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Abstract. Semi-supervised classification problem arises in the situation that we
just have a small amount of labeled instances in the training set. One method to
classify the new time series in such situation is that; firstly we need to use
self-training to classify the unlabeled instances in the training set. Then, we use
the output training set to classify the new time series. In this paper, we propose
two novel improvements for Minimum Description Length-based semi-
supervised classification of time series: an improvement technique for Mini-
mum Description Length-based stopping criterion and a refinement step to make
the classifier more accurate. Our first improvement applies the non-linear
alignment between two time series when we compute Reduced Description
Length of one time series exploiting the information from the other. The second
improvement is a post-processing step that aims to identify the class boundary
between positive and negative instances accurately. For the second improve-
ment, we propose an algorithm called Refinement that attempts to identify the
wrongly classified instances in the self-training step; then it reclassifies these
instances. We compare our method with some previous methods. Experimental
results show that our two improvements can construct more accurate
semi-supervised time series classifiers.

Keywords: Time series � Semi-supervised classification � Stopping criterion �
MDL principle � X-Means

1 Introduction

In time series data mining, classification is a crucial problem which has attracted lots of
research works in the last decade. However, most of the current methods assume that
the training set contains a great number of labeled data. Such an assumption is unre-
alistic in the real world where we have a small set of labeled data, in addition to
abundant unlabeled data. In such circumstances, semi-supervised classification is a
suitable paradigm.

To the best of our knowledge, most of the studies about semi-supervised classifi-
cation of time series follow two directions: the first approach bases on Wei and Keogh
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framework [8] as in [1, 6, 8], and the second approach bases on a clustering algorithm
such as in [10–12].

For the former approach, Semi-supervised classification (SSC) method will train
itself by trying to expand the set of labeled data with the most similar unlabeled data
until reaching a stopping criterion. Though several semi-supervised approaches have
been proposed, only a few could be used for time series data, due to its special
characteristic within. Most of the time series SSC methods have to suggest a good
stopping criterion. The SSC approach for time series proposed by Wei et al. in 2006 [8]
uses a stopping criterion which is based on the minimal nearest neighbor distance, but
this criterion can not work correctly in some situations. Ratanamahatana and
Wanichsan, in 2008 [6], proposed a stopping criterion for SSC of time series which is
based on the historical distances between candidate instances from the set of unlabeled
instances to the initial positive instances. The most well-known stopping criterion so far
is the one using Minimum Description Length (MDL) proposed by Begum et al., 2013
[1]. Even though this newest state-of-the-art stopping criterion gives a breakthrough for
SSC of time series, it is still not effective to be used in some situations where time
series may have some distortion along the time axis and the computation of Reduced
Description Length for them becomes so rigid that the stopping point for the classifier
can not be found precisely.

For the latter approach, Nhut et al. in 2011 proposed a method called LCLC
(Learning from Common Local Cluster) [11]. This method firstly apply K-means
clustering algorithm to obtain the clusters. Then, it considers all the instances in a
cluster belong to a class. According to Begum et al. [1], this method depends too much
on the clustering algorithm and it wrongly classifies many instances. In order to
improve LCLC, Nhut et al. in 2012 [12] proposed an extended version of LCLC called
En-LCLC (Ensemble based Learning from Common Local Clusters). This method
attempts to identify probability that a time series belong to a class. Since, the authors
proposed a fuzzy classification algorithm called AFNN (Adaptive Fuzzy Nearest
Neighbor) based on these probabilities. According to Begum et al. [1], this method
needs to be set up many initial constants. Marussy and Buza in 2013 [10] proposed a
semi-supervised classification method based on single-link hierarchical clustering
accompanying with must-link constraint and cannot-link constraint. Different from the
other methods, Marussy and Buza applied graph theory to tackle the semi-supervised
classification problem. In this method, the authors showed that semi-supervised clas-
sification problem is equivalent to finding the minimal spanning tree problem in a
graph. However, this method required to know all the classes before hand. For
example, in binary classification, we need to classify into two classes. Marussy and
Buza’s method requires that there must be two types of instances labeled positive and
negative as seeds at the beginning whereas the other methods only require one type of
instances (positive instances only).

In this work, we propose two novel improvements for binary SSC of time series in
the spirit of the first approach direction: an improvement technique for MDL-based
stopping criterion and a refinement step to make the classifier more accurate. Our first
improvement applies the non-linear alignment between two time series when we
compute Reduced Description Length of one time series exploiting the information
from the other. In order to obtain the non-linear alignment between two time series, we
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apply the Dynamic Time Warping distance. For the second improvement, we propose a
post-processing step that aims to identify the class boundary between positive and
negative instances accurately. Experimental results reveal that our two improvements
can construct more accurate semi-supervised time series classifiers.

The rest of this paper is organized as follows. Section 2 reviews some background.
Section 3 gives details of the two proposed improvements, followed by a set of
experiments in Sect. 4. Section 5 concludes the work and gives suggestions for future
work. Section Appendix shows some more experimental results.

2 Background

In this section, we review briefly Time Series and 1-Nearest Neighbor Classifier,
Euclidean Distance, Dynamic Time Warping, and the framework of semi-supervised
time series classification as well as some stopping criterion such as MDL-based
stopping criterion, Ratanamahatana and Wanichsan’s Stopping Criterion, and lastly we
introduce X-means clustering algorithm.

2.1 Time Series and 1-Nearest Neighbor Classifier

A time series T is a sequence of real numbers collected at regular intervals over a period
of time: T = t1, t2,…, tn. Furthermore, a time series can be seen as an n-dimensional
object in metric space. In 1-Nearest Neighbor Classifier (1-NN), the data object is
classified the same class as its nearest object in the training set. The 1-NN has been
considered hard to beat in classification of time series data among many other methods
such as Artificial Neural Network, Bayesian Network [16].

2.2 Euclidean Distance

The Euclidean Distance (ED) between two time series Q = q1, q2,…, qn and C = c1, c2,
…, cn is a similarity measure defined as follows:

EDðQ;CÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

i¼1
ðqi � ciÞ2

q

Euclidean distance is one of the most widely used distance measure in time series,
its computational complexity is O(n). In this work, Euclidean Distance is applied only
in the X-means clustering algorithm which is used to support the Refinement process
described in Subsect. 3.2.

2.3 Dynamic Time Warping Distance

One problem with time series data is the distortion in the time axis, making Euclidean
distance unsuitable. However, this problem can be effectively addressed by Dynamic

Two Novel Techniques to Improve MDL-Based SSC of Time Series 129



Time Warping (DTW), a distance measure that allows non-linear alignment between the
two time series to accommodate sequences that are similar in shape but out of phase [2].

Now we would like to show how to calculate DTW. Given two time series Q and
C which have length n and m respectively: Q ¼ q1; q2. . .; qn and C ¼ c1; c2. . .; cm.
DTW is a dynamic programming technique which calculates all possible warping paths
between two time series for finding minimum distance. To calculate DTW between the
two above time series, firstly we construct a matrix D with size m × n. Every element in
matrix D is cumulative distance defined as:

cði; jÞ ¼ dði; jÞþmin

cði� 1; jÞ
cði; j� 1Þ
cði� 1; j� 1Þ

8><
>:

where γ(i, j) is (i, j) element of matrix that is a summation between d(i, j) = (qi− cj)
2, a

square distance of qi and cj, and the minimum cumulative distance of three adjacent
elements to (i, j).

Next, we choose the optimal warping path which has minimum cumulative distance
defined as:

DTWðQ;CÞ ¼ min
XK
k¼1

wk

where wk is (i, j) at k
th element of the warping path, and K is the length of the warping

path.
In addition, for a more accurate distance measure, some global constraints were

suggested to DTW. A well-known constraint is Sakoe-Chiba band [7], shown in Fig. 1.
The Sakoe-Chiba band constrains the indices of the warping path wk = (i, j)k such that
j – r ≤ i ≤ j + r, where r is a term defining the allowed range of warping, for a given
point in a sequence. Much more detail about DTW is beyond the scope of this paper,
interested readers may refer to [3, 7].

Due to evident advantages of DTW for time series data, we incorporate DTW
distance measure into our proposed algorithm.

Fig. 1. DTW with Sakoe-Chiba band
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2.4 Semi-Supervised Classification of Time Series

SSC technique can help build better classifiers in situations where we have a small set
of labeled data, in addition to abundant unlabeled data. The main ideas of SSC of time
series are summarized as follows. Given a set P of positive instances and a set N of
unlabeled instances, the algorithm iterates the following two steps:

• Step 1: We find the nearest neighbor of any instance of our training set from the
unlabeled instances.

• Step 2: This nearest neighbor instance, along with its newly acquired positive label,
will be added into the training set.

Note that the above algorithm has to be coupled with the ability to stop adding
instances at the correct time. This important issue will be addressed later. The algorithm
for SSC of time series [1, 8] is given as follows:

Figure 2 illustrates the Semi-Supervised Learning process. The circled instances are
the initial positive/labeled instances. The triangle instances are the positive/unlabeled
instances, and the rectangle instances are the negative/unlabeled instances. Initially,
there are three positive labeled instances (circled instances); the process will assign all
the other unlabeled instances as well as their newly acquired labels into the positive set.
As we can see, the positive/unlabeled will be added into the training set in a chain
which is called the chain effect of this algorithm.

In this semi-supervised classification framework, to identify the point where neg-
ative instances are taken into the positive set is an important task as it affects the quality
of the final training set. There are some stopping criterions were proposed such as

Fig. 2. Semi-Supervised Learning on time series data, (a) Initial positive/labeled instances
(circled instances), (b) Select one nearest neighbor from unlabeled data (triangle instance) to
added in to positive/labeled set, (c) Continue taking more unlabeled instances into
positive/labeled set
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Ratanamahatana and Wanichsan’s Stopping Criterion [6] and Stopping Criterion based
on MDL Principle [1], which are depicted in the next two subsections.

2.5 Ratanamahatana and Wanichsan’s Stopping Criterion

In 2008, Ratanamahatana and Wanichsan [6] proposed a stopping criterion called SCC
(Stopping Criterion Confidence) for semi-supervised classification of time series data
which is based on the following formula:

SCCðiÞ ¼ MindistðiÞ �Mindistði� 1Þj j
StdfMindistð1Þ;Mindistð2Þ; . . .;MindistðiÞg
� NumInitialUnlabeled � ði� 1Þ

NumInitialUnlabeled

• Mindist: minimum distance in the positive/labeled set after each step of adding one
more instance into positive/labeled set.

• Std: standard deviation.
• NumInitialUnlabeled: the number of unlabeled data at the beginning of the learning

phase.

At the point, the value of SCC is maximal, i.e. at iteration i, the stopping criterion is
chose at i – 2.

In this work, we use this stopping criterion in order to test the effect of our
Refinement process (described later in Subsect. 3.2) for Semi-Supervised Learning.

2.6 Stopping Criterion Based on MDL Principle

The Minimum Description Length (MDL) principle is a formalization of Occam’s razor
in which the best hypothesis for a given set of data is the one that leads to the best
compression of the data. The MDL principle was introduced by Rissanen in 1978 [17].
This principle is a crucial concept in information theory and computational learning
theory.

The MDL principle is a powerful tool which has been applied in many time series
data mining tasks, such as motif discovery [18], criterion for clustering [19],
semi-supervised classification of time series [1, 15], discovery rules in time series [21],
Compression Rate Distance measure for time series [14]. In this work, we improve a
version of MDL for semi-supervised classification of time series which was firstly
proposed by Begum et al, in 2013 [1]. The MDL principle is described as follows:

• Definition 1. Discrete Normalization Function: A discrete function Dis_Norm is the
function to normalize a real-value subsequence T into b-bit discrete value of range
[1, 2b]. The maximum of the discrete range value 2b is also called the cardinality.
The Dis_Norm function is described as follows:
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Dis NormðTÞ ¼ round
T �min

max�min
� ð2b � 1Þ

� �
þ 1

where min and max are the minimum and maximum value in T respectively.
After casting the original real-valued data to discrete values, we are interested in
determining how many bits are needed to store a particular time series T. It is called
the Description Length of T.

• Definition 2. Description Length: A description length DL of a time series T is the
total number of bits required to represent it.

DL Tð Þ ¼ w� log2c

where w is the length of T and c is the cardinality (the number of values we
discretize the time series).

• Definition 3. Hypothesis: A hypothesis H is a subsequence used to encode one or
more subsequences of the same length.
We are interested in how many bits are required to encode T given H. It is called the
Reduced Description Length of T.

• Definition 4. Reduced Description Length: A reduced description length of a time
series T given hypothesis H is the sum of the number of bits required in order to
encode T exploiting the information in H. i.e. DL(T | H), and the number of bits
required for H itself, i.e. DL(H). Thus, the reduced description length is defined as:

DL T;Hð Þ ¼ DL Hð Þ þ DL T jHð Þ

One simple approach of encoding T using H is to store a difference vector between
T and H. Therefore: DL(T | H) = DL(T – H).

Example: Given A and H, two time series of length 20 as follows:

A ¼ 6 7 9 9 10 11 13 13 14 15 16 18 18 19 22 21 22 23 24 24½ �
H ¼ 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25½ �

Without encoding, the bit requirement to store A and H is 2 × 20 × log220 = 173 bits. The
difference vector A’ = |A –H| = [0 0 1 0 0 0 1 0 0 0 0 1 0 0 2 0 0 0 0 1]. And in the difference
vector, there are 5 mismatches. The bit requirement is now just 20� log220 þ
5� ðlog220 þ log220d eÞ ¼ 134 bits, which brings out a good data compression.

Assume that there exists only a single positive instance as the initial training set [1].
The SSC procedure using MDL-based stopping criterion can be outlined as follows.

First, it selects the seed positive instance as hypothesis. It selects the nearest
neighbor of any of the instance(s) in the labeled training set from the unlabeled dataset.
It encodes this instance in terms of the hypothesis and keeps the rest of the dataset
uncompressed. Then it computes the reduced description length of the whole dataset. If
it can achieve a data compression then the instance in question is a true positive. It
continues to test to see if unlabeled instances can be added to the positive pool by this
data compression criterion. Once the SSC module starts including instances dissimilar
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to the hypothesis, it no longer achieves data compression and the first occurrence of
such an instance is the point where the SSC module should stop.

Even though this stopping criterion is the best one for SSC of time series so far, it is
still not effective to be used in some situations where time series may have some
distortion along the time axis and the way of computing Difference Vector for them
becomes so rigid that the stopping point for the classifier can not be found precisely.

In this work, we improve this stopping criterion by applying a non-linear alignment
between two time series when calculating their Reduce Description Length (described
in Subsect. 3.1).

2.7 X-Means Clustering Algorithm

X-means was proposed by Pelleg and Moore in 2000 [5], which is an extended
clustering algorithm of K-means. X-means can identify the best number of clusters k by
itself based on the Bayesian Information Criterion (BIC) [20]. This clustering algorithm
requires setting up a more flexible k cluster than in K-means. At the beginning, we need
to specify a maximal value max_k and minimal value min_k of k clusters. X-means will
identify which value of k in the range [min_k, max_k] should be selected. In Fig. 3, we
show the outline of X-means which includes two steps. Step 1, called Improve-Params,
runs K-means until converging. Step 2, called Improve-Structure, decides whether a
cluster should be split into two sub-clusters or not basing on BIC. The algorithm stops
when the number of clusters reaches the maximum number of cluster max_k which was
set at the beginning.

In this work, we use X-means as a semi-supervised classification method, called X-
means-classifier. We apply X-means-classifier to support our refinement step to
identify the ambiguous instances which will be depicted later in Subsect. 3.2. For more
information about X-means algorithm, interested reader can refer to [5].

3 The Proposed Method

This work aims to improve the MDL-based stopping criterion and at the same time
improve the accuracy of the classifier. We devise an improvement technique for the
MDL-based stopping criterion and propose a Refinement step to make the classifier
more accurate.

X-means
1
2
3

Improve-Params
Improve-Structure

      If K > Kmax, return the best-scoring model. Otherwise, go to step 1.

Fig. 3. Outline of X-means clustering algorithm [5]
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3.1 New Stopping Criterion Based on MDL Principle

The original MDL-based stopping criterion is really simple, which finds mismatch
points by one-to-one alignment between two time series and then calculates Reduced
Description Length using the number of mismatch points. In fact, it is hard to find bit
saves in this method because the time series may have some distortion in the time axis
and a lot of mismatches will be found and there are not many bit saves.

We propose a more flexible technique for finding mismatch points. Instead of linear
alignment, we use a non-linear alignment when finding mismatch points. This method
attempts to find an optimal matching between two time series for determining as fewer
mismatch points as possible.

The principle of our proposed method is in the same spirit of the main characteristic
of Dynamic Time Warping (DTW). Therefore, we can modify the algorithm of com-
puting DTW distance between two time series in order to include the finding of
mismatch points between them.

Given an example, suppose we have two discrete time series H and A as follows:

H ¼ 2 6 6 8 5½ �
A ¼ 1 6 8 5 4½ �

By original method, the number of mismatch points is 4 because they have different
values at 4 positions (2 vs. 1, 6 vs. 8, 8 vs. 5, and 5 vs. 4). On the other hand, by using
our Count_Mismatch algorithm, the number of mismatch points is 2, less than in the
original method. This result can be easily seen in Fig. 4. The alignment between A and
H is shown in Fig. 4(a) through the warping path and the number of mismatch points
between them is shown in Fig. 4(b).

Figure 6 shows our proposed mismatch count algorithm based on the calculation of
DTW distance. There are two phases in this algorithm. At first phase, we calculate the
DTW distance. The second phase goes backward along the found warping path and
finds the number of mismatch points. In addition, at first phase, we use Sakoe-Chiba
band constraint (through the user-specified parameter r) for limiting the meaningless
warping paths between the two time series.

Fig. 4. Example of counting mismatch points in our proposed method
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In addition, for finding an efficient warping path, we also propose a method to
calculate the suitable value of Sakoe-Chiba band r with the algorithm given in Fig. 5.
At the beginning, the positive/labeled set must have at least two time series. We will
calculate the value of r by finding the lowest value of r that satisfies the condition
whereby one time series (seed) will accept the other as a positive instance. This
condition results in the following inequality that must be satisfied:

mismatch count� TS length� log2 card
log2 cardþ log2 TS lengthd e

where mismatch_count is the number of mismatch points between two positive/labeled
time series, TS_length is the length of two time series and card is the cardinality.

Now we will prove the above-mentioned condition.
Proof:
Time series T1 accept time series T2 as a positive/labeled instance, if and only if the

following inequality is satisfied:

DLðT1; T2Þ� DLðT1Þ þ DLðT2Þ
, DLðT1Þ þ DLðT2j T1Þ � DLðT1Þ þ DLðT2Þ

We can derive:

DLðT2 j T1Þ � DLðT2Þ
, mismatch count � ðlog2 card þ log2 TS lengthd eÞ � TS length � log2 card

So we can rewrite:

mismatch count � TS length � log2 card=ðlog2 cardþ log2 TS lengthd eÞ □

r = Find_Match_Range (T1, T2, card)
// T1, T2: positive/labeled sample time series, 
// card: the cardinality
// TS_length: the length of two time series
1
2
3
4
5
6
7
8

value = TS_length × log2(card)/(log2(card) + ceil(log2(TS_length)))
for i = 0 to TS_length

mismatch_count = Count_Mismatch (T1, T2, i)
if mismatch_count <= value

break
end

end
r = i

Fig. 5. The outline of Refinement process in SSC
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Based on the above inequality, we proposed the algorithm for finding the suitable
value for the Sakoe-Chiba band r, which is given in Fig. 5. Line 3 of the algorithm in
Fig. 5 invokes the procedure Count_Mismatch which is given in Fig. 6. This algorithm
can be easily extended for finding r with more than two initial positive/labeled samples.
One solution on this situation is to choose r as the average value of Match Range
between any two pairs of positive/labeled time series.

mismatch_count = Count_Mismatch (x, y, r)
// x: Time series, y: Time series, r: Sakoe-Chiba band constraint

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17

18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

// Phase 1: Calculate DTW with Sakoe-Chiba band constraint
matrix[1,1] = square(x[1] – y[1])
for i = 2 to length(y) do

matrix[1, i] = matrix[1, i – 1] + square(x[1] – y[i]) 
end
for i = 2 to length(x) do

matrix[i, 1] = matrix[i – 1, 1] + square (x[i] – y[1])
end
for i = 2 to length(x) do

for j = 2 to length(y) do
if |i – j| <= r then

min_val = MIN(matrix[i – 1, j], matrix[i, j – 1], matrix[i – 1, j – 1])
matrix[i, j] = min_val + square(x[i] – y[j])

else
matrix[i, j] = +INFINITY

end
end

end
// Phase 2: Finding minimum number of mismatch points
i = length(x); j = length(y)
mismatch_count = 0
if x[i] != y[j] then

mismatch_count = mismatch_count + 1
end
while i > 1 OR j > 1 do

value = MIN(matrix[i – 1, j],  matrix[i, j – 1], matrix[i – 1, j – 1])
if i > 1 AND j > 1 AND value = matrix[i – 1, j – 1] then

i = i – 1; j = j – 1
else if j > 1 AND value = matrix[i, j – 1] then

j = j – 1
else if i > 1 AND value = matrix[i – 1, j] then

i = i – 1
end
if x[i] != y[j] then

mismatch_count = mismatch_count + 1
end

end

Fig. 6. Mismatch-count algorithm between two time series with Sakoe-Chiba band constraint
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3.2 Refinement Step

In this work, we include to the framework of semi-supervised time series classification
algorithm given in Subsect. 3.2 a process called Refinement. The aim of this process is
to check again the training set and modify it in order to obtain a more accuracy
classifier. This process is based on the finding of ambiguous labeled instances, and
these ambiguous instances will be classified again using the confident true labeled
instances. The refinement process is iterated until the training set becomes stable, i.e.
the training set before and after a refinement iteration are the same.

Figure 7 shows our proposed refinement algorithm. In this algorithm, AMBI is the
set of ambiguous labeled instances, P is the positive set and N is the negative set. The
set AMBI consists of the instances which are near the positive and negative boundary.
This algorithm classifies the instances in AMBI basing on the current P and N. The
process of detecting AMBI and classifying the instances in P is repeated until P and
N are unchanged. Finally, the instances in AMBI that cannot be labeled will be clas-
sified the last time.

The ambiguous instance detection process is done under the following rules:

1. The instances in P which were classified as positive by SSC but their nearest
neighbors are in the negative set N, they and their nearest neighbors are ambiguous.

2. The instances in N which were classified as negative by SSC but their nearest
neighbors are in the positive set P, they and their nearest neighbors are ambiguous.

3. The instances which were classified as positive by X-means-classifier (explained
later) but are classified as negative by SSC, these are considered ambiguous.

The process of classifying instances in AMBI is done using One-Nearest-Neighbor
(1-NN) in which the instance in AMBI which is nearest to P or N will be labeled first.

In this work, we propose a method called X-means-Classifier that can be used as
SSC method for time series. This is a clustering-based approach which applies X-means
algorithm, an extended variant of k-means which was proposed by Pelleg and Moore in

Refinement (P, N)
// P: positive/labeled set (output of Improved MDL method)
// N: negative/unlabeled set (output of Improved MDL method)

1
2
3
4

5
6
7
8

AMBI = Find ambiguous instances in P and N
P = P – AMBI; N = N – AMBI
repeat

Classify AMBI by new training set P and N and then add each classified instance 
to P and N.
AMBI = Find ambiguous instances in P and N
P = P – AMBI;  N = N – AMBI

until (P and N are unchanged)
Classify AMBI by new training set P and N and then add each classified instance to 
P and N.

Fig. 7. The outline of Refinement process in SSC
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2000 [5]. One outstanding feature of X-means is that it can automatically estimate the
suitable number of clusters during the clustering process. The SSC method based on X-
means consists of the following steps. First, we use X-means to cluster the training set
(including positive and unlabeled instances). Then, if there exists one cluster which
contains the positive instance, all the instances in it will be classified as positive
instances, and all the rest are classified as negative. X-means-Classifier will be used to
initialize the AMBI in the Refinement process (Line 1 in the algorithm in Fig. 7).

In Fig. 8, we show an example to illustrate how the Refinement process works. In
Fig. 8(a), the circled/positive instances and squared/negative instances are obtained
from the Self-Learning process. The separate line which split the space into two areas
P and N indicates the true boundary between two classes P and N. As we can see from
Fig. 8(a), there are three wrongly classified instances, two squared instances indicate
that they belong to negative set but their true class is positive (they stand in area P), and
one circled instance indicates that it belong to positive set but their true class is negative
(because it locates in N area). When applying the Refinement process, some ambiguous
instances are identified because their nearest neighbors belong to another class as
shown in Fig. 8(b). Since, they are reclassified as shown in Fig. 8(c). In Fig. 8(d), the
Refinement process is continued, two more instances are identified as ambiguous
instances. They are finally reclassified as in Fig. 8(e). The Refinement step repeats until
there is no change in the positive set and the negative set.

4 Experimental Evaluation

We implemented our proposed method and previous methods with Matlab 2012 and
conducted the experiments on the Intel Core i7-740QM 1.73 GHz, 4 GB RAM PC.
After the experiments, we evaluate the classifier by measuring the precision, recall and

Fig. 8. An example of Refinement step, (a) positive set P and negative set N after applying
Self-Learning with improved MDL-based stopping criterion, (b) ambiguous instances are
identified (the two pair of instances marked), (c) the ambiguous instances are reclassified,
(d) continuing to identify ambiguous instances, (e) the final training set after Refinement step
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F-measure of the retrieval. The precision is the ratio of the correctly classified positive
test data to the total number of test instances classified as positive. The recall is the ratio
of the correctly classified positive test data to the total number of all positive instances
in the test dataset. An F-measure is the ratio defined by the formula:

F ¼ 2� p� r
pþ r

where p is precision and r is recall.

p ¼ # of correct positive predictions
number of positive predictions

r ¼ # of correct positive predictions
number of positive examples

In general, the higher the F-measure is, the better the classifier is.

4.1 Datasets

Our experiments were conducted over the datasets from UCR Time Series Classifi-
cation Archive [4]. Details of these datasets are shown in Table 1. Besides, we also use
two other datasets: MIT-BIH Supraventricular Arrhythmia Database, and St. Peters-
burg Arrhythmia Database that are used to compare the stopping criteria. These two
datasets are available in [9] and featured as follows:

• MIT-BIH Supraventricular Arrhythmia Database: This database includes many
ECG signals and a set of beat annotations by cardiologists. Record 801 and signal
ECG1 were used in our experiments as in [1] because we compared our method
with [1]. The target class in the 2-class classification problem is abnormal
heartbeats.

Table 1. Datasets used in the evaluation experiments

Datasets Number of classes Size of dataset Time series length

Yoga 2 300 426
Words synonyms 25 267 270
Two patterns 4 1000 128
MedicalImages 10 381 99
Synthetic control 6 300 60
TwoLeadECG 2 23 82
Gun-Point 7 50 150
Fish 7 175 463
Lightming-2 2 60 637
Symbols 6 25 398
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• St. Petersburg Arrhythmia Database: This database contains 75 annotated readings
extracted from 32 Holter records. Record I70 and signal II were used in our
experiments as in [1] because we compared our method with [1]. The target class in
the 2-class classification problem is R-on-T Premature Ventricular Contraction.

4.2 Parameters Setup

Cardinality for the MDL principle (described in Subsect. 2.6) is set to 8 (3-bit discrete
values). For all the methods, we use DTW as distance measure. Euclidean Distance is
applied only in X-means-classifier.

4.3 Comparing Two MDL-Based Stopping Criteria

We perform a comparison between our improvement technique and the previous
MDL-based stopping criteria [1] on four datasets: MIT-BIH Supraventricular
Arrhythmia Database, St. Petersburg Arrhythmia Database, Gun Point Training Set and
Fish Training Set in Figs. 9, 10, 11 and 12 respectively. In order to compare the
stopping criteria, we record the point when the truly negative instance is added into the
positive set of Self-Learning process, this point is consider as expected stopping point.
We compare the stopping criteria based on this expected stopping point as a baseline.

From Figs. 9, 10, 11 and 12, we can see that our improvement technique suggests a
better stopping point in most of the datasets. Detecting a good stopping point is very
crucial in SSC of time series. We attribute this desirable advantage of our improvement
technique to the flexible way of determining mismatches between two time series when
computing Reduced Description Length of one time series exploiting the information in
the other.

Fig. 9. In MIT-BIH Supraventricular Arrhythmia Database, the expected stopping point is 268.
(a) Stopping point by our MDL (Proposed Method) at iteration 262 (Nearly perfect). (b) Stopping
point by MDL (Previous Method) at iteration 10 (too early).
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Figure 9 shows the experimental results of our proposed MDL based stopping
criterion compared with the previous MDL based stopping criterion MIT-BIH
Supraventricular Arrhythmia Database. Our proposed stopping point is 268 which is
nearly the same as expected stopping point 262, and much better than that of the
previous method at 10.

Figures 10, 11 and 12 also reveal that our improvement can produce a more
accurate stopping point than the previous stopping criterion. In St. Petersburg
Arrhythmia Database (Fig. 10), the expected stopping point is 126; our proposed
method gives result 128, whereas the previous method gets 28 as stopping point.

Fig. 10. In St. Petersburg Arrhythmia Database, the expected stopping point is 126. (a) Stopping
point by our MDL (Proposed Method) at iteration 121 (Nearly perfect). (b) Stopping point by
MDL (Previous Method) at iteration 28 (too early)

Fig. 11. In Gun Point Training Set, the expected stopping point is 14th. (a) Stopping point by
our MDL (Proposed Method) at iteration 15th (Nearly perfect). (b) Stopping point by MDL at
iteration 3rd (too early).
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In Gun Point (Fig. 11), the expected stopping point is 14; our proposed method gives
result 15, whereas the previous method gets 3 as stopping point. And in Fish dataset
(Fig. 12), the expected stopping point is 18; our proposed method gives result 19,
whereas the previous method gets 3 as stopping point.

4.4 Effects of Refinement Step

In this subsection, we compare SSC by our new MDL-based stopping criterion with
and without Refinement step. Table 2 reports the experimental results (precision, recall
and F-measure) of this comparison. The results show that our proposed Refinement
step brings out better performance in all the datasets. In most of datasets, the

Fig. 12. In Fish Training Set, the expected stopping point is 18th. (a) Stopping point by our
MDL (Proposed Method) at iteration 19th (Nearly perfect). (b) Stopping point by MDL at
iteration 3rd (too early).

Table 2. Experiment results with and without Refinement (used proposed stopping criterion)

Datasets Without Refinement With Refinement
Precision Recall F-measure Precision Recall F-measure

Yoga 0.64 0.35036 0.45283 0.57609 0.38686 0.46288
WordsSynonyms 0.94737 0.3 0.4557 0.625 0.41667 0.5
Two patterns 1.0 0.41328 0.58486 1.0 0.68635 0.814
MedicalImages 0.57276 0.91133 0.70342 0.56587 0.93103 0.70391
Synthetic control 1.0 0.08 0.14815 1.0 0.98 0.9899
TwoLeadECG 0.88889 0.66667 0.7619 0.75 1.0 0.85714
Gun-Point 0.93333 0.58333 0.71795 1.0 0.625 0.76923
Fish 0.94737 0.81818 0.87805 1.0 0.86364 0.92683
Lightning-2 0.7619 0.4 0.52459 0.6875 0.55 0.61111
Symbols 1.0 0.75 0.85714 0.88889 1.0 0.94118
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performance of the proposed method is better, for example, on Two-Paterns F-measure
= 81.4 %, on Synthetic-Control F-measure = 98.99 %, on TwoLeadECG F-measure =
85.714 %, on Fish F-measure = 92.683 %, on Symbol F-measure = 94.118 %. Spe-
cially, on the Synthetic-Control dataset, SSC without Refinement gives F-measure =
14.815 %, while with Refinement, F-measure reaches to 98.99 %, a perfect result.
These experimental results show that the Refinement step in SSC can improve the
accuracy of the classifier remarkably.

Now we show the effect of Refinement step by using Ratanamahatana and
Wanichsan’s Stopping Criterion [6]. Table 3 indicates the precision, recall and
F-measure with and without Refinement. The results also reveal that our Refinement
step helps to bring better classifier. On Two Paterns dataset F-measure = 100 %, on
Synthetic Control F-measure = 98.99 %, on Fish F-measure = 88.372. On Yoga,
WordsSynonyms, and Symbols training set, the F-measure decreases with an insignif-
icant amount.

5 Conclusions

Existing semi-supervised learning algorithms for time series classification still have less
than satisfactory performance. In this work, we have proposed two novel improvements
for semi-supervised classification of time series: an improvement technique for
MDL-based stopping criterion and a refinement step to make the classifier more accu-
rate. Our former improvement applies the Dynamic Time Warping to find a non-linear
alignment between two time series when computing their Reduced Description Length.
The latter improvement attempts to identify wrongly classified instances by self-learning
process and reclassify these instances. Experimental results reveal that our two
improvements can construct more accurate semi-supervised time series classifiers.

As for future work, we plan to generalize our method to the case of multiple classes
and adapt it to some other distance measures such as Complexity-Invariant Distance
[13] or Compression Rate Distance [14]. Compression Rate Distance is a powerful

Table 3. Experiment results with and without Refinement (used Ratanamahatana and Wanich-
san’s Stopping Criterion [6])

Datasets Without Refinement With Refinement
Precision Recall F-measure Precision Recall F-measure

Yoga 0.6383 0.43796 0.51948 0.58654 0.44526 0.50622
WordsSynonyms 0.58696 0.9 0.71053 0.45669 0.96667 0.62032
Two patterns 0.99267 1.0 0.99632 1.0 1.0 1.0
MedicalImages 0.96078 0.24138 0.38583 1.0 0.24138 0.38889
Synthetic control 0.95918 0.94 0.94949 1.0 0.98 0.9899
TwoLeadECG 1.0 0.41667 0.58824 0.71429 0.83333 0.76923
Gun-Point 0.63636 0.58333 0.6087 0.68182 0.625 0.65217
Fish 0.9 0.81818 0.85714 0.90476 0.86364 0.88372
Lightning-2 0.62162 0.575 0.5974 0.69388 0.85 0.76404
Symbols 0.53333 1.0 0.69565 0.5 1.0 0.66667
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distance measure for time series data which we recently proposed. We also plan to
include some constraint in the Semi-Supervised Learning process as in [15] and extend
our method to perform semi-supervised classification for streaming time series.
Besides, we intend to apply another version of MDL such as in [14, 15, 19] which
computes the Description Length of a time series by its entropy. Although our method
helps to improve the F-measure of the output training set, there are still many instances
which were wrongly classified in the training set. This weakness could be solved by
removing the wrongly classified instances.

Acknowledgment. We would like to thank Prof. Eamonn Keogh and Nurjahan Begum for
kindly sharing the datasets which help us in constructing the experiments in this work.

Appendix A: Some More Experimental Results

This section shows the experimental results of X-means-classifier which was used to
support the Refinement step shown in Subsect. 4.4. Table 4 illustrates the precision,
recall and F-measure of X-means classifier. The experiments reveal that X-means
classifier gives good results in some datasets such as in Synthetic Control F-measure =
100 %, in Symbols F-measure = 94.118 %, in Gun Point F-measure = 71.795 %, in
Fish F-measure = 71.795 %. Specially, in Synthetic Control, the result is perfect
F-measure = 100 % (totally exact).

In Table 5, we show the execution time (seconds) of some algorithms: Refinement
with Improved MDL based stopping criterion, Refinement with Ratanamahatana and
Wanichsan’s stopping criterion, and X-means-classifier. Note that these figures do not
include the execution time of Self-Learning process.

Table 4. Semi-supervised classification of time series by X-means-Classifier

Datasets Precision Recall F-measure

Yoga 0.48421 0.33577 0.39655
WordsSynonyms 0.35632 0.51667 0.42177
Two patterns 0.28676 0.28782 0.28729
MedicalImages 0.71277 0.33005 0.45118
Synthetic control 1.0 1.0 1.0
TwoLeadECG 0.6 0.75 0.66667
Gun-Point 0.93333 0.58333 0.71795
Fish 0.82353 0.63636 0.71795
Lightning-2 0.75 0.525 0.61765
Symbols 0.88889 1.0 0.94118
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