
7 Extremal
Graph Theory

In this chapter we study how global parameters of a graph, such as its
edge density or chromatic number, can influence its local substructures.
How many edges, for instance, do we have to give a graph on n vertices
to be sure that, no matter how these edges are arranged, the graph will
contain a Kr subgraph for some given r? Or at least a Kr minor? Will
some sufficiently high average degree or chromatic number ensure that
one of these substructures occurs?

Questions of this type are among the most natural ones in graph
theory, and there is a host of deep and interesting results. Collectively,
these are known as extremal graph theory.

Extremal graph problems in this sense fall neatly into two categories,
as follows. If we are looking for ways to ensure by global assumptions
that a graph G contains some given graph H as a minor (or topolo-
gical minor), it will suffice to raise ‖G‖ above the value of some linear
function of |G|, i.e., to make ε(G) large enough. The precise value of ε
needed to force a desired minor or topological minor will be our topic
in Section 7.2. Graphs whose number of edges is about1 linear in their
number of vertices are called sparse, so Section 7.2 is devoted to ‘sparse sparse

extremal graph theory’.
A particularly interesting way to force an H minor is to assume

that χ(G) is large. Recall that if χ(G) � k + 1, say, then G has a
subgraph G′ with 2ε(G′) � δ(G′) � k (Lemma 5.2.3). The question here
is whether the effect of large χ is limited to this indirect influence via ε,
or whether an assumption of χ � k + 1 can force bigger minors than

1 Formally, the notions of sparse and dense (below) make sense only for classes
of graphs whose order tends to infinity, not for individual graphs.
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174 7. Extremal Graph Theory

the assumption of 2ε � k can. Hadwiger’s conjecture, which we meet
in Section 7.3, asserts that χ has this quality. The conjecture can be
viewed as a generalization of the four colour theorem, and is regarded
by many as the most challenging open problem in graph theory.

On the other hand, if we ask what global assumptions might imply
the existence of some given graph H as a subgraph, it will not help to
raise invariants such as ε or χ, let alone any of the other invariants dis-
cussed in Chapter 1. For as soon as H contains a cycle, there are graphs
of arbitrarily large chromatic number not containing H as a subgraph
(Theorem 5.2.5). In fact, unless H is bipartite, any function f such that
f(n) edges on n vertices force an H subgraph must grow quadratically
with n (why?).

Graphs with a number of edges about quadratic in their number ofdense

vertices are usually called dense; the number ‖G‖
/(|G|

2

)
, the proportion

of its potential edges that G actually has, is the edge density of G. Theedge
density

question of exactly which edge density is needed to force a given subgraph
is the archetypal extremal graph problem, and it is our first topic in this
chapter (Section 7.1). Rather than attempting to survey the wide field of
‘dense extremal graph theory’, however, we shall concentrate on its two
most important results: we first prove Turán’s classical extremal graph
theorem for H = Kr—a result that has served as a model for countless
similar theorems for other graphs H—and then state the fundamental
Erdős-Stone theorem, which gives precise asymptotic information for all
H at once.

Although the Erdős-Stone theorem can be proved by elementary
means, we shall use the opportunity of its proof to portray a powerful
modern proof technique that has transformed much of extremal graph
theory in recent years: Szemerédi regularity lemma. This lemma is pre-
sented and proved in Section 7.4. In Section 7.5, we outline a general
method for applying it, and illustrate this in the proof of the Erdős-Stone
theorem. Another application of the regularity lemma will be given in
Chapter 9.2.

7.1 Subgraphs

Let H be a graph and n � |H|. How many edges will suffice to force an
H subgraph in any graph on n vertices, no matter how these edges are
arranged? Or, to rephrase the problem: which is the greatest possible
number of edges that a graph on n vertices can have without containing
a copy of H as a subgraph? What will such a graph look like? Will it
be unique?

A graph G �⊇ H on n vertices with the largest possible number of
edges is called extremal for n and H; its number of edges is denoted byextremal
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ex(n,H). Clearly, any graph G that is extremal for some n and H will ex(n, H)

also be edge-maximal with H �⊆ G. Conversely, though, edge-maximality
does not imply extremality: G may well be edge-maximal with H �⊆ G
while having fewer than ex(n,H) edges (Fig. 7.1.1).

Fig. 7.1.1. Two graphs that are edge-maximal with P 3 �⊆ G; is
the right one extremal?

As a case in point, we consider our problem for H = Kr (with r > 1).
A moment’s thought suggests some obvious candidates for extremality
here: all complete (r− 1)-partite graphs are edge-maximal without con-
taining Kr. But which among these have the greatest number of edges?
Clearly those whose partition sets are as equal as possible, i.e. differ in
size by at most 1: if V1, V2 are two partition sets with |V1|− |V2| � 2, we
may increase the number of edges in our complete (r− 1)-partite graph
by moving a vertex from V1 to V2.

The unique complete (r − 1)-partite graphs on n � r − 1 vertices
whose partition sets differ in size by at most 1 are called Turán graphs;
we denote them by T r−1(n) and their number of edges by tr−1(n) T r−1(n)

(Fig. 7.1.2). For n < r − 1 we shall formally continue to use these tr−1(n)

definitions, with the proviso that—contrary to our usual terminology—
the partition sets may now be empty; then, clearly, T r−1(n) = Kn for
all n � r− 1.

Fig. 7.1.2. The Turán graph T 3(8)

The following theorem tells us that T r−1(n) is indeed extremal for
n and Kr, and as such unique; in particular, ex(n,Kr) = tr−1(n).

Theorem 7.1.1. (Turán 1941) [7.1.2]
[9.2.2]

For all integers r, n with r > 1, every graph G �⊇ Kr with n vertices and
ex(n,Kr) edges is a T r−1(n).
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We give two proofs: one using induction, the other by a short and direct
local argument.

First proof. We apply induction on n. For n � r − 1 we have G =
Kn = T r−1(n) as claimed. For the induction step, let now n � r.

Since G is edge-maximal without a Kr subgraph, G has a sub-
graph K = Kr−1. By the induction hypothesis, G − K has at mostK

tr−1(n − r + 1) edges, and each vertex of G − K has at most r − 2
neighbours in K. Hence,

‖G‖ � tr−1(n− r +1)+ (n− r +1)(r− 2)+
(

r− 1
2

)
= tr−1(n) ; (1)

the equality on the right follows by inspection of the Turán graph T r−1(n)
(Fig. 7.1.3).

(
r−1
2

)

r− 2

tr−1(n− r+1)

Fig. 7.1.3. The equation from (1) for r = 5 and n = 14

Since G is extremal for Kr (and T r−1(n) �⊇ Kr), we have equality
in (1). Thus, every vertex of G−K has exactly r−2 neighbours in K—
just like the vertices x1, . . . , xr−1 of K itself. For i = 1, . . . , r− 1 letx1, . . . , xr−1

Vi := { v ∈ V (G) | vxi /∈ E(G) }V1, . . . , Vr−1

be the set of all vertices of G whose r−2 neighbours in K are precisely the
vertices other than xi. Since Kr �⊆ G, each of the sets Vi is independent,
and they partition V (G). Hence, G is (r− 1)-partite. As T r−1(n) is the
unique (r−1)-partite graph with n vertices and the maximum number of
edges, our claim that G = T r−1(n) follows from the assumed extremality
of G. �

Written compactly as above, the proof of Turán’s theorem may ap-
pear a little magical, perhaps even technical. When we look at it more
closely, however, we can see how it evolves naturally from the initial idea
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of using a subgraph K � Kr−1 as the seed for the T r−1(n) structure we
are hoping to identify in G. Indeed, once we have fixed K and wonder
how the rest of G might relate to it, we immediately observe that for
every v ∈ G−K there is a vertex x ∈ K such that vx /∈ E(G). Turning
then to the internal structure of G − K, we know from the induction
hypothesis that the most edges it can possibly have is tr−1(n− r + 1),
and only if G−K � T r−1(n− r + 1). We do not know yet that G−K
can indeed have that many edges: all we know is that G, not necessar-
ily G−K, has as many edges as possible without a Kr subgraph, and
giving G−K the structure of a T r−1(n− r + 1) might prevent us from
having as many edges between G−K and K as we might otherwise have.
But this conflict does not in fact arise. Indeed, we can give G−K this
structure and have the theoretical maximum number of edges between
G − K and K (all except the necessary non-edges of type vx noted
earlier) if we form G from K by expanding the r − 1 vertices of K to
the r− 1 vertex classes of a T r−1(n). And since this is the only way in
which both these aims can be achieved, T r−1(n) is once more the unique
extremal graph on n vertices without a Kr.

In our second proof of Turán’s theorem we shall use an operation
called vertex duplication. By duplicating a vertex v ∈ G we mean adding vertex

duplication
to G a new vertex v′ and joining it to exactly the neighbours of v (but
not to v itself).

Second proof. We have already seen that among the complete k-partite
graphs on n vertices the Turán graphs T k(n) have the most edges, and
their degrees show that T r−1(n) has more edges than any T k(n) with
k < r− 1. So it suffices to show that G is complete multipartite.

If not, then non-adjacency is not an equivalence relation on V (G),
and so there are vertices y1, x, y2 such that y1x, xy2 /∈ E(G) but y1y2 ∈
E(G). If d(y1) > d(x), then deleting x and duplicating y1 yields another
Kr-free graph with more edges than G, contradicting the choice of G.
So d(y1) � d(x), and similarly d(y2) � d(x). But then deleting both y1

and y2 and duplicating x twice yields a Kr-free graph with more edges
than G, again contradicting the choice of G. �

The Turán graphs T r−1(n) are dense: in order of magnitude, they
have about n2 edges. More exactly, for every n and r we have

tr−1(n) � 1
2n2 r− 2

r− 1
,

with equality whenever r − 1 divides n (Exercise 7). It is therefore
remarkable that just εn2 more edges (for any fixed ε > 0 and n large)
give us not only a Kr subgraph (as does Turán’s theorem) but a Kr

s for
any given integer s—a graph itself teeming with Kr subgraphs:
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Theorem 7.1.2. (Erdős & Stone 1946)
For all integers r � 2 and s � 1, and every ε > 0, there exists an integer
n0 such that every graph with n � n0 vertices and at least

tr−1(n)+ εn2

edges contains Kr
s as a subgraph.

A proof of the Erdős-Stone theorem will be given in Section 7.5, as
an illustration of how the regularity lemma may be applied. But the
theorem can also be proved directly; see the notes for references.

The Erdős-Stone theorem is interesting not only in its own right: it
also has a most interesting corollary. In fact, it was this entirely unex-
pected corollary that established the theorem as a kind of meta-theorem
for the extremal theory of dense graphs, and thus made it famous.

Given a graph H and an integer n, consider the number hn :=
ex(n,H)/

(
n
2

)
: the maximum edge density that an n-vertex graph can

have without containing a copy of H. Could it be that this critical
density is essentially just a function of H, that hn converges as n→∞?
Theorem 7.1.2 implies this, and more: the limit of hn is determined by a
very simple function of a natural invariant of H—its chromatic number!

Corollary 7.1.3. For every graph H with at least one edge,

lim
n→∞ ex(n,H)

(
n

2

)−1

=
χ(H)− 2
χ(H)− 1

.

For the proof of Corollary 7.1.3 we need as a lemma that tr−1(n)
never deviates much from the value it takes when r − 1 divides n (see
above), and that tr−1(n)/

(
n
2

)
converges accordingly. The proof of the

lemma is left as an easy exercise with hint (Exercise 8).

Lemma 7.1.4.[7.1.2]

lim
n→∞ tr−1(n)

(
n

2

)−1

=
r− 2
r− 1

.

�

Proof of Corollary 7.1.3. Let r := χ(H). Since H cannot be colouredr

with r− 1 colours, we have H �⊆ T r−1(n) for all n ∈ N, and hence

tr−1(n) � ex(n,H) .

On the other hand, H ⊆ Kr
s for all sufficiently large s, so

ex(n,H) � ex(n,Kr
s )
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for all those s. Let us fix such an s. For every ε > 0, Theorem 7.1.2 s

implies that eventually (i.e. for large enough n)

ex(n,Kr
s ) < tr−1(n)+ εn2.

Hence for n large,

tr−1(n)/
(
n
2

)
� ex(n,H)/

(
n
2

)
� ex(n,Kr

s )/
(
n
2

)
< tr−1(n)/

(
n
2

)
+ εn2/

(
n
2

)
= tr−1(n)/

(
n
2

)
+2ε/(1− 1

n )

� tr−1(n)/
(
n
2

)
+4ε (assume n � 2).

Therefore, since tr−1(n)/
(
n
2

)
converges to r−2

r−1 (Lemma 7.1.4), so does
ex(n,H)/

(
n
2

)
. �

For bipartite graphs H, Corollary 7.1.3 says that substantially fewer
than

(
n
2

)
edges suffice to force an H subgraph. It turns out that

c1n
2− 2

r+1 � ex(n,Kr,r) � c2n
2− 1

r

for suitable constants c1, c2 depending on r; the lower bound is obtained
by random graphs,2 the upper bound is calculated in Exercise 12. If H
is a forest, then H ⊆ G as soon as ε(G) is large enough, so ex(n,H) is at
most linear in n (Exercise 14). Erdős and Sós conjectured in 1963 that Erdős-Sós

conjecture
ex(n, T ) � 1

2 (k− 1)n for all trees with k � 2 edges; as a general bound
for all n, this is best possible for every T (Exercises 15–17).

A related but rather different question is whether large values of ε or
χ can force a graph G to contain a given tree T as an induced subgraph.
Of course, we need some additional assumption for this to make sense—
for example, to prevent G from just being a large complete graph. The
weakest sensible such assumption is that G has bounded clique number,
i.e., that G �⊇ Kr for some fixed integer r. Then large average degree
still does not force an induced copy of T—consider complete bipartite
graphs—but large chromatic number might: according to a remarkable
conjecture of Gyárfás (1975), there exists for every r ∈ N and every
tree T an integer k = k(T, r) such that every graph G with χ(G) � k
and ω(G) < r contains T as an induced subgraph.

2 see Chapter 11
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7.2 Minors

In this section and the next we ask to what extent assumptions about
invariants of a graph such as average degree, chromatic number, or girth
can force it to contain another given graph as a minor or topological
minor.

As a starting question, let us consider the analogue of Turán’s the-
orem: how many edges on n vertices force a Kr minor or topological
minor? The qualitative answer is that, unlike for Kr subgraphs where
we might need as many as 1

2
r−2
r−1n2 edges, a number of edges linear in n

is enough: it suffices to assume that the graph has large enough average
degree (depending on r).

Proposition 7.2.1. Every graph of average degree at least 2r−2 has a
Kr minor, for all r ∈ N.

Proof. We apply induction on r. For r � 2 the assertion is trivial.
For the induction step let r � 3, and let G be any graph of average
degree at least 2r−2. Then ε(G) � 2r−3; let H be a minimal minor
of G with ε(H) � 2r−3. Pick a vertex x ∈ H. By the minimality
of H, x is not isolated. And each of its neighbours y has at least 2r−3

common neighbours with x: otherwise contracting the edge xy would
lose us one vertex and at most 2r−3 edges, yielding a smaller minor H ′

with ε(H ′) � 2r−3. The subgraph induced in H by the neighbours of x
therefore has minimum degree at least 2r−3, and hence has a Kr−1 minor
by the induction hypothesis. Together with x this yields the desired Kr

minor of G. �

In Proposition 7.2.1 we needed an average degree of 2r−2 to force a
Kr minor by induction on r. Forcing a topological Kr minor is a little
harder: we shall fix its branch vertices in advance and then construct its
subdivided edges inductively, which requires an average degree of 2(

r
2) to

start with. Apart from this difference, the proof follows the same idea:

Proposition 7.2.2. Every graph of average degree at least 2(
r
2) has a

topological Kr minor, for every integer r � 2.

Proof. The assertion is clear for r = 2, so let us assume that r � 3.(1.2.2)
(1.3.1)

We show by induction on m = r, . . . ,
(
r
2

)
that every graph G of average

degree d(G) � 2m has a topological minor X with r vertices and m edges.
If m = r then, by Propositions 1.2.2 and 1.3.1, G contains a cycle

of length at least ε(G)+1 � 2r−1 +1 � r +1, and the assertion follows
with X = Cr.

Now let r < m �
(
r
2

)
, and assume the assertion holds for smaller m.

Let G with d(G) � 2m be given; thus, ε(G) � 2m−1. Since G has a
component C with ε(C) � ε(G), we may assume that G is connected.
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Consider a maximal set U ⊆ V (G) such that U is connected in G and U

ε(G/U) � 2m−1; such a set U exists, because G itself has the form G/U
with |U | = 1. Since G is connected, we have N(U) �= ∅.

Let H := G[N(U)]. If H has a vertex v of degree dH(v) < 2m−1, we H

may add it to U and obtain a contradiction to the maximality of U : when
we contract the edge vvU in G/U , we lose one vertex and dH(v) + 1 �
2m−1 edges, so ε will still be at least 2m−1. Therefore d(H) � δ(H) �
2m−1. By the induction hypothesis, H contains a TY with |Y | = r
and ‖Y ‖ = m− 1. Let x, y be two branch vertices of this TY that are
non-adjacent in Y . Since x and y lie in N(U) and U is connected in G,
G contains an x–y path whose inner vertices lie in U . Adding this path
to the TY , we obtain the desired TX. �

In Chapter 3.5 we used the TKr from Proposition 7.2.2 (stated
there as Lemma 3.5.1) for a first proof that large enough connectivity
f(k) implies that a graph is k-linked. Later, in Theorem 3.5.3, we saw
that connectivity as low as 2k, coupled with an average degree of at
least 16k, is enough to imply this.

Conversely, we can use the more involved Theorem 3.5.3 to reduce
the bound in Proposition 7.2.2 from exponential to quadratic, which is
best possible up to a multiplicative constant (Exercise 24):

Theorem 7.2.3. There is a constant c ∈ R such that, for every r ∈ N,
every graph G of average degree d(G) � cr2 contains Kr as a topological
minor.

Proof. We prove the theorem with c = 10. Let G with d(G) � 10r2 be (1.4.3)
(3.5.3)

given. By Theorem 1.4.3 for k := r2, G has a subgraph H with κ(H) � r2

and ε(H) > ε(G)− r2 � 4r2. For a TKr in H, pick a set X of r vertices
in H as branch vertices, and a set Y of r(r− 1) neighbours of X in H,
r− 1 for each vertex in X, as initial subdividing vertices. These are r2

vertices altogether; they can be chosen distinct, since δ(H) � κ(H) � r2.
It remains to link up the vertices of Y in pairs, by disjoint paths in

H ′ := H −X corresponding to the edges of Kr. This can be done if Y
is linked in H ′. We show more generally that H ′ is 1

2r(r− 1)-linked, by
checking that H ′ satisfies the premise of Theorem 3.5.3 for k = 1

2r(r−1).
We have κ(H ′) � κ(H)− r � r(r − 1) = 2k. And as H ′ was obtained
from H by deleting at most r|H| edges (as well as some vertices), we
also have ε(H ′) � ε(H)− r � 4r(r− 1) = 8k. �

For small r one can try to determine the exact number of edges
needed to force a TKr subgraph on n vertices. For r = 4, this number is
2n− 2; see Corollary 7.3.2. For r = 5, plane triangulations yield a lower
bound of 3n − 5 (Corollary 4.2.10). The converse, that 3n − 5 edges
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do force a TK5—not just either a TK5 or a TK3,3, as they do by Co-
rollary 4.2.10 and Kuratowski’s theorem—is already a difficult theorem
(Mader 1998).

The average degree needed to force an arbitrary Kr minor is less
than that for a TKr, and it is known very precisely; see the notes for
the value of c in the following result.

Theorem 7.2.4. (Kostochka 1982)
There exists a constant c ∈ R such that, for every r ∈ N, every graph G
of average degree d(G) � c r

√
log r contains Kr as a minor. Up to the

value of c, this bound is best possible as a function of r.

The easier implication of the theorem, the fact that in general an average
degree of c r

√
log r is needed to force a Kr minor, follows from consid-

ering random graphs as introduced in Chapter 11. The converse im-
plication, that this average degree suffices, is proved by methods not
dissimilar to the proof of Theorem 3.5.3.

Rather than proving Theorem 7.2.4, therefore, we devote the re-
mainder of this section to another striking aspect of forcing minors: that
we can force a Kr minor in a graph simply by raising its girth (as long
as we do not merely subdivide edges). At first glance, this may seem
almost paradoxical. But it looks more plausible if, rather than trying to
force a Kr minor directly, we instead try to force a minor just of large
minimum or average degree—which suffices by Theorem 7.2.4. For if the
girth g of a graph is large then the ball { v | d(x, v) < �g/2� } around
a vertex x induces a tree with many leaves, each of which sends all but
one of its incident edges away from the tree. Contracting enough disjoint
such trees we can thus hope to obtain a minor of large average degree,
which in turn will have a large complete minor.

The following lemma realizes this idea.

Lemma 7.2.5. Let d, k ∈ N with d � 3, and let G be a graph of minimum
degree δ(G) � d and girth g(G) � 8k + 3. Then G has a minor H of
minimum degree δ(H) � d(d− 1)k.

Proof. Let X ⊆ V (G) be maximal with d(x, y) > 2k for all distinct
x, y ∈ X. For each x ∈ X put T 0

x := {x}. Given i < 2k, assumeX

that we have defined disjoint trees T i
x ⊆ G (one for each x ∈ X) whose

vertices together are precisely the vertices at distance at most i from X
in G. Joining each vertex at distance i + 1 from X to a neighbour at
distance i, we obtain a similar set of disjoint trees T i+1

x . As every vertex
of G has distance at most 2k from X (by the maximality of X), the trees
Tx := T 2k

x obtained in this way partition the entire vertex set of G. LetTx

H be the minor of G obtained by contracting every Tx.
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To prove that δ(H) � d(d− 1)k, note first that the Tx are induced
subgraphs of G, because diam(Tx) � 4k and g(G) > 4k + 1. Similarly,
there is at most one edge in G between any two trees Tx and Ty: two
such edges, together with the paths joining their ends in Tx and Ty,
would form a cycle of length at most 8k + 2 < g(G). So all the edges
leaving Tx are preserved in the contraction.

How many such edges are there? Note that, for every vertex u ∈
T k−1

x , all its dG(u) � d neighbours v also lie in Tx: since d(v, x) � k
and d(x, y) > 2k for every other y ∈ X, we have d(v, y) > k � d(v, x),
so v was added to Tx rather than to Ty when those trees were defined.
Therefore T k

x , and hence also Tx, has at least d(d − 1)k−1 leaves. But
every leaf of Tx sends at least d− 1 edges away from Tx, so Tx sends at
least d(d− 1)k edges to (distinct) other trees Ty. �

Lemma 7.2.5 provides Theorem 7.2.4 with the following corollary:

Theorem 7.2.6. (Thomassen 1983)
There exists a function f : N → N such that every graph of minimum
degree at least 3 and girth at least f(r) has a Kr minor, for all r ∈ N.

Proof. We prove the theorem with f(r) := 8 log r + 4 log log r + c , for
some constant c ∈ R. Let k = k(r) ∈ N be minimal with 3 ·2k � c′r

√
log r,

where c′ ∈ R is the constant from Theorem 7.2.4. Then for a suitable
constant c ∈ R we have 8k + 3 � 8 log r + 4 log log r + c, and the result
follows by Lemma 7.2.5 and Theorem 7.2.4. �

Large girth can also be used to force a topological Kr minor. We
now need some vertices of degree at least r−1 to serve as branch vertices,
but if we assume a minimum degree of r−1 to secure these, we can even
get by with a girth bound that is independent of r:

Theorem 7.2.7. (Kühn & Osthus 2002) [7.3.9]

There exists a constant g such that G ⊇ TKr for every graph G satisfying
δ(G) � r− 1 and g(G) � g.

7.3 Hadwiger’s conjecture
As we saw in Section 7.2, an average degree of c r

√
log r suffices to force

an arbitrary graph to have a Kr minor, and an average degree of cr2

forces it to have a topological Kr minor. If we replace ‘average de-
gree’ above with ‘chromatic number’ then, with almost the same con-
stants c, the two assertions remain true: this is because every graph
with chromatic number k has a subgraph of average degree at least k−1
(Lemma 5.2.3).
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Although both functions above, c r
√

log r and cr2, are best possible
(up to the constant c) for the said implications with ‘average degree’,
the question arises whether they are still best possible with ‘chromatic
number’—or whether some slower-growing function would do in that
case. What lies hidden behind this problem about growth rates is a fun-
damental question about the nature of the invariant χ: can this invariant
have some direct structural effect on a graph in terms of forcing concrete
substructures, or is its effect no greater than that of the ‘unstructural’
property of having lots of edges somewhere, which it implies trivially?

Neither for general nor for topological minors is the answer to this
question known. For general minors, however, the following conjecture
of Hadwiger suggests a positive answer:

Conjecture. (Hadwiger 1943)
The following implication holds for every integer r > 0 and every
graph G:

χ(G) � r ⇒ G � Kr.

Hadwiger’s conjecture is trivial for r � 2, easy for r = 3 and r = 4
(exercises), and equivalent to the four colour theorem for r = 5 and
r = 6. For r � 7 the conjecture is open, but it is true for line graphs
(Exercise 34) and for graphs of large girth (Exercise 32; see also Corol-
lary 7.3.9). Rephrased as G � Kχ(G), it is true for almost all graphs.3

In general, the conjecture for r +1 implies it for r (exercise).

The Hadwiger conjecture for any fixed r is equivalent to the asser-
tion that every graph without a Kr minor has an (r − 1)-colouring. In
this reformulation, the conjecture raises the question of what the graphs
without a Kr minor look like: any sufficiently detailed structural de-
scription of those graphs should enable us to decide whether or not they
can be (r− 1)-coloured.

For r = 3, for example, the graphs without a Kr minor are precisely
the forests (why?), and these are indeed 2-colourable. For r = 4, there
is also a simple structural characterization of the graphs without a Kr

minor:

Proposition 7.3.1. A graph with at least three vertices is edge-maximal[12.6.2]

without a K4 minor if and only if it can be constructed recursively from
triangles by pasting4 along K2s.

3 See Chapter 11 for the notion of ‘almost all’.
4 This was defined formally in Chapter 5.5.
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Proof. Recall first that every IK4 contains a TK4, because Δ(K4) = 3 (1.7.3)
(4.4.4)

(Proposition 1.7.3); the graphs without a K4 minor thus coincide with
those without a topological K4 minor. The proof that any graph con-
structible as described is edge-maximal without a K4 minor is left as an
easy exercise; in order to deduce Hadwiger’s conjecture for r = 4, we
only need the converse implication anyhow. We prove this by induction
on |G|.

Let G be given, edge-maximal without a K4 minor. If |G| = 3 then
G is itself a triangle, so let |G| � 4 for the induction step. Then G is
not complete; let S ⊆ V (G) be a separator of size κ(G), and let C1, C2

be distinct components of G−S. Since S is a minimal separator, every
vertex in S has a neighbour in C1 and another in C2. If |S| � 3, this
implies that G contains three independent paths P1, P2, P3 between a
vertex v1 ∈ C1 and a vertex v2 ∈ C2. Since κ(G) = |S| � 3, the graph
G−{v1, v2} is connected and contains a (shortest) path P between two
different Pi. Then P ∪P1 ∪P2 ∪P3 is a TK4, a contradiction.

Hence κ(G) � 2, and the assertion follows from Lemma 4.4.45 and
the induction hypothesis. �

One of the interesting consequences of Proposition 7.3.1 is that all
the edge-maximal graphs without a K4 minor have the same number of
edges, and are thus all ‘extremal’:

Corollary 7.3.2. Every edge-maximal graph G without a K4 minor
has 2 |G| − 3 edges.

Proof. Induction on |G|. �

Corollary 7.3.3. Hadwiger’s conjecture holds for r = 4.

Proof. If G arises from G1 and G2 by pasting along a complete graph,
then χ(G) = max {χ(G1), χ(G2)} (see the proof of Proposition 5.5.2).
Hence, Proposition 7.3.1 implies by induction on |G| that all edge-maxi-
mal (and hence all) graphs without a K4 minor can be 3-coloured. �

It is also possible to prove Corollary 7.3.3 by a simple direct argument
(Exercise 33).

By the four colour theorem, Hadwiger’s conjecture for r = 5 follows
from the following structure theorem for the graphs without a K5 minor,
just as it follows from Proposition 7.3.1 for r = 4. The proof of Theorem
7.3.4 is similar to that of Proposition 7.3.1, but considerably longer. We
therefore state the theorem without proof:

5 The proof of this lemma is elementary and can be read independently of the
rest of Chapter 4.
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Theorem 7.3.4. (Wagner 1937)
Let G be an edge-maximal graph without a K5 minor. If |G| � 4 then
G can be constructed recursively, by pasting along triangles and K2s,
from plane triangulations and copies of the graph W (Fig. 7.3.1).

==

Fig. 7.3.1. Three representations of the Wagner graph W

Using Corollary 4.2.10, one can easily compute which of the graphs(4.2.10)

constructed as in Theorem 7.3.4 have the most edges. It turns out that
these extremal graphs without a K5 minor have no more edges than
those that are extremal with respect to {IK5, IK3,3}, i.e. the maximal
planar graphs:

Corollary 7.3.5. A graph with n vertices and no K5 minor has at most
3n− 6 edges. �

Since χ(W ) = 3, Theorem 7.3.4 and the four colour theorem imply
Hadwiger’s conjecture for r = 5:

Corollary 7.3.6. Hadwiger’s conjecture holds for r = 5. �

The Hadwiger conjecture for r = 6 is again substantially more dif-
ficult than the case r = 5, and again it relies on the four colour theo-
rem. The proof shows (without using the four colour theorem) that any
minimal-order counterexample arises from a planar graph by adding one
vertex—so by the four colour theorem it is not a counterexample after all.

Theorem 7.3.7. (Robertson, Seymour & Thomas 1993)
Hadwiger’s conjecture holds for r = 6.

As mentioned earlier, the challenge posed by Hadwiger’s conjecture
is to devise a proof technique that makes better use of the assumption of
χ � r than just using its consequence of δ � r− 1 in a suitable subgraph,
which we know cannot force a Kr minor (Theorem 7.2.4). So far, no such
technique is known.

If we resign ourselves to using just δ � r− 1, we can still ask what
additional assumptions might help in making this force a Kr minor.
Theorem 7.2.7 says that an assumption of large girth has this effect;
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see also Exercise 32. In fact, a much weaker assumption suffices: for
any fixed s ∈ N and all large enough d depending only on s, the graphs
G �⊇ Ks,s of average degree at least d can be shown to have Kr minors
for r considerably larger than d. For Hadwiger’s conjecture, this implies
the following:

Theorem 7.3.8. (Kühn & Osthus 2005)
For every integer s there is an integer rs such that Hadwiger’s conjecture
holds for all graphs G �⊇ Ks,s and r � rs.

The strengthening of Hadwiger’s conjecture that graphs of chro-
matic number at least r contain Kr as a topological minor has become
known as Hajós’s conjecture. It is false in general, but Theorem 7.2.7
implies it for graphs of large girth:

Corollary 7.3.9. There is a constant g such that all graphs G of girth
at least g satisfy the implication χ(G) � r ⇒ G ⊇ TKr for all r.

Proof. Let g be the constant from Theorem 7.2.7. If χ(G) � r then, by (5.2.3)
(7.2.7)

Lemma 5.2.3, G has a subgraph H of minimum degree δ(H) � r−1. As
g(H) � g(G) � g, Theorem 7.2.7 implies that G ⊇ H ⊇ TKr. �

7.4 Szemerédi’s regularity lemma
Some 40 years ago, in the course of the proof of a theorem about arith-
metic progressions of integers, Szemerédi developed a graph-theoretical
tool that has since come to dominate methods in extremal graph theory
like none other: his regularity lemma. Very roughly, the lemma says
that all graphs can be approximated by random graphs in the following
sense: every graph can be partitioned, into a bounded number of equal
parts, so that most of its edges run between different parts and the edges
between any two parts are distributed fairly uniformly—just as we would
expect it if they had been generated at random.

In order to state the regularity lemma precisely, we need some defi-
nitions. Let G = (V,E) be a graph, and let X,Y ⊆ V be disjoint. Then
we denote by ‖X,Y ‖ the number of X–Y edges of G, and call ‖X, Y ‖

d(X,Y ) :=
‖X,Y ‖
|X| |Y | d(X, Y )

the density of the pair (X,Y ). (This is a real number between 0 and 1.) density

Given some ε > 0, we call a pair (A,B) of disjoint sets A,B ⊆ V ε-regular
if all X ⊆ A and Y ⊆ B with ε-regular

pair

|X| � ε |A| and |Y | � ε |B|
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satisfy ∣∣d(X,Y )− d(A,B)
∣∣ � ε .

The edges in an ε-regular pair are thus distributed fairly uniformly, the
more so the smaller the ε we started with.

Consider a partition {V0, V1, . . . , Vk} of V in which one set V0 has
been singled out as an exceptional set . (This exceptional set V0 mayexceptional

set
be empty.6) We call such a partition an ε-regular partition of G if it
satisfies the following three conditions:

(i) |V0| � ε |V |;ε-regular
partition

(ii) |V1| = . . . = |Vk|;
(iii) all but at most εk2 of the pairs (Vi, Vj) with 1 � i < j � k are

ε-regular.

The role of the exceptional set V0 is one of pure convenience: it
makes it possible to require that all the other partition sets have exactly
the same size. Since condition (iii) affects only the sets V1, . . . , Vk, we
may think of V0 as a kind of bin: its vertices are disregarded when
the regularity of the partition is assessed, but there are only few such
vertices.

Theorem 7.4.1. (Regularity Lemma)[7.1.2]
[9.2.2]

For every ε > 0 and every integer m � 1 there exists an integer M
such that every graph of order at least m admits an ε-regular partition
{V0, V1, . . . , Vk} with m � k � M .

The regularity lemma thus says that, given any ε > 0, every graph
has an ε-regular partition into a bounded number of sets. The upper
bound M on the number of partition sets ensures that for large graphs
the partition sets are large too; note that ε-regularity is trivial when
the partition sets are singletons, and a powerful property when they are
large. The lemma also allows us to specify a lower bound m for the
number of partition sets. This can be used to increase the proportion
of edges running between different partition sets (i.e., of edges governed
by the regularity assertion) over edges inside partition sets (about which
we know nothing). See Exercise 38 for more details.

Note that the regularity lemma in this form is designed for use with
dense graphs:7 for sparse graphs it becomes trivial, because all densities
of pairs—and hence their differences—tend to zero (Exercise 39).

The remainder of this section is devoted to the proof of the regu-
larity lemma. Although the proof is not difficult, a reader meeting the

6 So V0 may be an exception also to our terminological rule that partition sets
are not normally empty.

7 Sparse versions were developed later; see the notes.
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regularity lemma here for the first time is likely to draw more insight
from seeing how the lemma is typically applied than from studying the
technicalities of its proof. Any such reader is encouraged to skip to the
start of Section 7.5 now and come back to the proof at his or her leisure.

We shall need the following inequality for reals μ1, . . . , μk > 0 and
e1, . . . , ek � 0:

∑ e2
i

μi
� (

∑
ei)

2∑
μi

. (1)

This follows from the Cauchy-Schwarz inequality
∑

a2
i

∑
b2
i � (

∑
aibi)2

by taking ai :=
√

μi and bi := ei/
√

μi.
Let G = (V,E) be a graph and n := |V |. For disjoint sets A,B ⊆ V G = (V, E)

we define n

q(A,B) :=
|A| |B|

n2
d2(A,B) =

‖A,B‖2

|A| |B|n2
. q(A, B)

For partitions A of A and B of B we set

q(A,B) :=
∑

A′∈A; B′∈B
q(A′, B′) , q(A,B)

and for a partition P = {C1, . . . , Ck} of V we let

q(P) :=
∑
i<j

q(Ci, Cj) . q(P)

However, if P = {C0, C1, . . . , Ck} is a partition of V with exceptional
set C0, we treat C0 as a set of singletons and define

q(P) := q(P̃) ,

where P̃ :=
{
C1, . . . , Ck

}
∪

{
{v} : v ∈ C0

}
. P̃

The function q(P) plays a pivotal role in the proof of the regularity
lemma. On the one hand, it measures the regularity of the partition P:
if P has too many irregular pairs (A,B), we may take the pairs (X,Y ) of
subsets violating the regularity of the pairs (A,B) and make those sets
X and Y into partition sets of their own; as we shall prove, this refines
P into a partition for which q is substantially greater than for P. Here,
‘substantial’ means that the increase of q(P) is bounded below by some
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constant depending only on ε. On the other hand,

q(P) =
∑
i<j

q(Ci, Cj)

=
∑
i<j

|Ci| |Cj |
n2

d2(Ci, Cj)

� 1
n2

∑
i<j

|Ci| |Cj |

� 1 .

The number of times that q(P) can be increased by a constant is thus
also bounded by a constant—in other words, after some bounded number
of refinements our partition will be ε-regular! To complete the proof of
the regularity lemma, all we have to do then is to note how many sets
that last partition can possibly have if we start with a partition into m
sets, and to choose this number as our promised bound M .

Let us make all this precise. We begin by showing that, when we
refine a partition, the value of q will not decrease:

Lemma 7.4.2.

(i) Let C,D ⊆ V be disjoint. If C is a partition of C and D is a
partition of D, then q(C,D) � q(C,D).

(ii) If P,P ′ are partitions of V and P ′ refines P, then q(P ′) � q(P).

Proof. (i) Let C =: {C1, . . . , Ck} and D =: {D1, . . . ,D�}. Then

q(C,D) =
∑
i,j

q(Ci,Dj)

=
1
n2

∑
i,j

‖Ci,Dj‖2

|Ci| |Dj |

�
(1)

1
n2

(∑
i,j ‖Ci,Dj‖

)2

∑
i,j |Ci| |Dj |

=
1
n2

‖C,D‖2(∑
i |Ci|

)(∑
j |Dj |

)
= q(C,D) .

(ii) Let P =: {C1, . . . , Ck}, and for i = 1, . . . , k let Ci be the partition
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of Ci induced by P ′. Then

q(P) =
∑
i<j

q(Ci, Cj)

�
(i)

∑
i<j

q(Ci, Cj)

� q(P ′) ,

since q(P ′) =
∑

i q(Ci)+
∑

i<j q(Ci, Cj). �

Next, we show that refining a partition by subpartitioning an ir-
regular pair of partition sets increases the value of q a little; since we are
dealing here with a single pair only, the amount of this increase will still
be less than any constant.

Lemma 7.4.3. Let ε > 0, and let C,D ⊆ V be disjoint. If (C,D) is not
ε-regular, then there are partitions C = {C1, C2} of C and D = {D1,D2}
of D such that

q(C,D) � q(C,D)+ ε4
|C| |D|

n2
.

Proof. Suppose (C,D) is not ε-regular. Then there are sets C1 ⊆ C and
D1 ⊆ D with |C1| � ε |C| and |D1| � ε |D| such that

|η| > ε (2)

for η := d(C1,D1) − d(C,D). Let C := {C1, C2} and D := {D1,D2}, η

where C2 := C � C1 and D2 := D � D1.
Let us show that C and D satisfy the conclusion of the lemma. We

shall write ci := |Ci|, di := |Di|, eij := ‖Ci,Dj‖, c := |C|, d := |D| ci, di, eij

and e := ‖C,D‖. As in the proof of Lemma 7.4.2, c, d, e

q(C,D) =
1
n2

∑
i,j

e2
ij

cidj

=
1
n2

(
e2
11

c1d1
+

∑
i+j>2

e2
ij

cidj

)

�
(1)

1
n2

(
e2
11

c1d1
+

(e− e11)2

cd− c1d1

)
.
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By definition of η, we have e11 = c1d1e/cd+ ηc1d1, so

n2 q(C,D) � 1
c1d1

(
c1d1e

cd
+ ηc1d1

)2

+
1

cd− c1d1

(
cd− c1d1

cd
e− ηc1d1

)2

=
c1d1e

2

c2d2
+

2eηc1d1

cd
+ η2c1d1

+
cd− c1d1

c2d2
e2 − 2eηc1d1

cd
+

η2c2
1d

2
1

cd− c1d1

� e2

cd
+ η2c1d1

�
(2)

e2

cd
+ ε4cd

since c1 � εc and d1 � εd by the choice of C1 and D1. �

Finally, we show that if a partition has enough irregular pairs of
partition sets to fall short of the definition of an ε-regular partition,
then subpartitioning all those pairs at once results in an increase of q by
a constant:

Lemma 7.4.4. Let 0 < ε � 1/4, and let P = {C0, C1, . . . , Ck}
be a partition of V, with exceptional set C0 of size |C0| � εn and
|C1| = . . . = |Ck| =: c. If P is not ε-regular, then there is a partitionc

P ′ = {C′
0, C

′
1, . . . , C

′
�} of V with exceptional set C′

0, where k � � � k4k+1,
such that |C′

0| � |C0|+n/2k, all other sets C′
i have equal size, and either

P ′ is ε-regular or

q(P ′) � q(P)+ ε5/2 .

Proof. For all 1 � i < j � k, let us define a partition Cij of Ci and aCij

partition Cji of Cj , as follows. If the pair (Ci, Cj) is ε-regular, we let
Cij := {Ci} and Cji := {Cj}. If not, then by Lemma 7.4.3 there are
partitions Cij of Ci and Cji of Cj with |Cij | = |Cji| = 2 and

q(Cij , Cji) � q(Ci, Cj)+ ε4
|Ci| |Cj |

n2
= q(Ci, Cj)+

ε4c2

n2
. (3)

For each i = 1, . . . , k, let Ci be the unique minimal partition of Ci thatCi

refines every partition Cij with j �= i. (In other words, if we consider two
elements of Ci as equivalent whenever they lie in the same partition set
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of Cij for every j �= i, then Ci is the set of equivalence classes.) Thus,
|Ci| � 2k−1. Now consider the partition

C := {C0}∪
k⋃

i=1

Ci C

of V , with C0 as exceptional set. Then C refines P and |C � {C0}| �
k2k−1, so

k � |C| � k2k. (4)

Let C0 :=
{
{v} | v ∈ C0

}
. Now if P is not ε-regular, then for more C0

than εk2 of the pairs (Ci, Cj) with 1 � i < j � k the partition Cij is
non-trivial. Hence, by our definition of q for partitions with exceptional
set, and Lemma 7.4.2 (i),

q(C) =
∑

1�i<j

q(Ci, Cj)+
∑
1�i

q(C0, Ci)+
∑
0�i

q(Ci)

�
∑

1�i<j

q(Cij , Cji)+
∑
1�i

q
(
C0, {Ci}

)
+ q(C0)

�
(3)

∑
1�i<j

q(Ci, Cj)+ εk2 ε4c2

n2
+

∑
1�i

q
(
C0, {Ci}

)
+ q(C0)

= q(P)+ ε5
(

kc

n

)2

� q(P)+ ε5/2 .

(For the last inequality, recall that |C0| � εn � 1
4n, so kc � 3

4n.)
In order to turn C into our desired partition P ′, all that remains to

do is to cut its sets up into pieces of some common size, small enough that
all remaining vertices can be collected into the exceptional set without
making this too large.

If c < 4k, the ε-regular partition P ′ into C′
0 := C0 and the single-

tons {v} with v ∈ V � C0 is as desired, since there are � such singletons
for k � � = kc < k4k.

Assume now that c � 4k. Let C′
1, . . . , C

′
� be a maximal collection of

disjoint sets of size d := �c/4k� � 1 such that each C′
i is contained in some d

C ∈ C � {C0}, and put C′
0 := V �

⋃
C′

i. Then P ′ = {C′
0, C

′
1, . . . , C

′
�} is P′

indeed a partition of V . Moreover, P̃ ′ refines C̃, so

q(P ′) � q(C) � q(P)+ ε5/2

by Lemma 7.4.2 (ii). Since each set C′
i �= C′

0 is also contained in one of
the sets C1, . . . , Ck, but no more than c/d � 4k+1 sets C′

i can lie inside
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the same Cj (by the choice of d), we also have k � � � k4k+1 as required.
Finally, the sets C′

1, . . . , C
′
� use all but at most d vertices from each set

C �= C0 of C. Hence,

|C′
0| � |C0|+ d |C|

�
(4)

|C0|+
c

4k
k2k

= |C0|+ ck/2k

� |C0|+n/2k.
�

The proof of the regularity lemma now follows easily by repeated
application of Lemma 7.4.4:

Proof of Theorem 7.4.1. Let ε > 0 and m � 1 be given, assumingε, m

without loss of generality that ε � 1/4. Let s := 2/ε5. This number ss

is an upper bound on the number of iterations of Lemma 7.4.4 that can
be applied to a partition of a graph before it becomes ε-regular; recall
that q(P) � 1 for all partitions P.

There is one formal requirement which a partition {C0, C1, . . . , Ck}
with |C1| = . . . = |Ck| has to satisfy before Lemma 7.4.4 can be (re-)
applied: the size |C0| of its exceptional set must not exceed εn. With
each iteration of the lemma, however, the size of the exceptional set can
grow by up to n/2k. (More precisely, by up to n/2�, where � is the
number of other sets in the current partition; but � � k by the lemma,
so n/2k is certainly an upper bound for the increase.) We thus want
to start with k large enough that even s increments of n/2k add up to
at most 1

2εn, and ensure that n large enough that, for any initial value
of |C0| < k, we have |C0| � 1

2εn. (If we give our starting partition k
non-exceptional sets C1, . . . , Ck, we should allow an initial size of up to k
for C0, to be able to achieve |C1| = . . . = |Ck|.)

So let k � m be large enough that 2k−1 � s/ε. Then s/2k � ε/2,k

and hence

k +
s

2k
n � εn (5)

whenever k/n � ε/2, i.e. for all n � 2k/ε.
Let us now choose M . This should be an upper bound on the

number of (non-exceptional) sets in our partition after up to s iterations
of Lemma 7.4.4, where in each iteration this number may grow from its
current value r to at most r4r+1. So let f be the function x �→ x4x+1,
and take M := max {fs(k), 2k/ε}; the second term in the maximumM

ensures that any n � M is large enough to satisfy (5).
We finally have to show that every graph G = (V,E) of order at

least m has an ε-regular partition {V0, V1, . . . , Vk′} with m � k′ � M . So
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let G be given, and let n := |G|. If n � M , we partition G into k′ := n n

singletons, choosing V0 := ∅ and |V1| = . . . = |Vk′ | = 1. This partition of
G is clearly ε-regular. Suppose now that n > M . Let C0 ⊆ V be minimal
such that our earlier k =: k′ divides |V � C0|, and let {C1, . . . , Ck} be
any partition of V � C0 into sets of equal size. Then |C0| < k, and
hence |C0| � εn by (5). Starting with {C0, C1, . . . , Ck} we apply Lemma
7.4.4 again and again, until the partition of G obtained is ε-regular;
this will happen after at most s iterations, since by (5) the size of the
exceptional set in the partitions stays below εn, so the lemma could
indeed be reapplied up to the theoretical maximum of s times. �

7.5 Applying the regularity lemma

The purpose of this section is to illustrate how the regularity lemma
is typically applied in the context of (dense) extremal graph theory.
Suppose we are trying to prove that a certain edge density of a graph
G suffices to force the occurrence of some given subgraph H, and that
we have an ε-regular partition of G. For most of the pairs (Vi, Vj) of
partition sets, the edges between Vi and Vj are distributed fairly uni-
formly; their density, however, may depend on the pair. But since G
has many edges, this density cannot be too small for too many pairs:
some sizeable proportion of the pairs will have at least a certain positive
density. Moreover if G is large, then so are the pairs: recall that the
number of partition sets is bounded, and they have equal size. But any
large enough bipartite graph with equal partition sets, fixed positive edge
density (however small) and a uniform distribution of edges will contain
any given bipartite subgraph;8 this will be made precise below. Writing
H as a union of bipartite subgraphs, say those induced by pairs of colour
classes of some vertex colouring of H, we shall obtain H ⊆ G as desired.

These ideas will be formalized by Lemma 7.5.2 below. We shall then
use this and the regularity lemma to prove the Erdős-Stone theorem
from Section 7.1; another application will be given later, in the proof
of Theorem 9.2.2. We wind up the section with an informal review of
the application of the regularity lemma that we have seen, summarizing
what it can teach us for similar applications. In particular, we look at
how the various parameters involved depend on each other, and in which
order they have to be chosen to make the lemma work.

Let us begin by noting a simple consequence of the ε-regularity of a
pair (A,B). For any subset Y ⊆ B that is not too small, most vertices
of A have about the expected number of neighbours in Y :

8 Readers already acquainted with random graphs may find it instructive to com-
pare this statement with Proposition 11.3.1.
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Lemma 7.5.1. Let (A,B) be an ε-regular pair, of density d say, and
let Y ⊆ B have size |Y | � ε |B|. Then all but fewer than ε |A| of the
vertices in A have (each) at least (d− ε)|Y | neighbours in Y .

Proof. Let X ⊆ A be the set of vertices with fewer than (d − ε)|Y |
neighbours in Y . Then ‖X,Y ‖ < |X|(d− ε)|Y |, so

d(X,Y ) =
‖X,Y ‖
|X| |Y | < d− ε = d(A,B)− ε .

As (A,B) is ε-regular and |Y | � ε |B|, this implies that |X| < ε |A|. �

Let G be a graph with an ε-regular partition {V0, V1, . . . , Vk}, with
exceptional set V0 and |V1| = . . . = |Vk| =: �. Given d ∈ [0, 1], let RR

be the graph on {V1, . . . , Vk} in which two vertices Vi, Vj are adjacent if
and only if they form an ε-regular pair in G of density � d. We shall call
R a regularity graph of G with parameters ε, � and d. Given s ∈ N, letregularity

graph
us now replace every vertex Vi of R by a set V s

i of s vertices, and everyV s
i

edge by a complete bipartite graph between the corresponding s-sets.
The resulting graph will be denoted by Rs. (For R = Kr, for example,Rs

we have Rs = Kr
s .)

The following lemma says that subgraphs of Rs can also be found
in G, provided that d > 0, that ε is small enough, and that the Vi are
large enough. In fact, the values of ε and � required depend only on
(d and) the maximum degree of the subgraph:

Lemma 7.5.2. For all d ∈ (0, 1] and Δ � 1 there exists an ε0 > 0 with[9.2.2]

the following property: if G is any graph, H is a graph with Δ(H) � Δ,
s ∈ N, and R is any regularity graph of G with parameters ε � ε0,
� � 2s/dΔ and d, then

H ⊆ Rs ⇒ H ⊆ G .

Proof. Given d and Δ, choose ε0 > 0 small enough that ε0 < d andd, Δ, ε0

(d− ε0)Δ −Δε0 � 1
2dΔ ; (1)

such a choice is possible, since (d − ε)Δ − Δε → dΔ as ε → 0. Now letG, H, R, Rs

G, H, s and R be given as stated. Let {V0, V1, . . . , Vk} be the ε-regularVi

partition of G that gave rise to R; thus, ε � ε0, V (R) = {V1, . . . , Vk}ε, k, �

and |V1| = . . . = |Vk| = � � 2s/dΔ. Let us assume that H is actually
a subgraph of Rs (not just isomorphic to one), with vertices u1, . . . , uhui, h

say. Each vertex ui lies in one of the s-sets V s
j of Rs, which defines a

map σ: i �→ j. Our aim is to define an embedding ui �→ vi ∈ Vσ(i) of Hσ

in G as a subgraph; thus, v1, . . . , vh will be distinct, and vivj will be anvi

edge of G whenever uiuj is an edge of H.
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Our plan is to choose the vertices v1, . . . , vh inductively. Throughout
the induction, we shall have a ‘target set’ Yi ⊆ Vσ(i) assigned to each ui;
this contains the vertices that are still candidates for the choice of vi.
Initially, Yi is the entire set Vσ(i). As the embedding proceeds, Yi will
get smaller and smaller (until it collapses to {vi} when vi is chosen):
whenever we choose a vertex vj with j < i and ujui ∈ E(H), we delete
all those vertices from Yi that are not adjacent to vj . The set Yi thus
evolves as

Vσ(i) = Y 0
i ⊇ . . . ⊇ Y i

i = {vi} ,

where Y j
i denotes the version of Yi current after the definition of vj and

the resulting deletion of vertices from Y j−1
i .

In order to make this approach work, we have to ensure that the
target sets Yi do not get too small. When we come to embed a vertex uj ,
we consider all the indices i > j with ujui ∈ E(H); there are at most Δ
such i. For each of these i, we wish to select vj so that

Y j
i = N(vj)∩Y j−1

i (2)

is still relatively large: smaller than Y j−1
i by no more than a constant

factor such as (d − ε). Now this can be done by Lemma 7.5.1 (with
A = Vσ(j), B = Vσ(i) and Y = Y j−1

i ): provided that Y j−1
i still has size

at least ε� (which induction will ensure), all but at most ε� choices of vj

will be such that the new set Y j
i as in (2) satisfies

|Y j
i | � (d− ε)|Y j−1

i | . (3)

Excluding the bad choices for vj for all the relevant values of i simulta-
neously, we find that all but at most Δε� choices of vj from Vσ(j), and
in particular from Y j−1

j ⊆ Vσ(j), satisfy (3) for all i.
It remains to show that the sets Y j−1

i considered above as Y for
Lemma 7.5.1 never fall below the size of ε�, and that when we come to
select vj ∈ Y j−1

j we have a choice of at least s suitable candidates: since
before uj at most s− 1 vertices u were given an image in Vσ(j), we can
then choose vj distinct from these.

But all this follows from our choice of ε0. Indeed, the initial target
sets Y 0

i have size �, and each Yi shrinks at most Δ times by a factor of
(d− ε) when some vj with j < i and ujui ∈ E(H) is defined. Thus,

|Y j−1
i | −Δε� �

(3)
(d− ε)Δ�−Δε� � (d− ε0)Δ�−Δε0� �

(1)

1
2dΔ� � s

for all j � i; in particular, we have |Y j−1
i | � ε� and |Y j−1

j |−Δε� � s as
desired. �

We are now ready to prove the Erdős-Stone theorem.
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Proof of Theorem 7.1.2. Let r � 2 and s � 1 be given as in the
(7.1.1)
(7.1.4)
(7.4.1) statement of the theorem. For s = 1 the assertion follows from Turán’s

theorem, so we assume that s � 2. Let γ > 0 be given; this γ will play
r, s
γ

the role of the ε of the theorem. If any graph G with |G| =: n has

‖G‖ � tr−1(n)+ γn2‖G‖

edges, then γ < 1. We want to show that Kr
s ⊆ G if n is large enough.

Our plan is to use the regularity lemma to show that G has a regu-
larity graph R dense enough to contain a Kr by Turán’s theorem. Then
Rs contains a Kr

s , so we may hope to use Lemma 7.5.2 to deduce that
Kr

s ⊆ G.
On input d := γ and Δ := Δ(Kr

s ) Lemma 7.5.2 returns an ε0 > 0.d, Δ, ε0

To apply the regularity lemma, let m > 1/γ and choose ε > 0 smallm, ε

enough that ε � ε0,
ε < γ/2 < 1 , (1)

and
δ := 2γ − ε2 − 4ε− d− 1

m
> 0 ;δ

this is possible, since 2γ − d− 1
m > 0. On input ε and m, the regularity

lemma returns an integer M . Let us assume thatM

n � 2Ms

dΔ(1− ε)
.n

Since this number is at least m, the regularity lemma provides us with
an ε-regular partition {V0, V1, . . . , Vk} of G, where m � k � M ; letk

|V1| = . . . = |Vk| =: �. Then�

n � k� , (2)

and
� =

n− |V0|
k

� n− εn

M
= n

1− ε

M
� 2s

dΔ

by the choice of n. Let R be the regularity graph of G with parametersR

ε, �, d corresponding to the above partition. Then Lemma 7.5.2 will imply
Kr

s ⊆ G as desired if Kr ⊆ R (and hence Kr
s ⊆ Rs).

Our plan was to show Kr ⊆ R by Turán’s theorem. We thus have to
check that R has enough edges, i.e. that enough ε-regular pairs (Vi, Vj)
have density at least d. This should follow from our assumption that G
has at least tr−1(n)+ γn2 edges, i.e. an edge density of about r−2

r−1 +2γ:
this lies substantially above the approximate density of r−2

r−1 of the Turán
graph T r−1(k), and hence substantially above any density that G could
derive from tr−1(k) dense pairs alone, even if all these had density 1.
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Let us then estimate ‖R‖ more precisely. How many edges of G
lie outside ε-regular pairs? At most

(|V0|
2

)
edges lie inside V0, and by

condition (i) in the definition of ε-regularity these are at most 1
2 (εn)2

edges. At most |V0|k� � εn2 edges join V0 to other partition sets. The
at most εk2 other pairs (Vi, Vj) that are not ε-regular contain at most
�2 edges each, together at most εk2�2. The ε-regular pairs of insufficient
density (< d) each contain no more than d�2 edges, altogether at most
1
2k2d�2 edges. Finally, there are at most

(
�
2

)
edges inside each of the

partition sets V1, . . . , Vk, together at most 1
2�2k edges. All other edges

of G lie in ε-regular pairs of density at least d, and thus contribute to
edges of R. Since each edge of R corresponds to at most �2 edges of G,
we thus have in total

‖G‖ � 1
2ε2n2 + εn2 + εk2�2 + 1

2k2d�2 + 1
2�2k + ‖R‖ �2.

Hence, for all sufficiently large n,

‖R‖ � 1
2k2 ‖G‖− 1

2ε2n2 − εn2 − εk2�2 − 1
2dk2�2 − 1

2k�2

1
2k2�2

�
(1,2)

1
2k2

(
tr−1(n)+ γn2 − 1

2ε2n2 − εn2

n2/2
− 2ε− d− 1

k

)

� 1
2k2

(
tr−1(n)
n2/2

+2γ − ε2 − 4ε− d− 1
m

)

= 1
2k2

(
tr−1(n)

(
n

2

)−1(
1− 1

n

)
+ δ

)

> 1
2k2 r− 2

r− 1

� tr−1(k) .

(The strict inequality follows from Lemma 7.1.4.) Therefore Kr ⊆ R by
Theorem 7.1.1, as desired. �

Having seen a typical application of the regularity lemma in full
detail, let us now step back and try to separate the wheat from the
chaff: what were the main ideas, how do the various parameters depend
on each other, and in which order were they chosen?

The task was to show that γn2 more edges than can be accommo-
dated on n vertices without creating a Kr force a Kr

s subgraph, provided
that G is large enough. The plan was to do this using Lemma 7.5.2, which
asks for the input of two parameters: d and Δ. As we wish to find a
copy of H = Kr

s in G, it is clear that we must choose Δ := Δ(Kr
s ). We

shall return to the question of how to choose d in a moment.
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Given d and Δ, Lemma 7.5.2 tells us how small we must choose ε
to make the regularity lemma provide us with a suitable partition. The
regularity lemma also requires the input of a lower bound m for the
number of partition classes; we shall discuss this below, together with d.

All that remains now is to choose G large enough that the partition
classes have size at least 2s/dΔ, as required by Lemma 7.5.2. (The s
here depends on the graph H we wish to embed, and s := |H| would
certainly be big enough. In our case, we can use the s from our H = Kr

s .)
How large is ‘large enough’ for |G| follows straight from the upper bound
M on the number of partition classes returned by the regularity lemma:
roughly, i.e. disregarding V0, an assumption of |G| � 2Ms/dΔ suffices.

So far, everything was entirely straightforward, and standard for
any application of the regularity lemma of this kind. But now comes
the interesting bit, the part specific to this proof: the observation that,
if only d is small enough, our γn2 ‘additional edges’ force an ‘additional
dense ε-regular pair’ of partition sets, giving us more than tr−1(k) dense
ε-regular pairs in total (where ‘dense’ means ‘of density at least d’), thus
forcing R to contain a Kr and hence Rs to contain a Kr

s .
Let us examine why this is so. Suppose we have at most tr−1(k)

dense ε-regular pairs . Inside these, G has at most

1
2k2 r− 2

r− 1
�2 � 1

2n2 r− 2
r− 1

edges, even if we use those pairs to their full capacity of �2 edges each
(where � is again the common size of the partition sets other than V0, so
that k� is nearly n). Thus, we have almost exactly our γn2 additional
edges left to accommodate elsewhere in the graph: either in ε-regular
pairs of density less than d, or in some exceptional way, i.e. in irregular
pairs, inside a partition set, or with an end in V0. Now the number of
edges in low-density ε-regular pairs is less than

1
2k2d�2 � 1

2dn2,

and hence less than half of our extra edges if d � γ. The other half,
the remaining 1

2γn2 edges, are more than can be accommodated in ex-
ceptional ways, provided we choose m large enough and ε small enough
(giving an additional upper bound for ε). It is now a routine matter to
compute the values of m and ε that will work.
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Exercises

1.− Show that K1,3 is extremal without a P 3.

2.− Given k > 0, determine the extremal graphs of chromatic number at
most k.

3.− Is there a graph that is edge-maximal without a K3 minor but not
extremal?

4. Determine the value of ex(n, K1,r) for all r, n ∈ N.

5.+ Given k > 0, determine the extremal graphs without a matching of
size k.

(Hint. Theorem 2.2.3 and Ex. 20, Ch. 2.)

6. Without using Turán’s theorem, show that the maximum number of
edges in a triangle-free graph of order n > 1 is �n2/4�.

7. Show that

tr−1(n) � 1
2
n2 r− 2

r− 1
,

with equality whenever r− 1 divides n.

8. Show that tr−1(n)/
(

n
2

)
converges to (r− 2)/(r− 1) as n→∞.

(Hint. tr−1((r− 1)� n
r−1

�) � tr−1(n) � tr−1((r− 1)� n
r−1

�).)
9. Does every large enough graph G with at most c |G| edges, where c is

any constant, contain a set of 100 independent vertices?

10. Show that deleting at most (m − s)(n − t)/s edges from a Km,n will
never destroy all its Ks,t subgraphs.

11. For 0 < s � t � n let z(n, s, t) denote the maximum number of edges in
a bipartite graph whose partition sets both have size n, and which does
not contain a Ks,t. Show that 2 ex(n, Ks,t) � z(n, s, t) � ex(2n, Ks,t).

12.+ Let 1 � r � n be integers. Let G be a bipartite graph with bipartition
{A, B}, where |A| = |B| = n, and assume that Kr,r �⊆ G. Show that

∑
x∈A

(
d(x)

r

)
� (r− 1)

(
n

r

)
.

Using the previous exercise, deduce that ex(n, Kr,r) � cn2−1/r for some
constant c depending only on r.

13. The upper density of an infinite graph G is the lim sup of the maximum
edge densities of its (finite) n-vertex subgraphs as n→∞.

(i) Show that, for every r ∈ N, every infinite graph of upper density
> r−2

r−1
has a Kr

s subgraph for every s ∈ N.

(ii) Deduce that the upper density of infinite graphs can only take
the countably many values of 0, 1, 1

2
, 2

3
, 3

4
, . . ..
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14. Given a tree T , find an upper bound for ex(n, T ) that is linear in n and
independent of the structure of T , i.e. depends only on |T |.

15. Show that the Erdős-Sós conjecture is best possible in the sense that,
for every k and infinitely many n, there is a graph on n vertices and
with 1

2
(k− 1)n edges that contains no tree with k edges.

16.− Prove the Erdős-Sós conjecture for the case when the tree considered
is a star.

17. Prove the Erdős-Sós conjecture for the case when the tree considered
is a path.

(Hint. Use Exercise 9 of Chapter 1.)

18. Can large average degree force the chromatic number up if we exclude
some tree as an induced subgraph? More precisely: For which trees T
is there a function f :N→N such that, for every k ∈ N, every graph of
average degree at least f(k) either has chromatic number at least k or
contains an induced copy of T?

19. Given two numerical graph invariants i1 and i2, write i1 � i2 if we can
force i2 to be arbitrarily high on some subgraph of G by assuming that
i1(G) is large enough. (Formally: write i1 � i2 if there exists a function
f :N→N such that, given any k ∈ N, every graph G with i1(G) � f(k)
has a subgraph H with i2(H) � k.) If i1 � i2 as well as i1 � i2, write
i1 ∼ i2. Show that this is an equivalence relation for graph invariants,
and sort the following invariants into equivalence classes ordered by <:
minimum degree; average degree; connectivity; arboricity; chromatic
number; colouring number; choice number; max{ r | Kr ⊆ G }; max{ r |
TKr ⊆ G }; max { r | Kr � G }; min max d+(v), where the maximum
is taken over all vertices v of the graph, and the minimum over all its
orientations.

20.+ Prove, from first principles and without using average or minimum
degree arguments, the existence of a function f :N→N such that every
graph of chromatic number at least f(r) has a Kr minor.

(Hint. Use induction on r. For the induction step (r−1)→r try to find
a connected set U of vertices whose neighbours induce a subgraph that
needs enough colours to contract to Kr−1. If no such set U exists, show
that the given graph can be coloured with fewer colours than assumed.)

21. Given a graph G with ε(G) � k ∈ N, find a minor H � G such that
δ(H) � k � |H|/2.

22.+ Find a constant c such that every graph with n vertices and at least
n+2k(log k+log log k+ c) edges contains k edge-disjoint cycles (for all
k ∈ N). Deduce an edge-analogue of the Erdős-Pósa theorem (2.3.2).

(Hint. Assuming δ � 3, delete the edges of a short cycle and apply
induction. The calculations are similar to the proof of Lemma 2.3.1.)

23. Simplify the proof of Theorem 7.2.3 by using Exercise 32 of Chapter 3.
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24.+ Show that any function h as in Lemma 3.5.1 satisfies the inequality
h(r) > 1

8
r2 for all even r, and hence that Theorem 7.2.3 is best possible

up to the value of the constant c.

25. Characterize the graphs with n vertices and more than 3n − 6 edges
that contain no TK3,3. In particular, determine ex(n, TK3,3).

(Hint. You may use the theorem of Wagner that every edge-maximal
graph without a K3,3 minor can be constructed recursively from max-
imal planar graphs and copies of K5 by pasting along K2s.)

26.− Derive the four colour theorem from Hadwiger’s conjecture for r = 5.

27.− Show that Hadwiger’s conjecture for r+1 implies the conjecture for r.

28.− Deduce the following weakening of Hadwiger’s conjecture from known
results: given any ε > 0, every graph of chromatic number at least r1+ε

has a Kr minor, provided that r is large enough.

29.− Show that any graph constructed as in Proposition 7.3.1 is edge-
maximal without a K4 minor.

30. Prove the implication δ(G) � 3 ⇒ G ⊇ TK4.

(Hint. You may use any result from Section 7.3.)

31. A multigraph is called series-parallel if it can be constructed recursively
from a K2 by the operations of subdividing and of doubling edges. Show
that a 2-connected multigraph is series-parallel if and only if it has no
(topological) K4 minor.

32. Without using Theorem 7.3.8, prove Hadwiger’s conjecture for all
graphs of girth at least 11 and r large enough. Without using Co-
rollary 7.3.9, show that there is a constant g ∈ N such that all graphs
of girth at least g satisfy Hadwiger’s conjecture, irrespective of r.

33.+ Prove Hadwiger’s conjecture for r = 4 from first principles.

34.+ Prove Hadwiger’s conjecture for line graphs.

35. Prove Corollary 7.3.5.

36.− In the definition of an ε-regular pair, what is the purpose of the re-
quirement that |X| � ε |A| and |Y | � ε |B|?

37.− Show that any ε-regular pair in G is also ε-regular in G.

38. Consider a partition of a finite set V into k equally sized subsets. Show
that the complete graph on V has about k− 1 as many edges between
different partition sets as edges inside partition sets. Explain how this
leads to the choice of m := 1/γ in the proof of the Erdős-Stone theorem.

39. (i) Deduce the regularity lemma from the assumption that it holds,
given ε > 0 and m � 1, for all graphs of order at least some n = n(ε, m).

(ii) Prove the regularity lemma for sparse graphs—more precisely, for
every sequence (Gn)n∈N of graphs Gn of order n such that ‖Gn‖/n2→0
as n→∞.
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Notes
The standard reference work for results and open problems in extremal graph
theory (in a very broad sense) is still B.Bollobás, Extremal Graph Theory,
Academic Press 1978. A kind of update on the book is given by its author in
his chapter of the Handbook of Combinatorics (R.L.Graham, M.Grötschel &
L. Lovász, eds.), North-Holland 1995. An instructive survey of extremal graph
theory in the narrower sense of Section 7.1 is given by M. Simonovits in
(L.W.Beineke & R.J.Wilson, eds.) Selected Topics in Graph Theory 2, Aca-
demic Press 1983. This paper focuses among other things on the particular
role played by the Turán graphs. A more recent survey by the same author
can be found in (R.L.Graham & J.Nešeťril, eds.) The Mathematics of Paul
Erdős, Vol. 2, Springer 1996.

Turán’s theorem is not merely one extremal result among others: it is the
result that sparked off the entire line of research. Our first proof of Turán’s
theorem is essentially the original one; the second is a version of a proof of
Zykov due to Brandt.

Túran’s theorem has been generalized as follows. Suppose that, for some
fixed r � 3, we wish to construct a graph on n vertices with at least γn2

edges, where now 1
2

r−2
r−1

< γ < 1
2
, in such a way as to create as few Kr

subgraphs as possible. The clique density theorem says that, for fixed γ, the
asymptotically best way to do this is to form a complete multipartite graph
in which all classes have the same size except for one, which may be smaller.
How many such classes there are depends on γ, but not on n: as in Turán’s
theorem, s classes will always give about γn2 edges for γ = 1

2
s−1

s
. The clique

density theorem had been conjectured by Lovász and Simonovits in 1983, and
was finally proved for all r by C.Reiher, The clique density theorem, Ann.
Math. 184 (2016), 683–707, arXiv:1212.2454.

Our version of the Erdős-Stone theorem is a slight simplification of the
original. A direct proof, not using the regularity lemma, is given in L. Lovász,
Combinatorial Problems and Exercises (2nd edn.), North-Holland 1993. Its
most fundamental application, Corollary 7.1.3, was only found 20 years after
the theorem, by Erdős and Simonovits (1966).

Of our two bounds on ex(n, Kr,r) the upper one is thought to give the
correct order of magnitude. For vastly off-diagonal complete bipartite graphs
this was verified by J.Kollár, L.Rónyai & T. Szabó, Norm-graphs and bi-
partite Turán numbers, Combinatorica 16 (1996), 399–406, who proved that

ex(n, Kr,s) � crn
2− 1

r when s > r! .

Details about the Erdős-Sós conjecture, including an approximate solu-
tion for large k, can be found in the survey by Komlós and Simonovits cited
below. The case where the tree T is a path (Exercise 17) was proved by
Erdős & Gallai in 1959. It was this result, together with the easy case of
stars (Exercise 16) at the other extreme, that inspired the conjecture as a
possible unifying result. A proof of the precise conjecture for large graphs was
announced in 2009 by Ajtai, Komlós, Simonovits and Szemerédi, but has not
been made publicly available.

The Erdős-Sós conjecture says that graphs of average degree greater than
k−1 contain every tree with k edges. Loebl, Komlós and Sós have conjectured
a ‘median’ version, which appears to be easier: that if at least half the vertices
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of a graph have degree greater than k− 1 it contains every tree with k edges.
An approximate version of this conjecture has been proved by Hladký, Komlós,
Piguet, Simonovis, Stein and Szemerédi in arXiv:1408.3870.

Theorem 7.2.3 was first proved by B.Bollobás & A.G.Thomason, Proof
of a conjecture of Mader, Erdős and Hajnal on topological complete sub-
graphs, Eur. J. Comb. 19 (1998), 883–887, and independently by J.Komlós &
E. Szemerédi, Topological cliques in graphs II, Comb.Probab.Comput. 5
(1996), 79–90. For large G, the latter authors show that the constant c in
the theorem can be brought down to about 1

2
, which is not far from the lower

bound of 1
8
given in Exercise 24.

Theorem 7.2.4 was first proved in 1982 by Kostochka, and in 1984 with a
better constant by Thomason. For references and more insight, also in these
early proofs, see A.G.Thomason, The extremal function for complete minors,
J.Comb.Theory B 81 (2001), 318–338. There, Thomason determines the
smallest possible value of the constant c in Theorem 7.2.4 asymptotically for
large r. It can be written as c = α+ o(1), where α = 0.53131 . . . is an explicit
constant and o(1) stands for a function of r tending to zero as r→∞.

Surprisingly, the average degree needed to force an incomplete minor H
of order r remains at cr

√
log r, with c = αγ(H) + o(1), where γ is a graph

invariant H �→ [0, 1] that is bounded away from 0 for dense H, and o(1) is a
function of |H| tending to 0 as |H|→∞. See J.S.Myers & A.G.Thomason, The
extremal function for noncomplete minors, Combinatorica 25 (2005), 725–753.

As Theorem 7.2.4 is best possible, there is no constant c such that all
graphs of average degree at least cr have a Kr minor. Strengthening this as-
sumption to κ � cr, however, can force a Kr minor in all large enough graphs;
this was proved by T.Böhme, K.Kawarabayashi, J.Maharry and B.Mohar,
Linear connectivity forces large complete bipartite minors, J.Comb.Theory B
99 (2009), 557–582. Their proof rests on a structure theorem for graphs of
large tree-width not containing a given minor, which was proved only later by
R.Diestel, K.Kawarabayashi, Th.Müller & P.Wollan, On the excluded mi-
nor structure theorem for graphs of large tree-width, J.Comb.Theory B 102
(2012), 1189–1210, arXiv:0910.0946. A simple direct argument that bypasses
the use of this structure theorem was found by J.-O.Fröhlich and Th.Müller,
Linear connectivity forces large complete bipartite minors: an alternative ap-
proach, J.Comb.Theory B 101 (2011), 502–508, arXiv:0906.2568.

The fact that large enough girth can force minors of arbitrarily high min-
imum degree, and hence large complete minors, was discovered by Thomassen
in 1983. The reference can be found in W.Mader, Topological subgraphs
in graphs of large girth, Combinatorica 18 (1998), 405–412, from which our
Lemma 7.2.5 is extracted. Our girth assumption of 8k+3 has been reduced to
about 4k by D.Kühn and D.Osthus, Minors in graphs of large girth, Random
Struct.Alg. 22 (2003), 213–225, which is conjectured to be best possible.

The original reference for Theorem 7.2.7 can be found in D.Kühn and
D.Osthus, Improved bounds for topological cliques in graphs of large girth,
SIAM J. Discrete Math. 20 (2006), 62–78, where they re-prove their theorem
with g � 27. See also D.Kühn & D.Osthus, Subdivisions of Kr+2 in graphs
of average degree at least r + ε and large but constant girth, Comb.Probab.
Comput. 13 (2004), 361–371.

The proof of Hadwiger’s conjecture for r = 4 hinted at in Exercise 33 was
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given by Hadwiger himself, in the 1943 paper containing his conjecture. Like
Hadwiger’s conjecture, Hajós’s conjecture has (later) been proved for graphs
of large girth (Corollary 7.3.9) and for line graphs; see C.Thomassen, Hajós’
conjecture for line graphs, J.Comb.Theory B 97 (2007), 156–157. A coun-
terexample to the general Hajós conjecture was found as early as 1979 by
Catlin. A little later, Erdős and Fajtlowicz proved that Hajós’s conjecture
is false for ‘almost all’ graphs, while Bollobás, Catlin and Erdős showed that
Hadwiger’s conjecture is true for ‘almost all graphs’ (see Chapter 11). Proofs
of Wagner’s Theorem 7.3.4 (with Hadwiger’s conjecture for r = 5 as a co-
rollary) can be found in Bollobás’s Extremal Graph Theory (see above) and
in Halin’s Graphentheorie (2nd ed.), Wissenschaftliche Buchgesellschaft 1989.
Hadwiger’s conjecture for r = 6 was proved by N.Robertson, P.D. Seymour
and R.Thomas, Hadwiger’s conjecture for K6-free graphs, Combinatorica 13
(1993), 279–361.

For infinite graphs, the following weakening of the assertion of Hadwiger’s
conjecture is true: every graph of chromatic number α � ℵ0 contains every
Kβ with β < α as a minor, even as a topological minor. This was proved by
R.Halin, Unterteilungen vollständiger Graphen in Graphen mit unendlicher
chromatischer Zahl, Abh.Math. Sem.Univ.Hamburg 31 (1967), 156–165. The
case of α = ℵ0 is Exercise 14 in Chapter 8; the proof for α > ℵ0 is included
in R.Diestel, Graph Decompositions, Oxford University Press 1990.

The investigation of graphs not containing a given graph as a minor, or
topological minor, has a long history. It probably started with Wagner’s 1935
PhD thesis, in which he sought to ‘detopologize’ the four colour problem by
classifying the graphs without a K5 minor. His hope was to be able to show
abstractly that all those graphs were 4-colourable; since the graphs without
a K5 minor include the planar graphs, this would amount to a proof of the
four colour conjecture involving no topology whatsoever. The result of Wag-
ner’s efforts, Theorem 7.3.4, falls tantalizingly short of this goal: although it
succeeds in classifying the graphs without a K5 minor in structural terms,
planarity re-emerges as one of the criteria used in the classification. From this
point of view, it is instructive to compare Wagner’s K5 theorem with similar
classification theorems, such as his analogue for K4 (Proposition 7.3.1), where
the graphs are decomposed into parts from a finite set of irreducible graphs.
See R.Diestel, Graph Decompositions, Oxford University Press 1990, for more
such classification theorems.

Despite its failure to resolve the four colour problem, Wagner’s K5 struc-
ture theorem had consequences for the development of graph theory like few
others. To mention just two: it prompted Hadwiger to make his famous
conjecture; and it inspired much of the work of Robertson and Seymour on
minors (Chapter 12), in particular the notion of a tree-decomposition and the
structure theorem for graphs without a Kn minor (Theorem 12.6.6). Wagner
himself responded to Hadwiger’s conjecture with a proof in 1964 that, to force
a Kr minor, it does suffice to raise the chromatic number of a graph to some
value depending only on r (Exercise 20). This theorem, along with its analogue
for topological minors proved independently by Dirac and by Jung, prompted
the question which average degree suffices to force the desired minor. This was
first addressed by Mader, whose seminal proofs of Propositions 7.2.1 and 7.2.2
were part of his PhD thesis in 1967.
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Theorem 7.3.8 is a consequence of the more fundamental result of D.Kühn
and D.Osthus, Complete minors in Ks,s-free graphs, Combinatorica 25 (2005)
49–64, that every graph without a Ks,s subgraph that has average degree r � rs

has a Kp minor for p = �r1+ 1
2(s−1) /(log r)3�. This was improved further by

M.Krivelevich and B. Sudakov, Minors in expanding graphs, Geom. Funct.
Anal. 19 (2009), 294–331, arXiv:0707.0133.

As in Gyárfás’s conjecture, one may ask under what additional assump-
tions large average degree forces an induced subdivision of a given graph H.
This was answered for arbitrary H by D.Kühn and D.Osthus, Induced subdi-
visions in Ks,s-free graphs of large average degree, Combinatorica 24 (2004)
287–304, who proved that for all r, s ∈ N there exists d ∈ N such that every
graph G �⊇ Ks,s with d(G) � d contains a TKr as an induced subgraph.

Gyárfás’s conjecture itself, that excluding a fixed tree as an induced sub-
graph bounds the chromatic number of a graph in terms of its clique number,
is still open. Excluding all induced subdivisions of a fixed tree, however, does
achieve this: this was proved by A.D. Scott, Induced trees in graphs of large
chromatic number, J.Graph Theory 24 (1997), 297–311. On the other hand,
excluding all induced subdivisions of an arbitrary fixed graph H need not
bound the chromatic number of a graph G in terms of its clique number; see
J.Kozik et al, Triangle-free intersection graphs of line segments with large
chromatic number, J.Comb.Theory B 105 (2014), 6–10, arXiv:1209.1595.

The regularity lemma is proved in E. Szemerédi, Regular partitions of
graphs, Colloques Internationaux CNRS 260—Problèmes Combinatoires et
Théorie des Graphes, Orsay (1976), 399–401. Our rendering follows an account
by Scott (personal communication). A broad survey on the regularity lemma
and its applications is given by J.Komlós & M. Simonovits in (D.Miklós,
V.T. Sós & T. Szőnyi, eds.) Paul Erdős is 80, Vol. 2, Proc. Colloq. Math.
Soc. János Bolyai (1996); the concept of a regularity graph and Lemma 7.5.2
are taken from this paper. The regularity lemma was adapted to sparse graphs
by A.D. Scott, Szemerédi’s regularity lemma for matrices and sparse graphs,
Comb.Probab.Comput. 20 (2011), 455–466. The statement of the lemma
remains the same, only the definition of an ε-regular pair is adapted in the
obvious way depending on the graph G considered: a pair (A, B) of disjoint
sets of vertices of G is now called ε-regular if all subsets X ⊆ A and Y ⊆ B
with |X| � ε |A| and |Y | � ε |B| satisfy |d(X, Y ) − d(A, B)| � εp, where

p := ‖G‖/
(|G|

2

)
.


