: Symposium on Theory of Computing,
STOC 2014, New York, NY, USA, May 31–June 03 2014, pp. 505–514
(2014)

[BG08] Barak, B., Goldreich, O.: Universal arguments and their applications.
SIAM J. Comput. 38(5), 1661–1694 (2008)

[BGGL01] Barak, B., Goldreich, O., Goldwasser, S., Lindell, Y.: Resettably-sound
zero-knowledge and its applications. In: FOCS, pp. 116–125 (2001)

[BHK16] Brakerski, Z., Holmgren, J., Kalai, Y., Non-interactive ram, batch np del-
egation from any pir. Cryptology ePrint Archive, Report 2016/459 (2016).
http://eprint.iacr.org/

[BJY97] Bellare, M., Jakobsson, M., Yung, M.: Round-optimal zero-knowledge argu-
ments based on any one-way function. In: Fumy, W. (ed.) EUROCRYPT
1997. LNCS, vol. 1233, pp. 280–305. Springer, Heidelberg (1997). doi:10.
1007/3-540-69053-0 20

[BM14] Brzuska, C., Mittelbach, A.: Indistinguishability obfuscation versus multi-
bit point obfuscation with auxiliary input. In: Sarkar, P., Iwata, T. (eds.)
ASIACRYPT 2014. LNCS, vol. 8874, pp. 142–161. Springer, Heidelberg
(2014). doi:10.1007/978-3-662-45608-8 8

[BP04a] Barak, B., Pass, R.: On the possibility of one-message weak zero-
knowledge. In: Naor, M. (ed.) TCC 2004. LNCS, vol. 2951, pp. 121–132.
Springer, Heidelberg (2004). doi:10.1007/978-3-540-24638-1 7

[BP04b] Bellare, M., Palacio, A.: The knowledge-of-exponent assumptions and
3-round zero-knowledge protocols. In: Franklin, M. (ed.) CRYPTO 2004.
LNCS, vol. 3152, pp. 273–289. Springer, Heidelberg (2004). doi:10.1007/
978-3-540-28628-8 17

[BP12] Bitansky, N., Paneth, O.: From the impossibility of obfuscation to a new
non-black-box simulation technique. In: FOCS (2012)

[BP13] Bitansky, N., Paneth, O.: On the impossibility of approximate obfuscation
and applications to resettable cryptography. In: STOC, pp. 241–250 (2013)

[CD09] Canetti, R., Dakdouk, R.R.: Towards a theory of extractable functions.
In: Reingold, O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 595–613. Springer,
Heidelberg (2009). doi:10.1007/978-3-642-00457-5 35

[CDPW07] Canetti, R., Dodis, Y., Pass, R., Walfish, S.: Universally composable secu-
rity with global setup. In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392,
pp. 61–85. Springer, Heidelberg (2007). doi:10.1007/978-3-540-70936-7 4

http://dx.doi.org/10.1007/3-540-44987-6_8
http://eprint.iacr.org/
http://dx.doi.org/10.1007/3-540-69053-0_20
http://dx.doi.org/10.1007/3-540-69053-0_20
http://dx.doi.org/10.1007/978-3-662-45608-8_8
http://dx.doi.org/10.1007/978-3-540-24638-1_7
http://dx.doi.org/10.1007/978-3-540-28628-8_17
http://dx.doi.org/10.1007/978-3-540-28628-8_17
http://dx.doi.org/10.1007/978-3-642-00457-5_35
http://dx.doi.org/10.1007/978-3-540-70936-7_4

82 N. Bitansky et al.

[CKLR11] Chung, K.-M., Kalai, Y.T., Liu, F.-H., Raz, R.: Memory delegation. In:
Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 151–168. Springer,
Heidelberg (2011). doi:10.1007/978-3-642-22792-9 9

[CLP13a] Canetti, R., Lin, H., Paneth, O.: Public-coin concurrent zero-knowledge in
the global hash model. In: Sahai, A. (ed.) TCC 2013. LNCS, vol. 7785, pp.
80–99. Springer, Heidelberg (2013). doi:10.1007/978-3-642-36594-2 5

[CLP13b] Chung, K.-M., Lin, H., Pass, R.: Constant-round concurrent zero knowl-
edge from p-certificates. In: FOCS (2013)

[CLP15] Chung, K.-M., Lin, H., Pass, R.: Constant-round concurrent zero-
knowledge from indistinguishability obfuscation. In: Gennaro, R., Rob-
shaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9215, pp. 287–307. Springer,
Heidelberg (2015). doi:10.1007/978-3-662-47989-6 14

[COP+14] Chung, K.-M., Ostrovsky, R., Pass, R., Venkitasubramaniam, M., Visconti,
I.: 4-round resettably-sound zero knowledge. In: Lindell, Y. (ed.) TCC
2014. LNCS, vol. 8349, pp. 192–216. Springer, Heidelberg (2014). doi:10.
1007/978-3-642-54242-8 9

[FLS99] Feige, U., Lapidot, D., Shamir, A.: Multiple noninteractive zero knowledge
proofs under general assumptions. SIAM J. Comput. 29(1), 1–28 (1999)

[FS89] Feige, U., Shamir, A.: Zero knowledge proofs of knowledge in two rounds.
In: Brassard, G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 526–544.
Springer, Heidelberg (1990). doi:10.1007/0-387-34805-0 46

[GHV10] Gentry, C., Halevi, S., Vaikuntanathan, V.: i-Hop homomorphic encryption
and rerandomizable yao circuits. In: CRYPTO, pp. 155–172 (2010)

[GK96a] Goldreich, O., Kahan, A.: How to construct constant-round zero-knowledge
proof systems for NP. J. Cryptol. 9(3), 167–190 (1996)

[GK96b] Goldreich, O., Krawczyk, H.: On the composition of zero-knowledge proof
systems. SIAM J. Comput. 25(1), 169–192 (1996)

[GMR89] Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of inter-
active proof systems. SIAM J. Comput. 18(1), 186–208 (1989)

[GMW91] Goldreich, O., Micali, S., Wigderson, A.: Proofs that yield nothing but
their validity for all languages in NP have zero-knowledge proof systems.
J. ACM 38(3), 691–729 (1991)

[GO94] Goldreich, O., Oren, Y.: Definitions and properties of zero-knowledge proof
systems. J. Cryptol. 7(1), 1–32 (1994)

[Gol04] Goldreich, O.: Foundations of Cryptography: Basic Applications, vol. 2.
Cambridge University Press, New York (2004)

[HK12] Halevi, S., Kalai, Y.T.: Smooth projective hashing and two-message obliv-
ious transfer. J. Cryptol. 25(1), 158–193 (2012)

[HT98] Hada, S., Tanaka, T.: On the existence of 3-round zero-knowledge proto-
cols. In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS, vol. 1462, pp. 408–423.
Springer, Heidelberg (1998). doi:10.1007/BFb0055744

[HV16] Hazay, C., Venkitasubramaniam, M.: On the power of secure two-party
computation. Cryptology ePrint Archive, Report 2016/074 (2016). http://
eprint.iacr.org/

[IKOS09] Ishai, Y., Kushilevitz, E., Ostrovsky, R., Sahai, A.: Zero-knowledge proofs
from secure multiparty computation. SIAM J. Comput. 39(3), 1121–1152
(2009)

[Kat12] Katz, J.: Which languages have 4-round zero-knowledge proofs? J. Cryptol.
25(1), 41–56 (2012)

[KP15] Kalai, Y.T., Paneth, O.: Delegating ram computations. Cryptology ePrint
Archive, Report 2015/957 (2015). http://eprint.iacr.org/

http://dx.doi.org/10.1007/978-3-642-22792-9_9
http://dx.doi.org/10.1007/978-3-642-36594-2_5
http://dx.doi.org/10.1007/978-3-662-47989-6_14
http://dx.doi.org/10.1007/978-3-642-54242-8_9
http://dx.doi.org/10.1007/978-3-642-54242-8_9
http://dx.doi.org/10.1007/0-387-34805-0_46
http://dx.doi.org/10.1007/BFb0055744
http://eprint.iacr.org/
http://eprint.iacr.org/
http://eprint.iacr.org/

3-Message Zero Knowledge Against Human Ignorance 83

[KRR14] Kalai, Y.T., Raz, R., Rothblum, R.D.: How to delegate computations: the
power of no-signaling proofs. In: Symposium on Theory of Computing,
STOC 2014, New York, NY, USA, May 31–June 03 2014, pp. 485–494
(2014)

[LS90a] Lapidot, D., Shamir, A.: Publicly verifiable non-interactive zero-knowledge
proofs. In: Menezes, A.J., Vanstone, S.A. (eds.) CRYPTO 1990.
LNCS, vol. 537, pp. 353–365. Springer, Heidelberg (1991). doi:10.1007/
3-540-38424-3 26

[NP01] Naor, M., Pinkas, B.: Efficient oblivious transfer protocols. In: SODA, pp.
448–457 (2001)

[OV12] Ostrovsky, R., Visconti, I.: Simultaneous resettability from collision resis-
tance. Electronic Colloquium on Computational Complexity (ECCC)
(2012)

[Pas03] Pass, R.: Simulation in quasi-polynomial time, and its application to proto-
col composition. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656,
pp. 160–176. Springer, Heidelberg (2003). doi:10.1007/3-540-39200-9 10

[PVW08] Peikert, C., Vaikuntanathan, V., Waters, B.: A framework for efficient
and composable oblivious transfer. In: Wagner, D. (ed.) CRYPTO 2008.
LNCS, vol. 5157, pp. 554–571. Springer, Heidelberg (2008). doi:10.1007/
978-3-540-85174-5 31

[Reg09] Regev, O.: On lattices, learning with errors, random linear codes, and
cryptography. J. ACM 56(6), 34.1–34.40 (2009)

[Rog06] Rogaway, P.: Formalizing human ignorance. In: Nguyen, P.Q. (ed.) VIET-
CRYPT 2006. LNCS, vol. 4341, pp. 211–228. Springer, Heidelberg (2006).
doi:10.1007/11958239 14

[Yao86] Yao, A.C.-C.: How to generate and exchange secrets (extended abstract).
In: FOCS, pp. 162–167 (1986)

http://dx.doi.org/10.1007/3-540-38424-3_26
http://dx.doi.org/10.1007/3-540-38424-3_26
http://dx.doi.org/10.1007/3-540-39200-9_10
http://dx.doi.org/10.1007/978-3-540-85174-5_31
http://dx.doi.org/10.1007/978-3-540-85174-5_31
http://dx.doi.org/10.1007/11958239_14

The GGM Function Family Is a Weakly
One-Way Family of Functions

Aloni Cohen1(B) and Saleet Klein2

1 MIT, Cambridge, MA, USA
aloni@mit.edu

2 Tel Aviv University, Tel Aviv, Israel
saleetklein@mail.tau.ac.il

Abstract. We give the first demonstration of the cryptographic hard-
ness of the Goldreich-Goldwasser-Micali (GGM) function family when
the secret key is exposed. We prove that for any constant ε > 0, the
GGM family is a 1/n2+ε-weakly one-way family of functions, when the
lengths of secret key, inputs, and outputs are equal. Namely, any efficient
algorithm fails to invert GGM with probability at least 1/n2+ε – even
when given the secret key.

Additionally, we state natural conditions under which the GGM fam-
ily is strongly one-way.

1 Introduction

Pseudorandom functions (PRFs) are fundamental objects in general and in cryp-
tography in particular. A pseudorandom function ensemble is a collection of
(efficient) functions F = {fs}s∈{0,1}∗ indexed by a secret key s ∈ {0, 1}∗ with
the dual properties that (1) given the secret key s, fs is efficiently computable
and (2) without knowledge of the secret key, no probabilistic polynomial-time
algorithm can distinguish between oracle access to a random function from the
ensemble and access to a random oracle. The security property of PRFs depends
on the absolute secrecy of the key, and no security is guaranteed when the secret
key is revealed. Pseudorandom functions have found wide use: in cryptography
to construct private-key encryption and digital signatures [Gol04], in computa-
tional learning theory for proving negative results [Val84], and in computational
complexity to demonstrate the inherent limits of using natural proofs to prove
circuit lower-bounds [RR97].

The first construction of pseudorandom function families starting from any
one-way functions came in 1986 by Goldreich, Goldwasser, and Micali [GGM86].
Assuming only that a function is hard to invert, the construction amplifies
the secrecy of a short random secret key into an exponentially-long, randomly-
accessible sequence of pseudorandom values. For about 10 years, this was the only
known method to construct provably secure PRFs, even from specific number-
theoretic assumptions. Almost 30 years later, it remains the only generic app-
roach to construct PRFs from any one-way function.

c© International Association for Cryptologic Research 2016
M. Hirt and A. Smith (Eds.): TCC 2016-B, Part I, LNCS 9985, pp. 84–107, 2016.
DOI: 10.1007/978-3-662-53641-4 4

The GGM Function Family Is a Weakly One-Way Family of Functions 85

Almost three decades after its conception, we are continuing to discover sur-
prising power specific to the GGM pseudorandom function family. The basic
ideas of this construction were used in constructions of broadcast encryp-
tion schemes in the early 90s [FN94]. Additionally, these same ideas were to
construct function secret sharing schemes for point functions, leading to 2-
server computationally-secure PIR schemes with poly-logarithmic communica-
tion [BGI15]. More recently, Zhandry exhibited the first quantum-secure PRF by
demonstrating that the (classical) GGM ensemble (instantiated with a quantum-
secure pseudorandom generator) is secure even against quantum adversaries
[Zha12]. In [BW13,BGI14,KPTZ13], the notion of constrained pseudorandom
functions was introduced. The “constrained keys” for these PRFs allow a user
to evaluate the function on special subsets of the domain while retaining pseudo-
randomness elsewhere. The GGM ensemble (and modifications thereof) is a con-
strained PRF for the family of prefix-constraints (including point-puncturing),
and GGM yields the simplest known construction of constrained PRFs. This
family of constraints is powerful enough to enable many known applications of
these families for program obfuscation [SW14].

In this work, we give the first demonstration that the GGM family enjoys
some measure of security even when the secret key is revealed to an attacker. In
this setting, pseudorandom functions do not necessarily guarantee any security.
For example, the Luby-Rackoff family of pseudorandom permutations [LR88]
are efficiently invertible given knowledge of the secret key. This suggests that we
must examine specific constructions of pseudorandom functions to see if security
is retained when the secret key is revealed. In this work, we ask the following
question:

What security, if any, does the GGM ensemble provide when the secret key
is known?

A version of this question was posed and addressed by Goldreich1 in 2002 [Gol02].
Goldreich casts the question from the angle of correlation intractability. Infor-
mally, a function ensemble {fs}s∈{0,1}∗ is correlation intractable if – even given
the function description s – it is computationally infeasible to find an input x
such that x and fs(x) satisfy some “sparse” relation. Correlation intractability
was formalized in [CGH04], which proved that no such family exists for |x| ≥ |s|.

In [Gol02], Goldreich proves that the GGM ensemble is not correlation
intractable, even for |x| < |s|, in a very strong sense. Goldreich constructs a
pseudorandom generator G(0) which, when used to instantiate the GGM ensem-
ble, allows an adversary with knowledge of the secret key s to efficiently find
preimages x ∈ f−1

s (0n). This allows the inversion of fs for a specific image 0n,
but not necessarily for random images.

1 And posed much earlier by Micali and by Barak: see Acknowledgments of [Gol02].

86 A. Cohen and S. Klein

1.1 Our Contributions

In this work, we prove that the length-preserving2 GGM ensemble is a weakly
one-way family of functions. This means that any efficient algorithm A, when
given a random secret key s and fs(x) for a random input x, must fail to invert
with non-negligible probability.

Moreover, we prove that if either a random function in FG is “regular” in
the sense that each image has a polynomially-bounded number of pre-images, or
is “nearly surjective” in a sense made precise below, then the length-preserving
GGM ensemble is strongly one-way. Formally:

Theorem 1. Let FG = {fs}s∈{0,1}∗ be the length-preserving GGM function
ensemble with pseudorandom generator G, where fs : {0, 1}|s| → {0, 1}|s|. Then
for every constant ε > 0, FG is a 1/n2+ε–weakly one-way collection of functions.
That is, for every probabilistic polynomial-time algorithm A, for every constant
ε > 0, and all sufficiently large n ∈ N,

Pr
s←Un
x←Un

[A(s, fs(x)) ∈ f−1
s (fs(x))] < 1 − 1

n2+ε
(1)

where Un is the uniform distribution over {0, 1}n.

Theorem 2. Let FG be the GGM ensemble with pseudorandom generator G.
FG is a strongly one-way collection of functions if either of the following hold:

(a) There exists a negligible function negl(·) such that for all sufficiently large
n ∈ N

E
s←Un

[
|Img(fs)|

2n

]
≥ 1 − negl(n) (2)

(b) There exists a polynomial B such that for all sufficiently large n ∈ N and for
all s, y ∈ {0, 1}n

∣
∣f−1

s (y)
∣
∣ ≤ B(n) (3)

Remark 1. The conditions of Theorem 2 are very strong conditions. Whether
a pseudorandom generator G exists which makes the induced GGM ensemble
satisfy either condition is an interesting and open question. The possibility of
such a generator is open even for the stronger requirement that for every secret
key s, fs is a permutation.

Remark 2. The length-preserving restriction can be somewhat relaxed to the
case when |x| = |s| ± O(log |s|), affecting the weakly one-way parameter. A
partial result holds when |x| > |s| + ω(log |s|), and nothing is currently known
if |x| < |s| − ω(log |s|). See the full version for further discussion.

2 We consider the secret keys, inputs, and outputs to be of the same lengths. See
Remark 2.

The GGM Function Family Is a Weakly One-Way Family of Functions 87

1.2 Overview of Proof

Let’s go into the land of wishful thinking and imagine that for each secret key
s ∈ {0, 1}n, every string y ∈ {0, 1}n occurs exactly once in the image of fs; that
is, suppose that the GGM ensemble FG is a family of permutations. In this case
we can prove that the GGM family is strongly one-way (in fact, this is a special
case of Theorem 2).

The assumption that FG is a permutation implies the following two facts.3

– Fact 1: For each secret key s ∈ {0, 1}n, the distributions fs(Un) and Un are
identical.

– Fact 2: For each string y ∈ {0, 1}n, there are exactly two pairs (b, x) ∈ {0, 1}×
{0, 1}n such that Gb(x) = y, where G is the PRG underlying the GGM family,
and G0(x) and G1(x) are the first and second halves of G(x) respectively.

We may now prove that the GGM ensemble is strongly one-way in two steps:

– Step 1: Switch the adversary’s input to uniformly random.
– Step 2: Construct a distinguisher for the PRG.

Step 1. For a PPT algorithm A, let 1/α(n) be A’s probability of successfully
inverting y with secret key s; namely:

Pr
s←Un

y←fs(Un)

[A(s, y) ∈ f−1
s (y)] =

1
α(n)

By Fact 1, A has exactly the same success probability if y is sampled uniformly
from {0, 1}n:

Pr
s←Un
y←Un

[A(s, y) ∈ f−1
s (y)] =

1
α(n)

Step 2. We now construct a PPT algorithm D that has advantage 1/2α(n) −
negl(n) in distinguishing outputs from the PRG G from random strings (i.e., U2n

and G(Un)). By the security of G, this implies that 1/α(n) = negl(n), completing
the proof.
The distinguisher D is defined as follows:

Input: (y0, y1) // a sample from either G(Un) or U2n

Sample a secret key s ← Un and a bit b ← U ;
Compute x ← A(s, yb);
Let x̃ = x ⊕ 0n−11 // x̃ differs from x only at the last bit;
if fs(x) = yb and fs(x̃) = y1−b then

Output 1; // Guess ‘‘PRG’’
else

Output 0; // Guess ‘‘random’’
end

Algorithm 1. The PRG distinguisher D
3 While these are indeed facts in the land of wishful thinking, they are not generally

true. In this overview we wish to highlight only the usefulness of these facts, and
believe that their proofs (though elementary), do not further this goal.

88 A. Cohen and S. Klein

Notice that if D outputs 1, then either (y0, y1) or (y1, y0) is in Img(G). If
(y0, y1) was sampled uniformly from U2n, then this happens with probability at
most 2n+1/22n. Therefore,

Pr[D(U2n) = 1] ≤ 1/2n−1.

Now we use Fact 2 from above. There are only 2 possible x’s that A could
have output in agreement with fs(x); if (y0, y1) was sampled from G(Un) and
fs(x) = yb (which happens with probability 1/α(n)), then with probability at
least 1/2: fs(x̃) = y1−b. Therefore,

Pr[D(G(Un)) = 1] ≥ 1/2α(n),

completing the proof of this special case.

Leaving the land of wishful thinking, the proof that the GGM ensemble is weakly
one-way follows exactly the same two steps as the special case proved above,
but the facts we used are not true in general. We carry out Step 1 in the Input
Switching Proposition (Proposition 1): we more carefully analyze the relationship
between the distributions fs(Un) and Un, losing a factor of 1 − 1/n2+ε in the
adversary’s probability of successfully inverting. We carry out Step 2 in the
Distinguishing Lemma (Lemma 2): we analyze the success probability of the
distinguisher (the same one as above) by more carefully reasoning about the
number of preimages for a value y.

Organization. Section 2 contains standard definitions and the notation used
throughout this work. Section 3 contains the proof of Theorem1, leaving the
proof of the crucial Combinatorial Lemma (Lemma 1) to Sect. 4. Theorem 2 is
proved in Sect. 5, and Sect. 6 concludes.

2 Preliminaries

2.1 Notation

For two strings a and b we denote by a‖b their concatenation. For a bit string
x ∈ {0, 1}n, we denote by x[i] its i-th bit, and by x[i : j] (for i < j) the sequence
x[i]‖x[i + 1]‖ · · · ‖x[j]. We abbreviate ‘probabilistic polynomial time’ as ‘PPT’.

For a probability distribution D, we use Supp(D) to denote the support of
D. We write x ← D to mean that x is a sample from the distribution D. By
Un, we denote the uniform distribution over {0, 1}n, and omit the subscript
when n = 1. For a probabilistic algorithm A, we let A(x) denote a sample from
the probability distribution induced over the outputs of A on input x, though
we occasionally abuse notation and let A(x) denote the distribution itself. For
a function f : X → Y and a distribution D over X, we denote by f(D) the
distribution (f(x))x←D over Y .

The GGM Function Family Is a Weakly One-Way Family of Functions 89

Definition 1 (Computationally Indistinguishable). Two ensembles
{Xn}n∈N, {Yn}n∈N are computationally indistinguishable if for every probabilis-
tic polynomial-time algorithm A, every polynomial p(·), and all sufficiently large
n ∈ N

|Pr [A (Xn) = 1] − Pr [A (Yn) = 1]| ≤ 1
p(n)

We write Xn ≈c Yn to denote that {Xn}n∈N and {Yn}n∈N are computationally
indistinguishable.

Definition 2 (Multiset). A multi-set M over a set S is a function M : S → N.
For each s ∈ S, we call M(s) the multiplicity of s. We say s ∈ M if
M(s) ≥ 1, and denote the size of M by |M | =

∑
S M(s). For two multi-sets

M and M ′ over S, we define their intersection M ∩ M ′ to be the multiset
(M ∩ M ′)(s) = min[M(s),M ′(s)] containing each element with the smaller of
the two multiplicities.

2.2 Standard Cryptographic Notions, and the GGM Ensemble

Definition 3 (One-way collection of functions; adapted from [Gol04]).
A collection of functions {fs : {0, 1}|s| → {0, 1}∗}s∈{0,1}∗ is called strongly
(weakly) one-way if there exists a probabilistic polynomial-time algorithm Eval
such that the following two conditions hold:

– Efficiently computable: On input s ∈ {0, 1}∗, and x ∈ {0, 1}|s|, algorithm Eval
always outputs fs(x).

– Strongly one-way: For every polynomial w(·), for every probabilistic
polynomial-time algorithm A and all sufficiently large n,

Pr
s←Un
x←Un

[
A(s, fs(x)) ∈ f−1

s (fs(x))
]

<
1

w(n)
(4)

– Weakly one-way: There exists a polynomial w(·) such that for every probabilis-
tic polynomial-time algorithm A and all sufficiently large n,

Pr
s←Un
x←Un

[
A(s, fs(x)) ∈ f−1

s (fs(x))
]

< 1 − 1
w(n)

(5)

In this case, the collection is said to be 1/w(n)-weakly one-way.

We emphasize that in weakly one-way definition the polynomial w(n) bounds
the success probability of every efficient adversary. Additionally, weakly one-
way collections can be easily amplified to achieve (strongly) one-way collections
[Gol04].

We will use the following notation.

90 A. Cohen and S. Klein

Definition 4 (Inverting Advantage). For an adversary A and distribution
D over (s, y) ∈ {0, 1}n × {0, 1}n, we define the inverting advantage of A on
distribution D as

AdvA(D) = Pr
(s,y)←D

[
A(s, y) ∈ f−1

s (y)
]

(6)

Definition 5 (Pseudo-random generator). An efficiently computable func-
tion G : {0, 1}n → {0, 1}2n is a (length-doubling) pseudorandom generator
(PRG), if G(Un) is computationally indistinguishable from U2n. Namely for any
PPT D ∣

∣
∣
∣Pr[D(G(Un)) = 1] − Pr[D(U2n) = 1]

∣
∣
∣
∣ = negl(n)

Definition 6 (GGM function ensemble [GGM86]). Let G be a determinis-
tic algorithm that expands inputs of length n into string of length 2n. We denote
by G0(s) the |s|-bit-long prefix of G(s), and by G1(s) the |s|-bit-long suffix of
G(s) (i.e., G(s) = G0(s)‖G1(s). For every s ∈ {0, 1}n (called the secret key),
we define a function fG

s : {0, 1}n → {0, 1}n such that for every x ∈ {0, 1}n,

fG
s (x[1], . . . , x[n]) = Gx[n](· · · (Gx[2](Gx[1](s)) · · ·) (7)

For any n ∈ N, we define Fn to be a random variable over {fG
s }s∈{0,1}n . We call

FG = {Fn}n∈N the GGM function ensemble instantiated with generator G.
We will typically write fs instead of fG

s .

The construction is easily generalized to the case when |x| �= n. Though we
define the GGM function ensemble as the case when |x| = n, it will be useful to
consider the more general case.

2.3 Statistical Distance

For two probability distributions D and D′ over some universe X, we recall two
equivalent definitions of their statistical distance SD(D,D′):

SD(D,D′) :=
1
2

∑

x∈X

|D(x) − D′(x)| = max
S⊆X

∑

x∈S

D(x) − D′(x)

For a collection of distributions {D(p)} with some parameter p, and a distribu-
tion P over the parameter p, we write

(p,D(p))P

to denote the distribution over pairs (p, x) induced by sampling p ← P and
subsequently x ← D(p).4 It follows from the definition of statistical distance
(see appendix) that for distributions P , D(P), and D′(P):

SD
((

p,D(p)
)
P

,
(
p,D′(p)

)
P

)
= E

p←P

[
SD

(
D(p),D′(p)

)]
(8)

4 For example, the distribution (x,Bernoulli(x))Uniform[0,1] is the distribution over (x, b)
by drawing the parameter x uniformly from [0, 1], and subsequently taking a sample
b from the Bernoulli distribution with parameter x.

The GGM Function Family Is a Weakly One-Way Family of Functions 91

The quantity |Img(f)| is related to the statistical distance between the uni-
form distribution Un and the distribution f(Un). For any f : {0, 1}n → {0, 1}n,

SD(f(Un), Un) = 1 − |Img(f)|
2n

(9)

This identity can be easily shown by expanding the definition of statistical dis-
tance, or by considering the histograms of the two distributions and a simple
counting argument. See the appendix for a proof.

2.4 Rényi Divergences

Similar to statistical distance, the Rényi divergence is a useful tool for relating
the probability of some event under two distributions. Whereas the statistical
distance yields an additive relation between the probabilities in two distributions,
the Rényi divergence yields a multiplicative relation. The following is adapted
from Sect. 2.3 of [BLL+15].

For any two discrete probability distributions P and Q such that Supp(P) ⊆
Supp(Q), we define the power of the Rényi divergence (of order 2) by

R (P‖Q) =

⎛

⎝
∑

x∈Supp(Q)

P (x)2

Q(x)

⎞

⎠ . (10)

An important fact about Rényi divergence is that for an abitrary event E ⊆
Supp(Q)

Q(E) ≥ P (E)2

R (P‖Q)
. (11)

3 The weak one-wayness of GGM

We now outline the proof of Theorem1: that the GGM function ensemble is
1/n2+ε-weakly one-way. The proof proceeds by contradiction, assuming that
there exists a PPT A which inverts on input (s, y) with > 1−1/n2+ε probability,
where s is a uniform secret key and y is sampled as a uniform image of fs.

At a high level there are two steps. The first step (captured by the Input
Switching Proposition below) is to show that the adversary successfully inverts
with some non-negligible probability, even when y is sampled uniformly from
{0, 1}n, instead of as a uniform image from fs. The second step (captured by the
Distinguishing Lemma below) will then use the adversary to construct a distin-
guisher for the PRG underlying the GGM ensemble. The proof of Input Switch-
ing Proposition (Proposition 1) depends on the Combinatorial Lemma proved in
Sect. 4. Together, these suffice to prove Theorem 1.

92 A. Cohen and S. Klein

3.1 Step 1: The Input Switching Proposition

As discussed in the overview, our goal is to show that for any adversary
that inverts with probability > 1 − 1/n2+ε on input distribution (s, y) ←
(s, fs(Un))s←Un

will invert with non-negligible probability on input distribution
(s, y) ← (Un, Un). For convenience, we name these distributions:

– Dowf : This is A’s input distribution in the weakly one-way function security
game in Definition 3. Namely,

Dowf = (s, fs(Un))s←Un

– Drand: This is our target distribution (needed for Step 2), in which s and y are
drawn uniformly at random. Namely,

Drand = (Un, Un)

Proposition 1 (Input Switching Proposition). For every constant ε > 0
and sufficiently large n ∈ N

AdvA(Dowf) > 1 − 1/n2+ε =⇒ AdvA(Drand) > 1/poly(n) (12)

It suffices to show that for every constant ε > 0 and sufficiently large n ∈ N

|AdvA(Dowf) − AdvA(Drand)| < 1 − 1/n2+ε − 1/poly(n) (13)

If SD(Dowf ,Drand) < 1 − 1/n2, then the above follows immediately (even for an
unbounded adversary).5 If instead SD(Dowf ,Drand) ≥ 1−1/n2, we must proceed
differently.6

What if instead y is sampled as a random image from fs′ , where s′ is a totally
independent seed? Namely, consider the following distribution over (s, y):

– Dmix: This is the distribution in which y is sampled as a uniform image from
fs′ and s, s′ are independent secret keys.

Dmix = (s, fs′(Un))s,s′←Un×Un

In order to understand the relationship between AdvA(Dowf) and AdvA(Dmix) we
define our final distributions, parameterized by an integer k ∈ [0, n − 1]. These
distributions are related to Dowf and Dmix, but instead of sampling (s, s′) from
Un×Un, they are sampled from (G(fr(Uk)))r←Un

. If k = 0, we define fr(Uk) = r.

5 Whether this indeed holds depends on the PRG used to instantiate the GGM ensem-
ble. We do not know if such a PRG exists.

6 If there exists a PRG, then there exists a PRG such that SD(Dowf , Drand) = 1 −
Es←Un [|Img(fs)|/2n] ≥ 1 − 1/n2. For example, if the PRG only uses the first n/2
bits of its input, then |Img(fs)| < 2n/2+1.

The GGM Function Family Is a Weakly One-Way Family of Functions 93

– Dk
0 : Like Dowf but the secret key is s = G0(ŝ) where ŝ is sampled as

ŝ ← (fr(Uk))r←Un
. Namely,

Dk
0 = (s, fs(Un)) r←Un; ŝ←fr(Uk)

s=G0(ŝ)

– Dk
1 : Like Dmix, but the secret keys are s = G0(ŝ) and s′ = G1(ŝ) where ŝ is

sampled as ŝ ← (fr(Uk))r←Un
. Namely,

Dk
1 = (s, fs′(Un)) r←Un; ŝ←fr(Uk)

(s,s′)=(G0(ŝ),G1(ŝ))

Claim (Indistinguishability of Distributions). For every k ∈ [0, n − 1],

(a) Dowf ≈c Dk
0 , (b) Dk

1 ≈c Dmix, (c) Dmix ≈c Drand

Proof (Indistinguishability of Distributions). By essentially the same techniques
as in [GGM86], the pseudorandomness of the PRG implies that for any k ≤ n,
the distribution fUn

(Uk) is computationally indistinguishable from Un. Claim
(c) follows immediately. By the same observation, Dk

0 ≈c D0
0 and Dk

1 ≈c D0
1.

Finally, by the pseudorandomness of the PRG, Dowf ≈c D0
0 and D0

1 ≈ Dmix. This
completes the proofs of (a) and (b).

The above claim and the following lemma (proved in Sect. 4) allow us to complete
the proof of the Input Switching Proposition (Proposition 1).

Lemma 1 (Combinatorial Lemma). Let Dowf , Dk
0 , Dk

1 , Dmix and Drand be
defined as above. For every constant ε′ > 0 and every n ∈ N,

– either there exists k∗ ∈ [0, n − 1] such that

SD
(
Dk∗

0 ,Dk∗
1

)
≤ 1 − 1

n2+ε′ (L.1)

– or
SD (Dowf ,Drand) <

2
nε′/2 (L.2)

We now prove (13) and thereby complete the proof of Input Switching Propo-
sition (Proposition 1). Fix a constant ε > 0 and n ∈ N. Apply the Combinatorial
Lemma (Lemma 1) with ε′ = ε/2. In the case that (L.2) is true,

|AdvA(Dowf) − AdvA(Drand)| ≤ SD(Dowf ,Drand) <
2

nε/4

In the case that (L.1) is true, we use the Triangle Inequality. Let k∗ ∈ [0, n − 1]
be as guaranteed by (L.1):

|AdvA(Dowf)−AdvA(Drand)|
≤

∣
∣AdvA(Dowf) − AdvA(Dk∗

0)
∣
∣ +

∣
∣AdvA(Dk∗

0) − AdvA(Dk∗
1)

∣
∣

+
∣
∣AdvA(Dk∗

1) − AdvA(Dmix)
∣
∣ +

∣
∣AdvA(Dmix) − AdvA(Drand)

∣
∣

≤negl(n) +
(

1 − 1
n2+ε′/2

)
+ negl(n) + negl(n)

≤1 − 1
n2+ε/4

+ negl(n)

94 A. Cohen and S. Klein

3.2 Step 2: The Distinguishing Lemma

As discussed in the overview, in this step we show that any efficient algorithm
A that can invert fs on uniformly random values y ∈ {0, 1}n with probability ≥
1/α(n) can be used to distinguish the uniform distribution from uniform images
of the PRG G underlying the GGM ensemble with probability ≥ 1/poly(α(n)).
Formally, we prove the following lemma:

Lemma 2 (Distinguishing Lemma). Let G be a PRG and FG the corre-
sponding GGM ensemble. For all PPT algorithms A and polynomials α(n), there
exists a PPT distinguisher D which for all n ∈ N:

AdvA(Un × Un) ≥ 1
α(n)

=⇒
∣
∣Pr [D (G (Un)) = 1] − Pr [D (U2n) = 1]

∣
∣ ≥

(
1

4α(n)

)5

− negl(n)

Proof. Let A be a PPT algorithm such that for some polynomial α(n)

AdvA(Un × Un) ≥ 1
α(n)

(14)

The distinguisher D is defined as follows:
Input: (y0, y1) // a sample from either G(Un) or U2n

Sample a secret key s ← Un and a bit b ← U ;
Compute x ← A(s, yb);
Let x̃ = x ⊕ 0n−11 // x̃ differs from x only at the last bit;
if fs(x) = yb and fs(x̃) = y1−b then

Output 1; // Guess ‘‘PRG’’
else

Output 0; // Guess ‘‘random’’
end

Algorithm 2. The PRG distinguisher D

Next we show that the distinguisher D outputs 1 given input sampled uniformly
with only negligible probability, but outputs 1 with some non-negligible proba-
bility given input sampled from G(Un). This violates the security of the PRG,
contradicting assumption (14).

Observe that if D outputs 1, then either (y0, y1) or (y1, y0) is in Img(G). If
(y0, y1) was sampled uniformly from U2n, then this happens with probability at
most 2n+1/22n. Therefore,

Pr[D(U2n) = 1] = negl(n) (15)

We prove that

Pr[D(G(Un)) = 1] ≥
(

1
4α(n)

)5

(16)

The GGM Function Family Is a Weakly One-Way Family of Functions 95

At a very high level, the intuition is that for most (y0, y1) ∈ Img(G), there are
not too many y′

1 for which either (y0, y′
1) ∈ Img(G) or (y′

1, y0) ∈ Img(G) (simi-
larly for y′

0 and y1). After arguing that A must invert even on such “thin” y’s,
the chance that y′

1−b = y1−b is significant. We now formalize this high level
intuition.

We define the function G∗ : {0, 1} × {0, 1}n → {0, 1}n

G∗(b, y) = Gb(y)

Definition 7 (θ-thin, θ-fat). An element y ∈ Img(G∗) is called θ-thin under
G if |G−1

∗ (y)| ≤ θ. Otherwise, it is called θ-fat. Define the sets

Thinθ := {y ∈ Img(G∗) : y is θ − thin}
Fatθ := {y ∈ Img(G∗) : y is θ − fat}

Note that Thinθ � Fatθ = Img(G∗)

We define an ensemble of distributions {Zn}, where each Zn is the following
distribution over (s, y0, y1, b) ∈ {0, 1}n × {0, 1}n × {0, 1}n × {0, 1}:

Zn = (Un, G0(r), G1(r), U)r←Un
. (17)

Additionally, for every x ∈ {0, 1}n, we define x̃ to be x with its last bit flipped,
namely

x̃ = x ⊕ 0n−11.

We begin by expanding Pr[D(G(Un)) = 1].

Pr[D(G(Un)) = 1]
= Pr

(s,y0,y1,b)←Zn

[fs(x) = yb ∧ fs(x̃) = y1−b | x ← A(s, yb)]

≥ Pr
(s,y0,y1,b)←Zn

[yb ∈ Thinθ] (18)

· Pr
(s,y0,y1,b)←Zn

[
fs(x) = yb

∣
∣
∣
∣

x ← A(s, yb)
yb ∈ Thinθ

]
(19)

· Pr
(s,y0,y1,b)←Zn

[
fs(x̃) = y1−b

∣
∣
∣
∣

x ← A(s, yb)
yb ∈ Thinθ ∧ fs(x) = yb

]
(20)

To show that Pr[D(G(Un)) = 1] is non-negligible, it’s enough to show that (18),
(19), and (20) are each non-negligible.

The first term can be lower-bounded by

Pr
(s,y0,y1,b)←Zn

[y ∈ Thinθ] ≥ 1
2α(n)

− 1
θ

(21)

96 A. Cohen and S. Klein

To see why, first recall that by hypothesis AdvA(Un × Un) ≥ 1
α(n) . If

y �∈ Img(fs), then of course A(s, y) cannot output a preimage of y. Therefore
2n/α(n) ≤ |Img(fs)| ≤ |Img(G∗)|. On the other hand, because each θ-fat y must
have at least θ preimages, and the domain of G∗ is of size 2n+1, there cannot be
too many θ-fat y’s:

|Fatθ| ≤ 2n+1

θ
(22)

Recalling that Img(G∗) = Thinθ � Fatθ:

Pr
y←GU (Un)

[y ∈ Thin] =
|{(b, x) : Gb(x) ∈ Thinθ}|

2n+1

≥ |Thinθ|
2n+1

=
1

2α(n)
− 1

θ

The second term can be lower-bounded by:

Pr
(s,y0,y1,b)←Zn

[
fs(x) = yb

∣
∣
∣
∣

x ← A(s, yb)
yb ∈ Thinθ

]
≥

(
1

4α(n)

)3

(23)

We now provide some intuition for the proof of the above, which is included in
the appendix in full. In the course of that argument, we will set θ = 4α(n).

Definition 8 (q-good). For any q ∈ [0, 1], an element y ∈ {0, 1}n is called
q-good with respect to θ if it is both θ-thin and A finds some preimage of y for
a uniformly random secret key s with probability at least q. Namely,

Goodq :=
{
y ∈ Thinθ : Pr

s←Un

[A(s, y) ∈ f−1
s (y)] > q

}

The marginal distribution of yb where (s, y0, y1, b) ← Zn is GU (Un). To make
the notation more explicit, we use the latter notation for the intuition below. In
this notation, (23) can be written

Pr
s←Un

y←GU (Un)

[
A(s, y) ∈ f−1

s (y)
∣
∣ y ∈ Thinθ

]
≥

(
1

4α(n)

)3

The proof of the above inequality boils down to two parts. First, we show that,
by the definition of θ-thin:

Pr
s←Un
y←Un

[y ∈ Goodq | y ∈ Thinθ] ≥ θ · Pr
s←Un

y←GU (Un)

[y ∈ Goodq | y ∈ Thinθ]

Second, we must lower-bound the latter quantity. At a high level, this second step
follows from the fact that most of the y ∈ {0, 1}n are θ-thin. By assumption,
A inverts with decent probability when y ← Un, and therefore must invert
with some not-too-much-smaller probability when conditioning on the event y ∈
Thinθ.

The GGM Function Family Is a Weakly One-Way Family of Functions 97

The third term can be lower-bounded by:

Pr
(s,y0,y1,b)←Zn

[
fs(x̃) = y1−b

∣
∣
∣
∣

x ← A(s, yb)
yb ∈ Thinθ ∧ fs(x) = yb

]
≥ 1

θ
(24)

To see why, suppose that indeed yb ∈ Thinθ and fs(x) = yb. Because yb is θ-thin,
there are at most θ-possible values of y′

1−b := fs(x̃), where x̃ = x ⊕ 0n−11. The
true y1−b is hidden from the adversary’s view, and takes each of the possible
values with probability at least 1/θ. Thus the probability that y1−b = y′

1−b is as
above.
Finally, letting θ = 4α(n) as required to lower-bound the second term and
putting it all together implies that

Pr [D(G(Un)) = 1] >

(
1

2α(n)
− 1

θ

)
·
(

1
4α(n)

)3

· 1
θ

(25)

≥
(

1
4α(n)

)5

(26)

This completes the proof of Lemma 2.

4 The Combinatorial Lemma

In the proof of the Input Switching Proposition (Proposition 1), we defined the
following distributions over (s, y) ∈ {0, 1}n × {0, 1}n, for k ∈ [0, n − 1]. If k = 0,
we define fr(Uk) = r.

Dowf = (s, fs(Un))s←Un

Dk
0 =

(
G0(ŝ), fG0(ŝ)(Un)

)
r←Un; ŝ←fr(Uk)

Dk
1 =

(
G0(ŝ), fG1(ŝ)(Un)

)
r←Un; ŝ←fr(Uk)

Dmix = (s, fs′(Un))s,s′←Un×Un

Drand = (Un, Un)

We define two additional distributions:

D̂k
0 =

(
ŝ, fG0(ŝ)(Un)

)
r←Un; ŝ←fr(Uk)

D̂k
1 =

(
ŝ, fG1(ŝ)(Un)

)
r←Un; ŝ←fr(Uk)

We restate the lemma stated and used in the proof Input Switching Proposition.

Lemma1 (Combinatorial Lemma). Let Dowf , Dk
0 , Dk

1 , Dmix and Drand be
defined as above. For every constant ε′ > 0 and every n ∈ N,

– either there exists k∗ ∈ [0, n − 1] such that

SD
(
Dk∗

0 ,Dk∗
0

)
≤ 1 − 1

n2+ε′ (L.1)

98 A. Cohen and S. Klein

– or
SD (Dowf ,Drand) <

2
nε′/2 (L.2)

We will prove something slightly stronger, namely that either (L.1∗) or (L.2)
holds, where (L.1∗) is:

SD
(
D̂k∗

0 , D̂k∗
1

)
≤ 1 − 1

n2+ε′ (L.1∗)

To see why (L.1∗) implies (L.1), observe that for every k, given a sample
from D̂k

0 (resp. D̂k
1) it is easy to generate a sample from Dk

0 (resp. Dk
1). Thus

an (unbounded) distinguisher for the former pair of distributions implies an
(unbounded) distinguisher with at least the same advantage for the latter pair.7

Remark 3. By (8) and (9), SD(Dowf ,Drand) = 1 − Es←Un
[Img(fs)/2n]. Using

(L.1∗) and this interpretation of (L.2), the lemma informally states that either:

– There is a level k∗ such that for a random node ŝ on the k∗th level, the
subtrees induced by the left child G0(ŝ) and the right child G1(ŝ) are not too
dissimilar.

– The image of fs is in expectation, a very large subset of the co-domain.

Finally, it is worth noting that the proof of this lemma is purely combinatorial
and nowhere makes use of computational assumptions. As such, it holds for and
GGM-like ensemble instantiated with arbitrary length-doubling function G.

Proof (Combinatorial Lemma). Fix n ∈ N and a secret key s ∈ {0, 1}n. Recall
that for a multi-set M , M(x) is the multiplicity of the element x in M .

For every k ∈ [0, n − 1] and v ∈ {0, 1}k (letting {0, 1}0 = {ε}, where ε is
the empty string), we define two multi-sets over {0, 1}n (‘L’ for ‘leaves’) which
together contain all the leaves contained in the subtree with prefix v of the GGM
tree rooted at s.

Ls
v,0 = {fs(x) : x = v‖0‖t}t∈{0,1}n−k−1

Ls
v,1 = {fs(x) : x = v‖1‖t}t∈{0,1}n−k−1

(27)

Define Is
v := Ls

v,0 ∩ Ls
v,1 to be their intersection.

For each v ∈ {0, 1}k, we define a set Bs
v of “bad” inputs x to the function fs.

For each y ∈ Is
v , there are at least Is

v(y)-many distinct x0 (respectively, x1) such
that fs(x0) = y and x0 = v‖0‖t begins with the prefix v‖0 (respectively, v‖1).
Assign arbitrarily Is

v(y)-many such x0 and x1 to the set Bs
v. By construction,

|Bs
v| = 2|Is

v | (28)

Let Bs =
⋃n−1

k=0

⋃
v∈{0,1}k Bs

v, and let Qs := {0, 1}n\Bs be the set of “good”
inputs.

7 This essentially a data-processing inequality.

The GGM Function Family Is a Weakly One-Way Family of Functions 99

Observe that fs is injective on Qs. To see why, consider some x ∈ Qs, and let
x′ �= x be such that fs(x) = fs(x′) = y if one exists. Suppose that the length of
their longest common prefix v is maximal among all such x′. By the maximality
of the prefix v, x must be in Bs

v. Therefore,

|Img(fs)| ≥ |Qs| (29)

To reduce clutter we define the following additional notation: for every secret
key r ∈ {0, 1}n and level � ∈ [n] we define

Δmix(r; �) = SD(fG0(r)(U�); fG1(r)(U�))

Informally, Δmix(r; �) is the difference between the left and right subtrees rooted
at r of depth �. For all � < n and r ∈ {0, 1}n:

Δmix(r; �) ≥ Δmix(r;n) (30)

This can be seen by expanding the definitions, or by considering the nature of the
distributions as follows. The GGM construction implies that if two internal nodes
have the same label, then their subtrees exactly coincide. Thus, the fraction of
nodes at level n that coincide on trees rooted at G0(r) and G1(r) is at least the
fraction of nodes at level � that coincide.

For every secret key s ∈ {0, 1}n, k ∈ [0, n − 1], and v ∈ {0, 1}k, it holds that:

Δmix(fs(v);n − k − 1) = 1 − |Is
v |

2n−k−1
(31)

Rearranging (31) and using (30) with � = n − k, we have that

|Is
v |

2n−k−1
≤ 1 − Δmix(fs(v);n) (32)

Claim. For ε > 0, n ∈ N, if SD(D̂k∗
0 , D̂k∗

1) ≤ 1 − 1
n2+ε′ (i.e., if (L.1∗) is false),

then

1 − E
s←Un

[
|Qs|
2n

]
= E

s←Un

[
|Bs|
2n

]
<

2
nε/2

(33)

See proof below. This claim implies (L.2) as follows, completing the proof:

SD
(
Dowf ,Drand

)
= 1 − E

s←Un

[
|Img(fs)|

2n

]
≤ 1 − E

s←Un

[
|Qs|
2n

]
< 1 − 2

nε/2
(34)

100 A. Cohen and S. Klein

Proof (of Claim). We can now bound the expected size of |Bs| as follows.

E
s←Un

[
|Bs|
2n

]
(35)

= Pr
s←Un
x←Un

[x ∈ Bs]

≤
n−1∑

k=0

∑

v∈{0,1}k

Pr
s,x

[x ∈ Bs
v] by the definition of Bs

=
n−1∑

k=0

Pr
s,x

[
x ∈ Bs

x[1:k]

]

≤
n−1∑

k=0

T · Pr
s,x

(
|Bs

x[1:k]|
2n−k

≤ T

)

+ Pr
s,x

(
|Bs

x[1:k]|
2n−k

> T

)

for any 0 ≤ T ≤ 1

≤
n−1∑

k=0

T + Pr
s,x

(
|Is

x[1:k]|
2n−k−1

> T

)

by (28)

Fix constant ε > 0. Suppose (L.1∗) is false; namely, for all k ∈ [0, n − 1],

SD
(
D̂k∗

0 , D̂k∗
1

)
= E

r←Un

ŝ←fr(Uk)

[
Δmix(ŝ;n)

]
> 1 − 1

n2+ε
(36)

By Markov’s Inequality, for any τ > 0:

Pr
r←Un

ŝ←fr(Uk)

[
1 − Δmix(ŝ;n) >

τ

n2+ε

]
<

1
τ

(37)

Observe that the distributions
(
fs(x[1 : k])

)
s←Un
x←Un

and
(
ŝ
)

r←Un

ŝ←fr(Uk)
are identical.

Therefore, by inequality (32) and the above Markov bound:

Pr
s←Un
x←Un

(
|Is

x[1:k]|
2n−k−1

> T

)

≤ Pr
s←Un
x←Un

(
1 − Δmix(fs(x[1 : k]);n) > T

)
≤ 1

Tn2+ε
(38)

Continuing the series of inequalities from (35):

≤
n−1∑

k=0

(
T +

1
Tn2+ε

)
by (32)

≤ n
τ

n2+ε
+ n

1
τ

for T =
τ

n2+ε
,by (37)

=
2

nε/2
for τ = n1+ε/2

This completes the proof of the claim.

The GGM Function Family Is a Weakly One-Way Family of Functions 101

5 When Is GGM Strongly One-Way?

Theorem 2 shows that under some natural – albeit strong – conditions, the
GGM function ensemble is strongly one-way. Whether pseudorandom generators
G exist that induce these conditions in the GGM ensemble is, as yet, unknown.
Theorem 2. Let FG be the GGM ensemble with pseudorandom generator G.
FG is a strongly one-way collection of functions if either of the following hold:

(a) There exists a negligible function negl(·) such that for all sufficiently large n

E
s←Un

[
|Img(fs)|

2n

]
≥ 1 − negl(n) (39)

(b) There exists a polynomial β(·) such that for all sufficiently large n and for
all s, y ∈ {0, 1}n

∣
∣f−1

s (y)
∣
∣ ≤ β(n) (40)

Remark 4. These two conditions have some overlap, but neither is contained in
the other. Additionally, a weaker – but somewhat more abstruse – condition

than (b) also suffices: namely, that
∑

s,y

(|f−1
s (y)|
2n

)2

is bounded above by some
polynomial. This quantity is related to the collision entropy of the distribution
(s, fs(Un))s←Un

.

Proof (Theorem 2). Suppose FG satisfies one of the conditions of Theorem
2. Further suppose towards contradiction that there exists a probabilistic
polynomial-time A and a polynomial w(·), such that for infinitely-many n ∈ N

AdvA
(
(s, fs(Un))s←Un

)
≥ 1

w(n)
(41)

By the Distinguishing Lemma, to derive a contradiction it suffices to prove for
some polynomial α(·) related to w

AdvA(Un × Un) >
1

α(n)
(42)

Case (a): Applying Eqs. (8) and (9) to the assumption on Es←Un

[Img(fs)
2n

]
yields

SD
(
(s, fs(Un))Un

, (Un, Un)
)

≤ negl(n) (43)

It follows immediately that (42) holds for 1/α(n) = 1/w(n) − 1/poly(n), for any
polynomial poly (e.g. for 1/α(n) = 1/2w(n)).
Case (b): For this case, we use the facts about Rényi divergence from the
Preliminaries and follow that notation closely. Let P = Dowf = (s, fs(Un))s←Un

and Q = Drand = U2n be probability distributions over {0, 1}2n.

Claim. R (P‖Q) ≤ β(n)2.

102 A. Cohen and S. Klein

Proof (of Claim).

R (P‖Q) =
∑

(s,y)∈{0,1}2n

P (s, y)2

Q(s, y)

= 22n
∑

s,y

P (s, y)2

= 22n
∑

s,y

(
1
2n

· Pr
P

[y|s]
)2

=
∑

s,y

Pr
P

[y|s]2

=
∑

s,y

(
|f−1

s (y)|
2n

)2

≤ β(n)2

Let the event

E =
{

(s, y) ∈ {0, 1}n × {0, 1}n : Pr
A

[A(s, y) ∈ f−1
s (y)] >

1
2w(n)

}

be the set of pairs (s, y) on which A successfully inverts with probability at least
1/2w(n). By an averaging argument:

1
w(n)

< AdvA(P) = Pr
(s,y)←P

[A(s, y) ∈ f−1
s (y)]

= Pr
P

[A(s, y) ∈ f−1
s (y) ∧ E]

+ Pr
P

[A(s, y) ∈ f−1
s (y) ∧ ¬E]

≤ Pr
P

[E] + Pr[A(s, y) ∈ f−1
s (y) | ¬E]

≤ P (E) +
1

2w(n)

Using (11) from the Preliminaries (i.e., Q(E) ≥ P (E)2

R(P‖Q)), we get that

P (E) >
1

2w(n)
=⇒ Q(E) >

1
4w(n)2B(n)2

(44)

From the definition of event E, it follows that the condition in (42) holds, com-
pleting the proof:

AdvA(Q) = Pr
(s,y)←U2n

[A(s, y) ∈ f−1
s (y)] >

Q(E)
2w(n)

>
1

8w(n)3B(n)2
(45)

The GGM Function Family Is a Weakly One-Way Family of Functions 103

6 Conclusion

In this work, we demonstrated that the length-preserving Goldreich-Goldwasser-
Micali function family is weakly one-way. This is the first demonstration that
the family maintains some cryptographic hardness even when the secret key is
exposed.

Open Questions. Two interesting open questions suggest themselves.

1. Is GGM strongly one-way for all pseudorandom generators, or does there
exist a generator for which the induced GGM ensemble can be inverted some
non-negligible fraction of the time? A positive answer to this question would
be very interesting and improve upon this work; a negative answer would be
a spiritual successor to [Gol02].

2. In the absence of a positive answer to the above, do there exist pseudorandom
generators for which the induced GGM ensemble is strongly one-way? In
particular, do there exist generators that satisfy the requirements of Theorem
2?

Acknowledgments. We would like to thank Shafi Goldwasser, Ran Canetti, and Alon
Rosen for their encouragement throughout this project. We would additionally like to
thank Justin Holmgren for discussions about the proof of Lemma 1, and Krzysztof
Pietrzak, Nir Bitansky, Vinod Vaikuntanathan, Adam Sealfon, and anonymous review-
ers for their helpful feedback.

This work was done in part while the authors were visiting the Simons Insti-
tute for the Theory of Computing, supported by the Simons Foundation and by the
DIMACS/Simons Collaboration in Cryptography through NSF grant CNS-1523467.
Aloni Cohen was supported in part by the NSF GRFP, along with NSF MACS -
CNS-1413920, DARPA IBM - W911NF-15-C-0236, and Simons Investigator Award
Agreement Dated 6-5-12. Saleet Klein was supported in part by ISF grant 1536/14,
along with ISF grant 1523/14, and the Check Point Institute for Information Security.
Both authors were supported by the MIT-Israel Seed Fund.

A Appendix

Proof of (8):

SD ((p,D(p))P , (p,D′(p))P)

=
1
2

∑

(p,x)∈Supp(P)×X

∣
∣
∣
∣ Pr
(p,D(p))P

(p, x) − Pr
(p,D′(p))P

(p, x)
∣
∣
∣
∣

=
∑

p∈Supp(P)

Pr
P

(p) · 1
2

∑

x∈X

∣
∣
∣
∣ Pr
D(p)

(x) − Pr
D′(p)

(x)
∣
∣
∣
∣

=
∑

p∈Supp(P)

Pr
P

(p) · SD (D (p) ,D′ (p))

= E
p←P

[SD (D (p) ,D′ (p))]

104 A. Cohen and S. Klein

Proof of (9):

SD(f(Un), Un) =
1
2

∑

α∈{0,1}n

∣
∣
∣
∣Pr[f(Un) = α] − Pr[Un = α]

∣
∣
∣
∣

=
1
2

∑

α

∣
∣
∣
∣
|f−1(α)|

2n
− 1

2n

∣
∣
∣
∣

=
1
2

(∑

α∈Img(f)

∣
∣
∣
∣
|f−1(α)|

2n
− 1

2n

∣
∣
∣
∣ +

∑

α/∈Img(f)

1
2n

)

=
1
2

(
1 − |Img(f)|

2n
+ 1 − |Img(f)|

2n

)

= 1 − |Img(f)|
2n

Proof of Inequality (23): Recall the following definition.
Definition8 (q-good). For any q ∈ [0, 1], an element y ∈ {0, 1}n is called
q-good with respect to θ if it is both θ-thin and A finds some preimage of y for
a uniformly random secret key s with probability at least q. Namely,

Goodq :=
{
y ∈ Thinθ : Pr

s←Un

[A(s, y) ∈ f−1
s (y)] > q

}

We begin with two observations:

– The distribution over yb is equivalent to the distribution (Gb(x))(b,x)←U×Un
.

The number of pairs (b, x) such that Gb(x) ∈ Goodq is at least |Goodq|, while
the number of pairs (b, x) such that Gb(x) ∈ Thinθ is at most θ|Thinθ|. There-
fore:

Pr
s←Un

y←GU (Un)

[y ∈ Goodq | y ∈ Thinθ]

= Pr
(b,x)←U×Un

[Gb(x) ∈ Goodq | Gb(x) ∈ Thinθ]

≥ 1
θ

· |Goodq|
|Thinθ|

=
1
θ

· Pr
s,y←Un

[y ∈ Goodq|y ∈ Thinθ]

– By definition of Goodq:

Pr
s←Un

y←GU (Un)

[
A(s, y) ∈ f−1

s (y)
∣
∣ y ∈ Goodq

]
> q (46)

The GGM Function Family Is a Weakly One-Way Family of Functions 105

Combining the above

Pr
s←Un

y←GU (Un)

[
A(s, y) ∈ f−1

s (y)
∣
∣ y ∈ Thinθ

]

≥ Pr
s←Un

y←GU (Un)

[y ∈ Goodq | y ∈ Thinθ] · Pr
s←Un

y←GU (Un)

[
A(s, y) ∈ f−1

s (y)
∣
∣ y ∈ Goodq

]

≥ q

θ
· Pr

s,y←Un

[y ∈ Goodq|y ∈ Thinθ] (47)

If we show that

Pr
s,y←Un

[y ∈ Goodq|y ∈ Thinθ] ≥ 1
α(n)

− 2
θ

− q (48)

then selecting θ = 4α(n) and q = 1/4α(n), the value of (47) is bounded below
by

Pr
s←Un

y←GU (Un)

[
A(s, y) ∈ f−1

s (y)
∣
∣ y ∈ Thinθ

]
≥ q

θ
· Pr

s,y←Un

[y ∈ Goodq|y ∈ Thinθ]

≥
(

1
4α(n)

)3

The following proves inequality (48) and completes the proof of (23).

1
α(n)

< Pr
s←Un
y←Un

[A(s, y) ∈ f−1
s (y)] by (14)

= Pr
s←Un
y←Un

[A(s, y) ∈ f−1
s (y) ∧ y ∈ Thinθ]

+ Pr
s←Un
y←Un

[A(s, y) ∈ f−1
s (y) ∧ y �∈ Thinθ]

≤ Pr
s←Un
y←Un

[A(s, y) ∈ f−1
s (y) | y ∈ Thinθ] + Pr

y←Un

[y �∈ Thinθ]

≤ Pr
s←Un
y←Un

[A(s, y) ∈ f−1
s (y) | y ∈ Thinθ] +

2n+1/θ

2n
by (22)

106 A. Cohen and S. Klein

=⇒ 1
α(n)

− 2
θ

< Pr
s←Un
y←Un

[A(s, y) ∈ f−1
s (y) | y ∈ Thinθ]

= Pr
s←Un
y←Un

[y ∈ Goodq | y ∈ Thinθ]

· Pr
s←Un
y←Un

[A(s, y) ∈ f−1
s (y) | y ∈ Goodq]

+ Pr
s←Un
y←Un

[y �∈ Goodq | y ∈ Thinθ]

· Pr
s←Un
y←Un

[A(s, y) ∈ f−1
s (y) | y ∈ Thinθ\Goodq]

≤ Pr
s←Un
y←Un

[y ∈ Goodq | y ∈ Thinθ] + q

The final inequality is by the definition of Thinθ\Goodq.

References

[BGI14] Boyle, E., Goldwasser, S., Ivan, I.: Functional signatures and pseudorandom
functions. In: Krawczyk, H. (ed.) PKC 2014. LNCS, vol. 8383, pp. 501–519.
Springer, Heidelberg (2014). doi:10.1007/978-3-642-54631-0 29

[BGI15] Boyle, E., Gilboa, N., Ishai, Y.: Function secret sharing. In: Oswald, E.,
Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9057, pp. 337–367.
Springer, Heidelberg (2015). doi:10.1007/978-3-662-46803-6 12

[BLL+15] Bai, S., Langlois, A., Lepoint, T., Stehlé, D., Steinfeld, R.: Improved secu-
rity proofs in lattice-based cryptography: using the Rényi divergence rather
than the statistical distance. In: Iwata, T., Cheon, J.H. (eds.) ASIACRYPT
2015. LNCS, vol. 9452, pp. 3–24. Springer, Heidelberg (2015). doi:10.1007/
978-3-662-48797-6 1

[BW13] Boneh, D., Waters, B.: Constrained pseudorandom functions and
their applications. In: Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013.
LNCS, vol. 8270, pp. 280–300. Springer, Heidelberg (2013). doi:10.1007/
978-3-642-42045-0 15

[CGH04] Canetti, R., Goldreich, O., Halevi, S.: The random oracle methodology,
revisited. J. ACM (JACM) 51(4), 557–594 (2004)

[FN94] Fiat, A., Naor, M.: Broadcast encryption. In: Stinson, D.R. (ed.) CRYPTO
1993. LNCS, vol. 773, pp. 480–491. Springer, Heidelberg (1994). doi:10.
1007/3-540-48329-2 40

[GGM86] Goldreich, O., Goldwasser, S., Micali, S.: How to construct random func-
tions. J. ACM (JACM) 33(4), 792–807 (1986)

[Gol02] Goldreich, O.: The GGM construction does not yield correlation intractable
function ensembles (2002)

[Gol04] Goldreich, O.: Foundations of Cryptography: Basic Applications, vol. 2.
Cambridge University Press, Cambridge (2004)

[KPTZ13] Kiayias, A., Papadopoulos, S., Triandopoulos, N., Zacharias, T.: Delegat-
able pseudorandom functions and applications. In: 2013 ACM SIGSAC
Conference on Computer and Communications Security, CCS 2013, Berlin,
Germany, 4–8 November 2013, pp. 669–684 (2013)

http://dx.doi.org/10.1007/978-3-642-54631-0_29
http://dx.doi.org/10.1007/978-3-662-46803-6_12
http://dx.doi.org/10.1007/978-3-662-48797-6_1
http://dx.doi.org/10.1007/978-3-662-48797-6_1
http://dx.doi.org/10.1007/978-3-642-42045-0_15
http://dx.doi.org/10.1007/978-3-642-42045-0_15
http://dx.doi.org/10.1007/3-540-48329-2_40
http://dx.doi.org/10.1007/3-540-48329-2_40

The GGM Function Family Is a Weakly One-Way Family of Functions 107

[LR88] Luby, M., Rackoff, C.: How to construct pseudorandom permutations from
pseudorandom functions. SIAM J. Comput. 17(2), 373–386 (1988)

[RR97] Razborov, A.A., Rudich, S.: Natural proofs. J. Comput. Syst. Sci. 55(1),
24–35 (1997)

[SW14] Sahai, A., Waters, B.: How to use indistinguishability obfuscation, deniable
encryption, and more. In: Symposium on Theory of Computing, STOC
2014, 31 May–3 June 2014, pp. 475–484. ACM, New York (2014)

[Val84] Valiant, L.G.: A theory of the learnable. Commun. ACM 27(11), 1134–1142
(1984)

[Zha12] Zhandry, M.: How to construct quantum random functions. In: 2012 IEEE
53rd Annual Symposium on Foundations of Computer Science (FOCS), pp.
679–687. IEEE (2012)

On the (In)Security of SNARKs
in the Presence of Oracles

Dario Fiore1(B) and Anca Nitulescu2

1 IMDEA Software Institute, Madrid, Spain
dario.fiore@imdea.org

2 CNRS, ENS, INRIA, PSL, Paris, France
anca.nitulescu@ens.fr

Abstract. In this work we study the feasibility of knowledge extraction
for succinct non-interactive arguments of knowledge (SNARKs) in a sce-
nario that, to the best of our knowledge, has not been analyzed before.
While prior work focuses on the case of adversarial provers that may
receive (statically generated) auxiliary information, here we consider the
scenario where adversarial provers are given access to an oracle. For this
setting we study if and under what assumptions such provers can admit
an extractor. Our contribution is mainly threefold.

First, we formalize the question of extraction in the presence of ora-
cles by proposing a suitable proof of knowledge definition for this setting.
We call SNARKs satisfying this definition O-SNARKs. Second, we show
how to use O-SNARKs to obtain formal and intuitive security proofs
for three applications (homomorphic signatures, succinct functional sig-
natures, and SNARKs on authenticated data) where we recognize an
issue while doing the proof under the standard proof of knowledge defin-
ition of SNARKs. Third, we study whether O-SNARKs exist, providing
both negative and positive results. On the negative side, we show that,
assuming one way functions, there do not exist O-SNARKs in the stan-
dard model for every signing oracle family (and thus for general oracle
families as well). On the positive side, we show that when considering
signature schemes with appropriate restrictions on the message length
O-SNARKs for the corresponding signing oracles exist, based on classical
SNARKs and assuming extraction with respect to specific distributions
of auxiliary input.

1 Introduction

Succinct Arguments. Proof systems [GMR89] are fundamental in theoretical
computer science and cryptography. Extensively studied aspects of proof sys-
tems are the expressivity of provable statements and the efficiency. Related to
efficiency, it has been shown that statistically-sound proof systems are unlikely
to allow for significant improvements in communication [BHZ87,GH98,GVW02,
Wee05]. When considering proof systems for NP this means that, unless some
complexity-theoretic collapses occur, in a statistically sound proof system any
prover has to communicate, roughly, as much information as the size of the
c© International Association for Cryptologic Research 2016
M. Hirt and A. Smith (Eds.): TCC 2016-B, Part I, LNCS 9985, pp. 108–138, 2016.
DOI: 10.1007/978-3-662-53641-4 5

On the (In)Security of SNARKs in the Presence of Oracles 109

NP witness. The search of ways to beat this bound motivated the study of
computationally-sound proof systems, also called argument systems [BCC88].
Assuming existence of collision-resistant hash functions, Kilian [Kil92] showed
a four-message interactive argument for NP. In this protocol, membership of an
instance x in an NP language with NP machine M can be proven with commu-
nication and verifier’s running time bounded by p(λ, |M |, |x|, log t), where λ is a
security parameter, t is the NP verification time of machine M for the instance
x, and p is a universal polynomial. Argument systems of this kind are called
succinct.

Succinct Non-interactive Arguments. Starting from Kilian’s protocol,
Micali [Mic94] constructed a one-message succinct argument for NP whose
soundness is set in the random oracle model. The fact that one-message
succinct arguments are unlikely to exist for hard-enough languages in the
plain model motivated the consideration of two-message non-interactive argu-
ments, in which the verifier generates its message (a common reference
string, if this can be made publicly available) ahead of time and inde-
pendently of the statement to be proved. Such systems are called succinct
non-interactive arguments (SNARGs) [GW11]. Several SNARGs constructions
have been proposed [CL08,Mie08,Gro10,BCCT12,Lip12,BCC+14,GGPR13,
BCI+13,PHGR13,BSCG+13,BCTV14] and the area of SNARGs has become
popular in the last years with the proposal of constructions which gained signif-
icant improvements in efficiency. Noteworthy is that all such constructions are
based on non-falsifiable assumptions [Nao03], a class of assumptions that is likely
to be inherent in proving the security of SNARGs (without random oracles), as
shown by Gentry and Wichs [GW11].

Almost all SNARGs are also arguments of knowledge—so called SNARKs
[BCCT12,BCC+14]. Intuitively speaking, this property (which replaces sound-
ness) says that every prover producing a convincing proof must “know” a witness.
On the one hand, proof of knowledge turns out to be useful in many applications,
such as delegation of computation where the untrusted worker contributes its
own input to the computation, or recursive proof composition [Val08,BCCT13].
On the other hand, the formalization of proof of knowledge in SNARKs is a
delicate point. Typically, the concept that the prover “must know” a witness is
expressed by assuming that such knowledge can be efficiently extracted from the
prover by means of a so-called knowledge extractor. In SNARKs, extractors are
inherently non-black-box and proof of knowledge requires that for every adver-
sarial prover A generating an accepting proof π there must be an extractor EA
that, given the same input of A, outputs a valid witness.

Extraction with Auxiliary Input. Unfortunately, stated as above, proof of
knowledge is insufficient for being used in many applications. The problem is
that, when using SNARKs in larger cryptographic protocols, adversarial provers
may get additional information which can contribute to the generation of adver-
sarial proofs. To address this problem, a stronger, and more useful, definition
of proof of knowledge requires that for any adversary A there is an extractor
EA such that, for any honestly generated crs and any polynomial-size auxiliary

110 D. Fiore and A. Nitulescu

input aux , whenever A(crs, aux) returns an accepting proof, EA(crs, aux) outputs
a valid witness. This type of definition is certainly more adequate when using
SNARKs in larger cryptographic protocols, but it also introduces other sub-
tleties. As first discussed in [HT98], extraction in the presence of arbitrary aux-
iliary input can be problematic, if not implausible. Formal evidence of this issue
has been recently given in [BCPR14,BP15]. Bitansky et al. [BCPR14] show that,
assuming indistinguishability obfuscation, there do not exist extractable one-
way functions (and thus SNARKs) with respect to arbitrary auxiliary input of
unbounded polynomial length. Boyle and Pass [BP15] generalize this result show-
ing that assuming collision-resistant hash functions and differing-input obfusca-
tion, there is a fixed auxiliary input distribution for which extractable one-way
functions do not exist.

1.1 Extraction in the Presence of Oracles

In this work we continue the study on the feasibility of extraction by looking at
a scenario that, to the best of our knowledge, has not been explicitly analyzed
before. We consider the case in which adversarial provers run in interactive
security experiments where they are given access to an oracle. For this setting
we study if and under what assumptions such provers can admit an extractor.

Before giving more detail on our results, let us discuss a motivation for ana-
lyzing this scenario. To keep the presentation simple, here we give a motivation
via a hypotetical example; more concrete applications are discussed later.

A case study application. Consider an application where Alice gets a col-
lection of signatures generated by Bob, and she has to prove to a third party
that she owns a valid signature of Bob on some message m such that P (m) = 1.
Let us say that this application is secure if Alice, after asking for signatures on
several messages, cannot cheat letting the third party accept for a false state-
ment (i.e., P (m) = 0, or P (m) = 1 but Alice did not receive a signature on
m). If messages are large and one wants to optimize bandwidth, SNARKs can
be a perfect candidate solution for doing such proofs,1 i.e., Alice can generate
a proof of knowledge of (m,σ) such that “(m,σ) verifies with Bob’s public key
and P (m) = 1”.

An attempt of security proof. Intuitively, the security of this proto-
col should follow easily from the proof of knowledge of the SNARK and the
unforgeability of the signature scheme. However, somewhat surprisingly, the
proof becomes quite subtle. Let us consider a cheating Alice that always outputs
a proof for a statement in the language.2 If Alice is still cheating, then it must
be that she is using a signature on a message that she did not query – in other
words a forgery. Then one would like to reduce such a cheating Alice to a forger

1 Further motivation can be to keep the privacy of m by relying on zero-knowledge
SNARKs.

2 The other case of statements not in the language can be easily reduced to the sound-
ness of the SNARK.

On the (In)Security of SNARKs in the Presence of Oracles 111

for the signature scheme. To do this, one would proceed as follows. For any
Alice one defines a forger that, on input the verification key vk, generates the
SNARK crs, gives (crs, vk) to Alice, and simulate’s Alice’s queries using its own
signing oracle. When Alice comes with the cheating proof, the forger would need
an extractor for Alice in order to obtain the forgery from her. However, even if
we see Alice as a SNARK prover with auxiliary input vk, Alice does not quite
fit the proof of knowledge definition in which adversaries have no oracles. To
handle similar cases, one typically shows that for every, interactive, Alice there
is a non-interactive algorithm B that runs Alice simulating her oracles (i.e., B
samples the signing key) and returns the same output. The good news is that
for such B one can claim the existence of an extractor EB as it fits the proof
of knowledge definition. The issue is though that EB expects the same input of
B, which includes the secret signing key. This means that our candidate forger
mentioned above (which does not have the secret key) cannot run EB.

Applications that need extraction with oracles. Besides the above
example, this issue can show up essentially in every application of SNARKs in
which adversaries have access to oracles with a secret state, and one needs to
run an extractor during an experiment (e.g., a reduction) where the secret state
of the oracle is not available. For instance, we recognize this issue while try-
ing to formally prove the security of a “folklore” construction of homomorphic
signatures based on SNARKs and digital signatures that is mentioned in sev-
eral papers (e.g., [BF11,GW13,CF13,GVW15]). The same issue appears in a
generic construction of SNARKs on authenticated data in [BBFR15] (also infor-
mally discussed in [BCCT12]), where the security proof uses the existence of an
extractor for the oracle-aided prover, but without giving particular justification.
A similar issue also appears in the construction of succinct functional signatures
of [BGI14]. To be precise, in [BGI14] the authors provide a (valid) proof but
under a stronger definition of SNARKs in which the adversarial prover and the
extractor are independent PPT machines without common auxiliary input: a
notion for which we are not aware of standard model constructions. In contrast,
if one attempts to prove the succinct functional signatures of [BGI14] using the
standard definition of SNARKs, one incurs the same issues illustrated above,
i.e., the proof would not go through.

In this work we address this problem by providing both negative and positive
results to the feasibility of extraction in the presence of oracles. On one hand,
our negative results provide an explanation of why the above proofs do not go
through so easily. On the other hand, our positive results eventually provide
some guidelines to formally state and prove the security of the cryptographic
constructions mentioned above (albeit with various restrictions).

1.2 An Overview of Our Results

Defining SNARKs in the Presence of Oracles. As a first step, we formalize
the definition of non-black-box extraction in the presence of oracles by proposing
a notion of SNARKs in the presence of oracles (O-SNARKs, for short). In a

112 D. Fiore and A. Nitulescu

nutshell, an O-SNARK is like a SNARK except that adaptive proof of knowledge
must hold with respect to adversaries that have access to an oracle O sampled
from some oracle family O.3 Slightly more in detail, we require that for any
adversary AO with access to O there is an extractor EA such that, whenever AO

outputs a valid proof, EA outputs a valid witness, by running on the same input
of A, plus the transcript of oracle queries-answers of A.

Existence of O-SNARKs. Once having defined their notion, we study whether
O-SNARKs exist and under what assumptions. Below we summarize our results.

O-SNARKs in the random oracle model. As a first positive result, we
show that the construction of Computationally Sounds (CS) proofs of Micali
[Mic00] yields an O-SNARK for every oracle family, in the random oracle model.
This result follows from the work of Valiant [Val08] which shows that Micali’s
construction already allows for extraction. More precisely, using the power of
the random oracle model, Valiant shows a black-box extractor. This powerful
extractor can then be used to build an O-SNARK extractor that works for any
oracle family.

Insecurity of O-SNARKs for every oracle family. Although the above
result gives a candidate O-SNARK, it only works in the random oracle model,
and it is tailored to one construction [Mic00]. It is therefore interesting to under-
stand whether extraction with oracles is feasible in the standard model. And it
would also be interesting to see if this is possible based on the classical SNARK
notion. Besides its theoretical interest, the latter question has also a practical
motivation since there are several efficient SNARK constructions proposed in
the last years that one might like to use in place of CS proofs. Our first result in
this direction is that assuming existence of one way functions (OWFs) there do
not exist O-SNARKs for NP with respect to every oracle family. More precisely,
we show the following:

Theorem 1 (Informal). Assume OWFs exist. Then for any polynomial p(·)
there is an unforgeable signature scheme Σp such that any candidate O-SNARK,
that is correct and succinct with proofs of length bounded by p(·), cannot satisfy
adaptive proof of knowledge with respect to signing oracles corresponding to Σp.

The above result shows the existence of an oracle family for which O-SNARKs
do not exist. A basic intuition behind it is that oracles provide additional aux-
iliary input to adversaries and, as formerly shown in [BCPR14,BP15], this can
create issues for extraction. In fact, to obtain our result we might also have
designed an oracle that simply outputs a binary string following a distribution
with respect to which extraction is impossible due to [BCPR14,BP15]. How-
ever, in this case the result should additionally assume the existence of indistin-
guishability (or differing-input) obfuscation. In contrast, our result shows that
such impossibility holds by only assuming existence of OWFs, which is a much
weaker assumption.

3 The notion is parametrized by the family O, i.e., we say Π is an O-SNARK for O.

On the (In)Security of SNARKs in the Presence of Oracles 113

In addition to ruling out existence of O-SNARKs for general oracles, our
theorem also rules out their existence for a more specific class of oracle families
– signing oracles – that is motivated by the three applications mentioned earlier.4

Its main message is thus that one cannot assume existence of O-SNARKs that
work with any signature scheme. This explains why the security proofs of the
primitives considered earlier do not go through, if one wants to base it on an
arbitrary signature scheme.

Existence of O-SNARKs for specific families of signing oracles. We
study ways to circumvent our impossibility result for signing oracles of The-
orem 1. Indeed, the above result can be interpreted as saying that there exist
(perhaps degenerate) signature schemes such that there are no O-SNARKs with
respect to the corresponding signing oracle family. This is not ruling out that
O-SNARKs may exist for specific signature schemes, or – even better – for spe-
cific classes of signature schemes. We provide the following results:

1. Hash-and-sign signatures, where the hash is a random oracle, yield “safe
oracles”, i.e., oracles for which any SNARK is an O-SNARK for that oracle,
in the ROM.

2. Turning to the standard model setting, we show that any classical SNARK is
an O-SNARK for signing oracles if the message space of the signature scheme
is properly bounded, and O-SNARK adversaries query “almost” the entire
message space. This positive result is useful in applications that use SNARKs
with signing oracles, under the condition that adversaries make signing queries
on almost all messages.

Non-adaptive O-SNARKs. Finally, we consider a relaxed notion of
O-SNARKs in which adversaries are required to declare in advance (i.e., before
seeing the common reference string) all the oracle queries. For this weaker notion
we show that, in the standard model, every SNARK (for arbitrary auxiliary
inputs) is a non-adaptive O-SNARK.

Applications of O-SNARKs. A nice feature of the O-SNARK notion is that
it lends itself to easy and intuitive security proofs in all those applications where
one needs to execute extractors in interactive security games with oracles. We
show that by replacing SNARKs with O-SNARKs (for appropriate oracle fam-
ilies) we can formally prove the security of the constructions of homomorphic
signatures, succinct functional signatures and SNARKs on authenticated data
that we mentioned in the previous section. By combining these O-SNARK-based
constructions with our existence results mentioned earlier we eventually reach
conclusions about the possible secure instantiations of these constructions. The
first option is to instantiate them by using Micali’s CS proofs as an O-SNARK:
this solution essentially yields secure instantiations in the random oracle model

4 We do believe that many more applications along the same line – proving knowledge
of valid signatures – are conceivable. Two recent examples which considered our
work in such a setting are [DLFKP16,NT16].

114 D. Fiore and A. Nitulescu

that work with a specific proof system [Mic00] (perhaps not the most efficient
one in practice). The second option is to instantiate them using hash-and-sign
signatures, apply our result on hash-and-sign signatures mentioned above, and
then conjecture that replacing the random oracle with a suitable hash func-
tion preserves the overall security.5 Third, one can instantiate the construc-
tions using a classical SNARK scheme Π and signature scheme Σ, and then
conjecture that Π is also an O-SNARK with respect to the family of signing
oracles corresponding to Σ. Compared to the first solution, the last two ones
have the advantage that one could use some of the recently proposed efficient
SNARKs (e.g., [PHGR13,BSCG+13]); on the other hand, these solutions have
the drawback that security is based only on a heuristic argument. Finally, as a
fourth option we provide security proofs of these primitives under a weak, non-
adaptive, notion where adversaries declare all their queries in advance. Security
in this weaker model can be proven assuming non-adaptive O-SNARKs, and
thus classical SNARKs. The advantage of this fourth option is that one obtains
a security proof for these instantiations based on clear – not newly crafted –
assumptions, although under a much weaker security notion. Finally, worth not-
ing is that we cannot apply the positive result on O-SNARK for signing oracles to
the O-SNARK-based constructions of homomorphic signatures, functional sig-
natures and SNARKs on authenticated data that we provide, and thus conclude
their security under classical SNARKs. The inapplicability is due to the afore-
mentioned restriction of our result, for which adversaries have to query almost
the entire message space.6

Interpretation of Our Results. In line with recent work [BCPR14,BP15] on
the feasibility of extraction in the presence of auxiliary input, our results indicate
that additional care must be taken when considering extraction in the presence
of oracles. While for auxiliary input impossibility of extraction is known under
obfuscation-related assumptions, in the case of oracles we show that extraction
becomes impossible even by only assuming one-way functions. Our counterex-
amples are of artificial nature and do not rule out the feasibility of extraction in
the presence of “natural, benign” oracles. Nevertheless, our impossibility results
provide formal evidence of why certain security proofs do not go through, and
bring out important subtle aspects of security proofs. Given the importance of
provable security and considered the increasing popularity of SNARKs in more
practical scenarios, we believe these results give a message that is useful to pro-
tocol designers and of interest to the community at large.

5 The need of this final heuristic step is that hash-and-sign signatures use a random
oracle in verification and in our applications the SNARK is used to prove knowledge
of valid signatures, i.e., one would need a SNARK for NPO.

6 The exact reason is rather technical and requires to see the precise definitions and
constructions of these primitives first. For the familiar reader, the intuition is that
in these primitives/constructions an adversary that queries almost the entire mes-
sage space of the underlying signature scheme becomes able to trivially break their
security.

On the (In)Security of SNARKs in the Presence of Oracles 115

1.3 Organization

The paper is organized as follows. In Sect. 2 we recall notation and definitions
used in the rest of our work. Section 3 introduces the notion of O-SNARKs,
Sect. 4 includes positive and negative results about the existence of O-SNARKs,
and in Sect. 5 we give three applications where our new notion turns out to be
useful. For lack of space, additional definitions and detailed proofs are deferred
to the full version [FN16].

2 Preliminaries

Notation. We denote with λ ∈ N the security parameter. We say that a function
ε(λ) is negligible if it vanishes faster than the inverse of any polynomial in λ. If
not explicitly specified otherwise, negligible functions are negligible with respect
to λ. If S is a set, x

$← S denotes the process of selecting x uniformly at random
in S. If A is a probabilistic algorithm, x

$← A(·) denotes the process of running
A on some appropriate input and assigning its output to x. For binary strings
x and y, we denote by x|y their concatenation and by xi the i-th bit of x. For
a positive integer n, we denote by [n] the set {1, . . . , n}. For a random-access
machine M we denote by #M(x,w) the number of execution steps needed by
M to accept on input (x,w).

The Universal Relation and NP Relations. We recall the notion of universal
relation from [BG08], here adapted to the case of non-deterministic computa-
tions.

Definition 1. The universal relation is the set RU of instance-witness pairs
(y, w) = ((M,x, t), w), where |y|, |w| ≤ t and M is a random-access machine
such that M(x,w) accepts after running at most t steps. The universal language
LU is the language corresponding to RU .

For any constant c ∈ N, Rc denotes the subset of RU of pairs (y, w) =
((M,x, t), w) such that t ≤ |x|c. Rc is a “generalized” NP relation that is decid-
able in some fixed time polynomial in the size of the instance.

2.1 Succinct Non-interactive Arguments

In this section we provide formal definitions for the notion of succinct non-
interactive arguments of knowledge (SNARKs).

Definition 2 (SNARGs). A succinct non-interactive argument (SNARG) for
a relation R ⊆ RU is a triple of algorithms Π = (Gen,Prove,Ver) working as
follows

Gen(1λ, T) → crs: On input a security parameter λ ∈ N and a time bound T ∈ N,
the generation algorithm outputs a common reference string crs = (prs, vst)
consisting of a public prover reference string prs and a verification state vst.

116 D. Fiore and A. Nitulescu

Prove(prs, y, w) → π: Given a prover reference string prs, an instance y =
(M,x, t) with t ≤ T and a witness w s.t. (y, w) ∈ R, this algorithm pro-
duces a proof π.

Ver(vst, y, π) → b: On input a verification state vst, an instance y, and a proof
π, the verifier algorithm outputs b = 0 (reject) or b = 1 (accept).

and satisfying completeness, succinctness, and (adaptive) soundness:

– Completeness. For every time bound T ∈ N, every valid (y, w) ∈ R with
y = (M,x, t) and t ≤ T , there exists a negligible function negl such that

Pr
[
Ver(vst, y, π) = 0 (prs, vst)←Gen(1λ, T)

π←Prove(prs, y, w)

]
≤ negl(λ)

– Succinctness. There exists a fixed polynomial p(·) independent of R such that
for every large enough security parameter λ ∈ N, every time bound T ∈ N,
and every instance y = (M,x, t) such that t ≤ T , we have

• Gen runs in time

{
p(λ + log T) for a fully-succinct SNARG
p(λ + T) for a pre-processing SNARG

• Prove runs in time
{

p(λ + |M | + |x| + t + log T) for fully-succinct SNARG
p(λ + |M | + |x| + T) for pre-processing SNARG

• Ver runs in time p(λ + |M | + |x| + log T)
• a honestly generated proof has size |π| = p(λ + log T).

– Adaptive Soundness. For every non-uniform A of size s(λ) = poly(λ) there
is a negligible function ε(λ) such that for every time bound T ∈ N,

Pr
[
Ver(vst, y, π) = 1 (prs, vst)←Gen(1λ, T)

∧ y �∈ LR (y, π)←A(prs)

]
≤ ε(λ)

The notion of SNARG can be extended to be an argument of knowledge (a
SNARK) by replacing soundness by an appropriate proof of knowledge property.

Definition 3 (SNARKs [BCC+14]). A succinct non-interactive argument
of knowledge (SNARK) for a relation R ⊆ RU is a triple of algorithms
Π = (Gen,Prove,Ver) that constitutes a SNARG (as per Definition 2) except
that soundness is replaced by the following property:

– Adaptive Proof of Knowledge. For every non-uniform prover A of size
s(λ) = poly(λ) there exists a non-uniform extractor EA of size t(λ) = poly(λ)
and a negligible function ε(λ) such that for every auxiliary input aux ∈
{0, 1}poly(λ), and every time bound T ∈ N,

Pr

⎡

⎣
Ver(vst, y, π) = 1 (prs, vst)←Gen(1λ, T)

∧ (y, π)←A(prs, aux)
(y, w) �∈ R w←EA(prs, aux)

⎤

⎦ ≤ ε(λ)

Furthermore, we say that Π satisfies (s, t, ε)-adaptive proof of knowledge if the
above condition holds for concrete values (s, t, ε).

On the (In)Security of SNARKs in the Presence of Oracles 117

Remark 1 (Publicly verifiable vs. designated verifier). If security (adaptive PoK)
holds against adversaries that have also access to the verification state vst (i.e., A
receives the whole crs) then the SNARK is called publicly verifiable, otherwise it
is designated verifier. For simplicity, in the remainder of this work all definitions
are given for the publicly verifiable setting; the corresponding designated-verifier
variants are easily obtained by giving to the adversary only the prover state prs.

Remark 2 (About extraction and auxiliary input). First, we stress that in the
PoK property the extractor EA takes exactly the same input of A, including
its random tape. Second, the PoK definition can also be relaxed to hold with
respect to auxiliary inputs from specific distributions (instead of arbitrary ones).
Namely, let Z be a probabilistic algorithm (called the auxiliary input generator)
that outputs a string aux , and let compactly denote this process as aux←Z.
Then we say that adaptive proof of knowledge holds for Z if the above definition
holds for auxiliary inputs sampled according to Z – aux←Z – where Z is also
a non-uniform polynomial-size algorithm. More formally, we have the following
definition.

Definition 4 (Z-auxiliary input SNARKs). Π is called a Z-auxiliary input
SNARK if Π is a SNARK as in Definition 3 except that adaptive proof of knowl-
edge holds for auxiliary input aux←Z.

For ease of exposition, in our proofs we compactly denote by
AdPoK(λ, T,A, EA,Z) the adaptive proof of knowledge experiment executed with
adversary A, extractor EA and auxiliary input generator Z. See below its descrip-
tion:

AdPoK(λ, T,A, EA,Z)
aux←Z(1λ); crs←Gen(1λ, T)
(y, π)←A(crs, aux) w←EA(crs, aux)
if Ver(crs, y, π) = 1 ∧ (y, w) �∈ R return 1
else return 0

We say that Π satisfies adaptive proof of knowledge for Z-auxiliary input if for
every non-uniform A of size s(λ) = poly(λ) there is a non-uniform extractor
of size t(λ) = poly(λ) and a negligible function ε(λ) such that for every time
bound T we have Pr[AdPoK(λ, T,A, EA,Z)⇒1] ≤ ε. Furthermore, Π has (s, t, ε)-
adaptive proof of knowledge for Z-auxiliary input if the above condition holds
for concrete (s, t, ε).

SNARKs for NP. A SNARK for the universal relation RU is called a universal
SNARK. SNARKs for NP are instead SNARKs in which the verification algo-
rithm Ver takes as additional input a constant c > 0, and adaptive proof of
knowledge is restricted to hold only for relations Rc ⊂ RU . More formally,

Definition 5 (SNARKs for NP). A SNARK for NP is a tuple of algorithms
Π = (Gen,Prove,Ver) satisfying Definition 3 except that the adaptive proof of
knowledge property is replaced by the following one:

118 D. Fiore and A. Nitulescu

– Adaptive Proof of Knowledge for NP. For every non-uniform polynomial-
size prover A there exists a non-uniform polynomial-size extractor EA such
that for every large enough λ ∈ N, every auxiliary input aux ∈ {0, 1}poly(λ),
and every time bound T ∈ N, and every constant c > 0,

Pr

⎡

⎣
Verc(vst, y, π) = 1 crs←Gen(1λ, T)

∧ (y, π)←A(crs, aux)
(y, w) �∈ Rc w←EA(crs, aux)

⎤

⎦ ≤ negl(λ)

In the case of fully-succinct SNARKs for NP, it is not necessary to provide a
time bound as one can set T = λlog λ. In this case we can write Gen(1λ) as a
shorthand for Gen(1λ, λlog λ).

3 SNARKs in the Presence of Oracles

In this section we formalize the notion of extraction in the presence of oracles
for SNARKs. We do this by proposing a suitable adaptive proof of knowledge
definition, and we call a SNARK satisfying this definition a SNARK in the
presence of oracles (O-SNARK, for short). As we shall see, the advantage of
O-SNARKs is that this notion lends itself to easy and intuitive security proofs
in all those applications where one needs to execute extractors in interactive
security games with oracles (with a secret state). Below we provide the definition
while the existence of O-SNARKs is discussed in Sect. 4.

3.1 O-SNARKs: SNARKs in the Presence of Oracles

Let O = {O} be a family of oracles. We denote by O←O the process of sampling
an oracle O from the family O according to some (possibly probabilistic) process.
For example, O can be a random oracle family, i.e., O = {O : {0, 1}� → {0, 1}L}
for all possible functions from �-bits strings to L-bits strings, in which case
O←O consists of choosing a function O uniformly at random in O. As another
example, O might be the signing oracle corresponding to a signature scheme, in
which case the process O←O consists of sampling a secret key of the signature
scheme according to the key generation algorithm (and possibly a random tape
for signature generation in case the signing algorithm is randomized).

For any oracle family O, we define an O-SNARK Π for O as follows.

Definition 6 (Z-auxiliary input O-SNARKs for O). We say that Π is a
Z-auxiliary input O-SNARK for the oracle family O, if Π satisfies the properties
of completeness and succinctness as in Definition 3, and the following property
of adaptive proof of knowledge for O:

– Adaptive Proof of Knowledge for O. Consider the following experiment
for security parameter λ ∈ N, time bound T ∈ N, adversary A, extractor EA,
auxiliary input generator Z and oracle family O:

On the (In)Security of SNARKs in the Presence of Oracles 119

O-AdPoK(λ, T,A, EA,Z,O)
aux←Z(1λ); O←O; crs←Gen(1λ, T)
(y, π)←AO(crs, aux) w←EA(crs, aux , qt)
if Ver(crs, y, π) = 1 ∧ (y, w) �∈ R return 1
else return 0

where qt = {qi,O(qi)} is the transcript of all oracle queries and answers made
and received by A during its execution.

Π satisfies adaptive proof of knowledge with respect to oracle family O and
auxiliary input from Z if for every non-uniform oracle prover AO of size
s(λ) = poly(λ) making at most Q(λ) = poly(λ) queries there exists a non-
uniform extractor EA of size t(λ) = poly(λ) and a negligible function ε(λ)
such that for every time bound T , Pr[O-AdPoK(λ, T,A, EA,Z,O)⇒ 1] ≤ ε(λ).
Furthermore, we say that Π satisfies (s, t,Q, ε)-adaptive proof of knowledge
with respect to oracle family O and auxiliary input from Z if the above condi-
tion holds for concrete values (s, t,Q, ε).

3.2 Non-adaptive O-SNARKs

In this section we define a relaxation of O-SNARKs in which the adversary is
non-adaptive in making its queries to the oracle. Namely, we consider adversaries
that first declare all their oracle queries q1, . . . , qQ and then run on input the
common reference string as well as the queries’ outputs O(q1), . . . ,O(qQ). More
formally,

Definition 7 (Z-auxiliary input non-adaptive O-SNARKs for O). We
say that Π is a Z-auxiliary input non-adaptive O-SNARK for the oracle family
O, if Π satisfies the properties of completeness and succinctness as in Defin-
ition 3, and the following property of non-adaptive queries proof of knowledge
for O:

– Non-adaptive Proof of Knowledge for O. Consider the following exper-
iment for security parameter λ ∈ N, time bound T ∈ N, adversary A =
(A1,A2), extractor EA, auxiliary input generator Z and oracle family O:

O-NonAdPoK(λ, T,A, EA,Z,O)
(q1, . . . , qQ, st)←A1(1λ)
aux←Z(1λ); O←O; crs←Gen(1λ, T)
qt = (q1,O(q1), . . . , qQ,O(qQ))
(y, π)←A2(st, crs, aux , qt) w←EA(crs, aux , qt)
if Ver(crs, y, π) = 1 ∧ (y, w) �∈ R return 1
else return 0

where st is simply a state information shared between A1 and A2.

Π satisfies non-adaptive proof of knowledge with respect to oracle family O

and auxiliary input from Z if for every non-uniform prover A = (A1,A2)

120 D. Fiore and A. Nitulescu

of size s(λ) = poly(λ) making at most Q(λ) = poly(λ) non-adaptive queries
there exists a non-uniform extractor EA of size t(λ) = poly(λ) and a negligible
function ε(λ) such that for every time bound T , Pr[O-NonAdPoK(λ, T,A, EA,
Z,O) ⇒ 1] ≤ ε(λ). Furthermore, we say that Π satisfies (s, t,Q, ε)-non-
adaptive proof of knowledge with respect to oracle family O and auxiliary input
from Z if the above condition holds for concrete values (s, t,Q, ε).

It is also possible to define a stronger variant of the above definition in which A1

is given (adaptive) oracle access to O, whereas A2 has no access to O, except for
the query transcript obtained by A1. It is not hard to see that the result given
in the following paragraph works under this intermediate definition as well.

Existence of Non-adaptive O-SNARKs from SNARKs. Below we prove a
simple result showing that non-adaptive O-SNARKs follow directly from classical
SNARKs for which the proof of knowledge property holds for arbitrary auxiliary
input distributions.

Theorem 2. Let O be any oracle family. If Π is a SNARK satisfying
(s, t, ε)-adaptive PoK (for arbitrary auxiliary input), then Π is a non-adaptive
O-SNARK for O satisfying (s, t,Q, ε)-non-adaptive PoK.

For lack of space we only provide an intuition of the proof, which is given in
detail in the full version. The idea is that the second stage adversary A2 of non-
adaptive O-SNARKs is very much like a classical SNARK adversary that makes
no queries and receives a certain auxiliary input which contains the set of oracle
queries chosen by A1 with corresponding answers. The fact that the auxiliary
input includes the set of queries chosen by A1, which is an arbitrary adversary,
implies that the SNARK must support arbitrary, not necessarily benign, auxiliary
inputs (i.e., it is not sufficient to fix an auxiliary input distribution that depends
only on the oracle family O).

4 On the Existence of O-SNARKs

In this section we study whether O-SNARKs exist and under what assumptions.
In the following sections we give both positive and negative answers to this
question. For lack of space, a positive existence result about O-SNARKs for
(pseudo)random oracles is given in the full version [FN16].

4.1 O-SNARKs in the ROM from Micali’s CS Proofs

In this section we briefly discuss how the construction of CS proofs of Micali
[Mic00] can be seen as an O-SNARK for any oracle family, albeit in the random
oracle model. To see this, we rely on the result of Valiant [Val08] who shows
that Micali’s construction is a “CS proof of knowledge” in the random oracle
model. The main observation is in fact that Valiant’s proof works by showing a
black-box extractor working for any prover.

On the (In)Security of SNARKs in the Presence of Oracles 121

Proposition 1. Let O be any oracle family and RO be a family of random
oracles. Let ΠMic be the CS proof construction from [Mic00]. Then ΠMic is an
O-SNARK for (RO,O), in the random oracle model.

Proof (Sketch). Let ERO be Valiant’s black-box extractor7 which takes as input
the code of the prover and outputs a witness w. For any adversary ARO,O we
can define its extractor EA as the one that, on input the query transcript qt of
A, executes w ← ERO(A) by simulating all the random oracle queries of ERO

using qt, and finally outputs the same w. The reason why qt suffices to EA for
simulating random oracle queries to ERO is that Valiant’s extractor ERO makes
exactly the same queries of the prover.

4.2 Impossibility of O-SNARKs for Every Family of Oracles

In this section we show that, in the standard model, there do not exist O-SNARKs
with respect to every family of oracles. We show this under the assumption
that universal one-way hash functions (and thus one-way functions [Rom90])
exist. To show the impossibility, we describe an oracle family in the presence
of which any candidate O-SNARK that is correct and succinct cannot satisfy
adaptive proof of knowledge with respect to that oracle family. Our impossibility
result is shown for designated-verifier O-SNARKs, and thus implies impossibility
for publicly verifiable ones as well (since every publicly verifiable O-SNARK is
also designated-verifier secure). More specifically, we show the impossibility by
means of a signing oracle family. Namely, we show a secure signature scheme
Σp such that every correct and succinct O-SNARK Π cannot satisfy adaptive
proof of knowledge in the presence of the signing oracle corresponding to Σp.
Interestingly, such a result not only shows that extraction cannot work for general
families of oracles, but also for families of signing oracles, a class which is relevant
to several applications.

For every signature scheme Σ = (kg, sign, vfy) we let OΣ be the family of
oracles O(m) = sign(sk,m), where every family member O is described by a
secret key sk of the signature scheme, i.e., the process O ← OΣ corresponds
to obtaining sk through a run of (sk, vk) $← kg(1λ). For the sake of simplicity,
we also assume that the oracle allows for a special query, say O(‘vk’),8 whose
answer is the verification key vk.

Theorem 3. Assume that one-way functions exist. Then for every polynomial
p(·) there exists a UF-CMA-secure signature scheme Σp such that every candidate
designated-verifier O-SNARK Π for NP, that is correct and succinct with proofs
of length bounded by p(·), does not satisfy adaptive proof of knowledge with respect
to OΣp

.
7 The CS proofs of knowledge definition used by Valiant considers adversaries that are

non-adaptive in choosing the statement. However it easy to see that the construction
and the proof work also for the adaptive case.

8 Here vk is an arbitrary choice; any symbol not in M would do so. Introducing the
extra query simplifies the presentation, otherwise vk should be treated as an auxiliary
input from a distribution generated together with the oracle sampling.

122 D. Fiore and A. Nitulescu

An intuition of the result. Before delving into the details of the proof,
we provide the main intuition of this result. This intuition does not use sig-
nature schemes but includes the main ideas that will be used in the signature
counterexample. Given a UOWHF function family H, consider the NP binary
relation R̃H = {((h, x), w) : h ∈ H, h(w) = x}, let Π be a SNARK for NP and
consider p(·) the polynomial for which Π is succinct. The idea is to show an
oracle family Õ and an adversary Ā for which there is no extractor unless H
is not a universal one-way family. For every polynomial p(·), the oracle family
contains oracles Op that given a query q, interpret q as the description of a
program P(·, ·), samples a random member of the hash family h

$← H, a ran-
dom w, computes x = h(w), and outputs (h, x) along with π ← P((h, x), w).
If P(·, ·) = Prove(prs, ·, ·), then the oracle is simply returning an hash image
with a proof of knowledge of its (random) preimage. The adversary ĀOp is the
one that on input prs, simply asks one query q = P(·, ·) = Prove(prs, ·, ·), gets
((h, x), π)←Op(q) and outputs ((h, x), π). Now, the crucial point that entails the
non-existence of an extractor is that, provided that the input w is sufficiently
longer than π, every valid extractor for such Ā that outputs a valid w′ immedi-
ately implies a collision (w,w′) for h.9 Finally, to prevent adversarially chosen P
from revealing too much information, we require the oracle to check the length
of π, and the latter is returned only if |π| ≤ p(λ).

Proof (Proof of Theorem 3). The proof consists of two main steps. First, we
describe the construction of the signature scheme Σp based on any other
UF-CMA-secure signature scheme Σ̂ with message space M = {0, 1}∗ (that
exists assuming OWFs [Lam79,Rom90]), and show that Σp is UF-CMA-secure.
Σp uses also an UOWHF family H. Second, we show that, when considering
the oracle family OΣp

corresponding to the signature scheme Σp, a correct Π
with succinctness p(·) cannot be an O-SNARK for OΣp

, i.e., we show an efficient
O-SNARK adversary AO

p (with access to a Σp signing oracle O(·) = sign(sk, ·)),
for which there is no extractor unless H is not one-way.

The Counterexample Signature Scheme Σp. Let Σ̂ be any UF-CMA-secure
scheme with message space M = {0, 1}∗. Let H = {H}λ be a collection of
function families H = {h : {0, 1}L(λ) → {0, 1}�(λ)} where each H is an universal
one-way hash family with L(λ) ≥ p(λ) + �(λ) + λ. Let MH((h, x), w) be the
machine that on input ((h, x), w) accepts iff h(w) = x, and RH be the NP relation
consisting of all pairs (y, w) such that, for y = (MH, (h, x), t), MH((h, x), w)
accepts in at most t steps.

The scheme Σp has message space M = {0, 1}∗; its algorithms work as
follows:

kg(1λ): Run (v̂k, ŝk) ← Σ̂.kg(1λ), set vk = v̂k, sk = ŝk.
sign(sk,m): Signing works as follows

9 This relies on the fact that sufficiently many bits of w remain unpredictable, even
given π.

On the (In)Security of SNARKs in the Presence of Oracles 123

– generate σ̂←Σ̂.sign(ŝk,m);
– sample h

$← H and w
$← {0, 1}L(λ);

– compute x = h(w), t = #MH((h, x), w), and set y = (MH, (h, x), t);
– interpret m as the description of program P(·, ·) and thus run π←P(y, w);
– if |π| ≤ p(λ), set π′ = π, else set π′ = 0;
– output σ = (σ̂, h, x, π′).

vfy(vk,m, σ): Parse σ = (σ̂, h, x, π′) and return the output of Σ̂.vfy(v̂k,m, σ̂).

It is trivial to check that, as long as Σ̂ is a UF-CMA-secure scheme, Σp is also
UF-CMA-secure. Moreover, remark that the scheme Σp does not depend on the
specific O-SNARK construction Π but only on the universal polynomial p(·)
bounding its succinctness.

Impossibility of O-SNARKs for OΣp
. To show that Π is not an O-SNARK

for OΣp
(under the assumption that H is universally one-way), we prove that

there is an adversary AO
p such that every candidate extractor E fails in the

adaptive proof of knowledge game.

Lemma 1. If H is universally one way then every Π for NP that is correct
and succinct with proofs of length p(·) is not a designated-verifier O-SNARK for
OΣp

.

Proof. Let AO
p be the following adversary: on input prs, encode the Prove algo-

rithm of Π with hardcoded prs as a program P(·, ·) := Prove(prs, ·, ·); let q be
P’s description, and make a single query σ = (σ̂, h, x, π′) ← O(q); return (y, π′)
where y = (MH, (h, x), t) is appropriately reconstructed. We show that for every
polynomial-size extractor E it holds

Pr[O-AdPoK(λ,Ap, E ,OΣp
) ⇒ 0] ≤ νH(λ) + 2−λ

where νH(λ) = AdvUOWHF
B,H (λ) is the advantage of any adversary B against H’s

universal one-wayness. This means that there is no extractor unless H is not an
universal one-way family.

We proceed by contradiction assuming the existence of a polynomial-size
extractor E such that the above probability is greater than some non-negligible
ε. We show how to build an adversary B that breaks universal one-wayness of H
with non-negligible probability.

B first chooses an hash input w
$← {0, 1}L(λ), and then receives an instance

h of H. Next, B generates (prs, vst)←Gen(1λ) and (v̂k, ŝk) ← Σ̂.kg(1λ), and runs
AO

p (prs) simulating the oracle O on the single query q := P(·, ·) = Prove(crs, ·, ·)
asked by Ap. In particular, to answer the query B uses the secret key ŝk to
generate σ̂, and computes x = h(w) using the function h received from its
challenger, and the input w chosen earlier. Notice that such a simulation can be
done perfectly in a straightforward way, and that Ap’s output is the pair (y, π)
created by B. Next, B runs the extractor w′←E(prs, qt = (P(·, ·), (σ̂, h, x, π)),
and outputs w′.

124 D. Fiore and A. Nitulescu

By correctness of Π it holds that the pair (y, π) returned by Ap satisfies
Ver(vst, y, π) = 1. Thus, by our contradiction assumption, with probability ≥
ε(λ), E outputs w′ such that (y, w′) ∈ RH. Namely, h(w′) = x = h(w). To show
that this is a collision, we argue that, information-theoretically, w′ �= w with
probability ≥ 1 − 1/2λ. This follows from the fact that w is randomly chosen of
length L(λ) ≥ p(λ)+ �(λ)+λ and the only information about w which is leaked
to E is through π and x = h(w), an information of length at most p(λ) + �(λ).
Therefore there are at least λ bits of entropy in w, from which Pr[w′ = w] ≤ 2−λ

over the random choice of w. Hence, B can break the universal one-wayness of
H with probability ≥ ε(λ) − 2−λ. �

4.3 O-SNARKs for Signing Oracles from SNARKs in the Random
Oracle Model

In this section we show that it is possible to “immunize” any signature scheme
in such a way that any classical SNARK is also an O-SNARK for the signing
oracle corresponding to the transformed scheme. The idea is very simple and
consists into applying the hash-then-sign approach using a hash function that
will be modeled as a random oracle. A limitation of this result is that, since
the verification algorithm uses a random oracle, in all those applications where
the SNARK is used to prove knowledge of valid signatures, one would need a
SNARK for NPO. Hence, the best one can do is to conjecture that this still works
when replacing the random oracle with a suitable hash function.

Let us now state formally our result. To this end, for any signature scheme
Σ and polynomial Q(·) we define ZQ,Σ as the distribution on tuples 〈vk,m1, σ1,
. . . ,mQ, σQ〉 obtained by running the following probabilistic algorithm:

ZQ,Σ(1λ)
let Q = Q(λ); (sk, vk)←kg(1λ)
M̃ $← MsgSample(M, Q) ; let M̃ = {m1, . . . ,mQ}
for i = 1 to Q do : σi←sign(sk,mi)
return 〈vk, {mi, σi}Q

i=1〉
where MsgSample(M, Q) is an algorithm that returns Q distinct messages, each
randomly chosen from M. The proof of the following theorem appears in the
full version.

Theorem 4. Let Σ be a UF-CMA-secure signature scheme, and H be a family
of hash functions modeled as a random oracle. Let Un be the uniform distribution
over strings of length n, and ZQ,Σ be the distribution defined above, where Q is
any polynomial in the security parameter. Then there exists a signature scheme
ΣH such that every (Z,U ,ZΣ,Q)-auxiliary input SNARK Π is a Z-auxiliary
input O-SNARK for (OH,OΣH) where OH is a random oracle.

4.4 O-SNARKs for Signing Oracles from SNARKs

In this section we give a positive result showing that any SNARK Π is an
O-SNARK for the signing oracle of signature scheme Σ if: (i) the message space

On the (In)Security of SNARKs in the Presence of Oracles 125

of Σ is appropriately bounded (to be polynomially or at most superpolynomi-
ally large); (ii) Π tolerates auxiliary input consisting of the public key of Σ
plus a collection of signatures on randomly chosen messages; (iii) one considers
O-SNARK adversaries that query the signing oracle on almost the entire mes-
sage space. Furthermore, in case of superpolynomially large message spaces, one
needs to assume sub-exponential hardness for Π.

The intuition behind this result is to simulate the O-SNARK adversary by
using a (non-interactive) SNARK adversary that receives the public key and a
set of signatures on (suitably chosen) messages as its auxiliary input. If these
messages exactly match10 those queried by the O-SNARK adversary, the sim-
ulation is perfect. However, since the probability of matching exactly all the
Q = poly(λ) queries may decrease exponentially in Q (making the simulation
meaningless), we show how to put proper bounds so that the simulation can
succeed with probability depending only on the message space size.

More formally, our result is stated as follows. Let Σ be a signature scheme
with message space M, and let Q := Q(·) be a function of the security parameter.
Let ZQ,Σ be the following auxiliary input distribution

ZQ,Σ(1λ)
let Q = Q(λ); (sk, vk)←kg(1λ)
M̃ $← MsgSample(M, Q) ; let M̃ = {m1, . . . ,mQ}
for i = 1 to Q do : σi←sign(sk,mi)
return 〈vk, {mi, σi}Q

i=1〉

where MsgSample(M, Q) is a probabilistic algorithm that returns a subset
M̃ ⊆ M of cardinality Q chosen according to some strategy that we discuss
later. At this point we only assume a generic strategy such that δ(|M|, Q) =
Pr[MsgSample(M, Q) = M∗] for any M∗ ⊆ M of cardinality Q. The proof is in
the full version.

Theorem 5. Let Σ be a signature scheme with message space M, let OΣ be the
associated family of signing oracles, and let ZQ,Σ be as defined above. If Π is
a ZQ,Σ-auxiliary input SNARK satisfying (s, t, ε)-adaptive PoK, then Π is an
O-SNARK for OΣ satisfying (s′, t′, Q, ε′)-adaptive PoK, where ε′ = ε/δ(|M|, Q),
s′ = s − O(Q · log |M|), and t′ = t.

Implications of Theorem5. The statement of Theorem 5 is parametrized by
values |M|, Q and the function δ(|M|, Q), which in turn depends on the query
guessing strategy. As for the MsgSample(M, Q) algorithm, let us consider the
one that samples a random subset M̃ ⊆ M of cardinality Q. For this algorithm
we have δ(|M|, Q) = 1

(|M|
Q) . Notice that δ(|M|, Q) is governing the success prob-

ability of our reduction, and thus we would like this function not to become

10 We note that the proof requires an exact match and it is not sufficient that the
O-SNARK adversary’s queries are a subset of the sampled messages. A more precise
explanation of this fact is given at the end of the proof in the full version.

126 D. Fiore and A. Nitulescu

negligible. However, since Q = poly(λ) is a parameter under the choice of the
adversary, it might indeed be the case that δ(|M|, Q) ≈ 2−Q ≈ 2−λ, which
would make our reduction meaningless. To avoid this bad case, we restrict our
attention to adversaries for which Q = |M| − c for some constant c ≥ 1, i.e.,
adversaries that ask for signatures on the entire message but a constant number
of messages. For this choice of Q we indeed have that δ(|M|, Q) = 1

|M|c depends
only on the cardinality of |M|. This gives us

Corollary 1. Let Σ be a signature scheme with message space M where |M| =
poly(λ) (resp. |M| = λω(1)), and let Q = |M| − c for constant c ∈ N. If Π is
a polynomially (resp. sub-exponentially) secure ZQ,Σ-auxiliary input SNARK,
then Π is an O-SNARK for OΣ (for adversaries making Q queries).

5 Applications of O-SNARKs

In this section we show three applications of O-SNARKs for building homomor-
phic signatures [BF11], succinct functional signatures [BGI14], and SNARKs on
authenticated data [BBFR15].

Generally speaking, our results show constructions of these primitives based
on a signature scheme Σ and a succinct non-interactive argument Π, and show
their security by assuming that Π is an O-SNARK for signing oracles corre-
sponding to Σ. Once these results are established, we can essentially reach the
following conclusions about the possible secure instantiations of these construc-
tions. First, one can instantiate them by using Micali’s CS proofs as O-SNARK
(cf. Sect. 4.1): this solution essentially yields secure instantiations in the random
oracle model that work with a specific proof system (perhaps not the most effi-
cient one in practice). Second, one can instantiate them with a classical SNARK
and a hash-and-sign signature scheme (cf. Sect. 4.3), and conjecture that replac-
ing the random oracle with a suitable hash function preserves the overall security.
Third, one can instantiate the constructions using a classical SNARK construc-
tion Π and signature scheme Σ, and then conjecture that Π is an O-SNARK
with respect to the family of signing oracles corresponding to Σ. Compared to
the first solution, the last two ones have the advantage that one could use some
of the recently proposed efficient SNARK schemes (e.g., [PHGR13,BSCG+13]);
on the other hand these solutions have the drawback that the security of the
instantiations would be heavily based on a heuristic argument. Finally, a fourth
option that we provide are security proofs of these primitives which consider
only non-adaptive adversaries (i.e., adversaries that declare all their queries in
advance). In this case we can prove security based on non-adaptive O-SNARKs,
and thus based on classical SNARKs (applying our Theorem2). The advantage
of this fourth option is that one obtains a security proof for these instantiations
based on classical, not new, assumptions, although the proof holds only for a
much weaker security notion.

On the (In)Security of SNARKs in the Presence of Oracles 127

5.1 Homomorphic Signatures

As first application of O-SNARKs we revisit a “folklore” construction of homo-
morphic signatures from SNARKs. This construction has been mentioned several
times in the literature (e.g., [BF11,GW13,CF13,CFW14,GVW15]) and is con-
sidered as the ‘straightforward’ approach for constructing this primitive. In this
section we formalize this construction, and notice that its security proof is quite
subtle as one actually incurs the extraction issues that we mentioned in the
introduction. Namely, one needs to run an extractor in an interactive security
game in the presence of a signing oracle. Here we solve this issue by giving a
simple proof based on our notion of O-SNARKs (for families of signing oracles).

Definition of Homomorphic Signatures. We begin by recalling the defini-
tion of homomorphic signatures. The definition below can be seen as the public
key version of the notion of homomorphic message authenticators for labeled
programs of Gennaro and Wichs [GW13].

Labeled Programs [GW13]. A labeled program consists of a tuple P =
(F, τ1, . . . τn) such that F : Mn → M is a function on n variables (e.g., a circuit),
and τi ∈ {0, 1}� is the label of the i-th variable input of F . Let Fid : M → M
be the canonical identity function and τ ∈ {0, 1}� be a label. We consider
Iτ = (Fid, τ) as the identity program for input label τ . Given t labeled pro-
grams P1, . . . Pt and a function G : Mt → M, the composed program P∗ is
the one obtained by evaluating G on the outputs of P1, . . . Pt, and is compactly
denoted as P∗ = G(P1, . . . Pt). The labeled inputs of P∗ are all distinct labeled
inputs of P1, . . . Pt, i.e., all inputs with the same label are grouped together in
a single input of the new program.

Definition 8 (Homomorphic Signatures for Labeled Programs). A
homomorphic signature scheme HomSig is a tuple of probabilistic, polynomial-
time algorithms (HomKG,HomSign,HomVer,HomEval) that work as follows

HomKG(1λ) takes a security parameter λ and outputs a public key VK and a
secret key SK. The public key VK defines implicitly a message space M, the
label space L, and a set F of admissible functions.

HomSign(SK, τ,m) takes a secret key SK, a (unique) label τ ∈ L and a message
m ∈ M, and it outputs a signature σ.

HomEval(VK, F, (σ1, . . . σn)) takes a public key VK, a function F ∈ F and a
tuple of signatures (σ1, . . . σn). It outputs a new signature σ.

HomVer(VK,P,m, σ) takes a public key VK, a labeled program P =
(F, (τ1 . . . τn)) with F ∈ F , a message m ∈ M, and a signature σ. It out-
puts either 0 (reject) or 1 (accept).

and satisfy authentication correctness, evaluation correctness, succinctness, and
security, as described below.

– Authentication Correctness. Informally, we require that signatures gener-
ated by HomSign(SK, τ,m) verify correctly for m as the output of the identity
program I = (Fid, τ).

128 D. Fiore and A. Nitulescu

– Evaluation Correctness. Intuitively, we require that running the evaluation
algorithm on signatures (σ1, . . . σn), where σi is a signature for mi on label τi,
produces a signature σ which verifies for F (m1, . . . mn).

– Succinctness. For every large enough security parameter λ ∈ N, there is a
polynomial p(·) such that for every (SK,VK)←HomKG(1λ) the output size of
HomSign and HomEval is bounded by p(λ) for any choice of their inputs.

– Security. A homomorphic signature scheme HomSig is secure if for
every PPT adversary A there is a negligible function ε such that
Pr[ExpHomSig-UF

A,HomSig (λ) = 1] ≤ ε(λ) where the experiment ExpHomSig-UF
A,HomSig (λ) is

described in the following:
Key generation: Run (VK,SK)←HomKG(1λ) and give VK to A.
Signing queries: A can adaptively submit queries of the form (τ,m), where

τ ∈ L and m ∈ M. The challenger initializes an empty list T and proceeds
as follows:
* If (τ,m) is the first query with label τ , then the challenger computes

σ←HomSign(SK, τ,m), returns σ to A and updates the list of queries
T←T ∪ {(τ,m)}.

* If (τ,m) ∈ T (i.e., the adversary had already queried the tuple (τ,m)),
then the challenger replies with the same signature generated before.

* If T contains a tuple (τ,m0) for some different message m0 �= m, then
the challenger ignores the query.

Note that each label τ can be queried only once.
Forgery: After the adversary is done with the queries of the previous stage,

it outputs a tuple (P∗,m∗, σ∗). Finally, the experiment outputs 1 iff the
tuple returned by the adversary is a forgery (as defined below).
Forgeries are tuples (P∗ = (F ∗, (τ∗

1 , . . . τ∗
n)),m∗, σ∗) such that

HomVer(VK,P∗,m∗, σ∗) = 1 and they satisfy one the following condi-
tions:
* Type 1 Forgery: There is i ∈ [n] such that (τ∗

i , ·) /∈ T (i.e., no message
m has ever been signed w.r.t. label τ∗

i during the experiment).
* Type 2 Forgery: All labels τ∗

i have been queried—∀i ∈ [n], (τ∗
i ,mi) ∈

T—but m∗ �= F ∗(m1, . . . mn) (i.e., m∗ is not the correct output of the
labeled program P∗ when executed on the previously signed messages.

A homomorphic signature scheme can also be required to be context-hiding
[BF11]. Intuitively this property says that signatures on outputs of functions do
not reveal information about the inputs. The formal definition is recalled in the
full version.

Homomorphic Signatures from O-SNARKs. To build the homomorphic
signature we use a regular signature scheme Σ and a fully-succinct O-SNARK
Π for NP. The resulting scheme is homomorphic for all functions F whose run-
ning time is upper bounded by some fixed polynomial tF (·), and the scheme is
1-hop, i.e., it is not possible to apply HomEval on signatures obtained from other
executions of HomEval.11

11 Previous work hinted the possibility of achieving multi-hop homomorphic signatures
by using SNARKs with recursive composition. However, given the issues we already

On the (In)Security of SNARKs in the Presence of Oracles 129

Defining the machine MΣ,F . Let Σ be a signature scheme, and F be the
description of a function F : X n → X where X is some appropriate domain (e.g.,
X = {0, 1}μ). Then MΣ,F (x,w) is the random-access machine that works as fol-
lows. It takes inputs (x,w) where values x are of the form x = (vk,m, τ1, . . . , τn)
where vk is a public key of the scheme Σ, m ∈ X is a message and τi ∈ {0, 1}� are
labels, for 1 ≤ i ≤ n. The values w are instead tuples w = (m1, σ1, . . . ,mn, σn)
where for every i ∈ [n], mi ∈ X is a message and σi is a signature of the scheme
Σ. On input such a pair (x,w), MΣ,F (x,w) accepts iff

m = F (m1, . . . ,mn) ∧ vfy(vk, τi|mi, σi) = 1,∀i = 1, . . . , n

Associated to such machine there is also a polynomial time bound tΣ,F (k) =
keΣ,F , such that MΣ,F rejects if it does more than tΣ,F (|x|) steps. Finally, we
note that given a polynomial bound tF (k) = keF on the running time of every
F supported by the scheme, a polynomial bound tΣ(k) = keΣ on the running
time of Σ’s verification algorithm, and values n, μ, �, one can efficiently deduce
the constant exponent eΣ,F for the time bound tΣ,F (|x|) = |x|eΣ,F .

We call RΣ the NP binary relation consisting of all pairs (y, w) such
that, parsing y = (MΣ,F , x, t), MΣ,F (x,w) accepts in at most t steps and
t ≤ tΣ,F (|x|).
The construction. Let Σ = (kg, sign, vfy) be a signature scheme and Π =
(Gen,Prove,Ver) be a fully-succinct O-SNARK for NP. The homomorphic sig-
nature scheme HomSig[Σ,Π] is defined as follows.

HomKG(1λ): Run (sk, vk)←kg(1λ) and crs←Gen(1λ). Define SK = sk and VK =
(vk, crs). Let the message be M = {0, 1}μ and the label space be L = {0, 1}�.
Output (SK,VK).

HomSign(SK, τ,m): Run σ←sign(sk, τ |m). Output σ̄ = (signature, (τ,m, σ)).
HomEval(VK,m, F, (σ̄1, . . . , σ̄n)): Parse every σ̄i = (signature, (τi,mi, σi)),

compute m = F (m1, . . . ,mn), reconstruct an instance y = (MΣ,F , x, t) where
x = (vk,m, τ1, . . . , τn) and t = |x|eΣ,F , and the witness w = (m1, σ1, . . . ,mn,
σn). Finally, run π←Prove(crs, y, w) and output σ̄ = (proof, π).

HomVer(VK,P = (F, (τ1, . . . τn)),m, σ̄): Parse the signature σ̄ = (flag, ·) and
output the bit b computed as follows:
If σ̄ = (signature, (τ,m, σ)) and P = I = (Fid, τ) run vfy(vk, τ |m,σ) → b.
If σ̄ = (proof, π) run VereΣ,F (crs, y, π) → b where y = (MΣ,F , x = (vk,m, τ1,
. . . , τn), |x|eΣ,F).
Recall that in a SNARK for NP, Verc is given a constant c > 0 and only
works for relation Rc.

In what follows we show that the scheme above is a homomorphic signature. Cor-
rectness follows from the correctness of Σ and Π, while succinctness is implied
by that of Π. More precise arguments are given in the full version.

notice in using classical SNARKs, it is unclear to us whether such a multi-hop
construction would allow for a proof.

130 D. Fiore and A. Nitulescu

Security. As in Sect. 4.2, for every signature scheme Σ = (kg, sign, vfy) we
denote by OΣ the family of oracles O(m) = sign(sk,m) (where the verifica-
tion key is returned as output of a special query O(‘vk′)). We show the security
of the scheme HomSig[Σ,Π] via the following theorem. The proof is in the full
version.

Theorem 6. Let Σ be a signature scheme. If Π is an O-SNARK for OΣ, and
Σ is UF-CMA-secure, then HomSig[Σ,Π] is a secure homomorphic signature
scheme.

Non-adaptive Security. Alternatively, one can modify the previous proof to
show that the scheme has security against homomorphic signature adversaries
that make non-adaptive signing queries, assuming the weaker assumption that
Π is a non-adaptive O-SNARK (see Definition 7). In particular, combining this
change with the result of Theorem 2 one obtains the following:

Theorem 7. If Π is a SNARK, and Σ is a UF-CMA-secure signature scheme,
then HomSig[Σ,Π] is secure against adversaries that make non-adaptive signing
queries.

Remark 3 (On the applicability of Corollary 1). We note that we cannot combine
the positive result of Corollary 1 with Theorem 6 to conclude that the security
of the homomorphic signature scheme holds under classical SNARKs. The inap-
plicability of Corollary 1 is due to its restriction for which adversaries have to
query almost the entire message space. By looking at the HomSig construction
(and the definition of homomorphic signatures too) one can note that an adver-
sary who queries almost the entire message space of the underlying signature
scheme can trivially break the security (for example he could obtain signatures
on two distinct messages under the same label).

Insecurity of HomSig. In the full version we show that the generic homomor-
phic signature construction HomSig is not (adaptive) secure for an arbitrary
choice of the signature scheme Σ. This insecurity result does not contradict
our Theorem 6, but is closely related with (and confirms) our impossibility of
O-SNARKs for any signing oracles (Theorem 3).

5.2 Succinct Functional Signatures

As second application of O-SNARKs we revisit the construction of succinct func-
tional signatures of Boyle, Goldwasser, and Ivan [BGI14]. In [BGI14] this con-
struction is proven secure using a notion of SNARKs which significantly differs
from the standard one [BCC+14]. To the best of our knowledge, there are no
known instantiations of SNARKs under this definition, in the standard model
(and is not clear whether it is possible to find some). On the other hand, if
one wants to prove the security of this construction using the classical SNARK
definition, the security proof incurs the same subtleties related to running an
extractor in the presence of a signing oracle.

On the (In)Security of SNARKs in the Presence of Oracles 131

In this section, we revisit the construction of [BGI14], and we prove its secu-
rity using O-SNARKs. Interestingly, this proof differs a little from the one of
homomorphic signature as here we have to consider O-SNARKs for multiple
signing oracles.

Definition 9 (Functional Signatures [BGI14]). A functional signa-
ture scheme FS for a message space M and function family F =
{f : Df → M} is a tuple of probabilistic, polynomial-time algorithms
(FS.Setup,FS.KeyGen,FS.Sign,FS.Ver) that work as follows

FS.Setup(1λ) takes a security parameter λ and outputs a master verification key
mvk and a master secret key msk.

FS.KeyGen(msk, f) takes the master secret key msk and a function f ∈ F (rep-
resented as a circuit) and it outputs a signing key skf for f .

FS.Sign(mvk, f, skf ,m) takes as input a function f ∈ F , a signing key skf , and
a message m ∈ Df , and it outputs (f(m), σ).

FS.Ver(mvk,m∗, σ) takes as input the master verification key mvk, a message
m∗ ∈ M and a signature σ, and outputs either 1 (accept) or 0 (reject).

and satisfy correctness, unforgeability, and function privacy as described below.

– Correctness. A functional signature scheme is correct if the following holds
with probability 1:

∀f ∈ F , ∀m ∈ Df , (msk,mvk) ← FS.Setup(1λ), skf ← FS.KeyGen(msk, f),

(m∗, σ) ← FS.Sign(mvk, f, skf ,m),FS.Ver(mvk,m∗, σ) = 1

– Unforgeablity. A functional signature scheme is unforgeable if for every PPT
adversary A there is a negligible function ε such that Pr[ExpFS-UF

A,FS (λ) = 1] ≤
ε(λ) where the experiment ExpFS-UF

A,FS (λ) is described in the following:
Key generation: Generate (msk,mvk) ← FS.Setup(1λ), and gives mvk to A.
Queries: The adversary is allowed to adaptively query a key generation oracle

Okey and a signing oracle Osign, that share a dictionary D indexed by
tuples (f, i) ∈ F ×N, whose entries are signing keys. For answering these
queries, the challenger proceeds as follows:

• Okey (f, i):
* If (f, i) ∈ D (i.e., the adversary had already queried the tuple

(f, i)), then the challenger replies with the same key ski
f generated

before.
* Otherwise, generate a new ski

f ← FS.KeyGen(msk, f), add the
entry (f, i) → ski

f in D, and return ski
f .

• Osign (f, i,m):
* If there is an entry for the key (f, i) in D, then the chal-

lenger generates a signature on f(m) using this key, i.e., σ ←
FS.Sign(mvk, f, ski

f ,m).

132 D. Fiore and A. Nitulescu

* Otherwise, generate a new key ski
f ← FS.KeyGen(msk, f), add an

entry (f, i) → ski
f to D, and generate a signature on f(m) using

this key, i.e., σ ← FS.Sign(mvk, f, ski
f ,m).

Forgery: After the adversary is done with its queries, it outputs a pair (m∗, σ),
and the experiment outputs 1 iff the following conditions hold
* FS.Ver(mvk,m∗, σ) = 1.
* there does not exist m such that m∗ = f(m) for any f which was sent

as a query to the Okey oracle.
* there does not exist a pair (f,m) such that (f,m) was a query to the

Osign oracle and m∗ = f(m).
– Function privacy. Intuitively, function privacy requires that the distribution

of signatures on a message m that are generated via different keys skf should
be computationally indistinguishable, even given the secret keys and master
signing key. See [BGI14] or the full version for a more formal definition.

Definition 10 (Succinct Functional Signatures). A functional signature
scheme is called succinct if there exists a polynomial s(·) such that, for every
security parameter λ ∈ N, f ∈ F , m ∈ Df , it holds with probability 1
over (mvk,msk) ← FS.Setup(1λ), skf ← FS.KeyGen(msk, f), (f(m), σ) ←
FS.Sign(skf ,m) that |σ| ≤ s(λ, |f(m)|). In particular, the size of σ is independent
of the function’s size, |f |, and the function’s input size, |m|.

Succinct Functional Signatures from O-SNARKs. In the following we
show a construction for message space M and family of functions F = {f : Df →
M} whose running time is bounded by some fixed polynomial tF (|m|). To build
the scheme, we use two UF-CMA-secure signature schemes, Σ0 = (kg0, sign0, vfy0)
for message space M0 and Σ′ = (kg′, sign′, vfy′) for message space D, together
with a fully succinct zero-knowledge O-SNARK Π = (Gen,Prove,Ver) for the NP
language L defined below. While in [BGI14] a single signature scheme is used,
we prefer to use two different ones as this allows for a more precise statement
since we will need to apply different restrictions to M0 and D to obtain a precise
proof.

Defining the relation RL. Let ML be a random-access machine as defined
below, and tL(k) = keL be a polynomial. RL is the binary relation consisting of
all pairs (y, w) such that, parsing y = (ML, x, t), ML(x,w) accepts in at most t
steps and t ≤ tL(|x|). The values x are of the form x = (m∗,mvk0) where mvk0
is a public key of the scheme Σ0, and m∗ ∈ M is a message. The values w are
instead tuples w = (m, f, vk′, σvk′ , σm) such that m ∈ Df with Df ⊂ D, and
σvk′ , σm are signatures for the schemes Σ0 and Σ′ respectively. On input such a
pair (x,w), ML(x,w) is the random-access machine that accepts iff the following
conditions (1), (2) and (3) hold:

(1) m∗ = f(m)
(2) vfy′(vk′,m, σm) = 1
(3) vfy0(mvk0, f |vk′, σvk′) = 1

On the (In)Security of SNARKs in the Presence of Oracles 133

Given polynomial bounds on the running times of verification algorithms vfy′

and vfy0, and a (fixed) bound tF (·) on the size and running time of every f ∈ F ,
one can deduce a polynomial time bound tL(|x|) = |x|eL for the machine ML.

The construction. Using the signature schemes Σ0, Σ
′ and a fully-succinct

zero-knowledge O-SNARK Π for NP, we construct the functional signature
scheme FS[Σ0, Σ

′,Π] = (FS.Setup,FS.KeyGen,FS.Sign,FS.Ver) as follows:

FS.Setup(1λ): This probabilistic algorithm takes a security parameter λ and
outputs a master verification key mvk and a master secret key msk:
Generate (msk0,mvk0) ← kg0(1λ), crs ← Gen(1λ). Set the master secret key
msk = msk0, and the master verification key mvk = (mvk0, crs).

FS.KeyGen(msk, f): This algorithm takes the master secret key msk and a func-
tion f ∈ F (represented as a circuit) and it outputs a signing key skf for f .
Generate a new key pair (sk′, vk′) ← kg′(1λ) for the scheme Σ′, compute
σvk′ ← sign0(msk0, f |vk′), and let the certificate c be c = (f, vk′, σvk′). Finally
output skf = (sk′, c).

FS.Sign(mvk, f, skf ,m): The algorithm takes as input a function f ∈ F , a signing
key skf , and a message m ∈ Df , and it outputs (f(m), π) where π represents
a signature on f(m).
Parse skf as (sk′, c = (f, vk′, σvk′)), generate σm ← sign′(sk′,m), set y =
(ML, x, t) with x = (mvk0, f(m)), t = |x|eL), and w = (m, f, vk′, σvk′ , σm).
Run π←Prove(crs, y, w) and output (m∗ = f(m), π).

FS.Ver(mvk,m∗, π): This algorithms takes as input the master verification key
mvk, a message m∗ ∈ M and a signature π, and outputs either 1 (accept) or
0 (reject):
Parse mvk = (mvk0, crs) and set y = (ML, x, t) with x = (mvk0,m

∗) and
t = |x|eL . Then output the same bit returned by VereL

(crs, y, π).

Correctness. It is not hard to see that as long as Σ0, Σ
′ and Π are correct,

then FS is also correct.

Succinctness. Intuitively, a functional signature is succinct if the size of any
signature depends only on the size of functions’ outputs (and the security para-
meter). In the above construction this property immediately follows from the
succinctness of Π.

Unforgeability. We prove the security of FS under the unforgeability of schemes
Σ0 and Σ′ and using the notion of O-SNARKs for a specific family of oracles
OmΣ,Q that we define below.

OmΣ,Q is parametrized by the algorithms of the signature schemes Σ0, Σ′

and by a polynomial Q = Q(λ). Every member O of OmΣ,Q is described by a set
of secret keys msk0, sk

′
1, . . . , sk

′
Q (i.e., the process of sampling O ← O consists of

running (mvk0,msk0)
$← kg0(1λ) and (vk′

i, sk
′
i)

$← kg′
1(1

λ),∀i ∈ [Q]). The oracle
O works as follows:

O(i, ‘vk′) =

{
mvk0 If i = 0,

vk′
i otherwise.

O(i, ‘sk′) =

{
⊥ If i = 0,

sk′
i otherwise.

134 D. Fiore and A. Nitulescu

O(i,m) =

⎧
⎪⎨

⎪⎩

(Cnt, sign0(msk0,m|vk′
Cnt)),Cnt←Cnt + 1 If i = 0 and Cnt ≤ Q,

⊥ If i = 0 and Cnt > Q,

sign′(sk′
i,m) otherwise.

For the sake of simplicity we compactly denote O0(·) = O(0, ·) and O′
i(·) = O(i, ·)

for all i > 0. From the above description, note that oracle O0 is stateful and we
assume it starts with Cnt = 1.

Finally, we point out that for some technical reasons that we mention in
Remark 5 at the end of this section, it is not possible to use the notion of
O-SNARK for a single signing oracle to prove the security of the functional
signature scheme. This is the reason why we explicitly considered O-SNARKs
for this more complex family of multiple signing oracles.

Theorem 8. If Π is an O-SNARK for OmΣ,Q for every Q = poly(λ), and Σ0, Σ
′

are UF-CMA-secure, then FS[Σ0, Σ
′,Π] is an unforgeable functional signature.

Our proof consists of the following two steps:

1. We show that for every successful AFS against the unforgeability of FS there
exists an O-SNARK adversary Ã for an oracle from OmΣ,Q such that Ã out-
puts a valid proof with the same (non-negligible) probability of success of
AFS. By the adaptive proof of knowledge for OmΣ,Q we then obtain that for
such Ã there exists a suitable extractor EÃ that outputs a valid witness with
all but negligible probability.

2. From the previous point, considering adversary Ã and the corresponding
extractor, we can partition adversary-extractor pairs in two types: (1) those
that yield a witness w containing a pair (f, vk′) that was never signed before,
and (2) those that yield w containing (f, vk′) that was signed before. We show
that adversaries of type (1) can be used to break the security of the signature
scheme Σ0, whereas adversaries of type (2) can be used to break the security
of Σ′.

For lack of space the complete proof appears in the full version, where we
also show that the scheme has function privacy.

Non-adaptive Unforgeability. Similarly to the homomorphic signature case,
it is possible to show that the functional signature scheme achieves security
against (functional signature) adversaries that make non-adaptive signing queries
(i.e., all queries are declared at the beginning of the game). This weaker security
can be proven assuming that Π is a non-adaptive O-SNARK (see Definition 7).
Combining this change with the result of Theorem 2 we obtain the following:

Theorem 9. If Π is a SNARK and Σ0, Σ
′ are UF-CMA-secure signature

schemes, then FS[Σ0, Σ
′,Π] is a functional signature where unforgeability holds

against adversaries that make non-adaptive signing queries.

Remark 4 (On the applicability of Corollary 1). For the same reasons discussed
in Remark 3, it is not possible to apply the result of Corollary 1 to conclude
the that the (adaptive) security of the functional signature scheme holds under
classical SNARKs.

On the (In)Security of SNARKs in the Presence of Oracles 135

Remark 5 (On the use of multiple signing oracles). In order to prove the security
of the functional signature scheme, one might be tempted to use the notion of
O-SNARK with a single signing oracle. Precisely, one might use O-SNARKs for
OΣ0 when making a reduction to Σ0 and O-SNARKs for OΣ′ when making
a reduction to Σ′. Unfortunately, this approach does not work for an intricate
technical reason that we explain here. Intuitively, assume that one wants to build
an O-SNARK adversary Ã that has access to a single signing oracle, say from
OΣ0 . Then the secret keys needed to simulate all the other oracles have to be
given to Ã as part of its auxiliary input (Ã needs them to simulate AFS). At this
point the issue is that such secret keys in fact give an efficient way to compute
a witness for several y in the relation RL. Therefore, if the extractor gets these
secret keys as auxiliary information, we then have no guarantee that, while
doing a reduction to the unforgeability of the signature scheme, the extractor
will output a witness of the form we expect.

5.3 SNARKs on Authenticated Data

As another application of O-SNARKs we consider the generic construction of
SNARKs on authenticated data that is given in [BBFR15]. Since this construc-
tion is very similar to the homomorphic signature scheme that we present in
Sect. 5.1, we only provide an informal discussion of this application. In [BBFR15]
Backes et al. introduce the notion of SNARKs on authenticated data to capture
in an explicit way the possibility of performing (zero-knowledge) proofs about
statements that are authenticated by third parties, i.e., to prove that (x,w) ∈ R
for some x for which there is a valid signature. While the main focus of that
work is on a concrete construction based on quadratic arithmetic programs, the
authors also show a generic construction based on SNARKs and digital signa-
tures. Roughly speaking, this construction consists in letting the prover use a
SNARK to prove a statement of the form “∃x,w, σ : (x,w) ∈ R∧vfy(vk, τ |x, σ) =
1”, for some public label τ of the statement. The formalization of their model is
rather similar to that of homomorphic signatures in this paper (e.g., they also
use labels). Noticeable differences are that their construction uses pre-processing
SNARKs for arithmetic circuit satisfiability, and that to handle several functions
they use different SNARK instantiations (one per function).

In [BBFR15] the security proof of this generic construction is only sketched,
and in particular they use the existence of an extractor for an adversary that
interacts with a signing oracle without providing a particular justification on
its existence. With a more careful look, it is possible to see that this security
proof incurs the same issue of extraction in the presence of oracles. Using the
same techniques that we developed in this paper for the homomorphic signa-
ture scheme,12 it is possible to prove the security of that generic construction
using O-SNARKs for signing oracles (or non-adaptive security based on classical
SNARKs). In conclusion, for this construction one can either conjecture that a

12 The only major difference is that one has to consider a specification of our definitions
to the case of pre-processing SNARKs.

136 D. Fiore and A. Nitulescu

specific SNARK scheme (e.g., [PHGR13]) is secure in the presence of oracles, or,
more conservatively, argue only the non-adaptive security of the primitive under
the existence of classical SNARKs.

Acknowledgements. We would like to thank Manuel Barbosa and Bogdan Warin-
schi for valuable discussions on this work, and the anonymous reviewers of Crypto 2016
and TCC 2016-B for their useful comments and suggestions. This work was partially
supported by the European Union’s Horizon 2020 Research and Innovation Programme
under grant agreement 688722 (NEXTLEAP), the Spanish Ministry of Economy under
project reference TIN2015-70713-R (DEDETIS) and a Juan de la Cierva fellowship
to Dario Fiore, by the Madrid Regional Government under project N-Greens (ref.
S2013/ICE-2731), and by the European Research Council under the European Commu-
nity’s Seventh Framework Programme (FP7/2007-2013 Grant Agreement no. 339563
CryptoCloud).

References

[BBFR15] Backes, M., Barbosa, M., Fiore, D., Reischuk, R.M.: ADSNARK: nearly
practical and privacy-preserving proofs on authenticated data. In: 2015
IEEE Symposium on Security and Privacy, pp. 271–286. IEEE Computer
Society Press (2015)

[BCC88] Brassard, G., Chaum, D., Crépeau, C.: Minimum disclosure proofs of
knowledge. J. Comput. Syst. Sci. 37(2), 156–189 (1988)

[BCC+14] Bitansky, N., Canetti, R., Chiesa, A., Goldwasser, S., Lin, H., Rubinstein,
A., Tromer, E.: The hunting of the SNARK. Cryptology ePrint Archive,
Report 2014/580 (2014). http://eprint.iacr.org/2014/580

[BCCT12] Bitansky, N., Canetti, R., Chiesa, A., Tromer, E.: From extractable col-
lision resistance to succinct non-interactive arguments of knowledge, and
back again. In: Goldwasser, S. (ed.) ITCS 2012, pp. 326–349. ACM, Jan-
uary 2012

[BCCT13] Bitansky, N., Canetti, R., Chiesa, A., Tromer, E.: Recursive composition
and bootstrapping for SNARKS and proof-carrying data. In: Boneh, D.,
Roughgarden, T., Feigenbaum, J. (eds.) 45th ACM STOC, pp. 111–120.
ACM Press, June 2013

[BCI+13] Bitansky, N., Chiesa, A., Ishai, Y., Paneth, O., Ostrovsky, R.: Succinct
non-interactive arguments via linear interactive proofs. In: Sahai, A. (ed.)
TCC 2013. LNCS, vol. 7785, pp. 315–333. Springer, Heidelberg (2013).
doi:10.1007/978-3-642-36594-2 18

[BCPR14] Bitansky, N., Canetti, R., Paneth, O., Rosen, A.: On the existence of
extractable one-way functions. In: Shmoys, D.B. (ed.) 46th ACM STOC,
pp. 505–514. ACM Press, May/June 2014

[BCTV14] Ben-Sasson, E., Chiesa, A., Tromer, E., Virza, M.: Scalable zero knowledge
via cycles of elliptic curves. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO
2014. LNCS, vol. 8617, pp. 276–294. Springer, Heidelberg (2014). doi:10.
1007/978-3-662-44381-1 16

[BF11] Boneh, D., Freeman, D.M.: Homomorphic signatures for polynomial func-
tions. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp.
149–168. Springer, Heidelberg (2011). doi:10.1007/978-3-642-20465-4 10

http://eprint.iacr.org/2014/580
http://dx.doi.org/10.1007/978-3-642-36594-2_18
http://dx.doi.org/10.1007/978-3-662-44381-1_16
http://dx.doi.org/10.1007/978-3-662-44381-1_16
http://dx.doi.org/10.1007/978-3-642-20465-4_10

On the (In)Security of SNARKs in the Presence of Oracles 137

[BG08] Barak, B., Goldreich, O.: Universal arguments and their applications.
SIAM J. Comput. 38(5), 1661–1694 (2008)

[BGI14] Boyle, E., Goldwasser, S., Ivan, I.: Functional signatures and pseudoran-
dom functions. In: Krawczyk, H. (ed.) PKC 2014. LNCS, vol. 8383, pp.
501–519. Springer, Heidelberg (2014). doi:10.1007/978-3-642-54631-0 29

[BHZ87] Boppana, R.B., Hastad, J., Zachos, S.: Does co-NP have short interactive
proofs? Inf. Process. Lett. 25(2), 127–132 (1987)

[BP15] Boyle, E., Pass, R.: Limits of extractability assumptions with distrib-
utional auxiliary input. In: Iwata, T., Cheon, J.H. (eds.) ASIACRYPT
2015. LNCS, vol. 9453, pp. 236–261. Springer, Heidelberg (2015). doi:10.
1007/978-3-662-48800-3 10

[BSCG+13] Ben-Sasson, E., Chiesa, A., Genkin, D., Tromer, E., Virza, M.: SNARKs
for C: verifying program executions succinctly and in zero knowledge. In:
Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8043, pp. 90–
108. Springer, Heidelberg (2013). doi:10.1007/978-3-642-40084-1 6

[CF13] Catalano, D., Fiore, D.: Practical homomorphic MACs for arithmetic
circuits. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013.
LNCS, vol. 7881, pp. 336–352. Springer, Heidelberg (2013). doi:10.1007/
978-3-642-38348-9 21

[CFW14] Catalano, D., Fiore, D., Warinschi, B.: Homomorphic signatures with effi-
cient verification for polynomial functions. In: Garay, J.A., Gennaro, R.
(eds.) CRYPTO 2014. LNCS, vol. 8616, pp. 371–389. Springer, Heidelberg
(2014). doi:10.1007/978-3-662-44371-2 21

[CL08] Crescenzo, G., Lipmaa, H.: Succinct NP proofs from an extractability
assumption. In: Beckmann, A., Dimitracopoulos, C., Löwe, B. (eds.) CiE
2008. LNCS, vol. 5028, pp. 175–185. Springer, Heidelberg (2008). doi:10.
1007/978-3-540-69407-6 21

[DLFKP16] Delignat-Lavaud, A., Fournet, C., Kohlweiss, M., Parno, B.: Cinderella:
Turning shabby x. 509 certificates into elegant anonymous credentials with
the magic of verifiable computation. In: IEEE Symposium on Security and
Privacy (2016)

[FN16] Fiore, D., Nitulescu, A.: On the (in)security of SNARKs in the presence
of oracles. Cryptology ePrint Archive, Report 2016/112 (2016)

[GGPR13] Gennaro, R., Gentry, C., Parno, B., Raykova, M.: Quadratic span pro-
grams and succinct NIZKs without PCPs. In: Johansson, T., Nguyen,
P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 626–645. Springer,
Heidelberg (2013). doi:10.1007/978-3-642-38348-9 37

[GH98] Goldreich, O., H̊astad, J.: On the complexity of interactive proofs with
bounded communication. Inf. Process. Lett. 67(4), 205–214 (1998)

[GMR89] Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of inter-
active proof systems. SIAM J. Comput. 18(1), 186–208 (1989)

[Gro10] Groth, J.: Short pairing-based non-interactive zero-knowledge arguments.
In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 321–340.
Springer, Heidelberg (2010). doi:10.1007/978-3-642-17373-8 19

[GVW02] Goldreich, O., Vadhan, S., Wigderson, A.: On interactive proofs with a
laconic prover. Comput. Complex. 11(1–2), 1–53 (2002)

[GVW15] Gorbunov, S., Vaikuntanathan, V., Wichs, D.: Leveled fully homomorphic
signatures from standard lattices. In: Servedio, R.A., Rubinfeld, R. (eds.)
47th ACM STOC, pp. 469–477. ACM Press, June 2015

http://dx.doi.org/10.1007/978-3-642-54631-0_29
http://dx.doi.org/10.1007/978-3-662-48800-3_10
http://dx.doi.org/10.1007/978-3-662-48800-3_10
http://dx.doi.org/10.1007/978-3-642-40084-1_6
http://dx.doi.org/10.1007/978-3-642-38348-9_21
http://dx.doi.org/10.1007/978-3-642-38348-9_21
http://dx.doi.org/10.1007/978-3-662-44371-2_21
http://dx.doi.org/10.1007/978-3-540-69407-6_21
http://dx.doi.org/10.1007/978-3-540-69407-6_21
http://dx.doi.org/10.1007/978-3-642-38348-9_37
http://dx.doi.org/10.1007/978-3-642-17373-8_19

138 D. Fiore and A. Nitulescu

[GW11] Gentry, C., Wichs, D.: Separating succinct non-interactive arguments from
all falsifiable assumptions. In Fortnow, L.P. Vadhan, S. (eds.) 43rd ACM
STOC, pp. 99–108. ACM Press, June 2011

[GW13] Gennaro, R., Wichs, D.: Fully homomorphic message authenticators. In:
Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013. LNCS, vol. 8270, pp. 301–
320. Springer, Heidelberg (2013). doi:10.1007/978-3-642-42045-0 16

[HT98] Hada, S., Tanaka, T.: On the existence of 3-round zero-knowledge proto-
cols. In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS, vol. 1462, pp. 408–423.
Springer, Heidelberg (1998). doi:10.1007/BFb0055744

[Kil92] Kilian, J.: A note on efficient zero-knowledge proofs and arguments
(extended abstract). In 24th ACM STOC, pp. 723–732. ACM Press, May
1992

[Lam79] Lamport, L.: Constructing digital signatures from a one-way function.
Technical report SRI-CSL-98, SRI International Computer Science Labo-
ratory, October 1979

[Lip12] Lipmaa, H.: Progression-free sets and sublinear pairing-based non-
interactive zero-knowledge arguments. In: Cramer, R. (ed.) TCC 2012.
LNCS, vol. 7194, pp. 169–189. Springer, Heidelberg (2012). doi:10.1007/
978-3-642-28914-9 10

[Mic94] Micali, S.: CS proofs (extended abstracts). In: 35th FOCS, pp. 436–453.
IEEE Computer Society Press, November 1994

[Mic00] Micali, S.: Computationally sound proofs. SIAM J. Comput. 30(4), 1253–
1298 (2000)

[Mie08] Mie, T.: Polylogarithmic two-round argument systems. J. Math. Crypt.
2(4), 343–363 (2008)

[Nao03] Naor, M.: On cryptographic assumptions and challenges. In: Boneh, D.
(ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 96–109. Springer, Heidelberg
(2003). doi:10.1007/978-3-540-45146-4 6

[NT16] Naveh, A., Tromer, E.: Photoproof: cryptographic image authentication
for any set of permissible transformations. In: IEEE Symposium on Secu-
rity and Privacy (2016)

[PHGR13] Parno, B., Howell, J., Gentry, C., Raykova, M.: Pinocchio: nearly prac-
tical verifiable computation. In: 2013 IEEE Symposium on Security and
Privacy, pp. 238–252. IEEE Computer Society Press, May 2013

[Rom90] Rompel, J.: One-way functions are necessary and sufficient for secure sig-
natures. In 22nd ACM STOC, pp. 387–394. ACM Press, May 1990

[Val08] Valiant, P.: Incrementally verifiable computation or proofs of knowl-
edge imply time/space efficiency. In: Canetti, R. (ed.) TCC 2008.
LNCS, vol. 4948, pp. 1–18. Springer, Heidelberg (2008). doi:10.1007/
978-3-540-78524-8 1

[Wee05] Wee, H.: On round-efficient argument systems. In: Caires, L., Ital-
iano, G.F., Monteiro, L., Palamidessi, C., Yung, M. (eds.) ICALP 2005.
LNCS, vol. 3580, pp. 140–152. Springer, Heidelberg (2005). doi:10.1007/
11523468 12

http://dx.doi.org/10.1007/978-3-642-42045-0_16
http://dx.doi.org/10.1007/BFb0055744
http://dx.doi.org/10.1007/978-3-642-28914-9_10
http://dx.doi.org/10.1007/978-3-642-28914-9_10
http://dx.doi.org/10.1007/978-3-540-45146-4_6
http://dx.doi.org/10.1007/978-3-540-78524-8_1
http://dx.doi.org/10.1007/978-3-540-78524-8_1
http://dx.doi.org/10.1007/11523468_12
http://dx.doi.org/10.1007/11523468_12

Leakage Resilient One-Way Functions:
The Auxiliary-Input Setting

Ilan Komargodski(B)

Weizmann Institute of Science, Rehovot, Israel
ilan.komargodski@weizmann.ac.il

Abstract. Most cryptographic schemes are designed in a model where
perfect secrecy of the secret key is assumed. In most physical imple-
mentations, however, some form of information leakage is inherent and
unavoidable. To deal with this, a flurry of works showed how to con-
struct basic cryptographic primitives that are resilient to various forms
of leakage.

Dodis et al. (FOCS ’10) formalized and constructed leakage resilient
one-way functions. These are one-way functions f such that given a ran-
dom image f(x) and leakage g(x) it is still hard to invert f(x). Based on
any one-way function, Dodis et al. constructed such a one-way function
that is leakage resilient assuming that an attacker can leak any lossy
function g of the input.

In this work we consider the problem of constructing leakage resilient
one-way functions that are secure with respect to arbitrary computation-
ally hiding leakage (a.k.a auxiliary-input). We consider both types of
leakage — selective and adaptive — and prove various possibility and
impossibility results.

On the negative side, we show that if the leakage is an adaptively-
chosen arbitrary one-way function, then it is impossible to construct
leakage resilient one-way functions. The latter is proved both in the ran-
dom oracle model (without any further assumptions) and in the standard
model based on a strong vector-variant of DDH. On the positive side, we
observe that when the leakage is chosen ahead of time, there are leakage
resilient one-way functions based on a variety of assumption.

1 Introduction

The holy grail of cryptography is designing systems that remain secure in the
presence of adversarial behavior. For this, one has to specify (1) a cryptographic
primitive of interest (e.g. an encryption scheme or a signature scheme), and (2)
a model that captures the power of a potential adversary and what it means for
it to break the system.

I. Komargodski—Supported in part by a Levzion fellowship, by grants from the
Israel Science Foundation grant no. 1255/12, BSF and from the I-CORE Pro-
gram of the Planning and Budgeting Committee and the Israel Science Foundation
(grant no. 4/11).

c© International Association for Cryptologic Research 2016
M. Hirt and A. Smith (Eds.): TCC 2016-B, Part I, LNCS 9985, pp. 139–158, 2016.
DOI: 10.1007/978-3-662-53641-4 6

140 I. Komargodski

One of the most common assumptions is that secret keys are perfectly secret
and are completely unknown to an adversary. However, in many physical imple-
mentations some information does leak due to various side-channel attacks, reuse
of randomness, and more.

This deficiency raised the necessity to build a theory of security against
classes of side-channel attacks. Starting with the works of [14,27,30], a flurry
of works in which different classes of side channel attacks have been defined
and different cryptographic primitives have been designed to provably withstand
these attacks (see, for example, [1,2,6–9,14–16,18,20–24,27,30,31,34]).

We consider the problem of constructing the most basic cryptographic prim-
itive, a one-way function, in a setting where an adversary obtains side-channel
information (this notion was first formalized by [3,17]). A one-way function f
is an efficiently computable function such that given f(x) for a random input
x, any efficient adversary cannot find an x′ such that f(x) = f(x′). A leakage
resilient one-way function f is a one-way function such that given f(x) as above
and g(x), where g is adversarially chosen, it is still hard to invert f and recover
such an x′.

To obtain some sort of security, one clearly has to restrict the adversary
to choose g from some collection of functions that do not trivially reveal x by
themselves. Indeed, if g is the identity function, no leakage resilient function
f exists. Thus, several assumptions on the power of the adversary have been
considered. Already in the work of Canetti et al. [14], the authors showed how
to obtain a leakage-resilient one-way function assuming that the attacker can leak
an arbitrary but sufficiently small subset of the bits of the input. However, this
may be overly restrictive as it provides no guarantees if the attacker can learn
the XOR of all the input bits. This issue was addressed in several works (see, for
example, [3,15,17]) showing that there exists a leakage-resilient one-way function
assuming that the attacker can leak any lossy function of the input, namely, any
function whose image size is significantly smaller than the domain size. The
leakage-resilience in both settings is proven based on the existence of any one-
way function which is the weakest assumption possible. For completeness, we
provide a proof of the following theorem in AppendixA.

Theorem 1 ([3,17], Informal). Assuming that one-way functions exist, there
exists a one-way function f , such that for any adversarially-chosen lossy function
g, given f(x) and g(x) for a random x, it is computationally hard to invert f .

Motivated by the positive results for a wide class of leakage functions, we
study the question of designing leakage-resilient one-way functions that are
secure with respect to arbitrary computationally hiding leakage function. We
model this by allowing the leakage to be an arbitrary one-way function, even
such that fully determine the input.1 We consider both an adaptive notion of
security in which the leakage function is adversarially chosen (from a restricted

1 This setting is sometimes referred to as the auxiliary-input setting (see, for example,
[16,18,26]).

Leakage Resilient One-Way Functions: The Auxiliary-Input Setting 141

pre-defined collection) after f is fixed, and a selective notion in which the leakage
is chosen ahead of time, before f is.

1.1 Our Contributions

Adaptively-chosen leakage. We show that if the leakage can be an arbitrary
one-way function, then there cannot be a leakage resilient one-way function f .
More precisely, we show that for every one-way function f , there exists a one-
way function g (that depends on f) such that when one gets both f(x) and g(x),
it is easy to invert f .

We prove this result in two ways: in the random oracle model and in the
standard model based on a strong vector-variant of DDH. Specifically, we first
show that if the leakage function has access to a random oracle O, then we can
construct an oracle-aided function gO which is one-way and gO(x) together with
f(x) allow to recover x. For the result in the standard model, we rely on multi-
bit point obfuscators that exist based on a strong vector-variant of the DDH
assumption [5,13]; see Sect. 2.3 and Theorem 8.

Theorem 2 (Informal). Let O be a random oracle. For every one-way func-
tion f , there is a one-way function gO such that for every x given f(x) and g(x)
it is easy to recover x.

Theorem 3 (Informal). Assuming multi-bit point obfuscators, for every one-
way function f , there is a one-way function g such that for every x given f(x)
and g(x) it is easy to recover x.

Moreover, such multi-bit point obfuscators can be constructed from a strong
vector-variant of the DDH assumption.

Selectively-chosen leakage. We show that if the leakage function g is fixed
ahead of time, then there exists a leakage resilient one-way function f for g from
various assumptions. To this end, we observe that one-wayness with respect
to selectively-chosen leakage is tightly related to extracting polynomially-many
hard-core bits.

Theorem 4 (Informal). For every leakage one-way function g, a hardcore
function for g that outputs polynomially-many hard-core bits is a leakage-resilient
one-way function for g.

If g is a sub-exponentially hard one-way function, then extracting polynomial-
ly-many hard-core bits is possible due to Goldreich and Levin [25] (and any
pseudorandom generator). Bellare, Stepanovs, and Tessaro [4] (see also the
follow-up work of Brzuska and Mittelbach [11]) were the first to show how to
extract any polynomial number of hard-core bits from any one-way function.
Their construction is based on obfuscation. More recently, Zhandry [36] obtained
the same result based on exponentially-hard DDH.

Thus, instantiating Theorem 4 with the variety of known methods for extract-
ing polynomially-many hard-core bits from g, we obtain a leakage-resilient one-
way function for g, whose security is based either on one-way functions, on
obfuscation, on exponential hardness of DDH, and more.

142 I. Komargodski

1.2 Overview of Our Techniques

In Theorem 2 the underlying idea is very simple. We assume a random oracle O
and assume that there exists a leakage resilient one-way function f , where the
leakage is any one-way function. We define a leakage function g(x) = O(f(x))⊕x.
Recovering x given f(x) and g(x) is easy by first applying O to f(x) and then
XORing the result with g(x). The non-trivial part is showing that this function
g is also one-way.

Roughly speaking, our analysis uses the fact that any adversary trying to
invert g(x) will have to query the oracle at the point f(x). Otherwise, all it
sees are uniform strings from which it cannot infer anything about a possible
pre-image. It is left to show that f(x) is sufficiently random so that it cannot
be guessed by any polynomial-time adversary with non-negligible probability.
Indeed, since f by itself is a one-way function, its image distribution has super-
logarithmic min-entropy which satisfied our requirement.

For Theorem 3, our construction is based on multi-bit point obfuscators
MBPO and can be seen as an instantiation of the above idea in the stan-
dard model. The leakage function, on input x, will output a multi-bit point
obfuscation of the multi-bit point function that maps f(x) to x, denoted by
g(x) = MBPO(If(x)→x). One obstacle is that an obfuscator is a probabilistic
procedure, and thus cannot be used directly in our setting. Hence, we use public-
coin multi-bit point obfuscators, which are obfuscators that output their internal
random coins. This allows us to define a leakage function which has hard-wired
random coins for the use of the point obfuscator. Specifically, we hardwire into
g random coins r and define gr(x) = MBPO(If(x)→x; r). We show that gr, with
very high probability, is a one-way function using the security of the obfuscator.2

We observe that such a multi-bit point obfuscator exists based on the strong
vector-variant of DDH of Bitansky and Canetti [5] given in Sect. 2.3.3

2 Preliminaries

In this section we present the notation and basic definitions that are used in this
work. For an integer n ∈ N we denote by [n] the set {1, . . . , n}. For a distribution
X we denote by x ← X the process of sampling a value x from the distribution
X. Similarly, for a set X we denote by x ← X the process of sampling a value
x from the uniform distribution over X . For a randomized function f and an
input x ∈ X , we denote by y ← f(x) the process of sampling a value y from
the distribution f(x). A function neg : N → R is negligible if for every constant
c > 0 there exists an integer Nc such that neg(λ) < λ−c for all λ > Nc. For two
strings x ∈ {0, 1}n and y ∈ {0, 1}m we denote by x||y the string concatenation
of x and y.

2 Theorem 2 can also be proved by first showing how to use a random oracle to
construct a multi-bit point obfuscator. We thank a reviewer for pointing this out.

3 We emphasize we do not require security with respect to auxiliary-input, which was
shown to be a problematic assumption [10].

Leakage Resilient One-Way Functions: The Auxiliary-Input Setting 143

Two sequences of random variables X = {Xλ}λ∈N and Y = {Yλ}λ∈N are
computationally indistinguishable if for any probabilistic polynomial-time algo-
rithm A there exists a negligible function neg(·) such that |Pr[A(1λ,Xλ) = 1] −
Pr[A(1λ, Yλ) = 1]| ≤ neg(λ) for all sufficiently large λ ∈ N.

2.1 Min-Entropy

The min-entropy of a distribution X over {0, 1}n is defined by

H∞(X) = − min
x∈{0,1}n

log2 Pr[X = x].

2.2 One-Way Functions

Definition 1 (One-way functions). A function f : {0, 1}∗ → {0, 1}∗ is said
to be one-way if the following two conditions hold:

1. There exists a polynomial-time algorithm A such that A(x) = f(x) for every
x ∈ {0, 1}∗.

2. For every probabilistic polynomial-time algorithm B there exists a negligible
function neg(·) such that

ADVOWF
f,B = Pr[B(1n, f(x)) ∈ f−1(f(x))] ≤ neg(n),

where the probability is taken uniformly over all possible x ∈ {0, 1}n and the
internal randomness of B.

The following claim will be useful.

Claim 5. Let f : {0, 1}n → {0, 1}m be a one-way function where m = m(n) is
a polynomial. It holds that H∞(f(X)) ≥ ω(log n).

Proof. Since f is a one-way function, it must be that on a random x ∈ {0, 1}n, it
is hard to a preimage for f(x). Assume, towards contradiction, that H∞(f(X)) =
O(log n). That is,

min
y∈{0,1}m

log2
1

Prx∈{0,1}n [f(x) = y]
= O(log n).

Thus, there exists a y∗ ∈ {0, 1}m for which Prx∈{0,1}n [f(x) = y∗] ≥ 1/p(n) for
some polynomial p(·).

Define an adversary A that given a random image y = f(x) outputs a uni-
formly random x′. This adversary wins if both f(x) = y∗ and f(x′) = y∗. Since
x and x′ are chosen independently and uniformly at random, we have that

Pr
x′∈{0,1}n

[A(f(x′)) ∈ f−1(y)] ≥ Pr
x,x′∈{0,1}n

[f(x) = y∗ and f(x′) = y∗]

= (Pr
x∈{0,1}n

[f(x) = y∗])2 ≥ 1/(p(n))2.

That is, A will successfully invert y with non-negligible probability, contradiction
the one-wayness of f .

144 I. Komargodski

We extend the definition of a one-way function to oracle-aided one-way func-
tions. Roughly speaking, an oracle-aided function fO is an oracle-aided one-way
function if there is an oracle-aided efficient algorithm that computes fO on every
point, and given an image of fO on a random preimage, any efficient algorithm
(that has oracle access to O) cannot find the preimage.

Definition 2 (Oracle aided one-way function). Let O be an oracle. A func-
tion fO that has oracle access to O is said to be oracle aided one-way if the
following two conditions hold:

1. There exists an oracle-aided polynomial-time algorithm AO such that AO(x) =
fO(x) for every x ∈ {0, 1}∗.

2. For every oracle-aided probabilistic polynomial-time algorithm BO and n ∈ N,

ADVOOWF
f,B = Pr[BO(1n, fO(x)) ∈ (fO)−1(fO(x))] < neg(n),

where the probability is taken uniformly over all possible x ∈ {0, 1}n and the
internal randomness of B.

2.3 Point Obfuscations

A point function Ix : {0, 1}n → {0, 1} returns 1 on input x ∈ {0, 1}n and 0 on
all other inputs. A point obfuscator is an obfuscator that gets a point function
Ix as input (in some canonical form in which x is explicit) and outputs a circuit
with the same functionality but where x is computationally hidden.

Definition 3 (Point obfuscator). A point obfuscator PO(·) is a probabilistic
polynomial-time algorithm that gets as input a point function Ix, where x ∈
{0, 1}n, and outputs a circuit C such that

1. For all x, the circuit C ← PO(Ix) is functionally equivalent to Ix.
2. For any probabilistic polynomial-time algorithm A, there is an probabilistic

polynomial-time simulator S and a negligible function neg(·), such that for
all x ∈ {0, 1}n and n ∈ N,

ADVPO
A,D = | Pr

A,PO
[A(PO(Ix)) = 1] − Pr

S
[SIx(1n)) = 1]| ≤ neg(n).

Moreover, a point obfuscator is called public coin if it publishes all internal
coin tosses as part of its output.

In [12], Canetti provided a construction that satisfies Definition 3 assuming
a strong variant of the DDH assumption. The construction of Canetti is given
next.

Construction 6 ([12]’s point obfuscator). Let G = {Gn}n∈N be a group
ensemble with uniform and efficient representation and operations, where each
Gn is a group of prime order pn ∈ (2n−1, 2n). The public coin point obfuscator
PO for points in the domain Zpn

is defined as follows: PO(Ix) samples a random
generator r ← G

∗
n of Gn and outputs r, rx. Evaluation of the obfuscation at point

z is done by checking whether rx = rz.

Leakage Resilient One-Way Functions: The Auxiliary-Input Setting 145

A multi-bit point function Ix→y : {0, 1}n → {0, 1}m is a function that returns
y ∈ {0, 1}m on input x ∈ {0, 1}n and ⊥ on all other inputs. A multi-bit point
function obfuscator, given a multi-bit point function in some canonical form in
which x and y are explicit, outputs a circuit with the same functionality but
where x and y are computationally hidden.

Definition 4 (Multi-bit point obfuscator). A multi-bit point obfuscator
MBPO is a probabilistic polynomial-time algorithm that gets as input a multi-bit
point function Ix→y, where x ∈ {0, 1}n and y ∈ {0, 1}m, and outputs a circuit C
such that

1. For all x ∈ {0, 1}n and y ∈ {0, 1}m, the circuit C ← MBPO(Ix→y) is func-
tionally equivalent to the function Ix→y.

2. For any probabilistic polynomial-time algorithm A, there is a probabilistic
polynomial-time simulator S and a negligible function neg(·),4 such that for
all n ∈ N, x ∈ {0, 1}n, and y ∈ {0, 1}m and

ADVMBPO
A,D = | Pr

A,MBPO
[A(MBPO(Ix→y)) = 1] − Pr

S
[SIx→y (1n+m) = 1]|

≤ neg(n).

Moreover, a multi-bit point obfuscator is called public coin if it publishes all
internal coin tosses as part of its output.

One way to obtain a multi-bit point obfuscator was suggested by Canetti
and Dakdouk [13]. Specifically, they showed that a composable point obfuscator
gives rise to a multi-bit point obfuscator.

Definition 5 (Composable point obfuscator). A point obfuscator PO(·) is
said to be t-composable if for any probabilistic polynomial-time algorithm A,
there is a probabilistic polynomial-time simulator S and a negligible function
neg(·) such that for any x1, . . . , xt it holds that

ADVt-PO
A,D = | Pr

A,PO
[A(PO(Ix1), . . . ,PO(Ixt

)) = 1] − Pr
S

[SIx1 ,...,Ixt (1t·n)) = 1]|

≤ neg(n).

Canetti and Dakdouk [13] showed how to use an m-composable point function
obfuscator PO to obtain a multi-bit point function that supports outputs (i.e. y
values) of length m. Specifically, they suggested the following construction.

4 We note that for our application of the multi-bit point obfuscator, it is enough to
consider the seemingly relaxed notion of virtual grey-box (VGB) multi-bit point
obfuscators, where the simulator has a polynomial bound on the number of queries
to its oracle, but is otherwise unlimited. We use the stronger definition which is
implied by the weaker one [5, Proposition 7.3].

146 I. Komargodski

Construction 7 ([13]’s multi-bit point obfuscator). Let PO be a point
obfuscator for the domain {0, 1}n. Given a point x ∈ {0, 1}n and value y =
y1 . . . ym ∈ {0, 1}m, sample s ← {0, 1}n uniformly at random and let

ai =

{
x if i = 0 or yi = 1,

s otherwise.

Now, the obfuscation of Ix,y is

MBPO(Ix→y) = PO(Ia0), . . . ,PO(Iam
), (1)

and in order to evaluate MBPO(Ix→y) on input z one first checks if z = a0 = x
(by evaluating the first obfuscated circuit). If not (namely, z 	= a0), then it out-
puts ⊥. Otherwise (namely, if z = a0), it evaluated all other point obfuscations
to find all coordinates in which z = ai = x and outputs y1 . . . ym, where yi = 1 if
a1 = z = x (and 0 otherwise). Notice that if PO is public coin then so is MBPO.

Bitansky and Canetti [5] showed that under the (m + 1)-strong vector DDH
assumption (defined next), the point obfuscator of Canetti from Theorem 6 is
(m + 1)-composable and thus can be used to get a multi-bit point function. We
further observe that since Canetti’s point obfuscator is public coin (see Theo-
rem 6), it follows that Canetti and Dakdouk’s multi-bit point obfuscator is public
coin. We begin with the assumption and then state the theorem.

Definition 6 (Well spread distribution). A distribution Xn over {0, 1}n

is well-spread if it is efficiently and uniformly samplable, and it has super-
logarithmic min-entropy. Namely, H∞(Xn) ≥ ω(log n).

Let m = m(n) be a polynomial. An ensemble of distributions X (1)
n , . . . ,X (m)

n

(each over {0, 1}n) is coordinate-wise well-spread if for each i ∈ [m], X (i)
n is

well-spread.

Assumption 8 (m-strong vector DDH [5]). Let m = poly(n). There
exists a group ensemble G = {Gn}n∈N, , where each Gn is a group of
prime order pn with uniform and efficient representation and operations, such
that for any coordinate-wise well-spread distribution ensemble X = {Xn =
(X (1)

n , . . . ,X (m)
n)}n∈N over vectors in Z

m
pn

the following two ensembles are com-
putationally indistinguishable:5

((g1, ga1
1), . . . , (gm, gam

m)), where g1, . . . , gm ← G
∗
n and (a1, . . . , am) ← Xn

and

((g1, ga1
1), . . . , (gm, gam

m)), where g1, . . . , gm ← G
∗
n and (a1, . . . , am) ← Z

m
pn

.

5 There is a variant for this definition which bears more similarities to DDH, general-
izes the assumption of Canetti [12], and it is equivalent to the definition we presented
as long as m ≥ 2. See [5] for more information.

Leakage Resilient One-Way Functions: The Auxiliary-Input Setting 147

Now we are ready to state the resulting theorem of [5] from Theorem 7 with
the underlying Theorem 8.6

Theorem 9. Assume the (m + 1)-strong vector DDH assumption. Then, the
construction from Eq. 1 is a public coin multi-bit point obfuscator for multi-bit
point functions that output m bits.

3 Definition of Leakage Resilient One-Way Functions

Here we define leakage resilient one-way functions. Intuitively, a one-way function
f is leakage resilient for leakage function g if given f(x) and g(x) it is hard to
recover an x′ such that f(x′) = f(x), where x is chosen uniformly at random.
Our actual definition is a relaxation and a generalization of the above informal
description: (1) we allow f to be sampled from a collection of functions, and (2)
we let g come from an a-priori fixed collection of leakage functions.

More precisely, a leakage resilient one-way function collection F =
{f : {0, 1}n → {0, 1}∗} is defined with respect to a collection of leakage func-
tions L = {g : {0, 1}n → {0, 1}∗}. F is said to be leakage resilient one-way if
given f ← F it is hard to invert f(x) on a random image even given f and g(x)
for any adaptively chosen g ∈ L (namely, the choice of g can depend on f).

Definition 7 (Leakage resilient one-way function). Let F = {f : {0, 1}n →
{0, 1}∗} be a collection of functions associated with an efficient probabilistic sam-
pler GenF (1n) that outputs a function f ∈ F together with an efficient (deter-
ministic) algorithm for evaluating f .

The function collection F is a leakage resilient one-way function collection
for a collection of functions L = {g : {0, 1}n → {0, 1}∗} if for every probabilis-
tic polynomial-time algorithms A = (A0,A1), there exists a negligible function
neg(·) such that for every n ∈ N it holds that

ADVlrOWF
A,F,L = Pr[EXPA,F,L(n) = 1] ≤ neg(n),

where the random variable EXPA,F,L(n) is defined via the following experiment:

1. f ← GenF (1n).
2. (g, state) ← A0(1n, f), where g ∈ L.
3. x∗ ← {0, 1}n (chosen uniformly at random and independently of f and g).
4. x ← A1(f, f(x∗), g(x∗), state).
5. If f(x) = f(x∗), then output 1, and otherwise output 0.

6 It may seem odd that Definitions 3 and 4 are stated in a “worst-case” language,
while Theorem 8 is stated in an “average-case” language. However, notice that the
former are definitions that are given in a simulation-based language while the latter
is an indistinguishability-based one. It is known that for (multi-bit) point functions
all of these variants are equivalent (see [5, Theorem 5.1 and Proposition 7.3] for a
proof).

148 I. Komargodski

If L consists of one fixed leakage function g,7 then we say that f is a selective
leakage resilient one-way function for L. Otherwise, it is called an adaptive
leakage resilient one-way function.

One vs. a collection of leakage resilient functions. One may also be inter-
ested in a single one-way function f : {0, 1}n → {0, 1}∗ which is leakage resilient.
In this case, Item 1 in the definition of the experiment EXPA,F,L(n) can be
ignored. We chose to present and work with a definition which allows f to be
chosen from a family as it is more general and since some of our results actually
require having f be chosen from a collection.

Adaptive vs. selective security. Our definition captures both adaptive and
selective (i.e. non-adaptive) choice of the leakage. Indeed, if the collection L
consists of a single function g, then we can choose the leakage resilient collection
F knowing the leakage g ahead of time (we think of this as the selective setting).
On the other hand, if the collection L contains more functions, we view the
security requirement as an adaptive one, since one has to design the collection
F without knowing in advance which g ∈ L will be chosen by an adversary.
To exemplify an extreme case of the last point, consider the case in which L is
the set of all one-way functions. Then, when designing F , one has very little
information about the leakage.

What kind of leakage makes sense? It does not make sense to allow g ∈ L
to output x, as in this case there is no leakage resilient one-way function family
L. This means that every g ∈ L has to introduce some hardness for inverting
x from g(x) (when x is a uniform input). (This is a standard and necessary
assumption.) There are several interesting settings for the leakage collection L,
for example:

1. All one-way functions.
2. All sub-exponentially hard one-way functions.
3. All functions whose image size is significantly smaller than the domain size.
4. An arbitrary single one-way function.

The notion in Item 3 was studied earlier (see, for example, [3,17] and implic-
itly in [2,29]) and was proven to be achievable from any one-way function. For
completeness we present the construction and proof in Appendix A. In the main
body, we study all other notions.

4 Impossibility of Adaptive Leakage Resilient One-Way
Functions

In this section we prove our negative results. We show that without non-trivial
limitation on the leakage collection L, there cannot be a leakage resilient one-
way functions. Specifically, we show that if the leakage collection L consists of
7 Recall that f and g receive the same input so defining g to be some sort of a universal

circuit and thereby obtaining a huge family of functions is useless.

Leakage Resilient One-Way Functions: The Auxiliary-Input Setting 149

all one-way functions, there cannot be a leakage resilient one-way function for
L. In particular, the leakage can be chosen after the leakage resilient function is
chosen and depend on it.

In Sect. 4.1 we prove this in the random oracle model, where functions have
access to a random oracle (and without any further cryptographic assumptions).
In Sect. 4.2 we provide a construction in the standard model whose security relies
on any public-coin multi-bit point obfuscator.

4.1 Impossibility in the Random Oracle Model

The following theorem shows that there cannot be a leakage resilient one-way
function family F if the leakage function can depend on the function f chosen
from F and if it has oracle access to a random oracle.

Theorem 10. Let O : {0, 1}∗ → {0, 1}n be a random oracle. Let LO =
{g : {0, 1}n → {0, 1}∗} be the collection of all oracle-aided one-way functions.
There is no leakage-resilient one-way function family F = {f : {0, 1}n →
{0, 1}∗} for the collection LO.

Proof. Assume towards contradiction that such a function f : {0, 1}n → {0, 1}∗

exists, where f ∈ F . We shall define an oracle-aided one-way function g ∈ LO

for which

Pr
x←{0,1}n

[A(1n, f(x), g(x)) = x] = 1. (2)

This will contradict the assumption that f is leakage-resilient one-way.
Let g : {0, 1}n → {0, 1}∗ be the following function:

g(x) = O(f(x)) ⊕ x.

We show that Eq. (2) holds and that g is indeed in LO. Given y = f(x)
and y′ = g(x) on a uniform x ∈ {0, 1}n, A can recover x as follows. Apply the
random oracle O on y to get O(y) = O(f(x)) and XOR the output with y′. By
the definition of g, the output must be x.

We are left with showing that g is in LO, that is, it is one-way. Fix n ∈ N

and let A be any q(n)-query inverter. For y ∈ {0, 1}∗ and i ∈ [q(n)] let Qi(y) be
the random variable corresponding to the i-th query made by A to O when A
is given as input the string y. Let us denote by Suci(y) the event that the i-th
query of A to the random oracle defines a preimage. Namely,

Suci(y) = 1 ⇐⇒ ∃x′ ∈ {0, 1}n : Qi(y) = f(x′) and O(f(x′)) ⊕ x′ = y

Therefore,

Pr[AO(y) ∈ f−1(y)] ≤Pr[Suc1(y) = 1]

+
q(n)∑

i=1

Pr[Suci+1(y) = 1 | Suc1(y), . . . ,Suci(y) = 0],

150 I. Komargodski

where y = g(x) and the probabilities are taken over the choice of O and over the
choice of x ∈ {0, 1}n.

To bound the probability of the event Suc1(y) = 1, notice that

Pr[Suc1(y) = 1] ≤ Pr[Q1(y) = f(x)] + Pr[Suc1(y) = 1 | Q1(y) 	= f(x)]

Claim 11. Pr[Q1(y) = f(x)] ≤ neg(n).

Proof. Recall that Q1(y) is the first query that A makes to O. Since x is random
and O maps every input to a random output, in the view of A, f(x) is distributed
uniformly in the distribution of images of f . Since H∞(f(X)) ≥ ω(log n) (see
Theorem 5), it holds that Pr[Q1(y) = f(x)] ≤ neg(n).

Claim 12. Pr[Suc1(y) = 1 | Q1(y) 	= f(x)] = 1/2n.

Proof. Note that

Pr[Suc1(y) = 1 | Q1(y) 	= f(x)]

≤ Pr[O(Q1(y)) = z ⊕ O(f(x)) ⊕ x and z ∈ f−1(Q1(y)) | Q1(y) 	= f(x)].

Since Q1(y) 	= f(x), then the value O(Q1(y)) is completely uniform over {0, 1}n

and independent of O(f(x)). Therefore, the probability that indeed O(Q1(y)) ⊕
z = O(f(x)) ⊕ x, where z ∈ f−1(Q1(y)), is 1/2n.

We use a similar argument to bound the probability that Suci+1(y) = 1
conditioned on Suc1(y) . . . ,Suci(y) = 0. Specifically, we bound the expression

Pr[Suci+1(y) = 1 | Suc1(y), . . . ,Suci(y) = 0]
≤ Pr[Qi+1(y) = f(x) | Suc1(y), . . . ,Suci(y) = 0]
+ Pr[Suci+1(y) = 1 | Suc1(y), . . . ,Suci(y) = 0 and Qi+1(y) 	= f(x)]

Notice that Suc1(y), . . . ,Suci(y) = 0 implies that Q1(y) . . . , Qi(y) 	= f(x). Thus,
the view of A is that f(x) is uniformly distributed in the distribution of images
of f except the points Q1(y) . . . , Qi(y) (some of which may not even be valid
images). Namely, for A the value f(x) is uniformly distribution w.r.t the distrib-
ution in which one samples a random x′ ← {0, 1}n, computes f(x′) and outputs
f(x′) conditioned on f(x′) /∈ {Q1(y) . . . , Qi(y)} (otherwise, we sample x′ again).
This distribution has super-logarithmic min-entropy, namely,

H∞(f(X) | f(X) /∈ {Q1(y) . . . , Qi(y)}) ≥ H∞(f(X)) − log i

≥ ω(log n),

where the last inequality follows from Theorem 5 and since i ≤ q(n) is a poly-
nomial in n. Therefore, as in Theorem 11, we get that

Pr[Qi+1(y) = f(x) | Suc1(y), . . . ,Suci(y) = 0] ≤ neg(n).

Given that Suc1(y), . . . ,Suci(y) = 0 and Qi+1(y) 	= f(x), we have that
Q1+1(y) is completely uniform over {0, 1}n and independent of O(f(x)) and

Leakage Resilient One-Way Functions: The Auxiliary-Input Setting 151

all previous queries O(Q1(y)), . . . ,O(Qi(y)) (we assume, without loss of gen-
erality, that all queries to O are distinct). Therefore, the probability that
O(Qi+1(y)) ⊕ z = O(f(x)) ⊕ x, where z ∈ f−1(Qi+1(y)), is 1/2n. Thus, as
in Theorem 12, we have that

Pr[Suci+1(y) = 1 | Suc1(y), . . . ,Suci(y) = 0 and Qi+1(y) 	= f(x)] = 1/2n.

In conclusion, since q(n) is a polynomial, we get that

Pr[AO(y) ∈ f−1(y)] ≤
q(n)∑

i=0

Pr[Suci+1(y) = 1 | Suc1(y), . . . ,Suci(y) = 0]

≤
q(n)∑

i=0

(neg(n) + 1/2n) ≤ neg(n).

4.2 Impossibility in the Standard Model

The following theorem shows that there cannot be a leakage resilient one-way
function family F if the leakage function can depend on the function f chosen
from F .

Theorem 13. Let L = {g : {0, 1}n → {0, 1}∗} be the collection of all one-way
functions. Assuming a public-coin multi-bit point obfuscator, there is no leak-
age resilient one-way function collection F = {f : {0, 1}n → {0, 1}m} for the
collection L.

Proof. Assume towards contradiction that such a function f : {0, 1}n → {0, 1}m

in F exists. We shall construct a function g ∈ L (depending on f) and show
that for any x ∈ {0, 1}n, f(x) together with g(x) reveal x. Our building block
is a public-coin multi-bit point obfuscator MBPO. Assume that MBPO takes as
input a pair of strings (x, y) ∈ {0, 1}m × {0, 1}n and randomness of length λ.
Let r ← {0, 1}λ be a uniformly random string. We define gr : {0, 1}n → {0, 1}m

that outputs, on input x, a multi-bit point obfuscation of the function If(x)→x.
Namely,

gr(x) = MBPO(If(x)→x; r) (3)

For correctness, we argue that given f(x) and gr(x) together it is easy to
recover x. Indeed, one can just plug in f(x) into the output of gr(x), namely
into MBPO(If(x)→x; r). By the correctness of the multi-bit point obfuscator it
follows that the output of this operation has to be x.

For security we have to prove that gr(x) is a one-way function. Namely,
given gr and gr(x) on a uniformly random x, one cannot recover any x′ such
that gr(x′) = gr(x). First, we observe that by the (perfect) correctness of
MBPO it holds that for every x′ 	= x, it cannot be that MBPO(If(x)→x; r) =
MBPO(If(x′)→x′ ; r). Thus, gr is injective. It is left to show that given gr(x)

152 I. Komargodski

any computationally bounded adversary cannot recover x with non-negligible
probability.

We consider an even easier task for A of just outputting the first bit of x. By
the security of MBPO, we have that for every such adversary A, if there exists
a polynomial p such that

Pr[A(MBPO(If(x)→x; r)) = x1] ≥ 1/2 + 1/p(n),

then there is an efficient simulator S such that

Pr[SIf(x)→x(1n) = x1] ≥ 1/2 + 1/p(n) − neg(n).

However, since If(x)→x outputs ⊥ on all inputs which are not f(x), and since the
distribution f(x) has super-logarithmic min entropy (see Theorem 5), any effi-
cient simulator will never query the oracle on f(x) and thus will get no informa-
tion about x. Hence, it is impossible for it to guess with non-negligible advantage
the first bit of x.

5 Possibility of Selective Leakage Resilient One-Way
Functions

In both impossibility results (Theorems 10 and 13) we used the fact that the
leakage functions can be chosen adaptively and depend on f . In contrast, the fol-
lowing theorem shows that if we limit the choice of the leakage to be independent
of f , a leakage resilient one-way function exists based on various assumptions.

The high level idea is that if the leakage g is fixed ahead of time, we can still
extract from the input (for f and g) enough pseudorandom bits that will ensure
one-wayness.

Theorem 14. Let g : {0, 1}n → {0, 1}m be a fixed leakage one-way function.
Then, there is a leakage-resilient one-way function f : {0, 1}n → {0, 1}∗ for
L = {g} assuming that polynomially-many hardcore bits can be extracted from g.

Instantiating the theorem with known results we obtain the following corollaries:

1. if g is sub-exponentially secure (with known hardness), then f can be based
on any one-way function.

2. if g is a one-way function (with known hardness), then f can be based on any
exponentially-secure one-way function.

3. if g is a injective one-way function, then f can be based on indistinguishability
obfuscation [4].

4. if g is a one-way function, then f can be based on indistinguishability obfus-
cation and auxiliary-input point obfuscators [11].

5. if g is a one-way function, then f can be based on exponential hardness of
DDH [36].

Leakage Resilient One-Way Functions: The Auxiliary-Input Setting 153

Proof of Theorem 14. Let g be the leakage function and let H = {h : {0, 1}n

→ {0, 1}2n} be a family of hardcore function for any one-way function that
output polynomially-many hard-core bits. Note that letting the range be 2n is
without loss of generality since from any polynomial number of hardcore bits we
can use a (standard) PRG and obtain the desired length. The leakage resilient
one-way function f is defined as follows. We sample a random hard-core function
from H and let

fH(x) = H(x)

We argue that fH(x) is a one-way function even given g(x), where g is a
one-way function. For this we use the definition of a hard-core function which
says that the distribution

(H,H(x), g(x))

is computationally indistinguishable from

(H, r, g(x)),

where x ← {0, 1}n, H ← H, and r ← {0, 1}2n are chosen independently uni-
formly at random. Now, since r is of length 2n, with all but exponentially small
probability, it holds that there is no preimage x′ for fH for which fH(x′) = r.
Thus, since g is one-way as well, any polynomial-time adversary cannot find a
preimage.

6 Future Directions

In this work we introduced and studied leakage resilient one-way functions with
arbitrary computationally-hiding leakage. We showed that the natural adaptive
definition is impossible to achieve in the random oracle model and in the standard
model based on a (non-standard) computation assumption. We further observed
that the non-adaptive variant is very related to hardcore functions and in some
sense is dual to it.

It is interesting to base the impossibility result on other assumptions (any
one-way function, DDH or even based on indistinguishability obfuscation). Also,
extracting polynomially-many hardcore bits from any one-way function based
on better assumptions is also an interesting problem.

Acknowledgements. We thank Zvika Brakerski, Moni Naor, Gil Segev, and Eylon
Yogev for many fruitful discussions on the subject of this paper. We thank the reviewers
for their useful comments.

A One-Way Functions Resilient for Bounded Leakage

In both impossibility results (Theorems 10 and 13) we used the fact that the
leakage functions can output enough information to allow anyone to invert the

154 I. Komargodski

original one-way function. In contrast, the theorem below shows that if we limit
the image size of the functions in the leakage collection L, a leakage resilient
one-way function exists assuming one-way functions exist.

We start with a definition of a lossy function (as defined by [33]). This will
capture our restriction on the amount of information the output of the leakage
must “lose”.

Definition 8 ((n, �)-lossy function). A function f : {0, 1}n → {0, 1}n is said
to be (n, �)-lossy if its image {f(x) | x ∈ {0, 1}n} has size at most 2n−� for every
x ∈ {0, 1}n.

Roughly speaking, the parameter � captures the number of information bits f
loses about a typical input x. We note that it is enough for us to relax the
definition of a lossy function and only require that it has bounded image size
on all but a negligible fraction of the x’s. We use the stronger requirement for
simplicity.

The construction will rely on universal one-way hash functions (UOWHFs)
that were introduced by Naor and Yung [32]. The main feature of UOWHFs
is that given an element x in the domain, it is computationally hard to find a
different domain element x′ 	= x which collides with x. Naor and Yung showed
how to use UOWHFs to construct digital signatures. Besides this application,
they showed how to construct them using any injective one-way function. Later,
Rompel [35] showed how to construct UOWHFs from any one-way function (see
also [28]).

In the following definition we define a weak variant of UOWHFs in which the
initial domain element is a uniform random input (rather than an adversarially
chosen input).8 The goal of the adversary is then to find a collision with that
random input.

Definition 9 ((Weak) universal one-way hash functions). Let p(n) =
n1/c be a polynomial where c ∈ N is a constant. A collection of functions
{Fh : {0, 1}n → {0, 1}p(n)} mapping strings of length n to strings of length p(n)
is a (collection of) universal one-way hash functions if it is described by a pair of
efficient algorithms UOWHF = (Gen, F) with the following properties.

1. Gen is a probabilistic algorithm that is given as input the unary value of n,
and it outputs a function index h.

2. For every function index h in the image of Gen, Fh is given as input x ∈
{0, 1}n and it outputs a string of length p(n).

3. For every probabilistic polynomial-time adversary A, there exists a negligible
function neg(·), such that

Pr[x′ ← A(h, x, Fh(x)) : x 	= x′and Fh(x′) = Fh(x)] ≤ neg(n),

where the probability is over the choice of x ← {0, 1}n, the choice of h ←
Gen(1n), and the internal randomness of A.

8 This is sometimes called a second pre-image resistant function.

Leakage Resilient One-Way Functions: The Auxiliary-Input Setting 155

Theorem 15 ([3,17]). Let k = n1/c for a constant c ∈ N and let κ = ω(log n).
Let F = {Fh : {0, 1}n → {0, 1}k−κ} be a family of universal one-way hash func-
tions mapping strings of length n to strings of length k−κ described by (Gen, F).
Let L = {g : {0, 1}n → {0, 1}n} be the collection of all (n, k)-lossy functions.
Then, F is a leakage resilient one-way function collection for L .

The proof uses the notion of average min-entropy defined by Dodis et al. [19]
which captures the remaining unpredictability of X conditioned on the value of
Y . Roughly speaking, the average min-entropy of X given Y is the logarithm of
the average probability of the most likely value of X given Y . That is,

H̃∞(X | Y) = − log
(

E
y←Y

[2−H∞(X|Y =y)]
)

.

The following property of average min-entropy was shown by Dodis et al.
[19].

Lemma 1 ([19, Lemma 2.2]). Let X and Y be two random variables. Then,

1. For any δ > 0, it holds that

Pr
y←Y

[H∞(X | Y = y) ≥ H̃∞(X | Y) − log(1/δ)] ≥ 1 − δ.

2. If Y has at most 2k possible values, then H̃∞(X | Y) ≥ H∞(X) − k.

Proof of Theorem 15. We assume towards contradiction that the statement
is false. Namely, there exists a function g : {0, 1}n → {0, 1}n−k for which there
exists an adversary A such that for x∗ ← {0, 1}n chosen uniformly at random
given

h, Fh(x∗), g(x∗),

where h ← Gen(1n), A is able to recover any x such that Fh(x∗) = Fh(x) with
non-negligible probability 1/p(n). We use this adversary A and construct an
adversary B that breaks the security of the universal one-way hash function.

Let h, x∗, Fh(x∗) be a challenge for the universal one-way hash function,
where h ← Gen(1n) and x∗ ← {0, 1}n is chosen uniformly and independently.
Our adversary B will first simulate the choice of g and compute g(x∗). Then, it
runs the inverter A on input (h, Fh(x∗), g(x∗)) and obtains a preimage x. Finally,
B outputs x as its guess for the collision. We now argue that this adversary
indeed breaks the security of the UOWHF. First, it is clear by the correctness
of the adversary A that Fh(x) = Fh(x∗). We are left to argue that x 	= x∗ with
non-negligible probability.

Roughly speaking, the idea is that since x∗ is chosen uniformly at ran-
dom, given only Fh(x∗) and g(x∗), whose image size altogether 2n, there
is not enough information regarding the real x∗ that maps to Fh(x∗) and g(x∗).
Namely, we will show that with high probability over the choice of x∗, there

156 I. Komargodski

could be many consistent x’s that map to the same output. The inverted can-
not distinguish between them and thus will output the real x∗ with very small
probability. We formalize this intuition next.

Fix the function index h ← Gen(1n) and leakage function g (that might
depend h). Since Fh(x∗) and g(x∗) have together at most 2k−κ · 2n−k = 2n−κ

possible outputs and x∗ ← {0, 1}n is uniform and independent of h, by item 2
of Lemma 1 we have that

H̃∞(x∗ | h, Fh(x∗), g(x∗)) ≥ H∞(x∗ | h) − (n − κ) = κ.

By item 1 of Lemma 1, we get that for any δ > 0, it holds that

Pr
x∗←{0,1}n

[H∞(x∗ | h, Fh(x∗), g(x∗)) ≥ H̃∞(x∗ | h, Fh(x∗), g(x∗)) − log(1/δ)]

≥ 1 − δ.

Therefore,

Pr
x∗←{0,1}n

[H∞(x∗ | h, Fh(x∗), g(x∗)) ≥ κ − log(1/δ)] ≥ 1 − δ. (4)

Let δ = 1/2κ/2. Then, with all but a negligible probability over the choice of
x∗, it holds that

H∞(x∗ | h, Fh(x∗), g(x∗)) ≥ κ − κ/2 = κ/2.

Therefore, since κ = ω(log n), by the definition of min-entropy Pr[x∗ ←
A(h, Fh(x∗), g(x∗))] ≤ neg(·). In conclusion, the adversary B is able to find a
collision with non-negligible probability:

Pr[x ← B(h, Fh(x∗), g(x∗)) : x 	= x∗ and Fh(x∗) = Fh(x), g(x∗) = g(x)]
= Pr[x ← A(h, Fh(x∗), g(x∗)) : Fh(x∗) = Fh(x), g(x∗) = g(x)]
− Pr[x∗ ← A(h, Fh(x∗), g(x∗))] ≥
1/p(n) − neg(n) ≥ 1/(2p(n)).

References

1. Akavia, A., Goldwasser, S., Vaikuntanathan, V.: Simultaneous hardcore bits and
cryptography against memory attacks. In: Reingold, O. (ed.) TCC 2009. LNCS, vol.
5444, pp. 474–495. Springer, Heidelberg (2009). doi:10.1007/978-3-642-00457-5 28

2. Alwen, J., Dodis, Y., Wichs, D.: Leakage-resilient public-key cryptography in the
bounded-retrieval model. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp.
36–54. Springer, Heidelberg (2009). doi:10.1007/978-3-642-03356-8 3

3. Alwen, J., Dodis, Y., Wichs, D.: Survey: leakage resilience and the bounded
retrieval model. In: Kurosawa, K. (ed.) ICITS 2009. LNCS, vol. 5973, pp. 1–18.
Springer, Heidelberg (2010). doi:10.1007/978-3-642-14496-7 1

http://dx.doi.org/10.1007/978-3-642-00457-5_28
http://dx.doi.org/10.1007/978-3-642-03356-8_3
http://dx.doi.org/10.1007/978-3-642-14496-7_1

Leakage Resilient One-Way Functions: The Auxiliary-Input Setting 157

4. Bellare, M., Stepanovs, I., Tessaro, S.: Poly-many hardcore bits for any one-way
function and a framework for differing-inputs obfuscation. In: Sarkar, P., Iwata,
T. (eds.) ASIACRYPT 2014. LNCS, vol. 8874, pp. 102–121. Springer, Heidelberg
(2014). doi:10.1007/978-3-662-45608-8 6

5. Bitansky, N., Canetti, R.: On strong simulation and composable point obfuscation.
J. Cryptol. 27(2), 317–357 (2014)

6. Boyle, E., Goldwasser, S., Jain, A., Kalai, Y.T.: Multiparty computation secure
against continual memory leakage. In: Proceedings of the 44th Symposium on
Theory of Computing Conference, STOC, pp. 1235–1254 (2012)

7. Boyle, E., Segev, G., Wichs, D.: Fully leakage-resilient signatures. J. Cryptol. 26(3),
513–558 (2013)

8. Brakerski, Z., Goldwasser, S.: Circular and leakage resilient public-key encryption
under subgroup indistinguishability. In: Rabin, T. (ed.) CRYPTO 2010. LNCS,
vol. 6223, pp. 1–20. Springer, Heidelberg (2010). doi:10.1007/978-3-642-14623-7 1

9. Brakerski, Z., Kalai, Y.T., Katz, J., Vaikuntanathan, V.: Overcoming the hole
in the bucket: public-key cryptography resilient to continual memory leakage. In:
51th Annual IEEE Symposium on Foundations of Computer Science, FOCS, pp.
501–510 (2010)

10. Brzuska, C., Mittelbach, A.: Indistinguishability obfuscation versus multi-bit point
obfuscation with auxiliary input. In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT
2014. LNCS, vol. 8874, pp. 142–161. Springer, Heidelberg (2014). doi:10.1007/
978-3-662-45608-8 8

11. Brzuska, C., Mittelbach, A.: Using indistinguishability obfuscation via UCEs. In:
Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014. LNCS, vol. 8874, pp. 122–141.
Springer, Heidelberg (2014). doi:10.1007/978-3-662-45608-8 7

12. Canetti, R.: Towards realizing random oracles: hash functions that hide all partial
information. In: Kaliski, B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 455–469.
Springer, Heidelberg (1997). doi:10.1007/BFb0052255

13. Canetti, R., Dakdouk, R.R.: Obfuscating point functions with multibit output.
In: Smart, N. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 489–508. Springer,
Heidelberg (2008). doi:10.1007/978-3-540-78967-3 28

14. Canetti, R., Dodis, Y., Halevi, S., Kushilevitz, E., Sahai, A.: Exposure-resilient
functions and all-or-nothing transforms. In: Preneel, B. (ed.) EUROCRYPT
2000. LNCS, vol. 1807, pp. 453–469. Springer, Heidelberg (2000). doi:10.1007/
3-540-45539-6 33

15. Dav̀ı, F., Dziembowski, S., Venturi, D.: Leakage-resilient storage. In: Garay, J.A.,
Prisco, R. (eds.) SCN 2010. LNCS, vol. 6280, pp. 121–137. Springer, Heidelberg
(2010). doi:10.1007/978-3-642-15317-4 9

16. Dodis, Y., Goldwasser, S., Tauman Kalai, Y., Peikert, C., Vaikuntanathan, V.:
Public-key encryption schemes with auxiliary inputs. In: Micciancio, D. (ed.) TCC
2010. LNCS, vol. 5978, pp. 361–381. Springer, Heidelberg (2010). doi:10.1007/
978-3-642-11799-2 22

17. Dodis, Y., Haralambiev, K., López-Alt, A., Wichs, D.: Cryptography against con-
tinuous memory attacks. In: 51th Annual IEEE Symposium on Foundations of
Computer Science, FOCS, pp. 511–520 (2010)

18. Dodis, Y., Kalai, Y.T., Lovett, S.: On cryptography with auxiliary input. In: Pro-
ceedings of the 41st Annual ACM Symposium on Theory of Computing, STOC,
pp. 621–630 (2009)

19. Dodis, Y., Ostrovsky, R., Reyzin, L., Smith, A.D.: Fuzzy extractors: how to gen-
erate strong keys from biometrics and other noisy data. SIAM J. Comput. 38(1),
97–139 (2008)

http://dx.doi.org/10.1007/978-3-662-45608-8_6
http://dx.doi.org/10.1007/978-3-642-14623-7_1
http://dx.doi.org/10.1007/978-3-662-45608-8_8
http://dx.doi.org/10.1007/978-3-662-45608-8_8
http://dx.doi.org/10.1007/978-3-662-45608-8_7
http://dx.doi.org/10.1007/BFb0052255
http://dx.doi.org/10.1007/978-3-540-78967-3_28
http://dx.doi.org/10.1007/3-540-45539-6_33
http://dx.doi.org/10.1007/3-540-45539-6_33
http://dx.doi.org/10.1007/978-3-642-15317-4_9
http://dx.doi.org/10.1007/978-3-642-11799-2_22
http://dx.doi.org/10.1007/978-3-642-11799-2_22

158 I. Komargodski

20. Dodis, Y., Pietrzak, K.: Leakage-resilient pseudorandom functions and side-channel
attacks on Feistel networks. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223,
pp. 21–40. Springer, Heidelberg (2010). doi:10.1007/978-3-642-14623-7 2

21. Dodis, Y., Sahai, A., Smith, A.: On perfect and adaptive security in exposure-
resilient cryptography. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol.
2045, pp. 301–324. Springer, Heidelberg (2001). doi:10.1007/3-540-44987-6 19

22. Dziembowski, S., Pietrzak, K.: Leakage-resilient cryptography. In: 49th Annual
IEEE Symposium on Foundations of Computer Science, FOCS, pp. 293–302 (2008)

23. Faust, S., Kiltz, E., Pietrzak, K., Rothblum, G.N.: Leakage-resilient signatures. In:
Micciancio, D. (ed.) TCC 2010. LNCS, vol. 5978, pp. 343–360. Springer, Heidelberg
(2010). doi:10.1007/978-3-642-11799-2 21

24. Faust, S., Rabin, T., Reyzin, L., Tromer, E., Vaikuntanathan, V.: Protecting cir-
cuits from computationally bounded and noisy leakage. SIAM J. Comput. 43(5),
1564–1614 (2014)

25. Goldreich, O., Levin, L.A.: A hard-core predicate for all one-way functions. In:
Proceedings of the 21st Annual ACM Symposium on Theory of Computing, STOC,
pp. 25–32 (1989)

26. Goldwasser, S., Kalai, Y.T.: On the impossibility of obfuscation with auxiliary
input. In: 46th Annual IEEE Symposium on Foundations of Computer Science,
FOCS, pp. 553–562 (2005)

27. Ishai, Y., Sahai, A., Wagner, D.: Private circuits: securing hardware against prob-
ing attacks. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 463–481.
Springer, Heidelberg (2003). doi:10.1007/978-3-540-45146-4 27

28. Katz, J., Koo, C.: On constructing universal one-way hash functions from arbitrary
one-way functions. IACR Cryptology ePrint Archive, p. 328 (2005)

29. Katz, J., Vaikuntanathan, V.: Signature schemes with bounded leakage resilience.
In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 703–720. Springer,
Heidelberg (2009). doi:10.1007/978-3-642-10366-7 41

30. Micali, S., Reyzin, L.: Physically observable cryptography. In: Naor, M. (ed.) TCC
2004. LNCS, vol. 2951, pp. 278–296. Springer, Heidelberg (2004). doi:10.1007/
978-3-540-24638-1 16

31. Naor, M., Segev, G.: Public-key cryptosystems resilient to key leakage. SIAM J.
Comput. 41(4), 772–814 (2012)

32. Naor, M., Yung, M.: Universal one-way hash functions and their cryptographic
applications. In: Proceedings of the 21st Annual ACM Symposium on Theory of
Computing, STOC, pp. 33–43 (1989)

33. Peikert, C., Waters, B.: Lossy trapdoor functions and their applications. SIAM J.
Comput. 40(6), 1803–1844 (2011)

34. Pietrzak, K.: A leakage-resilient mode of operation. In: Joux, A. (ed.) EURO-
CRYPT 2009. LNCS, vol. 5479, pp. 462–482. Springer, Heidelberg (2009). doi:10.
1007/978-3-642-01001-9 27

35. Rompel, J.: One-way functions are necessary and sufficient for secure signatures.
In: Proceedings of the 22nd Annual ACM Symposium on Theory of Computing,
STOC, pp. 387–394 (1990)

36. Zhandry, M.: The magic of ELFs. In: Robshaw, M., Katz, J. (eds.) CRYPTO
2016. LNCS, vol. 9814, pp. 479–508. Springer, Heidelberg (2016). doi:10.1007/
978-3-662-53018-4 18

http://dx.doi.org/10.1007/978-3-642-14623-7_2
http://dx.doi.org/10.1007/3-540-44987-6_19
http://dx.doi.org/10.1007/978-3-642-11799-2_21
http://dx.doi.org/10.1007/978-3-540-45146-4_27
http://dx.doi.org/10.1007/978-3-642-10366-7_41
http://dx.doi.org/10.1007/978-3-540-24638-1_16
http://dx.doi.org/10.1007/978-3-540-24638-1_16
http://dx.doi.org/10.1007/978-3-642-01001-9_27
http://dx.doi.org/10.1007/978-3-642-01001-9_27
http://dx.doi.org/10.1007/978-3-662-53018-4_18
http://dx.doi.org/10.1007/978-3-662-53018-4_18

Simulating Auxiliary Inputs, Revisited

Maciej Skórski(B)

University of Warsaw, Warsaw, Poland
maciej.skorski@mimuw.edu.pl

Abstract. For any pair (X, Z) of correlated random variables we can
think of Z as a randomized function of X. If the domain of Z is small,
one can make this function computationally efficient by allowing it to be
only approximately correct. In folklore this problem is known as simulat-
ing auxiliary inputs. This idea of simulating auxiliary information turns
out to be a very usefull tool, finding applications in complexity theory,
cryptography, pseudorandomness and zero-knowledge. In this paper we
revisit this problem, achieving the following results:
(a) We present a novel boosting algorithm for constructing the simu-

lator. This boosting proof is of independent interest, as it shows
how to handle “negative mass” issues when constructing probabil-
ity measures by shifting distinguishers in descent algorithms. Our
technique essentially fixes the flaw in the TCC’14 paper “How to
Fake Auxiliary Inputs”.

(b) The complexity of our simulator is better than in previous works,
including results derived from the uniform min-max theorem due
to Vadhan and Zheng. To achieve (s, ε)-indistinguishability we need
the complexity O

(
s · 25�ε−2

)
in time/circuit size, which improve

previous bounds by a factor of ε−2. In particular, with we get mean-
ingful provable security for the EUROCRYPT’09 leakage-resilient
stream cipher instantiated with a standard 256-bit block cipher, like
AES256.

Our boosting technique utilizes a two-step approach. In the first step we
shift the current result (as in gradient or sub-gradient descent algorithms)
and in the separate step we fix the biggest non-negative mass constraint
violation (if applicable).

Keywords: Simulating auxiliary inputs · Boosting · Leakage-resilient
cryptography · Stream ciphers · Computational indistinguishability

The full (and updated) version of this paper is available at the Cryptology ePrint
archive and the arXiv archive (http://arxiv.org/abs/1503.00484).
M. Skorski—Supported by the National Science Center, Poland
(2015/17/N/ST6/03564).

c© International Association for Cryptologic Research 2016
M. Hirt and A. Smith (Eds.): TCC 2016-B, Part I, LNCS 9985, pp. 159–179, 2016.
DOI: 10.1007/978-3-662-53641-4 7

http://arxiv.org/abs/1503.00484

160 M. Skórski

1 Introduction

1.1 Simulating Correlated Information

Informal Problem Statement. Let (X,Z) ∈ X × Z be a pair of correlated
random variables. We can think of Z as a randomized function of X. More
precisely, consider the randomized function h : X → Z, which for every x outputs
z with probability Pr[Z = z|X = x]. By definition it satisfies

(X,h(X)) d= (X,Z) (1)

however the function h is inefficient as we need to hardcode the conditional
probability table of Z|X. It is natural to ask, if this limitation can be overcome

Q1: Can we represent Z as an efficient function of X?

Not surprisingly, it turns out that a positive answer may be given only in com-
putational settings. Note that replacing the equality in Eq. (1) by closeness in
the total variation distance (allowing the function h to make some mistakes
with small probability) is not enough1. This discussion leads to the following
reformulated question

Q1’: Can we efficiently simulate Z as a function of X?

Why It Matters? Aside from being very foundational, this question is relevant
to many areas of computer science. We will not discuss these applications in
detail, as they are well explained in [JP14]. Below we only mention where such
a generic simulator can be applied, to show that this problem is indeed well-
motivated.

(a) Complexity Theory. From the simulator one can derive Dense Model The-
orem [RTTV08], Impagliazzo’s hardcore lemma [Imp95] and a version of
Szemeredis Regularity Lemma [FK99].

(b) Cryptography. The simulator can be applied for settings where Z models
short leakage from a secret state X. It provides tools for improving and
simplifying proofs in leakage-resilient cryptography, in particular for leakage-
resilient stream ciphers [JP14].

(c) Pseudorandomness. Using the simulator one can conclude results called chain
rules [GW11], which quantify pseudorandomness in conditioned distribu-
tions. They can be also applied to leakage-resilient cryptography.

(d) Zero-knowledge. The simulator can be applied to represent the text
exchanged in verifier-prover interactions Z from the common input X
[CLP15].

Thus, the simulator may be used as a tool to unify, simplify and improve many
results. Having briefly explained the motivation we now turn to answer the posed
question, leaving a more detailed discussion of some applications to Sect. 1.6.
1 Indeed, consider the simplest case Z = {0, 1}, define X to be uniform over X =

{0, 1}n, and take Z = f(X) where f is a function which is 0.5-hard to predict by
circuits exponential in n, Then (X, h(X)) and (X, Z) are at least 1

4
-away in total

variation.

Simulating Auxiliary Inputs, Revisited 161

1.2 Problem Statement

The problem of simulating auxiliary inputs in the computational setting can be
defined precisely as follows

Given a random variables X ∈ {0, 1}n and correlated Z ∈ {0, 1}�, what
is the minimal complexity sh of a (randomized) function h such that the
distributions of h(X) and Z are (ε, s)-indistinguishable given X, that is

|ED(X,h(X)) − ED(X,Z)| < ε

holds for all (deterministic) circuits D of size s?

The indistinguishability above is understood with respect to deterministic cir-
cuits. However it doesn’t really matter for distinguishing two distributions, where
randomized and deterministic distinguishers are equally powerful2.

It turns out that it is relatively easy3 to construct a simulator h with a
polynomial blowup in complexity, that is when

sh = poly
(
s, ε−1, 2�

)
.

However, more challenging is to minimize the dependency on ε−1. This problem
is especially important for cryptography, where security definitions require the
advantage ε to be possibly small. Indeed, for meaningful security ε = 2−80 or at
least ε = 2−40 it makes a difference whether we lose ε−2 or ε−4. We will see later
how much inefficient bounds here may affect provable security of stream ciphers.

1.3 Related Works

Original Work of Jetchev and Pietrzak (TCC’14). The authors showed
that Z can be “approximately” computed from X by an “efficient” function h.

Theorem 1 ([JP14], corrected). For every distribution (X,Z) on {0, 1}n ×
{0, 1}� and every ε, s, there exists a “simulator” h : {0, 1}n → {0, 1}� such that

(a) (X,h(X)) and (X,Z) are (ε, s)-indistinguishable
(b) h is of complexity sh = O

(
s · 24�ε−4

)

The proof uses the standard min-max theorem. In the statement above we correct
two flaws. One is a missing factor of 2�. The second (and more serious) one is
the (corrected) factor ε−4, claimed incorrectly to be ε−2. The flaws are discussed
in AppendixA.

2 If two distributions can be distinguished by a randomized circuit, we can fix a specific
choice of coins to achieve at least the same advantage.

3 We briefly sketch the idea of the proof: note first that it is easy to construct a
simulator for every single distinguisher. Having realized that, we can use the min-
max theorem to switch the quantifiers and get one simulator for all distinguishers.

162 M. Skórski

Vadhan and Zheng (CRYPTO’13). The authors derived a version of The-
orem 1 but with incomparable bounds

Theorem 2 ([VZ13]). For every distribution X,Z on {0, 1}n × {0, 1}� and
every ε, s, there exists a “simulator” h : {0, 1}n → {0, 1}� such that

(a) (X,h(X)) and (X,Z) are (s, ε)-indistinguishable
(b) h is of complexity sh = O

(
s · 2�ε−2 + 2�ε−4

)

The proof follows from a general regularity theorem which is based on their uni-
form min-max theorem. The additive loss of O

(
2�ε−4

)
appears as a consequence

of a sophisticated weight-updating procedure. This error is quite large and may
dominate the main term for many settings (whenever s � ε−2).

As we show later, Theorems 1 and 2 give in fact comparable security bounds
when applied to leakage-resilient stream ciphers (see Sect. 1.6)

1.4 Our Results

We reduce the dependency of the simulator complexity sh on the advantage ε to
only a factor of ε−2, from the factor of ε−4.

Theorem 3 (Our Simulator). For every distribution X,Z on {0, 1}n×{0, 1}�

and every ε, s, there exists a “simulator” h : {0, 1}n → {0, 1}� such that

(a) (X,h(X)) and (X,Z) are (s, ε)-indistinguishable
(b) h is of complexity sh = O

(
s · 25� log(1/ε)ε−2

)

Below in Table 1 we compare our result to previous works.

Table 1. The complexity of simulating �-bit auxiliary information given required
indistinguishability strength, depending on the proof technique. For simplicity, terms
polylog(1/ε) are omitted.

Author Technique Advantage Size Cost of simulating

[JP14] (Theorem1) Min-Max ε s sh = O
(

s · 24�ε−4
)

[VZ13] (Theorem2) Complicated boosting sh = O
(

s · 2�/ε2 + 2�ε−4
)

This paper (Theorem3) Simple boosting sh = O
(

s · 25�ε−2
)

Our result is slightly worse in terms of dependency �, but outperforms pre-
vious results in terms of dependency on ε−1. However, the second dependency
is more crucial for cryptographic applications. Note that the typical choice is
sub-logarithmic leakage, that is � = o

(
log ε−1

)
is asymptotic settings4 (see for

example [CLP15]). Stated in non-asymptotic settings this assumption translates

4 This is a direct consequence of the fact that we want � to fit poly-preserving reduc-
tions.

Simulating Auxiliary Inputs, Revisited 163

to � < c log ε−1 where c is a small constant (for example c = 1
12 see [Pie09]). In

these settings, we outperform previous results.
To illustrate this, suppose we want to achieve security ε = 2−60 simulating

just one bit from a 256-bit input. As it follows from Table 1, previous bounds
are useless as they give the complexity bigger than 2256 which is the worst
complexity of all boolean functions over the chosen domain. In settings like
this, only our bound can be applied to conclude meaningful results. For more
concrete examples of settings where our bounds are even only meaningful, we
refer to Table 2 in Sect. 1.6.

1.5 Our Techniques

Our approach utilizes a simple boosting technique: as long as the condition (a)
in Theorem 3 fails, we can use the distinguisher to improve the simulator. This
makes our algorithm constructive with respect to distinguishers obtained from
an oracle5, similarly to other boosting proofs [JP14,VZ13]. In short, if for a
“candidate” solution h there exists D such that

ED(X,Z) − ED(X,h(X)) > ε

then we construct a new solution h′ using D and h, according to the equation6

Pr[h′(x) = z] = Pr[h(x) = z] + γ · Shift (D(x, z)) + Corr(x, z)

where

(a) The parameter γ is afixed step chosen in advance (its optimal value depends
on ε and � and is calculated in the proof.)

(b) Shift (D(x, z)) is a shifted version of D, so that
∑

z Shift (D(x, z)) = 0. This
restriction correspond to the fact that we want to preserve the constraint∑

z h(x, z) = 1. More precisely, Shift (D(x, z)) = D(x, z) − Ez′←U�
D(x, z)

(c) Corr(x, z) is a correction term used to fix (some of) possibly negative weights.

The procedure is being repeated in a loop, over and over again. The main tech-
nical difficulty is to show that it eventually stops after not so many iterations.

Note that in every such a step the complexity cost of the shifting term is
O

(
2� · size(D)

)
7. The correction term, in our approach, does a search over z

looking for the biggest negative mass, and redistributes it over the remaining
points. Intuitively, it works because the total negative mass is getting smaller
with every step. See Algorithm 1 for a pseudo-code description of the algorithm
and the rest of Sect. 3 for a proof.

5 The oracle evaluates the distance of the given candidate solution and the simulated
distribution, answering with a distiguisher if the distance is smaller than required.

6 As we already mentioned, we can assume that D is deterministic without loss of
generality. Then all the terms in the equation are well-defined.

7 By definition, it requires computing the average of D(x, ·) over 2� elements.

164 M. Skórski

1.6 Applications

Better Security for the EUROCRYPT’09 Stream Cipher. The first
construction of leakage-resilient stream cipher was proposed by Dziembowski
and Pietrzak in [DP08]. On Fig. 1 below we present a simplified version of this
cipher [Pie09], based on a weak pseudorandom function (wPRF).

K0

x0

K1

F

F

F

F

x1

K3

x2

K2

x3

K4

K5

x5

L0 L2

L1 L3

Fig. 1. The EUROCRYPT’09 stream cipher (adaptive leakage). F denotes a weak
pseudorandom function. By Ki and xi we denote, respectively, values of the secret
state and keystream bits. Leakages are denotted in gray with Li.

Jetchev and Pietrzak in [JP14] showed how to use the simulator theorem to
simplify the security analysis of the EUROCRYPT’09 cipher. The cipher secu-
rity depends on the complexity of the simulator as explained in Theorem1 and
Remark 2. We consider the following setting:

– number of rounds q = 16,
– F instantiated with AES256 (as in [JP14])
– cipher security we aim for ε′ = 2−40

– λ = 3 bits of leakage per round

The concrete bounds for (q, ε′, s′)-security of the cipher (which roughly speaking
means that q consecutive outputs is (s′, ε′)-pseudorandom, see Sect. 2 for a formal
definition) are given in Table 2 below. We ommit calculations as they are merely
putting parameters from Theorems 1, 2 and 3 into Remark 2 and assuming that
AES as a weak PRF is (ε, s)-secure for any pairs s/ε ≈ 2k (following the similar
example in [JP14]).

More generally, we can give the following comparison of security bounds for
different wPRF-based stream ciphers, in terms of time-sccess ratio. The bounds
in Table 3 follow from the simple lemma in Sect. 4, which shows how the time-
success ratio changes under explicit reduction formulas.

Simulating Auxiliary Inputs, Revisited 165

Table 2. The security of the EUROCRYPT’09 stream cipher, instantiated with
AES256 as a weak PRF of rouhgly k = 256 bits of security. In this settngs only
our new bounds provide non-trivial bounds.

Analysis/authors wPRF security Leakage Advantage ε′ Size s′

[JP14] (Theorem 1) 256 λ = 3 2−40 0

[VZ13] (Theorem 2) 0

This paper (Theorem 3) 266

Table 3. Different bounds for wPRF-based leakage-resilient stream ciphers. k is the
security level of the underlying wPRF. The value k′ is the security level for the
cipher, understood in terms of time-success ratio. the numbers denote: (1) The EURO-
CRYPT’09 cipher, (2) The CSS’10/CHESS’12 cipher, (3) The CT-RSA’13 cipher.

Cipher Analysis Proof techniques Security level Comments

(1) [Pie09] Pseudoentropy chain rules k′ � 1
8
k Large number of blocks

(1) [JP14] Aux. Inputs Simulator (corr.) k′ ≈ k
6

− 5
6
λ

(1) [VZ13] Aux. Inputs Simulator k′ ≈ k
6

− 1
3
λ

(1) This work Aux. Inputs Simulator k′ ≈ k
4

− 4
3
λ

(2) [FPS12] Pseudoentropy chain rules k′ ≈ k
5

− 3
5
λ Large public seed

(3) [YS13] Square-friendly apps. k′ ≈ k
4

− 3
4
λ Only in minicrypt

1.7 Organization

In Sect. 2 we discuss basic notions and definitions. The proof of Theorem3
appears in Sect. 3.

2 Preliminaries

2.1 Notation

By Ey←Y f(y) we denote an expectation of f under y sampled according to the
distribution Y .

2.2 Basic Notions

Indistinguishability. Let V be a finite set, and D be a class of deterministic [0, 1]-
valued functions on V. For any two real functions f1, f2 on V, we say that f1, f2
are (D, ε)-indistinguishable if

∀D ∈ D :

∣
∣
∣
∣
∣

∑

x∈V
D(x) · f1(x) −

∑

x∈V
D(x) · f2(x))

∣
∣
∣
∣
∣
� ε

166 M. Skórski

Note that the domain V depends on the context. If X1,X2 are two probability
distributions, we say that they are (s, ε)-indistinguishable if their probability
mass functions are indistinguishable, that is when

∣
∣
∣
∣
∣

∑

x∈V

D(x) · Pr[X1 = x] −
∑

x∈V

D(x) · Pr[X2 = x]

∣
∣
∣
∣
∣
� ε

for all D ∈ D. If D consists of all circuits of size s we say that f1, f2 are (s, ε)-
indistinguishable.

Remark 1. This an extended notion of indistinguishability, borrowed from
[TTV09], which captures not only probability measures but also real-valued func-
tions. A good intuition is provided by the following observation [TTV09]: think
of functions over V as |V|-dimensional vectors then ε � |

∑
x∈V D(x) · f1(x) −∑

x∈V D(x) · f2(x)| = |〈f1 − f2,D〉| means that f1 and f2 are nearly orthogonal
for all test functions in D.

Distinguishers. In the definition above we consider deterministic distinguishers,
as this is required by our algorithm. However, being randomized doesn’t help in
distinguishing, as any randomized-distinguisher achieving advantage ε when run
on two fixed distributions can be converted into a deterministic distinguishers of
the same size and advantage (by fixing one choice of coins). Moreover, any real-
valued distinguisher can be converted, by a boolean threshold, into a boolean
one with at least the same advantage [FR12].

Relative Complexity. We say that a function h has complexity at most T rel-
ative to the set of functions D if there are functions D1, . . . ,DT such h can
be computed by combining them using at most T of the following operations:
(a) multiplication by a constant, (b) application of a boolean threshold function,
(c) sum, (d) product.

2.3 Stream Ciphers Definitions

We start with the definition of weak pseudorandom functions, which are com-
putationally indistinguishable from random functions, when queried on random
inputs and fed with uniform secret key.

Definition 1 (Weak pseudorandom functions). A function F : {0, 1}k ×
{0, 1}n → {0, 1}m is an (ε, s, q)-secure weak PRF if its outputs on q random
inputs are indistinguishable from random by any distinguisher of size s, that is

|Pr [D ((Xi)
q
i=1 ,F((K,Xi)

q
i=1) = 1] − Pr [D ((Xi)

q
i=1 , (Ri)

q
i=1) = 1]| � ε

where the probability is over the choice of the random Xi ← {0, 1}n, the choice
of a random key K ← {0, 1}k and Ri ← {0, 1}m conditioned on Ri = Rj if
Xi = Xj for some j < i.

Simulating Auxiliary Inputs, Revisited 167

Stream ciphers generate a keystream in a recursive manner. The security requires
the output stream should be indistinguishable from uniform8.

Definition 2 (Stream ciphers). A stream-cipher SC : {0, 1}k → {0, 1}k ×
{0, 1}n is a function that, when initialized with a secret state S0 ∈ {0, 1}k,
produces a sequence of output blocks X1,X2, ... computed as

(Si,Xi) := SC(Si−1).

A stream cipher SC is (ε, s, q)-secure if for all 1 � i � q, the random variable Xi

is (s, ε)-pseudorandom given X1, ...,Xi−1 (the probability is also over the choice
of the initial random key S0).

Now we define leakage resilient stream ciphers, following the “only computation
leaks” assumption.

Definition 3 (Leakage-resilient stream ciphers). A leakage-resilient
stream-cipher is (ε, s, q, λ)-secure if it is (ε, s, q)-secure as defined above, but
where the distinguisher in the j-th round gets λ bits of arbitrary deceptively
chosen leakage about the secret state accessed during this round. More pre-
cisely, before (Sj ,Xj) := SC(Sj−1) is computed, the distinguisher can choose
any leakage function fj with range {0, 1}λ, and then not only get Xj, but also
Λj := fj(Ŝj−1), where Ŝj−1 denotes the part of the secret state that was modified
(i.e., read and/or overwritten) in the computation SC(Sj−1).

2.4 Security of Leakage-Resilient Stream Ciphers

Best provable secure constructions of leakage-resilient streams ciphers are based
on so called weak PRFs, primitives which look random when queried on random
inputs [Pie09,FPS12,JP14,DP10,YS13]. The most recent (TCC’14) analysis is
based on a version of Theorem 1.

Theorem 4 (Proving Security of Stream Ciphers [JP14]). If F is a
(εF , sF , 2)-secure weak PRF then SCF is a (ε′, s′, q, λ)-secure leakage resilient
stream cipher where

ε′ = 4q
√

εF 2λ, s′ = Θ(1) · sF ε′4

24λ
.

Remark 2 (The exact complexity loss). An inspection of the proof in [JP14]
shows that sF equals the complexity of the simulator h in Theorem 1, with
circuits of size s′ as distingusihers and ε replaced by ε′.

8 We note that in a more standard notion the entire stream X1, . . . , Xq is indistin-
guishable from random. This is implied by the notion above by a standard hybrid
argument, with a loss of a multiplicative factor of q in the distinguishing advantage.

168 M. Skórski

2.5 Time-Success Ratio

The running time (circuit size) s and success probability ε of attacks (practical
and theoretical) against a particular primitive or protocol may vary. For this
reason Luby [LM94] introduced the time-success ratio t

ε as a universal measure
of security. This model is widely used to analyze provable security, cf. [BL13]
and related works.

Definition 4 (Security by Time-Success Ratio [LM94]). A primitive P
is said to be 2k-secure if for every adversary with time resources (circuit size in
the nonuniform model) s, the success probability in breaking P (advantage) is at
most ε < s · 2−k. We also say that the time-success ratio of P is 2k, or that is
has k bits of security.

For example, AES with a 256-bit random key is believed to have 256 bits of
security as a weak PRF9.

3 Proof of Theorem3

For technical convenience, we attempt to efficiently approximate the conditional
probability function g(x, z) = Pr[Z = z|X = x] rather than building the sam-
pler directly. Once we end with building an efficient approximation h(x, z), we
transform it into a sampler hsim which outputs z with probability h(x, z) (this
transformation yields only a loss of 2� log(1/ε)). We are going to prove the fol-
lowing fact

For every function g on X × Z which is a X -conditional probability mass
function over Z (that is g(x, z) � 0 for all x, z and

∑
z g(x, z) = 1 for every

x), and for every class D closed under complements10 there exists h such
that
(a) h is a X -conditional probability mass function over Z
(b) h is of complexity sh = O(24�ε−2) with respect to D
(c) (X,Z) and (X,hsim(X)) are indistinguishable, which in terms of g

and h means
∣
∣
∣
∣
∣

∑

z

Ex∼X [D(x, z) · (g(x, z) − h(x, z))]

∣
∣
∣
∣
∣
� ε (2)

The sketch of the construction is shown in Algorithm 1. Here we would like to
point out two things. First, we stress that we do not produce a strictly positive
function; what our algorithm guarantees, is that the total negative mass issmall.
We will see later that this is enough. Second, our algorithm performs essentially
same operations for every x, which is why its complexity depends only on Z.

We denote for shortness D(x, z) = D(x, z) − Ez′←UZ D(x, z′) for any D (the
“shift” transformation).
9 We consider the security of AES256 as a weak PRF, and not a standard PRF, because

of non-uniform attacks which show that no PRF with a k-bit key can have s/ε ≈ 2k

security [DTT09], at least unless we additionally require ε � 2−k/2.
10 This is a standard assumption in indistinguishability proofs. We can always extend

the class by adding −D for every D ∈ D, which increases the complexity only by 1.

Simulating Auxiliary Inputs, Revisited 169

Algorithm 1. Construct the Auxiliary Inputs Simulator
input : Function g : {0, 1}n × {0, 1}� → [0, 1], accuracy paramter ε > 0, class

D, step γ
output: Function h which is ε-indistinguishable from g under D, add up to 1

for every x, and with total negative mass smaller γ|Z|3
1 t ← 0
2 h0(x, z) ← 1

|Z| for every x and z

3 while exists D ∈ D such that Ex∼X

[∑
z D(x, z) · (g(x, z′) − ht(x, z′)

)]
� ε do

/* while the simulator is not good enough */

4 Dt+1 ← D
5 for z′ ∈ Z do /* improve the simulator towards the distinguisher

direction */

6 ht+1(x, z′) ← ht(x, z′) + γ · Dt+1(x, z′)

7 t ← t + 1
8 m ← 0
9 for z′ ∈ Z do /* locate the biggest negative point mass */

10 if ht(x, z′) < m then
11 m ← ht(x, z′)
12 z− ← z′

13 ht(x, z−) = 0 /* cut the biggest negative mass */ for z′ ∈ Z do
14 ht(x, z′) ← ht(x, z′) + m

|Z|−1
/* redestribute the cut mass */

15 return ht(x, z)

Proof. Consider the functions ht. Define h̃t+1(x, z)
def
= ht(x, z) + γ · Dt+1

(x, z).
According to Algorithm 1, we have

ht+1(x, z) = ht(x, z) + γ · Dt+1
(x, z) + θt+1(x, z) (3)

with the correction term θt(x, z) that be computed recursively as (see Line 13
in Algorithm 1)

θt(x, z) = 0

θt(x, z) =

⎧
⎨

⎩

−min
(
ht(x, z) + γ · Dt+1

(x, z), 0
)

, if z = zt
min(x)

min
(

ht(x,zt
min(x)))+γ·Dt+1

(x,zt
min(x)),0

)

#Z−1 if z
= zt
min(x)

t = 0, 1, . . .

(4)

where zt
min(x) is one of the points z minimizing ht(x, z) + γ ·Dt+1

(x, z) (chosen
and fixed for every t) . In particular

ht(x, zt
min(x))) + γ · Dt+1

(x, zt
min(x)) < 0 ⇐⇒ ∃z : ht(x, z) + γ · Dt+1

(x, z) < 0
(5)

Notation: for notational convenience we indenify the functions Dt(x, z), D
t
(x, z),

θt(x, z), h̃t(x, z) and ht(x, z) with matrices where x are columns and z are rows.

170 M. Skórski

That is ht
x denotes the |Z|-dimensional vector with entries ht(x, z) for z ∈ Z

and similarly for other functions Dt(x, z), D
t
(x, z), θt(x, z), h̃t(x, z).

Claim 1 (Complextity of Algorithm1). T executions of the “while loop” can be
realized with time O (T · |Z| · size(D)) and memory O(|Z|).11

This claim describes precisely resources required to compute the function hT for
every T . In order to bound T , we define the energy function as follows:

Claim 2 (Energy function). Define the auxiliary function

Δt =
t−1∑

i=0

Ex∼X

[
D

i+1

x ·
(
gx − hi

x

)]
. (6)

Then we have Δt = E1 + E2 where

E1 = 1
γ Ex∼X

[(
ht

x − h0
x

)
· gx + 1

2

∑t−1
i=0

(
hi+1

x − hi
x

)2 − 1
2

(
(ht

x)2 −
(
h0

x

)2)]

E2 = 1
γ Ex∼X

[
−

∑t−1
i=0 θi+1

x ·
(
gx − hi+1

x

)
−

∑t−1
i=0 θi+1

x ·
(
hi+1

x − hi
x

)]
(7)

Note that all the symbols represent vectors and multiplications, including
squares, should be understood as scalar products. The proof is based on simple
algebraic manipulations and appears in AppendixB.

Remark 3 (Technical issues and intuitions). To upper-bound the formulas in
Eq. (7), we need the following important properties

(a) Boundedness of correction terms, that is ideally |θi(x.z)| = O(poly(|Z|) · γ).
(b) Acute angle between the correction and the error, that is θi

x · (gx − hi
x) � 0.

Below we present an outline of the proof, discussing more technical parts in the
appendix.

Proof Outline. Indeed, with these assumptions we prove an upper bound on
the energy function, namely

E1 + E2 � O
(
poly(|Z|) ·

(
tγ + γ−1

))
, (8)

which follows from the properties (a) and (b) above (they are proved in Claims 4
and 3 below, and the inequality on E1 + E2 is derived in Claim 5). Note that,
except a factor poly(|Z|), our formula (not the proof, though) is identical to
the bound used in [TTV09] (see Claim 3.4 in the eprint version). Indeed, our
theorem is, to some extent, an extension to the main result in [TTV09] to cover
the conditional case, where |X | > 1. The main difference is that we show how to
simulate a short leakage |Z| given X, whereas [TTV09] shows how to simulate

11 The RAM model.

Simulating Auxiliary Inputs, Revisited 171

Z alone, under the assumption that the distribution of Z is dense in the uniform
distribution (the min-entropy gap being small)12.

Since the bound above is valid for any step t, and since on the other
hand we have tε � Δt after t steps of the algorithm, we achieve a contradic-
tion (to the number of steps) setting γ = ε/poly(|Z). Indeed, suppose that
tε � A|Z|B(γ−1 + tγ) for some positive constants A,B. Since the step size γ

can be chosen arbitrarily, we can set γ = ε
2A|Z|B which yields tε

2 � 2A2|Z|B
ε

or t � 4A2|Z|Bε−2, which means that the algorithm terminates after at most
T = poly(|Z|)ε−2 steps. Our proof goes exactly this way, except some extra
optimization do obtain better exponent A.

We stress that it outputs only a signed measure, not a probability distrib-
ution yet. However, because of property (a) the negative mass is only of order
poly(|Z|)ε and the function we end with can be simply rescaled (we replace neg-
ative masses by 0 and normalize the function dividing by a factor 1 − m where
m is the total negative mass). With this transformation, we keep the expected
advantage O(ε) and lose an extra factor O(|Z|) in the complexity. We can then.
Finally, we need to remember that we construct only a probability distribution
function, not a sampler. Transforming it into a sampler yields an overhead of
O(Z). This discussion shows that it is possible to build a sampler of complexity
poly(|Z|)ε−2 with respect to D. A more careful inspection of the proof shows
that we can actually achieve the claimed bound |Z|5ε−2 (see Remark 4 at the
end of the proof).

Technical Discussion. We note that condition (b) somehow means that mass
cuts should go in the right direction, as it is much simpler to prove that Algo-
rithm1 terminates when there are no correction terms θt; thus we don’t want to
go in a wrong direction and ruin the energy gain. Concrete bounds on properties
(a) and (b) are given in Claims 3 and 4.

In Algorithm 1 in every round we shift only one negative point mass (see Line
13). However, since this point mass is chosen to be as big as possible and since
ht+1 and ht differ only by a small term γ ·Dt+1

except the mass shift θt+1, one
can expect that we have the negative mass under control. Indeed, this is stated
precisely in Claim 3 below.

Claim 3 (The total negative mass is small). Let

NegativeMass(ht(x, ·)) = −
∑

z

min(ht(x, z), 0)

be the total negative mass in ht(x, z) as the function of z. Then we have

NegativeMass(ht(x, ·) < |Z|3γ. (9)

12 It’s not possible to extend the result from [TTV09] directly, the issue is that the
constraint on the marginal distribution are not preserved. That’s why [JP14] and
this paper require much more extra work.

172 M. Skórski

for every x and every t. In fact, for all x, z and t we have the following stronger
bound

max
z

∣
∣min(ht(x, z), 0)

∣
∣ < |Z|γ.

The proof is based on a recurrence relation that links NegativeMass(ht+1(x, ·)
with NegativeMass(ht(x, ·), and appears in AppendixC.

Claim 4 (The angle formed by the correction and the difference vector is acute).
For every x, t we have Angle

(
θt+1

x , gx − ht+1
x

)
∈

[
−π

2 , π
2

]
.

The proof appears in AppendixD.
Having established Claims 3 and 4 we are now in position to prove a concrete

bound in Eq. (8). To this end, we give upper bounds on E1 and E2, defined in
Eq. (7), separately.

Claim 5 (Algorithm1 terminates after a small number of steps). The energy
function in Claim 2 can be bounded as follows

E1 � γ−1
(
1 + 2|Z|2γ + |Z|tγ2 + |Z|3tγ2

)
, E2 � 2|Z|2tγ.

In particular, we conclude that with γ = ε
8|Z|4 the algorithm terminates after at

most t = O(|Z|3)ε−2 steps.

First, note that by Claim4 we have −
∑t−1

i=0 θi+1
x ·

(
gx − hi+1

x

)
� 0. Second, by

definition of the sequence (hi)i we have −
∑t−1

i=0 θi+1
x ·

(
hi+1

x − hi
x

)
= −

∑t−1
i=0 θi+1

x ·
θi+1

x −
∑t−1

i=0 γθi+1
x · Di+1

x which is at most 2|Z|3tγ2, because of Eq. (9) (the
sum of absolute correction terms

∑
z |θi+1(x, z)| is, by definition, twice the total

negative mass, and |Di+1
(x, z)| � 1). This proves that

E2 � 1
γ

· 2|Z|3tγ2 = 2|Z|3tγ.

To bound E1, note that we have to bounds two non-negative terms, namely
1
2

∑
i

(
hi+1

x − hi
x

)2 and
(
ht

x − h0
x

)
· gx. As for the first one, we have

(
hi+1

x − hi
x

)2
=

(
γD

i+1

x + θi+1
x

)2

� 2(γD
i+1

x)2 + 2
(
θi+1

x

)2
,

where the inequality follows by the Cauchy-Schwarz inequality13. We trivially

have
(
D

i+1

x

)2

� |Z| (because of |D(x, z)| � 1). By the definition of correction

terms in Eq. (4) we have
(
θi+1

x

)2 =
∑

z(θ
i+1(x, z))2 < 2(θi+1(x, z0))2, where

θi+1(x, z0) is the smallest negative mass, which is at most (2|Z|3γ)2 by Eq. (9)
. Thus, we have

(
hi+1

x − hi
x

)2 � 2|Z|γ2 + 8|Z|6γ2. To bund
(
ht

x − h0
x

)
· gx note

that −h0
x · gx � 0 and that ht

x · gx � maxz |ht(x, z)| (because g(x, z) � 0
13 Or cam be concluded from the parallelogram identity (x + y)2 + (x − y)2 = x2 + y2.

Simulating Auxiliary Inputs, Revisited 173

and
∑

x g(x, z) = 1) which means ht
x · gx � 1 + 2NegativeMass(ht

x) (as∑
z max(ht(x, z), 0) = 1 −

∑
z min(ht(x, z), 0) = 1 + NegativeMass(ht

x) and
−

∑
z min(ht(x, z), 0) = NegativeMass(ht

x) by
∑

z max(ht(x, z) = 1 and the defi-
nition of the total negative mass). This allows us to estimate E1 as follows

E1 � γ−1
(
1 + 2|Z|3γ + |Z|tγ2 + 4|Z|6tγ2

)

After t steps, the energy is at least tε. On the other hand, it at most E1 + E2.
Since |Z|, |Z|3 � |Z|6, we obtain

tε < γ−1 + 2|Z|3 + 7|Z|6tγ

Since this is true for any positive γ, we choose γ = ε
14|Z|6 , which gives us (slightly

weaker than claimed)

t < 32|Z|6ε−2.

Remark 4 (Optimized bounds). By the second part of Claim 3 we have |θi(x, z)| <
|Z|γ for every x, z and i. An inspection of the discussion above shows that this
allows us to improve the bounds on E1, E2

E1 � γ−1
(
1 + 2|Z|2γ + |Z|tγ2 + |Z|2tγ2

)
, E2 � 2|Z|2tγ

Setting γ = ε
8|Z|2 we get E1 + E2 � 20|Z|2ε−1 and t � 20|Z|2ε−2.

This finishes the proof of the claim.
From Claim 5 we conclude that after t = O

(
|Z|2ε−2

)
steps we end up with

a function h = ht that is (s, ε)-indistinguishable from g, because the algorithm
terminated (and, clearly, has the complexity at most O

(
|Z|3ε−2

)
relative to

circuits of size s (including an overhead of O(|Z|) to compute D from D). To
finish the proof, we need to solve two issues

Claim 6 (From the signed measure to the probability measure). Let ht be the
output of the algorithm. Define the probability distribution

h(x, z) =
max(ht(x, z), 0)

∑
z′ max(ht(x, z′), 0)

for every x, z. Then ht(x, ·) and h(x, ·) are O(ε)-statistically close for every x.

To prove the claim, we note that
∑

z′ max(ht(x, z′), 0) equals 1 + β where β =
NegativeMass(ht(x, ·). Thus we have |h(x, z) − ht(x, z)| � |ht(x, z)| · β

1+β . Since
∑

z′ |ht(x, z′)| =
∑

z′ max(ht(x, z′), 0) −
∑

z′ min(ht(x, z′), 0) = 1 + 2β, we get∑
|h(x, z)−ht(x, z)| = O(β) which is O(ε) by Claim 3 for γ defined as in Claim 5.
Recall that we have constructed an approximating probability measure h for

the probability mass function g, which is not a sampler yet. However, we can fix
it by rejection sampling, as shown below.

174 M. Skórski

Claim 7 (From the pmf to the sampler). There exists a (probabilistic) function
hsim : X → Z which calls h(x, z) (defined as above) at most O(|Z| log(1/ε)) times
and for every x the distribution of its output is ε-close to h(x, ·) for every x.

The proof goes by a simple rejection sampling argument: we sample a point
z ← Z at random and reject with probability h(x, z). The rejection probability
in one turn is 1

|Z| . If we repeat the experiment |Z| log(1/ε)| then the probability
of rejection in every round is only ε. On the other hand, conditioned on the
opposite event, we get the distribution identical to h(x, ·). So the distance is at
most ε as claimed. note that

The last two claims prove that the distribution of hsim(x) is (s,O(ε))-close
to ht

x = ht(x, ·), for every x. Since ht, as a function of x, z is (s, ε)-close to g,
and g is the conditional distribution of Z|X, we obtain

X,hsim(X) ≈s,O(ε) X,Z

and the complexity of the final sampler hsim(X) is O(|Z|5ε−2)

4 Time-Success Ratio Under Algebraic Transformations

In Theorem 1 below we provide a quantitative analysis of how the time-success
ratio changes under concrete formulas in security reductions.

Lemma 1 (Time-success ratio for algebraic transformations). Let a, b, c
and A,B,C be positive constants. Suppose that P ′ is secure against adversaries
(s′, ε′), whenever P is secure against adversaries (s, ε), where

s′ = s · cεC − bε−B

ε′ = aεA.
(10)

In addition, suppose that the following condition is satisfied

A � C + 1. (11)

Then the following is true: if P is 2k-secure, then P ′ is 2k′
-secure (in the sense

of Definition 4) where

k′ =
{ A

B+C+1k + A
B+C+1 (log c − log b) − log a, b � 1

A
C+1k + A

C+1 log c − log a, b = 0
(12)

The proof is elementary though not immediate. It can be found in [Skó15].

Remark 5 (On the technical condition(11)). This condition is satisfied in almost
all applications, at in the reduction proof typically ε′ cannot be better (meaning
higher exponent) than ε. Thus, quite often we have A � 1.

Simulating Auxiliary Inputs, Revisited 175

A More on the Flaw in [JP14]

In the original setting we have Z = {0, 1}λ. In the proof of the claimed bet-
ter bound O

(
s · 23λε−2

)
there is a mistake on page 18 (eprint version), when

the authors enforce a signed measure to be a probability measure by a mass
shifting argument. The number M defined there is in fact a function of x and
is hard to compute, whereas the original proof amuses that this is a constant
independent of x. During iterations of the boosting loop, this number is used
to modify distinguishers class step by step, which drastically blows up the com-
plexity (exponentially in the number of steps, which is already polynomial in ε).
In the min-max based proof giving the bound O

(
s · 23λε−4

)
a fixable flaw is a

missing factor of 2λ in the complexity (page 16 in the eprint version), which is
because what is constructed in the proof is only a probability mass function, not
yet a sampler [Pie15].

B Proof of Claim2

We can rewrite Eq. (6) as

Δt =
1
γ
Ex∼X

[
t−1∑

i=0

((
hi+1

x − hi
x

)
− θi+1

x

)
·
(
gx − hi

x

)
]

=
1
γ
Ex∼X

[
t−1∑

i=0

(
hi+1

x − hi
x

)
·
(
gx − hi

x

)
−

t−1∑

i=0

θi+1
x ·

(
gx − hi

x

)
]

(13)

First, note that
t−1∑

i=0

(
hi+1

x − hi
x

)
·
(
gx − hi

x

)

=
(
ht

x − h0
x

)
· gx −

t−1∑

i=0

hi
x ·

(
hi+1

x − hi
x

)

=
(
ht

x − h0
x

)
· gx +

1
2

t−1∑

i=0

(
hi+1

x − hi
x

)
·
(
hi+1

x − hi
x

)
+

− 1
2

t−1∑

i=0

(
hi+1

x + hi
x

)
·
(
hi+1

x − hi
x

)

=
(
ht

x − h0
x

)
· gx +

1
2

t−1∑

i=0

(
hi+1

x − hi
x

)2 − 1
2

((
ht

x

)2 −
(
h0

x

)2)

(14)

As to the second term in Eq. (13), we observe that

−
t−1∑

i=0

θi+1
x ·

(
gx − hi

x

)
= −

t−1∑

i=0

θi+1
x ·

(
gx − hi+1

x

)
−

t−1∑

i=0

θi+1
x ·

(
hi+1

x − hi
x

)
(15)

176 M. Skórski

C Proof of Claim3

Proof (Proof of Claim 3). We start by comparing the total negative mass in the
functions ht+1 = ht +D

t+1
+ θt+1 and ht. Suppose first that h̃t(x, z0) < 0 where

z0 = zt
min(x). Since

∑
z �=z0

h̃t+1 = 1 − h̃t+1(x, z0), there exists z1 such that

h̃t+1(x, z1) � 1−h̃t+1(x,z0)
|Z|−1 > 0. Combining this with Eq. (4) we obtain

ht+1(x, z1) = h̃t+1(x, z1) +
h̃t+1(x, z0)

|Z| − 1
� 1

|Z| − 1
(16)

These observations together with Eq. (3) give us

∑

z∈Z
min
(
ht+1(x, z), 0

)
=
∑

z∈Z
min
(
h̃t+1(x, z) + θt+1(x, z), 0

)

=
∑

z∈Z\{z0,z1}
min

(
h̃t+1(x, z) +

h̃t+1(x, z0)

|Z| − 1
, 0

)

�
∑

z∈Z\{z0,z1}
min
(
h̃t+1(x, z), 0

)
+ (|Z| − 2) · h̃t+1(x, z0)

|Z| − 1

=
∑

z∈Z
min
(
h̃t+1(x, z), 0

)
+ (|Z| − 2) · h̃t+1(x, z0)

|Z| − 1
− h̃t+1(x, z1)

=
∑

z∈Z
min
(
h̃t+1(x, z), 0

)
+min

(
h̃t+1(x, z0)

|Z| − 1
, 0

)

(17)

where the inequality line follows from h̃t+1(x, z0) < 0 and Eq. (16). But by the
definition of z0 = zt

min(x) we have h̃t+1(x, z0) = minz h̃t+1(x, z). Since this value
is negative, we get

h̃t+1(x, z0) � 1
|Z| − 1

·
∑

z∈Z
min

(
h̃t+1(x, z), 0

)
(18)

Combining Eqs. (17) and (18) we obtain

−
∑

z∈Z
min

(
ht+1(x, z), 0

)
� −

(
1 − 1

(|Z| − 1)2

) ∑

z∈Z
min

(
h̃t+1(x, z), 0

)
. (19)

Since |ht+1(x, z) − h̃t(x, z)| � γ by Eq. (3), we get the following recursion

−
∑

z∈Z
min
(
ht+1(x, z), 0

) � −
(
1 − 1

(|Z| − 1)2

)∑

z∈Z
min
(
ht(x, z), 0

)
+ |Z|γ (20)

which can be rewritten as

NegativeMass
(
ht+1(x, ·)

)
<

(
1 − 1

|Z|2
)
NegativeMass

(
ht(x, ·)

)
+ |Z|γ. (21)

Simulating Auxiliary Inputs, Revisited 177

which is in addition trivially true if h̃t+1(x, z) � 0 for all z. Since we have
NegativeMass

(
h0(x, ·)

)
= 0, expanding this recursion till t = 0 gives an upper

bound |Z|γ ·
∑

j�t+1

(
1 − |Z|−2

)j which is smaller than by |Z|3γ by the conver-
gence of the geometric series. This finishes the proof of the first part.

To prove the second part, recall that by the definition of z0 we have
h̃t+1(x, z0) = minz h̃t+1(x, z). Suppose that h̃t+1(x, z0) < 0 (that is, there is
a negative mass in h̃t+1(x, ·)). Now, by the definition of ht+1, we get

max
z

∣
∣min(ht+1(x, z), 0)

∣
∣ = max

z �=z0

∣
∣min(ht+1(x, z), 0)

∣
∣

= max
z �=z0

∣
∣
∣
∣
∣
min

(

h̃t+1(x, z) +
|h̃t+1(x, z0)|

|Z| − 1
, 0

)∣
∣
∣
∣
∣
.

Suppose that h̃t+1(x, z) + |h̃t+1(x,z0)|
|Z|−1 � 0 for some z. Then, by the definition of

z0, we also have

0 � h̃t+1(x, z) +
|h̃t+1(x, z0)|

|Z| − 1

� h̃t+1(x, z0) +
|h̃t+1(x, z0)|

|Z| − 1

= −
(

1 − 1
|Z| − 1

) ∣
∣
∣h̃t+1(x, z0)

∣
∣
∣ .

From this we conclude that for any z we have

min

(

h̃t+1(x, z) +
|h̃t+1(x, z0)|

|Z| − 1
, 0

)

� −
(

1 − 1
|Z| − 1

) ∣
∣
∣h̃t+1(x, z0)

∣
∣
∣ .

and thus

max
z �=z0

∣
∣
∣
∣
∣
min

(

h̃t+1(x, z) +
|h̃t+1(x, z0)|

|Z| − 1
, 0

)∣
∣
∣
∣
∣
�

(
1 − 1

|Z| − 1

) ∣
∣
∣h̃t+1(x, z0)

∣
∣
∣

which means that (still assuming that h̃t+1(x, z0) < 0)

max
z

∣
∣min(ht+1(x, z), 0)

∣
∣ �

(
1 − 1

|Z| − 1

)
max

z

∣
∣
∣min

(
h̃t+1(x, z), 0

)∣
∣
∣ .

Note that 0 � min
(
h̃t+1(x, z), 0

)
� min (ht(x, z), 0) − γ by the definition of

ht+1 and h̃t+1. Then

max
z

∣
∣min(ht+1(x, z), 0)

∣
∣ �

(
1 − 1

|Z| − 1

)
max

z

∣
∣min(ht(x, z), 0)

∣
∣ + γ.

Note that this inequality is true even if h̃t+1(x, z0) = 0, that is h̃t+1(x, z) � 0 for
all z as then ht+1(x, z) � 0 for all z. By expanding this recursion, and noticing

178 M. Skórski

that min(h0(x, z), 0) = 0 for all x, z by definition, we get

max
z

∣
∣min(ht+1(x, z), 0)

∣
∣ � γ

t∑

j=0

(
1 − 1

|Z| − 1

)j

< |Z|γ.

D Proof of Claim4

Proof. If θt+1(x, z) = 0 then there is nothing to prove. Suppose that θt+1(x, z)
< 0. Let z0 = zt

min(x). According to Eq. (4) we have θt+1(x, z0) = −h̃t+1(x, z0)
and θt+1(x, z) = h̃t+1(x,z0)

#Z−1 for z
= z0. Therefore

θt+1
x ·

(
gx − h̃t+1

x

)
= −h̃t+1(x, z0)

(
g(x, z0) − h̃t+1(x, z0)

)

+
∑

z �=z0

h̃t+1(x, z0)
|Z| − 1

·
(
g(x, z) − h̃t+1(x, z)

)

= −h̃t+1(x, z0)
(
g(x, z0) − h̃t+1(x, z0)

)

− h̃t+1(x, z0)
|Z| − 1

(
g(x, z0) − h̃t+1(x, z0)

)
(22)

and

−θt+1
x · θt+1

x = −h̃t+1(x, z0) · h̃t+1(x, z0)
(

1 +
1

|Z − 1|

)
. (23)

Putting Eqs. (22) and (23) together we obtain

θt+1
x ·

(
gx − ht+1

x

)
= θt+1

x ·
(
gx − h̃t+1

x

)
− θt+1

x · θt+1
x

= −
(

1 +
1

|Z| − 1

)
h̃t+1(x, z0) · g(x, z0)

which is positive because h̃t,r(x, z0) < 0 and g(x, z0) � 0. This proves Claim 4.

References

[BL13] Buldas, A., Laanoja, R.: Security proofs for hash tree time-stamping using
hash functions with small output size. In: Boyd, C., Simpson, L. (eds.)
ACISP. LNCS, vol. 7959, pp. 235–250. Springer, Heidelberg (2013). doi:10.
1007/978-3-642-39059-3 16

[CLP15] Chung, K.-M., Lui, E., Pass, R.: From weak to strong zero-knowledge and
applications. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015. LNCS, vol. 9014,
pp. 66–92. Springer, Heidelberg (2015). doi:10.1007/978-3-662-46494-6 4

[DP08] Dziembowski, S., Pietrzak, K.: Leakage-resilient cryptography. In: Proceed-
ings of the 49th Annual IEEE Symposium on Foundations of Computer
Science, Washington, DC, USA, FOCS 2008, pp. 293–302. IEEE Computer
Society (2008)

http://dx.doi.org/10.1007/978-3-642-39059-3_16
http://dx.doi.org/10.1007/978-3-642-39059-3_16
http://dx.doi.org/10.1007/978-3-662-46494-6_4

Simulating Auxiliary Inputs, Revisited 179

[DP10] Dodis, Y., Pietrzak, K.: Leakage-resilient pseudorandom functions and side-
channel attacks on Feistel networks. In: Rabin, T. (ed.) CRYPTO 2010.
LNCS, vol. 6223, pp. 21–40. Springer, Heidelberg (2010). doi:10.1007/
978-3-642-14623-7 2

[DTT09] De, A., Trevisan, L., Tulsiani, M.: Non-uniform attacks against one-way
functions and prgs. In: Electronic Colloquium on Computational Complex-
ity (ECCC), vol. 16, p. 113 (2009)

[FK99] Frieze, A.M., Kannan, R.: Quick approximation to matrices and applica-
tions. Combinatorica 19(2), 175–220 (1999)

[FPS12] Faust, S., Pietrzak, K., Schipper, J.: Practical leakage-resilient sym-
metric cryptography. In: Prouff, E., Schaumont, P. (eds.) CHES 2012.
LNCS, vol. 7428, pp. 213–232. Springer, Heidelberg (2012). doi:10.1007/
978-3-642-33027-8 13

[FR12] Fuller, B., Reyzin, L.: Computational entropy and information leakage.
Cryptology ePrint Archive, report 2012/466 (2012). http://eprint.iacr.org/

[GW11] Gentry, C., Wichs, D.: Separating succinct non-interactive arguments from
all falsifiable assumptions. In: Fortnow, L., Vadhan, S.P. (eds.) STOC, pp.
99–108. ACM (2011)

[Imp95] Impagliazzo, R.: Hard-core distributions for somewhat hard problems. In:
36th Annual Symposium on Foundations of Computer Science, pp. 538–545.
IEEE (1995)

[JP14] Jetchev, D., Pietrzak, K.: How to fake auxiliary input. In: Lindell, Y. (ed.)
TCC 2014. LNCS, vol. 8349, pp. 566–590. Springer, Heidelberg (2014)

[LM94] Luby, M.G., Michael, L.: Pseudorandomness and Cryptographic Applica-
tions. Princeton University Press, Princeton (1994)

[Pie09] Pietrzak, K.: A leakage-resilient mode of operation. In: Joux, A. (ed.)
EUROCRYPT 2009. LNCS, vol. 5479, pp. 462–482. Springer, Heidelberg
(2009). doi:10.1007/978-3-642-01001-9 27

[Pie15] Pietrzak, K.: Private communication, May 2015
[RTTV08] Reingold, O., Trevisan, L., Tulsiani, M., Vadhan, S.: Dense subsets of

pseudorandom sets. In: Proceedings of the 49th Annual IEEE Symposium
on Foundations of Computer Science, Washington, DC, USA, FOCS 2008,
pp. 76–85. IEEE Computer Society (2008)

[Skó15] Skórski, M.: Time-advantage ratios under simple transformations: appli-
cations in cryptography. Cryptography and Information Security in the
Balkans - Second International Conference, BalkanCryptSec: Koper, Slove-
nia, 3–4 September 2015. Revised Selected Papers, pp. 79–91 (2015)

[TTV09] Trevisan, L., Tulsiani, M., Vadhan, S.: Regularity, boosting, and efficiently
simulating every high-entropy distribution. In: Proceedings of the 24th
Annual IEEE Conference on Computational Complexity, Washington, DC,
USA, CCC 2009, pp. 126–136. IEEE Computer Society (2009)

[VZ13] Vadhan, S., Zheng, C.J.: A uniform min-max theorem with applica-
tions in cryptography. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013.
LNCS, vol. 8042, pp. 93–110. Springer, Heidelberg (2013). doi:10.1007/
978-3-642-40041-4 6

[YS13] Yu, Y., Standaert, F.-X.: Practical leakage-resilient pseudorandom objects
with minimum public randomness. In: Dawson, E. (ed.) CT-RSA 2013.
LNCS, vol. 7779, pp. 223–238. Springer, Heidelberg (2013). doi:10.1007/
978-3-642-36095-4 15

http://dx.doi.org/10.1007/978-3-642-14623-7_2
http://dx.doi.org/10.1007/978-3-642-14623-7_2
http://dx.doi.org/10.1007/978-3-642-33027-8_13
http://dx.doi.org/10.1007/978-3-642-33027-8_13
http://eprint.iacr.org/
http://dx.doi.org/10.1007/978-3-642-01001-9_27
http://dx.doi.org/10.1007/978-3-642-40041-4_6
http://dx.doi.org/10.1007/978-3-642-40041-4_6
http://dx.doi.org/10.1007/978-3-642-36095-4_15
http://dx.doi.org/10.1007/978-3-642-36095-4_15

Unconditional Security

Pseudoentropy: Lower-Bounds for Chain Rules
and Transformations

Krzysztof Pietrzak1,2(B) and Maciej Skórski1,2

1 IST Austria, Klosterneuburg, Austria
krzpie@gmail.com

2 University of Warsaw, Warsaw, Poland

Abstract. Computational notions of entropy have recently found
many applications, including leakage-resilient cryptography, determin-
istic encryption or memory delegation. The two main types of results
which make computational notions so useful are (1) Chain rules, which
quantify by how much the computational entropy of a variable decreases
if conditioned on some other variable (2) Transformations, which quan-
tify to which extend one type of entropy implies another.

Such chain rules and transformations typically lose a significant
amount in quality of the entropy, and are the reason why applying these
results one gets rather weak quantitative security bounds. In this paper
we for the first time prove lower bounds in this context, showing that
existing results for transformations are, unfortunately, basically optimal
for non-adaptive black-box reductions (and it’s hard to imagine how non
black-box reductions or adaptivity could be useful here.)

A variable X has k bits of HILL entropy of quality (ε, s) if there exists
a variable Y with k bits min-entropy which cannot be distinguished from
X with advantage ε by distinguishing circuits of size s. A weaker notion
is Metric entropy, where we switch quantifiers, and only require that for
every distinguisher of size s, such a Y exists.

We first describe our result concerning transformations. By definition,
HILL implies Metric without any loss in quality. Metric entropy often
comes up in applications, but must be transformed to HILL for meaning-
ful security guarantees. The best known result states that if a variable
X has k bits of Metric entropy of quality (ε, s), then it has k bits of
HILL with quality (2ε, s · ε2). We show that this loss of a factor Ω(ε−2)
in circuit size is necessary. In fact, we show the stronger result that this
loss is already necessary when transforming so called deterministic real
valued Metric entropy to randomised boolean Metric (both these vari-
ants of Metric entropy are implied by HILL without loss in quality).

The chain rule for HILL entropy states that if X has k bits of HILL
entropy of quality (ε, s), then for any variable Z of length m, X condi-
tioned on Z has k−m bits of HILL entropy with quality (ε, s·ε2/2m). We
show that a loss of Ω(2m/ε) in circuit size necessary here. Note that this
still leaves a gap of ε between the known bound and our lower bound.

K. Pietrzak—Supported by the European Research Council consolidator grant
(682815-TOCNeT).
M. Skórski—Supported by the National Science Center, Poland (2015/17/N/
ST6/03564).

c© International Association for Cryptologic Research 2016
M. Hirt and A. Smith (Eds.): TCC 2016-B, Part I, LNCS 9985, pp. 183–203, 2016.
DOI: 10.1007/978-3-662-53641-4 8

184 K. Pietrzak and M. Skórski

1 Introduction

There exist various information theoretic notions of entropy that quantify the
“uncertainty” of a random variable. A variable X has k bits of Shannon entropy
if it cannot be compressed below k bits. In cryptography we mostly consider min-
entropy, where we say that X has k bits of min-entropy, denoted H∞ (X) = k,
if for any x, Pr[X = x] ≤ 2−k.

In a cryptographic context, we often have to deal with variables that only
appear to have high entropy to computationally bounded observers. The most
important case is pseudorandomness, where we say that X ∈ {0, 1}n is pseudo-
random, if it cannot be distinguished from the uniform distribution over {0, 1}n.

More generally, we say that X ∈ {0, 1}n has k ≤ n bits of HILL pseudoen-
tropy [12], denoted HHILL

ε,s (X) = k if it cannot be distinguished from some Y
with H∞ (Y) = k by any circuit of size s with advantage > ε, note that we get
pseudorandomness as a special case for k = n. We refer to k as the quantity and
to (ε, s) as the quality of the entropy.

A weak notion of pseudoentropy called Metric pseudoentropy [3] often comes
up in security proofs. This notion is defined like HILL, but with the quantifiers
exchanged: We only require that for every distininguisher there exists a distrib-
ution Y,H∞ (Y) = k that fools this particular distinguisher (not one such Y to
fool them all).

HILL pseudoentropy is named after the authors of the [12] paper where it was
introduced as a tool for constructing a pseudorandom generator from any one-
way function. Their construction and analysis was subsequently improved in a
series of works [11,13,28]. A lower bound on the number of calls to the underlying
one-way function was given by [14].1 More recently HILL pseudoentropy has
been used in many other applications like leakage-resilient cryptography [6,17],
deterministic encryption [7] and memory delegation [4].

The two most important types of tools we have to manipulate pseudoentropy
are chain rules and transformations from one notion into another. Unfortunately,
the known transformations and chain rules lose large factors in the quality of
the entropy, which results in poor quantitative security bounds that can be
achieved using these tools. In this paper we provide lower bounds, showing that
unfortunately, the known results are tight (or almost tight for chain rules), at
least when considering non-adaptive black-box reductions. Although black-box
impossibility results have been overcome by non black-box constructions in the
past [2], we find it hard to imagine how non black-box constructions or adaptivity
could help in this setting. We believe that relative to the oracles we construct
also adaptive reductions are impossible as adaptivity “obviously” is no of use,
but proving this seems hard. Our results are summarized in Figs. 1 and 2.

Complexity of the Adversary. In order to prove a black-box separation, we
will construct an oracle and prove the separation unconditionally relative to this

1 Their Ω(n/log(n)) lower bound matches existing constructions from regular one-way
functions [10]. For general one-way functions this lower bound is still far of the best
construction [28] making Θ̃(n3) calls.

Pseudoentropy: Lower-Bounds for Chain Rules and Transformations 185

oracle, i.e., assuming all parties have access to it. This then shows that any
construction/proof circumventing or separation in the plain model cannot be
relativizing, which in particular rules out all black-box constructions [1,16].

In the discussion below we measure the complexity of adversaries only in
terms of numbers of oracle queries. Of course, in the actual proof we also bound
them in terms of circuit size. For our upper bounds the circuits will be of basically
the same size as the number of oracle queries (so the number of oracle queries is
a good indication of the actual size), whereas for the lower bounds, we can even
consider circuits of exponential size, thus making the bounds stronger (basically,
we just require that one cannot hard-code a large fraction of the function table
of the oracle into the circuit).

X ∈ {0, 1}n

HMetric
ε,s

,det{0,1}(X) = k HMetric
ε′,s′ ,det[0,1](X) = k HMetric

ε′′,s′′ ,rand{0,1}(X) = k HHILL
ε′′′,s′′′(X) = k

ε′ = ε
s′ ≈ s

(due to [22])

ε′′′ = 2ε′

s′′′ = Ω(s′ · ε′2/(n − k + 1))
(due to [3, 25])

Theorem 1:
s′′ = O(s′ · ε′2/ln(1/ε′)) necessary
if ε′′ = O(ε′)

ε′′ = ε′′′

s′′ = s′′′ (by definition)
ε′ = ε′′

s′ = s′′ (due to [8])
ε = ε′

s = s′ (by definition)

Fig. 1. Transformations: our bound comparing to the state of art. Our Theorem 1,
stating that a loss of ε′2/ ln(1/ε′) in circuit size is necessary for black-box reductions
that show how deterministic implies randomized metric entropy (if the advantage ε′

remains in the same order) requires ε′ = 2−O(n−k+1) and thus ln(1/ε′) ∈ O(n−k+1), so
there’s no contradiction between the transformations from [3,25] and our lower bound
(i.e., the blue term is smaller than the red one). (Color figure online)

Transformations. It is often easy to prove that a variable X ∈ {0, 1}n has
so called Metric pseudoentropy against deterministic distinguishers, denoted
HMetric

ε,s
,det{0,1}(X) = k. Unfortunately, this notion is usually too weak to be

useful, as it only states that for every (deterministic, boolean) distinguisher,
there exists some Y with H∞ (Y) = k that fools this particular distinguisher,
but one usually needs a single Y that fools all (randomised) distinguishers, this
is captured by HILL pseudoentropy.

Barak et al. [3] show that any variable X ∈ {0, 1}n that has Metric entropy,
also has the same amount of HILL entropy. Their proof uses the min-max the-
orem, and although it perseveres the amount k of entropy, the quality drops
from (ε, s) to (2ε,Ω(s ·ε2/n)). A slightly better bound

(
2ε,Ω(s · ε2/(n + 1 − k))

)

(where again k is the amount of Metric entropy), was given recently in [25]. The
argument uses the min-max theorem and some results on convex approximation
in Lp spaces.

186 K. Pietrzak and M. Skórski

In Theorem 1 we show that this is optimal – up to a small factor Θ((n −
k + 1)/ ln(1/ε)) – as a loss of Ω(ln(1/ε)/ε2) in circuit size is necessary for any
black-box reduction. Note that for sufficiently small ε ∈ 2−Ω(n−k+1) our bound
even matches the positive result up to a small constant factor.

The high-level idea of our separation is as follows; We construct an oracle
O and a variable X ∈ {0, 1}n, such that relative to this oracle X can be dis-
tinguished from any variable Y with high min-entropy when we can make one
randomized query, but for any deterministic distinguisher A, we can find a Y
with high min-entropy which A cannot distinguish from X.

To define O, we first choose a uniformly random subset S ∈ {0, 1}n of
size |S| = 2m. Moreover we chose a sufficiently large set of boolean functions
D1(·), . . . , Dh(·) as follows: for every x ∈ S we set Di(x) = 1 with probability
1/2 and for every x �∈ S, Di(x) = 1 with probability 1/2 + δ.

Given any x, we can distinguish x ∈ S from x �∈ S with advantage ≈ 2δ by
quering Di(x) for a random i. This shows that X cannot have much more than
log(|S|) = m bits of HILL entropy (in fact, even probabilistic Metric entropy)
as any variable Y with H∞ (Y) � m + 1 has at least half of its support outside
S, and thus can be distinguished with advantage ≈ 2δ/2 = δ with one query
as just explained. Concretely (recall that in this informal discussion we measure
size simply by the number of oracle queries).

HMetric
δ,1

,rand{0,1}(X) � m + 1

On the other hand, if the adversary is allowed q deterministic queries, then intu-
itively, the best he can do is to query D1(x), . . . , Dq(x) and guess that x ∈ S
if less than a 1/2 + δ/2 fraction of the outputs is 1. But even if q = 1/δ2, this
strategy will fail with constant probability. Thus, we can choose a Y with large
support outside S (and thus also high min-entropy) which will fool this adver-
sary. This shows that X does have large Metric entropy against deterministic
distinguishers, even if we allow the adversaries to run in time 1/δ2, concretely,
we show that

HMetric,det{0,1}
Θ(δ),O(1/δ2) (X) � n − O(log(1/δ))

The Adversary. Let us stress that we show impossibility in the non-uniform
setting, i.e., for any input length, the distinguisher circuit can depend arbitrarily
on the oracle. Like in many non-uniform black-box separation results (includ-
ing [19,22,24,30,31]), the type of adversaries for which we can rigorously prove
the lower bound is not completely general, but the necessary restrictions seem
“obviously” irrelevant. In particular, given some input x (where we must decide
if x ∈ S), we only allow the adversary queries on input x. This doesn’t seem
like a real restriction as the distribution of Di(x′) for any x′ �= x is independent
of x, and thus seems useless (but such queries can be used to make the suc-
cess probability of the adversary on different inputs correlated, and this causes
a problem in the proof). Moreover, we assume the adversary makes his queries
non-adaptively, i.e., it choses the indices i1, . . . , iq before seeing the outputs of

Pseudoentropy: Lower-Bounds for Chain Rules and Transformations 187

the queries Di1(x), . . . , Diq (x). As the distribution of all the Di’s is identical,
this doesn’t seem like a relevant restriction either.

HHILL
ε,s (X) = k

HMetric
ε′,s′ (X|Z) = k′ HHILL

ε′′,s′′(X|Z) = k′ HHILL−rlx
ε′′′,s′′′ (X|Z) = k′ HHILL

ε′′′′,s′′′′(X|Z) = k′

s′ ≈ s
ε′ = ε · 2|Z|

k′ = k − |Z|
(due to [8])

k′ = k − |Z|
ε′′′ = 2ε
s′′′ = O

(
s · ε′′′2/2|Z| − 2|Z|ε′′′2

)

(due to [21])

This paper (Theorem 2)

s′′′ = Ω
(
s · ε′′′/2|Z|)

)
, k′ = k − |Z| necessary

if ε′′′ = O(ε)

ε′′ = 2ε′

s′′ = O s′ · ε′′2/(n + m)
)

(by [3])

ε′′′ = ε′′

s′′′ = s′′

(by definition)

ε′′′′ = 2ε′′′

s′′′′ = s′′′ − 2|Z|

(due to [17])

Fig. 2. Chain rules: our lower bounds comparing to the state of art. In the literature
there are basically three approaches to prove a chain rule for HILL entropy. The first
one reduces the problem to an efficient version of the dense model theorem [22], the
second one uses the so called auxiliary input simulator [17], and the last one is by a
convex optimization framework [21,26]. The last approach yields a chain rule with a
loss of ≈ 2m/ε2 in circuit size, where m is the length of leakage Z.

Chain Rules. Most (if not all) information theoretic entropy notions H(.) sat-
isfy some kind of chain rule, which states that the entropy of a variable X, when
conditioned on another variable Z, can decrease by at most the bitlength |Z| of
Z, i.e., H(X|Z) � H(X) − |Z|.

Such a chain rule also holds for some computational notions of entropy. For
HILL entropy a chain rule was first proven in [6,22] by a variant of the dense
model theorem, and was improved by Fuller and Reyzin [8]. A different approach
using a simulator was proposed in [17] and later improved by Vadhan and Zheng
[29]. A unified approach, based on convex optimization techniques was proposed
recently in [21,26] achieving best bounds so far.

The “dense model theorem approach” [8] proceeds as follows: one shows that
if X has k bits of HILL entropy, then X|Z has k−m (where Z ∈ {0, 1}m) bits of
Metric entropy. In a second step one applies a Metric to HILL transformation,
first proven by Barak et al. [3], to argue that X|Z has also large HILL. The
first step loses a factor 2m in advantage, the second another 22mε2 in circuit
size. Eventually, the loss in circuit size is 22m/ε2 and the loss in advantage is 2m

which measured in terms of the security ratio size/advantage gives a total loss
of 2m/ε2.

A more direct “simulator” approach [29] loses only a multiplicative factor
2m/ε2 in circuit size (there’s also an additive 1/ε2 term) but there is no loss in
advantage. The additive term can be improved to only 2mε2 as shown in [21,26].

188 K. Pietrzak and M. Skórski

In this paper we show that a loss of 2m/ε is necessary. Note that this still
is a factor 1/ε away from the positive result. Our result as stated in Theorem2
is a bit stronger as just outlined, as we show that the loss is necessary even if
we only want a bound on the “relaxed” HILL entropy of X|Z (a notion weaker
than standard HILL).

To prove our lower bound, we construct an oracle O(.), together with a joint
distribution (X,Z) ∈ {0, 1}n × {0, 1}m. We want X to have high HILL entropy
relative to O(.), but when conditioning on Z it should decrease as much as
possible (in quantity and quality).

We first consider the case m = 1, i.e., the conditional part Z is just one bit.
For n � � � m = 1 the oracle O(.) and the distribution (X,Z) is defined as
follows. We sample (once and for all) two (disjoint) random subset X0,X1 ⊆
{0, 1}n of size |X0| = |X1| = 2�−1, let X = X0 ∪X1. The oracle O(.) on input x is
defined as follows (below Bp denotes the Bernoulli distribution with parameter
p, i.e., Pr[b = 1 : b ← Bp] = p).

– If x ∈ X0 output a sample of B1/2+δ.
– If x ∈ X1 output a sample of B1/2−δ.
– Otherwise, if x �∈ X , output a sample of B1/2.

Note that our oracle O(.) is probabilistic, but it can be “derandomized” as we’ll
explain at the beginning of Sect. 4. The joint distribution (X,Z) is sampled by
first sampling a random bit Z ← {0, 1} and then X ← XZ .

Given a tuple (V,Z), we can distinguish the case V = X from the case where
V = Y for any Y with large support outside of X (X has min-entropy �, so let’s
say we take a variable Y with H∞ (Y |Z) � � + 1 which will have at least half
of its support outside X) with advantage Θ(δ) by quering α ← O(V,Z), and
outputting β = α ⊕ Z.

– If (V,Z) = (X,Z) then Pr[β = 1] = 1/2 + δ. To see this, consider the case
Z = 0, then Pr[β = 1] = Pr[α = 1] = Pr[O(X) = 1] = 1/2 + δ.

– If (V,Z) = (Y,Z) then Pr[β = 1] = Pr[Y �∈ X](1/2) + Pr[Y ∈ X](1/2 + δ) ≤
1/2 + δ/2.

Therefore X|Z doesn’t have � + 1 bits of HILL entropy

HHILL
δ/2,1(X|Z) < � + 1

On the other hand, we claim that X (without Z but access to O(.)) cannot be
distinguished from the uniform distribution over {0, 1}n with advantage Θ(δ)
unless we allow the distinguisher Ω(1/δ) oracle queries (the hidden constant in
Θ(δ) can be made arbitrary large by stetting the hidden constant in Ω(1/δ)
small enough), i.e.,

HHILL
Θ(δ),Ω(1/δ)(X) = n (1)

To see why (1) holds, we first note that given some V , a single oracle query is
useless to tell whether V = X or V = Un: although in the case where V = X ∈
XZ the output O(X) will have bias δ, one can’t decide in which direction the

Pseudoentropy: Lower-Bounds for Chain Rules and Transformations 189

bias goes as Z is (unconditionally) pseudorandom. If we’re allowed in the order
1/δ2 queries, we can distinguish X from Un with constant advantage, as with
1/δ2 samples one can distinguish the distribution B1/2+δ (or B1/2−δ) from B1/2

with constant advantage. If we just want Θ(δ) advantage, Ω(1/δ) samples are
necessary, which proves (1). While it is easy to prove that for the coin with bias
δ one needs O

(
1/δ2

)
trials to achieve 99% of certainty, finding the number of

trials for some confidence level in o(1) as in our case, is more challenging. We
solve this problem by a tricky application of Renyi divergences2 The statement
of our “coin problem” with precise bounds is given in Lemma3.

So far, we have only sketched the case m = 1. For m > 1, we define a random
function π : {0, 1}n → {0, 1}m−1. The oracle now takes an extra m−1 bit string
j, and for x ∈ X , the output of O(x, j) only has bias δ if π(x) = j (and outputs a
uniform bit everywhere else). We define the joint distribution (X,Z) by sampling
X ← X , define Z ′ s.t. X ∈ XZ′ , and set Z = π(X)‖Z ′. Now, given Z, we can
make one query α ← O(V,Z[1 . . . m − 1]) and output β = α ⊕ Z[m], where, as
before, getting advantage δ in distinguishing X from any Y with min-entropy
≥ � + 1.

On the other hand, given some V (but no Z) it is now even harder to tell if
V = X or V = Y . Not only don’t we know in which direction the bias goes as
before in the case m = 1 (this information is encoded in the last bit Z[m] of Z),
but we also don’t know on which index π(V) (in the case V = X) we have to
query the oracle to observe any bias at all. As there are 2m−1 possible choices
for π(V), this intuitively means we need 2m−1 times as many samples as before
to observe any bias, which generalises (1) to

HHILL
Θ(δ),Ω(2m−1/δ)(X) = n

1.1 Some Implications of Our Lower Bounds

Leakage Resilient Cryptography. The chain rule for HILL entropy is a main
technical tool used in several security proofs like the construction of leakage-
resilient schemes [6,20]. Here, the quantitative bound provided by the chain rule
directly translates into the amount of leakage these constructions can tolerate.
Our Theorem2 implies a lower bound on the necessary security degradation for
this proof technique. This degradation is, unfortunately, rather severe: even if
we just leak m = 1 bit, we will lose a factor 2m/ε, which for a typical security
parameter ε = 2−80 means a security degradation of “80 bits”.

Let us also mention that Theorem 2 answers a question raised by Fuller and
Reyzin [8], showing that for any chain rule the simultaneous loss in quality and
quantity is necessary,3

2 Lower bounds [30,31] also require nontrivial binomial estimates. They were obtained,
however by direct and involved calculations.

3 Their question was about chain rules bounding the worst-case entropy, that is bound-
ing HHILL(X|Z = z) for every z. Our result, stated simply for average entropy
HHILL(X|Z), is much more general and applies to qualitatively better chain rules
obtained by simulator arguments.

190 K. Pietrzak and M. Skórski

Faking Auxiliary Inputs. [17,27,29] consider the question how efficiently
one can “fake” auxiliary inputs. Concretely, given any joint distribution (X,Z)
with Z ∈ {0, 1}m, construct an efficient simulator h s.t. (X,h(X)) is (ε, s)-
indistinguishable from (X,Z). For example [29] gives a simulator h of complexity
O

(
2mε2 · s

)
(plus additive terms independent of s). This result has found many

applications in leakage-resilient crypto, complexity theory and zero-knowledge
theory. The best known lower bound (assuming exponentially hard OWFs) is
Ω (max(2m, 1/ε)). Since the chain rule for relaxed HILL entropy follows by a
simulator argument [17] with the same complexity loss, our Theorem 2 yields a
better lower bound Ω (2m/ε) on the complexity of simulating auxiliary inputs.

Dense Model Theorem. The computational dense model theorem [22] says,
roughly speaking, that dense subsets of pseudorandom distributions are com-
putationally indistinguishable from true dense distributions. It has found appli-
cations including differential privacy, memory delegation, graph decompositions
and additive combinatorics. It is well known that the worst-case chain rule for
HILL-entropy is equivalent to the dense model theorem, as one can think of
dense distributions as uniform distributions X given short leakage Z. For set-
tings with constant density, which correspond to |Z| = O (1), HILL and relaxed
HILL entropy are equivalent [17]; moreover, the complexity loss in the chain rule
is then equal to the cost of transforming Metric Entropy into HILL Entropy.
Now our Theorem 1 implies a necessary loss in circuit size Ω

(
1/ε2

)
if one wants

ε-indistinguishability. This way we reprove the tight lower bound due to Zhang
[31] for constant densities.

2 Basic Definitions

Let X1 and X2 be two distributions over the same finite set. The statistical
distance of X1 and X2 equals SD (X1;X2) = 1

2

∑
x |Pr[X1 = x] − Pr[X2 = x]|.

Definition 1 (Min-Entropy). A random variable X has min-entropy k,
denoted by H∞ (X) = k, if maxx Pr[X = x] ≤ 2−k.

Definition 2 (Average conditional min-Entropy [5]). For a pair (X,Z) of
random variables, the average min-entropy of X conditioned on Z is

H̃∞(X|Z) = − logEz←Z [max
x

Pr[X = x|Z = z]] = − logEz←Z [2−H∞(X|Z=z)]

Distinguishers. We consider several classes of distinguishers. With Drand,{0,1}
s

we denote the class of randomized circuits of size at most s with boolean output
(this is the standard non-uniform class of distinguishers considered in crypto-
graphic definitions). The class Drand,[0,1]

s is defined analogously, but with real val-
ued output in [0, 1]. Ddet,{0,1}

s ,Ddet,[0,1]
s are defined as the corresponding classes

for deterministic circuits. With ΔD(X;Y) = |EX [D(X)]−EY [D(Y)] we denote
D’s advantage in distinguishing X and Y .

Pseudoentropy: Lower-Bounds for Chain Rules and Transformations 191

Definition 3 (HILL pseudoentropy [12,15]). A variable X has HILL
entropy at least k if

HHILL
ε,s (X) ≥ k ⇐⇒ ∃Y, H∞ (Y) = k ∀D ∈ Drand,{0,1}

s : ΔD(X;Y) ≤ ε

For a joint distribution (X,Z), we say that X has k bits conditonal Hill entropy
(conditionned on Z) if

HHILL
ε,s (X|Z) ≥ k

⇐⇒ ∃(Y,Z), H̃∞(Y |Z) = k ∀D ∈ Drand,{0,1}
s : ΔD((X,Z); (Y,Z)) ≤ ε

Definition 4 (Metric pseudoentropy [3]). A variable X has Metric entropy
at least k if

HMetric
ε,s (X) ≥ k ⇐⇒ ∀D ∈ Drand,{0,1}

s ∃YD , H∞ (YD) = k : ΔD(X;YD) ≤ ε

Metric star entropy is defined analogousely but using deterministic real valued
distinguishers

HMetric∗
ε,s (X) ≥ k ⇐⇒ ∀D ∈ Ddet,[0,1]

s ∃YD, H∞ (YD) = k : ΔD(X;YD) ≤ ε

Relaxed Versions of HILL and Metric Entropy. A weaker notion of con-
ditional HILL entropy allows the conditional part to be replaced by some com-
putationally indistinguishable variable

Definition 5 (Relaxed HILL pseudoentropy [9,23]). For a joint distribu-
tion (X,Z) we say that X has relaxed HILL entropy k conditioned on Z if

HHILL−rlx
ε,s (X|Z) ≥ k

⇐⇒ ∃(Y,Z ′), H̃∞(Y |Z ′) = k,∀D ∈ Drand,{0,1}
s , : ΔD((X,Z); (Y,Z ′)) ≤ ε

The above notion of relaxed HILL satisfies a chain rule whereas the chain rule
for the standard definition of conditional HILL entropy is known to be false [18].
One can analogously define relaxed variants of metric entropy, we won’t give
these as they will not be required in this paper.

Pseudoentropy Against Different Distinguisher Classes. For randomized
distinguishers, it’s irrelevant if the output is boolean or real values, as we can
replace any D ∈ Drand,[0,1]

s with a D′ ∈ Drand,{0,1} s.t. E[D′(X)] = E[D(X)] by
setting (for any x) Pr[D′(x) = 1] = E[D(x)]. For HILL entropy (as well as for
its relaxed version), it also doesn’t matter if we consider randomized or deter-
ministic distinguishers in Definition 3, as we always can “fix” the randomness
to an optimal value. This is no longer true for metric entropy,4 and thus the
distinction between metric and metric star entropy is crucial.

4 It might be hard to find a high min-entropy distribution Y that fools a randomized
distinguisher D, but this task can become easy once D’s randomness is fixed.

192 K. Pietrzak and M. Skórski

3 A Lower Bound on Metric-to-HILL Transformations

Theorem 1. For every n, k, m and ε such that n � k + log(1/ε) + 4, 1
8 > ε

and n − 1 ≥ m > 6 log(1/ε) there exist an oracle O and a distribution X over
{0, 1}n such that

HMetric
ε,T

,det{0,1}(X) � k (2)

here the complexity T denotes any circuit of size 2O(m) that makes at most ln(2/ε)
216ε2

non-adaptive queries and, simultaneously,

HMetric
2ε,T ′

,rand{0,1}(X) � m + 1 (3)

where the distinguishers size T ′ is only O(n) and the query complexity is 1.

Let S be a random subset of {0, 1}n of size 2m, where m � n − 1, and let
D1, . . . , Dh be boolean functions drawn independently from the following dis-
tribution D: D(x) = 1 on S with probability p if x ∈ S and D(x) = 1 with
probability q if x ∈ Sc, where p > q and p + q = 1. Denote X = US . We will
argue that the metric entropy against a probabilistic adversary who is allowed
one query is roughly m with advantage Ω(p−q). But the metric entropy against
non-adaptive deterministic adversary who can make t queries of the form Di(x)
is much bigger, even if t = O

(
(p − q)−2

)
. Let us sketch an informal argument

before we give the actual proof. We need to prove two facts:

(i) There is a probabilistic adversary A∗ such that with high probability over
X,D1, . . . , Dh we have ΔA∗

(X,Y) = Ω(p−q) for all Y with H∞ (Y) � m+1.
(ii) For every deterministic adversary A making at most t = O

(
(p − q)−2

)

non-adaptive queries, with high probability over X,D1, . . . , Dh we have
ΔA(X;Y) = 0 for some Y with H∞ (Y) = n − Θ(1).

To prove (i) we observe that the probabilistic adversary can distinguish between
S and Sc by comparing the bias of ones. We simply let A∗ forward its input to
Di for a randomly chosen i, i.e.,

A∗(x) = Di(x), i ← [1, . . . , h]

With extremely high probability we have Pr[A∗(x) = 1] ∈ [p − δ, p + δ] if x ∈ S
and Pr[A∗(x) = 1] ∈ [q − δ, q + δ] if x �∈ S for some δ � p − q (by a Chernoff
bound, δ drops exponentially fast in h, so we just have to set h large enough).
We have then Pr[A∗(X) = 1] � p + δ and Pr[A∗(Y) = 1] � 1/2 · (p + q + 2δ)
for every Y of min-entropy at least m + 1 (since then Pr[Y ∈ S] � 1/2). This
yields ΔA∗

(X;Y) = (p − q)/2. In order to prove (ii) one might intuitively argue
that the best a t-query deterministic adversary can do to contradict to (ii), is to
guess whether some value x has bias p or q = 1 − p, by taking the majority of t
samples

A(x) = Maj(D1(x), . . . , Dt(x))

Pseudoentropy: Lower-Bounds for Chain Rules and Transformations 193

But even if t = Θ(1/(p−q)2), majority will fail to predict the bias with constant
probability. This means there exists a variable Y with min-entropy n−Θ(1) such
that Pr[A(Y) = 1] = Pr[A(X) = 1]. The full proof gives quantitative forms of (i)
and (ii), showing essentially that “majority is best” and appears in AppendixA.

4 Lower Bounds on Chain Rules

For any n � � � m, we construct a distribution (X,Z) ∈ {0, 1}n × {0, 1}m and
an oracle O(.) such that relative to this oracle, X has very large HILL entropy
but the HILL entropy of X|Z is much lower in quantity and quality: for arbitrary
n � � � m (where |Z| = m, X ∈ {0, 1}n), the quantity drops from n to �−m+2
(it particular, by much more than |Z| = m), even if we allow for a 2m/ε drop in
quality.

Theorem 2 (A lower bound on the chain rule for HHILL−rlx). There exists
a joint distribution (X,Z) over {0, 1}n × {0, 1}m, and an oracle O such that,
relative to O, for any (�, δ) such that n

2 − log(1/δ)
2 > m and � > m + 6 log(1/δ),

we have

HHILL
δ/2,T (X) = n (4)

where5 T > c · 2m/δ with some absolute constant c but

HHILL−rlx
δ/2,T ′ (X|Z) < � + 1 (5)

where T ′ captures a circuit of size only O(n) making only 1 oracle query.

Remark 1 (On the technical restrictions). Note that the assumptions on � and
δ are automatically satisfied in most interesting settings, as typically we assume
m � n and log(1/δ) � n.

Remark 2 (A strict separation). The theorem also holds if we insist on a larger
distinguishing advantage after leakage. Concretely, allowing for more than just
one oracle query, the δ/2 advantage in (5) can be amplified to Cδ for any constant
C assuming δ is small enough to start with (see Remark 4 in the proof).

The full proof appears in AppendixB. The heart of the argument is a lower
bound on the query complexity for the corresponding “coin problem”: we need
to distinguish between T random bits, and the distribution where we sample
equally likely T independent bits Bp or T independent bits Bq where p = 1

2 + δ
and q = 1 − p. (see Appendix C for more details). The rest of the proof is based
on a standard concentration argument, using extensively Chernoff Bounds.

5 The class of adversaries here consists of all circuits with the total number of gates,
including oracle gates, at most T . Theorem 2 is also true when the circuit size s is
much bigger than the total number of oracle gates T (under some assumption on s,
�, ε). For simplicity, we do not state this version.

194 K. Pietrzak and M. Skórski

5 Open Problems

As shown in Fig. 2, there remains a gap between the best proofs for the chain-
rule, which lose a factor ε2/2|Z| in circuit size, and the required loss of ε/2|Z|

we prove in this paper. Closing this bound by either improving the proof for the
chain-rule or give an improved lower bound remains an intriguing open problem.

Our lower bounds are only proven for adversaries that make their queries non-
adaptively. Adaptive queries don’t seem to help against our oracle, but rigorously
proving this fact seems tricky.

Finally, the lower bounds we prove on the loss of circuit size assume that the
distinguishing advantage remains roughly the same. There exist results which
are not of this form, in particular – as shown in Fig. 2 – the HILL to Metric
transformation from [8] only loses in distinguishing advantage, not in circuit
size (i.e., we have s ≈ s′). Proving lower bounds and giving constructions for
different circuit size vs. distinguishing advantage trade-offs leave many challenges
for future work.

A Proof of Theorem1

A.1 Majority Is Best

We prove two statements which are quantitative forms of (i) and (ii) discussed
after the statement of Theorem 1. First we show that the probabilistic adversary
A∗ easily distinguishes X from all Y of high min-entropy.

Claim 1 (Probabilistic Metric Entropy of X is small). Let A∗ be a prob-
abilistic adversary who on input x samples a random i ∈ [1, . . . , h], then queries
for Di(x) and outputs the response. Then for any δ � (p − q)/3 we have

Pr[∀Y : H∞ (Y) � m + 1, ΔA∗
(X;Y) � (p − q)/3] � 1 − 2max(n−1,m+1) exp(−hδ2). (6)

Remark 3 (The complexity of the probabilistic distinguisher). We can chose h in
Claim 1 to be 2n, then A∗ is of size O (n) and makes only one query.

Consider now a deterministic adversary A who on input x can make at most t
queries learning Di(x) for t different i ∈ [1, . . . , h]. We claim that

Claim 2 (Deterministic Metric Entropy is big). Suppose that we have
n � k + log(1/ε) + 4 and δ = ε2

2+2ε . Then for every nonadaptive adversary A

which makes t � ln(2/ε)
6(p−q)2 queries we have

Pr
X,D1,...,Dh

[
∃Y : H∞ (Y) � k, ΔA(X;Y) � ε

]
� 1 − 4 exp(−2mδ2). (7)

Setting p − q = 6ε we see that Eq. (2) follows from Claim 1 and Eq. (3) follows
from Eq. (7) combined with the union bound over all distinguishers. Note that
the right hand side of Eq. (7) converges to 1 with the rate doubly exponential
in m, so we can even afford taking a union bound over all distinguishers of size
exponential in m.

Pseudoentropy: Lower-Bounds for Chain Rules and Transformations 195

Proof (of Claim 1). By a Chernoff bound6 and the union bound

Pr
X,D1,...,Dh

[∀x ∈ Sc : Pr[A∗(x) = 1] � q + δ] � 1 − 2n−1 exp(−2δ2h) (8)

similarly

Pr
X,D1,...,Dh

[∀x ∈ S : |Pr[A∗(x) = 1] − p| � δ] � 1 − 2m · 2 exp(−2δ2h). (9)

The advantage of A∗, with probability 1 − 2n−1 exp(−2hδ2), equals

ΔA∗
(X;Y) � (p − δ) − (p + δ) Pr[Y ∈ S] − (q + δ) Pr[Y ∈ Sc]

� p − q − (p − q) Pr[Y ∈ S] − 2δ.

Since by the assumption we have Pr[Y ∈ S] � 1
2 , Eq. (6) follows.

Proof (of Claim 2). The adversary A non-adaptively queries for Di(x) values for
t distinct i’s and then outputs a bit, this bit is thus computed by a function of
the form

f
(
x,Di1(x)(x), . . . , Dit(x)(x)

)
, (10)

for some fixed boolean function f : {0, 1}n × {0, 1}t → {0, 1}. We start by sim-
plifying the event (7) using the following proposition, which gives an alternative
characterization of the deterministic metric entropy.

Lemma 1 ([3,25]). Let D be a boolean deterministic function on {0, 1}n. Then
there exists Y of min-entropy at least k such that ΔD(X;Y) � ε if and only if

ED′(X) � 2n−k
ED′(U) + ε (11)

holds for D′ ∈ {D,1 − D}

Since |Sc| � 2n−1, we have ED(U) � Ex←Sc D(x)/2 for any function D.
Therefore, by Lemma 1, the inequality (7) will be proved if we show that the
following inequality holds:

Pr
X,D1,...,Dh

[
∀A′ ∈ {A,1 − A} : Ex←S A′(x) � 2n−k−1

Ex←Sc A′(x) + ε
]

� 1 − 4 exp(−2mδ2)

(12)

By the union bound, it is enough to show that for A′ ∈ {A,1 − A} we have

Pr
X,D1,...,Dh

[
Ex←S A′(x) � 2n−k−1

Ex←Sc A′(x) + ε
]

� 1 − 2 exp(−2mδ2) (13)

In the next step we simplify the expressions Ex←S A′(x) and Ex←Sc A′(x). The
following fact is a direct consequence of the Chernoff bound.
6 We use the following version: let Xi for i = 1, . . . , N be independent ran-

dom variables such that Xi ∈ [ai, bi]. Then for any positive t we have

PrX1,...,XN

[∑N
i=1 Xi − E

[∑N
i=1 Xi

]
� t
]

� exp
(

2t2∑N
i=1(bi−ai)2

)
.

196 K. Pietrzak and M. Skórski

Proposition 1. For any function f ∈ {0, 1}n × {0, 1}t → [0, 1] we have
∣
∣Ex←S f

(
x,Di1(x)(x), . . . , Dit(x)(x)

)
− E f(Un, B1

p , . . . , Bt
p)

∣
∣ � δ (14)

∣
∣Ex←Sc f

(
x,Di1(x)(x), . . . , Dit(x)(x)

)
− E f(Un, B1

q , . . . , Bt
q)

∣
∣ � δ (15)

with probability 1 − 2 exp(−2 · 2mδ2) over the choice of X and D1, . . . , Dh.

For any r = (r1, r2, . . . , rt) ∈ [0, 1]t, and any (deterministic or randomized)
function f ∈ {0, 1}t → [0, 1] we denote Erf = Ef(Br1 , . . . , Brt). It is enough to
show that if r, r′ are both chosen from {p, q}t then we have

Erf + δ � 2n−k−1 max(Er′f − δ, 0) + ε. (16)

This inequality will follow by the following lemma (applied to f in the proposition
but considered as a function of {0, 1}t randomized with the first n input bits).

Lemma 2. Suppose that p, q > 0 are such that p+ q = 1. Let f : {0, 1}t → [0, 1]
be an arbitrary function and let r, r′ ∈ {p, q}t. Then for any c > 0 we have

Erf � exp
(

(c + 1)(p − q)2

q
· t

)
· Er′f + exp(−2c2(p − q)2t).

Proof. The idea of the proof is to show that for most values of z the ratio
Pr[Br = z]/Pr[Br′ = z] is bounded. We have

Pr[Br = z]/Pr[Br′ = z]

= (p/q)#{i:zi=1, ri>r′
i}−#{i:zi=1, ri<r′

i} · (q/p)#{i:zi=0, ri>r′
i}−#{i:zi=0, ri<r′

i}

= (p/q)#{i:zi=1, ri>r′
i}−#{i:zi=0, ri>r′

i}−#{i:zi=1, ri<r′
i}+#{i:zi=0, ri<r′

i} (17)

= (p/q)
∑t

i=1(2zi−1)·sgn(ri−r′
i) (18)

The random variables ξi = (2zi − 1) · sgn(ri − r′
i) for i = 1, . . . , t, where z is

sampled from Br, are independent with the expectations Eξi = (2ri −1)sgn(ri −
r′

i) � p − q. By the Chernoff bound for any c > 0 we get

Pr
z←Br

[
t∑

i=1

(2zi − 1) · sgn(ri − r′
i) � (p − q)t + c(p − q)t

]

� exp(−2c2(p − q)2t).

(19)

Therefore,

Erf � (p/q)(c+1)(p−q)t
Er′f + 2 exp(−2c2(p − q)2t) (20)

and the claim follows by observing that p/q = 1 + (p − q)/q � exp((p − q)/q).

From Lemma 2 it follows that Eq. (16) is satisfied with

δ � ε

2 exp ((c + 1)(p − q)2 · t/q) + 2
(21)

Pseudoentropy: Lower-Bounds for Chain Rules and Transformations 197

provided that

exp(−2c2(p − q)2 · t) � ε/2 (22)

exp
(
(c + 1)(p − q)2 · t/q

)
� 2n−k−1 (23)

It is easy to see that Eqs. (23) and (22) are satisfied if and only if

ln(2/ε)
2c2(p − q)2

� t � (n − k − 3) ln 2 · q

(c + 1)(p − q)2
.

This inequality can be satisfied if and only if

ε � 2 · 2(k−n+3)· 2qc2c+1 .

If we set t = ln(2/ε)
2c2(p−q)2 then Eq. (21) becomes

δ � ε

(2/ε)
c+1
2qc2 + 2

Choosing c so that 2qc2

c+1 = 1 we see that it is enough to assume ε � 2 · 2k−n+3,

any δ such that δ � ε2

2+2ε and t ≈ ln(2/ε)
6(p−q)2 (the constant 6 is sightly bigger than

the exact value, but if Claim 2 holds true for some t then also for t′ < t). This
finishes the proof of Claim 2.

B Proof of Theorem2

A Remark on the Oracle. For convenience, the oracle O : {0, 1}n → {0, 1}
we use in the proof is probabilistic, in the sense that it flips some random coins
before answering a query (in particular, making the same query twice might give
different outputs). We remark that, as the adversaries considered are probabilis-
tic, one can replace this oracle with a deterministic one Odet by assigning to
every possible query x a 2L tuple (x, r), r ∈ {0, 1}L of queries (for some suffi-
ciently large L), where the output for Odet((x, r)) is sampled according to O(x)
for every r. We can emulate the output distribution O(x) by querying O((x, r))
for a random r. On the other hand, for a random x, even an exponential size
distinguisher will not be able to distinguish Odef((x, ·)) from an oracle which,
when queried on input (x, r) for the first time, samples the output according to
the distribution of O(x).7

Proof (of Theorem 2). We first describe how we construct the distribution (X,Z)
and the oracle O.
7 This can be shown along the lines of the proof that a random exponential size

subset is unconditionally pseudorandom against exponential size distinguishers, see
Goldreich’s book “Foundations of Cryptography – Basic Techniques”, Proposition
3.2.3.

198 K. Pietrzak and M. Skórski

Construction details. We chose at random two disjoint sets X0,X1 ⊂ {0, 1}n

of size 2� and define X = X0 ∪ X1. Let π : {0, 1}n → {0, 1}m−1 be a random
function. The oracle O on input (x, j) ∈ X ×{0, 1}m−1 outputs a sample of B1/2

(i.e., a uniformly random bit), except if x ∈ X and π(x) = j, in this case the
output bit has bias δ; If x ∈ X0, the oracle outputs a sample of B1/2−δ, and
otherwise, if x ∈ X1, a sample of B1/2+δ. We define the joint distribution (X,Z)
by sampling Z ′ ← {0, 1},X ← XZ′ and setting Z = π(X)‖Z ′ (note that X is
uniform in X)

Adversaries. The adversary on input x ∈ {0, 1}n makes T non-adaptive
queries (x, j1(x)), . . . , (x, jT (x)) to the oracle. We denote O’s response with
R(x) =

(
Ri(x, ji(x))

)T

i=1
. The adversary’s final output f(x,R(x)) is computed

by a boolean function f : {0, 1}n × {0, 1}T → {0, 1}.

Formal proof. Let R(x) = (R1(x, j1(x)), . . . , RT (x, jT (x))) be the sequences of
the oracle’s responses and Let B(x) = (B1

1/2, . . . , B
T
1/2) be independent random

bits. For every x the number of useful responses, that is indexes i such that
Ri(x, ji(x)) is biased, is defined to be

T (x) =
T∑

i=1

[ji(x) = π(x)] (24)

On average we have EO(·) T (x) = T/2m−1. We claim that the adversary actually
learns basically nothing about X : the sequence of oracle outptus is close to the
sequence of unbiased bits. We start by showing that X is pseudorandom for our
adversary.

Claim 3 (X is pseudorandom, even given oracle responses). For any f
and ε > 0 we have

|Ex←X f(x,R(x)) − Ex←Un
f(x,R(x))| ≤ ε + O

(
δ2T/2m

)
(25)

with error probability at most O
(
exp (−Ω (2n−m)) + exp

(
−Ω

(
2�ε2

)))
.

Proof. By Lemma 3 and the definition of O, for every x ∈ X we obtain

|Ef(x,R(x)) − Ef(x,B(x))| =
{

O
(
T (x)δ2

)
, x ∈ X

0, x �∈ X (26)

for every boolean function f and some absolute constant hidden under big-Oh.
Thus

∣
∣
∣
∣ E
x←X

f(x,R(x)) − E
x←X

f(x,B(x))
∣
∣
∣
∣ = O

(

E
x←X

T (x)δ2
)

(27)

Note that the random variables f(x,R(x)) for different values of x are indepen-
dent and similarly f(x,B(x)) for different values of x are independent. Since the

Pseudoentropy: Lower-Bounds for Chain Rules and Transformations 199

set X is chosen at random by the Hoeffding-Chernoff bound we obtain that with
probability 1 − 2 exp

(
−Ω

(
2�ε2

))
over O the following holds:

∣
∣
∣
∣ E
x←X

f(x,B(x)) − E
x←Un

f(x,B(x))
∣
∣
∣
∣ � ε (28)

Combining Eqs. (27) and (28) we obtain (with probability 1− 2 exp
(
−Ω

(
2�ε2

))

over O).
∣
∣
∣
∣ E
x←X

f(x,R(x)) − E
x←Un

f(x,B(x))
∣
∣
∣
∣ � ε + O

(

E
x←X

T (x)δ2
)

(29)

By Eq. (26) we have
∣
∣
∣
∣ E
x←Un

f(x,R(x)) − E
x←Un

f(x,B(x))
∣
∣
∣
∣ � O

(

E
x←Un

T (x)δ2
)

. (30)

Now Eqs. (29) and (30) imply
∣
∣
∣
∣ E
x←X

f(x,R(x)) − E
x←Un

f(x,R(x))
∣
∣
∣
∣ � ε + O

(

E
x←Un

T (x)δ2
)

. (31)

The random variables T (x) for different x are independent, bounded by T and
have the first moment E

O
(T (x)) = T/2m−1. By the multiplicative Chernoff bound

with probability 1 − 2 exp (−Ω (2n−m)) over O it holds that E
x←Un

T (x) < 2 ·

T/2m−1. This implies Eq. (25) with error probability at most

Perr = O
(
exp

(
−Ω

(
2n−m

))
+ exp

(
−Ω

(
2�ε2

)))
.

Claim 4. There exists a distinguisher D : {0, 1}n × {0, 1}m → {0, 1} which
calls the oracle O one time and such that for any joint distribution Y,Z ′ over
{0, 1}n × {0, 1}m with entropy H̃∞(Y |Z ′) � � + 1 it holds that

ED(X,Z) − ED(Y,Z ′) � δ

2

with probability 1 − 2 exp(−Ω
(
2�δ2)

)
.

Remark 4 (Amplified distinguisher). Assuming that T is sufficiently large, we
can modify D by taking the majority vote over T queries on O(x, z). This will
boost the distinguishing advantage from δ/2 to Cδ where C can be an arbitrary
constant (for sufficiently small δ).

Proof (of Claim 4). The distinguisher D simply calls the oracle O on the
pair (x, z). The probability that D outputs 1 on input (Y,Z ′) is at most

200 K. Pietrzak and M. Skórski

(the probabilities below are over the choice of O and Y,Z ′)

Pr (D(Y,Z ′) = 1) = E
z←Z′

Pr (D(Y |Z′=z, z) = 1)

= E
z←Z′

[Pr (D(Y, z) = 1 ∧ Y �∈ X |Z ′ = z)]

+ E
z←Z′

[Pr (D(Y, z) = 1 ∧ Y ∈ X |Z ′ = z)]

=
1
2

+ δ · E
z←Z′

[Pr (Y ∈ X |Z ′ = z)]

� 1
2

+ δ E
z←Z′

[
|X | · 2−H∞(Y |Z′=z)

]

=
1
2

+ δ · |X | · 2−H̃∞(Y |Z′)

which is at most 1
2 + δ

2 . On the other hand we have Pr(D(X,Z) = 1) = 1
2 + δ.

From this we see that the advantage is δ on average - but we need stronger
concentration guarantees. Note that Pr(D(X,Z) = 1) =

∑
x∈S Pr[X = x] ·

D(x, i(x)) can be viewed as a sum of independent random variables. By the
Chernoff-Hoeffding bound we get

Pr
O

[
Pr(D(X,Z) = 1) � 1

2
+ δ − δ

8

]
� 1 − exp(−Ω

(
2�δ2)

)
)

Similarly, Pr(D(Y,Z ′) = 1) =
∑

x,z Pr[Y = x,Z ′ = z] · D(x, z′). Since
∑

x,z

Pr[Y = x,Z ′ = z]2 =
∑

z

∑
xPr[Z ′ = z]2 Pr[Y = x|Z ′ = z]2

�
∑

z

Pr[Z ′ = z]2−H∞(Y |Z′=z)

� 2−H̃∞(Y |Z),

the Chernoff-Hoeffding bound implies

Pr
O

[
Pr(D(Y ′, Z) = 1) � 1

2
+

δ

2
+

δ

8

]
� 1 − exp(−Ω

(
2�δ2

)
) (32)

and the result follows. We set ε = δ
3 and T = c · 2m/ε. Now Claim 4 directly

implies Eq. (5) whereas Eq. (4) follows, when c is sufficiently small, from Claim 3
by a union bound; To see this, note that the right hand side of (32) is doubly
exponentially close (in �) to 1, and recall that � > m + 6 log(1/δ). So we can
take a union bound over all O(exp(T)) circuits D of size T and deduce that with
high probability the left hand side of (32) hold for all of them.

C Proof of Lemma3

Lemma 3 (Lower bounds on the coin problem). Fix δ ∈ (0, 1/2) and
define p = 1

2 + δ and q = 1 − p. Consider the following two experiments:

Pseudoentropy: Lower-Bounds for Chain Rules and Transformations 201

(a) We flip a fair coin, and depending on the result we toss T times a biased
coin Bp (probability of the head is p) or toss T times a coin Bq (probability
of the head is q). The output is the result of these T flips.

(b) We flip T times a fair coin and output the results.

Then one cannot distinguish (a) from (b) better than with advantage O
(
Tδ2

)
.

Remark 5. We give a simple proof based on calculating Renyi divergences. This
result can be also derived by more sophisticaed techniques from Fourier analysis
(the generalized XOR lemma).

Before we give the proof, let’s recall some basic facts about Pearson Chi-Squared
Distance. For any two distributions P,Q over the same space, their Chi-Squared
distance defined by

Dχ2(P ‖ Q) =
∑

x

Q(x)
(

P (x)
Q(x)

− 1
)2

=
∑

x

P (x)2

Q(x)2
− 1 (33)

Now let U1, . . . , Un be independent uniform bits, X1, . . . , Xn be i.i.d. bits where
1 appears with probability p = 1

2 +δ and Y1, . . . , Yn be i.i.d. bits where 1 appears
w ith probability q = 1 − p = 1

2 − δ. We want to estimate the distance between
U = U1, . . . , Un and Z distributed as an equally weighted combination of X =
X1, . . . , Xn and Y = Y1, . . . , Yn. We think of δ as a fixed parameter and n as
a growing number. Our statement will easily follow by combining the following
two claims

Claim 5. With U and Z as above, and for n = O
(
δ−2

)
, it holds that

Dχ2 (U ;Z) = O
(
n2δ4

)
(34)

Claim 6. For any R and uniform U

SD(R ‖ U) �
√

Dχ2(R ‖ U), (35)

Indeed, combining these claims we obtain SD(Z ‖ U) = O(nδ2) when n =
O

(
δ−2

)
. Since the left-hand side is bounded by 1, this is true also when n > cδ−2

for some absolute constant c and the result follows.

Proof (of Claim 5). We have

Dχ2

(
1
2
PX1,...,Xn

+
1
2
PY1,...,Yn

‖ PU1 · . . . · PUn

)

= 2n ·
∑

z1,...,zn

(
1
2
PX1(z1) · . . . · PXn

(zn) +
1
2
PY1(z1) · . . . · PYn

(zn)
)2

− 1

=
1
4

· 2n
∏

i

(
∑

z

PXi
(z)2

)

+
1
4

· 2 · 2n
∏

i

(
∑

z

PXi
(z)PYi

(z)

)

202 K. Pietrzak and M. Skórski

+
1
4

· 2n
∏

i

(
∑

z

PYi
(z)2

)

− 1

=
1
4

(
(1 + 4δ2)n + 2(1 − 4δ2)n + (1 + 4δ2)n − 4

)

(36)

and the result follows by the Taylor expansion (1 + u)n = 1 + nu + O(n2u2)
where nu = O(1) applied to u = 4δ2. The bound is valid as long as n = O

(
δ−2

)
.

Proof (of Claim 6). This inequality follows immediately from the Cauchy-
Schwarz inequality and the definition of Dχ2 .

References

1. Baker, T., Gill, J., Solovay, R.: Relativizations of the p=?np question. SIAM J.
Comput. 4(4), 431–442 (1975)

2. Barak, B.: How to go beyond the black-box simulation barrier. In: 42nd FOCS,
pp. 106–115. IEEE Computer Society Press, October 2001

3. Barak, B., Shaltiel, R., Wigderson, A.: Computational analogues of entropy. In:
11th International Conference on Random Structures and Algorithms, pp. 200–
215 (2003)

4. Chung, K.-M., Kalai, Y.T., Liu, F.-H., Raz, R.: Memory delegation. In: Rogaway,
P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 151–168. Springer, Heidelberg (2011)

5. Dodis, Y., Reyzin, L., Smith, A.: Fuzzy extractors: how to generate strong keys
from biometrics and other noisy data. In: Cachin, C., Camenisch, J.L. (eds.)
EUROCRYPT 2004. LNCS, vol. 3027, pp. 523–540. Springer, Heidelberg (2004)

6. Dziembowski, S., Pietrzak, K.: Leakage-resilient cryptography. In: 49th FOCS, pp.
293–302. IEEE Computer Society Press, October 2008

7. Fuller, B., O’Neill, A., Reyzin, L.: A unified approach to deterministic encryption:
new constructions and a connection to computational entropy. In: Cramer, R. (ed.)
TCC 2012. LNCS, vol. 7194, pp. 582–599. Springer, Heidelberg (2012)

8. Fuller, B., Reyzin, L.: Computational entropy and information leakage. Cryptology
ePrint Archive, report 2012/466 (2012). http://eprint.iacr.org/

9. Gentry, C., Wichs, D.: Separating succinct non-interactive arguments from all fal-
sifiable assumptions. In: Fortnow, L., Vadhan, S.P. (eds.) 43rd ACM STOC, pp.
99–108. ACM Press, June 2011

10. Goldreich, O., Krawczyk, H., Luby, M.: On the existence of pseudorandom gener-
ators. SIAM J. Comput. 22(6), 1163–1175 (1993)

11. Haitner, I., Reingold, O., Vadhan, S.P.: Efficiency improvements in constructing
pseudorandom generators from one-way functions. In: Schulman, L.J. (ed.) 42nd
ACM STOC, pp. 437–446. ACM Press, June 2010

12. H̊astad, J., Impagliazzo, R., Levin, L.A., Luby, M.: A pseudorandom generator
from any one-way function. SIAM J. Comput. 28(4), 1364–1396 (1999)

13. Holenstein, T.: Pseudorandom generators from one-way functions: a simple con-
struction for any hardness. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol.
3876, pp. 443–461. Springer, Heidelberg (2006)

14. Holenstein, T., Sinha, M.: Constructing a pseudorandom generator requires an
almost linear number of calls. In: 53rd FOCS, pp. 698–707. IEEE Computer Society
Press, October 2012

http://eprint.iacr.org/

Pseudoentropy: Lower-Bounds for Chain Rules and Transformations 203

15. Hsiao, C.-Y., Lu, C.-J., Reyzin, L.: Conditional computational entropy, or toward
separating pseudoentropy from compressibility. In: Naor, M. (ed.) EUROCRYPT
2007. LNCS, vol. 4515, pp. 169–186. Springer, Heidelberg (2007)

16. Impagliazzo, R., Rudich, S.: Limits on the provable consequences of one-way per-
mutations. In: Goldwasser, S. (ed.) CRYPTO 1988. LNCS, vol. 403, pp. 8–26.
Springer, Heidelberg (1990)

17. Jetchev, D., Pietrzak, K.: How to fake auxiliary input. In: Lindell, Y. (ed.) TCC
2014. LNCS, vol. 8349, pp. 566–590. Springer, Heidelberg (2014)

18. Krenn, S., Pietrzak, K., Wadia, A.: A counterexample to the chain rule for condi-
tional HILL entropy. In: Sahai, A. (ed.) TCC 2013. LNCS, vol. 7785, pp. 23–39.
Springer, Heidelberg (2013)

19. Lu, C.-J., Tsai, S.-C., Wu, H.-L.: On the complexity of hard-core set constructions.
In: Arge, L., Cachin, C., Jurdziński, T., Tarlecki, A. (eds.) ICALP 2007. LNCS,
vol. 4596, pp. 183–194. Springer, Heidelberg (2007)

20. Pietrzak, K.: A leakage-resilient mode of operation. In: Joux, A. (ed.) EURO-
CRYPT 2009. LNCS, vol. 5479, pp. 462–482. Springer, Heidelberg (2009)

21. Pietrzak, K., Skórski, M.: The chain rule for HILL pseudoentropy, revisited. In:
Lauter, K., Rodŕıguez-Henŕıquez, F. (eds.) LatinCrypt 2015. LNCS, vol. 9230, pp.
81–98. Springer, Heidelberg (2015)

22. Reingold, O., Trevisan, L., Tulsiani, M., Vadhan, S.P.: Dense subsets of pseudo-
random sets. In: 49th FOCS, pp. 76–85. IEEE Computer Society Press, October
2008

23. Reyzin, L.: Some notions of entropy for cryptography. In: Fehr, S. (ed.) ICITS
2011. LNCS, vol. 6673, pp. 138–142. Springer, Heidelberg (2011)

24. Simon, D.R.: Findings collisions on a one-way street: can secure hash functions be
based on general assumptions? In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS,
vol. 1403, pp. 334–345. Springer, Heidelberg (1998)

25. Skorski, M.: Metric pseudoentropy: characterizations, transformations and appli-
cations. In: Lehmann, A., Wolf, S. (eds.) Information Theoretic Security. LNCS,
vol. 9063, pp. 105–122. Springer, Heidelberg (2015)

26. Skorski, M.: A better chain rule for hill pseudoentropy - beyond bounded leakage.
In: Information Theoretic Security - 9th International Conference, ICITS 2016
(2016)

27. Skorski, M.: Simulating auxiliary information, revisited. In: TCC 2016-B (2016)
28. Vadhan, S.P., Zheng, C.J.: Characterizing pseudoentropy and simplifying pseudo-

random generator constructions. In: Karloff, H.J., Pitassi, T. (eds.) 44th ACM
STOC, pp. 817–836. ACM Press, May 2012

29. Vadhan, S., Zheng, C.J.: A uniform min-max theorem with applications in cryp-
tography. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part I. LNCS, vol.
8042, pp. 93–110. Springer, Heidelberg (2013)

30. Watson, T.: Advice lower bounds for the dense model theorem. TOCT 7(1), 1
(2014)

31. Zhang, J.: On the query complexity for showing dense model. Electron. Colloquium
Comput. Complexity (ECCC) 18, 38 (2011)

Oblivious Transfer from Any Non-trivial Elastic
Noisy Channel via Secret Key Agreement

Ignacio Cascudo1(B), Ivan Damg̊ard2, Felipe Lacerda2, and Samuel Ranellucci2

1 Department of Mathematics, Aalborg University, Aalborg, Denmark
ignacio@math.aau.dk

2 Department of Computer Science, Aarhus University, Aarhus, Denmark
{ivan,lacerda,samuel}@cs.au.dk

Abstract. A (γ, δ)-elastic channel is a binary symmetric channel
between a sender and a receiver where the error rate of an honest
receiver is δ while the error rate of a dishonest receiver lies within the
interval [γ, δ]. In this paper, we show that from any non-trivial elas-
tic channel (i.e., 0 < γ < δ < 1

2
) we can implement oblivious transfer

with information-theoretic security. This was previously (Khurana et al.,
Eurocrypt 2016) only known for a subset of these parameters. Our tech-
nique relies on a new way to exploit protocols for information-theoretic
key agreement from noisy channels. We also show that information-
theoretically secure commitments where the receiver commits follow from
any non-trivial elastic channel.

Keywords: Oblivious transfer · Elastic channels · Key agreement ·
Commitments

1 Introduction

In this paper we consider oblivious transfer (OT), a well known two-party crypto-
graphic primitive. In oblivious transfer, a sender has two messages and a receiver
chooses to learn one of them. The receiver gains no information about the other
message, while the sender does not know which of the messages the receiver has
learned. Oblivious transfer is an important primitive because it is sufficient for
information-theoretic secure computation [Kil88].

However, information-theoretic secure computation and therefore oblivious
transfer are well known to be impossible if sender and receiver communicate
in the plain model, without additional resources. Therefore, several alternative
models have been studied where information-theoretically secure oblivious trans-
fer is possible because we assume additional resources.

One such assumption is the existence of a noisy channel between the sender
and the receiver. It was shown in [CK88] that binary symmetric channels are
in fact enough to realize oblivious transfer. A binary symmetric channel is one
where each bit sent is flipped with a certain probability, known as the error
rate of the channel. More efficient constructions, and different variants of noisy
c© International Association for Cryptologic Research 2016
M. Hirt and A. Smith (Eds.): TCC 2016-B, Part I, LNCS 9985, pp. 204–234, 2016.
DOI: 10.1007/978-3-662-53641-4 9

Oblivious Transfer from Any Non-trivial Elastic Noisy Channel 205

channels, were provided in subsequent papers, such as [BCS96,Cré97,DKS99,
DFMS04,CMW05,CS06,PDMN11,IKO+11].

In particular, it was realized that it is problematic to assume that we are
given a noisy channel with known and fixed parameters, such that the OT pro-
tocol we construct is allowed to depend on the parameter values. One reason
for this is that it can be very hard to reliably estimate the parameters of a
real channel. Another, more serious problem is that by fixing the parameters we
are implicitly assuming that the adversary cannot change them. This is clearly
unrealistic, and was the main motivation for introducing unfair noisy channels
(UNC) in [DKS99]. In this model, the channel is a binary symmetric channel
where, however, an adversary who corrupts one of the two parties can also choose
the error rate to be within some range [γ, δ]. For δ ≥ 2γ(1−γ), the channel is eas-
ily seen to be trivial (it can be simulated from noiseless communication). It was
shown in [DKS99] that information-theoretically secure oblivious transfer follows
from UNC for a certain subset of the possible non-trivial parameter choices, while
information-theoretically secure commitments follow from any non-trivial UNC.

Elastic channels (EC), a relaxation of unfair noisy channels, have been intro-
duced in [KMS16]. For an EC, the noise can only be reduced by an adversary
who corrupts the receiver. More precisely, given 0 ≤ γ < δ ≤ 1/2, a (γ, δ)-elastic
channel is one where the communication between the sender and an honest
receiver has error rate δ, but a dishonest receiver may reduce this to be in the
interval [γ, δ]. Clearly, in this setting, δ = 1/2 would correspond to a channel
where all information is lost for the honest receiver, while γ = 0 would yield a
channel where a dishonest receiver has full information about the messages sent
by the sender. We cannot implement oblivious transfer in either case, and hence
these channels are deemed trivial.

It was shown in [KMS16] that commitments where the sender commits fol-
low from any non-trivial EC, and that oblivious transfer follow from EC for a
certain subset of parameters, which is larger than in the case of an UNC. More
specifically, they show that δ ≤ �(γ) where �(γ) :=

(
1 + (4γ(1 − γ))−1/2

)−1
is

sufficient.
It is of course interesting that going from UNC to EC allows a larger range

of parameters from which we can get OT. However, for both channels, we are
still left with a “grey area” of parameter values where we do not know if OT
is possible. One might say that we still do not know if an EC is fundamentally
and qualitatively different from a UNC as far as OT is concerned. Moreover, for
commitments, we know that we can have the sender commit, but since an EC
is asymmetric w.r.t what corrupted senders and receivers can do, it is not clear
that we can get commitments where the receiver commits for any non-trivial
EC.

Our Contribution. In this paper, we make progress on the above questions. First,
we close the gap left open in [KMS16] and show that information theoretically
secure oblivious transfer follows from any non-trivial EC. Along the way, we also
construct commitments where the receiver commits, from any non-trivial EC.

206 I. Cascudo et al.

Our main technical contribution is a new way to exploit a certain type of key
agreement protocol towards implementing OT. More specifically, we consider a
key agreement protocol between two parties (Alice and Bob) in the following
model: Alice can send messages to Bob through a binary symmetric channel
C with error rate δ, and the adversary Eve will receive what Alice sends via
an independent binary symmetric channel with error rate γ′ ∈ [γ, δ]. On top
of this, Alice and Bob may also communicate via a public error-free channel.
Several key agreement protocols exist in this model [Mau93]. The main idea is
to use the public channel to identify transmissions where Alice and Bob are more
likely to agree on what was sent on the noisy channel. Because Eve’s channel is
independent, this may create a situation where Eve has a disadvantage compared
to Bob, even if her noise rate is initially smaller.

In this work, we consider key agreement protocols that are secure in the
usual sense: Alice and Bob agree on the output, and Eve gets essentially no
information on the key. But in addition, we require an extra property we call
emulatability : We can replace Bob by a “fake” Bob’, who gets no information
on what Alice sends on the noisy channel (but Eve gets information with error
rate γ′ as usual). Still, Bob’ can complete the conversation on the public channel
such that neither Alice nor Eve can distinguish Bob’ from Bob. As we explain
later, we can modify the key agreement protocol presented in [Mau93, Sect. 5] so
that it is emulatable. We show that an oblivious transfer protocol secure against
semi-honest adversaries can be constructed from any emulatable key agreement
protocol. Furthermore, by using information-theoretic commitments where the
committing party is the receiver (which can be constructed from any non-trivial
EC, as we will show) we can upgrade our protocol to achieve security against
a malicious receiver too. Finally, we show how to achieve security against a
malicious sender in the case where our emulatable key agreement protocol is the
one mentioned above.

Technical Overview. To give an intuition of how our protocol works, consider
first the case of semi-honest security where a semi-honest receiver reduces the
error rate to the minimal value γ (which is without loss of generality).

We turn an emulatable key agreement (KA) protocol as described above into
an OT protocol as follows. The sender and the receiver engage in two independent
instances (indexed respectively by 0 and 1) of the key agreement protocol above.
In both cases, the sender from the OT protocol takes the role of Alice in the
KA protocol, while the receiver does the following: in the instance of the KA
protocol corresponding to his selection bit b, he acts as Bob would, while in the
other instance, he acts as Bob’ (so in particular his actions are independent of
what he receives from the sender on the EC). Finally Alice sends her messages
m0, m1 one-time padded respectively with k0 and k1, each of these keys obtained
in the corresponding key agreement protocol.

Now, an honest receiver will learn mb as he should, which follows from cor-
rectness of the KA protocol. Second, a corrupt sender cannot learn the choice bit
b. This follows from the emulatability property of the KA protocol: the sender
cannot distinguish in which of the two instances she is interacting with the real

Oblivious Transfer from Any Non-trivial Elastic Noisy Channel 207

Bob. Finally, a corrupt receiver cannot learn m1−b. This follows from the fact
that, in the instance of the KA corresponding to 1 − b, the view of the receiver
is the same as the view of Eve, namely he sees everything Alice sends with error
rate γ, and he sees the public discussion (the fact that he generates that dis-
cussion himself by running Bob’ makes no difference). One can then show that
emulatability implies that this view is distributed identically to the case where
Eve watches Alice interact with Bob, and the usual definition of key agreement
security guarantees that this is independent from the exchanged key k1−b.

Security in the malicious case is more involved. First, we need to ensure that
the malicious receiver follows the protocol. It turns out to be sufficient that the
receiver proves that for one of the KA instances, the messages he sends on the
public channel are generated by Bob’, of course without revealing which one. To
this end we can use the fact that commitments where the committing party is
the receiver also follow from any EC (see below) and, via a known reduction,
zero-knowledge proofs on committed values follow as well. Thus, we are doing
something very similar to the GMW compiler. As a result we get a protocol that
is secure against a semi-honest sender and a malicious receiver.

To further protect against a malicious sender, we execute many instances of
the OT. The receiver checks the statistics of what he receives on the EC and
discards instances that are too far from what he expects to see from an honest
sender. This creates a protocol where the sender will (at least sometimes) have
non-trivial uncertainty about the choice bit. We can now use standard techniques
to clean this up to get a secure OT.

As for our construction on receiver commitments from any non-trivial EC,
we observe that the commitment protocol from [DKS99] (that was designed for
a UNC) can be modified to work for an EC. All we essentially have to do is
to choose the parameters correctly. On the one hand, handling an EC is harder
because δ and γ are much further apart than for a UNC, however, on the other
hand an EC is easier because one party has to live with the large noise rate even
if he is corrupt. Intuitively, the observation is that these two issues balance each
out so that (almost) the same protocol still works.

Outline. In Sect. 2 we define the basic functionalities we will deal with for the
remainder of the paper, namely oblivious transfer and the elastic channel. In
Sect. 3, we introduce the notion of emulatable key agreement, as well as a proto-
col that implements it. Emulatable key agreement is used in Sect. 4 to implement
an OT protocol that is secure against semi-honest adversaries. This protocol is
then used in Sect. 5 in the construction of a protocol secure against a malicious
receiver. Finally, in Sect. 6 we present a construction that builds upon the one
of Sect. 5 to obtain security against malicious adversaries.

2 Preliminaries

2.1 Security Model

We prove our protocols secure in the Universal Composability framework intro-
duced in [Can01]. This model is explained in AppendixA.

208 I. Cascudo et al.

2.2 Oblivious Transfer

Oblivious transfer is a two-party primitive where one party (the sender) inputs
two messages and the other party (the receiver) chooses to receive one—and
only one—of them. Crucially, the sender does not learn the receiver’s choice,
and the receiver does not learn the message it did not choose. This primitive is
formalized in the figure below. Note that the description includes an adversary
A, which can corrupt parties.

Functionality FOT (Oblivious transfer)
FOT runs with two parties: a sender and a receiver.

Send: Upon receiving (send, sid,m0,m1) from the sender: store
(sid,m0,m1) and send (sent, sid) to A.

Receipt: Upon receiving (choice, sid, b) from the receiver: if a message
of the form (sid,m0,m1) has been stored, send (receipt,mb) to the
receiver.

2.3 Elastic Channel

A (γ, δ)-elastic channel, as introduced in [KMS16], is a binary symmetric channel
with crossover probability δ where a receiver that has been corrupted by the
adversary can choose to reduce the crossover probability to a level ν with γ ≤ ν ≤
δ. In the functionality below, we define a more general version where the channel
is composed by � binary symmetric channels (all with crossover probability ν).

Functionality FEC(γ, δ) (Elastic channel)
FEC runs with parties P1, P2 and eavesdropper A as follows:

Initialization: ν ← δ

Noise: Upon receiving (noise, ν̄) from A, if the receiver is corrupt and
γ ≤ ν̄ ≤ δ then set ν ← ν̄.

Send: On (send, sid,m) from the sender, where m ∈ {0, 1}�, produce m̄ by
flipping each bit of m independently with probability ν. Then send the
message (sent, sid) to A and the message (sent, sid, m̄) to the receiver.

3 Emulatable Key Agreement

Key agreement is the problem where two parties, Alice and Bob, want to estab-
lish a common key (a random element from {0, 1}�) so that an eavesdropper Eve

Oblivious Transfer from Any Non-trivial Elastic Noisy Channel 209

has no information about this key. In other words, the goal is to implement the
following functionality FKA.1

Functionality FKA (Key agreement)
FKA runs with security parameter u, parties P1, P2 and eavesdropper A as

follows:

Establish: Upon receiving (establish, sid, Pi, P3−i) from Pi (where i ∈
{1, 2}), store (sid, Pi, P3−i) and send (sid, Pi, P3−i) to A. If the tuple
(sid, P3−i, Pi) had also been stored, choose k ←R {0, 1}t, send (sent, 1t)
to A and send (key, sid, k) to P1, P2.

In this section, we consider the scenario in which Alice can communicate
to Bob via a wiretap channel FC where each bit is flipped (independently) with
probability δ. Eve can obtain another noisy version of this communication, where
each bit is flipped with probability γ and this noise is independent from Bob’s.
Furthermore, there is a feedback public channel FPub through which Alice and
Bob can communicate.

Functionality FC (Wiretap channel)
FC runs with parameters γ, δ ∈ (0, 1/2), message size �, parties P1, P2 and
eavesdropper A as follows:

Send: Upon receiving (send, sid, P1, P2,m) where m ∈ {0, 1}�:
1. Produce m̄ by flipping each bit of m independently with probability

δ. Furthermore, produce m̃ by flipping each bit of m independently
with probability γ.

2. Send (sent, sid) to P1, (receipt, sid, m̄) to P2 and (receipt, sid, m̃)
to A.

Functionality FPub (Public channel)
FPub runs with message size �, parties P1, P2 and eavesdropper A as follows:

Send: Upon receiving (send, sid, Pi, Pj ,m) where m ∈ {0, 1}�, send
(sent, sid) to Pi and (receipt, sid,m) to Pj and A.

In this setting, we are interested in key agreement protocols with an addi-
tional property that we call emulatability. A key agreement protocol π is emulat-
able if, in addition to implementing the key agreement functionality as it should,
1 In the remainder of this section, we interchangeably call the parties Alice, Bob, Eve

or respectively P1, P2,A.

210 I. Cascudo et al.

the role of Bob can be simulated by some entity E , the emulator, that learns
no information about the messages transmitted through FC, other than their
lengths, and neither Alice nor Eve can distinguish whether Alice is interacting
with Bob or with E .

We formalize this below. We first define a functionality FDC that models
a dummy channel whose task is to erase every information sent through the
channel FC except for the length of the messages.

Functionality FDC (Dummy channel)
FDC runs with message size � and parties P1, P2 as follows:

Send: Upon receiving (send, sid,m) from P1 where m ∈ {0, 1}�: If no such
command has already been sent, send (sent, sid, |1|�) to P2. Otherwise,
ignore the command.

Definition 1. A key agreement protocol π between Alice and Bob using a wire-
tap channel FC and a public channel FPub is emulatable if:

1. It realizes the functionality FKA. That is, there exists a simulator S such that
for all eavesdroppers A,

π � FC � FPub ≡A FKA � S.

2. There exists an emulator E such that the following happens: suppose that we
consider the protocol π′ where we replace Bob by FDC � E, i.e., E is linked to
FC via the dummy channel FDC, and Alice acts as in protocol π, while in both
cases the eavesdropper A receives information from FC and FPub. Then from
the point of view of Alice and all eavesdroppers A, the protocol executions of
π and π′ are indistinguishable.

That is, we have

π � FC � FPub ≡Alice,A π′ � FC � FPub.

We will need the following property later on.

Proposition 1. Suppose that a key agreement protocol π is emulatable. Then
for any eavesdropper A, if Alice is executing the protocol π′ with the emulator E
as in the definition, A obtains no information about Alice’s output.

This is because, if A could obtain any information about Alice’s output in
the execution of π′, then either she would be able to obtain information about
Alice’s output in the execution of π (contradicting property 1 of emulatability)
or she would be able to distinguish π and π′ (contradicting property 2).

Oblivious Transfer from Any Non-trivial Elastic Noisy Channel 211

3.1 The Emulatable Key Agreement Protocol

We now describe an emulatable key agreement protocol for a wiretap channel
FC with γ < δ, that is, for which the channel to the eavesdropper Eve is more
reliable than the channel to Bob.

This is a small modification of a key agreement protocol from [Mau93,
Sect. 5]. For each γ, δ, the protocol specifies numbers s, �, n ∈ N, to be deter-
mined below. In addition, � = 2m + 1 is an odd number. The protocol consists
of three phases: advantage distillation, information reconciliation and privacy
amplification.

The goal of the advantage distillation step is to create a conceptual channel
between Alice and Bob which is more reliable than the one between Alice and
Eve. In our protocol, this step proceeds as follows. Alice samples n random bits
bi and encodes each bit b as a bitstring v in {0, 1}� by selecting uniformly at
random a set J ⊆ {1, . . . , �} of size m and setting the j-th coordinate of v to
be 1 − b if j ∈ J and b if j 	∈ J . Note that this means m + 1 of the bits of the
encoding equal b while the other m bits equal 1−b. Now, if for a given sent bit b,
Bob receives a message of the form (c, c, . . . , c) for some c, we say Bob accepts the
bit b and c is his guess about b. Now Alice creates the bitstring bi1bi2 . . . bis

given
by the first s bits accepted by Bob and Bob creates the bitstring ci1ci2 . . . cis

of his guesses. They both disregard the remaining bits. Alternatively, one can
see Alice’s encoding process as first encoding her bit with the repetition code
and then introducing errors in exactly m positions. As we discuss in Sect. 3.2,
the protocol is similar to that in [Mau93, Sect. 5], except that the global error
introduced here is of fixed weight m, rather than flipping each bit with certain
probability. In Sect. 3.2 below, we discuss why we need this to introduce this
modification. Yet, from the point of view of advantage distillation, the intuition
why this protocol works is the same as in [Mau93]: namely, even though Eve has
more information over messages sent over the wiretap channel than Bob has,
she has less information about the ones accepted by Bob; in other words, the
probability that Bob decodes those bits correctly is higher than that of Eve’s.
We formalize this later.

The information reconciliation step is carried out over the public channel.
After this step, Alice and Bob will share a common bitstring with overwhelming
probability, and Eve is still guaranteed to have some uncertainty about it. In
the description below, we use the information reconciliation protocol in [BS94],
where Alice sends the evaluation on her bitstring of a hash function chosen
from a 2-universal family with an appropriate range size. Then Bob corrects
his bitstring by finding the closest bitstring to it which is consistent with this
evaluation.

Alice and Bob can then apply privacy amplification to obtain a random string
about which Eve has no information. This can also be done by having only Alice
send information over the public channel. The fact that both the information rec-
onciliation and privacy amplification steps involve only Alice sending information
over the public channel is important to guarantee the emulatability property.

212 I. Cascudo et al.

We note that the information reconciliation step may in general not be com-
putationally efficient for Bob; however, in fact any information reconciliation
protocol can be used, as long as it is non-interactive. One efficient option is to
employ a fuzzy extractor, as in [DORS08, Sect. 8.1], in order to execute both
steps.

This description is formalized below. (For simplicity, we omit the description
of the “establish” step introduced in the functionality of Sect. 3.)

Protocol πKA (Emulatable key agreement)

Parameters:

– σ: security parameter.
– � := �(γ, δ): an odd natural number which only depends on γ and δ.
– m := �−1

2 .
– s ∈ ω(σ).
– t ∈ Θ(σ).
– n >
s/(δ(1 − δ)m)�.
– 0 < ε < 1

2 − δ: a small constant.

Let h denote the binary entropy function and H1 : {0, 1}s → {0, 1}s·h(δ+ε)+σ,
H2 : {0, 1}s → {0, 1}t be 2-universal families of hash functions.

Advantage distillation:

Alice:
Select b1, . . . , bn ∈R {0, 1}.

For i ∈ {1, . . . , n}:
1. Select a set Ji ⊆ {1, . . . , �} of size m uniformly at random.
2. Set vi to be the bitstring in {0, 1}� such that vi[j] = 1 − bi for j ∈ Ji

and vi[j] = bi for j /∈ Ji where vi[j] denotes the j-th coordinate of
vi.

3. Send (send,Alice,Bob, sidi, vi) to FC.

Bob:
For i ∈ {1, . . . , n}, await (receipt,Alice,Bob, sidi, v̄i) from FC.
Construct the set I ⊆ {1, . . . , n} consisting of the indices i for which
v̄i = c�

i for some ci ∈ {0, 1}
Encode the set I as a bit string u and send (send, sid,Bob,Alice, u) to
FPub.

Alice:
Await (sent, sid,Bob,Alice, u) from FPub.

Oblivious Transfer from Any Non-trivial Elastic Noisy Channel 213

Alice ↔ Bob:
Alice sets Xs = (bi1 , bi2 , . . . , bis

) and Bob sets Y s = (ci1 , ci2 , . . . , cis
),

where i1, . . . , is are the first s indices in I.

Information reconciliation and privacy amplification:

Alice:
Sample h1 ∈R H1, h2 ∈R H2, send (send, sid,Alice,Bob, h1, h1(Xs), h2)
to FPub.
Output h2(Xs).

Bob:
Await (send, sid,Alice,Bob, h1, h1(Xs), h2) from FPub.

Find the closest (in the Hamming metric) bitstring X̃s to Y s satisfying
h1(X̃s) = h1(Xs).

Output h2(X̃s).

In order to prove that our protocol is indeed an emulatable key agreement
protocol, we introduce the following notation. Let X denote a variable with the
uniform distribution over {0, 1}. Let Y and Z be the random variables that
describe respectively the output bit c of Bob and the received bitstring of Eve
(which is an element in {0, 1}�) when Alice samples a bit b according to X,
encodes it as in our protocol, sends it through the wiretap channel and Bob
accepts. An important point to make is that, since the noise of Bob and Eve are
independent, the probability distribution of Z would be the same if we removed
the conditioning on Bob accepting the bit. We have the following theorem.

Theorem 1. The protocol πKA is an emulatable key agreement protocol.

We use the following lemma which intuitively means that, as � grows, the
probability that Eve receives a bitstring where most bits are 0 approaches 1/2
if Alice encoded a 0 (naturally an analogous statement holds if Alice encoded a
1). The proof of the lemma can be found in AppendixB.

Lemma 1. For i ∈ {0, 1}, let Si ⊆ {0, 1}� be the set of all bitstrings where most
bits are i. Then Pr[Z ∈ Si|X = i] → 1/2 as � → ∞.

Proof (of Theorem1). The detailed proof is in AppendixC. Here we give a sketch.
First we argue about the correctness of the protocol. It is not difficult to

see that, for each index i, Bob accepts the corresponding bit with probability
paccept = (δ(1 − δ))m. Furthermore, condition to Bob having accepted a bit, the
probability that he decodes it correctly is again exactly 1 − δ, i.e., the advan-
tage distillation step creates another conceptual noisy channel where the noise
parameter is still δ, the same as in the original noisy channel.

214 I. Cascudo et al.

Since we set n slightly larger than
s/paccept�, for large enough parameters
Bob will, with very high probability, accept at least s bits, of which roughly
δ · s will be incorrect. By the results on information reconciliation in [BS94] our
choice of H1 guarantees that Bob corrects to the right string in the information
reconciliation step, and hence that they output the same key at the end of the
protocol.

Next, we consider privacy. Let X and Z be as above. We can use Lemma 1
in order to establish that H∞(X|Z) → 1 as � → ∞. We can then select � large
enough so that H∞(Xs|Zs, h1, h1(Xs)) ≥ t + 2σ (see the full proof for details),
and apply the leftover hash lemma to conclude that conditioned on everything
seen by Eve during the protocol, the distribution of h2(Xs) is 2−σ-close to the
uniform distribution over {0, 1}t.

Finally, to show that the protocol is emulatable, we have to construct an
emulator E that satisfies Property 2 in Definition 1. Note the only information
sent by Bob is the description of the set I of indices for which Bob accepted
Alice’s message. Hence, this can be emulated by sampling a random index set
I ⊆ {0, 1}n, where each index belongs to I with independent probability paccept.

3.2 On the Emulatability of Other Key Agreement Protocols

Protocol πKA described above is based on the protocol given in [Mau93, Sect. 5].
As a matter of fact, several key agreement protocols for noisy channels are
described in [Mau93] and subsequent works. However, they are either not emu-
latable (or, at least, it seems difficult to show they are) or they do not work for
all non-trivial sets of parameters (γ, δ).

First, [Mau93, Sect. 5], considers a slightly different scenario, in which there
is only a public channel available for communication but on the other hand at the
beginning of the protocol Alice, Bob and Eve have noisy versions (respectively
rA, rB and rE) of a common string r, where each bit is independently flipped
with probabilities εA, εB and εE for Alice, Bob and Eve respectively. Then having
Alice mask a message (by xoring it with rA) and send it through the public
channel, induces a conceptual noisy channel where the input of Alice is m, and
the outputs of Bob and Eve are m⊕rA ⊕rB and m⊕rA ⊕rE respectively. In the
protocol proposed in [Mau93, Sect. 5] Alice encodes random bits with a repetition
code and sends the information over the conceptual channel. From this point,
the protocol proceeds as ours (Bob accepts the bits corresponding to codewords
and they execute information reconciliation and privacy amplification on the
resulting string). It can be shown that any parameters 0 < εA, εB , εE < 1/2 lead
to a secure key agreement protocol.

In our scenario, the players do not start with noisy versions of a common
string, but have a (γ, δ)-wiretap channel. We can reproduce the situation above
in our scenario as follows: in order to send the message m, Alice flips each
bit independently with probability εA > 0 and sends the result through the
(γ, δ)-wiretap channel. This would be an equivalent situation of the above where
εB = γ and εE = δ, and therefore it would lead to a secure key agreement
protocol. However, the protocol would not be emulatable: the reason is that the

Oblivious Transfer from Any Non-trivial Elastic Noisy Channel 215

probability that Bob accepts a given instance depends on the exact number of
bitflips introduced by Alice. However, because this artificial noise has been intro-
duced by Alice and not by the channel, this information is known by Alice; on
the other hand, the number of bitflips in a given instance cannot be determined
precisely by the emulator, even though it knows εA. Hence, regardless of how
we define the emulator, Alice will be able to distinguish when she is interacting
with it or with Bob.

If Alice does not introduce this artificial noise (i.e., if εA = 0), then there
is an emulator that can reproduce Bob’s answer in every case, but the range
of (γ, δ) for which this protocol is a secure key agreement protocol does not
include all possible 0 < γ, δ < 1/2 and, in fact, it can be seen is exactly the
very same range of parameters (γ, δ) for which [KMS16] shows the existence
of an OT protocol for a (γ, δ)-elastic noisy channel (i.e. those pairs satisfying
δ ≤

(
1 + (4γ(1 − γ))−1/2

)−1
).

In our protocol, we solve these problems by having Alice introduce artificial
noise, but making this noise be of a fixed Hamming weight m. This solves the
problem with the existence of the emulator, while still preserving the security of
the protocol.

Finally, we also need to mention that a simpler protocol for key agreement
in our wire-tap channel scenario is presented in [Mau93, Proposition 1]. The
protocol first creates a conceptual channel from Bob to Alice in which Alice
has more information about Bob’s message than Eve does. This protocol works
for all non-trivial wire-tap channel noise parameters. However, the information
reconciliation and privacy amplification steps cannot be performed in such a way
that it is only Alice who sends information (because in this case these steps are
going to correct Alice’s knowledge of Bob’s string). Then, it is unclear whether
this protocol can be made emulatable, because we would also need the emulator
to simulate the information sent by Bob in these steps, and this does not appear
to be straightforward.

4 Semi-honest Protocol

Now we present an OT protocol over the elastic channel FEC(γ, δ) for semi-honest
adversaries. We show that such an oblivious transfer protocol can be constructed
from any emulatable key agreement protocol that works in the setting of Sect. 3
(where Alice, Bob and Eve are connected by a wiretap channel FC with the noise
parameters being δ for Bob and γ for Eve).

The idea of the protocol is for sender and receiver to engage in two separate
subprotocols. In one, they run the emulatable key agreement protocol with the
sender acting as Alice and the receiver acting as Bob. In the other subprotocol,
the sender follows again the key agreement protocol as Alice, whereas the receiver
runs the emulator, according to Definition 1. The choice bit c determines whether
the receiver will follow the protocol or act as the emulator. Here, the elastic
channel is used as a conceptual wiretap channel FC, where an honest receiver gets

216 I. Cascudo et al.

the output of the legitimate (noisier) channel, whereas an adversarial receiver
gets the output of the less noisy channel.

To see why the protocol is secure, we note that since the key agreement
protocol is emulatable, the sender does not know whether she is interacting with
Bob (that is, whether she is engaging in the actual key agreement protocol) or
with the emulator. Hence, she does not learn any information about the choice
bit c. This guarantees the receiver’s privacy.

On the other hand, by definition the emulator can generate the transcript
for the key agreement protocol without knowing anything about the exchanged
key. Therefore in this case the receiver has no information about the key output
by Alice at the end of the key agreement protocol.

This proof sketch is formalized in Theorem 2, below.

Protocol πOTSH (Semi-honest oblivious transfer)

Let πKA be an emulatable key agreement protocol, as stated in Definition 1.
We denote the sender’s input as m0,m1 and denote the receiver’s input as
c.

Sender ↔ Receiver:
Sender and receiver execute two copies π0, π1 of πKA, where the sender
behaves in both as Alice. In πc, the receiver acts as Bob and in π1−c, it
acts as the emulator E prescribed by π′

KA.

Receiver:
On completion of π0, π1, record the output of πc as k.

Sender:
Await k0, k1 from π0, π1.
Set m̄i := mi ⊕ ki for i = 0, 1.
Send (send, sid0, m̄0) and (send, sid1, m̄1) to FPub.

Receiver:
Await (sent, sid0, m̄0), (sent, sid1, m̄1) from FPub.
Output mc := m̄c ⊕ k.

Theorem 2. The protocol πOTSH realizes FOT. That is, there exists a simulator
S such that

πOTSH � FEC � FPub ≡Z FOT � S

for all semi-honest environments Z.

Proof. For each activation, the environment Z chooses m0,m1, c. When inter-
acting with the protocol, Z receives m′

c, and when interacting with FOT, it

Oblivious Transfer from Any Non-trivial Elastic Noisy Channel 217

receives mc. We note first that since πc is an instance of πKA, which imple-
ments FKA, we have m′

c = mc. All that remains to be shown is that there exists
a simulator for FOT that can reproduce the view of the environment.

First, assume P1 is corrupted, so that Z gets access to P1’s internal state.
During the real execution, it gets access to k0, k1 (through P1), m̄0, m̄1 plus the
leakage from π0 and π1 (through the adversary A, which interacts with FEC and
FPub). At the end of the execution, it gets P2’s output, which is given by mc.

In the ideal process, the simulator S corrupts P1, so that it gets access to
m0,m1. S proceeds as follows. First, it executes two copies of FKA � S ′, where
S ′ is the simulator for the key agreement protocol. By assumption, this internal
simulator replicates the leakage from π0 and π1, which is relayed to Z. Addi-
tionally, at the end of FKA’s execution, S gets two random keys, which we denote
by k′′

0 , k′′
1 . It then computes m̄i = mi ⊕ k′′

i for i = 1, 2 and sends both to Z.
Finally, it sends m0,m1 to FOT, which will then send mc to P2. It is easy to see
that FOT � S provides Z with the same view as in the real protocol.

Now assume P2 is corrupted. Throughout the real execution, Z gets access
to kc (through P2), m̄0, m̄1,mc plus the leakage from π0 and π1 (through the
eavesdropper A). In the ideal process, S gets c by corrupting P2. It proceeds as
follows. It runs one copy of FKA � S ′, obtaining a random key k′′

c , and relays c to
FOT. After P2 receives mc from FOT, S computes m̄c = mc ⊕ k′′

c and sends it to
Z. Clearly, mc and m̄c have the same distribution as in the real execution.

Finally, we look at the leakage from the execution of π1−c (executing the
instance of π′

KA with the emulator E). Due to Proposition 1, π1−c gives no infor-
mation on k1−c to the eavesdropper A. Therefore m̄1−c gives no additional infor-
mation to Z. Moreover, since the execution of E only depends on the outputs
of the dummy channel FDC, its view provides Z with no additional information,
even given the rest of Z’s view. The view of Z is therefore the same in both
scenarios.

5 OT Protocol Secure Against a Malicious Receiver

In this section, we make our protocol secure against a malicious receiver. Note
that in our semi-honest protocol, we rely on the fact that the players will engage
in two instances of an emulatable key agreement protocol, where the receiver will
play the role of Bob in one of them and the emulator in the other. Of course, if
the receiver is malicious, he will not necessarily adopt this behaviour. We will use
standard techniques to solve this problem. Namely, we want to use the paradigm
introduced in [GMW86]: we will make the receiver prove in zero knowledge that
he is acting as in the semi-honest protocol.

To do this, we will need that the receiver can commit to bits. Recall that
in [KMS16] it was shown that commitments where the sender commits follow
from any non-trivial EC, but since an EC is asymmetric, it is not clear that this
allows the receiver to commit. Therefore, we solve this problem first.

218 I. Cascudo et al.

5.1 Receiver Commitment from Any Non-trivial EC

The solution in a nutshell is to observe that the commitment protocol from
[DKS99] will work for receiver commitments on any non-trivial EC, if we slightly
tune some of the parameters.

First, note that we can reverse the direction of the EC, by simply having the
sender send a random bit x on the EC, the receiver chooses a bit b to send and
sends x ⊕ b back on the public channel. This is clearly a noisy channel in the
opposite direction. In this subsection we will rename the sender and call him
the verifier V , while the receiver will be called the committer C. What we just
constructed is a “reversed EC” where the C sends and V receives. V always
receives with noise rate δ, but C can reduce his noise rate to γ if he is corrupted
(and hence get a better idea of what V received). The goal is now to build an
unconditionally secure commitment scheme based on such a channel.

In fact, we show that, under a careful choice of parameters, the commitment
protocol from [DKS99] already works with no change. A complete description of
the protocol, as well as an intuition for why it is secure, is provided in Appen-
dixD.

5.2 From Commitment to Security Against a Malicious Receiver

Recall that the GMW compiler [GMW86] transforms a semi-honestly secure
protocol into a maliciously secure one by using the following three steps: in the
first step, each party commits to his input; in the second step, each party is forced
to commit to a random tape, where it is important that the tape is hidden from
the other party and is chosen at random. This is done by having the party that is
committing to a random tape commit to a random value. The other party then
sends a random string. The tape is then defined to be the xor of both strings.
This technique is known as coin-tossing in the well. Finally, in the third step,
each player follows the protocol with the committed inputs and their committed
tape and whenever they send a message, they also prove in zero-knowledge that
this is the correct message given their committed input, their committed random
tape and the transcript of the protocol.

In this section, we are only interested in achieving security against a mali-
cious receiver, so we apply the compiler to the receiver only. This results in the
following approach: In the first step, the receiver will commit to his choice of
input c; this also indicates the instance of the key agreement protocol where he
will play the role of Bob. In the second step, the receiver will be forced to com-
mit to a random tape t for the emulator using coin-tossing in the well. Then the
sender and receiver will run an augmented version of the semi-honest protocol.
Each instance of the key agreement protocol will be associated to an index b.
Each time a receiver sends a message, the receiver also proves in zero-knowledge:
“Either the given instance of key agreement has index b = c or the message was
produced by following the description of the emulator with random tape t”.

There is, however, one difficulty: In [GMW86], the commitments were com-
putational. It was therefore possible to prove statements about committed val-
ues directly. For a black-box information-theoretically secure commitment, it

Oblivious Transfer from Any Non-trivial Elastic Noisy Channel 219

is not directly possible to prove statements that involve the committed val-
ues. To fix this problem, we use a commitment scheme which can indeed be
used for any number of zero-knowledge proofs. This is the commitment scheme
from [CvdGT95] which was later proven UC-secure in [Est04]. As shown in
[CvdGT95], this commitment scheme can be constructed in a black-box manner
from any commitment schemes. Although this commitment scheme only allows
proofs of xor relationships directly, one can use techniques such as [BCC88] to
prove arbitrary statements involving the committed values.

Functionality FCOMZK (Commitment with zero-knowledge)
FCOMZK runs with two parties: a sender and a receiver.

Commit: On receiving (commit, cid,m) from the sender:
If such a command has already been sent, ignore the message.
Otherwise, record (cid,m) and send (committed, cid) to A and to the
receiver.

Reveal: On receiving (reveal, cid) from the sender:
If no pair (cid,m) was recorded then ignore the message. Otherwise, send
(open, cid,m) to A and to the receiver.

Proof: On receiving (prove, x, cid1, . . . , cidn, R) from the sender:
Check that for each cidi, there exists a mi such that the pair (cidi,mi)
has been recorded. If this is not the case then ignore the command. Let
w = (m1, . . . ,mn). Check that (x,w) ∈ R. If this is not the case then
ignore the command. Otherwise, send (proven, x, cid1, . . . , cidn, R) to the
receiver and A.

Protocol πOTMR (Oblivious transfer–malicious receiver)
We denote b as the index of the key agreement instance. We denote m0,m1

as the sender’s input and c denotes the receiver’s input. We denote E(t, r),
the next message function of the emulator given transcript t and random
tape r. If the emulator is awaiting a message for a given transcript t, we let
E(t, r) = ⊥. We define the following two relationships: R1 and R2.

R1(a, (b, c)) :=

{
1 a = b ⊕ c

0 otherwise

R2((t,m, b), (r, c)) :=

⎧
⎪⎨

⎪⎩

1 if b = c

1 E(t; r) = m

0 otherwise

220 I. Cascudo et al.

Receiver:
r1 ∈R {0, 1}k

Send (commit, cid, c), (commit, rid1, r1) to FCOMZK

Sender:
Await (committed, cid), (committed, rid1) from FCOMZK

r2 ∈R {0, 1}k

Send r2 to the receiver.

Receiver:
r ← r1 ⊕ r2 (random tape)
Send (commit, rid, r) to FCOMZK (commit to the random tape)
Send (prove, r2, rid1, rid, R1) to FCOMZK (prove that the commited value
associated to rid is indeed a commitment to the random tape)

Sender:
Await (committed, rid) and (proven, r2, rid1, rid, R1) from FCOMZK.

Sender ↔ Receiver:
Sender and receiver run πOTSH as defined in Section 4 where the sender
inputs m0,m1 and the receiver inputs c with the following modification:
Whenever a receiver would send a message m in the semi-honest protocol,
let b be the instance of the key agreement protocol they are executing,
and let t be the transcript up to that point for that instance of the key
agreement protocol. The receiver sends m to the sender and also sends the
command (prove, (t,m, b), rid, cid, R2) to FCOMZK. Whenever the sender
receives a message m from the receiver, he awaits that FCOMZK send him
(proven, (t,m, b), rid, cid, R2) before proceeding.

Theorem 3. πOTMR securely realizes FOT in the FEC-hybrid model against an envi-
ronment that can only semi-honestly corrupt the sender.

This theorem follows directly from the construction of XOR commitments
from [CvdGT95,Est04], the security of the GMW compiler [GMW86] and the
security of the zero-knowledge protocol from [BCC88,Kil92].

6 Secure Protocol

In this section we consider our oblivious transfer protocol πOTMR from Sect. 5,
which is secure against a semi-honest sender and a malicious receiver and we
show that, if πOTMR is implemented with the key agreement protocol from Sect. 3.1,
we can transform πOTMR into a protocol πOT secure against an malicious sender
too.

Oblivious Transfer from Any Non-trivial Elastic Noisy Channel 221

Note that in the aforementioned key agreement protocol, the sender is sup-
posed to send through the channel several bitstrings of length � and Hamming
weight either m or m+1, where � = 2m+1. From now on, we refer to bitstrings
of weights m and m + 1 as codewords, while the rest will be non-codewords. A
problem that arises when using this key agreement protocol as a basis for our
oblivious transfer protocol, is that an active sender could use non-codewords to
bias the distribution of indices and learn the receiver’s choice. For example, if
she sends the all-one bitstring, this index will be accepted by the receiver with
higher probability if he is playing the role of Bob, than it will if he is playing
the role of the emulator.

We will prevent an active sender from using non-codewords in her advantage
by combining cut-and-choose techniques, a typicality test and an OT-combiner.
The protocol works essentially as follows: the sender and receiver will start to
run N instances of πOTMR in parallel. Right after the sender has sent the intended
codewords through the channel FEC in all these instances, the receiver will then
choose half of those instances and request the sender to open her view (i.e., to
reveal the information that she sent through the channel). The receiver now runs
a typicality test on those instances: he counts the number of differences between
what the sender claims to have sent and what he received for those instances.
If this distance is higher than what would be typically expected from the noisy
channel then the receiver aborts. If the test passes then it is guaranteed that,
except with negligible probability, there is at least one unopened instance where
no bad codeword was sent.

The sender and receiver now apply a (1, N/2) OT-combiner on the half
of the instances of πOTMR that have not been opened; in general, a (t, n) OT-
combiner [HKN+05] is a primitive which given (black-box) access to n OT can-
didates, implements a secure OT as long as t of them are secure; in our case, our
candidates are the unopened instances of πOTMR and we use a simple XOR-based
OT-combiner which only needs to be secure against a malicious sender (all the
candidates are already guaranteed to be secure against a malicious receiver).
Since the sender has behaved well in at least one of these instances, we achieve
a secure oblivious transfer protocol by applying this combiner.

The sender could also try to cheat in the public channel part of the key
agreement protocol by sending some inconsistent information (for example in
the information reconciliation step) to see the aborting behaviour of the receiver;
however, we have the receiver abort in the global protocol if he sees at least
one inconsistency in some instance of the protocol. Given the properties of the
combiner the only way to obtain information about the receiver’s input bit is
that the sender cheats in one of the key agreement protocols of every unopened
instance and the receiver never aborts, which happens if the sender guesses each
of the bi’s for the unopened instances and in turn this happens with probability
2−N/2 (in fact, we could make her cheating probability even lower by having the
receiver abort if he detects inconsistent information in the opened instances).

222 I. Cascudo et al.

6.1 Protocol

The protocol πOT is described below.

Protocol πOT (Oblivious transfer)
The protocol involves two players: the sender and the receiver. The sender
provides inputs m0,m1 ∈ {0, 1} and receives no output. The receiver
provides c ∈ {0, 1} and outputs mc. Fix κ a security parameter for πOT.

For the protocol πOTMR secure against a malicious receiver from previous
section instantiated with security parameter x, denote W (x) the expected
number of bits flipped during such protocol if the noise parameter is not
changed (that is, δ times the number of bits sent through the elastic channel).

Now define the following parameters:

Q(x) :=
32

(1 − 2δ)2
W (x).

σ := min{x ∈ Z : x − log Q(x) − log κ ≥ κ}.

N := κQ(σ).

τ := W (σ) +
1 − 2δ

2
.

and we instantiate πOTMR with security parameter σ.
(Note that, once κ is fixed, σ is well defined because Q(x) is polynomial

in x and hence x − log Q(x) ≥ κ + log κ for sufficiently large x.)

Sender:
Sample Δ ∈R {0, 1}.
Sample w1

0, . . . , w
N
0 ∈R {0, 1}.

Sample w1
1, . . . , w

N
1 ∈R {0, 1}.

Let Δi := wi
0 ⊕ wi

1 ⊕ Δ, i = 1, . . . , N .

Receiver:
Sample b1, . . . , bN ∈R {0, 1}.

Sender ↔ Receiver:
Sender and receiver run N instances of the protocol πOTMR as defined in
Section 5. Let (wi

0, w
i
1) be the sender’s input and bi be the receiver’s

input in the ith instance. If at some point in one of the instances the
sender sends any information through the public channel that the receiver
detects as invalid (such as incorrectly formed h1, h2, or a value v that is
not of the form h1(Xs) for any string Xs), then the receiver waits until
all instances are completed and then aborts.
Moreover, the sender records the bits that she sends through the elastic
channel in each of the instances as X = {(i, j, xi,j) | 1 ≤ i ≤ N, 1 ≤ j ≤
B}. The receiver records the noisy version of bits that he receives from
each instance as Y = {(i, j, yi,j) | 1 ≤ i ≤ N, 1 ≤ j ≤ B}.

Oblivious Transfer from Any Non-trivial Elastic Noisy Channel 223

Receiver:
Choose T ∈R {I | I ⊆ {1, . . . , N}, |I| = N/2}.
Send T to receiver.
Set L := {1, . . . , N} \ T .

Sender:
Await T .
If |T | 	= N/2 then abort.
Set L := {1, . . . , N} \ T , send S := {(i,Δi) | i ∈ L} and X̃ :=
{(i, j, xi,j) ∈ X | i ∈ T } to the receiver.

Receiver:
Await X̃ and S.
Check that X̃ indeed corresponds to a set of bits that the sender should
have sent in πOTMR (i.e., that the appropriate parts of X̃ correspond to
codewords). If not, abort.
Check that

∑

i∈T ,1≤j≤B

|xi,j − yi,j | ≤ τN

2
.

If it fails, then abort.

Let b :=
⊕

i∈L
bi. Send d := b ⊕ c to the sender.

Sender:
Let w0 :=

⊕

i∈L
wi

0, w1 := w0 ⊕ Δ. Send (v0, v1) := (m0 ⊕ wd,m1 ⊕ w1⊕d)

to the receiver.

Receiver:
Let w :=

⊕

i∈L
wi

bi
⊕ (bi ∧ Δi). Output w ⊕ vc.

In protocol πOT, the parameters N (the number of instances of πOTMR that will
be run), σ (the security parameter of πOTMR) and τ (a threshold parameter for the
test, which is W (σ) plus a small offset) are defined so that we have the following
guarantees:

1. The probability that at least one instance of πOTMR is broken by a dishonest
receiver is smaller than 2−κ: Indeed, each individual instance can be broken
with probability at most 2−σ, and it is easy to see that with our choice of
parameters, it holds that N · 2−σ ≤ 2−κ.

224 I. Cascudo et al.

2. The probability that an honest sender passes the typicality test is at least
1 − 2−κ: see proof in AppendixE.1.

3. If a malicious sender sends at least one non-valid codeword in at least N/2−κ
instances of πOTMR from the testing set, then she passes the typicality test with
probability at most 2−κ: see proof in AppendixE.1.

Note that the third property prevents a malicious sender to cheat except with
probability 2−κ. Indeed, in order for a malicious sender to cheat successfully, she
would need to break each of the N/2 instances of πOTMR from the evaluation
set, and for that she would need to send at least one bad codeword in each of
those instances. By 3., in order to pass the test she needs to send all the correct
codewords in at least κ instances of the testing set. But since she does not know
which instances will be selected for the evaluation set and which for the testing
set, then the probability that none of these (at least) κ correct instances end up
in the evaluation set is at most 2−κ.

With all these remarks in mind, we can show (AppendixE) that

Theorem 4. πOT securely realizes FOT in FEC-hybrid model.

Acknowledgments. Part of this work was carried out while Ignacio Cascudo was
with Aarhus University. The authors acknowledge support from the Danish National
Research Foundation and The National Science Foundation of China (under the
grant 61361136003) for the Sino-Danish Center for the Theory of Interactive Com-
putation and from the Center for Research in Foundations of Electronic Markets
(CFEM), supported by the Danish Strategic Research Council. In addition, Ignacio
Cascudo acknowledges support from the Danish Council for Independent Research,
grant no. DFF-4002-00367, Ivan Damgrd was also supported by the advanced ERC
grant MPCPRO and Samuel Ranellucci was supported by European Research Coun-
cil Starting Grant 279447. We thank Jesper Buus Nielsen, Maciej Obremski and the
anonymous reviewers for their helpful comments.

A Universal Composability

The Universal Composability security framework, introduced in [Can01], is based
on the simulation paradigm. Roughly, the idea is to compare the execution of
the actual protocol (the real world) with an idealized scenario (the ideal world)
in which the computations are carried out by a trusted third party (the ideal
functionality) which receives inputs from and hands in outputs to the players.
The goal is to show that these two worlds are indistinguishable. In order to for-
malize this goal, we introduce a party called the environment Z, whose task is
to distinguish between both worlds. Furthermore, in the ideal world, we intro-
duce a simulator S, its task being to simulate any action of the adversary in
the real protocol and thereby to make the two views indistinguishable for any
environment. More precisely, in the real world execution of protocol π, with the
adversary A and environment Z, the environment provides input and receives
output from both A and π. Call RealA,π,Z the view of Z in this execution.
In the ideal world Z provides input and receives output from S and the ideal

Oblivious Transfer from Any Non-trivial Elastic Noisy Channel 225

functionality F . Call IdealS,F,Z the view of Z in the ideal execution. We can
proceed to define what it means for a protocol to be secure.

Definition 2. A protocol π UC-implements a functionality F against a certain
class of adversaries C if for every adversary A ∈ C there exists a simulator S
such that for every environment Z, RealA,π,Z ≈ IdealS,F,Z .

The cornerstone of the universal composability framework is the composition
theorem, which works as follows. Denote by π � G a protocol π that during its
execution makes calls to an ideal functionality G. The composition proof shows
that if πf �G securely implements F and if πg securely implements G then πf �πg

securely implements F . This provides modularity in construction of protocols
and simplifies proofs dramatically. It is also shown that proving security against
a dummy adversary, one who acts as a communication channel, is sufficient for
proving general security.

B Proof of Lemma 1

Clearly, we only need to cover the case i = 0. First, note that Pr[Z ∈ S0|X = 0] ≥
1/2 since γ < 1/2. Let X denote the random variable describing the encoding
of b = 0 by Alice, i.e., X has the uniform distribution over the set of bitstrings
in {0, 1}� of weight exactly m or m + 1. We observe that since Eve’s noise is
independent and identically distributed for each bit sent through the wiretap
channel, for every string x ∈ {0, 1}� of weight m, Pr[Z ∈ S0|X = 0] = Pr[Z ∈
S0|X = x]. So we now compute Pr[Z ∈ S0|X = x] for x = 010101 . . . 010.

For i = 1, . . . , m, let Vi be the random variable that takes value 1 if Z = z and
z2i−1 = z2i = 1, the value −1 if z2i−1 = z2i = 0 and the value 0 if z2i−1 	= z2i.
Then clearly Pr[Z ∈ S0|X = x] ≤ Pr[

∑m
i=1 Vi ≤ 0].

Now note that Vi are independent identically distributed variables such that
Pr[Vi = 1] = Pr[Vi = −1] = p and Pr[Vi = 0] = 1 − 2p where p = γ(1 − γ).
Hence Pr[

∑m
i=1 Vi < 0] = Pr[

∑m
i=1 Vi > 0] and clearly (using for example the

central limit theorem) Pr[
∑m

i=1 Vi = 0] → 0 as � (and consequently m) grows.
Therefore

1/2 ≤ Pr[Z ∈ S0|X = 0] ≤ Pr[
m∑

i=1

Vi ≤ 0] → 1/2

and consequently Pr[Z ∈ S0|X = 0] → 1/2.

C Proof of Theorem 1

We first argue that, if we set the parameters adequately, the protocol is correct
and secure, i.e., with overwhelming probability Alice and Bob have a common
string at the end of the protocol about which Eve has a negligible amount of
information.

226 I. Cascudo et al.

Remember that for each index i, Alice encodes bi as a bitstring containing
m+1 bits equal to bi and m bits equal to (1− bi) and Bob accepts if he receives
c�
i . Hence, the probability that Bob accepts i, i.e., the probability that an index

i is in I is paccept = δm(1 − δ)m+1 + δm+1(1 − δ)m = (δ(1 − δ))m.
On the other hand, conditioned on Bob accepting index i, the probability

that ci 	= bi is

δm+1(1 − δ)m

(δ(1 − δ))m
= δ.

Furthermore these probabilities are independent from each i, so the advantage
distillation step creates another conceptual noisy channel where Alice commu-
nicates s bits to Bob and the noise parameter is still δ (independently of how
large � is).

Hence if we set n slightly larger than
s/paccept� for large enough parameters,
Bob will, with very high probability, accept at least s bits, of which roughly δ · s
will be incorrect. By the results on information reconciliation in [BS94], if h1 is
chosen from the 2-universal family of hash functions H1, then Bob can correct
to the right string Xs with very high probability given his original string, h1 and
h1(Xs). Hence both Alice and Bob will compute the same value h2(Xs) with
high probability and hence the protocol is correct.

As for privacy, remember that X denotes the uniform distribution over {0, 1}
and Z the variable that represents Eve’s output when Alice chooses b according
to X, encodes it, and sends it through the channel. Then

H∞(X|Z) =
∑

z∈{0,1}�

Pr[Z = z] · (− log(max
b∈{0,1}

Pr[X = b|Z = z])).

Now the maximum of Pr(X = b|Z = z) is reached for b = 0 if z ∈ S0 and for
b = 1 if z ∈ S1, where Si is defined as in Lemma 1. On the other hand, for every
z ∈ S0, we have z′ := (1, . . . , 1)−z ∈ S1 and clearly, Pr[X = 0|Z = z] = Pr[X =
1|Z = z′]. Hence we can write

H∞(X|Z) =
∑

z∈S0

2 · Pr[Z = z] · (− log Pr[X = 0|Z = z]).

Now, clearly
∑

z∈S0
2 · Pr[Z = z] = 1 and − log is a convex function. This

means we can apply Jensen’s inequality to get

H∞(X|Z) ≥ − log

(
∑

z∈S0

2 · Pr[Z = z] Pr[X = 0|Z = z]

)

.

Now we use that Pr[Z = z] Pr[X = 0|Z = z] = Pr[X = 0]Pr[Z = z|X =
0] = 1

2 Pr[Z = z|X = 0], so after summing over z ∈ S0 we obtain:

H∞(X|Z) ≥ − log Pr[Z ∈ S0|X = 0] → 1

Oblivious Transfer from Any Non-trivial Elastic Noisy Channel 227

as � → ∞ because of Lemma 1. Since δ + ε < 1/2, for large enough �, we have
h(δ + ε) < H∞(X|Z) (remember h(·) denotes the binary entropy function).

Now let Xs, Y s denote the random variables denoting the s bits outputted by
Alice and Bob respectively and let Zs be the variable representing the s bitstrings
outputted by Eve. Then clearly H∞(Xs|Zs) = sH∞(X|Z) > sh(δ + ε) + t + 3σ
since t, σ = o(s) and therefore H∞(Xs|Zs, h1, h1(Xs)) ≥ H∞(Xs|Zs) − sh(δ +
ε) − σ > t + 2σ.

Now, the leftover hash lemma guarantees that conditioned on everything
seen by Eve during the protocol, the distribution of h2(Xs) is 2−σ-close to the
uniform distribution over {0, 1}t.

To show that the protocol is emulatable, we have to construct an emulator E
that satisfies Property 2 in Definition 1. We note that the only information Bob
sends to Eve is the description of the set I of indices for which Bob accepted
Alice’s message. We can construct an emulator for Bob thus. After E receives a
message from the dummy channel FDC, it samples a random index set I ⊆ {0, 1}n,
where each index is chosen according to a Bernoulli distribution with parameter
paccept—the index is included in I if the trial succeeds. E then sends a description
of I to Alice via FPub. It is clear that such an emulator satisfies Property 2.

D Commitment Protocol for ECs from [DKS99]

In this section we describe the commitment protocol from [DKS99] and show
that, under the adequate choice of parameters, it is a receiver commitment pro-
tocol for any (γ, δ)-elastic noisy channels.

We define some constants as follows. d0 is defined by δ = γ(1−d0)+d0(1−γ).
That is, d0 is such that adding noise with rate γ and then noise with rate d0
produces total noise rate δ. This means that d0 = (δ − γ)/(1 − 2γ), and from
it follows trivially that since δ < 1/2, we have δ > d0. We can therefore choose
constants d1, d and d∗ such that d0 < d1 < d∗ < d < δ. Finally, we define
δ′ = γ(1 − d1) + d1(1 − γ). Note that since d1 > d0 we have δ′ > δ.

Furthermore, we define � to be the logarithm of the number of elements in a
Hamming ball of radius d, and likewise �∗ the logarithm of number of elements
in a Hamming ball of radius d∗.

We will need three families of universal hash functions H,H1,H2 that are
64k-wise independent and map from {0, 1}k to {0, 1}, {0, 1}�∗

, {0, 1}�−�∗
, respec-

tively.
Finally, remember that, as explained in Sect. 5.1, we reverse the direction of

the elastic channel, so the protocol that we describe next uses a noisy channel
with noise rate δ where the committer C sends information and the verifier V
receives, but where it is C who can alter the noise rate and reduce it to γ.

228 I. Cascudo et al.

Protocol Commit

C:
Sample X ∈R {0, 1}k, send (send, sid, C, V,X) to FEC.

V:
Await (send, sid, C, V,X ′) from FEC

Sample h1 ∈R H1, send (send, sid1, V, C, h1) to FPub.

C:
Await (send, sid1, V, C, h1) from FPub.
Set y1 := h1(X), send (send, sid2, C, V, y1) to FPub.

V:
Await (send, sid2, C, V, y1) from FPub.
Sample h2 ∈R H2, send (send, sid3, V, C, h2) to FPub.

C:
Await (send, sid3, V, C, h2) from FPub.
Sample h ∈R H, set y2 := h2(X) and b := h(X).
Send (send, sid4, C, V, y2) and (send, sid5, C, V, h) to FPub.
Output b.

V:
Await (send, sid4, C, V, y2) and (send, sid5, C, V, h) from FPub.

Protocol Open
We define Δ as the Hamming distance.
C:

Send (send, sid, C, V,X) to FPub.

V:
Await (sent, sid, C, V,X) from FPub.
Check that y1 = h1(X), y2 = h2(X) and Δ(X,X ′) ≤ δ′k. If either
condition is false, then abort.
Output b := h(X).

We have defined our constants slightly differently from what was done in
[DKS99], but d0 is defined in the same way, and the rest of the constants satisfy
the same inequalities. It therefore turns out that exactly the same proofs can

Oblivious Transfer from Any Non-trivial Elastic Noisy Channel 229

be used to show this version secure. We will not repeat the proofs here, but
give some intuition why the protocol is secure. We let Δ denote the Hamming
distance, and by negligible we mean negligible as a function of k.

Both parties are honest. In this case we expect X ′ to be at distance δk from
X. Since δ′ > δ, the probability that the distance is greater than δ′k is
negligible, so V will accept the opening.

C is corrupt. We want to argue that there is only one string C can convincingly
open after commitment time. Suppose first that C tries to claim a string X∗

with Δ(X∗,X) > d∗k. Then note than in his view, the received string X ′

is expected to be such that δ(X,X ′) = γk. So we expect that Δ(X∗,X ′) >
(d∗(1 − γ) + γ(1 − d∗))k > δ′k because d∗ > d1. So V would reject with
overwhelming probability in this case. This means that X∗ must be in a
Hamming ball with radius d∗ and center in X. But by sending h1(X), h2(X),
C reveals � bits of information on X. Since � > �∗ this is more than required
to identify uniquely an string in a ball of radius �∗, so there is only one string
that can be opened.

V is corrupt. We want to argue that V has essentially no information about
h(X) before opening. Note that in V ’s view X is in a Hamming ball with
radius δ and center in X ′. Via the hashing V gets only � bits of information,
and since d < δ, one can show that there are exponentially many candidates
left for X, even after hashing. Now by a standard privacy amplification argu-
ment, it follows that the expected information V has on h(X) is negligible.

E Proof of Security of πOT

E.1 Statements About the Typicality Test

We will need to establish some statements about the typicality test from our
protocol.

Define X[μ] to be a binomial variable with expectation μ. By abuse of nota-
tion, we denote by

∑N
i=1 X[μ] the variable defined by sampling N independent

random variables with expectation μ and adding the result.

Probability that an Honest Sender Passes the Typicality Test. We show
that the honest sender passes the typicality test with probability at least 1−2−κ.
Let T =

∑N/2
i=1 X[W (σ)]. An honest receiver does not pass the typicality test if

and only if T ≥ τN/2. Now let μ = E[T] = N
2 W (σ) and β = 1

2W (σ) . We can
apply Chernoff’s bound to see that

Pr [T ≥ τN/2] = Pr [T ≥ (1 + β)μ] ≤ e−μβ2/4 ≤ 2−κ.

230 I. Cascudo et al.

Probability that a Malicious Sender Breaks the Typicality Test. We
show that if a malicious sender cheats in N/2−κ instances of the testing set, she
passes the typicality test with probability at most 2−κ. Note that in order for the
sender to send something different from a codeword in a given instance, at least
one of the bits she sent does not correspond to the bit she communicates when
she sends X̃. Now note that, for a given bit xi,j communicated by the sender
when she sends X̃, if this bit was indeed correct, then xi,j 	= yi,j with probability
δ, while if she sent 1 − xi,j instead, then xi,j 	= yi,j with probability 1 − δ. Note
that the difference between these probabilities is 1 − 2δ. This means that, in
expectation, if the sender assumes the cheating behaviour we just described, the
distance between the bitstrings (xi,j) and (yi,j) will grow by an additive factor
of (1 − 2δ)(N/2 − κ) with respect to the case where the sender would be honest.
We want to show that in these conditions, the malicious sender will fail the test
with high probability. That is, again defining T =

∑N/2
i=1 X [W (σ)], we need to

show:

Pr
[
T ≤ τN

2
− (1 − 2δ)

(
N

2
− κ

)]
≤ 2−κ.

Let μ = E[T] = N
2 W (σ) and β = (1−2δ)(N−4κ)

2NW (σ) . Chernoff’s bound then says

Pr [T ≤ (1 − β)μ] ≤ e−μβ2/2.

Now it is easy to see that, for the values of μ and β detailed above, (1−β)μ =
τN
2 − (1 − 2δ)

(
N
2 − κ

)
(so this probability is indeed what we want to bound)

and that e−μβ2/2 ≤ 2−κ.
In the rest of the section we will prove Theorem 4.

E.2 Correctness

If both players are honest, then the protocol is correct with probability at least
1 − 2−κ. Indeed, with at least this probability the honest sender passes the
typicality test and the protocol is completed. Then, note that:

wi
bi

⊕ (bi ∧ Δi) =

{
wi

0 , if bi = 0
wi

1 ⊕ Δi = wi
0 ⊕ Δ , if bi = 1

Hence w = w0 if there is an even number of i ∈ L such that bi = 1, i.e., if b = 0,
and w = w0 ⊕ Δ = w1 if b = 1. In other words, w = wb.

On the other hand vc = mc ⊕ wc⊕d = mc ⊕ wb.
Therefore the output of the receiver equals w ⊕ vc = mc, so the protocol

outputs the correct value.

E.3 Security Against a Malicious Receiver

Simulation. The simulator S for πOT will first proceed by running N instances
S1, . . . ,SN of the simulator for πOTMR. Upon receiving (choice, bi) from the envi-
ronment, it will record it and send a random wi. If any of the simulators aborts,

Oblivious Transfer from Any Non-trivial Elastic Noisy Channel 231

then the simulator aborts. In the next step, it awaits the test set T from Z.
Now, the simulator must send a X̃ such that the view of Z for the test instances
is the same as in the real world.

Each of the views produced by the simulators are statistically indistinguish-
able (within 2−σ) from real instances of the OT protocol. Therefore, there must
be a distribution D for X̃ that depends only on the transcript between the sim-
ulators and Z that is (1/2κ)-close to one which would be produced in the real
world.

Indeed, if this was not the case, since

N

2σ
=

κQ(σ)
2σ

=
1

2σ−log Q(σ)−log κ
≤ 1

2κ
,

then Z would be able to distinguish with probability larger than 1/2σ between a
run of the simulated malicious-receiver OT and a run with the malicious-receiver
OT protocol with the elastic channel for at least one of the N instances, which
contradicts the security of πOTMR.

S samples X̃ ∈R D. S sets L = {1, . . . , N} \ T . S samples Δi ∈R {0, 1}, for
i ∈ L and sets S = {(i,Δi) | i ∈ L}.
S sends S, X̃ to Z. S computes w :=

⊕

i∈L
wi ⊕ (Δi ∧ bi) and b :=

⊕

i∈L
bi. S

awaits that the environment inputs d. S samples a random x ∈R {0, 1}, sets
c = b ⊕ d and sends (choice, c) to FOT. Upon receiving (receipt,m), S sets
u0 = m ⊕ w, u1 = x and sends (v0, v1) := (ud, u1⊕d) to Z.

Indistinguishability. This follows from the fact that the given robust OT-
combiner is universally composable and that the underlying OT protocol is
secure against a malicious receiver.

E.4 Security Against a Malicious Sender

Simulation. The simulator S employs the following strategy. First, for each
instance of OT, S runs an instance Si of the simulator for the protocol πOTMR

(for the semi-honest sender) for as long as Z does not send invalid codewords
for that instance. If any Si aborts, then S aborts.

When, for a given instance, Z sends an invalid codeword, S takes the sim-
ulator Si, samples a bi at random and samples a receiver Ri whose input is bi

and whose view is consistent with what has been sent by the environment for
that instance.

From this point on, instead of running the simulator for the given instance,
S runs Ri and whenever Z sends a message which is meant to be communicated
through the elastic channel, S simulates the channel and sends the result to Ri.

Once the instances of OT (both simulated and run with honest receiver) have
completed, S samples a random test set T and sends it to Z. S awaits X̃, S from
the environment. S simulates the typicality test. S takes each instance of OT for

232 I. Cascudo et al.

the test that is still run by the simulator for the test cases and replaces it with a
receiver in the same way that was described above. Then once S has produced
the given views, S takes these views and runs the typicality test. If the test fails,
the simulator aborts.

S denotes the set of instances I that were only run by simulators and were
not part of the test set. Let J be the set of instances that were run by the
receivers and were not part of the test set. The simulators provided the values
{(wi

0, w
i
1) | i ∈ I} and the receivers provided the values {wj

bj
| j ∈ J }.

S samples a u ∈ I and, for each i ∈ I, selects a random bi. S selects b =⊕

i∈L,i 	=u

bi, w :=
⊕

i∈L,i 	=u

wi
bi

⊕ (Δi ∧bi). S sets m′
0 := w⊕wu

0 , m′
1 := w⊕wu

1 ⊕Δu.

S samples a random r and sends d = b ⊕ r to Z. S awaits v0, v1 from Z.
S sets m0 := w ⊕ vb⊕r ⊕ m′

b⊕r and m1 := w ⊕ vb⊕r⊕1 ⊕ m′
b⊕r⊕1. S sends

(send, sid,m0,m1) to FOT.

Indistinguishability. The real-world instances of OT where the sender did not
send bad codewords are indistinguishable from the ideal-world instances run
by local simulators. This follows from the security of πOTSH against semi-honest
adversaries.

Next, we consider, the instances of OT where the sender sent bad codewords.
These are also indistinguishable from instances run by the simulator because,
on seeing a bad codeword, the simulator replaces the local simulator with a
receiver Ri, with random input bi, that acts as in the real world (including
the communication between the sender and this receiver, which is simulated by
imitating the behaviour of the channel). Furthermore, the receiver is constructed
so that it is consistent with what had been previously sent through the channel
and the given choice of inputs.

The last step of our simulation needs, however, to make sure that I is non-
empty, i.e., that there is at least one instance of the evaluation set where Z sends
only correct codewords. But notice that, as we have shown before, if Z would
send a non-codeword in each instance, it would result (except with probability
2−κ) in an abort due to the typicality test.

References

[BCC88] Brassard, G., Chaum, D., Crépeau, C.: Minimum disclosure proofs of
knowledge. J. Comput. Syst. Sci. 37(2), 156–189 (1988)

[BCS96] Brassard, G., Crépeau, C., Santha, M.: Oblivious transfers and intersecting
codes. IEEE Trans. Inf. Theory 42(6), 1769–1780 (1996)

[BS94] Brassard, G., Salvail, L.: Secret-key reconciliation by public discussion.
In: Helleseth, T. (ed.) EUROCRYPT 1993. LNCS, vol. 765, pp. 410–423.
Springer, Heidelberg (1994). doi:10.1007/3-540-48285-7 35

[Can01] Canetti, R.: Universally composable security: a new paradigm for crypto-
graphic protocols. In: Proceedings of 42nd IEEE Symposium on Founda-
tions of Computer Science, pp. 136–145. IEEE (2001)

http://dx.doi.org/10.1007/3-540-48285-7_35

Oblivious Transfer from Any Non-trivial Elastic Noisy Channel 233

[CK88] Crépeau, C., Kilian, J.: Achieving oblivious transfer using weakened secu-
rity assumptions (Extended Abstract). In: 29th Annual Symposium on
Foundations of Computer Science, White Plains, New York, USA, 24–26
October 1988, pp. 42–52 (1988)

[CMW05] Crépeau, C., Morozov, K., Wolf, S.: Efficient unconditional oblivious trans-
fer from almost any noisy channel. In: Blundo, C., Cimato, S. (eds.) SCN
2004. LNCS, vol. 3352, pp. 47–59. Springer, Heidelberg (2005). doi:10.
1007/978-3-540-30598-9 4

[Cré97] Crépeau, C.: Efficient cryptographic protocols based on noisy channels.
In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp. 306–317.
Springer, Heidelberg (1997). doi:10.1007/3-540-69053-0 21

[CS06] Crépeau, C., Savvides, G.: Optimal reductions between oblivious transfers
using interactive hashing. In: Proceedings of Advances in Cryptology -
EUROCRYpPT, 25th Annual International Conference on the Theory and
Applications of Cryptographic Techniques, St. Petersburg, Russia, May
28–June 1, pp. 201–221 (2006)

[CvdGT95] Crépeau, C., Graaf, J., Tapp, A.: Committed oblivious transfer and pri-
vate multi-party computation. In: Coppersmith, D. (ed.) CRYPTO 1995.
LNCS, vol. 963, pp. 110–123. Springer, Heidelberg (1995). doi:10.1007/
3-540-44750-4 9

[DFMS04] Damg̊ard, I., Fehr, S., Morozov, K., Salvail, L.: Unfair noisy channels and
oblivious transfer. In: Naor, M. (ed.) TCC 2004. LNCS, vol. 2951, pp.
355–373. Springer, Heidelberg (2004). doi:10.1007/978-3-540-24638-1 20

[DKS99] Damg̊ard, I., Kilian, J., Salvail, L.: On the (im)possibility of basing obliv-
ious transfer and bit commitment on weakened security assumptions. In:
Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 56–73. Springer,
Heidelberg (1999). doi:10.1007/3-540-48910-X 5

[DORS08] Dodis, Y., Ostrovsky, R., Reyzin, L., Smith, A.D.: Fuzzy extractors: how
to generate strong keys from biometrics and other noisy data. SIAM J.
Comput. 38(1), 97–139 (2008)

[Est04] Estren, G.: Universally composable committed oblivious transfer and
multi-party computation assuming only basic black-box primitives. Ph.D.
thesis, McGill University (2004)

[GMW86] Goldreich, O., Micali, S., Wigderson, A.: How to prove all NP state-
ments in zero-knowledge and a methodology of cryptographic protocol
design (Extended Abstract). In: Odlyzko, A.M. (ed.) CRYPTO 1986.
LNCS, vol. 263, pp. 171–185. Springer, Heidelberg (1987). doi:10.1007/
3-540-47721-7 11

[HKN+05] Harnik, D., Kilian, J., Naor, M., Reingold, O., Rosen, A.: On robust
combiners for oblivious transfer and other primitives. In: Proceedings
of Advances in Cryptology - EUROCRYpPT, 24th Annual International
Conference on the Theory and Applications of Cryptographic Techniques,
Aarhus, Denmark, pp. 96–113, 22–26 May 2005

[IKO+11] Ishai, Y., Kushilevitz, E., Ostrovsky, R., Prabhakaran, M., Sahai, A.,
Wullschleger, J.: Constant-rate oblivious transfer from noisy channels. In:
Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 667–684. Springer,
Heidelberg (2011). doi:10.1007/978-3-642-22792-9 38

[Kil88] Kilian, J.: Founding cryptography on oblivious transfer. In: Proceedings
of the Twentieth Annual ACM Symposium on Theory of Computing, pp.
20–31. ACM (1988)

http://dx.doi.org/10.1007/978-3-540-30598-9_4
http://dx.doi.org/10.1007/978-3-540-30598-9_4
http://dx.doi.org/10.1007/3-540-69053-0_21
http://dx.doi.org/10.1007/3-540-44750-4_9
http://dx.doi.org/10.1007/3-540-44750-4_9
http://dx.doi.org/10.1007/978-3-540-24638-1_20
http://dx.doi.org/10.1007/3-540-48910-X_5
http://dx.doi.org/10.1007/3-540-47721-7_11
http://dx.doi.org/10.1007/3-540-47721-7_11
http://dx.doi.org/10.1007/978-3-642-22792-9_38

234 I. Cascudo et al.

[Kil92] Kilian, J.: A note on efficient zero-knowledge proofs and arguments. In:
Proceedings of the Twenty-Fourth Annual ACM Symposium on Theory of
Computing, pp. 723–732. ACM (1992)

[KMS16] Khurana, D., Maji, H.K., Sahai, A.: Secure computation from elastic noisy
channels. In: Proceedings of Advances in Cryptology - EUROCRYpPT -
35th Annual International Conference on the Theory and Applications of
Cryptographic Techniques, Vienna, Austria, Part II, pp. 184–212, 8–12
May 2016

[Mau93] Maurer, U.M.: Secret key agreement by public discussion from common
information. IEEE Trans. Inf. Theory 39(3), 733–742 (1993)

[PDMN11] Pinto, A.C.B., Dowsley, R., Morozov, K., Nascimento, A.C.A.: Achieving
oblivious transfer capacity of generalized erasure channels in the malicious
model. IEEE Trans. Inf. Theory 57(8), 5566–5571 (2011)

Simultaneous Secrecy and Reliability
Amplification for a General Channel Model

Russell Impagliazzo1(B), Ragesh Jaiswal2, Valentine Kabanets3,
Bruce M. Kapron4, Valerie King4, and Stefano Tessaro5

1 University of California, San Diego, San Diego, USA
russell@cs.ucsd.edu

2 Indian Institute of Technology Delhi, New Delhi, India
rjaiswal@cse.iitd.ac.in

3 Simon Fraser University, Burnaby, Canada
kabanets@cs.sfu.ca

4 University of Victoria, Victoria, Canada
bmkapron@uvic.ca, val@cs.uvic.ca

5 University of California, Santa Barbara, Santa Barbara, USA
tessaro@cs.ucsb.edu

Abstract. We present a general notion of channel for cryptographic
purposes, which can model either a (classical) physical channel or the
consequences of a cryptographic protocol, or any hybrid. We consider
simultaneous secrecy and reliability amplification for such channels. We
show that simultaneous secrecy and reliability amplification is not pos-
sible for the most general model of channel, but, at least for some values
of the parameters, it is possible for a restricted class of channels that
still includes both standard information-theoretic channels and keyless
cryptographic protocols.

Even in the restricted model, we require that for the original chan-
nel, the failure chance for the attacker must be a factor c more than
that for the intended receiver. We show that for any c > 4, there is a
one-way protocol (where the sender sends information to the receiver
only) which achieves simultaneous secrecy and reliability. From results
of Holenstein and Renner (CRYPTO’05), there are no such one-way pro-
tocols for c < 2. On the other hand, we also show that for c > 1.5, there
are two-way protocols that achieve simultaneous secrecy and reliability.

We propose using similar models to address other questions in the
theory of cryptography, such as using noisy channels for secret agree-
ment, trade-offs between reliability and secrecy, and the equivalence of
various notions of oblivious channels and secure computation.

1 Introduction

Modern cryptography has its roots in the work of Shannon [35], using channels
as the model of communication where some secrecy is attainable [9,39]. A cryp-
tographic protocol can also be interpreted as implicitly defining a computational
channel, where the loss of information is merely computational. For example,
c© International Association for Cryptologic Research 2016
M. Hirt and A. Smith (Eds.): TCC 2016-B, Part I, LNCS 9985, pp. 235–261, 2016.
DOI: 10.1007/978-3-662-53641-4 10

236 R. Impagliazzo et al.

consider a channel sending a message m as the pair consisting of a public key
pk, and an encryption c of m under pk. If the encryption scheme provides some
form of (even weak) security, a computationally bounded adversarial observer
of the channel output will only learn partial information about m, even though
information-theoretically the channel may well uniquely define its input.

In some circumstances, it may not even be clear whether the limitation is
computational or informational. For example, an adversary may not be able
to perfectly tune in to a low-power radio broadcast. This might appear an
information-theoretic limitation, but improved algorithms to interpolate signals
or to predict interference due to atmospheric conditions could also improve the
adversary’s ability to eavesdrop.

In this work, we introduce a model of computation that combines
information-theoretic and computational limitations. Specifically, we present a
general notion of channel for cryptographic purposes, which can model either a
(classical) physical channel or the consequences of a cryptographic protocol, or
any hybrid.

We require our model to satisfy the following properties:

– [Agnostic] It should not matter why an adversary is limited. Protocols
designed exploiting an adversary’s weakness should remain secure whether
that weakness is due to limited information, computational ability, or any
other reason.

– [Composable] We should be able to safely combine a protocol that achieves
one goal from an assumption, and a second protocol that achieves a second
goal from the first, into one that achieves the second goal from the original
assumption.

– [Functional] The assumptions underlying our protocols should concern what
the parties can do, rather than concerning what they or the channels through
which they communicate are. In particular, we should be able to use this to
evaluate the danger of side information, and enhanced functionality should
not threaten secrecy properties.

– [Combining reliability and secrecy] Instead of viewing reliability of a
channel and its secrecy as separate issues, our model should combine the two
in a seamless way. We want to study how enhancing secrecy might impact reli-
ability, and vice versa. In other words, we view reliability as equally necessary
for the overall secrecy.

In this paper, we focus on the simultaneous secrecy and reliability amplifi-
cation for such channels. We start with a channel where the intended receiver
gets the transmitted bit except with some probability and the attacker can guess
the transmitted bit except with a somewhat higher probability. We wish to use
the channel to define one where the receiver gets the transmitted bit almost
certainly while only negligible information is leaked to the attacker. We show
that simultaneous secrecy and reliability amplification is not possible for the
most general model of channel, but, at least for some values of the parameters,
it is possible for a restricted class of channels that still includes both standard
information-theoretic channels and keyless cryptographic protocols.

Simultaneous Secrecy and Reliability Amplification for a Channel Model 237

Note that, traditionally, error-correction and encryption have been thought
of in communications theory as separate layers, with one performed first and
then the other on top. However, when one wants to leverage the secrecy of an
unreliable channel, it does not seem possible to separate the two. Using an error-
correcting code prior to secrecy considerations could totally eliminate even the
partial secrecy, and amplifying secrecy could make the channel totally unreliable.
(In some sense, our solution alternates primitive error-correction stages with
secrecy amplification stages, but we need several rounds of each nested carefully.)

1.1 Our Results

We propose a very general model of channel with state, which makes few assump-
tions about the way the channel is constructed or the computational resources
of the users and attackers. In the present paper, such a channel is used for com-
munication between Alice and Bob, with an active attacker Eve. The channel
has certain reliability and secrecy guarantees, ensuring that Bob receives a bit
sent to him by Alice with sufficiently higher probability than Eve (see Sect. 2).

We show (in Sect. 3) how secrecy and reliability of such channels can be
simultaneously amplified with efficient protocols (using one-way communication
only), provided that the original channel has a constant-factor gap (at least 4)
between its secrecy and reliability (i.e., Eve is 4 times more likely to make a
mistake on a random bit sent by Alice across the channel than Bob is on any
given bit sent by Alice). We prove (in Sect. 4) that some constant-factor gap
(the factor 2) is necessary for any one-way protocol. Finally, we present (in
Sect. 5) an efficient two-way communication protocol for amplifying secrecy and
reliability, assuming the original channel has the factor 1.5 gap between secrecy
and reliability.

For our one-way protocol in Sect. 3, we tighten a result of Halevi and
Rabin [16] on the secrecy analysis of a repetition protocol. If the eavesdrop-
per has probability at most 1 − α of guessing a bit sent across the channel from
Alice to Bob, then the eavesdropper has probability at most 1−(2α)n/2 of learn-
ing the bit, if this bit is sent across the channel n times. This improves upon the
analysis of [16], who showed 1 − αn probability for the eavesdropper.

Our two-way protocol in Sect. 5 applies to secret-key agreement between
two parties both in the information-theoretic and complexity-theoretic setting,
extending the results of Holenstein and Renner [19] on one-way protocols.

1.2 Related Work

Our results exhibit both technical and conceptual similarities with the rich line
of works on secrecy amplification for cryptographic primitives and protocols.
A number of them developed amplification results for both soundness and cor-
rectness of specific two-party protocols [1,4,5,15–17,20,32,33,37]. Different from
our work, however, these consider settings where one of two parties is corrupt,
and secrecy for the other party is desired. Here, we envision a scenario with two
honest parties, Alice and Bob, communicating in presence of a malicious third

238 R. Impagliazzo et al.

party, Eve. Previously, this was only considered in works on secrecy and correct-
ness amplification for public-key encryption and key agreement [11,18,19,26].
We note that our framework is far more general than these previous works.

Following Shannon’s impossibility result showing that perfect secrecy requires
a secret key as large as the plaintext [35] (see also [10]), there has been a large
body of research in information-theoretic cryptography. This line of work shows
that perfect secrecy is possible, if one assumes that physical communication
channels are noisy. One such model of a noisy communication channel is Wyner’s
wiretap channel of [39], generalized by [9], and extensively studied since (see [25]
for a survey). A number of both possibility and impossibility results were shown
for various models of noisy channels, see, e.g., [6–8,12,21,29–31,38].

Different formalizations of secrecy in the information-theoretic setting were
studied by [2,22,23,36]. In particular, Bellare et al. [2] consider the wiretap
channel and relate the information-theoretic notion of secrecy (traditionally used
in information-theoretic cryptography) to the semantic secrecy in the spirit of
[14] (used in complexity-theoretic cryptography).

We remark that in the information-theoretic approach to cryptography, the
focus is usually on what the channel is: for example, a channel between Alice
and Bob, with eavesdropper Eve, is modeled as a triple of correlated random
variables A,B,E, with certain assumptions on the joint distribution of these
variables. Then the question is studied what such a channel can be used for, and
how efficiently (e.g., at what rate). In contrast, our main focus is on the utilization
of the channel, i.e., what the channel can be used for. For example, if a channel
can be used for somewhat secret and reliable transmission of information, we
would like to know if that channel can be used to construct a new channel for
totally secret and reliable transmission.

Below we provide a more detailed comparison between our work and the
most closely related previous work.

Comparison with [19] . Perhaps the most closely related to the present paper is
the work by Holenstein and Renner [19] that considers the task of secret-key
agreement in the information-theoretic setting, where two honest parties, Alice
and Bob, have access to some correlated randomness such that the eavesdrop-
per, Eve, has only partial information on that randomness. In particular, [19]
consider a special case where the random variables of Alice and Bob, A and B,
are binary and have correlation at least α (i.e., A and B are equal with proba-
bility at least (1 + α)/2), whereas with probability at least 1 − β, the random
variable E of Eve contains no information on A. One of the main results of [19]
shows that secret key agreement, using one-way communication from Alice to
Bob, is possible when α2 > β, and impossible otherwise. Holenstein and Ren-
ner also observe that one-way secret-key agreement for such random variables
is equivalent to the task of black-box circuit polarization, introduced by Sahai
and Vadhan [34] in the context of statistical zero knowledge. The impossibility
result for one-way secret-key agreement in [19] implies that the parameters for
circuit polarization achieved by Sahai and Vadhan [34] are in fact optimal for
such black-box protocols.

Simultaneous Secrecy and Reliability Amplification for a Channel Model 239

The setting of binary random variables A,B,E in [19] is similar to the channel
model we consider. Their condition on A and B being correlated corresponds to
channel’s reliability, and the condition on E sometimes having no information on
A corresponds to channel’s secrecy. We use the impossibility result of [19] (almost
directly) to argue the need of a constant-factor (factor 2) separation between
reliability and secrecy of channels for the case of one-way protocols. However,
our one-way channel protocol (for the case of factor 4 separation between reli-
ability and secrecy) is for a more general, not necessarily information-theoretic,
setting. Moreover, we go beyond the one-way communication, and describe an
efficient two-way protocol that works for the case where the constant-factor gap
between reliability and secrecy of a channel is smaller (factor 1.5) than the gap
required by one-way protocols. This yields a new protocol that works both for
the information-theoretic setting (as in [19]), and for the complexity-theoretic
setting, using the results of [18].

Comparison with [30] . Maurer [30] considered the information-theoretic setting
of a channel between Alice and Bob, with eavesdropper Eve, where the channel
from Alice to Bob is symmetric noisy channel with the noise parameter ε, and
the channel from Alice to Eve is an independent symmetric noisy channel with
the noise parameter δ. Using the earlier work by [9], Maurer shows that Alice and
Bob can securely agree on a secret in this setting, provided ε < δ. Surprisingly,
Maurer also shows that secret-key agreement between Alice and Bob is still
possible even if ε ≥ δ, by using a two-way protocol (where Bob also sends
messages to Alice over the public channel)! Like Maurer, we also use a two-
way protocol to overcome the limitations of one-way protocols. The difference is
that our setting is more general than his information-theoretic setting (of two
independent noisy channels). For example, in Maurer’s setting, it is easy to see
that Eve has less information than Alice about the bit Bob receives, which is
not always true in our setting (unless α > 2β). However, his results raise the
question of what additional reasonable conditions on our channel model could be
used to reduce the gap between secrecy and reliability that one needs to assume.
One natural condition is that Eve has a small probability of learning a random
bit sent from Bob to Alice (in addition to the existent secrecy condition that Eve
has small probability of learning a random bit sent from Alice to Bob). We leave
the study of this channel model with “symmetric secrecy” for future research.

Comparison with [27] . The framework of constructive cryptography by Maurer
[27] also deals with reductions between channels, using the formalism from the
abstract cryptography framework [28]. In constructive cryptography, the main
goal is to capture traditional security goals (like secrecy and authenticity) in
terms of channel transformations. Contrary to our framework, channels in con-
structive cryptography are described exactly through ideal functionalities, in the
same spirit as in Canetti’s UC framework [3]. Maurer’s framework in fact also
allows the definition of classes of channels (as we consider here), but this feature
appears to be mostly definitional, as we are not aware of any results that would
apply to the context of our work.

240 R. Impagliazzo et al.

1.3 Our Techniques

We use fairly standard tools such as the direct-product and XOR protocols,
relying on the proof techniques in [13,24]. We also use the repetition protocol,
whose secrecy in the cryptographic setting was first analyzed in [16]. We general-
ize and improve their analysis (see Theorem 14), getting better secrecy ((2α)n/2
instead of αn), which is crucial for our applications. While the techniques we
ended up using in this paper are standard, finding the right techniques to use
for our applications was nontrivial, and involved considering many other stan-
dard techniques that turned out to be inapplicable to our setting. For example,
error-correcting codes are an obvious approach to amplifying reliability. But it
is still very unclear how such codes affect secrecy. Also, many of the ways we
apply standard techniques are delicate. The XOR protocol we use is standard,
but fails dramatically if one reverses the order in which the messages are sent.
There seems to be a subtle and intricate interplay between the contradictory
requirements of secrecy and reliability that we want to achieve simultaneously.

2 The Model and Axioms

2.1 Channels

The following is a definition of a one-way channel that communicates information
from a user Alice to a user Bob. An attacker Eve is capable of launching possibly
active attacks, and can gain some information about communicated messages.
We can generalize such a channel to one allowing two-way communication or
multi-party channels. Note that while we do capture a variety of classical physical
systems with this definition, we do not necessarily capture quantum channels or
protocols, because we assume that computation does not change the system’s
state. We could generalize further, but it’s already getting pretty complicated.

Definition 1 (Channel). A one-way channel from user Alice to user Bob with
attacker Eve has the following components:

1. Security parameter: k ∈ N;
2. States: for each k, a countable set of possible underlying states, Σk ⊆

{0, 1}∗;
3. Attacks: for each k, a countable set of possible attacks Γk ⊆ {0, 1}∗;
4. Transition function: for each k, a probabilistic transition function δk

which takes as input the current state s ∈ Σk, an attack γ ∈ Γk from Eve,
and a transmitted bit b from Alice, and produces a probability distribution
δk(s, γ, b) on the updated state s′ ∈ Σk and received message b′ ∈ {0, 1};

5. Eve’s view function: a function vE(s) from states to strings, giving the
visible part of the state for Eve;

6. Resource limits: a set F of probabilistic functions from strings to strings,
computable within the computational limits of the adversary. We assume F
is closed under polynomial-time (in the lengths of strings and the secrecy

Simultaneous Secrecy and Reliability Amplification for a Channel Model 241

parameter) Turing reductions, and under fixing as advice any single bit, visible
state or action.1

Remark 2. For our application of secret and reliable information transmission
from Alice to Bob in the presence of an active evesedropper Eve, we can assume
that Alice and Bob, as trusted parties, do not need to keep track of the channel
state. This simplifies our definition of channel above. However, for other tasks
(e.g., Oblivious Transfer, bit flipping over the phone, secure multiparty compu-
tation), we need to include in our model Alice’s and Bob’s view functions of
the channel state, vA(s) and vB(s), respectively. This would match the standard
information-theoretic view of such a channel as a triple of correlated random
variables A (for Alice), B (for Bob), and E (for Eve).

Our main results only apply to limited classes of channels that we call trans-
parent and semi-transparent.

Definition 3 (Transparency). A channel of Definition 1 is called transparent
if it satisfies the following additional properties:

– vE(s) = s (i.e., all of the state is visible to the attacker), and
– for every k ∈ N, δk ∈ F (i.e., the attacker can simulate the channel).

A channel of Definition 1 is called semi-transparent if it satisfies the following
additional properties:

– vE(s) = s (i.e., all of the state is visible to the attacker), and
– for every k ∈ N, computing the new state under δk is in F (i.e., the attacker

can simulate the channel as far as the information they get, but not necessarily
the output).

Remark 4. The utility of transparency condition on the channel is that it enables
the eavesdropper Eve to simulate the channel forward, by taking control of a
virtual Alice. In fact, as was pointed out to us by Daniele Micciancio [personal
communication, 2015], given an arbitrary channel that can be simulated forward,
one can define a new, equivalent channel that is transparent; the converse is also
true. So transparency is equivalent to being simulatable forward.

Transparent channels include any memoryless channel with computationally
unbounded (information-theoretic) attackers, and any two-party protocol where
there are no secret inputs for either party before the protocol starts.

1 If a channel is such that the state description rapidly grows (say, squares) after each
use, then after very few uses, the adversary that is allowed polynomial time in the
size of the state will get to use exponential-time computation for her attacks. A
standard cryptographic channel will unlikely be secure in this case. However, it is
up to the designer of the channel to ensure that it remains secure, with respect to
polynomial-time adversaries (which will probably force the designer to make sure
that the state description does not grow too fast with respect to k).

242 R. Impagliazzo et al.

Definition 5 (α-Secrecy and β-Reliability). Let 1/2 > α > β ≥ 0 be con-
stants (or functions of the security parameter). A channel is called α-secret and
β-reliable if it satisfies the following axioms:

– Secrecy Axiom: For all but finitely many k ∈ N, ∀f ∈ F , ∀s ∈ Σk, ∀γ ∈ Γk,
and for b ∈U {0, 1} uniformly chosen,

Pr
(s′,b′)=δk(s,γ,b)

[f(vE(s′)) = b] ≤ 1 − α.

– Reliability Axiom: ∀k ∈ N, ∀s ∈ Σk, ∀γ ∈ Γk, and ∀b ∈ {0, 1},

Pr
(s′,b′)=δk(s,γ,b)

[b′ = b] ≥ 1 − β.

These conditions are met by the (non-transparent) channel that works as
follows. Initially the state is the empty string. The intended receiver always gets
the sent bit. The eavesdropper is allowed exponential computation time, and has
two attacks: “defer” or “break”. If “defer” is chosen, the eavesdropper learns
nothing at the time (the visible state contains no bits), but the current bit sent
is appended to the channel state. If “break” is chosen, with probability 1 − 2α,
the channel state is updated as normal but becomes visible to the eavesdropper;
with probability 2α, the channel state is erased (becomes the empty string).

The first example provably shows that secrecy amplification cannot be based
solely on the above axioms. Consider any protocol to send a bit secretly from
Alice to Bob, using the channel above. Eve can use the strategy of using “defer”
until the last bit is sent, and attacking the last bit with “break”. With probability
1−2α, Eve learns the entire conversation between Alice and Bob. By simulating
all possible random choices used by Alice and Bob, and seeing which ones are
consistent with the conversation, Eve can learn the secret.

To see where non-transparency could actually prevent secrecy amplification
in the cryptographic setting, consider a channel that simulates the following
private-key protocol. Alice and Bob share a secret key κ, and to send a message,
Alice sends Eκ(m) and a weak commitment C(κ) to Bob. If an eavesdropper can
break the secrecy of the commitment scheme with some small probability α, then
no matter how the scheme is used repeatedly and combined, the attacker will
learn the key with probability at least α. In general, protocols that assume prior
shared information such as a private key will not be transparent, because the
attacker cannot simulate a run of the protocol without this shared information.

We will show that for transparent channels this problem does not arise.

2.2 Examples

We give some examples of both channels in an information-theoretic setting and
computational setting. Our results hold for channels that are some hybrid of
the two as well, but these two extremes are the most familiar, so will serve as
intuition. In general, we’ll be using complexity-theoretic methods when proving
possibility results, and prove impossibility results using information-theoretic
means, so we will be shifting back and forth between the two.

Simultaneous Secrecy and Reliability Amplification for a Channel Model 243

Information-Theoretic Channels

Noise vs. erasure: One interesting channel is a joint symmetric binary noise
and erasure channel, where, when Alice sends b, Bob receives the bit b′ which
is equal to b with probability 1−β and equal to 1− b otherwise. Eve receives
(i.e., the new state equals) the bit b with probability 1 − 2α and the message
⊥ otherwise.2 There might or might not be correlation between Eve’s erasures
and Bob’s noise. The channel is memoryless, in that the current state does not
actually affect the transition function. Any memoryless channel is equivalent
to a transparent one in the information-theoretic setting, since we might as
well replace the state with the visible state and Eve can always simulate the
fixed transition function.

Noise attacks: An active Eve might be able to control the noise of the channel,
but not gain any information about the bit sent. For example, say attacks
are numbers γ between 0 and β. Bob receives a bit b′ with binary symmetric
noise γ, and Eve receives (i.e., the new state is) b′ ⊕b, whether or not Bob got
the bit sent. This channel gives Eve no information about the bit sent, but
allows her to attack reliability. Again it is memoryless, hence transparent.

Arbitrary memoryless channels: We can embed conventional results about
secrecy capacity of channels in our model. Consider any fixed distribution
on triples (A,B,E), where we view a single use of a device as giving Alice
information A, Bob, B and the attacker E, and Alice and Bob can commu-
nicate in the clear as well. Using the device K times gives a sequence of K
values of these variables A1, ..., AK , B1, ..., BK , and E1, ..., EK from the same
joint distribution. At some point, after using the device and sending some
messages, Bob will output a guess as to the bit Alice meant to send him. The
new state would be the K tuple of values E1, . . . , EK , and the messages sent
in the clear. While the sequence A and B are used, and help determine the
output, we don’t include them in the state (because they will not be used
in future transmissions), and since Alice and Bob are trusted participants,
there is no reason to keep track of their side information, rather than just the
secret they agree on. The system is memoryless, and hence transparent.

Complexity-Theoretic Channels

Private key encryption: If Alice and Bob use a secret key and send messages
using a private key encryption, then the state would be both the key and the
messages sent in the clear, but the visible state for Eve would just be the
messages sent in the clear. So this type of protocol is not transparent, since
including the key in the visible state would render it useless.

Noisy trapdoor function with fixed public key: Say Bob creates a trap-
door function with probabilistic encryption and noisy decryption, and Alice
always sends bits with Bob’s fixed public key. Then the state of the channel

2 Note that Eve can guess the bit with probability 1/2 when she receives ⊥. So the
probability of her knowing the bit b is 1 − 2α + (1/2) · (2α) = 1 − α.

244 R. Impagliazzo et al.

is the public key and the encryption of the bit sent. This channel is semi-
transparent, because Eve can simulate the new state (only the encryption of
the bit is changed), but cannot necessarily simulate whether Bob will get the
bit correctly without Bob’s secret key. If there is feed-back from Bob to Alice,
Eve might be able to simulate a chosen cyphertext attack on the encryption
function.

Noisy trapdoor function with fresh public keys: On the other hand, using
the same encryption function but with a fresh key every message, the channel
becomes fully transparent. Eve can simulate the channel and Bob’s received
bit by generating her own keys and using them. Chosen cyphertext attacks
become a non-issue, so protocols using feedback are fine.

2.3 Virtual Channels and Protocol Channels

A protocol using a channel defines a new, virtual channel. The inputs to this
virtual channel are strategies for the participants and attacker, using the old
channel. The virtual channel’s states accumulate the protocol history, that is the
sequence of observable states during the protocol, together with any messages
sent in the clear. The transition function simulates the protocol with the given
strategies to obtain the history.

A protocol channel fixes the inputs from Alice and Bob in the virtual channel
to specific strategies of Alice and Bob.

Definition 6 (Amplifying secrecy and reliability). For α′ > α > β >
β′, secrecy and reliability amplification from (α, β) to (α′, β′) means defining a
protocol which guarantees that, for any (transparent) channel satisfying α-secrecy
and β-reliability, the protocol channel satisfies α′-secrecy and β′-reliability.

We note that by construction, states of a protocol channel have the same
degree of visibility as states of the underlying channel. Furthermore, since tran-
sitions of the protocol channel simulate the strategies of the participants, we
conclude the following.

Lemma 7. If a channel is transparent, and the legitimate users’ strategies are
in F , then the protocol channel is also transparent, regardless of whether the pro-
tocol uses one-way or two-way communication. If a channel is semi-transparent,
and the legitimate users’ strategies are in F , then the protocol channel is also
semi-transparent, provided that the protocol uses one-way (from Alice to Bob)
communication only.

Thus, protocol constructions or secrecy and reliability amplifications which
assume the axiom of transparency will always be composable. In other words,
we can have a series of protocols built on top of channels. The protocols will
only utilize the channels as black boxes and so not require any knowledge of how
the underlying channel works. They will have the property that if the channel
is transparent, α-secret and β-reliable, then the protocol is α′-secret and β′-
reliable. Then we can use the protocol as the channel in any way of converting
α′-secret and β′-reliable channels into α′′-secret and β′′-reliable ones. The same
is true also for one-way protocols using semi-transparent channels.

Simultaneous Secrecy and Reliability Amplification for a Channel Model 245

3 Secrecy and Reliability Amplification for One-Way
Protocols

The main result of this section is the following.

Theorem 8. For any non-negligible ε and any 1/2 > α > 4β > 0, there is a one-
way protocol for secrecy and reliability amplification from (α, β) to (1/2−ε, 2−k).

The required protocol will rely on the Direct-Product protocol, the Parity
protocol, and the Repetition protocol that we discuss next.

3.1 Direct-Product Protocols

The direct product is one of the fundamental constructions in complexity and
the theory of cryptography. Direct product theorems state that if one instance
of a problem is unlikely to be solved, then two independent instances are even
less likely to be both solved. There are many proofs of direct product theorems
that apply to a wide variety of models and circumstances. Modern proofs utilize
connections to coding theory, hard-core sets, and so on. However, these proofs do
not seem to work in our setting. What does work is one of the oldest techniques
in direct products, estimates of conditional probabilities, used, for example, by
Levin [24].

Direct product constructions generally decrease reliability but enhance
secrecy. The simplest direct product constructions just concatenate the vari-
ous solutions. We’ll analyze such a protocol, but it will not be immediate how to
translate the result about concatenating secrets into one where the secrets are
combined into a single bit.

Consider the following Direct-Product Protocol:

Alice sends n independent random bits bn, . . . , b1 (we number them in
reverse order to make an inductive argument cleaner) through the channel.

We compare the probability that Bob receives all n bits with the probability
that Eve can guess all n bits. First, for Bob’s probability of receiving all n
bits, we can use that the reliability axiom holds for each state of the channel.
Conditioned on any event for the first i bits, and in particular, conditional on
Bob receiving the first i bits correctly, the probability of his receiving the ith bit
correctly is at least 1 − β. Therefore, the probability that he receives all n bits
correctly is at least (1 − β)n.

Next, we use the method of conditional probabilities, due to Levin, to bound
the probability that Eve can guess all n bits.

Theorem 9 (Direct-Product Theorem for Channels). For any non-
negligible function ε of the secrecy parameter, and any polynomially bounded
n, the probability that Eve can guess all n bits is at most (1 − α)n + nε.

246 R. Impagliazzo et al.

Proof. Consider the distribution on the information available to Eve by an
attack. An attack on the protocol will be determined by two functions A which
receives a list of states and determines the next attack a on the channel, and
f which after the protocol ends outputs the guess Bn...B1. The protocol under
this strategy will evolve as follows:

1. The protocol starts in some state sn+1. Let the initial history Hn+1 be the
list containing only sn+1.

2. For each i from n to 1:
(a) Alice picks a random bit bi ∈ {0, 1}.
(b) Eve picks channel attack ai = A(Hi+1).
(c) The new state si and the bit b′

i received by Bob are given by (si, b
′
i) =

δk(si+1, ai, bi).
(d) Append si to Hi+1 to get an updated history Hi.

3. Eve guesses Bn, . . . , B1 = f(H1).

Note that given any Hi, Eve can simulate the rest of the process to produce
H1 according to the correct conditional distribution, using randomly generated
bits bi−1, . . . , b1 (since δk ∈ F). (This is where we use transparency.)

Let Successi be the event that Bi = bi, . . . , B1 = b1. The theorem will follow
from the next claim for i = n.

Claim. For any 1 ≤ i ≤ n and history Hi+1, Pr [Successi | Hi+1] ≤ (1 − α)i + iε.

Proof (of Claim). Our proof is by induction on i. The i = 1 case is just the
secrecy property of the channel at state s2. Fix Hi+1. Consider the following
attack on a single bit bi sent on the channel at state si+1:

Eve uses attack ai, bit bi is sent by Alice, and the channel arrives in state
si. Then she repeatedly simulates the conditional distribution on histories
starting from Hi as given above, until either Successi−1 or the number
of simulations reaches T = (1/ε) ln(1/ε). If the former, she outputs Bi as
her guess for bi, otherwise, the simulations time out without success, she
outputs no guess.

By transparency of the channel and its α-secrecy, we get that

Pr[Bi = bi | Hi+1] ≤ (1 − α). (1)

Next, Pr[Bi = bi | Hi] is Pr[Successi | Hi,Successi−1] times the probability of
not timing out, which is 1−(1−Pr[Successi−1|Hi])T . In particular, if Pr[Successi |
Hi] ≥ ε, so is Pr[Successi−1 | Hi] and the probability of not timing out is at least
1 − (1 − ε)T ≥ 1 − e−εT = 1 − ε by our choice of T . Then

Pr[Bi = bi | Hi] ≥ Pr[Successi | Hi]
Pr[Successi−1 | Hi]

− ε

≥ Pr[Successi | Hi]
(1 − α)i−1 + (i − 1)ε

− ε,

Simultaneous Secrecy and Reliability Amplification for a Channel Model 247

where the last inequality is by the induction hypothesis applied to Hi−1. So we
get

Pr[Successi | Hi] ≤ (1 − α)i−1 · Pr[Bi = bi | Hi] + iε. (2)

If Pr[Successi | Hi] < ε, then Eq. (2) holds for trivial reasons. Finally, averaging
over Hi in Eq. (2) and then using the inequality of Eq. (1), concludes the proof.

3.2 Parity Protocols

Next we want to use our direct-product protocol to get a single bit message across
the channel. Before showing a protocol that works (under some circumstances),
we give an illuminating example of a tempting protocol that fails.

Naive Parity Protocol. Consider the naive parity protocol for sending a bit
b from Alice to Bob:

Alice sends random bits bn, . . . , b1 as above, and then sends b⊕bn⊕· · ·⊕b1.
Bob’s guess at b is the parity of all the bits he receives.

We are not sure whether this protocol boosts secrecy, but it actually fails
miserably when it comes to reliability. In fact, there are channels where this
protocol is much worse than random guessing from Bob’s point of view!

Theorem 10. For any 1/2 > β > 0, there is a transparent 1/2-secret and
β-reliable channel such that the naive parity protocol above yields the protocol
channel with reliability 1 − (1 − β)n.

Proof. Indeed, consider a channel where Eve decides whether each bit is sent
with symmetric noise β or with no noise, and learns nothing about the bit sent,
only the noise. In other words, the channel has two states, 0 and 1, and there are
two attacks, 0 and 1. A coin η of bias β is flipped by the channel, and the new
state is η (regardless of the bit sent or the attack). The bit received by Bob is
b⊕aη, i.e., is flipped if Eve picks attack 1 and the noise is 1, and is not otherwise.
One can think of Alice and Bob as communicating by low power radio, and Eve
can make the channel noisy by broadcasting at the same time, but can only tell
if she disrupted the signal, not what the message was.

This channel has secrecy 1/2 and β-reliability. But if Alice and Bob use the
parity protocol, Eve can use attack 1 (keep the channel noisy) until η = 1, and
then set a = 0 after that. Bob only gets the correct bit if η is never 1, so with
probability (1 − β)n.

So the reliability of the naive parity protocol goes totally out the window!

Modified Parity Protocol. Next we show a modification of this protocol that
amplifies secrecy of a given channel, albeit at the price of possibly worsening its
reliability somewhat. This will be later combined with another protocol that will
significantly improve reliability while somewhat worsening secrecy. By carefully

248 R. Impagliazzo et al.

choosing the parameters of the protocols in this combination, we will be able
to achieve both secrecy and reliability amplification for a given α-secret and
β-reliable channel, provided that α > 4β.

The modified parity protocol sends the parity of a random subset of bits
bn, . . . , b1, rather than all of them. Consider the Parity Protocol:

To send a given bit b to Bob, Alice uses the channel to send random bits
bn, . . . , b1, and then, in the clear, sends random bits rn, . . . , r1, followed
by b ⊕ (⊕n

i=1biri). Bob receives bits b′
n, . . . , b′

1 through the channel, and
outputs (b ⊕ (⊕n

i=1biri)) ⊕ (⊕n
i=1b

′
iri).

Theorem 11. Given any α-secret and β-reliable transparent channel, the Parity
Protocol above yields the protocol channel that is α′-secret and β′-reliable for
α′ ≈ (1 − e−αn/2)/2 and β′ ≈ (1 − e−βn)/2.

Proof. The probability that Bob receives all n bits is (1 − β)n, and then he
correctly recovers b with probability 1 over the choice of random bits rn, . . . , r1.
Otherwise, Bob’s string b′

n . . . b′
1 is different from the string bn . . . b1, but the two

strings have the same inner product modulo 2 with the random string rn . . . r1,
with probability 1/2 over the choice of rn, . . . , r1. Thus, Bob’s overall chance of
guessing b correctly is (1 + (1 − β)n)/2, which means that the protocol is about
(1/2)(1 − e−βn)-reliable.

On the other hand, if Eve can guess b with conditional probability 1/2 + γb
after b = bn, . . . , b1 are sent, using the algorithm of Goldreich and Levin [13],
varying over choices of bits r, she can guess the entire vector b with probability
c · γ2

b , for some constant c > 0. Set γ = Expb[γb]. We conclude that if Eve can
guess b with probability 1/2+γ, then she can recover the entire b with probability
at least c·Expb[γ2

b], which by Jensen’s Inequality is at least c·(Expb[γb])2 = c·γ2.
Finally, using the Direct-Product Theorem for Channels, Theorem9, we must

have c · γ2 ≤ (1 − α)n + nε for any non-negligible ε, or γ ≤ √
c · (1 − α)n/2 + ε′

for any such ε′. So secrecy is roughly 1/2(1 − e−αn/2).

While both secrecy and reliability in the above protocol are close to 1/2, a
multiplicative difference in α vs. β has become an exponent in the advantage
over random guessing, with the factor of 2 lost in the process.

Remark 12. Note that order matters in the protocol. Although sending bn, . . . , b1
then rn, . . . , r1 is the same information as sending r first then b, the reverse order
would be subject to the same attack as the naive parity protocol above.

3.3 Repetition Protocol

Here we get a protocol for improving reliability. It is the following Repetition
Protocol:

To transmit a given bit b to Bob, Alice sends this b over the channel n
times. Bob takes the majority value of the received bits.

Simultaneous Secrecy and Reliability Amplification for a Channel Model 249

This protocol is somewhat dual to direct product: here reliability is enhanced
at the price of secrecy dropping substantially. In fact, it is not clear that any
secrecy would remain. In the cryptographic setting, Halevi and Rabin [16] showed
that at least αn secrecy remains. We generalize and improve their result, showing
that the repetition protocol has at least (2α)n/2 secrecy.

First, we analyze reliability using familiar probabilistic tools.

Theorem 13. The Repetition Protocol applied to a β-reliable channel yields a
channel with reliability β′ ≤ e−(1−2β)2n/8.

Proof. We need to show that, for any attack on the Repetition Protocol over
a β-reliable channel, the probability that Bob fails to output b is at most
e−(1−2β)2n/8. Let b′

n, . . . , b′
1 be the bits received by Bob. Look at the quantity

that adds β each time bit b′
i = b and subtracts (1 − β) if the bit received is

incorrect. By the definition of β-reliability, this quantity is a sub-martingale,
with the difference bounded by 1. Bob only returns the wrong bit if there are
more incorrect bits received than correct bits, in which case this quantity is at
most βn/2− (1−β)n/2 = −(1−2β)n/2. By Azuma’s inequality, the probability
of this is at most e−((1−2β)n/2)2/(2n)), as claimed.

Next we show:

Theorem 14. For any parameters α and n (with n polynomially bounded in the
security parameter, and (2α)n non-negligible), the n-bit Repetition Protocol over
an α-secret transparent channel has secrecy at least (2α)n/2.

Proof. As in the proof of Theorem 9, fixing functions A and f that describe
Eve’s attack, the process can be described as follows:

1. Alice picks a random bit r (to be sent over the channel n times).
2. The protocol starts in some state sn+1. Let the initial history Hn+1 be the

list containing only sn+1.
3. For each i from n to 1:

(a) Eve picks channel attack ai = A(Hi+1).
(b) The new state and bit Bob receives is (si, b

′
i) = δk(si+1, ai, r).

(c) Append si to Hi+1 to get an updated history Hi.
4. Eve guesses R = f(H1).

Consider starting from partial history Hi+1, picking a new random bit r1
and simulating the protocol from then on sending r1 for the i remaining bits to
be sent. The theorem will follow from the next claim when i = n.

Claim. For every 1 ≤ i ≤ n, Pr[R �= r1 | Hi+1] ≥ (2α)i/2.

Proof. The proof is by induction on i. For i = 1, this is exactly the definition of
α-secrecy. Consider the following attack on a single bit r1 sent on the channel
at state si+1:

250 R. Impagliazzo et al.

Eve uses attack ai and r1 is sent by Alice, and the channel arrives in state
si. Then she picks a new random bit r2 and simulates the repetition pro-
tocol starting from Hi, with Alice sending r2 each time. If the simulation
returns an R �= r2, Eve guesses R. Otherwise, Eve repeats the simulation
for a fresh random bit r2. (Note that the expected number of repetitions is
at most 2(2α)−i, by the induction hypothesis, which is feasible by assump-
tion).

By α-secrecy, the described strategy must fail with probability at least α, i.e.,

Pr[R �= r1 | R �= r2,Hi+1] ≥ α. (3)

Now fix any history Hi and bit r1. For the R returned by Eve in the above
strategy, the probability that R �= r1 is the conditional probability

Pr[R �= r1 | R �= r2,Hi] =
Pr[R = ¬r1 = ¬r2 | Hi]

Pr[R �= r2|Hi]
.

By induction, for each Hi the denominator of this expression is at least
(2α)i−1/2. So for each Hi and r1, we have

((2α)i−1/2) · Pr[R �= r1 | R �= r2,Hi] ≤ Pr[r1 = r2, R �= r1 | Hi].

Averaging both sides over Hi, we get

((2α)i−1/2) · Pr[R �= r1 | R �= r2,Hi+1] ≤ Pr[r2 = r1, R �= r1 | Hi+1]. (4)

Finally, applying Eq. (3) to the left-hand side of Eq. (4), we get

((2α)i−1/2) · α ≤ Pr[r2 = r1, R �= r1 | Hi+1]
= Pr[r2 = r1] · Pr[R �= r1 | r2 = r1,Hi+1]
= (1/2) · Pr[R �= r1 | r2 = r1,Hi+1],

and so Pr[R �= r1 | r2 = r1,Hi+1] ≥ (2α)i−1(2α)/2 = (2α)i/2. Observe that the
last probability is for the process where, starting at Hi+1, the same bit r1 is sent
i times. This is exactly the probability in the statement of our claim (for the
repetition protocol starting at Hi+1).

This completes the proof of the theorem.

3.4 Assembling the Pieces for One-Way Protocols

Here we show how to combine the two building blocks we just used: the Parity
protocol and the repetition protocol. Let α > 4(1 + 2δ)β. We re-state the main
theorem of this section.

Theorem 15. For any non-negligible ε and any 1/2 > α > 4β > 0, there is a
one-way protocol for secrecy and reliability amplification from (α, β) to (1/2 −
ε, 2−k).

Simultaneous Secrecy and Reliability Amplification for a Channel Model 251

Proof. First, we can use the following protocol to make α and β suitably small
without changing their ratios:

With probability p, Alice uses the channel to send a random bit b, otherwise
she sends b in the clear. This protocol is α′ = pα secret and β′ = pβ
reliable.

Since 1 − α′ ≈ e−α′
for small α′, we can pick p small enough so that (1 − α′) <

e−α(1−δ). Then we use the Parity protocol of Theorem11 with n = log k to define
a channel that has secrecy at least

(1/2) ·
(
1 − (1 − α′)n/2

)
≥ (1/2) ·

(
1 − k−(α/2)(1−δ)

)

≥ (1/2) ·
(
1 − k−2β(1+δ)

)
,

and reliability at least (1/2) ·
(
1 − e−βn

)
= (1/2) ·

(
1 − k−β

)
.

We use the repetition protocol on this channel for N = k2β(1+δ/2) repetitions.
By Theorem 14, the resulting channel has secrecy at least (1/2) · (1−k−βδ) and,
by Theorem 14, reliability at most e−k−2βN/8 = e−(1/8)kβδ

, which tends to 0
exponentially fast with k. We can use the Parity protocol with n = k on this
protocol, to get one that is (1/2 − ε)-secret for arbitrary non-negligible ε, and
still has exponentially small reliability. If we want, we can then use repetition
on this protocol for any polynomial number of times to keep the advantage of
an adversary negligible, while making the reliability as good as desired.

Remark 16. The above shows a one-way protocol when α > 4β. The factor of
4 can be thought of as two factors of two. The first one is due to the quadratic
dependence of list size on the advantage when list decoding the Hadamard code
(cf. the proof of Theorem 11 above). The second factor of 2 is because repeating
a message through a symmetric channel takes quadratic time in the advantage,
whereas for an erasure channel, the advantage grows linearly (cf. the proof of
Theorem 17 below).

4 Impossibility Results for One-Way Protocols

Here, we show that a constant factor difference of two between α and β is
necessary. To get our negative result, we will look at a particular channel; of
course, it follows that if no protocol exists for this channel, then no protocol
exists for an unknown channel. Our particular channel is stateless, and is

– Symmetric β-Noise Channel for Bob: each bit sent over the channel is
flipped with probability β, and is unchanged with probability 1 − β,

– 2α-Erasure Channel for Eve: each bit sent over the channel is erased
with probability 2α (with Eve getting a special symbol ‘?’), and is unchanged
with probability 1 − 2α.

252 R. Impagliazzo et al.

In addition, we allow Eve to have unlimited computational power.
We prove the following result, using the techniques of Holenstein and Ren-

ner [19].

Theorem 17. If α ≤ 2β − 2β2, then no one-way protocol for the above channel
has reliability .01 and secrecy .49.

Proof. We use the techniques of Holenstein and Renner [19] who showed that the
same relationship between secrecy and reliability parameters is necessary for any
information-theoretic one-way protocol for secret key agreement. Let a random
variable B denote the bit to be sent. Let X1, . . . , Xn be the distribution on bits
Alice sends through the channel, and let V be the distribution on messages she
sends in the clear. Let Y1, . . . , Yn be the bits Bob receives, and Z1, . . . , Zn be the
information Eve receives.

Let H be the entropy function. Let B′ bet the Boolean random variable
that is 1 iff Bob correctly guesses the bit B, given V and Y1, . . . , Yn. Since,
given V, Y1, . . . , Yn, Bob guesses B correctly with probability at least .99, we get
H(B′ | V, Y1, . . . , Yn) ≤ H(.99). On the other hand, note that V and Y1, . . . , Yn

determine Bob’s guess at B, and so if we know B, then we also know B′, and vice
versa. It follows that H(B | V, Y1, . . . , Yn) = H(B′ | V, Y1, . . . , Yn) ≤ H(.99) ≈ 0.
By a similar reasoning for Eve, we get that H(B | V,Z1, . . . , Zn) ≥ H(.49) ≈ 1.

Consider H(B | V, Y1, ..Yi, Zi+1...Zn). When i = n, this is close to 0, and
when i = 0, close to 1. So there must exist an index i, 0 ≤ i ≤ n, such that

H(B | V, Y1, . . . , Yi, Zi+1, . . . , Zn) < H(B | V, Y1, . . . , Yi−1, Zi, . . . , Zn).

Then by an averaging argument, there must exist values for V , Y1, . . . , Yi−1 and
Zi+1, . . . , Zn, so that in the conditional distribution, we have

H(B | Yi) < H(B | Zi). (5)

Note that, because the protocol is one-way, conditioning on these values does
not change the conditional distributions of Yi or Zi as functions of Xi (the bit
sent)3. It will possibly change both the distributions of B and Xi to arbitrary
distributions.

By Eq. (5), and using the entropy chain rule twice, we get

0 > H(B | Yi) − H(B | Zi)
= H(B, Yi) − H(Yi) − H(B,Zi) + H(Zi)
= H(B) + H(Yi | B) − H(Yi) − H(B) − H(Zi|B) + H(Zi)
= H(Yi | B) − H(Yi) − H(Zi | B) + H(Zi).

3 In contrast, consider a 2-way protocol where Bob, after receiving his n bits over the
channel, sends Alice a message in the clear stating whether all his received bits are
the same. Then fixing the value of Bob’s message to Alice will change the distribution
of Yi as a function of Xi. So the argument in the present theorem does not apply
to this 2-way protocol. (In fact, we use such a 2-way protocol in Sect. 5 in order to
overcome the “factor-2 barrier” for one-way protocols given by the present theorem).

Simultaneous Secrecy and Reliability Amplification for a Channel Model 253

Next we analyze each of the four summands in the last equation above.
Let q be the conditional probability that B = 1, and let p1 be the conditional

probability that Xi = 1 if B = 1, and p0 be the conditional probability that
Xi = 1 if B = 0. Then the overall probability that Xi = 1 is

p := qp1 + (1 − q)p0.

Note that Yi is equal to Xi with probability 1 − β, and to ¬Xi otherwise. It
follows that

H(Yi) = H(p(1 − 2β) + β). (6)

Next, given B = 1, Yi is distributed as first flipping a coin with probability
p1 to determine X1, then a coin with probability β, and finally taking the parity.
So we have

H(Yi | B = 1) = H(p1(1 − 2β) + β),

and similarly,

H(Yi | B = 0) = H(p0(1 − 2β) + β).

Combining the two conditional entropies, we conclude

H(Yi | B) = q · H(p1(1 − 2β) + β) + (1 − q) · H(p0(1 − 2β) + β), (7)

Finally, Zi reveals whether the bit is erased, a random event with probability
2α no matter what, and then, with probability 1 − 2α, it reveals the value of
Xi. Thus, H(Zi) = H(2α) + (1 − 2α) · H(Xi), and the same for any conditional
distribution. So we get

H(Zi) = H(2α) + (1 − 2α) · H(p), (8)

and
H(Zi | B) = H(2α) + (1 − 2α) · (q · H(p1) + (1 − q) · H(p0)). (9)

Combining Eqs. (6)–(9), we get

0 > (H(Yi | B) − H(Yi)) − (H(Zi | B) − H(Zi))

= q · H(p1(1 − 2β) + β) + (1 − q) · H(p0(1 − 2β) + β) − H(p(1 − 2β) + β)

− (H(2α) + (1 − 2α) · (q · H(p1) + (1 − q) · H(p0)) − H(2α) − (1 − 2α) · H(p)) .

Rearranging the terms in the last expression, we can write it as

q · (H(p1(1 − 2β) + β) − (1 − 2α) · H(p1))
+ (1 − q) · (H(p0(1 − 2β) + β) − (1 − 2α) · H(p0))
− (H(p(1 − 2β) + β) − (1 − 2α) · H(p))
= q · F (p1) + (1 − q) · F (p0) − F (p),

254 R. Impagliazzo et al.

for the function F (x) := H(x · (1 − 2β) + β) − (1 − 2α) · H(x). Thus, we have

q · F (p1) + (1 − q) · F (p0) − F (p) < 0,

which is equivalent (recalling that p = qp1 + (1 − q)p0) to

F (qp1 + (1 − q)p0) > q · F (p1) + (1 − q) · F (p0). (10)

Observe that Eq. (10) states that the function F at a convex combination
of two points is greater than the convex combination of its values at those two
points. This condition is violated if F is a convex function on the interval [0, 1].
So, to complete our proof by contradiction, it suffices to show

Claim. The function F (x) defined above is convex on [0, 1].

Proof (of Claim). We use the convexity criterion for twice differentiable func-
tions: such a function is convex over an interval iff its second derivative is nonneg-
ative on that interval. We can change the binary logs to natural logs, since that
just multiplies F by a positive constant factor. For the ln-based entropy function
h(x) = −x ln x− (1−x) ln(1−x), its first derivative is h′(x) = − ln x+ln(1−x),
and its second derivative is h′′(x) = −1/x − 1/(1 − x).

Similarly, for the linear function L(x) := x(1 − 2β) + β, one can easily verify
that

(h(L(x)))′ = (1 − 2β) · (ln(1 − L(x)) − ln(L(x))) ,

and

(h(L(x)))′′ = (1 − 2β)2 ·
(

− 1
1 − L(x)

− 1
L(x)

)
.

Using these expressions for the second derivatives of h(x) and h(L(x)), we
get

F ′′(x) = (H(L(x)))′′ − (1 − 2α) · H ′′(x)

= (1 − 2β)2 ·
(

− 1
1 − L(x)

− 1
L(x)

)
+ (1 − 2α) ·

(
1
x

+
1

1 − x

)

= −(1 − 2β)2 · 1
L(x) · (1 − L(x))

+ (1 − 2α) · 1
x(1 − x)

.

We want to show that F ′′(x) ≥ 0 for all x ∈ [0, 1], i.e., that

1 − 2α

x(1 − x)
≥ (1 − 2β)2

L(x) · (1 − L(x))
.

Note that L(x) = x(1 − 2β) + (1/2)(2β), and so L(x) is always between x and
1/2 (no matter which side of 1/2 the point x is). Since the function x(1 − x) is

Simultaneous Secrecy and Reliability Amplification for a Channel Model 255

symmetric around 1/2, and achieves its maximum at the point 1/2, we conclude
that L(x)(1 − L(x)) ≥ x(1 − x). Thus it suffices to show

1 − 2α

x(1 − x)
≥ (1 − 2β)2

x(1 − x)
,

equivalent to 1−2α ≥ (1−2β)2. The latter is equivalent to α ≤ 2β −2β2, which
is our assumption on the α and β.

This completes the proof of the theorem.

5 Breaking the Factor of Two Barrier with Two-Way
Protocols

By the lower bound of Theorem 17, we know that it is impossible to amplify
secrecy and reliability of a given α-secret and β-reliable channel when α < 2β,
if we use one-way communication only. Here we show that a two-way communi-
cation protocol exists that works even for α < 2β, as long as α > (3/2)β.

Our main result of the section is the following.

Theorem 18. For any non-negligible ε and for any 1/2 > α > 1.5 · β > 0,
there is a two-way protocol for secrecy and reliability amplification from (α, β)
to (1/2 − ε, 2−k).

We will need a simple variant on the repetition protocol where Bob commu-
nicates one bit in the clear. Like the repetition protocol, this variant will reduce
both secrecy and reliability exponentially. But, if α > 1.5β, the exponent that
secrecy decreases by will be larger than that for Bob’s failure chance. So the
ratio between them will improve with the number of repetitions. We can then
pick the number of repetitions to be such that the ratio is greater than 4, and
use this protocol as the channel in the one-way protocol from Theorem 15.

The variant protocol is Repetition with Feedback:

1. Alice uses the channel to send b to Bob n times.
2. If Bob receives the same bit b′ each time, he sends the message “Con-

sistent” to Alice in the clear and uses b′ as his output. Otherwise he
sends the message “Inconsistent” to Alice in the clear.

3. If Bob sends “Inconsistent”, Alice sends b in the clear, and Bob uses
that as his output.

We show the following.

Theorem 19. Let α, β, n be any parameters such that n is poly-bounded in the
security parameter, and (2(α − β))n is non-negligible. The n-bit Repetition with
Feedback protocol applied to an α-secret and β-reliable transparent channel yields
a new α′-secret and β′-reliable channel, for α′ ≥ (2(α − β))n/2 and β′ ≤ βn.

256 R. Impagliazzo et al.

Proof. Reliability: First we argue reliability of the new channel. We need to
show that for any attack on the Repetition with Feedback Protocol over a β-
reliable channel, the probability that Bob fails to output b is at most βn. Indeed,
Bob gets b unless he receives the same bit b′ each of n times, and b′ �= b. Thus,
the protocol only fails if the channel fails n times in a row, which happens with
probability at most βn.

Secrecy: Next we argue secrecy of the new channel. We need to show that
no attack on the n-bit Repetition with Feedback protocol using an α-secret and
β-reliable transparent channel can predict a random bit b sent by the protocol
with better than 1 − (2(α − β))n/2 probability of success. As before, fixing
functions A and f that describe Eve’s attack, the process can be described as:

1. Alice picks a random bit r.
2. The protocol starts in some state sn+1. Let the initial history Hn+1 be the

list containing only sn+1.
3. For each i from n to 1:

(a) Eve picks channel attack ai = A(Hi+1).
(b) The new state and bit Bob receives is (si, b

′
i) = δk(si+1, ai, r) .

(c) Append si to Hi+1 to get an updated history Hi.
4. If all b′

i are equal (according to Bob’s message in the clear), Eve guesses
R = f(H1, “Consistent”). Otherwise she learns b when it is sent in the clear.

The intuition is that, even if we revealed the secret to Eve whenever Bob
fails to get the secret, the channel would remain (α − β)-secret, because failure
happens with probability at most β. We could then apply the analysis of the
repetition protocol to this altered channel.

Define random variable R = f(H1, “Consistent”), even if the bits received
are possibly inconsistent. Consider starting from partial history Hi+1, picking a
new random bit r1 and simulating the protocol from then on sending r1 for the
i remaining bits to be sent, and verifying that b′

i = r1 each time. The theorem
will follow form the next claim for i = n (which shows that with probability at
least (2(α−β))n/2, Bob gets b all n times, sends “Consistent”, and Eve outputs
R �= b).

Claim. For each 1 ≤ i ≤ n, Pr[R �= r1,∧1≤j≤i(b′
j = r1) | Hi+1] ≥ (2(α − β))i/2.

Proof (of Claim). Our proof is by induction on i. For i = 1, this follows from
α-secrecy and β-reliability: the probability that R �= r1 is at least α, and the
probability that b′

1 �= r1 is at most β, so the probability that R �= r1 = b′
1 is

at least α − β. Consider the following strategy for Eve to predict a single bit r1
sent on the channel at state si+1:

Eve uses ai as her attack when Alice sends r1, and the channel arrives in
state si. Then she picks a new random bit r2 and simulates the repetition
protocol with feedback starting from Hi, with Alice sending r2 each time
(including simulating the bit Bob receives). If the simulation returns an
R �= r2 and Bob receives r2 each time, Eve guesses R. Otherwise, Eve

Simultaneous Secrecy and Reliability Amplification for a Channel Model 257

repeats the simulation for a fresh random bit r2. (Note that the expected
number of repetitions is at most 2(2(α−β))−i, by the induction hypothesis,
which is feasible by assumption).

Denote by Successi the event that Bob receives r2 each of the last i times.
Fix any history Hi, together with r1. The probability that, for the R returned
by Eve in the above strategy, R �= r1 is

Pr[R �= r1 | R �= r2,Hi,Successi−1] =
Pr[R = ¬r1 = ¬r2,Successi−1 | Hi]

Pr[R �= r2,Successi−1 | Hi]
.

By induction, for each such Hi, the denominator of this expression is at least
(2(α − β))i−1/2. So for each Hi where b′

i = r1,

(2(α − β))i−1

2
· Pr[R �= r1 | R �= r2,Hi,Successi−1]

≤ Pr[r2 = r1, R �= r1,Successi−1|Hi].

Note that Hi already determines (although Eve doesn’t know which way)
whether Bob received r1, i.e., whether b′

i = r1. For those histories where this did
happen, the conditional probability that R �= r1 and Bob receives r1 is the same
as just the first clause, and for the others, it is 0. So either way we get

1
2

· (2(α − β))i−1 · Pr[R �= r1, b
′
i = r1 | R �= r2,Hi,Successi−1]

≤ Pr[r2 = r1, R �= r1, b
′
i = r1,Successi−1 | Hi].

Then we can average both sides over all Hi, to get

1
2

· (2(α − β))i−1 · Pr[R �= r1, b
′
i = r1 | R �= r2,Hi+1,Successi−1]

≤ Pr[r2 = r1, R �= r1, b
′
i = r1,Successi−1 | Hi+1].

By α-secrecy and β-reliability, the probability on the left-hand side of the
inequality above is at least α − β. The probability on the right-hand side is 1/2
(the probability that r2 = r1), times the probability that R �= r1 and Successi

when r1 is sent i times starting at Hi+1. The latter probability is exactly the
probability in the statement of the claim. Thus, we get

Pr[R �= r1,∧1≤j≤i(b′
j = r1) | Hi+1] ≥ 1

2
· (2(α − β))(2(α − β))i−1.

This completes the proof of the theorem.
As a corollary, we get the desired proof of the main result of this section.

Proof (of Theorem 18). Given α > 1.5β, we first use the Repetition with Feed-
back protocol for an appropriate number of times to get a new protocol channel
with α′-secrecy and β′-reliability for α′ > 4β′. Then we use the protocol of
Theorem 15 on this protocol channel.

258 R. Impagliazzo et al.

Tightness of the Analysis of the Repetition with Feedback Protocol. In our analy-
sis of the Repetition with Feedback protocol, the ratio of secrecy to reliability
improves with n when 2(α−β) > β, i.e., when α > 1.5β. In other cases, it makes
things worse, rather than better. We now show this analysis is actually tight.

Consider the channel where, with probability 2β, Eve and Bob both receive
a random bit b′. In addition, Eve receives A, denoting that this is the case in
question. With probability 2(α − β), Bob receives the correct bit b, and Eve
receives just the message B, saying that this is the case. With the remaining
probability 1 − 2α, Bob receives the correct bit b, and Eve also receives b and
the message C.

In the repetition with feedback, if the messages Bob receives are consistent,
and C has occurred, Eve knows with certainty one bit Bob received and hence
that bit must have been received all n times. If the messages Bob receives are
consistent, and A occurred, then Eve and Bob get the same random bit b′ all n
times.

If Bob’s messages are inconsistent, the secret is sent in the clear and Eve
gets it. Eve fails to get the secret when either (i) case B happens all n times,
and thereafter Eve does not guess the random bit sent by Alice, or (ii) case A
happens all n times, and the random bit b′ is different from Alice’s bit. Thus the
overall failure probability for Eve is at most (2(α − β))n/2 + βn.

6 Conclusions and Open Problems

In this paper, we considered just the simplest issue in secure communication, the
transmission of secret information from one party to another. Even here, there
are unexpected complications arising from the joint consideration of secrecy and
reliability. We gave non-trivial constructions of secure protocols that under some
circumstances are guaranteed to amplify both secrecy and reliability to within
negligible amounts of the ideal.

However, our results raise more questions than they answer. We hope that
these will be addressed in future work, and that future work will consider sim-
ilar models for more complex issues in secure communications. We suggest the
following tasks to consider for the case of trusted parties: authentication, covert
channels (steganography), and traffic analysis. For the case of untrusted parties,
it will be interesting to use an appropriate channel model to argue about: coin
flipping, oblivious transfer, multi-party computation, and broadcast.

It would also be very interesting to study channel models with weaker restric-
tions on transparency. For example, can one generalize our channel model to
include the quantum-computational setting?

Acknowledgments. We thank Yevgeny Dodis, Noah Stevens-Davidowitz, Giovanni
di Crescenzo, Daniele Micciancio, Thomas Holenstein and Steven Rudich for helpful
comments and discussions. Russell Impagliazzo’s work was partially supported by the
Simons Foundation and NSF grant CCF-121351; this work was done [in part] while
Russell Impagliazzo was visiting the Simons Institute for the Theory of Computing,
supported by the Simons Foundation and by the DIMACS/Simons Collaboration in

Simultaneous Secrecy and Reliability Amplification for a Channel Model 259

Cryptography through NSF grant #CNS-1523467. Valentine Kabanets was partially
supported by the NSERC Discovery grant. Bruce Kapron’s work was supported in
part by the NSERC Discovery Grant “Foundational Studies in Privacy and Security”.
Stefano Tessaro was partially supported by NSF grants CNS-1423566, CNS-1553758,
CNS-1528178, IIS-1528041 and the Glen and Susanne Culler Chair.

References

1. Bellare, M., Impagliazzo, R., Naor, M.: Does parallel repetition lower the error
in computationally sound protocols? In: Proceedings of the 38th IEEE Annual
Symposium on Foundations of Computer Science, FOCS 1997, pp. 374–383 (1997)

2. Bellare, M., Tessaro, S., Vardy, A.: Semantic security for the wiretap channel. In:
Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 294–311.
Springer, Heidelberg (2012). doi:10.1007/978-3-642-32009-5 18

3. Canetti, R.: Universally composable security: a new paradigm for cryptographic
protocols. In: 42nd Annual Symposium on Foundations of Computer Science,
FOCS 2001, Las Vegas, Nevada, USA, 14–17 October 2001, pp. 136–145. IEEE
Computer Society (2001)

4. Chung, K.-M., Liu, F.-H.: Parallel repetition theorems for interactive argu-
ments. In: Micciancio, D. (ed.) TCC 2010. LNCS, vol. 5978, pp. 19–36. Springer,
Heidelberg (2010). doi:10.1007/978-3-642-11799-2 2

5. Chung, K.-M., Pass, R.: Tight parallel repetition theorems for public-coin argu-
ments using KL-divergence. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015,
Part II. LNCS, vol. 9015, pp. 229–246. Springer, Heidelberg (2015). doi:10.1007/
978-3-662-46497-7 9

6. Crépeau, C.: Efficient cryptographic protocols based on noisy channels. In: Fumy,
W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp. 306–317. Springer, Heidelberg
(1997). doi:10.1007/3-540-69053-0 21

7. Crépeau, C., Kilian, J.: Achieving oblivious transfer using weakened security
assumptions. In: 29th Annual Symposium on Foundations of Computer Science,
1988, pp. 42–52, October 1988

8. Crépeau, C., Morozov, K., Wolf, S.: Efficient unconditional oblivious transfer from
almost any noisy channel. In: Blundo, C., Cimato, S. (eds.) SCN 2004. LNCS, vol.
3352, pp. 47–59. Springer, Heidelberg (2005). doi:10.1007/978-3-540-30598-9 4

9. Csiszar, I., Körner, J.: Broadcast channels with confidential messages. IEEE Trans.
Inf. Theory 24(3), 339–348 (1978)

10. Dodis, Y.: Shannon impossibility, revisited. In: Smith, A. (ed.) ICITS 2012.
LNCS, vol. 7412, pp. 100–110. Springer, Heidelberg (2012). doi:10.1007/
978-3-642-32284-6 6

11. Dwork, C., Naor, M., Reingold, O.: Immunizing encryption schemes from decryp-
tion errors. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol.
3027, pp. 342–360. Springer, Heidelberg (2004). doi:10.1007/978-3-540-24676-3 21

12. Garg, S., Ishai, Y., Kushilevitz, E., Ostrovsky, R., Sahai, A.: Cryptography
with one-way communication. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO
2015. LNCS, vol. 9216, pp. 191–208. Springer, Heidelberg (2015). doi:10.1007/
978-3-662-48000-7 10

13. Goldreich, O., Levin, L.A.: A hard-core predicate for all one-way functions. In: Pro-
ceedings of the Twenty-First Annual ACM Symposium on Theory of Computing,
pp. 25–32 (1989)

http://dx.doi.org/10.1007/978-3-642-32009-5_18
http://dx.doi.org/10.1007/978-3-642-11799-2_2
http://dx.doi.org/10.1007/978-3-662-46497-7_9
http://dx.doi.org/10.1007/978-3-662-46497-7_9
http://dx.doi.org/10.1007/3-540-69053-0_21
http://dx.doi.org/10.1007/978-3-540-30598-9_4
http://dx.doi.org/10.1007/978-3-642-32284-6_6
http://dx.doi.org/10.1007/978-3-642-32284-6_6
http://dx.doi.org/10.1007/978-3-540-24676-3_21
http://dx.doi.org/10.1007/978-3-662-48000-7_10
http://dx.doi.org/10.1007/978-3-662-48000-7_10

260 R. Impagliazzo et al.

14. Goldwasser, S., Micali, S.: Probabilistic encryption. J. Comput. Syst. Sci. 28(2),
270–299 (1984)

15. Haitner, I.: A parallel repetition theorem for any interactive argument. In: Proceed-
ings of the 50th IEEE Annual Symposium on Foundations of Computer Science,
FOCS 2009, pp. 241–250 (2009)

16. Halevi, S., Rabin, T.: Degradation and amplification of computational hardness.
In: Canetti, R. (ed.) TCC 2008. LNCS, vol. 4948, pp. 626–643. Springer, Heidelberg
(2008). doi:10.1007/978-3-540-78524-8 34

17. H̊astad, J., Pass, R., Wikström, D., Pietrzak, K.: An efficient parallel repetition
theorem. In: Micciancio, D. (ed.) TCC 2010. LNCS, vol. 5978, pp. 1–18. Springer,
Heidelberg (2010). doi:10.1007/978-3-642-11799-2 1

18. Holenstein, T.: Key agreement from weak bit agreement. In: Proceedings of the
37th Annual ACM Symposium on Theory of Computing, STOC 2005, pp. 664–673
(2005)

19. Holenstein, T., Renner, R.: One-way secret-key agreement and applications to cir-
cuit polarization and immunization of public-key encryption. In: Shoup, V. (ed.)
CRYPTO 2005. LNCS, vol. 3621, pp. 478–493. Springer, Heidelberg (2005). doi:10.
1007/11535218 29

20. Holenstein, T., Schoenebeck, G.: General hardness amplification of predicates and
puzzles. In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 19–36. Springer,
Heidelberg (2011). doi:10.1007/978-3-642-19571-6 2

21. Ishai, Y., Kushilevitz, E., Ostrovsky, R., Prabhakaran, M., Sahai, A., Wullschleger,
J.: Constant-rate oblivious transfer from noisy channels. In: Rogaway, P. (ed.)
CRYPTO 2011. LNCS, vol. 6841, pp. 667–684. Springer, Heidelberg (2011). doi:10.
1007/978-3-642-22792-9 38

22. Iwamoto, M., Ohta, K.: Security notions for information theoretically secure
encryptions. In: 2011 IEEE International Symposium on Information Theory Pro-
ceedings (ISIT), pp. 1777–1781, July 2011

23. Iwamoto, M., Ohta, K., Shikata, J.: Security formalizations and their relationships
for encryption and key agreement in information-theoretic cryptography. CoRR,
abs/1410.1120 (2014)

24. Levin, L.A.: One-way functions and pseudorandom generators. Combinatorica
7(4), 357–363 (1987)

25. Liang, Y., Poor, H.V., Shamai (Shitz), S.: Information theoretic security. Found.
Trends Commun. Inf. Theory 5(45), 355–580 (2008)

26. Lin, H., Tessaro, S.: Amplification of chosen-ciphertext security. In: Johansson, T.,
Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 503–519. Springer,
Heidelberg (2013). doi:10.1007/978-3-642-38348-9 30

27. Maurer, U.: Constructive cryptography – a new paradigm for security definitions
and proofs. In: Mödersheim, S., Palamidessi, C. (eds.) TOSCA 2011. LNCS, vol.
6993, pp. 33–56. Springer, Heidelberg (2012). doi:10.1007/978-3-642-27375-9 3

28. Maurer, U., Renner, R.: Abstract cryptography. In: ICS, pp. 1–21. Tsinghua Uni-
versity Press (2011)

29. Maurer, U.M.: Perfect cryptographic security from partially independent chan-
nels. In: Proceedings of the Twenty-Third Annual ACM Symposium on Theory of
Computing, STOC 1991, pp. 561–571. ACM, New York (1991)

30. Maurer, U.M.: Secret key agreement by public discussion from common informa-
tion. IEEE Trans. Inf. Theory 39(3), 733–742 (1993)

31. Ueli, M.: Information-theoretic cryptography. In: Wiener, M. (ed.) CRYPTO 1999.
LNCS, vol. 1666, pp. 47–65. Springer, Berlin Heidelberg (1999). doi:10.1007/
3-540-48405-1 4

http://dx.doi.org/10.1007/978-3-540-78524-8_34
http://dx.doi.org/10.1007/978-3-642-11799-2_1
http://dx.doi.org/10.1007/11535218_29
http://dx.doi.org/10.1007/11535218_29
http://dx.doi.org/10.1007/978-3-642-19571-6_2
http://dx.doi.org/10.1007/978-3-642-22792-9_38
http://dx.doi.org/10.1007/978-3-642-22792-9_38
http://dx.doi.org/10.1007/978-3-642-38348-9_30
http://dx.doi.org/10.1007/978-3-642-27375-9_3
http://dx.doi.org/10.1007/3-540-48405-1_4
http://dx.doi.org/10.1007/3-540-48405-1_4

Simultaneous Secrecy and Reliability Amplification for a Channel Model 261

32. Pass, R., Venkitasubramaniam, M.: An efficient parallel repetition theorem for
Arthur-Merlin games. In: Proceedings of the 39th Annual ACM Symposium on
Theory of Computing, STOC 2007, pp. 420–429 (2007)

33. Pietrzak, K., Wikström, D.: Parallel repetition of computationally sound protocols
revisited. In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 86–102. Springer,
Heidelberg (2007). doi:10.1007/978-3-540-70936-7 5

34. Sahai, A., Vadhan, S.P.: A complete promise problem for statistical zero-knowledge.
In: 38th Annual Symposium on Foundations of Computer Science, FOCS 1997,
Miami Beach, Florida, USA, 19–22 October 1997, pp. 448–457. IEEE Computer
Society (1997)

35. Shannon, C.E.: Communication theory of secrecy systems. Bell Syst. Tech. J. 28,
656–715 (1949)

36. Shikata, J.: Formalization of information-theoretic security for key agreement,
revisited. In: 2013 IEEE International Symposium on Information Theory Pro-
ceedings (ISIT), pp. 2720–2724, July 2013

37. Wullschleger, J.: Oblivious-transfer amplification. In: Naor, M. (ed.) EUROCRYPT
2007. LNCS, vol. 4515, pp. 555–572. Springer, Heidelberg (2007). doi:10.1007/
978-3-540-72540-4 32

38. Wullschleger, J.: Oblivious transfer from weak noisy channels. In: Reingold, O.
(ed.) TCC 2009. LNCS, vol. 5444, pp. 332–349. Springer, Heidelberg (2009). doi:10.
1007/978-3-642-00457-5 20

39. Wyner, A.D.: The wire-tap channel. Bell Syst. Tech. J. 54, 1355–1387 (1975)

http://dx.doi.org/10.1007/978-3-540-70936-7_5
http://dx.doi.org/10.1007/978-3-540-72540-4_32
http://dx.doi.org/10.1007/978-3-540-72540-4_32
http://dx.doi.org/10.1007/978-3-642-00457-5_20
http://dx.doi.org/10.1007/978-3-642-00457-5_20

Proof of Space from Stacked Expanders

Ling Ren(B) and Srinivas Devadas

Massachusetts Institute of Technology, Cambridge, MA, USA
{renling,devadas}@mit.edu

Abstract. Recently, proof of space (PoS) has been suggested as a more
egalitarian alternative to the traditional hash-based proof of work. In
PoS, a prover proves to a verifier that it has dedicated some speci-
fied amount of space. A closely related notion is memory-hard functions
(MHF), functions that require a lot of memory/space to compute. While
making promising progress, existing PoS and MHF have several prob-
lems. First, there are large gaps between the desired space-hardness and
what can be proven. Second, it has been pointed out that PoS and MHF
should require a lot of space not just at some point, but throughout the
entire computation/protocol; few proposals considered this issue. Third,
the two existing PoS constructions are both based on a class of graphs
called superconcentrators, which are either hard to construct or add a
logarithmic factor overhead to efficiency. In this paper, we construct
PoS from stacked expander graphs. Our constructions are simpler, more
efficient and have tighter provable space-hardness than prior works. Our
results also apply to a recent MHF called Balloon hash. We show Balloon
hash has tighter space-hardness than previously believed and consistent
space-hardness throughout its computation.

1 Introduction

Proof of work (PoW) has found applications in spam/denial-of-service counter-
measures [13,22] and in the famous cryptocurrency Bitcoin [36]. However, the
traditional hash-based PoW does have several drawbacks, most notably poor
resistance to application-specific integrated circuits (ASIC). ASIC hash units
easily offer ∼ 100× speedup and ∼ 10, 000× energy efficiency over CPUs. This
gives ASIC-equipped adversaries a huge advantage over common desktop/laptop
users. Recently, proof of space (PoS) [11,24] has been suggested as a potential
alternative to PoW to address this problem. A PoS is a protocol between two
parties, a prover and a verifier. Analogous to (but also in contrast to) PoW, the
prover generates a cryptographic proof that it has invested a significant amount
of memory or disk space (as opposed to computation), and the proof should be
easy for the verifier to check. It is believed that if an ASIC has to access a large
external memory, its advantage over a CPU will be small, making PoS more
egalitarian than PoW.

Somewhat unfortunately, two competing definitions of “proof of space” have
been proposed [11,24] with very different security guarantees and applications.
Adding to the confusion are other closely related and similar-sounding notions
c© International Association for Cryptologic Research 2016
M. Hirt and A. Smith (Eds.): TCC 2016-B, Part I, LNCS 9985, pp. 262–285, 2016.
DOI: 10.1007/978-3-662-53641-4 11

Proof of Space from Stacked Expanders 263

such as memory-hard functions (MHF) [39], proof of secure erasure (PoSE) [40],
provable data possession (PDP) [12] and proof of retrievability (PoR) [30]. A
first goal of this paper is to clarify the connections and differences between
these notions. Section 2 will give detailed comparisons. For now, we give a short
summary below and in Fig. 1.

Fig. 1. Relation between PoSE/MHF, PoTS, PoPS and PDP/PoR.

As its name suggests, a memory-hard function (MHF) is a function that
requires a lot of memory/space to compute. Proof of secure erasure (PoSE) for
the most part is equivalent to MHF. Proof of space by Ateniese et al. [11] extends
MHF with efficient verification. That is, a verifier only needs a small amount of
space and computation to check a prover’s claimed space usage. Proof of space
by Dziembowski et al. [24] further gives a verifier the ability to repeatedly audit
a prover and check if it is still storing a large amount of data. The key difference
between the two proofs of space lies in whether the proof is for transient space
or persistent space. We shall distinguish these two notions of space and define
them separately as proof of transient space (PoTS) and proof of persistent space
(PoPS). PDP and PoR solve a very different problem: availability check for a
user’s outsourced storage to an untrusted server. They do force the server to
use a lot of persistent space but do not meet the succinctness (short input)
requirement since a large amount of data needs to be transferred initially. Since
PoPS is the strongest among the four related primitives (MHF, PoSE, PoTS, and
PoPS), the end goal of this paper will be a PoPS with improved efficiency and
space-hardness. Along the way, our techniques and analysis improve MHF/PoSE
and PoTS as well.

Let us return to the requirements for a MHF f . Besides being space-hard,
it must take short inputs. This is to rule out trivial solutions that only take
long and incompressible input x of size |x| = N . Such an f trivially has space-
hardness since N space is needed to receive the input, but is rather uninteresting.
We do not have many candidate problems that satisfy both requirements. Graph
pebbling (also known as pebble games) in the random oracle model is the only
candidate we know of so far. Although the random oracle model is not the most
satisfactory assumption from a theoretical perspective, it has proven useful in
practice and has become standard in this line of research [8,11,20,24,26,28,
31]. Following prior work, we also adopt the graph pebbling framework and the
random oracle model in this work.

A pebble game is a single-player game on a directed acyclic graph (DAG).
The player’s goal is to put pebbles on certain vertices. A pebble can be placed
on a vertex if it has no predecessor or if all of its predecessors have pebbles

264 L. Ren and S. Devadas

on them. Pebbles can be removed from any vertex at any time. The number of
pebbles on the graph models the space usage of an algorithm.

Pebble games on certain graphs have been shown to have high space com-
plexity or sharp space-time trade-offs. The most famous ones are stacked super-
concentrators [32,38], which have been adopted in MHF [28], PoSE [31] and
PoS [11,24]. However, bounds in graph pebbling are often very loose, especially
for stacked superconcentrators [32,38]. This translates to large gaps between
the desired memory/space-hardness and the provable guarantees in MHF and
PoS (Sect. 1.1). Furthermore, MHFs and PoS need other highly desired proper-
ties that have not been studied in graph pebbling before (Sect. 1.2). The main
contribution of this paper is to close these unproven or unstudied gaps while
maintaining or even improving efficiency.

We illustrate these problems in the next two subsections using MHF as an
example, but the analysis and discussion apply to PoS as well. We use “memory-
hard” and “space-hard” interchangeably throughout the paper.

1.1 Gaps in Provable Memory Hardness

The most strict memory-hardness definition for a MHF f is that for any x, f(x)
can be efficiently computed using N space, but is impossible to compute using
N − 1 space. Here, “impossible to compute” means the best strategy is to take
a random guess in the output space of f(·) (by the random oracle assumption).
Achieving this strict notion of memory-hardness is expensive. Aside from the
trivial solution that sets input size to |x| = N , the best known construction has
O(N2) time complexity for computing f [26]. The quadratic runtime makes this
MHF impractical for large space requirements.

All other MHFs/PoSE and PoS in the literature have quasilinear runtime,
i.e., N · polylogN , by adopting much more relaxed notions of memory-hardness.
One relaxation is to introduce an unproven gap [24,31]. For example, in the
PoSE by Karvelas and Kiayias [31], while the best known algorithm to compute
f needs N space, it can only be shown that computing f using less than N/32
space is impossible. No guarantees can be provided if an adversary uses more
than N/32 but less than N space.

The other way to relax memory-hardness is to allow space-time trade-offs,
and it is usually combined with unproven gaps. Suppose the best known algo-
rithm (to most users) for a MHF takes S space and T time. These proposals
hope to claim that any algorithm using S′ = S/q space should run for T ′ time,
so that the time penalty T ′/T is “reasonable”. If the time penalty is linear in q,
it corresponds to a lower bound on S′T ′ = Ω(ST), as scrypt [39] and Catena-
BRG [28] did. Notice that the hidden constant in the bound leaves an unproven
gap. Other works require the penalty to be superlinear in q [15,28] or exponen-
tial in some security parameter [11,20,33], but the penalty only kicks in when
S′ is below some threshold, e.g., N/8, again leaving a gap.

We believe an exponential penalty is justifiable since it corresponds to the
widely used computational security in cryptography. However, an ST lower

Proof of Space from Stacked Expanders 265

bound and a large unproven gap are both unsatisfactory. Recall that the moti-
vation of MHF is ASIC-resistance. With an ST bound, an attacker is explicitly
allowed to decrease space usage, at the cost of a proportional increase in com-
putation. Then, an adversary may be able to fit S/100 space in an ASIC, and
get in return a speedup or energy efficiency gain well over 100.

A large unproven gap leaves open the possibility that an adversary may gain
an unfair advantage over honest users, and fairness is vital to applications like
voting and cryptocurrency. A more dramatic example is perhaps PoSE [31]. With
an unproven gap of 32, a verifier can only be assured that a prover has wiped
1/32 fraction of its storage, which can hardly be considered a “proof of erasure”.
The authors were well aware of the problem and commented that this gap needs
to be very small for a PoSE to be useful [31], yet they were unable to tighten it.
Every MHF, PoSE or PoS with quasilinear efficiency so far has a large unproven
gap (if it has a provable guarantee at all).

In fact, MHFs have been broken due to the above weaknesses. Scrypt [39],
the most popular MHF, proved an asymptotic ST lower bound. But an ST
bound does not prevent space-time trade-offs, and the hidden constants in the
bounds turned out to be too small to provide meaningful guarantees [16]. As
a result, ASICs for scrypt are already commercially available [1]. The lesson is
that space-hardness is one of the examples where exact security matters. PoS
proposals so far have not received much attention from cryptanalysis, but the
loose hidden constants in prior works are equally concerning. Therefore, we will
be explicit about every constant in our constructions, and also make best efforts
to analyze hidden constants in prior works (in Tables 1, 2 and 3).

1.2 Consistent Memory Hardness

In a recent inspiring paper, Alwen and Serbinenko pointed out an overlooked
weakness in all existing MHFs’ memory-hardness guarantees [8]. Again, the dis-
cussion below applies to PoS. The issue is that in current definitions, even if a
MHF f is proven to require N space in the most strict sense, it means N space
is needed at some point during computation. It is possible that f can be com-
puted by an algorithm that has a short memory-hard phase followed by a long
memory-easy phase. In this case, an adversary can carry out the memory-hard
phase on a CPU and then offload the memory-easy phase to an ASIC, defeating
the supposed ASIC-resistance.

Alwen and Serbinenko argue, and we fully agree, that a good MHF should
require a lot of memory not just at some point during its computation, but
throughout the majority of its computation. However, we think the solution
they presented has limitations. Alwen and Serbinenko suggested lower bounding
a MHF’s cumulative complexity (CC), the sum of memory usage in all steps of
an algorithm [8]. For example, if the algorithm most users adopt takes T time
and uses S space at every time step, its CC is ST . If we can lower bound the
CC of any algorithm for this MHF to ST , it rules out an algorithm that runs
for T time, uses S space for a few steps but very little space at other steps. A
CC bound is thus an improved version of an ST bound, and this is also where

266 L. Ren and S. Devadas

the problem is. Like an ST bound, CC explicitly allows proportional space-time
trade-offs: algorithms that run for qT time and use S/q space for any factor
q. Even when combined with a strict space lower bound of S, it still does not
rule out an algorithm that runs for qT time, uses S space for a few steps but
S/q space at all other steps. We have discussed why a proportional space-time
trade-off or a long memory-easy phase can be harmful, and CC allows both.

Instead, we take a more direct approach to this problem. Recall that our goal
is to design a MHF that consistently uses a lot of memory during its computation.
So we will simply lower bound the number of time steps during the computation
with high space usage. If this lower bound is tight, we say a MHF has consistent
memory-hardness.

Another difference between our approach and that of [8] is the computation
model. Alwen and Serbinenko assumed their adversaries possess infinite paral-
lel processing power, and admirably proved lower bounds for their construction
against such powerful adversaries. But their construction is highly complicated
and the bound is very loose. We choose to stay with the sequential model or lim-
ited parallelism for two reasons. First, cumulative/consistent memory-hardness
and parallelism are two completely independent issues and should not be cou-
pled. Consistent (cumulative) memory-hardness is extremely important in the
sequential model. Mixing it with the parallel model gives the wrong impression
that it only becomes a problem when an adversary has infinite parallelism. Sec-
ond, massive parallelism seems unlikely for MHFs in the near future. Even if
parallel computation is free in ASICs, to take advantage of it, an adversary also
needs proportionally higher memory bandwidth (at least in our construction).
Memory bandwidth is a scarce resource and is the major bottleneck in parallel
computing, widely known as the “memory wall” [10]. It is interesting to study
the infinitely parallel model from a theoretical perspective as memory bandwidth
may become cheap in the future. But at the time being, it is not worth giving
up practical and provably secure solutions in the sequential model.

1.3 Our Results

We construct PoTS and PoPS from stacked expanders. Our constructions are
conceptually simpler, more efficient and have tighter space-hardness guarantees
than prior works [11,24]. We could base our space-hardness on a classical result
by Paul and Tarjan [37], but doing so would result in a large unproven gap.
Instead, we carefully improve the result by Paul and Tarjan to make the gap
arbitrarily small. We then introduce the notion of consistent memory-hardness
and prove that stacked expanders have this property.

These results lead to better space-hardness guarantees for our constructions.
For our PoTS, we show that no computationally bounded adversary using γN
space can convince a verifier with non-negligible probability, where γ can be
made arbitrarily close to 1. The prover also needs close to N space not just at
some point in the protocol, but consistently throughout the protocol. In fact, the
honest strategy is very close to the theoretical limits up to some tight constants.
For PoPS, we show that an adversary using a constant fraction of N persistent

Proof of Space from Stacked Expanders 267

space (e.g., N/3) will incur a big penalty. It is a bit unsatisfactory that we are
unable to further tighten the bound and have to leave a small gap. But our result
still represents a big improvement over the only previous PoPS [24] whose gap
is as large as 2 × 256 × 25.3 × log N .

Our tight and consistent memory-hardness results can be of independent
interest. Independent of our work, Corrigan-Gibbs et al. recently used stacked
expanders to build a MHF called Balloon hash [20]. They invoked Paul and
Tarjan [37] for space-hardness and left an unproven gap of 8. (Their latest
space-hardness proof no longer relies on [37], but the gap remains the same.)
Our results show that Balloon hash offers much better space-hardness than pre-
viously believed. Our work also positively answers several questions left open
by Corrigan-Gibbs et al. [20]: Balloon hash is consistently space-hard, over time
and under batching.

2 Related Work

MHF . It is well known that service providers should store hashes of user pass-
words. This way, when a password hash database is breached, an adversary
still has to invert the hash function to obtain user passwords. However, ASIC
hash units have made the brute force attack considerably easier. This motivated
memory-hard functions (MHF) as better password scramblers. Percival [39] pro-
posed the first MHF, scrypt, as a way to derive keys from passwords. Subse-
quent works [3,15,20,28,33] continued to study MHFs as key derivation func-
tions, password scramblers, and more recently as proof of work. In the recent
Password Hashing Competition [27], the winner Argon2 [15] and three of the
four “special recognitions”—Catena [28], Lyra2 [3] and yescrypt [41]—claimed
memory-hardness.

The most relevant MHF to our work is Balloon hash [20], which also adopted
stacked expanders. We adopt a technique from Balloon hash to improve our
space-hardness. Our analysis, in turn, demonstrates better space-hardness for
Balloon hash and positively answers several open questions regarding its con-
sistent memory-hardness [20]. We also develop additional techniques to obtain
PoS.

Attacking MHF . MHFs have been classified into data-dependent ones (dMHF)
and data-independent ones (iMHF), based on whether a MHF’s memory access
pattern depends on its input [20,28]. Catena and Balloon hash are iMHF, and
the rest are dMHF. Some consider dMHFs less secure for password hashing due
to cache timing attacks.

Most MHF proposals lack rigorous analysis, and better space-time trade-
offs (in the traditional sequential model) have been shown against them [16,
20]. The only two exceptions are Catena-DBG and Balloon, both of which use
graph pebbling. Alwen and Blocki considered adversaries with infinite parallel
processing power, and showed that such a powerful attacker can break any iMHF,
including Catena-DBG and Balloon [5,6].

268 L. Ren and S. Devadas

MBF . Prior to memory-hard functions, Dwork et al. [21,23] and Abadi et al. [2]
proposed memory-bound functions (MBF). The motivation of MBF is also ASIC-
resistance, but the complexity metric there is the number of cache misses. A MHF
may not be memory-bound since its memory accesses may hit in cache most of
the time. A MBF has to be somewhat memory-hard to spill from cache, but it
may not consume too much memory beyond the cache size. A construction that
enjoys both properties should offer even better resistance to ASICs, but we have
not seen efforts in this direction.

PoSE . Proof of secure erasure (PoSE) was first studied by Perito and Tsudik [40]
as a way to wipe a remote device. Assuming a verifier knows a prover (a remote
device) has exactly N space, any protocol that forces the prover to use N space
was considered a PoSE [40]. This includes the trivial solution where the verifier
sends the prover a large random file of size N , and then asks the prover to send it
back. Since this trivial solution is inefficient and uninteresting, for the rest of the
paper when we say PoSE, we always mean communication-efficient PoSE [31],
where the prover receives a short challenge but needs a lot of space to generate
a proof. A reader may have noticed that space-hardness and short input are
exactly the same requirements we had earlier for MHFs. Thus, we can think
of PoSE as an application of MHFs, with one small caveat in the definition of
space-hardness. We have mentioned that a proportional space-time trade-off or
a large unproven gap is undesirable for MHFs; for PoSE, they are unacceptable.
On the flip side, PoSE does not need consistent space-hardness.

PoTS and memory-hard PoW . Two independent works named their pro-
tocols “proofs of space” [11,24]. The key difference is whether the proof is for
transient space or persistent space. Ateniese et al. [11] corresponds to a proof of
transient space (PoTS). It enables efficient verification of a MHF with polylog(N)
verifier space and time. If we simply drop the efficient verification method and
have the verifier redo the prover’s work, PoTS reduces to PoSE/MHF.

Two recent proposals Cuckoo Cycle [48] and Equihash [17] aim to achieve
exactly the same goal as PoTS, and call themselves memory-hard proof of work.
This is also an appropriate term because a prover in PoTS has to invest both
space and time, usually N space and N ·polylog(N) computation. Cuckoo Cycle
and Equihash are more efficient than Ateniese et al. [11] but do not have security
proofs. An attack on Cuckoo Cycle has already been proposed [9].

PoPS . Dziembowski et al. [24] is a proof of persistent space (PoPS). Compared
to Ateniese et al. [11], it supports “repeated audits”. The protocol has two stages.
In the first stage, the prover generates some data of size N , which we call advice.
The prover is supposed to store the advice persistently throughout the second
stage. In the second stage, the verifier can repeatedly audit the prover and check
if it is still storing the advice. All messages exchanged between the two parties
and the verifier’s space/time complexity in both stages should be polylog(N). If
the prover is audited only once, PoPS reduces to PoTS.

It is worth pointing out that an adversary can always discard the advice and
rerun setup when audited. To this end, the space-hardness definition is some-

Proof of Space from Stacked Expanders 269

what relaxed (see Sect. 6 for details). PoPS also attempts to address the other
drawback of PoW: high energy cost. It allows an honest prover who faithfully
stores the advice to respond to audits using little computation, hence consuming
little dynamic energy. Whether these features are desirable depends heavily on
the application. Proof of Space-Time [35] is a recent proposal that resembles
PoPS but differs in the above two features. In their protocol, an honest prover
needs to access the entire N -sized advice or at least a large fraction to pass
each audit. In return, they argue that the penalty they guarantee for a cheating
prover is larger.

PDP and PoR. Provable data possession (PDP) [12] and proof of retrievability
(PoR) [30] allow a user who outsources data to a server to repeatedly check
if the server is still storing his/her data. If a verifier (user) outsources large
and incompressible data to a prover (server), PDP and PoR can achieve the
space-hardness goal of both PoTS and PoPS. However, transmitting the initial
data incurs high communication cost. In this aspect, PoS schemes [11,24] are
stronger as they achieve low communication cost. PDP and PoR are stronger in
another aspect: they can be applied to arbitrary user data while PoS populates
prover/server memory only with random bits. In summary, PDP and PoR solve
a different problem and are out of the scope of this paper.

Graph pebbling . Graph pebbling is a powerful tool in computer science, dating
back at least to 1970 s in studying Turing machines [19,29] and register alloca-
tion [46]. More recently, graph pebbling has found applications in various areas
of cryptography [11,23–26,28,31,34,47].

Superconcentrators. The simplest superconcentrator is perhaps the butterfly
graph, adopted in MHF/PoSE [28,31] and PoTS [11], but it has a logarithmic fac-
tor more vertices and edges than linear superconcentrators or expanders. Linear
superconcentrators, adopted in PoPS [24], on the other hand, are hard to con-
struct and recursively use expanders as building blocks [4,18,44,45]. Thus, it is
expected that superconcentrator-based MHFs and PoS will be more complicated
and less efficient than expander-based ones (under comparable space-hardness).

3 Pebble Games on Stacked Expanders

3.1 Graph Pebbling and Labelling

A pebble game is a single-player game on a directed acyclic graph (DAG) G with
a constant maximum in-degree d. A vertex with no incoming edges is called a
source and a vertex with no outgoing edges is called a sink. The player’s goal is
to put pebbles on certain vertices of G using a sequence of moves. In each move,
the player can place one pebble and remove an arbitrary number of pebbles
(removing pebbles is free in our model). The player’s moves can be represented as
a sequence of transitions between pebble placement configurations on the graph,
P = (P0, P1, P2 · · · , PT). If a pebble exists on a vertex v in a configuration Pi,
we say v is pebbled in Pi. The starting configuration P0 does not have to be

270 L. Ren and S. Devadas

empty; vertices can be pebbled in P0. The pebble game rule is as follows: to
transition from Pi to Pi+1, the player can pebble (i.e., place a pebble on) one
vertex v if v is a source or if all predecessors of v are pebbled in Pi, and then
unpebble (i.e., remove pebbles from) any subset of vertices. We say a sequence
P pebbles a vertex v if there exists Pi ∈ P such that v is pebbled in Pi. We say
a sequence P pebbles a set of vertices if P pebbles every vertex in the set.

A pebble game is just an abstraction. We need a concrete computational
problem to enforce the pebble game rules. Prior work has shown that the graph
labelling problem with a random oracle H implements pebble games. In graph
labelling, vertices are numbered, and each vertex vi is associated with a label
h(vi) ∈ {0, 1}λ where λ is the output length of H.

h(vi) =

{
H(i, x) if vi is a source
H(i, h(u1), h(u2), · · · , h(ud)) otherwise, u1 to ud are v′

is predecessors

Clearly, any legal pebbling sequence gives a graph labelling algorithm. It has been
shown that the converse is also true for PoSE/MHF [23,26,31] and PoTS [11], via
a now fairly standard “ex post facto” argument. The equivalence has not been
shown for PoPS due to subtle issues [24], but there has been recent progress
in this direction [7]. We refer readers to these papers and will not restate their
results.

Given the equivalence (by either a proof or a conjecture), we can use metrics
of the underlying pebble games to analyze higher-level primitives. Consider a
pebble sequence P = (P0, P1, P2 · · · , PT). Let |Pi| be the number of pebbles on
the graph in configuration Pi. We define the space complexity of a sequence
S(P) = maxi(|Pi|), i.e., the maximum number of pebbles on the graph at any
step. It is worth noting that space in graph labelling is measured in “label size”
λ rather than bits.

We define the time complexity of a sequence T (P) to be the number of
transitions in P. T (P) equals the number of random oracle H calls, because
we only allow one new pebble to be placed per move. This corresponds to the
sequential model. We can generalize to limited parallelism, say q-way parallelism,
by allowing up to q pebble placements per move. But we do not consider infinite
parallelism in this paper as discussed in Sect. 1.2.

For a more accurate timing model in graph labelling, we assume the time
to compute a label is proportional to the input length to H, i.e., the in-degree
of the vertex. Another way to look at it is that we can transform a graph with
maximum in-degree d into a graph with maximum in-degree 2 by turning each
vertex into a binary tree of up to d leaves.

To capture consistent space-hardness, we define MS′(P) = |{i : |Pi| ≥ S′}|,
i.e., the number of configurations in P that contain at least S′ pebbles. Consider
a pebble game that has a legal sequence P. If there exist some S′ < S(P)
and T ′ < T (P), such that any legal sequence P′ for that same pebble game
has MS′(P′) ≥ T ′, we say the pebble game is consistently memory-hard. The
distance between (S′, T ′) and (S(P), T (P)) measures the quality of consistent
memory-hardness.

Proof of Space from Stacked Expanders 271

3.2 Bipartite Expanders

Now we introduce bipartite expanders, the basic building blocks for our construc-
tions, and review classical results on their efficient randomized constructions.

Definition 1. An (n, α, β) bipartite expander (0 < α < β < 1) is a directed
bipartite graph with n sources and n sinks such that any subset of αn sinks are
connected to at least βn sources.

Prior work has shown that bipartite expanders for any 0 < α < β < 1
exist given sufficiently many edges. We adopt the randomized construction by
Chung [18]. This construction gives a d-regular bipartite expander, i.e., there
are d outgoing edges from each source and d incoming edges to each sink. It
simply connects the dn outgoing edges of the sources and the dn incoming edges
of the sinks according to a random permutation. Given a permutation Π on
{0, 1, 2, · · · , dn − 1}, if Π(i) = j, add an edge from source (i mod n) to sink
(j mod n).

Theorem 1. Chung’s construction yields an (n, α, β) bipartite expander
(0 < α < β < 1) for sufficiently large n with overwhelming probability if

d >
Hb(α) + Hb(β)

Hb(α) − βHb(α
β)

where Hb(α) = −α log2 α − (1 − α) log2(1 − α) is the binary entropy function.

The theorem has been proven by Bassalygo [14] and Schöning [44], but both
proofs were quite involved. We give a proof using a simple counting argument.

Proof. There are (dn)! permutations in total. We analyze how many permuta-
tions are “bad”, i.e., do not yield an expander. A bad permutation must connect
some subset U of αn sinks to a subset V of βn sources. There are

(
n

αn

)(
n

βn

)
com-

binations. Within each combination, there are
(

dβn
dαn

)
(dαn)! ways to connect U to

V . There are (dn − dαn)! ways to connect the rest of edges (those not incident
to U). The probability that we hit a bad permutation is

Pr(Π is bad) =
(

n

αn

)(
n

βn

)(
dβn

dαn

)
(dαn)!(dn − dαn)!/(dn)!

=
(

n

αn

)(
n

βn

)(
dβn

dαn

)
/

(
dn

dαn

)

Using Robbins’ inequality for Stirling’s approximation
√

2πn(n/e)ne
1

12n+1 <

n! <
√

2πn(n/e)ne
1

12n [43], we have log2
(

n
αn

)
= nHb(α)− 1

2 log2 n+ o(1). Thus,

log2 Pr(Π is bad) = n[Hb(α) + Hb(β) + dβHb(α/β) − dHb(α)] − log2 n + o(1).

If Hb(α) + Hb(β) + dβHb(α/β) − dHb(α) < 0, or equivalently the bound on d
in the theorem statement holds, then Pr(Π is bad) decreases exponentially as n
increases. ��

272 L. Ren and S. Devadas

Fig. 2. A stacked bipartite expander G(4,4, 14 , 12).

Pinsker [42] used a different randomized construction, which indepen-
dently selects d predecessors for each sink. Pinsker’s construction requires
d > Hb(α)+Hb(β)

−α log2 β [20], which is a slightly worse bound than Theorem 1. But
Pinsker’s construction is arguably simpler than Chung’s because it only needs a
random function as opposed to a random permutation.

3.3 Pebble Games on Stacked Bipartite Expanders

Construct G(n,k,α,β) by stacking (n, α, β) bipartite expanders. G(n,k,α,β)

has n(k + 1) vertices, partitioned into k + 1 sets each of size n,
V = {V0, V1, V2, · · · , Vk}. All edges in G(n,k,α,β) go from Vi−1 to Vi for some
i from 1 to k. For each i from 1 to k, Vi−1 and Vi plus all edges between them
form an (n, α, β) bipartite expander. The bipartite expanders at different layers
can but do not have to be the same. G(n,k,α,β) has n sources, n sinks, and the
same maximum in-degree as the underlying (n, α, β) bipartite expander. Figure 2
is an example of G(4,4, 14 , 12)

with in-degree 2.
Obviously, simply pebbling each expander in order results in a sequence P

that pebbles G(n,k,α,β) using S(P) = 2n space in T (P) = n(k + 1) moves. Paul
and Tarjan [37] showed that G(n,k, 18 , 12)

has an exponentially sharp space-time
trade-off. Generalized to (n, α, β) expanders, their result was the following:

Theorem 2 (Paul and Tarjan [37]). If P pebbles any subset of 2αn sinks
of G(n,k,α,β), starting with |P0| ≤ αn and using S(P) ≤ αn space, then
T (P) ≥ 	 β

2α
k.

This theorem forms the foundation of Balloon hash. We could base our
PoTS/PoPS protocols on it. However, the space-hardness guarantee we get
will be at most n/4. We need β

2α ≥ 2 to get an exponential time penalty, so
αn < βn/4 < n/4.

Proof of Space from Stacked Expanders 273

Through a more careful analysis, we show a tighter space-time trade-off for
stacked bipartite expanders, which will lead to better space-hardness for our
PoTS/PoPS protocols as well as Balloon hash. We improve Theorem 2 by con-
sidering only initially unpebbled sinks. Let γ = β − 2α > 0 for the rest of the
paper.

0 0.2 0.4 0.6 0.8
0

10
20
30
40
50
60
70
80
90

100

γ = β − 2α

in
−d

eg
re

e
d

Chung
Pinsker

0.8 0.85 0.9 0.95 1
101

102

103

104

γ = β − 2α

in
−d

eg
re

e
d

Chung
Pinsker

Fig. 3. Minimum in-degree d to achieve a given γ = β − 2α.

Theorem 3. If P pebbles any subset of αn initially unpebbled sinks of G(n,k,α,β),
starting with |P0| ≤ γn and using S(P) ≤ γn space, then T (P) ≥ 2kαn.

Proof. For the base case k = 0, G(n,0,α,β) is simply a collection of n isolated
vertices with no edges. Each vertex is both a source and a sink. The theorem is
trivially true since the αn initially unpebbled sinks have to be pebbled.

Now we show the inductive step for k ≥ 1 assuming the theorem holds
for k − 1. In G(n,k,α,β), sinks are in Vk. The αn to-be-pebbled sinks in Vk are
connected to at least βn vertices in Vk−1 due to the (n, α, β) expander property.
Out of these βn vertices in Vk−1, at least βn−γn = 2αn of them are unpebbled
initially in P0 since |P0| ≤ γn. These 2αn vertices in Vk−1 are unpebbled sinks
of G(n,k−1,α,β). Divide them into two groups of αn each in the order they are
pebbled in P for the first time. P can be then divided into two parts P =
(P1,P2) where P1 pebbles the first group (P1 does not pebble any vertex in the
second group) and P2 pebbles the second group. Due to the inductive hypothesis,
T (P1) ≥ 2k−1αn. The starting configuration of P2 is the ending configuration of
P1. At the end of P1, there are at most γn pebbles on the graph, and the second
group of αn vertices are all unpebbled. So we can invoke the inductive hypothesis
again, and have T (P2) ≥ 2k−1αn. Therefore, T (P) = T (P1)+T (P2) ≥ 2kαn. ��

Theorem 3 lower bounds the space complexity of any feasible pebbling strat-
egy for stacked bipartite expanders to γn, where γ = β − 2α. If we increase β
or decrease α, γ improves but the in-degree d also increases due to Theorem 1.
For each γ = β − 2α, we find the α and β that minimize d, and plot them in

274 L. Ren and S. Devadas

localiza on

Fig. 4. Localization for a bipartite expander.

Fig. 3. The curves show the efficiency vs. space-hardness trade-offs our construc-
tions can provide. For γ < 0.7, d is reasonably small. Beyond γ = 0.9, d starts
to increase very fast. We recommend parameterizing our constructions around
0.7 ≤ γ ≤ 0.9.

However, even if γ is close to 1, we still have a gap of 2 as our simple pebbling
strategy for stacked bipartite expanders needs 2n space. To address this gap, we
adopt the localization technique in Balloon hash [20].

3.4 Localization of Bipartite Expanders

Localization [20] is a transformation on the edges of a bipartite expander. Con-
sider an (n, α, β) bipartite expander with sources V = {v1, v2, · · · vn} and sinks
U = {u1, u2, · · · un}. The localization operation first adds an edge (vi, ui) for all
i (if it does not already exist), and then replaces each edge (vi, uj) where i < j
with (ui, uj). Figure 4 highlights the removed and the added edges in red. Pic-
torially, it adds an edge for each horizontal source-sink pair, and replaces each
“downward diagonal” edge with a corresponding “downward vertical” edge. This
adds at most one incoming edge for each vertex in U .

Let LG(n,k,α,β) be a stack of localized expanders, i.e., the resulting graph
after localizing the bipartite expander at every layer of G(n,k,α,β). LG(n,k,α,β)

can be efficiently pebbled using n space, by simply pebbling each layer in order
and within each layer from top to bottom. Once vk,i is pebbled, vk−1,i can be
unpebbled because no subsequent vertices depend on it. A vertex vk,j ∈ Vk that
originally depended on vk−1,i is either already pebbled (if j ≤ i), or has its
dependency changed to vk,i by the localization transformation.

When we localize a bipartite expander, the resulting graph is no longer bipar-
tite. The expanding property, however, is preserved under a different definition.
After localization, the graph has n sources and n non-sources (the original sinks).
Any subset U ′ of αn non-sources collectively have βn sources as ancestors (v is
an ancestor of u if there is a path from v to u). Crucially, the paths between

Proof of Space from Stacked Expanders 275

them are vertex-disjoint outside U ′. This allows us to prove the same result in
Theorem 3 for stacked localized expanders.

Lemma 1. Let U ′ be any subset of αn sinks of an (n, α, β) bipartite expander,
and V ′ be the set of sources connected to U ′ (we have |V ′| ≥ βn). After local-
ization, there exist βn paths from V ′ to U ′ that are vertex-disjoint outside U ′.

Proof. After localization, vertices in V ′ fall into two categories. A vertex vi ∈ V ′

may still be an immediate predecessor to some u ∈ U ′, which obviously does not
share any vertex outside U ′ with a path starting from any vj (j �= i). If vi is
not an immediate predecessor, then the path vi → ui → u must exist for some
u ∈ U ′, because there was an edge (vi, u) in the original bipartite expander.
Any other vj ∈ V ′ (j �= i) is either an immediate predecessor or uses uj as the
intermediate hop in its path to U ′. In either case, vi does not share any source
or intermediate-hop with any other vj . ��
Theorem 4. Let γ = β − 2α > 0. If P pebbles any subset U ′ of αn initially
unpebbled vertices in the last layer Vk of LG(n,k,α,β), starting with |P0| ≤ γn and
using S(P) ≤ γn space, then T (P) ≥ 2kαn.

Proof. The proof remains unchanged from Theorem 3 as long as we show that
P still needs to pebble 2αn initially unpebbled vertices in Vk−1.

A path from v to u is “initially pebble-free”, if no vertex on the path, includ-
ing v and u, is pebbled in P0. Due to the pebble game rule, if a vertex v ∈ Vk−1

has an initially pebble-free path to some u ∈ U ′, then it needs to be pebbled
before u can be pebbled. Since Vk−1 and Vk form a localized expander, due to
Lemma 1, there exist at least βn ancestors in Vk−1 whose paths to U ′ are vertex-
disjoint outside U ′. Since vertices in U ′ are initially unpebbled, pebbles in P0

can only be placed on the vertex-disjoint parts of these paths. Therefore, each
pebble can block at most one of these paths. Since |P0| ≤ γn, there must be at
least βn− γn = 2αn vertices in Vk−1 that have initially pebble-free paths to U ′,
and they have to be pebbled by P. ��

We now have tight space lower bounds for pebble games on stacked localized
expanders. LG(n,k,α,β) can be efficiently pebbled with n space but not with
γn space, where γ can be set close to 1. Next, we show that pebble games on
localized stacked expanders are also consistently space-hard.

3.5 Consistent Space Hardness

Theorem 5. Let 0 < η < γ = β − 2α. If P pebbles any subset of αn initially
unpebbled vertices in the last layer of LG(n,k,α,β), starting with |P0| ≤ ηn, and
using T (P) ≤ 2k0αn moves, then

Mηn(P) ≥

⎧
⎪⎨

⎪⎩

0 k < k0

2k−k0 k0 ≤ k ≤ k1

(k − k1 + 1)(γ − η)n k > k1

where k1 = k0 + log2(γ − η)n�.

276 L. Ren and S. Devadas

Proof. We will derive a lower bound Mk for Mηn(P) where k is the number
of layers in LG(n,k,α,β). Similar to the proof of Theorem 3, there are (β − η)n
initially unpebbled vertices in Vk−1 that have to be pebbled by P. Let U be the
set of these (β − η)n vertices. Again, we sort U according to the time they are
first pebbled. We divide P into three parts P = (P1,P2,P3). P1 pebbles the
first αn vertices in U ⊂ Vk−1. P1 starts from the same initial configuration as
P and has fewer moves than P, so we have Mηn(P1) ≥ Mk−1.

We define P2 to include all consecutive configurations immediately after P1

until (and including) the first configuration whose space usage is below ηn. P3

is then the rest of P. By definition, every Pi ∈ P2, except the last one, satisfies
|Pi| > ηn. The last configuration in P2 is also the starting configuration of P3,
and its space usage is below ηn. It is possible that T (P2) = 1 or T (P3) = 0, if
the space usage after P1 immediately drops below ηn or never drops below ηn.

Now we have two cases based on T (P2). If T (P2) > (γ − η)n, we have
Mk > Mk−1 + (γ − η)n. If T (P2) ≤ (γ − η)n, then P3 has to pebble at least
αn vertices in U , because P1 and P2 combined have pebbled no more than
αn + (γ − η)n = (β − α − η)n vertices in U . And P3 starts with no more than
ηn pebbles and has fewer moves than P, so Mηn(P3) ≥ Mk−1. In this case, we
have Mk ≥ 2Mk−1. Combining the two cases, we have the following recurrence

Mk ≥ min(Mk−1 + (γ − η)n, 2Mk−1).

For a base case of this recurrence, we have Mk0 ≥ 1, because Theorem 4 says any
pebbling strategy that never uses ηn space needs at least 2k0αn moves. Solving
the recurrence gives the result in the theorem. ��

For a tight bound on the entire sequence, we further chain the vertices in
LG(n,k,α,β) by adding an edge (vi,j , vi,j+1) for every 0 ≤ i ≤ k and 1 ≤ j ≤ n−1.
(We can prove a looser bound without the chaining technique.) This forces any
sequence to pebble all vertices in the same order as the simple strategy.

Corollary 1. Any sequence P that pebbles the chained stacked localized
expanders LG(n,k,α,β) starting from an empty initial configuration in T (P) ≤
2k0αn steps has M(β−3α)n(P) ≥ n(k − k1) where k1 = k0 + log2(αn)�.

Proof. Set η = β − 3α. Theorem 5 shows that beyond the first k1 layers, it is
expensive to ever reduce space usage below ηn. Doing so on layer k > k1 would
require at least (k − k1 + 1)αn > αn steps with ηn space usage to pebble the
next αn vertices. The penalty keeps growing with the layer depth. So a better
strategy is to maintain space usage higher than ηn for every step past layer k1.
There are at least n(k − k1) steps past layer k1, and hence the theorem holds. ��

The simple strategy maintains n space for nk steps, i.e., the entire duration
except for the first n steps which fill memory. Corollary 1 is thus quite tight as
n(k − k1) and ηn can be very close to nk and n with proper parameters.

Proof of Space from Stacked Expanders 277

4 Improved Analysis for Balloon Hash MHF

A memory-hard function (MHF) is a function f that (i) takes a short input, and
(ii) requires a specified amount of, say N , space to compute efficiently. To our
knowledge, all MHF proposals first put the input through a hash function H so
that f(H(·)) can take an input of any size, and f(·) only deals with a fixed input
size λ = |H(·)|. λ is considered short since it does not depend on N . There is no
agreed upon criterion of memory-hardness. As discussed in Sect. 1.1, we adopt
the exponential penalty definition.

Definition 2 (MHF). Let k be a security parameter, N be the space require-
ment, and N ′ be the provable space lower bound. A memory-hard function
y = f(x), parameterized k, N and N ′, has the following properties:

(non-triviality) the input size |x| does not depend on N ,
(efficiency) f can be computed using N space in T = poly(k,N) time,
(memory-hardness) no algorithm can compute f using less than N ′ space
in 2k time with non-negligible probability.

The graph labelling problem on a hard-to-pebble graph immediately gives a
MHF. Table 1 lists the running time T and the provable space lower bound N ′ for
all existing MHFs with strict memory-hardness or exponential penalty (though
the former two did not use the term MHF). All of them are based on graph peb-
bling. DKW [26] has perfect memory-hardness but requires a quadratic runtime.
The other three have quasilinear runtime but large gaps in memory-hardness.
The single-buffer version of Balloon hash (Balloon-SB) [20] used stacked localized
expanders. Using the analysis in the Balloon hash paper, the space lower bound
N ′ for Balloon-SB is at most N/4 no matter how much we sacrifice runtime. Our
improved analysis shows that Balloon-SB enjoys tighter space-hardness as well
as consistent space-hardness. Theorem 4 shows that Balloon-SB with T = dkN
achieves N ′ = γN , where γ can be made arbitrarily small. The relation between
γ and d is shown in Fig. 3. In addition, Corollary 1 gives a tight bound on con-
sistent memory-hardness. This gives positive answers to two open questions left
in the Balloon hash paper [20]: Balloon hash is space-hard over time and under
batching.

Table 1. Comparison of MHFs with strict space-hardness or exponential penalty.

DKW [26] KK [31] Catena-DBG [28] Balloon [20] Balloon + our analysis

T N2 2N(log2 N)2 2kN log2 N 7kN dkN

N ′ N N/32 N/20 N/8 γN

KK [31] reported T = Θ(N log2 N) due to a miscalculation on the number of ver-
tices. We generalized Catena-DBG [28] to exponential penalty though the designers
of Catena recommended tiny security parameters like k = 2 for better efficiency.

278 L. Ren and S. Devadas

5 Proof of Transient Space from Stacked Expanders

5.1 Definition

We use notation (yv, yp) ← 〈V(xv),P(xp)〉 to denote an interactive protocol
between a verifier V and a prover P. xv, xp, yv, yp are V’s input, P’s input,
V’s output and P’s output, respectively. We will omit (xv) or (xp) if a party
does not take input. We will omit yp if P does not have output. For example,
{0, 1} ← 〈V,P〉 means neither V nor P takes input, and V outputs one bit
indicating if it accepts (output 1) or rejects (output 0) P’s proof. Both P and V
can flip coins and have access to the same random oracle H.

Definition 3 (PoTS). Let k, N and N ′ be the same as in Definition 2. A proof
of transient space is an interactive protocol {0, 1} ← 〈V,P〉 that has the following
properties:

(succinctness) all messages between P and V have size poly(k, log N),
(efficient verifiability) V uses poly(k, log N) space and time,
(completeness) P uses N space, runs in poly(k,N) time, and 〈V,P〉 = 1,
(space-hardness) there does not exist A that uses less than N ′ space, runs
in 2k time, and makes 〈V,A〉 = 1 with non-negligible probability.

The definition above is due to Ateniese et al. [11]. Metrics for a PoTS include
message size, prover runtime, verifier space/runtime, and the gap between N and
N ′. The first three measure efficiency and the last one measures space-hardness.
We also care about consistent space-hardness as defined in Sect. 3.5.

5.2 Construction

We adopt the Merkle commitment framework in Ateniese et al. [11] and
Dziembowski et al. [24] to enable efficient verification. At a high level, the prover
computes a Merkle commitment C that commits the labels of all vertices in
LG(n,k,α,β) using the same random oracle H. The verifier then checks if C is
“mostly correct” by asking the prover to open the labels of some vertices. The
opening of label h(v) is the path from the root to the leaf corresponding to v in
the Merkle tree. To compute a commitment C that is “mostly correct”, a prover
cannot do much better than pebbling the graph following the rules, which we
have shown to require a lot of space consistently. We say “a vertex” instead of
“the label of a vertex” for short. For example, “commit/open a vertex” means
“commit/open the label of a vertex”.

Computing a Merkle tree can be modeled as a pebble game on a binary
tree graph. It is not hard to see that a complete binary tree with n leaves can
be efficiently pebbled with roughly log2 n space (log2 n� + 1 to be precise) in n
moves. So P can compute the commitment C using N = n+log2 n+k ≈ n space.
The strategy is as follows: pebble V0 using n space, compute Merkle commitment
C0 for all vertices in V0 using additional log2 n space, discard the Merkle tree
except the root, and then pebble V1 rewriting V0, compute C1, discard the rest

Proof of Space from Stacked Expanders 279

of the Merkle tree, and continue like this. Lastly, C1 to Ck are committed into
a single Merkle root C.

After receiving C, V randomly selects l0 vertices, and for each vertex v asks
P to open v, and all predecessors of v if v is not a source. Note that P did not
store the entire Merkle tree but was constantly rewriting parts of it because the
entire tree has size nk � n. So P has to pebble the graph for a second time
to reconstruct the l0(d + 1) paths/openings V asked for. This is a factor of 2
overhead in prover’s runtime.

Table 2. Efficiency and space-hardness of PoTS.

prover runtime verifier space/time and message size N ′

ABFG [11] 12kN log2 N 6δ−1k2(log2 N)2 (1
6
− δ)N

This paper 2(d + 1)kN (d + 1)δ−1k2 log2 N (γ − δ)N

Given the labels of all the predecessors of v (or if v is a source), V can check
if h(v) is correctly computed. If any opening or h(v) is incorrect, V rejects. If no
error is found, then C is “mostly correct”. We say a label h(vi) is a “fault” under
C if it is not correctly computed either as h(i, x) or from vi’s predecessors’ labels
under C. A cheating prover is motivated to create faults using pseudorandom
values, because these faulty labels are essentially free pebbles that are always
available but take no space. Dziembowski et al. [24] called them red pebbles
and pointed out that a red pebble is no more useful than a free normal pebble
because a normal pebble can be removed and later placed somewhere else. In
other words, any sequence P that starts with |P0| = s0 initial pebbles and uses
m red pebbles and s normal pebbles can be achieved by some sequence P′ that
starts with |P ′

0| = s0 + m initial pebbles and uses 0 red pebbles and s + m
normal pebbles. We would like to bound the number of faults, which translate
to a bounded loss in provable space-hardness.

If we want to lower bound the number of faults to δn (δ < 1) with over-
whelming probability, we can set l0 = k|V |

δn = δ−1k2. Then, any commitment C

with δn faults passes the probabilistic checking with at most (1 − δn
|V |)

l0 < e−k.
Again, k is our security parameter. With at most δn faults, P needs to pebble
at least n − δn sinks (> αn with a proper δ). By Theorem 4 and accounting for
faults, a cheating prover needs at least N ′ = (γ − δ)n ≈ (γ − δ)N space to avoid
exponential time.

5.3 Efficiency and Space-Hardness

Table 2 gives the efficiency and space-hardness of our construction, and compares
with prior work using stacked butterfly superconcentrators [11]. Our prover run-
time is 2(d + 1)Nk where 2 is due to pebbling the graph twice, and d + 1 is due
to the in-degree of our graph plus hashing in Merkle tree. Message size includes

280 L. Ren and S. Devadas

Merkle openings for the l0 = δ−1k2 challenges and their predecessors. The veri-
fier has to check all these Merkle openings, so its space/time complexity are the
same as message size. The efficiency of ABFG [11] can be calculated similarly
using the fact that stacked butterfly superconcentrators have 2kN log N vertices
with in-degree 2. To match their space-hardness, which cannot be improved past
N ′ = 1

6N with existing proof techniques, we only need in-degree d = 9. To match
their efficiency, we set d = 6 log2 N , which we approximate as 150. That gives
our construction very tight space-hardness at N ′ = (γ − δ)N with γ = 0.85.
Furthermore, Corollary 1 gives a tight bound on consistent memory-hardness.
Adjusting for faults, an adversary needs n(k − k1) steps whose space usage is at
least (β − 3α − δ)n.

For simplicity, we used a single security parameter k. But in fact, the term
k2 in message size and verifier complexity should be kk′ where k′ is a statistical
security parameter. k′ can be set independently from our graph depth k, which
captures computational security. The same applies to the DFKP construction in
Table 3.

6 Proof of Persistent Space from Stacked Expanders

6.1 Definition

Definition 4 (PoPS). Let k be a security parameter, N be the space/advice
requirement, N ′

0 and N ′
1 be two space lower bound parameters. A proof of per-

sistent space is a pair of interactive protocols (C, y) ← 〈V0,P0〉 and {0, 1} ←
〈V1(C),P1(y)〉 that have the following properties:

(succinctness) all messages between P0 and V0, and between P1 and V1 have
size poly(k, log N),
(efficient verifiability) V0 and V1 use poly(k, log N) space and time,
(completeness) P0 and P1 satisfy the following

– P0 uses N space, runs in poly(k,N) time, and outputs y of size N ,
– P1 uses N space, runs in poly(k, log N) time, and 〈V1(C),P1(y′)〉 = 1,

(space-hardness) there do not exist A0 and A1 such that
– A0 uses poly(k,N) space, runs in poly(k,N) time, and 〈V0,A0〉 = (C, y′)
where |y′| < N ′

0,
– A1 takes y′ as input, uses N ′

1 space, runs in 2k time, and makes
〈V1(C),A1(y′)〉 = 1 with non-negligible probability.

(C, y) ← 〈V0,P0〉 represents the setup stage. P outputs advice y of size
N , which is supposed to be stored persistently. V (through interaction with P)
outputs a verified commitment C. {0, 1} ← 〈V1(C),P1(y)〉 represents one audit.
The inputs of two parties are their respective output from the setup stage, and
in the end V either accepts or rejects. It is implied that an audit V1 has to use
random challenges. Otherwise, it is easy to find A1 that takes as input and also
outputs the correct response to a fixed audit.

Proof of Space from Stacked Expanders 281

Efficiency metrics (message size, prover runtime, verifier space/runtime) are
defined similarly to PoTS but now take into account both stages of the protocol.

The space-hardness definition and metric become a little tricky. Since the
focus here is persistent space or advice size, one natural definition is to require
that no polynomial adversary A1 with advice size |y′| < N ′

0 can convince V
with non-negligible probability. Unfortunately, this ideal space-hardness defini-
tion is not achievable given the succinctness requirement, and we will describe an
adversary who can violate it. In the setup phase, A0 behaves in the same way as
an honest P0 except that it outputs the transcript (all the messages combined)
between A0 and V0 as the cheating advice y′. Due to succinctness, the transcript
size |y′| = poly(k, log N) is much shorter than any reasonable N ′

0. In an audit,
A1 can rerun P0 by simulating V0, using the recorded transcript y′, to obtain
the advice y that P0 would have produced, and then go on to run an honest P1

to pass the audit.
Given the impossibility of ideal space-hardness, multiple alternative defini-

tions have been proposed. Dziembowski et al. [24] gave two definitions. The first
one requires A1 to use O(N) space. The second one requires A1 to use O(N)
runtime, which is strictly weaker than the first one because O(N) transient
space implies O(N) runtime. Proof of Space-Time [35] introduces a conversion
rate between space and computation, and requires the sum of the two resources
spent by A1 to be within a constant factor of the sum spent by P0. In this paper,
we adopt the first definition of Dziembowski et al. [24] because it forces a prover
to use space (either transient or persistent). In contrast, the latter two defini-
tions explicitly allow a cheating prover to use tiny space and compensate with
computation.

Under our space-hardness definition, if a cheating prover discards persistent
advice in an attempt to save space, he/she will find himself/herself repeatedly
refilling that space he/she attempts to save. If (N ′

0, N
′
1) are close to (N,N), a

rational prover will choose to dedicate persistent space for the advice. We would
like to be explicit that such a PoPS relies on a prover’s cost of persistent space
relative to computation and transient space, and very importantly the frequency
of audits.

6.2 Construction

The setup phase is basically the PoTS protocol we presented in Sect. 5. P com-
putes a Merkle commitment C, and V makes sure C is “mostly correct” through
a probabilistic check. At the end of the setup phase, an honest P stores the labels
of all sinks Vk and the Merkle subtree for Vk as advice. Any vertices in Vi for
i < k are no longer needed. V now can also discard C and use Ck which commits
Vk from this point onward. Since an honest P has to store the Merkle tree, it
makes sense to use a different random oracle H1 with smaller output size for the
Merkle commitment. If |H(·)| is reasonably larger than |H1(·)|, then the labels
in the graph dominate, and the advice size is thus roughly n. Using the same
random oracle results in an additional factor of 2 loss in space-hardness.

282 L. Ren and S. Devadas

Table 3. Efficiency and space-hardness of PoPS.

Prover runtime Verifier space/runtime and message size N′
0 N′

1

DFKP [24] Setup 3N 3δ−1k(log2 N)2 (1
3 × 1

256×25.3 − δ) N
log2 N

Audit 0 k log2 N (2
3 × 1

256×25.3 − δ) N
log2 N

This paper Setup 2(d + 1)kN (d + 1)δ−1k2 log2 N (1
3 γ − δ)N

Audit 0 k log2 N (2
3 γ − δ)N

In the audit phase, V asks P to open l1 randomly selected sinks. The binding
property of the Merkle tree forces P to pebble these sinks, possibly with the help
of at most δn faults. But due to the red pebble argument, we can focus on the
case with no faults first and account for faults later.

There is still one last step from Theorem 4 to what we need. Theorem 4 says
any subset of αn initially unpebbled sinks are hard to pebble, but we would hope
to challenge P on l1 � αn sinks. Therefore, we need to show that a significant
fraction of sinks are also hard to pebble individually.

Theorem 6. Let γ = β − 2α. Starting from any initial configuration P0 of size
|P0| ≤ 1

3γn, less than αn initially unpebbled sinks of G(n,k,α,β) can be pebbled
individually using 2

3γn space in 2k moves.

Proof. Suppose for contradiction that there are at least αn such sinks. Consider
a strategy that pebbles these sinks one by one, never unpebbles P0, and restarts
from P0 after pebbling each sink. This strategy pebbles a subset of αn initially
unpebbled sinks, starting with |P0| < 1

3γn < γn, using at most 1
3γn+ 2

3γn = γn
pebbles in at most 2kαn moves. This contradicts Theorem 4. ��

At most 1
3γn pebbles may be initially pebbled in P0, so no more than (13γ +

α)n < 1
2n individual sinks can be pebbled using 2

3γn space in 2k moves by
Theorem 6. With more than half of the sinks being hard to pebble individually,
we can set l1 = k. The probability that no hard-to-pebble sink is included in
the challenge is at most 2−k. Lastly, accounting for faults, no computationally
bounded P using N ′

0 = (13γ − δ)n advice and N ′
1 = (23γ − δ)n space can pass an

audit. The choice of constants 1
3 and 2

3 are arbitrary. The theorem holds for any
pair of constants that sum to 1.

6.3 Efficiency and Space-Hardness

We compare with prior work [24] based on recursively stacked linear supercon-
centrators [38] in Table 3. The efficiency and (consistent) space-hardness of the
setup phase are the same as our PoTS. In the audit phase, the prover sends
Merkle openings for k sinks to the verifier to check. If the prover stores less than
N ′

0 = (13γ −δ)N advice, it needs at least N ′
1 = (23γ −δ)N space to pass an audit.

This also sets a lower bound of N ′
1 − N ′

0 = (13γ − δ)N on prover’s time to pass
the audit, as it needs to fill its space to N ′

1. Consistent space-hardness is not
well defined for audits as an honest prover needs very little time to respond to
audits.

Proof of Space from Stacked Expanders 283

The DFKP construction [24] treats the labels of all vertices as advice. This
optimizes runtime but leaves a very large (even asymptotic) gap in space-
hardness. It is possible for them to run audits only on the sinks, essentially
generating less advice using the same graph and runtime. This will improve
space-hardness up to N ′

0 = N ′
1 = (12 × 1

256 − δ)N while increasing runtime by a
factor of 25.3 log N . There is currently no known way to remove the remaining
gap of 512. We did not count the cost of including vertex ID in random oracle
calls (for both our construction and theirs) since vertex ID is small compared to
labels. This explains the different prover runtime we report in Table 3 compared
to [24]. For completeness, we mention that the second construction of DFKP [24]
and proof of Space-Time [35] are not directly comparable to our construction
or the first DFKP construction because they provide very different efficiency
and/or space-hardness guarantees.

7 Conclusion and Future Work

We derived tight space lower bounds for pebble games on stacked expanders,
and showed that a lot of space is needed not just at some point, but throughout
the pebbling sequence. These results gave MHF (Balloon hash) and PoTS with
tight and consistent space-hardness. We also constructed a PoPS from stacked
expanders with much better space-hardness than prior work.

While the space-hardness gap for Balloon hash and our PoTS can be made
arbitrarily small, pushing it towards the limit would lead to very large constants
for efficiency. How to further improve space-hardness for MHF and PoS remains
interesting future work. It is also interesting to look for constructions that main-
tain consistent space-hardness under massive or even infinite parallelism.

At the moment, PoTS and PoPS are still far less efficient than PoW in terms
of proof size and verifier complexity. A PoW is a single hash, while a PoS consists
of hundreds (or more) of Merkle paths. The challenge remains in constructing
practical PoTS/PoPS with tight and consistent space-hardness.

References

1. Zoom Hash Scrypt ASIC. http://zoomhash.com/collections/asics. Accessed: 20
May 2016

2. Abadi, M., Burrows, M., Manasse, M., Wobber, T.: Moderately hard, memory-
bound functions. ACM Trans. Internet Technol. 5(2), 299–327 (2005)

3. Almeida, L.C., Andrade, E.R., Barreto, P.S.L.M., Marcos, A., Simplicio Jr., M.A.:
Lyra: password-based key derivation with tunable memory and processing costs.
J. Crypt. Eng. 4(2), 75–89 (2014)

4. Alon, N., Capalbo, M.: Smaller explicit superconcentrators. In: Proceedings of the
Fourteenth Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 340–346.
Society for Industrial and Applied Mathematics (2003)

5. Alwen, J., Blocki, J.: Efficiently computing data-independent memory-hard func-
tions. Cryptology ePrint Archive, Report 2016/115 (2016)

http://zoomhash.com/collections/asics

284 L. Ren and S. Devadas

6. Alwen, J., Blocki, J.: Towards practical attacks on argon2i and balloon hashing.
Cryptology ePrint Archive, Report 2016/759 (2016)

7. Alwen, J., Chen, B., Kamath, C., Kolmogorov, V., Pietrzak, K., Tessaro, S.: On
the complexity of scrypt and proofs of space in the parallel random oracle model.
In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9666, pp.
358–387. Springer, Heidelberg (2016). doi:10.1007/978-3-662-49896-5 13

8. Alwen, J., Serbinenko, V.: High parallel complexity graphs and memory-hard func-
tions. In: Proceedings of the Forty-Seventh Annual ACM on Symposium on Theory
of Computing, pp. 595–603. ACM (2015)

9. Andersen, D.G.: Exploiting time-memory tradeoffs in cuckoo cycle (2014). https://
www.cs.cmu.edu/∼dga/crypto/cuckoo/analysis.pdf. Accessed Aug 2016

10. Asanovic, K., Bodik, R., Catanzaro, B.C., Gebis, J.J., Husbands, P., Keutzer, K.,
Patterson, D.A., Plishker, W.L., Shalf, J., Williams, S.W.: The landscape of parallel
computing research: a view from berkeley. Technical Report UCB/EECS-2006-183,
EECS Department, University of California, Berkeley (2006)

11. Ateniese, G., Bonacina, I., Faonio, A., Galesi, N.: Proofs of space: when space is
of the essence. In: Abdalla, M., De Prisco, R. (eds.) SCN 2014. LNCS, vol. 8642,
pp. 538–557. Springer, Heidelberg (2014)

12. Ateniese, G., Burns, R., Curtmola, R., Herring, J., Kissner, L., Peterson, Z., Song,
D.: Provable data possession at untrusted stores. In: Proceedings of the 14th ACM
Conference on Computer and Communications Security, pp. 598–609. ACM (2007)

13. Back, A.: Hashcash-a denial of service counter-measure (2002)
14. Leonid Alexandrovich Bassalygo: Asymptotically optimal switching circuits. Prob-

lemy Peredachi Informatsii 17(3), 81–88 (1981)
15. Biryukov, A., Dinu, D., Khovratovich, D.: Fast and tradeoff-resilient memory-hard

functions for cryptocurrencies and password hashing (2015)
16. Biryukov, A., Khovratovich, D.: Tradeoff cryptanalysis of memory-hard functions.

Cryptology ePrint Archive, Report 2015/227 (2015)
17. Biryukov, A., Khovratovich, D.: Equihash: asymmetric proof-of-work based on the

generalized birthday problem. In: NDSS (2016)
18. Chung, F.R.K.: On concentrators, superconcentrators, generalizers, and nonblock-

ing networks. Bell Syst. Techn. J. 58(8), 1765–1777 (1979)
19. Cook, S.A.: An observation on time-storage trade off. In: Proceedings of the Fifth

Annual ACM Symposium on Theory of Computing, pp. 29–33. ACM (1973)
20. Corrigan-Gibbs, H., Boneh, D., Schechter, S.: Balloon hashing: a provably memory-

hard function with a data-independent access pattern. Cryptology ePrint Archive,
Report 2016/027 (2016)

21. Dwork, C., Goldberg, A., Naor, M.: On memory-bound functions for fighting
spam. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 426–444. Springer,
Heidelberg (2003). doi:10.1007/978-3-540-45146-4 25

22. Dwork, C., Naor, M.: Pricing via processing or combatting junk mail. In:
Brickell, E.F. (ed.) CRYPTO 1992. LNCS, vol. 740, pp. 139–147. Springer,
Heidelberg (1993)

23. Dwork, C., Naor, M., Wee, H.M.: Pebbling and proofs of work. In: Shoup, V. (ed.)
CRYPTO 2005. LNCS, vol. 3621, pp. 37–54. Springer, Heidelberg (2005)

24. Dziembowski, S., Faust, S., Kolmogorov, V., Pietrzak, K.: Proofs of space. In:
Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9216, pp. 585–605.
Springer, Heidelberg (2015)

25. Dziembowski, S., Kazana, T., Wichs, D.: Key-evolution schemes resilient to space-
bounded leakage. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 335–
353. Springer, Heidelberg (2011)

http://dx.doi.org/10.1007/978-3-662-49896-5_13
https://www.cs.cmu.edu/~dga/crypto/cuckoo/analysis.pdf
https://www.cs.cmu.edu/~dga/crypto/cuckoo/analysis.pdf
http://dx.doi.org/10.1007/978-3-540-45146-4_25

Proof of Space from Stacked Expanders 285

26. Dziembowski, S., Kazana, T., Wichs, D.: One-time computable self-erasing func-
tions. In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 125–143. Springer,
Heidelberg (2011)

27. Forler, C., List, E., Lucks, S., Wenzel, J.: Overview of the candidates for the pass-
word hashing competition (2015)

28. Forler, C., Lucks, S., Wenzel, J.: Catena: a memory-consuming password-
scrambling framework. Cryptology ePrint Archive, Report 2013/525 (2013)

29. Hopcroft, J., Paul, W., Valiant, L.: On time versus space and related problems. In:
16th Annual Symposium on Foundations of Computer Science, pp. 57–64. IEEE
(1975)

30. Juels, A., Kaliski Jr., B.S.: PORs: proofs of retrievability for large files. In: Pro-
ceedings of the 14th ACM Conference on Computer and Communications Security,
pp. 584–597. ACM (2007)

31. Karvelas, N.P., Kiayias, A.: Efficient proofs of secure erasure. In: Abdalla,
M., De Prisco, R. (eds.) SCN 2014. LNCS, vol. 8642, pp. 520–537. Springer,
Heidelberg (2014)

32. Lengauer, T., Tarjan, R.E.: Asymptotically tight bounds on time-space trade-offs
in a pebble game. J. ACM 29(4), 1087–1130 (1982)

33. Lerner, S.D.: Strict memory hard hashing functions (preliminary v0. 3, 01-19-14)
34. Mahmoody, M., Moran, T., Vadhan, S.: Publicly verifiable proofs of sequential

work. In: Proceedings of the 4th Conference on Innovations in Theoretical Com-
puter Science, pp. 373–388. ACM (2013)

35. Moran, T., Orlov, I.: Proofs of space-time and rational proofs of storage. Cryptol-
ogy ePrint Archive, Report 2016/035 (2016)

36. Nakamoto, S.: Bitcoin: a peer-to-peer electronic cash system (2008)
37. Paul, W.J., Tarjan, R.E.: Time-space trade-offs in a pebble game. Acta Informatica

10(2), 111–115 (1978)
38. Paul, W.J., Tarjan, R.E., Celoni, J.R.: Space bounds for a game on graphs. Math.

Syst. Theory 10(1), 239–251 (1976)
39. Percival, C.: Stronger key derivation via sequential memory-hard functions (2009)
40. Perito, D., Tsudik, G.: Secure code update for embedded devices via proofs of

secure erasure. In: Gritzalis, D., Preneel, B., Theoharidou, M. (eds.) ESORICS
2010. LNCS, vol. 6345, pp. 643–662. Springer, Heidelberg (2010)

41. Peslyak, A.: yescrypt - a password hashing competition submission (2014). https://
password-hashing.net/submissions/specs/yescrypt-v2.pdf. Accessed Aug 2016

42. Pinsker, M.S.: On the complexity of a concentrator. In: 7th International Telegraffic
Conference, vol. 4 (1973)

43. Robbins, H.: A remark on Stirling’s formula. Am. Math. Monthly 62(1), 26–29
(1955)

44. Schöning, U.: Better expanders and superconcentrators by Kolmogorov complexity.
In: SIROCCO, pp. 138–150 (1997)

45. Schöning, U.: Smaller superconcentrators of density 28. Inf. Process. Lett. 98(4),
127–129 (2006)

46. Sethi, R.: Complete register allocation problems. SIAM J. Comput. 4(3), 226–248
(1975)

47. Smith, A., Zhang, Y.: Near-linear time, leakage-resilient key evolution schemes
from expander graphs. Cryptology ePrint Archive, Report 2013/864 (2013)

48. Tromp, J.: Cuckoo cycle: a memory-hard proof-of-work system (2014)

https://password-hashing.net/submissions/specs/yescrypt-v2.pdf
https://password-hashing.net/submissions/specs/yescrypt-v2.pdf

Perfectly Secure Message Transmission
in Two Rounds

Gabriele Spini1,2,3(B) and Gilles Zémor1

1 Institut de Mathématiques de Bordeaux, UMR 5251, Université de Bordeaux,
351 Cours de la Libération, 33400 Talence, France

2 Mathematical Institute, Leiden University, Leiden, The Netherlands
3 CWI Amsterdam, Amsterdam, The Netherlands

spini@cwi.nl

Abstract. In the model that has become known as “Perfectly Secure
Message Transmission” (PSMT), a sender Alice is connected to a receiver
Bob through n parallel two-way channels. A computationally unbounded
adversary Eve controls t of these channels, meaning she can acquire and
alter any data that is transmitted over these channels. The sender Alice
wishes to communicate a secret message to Bob privately and reliably,
i.e. in such a way that Eve will not get any information about the mes-
sage while Bob will be able to recover it completely.

In this paper, we focus on protocols that work in two transmission
rounds for n = 2t + 1. We break from previous work by following
a conceptually simpler blueprint for achieving a PSMT protocol. We
reduce the previously best-known communication complexity, i.e. the
number of transmitted bits necessary to communicate a 1-bit secret, from
O(n3 log n) to O(n2 logn). Our protocol also answers a question raised
by Kurosawa and Suzuki and hitherto left open: their protocol reaches
optimal transmission rate for a secret of size O(n2 logn) bits, and the
authors raised the problem of lowering this threshold. The present solu-
tion does this for a secret of O(n logn) bits.

Keyword: Perfectly Secure Message Transmission

1 Introduction

The problem of Perfectly Secure Message Transmission (PSMT for short) was
introduced by Dolev et al. in [2] and involves two parties, a sender Alice and
a receiver Bob, who communicate over n parallel channels in the presence of
an adversary Eve. Eve is computationally unbounded and controls t ≤ n of
the channels, meaning that she can read and overwrite any data sent over the
channels under her control. The goal of PSMT is to design a protocol that allows

G. Spini—Supported by the Algant-Doc doctoral program, www.algant.eu.
G. Zémor—Supported by the “Investments for the Future” Programme IdEx
Bordeaux – CPU (ANR-10-IDEX- 03-02).

c© International Association for Cryptologic Research 2016
M. Hirt and A. Smith (Eds.): TCC 2016-B, Part I, LNCS 9985, pp. 286–304, 2016.
DOI: 10.1007/978-3-662-53641-4 12

www.algant.eu

Perfectly Secure Message Transmission in Two Rounds 287

Alice to communicate a secret message to Bob privately and reliably, i.e. in such
a way that Eve will not be able to acquire any information on the message, while
Bob will always be able to completely recover it.

Two factors influence whether PSMT is possible and how difficult it is to
achieve, namely the number t of channels corrupted and controlled by Eve, and
the number r of transmission rounds, where a transmission round is a phase
involving only one-way communication (either from Alice to Bob, or from Bob
to Alice).

It was shown in Dolev et al.’s original paper [2] that for r = 1, i.e. when
communication is only allowed from Alice to Bob, PSMT is possible if and only
if n ≥ 3t + 1. It was also shown in [2] that for r ≥ 2, i.e. when communication
can be performed in two or more rounds, PSMT is possible if and only if n ≥
2t + 1, although only a very inefficient way to do this was proposed. A number
of subsequent efforts were made to improve PSMT protocols, notably in the
most difficult case, namely for two rounds and when n = 2t + 1. The following
two quantities, called communication complexity and transmission rate, were
introduced and give a good measure of the efficiency of a PSMT protocol. They
are defined as follows:

Communication complexity := total number of bits transmitted to
communicate a single-bit secret,

Transmission rate :=
total number of bits transmitted

bit-size of the secret
.

Focusing exclusively on the case n = 2t + 1, Dolev et al. [2] presented a
PSMT protocol for r = 3 with transmission rate O

(
n5

)
: for r = 2 a protocol

was presented with non-polynomial rate.
Sayeed and Abu-Amara [8] were the first to propose a two-round protocol

with a polynomial transmission rate of O
(
n3

)
. They also achieved communi-

cation complexity of O
(
n3 log n

)
. Further work by Agarwal et al. [1] improved

the transmission rate to O(n) meeting, up to a multiplicative constant, the lower
bound of [10]. However, this involved exponential-time algorithms for the partic-
ipants in the protocol. The current state-of-the art protocol is due to Kurosawa
and Suzuki [4,5]. It achieves O(n) transmission rate with a polynomial-time effort
from the participants. All these protocols do not do better than O

(
n3 log n

)
for

the communication complexity.
We contribute to this topic in the following ways. We present a construc-

tive protocol for which only polynomial-time, straightforward computations are
required of the participants, that achieves the improved communication complex-
ity of O

(
n2 log n

)
. In passing, we give an affirmative answer to an open problem

of Kurosawa and Suzuki (at the end of their paper [5]) that asks whether it is
possible to achieve the optimal transmission rate O(n) for a secret of size less
than O(n2 log n) bits. We do this for a secret of O(n log n) bits.

Just as importantly, our solution is conceptually significantly simpler than
previous protocols. Two-round PSMT involves Bob initiating the protocol by
first sending an array of symbols (xij) over the n parallel channels, where the

288 G. Spini and G. Zémor

first index i means that symbol xij is sent over the i-th channel. All previous pro-
posals relied on arrays (xij) with a lot of structure, with linear relations between
symbols that run both along horizontal (constant j) and vertical (constant i)
lines. In contrast, we work with an array (xij) consisting of completely inde-
pendent rows x(j) = (x1j , x2j , . . . , xnj) that are simply randomly chosen words
of a given Reed-Solomon code. In its simplest, non-optimized, form, the PSMT
protocol we present only involves simple syndrome computations from Alice, and
one-time padding the secrets it wishes to transfer with the image of linear forms
applied to corrupted versions of the codewords x(j) it has received from Bob.
Arguably, the method could find its way into textbooks as relatively straightfor-
ward applications of either secret-sharing or wiretap coset-coding techniques. In
its optimized form, the protocol retains sufficient simplicity to achieve a trans-
mission rate 5n + o(n), compared to the previous record of 6n + o(n) of [3]
obtained by painstakingly optimizing the 25n + o(n) transmission rate of [5].

In the next Section we give an overview of our method and techniques.

2 Protocol Overview

The procedure takes as input the number n = 2t + 1 of channels between Alice
and Bob and the number � of secret messages to be communicated; we assume
that the messages lie in a finite field Fq. First, a code C that will be the basic
communication tool is selected; C is a linear block code of length n over Fq,
dimension t + 1 and minimum distance t + 1. It furthermore has the property
that the knowledge of t symbols of any of its codewords x leaves hxT completely
undetermined, where h is a vector produced together with C at the beginning of
the protocol. The code C can be a Reed-Solomon code.

Since we require at most two rounds of communication, Bob starts the proce-
dure; he chooses a certain number of random and independent codewords x, and
communicates them by sending the i-th symbol of each codeword over the i-th
channel. This is a first major difference from previous papers, notably [5], where
codewords are communicated in a more complicated “horizontal-and-vertical”
fashion; our construction is thus conceptually simpler and eliminates techniques
introduced by early papers [8] which marked substancial progress at the time but
also hindered the development of more efficient protocols when they survived in
subsequent work.

As a result of this first round of communication, Alice receives a corrupted
version y = x + e for each codeword x sent by Bob. As in previous PSMT
protocols, Alice then proceeds by broadcast, meaning every symbol she physically
sends to Bob, she sends n times, once over every channel i. In this way privacy is
sacrificed, since Eve can read everything Alice sends, but reliability is ensured,
since Bob recovers every transmitted symbol by majority decoding.

A secret message consisting of a single symbol s ∈ Fq is encoded by Alice
as s + hyT for some received vector y. In other words, s is one-time padded
with the quantity hyT and this is broadcast to Bob. Notice that at this point,
revealing s + hyT to Eve gives her zero information on s. This is because she

Perfectly Secure Message Transmission in Two Rounds 289

can have intercepted at most t symbols of the codeword x: therefore the element
hxT is completely unknown to her by the above property of C and h, and the
mask hyT = hxT + heT is unknown to her as well.

Now broadcasting the quantity s + hyT is not enough by itself to convey
the secret s to Bob, because Bob also does not have enough information to
recover the mask hyT . To make the protocol work, Alice needs to give Bob
extra information that tells Eve nothing she doesn’t already know.

This extra information comes in two parts. The first part is simply the
syndrome σ(y) = HyT of y, where H is a parity-check matrix of C; notice
that this data is indeed useless to Eve, who already knows it given that
HyT = HxT + HeT = HeT where e is chosen by herself.

The second part makes use of the fact that during the first phase, Bob has
not sent a single codeword x to Alice, but a batch of codewords X and Alice has
received a set Y of vectors made up of the corrupted versions y = x + e of the
codewords x. Alice will sacrifice a chosen subset of these vectors y and reveal
them completely to Bob and Eve by broadcast. Note that this does not yield any
information on the unrevealed vectors y since Bob has chosen the codewords x
of X randomly and independently. At this point we apply an idea that originates
in [5]: the chosen revealed subset of Y is called in [5] a pseudo-basis of Y. To
compute a pseudo-basis of Y, Alice simply computes all syndromes σ(y) for
y ∈ Y, and choses a minimal subset of Y whose syndromes generate linearly all
syndromes σ(y) for y ∈ Y. A pseudo-basis of Y could alternatively be called a
syndrome-spanning subset of Y. Now elementary coding-theory arguments imply
that the syndrome function σ is injective on the subspace generated by the set of
all errors e that Eve applies to all Bob’s codewords x (Lemma 2 and Proposition
1). Therefore a pseudo-basis of Y gives Bob access to the whole space spanned
by Eve’s errors and allows him, for any non-revealed y = x + e, to recover the
error e from the syndrome σ(y) = σ(e).

The above protocol is arguably “the right way” of exploiting the pseudo-
basis idea of Kurosawa and Suzuki, by which we mean it is the simplest way of
turning it into a two-round PSMT protocol. We shall present optimised variants
that achieve the communication complexity and transmission rate claimed in the
Introduction. Our final protocol involves two additional ideas; the first involves a
more efficient broadcasting scheme than pure repetition: this idea was also used
by Kurosawa and Suzuki. The second idea is new and involves using a decoding
algorithm for the code C.

The rest of the paper is organised as follows. In Sect. 3 we recall the coding
theory that we need to set up the protocol. In particular, Sect. 3.1 introduces
the code C and the vector h with the desired properties. Section 3.2 introduces
Kurosawa and Suzuki’s pseudo-basis idea, though we depart somewhat from
their original description to fit our syndrome-coding approach to PSMT.

In Sect. 4 we describe in a formal way the protocol sketched above, and we
compute its communication cost; it will turn out that this construction has a
communication complexity of O

(
n3 log n

)
and a transmission rate of O

(
n2

)
.

290 G. Spini and G. Zémor

Section 5 is devoted to improving the efficiency of the protocol; specifically,
Sect. 5.1 introduces generalized broadcast, Sects. 5.2 and 5.3 show how to lower
the cost of transmitting the pseudo-basis, while Sect. 5.4 presents a way to
improve the efficiency of the last part of the protocol. A key aspect of this
section is that Alice must make extensive use of a decoding algorithm for linear
codes, a new feature compared to previous work on the topic.

Finally, in Sect. 6 we implement these improvements and compute the cost of
the resulting protocol, reaching a communication complexity of O

(
n2 log n

)
and

a transfer rate of 5n+o(n); we also show in this section that optimal transfer rate
is achieved for a secret of O(n log n) bits. Section 7 gives concluding remarks.

3 Setting and Techniques

3.1 Error-Correcting Codes for Communication

We will use the language of Coding Theory, for background, see e.g. [6]. Let
us briefly recall that when a linear code over the finite field Fq is defined as
C = {x ∈ F

n
q , HxT = 0}, the r × n matrix H is called a parity-check matrix for

C and the mapping

σ : Fn
q → F

r
q

x �→ HxT

is referred to as the syndrome map. Recall also that a code of parameters (length,
dimension, minimum Hamming distance) [n, k, d] is said to be Maximum Dis-
tance Separable or MDS, if d+k = n+1. Particular instances of MDS codes are
Reed-Solomon codes, which exist whenever the field size q is equal to or larger
than the length n. In a secret-sharing context, Reed-Solomon codes are equiva-
lent to Shamir’s secret-sharing scheme [9], and they have been used extensively
to construct PSMT protocols. We could work from the start with Reed-Solomon
codes, equivalently Shamir’s scheme, but prefer to use more general MDS codes,
not purely for generality’s sake, but to stay unencumbered by polynomial evalu-
ations and to highlight that we have no need for anything other than Hamming
distance properties. In Sect. 6, we will need our MDS codes to come with a
decoding algorithm and will have to invoke Reed-Solomon codes specifically: we
will only need to know of the existence of a polynomial-time algorithm though,
and will not require knowledge of any specifics.

We will need an MDS code C that will be used to share randomness, together
with a vector h such that the value of hxT is completely undetermined for a
codeword x ∈ C even when t symbols of x are known. The linear combination
given by h will then be used to create the masks that hide the secrets.

The following Lemma states the existence of such a pair (C,h): it is a slightly
non-standard use of Massey’s secret sharing scheme [7]. It is implicit that we
suppose q > n, so that MDS codes exist for all dimensions and length up to
n + 1.

Perfectly Secure Message Transmission in Two Rounds 291

Lemma 1. For any n and any t < n there exists an MDS code C of parameters
[n, t + 1, n − t] and a vector h ∈ F

n
q such that given a random codeword x ∈ C,

the scalar product hxT is completely undetermined even when t symbols of x are
known.

Proof. Let C′ be an MDS code of parameters [n + 1, t + 1, n − t + 1]; notice that
such a code exists for any n and t ≤ n [6]. Let C be the code obtained from C′

by puncturing at its last coordinate, i.e.

C :=
{
x ∈ F

n
q : ∃x ∈ Fq with (x, x) ∈ C′}

The minimum distance of C is at most one less than that of C′, and C is MDS of
parameters [n, t + 1, n − t] as requested. Now let H′ be a parity-check matrix of
C′; since C′ has minimum distance n − t + 1 > 1, there is at least one row of H′

whose last symbol is non-zero, i.e. such a row is of the form

(h, α) ∈ F
n+1
q with h ∈ F

n
q , 0 �= α ∈ Fq.

We claim that the pair (C,h) is of the desired type: indeed, let x be a random
codeword of C. Then there exists a (unique) codeword x′ of C′ such that x′ =
(x, x); now hxT = −αx, i.e. the knowledge of hxT is equivalent to the knowledge
of x, given that α is non-zero.

Now since C′ has dimension t + 1, for any t known symbols xi1 , · · · , xit of x
and any x̃ ∈ Fq, there exists exactly one x̃′ ∈ C′ such that x̃′

ij
= xij for any j

and such that x̃′
n+1 = x̃. Hence the claim holds. 	

As stated above, this lemma will guarantee the privacy of our protocols;
conversely, we can achieve reliable (although not private) communication via
the following remark: Alice and Bob can broadcast a symbol by sending it over
all the channels; since Eve only controls t < n/2 of them, the receiver will be able
to correct any error introduced by Eve with a simple majority choice. Broadcast
thus guarantees reliability by sacrificing privacy.

3.2 Pseudo-Bases or Syndrome-Spanning Subsets

The second fundamental building block of our paper is the notion of pseudo-basis,
introduced by Kurosawa and Suzuki [5]. The concept stems from the following
intuition: assume that Bob communicates a single codeword x of an MDS code
C to Alice by sending each of its n symbols over the corresponding channel. Eve
intercepts t of these symbols, thus C must have dimension at least t + 1 if we
want to prevent her from learning x; but this means that the minimum distance
of C cannot exceed n+1−(t+1) = t+1, which is not enough for Alice to correct
an arbitrary pattern of up to t errors that Eve can introduce.

If, however, we repeat the process for several different x(i), then Alice and
Bob have an important advantage: they know that all the errors introduced by
Eve always lie in the same subset of t coordinates. Kurosawa and Suzuki propose

292 G. Spini and G. Zémor

the following strategy to exploit this knowledge: Alice can compute a pseudo-
basis (a subset with special properties) of the received vectors; she can then
transmit it to Bob, who will use this special structure of the errors to determine
their support.

The key is the following simple lemma:

Lemma 2. Let C be a linear code of parameters [n, k, d]q, and let H be a parity-
check matrix of C; let E be a linear subspace of vectors of F

n
q such that the

Hamming weight wH(e) of e satisfies wH(e) < d for any e ∈ E.
We then have that the following map is injective:

σ|E : E → F
n−k
q

e �→ HeT

Proof. Simply notice that ker
(
σ|E

)
= {0}: indeed, ker

(
σ|E

)
⊆ C; but

by assumption all elements of E have weight smaller than d, so that
ker

(
σ|E

)
= {0}. 	

We can now introduce the concept of pseudo-basis; for the rest of this section,
we assume that a linear code C of parameters [n, k, d]q has been chosen, together
with a parity-check matrix H and associated syndrome map σ.

Definition 1 (Pseudo-Basis [5]). Let Y be a set of vectors of Fn
q ; a pseudo-

basis of Y is a subset W ⊆ Y such that σ(W) is a basis of the syndrome subspace
〈σ(Y)〉.

Notice that a pseudo-basis has thus cardinality at most n− k, and that it can
be computed in time polynomial in n.

The following property formalizes the data that Bob can acquire after he
obtains a pseudo-basis of the words received by Alice:

Proposition 1 ([5]). Let X , E ,Y be three subsets:

X :=
{
x(1), · · · ,x(r)

}
⊆ C,

E :=
{
e(1), · · · , e(r)

}
⊆ F

n
q such that #

⋃(
support

(
e(j)
)

: j = 1, · · · , r
)
< d,

Y :=
{
y(1), · · · ,y(r)

}
⊆ F

n
q with y(j) = x(j) + e(j) for every j

Then, given knowledge of X and a pseudo-basis of Y, we can compute e(j)

from its syndrome σ(e(j)), for any 1 ≤ j ≤ r.

Proof. The hypothesis on the supports of the elements of E implies that the
subspace E = 〈E〉 satisfies the hypothesis of Lemma 2 and the syndrome func-
tion is therefore injective on 〈E〉. Given the pseudo-basis

{
y(i) : i ∈ I

}
, we can

Perfectly Secure Message Transmission in Two Rounds 293

decompose any syndrome σ(e(j)) as

σ(e(j)) =
∑

i∈I

λiσ(y(i)) =
∑

i∈I

λiσ(e(i))

= σ

(
∑

i∈I

λie(i)
)

which yields

e(j) =
∑

i∈I

λie(i)

by injectivity of σ on E. 	

Remark 1. Since the syndrome map induces a one-to-one mapping from E to
σ(E), we also have that

{
y(i) : i ∈ I

}
is a pseudo-basis of Y if and only if{

e(i) : i ∈ I
}

is a basis of E = 〈E〉.

The reader should now have a clear picture of how the pseudo-basis will be
used to obtain shared randomness: Bob will select a few codewords x(1), · · · ,x(r)

in an MDS code of distance at least t + 1, then communicate them to Alice by
sending the i-th symbol of each codeword over channel i; Alice will be able to
compute a pseudo-basis of the received words, a clearly non-expensive computa-
tion, then communicate it to Bob. Bob will then be able to determine any error
introduced by Eve just from its syndrome as just showed in Proposition 1.

The following section gives all the details.

4 A First Protocol

We now present the complete version of our first communication protocol, fol-
lowing the blueprint of Sect. 2.

Protocol 1. The protocol allows Alice to communicate � secret elements
s(1), · · · , s(�) of Fq to Bob, where q is an arbitrary integer with q > n. The
protocol takes as input an MDS code C of parameters [n, t + 1, t + 1]q and a
vector h of length n as in Lemma 1.

I. Bob chooses t + � uniformly random and independent codewords
x(1), · · · ,x(t+�) of C and communicates them to Alice by sending the i-th
symbol of each codeword over the i-th channel.

II. Alice receives the corrupted versions y(1) = x(1) + e(1), · · · ,y(t+�) =
x(t+�) + e(t+�); she then proceeds with the following actions:
(i) She computes a pseudo-basis

{
y(i) : i ∈ I

}
for I ⊂ {1, · · · , t + �} of

the received values and broadcasts to Bob
(
i,y(i) : i ∈ I

)
.

294 G. Spini and G. Zémor

(ii) She then considers the first � words that do not belong to the pseudo-
basis; to ease the notation, we will re-name them y(1), · · · ,y(�). For
each secret s(j) to be communicated she broadcasts to Bob the follow-
ing two elements:
– H

(
y(j)

)T
, the syndrome of y(j);

– s(j) + h
(
y(j)

)T
.

III. Proposition 1 guarantees that for any j, 1 ≤ j ≤ �, Bob can compute
the error vector e(j) and hence reconstruct y(j) = x(j) + e(j) from his
knowledge of x(j). He can therefore open the mask h

(
y(j)

)T
and obtain

the secret s(j).

Proposition 2. The above protocol allows for private and reliable communica-
tion of � elements of Fq.

Proof. As a first remark, notice that since the pseudo-basis has cardinality at
most t as remarked in Definition 1, Alice has enough words to mask her � secret
messages, since the total number of words is equal to t + �. We can now prove
that the protocol is private and reliable:

– Privacy: Eve can intercept at most t coordinates of each codeword sent over
the channels in the first step; the codewords corresponding to the pseudo-basis
are revealed in step II-(i), but this information is useless since the words are
chosen independently and those belonging to the pseudo-basis are no longer
used. For any y(j) that does not belong to the pseudo-basis, the syndrome
H

(
y(j)

)T
is also transmitted, but Eve already knows it since H

(
y(j)

)T
=

H
(
x(j) + e(j)

)T
= H

(
e(j)

)T
, where e(j) denotes the error she introduced

herself on x(j).
Hence thanks to Lemma 1, Eve has no information on any h

(
y(j)

)T
, so

that privacy holds.
– Reliability: Eve can disrupt the communication only at step I, since all the

following ones only use broadcasts. Proposition 1 then ensures that Bob can
recover the vectors y(j) from their syndromes and the corresponding codeword
x(j). From there he can compute and remove the mask h

(
y(j)

)T
without

error. 	

We now compute the communication complexity and transmission rate of
this first protocol, underlining the most expensive parts:

Communication complexity: we can set � := 1.

– Step I requires transmitting t + 1 codewords over the channels, thus requiring
a total of O

(
n2

)
symbols to be transmitted.

– Step II-(i) requires broadcasting up to t words of F
n
q , thus giving a total of

O
(
n3

)
symbols to be transmitted.

Perfectly Secure Message Transmission in Two Rounds 295

– Finally, step II-(ii) requires broadcasting a total of t + 1 symbols (a size-t
syndrome and the masked secret), thus giving a total of O

(
n2

)
elements to

be transmitted.

Hence since we can assume that q = O(n), we get a total communication com-
plexity of

O
(
n3 log n

)

bits to be transmitted to communicate a single-bit secret.

Tranfer rate: optimal rate is achieved for � = Ω (n).

– Step I requires transmitting t+� codewords, for a total of O
(
n2 + n�

)
symbols.

– Step II-(i) remains unchanged from the single-bit case, and thus requires trans-
mitting O

(
n3

)
symbols.

– Finally, step II-(ii) requires broadcasting a total of �(t + 1) symbols (� size-t
syndromes and the masked secrets), thus giving a total of O

(
n2�

)
symbols;

To sum up, the overall transmission rate is equal to

O
(
n2 + n� + n3 + n2�

)

�
= O

(
n2

)
.

It is immediately seen that the main bottleneck for communication complex-
ity is step II-(i), i.e. the communication of the pseudo-basis, while for transmis-
sion rate it is step II-(ii), i.e. the communication of the masked secrets and of
the syndromes. We address these issues in the following sections.

5 Improvements to the Protocol

We discuss in this section some key improvements to the protocol; Sect. 5.1
presents the key technique of generalized broadcast, Sects. 5.2 and 5.3 show a new
way to communicate the pseudo-basis (the main bottleneck for communication
complexity) and Sect. 5.4 a new way to communicate the masked secret and the
information to open the masks (bottleneck for transmission rate).

5.1 Generalized Broadcast

Our improvements on the two bottlenecks showed in Sect. 4 rely on the funda-
mental technique of generalized broadcast, which has been highlighted in the
paper by Kurosawa and Suzuki [5].

The intuition is the following: we want to choose a suitable code CBCAST for
perfectly reliable transmission, i.e. we require that if any word x ∈ CBCAST is com-
municated by sending each symbol xi over the i-th channel, then x can always
be recovered in spite of the errors introduced by the adversary. In the general
situation, since Eve can introduce up to t errors, CBCAST must have minimum dis-
tance 2t + 1 = n, and hence dimension 1; for instance, CBCAST can be a repetition
code, yielding the broadcast protocol of Sect. 3.1.

296 G. Spini and G. Zémor

Now assume that at a certain point of the protocol, Bob gets to know the
position of m channels under Eve’s control; then the communication system
between the two has been improved: instead of n channels with t errors, we
have n channels with m erasures and t − m errors (since Bob can ignore the
symbols received on the m channels under Eve’s control that he has identified).
We can thus expect that reliable communication between Alice and Bob (i.e.,
broadcast) can be performed at a lower cost by using a code with smaller distance
and greater dimension; the following lemma formalizes this intuition.

Lemma 3 (Generalized Broadcast). Let m ≤ t and let Cm be an MDS code
of parameters [n,m+1, n−m]q; assume that Bob knows the location of m chan-
nels controlled by Eve. Then Alice can communicate with perfect reliability m+1
symbols x1, · · · , xm+1 of Fq to Bob in the following way: she first takes the code-
word c ∈ Cm which encodes (x1, · · · , xm+1), then sends each symbol of c through
the corresponding channel; Eve cannot prevent Bob from completely recovering
the message.

We refer to this procedure as m-generalized broadcast.

Proof. Notice that c is well-defined since Cm has dimension m+1. Now since Bob
knows the location of m channels that are under Eve’s control, he can replace the
symbols of c received via these channels with erasure marks ⊥, and consider the
truncated codeword c̃ lacking these symbols. Now c̃ belongs to the punctured
code obtained from Cm by removing m coordinates, which has minimum distance
(n − m) − m ≥ 2(t − m) + 1; it can thus correct up to t − m errors, which is
exactly the maximum number of errors that Eve can introduce (since she controls
at most t − m of the remaining channels). Once he has obtained the shortened
codeword c̃, he can then recover the complete one since Cm can correct from m
erasures, given that it has minimum distance n − m ≥ m. 	

Hence if Alice knows that Bob has identified at least m channels under Eve’s
control, she can divide the cost of a broadcast by a factor m (since the above
method requires to transmit n symbols of Fq to communicate m + 1 symbols of
Fq).

In the following sections we will make use of Lemma 3 to improve the effi-
ciency of the protocol.

5.2 Improved Transmission of the Pseudo-Basis: A Warm-Up

We present here a new method of communicating the pseudo-basis, which is a
straightforward implementation of the generalized broadcasting technique.

The key point is the following observation:

Lemma 4. Let W =
(
y(i) : i ∈ I

)
be a pseudo-basis of the set of received vec-

tors; then if Bob knows m elements of W, he knows at least m channels that
have been forged by Eve.

Perfectly Secure Message Transmission in Two Rounds 297

Proof. By subtracting the original codeword from an element of the pseudo-
basis, Bob knows the corresponding error; furthermore, these errors form a basis
of the entire error space (Remark 1). Now if Bob knows m elements of the
pseudo-basis, he then knows m of these errors, which necessarily affect at least
m coordinates since they are linearly independent. The claim then follows. 	

The sub-protocol consisting of the transmission of the pseudo-basis by Alice
is simply the following:

Protocol 2. Alice wishes to communicate to Bob a pseudo-basis W of car-
dinality w.

For any i = 1, · · · , w, she then uses (i − 1)-generalized broadcast to
communicate the i-th element of the pseudo-basis to Bob.

Lemmas 3 and 4 ensure that this technique is secure; we now compute its
cost:

– Each element of the pseudo-basis is a vector of Fn
q ;

– using m-generalized broadcast to communicate n elements of Fq requires com-

municating
⌈

n
m+1

⌉
n field elements;

– hence Protocol 2 requires communicating the following number of elements of
Fq:

w∑

i=1

⌈n

i

⌉
n = O

(

n2
w∑

i=1

1
i

)

= O
(
n2 log n

)

which means that we have reduced to O
(
n2 log2 n

)
the total communication

complexity.

This complexity is still one logarithmic factor short of our goal; in the next
section we show a more advanced technique that allows to bring down the cost
to O

(
n2

)
field elements.

5.3 Improved Transmission of the Pseudo-Basis: The Final Version

In this section we show a more advanced technique to communicate the pseudo-
basis. The key idea is the following: denote by w the size of the pseudo-basis; if
Alice can find a received word y which is subject to an error of weight cw for
some constant c and sends it to Bob, then Bob will learn the position of at least
cw corrupted channels. Alice will thus be able to use cw-generalized broadcast as
in Lemma 3 to communicate the elements of the pseudo-basis (which amount to
wn symbols); since cw-generalized broadcast of a symbol has a cost of O(n/cw),
the total cost of communicating the pseudo-basis will thus be (wn) · O(n/cw) =
O

(
n2

)
.

298 G. Spini and G. Zémor

We thus devise an algorithm that allows Alice to find a word y subject to
at least m = Ω(w) errors (for instance, such condition is met if y is subject to
Ω(t) errors, since w ≤ t). Notice that such a word y may not exist among the
received words

{
y(i)

}
, therefore we will look for a linear combination of the y(i)

with this property.
As mentioned in Sects. 2 and 3, Alice will make extensive use of a decoding

algorithm. Recall that a code of distance d can be uniquely decoded from up to
�(d − 1)/2� errors, and that in the case of Reed-Solomon codes, such decoding
can be performed in time polynomial in n [6]; this means that for any Reed-
Solomon code C there exists an algorithm that takes as input a word y ∈ F

n
q and

outputs a decomposition y = x+ e with x ∈ C and wH(e) ≤ �(d − 1)/2� (if such
a decomposition does not exist, the algorithm outputs an error message ⊥).

Protocol 3. Alice has received the words y(1), · · · ,y(r) and has computed
a pseudo-basis

{
y(i) : i ∈ I

}
of them; denote by w its cardinality. Alice pro-

ceeds with the following actions:

– she uses Algorithm 1 below to find a “special word” y, with coefficients
(μi : i ∈ I) such that y =

∑
i∈I μiy(i). She then communicates to Bob the

triplet
(
I, (μi : i ∈ I),y

)
by using ordinary broadcast.

– Finally, she communicates the pseudo-basis of the received values by using
m-generalized broadcast, where m := min(w, t/3), w being the cardinality
of the pseudo-basis.

Before describing the algorithm formally and proving its validity, we sketch
the idea. Alice has computed a pseudo-basis {y(i) : i ∈ I}. For i ∈ I, she applies
the decoding algorithm to y(i) = x(i) + e(i). If the decoding algorithm fails, it
means that y(i) is at a large Hamming distance from any codeword, in particular
from Bob’s codeword x(i), and the single y(i) is the required linear combination.
If the decoding algorithm succeeds for every i, Alice obtains decompositions

y(i) = x̃(i) + ẽ(i)

where x̃(i) is some codeword. Alice must be careful, because she has no guarantee
that the codeword x̃(i) coincides with Bob’s codeword x(i), and hence that ẽ(i)

coincides with Eve’s error vector e(i). What Alice then does is look for a linear
combination

∑
i μiẽ(i) that has Hamming weight at least t/3 and at most 2t/3.

If she is able to find one, then a simple Hamming distance argument guaran-
tees that the corresponding linear combination of Eve’s original errors

∑
i μie(i)

also has Hamming weight at least t/3. If Alice is unable to find such a linear
combination, then she falls back on constructing one that has weight not more
than 2t/3 and at least the cardinality w of the pseudo-basis. This will yield an
alternative form of the desired result. We now describe this formally.

Perfectly Secure Message Transmission in Two Rounds 299

Algorithm 1. Alice has a pseudo-basis
(
y(i) : i = 1, · · · , w

)
(indices have

been changed to simplify the notation); the algorithm allows Alice to identify
a word y subject to at least m := min(w, t/3) errors introduced by Eve.

In the following steps, whenever we say that the output of the algorithm
is a word y(i), we implicitly assume that the algorithm also outputs the
index i; more generally, whenever the algorithm outputs a linear combination∑

i μiy(i) of the words in the pseudo-basis, we assume that it also outputs
the coefficient vector (μ1, · · · , μw) of the linear combination.

1. Alice uses a unique decoding algorithm to decode the elements of the
pseudo-basis; if the algorithm fails for a given word y(i) (i.e., it doesn’t
output a codeword having distance at most t/2 from y(i)), then Algo-
rithm 1 stops and outputs y(i).

2. If the decoding algorithm worked for every i, Alice gets a decomposition
y(i) = x̃(i) + ẽ(i) with x̃(i) ∈ C and wH

(
ẽ(i)

)
≤ t/2 for every i; notice

that it is not guaranteed that the x̃(i) coincide with the codewords x(i)

originally chosen by Bob.
If any of the ẽ(i) has weight greater than t/3, the algorithm stops and
outputs y(i).

3. Define f̃ (1) := ẽ(1) and ỹ(1) := y(1). For any i = 2, · · · , w, proceed with
the following actions:

• let λ(i) be a non-zero element of Fq such that f̃ (i−1)
j +λ(i)ẽ(i)j �= 0 for

any coordinate j ∈ {1, 2, . . . , n} for which f̃ (i−1)
j �= 0.

• let f̃ (i) := f̃ (i−1) + λ(i)ẽ(i) and ỹ(i) := ỹ(i−1) + λ(i)y(i);
if wH

(
f̃ (i)

)
> t/3, stop and output ỹ(i).

4. Output ỹ(w).

We can now prove that this algorithm allows Alice to find the desired code-
word, which naturally implies that Protocol 3 indeed allows for reliable commu-
nication of the pseudo-basis:

Proposition 3. Algorithm 1 allows Alice to find a word y subject to an error
introduced by Eve of weight at least m := min(w, t/3).

Proof. The following observation is the key point of the algorithm:

Lemma 5. Let y = x+e = x̃+ ẽ for x, x̃ ∈ C. Then if ẽ satisfies wH(ẽ) ≤ 2t/3,
we have that wH(e) ≥ min {wH(ẽ), t/3}.

Proof. The claim is trivial if e = ẽ; hence assume that e �= ẽ. Notice that
e − ẽ = x̃ − x; hence since dmin(C) = t + 1, we have that

t + 1 ≤ wH (e − ẽ) ≤ wH (e) + wH (ẽ) ≤ wH (e) +
2t

3

300 G. Spini and G. Zémor

Hence we have that wH (e) ≥ t/3, so that the claim is proved. 	

We now analyze the algorithm step-by-step:

1. if decoding fails for a word y(i), then it is guaranteed that the error introduced
by Eve on it has weight bigger than t/2 > m (otherwise, the unique decoding
algorithm would succeed since dmin(C) = t + 1).

2. since by assumption wH

(
ẽ(i)

)
≤ t/2 ≤ 2t/3, if we also have t/3 ≤ wH

(
ẽ(i)

)
,

then thanks to Lemma 5 the output y(i) is of the desired type.
3. Since the algorithm did not abort at step 2, all elements ẽ(i) have weight at

most t/3.
First notice that if the algorithm did not produce f̃ (i−1) as output, then f̃ (i)

is well-defined: indeed, we have that wH

(
f̃ (i−1)

)
≤ t/3; this means that λ(i)

is well-defined, since it is an element of Fq that has to be different from 0 and
from at most t/3 < n − 1 elements.
Now if the algorithm outputs f̃ (i), then necessarily wH

(
f̃ (i−1)

)
≤ t/3 (other-

wise the algorithm would have stopped before computing f̃ (i)); furthermore,
by assumption we have that wH

(
ẽ(i)

)
≤ t/3, so that wH

(
f̃ (i)

)
≤ 2t/3 and we

can apply Lemma 5, so that the output is of the desired type.
4. Notice that for any i = 1, · · · , w, we have that f̃ (i) has maximal weight among

elements of the vector space 〈ẽ(1), · · · , ẽ(i)〉 (the condition on λ(i) ensures that
this condition is met at each step). Hence since the elements

{
ẽ(1), · · · , ẽ(w)

}

are linearly independent (because their syndromes are linearly independent,
since (y(1), . . . ,y(w)) is a pseudo-basis), we have that wH

(
f̃ (i)

)
≥ i for any i.

In particular, we have that wH

(
f̃ (w)

)
≥ w; hence since wH

(
f̃ (w)

)
≤ 2t/3 as

remarked above, we have that the output ỹ(w) is of the desired type. 	

Remark 2. Protocol 3 requires Alice to use ordinary broadcast to communicate
a single vector of F

n
q (hence transmitting n2 elements of Fq), then to use m-

generalized broadcast with m ≥ min{w, t/3} to communicate w ≤ t vectors of
F

n
q (hence transmitting at most 3n2 elements of Fq). We thus get a total of at

most 4n2 elements of Fq to be transmitted.
Furthermore, Algorithm 1 has running time polynomial in n, as long as the

code C has a unique-decoding algorithm of polynomial running time as well. As
already remarked, such algorithms exist for instance for Reed-Solomon codes.

We study the second bottleneck of the original protocol in the next section.

5.4 The Improved Communication of the Masked Secrets

We present in this section the second key improvement to the protocol: after the
pseudo-basis is communicated, we devise a way to lower the cost of transmitting
to Bob the masked secrets and the information to open the masks. We aim at a
cost linear in the number � of secrets to be transmitted (while it was quadratic
in Protocol 1). As in Sect. 5.3, Alice makes use of a unique decoding algorithm.

Perfectly Secure Message Transmission in Two Rounds 301

Protocol 4. The protocol is performed once the pseudo-basis has been com-
municated to Bob; we thus assume that Bob knows the global support S :=
∪isupport

(
e(i)

)
of the errors affecting the elements y(i) (cf. Remark 1). We

assume that Alice wishes to communicate � secret elements s(1), · · · , s(�) of
Fq to Bob, and that � codewords x(1), · · · ,x(�) of C have been sent by Bob to
Alice (who has received y(1), · · · ,y(�)) and have not been disclosed in other
phases.

– Alice uses a unique decoding algorithm to decode y(i), so that for every i
she obtains (if decoding was successful) a decomposition y(i) = x̃(i) + ẽ(i)

with x̃(i) ∈ C and wH

(
ẽ(i)

)
≤ t/2.

For every i = 1, · · · , � she then communicates the following elements to
Bob:

• the syndrome H
(
y(i)

)T
via t/2-generalized broadcast;

• the elements z
(i)
1 , z

(i)
2 of Fq by ordinary broadcast, where

z
(i)
1 := s(i) + h

(
y(i)

)T

z
(i)
2 :=

{
s(i) + h

(
x̃(i)

)T
if decoding succeeded,

0 otherwise.

– Bob can then obtain each secret s(i) in a different way depending on the
size of the global support S of the errors:

• if |S| ≥ t/2, he uses the knowledge of the syndrome of y(i) and of
the support of the error to compute y(i), so that he can compute
z
(i)
1 − h

(
y(i)

)T
as well.

• if |S| < t/2, he ignores the syndrome that has been communicated to
him, and computes z

(i)
2 − h

(
x(i)

)T
.

We now prove that this protocol works and is secure:

Proposition 4. The above protocol allows for private and reliable communica-
tion of � elements of Fq.

Proof. We check Privacy and Reliability.

Privacy: we have already observed in Proposition 2 that Eve has no information
on hyT (we drop the index (i) to simplify notation), so that z1 perfectly hides
the secret. Now notice that if y can be decoded, then z2 = s +hx̃T = z1 −hẽT ;
hence to conclude, it suffices to prove that Eve already knows whether y can be
decoded or not, and that she knows ẽ if y can be decoded. We prove this claim
in the following lemma:

302 G. Spini and G. Zémor

Lemma 6. Let x be a codeword sent by Bob to Alice, and let y = x + e be the
received vector. Then Eve knows whether y can be decoded (i.e. y = x̃ + ẽ as
above) or not; furthermore, if y can be decoded, then she knows ẽ.

Proof. By definition, ẽ is a vector of minimum weight (and of weight at most
t/2) such that y − ẽ belongs to C; notice that the last condition is equivalent to
require that e − ẽ belongs to C. Now these requirements uniquely determine ẽ:
indeed, if by contradiction e − e′ ∈ C for another e′, then e′ − ẽ would belong
to C, a contradiction since wH(e′ − ẽ) ≤ t/2 + t/2 < dmin(C).

Hence ẽ is uniquely determined by e and C: Eve can thus compute it from
the data in her possession. Notice that, in particular, she knows whether ẽ exists
or not, i.e. whether decoding of y is possible or not. 	

Reliability: we have two possible cases:

– if |S| ≥ t/2, then Bob is able to acquire the syndrome HyT of y via t/2-
generalized broadcast (cf. Lemma 3); thus as remarked in Proposition 2, he
can recover y and open the mask to get the secret.

– if |S| < t/2, then Bob knows that Alice has correctly decoded y, since Eve
introduced less than dmin/2 errors; thus x̃ = x so that z2−hxT =

(
s + hx̃T

)
−

hxT = s.
Notice that in this case Bob will have failed to decode the t/2-generalized
broadcast but he will simply ignore the elements received in this way. 	

Remark 3. Notice that we could further improve the efficiency of this protocol
by requiring Alice to use w-generalized broadcast (instead of regular one) to
communicate the elements z

(i)
1 and z

(i)
2 , where w is the size of the pseudo-basis;

this, however, would not reduce the order of magnitude of the total cost.

6 The Improved Protocol

The improved protocol simply implements the new techniques of Sects. 5.3 and
5.4.

Protocol 5. The protocol allows Alice to communicate � secret elements
s(1), · · · , s(�) of Fq to Bob, where q is an arbitrary integer with q > n. The
protocol takes as input an MDS code C of parameters [n, t + 1, t + 1]q and a
vector h of length n as in Lemma 1.

I. Bob chooses t + � + 1 uniformly random and independent codewords
x(1), · · · ,x(t+�+1) of C and sends them over the channels to Alice.

II. Alice receives the corrupted versions y(1), · · · ,y(t+�+1), and she computes
a pseudo-basis

{
y(i) : i ∈ I

}
of the received values; she then proceeds with

the following actions:

Perfectly Secure Message Transmission in Two Rounds 303

(i) She uses Protocol 3 to communicate the pseudo-basis to Bob.
(ii) She then uses the remaining words to communicate to Bob the masked

secrets and the data to retrieve them as in the first part of Protocol 4.
III. Upon receiving the pseudo-basis, Bob proceeds to compute the global sup-

port S of the error space; he can then obtain each secret s(i) as specified
in the corresponding part of Protocol 4.

Notice that privacy and reliability of the protocol follow from the previous
discussions; we now analyze the complexity of the protocol:
Communication complexity: we can set � := 1.

– Step I requires transmitting t+2 words of Fn
q over the channels, thus requiring

a total of O
(
n2

)
symbols to be transmitted.

– Step II-(i) requires transmitting O
(
n2

)
elements of Fq as shown in Remark 2.

– Finally, step II-(ii) requires using t/2-generalized broadcast to communicate
n symbols, and standard broadcast to communicate 2 symbols, thus giving a
total of O(n) elements to be transmitted.

Hence since we can assume that q = O(n), we get a total communication
complexity of

O
(
n2 log n

)

bits to be transmitted to communicate a single-bit secret.

Transfer rate: optimal rate is achieved for � = Ω (n).

– Step I requires transmitting t + � + 1 = � + O(n) codewords, for a total of
n� + O(n2) symbols.

– Step II-(i) remains unchanged from the single-bit case, and thus requires trans-
mitting O

(
n2

)
symbols.

– Finally, step II-(ii) uses t/2-generalized broadcast to communicate �t elements
of Fq and standard broadcast to communicate 2� elements of Fq, so that the
overall cost is equal to 4n� symbols to be transmitted.

To sum up, the overall transmission rate is equal to

5n� + O
(
n2

)

�
= 5n + O

(
n2/�

)
.

Furthermore, by using Reed-Solomon codes (instead of arbitrary MDS ones),
we then have that Protocol 5 has computational cost polynomial in n for both
Alice and Bob.

304 G. Spini and G. Zémor

7 Concluding Remarks

We have presented a two-round PSMT protocol that has polynomial compu-
tational cost for both sender and receiver, and that achieves transmission rate
linear in n and communication complexity in O

(
n2 log n

)
; we believe that our

protocol is conceptually simpler compared to previous work and fully harnesses
the properties of the pseudo-basis.

As proved in [10], the transfer rate is asymptotically optimal; furthermore,
our protocol has a low multiplicative constant of 5.

Conversely, it remains open whether the O
(
n2 log n

)
communication com-

plexity is optimal or not; the only known lower bound on this parameter is still
O(n), as the one for transfer rate [10]. We believe that a communication com-
plexity lower than O

(
n2

)
is unlikely to be achievable, at least not without a

completely different approach to the problem.

Acknowledgments. The authors would like to thank Serge Fehr and Ronald Cramer
for their useful comments and suggestions.

References

1. Agarwal, S., Cramer, R., Haan, R.: Asymptotically optimal two-round perfectly
secure message transmission. In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117,
pp. 394–408. Springer, Heidelberg (2006). doi:10.1007/11818175 24

2. Dolev, D., Dwork, C., Waarts, O., Yung, M.: Perfectly secure message transmission.
J. ACM 40(1), 17–47 (1993)

3. Griggio, J.: Perfectly secure message transmission protocols with low communi-
cation overhead and their generalization. Master thesis (2012). http://algant.eu/
documents/theses/griggio.pdf

4. Kurosawa, K., Suzuki, K.: Truly efficient 2-round perfectly secure message transmis-
sion scheme. In: Smart, N. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 324–340.
Springer, Heidelberg (2008). doi:10.1007/978-3-540-78967-3 19

5. Kurosawa, K., Suzuki, K.: Truly efficient 2-round perfectly secure message trans-
mission scheme. IEEE Trans. Inf. Theory 55(11), 5223–5232 (2009)

6. MacWilliams, F., Sloane, N.: The Theory of Error Correcting Codes. North-Holland
mathematical library. North-Holland Publishing Company (1977)

7. Massey, J.L.: Some applications of coding theory in cryptography. In: Codes,
Ciphers: Cryptography and Coding IV, pp. 33–47 (1995)

8. Sayeed, H.M., Abu-Amara, H.: Efficient perfectly secure message transmission in
synchronous networks. Inf. Comput. 126(1), 53–61 (1996)

9. Shamir, A.: How to share a secret. Commun. ACM 22(11), 612–613 (1979)
10. Srinathan, K., Narayanan, A., Pandu Rangan, C.: Optimal perfectly secure mes-

sage transmission. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 545–
561. Springer, Heidelberg (2004). doi:10.1007/978-3-540-28628-8 33

http://dx.doi.org/10.1007/11818175_24
http://algant.eu/documents/theses/griggio.pdf
http://algant.eu/documents/theses/griggio.pdf
http://dx.doi.org/10.1007/978-3-540-78967-3_19
http://dx.doi.org/10.1007/978-3-540-28628-8_33

Foundations of Multi-Party Protocols

Almost-Optimally Fair Multiparty Coin-Tossing
with Nearly Three-Quarters Malicious

Bar Alon(B) and Eran Omri

Department of Computer Science, Ariel University, Ariel, Israel
alonbar08@gmail.com, omrier@ariel.ac.il

Abstract. An α-fair coin-tossing protocol allows a set of mutually dis-
trustful parties to generate a uniform bit, such that no efficient adver-
sary can bias the output bit by more than α. Cleve [STOC 1986] has
shown that if half of the parties can be corrupted, then, no r-round
coin-tossing protocol is o(1/r)-fair. For over two decades the best known
m-party protocols, tolerating up to t ≥ m/2 corrupted parties, were
only O (t/

√
r)-fair. In a surprising result, Moran, Naor, and Segev [TCC

2009] constructed an r-round two-party O(1/r)-fair coin-tossing proto-
col, i.e., an optimally fair protocol. Beimel, Omri, and Orlov [Crypto
2010] extended the result of Moran et al. to the multiparty setting where
strictly fewer than 2/3 of the parties are corrupted. They constructed a

22k

/r-fair r-round m-party protocol, tolerating up to t = m+k
2

corrupted
parties.

Recently, in a breakthrough result, Haitner and Tsfadia [STOC 2014]
constructed an O

(
log3(r)/r

)
-fair (almost optimal) three-party coin-

tossing protocol. Their work brought forth a combination of novel tech-
niques for coping with the difficulties of constructing fair coin-tossing
protocols. Still, the best coin-tossing protocols for the case where more
than 2/3 of the parties may be corrupted (and even when t = 2m/3,
where m > 3) were θ (1/

√
r)-fair. We construct an O

(
log3(r)/r

)
-fair m-

party coin-tossing protocol, tolerating up to t corrupted parties, when-
ever m is constant and t < 3m/4.

1 Introduction

Secure multiparty computation allows a set of mutually distrustful parties to per-
form a computational task, while guaranteeing some security properties to hold.
Examples of desirable security properties of a secure protocol are correctness,
privacy, and fairness (roughly, the requirement that either all parties receive
their respective outputs, or none do). When a strict majority of honest parties
can be guaranteed, protocols for secure computation (see, e.g., [9,19]) provide
full security, i.e., they provide all the security properties mentioned above (and
others), including fairness. When there is no honest majority, however, this is no
longer the case, and full security (specifically, full fairness) is not achievable in

Research supported by ISF grant 544/13.

c© International Association for Cryptologic Research 2016
M. Hirt and A. Smith (Eds.): TCC 2016-B, Part I, LNCS 9985, pp. 307–335, 2016.
DOI: 10.1007/978-3-662-53641-4 13

308 B. Alon and E. Omri

general. As was shown by Cleve [14], this is already evident for the elementary
(no input) task of coin-tossing.

The coin-tossing functionality, introduced by Blum [12], allows a set of par-
ties to agree on a uniformly chosen bit. Cleve [14] showed that this functionality
cannot be computed with complete fairness without a strict honest majority.
He proved that for any r-round two-party coin-tossing protocol, there exists
an (efficient) adversary that can bias the output of the honest party by Ω(1/r).
Cleve’s impossibility naturally generalizes to the multiparty setting with no hon-
est majority and has ramifications to general secure computation, implying that
any function that implies coin-tossing (e.g., the XOR function) cannot be com-
puted with full fairness without an honest majority. The question of optimal
fairness for the coin-tossing functionality seems to be crucial towards under-
standing general secure and fair multiparty computation.

On the positive end, Averbuch et al. [6], Cleve [14] showed how to compute
the coin-tossing functionality with partial fairness, limiting the bias of any adver-
sary to O (1/

√
r). For over two decades, these constructions were believed to be

optimal. This belief was supported by the work of Cleve and Impagliazzo [15],
showing that in a model, where commitments are available only as black-box
(and no other assumptions are made), the bias of any coin-tossing protocol is
Ω(1/

√
r). In a breakthrough result, Moran, Naor, and Segev [30] showed that the

Ω(1/r)-bias lowerbound of Cleve is tight for the case of two-party coin-tossing.
They constructed an r-round two-party coin-tossing protocol with bias O(1/r).
The protocol of Moran et al. follows the special-round paradigm1, previously
appearing in [22,27].

Beimel, Omri, and Orlov [8] constructed (via the special-round paradigm)
an optimal O(1/r)-bias protocol for any constant number of parties, whenever
strictly less than a 2/3-fraction of the parties are malicious. More accurately,
for their construction to yield an O(1/r) bound on the bias of their protocol, it
suffices that the gap between the number of corrupted parties and the number
of honest parties is constant (rather than the total number of parties).

Still, the question whether optimal O(1/r)-coin-tossing was possible when the
set of malicious parties may consist of two-thirds or more of the parties remained
open. Specifically, even the case of three-party optimally-fair coin-tossing, where
two of the parties may be corrupted remained unsettled. Answering the question
regarding the three party case seemed to require new techniques and a novel
understanding of coin-tossing protocols. In another breakthrough result, Haitner
and Tsfadia [24] constructed an O

(
log3(r)/r

)
-fair (almost optimal) three-party

coin-tossing protocol. Their work, indeed, offers some profound insight into the
difficulties of constructing coin-tossing protocols, and brings forth a combination
of novel techniques for coping with these difficulties. However, while it may be
tempting to expect that the solution for the three-party case (and, specifically,
that of [24]) will soon lead to a solution for fair coin-tossing for any (constant)
number of parties, this has not been the case so far.

1 The idea is to randomly and secretly choose a special round in which the parties
unknowingly get the output of the computation.

Almost-Optimally Fair Multiparty Coin-Tossing 309

1.1 Our Results

Our main contribution is a multiparty coin-tossing protocol that has small bias
whenever the number of parties is constant fewer than 3/4 of them are corrupted.

Theorem 1 (informal). Assume that oblivious transfer protocols exist. Let m
and t be constants (in the security parameter n) such that m/2 ≤ t < 3m/4, and
let r = r(n) be an integer. There exists an r-round m-party coin-tossing protocol
tolerating up to t corrupted parties that has bias O(22

m

log3(r)/r).

The formal statements and proofs implying Theorem 1 are given in Sect. 3, a
warmup construction illustrating the ideas behind the general construction is
given in Sect. 1.4. The 22

m

factor in the upperbound on the bias of our construc-
tion is due the fact that in each round, the adversary sees defense values for
many corrupted subsets. For this reason, we require m to be constant.

1.2 Additional Related Work

Partially fair coin-tossing is an example of 1/p-secure computation. Informally,
a protocol is 1/p-secure if it emulates the ideal functionality within 1/p dis-
tance. The formal definition of 1/p-secure computation appears in Sect. 2.3.1.
1/p-security with abort was suggested by Katz [27]. Gordon and Katz [21] defined
1/p-security and constructed 2-party 1/p-secure protocols for every functionality
whose size of either the domain or the range of the functionality is polynomial (in
the security parameter). Beimel et al. [7] studied multiparty 1/p-secure protocols
for general functionalities. The main result in [7] is constructions of 1/p-secure
protocols that are resilient against any number of corrupted parties, provided
that the number of parties is constant and that the size of the range of the
functionality is at most polynomial in the security parameter n. The bias of the
coin-tossing protocol resulting from [7] is O(1/

√
r).

The impossibility result of Cleve [14] made many researchers believe that
no interesting functions can be computed with full fairness without an hon-
est majority. A surprising result by Gordon et al. [22] showed that there are
even functions containing embedded XOR that can be computed with fairness.
This led to a line of works, investigating complete fairness in secure multiparty
computation without an honest majority [2,3,29]. Recently, Asharov et al. [4]
gave a full characterization of fairness secure two-party computation of Boolean
functions.

Coin-tossing is an interesting and useful task even in weaker models, e.g.,
secure-with-abort coin-tossing – where honest parties are not requested to output
a bit upon a premature abort by the adversary, and weak coin-tossing – where
each party has an a priori desire for the output bit. Indeed, the latter type of coin-
tossing was the one formulated by Blum [11], who suggested a fully secure weak
(and actually, secure with abort) coin-tossing protocol based on the existence of
one-way functions ([25,31]). His protocol is also a 1/4-secure implementation of
the fair coin-tossing functionality. Conversely, the existence of secure-with-abort

310 B. Alon and E. Omri

protocols imply the existence of one-way functions [10,23,28]. For the crypto-
graphic complexity of optimally-fair coin-tossing, [16,17] gave some evidence that
one-way functions may not suffice.

1.3 Our Techniques

Towards explaining the ideas behind our protocol, we give a brief overview of
the constructions of [8,24,30]. We restrict our discussion to the fail-stop model,
where corrupted parties follow the prescribed protocol, unless choosing to pre-
maturely abort at some point in the execution. Indeed, the core difficulties in
constructing fair coin-tossing protocols stand in this model as well. Specifically,
an r-round multiparty coin-tossing protocol in the fail-stop model can be adapted
to the malicious setting by adding signatures to each message (or by applying
the GMW compiler [19]).

1.3.1 The Protocol of Moran et al. [30]. The protocol of Moran, Naor, and
Segev [30] is a two-party r-round coin-tossing protocol with optimal bias 1/4r.
That is, their protocol matches the lowerbound of Cleve [14] (up to a factor 2).
The basic idea of the protocol is that in each round i, each of the parties is given
an independently chosen uniform bit, which will be its output, in case the other
party aborts. This is done until some special round i∗. From round i∗ and on,
both parties get the same bit c. Finally, i∗ is chosen uniformly from [r] and is
kept secret from the parties. The security of the protocol relies on the inability
of the adversary to guess the value of i∗ with probability higher than 1/r. We
next give a slightly more detailed overview of the MNS protocol restricted to
fail-stop adversaries.

A skeleton for two-party coin-tossing protocols. We start by describing the skele-
ton for the two-party protocol of [30]. Indeed, this is a more generic skeleton and
can be used to describe any two-party coin-tossing protocol (A,B).

The preliminary phase of the protocol. In this phase, the parties jointly compute
defense values for each of the r rounds of interaction. Denote the defense value
assigned to A for round i ∈ [r] by ai and the value assigned to B for round i by
bi (in the MNS protocol, these defense values are actually bits). At the end of
this preliminary phase, the parties do not learn these defense values, but rather
hold a share in a 2-out-of-2 secret sharing scheme (separately, for each defense
value). Denote by ai[P] and bi[P] the shares of ai and bi (respectively) held by
party P.

Interaction rounds. In round i, party A reveals bi[A] and party B reveals ai[B].
Specifically, in round i, party A learns ai and party B learns bi. The role of these
defense values is to define the output of an honest party, upon a premature abort
of the other party. For example, if party A aborts in round i (not allowing B to
learn bi), then B halts and outputs bi−1. If an abort never occurs, then parties
output ar = br.

Almost-Optimally Fair Multiparty Coin-Tossing 311

The MNS instantiation of the two-party skeleton. We now specify how the
defense values are selected in the protocol of [30]. The parties jointly select
a special round number i∗ ∈ {1, . . . , r}, uniformly at random, and select bits
a1, . . . , ai∗−1, b1, . . . , bi∗−1, independently, uniformly at random. Then, they uni-
formly select a bit w ∈ {0, 1} and set ai = bi = w for all i∗ ≤ i ≤ r.

The security of the protocol follows from the fact that, unless the adversary
aborts in round i∗, it cannot bias the output of the protocol. This is true, since
before round i∗ the view of the adversary is independent of the prescribed output
bit w, and hence, given that the adversary aborts before round i∗, the output of
the honest party is a uniform bit. On the other hand, after round i∗ is completed,
the output of the honest party is fixed. Hence, aborting in any round after i∗

is equivalent to never aborting at all, therefore, given that the adversary aborts
after round i∗, the output of the honest party is also a uniform bit. Finally, the
view of any of the parties up to round i ≤ i∗ is independent of the value of i∗,
hence, any adversary corrupting a single party can guess i∗ with probability at
most 1/r.

1.3.2 The Protocols of Haitner and Tsfadia [24]. Haitner and Tsfadia
[24] constructed a three-party r-round coin-tossing protocol with close to optimal
bias O

(
log3 r/r

)
. Towards achieving this goal, Haitner and Tsfadia [24] first con-

structed several new two-party fair coin-tossing protocols with bias O
(
log3 r/r

)
.

Evidently, the bias of these protocols does not match the Cleve [14] lowerbound
(as does the MNS protocol), however, the techniques and insight introduced
in these constructions make them interesting even before considering the final
three-party construction, for which they serve as a building block. In fact, most of
the techniques that enable the three-party construction of [24] come up already
in their two-party protocols.

Before describing the protocols of [24], let us first highlight some of the
ideas underlying them. We stress that none of their protocols follows the special
round paradigm. Alternatively, their protocols have the value of the game (i.e.,
the expected outcome in an honest continuation of the current state) gradually
shift from being 1/2 (or some other α ∈ [0, 1], for that matter) to being either
0 or 1. This is done by having the parties run in the background – jointly and
hidden from each of them – a protocol with a gradually shifting and publicly
known game value (in this case, a weighted variant of the majority protocol of
[6,14]). Let Oi be the game value in round i.

One of the core observations underlying all the constructions of Haitner and
Tsfadia [24] is that letting the defense value ai be a bit sampled according to Oi,
fully protects A in case of an abort by B in round i. More importantly, if the gap
between Oi and Oi−1 is typically O (1/

√
r), then ai does not reveal too much

information about the current value of Oi to A. Finally, Haitner and Tsfadia [24]
show that ai can be instantiated, not only as a bit, but also as a description of a
full execution of a two-party protocol with output and (defense values) sampled
according to Oi (where, this form of ai still does not reveal too much information

312 B. Alon and E. Omri

about the current value of Oi to A). Going from here to their construction of a
three-party coin-tossing protocol is fairly natural.

We next describe the two-party protocols of Haitner and Tsfadia [24]. We
do so using the skeleton for two-party protocols described in Sect. 1.3.1. That
is, we explain how the defense values ai, bi for each round i are selected. We
note that Haitner and Tsfadia [24] did not present their protocols in this exact
manner, but rather divided each interaction round i into two steps. The first step
is exactly the one described in the above skeleton, i.e., where A learns ai and B
learns bi. In the second step of round i, the parties reconstruct a value xi that
describes the expected value of the game Oi. This extra step is not necessary
for the correctness of the protocol, and hence, does not affect the security of the
protocol (since any attack on the protocol not using xi can also be applied to
the protocol that gives xi).

The basic two-party protocol of [24]. We now specify how the defense values
are selected in the basic two-party protocol of [24] (parametrized by α ∈ [0, 1]),
such that the common output bit is 1 with probability α. The basic idea is to
sample O(r2) bits (i.e., elements from {−1, 1}) i.i.d., such that the sum of all
bits is positive with probability α. The prescribed output of the protocol is 1 if
the sum of all bits is positive, and 0 otherwise. Towards revealing this output
(gradually, in r rounds), let δi be the value of the game, conditioned on the
value of the first

∑r
k=r−i+1 k bits. Note that δ0 = α and that in each round i,

the value of δi is computed conditioned on less and less new bits (i.e., bits that
were not used to compute δi−1). The defense value given to each of the parties
in round i is simply a sample from δi.

Slightly more formally, let ε ∈
[
− 1

2 , 1
2

]
be such that the sum of r(r + 1)/2

elements from {−1, 1} is positive with probability α, where each element is 1
with probability 1/2 + ε. Let xi be the sum of r − i + 1 elements from {−1, 1},
where each element takes the value of 1 with probability 1/2 + ε. Let δi be
the expected game value in round i, that is, δi is the probability that the sum
of

∑r−i
k=1 k elements from {−1, 1}, is at least

∑i
k=1 xk. The bits ai and bi are

independently sampled according to δi, i.e., ai = 1 (and bi = 1) w.p. δi.
For some intuition on the security of the protocol, consider the case where

party A, wishing to bias the output of party B, receives a defense value ai before
party B receives its defense value bi. If A chooses to abort, then B is instructed
to output ai−1, which was sampled according to δi−1. Indeed, if A could see
δi before deciding whether to abort or not, it could bias the output of B by
Ω(1/

√
r). The crux of the analysis is to show that this is not the case when

A only receives a sample from δi. Towards this end, Haitner and Tsfadia [24]
bound, on expectation, the gap between δi−1 and δ̂i−1, defined to be the value
of the game, conditioned on the value of the first

∑r
k=r−i+1 k bits and on the

value of ai.

The three party protocol of [24]. The construction of [24] for three parties follows
a very similar rationale to the above protocol. That is, in each round i every
single party, as well as, every pair of parties obtain a defense value that should

Almost-Optimally Fair Multiparty Coin-Tossing 313

behave as a sample from δi. A pair of parties cannot simply be given a single
bit, since one of them may be corrupt. Rather, they should be given a two-party
protocol similar to the above, with their defenses set with parameter α = δi. A
problem arises here, since the simple application of the above idea would require
giving the adversary information based on Ω(r3) bits sampled according to the
appropriate ε value. This would be devastating to the security of the protocol,
as it would allow the adversary to reveal δi. To tackle this problem, [24] came up
with a derandomized version of the above two-party protocol. They were then
able to show that sending the shares for this protocol as the defense values for
pairs of parties does not reveal too much about δi to the adversary. We next
describe the derandomized two-party protocol of Haitner and Tsfadia [24].

The two-party derandomized protocol of [24]. We now specify how the defense
values are selected in the derandomized version of the protocol of [24], such that
the common output bit is 1 with probability α. Let ε ∈

[
− 1

2 , 1
2

]
be such that the

sum of r(r + 1)/2 elements from {−1, 1} is positive with probability α, where
each element is 1 with probability 1/2 + ε. For j ∈ {a, b}, let Sj be a set of size
r(r + 1), over {−1, 1}, where each element takes the value of 1 with probability
1/2+ε. Let xi be the sum of r− i+1 elements from {−1, 1}, where each element
takes the value of 1 with probability 1/2 + ε. Let δj

i be the expected game value
in round i, according to the set Sj , that is, δj

i is the probability that the sum
of the elements in a randomly chosen subset of Sj , of size

∑r−i
k=1 k, is at least

∑i
k=1 xk. The bit ai (respectively bi) is sampled according to δa

i (respectively
δb
i), i.e., ai = 1 (respectively bi = 1) with probability δa

i (respectively δb
i).

The security of the various constructions of [24] is proved via a series of
bounds on weighted Binomial games. In Sect. 2, we recall these results, and in
Sect. 3 we use them to prove the security of our construction.

1.3.3 Reducing Many-Party Coin-Tossing to Few-Party Coin-
Tossing. Reducing multiparty coin-tossing protocols for the setting without
an honest majority to 2-party protocols is quite straightforward. Indeed, the
impossibility of [14] is generalized from the two-party setting to the many party
setting via such a reduction. In this section, we show that sometimes the other
direction is also possible.

The Protocol of Beimel et al.[8]. The protocol of Beimel, Omri, and Orlov [8]
extends the results of [30] to the multiparty model, where fewer than 2/3 of the
parties are corrupted. The bias of their protocol is proportional to 1/r and
doubly exponential in the gap between the number of corrupted parties t and
the number of honest parties h in the protocol (m = h + t). In particular,
for a constant number of parties m, where fewer than 2m/3 are corrupted, [8]
present an r-round m-party coin-tossing protocol with an optimal bias of O(1/r).
Interestingly, their protocol has an O(1/r)-bias even when the number of parties
m is non-constant, as long as the t − h is constant. In the following description,

314 B. Alon and E. Omri

however, we present a simplified version of the protocol of [8], which requires t
(rather than t − h) to be constant in order to achieve an O(1/r)-bias.

While not presented this way, the result of Beimel et al. [8] is achieved via
a generic reduction to (a certain type of) two-party protocols. They use a few
layers of secret sharing schemes to allow for each subset J of parties, containing
an honest majority (i.e., h ≤ |J | < 2h, hence if all the parties outside of J abort
the execution, then there is an honest majority in J) to obtain a defense value,
i.e., a bit dJ

i . For each round i and for each such J , the value of dJ
i is shared

in an inner secret sharing scheme with threshold h-out-of-|J |. The idea is that
the shares of this inner secret sharing scheme (of dJ

i) should be revealed to the
parties of J at round i of the execution. Namely, each party in J should get one
of the (inner scheme) shares of dJ

i in round i.
To make sure that the above shares are not revealed to any subset before

round i, and at the same time, that the execution of the protocol proceeds, as
long as, the set of remaining active parties does not contain an honest majority,
the shares (of the inner scheme) for round i are shared in an outer secret sharing
scheme with threshold (t+1)-out-of-m. As a result, the adversary can never learn
anything about the shares of the i’th inner scheme without the help of honest
parties. In addition, to halt the computation in round i, the adversary must
instruct at least h parties to abort the computation.

Now, given a two-party protocol according to the above skeleton, and with
the additional property that ai and bi are sampled from the same distribution Di

and that it is possible to sample many such samples, completing the reduction
is done by selecting the defense values dJ

i from the distribution Di.
If the following extra property holds, then the resulting many-party protocol

would be α-fair as long as t < 2m/3. The extra property that we need to require
is that if the adversary in the 2-party protocol is given 22

m

defense values,
sampled from Di (and the honest party gets a single one), it will not be able to
bias the 2-party protocol by more than α.2

1.3.4 Applying the Reduction of Beimel et al. to the Protocols of
Haitner and Tsfadia. In this work, we use secret sharing schemes, in a man-
ner similar to [8], to reduce an m-party coin-tossing with t < 3m/4 malicious
to the 3-party construction of [24]. We do so in two steps. First, we apply the
above (simplified version of the) reduction of [8] to the (derandomized) two-party
protocol of [24] to obtain an auxiliary m̂-party coin-tossing protocol, tolerating
t̂ < 2m̂/3 corruptions. Then, we use the auxiliary protocol, as a building block
in the construction of the final m-party protocol that tolerates t < 3m/4 corrup-
tions. More specifically, the auxiliary protocol, parametrized by some ε ∈ [0, 1],
is used as defense values for subsets of parties for the case that at least m/4
corrupted parties abort the execution of the final protocol.

2 Beimel et al. [8] use a slightly more involved technique to distribute defense values
to the different subsets of parties, allowing several subsets to be assigned the same
output bit, while maintaining the guarantee that the adversary cannot bias the
output of the honest parties without guessing the value of the special round i∗.

Almost-Optimally Fair Multiparty Coin-Tossing 315

We next give an overview of both constructions. In Sect. 1.4, we exemplify
the constructions for the case that m = 7 and t = 5; in Sect. 1.4.1, we instantiate
the auxiliary protocol for the case of five parties with up to three corruptions,
and in Sect. 1.4.2, we use this construction to instantiate the final protocol for
the case of seven parties with up to five corruptions. In the following, let ĥ =
m̂ − t̂ and h = m − t be lowerbounds on the number of honest parties in the
respective protocols. In our discussion the auxiliary protocol will be used with m̂
being the number of active parties remaining after some corrupted parties have
prematurely aborted the execution of the final m-party protocol. Specifically, we
will have ĥ = h, since honest parties never prematurely abort the computation.

Both the basic and the final protocols use two layers of (threshold) secret
sharing schemes. For each round i and for each protected subset of parties J
(we specify below which subsets are called protected for each construction), the
defense value for the set J in round i is dJ

i . This defense value is shared among
the parties of J in an appropriate secret sharing scheme (actual parameters for
each construction are specified below). This is called the inner secret sharing
scheme. For each round i, all the shares of all parties in the inner secret sharing
schemes for round i are shared in an (t̃ + 1)-out-of-m̃ threshold secret sharing
scheme, where m̃ and t̃ are the number of parties and the bound on the number of
corruptions in the respective construction. This is called the outer secret sharing
scheme.

The idea behind the outer secret sharing scheme is to provide two guarantees.
First, the adversary is never able to reconstruct the secrets without the partici-
pation of honest parties (which will only participate in the appropriate round).
Second, the adversary is only able to prevent the reconstruction of the secret of
the outer scheme (for round i) by instructing at least h̃ = m̃ − t̃ corrupted par-
ties to abort before completing the reconstruction. Hence, the protocol proceeds
normally as long as more than t̃ parties are active. We stress that the adversary
is indeed able to instruct h̃ parties to abort in the process of reconstruction of
the secret of the outer secret sharing scheme, hence, seeing all the shares of cor-
rupted parties for round i, while not allowing honest parties to see their shares
of the inner scheme. Furthermore, since the adversary is rushing, it can actually
decide whether to do so or not – after seeing the shares of all honest parties.

In addition to the above, assume that t̃ < bm̃
b+1 for some natural b > 1,

and assume that at least h̃ corrupted parties aborted (which is the case if the
secret of the outer scheme cannot be reconstructed). Let J be the set of the
remaining parties and let tJ be the number of corrupted parties in J . Since the
number of honest parties in J remains the same as before, i.e., at least h > m̃

b+1 ,
it follows that tJ < |J | − m̃

b+1 . By assumption |J | ≤ t̃ < bm̃
b+1 , it follows that

tJ < |J | − m̃
b+1 < (b−1)·|J|

b . Thus, if h parties abort the execution of the final
construction, then less than 2/3 of the remaining parties are corrupted, and if
ĥ parties abort the execution of the auxiliary construction, then most of the
remaining parties are honest.

We now explain what protected subsets are and how the parameters for the
inner secret sharing schemes are chosen for each of the two constructions. We

316 B. Alon and E. Omri

begin with the final construction. Protected subsets of parties are subsets J
that are assigned a defense value dJ

i in each round i. These should include all
subsets that are liable to become the set of active parties, after a premature
abort by at least h parties. Since the number of aborting (corrupted) parties
may be anything between h and t, we should let protected subsets be all subsets
of parties J , such that h ≤ |J | ≤ t.3

To determine the parameters for the inner secret sharing scheme, consider
the case that a ≥ h corrupted parties have aborted in round i, hence the set of
active parties J is of size m − a. Let tJ be the number of corrupted parties in
J , then tJ ≤ t − a. Therefore, using a (t − m + |J | + 1)-out-of-|J |, we require
at least t − a + 1 = t − m + |J | + 1 parties of J for the reconstruction of dJ

i .
This ensures that the adversary was never able to reconstruct dJ

i−1 (which is the
defense value that the parties in J will use). Very similar reasoning are used for
the auxiliary construction, where a subset of parties is protected if it of any size
between ĥ and 2ĥ − 1, and the threshold of the inner secret sharing scheme is
set to ĥ-out-of-|J |.

It is left to specify what are the defense values dJ
i , which are the secrets that

are shared in the inner secret sharing schemes. Roughly speaking these values
are selected in the auxiliary and in the final constructions in a very similar
manner to that of the derandomized two-party and the three-party protocols
of [24] (respectively). In a bit more detail, in these protocols, there is a value
δi representing the expected value of the game, and the defense values for all
protected subsets describe a way to reveal a sample a bit according to δi.

In the final protocol, a defense value is an instantiation of the auxiliary
protocol, such that the output bit is 1 with probability δi. To be more precise,
dJ

i is the set of shares in the outer secret sharing of the instantiation of the
auxiliary protocol to be executed by the parties of J , in case all other parties
abort the computation. The exact same information can also be encapsulated
into a set of O(r2) elements from {−1, 1} taking the value with probability
1/2 + ε, where ε = ε(δi) ∈

[
− 1

2 , 1
2

]
is such that the sum of r(r + 1)/2 elements

from {−1, 1} is positive with probability δi, whenever each element is 1 with
probability 1/2+ ε. Indeed, this fact will allow us to use the vector game lemma
of [24] (see Lemma 2) to bound the bias that the adversary can inflict by seeing
the defense values of all corrupted protected sets. The proof of security of the
final protocol is obtained by combining the above bound with a bound on the
bias of the auxiliary protocol.

We now specify how the defense values are selected in the auxiliary protocol.
Let J be a protected subset of parties, the parties of J jointly hold a set SJ of size
r(r + 1), over {−1, 1}, where each element takes the value of 1 with probability
1/2+ε. Recall that xi be the sum of r − i+1 elements from {−1, 1}, where each
element takes the value of 1 with probability 1/2+ε. Let δJ

i be the expected game
value in round i, according to the set SJ , that is, δJ

i is the probability that the

3 Actually, in our construction, we only call subsets J , such that 2h − 1 ≤ |J | ≤ t.
This suffices, since if a smaller subset of active parties is left, it can use the defense
value of its lexicographically first superset of size 2h − 1.

Almost-Optimally Fair Multiparty Coin-Tossing 317

sum of the elements in a randomly chosen subset of SJ , of size
∑r−i

k=1 k, is at least
∑i

k=1 xk. The bit bJ
i is sampled according to δJ

i , i.e., bJ
i = 1 with probability δJ

i .
To prove the security of this protocol, we introduce an extended version of the
Hypergeometric game (Lemma 3), presented in [24]. More specifically, we show
that even when the adversary sees a (constant) number of independent samples,
each from a different set, it cannot bias the output by much.

1.4 A Warm-Up Construction – A Seven-Party Protocol Tolerating
up to Five Corrupted Parties

Following the overview of our constructions, given in Sect. 1.3.4 in this section,
we show how to instantiate our final construction for the case of 7 parties, where
at most 5 are corrupted. In Sect. 1.4.1, we instantiate the auxiliary protocol for
5 parties with at most 3 corruptions, and in Sect. 1.4.2 we use it to instantiate
the final protocol for 7 parties with at most 5 corruptions. In the following, let
ε ∈

[
− 1

2 , 1
2

]
, and for i ∈ {0, . . . , r} let si =

∑r−i
k=1 k.

1.4.1 A Five-Party Protocol Tolerating up to Three Corrupted
Parties. We now describe the algorithm HG(ε, 5, 3), generating shares for 5
parties with 3 corrupted parties. This is a specific instantiation of the more
general functionality described in Algorithm 5. Let Binn,ε denote the binomial
distribution over {−1, 1} (i.e., a sum of n samples from {−1, 1}, each taking the
value of 1 with probability 1

2 + ε).

Selecting defenses:

1. For every J ⊂ [5] of size 3, let SJ be a set with 2s0 elements from {−1, 1},
each taking the value of 1 with probability 1

2 + ε.
2. For every i ∈ [r] let x̂i ← Binr−i+1,ε.
3. For every i ∈ {0, . . . , r} and every J ⊆ [5] of size 3:

(a) Let AJ
i be a random subset of SJ of size si.

(b) Let d̂J
i be 1 if

i∑

k=1

x̂k +
∑

a∈AJ
i

a ≥ 0, and 0 otherwise.

Sharing the values:

– For every i ∈ {0, 1 . . . , r}, J ⊂ [5] of size 3, and j ∈ J , let dJ
i [j] be the share

of party Pj of the secret dJ
i , in a 2-out-of-3 secret sharing.

– For every i ∈ [r], J ⊂ [5] of size 3, and for every j′ ∈ J , let dJ
i [j′, j] be the

share of party Pj of the secret dJ
i [j′], in a 4-out-of-5 secret sharing, such that

party Pj′ is required in order to recover dJ
i [j′] (See Construction 4).

Interaction rounds. The interaction of the parties proceeds in r rounds. In round
i ∈ [r], party Pj broadcasts dJ

i [j′, j], for every J ⊂ [5] of size 3, and for every
j′ ∈ J .

If a single party aborts the execution, then the remaining 4 parties can con-
tinue with the protocol. If two or three parties abort the execution, then the

318 B. Alon and E. Omri

remaining parties reconstruct dJ
i′ , where J is lexicographically first set of size 3,

which contains all the indices of the active parties, and i′ is the maximum i for
which the parties have enough shares to reconstruct. The honest parties output
that bit.

If after r rounds, there are at least 4 active parties, then the parties recon-
struct the last joint defense for the lexicographically first subset of them, and
the honest parties output that bit.

Security. By the properties of the two layers of secret sharing, in each round
the adversary learns a constant number of defense values, which are sampled
according to the appropriate Hypergeometric distribution. Roughly speaking,
the security of the above protocol is reduced to an extended version of the
Hypergeometric game considered by [24], with a constant number of samples.
The proof of security of the general construction, as well as, the froof of the
bound for the extended Hypergeometric game are given in the full version of the
paper [1].

1.4.2 The Seven-Party Protocol. We are now ready to describe our 7 party
protocol. We first describe the share generator. Given x1 . . . xi, for some i ∈ [r]
we let δi(x1 . . . xi) be the probability that then sum of si uniform {−1, 1} bits
is at least −

∑i
k=1 xk. We call δi the expected outcome of the protocol in round

i. In the following we let Binn := Binn,0.

Selecting defenses:

1. For every i ∈ [r], let xi ← Binr−i+1.
2. Let εi ∈

[
− 1

2 , 1
2

]
be such that, the expected outcome of an honest execution

with parameter ε = εi of the 5-party protocol from Sect. 1.4.1 is δi(x1 . . . xi).
3. For every J ⊂ [7], such that 4 ≤ |J | ≤ 5, let dJ

i ← HG(εi, |J |, |J | − 2).
4. For every J ⊂ [7], such that 2 ≤ |J | ≤ 3, let dJ

i be a bit, sampled with
probability δi(x1 . . . xi).

Sharing the values:

– For every i ∈ [r] and J ⊂ [7], such that 4 ≤ |J | ≤ 5, let dJ
i [j] be the share of

party Pj of the secret dJ
i , in a (|J | − 1)-out-of-|J | secret sharing.

– For every i ∈ [r], J ⊂ [7], such that 4 ≤ |J | ≤ 5, and for every j′ ∈ J , let
dJ

i [j′, j] be the share of party Pj of the secret dJ
i [j′], in a 6-out-of-7 secret

sharing, such that party Pj′ is required in order to recover dJ
i [j′] (See Con-

struction 4).
– For every i ∈ [r] and J ⊂ [7], such that 2 ≤ |J | ≤ 3, let dJ

i [j] be the share of
party Pj of the secret dJ

i , in a 2-out-of-|J | secret sharing.

Interaction rounds. The interaction of the parties proceeds in r rounds. In round
i ∈ [r] party Pj broadcasts dJ

i [j′, j], for every J ⊂ [7], such that 3 ≤ |J | ≤ 5,
and for every j′ ∈ J .

Almost-Optimally Fair Multiparty Coin-Tossing 319

If a single party aborts the execution, then the remaining 6 parties can con-
tinue with the protocol (they can do so by the properties of the 6-out-of-7 secret
sharing scheme). If more parties abort the execution, then the remaining active
parties reconstruct dJ

i′ , where J is the lexicographic first set containing all their
indices, and i′ is the maximum i for which the parties have enough shares to
reconstruct. If more than three parties remain, then they execute the five party
protocol from Sect. 1.4.1. Otherwise, there is an honest majority, and hence, the
remaining parties reconstruct dJ

i′ , which is a bit.
If after r rounds, there are at least 5 active parties, then each pair reconstruct

its last common defense (Note that either all of these defenses are equal to 1 or
all of them are equal to 0).

Security. In each round i ∈ [r], the adversary learns an O
(
r2

)
bits sampled

according to εi. If only one party aborts the execution, then the remaining parties
can still continue, as the secret sharing is a 6-out-of-7. Hence the adversary must
instruct at least two parties to abort. In case at least two parties abort at round
i, the remaining active parties can reconstruct the defense from the round i − 1.
They then, execute the protocol described in Sect. 1.4.1. As this is the Vector
game considered by [24], the adversary does not gain much advantage from
aborting after seeing the above O

(
r2

)
bits samples (assuming that the remaining

parties run the defense protocol honestly). Of course, we cannot assume that they
do, however, combining the above with the security of the 5-party protocol, we
get that in total, the adversary’s gain remains small.

1.5 Organization

In Sect. 2, we provide some notations and definitions that we use in this work,
and recall some bounds on online Binomial games from [24]. In Sect. 3 we present
our main construction and provide a proof for Theorem 1.

2 Preliminaries

2.1 Notation

We use calligraphic letters to denote sets, uppercase for random variables, and
lowercase for values. All logarithms considered here are in base two. For n ∈ N,
let [n] = {1, 2 . . . n}. Given a random variable (or a distribution) X, we write
x ← X to indicate that x is selected according to X. The support of a distribution
D over a finite set S, denoted Supp(D), is defined as {s ∈ S | D(s) > 0}. For a
random variable X and a natural number n we let Xn =

(
X(1),X(2), . . . , X(n)

)
,

where the X(i)’s are i.i.d. copies of X.
Let n ∈ N and ε ∈

[
− 1

2 , 1
2

]
. Let Ber(ε) be the Bernoulli distribution over

{−1, 1}, taking 1 with probability 1
2 +ε. Define the Binomial distribution Binn,ε,

by Binn,ε(k) = Pr [
∑n

i=1 xi = k] where xi are i.i.d according to Ber(ε). Let

320 B. Alon and E. Omri

B̂inn,ε(k) = Prx←Binn,ε
[x ≥ k] =

∑
t≥k Binn,ε(t). For ε = 0 we will simply write

Binn and B̂inn.
Define the Hypergeometric distribution HGn,w,m, by HGn,w,m(k) =

PrS⊆S,|S|=m

[∑
s∈S s = k

]
, where S is chosen uniformly, S is a set of size

n, whose members are from {−1, 1}, and it holds that
∑

s∈S s = w. Let
ĤGn,w,m(k) = Prx←HGn,w,m

[x ≥ k] =
∑

t≥k HGn,w,m(t). For i ∈ {0, 1, . . . n}
let si(n) =

∑n−i
k=1 k = (n−i+1)(n−i)

2 . When n is clear from the context we write
si. For a set S we let w (S) =

∑
s∈S s.

We make use of the following facts.

Fact 2 (Hoeffding’s inequality for {−1, 1}). Let n, t ∈ N and let ε ∈[
− 1

2 , 1
2

]
. Then

Pr
x←Binn,ε

[|x − 2εn| ≥ t] ≤ 2e− t2
2n .

Fact 3 (Hoeffding’s inequality for the hypergeometric distribution).
Let m ≤ n ∈ N and let w ∈ Z satisfying |w| ≤ n. Then

Pr
x←HGn,w,m

[|x − μ| ≥ t] ≤ e− t2
2m ,

where μ = E
x←HGn,w,m

[x] = mw
n

2.2 Coin-Tossing Protocols

A multiparty coin-tossing protocol with m parties is defined using m probabilis-
tic polynomial-time Turing machines p1, . . . , pm having the security parameter
1n as their only input. The coin-tossing computation proceeds in rounds, in each
round, the parties broadcast and receive messages on a broadcast channel. The
number of rounds in the protocol is typically expressed as some polynomially-
bounded function r in the security parameter. At the end of protocol, the (hon-
est) parties should hold a common bit w. We denote by CoinTossε() the ideal
functionality that gives the honest parties the same bit w, distributed according
to ε, that is, Pr[w = 1] = 1/2 + ε and Pr[w = 0] = 1/2 − ε. We let CoinToss()
be CoinToss0().

In this work we consider a malicious static computationally-bounded adver-
sary, i.e., a non-uniform that runs in a polynomial-time. The adversary is allowed
to corrupt some subset of the parties. That is, before the beginning of the pro-
tocol, the adversary corrupts a subset of the parties that may deviate arbitrarily
from the protocol, and thereafter the adversary sees the messages sent to the
corrupt parties and controls the messages sent by the corrupted parties. Still,
for the most of the technical discussion of the paper, we only discuss fail-stop
adversaries. A fail-stop adversary acts completely honestly (i.e., as required by
the prescribed protocol), with the only difference that it can abort the compu-
tation at any point in the execution of the protocol. We, then, use standard

Almost-Optimally Fair Multiparty Coin-Tossing 321

techniques ([8,19]) to turn a coin-tossing protocol in the fail-stop model into
a coin-tossing protocol (with the same fairness and round-complexity) in the
malicious model. The honest parties follow the instructions of the protocol.

The parties communicate in a synchronous network, using only a broadcast
channel. The adversary is rushing, that is, in each round the adversary hears the
messages sent by the honest parties before broadcasting the messages of the cor-
rupted parties for this round (thus, the messages broadcast by corrupted parties
can depend on the messages of the honest parties broadcast in this round).

2.3 Security Definitions for Multiparty Protocols

The security of multiparty computation protocols is defined using the real
vs. ideal paradigm. In this paradigm, we consider the real-world model, in which
protocols are executed. We then formulate an ideal model for executing the task
at hand. This ideal model involves a trusted party whose functionality captures
the security requirements of the task. Finally, we show that the real-world pro-
tocol “emulates” the ideal-world protocol: For any real-life adversary A there
should exist an ideal-model adversary S (also called simulator) such that the
global output of an execution of the protocol with A in the real-world model is
distributed similarly to the global output of running S in the ideal model. In
the coin-tossing protocol, the parties do not have inputs. Thus, to simplify the
definitions, we define secure computation without inputs (except for the security
parameters).

The Real Model. Let Π be an m-party protocol computing F . Let A be a non-
uniform probabilistic polynomial time adversary with auxiliary input aux, cor-
rupting a subset C of the parties. Let REALΠ,A(aux)(1n) be the random variable
consisting of the view of the adversary (i.e., its random input and the messages
it got) and the output of the honest parties, following an execution of Π, where
each party pj begins by holding the input 1n.

The Ideal Model. The basic ideal model we consider is a model without abort.
Specifically, there are parties {p1, . . . , pm}, and an adversary S who has cor-
rupted a subset I of them. An ideal execution for the computing F proceeds as
follows:

Inputs: Party pj holds a security parameter 1n. The adversary S has some
auxiliary input aux.

Trusted party sends outputs: The trusted party computes F(1n) with uni-
formly random coins and sends the appropriate outputs to the parties.

Outputs: The honest parties output whatever they received from the trusted
party, the corrupted parties output nothing, and S outputs an arbitrary prob-
abilistic polynomial-time computable function of its view.

Let IDEALF,S(aux)(1n) be the random variable consisting of the output of
the adversary S in this ideal world execution and the output of the honest parties
in the execution.

322 B. Alon and E. Omri

In this work we consider a few formulations of the ideal-world, and consider
composition of a few protocols, all being executed in the same real-world, how-
ever, each secure with respect to a different ideal-world. We prove the security
of the resulting protocol, using the hybrid model techniques of Canetti [13].

2.3.1 1/p-Indistinguishability and 1/p-Secure Computation
As explained in the introduction, the ideal functionality CoinToss() cannot be
implemented when there is no honest majority. We use 1/p-secure computation,
defined by [20,27], to capture the divergence from the ideal world. This notion
applies to general secure computation. We start with some notation.

A function μ(·) is negligible if for every positive polynomial q(·) and all
sufficiently large n it holds that μ(n) < 1/q(n). A distribution ensemble
X = {Xa,n}a∈{0,1}∗,n∈N

is an infinite sequence of random variables indexed
by a ∈ {0, 1}∗ and n ∈ N.

Definition 1 (Statistical Distance and 1/p-indistinguishability). We
define the statistical distance between two random variables A and B as the
function

SD(A,B) =
1
2

∑

α

∣
∣
∣ Pr [A = α] − Pr [B = α]

∣
∣
∣.

For a function p(n), two distribution ensembles X = {Xa,n}a∈{0,1}∗,n∈N

and Y = {Ya,n}a∈{0,1}∗,n∈N are computationally 1/p-indistinguishable, denoted

X
1/p
≈ Y , if for every non-uniform polynomial-time algorithm D there exists a

negligible function μ(·) such that for every n and every a ∈ {0, 1}∗,
∣
∣
∣ Pr [D(Xa,n) = 1] − Pr [D(Ya,n)) = 1]

∣
∣
∣ ≤ 1

p(n)
+ μ(n).

Two distribution ensembles are computationally indistinguishable, denoted

X
C≡ Y , if for every c ∈ N they are computationally 1

nc -indistinguishable.
We next define the notion of 1/p-secure computation [7,20,27]. The definition

uses the standard real/ideal paradigm [13,18], except that we consider a com-
pletely fair ideal model (as typically considered in the setting of honest majority),
and require only 1/p-indistinguishability rather than indistinguishability.

Definition 2 (perfect 1/p-secure computation). An m-party protocol Π
is said to perfectly (t, 1/p)-secure compute a functionality F if for every non-
uniform adversary A in the real model, corrupting up to t of the parties, there
exists a polynomial-time adversary S in the ideal model, corrupting the same
parties as A, such that for every n ∈ N and for every aux ∈ {0, 1}∗

SD(IDEALF,S(aux)(1n),REALΠ,A(aux)(1n)) ≤ 1
p(n)

.

Almost-Optimally Fair Multiparty Coin-Tossing 323

Definition 3 (1/p-secure computation [7,20,27]). Let p = p(n) be a func-
tion. An m-party protocol Π is said to (t, 1/p)-securely compute a functionality
F if for every non-uniform probabilistic polynomial-time adversary A in the real
model, corrupting up to t of the parties, there exists a non-uniform probabilis-
tic polynomial-time adversary S in the ideal model, corrupting the same parties
as A, such that the following two distribution ensembles are computationally
1/p(n)-indistinguishable

{
IDEALF,S(aux)(1n)

}
aux∈{0,1}∗,n∈N

1/p
≈

{
REALΠ,A(aux)(1n)

}
aux∈{0,1}∗,n∈N

.

We next define the notion of secure computation and notion of bias of a coin-
tossing protocol by using the previous definition.

Definition 4 (secure computation). An m-party protocol Π t-securely com-
putes a functionality F , if for every c ∈ N , the protocol Π is (t, 1/nc)-securely
compute the functionality F .

Definition 5 (ε-coin-toss). We say that a protocol is a ε-coin-toss protocol
with bias 1/p, tolerating up to t corruptions, if it is a (t, 1/p)-secure protocol for
the functionality CoinTossε().

Definition 6 (coin tossing). We say that a protocol is a coin-tossing protocol
with bias 1/p, tolerating up to t corruptions, if it is a (t, 1/p)-secure protocol for
the functionality CoinToss().

2.4 Security with Identifiable Abort

We use here a variant of secure computation with abort, where upon abort, at
least one cheating party is identified to all honest parties. This definition was first
formally stated by Aumann and Lindell [5], and was also considered in [7,8,26],
(in the first two, it was called security with abort and cheat detection).

Roughly speaking, our definition requires that one of two events is possible:
If at least one party deviates from the prescribed protocol, then the adversary
obtains the outputs of these parties (but nothing else), and all honest parties are
notified by the protocol that these parties have aborted. Otherwise, the protocol
terminates normally, and all parties receive their outputs. Again, we consider
the restricted case where parties hold no private inputs. The formal definition is
omitted for lack of space, and will appear in the full version of the paper [1].

2.5 Cryptographic Tools

We next informally describe two cryptographic tools that we use in our protocols.

324 B. Alon and E. Omri

Signature Schemes. A signature on a message proves that the message was
created by its presumed sender, and its content was not altered. A signature
scheme is a triple (Gen,Sign,Ver) containing the key generation algorithm Gen,
which gets as input a security parameter 1n and outputs a pair of keys, the
signing key KS and the verification key Kv, the signing algorithm Sign, and the
verifying algorithm Ver. We assume that it is infeasible to produce signatures
without holding the signing key.

Secret-Sharing Schemes. An α-out-of-m secret-sharing scheme is a mechanism
for sharing data among a set of parties such that every set of parties of size
α can reconstruct the secret, while any smaller set knows nothing about the
secret. In this paper, we use Shamir’s α-out-of-m secret-sharing scheme [33].
In this scheme, the shares of any α − 1 parties are uniformly distributed and
independent of the secret. Furthermore, given at most such α − 1 shares and a
secret s, one can efficiently complete them to m shares of the secret s. Using this
scheme, [8] presented a way to construct a secret sharing scheme with respect to
a certain party. We use that in our construction as well.

Construction 4. Let s be some secret taken from some finite field F. We share
s among m parties with respect to a special party pj in an α-out-of-m secret-
sharing scheme as follows:

1. Choose shares
(
s(1), s(2)

)
of the secret s in a two-out-of-two secret-sharing

scheme, that is, select s(1) ∈ F uniformly at random and compute s(2) =
s − s(1). Denote these shares by maskj (s) and comp (s), respectively.

2. Generate shares
(
λ(1), . . . , λ(j−1), λ(j+1), . . . , λ(m)

)
of the secret comp (s) in

an (α − 1)-out-of-(m − 1) Shamir’s secret-sharing scheme. For each � �= j,
denote comp� (s) = λ(�).

Output:

– The share of party pj is maskj (s). We call this share, pj’s masking share.
– The share of each party p�, where � �= j, is comp� (s). We call this share, p�’s

complement share.

In the above, the secret s is shared among the parties in P in a secret-sharing
scheme such that any set of size at least α that contains pj can reconstruct the
secret. In addition, similarly to the Shamir secret-sharing scheme, the following
property holds: for any set of β < α parties (regardless if the set contains pj), the
shares of these parties are uniformly distributed and independent of the secret.
Furthermore, given such β < α shares and a secret s, one can efficiently complete
them to m shares of the secret s and efficiently select uniformly at random one
vector of shares competing the β shares to m shares of the secret s.

2.6 Claims and Definitions from [24]

The following definitions and propositions are taken verbatim from [24] and
they will serve us as well. Given a partial view of a fail-stop adversary, we are

Almost-Optimally Fair Multiparty Coin-Tossing 325

interested in the expected outcome of the parties, conditioned on this view and
the adversary making no further aborts.

Definition 7 (view value). Let π be a protocol in which the honest parties
always output the same bit value. For a partial view v of the parties in a fail-
stop execution of π, let Cπ(v) denote the parties full view in an honest execution
of π conditioned on v (i.e. all parties that do not abort in v act honestly in
Cπ(v)). Let Δπ(v) = Ev′←Cπ(v)[out(v′)], where out(v′) is the common output of
the non-aborting parties in v′.

A protocol is unbiased, if no fail-stop adversary can bias the common output
of the honest parties by too much.

Definition 8 ((t, α)-unbiased protocol). Let π be an m-party, r-round pro-
tocol, in which the honest parties always output the same bit value. We say that
π is (t, α)-unbiased, if the following holds for every fail-stop adversary A con-
trolling the parties indexed by a subset C ⊂ [m] of size at most t. Let V be A’s
view in a random execution of π, and let Ij be the index of the j’th round in
which A sent an abort message (set to r + 1 if no abort occurred). Let Vi be the
prefix of V at the end of the i’th round, letting V0 be the view consisting of only
the random coins of A, and let V −

i be the prefix of Vi with the i’th round abort
message (if any) removed. Then,

E
V

⎡

⎣

∣
∣
∣
∣
∣
∣

∑

j∈|C|

(
Δ(VIj

) − Δ(V −
Ij

)
)
∣
∣
∣
∣
∣
∣

⎤

⎦ ≤ α

where Δ = Δπ according to Definition 7.

The following is an alternative characterization of fair coin-tossing protocols
(against fail-stop adversaries).

Lemma 1 ([24, Lemma 2.18]). Let n ∈ N be a security parameter and let π be
a (t, α)-unbiased coin-tossing protocol with α(n) ≤ 1

2 − 1
p(n) , for some polynomial

p. Then π is a (t, α(n) + neg(n))-secure coin tossing protocol against fail-stop
adversaries.

The following lemmata and propositions assume that the protocol is of a
specific form. More concretely, let ε ∈

[
− 1

2 , 1
2

]
, f be a randomized function (that

may depend on ε), and let πε,f be an r-round m-party coin-tossing protocol, such
that, before any interaction takes place, every party learns D0, which is sampled
according to the current game value, and for every round i ∈ [r], every party first
learns a defense Di = f(i, Yi), and then the coin Xi, where Xi ← Binr−i+1,ε,

Yi =
i∑

k=1

Xk. We let Vπε,f
denote the adversary’s view in a random execution of

πε,f . We further assume that adversary never aborts after seeing Xi.

326 B. Alon and E. Omri

Lemma 2 (Vector Game [24, Lemma 4.5]). Let c ∈ N and let r ∈ N be the
number of rounds. Let f : [r]×Z → {−1, 1}c·r2

be a randomized function that on
input (i, y) outputs c · r2 elements from {−1, 1}, each takes the value of 1 with
probability Ber(ε), where ε ∈

[
− 1

2 , 1
2

]
satisfies B̂ins0,ε(0) = B̂insi

(−y). Then:

E
Vπ0,f

[∣∣
∣Δ

(
Vπ0,f

)
− Δ

(
V −

π0,f

)∣
∣
∣
]

= O

(
log3 r

r

)
.

Lemma 3 (Hypergeometric Game [24, Lemma 4.4]). Let w ∈ Z, ε ∈[
− 1

2 , 1
2

]
and let r ∈ N be the number of rounds. Let f : [r]×Z → {0, 1} be a ran-

domized function that on input (i, y) outputs 1 with probability ĤG2s0,w,si
(−y)

and 0 otherwise. Assuming that |w| ≤ c ·
√

log r · s0, for some constant c, then:

E
Vπε,f

[∣∣
∣Δ

(
Vπε,f

)
− Δ

(
V −

πε,f

)∣
∣
∣
]

= O

(
log3 r

r

)
.

Lemma 4 (Ratio Lemma [24, Lemma 4.10]). Let r ∈ N be the number of
rounds, and let ε ∈

[
− 1

2 , 1
2

]
. In the following we let Y0 = 0. Let

Xi :=
{

x ∈ Supp(Xi) : |x| ≤ 4
√

log r · (r − i + 1)
}

and

Yi :=
{

y′ ∈ Supp(Yi−1) : |y′ + 2ε · si−1| ≤ 4
√

log r · si−1

}
.

Assume |ε| ≤ 2
√

log r
s0

and that for every i ∈ [r −
⌊
log2.5 r

⌋
] and y ∈ Yi, there

exists a set Di,y such that for every x ∈ Xi, and every d ∈ Di,y ∩ Supp(f(i, y +
Xi) | Yi−1 = y,Xi ∈ Xi), it holds that:

Pr[f(i, y + Xi) /∈ Di,y | Yi−1 = y] ≤ 1
r2

and
∣
∣
∣
∣1 − Pr[f(i, y + Xi) = d | Yi−1 = y ∧ Xi = x]

Pr[f(i, y + Xi) = d | Yi−1 = y ∧ Xi ∈ Xi]

∣
∣
∣
∣ ≤ c ·

√
log r

r − i
·
(

1 +
|x|√

r − i + 1

)
,

for some constant c. Then:

E
Vπε,f

[∣∣
∣Δ

(
Vπε,f

)
− Δ

(
V −

πε,f

)∣
∣
∣
]

= O

(
log3 r

r

)
.

Proposition 1 ([24, Proposition 4.6]). For every randomized functions f, g,
and for every ε ∈

[
− 1

2 , 1
2

]
, it holds that

E
Vπε,g◦f

[∣∣
∣Δ

(
Vπε,g◦f

)
− Δ

(
V −

πε,g◦f

)∣
∣
∣
]

≤ E
Vπε,f

[∣∣
∣Δ

(
Vπε,f

)
− Δ

(
V −

πε,f

)∣
∣
∣
]

Almost-Optimally Fair Multiparty Coin-Tossing 327

Proposition 2 ([24, Proposition 4.7]). Let ε ∈
[
− 1

2 , 1
2

]
and f be some random-

ized function. If Pr[Yr ≥ 0] /∈
[

1
r2 , 1 − 1

r2

]
, where r ∈ N is the number of rounds,

then

E
Vπε,f

[∣∣
∣Δ

(
Vπε,f

)
− Δ

(
V −

πε,f

)∣
∣
∣
]

≤ 2
r
.

2.7 An Extension of the Hypergeometric Game

In this section we introduce an extended version of the Hypergeometric game
(Lemma 3), presented in [24]. More specifically, we let the adversary see a con-
stant number of independent samples, each from a different set. Furthermore,
we augment the view of the adversary with all of these sets.

Lemma 5. Let ξ ∈ N be some constant, let w = (w1 . . . , wξ) ∈ Z
ξ, let ε ∈[

− 1
2 , 1

2

]
, and let r ∈ N be the number of rounds. For k ∈ [ξ], let hk : [r] × Z →

{0, 1} be a randomized function that on input (i, y) outputs 1 with probability
ĤG2s0,wk,si

(−y) and 0 otherwise. Assuming that for every k ∈ [ξ], it holds that
|wk| ≤ c

√
log r · s0, for some constant c, then:

E
Vπε,h

[∣∣
∣Δ

(
Vπε,h

)
− Δ

(
V −

πε,h

)∣
∣
∣
]

= O

(
2ξ· log3 r

r

)
,

where h(i, y) = (h1(i, y), . . . , hξ(i, y)).

The proof of Lemma 5 is deferred to the full version of this paper [1].

3 The Multiparty Protocol

In this section, we describe our construction and prove Theorem 1. This result
is formally restated in Sect. 3.3 (as Corollary 1) and proved therein.

In Sect. 3.1, we describe a construction of an m-party coin-tossing protocol
tolerating up to 2/3 corruptions. In Sect. 3.2, we describe the main construction
of an m-party almost optimally fair coin-tossing protocol tolerating up to 3/4
corruptions.

3.1 A Coin-Tossing Protocol for t < 2m/3

The following algorithm, is an extension of the two-party share generator, pre-
sented in [24], to the multiparty case.

Algorithm 5 (MultipartyShareGen<2/3 – HG(ε,m, t)). Let r ∈ N be the
number of rounds.

Input: Number of rounds r, ε = ε(n) ∈
[
− 1

2 , 1
2

]
, the number of parties m, and

an upper bound t on the number of corrupted parties. Denote h = m − t.
Observe that a subset J ⊂ [m] of size 2h − 1, containing all honest parties
has an honest majority.

328 B. Alon and E. Omri

Selecting coins and defenses:
1. For every J ⊂ [m] of size 2h − 1:

(a) Let SJ be a set with 2s0 elements from {−1, 1}, where each element is
sampled according to Ber(ε).

(b) Let AJ
0 be a random subset of SJ of size s0.

(c) Let dJ
0 be 1 if

∑

a∈AJ
0

a ≥ 0, and 0 otherwise .

2. For i = 1 to r:
(a) Sample xi ← Binr−i+1,ε.
(b) For every J ⊂ [m] of size 2h − 1, we let AJ

i be a random subset of SJ of
size si.

(c) For every J ⊂ [m] of size 2h − 1, let dJ
i be 1 if

i∑

k=1

xk +
∑

a∈AJ
i

a ≥ 0, and

0 otherwise .
Sharing the values:
1. For i ∈ [r], let xi[j] be a share of xi in a (t + 1)-out-of-m secret sharing.
2. For i ∈ {0, . . . , r}, j ∈ [m], and J ⊂ [m] of size 2h − 1, let dJ

i [j] be a share
of dJ

i in a h-out-of-(2h − 1) secret sharing.
3. For i ∈ [r], j ∈ [m], J ⊂ [m] of size 2h−1, and j′ ∈ J , let dJ

i [j′, j] be a share
of dJ

i [j′] in a (t + 1)-out-of-m secret sharing, such that party Pj′ is required
in order to recover dJ

i [j′]. This can be done with Construction 4.
Output: Party Pj receives dJ ′

i [j′, j], dJ
0 [j], xi[j] for all i ∈ [r], J, J ′ ⊂ [m] of

size 2h − 1, j ∈ J , and j′ ∈ J ′.

Protocol 6 (Multiparty<2/3 Coin-Toss). Let r ∈ N be the number of rounds.
Let m̂, and t̂ be two constants where m̂ denotes the number of parties, and t̂ is
an upper bound on the number of corrupted parties.

Common input: Number of rounds r and output distribution parameter ε
(jointly reconstructable, possibly unknown to parties).

Private inputs: The private inputs of the parties were given to them by an
oracle computing HG(ε, m̂, t̂) as defined in Algorithm 5. The input of party
Pj for j ∈ [m̂] is xj,dj, where

xj = (x1[j], . . . , xr[j]) and dj = (D0[j],D1[j], . . . Dr[j]) ,

where

Di[j] =
{
dJ

i [j′, j] | J ⊂ [m̂] ∧ |J | = 2h − 1 ∧ j′ ∈ J
}

, for i ∈ [r]

and

D0[j] =
{
dJ
0 [j] | J ⊂ [m̂] ∧ |J | = 2h − 1 ∧ j ∈ J

}
.

Interaction rounds: For i = 1 to r:
(a) Each party Pj sends dJ

i [j′, j] to Pj′ for every j′ �= j and J ⊂ [m̂] of size
2h − 1, such that j′ ∈ J .

(b) The parties reconstruct xi.

Almost-Optimally Fair Multiparty Coin-Tossing 329

Output: The honest parties output 1 if
r∑

i=1

xi ≥ 0, and outputs 0 otherwise .

In case of abort: Let J ⊂ [m̂] be the set of remaining parties. If |J | ≥ t̂ + 1,
then the parties in J go on with the execution of the protocol. Otherwise,
they reconstruct and output dJ ′

i , for the lexicographically first J ′ ⊂ [m̂] of size
2h − 1, such that J ⊆ J ′, and for the largest i for which they have all of the
corresponding shares (for the parties of J).

3.2 A Coin-Tossing Protocol for t < 3m/4

Algorithm 7 (MultipartyShareGen<3/4). Let r ∈ N be the number of
rounds. Let m be a constant representing the number of parties, and let t be
a constant which is a bound on the number of corrupted parties. We denote
h = m − t (i.e., a lower bound on the number of honest parties). In the follow-
ing, we call a subset J ⊂ [m] protected if 2h − 1 ≤ |J | ≤ t.

Input: Number of rounds r.
Selecting coins and defenses:

For i = 1 to r:
1. Sample xi ← Binr−i+1.

2. Let εi ∈
[
− 1

2 , 1
2

]
be such that B̂insi,ε

(
−

i∑

k=1

xk

)
= B̂ins0,εi

(0).

3. For every protected J ⊂ [m], sample dJ
i ← HG(εi, |J | , t − m + |J |).

Sharing the values:
1. For i ∈ [r], let xi[j] be a share of xi in a (t + 1)-out-of-m secret sharing.
2. For i ∈ [r], j ∈ [m], and a protected J ⊂ [m], let dJ

i [j] be a share of dJ
i in a

(t − m + |J | + 1)-out-of-|J | secret sharing.
3. For i ∈ [r], j ∈ [m], a protected J ⊂ [m], and j′ ∈ J , let dJ

i [j′, j] be a share
of dJ

i [j′] in a (t + 1)-out-of-m secret sharing, such that party Pj′ is required
in order to recover dJ

i [j′]. This can be done with Construction 4.
Output: Party Pj receives dJ

i [j′, j], xi[j] for every i ∈ [r], J ⊂ [m], and j′ ∈ J .

We are now ready to describe the actual multiparty coin-tossing protocol.
We remark that the protocol is defined in the fail-stop model, where corrupted
parties must follow the prescribed protocol, unless they decide to prematurely
abort the execution at some point. This is done for the sake of simplicity of
presentation and compiling the following protocols so that they tolerate any
malicious behavior is done by standard techniques, using signatures.

Protocol 8 (Multiparty<3/4 Coin-Toss).

Common input: Number of rounds r.
Preprocessing: Parties run a secure with identifiable abort implementation of

Algorithm 7 to obtain their respective outputs. If an abort occurred during the
execution, then the remaining parties restart the protocol without the aborting
parties.

Interaction rounds: For i = 1 to r:

330 B. Alon and E. Omri

(a) Each party Pj sends dJ
i [j′, j] to Pj′ for every j′ �= j and every protected

J ⊂ [m] such that j′ ∈ J .
(b) The parties reconstruct xi.

Output: The honest parties output 1 if
r∑

i=1

xi ≥ 0, and outputs 0 otherwise .

In case of abort: Let J ⊂ [m] be the set of remaining active parties. If |J | ≥
t+1, then the parties in J continue with the execution of the protocol. Assume
that |J | ≤ t. If the abort happened before the execution of Algorithm 7, then
the parties run a secure with identifiable abort implementation of Algorithm 5
to obtain their respective outputs, and they execute Protocol 6. If the abort
happened during the interaction rounds, then the parties execute Protocol 6
with dJ ′

i [j] as the private input for Pj, for the lexicographic first J ′ ⊂ [m] such
that J ⊆ J ′, and for the largest i for which they have all of the corresponding
shares.4

3.3 Stating the Main Results

Theorem 9. Let m and t be two constants such that t < 3m/4. Assuming OT
exists, then for every r ∈ N, Protocol 8 is an r-round m-party O

(
22

m · log3 r
r

)
-

secure coin-tossing protocol tolerating any fail-stop adversary that corrupts
up to t parties, in the

(
MultipartyShareGen<3/4,MultipartyShareGen<2/3

)
-

hybrid model (guaranteeing security with identifiable abort).

Corollary 1. Let n be the security parameter, and let m and t be two con-
stants, such that t < 3m/4. Assuming OT exists, then for every polynomial
r = r(n), there exists an r-round m-party O

(
22

m · log
3 r

r

)
-secure coin-tossing

protocol, against any PPT adversary corrupting up to t parties.

In order to prove Theorem 9 we first need to show that Protocol 6 is secure.
The security of Protocol 6 by itself does not suffice, as in Protocol 8 after an
abort, the adversary’s view contains some additional information, and so, the
following Lemma states that the additional information won’t help him to bias
the outcome.

Lemma 6. Let ε ∈
[
− 1

2 , 1
2

]
, and let m̂ and t̂ be two constants, such that

t̂ < 2m̂/3. Then for every r ∈ N, Protocol 6 is an r-round m̂-party(
t̂, O

(
22

m · log
3 r

r

))
-unbiased ε-coin-toss protocol tolerating any fail-stop adver-

sary, corrupting up to t̂ parties. Moreover, the above holds even when the adver-
sary gets ε as an auxiliary input.

4 Note that in the case where |J | ≤ 2h − 1, there is an honest majority, and so, in
MultipartyShareGen<3/4 we could have given them a common bit reconstruct with
full security. We decided to instruct the parties to execute Protocol 6 for the sake of
simplicity.

Almost-Optimally Fair Multiparty Coin-Tossing 331

The proof of Lemma 6 is deferred to the final version of this paper [1]. We
now use it in combination with the results of [24] to prove Theorem 9.

Proof of (Theorem 9). Assume without loss of generality that r ≡ 1 mod 4
(otherwise, we set the number of rounds to be the largest r′ < r such that
r′ ≡ 1 mod 4). Hence, si(r) is odd, and the output of the parties in an honest
execution (without aborts) is a uniform bit. We also assume that r is larger
than some constant, which will be determined by the analysis, as otherwise the
theorem holds trivially.

Let A be a fail-stop adversary and let C ⊂ [m] be the set of parties that A
corrupts. By assumption, it holds that |C| < 3m/4. Let V be the view of the
adversary A in a random execution of Protocol 8. For a round I ∈ [r]×{(a), (b)}
in the outer protocol, let VI be the view of the adversary in round I and let
V −

I be it’s view without the abort (if happened). We show that the protocol is(
t, O

(
22

m · log
3 r

r

))
-unbiased, i.e., we show that:

E
V

[∣∣Δ (V) − Δ
(
V −)∣∣] = O

(
22

m · log3 r

r

)
. (1)

Applying Lemma 1 to Eq. (1) yields that the protocol is(
|C|, O

(
22

m · log
3 r

r

)
+ neg(n)

)
-secure. We next prove the correctness of Eq. (1).

We need to analyze the gain of the adversary by prematurely aborting the
execution of the protocol. Recall that to prematurely abort the execution of
the outer protocol, the adversary needs to instruct at least m − t parties to
abort. Otherwise, the remaining active parties are instructed to go on as usual,
and indeed, by the properties of the secret sharing scheme, they are able to go
through with reconstructing their appropriate secrets. Namely, upon receiving
(in Step a of round i) shares dJ

i [j, j′] from at least t parties Pj′ , party Pj is
able to reconstruct dJ

i [j] (using its own share of it). Similarly, upon receiving (in
Step b of round i) shares xi[j′] from at least t parties Pj′ , party Pj is able to
reconstruct xi.

Assume an abort occurred before the interaction rounds. Moreover, we
assume that at most t parties remain active. Then by the description of the proto-
col, the parties are instructed to run a secure with identifiable abort implementa-
tion of Protocol 6, and there is no bias in the samples. Then Δ(V) = Δ(V −) = 1

2 ,
which yields no advantage to the adversary.

Assume an abort occurred during the interaction rounds. Let I = (i, (·)) be
the first round for which there is an abort and there are at most t active parties
remaining. We define two adversaries A(a) and A(b) as follows: A(a) and A(b) act
exactly as does A, until round I, in which A decided to abort. If I = (i, (a)),
then A(a) aborts at (i, (a)), and A(b) completes the execution honestly without
aborting. If I = (i, (b)), then A(a) completes the execution honestly without
aborting, and A(b) aborts at (i, (b)). Let V

(a)
I and V

(b)
I be the view of A(a) and

A(b), respectively.

332 B. Alon and E. Omri

Assume that I = (i, (a)):
The view of the adversary A(a) consists of:

{x1, x2 . . . xi−1} and DC
i ,

where

DC
i =

{
dC′

k : |C′ ∩ C| > t − m + |C′| ∧ k ≤ i
}

,

is the set of all the defenses that the adversary can see up to and including
round i. In addition, the adversary A(a) sees many shares that are useless to
it. Specifically, the adversary A(a) holds shares of two different types. The first
type are shares of the elements in its view that A(a) completely reconstructed
(i.e., those specified above). This type of shares are useless to A(a), as they were
chosen independently of all other information. The second type are shares of the
defense values of other sets that A(a) cannot reconstruct (since it sees at most t
such shares). This type of shares are useless to A(a) by the properties of secret
sharing schemes. We thus, disregard these two types of shares, and continue
with the analysis as if the view of A(a) consists only of the random coins and
of DC

i . Formally, the view of the adversary A(a) may contain only part of DC
i ,

however, an adversary with more information can always emulate one with less
information by simply disregarding parts of its view.

Each dC′
k is a vector, which consists of O

(
r2

)
elements from {−1, 1}, where

the elements are sampled according to Ber(εk), where εk satisfies B̂ins0,εk
(0) =

B̂insk

(
−

k∑

l=1

xl

)
. As DC

i has O
(
r2

)
bits in total, Lemma 2 tell us that:

E
V

(a)
I

[∣∣
∣Δ

(
V

(a)
I

)
− Δ

(
V

(a)−
I

)∣
∣
∣
]

= O

(
log3 r

r

)
, (2)

Assume that I = (i, (b)):
The view of the adversary A(b) consists of:

{x1, x2 . . . xi} and DC
i ,

As in the previous case, we disregard the other shares that A(b) sees. Since the
defenses are sampled independently, given xi, and since the expectation of each
dC′

i is exactly the game value given x1, . . . xi, the adversary gains nothing by
aborting in this rounds.

Combining the two cases yields the bound on the maximum bias A can do
in round I:

E
VI

[∣∣Δ (VI) − Δ
(
V −

I

)∣∣]

= E
V

(a)
I

[∣∣
∣Δ

(
V

(a)
I

)
− Δ

(
V

(a)−
I

)∣
∣
∣
]

+ E
V

(b)
I

[∣∣
∣Δ

(
V

(b)
I

)
− Δ

(
V

(b)−
I

)∣
∣
∣
]

= O

(
log3 r

r

)
.

Almost-Optimally Fair Multiparty Coin-Tossing 333

In order the conclude the proof of security we need to show that the remaining
corrupted parties can’t bias the outcome by more than O

(
log3 r

r

)
. Let J ⊂ [m] be

the set of the remaining parties , let m̂ = |J |, and let h = m−t be a lower bound
on the number of honest parties. Since, at least h parties aborted, it follows that
there are at most t̂ := m̂ − h corrupted parties in J . By assumption, t < 3m

4 ,
and hence, t̂ < m̂ − m

4 . Since m̂ ≤ t < 3m
4 , it holds that t̂ < m̂ − m̂

3 = 2m̂
3 .

Therefore by Lemma 6 it holds that:

E
Vinner

[∣∣Δ (Vinner) − Δ
(
V −
inner

)∣∣] = O

(
22

m · log3 r

r

)
, (3)

where Vinner is the view of A in Protocol 6, with εi included. Note that Lemma 6
assumes that the adversary’s view contains only εi as auxiliary input. However,
Eq. (3) still holds, as the rest of the view is independent of VI , and give no
information to the adversary. ��

3.3.1 Proof of Corollary 1. We next sketch the proof of Corollary 1.

Proof Sketch of Corollary 1. We adjust Protocols 6 and 8, so that each message
that any of the parties ever needs to send is signed, and all other parties verify
this signature upon receiving this messages. If at some point in the execution,
party P broadcasts a message that is not properly signed, then, all parties treat
this as if P has aborted the computation and is no longer active. This is done
similarly to the way presented in [8]. Towards this end, Algorithm 7 is changed
so that for every round i, every two parties Pj , Pj′ , and every appropriate subset
J , both xi[j] and dJ

i [j] are signed. In addition, let σ(i, J, j′) be the signature
attributed to dJ

i [j′], then, dJ
i [j′, j] is redefined to be a share of

(
dJ

i [j′], σ(i, J, j′)
)

in a (t + 1)-out-of-m secret sharing, such that party Pj′ is required in order to
recover dJ

i [j′]. Finally, dJ
i [j′, j] is also signed.

We further modify Algorithm 7 so that for every i ∈ [r], the computation of
εi (see Item 2) can be done efficiently, similarly to the way done in [24]. Observe
that εi is only used to sample O

(
r2

)
independent bits, hence it can be efficiently

estimated with ε̃i, such that the statistical difference between the samples is
bounded by 1

r2 . It follows that the adjusted Protocol 8 is a r-round, m-party

O
(
22

m · log3 r
r + r

r2

)
-secure coin-tossing protocol against any PPT adversary.

Finally, similarly to [8], the modified (efficient) functionality is replaced by a
secure with identifiable abort protocol that runs in a constant number of rounds.
As explained in [8], this can be done using (a variation on) the protocol of [32].

Acknowledgements. We are grateful to Iftach Haitner and Amos Beimel for useful
conversations.

References

1. Alon, B., Omri, E.: Almost-optimally fair multiparty coin-tossing with
nearly three-quarters malicious (2016). http://omrier.wixsite.com/eran-omri/
almost-opt-fair-multiparty-coin-tos. Full version of this paper

http://omrier.wixsite.com/eran-omri/almost-opt-fair-multiparty-coin-tos
http://omrier.wixsite.com/eran-omri/almost-opt-fair-multiparty-coin-tos

334 B. Alon and E. Omri

2. Asharov, G.: Towards characterizing complete fairness in secure two-party compu-
tation. In: Lindell, Y. (ed.) TCC 2014. LNCS, vol. 8349, pp. 291–316. Springer,
Heidelberg (2014)

3. Asharov, G., Lindell, Y., Rabin, T.: A full characterization of functions that imply
fair coin tossing and ramifications to fairness. In: Sahai, A. (ed.) TCC 2013. LNCS,
vol. 7785, pp. 243–262. Springer, Heidelberg (2013)

4. Asharov, G., Beimel, A., Makriyannis, N., Omri, E.: Complete characterization
of fairness in secure two-party computation of Boolean functions. In: Dodis, Y.,
Nielsen, J.B. (eds.) TCC 2015, Part I. LNCS, vol. 9014, pp. 199–228. Springer,
Heidelberg (2015)

5. Aumann, Y., Lindell, Y.: Security against covert adversaries: efficient protocols
for realistic adversaries. In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp.
137–156. Springer, Heidelberg (2007). doi:10.1007/978-3-540-70936-7 8

6. Averbuch, B., Blum, M., Chor, B., Goldwasser, S., Micali, S.: How to implement
Bracha’s O(log n) Byzantine agreement algorithm (1985, Unpublished manuscript)

7. Beimel, A., Lindell, Y., Omri, E., Orlov, I.: 1/p-secure multiparty computation
without honest majority and the best of both worlds. In: Rogaway, P. (ed.)
CRYPTO 2011. LNCS, vol. 6841, pp. 277–296. Springer, Heidelberg (2011)

8. Beimel, A., Omri, E., Orlov, I.: Protocols for multiparty coin toss with dishon-
est majority. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 538–557.
Springer, Heidelberg (2010)

9. Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems for non-
cryptographic fault-tolerant distributed computation (extended abstract). In: Pro-
ceedings of the 29th Annual Symposium on Foundations of Computer Science
(FOCS), pp. 1–10 (1988)

10. Berman, I., Haitner, Tentes, A.: Coin flipping of any constant bias implies one-way
functions. In: Symposium on Theory of Computing, STOC 2014, New York, NY,
USA, 31 May - 03 June 2014, pp. 398–407 (2014)

11. Blum, M.: Coin flipping by telephone. In: Advances in Cryptology - CRYPTO
1981, pp. 11–15 (1981)

12. Blum, M.: Coin flipping by telephone a protocol for solving impossible problems.
SIGACT News 15(1), 23–27 (1983)

13. Canetti, R.: Security and composition of multiparty cryptographic protocols. J.
Cryptol. 13(1), 143–202 (2000)

14. Cleve, R.: Limits on the security of coin flips when half the processors are faulty.
In: Proceedings of the 18th Annual ACM Symposium on Theory of Computing
(STOC), pp. 364–369 (1986)

15. Cleve, R., Impagliazzo, R.: Martingales, collective coin flipping and discrete control
processes (1993, Manuscript)

16. Dachman-Soled, D., Lindell, Y., Mahmoody, M., Malkin, T.: On the black-box
complexity of optimally-fair coin tossing. In: Ishai, Y. (ed.) TCC 2011. LNCS, vol.
6597, pp. 450–467. Springer, Heidelberg (2011)

17. Dachman-Soled, D., Mahmoody, M., Malkin, T.: Can optimally-fair coin tossing
be based on one-way functions? In: Lindell, Y. (ed.) TCC 2014. LNCS, vol. 8349,
pp. 217–239. Springer, Heidelberg (2014)

18. Goldreich, O.: Foundations of Cryptography: Volume 2, Basic Applications.
Cambridge University Press, New York (2009)

19. Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game or a com-
pleteness theorem for protocols with honest majority. In: STOC 19, pp. 218–229
(1987)

http://dx.doi.org/10.1007/978-3-540-70936-7_8

Almost-Optimally Fair Multiparty Coin-Tossing 335

20. Gordon, S.D., Katz, J.: Partial fairness in secure two-party computation. In:
Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 157–176. Springer,
Heidelberg (2010)

21. Gordon, S.D., Katz, J.: Partial fairness in secure two-party computation. J. Cryp-
tol. 25(1), 14–40 (2012)

22. Gordon, S.D., Hazay, C., Katz, J., Lindell, Y.: Complete fairness in secure two-
party computation. In: Proceedings of the 40th Annual ACM Symposium on The-
ory of Computing (STOC), pp. 413–422 (2008)

23. Haitner, I., Omri, E.: Coin flipping with constant bias implies one-way functions. In:
Proceedings of the 52nd Annual Symposium on Foundations of Computer Science
(FOCS), pp. 110–119 (2011)

24. Haitner, I., Tsfadia, E.: An almost-optimally fair three-party coin-flipping protocol.
In: Symposium on Theory of Computing, STOC 2014, New York, NY, USA, 31
May - 03 June 2014, pp. 408–416 (2014). http://www.cs.tau.ac.il/∼iftachh/papers/
3PartyCF/QuasiOptimalCF Full.pdf

25. Haitner, I., Nguyen, M., Ong, S.J., Reingold, O., Vadhan, S.: Statistically hiding
commitments and statistical zero-knowledge arguments from any one-way function.
SIAM J. Comput. 39(3), 1153–1218 (2009)

26. Ishai, Y., Ostrovsky, R., Zikas, V.: Secure multi-party computation with identifiable
abort. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014, Part II. LNCS, vol. 8617,
pp. 369–386. Springer, Heidelberg (2014)

27. Katz, J.: On achieving the “best of both worlds” in secure multiparty computation.
In: STOC07, pp. 11–20 (2007)

28. Maji, H.K., Prabhakaran, M., Sahai, A.: On the computational complexity of coin
flipping. In: Proceedings of the 51st Annual Symposium on Foundations of Com-
puter Science (FOCS), pp. 613–622 (2010)

29. Makriyannis, N.: On the classification of finite Boolean functions up to fairness.
In: Abdalla, M., De Prisco, R. (eds.) SCN 2014. LNCS, vol. 8642, pp. 135–154.
Springer, Heidelberg (2014)

30. Moran, T., Naor, M., Segev, G.: An optimally fair coin toss. In: Reingold, O. (ed.)
TCC 2009. LNCS, vol. 5444, pp. 1–18. Springer, Heidelberg (2009)

31. Naor, M.: Bit commitment using pseudorandomness. J. Cryptol. 4(2), 151–158
(1991). Preliminary version in CRYPTO 1989

32. Pass, R.: Bounded-concurrent secure multi-party computation with a dishonest
majority. In: Proceedings of the 36th Annual ACM Symposium on Theory of Com-
puting (STOC), pp. 232–241 (2004)

33. Shamir, A.: How to share a secret. Commun. ACM 22(11), 612–613 (1979)

http://www.cs.tau.ac.il/~iftachh/papers/3PartyCF/QuasiOptimalCF_Full.pdf
http://www.cs.tau.ac.il/~iftachh/papers/3PartyCF/QuasiOptimalCF_Full.pdf

Binary AMD Circuits from Secure Multiparty
Computation

Daniel Genkin1,2(B), Yuval Ishai1,3, and Mor Weiss1

1 Technion, Haifa, Israel
{danielg3,yuvali,morw}@cs.technion.ac.il

2 Tel Aviv University, Tel Aviv, Israel
3 UCLA, Los Angeles, USA

Abstract. An AMD circuit over a finite field F is a randomized arith-
metic circuit that offers the “best possible protection” against additive
attacks. That is, the effect of every additive attack that may blindly add
a (possibly different) element of F to every internal wire of the circuit
can be simulated by an ideal attack that applies only to the inputs and
outputs.

Genkin et al. (STOC 2014, Crypto 2015) introduced AMD circuits
as a means for protecting MPC protocols against active attacks, and
showed that every arithmetic circuit C over F can be transformed into
an equivalent AMD circuit of size O(|C|) with O(1/|F|) simulation error.
However, for the case of the binary field F = F2, their constructions
relied on a tamper-proof output decoder and could only realize a weaker
notion of security.

We obtain the first constructions of fully secure binary AMD circuits.
Given a boolean circuit C and a statistical security parameter σ, we con-
struct an equivalent binary AMD circuit C′ of size |C| · polylog(|C|, σ)
(ignoring lower order additive terms) with 2−σ simulation error. That is,
the effect of toggling an arbitrary subset of wires can be simulated by
toggling only input and output wires.

Our construction combines in a general way two types of “sim-
ple” honest-majority MPC protocols: protocols that only offer security
against passive adversaries, and protocols that only offer correctness
against active adversaries. As a corollary, we get a conceptually new
technique for constructing active-secure two-party protocols in the OT-
hybrid model, and reduce the open question of obtaining such protocols
with constant computational overhead to a similar question in these sim-
pler MPC models.

Keywords: Algebraic Manipulation Detection · AMD circuits · Secure
multiparty computation

1 Introduction

In this paper we give the first construction of boolean circuits which are secure
against attacks that can toggle an arbitrary subset of the wires, in the sense that
c© International Association for Cryptologic Research 2016
M. Hirt and A. Smith (Eds.): TCC 2016-B, Part I, LNCS 9985, pp. 336–366, 2016.
DOI: 10.1007/978-3-662-53641-4 14

Binary AMD Circuits from Secure Multiparty Computation 337

every such attack is equivalent to attacking only the inputs and outputs of the
circuit. We begin with a short overview of the problem and related background.

An Algebraic Manipulation Detection (AMD) code [3] over a finite field F is a
randomized coding scheme that offers the best possible protection against addi-
tive attacks, namely attacks that can blindly add a fixed (but possibly different)
element from F to every entry of the codeword. Since an attacker can destroy
all information by adding a random field element to every symbol, the best one
can hope for is to detect errors with high probability, rather than correct them.

An analogous goal of protecting computations against additive attacks was
recently considered by Genkin et al. [11]. This goal is captured by the notion
of an AMD circuit, a randomized arithmetic circuit which offers the best possi-
ble protection against additive attacks that may add a (possibly different) field
element to every wire. Since the adversary can legitimately attack input and out-
put wires, the best one can hope for is to limit the adversary to these inevitable
attacks. That is, in an AMD circuit the effect of every additive attack that may
apply to all internal wires in the circuit can be simulated by an ideal attack that
applies only to the inputs and outputs. Combining such AMD circuits with a
standard AMD code, one can also protect the inputs and outputs by employing
small tamper-proof input encoder and output decoder.

The study of AMD circuits in [11] was motivated by the observation that in
the simplest information-theoretic MPC protocols from the literature, that were
only designed to offer protection against passive (i.e., semi-honest) adversaries,
the effect of every active (malicious) adversary corresponds precisely to an addi-
tive attack on the circuit being evaluated. Thus, a useful paradigm for tackling
the difficult goal of protecting against active attacks is to apply such a simple
passive-secure protocol to an AMD-encoded computation. This paradigm seems
quite promising even from a concrete efficiency perspective [10,13].

The main result of [11] is that every arithmetic circuit C over F can be trans-
formed into an equivalent AMD circuit of size O(|C|) with O(1/|F|) simulation
error. This provides poor security guarantees over small fields, and in fact the
construction used to achieve this can be completely broken when applied over the
binary field F = F2. (The natural approach of using an arithmetic circuit over
a large extension field does not apply here, because the computation of field
multiplications is also subject to attacks.) For the binary case, an alternative
construction from [11] relies on the use of a tamper-proof output decoder and
can only realize a weaker notion of security that allows for arbitrary correlations
between the input and the event an attack is detected.

The goal of this work is to remedy this state of affairs and provide fully
secure AMD circuits over small fields, with a primary focus on the binary case.
Binary AMD circuits can be viewed as standard (randomized) boolean circuits
(over the full basis) that are subject to arbitrary toggling attacks: the adversary
may choose to toggle the values of an arbitrary subset of the wires. This seems
quite natural even from a pure fault tolerance perspective and can be viewed
as a strict generalization of the classical “random noise” fault model considered
by von Neumann [20], Dobrushin and Ortyukov [7], and Pippenger [18]. Such a

338 D. Genkin et al.

toggling attack model may not be too far from some real-life scenarios like faults
introduced by faulty hardware or cosmic radiation.

In the context of applications to MPC, the binary case is important because
it enables us to apply the AMD circuits methodology also to natural protocols
that are cast in the OT-hybrid model. These include the simple passive-secure
version of the GMW protocol [12]. In contrast, the MPC applications in [11] for
the case of dishonest majority could only apply to arithmetic extensions of the
GMW protocol that employ an arithmetic extension of OT denoted by OLE.1

Replacing OLE by OT is particularly attractive in light of efficient OT extension
techniques [14,17] that do not apply to OLE.

We obtain the first constructions of fully secure binary AMD circuits. Given
a boolean circuit C and a statistical security parameter σ, we construct an
equivalent binary AMD circuit Ĉ of size |C| · polylog(|C|, σ) (ignoring lower
order additive terms) with 2−σ simulation error. That is, the effect of toggling
an arbitrary subset of wires can be simulated by toggling only input and output
wires.

Our construction combines in a general way two types of “simple” honest-
majority MPC protocols: protocols that only offer security against passive adver-
saries, and protocols that only offer correctness against active adversaries. It
proceeds according to the following steps. First, we use the correct-only MPC
protocol to convert a relatively simple AMD circuit that provides only constant
correctness (i.e., any “potentially harmful” attack is detected with some positive
probability) into one that offers full correctness (i.e., attacks are detected except
with 2−σ probability). However, this notion of correctness is not enough, mainly
because it does not rule out correlations between the input and the event an
attack is detected. We eliminate such correlations generically by distributing the
computation using a passive-secure MPC protocol. The analysis of this step cru-
cially relies on a recent lemma due to Bogdanov et al. [1] that uses the degree of
approximating the OR function by real-valued polynomials to upper bound its
best-case advantage in distinguishing between two distributions that are t-wise
indistinguishable.

As a byproduct, we get a conceptually different technique for constructing
active-secure two-party protocols in the OT-hybrid model from these simpler
building blocks. This technique is appealing because in a sense it counters the
common wisdom that “security” is more than a combination of “correctness”
and “secrecy.” Indeed, our construction shows a general way to obtain full secu-
rity (for MPC protocols in the OT-hybrid model) by only combining one MPC
protocol that guarantees correctness and another that only guarantees secrecy,
namely security in the presence of passive attacks. Moreover, the “correct-
only MPC” component can be instantiated by a trivial protocol in which each
party performs the entire computation locally. (To get the asymptotic efficiency

1 An Oblivious Linear-function Evaluation (OLE) over a field F takes a field element
x ∈ F from Receiver and a pair (a, b) ∈ F

2 from Sender and delivers ax+b to Receiver.
In the case of binary fields, OLE can be realized via a single call to standard (bit-)
OT.

Binary AMD Circuits from Secure Multiparty Computation 339

mentioned above, we need to apply more sophisticated correct-only MPC proto-
cols that offer better efficiency.) This can be compared with the IPS compiler [16],
which also provides a general way of obtaining active-secure protocols in the
OT-hybrid model, but requires an honest-majority MPC protocol that provides
active security (which is strictly stronger than relying on active correctness and
passive security).

In addition to its conceptual appeal, our new methodology also sheds new
light on an intriguing open question about the complexity of secure computa-
tion [15]: Are there active-secure two-party protocols that achieve constant com-
putational overhead? In other words, does the asymptotic multiplicative cost of
protecting against active adversaries have to grow with the level of security?
This question is open even when allowing a trusted source of correlated ran-
domness, and in particular it is open in the OT-hybrid model. The best known
protocols [6] have a polylogarithmic overhead in the security parameter (a result
that we can match using binary AMD circuits). Our work reduces this question
to the same open question in arguably simpler models. Indeed, while our con-
struction involves some additional ad-hoc components (on top of the two types
of MPC protocols discussed above) the additional cost they incur depends only
on the input and output sizes, and not on the size of the computation. Further-
more, our construction also employs AMD codes to encode the entire protocol
transcript, but these can be implemented with constant computational overhead
(see Claim 18 and Corollary 1 in Sect. 6).

1.1 Our Results and Techniques

We now provide more details about our results, and the underlying techniques
(summarized in Fig. 1 below). We begin by defining the notion of additive cor-
rectness, which allows the evaluation of a function f : F

n → F
k in the presence

of an additive attack2 on the circuit computing f .

Definition 1 (Additive correctness; cf. full version of [11], Defini-
tion 4.1). Let ε > 0. We say that a randomized circuit Ĉ : F

n → F
t × F

k is an
ε-additively-correct implementation of a function f : F

n → F
k if the following

holds:

– Completeness. For all x ∈ F
n it holds that Pr[Ĉ(x) = (0t, f(x))] = 1.

– Additive correctness. For any additive attack A there exists ain ∈ F
n,

and aout ∈ F
k, such that for every input x it holds that Pr[ĈA(x) /∈ ERR ∪

{(0t, f(x+ain)+aout)}] ≤ ε, where CA is the circuit obtained by subjecting C
to the additive attack A, and ERR = (Ft\{0t}) × F

k.

We say that Ĉ is an ε-additively-correct implementation of a circuit C if Ĉ is an
ε-additively-correct implementation of the function fC computed by C.

Previous works [10,11] constructed additively correct implementations for
arithmetic circuits over any finite field F, with constant overhead, and ε =
O (1/|F|). In particular, for F = F2 the error is constant.
2 For a formal definition of additive attacks, see Definition 3.

340 D. Genkin et al.

1.1.1 Correctness Amplification via Correct-Only MPC
For any function f , and security parameter σ, we show the first 2−σ-additively-
correct implementation of f , with polylogarithmic blowup:

Theorem 1 (Cf. Theorem11). For any depth-d arithmetic circuit C : F
n →

F
k, and any security parameter σ, there exists a 2−σ-additively-correct imple-

mentation Ĉ of C, where |Ĉ| = |C| · polylog(|C|, σ) + poly(n, k, d, σ).

To prove Theorem 1, we present a general method of amplifying additive
correctness based on “correct-only” MPC protocols. Such protocols enable a
single client, aided by m servers, to evaluate an arithmetic circuit C on its
input, while guaranteeing correctness of the computation in the presence of an
active adversary that corrupts a constant fraction of the servers. Moreover, the
only interaction between the client and servers is in the first and last rounds.

More specifically, for m servers, and some constant c, let π be a d-round
cm-correct MPC protocol, namely correctness holds even if cm servers are cor-
rupted. Let InpEnc,OutDec denote the functions used by the client in the first
and last rounds (respectively) to compute its messages to the servers, and its
output (respectively). Let NextMSG denote the function used by the servers
to compute their messages in each round of the protocol. The naive approach
towards implementing the circuit Ĉ using π is to implement every sub-circuit
(namely, each of NextMSG, InpEnc, and OutDec) using an ε-additively-correct
implementation. This naive approach fails because an additive attack may influ-
ence the computation of all NextMSG functions, which corresponds to actively
corrupting all servers in π, whereas the correctness of the protocol only holds
when at most cm servers are corrupted. Consequently, additive attacks on Ĉ can
be divided into two categories:

1. “Small” Attacks. The sub-circuits of Ĉ that these attacks influence corre-
spond to at most cm servers of π, so by the cm-correctness of π, such attacks
cannot affect the output.

2. “Large” Attacks. The sub-circuits of Ĉ that these attacks affect correspond
to more than cm servers of π. Since each sub-circuit (computing NextMSG) is
implemented using an ε-additively-correct implementation, then except with
probability εcm at least one of these attacks is detected, or their effect on
the computations in the sub-circuits is equivalent to additive attacks on the
inputs and outputs of the sub-circuits.

Additionally, we notice that any additive attack on π consists of sub-attacks of
one of three types:

1. Attacks on communication channels. These attacks only affect the mes-
sages that parties receive in π, but do not modify the NextMSG functions. By
encoding all messages sent in the protocol using an AMD encoding scheme
(and altering InpEnc,NextMSG,OutDec to operate on AMD codewords) we
can guarantee that such attacks are detected with high probability.

2. Attacks on NextMSG functions. These attacks arbitrary modify the
NextMSG function of the corresponding server, but (as noted above) can be

Binary AMD Circuits from Secure Multiparty Computation 341

protected against by replacing all NextMSG functions with their ε-additively-
correct implementations.

3. Attacks on client functions. Since π is correct only as long as the client is
honest, such attacks may arbitrarily affect the outputs. Therefore, to guaran-
tee that such attacks are detected except with negligible probability, InpEnc
and OutDec should be replaced with their 2−σ-additively-correct implementa-
tion. The crucial point here is that since |InpEnc| + |OutDec| is polynomial in
the inputs and outputs, but otherwise independent of |C|, then any efficient
2−σ-additively-correct implementation will do, and the resultant overhead
would still be polylog (m |C|). (We show an example of a 2−σ-additively-
correct implementation in AppendixA.)

Consequently, we implement the circuit Ĉ using π as follows. We first replace
the NextMSG functions of π with the functions NextMSG′ that operate on
AMD codewords, and replace NextMSG′ with its ε-additively correct imple-

mentation, ̂NextMSG′, such that
∣
∣
∣ ̂NextMSG′

∣
∣
∣ = O

(∣∣NextMSG′∣∣), and ε is
constant. Additionally, we replace InpEnc (resp., OutDec) with the function
InpEnc′ (resp., OutDec′) which outputs (resp., takes as input) AMD codewords,
and replace InpEnc′,OutDec′ with their 2−σ-additively correct implementations
̂InpEnc, ÔutDec. Thus, |Ĉ| = | ̂InpEnc| + |ÔutDec| +

∑m
i=1

∑d
j=1 | ̂NextMSGj

i |. We
use an efficient correct-only MPC protocol π (e.g., a slightly simplified ver-
sion of [6]) to guarantee that when m = σ, the multiplicative computational
overhead is only polylog (σ, |C|). (Since we would like the overhead to be sub-
linear in σ, we cannot use a trivial correct-only MPC protocol for evaluat-
ing C on input x.) For this choice of π, |InpEnc| + |OutDec| = poly(n, k),
so | ̂InpEnc| + |ÔutDec| = poly(n, k). Similarly,

∑σ
i=1

∑d
j=1 |NextMSGj

i | =

|C| · polylog(|C|, σ) + poly(n, k, d, σ), so
∑σ

i=1

∑d
j=1 | ̂NextMSGj

i | = |C| ·
polylog(|C|, σ) + poly(n, k, d, σ). (See Sect. 4 for a more complete discussion.)

1.1.2 From Correctness to Security via Passive-Secure MPC
Additive correctness (as guaranteed by Theorem1) does not rule out the possi-
bility that the probability of ERR (due to set flags) is correlated with the inputs
of Ĉ. Thus, additive attacks on additively-correct circuits may leak information
about the inputs to Ĉ, making additive correctness insufficient for applications
to secure multiparty computation (as described in, e.g., [11]) that require that
no such correlations exist. This stronger property is achieved by the following
additive security property which, intuitively, guarantees that any additive attack
on Ĉ is equivalent (up to a small statistical distance) to an additive attack on
the inputs and outputs of the function that Ĉ computes. Formally,

Definition 2 (Additively-secure implementation). Let ε > 0. We say that
a randomized circuit C : F

n → F
k is an ε-additively-secure implementation of a

function f : F
n → F

k if the following holds.

– Completeness. For every x ∈ F
n, Pr [C (x) = f (x)] = 1.

342 D. Genkin et al.

– Additive-attack security. For any additive attack A there exist ain ∈
F

n, and a distribution AOut over F
k, such that for every x ∈ F

n,
SD(CA (x) , f

(
x + ain

)
+ Aout) ≤ ε.

As in the case of additive correctness, previous works [10,11] constructed
additively-secure implementations for arithmetic circuits over any finite field
F, with constant overhead, and ε = O (1/ |F|). Unfortunately, their results and
techniques are of little use in the binary case, since the error is too large. We
present the first additively-secure circuits with negligible error probability over
the binary field. Formally:

Theorem 2 (Cf. Theorem14). For any depth-d arithmetic circuit C : F
n →

F
k, and security parameter σ, there exists a 2−σ-additively-secure implementa-

tion Ĉ of C, where |Ĉ| = |C| · polylog(|C|, σ) + poly(n, k, d, σ).

As in Sect. 1.1.1, the high-level idea is to implement C using an m-party pro-
tocol (in the standard model, namely not in the server-client model), where the
functions computed by the parties are replaced with additively-correct imple-
mentations that operate over AMD encodings. However, since our main concern
now is privacy, and not correctness, we use passive-secure protocols which only
guarantee privacy against a constant fraction c of passively-corrupted parties.
This privacy guarantee allows us to decouple the probability of ERR of the addi-
tively correct circuits from their inputs, resulting in additively secure circuits.

More specifically, the input of the circuit C is shared between the parties
using an additive secret-sharing, and the d-round passive-secure protocol π com-
putes the functionality that reconstructs the input from the shares, evaluates C,
and outputs an additive secret-sharing of the output. The privacy property of π,
together with the secrecy property of the secret-sharing scheme, guarantee that
the joint view of a constant fraction of passively-corrupted parties reveals no
information about the inputs, or outputs, of the computation. As in Sect. 1.1.1,
Ĉ is obtained from π by first replacing all NextMSG functions with the func-
tions NextMSG′ that operate on AMD encodings, and then implementing each

NextMSG′ using a 2−σ-additively-correct implementation ̂NextMSG′ with con-
stant overhead (such as the one from Theorem 1). As Ĉ should emulate C (rather
than output a secret sharing of the output of C), the output is reconstructed
from the outputs of the parties in π by summing their shares, and is then com-
bined with the flags generated by all the additively-correct implementations,
such that if any of the flags were set then the output of Ĉ is random.

Using a union-bound over the additive-correctness property of the additively-
correct implementations, except with probability at most |C| · 2−σ any additive

attack on the ̂NextMSG′ functions either sets a flag, or is equivalent to an attack
on the inputs and outputs of NextMSG′. Except for the inputs, and output, of
Ĉ, the inputs and outputs of the NextMSG′ functions are protected by the AMD
encoding scheme, so by the additive soundness of the AMD encoding scheme,
any attack (except for an attack on the inputs, and output, of Ĉ) will set a flag
with overwhelming probability. Thus, the only additive attacks that do not set

Binary AMD Circuits from Secure Multiparty Computation 343

a flag (with overwhelming probability) are attacks on the inputs and outputs of
Ĉ, which are equivalent to attacks on the inputs and outputs of C. Thus, with
overwhelming probability the execution of π is correct even in the presence of
additive attacks.

It remains to show that the probability of setting a flag in Ĉ, thus causing the
output to be random, is input independent. We use the fact that the probability
that a subset of ̂NextMSG′ implementations set their flags depends only on their
joint inputs and outputs, and distinguish between two types of attacks.

1. “Small” attacks. These attacks attempt to corrupt less than cm parties.
Therefore, the probability that a flag is set depends only on the inputs and
outputs of these parties which, by the privacy of π, and the secrecy of the
secret-sharing scheme, is independent of the inputs of Ĉ.

2. “Large” attacks. These attacks attempt to corrupt more than cm parties,
and so we can no longer use the privacy of π. However, notice that in this
case the output of Ĉ is random if and only if at least one additively-correct
implementation set a flag (regardless of the identity or number of flags that
were set). That is, the output is random if and only if the OR of the flags is
1. Using a recent lemma of [1] (stated as Lemma 1 below), the correlation of
the OR with the input is negligible, because the OR is computed over a large
fraction of the flags.

As for the size of Ĉ, notice that |Ĉ| =
∑m

i=1

∑d
j=1 | ̂NextMSGj

i |. To obtain the
small overhead guaranteed by Theorem 2, we use a cm private (for some constant
c > 0), m-party protocol of [6] in which the total circuit size of all the NextMSG
functions is |C| · polylog(|C|,m) + poly(m,n, k, d, log |C|). Setting m = poly (σ),∑σ

i=1

∑d
j=1 |NextMSGj

i | = |C| · polylog(|C|, σ) + poly(n, k, d, σ), and so if all

the ̂NextMSGj
i are generated using Theorem1, |Ĉ| = |C| · polylog(|C|, σ) +

poly(n, k, d, σ). (See Sect. 5 for a more detailed analysis.)

1.2 On the Difference Between Additive Correctness and Additive
Security

As noted in Sect. 1.1.2, Definition 1 is weaker than Definition 2. In particular,
the correctness guarantee of Definition 1 is insufficient for many MPC applica-
tions, since the probability of ERR (due to set flags) might be correlated with
the inputs, and consequently reveal information regarding the inputs of Ĉ. As
we now show, such correlations exist in many natural constructions of additively
correct implementations (and, in particular, in all additivity correct construc-
tions discussed in this paper as well as the constructions in [10,11]).

As a typical example of correlations between inputs and the probability
of ERR created by additive attacks, consider the simpler case of an AMD
code. Specifically, consider the code which encodes a field element x ∈ F as
(x, v1, · · · , vσ, r1, · · · , rσ), where v1, · · · , vσ ∈R F are uniformly random, and
ri = vi · x for all 1 ≤ i ≤ σ. To decode (x, v1, · · · , vσ, r1, · · · , rσ), the decoder

344 D. Genkin et al.

Fig. 1. Additive security from weak additive correctness (both steps use AMD codes)

verifies that x · vi = ri for all 1 ≤ i ≤ σ. Consider the additive attack that adds
the same arbitrary constant δ �= 0 to all the vi’s. If x = 0 then ri = 0 for every
1 ≤ i ≤ σ, thus the test 0 · (vi + δ) = 0 passes for all i, and decoding succeeds.
However, if x �= 0 then every x · vi = ri test fails except with probability 1/|F|.
Since decoding succeeds only if all tests succeed, decoding fails in this case with
probability at least 1 − 1/|F|σ.

Overall, this attack leaks information regarding the value of x because if
x = 0 then the decoder aborts with probability zero, whereas if x �= 0 then the
decoder aborts with probability almost 1. Similar attacks apply to all additively-
correct constructions presented in this paper, thus requiring the transformation
of Sect. 5.

2 Preliminaries

In the following, F will denote a finite field, n usually denotes the input length, k
usually denotes the output length, d, s denote depth and size, respectively (e.g.,
of circuits, as defined below), and m is used to denote the number of parties.
Vectors will be denoted by boldface letters (e.g., a). If D is a distribution then
X ← D, or X ∈R D, denotes sampling X according to the distribution D. Given
two distributions X,Y , SD (X,Y) denotes the statistical distance between X,Y .

The following lemma regarding k-wise indistinguishable distributions over
{0, 1}n will be used to construct additively-secure circuits.

Lemma 1 (Cf. Claim 3.9 in [1]). Let n, k be positive integers, and X , Y be
k-wise indistinguishable distributions over {0, 1}n. Then

|Pr[(x1, · · · , xn) ← X : ∨n
i=1xi = 1] − Pr[(y1, · · · , yn) ← Y : ∨n

i=1yi = 1]| ≤ 2−Ω(k/
√

n).

Additive Attacks. We follow the terminology of [10].

Binary AMD Circuits from Secure Multiparty Computation 345

Definition 3 (Additive attack). An additive attack A on a circuit C is a
fixed vector of field elements which is independent from the inputs and internal
values of C. A contains an entry for every wire, and every output gate, of C,
and has the following effect on the evaluation of the circuit. For every wire ω
connecting gates a and b in C, the entry of A that corresponds to ω is added
to the output of a, and the computation of the gate b uses the derived value.
Similarly, for every output gate o, the entry of A that corresponds to the wire
in the output of o is added to the value of this output.

Notation 3. For a (possibly randomized) circuit C and for a gate g of C, we
denote by gx the distribution of the output value of g (defined in a natural way)
when C is evaluated on an input x.

Notation 4. Let C be a (possibly randomized) circuit, and A be an additive
attack on C. We denote by Ac,c′ the attack A restricted to the wire connecting
the gates c, c′ of C. Similarly we denote by Aout the restriction of A to all the
outputs of C.3

Encoding Schemes. An encoding scheme E over a set Σ of symbols (called “the
alphabet”) is a pair (Enc,Dec) of algorithms, where the encoding algorithm Enc
is a PPT algorithm that given a message x ∈ Σn outputs an encoding x̂ ∈ Σn̂

for some n̂ = n̂ (n); and the decoding algorithm Dec is a deterministic algorithm,
that given an x̂ of length n̂ in the image of Enc, outputs an x ∈ Σn. Moreover,
Pr [Dec (Enc (x)) = x] = 1 for every x ∈ Σn. We will assume that when n > 1,
Enc encodes every symbol of x separately, and in particular n̂ (n) = n · n̂ (1).

Parameterized Encoding Schemes. We consider encoding schemes in which
the encoding and decoding algorithms are given an additional input 1t, which
is used as a security parameter. Concretely, the encoding length depends also
on t (and not only on n), i.e., n̂ = n̂ (n, t), and for every t the resultant
scheme is an encoding scheme (in particular, for every x ∈ Σn and every
t ∈ N, Pr [Dec (Enc (x, 1t) , 1t) = x] = 1). We call such schemes parameterized.
We will only consider parameterized encoding schemes, and therefore when we
say “encoding scheme” we mean a parameterized encoding scheme.

Algebraic Manipulation Detection (AMD) Encoding Schemes. Infor-
mally, AMD encoding schemes over a finite field F guarantee that additive
attacks on codewords are detected by the decoder with some non-zero prob-
ability:

Definition 4 (AMD encoding scheme, [3,11]). Let F be a finite field, n ∈ N

be an input length parameter, t ∈ N be a security parameter, and ε (n, t) : N×N →
R

+. An (n, t, ε (n, t))-algebraic manipulation detection (AMD) encoding scheme
(Enc,Dec) over F is an encoding scheme with the following guarantees.

– Perfect completeness. For every x ∈ F
n, Pr [Dec (Enc (x, 1t) , 1t) =

(0,x)] = 1.

3 Note that Ac,c′ is a single field element whereas Aout is a vector of field elements.

346 D. Genkin et al.

– Additive soundness. For every 0n̂(n,t) �= a ∈ F
n̂(n,t), and every x ∈ F

n,
Pr [Dec (Enc (x, 1t) + a, 1t) /∈ ERR] ≤ ε (n, t) where ERR = (F\{0}) × F

n, and
the probability is over the randomness of Enc.

Remark 1. It will sometime be useful to represent (Enc,Dec) as families of
arithmetic circuits (instead of polynomial-time algorithms) that are parameter-
ized by the security parameter t. That is, (Enc = {Encn} ,Dec = {Decn}) are
families of arithmetic circuits over F, where Encn : F

n → F
n̂ is randomized,

and Decn : F
n̂ → F × F

n is deterministic. (Here, the security parameter t is
“hard-wired” into the circuits.) Somewhat abusing notation, we use Enc,Dec to
denote both the families of circuits, and the circuits Encn,Decn for a specific n,
omitting the subscript (when n is clear from the context).

We will sometimes need AMD codes with a stronger robustness guarantee
which, roughly speaking, guarantees additive correctness even in the presence of
additive attacks on the internal wires of the encoding procedure, where the ideal
additive attack on the output is independent of the additive attack:

Definition 5 (Robust AMD encoding schemes). Let F be a finite field,
n ∈ N be an input length parameter, n̂ ∈ N be an output length parameter,
t ∈ N be a security parameter, and ε (n, t) : N × N → R

+. We say that an
encoding scheme (Enc,Dec) over F is an (n, n̂, t, ε (n, t))-robust AMD encoding
scheme, if it is an (n, t, ε (n, t))-AMD encoding scheme in which the additive
soundness property is replaced with the following additive robustness property.
Let Enc : F

n → F
n̂, Dec : F

n̂ → F × F
n, then for any additive attack A on Enc

there exists an ideal attack ain ∈ F
n such that for any b ∈ F

n̂, and any x ∈ F
n,

it holds that Pr
[
Dec

(
EncA (x, 1t) + b, 1t

)
/∈ ERR ∪

{(
0,x + ain

)}]
≤ ε, where

ERR = (F\{0}) × F
n, and the probability is over the randomness of Enc.

Secure Multiparty Computation. We recall a few standard definitions that
will be used in subsequent sections.

We view an MPC protocol π as a collection of NextMSG functions. The
protocol proceeds in rounds, where in round j, the description of π contains a
next message function NextMSGj

i of round j for party Pi, defined as follows.
NextMSGj

i takes as input all the messages mj−1
i that Pi received before round j,

its input xi, and its randomness ri; and outputs the messages that Pi sends in
round j. If j is the last round of π, then for every party Pi, NextMSGj

i outputs
the output of Pi in π.

The Client-Server Model. The client-server model (see [2,4,5] for a more
detailed discussion) is a refinement of the standard MPC model in which each
party has one of two possible roles: clients hold inputs and receive outputs; and
servers have no inputs and receive no outputs, but may participate in the com-
putation. Notice that every protocol in the client-server model can be converted
to a protocol in the standard MPC model by asking every party to emulate a
single server and a single client (assuming the protocol has the same number of
clients and servers). See Fig. 2.

Binary AMD Circuits from Secure Multiparty Computation 347

Fig. 2. MPC protocol with a single client and m servers

In the following, we assume that the protocol consists of a single input client,
a single output client, and mS servers. We call such protocols mS-server proto-
cols. We use the simulation-based paradigm, and say that a protocol π in the
client-server model is (s, ε)-secure ((s, ε)-private) if it is secure (up to distance
ε) against all active (passive) adversaries corrupting at most s servers, and no
clients. We assume that the description of a protocol in the client-server model
consists of the following:

1. Input Encoding. A description of a function InpEnc whose input is the input
of the input client, and whose output is the messages that the input client
sends to the servers.

2. Circuit Evaluation. For every server Si, and every round j, a description
of a function NextMSGj

i which specifies the messages that Si sends to all the
servers (to the output client) in round j (in the last round).

3. Output Decoding. A description of a function OutDec whose input is the
messages sent to the output client (from the servers) in the last round, and
whose output is the output of π.

We will use a relaxed notion of security, which we call correct-only MPC.
Intuitively, it guarantees output correctness even in the presence of an active
adversary that corrupts a “small” subset of the servers. This notion relaxes
the standard security notion because it does not guarantee input privacy. We
formalize correct-only MPC as follows, where for a protocol π, and an adversary
Adv, πAdv(x) denotes the outputs (of the clients) in an execution of π on inputs
x in the presence of Adv.

Definition 6. Let f : X → Y be a function, and π be a single client, mS-server
protocol. We say that π (t, ε)-correctly computes f if for every active adversary
Adv corrupting a set T, |T | ≤ t of servers, and every client input x ∈ X, it holds
that Pr

[
f(x) �= πAdv(x)

]
≤ ε.

We say that π t-correctly computes f if it (t, ε)-correctly computes f for
ε = 0.

Remark 2. Notice that any protocol π for t-correctly computing f in the client-
server model can be assumed to be deterministic without loss of generality. This

348 D. Genkin et al.

is because the adversary Adv has no effect on the randomness used by the input
clients. Therefore, any π can be de-randomized by fixing its randomness to some
arbitrary value.

Next, we describe a simple replication-based m-server protocol for
(�m/2	 − 1)-correctly computing a function f .

Theorem 5. Let F be a finite field. Then for every arithmetic circuit C : F
n →

F
k, and m ∈ N, there exists an m-server protocol for (�m/2	 − 1)-correctly com-

puting f . Moreover, the computational complexity (in field operations) of π is
|C| · m.

Proof. The input client replicates the input x among all the servers, who
locally compute zi ← C(x) and send zi to the output client, who outputs
maj{z1, · · · , zm}.
�

We will use the following theorem regarding the existence of correct-only
MPC protocols.

Theorem 6 (Implicit in [6]). Let σ be a security parameter, m ∈ N, F be a
finite field, and C : F

n → F
k be a depth-d arithmetic circuit. Then there exists

a d-round, m-server protocol π that m/10-correctly computes C, where:

– The total circuit size of the input encoding function InpEnc, and the output
decoding function OutDec, is poly(n, k,m).

– The total circuit size of all the NextMSG functions is |C| · polylog(|C|, σ) +
poly(m, d, n, k, log |C|).

– In each round of π, the messages sent by each party contain in total at most
poly(n, k, log |C|) field elements.

3 Circuit Transformations

In this section we describe a few circuit transformations which will be used in
Sects. 4 and 5 to construct additively-correct and additively-secure circuits. At
a high level, these transformations replace a given circuit C over field F with a
new circuit that operates on AMD encodings. We first describe a randomized
gadget that combines and amplifies error flags. This gadget will be used in the
following constructions to combine error flags obtained from AMD decoding of
several codewords.

Construction 1. Let nf ∈ N be an input length parameter, and σ ∈ N be a
security parameter. The flag combining gadget Fcomb : F

nf → F
σ, on input

f1, · · · , fnf
∈ F, operates as follows.

1. Generates nf random vectors r1, · · · , rnf
∈R F

σ.
2. Outputs f ←

∑nf

i=1 ri · fi.

Observation 7. If
(
f1, · · · , fnf

)
�= 0 then Fcomb

(
f1, · · · , fnf

)
�= 0 except with

probability at most 2−σ.

Binary AMD Circuits from Secure Multiparty Computation 349

Next, we describe a circuit transformation Tinter that will be used to replace
intermediate rounds in secure protocols. Intuitively, given a circuit C, the trans-
formed circuit Tinter (C) takes AMD encodings of the inputs of C, decodes them,
uses the flag combining gadget Fcomb of Construction 1 to combine the error flags
generated during decoding, evaluates the circuit C, and outputs AMD encodings
of the output, concatenated with the combined error flag.

Construction 2. Given a circuit C : F
n → F

k, and an AMD encoding scheme
(Enc,Dec) that outputs encodings of length n̂ (n), the circuit Tinter (C) : F

n̂(n) →
F

σ × F
n̂(k), on input (x1, · · · ,xn), operates as follows.

1. For every 1 ≤ i ≤ n, computes (fi,x′
i) ← Dec(xi).

2. Computes (y1, · · · , yk) ← C(x′
1, · · · ,x′

n).
3. Computes f ← Fcomb (f1, · · · , fn).
4. Outputs (f ,Enc(y1), · · · ,Enc(yk)).

Finally, we describe a circuit transformation Tfin that will be used to replace
the output generation rounds. This transformation differs from the transforma-
tion Tinter of Construction 2 only in the fact that it does not encode the outputs.

Construction 3. Given a circuit C : F
n → F

k, and an AMD encoding scheme
(Enc,Dec) that outputs encodings of length n̂ (n), the circuit Tfin (C) : F

n̂(n) →
F

σ × F
k, on input (x1, · · · ,xn), operates as follows.

1. Performs Steps 1–3 of Construction 2, and let (y1, · · · , yk), f denote the out-
puts of Steps 2 and 3, respectively.

2. Outputs (f , y1, · · · , yk).

Finally, we will use the following notation.

Notation 8. Given a circuit C : F
n → F

k, and an AMD encoding scheme
(Enc,Dec) that outputs encodings of length n̂ (n), we use (Enc ◦ C) : F

n → F
n̂(k)

to denote the circuit that on input x ∈ F
n, computes (y1, · · · , yk) ← C (x), and

outputs (Enc (y1) , · · · ,Enc (yk)).

4 Efficient Additive Correctness Using Correct-Only
MPC

In this section we construct a 2−σ-additively-correct circuit with polylog(|C|, σ)
overhead. Specifically, for every depth-d arithmetic circuit C : F

n → F
k

we construct a 2−σ-additively correct implementation Ĉ, where
∣
∣
∣Ĉ

∣
∣
∣ = |C| ·

polylog(|C|, σ) + poly(n, k, d, σ), thus proving Theorem1.
Recall that when Ĉ is constructed from a correct-only MPC protocol π then

each attack on Ĉ can be divided into three “parts”. The first “part” attacks
connecting wires between sub-circuits of Ĉ (these sub-circuits are InpEnc,OutDec
and NextMSG), and we protect against such attacks by having these sub-circuits

350 D. Genkin et al.

operate on AMD codewords. The second “part” attacks the NextMSG functions,
and we protect against such attacks by replacing NextMSG with its ε-additively
correct implementation. Thus, every such attack either affects only few NextMSG
functions, in which case the correctness of π guarantees that it does not affect
the outputs; or it affects many NextMSG functions, in which case ε-additive
correctness guarantees that (except with negligible probability) the attack is
either detected, or corresponds to an additive attack on the inputs and outputs
of NextMSG. (Additive attacks on the inputs and outputs correspond to the
first type of attacks, namely attacks on the connecting wires, which are detected
by the AMD encoding scheme.) The third and final “part” attacks the clients,
and we protect against such attacks by replacing InpEnc,OutDec with their 2−σ-
additively-correct implementations (e.g., Construction 9 and AppendixA). This
is formalized in the following construction, and described in Fig. 3.

Construction 4. Let F be a finite field, C : F
n → F

k be an arithmetic circuit
over F, σ be a security parameter, and π be a d-round, σ-correct m-server protocol
for computing C using only point-to-point channels. We assume (without loss of
generality) that every message sent in π consists of exactly s field elements, for
some s ∈ N. Let (Enc,Dec) be an (s, σ, 2−σ)-AMD encoding scheme that outputs
encodings of length n̂ (s). The circuit Ĉ will use the following ingredients.

1. Input Encoding. Let h denote the number of messages sent by the input
client in the first round, namely InpEnc : F

n → (Fs)h. Let ̂InpEnc : F
n →

F
t′ ×

(
F

n̂(s)
)h

denote the 2−σ-additively correct implementation, with t′ flags,

of the circuit (Enc ◦ InpEnc) : F
n →

(
F

n̂(s)
)h

(as defined in Notation 8).
2. Message Generation. For every 1 ≤ i ≤ m, and 2 ≤ j ≤ d − 1, let g (h)

denote the number of messages received (sent) by the i’th server in round j−1

(j).4 That is, NextMSGj
i : (Fs)g → (Fs)h. Let ̂NextMSGj

i :
(
F

n̂(s)
)g → F

t ×
F

σ ×
(
F

n̂(s)
)h

denote the ε-additively correct implementation, with t flags, of

the circuit Tinter

(
NextMSGj

i

)
:
(
F

n̂(s)
)g → F

σ×
(
F

n̂(s)
)h

(see Construction 2).
3. Output Generation. Let g denote the number of messages received by

the output client in the final round, namely OutDec : (Fs)g → F
k. Let

ÔutDec :
(
F

n̂(s)
)g → F

t′′ × F
σ × F

k denote the 2−σ-additively correct imple-
mentation, with t′′ flags, of the circuit Tfin (OutDec) :

(
F

n̂(s)
)g → F

σ ×F
k (see

Construction 3).
4. Circuit Construction. The circuit Ĉ, on input x ∈ F

n:
(a) Emulates π, with x as the input of the client, and where ̂InpEnc, ̂NextMSGj

i

and ÔutDec of Steps 1–3 above (connected in the natural way) replace
InpEnc, NextMSGj

i and OutDec. That is, for every round 1 ≤ j ≤ d, if
server Si sends a message to server Si′ , then the corresponding output

of ̂NextMSGj
i is wired to the corresponding input of ̂NextMSGj+1

i′ . Denote
the output of the client in the above execution by z.

4 We assume each server transfers its internal state from one round to the next by
sending a message to itself.

Binary AMD Circuits from Secure Multiparty Computation 351

Fig. 3. Components of Construction 4

(b) For every 1 ≤ i ≤ m, and every 1 ≤ j ≤ d, let f ′j
i,1, · · · , f ′j

i,t be the

first t outputs of ̂NextMSGj
i , and let f j

i,1, · · · , f j
i,σ be the next σ outputs of

̂NextMSGj
i . (The f ′j

i,w’s are the flags of the ε-correct implementation, and
the f j

i,w’s are the flags generated during the AMD decoding.)

(c) Let f ′1
1 , · · · , f ′1

t′ be the first t′ outputs of ̂InpEnc. (These are the flags of
the 2−σ-correct implementation.)

(d) Let f ′d
1 , · · · , f ′d

t′′ be the first t′′ outputs of ÔutDec and let fd
1 , · · · , fd

σ be
the next σ outputs of ÔutDec. (The f ′d

i ’s are the flags of the 2−σ-correct
implementation, and the fd

i ’s are the flags generated during the AMD
decoding.)

(e) For every 1 ≤ w′ ≤ σ, compute f ′′
w′ ←

∑m
i=1

∑d−1
j=2

(∑t
w=1 f ′j

i,w·

ri,j,w,w′ +
∑σ

w=1 f j
i,w · ri,j,t+w,w′

)
+

∑t′′

w=1 f ′d
w · r1,d,w,w′ +

∑σ
w=1 fd

w ·

r1,d,t+w,w′ +
∑t′′

w=1 f ′1
w · r1,1,w,w′ where ri,j,w,w′ ∈R F.

(f) Output z +
∑σ

w=1 f ′′
w · r′

w where r′
w ∈R F

k.

We now analyze the properties of Construction 4. The following notation will
be useful.

Notation 9. We denote the ingredients of Construction 4 as follows.

– We use InpEnc′ to denote the circuit (Enc ◦ InpEnc) obtained in Step 1.

352 D. Genkin et al.

– For every 1 ≤ i ≤ m, and 2 ≤ j ≤ d − 1, we use NextMSG′j
i to denote the

circuit Tinter

(
NextMSGj

i

)
obtained in Step 2.

– We use OutDec′ to denote the circuit Tfin (OutDec) obtained in Step 3.

The next theorem shows that Construction 4 produces a 2−Ω(σ)-additively-
correct implementation.

Theorem 10. Let σ be a security parameter, C : F
n → F

k be an arithmetic
circuit, and π be an m-party, d-round protocol for (σ, 2−σ)-correctly computing
C. Then the circuit Ĉ obtained by applying Construction 4 to C is a 2−Ω(σ)-
additively-correct implementation of C.

Proof. The completeness property of Ĉ immediately follows from Construction 4,
the correctness of π, and the perfect completeness of the underlying AMD code.
We now proceed to proving additive correctness. Let A be an additive attack
on Ĉ, and let Aout denote the attacks on the outputs of Ĉ as specified by A. Let
AInpEnc, AOutDec denote the restrictions of A to the wires of ̂InpEnc and ÔutDec
respectively. Additionally, for every 1 ≤ i ≤ m and every 2 ≤ j ≤ d − 1 let

Aj
i denote the restriction of A to ̂NextMSGj

i . Let (ain,1,aout,1) and (ain,d,aout,d)
be the ideal additive attacks on the inputs and outputs of ̂InpEnc and ÔutDec
corresponding to AInpEnc, AOutDec. Similarly, for every 1 ≤ i ≤ m and every
2 ≤ j ≤ d − 1, let ain,j

i , and aout,j
i be the ideal additive attacks on the inputs

and outputs of ̂NextMSGj
i corresponding to Aj

i . Define ain = ain,1 and aout =
aout,d + Aout. We claim that for every input x it holds that

Pr[ĈA(x) /∈ ERR ∪ {(0σ, C(x + ain) + aout)}] ≤ 2−Ω(σ)

where ERR = (Fσ\{0σ}) × F
k.

Indeed, let x ∈ F
n be an input to Ĉ, and define Pbad as the event that

ĈA(x) /∈ ERR ∪ {(0σ, C(x + ain) + aout)}, namely

Pr[ĈA(x) /∈ ERR ∪ {(0σ, C(x + ain) + aout)}] = Pr [Pbad] .

Next, denote by Pf the event that

m∧

i=1

d−1∧

j=2

t∧

w=1

(f ′jA
i,w,x = f jA

i,w,x = 0)
∧ t′

∧

w=1

f ′1
w = 0

∧ t′′
∧

w=1

f ′d
w = 0.

Notice that by construction of Ĉ we obtain that

Pr[ĈA(x) /∈ ERR ∪ {(0σ, C(x + ain) + aout)}] ≤ 2−Ω(σ) + Pr [Pbad ∧ Pf] .

We proceed by defining the event P 1,1
OK as ̂InpEnc

A
(x) ∈ ERR ∪ {InpEnc(x +

ain,1)+aout,1} and P d,d
OK as ÔutDec

A
(yA

x) ∈ ERR∪{OutDec(yA
x +ain,d)+aout,d},

Binary AMD Circuits from Secure Multiparty Computation 353

where yA
x is the random variable corresponding to the messages received by the

client from the servers during the last round of π inside ĈA(x). We notice that
by the 2−σ-correctness of ̂InpEnc and ÔutDec it holds that

Pr [Pbad ∧ Pf] ≤ 2−Ω(σ) + Pr
[
Pbad ∧ Pf ∧ P 1,1

OK ∧ P d,d
OK

]
.

Next, for every round 2 ≤ j ≤ d − 1 and party 1 ≤ i ≤ m, denote by Inj
i

the set of servers which send messages to the ith server during the jth round,

and denote by ain,j
i,i′ the ideal additive attacks on the inputs of ̂NextMSGj

i which
correspond to the message received by server i from server i′ during the jth
round. Similarly, denote by Outji the set of servers to which the ith server sends
messages during the jth round, and denote by aout,j

i,i′ the ideal additive attacks

on the outputs of ̂NextMSGj
i which correspond to the message sent by server i to

server i′ during the jth round. In addition, we assume without loss of generality
that the client sends a message to all the servers during the first round, and
receives a message from all the servers during the last round. Finally, for every
server 1 ≤ i ≤ m, we denote by aout,1

i the restriction of aout,1 to the messages
that the client sends to the ith server during the first round and by ain,d

i the
restriction of ain,d to the messages that the client receives from the ith server
during the dth round. Finally, we denote by ain,2

i the messages received by the
ith server from the client, and we denote by aout,d−1

i′ the messages sent by the
i′th server to the client.

For any 1 ≤ i, i′ ≤ m and 2 ≤ j ≤ d − 1, we say that a tuple (i′, i, j) is
problematic if one of the following three conditions hold.

1. Input Corruption. It holds that ain,2
i + aout,1

i �= 0 and i′ = j = 1.
2. Intermediate Corruption. It holds that ain,j

i,i′ + aout,j−1
i′,i �= 0.

3. Output Corruption. It holds that aout,d−1
i′ + ain,d

i′ �= 0 and i = j = d.

Next, we define the set A = {(i′, i, j) : the tuple (i′, i, j) is problematic} and we
split the proof into two cases.

– Case 1: |A| > σ. Intuitively, in this case a large portion of Ĉ was corrupted.
We show that in this case Ĉ will almost always abort the computation by
setting at least one of the flags to a non zero value, namely the probability of
an incorrect output (i.e., not in ERR ∪ {(0σ, C(x + ain) + aout)}) is low.
We denote the random variables describing the messages exchanged during the
evaluation of ĈA on input x as follows: for every 1 ≤ i ≤ m and 2 ≤ j ≤ d−2,
ŷA,j

i,i′,x corresponds to the message sent by the ith server to the i′th server in
round j; ŷA,1

i,x corresponds to the messages sent by the client to the ith server
in the first round; and ŷA,d−1

i,x corresponds to the message sent by the ith
server to the client in round d − 1.
Next, for any 1 ≤ i ≤ m and 2 ≤ j ≤ d − 1 denote

by P i,j
OK the event that ̂NextMSGA,j

i

((
ŷA,j−1

i′,i,x

)

i′∈Inj
i

)
is in ERR ∪

354 D. Genkin et al.

{(
0t,NextMSG′j

i

((
ŷA,j−1

i′,i,x

)

i′∈Inj
i

+ ain,j
i

)
+ aout,j

i

)}
, where ERR =

({F
t}\{0t}) × F

oj
i , and oj

i is the output length of NextMSG′j
i .

Next, notice that for every tuple (i′, i, j) the randomness of ̂NextMSGA,j
i

is independent from the randomness of ̂NextMSGA,j−1
i′ . Thus, it holds

that Pr
[
P i′,j−1
OK ∧ P i,j

OK

]
≥ (1 − ε)2, yielding Pr

[
P i′,j−1
OK ∧ P i,j

OK

]
≤ 1 −

(1 − ε)2. Next, across all the problematic tuples in A we obtain that
Pr

[
Pbad ∧ Pf ∧ P 1,1

OK ∧ P d,d
OK

]
is at most

(
1 − (1 − ε)2

)σ

+ Pr

[
Pbad ∧ Pf ∧ P 1,1

OK ∧ P d,d
OK ∧(

∃(i′, i, j) ∈ A : (P i′,j−1
OK ∧ P i,j

OK)
)

]

.

Finally, the fact that P i′,j−1
OK ∧ P i,j

OK for some problematic tuple (i′, i, j) ∈ A
implies that there is a non-zero additive attack on the wires between server i′

(or the client in case j = 1) and server i (again, or the client in case j = d)
during the jth round. Thus, by the additive soundness of (Enc,Dec) we obtain
that except with probability 2−σ, (f j

i,1, · · · , f j
i,σ) �= 0, namely Pf does not

hold. Consequently,

Pr

[
Pbad ∧ Pf ∧ P 1,1

OK ∧ P d,d
OK ∧(

∃(i′, i, j) ∈ A : (P i′,j−1
OK ∧ P i,j

OK)
)

]

≤ 2−Ω(σ).

– Case 2: |A| ≤ σ. Notice that having less than σ problematic tuples implies
that for the protocol π inside Ĉ, the additive attack A only corrupted less than
σ parties. In this case we get that except with probability 2−σ, the protocol
π manages to correctly compute C. Thus, in this case

Pr
[
Pbad ∧ Pf ∧ P 1,1

OK ∧ P d,d
OK

]
≤ 2−Ω(σ).
�

We show that for an appropriate choice of parameters, Construction 4 is a
2−σ-additively correct implementation. This is formalized in the next Theorem.

Theorem 11. For any depth-d arithmetic circuit C : F
n → F

k, and any secu-
rity parameter σ, there exists a 2−Ω(σ)-additively-correct implementation Ĉ of C
where |Ĉ| = |C| · polylog(|C|, σ) + poly(n, k, d, σ).

We first state several results regarding AMD encoding schemes, which will be
used in the proof.

Asymptotically optimal constructions of AMD encoding schemes have been
presented by [3,8]. In fact, [3] consider a slightly weaker definition of AMD
codes which guarantees that Pr[Dec(Enc(x) + a) /∈ ERR∪ {(0,x)}] ≤ ε, allowing
for ERR on some inputs and correct output on others (see Definition 7 below).
However, their construction actually possesses the stronger security property of
Definition 4.

Binary AMD Circuits from Secure Multiparty Computation 355

Theorem 12 (Implicit in [3], Corollary 1). For any n, σ ∈ N, and field F,
there exists a pair of families of circuits (Enc,Dec) over F that is an (n, σ, 1

|F|σ)-
AMD encoding scheme with encodings of length n+σ. Moreover, the size of Enc
and Dec is Õ(n + σ).

Theorem 13 (Implicit in [10]). There exists a constant ε ∈ (0, 1) such that
for any field F and arithmetic circuit C : F

n → F
k there exist a circuit Ĉ :

F
n → F × F

k which is an ε-additively-correct implementation of C. Moreover,∣
∣
∣Ĉ

∣
∣
∣ = O (|C|).

Proof (of Theorem11). Apply Construction 4 to C using an AMD code of The-
orem 12, the ε-additively-correct construction from Theorem13 and the σ-server
protocol π from Theorem 6. To obtain the 2−σ-additively-correct implementa-
tion of ̂InpEnc and ÔutDec used in Steps 1 and 3 of Construction 4, we use an
additively-correct circuit compiler CompIn that on input a circuit C outputs a
circuit Ĉ such that

∣
∣
∣Ĉ

∣
∣
∣ = σ · |C| (e.g., Construction 9 of AppendixA). Since

π (σ/10)-correctly computes C we obtain that Ĉ is a 2−Ω(σ)-additively-correct
implementation of C.

Next, we proceed to analyze the size of Ĉ. By the construction of Ĉ we have

that |Ĉ| = | ̂InpEnc| + |ÔutDec| +
∑σ

i=1

∑d
j=1 | ̂NextMSGj

i |. From Theorem 6 we
obtain that |InpEnc| + |OutDec| is poly(n, k, σ). Thus, when InpEnc and OutDec

are implemented using Construction 9 (AppendixA, | ̂InpEnc| + |ÔutDec| is also

poly(n, k, σ). We now proceed to analyze
∑σ

i=1

∑d
j=1 | ̂NextMSGj

i |.
We begin by noticing that in each round of π, each server sends messages

containing a total of poly(n, k, log |C|) field elements. Thus, by having NextMSG′

encode every message sent during the execution of π with the AMD codes from
Theorem 12 we obtain that the circuit size of every NextMSG′ function increases
by an additive term which is poly(n, k, log |C|, σ) compared to NextMSG. Next,
since the overall circuit size of all the NextMSG functions is |C| ·polylog(|C|, σ)+
poly(σ, d, n, k, log |C|) and since | ̂NextMSG| = O(NextMSG′) we obtain that the
total circuit size of all the ̂NextMSG circuits inside Ĉ is also |C| ·polylog(|C|, σ)+
poly(σ, d, n, k, log |C|).
�

Remark 3. The proof of Theorem11 uses an ad-hoc “feasibility” construction
to achieve polylog (σ) overhead. However, it is possible to improve the sim-
plicity, and concrete efficiency, of the construction by replacing the feasibility
construction with simpler gadgets implementing the input encoder and output
decoder. We now outline a more direct construction (which matches the com-
plexity of Theorem11). We begin by observing that for the protocol of Theo-
rem6, we can assume (without loss of generality) that InpEnc(x) = (x, · · · ,x),
and OutDec(y1, · · · ,ym) outputs (0σ,y1) if y1 = · · · = ym, otherwise it out-
puts a random value in (Fσ\{0σ})×F

k. Next, we implement ̂InpEnc and ÔutDec
directly using the following simple gadgets.

356 D. Genkin et al.

– Implementing ̂InpEnc. We define ̂InpEnc(x) = (Enc(x), · · · ,Enc(x)), where
Enc is the encoding procedure of a 2−σ-robust AMD code (as in Definition 5).
The stronger robustness property guarantees the existence of a single consis-
tent value such that (with high probability) every server either decodes to it,
or aborts.

– Implementing ÔutDec. We modify each server to compute a MAC value of
its outputs. In addition, C is evaluated in the clear: z ← C(x), and the output
z is MACed to obtain z̃. Finally, ÔutDec contains a gadget that compares all
MACed outputs of the servers to z̃, and outputs z if the test passes, otherwise
it outputs ERR.5

5 From Additive Correctness to Additive Security via
Passive-Secure MPC

In this section we combine additively-correct circuits with passive-secure MPC
protocols to construct binary additively-secure circuits with a negligible error,
thus proving Theorem2.

Recall that (as described in Sect. 1.1.2) we construct the additively-secure
implementation Ĉ of C from a passive-secure MPC protocol π. More specifically,
the inputs of parties in π are additive secret-shares of the input of C, and π
evaluates the function that: (1) reconstructs the input from the secret shares;
(2) evaluates C; and (3) outputs an additive secret-sharing of the output.

Consequently, every additive attack on Ĉ can be divided into two “parts”.
The first “part” targets the wires connecting different sub-circuits NextMSG of
Ĉ, and we protect against such attacks by having these sub-circuits operate
on AMD codewords. The second “part” modifies the internal computations of
the NextMSG functions, and we protect against such attacks by replacing each
NextMSG with its 2−σ-additively-correct implementation. Thus, the resultant Ĉ
is a 2−Ω(σ)-additively correct implementation of C, where every attack is with
overwhelming probability either “harmless” (namely, corresponds to an additive
attack on the inputs and output of C), or causes the output to be random.
Moreover, as we argued in Sect. 1.1.2, the probability that the output is random
is independent of the inputs.

We start by defining the circuit CAUG, which implements the functionality
computed by π (namely, emulates C on secret shares).

Construction 5. Let C : F
n → F

k be an arithmetic circuit, and m ∈ N. The
circuit CAUG, on inputs (x1, · · · ,xm) ∈ (Fn)m, performs the following.

1. Computes x ←
∑m

i=1 xi, and y ← C(x). (This step reconstructs the input to
C from the secret shares, and evaluates C.)

5 To implement ÔutDec without leaking information regarding the outputs of C, we
compare only the MAC tags generated by the servers (and not the actual outputs).
This necessitates an additional evaluation of C (in the clear) to generate the output.

Binary AMD Circuits from Secure Multiparty Computation 357

2. Generates y1, · · · ,ym−1 ∈ F
n uniformly at random, and compute ym ←

y −
∑m−1

i=1 yi. (y1, · · · ,ym is an additive secret sharing of the output y.)
3. Outputs (y1, · · · ,ym).

Next, we use CAUG to construct the circuit Ĉ, see also Fig. 4.

Construction 6. Let C : F
n → F

k be an arithmetic circuit over a finite field
F, σ be a security parameter, and π be a d-round, t-private, m-party protocol for
computing the circuit CAUG of Construction 5, using only point-to-point channels.
We assume (without loss of generality) that every message sent in π consists of
exactly s field elements, for some s ∈ N. Let (Enc,Dec) be an (s, σ, 2−σ)-AMD
encoding scheme that outputs encodings of length n̂ (s), and Dec outputs σ flags
during decoding. The circuit Ĉ will use the following ingredients.

1. Protecting the first round. For every 1 ≤ i ≤ m, assume that party Pi

sends h messages in the first round, namely NextMSG1
i : F

n → (Fs)h. Let
̂NextMSG1

i : F
n → F

t ×
(
F

n̂(s)
)h

be the 2−σ-additively correct implemen-

tation, with t flags, of the circuit
(
Enc ◦ NextMSG1

i

)
: F

n →
(
F

n̂(s)
)h

(see
Construction 3).

2. Protecting middle rounds. For every 1 ≤ i ≤ m, and 2 ≤ j ≤ d − 1,
assume that in round j − 1 (j) Pi receives (sends) g (h) messages, namely

NextMSGj
i : (Fs)g → (Fs)h. Let ̂NextMSGj

i :
(
F

n̂(s)
)g → F

t × F
σ ×

(
F

n̂(s)
)h

be the 2−σ-additively correct implementation, with t flags, of the circuit
Tinter

(
NextMSGj

i

)
:
(
F

n̂(s)
)g → F

σ ×
(
F

n̂(s)
)h

(see Construction 2).
3. Protecting the last round. For every 1 ≤ i ≤ m assume that Pi receives g

messages in the final round, namely NextMSGd
i : (Fs)g → F

k. Let ̂NextMSGd
i :(

F
n̂(s)

)g → F
t × F

σ × F
k be the 2−σ-additively correct implementation, with

t flags, of the circuit Tfin

(
NextMSGd

i

)
:
(
F

n̂(s)
)g → F

t × F
k (see Construc-

tion 3).
4. Circuit construction. The circuit Ĉ on input x performs the following.

(a) Generate x1, · · · ,xm−1 ∈ F
n uniformly at random and compute xm ←

x −
∑m−1

i=1 xi.

(b) Emulates π with xi as the input of party Pi, where the ̂NextMSGj
i described

in Steps Steps 1–3 (connected in the natural way) replace the NextMSGj
i .

That it, for every round 1 ≤ j ≤ d−1, if party Pi sends a message to party

Pi′ , we wire the corresponding output of ̂NextMSGj
i to the corresponding

input of ̂NextMSGj+1
i′ .

(c) Let zi denote Pi’s output in the above execution. Compute z ←
∑m

i=1 zi.
(d) For every 1 ≤ i ≤ m, and 2 ≤ j ≤ d, let f ′j

i,1, · · · , f ′j
i,t denote the first t

outputs of ̂NextMSGj
i , and f j

i,1, · · · , f j
i,σ denote the t+1 to t+σ outputs of

̂NextMSGj
i . (The f ′j

i,w’s are the flags of the 2−σ-correct implementation,
and the f j

i,w’s are the flags generated during the AMD decoding.)

358 D. Genkin et al.

Fig. 4. Components of Construction 6

(e) For every 1 ≤ i ≤ m let f ′d
i,1, · · · , f ′d

i,t denote the first t outputs of
̂NextMSG1

i . (These are the flags of the 2−σ-correct implementation.)
(f) For every 1 ≤ w′ ≤ σ, compute f ′′

w′ ←
∑m

i=1

∑d
j=2(∑t

w=1 f ′j
i,w · ri,j,w +

∑σ
w=1 f j

i,w · rt+i,j,w

)
+

∑m
i=1

∑t
w=1 f ′1

i,w·ri,d,w, where
ri,j,w ∈R F.

(g) Output z +
∑m

w=1 f ′′
w · r′

w, where r′
w ∈R F

k.

We show that any additive attack on Ĉ is either equivalent to an additive
attack on the inputs and output of C, or will sets flags inside Ĉ to non-zero
values. Moreover, the probability that a flag is set depends only on the additive
attack, and is almost independent of the input. This is captured by the next
theorem.

Theorem 14. For any depth-d arithmetic circuit C : F
n → F

k, and security
parameter σ, there exists a 2−Ω(σ)-additively-secure implementation Ĉ of C,
where |Ĉ| = |C| · polylog(|C|, σ)+ poly(n, k, d, σ). Moreover, Ĉ can be constructed
from C in poly (|C|, σ,m) time.

The proof of Theorem14, which follows the outline presented in Sect. 1.1.2,
is deferred to the full version. Here, we only outline the main points and subtle
issues in the proof. We first show that with overwhelming probability any addi-
tive attack on Ĉ either sets error flags in Ĉ, or is equivalent to an additive attack
on its inputs and output. This is proved in two steps: first, using the additive

correctness property of the ̂NextMSGj
i sub-circuits, except with negligible proba-

bility additive attacks on the internal wires of every ̂NextMSGj
i can be “pushed”

Binary AMD Circuits from Secure Multiparty Computation 359

to an additive attack on its inputs and outputs. Second, we examine the additive

attacks obtained in this manner between every pair of adjacent ̂NextMSGj−1
i′ and

̂NextMSGj
i sub-circuits. If all these attacks cancel out, then the output of Ĉ is

correct. Otherwise, the additive-security property of the AMD code protecting
the communication channels between the ̂NextMSG sub-circuits guarantees that
with overwhelming probability an error flag will be set, causing Ĉ to abort.

Next, we prove that the probability of abort is almost independent of the

inputs of Ĉ. As before, we first “push” additive attacks on the ̂NextMSGj
i sub-

circuits to additive attacks on their inputs and outputs. We then traverse the
layers of Ĉ from the inputs to the output. In each layer j, a flag can be raised

either by a ̂NextMSGj
i sub-circuit (which corresponds to the computation per-

formed by a single party Pi), or by the AMD decoding performed in ̂NextMSGj
i .

In either case, the event that a flag is set depends only on the view of Pi which,
by the t-privacy of π (and of the additive secret sharing of the input), guarantees
that the distributions of the flags when evaluating Ĉ on two different inputs x,x′

are t-wise indistinguishable. Since a single set flag suffices to cause an abort, the
“OR lemma” (Lemma 1) guarantees that the probability of abort is independent
of the inputs to Ĉ.

6 Constant-Overhead AMD Codes and Their
Applications to Constant-Overhead MPC

In this section we use AMD codes to relate the open question of construct-
ing actively-secure two-party protocols with constant computational overhead
to the simpler questions of constructing passively-secure honest-majority MPC
protocols, and correct-only honest-majority MPC protocols, with constant com-
putational overhead. This is done by combining our constructions from Sects. 4
and 5 with a (relaxed) AMD encoding scheme that has constant overhead.

More formally, we say that a secure implementation of a circuit C (e.g.,
an additively-secure implementation of C, or a secure protocol for evaluat-
ing C) has constant computational overhead if its circuit size is O(|C|) +
poly(log |C|, σ, d, n, k) where σ is the security parameter, d is the circuit depth,
and n, k are the input and output lengths, respectively. (The circuit size of a
protocol π is the total circuit size of all the NextMSG functions of π.)

We first construct relaxed AMD encoding schemes with constant overhead,
namely the size of the encoding and decoding circuits is linear in the mes-
sage length. At a high level, relaxed AMD encoding schemes, first considered
by [3], have a weaker soundness guarantee: as long as the output is correct with
high probability, (non-zero) additive attacks are allowed to pass unnoticed. This
should be contrasted with (standard) AMD codes, in which every additive attack
is guaranteed to be detected (with high probability).

360 D. Genkin et al.

Definition 7 (Relaxed AMD encoding scheme [3]). Let F be a finite field,
n ∈ N be an input length parameter, t ∈ N be a security parameter, and ε (n, t) :
N × N → R

+. An (n, t, ε (n, t))-relaxed AMD encoding scheme (Enc,Dec) over F

is an encoding scheme with the following properties.

– Perfect completeness. For every x ∈ F
n,

Pr [Dec (Enc (x, 1t) , 1t) = (0,x)] = 1.
– Relaxed additive soundness. For every 0n̂(n,t) �= a ∈ F

n̂(n,t), and every
x ∈ F

n, Pr [Dec (Enc (x, 1t) + a, 1t) /∈ ERR ∪ {(0,x)}] ≤ ε (n, t) where ERR =
(F\{0}) × F

n, and the probability is over the randomness of Enc.

Roughly speaking, we construct a constant-overhead AMD encoding scheme
by composing a linearly encodable and decodable AMD encoding scheme with
constant additive soundness, with a linearly encodable error-correcting code with
constant rate and relative distance. We will need the following notion of an
[n, k, d]-error-correcting code.

Definition 8. We say that a pair (Enc : F
k → F

n,Dec : F
n → F

k) of determin-
istic circuits is an [n, k, d]-error-correcting code (ECC) over F if any x,y ∈ F

k it
holds that Pr [Dec(Enc(x)) = x] = 1 and that |{i : (Enc(x))i �= (Enc(y))i}| ≥ d.

The following theorem is due to Spielman [19] (see also [9]):

Theorem 15. There exist constants d1 > 1, and d2 > 0, such that for any
field F, and any k ∈ N, there exists a pair of circuits (Enck,Deck) which is a
[�d1k�, k, �d2k]-ECC over F. Moreover, the size of Enck is O(k).

We can now construct an AMD encoding scheme with constant overhead.

Construction 7. Let n be a positive integer, F be a finite field, and (Encn,Decn)
be an [n′, n, d]-ECC over F. In addition, let (Encamd : F → F

k,Decamd : F
k →

F × F be a (1, t, ε(t))-AMD encoding scheme. Consider the circuits Enc : F
n →

F
n+k·n′

and Dec : F
n+k·n′ → F × F

n which are defined as follows.

– The circuit Enc on input x ∈ F
n performs the following:

1. Computes x′ ← Encn(x) and for all 1 ≤ i ≤ n′ computes x̂i ←
Encamd(x′

i).
2. Outputs (x, x̂).

– The circuit Dec on input (x, x̂) performs the following:
1. Computes x′ ← Encn(x).
2. For all 1 ≤ i ≤ n′ computes (fi, y

′
i) ← Decamd(x̂i) and f ′

i ← x′
i − y′

i.
3. In case there exists an 1 ≤ i ≤ n′ such that fi �= 0 or f ′

i �= 0, outputs
(1, 0n). Otherwise, outputs (0,x).

Theorem 16. For any positive integer n, the pair of circuits Enc,Dec of Con-
struction 7 is an (n, t, ε(t)d)-relaxed AMD encoding scheme.

Proof. The correctness property follows directly from the construction. We now
prove the relaxed additive soundness property. Let x ∈ F

n be an input to Enc,
and A = (a,b) ∈ F

n × F
kn′

be an additive attack on the outputs of Enc. We
consider two possible cases.

Binary AMD Circuits from Secure Multiparty Computation 361

1. a = 0. In this case, the additive attack does not attempt to alter the
value x passed from Enc to Dec, so
Pr [Dec (Enc (x, 1t) + (a,b), 1t) /∈ ERR ∪ {(0,x)}] = 0.

2. ai �= 0 for some 1 ≤ i ≤ n. In this case, let I =
{i : (Encn(x + a))i �= (Encn(x))i}. For an additive attack to successfully
cause Dec to output some x̃ �= x, it must be the case that x′A

i =
y′A

i for every i ∈ I, where x′A
i = (Encn(x + a))i, and y′A

i =
Decamd(x̂i + bi) = Decamd ((Encamd((Encn(x))i)) + bi) (the right equality
follows from the definition of x̂). For every i ∈ I, if bi = 0 then by
the correctness of (Encamd,Decamd), Decamd (Encamd((Encn(x)i)) + bi) =
Decamd (Encamd((Encn(x))i)) = (Encn(x))i �= (Encn(x + a))i (the right-
most equality holds since i ∈ I), so Dec outputs ERR (with prob-
ability 1); otherwise the additive soundness of (Encamd,Decamd) guar-
antees that fi �= 0 only with probability ε(t). Moreover, the relative
distance property of the ECC guarantees that |I| ≥ d. Consequently,
Pr [Dec (Enc (x, 1t) + (a,b), 1t) /∈ ERR ∪ {(0,x)}] ≤ ε(t)d.
�

Instantiating Construction 7 with the ECC of Theorem 15, we obtain the
following result.

Theorem 17. For any positive integer n there exists an (n, t, 2−Ω(n))-relaxed
AMD encoding scheme with encoding and decoding circuits of size Θ(n).

Theorem 17 can be used to relate the open question of constructing actively-
secure two-party protocols with constant computational overhead to the sim-
pler questions of constructing passively-secure honest-majority MPC protocols,
and correct-only honest-majority MPC protocols, with constant computational
overhead. We first show that actively secure 2-party MPC protocols in the OT-
hybrid model, with constant computational overhead, can be constructed from
additively-secure circuits with constant computational overhead. Formally,

Claim 18. Assume that any boolean circuit C admits an additively-secure
implementation Ĉ with constant computational overhead. Then there exists an
actively secure 2-party protocol π for evaluating cC in the OT-hybrid model with
constant computational overhead.

Proof (sketch). The work of [11] observed that the effect of an active attack on an
arithmetic version of the passively-secure GMW protocol [12] πGMW (in the OLE-
hybrid model) corresponds to an additive attack on the underlaying circuit being
evaluated. This observation holds in the binary case as well (where π′ is executed
in the OT-hybrid model). Thus, given an additively-secure implementation Ĉ of
C with constant computational overhead, one can construct an actively secure
2-party protocol π for evaluating C in the OT-hybrid model, with constant
computational overhead, simply by running πGMW on Ĉ.
�

The following corollary reduces the task of constructing actively-secure 2-
party protocols in the OT-hybrid model, with constant computational overhead,
to the following simpler tasks:

362 D. Genkin et al.

1. Constructing passively-secure 2-party protocols in the OT-hybrid model with
constant computational overhead.

2. Constructing correct-only (as per Definition 6) 2-party protocols in the OT-
hybrid model with constant computational overhead.

Corollary 1. If there exist both correct-only MPC protocols, and passively
secure MPC protocols, with constant computational overhead, then there is a
secure 2-party protocol in the OT-hybrid model with constant computational over-
head.

Proof (sketch). Let π1, π2 be correct-only, and passively secure, protocols (resp.)
with constant computational overhead. The protocol π for evaluating a circuit
C is obtained by applying Claim18 to the circuit Ĉsec constructed below.
1. Construct an additively-correct implementation Ĉcorr of C (as per Defini-

tion 1) with constant computational overhead using π1, Construction 4, and
the relaxed AMD codes of Theorem 17.

2. Construct an additively-secure implementation Ĉsec of C (as per Definition 2)
with constant computational overhead using π2, Construction 6, and the
relaxed AMD codes of Theorem 17.

By repeating the analysis of Constructions 4 and 6 while replacing the protocol
from [6] with π1, π2, we obtain that π has constant computational overhead.
Regarding the security of π, the only difference from the analysis in Sects. 4 and 5
is that π employs a relaxed AMD encoding scheme (whereas Constructions 4 and
6 used (standard) AMD encoding schemes). However, since AMD codes are used
in these constructions only to protect the communication channels of π1, π2, then
relaxed additive soundness suffices for the analysis since it guarantees that no
attack can alter the values of these messages.
�

Acknowledgments. The first author is a member of the Check Point Institute for
Information Security and was supported by ERC starting grant 259426; by the Blavat-
nik Interdisciplinary Cyber Research Center; by the Israeli Centers of Research Excel-
lence I-CORE program (center 4/11); by the Leona M. & Harry B. Helmsley Charitable
Trust; and by NATO’s Public Diplomacy Division in the Framework of “Science for
Peace”.

The second author was supported by ERC starting grant 259426, ISF grant
1709/14, BSF grant 2012378, a DARPA/ARL SAFEWARE award, NSF Frontier
Award 1413955, NSF grants 1228984, 1136174, 1118096, and 1065276. This mater-
ial is based upon work supported by the Defense Advanced Research Projects Agency
through the ARL under Contract W911NF-15-C-0205. The views expressed are those
of the author and do not reflect the official policy or position of the Department of
Defense, the National Science Foundation, or the U.S. Government.

The third author was supported by ERC starting grant 259426 and a Check Point
Institute for Information Security grant for graduate students and post-doctoral fellows.

A Additive Correctness Without a Decoder: Feasibility

In this section we construct a 2−Ω(σ) additively-correct circuit compiler CompIn

which on input a circuit C outputs a circuit Ĉ such that
∣
∣
∣Ĉ

∣
∣
∣ = σ · |C|.

Binary AMD Circuits from Secure Multiparty Computation 363

We present a method of amplifying security of additively-correct construc-
tions through repetition. The natural approach is for the compiled circuit Ĉ
to contain σ copies of an ε-additively-correct implementation Ĉε that are all
evaluated on the input x. This approach raises two issues. First, an additive
attack A on Ĉ consists of σ additive attacks A1, · · · ,Aσ on the σ copies of Ĉε.
For each copy Ĉε,i, the additive-security of Ĉε guarantees that there exists an
“ideal” additive attack on the inputs and outputs of Ĉε,i such that except with
probability ε, the output of Ĉε,i under the additive attack Ai equals its output
under the corresponding ideal additive attack. However, if different copies are
evaluated under different additive attacks then the corresponding ideal additive
attacks may also be different. This in effect causes different copies to be evalu-
ated on different inputs. To overcome this, before compiling C we first modify it
to take inputs encoded using a robust AMD encoding scheme. Since such codes
guarantee additive correctness with an ideal additive attack that is independent
of the additive attack on the outputs of the encoder, this guarantees the exis-
tence of a single additive attack that simultaneously corresponds to the additive
attacks on all copies.

The second issue is that Ĉ should verify that all copies have the same output,
and this should be performed in the presence of additive attacks. Therefore,
before compiling C we first transform it into a circuit that MACs its output.
Thus, the test comparing the MACs of two inconsistent outputs will fail, even if
it is performed under an additive attack. These alterations of C are summarized
in the following construction of CAUG.

Construction 8 (CAUG, CMAC). Let C : F
n → F

k be an arithmetic circuit over
a finite field F, σ ∈ N be a length parameter, and (Enc,Dec) be an (n+σ, l, σ, ε)-
robust AMD encoding scheme (as in Definition 5). The circuit CAUG : F

l →
F

σ × F
k × (Fσ)k, on input x′ ∈ F

l, performs the following.

1. Compute (f, (u,x)) ← Dec(x′), where f ∈ F, u = (u1, · · · , uσ) ∈ F
σ, and

x ∈ F
n. (Intuitively, x is the input to the original circuit, and u will be used

to MAC the outputs.)
2. Computes z ← C(x), where z ∈ F

k.
3. For all 1 ≤ i ≤ k, computes (z′

i,1, · · · , z′
i,σ) ← (u1 · zi, · · · , uσ · zi). (This step

MACs each output coordinate zi.)
4. Outputs

(
f · s, z, (z′

1,1, · · · , z′
1,σ), · · · , (z′

k,1, · · · , z′
k,σ)

)
where s ∈R F

σ.

The circuit CMAC : F
n × F

σ → F
k × (Fσ)k is obtained from C in a similar

manner, except that its input is (u,x) (“in the clear”), and so it does not perform
the input decoding of Step 1 above, and does not output a list of flags.

Construction 9. Let F be a finite field, σ ∈ N be a security parameter, n ∈ N

be an input length parameter, and k, k′ ∈ N be output length parameters. Let C :
F

n → F
k be an arithmetic circuit over F, and (Enc,Dec)‘ be an (n + σ, l, σ, 2−σ)-

additively robust AMD encoding scheme. Let CMAC and CAUG denote the circuits
obtained by applying Construction 8 to C. Notice that the inputs to CMAC are

364 D. Genkin et al.

x ∈ F
n and a MAC key u ∈ F

σ, and its output is in F
k+σk, whereas the inputs to

CAUG are robust-AMD encodings of u,x, and its output is in F
σ+k+σk. Let ĈAUG

be an ε-additively-correct implementation of CAUG with t flags. The randomized
circuit Ĉ : F

n → F
σ × F

k, on input x ∈ F
n, operates as follows.

1. Generates a random MAC key u ∈ F
σ. (u will be used to MAC the outputs

of C in CAUG.)
2. Computes zMAC ← CMAC (x,u), and we denote zMAC =

(z, (z̃1,1, · · · , z̃1,σ) , · · · , (z̃k,1, · · · , z̃k,σ)). (This step evaluates C once directly,
and MACs the outputs.)

3. Computes (x′,u′) ← Enc ((x,u)). (This step encodes the inputs to CAUG.)
4. For all 1 ≤ i ≤ σ, computes (fi,yi) ← ĈAUG,i (x′,u′), where

ĈAUG,1, · · · , ĈAUG,σ denote σ separate copies of ĈAUG.
5. For all 1 ≤ i ≤ σ, interprets yi as(

(f ′
i,1, · · · , f ′

i,σ), z′
i, (z

′
i,1,1, · · · , z′

i,1,σ), · · · , (z′
i,k,1, · · · , z′

i,k,σ)
)
. (The output of

each copy ĈAUG,i is interpreted as σ flags f ′
i,1, · · · , f ′

i,t indicating whether the
decoding of x′,u′ succeeded, a k-length output, and σ MACs for every output
coordinate.)

6. For all 1 ≤ i, j ≤ σ, computes f ′′
i,j ←

∑k
l=1(z̃l,i − z′

j,l,i)ri,j,l where all the
ri,j,l are generated uniformly from F. (This step compares the MACed out-
puts computed by the ε-additively-correct implementations in Step 3, with the
MACed output computed directly in Step 2. Specifically, f ′′

i,j compares the i’th
MAC of the j’th copy, to the i’th MAC of Step 2.)

7. For all 1 ≤ i ≤ σ, computes f ′′
i ←

∑σ
j=1 f ′′

i,jri,j +
∑σ

j=1 r′
i,jf

′
j,i, where all the

ri,j and r′
i,j are generated uniformly from F. (This step checks that all copies

agree on the i’th MAC, and in addition, that the decoding of the inputs in all
copies succeeded.)

8. For all 1 ≤ i ≤ σ compute gi ←
∑σ

j=1(
∑t

u=1 fj,ur̃i,j,u + f ′′
j r̃′

i,j,u) where all
the r̃i,j and r̃′

i,j are generated uniformly from F. (This step checks that the
computation in the i’th ε-additively-correct implementation succeeded, and in
addition, that the input decoding in all copies succeeded, and they all agree on
all MACs.)

9. Output ((g1, · · · , gσ), z).

In the full version of the paper we prove the following:

Theorem 19. For any field F, arithmetic circuit C : F
n → F

k and security
parameter σ, the circuit Ĉ obtained by applying Construction 9 to C is a 2−Ω(σ)-
additively-correct implementation of C. Moreover, |Ĉ| = poly(σ, |C|).

References

1. Bogdanov, A., Ishai, Y., Viola, E., Williamson, C.: Bounded indistinguishability
and the complexity of recovering secrets. In: Robshaw, M., Katz, J. (eds.) CRYPTO
2016. LNCS, vol. 9816, pp. 593–618. Springer, Heidelberg (2016). doi:10.1007/
978-3-662-53015-3 21

http://dx.doi.org/10.1007/978-3-662-53015-3_21
http://dx.doi.org/10.1007/978-3-662-53015-3_21

Binary AMD Circuits from Secure Multiparty Computation 365

2. Cramer, R., Damg̊ard, I.B., Ishai, Y.: Share conversion, pseudorandom secret-
sharing and applications to secure computation. In: Kilian, J. (ed.) TCC 2005.
LNCS, vol. 3378, pp. 342–362. Springer, Heidelberg (2005)

3. Cramer, R., Dodis, Y., Fehr, S., Padró, C., Wichs, D.: Detection of algebraic manip-
ulation with applications to robust secret sharing and fuzzy extractors. In: Smart,
N.P. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 471–488. Springer, Heidelberg
(2008)

4. Damg̊ard, I.B., Ishai, Y.: Constant-round multiparty computation using a black-
box pseudorandom generator. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621,
pp. 378–394. Springer, Heidelberg (2005)

5. Damg̊ard, I.B., Ishai, Y.: Scalable secure multiparty computation. In: Dwork, C.
(ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 501–520. Springer, Heidelberg (2006)

6. Damg̊ard, I., Ishai, Y., Krøigaard, M.: Perfectly secure multiparty computation and
the computational overhead of cryptography. In: Gilbert, H. (ed.) EUROCRYPT
2010. LNCS, vol. 6110, pp. 445–465. Springer, Heidelberg (2010)

7. Dobrushin, R., Ortyukov, E.: Upper bound on the redundancy of self-correcting
arrangements of unreliable functional elements. Problems Inf. Transm. 23(2), 203–
218 (1977)

8. Dodis, Y., Katz, J., Reyzin, L., Smith, A.: Robust fuzzy extractors and authenti-
cated key agreement from close secrets. In: Dwork, C. (ed.) CRYPTO 2006. LNCS,
vol. 4117, pp. 232–250. Springer, Heidelberg (2006)

9. Druk, E., Ishai, Y.: Linear-time encodable codes meeting the Gilbert-Varshamov
bound and their cryptographic applications. In: ITCS 2014, pp. 169–182. ACM
(2014)

10. Genkin, D., Ishai, Y., Polychroniadou, A.: Efficient multi-party computation: from
passive to active security via secure SIMD circuits. In: Gennaro, R., Robshaw, M.
(eds.) CRYPTO 2015. LNCS, vol. 9216, pp. 721–741. Springer, Heidelberg (2015)

11. Genkin, D., Ishai, Y., Prabhakaran, M., Sahai, A., Tromer, E.: Circuits resilient
to additive attacks with applications to secure computation. In: STOC 2014, pp.
495–504 (2014). Full version in Cryptology ePrint Archive: Report 2015/154

12. Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game or a com-
pleteness theorem for protocols with honest majority. In: STOC 1987, pp. 218–229.
ACM (1987)

13. Ikarashi, D., Kikuchi, R., Hamada, K., Chida, K.: Actively private and correct
MPC scheme in t ≤ n/2 from passively secure schemes with small overhead. IACR
Cryptology ePrint Archive 2014:304 (2014)

14. Ishai, Y., Kilian, J., Nissim, K., Petrank, E.: Extending oblivious transfers effi-
ciently. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 145–161. Springer,
Heidelberg (2003)

15. Ishai, Y., Kushilevitz, E., Ostrovsky, R., Sahai, A.: Cryptography with constant
computational overhead. In: STOC 2008, pp. 433–442 (2008)

16. Ishai, Y., Prabhakaran, M., Sahai, A.: Founding cryptography on oblivious transfer
– efficiently. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 572–591.
Springer, Heidelberg (2008)

17. Keller, M., Orsini, E., Scholl, P.: Actively secure OT extension with optimal over-
head. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9215, pp.
724–741. Springer, Heidelberg (2015). doi:10.1007/978-3-662-47989-6 35

18. Pippenger, N.: On networks of noisy gates. In: FOCS 1985, pp. 30–38. IEEE (1985)

http://dx.doi.org/10.1007/978-3-662-47989-6_35

366 D. Genkin et al.

19. Spielman, D.A.: Linear-time encodable and decodable error-correcting codes. IEEE
Trans. Inf. Theor. 42(6), 1723–1731 (1996)

20. von Neumann, J.: Probabilistic logics and synthesis of reliable organisms from
unreliable components. In: Shannon, C., McCarthy, J. (eds.) Automata Studies,
pp. 43–98. Princeton University Press, Princeton (1956)

Composable Security in the Tamper-Proof
Hardware Model Under Minimal Complexity

Carmit Hazay1, Antigoni Polychroniadou2,
and Muthuramakrishnan Venkitasubramaniam3(B)

1 Bar-Ilan University, Ramat Gan, Israel
carmit.hazay@biu.ac.il

2 Aarhus University, Aarhus, Denmark
antigoni@cs.au.dk

3 University of Rochester, Rochester, NY, USA
muthuv@cs.rochester.edu

Abstract. We put forth a new formulation of tamper-proof hardware
in the Global Universal Composable (GUC) framework introduced by
Canetti et al. in TCC 2007. Almost all of the previous works rely on
the formulation by Katz in Eurocrypt 2007 and this formulation does
not fully capture tokens in a concurrent setting. We address these short-
comings by relying on the GUC framework where we make the following
contributions:
1. We construct secure Two-Party Computation (2PC) protocols for

general functionalities with optimal round complexity and compu-
tational assumptions using stateless tokens. More precisely, we show
how to realize arbitrary functionalities in the two-party setting with
GUC security in two rounds under the minimal assumption of One-
Way Functions (OWFs). Moreover, our construction relies on the
underlying function in a black-box way. As a corollary, we obtain
feasibility of Multi-Party Computation (MPC) with GUC-security
under the minimal assumption of OWFs. As an independent con-
tribution, we identify an issue with a claim in a previous work by
Goyal, Ishai, Sahai, Venkatesan and Wadia in TCC 2010 regard-
ing the feasibility of UC-secure computation with stateless tokens
assuming collision-resistant hash-functions (and the extension based
only on one-way functions).

2. We then construct a 3-round MPC protocol to securely realize arbi-
trary functionalities with GUC-security starting from any semi-
honest secure MPC protocol. For this construction, we require the
so-called one-many commit-and-prove primitive introduced in the
original work of Canetti, Lindell, Ostrovsky and Sahai in STOC 2002
that is round-efficient and black-box in the underlying commitment.
Using specially designed “input-delayed” protocols we realize this
primitive (with a 3-round protocol in our framework) using state-
less tokens and one-way functions (where the underlying one-way
function is used in a black-box way).

Keywords: Secure computation · Tamper-proof hardware · Round
complexity · Minimal assumptions

c© International Association for Cryptologic Research 2016
M. Hirt and A. Smith (Eds.): TCC 2016-B, Part I, LNCS 9985, pp. 367–399, 2016.
DOI: 10.1007/978-3-662-53641-4 15

368 C. Hazay et al.

1 Introduction

Secure Multi-Party Computation (MPC) enables a set of parties to mutually
run a protocol that computes some function f on their private inputs, while pre-
serving two important properties: privacy and correctness. The former implies
data confidentiality, namely, nothing leaks by the protocol execution but the
computed output, while, the later requirement implies that no corrupted party
or parties can cause the output to deviate from the specified function. It is by
now well known how to securely compute any efficient functionality [4,29,50,58]
under the stringent simulation-based definitions (following the ideal/real para-
digm). These traditional results prove security in the stand-alone model, where
a single set of parties run a single execution of the protocol. However, the
security of most cryptographic protocols proven in the stand-alone setting does
not remain intact if many instances of the protocol are executed concurrently
[6,8,48]. The strongest (but also the most realistic) setting for concurrent secu-
rity, known as Universally Composable (UC) security [6] considers the execution
of an unbounded number of concurrent protocols in an arbitrary and adversari-
ally controlled network environment. Unfortunately, stand-alone secure protocols
typically fail to remain secure in the UC setting. In fact, without assuming some
trusted help, UC-security is impossible to achieve for most tasks [8,10,48]. Conse-
quently, UC-secure protocols have been constructed under various trusted setup
assumptions in a long series of works; see [2,7,13,22,41,42,46] for few examples.

One such setup assumption and the focus of this work is the use of tamper-
proof hardware tokens. The first work to model tokens in the UC framework was
by Katz in [42] who introduced the FWRAP-functionality to capture such tokens
and demonstrated feasibility of realizing general functionalities with UC-security.
Most of the previous works in the tamper proof hardware [15,17,22,25,30,42,46]
rely on this formulation. As we explain next, this formulation does not provide
adequate composability guarantees. We begin by mentioning that any notion of
composable security in an interactive setting should allow for multiple protocols
to co-exist in the same system and interact with each other. We revisit the
following desiderata put forth by Canetti, Lin and Pass [11] for any notion of
composable security:

Concurrent multi-instance security: The security properties relating to
local objects (including data and tokens) of the analyzed protocol itself
should remain valid even when multiple instances of the protocol are exe-
cuted concurrently and are susceptible to coordinated attacks against multiple
instances. Almost all prior works in the tamper proof model do not specifi-
cally analyze their security in a concurrent setting. In other words, they only
discuss UC-security of a single instance of the protocol. In particular, when
executing protocols in the concurrent setting with tokens, an adversary could
in fact transfer a token received from one execution to another and none of
the previous works that are based on the FWRAP-functionality accommodate
transfers.

Modular analysis: Security of the larger overall protocols must be deducible
from the security properties of its components. In other words, composing

Composable Security 369

protocols should preserve security in a modular way. One of the main moti-
vations and features in the UC-framework is the ability to analyze a protocol
locally in isolation while guaranteeing global security. This does not only
enable easier design but identifies the required security properties. The cur-
rent framework proposed by Katz [42] does not allow for such a mechanism.

Environmental friendliness: Unknown protocols in the system should not
adversely affect the security of the analyzed protocol. Prior UC-formulation
of tamper proof tokens are not “fully” environment friendly as tokens can-
not be transferred to other unknown protocols. Furthermore, prior works in
the FWRAP-hybrid do not explicitly prove multi-instance security in the pres-
ence of an environment (i.e., they do not realize the multi-versions of the
corresponding complete functionality).

The state-of-affairs regarding tamper-proof tokens leads us to ask the following
question.

Does there exist a UC-formulation of tamper-proof hardware tokens that
guarantee strong composability guarantees and allows for modular design?

Since the work of [42], the power of hardware tokens has been explored exten-
sively in a long series of works, especially in the context of achieving UC-security
(for example, [15,17,23,25,26,30,51]). While the work of Katz [42] assumed the
stronger stateful tokens, the work of Chandran, Goyal and Sahai [15] was the
first to achieve UC-security using only stateless tokens. In this work we will
focus only on the weaker stateless token model. In the tamper-proof model with
stateless tokens, as we argue below, the issue of minimal assumptions and round-
complexity have been largely unaddressed. The work of Chandran et al. [15] gives
an O(κ)-round protocol (where κ is the security parameter) based on enhanced
trapdoor permutations. Following that, Goyal et al. [30] provided an (incorrect)
O(1)-round construction based on Collision-Resistant Hash Functions (CRHFs).
The work of Choi et al. [17], extending the techniques of [23,30], establishes the
same result and provide a five-round construction based on CRHFs.

All previous constructions require assumptions stronger than one-way func-
tions (OWFs), namely either trapdoor permutations or CRHFs. Thus as a
first question, we investigate the minimal assumptions required for token-based
secure computation protocols. The works of [17,30] rely on CRHFs for realiz-
ing statistically-hiding commitment schemes. Towards minimizing assumptions,
both these works, consider the variant of their protocol where they replace the
construction of the statistically-hiding commitment scheme based on CRHFs to
the one based on one-way functions [33] to obtain UC-secure protocols under
minimal assumptions (See Theorem 3 in [30] and Footnote 7 in [17]). While ana-
lyzing the proof of this variant in the work of [30], we found a flaw1 in the origi-
nal construction based on CRHFs. We present a concrete attack that breaks the
1 In private communication, the authors have acknowledged this flaw and are in the

process of updating their result. We remark that we point out a flaw only in one
particular result, namely, realizing the UC-secure oblivious transfer functionality
based on CRHFs and stateless tokens.

370 C. Hazay et al.

security of their construction in Sect. 3. More recently, the authors of [17] have
conveyed in private communication that the variant that naively replaces the
commitment in their protocol is in fact vulnerable to covert attacks. They have
since retracted this result (see the updated eprint version [16]). Given the state
of affairs, our starting point is to address the following fundamental question
regarding tokens that remains open.

Can we construct tamper-proof UC-secure protocols using stateless tokens
assuming only one-way functions?

A second important question that we address here is:

What is the round complexity of UC-secure two-party protocols using state-
less tokens assuming only one-way functions?

We remark here that relying on black-box techniques, it would be impossible
to achieve non-interactive secure computation even in the tamper proof model
as any such approach would be vulnerable to a residual function attack.2 This
holds even if we allow an initial token exchange phase, where the two parties
exchange tokens (that are independent of their inputs). Hence, the best we could
hope for is two rounds.3

(G)UC-secure protocols in the multi-party setting. In the UC frame-
work, it is possible to obtain UC-secure protocols in the MPC setting by first
realizing the UC-secure oblivious transfer functionality (UC OT) in the two-
party setting and then combining it with general compilation techniques (e.g.,
[12,40,44,47] to obtain UC-secure multi-party computation protocols. First, we
remark that specifically in the stateless tamper-proof tokens model, prior works
fail to consider multi-versions of the OT-functionality while allowing transferra-
bility of tokens which is important in an MPC setting.4 As such, none of the
previous works explicitly study the round complexity of multi-party protocols
in the tamper proof model (with stateless tokens), we thus initiate this study in
this work and address the following question.

Can we obtain round-optimal multi-party computation protocols with GUC-
security in the tamper proof model?

2 Intuitively, this attack allows the recipient of the (only) message to repeatedly eval-
uate the function on different inputs for a fixed sender’s input.

3 Note that in the plain model, without trusted setup, Katz and Ostrovsky [43] showed
that five rounds are necessary and sufficient for general 2PC functionalities. Garg
et al. [28] revisit the lower bound of [43] and showed that four rounds are necessary
and sufficient for realizing general 2PC functionalities in the simultaneous message
exchange model where both parties can simultaneously exchange messages in each
round.

4 We remark that the work of [17] considers multiple sessions of OT between a single
pair of parties. However, they do not consider multiple sessions between multiple
pairs of parties which is required to realize UC-security in the multiparty setting.

Composable Security 371

Unidirectional token exchange. Consider the scenario where companies such
as Amazon or Google wish to provide an email spam-detection service and users
of this service want to keep their emails private (so as to not have unwanted
advertisements posted based on the content of their emails). In such a scenario,
it is quite reasonable to assume that Amazon or Google have the infrastructure
to create tamper-proof hardware tokens in large scale while the clients cannot
be expected to create tokens on their own. Most of the prior works assume
(require) that both parties have the capability of constructing tokens. When
relying on non-black-box techniques, the work of [17] shows how to construct
UC-OT using a single stateless token and consequently requires only one of the
parties to create the token. The work of Moran and Segev in [51] on the other
hand shows how to construct UC-secure two-party computation via a black-
box construction where tokens are required to be passed only in one direction,
however, they require the stronger model of stateful tokens. It is desirable to
obtain a black-box construction when relying on stateless tokens. Unfortunately,
the work of [17] shows that this is impossible in the fully concurrent setting.
More precisely, they show that UC-security is impossible to achieve for general
functionalities via a black-box construction using stateless tokens if only one
of the parties is expected to create tokens. In this work, we therefore wish to
address the following question:

Is there a meaningful security notion that can be realized in a client-server
setting relying on black-box techniques using stateless tokens where tokens
are created only by the server?

1.1 Our Results

As our first contribution, we put forth a formulation of the tamper-proof hard-
ware as a “global” functionality that provides strong composability guarantees.
Towards addressing the various shortcomings of the composability guarantees of
the UC-framework, Canetti et al. [7] introduced the Global Universal Compos-
ability (GUC) framework which among other things allows to consider global
setup functionalities such as the common reference string model, and more
recently the global random oracle model [9]. In this work, we put forth a new
formulation of tokens in the GUC-framework that will satisfy all our desider-
ata for composition. Furthermore, in our formulation, we will be able to invoke
the GUC composition theorem of [7] in a modular way. A formal description of
the FgWRAP-functionality can be found in Fig. 2 and more detailed discussion is
presented in the next section.

In the two-party setting we resolve both the round complexity and com-
putational complexity required to realize GUC-secure protocols in the stronger
FgWRAP-hybrid stated in the following theorem:

Theorem 1.1 (Informal). Assuming the existence of OWFs, there exists a
two-round protocol that GUC realizes any (well-formed) two-party functionality
in the global tamper proof model assuming stateless tokens. Moreover it only
makes black-box use of the underlying OWF.

372 C. Hazay et al.

As mentioned earlier, any (black-box) non-interactive secure computation
protocol is vulnerable to a residual function attack assuming stateless tokens.
Therefore, the best round complexity we can hope for assuming (stateless)
tamper-proof tokens is two which our results shows is optimal. In concurrent
work [24], Dottling et al. show how to obtain UC-secure two-party computation
protocol relying on one-way functions via non-black-box techniques.

As mentioned before, we also identify a flaw in a prior construction that
attempted to construct a UC-secure protocols in the stateless tamper-proof
model from OWFs. We describe a concrete attack on this protocol in Sect. 3.
On a high-level, the result of Goyal et al. first constructs a “Quasi oblivious
transfer” protocol based on tokens that admits one-sided simulation and one-
sided indistinguishability. Next, they provide a transformation from Quasi-OT
to full OT. We demonstrate that the transformation in the second step is inse-
cure by constructing an adversary that breaks its security. The purpose of pre-
senting the flaw is to illustrate a subtlety that arises when arguing security in
the token model. While there are mechanisms that could potentially facilitate
compiling a Quasi-OT to full OT in the token model, we do not pursue this
approach for two reasons. First, fixing this issue will still result in a protocol
that requires statistically-hiding commitments and in light of the vulnerability
of the [17] protocol, it is unclear if we can simply rely on one-way functions
for the statistically-hiding commitment scheme to obtain a construction under
minimal assumptions. Second, even if this construction is secure, it would yield
only a O(κ)-round protocol [33]. Instead, we directly construct a round-optimal
construction based on OWFs using a more modular, and in our opinion, simpler
construction.

In the multi-party setting, our first theorem follows as a corollary of our
results from the two-party setting.

Theorem 1.2. Assuming the existence of OWFs, there exists a O(df)-round
protocol that GUC realizes any multi-party (well formed) functionality f in the
global tamper proof model assuming stateless tokens, where df is the depth of
any circuit implementing f .

Next, we improve the round-complexity of our construction to obtain the
following theorem:

Theorem 1.3. Assuming the existence of OWFs and stand-alone semi-honest
MPC in the OT-hybrid, there exists a three-round protocol that GUC realizes any
multi-party (well formed) functionality in the global tamper proof model assuming
stateless tokens.

We remark that our construction is black-box in the underlying one-way
function but relies on the code of the MPC protocol in a non-black-box way.
It is conceivable that one can obtain a round-optimal construction if we do not
require it to be black-box in the underlying primitives and leave it as future
work.

Finally, in the client-server setting, we prove the following theorem in the full
version [34]:

Composable Security 373

Theorem 1.4 (Informal). Assuming the existence of one-way functions, there
exists a two-round protocol that securely realizes any two-party functionality
assuming stateless tokens in a client-server setting, where the tokens are created
only by the server. We also provide an extension where we achieve UC-security
against malicious clients and sequential and parallel composition security against
malicious servers.

In more detail, we provide straight-line (UC) simulation of malicious clients and
standard rewinding-based simulation against malicious servers. Our protocols
guarantee security of the servers against arbitrary malicious coordinating clients
and protects every individual client executing sequentially or in parallel against
a corrupted server. We believe that this is a reasonable model in comparison to
the Common Reference String (CRS) model where both parties require a trusted
entity to sample the CRS. Furthermore, it guarantees meaningful concurrent
security that is otherwise not achievable in the plain model in two rounds.

1.2 Our Techniques

Our starting point for our round optimal secure two-party computation is the
following technique from [30] for an extractable commitment scheme.

Roughly speaking, in order to extract the receiver’s input, the sender chooses
a function F from a pseudorandom function family that maps {0, 1}m to {0, 1}n

bits where m >> n, and incorporates it into a token that it sends to the receiver.
Next, the receiver commits to its input b by first sampling a random string
u ∈ {0, 1}m and querying the PRF token on u to receive the value v. It sends as
its commitment the string comb = (Ext(u; r) ⊕ b, r, v) where Ext(·, ·) is a strong
randomness extractor. Now, since the PRF is highly compressing, it holds with
high probability that conditioned on v, u has very high min-entropy and therefore
Ext(u; r) ⊕ b, r statistically hides b. Furthermore, it allows for extraction as the
simulator can observe the queries made by the sender to the token and observe
that queries that yields v to retrieve u. This commitment scheme is based on one-
way functions but is only extractable. To obtain a full-fledged UC-commitment
from an extractable commitment we can rely on standard techniques (See [35,56]
for a few examples). Instead, in order to obtain round-optimal constructions for
secure two-party computation, we extend this protocol directly to realize the UC
oblivious transfer functionality. A first incorrect approach is the following pro-
tocol. The parties exchange two sets of PRF tokens. Next, the receiver commits
to its bit comb using the approach described above, followed by the sender com-
mitting to its input (coms0 , coms1) along with an OT token that implements the
one-out-of-two string OT functionality. More specifically, it stores two strings s0
and s1, and given a single bit b outputs sb. Specifically, the code of that token
behaves as follows:

– On input b∗, u∗, the token outputs (sb, decomsb
) only if comb = (Ext(u∗; r) ⊕

b∗, r, v) and PRF(u∗) = v. Otherwise, the token aborts.

The receiver then runs the token to obtain sb and verifies if decomsb
correctly

decommits comsb
to sb. This simple idea is vulnerable to an input-dependent

374 C. Hazay et al.

abort attack, where the token aborts depending on the value b∗. The work of
[30] provides a combiner to handle this particular attack which we demonstrate
is flawed. We describe the attack in Sect. 3. We instead will rely on a combiner
from the recent work of Ostrovsky, Richelson and Scafuro [54] to obtain a two-
round GUC-OT protocol.

GUC-secure multi-party computation protocols. In order to demonstrate
feasibility, we simply rely on the work of [40] who show how to achieve GUC-
secure MPC protocols in the OT-hybrid. By instantiating the OT with our GUC-
OT protocol, we obtain MPC protocols in the tamper proof model assuming only
one-way functions. While this protocol minimizes the complexity assumptions,
the round complexity would be high. In this work, we show how to construct
a 3-round MPC protocol. Our starting point is to take any semi-honest MPC
protocol in the stand-alone model and compile it into a malicious one using
tokens following the paradigm in the original work of Canetti et al. [12] and
subsequent works [48,55]. Roughly, the approach is to define a commit-and-
prove GUC-functionality FCP and compile the semi-honest protocol using this
functionality following a GMW-style compilation.

We will follow an analogous approach where we directly construct a full-
fledged F1:M

CP -functionality that allows a single prover to commit to a string and
then prove multiple statements on the commitment simultaneously to several
parties. In the token model, realizing this primitive turns out to be non-trivial.
This is because we need the commitment in this protocol to be straight-line
extractable and the proof to be about the value committed. Recall that, the
extractable commitment is based on a PRF token supplied by the receiver of the
commitment (and the verifier in the zero-knowledge proof). The prover cannot
attest the validity of its commitment (via an NP-statement) since it does not
know the code (i.e. key) of the PRF. Therefore, any commit and prove scheme in
the token model necessarily must rely on a zero-knowledge proof that is black-
box in the underlying commitment scheme. In fact, in the seminal work of Ishai
et al. [39] they showed how to construct such protocols that have been extensively
used in several works where the goal is to obtain constructions that are black-box
in the underlying primitives. Following this approach and solving its difficulties
that appear in the tamper-proof hardwire model, we can compile a T -round
semi-honest secure MPC protocol to a O(T)-round protocol. Next, to reduce
the rounds of the computation we consider the approach of Garg et al. [27] who
show how to compress the round complexity of any MPC protocol to a two-round
GUC-secure MPC protocol in the CRS model using obfuscation primitives.

In more detail, in the first round of the protocol in [27], every party commits
to its input along with its randomness. The key idea is the following compiler
used in the second round: it takes any (interactive) underlying MPC protocol,
and has each party obfuscate their “next-message” function in that protocol,
providing one obfuscation for each round. To ensure correctness, zero-knowledge
proofs are used to validate the actions of each party w.r.t the commitments
made in the first step. Such a mechanism is also referred to as a commit-and-
prove strategy. This enables each party to independently evaluate the obfuscation

Composable Security 375

one by one, generating messages of the underlying MPC protocol and finally
obtain the output. The observation here is that party Pi’s next-message circuit
for round j in the underlying MPC protocol depends on its private input xi

and randomness ri (which are hard-coded in the obfuscation) and on input the
transcript of the communication in the first j −1 rounds outputs its message for
the next round.

To incorporate this approach in the token model, we can simply replace
the obfuscation primitives with tokens. Next, to employ zero-knowledge proofs
via a black-box construction, we require a zero-knowledge protocol that allows
commitment of a witness via tokens at the beginning of the protocol and then in a
later step prove a statement about this witness where the commitment scheme is
used in a “black-box” way. A first idea here would be to compile using the zero-
knowledge protocol of [39] that facilitate such a commit-and-prove paradigm.
However, as we explain later this would cost us in round-complexity. Instead we
will rely on so-called input-delayed proofs [45] that have recently received much
attention [20,21,36]. In particular, we will rely on the recent work of [36] who
shows how to construct the so-called “input-delay” commit-and-prove protocols
which allow a prover to commit a string in an initial commit phase and then
prove a statement regarding this string at a later stage where the input statement
is determined later. However, their construction only allows for proving one
statement regarding the commitment. One of our technical contributions is to
extend this idea to allow multiple theorems and further extend it so that a
single prover can prove several theorems to multiple parties simultaneously. This
protocol will be 4-round and we show how to use this protocol in conjunction
with the Garg et al.’s round collapsing technique.

1.3 Related Work

In recent and independent work, using the approach of [9], Nilges [49,53] con-
sider a GUC-like formulation of the tokens for the two-party setting where the
parties have fixed roles. The focus in [49,53] was to obtain a formulation that
accommodates reusability of a single token for several independent protocols in
the UC-setting for the specific two-party case. In contrast to our work, they do
not explicitly model or discuss adversarial transferability of the tokens. In par-
ticular they do not discuss in the multi-party case, which is the main motivation
behind our work.

Another recent work by Boureanu, Ohkubo and Vaudenay [5] studies the
limit of composition when relying on tokens. In this work, they prove that EUC
(or GUC)-security is impossible to achieve for most functionalities if tokens
can be transferred in a restricted framework. More precisely, their impossibility
holds, if the tokens themselves do not “encode” the session identifier in any way.
Our work, circumvents this impossibility result by precisely allowing the tokens
generated (by honest parties) to encode the session identifier in which they have
to be used.

376 C. Hazay et al.

2 Modeling Tamper-Proof Hardware in the GUC
Framework

In this section we describe our model and give our rationale for our approach.
We provide a brief discussion on the Universal Composability (UC) framework
[6], UC with joint state [14] (JUC) and Generalized UC [7] (GUC). For more
details, we refer the reader to the original works and the discussion in [9].

Basic UC. Introduced by Canetti in [6], the Universal Composability (UC)
framework provides a framework to analyse security of protocols in complex
network environments in a modular way. One of the fundamental contributions
of this work was to give a definition that will allow to design protocols and
demonstrate security by “locally” analyzing a protocol but guaranteeing secu-
rity in a concurrent setting where security of the protocol needs to be intact
even when it is run concurrently with many instances of arbitrary protocols.
Slightly more technically, in the UC-framework, to demonstrate that a proto-
col Π securely realizes an ideal functionality F , we need to show that for any
adversary A in the real world interacting with protocol Π in the presence of
arbitrary environments Z, there exists an ideal adversary S such that for any
environment Z the view of an interaction with A is indistinguishable from the
view of an interaction with the ideal functionality F and S.

Unfortunately, soon after its inception, a series of impossibility results
[8,10,48] demonstrated that most non-trivial functionalities cannot be realized
in the UC-framework. Most feasibility results in the UC-framework relied on
some sort of trusted setup such as the common reference string (CRS) model
[8], tamper-proof model [42] or relaxed security requirements such as super-
polynomial simulation [3,55,57]. When modeling trusted setup such as the CRS
model, an extension of the UC-framework considers the G-hybrid model where
“all” real-world parties are given access to an ideal setup functionality G. In
order for the basic composition theorem to hold in such a G-hybrid model, two
restrictions have to be made. First, the environment Z cannot access the ideal
setup functionality directly ; it can only do so indirectly via the adversary. In
some sense, the setup G is treated as “local” to a protocol instance. Second, two
protocol instances of the same or different protocol cannot share “state” for the
UC-composition theorem to hold. Therefore, a setup model such as the CRS
in the UC-framework necessitates that each protocol uses its own local setup.
In other words, an independently sampled reference string for every protocol
instance. An alternative approach that was pursued in a later work was to real-
ize a multi-version of a functionality and proved security of the multi-version
using a single setup. For example, the original feasibility result of Canetti, Lin-
dell, Ostrovsky and Sahai [12] realized the FMCOM-functionality which is the
multi-version of the basic commitment functionalityFCOM in the CRS model.

JUC. Towards accommodating a global setup such as the CRS for multiple
protocol instances, Canetti and Rabin [14] introduced the Universal Composition
with Joint State (JUC) framework. Suppose we want to analyze several instances

Composable Security 377

of protocol Π with an instance G as common setup, then at the least, each
instance of the protocol must share some state information regarding G (e.g., the
reference string in the CRS model). The JUC-framework precisely accommodates
such a scenario, where a new composition theorem is proven, that allows for
composition of protocols that share some state. However, the JUC-model for the
CRS setup would only allow the CRS to be accessible to a pre-determined set
of protocols and in particular still does not allow the environment to directly
access the CRS.

GUC. For most feasibility results in the (plain) CRS model both in the UC
and JUC framework, the simulator S in the ideal world needed the ability to
“program” the CRS. In particular, it is infeasible to allow the environment to
access the setup reference string. As a consequence, we can prove security only
if the reference string is privately transmitted to the protocols that we demand
security of and cannot be made publicly accessible. The work of Canetti, Pass,
Dodis and Walfish [7] introduced the Generalized UC-framework to overcome
this shortcoming in order to model the CRS as a global setup that is publicly
available. More formally, in the GUC-framework, a global setup G is accessible
by any protocol running in the system and in particular allows direct access by
the environment. This, in effect, renders all previous protocols constructed in
the CRS model not secure in the GUC framework as the simulator loses the
programmability of the CRS. In fact, it was shown in [7] that the CRS setup is
insufficient to securely realize the ideal commitment functionality in the GUC-
framework. More generally, they show that any setup that simply provides only
“public” information is not sufficient to realize GUC-security for most non-trivial
functionalities. They further demonstrated a feasibility in the Augmented CRS
model, where the CRS contains signature keys, one for each party and a secret
signing key that is not revealed to the parties, except if it is corrupt, in which
case the secret signing key for that party is revealed.

As mentioned before, the popular framework to capture the tamper-proof
hardware is the one due to [42] who defined the FWRAP-functionality in the
UC-framework. In general, in the token model, the two basic advantages that
the simulator has over the adversary is “observability” and “programmability”.
Observability refers to the ability of the simulator to monitor all queries made by
an adversary to the token and programmability refers to the ability to program
responses to the queries in an online manner. In the context of tokens, both these
assumptions are realistic as tamper-proof tokens do provide both these abilities
in a real-world. However, when modeling tamper proof hardware tokens in the
UC-setting, both these properties can raise issues as we discuss next.

Apriori, it is not clear why one should model the tamper proof hardware as
a global functionality. In fact, the tokens are local to the parties and it makes
the case for it not to be globally accessible. Let us begin with the formulation
by Katz [42] who introduced the FWRAP-functionality (see Fig. 1 for the stateless
variant). In the real world the creator or sender of a token specifies the code
to be incorporated in a token by sending the description of a Turing machine
M to the ideal functionality. The ideal functionality then emulates the code

378 C. Hazay et al.

of M to the receiver of the token, only allowing black-box access to the input
and output tapes of M . In the case of stateful tokens, M is modeled as an
interactive Turing machine while for stateless tokens, standard Turing machines
would suffice. Slightly more technically, in the UC-model, parties are assigned
unique identifiers PID and sessions are assigned identifiers sid. In the tamper
proof model, to distinguish tokens, the functionality accepts an identifier mid
when a token is created. More formally, when one party PIDi creates a token with
program M with token identifier mid and sends it to another party PIDj in session
sid, then the FWRAP records the tuple (PIDi,PIDj ,mid,M). Then whenever a
party with identifier PIDj sends a query (Run, sid,PIDi,mid, x) to the FWRAP-
functionality, it first checks whether there is a tuple of the form (·,PIDj ,mid, ·)
and then runs the machine M in this tuple if one exists.

Fig. 1. The ideal functionality for stateless tokens [42].

In the UC-setting (or JUC), to achieve any composability guarantees, we need
to realize the multi-use variants of the specified functionality and then analyze
the designed protocol in a concurrent man-in-the-middle setting. In such a multi-
instance setting, it is reasonable to assume that an adversary that receives a
token from one honest party in a left interaction can forward the token to another
party in a right interaction. Unfortunately, the FWRAP-functionality does not
facilitate such a transfer.

Let us modify FWRAP to accommodate transfer of tokens by adding a spe-
cial “transfer” query that allows a token in the possession of one party to be
transferred to another party. Since protocols designed in most works do not
explicitly prove security in a concurrent man-in-the-middle setting, such a mod-
ification renders the previous protocols designed in FWRAP insecure. For instance,
consider the commitment scheme discussed in the introduction based on PRF
tokens. Such a scheme would be insecure as an adversary can simply forward the

Composable Security 379

token from the receiver in a right interaction to the sender in a left interaction
leading to a malleable commitment.

In order to achieve security while allowing transferability we need to modify
the tokens themselves in such a way to be not useful in an execution different
from where it is supposed to be used. If every honestly generated token admits
only queries that are prefixed with the correct session identifier then transferring
the tokens created by one honest party to another honest party will be useless
as honest parties will prefix their queries with the right session and the honestly
generated tokens will fail to answer on incorrect session prefixes. This is inspired
by an idea in [9], where they design GUC-secure protocols in the Global Ran-
dom Oracle model [9]. As such, introducing transferrability naturally requires
protocols to address the issue of non-malleability.

While this modification allows us to model transferrability, it still requires
us to analyze protocols in a concurrent man-in-the-middle setting. In order to
obtain a more modular definition, where each protocol instance can be analyzed
in isolation we need to allow the token to be transferred from the adversary to
the environment. In essence, we require the token to be somewhat “globally”
accessible and this is the approach we take.

2.1 The Global Tamper-Proof Model

A natural first approach would be to consider the same functionality in the GUC-
framework and let the environment to access the FWRAP-functionality. This is
reasonable as an environment can have access to the tokens via auxiliary parties
to whom the tokens were transferred to. However, naively incorporating this
idea would deny “observability” and “programmability” to the simulator as all
adversaries can simply transfer away their tokens the moment they receive them
and let other parties make queries on their behalf. Indeed, one can show that
the impossibility result of [17] extends to this formulation of the tokens (at least
if the code of the token is treated in a black-box manner).5 A second approach
would be to reveal to the simulator all queries made to the token received by
the adversary even if transferred out to any party. However, such a formulation
would be vulnerable to the following transferring attack. If an adversary received
a token from one session, it can send it as its token to an honest party in another
session and now observe all queries made by the honest party to the token.
Therefore such a formulation of tokens is incorrect.

Our formulation will accommodate transferrability while still guaranteeing
observability to the simulator. In more detail, we will modify the definition of
FWRAP so that it will reveal to the simulator all “illegitimate” queries made
to the token by any other party. This approach is analogous to the one taken
by Canetti, Jain and Scafuro [9] where they model the Global Random Oracle

5 Informally, the only advantage that remains for the simulator is to see the code of the
tokens created by the adversary. This essentially reduces to the case where tokens
are sent only in one direction and is impossible due to a result of [17] when the code
is treated as a black-box.

380 C. Hazay et al.

Model and are confronted by a similar issue; here queries made to a globally
accessible random oracle via auxiliary parties by the environment must be made
available to the simulator while protecting the queries made by the honest party.
In order to define “legitimate” queries we will require that all tokens created by
an honest party, by default, will accept an input of the form (sid, x) and will
respond with the evaluation of the embedded program M on input x, only if
sid = sid, where sid corresponds to the session where the token is supposed to
be used, i.e. the session where the honest party created the token. Furthermore,
whenever an honest party in session sid queries a token it received on input x, it
will prefix the query with the correct session identifier, namely issue the query
(sid, x). An illegitimate query is one where the sid prefix in a query differs from
the session identifier from which the party is querying from. Every illegitimate
query will be recorded by our functionality and will be disclosed to the party
whose session identifier is actually sid.

More formally, the FgWRAP-functionality is parameterized by a polynomial
p(·) which is the time bound that the functionality will exercise whenever it runs
any program. The functionality admits the following queries:

Creation Query: This query allows one party S to create and send a token to
another party R by sending the query (Create, sid,S,R,mid,M) where M is
the description of the machine to be embedded in the token, mid is a unique
identifier for the token and sid is the session identifier. The functionality
records (R, sid,mid,M).6

Transfer Query: We explicitly provide the ability for parties to transfer tokens
to other parties that were not created by them (e.g., received from another
session). Such a query will only be used by the adversary in our protocols as
honest parties will always create their own tokens. When a transfer query of
the form (transfer, sid,S,R,mid) is issued, the tuple (S, sid,mid,M) is erased
and a new tuple (R, sid,mid,M) is created where sid is the identifier of the
session where it was previously used.

Execute Query: To run a token the party needs to provide an input in a
particular format. All honest parties will provide the input as x = (sid, x′)
and the functionality will run M on input x and supply the answer. In order
to achieve non-malleability, we will make sure in all our constructions that
tokens generated by honest parties will respond to a query only if it contains
the correct sid.

Retrieve Query: This is the important addition to our functionality follow-
ing the approach taken by [9]. FgWRAP-functionality will record all illegit-
imate queries made to a token. Namely for a token recorded as the tuple
(R, sid,mid,M) an illegitimate query is of the form (sid, x) where sid �= sid
and such a query will be recorded in a set Qsid that will be made accessible
to the receiving party corresponding to sid.

6 We remark here that the functionality does not explicitly store the PID of the creator
of the token. We made this choice since the simulator in the ideal world will create
tokens for itself which will serve as a token created on behalf of an honest party.

Composable Security 381

A formal description of the ideal functionality FgWRAP is presented in Fig. 2.
We emphasize that our formulation of the tamper-proof model will now have the
following benefits:

1. It overcomes the shortcomings of the FWRAP-functionality as defined in [42]
and used in subsequent works. In particular, it allows for transferring tokens
from one session to another while retaining “observability”.

2. Our model allows for designing protocols in the UC-framework and enjoys the
composition theorem as it allows the environment to access the token either
directly or via other parties.

3. Our model explicitly rules out “programmability” of tokens. We remark that
it is (potentially) possible to explicitly provide a mechanism for programma-
bility in the FgWRAP-functionality. We chose to not provide such a mechanism
so as to provide stronger composability guarantees.

4. In our framework, we can analyze the security of a protocol in isolation
and guarantee concurrent multi-instance security directly using the GUC-
composition theorem. Moreover, it suffices to consider a “dummy” adversary
that simply forwards the environment everything (including the token).

An immediate consequence of our formulation is that it renders prior works
such as [15,23,24,42] that rely on the programmability of the token insecure
in our model. The works of [17,30] on the other hand can be modified and
proven secure in the FgWRAP-hybrid as they do not require the tokens to be
programmed.

We now provide the formal definition of UC-security in the Global Tamper-
Proof model.

Definition 2.1 (GUC security in the global tamper-proof model). Let F
be an ideal functionality and let π be a multi-party protocol. Then protocol π GUC
realizes F in FgWRAP-hybrid model, if for every uniform PPT hybrid-model
adversary A, there exists a uniform PPT simulator S, such that for every non-
uniform PPT environment Z, the following two ensembles are computationally
indistinguishable,

{
ViewFgWRAP

π,A,Z (κ)
}

κ∈N

c≈
{
ViewFgWRAP

F,S,Z (κ)
}

κ∈N
.

3 Issue with Over Extraction in Oblivious Transfer
Combiners [30]

In the following we identify an issue that affects one of the feasibility results in
[30, Sect. 5]. More precisely, this result establishes that UC security for gen-
eral functionalities is feasible in the tamper-proof hardware model in O(κ)-
round assuming only OWFs (or O(1)-round based on CRHFs) based on stateless
tokens. The issue arises as a result of over extraction where a fully-secure OT
protocol is constructed from a weaker variant and the simulation extracts val-
ues for sender’s inputs even on certain executions where the receiver aborts.

382 C. Hazay et al.

Fig. 2. The global stateless token functionality.

The term over extraction has been studied before in the context of commitment
schemes where a scheme with over extraction is constructed as an intermediate
step towards achieving full security [31,56].

On a high-level, in the work of [30], they first construct an OT protocol with
milder security guarantees. More precisely, a QuasiOT protocol achieves UC-
security against a malicious receiver and straight-line extraction against mali-
cious sender. However, the scheme is not fully secure as a malicious sender can
cause an input-dependent abort for an honest receiver. Towards amplifying the
security, [30] consider the following protocol:

1. The sender with input (s0, s1) and receiver with input b interact in n execu-
tions of QuasiOTs. The sender picks z1, . . . , zn and Δ at random and sets the
inputs to the ith QuasiOT instance as (zi, zi + Δ). The receiver on the other
hand chooses bits b1, . . . , bn at random subject to the sum being its input b.

2. If the first step completes, the sender sends (s′
0 = s0+

∑
i zi, s

′
1 = s1+

∑
i zi+

Δ) to the receiver. The receiver computes its output as s′
b +

∑
i wi where wi

is the output of the receiver in the ith QuasiOT.

This protocol remains secure against a malicious receiver. However, an issue
arises with a malicious sender. To simulate a malicious sender in this protocol,
[30] rely on the straight-line extractor of the n QuasiOTs by sampling two sets
of random (b1, . . . , bn), one set summing up to 0 and another set summing up to
1 and computing what the receiver outputs in the two cases. As we demonstrate

Composable Security 383

below such a strategy leads to failure in the simulation. More precisely, consider
the following malicious sender strategy.

– Pick z1, z2, . . . , zn−1 and Δ at random.
– The inputs of the first n − 1 tokens are set to z1, z1 + Δ, . . . , zn−1, zn−1 + Δ.
– Let z1 + . . . + zn−1 = a and z1 + . . . + zn−1 + Δ = b.
– The inputs to the n-th token are some fixed values c (when bn = 0) and d

(when bn = 1), where c + d �= Δ.

Next, the sender modifies the code of the tokens used in the QuasiOT protocol
so that the first n − 1 QuasiOTs never abort. The n-th instantiations however
is made to abort whenever the input bn, the receiver’s input is 1. Let s0 = 0
and s1 = 1 (we remark that we are not concerned about the actual inputs of
the sender, but focus on what the receiver learns). We next examine the honest
receiver’s output in both the real and ideal worlds. First, in the real world the
honest receiver learns an output only if bn = 0 (since the n-th token aborts
whenever bn = 1). We consider two cases:

Case 1: The receiver’s input is b = 0. Then bn = 0 with probability 1/2, and
bn = 1 with probability 1/2. Moreover, when bn = 0, the sum of the
outputs obtained by the receiver is a + c. This is because when bn = 0,
then, b1 + . . . + bn−1 = 0, and the receiver learns a as the sum of the
outputs in the first n − 1 QuasiOTs and c from the n-th QuasiOT. On
the other hand, if bn = 1 then the receiver aborts in the n-th QuasiOT
and therefore aborts.

Case 2: The receiver’s input is b = 1. Similarly, in this case the receiver will learn
b + c with probability 1/2 and aborts with probability 1/2.

In the ideal world, the simulator runs first with a random bit-vector and extracts
its inputs in the QuasiOTs by monitoring the queries to the corresponding PRF
tokens. Next, it generates two bit-vectors bi’s and b′

i’s that add up to 0 and 1,
respectively, and computes the sums of the sender’s input that correspond to
these bits. Then the distribution of these sums can be computed as follows:

Case 1: In case that
∑

bi = 0, then bn = 0 with probability 1/2, and bn = 1 with
probability 1/2. In the former case the receiver learns a + c, whereas in
the latter case it learns b + d.

Case 2: In case that
∑

b′
i = 1, then with probability 1/2, b′

n = 0 and with
probability 1/2, b′

n = 1. In the former case the receiver learns b + c,
whereas in the latter it learns a + d.

Note that this distribution is different from the real distribution, where the
receiver never learns b + d or a + d since the token will always abort and not
reveal d. We remark that in our example the abort probability of the receiver
is independent of its input as proven in Claim 17 in [30], yet the distribution of
what it learns is different.

On a more general note, our attack presents the subtleties that need to be
addressed with the “selective” abort strategy. Recent works by Ciampi et al.
[18,19] have identified subtleties in recent construction of non-malleable com-
mitments [32] where selective aborts were not completely addressed.

384 C. Hazay et al.

4 Two-Round Token-Based GUC Oblivious Transfer

In this section we present our main protocol that implements GUC OT in two
rounds. We first construct a three-round protocol and then show in [34] how to
obtain a two-round protocol by exchanging tokens just once in a setup phase.
Recall that the counter example to the [30] protocol shows that directly extract-
ing the sender’s inputs does not necessarily allow us to extract the sender’s
inputs correctly, as the tokens can behave maliciously. Inspired by the recently
developed protocol from [54] we consider a new approach here for which the
sender’s inputs are extracted directly by monitoring the queries it makes to the
PRF tokens and using additional checks to ensure that the sender’s inputs can
be verified.

Protocol intuition. As a warmup consider the following sender’s algorithm
that first chooses two random strings x0 and x1 and computes their shares
[xb] = (x1

b , . . . , x
2κ
b) for b ∈ {0, 1} using the κ + 1-out-of-2κ Shamir secret-

sharing scheme. Next, for each b ∈ {0, 1}, the sender commits to [xb] by first
generating two vectors αb and βb such that αb ⊕βb = [xb], and then committing
to these vectors. Finally, the parties engage in 2κ parallel OT executions where
the sender’s input to the jth instance are the decommitments to (α0[j], β0[j])
and (α1[j], β1[j]). The sender further sends (s0 ⊕ x0, s1 ⊕ x1). Thus, to learn sb,
the receiver needs to learn xb. For this, it enters the bit b for κ + 1 or more OT
executions and then reconstructs the shares for xb, followed by reconstructing
sb using these shares. Nevertheless, this reconstruction procedure works only if
there is a mechanism that verifies whether the shares are consistent.

To resolve this issue, Ostrovsky et al. made the observation that the Shamir
secret-sharing scheme has the property for which there exists a linear function
φ such that any vector of shares [xb] is valid if and only if φ(xb) = 0. Moreover,
since the function φ is linear, it suffices to check whether φ(αb) + φ(βb) = 0.
Nevertheless, this check requires from the receiver to know the entire vectors
αb and βb for its input b. This means it would have to use b as the input to
all the 2κ OT executions, which may lead to an input-dependent abort attack.
Instead, Ostrovsky et al. introduced a mechanism for checking consistency indi-
rectly via a cut-and-choose mechanism. More formally, the sender chooses κ
pairs of vectors that add up to [xb]. It is instructive to view them as matrices
A0, B0, A1, B1 ∈ Z

κ×2κ
p where for every row i ∈ [κ] and b ∈ {0, 1}, it holds that

Ab[i, ·] ⊕ Bb[i, ·] = [xb]. Next, the sender commits to each entry of each matrix
separately and sets as input to the jth OT the decommitment information of the
entire column ((A0[·, j], B0[·, j]), (A1[·, j], B1[·, j])). Upon receiving the informa-
tion for a particular column j, the receiver checks if for all i, Ab[i, j] ⊕ Bb[i, j]
agree on the same value. We refer to this as the shares consistency check.

Next, to check the validity of the shares, the sender additionally sends vectors
[zb

1], . . . , [z
b
κ] in the clear along with the sender’s message where it commits to

the entries of A0, A1, B0 and B1 such that [zb
i] is set to φ(A0[i, ·]). Depending

on the challenge message, the sender decommits to A0[i, ·] and A1[i, ·] if ci = 0
and B0[i, ·] and B1[i, ·] if ci = 1. If ci = 0, then the receiver checks whether

Composable Security 385

φ(Ab[i, ·]) = [zb
i], and if ci = 1 it checks whether φ(Bb[i, ·]) + zb

i = 0. This
check ensures that except for at most s ∈ ω(log κ) of the rows (Ab[i, ·], Bb[i, ·])
satisfy the condition that φ(Ab[i, ·]) + φ(Bb[i, ·]) = 0 and for each such row
i, Ab[i, ·] + Bb[i, ·] represents a valid set of shares for both b = 0 and b = 1.
This check is denoted by the shares validity check. In the final protocol, the
sender sets as input in the jth parallel OT, the decommitment to the entire
jth columns of A0 and B0 corresponding to the receiver’s input 0 and A1 and
B1 for input 1. Upon receiving the decommitment information on input bj , the
receiver considers a column “good” only if Abj

[i, j]+Bbj
[i, j] add up to the same

value for every i. Using another cut-and-choose mechanism, the receiver ensures
that there are sufficiently many good columns which consequently prevents any
input-independent behavior. We refer this to the shares-validity check.

Our oblivious transfer protocol. We obtain a two-round oblivious transfer proto-
col as follows. The receiver commits to its input bits b1, . . . , b2κ and the challenge
bits for the share consistency check c1, . . . , cκ using the PRF tokens. Then, the
sender sends all the commitments a la [54] and 2κ + κ tokens, where the first
2κ tokens provide the decommitments to the columns, and the second set of κ
tokens give the decommitments of the rows for the shares consistency check. The
simulator now extracts the sender’s inputs by retrieving its queries and we are
able to show that there cannot be any input dependent behavior of the token if
it passes both the shares consistency check and the shares validity check.

We now describe our protocol ΠGUC
OT with sender S and receiver R using the

following building blocks: let (1) Com be a non-interactive perfectly binding com-
mitment scheme, (2) let SS = (Share,Recon) be a (κ+1)-out-of-2κ Shamir secret-
sharing scheme over Zp, together with a linear map φ : Z2κ

p → Z
κ−1
p such that

φ(v) = 0 iff v is a valid sharing of some secret, (3) F, F ′ be two families of pseudo-
random functions that map {0, 1}5κ → {0, 1}κ and {0, 1}κ → {0, 1}p(κ), respec-
tively (4) H denote a hardcore bit function and (5) Ext : {0, 1}5κ × {0, 1}d →
{0, 1} denote a randomness extractor where the source has length 5κ and the
seed has length d. See Protocol 1 for the complete description.

Protocol 1. Protocol ΠOT
GUC - GUC OT with stateless tokens.

– Inputs: S holds two strings s0, s1 ∈ {0, 1}κ and R holds a bit b. The common
input is sid.

– The protocol:
1. S → R: S chooses 3κ random PRF keys {γl}[l∈3κ] for family F . Let

PRFγl
: {0, 1}5κ → {0, 1}κ denote the pseudorandom function. S creates

token TKPRF,l
S sending (Create, sid,S,R,midl,M1) to FgWRAP where M1

is the functionality of the token that on input (sid, x) outputs PRFγl
(x)

for all l ∈ [3κ]; For the case where sid �= sid the token aborts;
2. R → S: R selects a random subset T1−b ⊂ [2κ] of size κ/2 and defines

Tb = [2κ]/T1−b. For every j ∈ [2κ], R sets bj = β if j ∈ Tβ. R samples
uniformly at random c1, . . . , cκ ← {0, 1}. Finally, R sends

386 C. Hazay et al.

(a) ({combj
}j∈[2κ], {comci

}i∈[κ]) to S where

∀ j ∈ [2κ], i ∈ [κ] combj
= (Ext(uj) ⊕ bj , vj) and comci = (Ext(u′

i) ⊕ ci, v
′
i)

uj , u
′
i ← {0, 1}5κ and vj , v

′
i are obtained by sending respectively

(Run, sid,midj , uj) and (Run, sid,mid2κ+i, u
′
i).

(b) R generates the tokens {TKPRF,l′
R }l′∈[8κ2] which are analogous to the

PRF tokens {TKPRF,l
S }l∈[3κ] by sending (Create, sid,R,S,midl′ ,M2)

to FgWRAP for all l′ ∈ [8κ2].
3. S → R: S picks two random strings x0, x1 ← Zp and secret shares them

using SS. In particular, S computes [xb] = (x1
b , . . . , x

2κ
b) ← Share(xb) for

b ∈ {0, 1}. S commits to the shares [x0], [x1] as follows. It picks random
matrices A0, B0 ← Z

κ×2κ
p and A1, B1 ← Z

κ×2κ
p such that ∀i ∈ [κ]:

A0[i, ·] + B0[i, ·] = [x0], A1[i, ·] + B1[i, ·] = [x1].

S computes two matrices Z0, Z1 ∈ Z
κ×κ−1
p and sends them in the clear

such that:

Z0[i, ·] = φ(A0[i, ·]), Z1[i, ·] = φ(A1[i, ·]).

S sends:
(a) Matrices (comA0 , comB0 , comA1 , comB1) to R, where,

∀ i ∈ [κ], j ∈ [2κ], β ∈ {0, 1} comAβ [i,j] = (Ext(uAβ [i,j] ⊕ Aβ [i, j], v
Aβ [i,j])

comBβ [i,j] = (Ext(uBβ [i,j] ⊕ Bβ [i, j], v
Bβ [i,j])

where (uAβ [i,j], uBβ [i,j]) ← {0, 1}5κ and (vAβ [i,j], vBβ [i,j]) are
obtained by sending (Run, sid,mid[i,j,β], u

Aβ [i,j]) and (Run, sid,
mid2κ2+[i,j,β], u

Bβ [i,j]), respectively, to the token TK
PRF,[i,j,β]
R where

[i, j, β] is an encoding of the indices i, j, β into an integer in [2κ2].
(b) C0 = s0 ⊕ x0 and C1 = s1 ⊕ x1 to R.
(c) For all j ∈ [2κ], S creates a token TKj sending (Create, sid,S,R,

mid3κ+j ,M3) to FgWRAP where M3 is the functionality that on input
(sid, bj , decombj

), aborts if sid �= sid or if decombj
is not veri-

fied correctly. Otherwise it outputs (Abj
[·, j], decomAbj

[·,j], Bbj
[·, j],

decomBbj
[·,j]).

(d) For all i ∈ [κ], S creates a token T̂Ki sending (Create, sid,S,R,
mid5κ+i,M4) to FgWRAP where M4 is the functionality that on input
(sid, ci, decomci

) aborts if sid �= sid or if decomci
is not verified cor-

rectly. Otherwise it outputs,

(A0[i, ·], decomA0[i,·], A1[i, ·], decomA1[i,·]), if c = 0
(B0[i, ·], decomB0[i,·], B1[i, ·], decomB1[i,·]), if c = 1

Composable Security 387

4. Output Phase: For all j ∈ [2κ], R sends (Run, sid,mid3κ+j , (bj ,
decombj

)) and receives

(Abj
[·, j], decomAbj

[·,j], Bbj
[·, j], decomBbj

[·,j]).

For all i ∈ [κ], R sends (Run, sid,mid5κ+i, (ci, decomci
)) and receives

(A0[·, i], A1[·, i]) or (B0[·, i], B1[·, i]).

(a) Shares Validity Check Phase: For all i ∈ [κ], if ci = 0 check
that Z0[i, ·] = φ(A0[i, ·]) and Z1[i, ·] = φ(A1[i, ·]). Otherwise, if ci = 1
check that φ(B0[i, ·])+Z0[i, ·] = 0 and φ(B1[i, ·])+Z1[i, ·] = 0. If the
tokens do not abort and all the checks pass, the receiver proceeds to
the next phase.

(b) Shares Consistency Check Phase: For each b ∈ {0, 1}, R ran-
domly chooses a set Tb for which bj = b of κ/2 coordinates. For
each j ∈ Tb, R checks that there exists a unique xj

b such that
Ab[i, j] + Bb[i, j] = xj

b for all i ∈ [κ]. If so, xj
b is marked as con-

sistent. If the tokens do not abort and all the shares obtained in this
phase are consistent, R proceeds to the reconstruction phase. Else it
abort.

(c) Output Reconstruction: For j ∈ [2κ]/T1−b, if there exists a
unique xj

b such that Ab[i, j] + Bb[i, j] = xj
b, mark share j as a good

column. If R obtains less than κ+1 good shares, it aborts. Otherwise,
let xj1

b , . . . , x
jκ+1
b be any set of κ + 1 consistent shares. R computes

xb ← Recon(xj1
b , . . . , x

jκ+1
b) and outputs sb = Cb ⊕ xb.

Next, we state the following theorem, the proof can be found in [34].

Theorem 4.1. Assume the existence of one-way functions, then protocol ΠOT
GUC

GUC realizes FOT in the FgWRAP-hybrid.

Proof overview. On a high-level, when the sender is corrupted our simulation pro-
ceeds analogously to the simulation from [54] where the simulator generates the
view of the malicious sender by honestly generating the receiver’s messages and
then extracting all the values committed to by the sender. Nevertheless, while in
[54] the authors rely on extractable commitments and extract the sender’s inputs
via rewinding, we directly extract its inputs by retrieving the queries made by
the malicious sender to the {TKPRF,i

R }i tokens. The proof of correctness follows
analogously. More explicitly, the share consistency check ensures that for any
particular column that the receiver obtains, if the sum of the values agree on the
same bit, then the receiver extracts the correct share of [xb] with high probabil-
ity. Note that it suffices for the receiver to obtain κ+1 good columns for its input
b to extract enough shares to reconstruct xb since the shares can be checked for
validity. Namely, the receiver chooses κ/2 indices Tb and sets its input for these
OT executions as b. For the rest of the OT executions, the receiver sets its input
as 1 − b. Denote this set of indices by T1−b. Then, upon receiving the sender’s

388 C. Hazay et al.

response to its challenge and the OT responses, the receiver first performs the
shares consistency check. If this check passes, it performs the shares validity
check for all columns, both with indices in T1−b and for the indices in a random
subset of size κ/2 within Tb. If one of these checks do not pass, the receiver
aborts. If both checks pass, it holds with high probability that the decommit-
ment information for b = 0 and b = 1 are correct in all but s ∈ ω(log n) indices.
Therefore, the receiver will extract [xb] successfully both when its input b = 0
and b = 1. Furthermore, it is ensured that if the two checks performed by the
receiver pass, then a simulator can extract both x0 and x1 correctly by simply
extracting the sender’s input to the OT protocol and following the receiver’s
strategy to extract.

On the other hand, when the receiver is corrupted, our simulation proceeds
analogous to the simulation in [54] where the simulator generates the view of
the malicious receiver by first extracting the receiver’s input b and then obtain-
ing sb from the ideal functionality. It then completes the execution following
the honest sender’s code with (s0, s1), where s1−b is set to random. Moreover,
while in [54] the authors rely on a special type of interactive commitment that
allows the extraction of the receiver’s input via rewinding, we instead extract
this input directly by retrieving the queries made by the malicious receiver to the
{TKPRF,l

S }l∈[3κ] tokens. The proof of correctness follows analogously. Informally,
the idea is to show that the receiver can learn κ + 1 or more shares for either
x0 or x1 but not both. In other words there exists a bit b for which a corrupted
receiver can learn at most κ shares relative to s1−b. Thus, by replacing s1−b with
a random string, it follows from the secret-sharing property that obtaining at
most κ shares keeps s1−b information theoretically hidden.

On relying on one-way functions. In this protocol the only place where one-way
permutations are used is in the commitments made by the sender in the second
round of the protocol via a non-interactive perfectly-binding commitment. This
protocol can be easily modified to rely on statistically-binding commitments
which have two-round constructions based on one-way functions [52]. Specifically,
since the sender commits to its messages only in the second-round, the receiver
can provide the first message of the two-round commitment scheme along with
the first message of the protocol.

5 Three-Round Token-Based GUC Secure Multi-party
Computation

In this section, we show how to compile an arbitrary round semi-honest protocol
Π to a three-round protocol using stateless tokens. As discussed in the intro-
duction, the high-level of our approach is borrowing the compressing round idea
from [27] which proceeds in three steps. In the first step, all parties commit to
their inputs via an extractable commitment and then in the second step, each
party provides a token to emulate their actions with respect to Π given the
commitments. Finally, each party runs the protocol Π locally and obtains the

Composable Security 389

result of the computation. For such an approach to work, it is crucial that an
adversary, upon receiving the tokens, is not be able to “rewind” the computa-
tion and launch a resetting attack. This is ensured via zero-knowledge proofs
that are provided in each round. In essence, the zero-knowledge proofs validates
the actions of each party with respect to the commitments made in the first
step. Such a mechanism is also referred to as a commit-and-prove strategy. In
Sect. 5.1, we will present a construction of a commit-and-prove protocol in the
FgWRAP-hybrid and then design our MPC protocol using this protocol. We then
take a modular approach by describing our MPC protocol in an idealized version
of the commit-and-prove functionality analogous to [12] and then show how to
realize this functionality. As we mentioned before we then rely on the approach
of [27] to compress the rounds of our MPC protocol compiled with our commit
and prove protocol in 3 rounds. This is presented in the full version [34].

5.1 One-Many Commit-and-Prove Functionality

The commit and prove functionality FCP introduced in [12] is a generalization
of the commitment functionality and is core to constructing protocols in the
GUC-setting. The functionality parameterized by an NP-relation R proceeds
in two stages: The first stage is a commit phase where the receiver obtains a
commitment to some value w. The second phase is a prove phase where the
functionality upon receiving a statement x from the committer sends x to the
receiver along with the value R(x,w). We will generalize the FCP-functionality
in two ways. First, we will allow for asserting multiple statements on a single
committed value w in the FgWRAP-hybrid. Second, we will allow a single party
to assert the statement to many parties. In an MPC setting this will be useful
as each party will assert the correctness of its message to all parties in each
step. Our generalized functionality can be found in Fig. 3 and is parameterized
by an NP relation R and integer m ∈ N denoting the number of statements to
be proved.

To realize this functionality, we will rely on the so-called input-delayed
proofs [20,21,36,45]. In particular, we rely on the recent work of Hazay and
Venkitasubramaniam [36], who showed how to obtain a 4-round commit-and-
prove protocol where the underlying commitment scheme and one-way permu-
tation are used in a black-box way, and requires the statement only in the last
round. Below, we extend their construction and design a protocol ΠCP that
securely realizes functionality F1:M

CP , and then prove the following theorem.

Theorem 5.1. Assuming the existence of one-way functions, then protocol ΠCP

securely realizes the F1:M
CP -functionality in the FgWRAP-hybrid.

Realizing F1:M
CP in the FgWRAP -Hybrid. In the following section we extend

ideas from [36] in order to obtain a one-many commit-and-prove protocol with
negligible soundness using a specialized randomized encodings (RE) [1,38], where
the statement is only known at the last round. Loosely speaking, RE allows to
represent a “complex” function by a “simpler” randomized function. Given a

390 C. Hazay et al.

Fig. 3. The one-many multi-theorem commit and prove functionality [12].

string w0 ∈ {0, 1}n, the [36] protocol considers a randomized encoding of the
following function:

fw0(x,w1) = (R(x,w0 ⊕ w1), x, w1)

where R is the underlying NP relation and the function has the value w0 hard-
wired in it. The RE we consider needs to be secure against adaptively chosen
inputs and robust. Loosely speaking, an RE is secure against adaptive chosen
inputs if both the encoding and the simulation can be decomposed into offline
and online algorithms and security should hold even if the input is chosen adap-
tively after seeing the offline part of the encoding. Moreover, an offline/online
RE is said to be robust if no adversary can produce an offline part following
the honest encoding algorithm and a (maliciously generated) online part that
evaluates to a value outside the range of the function. Then the ZK proof follows
by having the prover generate the offline phase of the randomized encoding for
this functionality together with commitments to the randomness r used for this
generation and w1. Next, upon receiving a challenge bit ch from the verifier, the
prover completes the proof as follows. In case ch = 0, then the prover reveals r
and w1 for which the verifier checks the validity of the offline phase. Otherwise,
the prover sends the online part of the encoding and a decommitment of w1 for
which the verifier runs the decoder and checks that the outcome is (1, x, w1).

A concrete example based on garbled circuits [58] implies that the offline
part of the randomized encoding is associated with the garbled circuit, where
the randomness r can be associated with the input key labels for the garbling.
Moreover, the online part can be associated with the corresponding input labels
that enable to evaluate the garbled circuit on input x,w1. Clearly, a dishonest
prover cannot provide both a valid garbling and a set of input labels that eval-
uates the circuits to 1 in case x is a false statement. Finally, adaptive security
is achieved by employing the construction from [37] (see [36] for a discussion
regarding the robustness of this scheme).

Composable Security 391

We discuss next how to extend Theorem 5.5 from [36] by adding the one-many
multi-theorem features. In order to improve the soundness parameter of their
ZK proof Hazay and Venkitasubramaniam repeated their basic proof sufficiently
many times in parallel, using fresh witness shares each time embedding the [39]
approach in order to add a mechanism that verifies the consistency of the shares.
Consider a parameter N to be the number of repetitions and let m denote the
number of proven theorems. Our protocol employs two types of commitments
schemes: (1) Naor’s commitment scheme [52] denoted by Com. (2) Token based
extractable commitment scheme in the FgWRAP-hybrid denoted by ComgWRAP

and defined as follows. First, the receiver R in the commitment scheme will
prepare a token that computes a PRF under a randomly chosen key k and
send it to the committer in an initial setup phase, incorporated with the session
identifier sid. Such that on input (x, sid) the token outputs PRF evaluated on
the input x. More, precisely, the receiver on input sid creates a token TKPRFk

with the following code:

– On input (x, s̃id): If s̃id = sid output PRFk(x). Otherwise, output ⊥.

Then, to commit to a bit b, the committer C first queries the token TKPRFk

on input (u, sid) where u ∈ {0, 1}5κ is chosen at random and sid is the session
identifier. Upon receiving the output v from the token, it sends (Ext(u) ⊕ b, v)
where Ext is a randomness extractor as used in Sect. 4. We remark here that if the
tokens are exchanged initially in a token exchange phase, then the commitment
scheme is non-interactive.

Protocol 2. Protocol ΠCP - one-many commit-and-prove protocol.

– Input: The prover holds a witness w, where the prover is a designated party Pτ for
some τ ∈ [n].

– The Protocol:
1. Each party Pk for k �= τ plays the role of the verifier and picks random m

t-subsets Ik
j of [N] for each j ∈ [m] and k ∈ [n − 1] where m is the number

of proven statements. It also picks t random challenge bits {chk
i,j}i∈Ik

j
and

commits to them using Comk
gWRAP. It further sends the first message of the

Naor’s commitment scheme.
2. The prover then continues as follows:

(a) It first generates N ×m×(n−1) independent XOR sharings of the witness
w, say

{w0
i,j,k, w1

i,j,k}(i×j×k)∈[N×m×(n−1)].

(b) Next, for each j ∈ [m] and k ∈ [n − 1], it generates the views of 2N
parties P 0

i,j,k and P 1
i,j,k for all i ∈ [N] executing a t-robust t-private MPC

protocol, where P b
i,j,k has input wb

i,j,k, that realizes the functionality that

checks if w0
i,j,k ⊕ w1

i,j,k are all equal. Let V b
i,j,k be the view of party P b

i,j,k.
(c) Next, for each j ∈ [m] and k ∈ [n − 1], it computes N offline encodings

of the following set of functions:

fw0
i,j,k

,V 0
i,j,k

(xj , w
1
i,j,k, V 1

i,j,k) = (b, xj , w
1
i,j,k, V 1

i,j,k)

where b = 1 if and only if R(xj , w
0
i,j,k ⊕ w1

i,j,k) holds and the views V 0
i,j,k

and V 1
i,j,k are consistent with each other.

392 C. Hazay et al.

(d) Finally, the prover broadcasts to all parties the set containing
{
(f off

w0
i,j,k

,V 0
i,j,k

(ri,j,k),Com(ri,j,k),Com(w0
i,j,k),Com(w1

i,j,k),

Com(V 0
i,j,k),Com(V 1

i,j,k))
}
(i×j×k)∈[N×m×(n−1)]

.

Moreover, let decomri,j,k , decomw0
i,j,k

, decomw1
i,j,k

, decomV 0
i,j,k

, decom

V 1
i,j,k

be the respective decommitment information of the above commit-

ments. Then for every k ∈ [n−1], Pi commits to the above decommitment
information with respect to party Pk and all (i × j) ∈ [N] × [m], using
ComgWRAP.

3. The verifier decommits to all its challenges.
4. For every index (i, j) in the t subset the prover replies as follows:

• If chi
j,k = 0 then it decommits to ri,j,k, w0

i,j,k and V 0
i,j,k. The verifier then

checks if the offline part was constructed correctly.
• If chi

j,k = 1 then it sends f on
w0

i,j,k
,V 0

i,j,k
(ri,j,k, xj , w

1
i,j,k, V 1

i,j,k) and decommits

w1
i,j,k and V 1

i,j,k. The verifier then runs the decoder and checks if it obtains
(1, xj , w

1
i,j,k, V 1

i,j,k).

Furthermore, from the decommitted views V
chi

j,k

i,j,k for every index (i, j) that the
prover sends, the verifier checks if the MPC-in-the-head protocol was executed
correctly and that the views are consistent.

Theorem 5.2. Assuming the existence of one-way functions, then protocol ΠCP

GUC realizes F1:M
CP in the FgWRAP-hybrid.

Proof. Let A be a malicious PPTreal adversary attacking protocol ΠCP in the
FgWRAP-hybrid model. We construct an ideal adversary S with access to F1:M

CP

which simulates a real execution of ΠCP with A such that no environment Z can
distinguish the ideal process with S and FgWRAP-hybrid from a real execution
of ΠCP with A in the FgWRAP-hybrid. S starts by invoking a copy of A and
running a simulated interaction of A with environment Z, emulating the honest
party. We describe the actions of S for every corruption case.

Simulating the communication with Z: Every message that S receives from Z
it internally feeds to A and every output written by A is relayed back to Z. In
case the adversary A issues a transfer query on any token (transfer, ·), S relays
the query to the FgWRAP.

Party Pτ is not corrupted. In this scenario the adversary only corrupts a subset of
parties I playing the role of the verifiers in our protocol. The simulator proceeds
as follows.

1. Upon receiving a commitment Comk
gWRAP from a corrupted party Pk, the

simulator extracts the m committed t-subsets Ik
j and the challenge bits

{chk
i,j}i∈Ik

j
for all j ∈ [m], by retrieving the queries made to the tokens.

2. For each j ∈ [m] and k ∈ [I], the simulator generates the views of 2N parties
P 0

i,j,k and P 1
i,j,k for all i ∈ [N] emulating the simulator of the t-robust t-private

MPC protocol underlying in the real proof, where the set of corrupted parties
for the (j, k)th execution is fixed to be Ik

j extracted above. Let V b
i,j,k be the

view of party P b
i,j,k.

Composable Security 393

3. Next, for each j ∈ [m] and k ∈ [I], the simulator computes N offline encodings
as follows.
– For every index i in the t subset Ik

j the simulator replies as follows:
• If chk

i,j = 0, then the simulator broadcasts the following honestly gen-
erated message: foff

w0
i,j,k,V 0

i,j,k
(ri,j,k),Com(ri,j,k),Com(w0

i,j,k),Com(0),

Com(V ′0
i,j,k),Com(V ′1

i,j,k). where V ′0
i,j,k = 0 and V ′1

i,j,k = V 1
i,j,k if the

matched challenge bit equals one, and vice versa.
• Else, if chk

i,j = 1, then the simulator invokes the simulator for the
randomized encoding and broadcasts the following message:

{
Soff

w0
i,j,k,V 0

i,j,k
(ri,j,k),Com(0),Com(0),Com(w1

i,j,k),

Com(V ′0
i,j,k),Com(V ′1

i,j,k)
}
(i×j×k)∈[N×m×(n−1)]

where w1
i,j,k is a random string and V ′0

i,j,k = 0 and V ′1
i,j,k = V 1

i,j,k if the
matched challenge bit equals one, and vice versa.

– For every index i not in the t subset Ik
j the simulator broadcasts

foff
w0

i,j,k,V 0
i,j,k

(ri,j,k),Com(ri,j,k),Com(w0
i,j,k),Com(0),Com(0),Com(0).

The simulator correctly commits to the decommitments information with
respect to the honestly generated commitments (namely, as the honest prover
would have done) using ComgWRAP. Else, it commits to the zero string.

4. Upon receiving the decommitment information from the adversary, the simu-
lator aborts if the adversary decommits correctly to a different set of messages
than the one extracted above by the simulator.

5. Else, S completes the protocol by replying to the adversary as the honest
prover would do.

Note that the adversary’s view is modified with respect to the views it obtains
with respect to the underlying MPC and both types of commitments. Indistin-
guishability follows by first replacing the simulated views of the MPC execution
with a real execution. Namely the simulator for this hybrid game commits to the
real views. Indistinguishability follows from the privacy of the protocol. Next,
we modify the fake commitments into real commitments computed as in the real
proof. The reduction for this proof follows easily as the simulator is not required
to open these commitments.

Party Pτ is corrupted. In this scenario the adversary corrupts a subset of par-
ties I playing the role of the verifiers in our protocol as well as the prover.
The simulator for this case follows the honest verifier’s strategy {Pk}k/∈[I], with
the exception that it extracts the prover’s witness by extracting one of the wit-
ness’ pairs. Recall that only the decommitment information is committed via
the extractable commitment scheme ComgWRAP. Since a commitment is made
using tokens from every other party and there is at least one honest party, the
simulator can extract the decommitment information and from that extract the

394 C. Hazay et al.

real value. We point out that in general extracting out shares from only one-
pair could cause the problem of “over-extraction” where the adversary does not
necessarily commit to shares of the same string in each pair. In our protocol
this is not an issue because in conjunction with committing to these shares, it
also commits to the views of an MPC-in-the-head protocol which verifies that
all shares are correct. Essentially, the soundness argument follows by showing
that if an adversary deviates, then with high-probability the set I will include a
party with an “inconsistent view”. This involves a careful argument relying on
the so-called t-robustness of the underlying MPC-in-the-head protocol. Such an
argument is presented in [36] to get negligible soundness from constant sound-
ness and this proof can be naturally extended to our setting (our protocol simply
involves more repetitions but the MPC-in-the-head views still ensure correctness
of all repetition simultaneously).

As for straight-line extraction, the argument follows as for the simpler pro-
tocol. Namely, when simulating the verifier’s role the simulator extracts the
committed values within the forth message of the prover. That is, following a
similar procedure of extracting the committed message via obtaining the queries
to the token, it is sufficient to obtain two shares of the witness as the robustness
of the MPC protocol ensures that all the pairs correspond to the same witness.

�

5.2 Warmup: Simple MPC Protocol in the F1:M
CP

-Hybrid

We next describe our MPC protocol in the F1:M
CP -hybrid. On a high-level, we

follow GMW-style compilation [29] of a semi-honest secure protocol Π to achieve
malicious security using the F1:M

CP -functionality. Without loss of generality, we
assume that in each round of the semi-honest MPC protocol Π, each party
broadcasts a single message that depends on its input and randomness and on
the messages that it received from all parties in all previous rounds. We let mi,j

denote the message sent by the ith party in the jth round in the protocol Π. We
define the function πi such that mi,t = πi(xi, ri, (M1, . . . ,Mt−1)) where mi,t is
the tth message generated by party Pi in protocol Π with input xi, randomness
ri and where Mr is the message sent by all parties in round i of Π. We leave the
complete construction to the full version [34].

Protocol description. Our protocol ΠMPC proceeds as follows:

Round 1. In the first round, the parties commit to their inputs and ran-
domness. More precisely, on input xi, party Pi samples random strings
ri,1, ri,2, . . . , ri,n and sends (commit, sid,P, w) to F1:M

CP and w = (x,Ri) where
Ri = (ri,1, ri,2, . . . , ri,n).

Round 2. Pi broadcasts shares Ri = Ri − {ri,i} and sends (prove, Pi,P, Ri).
Let M0 = (R1, . . . , Rn).

Round 2 + δ. Let Mδ−1 be the messages broadcast by all parties in rounds
3, 4, . . . , 2+(δ−1) and let mi,δ = πi(xi, ri, (M1, . . . ,Mδ−1)) where ri = ⊕jrj,i.
Pi broadcasts mi,δ and sends to F1:M

CP the message (prove, Pi,P,M t−1 : mi,δ)
where M δ−1 = (M0,M1, . . . ,Mδ−1).

Composable Security 395

The NP-relation R used to instantiate the F1:M
CP functionality will include:

1. (M0, Ri) : if M0 contains Ri as its ith component where Ri = Ri − {ri,i} and
Ri = {ri,1, . . . , ri,n}.

2. ((M δ−1,mi,δ), (xi, Ri)) : if (M0, Ri) ∈ R and mi,δ = πi(xi, ri, (M1, . . . ,
Mδ−1)) where ri = ⊕j∈[n]rj,i, M δ−1 = (M0,M1 . . . ,Mδ−1) and Ri =
{ri,1, . . . , ri,n}.

Theorem 5.3. Let f be any deterministic polynomial-time function with n
inputs and a single output. Assume the existence of one-way functions and an
n-party semi-honest MPC protocol Π. Then the protocol ΠMPC GUC realizes Ff

in the F1:M
CP -hybrid.

Proof. Let A be a malicious PPT real adversary attacking protocol ΠMPC in
the F1:M

CP -hybrid model. We construct an ideal adversary S with access to Ff

which simulates a real execution of ΠMPC with A such that no environment Z can
distinguish the ideal process with S interacting with Ff from a real execution of
ΠMPC with A in the F1:M

CP -hybrid. S starts by invoking a copy of A and running
a simulated interaction of A with environment Z, emulating the honest party.
We describe the actions of S for every corruption case.

Simulating honest parties: Let I be the set of parties corrupted by the adversary
A. This means S needs to simulate all messages from parties in P/I. S emulates
the F1:M

CP functionality for A as follows. For every Pj ∈ P/I it sends the commit-
ment message (receipt, Pj ,P, sid) to all parties Pi ∈ I. Next, for every message
(commit, sid, Pi,P, wi) received from A, it records wi = (xi, ri,1, . . . , ri,n). Upon
receiving this message on behalf of every Pi ∈ I, the simulator S sends xi on
behalf of every Pi ∈ I to Ff and obtains the result of the computation output.
Then using the simulator of the semi-honest protocol Π, it generates random
tapes ri for every Pi ∈ I and messages mj,δ for all honest parties Pj ∈ P/I and
all rounds δ. Next, it sends Rj on behalf of the honest parties Pj ∈ P/I so that
for every Pi ∈ I, ri = ⊕rj,i. This is possible since there is at least one party
Pj outside I and S can set rj,i so that it adds to ri. Next, in round 2 + δ, it
receives the messages from Pi ∈ I and supplies messages from the honest parties
according to the simulation of Pi. Along with each message it receives the prove
message that the parties in I send to F1:M

CP . S simply honestly emulates F1:M
CP

for these messages. For messages that the honest parties send to F1:M
CP , S simply

sends the receipt message to all parties in I.
Indistinguishability of the simulation follows from the following two facts:

– Given an input xi and random tape ri for every Pi ∈ I and the messages from
the honest parties, there is a unique emulation of the semi-honest protocol Π
where all the messages from parties Pi if honestly generated are deterministic.

– Since the simulation is emulating the F1:M
CP functionality, the computation

immediately aborts if a corrupted party Pi deviates from the deterministic
strategy. �

396 C. Hazay et al.

Acknowledgements. We thank Yuval Ishai, Amit Sahai, and Vipul Goyal for fruitful
discussions regarding token-based cryptography. The first author acknowledges support
from the Israel Ministry of Science and Technology (grant No. 3-10883) and support by
the BIU Center for Research in Applied Cryptography and Cyber Security in conjunc-
tion with the Israel National Cyber Bureau in the Prime Minister’s Office. The second
author was also supported by the Danish National Research Foundation; the National
Science Foundation of China (grant no. 61061130540) for the Sino-Danish CTIC; the
CFEM supported by the Danish Strategic Research Council. In addition, this work
was done in part while visiting the Simons Institute for the Theory of Computing,
supported by the Simons Foundation and by the DIMACS/Simons Collaboration in
Cryptography through NSF grant CNS-1523467. The third author was supported by
Google Faculty Research Grant and NSF Award CNS-1526377.

References

1. Applebaum, B., Ishai, Y., Kushilevitz, E.: Cryptography in NC0. In: FOCS, pp.
166–175 (2004)

2. Barak, B., Canetti, R., Nielsen, J.B., Pass, R.: Universally composable protocols
with relaxed set-up assumptions. In: FOCS, pp. 186–195 (2004)

3. Barak, B., Sahai, A.: How to play almost any mental game over the net - concurrent
composition via super-polynomial simulation. In: FOCS, pp. 543–552 (2005)

4. Beaver, D.: Foundations of secure interactive computing. In: Feigenbaum, J. (ed.)
CRYPTO 1991. LNCS, vol. 576, pp. 377–391. Springer, Heidelberg (1992). doi:10.
1007/3-540-46766-1 31

5. Boureanu, I., Ohkubo, M., Vaudenay, S.: The limits of composable crypto with
transferable setup devices. In: CCS, pp. 381–392 (2015)

6. Canetti, R.: Universally composable security: a new paradigm for cryptographic
protocols. In: FOCS, pp. 136–145 (2001)

7. Canetti, R., Dodis, Y., Pass, R., Walfish, S.: Universally composable security
with global setup. In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 61–
85. Springer, Heidelberg (2007). doi:10.1007/978-3-540-70936-7 4

8. Canetti, R., Fischlin, M.: Universally composable commitments. In: Kilian, J. (ed.)
CRYPTO 2001. LNCS, vol. 2139, pp. 19–40. Springer, Heidelberg (2001). doi:10.
1007/3-540-44647-8 2

9. Canetti, R., Jain, A., Scafuro, A.: Practical UC security with a global random
oracle. In: CCS, pp. 597–608 (2014)

10. Canetti, R., Kushilevitz, E., Lindell, Y.: On the limitations of universally com-
posable two-party computation without set-up assumptions. J. Cryptology 19(2),
135–167 (2006)

11. Canetti, R., Lin, H., Pass, R.: Adaptive hardness and composable security in the
plain model from standard assumptions. In: FOCS, pp. 541–550 (2010)

12. Canetti, R., Lindell, Y., Ostrovsky, R., Sahai, A.: Universally composable two-
party and multi-party secure computation. In: STOC (2002)

13. Canetti, R., Pass, R., Shelat, A.: Cryptography from sunspots: how to use an
imperfect reference string. In: FOCS, pp. 249–259 (2007)

14. Canetti, R., Rabin, T.: Universal composition with joint state. In: Boneh, D. (ed.)
CRYPTO 2003. LNCS, vol. 2729, pp. 265–281. Springer, Heidelberg (2003). doi:10.
1007/978-3-540-45146-4 16

http://dx.doi.org/10.1007/3-540-46766-1_31
http://dx.doi.org/10.1007/3-540-46766-1_31
http://dx.doi.org/10.1007/978-3-540-70936-7_4
http://dx.doi.org/10.1007/3-540-44647-8_2
http://dx.doi.org/10.1007/3-540-44647-8_2
http://dx.doi.org/10.1007/978-3-540-45146-4_16
http://dx.doi.org/10.1007/978-3-540-45146-4_16

Composable Security 397

15. Chandran, N., Goyal, V., Sahai, A.: New constructions for UC secure com-
putation using tamper-proof hardware. In: Smart, N.P. (ed.) EUROCRYPT
2008. LNCS, vol. 4965, pp. 545–562. Springer, Heidelberg (2008). doi:10.1007/
978-3-540-78967-3 31

16. Choi, S.G., Katz, J., Schröder, D., Yerukhimovich, A., Zhou, H.-S.: (Efficient) uni-
versally composable oblivious transfer using a minimal numberof stateless tokens.
IACR Cryptology ePrint Archive, 2013:840 (2013)

17. Choi, S.G., Katz, J., Schröder, D., Yerukhimovich, A., Zhou, H.-S.: (Efficient) uni-
versally composable oblivious transfer using a minimal number of stateless tokens.
In: Lindell, Y. (ed.) TCC 2014. LNCS, vol. 8349, pp. 638–662. Springer, Heidelberg
(2014). doi:10.1007/978-3-642-54242-8 27

18. Ciampi, M., Ostrovsky, R., Siniscalchi, L., Visconti, I.: Concurrent non-malleable
commitments (and more) in 3 rounds. In: Robshaw, M., Katz, J. (eds.) CRYPTO
2016. LNCS, vol. 9816, pp. 270–299. Springer, Heidelberg (2016). doi:10.1007/
978-3-662-53015-3 10

19. Michele, C., Rafail, O., Luisa, S., Ivan, V.: On round-efficient non-malleable pro-
tocols. IACR Cryptology ePrint Archive, 2016:621 (2016)

20. Ciampi, M., Persiano, G., Scafuro, A., Siniscalchi, L., Visconti, I.: Improved or-
composition of sigma-protocols. In: TCC, pp. 112–141 (2016)

21. Ciampi, M., Persiano, G., Scafuro, A., Siniscalchi, L., Visconti, I.: Online/Offline
OR composition of sigma protocols. In: Fischlin, M., Coron, J.-S. (eds.) EURO-
CRYPT 2016. LNCS, vol. 9666, pp. 63–92. Springer, Heidelberg (2016). doi:10.
1007/978-3-662-49896-5 3

22. Dachman-Soled, D., Malkin, T., Raykova, M., Venkitasubramaniam, M.: Adaptive
and concurrent secure computation from new adaptive, non-malleable commit-
ments. In: Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013, Part I. LNCS, vol. 8269,
pp. 316–336. Springer, Heidelberg (2013). doi:10.1007/978-3-642-42033-7 17

23. Döttling, N., Kraschewski, D., Müller-Quade, J.: Unconditional and composable
security using a single stateful tamper-proof hardware token. In: Ishai, Y. (ed.)
TCC 2011. LNCS, vol. 6597, pp. 164–181. Springer, Heidelberg (2011). doi:10.
1007/978-3-642-19571-6 11

24. Döttling, N., Kraschewski, D., Möller-Quade, J., Nilges, T.: From stateful hardware
to resettable hardware using symmetric assumptions. In: ProvSec, pp. 23–42 (2015)

25. Döttling, N., Kraschewski, D., Müller-Quade, J., Nilges, T.: General statisti-
cally secure computation with bounded-resettable hardware tokens. In: Dodis, Y.,
Nielsen, J.B. (eds.) TCC 2015, Part I. LNCS, vol. 9014, pp. 319–344. Springer,
Heidelberg (2015). doi:10.1007/978-3-662-46494-6 14

26. Döttling, N., Mie, T., Müller-Quade, J., Nilges, T.: Implementing resettable UC-
functionalities with untrusted tamper-proof hardware-tokens. In: Sahai, A. (ed.)
TCC 2013. LNCS, vol. 7785, pp. 642–661. Springer, Heidelberg (2013). doi:10.
1007/978-3-642-36594-2 36

27. Garg, S., Gentry, C., Halevi, S., Raykova, M.: Two-round secure MPC from indis-
tinguishability obfuscation. In: TCC, pp. 74–94 (2014)

28. Garg, S., Mukherjee, P., Pandey, O., Polychroniadou, A.: The exact round com-
plexity of secure computation. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT
2016. LNCS, vol. 9666, pp. 448–476. Springer, Heidelberg (2016). doi:10.1007/
978-3-662-49896-5 16

29. Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game or a
completeness theorem for protocols with honest majority. In: STOC, pp. 218–229
(1987)

http://dx.doi.org/10.1007/978-3-540-78967-3_31
http://dx.doi.org/10.1007/978-3-540-78967-3_31
http://dx.doi.org/10.1007/978-3-642-54242-8_27
http://dx.doi.org/10.1007/978-3-662-53015-3_10
http://dx.doi.org/10.1007/978-3-662-53015-3_10
http://dx.doi.org/10.1007/978-3-662-49896-5_3
http://dx.doi.org/10.1007/978-3-662-49896-5_3
http://dx.doi.org/10.1007/978-3-642-42033-7_17
http://dx.doi.org/10.1007/978-3-642-19571-6_11
http://dx.doi.org/10.1007/978-3-642-19571-6_11
http://dx.doi.org/10.1007/978-3-662-46494-6_14
http://dx.doi.org/10.1007/978-3-642-36594-2_36
http://dx.doi.org/10.1007/978-3-642-36594-2_36
http://dx.doi.org/10.1007/978-3-662-49896-5_16
http://dx.doi.org/10.1007/978-3-662-49896-5_16

398 C. Hazay et al.

30. Goyal, V., Ishai, Y., Sahai, A., Venkatesan, R., Wadia, A.: Founding cryptography
on tamper-proof hardware tokens. In: Micciancio, D. (ed.) TCC 2010. LNCS, vol.
5978, pp. 308–326. Springer, Heidelberg (2010). doi:10.1007/978-3-642-11799-2 19

31. Goyal, V., Lee, C.-K., Ostrovsky, R., Visconti, I.: Constructing non-malleable com-
mitments: a black-box approach. In: FOCS, pp. 51–60 (2012)

32. Goyal, V., Richelson, S., Rosen, A., Vald, M.: An algebraic approach to non-
malleability. In: 55th IEEE Annual Symposium on Foundations of Computer Sci-
ence, FOCS 2014, Philadelphia, PA, USA, 18–21 October 2014, pp. 41–50 (2014)

33. Haitner, I., Hoch, J.J., Reingold, O., Segev, G.: Finding collisions in interactive
protocols - tight lower bounds on the round and communication complexities of
statistically hiding commitments. SIAM J. Comput. 44(1), 193–242 (2015)

34. Carmit, H., Antigoni, P., Muthuramakrishnan, V.: Composable security in the
tamper proof hardware model under minimal complexity. IACR Cryptology ePrint
Archive 2015:887 (2015)

35. Hazay, C., Venkitasubramaniam, M.: On black-box complexity ofuniversally com-
posable security in the CRS model. In: ASIACRYPT, pp. 183–209 (2015)

36. Hazay, C., Venkitasubramaniam, M.: On the power of secure two-party computa-
tion. In: Robshaw, M., Katz, J., Wooten, M.B. (eds.) CRYPTO 2016. LNCS, vol.
9815, pp. 397–429. Springer, Heidelberg (2016). doi:10.1007/978-3-662-53008-5 14

37. Brett, H., Zahra, J., Rafail, O., Alessandra, S., Daniel, W.: Adaptively secure gar-
bled circuits from one-way functions. IACR Cryptology ePrint Archive 2015:1250
(2015)

38. Ishai, Y., Kushilevitz, E. Randomizing polynomials: a new representation with
applications to round-efficient secure computation. In: FOCS, pp. 294–304 (2000)

39. Ishai, Y., Kushilevitz, E., Ostrovsky, R., Sahai, A.: Zero-knowledge proofs from
secure multiparty computation. SIAM J. Comput. 39(3), 1121–1152 (2009)

40. Ishai, Y., Prabhakaran, M., Sahai, A.: Founding cryptography on oblivious transfer
– efficiently. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 572–591.
Springer, Heidelberg (2008). doi:10.1007/978-3-540-85174-5 32

41. Kalai, Y.T., Lindell, Y., Prabhakaran, M.: Concurrent composition of secure pro-
tocols in the timing model. J. Cryptology 20(4), 431–492 (2007)

42. Katz, J.: Universally composable multi-party computation using tamper-proof
hardware. In: Naor, M. (ed.) EUROCRYPT 2007. LNCS, vol. 4515, pp. 115–128.
Springer, Heidelberg (2007). doi:10.1007/978-3-540-72540-4 7

43. Katz, J., Ostrovsky, R.: Round-optimal secure two-party computation. In:
Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 335–354. Springer,
Heidelberg (2004). doi:10.1007/978-3-540-28628-8 21

44. Kilian, J.: Founding cryptography on oblivious transfer. In: STOC, pp. 20–31
(1988)

45. Lapidot, D., Shamir, A.: Publicly verifiable non-interactive zero-knowledge proofs.
In: Menezes, A., Vanstone, S.A. (eds.) CRYPTO 1990. LNCS, vol. 537, pp. 353–
365. Springer, Heidelberg (1991). doi:10.1007/3-540-38424-3 26

46. Lin, H., Pass, R., Venkitasubramaniam, M.: A unified framework for concurrent
security: universal composability from stand-alone non-malleability. In: STOC, pp.
179–188 (2009)

47. Pass, R., Lin, H., Venkitasubramaniam, M.: A unified framework for UC from
only OT. In: Wang, X., Sako, K. (eds.) ASIACRYPT 2012. LNCS, vol. 7658, pp.
699–717. Springer, Heidelberg (2012). doi:10.1007/978-3-642-34961-4 42

48. Lindell, Y.: General composition and universal composability in secure multi-party
computation. In: FOCS, pp. 394–403 (2003)

http://dx.doi.org/10.1007/978-3-642-11799-2_19
http://dx.doi.org/10.1007/978-3-662-53008-5_14
http://dx.doi.org/10.1007/978-3-540-85174-5_32
http://dx.doi.org/10.1007/978-3-540-72540-4_7
http://dx.doi.org/10.1007/978-3-540-28628-8_21
http://dx.doi.org/10.1007/3-540-38424-3_26
http://dx.doi.org/10.1007/978-3-642-34961-4_42

Composable Security 399

49. Jeremias, M., Jörn, M.-Q., Tobias, N.: Universally composable (non-interactive)
two-party computation from untrusted reusable hardware tokens. IACR Cryptol-
ogy ePrint Archive 2016:615 (2016)

50. Micali, S., Rogaway, P.: Secure computation. In: Feigenbaum, J. (ed.) CRYPTO
1991. LNCS, vol. 576, pp. 392–404. Springer, Heidelberg (1992). doi:10.1007/
3-540-46766-1 32

51. Moran, T., Segev, G.: David and Goliath commitments: UC computation for asym-
metric parties using tamper-proof hardware. In: Smart, N.P. (ed.) EUROCRYPT
2008. LNCS, vol. 4965, pp. 527–544. Springer, Heidelberg (2008). doi:10.1007/
978-3-540-78967-3 30

52. Naor, M.: Bit commitment using pseudorandomness. J. Cryptology 4(2), 151–158
(1991)

53. Nilges, T.: The Cryptographic Strength of Tamper-Proof Hardware. Ph.D. thesis,
Karlsruhe Institute of Technology (2015)

54. Ostrovsky, R., Richelson, S., Scafuro, A.: Round-optimal black-box two-party com-
putation. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9216,
pp. 339–358. Springer, Heidelberg (2015). doi:10.1007/978-3-662-48000-7 17

55. Pass, R.: Simulation in quasi-polynomial time, and its application to protocol com-
position. In: EUROCRYPT, pp. 160–176 (2003)

56. Pass, R., Wee, H.: Black-box constructions of two-party protocols from one-way
functions. In: Reingold, O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 403–418. Springer,
Heidelberg (2009). doi:10.1007/978-3-642-00457-5 24

57. Prabhakaran, M., Sahai, A.: New notions of security: achieving universal compos-
ability without trusted setup. In: STOC, pp. 242–251 (2004)

58. Yao, A.C.-C.: How to generate and exchange secrets (extended abstract). In: FOCS,
pp. 162–167 (1986)

http://dx.doi.org/10.1007/3-540-46766-1_32
http://dx.doi.org/10.1007/3-540-46766-1_32
http://dx.doi.org/10.1007/978-3-540-78967-3_30
http://dx.doi.org/10.1007/978-3-540-78967-3_30
http://dx.doi.org/10.1007/978-3-662-48000-7_17
http://dx.doi.org/10.1007/978-3-642-00457-5_24

Composable Adaptive Secure Protocols
Without Setup Under Polytime Assumptions

Carmit Hazay1(B) and Muthuramakrishnan Venkitasubramaniam2

1 Bar-Ilan University, Ramat Gan, Israel
carmit.hazay@cs.biu.ac.il

2 University of Rochester, Rochester, NY, USA
muthuv@cs.rochester.edu

Abstract. All previous constructions of general multiparty computa-
tion protocols that are secure against adaptive corruptions in the concur-
rent setting either require some form of setup or non-standard assump-
tions. In this paper we provide the first general construction of secure
multi-party computation protocol without any setup that guarantees
composable security in the presence of an adaptive adversary based
on standard polynomial-time assumptions. We prove security under the
notion of “UC with super-polynomial helpers” introduced by Canetti
et al. (FOCS 2010), which is closed under universal composition and
implies “super-polynomial-time simulation”. Moreover, our construction
relies on the underlying cryptographic primitives in a black-box manner.

Next, we revisit the zero-one law for two-party secure functions evalu-
ation initiated by the work of Maji, Prabhakaran and Rosulek (CRYPTO
2010). According to this law, every two-party functionality is either triv-
ial (meaning, such functionalities can be reduced to any other function-
ality) or complete (meaning, any other functionality can be reduced to
these functionalities) in the Universal Composability (UC) framework.
As our second contribution, assuming the existence of a simulatable
public-key encryption scheme, we establish a zero-one law in the adaptive
setting. Our result implies that every two-party non-reactive functional-
ity is either trivial or complete in the UC framework in the presence of
adaptive, malicious adversaries.

Keywords: UC security · Adaptive secure computation · Coin-tossing ·
Black-box construction · Extractable commitments · Zero-one law

1 Introduction

Secure computation enables a set parties to mutually run a protocol that com-
putes some function f on their private inputs, while preserving a number of

C. Hazay—Research supported by the Israel Ministry of Science and Technology
(grant No. 3-10883) and by the BIU Center for Research in Applied Cryptography
and Cyber Security in conjunction with the Israel National Cyber Bureau in the
Prime Minister’s Office.
M. Venkitasubramaniam—Research supported by Google Faculty Research Grant
and NSF Award CNS-1526377.

c© International Association for Cryptologic Research 2016
M. Hirt and A. Smith (Eds.): TCC 2016-B, Part I, LNCS 9985, pp. 400–432, 2016.
DOI: 10.1007/978-3-662-53641-4 16

Composable Adaptive Secure Protocols 401

security properties. Two of the most important properties are privacy and cor-
rectness. The former implies data confidentiality, namely, nothing leaks by the
protocol execution but the computed output. The later requirement implies that
no corrupted party or parties can cause the output to deviate from the specified
function. It is by now well known how to securely compute any efficient func-
tionality [Yao86,GMW87,MR91,Bea91,Can01] in various models and under the
stringent simulation-based definitions (following the ideal/real paradigm). Secu-
rity is typically proven with respect to two adversarial models: the semi-honest
model (where the adversary follows the instructions of the protocol but tries
to learn more than it should from the protocol transcript), and the malicious
model (where the adversary follows an arbitrary polynomial-time strategy), and
feasibility results are known in the presence of both types of attacks. The ini-
tial model considered for secure computation was of a static adversary where
the adversary controls a subset of the parties (who are called corrupted) before
the protocol begins, and this subset cannot change. In a stronger corruption
model the adversary is allowed to choose which parties to corrupt throughout
the protocol execution, and as a function of its view; such an adversary is called
adaptive.

These feasibility results rely in most cases on stand-alone security, where
a single set of parties run a single execution of the protocol. Moreover, the
security of most cryptographic protocols proven in the stand-alone setting does
not remain intact if many instances of the protocol are executed concurrently
[Lin03]. The strongest (but also the most realistic) setting for concurrent secu-
rity is known by Universally Composable (UC) security [Can01]. This setting
considers the execution of an unbounded number of concurrent protocols in
an arbitrary and adversarially controlled network environment. Unfortunately,
stand-alone secure protocols typically fail to remain secure in the UC setting. In
fact, without assuming some trusted help, UC security is impossible to achieve for
most tasks [CF01,CKL06,Lin03]. Consequently, UC secure protocols have been
constructed under various trusted setup assumptions in a long series of works;
see [BCNP04,CDPW06,KLP07,CPS07,LPV09,DMRV13] for few examples.

Concurrent Security Without Any Setup. In many situations, having a
trusted set-up might be hard or expensive. Designing protocols in the plain
model that provide meaningful security in a concurrent setting is thus an impor-
tant challenge. In this regard, a relaxation of UC security allows the adversary
in an ideal execution to run in super-polynomial time; this notion is referred
to as super-polynomial security (or SPS) [Pas03]. On a high-level, this secu-
rity notion guarantees that any attack carried out by an adversary running in
polynomial time can be mounted in the ideal execution with super-polynomial
resources. In many scenarios, such a guarantee is meaningful and indeed sev-
eral past works have designed protocols guaranteeing this relaxed UC secu-
rity against static adversaries [Pas03,BS05,LPV09] and adaptive adversaries
[BS05,DMRV13,Ven14]. While initial works relied on sub-exponential hardness
assumptions, more recent works in the static setting have been constructed based
on standard polynomial-time hardness assumptions.

402 C. Hazay and M. Venkitasubramaniam

The work of [CLP10], put forth some basic desiderata regarding security
notions in a concurrent setting. One of them requires supporting modular analy-
sis: Namely, there should be a way to deduce security properties of the overall
protocol from the security properties of its components. Quite surprisingly, it
was shown in [CDPW06] that most protocols in the UC framework that con-
sider both trusted setups and relaxed models of security, in fact, do not support
this.

Towards remedying the drawbacks of SPS security, Prabhakaran and Sahai
[PS04] put forth the notion of Angel-based UC security that provides guarantees
analogous to SPS security while at the same time supporting modular analysis.
In this model, both the adversary and the simulator have access to an ora-
cle, referred to as an “angel” that provides judicious use of super-polynomial
resources. In the same work and subsequent effort [MMY06] the authors pro-
vided constructions under this security notion relying on non-standard hard-
ness assumptions. Recently, Canetti, Lin and Pass [CLP10] provided the first
constructions in this model relying on standard polynomial time assumptions.
Moreover, to emphasize the modular analysis requirement, they recast the notion
of Angel-based security in the extended UC (EUC) framework of [CDPW06]
calling it UC with super-polynomial helpers. While prior approaches relied on
non-interactive helpers that were stateless, this work designed a helper that
was highly interactive and stateful. Since this work, several follow up works
[LP12a,GLP+15,Kiy14] have improved both the round complexity and the com-
putational assumptions. The most recent work due to Kiyoshima [Kiy14] pro-
vides a Õ(log2 n)-round protocol to securely realize any functionality in this
framework based on semi-honest oblivious transfer protocols where the under-
lying primitives are used in a black-box manner. In this line of research, the
work of Canetti, Lin and Pass [CLP13] distinguishes itself by designing proto-
cols that guarantee a stronger notion of security. More precisely, they extend
the angel-based security so that protocols developed in this extended framework
additionally preserve security of other protocols running the system (i.e. cause
minimal “side-effect”). They refer to such protocols “environment friendly” pro-
tocols. However, as observed in the same work, this strong notion inherently
requires non-black-box simulation techniques. Moreover, the constructions pre-
sented in [CLP13] are non-black-box as well.

While considerable progress has been made in constructing protocols secure
against static adversaries, very little is known regarding adaptive adver-
saries. Specifically, the work of Barak and Sahai [BS05] and subsequent works
[DMRV13,Ven14] show how to achieve SPS security under non-standard assump-
tions. Besides these works, every other protocol that guarantees any meaningful
security against adaptive adversaries in a concurrent setting has required setup.
The main question left open by previous work regarding adaptive security is:

Can we realize general functionalities with SPS security in the plain model
under standard polynomial time assumptions? and,

Composable Adaptive Secure Protocols 403

Can we show adaptively secure angel-based (or EUC-security) under stan-
dard hardness assumptions where the underlying primitives are used in a
black-box manner?

We stress that even the works that provide SPS security require non-standard or
sub-exponential hardness assumptions and are non-black-box, that is, the con-
structions rely on the underlying assumptions in non-black-box way. A more
ambitious goal would be to construct “environment-friendly” protocols [CLP13]
and we leave it as future work.

1.1 Our Results

In this work we resolve both these questions completely and provide the first real-
izations of general functionalities under EUC security against malicious, adaptive
adversaries (See [CDPW06,CLP10] for a formal definition). More formally, we
prove the following theorem:

Theorem 1.1. Assume the existence of a simulatable public-key encryption
scheme. Then there exists a sub-exponential time computable (interactive) helper
machine H such that for any “well formed” polynomial-time functionality F ,
there exists a protocol that realizes F with H-EUC security, in the plain model
secure against malicious, adaptive adversaries. Furthermore, the protocol makes
only black-box use of the underlying encryption scheme.

We recall here that simulatable public-key encryption (PKE), introduced
by Damgard and Nielsen [DN00], allows to obliviously sample the public
key/ciphertext without the knowledge of the corresponding secret key/plaintext.

As far as we know, this is the first construction based on polynomial-time
hardness assumptions of a secure multi-party computation that achieves any
non-trivial notion of concurrent security against adaptive adversaries without
any trusted-set up (in the plain model) and without assuming an honest major-
ity. Also, the construction supports modular analysis and relies on the underly-
ing scheme in a black-box way. In essence, our protocol provides the strongest
possible security guarantees in the plain model.

A Zero-One Law for Adaptive Security. In [PR08], Prabhakaran and
Rosulek initiated the study of the “cryptographic complexity” of two-party
secure computation tasks in the UC framework. Loosely speaking, in their frame-
work a functionality F UC-reduces to another functionality G if there is a UC
secure protocol for F in the G-hybrid, i.e., using ideal access to G. Under this
notion of a reduction in the presence of static adversaries, Maji et al. in [MPR10]
established a zero-one law for two-party (non-reactive) functionalities which
states that every functionality is either trivial or complete. In this work, we
extend their result to the adaptive setting to obtain the following theorem.

Theorem 1.2 (Informal). All non-reactive functionalities are either trivial or
complete under UC-reductions in the presence of adaptive adversaries.

404 C. Hazay and M. Venkitasubramaniam

1.2 Previous Techniques

All previous approaches for Angel-based UC secure protocols relied on a par-
ticular “adaptive hardness” assumption which amounts to guaranteeing security
in the presence of an adversary that has adaptive access to a helper function.
Indeed, as pursued in the orginal approaches by [PS04,MMY06], complexity
leveraging allows for designing such primitives. A major breakthrough was made
by Canetti, Lin and Pass [CLP10] that showed that a helper function could be
based on standard assumptions. The main technical tool introduced in this work
is a new notion of a commitment scheme that is secure against an adaptive
chosen commitment attack (CCA security). On a high-level, a tag-based com-
mitment scheme, which are schemes that have additionally a tag as a common
input, is said to be CCA-secure if a commitment made with tag id is hiding even
if the receiver has access to a (possibly, super-polynomial time) oracle that is
capable of “breaking” commitments made using any tag id′ �= id. In the original
work, they constructed a O(nε)-round CCA-secure commitment scheme based
on one-way functions (OWFs) [CLP10]. Since then, several followup works have
improved this result, culminating in the work of Kiyoshima [Kiy14] who gave
a Õ(log2 n)-round construction of a CCA-secure commitment scheme based on
OWFs while relying on the underlying OWF in a black-box way.1 We remark
here that Angel-based security based on standard polynomial-time assumptions
have been constructed only in the static setting. Moreover, all constructions in
this line of work, first construct a CCA-secure commitment scheme and then real-
ize a complete UC functionality, such as the commitment or oblivious-transfer
functionality using a “decommitment” oracle as the helper functionality.

When considering the adaptive setting, we begin with the observation that
any cryptographic primitive in use must be secure in the presence of adaptive
corruptions. Namely, we require a simulation that can produce random coins con-
sistent with any honest party during the execution as soon as it is adaptively cor-
rupted. A first attempt would be to enhance a CCA-secure commitment scheme
to the adaptive setting. This means there must be a mechanism to equivocate the
commitment scheme. It is in fact crucial in all works using CCA-secure commit-
ments that the helper functionality be able to break the commitment and obtain
the unique value (if any) that the commitment can be decommitted to. However,
equivocal commitments by definition can have commitments that do not have
unique decommitments. In essence, standard CCA-secure commitment schemes
are necessarily statistically binding (and all previous constructions indeed are
statistically binding). Hence, it would be impossible to use any of those schemes
in the adaptive setting.

The previous works [DMRV13,Ven14] get around this issue by relying on
some sort of setup, namely, a mechanism by which the commitments will be
statistically binding in the real world for adversaries, yet can be equivocated in
the ideal world by the simulator. The notion of an adaptive instance-dependent

1 We further note that Goyal et al. [GLP+15] gave a Õ(log n)-round CCA-secure
commitment scheme but makes use of the OWF in a non-black-box way.

Composable Adaptive Secure Protocols 405

scheme [LZ11] provides exactly such a primitive. Informally, such commitment
schemes additionally take as input an NP-statement and provide the following
guarantee: If the statement is true, the commitment can be equivocated using
the witness, whereas if the statement is false then the commitment is statisti-
cally binding. Moreover, it admits adaptive corruptions where a simulator can
produce random coins for an honest committer, revealing a simulated commit-
ment to any value. The work of [BS05] relies on complexity leveraging in order
to generate statements that a simulator, in super-polynomial time can break but
an adversary, in polynomial time, cannot break. On the other hand, the works
of [DMRV13,Ven14] rely on the so called UC puzzle, that provides a similar
advantage for the simulator while relying on milder assumptions.

A second issue arises in the adaptive setting where any commitment scheme
that tolerates concurrent executions (even with fixed roles) and is equivocal,
implies some sort of selective opening security. Indeed, the result of Ostrovsky
et al. [ORSV13] proves that it is impossible, in general, to construct concurrent
commitments secure w.r.t. selective opening attacks. Getting around this lower
bound is harder. Previous results [DMRV13,Ven14] get around this lower bound
by first constructing a “weaker” commitment scheme in a limited concurrent
environment. Namely, they construct an equivocal non-malleable commitment
scheme that can simulate any man-in-the-middle adversary receiving “left” com-
mitments made to independent and identically distributed values (via some a
priori fixed distribution), and is acting as a committer in many “right” interac-
tions. This allows to get around the [ORSV13] lower bound, as Ostrovsky et al.
lower bound holds only if the simulator does not know the distribution of the
commitments received by the adversary. In any case, all previous works fail to
achieve the stronger Angel-based UC security, where the helper function is pro-
vided to the adversary and the simulator in the real and ideal world respectively
are the same.

Given these bottlenecks, it seems unlikely to use a commitment scheme with
such a property. In this work, we introduce a new primitive that will allow to both
provide the adaptive hardness property as well as admit adaptive corruptions.
This primitive is coin-tossing and will additionally require to satisfy an adaptive
hardness guarantee that we define in the next section. We chose coin-tossing as
a primitive as it does not require any inputs from the parties and the output
is independent of any “global” inputs of the parties participating in the coin-
tossing. Roughly speaking, if a party is adaptively corrupted it is possible to
sample a random string as the output and equivocate the interaction to output
this string. On the other hand, a commitment scheme will not allow such a
mechanism as corrupting a sender requires equivocating the interaction to a
particular value (that could potentially depend on a global input).

2 Our Main Tool: CCA-Secure Coin-Tossing

The main technical tool used in our construction is a new notion of a coin-tossing
protocol that is secure against adaptive chosen coins attack (CCA security).

406 C. Hazay and M. Venkitasubramaniam

Cryptographic primitives with an adaptive hardness property has been stud-
ied extensively in the case of the encryption schemes (chosen ciphertext attack
security), and more recently in the case of commitments [CLP10,KMO14,Kiy14,
GLP+15]. We define here an analogous notion for coin-tossing protocols for the
stronger case of adaptive corruptions.

A natural approach is to say that a coin-tossing protocol is CCA-secure if
the coin-tossing scheme retains its simulatability even if a “Receiver” has access
to a “biasing” oracle O that has the power to bias the protocol outcome of the
coin-tossing to any chosen value. Unfortunately, we do not know how to realize
such a notion and will instead, consider a weaker “indistinguishability”-based
notion (as opposed to simulation based notion) that will be sufficient for our
application.

A motivating example. We motivate our definition by discussing what secu-
rity properties are desirable for coin-tossing protocols (in general). Consider a
public-key cryptosystem that additionally has a property that a public-key can
be obliviously sampled using random coins without knowledge of the secret-key
(e.g., dense cryptosystems, simulatable public-key encryption schemes). Further-
more, semantic security holds for a key sampled using the oblivious strategy.
Consider a protocol where the parties after engaging in a coin-tossing protocol
sample a public-key using the outcome of the coin-tossing. In such a scenario we
would like the coin-tossing scheme to ensure that the semantic-security continues
to hold if parties encrypt messages using the public-key.

The natural “simulatable” definition requires the coin-tossing to be “simu-
latable”. If we instantiate a simulatable coin-tossing protocol in our motivating
application, semantic security of ciphertexts constructed using the public-key
sampled from the coin-tossing outcome indeed holds via a simple security reduc-
tion. Suppose there exists an adversary that distinguishes an encryption of 0
from 1 when encrypted under a public-key sampled using the coin-tossing. We
can use the simulator to construct an adversary that violates the security of
the underlying encryption scheme. Consider a simulator that receives as a chal-
lenge a uniformly sampled string and a ciphertext generated with the associated
public-key. The simulator can internally simulate the coin-tossing to be this sam-
pled string and thereby use the adversary to break the security of the encryption
scheme.

A weaker alternative to simulatability is an information-theoretic based def-
inition where the requirement would be that the entropy of the outcome is
sufficiently high. However, such a definition will not suffice in our motivating
example.2 This is because we will not be able to “efficiently” reduce a cheating
adversary to the violating the security game of the underlying cryptosystem.

Instead, we take a more direct approach where the security for the coin-
tossing is defined so that it will be useful in our motivating example. First,
we generalize the security game of the underlying encryption scheme in our

2 Unless the cryptosystems have additional properties. For instance, consider dual-
mode encryption schemes where there are keys sampled via a high-entropy string
and could potentially be statistically hiding.

Composable Adaptive Secure Protocols 407

motivating example to any indistinguishability based primitive. We model such a
primitive via a (possibly) interactive challenger C that receives as input a random
string o and a private bit b. We say that an adversary interacting with C succeeds
if when interacting on a randomly chosen o and bit b, the adversary can guess b
with probability better than a 1

2 . Let π be a (two-party) coin-tossing protocol.
Our motivating example can be formulated using the following experiment EXPb

with an adversary A:

– A interacts with an honest party using π to generate o.
– Next, it interacts with a challenger C on input o and bit b.

We compare this experiment with a stand-alone experiment STAb where an
adversary B simply interacts with C on input b and o where o is uniformly
sampled. Our security definition of the coin-tossing protocol must preserve the
following security property against a challenger C: if the stand-alone game is hard
to distinguish, i.e. STA0 from STA1, then the experiments EXP0 from EXP1 must
also be hard to distinguish. More formally, our definition will (explicitly) give a
reduction from any adversary that A distinguishes EXPb to a stand-alone adver-
sary B that can distinguish STAb. Finally, in a CCA-setting, we generalize this
definition by requiring that if there exists any oracle adversary AO with access
to a biasing oracle O that can distinguish EXP0 from EXP1, then there exists
a stand-alone adversary B (without access to any oracle) that can distinguish
STAb from STA1.

Towards formalizing this notion and incorporating adaptive corruptions, we
first consider a tag-based coin-tossing protocol between two parties, an Initiator
I and a Receiver R with l(n)-bit identities and m(n)-bit outcomes. A biasing
oracle O interacts with an adversary A as follows: O participates with A in
many sessions using the protocol where the oracle controls the initiator, using
identities of length l(n) that are chosen adaptively by A. At the beginning of
each session, the adversary produces a coin outcome c ∈ {0, 1}m(n) to the oracle
where at the end of this session, if the initiator that is initially controlled by the
oracle is not (adaptively) corrupted by the adversary, then the outcome of the
interaction must result in the chosen coin c. If at any point during the interaction
the initiator is corrupted, then the oracle simply provides the random-tape of I
that is consistent with the partial transcript of the interaction.

We compare an experiment EXPb with oracle PPT adversary AO and a
stand-alone experiment STAb with adversary B. In the man-in-the-middle exper-
iment, an adversary with oracle access to O interacts with a honest receiver R
on identity id to generate an output o ∈ {0, 1}n where n is the security parame-
ter. Then it interacts with a challenger C on common input (n, o, id) and private
input b for C. The adversary is allowed to corrupt the receiver R, challenger C
and any of the interactions with O. If the adversary A corrupts either C or I
then the output of the experiment is set to ⊥. If for some identity id′ on which A
queries O, it holds that id′ = id, then the output of the experiment is set to ⊥.
Otherwise, the output of the experiment is set to be the output of the adversary.

In the stand-alone experiment STAb, we consider a PPT adversary B that
interacts with C on common input (n, o) and private input b for C where o is

408 C. Hazay and M. Venkitasubramaniam

uniformly sampled from {0, 1}n. The output of the experiment is set to be the
output of B. Observe that in the stand-alone experiment B does not get to
corrupt C.

Informally, a tag-based coin-tossing scheme 〈I,R〉 is said to be CCA-secure
against a challenger C, if there exists a biasing oracle O for 〈I,R〉 such that for
every oracle PPT adversary A and distinguisher D such that D distinguishes
EXP0 and EXP1 with A, then there exist a (stand-alone) PPT B and distin-
guisher D′ such that D′ distinguishes STA0 and STA1 with B.

In addition to this security requirement we will additionally consider the
following definition of CCA-security which simply requires that any adversary
with oracle access to a biasing oracle O can be simulated by a stand-alone PPT
machine. In this case, we simply say 〈I,R〉 is CCA-secure w.r.t O.

Quite surprisingly, we show how to realize such a primitive by relying on
a CCA-secure commitment that is secure only against static adversaries. The
idea here is that while CCA-secure commitments cannot admit adaptive corrup-
tions, the basic security game ensures that an unopened commitment remains
hiding in the presence of an adversary having access to a decommitment ora-
cle. We combine such a commitment scheme with the technique of Hazay and
Venkitasubramaniam from [HV15] who showed how to construct an adaptive
UC-commitment scheme, starting from a public-key encryption scheme (with an
oblivious ciphertext generation property) in the CRS model. On a high-level,
the protocol can be abstracted as providing a transformation from a extractable
(only) commitment scheme (that has a oblivious generation property) to a full
adaptively secure UC-commitment. At first, it would be tempting to simply
replace the invocations of extractable commitments with a CCA-secure commit-
ment scheme as we only require extraction from these commitments and not
equivocation in the simulation. However, this intuition fails in an adaptive set-
ting when considering the fact that we additionally require that the commitment
scheme has a oblivious generation property and it is unclear how to construct
such a extractable scheme (based on rewinding) to have this property. Never-
theless, we show how to carefully use CCA-secure commitments in the same
protocol to obtain a CCA-secure coin-tossing scheme. Next, we show that given
a CCA-secure coin-tossing protocol with a biasing oracle O it is possible to real-
ize the ideal commitment functionality using a helper functionality. Again, we
use another variant of the same protocol from [HV15] to accomplish this trans-
formation. Our constructions and proofs of security are highly modular and quite
simple. Moreover, all our transformations rely on the underlying primitives in a
black-box manner.

Finally, we show that the black-box construction of an O(nε)-round CCA-
secure commitment scheme from Lin and Pass [LP12a] will satisfy the required
property to be instantiated in our protocol for the CCA-secure coin-tossing
scheme.

We remark here that while the focus of the present work is to achieve plain
angel-based security, we could achieve the stronger “environment-friendly” prop-
erty if we instead rely on a strongly unprovable CCA-secure commitment scheme

Composable Adaptive Secure Protocols 409

[CLP13] to construct our CCA-secure coin-tossing scheme. We leave this as
future work.

2.1 A Formal Definition of CCA-Secure Coin-Tossing

We begin with the simpler security requirement of CCA-security w.r.t biasing
oracles.

Definition 1 (CCA-secure coin-tossing). Let 〈I,R〉 be a tag-based coin-
tossing scheme with l(n)-bit identities, m(n)-bit outcomes and O a biasing
oracle for it. We say that 〈I,R〉 is robust CCA-secure w.r.t. O, if for every
PPT adversary A there exists a simulator S such that {AO(n, z)}n∈N,z∈{0,1}∗ ≈
{S(n, z)}n∈N,z∈{0,1}∗

2.2 CCA-Security w.r.t Challengers

Let the random variable EXPb(〈I,R〉,O,A, C, n, z) denote the output of the fol-
lowing experiment:

1. On common input 1n and auxiliary input z, AO chooses an identity id ∈
{0, 1}l(n) and first interacts with a honest receiver R using 〈I,R〉. Let o be
the outcome of the execution.

2. Next, it interacts with C with common input (n, o) and private input b for C.

Finally, the experiment outputs the view of the adversary A in the experiment
and the output is set to ⊥ unless A corrupts either C or I or any of the identities
chosen for the interactions of A with O is equal to id. Let the random variable
STAb(B, C, n, z) denote the output of B in an interaction between B and C with
common input (n, o) where o is uniformly sampled from {0, 1}n, private input b
for C and auxiliary input c with B.

Definition 2 (CCA-secure coin-tossing). Let 〈I,R〉 be a tag-based coin-
tossing scheme with l(n)-bit identities, m(n)-bit outcomes and O a biasing oracle
for it. We say that 〈I,R〉 is CCA-secure w.r.t. O against a challenger C, if for
every PPT adversary A and distinguisher D, if D distinguishes the following
ensembles with non-negligible probability:

– {EXP0(〈I,R〉,O,A, C, n, z)}n∈N,z∈{0,1}∗

– {EXP1(〈I,R〉,O,A, C, n, z)}n∈N,z∈{0,1}∗

then there exists a stand-alone adversary (that does not have access to O) B and
distinguisher D′ such that D′ distinguishes the following ensembles with non-
negligible probability:

– {STA0(B, C, n, z)}n∈N,z∈{0,1}∗

– {STA1(B, C, n, z)}n∈N,z∈{0,1}∗

410 C. Hazay and M. Venkitasubramaniam

We highlight that in a real experiment, o is the result of the outcome of a
coin-tossing between the adversary acting as the receiver and an honest initiator.
However, the game between B and Cb is instantiated with a randomly chosen
o. In essence, the definition says that if a challenge presented by C0 and C1 is
hard to distinguish for a randomly sampled o, then it will be hard to distinguish
even if o was sampled according to 〈I,R〉 with an adversarial receiver R who has
access to oracle O.

3 Preliminaries

We assume familiarity with basic notions of Turing machines, probabilistic-
polynomial time computation and standard security notions of computational
indistinguishability, public-key encryption and commitment schemes.

3.1 Simulatable PKE

Definition 3 (Simulatable public-key encryption scheme). A �-bit sim-
ulatable encryption scheme consists of an encryption scheme (Gen,Enc,Dec)
augmented with (oGen, oRndEnc, rGen, rRndEnc). Here, oGen and oRndEnc are
the oblivious sampling algorithms for public keys and ciphertexts, and rGen and
rRndEnc are the respective inverting algorithms, rGen (resp. rRndEnc) takes rg
(resp. (PK, re,m)) as the trapdoor information. We require that, for all messages
m ∈ {0, 1}�, the following distributions are computationally indistinguishable:

{rGen(PK), rRndEnc(PK, c),PK, c | (PK,SK) = Gen(1n; rg), c = EncPK(m; re)}
and {r̂g, r̂e, P̂K, ĉ | (P̂K,⊥) = oGen(1n; r̂g), ĉ = oRndEncP̂K(1n; r̂e)}

It follows from above that a simulatable encryption scheme is also semantically
secure.

3.2 CCA-Secure Commitment Schemes

The following is taken verbatim from [CLP10]. Roughly speaking, a commitment
scheme is CCA (chosen-commitment-attack) secure if the commitment scheme
retains its hiding property even if the receiver has access to a “decommitment
oracle”. Let 〈C,R〉 be a tag-based commitment scheme with l(n)-bit identities. A
decommitment oracle O of 〈C,R〉 acts as follows in interaction with an adversary
A: it participates with A in many sessions of the commit phase of 〈C,R〉 as an
honest receiver, using identities of length n, chosen adaptively by A. At the end
of each session, if the session is accepting and valid, it reveals a decommitment of
that session to A. Otherwise, it sends ⊥. Note that when a session has multiple
decommitments, the decommitment oracle only returns one of them. Hence,
there might exist many valid decommitment oracles. We remark that we will rely
on a slightly weaker oracle, referred to as “committed-value” oracle in [LP12a]
that simply extracts the committed value instead of providing the decommitment

Composable Adaptive Secure Protocols 411

information. This relaxation is required for the black-box construction in [LP12a]
and we will rely on the same definition.

Loosely speaking, a tag-based commitment scheme 〈C,R〉 is said to be CCA-
secure, if there exists a committed-value oracle O for 〈C,R〉, such that the hiding
property of the commitment holds even with respect to adversaries with access
to O. More precisely, let AO denote the adversary A with access to the oracle
O. Let INDb(〈C,R〉,O,A, n, z), where b ∈ {0, 1}, denote the output of the fol-
lowing probabilistic experiment: on common input 1n and auxiliary input z, AO

(adaptively) chooses a pair of challenge values (v0, v1) ∈ {0, 1}, the values to be
committed to, and an identity id ∈ {0, 1}l(n), and receives a commitment to vb

using identity id. Finally, the experiment outputs the output y of AO, the out-
put y is replaced by ⊥ if during the execution A sends O any commitment using
identity id (that is, any execution where the adversary queries the committed-
value oracle on a commitment using the same identity as the commitment it
receives, is considered invalid).

Definition 4 (CCA-secure commitments). Let 〈C,R〉 be a tag-based com-
mitment scheme with l(n)-bit identities, and O a committed-value oracle for it.
We say that 〈C,R〉 is CCA-secure w.r.t. O, if for every PPT A, the following
ensembles are computationally indistinguishable:

(i){IND0(〈C,R〉,O,A, n, z)}n∈N, (ii){IND1(〈C,R〉,O,A, n, z)}n∈N

We say that 〈C,R〉 is CCA-secure if there exists a committed-value oracle O′,
such that, 〈C,R〉 is CCA-secure w.r.t. O′.

We extend this definition to include adversaries that can adaptively corrupt
the committer C in the left interaction and any of the receivers in the interactions
with the committed-value oracle. We present this definition in Appendix A. We
stress here that the security definition only requires the standard static guar-
antee of hiding even in the presence of adaptive corruptions. Finally, we will
also require a strengthening of the CCA-security commitment scheme called
k-robustness [CLP10] that preserves the security of arbitrary k-round proto-
cols w.r.t any adversary that has access to the committed-value oracle and its
adaptive analogue (For a more precise definition, we refer the reader to the full
version).

4 Black-Box Adaptive UC Secure Protocols with
Super-Polynomial Helpers

We consider the model of UC with super-polynomial helpers introduced in [PS04,
CLP10]. Informally speaking, in this UC model, both the adversary and the
environment in the real and ideal worlds have access to a super-polynomial time
functionality that assists the parties. For more details, we refer the reader to
[CLP10]. In the original work of [CLP10] as well as subsequent works, only static
adversaries were considered. In this work, we consider the stronger adaptive
adversary and obtain the following theorem in this model.

412 C. Hazay and M. Venkitasubramaniam

Theorem 4.1. Assume the existence of a simulatable public-key encryption
scheme. Then, for every ε > 0 there exists a super-polynomial time helper
functionality H, such that for every well-formed functionality F , there exists
a Õ(dFnε)-round protocol Π that H-EUC emulates F where dF is the depth of
the circuit implementing the functionality F . Furthermore, the protocol uses the
underlying encryption scheme in a black-box way.

We will rely in our proof the following two lemmas.

Lemma 4.1. Assume the existence of a simulatable public-key encryption
scheme and a TCOIN-round CCA-secure coin-tossing protocol. Then, there exists a
super-polynomial time helper functionality H, such that there exists a O(TCOIN)-
round protocol Π that H-EUC emulates FCOM against malicious adaptive adver-
saries. Furthermore, the protocol uses the underlying encryption scheme in a
black-box way.

Lemma 4.2. Assume the existence of one-way functions, the for every ε > 0
there exists a O(nε)-round CCA-secure coin-tossing scheme against malicious
adaptive adversaries. Furthermore, the protocol uses the underlying primitives
in a black-box way.

First, we prove the theorem assuming the lemmas hold and then prove the
lemmas in the following sections. Towards this, we first describe our helper func-
tionality H. The biasing oracle for the CCA-secure coin-tossing scheme provided
in Lemma 4.2 will serve as H. This in turn relies on Lin and Pass construc-
tion from [LP12a] of a Õ(nε)-round black-box construction of a CCA-secure
commitment scheme based on one-way functions. Since one-way functions can
be constructed from a simulatable public-key encryption scheme in a black-box
way, combining [LP12a] with Lemmas 4.1 and 4.2 we have a O(nε)-round pro-
tocol that H-EUC that emulates FCOM. We conclude the proof of the theorem
by combining the following three results:

1. The work of Choi et al. [CDMW09] provides a O(TOT)-round construction
that realizes FOT in the FCOM-hybrid assuming the existence of a TOT-round
stand-alone adaptively-secure semi-honest oblivious-transfer protocol where
the underlying protocol is used in a black-box way.

2. The work of Damgard and Nielsen [DN00] provides a black-box construction
of a O(1)-round stand-alone adaptively-secure semi-honest oblivious-transfer
protocol assuming the existence of simulatable public-key encryption schemes.

3. The work of Ishai et al. [IPS08] provides a O(dF)-round protocol that realizes
any well-formed functionality F in the FOT-hybrid, where dF is the depth of
the circuit implementing functionality F .

We rely on the O(nε) construction of CCA-secure commitment of Lin and
Pass [LP12a] instead of the more round efficient construction of Kiyoshima
[Kiy14] because we additionally need to prove that the commitment is secure in
the presence of adaptive adversaries and we are able to achieve this only for the
[LP12a] construction. We leave it as future work to improve it with respect to
the [Kiy14] construction.

Composable Adaptive Secure Protocols 413

5 CCA-Secure Coin-Tossing from CCA-Secure
Commitments

In this section, we provide our construction of CCA-secure coin-tossing protocol
〈I,R〉. The two primitives we will require are CCA-secure commitments and one-
way functions. Recall that, standard CCA-secure commitments require that a
value committed to, using a tag id, remains hidden even to an adversary who has
access to a “decommitment oracle”. We will additionally require that if we con-
sider an adversary that can adaptively corrupt receivers in its interactions with
the decommitment oracle, the value committed to the adversary is hidden as long
as the committer in this interaction is not corrupted. We show that the CCA-
secure commitment scheme of [LP12a] satisfies this guarantee in Appendix A.
More formally, let 〈C,R〉 be a CCA-secure commitment scheme and Com be
a statistically-binding commitment scheme with pseudorandom commitments.
For instance, the 2-round commitment scheme of Naor [Nao91] based on one-
way function satisfies this notion. Next, we prove that the scheme from Fig. 1 is
CCA-secure and CCA-secure against challengers.

Theorem 5.1. Suppose, 〈C,R〉 is a 0-robust CCA secure commitment scheme
in the presence of adaptive adversaries. Then there exists an oracle helper O
such that 〈I,R〉 is a CCA-secure coin tossing protocol w.r.t O.

Proof. To demonstrate that our scheme is CCA-secure, we construct a biasing
oracle O and show that given any PPT adversary A, there exists a PPT simu-
lator S such that:

{AO(n, z)}n∈N,z∈{0,1}∗ ≈ {S(n, z)}n∈N,z∈{0,1}∗ .

We provide the description of our biasing oracle O in Fig. 2. On a high-
level, this oracle follows the equivocation strategy analogous to the simulation
in [HV15]. In slight more detail, this protocol that is a variant of the protocol in
[HV15] allows for the initiator to equivocate m in Stage 3 if for a chosen set S
at the beginning of the execution, the outcome of the coin-tossing in Stage 2 can
be biased to yield S. Our oracle O will be able to accomplish this by breaking
the commitment made by the receiver R in Stage 2 using 〈C,R〉 in exponential
time. Next, given an adversary A, we construct a simulator S in two steps:

Step 1: Suppose O′ is the oracle w.r.t which 〈C,R〉 is 0-robust. From the
description of our oracle O, it follows that every query to O can be simu-
lated by a PPT algorithm with access to O′. Recall that the only super-
polynomial computation made by O is breaking a commitment made using
〈C,R〉, which can be done using O′.3 Therefore, given any adversary A, there
exists another oracle adversary Â such that the following distributions are
identically distributed:

3 We remark here that typical CCA-secure commitment schemes are statistically bind-
ing and such schemes can be easily broken in exponential time. However, the CCA-
secure commitment of [LP12a] is not statistically binding. However, as shown in
[LP12a] it is “strongly” computationally binding which will suffice.

414 C. Hazay and M. Venkitasubramaniam

Fig. 1. Our CCA-secure coin-tossing protocol 〈I, R〉.

– {AO(n, z)}n∈N,z∈{0,1}∗

– {ÂO′
(n, z)}n∈N,z∈{0,1}∗

Composable Adaptive Secure Protocols 415

Fig. 2. Biasing oracle O

Step 2: Relying on the 0-robustness CCA-security of the 〈C,R〉 commitment
scheme, it follows that given Â, there exists a simulator S such that the
following distributions are indistinguishable.

– {ÂO′
(n, z)}n∈N,z∈{0,1}∗

– {S(n, z)}n∈N,z∈{0,1}∗

The statement of the theorem now follows using a standard hybrid
argument. �

Next, we proceed to show the stronger security-preserving property of our
scheme.

Theorem 5.2. Suppose, 〈C,R〉 is a k-robust CCA-secure commitment scheme
in the presence of adaptive adversaries. Then for every k-message PPT C, 〈I,R〉
is a CCA-secure coin-tossing scheme w.r.t. the biasing oracle O against C.

Proof. Assume for contradiction there exist an adversary A, sequence {zn}n∈N

and distinguisher D such that D distinguishes the following ensembles

416 C. Hazay and M. Venkitasubramaniam

– {EXP0(〈I,R〉,O,A, C, n, zn)}n∈N

– {EXP1(〈I,R〉,O,A, C, n, zn)}n∈N

with non-negligible probability. Namely, it distinguishes with probability p(n)
for some polynomial p(·) and infinitely many n’s. We need to construct a machine
B and distinguisher D′ that will distinguish STA0 from STA1. Let O′ be the
committed-value oracle guaranteed by the k-robust CCA-security of 〈C,R〉 in
the presence of adaptive adversaries. We will accomplish our goal of constructing
B in two steps.

Step 1: First we construct a simulator S̃ such that the following distributions
are distinguishable with non-negligible probability.

– {STA0(S̃O′
, C, n, z)}n∈N,z∈{0,1}∗

– {STA1(S̃O′
, C, n, z)}n∈N,z∈{0,1}∗

Step 2: Since C interacts in at most k-messages, we obtain the required B
directly by relying on the k-robustness of the CCA-security of 〈C,R〉 in the
presence of an adaptive adversary.

Step 1: Constructing S̃O′
. Fix an n for which D distinguishes the two ensem-

bles with probability p = p(n). Recall that in the EXP experiment, A first
interacts with an external R and then interacts with Cb.

In a random instance of the EXPb experiment, let T be the random variable
representing the partial transcript up until the end of Stage 1 in A’s interaction

with external R. Now, we consider the modified experiment ẼXP
T

b which starts
from the partial transcript4 T and proceeds identically to the EXPb.

Now, using an averaging argument, we can conclude that with probability
at least p/2 over partial transcript τn ← T it holds that D distinguishes the
following two ensembles with probability at least p/2s.

– {ẼXP
τn

0 (〈I,R〉,O,A, C, n, zn)}n∈N

– {ẼXP
τn

0 (〈I,R〉,O,A, C, n, zn)}n∈N

Now, we are ready to construct S̃. The high-level approach is as follows: First,
we show that, except with non-negligible probability over random executions
starting from τn, there is a fixed value mn that the adversary will decommit to
in the Stage 3 of its interaction with R. We will rely on an information theoretic
lemma from [HV15] for this. We state this step in the Claim 5.1 below.

Claim 5.1. There exists a string mn such that, starting from partial transcript
τn, the probability that A successfully decommits to a message different from mn

in Stage 3 is negligible.

4 This can be achieved by instantiating the adversary with the same random coins
and feeding the messages from T and then running the rest of the experiment with
fresh randomness.

Composable Adaptive Secure Protocols 417

On a high-level the idea is that given the transcript until end of Stage 1, there
is a unique set S that needs to be the outcome of Stage 2 in order for the an
initiator to equivocate in Stage 3. This means that if an adversarial initiator can
equivocate with non-negligible probability, then it has to bias the coin-tossing
in Stage 2 to yield this unique set S with non-negligible probability. Such an
adversary can then show to violate the CCA-security of the commitment made
using 〈C,R〉 in Stage 2. We provide a formal proof of the claim at the end of
this section.

Next, for a fixed transcript τn, we will give τn,mn and partial view of A in
the execution as the non-uniform advice. Our simulator S̃ will start an execution
with A from the partial view with transcript τn and will use mn to bias the out-
come of the coin-tossing to o by setting m′ = mn ⊕o in Stage 3 of the execution.
Now, we observe that, if o is uniformly distributed, then m′ chosen by S̃ will
also be (non-negligibly) close to the uniform distribution given mn and hence
the view of S output with Cb will be statistically close to the distribution of A
when interacting with Cb starting from τn. This means that if D distinguishes the
view of A starting from τn in both the experiments, then it will also distinguish
the output of S̃O′

in the two experiments.
We now construct our simulation S̃. On input (1n, o, (z, τn,mn, rn)), S̃O′

internally emulates an execution of A(1n, z; r) in the real experiment starting
from the partial transcript τn. On the left, S̃O′

needs to provide messages for the
initiator I such that the outcome is o while simultaneously answering all oracle
queries to O. This it accomplished by committing to m′ = o ⊕ mn in Stage 3.
Then if the adversary reveals anything other than the mn, it simply aborts.

Answering O Queries. In any interaction, the oracle O first receives a coin c.
In the internal emulation S̃O′

obtains c and needs to emulate O. It carries
out the actions exactly as O with the exception that instead of breaking the
commitments made using 〈C,R〉 (as O does) S̃O′

simply forwards it to O′ which
breaks them for S.

It follows from the construction and Claim 5.1 that the following distributions
are statistically close:

– {ẼXP
τn

b (〈I,R〉,O,A, C, n, zn)}n∈N

– {STAb(S̃O′
, C, n, (zn, τn,mn, rn))}n∈N,z∈{0,1}∗

and therefore D distinguishes the distribution STA0(S̃O′
, C, n, (zn, τn,mn, rn))

from STA1(S̃O′
, C, n, (zn, τn,mn, rn)) with with probability at least p/2−ν(n) >

p/4 for all sufficiently large n’s.

Step 2: Constructing a Stand-alone B. In Step 1, we constructed a machine
S̃O′

that with access to O′ can violate the game. Now to get a stand-alone B, we
rely on the k-robustness property of 〈C,R〉 with S̃O′

to obtain B. More precisely,
using the robustness we have that the following distributions are computationally
indistinguishable:

– {STAb(S̃O′
, C, n, (zn, τn,mn, rn))}n∈N,z∈{0,1}∗

418 C. Hazay and M. Venkitasubramaniam

– {STAb(B, C, n, (zn, τn,mn, rn))}n∈N,z∈{0,1}∗

and therefore D distinguishes the distribution STA0 from STA1 with probability
at least p/4 − ν(n) > p/8 for all sufficiently large n’s and this completes the
proof of the theorem.

To conclude the proof of Theorem 5.2, it only remains to prove Claim 5.1.

Proof of Claim 5.1. Assume for contradiction, the adversary A equivocates with
non-negligible probability starting from τn. We now show that AO′

violates the
CCA-security of 〈C,R〉 w.r.t O′, namely, it violates the hiding property of the
commitment made using 〈C,R〉 in Stage 2.

As stated above, we use an information theoretic lemma from [HV15]. On
a high-level, the lemma states that for the adversary to be able to equivocate
in Stage 3, there exists a unique set S that it must bias the outcome of the
coin-toss in Stage 2 so that the resulting set is S. On a high-level, we can rely
on this lemma, as a malicious initiator that equivocates must bias the outcome
to a particular set S and using the set S. Then, we can construct an adversary
ÂO′

that violates the CCA-game for 〈C,R〉 by simply detecting this set S in the
outcome of Stage 2.

More formally, given τn, and a partial view of A, let us assume that A
equivocates with probability 1

q(n) for some polynomial q(·) and infinitely many n.
Before we recall the information theoretic lemma from [HV15], we first

explain how our protocol is an instance of the protocol in their work. In [HV15],
they construct an adaptively secure UC-commitment in the CRS hybrid where
the protocol proceeds as follows:

1. In Stage 1, the committer using the same strategy as the initiator in our Stage
1 commits to a string m, where instead of using Comσ, it uses an encryption
scheme with oblivious ciphertext generation property (where the public-key
for this scheme is placed in the CRS).

2. In Stage 2, the committer and receiver execute a coin-toss where the receiver
makes the first move just as in 〈I,R〉 with the exception that the receiver in
the their protocol uses again an encryption scheme (with the public-key in
the CRS) instead of a commitment scheme to commit to σ0.

3. In the decommitment phase of their protocol, the committer reveals its com-
mitment just as the initiator does in Step 2 of Stage 3 in our protocol.

We remark that in essence, the protocol in [HV15] is used as a subprotocol in
our work here where the initiator commits to a string m and then reveals it.
The only property they need of the encryption scheme is that it is statistically
binding and has the oblivious generation property. In our protocol, the Naor
commitment scheme has both these properties. (See our next protocol for such
a variant).

Claim 5.2 Restatement of Claim 5.5 [HV15]. Let τ be a fixed partial
transcript up until end of Stage 1. Then, except with negligible probability, there
exists no two transcripts trans1, trans2 that satisfy the following conditions:

Composable Adaptive Secure Protocols 419

1. trans1 and trans2 are complete and accepting transcripts of πCOM with τ being
their prefix.

2. There exists two distinct sets S1, S2 such that S1 and S2 are the respective
outcomes of the coin-tossing phase within trans1 and trans2.

3. There exist valid decommitments to two distinct strings in trans1 and trans2.

Since the commitment made by our Initiator can be viewed as an instance
of their protocol, we can conclude that there exists a unique set S that should
be the outcome of the coin-toss in Stage 2 for a malicious initiator to equivocate
m. Since A equivocates with probability 1

q(n) it holds, there is a set S such
that with the probability negligible close5 to 1

q(n) , starting from τn, the outcome

of Stage 2 is S. To construct an adversary Â that violates the CCA-security
of the underling 〈C,R〉 scheme, we simply incorporate A and use as auxiliary
input τn, S and the partial view of A. Next, it forwards the 〈C,R〉 interaction
in Stage 2 to an external committer. All queries to the helper oracle O by A
can be simulated using H and Â simply uses H to emulate O. Then it halts the
execution right after the adversary in the internal emulation reveals σ1. Now,
Â simply outputs σ0 = σ ⊕ σ1 where σ is the string that maps to the set S.
This violates the CCA game as with probability close to 1

q(n) , Â identifies the
message committed using 〈C,R〉.
� �

6 Realizing FCOM Using CCA-Secure Coin-Tossing

In this section, we provide our black-box construction of H-EUC secure pro-
tocol ΠCOM. Our protocol is a variant of the protocol described in [HV15]
where it is shown how to realize FCOM in the CRS model assuming only public-
key encryption that admits oblivious-ciphertext generation with adaptive UC-
security. While the [HV15] protocol assumes that every pair of parties share an
independently generated CRS, in this work we assume no setup, but will require
the stronger simulatable public-key encryption scheme. Assume that 〈I,R〉 is
a CCA-secure coin-tossing scheme and that the public-key encryption scheme
(Gen,Enc,Dec) is augmented with algorithms (oGen, oRndEnc, rGen, rRndEnc)
which implies a simulatable public-key encryption scheme. Then we start with
a formal description of our protocol.

Consider a helper functionality H that “biases” the coin-tossing in an inter-
action using 〈I,R〉 in the same way as the biasing oracle O does, subject to the
condition that player Pi in a protocol instance sid can only query the functional-
ity on interactions that use identity (Pi, sid). More precisely, every party Pi can
simultaneously engage with H in multiple sessions of 〈I,R〉 as an initiator using
identity Pi where the functionality simply forwards all the messages internally to
the biasing oracle O, and ensures that the result of the coin-tossing is biased to a
prescribed outcome at the end of each session. See Fig. 3 for a formal description

5 The probability is not identically equal to 1
q(n)

since the commitment scheme is only
statistically binding and not perfectly binding.

420 C. Hazay and M. Venkitasubramaniam

Fig. 3. The helper functionality H (i.e. angel).

Fig. 4. Protocol ΠCOM that realizes FCOM using a CCA-secure coin-tossing protocol
〈I, R〉

of the functionality. We note here that since O can be implemented in super-
polynomial time, this functionality can also be implemented in super-polynomial
time.

Composable Adaptive Secure Protocols 421

Proof overview: Recalling that an adversary can adaptively corrupt both par-
ties, for the overview, we present the hardest cases for simulation, which is static
corruption of one party followed by the adaptive corruption of the other party.

Simulating static corruption of receiver and post-execution corruption of sender.
To simulate the messages for a honest sender, the simulator generates random
shares for 0 and 1 that agree on a randomly chosen n subset Γ̃ (chosen in
advance). It then encrypts these shares in Stage 2 where for each index it ran-
domly positions the shares for 0 and 1. Next, in Stage 3, the simulator biases
τR→S using the helper H so that the subset generated using out(τR→S) is exactly
Γ̃ . As these shares are common for a sharing of 0 and 1, revealing them in the
commit phase will go undetected. Later in the decommit phase, it can chose
to reveal shares of 0 or 1 depending on the real message m (to show that the
unopened shares were obliviously generated will be done by exploiting the invert-
ible sampling algorithm for the simulatable encryption scheme). The core argu-
ment in proving indistinguishability of simulation will be to reduce the hiding
property of Stage 2 to the semantic-security of the underlying encryption scheme
on a public-key generated using Gen, i.e., the CPA-security of the encryption
scheme, where we will rely on the CCA-security game w.r.t challengers for our
coin-tossing protocol to achieve this. We discuss this reduction on a high-level
below. Before that we remark that the adversary will not be able to use the
helper oracle H to bias the outcome of the coin-tossing in Stage 1 because the
helper oracle will not provide access to the biasing oracle on sessions where the
party querying the helper is not the responder R of that coin-tossing session.

Reduction: The challengers C for our CCA-game, on input a string o will set
PK = rGen(o) and for a predetermined message t it proceed as follows: If its
private input b = 0, C will output a ciphertext that is an honest encryption of
t using Enc. If its private input b = 1, C will obliviously generate a ciphertext
using oRndEnc. It will follow from the security guarantees of the simulatable
public-key encryption that for a randomly chosen o, no (stand-alone) adversary
can distinguish the outputs of C|b=0 or C|b=1 even given o (i.e. STA0 ≈ STA1).

Now given an adversary A controlling the receiver in our coin-tossing scheme
〈I,R〉 we consider a sequence of hybrid experiments where we replace the
encryptions in Stage 2 from the honest sender’s strategy to the simulated strat-
egy. Namely, obliviously generated ciphertexts c

1−bj
j will be generated using

the encryption algorithm. More precisely, we consider a sequence of hybrids
H1 . . . ,H3n+1 where in the Hi we generate c

1−bj
j for j = 1, . . . , i in Stage

2 according to the simulator’s strategy (i.e. encryption of valid messages as
opposed to being obliviously generated). Next we show that Hi−1 and Hi are
indistinguishable. The only difference between the two hybrids is in how c1−bi

i

is generated. More precisely, in Hi−1, c1−bi
i is generated using oRndEnc and

in Hi it is generated using Enc. We now reduce the indistinguishability of the
hybrids to the semantic-security of the encryption scheme via the CCA-game of

422 C. Hazay and M. Venkitasubramaniam

〈I,R〉. Towards this, we consider a challenger C described above for which the
stand-alone game is hard.

Next, consider an oracle adversary Ã that internally incorporates A and the
environment and proceeds as follows: Ã forwards every oracle query made by
A to its oracle and forwards the interaction using 〈I,R〉 in Stage 1 externally
to an honest receiver. Ã then stalls the internal emulation upon having the
interaction within 〈I,R〉 complete, and outputs the view of A and the outcome
of the coin-tossing o from the internal emulation, in the external interaction.
Then it interacts with C that on input o produces a ciphertext. Internally, Ã
feeds the ciphertext in place of c1−bi

i in Stage 2. The rest of the encryptions are
honestly generated according to the strategy in Hi.

It now follows that if the message t is chosen according to the strategy
in Hi, then we have that hybi−1 = EXP1(〈I,R〉,O,A, C, n, z)}n∈N,z∈{0,1}∗ and
hybi = EXP0(〈I,R〉,O,A, C, n, z)}n∈N,z∈{0,1}∗ where hybi−1 and hybi are the
views of the adversary A in the hybrids Hi−1 and Hi. Therefore, if hybi−1 and
hybi are distinguishable by the CCA-security of 〈I,R〉 we have that there exists
a stand-alone PPT algorithm B for which STA0 and STA1 are distinguishable.
Recalling that STA0 ≈ STA1 by the hiding property of obliviously generated
ciphertexts in the underlying encryption scheme and thus we arrive at a contra-
diction. Therefore, hybi−1 and hybi must be indistinguishable.

To complete this case, we need to handle post-execution corruption of the
sender. This can be achieved exactly as in the decommitment phase which reveals
all the randomness used in the commitment phase.

Simulating static corruption of sender and post-execution corruption of receiver.
For a honest receiver, the simulator first biases the outcome of the coin-tossing in
Stage 1, so that PK is a public-key for which it knows the corresponding secret-
key. This will allow the simulator to decrypt the ciphertexts provided by the
adversary in Stage 2. However, this does not ensure extraction as an adversarial
sender can equivocate just as the simulator for honest senders. Showing that
there is a unique value that can be extracted requires showing that a corrupted
sender cannot successfully predict exactly the n indexes Γ from {1, . . . , 3n + 1}
that will be chosen in the coin-tossing protocol. Using an information-theoretic
argument from [HV15], we know that after an encoding phase, for any adversary
to break binding (i.e. equivocate) it must ensure that the coin-tossing phase
results in a particular set Γ . We can reduce the binding property of our scheme
to the CCA-security of underlying coin-tossing scheme. First, we observe that
the helper functionality cannot be directly used by the adversary to bias the coin-
toss as H will not help in sessions where the identity of the party controlling I
is the party requesting the help. We will infact rely on the CCA-security against
challengers to guarantee that the coin-tossing outcome has high-entropy. Once we
have established that the adversary cannot bias the coin-toss used to determine
the set Γ , we can obtain extraction by relying on a strategy from [HV15], that
can determine the message using the decryptions from Stage 1 and the coin-
tossing outcome in Stage 3. Finally, to address post-execution corruption of the
receiver we observe that it suffices to generate the messages for the receiver

Composable Adaptive Secure Protocols 423

honestly and upon corruption simply provide the random coins of this honest
receiver.

Formal Proof of Correctness of UC-Commitment Protocol: Let A be a
PPT adversary that attacks Protocol ΠCOM described in Fig. 4 and recall that
simulator S interacts with the ideal functionality FCOM and with the environment
Z. Then S starts by invoking a copy of A and running a simulated (internal)
interaction of A with the environment Z and parties running the protocol. We fix
the following notation. First, the session and sub-session identifiers are respec-
tively denoted by sid and ssid. Next, the committing party is denoted Pi and
the receiving party Pj . S proceeds as follows:

Simulating the Communication With Z: Every message that S receives
from Z it internally feeds to A and every output written by A is relayed back
to Z.

Simulating the Commitment Phase When the Receiver is Statically
Corrupted: In this case S uses the honest sender’s algorithm in Stage 1 and in
Stage 2 proceeds as follows. Upon receiving message (sid,Sen,Rec) from FCOM,
the simulator picks a random subset γ̃ ⊂ [3n + 1] of size n and two random n-
degree polynomials p0(·) and p1(·) such that p0 and p1 agree on all points i ∈ Γ̃
and p0(0) = 0 and p1(0) = 1.

– For every i ∈ Γ̃ the simulator proceeds as the honest sender would with
polynomial p0(·). Namely, it first picks bi ← {0, 1} at random and then sets
the following pairs, cbi

i = EncPK(p0(i); ti) and c1−bi
i = oRndEnc(PK, ri) where

ri, ti ← {0, 1}n (we recall that p0(i) = p1(i) for all i ∈ Γ̃).
– For every i ∈ Γ̃ ′ = [3n + 1] − Γ̃ the simulator picks bi ← {0, 1} at random

and then uses the points on both polynomials p0(·) and p1(·) to calculate the
following pairs, namely cbi

i = EncPK(p0(i); t0i) and c1−bi
i = EncPK(p1(i), t1i)

where t0i , t
1
i ← {0, 1}n are chosen uniformly at random.

Finally, the simulator sends the pairs (c00, c
1
0), . . . , (c

0
3n+1, c

1
3n+1) to the receiver.

Next, in Stage 3, the simulator biases the coin-tossing result so that the set
Γ that is chosen in this phase is identical to Γ̃ . More precisely, produces coins
c that will yield Γ̃ in Stage 3 and sends c to H. Next, it forwards the messages
the simulator receives from A controlling R in this interaction using 〈I,R〉 to
H. Recall that the helper function will bias the outcome of this interaction to
c (as the identity of this interaction is not equal to any identity made by the
A). Finally, the simulator reveals the plaintexts in all the ciphertexts within
{cbi

i }i∈Γ̃ .

Simulating the Decommitment Phase Where the Receiver is Statically
Corrupted: Upon receiving a message (reveal, sid,m) from FCOM, S generates
a simulated decommitment message as follows. Recall first that the simulator
needs to reveal points on a polynomial p(·) and pairs {(bi, ti)}i∈[3n+1] such that

424 C. Hazay and M. Venkitasubramaniam

p(0) = m and cbi
i = EncPK(p(i); ti). Let b̂i = bi ⊕ m for all i ∈ Γ̃ ′, then S reveals

pm(·), {b̂i, t
b̂i
i , ri = rRndEnc(PK, t1−m

i , p1−m(i))}
i∈Γ̃ ′ .

Simulating the Commit Phase When the Sender is Statically Cor-
rupted: Simulating the sender involves extracting the committed value as fol-
lows. In Stage 1, S first samples (PK,SK) using the Gen algorithm with ran-
domness rG. Then it runs rGen on rG to obtain c which it forwards to the helper
H. Then, it forwards the messages the simulator receives from A controlling R
in this interaction using 〈I,R〉 to H. Recall that the helper function will bias
the outcome of this interaction to c. This means that the public-key obtained
from the coin-tossing is PK.

The simulation next uses the honest receiver’s algorithm in Stages 2 and 3.
Let Γ be the set obtained from the outcome of the coin-tossing phase. To extract
the input, S chooses an arbitrary index j ∈ [3n + 1] − Γ and reconstructs two
polynomials q(·) and q̃(·) such that for all i ∈ Γ , q(i) = q̃(i) = βbi

i , q(j) = β0
j ,

q̃(j) = β1
j and q(0), q̃(0) ∈ {0, 1}. It then verifies whether for all i ∈ [3n + 1],

q(i) ∈ {β0
i , β1

i } and q̃(i) ∈ {β0
i , β1

i }. The following cases arise:

Case 1: Both q(·) and q̃(·) satisfy the condition and q̃(0) �= q(0) Then S halts
returning fail. Below we prove that the simulator outputs fail with negligible
probability.

Case 2: At most one of q(·) and q̃(·) satisfy the condition or q̃(0) = q(0). S
sends (commit, sid, q(0)) to the FCOM functionality and stores the committed
bit q(0). Otherwise, S sends a default value.

Case 3: Neither q(·) or q̃(·) satisfy the condition. S sends a default value to the
ideal functionality and need not store the committed bit since it will never
be decommitted correctly.

Simulating Adaptive Corruptions: We remark that we only provide the
description of the simulator for static corruption. If any honest party is adap-
tively corrupted during the simulation, since the simulation is straight-line and
admits post-execution corruption, it can directly generate coins even in the mid-
dle of the execution.

Below we analyze each of the scenarios above, and show that no environment
Z interacting with S in the ideal-world is distinguishable from that with A in
the real-world in each of the cases.

Analysis of Receiver Corruptions: Our proof follows a sequence of hybrids
from the real world execution to the ideal world execution.

Hybrid H0: H0 is identical to the real world execution.
Hybrid H1: The hybrid experiment H1 proceeds identically to H0 with the

exception that a set Γ̃ of size n is chosen at random and the coin-tossing
interaction using 〈I,R〉 in Stage 3 is biased so that the outcome yields Γ̃ .
Hybrids H0 and H1 are identically distributed except when the oracle O
fails. Since this happens only with negligible probability, the outputs of the
two experiments are statistically close.

Composable Adaptive Secure Protocols 425

Hybrid H2: We gradually change the ciphertexts generated in Stage 2 from the
real committer to the simulation. Indistinguishability of experiment H1 and
H2 will rely on the security of the encryption scheme. However, to reduce
the indistinguishability to the security game of the simulatable public-key
encryption scheme, we will require to bias the PK chosen in Stage 1 to a
challenge public-key obtained from the challenger for the encryption security
game. We will be able to do this by relying on the security game of our
CCA-secure coin-tossing protocol.
More formally, consider a sequence of hybrids H0

1 , . . . , H3n+1
1 where in the

Hi
1 we generate c

1−bj
j for j = 1, . . . , i according to the simulator’s strategy

(i.e. encryption of valid messages as opposed to being obliviously generated).
Now we show that Hi−1

1 and Hi
1 are indistinguishable. The only difference

between the two hybrids is in how c1−bi
i is generated. More precisely, in Hi−1

1 ,
c1−bi
i is generated using oRndEnc and in Hi

1 it is generated using Enc. We
now reduce the indistinguishability of the hybrids to the semantic-security
of the encryption scheme via the CCA-game of 〈I,R〉. Towards this, we give
a challenger C for which the stand-alone game is hard. On a high-level this
game will be the semantic-security of the underlying simulatable public-key
encryption scheme where the public-key is sampled using rGen on the coin-
toss o.

Reduction: More formally, given a message t, define C(o, b) as the strategy
that sets PK = rGen(o) and outputs a ciphertext that was honest encryption
of t using Enc when b = 0 and obliviously generated using oRndEnc when
b = 1.

Next consider an oracle adversary Ã that internally incorporates A and the
environment and proceeds as follows: Ã forwards every oracle query made by
A to its oracle and forwards the interaction using 〈I,R〉 in Stage 1 externally
to an honest receiver. Let o be the outcome of the interaction in the internal
emulation. an encryption of a message using Enc or generates one obliviously.
Then it interacts with C that on input o produces a ciphertext. Internally, Ã
feeds the ciphertext in place of c1−bi

i in Stage 2. It now follows that if the
message t is chosen according to the strategy in Hi

1, then hybi−1
1 (n, z) =

EXP1(〈I,R〉,O,A, C, n, z)} and hybi
1(n, z) = EXP0(〈I,R〉,O,A, C, n, z)}

where hybi−1
1 and hybi

1 are the views of the adversary A in the hybrids Hi−1
1

and Hi
1. Therefore, if hybi−1

1 and hybi
1 are distinguishable by the CCA-security

of 〈I,R〉 we have that there exists a stand-alone PPT algorithm B that dis-
tinguish the interaction with C0 and C1 for a randomly sampled coin-toss
outcome o. This violates the semantic-security of the encryption scheme and
thus we arrive at a contradiction. Therefore, hybi−1

1 and hybi
1 must be indis-

tinguishable.
Hybrid H3: In this hybrid, we follow H2 except that we use the simulation

strategy to decommit to the message m received from the FCOM-functionality.
Since in H2 the commitment phase has been setup to be equivocated, this
follows directly. Again using the CCA-security of 〈I,R〉 just as we used to

426 C. Hazay and M. Venkitasubramaniam

argue indistinguishability for hybrids H1 and H2, we can reduce the indis-
tinguishability of H2 and H3 to the security of the underlying simulatable
public-key encryption scheme.

Finally, we conclude by observing the H3 is identical to the ideal world experi-
ment.

Analysis of Sender Corruptions: Our proof follows a sequence of hybrids
from the real world execution to the ideal world execution.
Hybrid H0: H0 is identical to the real world execution.
Hybrid H1: This experiment proceeds identical to H0 with the exception that

we forward the interaction using 〈I,R〉 in Stage 1 to the oracle H. More
precisely, we pick (PK,SK) using the Gen algorithm with randomness rG.
Then rGen is invoked on rG to obtain c which it forwards to the helper H.
Recall that H will bias the coin-toss outcome to c and the resulting public-key
agreed upon will be PK. Indistinguishability of H1 and H0 can be reduced
directly to the indistinguishability of real and obliviously generated public-
keys of the simulatable public-key encryption scheme using the CCA-security
of 〈I,R〉.

Hybrid H2: H2 is the same as H1 with the exception that the value committed
to by the adversary is extracted using the simulator’s strategy and forwarded
to FCOM. The only difference between the hybrids H1 and H2 is that in H2

we extract a value for the commitment from the adversarial sender. This
means that to argue indistinguishability it suffices to show that the value
extracted is correct (i.e. the scheme is binding). We argue this by relying
on the information-theoretic lemma proved in [HV15]. In more detail, this
lemma shows that at the end of Stage 2, it is possible to define a set Γ such
that for any adversarial sender to equivocate it needs to bias the outcome of
the coin toss in Stage 3 to result in this set Γ . This coin-toss is decided using
our protocol 〈I,R〉 where the adversarial sender controls the initiator and by
relying on CCA-security we argue next that there exists no adversary that
can bias the outcome to result in a particular set with non-negligible prob-
ability. Suppose for contradiction there exists an adversary A that can bias
the outcome to Γ in H1 with non-negligible probability. We now construct an
adversary A′ that incorporates A and internally emulates the hybrid experi-
ment H2 with the exception that it forwards the interaction of A in Stage 3
to an external honest receiver. Now, consider the challengers C for the CCA-
security game where C|b=0 outputs 1 if the outcome o results in Γ and 0
otherwise. C|b=1 outputs 0 irrespective of the outcome. By our assumption on
A, this means that EXP0 and EXP1 with the adversary A′ are distinguishable
because the adversary biases the coin-toss to result in Γ with non-negligible
probability. However, since a uniformly sampled coin will result in Γ with at
most negligible probability we have that STA0 and STA1 are indistinguishable
which is a contradiction. Therefore, we have that the value extracted by our
simulator is correct except with non-negligible probability and this concludes
the proof. Finally, we conclude by observing the H2 is identical to the ideal
world experiment.

Composable Adaptive Secure Protocols 427

7 Application: A Zero-One Law for Adaptive Security

We extend the result of [MPR10] and establish a zero-one law under adaptive
UC-reduction. More formally, we show that all (non-reactive)6 functionalities
fall into two categories: trivial functionalities, those which can be UC-reduced
to any other functionality; and complete functionalities, to which any other func-
tionality can be UC-reduced.

Theorem 7.1. Assume the existence of simulatable public-key encryption
scheme. Then every two-party non-reactive functionality is either trivial or com-
plete in the UC framework in the presence of adaptive, malicious adversaries.

Proof. An important step in proving the zero-one law in [MPR10] was to identify
all non-trivial functionalities into one of four categories (i.e. functionalities):

1. FXOR: This functionality enables simultaneous exchange of information, such
as the XOR function.

2. FCC: This functionality enables to selectively hide one party’s input from the
other, typically characterized as a cut-and-choose functionality.

3. FOT: This functionality enables OT of inputs from one party to another.
4. FCOM: This functionality allows information in internal memory to be hidden

between rounds, an instance of which is the commitment functionality.

Specifically, it was shown in [MPR10] that every non-trivial functionality F can
realize one of the above four functionalities with information-theoretic security.
We are able to demonstrate the zero-one law by proving the following key lemma.

Lemma 7.1 (Informal). Assume the existence of simulatable public-key
encryption scheme. Then FCOM can be realized in the FCOIN-hybrid model in
the presence of adaptive, malicious adversaries, using black-box access to the
encryption scheme.

As mentioned before, in order to demonstrate the zero-one law it suffices to
show that the four categories of non-trivial functionalities are complete, where
it suffices to only consider FOT, FXOR and FCC when considering non-reactive
functionalities. Recalling that the previous results [IPS08,CDMW09] establish
completeness of FOT and FCOM, where the latter result additionally requires
the existence of stand-alone adaptively secure semi-honest oblivious-transfer
protocol, it is thus left to show that the remaining two categories FCC and
FXOR are complete. We note first that combining our lemma with the result of
[CDMW09] establishes that FXOR is complete. We remark here that simulat-
able PKE schemes are sufficient to construct adaptive semi-honest OT which
is required in the transformation of [CDMW09]. In order to show that FCC is
complete, we recall that in [MPR10], FCC is reduced to another functionality
called the FEXTCOM-functionality for the static corruptions case. Roughly speak-
ing this functionality is a mild variant of the FCOM functionality that admits
6 Such functionalities are computed in a single round of communication with the

functionality.

428 C. Hazay and M. Venkitasubramaniam

straight-line extraction without straight-line equivocation. For more details, we
refer the reader to the full version or [MPR10]. We argue that the same protocol
also realizes FEXTCOM in the presence of adaptive corruptions. On a high-level,
we are able to accomplish this since FEXTCOM does not require equivocation. To
complete the picture, we show how to construct a variant of the FCOIN function-
ality in the FEXTCOM-hybrid and argue that this variant suffices to establish that
FEXTCOM is complete even for the adaptive case. Our constructions make use of
the underlying primitives only in a black-box manner.
�

A Adaptive Extension to CCA-Secure Commitments

In our work, we need to consider the CCA-Security game in the presence of an
adaptive adversary A. We recall the CCA-security game for the commitments
as introduced in [CLP10]. Roughly speaking, a commitment scheme is CCA-
secure if the commitment scheme retains its hiding property even if the receiver
has access to a “decommitment oracle”. The experiment considers an oracle
adversary A with oracle access to a helper function H and interacts as the
receiver with an honest committer C. In our adaptive setting, we will require two
additional properties: (1) The adversary will be allowed to corrupt the external
committer C. However, security is required to hold, i.e. hiding property of the left
commitment, only if the committer is not corrupted, and (2) In the interaction
between the adversary and the helper oracle, where it interacts as the committer,
the adversary will be allowed to corrupt the receiver. In this case, the helper
oracle is required to provide random coins for the receiver consistent with the
transcript.

The second property does not require any explicit change in the definition of
the security as it only alters the semantics of the interaction between A and H.
The first property however needs to be incorporated in the definition which we
do next.

Modifying the INDb Random Variable in the Definition. In the stan-
dard definition INDb(〈C,R〉,O,A, n, z) represents the output of the AO in a
experiment where it interacts with an honest committer with input b ∈ {0, 1}n.
This output is set to ⊥, if the identity of the execution with C is the same as
the identity of any interaction of A with O. We define a new random variable
INDb(〈C,R〉,O,A, n, z) which is equal to INDb(〈C,R〉,O,A, n, z) only if AO does
not corrupt the honest committer C in the execution. Otherwise it is set to ⊥.

Definition 5 (CCA-secure commitments with adaptive adversary).
Let 〈C,R〉 be a tag-based commitment scheme with l(n)-bit identities, and O a
committed-value oracle for it. We say that 〈C,R〉 is CCA-secure w.r.t. O in the
presence of an adaptive adversary, if for every PPT A, the following ensem-
bles are computationally indistinguishable: {IND0(〈C,R〉,O,A, n, z)}n∈N ≈
{IND1(〈C,R〉,O,A, n, z)}n∈N We say that 〈C,R〉 is CCA-secure if there exists
a committed-value oracle O′, such that, 〈C,R〉 is CCA-secure w.r.t. O′.

Composable Adaptive Secure Protocols 429

Theorem A.1. Assume the existence of one-way functions. Then, for every
ε > 0, there exists a O(nε), there exists a O(nε)-round commitment scheme that
is CCA-secure w.r.t. the committed-value oracle in the presence of an adaptive
adversary and only relies on black-box access to one-way functions (where n is
the security parameter).

Proof Sketch: Lin and Pass [LP12a] gave a black-box construction of a O(nε)-
round CCA-secure commitment scheme 〈C,R〉. We rely on the same construction
for our stronger definition of security in the presence of an adaptive adversary.
We provide a high-level proof sketch of its correctness. We begin with a short
overview of their proof.

In the proof of standard security of the scheme provided in [LP12a], the
idea is to reduce the indistinguishability of the INDb experiments to the stand-
alone hiding property of a different commitment scheme 〈C̃, R̃〉 (that is a slight
variant of 〈C,R〉). The main part of the proof is to show that given and oracle
adversary for 〈C,R〉 there exists a stand-alone malicious receiver R∗ (that does
not have access to the oracle) for 〈C̃, R̃〉. On a high-level, R∗ will internally
incorporate A and emulate the committed-value oracle for A while forwarding
the left interaction externally to C̃ (which it can do as it is a variant that has
a “similar” structure). To emulate the oracle, R∗ needs to extract the value
committed value which it will accomplish by rewinding the right interactions.
Two issues arise:

– Since the left interaction is forwarded to an external committer, R∗ needs to
be able to rewind the right interactions without rewinding the left. The main
idea here that is reminiscent of previous work [DDN03,LPV08] is to identify
the so-called safe-points where this can be done. In slight more detail, when
rewinding from a safe-point the only thing the adversary can do in the left
interaction is to request “complete” (3-round witness-indistinguishable) proofs
and such a request will be accommodated by the variant 〈C̃, R̃〉.

– There are unbounded-many right interactions and will result in R∗ recursively
rewinding interactions to extract the committed value in the interactions. In
[LP12a], they achieve this by provided several points to rewind from and rely
on the [RK99] to ensure that expected running time of the rewindings in each
level is polynomial and the recursive depth is at most a constant.

Next, we argue why the same protocol satisfies our stronger definition of security.
We begin with the observation that if the adversary A does not corrupt the left
or right interactions, then our definition reduces to the standard CCA-security.
We will prove security identically to [LP12a] by reducing it to the stand-alone
hiding property of 〈C̃, R̃〉. We will employ the exact rewinding strategy as in
[LP12a] for R∗ with the following exception: Our definition of safe-point will
have one additional requirement: A safe-point for our scheme is any safe-point
according to [LP12a] with the added requirement that the adversary corrupts
neither the committer in the left-interaction or the receiver of the right interac-

430 C. Hazay and M. Venkitasubramaniam

tion (associated with the safe-point) before the 3-round witness indistinguishable
(WI) proof associated with the safe-point completes.7

We remark that our definition of safe-point can modularly replace the defin-
ition in [LP12a] and the entire proof goes through. This is because the definition
affects only the run-time analysis of the reduction. For the run-time analysis to
go through the only requirements are that there are sufficiently many safe-point ’s
and when rewound from a safe-point, it continues to be a safe-point with at least
the same probability (See Step 1 in Sub-Claim 2 of [LP12b]). The first property
holds because, a right receiver needs to be rewound only if A completes the entire
right session without corrupting the right receiver or the left committer. In this
event there will be as many safe points according to the definition of [LP12a] as
there according to ours. The second property holds because a rewinding will be
cancelled only if the point is not safe. This concludes the proof.

References

[BCNP04] Barak, B., Canetti, R., Nielsen, J.B., Pass, R.: Focs, pp. 186–195 (2004)
[Bea91] Beaver, D.: Foundations of secure interactive computing. In: Feigenbaum,

J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 377–391. Springer, Heidelberg
(1992)

[BS05] Barak, B., Sahai, A.: How to play almost any mental game over the net -
concurrent composition via super-polynomial simulation. In: FOCS, pp.
543–552 (2005)

[Can01] Canetti, R.: Universally composable security: a new paradigm for crypto-
graphic protocols. In: FOCS, pp. 136–145 (2001)

[CDMW09] Choi, S.G., Dachman-Soled, D., Malkin, T., Wee, H.: Simple, black-box
constructions of adaptively secure protocols. In: Reingold, O. (ed.) TCC
2009. LNCS, vol. 5444, pp. 387–402. Springer, Heidelberg (2009)

[CDPW06] Canetti, R., Dodis, Y., Pass, R., Walfish, S.: Universally composable secu-
rity with global setup. IACR Cryptology ePrint Archive, 2006:432 (2006)

[CF01] Canetti, R., Fischlin, M.: Universally composable commitments. In: Kilian,
J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 19–40. Springer, Heidelberg
(2001)

[CKL06] Canetti, R., Kushilevitz, E., Lindell, Y.: On the limitations of universally
composable two-party computation without set-up assumptions. J. Cryp-
tology 19(2), 135–167 (2006)

[CLP10] Canetti, R., Lin, H., Pass, R.: Adaptive hardness and composable security
in the plain model from standard assumptions. In: FOCS, pp. 541–550
(2010)

[CLP13] Canetti, R., Lin, H., Pass, R.: From unprovability to environmentally
friendly protocols. In: FOCS, pp. 70–79 (2013)

[CPS07] Canetti, R., Pass, R., Shelat, A.: Cryptography from sunspots: how to use
an imperfect reference string. In: FOCS, pp. 249–259 (2007)

[DDN03] Dolev, D., Dwork, C., Naor, M.: Nonmalleable cryptography. SIAM Rev.
45(4), 727–784 (2003)

7 In [LP12b] the definition of a safe-point is parameterized with the depth of the
recursion and our additional requirement naturally extends to the definition.

Composable Adaptive Secure Protocols 431

[DMRV13] Dachman-Soled, D., Malkin, T., Raykova, M., Venkitasubramaniam, M.:
Adaptive and concurrent secure computation from new adaptive, non-
malleable commitments. In: Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013,
Part I. LNCS, vol. 8269, pp. 316–336. Springer, Heidelberg (2013)

[DN00] Damg̊ard, I.B., Nielsen, J.B.: Improved non-committing encryption
schemes based on a general complexity assumption. In: Bellare, M. (ed.)
CRYPTO 2000. LNCS, vol. 1880, pp. 432–450. Springer, Heidelberg (2000)

[GLP+15] Goyal, V., Lin, H., Pandey, O., Pass, R., Sahai, A.: Round-efficient con-
currently composable secure computation via a robust extraction lemma.
In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015, Part I. LNCS, vol. 9014, pp.
260–289. Springer, Heidelberg (2015)

[GMW87] Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game or
a completeness theorem for protocols with honest majority. In: STOC, pp.
218–229 (1987)

[HV15] Hazay, C., Venkitasubramaniam, M.: On black-box complexity of uni-
versally composable security in the CRS model. In: Iwata, T., Cheon,
J.H. (eds.) ASIACRYPT 2015. LNCS, vol. 9453, pp. 183–209. Springer,
Heidelberg (2015). doi:10.1007/978-3-662-48800-3 8

[IPS08] Ishai, Y., Prabhakaran, M., Sahai, A.: Founding cryptography on oblivious
transfer – efficiently. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157,
pp. 572–591. Springer, Heidelberg (2008)

[Kiy14] Kiyoshima, S.: Round-efficient black-box construction of composable multi-
party computation. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014,
Part II. LNCS, vol. 8617, pp. 351–368. Springer, Heidelberg (2014)

[KLP07] Kalai, Y.T., Lindell, Y., Prabhakaran, M.: Concurrent composition of
secure protocols in the timing model. J. Cryptology 20(4), 431–492 (2007)

[KMO14] Kiyoshima, S., Manabe, Y., Okamoto, T.: Constant-round black-box con-
struction of composable multi-party computation protocol. In: Lindell, Y.
(ed.) TCC 2014. LNCS, vol. 8349, pp. 343–367. Springer, Heidelberg (2014)

[Lin03] Lindell, Y.: General composition and universal composability in secure
multi-party computation. In: FOCS, pp. 394–403 (2003)

[LP12a] Lin, H., Pass, R.: Black-box constructions of composable protocols without
set-up. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol.
7417, pp. 461–478. Springer, Heidelberg (2012)

[LP12b] Lin, H., Pass, R.: Black-box constructions of composable protocols without
set-up (full version) (2012). https://www.cs.ucsb.edu/rachel.lin

[LPV08] Lin, H., Pass, R., Venkitasubramaniam, M.: Concurrent non-malleable
commitments from any one-way function. In: Canetti, R. (ed.) TCC 2008.
LNCS, vol. 4948, pp. 571–588. Springer, Heidelberg (2008)

[LPV09] Lin, H., Pass, R., Venkitasubramaniam, M.: A unified framework for con-
current security: universal composability from stand-alone nonmalleability.
In: STOC, pp. 179–188 (2009)

[LZ11] Lindell, Y., Zarosim, H.: Adaptive zero-knowledge proofs and adaptively
secure oblivious transfer. J. Cryptology 24(4), 761–799 (2011)

[MMY06] Malkin, T., Moriarty, R., Yakovenko, N.: Generalized environmental secu-
rity from number theoretic assumptions. In: Halevi, S., Rabin, T. (eds.)
TCC 2006. LNCS, vol. 3876, pp. 343–359. Springer, Heidelberg (2006)

[MPR10] Maji, H.K., Prabhakaran, M., Rosulek, M.: A zero-one law for cryp-
tographic complexity with respect to computational UC security. In:
Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 595–612. Springer,
Heidelberg (2010)

http://dx.doi.org/10.1007/978-3-662-48800-3_8
https://www.cs.ucsb.edu/rachel.lin

432 C. Hazay and M. Venkitasubramaniam

[MR91] Micali, S., Rogaway, P.: Secure computation. In: Feigenbaum, J. (ed.)
CRYPTO 1991. LNCS, vol. 576, pp. 392–404. Springer, Heidelberg (1992)

[Nao91] Naor, M.: Bit commitment using pseudorandomness. J. Cryptology 4(2),
151–158 (1991)

[ORSV13] Ostrovsky, R., Rao, V., Scafuro, A., Visconti, I.: Revisiting lower and upper
bounds for selective decommitments. In: Sahai, A. (ed.) TCC 2013. LNCS,
vol. 7785, pp. 559–578. Springer, Heidelberg (2013)

[Pas03] Pass, R.: Simulation in quasi-polynomial time, and its application to proto-
col composition. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656,
pp. 160–176. Springer, Heidelberg (2003). doi:10.1007/3-540-39200-9 10

[PR08] Prabhakaran, M., Rosulek, M.: Cryptographic complexity of multi-party
computation problems: classifications and separations. In: Wagner, D. (ed.)
CRYPTO 2008. LNCS, vol. 5157, pp. 262–279. Springer, Heidelberg (2008)

[PS04] Prabhakaran, M., Sahai, A.: New notions of security: achieving universal-
composability without trusted setup. In: STOC, pp. 242–251 (2004)

[RK99] Richardson, R., Kilian, J.: On the concurrent composition of zero-
knowledge proofs. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592,
p. 415. Springer, Heidelberg (1999)

[Ven14] Venkitasubramaniam, M.: On adaptively secure protocols. In: Abdalla, M.,
De Prisco, R. (eds.) SCN 2014. LNCS, vol. 8642, pp. 455–475. Springer,
Heidelberg (2014)

[Yao86] Yao, A.C.-C.: How to generate and exchange secrets (extended abstract).
In: FOCS, pp. 162–167 (1986)

http://dx.doi.org/10.1007/3-540-39200-9_10

Adaptive Security of Yao’s Garbled Circuits

Zahra Jafargholi(B) and Daniel Wichs

Northeastern University, Boston, USA
{zahra,wichs}@ccs.neu.edu

Abstract. A garbling scheme is used to garble a circuit C and an input
x in a way that reveals the output C(x) but hides everything else. Yao’s
construction from the 80’s is known to achieve selective security, where
the adversary chooses the circuit C and the input x in one shot. It has
remained as an open problem whether the construction also achieves
adaptive security, where the adversary can choose the input x after see-
ing the garbled version of the circuit C.

A recent work of Hemenway et al. (CRYPTO’16) modifies Yao’s con-
struction and shows that the resulting scheme is adaptively secure. This
is done by encrypting the garbled circuit from Yao’s construction with
a special type of “somewhere equivocal encryption” and giving the key
together with the garbled input. The efficiency of the scheme and the
security loss of the reduction is captured by a certain pebbling game
over the circuit.

In this work we prove that Yao’s construction itself is already adap-
tively secure, where the security loss can be captured by the same peb-
bling game. For example, we show that for circuits of depth d, the security
loss of our reduction is 2O(d), meaning that Yao’s construction is adap-
tively secure for NC1 circuits without requiring complexity leveraging.
Our technique is inspired by the “nested hybrids” of Fuchsbauer et al.
(Asiacrypt’14, CRYPTO’15) and relies on a careful sequence of hybrids
where each hybrid involves some limited guessing about the adversary’s
adaptive choices. Although it doesn’t match the parameters achieved by
Hemenway et al. in their full generality, the main advantage of our work
is to prove the security of Yao’s construction as is, without any additional
encryption layer.

1 Introduction

Garbled circuits, introduced by Yao in (oral presentations of) [Yao82,Yao86],
can be used to garble a circuit C and an input x in a way that reveals C(x)
but hides everything else. Yao’s construction is based on one-way functions and
achieves a number of desirable properties with countless applications. One of the
features of this construction is that a circuit C can be garbled off-line in time

Research supported by NSF grants CNS-1347350, CNS-1314722, CNS-1413964.
This work was done in part while the authors were visiting the Simons Institute
for the Theory of Computing, supported by the Simons Foundation and by the
DIMACS/Simons Collaboration in Cryptography through NSF grant CNS-1523467.

c© International Association for Cryptologic Research 2016
M. Hirt and A. Smith (Eds.): TCC 2016-B, Part I, LNCS 9985, pp. 433–458, 2016.
DOI: 10.1007/978-3-662-53641-4 17

434 Z. Jafargholi and D. Wichs

proportional to |C| which is presumably large, but an input x can later be garbled
very efficiently on-line in time only proportional to |x| which is presumably much
smaller. We consider the on-line complexity (i.e., time to garble the input x) as
the main measure of efficiency.

Selective vs. Adaptive Security. Unfortunately, Yao’s construction is only known
to satisfy selective security where the adversary must choose the circuit C and
the input x to be garbled in one shot. It has remained an open problem whether
Yao’s construction also achieves the stronger notion of adaptive security where
the adversary can choose the input x after seeing the garbled circuit. Adaptive
security is especially important in the off-line/on-line setting where the adversary
often sees the garbled circuit first and may be able to influence the choice of the
input x.

Prior Work on Adaptive Security. The work of Bellare, Hoang and Rogaway
[BHR12a] raised the question of whether Yao’s construction or indeed any con-
struction of garbled circuits achieves adaptive security. They showed a simple
adaptively secure construction where the on-line complexity is proportional to
the circuit size, but left it as an open problem to do better.

The work of Applebaum et al. [AIKW13] shows that the on-line complexity
in the adaptive setting must at least exceed the output size of the circuit. This is
in contrast to the selective setting, where Yao’s garbling scheme achieves on-line
complexity that depends only on the input size and not the output size. However,
there is a small variant of Yao’s scheme (by giving the mapping of output labels
to output bits with the garbled input) which is natural in the adaptive setting
and which raises the on-line complexity to also depend on the output size. We
refer to this variant as Yao’s construction when we consider the adaptive setting
and it has remained as an open problem if this variant is adaptively secure.

Another approach to proving adaptive security of Yao’s construction is to
use complexity leveraging where we guess the adversary’s choice of x a-priori. A
direct approach results in a security loss of 2n where n is the input size to the
circuit. In particular, if we insist on polynomial security loss then this approach
can only handle circuits with a logarithmic input size.

We mention that there are also other approaches that depart from Yao’s con-
struction and/or rely on significantly heavier assumptions than one-way func-
tions. For example [BHR12a] show how to get an optimal solution (in fact one
that bypasses the lower-bound of [AIKW13]) in the random oracle model. The
work of [BHK13] shows that this solution also works in the standard-model
based on non-standard hash-function assumption referred to as UCE. Boneh
et al. [BGG+14] implicitly provides an adaptive garbling scheme with low on-line
complexity that scales with the depth of the circuit under LWE, while the work
of Ananth and Sahai [AS15] shows how to get an essentially optimal schemes
assuming indistinguishability obfuscation.

Work of Hemenway et al. (CRYPTO’16). The most relevant prior work is
a recent result of Hemenway et al. [HJO+15]. This work modifies Yao’s

Adaptive Security of Yao’s Garbled Circuits 435

construction by encrypting the garbled circuit with a special type of “some-
where equivocal encryption” and giving the key together with the garbled input.
The encryption scheme has an “equivocation parameter” which determines its
key size and therefore affects the on-line complexity of the garbling. They show
that the resulting scheme is adaptively secure where the equivocation parameter
needed and the security loss of the reduction are captured by a certain pebbling
game over the circuit. In particular, if a circuit with input size n and output size
m can be pebbled with t pebbles in γ steps then the resulting scheme can be
instantiated so as to achieve on-line complexity O(n + m + t) and security loss
γ. Furthermore they show that any circuit of size q, width w, and depth d can
either be pebbled with t = O(w) pebbles in γ = O(q) steps or with t = O(d)
pebbles in γ = q ·2O(d) steps. In particular, this means that (without complexity
leveraging):

– For any circuit of width w, the on-line complexity can be made O(w).
– For NC1 circuits, the on-line complexity can be just O(n + m).

Our Results. In this work we revisit the question of whether Yao’s construction
itself (without modification) is adaptively secure. We give a new reduction which
connects the security of Yao’s construction with the same pebbling game as
studied by Hemenway et al. [HJO+15]. In particular, we show that for circuits
that can be pebbled with t pebbles in γ steps, Yao’s construction is adaptively
secure with a security loss of γ2O(t). For example, since circuits of size q and
depth d can be pebbled in γ = q2O(d) steps with t = O(d) pebbles we get a
security loss of q2O(d). This means that Yao’s construction is already adaptively
secure for NC1 circuits, without the use of complexity leveraging.1

Next we describe our techniques and compare to those of [HJO+15]. On a
very high level, the work of [HJO+15] proves security via a sequence of hybrids,
where in each hybrid some small number of garbled gates of the Yao garbled
circuit are “equivocal” and only needed to be specified by the reduction in the
on-line phase after the input x is known. In this work we replace the role of
“equivocation” with the careful use of “guessing”. Instead of simply guessing
the entire input x, our reduction consists of a sequence of hybrids where in each
hybrid we guess some small number of the wire values in the circuit and abort if
the guess is incorrect. We then show how to patch together hybrids that contain
different guessed wires (and even a different number of guessed wires) to get a
security proof. This approach is reminiscent of the “nested hybrids” technique
employed by Fuchsbauer et al. [FKPR14,FJP15] and we believe our abstraction
of this technique via pebbling will be useful in other contexts.

1.1 Our Techniques

Yao’s Scheme and the Challenge of Adaptive Security ([HJO+15]). To
describe our technical contribution, we must first describe Yao’s construction
1 Unfortunately, we cannot get a meaningful analogue of the width based result of

[HJO+15] since the security loss would be 2w which exceeds the trivial security loss
of 2n obtained by simply guessing the input.

436 Z. Jafargholi and D. Wichs

and the difficulty one faces when trying to prove adaptive security. The following
discussion is taken essentially verbatim from [HJO+15], following the ideas of
Lindell and Pinkas [LP09] who gave the first detailed proof of security for Yao’s
garbled circuits in the selective security setting.

Yao’s Scheme. For each wire w in the circuit, we pick two keys k0
w, k1

w for
a symmetric-key encryption scheme. For each gate in the circuit computing a
function g : {0, 1}2 → {0, 1} and having input wires a, b and output wire c we
create a garbled gate consisting of 4 randomly ordered ciphertexts created as:

c0,0 = Enck0
a
(Enck0

b
(kg(0,0)

c)) c1,0 = Enck1
a
(Enck0

b
(kg(1,0)

c)),
c0,1 = Enck0

a
(Enck1

b
(kg(0,1)

c)) c1,1 = Enck1
a
(Enck1

b
(kg(1,1)

c))
(1)

where (Enc,Dec) is a CPA-secure encryption scheme. The garbled circuit C̃
consists of all of the gabled gates, along with an output mapping {k0

w → 0, k1
w →

1} which gives the correspondence between the keys and the bits they represent
for each output wire w. To garble an n-bit value x = x1x2 · · · xn, the garbled
input x̃ consists of the keys kxi

wi
for the n input wires wi.

To evaluate the garbled circuit on the garbled input, it’s possible to decrypt
(exactly) one ciphertext in each garbled gate and get the key k

v(w)
w corresponding

to the bit v(w) going over the wire w during the computation C(x). Once the
keys for the output wires are computed, it’s possible to recover the actual output
bits by looking them up in the output mapping.

Selective Security Simulator. To prove the selective security of Yao’s scheme, we
need to define a simulator that gets the output y = y1y2 · · · ym = C(x) and must
produce C̃, x̃. The simulator picks random keys k0

w, k1
w for each wire w just like

the real scheme, but it creates the garbled gates as follows:

c0,0 = Enck0
a
(Enck0

b
(k0

c)) c1,0 = Enck1
a
(Enck0

b
(k0

c)),
c0,1 = Enck0

a
(Enck1

b
(k0

c)) c1,1 = Enck1
a
(Enck1

b
(k0

c)) (2)

where all four ciphertext encrypt the same key k0
c . It creates the output mapping

{k0
w → yw, k1

w → 1 − yw} by “programming it” so that the key k0
w corresponds

to the correct output bit yw for each output wire w. This defines the simulated
garbled circuit C̃. To create the simulated garbled input x̃ the simulator simply
gives out the keys k0

w for each input wire w. Note that, when evaluating the
simulated garbled circuit on the simulated garbled input, the adversary only
sees the keys k0

w for every wire w.

Selective Security Hybrids. To prove indistinguishability between the real world
and the simulation, there is a series of carefully defined hybrid games that switch
the distribution of one garbled gate at a time. Unfortunately, we cannot directly
switch a gate from the real distribution (1) to the simulated one (2) and therefore

Adaptive Security of Yao’s Garbled Circuits 437

must introduce an intermediate distribution (3) as below:

c0,0 = Enck0
a
(Enck0

b
(kv(c)

c)) c1,0 = Enck1
a
(Enck0

b
(kv(c)

c)),
c0,1 = Enck0

a
(Enck1

b
(kv(c)

c)) c1,1 = Enck1
a
(Enck1

b
(kv(c)

c))
(3)

where v(c) is the correct value of the bit going over the wire c during the com-
putation of C(x).

Let us give names to the three modes for creating garbled gates that we
defined above: (1) is called RealGate mode, (2) is called SimGate mode, and
(3) is called InputDepSimGate mode, since the way that it is defined depends
adaptively on the choice of the input x.

We can switch a gate from RealGate to InputDepSimGate mode if the pre-
decessor gates are in InputDepSimGate mode (or we are in the input level).
This follows by CPA security of encryption. In particular, we are not changing
the value contained in ciphertext cv(a),v(b) encrypted under the keys k

v(a)
a , k

v(b)
b

that the adversary obtains during evaluation, but we can change the values
contained in all of the other ciphertexts since the keys k1−v(a), k1−v(b) do not
appear anywhere inside the predecessor garbled gates as long as they are already
in InputDepSimGate mode.

We can also switch a gate from InputDepSimGate to SimGate mode if the
successor gates are in InputDepSimGate or SimGate mode (or we are at the out-
put level). This is actually an information theoretic step; since the keys k0

c , k1
c

are used completely symmetrically in the successor gates there is no difference
between always encrypting k

v(c)
c as in InputDepSimGate mode or encrypting

k0
c as in SimGate. This allows us to first switch every gate from RealGate to

InputDepSimGate mode and then from InputDepSimGate to SimGate, proving the
selective security of Yao’s construction.

Challenges in Achieving Adaptive Security. There are two issues in using the
above strategy in the adaptive setting: an immediate but easy to fix problem
and a more subtle but difficult to overcome problem.

The first immediate issue is that the selective simulator needs to know the
output y = C(x) to create the garbled circuit C̃ and in particular to program the
output mapping {k0

w → yw, k1
w → 1 − yw} for the output wires w. However, the

adaptive simulator does not get the output y until after it creates the garbled
circuit C̃. Therefore, we cannot (even syntactically) use the selective security
simulator in the adaptive setting. This issue turns out to be easy to fix by
modifying the construction to send the output-mapping as part of the garbled
input x̃ in the on-line phase, rather than as part of the garbled circuit C̃ in the off-
line phase. This modification raises on-line complexity to also being linear in the
output size of the circuit, which we know to be necessary by the lower bound of
[AIKW13]. We refer to this modification as Yao’s garbled circuit construction in
the adaptive setting. With this modification, the adaptive simulator can program
the output mapping after it learns the output y = C(x) in the on-line phase and
therefore we get a syntactically meaningful simulation strategy in the adaptive
setting.

438 Z. Jafargholi and D. Wichs

The second problem is where the true difficulty lies. Although we have a syn-
tactically meaningful simulation strategy, the previous proof of indistinguishabil-
ity of the real world and the simulation completely breaks down in the adaptive
setting. In particular InputDepSimGate mode as specified in Eq. (3) is syntac-
tically undefined in the adaptive setting. Recall that in this mode the garbled
gate is created in a way that depends on the input x, but in the adaptive setting
the input x is chosen adaptively after the garbled circuit is created! Therefore,
although we have a syntactically meaningful simulation strategy for the adaptive
setting, we do not have any syntactically meaningful sequence of intermediate
hybrids to prove indistinguishability between the real world and the simulated
world.

Our Solution. As described above, in the selective setting there is a proof
of security via a sequence of hybrids that changes the distribution of gates
from RealGate mode to InputDepSimGate mode to SimGate mode. Unfortunately,
InputDepSimGate mode does not make sense (even syntactically) in the adaptive
setting since it relies on knowing the value on the outgoing wire of that gate,
which isn’t defined until the input x is given.

To overcome this problem, the work of [HJO+15] encrypted the entire gar-
bled circuit with a somewhere equivocal encryption scheme which allowed the
simulator to put dummy values in place of all of the gates in InputDepSimGate
mode and only later after the input x was known replace the dummy values with
correctly distributed garbled gates by equivocating the encryption.

Our Idea: Guess and Hope for the Best. Our idea to overcome this problem is
very different. We define hybrid games in the adaptive setting where we guess
the value v(c) on the outgoing wire c of every gate in InputDepSimGate mode
a-priori and abort if the adversary’s adaptive choice of the input x doesn’t
match our guesses. Note that although the goal is to have the garbled gates in
InputDepSimGate mode depend on the input x, we choose them independently of
x and only abort later if we chose incorrectly. This defines syntactically mean-
ingful hybrid games, but unfortunately the set of guessed wires and even the
number of guessed wires is different in each hybrid making it impossible to com-
pare them directly. However, we show that by carefully adding and removing
guesses in different parts of the proof and then only comparing hybrids with an
equivalent set of guesses, we can patch together this sequence of a-priori incompa-
rable hybrids and give an indistinguishability reduction. Overall, we can take any
valid sequence of γ hybrid games that would give an indistinguishability proof
in the selective setting and translate it into a proof of security in the adaptive
setting with a security loss of γ2O(t) where t is the maximum number of gates in
InputDepSimGate mode in any hybrid. This idea of “carefully” guessing different
components in different hybrids is reminiscent of the nested hybrids technique
of Fuchsbauer et al. [FKPR14,FJP15].

In comparison to [HJO+15], we rely on “guessing” instead of “equivo-
cating”. Whereas [HJO+15] had to modify Yao’s scheme and pay for gates

Adaptive Security of Yao’s Garbled Circuits 439

in InputDepSimGate mode by increasing the “equivocation parameter” which
resulted in larger key size for the somewhere equivocal encryption, we get to
keep the scheme unmodified but pay for gates in InputDepSimGate mode in the
security loss of our reduction.

Sequences of Hybrids and Pebbling. With the above framework, the goal of prov-
ing adaptive security reduces to the goal of giving a sequence of hybrids in the
selective setting where the number of gates in InputDepSimGate mode in any
hybrid is as small as possible. This is the same challenge as faced in the work of
[HJO+15] and we can rely on the same idea.

Recall that we need to start with the real world where all gates are in RealGate
mode and end with the simulated world where all gates are in SimGate mode.
As discussed in the overview of the selective security proof of Yao’s garbled
circuits, we are allowed to change a gate from RealGate to InputDepSimGate if
all of its predecessors are in InputDepSimGate (or it’s an input gate) and we
are allowed to change InputDepSimGate to SimGate if all of the successors are in
InputDepSimGate or SimGate modes (or it’s an output gate). A naive sequence
of hybrids, corresponding to the proof of selective security of Lindell and Pinkas
[LP09], would first change all the gates from RealGate mode to InputDepSimGate
mode one level at a time starting from the input level, and then change them all
to SimGate mode by again changing one level at a time starting from the input
level. However, this requires that there is a hybrid step where all of the gates
are in InputDepSimGate mode, while our goal is to minimize the number of such
gates. It turns out that one can do much better.

The work of [HJO+15] abstracts the above problem as a pebbling game. We
associate RealGate mode with not having a pebble, InputDepSimGate mode with
having a black pebble and SimGate mode with having a gray pebble. The rules of
the game go as follows:

– We can place or remove a black pebble on a gate as long as both predecessors
of that gate have black pebbles on them (or the gate is an input gate).

– We can replace a black pebble with a gray pebble on a gate as long as all
successors of that gate have black or gray pebbles on them (or the gate is an
output gate).

The goal of the game is to end up with a gray pebble on every gate while using
as few black pebbles as possible at any point in time. It was shown that any
circuit of size q, width w and depth d can be pebbled in two different ways:
either with t = O(w) black pebbles in γ = O(q) steps or with t = O(d) black
pebbles in γ = q · 2O(d) steps.

Our Parameters. Using the second pebbling strategy based on depth, we get
a security proof of Yao’s garbled circuits in the adaptive setting with a security
loss of q2O(d) where q is the circuit size and d is the circuit depth. In particular,
for NC1 circuits we get a security reduction showing the adaptive security of
Yao’s garbled circuits without complexity leveraging.

440 Z. Jafargholi and D. Wichs

2 Preliminaries

General Notation. For a positive integer n, we define [n] := {1, . . . , n}. We
use the notation x ← X for the process of sampling a value x according to
the distribution X. We use Un for uniform distribution over n-bit strings. A
function μ(·) is negligible in x if μ(x) ≤ 1/p(x) for any polynomial function p
and all sufficiently large x. We use poly(x) to denote the set of all polynomial
functions p(x). For an interactive game Game with an adversary A, we use
GameA to denote the outcome of the game played with A.

Definition 1. Two distributions X and Y are (T, ε)-indistinguishable, denote
DT [X,Y] = ε if for any probabilistic algorithm A, running in time T ,

|Pr [A(X) = 1] − Pr [A(Y) = 1]| ≤ ε.

For two games Game and Game′ we say they are (T (λ), ε(λ))-
indistinguishable, DT (λ)

[
Game,Game′] = ε(λ), if for any adversary A running

in time T (λ),
∣
∣Pr [GameA = 1] − Pr

[
Game′

A = 1
]∣∣ ≤ ε(λ).

Let games Game(λ) and Game′(λ) be games parameterized by the security
parameter λ. If for any polynomial function T (λ), there exists a negligible
function ε(λ), such that for all λ, DT (λ)

[
Game(λ),Game′(λ)

]
≤ ε(λ), we

say the two games are computationally indistinguishable and denote this by
Game(λ)

comp
≈ Game′(λ).

Circuit Notation. A boolean circuit C consists of gates gate1, . . . , gateq and
wires w1, w2, . . . , wp. A gate is defined by the tuple gatei = (g, wa, wb, wc), where
g : {0, 1}2 → {0, 1} is the function computed by the gate, wa, wb are the incoming
wires, and wc is the outgoing wire. Although each gate has a unique outgoing
wire wc, this wire can be used as an incoming wire to several different gates and
therefore this models a circuit with fan-in 2 and unbounded fan-out. We also
allow wa = wb, for gates with fan-in 1. We denote the number of gates with
q, input wires with m and output wires with m. The total number of wires is
p = n + q (since each wire can either be input wire or an outgoing wire of some
gate). For convenience, we denote the n input wires by in1, . . . , inn and the m
output wires by out1, . . . , outm. We also use reserve a, b and c as labels for input
wires to a gate and output wire of the same gate (instead of wa, wb, and wc).
For x ∈ {0, 1}n we write C(x) to denote the output of evaluating the circuit C
on input x.

We say C is leveled, if each gate has an associated level and any gate at level
l has incoming wires only from gates at level l − 1 and outgoing wires only to
gates at level l+1. We let the depth d denote the number of levels and the width
w denote the maximum number of gates in any level.

A circuit C is fully specified by a list of gate tuples gatei = (g, a, b, c). We
use Φtopo(C) to refer to the topology of a circuit– which indicates how gates

Adaptive Security of Yao’s Garbled Circuits 441

are connected, without specifying the function implement by each gate. In other
words, Φtopo(C) is the list of sanitized gate tuples ĝatei = (⊥, a, b, c) where the
function g that the gate implements is removed from the tuple.

3 Garbling Scheme and Adaptive Security ([HJO+15])

The bulk of this section defining what garbled circuits are and presenting Yao’s
construction is taken verbatim from [HJO+15].

3.1 Garbling Scheme

We now give a formal definition of a garbling scheme. There are many variants
of such definitions in the literature, we use the definition given in [HJO+15] and
refer the reader to [BHR12b] for a comprehensive treatment.

Definition 2. A Garbling Scheme is a tuple of PPT algorithms GC = (GCircuit,
GInput,Eval) such that:

– (C̃, k) $← GCircuit(1λ, C): takes as input a security parameter λ, a circuit
C : {0, 1}n → {0, 1}m, and outputs the garbled circuit C̃, and key k.

– x̃ ← GInput(k, x): takes as input,s x ∈ {0, 1}n, and key k and outputs x̃.
– y = Eval(C̃, x̃): given a garbled circuit C̃ and a garbled input x̃ output y ∈

{0, 1}m.

Correctness. There is a negligible function ε such that for any λ ∈ N, any
circuit C and input x it holds that Pr[C(x) = Eval(C̃, x̃)] = 1 − ε(λ), where
(C̃, k) ← GCircuit(1λ, C), x̃ ← GInput(k, x).

Adaptive Security.

– GC is (T (λ), ε(λ))-adaptively secure garbling scheme, if there exists a prob-
abilistic polynomial time simulator Sim = (SimC,SimIn) such that, for any
probabilistic adversary A, running in time T (λ),

∣
∣
∣Pr[ExpadaptiveA,GC,Sim(1λ, 0) = 1] − Pr[ExpadaptiveA,GC,Sim(1λ, 1) = 1]

∣
∣
∣ ≤ ε(λ).

In other words, DT (λ)

[
ExpadaptiveGC,Sim (1λ, 0),ExpadaptiveGC,Sim (1λ, 1)

]
= ε(λ).

– GC is adaptively secure if ExpadaptiveGC,Sim (1λ, 0)
comp
≈ ExpadaptiveGC,Sim (1λ, 1)

where the experiment ExpadaptiveA,GC,Sim(1λ, b) is defined as follows:

1. The adversary A specifies C and gets C̃ where C̃ is created as follows:
– if b = 0: (C̃, k) ← GCircuit(1λ, C),
– if b = 1: (C̃, ,) ← SimC(1λ, Φtopo(C)), where Φtopo(C) reveals the topology

of C.
2. The adversary A specifies x and gets x̃ created as follows:

– if b = 0, x̃ ← GInput(k, x),
– if b = 1, x̃ ← SimIn(C(x), state).

3. Finally, the adversary outputs a bit b′, which is the output of the experiment.

442 Z. Jafargholi and D. Wichs

On-line Complexity. The time it takes to garble an input x, (i.e., time complex-
ity of GInput(·, ·)) is the on-line complexity of the scheme. Clearly the on-line
complexity of the scheme gives a bound on the size of the garbled input x̃. Ideally,
the on-line complexity should be much smaller than the circuit size |C|.

Projective Scheme. We say a garbling scheme is projective if each bit of the
garbled input x̃ only depends on one bit of the actual input x. In other words,
each bit of the input, is garbled independently of other bits of the input. Pro-
jective schemes are essential for two-party computation where the garbled input
is transmitted using an oblivious transfer (OT) protocol. Our constructions will
be projective.

Hiding Topology. A garbling scheme that satisfies the above security definition
may reveal the topology of the circuit C. However, there is a way to transform
any such garbling scheme into one that hides everything, including the topology
of the circuit, without a significant asymptotic efficiency loss. More precisely,
we rely on the fact that there is a function HideTopo(·) that takes a circuit C
as input and outputs a functionally equivalent circuit C ′, such that for any two
circuits C1, C2 of equal size, if C ′

1 = HideTopo(C1) and C ′
2 = HideTopo(C2), then

Φtopo(C ′
1) = Φtopo(C ′

2). An easy way to construct such function HideTopo is by
setting C ′ to be a universal circuit, with a hard-coded description of the actual
circuit C. Therefore, to get a topology-hiding garbling scheme, we can simply
use a topology-revealing scheme but instead of garbling the circuit C directly,
we garble the circuit HideTopo(C).

3.2 Yao’s Garbling Scheme

In this section we describe Yao’s garbling scheme and in the next section we give
the simulation strategy.

Construction. Let C be a leveled boolean circuit with fan-in 2 and unbounded
fan-out, with inputs size n, output size m, depth d. Let q denote the number of
gates in C. Recall that wires are uniquely identified with labels and a circuit C
is specified by a list of gate tuples gate = (g, a, b, c), where g computes the gate
and a, b are the input wire labels and c is the output wire label. The topology
of the circuit Φtopo(C) consists of the sanitized gate tuples ĝate = (⊥, a, b, c).
For simplicity, we implicitly assume that Φtopo(C) is public and known to the
circuit evaluator without explicitly including it as part of the garbled circuit C̃.
To simplify the description of our construction, we first describe the procedure
for garbling a single gate, that we denote by GarbleGate.

Let Γ = (KeyGen,Enc,Dec) be a CPA-secure symmetric-key encryption
scheme that satisfies the special correctness property, enabling one to recog-
nize successful decryptions (defined in Appendix A.) GarbleGate is defined as
follows.

Adaptive Security of Yao’s Garbled Circuits 443

Fig. 1. Yao’s garbling scheme.

– g̃ ← GarbleGate(g, {kσ
a , kσ

b , kσ
c }σ∈{0,1}): This function computes 4 ciphertexts

ctσ0,σ1 : σ0, σ1 ∈ {0, 1} as defined below and outputs them in a random
order as g̃ = [ct1, ct2, ct3, ct4].

ct0,0 ← Enck0
a
(Enck0

b
(kg(0,0)

c)), ct0,1 ← Enck0
a
(Enck1

b
(kg(0,1)

c))

ct1,0 ← Enck1
a
(Enck0

b
(kg(1,0)

c)), ct1,1 ← Enck1
a
(Enck0

b
(kg(1,1)

c))

3.3 Adaptive Simulator

The adaptive security simulator for our garbling scheme is essentially the same
as the selective security simulator for Yao’s scheme (as in [LP09]), with the only
difference that the output table is sent in the on-line phase, and is computed
adaptively to map to the correct output.

More specifically, the adaptive simulator (SimC,SimIn) works as follows.
In the off-line phase, SimC computes the garbled gates using procedure
GarbleSimGate, that generates 4 ciphertexts that encrypt the same output key.
More precisely,

– GarbleSimGate({kσ
a , kσ

b }σ∈{0,1}, k′
c) takes both keys for input wires wa, wb and

a single key for the output wire wc, that we denote by k′
c. It then output

g̃c = [ct1, ct2, ct3, ct4] where the ciphertexts, arranged in random order, are
computed as follows.

ct0,0 ← Enck0
a
(Enck0

b
(k′

c)) ct1,0 ← Enck1
a
(Enck0

b
(k′

c))

ct0,1 ← Enck0
a
(Enck1

b
(k′

c)) ct1,1 ← Enck1
a
(Enck0

b
(k′

c))

444 Z. Jafargholi and D. Wichs

Fig. 2. Simulator for adaptive security.

The simulator invokes GarbleSimGate on input k′
c = k0

c .
In the on-line phase, SimIn, on input y = C(x) adaptively computes the

output tables so that the evaluator obtains the correct output. This is easily
achieved by associating each bit of the output, yj , to the only key encrypted in
the output gate goutj , which is k0

outj . For the input keys, SimIn just sends keys
k0
ini

for each i ∈ [n]. The detailed definition of (SimC,SimIn) is provided in Fig. 2.

4 Hybrid Games

Our goal is to show the indistinguishability of the real world and the simulation
in the adaptive setting. We do so by first introducing a template that allows
us to define various hybrid games and then showing how to patch such games
together to get a full security proof.

4.1 Template for Defining Hybrid Games

Garbling Mode/Guessed Wires. A gate’s garbling mode indicates the way it is
computed and can be one of the following RealGate, SimGate, InputDepSimGate
which corresponds to the distributions outlined in Fig. 3. A circuit configura-
tion is consists of two sets. A set the garbling modes for each gate in the cir-
cuit (i.e. modei, i ∈ [q]) and as set of guessed wires I ⊆ [p]. We use the pair
((modei)i∈[q], I) to denote a circuit configuration. A circuit configuration is valid
if the outgoing wire of every gate in InputDepSimGate mode, is contained in the
set of guessed wires I.

The Hybrid Game Hyb((modei)i∈[q], I). Every valid circuit configuration defines
a hybrid game as specified formally in Fig. 4 and described informally below. The
hybrid game consists of a guessing step and a garbling step. The garbling step

Adaptive Security of Yao’s Garbled Circuits 445

Fig. 3. Garbling Gate modes: RealGate (left), SimGate (center), InputDepSimGate
(right). The value v(c) depends on the input x and corresponds to the bit going over
the wire c in the computation C(x).

has two procedures: one for creating the garbled circuit C̃ and one for creating
the garbled input x̃. The initial guessing step, is necessary in order to create gates
in InputDepSimGate mode. For any such gate it is essential to know what is the
bit on its output wire, (referred to as v(c) in Fig. 3) once the circuit is computed.
However the input is not known at the time of circuit garbling. Therefore we
guess it! In some hybrid games we also need to guess values on other wires in the
circuit. We define a set (called Guess), that stores all these guessed values for the
marked wires. Hyb creates the garbled circuit by picking random keys kσ

wi
for

each wire wi. For each gate i, modei ∈ {RealGate,SimGate, InputDepSimGate}, it
creates a garbled gate g̃i according to the corresponding distribution as described
in Fig. 3, and using Guess(c) instead of the unknown v(c). Once Hyb has the
input, it checks whether all the guesses were made correctly. If not, the game is
over with a fixed and dedicated output (say 0). However if they are correct, it
follows the rules below to create the garbled input and map the output wires to
{0, 1}.

– If all of the gates having ini as an input wire are in SimGate mode, then
K[i] := k0

ini
else K[i] := kxi

ini
.

– If the unique gate having out� as an output wire is in SimGate mode, then we
give the output map the simulated values d̃� := [(ky�

out� → 0), (k1−y�
out� → 1)] else

the real ones d̃� := [(k0
out� → 0), (k1

out� → 1)].

Real Game and Simulated Game. By the definition of adaptively secure gar-
bled circuits (Definition 2), the real game ExpadaptiveA,GC,Sim(1λ, 0) is equivalent to
Hybλ

A((modei = RealGate)i∈[q], ∅) and the simulated game ExpadaptiveA,GC,Sim(1λ, 1) is
equivalent to Hybλ

A((modei = SimGate)i∈[q], ∅). Therefore, the main aim is to
show that these hybrids are indistinguishable.

4.2 Rules for Indistinguishable Hybrids

We provide rules that allow us to move from one configuration to another and
prove that the corresponding hybrid games are indistinguishable. We define two
rules that allow us to do this.

446 Z. Jafargholi and D. Wichs

Fig. 4. The hybrid game.

Definition 3 (Neighboring Hybrids). We say two valid hybrids or configu-
rations ((modei)i∈[q], I), ((mode′

i)i∈[q], I) are “neighboring”, if the set of guessed
wires I is the same in both of them and the garbling modes of all gates except
one are the same; i.e. there exists some j ∈ [q] such that for all i
= j we have
modei = mode′

i. We call gatej the target gate of the two hybrids or configura-
tions.

Definition 4 (Predecessor/Successor/Sibling Gates). [HJO+15] Given
a circuit C and a gate j ∈ [q] of the form gatej = (g, wa, wb, wc) with incoming
wires wa, wb and outgoing wire wc:

Adaptive Security of Yao’s Garbled Circuits 447

– We define the predecessors of j, denoted by Pred(j), to be the set of gates whose
outgoing wires are either wa or wb. If wa, wb are input wires then Pred(j) = ∅,
else |Pred(j)| = 2.

– We define the successors of j, denoted by Succ(j) to be the set of gates that
contain wc as an incoming wire. If wc is an output wires then Succ(j) = ∅.

– We define the siblings of j, denoted by Siblings(j) to be the set of gates that
contain either wa or wb as an incoming wire.

We define TimeGC(x) to be the time it takes to garble a circuit of size x using
Yao’s garbling scheme. For convenience, we let mode

def= (modei)i∈[q] and omit
writing the security parameter λ in the superscript of the hybrid games, since it
is the same for all the games discussed here. For the same reason we use, ε and
T instead of ε(λ) and T (λ).

Indistinguishability Rule 1: RealGate ↔ InputDepSimGate: This
rule allows us to change the garbling mode of a gate from RealGate to
InputDepSimGate. It says that one can move from a circuit configuration
(mode, I) to neighboring circuit configuration (mode′, I) where the mode of the
target gate changes from RealGate in mode to InputDepSimGate in mode′ (and
vice versa).

Lemma 1. Let Hyb(mode, I) and Hyb(mode′, I) be two neighboring hybrids,
with target gatej such that modej = RealGate and mode′

j = InputDepSimGate.
In addition, for all i ∈ Pred(j): modei = InputDepSimGate. Then
Hyb(mode, I)and Hyb(mode′, I) are (T (λ), ε(λ))-indistinguishable as long as Γ =
(KeyGen,Enc,Dec) is an encryption scheme (T ′(λ), ε(λ))-secure under CPA dou-
ble encryption as per Definition 6 and T ′(λ) = T (λ) + TimeGC(|C|).

Proof. Let (mode, I) and (mode′, I) be as in the statement of the lemma, two
valid circuit configurations. Towards a contradiction, assume that there exists
a adversary A who runs in time T and distinguishes H0 := Hyb(mode, I) and
H1 := Hyb(mode′, I). i.e.,

∣
∣Pr

[
H0

A = 1
]
− Pr

[
H1

A = 1
]∣∣ > ε.

We construct an adversary B, running in time T ′ that breaks the double CPA-
security of the encryption scheme Γ = (KeyGen,Enc,Dec) which is used to garble
gates. More specifically, we show that B wins the chosen double encryption secu-
rity game (Definition 6) which is implied by CPA security. The formal description
of adversary B is provided in Fig. 5.

Informally, B –on input (mode, I) and target gate j– aims to use her CPA-
oracle access in Expdouble(1λ, b) to generate distribution Hb. The only difference
between H0 and H1 is in the way gate g̃j is computed. On a high level, the
reduction B will compute all garbled gates g̃i for i
= j, according to experi-
ment Hyb(mode, I), and will compute the garbled gate g̃j using the ciphertexts
obtained as a challenge in the experiment Expdouble(1λ, b).

448 Z. Jafargholi and D. Wichs

Fig. 5. Proof of security for rule 1: the reduction B uses an adversary A that distin-
guishes the hybrids to play the chosen double encryption security game (Definition 6)
denoted by Expdouble.

Adaptive Security of Yao’s Garbled Circuits 449

In more detail, let gatej = (g∗, a∗, b∗, c∗) be the target gate. Recall, the pre-
decessors of gatej (with output wires a∗ and b∗) are in InputDepSimGate mode.
Therefore garbling of each gate in Pred(j), includes encryptions of one wire label
only. We call these wires (which are fixed by the bit values guessed in step 1,
α, β ∈ {0, 1}) kα

a∗ and kβ
b∗ . Consequently the wire label decrypted during the eval-

uation of gatej is also the same wire label in both games, k
g(α,β)
c∗ . The difference

is modej = RealGate in Hyb(mode, I), meaning, there is another wire label, which
was used to garble gatej and its ciphertext is one of the four ciphertexts cts,
s ∈ {0, 1}2. But in Hyb(mode′, I), garbling mode of gatej is InputDepSimGate and

the only wire label used is k
g(α,β)
c∗ . To create the same garbled gate distributions

using the challenger of the Expdouble(1λ, b), the reduction B –who knows all wire
keys except for k1−α

a∗ , k1−β
b∗ – will create ctα,β as an encryption of k

g(α,β)
c∗ on its

own, but the remaining three ciphertexts ctα′,β′ will come from the experiment
Expdouble(1λ, b) as either encryptions of different values k

g(α′,β′)
c∗ (real) or of the

same value k
g(α,β)
c∗ 2.

The one subtlety is that the reduction needs to create encryptions under the
keys k1−α

a∗ , k1−β
b∗ to create garbled gates g̃i for gates i that are siblings of gate j.

It can do that by using the encryption oracles which are given to it as part of the
experiment Expdouble(1λ, b). The formal description of the reduction B is provided
in Fig. 5. Finally notice that B’s running time is, the time it takes to create the
garble circuit plus the time it takes to run A, so T ′ = T + TimeGC(|C|).

∣
∣Pr[H0

A = 1] − Pr[H1
A = 1]

∣
∣

≤
∣
∣
∣Pr[ExpdoubleB (1λ, 0) = 1] − Pr[ExpdoubleB (1λ, 1) = 1]

∣
∣
∣ ≤ ε.

which proves the Lemma.

Indistinguishability Rule 2. InputDepSimGate ↔ SimGate: This rule
allows us to change the mode of a gate j from InputDepSimGate to SimGate
under the condition that all successor gates i ∈ Succ(j) satisfy that modei ∈
{InputDepSimGate,SimGate}.

Lemma 2. Let Hyb(mode, I) and Hyb(mode′, I) be two neighboring hybrids,
with target gatej such that modej = InputDepSimGate in mode and modej =
SimGate in mode′. In addition, for all i ∈ Succ(j) we have modei ∈ {SimGate,
InputDepSimGate}. Then for any A, HybA(mode, I) and HybA(mode′, I ′) are
identically distributed.

Proof. Fix any adversary A. Define H0 := HybA(mode, I) and H1 :=
HybA(mode′, I). The difference between the hybrids is in how the garbled gate
g̃j is created:

2 If a∗ = b∗, (gatej has fan-in 1), then B uses the challenger of the CPA encryption
instead of the double-encryption scheme. The reduction considers the CPA chal-
lenger’s key as k1−α

b∗ , and using appropriate queries garbles gatej .

450 Z. Jafargholi and D. Wichs

– In H0, we set g̃j ← GarbleSimGate((kσ
a∗ , kσ

b∗)σ∈{0,1}, k
Guess(c∗)
c∗).

– In H1, we set g̃j ← GarbleSimGate((kσ
a∗ , kσ

b∗)σ∈{0,1}, k0
c∗).

If j is not an output gate, and all successor gates i ∈ Succ(j) are in {SimGate,
InputDepSimGate} modes then the keys k0

c∗ and k1
c∗ are treated symmetrically

everywhere in the game other than in g̃j . Therefore, by symmetry, there is no
difference between using k0

c∗ and k
Guess(c∗)
c∗ in g̃j

If j is an output gate then the keys k0
c∗ and k1

c∗ are only used in g̃j and in
the output map d̃j . Therefore, by symmetry, there is no difference between using
k

yj

c∗ in g̃j and setting d̃j := [(k0
outj → 0), (k1

outj → 1)] (in H0) versus using k0
c∗ in

g̃j and setting d̃j := [(kyj

outj → 0), (k1−yj

outj → 1)] (in H1).
One last difference between the hybrids occurs if some wire ini becomes only

connected to gates that are in SimGate in H1. In this case, when we create the
garbled input x̃, then in H0 we give K[i] := kxi

ini
but in H1 we give K[i] := k0

ini
.

Since the keys k0
ini

, k1
ini

are treated symmetrically everywhere in the game (both
in H0 and H1) other than in K[i], there is no difference between setting K[i] :=
k0
ini

versus K[i] := kxi

ini
.

Scaling Indistinguishability. We now show that by adding guesses we can
make the hybrids more indistinguishable, or equivalently, removing guesses
makes the hybrids more distinguishable. This lemma is crucial for comparing
hybrids with different guesses by scaling the number of guesses up or down to
make the comparison possible.

Lemma 3. If DT

[
Hyb(mode, I),Hyb(mode′, I)

]
= ε and J is a set of wires,

disjoint from I then

DT

[
Hyb(mode, I ∪ J),Hyb(mode′, I ∪ J)

]
= 2−|J| · ε.

Proof. For any probabilistic T bounded adversary A, we have

Pr [HybA(mode, I ∪ J) = 1] = 2−|J| Pr [HybA(mode, I) = 1)]

Because with probability 2−|J|, (the probability of guessing the extra |J | wires
correctly) A playing the game Hyb(mode, I ∪ J) has the exact same interactions
as in game Hyb(mode, I) and therefore the same exact outputs. The same holds
for Pr

[
HybA(mode′, I ∪ J) = 1

]
therefore,

[
Pr [HybA(mode, I ∪ J) = 1] − Pr

[
HybA(mode′, I ∪ J) = 1

]]

= 2−|J| ∣∣Pr [HybA(mode, I) = 1] − Pr
[
HybA(mode′, I) = 1

]∣∣ ≤ 2−|J| · ε

5 Pebbling and Sequences of Hybrid Games

In the last section we defined hybrid games parameterized by a configuration
(mode, I). We also gave 2 rules, which describe ways that allow us to move

Adaptive Security of Yao’s Garbled Circuits 451

from one configuration to another in indistinguishable steps. Now our goal is to
use the given rules so as to define a sequence of indistinguishable hybrid games
that takes us from the real game Hyb((modei = RealGate)i∈[q], I = ∅) to the
simulation Hyb((modei = SimGate)i∈[q], I = ∅).

Pebbling Game. We capture the problem of finding a sequences of hybrid games
using a certain type of pebbling game on the graph of circuit C.

– Graph of circuit C is obtained by assigning a node to each gate, and a directed
edge from node i to node j for each wire going out of gate i and into gate
j. To make this consistent, we think of each input wire (in) as outgoing wire
of an empty (dummy) gate, going into a gate in level 1 of the circuit. Since
we are always considering a pebbling on the graph of a circuit, we use words
gate/node and wire/edge interchangeably.

– Pebbles. Each gate can either have no pebble, a black pebble, or a gray pebble
on it (this will correspond to RealGate, InputDepSimGate and SimGate modes
respectively). Initially, the circuit starts out with no pebbles on any gate. The
game consist of the following possible moves:
Pebbling Rule A. We can place or remove a black pebble on a gate as long

as both predecessors of that gate have black pebbles on them (or it is an
input gate).

Pebbling Rule B. We can replace a black pebble with a gray pebble on a
gate as long as all successors of that gate have black or gray pebbles on
them (or the gate is an output gate).

– A pebbling of a circuit C starts with no pebbles on the graph and is a sequence
of γ moves that follow rules A and B and that end up with a gray pebble on
every gate. We say that a pebbling uses t black pebbles if this is the maximal
number of black pebbles on the circuit at any point in time during the game.

– A pebble configuration specifies for each gate, whether it contains no pebble,
a gray pebble, or a black pebble.

From Pebbling to Sequence of Hybrids. A pebbling in γ moves has a sequence of
γ+1 pebble configurations starting with no pebbles and ending with a gray peb-
ble on each gate. Each pebble configuration follows from the preceding one by a

Fig. 6. Pebbling rules

452 Z. Jafargholi and D. Wichs

move that satisfies pebbling rules A or B. Next we create a sequence of hybrids
by defining one hybrid from each pebbling configuration.

– For every gate i ∈ [q], we set modei = RealGate if gate i has no pebble,
modei = InputDepSimGate if gate i has a black pebble, and modei = SimGate
if gate i has a gray pebble.

– We set I to be the set of the output wires of the gates with black pebbles.

Therefore a pebbling defines a sequence of hybrids Hα = Hyb(modeα, Iα) for
α = 0, . . . , γ where H0 = Hyb((mode0i = RealGate)i∈[q], ∅) is the real game and
Hγ = Hyb((modeγ

i = SimGate)i∈[q], ∅) is the simulated game, and each Hα is
induced by the pebbling configuration after α moves. In our next theorem and
the following corollary, we prove that the sequence of hybrids obtained from a
pebbling, as explained above, shows indistinguishability of the real and simulated
games.

Theorem 1. Assume that there is a pebbling of circuit C in γ moves, using t
black pebbles. Also assume that the encryption scheme Γ = (KeyGen,Enc,Dec)
is (T + TimeGC(|C|), ε)-secure under CPA double encryption.

Then, the sequence of hybrids obtained from such pebbling as described above
has the following property. For any α ∈ {0, 1, · · · , γ}, Hα = Hyb(modeα, Iα)

DT

[
Hyb(mode0, Iα),Hα

]
≤

α∑

i=1

2ri−|Iα| · ε ≤ α2t−|Iα|ε

where rα = max
(∣∣Iα−1

∣
∣ , |Iα|

)
≤ t, for α ∈ [γ].

Proof. We show the claim holds for mode0 and any configurations; (modeα, Iα),
α ∈ {0, 1, · · · γ} by induction on the number of pebbling steps taken so far (i.e.,
α). For convenience, let sα = |Iα| and remember rα = max (sα−1, sα).

Base case. Let α = 0, DT

[
Hyb(mode0, I0),H0

]
= DT [H0,H0] = 0.

Inductive step. Assume the claim holds for α, we show it holds for α + 1.

– If the α+1st move in the pebbling game is to add a black pebble: sα+1 = sα+1
and rα+1 = sα+1

DT

[
Hyb(mode0, Iα+1),Hyb(modeα+1, Iα+1)

]

≤ DT

[
Hyb(mode0, Iα+1),Hyb(modeα, Iα+1)

]

+ DT

[
Hyb(modeα, Iα+1),Hyb(modeα+1, Iα+1)

]
(4)

≤ 2−1 · DT

[
Hyb(mode0, Iα),Hyb(modeα, Iα)

]
+ ε (5)

≤ 2−1
α∑

i=1

2ri−sα · ε + ε ≤
α∑

i=1

2ri−sα−1 · ε + ε

≤
α∑

i=1

2ri−sα+1 · ε + 2rα+1−sα+1 · ε ≤
α+1∑

i=1

2ri−sα+1 · ε (6)

Adaptive Security of Yao’s Garbled Circuits 453

Line 4 follows from the previous line by the Triangle Inequality. By Lemmas
1 or 2, DT [Hyb(modeα, Iα+1), Hyb(modeα+1, Iα+1)] ≤ ε. By Lemma 3 we
have that DT

[
Hyb(mode0, Iα+1),Hyb(modeα, Iα+1)

]
≤ DT [Hyb(mode0, Iα),

Hyb(modeα, Iα)]/2. Combining the two we get Line 5. We use the induction
hypothesis to arrive at Line 6. The last line follows by noticing sα+1 = sα + 1
and rα+1 = sα+1.

– If the α + 1st move in the pebbling game is to remove a black pebble: sα+1 =
sα − 1 and rα+1 = sα

DT

[
Hyb(mode0, Iα+1),Hyb(modeα+1, Iα+1)

]

≤ 2DT

[
Hyb(mode0, Iα),Hyb(modeα+1, Iα)

]
(7)

≤ 2DT

[
Hyb(mode0, Iα),Hyb(modeα, Iα)

]

+ 2DT

[
Hyb(modeα, Iα),Hyb(modeα+1, Iα)

]
(8)

≤ 2

(
α∑

i=1

2ri−sα · ε + ε

)

≤
α∑

i=1

2ri−sα+1 · ε + 2ε

≤
α∑

i=1

2ri−sα+1 · ε + 2rα+1−sα+1 · ε ≤
α+1∑

i=1

2ri−sα+1 · ε (9)

Similar to the last case, Line 7 follows from the previous line By Lemma 3.
Line 8 follows from the Triangle inequality. By Lemma 1 or 2 and the induction
hypothesis we arrive at Line 9. The last line follows by noticing sα+1 = sα −1
and rα+1 = sα.

The reason we can apply Lemmas 1 or 2, is that the pebbling game rules (A and
B) guarantee that the garbling modes of each two hybrids in our sequence have
the necessary properties for applying Lemmas 1 or 2. In addition we created
the set I such that it includes all the necessary wires to keep the configuration
valid. For more details, see Fig. 7, where we change gatej ’s mode at step α + 1,
following rule A or B.

Corollary 1. Assume that Γ = (KeyGen,Enc,Dec) is an encryption scheme
which is (T (λ), ε(λ))-secure under CPA double encryption. If there is a peb-
bling of circuit C in γ moves, using t black pebbles then ExpadaptiveGC,Sim (1λ, 0) and
ExpadaptiveGC,Sim (1λ, 1) are (T ′(λ), ε′(λ))-indistinguishable where

– ε′(λ) ≤
∑γ

i=1 2ri · ε(λ) ≤ γ · 2t · ε(λ)
– T ′(λ) = T (λ) − TimeGC (|C|).
where ri = max (si−1, si) and si is the number of black pebbles used at the ith
pebbling step.

Proof. By definition ExpadaptiveGC,Sim (1λ, 0) = Hybλ(mode0, I0) and ExpadaptiveGC,Sim (1λ, 1) =
Hybλ(modeγ , Iγ) where I0 = Iγ = ∅. By Theorem 1 with α = γ, we have
DT (λ)

[
Hybλ(mode0, ∅),Hybλ(modeγ , ∅)

]
≤

∑γ
i=1 2ri · ε(λ) which proves the

Corollary.

454 Z. Jafargholi and D. Wichs

Fig. 7. From pebbling rules to indistinguishable hybrids. WPred :=
{output wires of Pred(j)}, WSucc := {output wires of Succ(j)}.

Corollary 2. If there is a pebbling of circuit C in γ moves, using t black pebbles
then GC is adaptively secure with online complexity

1. (m+n)λ, when Γ is secure under CPA double encryption and 2tγ = poly(λ).
2. (m + n)poly(λ + log γ + t), when Γ is sub-exponentially secure under CPA

double encryption and log(γ) + t = poly(λ).

Proof. The online complexity of the garbling scheme consist of (m + n) secret
keys of the scheme Γ .

For case (1) we only need standard security of Γ to survive a polynomial
security loss of 2tγ = poly(λ). Therefore, we can set the security parameter of Γ
to λ, which gives a key size of λ.

For case (2) we need to survive a security loss of 2tγ = 2poly(λ). If the encryp-
tion scheme Γ is sub-exponentially secure it means that when instantiated with
security parameter λ′ it has security ε(λ′) ≤ 2−(λ′)ν

for some constant ν and all
large enough λ′. Therefore we need to set λ′ = (λ+ log(γ)+ t)1/ν to ensure that
2tγε(λ′) is negligible, which results in a key size of λ′ = poly(λ + log(γ) + t).

5.1 Pebbling Strategies

We now rely on a result of [HJO+15] to instantiate Corollary 2. In particular, it
shows that for any circuit with q gates and depth d there is a pebbling strategy
which makes at most γ = q · 22d moves and uses t = 2d black pebbles. See
Appendix B for the description of the strategy. By instantiating Corollary 2
with the above strategy, we obtain the following corollary.

Corollary 3. Assuming the existence of (standard) one-way functions, Yao’s
garbling schemes is adaptively secure with on-line complexity (n + m)λ for all
circuits of depth d = O(log λ).

Assuming the existence of sub-exponentially secure one-way functions Yao’s
garbling schemes is adaptively secure with on-line complexity (n + m)poly(λ, d),
for arbitrary circuits of depth d = poly(λ).

Adaptive Security of Yao’s Garbled Circuits 455

6 Conclusions

We show that Yao’s garbled circuit construction is already adaptively secure,
without the need for any modification, at least when it comes to NC1 circuits.
More generally, we give a reduction where the security loss is related (exponen-
tially) to the pebble complexity of the circuit, which can often be much smaller
than the input size, and therefore beats the naive reduction that guesses the
entire input. It remains as an open problem to improve the reduction further or
to give some negative results showing that it cannot be done.

A Symmetric-Key Encryption with Special Correctness
[LP09]

In our construction of the garbling scheme, we use a symmetric-key encryption
scheme Γ = (KeyGen,Enc,Dec) which satisfies the standard definition of CPA
security and an additional special correctness property below (this is a simplified
and sufficient variant of the property described in from [LP09]). We need this
property to ensure the correctness of our garbled circuit construction.

Definition 5 (Special Correctness). A CPA-secure symmetric-key encryp-
tion Γ = (KeyGen,Enc,Dec) satisfies special correctness if there is some negligi-
ble function ε such that for any message m we have:

Pr[Deck2(Enck1(m))
= ⊥ : k1, k2 ← KeyGen(1λ)] ≤ ε(λ).

Construction. Let F = {fk} be a family of pseudorandom functions where fk :
{0, 1}λ → {0, 1}λ+s, for k ∈ {0, 1}λ and s is a parameter denoting the message

length. Define Enck(m) = (r, fk(r) ⊕ m0λ) where m ∈ {0, 1}s, r
$← {0, 1}λ and

m0λ denotes the concatenation of m with a string of 0s of length λ. Define
Deck(c) which parses c = (r, z), computes w = z ⊕ fk(r) and if the last λ bits of
w are 0’s it outputs the first s bits of w, else it outputs ⊥.

It’s easy to see that this scheme is CPA secure and that it satisfies the special
correctness property.

Double Encryption Encryption Security. For convenience, we define a notion of
double encryption security, following [LP09]. This notion is implied by standard
CPA security but is more convenient to use in our security proof of garbled
circuit security.

Definition 6 (Double-encryption security). An encryption scheme Γ =
(KeyGen,Enc,Dec)

– is (T (λ), ε(λ))-secure under chosen double encryption if

DT (λ)

[
Expdouble(1λ, 0),Expdouble(1λ, 1)

]
= ε(λ).

456 Z. Jafargholi and D. Wichs

– is secure under chosen double encryption if

Expdouble(1λ, 0)
comp
≈ Expdouble(1λ, 1).

– is sub-exponentially secure if

∃ ν > 0, ∀ T (λ) ∈ poly(λ) DT (λ)

[
Expdouble(1λ, 1),Expdouble(1λ, 0)

]
≤ ε(λ) = 1/2λν

.

where the experiment ExpdoubleA is defined as follows.
Experiment ExpdoubleA (1λ, b)

1. The adversary A on input 1λ outputs two keys ka and kb of length λ and two
triples of messages (x0, y0, z0) and (x1, y1, z1) where all messages are of the
same length.

2. Two keys k′
a, k′

b
$← KeyGen(1λ) are chosen.

3. AEnck′
a
(·),Enck′

b
(·) is given the challenge ciphertexts cx ← Encka

(Enck′
b
(xb)),

cy ← Enck′
a
(Enckb

(yb)), cz ← Enck′
a
(Enck′

b
(zb)) as well as oracle access to

Enck′
a
(·) and Enck′

b
(·).

4. A outputs b′ which is the output of the experiment.

The following lemma is essentially immediate - see [LP09] for a formal proof.

Lemma 4. If (KeyGen,Enc,Dec) is CPA-secure then it is secure under chosen
double encryption with the same security parameter.

B Pebbling Strategy [HJO+15]

This is a recursive strategy defined as follows.

– Pebble(C):
For each gate i in C starting with the gates at the top level moving to the
bottom level:

1. RecPutBlack(C, i)
2. Replace the black pebble on gate i with a gray pebble.

– RecPutBlack(C, i): // Let LeftPred(C, i) and RightPred(C, i) be the two prede-
cessors of gate i in C.

1. If gate i is an input gate, put a black pebble on i and return.
2. Run RecPutBlack(C, LeftPred(C, i)), RecPutBlack(C,RightPred(C, i))
3. Put a black pebble on gate i.
4. Run RecRemoveBlack(C, LeftPred(C, i)) and

RecRemoveBlack(C,RightPred(C, i)),
– RecRemoveBlack(C, i): This is the same as RecPutBlack, except that instead

of putting a black pebble on gate i, in steps 1 and 3, we remove it.

Adaptive Security of Yao’s Garbled Circuits 457

To analyze the correctness of this strategy, we note the following invariants:
if the circuit C is in a configuration where it does not contain any pebbles at
any level below that of gate i, then (1) the procedure RecPutBlack(C, i) results
in a configuration where a single black pebble is added to gate i, but nothing
else changes, (2) the procedure RecRemoveBlack(C, i) results in a configuration
where a single black pebble is removed from gate i, but nothing else changes.
Using these two invariants the correctness of of the entire strategy follows.

To calculate the number of black pebbles used and the number of moves
that the above strategy takes to pebble C, we use the following simple recursive
equations. Let #PebPut(d) and #PebRem(d) be the number of black pebbles on
gate i and below it used to execute RecPutBlack and RecRemoveBlack on a gate
at level d, respectively. We have,

#PebPut(1) = 1, #PebPut(d) ≤ max(#PebPut(d − 1),#PebRem(d − 1)) + 2
#PebRem(1) = 1, #PebRem(d) ≤ max(#PebPut(d − 1),#PebRem(d − 1)) + 2

Therefore the strategy requires at most 2d black pebbles to pebble the circuit.
To calculate the number of moves it takes run Pebble(C), we use the following

recursive equations. Let #Moves(d) be the number of moves it takes to put a
black pebble on, or remove a black pebble from, a gate at level d. Then

#Moves(1) = 1, #Moves(d) = 4(#Moves(d − 1)) + 1

Hence, each call of RecPutBlack takes at most 4d moves, and the total number
of moves to pebble the circuit is at most q4d. In summary, the above gives
us a strategy to pebble any circuit with at most γ = q4d moves and t = 2d
black pebbles.

References

[AIKW13] Applebaum, B., Ishai, Y., Kushilevitz, E., Waters, B.: Encoding functions
with constant online rate or how to compress garbled circuits keys. In:
Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part II. LNCS, vol. 8043,
pp. 166–184. Springer, Heidelberg (2013)

[AS15] Ananth, P., Sahai, A.: Functional encryption for turing machines. Cryptol-
ogy ePrint Archive, Report 2015/776 (2015). http://eprint.iacr.org/

[BGG+14] Boneh, D., Gentry, C., Gorbunov, S., Halevi, S., Nikolaenko, V., Segev, G.,
Vaikuntanathan, V., Vinayagamurthy, D.: Fully key-homomorphic encryp-
tion, arithmetic circuit ABE and compact garbled circuits. In: Nguyen,
P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 533–
556. Springer, Heidelberg (2014)

[BHK13] Bellare, M., Hoang, V.T., Keelveedhi, S.: Instantiating random oracles via
UCEs. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part II. LNCS,
vol. 8043, pp. 398–415. Springer, Heidelberg (2013)

[BHR12a] Bellare, M., Hoang, V.T., Rogaway, P.: Adaptively secure garbling with
applications to one-time programs and secure outsourcing. In: Wang, X.,
Sako, K. (eds.) ASIACRYPT 2012. LNCS, vol. 7658, pp. 134–153. Springer,
Heidelberg (2012)

http://eprint.iacr.org/

458 Z. Jafargholi and D. Wichs

[BHR12b] Bellare, M., Hoang, V.T., Rogaway, P.: Foundations of garbled circuits. In:
Yu, T., Danezis, G., Gligor, V.D. (eds.) ACM CCS 12, pp. 784–796. ACM
Press, October 2012

[FJP15] Fuchsbauer, G., Jafargholi, Z., Pietrzak, K.: A quasipolynomial reduction
for generalized selective decryption on trees. In: Gennaro, R., Robshaw, M.
(eds.) CRYPTO 2015. LNCS, vol. 9215, pp. 601–620. Springer, Heidelberg
(2015). doi:10.1007/978-3-662-47989-6 29

[FKPR14] Fuchsbauer, G., Konstantinov, M., Pietrzak, K., Rao, V.: Adaptive security
of constrained PRFs. In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014,
Part II. LNCS, vol. 8874, pp. 82–101. Springer, Heidelberg (2014)

[HJO+15] Hemenway, B., Jafargholi, Z., Ostrovsky, R., Scafuro, A., Wichs, D.: Adap-
tively secure garbled circuits from one-way functions. IACR Cryptology
ePrint Archive, 2015, p. 1250 (2015)

[LP09] Lindell, Y., Pinkas, B.: A proof of security of Yao’s protocol for two-party
computation. J. Cryptol. 22(2), 161–188 (2009)

[Yao82] Yao, A.C.: Protocols for secure computations (extended abstract). In: 23rd
FOCS, pp. 160–164. IEEE Computer Society Press, November (1982)

[Yao86] Yao, A.C.: How to generate and exchange secrets (extended abstract). In:
27th FOCS, pp. 162–167. IEEE Computer Society Press, October 1986

http://dx.doi.org/10.1007/978-3-662-47989-6_29

Round Complexity and Efficiency
of Multi-party Computation

Efficient Secure Multiparty Computation
with Identifiable Abort

Carsten Baum1(B), Emmanuela Orsini2, and Peter Scholl2

1 Department of Computer Science, Aarhus University, Aarhus, Denmark
cbaum@cs.au.dk

2 Department of Computer Science, University of Bristol, Bristol, UK
{emmanuela.orsini,peter.scholl}@bristol.ac.uk

Abstract. We study secure multiparty computation (MPC) in the dis-
honest majority setting providing security with identifiable abort, where
if the protocol aborts, the honest parties can agree upon the identity of
a corrupt party. All known constructions that achieve this notion require
expensive zero-knowledge techniques to obtain active security, so are not
practical.

In this work, we present the first efficient MPC protocol with iden-
tifiable abort. Our protocol has an information-theoretic online phase
with message complexity O(n2) for each secure multiplication (where n
is the number of parties), similar to the BDOZ protocol (Bendlin et al.,
Eurocrypt 2011), which is a factor in the security parameter lower than
the identifiable abort protocol of Ishai et al. (Crypto 2014). A key com-
ponent of our protocol is a linearly homomorphic information-theoretic
signature scheme, for which we provide the first definitions and construc-
tion based on a previous non-homomorphic scheme. We then show how
to implement the preprocessing for our protocol using somewhat homo-
morphic encryption, similarly to the SPDZ protocol (Damg̊ard et al.,
Crypto 2012).

Keywords: Secure multiparty computation · Identifiable abort

1 Introduction

Multiparty Computation deals with the problem of jointly computing a function
among a set of mutually distrusting parties with some security guarantees such as

Full version available at http://eprint.iacr.org/2016/187.pdf
C. Baum—Part of the work was done while visiting University of Bristol. The
author acknowledges support from the Danish National Research Foundation and
The National Science Foundation of China (under the grant 61061130540) for the
Sino-Danish Center for the Theory of Interactive Computation; and also from the
CFEM research center (supported by the Danish Strategic Research Council) and
the COST Action IC1306.
E. Orsini—Supported in part by ERC Advanced Grant ERC-2010-AdG-267188-
CRIPTO.
P. Scholl—Supported in part by EPSRC via grant EP/I03126X, and in part by the
DARPA Brandeis program and the US Navy under contract #N66001-15-C-4070.

c© International Association for Cryptologic Research 2016
M. Hirt and A. Smith (Eds.): TCC 2016-B, Part I, LNCS 9985, pp. 461–490, 2016.
DOI: 10.1007/978-3-662-53641-4 18

http://eprint.iacr.org/2016/187.pdf

462 C. Baum et al.

correctness of the output and privacy of the inputs. MPC has been an interesting
topic in cryptography for the last 30 years, but while in the past efficiency was the
main bottleneck and MPC was exclusively the subject of academic studies, the
situation has steadily improved and now even large circuits can be evaluated with
acceptable costs in terms of time and space. A key example of this progress is the
recent line of work that began with the BDOZ [BDOZ11] and SPDZ [DPSZ12,
DKL+13] protocols. These protocols are based on a secret-sharing approach and
can provide active security against a dishonest majority, where any number of
the parties may be corrupt.

The SPDZ-style protocols work in the preprocessing model (or offline/online
setting), with an offline phase that generates random correlated data indepen-
dent of the parties’ inputs and the function, and an online phase, in which
this correlated randomness is used to perform the actual computation. The key
advantage of the preprocessing model in SPDZ lies in the efficiency of the online
phase, which only uses information-theoretic techniques.

It is a well-known fact that, in the dishonest majority setting, successful
termination of protocols cannot be guaranteed, so these protocols simply abort
if cheating is detected. It was also shown by Cleve in [Cle86] that, unless an
honest majority is assumed, it is impossible to obtain protocols for MPC that
provide fairness and guaranteed output delivery . Fairness is a very desirable
property and intuitively means that either every party receives the output, or
else no-one does.

In this scenario SPDZ-style protocols, and in general all known efficient
MPC protocols that allow dishonest majority, are vulnerable to Denial-of-Service
attacks, where one or more dishonest parties can force the protocol to abort, so
that honest parties never learn the output. They can even do this after learn-
ing the output, whilst remaining anonymous to the honest parties, which could
be a serious security issue in some applications. This motivates the notion of
MPC with identifiable abort (ID-MPC) [CL14,IOZ14]. Protocols with identifi-
able abort either terminate, in which case all parties receive the output of the
computation, or abort, such that all honest parties agree on the identity of at
least one corrupt party. It is clear that, while this property neither guarantees
fairness nor output delivery (as it does not prevent a corrupt party from abort-
ing the protocol by refusing to send messages) at the same time it discourages
this kind of behaviour because, upon abort, at least one corrupt party will be
detected and can be excluded from future computations.

Why Efficient ID-MPC is not Trivial. It is easy to see that the SPDZ
protocol is not ID-MPC: Each party holds an additive share xi of each value x
and similarly an additive share m(x)i of an information-theoretic MAC on x.
To open a shared value, all parties provide their shares of both the value and
its MAC, and then check validity of the MAC. A dishonest party Pi can make
the protocol abort by sending a share x∗

i �= xi or m(x)∗
i �= m(x)i. However,

since the underlying value x is authenticated, and not the individual shares,
Pi is neither committed to xi nor m(x)i, so other parties cannot identify who

Efficient Secure Multiparty Computation with Identifiable Abort 463

caused the abort. At first glance, it seems that the [BDOZ11] protocol might
satisfy identifiable abort. In this protocol, instead of authenticating x, pairwise
MACs are set up so that each party holds a MAC on every other party’s share.
However, the following counterexample (similar to [Sey12, Sect. 3.6]), depicted
in Fig. 1, shows that this is not sufficient.

P̂1 P̂2

P3 P4

x1

m(x1)3

x2

m(x2)4
x1

m(x1)∗4

x2

m(x2)∗3

(Abort, P2) (Abort, P1)

P̂1 P̂2

P3 P4

x1

m(x1)3

x2

m(x2)4
x1

m(x1)∗4

x2

m(x2)∗3

Fig. 1. Counterexample for identifiable abort with pairwise MACs

Let the adversary control parties P1 and P2. P1 sends the correct value x1

to both remaining parties P3, P4, but only the correct MAC m(x1)3 to P3. To
P4, he sends an incorrect MAC m(x1)∗

4. Conversely, P2 will send the incorrect
MAC m(x2)∗

3 of his share x2 to P3 and the correct m(x2)4 to P4. Now both
honest parties P3, P4 can agree that some cheating happened, but as they do not
agree on the identity of the corrupt party they are unable to reliably convince
each other who cheated. (Note that a corrupt party could also decide to output
(Abort, P3), confusing matters even further for the honest P2, P3.) We conclude
that, with an approach based on secret-sharing, special care must be taken so
that all honest parties can agree upon the correctness of an opened value.

Our Contributions. In this work we present an efficient MPC protocol in
the preprocessing model that reactively computes arithmetic circuits over a
finite field, providing security with identifiable abort against up to n − 1 out
of n malicious parties. The online phase relies only on efficient, information-
theoretic primitives and a broadcast channel, with roughly the same complex-
ity as the BDOZ protocol [BDOZ11]. The offline phase, which generates corre-
lated randomness, can be instantiated using somewhat homomorphic encryption
based on ring-LWE, and allows use of all the relevant optimisations presented
in [DPSZ12,DKL+13,BDTZ16].

A first building block towards achieving this goal is our definition of homo-
morphic information-theoretic signatures (HITS). Information-theoretic signa-
ture schemes [CR91] cannot have a public verification key (since otherwise an
unbounded adversary can easily forge messages), but instead each party holds

464 C. Baum et al.

a private verification key. The main security properties of IT signatures are
unforgeability and consistency, meaning that no-one can produce a signature
that verifies by one honest party but is rejected by another. Swanson and Stin-
son [SS11] were the first to formally study and provide security proofs for IT
signatures, and demonstrated that many subtle issues can arise in definitions.
On the other hand, homomorphic signature schemes [BFKW09,CJL09] feature
an additional homomorphic evaluation algorithm, which allows certain functions
to be applied to signatures. The verification algorithm is then given a signature,
a message m and a description of a function f , and verifies that m is the output
of f , applied to some previously signed inputs. We give the first definition of
HITS, and the first construction of HITS for affine functions, which is based on
the (non-homomorphic) construction from [HSZI00] (proven secure in [SS11]),
and has essentially the same complexity.

We then show how to build ID-MPC in the preprocessing model, based on
any HITS with some extra basic properties. Our basic protocol is similar to the
online phase of SPDZ and BDOZ, based on a correlated randomness setup that
produces random shared multiplication triples, authenticated using HITS with
an unknown signing key. The downside of this approach is the need for a secure
broadcast channel in every round of the protocol. Since broadcast with up to n−1
corrupted parties requires Ω(n) rounds of communication1 [GKKO07] (assuming
a PKI setup), this leads to a round complexity of Ω(n·D), for depth D arithmetic
circuits, and a message complexity of Ω(n3) field elements per multiplication
gate. The number of broadcast rounds can be reduced to just two—and the
total number of rounds to O(n + D)—by using an insecure broadcast for each
multiplication gate, and then verifying the insecure broadcasts at the end of the
protocol in a single round of authenticated broadcast. Additionally, by batching
the signature verification at the end of the protocol, we can reduce the message
complexity per multiplication to O(n2). Overall, this gives on online phase that
is only around n times slower than the SPDZ protocol, or similar to BDOZ.

In addition, we present a preprocessing protocol that uses somewhat homo-
morphic encryption to compute the correlated randomness needed for the online
phase of our protocol, obtaining security with identifiable abort. The method for
creating multiplication triples is essentially the same as [DPSZ12], but creating
the additional HITS data is more complex. In addition, we must ensure that the
preprocessing protocol has identifiable abort as well.

In the full version of this work, we moreover give two interesting modifi-
cations of the scheme: We present an extension of our ID-MPC scheme that
implies verifiable abort : In the ID-MPC setting, the honest parties agree upon
which party is corrupt, but they are not able to convince anyone outside of the
computation of this fact. We sketch how our scheme can be modified so that this
in fact is possible, using a public bulletin board. We also present an information-
theoretic MPC protocol in the preprocessing model that allows use of fields of

1 This is not needed in SPDZ, because a simple ‘broadcast with abort’ technique can
be performed in just two rounds.

Efficient Secure Multiparty Computation with Identifiable Abort 465

substantially smaller size than in our main protocol (with an approach that is
similar to the MiniMAC protocol [DZ13]).

Comparison to Existing Work. The model of identifiable abort was first
explicitly defined in the context of covert security, by Aumann and Lin-
dell [AL10]. Cohen and Lindell [CL14] considered the relationships between
broadcast, fairness and identifiable abort, and showed that an MPC protocol
with identifiable abort can be used to construct secure broadcast. The clas-
sic GMW protocol [GMW87] (and many protocols based on this) satisfies the
ID-MPC property, but is highly impractical due to the non-black box use of
cryptographic primitives.

The most relevant previous work is by Ishai et al. [IOZ14], who formally
studied constructing identifiable abort, and presented a general compiler that
transforms any semi-honest MPC protocol in the preprocessing model into a
protocol with identifiable abort against malicious adversaries. Their protocol is
information-theoretic, and makes use of the ‘MPC-in-the-head’ technique of Ishai
et al. [IKOS07] for proving the correctness of each message in zero-knowledge.
Although recent work by Giacomelli et al. [GMO16] shows that this technique
can be efficient for certain applications, we show that when applied to ID-MPC as
in [IOZ14], the resulting protocol is around O(κ) times less efficient than ours,
to achieve soundness error 2−κ. Note that Ishai et al. also use IT signatures
for authenticating values, similarly to our usage, but without the homomorphic
property that allows our protocol to be efficient. For the preprocessing stage,
they describe an elegant transformation that converts any protocol for imple-
menting any correlated randomness setup in the OT-hybrid model into one with
identifiable abort, which makes black-box use of an OT protocol. Again, unfor-
tunately this method is not particularly practical, mainly because it requires the
OT protocol to be secure against an adaptive adversary, which is much harder
to achieve than statically secure OT [LZ13].

Several other works have used similar primitives to information-theoretic
signatures for various applications. In [CDD+99], a primitive called IC signatures
is used for adaptively secure multiparty computation. These are very similar to
what we use and their construction is linearly homomorphic, but the opening
stage requires every party to broadcast values, whereas in our HITS only the
sender broadcasts a message. Moreover, IC signatures are required to handle the
case of a corrupted dealer (which we do not need, due to trusted preprocessing),
and this leads to further inefficiencies. In [IOS12], a unanimously identifiable
commitment scheme is presented, which is used to construct identifiable secret
sharing; this has similarities to a simplified form of IC signatures, but is not
linear.

Finally, we note that when the number of parties is constant, it is possible
to achieve a relaxed notion of fairness, called partial fairness, in the dishonest
majority setting by allowing a non-negligible distinguishing probability by the
environment [BLOO11].

466 C. Baum et al.

Organisation. In Sect. 2, we describe the model and some basic preliminar-
ies, and also discuss the need for and use of a broadcast channel in our pro-
tocols. Section 3 introduces the definition of homomorphic information-theoretic
signatures, and Sect. 4 describes our construction. Our information-theoretic ID-
MPC protocol in the preprocessing model is presented in Sect. 5, followed by the
preprocessing using SHE in Sect. 6. In Sect. 7 we evaluate the efficiency of our
protocols, compared with the previous state of the art.

2 Preliminaries

2.1 Notation

Throughout this work, we denote by κ and λ the statistical, resp. computational,
security parameters, and we use the standard definition of negligible (denoted
by negl(κ)) and overwhelming function from [Gol01]. We use bold lower case
letters for vectors, i.e. v and refer to the ith element of a vector v as v|i. The
notation x ← S will be used for the uniform sampling of x from a set S, and
by [n] we mean the set {1, . . . , n}. The n parties in the protocol are denoted as
P = {P1, . . . , Pn}, while the adversary is denoted by A, and has control over a
subset I ⊂ [n] of the parties. We also sometimes let P denote the index set [n],
depending on the context.

2.2 Model

We prove our protocols secure in the universal composability (UC) model of
Canetti [Can01], with which we assume the reader has some familiarity. Our
protocols assume a single static, active adversary, who can corrupt up to n − 1
parties at the beginning of the execution of a protocol, forcing them to behave
in an arbitrary manner. We assume a synchronous communication model, where
messages are sent in rounds, and a rushing adversary, who in each round, may
receive the honest parties’ messages before submitting theirs.

We use the UC definition of MPC with identifiable abort, or ID-MPC, from
Ishai et al. [IOZ14]. Given any UC functionality F , define

[
F

]ID
⊥ to be the func-

tionality with the same behaviour as F , except that at any time the adversary
may send a special command (Abort, Pi), where i ∈ I, which causes

[
F

]ID
⊥ to

output (Abort, Pi) to all parties.

Definition 1 ([IOZ14]). Let F be a functionality and
[
F

]ID
⊥ the correspond-

ing functionality with identifiable abort. A protocol Π securely realises F with
identifiable abort if Π securely realises the functionality

[
F

]ID
⊥ .

As noted in [IOZ14], the UC composition theorem [Can01] naturally extends
to security with identifiable abort, provided that the higher-level protocol always
respects the abort behaviour of any hybrid functionalities.

Efficient Secure Multiparty Computation with Identifiable Abort 467

2.3 Broadcast Channel

Our protocols require use of a secure broadcast channel. Since Cohen and Lindell
showed that MPC with identifiable abort can be used to construct a broadcast
channel [CL14], and it is well known that secure broadcast is possible if and only
if there are fewer than n/3 corrupted parties, it is not surprising that we assume
this (the protocols in [IOZ14] require the same).

In practice, we suggest the broadcast primitive is implemented using authen-
ticated broadcast, which exists for any number of corrupted parties, assuming a
PKI setup. For example, the classic protocol of Dolev and Strong [DS83] uses
digital signatures, and Pfitzmann and Waidner [PW92] extended this method
to the information-theoretic setting. Both of these protocols have complexity
O(�n2) when broadcasting �-bit messages. Hirt and Raykov [HR14] presented a
protocol that reduces the communication cost to O(�n) when � is large enough.
We are not aware of any works analysing the practicality of these protocols, so
we suggest this as an important direction for future research.

3 Homomorphic Information-Theoretic Signatures

In this section, we define the notion of homomorphic information-theoretic sig-
natures (HITS). It differs slightly from standard cryptographic signatures: First
and foremost, in the information-theoretic setting, a signature2 scheme must
have a distinct, private verification key for each verifying party. This is because
we define security against computationally unbounded adversaries, hence a ver-
ifier could otherwise easily forge signatures. Secondly, allowing homomorphic
evaluation of signatures requires taking some additional care in the definitions.
To prevent an adversary from exploiting the homomorphism to produce arbi-
trary related signatures, the verification algorithm must be given a function,
and then verifies that the signed message is a valid output of the function on
some previously signed messages.

With this in mind, our definition therefore combines elements from the IT
signature definition of Swanson and Stinson [SS11], and (computational) homo-
morphic signature definitions such as [BFKW09,CJL09,GVW15].

Definition 2 (Homomorphic Information-Theoretic Signature). A
homomorphic information-theoretic signature (HITS) scheme for the set of ver-
ifiers P = {P1, . . . , Pn}, function class F and message space M, consists of a
tuple of algorithms (Gen,Sign,Ver,Eval) that satisfy the following properties:

(sk,vk) ← Gen(1κ, w) takes as input the (statistical) security parameter κ
and an upper bound w ∈ N on the number of signatures that may be created,
and outputs the signing key sk and vector of the parties’ (private) verification
keys, vk = (vk1, . . . , vkn).

2 We want to put forward that the name signature for the primitive in question can
be somewhat misleading, as it shares properties with commitments and MACs. Nev-
ertheless we decided to use the term for historical reasons.

468 C. Baum et al.

σ ← Sign(m, sk) is a deterministic algorithm that takes as input a message
m ∈ M and signing key sk, and outputs a signature σ.
σ ← Eval(f, (σ1, . . . , σ�)) homomorphically evaluates the function f ∈ F on a
list of signatures (σ1, . . . , σ�).
0/1 ← Ver(m,σ, f, vkj) takes as input a message m, a signature σ, a function
f and Pj’s verification key vkj, and checks that m is the valid, signed output
of f .

Remark 1. HITS schemes can generally be defined to operate over data sets.
Multiple data sets can be handled by tagging each dataset with a unique iden-
tifier and restricting operations to apply only to signatures with the same tag.
However, for our application we only require a single dataset, which simplifies
the definition.

Remark 2. To streamline the definition even more, we consider a setting where
there is only one signer, who is honest. This leads to a definition that is concep-
tually simpler than the IT signature definition of Swanson and Stinson [SS11],
which considers a group of users who can all sign and verify each others’ mes-
sages.

We then define security as follows:

Definition 3 (w, τ-security). A HITS scheme (Gen,Sign,Ver,Eval) is (w, τ)-
secure for a class of functions F and message space M if it satisfies the following
properties:

Signing correctness: Let � ≤ w and define for i ∈ [�] the projection function
πi(m1, . . . ,m�) = mi. Then we require that for every pair (sk,vk) output by
Gen, for any (m1, . . . ,m�) ∈ M�, and for all i ∈ [�], j ∈ [n],

Ver(mi,Sign(mi, sk), πi, vkj) = 1.

Evaluation correctness: For every pair sk,vk output by Gen, for every
function f ∈ F , for all messages (m1, . . . ,m�) ∈ M�, and for all j ∈ [n],

Ver (f (m1, . . . ,m�) ,Eval (f, (Sign(m1, sk), . . . ,Sign(m�, sk))) , f, vkj) = 1.

Unforgeability: Let I � [n] be an index set of corrupted verifiers, and define
the following game between a challenger C and an adversary A:
1. C computes (sk,vk) ← Gen(1κ, w) and sends {vki}i∈I to the adversary.
2. A may query C adaptively up to a maximum of w times for signatures.

Let m1, . . . ,mw′ be the list of messages queried to C.
3. A outputs a function f ∈ F , a list of indices {i1, . . . , i�} ⊆ [w′] in ascend-

ing order, a target message m∗ and a signature σ∗.
4. A wins if m∗ �= f(mi1 , . . . ,mi�

) and there exists j ∈ [n]\I for which

Ver(m∗, σ∗, f, vkj) = 1.

Efficient Secure Multiparty Computation with Identifiable Abort 469

A scheme is unforgeable if for any subset of corrupted verifiers I � [n] and
for any adversary A,

Pr[Awins] ≤ τ(|M|, κ).

Consistency: The security game for consistency is identical to the unforge-
ability game, except for the final step (the winning condition), which becomes:
4. A wins3 if there exist i, j ∈ [n]\I such that

Ver(m∗, σ∗, f, vki) = 1 and Ver(m∗, σ∗, f, vkj) = 0.

A scheme satisfies consistency if for any set I � [n] and for any A playing
the above modified game,

Pr[Awins] ≤ τ(|M|, κ).

Note that evaluation correctness implies signing correctness, but we state
two separate properties for clarity. The consistency (or transferability) prop-
erty guarantees that a corrupted party cannot create a signature σ that will be
accepted by one (honest) verifier but rejected by another. In [SS11], a reduction
from consistency to unforgeability is given. However, their definition of IT sig-
natures considers a group of users who are all signers and verifiers, any of whom
may be corrupted. In our setting, there is a single, honest signer, so consistency
is no longer implied and must be defined separately.

Additionally, we require that signatures output by the Eval algorithm do not
reveal any information on the input messages m1, . . . ,m� other than that given
by f(m1, . . . ,m�). This is similar to the concept of context hiding [GVW15] in
the computational setting, and is captured by the following definition.

Definition 4 (Evaluation privacy). A HITS scheme (Gen,Sign,Eval,Ver)
is evaluation private if there exists a PPT algorithm Sim that, for every
(sk,vk) ← Gen, for every function f ∈ F , for all messages m1, . . . ,m� with
m = f(m1, . . . ,m�), σi = Sign(mi, sk) and σ = Eval(f, σ1, . . . , σ�), computes

Sim(sk,m, f) = σ.

Intuitively, this means that any valid signature that comes from Eval can also
be computed without knowing the original inputs to f , so is independent of
these. This definition is simpler than that of [GVW15], as our signing algorithm
is restricted to be deterministic, so we require equality rather than an indist-
inguishability-based notion.

4 Construction of HITS

We now describe our construction of homomorphic information-theoretic signa-
tures. The message space M is a finite field F. We restrict the function class F
3 There is no requirement that m∗ �= f(mi1 , . . . , mi�).

470 C. Baum et al.

to be the set of all affine transformations f : F
w → F (where w is the maximum

number of signatures that can be produced). The general case of affine functions
with fewer than w inputs can be handled by using a default value, ⊥, for the
unused input variables. Note also that the signing algorithm is stateful, and must
keep track of how many messages have been signed previously.

Gen(1κ, w): The key generation algorithm is as follows:
1. Sample α̂1, . . . , α̂n ← F and β̂i,1, . . . , β̂i,n ← F for each i ∈ [w].
2. For each verifier Pj , sample vj = (vj,1, . . . , vj,n) ← F

n and compute

αj =
n∑

r=1

α̂r · vj,r and βj,i =
n∑

r=1

β̂i,r · vj,r for i ∈ [w].

3. Output sk =
({

α̂r, {β̂i,r}i∈[w]

}n

r=1

)
,vk =

(
vj , αj , {βj,i}i∈[w]

)n

j=1
.

Sign(m, sk): To sign the i-th message, m, (for i ≤ w) the signer computes the
vector

σi =
(
α̂r · m + β̂i,r

)n

r=1
.

Eval(f, (σ1, . . . ,σw)): Let f : F
w → F be defined by

f(x1, ..., xw) = μ1 · x1 + · · · + μw · xw + c,

with μi, c ∈ F. The new signature σ is obtained by evaluating f , excluding
the constant term, over every component of the input signatures:

σ = μ1 · σ1 + · · · + μw · σw ∈ F
n.

Ver(m,σ, f, vkj): First use f to compute the additional verification data

βj =
w∑

i=1

μi · βj,i − c · αj .

Then check that

βj + αj · m =
n∑

r=1

σ|r · vj,r.

If the check passes output 1, otherwise 0.

Theorem 1. Let F be a finite field, M := F and F be the the set of affine maps
from F

w to F, then the tuple of algorithms (Gen,Sign,Eval,Ver) is a (w, 3/|F|)-
secure HITS with evaluation privacy.

Proof. See the full version of this work.
�

As an immediate consequence of the previous theorem, we have:

Efficient Secure Multiparty Computation with Identifiable Abort 471

Corollary 1. Let |F| > 2κ, w = poly(κ) then (Gen,Sign,Eval,Ver) is a
(poly(κ), negl(κ))-secure HITS with evaluation privacy.

Proposition 1. Let SG,SK and VK be the domains of the signatures, signing
and verification keys, respectively. Our HITS has the following memory sizes:

|SG| = |F|n, |SK| = |F|n(w+1), |VF| = |F|n(w+3).

In terms of signature size, our scheme is n-bits close to the lower bound for
MRA-codes, which HITS is a special case of (see the full version of this work
for more details). Note that the scheme of [SS11], which is not homomorphic,
requires the same memory size as HITS for signatures and signing keys, but has
slightly smaller verification keys (|F|n(w+2)−1). We do not know if the signature
schemes described in [SS11] and our HITS are optimal in terms of the memory
size of the keys, or if the need for larger verification keys in HITS is due to the
homomorphic property of the scheme.

5 Online Phase for Efficient MPC with Identifiable Abort

In this section we describe our information-theoretic protocol for secure mul-
tiparty computation with identifiable abort in the preprocessing model. We
assume a set of n parties P = {P1, . . . , Pn}, and any HITS scheme HITS =
(Gen,Sign,Eval,Ver) that satisfies (w, negl(κ))-security and evaluation privacy
from Sect. 3, and supports homomorphic evaluation of linear functions over a
message space of a finite field F.

Our protocol performs reactive computation of arithmetic circuits over F,
using correlated randomness from a preprocessing setup, similarly to the BDOZ
and SPDZ protocols [BDOZ11,DPSZ12]. Correctness, privacy and identifiable
abort are guaranteed by the security properties of HITS. The functionality that
we implement is FMPC, shown in Fig. 2. Note that FMPC already contains an
explicit command for identifiable abort in the output stage, since it models an
unfair execution where the adversary can abort after learning the output. The
modified functionality

[
FMPC

]ID
⊥ then extends this abort to be possible at any

time.

Authenticated Secret Sharing. Our protocol is based on authenticated addi-
tive secret sharing over the finite field F, and we use the following notation to
represent a shared value a:

�a� =
(
ai, σai

)
i∈P ,

where party Pi holds ai ∈ F and σai
= Sign(ai, sk), such that

∑
i∈P ai = a.

By the linearity of the secret sharing scheme and HITS we can easily define
addition of two shares, �z� = �x� + �y�, as follows:

1. Compute zi = xi + yi.

472 C. Baum et al.

Fig. 2. Ideal functionality for reactive MPC in the finite field F.

2. Compute σzi
= Eval(f, (σxi

, σyi
)), where f(a, b) = a + b.

3. Output �z� =
(
zi, σzi

)
i∈P .

Note that if σxi
, σyi

are already outputs of the Eval algorithm, then f should
instead be defined to include the linear function that was applied to these inputs
previously, and Eval applied to those inputs. However, this is just a technicality
and in practice, each homomorphic addition can be computed on-the-fly. We can
also define addition or multiplication of shared values by constants, using Eval
in a similar way.4

Fig. 3. Procedure for opening an authenticated, shared value.

In Fig. 3 we define the basic subprotocol used to open authenticated, shared
values. Each time the command Open is called, parties check the correctness of
the opened value using the Ver algorithm. For each share, the intuition is that
if the corresponding signature is verified, then the share is correct with over-
whelming probability due to the unforgeability of the scheme; on the contrary,

4 For addition with a constant, only one party (say P1) needs to adjust their share.
Signatures stay the same, as the verification algorithm accounts for the constant
term in the affine function.

Efficient Secure Multiparty Computation with Identifiable Abort 473

if there exists an index j ∈ P\I, where I denotes the set of corrupt parties,
for which the check does not go through, then the same happens for all honest
parties, due to the consistency of HITS.

Preprocessing Requirements. The preprocessing functionality, FPrep, is
shown in Fig. 4. It generates a set of HITS keys (sk,vk) and gives each party
a verification key, whilst no-one learns the signing key. The functionality then
computes two kinds of authenticated data, using sk:

– Input tuples: Random shared values �r�, such that one party, Pi, knows r.
This is used so that Pi can provide input in the online phase.

– Multiplication triples: Random shared triples �a�, �b�, �c�, where a, b ← F

and c = a · b.

Note that corrupted parties can always choose their own shares of authenti-
cated values, instead of obtaining random shares from the functionality.

Protocol. Our protocol, shown in Fig. 5, is based on the idea of securely eval-
uating the circuit gate by gate in a shared fashion, using the linearity of the
�·�-representation for computing all linear gates, preprocessed multiplication
triples for multiplication using Beaver’s technique [Bea91], and preprocessed
input tuples for the inputs.

Fig. 4. Ideal functionality for the preprocessing phase.

474 C. Baum et al.

Fig. 5. Operations for secure function evaluation with identifiable abort.

5.1 Security

Theorem 2. In the FPrep-hybrid model, the protocol ΠOnline implements
[
FMPC

]ID
⊥ with statistical security against any static active adversary corrupt-

ing up to n − 1 parties.

Proof. Let A be a malicious PPT real adversary attacking the protocol ΠOnline,
we construct an ideal adversary S with access to FMPC which simulates a real
execution of ΠOnline with A such that no environment Z can distinguish the ideal
process with S and FMPC from a real execution of ΠOnline with A. S starts by
invoking a copy of A and running a simulated interaction of A with Z.

After describing the simulator we will argue indistinguishability of the real
and ideal worlds. Let I be the index set of corrupt parties, simulation proceeds
as follows:

Simulating the Initialise Step. The simulator S honestly emulates FPrep towards
the adversary A. Note that S knows all the data given to the adversary and the
simulated signing key sk∗ of HITS, so can generate a valid signature for any
message.

Simulating the Input Step. We distinguish two cases:

– For i ∈ P\I, S emulates towards A a broadcast of a random value m ∈ F,
and proceeds according to the protocol with the next simulated random input

Efficient Secure Multiparty Computation with Identifiable Abort 475

tuple, r. Thereafter, S computes x = r −m and stores x, the dummy, random
input for honest Pi.

– For i ∈ I, S receives from the adversary the message m, and retrieves the
next random input tuple r. It then computes x = r − m and inputs it to the[
FMPC

]ID
⊥ .

Simulating the Circuit Evaluation. For linear gates, the simulator does not
have to simulate any message on the behalf of the honest parties. S updates the
internal shares and calls the respective procedure in

[
FMPC

]ID
⊥ .

In a multiplication gate, for each call to Open, S receives all the corrupt
shares (t∗j , σt∗

j
) from A, and computes and sends the shares and signatures for

the dummy honest parties as in the protocol. Let (tj , σtj
) be the values that S

expects from the dishonest Pj , based on previous computations and the simu-
lated preprocessing data. S checks for all the (t∗j , σt∗

j
) received from A and for

all i ∈ P\I that tj = t∗j and σtj
= σt∗

j
. If the check does not pass for some j ∈ I

then S sends (Abort, Pj) to
[
FMPC

]ID
⊥ . Otherwise it proceeds.5

Simulating the Output Step. The simulator sends (Output) to the functionality
and gets the result y back. Let y′ be the output value that the simulator has
computed using dummy, random inputs on behalf of the honest parties. Then
it picks an honest party Pi0 , and modifies its share as y∗

i0
= yi0 + (y − y′), then

uses the evaluation privacy algorithm to compute σy∗
i0

= Sim(sk∗, y∗
i0

, f), where
f is the same linear function that has been applied to obtain σyi0

, and sends the
honest shares and signatures to the adversary. It then receives (y∗

j , σy∗
j
)j∈I from

the adversary, while expecting yj , σyj
. If yj = y∗

j and σyj
= σy∗

j
for all j ∈ I

then S sends Deliver to the functionality; otherwise it sends (Abort, Pj) for the
lowest j that failed and halts.

Indistinguishability. Now we prove that the all the simulated transcripts and
the honest parties’ outputs are identically distributed to the real transcripts and
output in the view of the environment Z, except with probability negl(κ).

During initialisation, the simulator honestly runs an internal copy of FPrep,
so the simulation of this step is perfect. In the input step, the values m broadcast
by honest parties are uniformly random in both cases, as they are masked by a
one-time uniformly random value from FPrep that is unknown to Z.

In the multiplication step, the parties call the command Open. Honest shares
and signatures are simulated as in the protocol, using the simulated data from
the emulation of FPrep, and applying the Eval algorithm. The broadcast shares
are all uniformly distributed in both worlds, as the shares are always masked by
fresh random values from FPrep, so are perfectly indistinguishable. To argue indis-
tinguishability of the signatures, we need to use the evaluation privacy property.

5 If there is more than invalid share then we always abort with the smallest index
where the check fails.

476 C. Baum et al.

We must prove that

σti

s≈ σt∗
i
,

where {σt∗
i
}i�∈I are the simulated ideal-world signatures, and {σti

}i�∈I are the
real-world signatures, for some honest parties’ shares {ti}i/∈I .

Since σti
and σt∗

i
are both valid signatures output from Eval, evaluation

privacy guarantees that there exists an algorithm Sim such that:

σti
= Sim(sk, ti, g) and σt∗

i
= Sim(sk∗, t∗i , g),

where g is the linear function evaluated to get the values ti and t∗i , and sk and
sk∗ are respectively the real-world and ideal-world secret keys. Since (ti, sk) and
(t∗i , sk

∗) are identically distributed in both the executions, then the same holds
for σti

and σt∗
i
. Note that it is crucial here that S computes σt∗

i
using Eval

and the function g, rather than creating a fresh signature using sk∗, otherwise
indistinguishability would not hold.

We also must consider the abort behaviour of the Open procedure in the
two worlds. If during any opening, A attempts to open a fake value then it will
always be caught in the simulation, whereas it succeeds if it is able to forge a
corresponding signature in the real protocol. Hence, if the ideal protocol aborts
with the identity of some corrupt party Pi, then the same happens in the real
world, except with negligible probability due to unforgeability. The consistency
property of HITS ensures that if one honest party outputs (Abort, Pi) in the
protocol, then all the honest parties will output the same, except with negligible
probability.

Now, if the real or simulated protocol proceeds to the last step, Z observes
the output value y, and the corresponding honest parties’ shares, together with
their signatures. The honest shares are consistent with y and the signatures are
correctly generated in both worlds. Again, to argue indistinguishability of the
signatures we can use the evaluation privacy property of HITS. Hence Z’s view
of the honest parties’ messages in the last step has the same distribution in the
real and hybrid execution.

Finally, we must argue indistinguishability of the outputs in both worlds. In
the ideal world, the output y is a correct evaluation on the inputs, so the only
way the environment can distinguish is to produce an incorrect output in the
real world. This can only happen if a corrupt party sending an incorrect share
that is successfully verified. However, as we have seen before, if the adversary
attempts to open a fake value, during the input, multiplication or output step,
then it will be caught with overwhelming probability, by the unforgeability and
consistency properties of HITS.
�

5.2 An Optimised Protocol

When instantiated with our HITS scheme from Sect. 4, the online phase protocol
above requires O(n2) field elements to be broadcasted per secure multiplication.

Efficient Secure Multiparty Computation with Identifiable Abort 477

Since each authenticated broadcast requires O(n) rounds, this gives a communi-
cation complexity of at least O(n3) field elements per multiplication and O(D ·n)
rounds overall, where D is the multiplicative depth of the arithmetic circuit. We
now describe an optimised variant of our protocol, which reduces the number of
rounds to O(D + n) and the communication cost per multiplication to O(n2).

Reducing the Number of Broadcasts. Let Πbc be the UC protocol for
authenticated broadcast used in the protocol. We make the following assumption
about its structure: in the first round of Πbc, the sender (with input x) sends x,
and nothing more, to all parties.6 Let the remainder of the protocol be denoted
Π ′

bc.
We now modify the protocol ΠOnline so that whenever a party Pi is supposed

to broadcast a value xi in the Open subprotocol, Pi instead sends xi to all parties,
and appends xi to a list Bi. Note that the Input stage still requires broadcast,
as otherwise it seems difficult for the simulator to extract a corrupted party’s
input. The Output stage is then modified so that first, each party runs Π ′

bc(Bi)
to complete the broadcasts that were initialised in the previous rounds. With
this change, there are only two broadcast rounds and each multiplication gate
requires just one round of communication, reducing the overall number of rounds
to O(D + n).

Batching the Signature Verification. We can reduce the number of field
elements sent during a multiplication to n − 1 per party by checking all sig-
natures together in the Output stage of the protocol, rather than during the
circuit evaluation. This means that during the computation, the parties only
send shares without the corresponding signatures. We then check a random lin-
ear combination of each parties’ signatures just before every output stage.

The complete protocol for the optimised output stage is given in Fig. 6. Since
there are only two authenticated broadcast rounds, the number of rounds for
computing a depth D circuit with one output gate in the optimised protocol is
O(D + n). The total number of field elements sent over the network is no more
than7

nI · bc(1) + 2n(n − 1) · nM + n · bc(n + 2nM + 1),

where nI is the total number of private inputs, nM the number of secure multi-
plications and bc(m) the cost of broadcasting m elements using Πbc. Meanwhile,
the storage cost (for the preprocessing data) is O(n(nM + nI)) per party.

A drawback of this optimization is that in comparison to ΠOnline a party that
sends corrupt signatures σ will now only be caught after A learns the output.

6 Almost any broadcast protocol can be easily converted into this form. For example,
the Dolev-Strong broadcast [DS83] begins with the sender sending (x, Sign(x)) to all
parties; we split this up into one round for x and one round for Sign(x).

7 Excluding the cost of FRand, which can be implemented using standard techniques
such as a hash-based commitment scheme in the random oracle model.

478 C. Baum et al.

Fig. 6. Output stage of the optimised online protocol.

Fig. 7. Functionality FRand that provides random values to all parties.

We stress that this is according to the definition of identifiable abort (which does
not specify when the abort signal must be sent), but different from ΠOnline where
such behaviour would immediately be detected.

Security of the Modified Online Phase. We now argue security of the
new online protocol, describing the key differences compared with the previous
protocol. In the simulation, the simulator S now cannot determine whether a
corrupt party has sent the correct message during the Multiply command, since
the signatures are not sent here. Instead, this must be detected in the output
stage when the broadcasts and signatures are checked.

In the OutputCheck stage, S first calls the functionality
[
FMPC

]ID
⊥ to obtain

the result y, then adjusts one honest party’s share and signature (using the evalu-
ation privacy algorithm) to fix the correct output as before, and sends the honest
shares to the adversary. For the remainder of this stage, the simulator acts as in
the protocol for the honest parties, computing the random linear combination of
signatures using Eval, and then runs the simulator of Πbc for each broadcast. If
any broadcast fails for a corrupt sender Pj then S sends (Abort, Pj) to

[
FMPC

]ID
⊥ .

If all broadcasts succeed, S checks the signatures and sends (Abort, Pj) if the

Efficient Secure Multiparty Computation with Identifiable Abort 479

signature of Pj does not verify. Note that an incorrect broadcast can lead to an
honest party’s signature being incorrect, so it is important that the broadcasts
are checked first here.

Indistinguishability of all shares sent up until the Output stage follows from
uniformity of the preprocessing data, as in the previous protocol. The security of
the Πbc simulator guarantees indistinguishability of step 5, in particular that all
parties agree upon the sets of shares Bi that were sent by each party Pi during
the protocol.

If the broadcasts succeed then the honest parties’ signatures will always be
correctly generated, and the evaluation privacy property of HITS guarantees
they are identically distributed. The environment therefore can only distinguish
between the worlds by causing the output, y, to be incorrect. Suppose a corrupt
party Pi broadcasts the values B′

i = (a′
1, . . . , a

′
t) in the protocol, and aj �= a′

j for
at least one j, where aj is the original signed value that Pi was supposed to send.
Then if the verification in step 5 of the output stage succeeds, the correctness
and security properties of HITS guarantee that:

t∑

i=1

(ai − a′
i) · ri = 0,

It is easy to see that the probability of this check passing is 1/|F|, as the values
ri are unknown to the adversary at the time of choosing a′

i, so the check prevents
an incorrect output with overwhelming probability.

6 Preprocessing with Identifiable Abort

This section describes a practical protocol for securely implementing FPrep with
identifiable abort, based on somewhat homomorphic encryption. The protocol
is based on the SPDZ preprocessing [DPSZ12,DKL+13], but the cost is around
n2 times higher due to the larger amount of preprocessing data needed for the
HITS data in our online phase.

We first explain in more detail why the generic preprocessing method of
Ishai et al. [IOZ14] does not lead to an efficient protocol. They presented a
method to transform any protocol for a correlated randomness setup in the OT-
hybrid model into a protocol that is secure with identifiable abort. Although
their compiled protocol only requires black-box use of an OT protocol, it is
impractical for a number of reasons:

– The protocol to be compiled is assumed to consist only of calls to an ideal OT
functionality and a broadcast channel. This means that any pairwise commu-
nication must be performed via the OT functionality and so is very expensive.

– The transformation requires first computing an authenticated secret sharing
of the required output, and then opening this to get the output. In our case,
the output of FPrep is already secret shared and authenticated, so intuitively,
this step seems unnecessary.

480 C. Baum et al.

– Their security proof requires the underlying OT protocol to be adaptively
secure. This is much harder to achieve in practice, and rules out the use of
efficient OT extensions [LZ13].

6.1 Modified Functionality F∗
Prep

The FPrep functionality from Sect. 5 is completely black-box with respect to
the HITS scheme used. In this section, we implement preprocessing specifically
for the scheme HITS from Sect. 4. We also make one small modification to the
initialisation of FPrep, shown in Fig. 8, which simplifies our preprocessing protocol
by not requiring the adversary’s verification data, vj , to be uniformly random.
The following proposition shows that the scheme, and therefore online phase,
remain secure with this modification.

Proposition 2. The scheme HITS remains secure when Gen is modified to allow
adversarial inputs, as in F∗

Prep.

Proof. This easily follows by inspection of the scheme. Notice that the sign-
ing and verification algorithms for honest parties are independent of the values
{vj}j∈I , so changing the distribution of these cannot cause an honest party to
accept an invalid signature or reject a valid signature.
�

We now show how to use somewhat homomorphic encryption to perform the
preprocessing with identifiable abort.

6.2 SHE Scheme Requirements

As in SPDZ, we use a threshold somewhat homomorphic encryption scheme
SHE = (Gen,Enc,Dec,�,�) to generate the preprocessing data. The scheme
must have a message space of F, and we represent ciphertexts known to all par-
ties with the notation 〈x〉 = Enc(x). The binary operators �,� then guarantee
that

〈x + y〉 = 〈x〉 � 〈y〉 and 〈x · y〉 = 〈x〉 � 〈y〉,

for some suitable choice of randomness in the output ciphertexts. For our pur-
poses, these homomorphic operations only need to support evaluation of circuits

On input (Init, nM , nI) from all parties, set w = n·(3·nM +nI) and do the following:

1. Wait for the adversary to input vj ∈ F
n, for each j ∈ I.

2. Compute (sk,vk) ← HITS.Gen(1κ, w), except using the provided values
{vj}j∈I to compute {vkj}j∈I , instead of sampling fresh values.

3. Send vki to party Pi and store sk.

Fig. 8. Initialise command of F∗
Prep.

Efficient Secure Multiparty Computation with Identifiable Abort 481

with polynomially many additions and multiplicative depth 1. As was shown
in [DPSZ12,DKL+13], a ring-LWE variant of the BGV scheme [BGV12] is prac-
tical for this purpose, and this also allows homomorphic operations to be batched
for greater efficiency.

In addition, we require the following interactive protocols that will be used
for the preprocessing.

Zero Knowledge Proof of Plaintext Knowledge. A protocol ΠZKPoK, which is a
public-coin zero-knowledge proof of knowledge of the message and randomness
that makes up a ciphertext. When used in our preprocessing protocol, all parties
will sample the public verifier’s messages with a coin-tossing functionality FRand

(see Fig. 7), so that the proofs are verified by all parties.

Distributed Key Generation and Decryption. The distributed key generation
protocol outputs a public key to all parties, and an additively shared secret key.
The distributed decryption protocol then allows the parties to decrypt a public
ciphertext so that all parties obtain the output. These requirements are mod-
elled in the functionality FKeyGenDec (Fig. 9). To achieve security with identifiable
abort in our preprocessing protocol, note that the distributed decryption method
modelled in FKeyGenDec always outputs a correct decryption, unlike the method
in SPDZ [DPSZ12], which allows a corrupted party to introduce additive errors
into the output. The SPDZ method can easily be modified to achieve this, by
including a zero-knowledge proof, similar to the ΠZKPoK proof used for cipher-
text generation. Efficient zero-knowledge proofs for actively secure LWE-based
key generation and distributed decryption were also given in [AJL+12], which
can be adapted to the ring-LWE setting.

6.3 Basic Subprotocols

In Fig. 10 we describe some basic subprotocols for generating and decrypting
ciphertexts. The RandShCtxt subprotocol creates n public ciphertexts encrypt-
ing uniformly random shares, where each party holds one share. The ShareDec
subprotocol takes a public ciphertext 〈m〉, encrypting m, and performs distrib-
uted decryption in such a way that each party learns only a random, additive

Functionality FKeyGenDec

KeyGen(1λ): Let (sk, pk) ← SHE.Gen(1λ). Store sk and output pk to all parties.

DistDec(〈m〉): On input a ciphertext 〈m〉 from all parties, output

m = Dec(〈m〉, sk)
to all Pi, where m may be a valid message or an invalid ciphertext symbol ⊥.

Fig. 9. SHE distributed key generation and decryption functionality.

482 C. Baum et al.

share of m. If the flag new ctxt is set to 1 then ShareDec additionally outputs a
fresh encryption of the message m to all parties. This is used to ensure that SHE
only needs to evaluate circuits of multiplicative depth 1. The PrivateDec subpro-
tocol is another variant of distributed decryption that decrypts the ciphertext
〈x〉 only to Pi. Note that the private decryption protocol used in [DPSZ12] is
not suitable here, as it involves parties all sending a single message to Pj ; in the
identifiable abort setting, this would allow Pj to claim that an honest party Pi

sent an invalid message, as the messages are not verifiable by all parties. To get
around this, our PrivateDec protocol only uses broadcasted messages that are
verifiable by all parties using the public-coin zero-knowledge proofs.

6.4 Creating the Preprocessing Data

The complete preprocessing protocol is shown in Figs. 11 and 12. To create a mul-
tiplication triple, each party must obtain random, additive shares (ai, bi, ci) such
that c = a · b, along with signatures on these shares. Creating shares of triples is
essentially identical to the method in [DPSZ12], except we use the correct dis-
tributed decryption command of FKeyGenDec, instead of a possibly faulty method.
This means that there is no way the adversary can introduce errors into triples,
so we avoid the need for the pairwise sacrificing procedure from [DPSZ12], where
half of the triples are wasted to check correctness. The main other difference in
our protocol, compared to [DPSZ12], is that we need to setup verification keys
for the signature scheme and create signatures on every share, which is more
complex than setting up simple MACs.

The setup phase begins by using RandShCtxt to create random, additive
shares of the signing key values α̂r, β̂r,i, and each party Pj ’s private verification
values vj,r, along with ciphertexts encrypting the signing key shares and verifica-
tion data, in steps 2–3. Next, in steps 4–5, the homomorphism of SHE is used to
compute ciphertexts encrypting the signing key, and then ciphertexts encrypting
the verification key values αj , βj,i for party Pj , for i ∈ [w]. These verification
keys are then privately decrypted to each party.

Given encryptions of the signing key, an encrypted share can be authenti-
cated by homomorphic evaluation of the signing algorithm, followed by private
decryption of the signature to the relevant party, as seen in the subprotocol Auth
(Fig. 11). Recall that in our scheme, a signature on xj is given by

σ =
(
α̂r · xj + β̂r

)n

r=1
,

where α̂r, β̂r are uniformly random elements of the secret key. (Note we have
dropped the subscript i on β̂ here.) For party Pj to obtain a signature on the
share xj , where all parties already know the ciphertext 〈xj〉, all parties homo-
mophically compute

〈σ|r〉 = (〈αr〉 � 〈xj〉) � 〈βr〉,

for r ∈ [n], and use private distributed decryption to output σ to Pj .

Efficient Secure Multiparty Computation with Identifiable Abort 483

Subprotocol RandShCtxt():
1. Each party samples a random share xj ∈ F and computes

〈xj〉 = SHE.Encpk(xj).

2. Each party broadcasts 〈xj〉 and runs the protocol ΠZKPoK to prove that
〈xj〉 is correctly generated.

3. Each party Pj outputs xj , 〈x1〉, . . . , 〈xn〉.
Subprotocol ShareDec(〈m〉, new ctxt):

1. Run RandShCtxt so that each Pj obtains a share rj and ciphertexts
〈r1〉, . . . , 〈rn〉 that encrypt the shares.

2. Homomorphically compute

〈m + r〉 = 〈m〉 � 〈r1〉 � · · · � 〈rn〉.
3. Call FKeyGenDec.DistDec to decrypt 〈m + r〉 so all parties learn m + r, where

r = r1 + · · · + rn.

4. P1 outputs m1 = (m + r) − r1 and for all j �= 1, Pj outputs mj = −rj .

5. If new ctxt = 1, each party Pi also outputs 〈m∗〉 = SHE.Encpk(m+r)−〈r〉,
where a default, public value is used for the randomness in Enc.

Subprotocol PrivateDec(〈x〉, Pj):
1. Pj samples a random mask K ← F, broadcasts 〈K〉 ← SHE.Encpk(K) and

runs ΠZKPoK to prove its correctness.

2. All parties homomorphically compute

〈x + K〉 = 〈x〉 � 〈K〉.
3. Run FKeyGenDec.DistDec(〈x + K〉) so that all parties obtain the plaintext

x + K.

4. Pj recovers and outputs x.

Fig. 10. Subprotocols for the preprocessing protocol using SHE

Theorem 3. The protocol ΠPrep (Figs. 11 and 12) securely realises F∗
Prep (Figs. 8

and 4) with identifiable abort in the FKeyGenDec-hybrid model, with computational
security.

Proof. See the full version of this work.
�

7 Efficiency Evaluation

We now evaluate the concrete efficiency of our protocol, and compare it with the
BDOZ [BDOZ11] and SPDZ [DPSZ12] protocols—which only offer security with
abort—and the IOZ protocol [IOZ14], which achieves identifiable abort. First we
discuss the complexity of broadcast in the two settings, then we compare the
online phases of each protocol, and finally discuss the preprocessing.

484 C. Baum et al.

Protocol ΠPrep

To create nM triples and nI input values for n parties, set the parameter w :=
n · (3nM + nI).

Setup: Creates the verification keys and ciphertexts encrypting the signing key.
1. Run FKeyGenDec.KeyGen to obtain an SHE public key pk.

2. Run RandShCtxt() 2n times, so each party Pj obtains random elements
α̂j

r, vj,r, for r = 1, . . . , n, and everyone obtains ciphertexts 〈α̂j
r〉, 〈vj,r〉 en-

crypting these.

3. Run RandShCtxt() w(n) times, so party Pj obtains β̂j
r,i, for r ∈ [n] and

i ∈ [w], and everyone gets the corresponding ciphertexts.

4. Homomorphically compute, for r ∈ [n]:

〈α̂r〉 = 〈α̂1
r〉 � · · · � 〈α̂n

r 〉
〈β̂r,i〉 = 〈β̂1

r,i〉 � · · · � 〈β̂n
r,i〉 for i ∈ [w].

5. Now compute the encrypted verification keys, for j ∈ [n]:

〈αj〉 =

n

�
r=1

(〈α̂r〉 � 〈vj,r〉) and s〈βj,i〉 =

n

�
r=1

(
〈β̂j,r〉 � 〈vj,r〉

)

6. Run the subprotocol PrivateDec(〈αj〉, Pj) and PrivateDec(〈βj,i〉, Pj) for i ∈
[w] and j ∈ [n], so that each party Pj gets their verification key vkj .

7. All parties store the ciphertexts 〈α̂r〉, 〈β̂r,i〉, for r ∈ [n] and i ∈ [w], and
their private verification keys, vkj = (vj , αj , {βj,i}i∈[w]).

Fig. 11. Preprocessing protocol with identifiable abort (Setup).

Cost of Broadcast. For MPC with identifiable abort, we denote the cost
of broadcasting m field elements by bc(m). To be able to identify a cheater,
this must be done using authenticated broadcast, which requires a PKI setup.
The classic Dolev-Strong broadcast [DS83] has message complexity O(mn2),
or a more recent protocol by Hirt and Raykov costs O(mn) for large enough
messages [HR14]. Note that any authenticated broadcast protocol requires Ω(n)
rounds of communication if up to n−1 parties may be corrupt [GKKO07], which
is considerably more expensive than the standard abort setting.

When security with (non-unanimous) abort is allowed (here, for SPDZ and
BDOZ), a simple “broadcast with abort” protocol suffices [GL05]. Here, the
broadcaster sends x to everyone, then all other parties resend x and check they
received the same value. This can be further optimised by performing trivial,
insecure broadcasts, and then at the end of the protocol, doing a single broadcast
of the hash of all sent values to verify correctness [DKL+12]. This means each
broadcast costs O(n) messages, with a one-time O(n2) cost to verify these at
the end.

Efficient Secure Multiparty Computation with Identifiable Abort 485

Fig. 12. Preprocessing protocol with identifiable abort (authentication and triple gen-
eration).

When opening shared values (such as during multiplication) a more efficient
method was described in [DPSZ12], where each party first sends their share to
P1, who then computes the sum and sends the result to all parties. This gives
a cost of 2(n − 1) messages per opening, instead of n(n − 1) for the previous
method (again, the actual broadcast is verified at the end of the protocol).

SPDZ. In the SPDZ protocol (as in [DKL+13]), an authenticated secret share
consists of n additive shares on the secret and n MAC shares, so each party
stores two field elements. The preprocessing consists of one authenticated share
per input, and three per multiplication triple. In the online phase, each input
requires one party to broadcast a single value, for a communication cost of n−1

486 C. Baum et al.

field elements. A multiplication consists of two openings, each of which requires
all parties to broadcast a share at a cost of 2n(n−1) messages using the protocol
described above.

In the output phase of SPDZ, first the shares are opened, then a random
linear combination of the MACs is checked, and finally all broadcasts must be
checked. The MAC and broadcast checking methods both have a communication
cost in O(n2).

BDOZ. In the BDOZ protocol, each party first obtains a fixed, global MAC key
αi. This is fixed for all shared values, so we ignore this cost. For each shared rep-
resentation [a], party Pi also stores the share ai, n local MAC keys βi

a1
, . . . , βi

an

and n MAC values m1(ai), . . . ,mn(ai). Each of these are a single field element,
so we get a total storage cost of 2n + 1 field elements per party for each authen-
ticated shared value.

If we assume an optimised version of the original protocol, so that all parties
open their shares ai using the SPDZ broadcast and then delay MAC checking
until the Output stage, then the online communication costs are essentially the
same as SPDZ.

IOZ. The IOZ online phase takes any semi-honest MPC protocol (with pre-
processing), and compiles it to a malicious protocol with identifiable abort, sim-
ilarly to the GMW paradigm [GMW87]. The compiled protocol has a preprocess-
ing phase that outputs the original semi-honest preprocessing data, authenti-
cated using IT signatures, as well as additional data for zero-knowledge proofs
using MPC-in-the-head, which are required for each round of the semi-honest
protocol. Using a semi-honest GMW protocol with multiplication triples as a
base, the preprocessing data already contains the same number of IT signatures
as our protocol, before taking into account the zero-knowledge proofs.

Each zero-knowledge proof requires storing m IT signatures as preprocessing,
where m is the number of parties in the MPC-in-the-head method. In [IOZ14],
they choose m = O(κ) for statistical security level κ, whereas [GMO16] use
m = 3, but require repeating the proof κ times to get negligible soundness error.
Since repeating the proof requires extra preprocessing for each repetition, we
obtain a very rough lower bound of storing κ signatures (or κ · n field elements)
per proof with either approach.

For the communication costs, we only take into account the cost for every
party to broadcast one proof, plus the (at least) two signatures that are broadcast
in the ΠSCP protocol of [IOZ14]. According to [GMO16, Sect. 4.2], the proof size
is at least 2 ·κ · log2(|F|), for a proof with soundness 2−κ, generously ignoring the
size of the circuit representing the NP-relation being proven and other constant
factors. If the IOZ version of MPC-in-the-head is used instead, each proof still
requires broadcasting t = O(κ) field elements in the Π1SCP protocol, so would
not have significantly better complexity.

Efficient Secure Multiparty Computation with Identifiable Abort 487

Table 1. Comparison of the storage and communication costs of the protocols, mea-
sured in number of field elements. N = nI + 2nM (where nI is number of inputs, nM

is number of multiplications), D is the multiplicative depth of the circuit, and κ is a
statistical security parameter

Protocol Prep. storage Online Comms. Rounds

Input Mult. Input Mult. Output

SPDZ 2 6 n − 1 4(n − 1) O(n2) O(D)

BDOZ 2n + 1 6n + 3 n − 1 4(n − 1) O(n2) O(D)

IOZ (at least) κn κn κ · bc(1) κn · bc(1) + 2n · bc(n) κn · bc(1) + 2n · bc(n) O(D · n)

Ours 2n + 1 6n + 3 bc(1) 2n(n − 1) n · bc(n + 2nM + 1) O(D + n)

Comparison of the Online Phases. The complexities in Table 1 for our pro-
tocol can be derived from the analysis in Sect. 5.2. We have ignored storage costs
for the vj , αj parts of the verification keys, as these are independent of the num-
ber of signatures. Our protocol is roughly a factor of n times worse than SPDZ
in terms of storage and communication cost, and has similar costs to BDOZ,
bar the requirement for two rounds of authenticated broadcast. Compared with
the IOZ protocol, we improve by at least a multiplicative factor in the security
parameter, as well as a greatly reduced number of broadcast rounds.

7.1 Preprocessing Cost

For preprocessing, the main factor affecting computation and communication
costs in [DPSZ12,DKL+13] is the number of zero-knowledge proofs of correct
ciphertext generation that are required, so this is what we measure in our pro-
tocol.

The main cost of our preprocessing protocol, compared with [DPSZ12], is
to produce the signatures and verification keys for each shared value, instead
of MACs as in SPDZ. The Setup phase of our protocol (Fig. 11) generates
verification keys, whose size depends on the number of signatures. Ignoring any
costs independent of the number of signatures, this requires n calls to RandShCtxt
for each signature. Each RandShCtxt call requires n zero-knowledge proofs, and
since there are n signatures per shared value (one per share) this gives a total
of O(n3) zero-knowledge proofs per multiplication triple or input tuple. This
dominates the cost of creating the n signatures for each shared value, which is
in O(n2).

In contrast, SPDZ shared MAC values only require O(n) proofs each, so our
protocol requires O(n2) more proofs than SPDZ in the preprocessing phase. It
as an interesting problem to see if this can be reduced, although it seems that
with IT signatures a factor of at least O(n) is inherent, due to the signature size.

For comparison, note that the IOZ preprocessing transformation, which is
based on any protocol in the OT-hybrid model, uses a verifiable OT protocol
which broadcasts a message for every message of the OT protocol, adding an
O(n) overhead on top of the OT-hybrid protocol. When accounting for producing
the larger amount of preprocessing data needed for the online phase, this gives

488 C. Baum et al.

an overall overhead of O(n2), the same as ours. However, it seems unlikely that
an OT-based protocol for FPrep could be much more efficient than using SHE,
mainly because the need for adaptive security in IOZ prevents the use of efficient
OT extensions [LZ13].

References

[AJL+12] Asharov, G., Jain, A., López-Alt, A., Tromer, E., Vaikuntanathan, V.,
Wichs, D.: Multiparty computation with low communication, computation
and interaction via threshold FHE. In: Pointcheval, D., Johansson, T. (eds.)
EUROCRYPT 2012. LNCS, vol. 7237, pp. 483–501. Springer, Heidelberg
(2012)

[AL10] Aumann, Y., Lindell, Y.: Security against covert adversaries: efficient pro-
tocols for realistic adversaries. J. Cryptology 23(2), 281–343 (2010)

[BDOZ11] Bendlin, R., Damg̊ard, I., Orlandi, C., Zakarias, S.: Semi-homomorphic
encryption and multiparty computation. In: Paterson, K.G. (ed.) EURO-
CRYPT 2011. LNCS, vol. 6632, pp. 169–188. Springer, Heidelberg (2011)

[BDTZ16] Baum, C., Damg̊ard, I., Toft, T., Zakarias, R.: Better preprocessing for
secure multiparty computation. In: Manulis, M., Sadeghi, A.-R., Schneider,
S. (eds.) ACNS 2016. LNCS, vol. 9696, pp. 327–345. Springer, Heidelberg
(2016). doi:10.1007/978-3-319-39555-5 18

[Bea91] Beaver, D.: Efficient multiparty protocols using circuit randomization.
In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 420–432.
Springer, Heidelberg (1992)

[BFKW09] Boneh, D., Freeman, D.M., Katz, J., Waters, B.: Signature schemes for
network coding: signing a linear subspace. In: Public Key Cryptography -
PKC, pp. 68–87 (2009)

[BGV12] Brakerski, Z., Gentry, C., Vaikuntanathan, V.: (leveled) fully homomorphic
encryption without bootstrapping. In: ITCS 2012, pp. 309–325 (2012)

[BLOO11] Beimel, A., Lindell, Y., Omri, E., Orlov, I.: 1/p-secure multiparty computa-
tion without honest majority and the best of both worlds. In: Rogaway, P.
(ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 277–296. Springer, Heidelberg
(2011)

[Can01] Canetti, R.: Universally composable security: a new paradigm for crypto-
graphic protocols. In: FOCS, pp. 136–145 (2001)

[CDD+99] Cramer, R., Damg̊ard, I.B., Dziembowski, S., Hirt, M., Rabin, T.: Efficient
multiparty computations secure against an adaptive adversary. In: Stern,
J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 311–326. Springer,
Heidelberg (1999)

[CJL09] Charles, D.X., Jain, K., Lauter, K.E.: Signatures for network coding. IJI-
CoT 1(1), 3–14 (2009)

[CL14] Cohen, R., Lindell, Y.: Fairness versus guaranteed output delivery in secure
multiparty computation. In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014,
Part II. LNCS, vol. 8874, pp. 466–485. Springer, Heidelberg (2014)

[Cle86] Cleve, R.: Limits on the security of coin flips when half the processors are
faulty (extended abstract). In: STOC 1986, pp. 364–369 (1986)

[CR91] Chaum, David, Roijakkers, Sandra: Unconditionally-Secure Digital Signa-
tures. In: Menezes, Alfred, J., Vanstone, Scott, A. (eds.) CRYPTO 1990.
LNCS, vol. 537, pp. 206–214. Springer, Heidelberg (1991). doi:10.1007/
3-540-38424-3 15

http://dx.doi.org/10.1007/978-3-319-39555-5_18
http://dx.doi.org/10.1007/3-540-38424-3_15
http://dx.doi.org/10.1007/3-540-38424-3_15

Efficient Secure Multiparty Computation with Identifiable Abort 489

[DKL+12] Damg̊ard, I., Keller, M., Larraia, E., Miles, C., Smart, N.P.: Implementing
AES via an actively/covertly secure dishonest-majority MPC protocol. In:
SCN, pp. 241–263 (2012)

[DKL+13] Damg̊ard, I., Keller, M., Larraia, E., Pastro, V., Scholl, P., Smart, N.P.:
Practical covertly secure MPC for dishonest majority – or: breaking the
SPDZ limits. In: Crampton, J., Jajodia, S., Mayes, K. (eds.) ESORICS
2013. LNCS, vol. 8134, pp. 1–18. Springer, Heidelberg (2013)

[DPSZ12] Damg̊ard, I., Pastro, V., Smart, N., Zakarias, S.: Multiparty computation
from somewhat homomorphic encryption. In: Safavi-Naini, R., Canetti, R.
(eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 643–662. Springer, Heidelberg
(2012)

[DS83] Dolev, D., Strong, H.R.: Authenticated algorithms for byzantine agree-
ment. SIAM J. Comput. 12(4), 656–666 (1983)

[DZ13] Damg̊ard, I., Zakarias, S.: Constant-overhead secure computation of
boolean circuits using preprocessing. In: Sahai, A. (ed.) TCC 2013. LNCS,
vol. 7785, pp. 621–641. Springer, Heidelberg (2013)

[GKKO07] Garay, J.A., Katz, J., Koo, C.-Y., Ostrovsky, R.: Round complexity of
authenticated broadcast with a dishonest majority. In: FOCS 2007, pp.
658–668 (2007)

[GL05] Goldwasser, S., Lindell, Y.: Secure multi-party computation without agree-
ment. J. Cryptology 18(3), 247–287 (2005)

[GMO16] Giacomelli, I., Madsen, J., Orlandi, C.: ZKBoo: faster zero-knowledge for
boolean circuits. In: 25th USENIX Security Symposium (USENIX Security
2016), pp. 1069–1083 (2016)

[GMW87] Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game
or a completeness theorem for protocols with honest majority. In: STOC
1987, pp. 218–229 (1987)

[Gol01] Goldreich, O.: The Foundations of Cryptography - Basic Techniques, vol.
1. Cambridge University Press, Cambridge (2001)

[GVW15] Gorbunov, S., Vaikuntanathan, V., Wichs, D.: Leveled fully homomorphic
signatures from standard lattices. In: STOC 2015, pp. 469–477 (2015)

[HR14] Hirt, M., Raykov, P.: Multi-valued byzantine broadcast: The t¡n case. In:
Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014. LNCS, vol. 8874, pp. 448–
465. Springer, Heidelberg (2014). doi:10.1007/978-3-662-45608-8 24

[HSZI00] Hanaoka, G., Shikata, J., Zheng, Y., Imai, H.: Unconditionally secure digi-
tal signature schemes admitting transferability. In: Okamoto, T. (ed.) ASI-
ACRYPT 2000. LNCS, vol. 1976, pp. 130–142. Springer, Heidelberg (2000).
doi:10.1007/3-540-44448-3 11

[IKOS07] Ishai, Y., Kushilevitz, E., Ostrovsky, R., Sahai, A.: Zero-knowledge from
secure multiparty computation. In: STOC 2007, pp. 21–30 (2007)

[IOS12] Ishai, Y., Ostrovsky, R., Seyalioglu, H.: Identifying cheaters without an
honest majority. In: Cramer, R. (ed.) TCC 2012. LNCS, vol. 7194, pp.
21–38. Springer, Heidelberg (2012)

[IOZ14] Ishai, Y., Ostrovsky, R., Zikas, V.: Secure multi-party computation with
identifiable abort. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014, Part
II. LNCS, vol. 8617, pp. 369–386. Springer, Heidelberg (2014)

[LZ13] Lindell, Y., Zarosim, H.: On the feasibility of extending oblivious transfer.
In: Sahai, A. (ed.) TCC 2013. LNCS, vol. 7785, pp. 519–538. Springer,
Heidelberg (2013)

[PW92] Pfitzmann, B., Waidner, M.: Unconditional byzantine agreement for any
number of faulty processors. In: STACS 1992, pp. 339–350 (1992)

http://dx.doi.org/10.1007/978-3-662-45608-8_24
http://dx.doi.org/10.1007/3-540-44448-3_11

490 C. Baum et al.

[Sey12] Seyalioglu, H.A.-J.: Reducing trust when trust is essential. Ph.D. thesis,
University of California, Los Angeles 2012. https://escholarship.org/uc/
item/7301296m

[SS11] Swanson, C.M., Stinson, D.R.: Unconditionally secure signature schemes
revisited. In: Fehr, S. (ed.) ICITS 2011. LNCS, vol. 6673, pp. 100–116.
Springer, Heidelberg (2011)

https://escholarship.org/uc/item/7301296m
https://escholarship.org/uc/item/7301296m

Secure Multiparty RAM Computation
in Constant Rounds

Sanjam Garg1(B), Divya Gupta1, Peihan Miao1, and Omkant Pandey2

1 University of California, Berkeley, USA
{sanjamg,divyagupta2016,peihan}@berkeley.edu

2 Stony Brook University, Stony Brook, USA
omkant@gmail.com

Abstract. Secure computation of a random access machine (RAM) pro-
gram typically entails that it be first converted into a circuit. This con-
version is unimaginable in the context of big-data applications where the
size of the circuit can be exponential in the running time of the origi-
nal RAM program. Realizing these constructions, without relinquishing
the efficiency of RAM programs, often poses considerable technical hur-
dles. Our understanding of these techniques in the multi-party setting
is largely limited. Specifically, the round complexity of all known proto-
cols grows linearly in the running time of the program being computed.
In this work, we consider the multi-party case and obtain the following
results:
– Semi-honest model : We present a constant-round black-box secure

computation protocol for RAM programs. This protocol is obtained
by building on the new black-box garbled RAM construction by Garg,
Lu, and Ostrovsky [FOCS 2015], and constant-round secure compu-
tation protocol for circuits of Beaver, Micali, and Rogaway [STOC
1990]. This construction allows execution of multiple programs on
the same persistent database.

– Malicious model : Next, we show how to extend our semi-honest results
to the malicious setting, while ensuring that the new protocol is still
constant-round and black-box in nature.

1 Introduction

Alice, Bob, and Charlie jointly own a large private database D. For instance,
the database D can be a concatenation of their individually owned private data-
bases. They want to compute and learn the output of arbitrary dynamically
chosen private random access machine (RAM) programs P1, P2, . . ., on private

This paper was presented jointly with [25] in proceedings of the 14th IACR Theory
of Cryptography Conference (TCC) 2016-B.
Research supported in part from a DARPA/ARL SAFEWARE Award, AFOSR
Award FA9550-15-1-0274, NSF CRII Award 1464397 and a research grant from the
Okawa Foundation. The views expressed are those of the author and do not reflect
the official policy or position of the funding agencies.

c© International Association for Cryptologic Research 2016
M. Hirt and A. Smith (Eds.): TCC 2016-B, Part I, LNCS 9985, pp. 491–520, 2016.
DOI: 10.1007/978-3-662-53641-4 19

492 S. Garg et al.

inputs x1, x2, . . . and the previously stored database, which gets updated as these
programs are executed. Can we do this?

Beginning with the seminal results of Yao [41] and Goldreich, Micali, and
Wigderson [17], cryptographic primitives for secure computations are custom-
arily devised for circuits. Using these approaches for random access machine
(RAM) programs requires the conversion of the RAM program to a circuit.
Using generic transformations [7,38], a program running in time T translates
into a circuit of size O(T 3 log T). Additionally, the obtained circuit must grow
at least with the size of the input that includes data, which can be prohibitive
for various applications. In particular, this dependence on input length implies
an exponential slowdown for binary search. For instance, in the example above,
for each program that Alice, Bob, and Charlie want to compute, communication
and computational complexities of the protocol need to grow with the size of
the database. Using fully homomorphic encryption [13], one can reduce the com-
munication complexity of this protocol, but not the computational cost, which
would still grow with the size of the database. Therefore, it is paramount that
we realize RAM friendly secure computation techniques, that do not suffer from
these inefficiencies.

Secure computation for RAM programs. Motivated by the above consid-
erations, various secure computation techniques that work directly for RAM
programs have been developed. For instance, Ostrovsky and Shoup [36] achieve
general secure RAM computation using oblivious RAM techniques [16,18,35].
Subsequently, Gordon et al. [20] demonstrate an efficient realization based on
specialized number-theoretic protocols. However, all these and other follow-up
works require round complexity linear in the running time of the program.
This changed for the two-party setting with the recent results on garbled RAM
[12,14,32] and its black-box variant [11].1 However, these round-efficient results
are limited to the two-party setting.

In this work, we are interested in studying this question in the multiparty
setting in the following two natural settings of RAM computations: persistent
database setting and the non-persistent database setting. Furthermore, we want
constructions that make only a black-box use of the underlying cryptographic
primitives.

Persistent vs. non-persistent database. In the setting of RAM programs,
the ability to store a persistent private database that can be computed on mul-
tiple times can be very powerful. Traditionally, secure computation on RAM
programs is thus studied in two models. In the first model, called the persistent
database model, one considers execution of many programs on the same data-
base over a time period; the database can be modified by these programs during
their execution and these changes persist over time. In this setting, the database

1 We note that several other cutting-edge results [4,6,15,19,31] have been obtained
in non-interactive secure computation over RAM programs but they all need to
make strong computational assumptions such as [9,10,39]. Additionally they make
non-black-box use of the underlying cryptographic primitives.

Secure Multiparty RAM Computation in Constant Rounds 493

can be huge and the execution time of each program does not need to depend
on the size of the database.

In the non-persistent database setting, one considers only a single program
execution. This setting is extremely useful in understanding the underlying dif-
ficulties in obtaining a secure solution.

Black-box vs. non-black-box. Starting with Impagliazzo-Rudich [26,27],
researchers have been very interested in realizing cryptographic goals making
just a black-box use of underlying primitive. It has been the topic of many
important recent works in cryptography [21,23,29,37,40]. On the other hand,
the problem of realizing black-box construction for various primitive is still open,
e.g. multi-statement non-interactive zero-knowledge [5,8,24] and oblivious trans-
fer extension [1].2 From a complexity perspective, black-box constructions are
very appealing as they often lead to conceptually simpler and qualitatively more
efficient constructions.3

Note that putting together Garbled RAM construction of Garg, Lu,
Ostrovsky, and Scafuro [12] and the multiparty secure computation protocol
of Beaver, Micali, and Rogaway [2] immediately gives a non-black-box protocol
for RAM programs with the persistent use of memory. However, motivated by
black-box constructions and low round complexity, in this work, we ask:

Can we realize constant-round black-box secure multiparty computation
for RAM programs?

1.1 Our Results

In this paper, addressing the above question, we obtain the first constant-round
black-box protocols for both the semi-honest and the malicious setting. Specifi-
cally, we present the following results:

– Semi-honest: We show a constant-round black-box secure computation pro-
tocol for RAM programs. This protocol is obtained by building on the new
black-box garbled RAM construction by Garg, Lu, and Ostrovsky [11], and
constant round secure computation protocol for circuits of Beaver, Micali,
and Rogaway [2]. Our construction allows for the execution of multiple pro-
grams on the same persistent database. In our construction, for an original
database of size M , one party needs to maintain a persistent database of size
M ·poly(log M,κ). The communication and computational complexities of each
program evaluation grow with T · poly(log T, log M,κ) where T is the running
time of the program and κ is the security parameter.

2 Interestingly for oblivious transfer extension we do know black-box construction
based on stronger assumptions [28].

3 Additionally, black-box constructions enable implementations agnostic to the imple-
mentation of the underlying primitives. This offers greater flexibility allowing for
many optimizations, scalability, and choice of implementation.

494 S. Garg et al.

– Malicious: Next we enhance the security of our construction from semi-honest
setting to malicious, while ensuring that the new protocol is still constant-
round and black-box. In realizing this protocol we build on the constant round
black-box secure computation protocol of Ishai, Prabhakaran, and Sahai [30].
However, this result is only for the setting of the non-persistent database.4

Both our constructions only make a black-box use of one-way functions in the
OT-hybrid model.

1.2 Concurrent and Independent Work

In a concurrent and independent work, Hazay and Yanai [25] consider the ques-
tion of malicious secure two-party secure RAM computation. They present a
constant-round protocol building on the the semi-honest two-party protocols
[12,14]. They achieve a similar result as ours in the two-party setting but make
a non-black-box use of one-way functions. Moreover, they allow running of mul-
tiple programs on a persistent database when all the programs as well as the
inputs are known beforehand to the garbler.5 Finally, the protocol of [25] makes a
black-box use of ORAM6 and only one party needs to store the memory locally.
In this work, we can achieve the latter efficiency property in the semi-honest
setting but not in the malicious setting.

An independent work of Miao [33] addresses the same problem as [25] but
making only a black-box use of one-way functions and for the standard notion
of persistent database that allows for programs and inputs of later executions to
be chosen dynamically based on previous executions. [33] achieves a constant-
round malicious secure two-party computation protocol making a black-box use
of one-way functions in the OT-hybrid with the use of random oracle. It builds
on the techniques of [3,34].

2 Our Techniques

Semi-honest setting with a single program. First, we consider the problem
of constructing a semi-honest secure protocol for multi-party RAM computation.
That is, consider n parties Q1, . . . , Qn and a database D = D1|| . . . ||Dn such
that Qi holds the database Di. They want to securely evaluate a program P
on input x = x1, . . . , xn w.r.t. the database D, where xi is the secret input
of party Qi. Recall that our goal is to construct a constant-round protocol that
4 We elaborate on the fundamental issue in extending this result to the persistent

database setting at the end of next section.
5 We note that our malicious secure protocol also achieves this weaker notion of per-

sistent database, but in this paper we only focus on the standard notion of persistent
data where later programs and inputs can be chosen dynamically.

6 Our protocol is non-black-box in the use of ORAM. But, since [11] and our paper
use an information theoretic ORAM, we are still black-box in the use of underlying
cryptography.

Secure Multiparty RAM Computation in Constant Rounds 495

only makes a black-box use of cryptographic primitives such as one-way function
and oblivious transfer (OT). Moreover, we require that our protocol should only
incur a one-time communication and computational cost that is linear in the size
of D up to poly-logarithmic factors. Subsequently, evaluating each new program
should require communication and computation that is only linear in the running
time of that program up to poly-logarithmic factors.

High level approach. Our starting point would be garbled RAM that solves
the problem in the two-party setting. Recall that a garbled RAM is the RAM
analogue of Yao’s garbled circuits [41], and allows for multiple program execu-
tions on a persistent database. Recently, Garg et al. [11] gave a construction of
a garbled RAM that only makes a black-box use of one-way functions. Given
this primitive, a natural approach would be to generate the garbled RAM via a
secure computation protocol for circuits. However, since garbled RAM is a cryp-
tographic object and builds on one-way functions, a straight-forward application
of this approach leads to an immediate problem of non-black-box use of one-way
functions.

Garbled RAM abstraction. To handle the above issue regarding non-black-
box use of one-way functions, we would massage the garbled RAM construction
of [11] such that all calls to one-way functions are performed locally by parties
and ensure that the functionality computed by generic MPC is information-
theoretic. Towards this goal, we need to understand the structure of the garbled
RAM of [11] in more detail. Next, we abstract the garbled RAM of [11] and
describe the key aspects of the construction, which avoids the details irrelevant
for understanding our work.

The garbled RAM for memory database D, program P and input x consists
of the garbled memory D̃, the garbled program P̃ , and the garbled input x̃. At a
high level, the garbled memory D̃ consists of a collection of memory garbled cir-
cuits (for reading and writing to the memory) that invoke other garbled circuits
depending on the input and the execution. More precisely, the garbled circuits
of the memory are connected in a specific manner and each garbled circuit has
keys of several other garbled circuits hard-coded inside it and it outputs input
labels for the garbled circuit that is to be executed next. Moreover, for some of
these garbled circuits, labels for partial inputs are revealed at the time of the
generation of garbled RAM, while the others are revealed at run-time. Among
the labels revealed at generation time, semantics of some of the labels is public,
while the semantics of the others depend on the contents of the database as
well as the randomness of the ORAM used.7 Similarly, the garbled program P̃
consists of a sequence of garbled circuits for CPU steps such that each circuit
has input labels of several garbled circuits, from the memory and the program,
hard-coded inside itself. Finally, the garbled input consists of the labels for the
first circuit in the garbled program that are revealed depending on the input x.
7 The labels revealed at generation time are later referred to as the tabled garbled

information. For security of garbled RAM, it is crucial to hide the semantics of
the labels dependent on the database contents and we will revisit this later in the
technical overview.

496 S. Garg et al.

Our crucial observation about [11] is the following: Though each circuit has
hard-coded secret labels for several other garbled circuits, the overall structure
of the garbled memory as well as garbled program is public. That is, how the
garbled circuits are connected in memory and the program as well as the struc-
ture of hard-coding is fixed and public, independent of the actual database or
the program being garbled. This observation would be useful in two aspects:
(1) To argue that the functionality being computed using the generic MPC for
circuits is information theoretic. This is crucial in getting a black-box secure
computation protocol for RAM. (2) When running more than one program on
a persistent database, the basic structure of garbled RAM being public ensures
that the cost of garbling additional programs does not grow with the size of the
database.

Using above observations, we provide a further simplified formalization of the
garbled RAM scheme of [11], where intuitively, we think of the circuits of memory
and program as universal circuits that take secret hard-coded labels as additional
inputs.8 The labels for these additional input wires now have to be revealed at
the time of garbled RAM generation. For details refer to Sect. 3.2. In light of
this, our task is to devise a mechanism to generate all these garbled circuits and
(partial) labels in a distributed manner securely. As mentioned above, since these
garbled circuits use one-way functions (in generating encrypted gate tables), we
cannot generate them näıvely.

Handling the issue of non-black-box use of one-way functions. We note
that the garbled RAM of [11] makes a black-box use of a circuit garbling scheme
and hence, can be instantiated using any secure circuit garbling scheme. This
brings us to the next tool we use from the literature, which is the distributed
garbling scheme of Beaver et al. [2], referred to as BMR in the following. In
BMR, for each wire in the circuit, every party contributes a share of the label
such that the wire-label is a concatenation of label shares from all the parties.
Moreover, all calls to PRG (for generating encryptions of gate tables) are done
locally such that given these PRG outputs and label shares, the generation of a
garbled gate-table is information theoretic. This ensures that the final protocol
of BMR is black-box in use of one-way functions. Our key observation is that we
can instantiate the black-box garbled RAM of [11] with the BMR distributed
garbling as the underlying circuit garbling scheme.

Based on what we have described so far, to obtain a constant-round semi-
honest secure protocol for RAM, we would do the following: First, we would
view the garbled RAM of [11] as a collection of suitable garbled circuits with
additional input wires corresponding to the hardcoded secret labels (for sim-
plicity). Next, we would use BMR distributed garbling as the underlying circuit
garbling scheme, where each party computes the labels as well as PRG outputs
locally. And, finally, we would run a constant-round black-box secure computa-
tion protocol for circuits (that is, BMR) to generate all the garbled circuits of
the garbled RAM along with labels for partial inputs. In Sect. 5.3, we argue that
8 Though this transformation is not crucial for security, it helps simplify the exposition

of our protocol.

Secure Multiparty RAM Computation in Constant Rounds 497

the functionality being computed by MPC is information theoretic. Hence, this
gives a black-box protocol.

Subtlety with use of ORAM. At first, it seems that we can generate all the
garbled circuits of the garbled RAM in parallel via the MPC. But, separating
the generation of garbled circuits creates a subtle problem in how garbled RAM
internally uses oblivious RAM. As mentioned before, some of the labels revealed
at the time of garbled RAM generation depend on the database contents and
the randomness used for ORAM. For security, the randomness of ORAM is
contributed by all the parties and any sub-group of the parties does not learn
the semantics of these labels. Therefore, separating the generation of garbled
circuits requires all the parties to input the entire database to each garbled
circuit generation, which would violate the efficiency requirements. In particular,
efficiency of garbling the database would be at least quadratic in its size.

We solve this problem by bundling together the generation of all the garbled
circuits under one big MPC. This does not harm security as well as provides
the desired efficiency guarantees. More precisely, all the garbled circuits are
generated by a single MPC protocol, where all the parties only need to input
once the entire database along with all the randomness for the oblivious RAM
(as well as their label shares and PRG outputs). We defer the details of this to
the main body. There we also describe how we can extend this protocol for the
setting of multiple program executions on a persistent database.

Malicious Setting. Next, we consider the case of malicious security. Again,
to begin with, consider the case of a single program execution. For malicious
security, we change the underlying secure computation protocol for generating
garbled RAM to be malicious secure instead of just semi-honest secure. This
would now ensure that each garbled circuit is generated correctly. Given that
this secure computation is correct and malicious secure, the only thing that
a malicious adversary can do is choose inputs to this protocol incorrectly or
inconsistently. More precisely, as we will see in the main body, it is crucial that
the PRG outputs fed into the secure computation protocol are correct. In fact,
use of incorrect PRG values can cause honest parties to abort during evaluation
of generated garbled RAM. This would be highly problematic for security if
the adversary can cause input-dependent abort of honest parties as this is not
allowed in ideal world. Note that we cannot use zero-knowledge proofs to ensure
the correctness of PRG evaluations as this would lead to a non-black-box use
of one-way functions. To get around this hurdle, we prove that the probability
that an honest party aborts is independent of honest party inputs and depends
only on the PRG values used by the adversary. In fact, given the labels as well
as PRG outputs used by our adversary, our simulator can simulate which honest
parties would abort and which honest parties would obtain the output.

The case of persistent data in the malicious setting. The final question is,
can we extend the above approach to handle multiple programs? In the malicious
setting, the adversary can choose the inputs for the second program based on
the garbled memory that it has access to. Note that the garbled RAM of [11]

498 S. Garg et al.

does not guarantee security when the inputs can be chosen adaptively given the
garbled RAM. Recall that the garbled memory of [11] consists of a collection
of garbled circuits. In fact, to construct a scheme that satisfies this stronger
security guarantee will require a circuit garbling scheme with the corresponding
stronger security guarantee. In other words, we would need a circuit garbling
scheme that is adaptively secure where the size of garbled input does not grow
with the size of the circuit. However, we do not know of any such scheme in the
standard model, i.e., without programmable random oracle assumption. Hence,
we leave open the question of black-box malicious security for executing multiple
RAM programs on a persistent database.

3 Preliminaries

We describe garbled RAM formally and give a brief overview of black box gar-
bled RAM construction from [11]. Here we describe an abstraction of their con-
struction which will suffice to describe our protocol for secure multi-party RAM
computation as well as its security proof. Parts of this section have been taken
verbatim from [11,14]. In the following, let κ be the security parameter. For a
brief description of RAM model and garbled circuits, refer to the full version of
this paper.

3.1 Garbled RAM

The garbled RAM [12,14,32] is the extension of garbled circuits to the setting of
RAM programs. Here, the memory data D is garbled once and then many dif-
ferent garbled programs can be executed sequentially with the memory changes
persisting from one execution to the next.

Definition 1. A secure single-program garbled RAM scheme consists of four
procedures (GData,GProg,GInput,GEval) with the following syntax:

– (D̃, s) ← GData(1κ,D): Given a security parameter 1κ and memory D ∈
{0, 1}M as input, GData outputs the garbled memory D̃ and a key s.

– (P̃ , sin) ← GProg(1κ, 1log M , 1t, P, s,m) : Takes the description of a RAM pro-
gram P with memory-size M and running-time t as input. It also requires a
key s (produced by GData) and current time m. It then outputs a garbled pro-
gram P̃ and an input-garbling-key sin.

– x̃ ← GInput(1κ, x, sin): Takes as input x ∈ {0, 1}n and an input-garbling-key
sin, and outputs a garbled-input x̃.

– (y, D̃′) = GEvalD̃(P̃ , x̃): Takes a garbled program P̃ , garbled input x̃ and gar-
bled memory data D̃ and outputs a value y along with updated garbled data D̃′.
We model GEval itself as a RAM program that can read and write to arbitrary
locations of its memory initially containing D̃.

Secure Multiparty RAM Computation in Constant Rounds 499

Efficiency: The run-time of GProg and GEval are t ·poly(log M, log T, κ), which
also serves as the bound on the size of the garbled program P̃ . Here, T denotes
the combined running time of all programs. Moreover, the run-time of GData is
M · poly(log M, log T, κ), which also serves as an upper bound on the size of D̃.
Finally the running time of GInput is n · poly(κ).

Correctness: For correctness, we require that for any initial memory data
D ∈ {0, 1}M and any sequence of programs and inputs {Pi, xi}i∈[�], fol-
lowing holds: Denote by yi the output produced and by Di+1 the modified
data resulting from running Pi(Di, xi). Let (D̃, s) ← GData(1κ,D). Also, let
(P̃i, s

in
i) ← GProg(1κ, 1log M , 1ti , Pi, s,

∑
j∈[i−1] tj), x̃i ← GInput(1κ, xi, s

in
i) and

(y′
i, D̃i+1) = GEvalD̃i(P̃i, x̃i). Then, Pr [yi = y′

i, for all i ∈ {1, . . . , �}] = 1.

Security: For security, we require that there exists a PPT simulator GramSim
such that for any initial memory data D ∈ {0, 1}M and any sequence of pro-
grams and inputs {Pi, xi}i∈[�], the following holds: Denote by yi the output
produced and by Di+1 the modified data resulting from running Pi(Di, xi). Let
(D̃, s) ← GData(1κ,D), (P̃i, s

in
i) ← GProg(1κ, 1log M , 1ti , Pi, s,

∑
j∈[i−1] tj) and

x̃i ← GInput(1κ, xi, s
in
i), then

(D̃, {P̃i, x̃i}i∈[�])
comp
≈ GramSim(1κ, 1M , {1ti , yi}i∈[�]).

3.2 Black-Box Garbled RAM of [11]

The work of [11] gives a construction of garbled RAM that only makes a black-
box use of one-way functions. In particular, it proves the following theorem.

Theorem 1 ([11]). Assuming the existence of one-way functions, there exists
a secure black-box garbled RAM scheme for arbitrary RAM programs satisfying
the efficiency, correctness and security properties stated in Definition 1.

Below, we describe the construction of [11] at a high level. We describe the
algorithms (GData,GProg,GInput). In following, in the context of garbled cir-
cuits, labels refers to one of the labels for an input bit and keys refers to both
labels (one for 0 and one for 1) corresponding to an input bit.

[11] construct black-box garbled RAM in two steps. First a garbled RAM
scheme is constructed under the weaker security requirement of unprotected
memory access (UMA2-security) where only the sequence of memory locations
being accessed is revealed. Everything else about the program, data and the input
is hidden. Next this weaker security guarantee is amplified to get full security by
using statistical oblivious RAM that hides the memory locations being accessed.

Garbled RAM achieving UMA2-security. Let the corresponding proce-
dures be (ĜData, ĜProg, ĜInput, ĜEval).

500 S. Garg et al.

– (D̃, s) ← ĜData(1κ,D): D̃ consists of a collection of garbled circuits and a
tabled garbled information Tab. The key s corresponds to a PRF key.

Garbled Circuits. The collection of garbled circuits is organized as a binary
tree of depth d = O(log |D|) and each node consists of a sequence of garbled
circuits.9 For any garbled circuit, its successor (resp. predecessor) is defined
to be the next (resp. previous) node in the sequence. For a garbled circuit,
all garbled circuits in parent (resp. children) node are called parents (resp.
children). There are two kinds of circuits: leaf circuits Cleaf (at the leaves
of the tree) and non-leaf circuits Cnode (at the internal nodes of the tree).
Intuitively speaking, the leaf nodes carry the actual data.

Each garbled circuit has hard-coded inside it (partial) keys of a set of other
garbled circuits. We emphasize that for any circuit C, the keys that are hard-
coded inside it are fixed (depending on the size of data) and is independent of
the actual contents of the data. This would be crucial later.

Tabled garbled information. For each node in the tree as described above,
the garbled memory consists of a table of information Tab(i, j), where (i, j)
denotes the jth node at ith level from the root. Note that d denotes the depth
of the tree. The tabulated information Tab(i, j) contains labels for partial
inputs of the first garbled circuit in the sequence of circuits at node (i, j) (i.e.,
one label for some of the input bits). As the garbled memory is consumed by
executing the garbled circuits, the invariant is maintained that the tabulated
information contains partial labels for the first unused garbled circuit at that
node.

A crucial point to note is the following: Labels in Tab entry correspond-
ing to non-leaf nodes, i.e., Cnode, depend on the keys on some other garbled
circuit. Also, the tabulated information for the leaf nodes depends on actual
value in the data being garbled. More precisely, the entry Tab(d, j) for level
d of the leaves contains the partial labels for the first Cleaf circuit at jth leaf
corresponding to value D[j] value.10

The keys of the all the garbled circuits are picked to be outputs of a PRF
with key s on appropriate inputs.

– (P̃ , sin) ← ĜProg(1κ, 1log M , 1t, P, s,m) : The garbled program P̃ consists of
a sequence of garbled circuits, called Cstep. Again, each garbled circuit has
(partial) keys of some circuits of P̃ and D̃ hard-coded inside it. We emphasize
that for any circuit Cstep ∈ P̃ , which keys are hard-coded inside it is fixed and
is independent of the actual program and actual data.

sin corresponds to the keys of the first circuit in this sequence.
9 Note that for security, any garbled circuit can only be executed once. Hence, to

enable multiple reads from the memory, each node consists of a sequence of garbled
circuits. Number of garbled circuits at any node is chosen carefully. See [11] for
details. For our purpose, we do not need to specify the number of garbled circuits
at each node, but it is worth emphasizing that the total number of garbled circuits
is |D| · poly(log |D|, κ).

10 Note that it is public that jth leaf corresponds to D[j]. Later, statistical ORAM is
used to hide this correspondence.

Secure Multiparty RAM Computation in Constant Rounds 501

– x̃ ← ĜInput(1κ, x, sin): The GInput algorithm uses x as selection bits for the
keys provided in sin, and outputs x̃ that is just the selected labels.

Remark 1. Note that for [11] the labels in Tab for Cnode and hard-coded key
values are independent of the actual data D and input x. The labels in Tab for
Cleaf depend on data D and labels in x̃ depend on input x.

Garbled RAM Achieving Full Security. [11] prove the following lemma.

Lemma 1 [11]. Given a UMA2-secure garbled RAM scheme (ĜData, ĜProg,
ĜInput, ĜEval) for programs with (leveled) uniform memory access, and a sta-
tistical ORAM scheme (OData,OProg) giving (leveled) uniform memory access
that protects the access pattern, there exists a fully secure garbled RAM scheme.

The construction works by first applying ORAM compiler followed by UMA2-
secure garbled RAM compiler. More formally,

– GData(1κ,D): Execute (D∗) ← OData(1κ,D) followed by (D̃, s) ←
ĜData(1κ,D∗). Output (D̃, s). Note that OData does not require a key as
it is a statistical scheme.

– GProg(1κ, 1log M , 1t, P, ŝ,m): Execute P ∗ ← OProg(1κ, 1log M , 1t, P) followed
by (P̃ , sin) ← ĜProg(1κ, 1log M ′

, 1t′
, P ∗, s,m) . Output (P̃ , sin).

– GInput(1κ, x, sin): Note that x is valid input for P ∗. Execute x̃ ←
ĜInput(1κ, x, sin), and output x̃.

– GEvalD̃(P̃ , x̃): Execute y ← ĜEval
D̃

(P̃ , x̃) and output y.

Note that UMA-2-secure garbled RAM does not hide which leaf nodes of
garbled data correspond to which bit of data D. In the garbled RAM with full
security, this is being hidden due to compilation by ORAM. In the final garbled
RAM with full security, which keys are hardwired in each garbled circuit remains
public as before. Also, which keys are stored in Tab are public except those for
Cleaf as they correspond to data values. These are determined by the randomness
used in ORAM as well as actual data.

Transformation of Garbled RAM to Remove the Hard-Coding of
Keys. As is clear from the above description, the garbled RAM (D̃, P̃ , x̃) con-
sists of a collection of garbled circuits of three types: Cleaf ,Cnode and Cstep and
a collection of labels given in tabled garbled information of D̃ and x̃. Each of
these circuits have (partial) keys of other garbled circuits hard-coded inside them
and this structure of hard-coding is public and fixed independent of the actual
data, program and randomness of ORAM. In this work, we change the circuits
in garbled RAM construction as follows: We consider these hard-coded values as
additional inputs whose labels are given out at time of garbled RAM generation.
Once we remove the hard-coding of keys from inside these circuits, the structure
of these circuits is public and known to all. The remark below summarizes our
garbled RAM abstraction.

502 S. Garg et al.

Remark 2. Garbled RAM abstraction. The garbled RAM consists of a col-
lection of garbled circuits. The structure of these garbled circuits as well as
semantics of each of the input wires are public. For each of these garbled cir-
cuits, labels for partial inputs are revealed at the time of garbled RAM genera-
tion. Labels which are not revealed become known while evaluating the garbled
RAM. Labels which are revealed correspond to one of the following inputs: The
ones for which labels were given in Tab, earlier hardcoded keys, or the input x.

The semantics of the labels revealed in Tab corresponding to Cnode is public.
But, ORAM hides the semantics of the labels in Tab corresponding to Cleaf

and these depend on data values in memory at specific locations. Moreover, the
mapping of these leaves to locations of memory is also hidden by ORAM and is
determined by the randomness used by ORAM.

It is easy to see that the garbed RAM obtained after this transformation
is equivalent to the original garbled RAM of [11]. In the following, the garbled
RAM will refer to this simpler version of garbled RAM where circuits do not
have any hard-coded keys. This transformation would help in ensuring that the
secure computation protocols that we describe only make a black-box use of
cryptography.

4 Our Model

In this section we define the security of secure computation for RAM programs
for the case of persistent database. In this work, we consider both semi-honest as
well as malicious adversaries. A semi-honest adversary is guaranteed to follow the
protocol whereas a malicious adversary may deviate arbitrarily from the protocol
specification. In particular, a malicious adversary may refuse to participate in
the protocol, may use an input that is different from prescribed input, and may
be abort prematurely blocking the honest parties from getting the output. We
consider static corruption model, where the adversary may corrupt an arbitrary
collection of the parties, and this set is fixed before the start of the protocol. We
consider security with abort using real world and ideal world simulation based
definition. We consider a ideal computation using incorruptible third party to
whom parties send their inputs and receive outputs. This ideal scenario is secure
by definition. For security, we require that whatever harm the adversary can do
by interacting in the real protocol is mimicked by an ideal world adversary. We
provide a detailed formal description of our model in our full version.

Consider parties Q1, . . . , Qn holding secret database D1, . . . , Dn, respectively.
They want to compute a sequence of programs P = (P (1), . . . , P (�)) on the
persistent database D = D1|| . . . ||Dn. Qi has secret input x

(j)
i for program P (j).

The overall output of the ideal-world experiment consists of all the values
output by all parties at the end, and is denoted by IdealPS (1κ,D, {x(j)}j∈[�], z),
where z is the auxiliary input given to the ideal adversary S at the beginning.
In the case of an semi-honest adversary S, all parties receive the same output
from the trusted functionality. In the case of the malicious adversary, S after

Secure Multiparty RAM Computation in Constant Rounds 503

receiving the output from the trusted party, chooses a subset of honest parties
J ⊆ [n] \ I and sends J to the trusted functionality. Here, I ⊆ [n] denotes the
set of corrupt parties. The trusted party sends the output to parties in J and
special symbol ⊥ to all the other honest parties.

Similarly, the overall output of the real-world experiment consists of all the
values output by all parties at the end of the protocol, and is denoted by
RealπA(1κ,D, {x(j)}j∈[�], z), where z is the auxiliary input given to real world
adversary A. Then, security is defined as follows:

Definition 2 (Security). Let P = (P (1), . . . , P (�)) be a sequence of well-
formed RAM programs and let π be a n-party protocol for P . We say that
π securely computes P , if for every {Di, x

(1)
i , . . . , x

(�)
i }i∈[n], every auxiliary

input z, every real world adversary A, there exists an ideal world S such that
RealπA(1κ,D, {x(j)}j∈[�], z) ≈ IdealPS (1κ,D, {x(j)}j∈[�], z).

Efficiency: We also want the following efficiency guarantees. We consider the
following two natural scenarios: Below, M is the size of total database, i.e. M =
|D|, tj denotes the running time of P (j) and T = maxj tj

1. All parties do computation: In this case, for all the parties we require
the total communication complexity and computation complexity to be
bounded by M · poly(log M, log T, κ) +

∑
j∈[�] tj · poly(log M, log tj , κ) and

each party needs to store total database and program of size at most
M · poly(log M, log T, κ) + T · poly(log M, log T, κ). With each additional pro-
gram to be computed, the additional communication complexity should be
tj · poly(log M, log tj , κ).

2. Only one party does the computation: In this case, as before the commu-
nication complexity and computation complexity of the protocol is bounded
by M · poly(log M, log T, κ) +

∑
j∈[�] tj · poly(log M, log tj , κ). But, in some

cases such as semi-honest security, we can optimize on the space require-
ments of the parties and all parties do not require space proportional to the
total database. The one designated party who does the computation needs to
store M · poly(log M, log T, κ) + T · poly(log M, log T, κ). All the other parties
Qi only need to store their database of size |Di|.11

5 Semi-honest Multi-party RAM Computation

In this section, we describe the semi-honest secure protocol for RAM computa-
tion. We prove the following theorem.

Theorem 2. There exists a constant-round semi-honest secure multiparty pro-
tocol for secure RAM computation for the case of persistent database in the
OT-hybrid model that makes a black-box use of one-way functions. This protocol
satisfies the security and the efficiency requirements of Sect. 4.
11 During the protocol execution all parties would need space proportional to M ·

poly(log M, log T, κ) + T · poly(log M, log T, κ). Looking ahead, this is needed to run
a protocol which outputs the garbled RAM to the designated party.

504 S. Garg et al.

Below, we first describe a secure protocol for the case of a single program
execution for the case when all the parties compute the program and hence, need
space proportional to the total size of the database. Later, we describe how our
protocol can be extended to the case of multiple programs and optimizations of
load balancing.

Protocol Overview. Our goal is to construct a semi-honest secure protocol
for RAM computation. At a high level, in our protocol, the parties will run
a multiparty protocol (for circuits) to generate the garbled RAM. We want a
constant round protocol for secure computation that only makes a black-box
use of one-way functions in the OT-hybrid model. Such a protocol was given by
[2]. As already mentioned in technical overview, a näıve use of this protocol to
generate the garbled RAM results in a non-black-box use of one way functions.
The reason is the following: As explained before, the black-box garbled RAM of
[11] consists of a collection of garbled circuits and hence, uses one-way functions
inside it. Our main idea is to transform the garbled RAM of [11] in a way that
allows each party to compute the one-way functions locally so that the function-
ality we compute using [2] is non-cryptographic (or, information theoretic). To
achieve this, we again use ideas from distributed garbling scheme of [2]. Below
we review their main result and the underlying garbling technique.

5.1 Distributed Garbling Protocol of [2]

Following result was proven by [2].

Theorem 3 ([2]). There exists a constant-round semi-honest secure protocol for
secure computation for circuits, which makes black-box calls to PRG in the OT-
hybrid model. Let the protocol for a functionality F be denoted by ΠF

bmr and the
corresponding simulator be Simbmr.

We describe this protocol next at a high level. Some of the following text has
been taken from [22].

Suppose there are n parties Q1, . . . , Qn with inputs x1, . . . , xn. The goal is
the following: For any circuit C, at the end of the garbling protocol, each party
holds a garbled circuit C̃ corresponding to C and garbled input x̃ corresponding
to x = x1, . . . , xn. Then, each party can compute C̃ on x̃ locally. At a high
level, the evaluation is as follows: Recall that in a garbled circuit, each wire w
has two keys keyw

0 and keyw
1 : one corresponding to the bit being 0 and another

corresponding to the bit being 1. In the multiparty setting, each wire also has
a wire mask λw that determines the correspondence between the two wire keys
and the bit value. More precisely, the key keyw

b corresponds to the bit b ⊕ λw.
In the following, let F be a PRF and G be a PRG. The garbling protocol

Πsh
bmr is as follows:

– Stage 1. Party Qi picks a seed si for the PRF F . It generates its shares for
keys for all the wires of C and wire masks as follows: Define (kw

0 (i), kw
1 (i), λw

i) =

Secure Multiparty RAM Computation in Constant Rounds 505

Fsi
(w). In the final garbled circuit C̃, key for any wire w will be a concate-

nation of keys from all the parties. That is, keyw
b = kw

b (1) ◦ . . . ◦ kw
b (n) and

λw = λw
1 ⊕ . . . ⊕ λw

n .
– Stage 2. Recall that in a garbled circuit, for any gate, the keys for the output

wires are encrypted under the input keys for all the four possible values for the
inputs. These encryptions are stored in a garbled table corresponding to each
gate. For all garbled circuit constructions, this step of symmetric encryption
involves the use of one-way functions. In order to ensure black-box use of one-
way functions, each party will make the PRG call locally. The parties locally
expand their key parts into large strings that will be used as one-time pads
to encrypt the key for the output wire labels. More precisely, Qi expands
the key parts kw

0 (i) and kw
1 (i) using PRG G to obtain two new strings, i.e.,

(pw
b (i), qw

b (i)) = G(kw
b (i)), for b ∈ {0, 1}. Both pw

b (i) and qw
b (i) have length

n|kw
b (i)| = |keyw

b | (enough to encrypt the key for output wire). More precisely,
for every gate in C, a gate table is defined as follows: Let α, β be the two input
wires and γ be the output wire, and denote the gate operation by ⊗. Party
Qi holds the inputs pα

b (i), qα
b (i), pβ

b (i), qβ
b (i) for b ∈ {0, 1} along with shares of

masks λα
i , λβ

i , λγ
i . The garbled gate table is the following four encryptions:

Ag = pα
0 (1) ⊕ . . . ⊕ pα

0 (n) ⊕ pβ
0 (1) ⊕ . . . ⊕ pβ

0 (n)

⊕
{
kγ
0 (1) ◦ . . . ◦ kγ

0 (n) if λα ⊗ λβ = λγ

kγ
1 (1) ◦ . . . ◦ kγ

1 (n) otherwise
Bg = qα

0 (1) ⊕ . . . ⊕ qα
0 (n) ⊕ pβ

1 (1) ⊕ . . . ⊕ pβ
1 (n)

⊕
{
kγ
0 (1) ◦ . . . ◦ kγ

0 (n) if λα ⊗ λβ = λγ

kγ
1 (1) ◦ . . . ◦ kγ

1 (n) otherwise
Cg = pα

1 (1) ⊕ . . . ⊕ pα
1 (n) ⊕ qβ

0 (1) ⊕ . . . ⊕ qβ
0 (n)

⊕
{
kγ
0 (1) ◦ . . . ◦ kγ

0 (n) if λα ⊗ λβ = λγ

kγ
1 (1) ◦ . . . ◦ kγ

1 (n) otherwise
Dg = qα

1 (1) ⊕ . . . ⊕ qα
1 (n) ⊕ qβ

1 (1) ⊕ . . . ⊕ qβ
1 (n)

⊕
{
kγ
0 (1) ◦ . . . ◦ kγ

0 (n) if λα ⊗ λβ = λγ

kγ
1 (1) ◦ . . . ◦ kγ

1 (n) otherwise

In [2] this garbled table is generated by running a semi-honest secure computa-
tion protocol by the parties Q1, . . . , Qn. Here, for the secure computation pro-
tocol, the private input of party Qi are pα

b (i), qα
b (i), pβ

b (i), qβ
b (i), kγ

b (i), λα
i , λβ

i , λγ
i

for b ∈ {0, 1}. Note that the garbled table is an information theoretic (or, non-
cryptographic) function of the private inputs. Hence, the overall protocol is
information theoretic in the OT-hybrid model. Moreover, to get the constant
round result of [2], it was crucial that the garbled table generation circuit has
depth constant (in particular, 2).

– Stage 3. The parties also get the garbled input x̃. For a wire w with value
xw, let Λw = xw ⊕λw

1 ⊕ . . . ⊕λw
n . All parties get Λw, keyw

Λw . Parties also reveal
their masks for each output wire λo

i .
– Stage 4. Finally, given the garbled circuit C̃ consisting of all the garbled tables

and garbled input x̃, the parties can compute locally as follows: For any wire
w, ρw denote its correct value during evaluation. It is maintained that for any

506 S. Garg et al.

wire w, each party learns the masked value Λw and the label keyw
Λw where

Λw = λw ⊕ ρw. It is clearly true for the input wires. Now, for any gate g with
input wires α, β, each party knows Λα, keyα

Λα , Λβ , keyβ
Λβ . If (Λα, Λβ) = (0, 0),

decrypt the first row of the garbled gate, i.e., Ag, if (Λα, Λβ) = (0, 1) decrypt
Bg, if (Λα, Λβ) = (1, 0) decrypt Cg, and else if (Λα, Λβ) = (1, 1) decrypt Dg

and obtain keyγ = kγ(1) ◦ . . . ◦ kγ(n). Now, party Qi checks the following: If
kγ(i) = kγ

b (i) for some b ∈ {0, 1}, it sets Λγ = b. Else, party Qi aborts. Finally,
each parties computes the output using λo and Λo for the output wires.

5.2 Garbled RAM Instantiated with Distributed Garbling of BMR

The aforementioned garbling protocol implies a special distributed circuit gar-
bling scheme, which we refer to in the following as BMR scheme, denoted by
(GCircuitbmr,Evalbmr,CircSimbmr). It has the same syntax as the a secure circuit
garbling scheme, but with the special labeling structure described above. The
scheme has the following properties.

Black-box use of OWFs. The scheme only involves a black-box use of one-way
functions in the OT-hybrid model.

Security. Since the above protocol from [2] is a semi-honest secure computation
protocol, the BMR scheme is a secure circuit garbling scheme. That is, it does
not reveal anything beyond the output of the circuit C on x to an adversary
corrupting a set of parties I ⊂ [n]. More precisely, we can abstract out the BMR
scheme as well as its security as follows: Let us denote the collection of labels
used by party Qi using PRF si by Labelsi and the set of wire masks by λi.
Similarly, let LabelsI denote {Labelsi}i∈[I] and λI denote {λi}i∈[I]. Then, the
following lemma states the security of the BMR scheme.

Lemma 2 (Security of BMR garbling scheme). There exists a PPT
simulator CircSimbmr such that CircSimbmr(1κ, C, xI , LabelsI , λI , y) ≈ (C̃, x̃).
Here (C̃, x̃) correspond to the garbled circuit and the garbled input produced
in the real world using Πsh

bmr conditioned on (LabelsI , λI). We denote it by

GCircuitbmr(1κ, C, x)
∣
∣
∣
(LabelsI ,λI)

.

The proof of the above lemma follows from the security of [2].

Distributed garbling scheme of garbled RAM. Our next step is instan-
tiating the garbled RAM of [11] with the BMR circuit garbling scheme. As
mentioned in Lemma 2, the BMR scheme (GCircuitbmr,Evalbmr,CircSimbmr) is a
secure circuit garbling scheme. And we note that [11] makes a black-box use of
a secure circuit garbling scheme (GCircuit,Eval,CircSim). Our key observation is
that it can be instantiated using the BMR scheme. This would be very useful for
our protocol of secure computation for RAM programs. When we instantiate the
garbled RAM of [11] with the BMR scheme, the following lemma summarizes
the security of the resulting garbled RAM relying upon Lemma 2.

Secure Multiparty RAM Computation in Constant Rounds 507

Lemma 3 (Garbled RAM security with BMR garbling). Instantiating
the garbled RAM construction of [11] with the BMR circuit garbling scheme
(GCircuitbmr,Evalbmr,CircSimbmr) gives a secure garbled RAM scheme. In partic-
ular, the garbler picks s1, . . . , sn as the seeds of the PRF to generate the keys
of the garbled circuit. Let the ith set of keys be Labelsi. Denote the resulting
scheme by Grambmr. Denote the corresponding simulator for garbled RAM by
GramSimbmr, which would internally use CircSimbmr. Using the security of gar-
bled RAM and the security of BMR scheme, we have the following:

Grambmr(1κ, 1t,D, P, x) ≈c GramSimbmr(1κ, 1t, 1|D|, y),

where y denotes the output of P (D,x). In fact, using the security property of
CircSimbmr, we have the following stronger security property. Let (x = x1, . . . , xn)
and D = (D1|| . . . ||Dn). Let I ⊂ [n]. Then

Grambmr(1
κ, 1t, D, P, x, LabelsI , I) ≈c GramSimbmr(1

κ, 1t, 1|D|, (xI , DI , LabelsI), y).

Recall that a garbled RAM consists of a collection of garbled circuits along
with partial labels. It is easy to see that using the BMR garbling scheme preserves
the black-box nature of the garbled RAM construction of [11].

Removing the hard-coding of keys in the scheme of [11]. As mentioned
before, the garbled circuits in garbled RAM of [11] contain hard-coding of keys of
other garbled circuits. For ease of exposition, we remove this hard-coding of sen-
sitive information and provide the previously these values as additional inputs.12

Moreover, labels corresponding to these new inputs would be revealed at the time
of garbled RAM generation. More precisely, we would do the following:

Consider a circuit C in the original scheme of [11] which has the partial
keys of some circuit C ′ hardcoded inside it. Since we will be using the BMR
garbling scheme, key keyw

b of any wire w of C ′ consists of a concatenation of keys
kw
b (i) such that the party Qi contributes kw

b (i). Wire w will also have a mask
λw = λw

1 ⊕. . .⊕λw
n such that λw

i is contributed by party Qi. Now, the transformed
C will have input wires corresponding to each bit of keyw

0 and keyw
1 and also λw.

That is, the circuits along with having keys of some other circuits, will also
have masks for the corresponding wires.13 This is necessary for consistency and
correctness of evaluation of the garbled circuits. We further expand the input
λw into n bits as λw

1 , . . . , λw
n . Finally, input wires of C corresponding to kw

b (i)
for b ∈ {0, 1} and λw

i will correspond to input wires of party Qi. Note that the
transformed circuit falls in the framework of [2].

12 This would be useful in arguing that the functionality computed under generic MPC
is information theoretic as well as arguing efficiency while garbling multiple programs
w.r.t. a persistent database.

13 The circuits described in [11] will be modified naturally to include these mask bits
in evaluation. For example, consider a circuit which was originally producing output
qKeyx, where qKey was a collection of keys (two per bit) being selected by string x.
Now new circuit will output qKeyx⊕λ , where λ contains the mask bits for all wires
in x. Hence, if qKey was given as input, then we also need to provide λ as input.

508 S. Garg et al.

5.3 Semi-honest Secure Protocol for RAM Computation

In this section, we describe our constant-round protocol for semi-honest secure
multiparty RAM computation that only makes a black-box use of one-way func-
tions in the OT-hybrid model. The parties will run the semi-honest protocol
from [2] to collectively generate the garbled RAM and compute the garbled
RAM locally to obtain the output. As mentioned before, a näıve implementa-
tion of this idea results in a non-black-box use of one-way functions because a
garbled RAM consists of a bunch of garbled circuits (that use PRG inside them).
To overcome this issue, we will use the garbled RAM instantiation based on gar-
bling scheme of [2] described above (see Lemma 3) without the hard-coding of
keys. Here, the main idea is that each party invokes the one-way function locally
and off-the-shelf secure computation protocol is invoked only for an information
theoretic functionality (that we describe below). Moreover, recall that the gar-
bled RAM scheme with full security compiles a UMA-2 secure scheme with a
statistically secure ORAM. It is crucial for black-box nature of our protocol that
the ORAM scheme is statistical and does not use any cryptographic primitives.
Hence, intuitively, since the secure computation protocol of [2] is black-box, the
overall transformation is black-box in use of OWFs.

The functionality FGram. We begin by describing the functionality FGram

w.r.t. a program P that will be computed by the parties via the constant-round
black-box protocol of [2].

1. Inputs: The input of party Qi consists of xi, database Di, shares of keys for
all the garbled circuits denoted by Labelsi, all the wire masks denoted by λi,
the relevant PRG outputs on labels denoted by PRGi, and randomness for
ORAM ri.

2. Output: Each party gets the garbled RAM (D̃, P̃ , x̃) for program P promised
by Lemma 3. The randomness used by ORAM is computed as ⊕i∈[n]ri.

Now we argue that the above described functionality is information theoretic.
We first note that garbled RAM consists of a collection of garbled circuits and
the structure of these circuits as well as interconnection of these circuits is known
publicly. This is true because we have removed all the sensitive information that
was earlier hard-coded as additional input to the circuits. Moreover, the circuits
that are being garbled in [11] are information theoretic. This follows from the
fact that [11] only makes a black-box of one-way functions. Secondly, once all the
labels as well as PRG outputs are computed locally by the parties, the garble
table generation is information theoretic (see Sect. 5.1). Thirdly, the circuit to
compute the labels for partial inputs that are revealed at the time of garbled
RAM generation is information theoretic. This is because the values of those
partial inputs can be computed information theoretically from the inputs of the
parties. And finally, we use the fact that the ORAM used is statistical and hence,
information theoretic. Therefore, the overall functionality FGram is information
theoretic.

Secure Multiparty RAM Computation in Constant Rounds 509

Our protocol. Consider n parties Q1, . . . , Qn who want to compute a program
P . The party Qi holds an input xi and database Di. Let us denote the semi-
honest protocol for RAM computation of P by Πsh

RAM that is as follows:

– Step 1. Party Qi computes the inputs for the functionality FGram described
above. More precisely, party Qi does the following: It picks a seed si for a PRF
and randomness ri for ORAM. It generates its shares for keys to all wires of all
the circuits Labelsi by computing the PRF with key si on appropriate inputs.
It also picks a random mask for each wire λi. Party Qi also locally computes
the relevant PRG outputs PRGi needed for garbled tables (see Sect. 5.1).

– Step 2. The parties run the semi-honest secure protocol ΠFGram

bmr (provided by
Theorem 3) to compute the functionality FGram described above. Each party
will get the garbled RAM (D̃, P̃ , x̃) as output.

– Step 3. Each party runs GEvalD̃(P̃ , x̃) to obtain the output y.

Correctness. The correctness of the above protocol follows trivially from the
correctness of ΠFGram

bmr and correctness of garbled RAM of [11].

Round complexity. The round complexity of the above protocol is same as
the round complexity of ΠFGram

bmr . Hence, it is a constant by Theorem 3.

Black-box use of one-way functions. This follows from the fact that the
protocol ΠF

bmr in Theorem 3 only makes a black-box use of one-way functions in
the OT-hybrid model and that the functionality FGram is set up to be information
theoretic (as argued above).

Efficiency. First of all, [11] guarantees that the number of circuits needed for D̃
is only proportional to |D| up to poly-logarithmic factors, and that the number
of circuits needed for P̃ is proportional to the running time of P up to poly-
logarithmic factors. The functionality FGram that generates the garbled RAM
(D̃ and P̃) has size linear in the garbled RAM itself. And finally, the commu-
nication and computation complexities of ΠFGram

bmr grow linearly in the size of
FGram. Therefore the entire communication and computation complexities are
satisfactory.

Note that for the desired efficiency, it is crucial that we run a single MPC
protocol to generate all the garbled circuits instead of running multiple sessions
of MPC (each generating one garbled circuit) in parallel. This is because partial
labels for some garbled circuits depend on the actual database values and for
security it is crucial to hide which circuit corresponds to which index in the
database. This security guarantee is achieved by the use of ORAM in the gar-
bled RAM scheme. In our protocol, for security, the randomness of ORAM is
contributed by all the parties. Hence, separating the generation of garbled cir-
cuits would require all the parties to input the entire database to each garbled
circuit generation, and the resulting efficiency of garbling the database would be
at least quadratic in its size.

510 S. Garg et al.

5.4 Proof of Semi-Honest Security

In this section, we prove that the above protocol is secure against a semi-honest
adversary corrupting a set I ⊆ [n] of parties. We would rely on the semi-honest
security of garbled RAM from [11] when instantiated using the BMR garbling
scheme (see Lemma 3) as well as semi-honest security of ΠF

bmr (see Theorem 3).
We will define our simulator Simsh

mpc and prove that the view computed by Simsh
mpc

is indistinguishable from the view of the adversary in the real world.14

1. Simsh
mpc begins by corrupting the parties in set I and obtains the inputs xI =

{xi}i∈I and database DI = {Di}i∈I of the corrupt parties. Simsh
mpc queries

trusted functionality for program P on input (xI ,DI) and receives output y.
2. Simsh

mpc picks PRF keys si and randomness ri for ORAM for all i ∈ I. It
computes the shares of keys for all the wires of all the circuits Labelsi, wire
masks λi as well as PRG outputs PRGi honestly for all the corrupt parties.

3. Simsh
mpc invokes the simulator of the garbled RAM GramSimbmr(1κ, 1t, 1|D|,

(xI ,DI , LabelsI), y) to get the simulated garbled RAM. Let us denote it by
(D̃, P̃ , x̃).

4. Simsh
mpc now invokes Simbmr for functionality FGram where the inputs of the

corrupt parties are obtained in Step 2 above, that is, {(xi,Di, ri, Labelsi,
λi,PRGi)}i∈I and output is the simulated garbled RAM (D̃, P̃ , x̃). More
precisely, the simulator Simsh

mpc outputs Simbmr(1κ, {(xi,Di, ri, Labelsi, λi,

PRGi)}i∈I , (D̃, P̃ , x̃)).

Next, we show that the output of the simulator Simsh
mpc is indistinguishable

from the real execution via a sequence of hybrids Hyb0,Hyb1,Hyb2, where we
prove that the output of any pair of consecutive hybrids is indistinguishable. Hyb0
corresponds to the real execution and Hyb2 corresponds to the final simulation.

Hyb1: This is same as the hybrid Hyb0 except we simulate the protocol for ΠFGram

bmr

by using Simbmr with real garbled RAM as output. More precisely, this hybrid
is as follows:

1. For all i ∈ [n], let xi and Di denote the input and database respectively.
2. Pick PRF keys si and randomness ri for ORAM for all i ∈ [n].
3. For each i ∈ I, compute the shares of keys for all the wires of all the circuits,

wire masks as well as PRG outputs honestly for the corrupt parties. For the
party Qi, denote the collection of wire key shares by Labelsi, collection of wire
masks shares by λi and the collection of PRG outputs by PRGi.

4. Generate the garbled RAM (D̃, P̃ , x̃) honestly as Grambmr(1κ, 1t,D[n],
P, x[n], s[n]).

5. Run Simbmr for functionality FGram where the inputs of the corrupt parties
are obtained in Steps 2 and 3 above, that is, {(xi,Di, ri, Labelsi, λi,PRGi)}i∈I
and output is the garbled RAM (D̃, P̃ , x̃) obtained above. More precisely,
the simulator Simsh

mpc outputs Simbmr(1κ, {(xi,Di, ri, Labelsi, λi,PRGi)}i∈I ,

(D̃, P̃ , x̃)).
14 In the semi-honest setting, outputs of the honest parties are identical in the real

world and the ideal world.

Secure Multiparty RAM Computation in Constant Rounds 511

Intuitively, Hyb0 ≈c Hyb1 by the correctness and the semi-honest security
of the multi-party protocol from [2] used for computing the garbled RAM (see
Theorem 3 for formal security guarantee).

Hyb2: This is same as simulator Simsh
mpc. In other words, this is same

as the previous hybrid except instead of using actual circuits of gar-
bled RAM, we use simulated garbled circuits output by GramSimbmr on
GramSimbmr(1κ, 1t, 1|D|, (xI ,DI , LabelsI), y). Note that unlike previous hybrid,
this hybrid does not rely on the inputs and the database of honest parties.

Hybrids Hyb1 ≈c Hyb2 by Lemma 3.

5.5 Running More Than One Program on a Persistent Database

In this section, we provide a protocol for executing multiple programs
P (1), . . . , P (�) on a persistent database. For exposition, it suffices to describe
the case of P (1) and P (2), and it would be easy to extend to more programs in
a natural way.

Recall that the garbled memory consists of a collection of garbled circuits that
get consumed when a program is executed. Note that for security each garbled
circuit can only be executed on a single input. Hence, the main issue in executing
multiple programs on a persistent memory (as already observed by [11]) is that
we need a way to replenish the circuits in the memory so that we can allow for
more reads/writes by programs. To address this challenge, [11] gave a mechanism
for replenishing circuits obliviously where each garbled program running for time
T also generates enough garbled circuits for memory to support T more reads.
Recall that the garbled memory consists of a tree of garbled circuits where each
node consists of a sequence of garbled circuits. In [11], since the execution of the
program P (1) as well as which circuits get consumed is hidden from the garbler,
they need a more sophisticated oblivious technique for replenishing. This can
be simplified in our setting because all the parties execute the garbled RAM for
D,P (1) and hence, know which garbled circuits have been consumed and need
to be replenished at any node of the tree.

At the time of garbling of the second program P (2), the parties would com-
pute the functionality FRep described next.

The functionality FRep. This functionality guarantees that the parties replen-
ish the garbled memory to support M reads before executing the program P (2),
where M is the size of the database. The garbled circuits that need to be replen-
ished is determined by the execution of P (1) and hence, is known to all the
parties.

1. Inputs: The input of party Qi consists of xi (inputs for program P (2)), shares
of keys, wire masks needed for the garbled circuits of program P (2) as well
as share of keys, wire masks for the memory garbled circuits to be added.
Note that these keys and wire masks for garbled circuits of the program and
memory need to be consistent with previously generated garbled circuits. As
before, we denote these by Labelsi and λi respectively. Parties also generate
the relevant PRG outputs on labels denoted by PRGi.

512 S. Garg et al.

2. Output: Each party gets the garbled program and garble input (P̃ (2), x̃(2))
for program P (2), as well as more garbled circuits for the memory which
restores the garbled memory to support M more reads.

Our protocol. We describe the protocol for running P (1) and P (2) on a per-
sistent database D below. Note that at a high level, the following invariant is
maintained. Before executing a program, the memory is replenished to support
M reads, where M is the size of the memory (which is w.l.o.g. greater than the
running time of the program).

– Step 1. The parties Q1, . . . , Qn run the protocol Πsh
RAM to generate the gar-

bled RAM D̃(1), P̃ (1), x̃(1). Each party Qi executes the above garbled RAM to
obtain the output y(1) and the resulting garbled memory D̃′(1). (The parties
know what all garbled circuits got consumed from the garbled memory and
need to be replenished.)

– Step 2. Party Qi computes the inputs for the functionality FRep described
above. More precisely, party Qi does the following: It uses its PRF seed si to
generate its shares for all keys needed for generating the new circuits Labelsi. It
picks a random mask for each wire λi, and locally computes the relevant PRG
outputs PRGi needed for garbled tables. Note that the shares for keys and wire
masks need to be consistent with previously generated garbled circuits. Since
we are in the semi-honest setting, we can safely assume that the consistency
is maintained.

– Step 3. The parties run the semi-honest secure protocol ΠFRep

bmr to compute
the functionality FRep described above. Each party will obtain the garbled
program and garbled input (P̃ (2), x̃(2)). Each party will also get more circuits
for the memory which restores the garbled memory to support M more reads,
thus obtaining an updated garbled memory D̃(2).

– Step 4. Each party runs GEvalD̃
(2)

(P̃ (2), x̃(2)) to obtain the output y(2) and

modified garbled memory D̃′(2).

The correctness, constant round complexity, and black-box use of one-way func-
tions of the protocol can be argued similarly as before in Sect. 5.4. A crucial
idea in arguing correctness is that the structure of the garbled circuits needed
is public and the keys of new circuits should be consistent with previously gen-
erated garbled circuits. This is easy to ensure as the parties behave honestly in
generating consistent labels using the same PRF keys as before.

Efficiency. We argue that the complexity of garbling second program is propor-
tional to the running time of P (2) up to poly-logarithmic factors. The argument
follows in a similar manner as Sect. 5.4. First note that the number of garbled
circuits in garbled program P̃ (2) is proportional to the running time of P (2). The
replenishing mechanism of [11] ensures that the number of new circuits needed
is only proportional to the running time of P (1) up to poly-logarithmic factors

Secure Multiparty RAM Computation in Constant Rounds 513

(since these are the number of circuits consumed from memory while running
P (1) program).15

It is crucial to note that the cost of replenishing does not grow with the
size of the memory. We note that replenishing does not require the database
contents or the randomness used by ORAM as input. More precisely, for any
node in the tree of the garbled memory, adding more circuits to that node only
requires knowledge of the labels used in the previous circuit in that node and
being consistent with that.16

Security. We can argue the semi-honest security of the above protocol as follows:
The simulator needs to simulate the view of the adversary for all the program
executions using the corresponding simulator of garbled RAM provided by [11] as
before. The only non-triviality is that the underlying simulator of garbled RAM
would need to know the outputs of all the executions in order to do successful
simulation of garbled RAM. Since we are the semi-honest setting, these are easy
to compute. This is because since all the parties are semi-honest, the parties
choose the inputs for different execution just based on their previous inputs and
outputs. This choice does not depend on the garbled RAM given to the parties
in the real execution. This will be the major bottleneck for the malicious setting
and we will revisit this point later.17

At a high level, our simulator for the persistent database would do the follow-
ing. As before, let I ⊂ [n] denote the set of corrupt parties. The simulator will
use DI and x

(1)
I of corrupt parties to learn the output y(1) from the trusted func-

tionality. Then, it will use the honest party strategy to compute the next round
of adversarial inputs x

(2)
I for the second program, and learn the output y(2). This

way the simulator learns the outputs y(1), . . . , y(�) for all the executions. Now
we can use the simulator of [11] to simulate the garbled RAM consisting of all
the garbled circuits. Finally, we use the simulator Simbmr on garbled RAM to
simulate the view of adversary for all the program executions. The argument of
indistinguishability follows in the same manner as proof of a single program in
Sect. 5.4.

5.6 Load Balancing

In the protocol we have described above for semi-honest RAM computation, each
party gets a garbled RAM, which can be computed locally. This requires each
party to store information whose size is at least as large as size of total database.
In some settings, this might not be desired. In the semi-honest setting it is easy
to guarantee security even when only one party stores the garbled memory and
15 For ease of calculation, we can include of replenishing after running P (1) in the cost

of P (1) and cost of replenishing after P (2) in the cost of P (2) and so on.
16 This is because the keys of the successor circuit are already fed as input to the

predecessor and the new circuit just has to be consistent to the previously generated
circuit.

17 Note that a malicious party might choose its inputs for the second program execution
based on the garbled memory obtained in the first execution.

514 S. Garg et al.

computes the program. We can simply modify the protocol such that only one
party gets the garbled RAM as output. All the other parties get no output. The
party which gets the garbled RAM, computes it, and sends the output of the
computation to all the other parties. Since we are in the semi-honest setting, it
is easy to see that this protocol is correct and secure given the correctness and
security of the original protocol.

6 Malicious Setting

In this section, we show how the semi-honest protocol presented in Sect. 5 can
be extended using appropriate tools to work for the malicious setting in the case
of non-persistent database.18 We show the following result:

Theorem 4. There exists a constant-round malicious secure multiparty proto-
col in the OT-hybrid model that makes a black-box use of one-way functions
for secure RAM computation for the case of non-persistent database satisfying
security and efficiency requirements of Sect. 4.

Protocol Overview. We first recall the semi-honest protocol from Sect. 5.3 at
a high level. In the first step, each party picks a seed of a PRF and computes
the share of keys and masks for all the circuits in the garbled RAM as output of
the PRF as well as the PRG outputs on all the key shares. The parties also pick
randomness for statistical ORAM such that final randomness used is the sum of
the randomness from all the parties. Next, the parties run the constant round
protocol of [2] to generate all the garbled circuits for the garbled RAM of [11]
instantiated with distributed garbling scheme (see Lemma 3). A key point was
that the functionality FGram executed via the secure computation protocol is
information theoretic that gives us a black-box constant-round protocol. In this
section, we would extend these ideas to construct a malicious secure protocol as
follows:

To protect against malicious behavior, we need to ensure that the adversary
behaves honestly in the above high-level protocol. Towards this, we transform
the above protocol as follows: The first step is to replace the execution of ΠFGram

bmr

with a malicious secure computation protocol. Since the overall goal is to get a
constant round protocol for RAM which makes a black-box use of PRG in the
OT-hybrid model, we use the protocol from [30] that gives such a protocol for
circuits. Denote this protocol by ΠFGram

ips . More formally, the following theorem
was proven by [30].

Theorem 5 ([30], Theorem3). For any n ≥ 2 there exists an n-party
constant-round secure computation protocol in the OT-hybrid model which makes
a black-box use of a pseudorandom generator and achieves computational UC-
security against an active adversary which may adaptively corrupt at most n− 1
parties.

18 We address the issue of persistent database at the end of this section.

Secure Multiparty RAM Computation in Constant Rounds 515

Let Simips be the simulator provided by the above theorem. In our case,
we only need stand-alone security against a static malicious adversary which is
weaker than what is provided by the above theorem.

Next, recall that in a distributed garbling scheme of Sect. 5.2, each party
computes shares of labels using a PRF seed as well as PRG outputs on these
labels to be used in garbling of individual gates. If we can ensure that a malicious
party correctly computes the labels as outputs of a PRF and also the PRG out-
puts, intuitively the security would follow similarly to the semi-honest scenario
by relying on the malicious security of ΠFGram

ips . Since the goal is to construct a
protocol that only makes a black-box of one-way functions, we cannot make the
parties prove that they computed the PRF or PRG values correctly. In particu-
lar, proving correctness of PRF and PRG outputs would lead to a non-black-box
use of cryptography. To solve this issue we make two key observations described
below.

First, we observe that in any scheme for circuit garbling as well as garbled
RAM, the wire labels are chosen to be outputs of a PRF only for efficiency and
not security. That is, even if malicious parties choose these labels as arbitrarily
chosen strings, it does not compromise the security of the garbled circuits, or
garbled RAM scheme, and hence, our construction. But, the correct computation
of PRG values used to encrypt the keys in garbled gate tables, is indeed critical.
In fact, if a malicious party feeds the wrong output of PRG in computing of
the garbled tables, it can cause the honest parties to abort during evaluation of
garbled circuits or garbled RAM.19 Note that an adversary can choose to cause
this abort selectively by computing, let us say, most PRG outputs correctly and
only a few incorrectly. This seems highly problematic at first, since this can
lead to the problem of selective abort based on the inputs of honest parties and
would break security. Our key observation is that the probability of this abort
happening is independent of the inputs of the honest parties and is, indeed,
simulatable given just the labels and the PRG outputs used by the adversary
during the secure computation. This holds because of the following:

1. In the distributed garbling scheme, during evaluation, all parties decrypt the
same row during evaluation (See Sects. 5.1 and 5.2 for details). That is, the
adversary as well as the honest parties decrypt the same row for all the gate
tables. Now, since this scheme is semi-honest secure, which row is decrypted
during evaluation is independent of the honest parties’ inputs. In fact, it
depends on the mask value λw for the wires which is secret shared among all
parties and hence, hidden from all the parties.

2. The protocol ΠFGram

ips is a correct and malicious secure protocol. Hence, the
simulator of ΠFGram

ips would extract an input for the adversary that consists of
xi,Di, ri, Labelsi,PRGi for all corrupt parties. Here, Labelsi and PRGi corre-
spond to the label shares and PRG outputs used by Qi. Looking at these,

19 Recall that during evaluation, when a party Qi decrypts the key for the output of
a gate, it aborts if the ith sub-part of the key does not match either the 0 or 1 key
of Qi.

516 S. Garg et al.

the simulator can check which PRG outputs have been computed incorrectly.
Moreover, each PRG value is used in exactly one row of one gate table that is
fixed. Now, as mentioned before, incorrect PRG values can cause an honest
party to abort. But, whether Qi aborts or not is independent of input of Qi

or any other party because of the following: The adversary feeds a PRG value
to mask the keys in this row of garbled table, which acts independently on
kw
b (i) for each i. This is because keyw

b = kw
b (1) ◦ . . . ◦ kw

b (n). If the PRG value
used by the adversary does not match the correct PRG output for masking
kw
b (i), then w.h.p. it would not match the keys of Qi for both 0 and 1 and the

party Qi would abort. This behavior is completely simulatable just given the
input of the adversary.

In short, the adversary can only control whether an honest party Qi aborts
or not on some specific gate. The adversary cannot set up the incorrect PRG
values to change the label from 0 to 1 for an honest party because honest labels
are chosen to be outputs of a PRF. We can continue the same argument for each
gate to conclude that the adversary cannot make an honest party compute a
wrong output.

Recall that each garbled gate has 4 rows of encryptions. For any gate, the
adversary can behave honestly for α rows of the gate and cheat in 4−α rows. In
this case, the honest party would abort with probability 1−α/4, again indepen-
dent of inputs as which row gets decrypted during evaluation is uniform (depends
only on mask values). This cheating behavior is simulatable as well.

6.1 Our Protocol

We now describe our protocol for constant-round malicious secure RAM compu-
tation denoted by Πmal

RAM. This protocol is same as the semi-honest secure protocol
with one change that we use malicious secure protocol ΠFGram

ips from [30] instead of
semi-honest secure ΠFGram

bmr to compute the garbled RAM in a distributed manner.
Recall the functionality FGram described in Sect. 5.3 that takes as input the

shares of randomness for ORAM, keys for all wires of all the garbled circuits,
PRG outputs used in generating garbled tables (see Sect. 5.1), share of wire
masks as well as inputs x1, . . . , xn and data base D1, . . . , Dn and produces the
corresponding garbled RAM for P as output. The randomness used for ORAM
is the sum of the shares of randomness from all the parties. Note that as argued
in Sect. 5.3, the functionality FGram is information theoretic and does not use
oneway function or any other cryptographic primitives.20 Now the protocol Πmal

RAM

is as follows:

– Step 1. Party Qi computes the inputs for the functionality FGram. More pre-
cisely, party Qi does the following: It picks a seed si for a PRF and randomness
ri for ORAM. It generates its shares for keys to all wires of all the circuits
Labelsi by computing the PRF with key si on appropriate inputs. It also picks

20 This is because ORAM is statistical and garble table generation is information the-
oretic once wire labels as well PRG outputs are known.

Secure Multiparty RAM Computation in Constant Rounds 517

a random mask for each wire λi. Party Qi also locally computes the relevant
PRG outputs PRGi needed for garbled tables (see Sect. 5.1).

– Step 2. The parties run the constant round malicious secure protocol ΠFGram

ips

(provided by [30]) to compute the functionality FGram. Each party will get
the garbled RAM (D̃, P̃ , x̃) as output.

– Step 3. Each party runs GEvalD̃(P̃ , x̃) to obtain the output21 y.

Similar to the semi-honest case, the correctness, the constant round-
complexity and the black-box nature of the above protocol follow in a straight-
forward manner from the corresponding properties of ΠFGram

ips as well as garbled
RAM of [11].

The formal proof of malicious security of this protocol appears in Sect. 6.2.

The case of persistent database. As noted earlier, we do not handle the case
of persistent database against malicious adversaries, as remarked below:

Remark 3. We leave open the problem of realizing a solution against malicious
adversaries for the persistent database setting. Realizing a solution that supports
persistent database would involve realizing garbled RAM with adaptive input
security. Specifically, a garbled RAM solution for which the inputs on which the
persistent garbled RAM is invoked can be chosen depending on the provided
garbled RAM itself. In order to construct such a scheme, efficient garbled circuit
construction satisfying analogous stronger security properties is needed. No con-
struction for such garbled circuits are known based on the standard assumptions
(i.e., without random-oracle model).

6.2 Proof of Malicious Security

In this section, we prove that the above protocol is secure against a malicious
adversary corrupting a set I ⊆ [n] of parties. We will construct a simulator
Simmal

mpc and prove that the joint distribution of the view computed by Simmal
mpc

and the outputs of the honest parties is indistinguishable from the real world.
Let us denote the collection of labels used by party Qi by Labelsi, set of PRG

outputs by PRGi and the set of wire masks by λi. Note that while generating the
garbled RAM, an honest party uses the correct PRG outputs but a malicious
party may use arbitrary strings. Let P̂RGi denote the correct PRG outputs
corresponding to Labelsi.Sim

mal
mpc works as follows.

1. Simmal
mpc begins by corrupting the parties in set I.

2. Next, Simmal
mpc runs Simips for functionality FGram that would begin by extract-

ing the inputs xI = {xi}i∈I and database DI = {Di}i∈I of the corrupt par-
ties as well as the collection of labels LabelsI , PRG values PRGI , wire masks
λI and ORAM randomness share rI .

21 Since we are in the malicious setting, some honest parties may output ⊥. This would
be captured by the ideal world adversary described later.

518 S. Garg et al.

3. Simmal
mpc queries trusted functionality for program P on input (xI ,DI) and

receives output y.
4. Simmal

mpc runs a simulator GramSim′
bmr on (1κ, 1t, 1|D|, (xI ,DI , LabelsI ,

PRGI), y) to obtain the simulated garbled RAM. Let us denote it by (D̃, P̃ , x̃).
Here, GramSim′

bmr denotes the stronger version22 of GramSimbmr that uses
PRGI instead of P̂RGI . We describe this simulator formally in full version.

5. Simmal
mpc gives (D̃, P̃ , x̃) to Simips as the output of the secure computation

protocol of ΠFGram

ips . Simips will now simulate the view of the adversary in the
protocol ΠFGram

ips .
6. Simmal

mpc computes the set J ⊆ [n]\I of honest parties who receive the output.
Details on how to do this are described below. Simmal

mpc will now send J to the
trusted functionality.

Computing the set J of honest parties who receive the output in
ideal world. Simmal

mpc runs GramSimbmr((1κ, 1t, 1|D|, (xI ,DI , LabelsI), y) to com-
pute the honest garbled RAM (D̂, P̂ , x̂) and executes it. This defines the set of
relevant rows as the ones that need to be decrypted in any gate that is executed
for any garbled circuit. Note that an honest party aborts iff decryption of at
least one of the relevant row fails. Moreover, decryption fails for party Qj if the
jth part of the decrypted label matches neither the party’s label 0 nor label 1.

For simplicity, consider one such relevant row that is used during execution.
W.l.o.g. it is enough to consider the xor of PRG values input by the adversary
on behalf of all corrupt parties. For this row, let p̂rg = â1 ◦ . . .◦ ân define the xor
of correct PRG values from the adversary and prg = a1 ◦ . . . ◦ an denote the xor
of PRG values used by the adversary. Here, intuitively, âj or aj defines the part
of PRG value used to mask the part of the label contributed by party Qj . See
Sect. 5.1 for details of each gate garbling. The index j ∈ [n] \ I belongs to set J
iff âj = aj for all relevant rows. That is, only then the honest party Qj is able
to decrypt all the relevant rows correctly. Note that since honest party chooses
its labels as outputs of a PRF, the encryption of label 0 cannot be decrypted
as label 1. This happens only when âj ⊕ aj = kw

0 (j) ⊕ kw
1 (j), which happens with

negligible probability in κ.
For a formal proof of indistinguishability of views of real and ideal worlds,

refer to the full version of the paper.

References

1. Beaver, D.: Correlated pseudorandomness and the complexity of private computa-
tions. In: 28th ACM STOC, pp. 479–488. ACM Press, May 1996

22 Recall that PRG outputs are only used to mask the keys of the output wire (see
gate garbled technique in Sect. 5.1). This simulator uses the PRG values provided
by the adversary instead of correct PRG outputs. This change can be described by
a simple deterministic transformation on output of GramSimbmr.

Secure Multiparty RAM Computation in Constant Rounds 519

2. Beaver, D., Micali, S., Rogaway, P.: The round complexity of secure protocols
(extended abstract). In: 22nd ACM STOC, pp. 503–513. ACM Press, May 1990

3. Bellare, M., Hoang, V.T., Rogaway, P.: Foundations of garbled circuits. In: Yu, T.,
Danezis, G., Gligor, V.D. (eds.) ACM CCS 2012, pp. 784–796. ACM Press (2012)

4. Bitansky, N., Garg, S., Telang, S.: Succinct randomized encodings and their appli-
cations. Cryptology ePrint Archive, Report 2014/771 (2014). http://eprint.iacr.
org/2014/771

5. Blum, M., Feldman, P., Micali, S.: Non-interactive zero-knowledge and its appli-
cations. In: STOC, pp. 103–112 (1988)

6. Canetti, R., Holmgren, J., Jain, A., Vaikuntanathan, V.: Indistinguishability obfus-
cation of iterated circuits and RAM programs. Cryptology ePrint Archive, Report
2014/769 (2014). http://eprint.iacr.org/2014/769

7. Cook, S.A., Reckhow, R.A.: Time bounded random access machines. J. Comput.
Syst. Sci. 7(4), 354–375 (1973)

8. Feige, U., Lapidot, D., Shamir, A.: Multiple non-interactive zero knowledge proofs
under general assumptions. SIAM J. Comput. 29(1), 1–28 (1999)

9. Garg, S., Gentry, C., Halevi, S.: Candidate multilinear maps from ideal lattices.
In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp.
1–17. Springer, Heidelberg (2013). doi:10.1007/978-3-642-38348-9 1

10. Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.: Candidate
indistinguishability obfuscation and functional encryption for all circuits. In: 54th
FOCS, pp. 40–49. IEEE Computer Society Press, October 2013

11. Garg, S., Lu, S., Ostrovsky, R.: Black-box garbled RAM. In: 56th Annual IEEE
Symposium on Foundations of Computer Science (2015)

12. Garg, S., Lu, S., Ostrovsky, R., Scafuro, A.: Garbled RAM from one-way functions.
In: Servedio, R.A., Rubinfeld, R. (eds.) 47th ACM STOC, pp. 449–458. ACM Press
(2015)

13. Gentry, C.: Fully homomorphic encryption using ideal lattices. In: Mitzenmacher,
M. (ed.) 41st ACM STOC, pp. 169–178. ACM Press, May/June 2009

14. Gentry, C., Halevi, S., Lu, S., Ostrovsky, R., Raykova, M., Wichs, D.: Garbled RAM
revisited. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol.
8441, pp. 405–422. Springer, Heidelberg (2014). doi:10.1007/978-3-642-55220-5 23

15. Gentry, C., Halevi, S., Raykova, M., Wichs, D.: Outsourcing private RAM com-
putation. In: 55th FOCS, pp. 404–413. IEEE Computer Society Press, October
2014

16. Goldreich, O.: Towards a theory of software protection and simulation by oblivious
RAMs. In: Aho, A. (ed.) 19th ACM STOC, pp. 182–194. ACM Press (1987)

17. Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game or a com-
pleteness theorem for protocols with honest majority. In: Aho, A. (ed.) 19th ACM
STOC, pp. 218–229. ACM Press (1987)

18. Goldreich, O., Ostrovsky, R.: Software protection and simulation on oblivious
RAMs. J. ACM 43(3), 431–473 (1996)

19. Goldwasser, S., Kalai, Y.T., Popa, R.A., Vaikuntanathan, V., Zeldovich, N.: How
to run turing machines on encrypted data. In: Canetti, R., Garay, J.A. (eds.)
CRYPTO 2013. LNCS, vol. 8043, pp. 536–553. Springer, Heidelberg (2013). doi:10.
1007/978-3-642-40084-1 30

20. Gordon, S.D., Katz, J., Kolesnikov, V., Krell, F., Malkin, T., Raykova, M., Vahlis,
Y.: Secure two-party computation in sublinear (amortized) time. In: CCS (2012)

21. Goyal, V., Lee, C.K., Ostrovsky, R., Visconti, I.: Constructing non-malleable com-
mitments: a black-box approach. In: 53rd FOCS, pp. 51–60. IEEE Computer Soci-
ety Press, October 2012

http://eprint.iacr.org/2014/771
http://eprint.iacr.org/2014/771
http://eprint.iacr.org/2014/769
http://dx.doi.org/10.1007/978-3-642-38348-9_1
http://dx.doi.org/10.1007/978-3-642-55220-5_23
http://dx.doi.org/10.1007/978-3-642-40084-1_30
http://dx.doi.org/10.1007/978-3-642-40084-1_30

520 S. Garg et al.

22. Goyal, V., Mohassel, P., Smith, A.: Efficient two party and multi party computation
against covert adversaries. In: Smart, N. (ed.) EUROCRYPT 2008. LNCS, vol.
4965, pp. 289–306. Springer, Heidelberg (2008). doi:10.1007/978-3-540-78967-3 17

23. Goyal, V., Ostrovsky, R., Scafuro, A., Visconti, I.: Black-box non-black-box zero
knowledge. In: Shmoys, D.B. (ed.) 46th ACM STOC. pp. 515–524. ACM Press,
May/June 2014

24. Groth, J., Ostrovsky, R., Sahai, A.: Perfect non-interactive zero knowledge for NP.
In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 339–358. Springer,
Heidelberg (2006). doi:10.1007/11761679 21

25. Hazay, C., Yanai, A.: Constant-round maliciously secure two-party computation
in the RAM model. In: TCC (2016-B)

26. Impagliazzo, R., Rudich, S.: Limits on the provable consequences of one-way per-
mutations. In: 21st ACM STOC, pp. 44–61. ACM Press, May 1989

27. Impagliazzo, R., Rudich, S.: Limits on the provable consequences of one-way per-
mutations. In: Goldwasser, S. (ed.) CRYPTO 1988. LNCS, vol. 403, pp. 8–26.
Springer, Heidelberg (1990). doi:10.1007/0-387-34799-2 2

28. Ishai, Y., Kilian, J., Nissim, K., Petrank, E.: Extending oblivious transfers effi-
ciently. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 145–161. Springer,
Heidelberg (2003). doi:10.1007/978-3-540-45146-4 9

29. Ishai, Y., Kushilevitz, E., Lindell, Y., Petrank, E.: Black-box constructions for
secure computation. In: Kleinberg, J.M. (ed.) 38th ACM STOC, pp. 99–108. ACM
Press (2006)

30. Ishai, Y., Prabhakaran, M., Sahai, A.: Founding cryptography on oblivious transfer
– efficiently. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 572–591.
Springer, Heidelberg (2008). doi:10.1007/978-3-540-85174-5 32

31. Lin, H., Pass, R.: Succinct garbling schemes and applications. Cryptology ePrint
Archive, Report 2014/766 (2014). http://eprint.iacr.org/2014/766

32. Lu, S., Ostrovsky, R.: How to garble RAM programs? In: Johansson, T.,
Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 719–734. Springer,
Heidelberg (2013). doi:10.1007/978-3-642-38348-9 42

33. Miao, P.: Cut-and-choose for garbled RAM. Personal Communication (2016)
34. Nielsen, J.B., Orlandi, C.: LEGO for two-party secure computation. In: Reingold,

O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 368–386. Springer, Heidelberg (2009).
doi:10.1007/978-3-642-00457-5 22

35. Ostrovsky, R.: Efficient computation on oblivious RAMs. In: 22nd ACM STOC,
pp. 514–523. ACM Press, May 1990

36. Ostrovsky, R., Shoup, V.: Private information storage (extended abstract). In: 29th
ACM STOC, pp. 294–303. ACM Press, May 1997

37. Pass, R., Wee, H.: Black-box constructions of two-party protocols from one-way
functions. In: Reingold, O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 403–418. Springer,
Heidelberg (2009). doi:10.1007/978-3-642-00457-5 24

38. Pippenger, N., Fischer, M.J.: Relations among complexity measures. J. ACM
26(2), 361–381 (1979)

39. Regev, O.: On lattices, learning with errors, random linear codes, and cryptogra-
phy. In: Gabow, H.N., Fagin, R. (eds.) 37th ACM STOC, pp. 84–93. ACM Press
(2005)

40. Wee, H.: Black-box, round-efficient secure computation via non-malleability ampli-
fication. In: 51st FOCS, pp. 531–540. IEEE Computer Society Press, October 2010

41. Yao, A.C.C.: Protocols for secure computations (extended abstract). In: 23rd
FOCS, pp. 160–164. IEEE Computer Society Press, November 1982

http://dx.doi.org/10.1007/978-3-540-78967-3_17
http://dx.doi.org/10.1007/11761679_21
http://dx.doi.org/10.1007/0-387-34799-2_2
http://dx.doi.org/10.1007/978-3-540-45146-4_9
http://dx.doi.org/10.1007/978-3-540-85174-5_32
http://eprint.iacr.org/2014/766
http://dx.doi.org/10.1007/978-3-642-38348-9_42
http://dx.doi.org/10.1007/978-3-642-00457-5_22
http://dx.doi.org/10.1007/978-3-642-00457-5_24

Constant-Round Maliciously Secure Two-Party
Computation in the RAM Model

Carmit Hazay(B) and Avishay Yanai

Bar Ilan University, Ramat Gan, Israel
carmit.hazay@biu.ac.il, ay.yanay@gmail.com

Abstract. The random-access memory (RAM) model of computation
allows program constant-time memory lookup and is more applicable in
practice today, covering many important algorithms. This is in contrast
to the classic setting of secure 2-party computation (2PC) that mostly
follows the approach for which the desired functionality must be rep-
resented as a boolean circuit. In this work we design the first constant
round maliciously secure two-party protocol in the RAM model. Our
starting point is the garbled RAM construction of Gentry et al. [16] that
readily induces a constant round semi-honest two-party protocol for any
RAM program assuming identity-based encryption schemes. We show
how to enhance the security of their construction into the malicious set-
ting while facing several challenges that stem due to handling the data
memory. Next, we show how to apply our techniques to a more recent
garbled RAM construction by Garg et al. [13] that is based on one-way
functions.

1 Introduction

Background on Secure Computation. Secure multi-party computation enables a
set of parties to mutually run a protocol that computes some function f on
their private inputs, while preserving a number of security properties. Two of
the most important properties are privacy and correctness. The former implies
data confidentiality, namely, nothing leaks by the protocol execution but the
computed output. The latter requirement implies that the protocol enforces the
integrity of the computations made by the parties, namely, honest parties learn
the correct output. More generally, a rigorous security definition requires that
distrusting parties with secret inputs will be able to compute a function of their
inputs as if the computation is executed in an ideal setting, where the parties
send their inputs to a incorruptible trusted party that performs the computation

Supported by the European Research Council under the ERC consolidators grant
agreement no. 615172 (HIPS) and by the BIU Center for Research in Applied Cryp-
tography and Cyber Security in conjunction with the Israel National Cyber Bureau
in the Prime Minister’s Office. First author’s research partially supported by a grant
from the Israel Ministry of Science and Technology (grant No. 3-10883).
This paper was presented jointly with [11] in proceedings of the 14th IACR Theory
of Cryptography Conference (TCC) 2016-B.

c© International Association for Cryptologic Research 2016
M. Hirt and A. Smith (Eds.): TCC 2016-B, Part I, LNCS 9985, pp. 521–553, 2016.
DOI: 10.1007/978-3-662-53641-4 20

522 C. Hazay and A. Yanai

and returns its result (also known by the ideal/real paradigm). The feasibility of
secure computation has been established by a sequence of works [2,7,19,36,48],
proving security under this rigorous definition with respect to two adversarial
models: the semi-honest model (where the adversary follows the instructions of
the protocol but tries to learn more than it should from the protocol transcript),
and the malicious model (where the adversary follows an arbitrary polynomial-
time strategy).

Following these works much effort was put in order to improve the efficiency
of computation with the aim of minimizing the workload of the parties [24–
27,30–32,37,39]. These general-purpose protocols are restricted to functions rep-
resented by Boolean/arithmetic circuits. Namely, the function is first translated
into a (typically Boolean) circuit and then the protocol securely evaluates it
gate-by-gate on the parties’ private inputs. This approach, however, falls short
when the computation involves access to a large memory since in the circuits-
based approach, dynamic memory accesses, which depend on the secret inputs,
are translated into a linear scan of the memory. This translation is required for
every memory access and causes a huge blowup in the description of the circuit.

The RAM Model of Computation. We further note that the majority of applica-
tions encountered in practice today are more efficiently captured using random-
access memory (RAM) programs that allow constant-time memory lookup. This
covers graph algorithms, such as the known Dijkstra’s shortest path algorithm,
binary search on sorted data, finding the kth-ranked element, the Gale-Shapely
stable matching algorithm and many more. This is in contrast to the sequen-
tial memory access that is supported by the architecture of Turing machines.
Generic transformations from RAM programs that run in time T generate cir-
cuits of size (T 3 log T) which are non-scalable even for cases where the memory
size is relatively small [9,40].

To address these limitations, researchers have recently started to design
secure protocols directly in the RAM model [1,10,22]. The main underlying
idea is to rely on Oblivious RAM (ORAM) [17,20,38], a fundamental tool that
supports dynamic memory access with poly-logarithmic cost while preventing
any leakage from the memory. To be concrete, ORAM is a technique for hiding
all the information about the memory of a RAM program. This includes both
the content of the memory as well as the access pattern to it.

In more details, a RAM program P is defined by a function that is executed
in the presence of memory D via a sequence of read and write operations, where
the memory is viewed as an array of n entries (or blocks) that are initially set to
zero. More formally, a RAM program is defined by a “next instruction” function
that is executed on an input x, a current state state and data element bread (that
will always be equal to the last read element from memory D), and outputs the
next instruction and an updated state. We use the notation PD(x) to denote
the execution of such a program. To avoid trivial solutions, such as fetching the
entire memory, it is required that the space used by the evaluator grows linearly
with log n, |x| and the block length. The space complexity of a RAM program
on inputs x,D is the maximum number of entries used by P during the course

Constant-Round Maliciously Secure Two-Party Computation 523

of the execution. The time complexity of a RAM program on the same inputs is
the number of instructions issued in the execution as described above.

Secure Computation for RAM Programs. An important application of ORAM is
in gaining more efficient protocols for secure computation [1,12–16,22,23,28,33,
34,44,45]. This approach is used to securely evaluate RAM programs where the
overall input sizes of the parties are large (for instance, when one of the inputs
is a database). Amongst these works, only [1] addresses general secure compu-
tation for arbitrary RAM programs with security in the presence of malicious
adversaries. The advantage of using secure protocols directly for RAM programs
is that such protocols imply (amortized) complexity that can be sublinear in
the total size of the input. In particular, the overhead of these protocols grows
linearly with the time-complexity of the underlying computation on the RAM
program (which may be sublinear in the input size). This is in contrast to the
overhead induced by evaluating the corresponding Boolean/arithmetic circuit of
the underlying computation (for which its size is linear in the input size).

One significant challenge in handling dynamic memory accesses is to hide
the actual memory locations being read/written from all parties. The general
approach in most of these protocols is of designing protocols that work via
a sequence of ORAM instructions using traditional circuit-based secure com-
putation phases. More precisely, these protocols are defined using two phases:
(1) initialize and setup the ORAM, a one-time computation with cost depend-
ing on the memory size, (2) evaluate the next-instruction circuit which out-
puts shares of the RAM program’s internal state, the next memory operations
(read/write), the location to access and the data value in case of a write. This
approach leads to protocols with semi-honest security whom their round com-
plexity depends on the ORAM running time. In [22] Gordon et al. designed the
first rigorous semi-honest secure protocols based on this approach, that achieves
sublinear amortized overhead that is asymptotically close to the running time of
the underlying RAM program in an insecure environment.

As observed later by Afshar et al. [1], adapting this approach in the malicious
setting is quite challenging. Specifically, the protocol must ensure that the parties
use state and memory shares that are consistent with prior iterations, while
ensuring that the running time only depends on the ORAM running time rather
than on the entire memory. They therefore consider a different approach of
garbling the memory first and then propagate the output labels of these garbling
within the CPU-step circuits.

The main question left open by their work is the feasibility of constant round
malicious secure computation in the RAM model. In this work we address this
question in the two-party setting.

1.1 Our Results

We design the first constant round maliciously secure protocol for arbitrary
RAM programs. Our starting point is the garbled RAM construction of Gentry
et al. [16], which is the analogue object of garbled circuits [4,47] with respect to

524 C. Hazay and A. Yanai

RAM programs. Namely, a user can garble an arbitrary RAM program directly
without converting it into a circuit first. A garbled RAM scheme can be used
to garble the data, the program and the input in a way that reveals only the
evaluation outcome and nothing else. In their work, Gentry et al. proposed two
ways to fix a subtle point emerged in an earlier construction by Lu and Ostrovsky
[34] that requires a complex “circular” use of Yao garbled circuits and PRFs.
For simplicity, we chose to focus on their garbled RAM based on identity based
encryption (IBE) schemes. We show how to transform their IBE based protocol
into a maliciously secure 2PC protocol at the cost of involving the cut-and-choose
technique. Following that, in the full version we show how to achieve the same
result using the garbled RAM construction of Garg et al. [13] assuming only the
existence of one-way-functions. We state our main theorem below,

Theorem 1 (Informal). Under the standard assumptions for achieving static
malicious 2PC security, there exists a constant round protocol securely realizes
any RAM program in the presence of malicious adversaries, making only black-
box use of an Oblivious RAM construction, where the size of the garbled database
is |D| · poly(κ)1, the size of the garbled input is |x| · O(κ) + T · poly(κ) and the
size of the garbled program and its evaluation time is |CP

CPU| × T × poly(κ) ×
polylog(|D|) × s.

Where CP
CPU is a circuit that computes a CPU-step that involves reading/writing

to the memory, T is the running time of program P on input x, κ is the security
parameter and s is a statistical cut-and-choose parameter.

Challenges Faced in the Malicious Setting and RAM Programs.

1. Memory management. Intuitively speaking, garbled RAM readily induces
a two-party protocol with semi-honest security by exchanging the garbled
input using oblivious transfer (OT). The natural approach for enhancing
the security of a garbled RAM scheme into a maliciously 2PC protocol is
by using the cut-and-choose approach [31] where the basic underlying semi-
honest protocol is repeated s times (for some statistical parameter s), such
that a subset of these instances are “opened” in order to demonstrate correct
behaviour whereas the rest of “unopened” instances are used to obtaining
the final outcome (typically by taking the majority of results). The main
challenge in boosting the security of a semi-honest secure protocol into the
malicious setting, using this technique in the RAM model, is with handling
multiple instances of memory data. That is, since each semi-honest protocol
instance is executed independently, the RAM program implemented within
this instance is associated with its own instance of memory. Recalling that
the size of the memory might be huge compared to the other components in
the RAM system, it is undesirable to store multiple copies of the data in the
local memory of the parties. Therefore, the first challenge we had to handle

1 The size mentioned is correct when relying on the IBE assumption, while relying on
the OWF assumption would incur database size of |D| · log |D| · poly(κ).

Constant-Round Maliciously Secure Two-Party Computation 525

is how to work with multiple copies of the same protocol while having access
to a single memory data.

2. Handling check/evaluation circuits. The second challenge concerns
the cut-and-choose proof technique as well. The original approach to garble
the memory is by using encryptions computed based on PRF keys that are
embedded inside the garbled circuits. These keys are used to generate a trans-
lation mapping which allows the receiver to translate between the secret keys
and the labels of the read bit in the next circuit. When employing the cut-
and-choose technique, all the secret information embedded within the circuits
is exposed during the check process of that procedure which might violate the
privacy of the sender. The same difficulty arises when hardwiring the random-
ness used for the encryption algorithm. A naive solution would be to let the
sender choose s sets of keys, such that each set is used within the appropriate
copy of the circuit. While this solution works, it prevents the evaluator from
determining the majority of the (intermediate) results of all copies.

3. Integrity and consistency of memory operations. During the evalu-
ation of program P , the receiver reads and writes back to the memory. In the
malicious setting these operations must be backed up with a mechanism that
enforces correctness. Moreover, a corrupted evaluator should not be able to
roll back the stored memory to an earlier version. This task is very challenging
in a scenario where the evaluator locally stores the memory and fully con-
trols its accesses without the sender being able to verify whether the receiver
has indeed carried out the required instructions (as that would imply that the
round complexity grows linearly with the running time of the RAM program).

Constant Round 2PC in the RAM Model. Towards achieving malicious security,
we demonstrate how to adapt the garbled RAM construction from [16] into the
two-party setting while achieving malicious security. Our protocol is combined
of two main components. First, an initialization circuit is evaluated in order to
create all the IBE keys (or the PRF keys) that are incorporated in the latter
RAM computation, based on the joint randomness of the parties (this phase is
not computed locally since we cannot rely on the sender properly creating these
keys). Next, the program P is computed via a sequence of small CPU-steps
that are implemented using a circuit that takes as input the current CPU state
and a bit that was read from the last read memory location, and outputs an
updated state, the next location to read, a location to write to and a bit to write
into that location. In order to cope with the challenges regarding the cut-and-
choose approach, we must ensure that none of the secret keys nor randomness are
incorporated into the circuits, but instead given as inputs. Moreover, to avoid
memory duplication, all the circuits are given the same sequence of random
strings. This ensures that the same set of secret keys/ciphertexts are created
within all CPU circuits.

We note that our protocol is applicable to any garbled scheme that sup-
ports wire labels and can be optimized using all prior optimizations. Moreover,
in a variant of our construction the initialization phase can be treated as a
preprocessing phase that does not depend on the input. We further note that

526 C. Hazay and A. Yanai

our abstraction of garbled circuits takes into account authenticity [4]. Meaning
that, a malicious evaluator should not be able to conclude the encoding of a
string that is different than the actual output. This requirement is crucial for
the security of garbled circuits with reusable labels (namely, where the output
labels are used as input labels in another circuit), and must be addressed even
in the semi-honest setting (and specifically for garbled RAM protocols). This is
because authenticity is not handled by the standard privacy requirement. Yet,
all prior garbled RAM constructions do not consider it. We stress that we do not
claim that prior proofs are incorrect, rather that the underlying garbled circuits
must adhere this security requirement in addition to privacy.

As final remark, we note that our construction employs the underlying
ORAM in a black-box manner as the parties invoke it locally. This is in contrast
to alternative approaches that compute the ORAM using a two (or multi)-party
secure protocol such as in [22].

Complexity. The overhead of our protocol is dominated by the complexity
induced by the garbled RAM construction of [16] times s, where s is the
cut-and-choose statistical parameter. The [16] construction guarantees that the
size/evaluation time of the garbled program is |CP

CPU|×T ×poly(κ)×polylog(n).
Therefore the multiplicative overhead of our protocol is poly(κ)×polylog(n)× s.

Reusable/Persistent Data. Reusable/persistent data means that the garbled
memory data can be reused across multiple program executions. That is, all
memory updates are persist for future program executions and cannot be rolled
back by the malicious evaluator. This feature is very important as it allows to
execute a sequence of programs without requiring to initialize the data for every
execution, implying that the running time is only proportional to the program
running time (in a non-secured environment). The [16] garbled RAM allows to
garble any sequence of programs (nevertheless, this set must be given to the
garbler in advance and cannot be adaptively chosen). We show that our scheme
preserves this property in the presence of malicious attacks as well.

Concurrent Work. In a concurrent and independent work by Garg, Gupta, Miao
and Pandey [11], the authors demonstrate constant-round multi-party computa-
tion with the advantage of achieving a construction that is black-box in the one-
way function. Their work is based on the black-box GRAM construction of [12]
and the constant-round MPC construction of [3]. Their semi-honest secure pro-
tocol achieves persistent data, whereas their maliciously secure protocol achieves
the weaker notion of selectively choosing the inputs in advance, as we do. The
core technique of pulling secrets out of the programs and into the inputs is com-
mon to both our and their work. Whereas our construction achieves two features
which [12] does not. First, we use the ORAM in a black-box way since the par-
ties can locally compute it. Second, only one party locally stores the memory,
rather than both parties string shares of the memory. In another paper [35], Miao
demonstrates how to achieve persistent data in the two-party setting assuming

Constant-Round Maliciously Secure Two-Party Computation 527

a random oracle and using techniques from [37] and [4], where the underlying
one-way function is used in a black-box manner.

2 Preliminaries

2.1 The RAM Model of Computation

We follow the notation from [16] verbatim. We consider a program P that has
random-access to a memory of size n, which is initially empty. In addition, the
program gets a “short” input x, which we can alternatively think of as the
initial state of the program. We use the notation PD(x) to denote the execution
of such program. The program can read/write to various locations in memory
throughout the execution. [16] also considered the case where several different
programs are executed sequentially and the memory persists between executions.
Our protocol follows this extension as well. Specifically, this process is denoted
as (y1, . . . , yc) = (P1(x1), . . . , P�(xc))D to indicate that first PD

1 (x1) is executed,
resulting in some memory contents D1 and output y1, then PD1

2 (x2) is executed
resulting in some memory contents D2 and output y2 etc.

CPU-Step Circuit. We view a RAM program as a sequence of at most T small
CPU-steps, such that step 1 ≤ t ≤ T is represented by a circuit that computes
the following functionality:

CP
CPU(statet, b

read
t) = (statet+1, i

read
t , iwritet , bwritet).

Namely, this circuit takes as input the CPU state statet and a bit breadt that
was read from the last read memory location, and outputs an updated state
statet+1, the next location to read ireadt ∈ [n], a location to write to iwritet ∈ [n]∩⊥
(where ⊥ means “write nothing”) and a bit bwritet to write into that location.
The computation PD(x) starts in the initial state state1 = (x1, x2), corre-
sponding to the parties “short input” and by convention we will set the ini-
tial read bit to bread1 := 0. In each step t, the computation proceeds by running
CP

CPU(statet, b
read
t) = (statet+1, i

read
t , iwritet , bwritet). We first read the requested loca-

tion ireadt by stetting breadt+1 := D[ireadt] and, if iwritet �= ⊥ we write to the location by
setting D[iwritet] := bwritet . The value y = stateT+1 output by the last CPU-step
serves as the output of the computation.

A program P has a read-only memory access, if it never overwrites any values
in memory. In particular, using the above notation, the outputs of CP

CPU always
set iwritet = ⊥.

Predictably Time Writes. Predictably Time Writes (ptWrites) means that
whenever we want to read some location i in memory, it is easy to figure out the
time (i.e., CPU step) t′ in which that location was last written to, given only
the current state of the computation and without reading any other values in
memory. In [16] the authors describe how to upgrade a solution for ptWrites to
one that allows arbitrary writes. More formally,

528 C. Hazay and A. Yanai

Definition 1 (Predictably timed writes [16]). A program execution
PD(x1, x2) has predictably timed writes if there exists a poly-size circuit,
denoted WriteTime, such that the following holds for every CPU step t =
1, . . . , T . Let the inputs/outputs of the t-th CPU step be cpu-step(statet, b

read
t) =

(statet+1, i
read
t , iwritet , bwritet), then t′ = WriteTime(t, statet, i

read
t) is the largest value

of t′ < t such that the CPU step t′ wrote to memory location ireadt ; i.e.
iwritet′ = ireadt .

As in [16], we also describe a solution for RAM programs that support
ptWrites and then show how to extend it to the general case.

2.2 Oblivious RAM (ORAM)

ORAM, initially proposed by Goldreich and Ostrovsky [17,20,38], is an app-
roach for making a read/write memory access pattern of a RAM program input-
oblivious. More precisely, it allows a client to store private data on an untrusted
server and maintain obliviousness while accessing that data, by only storing a
short local state. A secure ORAM scheme not only hides the content of the
memory from the server, but also the access pattern of which locations in the
memory the client is reading or writing in each protocol execution.2 The work
of the client and server in each such access should be small and bounded by a
poly-logarithmic factor in the memory size, where the goal is to access the data
without downloading it from the server in its entirely. In stronger attack scenar-
ios, the ORAM is also authenticated which means that the server cannot modify
the content of the memory. In particular, the server cannot even “roll-back” to
an older version of the data. The efficiency of ORAM constructions is evaluated
by their bandwidth blowup, client storage and server storage. Bandwidth blowup
is the number of data blocks that are needed to be sent between the parties per
request. Client storage is the amount of trusted local memory required for the
client to manage the ORAM and server storage is the amount of storage needed
at the server to store all data blocks. Since the seminal sequence of works by
Goldreich and Ostrovsky, ORAM has been extensively studied [21,29,41–43,46],
optimizing different metrics and parameters.

Before giving the formal definition let us put down the settings and nota-
tions: A Random Access Machine (RAM) with memory size n consists of a CPU
with a small number of registers (e.g. poly(κ), where κ is the security parame-
ter), that each can store a string of length κ (called a “word”) and external
memory of size n. A word is either ⊥ or a κ bit string. Given n and x, the
CPU executes the program P by sequentially evaluating the CPU-step function
CP

CPU(n, statet, b
read
t) = (statet+1, i

read
t , iwritet , bwritet) where t = 0, 1, 2, . . . , T −1 such

that T is the upper bound on the program run time and state0 = x. The sequence
of memory cells and data written in the course of the execution of the program
is defined by MemAccess(P, n, x) = {(ireadt , iwritet , bwritet)}t∈[T] and the number of
memory accesses that were performed during a program execution is denoted by

2 This can always be done by encrypting the memory.

Constant-Round Maliciously Secure Two-Party Computation 529

T (P, n, x) (that is, the running time of the program P with memory of size n on
input x).

In this work we follow a slightly modified version of the standard definition (of
[17,20,38]), in which the compiled program P ∗ is not hardcoded with any secret
values, namely, neither secret keys for encryption/authentication algorithms nor
the randomness that specifies future memory locations to be accessed by the
program, rather, the compiled program obtains these secret values as input.
More concretely, P ∗ is given two inputs: (1) a secret value k that is used to
derive the keys for encrypting and authenticating the data, (2) a uniformly
random string r which corresponds to the random indices that are accessed
during the computation. The formal definition follows:3

Definition 2. A polynomial time algorithm C is an Oblivious RAM (ORAM)
compiler with computational overhead c(·) and memory overhead m(·), if C,
when given n ∈ N and a deterministic RAM program P with memory size n,
outputs a program P ∗ with memory size m(n) · n, such that for any input x ∈
{0, 1}∗, uniformly random key k ∈ {0, 1}κ and uniformly random string r ∈
{0, 1}κ, it follows that T (P ∗(n, x, k, r)) = c(n) · T (P, n, x) and there exists a
negligible function μ such that the following properties hold:

– Correctness. For any n ∈ N, any input x ∈ {0, 1}∗, any key and uniformly
random string k, r ∈ {0, 1}κ, with probability at least 1−μ(κ), P ∗(n, x, k, r) =
P (n, x).

– Obliviousness. For any two programs P1, P2, any n ∈ N, any two
inputs, uniformly random keys and uniformly random strings: x1, x2 ∈
{0, 1}∗, k1, k2, r1, r2 ∈ {0, 1}κ respectively, if T (P1(n, x1)) = T (P2(n, x2))
and P ∗

1 ← C(n, P1, ρ1), P ∗
2 ← C(n, P2, ρ2) then the access patterns

MemAccess(P ∗
1 (n, x1, k1, r1)) and MemAccess(P ∗

2 (n, x2, k2, r2)) are computa-
tionally indistinguishable, where the random tapes ρ1, ρ2 that were used by the
compiler to generate the compiled programs are given to the distinguisher.4

Note that the above definition (just as the definition of [20]) only requires
an oblivious compilation of deterministic programs P . This is without loss of
generality: We can always view a randomized program as a deterministic one
that receives random coins as part of its input.

Realization of the Modified Definition. We present here a sketch of an
ORAM compiler that meets the above requirements, which is a slightly modi-
fied construction of the Simple ORAM that was presented in [8]. The modified
compiler is a deterministic algorithm C, that is, its random tape ρ is an empty
string. When given a program P , the compiler outputs a program P ∗ that takes
the inputs x, k, r where x is the input to the original program P , k is a uniformly
3 The following definition is derived from the definition given in [8].
4 The use of ρ1, ρ2 does not reveal any information about the access pattern nor about

the encryption key of the data, these are determined only by the keys k1, k2 and the
random strings r1, r2.

530 C. Hazay and A. Yanai

random string from which the encryption/authentication keys are derived and
r is a uniformly random strings of the following form: r = {Pos, r1, r2, . . . , rT }
such that Pos is the initial position map of the oblivious program and r1, . . . , rT

are the additional random locations that are used for each iteration during the
execution of the program P ∗. The program P ∗ that C outputs is specified exactly
as the oblivious program presented in [8], except that the position map Pos and
random paths r1, . . . , rT are not hardcoded within the program, rather, they are
given as inputs to the program.

2.3 Secure Computation in the RAM Model

We adapt the standard definition for secure two-party computation of [18,
Chap. 7] for the RAM model of computation. In this model of computation,
the initial input is split between two parties and the parties run a protocol
that securely realizes a program P on a pair of “short” inputs x1, x2, which
are viewed as the initial state of the program. In addition, the program P has
random-access to a memory of size n which is initially empty. Using the nota-
tions from Sect. 2.1, we refer to this (potentially random) process by PD(x1, x2).
In this work we prove the security of our protocols in the presence of malicious
computationally bounded adversaries.

We next formalize the ideal and real executions, considering D as a common
resource.5 Our formalization induces two flavours of security definitions. In the
first (and stronger) definition, the memory accesses to D are hidden, that is,
the ideal adversary that corrupts the receiver only obtains (from the trusted
party) the running time T of the program P and the output of computation
y. Given only these inputs, the simulator must be able to produce an indis-
tinguishable memory access pattern. In the weaker, unprotected memory access
model described below, the simulator is further given the content of the memory,
as well as the memory access pattern produced by the trusted party through-
out the computation of PD. We present here both definitions, starting with the
definition of full security.

Full Security

Execution in the Ideal Model. In an ideal execution, the parties submit their
inputs to a trusted party that computes the output; see Fig. 1 for the description
of the functionality computed by the trusted party in the ideal execution. Let
P be a two-party program, let A be a non-uniform PPT machine and let i ∈
{S,R} be the corrupted party. Then, denote the ideal execution of P on inputs
(x1, x2), auxiliary input z to A and security parameters s, κ, by the random
variable IDEALFRAM

A(z),i(s, κ, x1, x2), as the output pair of the honest party and
the adversary A in the above ideal execution.

5 Nevertheless, we note that the memory data D will be kept in the receiver’s local
memory.

Constant-Round Maliciously Secure Two-Party Computation 531

Fig. 1. A 2PC secure evaluation functionality in the RAM model for program P .

Execution in the Real Model. In the real model there is no trusted third party
and the parties interact directly. The adversary A sends all messages in place
of the corrupted party, and may follow an arbitrary PPT strategy. The honest
party follows the instructions of the specified protocol π. Let PD be as above and
let π be a two-party protocol for computing PD. Furthermore, let A be a non-
uniform PPT machine and let i ∈ {S,R} be the corrupted party. Then, the real
execution of π on inputs (x1, x2), auxiliary input z to A and security parameters
s, κ, denoted by the random variable REALπ

A(z),i(s, κ, x1, x2), is defined as the
output pair of the honest party and the adversary A from the real execution
of π.

Security as Emulation of a Real Execution in the Ideal Model. Having defined the
ideal and real models, we can now define security of protocols. Loosely speaking,
the definition asserts that a secure party protocol (in the real model) emulates
the ideal model (in which a trusted party exists). This is formulated by saying
that adversaries in the ideal model are able to simulate executions of the real-
model protocol.

Definition 3 (Secure computation). Let FRAM and π be as above. Protocol π
is said to securely compute PD with abort in the presence of malicious adversary
if for every non-uniform PPT adversary A for the real model, there exists a non-
uniform PPT adversary S for the ideal model, such that for every i ∈ {S,R},

{
IDEALFRAM

S(z),i (s, κ, x1, x2)
}

s,κ∈N,x1,x2,z∈{0,1}∗

c≈
{
REALπ

A(z),i(s, κ, x1, x2)
}

s,κ∈N,x1,x2,z∈{0,1}∗

where s and κ are the security parameters.

We next turn to a weaker definition of secure computation in the unprotected
memory access model, and then discuss a general transformation from a protocol
that is secure in the UMA model to a protocol that is fully secure.

532 C. Hazay and A. Yanai

The UMA Model. In [16], Gentry et al. considered a weaker notion of secu-
rity, denoted by Unprotected Memory Access (UMA), in which the receiver may
additionally learn the content of the memory D, as well as the memory access
pattern throughout the computation including the locations being read/written
and their contents.6 In the context of two-party computation, when consider-
ing the ideal execution, the trusted party further forwards the adversary the
values MemAccess = {(ireadt , iwritet , bwritet)}t∈[T] where ireadt is the address to read
from, iwritet is the address to write to and bwritet is the bit value to be written to
location iwritet in time step t. We denote this functionality, described in Fig. 2,
by FUMA. We define security in the UMA model and then discuss our general
transformation from UMA to full security.

Definition 4 (Secure computation in the UMA model). Let FUMA be as
above. Protocol π is said to securely compute PD with UMA and abort in the
presence of malicious adversaries if for every non-uniform PPT adversary A for
the real model, there exists a non-uniform PPT adversary S for the ideal model,
such that for every i ∈ {S,R}, for every s ∈ N, x1, x2, z ∈ {0, 1}∗ and for large
enough κ

{
IDEALFUMA

S(z),i (s, κ, x1, x2)
}

s,κ,x1,x2,z

k,s
≈

{
REALπ

A(z),i(s, κ, x1, x2)
}

s,κ,x1,x2,z

where s and κ are the security parameters.

Fig. 2. A 2PC secure evaluation functionality in the UMA model for program P .

6 Gentry et al. further demonstrated that this weaker notion of security is useful by
providing a transformation from this setting into the stronger setting for which the
simulator does not receive this extra information. Their proof holds against semi-
honest adversaries. A simple observation shows that their proof can be extended
for the malicious 2PC setting by considering secure protocols that run the oblivious
RAM and the garbling computations; see below our transformation.

Constant-Round Maliciously Secure Two-Party Computation 533

A Transforation from UMA to Full Security. Below, we present a trans-
formation Θ, that is given (1) a protocol π with UMA security for RAM pro-
grams that support ptWrites, and (2) a secure ORAM compiler C that satisfies
ptWrites,7 and outputs a two-party protocol for arbitrary RAM programs with
full security; see Fig. 3 for the description of Θ. The formal theorem follows:

Theorem 2. Let π be a secure two-party protocol that provides UMA security
for RAM programs that support ptWrites in the presence of malicious adver-
saries and C an ORAM compiler that satisfies ptWrites, then Θ is a two-party
protocol that provides full security for arbitrary RAM programs in the presence
of malicious adversaries.

Note that the transformation uses the ORAM compiler C and the UMA-secure
protocol π in a black-box manner. In addition, the transformation preserves
all the properties that are related to the memory management, i.e., the party
who handles the memory in π is the same one who handles the memory in
π′ ← Θ(P, π). Note that the efficiency of the resulted protocol π′ ← Θ(P, π) is
dominated by the efficiency of the UMA-secure protocol π and the ORAM com-
piler C. Specifically, the recent ORAM constructions set an additional polylog
overhead with respect to all relevant parameters.

Fig. 3. A transformation from UMA to full security.

7 As for RAM programs, ORAM schemes can also support this property. Moreover,
the [16] transformation discussed in Sect. 2.1 can be applied to ORAM schemes as
well.

534 C. Hazay and A. Yanai

Security. We next present a proof sketch to the transformation presented in
Fig. 3. We consider first a corrupted receiver, which is the more complicated
case, and then a corrupted sender.

R is Corrupted. Let SUMA be the simulator for protocol π in the UMA model.
The simulator for the general model, SRAM, works as follows:

1. Let T be the run time of the program P , and let P̃ be the program of the
form:
For i=0 To T:
Read(k);

for some constant k ∈ [n] (i.e. k is in the range of D’s size). Let P̃ ∗ ← C(n, P̃)
and let MemAccess(P̃ ∗, n, ε) be the memory access pattern resulted by its
execution (where ε is an empty string, since P̃ gets no input).

2. Given the output of the program y = P (x, y), the simulator SRAM outputs
the view that is the result of SUMA(y,MemAccess(P̃ ∗, n, ε)).

We claim that the view that SRAM outputs is indistinguishable from the
real view of the receiver in the real execution of the protocol. Assume, by
contradiction, that there exist inputs x1, x2 for which there exists a distin-
guisher D who can distinguish between the two views with more than neg-
ligible probability. Consider the following hybrid view Hyb which is con-
structed as follows: Given P, x1, x2, n, compute P ∗ ← C(n, P), choose ran-
dom strings k and r and run P ∗(n, x1‖x2, k, r). Denote the access pat-
tern induced by this execution by MemAccess(P ∗, n, (x1‖x2, k, r)), then, out-
puts Hyb = SUMA(y,MemAccess(P ∗, n, (x1‖x2, k, r))). The indistinguishability
between SRAM(y) and Hyb(P, x1, x2, n) is reduced to the obliviousness of the
ORAM compiler and the indistinguishability between Hyb(P, x1, x2, n) and the
real view is reduced to the indistinguishability of the simulation of SUMA and the
real view of the execution of protocol π.s

S is Corrupted. This case is simpler since, by the definitions of functionalities
FUMA and FRAM the sender receives no output from the computation, thus, the
same simulator used in the UMA model works in the general RAM model, that
is SRAM = SUMA. Specifically, indistinguishability between the output of SRAM

and the sender’s view in the real execution in the RAM model is immediately
reduced to the indistinguishability between the output of SRAM and the view in
the real execution in the UMA model.

Note that our ORAM compiler definition simplifies the transformation to full
security as now the result oblivious program P ∗ gets its randomness r as part of
its input, rather than being hardcoded with it. Furthermore, recalling that this
randomness is used to determine the future locations in memory for which the
oblivious program is going to access, we stress that r is not revealed as part of
the “check circuits” when using the cut-and-choose technique.

On the Capabilities of Semi-honest in a Garbled RAM and ORAM
Schemes. When considering ORAM schemes in the context of two-party com-
putation, it must be ensured that a read operation is carried out correctly.

Constant-Round Maliciously Secure Two-Party Computation 535

Namely, that the correct element from the memory is indeed fetched, and that
the adversary did not “roll back” to an earlier version of that memory cell.
Importantly, this is not just a concern in the presence of malicious adversaries,
as a semi-honest adversary may try to execute its (partial) view on inconsistent
memory values. Therefore, the scheme must withhold such attacks. Handling
the first attack scenario is relatively simply using message authentications codes
(MACs), so that a MAC tag is stored in addition to the encrypted data. Han-
dling roll backs is slightly more challenging and is typically done using Merkle
trees. In [16] roll backs are prevented by creating a new secret key for each time
period. This secret key is used to decrypt a corresponding ciphertext in order to
extract the label for the next garbled circuit. By replacing the secret key each
time period, the adversary is not able decrypt a ciphertext created in some time
period with a secret key that was previously generated.

2.4 Timed IBE [16]

TIBE was introduced by Gentry et al. in [16] in order to handle memory data
writings in their garbled RAM construction. This primitive allows to create
“time-period keys” TSKt for arbitrary time periods t ≥ 0 such that TSKt can
be used to create identity-secret-keys SK(t,v) for identities of the form (t, v) for
arbitrary v, but cannot break the security of any other identities with t′ �= t.
Gentry et al. demonstrated how to realize this primitive based on IBE [5,6].
Informally speaking, the security of TIBE is as follows: Let t∗ be the “current”
time period. Given a single secret key SK(t,v) for every identity (t, v) of the “past”
periods t < t∗ and a single period key TSKt for every “future” periods t∗ < t ≤ T ,
semantic security should hold for any identity of the form id∗ = (t∗, v∗) (for which
neither a period nor secret key were not given). We omit the formal definition
due to space limitations.

2.5 Garbled RAM Based on IBE [16]

Our starting point is the garbled RAM construction of [16]. Intuitively speaking,
garbled RAM [34] is an analogue object of garbled circuits [4,47] with respect
to RAM programs. The main difference when switching to RAM programs is
the requirement of maintaining a memory data D. In this scenario, the data is
garbled once, while many different programs are executed sequentially on this
data. As pointed out in the modeling of [16], the programs can only be executed
in the specified order, where each program obtains a state that depends on
prior executions. The [16] garbled RAM proposes a fix to the aforementioned
circularity issue raised in [34] by using an Identity Based Encryption (IBE)
scheme [5,6] instead of a symmetric-key encryption scheme.

In more details, the inputs D,P, x to the garbled RAM are garbled into
D̃, P̃ , x̃ such that the evaluator reveals the output P̃ (D̃, x̃) = P (D,x) and
nothing else. A RAM program P with running time T can be evaluated
using T copies of a Boolean circuit CP

CPU where Ct
CPU computes the function

CP
CPU(statet, b

read
t) = (statet+1, i

read
t , iwritet , bwritet). Then secure evaluation of P is

536 C. Hazay and A. Yanai

possible by having the sender S garble the circuits {Ct
CPU}t∈[T] (these are called

the garbled program P̃), whereas the receiver R sequentially evaluates these cir-
cuits. In order for the evaluation to be secure the state of the program should
remain secret when moving from one circuit to another. To this end, the garbling
is done in a way that assigns the output wires of one circuit with the same labels
as the input wires of the next circuit. The main challenge here is to preserve
the ability to read and write from the memory while preventing the evaluator
from learning anything beyond the program’s output, including any intermediate
value.

The original idea from [34] employed a clever usage of a PRF for which
the secret key is embedded inside all the CPU-steps circuits, where the PRF’s
role is twofold. For reading from the memory it is used to produce ciphertexts
encrypting the labels of the input wire of the input bit of the next circuit,
whereas for writing it is used to generate secret keys for particular “identities”.
As explained in [16], the proof of [34] does not follow without assuming an extra
circularity assumption. In order to avoid circularity, Gentry et al. proposed to
replace the PRF with a public-key primitive. As it is insufficient to use a standard
public-key cryptosystem (since the circuit must still produce secret keys for each
memory location i, storing the keys ski,0, ski,1), the alternative is to use IBE.
Below, we briefly describe their scheme.

The Read-Only Solution. The initialized garbled data D̃ contains a secret key
ski,b in each memory location i ∈ [n] where D[i] = b, such that i, b serves as an
identity secret key for the “identity” (i, b). Moreover, each garbled circuit GCt

CPU

is hardwired with the master public key MPK of an IBE scheme.8 This way, the
garbled circuit can encrypt the input labels for the next circuit, that are asso-
ciated with the bit that has just been read from the memory. More specifically,
the circuit generates two ciphertexts ct0, ct1 that are viewed as a translation
map. Namely, ctb = EncMPK(id = (i, b);msg = lblt+1

b) and the correct label is
extracted by decrypting the right ciphertext using ski,b, such that lblt+1

0 , lblt+1
1

are the input labels in the next garbled circuit that are associated with the last
input bit read from the memory.

The Read-Write Solution. A complete solution that allows both reading and
writing is slightly more involved. We describe how to garble the data and the
program next.

Garbling the data. The garbled data consists of secret keys sk(t,i,b) for iden-
tities of the form id = (t, i, b) where i is the location in the memory D′, t is the
last time step for which that location was written to and b ∈ {0, 1} is the bit
that was written to location i at time step t. The honest evaluator only needs
to keep the most recent secret key for each location i.

8 For ease of presentation, Gentry et al. abstract the security properties of the IBE
scheme using a new primitive denoted by Timed IBE (TIBE); see Sect. 2.4 for more
details.

Constant-Round Maliciously Secure Two-Party Computation 537

Garbling the program. Next, each CPU garbled circuit computes the last
time step in which memory location i was written to by computing t′ =
WriteTime(t, statet, i

read
t). Namely, if at time step t the garbled circuit GCt

CPU

instructs to read from location ireadt , then the circuit further computes the last
time step, u, in which that ireadt was written to, it then computes the translation
map translatet = (ct0, ct1) by ctb = EncMPK(id = (u, ireadt , b);msg = lblt+1

b)), and
outputs it in the clear.

In order to write at time step t to memory location i = iwritet the value
b = bwritet , a naive solution would hardwire MSK within each garbled circuit
and then generate the key sk(t,i,b) = KeyGenMSK(id = (t, i, b)); but this idea
re-introduces the circularity problem. Instead, Gentry et al. [16] solve this prob-
lem by introducing a new primitive called Timed IBE (TIBE). Informally, this
is a two-level IBE scheme in which the first level includes the master pub-
lic/secret keys (MPK,MSK) whereas the second level has T timed secret keys
TSK1, . . . ,TSKT . The keys MPK,MSK are generated by MasterGen(1κ) and the
timed keys are generated by TSKt = TimeGen(MSK, t).

Then in the garbling phase, the key TSKt is hardwired within the tth
garbled circuit GCt

CPU and is used to write the bit bwritet to memory loca-
tion iwritet . To do that GCt

CPU computes the secret key for identity (t, i, b) by
sk(t,i,b) ← KeyGen(TSKt, (t, i, b)) which is then stored in memory location i by
the evaluator. Note that GCt

CPU outputs a secret key for only one identity in
every time step (for (t, i, b) but not (t, i, 1 − b)). This solution bypasses the cir-
cularity problem since the timed secret keys TSKt are hardwired only within the
garbled circuit computing Ct

CPU, and cannot be determined from either sk(t,i,b)
or the garbled circuit, provided that the TIBE scheme and the garbling schemes
are secure.

2.6 Garbled Circuits

The idea of garbled circuit is originated in [47]. Here, a sender can encode a
Boolean circuit that computes some PPT function f , in a way that (computa-
tionally) hides from the receiver any information but the function’s output. In
this work we consider a variant of the definition from [16] that abstracts out the
security properties of garbled circuits that are needed via the notion of a garbled
circuit with wire labels. The definition that we propose below stems from the
cut-and-choose technique chosen to deal with a malicious sender. Specifically,
the sender uses the algorithm Garb to generate s garbled versions of the circuit
C, namely {C̃i}i∈[s] for some statistical parameter s. Then, in order to evaluate
these circuits the sender sends {C̃i}i∈[s] along with the garbled inputs {x̃i}i∈[s],
such that x̃i is the garbled input for the garbled circuit C̃i. The evaluator then
chooses a subset Z ⊂ s and evaluates the garbled circuits indexed by z ∈ Z
using algorithm Eval. Note that in the notion of garbled circuits with wire labels
the garbled inputs x̃i are associated with a single label per input wire of the cir-
cuit C̃i; we denote these labels by x̃i = (lbl1,i

in,x[1], . . . , lbl
vin,i
in,x[vin]

) (where vin is the
number of input wires in C and x = x[1], . . . , x[vin] is the input to the circuit).

538 C. Hazay and A. Yanai

The evaluator learns s sets9 of output-wire labels {ỹi}i∈[s] corresponding to the
output y = C(x)10, where ỹi = (lbl1,i

out,y[1], . . . , lbl
vout,i
in,y[vout]

), but nothing else (for

example, it does not learn lbl1,i
out,1−y[1]). For clarity, in the following exposition

the label lblj,iin,b is the label that represents the bit-value b ∈ {0, 1} for the jth
input wire (j ∈ vin) in the ith garbled version of the circuit (for i ∈ s), namely
C̃i. Analogously, lblj,iout,b represents the same, except that it is associated with an
output wire (where j ∈ vout).

We further abstract two important properties of authenticity and input con-
sistency. Loosely speaking, the authenticity property ensures that a malicious
evaluator will not be able to produce a valid encoding of an incorrect output given
the encoding of some input and the garbled circuit. This property is required due
to the reusability nature of our construction. Namely, given the output labels of
some iteration, the evaluator uses these as the input labels for the next circuit.
Therefore, it is important to ensure that it cannot enter an encoding of a differ-
ent input (obtained as the output from the prior iteration). In the abstraction
used in our work, violating authenticity boils down to the ability to generate
a set of output labels that correspond to an incorrect output. Next, a natural
property that a maliciously secure garbling scheme has to provide is input con-
sistency. We formalize this property via a functionality, denoted by FIC. That
is, given a set of garbled circuits {C̃i}i and a set of garbled inputs {x̃i}i along
with the randomness r that was used by Garb; the functionality outputs 1 if the
s sets of garbled inputs {x̃i}s

i=1 (where |x̃i| = j) represent the same input value,
and 0 otherwise. This functionality is described in Fig. 8 (AppendixA). We now
proceed to the formal definition.

Definition 5 (Garbled circuits). A circuit garbling scheme with wire labels
consists of the following two polynomial-time algorithms:

– The garbling algorithm Garb:
(
{C̃i}i, {u, b, lblu,i

in,b}u,i,b

)
← Garb

(
1κ, s,C, {v, b, lblv,i

out,b}v,i,b

)

for every u ∈ [vin], v ∈ [vout], i ∈ [s] and b ∈ {0, 1}. That is, given a circuit C
with input size vin, output size vout and s sets of output labels {v, b, lblv,i

out,b}v,i,b,
outputs s garbled circuits {C̃i}i∈[s] and s sets of input labels {u, b, lblu,i

in,b}u,i,b.
– The evaluation algorithm Eval:

{
lbl1,i

out, . . . , lbl
vout,i
out

}
i∈[s]

= Eval

(
{
C̃i, (lbl1,i

in , . . . , lblvin,i
in)

}
i∈[s]

)
.

That is, given s garbled circuits {C̃i}i and s sets of input labels{
lbl1,i

in , . . . , lblvin,i
in

}
i
, outputs s sets of output labels {lbl1,i

out, . . . , lbl
vout,i
out }i. Intu-

itively, if the input labels (lbl1,i
in , . . . , lblvin,i

in) correspond to some input x ∈
9 This s might be different from the s used in the garbling algorithm, still we used the

same letter for simplification.
10 Note that this holds with overwhelming probability since some of the garbled circuits

might be malformed.

Constant-Round Maliciously Secure Two-Party Computation 539

{0, 1}vin then the output labels (lbl1,i
out, . . . , lbl

vout,i
out) should correspond to y =

C(x).

Furthermore, the following properties hold.

Correctness. For correctness, we require that for any circuit C and any input
x ∈ {0, 1}vin , x = (x[1], . . . , x[vin]) such that y = (y[1], . . . , y[vout]) = C(x) and
any s sets of output labels {v, b, lblv,i

b,out}v,i,b (for u ∈ vin, v ∈ vout, i ∈ [s] and
b ∈ {0, 1}) we have

Pr
[
Eval

({
C̃i, (lbl1,i

in,x[1], . . . , lbl
vin,i
in,x[vin]

)
}

i

)
=

{
lbl1,i

out,y[1], . . . , lbl
vout,i
out,y[vout]

}
i

]
= 1

where
(
{C̃i}i, {u, b, lblu,i

in,b}u,i,b

)
← Garb

(
1κ, s,C, {v, b, lblv,i

out,b}v,i,b

)
as described

above.

Verifying the correctness of a circuit. Note that in a cut-and-choose based proto-
cols, the receiver is instructed to check the correctness of a subset of the garbled
circuits. This check can be accomplished by the sender sending the receiver the
randomness used in Garb. In our protocol this is accomplished by giving the
receiver both input labels for each input wire of the check circuits, for which it
can verify that the circuit computes the agreed functionality. We note that this
check is compatible with all prior known garbling schemes.

Privacy. For privacy, we require that there is a PPT simulator SimGC such
that for any C, x, Z and

{
lbl1,z

out , . . . , lbl
vout,z
out

}
z∈[Z]

, {v, b, lblv,z
out,b}v,z /∈[Z],b (i.e. one

output label for wires in circuits indexed by z /∈ Z and a pair of output labels
for wires in circuits indexed by z ∈ Z), we have

(
{C̃z (lbl1,z

in,x[1], . . . , lbl
vin,z
in,x[vin]

)}z

)

c≈ SimGC

(
1κ,

{
lbl1,z

out , . . . , lbl
vout,z
out

}
z∈[Z]

, {v, b, lblv,z
out,b}v,i/∈[Z],b

)

where
(
{C̃z}z, {u, b, lblu,z

in,b}u,z,b

)
← Garb

(
1κ, s,C, {v, b, lblv,z

out,b}v,z,b

)
and y =

C(x).

Authenticity. We describe the authenticity game in Fig. 7 (AppendixA) where
the adversary is obtained a set of garbled circuits and garbled inputs for
which the adversary needs to output a valid garbling of an invalid output.
Namely, a garbled scheme is said to have authenticity if for every circuit C,
for every PPT adversary A, every s and for all large enough κ the probability
Pr[AuthA(1κ, s,C) = 1] is negligible. Our definition is inspired by the definition
from [4] and also adapted for the cut-and-choose approach.

540 C. Hazay and A. Yanai

Input Consistency. We abstract out the functionality that checks the validity
of the sender’s input across all garbled circuits. We say that, a garbling scheme
has input consistency (in the context of cut-and-choose based protocols) if there
exists a protocol that realize the FIC functionality described in Fig. 8 (Appen-
dixA).

Realizations of our garbled circuits notion. We require the existence of a
protocol ΠIC that securely realizes the functionality FIC described in Fig. 8, in
the presence of malicious adversaries. We exemplify this realization using [32] in
the full version of the paper.

3 Building Blocks

In this section we show how to overcome the challenges discussed in the introduc-
tion and design the first maliciously secure 2PC protocol that does not require
duplication of the data and works for every garbling scheme that supports our
definition based on wire labels. Recall first that in [16] Gentry et al. have used
a primitive called Timed IBE, where the secret-key for every memory location
and stored bit (i, b) is enhanced with another parameter: the last time step t
in which it has been written to the memory. The secret-key sk(t,i,b) for identity
id = (t, i, b) is then generated using the hard-coded time secret-key TSKt. Now,
since algorithm KeyGen is randomized, running this algorithm s times will yield
s independent secret timed keys. This results in s different values to be written
to memory at the same location, which implies duplication of memory data D.
In order to avoid this, our solution forces the s duplicated garbled circuits for
time step t to use the same random string r, yielding that all garbled circuits
output the same key for the identity (t, i, b). Importantly, this does not mean
that we can hard-code r in all those s circuits, since doing this would reveal r
when applying the cut-and-choose technique on these garbled circuits as half of
the circuits are opened. Clearly, we cannot reveal the randomness to the evalua-
tor since the security definition of IBE (and Timed IBE) does not follow in such
a scenario. Instead, we instruct the sender to input the same randomness in all
s copies of the circuits and then run an input consistency check to these inputs
in order to ensure that this is indeed the case. We continue with describing the
components we embed in our protocol. An overview of the circuits involved in
our protocol can be found in Fig. 4 and a high-level overview of the protocol can
be found in Sect. 4.

3.1 Enhanced CPU-Step Function

The enhanced cpustep+ function is essentially the CPU-step functionality spec-
ified in Sect. 2.1 enhanced with more additional inputs and output, and defined
as follows

cpustep+(statet, b
read
t ,MPK,TSKt, rt) = (statet+1, i

read
t , iwritet , bwritet , translatet)

Constant-Round Maliciously Secure Two-Party Computation 541

Fig. 4. Garbled chains GCINIT, GC1,i

CPU+ , . . . GCT,i

CPU+ for i ∈ [s]. Dashed lines refer to
values that are passed privately (as one label per wire) whereas solid lines refer to
values that are given in the clear.

where the additional inputs MSK,TSKt and rt are the master public-key, a
timed secret-key for time t and the randomness r used by the KeyGen algorithm.
The output translatet is a pair of ciphertexts ct1, ct2, encrypted under MPK, that
allows the evaluator to obtain the appropriate label of the wire that corresponds
to the input bit in the next circuit. We denote the circuit that computes that
function by Ct

CPU+ . The functionality of Ct
CPU+ is described in Fig. 5). We later

describe how to securely realize this function and, in particular, how these new
additional inputs are generated and given to the T CPU-circuits. The enhanced
CPU-step circuit wraps the WriteTime algorithm defined in Definition 1.

3.2 Initialization Circuit

The initialization circuit generates all required keys and randomness to our solu-
tion and securely transfer them to the CPU-step circuits. As explained before,
our solution requires the parties to input not only their input to the program but
also a share to a randomness that the embedded algorithms would be given (that
is, the randomness is not fixed by one of the parties). The circuit is described in
Fig. 6.

542 C. Hazay and A. Yanai

Fig. 5. The CPU-step circuit.

3.3 Batch Single-Choice Cut-and-Choose OT

As a natural task in a cut-and-choose based protocol, we need to carry out cut-
and-choose oblivious transfers for all wires in the circuit, for which the receiver
picks a subset Z ⊂ [s] and then obtains either both input labels (for circuits
indexed with z ∈ Z), or the input label that matches the receiver’s input other-
wise. It is crucial that the subset of indices for which the receiver obtains both
input labels is the same in all transfers. The goal of this functionality is to ensure
the input consistency of the receiver and it is named by “batch single-choice cut-
and-choose OT” in [32].

Constant-Round Maliciously Secure Two-Party Computation 543

Fig. 6. Initialization circuit CINIT.

In addition to the above, our protocol uses the following building blocks: A
garbled scheme πGC = (Garb,Eval) that preserves the security properties from
Definition 5; Timed IBE πTIBE = (MasterGen,TimeGen,KeyGen,Enc,Dec) and a
statistically binding commitment scheme Com.

544 C. Hazay and A. Yanai

4 The Complete Protocol

Given the building blocks detailed in Sect. 3, we are now ready to introduce our
complete protocol. Our description incorporates ideas from both [32] and [16].
Specifically, we borrow the cut-and-choose technique and the cut-and-choose OT
abstraction from [32] (where the latter tool enables to ensure input consistency
for the receiver). Moreover, we extend the garbled RAM ideas presented in [16]
for a maliciously secure two-party protocol in the sense that we modify their
garbled RAM to support the cut-and-choose approach. This allows us to obtain
constant round overhead. Before we delve into the details of the protocol, let us
present an overview of its main steps:

The parties wish to run the program P on inputs x1, x2 with the aid of
an external random access storage D. In addition to their original inputs, the
protocol instructs the parties to provide random strings R1, R2 that suffice for
all the randomness needed in the execution of the CPU step circuits.

– Chains construction. Considering a sequence of cir-
cuits CINIT,C1

CPU+ , . . . ,CT
CPU+ as a connected chain of circuits, the sender S

first generates s versions of garbled chains GCi
INIT,GC1,i

CPU+ , . . . ,GCT,i
CPU+ for

every i ∈ [s]. It does so by iteratively feeding the algorithm Garb with s sets
of pairs of output labels, where the first set of output labels lblout are chosen
uniformly and are fed, together with the circuit CT

CPU+ , to procedure Garb,
which in turn, outputs s sets of input labels. This process is being repeated
till the first circuit in the chain, i.e. CINIT, the last s sets of input labels are
denoted lblin.

– Cut-and-choose. Then, the parties run the batch Single-Choice Cut-and-
choose OT protocol ΠSCCOT on the receiver’s input labels, which let the receiver
obtain a pair of labels for each of its input wires for every check chain with an
index in Z ⊂ [s] and a single label for each of its input wires for the evaluation
chains with an index not in Z, where Z is input by the receiver to ΠSCCOT.

– Sending chains and commitments. Then S sends R all garbled chains
together with a commitment for every label associated with its input wires in
all copies i ∈ [s].

– Reveal the cut-and-choose parameter. The receiver R then notifies S with
its choice of Z and proves that indeed that is the subset it used in ΠSCCOT

(by sending a pair of labels for some of its input wires in every chain with an
index in Z).

– Checking correctness of check-chains. When convinced, S sends R a pair
of labels for each input wire associated with the sender’s input; this allows
R check all the check chains, such that if all found to be built correctly than
the majority of the other, evaluation chains, are also built correctly with over-
whelming probability.

– Input consistency. S then supplies R with a single label for each input wire
associated with the sender’s input, for all evaluation chains; this step requires
checking that those labels are consistent with a single input x2 of the sender.
To this end, S and R run the input consistency protocol that is provided by
the garbling scheme defined in Sect. 2.6.

Constant-Round Maliciously Secure Two-Party Computation 545

– Evaluation. Upon verifying their consistency, R uses the input labels and
evaluates all evaluation chains, such that in every time step t it discards
the chains that their outputs (ireadt , iwritet , skt, translatet) do not comply to the
majority of the outputs in all evaluation chains. We put a spotlight on the
importance of the random strings R1, R2 that the parties provide to the chains,
these allow our protocol to use a single block of data D for all threads of eval-
uation, which could not be done in a trivial plugging of the cut-and-choose
technique. As explained in Definition 5, verifying the correctness of the check
chains can be done given only (both of the) input labels for CINIT circuits.

4.1 2PC in the UMA Model

We proceed with the formal detailed description of our protocol.

Protocol ΠP
UMA executed between sender S and receiver R. Unless stated differ-

ently, in the following parameters z, i, t, j respectively iterate over [Z], [s], [T], [�].
Inputs. S has input x1 and R has input x2 where |x1| = |x2| = �′. R has a blank

storage device D with a capacity of n bits.

Auxiliary inputs.

– Security parameters κ and s.
– The description of a program P and a set of circuits CINIT,C1

CPU+ , . . . ,CT
CPU+

(as described above) that computes its CPU-steps, such that the output of the
last circuit stateT+1 equals PD(x1, x2), given that the read/write instructions
output by the circuits are being followed.

– (G, g, q) where G is cyclic group with generator g and prime order q, where q
is of length κ.

– S and R respectively choose random strings R1 and R2 where |R1| = |R2| =
(4t + 1) · m. We denote the overall input size of the parties by �, that is,
|x1| + |R1| = |x2| + |R2| = �′ + (4t + 1) · m = �. Also, denote the output size
by vout.

The Protocol.

1. Garbled CPU-step and initialization circuits.

(a) Garble the last CPU-step circuit (t = T):
– Choose random labels for the labels corresponding to stateT+1.
– Garble Ct

CPU+ by calling

(
{GCt,i

CPU}i, {lblu,i,t
in,b }u,i,b

)
← Garb

(
1κ, s,Ct

CPU+ , {lblv,i,t
out,b}v,i,b; rt

g

)

for v ∈ [vout], i ∈ [s], b ∈ {0, 1} and rt
g the randomness used within

Garb.
– Interpret the result labels {lblu,i,t

in,b }u,i,b as the following groups of val-
ues: statet, b

read
t ,MPKt,TSKt and rt, that cover the labels: {lblu,i,t

,,b }u,i,b,
{lblu,i,t

breadt ,b
}u,i,b, {lblu,i,t

MPKt,b
}u,i,b, {lblu,i,t

TSKt,b
}u,i,b, {lblu,i,t

rt,b
}u,i,b resp.

546 C. Hazay and A. Yanai

(b) Garble the remaining CPU-step circuits. For t = T − 1, . . . , 1:
– Hard-code the labels {lblu,i

breadt+1,b
}u,i,b inside Ct

CPU+ .
– Choose random labels for the output wires correspond to

ireadt , iwritet , skt,i,b and translatet and unite them with the labels
{lblu,i,t+1

,b }u,i,b correspond to statet+1 obtained from the previous invo-
cation of Garb; denote the resulting set {lblv,i,t

out,b}v,i,b.
– Garble Ct

CPU+ by calling

(
{GCt,i

CPU}i, {lblu,i,t
in,b }u,i,b

)
← Garb

(
1κ, s,Ct

CPU+ , {lblv,i,t
out,b}v,i,b; rt

g

)

with {lblv,i,t
out,b}v,i,b the set of labels from above and rt

g the randomness
used within Garb.

– Interpret the result labels {lblu,i,t
in,b }u,i,b as the following groups of val-

ues: statet, b
read
t ,MPKt,TSKt and rt, that cover the labels: {lblu,i,t

,b }u,i,b,
{lblu,i,t

breadt ,b
}u,i,b, {lblu,i,t

MPKt,b
}u,i,b, {lblu,i,t

TSKt,b
}u,i,b {lblu,i,t

rt,b
}u,i,b resp.

(c) Garble the initialization circuit CINIT:
– Combine the group of labels {lblu,i,1

,b }i,b, that is covered by the value
state1 which resulted from the last invocation of Garb, with the groups
of labels {lblu,i,t

MPKt,b
, lblu,i,t

TSKt,b, lbl
u,i,t
rt,b

}u,i,b that are covered by the values
{MPKt,TSKt, rt} for all t ∈ [T]. That is, set {lblv,i

out,b}v,i,b =
{
lblu,i,1

,b ∪
lblu,i,t

MPKt,b
∪ lblu,i,t

TSKt,b ∪ lblu,i,t
rt,b

}
u,i,b

for all u, i, t, b.
– Garble the initialization circuit:

(
{GCi

INIT}i, {lblu,i
in,b}u,i,b

)
← Garb

(
1κ, s,CINIT, {lblv,i

out,b}v,i,b; r0g

)
.

– Interpret the input labels result from that invocation of Garb by
{lblu,i

S,b}u,i,b and {lblu,i
R,b}u,i,b which are the input wire labels that are

respectively associated with the sender’s and receiver’s input wires.
2. Oblivious transfers.

S and R run the Batch Single-Choice Cut-And-Choose Oblivious Transfer
protocol ΠSCCOT.
(a) S defines vectors v1, . . . ,v� so that vj contains the s pairs of random

labels associated with R’s jth input bit x2[j] in all garbled circuits
GC1

INIT, . . . ,GCs
INIT.

(b) R inputs a random subset Z ⊂ [s] of size exactly s/2 and bits
x2[1], . . . , x2[�].

(c) The result of ΠSCCOT is that R receives all the labels associated with its
input wires in all circuits GCz

INIT for z ∈ Z, and receives a single label
for every wire associated with its input x2 in all other circuits GCz

INIT for
z /∈ Z.

Constant-Round Maliciously Secure Two-Party Computation 547

3. Send garbled circuits and commitments.

S sends R the garbled circuits chains GCi
INIT,GC1,i

CPU+ , . . . ,GCT,i
CPU+ for every

i ∈ [s], and the commitment ,u,i
b = Com(lblu,i

S,b, dec
u,i
b) for every label in

{lblu,i
S,b}u,i,b where lblu,i

S,b is the bth label (b ∈ {0, 1}) for the sender’s uth bit
(u ∈ [�]) for the ith garbled circuit GCINIT.

4. Send cut-and-choose challenge.

R sends S the set Z along with the pair of labels associated with its first input
bit in every circuit GCz

INIT for every z ∈ Z. If the values received by S are
incorrect, it outputs ⊥ and aborts. Chains GCz

INIT,GC1,z
CPU+ , . . . ,GCt,z

CPU+ for
z ∈ Z are called check-circuits, and for z /∈ Z are called evaluation-circuits.

5. Send all input garbled values in check circuits.

S sends the pair of labels and decommitments that correspond to its input
wires for every z ∈ Z, whereas R checks that these are consistent with the
commitments received in Step 3. If not R aborts, outputting ⊥.

6. Correctness of check circuits.

For every z ∈ Z, R has a pair of labels for every input wire for the circuits
GCz

INIT (from Steps 2 and 5). This means that it can check the correctness
of the chains GCz

INIT,GC1,z
CPU+ , . . . ,GCT,z

CPU+ for every z ∈ Z. If the chain was
not built correctly for some z then output ⊥.

7. Check garbled inputs consistency for the evaluation-circuits.

– S sends the labels
{
(lbl1,z

in,x1[1]
, . . . , lbl�,z

in,x1[�]
)
}

z/∈[Z]
for its input x1.

– S and R participate in the input consistency check protocol ΠIC.
• The common inputs for this protocol are the circuit CINIT, its garbled

versions {GCi
INIT}z/∈Z and the labels

{
(lbl1,z

in,x1[1]
, . . . , lbl�,z

in,x1[�]
)
}

z/∈[Z]

that were sent before.
• S inputs its randomness r0g and the set of output labels {lblv,i

out,b}v,i,b

that were used within Garb on input GCINIT, along with the decom-
mitments {decu,z

b }u∈[�],z /∈Z,b∈{0,1}.
8. Evaluation.

Let Z̃ = {z | z /∈ Z} be the indices of the evaluation circuits.
(a) For every z ∈ Z̃, R evaluate GCz

INIT using Eval and the input wires it
obtained in Step 7 and reveal one label for each of its output wires lblout,z

INIT .
(b) For t = 1 to T :

i. For every z ∈ Z̃, evaluate GCt,z
CPU+ using Eval and obtain one out-

put label for each of its output wires, namely, lblout,t,z
CPU+ . Part of

these labels refer to statet+1,z. In addition Eval outputs outt,z =
(ireadt,z , iwritet,z , bwritet,z , translatet,z) in the clear11. For t = T Eval outputs
stateT+1 in the clear and we assign outt,z = stateT+1,z.

ii. Take the majority outt = Maj({outt,z}z∈Z̃) and remove from Z̃ the
indices z̃ for which outt,z̃ �= outt. Formally set Z̃ = Z̃ � {z′ | outt,z′ �=
outt}. This means that R halts the execution thread of the circuit
copies that were found flawed during the evaluation.

iii. Output outT+1.

11 Note that if S is honest then outt,z1 = outt,z2 for every z1, z2 ∈ Z̃.

548 C. Hazay and A. Yanai

Theorem 3. Assume that πGC is a garbling scheme (cf. Definition 5), that πTIBE

is TIBE scheme and that Com is a statistical binding commitment scheme. Then,
protocol ΠP

UMA securely realizes FUMA in the presence of malicious adversaries in
the {FSCCOT,FIC}-hybrid for all program executions with ptWrites.

High-Level Overview of Our Proof. In this section we present the intuition of
why does our protocol secure in the UMA model, while a full proof of Lemma
3 presented in the full version of the paper. With respect to garbled circuits
security, we stress that neither the selective-bit-attack nor the incorrect-circuit-
construction attack can harm the computation here due to the cut-and-choose
technique, which prevents the sender from cheating in more than s−|Z|

2 of the cir-
cuits without being detected. As explained in [32], the selective-bit attack cannot
be carried out successfully since R obtains all the input keys associated with its
input in the cut-and-choose oblivious transfer, where the labels associated with
both the check and evaluation circuits are obtained together. Thus, if S attempts
to run a similar attack for a small number of circuits then it will not effect the
majority, whereas if it does so for a large number of circuits then it will be
caught with overwhelming probability. In the protocol, R checks that half of the
chains and their corresponding input garbled values were correctly generated.
It is therefore assured that with high probability the majority of the remaining
circuits and their input garbled values are correct as well. Consequently, the
result output by the majority of the remaining circuits must be correct.

The proof for the case the receiver is corrupted is based on two secure compo-
nents: The garbling scheme and the timed IBE scheme. In the proof we reduce the
security of our protocol to the security of each one of them. The intuition behind
this proof asserts that R receives |Z| opened check circuits and |Z̃| = s − |Z|
evaluation circuits. Such that for each evaluation circuit it only receives a single
set of keys for decrypting the circuit. Furthermore, the keys that it receives for
each of the |Z̃| evaluation circuits are associated with the same pair of inputs
x1, x2. This intuitively implies that R can do nothing but correctly decrypt |Z̃|
circuits, obtaining the same value P d(x1, x2). One concern regarding the secu-
rity proof stems from the use of a TIBE encryption scheme within each of the
CPU-step circuits. Consequently, we have to argue the secrecy of the input label
that is not decrypted by R. Specifically, we show that this is indeed the case by
constructing a simulator that, for each CPU-step, outputs a fake translate table
translate that correctly encrypts the active label (namely, the label observed by
the adversary), yet encrypts a fake inactive label. We then show, that the real
view in which all labels are correctly encrypted, is indistinguishable from the
simulated view in which only the active label is encrypted correctly.

Constant-Round Maliciously Secure Two-Party Computation 549

A Garbled Circuits

The definition of garbled circuits with respect to the cut-and-choose technique
is presented in Sect. 2.6. In this section we present the Input Consistency Func-
tionality (Fig. 8) which is realized via a secure 2PC protocol when the underly-
ing garbling scheme is applied using a cut-and-choose based protocol. We next
present the authenticity game (Fig. 7) used in the definition of garbled circuits.

Fig. 7. The authenticity game AuthA(1κ, s, C).

550 C. Hazay and A. Yanai

Fig. 8. The input consistency functionality FIC.

Constant-Round Maliciously Secure Two-Party Computation 551

References

1. Afshar, A., Hu, Z., Mohassel, P., Rosulek, M.: How to efficiently evaluate RAM
programs with malicious security. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT
2015. LNCS, vol. 9056, pp. 702–729. Springer, Heidelberg (2015). doi:10.1007/
978-3-662-46800-5 27

2. Beaver, D.: Foundations of secure interactive computing. In: Feigenbaum, J. (ed.)
CRYPTO 1991. LNCS, vol. 576, pp. 377–391. Springer, Heidelberg (1992). doi:10.
1007/3-540-46766-1 31

3. Beaver, D., Micali, S., Rogaway, P.: The round complexity of secure protocols. In:
Harriet, O. (ed.) 22nd STOC, pp. 503–513. ACM (1990)

4. Bellare, M., Hoang, V.T., Rogaway, P.: Foundations of garbled circuits. In: CCS,
pp. 784–796 (2012)

5. Boneh, D., Boyen, X.: Efficient selective identity-based encryption without random
oracles. J. Cryptology 24(4), 659–693 (2011)

6. Boneh, D., Franklin, M.K.: Identity-based encryption from the weil pairing. SIAM
J. Comput. 32(3), 586–615 (2003)

7. Canetti, R.: Security and composition of multiparty cryptographic protocols. J.
Cryptology 13(1), 143–202 (2000)

8. Chung, K.-M., Pass, R.: A simple oram. Cryptology ePrint Archive, Report
2013/243 (2013). http://eprint.iacr.org/2013/243

9. Cook, S.A., Reckhow, R.A.: Time-bounded random access machines. In: Pro-
ceedings of the 4th Annual ACM Symposium on Theory of Computing, Denver,
Colorado, USA, 1–3 May 1972, pp. 73–80 (1972)

10. Damg̊ard, I., Meldgaard, S., Nielsen, J.B.: Perfectly secure oblivious RAM with-
out random oracles. In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 144–163.
Springer, Heidelberg (2011). doi:10.1007/978-3-642-19571-6 10

11. Garg, S., Gupta, D., Miao, P., Pandey, O.: Secure multiparty ram computation in
constant rounds. In: TCC (2016, to appear)

12. Garg, S., Lu, S., Ostrovsky, R.: Black-box garbled RAM. In: FOCS 2015, pp. 210–
229 (2016)

13. Garg, S., Lu, S., Ostrovsky, R., Scafuro, A.: Garbled RAM from one-way functions.
In: STOC, pp. 449–458 (2015)

14. Gentry, C., Goldman, K.A., Halevi, S., Julta, C., Raykova, M., Wichs, D.: Opti-
mizing ORAM and using it efficiently for secure computation. In: De Cristofaro,
E., Wright, M. (eds.) PETS 2013. LNCS, vol. 7981, pp. 1–18. Springer, Heidelberg
(2013). doi:10.1007/978-3-642-39077-7 1

15. Gentry, C., Halevi, S., Jutla, C.S., Raykova, M.: Private database access with he-
over-oram architecture. IACR Cryptology ePrint Archive, 2014:345 (2014)

16. Gentry, C., Halevi, S., Lu, S., Ostrovsky, R., Raykova, M., Wichs, D.: Garbled RAM
revisited. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol.
8441, pp. 405–422. Springer, Heidelberg (2014). doi:10.1007/978-3-642-55220-5 23

17. Goldreich, O.: Towards a theory of software protection and simulation by oblivious
RAMs. In: STOC, pp. 182–194 (1987)

18. Goldreich, O.: Foundations of Cryptography: Volume 2, Basic Applications.
Cambridge University Press, New York (2004)

19. Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game or a
completeness theorem for protocols with honest majority. In: STOC, pp. 218–229
(1987)

http://dx.doi.org/10.1007/978-3-662-46800-5_27
http://dx.doi.org/10.1007/978-3-662-46800-5_27
http://dx.doi.org/10.1007/3-540-46766-1_31
http://dx.doi.org/10.1007/3-540-46766-1_31
http://eprint.iacr.org/2013/243
http://dx.doi.org/10.1007/978-3-642-19571-6_10
http://dx.doi.org/10.1007/978-3-642-39077-7_1
http://dx.doi.org/10.1007/978-3-642-55220-5_23

552 C. Hazay and A. Yanai

20. Goldreich, O., Ostrovsky, R.: Software protection and simulation on oblivious rams.
J. ACM 43(3), 431–473 (1996)

21. Goodrich, M.T., Mitzenmacher, M., Ohrimenko, O., Tamassia, R.: Privacy-
preserving group data access via stateless oblivious RAM simulation. In: SODA,
pp. 157–167 (2012)

22. Gordon, S.D., Katz, J., Kolesnikov, V., Krell, F., Malkin, T., Raykova, M., Vahlis,
Y.: Secure two-party computation in sublinear (amortized) time. In: CCS, pp.
513–524 (2012)

23. Hu, Z., Mohassel, P., Rosulek, M.: Efficient zero-knowledge proofs of non-algebraic
statements with sublinear amortized cost. In: Gennaro, R., Robshaw, M. (eds.)
CRYPTO 2015. LNCS, vol. 9216, pp. 150–169. Springer, Heidelberg (2015). doi:10.
1007/978-3-662-48000-7 8

24. Ishai, Y., Kushilevitz, E., Ostrovsky, R., Prabhakaran, M., Sahai, A.: Effi-
cient non-interactive secure computation. In: Paterson, K.G. (ed.) EUROCRYPT
2011. LNCS, vol. 6632, pp. 406–425. Springer, Heidelberg (2011). doi:10.1007/
978-3-642-20465-4 23

25. Ishai, Y., Prabhakaran, M., Sahai, A.: Founding cryptography on oblivious trans-
fer – efficiently. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 572–591.
Springer, Heidelberg (2008). doi:10.1007/978-3-540-85174-5 32

26. Ishai, Y., Prabhakaran, M., Sahai, A.: Secure arithmetic computation with no
honest majority. In: Reingold, O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 294–314.
Springer, Heidelberg (2009). doi:10.1007/978-3-642-00457-5 18

27. Jarecki, S., Shmatikov, V.: Efficient two-party secure computation on commit-
ted inputs. In: Naor, M. (ed.) EUROCRYPT 2007. LNCS, vol. 4515, pp. 97–114.
Springer, Heidelberg (2007). doi:10.1007/978-3-540-72540-4 6

28. Keller, M., Scholl, P.: Efficient, oblivious data structures for MPC. In: Sarkar,
P., Iwata, T. (eds.) ASIACRYPT 2014, Part II. LNCS, vol. 8874, pp. 506–525.
Springer, Heidelberg (2014). doi:10.1007/978-3-662-45608-8 27

29. Kushilevitz, E., Lu, S., Ostrovsky, R.: On the (in)security of hash-based oblivious
RAM and a new balancing scheme. In: SODA, pp. 143–156 (2012)

30. Lindell, Y.: Fast cut-and-choose based protocols for malicious and covert adver-
saries. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part II. LNCS, vol. 8043,
pp. 1–17. Springer, Heidelberg (2013). doi:10.1007/978-3-642-40084-1 1

31. Lindell, Y., Pinkas, B.: An efficient protocol for secure two-party computa-
tion in the presence of malicious adversaries. In: Naor, M. (ed.) EUROCRYPT
2007. LNCS, vol. 4515, pp. 52–78. Springer, Heidelberg (2007). doi:10.1007/
978-3-540-72540-4 4

32. Lindell, Y., Pinkas, B.: Secure two-party computation via cut-and-choose oblivious
transfer. In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 329–346. Springer,
Heidelberg (2011). doi:10.1007/978-3-642-19571-6 20

33. Liu, C., Huang, Y., Shi, E., Katz, J., Hicks, M.W.: Automating efficient ram-model
secure computation. In: IEEE Symposium on Security and Privacy, pp. 623–638
(2014)

34. Lu, S., Ostrovsky, R.: How to garble RAM programs? In: Johansson, T.,
Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 719–734. Springer,
Heidelberg (2013). doi:10.1007/978-3-642-38348-9 42

35. Miao, P.: Cut-and-choose for garbled RAM. Cut-and-Choose for Garbled RAM
IACR Cryptology ePrint Archive 2016:907 (2016)

36. Micali, S., Rogaway, P.: Secure computation. In: Feigenbaum, J. (ed.) CRYPTO
1991. LNCS, vol. 576, pp. 392–404. Springer, Heidelberg (1992)

http://dx.doi.org/10.1007/978-3-662-48000-7_8
http://dx.doi.org/10.1007/978-3-662-48000-7_8
http://dx.doi.org/10.1007/978-3-642-20465-4_23
http://dx.doi.org/10.1007/978-3-642-20465-4_23
http://dx.doi.org/10.1007/978-3-540-85174-5_32
http://dx.doi.org/10.1007/978-3-642-00457-5_18
http://dx.doi.org/10.1007/978-3-540-72540-4_6
http://dx.doi.org/10.1007/978-3-662-45608-8_27
http://dx.doi.org/10.1007/978-3-642-40084-1_1
http://dx.doi.org/10.1007/978-3-540-72540-4_4
http://dx.doi.org/10.1007/978-3-540-72540-4_4
http://dx.doi.org/10.1007/978-3-642-19571-6_20
http://dx.doi.org/10.1007/978-3-642-38348-9_42

Constant-Round Maliciously Secure Two-Party Computation 553

37. Nielsen, J.B., Orlandi, C.: LEGO for two-party secure computation. In: Reingold,
O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 368–386. Springer, Heidelberg (2009).
doi:10.1007/978-3-642-00457-5 22

38. Ostrovsky, R.: Efficient computation on oblivious RAMs. In: STOC, pp. 514–523
(1990)

39. Pinkas, B., Schneider, T., Smart, N.P., Williams, S.C.: Secure two-party compu-
tation is practical. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp.
250–267. Springer, Heidelberg (2009). doi:10.1007/978-3-642-10366-7 15

40. Pippenger, N., Fischer, M.J.: Relations among complexity measures. J. ACM
26(2), 361–381 (1979)

41. Ren, L., Fletcher, C.W., Kwon, A., Stefanov, E., Shi, E., van Dijk, M., Devadas,
S.: Constants count: practical improvements to oblivious RAM. In: USENIX, pp.
415–430 (2015)

42. Shi, E., Chan, T.-H.H., Stefanov, E., Li, M.: Oblivious RAM with O((logN)3)
worst-case cost. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol.
7073, pp. 197–214. Springer, Heidelberg (2011). doi:10.1007/978-3-642-25385-0 11

43. Stefanov, E., van Dijk, M., Shi, E., Fletcher, C.W., Ren, L., Xiangyao, Y., Devadas,
S.: Path ORAM: an extremely simple oblivious RAM protocol. In: CCS, pp. 299–
310 (2013)

44. Wang, X., Hubert Chan, T.-H., Shi, E.: Circuit ORAM: on tightness of the
Goldreich-Ostrovsky lower bound. In: CCS, pp. 850–861 (2015)

45. Wang, X.S., Huang, Y., Hubert Chan, T.-H., Shelat, A., Shi, E.: SCORAM: obliv-
ious RAM for secure computation. In: CCS, pp. 191–202 (2014)

46. Williams, P., Sion, R.: Single round access privacy on outsourced storage. In: CCS,
pp. 293–304 (2012)

47. Yao, A.C.: Protocols for secure computations (extended abstract). In: FOCS, pp.
160–164 (1982)

48. Yao, A.C.: How to generate and exchange secrets (extended abstract). In: FOCS,
pp. 162–167 (1986)

http://dx.doi.org/10.1007/978-3-642-00457-5_22
http://dx.doi.org/10.1007/978-3-642-10366-7_15
http://dx.doi.org/10.1007/978-3-642-25385-0_11

More Efficient Constant-Round Multi-party
Computation from BMR and SHE

Yehuda Lindell1(B), Nigel P. Smart2, and Eduardo Soria-Vazquez2

1 Bar-Ilan University, Ramat Gan, Israel
yehuda.lindell@biu.ac.il

2 University of Bristol, Bristol, UK
nigel@cs.bris.ac.uk, eduardo.soria-vazquez@bristol.ac.uk

Abstract. We present a multi-party computation protocol in the case
of dishonest majority which has very low round complexity. Our proto-
col sits philosophically between Gentry’s Fully Homomorphic Encryption
based protocol and the SPDZ-BMR protocol of Lindell et al. (CRYPTO
2015). Our protocol avoids various inefficiencies of the previous two pro-
tocols. Compared to Gentry’s protocol we only require Somewhat Homo-
morphic Encryption (SHE). Whilst in comparison to the SPDZ-BMR
protocol we require only a quadratic complexity in the number of players
(as opposed to cubic), we have fewer rounds, and we require less proofs
of correctness of ciphertexts. Additionally, we present a variant of our
protocol which trades the depth of the garbling circuit (computed using
SHE) for some more multiplications in the offline and online phases.

1 Introduction

Secure multiparty computation: In the setting of secure multiparty computation
(MPC), a set of mutually distrusting parties wish to compute a joint function
of their private inputs. Secure computation has been studied since the 1980s,
and it has been shown that any functionality can be securely computed, even
in the presence of a dishonest majority [17,35]. Classically, two main types of
adversaries have been considered: passive (or semi-honest) adversaries follow the
protocol specification but try to learn more than allowed from the transcript, and
active (or malicious) adversaries who run any arbitrary strategy in an attempt
to breach security.

Efficient MPC: In the last decade, significant effort has been placed on making
secure computation efficient, both theoretically (with asymptotic efficiency) and
practically. Both in theory and in practice the round complexity of MPC proto-
cols is of interest. The theoretical interest is obvious, but it is in practice that
probably the most effect can be felt. It is well known from practical experiments
that often round complexity has more of an effect on the performance of MPC
systems than communication complexity. This is especially true in networks with
high latency (e.g., when the participating parties are on opposite sides of the

c© International Association for Cryptologic Research 2016
M. Hirt and A. Smith (Eds.): TCC 2016-B, Part I, LNCS 9985, pp. 554–581, 2016.
DOI: 10.1007/978-3-662-53641-4 21

More Efficient Constant-Round Multi-party Computation 555

world), where protocols with many rounds perform very poorly [33]. In practice,
one also finds that constants matter considerably.

Most of the research effort on making secure computation practically efficient
has focused on the case of two parties [30,31,35]. The most progress has been
with protocols based on Yao’s garbled circuits [35]. Extraordinary efficiency has
been achieved for both passive adversaries [1,4] and active adversaries [19,23,
25,26,28,29,34]. In contrast, the case of multiple parties is way behind. When
considering protocols with many rounds, the protocol of GMW can be used for
passive adversaries (see [17] with an implementation in [7]) and the protocols
of SPDZ and TinyOT can be used for active adversaries [10,11,22]. However,
as mentioned above, these protocols have inherent inefficiency based on the fact
that the number of rounds in the protocol is linear in the depth of the circuit
that the parties compute.

In contrast to the impressive progress made in the garbled circuits area for
the case of two parties, very little is known for multiple parties.

The focus of this paper: In this paper, we focus on the construction of a con-
cretely efficient actively secure MPC protocol in the case of dishonest major-
ity, which requires a (small) constant number of rounds. From a theoretical
standpoint this problem is essentially solved: By combining Gentry’s passively
secure MPC protocol based on Fully Homomorphic Encryption (FHE) (see [16]
and below) with generic non-interactive zero-knowledge proofs (NIZKs), one can
obtain a protocol with two rounds of communication. Below we will show that
such a protocol using more “practical” interactive zero-knowledge proofs can
be realised using five rounds of interaction. In the plain model (with no pre-
processing or access to a common reference string) recent work of Garg et al.
[14] shows that six rounds are sufficient (using a construction based on iO). This
work of Garg et al. builds on earlier work of Katz and Ostrovsky [21] who showed
that five rounds are necessary and sufficient for the case of two parties.

From a practical point of view though the use of either general FHE, iO
and/or generic NIZKs are clearly not suitable. Our protocol is based on the BMR
approach [3]; and will use only Somewhat Homomorphic Encryption (SHE) and
relatively efficient interactive zero-knowledge proofs. This approach consists of
constructing a two phase protocol. In the first phase the parties use a generic
MPC protocol to construct a “garbled” version of the function being computed.
Then, in a constant round evaluation phase the garbled function is evaluated.
The first garbling phase works in a gate-by-gate manner, and so by processing
all gates in one go we obtain a constant round protocol for both phases; since
this first garbling phase evaluates, via generic MPC, a circuit of constant depth.

In recent work [27] an efficient variant of the BMR protocol is used which
utilizes the SPDZ [11] generic MPC protocol in the first garbling phase. In addi-
tion the authors introduce other optimizations which make the entire protocol
actively secure for very little additional overhead. The SPDZ protocol itself uses
a two phase approach, in the first phase, which utilizes Somewhat Homomor-
phic Encryption, correlated randomness is produced. As opposed to the general
Fully Homomorphic Encryption of the above theoretical approaches. Then in the

556 Y. Lindell et al.

second phase this correlated randomness is used to evaluate the desired func-
tionality (which in this case is the BMR garbling). Thus overall this protocol,
which we dub SPDZ-BMR, consists of three phases; a phase using SHE, a phase
doing generic MPC via the SPDZ online phase, and the final BMR circuit eval-
uation phase.

As alluded to above, there is another approach to constant round MPC,
which utilizes Fully Homomorphic Encryption, namely Gentry’s MPC protocol
[16]. In this protocol the parties simply input their data using the encryption of
the underlying FHE scheme, the parties evaluate the function locally using FHE,
and then perform a distributed decryption (which requires ROut = 2 rounds of
interaction with current FHE schemes). This protocol is essentially optimal in
terms of the number of rounds of communication, but it suffers from a number
of drawbacks. The major drawback is that it requires FHE, which is itself a
prohibitively expensive operation (and currently not practical). In addition, it is
not immediately clear how to make the protocol actively secure without incurring
significant additional costs. We outline in this paper how to address this latter
problem, as a by-product of the analysis of our main protocol.

Our Contributions: Returning to the BMR based approach we note that any
MPC protocol could be used for the BMR garbling phase, as long as it can
be made actively secure within the specific context of the BMR protocol. In
particular we could utilize Gentry’s FHE-based MPC protocol (using only a
SHE scheme) to perform the first stage of the BMR protocol; a protocol idea
which we shall denote by SHE-BMR. The main observation as to why this is
possible is that, as we have mentioned, the depth of the circuit computing the
BMR garbled circuit is itself constant (and, in particular, independent of the
depth of the circuit computing the function itself). This is due to the fact that
in the BMR approach all garbled gates are computed in parallel; thus, the depth
of the circuit computing the entire garbled circuit equals the depth of the circuit
required to compute a single garble gate. We therefore conclude that somewhat
homomorphic encryption suffices, with the depth being that sufficient to compute
a single garbled gate.

A number of problems arise with this idea, which we address in this paper.
First, can we make the resulting protocol actively secure for little additional
cost? Second, is the required depth of the SHE scheme sufficiently small to make
the scheme somewhat practical? Recall the SPDZ-BMR protocol only requires
the underlying SHE scheme to support circuits of multiplicative depth one, and
increasing the depth increases the cost of the SHE itself. Third, is the resulting
round complexity of the scheme significantly less than that of the SPDZ-BMR
protocol? Note that we can only expect a constant factor improvement, but such
constants matter in practice. Fourth, can we save on any additional costs of the
SPDZ-BMR protocol?

Since we use Gentry’s FHE-based protocol (or an SHE version of it), we now
outline two key challenges with using Gentry’s FHE based protocol, which also
apply to our protocol. When entering data we require an actively secure protocol
to encrypt the FHE data, in particular we need to guarantee to the receiving

More Efficient Constant-Round Multi-party Computation 557

parties that each encryption is well formed. The standard technique to do this
is to also transmit a zero-knowledge proof of the correctness of encryption. A
method to do this is given in [10, Appendix F], or [2, Sect. 3.2]. This is costly, and
in practice rather inefficient. We call this protocol ID, and the associated round
cost by RID. In addition if we need to make further input dependent inputs, then
this round cost will multiply. Thus we also need to introduce a sub-protocol with
round cost RInput+ = 1, which enables us to place all the zero-knowledge proofs
for proving correctness of input into a pre-processing phase.

The second problem with Gentry’s protocol is that we need to ensure that
the distributed decryption is also actively secure; in the sense that the malicious
parties cannot get an honest party to accept an incorrect result. We describe
an efficient sub-protocol Out+ for performing this task, which importantly does
not require zero-knowledge proofs (after a key generation phase) and has round
complexity ROut+ = 2.

We present a variant of our protocol which reduces the depth of the required
SHE scheme, at the expense of requiring each party to input a larger amount of
data. Interestingly, the main aim of the design in the SPDZ-BMR protocol was to
reduce the number of multiplications needed (since each multiplication required
generating a multiplication tuple for SPDZ, and this was the main cost). In
contrast, when using SHE directly, additional multiplications are not expensive
as long as they are carried out in parallel. Stated differently, the main concern is
the depth of the circuit computing the BMR garbled circuit, and not necessarily
its size. Of course, for concrete efficiency, one must try to minimize both, as
reducing one slightly while greatly increasing the other would not be beneficial.
In order to achieve this reduction in the depth of the circuit computing the
BMR circuit, we utilize an observation that when computing the garbled circuit
it suffices to obtain either the PRF key on the output wire or its additive inverse.
This is due to the fact that we can actually take the PRF key to be the square
of the value obtained in the garbled gate, which is the same whether k or −k is
obtained. This allows us to combine the generation of the indicator-bits and the
key-vector generation together. The additional flexibility of being able to output
either the key or its additive inverse allows us to reduce the required SHE depth
by one; in particular, from a depth of four to a depth of three.

In summary, we actually obtain two distinct protocols πb where b ∈ {0, 1};
for which b = 0 means applying our basic variant protocol and b = 1 means
applying the modified variant with a reduced depth cost. In some sense we can
think of our basic SHE-BMR protocol as the same as the SPDZ-BMR protocol
of [27], but it “cuts out the middle man” of producing multiplication triples, and
the interaction needed to evaluate the garbling via the online phase of SPDZ.
Indeed almost all of our basic protocol is identical to that described in [27].
However, naively applying SHE to the protocol from [27] results in a protocol
that is neither efficient nor secure. For example, naively applying Gentry’s MPC
protocol to the garbling stage would result in needing an SHE scheme which
supports a depth logarithmic in the number of parties n; whereas we would

558 Y. Lindell et al.

rather utilize a SHE scheme with constant depth. Thus we need to carefully
design the FHE based MPC protocol to realise the BMR garbled circuit.

By utilizing the actively secure input and output routines in Gentry’s pro-
tocol we also obtain an actively secure variant of Gentry’s FHE based protocol
which we denote by Ga. This is in addition to the original passively secure FHE
based protocol of Gentry which we denote by Gp.

Comparison: By way of comparison we outline in Fig. 1 differences between
the variants of our protocol, and those of Gentry and SPDZ-BMR. We let n
denote the number of parties, W and G denote the number of wires and gates
in the binary circuit respectively, and Win the number of input wires and Wout

the number of output wires. To ease counting of rounds we consider a secure
broadcast to be a single round operation (in the case of a dishonest majority,
where parties may abort, a simple two-round echo-broadcast protocol suffices in
any case [18]). We will see later that ROut+ = 2, and RID = 3. In the table the
various functions T1, T2, T3 describing the number of executions of ID are

T1 = 16 · G · n3 + (8 · G + 4 · W) · n2 + 9 · W · n + 156 · G · n,

T2 = 4 · G · n2 + (3 · W + 1) · n,

T3 = (4 · G + 2 · W) · n2 + (W + 1) · n.

If we compare the SPDZ-BMR protocol with our protocol variants π0 and π1

we see that the major difference in computational cost is the number of invoca-
tions of the protocol ID. The difference between SPDZ-BMR and π0 is equal to
T1 − T2 = 16 · G · n3 + 4 · (G + W) · n2 + (6 · W − 1) · n + 156 · G · n invocations.
To be very concrete, for 9 parties, a circuit of size 10,000 gates and wires, the
number of ID invocations equals 141,210,000 in SPDZ-BMR versus 3,510,009 in
SHE-BMR-π0 versus 4,950,009 in SHE-BMR-π1. Thus, π0 is one fortieth of the
cost of SPDZ-BMR, and π1 is one twenty-eighth of the cost of SPDZ-BMR. This
gap widens further as the number of parties grows, with the difference for 25
parties being a factor of 100 for π0 and 70 for π1. We remark, however, that
even for just 3 parties, protocols π0 and π1 are already one twenty-third and one
eighteenth of the cost, respectively.

On the downside we require an SHE scheme which will support depth
three or four circuits, as opposed to the depth one circuits of the SPDZ-BMR

Protocol Security
Rounds of Depth of Number of
Interaction FHE/SHE ID Execs

Gp passive 3 = 1 + ROut Depth of f 0
Ga active 5 = RID + ROut+ 1 + Depth of f n + Win

SPDZ-BMR active 16 = 13 + RID 1 T1

π0 active 9 = RID + 4 + ROut+ 4 T2

π1 active 9 = RID + 4 + ROut+ 3 T3

Fig. 1. Comparison of Gentry’s, the SPDZ-BMR and our protocol

More Efficient Constant-Round Multi-party Computation 559

protocol. The SHE scheme needs to support message spaces of Fp, where p > 2κ.
We use [9], which gives potential parameter sizes for various SHE schemes sup-
porting depth two and five, and run the experiments there to compare the para-
meters required for our specific depths here (depth 1 for SPDZ, depth 4 for
protocol π0 and depth 3 for protocol π1). Specifically, assuming ciphertexts live
in a ring Rq, then the dimension needs to go up by approximately a factor of 1.5
for depth-3 and a factor of 2 for depth-4, and the modulus by a factor of 1.6 for
depth-3 and a factor of 2 for depth-4. Assuming standard DCRT representation
of Rq elements, this equates to an increase in the ciphertext size by a factor of
approximately 2.4 for depth-3, and by approximately a factor of 4 for depth-4.
Furthermore, the performance penalty (cost of doing arithmetic) increases by a
factor of approximately 3.6 for depth-3, and by a factor of 8 for depth-4. Fac-
toring in this additional cost, we have that when compared to SPDZ-BMR, the
relative improvement in the computational cost in the above example becomes
a factor of 40/8 = 5 for π0 and 28/3.6 = 7.7 for π1 for 9 parties, and a factor
of 100/8 = 12.5 for π0 and 70/3.6 ≈ 19.4 for π1 for 25 parties. Thus, both π0

and π1 significantly outperform BMR-SPDZ, and the depth reduction carried
out in π1 provides additional speedup (and reduction in bandwidth).

Our work should also be compared to [8] in which a constant round 3PC
protocol is given, based on Yao’s garbled circuits. However, active security in
their case is provided by an expensive cut-and-choose protocol. In addition,
their protocol is specifically designed for the three-party case, whereas we con-
sider multiparty computation for any number of parties. Another constant-round
multiparty protocol was constructed by [20]. However, although this protocol
has good asymptotic complexity, its concrete efficiency is very unclear and no
concretely efficient instantiation has been found. In [24] the authors propose a
concrete instantiation of [20] for the two-party case, but no analogous proposal
exists for the multiparty case.

2 Background on MPC and FHE

As a warm up to our main protocol, and to introduce the aspects of the FHE
functionality we shall be using in detail we first give an outline of Gentry’s FHE
based protocol to evaluate the generic MPC functionality.

2.1 The Generic MPC Functionality

The goal of all the protocols in this paper is to securely realise the functionality
given in Fig. 2. Namely we want protocols which allow n mutually distrusting
parties, with a possibly dishonest majority, to evaluate the function f(x1, . . . , xn)
on their joint inputs.

2.2 A Basic FHE Functionality with Distributed Decryption

We first describe in Fig. 3 a basic FHE functionality which contains a distributed
decryption functionality. Two points need to be noted about the functionality:

560 Y. Lindell et al.

The General MPC Functionality: FMPC

The functionality is parametrized by a function f(x1, . . . , xn) which is input as
a binary circuit Cf . The protocol consists of three externally exposed commands
Initialize, InputData, and Output and one internal subroutine Wait.

Initialize: On input (init, Cf) from all parties, where Cf is a Boolean circuit, the
functionality activates and stores Cf .

Wait: This waits on the adversary to return a GO/NO-GO decision. If the adver-
sary returns NO-GO then the functionality aborts.

InputData: On input (input, Pi, varid, xi) from Pi and (input, Pi, varid, ?) from
all other parties, with varid a fresh identifier, the functionality stores (varid, xi).
The functionality then calls Wait.

Output: On input (output) from all parties, if (varid, xi) is stored for each Pi,
the functionality computes y = f(x1, . . . , xn) and outputs y to the adversary.
The functionality then calls Wait. If Wait does not result in an abort, the
functionality outputs y to all parties.

Fig. 2. The MPC Functionality: FMPC

Firstly, the distributed decryption operation in Output can produce an incor-
rect result under the control of the adversary, but the “additive error” which is
introduced by the adversary is introduced before the adversary learns the cor-
rect output. Secondly, the InputData routine is actively secure, and so a proof
of correctness of its correct decryption is needed for each input ciphertext. The
need for such an actively secure input routines is because we need to ensure
that parties enter “valid” FHE/SHE encryptions, and that the simulator can
“extract” the plaintext values. Within the functionality we denote the depth
of a variable x by D(x), and we describe how the depth is altered with each
operation which can affect the depth.

A method to perform the required InputData operation is given in [10,
Appendix F], or [2, Sect. 3.2]. The basic idea is to check a number of executions
of InputData at the same time. The protocol run in two phases, in the first
phase a set of reference ciphertexts are produced and via cut-and-choose one
subset is checked for correctness, whilst the other is permuted into buckets; one
bucket for each value entered via InputData. In the second phase the input
ciphertexts are checked for correctness by combining them homomorphically
with the reference ciphertexts and opening the result. We denote the round
complexity of the protocol implementing InputData by RID. An analysis of the
protocol from [10] indicates that it requires RID = 3 rounds of communication:
In the first round of the proof one party broadcasts the reference ciphertexts, in
the next round the parties choose which ciphertexts to open, and in the third

More Efficient Constant-Round Multi-party Computation 561

The FHE Functionality: FFHE/FSHE

The functionality consists of externally exposed commands Initialize, InputData,
Add, Multiply and Output, and one internal subroutine Wait.

Initialize: On input (init,p) from all parties, the functionality activates and stores
p. All additions and multiplications below will be mod p.

Wait: This waits on the adversary to return a GO/NO-GO decision. If the adver-
sary returns NO-GO then the functionality aborts.

InputData: On input (input,Pi,varid,x) from Pi and (input,Pi,varid,?) from all
other parties, with varid a fresh identifier, the functionality stores (varid,x).
The functionality then calls Wait.

Add: On command (add, varid1, varid2, varid3) from all parties (if varid1, varid2

are present in memory and varid3 is not), the functionality retrieves (varid1, x),
(varid2, y) and stores (varid3, x + y mod p).

Add-scalar: On command (add-scalar, a, varid1, varid2) from all parties (if varid1

is present in memory and varid2 is not), the functionality retrieves (varid1, x)
and stores (varid2, a + x mod p).

Multiply: On command (multiply, varid1, varid2, varid3) from all parties (if varid1,
varid2 are present in memory and varid3 is not), the functionality retrieves
(varid1,x), (varid2,y) and stores (varid3,x · y mod p).
In the case of the FSHE version of this functionality only a limited depth of
such commands can be performed; this depth is specified for the functionality.
Depth Cost: D(varid3) = max(D(varid1), D(varid2)) + 1.

Multiply-scalar: On command (multiply-scalar, a, varid1, varid2) from all parties
(if varid1 is present in memory and varid2 is not), the functionality retrieves
(varid1, x) and stores (varid2, a · x mod p).

Output: On input (output,varid, i) from all honest parties (if varid is present in
memory), and a value e ∈ Fp from the adversary, the functionality retrieves
(varid, x), and if i = 0 it outputs (varid, x) to the adversary. The functionality
then calls Wait. If Wait does not result in an abort, then the functional-
ity outputs x+e to all parties if i = 0, or it outputs x+e only to party i if i �= 0.

Fig. 3. The FHE/SHE Functionality: FFHE/FSHE

round the ciphertexts are opened and combined.1 Thus, overall, three rounds
suffice.

In the following, we fix the notation 〈varid〉 to represent the result stored in
the variable varid by the FFHE/FSHE functionalities. In particular, we will use the
arithmetic shorthands 〈z〉 = 〈x〉 + 〈y〉 and 〈z〉 = 〈x〉 · 〈y〉 to represent the result
of calling the Add and Multiply commands in the FFHE/FSHE functionality,

1 Choosing at random which ciphertexts to open cannot be carried out in a single
round. However, it is possible for all parties to commit to the randomness in previous
rounds and only decrypt in this round.

562 Y. Lindell et al.

and we will slightly abuse those shorthands to denote subsequent additions or
multiplications.

The description of Output in the case of a passively secure functionality is
identical to the behaviour of the standard distributed decryption procedure for
FHE schemes such as BGV, again see [10] for how the distributed decryption
is performed. The basic protocol is to commit to the distributed decryption
shares, and then open the shares. This gives a round complexity for Output of
ROut = 2. We shall provide a simple mechanism to provide active security for the
Output command in the next section, which comes at the expense of increasing
the required supported depth of the SHE scheme by one.

In the case of a passively secure variant of the FHE functionality, one would
always have e = 0 in the Output routine. Furthermore, we would not need a
proof of correctness of the input ciphertexts and so the number of rounds of
interaction in the InputData routine would be RID = 1.

2.3 Gentry’s FHE-Based MPC Protcol

In [16] Gentry presents an MPC protocol which has optimal round complexity
to implement FMPC. In the FFHE-hybrid model the protocol can be trivially
described as follows: The parties enter their data using the InputData command
of the FHE functionality, the required function is evaluated using the Add and
Multiply commands (i.e. each party locally evaluates the function using the
FHE operations). The Add-scalar and Multiply-scalar commands can be
computed by the parties locally encrypting the scalar with a mutually agreed
randomness (so that all hold the same ciphertext) and then using the regular
FHE Add or Multiply command, respectively.

Finally, the output is obtained using the Output command of the FHE
functionality. For passively secure adversaries this gives us an “efficient” MPC
protocol, assuming the FHE scheme can actually evaluate the function. For active
adversaries we then have to impose complex zero-knowledge proofs to ensure that
the InputData command is performed correctly, and we need a way of securing
the Output command (which we will come to later).

3 The SPDZ-BMR Protocol

We shall now overview the SPDZ-BMR protocol from [27]. Much of the details we
cover here focus on the offline SHE-part of the SPDZ protocol and how it is used
in the SPDZ-BMR protocol. Recall the SPDZ protocol makes use of two phases;
one an offline phase which uses an SHE scheme (which for our purposes we
model via the functionality FSHE above restricted to functions of multiplicative
depth one), and an online phase using (essentially) only information theoretic
constructs. These two phases are used to create a shared garbled circuit which
is then evaluated in a third phase in the SPDZ-BMR protocol.

More Efficient Constant-Round Multi-party Computation 563

First Phase Cost: The first phase of the SPDZ-BMR protocol requires an upper
bound on the total number of parties n, internal wires W , gates G and input
wires per party Win of the circuit which will be evaluated. The phase then calls
the offline phase of the SPDZ engine to produce M = 13 · G multiplication
triples, B = W shared random bits, R = 2 · W · n shared random values and
I = 8 · G · n shared values for entering data per party.

The main cost of the SPDZ-BMR protocol is actually in computing this initial
data; yet the paper [27] does not address this cost in much detail. Delving into
the paper [10] we see that each of these operations requires parties to encrypt
random data under the SHE scheme and to produce additive sharings of SHE
encrypted data. This first operation is identical to our input command on the
functionality FSHE. We delve into the costs of the operations in more detail:

– Encrypting (Input) Data ID: When a party produces an encryption we need
to ensure that it is validly formed, so as to protect against active attackers.
As remarked above this is done using a zero-knowledge proof of correctness.
Whilst the computational costs of this can be amortized due to “packing” in
the SHE scheme, it is a non-trivial cost per encryption. We shall denote the
computational and round cost in what follows by CID and RID respectively, i.e.
the computational and round cost of the actively secure EncCommit operation
from [10].

– Producing Random ReSharings: Given a ciphertext encrypting a value
m this procedure results in an additive sharing of m amongst the n parties.
The computational cost of this procedure is dominated by the invocations
of the ID protocol. Since each party needs to encrypt a random value, the
computational cost n · CID and the round complexity is RID + 1. Again, the
computational costs can be amortized due to the packing of the SHE scheme.

– Producing Multiplication Triples: To produce an unchecked triple this
requires (per party) the encryption of two random values (of ai and bi in the
triple ([a], [b], [c])), plus four resharings (three of which can be done in parallel,
with the fourth only partially in parallel). To produce a checked triple, this
needs to be done twice (in parallel), followed by a sacrificing step of one of the
triples via a procedure (described in [10]) which requires another two rounds
of interaction. Thus the total computational cost is dominated by 12 · n · CID;
the round complexity is RID + 4.

– Producing Shared Random Bits: To produce an unchecked random bit
we require (per party) the encryption of one random value, one passively
secure distributed decryption (with only one round of interaction), plus two
resharings (in parallel). To produce a checked random bit, the above has to be
combined with an unchecked multiplication triple in a sacrificing step which
requires two rounds of interaction. Thus the total computational cost is dom-
inated by 9 · n · CID; and the round complexity is RID + 4.

– Producing Shared Random Values: This requires (per party) the encryp-
tion of one random value, and two resharings which can be done in parallel.
Thus the total computational cost is 2 · n · CID, and the round complexity is
RID + 1.

564 Y. Lindell et al.

– Producing Input Data: Per data item which needs to be input for each
player this requires the encryption of one random value plus two resharings
(which cannot be fully parallelised), as well as one additional round of inter-
action. Thus the total computational cost is dominated by CID + 2 · n · CID,
and the round complexity is RID + 3.

A major bottleneck in the protocol, for active security, is the cost of encrypting
the random data required by the protocol. Combining the costs, using the various
formulae above, we see that this cost is given by

TID · CID = 12 · n · CID · M + 9 · n · CID · B + 2 · n · CID · R + (1 + 2 · n) · n · CID · I

= (12 · 13 · G + 9 · W + 4 · W · n + (1 + 2 · n) · n · 8 · G) · n · CID

= (16 · G · n3 + (8 · G + 4 · W) · n2 + 9 · W · n + 156 · G · n) · CID

which is cubic in the number of players. In our protocol the same amortization
due to SHE packing can be achieved. Thus we do not pay further attention to
the constant improvement in performance due to packing, as the same constant
can be applied to our protocol.

The total round complexity of the SPDZ offline phase is the maximum round
complexity of the various pre-processing operations in the SPDZ offline phase;
namely RID+4. This holds since the transmission of all random encrypted values
can occur in one round at the beginning of this phase. We stress that the depth
of the SHE needed for SPDZ is just one, making it very efficient.

Second Phase Cost: A careful analysis of the rest of the garbling phase of SPDZ-
BMR implies that it requires six additional rounds of communication.2

Third Phase Cost: The online phase of the SPDZ-BMR protocol requires three
rounds of interaction, one to open the secret shared values and two to verify the
associated MACs.

Summary: In summary, the round complexity of SPDZ-BMR is RID + 10 in the
offline phase, and 3 in the online phase.

4 Extending the FFHE/FSHE Functionalities

4.1 The Extended Functionality Definition

The first step in describing our new offline protocol for constructing the BMR
circuit is to extend the functionalities FFHE/FSHE to new functionalities FFHE+/
FSHE+ . In Fig. 4 we present the FFHE+ functionality; the definition of the FSHE+

functionality is immediate.
2 With reference to [27] this is one round in the preprocessing-I phase and the start of

the preprocessing-II phase due to the Output commands, and three to evaluate the
required circuits in step 3 of preprocessing-II (since the circuits are of depth three,
and hence require three rounds of computation), plus two to verify all the associated
MAC values.

More Efficient Constant-Round Multi-party Computation 565

The Extended Functionality FFHE+

This functionality runs the same Initialize, Wait, InputData, Add, Multiply,
and Output commands as FFHE of Figure 3. It additionally has the four following
externally exposed commands:

Output+: On input (output+,varid, i) from all honest parties (if varid is present in
memory), the functionality retrieves (varid, x), and if i = 0 it outputs (varid, x)
to the adversary. The functionality then calls Wait, and only if Wait does not
abort then outputs x to all parties if i = 0, or outputs x only to party i if i �= 0.

InputData+: On input (input+,Pi,varid,x) from Pi and (input+,Pi,varid,?) from
all other parties, with varid a fresh identifier, the functionality stores (varid,x).
The functionality then calls Wait.

RandomElement: This command is executed on input (randomelement, varid)
from all parties, with varid a fresh identifier. The functionality then selects
uniformly at random x ∈ Fp and stores (varid,x).

RandomBit: This command is executed on input (randombit, varid) from all par-
ties, with varid a fresh identifier. The functionality then selects uniformly at
random x ∈ {0, 1} and stores (varid,x).

Fig. 4. The Extended Functionality FFHE+

These new functionalities mimic the output possibilities of the SPDZ offline
phase, which were exploited in [27]; by allowing the functionality to produce
encryptions of random data and encryptions of random bits. In addition the
functionalities provide a version of Output, which we call Output+, which does
not allow the adversary to introduce an error value. There is also a new version
of InputData called InputData+ which will enable us to reduce the number
of rounds of interaction in our main protocol. Functionally this does nothing
different from InputData but it will be convenient to introduce a different
name for a different implementation within our FHE functionality.

4.2 Securely Realising the Extended Functionality

In Fig. 5 we give the protocol πFHE+ for realising the FFHE+ functionality in
the FFHE-hybrid model. Let us start by looking at the Output+ command
in more detail (after first reading Fig. 5). Suppose the adversary tries to make
player Pj accept an incorrect value, by introducing errors into the calls to the
weakly secure Output command from FFHE. The honest player Pj will receive
varid + e1 instead of varid and authvaridj + e2 instead of authvaridj , for some
adversarially chosen values of e1 and e2. If player Pj is not to abort then these
quantities must satisfy authvaridj +e2 = skj ·(varid+e1). Now since we know that
authvaridj = varid ·skj then this implies that the adversary needs to select e1 and
e2 such that e2 = skj · e1, which it needs to do without having any knowledge of
skj . Thus either the adversary needs to select e1 = e2 = 0, or he needs to guess

566 Y. Lindell et al.

the correct value of skj . This will happen with probability at most 1/p, which
is negligible.

We note that in the concurrent independent work of [12] a similar approach to
our Output+ command is taken in order to attain active security. Nevertheless,
they use a global MAC key 〈sk〉 = 〈sk1〉 + · · · + 〈skn〉 that is revealed to all
parties after decryption, which means that sk needs to be renewed after each
call to Output+. Thus, each call to their similar Output+ implementation
requires n calls to the expensive InputData protocol, which does not pay off in
terms of concrete efficiency.

The protocol which implements InputData+ works by first running Input-
Data with a random value, and then later providing the difference between the
random value input and the real input. This enables parallel preprocessing of
the InputData procedure, thereby reducing the overall number of rounds.

The protocol which implements the RandomElement command generates
an encrypted random value 〈x〉, unknown to any party as long as one of the
parties honestly chooses his additional share xi randomly.

The protocol which implements the RandomBit command is more elab-
orate, and borrows much from the equivalent operations in the SPDZ offline
phase, see [10]. The basic idea is to generate an encrypted random value 〈x〉,
unknown to any party. This value is then squared to obtain 〈s〉. The value of
s is then publicly revealed and an arbitrary square root y is taken. As long as
s �= 0 (which happens with negligible probability due to the size of p) we then
have that 〈b〉 = 〈x〉/y is an encryption of a value chosen uniformly from {−1, 1}.
Since p is prime, with probability 1/2 the square root taken will be equal to x
and with probability 1/2 it will be equal to −x. This encryption of a value in
{−1, 1} is turned into an encryption of a value in {0, 1} by the final step, by
computing (〈b〉 + 1)/2, which is a linear function and can be thus computed by
calling Add-Scalar and Multiply-Scalar. However, unlike in SPDZ no sacri-
ficing procedure is required as the Output+ command is actively secure.

Theorem 1. Protocol πFHE+ securely computes FFHE+ in the FFHE-hybrid
model in the UC framework, in the presence of static, active adversaries cor-
rupting any number of parties.

Proof (sketch). By [5], it suffices to prove the security of Protocol πFHE+ in the
SUC (simple UC) framework. We will sketch the proof for each of the processes
in the functionality separately. In the FFHE-hybrid model the security follows in
a straightforward way utilizing the security of the commands in FFHE.

Output+: The security of Output+ relies on the security of the InputData
and Output commands of FFHE. Namely, by the security of InputData we
have that all skj values are secret, and by the security of Output the only
change that A can make to the output is an additive difference e (fixed before
the output is given). Thus, A can only change the output if it chooses additive
differences e1, e2 with e1 �= 0 such that (x + e1) · skj = x · skj + e2 (mod p),
where x is the value output. This implies that e1 ·skj = e2 (mod p). Since skj is
secret, the adversary can cause this equality to hold with probability at most p.

More Efficient Constant-Round Multi-party Computation 567

Protocol πFHE+

This protocol implements the functionality FFHE+ in the FFHE-hybrid model.

Initialize: This performs the initialisation routine just as in the FFHE function-
ality. However, in addition, each party executes InputData to obtain an en-
cryption 〈ski〉 of a random MAC value ski known only to player Pi.

Output+: On input (output+, varid, i) from all honest parties, if varid is present
in memory, the following steps are executed.
1. If i �= 0, party Pi computes authvaridi = 〈varid〉 · 〈ski〉, else, each party Pj

computes authvaridj = 〈varid〉 · 〈skj〉.
2. The parties call FFHE with the command (output, varid, i).
3. If i �= 0, they call FFHE with the command (output, authvaridi, i), else,

they use command (output, authvaridj, j) for every j ∈ [1, . . . , n].
4. Any party Pj aborts if authvaridj �= varid · skj .

Depth Needed: D(varid) + 1.
Round Cost: 2 (since steps 2 and 3 can be performed in parallel).

InputData+: The first step of this command does not depend on the input, and
so can be run in a pre-processing step if the number of values to be input per
party are known in advance. Upon input (input+, Pi, varid, x) with x ∈ Fp for
Pi and (input+, Pi, varid, ?) for all other parties:
1. Party Pi chooses a random ri ∈ Fp (in the same field as x) and sends

(input, Pi, varid-1, ri) to Functionality FFHE.
2. All parties Pj with j �= i send (input, Pi, varid-1, ?) to Functionality FFHE.
3. Party Pi broadcasts ci = xi − ri (mod p) to all parties.
4. All parties send (add-scalar, ci, varid-1, varid) to Functionality FFHE.

Depth Needed: D(xi) = D(c) = 0.
Round Cost: RID + 1. Although all RID rounds can be performed in parallel at
the start of the protocol.

RandomElement:
1. For i = 1, . . . , n, each Pi chooses a random xi ∈ Fp, and calls FFHE with

the command (input,Pi,xi) from party Pi and (input,Pi,?) for the others.
2. Call Add as many times as needed to compute 〈x〉 = 〈x1〉 + · · · + 〈xn〉.

Depth Needed: D(xi) = max{D(xi)} = 0.
Round Cost: RID.

RandomBit: This command requires a more elaborate implementation
1. For i = 1, . . . , n, call FFHE with the command (input,Pi,xi) from party Pi

and (input,Pi,?) for the rest of the parties.
2. Call Add as many times as needed to compute 〈x〉 = 〈x1〉 + · · · + 〈xn〉.
3. Call Multiply to compute 〈s〉 = 〈x〉 · 〈x〉.
4. Call FFHE+ on input (output+, s, 0) so all parties obtain s.
5. y =

√
s (mod p), if s = 0 then restart the protocol.

6. 〈b〉 = 〈x〉/y.
7. Call Add-scalar and Multiply-scalar to compute 〈varid〉 = (〈b〉 + 1)/2 .

Depth Needed: D(s) + 1 = 2. Note this is the depth required, but the output
encrypted bit has depth zero.
Round Cost: RID + 2.

Fig. 5. Protocol πFHE+

568 Y. Lindell et al.

We remark that the MAC key skj is only used for output values given to Pj .
Thus, it always remains secret (even when used for many outputs).

The simulator for Output+ works simply by simulating the Output inter-
action with FFHE for all honest Pi. Regarding a corrupt Pj , the simulator receives
the value x that is supposed to be output. Furthermore, the simulator receives
the value skj from the InputData instruction, as well as any errors that are
introduced in the Output calls by corrupted parties. Thus, the simulator can
construct the exact value that A would receive in a real execution.

InputData+: The only difference between InputData+ and InputData is that
InputData+ can be run such that the actual input is only known to the party
in the last round of the protocol. This is done in a straightforward way by using
InputData to have a party input a random string, and then using that result
to mask the real data (at the end). The simulator for this procedure therefore
relies directly on the InputData procedure of FFHE in a straightforward way.
Namely, in the FFHE-hybrid model when the party Pi is corrupted, the sim-
ulator receives the value ri that party Pi sends to InputData. Then, upon
receiving ci as broadcast by Pi, the simulator defines xi = ci + ri (mod p) and
sends (input+, Pi, varid, xi) to the ideal functionality as input. In the case that
Pi is honest, the simulator chooses a random ci ∈ Fp and simulates Pi broad-
casting that value. Furthermore, it simulates the (input, ...) and (add-scalar, ...)
interaction with FFHE.

The view of the adversary is identical in the simulated and real executions.
In addition, since InputData is secure and ci is broadcast and therefore the
same for all parties, the protocol fully determines the input value xi = ci + ri

(mod p), as required.

RandomElement: This is a straightforward coin tossing protocol. The security
is derived from the fact that FFHE provides a secure InputData protocol that
reveals no information about the input values. Thus, no party knows anything
about the x-values input by the others. Formally, a simulator just simulates the
message interaction with FFHE for all of the (input, Pi, xi) and (input, Pi, ?)
messages. As long as at least one party is honest, the distribution over the value
x defined is uniform, as required.

RandomBit: The first step of this protocol is to essentially run RandomEle-
ment in order to define a random shared value x. Then, the value s = x2

(mod p) is output to all parties, and each takes the same square-root y of s.
Assume that the square root taken is the one that is between 1 and (p − 1)/2.
Now, if 1 ≤ x ≤ p−1

2 , then y = x and so 〈b〉 = 〈1〉, and we have that
〈varid〉 = 〈1+1

2 〉 = 〈1〉. Else, if p−1
2 < x ≤ p − 1 then 〈b〉 = 〈−1〉 and we

have 〈varid〉 = 〈−1+1
2 〉 = 〈0〉. The security relies on the fact that the result is

fully determined from the (input, ...) messages sent in the beginning. Relying on
the security of InputData and Add/Multiply in FFHE, and on the security
of the Output+ procedure, the value x is uniformly distributed and the value
s that is output to all parties equals x2 and no other value. All other steps are

More Efficient Constant-Round Multi-party Computation 569

deterministic and thus this guarantees that the output is a uniformly distributed
bit, as required.

Regarding simulation, the simulator simulates the calls to InputData, Add
and Multiply as in the protocol. For the output, the simulator simply chooses
a random s as the value received from Output+. The view of the parties is
clearly identical to in a real execution.

This completes the proof sketch of the theorem. �	

5 The First Variant of the SHE-BMR Protocol: π0

In this section we outline our basic protocol, which follows much upon the lines
of the SPDZ-BMR protocol. The modifications needed for a variant using only
depth three will be left to Sect. 6. We divide our discussion into three subsections.
In the first section we outline the offline functionality Foffline we require. This
functionality produces a shared garbled circuit which computes the function
amongst the players.

For each wire there are 2 · n wire labels, corresponding to two labels for each
party. The wire labels are held as encrypted key values 〈ki

w,β〉, where encryption
is under the SHE scheme, along with encrypted masking values 〈λw〉; where
1 ≤ w ≤ W , β ∈ {0, 1} and 1 ≤ i ≤ n. The garbled gates are held as a set of
linear combinations of outputs from a suitable Pseudo-Random Function (PRF)
which is keyed by the wire labels of all parties. These linear combinations are
then used to one-time pad encrypt the output wire label, with the precise linear
combination to be used in any given situation determined by the encrypted mask
values. The output wire masking values are decrypted towards all parties, and
the input wire masking values are decrypted towards the inputting party, but
everything else remains held in encrypted form.

We then present the online protocol πMPC,0 which implements FMPC in the
Foffline-hybrid model. This first decrypts the input wire labels desired for each
party via the distributed decryption functionality, and revealing the associated
selector variables Λw = ρw ⊕λw, where ρw is the actual intended wire value. The
parties are then able, for each gate, to determine which linear combination to
apply (using the selector variables), and can then determine the output wire label
using the given linear combination. From this they can determine the output
selector variable and repeat the process for the next gate, and so on. Once
all gates have been processed in this way the players have learnt the selector
variables Λw for the output wires, and so can compute the output wire values
from Λw ⊕ λw, where the value of λw, for the output wires, was revealed in the
pre-processing phase. At the end of this section we present the offline protocol
itself πoffline,0 which implements Foffline in the FFHE+ -hybrid model.

5.1 Functionality Foffline for the Offline Phase

We first present the offline functionality (see Fig. 6) for our main MPC protocol.
This is almost identical to the offline functionality for the SPDZ-BMR protocol

570 Y. Lindell et al.

of [27]. The main difference is that it is built on top of our FFHE+ functionality
from the previous section, as opposed to the SPDZ MPC protocol. In particular
this means we have just a single pre-processing step as opposed to the two phases
in [27], which are in turn inherited from the two phases of the SPDZ protocol.

5.2 The SHE-BMR Protocol Specification πMPC, 0

We can now give our protocol πMPC,0, described in Fig. 7, which securely com-
putes the functionality FMPC described in Fig. 2 in the Foffline-hybrid model.
The computational and communication costs of πMPC,0 are mainly in the pre-
processing step, with the on-line phase adding only a depth of one to the SHE
scheme and two more rounds of communication, all of these costs coming from
the need for an actively secure Output+. The on-line phase is just an adapta-
tion of BMR [3], following the trend of [27], and thus we will not discuss it in
details.

5.3 The πoffline, 0 Protocol

Protocol πoffline,0 in Fig. 8 implements Foffline in the FFHE+-hybrid model.
For completeness, we show how to calculate the output indicators for func-

tions fg = AND and fg = XOR in Fig. 9 as shown in [27]. Note that we consume
a multiplicative depth of two for both operations.

– For fg = AND, we compute 〈t〉 = 〈λa〉 · 〈λ2〉 and then 〈xA〉 = (〈t〉 − 〈λc〉)2,
〈xB〉 = (〈λa〉 − 〈t〉 − 〈λc〉)2, 〈xC〉 = (〈λb〉 − 〈t〉 − 〈λc〉)2, 〈xD〉 = (1 − 〈λa〉 −
〈λb〉 + 〈t〉 − 〈λc〉)2.

– For fg = XOR, we first compute 〈t〉 = 〈λa〉⊕〈λb〉 = 〈λa〉+〈λb〉−2 ·〈λa〉·〈λ2〉,
and then 〈xA〉 = (〈t〉 − 〈λc〉)2, 〈xB〉 = (1 − 〈λa〉 − 〈λb〉 + 2 · 〈t〉 − 〈λc〉)2,
〈xC〉 = 〈xB〉, 〈xD〉 = 〈xA〉.

5.4 Security

The security of our protocol follows from the proof of the security of the SPDZ-
BMR protocol in [27]. Apart from the use of Gentry’s MPC protocol, as opposed
to the SPDZ protocol, (which is purely an implementation change) the only dif-
ference is that the InputData in SPDZ-BMR is generated in a way that guar-
antees that it is random. For our basic protocol, this is not the case. However,
there is nothing that forces the adversary to input the value it actually gets
and security is preserved. In particular, the adversary can ignore the value it
obtained and use a different one honestly, and no problem arises. So, it is no
different from this case where the adversary can choose the value in InputData.

More Efficient Constant-Round Multi-party Computation 571

The Offline Functionality - Foffline

This functionality runs the same Initialize, Wait, and Output+ commands as
FFHE+ . In addition it has the following command:

Preprocessing: On input (preprocessing, Cf), for a circuit Cf with at most W
wires and G gates, the functionality performs the following operations.
– For all wires w ∈ [1, . . . , W] :

• The functionality stores a random mask 〈λw〉, where λw ∈ {0, 1}.
• For every value β ∈ {0, 1}, each party Pi chooses and stores a random

key 〈ki
w,β〉, where ki

w,β ∈ Fp.
– For all wires w which are attached to party Pi the functionality decrypts

〈λw〉 to party Pi by running Output+ as in functionality FFHE+ .
– For all output wires w the functionality decrypts 〈λw〉 to all parties by

running Output+ as in functionality FFHE+ .
– For every gate g with input wires 1 ≤ a, b ≤ W and output wire 1 ≤ c ≤ W .

• Party Pi provides the following values for x ∈ {a, b} on the 4 ·G values:

Fki
x,0

(0||1||g), . . . , Fki
x,0

(0||n||g), Fki
x,0

(1||1||g), . . . , Fki
x,0

(1||n||g)

Fki
x,1

(0||1||g), . . . , Fki
x,1

(0||n||g), Fki
x,1

(1||1||g), . . . , Fki
x,1

(1||n||g)

(In our protocols, the parties actually provide sums of pairs of these
values; see Figure 9. This reduces the number of values input from 8
per-party per-gate to only 4 per-party per-gate.)

• Define the selector variables

χ1 =

{
0, If fg(λa, λb) = λc.

1, Otherwise.
χ2 =

{
0, if fg(λa, λ̄b) = λc.

1, Otherwise.

χ3 =

{
0, If fg(λ̄a, λb) = λc.

1, Otherwise.
χ4 =

{
0, If fg(λ̄a, λ̄b) = λc.

1, Otherwise.

• Set Ag = (A1
g, . . . , An

g), Bg = (B1
g , . . . , Bn

g), Cg = (C1
g , . . . , Cn

g), Dg =
(D1

g , . . . , Dn
g) where for 1 ≤ j ≤ n:

Aj
g =

(
n∑

i=1

Fki
a,0

(0||j||g) + Fki
b,0

(0||j||g)

)
+ kj

c,χ1

Bj
g =

(
n∑

i=1

Fki
a,0

(1||j||g) + Fki
b,1

(0||j||g)

)
+ kj

c,χ2

Cj
g =

(
n∑

i=1

Fki
a,1

(0||j||g) + Fki
b,0

(1||j||g)

)
+ kj

c,χ3

Dj
g =

(
n∑

i=1

Fki
a,1

(1||j||g) + Fki
b,1

(1||j||g)

)
+ kj

c,χ4

• The functionality finally stores the values 〈Ag〉, 〈Bg〉, 〈Cg〉, 〈Dg〉.

Fig. 6. The Offline Functionality Foffline

572 Y. Lindell et al.

The MPC Protocol - πMPC,0

On input a circuit Cf representing the function f , the parties execute the following
commands in sequence.

Preprocessing: This sub-task is performed as follows.
– Call Initialize on Foffline to initialize the FHE scheme.
– Call Preprocessing on Foffline with input Cf .

Online Computation: This sub-task is performed as follows.
– For all his input wires w, each party computes Λw = ρw ⊕ λw, where λw was

obtained in the preprocessing stage, and Λw is broadcast to all parties.
– Party i calls Output+ to all parties on Foffline to decrypt the key 〈ki

w〉 associ-
ated to Λw, for all his input wires w.

– The parties call Output+ on Foffline to decrypt {Ag}, {Bg}, {Cg}, and {Dg}
for every gate g.

– Passing through the circuit topologically, the parties can now locally compute
the following operations for each gate g. Let the gates input wires be labelled
a and b, and the output wire be labelled c.

• For j = 1, . . . , n compute kj
c according to the following cases:

(Λa, Λb) = (0, 0) : Set kj
c = Aj

g −
(∑n

i=1 Fki
a
(0||j||g) + Fki

b
(0||j||g)

)
.

(Λa, Λb) = (0, 1) : Set kj
c = Bj

g −
(∑n

i=1 Fki
a
(1||j||g) + Fki

b
(0||j||g)

)
.

(Λa, Λb) = (1, 0) : Set kj
c = Cj

g −
(∑n

i=1 Fki
a
(0||j||g) + Fki

b
(1||j||g)

)
.

(Λa, Λb) = (1, 1) : Set kj
c = Dj

g −
(∑n

i=1 Fki
a
(1||j||g) + Fki

b
(1||j||g)

)
.

• If ki
c {∈� ki

c,0, k
i
c,1}, then Pi outputs abort. Otherwise, it proceeds. If Pi

aborts it notifies all other parties with that information. If Pi is notified
that another party has aborted it aborts as well.

• If ki
c = ki

c,0 then Pi sets Λc = 0; if ki
c = ki

c,1 then Pi sets Λc = 1.
• The output of the gate is defined to be (k1

c , . . . , kn
c) and Λc.

– Assuming party Pi does not abort it will obtain Λw for every circuit-output wire
w. The party can then recover the actual output value from ρw = Λw ⊕ λw,
where λw was obtained in the preprocessing stage.

Depth Needed: D(Output + ({Ag}, {Bg}, {Cg}, {Dg})) = 3 + 1 = 4.
Round Cost:The round cost of the online stage is that of the first three steps,
which can be done in parallel in two rounds.

Fig. 7. The MPC Protocol - πMPC,0

5.5 Analysis of Efficiency

Just as in our analysis of the SPDZ-BMR protocol, we wish to estimate the cost
of the most expensive operations; which are the encryptions of input data and
random input data.

– Each party calls InputData once during the Initialize phase of the extended
FHE functionality.

– We perform W RandomBit operations, each of which consumes a CID per
party.

More Efficient Constant-Round Multi-party Computation 573

The offline Protocol: πoffline,0

The protocol runs the commands Initialize, Wait, and Output+ by calling the
equivalent commands on FFHE+ . Thus we only need to describe Preprocessing
as follows:

1. Call Initialize on the functionality FFHE+ with input a prime p > 2k.
2. Generate wire masks: For every circuit wire w we need to generate a random

and hidden masking-values λw. Thus for all wires w the parties execute Ran-
domBit of FFHE+ ; the output is denoted by 〈λw〉.
Depth Needed: D(RandomBit) = 2
Round Cost: RID + 2.

3. Generate keys: For every wire w, each party i ∈ [1, . . . , n] and for β ∈ {0, 1},
the parties execute the command InputData of the functionality FFHE+ to
obtain output 〈ki

w,β〉; where player i learns ki
w,β . For the vector of shares

〈ki
w,β〉)n

i=1
we shall abuse the notation and denote it by 〈kw,β〉.

Depth Needed: D(ki
w,β) = 0.

Round Cost: RID.
4. Output masks for circuit-input-wires: For all wires w which are attached

to party Pi we execute the command Output+ on the functionality FFHE+ to
decrypt 〈λw〉 to party i.
Depth Needed: max(D(RandomBit), D(Output + (λw))) = max(2, 1) = 2.
Round Cost: 2.

5. Output masks for circuit-output-wires: In order to reveal the real values
of the circuit-output-wires it is required to reveal their masking values. That is,
for every circuit-output-wire w, the parties execute the command Output+ on
the functionality FFHE+ for the stored value 〈λw〉.
Depth Needed: max(D(RandomBit), D(Output + (λw))) = max(2, 1) = 2.
Round Cost: 2.

6. Calculate garbled gates: See Figure 9 for the details of this step.

We note that steps two and three can be run in parallel, and that steps four and
five also can be run in parallel, but need to follow steps two. We also note that the
calls to InputData+ in the last step (detailed in Figure 9) need to be executed
after step three. Hence, we have:
Total Depth Needed: 3.
Total Round Cost: max(RID + 3, RID + 4) = RID + 4.

Fig. 8. The offline Protocol: πoffline,0

– To create the encrypted PRF keys we require an additional 2 · W invocations
of CID per party.

– Finally to enter the garbled labels we require, 4 ·n2 ·G invocations of the input
data routine, which consists of 4 · n · G invocations of InputData per party.

Thus the cost of encrypting the data for the SHE-BMR protocol is given by the
expression

(
4 · n2 · G + (3 · W + 1) · n

)
·CID, which is quadratic in n as opposed

to the cubic complexity of the SPDZ-BMR protocol.

574 Y. Lindell et al.

Calculate Garbled Gates Step of πoffline,0

This step is operated for each gate g in the circuit in parallel. Specifically, let g be
a gate whose input wires are a, b and output wire is c. Do as follows:

(a) Calculate output indicators: This step calculates four indicators 〈xA〉, 〈xB〉,
〈xC〉, 〈xD〉 whose values will be 〈0〉 or 〈1〉. Each indicator is determined by some
quadratic function fg on 〈λa〉, 〈λb〉, 〈λc〉, depending on the truth table of the
gate. See Section 5.3 for details.

〈xA〉 = (fg(〈λa〉, 〈λb〉) − 〈λc〉)2 〈xB〉 = (fg(〈λa〉, (1 − 〈λb〉)) − 〈λc〉)2
〈xC〉 = (fg((1 − 〈λa〉), 〈λb〉) − 〈λc〉)2 〈xD〉 = (fg((1 − 〈λa〉), (1 − 〈λb〉)) − 〈λc〉)2

Depth Needed: D(x∗) = D(λ∗) + 2 = 2.
(b) Assign the correct vector: The indicators are used to choose, for every garbled

label, either kc,0 or kc,1, for t = A, B, C, D,

〈vc,xt〉 = (1 − 〈xt〉) · 〈kc,0〉 + 〈xt〉 · 〈kc,1〉.
Depth Needed: D(vc,x∗) = max(D(x∗), D(kc,∗)) + 1 = 3.

(c) Calculate garbled labels: Party i can now compute the 2 · n PRF values
Fki

w,β
(0||1||g), . . . , Fki

w,β
(0||n||g) and Fki

w,β
(1||1||g), . . . , Fki

w,β
(1||n||g), for each

input wire w of gate G, and β = 0, 1.

F 0
ki

w,β
(g) =

(
Fki

w,β
(0||1||g), . . . , Fki

w,β
(0||n||g)

)

F 1
ki

w,β
(g) =

(
Fki

w,β
(1||1||g), . . . , Fki

w,β
(1||n||g)

)
.

Then, they call 4 · n · G times the command InputData+ on the functionality
FFHE, so all the parties obtain the output:

〈F 0
ki

a,0
+ F 0

ki
b,0

〉, 〈F 1
ki

a,0
+ F 0

ki
b,1

〉, 〈F 0
ki

a,1
+ F 1

ki
b,0

〉, 〈F 1
ki

a,1
+ F 1

ki
b,1

〉.

All the parties now compute 〈Ag〉, 〈Bg〉, 〈Cg〉, 〈Dg〉 via

〈Ag〉 = 〈vc,xA
〉 +

n∑

i=1

〈F 0
ki

a,0
(g) + F

0
ki

b,0
(g)〉 〈Bg〉 = 〈vc,xB

〉 +
n∑

i=1

〈F 1
ki

a,0
(g) + F

0
ki

b,1
(g)〉

〈Cg〉 = 〈vc,xC
〉 +

n∑

i=1

〈F 0
ki

a,1
(g) + F

1
ki

b,0
(g)〉 〈Dg〉 = 〈vc,xD

〉 +
n∑

i=1

〈F 1
ki

a,1
(g) + F

1
ki

b,1
(g)〉

Round Cost: RID = RID +1, but the RID can be done in parallel before. Depth
Needed: D(Ag) = D(Bg) = D(Cg) = D(Dg) = D(vc,x∗) = 3.

Fig. 9. Calculate garbled gates step of πoffline,0

6 A Modified SHE-BMR Protocol of Depth 3: π1

In this section we give a description of the protocol π1 (see Figs. 10 and 12 for the
offline and online modifications respectively) which requires only a multiplicative
depth of three rather than four as in π0. This reduction on the depth of the SHE

More Efficient Constant-Round Multi-party Computation 575

scheme comes directly from the reduction of the depth of the circuit used for
garbling the actual circuit to evaluate. On the downside, we require additional
2 ·W ·n · (n−1) calls to InputData and some more multiplications in the offline
and online phases. The new protocol π1 is, in fact, just a variant of π0, and
for which set of parameters one would be preferred in practice over the other
remains to be empirically tested.

6.1 Protocol π1 Description

Our earlier protocol π0 securely computes the BMR garbled gates, as follows. For
every gate the parties first compute the shares 〈xA〉, 〈xB〉, 〈xC〉, 〈xD〉 and then
use these shares to compute the shares 〈vc,xA

〉, 〈vc,xB
〉, 〈vc,xC

〉, 〈vc,xD
〉 of the

keys kc,0 or kc,1 on the output wire of the gate. Finally, these are masked by the
pseudorandom values provided by all parties; see Fig. 9. Considering how these
equations are computed, we have that the 〈x∗〉 values require two multiplications
and the 〈vc,x∗〉 require an additional multiplication. The final multiplication,
making it depth-4, is needed for computing Output+. Thus, our aim is to
compute the 〈vc,x∗〉 values directly, with just two multiplications instead of three.

In order to achieve this, we directly considered AND and XOR gates, and
provide direct formulae for them. The main idea is that it actually suffices to
compute shares of either the key kc,∗ on the output wire or its opposite −kc,∗
modulo p. The reason that this suffices is that the square of these values is the
same. Thus, we have two versions of each key: the basic-key and the squared-key.
The offline protocol works by the parties calling RandomElement in order to
generate each basic-key and then squaring the result and revealing the squared-
key to the appropriate party. Recall that in BMR, each party has one part of
the key, and inputs it in the offline phase to generate the garbled gates. The
parties then compute the shares of the basic-keys on the output wire of the gate
(or their negative) and mask the result with the outputs of the PRF, computed
using the revealed squared-keys. Observe that in the online phase, the basic-key
is revealed (since this is what is masked) and the parties then square it in order
to compute the PRF values to decrypt the next garbled gate.

Since the basic-key is random and was never revealed, the parties have no
idea if they received the basic-key or it’s negative. Otherwise this would leak
information about the values on the wires (as we mentioned, we compute either
the key or its negative, and this depends on the values on the wires). This
adds 2 · W · n · (n − 1) calls to InputData to generate the keys via calls to
RandomElement to ensure that no party knows them in the offline phase.

The AND gate. We now present the equations for computing an AND gate with
input wires a, b and output wire c. In order to motivate these equations, we build
the first equation for computing 〈vc,xA

〉, which is the share of the key output
from the first ciphertext in the garbled gate, in detail. We denote the basic-keys
(before being squared) on the output wire by k̃c,0, k̃c,1. If the indicator-bit λc

on the output wire equals 1 then the roles of the 0-key and 1-key are reversed.
Then, if the input-bit on wire a equals 0, then 〈λa〉 equals 0 and so the output

576 Y. Lindell et al.

The Offline Protocol: πoffline,1

This protocol is identical to the πoffline,0 protocol given in Figure 8, except for the
following changes:

3 Generate keys in Figure 8 is changed as follows:
(a) For every wire w, bit value β ∈ {0, 1} and party i ∈ [1, . . . , n], the parties

execute the command RandomElement of the functionality FFHE+ to
obtain output 〈k̃i

w,β〉. We stress that nobody learns k̃i
w,β . Let varid be the

identifier of 〈k̃i
w,β〉. In the following, we shall abuse the notation to denote

〈k̃w,β〉 =
(
〈k̃1

w,β〉, . . . , 〈k̃n
w,β〉

)
.

(b) The parties call (multiply, varid, varid, varid2) where varid2 is a new identi-

fier, in order to share a ciphertext 〈ki
w,β〉 = 〈k̃i

w,β〉2.
(c) The parties call FFHE+ on input (output+, varid2, i) for party Pi to obtain

ki
w,β .

Depth Needed: D(Output + (ki
w,β)) = 2.

Round Cost: RID + 2.
4 Calculate garbled gates in Figure 9 is changed as follows:

(a) The calculate output indicators and assign the correct vector phases
are replaced by the following functions, that choose, for every garbled label,
either k̃c,0, −k̃c,0, k̃c,1 or −k̃c,1.
– For an AND gate, the parties compute shares of the keys on the output

wires according to Equations (1)–(4).
– For a XOR gate, the parties compute shares of the keys on the output

wires according to Equations (5)–(7).
Depth Needed: D(vc,xA) = D(vc,xB) = D(vc,xC) = D(vc,xD) = 2.

Total Round Cost: max(RID + 3, RID + 4) = RID + 4.
Total Depth Needed: 2.

Fig. 10. The modified protocol πoffline,1

is a function of the first row of the equation. Once a equals 0, the output equals
0 irrespective of b, since this is an AND gate. Thus, if the output indicator bit
equals 0 then the output should be 〈k̃c,0〉; otherwise the output should be 〈k̃c,1〉.
In contrast, if the input on wire a equals 1, then the output depends only on
the second row of the equation (since 1 − 〈λa〉 equals 0). The output in this
case depends on b. If b = 1 and c = 0 or if b = 0 and c = 1 then the output
should be 〈k̃c,1〉 (since in the first case a = b = 1 and the output is the 1-key,
and in the second case the output should be the 0-key but c = 1 and so the
roles are reversed). This is obtained by multiplying 〈k̃c,1〉 by 〈λb〉 − 〈λc〉 which
equals ±1 in both of these cases (and 0 otherwise). We then multiply 〈k̃c,0〉 by
1 − 〈λb〉 − 〈λc〉, which equals 0 in both of these cases that b = 0, c = 1 and
b = 1, c = 0. In contrast, if b = c = 0 or b = c = 1 then the output should be
〈k̃c,0〉 (since if b = c = 0 then the output is 0, and if b = c = 1 then the output

More Efficient Constant-Round Multi-party Computation 577

is 1 but the 1-key is reversed). Finally leading to the equation

〈vc,xA
〉 = (1 − 〈λa〉) ·

(
〈λc〉 · 〈k̃c,1〉 + (1 − 〈λc〉) · 〈k̃c,0〉

)
(1)

+〈λa〉 ·
(
(〈λb〉 − 〈λc〉) · 〈k̃c,1〉 + (1 − 〈λb〉 − 〈λc〉) · 〈k̃c,0〉

)
.

The remaining three equations are computed similarly, as follows:

〈vc,xB 〉 = (1 − 〈λa〉) ·
(
〈λc〉 · 〈k̃c,1〉 + (1 − 〈λc〉) · 〈k̃c,0〉

)

+〈λa〉 ·
(
(〈λb〉 − 〈λc〉) · 〈k̃c,0〉 + (1 − 〈λb〉 − 〈λc〉) · 〈k̃c,1〉

)
(2)

〈vc,xC 〉 = 〈λa〉 ·
(
〈λc〉 · 〈k̃c,1〉 + (1 − 〈λc〉) · 〈k̃c,0〉

)

+(1 − 〈λa〉) ·
(
(〈λb〉 − 〈λc〉) · 〈k̃c,1〉 + (1 − 〈λb〉 − 〈λc〉) · 〈k̃c,0〉

)
(3)

〈vc,xD 〉 = 〈λa〉 ·
(
〈λc〉 · 〈k̃c,1〉 + (1 − 〈λc〉) · 〈k̃c,0〉

)

+(1 − 〈λa〉) ·
(
(〈λb〉 − 〈λc〉) · 〈k̃c,0〉 + (1 − 〈λb〉 − 〈λc〉) · 〈k̃c,1〉

)
(4)

In order to prove correctness of these equations, we present the truth table of
the outputs in Fig. 11. Observe that all values are correct, but sometimes the
negative value of the basic-key is obtained.

λa λb λc 〈vc,xA
〉 〈vc,xB

〉 〈vc,xC
〉 〈vc,xD

〉
0 0 0 〈k̃c,0〉 〈k̃c,0〉 〈k̃c,0〉 〈k̃c,1〉
0 0 1 〈k̃c,1〉 〈k̃c,1〉 〈−k̃c,1〉 〈−k̃c,0〉
0 1 0 〈k̃c,0〉 〈k̃c,0〉 〈k̃c,1〉 〈k̃c,0〉
0 1 1 〈k̃c,1〉 〈k̃c,1〉 〈−k̃c,0〉 〈−k̃c,1〉
1 0 0 〈k̃c,0〉 〈k̃c,1〉 〈k̃c,0〉 〈k̃c,0〉
1 0 1 〈−k̃c,1〉 〈−k̃c,0〉 〈k̃c,1〉 〈k̃c,1〉
1 1 0 〈k̃c,1〉 〈k̃c,0〉 〈k̃c,0〉 〈k̃c,0〉
1 1 1 〈−k̃c,0〉 〈−k̃c,1〉 〈k̃c,1〉 〈k̃c,1〉

λa λb λc 〈vc,xA
〉 〈vc,xB

〉 〈vc,xC
〉 〈vc,xD

〉
0 0 0 〈k̃c,0〉 〈k̃c,1〉 〈k̃c,1〉 〈k̃c,0〉
0 0 1 〈k̃c,1〉 〈k̃c,0〉 〈k̃c,0〉 〈k̃c,1〉
0 1 0 〈−k̃c,1〉 〈−k̃c,0〉 〈−k̃c,0〉 〈−k̃c,1〉
0 1 1 〈−k̃c,0〉 〈−k̃c,1〉 〈−k̃c,1〉 〈−k̃c,0〉
1 0 0 〈k̃c,1〉 〈k̃c,0〉 〈k̃c,0〉 〈k̃c,1〉
1 0 1 〈k̃c,0〉 〈k̃c,1〉 〈k̃c,1〉 〈k̃c,0〉
1 1 0 〈−k̃c,0〉 〈−k̃c,1〉 〈−k̃c,1〉 〈−k̃c,0〉
1 1 1 〈−k̃c,1〉 〈−k̃c,0〉 〈−k̃c,0〉 〈−k̃c,1〉

Fig. 11. The truth table of the vectors for an AND gate (on the left) and for a XOR
gate (on the right) computed in Fig. 10.

The XOR gate. We use a similar idea as above to compute the XOR gate.
Intuitively, in a XOR gate, there are two cases: λa = λb and λa �= λb. Multiplying
by λa − λb gives ±1 if λa �= λb and 0 if λa = λb. Furthermore, multiplying by
1 − λa − λb gives the exact reverse case; it equals 0 if λa �= λb and equals ±1
if λa = λb. Observe that 〈vc,xC

〉 and 〈vc,xD
〉 need not be computed at all since

(1 − a) ⊕ b = a ⊕ (1 − b) and (1 − a) ⊕ (1 − b) = a ⊕ b. This yields the following
equations, where as above, we prove correctness via the truth table given in
Fig. 11.

578 Y. Lindell et al.

〈vc,xA〉 = 〈vc,xD 〉 = (〈λa〉 − 〈λb〉) ·
(
〈λc〉 · 〈k̃c,0〉 + (1 − 〈λc〉) · 〈k̃c,1〉

)

+(1 − 〈λa〉 − 〈λb〉) ·
(
〈λc〉 · 〈k̃c,1〉 + (1 − 〈λc〉) · 〈k̃c,0〉

)
(5)

〈vc,xB 〉 = 〈vc,xC 〉 = (〈λa〉 − 〈λb〉) ·
(
〈λc〉 · 〈k̃c,1〉 + (1 − 〈λc〉) · 〈k̃c,0〉

)

+(1 − 〈λa〉 − 〈λb〉) ·
(
〈λc〉 · 〈k̃c,0〉 + (1 − 〈λc〉) · 〈k̃c,1〉

)
(6)

Security of the Modified Protocol: Observe that in the offline phase, the
only difference is that the 〈vc,x∗〉 values contain the “tilde” version of the keys;
more formally, the 〈vc,x∗〉 ciphertexts encrypt the square root of the keys, and
not the keys themselves. Thus, in the online phase, the parties receive the square
roots of the keys and need to square them before proceeding. The only issue that
needs to be explained here is that the specific square root provided reveals no
information. This needs to be justified because if an adversary could know that
−k̃ is computed or k̃, then it would know some information about the masks
λa, λb, λc. However, since the k̃ values are uniformly distributed in Fp, and the
keys themselves revealed in the offline phase are k = k̃2, it follows that each of
the two square roots of k are equally probable. Stated differently, given k, the
distribution over k̃ and −k̃ is identical.

The modified MPC Protocol - πMPC,1

This protocol is identical to the πMPC,1 protocol described in Figure 7, except for
the four cases of the Online Computation sub-task, in which for j = 1, . . . , n,
the values kj

c are now computed as follows:

Case (Λa, Λb) = (0, 0) : Compute kj
c =

(
Aj

g − (
∑n

i=1 Fki
a
(0||j||g) + Fki

b
(0||j||g))

)2

.

Case (Λa, Λb) = (0, 1) : Compute kj
c =

(
Bj

g − (
∑n

i=1 Fki
a
(1||j||g) + Fki

b
(0||j||g))

)2

.

Case (Λa, Λb) = (1, 0) : Compute kj
c =

(
Cj

g − (
∑n

i=1 Fki
a
(0||j||g) + Fki

b
(1||j||g))

)2

.

Case (Λa, Λb) = (1, 1) : Compute kj
c =

(
Dj

g − (
∑n

i=1 Fki
a
(1||j||g) + Fki

b
(1||j||g))

)2

.

Depth Needed: DOut+ + D({Ag}, {Bg}, {Cg}, {Dg}) = 2 + 1 = 3.

Fig. 12. The Modified Protocol πMPC,1

Analysis of Efficiency of the Modified Protocol: As we noted in the intro-
duction, the two main sources of overhead that concern our MPC protocol are
the number of rounds and the number of calls to the ID protocol. The former
is not changed by our π1 variant, but the latter does. To generate the keys in
πoffline,1, we now perform 2·W ·n2 calls to InputData, via calls to RandomEle-
ment. In π0 we performed 2 · W · n calls to generate the keys, so overall we add
2 · W · n · (n − 1) calls to InputData. To analyse the number of homomorphic
multiplications we go through each step of the protocol:

More Efficient Constant-Round Multi-party Computation 579

– Generate keys step: We perform 4 ·W ·n more multiplications (half of them
to square the keys, the other half to Output+ them).

– Calculate garbled gates step:
1. For every AND gate, we used 13 multiplications in the first variant. Now,

by careful rewriting of the equations, we can do this in 20.
2. For every XOR gate, we used 7 multiplications in the first variant. Now

we use 12.
3. So, on average, we pass from 10 to 16 multiplications per gate.

Thus, overall on average we perform 4 · W · n + 6 · G more homomorphic
multiplications. However, in practice each homomorphic multiplication will be
more efficient since the overall depth of the SHE scheme can now be three
rather than four.

Acknowledgements. The first author was supported in part by the European
Research Council under the European Union’s Seventh Framework Programme
(FP/2007-2013)/ERC consolidators grant agreement n. 615172 (HIPS), and by the BIU
Center for Research in Applied Cryptography and Cyber Security in conjunction with
the Israel National Cyber Bureau in the Prime Minster’s Office. The second author
was supported in part by ERC Advanced Grant ERC-2010-AdG-267188-CRIPTO,
DARPA and the US Navy under contract #N66001-15-C-4070, and by EPSRC via
grants EP/I03126X and EP/N021940/1. The third author was supported in part by the
Marie Sklodowska-Curie ITN ECRYPT-NET (Project Reference 643161). All authors
were also supported by an award from EPSRC (grant EP/M012824), from the Min-
istry of Science, Technology and Space, Israel, and the UK Research Initiative in Cyber
Security.

References

1. Asharov, G., Lindell, Y., Schneider, T., Zohner, M.: More efficient oblivious transfer
and extensions for faster secure computation. In: Sadeghi, A.-R., Gligor, V.D.,
Yung, M. (eds.) 2013 ACM SIGSAC Conference on Computer and Communications
Security, CCS 2013, 4–8 November 2013, pp. 535–548. ACM (2013)

2. Baum, C., Damg̊ard, I., Toft, T., Zakarias, R.: Better preprocessing for secure mul-
tiparty computation. In: Manulis, M., Sadeghi, A.-R., Schneider, S. (eds.) ACNS
2016. LNCS, vol. 9696, pp. 327–345. Springer, Heidelberg (2016). doi:10.1007/
978-3-319-39555-5 18

3. Beaver, D., Micali, S., Rogaway, P.: The round complexity of secure protocols. In:
Ortiz, H. (ed.), 22nd STOC, pp. 503–513. ACM (1990)

4. Bellare, M., Hoang, V.T., Keelveedhi, S., Rogaway, P.: Efficient garbling from a
fixed-key blockcipher. In: 2013 IEEE Symposium on Security and Privacy, SP 2013,
19–22 May 2013, Berkeley, CA, USA, pp. 478–492. IEEE Computer Society (2013)

5. Canetti, R., Cohen, A., Lindell. Y.: A simpler variant of universally composable
security for standard multiparty computation. In: Gennaro and Robshaw [15], pp.
3–22 (2015)

6. Canetti, R., Garay, J.A. (eds.): CRYPTO 2013. LNCS, vol. 8043. Springer,
Heidelberg (2013). doi:10.1007/978-3-642-40084-1 2

http://dx.doi.org/10.1007/978-3-319-39555-5_18
http://dx.doi.org/10.1007/978-3-319-39555-5_18
http://dx.doi.org/10.1007/978-3-642-40084-1_2

580 Y. Lindell et al.

7. Choi, S.G., Hwang, K.-W., Katz, J., Malkin, T., Rubenstein, D.: Secure multi-
party computation of Boolean circuits with applications to privacy in on-line mar-
ketplaces. In: Dunkelman, O. (ed.) CT-RSA 2012. LNCS, vol. 7178, pp. 416–432.
Springer, Heidelberg (2012). doi:10.1007/978-3-642-27954-6 26

8. Choi, S.G., Katz, J., Malozemoff, A.J., Zikas, V.: Efficient three-party computation
from cut-and-choose. In: Garay and Gennaro [13], pp. 513–530 (2014)

9. Costache, A., Smart, N.P.: Which ring based somewhat homomorphic encryption
scheme is best? In: Sako, K. (ed.) CT-RSA 2016. LNCS, vol. 9610, pp. 325–340.
Springer, Heidelberg (2016). doi:10.1007/978-3-319-29485-8 19

10. Damg̊ard, I., Keller, M., Larraia, E., Pastro, V., Scholl, P., Smart, N.P.: Practical
covertly secure MPC for dishonest majority – or: breaking the SPDZ limits. In:
Crampton, J., Jajodia, S., Mayes, K. (eds.) ESORICS 2013. LNCS, vol. 8134, pp.
1–18. Springer, Heidelberg (2013). doi:10.1007/978-3-642-40203-6 1

11. Damg̊ard, I., Pastro, V., Smart, N.P., Zakarias, S.: Multiparty computation from
somewhat homomorphic encryption. In: Safavi-Naini and Canetti [32], pp. 643–662
(2012)

12. Damg̊ard, I., Polychroniadou, A., Rao, V.: Adaptively secure multi-party com-
putation from LWE (via equivocal FHE). In: Cheng, C.-M., et al. (eds.) PKC
2016. LNCS, vol. 9615, pp. 208–233. Springer, Heidelberg (2016). doi:10.1007/
978-3-662-49387-8 9

13. Garay, J.A., Gennaro, R. (eds.): CRYPTO 2014. LNCS, vol. 8617. Springer,
Heidelberg (2014). doi:10.1007/978-3-662-44381-1 29

14. Garg, S., Mukherjee, P., Pandey, O., Polychroniadou, A.: The exact round com-
plexity of secure computation. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT
2016. LNCS, vol. 9666, pp. 448–476. Springer, Heidelberg (2016). doi:10.1007/
978-3-662-49896-5 16

15. Gennaro, R., Robshaw, M. (eds.): CRYPTO 2015. LNCS, vol. 9216. Springer,
Heidelberg (2015). doi:10.1007/978-3-662-48000-7 1

16. Gentry, C.: A fully homomorphic encryption scheme. Ph.D. thesis, Stanford
University (2009). http://crypto.stanford.edu/craig

17. Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game or A com-
pleteness theorem for protocols with honest majority. In: Aho, A.V. (ed.) Proceed-
ings of the 19th Annual ACM Symposium on Theory of Computing, pp. 218–229.
ACM, New York (1987)

18. Goldwasser, S., Lindell, Y.: Secure multi-party computation without agreement. J.
Cryptology 18(3), 247–287 (2005)

19. Huang, Y., Katz, J., Evans, D.: Efficient secure two-party computation using sym-
metric cut-and-choose. In: Canetti and Garay [6], pp. 18–35 (2013)

20. Ishai, Y., Prabhakaran, M., Sahai, A.: Founding cryptography on oblivious transfer
– efficiently. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 572–591.
Springer, Heidelberg (2008). doi:10.1007/978-3-540-85174-5 32

21. Katz, J., Ostrovsky, R.: Round-optimal secure two-party computation. In:
Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 335–354. Springer,
Heidelberg (2004). doi:10.1007/978-3-540-28628-8 21

22. Larraia, E., Orsini, E., Smart. N.P.: Dishonest majority multi-party computation
for binary circuits. In: Garay and Gennaro [13], pp. 495–512 (2014)

23. Lindell, Y.: Fast cut-and-choose based protocols for malicious and covert adver-
saries. In: Canetti and Garay [6], pp. 1–17 (2013)

24. Lindell, Y., Oxman, E., Pinkas, B.: The IPS compiler: optimizations, variants and
concrete efficiency. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp.
259–276. Springer, Heidelberg (2011). doi:10.1007/978-3-642-22792-9 15

http://dx.doi.org/10.1007/978-3-642-27954-6_26
http://dx.doi.org/10.1007/978-3-319-29485-8_19
http://dx.doi.org/10.1007/978-3-642-40203-6_1
http://dx.doi.org/10.1007/978-3-662-49387-8_9
http://dx.doi.org/10.1007/978-3-662-49387-8_9
http://dx.doi.org/10.1007/978-3-662-44381-1_29
http://dx.doi.org/10.1007/978-3-662-49896-5_16
http://dx.doi.org/10.1007/978-3-662-49896-5_16
http://dx.doi.org/10.1007/978-3-662-48000-7_1
http://crypto.stanford.edu/craig
http://dx.doi.org/10.1007/978-3-540-85174-5_32
http://dx.doi.org/10.1007/978-3-540-28628-8_21
http://dx.doi.org/10.1007/978-3-642-22792-9_15

More Efficient Constant-Round Multi-party Computation 581

25. Lindell, Y., Pinkas, B.: An efficient protocol for secure two-party computa-
tion in the presence of malicious adversaries. In: Naor, M. (ed.) EUROCRYPT
2007. LNCS, vol. 4515, pp. 52–78. Springer, Heidelberg (2007). doi:10.1007/
978-3-540-72540-4 4

26. Lindell, Y., Pinkas, B.: Secure two-party computation via cut-and-choose oblivious
transfer. In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 329–346. Springer,
Heidelberg (2011). doi:10.1007/978-3-642-19571-6 20

27. Lindell, Y., Pinkas, B., Smart, N.P., Yanai, A.: Efficient constant round multi-
party computation combining BMR and SPDZ. In: Gennaro and Robshaw [15],
pp. 319–338 (2015)

28. Lindell, Y., Riva, B.: Cut-and-choose Yao-based secure computation in the
online/offline and batch settings. In: Garay and Gennaro [13], pp. 476–494 (2014)

29. Lindell, Y., Riva, B.: Blazing fast 2PC in the offline/online setting with security
for malicious adversaries. In: Ray, I., Li, N., Kruegel, C. (eds.) Proceedings of the
22nd ACM SIGSAC Conference on Computer and Communications Security, 12–6
October 2015, Denver, CO, USA, pp. 579–590. ACM (2015)

30. Nielsen, J.B., Nordholt, P.S., Orlandi, C., Burra, S.S.: A new approach to practical
active-secure two-party computation. In: Safavi-Naini and Canetti [32], pp. 681–
700 (2012)

31. Pinkas, B., Schneider, T., Smart, N.P., Williams, S.C.: Secure two-party compu-
tation is practical. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp.
250–267. Springer, Heidelberg (2009)

32. Safavi-Naini, R., Canetti, R. (eds.): CRYPTO 2012. LNCS, vol. 7417, pp. 643–662.
Springer, Heidelberg (2012). doi:10.1007/978-3-642-32009-5 38

33. Schneider, T., Zohner, M.: GMW vs. Yao? efficient secure two-party computation
with low depth circuits. In: Sadeghi, A.-R. (ed.) FC 2013. LNCS, vol. 7859, pp.
275–292. Springer, Heidelberg (2013). doi:10.1007/978-3-642-39884-1 23

34. shelat, A., Shen, C.: Two-output secure computation with malicious adversaries. In:
Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 386–405. Springer,
Heidelberg (2011). doi:10.1007/978-3-642-20465-4 22

35. Yao, A.C.-C.: Protocols for secure computations. In: 23rd Annual Symposium on
Foundations of Computer Science, 3–5 November 1982, Chicago, Illinois, USA, pp.
160–164. IEEE Computer Society (1982)

http://dx.doi.org/10.1007/978-3-540-72540-4_4
http://dx.doi.org/10.1007/978-3-540-72540-4_4
http://dx.doi.org/10.1007/978-3-642-19571-6_20
http://dx.doi.org/10.1007/978-3-642-32009-5_38
http://dx.doi.org/10.1007/978-3-642-39884-1_23
http://dx.doi.org/10.1007/978-3-642-20465-4_22

Cross and Clean: Amortized Garbled Circuits
with Constant Overhead

Jesper Buus Nielsen(B) and Claudio Orlandi

Aarhus University, Aarhus, Denmark
{jbn,orlandi}@cs.au.dk

Abstract. Garbled circuits (GC) are one of the main tools for secure
two-party computation. One of the most promising techniques for effi-
ciently achieving active-security in the context of GCs is the so called
cut-and-choose approach, and the main measure of efficiency in cut-and-
choose based protocols is the number of garbled circuits which need to
be constructed, exchanged and evaluated.

In this paper we investigate the following, natural question: how many
garbled circuits are needed to achieve active security? and we show that
in the amortized setting (for large enough circuits and number of execu-
tions), it is possible to achieve active security while using only a constant
number of garbled circuits.

1 Introduction

Garbled circuits are one of the most widely used and promising tools for secure
two-party computation. Garbled circuits were introduced by Yao [Yao82] and
they were first implemented in Fairplay by Malkhi et al. [MNPS04].

The basic version of Yao’s protocol only guarantees security in the presence
of passive corruptions (i.e., when the adversary follows the protocol but might
try to learn more information from their view). From a very high level point
of view, since garbling schemes hide (to some extent) the circuit which is being
garbled, a malicious party can garble a different function from the one they are
supposed to without the honest party noticing it, therefore breaking the security
of the protocol. During the years many approaches have been proposed to con-
struct GC-based protocols with strong security guarantees against adversaries
who deviate arbitrarily from the protocol (i.e., malicious or active corruptions).
The main technique for achieving active security in the GC context is the so
called cut-and-choose approach: in a nutshell, cut-and-choose involves several
copies of the same circuit being garbled; afterwards, a random subset of the
garbled circuits are checked for correctness, while the rest are evaluated.

There are many different instantiations of the cut-and-choose approach: in
2007, Lindell and Pinkas [LP07] proposed a method which achieves security
2−κ by garbling approximately 3κ copies of the circuit. This was improved in
2013 in several works [Lin13,HKE13,Bra13] using the so called forge-and-lose
technique. In its most efficient instantiation [Lin13] this technique allows to

c© International Association for Cryptologic Research 2016
M. Hirt and A. Smith (Eds.): TCC 2016-B, Part I, LNCS 9985, pp. 582–603, 2016.
DOI: 10.1007/978-3-662-53641-4 22

Cross and Clean: Amortized Garbled Circuits with Constant Overhead 583

achieve security 2−κ using only κ garbled circuits (by adding a “small” actively
secure computation).

A different approach was taken by Nielsen and Orlandi in 2009 [NO09]. Using
“LEGO style” cut-and-choose the overhead decreases logarithmically with the
size of the circuit f i.e., it is possible to get security 2−κ using a replication
factor of O(κ/ log |f |). While the original LEGO approach required to perform
exponentiations for each gate in the circuit, subsequent work [FJN+13,FJNT15]
got rid of this limitation and only uses generic assumptions. A variant of the
LEGO approach has proven itself particularly useful in the amortized setting
i.e., when the two parties are evaluating the same circuit f multiple times (say
�) on different inputs. In this case the amortized overhead to get security 2−κ

is O(κ/ log �) [LR14,HKK+14], and experimental validation achieves “blazing
fast” results [LR15].

To summarize, while advanced styles of cut-and-choose techniques have
shown that one can achieve practically-efficient actively-secure two-party com-
putation in the amortized setting, in all of the above approaches the number
of garbled circuits grows linearly with the security parameter. It is natural to
ask whether this is an inherent limitation or whether it is possible to achieve
actively-secure two-party computation based on garbled circuits with constant
overhead.

1.1 Our Contribution

Before stating our contributions, it is important to clarify the question we are
asking as much as possible: it is of course possible to achieve active security using
a single garbled circuit and using the GMW compiler [GMW87] (i.e., proving in
zero-knowledge that the circuit is well-formed). This is not a satisfactory solution
since it is not black-box in the underlying garbling scheme and, therefore, does not
preserve the efficiency of Yao’s protocol. Jarecki and Shmatikov [JS07] proposed
an instantiation of this paradigm using a specific number theoretic assumption
(Pailler’s cryptosystem [Pai99]): thanks to the algebraic nature of the underlying
cryptosystem, the extra zero-knowledge proofs only add a constant overhead. We
do not consider this solution satisfying either, since one of the strengths of Yao’s
protocol (both in terms of security and efficiency) is that it only requires to
perform symmetric key operations per gate in the circuit. Therefore, we are only
interested in solutions that can be instantiated using any projective garbling
scheme in a black-box way. We are now ready to ask our question:

Can we achieve actively-secure two-party computation protocols in the
amortized setting with only a constant overhead over Yao’s protocol?

We answer the question positively: let p(κ) be an upper bound on the cost
of generating, evaluating or checking a garbled gate1, and let A(κ) be a fixed

1 In all known instantiations of garbled circuits generating a gate is the most expensive
operation, requiring at most 4 calls to a PRF. Evaluating typically requires fewer
calls while checking is equivalent to garbling.

584 J.B. Nielsen and C. Orlandi

function (this term describes the cost of performing some “small” fixed actively
secure computation and is independent of the circuit size and the number of
executions). Then the amortized complexity of our protocol (for large enough
circuits and number of executions) is bounded by:

O(1) · |f | · p(κ) + A(κ) (1)

i.e., only a constant overhead over Yao’s passive protocol and an additive factor
independent of |f |.

1.2 Technical Overview

We give here a high level description of our techniques. We have two parties,
Alice and Bob, respectively with inputs {xA

i , xB
i }i∈[�]. At the end both parties

should learn yi = f(xA
i , xB

i) for all i ∈ [�]. (We will assume that both |f | and �
are large, and that � ≥ |f |).

Our protocol proceeds in five stages: in the first stage we let the parties
commit to a key and exchange their inputs in an encrypted format (using a
symmetric encryption scheme). In this way the inputs to all computations are
well-defined already from this stage. We then let both parties garble (1 + ε)�
copies of the circuit (for some constant ε ≤ 1) and, using cut-and-choose, verify
that ε� of them are correct: this guarantees that even if one of the two parties
has been actively corrupted, there are at most O(κ) incorrect circuits among
the unopened ones except with (negligible) probability 2−κ. We then proceed
to evaluate these circuits in both directions (as in the dual-execution protocol
of Franklin and Mohassel [MF06]). Remember that Yao’s protocol is “almost”
actively secure against corrupt evaluators, which means that at this stage the
corrupt party learns the correct output of the function (together with unforge-
able output labels) in all positions, while the honest party learns outputs (with
corresponding output labels) in at least � − O(κ) positions.2 For the remain-
ing O(κ) positions the honest party might receive an incorrect output or no
output at all. Therefore in the next stage, which we call the filling-in stage,
we allow each party to ask for at most O(κ) re-computations using an actively
secure protocol (without disclosing in which positions), and we enforce that the
computation is performed on the same inputs (remember that the inputs are
provided in encrypted format). This computation also outputs MACs on the
new results. Note that the malicious party cannot gain anything in this stage,
since the corrupt party has already learned the correct output, and learning it
once more does not leak any extra information. After this stage we are ensured
that both parties have � candidate outputs together with unforgeable certificates
of their authenticity (either the output labels from the garbled circuits or the
MACs from the do-overs). But still it might be that some of the outputs received
by the honest party are incorrect and, therefore, different from the one received
2 As we cannot guarantee fairness nor termination in the two-party setting, the adver-

sary can of course abort the protocol at this stage and prevent the honest party from
learning any output at all.

Cross and Clean: Amortized Garbled Circuits with Constant Overhead 585

by the corrupt party. In the final stage of the protocol we run a kind of forge-
and-lose sub-protocol, where both parties input all the received outputs to an
actively secure computation. The computation finds the first position in which
the outputs differ and recomputes the function for that index. Since the parties
cannot lie about their outputs at this point (due to the unforgeable certificates),
there is at most one party with the incorrect output, and that party is the hon-
est one. Therefore, the other party must have cheated by garbling an incorrect
circuit. To “punish” this party, we release the secret key of the malicious party
to the honest party. (Crucially, the malicious party does not learn whether they
have been caught or not, since this would open the door for selective-failure
attacks). This allows the honest party to decrypt all the encrypted inputs and
compute all the correct results “in the clear”.

To recap, here are the 5 stages of the protocol:

1. (encrypted input) Both parties exchange inputs. This is done by using a com-
mitted OT using some symmetric keys (σA, σB) ∈ {0, 1}O(κ) as choice bits
and then exchanging encrypted inputs

XA
i = E(σA, xA

i) and XB
i = E(σB , xB

i)

2. (cut-and-choose) both parties garble (1 + ε)� circuits which compute

(σA,XA, σB ,XB) �→ f(D(σA,XA),D(σB ,XB))

and do cut-and-choose by checking ε� circuits each.
3. (dual execution) The parties evaluate each of the � remaining circuits. Thanks

to cut-and-choose, at most O(κ) circuits are incorrect, which in particular
means there are at most O(κ) positions in which the honest party did not
receive an output.

4. (filling-in) The parties run an actively secure protocol which recomputes the
function in at most O(κ) positions. Using Merkle-trees based commitments
we can make sure that a) the functions are recomputed on the same inputs
as before and that b) the input to this protocol (and its complexity) does not
grow linearly with �. This protocol also outputs MACs for the recomputed
values;

5. (forge-and-lose) At this point both parties have � outputs, but if one party
is dishonest some of the outputs might still be different. So now the parties
run an actively secure protocol which (a) finds the first position where the
outputs are different and (b) recomputes the function in that position, finds
out which party cheated, and reveals the secret key of the corrupt party to
the honest party, which can therefore decrypt all inputs and recompute the
function in the clear. Since MACs are used, a corrupt party cannot input a
wrong output (which would make the honest party to look corrupt).

Stage 1 can be seen as a kind of committed oblivious transfer combined with
an oblivious transfer extension, where we start with a “small” committed OT
functionality for O(κ) pair of messages which are then used to provide very long

586 J.B. Nielsen and C. Orlandi

inputs to a garbled circuit based computation: if a(κ) is the cost of evaluating a
gate with an actively secure protocol and q1(κ) is some function describing the
complexity of the circuit computing O(κ) committed OTs on messages of length
O(κ), then the complexity of this stage is q1(κ)a(κ). If we set e.g., ε := 1/4 then
the total complexity of Stage 2 and 3 is bounded by 5�(|f | + q2(κ))p(κ), where
q2 represents the complexity of the decryption circuit D. Then, the complexity
of Stage 4 is bounded by ψκ(|f | + q3(κ, log �))a(κ) where q3 is the complexity
of verifying the Merkle-tree commitment and computing a MAC, and ψ :=
log1+ε(2) is a constant picked to guarantee that the probability that there are
more than ψκ bad circuits among the unchecked ones is less than 2−κ. Finally
the complexity of Stage 5 is (�q4(κ)+ |f |)a(κ) where the q4 factor represents the
complexity of verifying the certificates. Since a(κ) > p(κ) the total cost of the
protocol is bounded by:

5�|f |p(κ) + (|f | + �)A(κ)

where A(κ) collects all the terms which are independent of the circuit size or the
number of computations. Now, when amortizing over � executions, and assuming
that � is at least as large as |f |, we achieve the desired amortized complexity
stated earlier in (1).

We can actually quantify the constant overhead over Yao’s protocol even
more precisely, by looking at the actual cost (in PRF calls) for garbling (or
checking) vs. evaluating a gate in some of the most common garbling schemes
(i.e., instead of upper bounding it with p). Let g be the number of calls to a PRF
(encryptions) performed during garbling/checking a gate and e be the number
of calls to a PRF (decryptions) performed during the evaluation of a gate. Then
(g + e) is the exact computational cost (per gate) in the passive version of Yao’s
protocol. In our protocol the exact cost is (2 + 4ε)g + 2e. In Yao’s original
garbling (g, e) = (4, 4), in point-and-permute [BMR90] (g, e) = (4, 1) and finally
in the half-gate construction [ZRE15] (g, e) = (4, 2) which means that when
using ε = 1/4 then the concrete overhead over Yao’s passive protocol is between
2.5 and 2.8.3

We conclude by stressing that this work is of theoretical nature and therefore
we have made no attempts in optimizing the concrete efficiency of any of the
steps. On the contrary, since our protocol is already quite complex and involves
several stages we have chosen at each turn simplicity of presentation over (con-
crete) efficiency. We leave it as an interesting open direction for future work to
investigate whether the approach proposed in this paper might lead to practical
efficiency.

2 Preliminaries and Notation

We review here the standard tools which are used in our protocol and their
syntax.
3 Decreasing ε reduces this overhead but increases the number of potentially unchecked

bad circuits, therefore increasing the number of necessary do-overs in Stage 3.

Cross and Clean: Amortized Garbled Circuits with Constant Overhead 587

Commitments. We use a computationally binding and computationally hiding
commitment scheme Com with commitment key ck ← CGen(1κ), and we use
an informative but slightly abusive notation: we write 〈x〉 ← Comck(x, open(x))
where 〈x〉 is a commitment to the value x using randomness open(x). In the
proof we need the commitment to be extractable i.e., we need the simulator to
be able to compute x ← Ext(td, 〈x〉) using some trapdoor td associated to the
commitment key ck.

Merkle-tree Commitments. We use Merkle-tree based commitments with the
following interface: Given a string of elements from some alphabet x ∈ Σn it
is possible to compute a short commitment by running root ← MT.C(1κ,x).
It is possible to construct a proof for a give position j ∈ [�] by computing
π ← MT.P(x, j) and the proof can be verified running b ← MT.V(root, j, x′, π)
with b ∈ {
,⊥}. We want that b =
 when the prover is honest and x′ = xj (i.e.,
correctness), that the proof is short i.e., |π| = O(κ log �) (compactness) and that
no PPT adversary can produce a tuple (root, j, x, x′, π, π′) such that x �= x′ and
MT.V(root, j, x, π) = MT.V(root, j, x′, π′) =
 (computational binding). (We do
not need these commitments to be hiding, since they are only used to reduce the
input size of the ideal functionality in the filling-in stage of the protocol).

Symmetric Encryption. We use an IND-CPA symmetric encryption scheme
(SE.E,SE.D) with key σ ∈ {0, 1}8κ. We use lower-case letters for plaintexts and
upper-case letters for ciphertexts, so X ← SE.E(σ, x) and x ← SE.D(σ,X). We
need the encryption scheme to be secure even if κ bits of the secret key leak
to the adversary (to counteract standard selective-failure attacks during the OT
phase). This is done in the following way: we start by generating a uniformly
random κ bit key σ′, which is then encoded into a 8κ bit long key σ using
the (randomized) encoding scheme (enc, dec) of Lindell and Pinkas [LP07] i.e.,
we compute σ ← enc(σ′, r) with some randomness r. Now given any encryp-
tion scheme E′,D′ which is IND-CPA secure using a κ-bit long key, we define
SE.E,SE.D to be SE.E(σ,m) = E′(dec(σ),m) and SE.D(σ, c) = D′(dec(σ),m).

MAC Scheme. We use an unforgeable message authentication code (MAC)
(MAC.Tag,MAC.Ver) with key τ ∈ {0, 1}κ and the following interface: one can
compute a tag on a message x by computing t ← MAC.Tag(τ, x) and the tag can
be verified running MAC.Ver(t, τ, x) ∈ {⊥,
}.

Oblivious Transfer. We use the following notation for transforming a random
OT on short, random messages (of length κ) into an OT on chosen messages
of any lengths (using the same choice bits): we start with the sender knowing
sen = {r0, r1} (a pair of random strings in {0, 1}κ) and the receiver knowing
rec = {σ, rσ} (with σ ∈ {0, 1}). Then we write

traj ← OTTransfer(sen, j, {m0,m1})

for the process of encrypting the pair of messages {m0,m1} using keys r0, r1
respectively (using an IND-CPA symmetric encryption scheme) and

mσ ← OTRetrieve(rec, j, traj)

588 J.B. Nielsen and C. Orlandi

for the process of recovering mσ,j from traj . To ease the notation, we also allow
a “vector” version of these OT commands i.e., if e = {mi,0,mi,1}i∈[n] is a vector
of n pairs of messages and σ ∈ {0, 1}n is a vector of n bits then we write rec =
{σi, ri,σi

}i∈[n], sen = {ri,0, ri,1}i∈[n] for the information known to the receiver
and sender respectively, traj ← OTTransfer(sen, j, e) for the process of encrypt-
ing each pair of messages and finally M ← OTRetrieve(rec, j, traj) with M =
{mi,σi

}i∈[n]. (In the proof of security we also use e ← OTRetrieve(sen, j, traj) to
denote the process of recovering all pairs of messages using the keys known to
the sender).

Garbled Circuits. We use the generalization of the notation introduced by Bellare
et al. [BHR12] already used in [JKO13,FNO15]: a garbling scheme is a tuple of
algorithms

(GC.Gb,GC.Ev,GC.En,GC.De,GC.Ve)

where:

– (f̂ , e, d) ← GC.Gb(f ; r) generates a garbled version f̂ of the circuit f :
{0, 1}n → {0, 1}n which has n input bits and n output bits. We make explicit
the randomness r used to garble since it will be used in the verification process.
The GC.Gb function outputs the garbled version of the function f̂ , the encod-
ing tables e and the decoding tables for the output wires d;

– x̂ ← GC.En(e, x) outputs an encoding of x.
– ẑ ← GC.Ev(f̂ , x̂) outputs an encoded version of the output;
– z′ ← GC.De(d, ẑ) outputs the plaintext version of an encoded value ẑ (or ⊥

for an invalid encoding);
– b ← GC.Ve(f, r, f̂ , e, d) allows to verify if a given garbled circuit was garbled

correctly and outputs b ∈ {
,⊥};

As usual we need the garbling scheme to be projective – i.e., both (e, d) are
vectors of pairs of strings – to be compatible with Yao’s protocol. We need the
garbling scheme to satisfy privacy and authenticity as defined in [BHR12]. We
need the garbling scheme to be verifiable in the standard sense i.e., that an
adversary cannot “open” a garbling f̂ to any function different than f .

Definition 1 (Correctness). We say that a garbling scheme enjoys correct-
ness if for all n = poly(κ), f : {0, 1}n → {0, 1}n and all inputs x ∈ {0, 1}n:

Pr
(
f(x) �= GC.De(d,GC.Ev(f̂ ,GC.En(e, x))) : (f̂ , e, d) ← GC.Gb(1κ, f)

)
= 0

(the probability is taken over the random coins of all algorithms).

Definition 2 (Privacy). We say that a garbling scheme enjoys privacy if there
exists a PPT simulator S such that the two following distributions are computa-
tionally indistinguishable:

{(f̂ ,GC.En(e, x), d) : (f̂ , e, d) ← GC.Gb(1κ, f)}x ≈ {S(1κ, f, f(x))}x

for all f, x.

Cross and Clean: Amortized Garbled Circuits with Constant Overhead 589

Definition 3 (Authenticity). We say that a garbling scheme enjoys authen-
ticity if for all PPT A, for all f, x ∈ {0, 1}n

Pr

⎛

⎝GC.De(d, z∗) �= ⊥ ∧ z∗ �= GC.Ev(f̂ , x̂) :
(f̂ , e, d) ← GC.Gb(1κ, f),

x̂ ← GC.En(e, x),
z∗ ← A(f̂ , x̂)

⎞

⎠

is negligible in κ.

Definition 4 (Circuit Verifiability). We say a garbling scheme enjoys circuit
verifiability if for all PPT A:

Pr (GC.Gb(f0; r0) = GC.Gb(f1; r1) : (f0, r0, f1, r1) ← A(1κ), f0 �= f1)

is negligible in κ.

Input Verification. We also enhance the garbling scheme with two algorithms
(GC.TkG,GC.TkV). The algorithm GC.TkG allows to generate some “tokens”
tk from the input labels e. These tokens can be used with the GC.TkV algo-
rithm to check whether an encoding of an input x̂ is correct without leaking
any information about the input x itself. In a nutshell, we construct this from
any projective garbling scheme in the following way: let e = (K0,K1) be the
encoding information of the original garbling scheme (for simplicity we assume
a single input bit). Then we flip a random bit r and let tk = (〈Kr〉, 〈K1−r〉) and
e′ = ((K0, open(K0)), (K1, open(K1))) that is, we extend the input labels with
some randomness and we compute two commitments, and permute them in a
random order. Now given an encoding of an input x̂ ← GC.En(e′, x) (using the
extended labels i.e., x̂ = (Kx, open(Kx))) it is possible to verify whether this is
a correct encoding by running GC.TkV(tk, x̂) ∈ {
,⊥}. The algorithm simply
parses x̂ = (K∗, open(K∗)), computes 〈K∗〉 = Comck(K∗, open(K∗)) and checks
if 〈K∗〉 ∈ tk. These tokens satisfy the following properties: (1) adding the tokens
does not break the privacy property of the garbling scheme, and (2) if a (possibly
malicious) encoding of an input passes the verification against the tokens, then
evaluating a (honestly generated) garbled circuit on this input encoding will give
an output different than ⊥.

Token Generation: Given any projective garbling scheme i.e., one where e =
{(Ki

0,K
i
1)}i∈[n], we construct a new garbling scheme with verifiable input in

the following way: First we define the new encoding information e′ to be

e′ = {(Ki
0, open(K

i
0)), (K

i
1, open(K

i
1))}i∈[n]

and then we compute tokens tk ← GC.TkG(e′) by sampling random bits
r1, . . . , rn and outputting

tk = {〈Ki
ri

〉, 〈Ki
1−ri

〉}i∈[n]

With 〈Ki
b〉 = Comck(Ki

b, open(K
i
b)) for all b ∈ {0, 1}, i ∈ [n].

590 J.B. Nielsen and C. Orlandi

Input Verification: b ← GC.TkV(tk, x̂) is a deterministic algorithm that
parses

x̂ = {Ki, open(Ki)}i∈[n]

computes 〈Ki〉 = Comck(Ki, open(Ki)), and outputs ⊥ if there exists an i
such that 〈Ki〉 �∈ tk.

We define the following properties:

Definition 5 (Token Privacy). We say that a garbling scheme enjoys token
privacy if there exists a PPT simulator S such that the two following distributions
are computationally indistinguishable:

{
(f̂ ,GC.En(e, x), d, tk) : (f̂ , e, d) ← GC.Gb(1κ, f),

tk ← GC.TkG(e)

}

x

≈ {S(1κ, f, f(x))}x

Definition 6 (Input Verifiability). We say that a garbling scheme enjoys
input verifiability if for all PPT A the following probability

Pr

⎛

⎝GC.De(d,GC.Ev(f̂ , x̂∗)) = ⊥ ∧ GC.TkV(tk, x̂∗) = � :
(f̂ , e, d) ← GC.Gb(1κ, f),

tk ← GC.TkG(e),

x̂∗ ← A(1κ, f̂ , e),

⎞

⎠

is negligible in κ.

The proof that our construction satisfies the above requirements is straight-
forward.

Lemma 1. Any projective garbling scheme can be enhanced to achieve token
privacy and input verifiability using computationally hiding and computationally
binding commitments as described above.

Proof. For token privacy, we simply run the simulator guaranteed by the privacy
property of the underlying garbling scheme. In addition, our simulator needs to
output tk, a vector of pair of commitments. The simulator does so by parsing the
encoded input x̂ (provided by the privacy simulator) into x̂ = {Ki}i∈[n], chooses
random values open(Ki), computes commitments 〈Ki〉 = Comck(Ki, open(Ki)).
The simulator also constructs n commitments 〈0〉 (using independent random-
ness), and constructs tk as n pairs of commitments, where each pair is (〈Ki〉, 〈0〉)
if ri = 0 or (〈0〉, 〈Ki〉) otherwise. Any adversary that can distinguish between
the two distributions in the token privacy property can be trivially reduced to
an adversary for either the computationally hiding property of the commitment
scheme or the privacy property of the underlying garbling scheme.

For the input verifiability property, let x̂∗ = {Ki, open(Ki)}i∈[n] be the out-
put of the adversary and let e = {(Ki

0, open(K
i
0)), (K

i
1, open(K

i
1))}i∈[n]. Now if

GC.TkV(tk, x̂∗) =
, it must be the case that Ki = Ki
b for some b or the adver-

sary can be used to break the binding property of the commitment scheme.
But then, the property follows from the correctness of the underlying garbling
scheme.

Cross and Clean: Amortized Garbled Circuits with Constant Overhead 591

Sub-functionalities. In some stages of our protocol we let the parties run any
actively-secure two-party computation protocol to implement a desired function-
ality. In the protocol description we only describe what the functionality should
do and not how the functionality is implemented (in the proof we will make use of
the UC composition theorem [Can01] to replace these subprotocols with hybrid
functionalities under the control of the simulator). In particular we describe the
private input of both parties, the private output of each party and the compu-
tation performed by the functionality. We also describe the public input of some
functionalities. These are values which are defined previously in the protocol
which can be imagined as values which are given as input by both parties (and
the functionality aborts if they are different).

3 Our Protocol

We are now ready to present our protocol, which we like to call cross-and-clean4.
As our protocol is quite complex, we split its presentation in five stages, which
are described in Figs. 1, 2, 3, 4 and 5 respectively.

We have already (in the introduction) argued that the efficiency of the pro-
tocol is as desired. So it is now only left to prove that the protocol is secure:

Theorem 1. The protocol described in Figs. 1, 2, 3, 4 and 5 securely evaluates
� copies of f in the presence of active adversaries.

Proof. Thanks to the UC composition theorem [Can01] it is sufficient to prove
security of the protocol where we replace all actively secure subprotocols in the
protocol (the committed OT, coin-flip, filling-in and forge-and-lose subprotocols
respectively in Stage 1, 2, 4, 5) with ideal functionalities controlled by the simu-
lator (in order to prove our theorem is enough to know that protocols for these
functionalities exist [CLOS02] and we have measured their complexity in terms
of the size of the functionalities that they implement). Since the protocol is com-
pletely symmetric for A and B, we will assume in the proof that A is corrupt and
B is honest. Note that, since we prove the security of the protocol in the stan-
dard simulation-based indistinguishability between the real world and the ideal
world, we must prove correctness and privacy at the same time – not as separate
properties. Note also that, for the sake of presentation, our proof neglects many
of the technicalities of the UC-framework [Can01] (such as delayed delivery of
messages) but that our simulation strategy is straight-line.

As usual we make a proof by hybrids. We describe the simulator strategy
along the way, by making progressive changes from the real protocol towards
the simulator strategy, arguing for indistinguishability after every change. We
describe the final simulator strategy in Fig. 6.

4 Cross since the parties send garbled circuits to each other in the dual-execution
phase, and clean since the subsequent stages “clean-up” the potential discrepancies
between the outputs of the two parties.

592 J.B. Nielsen and C. Orlandi

Stage 1: Providing Inputs:
1. A, B run an actively UC-secure protocol which implements the following func-

tionality:

Input: none.
Computation: The functionality runs the following code:

1. Generate commitment keys ckA ← CGen(1κ), ckB ← CGen(1κ);
2. Sample random σA, σB ∈ {0, 1}8κ;
3. Compute 〈σA〉 ← ComckA(σA, open(σA));
4. Compute 〈σB〉 ← ComckB (σB , open(σB));
5. Sample random senA = {rA

0,i, r
A
0,i}i∈[8k] with each rA

b,i ∈ {0, 1}κ;
6. Sample random senB = {rB

0,i, r
B
0,i}i∈[8k] with each rB

b,i ∈ {0, 1}κ;
7. Define recB = {σA[i], rA

σA[i],i}i∈[8k];

8. Define recA = {σB [i], rB
σB [i],i}i∈[8k];

A’s output: The functionality sends as private output to A:
1. σA, open(σA), 〈σB〉;
2. senA, recA;

B’s output: The functionality sends as private output to B:
1. σB , open(σB), 〈σA〉;
2. senB , recB ;

2. For all i ∈ [�]: A sends XA
i = SE.E(σA, xA

i) to B;
3. For all i ∈ [�]: B sends XB

i = SE.E(σB , xB
i) to A;

Fig. 1. Stage 1: providing inputs

Hybrid 0. We start in dream version of the simulation, where we assume the
simulator is given the real inputs xB

i of the honest party B. Here the simulator
simulates simply by running the real protocol with the adversary controlling A
and the simulator running B and the hybrid ideal functionalities. If B aborts in
the protocol before receiving encrypted inputs from A, instruct the ideal func-
tionality to abort on behalf of the corrupted A. Otherwise the simulator extracts
{xA

i ← SE.D(σA,XA
i)}i∈[�] and input these values to the ideal functionality. This

allows the simulator to learn all the real outputs {yi}i∈[�]. If B aborts in the pro-
tocol after receiving encrypted inputs, instruct the ideal functionality to abort
on behalf of the corrupted A. Otherwise, let {y′

i}i∈[�] be the outputs of the proto-
col. If {yi}i∈[�] �= {y′

i}i∈[�], the simulator aborts the simulation. Clearly this first
hybrid is perfectly indistinguishable from the real protocol execution as long as
{yi}i∈[�] = {y′

i}i∈[�]. Therefore hybrid 0 is computational indistinguishable from
the real protocol execution if the protocol has correctness except with negligible
probability. We argue correctness of this at the end of the proof.

Hybrid 1. Here we change the inner working of the committed OT functionality
(Stage 1): from now on the simulator sends A a commitment to 0 instead of σB .
Any adversary that can distinguish after this change can be used to break the
computationally hiding property of the commitment scheme.

Cross and Clean: Amortized Garbled Circuits with Constant Overhead 593

Stage 2: Cut-n-Choose:
1. A garbles (1 + ε)� times (with independent randomness)a:

(f̂A
i , eA

i , dA
i) ← GC.Gb(fA

i ; rA
i)

where fA
i is the circuit that computes

(σA, XA
i , σB , XB

i) 	→ f(SE.D(σA, XA
i), SE.D(σB , XB

i))

2. A computes tkA
i ← GC.TkG(eA

i) and 〈dA
i 〉 ← ComckA(dA

i , open(dA
i));

3. A sends (f̂A
i , tkA

i , 〈dA
i 〉) to B;

4. A,B perform an actively UC-secure coin flip to determine a random subset

CC ⊂ {1, . . . , (1 + ε)�}
of size ε� of circuits to be checked;

5. A sends (rA
i , eA

i , dA
i , open(dA

i)) to B;
6. B aborts if

∃i ∈ CC :
GC.Ve(fA

i , eA
i , dA

i , rA
i , f̂A

i) = ⊥ or
tkA

i = GC.TkG(eA
i) or

〈dA
i 〉 = ComckA(dA

i , open(dA
i))

7. A and B re-index the unopened circuits 1, . . . , �.b

8. A,B repeat with reversed roles;

a For the sake of notation, we implicitly assume that ε� is an integer.
b This is simply done to simplify the notation of the upcoming stages.

Fig. 2. Stage 2: cut-n-choose

Hybrid 2. Here we replace the commitment sent to A in Stage 4 (filling in phase)
to be a commitment to 0 instead of the MAC key τB . Any adversary that can
distinguish after this change can be used to break the hiding property of the
commitment.

Hybrid 3. Here we replace the abort condition (Step 1.a) in the functionalities
for filling-in in Stage 4. Let σA be the values received by A from the committed
OT functionality in Stage 1 and σ∗ be the values input by A to the filling-
in functionality in Stage 4. From now on we always abort if σ∗ �= σA (even
if what A inputs is a valid opening of the commitment 〈σA〉). Any adversary
that can distinguish after this change can be used to break the computationally
binding property of the commitment scheme. (Note that from now on we have
the guarantee that the output of filling-in to the honest party B can only be the
real output yi.)

Hybrid 4. Here we replace the abort condition (Step 1.a and 1.c in Compu-
tation) of the functionality for forge-and-lose in Stage 5 in a similar way as
in the previous hybrid, namely: let σ∗, τ∗ be the keys input by A, then in this
hybrid we abort if σA �= σ∗ or τA �= τ∗ (even if A inputs proper commitment

594 J.B. Nielsen and C. Orlandi

Stage 3: Run Computation i:
1. A computes encoded versions of the inputs X̂A

i , X̂B
i , σ̂A

i i.e.,
(a) X̂A

i ← GC.En(eA
i , XA

i),
(b) X̂B

i ← GC.En(eA
i , XB

i),
(c) σ̂A

i ← GC.En(eA
i , σA),

and sends them to B;
2. A runs traA

i ← OTTransfer(senA, i, eA
i) and sends traA

i to B;
3. B runs σ̂B

i ← OTRetrieve(recB , i, traA
i);

4. B aborts if GC.TkV(tkA
i , (σ̂A

i , X̂A
i , σ̂B

i , X̂B
i)) = ⊥;

5. B evaluates ŷB
i = GC.Ev(f̂A

i , X̂A
i , X̂B

i , σ̂A
i , σ̂B

i);
6. B computes 〈ŷB

i 〉 ← ComckB (ŷB
i , open(ŷB

i))
7. B sends 〈ŷB

i 〉 to A;
8. A sends dA

i , open(dA
i) to B; B aborts if Comck(dA

i , open(dA
i)) = 〈dA

i 〉
9. Bob computes yB

i ← GC.De(dA
i , ŷB

i);
10. If yB

i = ⊥ add i to IB ;
11. If |IB | > ψκ, then abort the protocol.
12. A,B repeat with reversed roles;

Fig. 3. Stage 3: run computation i

openings). An adversary distinguishing after this change can again be used to
break the computationally binding property of the commitment scheme.

Hybrid 5. Here we replace the last abort condition (Step 1.c) in the functionality
for filling-in in Stage 4. For each i ∈ IA let V ∗

i be the value input by A to
this computation. From now on we always abort if V ∗

i �= Vi (even if the MT.V
algorithm accepts the proof πi). An adversary distinguishing after this change
can be used to break the computationally binding property of the Merkle-tree
commitment. (Note that at this point, by definition, the output of filling-in to
A cannot be different from yi).

Hybrid 6. Here we change the distribution of traB
i (the value sent from B to

A in Step 2 of Stage 3): instead of computing traB
i = OTTransfer(senB, i, eB

i),
we compute traB

i = OTTransfer(senB , i, e∗
i) where e∗

i = {Ki
0,K

i
1} is defined as

follows: let σ̂A
i ← GC.En(eB

i , σA) and parse σ̂A
i = {Ki}, then we set

Ki
σA[i] = Ki and Ki

1−σA[i] = 0.

That is, we set all labels not corresponding to the bits of σA to 0. Since A only
has access to the keys recA corresponding to the bits of σA, we can use an adver-
sary that distinguishes after this change to break the IND-CPA of underlying
symmetric encryption scheme.

Hybrid 7. Here we change the distribution of the garbled circuits and garbled
inputs sent to A during Stage 2 and 3 for all i �∈ CC (since the simulator is
controlling the coin flip functionality, this set is known to the simulator from the

Cross and Clean: Amortized Garbled Circuits with Constant Overhead 595

Stage 4: Actively Secure Filling-in:
1. Define Vi = (XA

i , XB
i). Both A and B compute root = MT.C(V1, . . . , V�);

2. Run an actively UC-secure protocol which implements the following function-
ality:

Public Input: The functionality takes public inputs root, 〈σA〉, 〈σB〉.
A’s input The functionality takes as private input from A:

1. σA, open(σA),
2. the set IA with |IA| ≤ ψκ and
3. (Vi, πi ← MT.P((V1, . . . , V�), i) for all i ∈ IA.

B’s input The functionality takes as private input from B:
1. σB , open(σB),
2. the set IB with |IB | ≤ ψκ and
3. (Vi, πi ← MT.P((V1, . . . , V�), i) for all i ∈ IB .

Computation: The functionality runs the following code:
1. Abort if any of the following is true:

(a) 〈σA〉 = ComckA(σA, open(σA)),
(b) 〈σB〉 = ComckB (σB , open(σB)),
(c) ∃i : IA ∪ IB : MT.V(root, i, Vi, πi) = ⊥;

2. If all checks pass
(a) Sample random τA, τB ∈ {0, 1}κ;
(b) Compute 〈τA〉 ← ComckA(τA, open(τA));
(c) Compute 〈τB〉 ← ComckB (τB , open(τB));

3. For all i ∈ IA ∪ IB :
(a) Parse Vi = (XA

i , XB
i) and compute

(b) xA
i ← Dec(σA, XA

i);
(c) xB

i ← Dec(σB , XB
i);

(d) yi = f(xA
i , xB

i);
(e) tA

i = MAC.Tag(τB , yi) if i ∈ IA or tB
i = MAC.Tag(τA, yi) otherwise;

A’s output: The functionality sends as private output to A:
1. τA, open(τA), 〈τB〉;
2. For all i ∈ IA : (yA

i , tA
i)

B’s output: The functionality sends as private output to B:
1. τB , open(τB), 〈τA〉;
2. For all i ∈ IB : (yB

i , tB
i);

Fig. 4. Stage 4: actively secure filling-in

beginning), by running the simulator (which is guaranteed to exist thanks to the
token privacy property of the garbling scheme on input the function f and the
output yi. (Token privacy is defined in Definition 5.) The simulator provides us
with garbled versions of all inputs including σ̂A

i , as well as tkB
i , dB

i and f̂B
i which

can now replace the values sent to A in Step 3 of Stage 2 and Steps 1, 2 and 8 of
Stage 3. Any adversary distinguishing after this step can be used to break the
token privacy of the underlying garbling scheme. (Note that the simulator can
also, running GC.Ev on the garbled circuit and the garbled inputs, compute the
garbled output ŷA

i which is needed in the next steps.)

596 J.B. Nielsen and C. Orlandi

Stage 5: Forge-and-Lose:
1. A defines tA

i = ⊥ for all i ∈ IA;
2. B defines tB

i = ⊥ for all i ∈ IB ;
3. A and B run an actively UC-secure protocol which implements the following

functionality:

Public Input:
1. 〈σA〉, 〈σB〉, 〈τA〉, 〈τB〉
2. for all i ∈ [�] : (dA

i , dB
i , XA

i , XB
i , 〈ŷA

i 〉, 〈ŷB
i 〉);

A’s input The functionality takes as private input from A:
1. σA, open(σA),
2. τA, open(τA);
3. For all i ∈ [�] : (yA

i , ŷA
i , open(ŷA

i), tA
i);

B’s input The functionality takes as private input from B:
1. σB , open(σB),
2. τB , open(τB);
3. For all i ∈ [�] : (yB

i , ŷB
i , open(ŷB

i), tB
i);

Computation: The functionality:
1. Abort if any of the following is true:

(a) 〈σA〉 = ComckA(σA, open(σA)),
(b) 〈σB〉 = ComckB (σB , open(σB)),
(c) 〈τA〉 = ComckA(τA, open(τA)),
(d) 〈τB〉 = ComckB (τB , open(τB)),
(e) ∃i : 〈ŷA

i 〉 = ComckA(ŷA
i , open(ŷA

i)),
(f) ∃i : 〈ŷB

i 〉 = ComckB (ŷB
i , open(ŷB

i)),
(g) ∃i : yB

i = GC.De(dA
i , ŷB

i) ∧ MAC.Ver(tB
i , τA, yB

i) = ⊥;
(h) ∃i : yA

i = GC.De(dB
i , ŷA

i) ∧ MAC.Ver(tA
i , τB , yA

i) = ⊥;
2. If all checks pass

(a) Find i : yA
i = yB

i ;
(b) If no such i exists conclude that “no-one cheated”;
(c) Else compute yi = f(xA

i , xB
i);

(d) Conclude that “Alice cheated” if: yB
i = yi;

(e) Conclude that “Bob cheated” if: yA
i = yi;

Output: If
1. “Alice cheated” : A receives ⊥, B receives σA;
2. “Bob cheated” : A receives σB , B receives ⊥;
3. else (“No-one cheated”): A receives ⊥, B receives ⊥;

4. If A (resp. B) receives an output σB = ⊥, A computes xB
i ← SE.D(σB , XB

i)
for all i ∈ [�] and outputs yA

i = f(xA
i , xB

i);

Fig. 5. Stage 5: forge-and-lose

Hybrid 8. Here we replace the abort condition (Step 1.e) in the functionality
forge-and-lose in Stage 5. For all i the simulator computes ŷ∗

i ← Ext(tdA, 〈ŷ∗
i 〉)

using the trapdoor tdA (which the simulator learns as it controls the committed-
OT sub-protocol) and the commitments 〈ŷ∗

i 〉 received during Step 6 of Stage 3.

Cross and Clean: Amortized Garbled Circuits with Constant Overhead 597

Simulator Strategy:
Stage 1: 1. Simulate the committed OT functionality by sending A a random key

(σA, open(σA)); sending A a commitment 〈0〉 (instead of 〈σB〉); sending A
random strings senA, recA; learning the trapdoor tdA corresponding to ckA;

2. Receive {XA
i }i∈[�], decrypt xA

i ← SE.D(σA, XA
i) and input these values to

the ideal functionality; receive {yi}i∈[�] from the ideal functionality;
3. Send A {XB

i = SE.E(σB , 0)}i∈[�];
Stage 2.A: In Stage 2.A the simulator (when receiving garbled circuits from A):

1-7. Receive garbled circuits; Sample a random CC and simulate the coin-flip
functionality; Verify the circuits with i ∈ CC and abort as an honest B
would;

Stage 2.B In Stage 2.B the simulator (when sending garbled circuits to A):
1-7. Sample a random set CC. Construct honest garbling of the function for

all i ∈ CC; For all i ∈ CC, run the simulator of the garbling scheme to
receive the garbled circuit f̂B

i , inputs σ̂A
i , σ̂B

i , X̂A
i , X̂B

i , decoding tables dA
i

and tokens tkB
i . Force the coin-flip sub-protocol to output CC;

Stage 3.A: In Stage 3 the simulator (when acting as circuit evaluator):
1. Receive garbled inputs;

2-4. Fully decrypt traA
i , compute the set L and abort according to the strategy

as described during Hybrid 11;
5-7. Compute and send A a commitment to 〈0〉;

8-10. Abort if 〈dA
i 〉 is not opened correctly;

11. There is no abort if |IB | > ψκ as the simulator cannot compute IB .
Stage 3.B: In Stage 3 the simulator (when acting as circuit constructor):

1. Send garbled inputs (from the garbling scheme simulator);
2-4. Prepare and send traB

i to A as described during Hybrid 6 (i.e., only send
labels corresponding to the bits of σA, and 0 in all other positions); Fully
decrypt trai, compute the set L and abort according to the strategy as
described during Hybrid 11;

5-7. Receive from A a commitment 〈ŷB
i 〉 and extract ŷ∗∗

i ← Ext(tdA, 〈ŷA
i 〉) and

abort if ŷ∗∗
i breaks authenticity ;

8-10. Open 〈dB
i 〉;

Stage 4: In Stage 4 the simulator
1. Computes root as an honest B would;
2. Simulate the filling-in functionality by aborting if (on top of the original

conditions) σ∗ = σA or V ∗
i = Vi where σ∗, {V ∗

i }i∈IA are the value sent
by the adversary to the functionality; If the simulator does not abort, it
sends A a random MAC key and commitment opening (τA, open(τA)) and
a commitment 〈0〉 (instead of τB);

Stage 5: In Stage 5 the simulator
1-3. Simulates the forge-and-lose functionality by aborting if (on top of the orig-

inal conditions) σ∗ = σA, τ∗ = τA, ŷ∗∗
i = ŷ∗

i , y∗
i = yi where y∗

i , σ∗, τ∗, ŷ∗
i

are the value sent by the adversary to the functionality;

Fig. 6. Simulator strategy

Let ŷ∗∗
i be the value input by A to the forge-and-lose functionality. The simu-

lator now aborts if ŷ∗
i �= ŷ∗∗

i even if A provides a valid commitment opening.

598 J.B. Nielsen and C. Orlandi

Any adversary distinguishing after this step can be used to break the binding
property of the commitment scheme.

Hybrid 9. Here we change the last aborting condition (Step 1.h) in the func-
tionality forge-and-lose in Stage 5. Let (y∗

i , ŷ∗
i , t∗i) be the value input by the

adversary and let (yi, ŷ
A
i , tAi) be the values computed by the simulator in the

previous hybrids. From now on, instead of aborting if

∃i : y∗
i �= GC.De(dB

i , ŷ∗
i) ∧ MAC.Ver(t∗i , τ

B , y∗
i) = ⊥

the simulator aborts if

∃i : (y∗
i �= GC.De(dB

i , ŷ∗
i) ∧ MAC.Ver(t∗i , τ

B , y∗
i) = ⊥) ∨ (y∗

i �= yi).

Any adversary that can distinguish after this change can be used to break
unforgeability of the MAC scheme (note that the simulator at this point does
not need to know τB since it has been replaced by 0 in the commitment that
A receives at the end of the filling-in stage, and we can therefore successfully
run the reduction) or to break the authenticity property of the garbling scheme
(note that we have already made sure that value ŷ∗

i input by A here is the same
as the one he commits to in Step 7 of Stage 3 and – since the simulator can
extract the value in the commitment using the trapdoor – the reduction can
already break the authenticity property before having to send dB

i or the opening
of the commitment to A in Step 8 of Stage 3). Note that after this change we
are ensured (by definition) that A will never receive σB as a result of running
the forge-and-lose sub-protocol.

Hybrid 10. Here we change the distribution of the commitment that the simula-
tor sends to A in Step 6 of Stage 3, from being a commitment to ŷB

i to being a
commitment to 0. An adversary that distinguishes after this change can be used
to break the hiding property of the commitment scheme.

Hybrid 11. Here we let the simulator fully decrypt the transfer message trai from
A in Step 3 of Stage 3. That is, instead of running σ̂B

i ← OTRetrieve(recB , i, traA
i)

the simulator extracts

e∗
i ← OTRetrieve(senA, i, traA

i)

and constructs the set

Li ⊂ [8κ] × {0, 1}

as follows. Parse

tkA
i = {〈Aj〉, 〈Bj〉}j∈[8κ]

and

e∗
i = {(Kj,0, open(Kj,0)), (Kj,1, open(Kj,1))}j∈[8κ].

Cross and Clean: Amortized Garbled Circuits with Constant Overhead 599

We add (j, b) to Li if

Comck(Kj,b, open(Kj,b)) �∈ {〈Aj〉, 〈Bj〉}.

We then compute

L = ∪i∈[�]Li.

The set L represents all the positions in all the OT transfers in which A
“cheated” i.e., where A sent some value which is not consistent with the tokens
tkA

i . Since an honest B uses the same input bits σB in all transfers, we only
count each combination of position j and bit b once. In other words, for each
index j A has three strategies:

1. Input the right values (i.e., values that make GC.TkV accept) for both b ∈
{0, 1} (for all i ∈ [�]): in this case neither (j, b) �∈ L for both b ∈ {0, 1};

2. Input the right value for a single b ∈ {0, 1} (for all i ∈ [�])) and at least a
wrong value for 1 − b for some i∗ ∈ [�]: in this case (j, 1 − b) ∈ L;

3. Input the wrong value for both b ∈ {0, 1} (potentially for different i∗ ∈ [�]):
in this case both (j, 0) ∈ L and (j, 1) ∈ L;

Now we replace the abort condition in Step 4 of Stage 3 to the following: the
simulator aborts with probability 1 if ∃ j such that both (j, 0) ∈ L and (j, 1) ∈ L
(this is consistent with what B would do in the real protocol, since in this case
B will detect the wrong labels regardless of the value of σB[j]). Otherwise, the
simulator aborts with probability 1 − 2|L| (this is consistent with what B would
do in the real protocol, since in this case B detects the wrong labels only if
σB[j] = b for (j, b) ∈ L – note on the other hand that if (j, b) ∈ L and B does
not abort then the corrupt A learns that the value of σB [j] �= b, and we will take
care of this in a moment). At the same time we change the distribution of the
encryptions XB

i sent by B to A in Step 3 of Stage 1 to be all encryptions of 0.
Any adversary that can distinguish after this change can be used to break the
IND-CPA security of (SE.E,SE.D). Remember that we required (SE.E,SE.D) to
be secure even against adversaries who learn up to κ bits of the secret key. We
here use this property to let the reduction ask the IND-CPA challenger for the
bits of σB[j] for all j : (j, b) ∈ L.

Hybrid 12. After encrypting 0s instead of the real input of B, it can easily be
seen that there is only one place left where we use the input of B, namely to
compute the set IB for which we need the input of B to evaluate the garbled
circuits, as a bad circuit might give an output on some of B’s inputs and ⊥ on
some other inputs. We get rid of this last use of the inputs of B by removing
the restriction that |IB | ≤ ψκ in the functionalities for filling-in and dropping
the abort condition in Step 11 in Stage 3. This change is indistinguishable, as
|IB | ≤ ψκ except with negligible probability. To see why this is the case, let good
be the set of honestly generated circuits among those received by B. Thanks to
the input verifiability property of our garbling scheme we know that for all

600 J.B. Nielsen and C. Orlandi

i ∈ good the values received by B as output from the Stage 3 satisfy yB
i �= ⊥.

Since we open ε� of the circuits in the cut-and-choose the probability that ψκ
bad circuits will all survive without any being detected is less than (1 + ε)−ψκ,
and we have set ψ such that (1 + ε)−ψκ = 2−κ.

This concludes the description of our simulation strategy. It can be seen that
(by construction) at this point the simulator does not use the input of the honest
party B and we have argued for indistinguishability after each individual change.
The complete description of the simulator after all the hybrids can be found in
Fig. 6. The simulator is simply a compilation of all the individual changes done
in the above hybrids. Therefore the distribution of Hybrid 12 is identical to the
distribution of the simulation.

What remains is therefore only to argue that Hybrid 0 is indistinguishable
from the real protocol. In Hybrid i define an event Ei as follows. Let Y = ⊥
if the ideal functionality aborts and let Y = {yi}i∈[�] be the outputs of the
ideal functionality otherwise. Let Y ′ = ⊥ if the protocol aborts and let Y ′ =
{y′

i}i∈[�] otherwise. Let Ei be the event that Y �= Y ′. To argue that Hybrid 0 is
indistinguishable from the real protocol it is clearly enough to argue that Pr[E0]
is negligible. We have that Pr[E12] = 0 by construction: it has already been
argued that since Hybrid 5 the outputs of the filling-in for the honest party are
correct; and it has been argued that since Hybrid 8 the corrupt party can only
input the correct outputs to the forge-and-lose functionality, which implies that
either the outputs that B received before this sub-protocol are the correct ones
or B will receive σA as a result of forge-and-lose and compute the right outputs
in the clear.

It then follows from Hybrid 0 and Hybrid 12 being indistinguishable that
Pr[E0] is indistinguishable from 0, i.e., negligible.

4 Dealing with Long Inputs and Outputs

The protocol described and analysed in the previous section allows to compute
f : {0, 1}nI → {0, 1}nO where nI is the input size and nO is the output size.
In the previous sections we have, for simplicity, assumed that nI = nO = O(κ).
However in general nI and nO can be of size linear in |f |. This presents an
issue in the forge-and-lose step, since the size of the circuit implementing the
functionality is of size:

(�nO + �nI + |f |)κ = O(�|f |κ)

instead of O((� + |f |)κ) as desired. We describe here two optimizations which
allow to deal with this:

Dealing with Long Outputs: It is quite easy to deal with long outputs in
the following way: modify the circuit to be garbled so that, in addition to
outputting yi, it also outputs h(yi) with h a collision resistant hash function.
Now it is clear that |h(yi)| = κ < nO and therefore we can modify the protocol
in the following way: instead of letting A,B input the values yi to the forge

Cross and Clean: Amortized Garbled Circuits with Constant Overhead 601

and lose functionality, they input the hashes instead. The forge and lose finds
the first index where the hashes differ, recompute the function (and the hash)
on that index and determines who cheated.

Dealing with Long Inputs: To deal with long inputs, the key is to notice
that only a single pair of inputs (in encrypted format) is ever used during the
forge and lose functionality, and the only reasons for the parties to input all
of the ciphertexts is to guarantee that the adversary cannot learn in which
positions (if any) the function is being recomputed. In some sense we are
using a very näıve private information retrieval (PIR), which can of course
be replaced with a more clever one. We can therefore modify the forge and
lose stage in the following way: instead of having A, B input all ciphertexts
at the beginning, they only input the outputs (or their hashes as described
above). The functionality finds the first i such that yA

i �= yB
i (if any), and

then runs a 2-server PIR protocol with A, B. This allows the functionality to
learn the ciphertext pair XA

i ,XB
i necessary to determine the right value of yi

by receiving only
√

�nI bits from A,B. Since nI < |f | it is enough to assume
that � > |f |2 to bound this term with �.

After these changes, the number of bits which A, B send to the forge and
lose functionality (regardless of the input and output size of the function) is
bounded by

(�κ +
√

�f + |f |)κ = O((� + |f |)) poly(κ)

as desired.

Acknowledgements. This project was supported by: the Danish National Research
Foundation and The National Science Foundation of China (grant 61361136003) for the
Sino-Danish Center for the Theory of Interactive Computation; the European Union
Seventh Framework Programme ([FP7/2007-2013]) under grant agreement number
ICT-609611 (PRACTICE).

A List of symbols

– σA, σB global encryptions keys, also used as selection bits used in OTChoose;
– τA, τB global MAC key, generated during filling in;
– xA

i , xB
i the inputs used in execution i;

– yA
i , yB

i the output received by A/B in execution i;
– yi, the real output of execution i (i.e., f(xA

i , xB
i));

– We use x̂ to indicate “garbled values/functions” (in the GC context);
– We use capitals for encryptions of the inputs under σ (Xi

A,Xi
B);

– tAi , tBi are MACs computed during filling in;
– f : {0, 1}n × {0, 1}n → {0, 1}n the original function that we are trying to

evaluate, with input/output size n;
– κ the security parameter;
– � the number of copies of f we are evaluating i.e., i = 1, . . . , �;

602 J.B. Nielsen and C. Orlandi

– ε, the fraction of circuits being checked i.e., the number of garbled circuits
which each party generates is (1+ ε)�, and then ε� of those are checked during
the cut-and-choose. For simplicity we assume ε� to be an integer;

– ψ = log1+ε(2);
– Given a value x, 〈x〉 is a commitment to x using randomness open(x).

References

[BHR12] Bellare, M., Hoang, V.T., Rogaway, P.: Foundations of garbled circuits. In:
The ACM Conference on Computer and Communications Security, CCS
2012, Raleigh, NC, USA, 16–18 October 2012, pp. 784–796 (2012)

[BMR90] Beaver, D., Micali, S., Rogaway, P.: The round complexity of secure proto-
cols (extended abstract). In: Proceedings of the 22nd Annual ACM Sym-
posium on Theory of Computing, 13–17 May 1990, Baltimore, Maryland,
USA, pp. 503–513 (1990)

[Bra13] Brandão, L.T.A.N.: Secure two-party computation with reusable bit-
commitments, via a cut-and-choose with forge-and-lose technique. In: Sako,
K., Sarkar, P. (eds.) ASIACRYPT 2013, Part II. LNCS, vol. 8270, pp. 441–
463. Springer, Heidelberg (2013). doi:10.1007/978-3-642-42045-0 23

[Can01] Canetti, R.: Universally composable security: a new paradigm for crypto-
graphic protocols. In: 42nd Annual Symposium on Foundations of Com-
puter Science, FOCS 2001, 14–17 October 2001, Las Vegas, Nevada, USA,
pp. 136–145. IEEE Computer Society (2001)

[CLOS02] Canetti, R., Lindell, Y., Ostrovsky, R., Sahai, A.: Universally compos-
able two-party and multi-party secure computation. In: Proceedings on
34th Annual ACM Symposium on Theory of Computing, 19–21 May 2002,
Montréal, Québec, Canada, pp. 494–503 (2002)

[FJN+13] Frederiksen, T.K., Jakobsen, T.P., Nielsen, J.B., Nordholt, P.S., Orlandi,
C.: MiniLEGO: efficient secure two-party computation from general
assumptions. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013.
LNCS, vol. 7881, pp. 537–556. Springer, Heidelberg (2013). doi:10.1007/
978-3-642-38348-9 32

[FJNT15] Frederiksen, T.K., Jakobsen, T.P., Nielsen, J.B., Trifiletti, R.: Tinylego:
an interactive garbling scheme for maliciously. IACR Cryptology ePrint
Archive 2015:309 (2015)

[FNO15] Frederiksen, T.K., Nielsen, J.B., Orlandi, C.: Privacy-free garbled circuits
with applications to efficient zero-knowledge. In: Oswald, E., Fischlin,
M. (eds.) EUROCRYPT 2015. LNCS, vol. 9057, pp. 191–219. Springer,
Heidelberg (2015). doi:10.1007/978-3-662-46803-6 7

[GMW87] Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game or
a completeness theorem for protocols with honest majority. In: Proceed-
ings of the 19th Annual ACM Symposium on Theory of Computing, 1987,
New York, USA, pp. 218–229 (1987)

[HKE13] Huang, Y., Katz, J., Evans, D.: Efficient secure two-party computa-
tion using symmetric cut-and-choose. In: Canetti, R., Garay, J.A. (eds.)
CRYPTO 2013, Part II. LNCS, vol. 8043, pp. 18–35. Springer, Heidelberg
(2013). doi:10.1007/978-3-642-40084-1 2

http://dx.doi.org/10.1007/978-3-642-42045-0_23
http://dx.doi.org/10.1007/978-3-642-38348-9_32
http://dx.doi.org/10.1007/978-3-642-38348-9_32
http://dx.doi.org/10.1007/978-3-662-46803-6_7
http://dx.doi.org/10.1007/978-3-642-40084-1_2

Cross and Clean: Amortized Garbled Circuits with Constant Overhead 603

[HKK+14] Huang, Y., Katz, J., Kolesnikov, V., Kumaresan, R., Malozemoff, A.J.:
Amortizing garbled circuits. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO
2014, Part II. LNCS, vol. 8617, pp. 458–475. Springer, Heidelberg (2014).
doi:10.1007/978-3-662-44381-1 26

[JKO13] Jawurek, M., Kerschbaum, F., Orlandi, C.: Zero-knowledge using garbled
circuits: how to prove non-algebraic statements efficiently. In: 2013 ACM
SIGSAC Conference on Computer and Communications Security, CCS
2013, Berlin, Germany, 4–8 November 2013, pp. 955–966 (2013)

[JS07] Jarecki, S.: Efficient two-party secure computation on committed inputs.
In: Naor, M. (ed.) EUROCRYPT 2007. LNCS, vol. 4515, pp. 97–114.
Springer, Heidelberg (2007). doi:10.1007/978-3-540-72540-4 6

[Lin13] Lindell, Y.: Fast cut-and-choose based protocols for malicious and covert
adversaries. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part II.
LNCS, vol. 8043, pp. 1–17. Springer, Heidelberg (2013). doi:10.1007/
978-3-642-40084-1 1

[LP07] Lindell, Y., Pinkas, B.: An efficient protocol for secure two-party compu-
tation in the presence of malicious adversaries. In: Naor, M. (ed.) EURO-
CRYPT 2007. LNCS, vol. 4515, pp. 52–78. Springer, Heidelberg (2007).
doi:10.1007/978-3-540-72540-4 4

[LR14] Lindell, Y., Riva, B.: Cut-and-choose yao-based secure computation in
the online/offline and batch settings. In: Garay, J.A., Gennaro, R.
(eds.) CRYPTO 2014, Part II. LNCS, vol. 8617, pp. 476–494. Springer,
Heidelberg (2014). doi:10.1007/978-3-662-44381-1 27

[LR15] Lindell, Y., Riva, B.: Blazing fast 2pc in the offline/online setting with secu-
rity for malicious adversaries. In: Proceedings of the 22nd ACM SIGSAC
Conference on Computer and Communications Security, Denver, CO, USA,
12–16 October 2015, pp. 579–590 (2015)

[MF06] Mohassel, P., Franklin, M.K.: Efficiency tradeoffs for malicious two-
party computation. In: Yung, M., Dodis, Y., Kiayias, A., Malkin,
T. (eds.) PKC 2006. LNCS, vol. 3958, pp. 458–473. Springer,
Heidelberg (2006). doi:10.1007/11745853 30

[MNPS04] Malkhi, D., Nisan, N., Pinkas, B., Sella, Y.: Fairplay - secure two-party
computation system. In: Proceedings of the 13th USENIX Security Sym-
posium, 9–13 August 2004, San Diego, CA, USA, pp. 287–302 (2004)

[NO09] Nielsen, J.B., Orlandi, C.: LEGO for two-party secure computation. In:
Reingold, O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 368–386. Springer,
Heidelberg (2009). doi:10.1007/978-3-642-00457-5 22

[Pai99] Paillier, P.: Public-key cryptosystems based on composite degree residuos-
ity classes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, p. 223.
Springer, Heidelberg (1999). doi:10.1007/3-540-48910-X 16

[Yao82] Yao, A.C.-C.: Protocols for secure computations (extended abstract). In:
FOCS, pp. 160–164 (1982)

[ZRE15] Zahur, S., Rosulek, M., Evans, D.: Two halves make a whole. In: Oswald,
E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9057, pp. 220–250.
Springer, Heidelberg (2015). doi:10.1007/978-3-662-46803-6 8

http://dx.doi.org/10.1007/978-3-662-44381-1_26
http://dx.doi.org/10.1007/978-3-540-72540-4_6
http://dx.doi.org/10.1007/978-3-642-40084-1_1
http://dx.doi.org/10.1007/978-3-642-40084-1_1
http://dx.doi.org/10.1007/978-3-540-72540-4_4
http://dx.doi.org/10.1007/978-3-662-44381-1_27
http://dx.doi.org/10.1007/11745853_30
http://dx.doi.org/10.1007/978-3-642-00457-5_22
http://dx.doi.org/10.1007/3-540-48910-X_16
http://dx.doi.org/10.1007/978-3-662-46803-6_8

Differential Privacy

Separating Computational and Statistical
Differential Privacy in the Client-Server Model

Mark Bun(B), Yi-Hsiu Chen, and Salil Vadhan

John A. Paulson School of Engineering and Applied Sciences, Center for Research
on Computation and Society, Harvard University, Cambridge, MA, USA

{mbun,yhchen,salil}@seas.harvard.edu

Abstract. Differential privacy is a mathematical definition of privacy
for statistical data analysis. It guarantees that any (possibly adversarial)
data analyst is unable to learn too much information that is specific to
an individual. Mironov et al. (CRYPTO 2009) proposed several com-
putational relaxations of differential privacy (CDP), which relax this
guarantee to hold only against computationally bounded adversaries.
Their work and subsequent work showed that CDP can yield substantial
accuracy improvements in various multiparty privacy problems. How-
ever, these works left open whether such improvements are possible in
the traditional client-server model of data analysis. In fact, Groce, Katz
and Yerukhimovich (TCC 2011) showed that, in this setting, it is impos-
sible to take advantage of CDP for many natural statistical tasks.

Our main result shows that, assuming the existence of sub-
exponentially secure one-way functions and 2-message witness indistin-
guishable proofs (zaps) for NP, that there is in fact a computational
task in the client-server model that can be efficiently performed with
CDP, but is infeasible to perform with information-theoretic differential
privacy.

1 Introduction

Differential privacy is a formal mathematical definition of privacy for the analy-
sis of statistical datasets. It promises that a data analyst (treated as an adver-
sary) cannot learn too much individual-level information from the outcome of
an analysis. The traditional definition of differential privacy makes this promise
information-theoretically: Even a computationally unbounded adversary is lim-
ited in the amount of information she can learn that is specific to an individual.

c©IACR 2016. This article is the final version submitted by the authors to the IACR
and to Springer-Verlag on August 23, 2016.
M. Bun—Supported by an NDSEG Fellowship and NSF grant CNS-1237235. Part
of this work was done while the author was visiting Yale University.
Y.-H. Chen—Supported by NSF grant CCF-1420938.
S. Vadhan—Supported by NSF grant CNS-1237235 and a Simons Investigator
Award. Part of this work was done while the author was visiting the Shing-Tung
Yau Center and the Department of Applied Mathematics at National Chiao-Tung
University in Hsinchu, Taiwan.

c© International Association for Cryptologic Research 2016
M. Hirt and A. Smith (Eds.): TCC 2016-B, Part I, LNCS 9985, pp. 607–634, 2016.
DOI: 10.1007/978-3-662-53641-4 23

608 M. Bun et al.

On one hand, there are now numerous techniques that actually achieve this
strong guarantee of privacy for a rich body of computational tasks. On the other
hand, the information-theoretic definition of differential privacy does not itself
permit the use of basic cryptographic primitives that naturally arise in the prac-
tice of differential privacy (such as the use of cryptographically secure pseudo-
random generators in place of perfect randomness). More importantly, compu-
tationally secure relaxations of differential privacy open the door to designing
improved mechanisms: ones that either achieve better utility (accuracy) or com-
putational efficiency over their information-theoretically secure counterparts.

Motivated by these observations, and building on ideas suggested in [BNO08],
Mironov et al. [MPRV09] proposed several definitions of computational dif-
ferential privacy (CDP). All of these definitions formalize what it means for
the output of a mechanism to “look” differentially private to a computation-
ally bounded (i.e. probabilistic polynomial-time) adversary. The sequence of
works [DKM+06,BNO08,MPRV09] introduced a paradigm that enables two
or more parties to take advantage of CDP, either to achieve better utility or
reduced round complexity, when computing a joint function of their private
inputs: The parties use a secure multi-party computation protocol to simu-
late having a trusted third party perform a differentially private computation
on the union of their inputs. Subsequent work [MMP+10] showed that such
a CDP protocol for approximating the Hamming distance between two pri-
vate bit vectors is in fact more accurate than any (information-theoretically
secure) differentially private protocol for the same task. A number of works
[CSS12,GMPS13,HOZ13,KMS14,GKM+16] have since sought to characterize
the extent to which CDP yields accuracy improvements for two-party privacy
problems.

Despite the success of CDP in the design of improved algorithms in the multi-
party setting, much less is known about what can be achieved in the traditional
client-server model, in which a trusted curator holds all of the sensitive data
and mediates access to it. Beyond just the absence of any techniques for taking
advantage of CDP in this setting, results of Groce, Katz, and Yerukhimovich
[GKY11] (discussed in more detail below) show that CDP yields no additional
power in the client-server model for many basic statistical tasks. An additional
barrier stems from the fact that all known lower bounds against computationally
efficient differentially private algorithms [DNR+09,UV11,Ull13,BZ14,BZ16] in
the client-server model are proved by exhibiting computationally efficient adver-
saries. Thus, these lower bounds rule out the existence of CDP mechanisms just
as well as they rule out differentially private ones.

In this work, we give the first example of a computational problem in
the client-server model which can be solved in polynomial-time with CDP,
but (under plausible assumptions) is computationally infeasible to solve with
(information-theoretic) differential privacy. Our problem is specified by an effi-
ciently computable utility function u, which takes as input a dataset D ∈ X n

and an answer r ∈ R, and outputs 1 if the answer r is “good” for the dataset
D, and 0 otherwise.

Separating Computational and Statistical Differential Privacy 609

Theorem 1 (Main (Informal)). Assuming the existence of sub-exponentially
secure one-way functions and “exponentially extractable” 2-message witness
indistinguishable proofs (zaps) for NP, there exists an efficiently computable
utility function u : X n × R → {0, 1} such that

1. There exists a polynomial time CDP mechanism MCDP such that for every
dataset D ∈ X n, we have Pr[u(D,MCDP(D)) = 1] ≥ 2/3.

2. There exists a computationally unbounded differentially private mechanism
Munb such that Pr[u(D,Munb(D)) = 1] ≥ 2/3.

3. For every polynomial time differentially private M , there exists a dataset
D ∈ X n, such that Pr[u(D,M(D)) = 1] ≤ 1/3.

Note that the theorem provides a task where achieving differential privacy
is infeasible – not impossible. This is inherent because the CDP mechanism we
exhibit (for item 1) satisfies a simulation-based form of CDP (“SIM-CDP”),
which implies the existence of a (possibly inefficient) differentially private mech-
anism, provided the utility function u is efficiently computable as we require. It
remains an intriguing open problem to exhibit a task that can be achieved with
a weaker indistinguishably-based notion of CDP (“IND-CDP”) but is impossible
to achieve (even inefficiently) with differential privacy. Such a task would also
separate IND-CDP and SIM-CDP, which is an interesting open problem in its
own right.

Circumventing the impossibility results of [GKY11]. Groce et al. showed that
in many natural circumstances, computational differential privacy cannot yield
any additional power over differential privacy in the client-server model. In par-
ticular, they showed two impossibility results:

1. If a CDP mechanism accesses a one-way function (or more generally, any
cryptographic primitive that can be instantiated with a random function) in
a black-box way, then it can be simulated just as well (in terms of both utility
and computationally efficiency) by a differentially private mechanism.

2. If the output of a CDP mechanism is in R
d (for some constant d) and its

utility is measured via an Lp-norm, then the mechanism can be simulated
by a differentially private one, again without significant loss of utility or
efficiency.

(In Sect. 4, we revisit the techniques [GKY11] to strengthen the second result
in some circumstances. In general, we show that when error is measured in
any metric with doubling dimension O(log k), CDP cannot improve utility by
more than a constant factor. Specifically, respect to Lp-error, CDP cannot do
much better than DP mechanisms even when d is logarithmic in the security
parameter.)

We get around both of these impossibility results by (1) making non-black-
box use of one-way functions via the machinery of zap proofs and (2) relying
on a utility function that is far from the form in which the second result of
[GKY11] applies. Indeed, our utility function is cryptographic and unnatural

610 M. Bun et al.

from a data analysis point view. Roughly speaking, it asks whether the answer r
is a valid zap proof of the statement “there exists a row of the dataset D that is
a valid message-signature pair” for a secure digital signature scheme. It remains
an intriguing problem for future work whether a separation can be obtained from
a more natural task (such as answering a polynomial number of counting queries
with differential privacy).

Our Construction and Techniques. Our construction is based on the existence
of two cryptographic primitives: an existentially unforgeable digital signature
scheme (Gen,Sign,Ver), and a 2-message witness indistinguishable proof system
(zap) (P, V) for NP. We make use of complexity leveraging [CGGM00] and thus
require a complexity gap between the two primitives: namely, a sub-exponential
time algorithm should be able to break the security of the zap proof system,
but should not be able to forge a valid message-signature pair for the digital
signature scheme.

We now describe (eliding technical complications) the computational task
which allows us to separate computational and information-theoretic differential
privacy in the client-server model. Inspired by prior differential privacy lower
bounds [DNR+09,UV11], we consider a dataset D that consists of many valid
message-signature pairs (m1, σ1), . . . , (mn, σn) for the digital signature scheme.
We say that a mechanism M gives a useful answer on D, i.e. the utility function
u(D,M(D)) evaluates to 1, if it produces a proof π in the zap proof system that
there exists a message-signature pair (m,σ) for which Ver(m,σ) = 1.

First, let us see how the above task can be performed inefficiently with differ-
ential privacy. Consider the mechanism Munb that first confirms (in a standard
differentially private way) that its input dataset indeed contains “many” valid
message-signature pairs. Then Munb uses its unbounded computational resources
to forge a canonical valid message-signature pair (m,σ) and uses the zap prover
on witness (m,σ) to produce a proof π. Since the choice of the forged pair does
not depend on the input dataset at all, the procedure as a whole is differentially
private.

Now let us see how a CDP mechanism can perform the same task efficiently.
Our mechanism MCDP again first checks that it possesses many valid message-
signature pairs, but this time it simply outputs a proof π using an arbitrary
valid pair (mi, σi) ∈ D as its witness. Since the proof system is witness indistin-
guishable, a computationally bounded observer cannot distinguish π from the
canonical proof output by the differentially private mechanism Munb. Thus, the
mechanism MCDP is in fact CDP in the strongest (simulation-based) sense.

Despite the existence of the inefficient differentially private mechanism Munb,
we show that the existence of an efficient mechanism M for this task would
violate the sub-exponential security of the digital signature scheme. Suppose
there were such a mechanism M . Now consider a sub-exponential time adver-
sary A that completely breaks the security of the zap proof system, in the sense
that given a valid proof π, it is always able to recover a corresponding wit-
ness (m,σ). Since M is differentially private, the (m,σ) extracted by A cannot
be in the dataset D given to M . Thus, (m,σ) constitutes a forgery of a valid

Separating Computational and Statistical Differential Privacy 611

message-signature pair, and hence the composed algorithm A ◦ M violates the
security of the signature scheme.

2 Preliminaries

2.1 (Computational) Differential Privacy

We first set notations that will be used throughout this paper, and recall the
notions of (ε, δ)-differential privacy and computational differential privacy. The
abbreviation “PPT” stands for “probabilistic polynomial-time Turing machine.”

Security Parameter k. Let k ∈ N denote a security parameter. In this work,
datasets, privacy-preserving mechanisms, and privacy parameters ε, δ will all be
sequences parameterized in terms of k. Adversaries will also have their computa-
tional power parameterized by k; in particular, efficient adversaries have circuit
size polynomial in k. A function is said to be negligible if it vanishes faster than
any inverse polynomial in k.

Dataset D. A dataset D is an ordered tuple of n elements from some data
universe X . Two datasets D,D′ are said to be adjacent (written D ∼ D′) if they
differ in at most one row. We use {Dk}k∈N to denote a sequence of datasets,
each over a data universe Xk, with sizes growing with the parameter k. The size
in bits of a dataset Dk, and in particular the number of rows n, will always be
poly(k).

Mechanism M . A mechanism M : X ∗ → R is a randomized function taking a
dataset D ∈ X ∗ to an output in a range space R. We will be especially interested
in ensembles of efficient mechanisms {Mk}k∈N where each Mk : X ∗

k → Rk, when
run on an input dataset D ∈ X n

k , runs in time poly(k, n).

Adversary A. Given an ensemble of mechanisms {Mk}k∈N with Mk : X∗
k →

Rk, we model an adversary {Ak}k∈N as a sequence of polynomial-size circuits
Ak : Rk → {0, 1}. Equivalently, {Ak}k∈N can be thought of as a probabilistic
polynomial time Turing machine with non-uniform advice.

Definition 1 (Differential Privacy [DMNS06,DKM+06]). A mechanism M
is (ε, δ)-differentially private if for all adjacent datasets D ∼ D′ and every set
S ⊆ Range(M),

Pr[M(D) ∈ S] ≤ eε Pr[M(D′) ∈ S] + δ

Equivalently, for all adjacent datasets D ∼ D′ and every (computationally
unbounded) algorithm A, we have

Pr[A(M(D)) = 1] ≤ eε Pr[A(M(D′)) = 1] + δ (1)

For consistency with the definition of SIM-CDP, we also make the following
definitions for sequences of mechanisms:

612 M. Bun et al.

– An ensemble of mechanisms {Mk}k∈N is εk-DP if for all k, Mk is (εk,negl(k))-
differentially private.

– An ensemble of mechanisms {Mk}k∈N is εk-PURE-DP if for all k, Mk is
(εk, 0)-differentially private.

The above definitions are completely information-theoretic. Several compu-
tational relaxations of this definition are proposed by Mironov et al. [MPRV09].
The first “indistinguishability-based” definition, denoted IND-CDP, relaxes Con-
dition (1) to hold against computationally-bounded adversaries:

Definition 2 (IND-CDP). A sequence of mechanisms {Mk}k∈N is εk-IND-
CDP if there exists a negligible function negl(·) such that for all sequences of pairs
of poly(k)-size adjacent datasets {(Dk,D′

k)}k∈N, and all non-uniform polynomial
time adversaries A,

Pr[A(Mk(Dk)) = 1] ≤ eεk Pr[A(Mk(D′
k)) = 1] + negl(k).

Mironov et al. [MPRV09] also proposed a stronger “simulation-based” defini-
tion of computational differential privacy. A mechanism is said to be ε-SIM-CDP
if its output is computationally indistinguishable from that of an ε-differentially
private mechanism:

Definition 3 (SIM-CDP). A sequence of mechanisms {Mk}k∈N is εk-SIM-
CDP if there exists a negligible function negl(·) and a family of mechanisms
{M ′

k}k∈N that is εk-differentially private such that for all poly(k)-size datasets
D, and all non-uniform polynomial time adversaries A,

|Pr[A(Mk(D)) = 1] − Pr[A(M ′
k(D)) = 1]| ≤ negl(k).

If M ′
k is in fact εk-pure differentially private, then we say that {Mk}k∈N is εk-

PURE-SIM-CDP.

Writing A 	 B to denote that a mechanism satisfying definition A also
satisfies definition B (that is, A is a stricter privacy definition than B). We
have the following relationships between the various notions of (computational)
differential privacy:

DP 	 SIM-CDP 	 IND-CDP.

We will state and prove our separation between CDP and differential privacy
for the simulation-based definition SIM-CDP. Since SIM-CDP is a stronger pri-
vacy notion than IND-CDP, this implies a separation between IND-CDP and
differential privacy as well.

2.2 Utility

We describe an abstract notion of what it means for a mechanism to “succeed”
at performing a computational task. We define a computational task implicitly

Separating Computational and Statistical Differential Privacy 613

in terms of an efficiently computable utility function, which takes as input a
dataset D ∈ X ∗ and an answer r ∈ R and outputs a score describing how well
r solves a given problem on instance D. For our purposes, it suffices to consider
binary-valued utility functions u, which output 1 iff the answer r is “good” for
the dataset D.

Definition 4 (Utility). A utility function is an efficiently computable (deter-
ministic) function u : X ∗ ×R → {0, 1}. A mechanism M is α-useful for a utility
function u : X ∗ × R → {0, 1} if for all datasets D,

Pr
r←M(D)

[u(D, r) = 1] ≥ α.

Restricting our attention to efficiently computable utility functions is neces-
sary to rule out pathological separations between computational and statistical
notions of differential privacy. For instance, let {Gk}k∈N be a pseudorandom gen-
erator with Gk : {0, 1}k → {0, 1}2k, and consider the (hard-to-compute) function
u(0, r) = 1 iff r is in the image of Gk, and u(1, r) = 1 iff r is not in the image
of Gk. Then the mechanism M(b) that samples from Gk if b = 0 and samples
a random string if b = 1 is useful with overwhelming probability. Moreover, M
is computationally indistinguishable from the mechanism that always outputs a
random string, and hence SIM-CDP. On the other hand, the supports of u(0, ·)
and u(1, ·) are disjoint, so no differentially private mechanism can achieve high
utility with respect to u.

2.3 Zaps (2-Message WI Proofs)

The first cryptographic tool we need in our construction is 2-message witness
indistinguishable proofs for NP (“zaps”) [FS90,DN07] in the plain model (with
no common reference string). Consider a language L ∈ NP. A witness relation
for L is a polynomial-time decidable binary relation RL = {(x,w)} such that
|w| ≤ poly(|x|) whenever (x,w) ∈ RL, and

x ∈ L ⇐⇒ ∃w s.t. (x,w) ∈ RL.

Definition 5 (Zap). Let RL = {(x,w)} be a witness-relation corresponding to
a language L ∈ NP. A zap proof system for RL consists of a pair of algorithms
(P, V) where:

– In the first round, the verifier sends a message ρ ← {0, 1}�(k,|x|) (“public
coins”), where �(·, ·) is a fixed polynomial.

– In the second round, the prover runs a PPT P that takes as input a pair (x,w)
and verifier’s first message ρ and outputs a proof π.

– The verifier runs an efficient, deterministic algorithm V that takes as input an
instance x, a first-round message ρ, and proof π, and outputs a bit in {0, 1}.

The security requirements of the proof system are:

614 M. Bun et al.

1. Perfect completeness. An honest prover who possesses a valid witness
can always convince an honest verifier. Formally, for all x ∈ {0, 1}poly(k),
(x,w) ∈ RL, and ρ ∈ {0, 1}�(k,|x|),

Pr
π←P (1k,x,w,ρ)

[V (1k, x, ρ, π) = 1] = 1.

2. Statistical soundness. With overwhelming probability over the choice of
ρ, it is impossible to convince an honest verifier of the validity of a false
statement. Formally, there exists a negligible function negl(·) such that for all
sufficiently large k and t = poly(k), we have

Pr
ρ←{0,1}�(k,t)

[∃x /∈ L ∩ {0, 1}t, π ∈ {0, 1}∗ : V (1k, x, ρ, π) = 1] ≤ negl(k).

3. Witness indistinguishability. For every sequence {xk}k∈N with |xk| =
poly(k), every two sequences {w1

k}k∈N, {w2
k}k∈N such that (xk, w1

k), (xk, w2
k) ∈

RL, and every choice of the verifier’s first message ρ, we have

{P (1k, xk, w1
k, ρ)}k∈N

c≈ {P (1k, xk, w2
k, ρ)}k∈N.

Namely, for every such pair of sequences, there exists a negligible function
negl(·) such that for all polynomial-time adversaries A and all sufficiently
large k, we have

|Pr[A(1k, P (1k, xk, w1
k, ρ)) = 1] − Pr[A(1k, P (1k, xk, w2

k, ρ)) = 1]| ≤ negl(k).

In our construction, we will need more fine-grained control over the security of
our zap proof system. In particular, we need the proof system to be extractable
by an adversary running in time 2O(k), in that such an adversary can always
reverse-engineer a valid proof π to find a witness w such that (x,w) ∈ RL.
It is important to note that we require the running time of the adversary to
be exponential in the security parameter k, but otherwise independent of the
statement size |x|.

Definition 6 (Extractable Zap). The algorithm triple (P, V,E) is an
extractable zap proof system if (P, V) is a zap proof system and there exists
an algorithm E running in time 2O(k) with the following property:

4. (Exponential Statistical) Extractability. There exists a negligible
function negl(·) such that for all x ∈ {0, 1}poly(k):

Pr
ρ←{0,1}�(k,|x|)

[∃π ∈ {0, 1}∗, w ∈ E(1k, x, ρ, π) :

(x,w) /∈ RL ∧ V (1k, x, ρ, π) = 1] ≤ negl(k).

While we do not know whether extractability is a generic property of zaps, it
is preserved under Dwork and Naor’s reduction to NIZKs in the common random
string model. Namely, if we plug an extractable NIZK into Dwork and Naor’s
construction, we obtain an extractable zap.

Separating Computational and Statistical Differential Privacy 615

Theorem 2. Every language in NP has an extractable zap proof system
(P, V,E), as defined in Definition 6, if there exists non-interactive zero-knowledge
proofs of knowledge for NP [DN07].

For completeness, we sketch Dwork and Naor’s construction in AppendixB and
argue its extractability.

2.4 Digital Signatures

The other ingredient we need in our construction is sub-exponentially strongly
unforgeable digital signature schemes. Here “strong unforgeability” [ADR02]
means that the adversary in the existential unforgeability game is allowed to
forge a signature for a message it has queried before, as long as the signature is
different than the one it received.

Definition 7 (Sub-exponentially Strongly Unforgeable Digital Signa-
ture Scheme). Let c ∈ (0, 1) be a constant. A c-strongly unforgeable digital
signature is a triple of PPT algorithms (Gen,Sign,Ver) where

– (sk, vk) ← Gen(1k): The generation algorithm takes as input a security para-
meter k and generates a secret key and a verification key.

– σ ← Sign(sk,m): The signing algorithm signs a message m ∈ {0, 1}∗ to
produce a signature σ ∈ {0, 1}∗.

– b ← Ver(vk,m, σ): The (deterministic) verification algorithm outputs a bit to
indicate whether the signature σ is a valid signature of m.

The algorithms have the following properties:

1. Correctness. For every message m ∈ {0, 1}∗,

Pr
(sk,vk)←Gen(1k)

σ←Sign(sk,m)

[Ver(vk,m, σ) = 1] = 1.

2. Existential unforgeability. There exists a negligible function negl(·)
such that for all adversaries A running in time 2kc

,

Pr
(sk,vk)←Gen(1k)

(m,σ)←ASign(sk,·)(vk)

[Ver(m,σ) = 1 and (m,σ) /∈ Q] < negl(k)

where Q is the set of messages-signature pairs obtained through A’s use of
the signing oracle.

Theorem 3. If sub-exponentially secure one-way functions exist, then there is
a constant c ∈ (0, 1) such that a c-strongly unforgeable digital signature scheme
exists.

The reduction from a one-way function to digital signature [NY89,Rom90,KK05,
Gol04] can be applied when both schemes are secure against sub-exponential
time adversaries.

616 M. Bun et al.

3 Separating CDP and Differential Privacy

In this section, we define a computational problem in the client-server model
that can be efficiently solved with CDP, but not with statistical differential
privacy. That is, we define a utility function u for which there exists a CDP
mechanism achieving high utility. On the other hand, any efficient differentially
private algorithm can only have negligible utility.

Theorem 4 (Main). Assume the existence of sub-exponentially secure one-
way functions and extractable zaps for NP. Then there exists a sequence of data
universes {Xk}k∈N, range spaces {Rk}k∈N and an (efficiently computable) utility
function uk : X ∗

k × Rk → {0, 1} such that

1. There exists a polynomial p such that for any εk, βk > 0 there exists a
polynomial-time εk-PURE-SIM-CDP mechanism {MCDP

k }k∈N and an (inef-
ficient) εk-PURE-DP mechanism {Munb

k }k∈N such that for every n ≥
p(k, 1/εk, log(1/βk)) and dataset D ∈ X n

k , we have

Pr[uk(D,MCDP(D)) = 1] ≥ 1 − βk and Pr[uk(D,Munb(D)) = 1] ≥ 1 − βk

2. For every εk ≤ O(log k), αk = 1/poly(k), n = poly(k), and efficient (εk, δ =
1/n2)-differentially private mechanism {M ′

k}k∈N, there exists a dataset D ∈
X n

k such that

Pr[u(D,M ′(D)) = 1] ≤ αk for sufficient large k.

Remark 1 We can only hope to separate SIM-CDP and differential privacy by
designing a task that is infeasible with differential privacy but not impossible.
By the definition of (PURE-)SIM-CDP for a mechanism {Mk}k∈N, there exists
an εk-(PURE-)DP mechanism {M ′

k}k∈N that is computationally indistinguish-
able from {Mk}k∈N. But if for every differentially private {M ′

k}k∈N, there were
a dataset Dk ∈ X n

k such that Pr[uk(Dk,M ′
k(Dk)) = 1] ≤ Pr[uk(Dk,Mk(Dk)) =

1] − 1/poly(k), then the utility function uk(Dk, ·) would itself serve as a distin-
guisher between {M ′

k}k∈N and {Mk}k∈N.

3.1 Construction

Let (Gen,Sign,Ver) be a c-strongly unforgeable secure digital signature scheme
with parameter c > 0 as in Definition 7. After fixing c, we define for each k ∈ N a
reduced security parameter kc = kc/2. We will use kc as the security parameter
for an extractable zap proof system (P, V,E). Since k and kc are polynomially
related, a negligible function in k is negligible in kc and vice versa.

Given a security parameter k ∈ N, define the following sets of bit strings:

Verification Key Space: Kk = {0, 1}�1 where �1 = |vk| for (sk, vk) ←
Gen(1k),

Message Space: Mk = {0, 1}k,

Separating Computational and Statistical Differential Privacy 617

Signature Space: Sk = {0, 1}�2 where �2 = |σ| for σ ← Sign(sk,m) with
m ∈ Mk,

Public Coins Space: Pk = {0, 1}�3 where �3 = poly(�1) is the length of first-
round zap messages used to prove statements from Kk under security para-
meter kc,

Data Universe: Xk = Kk × Mk × Sk × Pk.

That is, similarly to one the hardness results of [DNR+09], we consider
datasets D that contain n rows of the form x1 = (vk1,m1, σ1, ρ1), . . . , xn =
(vkn,mn, σn, ρn) each corresponding to a verification key, message, and signa-
ture from the digital signature scheme, and to a zap verifier’s public coin tosses.

Let L ∈ NP be the language

vk ∈ (L ∩ Kk) ⇐⇒ ∃(m,σ) ∈ Mk × Sk s.t. Ver(vk,m, σ) = 1

which has the natural witness relation

RL =
⋃

k

{(vk, (m,σ)) ∈ Kk × (Mk × Sk) : Ver(vk,m, σ) = 1}.

Define

Proof Space: Πk = {0, 1}�4 where �4 = |π| for π ← P (1kc , vk, (m,σ), ρ) for
vk ∈ (L ∩ Kk) with witness (m,σ) ∈ Mk × Sk and public coins ρ ∈ Pk, and

Output Space: Rk = Kk × Pk × Πk.

Definition of Utility Function u. We now specify our computational task of
interest via a utility function u : X n

k × Rk → {0, 1}. For any string vk ∈ Kk and
D = ((vk1,m1, σ1, ρ1), · · · , (vkn,mn, σn, ρn)) ∈ X n

k define an auxiliary function

fvk,ρ(D) = #{i ∈ [n] : vki = vk ∧ ρi = ρ ∧ Ver(vk,mi, σi) = 1}.

That is, fvk,ρ is the number of elements of the dataset D with verification key
equal to vk and public coin string equal to ρ for which (mi, σi) is a valid message-
signature pair under vk. We now define u(D, (vk, ρ, π)) = 1 iff

fvk,ρ(D) ≥ 9n/10 ∧ V (1kc , vk, ρ, π) = 1
or

fvk′,ρ′(D) < 9n/10 for all vk′ ∈ Kk and ρ′ ∈ Pk.

That is, the utility function u is satisfied if either (1) many entries of D contain
valid message-signature pairs under the same verification key vk with the same
public coin string ρ and π is a valid proof for statement vk using ρ, or (2) it is
not the case that many entries of D contain valid message-signature pairs under
the same verification key, with the same public coin string (in which case any
response (vk, ρ, π) is acceptable).

618 M. Bun et al.

3.2 An Inefficient Differentially Private Algorithm

We begin by showing that there is an inefficient differentially private mechanism
that achieves high utility under u.

Proposition 1. Let k ∈ N. For every ε > 0, there exists an (ε, 0)-differentially
private algorithm Munb

k : X n
k → Rk such that, for every β > 0, every n ≥

10
ε log(2 · |Kk| · |Pk|/β)) = poly(1/ε, log(1/β), k) and D ∈ (Kk ×Mk ×Sk ×Pk)n,

Pr
(vk,ρ,π)←Munb

k (D)
[u(D, (vk, ρ, π)) = 1] ≥ 1 − β

Remark 2. While the mechanism Munb considered here is only accurate for
n ≥ Ω(log |Pk|), it is also possible to use “stability techniques” [DL09,TS13]
to design an (ε, δ)-differentially private mechanism that achieves high utility for
n ≥ O(log(1/δ)/ε) for δ > 0. We choose to provide a “pure” ε-differentially
private algorithm here to make our separation more dramatic: Both the inef-
ficient differentially private mechanism and the efficient SIM-CDP mechanism
achieve pure (ε, 0)-privacy, whereas no efficient mechanism can even achieve
(ε, δ)-differential privacy with δ > 0.

Our algorithm relies on standard differentially private techniques for identi-
fying frequently occurring elements in a dataset.

Report Noisy Max. Consider a data universe X . A predicate q : X → {0, 1}
defines a counting query over the set of datasets X n as follows: For D =
(x1, . . . , xn) ∈ X n, we abuse notation by defining q(D) =

∑n
i=1 q(xi). We fur-

ther say that a collection of counting queries Q is disjoint if, whenever q(x) = 1
for some q ∈ Q and x ∈ X , we have q′(x) = 0 for every other q′ �= q in Q.
(Thus, disjoint counting queries slightly generalize point functions, which are
each supported on exactly one element of the domain X .)

The “Report Noisy Max” algorithm [DR14], combined with observations of
[BV16], can efficiently and privately identify which of a set of disjoint counting
queries is (approximately) the largest on a dataset D, and release its identity
along with the corresponding noisy count. We sketch the proof of the following
proposition in AppendixA.

Proposition 2 (Report Noisy Max). Let Q be a set of efficiently computable
and sampleable disjoint counting queries over a domain X . Further suppose that
for every x ∈ X , the query q ∈ Q for which q(x) = 1 (if one exists) can be
identified efficiently. For every n ∈ N and ε > 0 there is an mechanism F :
X n → X × R such that

1. F runs in time poly(n, log |X |, log |Q|, 1/ε).
2. F is ε-differentially private.
3. For every dataset D ∈ X n, let qOPT = argmaxq∈Q q(D) and OPT =

qOPT(D). Let β > 0. Then with probability at least 1 − β, the
algorithm F outputs a solution (q̂, a) such that a ≥ q̂(D) − γ/2 where
γ = 8

ε · (log |Q| + log(1/β)). Moreover, if OPT −γ > maxq �=qOPT q(D), then
q̂ = argmaxq∈Q q(D).

Separating Computational and Statistical Differential Privacy 619

We are now ready to describe our unbounded algorithm Munb
k as Algorithm 1.

We prove Proposition 1 via the following two claims, capturing the privacy and
utility guarantees of Munb

k , respectively.

Algorithm 1. Munb
k

Input: Dataset D ∈ (Kk × Mk × Sk × Pk)n

Output: Triple (vk, ρ, π) ∈ Kk × Pk × Πk

1. Run the Report Noisy Max algorithm on D with privacy parameter ε using the
set of disjoint counting queries {fvk,ρ : vk ∈ Kk, ρ ∈ Pk}, obtaining an answer
((vk, ρ), a).

2. If a < 7n/10, output (⊥, ⊥, ⊥) and halt. Otherwise:
3. Choose the lexicographically first (m∗, σ∗) ∈ Mk ×Sk such that Ver(vk, m∗, σ∗) =

1 (If no such pair exists, output (⊥, ⊥, ⊥) and halt)
4. Let π = P (1kc , vk, (m∗, σ∗), ρ), and output (vk, ρ, π).

Lemma 1. The algorithm Munb
k is ε-differentially private.

Proof. The algorithm Munb
k accesses its input dataset D only through the ε-

differentially private Report Noisy Max algorithm (Proposition 2). Hence, by the
closure of differential privacy under post-processing, Munb

k is also ε-differentially
private.

Lemma 2. The algorithm Munb
k is (1 − β)-useful for any number of rows n ≥

20
ε (log(|Kk| · |Pk|/β)).

Proof. If fvk,ρ(D) < 9n/10 for every vk and ρ, then the utility of the mechanism
is always 1. Therefore, it suffices to consider the case when there exist vk, ρ
for which fvk,ρ(D) ≥ 9n/10. When such vk and ρ exist, observe that we have
fvk′,ρ′(D) ≤ n/10 for every other pair (vk′, ρ′) �= (vk, ρ). Thus, as long as

9n

10
− n

10
>

8
ε

· (log(|Kk| · |Pk|) + log(1/β)),

the Report Noisy Max algorithm successfully identifies the correct vk, ρ in Step
1 with probability all but β (Proposition 2). Moreover, the reported value a is at
least 7n/10. By the perfect completeness of the zap proof system, the algorithm
produces a useful triple (vk, ρ, π) in Step 4. Thus, the mechanism as a whole is
(1 − β)-useful.

3.3 A SIM-CDP Algorithm

We define a PPT algorithm MCDP
k in Algorithm 2, which we argue is an efficient,

SIM-CDP algorithm achieving high utility with respect to u.

620 M. Bun et al.

Algorithm 2. MCDP
k

Input: Dataset D ∈ (Kk × Mk × Sk × Pk)n

Output: Triple (vk, ρ, π) ∈ Kk × Pk × Πk

1. Run the Report Noisy Max algorithm on D with privacy parameter ε using the
set of disjoint counting queries {fvk,ρ : vk ∈ Kk, ρ ∈ Pk}, obtaining an answer
((vk, ρ), a).

2. If a < 7n/10, output (⊥, ⊥, ⊥) and halt. Otherwise:
3. Select the first (vki = vk, mi, σi) ∈ D such that Ver(vk, mi, σi) = 1 (If there is no

such pair in the dataset, output (⊥, ⊥, ⊥) and halt).
4. Let π = P (1kc , vk, (mi, σi), ρ), and output (vk, ρ, π).

The only difference between MCDP
k and the inefficient algorithm Munb

k occurs
in Step 3, where we have replaced the inefficient process of finding a canonical
message-signature pair (m∗, σ∗) with selecting a message-signature pair (mi, σi)
in the dataset. Since all the other steps (Report Noisy Max and the zap prover’s
algorithm) are efficient, MCDP

k runs in polynomial time. However, this change
renders MCDP

k statistically non-differentially private, since a (computationally
unbounded) adversary could reverse engineer the proof π produced in Step 4 to
recover the pair (mi, σi) contained in the dataset. On the other hand, the wit-
ness indistinguishability of the proof system implies that MCDP

k is nevertheless
computationally differentially private:

Lemma 3. The algorithm MCDP
k is ε-SIM-CDP provided that n ≥ (20/ε) · (k +

log |Kk| + log |Pk|) = poly(k, 1/ε).

Proof. Indeed, we will show that M ′
k = Munb

k is secure as the simulator for
Mk = MCDP

k . That is, we will show that for any poly(k)-size adversary A, that

Pr[A(MCDP
k (D)) = 1] − Pr[A(Munb

k (D)) = 1] ≤ negl(k).

First observe that by definition, the first two steps of the mechanisms are iden-
tical. Now define, for either mechanism Munb

k or MCDP
k , a “bad” event B where

the mechanism in Step 1 produces a pair ((vk, ρ), a) for which fvk,ρ(D) = 0, but
does not output (⊥,⊥,⊥) in Step 2. For either mechanism, the probability of the
bad event B is negl(k), as long as n ≥ (20/ε) · (k + log(|Kk| · |Pk|)). This follows
from the utility guarantee of the Report Noisy Max algorithm (Proposition 2),
setting β = 2−k.

Thus, it suffices to show that for any fixing of the coins of both mechanisms
in Steps 1 and 2 in which B does not occur, that the mechanisms MCDP

k (D) and
Munb

k (D) are indistinguishable. There are now two cases to consider based on
the coin tosses in Steps 1 and 2:

Case 1: Both Mechanisms Output (⊥,⊥,⊥) in Step 2. In this case,

Pr[A(MCDP
k (D)) = 1] = Pr[A(⊥,⊥,⊥) = 1] = Pr[A(Munb

k (D)) = 1],

and the mechanisms are perfectly indistinguishable.

Separating Computational and Statistical Differential Privacy 621

Case 2: Step 1 Produced a Pair ((vk, ρ), a) for which fvk,ρ(D) > 0. In this
case, we reduce to the indistinguishability of the zap proof system. Let (vki =
vk,mi, σi) be the first entry of D for which Ver(vk,mi, σi) = 1, and let (m∗, σ∗)
be the lexicographically first message-signature pair with Ver(vk,m∗, σ∗) = 1.
The proofs we are going to distinguish are πCDP ← P (1kc , vk, (mi, σi), ρ) and
πunb ← P (1kc , vk, (m∗, σ∗), ρ). Let Azap(1kc , ρ, π) = A(vk, ρ, π). Then we have

Pr[A(MCDP
k (D)) = 1] = Pr[Azap(1kc , ρ, πCDP) = 1]

and

Pr[A(Munb
k (D)) = 1] = Pr[Azap(1kc , ρ, πunb) = 1].

Thus, indistinguishability of MCDP
k (D) and Munb

k (D) follows from the witness
indistinguishability of the zap proof system.

The proof of Lemma 2 also shows that Mk is useful for u.

Lemma 4. The algorithm MCDP
k is (1 − β)-useful for any number of rows n ≥

20
ε (log(2 · |Kk| · |Pk|/β)).

3.4 Infeasibility of Differential Privacy

We now show that any efficient algorithm achieving high utility cannot be differ-
entially private. In fact, like many prior hardness results, we provide an attack
A that does more than violate differential privacy. Specifically we exhibit a dis-
tribution on datasets such that, given any useful answer produced by an efficient
mechanism, A can with high probability recover a row of the input dataset. Fol-
lowing [DNR+09], we work with the following notion of a re-identifiable dataset
distribution.

Definition 8 (Re-identifiable Dataset Distribution). Let u : X n × R →
{0, 1} be a utility function. Let {Dk}k∈N be an ensemble of distributions over
(D0, z) ∈ X n(k)+1 × {0, 1}poly(k) for n(k) = poly(k). (Think of D0 as a
dataset on n + 1 rows, and z as a string of auxiliary information about D0).
Let (D,D′, i, z) ← D̃k denote a sample from the following experiment: Sample
(D0 = (x1, . . . , xn+1), z) ← Dk and i ∈ [n] uniformly at random. Let D ∈ X n

consist of the first n rows of D0, and let D′ be the dataset obtained by replacing
xi in D with xn+1.

We say the ensemble {Dk}k∈N is a re-identifiable dataset distribution with
respect to u if there exists a (possibly inefficient) adversary A and a negligible
function negl(·) such that for all polynomial-time mechanisms Mk,

1. Whenever Mk is useful, A recovers a row of D from Mk(D). That is, for any
PPT Mk:

Pr
(D,D′,i,z)←D̃k

r←Mk(D)

[u(D, r) = 1 ∧ A(r, z) /∈ D] ≤ negl(k).

622 M. Bun et al.

2. A cannot recover the row xi not contained in D′ from Mk(D′). That is, for
any algorithm Mk:

Pr
(D,D′,i,z)←D̃k

r←Mk(D
′)

[A(r, z) = xi] ≤ negl(k),

where xi is the i-th row of D.

Proposition 3 ([DNR+09]). If a distribution ensemble {Dk}k∈N on datasets of
size n(k) is re-identifiable with respect to a utility function u, then for every γ > 0
and α(k) with min{α, (1 − 8α)/8n1+γ} ≥ negl(k), there is no polynomial-time
(ε = γ log(n), δ = (1 − 8α)/2n1+γ)-differentially private mechanism {Mk}k∈N

that is α-useful for u.
In particular, for every ε = O(log k), α = 1/poly(k), there is no polynomial-

time (ε, 1/n2)-differentially private and α-useful mechanism for u.

Construction of a Re-identifiable Dataset Distribution. For k ∈ N, recall that the
digital signature scheme induces a choice of verification key space Kk, message
space Mk, and signature space Sk, each on poly(k)-bit strings. Let n = poly(k).
Define a distribution {Dk}k∈N as follows. To sample (D0, z) from Dk, first sample
a key pair (sk, vk) ← Gen(1k). Sample messages m1, . . . ,mn+1 ← Mk uniformly
at random. Then let σi ← Sign(sk,mi) for each i = 1, . . . , n+1. Let the dataset
D0 = (x1, . . . , xn+1) where xi = (vk,mi, σi, ρ), and set the auxiliary string
z = (vk, ρ).

Proposition 4. The distribution {Dk}k∈N defined above is re-identifiable with
respect to the utility function u.

Proof. We define an adversary A : Rk × Kk → Xk. Consider an input to A
of the form (r, z) = ((vk′, ρ′, π), (vk, ρ)). If vk′ �= vk or ρ′ �= ρ or π = ⊥, then
output (vk,⊥,⊥, ρ). Otherwise, run the zap extraction algorithm E(1kc , vk, ρ, π)
to extract a witness (m,σ), and output the resulting (vk,m, σ, ρ). Note that the
running time of A is 2O(kc).

We break the proof of re-identifiability into two lemmas. First, we show that
A can successfully recover a row in D from any useful answer:

Lemma 5. Let Mk : X n
k → Rk be a PPT algorithm. Then

Pr
(D,D′,i,z)←D̃k

r←Mk(D)

[u(D, r) = 1 ∧ A(r, z) /∈ D] ≤ negl(k).

Proof. First, if u(D, r) = u(D, (vk′, ρ′, π)) = 1, then vk′ = vk, ρ′ = ρ, and
V (1k, vk, ρ, π) = 1. In other words, π is a valid proof that vk ∈ (L ∪ Kk).
Hence, by the extractability of the zap proof system, we have that (m,σ) =
E(1kc , vk, ρ, π) satisfies (vk, (m,σ)) ∈ RL; namely Ver(vk,m, σ) = 1 with over-
whelming probability over the choice of ρ.

Separating Computational and Statistical Differential Privacy 623

Algorithm 3. Forgery algorithm A
Sign(sk,·)
forge

Input: Verification key vk
Output: Message-signature pair (m, σ)

1. Sample public coins ρ ← Pk.
2. Invoke the signing oracle n times on random messages mi ∈ Mk to get

message-signature pairs (m1, σ1), · · · , (mn, σn), and construct the dataset D =
{(vk, mi, σi, ρ)}i∈[n].

3. Obtain the result r = (vk, ρ, π) from Mk(D).
4. Output (m, σ) where (vk, m, σ, ρ) ← A(r, (vk, ρ)).

Next, we use the exponential security of the digital signature scheme to show
that the extracted pair (m,σ) must indeed appear in the dataset D. Consider
the following forgery adversary for the digital signature scheme.

The dataset built by the forgery algorithm A
Sign(sk,·)
forge is identically distributed

to a sample D from the experiment (D,D′, i, z) ← D̃k. Since a message-signature
pair (m,σ) appears in D if and only if the signing oracle was queried on m to
produce σ, we have

Pr
(sk,vk)←Gen(1k)

(m,σ)←A
Sign(sk,·)
forge (vk)

[Ver(m,σ) = 1 ∧ (m,σ) /∈ Q]

= Pr
(D,D′,i,z)←D̃k

r←Mk(D)

[u(D, r) = 1 ∧ (vk,m, σ, ρ) = A(r, z) /∈ D].

The running time of the algorithm A, and hence the algorithm A
Sign(sk,·)
forge , is

2O(kc) = 2o(kc). Thus, by the existential unforgeability of the digital signature
scheme against 2kc

-time adversaries, this probability is negligible in k.

We next argue that A cannot recover row xi = (vk,mi, σi, ρ) from Mk(D′),
where we recall that D′ is the dataset obtained by replacing row xi in D with
row xn+1.

Lemma 6. For every algorithm Mk:

Pr
(D,D′,i,z)←D̃k

r←Mk(D
′)

[A(r, z) = xi] ≤ negl(k),

where xi is the i-th row of D.

Proof. Since in D0 = ((vk,m1,Signvk(m1), ρ) · · · , (vk,mn+1,Signvk(mn+1), ρ)),
the messages m1, · · · ,mn+1 are drawn independently, the dataset D′ = (D0 −
{(vk,mi, σi, ρ)})∪{(vk,mn+1, σn+1, ρ)} contains no information about message
mi. Since mi is drawn uniformly at random from the space Mk = {0, 1}k,
the probability that A(r, z) = A(Mk(D′), (vk, ρ)) outputs row xi is at most
2−k = negl(k).

624 M. Bun et al.

Re-identifiability of the distribution D̃k follows by combining Lemmas 5
and 6.

4 Limits of CDP in the Client-Server Model

We revisit the techniques of [GKY11] to exhibit a setting in which efficient CDP
mechanisms cannot do much better than information-theoretically differentially
private mechanisms. In particular, we consider computational tasks with output
in some discrete space (or which can be reduced to some discrete space) Rk, and
with utility measured via functions of the form g : Rk × Rk → R. We show that
if (Rk, g) forms a metric space with O(log k)-doubling dimension (and other
properties described in detail later), then CDP mechanisms can be efficiently
transformed into differentially private ones. In particular, when Rk = R

d for
d = O(log k) and utility is measured by an Lp-norm, we can transform a CDP
mechanism into a differentially private one.

The result in this section is incomparable to that of [GKY11]. We incur a
constant-factor blowup in error, rather than a negligible additive increase as in
[GKY11]. However, in the case that utility is measured by an Lp norm, our
result applies to output spaces of dimension that grow logarithmically in the
security parameter k, whereas the result of [GKY11] only applies to outputs of
constant dimension. In addition, we handle IND-CDP directly, while [GKY11]
prove their results for SIM-CDP, and then extend them to IND-CDP by applying
a reduction of [MPRV09].

4.1 Task and Utility

Consider a computational task with discrete output space Rk. Let g : Rk×Rk →
R be a metric on Rk. We impose the following additional technical conditions
on the metric space (Rk, g):

Definition 9 (Property L). A metric space formed by a discrete set Rk and
a metric g has property L if

1. The doubling dimension of (Rk, g) is O(log k). That is, for every a ∈ Rk and
radius r > 0, the ball B(a, r) centered at a with radius r is contained in a
union of poly(k) balls of radius r/2.

2. The metric space is uniform. Namely, for any fixed radius r, the size of a ball
of radius r is independent of its center.

3. Given a center a ∈ Rk and a radius r > 0, the membership in the ball B(a, r)
can be checked in time poly(k).

4. Given a center a ∈ Rk and a radius r > 0, a uniformly random point in
B(a, r) can be sampled in time poly(k).

Given a metric g, we can define a utility function measuring the accuracy of
a mechanism with respect to g:

Separating Computational and Statistical Differential Privacy 625

Definition 10 (α-accuracy). Consider a dataset space Xk. Let qk : X n
k → Rk

be any function on datasets of size n. Let Mk : X n
k → N

d
k be a mechanism for

approximating qk. We say that Mk is αk-accurate for qk with respect to g if
with overwhelming probability, the error of Mk as measured by g is at most αk.
Namely, there exists a negligible function negl(·) such that

Pr[g(qk(D),Mk(D)) ≤ αk] ≥ 1 − negl(k).

We take the failure probability here to be negligible primarily for aesthetic
reasons. In general, taking the failure probability to be βk will yield in our result
below a mechanism that is (εk, βk + negl(k))-differentially private.

Moreover, for reasonable queries qk, taking the failure probability to be negli-
gible is essentially without loss of generality. We can reduce the failure probabil-
ity of a mechanism Mk from constant to negligible by repeating the mechanism
O(log2 k) times and taking a median. By composition theorems for differential
privacy, this incurs a cost of at most O(log2 k) in the privacy parameters. But
we can compensate for this loss in privacy by first increasing the sample size
n by a factor of O(log2 k), and then applying a “secrecy-of-the-sample” argu-
ment [KLN+11] – running the original mechanism on a random subsample of the
larger dataset. This step maintains accuracy as long as the query qk generalizes
from random subsamples.

4.2 Result and Proof

Theorem 5. Let (Rk, g) be a metric space with property L. Suppose Mk : X n
k →

Rk is an efficient εk-IND-CDP mechanism that is αk-accurate for some func-
tion qk with respect to g. Then there exists an efficient (ε,negl(k))-differentially
private mechanism M̂k that is O(αk)-accurate for qk with respect to g.

Proof. We denote a ball centered at a with radius r in the metric space (Rk, g)
by

B(a, r) = {x ∈ Rk : g(a, x) ≤ r}.

We also let V (r) def= |B(a, r)| for any a ∈ Rk, which is well-defined due to the
uniformity of the metric space. Now we define a mechanism M̂k which outputs
a uniformly random point from B(Mk(x), ck), where ck > 0 is a parameter be
determined later. Note that M̂k can be implemented efficiently due to the efficient
sampling condition of property L. Since g satisfies the triangle inequality, M̂k is
(αk + ck)-accurate. Thus it remains to prove that M̂k is (ε,negl(k))-DP.

The key observation is that, for every D ∈ X n
k and s ∈ Rk,

Pr[M̂k(D) = s] =
1

V (ck)
Pr[Mk(D) ∈ B(s, ck)]

626 M. Bun et al.

For all sets S ⊆ Rk, we thus have

Pr[M̂k(D) ∈ S]

≤

⎛

⎝
∑

s∈S∩B(qk(D),αk+ck)

Pr[M̂k(D) = s]

⎞

⎠ + Pr[M̂k(D) /∈ B(qk(D), αk + ck)]

≤

⎛

⎝
∑

s∈S∩B(qk(D),αk+ck)

1
V (ck)

Pr[Mk(D) ∈ B(s, ck)]

⎞

⎠ + negl(k)

(by the above observation and αk-accuracy of Mk)

≤

⎛

⎝
∑

s∈S∩B(qk(D),αk+ck)

1
V (ck)

(
eε Pr[Mk(D′) ∈ B(s, ck)] + negl′(k)

)
⎞

⎠ + negl(k)

(since Mk is IND-CDP, and testing containment in B(s, ck) is efficient)

≤
∑

s∈S∩B(qk(D),αk+ck)

[
eεk Pr[M̂k(D′) = s] +

1
V (ck)

negl′(k)
]

+ negl(k)

≤eεk Pr[Mk(D′) ∈ S] +
V (αk + ck)

V (ck)
· negl′(k) + negl(k).

By the bounded doubling dimension of (Rk, g), we can set ck = O(αk) to
make V (αk + ck)/V (ck) = poly(k). Hence M̂k is a (εk,negl(k))-differentially
private algorithm.

Lp-norm Case. Many natural tasks can be captured by outputs in R
d with

utility measured by an Lp norm (e.g. counting queries). Since we work with
efficient mechanisms, we may assume that our mechanisms always have outputs
represented by poly(k) bits of precision. The level of precision is unimportant, so
we may assume an output space represented by k bits of precision for simplicity.
By rescaling, we may assume all responses are integers and take values in Nk

def=
N ∩ [0, 2k]. When d = O(log k), the doubling dimension of the new discrete
metric space induced by the Lp-norm on integral points is O(log k) ([GKL03]
shows that the subspace of Rd equipped with Lp norm has doubling dimension
O(d)). Now the metric space almost satisfies property L, with the exception of
the uniformity condition. This is because the sizes of balls close the boundary of
Nk are smaller than those in the interior. However, we can apply Theorem5 to
first construct a statistically DP mechanism with outputs in the larger uniform
metric space N

d. Then we may construct the final statistical mechanism M̂k,
by projecting answers that are not in N

d
k to the closest point in N

d
k. By post-

processing, the modified mechanism M̂k is still differentially private. Moreover,
its utility is only improved since M̂k can only get closer to the true query answer
in every coordinate. Therefore, we have the following corollary.

Corollary 1. Let Mk : X n
k → R

d with d = O(log k) be an efficient εk-IND-CDP
mechanism that is αk-accurate for some function qk when error is measured

Separating Computational and Statistical Differential Privacy 627

by an Lp-norm. Then there exists an efficient (ε,negl(k))-differentially private
mechanism M̂k that is O(αk)-accurate for qk.

Acknowledgements. We are grateful to an anonymous reviewer for pointing out
that our original construction based on non-interactive witness indistinguishable proofs
could be modified to accommodate 2-message proofs (zaps).

A Missing Proofs

A.1 Proof of Proposition 2

Proposition 2 (Report Noisy Max). Let Q be a set of efficiently computable
and sampleable disjoint counting queries over a domain X . Further suppose that
for every x ∈ X , the query q ∈ Q for which q(x) = 1 (if one exists) can be
identified efficiently. For every n ∈ N and ε > 0 there is an mechanism F :
X n → X × R such that

1. F runs in time poly(n, log |X |, log |Q|, 1/ε).
2. F is ε-differentially private.
3. For every dataset D ∈ X n, let qOPT = argmaxq∈Q q(D) and OPT =

qOPT(D). Let β > 0. Then with probability at least 1 − β, the algo-
rithm F outputs a solution (q̂, a) such that a ≥ q̂(D) − γ/2 where γ =
8
ε · (log |Q| + log(1/β)). Moreover, if OPT −γ > maxq �=qOPT q(D), then q̂ =
argmaxq∈Q q(D).

The proof of Proposition 2 relies on the existence of an efficient sanitizer for
the disjoint query class Q. Such a sanitizer appears in [Vad16], and is based on
ideas of [BV16]. (There, it is stated for the specific class of point functions, but
immediately extends to disjoint counting queries).

Proposition 3 ([Vad16, Theorem 7.1]). Let Q be a set of efficiently computable
and sampleable disjoint counting queries over a domain X . Suppose that for
every element x ∈ X , the query q ∈ Q for which q(x) = 1 (if one exists) can
be identified in time polylog(|X|). Let β > 0. Then there exists an algorithm
San running in time poly(n, log |X|, 1/ε) for which the following holds. For any
database D ∈ X n, with probability at least 1 − β, the algorithm San produces a
“synthetic database” D̂ ∈ X m such that

|q(D) − n

m
q(D̂)| <

4(log |Q| + log(1/β))
ε

for every q ∈ Q.

Proof (Proof of Proposition 2). Consider the algorithm F which first runs the
algorithm San on its input dataset to obtain a synthetic dataset D̂, and then
outputs the pair (q̂, n

m q̂(D̂)) where q̂ = argmaxq∈Q q(D̂). The algorithm F inher-
its efficiency and differential privacy from San. To see that it useful, suppose San
indeed produces a database D̂ ∈ X m for which

|q(D) − n

m
q(D̂)| <

4(log |Q| + log(1/β))
ε

628 M. Bun et al.

for every q ∈ Q. Let qOPT = argmaxq∈Q q(D), and γ = 8(log |Q| + log(1/β))/ε.
Then n

m q̂(D̂) ≥ n
mqOPT(D̂) ≥ qOPT(D)−γ/2. Moreover, suppose qOPT(D)−γ >

maxq �=qOPT q(D). Then for any q′ �= qOPT, we have

n

m
q′(D̂) < q′(D) + γ/2 < qOPT(D) − γ/2 ≤ n

m
q̂(D̂).

Hence q′(D̂) < q̂(D̂) for every q′ �= qOPT, and hence q̂ = qOPT.

B Extractability for Zap Proof Systems

B.1 Non-interactive Zero Knowledge Proofs

Most known constructions of zaps, as defined in Definition 5, are based on con-
structions of non-interactive zero knowledge proofs or arguments in the common
reference string model. We review the requirements of such proof systems below.

Definition 11 (NIZK Proofs and Arguments). Let RL = {(x,w)} be a
witness-relation corresponding to a language L ∈ NP. A non-interactive zero-
knowledge proof (or argument) system for RL consists of a triple of algorithms
(Gen, P, V) where:

– The generator Gen is a PPT that takes as input a security parameter k and
statement length t = poly(k), and produces a common reference string crs.
An important special case is where Gen(1k, 1t) outputs a uniformly random
string, in which case we say the proof (or argument) system operates in the
common random string model.

– The prover P is a PPT that takes as input a crs and a pair (x,w) and outputs
a proof π.

– The verifier V is an efficient, deterministic algorithm that takes as input a
crs, an instance x and proof π, and outputs a bit in {0, 1}.

Various security requirements we can impose on the proof system are:

Perfect completeness. An honest prover who possesses a valid witness
can always convince an honest verifier. Formally, for all (x,w) ∈ RL,

Pr
crs←Gen(1k,1|x|)

π←P (crs,x,w)

[V (crs, x, π) = 1] = 1.

Statistical soundness. It is statistically impossible to convince an honest
verifier of the validity of a false statement. There exists a negligible function
negl(·) such that for every sequence {xk}k∈N of poly(k)-size statements xk /∈
L,

Pr
crs←Gen(1k,1|xk|)

[∃π ∈ {0, 1}∗ s.t. V (crs, xk, π) = 1] ≤ negl(k).

Separating Computational and Statistical Differential Privacy 629

Computational zero-knowledge. Proofs do not reveal anything to the
verifier beyond their validity. Formally, a proof system is computational
zero-knowledge if there exists a PPT simulator (S1, S2) where S1 produces
a simulated common reference string crs with associated trapdoor τ . The pair
(crs, τ) allows S2 to simulate accepting proofs without knowledge of a witness
w. That is, there exists a negligible function negl such that for all (possi-
bly cheating) PPT verifiers V ∗ and sequences {(xk, wk)}k∈N of poly(k)-size
statement-witness pairs (xk, wk) ∈ RL,

∣
∣
∣
∣
∣
∣
∣

Pr
crs←Gen(1k,1|xk|)
π←P (crs,xk,wk)

[V ∗(crs, xk, π) = 1]

− Pr
(crs,τ)←S1(1

k,1|xk|)
π←S2(crs,τ,xk)

[V ∗(crs, xk, π) = 1]

∣
∣
∣
∣
∣
∣
∣
≤ negl(k).

Statistical knowledge extraction. A proof system is additionally a
proof of knowledge if a witness can be extracted from a valid proof. That is,
there exists a polynomial-time knowledge extractor E = (E1, E2) such that E1

produces a simulated common reference string crs with associated extraction
key ξ, which we assume to have length O(k).1 The pair (crs, ξ) allows the
deterministic algorithm E2 to extract a witness from a proof. Formally, the
first component of (crs, ξ) ← E1(1k, 1|x|) is identically distributed to crs ←
Gen(1k, 1|x|). Moreover, there exists a negligible function negl such that for
every x ∈ {0, 1}poly(k),

Pr
crs←Gen(1k,1|x|)

[
∃ξ ∈ {0, 1}∗, π ∈ {0, 1}∗, w ∈ E2(crs, ξ, x, π) :

(crs, ξ) ∈ E1(1k, 1|x|) ∧ (x,w) /∈ RL ∧ V (1k, x, π) = 1
]

≤ negl(k).

For technical reasons, we also require that the relation {(crs, ξ) ∈ E1(1k, 1|x|)}
be recognizable in polynomial-time, which will always be the case for our con-
structions.

B.2 Extractability of Zaps Based on Exponentially Extractable
NIZKs

We next describe Dwork and Naor’s original construction of zaps [DN07]. Here,
we show that extractable zaps can be based on the existence of NIZK proofs of
knowledge in the common random string model, which can in turn be built from
various number theoretic assumptions [DP92,DDP00,GOS12]. (Recall that in

1 Such a constraint which depends only on the security parameter k will be important
for meeting our definition of exponentially extractable zaps.

630 M. Bun et al.

the common random string model for NIZK proofs, the crs generation algorithm
simply outputs a uniformly random string.) The discussion in this section can
be summarized by the following theorem.

Theorem 6. Let RL be a witness relation for a language L ∈ NP. Then RL

has an extractable zap proof system if:

There exists a non-interactive zero-knowledge proof of knowledge for RL

(in the common random string model) with perfect completeness, statistical
soundness, computational zero-knowledge, and statistical extractability.

The existence of such proofs of knowledge for NP can be based on any of the
following assumptions:

1. The existence of NIZK proofs of membership for NP and “dense secure
public-key encryption schemes” [DP92]. NIZK proofs of membership can in
turn be constructed from trapdoor permutations [FLS99] or indistinguisha-
bility obfuscation and one-way functions [BP15]. Dense secure public-key
encryption schemes can be constructed under the hardness of factoring Blum
integers [DDP00] or the Diffie-Hellman assumption [DP92].

2. The decisional linear assumption for groups equipped with a bilinear map
[GOS12].

The remainder of this section is devoted to the proof of Theorem 6. Let RL

be a witness relation for a language L ∈ NP. Let (PNIZK, VNIZK) be a NIZK
proof system in the common random string model. We now describe Dwork and
Naor’s [DN07] zap proof system for RL based on (PNIZK, VNIZK).

For simplicity, assume we are interested in proving statements x having length
which is a fixed polynomial in k. Let � = �(k) be a fixed polynomial. (This
depends on the length of x and on the soundness error of the NIZK proof system.
We defer discussion of its value to the proof of Proposition 6, where it will
also depend on the knowledge error of the NIZK knowledge extractor E2.) The
verifier’s first message is a string ρ ∈ {0, 1}�·m, which should be interpreted as
a sequence of random strings ρ1, . . . , ρ� each in {0, 1}m. Here, m = poly(k) is
the length of the crs used in the proof system (PNIZK, VNIZK). The prover and
verifier algorithms appear as Algorithms 4 and 5 respectively.

Algorithm 4. Zap Prover P (1k, x, w, ρ)
Input: Security parameter k, instance x, witness w such that (x, w) ∈ RL, first message
ρ
Output: Proof π

1. Choose a random m-bit string b ∈ {0, 1}m. For each j = 1, . . . , �, let crsj = b ⊕ ρj

be the bitwise exclusive-OR of b with ρj

2. For each j = 1, . . . , �, let πj ← PNIZK(crsj , x, w)
3. Send the verifier π = (b, π1, . . . , π�)

Separating Computational and Statistical Differential Privacy 631

Algorithm 5. Zap Verifier V (1k, x, ρ, π)
Input: Security parameter k, instance x, first message ρ, proof π = (b, π1, . . . , π�)
Output: Accept or reject decision

1. Let crsj = b ⊕ ρj for each j = 1, . . . , �
2. Accept iff VNIZK(crsj , x, π) = 1 for all j = 1, . . . , �

Theorem 7 ([DN07]). Suppose (PNIZK, VNIZK) is a perfectly complete and sta-
tistically sound NIZK proof system for RL in the common random string model.
Then (P, V) is a perfectly complete, statistically sound zap proof system for RL.

Our goal now is to show that if (PNIZK, VNIZK) is also a statistically sound
proof of knowledge, then the zap proof system (P, V) is extractable in the sense
of Definition 6.

Proposition 6. If, in addition, (PNIZK, VNIZK) is statistically knowledge
extractable, then (P, V) is also an extractable zap for RL.

Proof (Proof). Consider the extraction Algorithm 6.

Algorithm 6. Zap Extractor E(1k, x, ρ, π)
Input: Security parameter k, instance x, first message ρ, proof π = (b, π1, . . . , π�)
Output: Witness w

For each j = 1, . . . , �:

1. Via brute force, identify (and verify) an extraction key ξj corresponding to a com-
mon random string crsj = b ⊕ ρj

2. Run the NIZK knowledge extractor E2(crsj , ξj , x, πj) to obtain a witness w
3. If (x, w) ∈ RL, halt and output w

Let x ∈ {0, 1}∗. We say a common random string crs ∈ {0, 1}k is knowledge-
sound for x if there does not exist a pair (π, ξ) such that

1. VNIZK(crs, x, π) = 1,
2. (crs, ξ) is in the support of E1(1k, 1|x|), and
3. (x,w) /∈ RL for w ← E2(crs, ξ, x, π).

Lemma 7. There exists a polynomial �(k) for which the following holds. Let x ∈
{0, 1}poly(k) and let ρ1, . . . , ρ� be random m-bit strings. Then with overwhelming
probability over the choice of ρ, for every b ∈ {0, 1}m, there exists an index j for
which crsj = b ⊕ ρj is knowledge-sound for x.

632 M. Bun et al.

Proof. Let q(k) denote the knowledge error of the NIZK proof system, i.e.

q(k) = Pr
crs←Gen(1k,1|x|)

[∃ξ, π : (crs, ξ) ∈ E1(1k, 1|x|)

∧ (x,E2(crs, ξ, x, π)) /∈ RL ∧ VNIZK(crs, x, π) = 1].

Statistical extractability of the NIZK proof system requires that q(k) = negl(k)
for any |x| = poly(k). For any fixed b, the strings crsj = b ⊕ ρj are independent
and uniformly random. Therefore, the probability that all � copies fail to be
knowledge-sound for x is at most q�. The number of possible assignments to
b ∈ {0, 1}m is 2m. Therefore, it suffices to take � = 2m to make 2mq� < negl(k).

We may now complete the proof of Proposition 6.
By Lemma 7, with overwhelming probability over the choice of ρ, there exists

an index j for which crsj = b ⊕ ρj is knowledge-sound for x. If the zap verifier
V accepts, then in particular, VNIZK(crsj , x, π) = 1. Thus, the zap knowledge
extractor E2(crsj , ξj , x, πj) recovers a valid witness w for x. Since the number of
strings crsj that need to be checked is polynomial in k, and each extraction key
has length O(k), the extractor runs in time 2O(k).

References

[ADR02] An, J.H., Dodis, Y., Rabin, T.: On the security of joint signature and
encryption. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332,
pp. 83–107. Springer, Heidelberg (2002). doi:10.1007/3-540-46035-7 6

[BNO08] Beimel, A., Nissim, K., Omri, E.: Distributed private data analysis: simul-
taneously solving how and what. In: Wagner, D. (ed.) CRYPTO 2008.
LNCS, vol. 5157, pp. 451–468. Springer, Heidelberg (2008). doi:10.1007/
978-3-540-85174-5 25

[BP15] Bitansky, N., Paneth, O.: ZAPs and non-interactive witness indistinguisha-
bility from indistinguishability obfuscation. In: Dodis, Y., Nielsen, J.B.
(eds.) TCC 2015, Part II. LNCS, vol. 9015, pp. 401–427. Springer, Heidel-
berg (2015). doi:10.1007/978-3-662-46497-7 16

[BV16] Balcer, V., Vadhan, S.: Efficient algorithms for differentially private his-
tograms with worst-case accuracy over large domains (2016). Manuscript

[BZ14] Boneh, D., Zhandry, M.: Multiparty key exchange, efficient traitor tracing,
and more from indistinguishability obfuscation. In: Garay, J.A., Gennaro,
R. (eds.) CRYPTO 2014, Part I. LNCS, vol. 8616, pp. 480–499. Springer,
Heidelberg (2014). doi:10.1007/978-3-662-44371-2 27

[BZ16] Bun, M., Zhandry, M.: Order-revealing encryption and the hardness of
private learning. In: Kushilevitz, E., Malkin, T. (eds.) TCC 2016-A.
LNCS, vol. 9562, pp. 176–206. Springer, Heidelberg (2016). doi:10.1007/
978-3-662-49096-9 8

[CGGM00] Canetti, R., Goldreich, O., Goldwasser, S., Micali, S.: Resettable zero-
knowledge. In: Proceedings of the Thirty-Second Annual ACM Symposium
on Theory of Computing, pp. 235–244. ACM (2000)

[CSS12] Chan, T.-H.H., Shi, E., Song, D.: Privacy-preserving stream aggre-
gation with fault tolerance. In: Keromytis, A.D. (ed.) FC 2012.
LNCS, vol. 7397, pp. 200–214. Springer, Heidelberg (2012). doi:10.1007/
978-3-642-32946-3 15

http://dx.doi.org/10.1007/3-540-46035-7_6
http://dx.doi.org/10.1007/978-3-540-85174-5_25
http://dx.doi.org/10.1007/978-3-540-85174-5_25
http://dx.doi.org/10.1007/978-3-662-46497-7_16
http://dx.doi.org/10.1007/978-3-662-44371-2_27
http://dx.doi.org/10.1007/978-3-662-49096-9_8
http://dx.doi.org/10.1007/978-3-662-49096-9_8
http://dx.doi.org/10.1007/978-3-642-32946-3_15
http://dx.doi.org/10.1007/978-3-642-32946-3_15

Separating Computational and Statistical Differential Privacy 633

[DDP00] Santis, A., Crescenzo, G., Persiano, G.: Necessary and sufficient assump-
tions for non-interactive zero-knowledge proofs of knowledge for all NP
relations. In: Montanari, U., Rolim, J.D.P., Welzl, E. (eds.) ICALP 2000.
LNCS, vol. 1853, pp. 451–462. Springer, Heidelberg (2000). doi:10.1007/
3-540-45022-X 38

[DKM+06] Dwork, C., Kenthapadi, K., McSherry, F., Mironov, I., Naor, M.: Our data,
ourselves: privacy via distributed noise generation. In: Vaudenay, S. (ed.)
EUROCRYPT 2006. LNCS, vol. 4004, pp. 486–503. Springer, Heidelberg
(2006). doi:10.1007/11761679 29

[DL09] Dwork, C., Lei, J.: Differential privacy and robust statistics. In: Proceed-
ings of the 41st Annual ACM Symposium on Theory of Computing, STOC
2009, Bethesda, 31 May–2 June 2009, pp. 371–380 (2009)

[DMNS06] Dwork, C., McSherry, F., Nissim, K., Smith, A.: Calibrating noise to sen-
sitivity in private data analysis. In: Halevi, S., Rabin, T. (eds.) TCC 2006.
LNCS, vol. 3876, pp. 265–284. Springer, Heidelberg (2006). doi:10.1007/
11681878 14

[DN07] Dwork, C., Naor, M.: Zaps, their applications. SIAM J. Comput. 36(6),
1513–1543 (2007). Preliminary version in FOCS 2000

[DNR+09] Dwork, C., Naor, M., Reingold, O., Rothblum, G.N., Vadhan, S.P.: On
the complexity of differentially private data release: efficient algorithms
and hardness results. In: STOC, pp. 381–390 (2009)

[DP92] De Santis, A., Persiano, G.: Zero-knowledge proofs of knowledge without
interaction (extended abstract). In: 33rd Annual Symposium on Founda-
tions of Computer Science, Pittsburgh, 24–27 October 1992, pp. 427–436
(1992)

[DR14] Dwork, C., Roth, A.: The algorithmic foundations of differential privacy.
Found. Trends Theor. Comput. Sci. 9(3–4), 211–407 (2014)

[FLS99] Feige, U., Lapidot, D., Shamir, A.: Multiple noninteractive zero knowledge
proofs under general assumptions. SIAM J. Comput. 29(1), 1–28 (1999)

[FS90] Feige, U., Shamir, A.: Witness indistinguishable and witness hiding proto-
cols. In: Proceedings of the Twenty-Second Annual ACM Symposium on
Theory of Computing, STOC 1990, pp. 416–426. ACM, New York (1990)

[GKL03] Gupta, A., Krauthgamer, R., Lee, J.R.: Bounded geometries, fractals, and
low-distortion embeddings. In: Proceedings of 44th Symposium on Founda-
tions of Computer Science (FOCS 2003), 11–14 October 2003, Cambridge,
pp. 534–543 (2003)

[GKM+16] Goyal, V., Khurana, D., Mironov, I., Pandey, O., Sahai, A.: Do distributed
differentially-private protocols require oblivious transfer? In: 43rd Interna-
tional Colloquium Automata, Languages, and Programming, ICALp 2016,
Rome, 12–15 July 2016, Proceedings, Part I (2016, to appear)

[GKY11] Groce, A., Katz, J., Yerukhimovich, A.: Limits of computational differ-
ential privacy in the client/server setting. In: Ishai, Y. (ed.) TCC 2011.
LNCS, vol. 6597, pp. 417–431. Springer, Heidelberg (2011). doi:10.1007/
978-3-642-19571-6 25

[GMPS13] Goyal, V., Mironov, I., Pandey, O., Sahai, A.: Accuracy-privacy tradeoffs
for two-party differentially private protocols. In: Canetti, R., Garay, J.A.
(eds.) CRYPTO 2013, Part I. LNCS, vol. 8042, pp. 298–315. Springer,
Heidelberg (2013). doi:10.1007/978-3-642-40041-4 17

[Gol04] Goldreich, O.: Foundations of Cryptography: Basic Applications.
Cambridge University Press, Cambridge (2004)

http://dx.doi.org/10.1007/3-540-45022-X_38
http://dx.doi.org/10.1007/3-540-45022-X_38
http://dx.doi.org/10.1007/11761679_29
http://dx.doi.org/10.1007/11681878_14
http://dx.doi.org/10.1007/11681878_14
http://dx.doi.org/10.1007/978-3-642-19571-6_25
http://dx.doi.org/10.1007/978-3-642-19571-6_25
http://dx.doi.org/10.1007/978-3-642-40041-4_17

634 M. Bun et al.

[GOS12] Groth, J., Ostrovsky, R., Sahai, A.: New techniques for noninteractive
zero-knowledge. J. ACM (JACM) 59(3), 11 (2012)

[HOZ13] Haitner, I., Omri, E., Zarosim, H.: Limits on the usefulness of random ora-
cles. In: Sahai, A. (ed.) TCC 2013. LNCS, vol. 7785, pp. 437–456. Springer,
Heidelberg (2013). doi:10.1007/978-3-642-36594-2 25

[KK05] Katz, J., Koo, C.-Y.: On constructing universal one-way hash func-
tions from arbitrary one-way functions. IACR Cryptology ePrint Archive
2005:328 (2005)

[KLN+11] Kasiviswanathan, S.P., Lee, H.K., Nissim, K., Raskhodnikova, S., Smith,
A.D.: What can we learn privately? SIAM J. Comput. 40(3), 793–826
(2011)

[KMS14] Khurana, D., Maji, H.K., Sahai, A.: Black-box separations for differentially
private protocols. In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014, Part
II. LNCS, vol. 8874, pp. 386–405. Springer, Heidelberg (2014). doi:10.1007/
978-3-662-45608-8 21

[MMP+10] McGregor, A., Mironov, I., Pitassi, T., Reingold, O., Talwar, K., Vadhan,
S.: The limits of two-party differential privacy. In: 2010 51st Annual IEEE
Symposium on Foundations of Computer Science (FOCS), pp. 81–90. IEEE
(2010)

[MPRV09] Mironov, I., Pandey, O., Reingold, O., Vadhan, S.: Computational differ-
ential privacy. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp.
126–142. Springer, Heidelberg (2009). doi:10.1007/978-3-642-03356-8 8

[NY89] Naor, M., Yung, M.: Universal one-way hash functions and their crypto-
graphic applications. In: Proceedings of the Twenty-First Annual ACM
Symposium on Theory of Computing, STOC 1989, pp. 33–43. ACM,
New York (1989)

[Rom90] Rompel, J.: One-way functions are necessary and sufficient for secure signa-
tures. In: Proceedings of the Twenty-Second Annual ACM Symposium on
Theory of Computing, STOC 1990, pp. 387–394. ACM, New York (1990)

[TS13] Thakurta, A., Smith, A.D.: Differentially private feature selection via sta-
bility arguments, and the robustness of the Lasso. In: The 26th Annual
Conference on Learning Theory. COLT 2013, 12–14 June 2013, Princeton
University, pp. 819–850 (2013)

[Ull13] Ullman, J.: Answering n2+o(1) counting queries with differential privacy
is hard. In: Proceedings of the Forty-Fifth Annual ACM Symposium on
Theory of Computing, pp. 361–370. ACM (2013)

[UV11] Ullman, J., Vadhan, S.: PCPs and the hardness of generating private syn-
thetic data. In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 400–416.
Springer, Heidelberg (2011). doi:10.1007/978-3-642-19571-6 24

[Vad16] Vadhan, S.: The complexity of differential privacy (2016). http://
privacytools.seas.harvard.edu/publications/complexity-differential-privacy

http://dx.doi.org/10.1007/978-3-642-36594-2_25
http://dx.doi.org/10.1007/978-3-662-45608-8_21
http://dx.doi.org/10.1007/978-3-662-45608-8_21
http://dx.doi.org/10.1007/978-3-642-03356-8_8
http://dx.doi.org/10.1007/978-3-642-19571-6_24
http://privacytools.seas.harvard.edu/publications/complexity-differential-privacy
http://privacytools.seas.harvard.edu/publications/complexity-differential-privacy

Concentrated Differential Privacy:
Simplifications, Extensions, and Lower Bounds

Mark Bun1(B) and Thomas Steinke2(B)

1 John A. Paulson School of Engineering and Applied Sciences,
Harvard University, Cambridge, MA, USA

mbun@seas.harvard.edu
2 IBM, Almaden Research Center, San Jose, CA, USA

Thomas.Steinke@ibm.com

Abstract. “Concentrated differential privacy” was recently introduced
by Dwork and Rothblum as a relaxation of differential privacy, which
permits sharper analyses of many privacy-preserving computations. We
present an alternative formulation of the concept of concentrated differ-
ential privacy in terms of the Rényi divergence between the distributions
obtained by running an algorithm on neighboring inputs. With this refor-
mulation in hand, we prove sharper quantitative results, establish lower
bounds, and raise a few new questions. We also unify this approach with
approximate differential privacy by giving an appropriate definition of
“approximate concentrated differential privacy”.

1 Introduction

Differential privacy [DMNS06] is a formal mathematical standard for protecting
individual-level privacy in statistical data analysis. In its simplest form, (pure)
differential privacy is parameterized by a real number ε > 0, which controls
how much “privacy loss”1 an individual can suffer when a computation (i.e., a
statistical data analysis task) is performed involving his or her data.

One particular hallmark of differential privacy is that it degrades smoothly
and predictably under the composition of multiple computations. In particular,
if one performs k computational tasks that are each ε-differentially private and
combines the results of those tasks, then the computation as a whole is kε-
differentially private. This property makes differential privacy amenable to the

The full version of this work appears at https://arXiv.org/abs/1605.02065
M. Bun—Supported by an NDSEG Fellowship and NSF grant CNS-1237235. Part
of this work was done while the author was visiting Yale University.
T. Steinke—Part of this work was done while the author was a Harvard University,
supported by NSF grants CCF-1116616, CCF-1420938, and CNS-1237235.

1 The privacy loss is a random variable which quantifies how much information is
revealed about an individual by a computation involving their data; it depends
on the outcome of the computation, the way the computation was performed, and
the information that the individual wants to hide. We discuss it informally in this
introduction and define it precisely in Definition 2 on p. 637.

c© International Association for Cryptologic Research 2016
M. Hirt and A. Smith (Eds.): TCC 2016-B, Part I, LNCS 9985, pp. 635–658, 2016.
DOI: 10.1007/978-3-662-53641-4 24

https://arXiv.org/abs/1605.02065

636 M. Bun and T. Steinke

type of modular reasoning used in the design and analysis of algorithms: When a
sophisticated algorithm is comprised of a sequence of differentially private steps,
one can establish that the algorithm as a whole remains differentially private.

A widely-used relaxation of pure differential privacy is approximate or (ε, δ)-
differential privacy [DKM+06], which essentially guarantees that the probability
that any individual suffers privacy loss exceeding ε is bounded by δ. For suffi-
ciently small δ, approximate (ε, δ)-differential privacy provides a comparable
standard of privacy protection as pure ε-differential privacy, while often permit-
ting substantially more useful analyses to be performed.

Unfortunately, there are situations where, unlike pure differential privacy,
approximate differential privacy is not a very elegant abstraction for mathe-
matical analysis, particularly the analysis of composition. The “advanced com-
position theorem” of Dwork, Rothblum, and Vadhan [DRV10] (subsequently
improved by [KOV15,MV16]) shows that the composition of k tasks that are each
(ε, δ)-differentially private is (≈

√
kε,≈kδ)-differentially private. However, these

bounds can be unwieldy; computing the tightest possible privacy guarantee for
the composition of k arbitrary mechanisms with differing (εi, δi)-differential pri-
vacy guarantees is #P-hard [MV16]! Moreover, these bounds are not tight even
for simple privacy-preserving computations. For instance, consider the mecha-
nism that approximately answers k statistical queries on a given database by
adding independent Gaussian noise to each answer. Even for this basic compu-
tation, the advanced composition theorem does not yield a tight analysis.2

Dwork and Rothblum [DR16] recently put forth a different relaxation of
differential privacy called concentrated differential privacy. Roughly, a random-
ized mechanism satisfies concentrated differentially privacy if the privacy loss
has small mean and is subgaussian. Concentrated differential privacy behaves
in a qualitatively similar way as approximate (ε, δ)-differential privacy under
composition. However, it permits sharper analyses of basic computational tasks,
including a tight analysis of the aforementioned Gaussian mechanism.

Using the work of Dwork and Rothblum [DR16] as a starting point, we intro-
duce an alternative formulation of the concept of concentrated differential pri-
vacy that we call “zero-concentrated differential privacy” (zCDP for short). To
distinguish our definition from that of Dwork and Rothblum, we refer to their
definition as “mean-concentrated differential privacy” (mCDP for short). Our
definition uses the Rényi divergence between probability distributions as a dif-
ferent method of capturing the requirement that the privacy loss random variable
is subgaussian.

2 In particular, consider answering k statistical queries on a dataset of n individuals by
adding noise drawn from N (0, (σ/n)2) independently for each query. Each individ-
ual query satisfies (O(

√
log(1/δ)/σ), δ)-differential privacy for any δ > 0. Applying

the advanced composition theorem shows that the composition of all k queries sat-
isfies (O(

√
k log(1/δ)/σ), (k + 1)δ)-differential privacy for any δ > 0. However, it is

well-known that this bound can be improved to (O(
√

k log(1/δ)/σ), δ)-differential
privacy.

Concentrated Differential Privacy 637

1.1 Our Reformulation: Zero-Concentrated Differential Privacy

As is typical in the literature, we model a dataset as a multiset or tuple of n
elements (or “rows”) in X n, for some “data universe” X , where each element
represents one individual’s information. A (privacy-preserving) computation is a
randomized algorithm M : X n → Y, where Y represents the space of all possible
outcomes of the computation.

Definition 1 (Zero-Concentrated Differential Privacy (zCDP)). A ran-
domised mechanism M : X n → Y is (ξ, ρ)-zero-concentrated differentially private
(henceforth (ξ, ρ)-zCDP) if, for all x, x′ ∈ X n differing on a single entry and all
α ∈ (1,∞),

Dα (M(x)‖M(x′)) ≤ ξ + ρα, (1)

where Dα (M(x)‖M(x′)) is the α-Rényi divergence3 between the distribution of
M(x) and the distribution of M(x′).

We define ρ-zCDP to be (0, ρ)-zCDP.4

Equivalently, we can replace (1) with

E

[
e(α−1)Z

]
≤ e(α−1)(ξ+ρα), (2)

where Z = PrivLoss (M(x)‖M(x′)) is the privacy loss random variable:

Definition 2 (Privacy Loss Random Variable). Let Y and Y ′ be random
variables on Ω. We define the privacy loss random variable between Y and Y ′

– denoted Z = PrivLoss (Y ‖Y ′) – as follows. Define a function f : Ω → R by
f(y) = log(P [Y = y] /P [Y ′ = y]). Then Z is distributed according to f(Y).

Intuitively, the value of the privacy loss Z = PrivLoss (M(x)‖M(x′)) represents
how well we can distinguish x from x′ given only the output M(x) or M(x′).
If Z > 0, then the observed output of M is more likely to have occurred if the
input was x than if x′ was the input. Moreover, the larger Z is, the bigger this
likelihood ratio is. Likewise, Z < 0 indicates that the output is more likely if x′

is the input. If Z = 0, both x and x′ “explain” the output of M equally well.
A mechanism M : X n → Y is ε-differentially private if and only if P [Z > ε] =

0, where Z = PrivLoss (M(x)‖M(x′)) is the privacy loss of M on arbitrary inputs
x, x′ ∈ X n differing in one entry. On the other hand, M being (ε, δ)-differentially

3 Rényi divergence has a parameter α ∈ (1, ∞) which allows it to interpolate between
KL-divergence (α → 1) and max-divergence (α → ∞). It should be thought of as
a measure of dissimilarity between distributions. We define it formally in Sect. 2.
Throughout, we assume that all logarithms are natural unless specified otherwise —
that is, base e ≈ 2.718.

4 For clarity of exposition, we consider only ρ-zCDP in the introduction and give more
general statements for (ξ, ρ)-zCDP later. We also believe that having a one-parameter
definition is desirable.

638 M. Bun and T. Steinke

private is equivalent, up to a small loss in parameters, to the requirement that
P [Z > ε] ≤ δ.

In contrast, zCDP entails a bound on the moment generating function of the
privacy loss Z — that is, E

[
e(α−1)Z

]
as a function of α−1. The bound (2) implies

that Z is a subgaussian random variable with small mean. Intuitively, this means
that Z resembles a Gaussian distribution with mean ξ + ρ and variance 2ρ. In
particular, we obtain strong tail bounds on Z. Namely (2) implies that

P [Z > λ + ξ + ρ] ≤ e−λ2/4ρ

for all λ > 0.5

Thus zCDP requires that the privacy loss random variable is concentrated
around zero (hence the name). That is, Z is “small” with high probability, with
larger deviations from zero becoming increasingly unlikely. Hence we are unlikely
to be able to distinguish x from x′ given the output of M(x) or M(x′). Note
that the randomness of the privacy loss random variable is taken only over the
randomnesss of the mechanism M .

Comparison to the Definition of Dwork and Rothblum. For compar-
ison, Dwork and Rothblum [DR16] define (μ, τ)-concentrated differential pri-
vacy for a randomized mechanism M : X n → Y as the requirement that, if
Z = PrivLoss (M(x)‖M(x′)) is the privacy loss for x, x′ ∈ X n differing on one
entry, then

E [Z] ≤ μ and E

[
e
(α−1)(Z−E[Z])

]
≤ e(α−1)2 1

2 τ2

for all α ∈ R. That is, they require both a bound on the mean of the privacy loss
and that the privacy loss is tightly concentrated around its mean. To distinguish
our definitions, we refer to their definition as mean-concentrated differential pri-
vacy (or mCDP).

Our definition, zCDP, is a relaxation of mCDP. In particular, a (μ, τ)-mCDP
mechanism is also (μ− τ2/2, τ2/2)-zCDP (which is tight for the Gaussian mech-
anism example), whereas the converse is not true. (However, a partial converse
holds; see Lemma 24.)

1.2 Results

Relationship Between zCDP and Differential Privacy. Like Dwork
and Rothblum’s formulation of concentrated differential privacy, zCDP can be
thought of as providing guarantees of (ε, δ)-differential privacy for all values of
δ > 0:
5 We only discuss bounds on the upper tail of Z. We can obtain similar

bounds on the lower tail of Z = PrivLoss (M(x)‖M(x′)) by considering Z′ =
PrivLoss (M(x′)‖M(x)).

Concentrated Differential Privacy 639

Proposition 3. If M provides ρ-zCDP, then M is (ρ + 2
√

ρ log(1/δ), δ)-
differentially private for any δ > 0.

There is also a partial converse, which shows that, up to a loss in parameters,
zCDP is equivalent to differential privacy with this ∀δ > 0 quantification (see
Lemma 22).

There is also a direct link from pure differential privacy to zCDP:

Proposition 4. If M satisfies ε-differential privacy, then M satisfies (12ε2)-
zCDP.

Dwork and Rothblum [DR16, Theorem 3.5] give a slightly weaker version of
Proposition 4, which implies that ε-differential privacy yields (12ε(eε −1))-zCDP;
this improves on an earlier bound [DRV10] by the factor 1

2 .
Propositions 3 and 4 show that zCDP is an intermediate notion between

pure differential privacy and approximate differential privacy. Indeed, many algo-
rithms satisfying approximate differential privacy do in fact also satisfy zCDP.

Gaussian Mechanism. Just as with mCDP, the prototypical example of a
mechanism satisfying zCDP is the Gaussian mechanism, which answers a real-
valued query on a database by perturbing the true answer with Gaussian noise.

Definition 5 (Sensitivity). A function q : X n → R has sensitivity Δ if for
all x, x′ ∈ X n differing in a single entry, we have |q(x) − q(x′)| ≤ Δ.

Proposition 6 (Gaussian Mechanism). Let q : X n → R be a sensitivity-Δ
query. Consider the mechanism M : X n → R that on input x, releases a sample
from N (q(x), σ2). Then M satisfies (Δ2/2σ2)-zCDP.

We remark that either inequality defining zCDP — (1) or (2) — is exactly
tight for the Gaussian mechanism for all values of α. Thus the definition of zCDP
seems tailored to the Gaussian mechanism.

Basic Properties of zCDP. Our definition of zCDP satisfies the key basic
properties of differential privacy. Foremost, these properties include smooth
degradation under composition, and invariance under postprocessing:

Lemma 7 (Composition). Let M : X n → Y and M ′ : X n → Z be random-
ized algorithms. Suppose M satisfies ρ-zCDP and M ′ satisfies ρ′-zCDP. Define
M ′′ : X n → Y×Z by M ′′(x) = (M(x),M ′(x)). Then M ′′ satisfies (ρ+ρ′)-zCDP.

Lemma 8 (Postprocessing). Let M : X n → Y and f : Y → Z be randomized
algorithms. Suppose M satisfies ρ-zCDP. Define M ′ : X n → Z by M ′(x) =
f(M(x)). Then M ′ satisfies ρ-zCDP.

These properties follow immediately from corresponding properties of the Rényi
divergence outlined in Lemma 15.

We remark that Dwork and Rothblum’s definition of mCDP is not closed
under postprocessing; we provide a counterexample in the full version of this
work. (However, an arbitrary amount of postprocessing can worsen the guaran-
tees of mCDP by at most constant factors.)

640 M. Bun and T. Steinke

Group Privacy. A mechanism M guarantees group privacy if no small group
of individuals has a significant effect on the outcome of a computation (whereas
the definition of zCDP only refers to individuals, which are groups of size 1).
That is, group privacy for groups of size k guarantees that, if x and x′ are inputs
differing on k entries (rather than a single entry), then the outputs M(x) and
M(x′) are close.

Dwork and Rothblum [DR16, Theorem 4.1] gave nearly tight bounds on the
group privacy guarantees of concentrated differential privacy, showing that a
(μ = τ2/2, τ)-concentrated differentially private mechanism affords (k2μ · (1 +
o(1)), kτ · (1 + o(1)))-concentrated differential privacy for groups of size k =
o(1/τ). We are able to show a group privacy guarantee for zCDP that is exactly
tight and works for a wider range of parameters:

Proposition 9. Let M : X n → Y satisfy ρ-zCDP. Then M guarantees (k2ρ)-
zCDP for groups of size k — i.e. for every x, x′ ∈ X n differing in up to k entries
and every α ∈ (1,∞), we have

Dα (M(x)‖M(x′)) ≤ (k2ρ) · α.

In particular, this bound is achieved (simultaneously for all values α) by
the Gaussian mechanism. Our proof is also simpler than that of Dwork and
Rothblum; see Sect. 5.

Lower Bounds. The strong group privacy guarantees of zCDP yield, as an
unfortunate consequence, strong lower bounds as well. We show that, as with
pure differential privacy, zCDP is susceptible to information-based lower bounds,
as well as to so-called packing arguments [HT10,MMP+10,De12]:

Theorem 10. Let M : X n → Y satisfy ρ-zCDP. Let X be a random variable
on X n. Then

I (X;M(X)) ≤ ρ · n2,

where I(·; ·) denotes the mutual information between the random variables (in
nats, rather than bits). Furthermore, if the entries of X are independent, then
I(X;M(X)) ≤ ρ · n.

Theorem 10 yields strong lower bounds for zCDP mechanisms, as we can
construct distributions X such that M(X) reveals a lot of information about X
(i.e. I(X;M(X)) is large) for any accurate M .

In particular, we obtain a strong separation between approximate differential
privacy and zCDP. For example, we can show that releasing an accurate approx-
imate histogram (or, equivalently, accurately answering all point queries) on a
data domain of size k requires an input with at least n = Θ(

√
log k) entries to

satisfy zCDP. In contrast, under approximate differential privacy, n can be inde-
pendent of the domain size k [BNS13]! In particular, our lower bounds show that
“stability-based” techniques (such as those in the propose-test-release framework
[DL09]) are not compatible with zCDP.

Concentrated Differential Privacy 641

Our lower bound exploits the strong group privacy guarantee afforded by
zCDP. Group privacy has been used to prove tight lower bounds for pure differ-
ential privacy [HT10,De12] and approximate differential privacy [SU15a]. These
results highlight the fact that group privacy is often the limiting factor for pri-
vate data analysis. For (ε, δ)-differential privacy, group privacy becomes vacuous
for groups of size k = Θ(log(1/δ)/ε). Indeed, stability-based techniques exploit
precisely this breakdown in group privacy.

As a result of this strong lower bound, we show that any mechanism for
answering statistical queries that satisfies zCDP can be converted into a mech-
anism satisfying pure differential privacy with only a quadratic blowup in its
sample complexity. More precisely, the following theorem illustrates a more gen-
eral result we prove in Sect. 7.

Theorem 11. Let n ∈ N and α ≥ 1/n be arbitrary. Set ε = α and ρ = α2. Let
q : X → [0, 1]k be an arbitrary family of statistical queries. Suppose M : X n →
[0, 1]k satisfies ρ-zCDP and

E
M

[‖M(x) − q(x)‖∞] ≤ α

for all x ∈ X n. Then there exists M ′ : X n′ → [0, 1]k for n′ = 5n2 satisfying
ε-differential privacy and

E
M ′

[‖M ′(x) − q(x)‖∞] ≤ 10α

for all x ∈ X n′
.

For some classes of queries, this reduction is essentially tight. For example,
for k one-way marginals, the Gaussian mechanism achieves sample complexity
n = Θ(

√
k) subject to zCDP, whereas the Laplace mechanism achieves sample

complexity n = Θ(k) subject to pure differential privacy, which is known to be
optimal. For more details, see Sects. 6 and 7.

Approximate zCDP. To circumvent these strong lower bounds for zCDP, we
consider a relaxation of zCDP in the spirit of approximate differential privacy
that permits a small probability δ of (catastrophic) failure:

Definition 12 (Approximate zCDP). A randomized mechanism M : X n →
Y is δ-approximately (ξ, ρ)-zCDP if, for all x, x′ ∈ X n differing on a single
entry, there exist events E (depending on M(x)) and E′ (depending on M(x′))
such that P [E] ≥ 1 − δ, P [E′] ≥ 1 − δ, and

∀α ∈ (1,∞) Dα (M(x)|E‖M(x′)|E′) ≤ ξ + ρ · α

∧ Dα (M(x′)|E′‖M(x)|E) ≤ ξ + ρ · α,

where M(x)|E denotes the distribution of M(x) conditioned on the event E. We
further define δ-approximate ρ-zCDP to be δ-approximate (0, ρ)-zCDP.

642 M. Bun and T. Steinke

In particular, setting δ = 0 gives the original definition of zCDP. However,
this definition unifies zCDP with approximate differential privacy:

Proposition 13. If M satisfies (ε, δ)-differential privacy, then M satisfies δ-
approximate 1

2ε2-zCDP.

Approximate zCDP retains most of the desirable properties of zCDP, but
allows us to incorporate stability-based techniques and bypass the above lower
bounds. This also presents a unified tool to analyse a composition of zCDP with
approximate differential privacy; see Sect. 8.

Related Work. Our work builds on the aforementioned prior work of Dwork
and Rothblum [DR16].6 We view our definition of concentrated differential pri-
vacy as being “morally equivalent” to their definition of concentrated differential
privacy, in the sense that both definitions formalize the same concept.7 (The for-
mal relationship between the two definitions is discussed in Sect. 4.) However,
the definition of zCDP generally seems easier to work with than mCDP. In par-
ticular, our formulation in terms of Rényi divergence simplifies many analyses.

Dwork and Rothblum prove several results about concentrated differential
privacy that are similar to ours. Namely, they prove analogous properties of
mCDP as we prove for zCDP. However, as noted, some of their bounds are
weaker than ours; also, they do not explore lower bounds.

Several of the ideas underlying concentrated differential privacy are implicit
in earlier works. In particular, the proof of the advanced composition theorem
of Dwork, Rothblum, and Vadhan [DRV10] essentially uses the ideas of concen-
trated differential privacy.

We also remark that Tardos [Tar08] used Rényi divergence to prove lower
bounds for cryptographic objects called fingerprinting codes. Fingerprinting
codes turn out to be closely related to differential privacy [Ull13,BUV14,SU15b],
and Tardos’ lower bound can be (loosely) viewed as a kind of privacy-preserving
algorithm.

Further Work. We believe that concentrated differential privacy is a useful
tool for analysing private computations, as it provides both simpler and tighter
bounds. We hope that CDP will be prove useful in both the theory and practice
of differential privacy.

Furthermore, our lower bounds show that CDP can really be a much more
stringent condition than approximate differential privacy. Thus CDP defines a
“subclass” of all (ε, δ)-differentially private algorithms. This subclass includes
most differentially private algorithms in the literature, but not all — the most

6 Although Dwork and Rothblum’s work only appeared publicly in March 2016, they
shared a preliminary draft of their paper with us before we commenced this work.
As such, our ideas are heavily inspired by theirs.

7 We use “concentrated differential privacy” (CDP) to refer to the underlying concept
formalized by both definitions.

Concentrated Differential Privacy 643

notable exceptions being algorithms that use the propose-test-release approach
[DL09] to exploit low local sensitivity.

This “CDP subclass” warrants further exploration. In particular, is there a
“complete” mechanism for this class of algorithms, in the same sense that the
exponential mechanism [MT07,BLR13] is complete for pure differential privacy?
Can we obtain a simple characterization of the sample complexity needed to sat-
isfy CDP? The ability to prove stronger and simpler lower bounds for CDP than
for approximate DP may be useful for showing the limitations of certain algorith-
mic paradigms. For example, any differentially private algorithm that only uses
the Laplace mechanism, the exponential mechanism, the Gaussian mechanism,
and the “sparse vector” technique, along with composition and postprocessing
will be subject to the lower bounds for CDP.

There is also room to examine how to interpret the zCDP privacy guaran-
tee. In particular, we leave it as an open question to understand the extent to
which ρ-zCDP provides a stronger privacy guarantee than the implied (ε, δ)-DP
guarantees (cf. Proposition 3).

In general, much of the literature on differential privacy can be re-examined
through the lens of CDP, which may yield new insights and results.

2 Rényi Divergence

Recall the definition of Rényi divergence:

Definition 14 (Rényi Divergence [Ren61, Eq. (3.3)]). Let P and Q be
probability distributions on Ω. For α ∈ (1,∞), we define the Rényi divergence
of order α between P and Q as

Dα (P‖Q) =
1

α − 1
log

(∫

Ω

P (x)αQ(x)1−αdx

)

=
1

α − 1
log

(

E
x∼P

[(
P (x)
Q(x)

)α−1
])

,

where P (·) and Q(·) are the probability mass/density functions of P and Q
respectively or, more generally, P (·)/Q(·) is the Radon-Nikodym derivative of
P with respect to Q.

We also define the KL-divergence

D1 (P‖Q) = lim
α→1

Dα (P‖Q) =
∫

Ω

P (x) log
(

P (x)
Q(x)

)
dx

and the max-divergence

D∞ (P‖Q) = lim
α→∞ Dα (P‖Q) = sup

x∈Ω
log

(
P (x)
Q(x)

)
.

644 M. Bun and T. Steinke

Alternatively, Rényi divergence can be defined in terms of the privacy loss
(Definition 2) between P and Q:

e(α−1)Dα(P‖Q) = E
Z∼PrivLoss(P‖Q)

[
e(α−1)Z

]

for all α ∈ (1,∞). Moreover, D1 (P‖Q) = E
Z∼PrivLoss(P‖Q)

[Z].

We record several useful and well-known properties of Rényi divergence. We
refer the reader to [vEH14] for proofs and discussion of these (and many other)
properties.

Lemma 15. Let P and Q be probability distributions and α ∈ [1,∞].

– Non-negativity: Dα (P‖Q) ≥ 0 with equality if and only if P = Q.
– Composition: Suppose P and Q are distributions on Ω × Θ. Let P ′ and Q′

denote the marginal distributions on Ω induced by P and Q respectively. For
x ∈ Ω, let P ′

x and Q′
x denote the conditional distributions on Θ induced by P

and Q respectively, where x specifies the first coordinate. Then

Dα

(
P ′‖Q′)+ min

x∈Ω
Dα

(
P ′

x‖Q′
x

) ≤ Dα (P‖Q) ≤ Dα

(
P ′‖Q′)+ max

x∈Ω
Dα

(
P ′

x‖Q′
x

)
.

In particular if P and Q are product distributions, then the Rényi divergence
between P and Q is just the sum of the Rényi divergences of the marginals.

– Quasi-Convexity: Let P0, P1 and Q0, Q1 be distributions on Ω, and let P =
tP0 + (1 − t)P1 and Q = tQ0 + (1 − t)Q1 for t ∈ [0, 1]. Then Dα (P‖Q) ≤
max{Dα (P0‖Q0) ,Dα (P1‖Q1)}. Moreover, KL divergence is convex:

D1 (P‖Q) ≤ tD1 (P0‖Q0) + (1 − t)D1 (P1‖Q1) .

– Postprocessing: Let P and Q be distributions on Ω and let f : Ω → Θ be a
function. Let f(P) and f(Q) denote the distributions on Θ induced by applying
f to P or Q respectively. Then Dα (f(P)‖f(Q)) ≤ Dα (P‖Q).
Note that quasi-convexity allows us to extend this guarantee to the case where
f is a randomized mapping.

– Monotonicity: For 1 ≤ α ≤ α′ ≤ ∞, Dα (P‖Q) ≤ Dα′ (P‖Q).

2.1 Gaussian Mechanism

The following lemma gives the Rényi divergence between two Gaussian distrib-
utions with the same variance.

Lemma 16. Let μ, ν, σ ∈ R and α ∈ [1,∞). Then

Dα

(
N (μ, σ2)‖N (ν, σ2)

)
=

α(μ − ν)2

2σ2

Consequently, the Gaussian mechanism, which answers a sensitivity-Δ query
by adding noise drawn from N (0, σ2), satisfies

(
Δ2

2σ2

)
-zCDP (Proposition 6).

For the multivariate Gaussian mechanism, Lemma 16 generalises to the fol-
lowing.

Concentrated Differential Privacy 645

Lemma 17. Let μ, ν ∈ R
d, σ ∈ R, and α ∈ [1,∞). Then

Dα

(
N (μ, σ2Id)‖N (ν, σ2Id)

)
=

α‖μ − ν‖22
2σ2

Thus, if M : X n → R
d is the mechanism that, on input x, releases a sample

from N (q(x), σ2Id) for some function q : X n → R
d, then M satisfies ρ-zCDP for

ρ =
1

2σ2
sup

x,x′∈Xn

differing in one entry

‖q(x) − q(x′)‖22. (3)

3 Relation to Differential Privacy

We now discuss the relationship between zCDP and the traditional definitions of
pure and approximate differential privacy. There is a close relationship between
the notions, but not an exact characterization.

Definition 18 (Differential Privacy (DP) [DMNS06,DKM+06]). A
randomized mechanism M : X n → Y satisfies (ε, δ)-differential privacy if, for
all x, x′ ∈ X differing in a single entry, we have

P [M(x) ∈ S] ≤ eε
P [M(x′) ∈ S] + δ

for all (measurable) S ⊂ Y. Further define ε-differential privacy to be (ε, 0)-
differential privacy.

3.1 Pure DP versus zCDP

We now show that ε-differential privacy implies (12ε2)-zCDP (Proposition 4).

Proposition 19. Let P and Q be probability distributions on Ω satisfying
D∞ (P‖Q) ≤ ε and D∞ (Q‖P) ≤ ε. Then Dα (P‖Q) ≤ 1

2ε2α for all α > 1.

Remark 20. In particular, Proposition 19 shows that the KL-divergence
D1 (P‖Q) ≤ 1

2ε2. A bound on the KL-divergence between random variables
in terms of their max-divergence is an important ingredient in the analysis of
the advanced composition theorem [DRV10]. Our bound sharpens (up to lower
order terms) and, in our opinion, simplifies the previous bound of D1 (P‖Q) ≤
1
2ε(eε − 1) proved by Dwork and Rothblum [DR16].

Proof (Proof of Proposition 19). We may assume 1
2εα ≤ 1, as otherwise 1

2ε2α >
ε, whence the result follows from monotonicity. We must show that

e(α−1)Dα(P‖Q) = E
x∼Q

[(
P (x)
Q(x)

)α]
≤ e

1
2α(α−1)ε2

.

646 M. Bun and T. Steinke

We know that e−ε ≤ P (x)
Q(x) ≤ eε for all x. Define a random function A : Ω →

{e−ε, eε} by E
A

[A(x)] = P (x)
Q(x) for all x. By Jensen’s inequality,

E
x∼Q

[(
P (x)
Q(x)

)α]
= E

x∼Q

[(

E
A

[A(x)]
)α]

≤ E
x∼Q

[

E
A

[A(x)α]
]

= E
A

[Aα] ,

where A denotes A(x) for a random x ∼ Q. We also have E
A

[A] = E
x∼Q

[
P (x)
Q(x)

]
= 1.

From this equation, we can conclude that

P
A

[
A = e−ε

]
=

eε − 1
eε − e−ε

and P
A

[A = eε] =
1 − e−ε

eε − e−ε
.

Thus

e(α−1)Dα(P‖Q) ≤E
A

[Aα]

=
eε − 1

eε − e−ε
· e−αε +

1 − e−ε

eε − e−ε
· eαε

=
sinh(αε) − sinh((α − 1)ε)

sinh(ε)
.

The result now follows from the following inequality, which is proved in the full
version of this work.

0 ≤ y < x ≤ 2 =⇒ sinh(x) − sinh(y)
sinh(x − y)

≤ e
1
2xy.

3.2 Approximate DP versus zCDP

The statements in this section show that, up to some loss in parameters, zCDP
is equivalent to a family of (ε, δ)-DP guarantees for all δ > 0.

Lemma 21. Let M : X n → Y satisfy (ξ, ρ)-zCDP. Then M satisfies (ε, δ)-DP
for all δ > 0 and

ε = ξ + ρ +
√

4ρ log(1/δ).

Thus to achieve a given (ε, δ)-DP guarantee it suffices to satisfy (ξ, ρ)-zCDP
with

ρ =
(√

ε − ξ + log(1/δ) −
√

log(1/δ)
)2

≈ (ε − ξ)2

4 log(1/δ)
.

Proof. Let x, x′ ∈ X n be neighbouring. Define f(y) = log(P [M(x) = y] /

P [M(x′) = y]). Let Y ∼ M(x) and Z = f(Y). That is, Z =

PrivLoss (M(x)‖M(x′)) is the privacy loss random variable. Fix α ∈ (1,∞) to be
chosen later. Then

Concentrated Differential Privacy 647

E

[
e(α−1)Z

]
= E

Y ∼M(x)

⎡

⎣

⎛

⎝
P [M(x) = Y]

P [M(x′) = Y]

⎞

⎠
α−1⎤

⎦ = e(α−1)Dα(M(x)‖M(x′)) ≤ e(α−1)(ξ+ρα).

By Markov’s inequality

P [Z > ε] = P

[
e(α−1)Z > e(α−1)ε

]
≤

E

[
e(α−1)Z

]

e(α−1)ε
≤ e(α−1)(ξ+ρα−ε).

Choosing α = (ε − ξ + ρ)/2ρ > 1 gives

P [Z > ε] ≤ e−(ε−ξ−ρ)2/4ρ ≤ δ.

This implies that for any measurable S ⊂ Y,

P [M(x) ∈ S] ≤ eε
P [M(x′) ∈ S] + δ.

Lemma 21 is not tight, and we give a quantitative refinement in Lemma 38
(setting δ = 0 there). There, we also show a partial converse to Lemma 21:

Lemma 22. Let M : X n → Y satisfy (ε, δ)-DP for all δ > 0 and

ε = ξ̂ +
√

ρ̂ log(1/δ) (4)

for some constants ξ̂, ρ̂ ∈ [0, 1]. Then M is
(
ξ̂ − 1

4 ρ̂ + 5 4
√

ρ̂, 1
4 ρ̂

)
-zCDP.

Thus zCDP and DP are equivalent up to a (potentially substantial) loss in
parameters and the quantification over all δ.

4 Zero- versus Mean-Concentrated Differential Privacy

We begin by recalling the definition of mean-concentrated differential privacy:

Definition 23 (Mean-Concentrated Differential Privacy [DR16]). A
randomized mechanism M : X n → Y satisfies (μ, τ)-mCDP if, for all x, x′ ∈ X n

differing in one entry, and letting Z = PrivLoss (M(x)‖M(x′)), we have

E [Z] ≤ μ and E

[

e
λ

(

Z−E[Z]

)]

≤ eλ2·τ2/2

for all λ ∈ R.

In contrast (ξ, ρ)-zCDP requires that, for all α ∈ (1,∞), E

[
e(α−1)Z

]
≤

e(α−1)(ξ+ρα), where Z ∼ PrivLoss (M(x)‖M(x′)) is the privacy loss random vari-
able. In the full version of this work, we show that these definitions are equivalent
up to a (potentially significant) loss in parameters.

648 M. Bun and T. Steinke

Lemma 24. If M : X n → Y satisfies (μ, τ)-mCDP, then M satisfies (μ −
τ2/2, τ2/2)-zCDP. Conversely, if M : X n → Y satisfies (ξ, ρ)-zCDP, then M
satisfies (ξ + ρ,O(

√
ξ + 2ρ))-mCDP.

Thus we can convert (μ, τ)-mCDP into (μ−τ2/2, τ2/2)-zCDP and then back
to (μ,O(

√
μ + τ2/2))-mCDP. This may result in a large loss in parameters,

which is why, for example, pure DP can be characterised in terms of zCDP, but
not in terms of mCDP.

We view zCDP as a relaxation of mCDP; mCDP requires the privacy loss
to be “tightly” concentrated about its mean and that the mean is close to the
origin. The triangle inequality then implies that the privacy loss is “weakly”
concentrated about the origin. (The difference between “tightly” and “weakly”
accounts for the use of the triangle inequality.) On the other hand, zCDP direcly
requires that the privacy loss is weakly concentrated about the origin. That is,
zCDP gives a subgaussian bound on the privacy loss that is centered at zero,
whereas mCDP gives a subgaussian bound that is centered at the mean and
separately bounds the mean.

There may be some advantage to the stronger requirement of mCDP, either
in terms of what kind of privacy guarantee it affords, or how it can be used as an
analytic tool. However, it seems that for most applications, we only need what
zCDP provides.

5 Group Privacy

In this section we show that zCDP provides privacy protections to small groups
of individuals.

Definition 25 (zCDP for Groups). We say that a mechanism M : X n → Y
provides (ξ, ρ)-zCDP for groups of size k if, for every x, x′ ∈ X n differing in at
most k entries, we have

∀α ∈ (1,∞) Dα (M(x)‖M(x′)) ≤ ξ + ρ · α.

The usual definition of zCDP only applies to groups of size 1. Here we show that
it implies bounds for all group sizes. We begin with a technical lemma.

Lemma 26 (Triangle-like Inequality for Rényi Divergence). Let P , Q,
and R be probability distributions. Then

Dα (P‖Q) ≤ kα

kα − 1
D kα−1

k−1
(P‖R) + Dkα (R‖Q) (5)

for all k, α ∈ (1,∞).

Concentrated Differential Privacy 649

Proof. Let p = kα−1
α(k−1) and q = kα−1

α−1 . Then 1
p + 1

q = α(k−1)+(α−1)
kα−1 = 1. By

Hölder’s inequality,

e(α−1)Dα(P‖Q) =
∫

Ω

P (x)αQ(x)1−αdx

=
∫

Ω

P (x)αR(x)−α · R(x)α−1Q(x)1−α · R(x)dx

= E
x∼R

[(
P (x)
R(x)

)α

·
(

R(x)
Q(x)

)α−1
]

≤ E
x∼R

[(
P (x)
R(x)

)pα]1/p

· E
x∼R

[(
R(x)
Q(x)

)q(α−1)
]1/q

=e(pα−1)Dpα(P‖R)/p · eq(α−1)Dq(α−1)+1(R‖Q)/q.

Taking logarithms and rearranging gives

Dα (P‖Q) ≤ pα − 1
p(α − 1)

Dpα (P‖R) + Dq(α−1)+1 (R‖Q) .

Now pα = kα−1
k−1 , q(α − 1) + 1 = kα, and pα−1

p(α−1) = kα
kα−1 .

Proposition 27. If M : X n → Y satisfies (ξ, ρ)-zCDP, then M gives (ξ ·
k

∑k
i=1

1
i , ρ · k2)-zCDP for groups of size k.

In particular, (ξ, ρ)-zCDP implies (ξ · O(k log k), ρ · k2)-zCDP for groups of size
k. The Gaussian mechanism shows that k2ρ is the optimal dependence on ρ.
However, O(k log k)ξ is not the optimal dependence on ξ: (ξ, 0)-zCDP implies
(kξ, 0)-zCDP for groups of size k.

Proof. We show this by induction on k. The statement is clearly true for groups
of size 1. We now assume the statement holds for groups of size k − 1 and will
verify it for groups of size k.

Let x, x′ ∈ X n differ in k entries. Let x̂ ∈ X n be such that x and x̂ differ in
k − 1 entries and x′ and x̂ differ in one entry.

Then, by the induction hypothesis,

Dα (M(x)‖M(x̂)) ≤ ξ · (k − 1)
k−1∑

i=1

1
i

+ ρ · (k − 1)2 · α

and, by zCDP,

Dα (M(x̂)‖M(x′)) ≤ ξ + ρ · α

650 M. Bun and T. Steinke

for all α ∈ (1,∞). By (5), for any α ∈ (1,∞),

Dα (M(x)‖M(x′))

≤ kα

kα − 1
D kα−1

k−1
(M(x)‖M(x̂)) + Dkα (M(x̂)‖M(x′))

≤ kα

kα − 1

(

ξ · (k − 1)
k−1∑

i=1

1
i

+ ρ · (k − 1)2 · kα − 1
k − 1

)

+ ξ + ρ · kα

= ξ ·
(

1 +
kα

kα − 1
(k − 1)

k−1∑

i=1

1
i

)

+ ρ ·
(

kα

kα − 1
(k − 1)2

kα − 1
k − 1

+ kα

)

≤ ξ · k

k∑

i=1

1
i

+ ρ · k2 · α,

where the last inequality follows from the fact that kα
kα−1 is a decreasing function

of α for α > 1.

6 Lower Bounds

In this section we develop tools to prove lower bounds for zCDP. We will use
group privacy to bound the mutual information between the input and the out-
put of a mechanism satisfying zCDP. Thus, if we are able to construct a distrib-
ution on inputs such that any accurate mechanism must reveal a high amount of
information about its input, we obtain a lower bound showing that no accurate
mechanism satisfying zCDP can be accurate for this data distribution.

We begin with the simplest form of our mutual information bound, which is
an analogue of the bound of [MMP+10] for pure differential privacy:

Proposition 28. Let M : X n → Y satisfy (ξ, ρ)-zCDP. Let X be a random
variable in X n. Then

I(X;M(X)) ≤ ξ · n(1 + log n) + ρ · n2,

where I denotes mutual information (measured in nats, rather than bits).

Proof. By Proposition 27, M is (ξ · n
∑n

i=1
1
i , ρ · n2)-zCDP for groups of size n.

Thus

D1 (M(x)‖M(x′)) ≤ ξ · n

n∑

i=1

1
i

+ ρ · n2 ≤ ξ · n(1 + log n) + ρ · n2

Concentrated Differential Privacy 651

for all x, x′ ∈ X n. Since KL-divergence is convex,

I(X;M(X)) = E
x←X

[D1 (M(x)‖M(X))]

≤ E
x←X

[

E
x′←X

[D1 (M(x)‖M(x′))]
]

≤ E
x←X

[

E
x′←X

[
ξ · n(1 + log n) + ρ · n2

]
]

= ξ · n(1 + log n) + ρ · n2.

The reason this lower bound works is the strong group privacy guarantee —
even for groups of size n, we obtain nontrivial privacy guarantees. While this is
good for privacy it is bad for usefulness, as it implies that even information that
is “global” (rather than specific to a individual or a small group) is protected.
These lower bounds reinforce the connection between group privacy and lower
bounds [HT10,De12,SU15a].

In contrast, (ε, δ)-DP is not susceptible to such a lower bound because it
gives a vacuous privacy guarantee for groups of size k = O(log(1/δ)/ε). This
helps explain the power of the propose-test-release paradigm.

Furthermore, we obtain even stronger mutual information bounds when the
entries of the distribution are independent:

Lemma 29. Let M : X m → Y satisfy (ξ, ρ)-zCDP. Let X be a random variable
in X m with independent entries. Then

I (X;M(X)) ≤ (ξ + ρ) · m,

where I denotes mutual information (measured in nats, rather than bits).

Proof. First, by the chain rule for mutual information,

I(X;M(X)) =
∑

i∈[m]

I(Xi;M(X)|X1···i−1),

where

I(Xi;M(X)|X1···i−1) = E
x←X1···i−1

[I(Xi|X1···i−1 = x;M(X)|X1···i−1 = x)]

= E
x←X1···i−1

[I(Xi;M(x,Xi···m))] ,

by independence of the Xis.
We can define mutual information in terms of KL-divergence:

I(Xi;M(x,Xi···m)) = E
y←Xi

[D1 (M(x,Xi···m)|Xi = y‖M(x,Xi···m))]

= E
y←Xi

[D1 (M(x, y,Xi+1···m)‖M(x,Xi···m))] .

652 M. Bun and T. Steinke

By zCDP, we know that for all x ∈ X i−1, y, y′ ∈ X , and z ∈ X m−i, we have

D1 (M(x, y, z)‖M(x, y′, z)) ≤ ξ + ρ.

Thus, by the convexity of KL-divergence,

D1 (M(x, y,Xi+1···m)‖M(x,Xi···m)) ≤ ξ + ρ

for all x and y. The result follows.

More generally, we can combine dependent and independent rows as follows.

Theorem 30. Let M : X n → Y satisfy (ξ, ρ)-zCDP. Take n = m · �.
Let X1, · · · ,Xm be independent random variables on X �. Denote X =
(X1, · · · ,Xm) ∈ X n. Then

I (X;M(X)) ≤ m ·
(
ξ · �(1 + log �) + ρ · �2

)
,

where I denotes the mutual information (measured in nats, rather than bits).

6.1 Example Applications of the Lower Bound

We informally discuss a few applications of our information-based lower bounds
to some simple and well-studied problems in differential privacy.

One-Way Marginals. Consider M : X n → Y where X = {0, 1}d and Y = [0, 1]d.
The goal of M is to estimate the attribute means, or one-way marginals, of its
input database x:

M(x) ≈ x =
1
n

∑

i∈[n]

xi.

It is known that this is possible subject to ε-DP if and only if n =
Θ(d/ε) [HT10,SU15a]. This is possible subject to (ε, δ)-DP if and only if
n = Θ̃(

√
d log(1/δ)/ε), assuming δ � 1/n [BUV14,SU15a].

We now analyze what can be accomplished with zCDP. Adding independent
noise drawn from N (0, d/2n2ρ) to each of the d coordinates of x satisfies ρ-zCDP.
This gives accurate answers as long as n �

√
d/ρ.

For a lower bound, consider sampling X1 ∈ {0, 1}d uniformly at random. Set
Xi = X1 for all i ∈ [n]. By Proposition 28,

I(X;M(X)) ≤ n2ρ

for any ρ-zCDP M : ({0, 1}d)n → [0, 1]d. However, if M is accurate, we can
recover (most of) X1 from M(X), whence I(X;M(X)) ≥ Ω(d). This yields a
lower bound of n ≥ Ω(

√
d/ρ), which is tight up to constant factors.

Concentrated Differential Privacy 653

Histograms (a.k.a. Point Queries). Consider M : X n → Y, where X = [T] and
Y = R

T . The goal of M is to estimate the histogram of its input:

M(x)t ≈ ht(x) = |{i ∈ [n] : xi = t}|

For ε-DP it is possible to do this if and only if n = Θ(log(T)/ε); the optimal
algorithm is to independently sample

M(x)t ∼ ht(x) + Laplace(2/ε).

However, for (ε, δ)-DP, it is possible to attain sample complexity n =
O(log(1/δ)/ε) [BNS16, Theorem 3.13]. Interestingly, for zCDP we can show that
n = Θ(

√
log(T)/ρ) is sufficient and necessary:

Sampling

M(x)t ∼ ht(x) + N (0, 1/ρ)

independently for t ∈ [T] satisfies ρ-zCDP. Moreover,

P

[
max
t∈[T]

|M(x)t − ht(x)| ≥ λ

]
≤ T · P [|N (0, 1/ρ)| > λ] ≤ T · e−λ2ρ/2.

In particular P

[
maxt∈[T] |M(x)t − ht(x)| ≥

√
log(T/β)/ρ

]
≤ β for all β > 0.

Thus this algorithm is accurate if n �
√

log(T)/ρ.
On the other hand, if we sample X1 ∈ [T] uniformly at random and set

Xi = X1 for all i ∈ [n], then I(X;M(X)) ≥ Ω(log T) for any accurate M , as
we can recover X1 from M(X) if M is accurate. Proposition 28 thus implies
that n ≥ Ω(

√
log(T)/ρ) is necessary to obtain accuracy. This gives a strong

separation between approximate DP and zCDP.

Lower Bounds with Accuracy. The above examples can be easily discussed in
terms of a more formal and quantitative definition of accuracy. For instance, in
the full version of this work, we revisit the histogram example:

Proposition 31. If M : [T]n → R
T satisfies ρ-zCDP and

∀x ∈ [T]n E
M

[
max
t∈[T]

∣
∣M(x)t − ht(x)

∣
∣
]

≤ αn,

then n ≥ Ω(
√

log(α2T)/ρα2).

We remark that our lower bounds for zCDP can be converted to lower bounds
for mCDP using Lemma 24.

654 M. Bun and T. Steinke

7 Obtaining Pure DP Mechanisms from zCDP

We now establish limits on what more can be achieved with zCDP over pure
differential privacy. In particular, we prove that any mechanism satisfying zCDP
can be converted into a mechanism satisfying pure DP with at most a quadratic
blowup in sample complexity. Formally, we show the following theorem.

Theorem 32. Fix n ∈ N, n′ ∈ N, k ∈ N α > 0, and ε > 0. Let q : X → R
k and

let ‖ · ‖ be a norm on R
k. Assume maxx∈X ‖q(x)‖ ≤ 1. Suppose there exists a

(ξ, ρ)-zCDP mechanism M : X n → R
k such that for all x ∈ X n,

E
M

[‖M(x) − q(x)‖] ≤ α.

Assume ξ ≤ α2, ρ ≤ α2, and

n′ ≥ 4
εα

(
ρ · n2 + ξ · n · (1 + log n) + 1

)
.

Then there exists a (ε, 0)-differentially private M ′ : X n′ → R
k satisfying

E
M ′

[‖M ′(x) − q(x)‖] ≤ 10α

and

P
M ′

[
‖M ′(x) − q(x)‖ > 10α +

4
εn′ log

(
1
β

)]
≤ β

for all x ∈ X n′
and β > 0.

Before discussing the proof of Theorem32, we make some remarks about its
statement:

– Unfortunately, the theorem only works for families of statistical queries q :
X → R

k. However, it works equally well for ‖ · ‖∞ and ‖ · ‖1 error bounds.
– If ξ = 0, we have n′ = O(n2ρ/εα). So, if ρ, ε, and α are all constants, we

have n′ = O(n2). This justifies our informal statement that we can convert
any mechanism satisfying zCDP into one satisfying pure DP with a quadratic
blowup in sample complexity.

– The requirement that ξ, ρ ≤ α2 is only used to show that

max
x∈X n′

min
x̂∈X n

‖q(x) − q(x̂)‖ ≤ 2α. (6)

However, in many situations (6) holds even when ξ, ρ � α2. For example,
if n ≥ O(log(k)/α2) or even n ≥ O(V C(q)/α2) then (6) is automatically
satisfied. The technical condition (6) is needed to relate the part of the proof
with inputs of size n to the part with inputs of size n′.

Concentrated Differential Privacy 655

The proof of Theorem32 is not constructive. Rather than directly constructing
a mechanism satisfying pure DP from any mechanism satisfying zCDP, we show
the contrapositive statement: any lower bound for pure DP can be converted
into a lower bound for zCDP. Pure DP is characterized by so-called packing
lower bounds and the exponential mechanism.

In the full version of this work, we use a greedy argument to show that for any
output space and any desired accuracy, there is a set T that is simultaneously a
“packing” and a “net:”

Lemma 33. Let (Y, d) be a metric space. Fix α > 0. Then there exists a count-
able T ⊂ Y such that both of the following hold.

– (Net:) Either T is infinite or for all y′ ∈ Y there exists y ∈ T with d(y, y′) ≤ α.
– (Packing:) For all y, y′ ∈ T , if y �= y′, then d(y, y′) > α.

It is well-known that a net yields a pure DP algorithm:

Lemma 34 (Exponential Mechanism [MT07,BLR13]). Let � : X n×T →
R satisfy |�(x, y) − �(x′, y)| ≤ Δ for all x, x′ ∈ X n differing in one entry and all
y ∈ T . Then, for all ε > 0, there exists an ε-differentially private M : X n → T
such that

P
M

[
�(x,M(x)) ≤ min

y∈T
�(x, y) +

2Δ

ε
log

(
|T |
β

)]
≥ 1 − β

and

E
M

[�(x,M(x))] ≤ min
y∈T

�(x, y) +
2Δ

ε
log |T |

for all x ∈ X n and β > 0.

On the other hand, in the full version of this work we use Proposition 28 to
show that a packing yields a lower bound for zCDP:

Lemma 35. Let (Y, d) be a metric space and q : X n → Y a function. Let
M : X n → Y be a (ξ, ρ)-zCDP mechanism satisfying

P
M

[d(M(x), q(x)) > α/2] ≤ β

for all x ∈ X n. Let T ⊂ Y be such that d(y, y′) > α, for all y, y′ ∈ T with y �= y′.
Assume that for all y ∈ T there exists x ∈ X n with q(x) = y. Then

(1 − β) log |T | − log 2 ≤ ξ · n(1 + log n) + ρ · n2.

In particular, if ξ = 0, we have

n ≥

√
(1 − β) log |T | − log 2

ρ
= Ω(

√
log |T |/ρ).

In the full version of this work, we combine these lemmas to prove Theorem32.

656 M. Bun and T. Steinke

8 Approximate zCDP

Recall our definition of approximate zCDP:

Definition 36 (Approximate zCDP). A randomised mechanism M : X n →
Y is δ-approximately (ξ, ρ)-zCDP if, for all x, x′ ∈ X n differing on a single
entry, there exist events E = E(M(x)) and E′ = E′(M(x′)) such that, for all
α ∈ (1,∞),

Dα

(
M(x)|E‖M(x′)|E′

) ≤ ξ + ρ · α and Dα

(
M(x′)|E′‖M(x)|E

) ≤ ξ + ρ · α

and P
M(x)

[E] ≥ 1 − δ and P
M(x′)

[E′] ≥ 1 − δ.

Clearly 0-approximate zCDP is simply zCDP. Hence we have a generalization
of zCDP. As we will show later in this section, δ-approximate (ε, 0)-zCDP is
equivalent to (ε, δ)-DP. Thus we have also generalized approximate DP. Hence,
this definition unifies both relaxations of pure DP.

Approximate zCDP is a three-parameter definition which allows us to capture
many different aspects of differential privacy. However, three parameters is quite
overwhelming. We believe that use of the one-parameter ρ-zCDP (or the two-
parameter δ-approximate ρ-zCDP if necessary) is sufficient for most purposes.

It is easy to verify that the definition of approximate zCDP satisfies the
usual composition and post-processing properties. However, the strong group
privacy guarantees of Sect. 5 no longer apply to approximate zCDP and, hence,
the strong lower bounds of Sect. 6 also no longer hold. Circumventing these lower
bounds is part of the motivation for considering approximate zCDP.

In the full version of this work, we use techniques developed in [KOV15,
MV16] to show that approximate DP can be converted to approximate zCDP.

Lemma 37. If M : X n → Y satisfies (ε, δ)-DP, then M satisfies δ-approximate
(ε, 0)-zCDP, which, in turn, implies δ-approximate (0, 1

2ε2)-zCDP.

Conversely, approximate zCDP also implies approximate DP. The following
result sharpens Lemma 21.

Lemma 38. Suppose M : X n → Y satisfies δ-approximate (ξ, ρ)-zCDP. If ρ =
0, then M satisfies (ξ, δ)-DP. In general, M satisfies (ε, δ +(1− δ)δ′)-DP for all
ε ≥ ξ + ρ, where

δ′ = e−(ε−ξ−ρ)2/4ρ · min

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1√
π · ρ

1
1+(ε−ξ−ρ)/2ρ

2

1+ ε−ξ−ρ
2ρ +

√

(1+ ε−ξ−ρ
2ρ)2+ 4

πρ

.

A result is that we can give a sharper version of the so-called advanced
composition theorem [DRV10]. Note that the following results are subsumed by
the bounds of Kairouz, Oh, and Viswanath [KOV15] and Murtagh and Vadhan

Concentrated Differential Privacy 657

[MV16]. However, these bounds may be extended to analyse the composition of
mechanisms satisfying CDP with mechanisms satisfying approximate DP. We
believe that such a “unified” analysis of composition will be useful.

Applying Lemmas 37 and 38 yields the following result.

Corollary 39. Let M1, · · · ,Mk : X n → Y and let M : X n → Yk be their
composition. Suppose each Mi satisfies (εi, δi)-DP. Then M satisfies

(
1
2
‖ε‖22 +

√
2λ‖ε‖2,

√
π

2
· ‖ε‖2 · e−λ2

+ ‖δ‖1
)

-DP

for all λ ≥ 0. Alternatively M satisfies
(

1
2
‖ε‖22 +

√
2 log(

√
π/2 · ‖ε‖2/δ′) · ‖ε‖2, δ′ + ‖δ‖1

)
-DP

for all δ′ ≥ 0.

In comparison to the composition theorem of [DRV10], we save modestly by
a constant factor in the first term and, in most cases

√
π/2‖ε‖2 < 1, whence

the logarithmic term is an improvement over the usual advanced composition
theorem.

Acknowledgements. We thank Cynthia Dwork and Guy Rothblum for sharing a
preliminary draft of their work with us. We also thank Ilya Mironov, Kobbi Nissim,
Adam Smith, Salil Vadhan, and the Harvard Differential Privacy Research Group for
helpful discussions and suggestions.

References

[BLR13] Blum, A., Ligett, K., Roth, A.: A learning theory approach to noninterac-
tive database privacy. J. ACM 60(2), 12 (2013)

[BNS13] Beimel, A., Nissim, K., Stemmer, U.: Private learning and sanitization:
pure vs. approximate differential privacy. In: Raghavendra, P., Raskhod-
nikova, S., Jansen, K., Rolim, J.D.P. (eds.) APPROX/RANDOM -2013.
LNCS, vol. 8096, pp. 363–378. Springer, Heidelberg (2013). doi:10.1007/
978-3-642-40328-6 26

[BNS16] Bun, M., Nissim, K., Stemmer, U.: Simultaneous private learning of mul-
tiple concepts. In: Proceedings of the 2016 ACM Conference on Innova-
tions in Theoretical Computer Science, ITCS 2016, pp. 369–380. ACM,
New York (2016)

[BUV14] Bun, M., Ullman, J., Vadhan, S.P.: Fingerprinting codes and the price of
approximate differential privacy. In: Symposium on Theory of Computing,
STOC 2014, New York, NY, USA, 31 May - 03 June 2014, pp. 1–10 (2014)

[De12] De, A.: Lower bounds in differential privacy. In: Cramer, R. (ed.) TCC
2012. LNCS, vol. 7194, pp. 321–338. Springer, Heidelberg (2012). doi:10.
1007/978-3-642-28914-9 18

http://dx.doi.org/10.1007/978-3-642-40328-6_26
http://dx.doi.org/10.1007/978-3-642-40328-6_26
http://dx.doi.org/10.1007/978-3-642-28914-9_18
http://dx.doi.org/10.1007/978-3-642-28914-9_18

658 M. Bun and T. Steinke

[DKM+06] Dwork, C., Kenthapadi, K., McSherry, F., Mironov, I., Naor, M.: Our data,
ourselves: privacy via distributed noise generation. In: Vaudenay, S. (ed.)
EUROCRYPT 2006. LNCS, vol. 4004, pp. 486–503. Springer, Heidelberg
(2006). doi:10.1007/11761679 29

[DL09] Dwork, C., Lei, J.: Differential privacy and robust statistics. In: Proceed-
ings of the 41st Annual ACM Symposium on Theory of Computing, STOC
2009, Bethesda, MD, USA, 31 May - 2 June 2009, pp. 371–380 (2009)

[DMNS06] Dwork, C., McSherry, F., Nissim, K., Smith, A.: Calibrating noise to sen-
sitivity in private data analysis. In: Halevi, S., Rabin, T. (eds.) TCC 2006.
LNCS, vol. 3876, pp. 265–284. Springer, Heidelberg (2006). doi:10.1007/
11681878 14

[DR16] Dwork, C., Rothblum, C.: Concentrated differential privacy. CoRR,
abs/1603.01887 (2016)

[DRV10] Dwork, C., Rothblum, G.N., Vadhan, S.P.: Boosting and differential pri-
vacy. In: IEEE Symposium on Foundations of Computer Science (FOCS
2010), pp. 51–60. IEEE, 23–26 October 2010

[HT10] Hardt, M., Talwar, K.: On the geometry of differential privacy. In: Pro-
ceedings of the Forty-Second ACM Symposium on Theory of Computing,
STOC 2010, pp. 705–714, New York, NY, USA. ACM (2010)

[KOV15] Kairouz, P., Oh, S., Viswanath, P.: The composition theorem for differ-
ential privacy. In: Proceedings of the 32nd International Conference on
Machine Learning, ICML 2015, Lille, France, pp. 1376–1385, 6–11 July
2015

[MMP+10] McGregor, A., Mironov, I., Pitassi, T., Reingold, O., Talwar, K., Vadhan,
S.P.: The limits of two-party differential privacy. In: 51th Annual IEEE
Symposium on Foundations of Computer Science, FOCS 23–26, 2010,
Las Vegas, Nevada, USA, pp. 81–90, October 2010

[MT07] McSherry, F., Talwar, K.: Mechanism design via differential privacy. In:
48th Annual IEEE Symposium on Foundations of Computer Science,
FOCS 2007, pp. 94–103, October 2007

[MV16] Murtagh, J., Vadhan, S.P.: The complexity of computing the optimal com-
position of differential privacy. In: Proceedings of Theory of Cryptogra-
phy - 13th International Conference, TCC2016-A, Tel Aviv, Israel, 10-13
January 2016, Part I, pp. 157–175 (2016)

[Ren61] Rényi, A.: On measures of entropy, information. In: Proceedings of the
Fourth Berkeley Symposium on Mathematical Statistics, Probability: Con-
tributions to the Theory of Statistics, vol. 1, pp. 547–561. University of
California Press (1961)

[SU15a] Steinke, T., Ullman, J.: Between pure and approximate differential privacy.
CoRR, abs/1501.06095 (2015)

[SU15b] Steinke, T., Ullman, J.: Interactive fingerprinting codes, the hardness of
preventing false discovery. In: COLT (2015). http://arXiv.org/abs/1410.
1228

[Tar08] Tardos, G.: Optimal probabilistic fingerprint codes. J. ACM 55(2), 10
(2008)

[Ull13] Ullman, J.: Answering n {2+ o (1)} counting queries with differential pri-
vacy is hard. In: Proceedings of the Forty-Fifth Annual ACM Symposium
on Theory of Computing, pp. 361–370. ACM (2013)

[vEH14] van Erven, T., Harremos, P.: Rényi divergence and kullback-leibler diver-
gence. IEEE Trans. Inf. Theory 60(7), 3797–3820 (2014)

http://dx.doi.org/10.1007/11761679_29
http://dx.doi.org/10.1007/11681878_14
http://dx.doi.org/10.1007/11681878_14
http://arXiv.org/abs/1410.1228
http://arXiv.org/abs/1410.1228

Strong Hardness of Privacy from Weak
Traitor Tracing

Lucas Kowalczyk1(B), Tal Malkin1, Jonathan Ullman2, and Mark Zhandry3,4

1 Columbia University, New York, USA
luke@cs.columbia.edu

2 Northeastern University, Boston, USA
3 MIT, Cambridge, USA

4 Princeton University, Princeton, USA

Abstract. A central problem in differential privacy is to accurately
answer a large family Q of statistical queries over a data universe X.
A statistical query on a dataset D ∈ Xn asks “what fraction of the
elements of D satisfy a given predicate p on X?” Ignoring computa-
tional constraints, it is possible to accurately answer exponentially many
queries on an exponential size universe while satisfying differential pri-
vacy (Blum et al., STOC’08). Dwork et al. (STOC’09) and Boneh and
Zhandry (CRYPTO’14) showed that if both Q and X are of polynomial
size, then there is an efficient differentially private algorithm that accu-
rately answers all the queries. They also proved that if Q and X are
both exponentially large, then under a plausible assumption, no efficient
algorithm exists.

We show that, under the same assumption, if either the number of
queries or the data universe is of exponential size, then there is no dif-
ferentially private algorithm that answers all the queries. Specifically,
we prove that if one-way functions and indistinguishability obfuscation
exist, then:
1. For every n, there is a family Q of Õ(n7) queries on a data universe X

of size 2d such that no poly(n, d) time differentially private algorithm
takes a dataset D ∈ Xn and outputs accurate answers to every query
in Q.

2. For every n, there is a family Q of 2d queries on a data universe
X of size Õ(n7) such that no poly(n, d) time differentially private
algorithm takes a dataset D ∈ Xn and outputs accurate answers to
every query in Q.

In both cases, the result is nearly quantitatively tight, since there is an
efficient differentially private algorithm that answers Ω̃(n2) queries on
an exponential size data universe, and one that answers exponentially
many queries on a data universe of size Ω̃(n2).

Our proofs build on the connection between hardness of differential
privacy and traitor-tracing schemes (Dwork et al., STOC’09; Ullman,
STOC’13). We prove our hardness result for a polynomial size query set
(resp., data universe) by showing that they follow from the existence of a
special type of traitor-tracing scheme with very short ciphertexts (resp.,
secret keys), but very weak security guarantees, and then constructing
such a scheme.

The full version of this work appears on the IACR Crypto ePrint [26].

c© International Association for Cryptologic Research 2016
M. Hirt and A. Smith (Eds.): TCC 2016-B, Part I, LNCS 9985, pp. 659–689, 2016.
DOI: 10.1007/978-3-662-53641-4 25

660 L. Kowalczyk et al.

1 Introduction

The goal of privacy-preserving data analysis is to release rich statistical infor-
mation about a sensitive dataset while respecting the privacy of the individu-
als represented in that dataset. The past decade has seen tremendous progress
towards understanding when and how these two competing goals can be recon-
ciled, including surprisingly powerful differentially private algorithms as well as
computational and information-theoretic limitations. In this work, we further
this agenda by showing a strong new computational bottleneck in differential
privacy.

Consider a dataset D ∈ Xn where each of the n elements is one individual’s
data, and each individual’s data comes from some data universe X. We would
like to be able to answer sets of statistical queries on D, which are queries of the
form “What fraction of the individuals in D satisfy some property p?” However,
differential privacy [14] requires that we do so in such a way that no individual’s
data has significant influence on the answers.

If we are content answering a relatively small set of queries Q, then it suffices
to perturb the answer to each query with independent noise from an appropriate
distribution. This algorithm is simple, very efficient, differentially private, and
ensures good accuracy—say, within ±.01 of the true answer—as long as |Q| � n2

queries [5,13,14,16].
Remarkably, the work of Blum et al. [6] showed that it is possible to output

a summary that allows accurate answers to an exponential number of queries—
nearly 2n—while ensuring differential privacy. However, neither their algorithm
nor the subsequent improvements [15,17,22,23,29,30,35] are computationally
efficient. Specifically, they all require time at least poly(n, |X|, |Q|) to privately
and accurately answer a family of statistical queries Q on a dataset D ∈ Xn.
Note that the size of the input is n log |X| bits, so a computationally efficient
algorithm runs in time poly(n, log |X|).1 For example, in the common setting
where each individual’s data consists of d binary attributes, so X = {0, 1}d, the
size of the input is nd but |X| = 2d. As a result, all known private algorithms for
answering arbitrary sets of statistical queries are inefficient if either the number
of queries or the size of the data universe is superpolynomial.

This accuracy vs. computation tradeoff has been the subject of extensive
study. Dwork et al. [15] showed that the existence of cryptographic traitor-tracing
schemes [11] yields a family of statistical queries that cannot be answered accu-
rately and efficiently with differential privacy. Applying recent traitor-tracing
schemes [8], we conclude that, under plausible cryptographic assumptions (dis-
cussed below), if both the number of queries and the data universe can be super-
polynomial, then there is no efficient differentially private algorithm. [34] used
variants of traitor-tracing schemes to show that in the interactive setting, where

1 It may require exponential time just to describe and evaluate an arbitrary counting
query, which would rule out efficiency for reasons that have nothing to do with
privacy. In this work, we restrict attention to queries that are efficiently computable
in time poly(n, log |X|), so they are not the bottleneck in the computation.

Strong Hardness of Privacy from Weak Traitor Tracing 661

the queries are not fixed but are instead given as input to the algorithm, assum-
ing one-way functions exist, there is no private and efficient algorithm that
accurately answers more than Õ(n2) statistical queries. All of the algorithms
mentioned above work in this interactive setting, but for many applications we
only need to answer a fixed family of statistical queries.

Despite the substantial progress, there is still a basic gap in our understand-
ing. The hardness results for Dwork et al. apply if both the number of queries
and the universe are large. But the known algorithms require exponential time
if either of these sets is large. Is this necessary? Are there algorithms that run
in time poly(n, log |X|, |Q|) or poly(n, |X|, log |Q|)?

Our main result shows that under the same plausible cryptographic assump-
tions, the answer is no—if either the data universe or the set of queries can
be superpolynomially large, then there is some family of statistical queries that
cannot be accurately and efficiently answered while ensuring differential privacy.

1.1 Our Results

Our first result shows that if the data universe can be of superpolynomial size
then there is some fixed family of polynomially many queries that cannot be
efficiently answered under differential privacy. This result shows that the effi-
cient algorithm for answering an arbitrary family of |Q| � n2 queries by adding
independent noise is optimal up to the specific constant in the exponent.

Theorem 1 (Hardness for small query sets). Assume the existence of indis-
tinguishability obfuscation and one-way functions. Let λ ∈ N be a computation
parameter. For any polynomial n = n(λ), there is a sequence of pairs {(Xλ, Qλ)}
with |Xλ| = 2λ and |Qλ| = Õ(n7) such that there is no polynomial time differ-
entially private algorithm that takes a dataset D ∈ Xn

λ and outputs an accurate
answer to every query in Qλ up to an additive error of ±1/3.

Our second result shows that, even if the data universe is required to be
of polynomial size, there is a fixed set of superpolynomially many queries that
cannot be answered efficiently under differential privacy. When we say that an
algorithm efficiently answers a set of superpolynomially many queries, we mean
that it efficiently outputs a summary such that there is an efficient algorithm
for obtaining an accurate answer to any query in the set. For comparison, if
|X| � n2, then there is a simple poly(n, |X|) time differentially private algorithm
that accurately answers superpolynomially many queries. Our result shows that
this efficient algorithm is optimal up to the specific constant in the exponent.

Theorem 2 (Hardness for small query sets). Assume the existence of indis-
tinguishability obfuscation and one-way functions. Let λ ∈ N be a computation
parameter. For any polynomial n = n(λ), there is a sequence of pairs {(Xλ, Qλ)}
with |Xλ| = Õ(n7) and |Qλ| = 2λ such that there is no polynomial time differ-
entially private algorithm that takes a dataset D ∈ Xn

λ and outputs an accurate
answer to every query in Qλ up to an additive error of ±1/3.

662 L. Kowalczyk et al.

Before we proceed to describe our techniques, we make a few remarks about
these results. In both of these results, the constant 1/3 in our result is arbitrary,
and can be replaced with any constant smaller than 1/2. We also remark that,
when we informally say that an algorithm is differentially private, we mean that
it satisfies (ε, δ)-differential privacy for some ε = O(1) and δ = o(1/n). These
are effectively the largest parameters for which differential privacy is a meaning-
ful notion of privacy. That our hardness results apply to these parameters only
makes our results stronger. Finally, we remark that it is possible to show that our
results also rule out the weaker notion of computational differential privacy [28].

On Indistinguishability Obfuscation. Indistinguishability obfuscation (iO) has
recently become a central cryptographic primitive. The first candidate con-
struction, proposed just a couple years ago [19], was followed by a flurry of
results demonstrating the extreme power and wide applicability of iO (cf.,
[4,8,19,24,31]). However, the assumption that iO exists is currently poorly
understood, and the debate over the plausibility of iO is far from settled. While
some specific proposed iO schemes have been attacked [12,27], other schemes
seem to resist all currently known attacks [1,20]. We also do not know how to
base iO on a solid, simple, natural computational assumption (some attempts
based on multilinear maps have been made [21], but they were broken with
respect to all current multilinear map constructions).

Nevertheless, our results are meaningful whether or not iO exists. If iO exists,
our results show that certain tasks in differential privacy are intractable. Inter-
estingly, unlike many previous results relying on iO, these conclusions were not
previously known to follow from even the much stronger (and in fact, false)
assumption of virtual black-box obfuscation. If, on the other hand, iO does
not exist, then our results still demonstrate a barrier to progress in differential
privacy—such progress would need to prove that iO does not exist. Alternatively,
our results highlight a possible path toward proving that iO does not exist. We
note that other “incompatibility” results are known for iO; for example, iO and
certain types of hash functions cannot simultaneously exist [3,9].

1.2 Techniques

(Weak) PLBE Schemes and the Hardness of Privacy. We prove our
results by building on the connection between differentially private algorithms
for answering statistical queries and traitor-tracing schemes discovered by Dwork
et al. [15]. Traitor-tracing schemes were introduced by Chor et al. [11] for the
purpose of identifying pirates who violate copyright restrictions.

Although previous results are described in the language of traitor-tracing,
our results are simpler to describe in the language of private linear broadcast
encryption (PLBE), which is a simpler primitive that implies traitor-tracing in
a very direct way (e.g. [7]). We will thus refer to PLBE rather than traitor-tracing
in all technical discussions going forward. A PLBE scheme allows a sender to
generate keys for n users so that (1) the sender can broadcast an encrypted

Strong Hardness of Privacy from Weak Traitor Tracing 663

message that can be decrypted by any subset of users [1, i] for 0 ≤ i ≤ n,2 so
that any user outside of [1, i] will decrypt 0, and (2) the index i describing the
set of users is hidden in the sense that any coalition of users that excludes user
i cannot distinguish messages sent to the set [1, i] from messages sent to the set
[1, i − 1].

Dwork et al. show that the existence of traitor-tracing schemes implies hard-
ness results for differential privacy. In the language of PLBE, the reduction is
as follows: Suppose a coalition of users takes their keys and builds a dataset
D ∈ Xn where each element of the dataset contains one of their user keys. The
family Q will contain a query qc for each possible ciphertext c. The query qc asks
“What fraction of the elements (user keys) in D would decrypt the ciphertext c
to the message 1?”

Suppose there were an efficient algorithm that accurately answers every query
qc in Q. Then the coalition could run it on the dataset D to produce a sum-
mary that can efficiently decrypt the ciphertexts. That means if c encrypts the
message 1 to all users [1, n], the summary outputs an answer close to 1, and if c
encrypts a message 1 to the empty set of users, the summary outputs an answer
close to 0. Thus, there exists a user i such that the summary is distinguishing
encryptions to the group [1, i] from encryptions to [1, i − 1]. Differential privacy
requires that the summary’s behavior is essentially the same even if run it on
the dataset D′ that excludes the secret key of user i. However, that means there
is an efficient algorithm that takes the keys of all users excluding i and distin-
guishes encryptions to the group [1, i] from encryptions to the group [1, i − 1],
which violates the second property of the PLBE scheme.

To instantiate this result, we need a PLBE. Observe that the data universe
contains one element for every possible user key, and the set of queries contains
one query for every ciphertext, and we want to minimize the size of these sets.
Boneh and Zhandry constructed a traitor-tracing scheme where both the keys
and the ciphertexts have length equal to the security parameter λ, which under
the Dwork et al. reduction yields hardness for a data universe and query set
each of size 2λ. The main contribution of this work is to show that we can
reduce either the number of possible ciphertexts or the number of possible keys
to poly(n) while the other remains of size 2λ.

But how is it possible to have a secure PLBE scheme with poly(n) ciphertexts
(resp., keys)? Even a semantically secure private key encryption scheme requires
superpolynomially many ciphertexts (resp., keys)! Here we rely on observations
from [34] showing that in order to show hardness for differential privacy, it suffices
to have a PLBE scheme with very weak functionality and security. First, in the
reduction, we only encrypt the message 1, so only the group [1, i] is actually
hidden. Second, in the reduction, the differentially private algorithm only has
access to the user’s keys, and there does not need to be a public encryption
key or access to an encryption oracle. Thus, the adversary does not have the
ability to generate encryptions to arbitrary groups [1, i]. Finally, the quantitative

2 We use [1, i] to denote the discrete interval {1, 2, . . . , i}, with the convention that
[1, 0] = ∅.

664 L. Kowalczyk et al.

version of the reduction only requires that the coalition has advantage o(1/n) in
distinguishing encryptions to different groups, rather than negligible. All three
of these relaxations are necessary for making the number of ciphertexts (resp.,
keys) poly(n), and, as we show, are sufficient as well.

Weak PLBE Schemes from Obfuscation. In order to provide intuition for
how we can achieve PLBE with a ciphertext or key space of size poly(n), we will
assume the existence of virtual black-box obfuscation (VBB). While our actual
results use iO, we emphasize that a PLBE scheme with the right properties to
establish our results was previously not even known to follow from VBB.

Polynomially Many Ciphertexts. Consider the following simple scheme:
Let the set of ciphertexts be [m] for an appropriate m = poly(n). Choose a
pseudorandom function f : [m] → {0, 1, . . . , n} and associate each ciphertext
c ∈ [m] with the group of users [1, f(c)]. Pseudorandomness is only used to keep
the description of f short, and for intuition it’s fine to think of f as truly random.
To encrypt to a set [1, i], choose a random ciphertext c ∈ f−1(i) and send it.
Each user i will get a secret key containing an obfuscation of the program Pi(c)
that computes j = f(c) and, if outputs 1 if j ≥ i and otherwise outputs 0.

Consider a coalition with keys for every user except some user i. Since there
are only poly(n) ciphertexts, we may as well assume that these users evaluate
each of their obfuscated programs on every ciphertext c, and VBB security of
the obfuscation ensures that they “cannot learn anything else” from their keys.
By evaluating their programs on every ciphertext, they can determine the value
of f(c) exactly on every ciphertext c such that f(c) < i − 1 or f(c) > i. Since f
is pseudorandom, for ciphertexts such that f(c) ∈ {i − 1, i}, they have at most
a negligible advantage in guessing whether f(c) = i or f(c) = i − 1, for any
ciphertext c. Thus, if the coalition guesses the value of f(c) on all ciphertexts
c ∈ f−1({i − 1, i}), a simple Chernoff bound shows that they will guess at most
1/2+O(

√
log(n)/T) of them correctly, where T is the size of f−1({i − 1, i}). For

a PRF, the size of this set will be at least m/2n with overwhelming probability.
Thus, in order to ensure that his overall advantage is o(1/n), it suffices to choose
m = Õ(n3).

In this straw-man scheme, the length of the ciphertext will clearly be
O(log(n)). The user keys contain an obfuscation of a poly(λ + log(n)) time pro-
gram, so the user keys are poly(λ+log(n)), so this scheme satisfies our efficiency
requirements.

While the scheme is very simple to describe using VBB, replacing VBB
with iO introduces some additional technicalities, and requires a new notion
of puncturable PRF (Sect. 5.2). These technicalities are also the reason we use
m = Õ(n7) ciphertexts.

Polynomially Many Keys. Our scheme with polynomially many keys is
roughly “dual” to the scheme with polynomially many ciphertexts. Let the set

Strong Hardness of Privacy from Weak Traitor Tracing 665

of user keys be [n] × [m] for an appropriate choice of m = poly(n). Each user
i = 1, . . . , n will receive a secret key (i, sk i) for a random s ←R [m]. To encrypt
a message to a group [1, i] produce a VBB obfuscation O of the following pro-
gram: The input is a pair (j, s) ∈ [n] × [m]. If s = sk j , then output 1 if j ∈ [1, i]
and otherwise output 0. Otherwise, output the value r(j, s) for a pseudorandom
function r. Again, pseudorandomness is only used to keep the description of the
r short, and for intuition it’s fine to think of r as an independent random value
for each input (j, s).

Suppose the coalition has the keys for every user except i and a ciphertext
encrypted to the group [1, i − b] for b ∈ {0, 1}. We want to claim that the
coalition has advantage at most o(1/n) in trying to determine b. Since there
are only polynomially many pairs (j, s), the coalition might as well evaluated
the obfuscated program on every one of the inputs, and VBB security of the
obfuscation ensures that they “cannot learn anything else” from their keys and
the ciphertext. Observe that by evaluating the ciphertext on all inputs (j, s),
they will actually evaluate the ciphertext on the input (i, sk i) belonging to user
i, but they do not actually know which input of the form (i, s) was the correct
one.

By (pseudo)randomness of r, the only values that contain any information
about the bit b are o = (O(i, s))s∈[m]. In the case that b = 0, meaning the
ciphertext was for group [1, i−1], o is distributed as a (pseudo)random vector in
{0, 1}m except that one random entry corresponding to the pair (i, sk i) is set to
1. Similarly, if b = 1, then o is distributed as a (pseudo)random vector in {0, 1}m

with one random entry set to 0. A simple argument based on Renyi-divergence
shows that these two distributions are O(1/

√
m)-close in statistical distance, so

the coalition’s advantage in determining b is at most O(1/
√

m). Thus, it suffices
to take m = Õ(n2) to obtain the level of security we need, corresponding to
nm = Õ(n3) keys.

As before, moving from VBB to iO introduces additional technicalities, lead-
ing to Õ(n7) keys. We remark that for both the short-ciphertext and short-key
schemes, obtaining the optimal Õ(n2) ciphertexts or keys seems to require both
coming up with a more efficient VBB scheme and avoiding the loss in efficiency
from moving to iO, or using another approach entirely.

1.3 Related Work

Theorem 1 should be contrasted with the line of work showing that differentially
private algorithms can efficiently answer many more than n2 simple queries.
These results include algorithms for highly structured queries like point queries,
threshold queries, and conjunctions (see e.g. [2,33] and the references therein).

Ullman and Vadhan [36] (building on Dwork et al. [15]) show that, assuming
one-way functions, no differentially private and computationally efficient algo-
rithm that outputs a synthetic dataset can accurately answer even the very
simple family of 2-way marginals. This result is incomparable to ours, since it
applies to a very small and simple family of statistical queries, but necessarily
only applies to algorithms that output synthetic data.

666 L. Kowalczyk et al.

There is also a line of work using fingerprinting codes to prove information-
theoretic lower bounds on differentially private mechanisms [10,18,32]. Namely,
that if the data universe is of size exp(n2), then there is no differentially private
algorithm, even a computationally unbounded one, that can answer more than n2

statistical queries. Fingerprinting codes are essentially the information-theoretic
analogue of traitor-tracing schemes, and thus these results are technically related,
although the models are incomparable.

1.4 Paper Outline

In Sect. 2 we will give the necessary background on differential privacy. In Sect. 3
we will give our definition of weak PLBE schemes, and in Sect. 4 we will connect
them to differential privacy. In Sect. 5 we will define some cryptographic tools
that we use to construct PLBE schemes. In Sect. 6 we will construct the short-
ciphertext scheme we use to prove Theorem 1 and in Sect. 7 we will construct
the short-key scheme we use to prove Theorem 2.

2 Differential Privacy Preliminaries

2.1 Differentially Private Algorithms

A dataset D ∈ Xn is an ordered set of n rows, where each row corresponds
to an individual, and each row is an element of some the data universe X. We
write D = (D1, . . . , Dn) where Di is the i-th row of D. We will refer to n as
the size of the dataset. We say that two datasets D,D′ ∈ X∗ are adjacent if
D′ can be obtained from D by the addition, removal, or substitution of a single
row, and we denote this relation by D ∼ D′. In particular, if we remove the
i-th row of D then we obtain a new dataset D−i ∼ D. Informally, an algorithm
A is differentially private if it is randomized and for any two adjacent datasets
D ∼ D′, the distributions of A(D) and A(D′) are similar.

Definition 3 (Differential Privacy [14]). Let A : Xn → S be a randomized
algorithm. We say that A is (ε, δ)-differentially private if for every two adjacent
datasets D ∼ D′ and every subset T ⊆ S, P [A(D) ∈ T] ≤ eε · P [A(D′) ∈ T] + δ.

In this definition, ε, δ may be a function of n.

2.2 Algorithms for Answering Statistical Queries

In this work we study algorithms that answer statistical queries (which are also
sometimes called counting queries, predicate queries, or linear queries in the
literature). For a data universe X, a statistical query on X is defined by a
predicate q : X → {0, 1}. Abusing notation, we define the evaluation of a query
q on a dataset D = (D1, . . . , Dn) ∈ Xn to be 1

n

∑n
i=1 q(Di).

A single statistical query does not provide much useful information about the
dataset. However, a sufficiently large and rich set of statistical queries is sufficient

Strong Hardness of Privacy from Weak Traitor Tracing 667

to implement many natural machine learning and data mining algorithms [25],
thus we are interesting in differentially private algorithms to answer such sets.
To this end, let Q = {q : X → {0, 1}} be a set of statistical queries on a data
universe X.

Informally, we say that a mechanism is accurate for a set Q of statistical
queries if it answers every query in the family to within error ±α for some
suitable choice of α > 0. Note that 0 ≤ q(D) ≤ 1, so this definition of accuracy
is meaningful when α < 1/2.

Before we define accuracy, we note that the mechanism may represent its
answer in any form. That is, the mechanism outputs may output a summary
S ∈ S that somehow represents the answers to every query in Q. We then
require that there is an evaluator Eval : S × Q → [0, 1] that takes the summary
and a query and outputs an approximate answer to that query. That is, we think
of Eval(S, q) as the mechanism’s answer to the query q. We will abuse notation
and simply write q(S) to mean Eval(S, q).3

Definition 4 (Accuracy). For a family Q of statistical queries on X, a dataset
D ∈ Xn and a summary s ∈ S, we say that s is α-accurate for Q on D if
∀q ∈ Q |q(D) − q(s)| ≤ α. For a family of statistical queries Q on X, we say
that an algorithm A : Xn → S is (α, β)-accurate for Q given a dataset of size n
if for every D ∈ Xn, P [A(D) is α-accurate for Q on X] ≥ 1 − β.

In this work we are typically interested in mechanisms that satisfy the very
weak notion of (1/3, o(1/n))-accuracy, where the constant 1/3 could be replaced
with any constant < 1/2. Most differentially private mechanisms satisfy quan-
titatively much stronger accuracy guarantees. Since we are proving hardness
results, this choice of parameters makes our results stronger.

2.3 Computational Efficiency

Since we are interested in asymptotic efficiency, we introduce a computation
parameter λ ∈ N. We then consider a sequence of pairs {(Xλ, Qλ)}λ∈N where
Qλ is a set of statistical queries on Xλ. We consider databases of size n where
n = n(λ) is a polynomial. We then consider algorithms A that take as input a
dataset Xn

λ and output a summary in Sλ where {Sλ}λ∈N is a sequence of output
ranges. There is an associated evaluator Eval that takes a query q ∈ Qλ and a
summary s ∈ Sλ and outputs a real-valued answer. The definitions of differential
privacy and accuracy extend straightforwardly to such sequences.

3 If we do not restrict the running time of the algorithm, then it is without loss
of generality for the algorithm to simply output a list of real-valued answers to
each queries by computing Eval(S, q) for every q ∈ Q. However, this transformation
makes the running time of the algorithm at least |Q|. The additional generality
of this framework allows the algorithm to run in time sublinear in |Q|. Using this
framework is crucial, since some of our results concern settings where the number of
queries is exponential in the size of the dataset.

668 L. Kowalczyk et al.

We say that such an algorithm is computationally efficient if the running
time of the algorithm and the associated evaluator run in time polynomial in
the computation parameter λ. We remark that in principle, it could require at
many as |X| bits even to specify a statistical query, in which case we cannot
hope to answer the query efficiently, even ignoring privacy constraints. In this
work we restrict attention exclusively to statistical queries that are specified by
a circuit of size poly(log |X|), and thus can be evaluated in time poly(log |X|),
and so are not the bottleneck in computation. To remind the reader of this fact,
we will often say that Q is a family of efficiently computable statistical queries.

3 Weakly Secure Private Linear Broadcast Schemes

We now describe a very relaxed notion of private linear broadcast schemes whose
existence will imply the hardness of differentially private data release.

3.1 Syntax and Correctness

For a function n : N → N and a sequence {Kλ, Cλ}λ∈N, a (n, {Kλ, Cλ})-private
linear broadcast scheme is a tuple of efficient algorithms Π = (Setup,Enc,Dec)
with the following syntax.

– Setup takes as input a security parameter λ, runs in time poly(λ), and outputs
n = n(λ) secret user keys sk1, . . . , skn ∈ Kλ and a secret master key mk . We
will write k = (sk1, . . . , skn,mk) to denote the set of keys.

– Enc takes as input a master key mk and an index i ∈ {0, 1, . . . , n}, and outputs
a ciphertext c ∈ Cλ. If c ←R Enc(j,mk) then we say that c is encrypted to
index j.

– Dec takes as input a ciphertext c and a user key sk i and outputs a single bit
b ∈ {0, 1}. We assume for simplicity that Dec is deterministic.

Correctness of the scheme asserts that if k are generated by Setup, then for
any pair i, j, Dec(sk i,Enc(mk , j)) = I{i ≤ j}. For simplicity, we require that this
property holds with probability 1 over the coins of Setup and Enc, although it
would not affect our results substantively if we required only correctness with
high probability.

Definition 5 (Perfect Correctness). An (n, {Kλ, Cλ})-private linear broad-
cast scheme is perfectly correct if for every λ ∈ N, and every i, j ∈ {0, 1, . . . , n}

P
k=Setup(λ), c=Enc(mk ,j)

[Dec(sk i, c) = I{i ≤ j}] = 1.

3.2 Weak Index-Hiding Security

Intuitively, the security property we want is that any computationally efficient
adversary who is missing one of the user keys sk i∗ cannot distinguish cipher-
texts encrypted with index i∗ from index i∗ − 1, even if that adversary holds

Strong Hardness of Privacy from Weak Traitor Tracing 669

all n − 1 other keys sk−i∗ . In other words, an efficient adversary cannot infer
anything about the encrypted index beyond what is implied by the correctness
of decryption and the set of keys he holds.

More precisely, consider the following two-phase experiment. First the adver-
sary is given every key except for sk i∗ , and outputs a decryption program S.
Then, a challenge ciphertext is encrypted to either i∗ or to i∗ − 1. We say that
the private linear broadcast scheme is secure if for every polynomial time adver-
sary, with high probability over the setup and the decryption program chosen
by the adversary, the decryption program has small advantage in distinguishing
the two possible indices.

Definition 6 (Weak Index Hiding). A private linear broadcast scheme Π
satisfies weak index-hiding security if for every sufficiently large λ ∈ N, every
i∗ ∈ [n(λ)], and every adversary A with running time poly(λ),

P
k=Setup(λ)

S=A(sk−i∗)

[
P [S(Enc(mk , i∗)) = 1] − P [S(Enc(mk , i∗ − 1)) = 1] >

1
2en

]
≤ 1

2en
(1)

In the above, the inner probabilities are taken over the coins of Enc and S.

Note that in the above definition we have fixed the success probability of the
adversary for simplicity. Moreover, we have fixed these probabilities to relatively
large ones. Requiring only a polynomially small advantage is crucial to achieving
the key and ciphertext lengths we need to obtain our results, while still being
sufficient to establish the hardness of differential privacy.

The Index-Hiding and Two-Index-Hiding Games. While Definition 6
is the most natural, in this section we consider some related ways of defining
security that will be easier to work with when we construct and analyze our
schemes. Consider the following IndexHiding game (Fig. 1).

The challenger generates keys k = (sk1, . . . , skn,mk) ←R Setup(λ).
The adversary A is given keys sk−i∗ and outputs a decryption program S.
The challenger chooses a bit b ←R {0, 1}
The challenger generates an encryption to index i∗ − b, c ←R Enc(mk , i∗ − b)
The adversary makes a guess b′ = S(c)

Fig. 1. IndexHiding[i∗]

Let IndexHiding[i∗, k , S] be the game IndexHiding[i∗] where we fix the
choices of k and S. Also, define

Adv[i∗, k , S] = P
IndexHiding[i∗,k ,S]

[b′ = b] − 1
2
.

670 L. Kowalczyk et al.

so that

P
IndexHiding[i∗]

[b′ = b] − 1
2

= E
k=Setup(λ)

S=A(sk−i∗)

[Adv[i∗, k , S]]

Then the following is equivalent to (1) in Definition 6 as

P
k=Setup(λ), S=A(sk−i∗)

[
Adv[i∗, k , S] >

1
4en

]
≤ 1

2en
(2)

In order to prove that our schemes satisfy weak index-hiding security, we
will go through an intermediate notion that we call two-index-hiding security.
To see why this is useful, In our constructions it will be fairly easy to prove that
Adv[i∗] is small, but because Adv[i∗, k , S] can be positive or negative, that alone
is not enough to establish (2). Thus, in order to establish (2) we will analyze the
following variant of the index-hiding game (Fig. 2).

The challenger generates keys k = (sk1, . . . , skn,mk) ←R Setup.
The adversary A is given keys sk−i∗ and outputs a decryption program S.
Choose b0 ←R {0, 1} and b1 ←R {0, 1} independently.
Let c0 ←R Enc(i∗ − b0;mk) and c1 ←R Enc(i∗ − b1;mk).
Let b′ = S(c0, c1).

Fig. 2. TwoIndexHiding[i∗]

Analogous to what we did with IndexHiding, we can define the quantity
TwoIndexHiding[i∗, k , S] to be the game TwoIndexHiding[i∗] where we fix
the choices of k and S, and define

TwoAdv[i∗] = P
TwoIndexHiding[i∗]

[b′ = b0 ⊕ b1] − 1
2

TwoAdv[i∗, k , S] = P
TwoIndexHiding[i∗,k ,S]

[b′ = b0 ⊕ b1] − 1
2

so that

P
TwoIndexHiding[i∗]

[b′ = b0 ⊕ b1] − 1
2

= E
k=Setup(λ),S=A(sk−i∗)

[TwoAdv[i∗, k , S]]

The crucial feature is that if we can bound the expectation of TwoAdv then
we get a bound on the expectation of Adv2. Since Adv2 is always positive, we
can apply Markov’s inequality to establish (2). Formally, we have the following
claim.

Strong Hardness of Privacy from Weak Traitor Tracing 671

Claim 1. Suppose that for every efficient adversary A, λ ∈ N, and index i∗ ∈
[n(λ)], TwoAdv[i∗] ≤ ε. Then for every efficient adversary A, λ ∈ N, and index
i∗ ∈ [n(λ)],

E
k=Setup(λ),

S←A(sk−i∗)

[
Adv[i∗, k , S]2

]
≤ ε

2
. (3)

Proof. Given any adversary A in the IndexHiding game, consider the following
adversary A2 in the TwoIndexHiding game, which, when given a set of keys,
runs A with the same keys to get program SA, then creates and outputs the
program SA2 , which on input c0, c1, runs S on c0 to get output b′

0, runs S on c1
to get output b′

1, then outputs b′ = b′
0 ⊕ b′

1. Then, for this A2,

TwoAdv[i∗] = E
k=Setup(λ),

SA2
←A2(sk−i∗)

[TwoAdv[i∗, k , SA2]]

= E
k=Setup(λ),

SA2
←A2(sk−i∗)

⎡

⎢
⎣ Pr

bi←R{0,1},
ci←Enc(i∗−bi)

[b′ = b0 ⊕ b1 : b′ = SA2(c0, c1)] − 1
2

⎤

⎥
⎦

= E
k=Setup(λ),

SA←A(sk−i∗)

⎡

⎢
⎣ Pr

bi←R{0,1},
ci←Enc(i∗−bi)

[b′
0 ⊕ b′

1 = b0 ⊕ b1 : b′
i = SA(ci)] − 1

2

⎤

⎥
⎦

= E
k=Setup(λ),

SA←A(sk−i∗)

[
2 · Adv[i∗, k , SA]2

]

So if every efficient adversary A′, λ ∈ N, and index i∗ ∈ [n(λ)] satis-
fies TwoAdv[i∗] ≤ ε, then this condition also holds for A2’s TwoAdv[i∗] =

E
k=Setup(λ),

SA←A(sk−i∗)

[
2 · Adv[i∗, k , SA]2

]
, which implies E

k=Setup(λ),
SA←A(sk−i∗)

[
Adv[i∗, k , SA]2

]
≤ ε

2 .

Using this claim we can prove the following lemma.

Lemma 7. Let Π be a private linear broadcast scheme such that for every effi-
cient adversary A, λ ∈ N, and index i∗ ∈ [n(λ)], TwoAdv[i∗] ≤ 1

200n3 . Then Π
satisfies weak index-hiding security.

Proof. By applying Claim 1 to the assumption of the lemma, we have that for
every efficient adversary A,

E
k=Setup(λ),S=A(sk−i∗)

[
Adv[i∗, k , S]2

]
≤ 1

400n3

672 L. Kowalczyk et al.

Now we have

E
k = Setup(λ),S=A(sk−i∗)

[
Adv[i∗, k , S]2

]
≤ 1

400n3

=⇒ P
k = Setup(λ),S=A(sk−i∗)

[
Adv[i∗, k , S]2 >

1
(4en)2

]
≤ (4en)2

400n3
≤ 1

2en

=⇒ P
k = Setup(λ),S=A(sk−i∗)

[
Adv[i∗, k , S] >

1
4en

]
≤ 1

2en

To complete the proof, observe that this final condition is equivalent to the
definition of weak index-hiding security (Definition 6).

In light of this lemma, we will focus on proving that the schemes we construct
in the following sections satisfying the condition TwoAdv[i∗] ≤ 1

200n3 , which will
be easier than directly establishing Definition 6.

4 Hardness of Differential Privacy from PLBE

In this section we prove that a private linear broadcast scheme satisfying perfect
correctness and index-hiding security yields a family of statistical queries that
cannot be answered accurately by an efficient differentially private algorithm.
The proof is a fairly straightforward adaptation of the proofs in Dwork et al.
[15] and Ullman [34] that various sorts of traitor-tracing schemes imply hardness
results for differential privacy. We include the result for completeness, and to
verify that our very weak definition of private linear broadcast is sufficient to
prove hardness of differential privacy.

Theorem 8. Suppose there is an (n, {Kλ, Cλ})-private linear broadcast scheme
that satisfies perfect correctness (Definition 5) and weak index-hiding security
(Definition 6). Then there is a sequence of of pairs {Xλ, Qλ}λ∈N where Qλ is a
set of statistical queries on Xλ, |Qλ| = |Cλ|, and |Xλ| = |Kλ| such that there is
no algorithm A that is simultaneously,

1. (1, 1/2n)-differentially private,
2. (1/3, 1/2n)-accurate for Qλ on datasets D ∈ X

n(λ)
λ , and

3. computationally efficient.

Theorems 1 and 2 in the introduction follow by combining Theorem 8 above
with the constructions of private linear broadcast schemes in Sect. 6. The proof
of Theorem 8 closely follows the proofs in Dwork et al. [15] and Ullman [34]. We
give the proof both for completeness and to verify that our definition of private
linear broadcast suffices to establish the hardness of differential privacy.

Proof. Let Π = (Setup,Enc,Dec) be the promised (n, {Kλ, Cλ}) private linear
broadcast scheme. For every λ ∈ N, we can define a distribution on datasets
D ∈ X

n(λ)
λ as follows. Run Setup(λ) to obtain n = n(λ) secret user keys

Strong Hardness of Privacy from Weak Traitor Tracing 673

sk1, . . . , skn ∈ Kλ and a master secret key mk . Let the dataset be D =
(sk1, . . . , skn) ∈ Xn

λ where we define the data universe Xλ = Kλ. Abusing
notation, we’ll write (D,mk) ←R Setup(λ).

Now we define the family of queries Qλ on Xλ as follows. For every ciphertext
c ∈ Cλ, we define the predicate qc ∈ Qλ to take as input a user key sk i ∈ Kλ and
output Dec(sk i, c). That is, Qλ = {qc(sk) = Dec(sk , c) | c ∈ Cλ} . Recall that,
by the definition of a statistical query, for a dataset D = (sk1, . . . , skn), we have

qc(D) = (1/n)
n∑

i=1

Dec(sk i, c).

Suppose there is an algorithm A that is computationally efficient and is
(1/3, 1/2n)-accurate for Qλ given a dataset D ∈ Xn

λ . We will show that A
cannot satisfy (1, 1/2n)-differential privacy. By accuracy, for every λ ∈ N and
every fixed dataset D ∈ Xn

λ , with probability at least 1 − 1/2n, A(D) outputs a
summary S ∈ Sλ that is 1/3-accurate for Qλ on D. That is, for every D ∈ Xn

λ ,
with probability at least 1 − 1/2n,

∀qc ∈ Qλ |qc(D) − qc(S)| ≤ 1/3. (4)

Suppose that S is indeed 1/3-accurate. By perfect correctness of the private
linear broadcast scheme (Definition 5), and the definition of Q, we have that
since (D,mk) = Setup(λ),

(c = Enc(mk , 0)) =⇒ (qc(D) = 0) (c = Enc(mk , n)) =⇒ (qc(D) = 1). (5)

Combining Eqs. (4) and (5), we have that if (D,mk) = Setup(λ), S ←R A(D),
and S is 1/3-accurate, then we have both P

c←REnc(mk ,0)
[qc(S) ≤ 1/3] = 1 and

P
c←REnc(mk ,n)

[qc(S) ≤ 1/3] = 0 Thus, for every (D,mk) and S that is 1/3-

accurate, there exists an index i ∈ {1, . . . , n} such that
∣
∣
∣
∣ P
c←REnc(mk ,i)

[qc(S) ≤ 1/3] − P
c←REnc(mk ,i−1)

[qc(S) ≤ 1/3]
∣
∣
∣
∣ >

1
n

(6)

By averaging, using the fact that S is 1/3-accurate with probability at least
1 − 1/2n, there must exist an index i∗ ∈ {1, . . . , n} such that

P
(D,mk)=Setup(λ)

S←RA(D)

[∣∣∣∣ P
c=Enc(mk,i∗)

[
qc(S) ≤ 1

3

]
− P

c=Enc(mk,i∗−1)

[
qc(S) ≤ 1

3

]∣∣∣∣ >
1

n

]
≥ 1

n
(7)

Assume, for the sake of contradiction that A is (1, 1/2n)-differentially pri-
vate. For a given i,mk , let Si,mk ⊆ Sλ be the set of summaries S such that (6)
holds. Then, by (7), we have P

(D,mk)←RSetup(λ)
[A(D) ∈ Si∗,mk] ≥ 1

n . By differen-

tial privacy of A, we have

P
(D,mk)←RSetup

[A(D−i∗) ∈ Si∗,mk] ≥ 1
e

(
1
n

− 1
2n

)
=

1
2en

674 L. Kowalczyk et al.

Thus, by our definition of Si∗,mk , and by averaging over (D,mk) ←R Setup(λ),
we have

P
(D,mk)=Setup
S=A(D−i∗)

[∣∣∣∣ P
c=Enc(mk,i∗)

[
qc(S) ≤ 1

3

]
− P

c=Enc(mk,i∗−1)

[
qc(S) ≤ 1

3

]∣∣∣∣ >
1

n

]
≥ 1

2en
(8)

But this violates the weak index hiding property of the private linear broadcast
scheme. Specifically, if we consider an adversary for the private linear broadcast
scheme that runs A on the keys sk−i∗ to obtain a summary S, then decrypts a
ciphertext c by computing qc(S) and rounding the answer to {0, 1}, then by (8)
this adversary violates weak index-hiding security (Definition 6).

Thus we have obtained a contradiction showing that A is not (1, 1/2n)-
differentially private. This completes the proof.

5 Cryptographic Primitives

We will make use of several cryptographic tools and information-theoretic prim-
itives. Due to space, we will omit a formal definition of standard concepts
like almost-pairwise-independent hash functions, pseudorandom generators, and
pseudorandom functions and defer these to the full version.

5.1 Puncturable Pseudorandom Functions

A pseudorandom function family Fλ = {PRF : [m] → [n]} is puncturable if there
is a deterministic procedure Puncture that takes as input PRF ∈ Fλ and x∗ ∈ [m]
and outputs a new function PRF{x∗} : [m] → [n] such that PRF{x∗}(x) = PRF(x)
if x = x∗ and PRF{x∗}(x) = ⊥ if x = x∗.

The definition of security for a punctured pseudorandom function states that
for any x∗, given the punctured function PRF{x∗}, the missing value PRF(x∗)
is computationally unpredictable. Specifically, we define the game Puncture to
capture the desired security property (Fig. 3).

The challenger chooses PRF ←R Fλ

The challenger chooses uniform random bit b ∈ {0, 1}, and samples

y0 ←R PRF(x∗), y1 ←R [n].

The challenger punctures PRF at x∗, obtaining PRF{x∗}.
The adversary is given (yb,PRF

{x∗}) and outputs a bit b′.

Fig. 3. Puncture[x∗]

Strong Hardness of Privacy from Weak Traitor Tracing 675

Definition 9 (Puncturing Secure PRF). A pseudorandom function family
Fλ = {PRF : [m] → [n]} is ε-puncturing secure if for every x∗ ∈ [m],

P
Puncture[x∗]

[b′ = b] ≤ 1
2

+ ε.

5.2 Twice Puncturable PRFs

A twice puncturable PRF is a pair of algorithms (PRFSetup,Puncture).

– PRFSetup is a randomized algorithm that takes a security parameter λ and
outputs a function PRF : [m] → [n] where m = m(λ) and n = n(λ) are
parameters of the construction. Technically, the function is parameterized by
a seed of length λ, however for notational simplicity we will ignore the seed
and simply use PRF to denote this function. Formally PRF ←R PRFSetup(λ).

– Puncture is a deterministic algorithm that takes a PRF and a pair of inputs
x0, x1 ∈ [m] and outputs a new function PRF{x0,x1} : [m] → [n] such that

PRF{x0,x1} =

{
PRF(x) if x /∈ {x0, x1}
⊥ if x ∈ {x0, x1}

Formally, PRF{x0,x1} = Puncture(PRF, x0, x1).

In what follows we will always assume that m and n are polynomial in the
security parameter and that m = ω(n log(n)).

In addition to requiring that this family of functions satisfies the standard
notion of cryptographic pseudorandomness, we will now define a new security
property for twice puncturable PRFs, called input matching indistinguishability.
For any two distinct outputs y0, y1 ∈ [n], y0 = y1, consider the following game
(Fig. 4).

The challenger chooses PRF such that ∀y ∈ [n], PRF−1(y) �= ∅.
The challenger chooses independent random bits b0, b1 ∈ {0, 1}, and samples

x0 ←R PRF−1(yb0), x1 ←R PRF−1(yb1).

The challenger punctures PRF at x0, x1, obtaining PRF{x0,x1}.
The adversary is given (x0, x1,PRF

{x0,x1}) and outputs a bit b′.

Fig. 4. InputMatching[y0, y1]

Notice that in this game, we have assured that every y ∈ [n] has a preimage
under PRF. We need this condition to make the next step of sampling random
preimages well defined. Technically, it would suffice to have a preimage only for

676 L. Kowalczyk et al.

yb0 and yb1 , but for simplicity we will assume that every possible output has a
preimage. When f : [m] → [n] is a random function, the probability that some
output has no preimage is at most n · exp(−Ω(m/n)) which is negligible when
m = ω(n log(n)). Since m,n are assumed to be a polynomial in the security
parameter, we can efficiently check if every output has a preimage, thus if PRF
is pseudorandom it must also be the case that every output has a preimage
with high probability. Since we can efficiently check whether or not every output
has a preimage under PRF, and this event occurs with all but negligible proba-
bility, we can efficiently sample the pseudorandom function in the first step of
InputMatching[y0, y1].

Definition 10 (Input-Matching Secure PRF). A function family
{PRF : [m] → [n]} is ε-input-matching secure if the function family is a secure
pseudorandom function and additionally for every y0, y1 ∈ [n] with y0 = y1,

P
InputMatching[y0,y1]

[b′ = b0 ⊕ b1] ≤ 1
2

+ ε.

In the full version of this work we show that input-matching secure twice
puncturable pseudorandom functions with suitable parameters exist.

Theorem 11. Assuming the existence of one-way functions, if m,n are poly-
nomials such that m = ω(n log(n)), then there exists a pseudorandom function
family Fλ = {PRF : [m(λ)] → [n(λ)]} that is twice puncturable and is Õ(

√
n/m)-

input-matching secure.

5.3 Indistinguishability Obfuscation

We use the following formulation of Garg et al. [19] for indistinguishability obfus-
cation:

Definition 12 (Indistinguishability Obfuscation). A indistinguishability
obfuscator O for a circuit class {Cλ} is a probabilistic polynomial-time uniform
algorithm satisfying the following conditions:

1. O(λ,C) preserves the functionality of C. That is, for any C ∈ Cλ, if we
compute C ′ = O(λ,C), then C ′(x) = C(x) for all inputs x.

2. For any λ and any two circuits C0, C1 with the same functionality, the circuits
O(λ,C0) and O(λ,C1) are indistinguishable. More precisely, for all pairs of
probabilistic polynomial-time adversaries (Samp,D), if

Pr
(C0,C1,σ)←Samp(λ)

[(∀x), C0(x) = C1(x)] > 1 − negl(λ)

then

|Pr[D(σ,O(λ,C0)) = 1] − Pr[D(σ,O(λ,C1)) = 1]| < negl(λ)

The circuit classes we are interested in are polynomial-size circuits - that
is, when Cλ is the collection of all circuits of size at most λ. When clear from
context, we will often drop λ as an input to O and as a subscript for C.

Strong Hardness of Privacy from Weak Traitor Tracing 677

6 A PLBE Scheme with Very Short Ciphertexts

In this section we construct a private linear broadcast scheme for n users where
the key length is polynomial in the security parameter λ and the ciphertext
length is only O(log(n)). This scheme will be used to establish our hardness
result for differential privacy when the data universe can be exponentially large
but the family of queries has only polynomial size. The construction of a weak
private linear broadcast scheme with user keys of length O(log(n)) is in Sect. 7.

6.1 Construction

Let n = poly(λ) denote the number of users for the scheme. Let m = Õ(n7) be
a parameter. Our construction will rely on the following primitives:
– A pseudorandom generator PRG : {0, 1}λ/2 → {0, 1}λ.
– A puncturable PRF family Fλ,sk =

{
PRFsk : [n] → {0, 1}λ

}
.

– A twice-puncturable PRF family Fλ,Enc = {PRFEnc : [m] → [n]}.
– An iO scheme Obfuscate.

Setup(λ) :
Choose PRFsk ←R Fλ,sk

Choose PRFEnc ←R Fλ,Enc such that for every i ∈ [n], PRF−1
Enc(i) �= ∅

For i = 1, . . . , n, let si = PRFsk (i).
Let O ←R Obfuscate(PPRFsk ,PRFEnc).
Let each user’s secret key be sk i = (i, si,O)
Let the master key be mk = PRFEnc.

Enc(j,mk = PRFEnc) :
Let c be chosen uniformly from PRF−1

Enc(j).
Output c.

Dec(sk i = (i, si,O), c):
Output O(c, i, si).

PPRFsk ,PRFEnc(c, i, s) :
If PRG(s) �= PRG(PRFsk (i)), halt and output ⊥.
Output I{i ≤ PRFEnc(c)}.

Fig. 5. Our scheme Πshort−ctext.

Theorem 13. Assuming the existence of one-way functions and indistinguisha-
bility obfuscation. For every polynomial n, the scheme Πshort−ctext (Fig. 5) is an
(n, d, �)-private linear broadcast scheme for d = poly(λ) and 2� = Õ(n7) and
satisfies: TwoAdv[i∗] ≤ 1

200n3 .

Combining this theorem with Lemma 7 and Theorem 8 establishes Theorem 1
in the introduction.

678 L. Kowalczyk et al.

Parameters. First we verify that Πshort−ctext is an (n, d, �)-private linear broad-
cast scheme for the desired parameters. Observe that the length of the secret
keys is log(n) + λ + |O|. By the efficiency of the pseudorandom functions and
the specification of P, the running time of P is poly(λ + log(n)). Thus, by the
efficiency of Obfuscate, |O| = poly(λ + log(n)). Therefore the total key length is
poly(λ + log(n)). Since n is assumed to be a polynomial in λ, we have that the
secret keys have length d = poly(λ) as desired. By construction, the ciphertext
is an element of [m]. Thus, since m = Õ(n7) the ciphertexts length � satisfies
2� = Õ(n7) as desired.

6.2 Proof of Weak Index-Hiding Security

In light of Lemma 7, in order to prove that the scheme satisfies weak index-
hiding security, it suffices to show that for every sufficiently large λ ∈ N, and
every i∗ ∈ [n(λ)], P

TwoIndexHiding[i∗]
[b′ = b0 ⊕ b1]− 1

2 = o(1/n3). We will demon-

strate this using a series of hybrids to reduce security of the scheme in the
TwoIndexHiding game to input-matching security of the pseudorandom func-
tion family PRFλ,Enc.

Before we proceed with the argument, we remark a bit on how we will present
the hybrids. Note that the view of the adversary consists of the keys sk−i∗ .
Each of these keys is of the form (i, si,O) where O is an obfuscation of the
same program P. Thus, for brevity, we will discuss only how we modify the
construction of the program P and it will be understood that each user’s key
will consist of an obfuscation of this modified program. We will also rely crucially
on the fact that, because the challenge ciphertexts depend only on the master
key mk , we can generate the challenge ciphertexts c0 and c1 can be generated
before the users’ secret keys sk1, . . . , skn. Thus, we will be justified when we
modify P in a manner that depends on the challenge ciphertexts and include an
obfuscation of this program in the users’ secret keys. We also remark that we
highlight the changes in the hybrids in green.

Breaking the Decryption Program for Challenge Index. We use a series
of hybrids to ensure that the obfuscated program reveals no information about
the secret si∗ for the specified user i∗. First, we modify the program by hard-
coding the secret si∗ into the program. The obfuscated versions of P and P1

(Fig. 6) are indistinguishable because the input-output behavior of the programs
are identical, thus the indistinguishability obfuscation guarantees that the obfus-
cations of these programs are computationally indistinguishable.

Next we modify the setup procedure to give a uniformly random value for si∗ .
The new setup procedure is indistinguishable from the original setup procedure
by the pseudorandomness of si∗ = PRFsk (i∗). Finally, we modify the decryption
program to use a truly random value x∗ instead of x∗ = PRG(PRFsk (i∗)). The
new decryption program is indistinguishable from the original by pseudoran-
domness of PRG and PRFsk .

Strong Hardness of Privacy from Weak Traitor Tracing 679

P1

PRF
{i∗}
sk

,PRFEnc,i
∗,x∗(c, i, s) :

If i = i∗ and PRG(s) �= x∗, halt and output ⊥.

If i �= i∗ and PRG(s) �= PRG(PRF
{i∗}
sk (i)), halt and output ⊥.

Output I{i ≤ PRFEnc(c)}.

Fig. 6. Modified program P1. i∗ and x∗ = PRG(PRFsk (i
∗)) are hardcoded values.

P2

PRF
{i∗}
sk

,PRFEnc,i
∗(c, i, s) :

If i = i∗ , halt and output ⊥.

If i �= i∗ and PRG(s) �= PRG(PRF
{i∗}
sk (i)), halt and output ⊥.

Output I{i ≤ PRFEnc(c)}.

Fig. 7. Modified program P2.

P3

PRF
{i∗}
sk

,PRF
{c0,c1}
Enc

,i∗,c0,b0,c1,b1
(c, i, s) :

If i = i∗ , halt and output ⊥.

If i �= i∗ and PRG(s) �= PRG(PRF
{i∗}
sk (i)), halt and output ⊥.

If c = c0, output I{i ≤ i∗ − b0}
If c = c1, output I{i ≤ i∗ − b1}

Output I{i ≤ PRF
{c0,c1}
Enc (c)}.

Fig. 8. Modified program P3. c0, b0, c1, b1 are hardcoded values.

After making these modifications, with probability at least 1 − 2−λ/2, the
random value x∗ is not in the image of PRG. Thus, with probability at least
1 − 2−λ/2, the condition PRG(sk) = x∗ will be unsatisfiable. Therefore, we can
simply remove this test without changing the program on any inputs. Thus, the
obfuscation of P1 will be indistinguishable from the obfuscation of the following
program P2 (Fig. 7).

Breaking the Decryption Program for the Challenge Ciphertexts. First
we modify the program so that the behavior on the challenge ciphertexts is hard-
coded and PRFEnc is punctured on the challenge ciphertexts. The new decryption
program is as follows. Note that the final line of the program is never reached
when the input satisfies c = c0 or c = c1, so puncturing PRFEnc at these points
does not affect the output of the program on any input. Thus, P3 (Fig. 8) is
indistinguishable from P2 by the security of indistinguishability obfuscation.

Next, since, b0, b1 ∈ {0, 1}, and the decryption program halts immediately
if i = i∗, the values of b0, b1 do not affect the output of the program. Thus, we

680 L. Kowalczyk et al.

P4

PRF
{i∗}
sk

,PRF
{c0,c1}
Enc

,i∗,c0,c1
(c, i, s) :

If i = i∗ , halt and output ⊥.

If i �= i∗ and PRG(s) �= PRG(PRF
{i∗}
sk (i)), halt and output ⊥.

If c = c0, output I{i ≤ i∗}
If c = c1, output I{i ≤ i∗}

Output I{i ≤ PRF
{c0,c1}
Enc (c)}.

Fig. 9. Modified program P4. c0, c1 are hardcoded values.

can simply drop them from the description of the program without changing the
program on any input. So, by security of the indistinguishability obfuscation, P3

is indistinguishable from the following program P4 (Fig. 9).

Reducing to Input-Matching Security. Finally, we claim that if the adver-
sary is able to win at TwoIndexHiding then he can also win the game
InputMatching[i∗ − 1, i∗], which violates input-matching security of Fλ,Enc.

Recall that the challenge in the game InputMatching[i∗ − 1, i∗] consists of
a tuple (c0, c1,PRF{c0,c1}) where PRFEnc is sampled subject to 1) PRFEnc(c0) =
i∗ −b0 for a random b0 ∈ {0, 1}, 2) PRFEnc(c1) = i∗ −b1 for a random b1 ∈ {0, 1},
and 3) PRF−1

Enc(i) = ∅ for every i ∈ [n]. Given this input, we can precisely simulate
the view of the adversary in TwoIndexHiding[i∗]. To do so, we can choose
PRFsk and give the keys sk−i∗ and obfuscations of P4

PRF
{i∗}
sk ,PRF

{c0,c1}
Enc ,i∗,c0,c1

to the

adversary. Then we can user c0, c1 as the challenge ciphertexts and obtain a bit
b′ from the adversary. By input-matching security, we have that P [b′ = b0 ⊕ b1]−
1
2 = o(1/n3). Since, as we argued above, the view of the adversary in this game
is indistinguishable from the view of the adversary in TwoIndexHiding[i∗], we
conclude that P

TwoIndexHiding[i∗]
[b′ = b0 ⊕ b1] − 1

2 = o(1/n3), as desired. This

completes the proof.

7 A Private Linear Broadcast Scheme with Very Short
Keys

In this section we construct a different private linear broadcast scheme for n users
where the parameters are essentially reversed—the length of the secret user keys
is O(log(n)) and the length of the ciphertexts is poly(λ). This scheme will be
used to establish our hardness result for differential privacy when the number of
queries is exponentially large but the data universe has only polynomial size.

7.1 Construction

Let n = poly(λ) denote the number of users for the scheme. Let m = Õ(n6) be
a parameter. Our construction will rely on the following primitives:

Strong Hardness of Privacy from Weak Traitor Tracing 681

Setup(λ) :
Choose a pseudorandom function PRFsk ←R Fλ,sk .
For i = 1, . . . , n, let si = PRFsk (i), and let each user’s secret key be sk i =

(i, si) ∈ [n] × [m].
Let the master key be mk = PRFsk .

Enc(j,mk = PRFsk) :
Choose a pseudorandom function PRFEnc ←R Fλ,Enc.
Let O = Obfuscate(Pj,PRFsk ,PRFEnc)
Output c = O.

Dec(sk i = (i, si), c = O):
Output O(i, sk i).

Pj,PRFsk ,PRFEnc(i, s):
If s �= PRFsk (i), output PRFEnc(i, s).
Else, output I{i ≤ j}.

Fig. 10. Our scheme Πshort−key

– A puncturable PRF family Fλ,sk = {PRFsk : [n] → [m]}.
– A puncturable PRF family Fλ,Enc = {PRFEnc : [n] × [m] → {0, 1}}.
– An iO scheme Obfuscate.

Theorem 14. Assuming the existence of one-way functions and indistinguisha-
bility obfuscation, for every polynomial n, the scheme Πshort−key (Fig. 10) is an
(n, d, �)-private linear broadcast scheme for 2d = Õ(n7) and � = poly(λ), and is
weakly index-hiding secure.

Combining this theorem with Lemma 7 and Theorem 8 establishes Theorem 2
in the introduction.

Parameters. First we verify that Πshort−key is an (n, d, �)-private linear broad-
cast scheme for the desired parameters. Observe that the length of the secret
keys is d such that 2d = nm. By construction, since m = Õ(n6), 2d = Õ(n7). The
length of the ciphertext is |O|, which is poly(|P|) by the efficiency of the obfusca-
tion scheme. By the efficiency of the pseudorandom function family and the pair-
wise independent hash family, the running time of P is at most poly(λ+log(n)).
Since n is assumed to be a polynomial in λ, the ciphertexts have length poly(λ).

7.2 Proof of Weak Index-Hiding Security

Just as in Sect. 6, we will rely on Lemma 7 so that we only need to show that
for every λ ∈ N, and every i∗ ∈ [n(λ)],

P
TwoIndexHiding[i∗]

[b′ = b0 ⊕ b1] − 1
2

= o(1/n3).

682 L. Kowalczyk et al.

Enc1(i∗, b0,mk = PRFsk) :
Choose a pseudorandom function PRFEnc ←R Fλ,Enc.

Let s∗ = PRFsk (i
∗), PRF{i∗}

sk = Puncture(PRFsk , i
∗).

Let O = Obfuscate

(
P1

i∗,b0,s∗,PRF
{i∗}
sk

,PRFEnc

)
.

Output c0 = O.

P1

i∗,b0,s∗,PRF
{i∗}
sk

,PRFEnc
(i, s):

If i = i∗

If s �= s∗, output PRFEnc(i
∗, s)

If s = s∗, output 1 − b0
Else If i �= i∗

If s �= PRF
{i∗}
sk (i), halt and output PRFEnc(i, s).

Output I{i ≤ i∗ − 1}.

Fig. 11. Hybrid (Enc1,P1).

We will demonstrate this using a series of hybrids to reduce security of the
scheme in the TwoIndexHiding game to the security of the pseudorandom
function families.

In our argument, recall that the adversary’s view consists of the keys sk−i∗

and the challenge ciphertexts c0, c1. In our proof, we will not modify how the
keys are generated, so we will present the hybrids only by how the challenge
ciphertexts are generated. Also, for simplicity, we will focus only on how c0 is
generated as a function of i∗, b0 and mk . The ciphertext c1 will be generated in
exactly the same way but as a function of i∗, b1 and mk . We also remark that
we highlight the changes in the hybrids in green.

Hiding the Missing User Key. First we modify the encryption procedure to
one where PRFsk is punctured on i∗ and the value s∗ = PRFsk (i∗) is hardcoded
into the program (Fig. 11).

We claim that, by the security of the iO scheme, the distribution of c0, c1
under Enc1 is computationally indistinguishable from the distribution of c0, c1
under Enc. The reason is that the obfuscation P and P1 compute the same
function. Consider two cases, depending on whether i = i∗ or i = i∗. If i = i∗,
since b0 ∈ {0, 1}, and i = i∗, replacing I{i ≤ i∗ − b0} with I{i ≤ i∗ − 1} does not
change the output. Moreover, since we only reach the branch involving PRF

{i∗}
sk

when i = i∗, the puncturing does not affect the output of the program. If i = i∗,
then the program either outputs PRFEnc(i∗, s) as it did before when s = s∗ or it
outputs 1−b0: equivalent to I{i ≤ i∗−b0}. Thus, by iO, the obfuscated programs
are indistinguishable.

Strong Hardness of Privacy from Weak Traitor Tracing 683

Enc2(i∗, b0,mk = PRFsk) :
Choose a pseudorandom function PRFEnc ←R Fλ,Enc.

PRF
{i∗}
sk = Puncture(PRFsk , i

∗), Let s̃ ←R [m].

Let O = Obfuscate

(
P2

i∗,b0,s̃,PRF
{i∗}
sk

,PRFEnc

)
.

Output c0 = O.

P2

i∗,b0,s̃,PRF
{i∗}
sk

,PRFEnc
(i, s):

If i = i∗

If s �= s̃, output PRFEnc(i
∗, s)

If s = s̃, output 1 − b0
Else If i �= i∗

If s �= PRF
{i∗}
sk (i), halt and output PRFEnc(i, s).

Output I{i ≤ i∗ − 1}.

Fig. 12. Hybrid (Enc2,P2).

Next, we argue that, since PRF{i∗}
sk is sampled from a puncturable pseudoran-

dom function family, and the adversary’s view consists of s−i∗ = {PRFsk (i)}i�=i∗

but not PRFsk (i∗), the value of PRFsk (i∗) is computationally indistinguishable
to the adversary from a random value. Thus, we can move to another hybrid
(Enc2,P2) where the value s∗ is replaced with a uniformly random value s̃
(Fig. 12).

Hiding the Challenge Index. Now we want to remove any explicit use of b0 from
P2. The natural way to try to do this is to remove the line where the program
outputs 1 − b0 when the input is (i∗, s̃), and instead have the program output
PRFEnc(i∗, s̃). However, this would involve changing the program’s output on
one input, and indistinguishability obfuscation does not guarantee any security
in this case. We get around this problem in two steps. First, we note that the
value of PRFEnc on the point (i∗, s̃) is never needed in P2, so we can move to
a new procedure P3 where we puncture at that point without changing the
program functionality. Indistinguishability obfuscation guarantees that P2 and
P3 are computationally indistinguishable (Fig. 13).

Next, we define another hybrid P4 where change how we sample PRFEnc and
sample it so that PRFEnc(i∗, s̃) = 1 − b0. Observe that the hybrid only depends
on PRF

{(i∗,s̃)}
Enc . We claim the distributions of PRF

{(i∗,s̃)}
Enc when PRFEnc is sam-

pled correctly versus sampled conditioned on PRFEnc(i∗, s̃) = 1 − b0 are com-
putationally indistinguishable. This follows readily from punctured PRF secu-
rity. Suppose to the contrary that the two distributions were distinguishable
with non-negligible advantage δ by adversary A. Then consider a punctured
PRF adversary B that is given PRF

{(i∗,s̃)}
Enc , b where b is chosen at random, or

b = PRFEnc(i∗, s̃). B distinguishes the two cases as follows. If b = 1 − b0, then B

684 L. Kowalczyk et al.

Enc3(i∗, b0,mk = PRFsk) :
Let s̃ ←R [m].

Choose a pseudorandom function PRFEnc ←R Fλ,Enc

PRF
{(i∗,s̃)}
Enc = PuncturePRFEnc, (i

∗, s̃).

PRF
{i∗}
sk = Puncture(PRFsk , i

∗).

Let O = Obfuscate

(
P3

i∗,b0,s̃,PRF
{i∗}
sk

,PRF
{(i∗,s̃)}
Enc

)
.

Output c0 = O.

P3

i∗,b0,s̃,PRF
{i∗}
sk

,PRF
{(i∗,s̃)}
Enc

(i, s):

If i = i∗

If s �= s̃, output PRF
{(i∗,s̃)}
Enc (i∗, s)

If s = s̃, output 1 − b0
Else If i �= i∗

If s �= PRF
{i∗}
sk (i), halt and output PRF

{(i∗,s̃)}
Enc (i, s).

Output I{i ≤ i∗ − 1}.

Fig. 13. Hybrid (Enc3,P3).

outputs a random bit and stops. Otherwise, it runs A on PRF
{(i∗,s̃)}
Enc , and outputs

whatever A outputs. If b is truly random and independent of PRFEnc, then condi-
tioned on b = 1− b0, PRFEnc is sampled randomly. However, if b = PRFEnc(i∗, s̃),
then conditioned on b = 1−b0, PRFEnc is sampled such that PRFEnc(i∗, s̃) = 1−b0.
These are exactly the two cases that A distinguishes. Hence, conditioned on
b = 1 − b0, B guesses correctly with probability 1

2 + δ. Moreover, by PRF secu-
rity, b = 1−b0 with probability ≥ 1

2 −ε for some negligible quantity ε, and in the
case b = 1 − b0, B guess correctly with probability 1

2 . Hence, overall B guesses
correctly with probability ≥ 1

2 (12 + ε) + (12 + δ)(12 − ε) = 1
2 + δ

2 − εδ. Hence, B

has non-negligible advantage δ
2 − εδ. Thus, changing how PRFEnc is sampled is

computationally undetectable, and P is otherwise unchanged. Therefore P3 and
P4 are computationally indistinguishable (Fig. 14).

Next, since PRFEnc(i∗, s̃) = 1 − b0, we can move to another hybrid P5 where
we delete the line “If s = s̃, output 1 − b0” without changing the functional-
ity. Thus, by indistinguishability obfuscation, P4 and P5 are computationally
indistinguishable (Fig. 15).

Now notice that P5 is independent of b0. However, Enc5 still depends on
b0. We now move to the final hybrid P6 where we remove the condition that
PRFEnc(i∗, s̃) = 1 − b0, which will completely remove the dependence on b0
(Fig. 16).

To prove that Enc6 is indistinguishable from Enc5, notice that they are inde-
pendent of s̃, except through the sampling of PRFEnc. Using this, and the follow-
ing lemma, we argue that we can remove the condition that PRFEnc(i∗, s̃) = 1−b0.

Strong Hardness of Privacy from Weak Traitor Tracing 685

Enc4(i∗, b0,mk = PRFsk) :
Let s̃ ←R [m].
Choose a pseudorandom function PRFEnc ←R Fλ,Enc conditioned on

PRFEnc(i
∗, s̃) = 1 − b0.

PRF
{(i∗,s̃)}
Enc = PuncturePRFEnc, (i

∗, s̃).

PRF
{i∗}
sk = Puncture(PRFsk , i

∗).

Let O = Obfuscate

(
P4

i∗,b0,s̃,PRF
{i∗}
sk

,PRF
{(i∗,s̃)}
Enc

)
.

Output c0 = O.

P4

i∗,b0,s̃,PRF
{i∗}
sk

,PRF
{(i∗,s̃)}
Enc

(i, s):

If i = i∗

If s �= s̃, output PRF
{(i∗,s̃)}
Enc (i∗, s)

If s = s̃, output 1 − b0
Else If i �= i∗

If s �= PRF
{i∗}
sk (i), halt and output PRF

{(i∗,s̃)}
Enc (i, s).

Output I{i ≤ i∗ − 1}.

Fig. 14. Hybrid (Enc4,P4).

Enc5(i∗, b0,mk = PRFsk) :
Let s̃ ←R [m].
Choose a pseudorandom function PRFEnc ←R Fλ,Enc such that PRFEnc(i

∗, s̃) =
1 − b0

PRF
{i∗}
sk = Puncture(PRFsk , i

∗).

Let O = Obfuscate

(
P5

i∗,PRF
{i∗}
sk

,PRFEnc

)
.

Output c0 = O.

P5

i∗,PRF
{i∗}
sk

,PRFEnc
(i, s):

If i = i∗

Output PRFEnc(i
∗, s)

Else If i �= i∗

If s �= PRF
{i∗}
sk (i), halt and output PRFEnc(i, s).

Output I{i ≤ i∗ − 1}.

Fig. 15. Hybrid (Enc5,P5).

686 L. Kowalczyk et al.

Enc6(i∗,mk = PRFsk) :
Choose a pseudorandom function PRFEnc ←R Fλ,Enc

PRF
{i∗}
sk = Puncture(PRFsk , i

∗).

Let O = Obfuscate

(
P6

i∗,PRF
{i∗}
sk

,PRFEnc

)
.

Output c0 = O.

P6

i∗,PRF
{i∗}
sk

,PRFEnc
(i, s):

If i = i∗

Output PRFEnc(i
∗, s)

Else If i �= i∗

If s �= PRF
{i∗}
sk (i), halt and output PRFEnc(i, s).

Output I{i ≤ i∗ − 1}.

Fig. 16. Hybrid (Enc6,P6).

Lemma 15. Let H = {h : [T] → [K]} be a δ-almost pairwise independent hash
family. Let y ∈ [K] and M ⊆ [T] of size m be arbitrary. Define the following two
distributions.

– D1: Choose h ←R H.
– D2: Choose a random x ∈ M , and then choose h ←R (H | h(x) = y).

Then D1 and D2 are (12
√

K/m + 7K2δ)-close in statistical distance.

We defer the proof to the full version. The natural way to try to show that
(Enc6,P6) is o(1/n3) statistically close to (Enc5,P5) is to apply this lemma to
the hash family H = Fλ,Enc. Recall that a pseudorandom function family is also
negl(λ)-pairwise independent. Here, the parameters would be [T] = [n] × [m],
M = {(i∗, s) | s ∈ [m]} and b = 1 − b0, and the random choice x ∈ M is the pair
(i∗, s̃).

However, recall that the adversary not only sees c0 = Enc5(i∗, b0,mk), but
also sees c1 = Enc5(i∗, b1,mk), and these share the same s̃. Hence, we cannot
directly invoke Lemma 15 on the PRFEnc,0 sampled in c0, since s̃ is also used to
sample PRFEnc,1 when sampling c1, and is therefore not guaranteed to be random
given c1.

Instead, we actually consider the function family H = F2
λ,Enc, where we define

h(i, s) = (PRFEnc,0,PRFEnc,1)(i, s) = (PRFEnc,0(i, s),PRFEnc,1(i, s)).

In Enc5, h is drawn at random conditioned on h(i∗, s̃) = (1− b0, 1− b1), whereas
in Enc6, it is drawn at random.

H is still a pseudorandom function family, so it must be negl(λ)-almost pair-
wise independent with δ negligible. In particular, δ = o(1/m). Hence, the con-
ditions of Lemma 15 are satisfied with K = 4. Since the description of P5,P6 is

Strong Hardness of Privacy from Weak Traitor Tracing 687

the tuple (i∗, s̃,PRF{i∗}
sk ,PRFEnc,0,PRFEnc,1), and by Lemma 15 the distribution

on these tuples differs by at most O(
√

1/m) in statistical distance, we also have
that the distribution on obfuscations of P5,P6 differs by at most O(

√
1/m).

Finally, we can choose a value of m = Õ(n6) so that O(
√

1/m) = o(1/n3).
Observe that when we generate user keys sk−i∗ and the challenge cipher-

texts according to (Enc6,P6), the distribution of the adversary’s view is com-
pletely independent of the random values b0, b1. Thus no adversary can output
b′ = b0⊕b1 with probability greater than 1/2. Since the distribution of these chal-
lenge ciphertexts is o(1/n3)-computationally indistinguishable from the original
distribution on challenge ciphertexts, we have that for every efficient adversary,

P
TwoIndexHiding[i∗]

[b′ = b0 ⊕ b1] − 1
2

= o(1/n3),

as desired. This completes the proof.

Acknowledgments. We thank Dan Boneh for helpful discussions in the early stages
of this work. The first author is supported by an NSF Graduate Research Fellowship
#DGE-11-44155. The first and second authors are supported in part by the Defense
Advanced Research Project Agency (DARPA) and Army Research Office (ARO) under
Contract #W911NF-15-C-0236, and NSF grants #CNS-1445424 and #CCF-1423306.
Part of this work was done while the third author was a postdoctoral fellow in the
Columbia University Department of Computer Science, supported by a junior fellow-
ship from the Simons Society of Fellows. Any opinions, findings and conclusions or
recommendations expressed are those of the authors and do not necessarily reflect the
views of the the Defense Advanced Research Projects Agency, Army Research Office,
the National Science Foundation, or the U.S. Government.

References

1. Badrinarayanan, S., Miles, E., Sahai, A., Zhandry, M.: Post-zeroizing obfusca-
tion: new mathematical tools, and the case of evasive circuits. In: Fischlin, M.,
Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9666, pp. 764–791. Springer,
Heidelberg (2016). doi:10.1007/978-3-662-49896-5 27

2. Beimel, A., Nissim, K., Stemmer, U.: Private learning and sanitization: pure vs.
approximate differential privacy. In: Raghavendra, P., Raskhodnikova, S., Jansen,
K., Rolim, J.D.P. (eds.) APPROX/RANDOM -2013. LNCS, vol. 8096, pp. 363–
378. Springer, Heidelberg (2013). doi:10.1007/978-3-642-40328-6 26

3. Bellare, M., Stepanovs, I., Tessaro, S.: Contention in cryptoland: obfuscation, leak-
age and UCE. In: Kushilevitz, E., Malkin, T. (eds.) TCC 2016. LNCS, vol. 9563,
pp. 542–564. Springer, Heidelberg (2016). doi:10.1007/978-3-662-49099-0 20

4. Bitansky, N., Paneth, O., Wichs, D.: Perfect structure on the edge of chaos.
In: Kushilevitz, E., Malkin, T. (eds.) TCC 2016. LNCS, vol. 9562, pp. 474–502.
Springer, Heidelberg (2016). doi:10.1007/978-3-662-49096-9 20

5. Blum, A., Dwork, C., McSherry, F., Nissim, K.: Practical privacy: the SuLQ frame-
work. In: PODS (2005)

6. Blum, A., Ligett, K., Roth, A.: A learning theory approach to noninteractive data-
base privacy. J. ACM 60(2), 12 (2013)

http://dx.doi.org/10.1007/978-3-662-49896-5_27
http://dx.doi.org/10.1007/978-3-642-40328-6_26
http://dx.doi.org/10.1007/978-3-662-49099-0_20
http://dx.doi.org/10.1007/978-3-662-49096-9_20

688 L. Kowalczyk et al.

7. Boneh, D., Sahai, A., Waters, B.: Fully collusion resistant traitor tracing with short
ciphertexts and private keys. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS,
vol. 4004, pp. 573–592. Springer, Heidelberg (2006). doi:10.1007/11761679 34

8. Boneh, D., Zhandry, M.: Multiparty key exchange, efficient traitor tracing, and
more from indistinguishability obfuscation. In: Garay, J.A., Gennaro, R. (eds.)
CRYPTO 2014. LNCS, vol. 8616, pp. 480–499. Springer, Heidelberg (2014). doi:10.
1007/978-3-662-44371-2 27

9. Brzuska, C., Farshim, P., Mittelbach, A.: Indistinguishability obfuscation and
UCEs: the case of computationally unpredictable sources. In: Garay, J.A.,
Gennaro, R. (eds.) CRYPTO 2014. LNCS, vol. 8616, pp. 188–205. Springer,
Heidelberg (2014). doi:10.1007/978-3-662-44371-2 11

10. Bun, M., Ullman, J., Vadhan, S.P.: Fingerprinting codes and the price of approxi-
mate differential privacy. In: STOC (2014)

11. Chor, B., Fiat, A., Naor, M.: Tracing traitors. In: Desmedt, Y.G. (ed.) CRYPTO
1994. LNCS, vol. 839, pp. 257–270. Springer, Heidelberg (1994). doi:10.1007/
3-540-48658-5 25

12. Coron, J.-S., Gentry, C., Halevi, S., Lepoint, T., Maji, H.K., Miles, E., Raykova,
M., Sahai, A., Tibouchi, M.: Zeroizing without low-level zeroes: new MMAP
attacks and their limitations. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO
2015. LNCS, vol. 9215, pp. 247–266. Springer, Heidelberg (2015). doi:10.1007/
978-3-662-47989-6 12

13. Dinur, I., Nissim, K.: Revealing information while preserving privacy. In: PODS
(2003)

14. Dwork, C., McSherry, F., Nissim, K., Smith, A.: Calibrating noise to sensitivity in
private data analysis. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876,
pp. 265–284. Springer, Heidelberg (2006). doi:10.1007/11681878 14

15. Dwork, C., Naor, M., Reingold, O., Rothblum, G.N., Vadhan, S.P.: On the complex-
ity of differentially private data release: efficient algorithms and hardness results.
In: STOC (2009)

16. Dwork, C., Nissim, K.: Privacy-preserving datamining on vertically partitioned
databases. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 528–544.
Springer, Heidelberg (2004). doi:10.1007/978-3-540-28628-8 32

17. Dwork, C., Rothblum, G.N., Vadhan, S.P.: Boosting and differential privacy. In:
FOCS. IEEE (2010)

18. Dwork, C., Smith, A.D., Steinke, T., Ullman, J., Vadhan, S.P.: Robust traceability
from trace amounts. In: FOCS (2015)

19. Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.: Candi-
date indistinguishability obfuscation and functional encryption for all circuits. In:
FOCS, pp. 40–49 (2013)

20. Garg, S., Mukherjee, P., Srinivasan, A.: Obfuscation without the vulnerabilities
of multilinear maps. Cryptology ePrint Archive, Report 2016/390 (2016). http://
eprint.iacr.org/

21. Gentry, C., Lewko, A.B., Sahai, A., Waters, B.: Indistinguishability obfuscation
from the multilinear subgroup elimination assumption. In: FOCS (2015)

22. Gupta, A., Roth, A., Ullman, J.: Iterative constructions and private data release.
In: Cramer, R. (ed.) TCC 2012. LNCS, vol. 7194, pp. 339–356. Springer, Heidelberg
(2012). doi:10.1007/978-3-642-28914-9 19

23. Hardt, M., Rothblum, G.N.: A multiplicative weights mechanism for privacy-
preserving data analysis. In: FOCS (2010)

http://dx.doi.org/10.1007/11761679_34
http://dx.doi.org/10.1007/978-3-662-44371-2_27
http://dx.doi.org/10.1007/978-3-662-44371-2_27
http://dx.doi.org/10.1007/978-3-662-44371-2_11
http://dx.doi.org/10.1007/3-540-48658-5_25
http://dx.doi.org/10.1007/3-540-48658-5_25
http://dx.doi.org/10.1007/978-3-662-47989-6_12
http://dx.doi.org/10.1007/978-3-662-47989-6_12
http://dx.doi.org/10.1007/11681878_14
http://dx.doi.org/10.1007/978-3-540-28628-8_32
http://eprint.iacr.org/
http://eprint.iacr.org/
http://dx.doi.org/10.1007/978-3-642-28914-9_19

Strong Hardness of Privacy from Weak Traitor Tracing 689

24. Hohenberger, S., Sahai, A., Waters, B.: Replacing a random oracle: full domain
hash from indistinguishability obfuscation. In: Nguyen, P.Q., Oswald, E. (eds.)
EUROCRYPT 2014. LNCS, vol. 8441, pp. 201–220. Springer, Heidelberg (2014).
doi:10.1007/978-3-642-55220-5 12

25. Kearns, M.J.: Efficient noise-tolerant learning from statistical queries. J. ACM
45(6), 983–1006 (1998)

26. Kowalczyk, L., Malkin, T., Ullman, J., Zhandry, M.: Strong hardness of privacy
from weak traitor tracing. IACR Cryptology ePrint Archive 2016/721 (2016)

27. Miles, E., Sahai, A., Zhandry, M.: Annihilation attacks for multilinear maps: crypt-
analysis of indistinguishability obfuscation over GGH13. In: Robshaw, M., Katz, J.
(eds.) CRYPTO 2016. LNCS, vol. 9815, pp. 629–658. Springer, Heidelberg (2016).
doi:10.1007/978-3-662-53008-5 22

28. Mironov, Ilya, Pandey, Omkant, Reingold, Omer, Vadhan, Salil: Computational
Differential Privacy. In: Halevi, Shai (ed.) CRYPTO 2009. LNCS, vol. 5677, pp.
126–142. Springer, Heidelberg (2009). doi:10.1007/978-3-642-03356-8 8

29. Nikolov, A., Talwar, K., Zhang, L.: The geometry of differential privacy: the sparse
and approximate cases. In: STOC (2013)

30. Roth, A., Roughgarden, T.: Interactive privacy via the median mechanism. In:
STOC, pp. 765–774. ACM, 5–8 June 2010

31. Sahai, A., Waters, B.: How to use indistinguishability obfuscation: deniable encryp-
tion, and more. In: STOC (2014)

32. Steinke, T., Ullman, J.: Between pure and approximate differential privacy. CoRR
abs/1501.06095 (2015). http://arxiv.org/abs/org/abs/1501.06095

33. Thaler, J., Ullman, J., Vadhan, S.: Faster algorithms for privately releasing mar-
ginals. In: Czumaj, A., Mehlhorn, K., Pitts, A., Wattenhofer, R. (eds.) ICALP
2012. LNCS, vol. 7391, pp. 810–821. Springer, Heidelberg (2012). doi:10.1007/
978-3-642-31594-7 68

34. Ullman, J.: Answering n2+o(1) counting queries with differential privacy is hard.
In: STOC (2013)

35. Ullman, J.: Private multiplicative weights beyond linear queries. In: PODS (2015)
36. Ullman, J., Vadhan, S.: PCPs and the hardness of generating private synthetic

data. In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 400–416. Springer,
Heidelberg (2011). doi:10.1007/978-3-642-19571-6 24

http://dx.doi.org/10.1007/978-3-642-55220-5_12
http://dx.doi.org/10.1007/978-3-662-53008-5_22
http://dx.doi.org/10.1007/978-3-642-03356-8_8
http://arxiv.org/abs/org/abs/1501.06095
http://dx.doi.org/10.1007/978-3-642-31594-7_68
http://dx.doi.org/10.1007/978-3-642-31594-7_68
http://dx.doi.org/10.1007/978-3-642-19571-6_24

Author Index

Alon, Bar I-307
Agrawal, Shashank II-269
Ananth, Prabhanjan II-3
Apon, Daniel II-299
Applebaum, Benny I-27

Baum, Carsten I-461
Ben-Sasson, Eli II-31
Bitansky, Nir I-57, II-391
Blocki, Jeremiah II-517
Bogdanov, Andrej II-471
Brakerski, Zvika I-57, II-330
Bun, Mark I-607, I-635

Canetti, Ran II-61
Cascudo, Ignacio I-204
Cash, David II-330
Chen, Yi-Hsiu I-607
Chen, Yilei II-61
Chen, Yu-Chi II-3
Chiesa, Alessandro II-31
Chung, Kai-Min II-3
Cohen, Aloni I-84

Dachman-Soled, Dana II-169
Damgård, Ivan I-204, II-547
Devadas, Srinivas I-262

Fan, Xiong II-299
Fiore, Dario I-108

Garg, Sanjam I-491, II-241, II-419
Genkin, Daniel I-336
Goyal, Rishab II-361
Guo, Siyao II-471
Gupta, Divya I-491

Haagh, Helene II-547
Hazay, Carmit I-367, I-400, I-521
Hofheinz, Dennis II-121, II-146
Holmgren, Justin II-61

Impagliazzo, Russell I-235
Ishai, Yuval I-336

Jafargholi, Zahra I-433
Jager, Tibor II-146
Jaiswal, Ragesh I-235

Kabanets, Valentine I-235
Kalai, Yael I-57, II-91
Kapron, Bruce M. I-235
King, Valerie I-235
Klein, Saleet I-84
Komargodski, Ilan I-139, II-471, II-485
Koppula, Venkata II-361
Kowalczyk, Lucas I-659

Lacerda, Felipe I-204
Li, Baiyu II-443
Lin, Huijia II-3
Lin, Wei-Kai II-3
Lindell, Yehuda I-554
Liu, Feng-Hao II-299

Malkin, Tal I-659
Maurer, Ueli I-3
Miao, Peihan I-491
Micciancio, Daniele II-443
Miles, Eric II-241
Mukherjee, Pratyay II-241

Naor, Moni II-485
Nielsen, Jesper Buus I-582
Nishimaki, Ryo II-391
Nitulescu, Anca I-108

Omri, Eran I-307
Orlandi, Claudio I-582, II-547
Orsini, Emmanuela I-461

Pandey, Omkant I-491
Paneth, Omer I-57, II-91
Passelègue, Alain II-391

Peikert, Chris II-217
Pietrzak, Krzysztof I-183
Polychroniadou, Antigoni I-367
Prabhakaran, Manoj II-269

Ranellucci, Samuel I-204
Rao, Vanishree II-121
Raykov, Pavel I-27
Raykova, Mariana II-61
Ren, Ling I-262
Renner, Renato I-3
Rupp, Andy II-146

Sahai, Amit II-241
Scholl, Peter I-461
Shiehian, Sina II-217
Skórski, Maciej I-159, I-183
Smart, Nigel P. I-554
Soria-Vazquez, Eduardo I-554
Spini, Gabriele I-286
Spooner, Nicholas II-31
Srinivasan, Akshayaram II-241, II-419
Steinke, Thomas I-635

Targhi, Ehsan Ebrahimi II-192
Tessaro, Stefano I-235
Tsabary, Rotem II-330

Ullman, Jonathan I-659
Unruh, Dominique II-192

Vadhan, Salil I-607
Vaikuntanathan, Vinod I-57
Venkitasubramaniam, Muthuramakrishnan

I-367, I-400

Waters, Brent II-361
Wee, Hoeteck II-330
Weiss, Mor I-336
Wichs, Daniel I-433, II-121, II-391

Yanai, Avishay I-521
Yogev, Eylon II-485
Yu, Ching-Hua II-269

Zémor, Gilles I-286
Zhandry, Mark I-659, II-241
Zhou, Hong-Sheng II-517

692 Author Index

	Preface
	TCC 2016-B Theory of Cryptography Conference
	Contents -- Part I
	Contents -- Part II
	TCC Test-of-Time Award
	From Indifferentiability to Constructive Cryptography (and Back)
	1 Introduction
	2 The Construction Paradigm
	2.1 Specifications and Constructions
	2.2 Composition
	2.3 Sets as Specifications

	3 Cryptographic Resource Systems and Their Use
	3.1 Systems, Interfaces, Parties
	3.2 Example Resource Systems
	3.3 Converters
	3.4 Some Relevant Resource Specification Relaxations
	3.5 Modeling Aspects: Resources vs. Converters

	4 Cryptographic Constructions for a Fixed Adversary Interface
	4.1 Definition of Constructions and Some Lemmas
	4.2 Proving Constructions by Simulators
	4.3 Computational Considerations

	5 Impossibility of Constructing a Random Oracle
	6 Construction Results
	7 Generalization to Many Parties
	8 Conclusions
	References

	Foundations
	Fast Pseudorandom Functions Based on Expander Graphs
	1 Introduction
	1.1 Goldreich's One-Way Function
	1.2 Results and Techniques
	1.3 Related Candidate PRFs
	1.4 Conclusion
	1.5 Organization

	2 Preliminaries
	2.1 Expander-Based Functions

	3 From One-Wayness to Pseudorandomness
	3.1 Proof of Theorem1

	4 PRF Constructions
	4.1 Instantiation F1
	4.2 Instantiation F2
	4.3 Instantiation F3

	A Array Multi-access in Quasilinear Time
	References

	3-Message Zero Knowledge Against Human Ignorance
	1 Introduction
	1.1 Our Results
	1.2 Our Techniques
	1.3 More Related Work

	2 Definitions and Tools
	2.1 Modeling Adversaries, Reductions, and Non-uniformity
	2.2 Zero Knowledge Arguments of Knowledge Against Provers with Bounded Non-uniformity
	2.3 Collision-Resistant Hashing
	2.4 Memory Delegation with Public Digest
	2.5 Witness Indistinguishability with First-Message-Dependent Instances
	2.6 1-Hop Homomorphic Encryption

	3 The Protocol
	3.1 Proving that the Protocol Is an Argument of Knowledge
	3.2 Proving that the Protocol Is Zero Knowledge

	References

	The GGM Function Family Is a Weakly One-Way Family of Functions
	1 Introduction
	1.1 Our Contributions
	1.2 Overview of Proof

	2 Preliminaries
	2.1 Notation
	2.2 Standard Cryptographic Notions, and the GGM Ensemble
	2.3 Statistical Distance
	2.4 Rényi Divergences

	3 The weak one-wayness of GGM
	3.1 Step 1: The Input Switching Proposition
	3.2 Step 2: The Distinguishing Lemma

	4 The Combinatorial Lemma
	5 When Is GGM Strongly One-Way?
	6 Conclusion
	A Appendix
	References

	On the (In)Security of SNARKs in the Presence of Oracles
	1 Introduction
	1.1 Extraction in the Presence of Oracles
	1.2 An Overview of Our Results
	1.3 Organization

	2 Preliminaries
	2.1 Succinct Non-interactive Arguments

	3 SNARKs in the Presence of Oracles
	3.1 O-SNARKs: SNARKs in the Presence of Oracles
	3.2 Non-adaptive O-SNARKs

	4 On the Existence of O-SNARKs
	4.1 O-SNARKs in the ROM from Micali's CS Proofs
	4.2 Impossibility of O-SNARKs for Every Family of Oracles
	4.3 O-SNARKs for Signing Oracles from SNARKs in the Random Oracle Model
	4.4 O-SNARKs for Signing Oracles from SNARKs

	5 Applications of O-SNARKs
	5.1 Homomorphic Signatures
	5.2 Succinct Functional Signatures
	5.3 SNARKs on Authenticated Data

	References

	Leakage Resilient One-Way Functions: The Auxiliary-Input Setting
	1 Introduction
	1.1 Our Contributions
	1.2 Overview of Our Techniques

	2 Preliminaries
	2.1 Min-Entropy
	2.2 One-Way Functions
	2.3 Point Obfuscations

	3 Definition of Leakage Resilient One-Way Functions
	4 Impossibility of Adaptive Leakage Resilient One-Way Functions
	4.1 Impossibility in the Random Oracle Model
	4.2 Impossibility in the Standard Model

	5 Possibility of Selective Leakage Resilient One-Way Functions
	6 Future Directions
	A One-Way Functions Resilient for Bounded Leakage
	References

	Simulating Auxiliary Inputs, Revisited
	1 Introduction
	1.1 Simulating Correlated Information
	1.2 Problem Statement
	1.3 Related Works
	1.4 Our Results
	1.5 Our Techniques
	1.6 Applications
	1.7 Organization

	2 Preliminaries
	2.1 Notation
	2.2 Basic Notions
	2.3 Stream Ciphers Definitions
	2.4 Security of Leakage-Resilient Stream Ciphers
	2.5 Time-Success Ratio

	3 Proof of Theorem3
	4 Time-Success Ratio Under Algebraic Transformations
	A More on the Flaw in
	B Proof of Claim2
	C Proof of Claim3
	D Proof of Claim4
	References

	Unconditional Security
	Pseudoentropy: Lower-Bounds for Chain Rules and Transformations
	1 Introduction
	1.1 Some Implications of Our Lower Bounds

	2 Basic Definitions
	3 A Lower Bound on Metric-to-HILL Transformations
	4 Lower Bounds on Chain Rules
	5 Open Problems
	A Proof of Theorem1
	A.1 Majority Is Best

	B Proof of Theorem2
	C Proof of Lemma3
	References

	Oblivious Transfer from Any Non-trivial Elastic Noisy Channel via Secret Key Agreement
	1 Introduction
	2 Preliminaries
	2.1 Security Model
	2.2 Oblivious Transfer
	2.3 Elastic Channel

	3 Emulatable Key Agreement
	3.1 The Emulatable Key Agreement Protocol
	3.2 On the Emulatability of Other Key Agreement Protocols

	4 Semi-honest Protocol
	5 OT Protocol Secure Against a Malicious Receiver
	5.1 Receiver Commitment from Any Non-trivial EC
	5.2 From Commitment to Security Against a Malicious Receiver

	6 Secure Protocol
	6.1 Protocol

	A Universal Composability
	B Proof of Lemma 1
	C Proof of Theorem 1
	D Commitment Protocol for ECs from
	E Proof of Security of OT
	E.1 Statements About the Typicality Test
	E.2 Correctness
	E.3 Security Against a Malicious Receiver
	E.4 Security Against a Malicious Sender

	References

	Simultaneous Secrecy and Reliability Amplification for a General Channel Model
	1 Introduction
	1.1 Our Results
	1.2 Related Work
	1.3 Our Techniques

	2 The Model and Axioms
	2.1 Channels
	2.2 Examples
	2.3 Virtual Channels and Protocol Channels

	3 Secrecy and Reliability Amplification for One-Way Protocols
	3.1 Direct-Product Protocols
	3.2 Parity Protocols
	3.3 Repetition Protocol
	3.4 Assembling the Pieces for One-Way Protocols

	4 Impossibility Results for One-Way Protocols
	5 Breaking the Factor of Two Barrier with Two-Way Protocols
	6 Conclusions and Open Problems
	References

	Proof of Space from Stacked Expanders
	1 Introduction
	1.1 Gaps in Provable Memory Hardness
	1.2 Consistent Memory Hardness
	1.3 Our Results

	2 Related Work
	3 Pebble Games on Stacked Expanders
	3.1 Graph Pebbling and Labelling
	3.2 Bipartite Expanders
	3.3 Pebble Games on Stacked Bipartite Expanders
	3.4 Localization of Bipartite Expanders
	3.5 Consistent Space Hardness

	4 Improved Analysis for Balloon Hash MHF
	5 Proof of Transient Space from Stacked Expanders
	5.1 Definition
	5.2 Construction
	5.3 Efficiency and Space-Hardness

	6 Proof of Persistent Space from Stacked Expanders
	6.1 Definition
	6.2 Construction
	6.3 Efficiency and Space-Hardness

	7 Conclusion and Future Work
	References

	Perfectly Secure Message Transmission in Two Rounds
	1 Introduction
	2 Protocol Overview
	3 Setting and Techniques
	3.1 Error-Correcting Codes for Communication
	3.2 Pseudo-Bases or Syndrome-Spanning Subsets

	4 A First Protocol
	5 Improvements to the Protocol
	5.1 Generalized Broadcast
	5.2 Improved Transmission of the Pseudo-Basis: A Warm-Up
	5.3 Improved Transmission of the Pseudo-Basis: The Final Version
	5.4 The Improved Communication of the Masked Secrets

	6 The Improved Protocol
	7 Concluding Remarks
	References

	Foundations of Multi-Party Protocols
	Almost-Optimally Fair Multiparty Coin-Tossing with Nearly Three-Quarters Malicious
	1 Introduction
	1.1 Our Results
	1.2 Additional Related Work
	1.3 Our Techniques
	1.4 A Warm-Up Construction -- A Seven-Party Protocol Tolerating up to Five Corrupted Parties
	1.5 Organization

	2 Preliminaries
	2.1 Notation
	2.2 Coin-Tossing Protocols
	2.3 Security Definitions for Multiparty Protocols
	2.4 Security with Identifiable Abort
	2.5 Cryptographic Tools
	2.6 Claims and Definitions from [24]
	2.7 An Extension of the Hypergeometric Game

	3 The Multiparty Protocol
	3.1 A Coin-Tossing Protocol for t<2m/3
	3.2 A Coin-Tossing Protocol for t<3m/4
	3.3 Stating the Main Results

	References

	Binary AMD Circuits from Secure Multiparty Computation
	1 Introduction
	1.1 Our Results and Techniques
	1.2 On the Difference Between Additive Correctness and Additive Security

	2 Preliminaries
	3 Circuit Transformations
	4 Efficient Additive Correctness Using Correct-Only MPC
	5 From Additive Correctness to Additive Security via Passive-Secure MPC
	6 Constant-Overhead AMD Codes and Their Applications to Constant-Overhead MPC
	A Additive Correctness Without a Decoder: Feasibility
	References

	Composable Security in the Tamper-Proof Hardware Model Under Minimal Complexity
	1 Introduction
	1.1 Our Results
	1.2 Our Techniques
	1.3 Related Work

	2 Modeling Tamper-Proof Hardware in the GUC Framework
	2.1 The Global Tamper-Proof Model

	3 Issue with Over Extraction in Oblivious Transfer Combiners
	4 Two-Round Token-Based GUC Oblivious Transfer
	5 Three-Round Token-Based GUC Secure Multi-party Computation
	5.1 One-Many Commit-and-Prove Functionality
	5.2 Warmup: Simple MPC Protocol in the F1:MCP-Hybrid

	References

	Composable Adaptive Secure Protocols Without Setup Under Polytime Assumptions
	1 Introduction
	1.1 Our Results
	1.2 Previous Techniques

	2 Our Main Tool: CCA-Secure Coin-Tossing
	2.1 A Formal Definition of CCA-Secure Coin-Tossing
	2.2 CCA-Security w.r.t Challengers

	3 Preliminaries
	3.1 Simulatable PKE
	3.2 CCA-Secure Commitment Schemes

	4 Black-Box Adaptive UC Secure Protocols with Super-Polynomial Helpers
	5 CCA-Secure Coin-Tossing from CCA-Secure Commitments
	6 Realizing FCOM Using CCA-Secure Coin-Tossing
	7 Application: A Zero-One Law for Adaptive Security
	A Adaptive Extension to CCA-Secure Commitments
	References

	Adaptive Security of Yao's Garbled Circuits
	1 Introduction
	1.1 Our Techniques

	2 Preliminaries
	3 Garbling Scheme and Adaptive Security ()
	3.1 Garbling Scheme
	3.2 Yao's Garbling Scheme
	3.3 Adaptive Simulator

	4 Hybrid Games
	4.1 Template for Defining Hybrid Games
	4.2 Rules for Indistinguishable Hybrids

	5 Pebbling and Sequences of Hybrid Games
	5.1 Pebbling Strategies

	6 Conclusions
	A Symmetric-Key Encryption with Special Correctness
	B Pebbling Strategy
	References

	Round Complexity and Efficiency of Multi-party Computation
	Efficient Secure Multiparty Computation with Identifiable Abort
	1 Introduction
	2 Preliminaries
	2.1 Notation
	2.2 Model
	2.3 Broadcast Channel

	3 Homomorphic Information-Theoretic Signatures
	4 Construction of HITS
	5 Online Phase for Efficient MPC with Identifiable Abort
	5.1 Security
	5.2 An Optimised Protocol

	6 Preprocessing with Identifiable Abort
	6.1 Modified Functionality FPrep*
	6.2 SHE Scheme Requirements
	6.3 Basic Subprotocols
	6.4 Creating the Preprocessing Data

	7 Efficiency Evaluation
	7.1 Preprocessing Cost

	References

	Secure Multiparty RAM Computation in Constant Rounds
	1 Introduction
	1.1 Our Results
	1.2 Concurrent and Independent Work

	2 Our Techniques
	3 Preliminaries
	3.1 Garbled RAM
	3.2 Black-Box Garbled RAM of [11]

	4 Our Model
	5 Semi-honest Multi-party RAM Computation
	5.1 Distributed Garbling Protocol of [2]
	5.2 Garbled RAM Instantiated with Distributed Garbling of BMR
	5.3 Semi-honest Secure Protocol for RAM Computation
	5.4 Proof of Semi-Honest Security
	5.5 Running More Than One Program on a Persistent Database
	5.6 Load Balancing

	6 Malicious Setting
	6.1 Our Protocol
	6.2 Proof of Malicious Security

	References

	Constant-Round Maliciously Secure Two-Party Computation in the RAM Model
	1 Introduction
	1.1 Our Results

	2 Preliminaries
	2.1 The RAM Model of Computation
	2.2 Oblivious RAM (ORAM)
	2.3 Secure Computation in the RAM Model
	2.4 Timed IBE
	2.5 Garbled RAM Based on IBE
	2.6 Garbled Circuits

	3 Building Blocks
	3.1 Enhanced CPU-Step Function
	3.2 Initialization Circuit
	3.3 Batch Single-Choice Cut-and-Choose OT

	4 The Complete Protocol
	4.1 2PC in the UMA Model

	A Garbled Circuits
	References

	More Efficient Constant-Round Multi-party Computation from BMR and SHE
	1 Introduction
	2 Background on MPC and FHE
	2.1 The Generic MPC Functionality
	2.2 A Basic FHE Functionality with Distributed Decryption
	2.3 Gentry's FHE-Based MPC Protcol

	3 The SPDZ-BMR Protocol
	4 Extending the FFHE/FSHE Functionalities
	4.1 The Extended Functionality Definition
	4.2 Securely Realising the Extended Functionality

	5 The First Variant of the SHE-BMR Protocol: 0
	5.1 Functionality Foffline for the Offline Phase
	5.2 The SHE-BMR Protocol Specification MPC,0
	5.3 The offline,0 Protocol
	5.4 Security
	5.5 Analysis of Efficiency

	6 A Modified SHE-BMR Protocol of Depth 3: 1
	6.1 Protocol 1 Description

	References

	Cross and Clean: Amortized Garbled Circuits with Constant Overhead
	1 Introduction
	1.1 Our Contribution
	1.2 Technical Overview

	2 Preliminaries and Notation
	3 Our Protocol
	4 Dealing with Long Inputs and Outputs
	A List of symbols
	References

	Differential Privacy
	Separating Computational and Statistical Differential Privacy in the Client-Server Model
	1 Introduction
	2 Preliminaries
	2.1 (Computational) Differential Privacy
	2.2 Utility
	2.3 Zaps (2-Message WI Proofs)
	2.4 Digital Signatures

	3 Separating CDP and Differential Privacy
	3.1 Construction
	3.2 An Inefficient Differentially Private Algorithm
	3.3 A SIM-CDP Algorithm
	3.4 Infeasibility of Differential Privacy

	4 Limits of CDP in the Client-Server Model
	4.1 Task and Utility
	4.2 Result and Proof

	A Missing Proofs
	A.1 Proof of Proposition 2

	B Extractability for Zap Proof Systems
	B.1 Non-interactive Zero Knowledge Proofs
	B.2 Extractability of Zaps Based on Exponentially Extractable NIZKs

	References

	Concentrated Differential Privacy: Simplifications, Extensions, and Lower Bounds
	1 Introduction
	1.1 Our Reformulation: Zero-Concentrated Differential Privacy
	1.2 Results

	2 Rényi Divergence
	2.1 Gaussian Mechanism

	3 Relation to Differential Privacy
	3.1 Pure DP versus zCDP
	3.2 Approximate DP versus zCDP

	4 Zero- versus Mean-Concentrated Differential Privacy
	5 Group Privacy
	6 Lower Bounds
	6.1 Example Applications of the Lower Bound

	7 Obtaining Pure DP Mechanisms from zCDP
	8 Approximate zCDP
	References

	Strong Hardness of Privacy from Weak Traitor Tracing
	1 Introduction
	1.1 Our Results
	1.2 Techniques
	1.3 Related Work
	1.4 Paper Outline

	2 Differential Privacy Preliminaries
	2.1 Differentially Private Algorithms
	2.2 Algorithms for Answering Statistical Queries
	2.3 Computational Efficiency

	3 Weakly Secure Private Linear Broadcast Schemes
	3.1 Syntax and Correctness
	3.2 Weak Index-Hiding Security

	4 Hardness of Differential Privacy from PLBE
	5 Cryptographic Primitives
	5.1 Puncturable Pseudorandom Functions
	5.2 Twice Puncturable PRFs
	5.3 Indistinguishability Obfuscation

	6 A PLBE Scheme with Very Short Ciphertexts
	6.1 Construction
	6.2 Proof of Weak Index-Hiding Security

	7 A Private Linear Broadcast Scheme with Very Short Keys
	7.1 Construction
	7.2 Proof of Weak Index-Hiding Security

	References

	Author Index

