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Abstract. The paper is devoted to the study of a greedy algorithm for
construction of approximate decision rules. This algorithm is applicable
to decision tables with many-valued decisions where each row is labeled
with a set of decisions. For a given row, we should find a decision from
the set attached to this row. We consider bounds on the precision of this
algorithm relative to the length of rules. To illustrate proposed approach
we study a problem of recognition of labels of points in the plain. This
paper contains also results of experiments with modified decision tables
from UCI Machine Learning Repository.

1 Introduction

In this paper, we consider one more extension of the notion of decision table –
decision table with many-valued decisions. In a table with many-valued decisions,
each row is labeled with a nonempty finite set of decisions, and for a given row,
we should find a decision from the set of decisions attached to this row.

Such tables arise in problems of discrete optimization, pattern recognition,
computational geometry, decision making etc. [10,17]. However, the main sources
of decision tables with many-valued decisions are datasets filled by statistical or
experimental data. In such datasets, we often have groups of objects with equal
values of conditional attributes but, probably, different values of the decision
attribute. Instead of a group of objects, we can consider one object given by
values of conditional attributes. We attach to this object a set of decisions:
either all decisions for objects from the group, or k the most frequent decisions
for objects from the group, etc. As a result we obtain a decision table with many-
valued decisions. In real life applications we can meet multi-label data when we
study, e.g., problem of semantic annotation of images [4], music categorization
into emotions [35], functional genomics [3], and text categorization [36].

In the rough set theory [22,30,31], decision tables are considered often that
have equal rows labeled with different decisions. The set of decisions attached
c© Springer-Verlag GmbH Germany 2016
J.F. Peters and A. Skowron (Eds.): TRS XX, LNCS 10020, pp. 24–50, 2016.
DOI: 10.1007/978-3-662-53611-7 2



Greedy Algorithm for the Construction of Approximate Decision Rules 25

to equal rows is called the generalized decision for that rows [23–25]. Here our
aim is to find the generalized decision for a given row. In the paper, we will
call this approach the generalized decision approach. However, the problem of
finding an arbitrary decision or one of the most frequent decisions from the
generalized decision is interesting also. Such study of decision tables with many-
valued decisions can give a new tool for the rough set theory. In [2] and [18] we
considered problem of construction of tests (super-reducts) and decision trees
for decision tables with many-valued decisions. To choose one of the attributes
we used uncertainty measure that is the number of boundary subtables.

Decision table with many-valued decisions can be considered as a decision
table with an incomplete information because we don’t know which decision
should be chosen from the set of decisions. Incomplete information exists also
in decision tables where instead of a single value of conditional attribute we
have a subset of values of the attribute domain. In [13,14] approaches to inter-
preting queries in a database with such incomplete information were discussed.
Z. Pawlak [22] and E. Or�lowska [21] proposed Non-deterministic Information
System for dealing with an incomplete information. Information incomplete-
ness is connected also with missing values of attributes or intervals on values
of attributes. M. Kryszkiewicz in [11] proposed method for computing all opti-
mal generalized rules from decision table with missing values. In [27–29] authors
proposed rule generation system, based on Apriori algorithm, where incomplete
information was considered as nondeterministic information.

In literature, often, problems connected with multi-label data are consid-
ered from the point of view of classification (multi-label classifications problems)
[7,8,15,19,33,34,37]. Here our aim is not to deal with classification but to show
that proposed approach for construction of decision rules for decision tables with
many-valued decisions can be useful when we deal with knowledge representa-
tion. In various applications, we often deal with decision tables which contain
noisy data. In this case, exact rules can be “over-fitted”, i.e., depend essentially
on the noise. So, instead of exact rules with many attributes, it is more appropri-
ate to work with approximate rules with smaller number of attributes. Besides,
classifiers based on approximate decision rules have often better accuracy than
classifiers based on exact decision rules.

In the proposed approach a greedy algorithm constructs α-decision rules (α is
a degree of rule uncertainty), and the number of rules for a given row is equal to
the cardinality of set of decisions attached to this row. Then we choose for each
row in a decision table a rule with the minimum length. The choice of shorter
rules is connected with the Minimum Description Length principle [26].

The problem of construction of rules with minimum length is NP-hard. There-
fore, we consider approximate polynomial algorithm for rule optimization. Based
on results of U. Feige [9] it was proved in [16], for decision tables with one-valued
decision, that greedy algorithm under some natural assumptions on the class NP,
is close to the best polynomial approximate algorithms for partial decision rule
minimization. It is natural to use these results in our approach. Note that each
decision table with one-valued decision can be interpreted also as a decision table
where each row is labeled with a set of decisions which has one element.
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The paper, extending a conference publication [6] and some results presented
in [17], is devoted to the study of a greedy algorithm for construction of approx-
imate decision rules for decision tables with many-valued decisions. The greedy
algorithm for rule construction has polynomial time complexity for the whole
set of decision tables with many-valued decisions.

We discuss also a problem of recognition of labels of points in the plain which
illustrates the considered approach and the obtained bounds on precision of this
algorithm relative to the length of rules.

In this paper, we study only binary decision tables with many-valued deci-
sions. However, the obtained results can be extended to the decision tables filled
by numbers from the set {0, . . . , k − 1}, where k ≥ 3. We present experimen-
tal results based on modified data sets from UCI Machine Learning Repository
[12] (by removal of some conditional attributes) into the form of decision tables
with many-valued decisions. Experiments are connected with length of α-decision
rules, number of different rules, lower and upper bounds on the minimum length
of α-decision rules and 0.5-hypothesis for α-decision rules. We also present exper-
imental results for the generalized decision approach. It allows us to make some
comparative study of length and number of different rules, based on the proposed
approach and the generalized decision approach.

The paper consists of eight sections. In Sect. 2, main notions are discussed.
In Sect. 3, a parameter M(T ) and auxiliary statement are presented. This para-
meter is used for analysis of a greedy algorithm. Section 4 is devoted to the
consideration of a set cover problem. In Sect. 5, the greedy algorithm for con-
struction of approximate decision rules is studied. In this section we also present
a lower and upper bounds on the minimum rule length based on the information
about greedy algorithm work, and 0.5-hypothesis for tables with many-valued
decisions. In Sect. 6, we discuss the problem of recognition of labels of points
in the plain. In Sect. 7, experimental results are presented. Section 8 contains
conclusions.

2 Main Definitions

In this section, we consider definitions corresponding to decision tables with
many-valued decisions.

A (binary) decision table with many-valued decisions is a rectangular table
T filled by numbers from the set {0, 1}. Columns of this table are labeled with
attributes f1, . . . , fn. Rows of the table are pairwise different, and each row is
labeled with a nonempty finite set of natural numbers (set of decisions). Note
that each decision table with one-valued decisions can be interpreted also as a
decision table with many-valued decisions. In such table, each row is labeled
with a set of decisions which has one element. An example of decision table with
many-valued decisions T0 is presented in Table 1.

We will say that T is a degenerate table if either T is empty (has no rows),
or the intersection of sets of decisions attached to rows of T is nonempty.
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Table 1. Decision table T0 with many-valued decisions

T0 =

f1 f2 f3
r1 1 1 1 {1}
r2 0 1 0 {1, 3}
r3 1 1 0 {2}
r4 0 0 1 {2, 3}
r5 1 0 0 {1, 2}

A decision which belongs to the maximum number of sets of decisions
attached to rows in T is called the most common decision for T . If we have
more than one such decision, we choose the minimum one. If T is empty then 1
is the most common decision for T .

Let r = (b1, . . . , bn) be a row of T labeled with a set of decisions D(r) and
d ∈ D(r). By U(T, r, d) we denote the set of rows r′ from T for which d /∈ D(r′).
We will say that an attribute fi separates a row r′ ∈ U(T, r, d) from the row r
if the rows r and r′ have different values at the intersection with the column fi.
The pair (T, r) will be called a decision rule problem.

Let α be a real number such that 0 ≤ α < 1. A decision rule

fi1 = b1 ∧ . . . ∧ fim = bm → d (1)

is called an α-decision rule for the pair (T, r) and decision d ∈ D(r) if attributes
fi1 , . . . , fim separate from r at least (1 − α)|U(T, r, d)| rows from U(T, r, d).
The number m is called the length of the rule (1). For example, 0.01-decision
rule means that attributes contained in the rule should separate from the row
r at least 99% of rows from U(T, r, d). If α is equal to 0 we have an exact
decision rule (0-decision rule) for (T, r) and d. If U(T, r, d) = ∅ then for any
fi1 , . . . , fim ∈ {f1, . . . , fn} the rule (1) is an α-decision rule for (T, r) and d. The
rule (1) with empty left-hand side (when m = 0) is an α-decision rule for (T, r)
and d if U(T, r, d) = ∅.

We will say that a decision rule is an α-decision rule for the pair (T, r) if this
rule is an α-decision rule for the pair (T, r) and a decision d ∈ D(r). We denote
by Lmin(α, T, r, d) the minimum length of an α-decision rule for the pair (T, r)
and decision d ∈ D(r). We denote by Lmin(α, T, r) the minimum length of an
α-decision rule for the pair (T, r). It is clear that

Lmin(α, T, r) = min{Lmin(α, T, r, d) : d ∈ D(r)}.

Let α, β be real numbers such that 0 ≤ α ≤ β < 1. One can show that
Lmin(α, T, r, d) ≥ Lmin(β, T, r, d) and Lmin(α, T, r) ≥ Lmin(β, T, r).

3 Parameter M(T )

In this section, we consider definition of a parameter M(T ) and auxiliary state-
ment from [17]. For the completeness, we will give this statement with proof.
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We will use the parameter M(T ) to evaluate precision of a greedy algorithm
relative to the length of rules.

Let T be a decision table with many-valued decisions, which has n columns
labeled with attributes {f1, . . . , fn}.

Now, we define the parameter M(T ) of the table T . If T is a degenerate table
then M(T ) = 0. Let now T be a nondegenerate table. Let

δ̄ = (δ1, . . . , δn) ∈ {0, 1}n.

Then M(T, δ̄) is the minimum natural m such that there exist attributes
fi1 , . . . , fim ∈ {f1, . . . , fn} for which T (fi1 , δi1) . . . (fim , δim) is a degenerate
table. Here T (fi1 , δi1) . . . (fim , δim) is a subtable of the table T consisting
only rows that have numbers δi1 , . . . , δim at the intersection with the columns
fi1 , . . . , fim . We denote

M(T ) = max{M(T, δ̄) : δ̄ ∈ {0, 1}n}.

Lemma 1. Let T be a nondegenerate decision table with many-valued decisions
which have n columns labeled with attributes f1, . . . , fn, δ̄=(δ1, . . . , δn)∈{0, 1}n,
and δ̄ be a row of T . Then

Lmin(0, T, δ̄) ≤ M(T, δ̄) ≤ M(T ).

Proof. By definition, M(T, δ̄) is the minimum natural m such that there exist
attributes fi1 , . . . , fim ∈ {f1, . . . , fn} for which subtable

T ′ = T (fi1 , δi1) . . . (fim , δim)

is a degenerate table. The subtable T ′ is nonempty since δ̄ is a row of this
subtable. Therefore there is a decision d which, for each row of T ′, belongs to
the set of decisions attached to this row.

One can show that a decision rule

fi1 = δi1 ∧ . . . ∧ fim = δim → d

is a 0-decision rule for the pair (T, δ̄) and decision d. Therefore Lmin(0, T, δ̄) ≤
m = M(T, δ̄). By definition, M(T, δ̄) ≤ M(T ). �	

4 Set Cover Problem

In this section, we consider a greedy algorithm for construction of an approximate
cover (an α-cover).

Let α be a real number such that 0 ≤ α < 1. Let A be a set containing N > 0
elements, and F = {S1, . . . , Sp} be a family of subsets of the set A such that
A =

⋃p
i=1 Si. We will say about the pair (A,F ) as about a set cover problem. A

subfamily {Si1 , . . . , Sit} of the family F will be called an α-cover for (A,F ) if
|⋃t

j=1 Sij | ≥ (1−α)|A|. The problem of searching for an α-cover with minimum
cardinality for a given set cover problem (A,F ) is NP-hard [20,32].
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We consider now a greedy algorithm for construction of an α-cover (see
Algorithm 1). At each step, this algorithm chooses a subset from F which covers
the maximum number of uncovered elements from A. This algorithm stops when
the constructed subfamily is an α-cover for (A,F ).

Algorithm 1. Greedy algorithm for approximate set cover problem
Input: a set cover problem (A, F ) and real number α, 0 ≤ α < 1.
Output: α-cover for (A, F ).

G := ∅, and COVER := ∅;
while |G| < (1 − α)|A| do

In the family F we find a set Si with minimum index i such that

|Si ∩ (A\G)| = max{|Sj ∩ (A\G)| : Sj ∈ F}.

G := G ∪ Si and COVER := COVER ∪ {Si};
end while
return COVER

We denote by Cgreedy(α,A, F ) the cardinality of the constructed α-cover for
(A,F ), and by Cmin(α,A, F ) we denote the minimum cardinality of an α-cover
for (A,F ).

The following statement was obtained by J. Cheriyan and R. Ravi in [5]. We
present it with our own proof.

Theorem 1. Let 0 < α < 1 and (A,F ) be a set cover problem. Then

Cgreedy(α,A, F ) ≤ Cmin(0, A, F ) ln(1/α) + 1.

Proof. We denote m = Cmin(0, A, F ). If m = 1 then, as it is not difficult to show,
Cgreedy(α,A, F ) = 1 and the considered inequality holds. Let m ≥ 2 and Si be
a subset of maximum cardinality in F . It is clear that |Si| ≥ N/m. So, after
the first step we will have at most N − N/m = N(1 − 1/m) uncovered elements
in the set A. After the first step we have the following set cover problem: the
set A \ Si and the family {S1 \ Si, . . . , Sp \ Si}. For this problem, the minimum
cardinality of a cover is at most m. So, after the second step, when we choose a
set Sj \ Si with maximum cardinality, the number of uncovered elements in the
set A will be at most N(1 − 1/m)2, etc.

Let the greedy algorithm in the process of α-cover construction make g steps
and construct an α-cover of cardinality g. Then after the step number g − 1
more then αN elements in A are uncovered. Therefore N(1 − 1/m)g−1 > αN
and 1/α > (1 + 1/(m − 1))g−1. If we take the natural logarithm of both sides
of this inequality we obtain ln 1/α > (g − 1) ln(1 + 1/(m − 1)). It is known
that for any natural p, the inequality ln(1 + 1/p) > 1/(p + 1) holds. Therefore
ln(1/α) > (g − 1)/m and g < m ln(1/α) + 1. Since m = Cmin(0, A, F ) and
g = Cgreedy(α,A, F ), we have Cgreedy(α,A, F ) < Cmin(0, A, F ) ln(1/α) + 1. �	
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5 Greedy Algorithm for α-Decision Rule Construction

In this section, we present a greedy algorithm for α-decision rule construction,
lower and upper bounds on the minimum length of α-decision rules (Sect. 5.1)
and 0.5-hypothesis connected with the work of a greedy algorithm (Sect. 5.2).

We use the greedy algorithm for construction of α-covers to construct α-
decision rules. Let T be a table with many-valued decisions containing n columns
labeled with attributes f1, . . . , fn, r = (b1, . . . , bn) be a row of T , D(r) be the
set of decisions attached to r, d ∈ D(r), and α be a real number such that
0 < α < 1.

We consider a set cover problem (A(T, r, d), F (T, r, d)) where A(T, r, d) =
U(T, r, d) is the set of all rows r′ of T such that d /∈ D(r′) and F (T, r, d) =
{S1, . . . , Sn}. For i = 1, . . . , n, the set Si coincides with the set of all rows from
A(T, r, d) which are different from r in the column fi. One can show that the
decision rule

fi1 = bi1 ∧ . . . ∧ fim = bim → d

is an α-decision rule for (T, r) and decision d∈D(r) if and only if {Si1, . . . ,Sim}
is an α-cover for the set cover problem (A(T, r, d), F (T, r, d)). Evidently, for the
considered set cover problem, Cmin(0, A(T, r, d),F (T, r, d))=Lmin(0, T, r, d), where
Lmin(0, T, r, d) is the minimum length of 0-decision rule for (T, r) and decision
d ∈ D(r).

Let us apply the greedy algorithm (see Algorithm 1) to the considered set
cover problem. This algorithm constructs an α-cover which corresponds to an
α -decision rule rule(α, T, r, d) for (T, r) and decision d ∈ D(r). From Theorem
1 it follows that the length of this rule is at most

Lmin(0, T, r, d) ln(1/α) + 1.

We denote by Lgreedy(α, T, r) the length of the rule constructed by the fol-
lowing polynomial time algorithm: for a given α, 0 < α < 1, decision table T ,
row r of T and decision d ∈ D(r), we construct the set cover problem (A(T, r, d),
F (T, r, d)) and then apply to this problem the greedy algorithm for construc-
tion of an α-cover. We transform the obtained α-cover into an α-decision rule
rule(α, T, r, d). Among the α-decision rules rule(α, T, r, d), d ∈ D(r), we choose
a rule with the minimum length. This rule is the output of the considered algo-
rithm. We denote by Lmin(α, T, r) the minimum length of an α-decision rule for
(T, r). According to what has been said above we have the following statement.

Theorem 2. Let T be a non-degenerate decision table with many-valued deci-
sions, r be a row of T , and α be a real number such that 0 < α < 1. Then

Lgreedy(α, T, r) ≤ Lmin(0, T, r) ln(1/α) + 1.

Note that the considered algorithm is a generalization of an algorithm studied
in [16].
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Example 1. Let us apply the considered greedy algorithm to α = 0.1, decision
table T0 (see Table 1) and the second row r2 of this table.

For each d ∈ D(r2) = {1, 3} we construct the set cover problem (A(T, r2, d),
F (T, r2, d)), where A(T, r2, d) is the set of all rows r′ of T such that d /∈ D(r′),
F (T, r2, d)) = {S1, S2, S3}, and Si coincides with the set of rows from A(T, r2, d)
which are different from r2 in the column fi, i = 1, 2, 3. We have:

– A(T, r2, 1) = {r3, r4}, F (T, r2, 1) = {S1 = {r3}, S2 = {r4}, S3 = {r4}},
– A(T, r2, 3) = {r1, r3, r5}, F (T, r2, 3) = {S1 = {r1, r3, r5}, S2 = {r5}, S3 =

{r1}}.

Now, we apply the greedy algorithm for the set cover problem (with α = 0.1)
to each of the constructed set cover problems, and transform the obtained 0.1-
covers into 0.1-decision rules.

For the case d = 1, we obtain the 0.1-cover {S1, S2} and corresponding 0.1-
decision rule f1 = 0 ∧ f2 = 1 → 1.

For the case d = 3, we obtain the 0.1-cover {S1} and corresponding 0.1-
decision rule f1 = 0 → 3. We choose the shortest rule f1 = 0 → 3 which is the
result of our algorithm work.

In order to show that the problem of minimization of α-decision rule length
is NP-hard, let us consider a set cover problem (A,F ) where A = {a1, . . . , aN}
and F = {S1, . . . , Sm}. We define the decision table as T (A,F ), this table has
m columns corresponding to the sets S1, . . . , Sm respectively, and N + 1 rows.
For j = 1, . . . , N , the j-th row corresponds to the element aj . The last (N + 1)-
th row is filled by 0. For j = 1, . . . , N and i = 1, . . . ,m, at the intersection of
j-th row and i-th column 1 stays if and only if aj ∈ Si. The set of decisions
corresponding to the last row is equal to {2}. All other rows are labeled with
the set of decisions {1}.

One can show that, for any α, 0 ≤ α < 1, a subfamily {Si1 , . . . , Sit} is an
α-cover for (A,F ) if and only if the decision rule

fi1 = 0 ∧ . . . ∧ fit = 0 → 2

is an α-decision rule for T (A,F ) and the last row of T (A,F ).
So, we have a polynomial time reduction of the problem of minimization of

α-cover cardinality to the problem of minimization of α -decision rule length for
decision tables with many-valued decisions. Since the first problem is NP -hard
[20,32], we have

Proposition 1. For any α, 0 ≤ α < 1, the problem of minimization of
α-decision rule length for decision tables with many-valued decisions is NP -hard.

5.1 Upper and Lower Bounds on Lmin(α, T, r)

In this section, we present some results connected with lower and upper bounds
on the minimum length of α-decision rules, based on the information obtained
during the greedy algorithm work.
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Let T be a decision table with many-valued decisions and r be a row of T .
Let α be a real number such that 0 ≤ α < 1. We apply the greedy algorithm to
T, r, α and each d ∈ D(r) (really to the corresponding set cover problem) and
obtain for every d ∈ D(r) an α-decision rule for the pair (T, r) and decision d.
Among these rules we choose a rule with the minimum length, and denote this
length by u(α, T, r). It is clear that

Lmin(α, T, r) ≤ u(α, T, r).

Let d ∈ D(r). We apply the greedy algorithm to T, r, α and d, and construct
the α-decision rule rule(α, T, r, d). Let the length of this rule be equal to t, and
δi, i = 1, . . . , t, be the number of rows from U(T, r, d) separated from row r at
the i-th step of the greedy algorithm work. We denote

l(α, T, r, d)=max
{⌈
(1 − α)|U(T, r, d)|� − (δ0 + . . . + δi)

δi+1

⌉

: i = 0, . . . , t − 1
}

,

where δ0 = 0. Let us denote

l(α, T, r) = min
d∈D(r)

l(α, T, r, d).

We can almost repeat the first part of the proof of Theorem 1.67 from [16]
to obtain the following lower bound:

Lmin(α, T, r, d) ≥ l(α, T, r, d),

where Lmin(α, T, r, d) is the minimum length of α-decision rule for (T, r) and d.
From this inequality it follows that

Lmin(α, T, r) ≥ l(α, T, r).

5.2 0.5-Hypothesis

In the book [16], the following 0.5-hypothesis was formulated for decision tables
with one-valued decisions: for the most part of decision tables for each row r
under the construction of decision rule, during each step the greedy algorithm
chooses an attribute which separates from r at least one-half of unseparated rows
with decisions other than decision attached to the row r.

Let T be a decision table with many-valued decisions and r be a row of T .
We will say that 0.5-hypothesis is true for T and r if for any decision d ∈ D(r)
under the construction of decision rule for the pair (T, r) and decision d, during
each step the greedy algorithm chooses an attribute which separates from r at
least 50 % of unseparated rows from U(T, r, d).

We will say that 0.5-hypothesis is true for T if it is true for each row of T .
Now we consider some theoretical results regarding to 0.5-hypothesis for deci-

sion tables with many-valued decisions.
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A binary information system I is a table with n rows (corresponding to
objects) and m columns labeled with attributes f1, . . . , fm. This table is filled
by numbers from {0, 1} (values of attributes). For j = 1, . . . , n, we denote by rj
the j-th row of the table I.

The information system I will be called strongly saturated if, for any row
rj = (b1, . . . , bn) of I, for any k ∈ {0, . . . , n − 1} and for any k rows with
numbers different from j, there exists a column fi which has at least k

2 numbers
¬bi (bi is the value of the fi column for the row rj) at the intersection with the
considered k rows.

First, we evaluate the number of strongly saturated binary information sys-
tems. After that, we study the work of the greedy algorithm on a decision table
with many-valued decisions obtained from a strongly saturated binary informa-
tion system by adding a set of decisions to each row. It is clear that 0.5-hypothesis
holds for every such table.

Theorem 3 [16]. Let us consider binary information systems with n rows and
m ≥ n + log2 n columns labeled with attributes f1, . . . , fm. Then the fraction of
strongly saturated information systems is at least 1 − 1/2m−n−log2 n+1.

For example, if m ≥ n + log2 n + 6, than at least 99% of binary information
systems are strongly saturated.

Let us consider the work of the greedy algorithm on an arbitrary deci-
sion table T with many-valued decisions obtained from the strongly satu-
rated binary information system. Let r be an arbitrary row of table T and
d ∈ D(r). For i = 1, 2, . . ., after the step number i at most |U(T, r, d)|/2i

rows from U(T, r, d) are unseparated from r. It is not difficult to show that
Lgreedy(α, T, r) ≤ 
log2(1/α)� for any real α, 0 < α < 1, where Lgreedy(α, T, r)
is the length of α-decision rules constructed by the greedy algorithm for (T, r).
One can prove that Lgreedy(0, T, r) ≤ log2 |U(T, r, d)|+1. It is easy to check that
l(0, T, r) ≤ 2.

6 Problem of Recognition of Labels of Points in the Plain

In this section, we present a problem of recognition of colors of points in the plain
(note that, we recognize labels attached to the points, and labels are named as
colors), which illustrates the considered approach and the obtained bounds on
precision of the greedy algorithm relative to the length of α-decision rules.

Let we have a finite set S = {(a1, b1), . . . , (an, bn)} of points in the plane
and a mapping μ which corresponds to each point (ap, bp) a nonempty subset
μ(ap, bp) of the set {green, yellow, red}. Colors are interpreted as decisions, and
for each point from S we need to find a decision (color) from the set of decisions
attached to this point. We denote this problem by (S, μ).

For the problem (S, μ) solving, we use attributes corresponding to straight
lines which are given by equations of the kind x = β or y = γ. These attributes
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are defined on the set S and take values from the set {0, 1}. Consider the line
given by equation x = β. Then the value of corresponding attribute is equal to
0 on a point (a, b) ∈ S if and only if a < β. Consider the line given by equation
y = γ. Then the value of corresponding attribute is equal to 0 if and only if
b < γ.

We now choose a finite set of straight lines which allow us to construct a
decision rule with the minimum length for the problem (S, μ). It is possible that
ai = aj or bi = bj for different i and j. Let ai1 , . . . , aim be all pairwise different
numbers from the set {a1, . . . , an} which are ordered such that ai1 < . . . < aim .
Let bj1 , . . . , bjt be all pairwise different numbers from the set {b1, . . . , bn} which
are ordered such that bj1 < . . . < bjt .

One can show that there exists a decision rule with minimum length which
use only attributes corresponding to the straight lines defined by equations x =
ai1 − 1, x = (ai1 + ai2)/2, . . ., x = (aim−1 + aim)/2, x = aim + 1, y = bj1 − 1,
y = (bj1 + bj2)/2, . . ., y = (bjt−1 + bjt)/2, y = bjt + 1.

Now, we describe a decision table T (S, μ) with m+ t+2 columns and n rows.
Columns of this table are labeled with attributes f1, . . . , fm+t+2, corresponding
to the considered m + t + 2 lines. Attributes f1, . . . , fm+1 correspond to lines
defined by equations x = ai1 −1, x = (ai1 +ai2)/2, . . . , x = (aim−1 +aim)/2, x =
aim + 1 respectively. Attributes fm+2, . . . , fm+t+2 correspond to lines defined
by equations y = bj1 − 1, y = (bj1 + bj2)/2, . . . , y = (bjt−1 + bjt)/2, y = bjt + 1
respectively. Rows of the table T (S, μ) correspond to points (a1, b1), . . . , (an, bn).
At the intersection of the column fl and row (ap, bp) the value fl(ap, bp) stays.
For p = 1, . . . , n, the row (ap, bp) is labeled with the set of decisions μ(ap, bp).

Example 2. A problem (S, μ) with four points and corresponding decision table
T (S, μ) is depicted in Fig. 1. We write “g” instead of “green”, “r” instead of
“red”, and “y” instead of “yellow”.

Fig. 1. Problem (S, μ) and corresponding decision table T (S, μ)
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Let us evaluate the parameter M(T (S, μ)).

Proposition 2. M(T (S, μ)) ≤ 4.

Proof. We denote T = T (S, μ). Let δ̄ = (δ1, . . . , δm+t+2) ∈ {0, 1}m+t+2. If δ1 =
0, or δm+1 = 1, or δm+2 = 0, or δm+t+2 = 1, then T (f1, δ1), or T (fm+1, δm+1), or
T (fm+2, δm+2), or T (fm+t+2, δm+t+2) is empty table and M(T, δ̄) ≤ 1. Let δ1 =
1, δm+1 = 0, δm+2 = 1 and δm+t+2 = 0. One can show that in this case there exist
i ∈ {1, . . . , m} and j ∈ {m+2, . . . , m+ t+1} such that δi = 1, δi+1 = 0, δj = 1,
and δj+1 = 0. It is clear that the table T (fi, δi)(fi+1, δi+1)(fj , δj)(fj+1, δj+1)
contains exactly one row. So M(T, δ̄) ≤ 4 and M(T ) ≤ 4. �	

From Lemma 1, Theorem 2 and Proposition 2 the next statement follows:

Corollary 1. For any real α, 0 < α < 1, and any row r of the table T (S, μ),

Lgreedy(α, T (S, μ), r) < 4 ln(1/α) + 1.

Note that 4 ln(1/0.01)+1 < 19. 43, 4 ln(1/0.1)+1 < 10. 22, 4 ln(1/0.2)+1 <
7. 44, and 4 ln(1/0.5) + 1 < 3. 78.

7 Results of Experiments

This section consists of three parts:

– experimental results for the many-valued decisions approach (Sect. 7.1),
– experimental results for the generalized decision approach (Sect. 7.2),
– comparative study (Sect. 7.3).

We consider a number of decision tables from UCI Machine Learning Reposi-
tory [12]. In some tables there were missing values. Each such value was replaced
with the most common value of the corresponding attribute. Some decision
tables contain conditional attributes that take unique value for each row. Such
attributes were removed. In some tables there were equal rows with, possibly,
different decisions.

In this case each group of identical rows was replaced with a single row
from the group which is labeled with the set of decisions attached to rows
from the group. To obtain rows which are labeled with sets containing more
than one decision we removed from decision tables more conditional attributes.
The information about such decision tables can be found in Table 2. This table
contains name of initial table, number of rows (column “Rows”), number of
attributes (column “Attr”), spectrum of this table (column “Spectrum”), and
list of names of removed attributes (column “Removed attributes”). Spectrum of
a decision table with many-valued decisions is a sequence #1, #2,. . . , where #i,
i = 1, 2, . . ., is the number of rows labeled with sets of decision with cardinality
equals to i. All experiments are performed using DAGGER software tool [1] in
C++.
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Table 2. Characteristics of decision tables with many-valued decisions

Decision table Rows Attr Spectrum Removed attributes

#1 #2 #3 #4 #5 #6

balance-scale-1 125 3 45 50 30 left-weight

breast-cancer-1 193 8 169 24 tumor-size

breast-cancer-5 98 4 58 40 inv-nodes,node-caps,deg-

malig,breast-quad,irradiat

cars-1 432 5 258 161 13 buying

flags-5 171 21 159 12 zone,language,religion,circles,

sunstars

hayes-roth-data-1 39 3 22 13 4 marital status

kr-vs-kp-5 1987 31 1564 423 katri,mulch,rimmx,skrxp,wknck

kr-vs-kp-4 2061 32 1652 409 katri,mulch,rimmx,wknck

lymphography-5 122 13 113 9 lymphatics,changes in node,

changes in stru,

special forms,no of nodes in

mushroom-5 4078 17 4048 30 odor,gill-size,stalk-root,stalk-

surface-below-ring,habitat

nursery-4 240 4 97 96 47 parents,housing,finance,social

nursery-1 4320 7 2858 1460 2 parents

poker-hand-train-5 3324 5 156 1832 1140 188 7 1 S1,C1,C2,C4,C5

poker-hand-train-5a 3323 5 130 1850 1137 199 6 1 C1,S2,C2,C3,C4

poker-hand-train-5b 1024 5 0 246 444 286 44 4 C1,C2,C3,C4,C5

spect-test-1 164 21 161 3 F3

teeth-1 22 7 12 10 top incisors

teeth-5 14 3 6 3 0 5 0 2 bottom incisors,top

canines,bottom canines,top

premolars,bottom molars

tic-tac-toe-4 231 5 102 129 top-right-square,middle-middle-

square,bottom-left-

square,bottom-right-square

tic-tac-toe-3 449 6 300 149 middle-middle-square,bottom-

left-square,bottom-right-

square

zoo-data-5 42 11 36 6 feathers,backbone,breathes,

legs,tail

7.1 Proposed Approach

We made four groups of experiments which are connected with:

– length of constructed α-decision rules,
– number of different α-decision rules,
– lower and upper bounds on the minimum length of α-decision rules,
– 0.5-hypothesis.

The first group of experiments is the following. For decision tables described
in Table 2 and α ∈ {0.0, 0.001, 0.01, 0.1, 0.2, 0.3}, we apply to each row of table
the greedy algorithm. After that, among the constructed rules we find minimum
(column “min”), average (column “avg”) and maximum (column “max”) length
of such rules. Results can be found in Tables 3 and 4.

One can see that the length of constructed α-decision rules is decreasing
when the value of α is increasing, and the greedy algorithm constructs relatively
short α-decision rules.
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Table 3. Length of α-decision rules for α ∈ {0.0, 0.001, 0.01} constructed by greedy
algorithm

Decision table α = 0.0 α = 0.001 α = 0.01

min avg max min avg max min avg max

balance-scale-1 2 2.00 2 2 2.00 2 2 2.00 2

breast-cancer-1 1 2.94 5 1 2.94 5 1 2.81 5

breast-cancer-5 1 1.72 3 1 1.72 3 1 1.72 3

cars-1 1 1.38 4 1 1.38 4 1 1.36 3

flags-5 1 2.43 5 1 2.43 5 1 2.10 4

hayes-roth-data-1 1 1.59 2 1 1.59 2 1 1.59 2

kr-vs-kp-5 1 4.11 11 1 4.11 11 1 2.97 8

kr-vs-kp-4 1 4.14 11 1 4.14 11 1 2.98 8

lymphography-5 1 2.68 5 1 2.68 5 1 2.66 5

mushroom-5 1 1.52 5 1 1.52 5 1 1.46 4

nursery-4 1 1.33 2 1 1.33 2 1 1.33 2

nursery-1 1 2.05 5 1 2.00 5 1 1.80 3

poker-hand-train-5 2 2.35 5 2 2.35 5 2 2.27 4

poker-hand-train-5a 2 2.24 5 2 2.24 4 2 2.09 4

poker-hand-train-5b 2 2.01 5 2 2.01 5 2 2.01 4

spect-test-1 1 1.32 5 1 1.32 5 1 1.29 4

teeth-1 1 2.27 3 1 2.27 3 1 2.27 3

teeth-5 1 1.93 3 1 1.93 3 1 1.93 3

tic-tac-toe-4 2 2.24 4 2 2.24 4 2 2.24 4

tic-tac-toe-3 3 3.29 6 3 3.29 6 3 3.14 5

zoo-data-5 1 2.19 5 1 2.19 5 1 2.19 5

Table 4. Length of α-decision rules for α ∈ {0.1, 0.2, 0.3} constructed by greedy
algorithm

Decision table α = 0.1 α = 0.2 α = 0.3

min avg max min avg max min avg max

balance-scale-1 1 1.06 2 1 1.00 1 1 1.00 1

breast-cancer-1 1 1.75 3 1 1.28 2 1 1.01 2

breast-cancer-5 1 1.15 2 1 1.00 1 1 1.00 1

cars-1 1 1.22 2 1 1.17 2 1 1.00 1

flags-5 1 1.20 2 1 1.02 2 1 1.00 1

hayes-roth-data-1 1 1.00 1 1 1.00 1 1 1.00 1

kr-vs-kp-5 1 1.77 4 1 1.17 2 1 1.04 2

kr-vs-kp-4 1 1.73 4 1 1.16 3 1 1.03 2

lymphography-5 1 1.80 3 1 1.37 2 1 1.01 2

mushroom-5 1 1.12 2 1 1.01 2 1 1.00 1

nursery-4 1 1.01 2 1 1.00 1 1 1.00 1

nursery-1 1 1.38 2 1 1.00 2 1 1.00 1

poker-hand-train-5 1 1.06 2 1 1.00 1 1 1.00 1

poker-hand-train-5a 1 1.01 2 1 1.00 1 1 1.00 1

poker-hand-train-5b 2 2.00 2 2 2.00 2 1 1.00 1

spect-test-1 1 1.25 3 1 1.08 2 1 1.07 2

teeth-1 1 1.50 2 1 1.14 2 1 1.05 2

teeth-5 1 1.71 3 1 1.29 2 1 1.07 2

tic-tac-toe-4 1 1.47 3 1 1.04 2 1 1.01 2

tic-tac-toe-3 2 2.00 3 1 1.50 2 1 1.01 2

zoo-data-5 1 1.69 4 1 1.26 3 1 1.12 2



38 M. Azad et al.

Table 5. Number of different rules constructed by greedy algorithm

Decision table values of α

0.0 0.001 0.01 0.1 0.2 0.3

balance-scale-1 51 51 51 45 27 23

breast-cancer-1 164 164 164 112 49 35

breast-cancer-5 61 61 61 38 25 25

cars-1 23 23 19 12 11 10

flags-5 159 159 155 111 101 98

hayes-roth-data-1 14 14 14 7 6 6

kr-vs-kp-5 856 856 577 188 93 65

kr-vs-kp-4 914 914 621 210 105 72

lymphography-5 59 59 58 44 32 23

mushroom-5 493 508 448 165 73 58

nursery-4 7 7 7 13 5 5

nursery-1 89 74 33 23 10 10

poker-hand-train-5 392 392 402 136 36 36

poker-hand-train-5a 333 333 255 93 34 34

poker-hand-train-5b 52 52 52 52 52 8

spect-test-1 29 29 29 28 22 22

teeth-1 22 22 22 22 22 22

teeth-5 14 14 14 14 14 14

tic-tac-toe-4 52 52 52 30 15 14

tic-tac-toe-3 157 157 137 63 57 16

zoo-data-5 16 16 16 16 15 15

Table 5 presents the number of different rules constructed by the greedy algo-
rithm for α ∈ {0.0, 0.001, 0.01, 0.1, 0.2, 0.3}. In the worst case, the number of
different rules can be equal to the number of rows in decision table T . One
can see that with the exception of three tables, the number of different rules is
non-increasing when the value of α is increasing.

Next group of experimental results is connected with lower and upper bounds
on the minimum length of α-decision rules. Figures 2 and 3 present average values
of bounds l(α, T, r) and u(α, T, r) among all rows r of T for α, 0 ≤ α < 1, with
the step 0.01.

The last group of experiments is connected with 0.5-hypothesis. Table 6 con-
tains, for i = 1, 2, . . ., the average percentage of rows separated at i-th step of
the greedy algorithm (average among all rows r and decisions d ∈ D(r)).

For decision tables described in Table 2 we find the number of rows for which
0.5-hypothesis is true. Table 7 contains name of decision table, number of rows
and number of rows for which 0.5-hypothesis is true.

Results in Table 6 show that average percentage of rows separated at i-th
step of the greedy algorithm during the exact decision rule construction is more
than or equal to 50 % (7-th step of the greedy algorithm for “spect-test-1”). We
say that 0.5-hypothesis is true for T if it is true for each row of T . Based on
results in Table 7 we can see that 0.5-hypothesis is true for 12 decision tables
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Fig. 2. Lower and upper bounds on Lmin(α, T, r) (“balance-scale-1” and “nursery-1”)

and is not true for 9 decision tables: “breast-cancer-1”, “kr-vs-kp-5”, “kr-vs-
kp-4”, “lymphography-5”, “poker-hand-train-5”, “poker-hand-train-5a”, “spect-
test-1”, “tic-tac-toe-3”, and “zoo-data-5”.
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Fig. 3. Average values of lower and upper bounds on Lmin(α, T, r) (“kr-vs-kp-5” and
“spect-test-1”)

7.2 Generalized Decision Approach

In this section, we present experimental results for α-decision rules relative to:

– length of constructed α-decision rules,
– number of different α-decision rules,
– 0.5-hypothesis.
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Table 6. Average percentage of rows separated at i-th step of the greedy algorithm
work

Decision table Number of step i

1 2 3 4 5 6 7 8 9 10

balance-scale-1 91.5 97.2 100

breast-cancer-1 84.5 82.8 87.6 92.9 84.8 100

breast-cancer-5 91.8 94.1 97.6 100

cars-1 90.2 86.9 89.1 85.7 100

flags-5 92.9 92.4 91.9 92.5 100

hayes-roth-data-1 89.7 96.4 100

kr-vs-kp-5 85.7 79.9 78.2 80.2 81.6 81.4 85.7 80.2 80.8 78.3

kr-vs-kp-4 85.8 79.5 78.4 79.8 81.9 82.1 85.3 82.1 82.3 80.0

lymphography-5 83.9 86.2 92.1 94.2 100

mushroom-5 97.0 97.3 91.2 92.6 96.8 100

nursery-4 94.8 99.8 90.9 100

nursery-1 90.2 92.3 93.3 93.6 92.5 92.7 100

poker-hand-train-5 92.3 87.2 91.0 86.3 100

poker-hand-train-5a 92.3 88.7 91.1 84.9 100

poker-hand-train-5b 75.5 92.2 81.5 87.5 100

spect-test-1 94.3 89.4 80.5 85.6 77.4 75.0 50.0 100

teeth-1 88.2 89.9 100

teeth-5 87.0 92.0 100

tic-tac-toe-4 86.7 91.6 90.6 94.9 100

tic-tac-toe-3 78.5 83.6 88.8 88.1 91.2 100

zoo-data-5 83.8 83.4 80.0 80.6 100

Table 7. Number of rows in decision tables for which 0.5-hypothesis is true

Decision table rows rows with 0.5-hypothesis

balance-scale-1 125 125

breast-cancer-1 193 191

breast-cancer-5 98 98

cars-1 432 432

flags-5 171 171

hayes-roth-data-1 39 39

kr-vs-kp-5 1987 1873

kr-vs-kp-4 2061 1949

lymphography-5 122 121

mushroom-5 4078 4078

nursery-4 240 240

nursery-1 4320 4320

poker-hand-train-5 3324 3321

poker-hand-train-5a 3323 3322

poker-hand-train-5b 1024 1024

spect-test-1 164 163

teeth-1 22 22

teeth-5 14 14

tic-tac-toe-4 231 231

tic-tac-toe-3 449 445

zoo-data-5 42 40
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Table 8. Transformation of the set of decisions for the generalized decision approach

T0 =

f1 f2 f3 d
r1 1 1 1 {1}
r2 0 1 0 {1, 3}
r3 1 1 0 {2}
r4 0 0 1 {2, 3}
r5 1 0 0 {1, 2}

⇒

d

1
2
3
4
5

In the generalized decision approach [23–25], the greedy algorithm constructs
for each row one α-decision rule which has on the right-hand side the generalized
decision (a number encoding the set of decisions attached to a given row) see
Table 8.

For decision tables described in Table 2 and α ∈ {0.0,0.001,0.01,0.1,0.2,0.3}
we apply to each row of table the greedy algorithm. After that, among the
constructed rules we find minimum (column “min”), average (column “avg”)
and maximum (column “max”) length of such rules. Results can be found in
Tables 9 and 10.

We can say that for this approach the greedy algorithm constructs relatively
short α-decision rules.

Table 9. Length of α-decision rules for α ∈ {0.0, 0.001, 0.01}–generalized decision
approach

Decision table α = 0.0 α = 0.001 α = 0.01

min avg max min avg max min avg max

balance-scale-1 3 3.00 3 3 3.00 3 2 2.92 3

breast-cancer-1 1 3.29 6 1 3.29 6 1 3.08 6

breast-cancer-5 1 2.38 4 1 2.38 4 1 2.38 4

cars-1 1 2.51 5 1 2.51 5 1 2.16 4

flags-5 1 2.49 5 1 2.49 5 1 2.15 4

hayes-roth-data-1 1 2.13 3 1 2.13 3 1 2.13 3

kr-vs-kp-5 1 4.81 12 1 4.42 11 1 3.14 8

kr-vs-kp-4 1 4.81 12 1 4.42 11 1 3.11 8

lymphography-5 1 2.94 6 1 2.94 6 1 2.89 6

mushroom-5 1 1.54 8 1 1.53 6 1 1.47 4

nursery-4 1 2.02 4 1 2.02 4 1 1.69 4

nursery-1 1 3.32 7 1 2.98 6 1 2.35 4

poker-hand-train-5 4 4.78 5 4 4.09 5 3 3.00 3

poker-hand-train-5a 4 4.78 5 4 4.08 5 3 3.00 3

poker-hand-train-5b 4 4.96 5 4 4.96 5 3 3.86 4

spect-test-1 1 1.72 10 1 1.72 10 1 1.68 9

teeth-1 1 2.27 3 1 2.27 3 1 2.27 3

teeth-5 1 1.93 3 1 1.93 3 1 1.93 3

tic-tac-toe-4 3 3.79 5 3 3.79 5 3 3.41 5

tic-tac-toe-3 3 4.55 6 3 4.55 6 3 3.61 5

zoo-data-5 1 2.55 6 1 2.55 6 1 2.55 6
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Table 10. Length of α-decision rules for α ∈ {0.1, 0.2, 0.3}–generalized decision
approach

Decision table α = 0.1 α = 0.2 α = 0.3

min avg max min avg max min avg max

balance-scale-1 2 2.00 2 1 1.02 2 1 1.00 1

breast-cancer-1 1 1.70 3 1 1.30 2 1 1.08 2

breast-cancer-5 1 1.30 2 1 1.00 1 1 1.00 1

cars-1 1 1.44 2 1 1.44 2 1 1.00 1

flags-5 1 1.22 2 1 1.01 2 1 1.00 1

hayes-roth-data-1 1 1.59 2 1 1.26 2 1 1.00 1

kr-vs-kp-5 1 1.71 4 1 1.24 3 1 1.04 2

kr-vs-kp-4 1 1.68 4 1 1.23 3 1 1.04 2

lymphography-5 1 1.82 3 1 1.33 2 1 1.07 2

mushroom-5 1 1.12 2 1 1.01 2 1 1.00 1

nursery-4 1 1.67 2 1 1.07 2 1 1.00 1

nursery-1 1 1.67 2 1 1.15 2 1 1.00 1

poker-hand-train-5 1 1.00 1 1 1.00 1 1 1.00 1

poker-hand-train-5a 1 1.00 1 1 1.00 1 1 1.00 1

poker-hand-train-5b 2 2.00 2 2 2.00 2 1 1.00 1

spect-test-1 1 1.59 3 1 1.14 2 1 1.05 2

teeth-1 1 1.50 2 1 1.14 2 1 1.05 2

teeth-5 1 1.71 3 1 1.29 2 1 1.07 2

tic-tac-toe-4 2 2.03 3 2 2.00 2 1 1.15 2

tic-tac-toe-3 2 2.03 3 2 2.00 2 1 1.27 2

zoo-data-5 1 1.81 4 1 1.33 3 1 1.21 2

Table 11. Number of different rules–generalized decision approach

Decision table values of α

0.0 0.001 0.01 0.1 0.2 0.3

balance-scale-1 125 125 118 83 27 27

breast-cancer-1 169 169 164 117 65 48

breast-cancer-5 82 82 82 44 33 33

cars-1 141 141 94 40 40 15

flags-5 159 159 154 115 106 106

hayes-roth-data-1 25 25 25 22 19 18

kr-vs-kp-5 1133 1073 783 256 140 87

kr-vs-kp-4 1205 1141 817 265 142 90

lymphography-5 73 73 72 58 43 33

mushroom-5 543 556 481 214 76 64

nursery-4 41 41 16 16 12 12

nursery-1 572 406 202 79 38 16

poker-hand-train-5 2883 2388 1459 213 213 213

poker-hand-train-5a 2904 2351 1439 205 205 205

poker-hand-train-5b 998 998 743 280 280 94

spect-test-1 42 42 42 41 29 23

teeth-1 22 22 22 22 22 22

teeth-5 14 14 14 14 14 14

tic-tac-toe-4 131 131 117 53 53 28

tic-tac-toe-3 347 347 262 96 95 49

zoo-data-5 24 24 24 24 21 20
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Table 12. Average percentage of rows separated at i-th step of the greedy algorithm
work–generalized decision approach

Decision table Number of step i

1 2 3 4 5 6 7 8 9 10

balance-scale-1 83.9 86.0 100

breast-cancer-1 85.5 82.6 83.8 88.0 87.0 100

breast-cancer-5 93.3 90.5 92.1 100

cars-1 90.1 77.4 82.8 83.8 100

flags-5 92.9 92.4 93.6 91.2 100

hayes-roth-data-1 87.7 85.3 100

kr-vs-kp-5 86.1 80.5 77.1 77.9 75.1 73.4 76.9 76.6 74.4 87.1

kr-vs-kp-4 86.4 80.4 77.4 78.2 75.2 72.6 75.9 76.2 73.7 81.1

lymphography-5 83.5 85.5 88.8 86.4 88.9 100

mushroom-5 96.9 97.4 91.2 94.4 90.5 48.9 77.8 100

nursery-4 90.3 97.3 98.6 100

nursery-1 89.4 83.5 86.7 89.3 91.3 93.0 100

poker-hand-train-5 92.4 77.5 79.2 84.3 100

poker-hand-train-5a 92.3 77.2 79.4 84.6 100

poker-hand-train-5b 75.7 77.0 78.9 82.5 100

spect-test-1 91.9 94.9 81.0 84.9 75.0 66.7 25.0 33.3 50.0 100

teeth-1 87.4 89.8 100

teeth-5 86.3 92.4 100

tic-tac-toe-4 73.7 79.8 84.7 89.5 100

tic-tac-toe-3 73.4 76.2 79.2 82.1 85.8 100

zoo-data-5 83.9 80.7 72.6 81.1 90.0 100

Table 13. Number of rows in decision tables for which 0.5-hypothesis is true–
generalized decision approach

Decision table rows rows with 0.5-hypothesis true

balance-scale-1 125 125

breast-cancer-1 193 192

breast-cancer-5 98 98

cars-1 432 432

flags-5 171 171

hayes-roth-data-1 39 39

kr-vs-kp-5 1987 1799

kr-vs-kp-4 2061 1871

lymphography-5 122 120

mushroom-5 4078 4072

nursery-4 240 240

nursery-1 4320 4320

poker-hand-train-5 3324 3324

poker-hand-train-5a 3323 3323

poker-hand-train-5b 1024 1024

spect-test-1 164 163

teeth-1 22 22

teeth-5 14 14

tic-tac-toe-4 231 231

tic-tac-toe-3 449 446

zoo-data-5 42 39
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We computed the number of different rules constructed by the greedy algo-
rithm for α ∈ {0.0, 0.001, 0.01, 0.1, 0.2, 0.3}. Results can be found in Table 11.
For the generalized decision approach, in the worst case, the number of different
rules can be equal to the number of rows in decision table T . With the exception
of one table, the number of different rules is nonincreasing with the growth of α.

The last group of experiments is connected with 0.5-hypothesis. Table 12
contains, for i = 1, 2, . . ., the average percentage of rows separated at i-th step
of the greedy algorithm work (average among all rows r). For two decision tables,
the average percentage of separated rows is less than 50 %: for “spect-test-1” –
at the 7-th and the 8-th step of the greedy algorithm work, for “mushroom-5”–
at the 6-th step of the greedy algorithm work.

We say that 0.5-hypothesis is true for T , if is true for each row of T . Table 13
contains, for decision tables described in Table 2, number of rows for which
0.5-hypothesis is true. From 21 decision tables, the 0.5-hypothesis is not true
for 8 of them: “breast-cancer-1”, “kr-vs-kp-5”, “kr-vs-kp-4”, “lymphography-5”,
“mushroom-5”, “spect-test-1”, “tic-tac-toe-3” and “zoo-data-5”.

7.3 Comparative Study

In this section, we make comparative study of α-decision rules for the proposed
approach and the generalized decision approach, relative to:

– length of constructed α-decision rules,
– number of different α-decision rules,
– 0.5-hypothesis.

Table 14, based on results from Tables 3 and 9 presents, for α ∈ {0.0,
0.001, 0.01}, a comparison of minimum (column “min”), average (column “avg”)
and maximum (column “max”) length of α-decision rules for both approaches.
Each input of Table 14 is equal to the (min, avg, max) length of α-decision rules
for the generalized decision approach divided by the (min, avg, max) length of
α-decision rules for proposed approach.

We can find decision tables for which minimum, average and maximum length
of α-decision rules constructed using the proposed approach is two or more
times shorter than minimum, average and maximum length of α-decision rules
constructed using generalized decision approach. However, for the maximum
values of length of 0.01-decision rules for decision tables “poker-hand-train-5”
and “poker-hand-train-5a” we have an opposite situation.

Table 15, based on results from Tables 4 and 10 presents, for α ∈ {0.1, 0.2,
0.3}, comparison of minimum (column “min”), average (column “avg”) and max-
imum (column “max”) length of α-decision rules for both approaches. Each input
of Table 15 is equal to the corresponding input of Table 10 divided by the input
of Table 4.

Results are similar to the results from Table 14.
Table 16, based on results from Tables 5 and 11 presents, for α ∈ {0.0,

0.001, 0.01, 0.1, 0.2, 0.3}, a comparison of the number of differentα-decision rules
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Table 14. Comparison of length of α-decision rules for α ∈ {0.0, 0.001, 0.01}

Decision table α = 0.0 α = 0.001 α = 0.01

min avg max min avg max min avg max

balance-scale-1 1.50 1.50 1.50 1.50 1.50 1.50 1.00 1.46 1.50

breast-cancer-1 1.00 1.12 1.20 1.00 1.12 1.20 1.00 1.10 1.20

breast-cancer-5 1.00 1.38 1.33 1.00 1.38 1.33 1.00 1.38 1.33

cars-1 1.00 1.82 1.25 1.00 1.82 1.25 1.00 1.59 1.33

flags-5 1.00 1.02 1.00 1.00 1.02 1.00 1.00 1.02 1.00

hayes-roth-data-1 1.00 1.34 1.50 1.00 1.34 1.50 1.00 1.34 1.50

kr-vs-kp-5 1.00 1.17 1.09 1.00 1.08 1.00 1.00 1.06 1.00

kr-vs-kp-4 1.00 1.16 1.09 1.00 1.07 1.00 1.00 1.04 1.00

lymphography-5 1.00 1.10 1.20 1.00 1.10 1.20 1.00 1.09 1.20

mushroom-5 1.00 1.01 1.60 1.00 1.01 1.20 1.00 1.01 1.00

nursery-4 1.00 1.52 2.00 1.00 1.52 2.00 1.00 1.27 2.00

nursery-1 1.00 1.62 1.40 1.00 1.49 1.20 1.00 1.31 1.33

poker-hand-train-5 2.00 2.03 1.00 2.00 1.74 1.00 1.50 1.32 0.75

poker-hand-train-5a 2.00 2.13 1.00 2.00 1.82 1.25 1.50 1.44 0.75

poker-hand-train-5b 2.00 2.47 1.00 2.00 2.47 1.00 1.50 1.92 1.00

spect-test-1 1.00 1.30 2.00 1.00 1.30 2.00 1.00 1.30 2.25

teeth-1 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

teeth-5 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

tic-tac-toe-4 1.50 1.69 1.25 1.50 1.69 1.25 1.50 1.52 1.25

tic-tac-toe-3 1.00 1.38 1.00 1.00 1.38 1.00 1.00 1.15 1.00

zoo-data-5 1.00 1.16 1.20 1.00 1.16 1.20 1.00 1.16 1.20

Table 15. Comparison of length of α-decision rules for α ∈ {0.1, 0.2, 0.3}

Decision table α = 0.1 α = 0.2 α = 0.3

min avg max min avg max min avg max

balance-scale-1 2.00 1.89 1.00 1.00 1.02 2.00 1.00 1.00 1.00

breast-cancer-1 1.00 0.97 1.00 1.00 1.02 1.00 1.00 1.07 1.00

breast-cancer-5 1.00 1.13 1.00 1.00 1.00 1.00 1.00 1.00 1.00

cars-1 1.00 1.18 1.00 1.00 1.23 1.00 1.00 1.00 1.00

flags-5 1.00 1.02 1.00 1.00 0.99 1.00 1.00 1.00 1.00

hayes-roth-data-1 1.00 1.59 2.00 1.00 1.26 2.00 1.00 1.00 1.00

kr-vs-kp-5 1.00 0.97 1.00 1.00 1.06 1.50 1.00 1.00 1.00

kr-vs-kp-4 1.00 0.97 1.00 1.00 1.06 1.00 1.00 1.01 1.00

lymphography-5 1.00 1.01 1.00 1.00 0.97 1.00 1.00 1.06 1.00

mushroom-5 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

nursery-4 1.00 1.65 1.00 1.00 1.07 2.00 1.00 1.00 1.00

nursery-1 1.00 1.21 1.00 1.00 1.15 1.00 1.00 1.00 1.00

poker-hand-train-5 1.00 0.94 0.50 1.00 1.00 1.00 1.00 1.00 1.00

poker-hand-train-5a 1.00 0.99 0.50 1.00 1.00 1.00 1.00 1.00 1.00

poker-hand-train-5b 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

spect-test-1 1.00 1.27 1.00 1.00 1.06 1.00 1.00 0.98 1.00

teeth-1 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

teeth-5 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

tic-tac-toe-4 2.00 1.38 1.00 2.00 1.92 1.00 1.00 1.14 1.00

tic-tac-toe-3 1.00 1.02 1.00 2.00 1.33 1.00 1.00 1.26 1.00

zoo-data-5 1.00 1.07 1.00 1.00 1.06 1.00 1.00 1.08 1.00
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Table 16. Comparison of number of different rules

Decision table values of α

0.0 0.001 0.01 0.1 0.2 0.3

balance-scale-1 2.45 2.45 2.31 1.84 1.00 1.17

breast-cancer-1 1.03 1.03 1.00 1.04 1.33 1.37

breast-cancer-5 1.34 1.34 1.34 1.16 1.32 1.32

cars-1 6.13 6.13 4.95 3.33 3.64 1.50

flags-5 1.00 1.00 0.99 1.04 1.05 1.08

hayes-roth-data-1 1.79 1.79 1.79 3.14 3.17 3.00

kr-vs-kp-5 1.32 1.25 1.36 1.36 1.51 1.34

kr-vs-kp-4 1.32 1.25 1.32 1.26 1.35 1.25

lymphography-5 1.24 1.24 1.24 1.32 1.34 1.43

mushroom-5 1.10 1.09 1.07 1.30 1.04 1.10

nursery-4 5.86 5.86 2.29 1.23 2.40 2.40

nursery-1 6.43 5.49 6.12 3.43 3.80 1.60

poker-hand-train-5 7.35 6.09 3.63 1.57 5.92 5.92

poker-hand-train-5a 8.72 7.06 5.64 2.20 6.03 6.03

poker-hand-train-5b 19.19 19.19 14.29 5.38 5.38 11.75

spect-test-1 1.45 1.45 1.45 1.46 1.32 1.05

teeth-1 1.00 1.00 1.00 1.00 1.00 1.00

teeth-5 1.00 1.00 1.00 1.00 1.00 1.00

tic-tac-toe-4 2.52 2.52 2.25 1.77 3.53 2.00

tic-tac-toe-3 2.21 2.21 1.91 1.52 1.67 3.06

zoo-data-5 1.50 1.50 1.50 1.50 1.40 1.33

for both approaches. Each input of Table 16 is equal to the number of different
α-decision rules for the generalized decision approach divided by the number
of different α-decision rules for the proposed approach. We can see that often
the number of different α-decision rules for the generalized decision approach is
two or more times greater than the number of different rules for the proposed
approach.

The last group of results is connected with 0.5-hypothesis. Based on results
from Tables 7 and 13 we can see that, for the proposed approach, the 0.5-
hypothesis is not true for 9 decision tables, for generalized decision approach,
the 0.5-hypothesis is not true for 8 decision tables. So, the difference is not
significant.

8 Conclusions

We studied the greedy algorithm for construction of approximate decision rules.
This algorithm has polynomial time complexity for the whole set of decision
tables with many-valued decisions. We obtained a bound on precision of this
algorithm relative to the length of rules, and considered lower and upper bounds
on the minimum length of α-decision rules. We studied binary decision tables
with many-valued decisions but the considered approach can be used also for
decision tables with more than two values of attributes, as presented in Sect. 7.
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Experimental results are connected with the construction of exact and approx-
imate decision rules. Based on them, we can see, that the greedy algorithm
constructs relatively short α-decision rules. We also presented results relative to
length, number of different α-decision rules and 0.5-hypothesis for the approach
based on generalized decision.

Based on results connected with comparison of two approaches we can see
that the length and number of different rules constructed in the framework
of our approach (one decision from the set of decisions attached to row) are
usually smaller than the length and number of different rules constructed in the
framework of the generalized decision approach (all decisions from the set of
decisions attached to row).

Future investigations will be connected with the study of other greedy
algorithms and construction of classifiers for decision tables with many-valued
decisions.
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