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Challenges for Cartilage Regeneration
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Abstract Articular cartilage is a resilient connective tissue, which covers the

surface of bones to facilitate their movements against each other. Due to unique

mechanical properties, cartilage has a prominent role in locomotion and mobility of

the human body. This tissue however has limited capability of regeneration and

repair due to its low metabolism and avascular structure. Trauma, degenerative

conditions and inflammatory arthritis lead to lifetime disability states and pain. The

scope of this chapter is to first provide an overview of mechanical, biological and

micro-architectural properties of articular cartilage and the effect of aging on these

characteristics. Then the cartilage treatment techniques that have been proposed for

different types of cartilage defects are discussed. Cell-based therapies, such as

autologous chondrocyte implantation (ACI) technique, have been developed to

achieve reproducible results regardless of patients’ age, gender and physical con-

ditions. The second generation of ACI is a tissue engineering-based technique,

which includes the use of appropriate cell type, bioactive molecules such as growth

factors and proper scaffold to regenerate cartilage. The favourable types of cells,

biological compounds and properties of biomaterials for cartilage regeneration

have also been discussed in this chapter. Finally, the biomaterial products that

have been examined in clinical trial for cartilage repair are outlined, and their

properties and clinical results are discussed.

Keywords Articular cartilage • Tissue engineering • Scaffold • Tissue

regeneration • Biopolymer

14.1 Articular Cartilage Properties and Aging

Hyaline articular cartilage covers the ends of articulating bones [1]. It is a resilient

connective tissue with low friction and high load-bearing capacity. Cartilage serves

a critical role in mobility of one bone against another. Chondrocyte is the main cell
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type scattered within an extracellular matrix (ECM) of cartilage [2]. Breakdown or

any degree of damage in this tissue leads to substantial reduction in mobility of the

human body and pain and subsequently has negative impact on patients’ lifestyle.
Cartilage has limited capability of regeneration and repair due to its low metabo-

lism and the absence of vascularisation in its structure [3, 4]. To design and

engineer a cartilage, it is essential to have better understanding over the mechanical

and biological properties of this tissue. Mechanical, physiochemical and biological

properties of articular cartilage are mainly affected by its biochemical composition

as well as its structural properties that are reviewed in this section.

14.1.1 Biochemical Composition

The composition of articular cartilage varies during the tissue development. In a

mature cartilage, 70–80% of its content is water. The solid fraction of articular

cartilage is mainly collagen (50–75%), proteoglycan (15–30%) and other protein

molecules [5, 6]. The collagen network provides shear and tensile stiffness, whereas

proteoglycan molecules bring about compressive stiffness to cartilage ECM. The

collagen network also suppresses the high swelling tendency of the proteoglycan

molecule and preserves the functional integrity of cartilage [7]. The mixture of

collagen and proteoglycan, therefore, forms an integrated mesh-like network with

superior mechanical properties. Concentration of collagenous proteins and proteo-

glycan along with non-collagenous proteins in the structure of articular cartilage

substantially affects the mechanical properties and functionality of articular

cartilage.

Collagen has a primary role in the function and structure of all connective tissues

throughout the human body. Collagen is composed of repeating amino acid

sequences (mainly glycine, proline and hydroxyproline) and possesses a triple

helix structure. In articular cartilage, collagen type II is predominant [8], which

provides shear and tensile stiffness to cartilage ECM. In addition to collagen type II,

cartilage ECM is composed of other types of collagen.

Other fibrillar and globular collagen types, such as types V, VI and IX, also exist

in cartilage ECM [9]. The roles of these types of collagen are still unknown, but it is

believed that they support the integration of cartilage structure by affecting the

intermolecular interaction in collagen type II [5, 6].

Proteoglycans are large macromolecules consisted of a protein segment in core,

covered with polysaccharide chain, known as glycosaminoglycan. The molecular

weight of proteoglycans varies in the range of 50,000 kDa to 100 kDa [10, 11]. Pro-

teoglycan networks function as a mesh, which covers the organised collagen

network. Majority of this biopolymer is one of the factors that provide structural

integrity to cartilage. The primary proteoglycan in articular cartilage network is

aggrecan. This proteoglycan consists of a hyaluronan core with chondroitin and

keratin sulphate in side chains. The presence of these two carboxyl and sulphate

groups gives articular cartilage network a negative charge (known as a fixed charge
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density) [12]. This overall negative charge leads to hydrophilic and high swelling

properties to cartilage network [7, 13]. The mechanical functionality of cartilage on

the other hand is highly dependent on the fluid pressurisation within the tissue. Loss

of proteoglycan can, therefore, decrease water intake capacity and thus fluid

pressure within the cartilage network. Lack of fluid pressure in cartilage substan-

tially decreases the mechanical strength of this tissue [13].

Cartilage ECM also contains a small fraction of non-collagenous proteins and

other matrix constituents. Non-collagenous proteins include cartilage oligomeric

proteins, fibronectin, thrombospondin, matrix glycine–leucine–alanine,

chondrocalcin, superficial proteins and elastin [14]. Other matrix constituents of

cartilage ECM are lipids, phospholipids and inorganic crystal compounds

[15, 16]. The role of each of these molecules in the function of articular cartilage

is still not clear. Collagen and proteoglycan are the two predominant compounds

that affect the cartilage functionality. In this chapter, therefore, the main focus is on

collagen type II and proteoglycan rather than other minor compounds [7]. In

addition to biochemical composition, the microstructures and micro-layouts of

articular cartilage affect the biomechanical and biological properties of cartilage.

14.1.2 Cartilage Microstructure

The structure of articular cartilage substantially varies from the surface of articular

cartilage to bone [17, 18]. The biochemistry, cell morphology and cell arrangement

vary in different regions within articular cartilage. The schematic overview of

articular cartilage is shown in Fig. 14.1. The tissue can be divided into superficial,

middle, deep and calcified regions.

The top surface of articular cartilage is covered with very thin proteinaceous

layer, termed as lamina splendens [18]. The zonal region right beside the lamina

splendens is a superficial zone, which has a thickness within the range of 4 to 8 mm

for the healthy cartilage of a man [17]. The cells in this region are densely packed

with discoidal shapes that are oriented along with the collagen fibres [19]. The

middle or transitional layer zone occupies 40–60% of the total articular cartilage

thickness (equivalent to 16–22 mm in healthy male cartilage) [17]. The deep zone is

the last region of purely hyaline tissue. The thin layer, which separates the deep

zone from calcified region of articular cartilage, is called tidemark. The calcified

region is the transitional zone between elastic cartilage and rigid bone tissues [20].

14.1.3 Cartilage Mechanical Function

The main role of articular cartilage is to act as low-friction, load-bearing, wear-

resistant surface for mobility of bones over decades of continuous use. The force

applied on cartilage depends on the location of the joint. The forces exerted on the
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shoulder, ankle, heap and knee are 1.5, 2.5, 3.3 and 3.5 times of the human body

weight, respectively [24]. The biochemical characteristics of articular cartilage

directly affect the performance of the tissue in the joint and its mechanical func-

tionality. Any change in mechanical and biochemical properties of articular carti-

lage might dramatically alter the loading profile exerted on the joint, which may

degrade tissue and eventually lead to loss of articular cartilage [3, 4].

The deformation of cartilage plays an important role in its mechanical function-

ality, which is governed by the rate of absorbance or release of fluid, mainly water,

through its solid structure [25, 26]. For example, sudden loading on cartilage

releases water from its structure; this subsequently absorbs the impact of stress

and covers the tissue. In addition, release of water leads to expansion of cartilage

which in turn increases the surface area of contact (between cartilage and the bone)

and thus decreases the impact of stress on skeleton [25, 26].

Loading and deformation of articular cartilage generate a combination of com-

pressive, tensile and shear stresses along with friction throughout the tissue

[27]. Some of the important mechanical behaviour of articular cartilage is

summarised in Table 14.1 and are discussed in this section. It is important to note

that all mechanical properties of cartilage are continuously changed during human

growth and affected due to health condition [28–32].

14.1.3.1 Compression Behaviour

Compressive loading is one of the primary types of mechanical stress exerted on

articular cartilage. The confined compressive modulus experienced by articular

Lamina splendens
(few microns)

Superficial
4-8 mm

Middle
16- 22 mm

Deep
10-20 mm

Tide mark

Calcified 
Cartilage

Subchondral 
bone

Cancellous 
bone

Chondrocyte

Chondrocyte

Fig. 14.1 Schematic layout of articular cartilage and thickness of different zones of articular

cartilage in a healthy knee joint (The image is generated by accumulating data from different

sources [18, 21–23])
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cartilage varies in the range of 0.08 to 2.1 MPa from superficial to deep layers of

adult bovine cartilage, respectively [31, 32, 39]. The mechanism of cartilage to

cope with high compressive stresses is predominantly described by permeability of

cartilage structure.

Cartilage structure has a low liquid permeability, leading to high resistance of

tissue against fluid flow within its structure. Under compression, therefore intersti-

tial fluid is subjected to very high pressure. After unloading, the fluid is

redistributed (from high pressure to low pressure spots) within the tissue and

imparts viscoelastic properties to the cartilage [26, 40, 41]. Volumetric changes

and viscoelastic properties of articular cartilage are, therefore, the two predominant

factors affecting the compressive behaviours of articular cartilage.

Volumetric changes occur as fluid moves out from the structure of articular

cartilage under compression. Upon the unloading of the tissue from compression

stress, cartilage recovers its initial dimension and absorbs the lost fluid. In this cycle

hence, the solid structure exhibits both high viscoelasticity and water uptake

properties to be able to cope with compression stresses and also keep its original

shape [38]. Over a course of a day, however, the bulk of cartilage is compressed in

the range of 15–20% of its initial volume, which can be fully recovered within a

period of inactivity (e.g. sleeping period) [42].

14.1.3.2 Tensile Properties

Tension in cartilage occurs either when two cartilages slide against each other and

pull towards a single direction or when a cartilage is compressed, pulling the

surrounding tissue towards the loading region. As cartilage is subjected to tension,

collagen fibres within the tissue structure align and stretch along the loading axis.

As the strain is in the range of 0–15%, the crosslinked collagen network starts

stretching, and thus the cartilage exhibits linear response [43]. As the strain

increases, the crosslinked collagen fibres themselves start stretching. In higher

range of strain (above 15%) therefore, cartilage exhibits higher stiffness

[44, 45]. The structural and physical properties of articular cartilage therefore affect

the behaviour of this tissue under tension condition. These include collagen fibre

density, their length and degree of crosslinking and strength of ionic bonds between

collagen and proteoglycan networks [46, 47].

Table 14.1 Important

mechanical properties of

native cartilage

Mechanical properties Refs

Compression modulus (MPa) 0.08–2.1 [31, 33, 34]

Tensile modulus (MPa) 4.8–25 [25]

Strain at failure (mm/mm) 30% [35]

Practical strain rate 0–1 mm/s [33]

Shear modulus (MPa) 0.07–0.65 [36, 37]

Coefficient of friction 0.001 [38]
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The tensile modulus of mature articular cartilage is significantly higher than its

compression modulus, and it varies in the range of 4.8–25 MPa from deep to the

superficial layers, respectively [25]. The tensile modulus of articular cartilage

increases by maturation [29, 48].

14.1.3.3 Shear Stress

Articular cartilage is subjected to shear stress in its deep tissue when the joint

undergoes rotational or translational movement. In theory, pure shear just causes

stretching of tissue (it causes no compressive stress on the tissue). The shear stress

on cartilage is independent on the fluid pressure within its structure, and thus it can

be used to characterise the solid fraction of cartilage regardless of fluid dynamics in

it [49]. The equilibrium shear stress in cartilage varies in the range of 0.05–0.7 MPa

[36, 37].

14.1.3.4 Friction Behaviour

Friction quantifies the resistive force between two subjects as they are in contact

with each other and move laterally relative to each other. Native cartilage gives

mobility to the bone by its lubrication properties. Under high dynamic and static

load conditions, the coefficient of friction for human cartilage is very low, and it is

in the order of 0.001 [38]. Several theories have been proposed to explain low

friction force between cartilage surfaces. These include but not necessarily limited

to elasto-hydrodynamic lubrication [50, 51] and fluid pressurisation theories

[52, 53]. It shows that the synovial fluid becomes thicker due to the deformation

of applied compression on cartilage, which gives superior lubrication properties to

articular cartilage. Compression and lubrication properties of cartilage therefore are

closely correlated.

14.1.4 Articular Cartilage Aging and Pathology

Articular cartilage is a highly resilient connective tissue with very important

biomechanical role in the human body. Cartilage has an essential function in the

movement of the human body and mobility of bones against each other. Any

breakdown in this tissue results in substantial reduction in standards of living and

substantial level of pain. Cartilage from skeletally immature, mature and older

patients exhibits very different biomechanical and biological properties. As carti-

lage ages, it becomes more prone to injuries [54, 55]. The damage to this tissue

might result from torsional loading, joint misalignment, foreign bodies in the joint

and osteoarthritis. It is critical to first understand the aging process of cartilage and
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then the factors that lead to cartilage damage to be able to develop an effective

treatment strategy for articular cartilage defects.

Similar to many organs, aging has significant impact on the characteristics of

cartilage. Skeletally mature, immature and old cartilages are different in respect to

their thickness [54, 55], vascularisation, chondrocyte population [56] and chondro-

cyte regeneration quality [57, 58]. Immature cartilage contains blood vessels as it is

still undergoing tissue formation (endochondral ossification). It is also thicker than

mature cartilage and its thickness decreases by aging [54, 55]. The population of

chondrocyte cells also decreases overtime by aging [56]. In addition to

chondrocytes’ cell reduction in mature cartilage, aging also brings lower metabolic

activity, increases apoptosis (a process of programmed cell death) and elevates

passive responses of cells to growth factors [57, 58].

Biomechanical properties of cartilage change by aging. For example, the degree

of crosslinking in collagen increases [59] as protein and lipids are covalently

bonded with sugars (i.e. glycation). The length and molecular weight of proteogly-

can also decrease as its protein content decreases [60]. These variations reduce the

stiffness/strength of cartilage and induce the risk of tissue failure [61]. Studies

showed that generally a cartilage approaches its peak in elasticity in 40 years of age,

while the viscoelastic energy reaches its maximum value earlier within 16–29 years

old. Both elasticity and viscoelasticity decline at a steady rate [62]. Collagen

alignment also decreases in the middle and deep zone of cartilage by age which

in turn decreases the tensile properties of cartilage [63].

Both biological and biomechanical properties of articular cartilage decrease by

time. The problematic issues are, therefore, the lack of healing responses and also

the decrease in the initial mechanical properties of cartilage. The overall changes in

the biochemical properties of articular cartilage are schematically shown in

Fig. 14.2.

Repeated non-physiological loading on tissue over the years and biological,

biomechanical and other systematic changes on articular cartilage are the factors

that make the tissue vulnerable to damage. Cartilage damages are either due to

injuries or osteoarthritis. In addition to the impact of aging on the nature of articular

cartilage, other factors such as hormonal therapy and diseases play a role in

properties of cartilage. For instance, oestrogen replacement in ovariectomised

sheep leads to substantial changes in the structure and mechanical properties of

articular cartilage, which is relevant to menopausal women [64]. In addition, anti-

inflammatory treatments such as intra-articular administration of methylpredniso-

lone diversely affect the properties of articular cartilage [65]. Some diseases such as

diabetes also have negative impact on cartilage properties [66].

14.1.4.1 Cartilage Injuries

Sudden impact, repeating loads, damage in other connective tissue and also foreign

bodies affect the loading profile on cartilage and, therefore, result in cartilage

damage as shown schematically in Fig. 14.3. The effect of load and stress on
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cartilage is a function of frequency of loading and their period of exposure. Due to

the viscoelastic nature of articular cartilage and based on the theory of confined

compression moduli, both load and strain rates significantly affect cartilage stiff-

ness which should be taken into account for determining the load of injury. For

instance, during the normal physical activity, the knee cartilage is subjected to 3.5

times the body weight [24]. Therefore, for a male with an average weight of 70 Kg,

the force on his joint is subject to around 1.5 MPa stress by assuming the surface

Decrease in thickness of 
cartilage, blood vessel 
removed, decrease in 
numbers of chondrocytes

Increase of collagen crosslinking, 
Decrease of proteglycan content, 
Decrease chondrocyte number, 
Decrease in collagen alignment

Skeletally immature cartilage Skeletally immature cartilage

Aged cartilage

Birth
~ 40 years

~ 20 years

Blood vessels Chondrocyte in superficial zone 

Chondrocyte in middle layer

Collagen fibres Chondrocyte in middle layer

Fig. 14.2 Biochemical changes in the structure of cartilage from skeletally immature cartilage to

mature and aged cartilage (The image is regenerated by accumulating data from different refer-

ences [54, 55, 60–63])

Femur

Tibia

Synovitis

Effusion
Femur

Tibia

Cartilage 
damaged Site

Aging, Disease,  injurious 
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injuries or surgery in other 

connective tissues 
Healthy Knee joint Arthritic Knee joint

Fig. 14.3 Cartilage injuries, causes and their effect on loading profile in connective tissue
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area of tibial plateau of 1670 mm2 [67]. During running, this load approaches to

50 MPa.s�1 and 100 MPa.s�1 that depends on the stress rate. However, the impact

of loading from injury on cartilage is any load with time between two peak loads in

the order of milliseconds (e.g. <30 ms) along with at least one of the following

criteria: (i) stress rate greater than 1000 MPa.s�1, (ii) loading rate above 100 kN.s�1

or (iii) strain rate in excess of 500 mm.mm�1.s1[68]. It is important to note that

these criteria are only applied to healthy cartilage; aging and other systematic

changes in cartilage make cartilage more vulnerable to damage.

14.1.4.2 Osteoarthritis

Osteoarthritis (OA) is one of the major health issues worldwide and it is a burden

for elderly population. Symptomatic OA manifests itself with severe pain in the

joint and lack or even loss of mobility in the defected joint [69, 70]. The cost of

treatment and healthcare for promoting the lifestyle of patients who suffered from

OA is enormous. The Australian Institute of Health and Welfare reported that OA

affects more than 1.3 million Australians in 2007 [71]. The existing trend suggests

that in 2050, more than seven million Australians will be affected by OA [72].

The OA mostly caused by biochemical and biomechanical changes that system-

atically occur in articular cartilage. It might also be attributed to traumatic joint

injuries such as accident and sport. It is estimated that approximately 11% of

Australian working force (young and middle-aged population) suffers from arthritis

(mainly OA) [72].

14.1.5 Natural Articular Cartilage Repairing Process

There are two types of cartilage damages: partial- and full-thickness defects [73].

Partial-thickness damage is limited to the cartilage, and the subchondral bone is not

violated in this type of damages. The site of defect has, therefore, no access to bone

marrow-derived stem cells [3]; the cartilage thus lacks in intrinsic capability to heal

the defected site [3, 74]. The defected site in this case might significantly expand by

time since there is no healing process naturally commenced by the tissue [74]. This

damage eventually leads to OA by aging. On the other hand, in full-thickness

cartilage defect, the lesion has access to bone marrow-derived stem cells which

allows the cartilage to undergo some spontaneous healing process [75].

In the full-thickness damage, also called osteochondral defect, the healing

process extends greatly after 2 weeks. The subchondral blood vessels bring pro-

genitor cells (mainly mesenchymal stem cells) into the defected site. These cells are

more bioactive in generating cartilage ECM compared to natural chondrocytes. The

migration, differentiation and proliferation of mesenchymal stem cells (MSC) at the

defected site take place 2 weeks post injury. The blood from subchondral bone

forms a fibrin clot, which contains platelets. These can secrete biofactors to recruit
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mesenchymal stem cells to form cartilage. MSCs produce collagen type II and

collagen type I to fill the defected site. After approximately 6–8 weeks, the defected

site is filled with collagen type I and type II [76–78]. From this point onwards, the

production of collagen type II is completely switched to collagen type I. After

1 year the repaired cartilage consists of hyaline and fibrocartilage tissue

[75, 79]. Fibrocartilage tissue suffers from lack of mechanical strength and physical

stability [80]. These lead to cartilage matrix degeneration through fibrillation [81],

chondrocyte loss and dedifferentiation and GAG loss [82]. Subsequently, deep

cracks appear within the structure of cartilage after the first year, and subsequently

complete failure of cartilage occurs [76–78].

Lack of chondrogenesis cell in partial- and also formation of fibrocartilage in

full-thickness articular cartilage damages might lead to the OA occurrence in a

patient. Therefore, articular cartilage damage must be treated with therapeutic

strategies at very early stages.

14.2 Therapies for Articular Cartilage Damages

Several cartilage repair techniques have been proposed to treat different types of

cartilage defects. Conventional therapeutic strategies are classified in two groups,

therapeutic intervention without biological compounds or with active biologics. In

this section an overview of these two groups of therapies is provided.

14.2.1 Therapeutic Intervention without Active Compounds

No biological compound is used in this group of therapeutic interventions. The

efficiency of these treatment techniques relies on their stimulation impact on

chondral or subchondral tissue for cartilage regeneration. The main techniques in

this category are lavage, chondral shaving, debridement, Pridie drilling and

microfracture that are described briefly in this section.

14.2.1.1 Lavage and Arthroscopy

Lavage or irrigation of the defected site with solution of sodium chloride, Ringer or

Ringer and lactate has been practised for treatment of OA of the knee. The defected

site in this technique is rinsed, using closed-needle hole or arthroscopic techniques

[83]. It is claimed that thorough rinsing of tissue removes intra-articularly active

pain signaling molecules from the defected site, thus leading to the relief of pain in

patients. The irrigation of cartilage surface might also lead to extraction of proteo-

glycan and aggrecans from the superficial surface of articular cartilage, which

might temporarily improve the adhesion of repaired cells at the defected site
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[84, 85]. In clinical studies, however, lavage (irrespective of whether it is performed

with closed-needle hole or arthroscopic techniques) appears to resolve the issue for

a short period of time [86, 87]. This approach is more effective for the patients with

history of trauma (such as sports injury, tearing of the ligament or meniscus or

traumatic structural lesions) compared to the cases with other types of OA [84, 88].

14.2.1.2 Chondral Shaving

Chondral shaving is conducted with arthroscopic techniques to mechanically

remove the defected site, using appropriate surgical instrument. In recent years, it

is only performed for treatment of chondromalacia patellae pain. The results of

in vivo studies suggest that this procedure does not have any impact on cartilage

regeneration in mature rabbits after 12 weeks. The remaining cartilage also

underwent degeneration due to apoptotic cell loss [89–91].

14.2.1.3 Debridement

This approach involves meniscectomy process in which the chondral defected site

is mechanically isolated, the lesion site underwent lavage process and all free

bodies are removed from the joint [92]. The removal of chondral defect tissues

leads to cell apoptosis and thus cartilage degeneration at the surrounding tissue. In

addition, the meniscectomy process leads to skeletal malalignment and significant

changes in the loading profile at the joint. The results of in vitro, in vivo and clinical

studies demonstrated that debridement alone exacerbates the osteoarthritic condi-

tions [93, 94].

14.2.1.4 Pridie Drilling

In this technique, therapeutic holes at the defected site are drilled from the articular

cartilage surface into the subchondral bone marrow. The drilling is performed close

to the defected articular cartilage sites. This stimulates the spontaneous repair

reaction at the defected site [95–97]. The intervention to drill the holes (2 mm–

2.5 mm in diameter) includes such methods as osteochondritis dissecans, which is a

painful process. It is claimed that this technique is beneficial for OA patients by

promoting the migration of chondrogenesis cells to the surface of the defected site

[95, 98, 99]. In vitro and in vivo studies showed that Pridie drilling on rabbit

resulted in formation of fibrocartilage tissue. This method may be accompanied

with inflammation at the defected joint [100]. Clinical studies, however, showed

that Pridie drilling is a safe treatment for cartilage repair for a short period

only [101].
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14.2.1.5 Microfracture

The biological basis of this technique is the same as Pridie drilling. The only

differences between Pridie drilling and microfracture techniques are the size and

numbers of holes [102]. In microfracture technique, micro-sized pores (from

500 μm to 1 mm in diameter) are generated within the entire articular cartilage

lesion site. This technique is efficient for lesions with average size of less than

2.3 cm2. The depth of holes is approximately 4 mm and 3–4 holes are generated per

cm2 of the cartilage defected site. The smaller diameter of holes in this technique,

compared to Pridie technique, leads to less adverse impact on biomechanical

properties of the subchondral bone [103]. Animal studies confirmed the regenera-

tion of tissue by using this method. In clinic, the microfracture technique is mainly

applied for articular cartilage damages in young athletes [102]. Positive results are

reported for cartilage treatments by microfracture; in 75% of cases, pain relief and

improvement in joint functionality are reported. However, application of this

method for the patients with OA with lack of adequate number of bone marrow-

derived mesenchymal stem cells is not promising [88, 104].

14.2.2 Allogeneic Osteochondral and Chondral Grafting
(Full Osteochondral Allograft)

In this technique, allogeneic osteochondral or chondral graft is used to fill the

articular cartilage defected site, which has no intention to stimulate cartilage repair

responses. It relies on replacing the defected tissue with healthy cartilage that is

usually derived from cadavers [105, 106]. Patients with substantial osteochondral

defects such as tumour reaction, osteonecrosis, broad OA, osteochondritis dissecans

and extensive trauma have benefited from this treatment technique. However, there

are immunological problems associated with this technique which might lead to

complete rejection of the grafted tissue. Animal studies showed that allogeneic

grafts survived under immunosuppressive conditions. In addition, matching the

histocompatibility between the grafted and native tissue is required to reduce

cell-mediated cytotoxicity and antibody titre [107, 108]. Clinical studies with this

treatment technique revealed that the immunoresponses in the human body are less

than those in animals [109–111]. In addition, the osteochondral transplant grafts

survive for a longer period of time even after freezing and lyophilisation [109–

111]. The success rates of 65–85% are reported for this treatment technique even

after follow-up period of 10 years [112, 113]. The application of this method,

however, is limited due to scarcity of fresh donor and problems associated with

the handling and storage of frozen allograft tissues. It is also critical to contemplate

the risk of disease transmission for allogeneic osteochondral and chondral

grafting [88].
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Among all the previously mentioned techniques for cartilage repair,

microfracture (MF) and fresh osteochondral allograft (FOA) are the only methods

with acceptable biological basis. Different human studies investigated the efficacy

of these techniques for treatment of articular cartilage defect. The results from the

clinical studies on efficacy of MF and FOA techniques are summarised in

Table 14.2.

14.2.3 Autologous Implantation Technique

Different cell-based therapies have been proposed such as autologous chondrocyte

implementation (ACI) technique for treatment of cartilage defects [117]. ACI is

established in 1994 [117] and thereafter fully approved by the US Food and Drug

Administration (FDA) in 1997 [118]. This treatment technique is schematically

shown in Fig. 14.4. The first generation of ACI technique provided significant and

long-term benefits for patients as per providing tissue functionality and pain relief

with better lifestyle. The major problematic issues in this method are the serious

damage that imposed at the donor collection site [88]; monolayer in vitro culture of

chondrocyte, which leads to the formation of fibrocartilage [119]; and also hyper-

trophy or ossification of the patched periosteum [120].

Table 14.2 Results from clinical studies of MF and FOA techniques for articular cartilage defect

treatment

Treatment

technique

No. of

joint

Average age

(yrs.)

Lesion size

(cm2)

Results, year (successful

cases %)1 Refs.

MF 11 38.5 2 1 (100), 1.5 (0) [114]

FOA 20 42 NR 2(90), 5 (35), 10 (15) [115]

14 37 NR 2(57), 5(43), 10 (29) [116]
1For example 2 (90) represented: after 2 years of follow-up time, there are 90% of successful cases

Tibia

Femur

Enzymatic isolation

Sampled Cartilage, from articular 
cartilage or non-load bearing 

cartilage 

Chondrocyte In vitro 2D 
cell culturing

Tibia

Femur

Damaged site

Implantation of 
chondrocyte

Open Surgery

Fig. 14.4 Schematic overview of classical ACI technique for articular cartilage treatment
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14.2.4 Motivation for Tissue Engineering

A demand for tissue engineering of cartilage arises from two perspectives, the high

risk of failure in using traditional treatment techniques and the large numbers of

patients suffering from articular cartilage defects. Articular cartilage damages can

occur during childhood, in young adults and also in elderly people. Osteochondrosis

and osteochondritis are joint defects that occur mainly in children due to the lower

capacity of skeletally immature cartilage to high range of stresses. The rate of knee

cartilage injuries is more than 25% of participants in any sport activity. In addition,

articular cartilage damage in elbow and shoulder joints commonly occurs in

athletes who play baseball and cricket, for example [121–123]. It is estimated

that one out of three children suffers from severe cartilage damage requiring

medical treatment. The cost of treatment for articular cartilage damage is estimated

to be $ 1.8 billion per annum considering that more than 30 million school-aged

children just in the USA participate in sport activities [124].

During the last decade, the first generation of ACI technique has been the major

approach for the treatment of cartilage defects [118]. Cartilage tissue engineering is

considered as a second generation of ACI and has been proposed to address the

issues with current cartilage treatments to improve autologous chondrocyte imple-

mentation techniques [125–129]. Tissue engineering involves using suitable type of

cells, scaffolds and bioactive molecules such as growth factors [130]. Tissue

engineering approaches will be discussed comprehensively in the next section.

14.3 Tissue Engineering of Cartilage

Tissue engineering is the modern approach in treatment of articular cartilage

defects using suitable types of cells, biomaterials and bioactive molecules such as

growth factors [130]. The schematic overview of tissue engineering approaches for

treatment of damaged cartilage is shown in Fig. 14.5. Briefly, suitable cell types

such as chondrocyte and stem cell (e.g. from autologous sources) are harvested

from patients, and then the cells are cultured in vitro. Chondrogenesis biofactors

may be used to promote the capacity of cells for cartilage regeneration. A bioma-

terial matrix is required for 3D cell growth, which is comprised of scaffolds for

in vitro cell growth or a cell carrier system for in vivo applications. For cartilage

tissue engineering, there are two approaches, namely, in vitro and in vivo cartilage

regeneration. In the former, cells are seeded on the scaffolds and the construct is

cultured for a specific period of time. The resulted autologous tissue is then

transplanted into the patient via arthrotomy (open surgery) or arthroscopy. In the

latter, the suspension of cells in bioengineered matrix is injected into the articular

cartilage damaged site. Selection of proper cells and incorporation of

chondrogenesis biofactors and the bioengineered matrix have pivotal role in
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modern ACI technique [131]. Suitable cell types, bioactive compounds and char-

acteristics of biomaterials for cartilage tissue engineering are discussed below.

14.3.1 Cells

Several different cell sources are proposed for cartilage tissue engineering. Autol-

ogous chondrocyte, isolated from hyaline or articular cartilage, however is regarded

as the most common cell type. By extracting cells from patient’s own body, the

issue of any immune response can be avoided. In addition, chondrocyte is already

differentiated into target cartilage phenotype and can secrete cartilage ECM, such

as collagen and proteoglycan [132]. For the cases with extensive cartilage damage

or disease, procurement of autologous chondrocyte is not possible. An alternative

method is to use allogeneic chondrocyte from a donor tissue. This approach,

however, is limited by disease transmission and also host body immune response.

Chondrogenesis 
Cells

Biofactors or 
morphogenic factors

3. Bioengineered 
Matrix

In vitro cell 
culturing on 

scaffold Injectable Solution

Chondrocyte

Enzymatic 
isolation

Progenitor 
cells

In vitro cell 
culturing

Patient

Open 
Surgery Injection

Suspension of cell in 
carrier

1. Cells

2. Bioactive 
molecules

Autologous construct

Biofactors

Fig. 14.5 Modern ACI treatment technique for articular cartilage repair

14 Challenges for Cartilage Regeneration 403



In general, the major issue in the application of both allogeneic and autologous

chondrocytes is the limited numbers of available cells, the instability of chondro-

cyte in monolayer culture and the lack of intrinsic repair capacity [131]. A prom-

ising alternative cell source for cartilage tissue engineering is autologous progenitor

cells or stem cells [133].

Adult stem cells reside throughout the different parts of the body and can be

differentiated along different pathways such as chondrogenesis and osteogenesis

lineages. Stem cells from fat tissue (adipose) and bone marrow mesenchymal stem

cells (BM-MSC) have been extensively used for different tissue engineering appli-

cations [133]. Stem cells exhibit multipotent differentiation capacity which can be

used to improve clinical treatment techniques in various locomotion tissues [134],

including the bone [135], fat [136], ligament [137, 138] and articular cartilage

[136, 139].

Stem cells exhibit high proliferation and growth rate, and thus for cell procure-

ment, little sampling from donor site is required. The sampling process for adipose

stem cells is also straightforward and less invasive compared to chondrocyte

procurement. The process therefore is advantaged by minimal donor site morbidity

and pain level. For a direct comparison between the efficacy of chondrocyte and

stem cells for cartilage repair, two populations of patients are treated with either

chondrocyte or stem cells [140]. The results from this study showed that articular

cartilage defect treatment with autologous stem cells is as successful as the one

using chondrocyte. By considering the limited number and low quality of chondro-

cyte in the defected tissues, treatment with stem cells has more potential for ACI

applications.

The use of BM-MSC also enables simultaneous repair of the bone and cartilage,

which ultimately results in promoting remodelling and integration of the

regenerated cartilage with the host tissue [141, 142]. However, the monolayer

culture of both stem cells and chondrocytes possesses the issue of telomere short-

ening,1 loss of proliferative rate and multipotency [143–145]. An alternative source

for stem cell is embryonic stem cell that has unlimited capacity for proliferation in

monolayer culturing and is promising for a broad range of tissue engineering

applications [133]; however, commercialisation of embryonic stem cell-based

discoveries is banned in many countries, such as European countries.

14.3.2 Bioactive Factors

Regeneration and growth of cartilage and its integration with the surrounding

tissues rely on the biochemical signaling of cells within the regenerating tissue.

Bioactive factors include small drug-like molecules, growth factors or any other

1Human (and other) somatic cells without telomerase gradually lose telomeric sequences as a

result of incomplete replication.
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molecule that has cell motif sites and can bond with cells to create biological

responses. The intensity, duration and sequence of stimulation factors affect the

metabolic activity of cells and their ECM exertion.

14.3.2.1 Chondrogenesis Small Drug-Like Molecules

Small drug-like molecules have developed to selectively regulate transcriptional

factors of subcellular localisations and activities [146, 147]. For cartilage tissue

engineering, kartogenin is identified as a small molecule which can promote

chondrogenesis and chondrocyte differentiation of MSC by disrupting interaction

of filamin-A with transcription factor CBFβ. This regulates the CBFβ-RUNX1
transcriptional program, which ultimately induces chondrogenesis. The positive

effect of this molecule on chondrogenesis has been studied and proved by in vitro

and two animal model studies that were subjected to osteoarthritis disease. Appli-

cation of drug-like selective regulator molecules for transcriptional subcellular

factors is limited for their intrinsic complexity. Chondrogenesis of BM-MSC is,

therefore, mostly promoted by using exogenous anabolic factors, loaded within the

network of scaffold.

14.3.2.2 Growth Factors

Chondrogenesis can be promoted by using exogenous anabolic factors [148]. The

growth factors include but not limited to TGF-β [148, 149] and BMP family [150–

152] that have been used to promote chondrogenesis. Most commonly used growth

factors for articular cartilage applications and their in vitro and in vivo effects are

summarised in Table 14.3.

TGF-β superfamily is involved in tissue repair and inflammation responses

following a cartilage injury [153, 154]. Controversy results are obtained for the

effect of TGF-β superfamily for cartilage tissue engineering. For therapeutic appli-

cation, TGF-β superfamily can prolong cartilage life by minimising or even

eliciting the biological and biomechanical changes in cartilage over the years. For

tissue engineering applications, some studies confirmed the positive effect of

TGF-β1 in chondrogenesis proliferation and growth. The positive effect of

TGF-β1 in cartilage tissue engineering, however, depends on the differentiation

state of cells; for freshly isolated chondrocytes, addition of TGF-β1 had no signif-

icant effect on cell growth. The incorporation of growth factor, however, signifi-

cantly affects the proliferation and proteoglycan synthesis of chondrocyte, cultured

in vitro after 1 week of isolation [155]. TGF-β1 had negative impact for cartilage

repair. For instance, it is observed that the synthesis of proteoglycan by arthritic

chondrocytes is decreased when adding TGF-β1 to the media [156]. This reduction

may result in formation of articular cartilage with unfavourable properties.

Bone morphogenetic protein (BMP) superfamily also plays an important role in

endochondral bone and cartilage formations. More than 20 types of BMP have been
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identified. In tissue engineering applications, BMPs are commonly used for bone

repair and regeneration. For cartilage tissue engineering, BMPs also enhance the

osteochondral integration of the defected cartilage by promoting osteogenesis and

chondrogenesis at the defected site. It is shown that BMP-1 has more stimulation

effect on cells to express proteoglycan and collagen compared to TGF-β1
[165]. BMP-2 also regulates the formation of collagen and proteoglycan from

chondrocytes [159, 160]. In addition it promotes the healing process of cartilage

defects in vivo [154]. BMP-4 stimulates proteoglycan expression and osteochondral

tissue formation and also enhances cellular proliferation for articular cartilage

regeneration [160, 161]. Addition of such BMP growth factors as BMP-7,

BMP-12 and BMP-13, particularly BMP-2, enhances ECM formation [160] and

cell proliferation [162]. In addition, BMP-7 suppresses expression of collagen type

I and differentiation of fibroblast in vivo [163], which inhibits the formation of

fibrocartilage at the defected site [164].

14.3.3 Biomaterials for Cartilage Regeneration

In a tissue engineering approach, biomaterials are used either for fabrication of 3D

scaffolds for in vitro tissue regeneration or synthesis of an injectable vehicle to

deliver cells/drugs to the defected site of cartilage for in vivo cartilage regeneration.

In both techniques, biomaterials play a critical role in cellular growth and tissue

regeneration. The physicochemical and biological properties of biomaterials sub-

stantially affect the functionality of repaired cartilage [166].

Table 14.3 Different growth factors, used for articular cartilage tissue engineering, and results

achieved in vitro and in vivo

Growth factor Results Refs.

TGF-β1 No significant effect on freshly isolated cells [153–158]

Improve proteoglycan synthesis on chondrocytes after 1 week of

post-isolation

Proteoglycan synthesis decreased by arthritic chondrocytes

BMP-1 Promotes the expression of proteoglycan and collagen more than

TGF-β1
[154, 159,

160]

BMP-2 Regulates proteoglycan and collagen production and helps to

adjust the biomechanical and biochemical properties of

regenerated tissue

[159, 160]

BMP-4 Increases cell proliferation, proteoglycan formation as well as

bone formation

[160, 161]

BMP-7 Decreases collagen type I expression, increases proteoglycan and

ECM production and cellular proliferation

[162, 163]

BMP-12 and

BMP-13

Promotes synthesis of GAG, less significant effect compared to

BMP-2

[164]
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14.3.4 Properties for Biomaterials

Biomaterials are used as physical supports for cell growth and to avoid spillover

and asymmetric distribution of cells. This is important to promote synthesis of

cartilage ECM and to regenerate functional tissues. In case of cartilage tissue

engineering, the biomaterials support the newly formed tissues to promote the

integration of repaired cartilage with host tissue. The physical and biological

properties of biomaterial used for scaffold fabrication play important roles in cell

responses, adhesion and infiltration to form functional 3D structure cartilage

[166]. Biomaterials must be biocompatible and exhibit cell adhesive surface prop-

erties with suitable microstructure for 3D cell proliferation. They also must be

mechanically strong to support the newly regenerated tissue in vivo.

14.3.4.1 Biocompatibility and Surface Properties

Particular attention has been paid on the biocompatibility of biomaterials. Biocom-

patibility is predominantly affected by the chemical and biological properties of

biomaterials used for cartilage repair. A biomaterial is biocompatible when it elicits

neither cytotoxic effects nor inflammatory responses within the surrounding

tissue [167].

Surface properties of biomaterials affect in vitro cellular adhesion, phenotype

maintenance, intracellular signaling and in vivo cell recruitment, healing and

osteochondral integrations [168–170]. Cell responses to the ECM matrix and the

new regenerated tissues are mediated through an interfacial layer formed on the

surface of scaffold or biomaterial. This layer is formed by non-specific absorption

(not chemical conjugation) of ECM proteins with a biomaterial when it is in a

proper physiological environment. As an example, hydrophilic properties of a

polymer such as gelatine and poly(vinyl alcohol) promote the formation of inter-

facial layer and thus enhance the adhesion of cells [171]. The incorporation of

peptides in the form of long chain of ECM proteins (such as fibronectin, laminin,

elastin and collagen) or short peptide sequences, derived from ECM proteins (such

as arginine–glycine–aspartic acid), provides cell binding sites on scaffold to medi-

ate cell responses, thereby enhancing tissue regeneration [172, 173].

14.3.4.2 Microstructural and Mechanical Properties

The microstructure, porosity and pore interconnectivity are critical factors for

biomaterials that are used for tissue engineering. Porosity allows the cell migration

into the 3D structure of scaffold, and pore interconnectivity is a key factor for

nutrient, oxygen and waste transfer into and from the cells in scaffolds [174–

178]. For each cell type a range of pore sizes is required to mimic the innate tissue

and allow the cells’ adhesion and regeneration [179]. For in vitro cartilage tissue
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engineering, the average pore size in the range of 250–500 μm is recommended

[180]. Small pore size resulted in occlusion and obstruction of pores, which then

prevents cellular penetration within the 3D structure of scaffolds. Pores in the range

of 75–100 μm can result in growth of un-mineralised osteoid tissues [181]. Addi-

tionally, only fibrous tissues penetrate within a scaffold with an average pores size

of 10 μm or less. Low average pore size, therefore, leads to the formation of

fibrocartilage rather than cartilage. Meanwhile, the mechanical strength of physical

supports decreases by increasing the average pore size. Therefore, it is important to

tune the void volume (or average pore size) in scaffolds for cartilage tissue

engineering to both enable the migration of chondrogenic cells and maintain the

required structural strength [178].

For in vivo cartilage tissue engineering, chondrogenic cells are suspended within

the polymeric matrix, and the suspension is gelled in situ. There is no need for cells

to immigrate through pores, and thus large pores from 250 to 500 μm are not

necessary anymore. It is shown that small pores that are less than 100 μm in

biomaterials induce osteochondral formation in vivo, while a larger pore size

leads to osteogenesis before cartilage formation [182]. As an example, chondrocyte

maintains its phenotype, and cartilage ECM is produced by encapsulating cells

within an injectable chitosan/starch/β-glycerol hydrogel with average pore size in

the range of 19.8–26.4 μm [183].

The biomaterials provide a temporary mechanical support to bearing in vivo

loadings and stresses during the tissue regeneration. One of the key factors in

successful tissue engineering is to develop a mechanically strong scaffold that its

degradation rate corresponds to the rate of regeneration of ECM. External loads and

stresses stimulate cell proliferation, remodelling and tissue regeneration [184–

186]. It is essential that loads gradually transfer from the biomaterials (supporting

cell growth and tissue regeneration) to the regenerated cartilage to promote tissue

remodelling. It is therefore, critical to control the degradation rate and mechanical

strength of scaffold to ensure sufficient structural integrity of matrix is retained

during the regeneration of cartilage [187]. The rapid degradation of biomaterials is

not desirable as it provokes excessive stresses and impact loads to the developed

tissues prior to sufficient growth and remodelling cartilage. This effect might result

in complete failure of regenerated tissue construct. On the other hand, the slow

degradation of biomaterials may shield the cells against external stimulating

stresses, which can decrease the proliferation and growth rate of chondrogenesis

cells. It is important to design scaffolds with the mechanical properties that mimic

cartilage tissues for in vitro and in vivo applications. The compressive modulus of

native cartilage varies from 0.08 to 2.1 MPa [31, 32, 39] and its tensile modulus in

between 4.8 and 25 MPa [25]. It might be possible to use biomaterials that may not

fully meet these mechanical properties, as the newly formed cartilage might

provide extra structural integrity after implantation.
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14.3.5 Scaffold for In Vitro Tissue Engineering

Tissue engineering techniques have been proposed for the treatment of articular

cartilage defects. In modern ACI, 3D scaffolds are used to address the issues

associated with monolayer culture of chondrogenesis cells in vitro such as dedif-

ferentiation and ossification of chondrogenesis cells [126]. In vitro cell studies

showed that chondrocyte phenotype can be maintained up to 8 months of post

seeding in 3D scaffold [188]. In the clinical approach for the treatment of cartilage

defect, chondrogenesis cells (chondrocytes or stem cells) are seeded on a biode-

gradable scaffold and cultured in vitro. The construct is harvested in vitro, and cell

viability and chondrogenesis of cultured cells are continually tested for a period of

6 weeks. Subsequently, the regenerated tissue, formed within the scaffold, is

transplanted at the defected site (most commonly with open surgery). The efficacy

of this technique for the treatment of articular cartilage defect is substantially

affected by the characteristics of scaffolds used for in vitro cell growth [188]. Dif-

ferent biomaterials are attempted for the fabrication of scaffolds for cartilage

regenerations. These include biodegradable synthetic and natural polymers that

are either hydrophobic or hydrophilic.

14.3.5.1 Synthetic Polymers

Synthetic polymers exhibit reproducible and predictable physicochemical, mechan-

ical and degradation properties, all of which can be closely tuned to fulfil the

requirements. In addition, the risk of toxicity, immunogenicity and infections is

low in the application of synthetic polymers for different biomedical applications

since they constituted of well-known molecular structure. Poly(α-hydroxy esters)

are widely used for cartilage tissue engineering, and they are often processed to

form 3D porous structures with hydrophobic properties. Meanwhile, poly(vinyl

alcohol) (PVA), poly(ethylene glycol) and polyacrylates (PEs) formed hydrophilic

structures with high water content, called hydrogel. Hydrogels are a class of bio-

materials, composed of natural or synthetic polymer chains with very high water

content (above 30 wt%) [189]. Hydrogels become the material of choice as scaffold

for cartilage tissue engineering applications attributable to their hydrophilic prop-

erties, high water content, superior permeability of nutrients, long chain molecules,

proteins and oxygen [174, 179, 190–193]. Some of the in vitro and in vivo out-

comes, from the applications of main synthetic polymers as scaffold for tissue

growth, are summarised in Table 14.4 and comprehensively discussed in the

following sections.
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Poly(α-Hydroxy Esters)

Poly(α-hydroxy esters) (PHEs) is a class of synthetic biodegradable polymers that

have been used for the preparation of scaffolds for cartilage tissue engineering.

Table 14.4 The pros and cons observed from in vivo and in vitro applications of synthetic

polymers for cartilage repair

Biomaterial Positive outcomes Negative outcomes Refs.

PGA Maintenance of chondrocyte

phenotype in vitro and in vivo

Initial in vitro cell culturing is

necessary to initiate ECM for-

mation in vitro

[194–197]

PLGA Can maintain the chondrocyte

phenotype in 2 weeks of in vitro

Initial in vitro culturing is nec-

essary prior to in vivo

implantation

[194–197]

PLA Minimising release of acid as the

result of degradation

Biochemical properties inferior

to native tissue

[198, 199]

Maintaining structural mechani-

cal support for a long time

Low cell adhesive surface

properties

Cartilaginous appearance

PCL High structural integrity in

in vitro culturing

Very low chondrocyte adhesion

and proliferation

[200–202]

PVA Similar water content as natural

cartilage

Dedifferentiate chondrocyte

due to very low mechanical

properties

[203–207]

Has high growth factor loading

capacity

Osteochondral

PEG-ma Photo-crosslinkable, suitable for

cell encapsulation

Lack of mechanical strength for

load-bearing cartilage

[208–210]

Chondrogenesis cells induced

cartilage ECM formation by the

addition of required growth

factors

PEG-da Photo-crosslinkable and suitable

for cartilage regeneration

Lack of cell motif sites [211–215]

Tuneable mechanical and physi-

cal properties to match the req-

uisites for cartilage repair

Can act as a crosslinking agent

for different PEG-based

polymers

OPF Formation of cartilage-like tissue

by using OPF hydrogel for carti-

lage regeneration both in vitro

and in vivo

The lack of cell motif sites

might lead to low

chondrogenesis cell prolifera-

tion and growth

[216–218]

Non-biodegradable properties

of this hydrogel might lead to

unpredictable problems and

unreproducible results
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They include poly(lactic acid) (PLA), poly(glycolic acid) (PGA), poly(lactic-co-
glycolic acid) (PLGA) and poly(ε-caprolactone) (PCL). Based on the position of

methyl group in the lactic acid monomer, there are three stereoisomers of PLA (D

(�), L(+) and D,L). The degree of crystallinity in PLLA is higher than those of

PDLA and PDLLA. All PHE polymers have had the FDA approval for different

biomedical applications [219].

PHEs can be easily processed, and their degradation and mechanical and phys-

ical properties are tuneable over a wide range by changing their molecular weight,

crystallinity and copolymer composition. Their degradation process via a random,

bulk hydrolysis of ester bonds in the polymer chain, however, might induce

premature bulk failure of scaffolds. In addition, the release of acidic degradation

products can cause strong inflammatory responses [220, 221]. These synthetic

polymers degrade to monomeric acids and thereafter to carbon dioxide and water

through de-esterification phase. PGAmolecules are degraded to glycine and PLA to

lactic acid. In vivo, polymeric degradation products are exerted by natural pathways

via respiratory routes and renal filtration [222].

The kinetics of degradation in PHEs are affected by different factors, including

(i) copolymer composition, (ii) molecular weight, (iii) degree of crystallinity,

(iv) polydispersity index, (v) structural morphology (pore size and porosity) and

(vi) distribution of chemically active compounds such as proteins in their structures

[223, 224]. In PLGA scaffolds, for example, the degradation rate strongly depends

on lactic/glycolic monomer ratio and crystallinity of lactic monomer [223]. PHE

scaffolds exhibit two profiles of degradation, surface and bulk degradation. Surface

degradation presents easier diffusion of soluble oligomer and neutralisation of the

carboxylic end groups by surrounding buffer solution in vitro or in vivo. Con-

versely, the degradation rate in bulk is promoted by autocatalysis [225]. Therefore,

PLA with a methyl pending group degrades slower compared to PGA without any

pending group. In addition, the hydrolysis of amorphous polymers such as PDLLA

is faster due to lack of crystalline regions [225].

The mechanical properties of PHEs depend on the molecular weight, micro-

structure and crystallinity of polymers. In general, PGA is more hydrophilic and

rigid, whereas PLA is more flexible (higher elastic modulus) with low degradation

rate. Copolymerisation of these two polymers in different ratios can be used to form

PLGA polymer with optimised mechanical, degradation and water uptake proper-

ties. PLGA has amorphous structure because PLA and PGA are not tightly coupled

and, therefore, it exhibits higher degradation rate compared to both PGA and

PLA [226].

PLA, PLGA and PGA are used for cartilage tissue engineering in the forms of

fibres (electrospun as discussed in Chap. 8) or foamed scaffolds. In vitro and in vivo

studies showed the maintenance of chondrocyte phenotype on PLGA and PGA

scaffolds [194, 197]. But functional cartilage could only be achieved by short-term

in vitro chondrocyte culturing on the scaffolds and then in vivo implantation of

constructs [195, 196]. Electrospun PLA scaffolds have been used for in vitro

cartilage tissue engineering. Chondrocyte maintains its chondrogenic phenotype

after 7 days of culturing on PLA [199]. One-year animal studies using allogeneic
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perichondrial cells [227] and autogenous perichondrial cells [198] on PLA scaffold

showed inconsistent subchondral bone regeneration.

In addition, regenerated tissues have been disadvantaged by inferior biochemical

properties compared to natural cartilage [198]. The limited application of these

types of polymers for cartilage tissue regeneration is due to the poor cell adhesion to

their surface. PLA has been conjugated with monomethoxy poly(ethylene glycol)

(mPEG) to increase its hydrophilicity and cellular adhesive properties [228]. The

compressive modulus of PLA/mPEG polymer, however, decreased significantly

compared to PLA [228].

Poly(ε-caprolactone) or PCL is aliphatic linear polyester, which undergoes

autocatalysed bulk hydrolysis. The degradation process of this biomaterial is slow

due to its semi-crystalline nature and hydrophobicity [229, 230]. The packed

macromolecular arrays retard fluid diffusion into the bulk of hydrophobic PCL.

This polymer is, therefore, used as a long-term implant (e.g. for years) in different

biomedical applications. To increase the degradation rate of this polymer and also

its processability, PCL is copolymerised with different PHEs [229, 230]. The

copolymerisation, however, substantially decreases the mechanical strength of

PCL copolymer and thus limited their applications for cartilage tissue engineering.

In addition, the hydrophobic surface of this synthetic polymer might adversely

affect the cell adhesion and proliferation. To achieve PCL-based scaffolds with

more favourable biological properties, composite scaffolds of PCL and naturally

derived polymers such as PCL with chitosan [231], hyaluronan, fibrin [232] and

elastin [200, 201] have been prepared. In one study PCL porous scaffold has been

fabricated using gas foaming by high pressure CO2 and salt leaching techniques.

Then elastin is impregnated into these pore structures. The in vitro study demon-

strated that chondrocyte cell adhesion and proliferation within the 3D structure of

this PCL/elastin composite scaffold are substantially enhanced compared to neat

PCL [201].

Acidic degradation products of PHEs can cause adverse tissue reactions and

might induce immunoresponsive reactions. To counteract the acidic degradation

process for some of PHEs and also to stabilise the pH of the surrounding environ-

ment, these polymers are combined with basic compounds [223, 224]. Calcium

phosphate compounds and bioactive glasses are the two main additives used for this

purpose. The addition of bioactive glass might also modify the mechanical proper-

ties of scaffolds and promote osteoconductivity of biomaterial. Bioactive glasses

are thus used for bone tissue engineering rather than cartilage regeneration.

One of the major drawbacks of PHEs is their hydrophobicity, which can

adversely affect the cell phenotype, cellular growth and proliferation. Different

techniques, such as surface modification [200, 201], NaOH surface treatment [233]

and ammonia plasma treatment [234], have been attempted to promote

chondrogenesis cell adhesion on the surface of PHE. For instance, coating the

surface of PLLA with chitosan and collagen enhances the cellular adhesion.

However, cell proliferation and differentiation in PLA/collagen scaffold is inhibited

due to blockage of pores.
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Poly(vinyl Alcohol) (PVA)

PVA is hydrophilic biocompatible polymer that can be crosslinked to form hydro-

gel. It is historically used for cartilage regeneration applications [235] and can be

engineered to have similar water uptake properties as native cartilage [203]. PVA

hydrogel can be cut into the required shapes and then transplant into the patient’s
body through an open surgery process. In vitro cell studies on pure PVA hydrogel

showed that low mechanical strength of the construct might lead to dedifferentia-

tion of seeded chondrocyte, and hence further processing is required to increase its

mechanical strength. Poly(lactic-co-glycolic acid) microparticles have been

embedded within PVA hydrogel network, and insulin-like growth factor-1

(IGF-1) has been loaded in the hydrogel, which showed that the sustained release

of IGF-1 can enhance cartilage formation which might lead to effective integration

of the construct with the surrounding tissue [207].

Poly(ethylene Glycol)-Based Polymers

Poly(ethylene glycol) (PEG), also known as poly(oxyethylene) or poly(ethylene

oxide), is one of the most extensively investigated non-biodegradable, synthetic,

hydrophilic polymers for different cartilage tissue engineering applications

[236]. This is due to its hydrophilicity, acceptable cell compatibility and

non-cytotoxicity. PEG can also be easily functionalised with different reactive

end groups. Copolymer of hydrophilic poly(ethylene glycol) (PEG) and different

biodegradable and biocompatible polyesters, such as polylactide (PLA), poly(-

ε-caprolactone) and poly(glycolide) (PGA), have drawn great attention for their

tuneable characteristic parameters [237].

PEG macromer is functionalised with methacrylate (ma) groups to form a photo-

crosslinkable hydrogel, suitable for cartilage tissue engineering [208]. Different

chondrogenesis cell types, including chondrocytes, embryonic stem cells and

MSCs, are encapsulated with PEG-ma hydrogels and induced to form cartilage

tissue in the presence of growth factor [208–210]. Diacrylate (da)-functionalised

macromers of PEG have also been developed for different cartilage tissue engi-

neering applications [211–215]. The lack of cell motif sites within its structure is

the main drawback of this polymer. Due to high activity of PEG-da macromer, it

can be used as a chemical crosslinking agent for different PEG-based

macromers [212].

More biomimetic derivative macromers of PEG have been synthesised by

conjugating collagen-mimetic peptide –(Pro-Hyp-Gly)x– with PEG macromers. In

vitro cell study showed that MSC proliferates and both collagen and proteoglycan

are produced within this hydrogel [238]. In addition, the incorporation of PEG to

chondroitin sulphate-based hydrogels increases the production of cartilage ECM

proteins from MSCs seeded within this hydrogel [239]. PEG can also be

functionalised by the addition of fumarate groups to the macromer using fumaric

acid. Oligo(poly(ethylene glycol) fumarate) (OPF) is the fumarate-functionalised,
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photo-crosslinkable PEG macromer. In a rabbit model with osteochondral defects,

acellular OPF hydrogel has been used, and it is observed that native MSCs migrate

within the 3D structure of these hydrogels to form fibrocartilage at the lesion site.

Encapsulation of external MSCs within the OPF hydrogel structure results in

regeneration of cartilage [218]. Different in vitro and in vivo studies have been

conducted to investigate the capability of OPF hydrogels to deliver different growth

factors to the defected site to promote natural process of cartilage tissue regener-

ation. These studies showed the potential of OPF hydrogels for encapsulation of

different growth factors for cartilage tissue engineering [216, 217]. Tuneable prop-

erties, easy to process and functionalised, hydrophilic and biocompatible properties

of PEG-based hydrogels are the main advantages of this group of biomaterials for

cartilage tissue engineering.

Polyacrylates (PEs)

Poly(2-hydroxyethyl methacrylate) (PHEMA), poly(methyl methacrylate), poly

(ethyl methacrylate) and poly(tetrahydrofurfuryl methacrylate) are the main

polyacrylate-based hydrogels used for cartilage tissue engineering. It has been

attempted to use PHEMA/MMA hydrogel for articular cartilage repair. However,

the regenerated tissue exhibited lower mechanical strength compared to the sur-

rounding native cartilage. Compliance of the fabricated PHEMA/poly(methyl

methacrylate) hydrogel might lead to the formation of fibrocartilage as a result of

implantation of construct in vivo [240]. Sawtell et al. also reported the cartilage

inductive properties of PEMA/poly(tetrahydrofurfuryl methacrylate) hydrogel. In

vitro studies showed the expression of GAG from seeded chondrocytes on this

hydrogel. This results indicated the potential of PEMA/poly(tetrahydrofurfuryl

methacrylate) hydrogel for cartilage repair [241]. Animal studies on this hydrogel

showed the regeneration of hyaline cartilage at the subchondral defected site in

rabbits [242]. The non-biodegradation properties of this group of biomaterials

might lead to some noncontrollable biological behaviour by the cartilaginous

construct after in vivo implantation. This is the main drawback in the application

of these polyacrylate biomaterials for cartilage repair.

14.3.5.2 Naturally Derived Hydrogels

The feasibility of using biopolymers such as protein and polysaccharides for

cartilage tissue engineering has been examined [5, 6]. The presence of cell motif

sites in naturally derived polymer promotes their cellular adhesive properties.

Protein-based hydrogels that have been attempted for cartilage tissue engineering

include collagen, fibrin, silk and elastin-like polypeptides (ELPs). Commonly used

polysaccharides are hyaluronic acid, agarose, alginate and chitosan. The common

methods used for crosslinking these polymers and a summary of their properties are

listed in Table 14.5, while more details are provided in the following discussion.
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Table 14.5 Natural hydrogels for in vitro cartilage tissue engineering

Biomaterial Crosslinking method Comments Refs.

Collagen

types I and

II

Physical/chemical

(mixed with alginate)

glutaraldehyde)

Bioactive, but poor mechanical

properties

[243–249]

Chondrogenesis after 3 days when

mixed with alginate

No cell degeneration after 24 weeks

For physical crosslinking, possible to

incorporate cells and chondrogenesis

biofactors

Chemical crosslinking slightly

increases the mechanical properties,

but there is a risk of cytotoxicity

In vivo cell study with chemically

crosslinked collagen in rabbit model

Might be immunogenic

Fibrin Physical Poor mechanical properties [88, 250–

252]Immunoresponsive effect

Promote natural healing process at the

defected site

Chondrocyte and biofactors can be

incorporated

Silk Physical High mechanical strength, risk of

immunoresponses

[253–256]

Tedious purification required to mini-

mise this risk

Stem cells and chondrocyte

maintained chondrogenic phenotype

Might initiate adverse

immunoresponses

Required complicated purification

process

Alginate Chemical (ion induced) Easy to produce, cost-effective [176, 243,

257–259]Chondrocytes and biofactors can be

incorporated within its structure

Low bioactivity, slow and inconsistent

degradation rate

Low cell adhesive properties

Chitosan Physical/chemical

(genipin and

glutaraldehyde)

Easy to process and functionalised [260–263]

Chondrocyte maintains its phenotype

in this hydrogel

Good cell adhesion and proliferation

Possess low mechanical properties

Chondroitin

sulphate

Physical Inhibit GAG production [259, 264–

268]High cost

(continued)
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Collagen

Collagen type II and type I are used for cartilage repair as these are the key types of

collagens that exist in this organ [243, 273]. Chondrogenesis cells bind to collagen

hydrogel via integrins, which induces chondrogenesis signaling that promotes

cartilage formation. Collagen type II initiates and maintains chondrogenesis phe-

notype of mesenchymal stem cells enhancing the effect of TGF-β1 on cartilage

formation [243]. The main advantage associated with collagen type I is its potential

to spontaneously form hydrogel at physiological temperature and pH. Despite the

fact that collagen type I is only found in the structure of diseased or damaged

cartilage, the studies showed that the articular chondrocyte maintains its phenotype

in collagen type I. Chondrocytes synthesised cartilage ECM component

(e.g. collagen type II and proteoglycan) when using hydrogels fabricated from

collagen type I [248]. Chondrocytes embedded within a collagen type I hydrogel

are used for the treatment of full-thickness articular cartilage defect in small

animals. Moderate regeneration of articular cartilage surface is reported [248]. In

another study, however, it is shown that after 2 weeks of in vitro culture, only 30%

of chondrocytes on collagen type I hydrogel maintained their chondrocytic pheno-

type (spherical shape) [249]. Nevertheless, when using hydrogels from collagen

type II, more than 60% of chondrocytes maintained their spherical shape

[249]. Buma et al. developed a composite hydrogel of collagen types I and II to

further mimic the biochemical properties of natural cartilage. In this approach deep

layer of hydrogel is formed from collagen type I for subchondral recruitment of

stem cells. The more superficial layers of hydrogel, however, are composed of

collagen type II that maintains chondrogenesis phenotype of cells [274]. Results

from the application of collagen type II hydrogels for treatment of osteochondral

defect in rabbit model showed the formation of both hyaline cartilage and the bone

at the defected site. However, the mechanical properties of regenerated tissues are

significantly lower than native tissues [244].

Several strategies have been undertaken to enhance the mechanical strength of

collagen-based hydrogels such as crosslinking [243], mixing collagen with a

synthetic polymer such as PLGA [275], bioactive glass [275] and hydroxyapatite

[276]. For chemical crosslinking of collagen, the amine side group of lysine and

hydroxylysine is chemically bonded with a crosslinking agent. Glutaraldehyde

Table 14.5 (continued)

Biomaterial Crosslinking method Comments Refs.

Elastin-like

polypeptides

Physical/chemical

(glutaraldehyde)

Maintain chondrocyte phenotype [201, 269–

272]Functionalised to form covalent

bonding and crosslinking

Tuneable chemical structure to pro-

mote chondrogenesis

Lack of mechanical strength

High cost
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[245], hexamethylene diisocyanate [277] and 1-ethyl-3-(3-dimethylaminopropyl)

carbodiimide [246] are the examples of crosslinkers [247]. However, the effect of

chemical crosslinking on mechanical properties and degradation of collagen hydro-

gel is trivial [243, 278].

Elastin and Elastin-Like Polypeptides (ELPs)

Elastin is 68 kDa protein comprised of approximately 800 amino acid residues

[279]. It has elasticity and mechanical strength that mimic native cartilage and

ligament tissues [280]. Elastin contains hydrophobic and hydrophilic domains,

which provides crosslinking sites with neighbouring molecules [281]. Application

of elastin in tissue engineering, however, is limited for many years by its extreme

water insolubility [282]. This has been improved by increasing availability of

animal-derived soluble elastin through acidic (α-elastin) [283, 284], alkaline

(k-elastin) [284] and enzymatic hydrolysis of elastin [285, 286]. In addition, a

recently developed recombinant full-length elastin precursor, known as recombi-

nant tropoelastin (rhTE), has been developed suitable for biomedical applications

[285]. It is viable to synthesise elastin-like polypeptides (ELPs) by polymerisation

of pentapeptide motif VPGVG and control physical and functional properties at the

generic or chemical level [279].

Early studies showed the positive effect of elastin in promoting production of

chondrocyte ECM such as collagen type II and proteoglycan in long-term mono-

layer culture of chondrocyte without dedifferentiation [269]. After 10 days of

culturing chondrocyte in thermosensitive ELP solution, its phenotype is maintained

and both collagen type II and GAG are produced [269]. Primary chondrocyte [287]

and adult stem cell [288] have been cultured using coacervated ELP structure for

cartilage tissue engineering. It has been demonstrated that ELP promotes the

differentiation of stem cell that has undergone chondrocytic pathway even in the

absence of any specific chondrocyte growth factor [288]. Elimination of growth

factor significantly reduces the cost of differentiation and cartilage regeneration

[285]. However, the shear moduli of ELP are fourfold lower than that of articular

cartilage. The addition of crosslinking agent is one option to enhance the mechan-

ical strength of ELP [37, 287]. For instance ELP is functionalised with glutamine to

fabricate an enzymatic crosslinking site and create hydrogel [270]. This ELP-based

hydrogel exhibits chondrogenesis behaviour and produces cartilage ECM

proteins [270].

ELP-based biomaterials are chemically crosslinked from their active lysine

group to increase their mechanical properties [289–291]. Lim et al. fabricated

ELP hydrogel by reacting lysine containing ELPs with an organophosphorus

crosslinker, β-[tris(hydroxymethyl)phosphino]propionic acid (THPP) in less than

5 min [289]. Both in vitro and in vivo cell studies confirmed the formation of

cartilage ECM with these hydrogels [289, 290]. The mechanical strength of elastin-

based hydrogel can be enhanced by synthesising this class of molecules with more

14 Challenges for Cartilage Regeneration 417



crosslinking sites. It is also feasible to use naturally derived elastin and mix it with

mechanically stronger tropoelastin to enhance their mechanical properties [292].

Level of crosslinking, formulation, molecular weight and concentration of ELPs

are the important factors that may affect the properties of ELP hydrogel and its

performance for cartilage repair [271]. It is found that the molecular weight of ELPs

has negligible effect on the physiochemical and biological properties of regenerated

cartilage [293]. However, the crosslinking and also mechanical properties of ELP

have significant impact on cartilage regeneration. The human tropoelastin has been

crosslinked with genipin and created a hydrogel with compressive modulus in the

range reported for articular cartilage [272]. This sample is then press-fitted into

osteochondral defect site in a knee joint of rabbit for in vivo studies. Preliminary

results showed no significant inflammation and high level of hyaline articular

cartilage formation.

The high cost of producing elastin by recombinant technology or protein syn-

thesis, immunogenicity of naturally derived elastin and low mechanical properties

are the hurdles for application of elastin for cartilage repair despite its excellent

biological properties.

Fibrin

Fibrin, which is produced by enzymatic cleavage of fibrinogen, is used for cartilage

tissue engineering due to its role in natural wound healing [88, 250]. It promotes

healing process within the extravascular space. Similar to other natural polymers,

products of fibrin degradation are not toxic [250]. Fibrin has been used as a scaffold

to deliver chondrocyte [294], mesenchymal stem cell [295] or growth factors [296]

for cartilage tissue engineering applications. The natural healing process is

optimised by implanting fibrin clot at the defected site [297, 298]. It can, therefore,

promote spreading of endogenous blood over the large volume of the lesion site,

which otherwise would be occupied with a developing haematoma.

Chondrogenesis cells have been incorporated within the network of fibrin hydrogel

to further enhance the healing process [251]. Both in vitro and in vivo results

confirmed the positive impact of incorporated chondrogenesis cells with fibrin clot

for cartilage regeneration [299, 300]. Despite these positive results, due to the low

mechanical strengths and immunoresponsive effect of fibrin, this protein has minimal

potential to be used directly for cartilage tissue engineering [252, 301, 302].

Silk

Silk fibroin is a typical protein that forms the filament of native silkworm. It has a

broad range of applications due to its unique physicochemical properties. Silk

mimics many characteristic properties of cartilage extracellular metrics and has

potential for cartilage repair. These properties include high mechanical strength,

flexibility, low degradation rate and water permeability [254, 303–305]. The
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physically crosslinked silk hydrogel is used for chondrogenesis of bone marrow-

derived mesenchymal stem cells, in which chondrogenic growth factors are used in

culture media [306]. The chondrogenesis of MSCs is further increased by the

incorporation of IGF-1 growth factor to silk hydrogel [307]. In vitro cell study on

silk hydrogel showed great promise for the application of this type of hydrogel for

full-thickness cartilage repair using both chondrocytes and stem cells [308, 309]. A

structural protein blend system based on silkworm, silk fibroin and recombinant

human tropoelastin has also been developed to form a scaffold with high mechan-

ical strength, controllable degradation behaviour and elasticity [310, 311]. These

studies showed human mesenchymal stem cell adhered and proliferated on this

scaffold, exhibiting high potential of this protein blend for cartilage repair.

Care must be taken in purification of silk to remove sericin from fibroin silk to

inhibit adverse immune response at the host tissue. In vivo studies demonstrated

that pure fibroin silk has low immunogenicity and elicits foreign body response.

Limited studies claimed that granuloma might form due to abandoned phagocytic

response to silk by giant body cells and macrophages [256]. Compared with other

biopolymer, however, silk is a desirable natural polymer for cartilage repair.

Chitosan

Chitosan, a positively charged polymer, is a linear polysaccharide that consists of

randomly distributed N-acetyl-D-glucosamine and β-(1,4)-linked-D-glucosamine

units [312]. It has been broadly used for biomedical applications for the low cost,

low toxicity and immunostimulatory effects [260]. Molecular structure of chitosan

resembles glycosaminoglycan, which also presents in the molecular structure of

GAG. It thus interacts with different articular cartilage growth factors, adhesion

proteins and receptors; hence chitosan can stimulate chondrogenesis of cells. In

addition, physicochemical and biological properties of chitosan rely on the activity

of glucosamine residues from acetylation [313], alkylation [314],

carboxymethylation [315] and conjugation of chitosan with methacrylic acid and

lactic acid [316, 317]. These techniques have been used to fulfil the characteristics

of chitosan-based hydrogels for cartilage repair. The mechanical properties of these

chitosan-based hydrogels are increased. Chitosan has been crosslinked with differ-

ent reagents such as glutaraldehyde [318, 319], 1-ethyl-3-(3-dimethylaminopropyl)

carbodiimide hydrochloride [320] and genipin [321–323] to increase its mechanical

properties.

Porous chitosan hydrogel has been produced by gas foaming and lyophilisation

techniques to create porosity in 3D structure and enhance cell proliferation

[261, 321, 324]. For example, Ji et al. simultaneously used gas-foamed and

crosslinked chitosan (using either genipin or glutaraldehyde) under higher pressure

CO2 [321, 326]. These pores allowed the nutrient and oxygen transfer, hence the

proliferation of fibroblast cells in 3D structure of chitosan hydrogel. In another

study, it is demonstrated that chitosan enhances the natural regeneration process of

articular cartilage in the rat joint [325]. Polyelectrolytic complex of chondroitin
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sulphate and chitosan also provides a good mechanical structure for the adhesion

and attachment of chondrocytes and MSC [162, 262]. Chondrocyte cells

maintained their round or polygonal morphology and had undergone modest degree

of mitosis [326]. Chitosan is used to promote cartilage wound healing as an

injectable formulation. As an example, BST-CarGel, a chitosan-based biomaterial,

is commercially available for cartilage regeneration [327, 328]. However, due to

low mechanical strength, neat chitosan cannot be used for the fabrication of 3D

hydrogels for regeneration of full cartilage.

Chondroitin Sulphate

Chondroitin sulphate (CS) is a GAG-based biomaterial composed of a chain of

N-acetylgalactosamine and glucuronic acid [329]. It has been initially used in

articular cartilage repair as a preventive and healing compound [330]. The

in vitro [264, 265] and in vivo [266] studies demonstrated that CS promotes the

metabolic activity of cartilage, preventing cartilage from degeneration in

osteoarthritis.

Controversy results nevertheless reported in the literature for the application of

CS hydrogel for cartilage repair. Many studies provided evidence that CS hydrogel

inhibits the secretion of cartilage ECM such as collagen precursors [331]. In vitro

studies showed that the addition of CS (with concentration of 100 mg/ml) also

reduced GAG content in cartilage ECM in long-term culture despite chondrocyte

viability [332]. In addition, photo-crosslinkable methacrylate derivative of CS

inhibits the synthesis of cartilage ECM compounds [239]. This effect might be

due to the presence of negative charge on the CS hydrogel, which attracts free

cations within the culture medium. This effect increases the osmolarity within the

hydrogel, which has an adverse impact on cell growth within the hydrogel [259].

This issue associated with CS is resolved by using a combination of CS with

other hydrogels. For instance, it is found that chondrocyte maintained its phenotype

and GAG production was not interfered in the mixture of chitosan with CS [267]. In

addition, proteoglycan (related to GAG) production increased in CS-based hydro-

gel that covalently bonded with collagen type I [268]. Chondrocyte proliferated

within this hydrogel and produced proteoglycan. Addition of CS in PEG hydrogel

also improved the expression of chondrogenic gene from chondrocytes, enhancing

the production of cartilage ECM compared to pure PEG hydrogel [333]. Compared

with other biopolymers, CS production cost is high. In addition, its applications

may have negative impact on ECM generation for cartilage repair. These data

illuminate the limited applications of CS and low potential of using this compound

for cartilage repair to date [259].
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Hyaluronan (Hyaluronic Acid)

Hyaluronan (hyaluronic acid, HA) is the primary physiological component of the

articular cartilage matrix [334]. The physical interaction between the molecule

networks of hyaluronan can form extensively long, biodegradable and biocompat-

ible molecules [335]. Theoretically, HA is superior for cartilage repair if it can be

implanted in an unmodified form [336]. However, high degradation rate and poor

mechanical strength are the major hurdles for its direct application in cartilage

repair. The degradation of hyaluronan might lead to chondrolysis under certain

conditions [337]. Different approaches, such as esterification [338] and crosslinking

[335, 339], have been undertaken to improve its properties. However, these

methods showed adverse effect on HA biocompatibility [340].

HA has been used for chondrocyte and stem cell encapsulations to regenerate

cartilage. The in vitro and in vivo studies underlined the feasibility of cell prolif-

eration and synthesis of cartilage ECM in a modified form of HA [341, 342] and as a

cell carrier for chondrocytes [343, 344] or bone marrow-derived stems cells

[345, 346]. Despite all biological and physiochemical issues associated with

hyaluronan, Hyalograft C, a hyaluronic acid-based biomaterial, has been

commercialised for cartilage repair, and it is in clinical trial phase.

Alginate

Alginate is a binary copolymer of (1! 4)-linked β-D-mannuronic acid-co-α-L-
guluronic acid. It can readily form bonds with different divalent metal ions,

including calcium, magnesium and barium. This chemical bonding can be used to

form alginate hydrogels for different biomedical applications, such as cartilage

repair. Superior biological properties, high cell response and low cost are the main

advantages of alginate hydrogels. Alginate is used for different cartilage tissue

engineering applications such as preserving chondrocyte phenotype, organisation

and turnover and differentiation of adipose-derived adult stem cells and bone

marrow-derived stem cells for 3D cell growth [176, 243, 257, 258]. In vitro studies

showed that chondrocytes, seeded within an alginate hydrogel, synthesised high

level of cartilage ECM protein (i.e. collagen type II). The chondrogenesis of cells

can be further promoted by the addition of BMP-2 in the structure of alginate

hydrogel [347].

The effect of alginate hydrogel on chondrogenesis of chondrocytes has also been

studied by comparing the in vitro results from 3D growth in alginate with conven-

tional 2D culture in flask [347], which showed higher expression of collagen type II

from chondrocytes seeded within alginate hydrogel compared to control normal 2D

growth in the presence of IGF-1 and BMP-1 growth factors. Cai et al. showed that

bone marrow-derived mesenchymal stem cells can be well distributed within an

alginate hydrogel [348]. After 2 weeks of in vitro culturing that hydrogel is

implanted into nude mice, the encapsulated bone marrow-derived mesenchymal

stem cells exhibited continued process of induced chondrogenesis in vivo. High
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expression of cartilage extracellular matrix proteins (such as collagen type II and

aggrecan) confirmed that the alginate-based cartilaginous implants are actively

chondrogenic during bone marrow-derived mesenchymal stem cell terminal

differentiation.

The main drawbacks in application of alginate for cartilage repair are lack of cell

motif sites within its structure and also low and unpredictable degradation behav-

iour [259]. The former might lead to a low level of chondrogenesis cell adhesion

that prevents cell proliferation within the 3D structure. In addition, alginate is

negatively charged that inhibits the absorption of proteins to its structure and

interferes with the diffusion of biofactors and proteins. Low cell adhesion and

protein absorption both might lead to decreasing chondrogenesis cell proliferation

within the alginate hydrogels. Previous studies showed that functionalisation of

alginate with arginine–glycine–aspartic acid (RGD) sequence enhances the chon-

drocyte adhesion [349] and thus can address low cell adhesive properties of this

biomaterial.

The slow degradation rate of alginate and its unpredictable profile might have

adverse effect on the application of this polymer for cartilage repair. Bouhadir et al.
addressed this issue by preparing a biodegradable alginate hydrogel using

periodate-oxidised alginate. This polymer is crosslinked with calcium ions and

the hydrogel degraded within 9 days in PBS solution [350]. In vivo application of

this alginate-based hydrogel showed that chondrocyte encapsulated initiated native

cartilage formation at the defected site after 7 days of implantation [350]. The most

challenging issue in application of alginate for cartilage repair is the extraction of

this material from different sources that might have different physicochemical

properties, mechanical strengths and degradation rates [259].

14.3.6 Injectable Hydrogels for In Vivo Cartilage Formation

Injectable hydrogels have been used to deliver chondrogenesis cells or drugs to the

defected site in a minimally invasive manner to decrease patient morbidity upon the

treatment procedure. As shown schematically in Fig. 14.6, a solution that contains a

polymer, cells, drug or any combination of these three is injected to the lesion site.

The polymeric solution is then crosslinked in situ to form a solid structure at the

site. The cells along with the polymeric matrix are surrounded with chondrogenic

biological and mechanical signaling that enhances cartilage regeneration. The

polymeric matrices are usually degraded gradually, while cartilage ECM is

synthesised by chondrogenic cells that are either externally provided or migrated

from subchondral regions. Cartilaginous physiochemical environment and delivery

of chondrogenic cell/drugs in minimally invasive manner are the main advantages

of this technique.

The favourable polymers for injection are those that possess the following

characteristics:
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• Cell adhesive property, biofactor loading capacity and sufficient mechanical

strength

• Adjustable gelation properties to facilitate injectability during surgical operation

and rapid hydrogel formation in the body to inhibit transfer of formulation to

surrounding tissues

• Biocompatibility without toxic chemicals and severe conditions for gelation to

promote cell viability

Different strategies have been attempted for in situ gelation such as redox

polymerisation, photo-polymerisation, Michael addition, Schiff and enzymatic

reactions and physical approaches such as pH induction and thermogelation. The

following sections provide an insight into each of these methods.

14.3.6.1 Chemical Reaction

Chemical stimulus induces in situ gelation of polymeric solution by forming

chemical changes in the molecular structure of precursors or by formation of

covalent bond in polymeric system. The chemical reactions include redox and

photo-polymerisation of acrylate-functionalised macromers, Michael addition,

Schiff reaction scheme and enzymatic reactions. It is critical to select the conditions

that precursors, initiators and catalysts are soluble in aqueous media to develop a

biocompatible formulation [351]. A brief summary of injectable chemical stimuli

Encapsulation of cells in 
polymeric solution 

Hydrogel   formation 
in vivo Tissue formation 

Injectable to 
defected site Biodegradation

Femur

TibiaCartilage 
damaged Site

Arthritic Knee joint

Tibia

Femur

Injectable 
hydrogel with 

cells

Femur

Tibia

Health Knee jointCartilage formation and           
hydrogel degradation

Hydrogel formation in vivo

Cell

Biofactors

Nutrients, Oxygen

Waste, CO2

Fig. 14.6 Schematic overview of cartilage tissue engineering, using injectable hydrogels as cell

carrier
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systems, used for cartilage tissue engineering, is presented in Table 14.6. This

section is focused on the properties, type of cell, gelation and degradation behaviour

and mechanical properties of this class of hydrogels for cartilage repair.

Redox Polymerisation and Photo-Crosslinking

Acrylate- or methacrylate-functionalised macromers are crosslinked by free radi-

cals, produced from redox reaction in an aqueous solution. Two systems have been

used to initiate these reactions that include ammonium persulphate/N,N,

Table 14.6 Different gelation techniques to crosslink injectable hydrogels for cartilage tissue

engineering

Polymer

Gelling

strategy

Gelling

time

Mechanical/degradation

behaviour Refs.

KGM/collagen–PLAa Redox

APS/TEMED

15 min G’¼ 0.87–2.15 MPa [352]

OPF/gelatinb Redox

APS/TEMED

8 min NR [353]

Chitosan (acrylated)a Redox

APS/TEMED

NR Degrade in 18 days in PBS [354]

PEG-da/HAb UV photo-

crosslink

NR NR [355]

PEG-dimethacrylatea UV photo-

crosslink

NR 60–590 kPa [356, 357]

PEG-dimethacrylate/

PDSa
UV photo-

crosslink

NR 40–70 kPa [358]

PLA–PEG–PLA/AESa UV photo-

crosslink

NR 7 kPa–97 kPa by 6 weeks of

culture

[359]

Methacrylated

hyaluronic acidab
Laser photo-

crosslink

NR 5kPa–120 kPa by 6 weeks

of culture

[360, 361]

Methacrylated alginatea UV photo-

crosslink

NR NR [362]

Gelatin-methacrylatea UV photo-

crosslink

30 s 0.5 kPa–10 kPa [363, 364]

Col-PEG with thiolated

PEGb
Michael

addition

30 min 15 kPa–18 kPa [238]

Chitosan–hyaluronic

acidc
Schiff reaction 1–4 min 10 kPa–30 kPa [365]

Hyaluronic acid//H2O2
a Enzymatic

reaction

10–20 s 0.1 kPa–2 kPa [366]

Tyramine chitosan/

HRP/H2O2a
Enzymatic

reaction

NR 1 kPa–5 kPa, 40% mass

loss in 3 weeks

[367]

NR not reported in the reference
achondrocyte
bMSC cell growth
cacellular
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N’N’-tetramethylethylenediamine (APS/TEMED) or APS/L-ascorbic acid

(AA) [352, 368]. APS/TEMED redox initiation system is used to crosslink

collagen-coated PLA micro-carriers in hydrogel precursor of konjac glucomannan

(KGM) for cartilage repair. The composite collagen–PLA/KGM precursor formed

hydrogel at 37 �C in 15 min [352]. In vitro studies showed proliferation of

chondrocyte cells on this in situ formed hydrogel, demonstrating the potential of

this hydrogel for cartilage repair.

In addition, OPF macromer is crosslinked with redox initiation system to form

injectable hydrogels for cartilage regeneration [217, 353]. Park et al. loaded

TGF-β1 growth factor into the structure of OPF hydrogel crosslinked with

PEG-da using redox initiation system of APS/TEMED [353]. In their study the

biological properties of injectable hydrogel were enhanced by addition of gelatin

microspheres that were crosslinked with GA. It is observed that MSCs that are

encapsulated within OPF/gelatin maintained viable and synthesised cartilaginous

ECM proteins [353]. In another study, injectable OPF/gelatin hydrogel is used for

coculture of osteogenic and chondrogenic cells to adjacent subchondral bone

condition [217]. In vitro studies showed the synthesis of GAG, collagen type II

and aggrecan by encapsulated MSC in OPF/gelatin hydrogel. These data suggested

that OPF/gelatin and the developed crosslinking strategy may have potential for

cartilage tissue engineering [217, 353].

In addition to synthetic polymers, such as OPF, naturally derived polymers such

as chitosan are also crosslinked with redox initiation system. Acrylate-

functionalised chitosan hydrogel is crosslinked with redox initiation system of

APS/TEMED and used for cartilage repair [354]. Encapsulated chondrocytes

within this hydrogel maintained their spherical phenotype. The hydrogel is

completely degraded in 8 days, using lysozyme to mimic physiological

environment [354].

Redox polymerisation is considered as a biologically benign process. The

generation of free radical ions, however, might have negative impact on cells,

biofactors and surrounding tissues. The biological consequences of releasing free

radicals are a major concern of using this strategy. Further research is required to be

conducted to fully understand their effects prior to broad applications in cartilage

and other tissue engineering [369].

Different biomaterials are photo-crosslinked under ultraviolet (UV), visible and

laser light sources. Photo-initiators are used to release free radicals to initiate the

crosslinking. Irgacure 2959 and eosin/triethanolamine are the most widely used

photo-initiator in biomedical applications which are FDA approved and commer-

cially available. Both synthetic and naturally derived polymers can be photo-

crosslinked to form hydrogel. Synthetic macromers, such as PEG-da,

PEG-dimethacrylate/star-shaped poly(dimethylsiloxane) methacrylate, methacry-

late end-capped PLA–PEG–PLA, mono-2-(acryloyloxy)-ethyl succinate grafter

poly(vinyl alcohol) and OPF/PEG diacrylate, are photo-crosslinked for biomedical

applications. In addition, naturally derived copolymers, including methacrylated

chondroitin sulphate, methacrylated HA, PLA methacrylated HA, methacrylated
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glycol chitosan, heparin methacrylamide, methacrylated alginate and

methacrylated alginate, are photo-crosslinked to form in situ injectable hydrogels.

PEG is functionalised with methacrylate groups to form photo-crosslinkable

hydrogel, suitable for cartilage tissue engineering. Chondrocyte embedded within

the 3D structure of this hydrogel induces chondrogenic ECM production. Mesen-

chymal stem cell [355] and also embryonic cell [210] are encapsulated in this

photo-crosslinkable hydrogel. By using growth factor (β-TGF), cartilage is formed

in both of these two studies [210, 355, 370]. A solution of PEG-da and HA with

TGF-β3 and Irgacure 2959 is used to deliver MSC in vivo [355]. After subcutane-

ous injection, the skin of mice is exposed to UV light. PEG-da macromers are

photo-crosslinked, leading to formation of in situ hydrogel. The encapsulated MSC

synthesised collagen type II and proteoglycan. This result showed the

chondrogenesis properties of PEG-da/HA injectable hydrogel that can be used for

cartilage regeneration [355]. PEG-dimethacrylate is also photo-crosslinked by UV

radiation [356, 357]. Chondrocyte is encapsulated within this injectable hydrogel,

and upon in situ gelation, GAG and collagen type II are produced.

The compressive modulus of this hydrogel is varied in the range of 60–590 kPa

by changing the concentration of macromer in injectable precursor [356, 357]. The

modulus of hydrogels affects both anabolic and catabolic activity of encapsulated

cells [356, 357]. For instance, GAG is synthesised in softer hydrogel fabricated

from PEG-dimethacrylate, while in hydrogels with a higher mechanical strength,

collagen type II is mainly produced by encapsulated chondrocyte cells. RGD is

incorporated into the 3D structures of PEG-dimethacrylate-based hydrogels to

enhance cell proliferation. PEG-dimethacrylate and star-shaped poly

(dimethylsiloxane) (PDS) methacrylate are crosslinked with acryloyl-PEG-RGD

by photo-polymerisation. The compressive modulus of this hydrogel varies in a

range of 40–70 kPa, depending on the composition of injectable precursor. Despite

favourable biological performance of PEG-based hydrogels,application in cartilage

repair is limited due to the lack of biodegradability [358].

Methacrylated end-capped PLA–PEG–PLA can be photo-crosslinked by

forming IPN hydrogel with mono-2-(acryloyloxy)-ethyl succinate (AES)-grafted

PVA. This IPN hydrogel is fabricated to achieve desirable mechanical, biological

and gelation properties for cartilage tissue engineering [359]. This study showed

that when chondrocytes are encapsulated in this hydrogel, cartilage ECM is formed

within 6-week culture. The entanglement of cartilage ECM within the structure of

hydrogel dramatically enhanced the compressive modulus of construct from 7 to

97 kPa [359].

Naturally derived macromer of chondroitin sulphate, functionalised with meth-

acrylate groups, is synthesised to form hydrogel with UV, using Irgacure 2959 as

photo-initiator [371]. High cell viability is detected for encapsulated chondrocytes

during the in situ gelation. In the presence of suitable enzyme (chondroitinase with

concentration of 0.8 mg/ml), the hydrogel is degraded within 24 h, whereas in the

absence of this enzyme, the hydrogel retains its structure up to 7 days [371]. IPN

hydrogel of methacrylated chondroitin sulphate and PEG-dimethacrylate is also
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formed for cartilage regeneration [239]. The compressive modulus of this hydrogel

is controlled by changing the concentration of polymers [239].

Methacrylated hyaluronic acid is crosslinked using eosin/triethanolamine as

photo-initiator [360]. The crosslinking process is activated using argon laser at

514 nm. Eosin is excited by laser to the triplet state, and then triethanolamine

releases an electron to produce the free radical anion of eosin and radical cation of

ethanolamine. This free radical cation can polymerise methacrylated HA. Laser

beam can reach deep tissue; therefore, it could have more applications for cartilage

tissue engineering compared to visible light and UV [360]. In vitro and in vivo

study confirmed that chondrocyte maintains its spherical phenotype when encap-

sulated within this system [360], and chondrogenic proteins, such as collagen type

II, are synthesised [361]. In vitro studies showed that in 6 weeks, chondrogenesis is

induced in the presence of TGF-β3 using this hydrogel with encapsulated MSC

cells. The formation of cartilage ECM and synthesis of GAG and collagen type II

by MSCs resulted in an increased compressive modulus from 5 kPa to

120 kPa [361].

Alginate is functionalised with methacrylate groups to form photo-crosslinkable

biopolymer. The effect of concentration of Irgacure 2595, the photo-crosslinker

reagent, on the physical properties of this hydrogel is examined, which included

swelling behaviour, compressive modulus and degradation behaviour. After

3 weeks, chondrocyte maintained its spherical phenotype [362]. In addition to

alginate and hyaluronic acid, gelatin-methacrylate (Gel-ma) that creates hydrogel

under UV within 30 s has been attempted for cartilage repair [363]. The compres-

sive modulus of this hydrogel varied from 0.5 to 10 kPa based on the concentration

of polymer [364]. Although adverse biological effect has not been observed in using

the hydrogel formation strategy, the impact of UV radiation for in situ delivery for

non-invasive operation and surrounding tissues is still questionable due to free

radical formation [369].

Michael Addition

Michael addition is the 1,4-addition of nucleophiles to α,β-unsaturated ketones or

esters (electrophiles) [369]. Amine- and thiol-functionalised macromers are the

main nucleophiles, whereas acrylate-, methacrylate- and methacrylamide-

functionalised macromers are the main electrophiles in Michael addition. The

combination of these two in polymer solution is required for in situ gelation

[369]. This reaction scheme is favourable for biomedical applications such as

cartilage repair due to its high gelation efficiency in physiological condition without

any side products. Different combinations of synthetic and naturally derived poly-

mers are used to form in situ gelled systems for cartilage repair, using Michael

addition.

Thiolated hyaluronic acid and PEG vinylsulfone (PEG-VS) macromers are in

situ crosslinked within 14 min, using Michael addition scheme. Encapsulated

chondrocyte maintained their phenotype after 21 days, while this hydrogel is
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degraded within this period. GAG and collagen type II are produced when using

these cell-laden hydrogel underlining their high potential for cartilage repair

[372]. To accelerate the in situ gelation of hyaluronic acid-based hydrogels, poly

(ethylene glycol)-bis-maleimide (PEG-BM) is used. This system exhibited in situ

gelation within approximately 1 min through Michael addition scheme.

Heparin-based hydrogels are formed, using thiolated heparin and Michael addi-

tion scheme [373]. Thiolated heparin and PEG-da are in situ gelled at physiological

condition using Michael addition. This hydrogel promotes the in vitro

re-differentiation of encapsulated dedifferentiated rabbit chondrocytes. In vivo

studies are conducted by transplanting the hydrogel in the subcutaneous dorsum

of mice, which showed the proliferation of chondrocyte in vivo and formation of

cartilage without using any biofactors [373].

Semi-interpenetrated network (SIPN) scaffold is also fabricated by incorporat-

ing in situ gelled heparin-based precursors (thiolated heparin–PEG-da system) and

poly(L-lactide-co-ε-caprolactone) (PLCSL) scaffold. BMP-2 and chondrocytes are

encapsulated within this system and is locally delivered to the defected cartilage

site to promote the formation of calcified fibrocartilaginous transition region. This

hydrogel enhanced the integrity of regenerated cartilage and secured its attachment

to the surrounding tissue [374]. In addition, thiolated gelatin is crosslinked using

PEG-da through Michael addition scheme. The gelation time is in between 3 and

5 min depending on the concentration of macromers in the precursor system. Bone

marrow-derived MSCs are encapsulated within this hydrogel and exhibited a high

level of viability. This system has been used for different cartilage regeneration

applications [375]. More complicated systems are designed by conjugation of

synthetic and naturally derived copolymers to closely tune the gelation, degradation

and mechanical properties of this group of hydrogels.

Collagen-mimetic peptide (Col-P), which contains a GFOGER sequence

(responsible to maintain chondrocyte phenotype), is conjugated with poly(ethylene

glycol) tetraacrylate to form Col-P-co-PEG macromer. This macromer could form

gel in 30 min upon mixing with thiolated PEG in physiological environment (37 �C
and 7.4 pH) [238]. The encapsulated MSCs showed a higher degree of

chondrogenesis compared with the thiolated PEG hydrogel without the addition

of peptide sequence (no conjugation of Col-P). The compressive modulus of

hydrogels is tuned from 15 to 18 kPa by changing the concentration of macromers

within the precursor solution. The softer gel induced a higher degree of

chondrogenesis differentiation of MSCs compared to the stiffer gel [238], due to

a lower mass transfer rate in the latter system.

Schiff Reaction

Schiff-based reaction schemes are based on the chemical reactions between an

amine and aldehyde groups. It is one of the promising schemes in the formation

of in situ gelled hydrogels due to high yield in physiological condition [365].

N-Succinyl-chitosan and aldehyde hyaluronic acid macromers are synthesised and
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chemically conjugated to form an injectable precursor. The in situ gelation time of

this system in physiological environment varied from 1 to 4 min [365]. The

crosslinking density within the macromers affects the mechanical properties within

10 kPa to 30 kPa, and the degradation time varies between 1 and 30 days. In vitro

studies showed that the encapsulated chondrocytes retained their phenotype, when

encapsulated in this hydrogel [365]. Most of the injectable hydrogels, formed with

this reaction scheme, suffered from low mechanical properties. This class of

hydrogels, therefore, is not widely used for cartilage tissue engineering.

Enzymatic Reaction

Enzymes can form new bonds or can cleave specific bonds in a polymer to induce

gelation. Due to the specificity of enzymatic reactions, the other chemical moieties

in polymers are not interfered. Therefore, enzymatic gelation is a rational platform

with low risk of side products. Enzymes such as horseradish peroxidase (HRP)

[376], phosphatase [377], tyrosinase [378], thermolysin [379], α-galactosidase
[380] and esterase [381] have been used to prepare hydrogels through enzymatic

reactions. The gelation occurred by crosslinking polymer networks or by decreasing

the solubility of polymer in aqueous solution2.

HRP is the most widely used enzyme for the preparation of hydrogel for

cartilage tissue regeneration. Tyramine-co-hyaluronic acid (THA) macromer is

synthesised which undergoes instant gelation in the presence of HRP. For in vivo

studies, THA is dissolved in H2O2 and subcutaneously injected into rats, followed

by separate injection of HRP [366]. This polymer instantly formed hydrogel after

the addition of HRP. The gelation time and the mechanical strength of the resulted

hydrogel are controlled by changing the concentration of HRP. The gelation time is

less than 10 s when HRP concentration is from 1.3 to 2.2 unit/ml. This hydrogel

exhibited compressive modulus of 0.1–2 kPa [366].

Chitosan is also functionalised with tyramine groups [367], which are

crosslinked with HRP/H2O2 system to form hydrogel. The compressive modulus

of this hydrogel varies in the range of 1–5 kPa by changing the concentration of

functionalised chitosan from 1 to 2 wt%. In the presence of lysozyme, chitosan

hydrogel is rapidly degraded and loses 60% of its weight after 3 weeks. The

chondrocyte viability in this hydrogel is high and their phenotype is maintained

after 2 weeks of encapsulation [367].

Enzymes are involved in the gelation process. After the formation of gels, the

enzymes act as impurities that might have biological impact on encapsulated cells

and also the host tissue. Additionally, the denaturation of an enzyme in the body

may induce immunogenicity. Due to these reasons, the application of this group of

in situ gelled precursors for cartilage tissue engineering is limited [369].

2Hydrogel is formed through condensation process upon decrease of solubility of polymer in

aqueous solution.
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14.3.6.2 Physically Induced Gelation

Hydrogel can be formed via physical stimulation of polymers to create interaction

between molecules. Thermo- and pH-responsive stimulators are the most common

approach for the fabrication of hydrogels. In physical stimuli, intermolecular

interactions such as van der Waals, hydrogen and covalent bonding result in

phase transition behaviour. Physically induced gelation scheme, therefore, provides

a mild condition for delivery of chondrogenesis cells to the defected site, which

might exhibit low cytotoxicity and enhance cell viability and regenerate cartilage at

the defected site. This section provides an overview for different types of physically

induced gelation systems (pH and thermoresponsive) that have been attempted for

cartilage repair.

pH-Induced Gelation

Changes in pH can induce in situ gelation of polymers. Different synthetic and

naturally derived polymers can be functionalised with carboxylic acid-derived

monomers, such as methacrylic acid (MAA [382, 383] and AA [384–386]), to

synthesise copolymers that can undergo gelation by variation of pH [387]. The

functionalised polymer with MAA and AA exhibited pKa value of approximately

5 and 4.8, respectively [387]. It is, therefore, feasible to incorporate the cells into

the solution, when the pH is below the pKa. The hydrogel is formed by increasing

the pH above this value. However, cells and growth factors tolerate physiological

pH (6–7.5) and cannot maintain viable out of this range for a long period. Care must

be taken in using pH-sensitive hydrogels to ensure having less impact on cell

viability. For this reason, pH-sensitive hydrogels have not been used broadly for

tissue engineering of cartilage.

Thermogelation

Temperature variation has an impact on the molecular conformation of

thermoresponsive polymers. Two types of these polymers are identified, (i) lower

critical solution temperature (LCST) and (ii) upper critical solution temperature

(UCST), shown schematically in Fig. 14.7. In the former, the polymer maintains

miscible only at any temperature below the LCST. In the latter, however, the

opposite phenomenon occurs, in which the polymer is only miscible above the

UCST. Thermogelation is a promising and clean approach for hydrogel formation

and development of an injectable formulation due to the absence of any chemical,

reagent and enzyme that might exhibit an adverse effect on cell viability and

performance. Table 14.7 summarises different thermoresponsive injectable

hydrogels that are synthesised for cartilage regeneration. These injectable systems

are discussed more in depth in this section.
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The polymers that possess LCST below the body fluid are favourable for tissue

engineering. In this case, the biofactors and cells are incorporated into the solution

at low temperature with low risk of denaturation and minimal impact on cell

viability. Poly(N-isopropylacrylamide) (PNIPAAm), Pluronic®, elastin-like poly-

peptides (ELPs), chitosan-derived polymers, functionalised hyaluronic acid and

heparin are the main synthetic and naturally derived polymers used to form

thermoresponsive precursor for cartilage tissue engineering.

The LCST of PNIPAAm (32 �C) is close to physiological temperature (37 �C),
and it can be readily tuned by adding hydrophilic and hydrophobic side chains to its

molecular structure. PNIPAAm is a biocompatible polymer with very high rate of

phase transition behaviour. Therefore, PNIPAAm is the most commonly used

thermoresponsive polymer for tissue engineering applications. PNIPAAm-based

copolymers form gel through coil-to-globe phase transition process [403]. Hydrogel

formations are initiated by increasing the temperature above the LCST of copoly-

mer [404]. For fabrication of biodegradable PNIPAAm-based hydrogels, it is

critical to conjugate hydrophilic moieties, such as acrylic acid or PEG, and a

hydrophobic segment to PNIPAAm-based macromers [387, 388]. The mechanical

properties of PNIPAAm-based copolymers are increased by conjugating hydropho-

bic moieties such as n-alkyl acrylate and poly(lactide) macromers [387]. The

incorporation of hydrophobic macromer resulted in increasing compressive

modulus [387].

Yun et al. synthesised more biocompatible PNIPAAm-based copolymer by the

incorporation of acrylic acid (AAc) segments to PNIPAAm molecule to form P

(NIPAAm-co-AAc). TGF-β3 growth factor is encapsulated within this hydrogel to

promote cartilage formation. In vitro cell study showed that chondrocytes retained

their phenotype after 8 weeks. A solution of precursor, chondrocyte and TGF-β3
growth factor is injected subcutaneously into nude mice and formed gel at the

injected location. After 8 weeks, the regenerated cartilage acquired normal histo-

logical and physiochemical properties [389].
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Fig. 14.7 Schematic illustration of phase transition behaviour for thermosensitive polymers with

upper critical solution temperature (UCST) (a) and lower critical solution temperature (LCST) (b)
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A porous structure of poly(NIPAAm)-based hydrogel is formed by the incorpo-

ration of PLDLA and dextran (conjugation via chemical bonding) to form a

copolymer with LCST at32 �C. The chondrogenic ECM protein, such as collagen

type II, is formed after 4 weeks of encapsulation of chondrocyte within this

hydrogel. To assess the phenotype of chondrocyte after culturing within this

hydrogel, they are detached from the surface by decreasing the temperature from

37 �C to below 32 �C (LCST of hydrogel). The detached chondrocyte exhibited a

round shape which confirmed that its phenotype is maintained during this period.

Poly(NIPAAm)-g-methylcellulose copolymer is also synthesised to form hydro-

gel at 32 �C [391, 392]. ATDC5, a chondrogenic cell line, is encapsulated in this

hydrogel to assess its chondrogenesis properties. The in vitro studies confirmed the

high potential of this injectable hydrogel for cartilage tissue engineering due to the

low degree of cytotoxicity and high cell proliferation within this hydrogel

[391, 392].

Table 14.7 Different thermoresponsive hydrogels for cartilage regeneration

Polymer precursor

Gelling

temperature

Degradation

behaviour

Mechanical

properties Refs.

P(NIPAAm-co-propylacrylic
acid)a

37 �C NR 1 kPa (Comp

Mod)

[387, 388]

P(NIPAAm-propylacrylic

acid-butyl acrylate)a
>37 �C NR 2 kPa (Comp

Mod)

[387, 388]

P(NIPAAm-co-acrylic acid)+ ~37 �C Retain for

8 weeks

NR [389]

P(NIPAAm-PLDLA-dextran)+ 32 �C Retain for

4 weeks

NR [390]

PNIPAAm-g-methylcellulose+ ~32 �C Retain for

4 weeks

NR [391, 392]

DNA-modified ELP+ ~35 �C NR Gd¼ 80 pa [287, 393]

P(NIPAAm-AAc-NAS-

HEMAPLA)b
18 �C–26 �C 85 wt% in

21 days

~0.5 MPa

(Tensile Mod)

[394]

Chitosan/GP+ 37 �C Retain in

3 weeks

NR [395, 396]

Chitosan/GP/starch+ 37� 2 �C 67% loss in

56 days

NR [183]

Chitosan/PPO–PEO+ 25 �C Retained in

28 days

NR [397]

Chitosan/PNIPAAmd <37 �C NR NR [398]

Chitosan/PNIPAAm/HA+ 30 �C NR NR [399]

PEO–PPO–PEO+ 37 �C Fast dissolu-

tion rate

Very weak [400–402]

NR not reported in the study
aAcellular matrix
bchondrocyte
csmooth muscle cells
dMSCs
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Another thermoresponsive hydrogel is produced by the conjugation of chitosan

with PNIPAAm. This copolymer is water soluble with the LCST less than 37 �C
[398]. MSCs are mixed with this copolymer solution and injected for assessing the

application of hydrogel for cartilage tissue engineering. The hydrogel is formed in

the body temperature and promising results were acquired; chondrocytic markers

were produced including GAGs and collagen type II at the injected site [398].

HA is also conjugated with PNIPAAm to form thermoresponsive poly

(NIPAAm-co-HA) hydrogel. Preliminary studies on this hydrogel showed contin-

uous and sustained release of fluorescein isothiocyanate (FITC)-labelled bovine

serum albumin up to 60 h by in vivo subcutaneous injection on the dorsal surface of

rabbit. These data demonstrated the potential of thermosensitive hydrogel for

cartilage tissue engineering [405].

Chitosan/PNIPAAm copolymer is grafted with hyaluronic acid (HA) to further

mimic the properties of natural cartilage ECM. Chitosan/PNIPAAm/HA hydrogel

formed injectable hydrogel above 5 wt% at 30 �C. In vitro cell study with this

hydrogel showed that chondrocyte maintains its morphology and posed a high

degree of proliferation and differentiation [399].

These studies underlined that most of PNIPAAm copolymers conjugated with

natural or synthetic polymers are suitable for chondrogenesis cells to produce

cartilage ECM. They might be favourable systems for developing an injectable

formulation; however, it is still in its infancy, and further research is required to

select a polymer with desirable injection properties, stability, degradation rate and

mechanical strength for regenerating cartilage.

Synthetic and naturally derived polymers, such as block copolymers of ethylene

oxide (PEO) and propylene oxide (PPO), elastin-like polypeptides (ELPs) and

chitosan with thermoresponsive properties, were used to form injectable hydrogels

for cartilage tissue engineering. Block copolymer of silk and elastin peptide

sequence (SELP) were used as acellular therapy for cartilage tissue repair in a

rabbit model of an osteochondral defect [406, 407]. In this study SELP was injected

into the osteochondral defect site on the femoral condyles of rabbit knee and

crosslinked in vivo [407]. SELP hydrogels were also used for cartilage tissue

engineering, using mesenchymal stem cell (MSC). Molecular structure of SELP

copolymer is changed to achieve a thermosensitive copolymer, named SELP-47 K.

This copolymer undergoes gelation at 37 �C. MSCs are encapsulated within SELP-

47 K hydrogel in the presence and absence of chondrogenic TGF-β3 growth factor.
After 28 days, cartilaginous matrix components (sGAG and collagen type II) are

formed by MSC encapsulated in SEL-47 K hydrogel in both cases (in the presence

and absence of TGF-β3) [393]. This result showed that ELP can act as an

engineered bioactive molecule to stimulate chondrogenesis pathway in MSC.

A thermosensitive chitosan-based hydrogel was fabricated, using β-glycerol
phosphate disodium salt (GP) as sol–gel initiator at physiological pH and temper-

ature [395]. GP showed an osteogenic effect when added to bone marrow stromal

cells. In vitro study of chitosan/GP hydrogel showed its capability to deliver an

osteogenic mixture of β-transforming growth factor (β-TGF) and encapsulated

chondrocyte over 3 weeks [396]. The use of chitosan as a cationic polysaccharide
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in this mixture led to the adhesion of hydrogel to tissue surface which normally bear

net anionic characteristic. In addition, chitosan/GP mixed with chondrocyte is used

as cytocompatible space filler [408]. BioSyntech Inc. (Laval, Quebec, Canada)

developed the thermoresponsive (chitosan/GP) solution, which is in clinical trial

for cartilage tissue engineering [409].

The properties of chitosan/GP hydrogel were further improved by the incorpo-

ration of starch to the thermoresponsive mixture [183]. The injectable chitosan/GP/

starch mixture had a gelation temperature of 37� 2 �C. The hydrogel also exhibited
microporous structure with 67% of degradation within 56 days in PBS solution

containing 0.02 mg/ml of lysozyme. Chondrocyte remained its phenotype after

14 days of culturing within this hydrogel [183].

In addition, injectable chitosan-based hydrogel was developed by fabricating

interpenetrating polymeric network of chitosan with other natural polymers such as

alginate and hyaluronate, hyaluronic acid and heparin, which enhanced the produc-

tion of collagen type II and increased the rate of cellular proliferation after 2 weeks

of cell growth [410, 411]. Combining chitosan with other biomaterials, however,

does not necessarily result in favourable effects. For example, the combination of

chitosan with chondroitin sulphate and dermatan sulphates showed adverse effect

on production of collagen type II and morphology of chondrocyte cells [412].

Alternatively, chitosan-based thermosensitive hydrogel is prepared by graft

copolymerisation with Pluronic® (block copolymer based on ethylene oxide and

propylene oxide) (PPO–PEO). This thermosensitive hydrogel (chitosan/PPO–PEO)

is used for cartilage tissue engineering and had sol–gel transition temperature of

25 �C. Chondrocyte proliferation and GAG production are significantly increased

after 28 days by using chitosan/PPO–PEO in situ gelled precursor [397].

Copolymer of hyaluronic acid conjugated with heparin and Pluronic® (block

copolymer based on ethylene oxide and propylene oxide) (PPO–PEO) is

synthesised to form in situ gelled at 37 �C in less than 10 min. TGF-β3 is

successfully loaded within the structure of hydrogel and continuously released

from hydrogel for 20 days. This resulted in formation of cartilage ECM at full-

thickness cartilage defect of rabbit knee [413].

HA is also conjugated with PNIPAAm to form thermosensitive hydrogel p

(NIPAAm-co-HA). Preliminary studies on this hydrogel showed continuous and

sustained release of FITC-labelled bovine serum albumin up to 60 h by in vivo

subcutaneous injection on the dorsal surface of rabbit. This demonstrated the

potential of this thermosensitive hydrogel for cartilage tissue engineering [405].

Therapeutic agents such cartilaginous bioactive compounds as BMP-2 were also

delivered to the cartilage lesion site with a HA-based injectable hydrogels to control

the release of bioactive compounds [414]. These HA-based hydrogels are conju-

gated with a heparin sulphate proteoglycan and are used to deliver BMP-2. The

controlled and slow release of BMP-2 and the presence of proteoglycan within the

structure of this hydrogel had an anabolic influence on articular cartilage in an

osteoarthritis model. The synthesis of proteoglycans and other cartilaginous ECMs

is stimulated upon the injection of this hydrogel at the lesion site [414].

434 F. Dehghani and A. Fathi



14.3.7 Products Approached Clinical Trial for Cartilage
Repair

Current cell-based therapies for cartilage repair fall into three categories: (1) cell or

tissue implementation [415–418], (2) cartilage or bone grafts [419, 420] and

(3) bone marrow stimulation through either abrasion, arthroplasty, Pridie drilling

or microfracture [96, 421, 422]. Promising clinical results have been reported for

most of these treatments [327]. Based on the preferred treatment by the surgeon,

different classes of biomaterials can be selected. The major available products for

cartilage repair are BST-CarGel (e.g. filler in bone marrow stimulation) and

Hyalograft C, CaReS, TruFit, NeoCart, Pluronic and PEG-da-based injectable

hydrogel. A brief summary of these treatments is provided in Table 14.8. This

section aims to provide insight about the properties, type of cell and results of

animal and clinical studies.

14.3.7.1 BST-CarGel

BST-CarGel is developed to stabilise blood clot at the defected site by dispersing

biological adhesive solution at the wound site. This technique involves the use of an

aqueous solution of chitosan in glycerol phosphate buffer at pH 7 [396]. Intrinsic

biocompatible and biodegradable properties of components and neutral pH of this

solution make it biocompatible, biodegradable and adhesive to native tissue. In

surgical applications, BST-CarGel is mixed with blood with a ratio of 1:3 to

generate normal clot with reinforced properties and impede clot retraction.

BST-CarGel is injected (normally with 18-G needle) at the lesion site in liquid

form and solidifies in 10 min [423, 424]. The cationic nature of chitosan increases

the adhesive property of the mixture to cartilage lesion and thus ensures longer clot

residency at the cartilage defected site. This method provides critical blood com-

ponents, red cells and nutrients above the bone marrow wound site (holes or

microfracture) to ensure initiation and activation of tissue regeneration and

repair [327].

Animal studies have been conducted using BST-CarGel [424, 440, 441]. Skele-

tally mature rabbit (8–15 months old) are used to assess the characteristics of

regenerated cartilage after implementation of BST-CarGel. It is observed that

BST-CarGel stimulates the proliferation of stromal cells through the gel towards

the lesion site. Vascularisation within the subchondral bone is also significantly

increased which indicates positive impact for cartilage regeneration. The

BST-CarGel, which is mainly chitosan, is degraded via neutrophil phagocytosis

after approximately 1 month [440].

In another animal study, 3–6-year-old sheep models are used, in which

BST-CarGel is injected in a surgically prepared 1-cm2 condylar and trochlear

defects. The cartilage regeneration in this defected side is compared with a negative

control (microfracture only without any filler) after 6 months of implantation. It is
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observed that there is a high level of adhesion between the BST-CarGel/blood clot,

bone and cartilage. The volume and quality of hyaline cartilage regenerated at the

defected site are also increased. In addition, relatively mature articular cartilage is

observed in the sheep model [424, 441].

Depending on the size and the location of the lesion, there are two approaches

that surgeons can use to implant BST-CarGel: (1) mini-open and (2) arthroscopic

approaches [327] in clinical applications. In the former a mini-arthrotomy is used to

facilitate visualisation of the lesion and delivery of BST-CarGel. Arthroscopic

method is feasible only when the entire lesion site is within arthroscopic field of

view. It is critical to deliver the mixture of BST-CarGel and blood over individual

bone marrow stimulation channels (holes or microfractures) and then over the

remaining lesion. In most of the cases, therefore, incision is required to implant

BST-CarGel at the exact lesion site.

In 2003–2004 Health Canada’s Special Access Program for medical device

assessed the BST-CarGel for cartilage repair in human cases. In this study,

33 patients (22 males and 11 females) are treated with BST-CarGel. The treatment

is carried out on a case-by-case basis, and it is not legally contemplated as a clinical

trial due to the absence of negative control. The outcomes of this study are not

reliable as there is no control on the examination of patients and lesion [327]. For

example, the size of the lesion ranged from 0.5 cm2 to 12 cm2; BST-CarGel is

delivered for 22 patients by arthroscopy and for 11 patients by mini-arthrotomy.

Nevertheless, the treated patients suffered from both traumatic and degenerative

lesions.

It is concluded that BST-CarGel treatment is safe as no complication is observed

from physical examination of 33 patients and their blood tests. TheWestern Ontario

and McMaster (WOMAC) Universities Osteoarthritis Index [328] questionnaires

are administrated preoperatively and postoperatively after 3, 6 and 12 months. After

12 months postoperatively, pain, stiffness and function index value (based on

WOMAC questionnaires) are significantly decreased underlining clinical benefit

of using BST-CarGel [327].

The lesion grade (depth), location, size and status of the opposing chondral

surface are factors that play a critical role in selecting BST-CarGel for cartilage

repair. BST-CarGel has not yet been approved for sale in any country, and further

investigations and clinical trials are still required.

14.3.7.2 Hyalograft C

Hyaluronic acid (HA)-based scaffolds such as Hyaff 11 have been used for cartilage

tissue engineering applications. Hyaff 11 is made of linear derivative of HA

modified by complete esterification of the carboxyl functions of glucuronic acid

with benzyl group [338]. HA-containing scaffolds are biocompatible and support

cell–cell interaction, cluster formation and extracellular matrix production for

cartilage tissue engineering [442]. Hyaff 11 is a 3D fibrous scaffold that is
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fabricated from 20-μm thick fibres that are insoluble in water [338, 443]. This

scaffold undergoes a hydrolysis process, releasing benzyl alcohol and

hyaluronan [427].

Hyalograft C is a tissue engineering graft, comprised of autologous chondrocyte,

grown on Hyaff 11 scaffolds. This product was attempted for treatment of knee

cartilage defects caused by either trauma or osteochondritis diseases in 1999

[429, 444]. In most cases arthroscopic techniques have been used for implantation

of Hyalograft C due to the easy handling properties of Hyaff 11 [445]. Hyalograft C

has been approved by the Food and Drug Administration (FDA) and is successfully

used for the treatment of different articular cartilage defects in more than 3600

patients [428–430].

Several clinical studies are conducted to assess the therapeutic effect of

Hyalograft C for articular cartilage treatment [425, 429, 444]. In one clinical

study, 53 patients (31 males and 22 females) with mean age of 32� 12 years are

contemplated for the treatment with Hyalograft C. The average size of cartilage

defect is 4.4� 1.9 cm2 in these patients who are examined for 7 years. Based on the

cartilage lesion site, either arthroscopic or mini-arthrotomy (medial or lateral

parapatellar arthrotomy) techniques have been used to access the lesion site of

patients. The procedure for the preparation of implant involves several steps. For

enzymatic isolation of autologous chondrocytes, articular cartilage is harvested

from non-weight-bearing area of the knee joint. The chondrocytes are expanded

on conventional monolayer cell culture flasks for 2 weeks and then seeded on Hyaff

11 and cultured for another 2 weeks in vitro. Before the implantation of construct,

the lesion site is debrided, and cartilage defect site is prepared by complete excision

of all nonviable tissues [446]. The defected cartilage site is cleaned to the depth of

2 mm to avoid disrupting the subchondral plate. Subsequently, the knee joint is

drained of fluid to assist graft delivery and visualisation. Afterwards, the implant

with the required size and shape is delivered either with arthroscopic or mini-

arthrotomy implantation. In most of the cases, except for patellar and selected

trochlear lesions, there is no need for open surgery, and the Hyalograft C implant

can be delivered with arthroscopy [425, 428]. Due to the intrinsic adhesive prop-

erties of Hyaff 11, there is no need to use additional fixation devices such as tissue

glues. This approach eradicates the use of inorganic chemicals in implantation,

which promotes the biocompatibility of implants [425]. Hyalograft C provides

required support for in vivo cartilage growth during the rehabilitation procedure,

and it is completely dissolved and degraded after 4 months post implantation [426].

Based on different clinical tests, Hyalograft C autograft can provide excellent

outcome for the repair of deep articular cartilage defects for young and active

patients who suffered from singular defects, with good knee alignment and stable

joint [444, 447–449]. The effect for other patients is questionable, and it appears

that the patients with secondary indications may require further surgeries due to the

continuation of pain and swelling after 6-month to 5-year implantation of

Hyalograft C [444]. Therefore, further follow-up studies are required to determine

the long-term effect of cartilage defect treatment with Hyalograft C.
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14.3.7.3 CaReS

Cartilage Regeneration System (CaReS) is a collagen type I hydrogel, prepared

from rat tail tendon [432]. In this process, chondrocytes are isolated from the

autologous cartilage biopsy specimen. Subsequently, the isolated cells are

suspended in a double-buffered 4-(2-hydroxyethyl)-1-piperazineethanesulfonic

acid (HEPES)3 solution and gently mixed with type I collagen with the volume

ratio of 1:1 (HEPES to collagen). The final mixture (chondrocyte and collagen type

I) is then allowed to form hydrogel when they are incubated at 37 �C. Generally, the
cell-seeded implants are cultured in autologous serum for a period of 10–13 days

[431]. Quality control analysis is conducted to determine cell viability of higher

than 80% and expression of collagen type II for ensuring chondrogenesis from the

seeded cells [431, 432].

The therapeutic effect of clinical treatment with CaReS is studied from 2003 to

2008 on 116 patients (67 males and 49 females) with average age of

32.5� 8.9 years. The patients suffered from cartilage defects as the result of either

trauma degeneration (84 patients) or osteochondritis dissecans (32 patients) with an

average defected size of 5.37� 2.7 cm2 (35 patients with lesion size less than 4 cm2

and 81 above this value) [431]. Chondral defect site is at femoral condyle, patella/

trochlea or tibial plateau sites.

Depending on the cartilage defected site, medial or lateral parapatellar

arthrotomy has been used to access the lesion site [431]. The defected cartilage

site is debrided down to the subchondral bone. The base of the cartilage defect site

is then coated with fibrin glue. After which the CaReS implants (with 1-mm wider

diameter than the defected site) are push-fitted into the trimmed chondral defected

site. Generally, a hydrogel is fabricated with twice the height of the defected

cartilage. It is then fitted into the defected site by squeezing the hydrogels and

removing 50% of its water content.

The functional outcomes of the treatment procedure with CaReS are evaluated

using the International Cartilage Repair Society (ICRS) and the International Knee

Documentation Committee (IKDC) scales. ICRS is a four-level scale, used to

categorise functionality and status of cartilage and pain level, while IKDC is a

subjective knee assessment questionnaire. At mean follow-up time (30.2 months),

IKDC score is significantly ( p< 0.001) improved compared to preoperative con-

dition (from 42.2� 13.8 to 70.5� 18.7). The pain level is also significantly

decreased ( p< 0.001) from 6.7� 2.2 to 3.2� 3.1 from preoperative condition to

latest follow-up time. The IKDC results and pain comprehensive reduction level in

patients demonstrated the benefit of CaReS for the treatments of traumatic or

degenerative articular cartilage defects. During the surgery and in particular the

debridement of the subchondral bone, bone marrow space is opened, which pro-

vides access for chondroprogenitor cells to CaReS hydrogel (culture with autolo-

gous chondrocyte). Therefore, cells can migrate to the defected site and produce

3HEPES is a buffer solution, widely used in vitro cell culturing to maintain neutral pH in media.
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cartilage extracellular matrix. It is suggested that autologous chondrocytes cultured

on CaReS hydrogel are not the exclusive cell source for cartilage formation [431].

14.3.7.4 TruFit

TruFit bone (or cartilage) substitute plugs (Smith & Nephew, Andover, MA) are

cylindrical-shaped scaffolds comprised of PLGA and calcium sulphate that are

mechanically stable [433]. These scaffolds are commercially available with defer-

ent diameters (7, 9 and 11 mm) [434] and are clinically used to promote cartilage

and bone regeneration to restore osteochondral defects [435]. The scaffolds are

designed to degrade within a year after implantation (approximately 9 months)

[73]. They are used for back filling femoral donor site during mosaicplasty or for

primary repair of full-thickness articular cartilage of the femoral condyle lesions

[436]. During the operation, the defected sites are drilled and the plugs (TruFit

scaffolds) inserted into the drilled site. TruFit scaffolds promote cancellous bone

formation due to the presence of osteoinductive calcium sulphate components in its

structure with regeneration of fibrocartilage on the surface [450]. It is claimed that

this material promotes the regeneration of articular cartilage in full-thickness

chondral defect by supporting chondrogenesis cell migration from the surrounding

tissue to the defected site [433]. Different in vitro animal and human studies support

the positive impact of using TruFit plugs for cartilage regeneration.

TruFit implants can be bioabsorbed in vivo within 1 year after implantation to

create space for further regeneration of cartilage ECM [73]. A mini-open surgery at

the defected site is performed to deliver the implant TruFit plugs to the

osteochondral lesion site. The defected site is then shaved, and the edges of the

damaged cartilage are trimmed back to stable healthy location. The scaffolds are

then inserted into the defected site to promote osteochondral tissue regeneration

[433]. Single or multiple holes (based on the decision made by the surgeon to use

single plug or multiple plugs) are drilled with the depth from 8 to 12 mm [437]. It is

critical that the diameter of drilled holes and plugs is matched with the size of the

lesion site. The plug is then filled with implant and surface of implant is adjusted

with healthy cartilage. It is reported that this tamping process might deform the

implant; therefore, a bridge distance of 1–2 mm is contemplated while using

multiple plugs [437]. It is important that the edges of implants are in direct contact

with the surrounding chondral surface to induce normal cartilage regeneration. This

strategy enables natural migration of chondrogenesis cells to the site and thereafter

regeneration of articular cartilage [437].

The functional outcome of treatment with TruFit is assessed with clinical

outcome score (KOOS). The study is conducted on 10 patients (15–50 years old)

with 20% grade III and 80% grade IV cartilage defect and an average lesion size of

2.65 cm2. After 1 year, 80% of patients (8 out of 10) had improvement based on

clinical outcome score (KOOS). The clinical outcomes of the operation for the

other two patients are poor according to the implemented clinical outcome score.

Subsequent monitoring (in 18 months and 24 months) revealed that the clinical
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outcome score of patients is reduced significantly. Pain and inflammation are

increased in patients and joint functionality is significantly decreased. The implants

are removed from 7 patients (7 out of 8). Histological analysis showed the forma-

tion of hyaline cartilage on the implants, but a bony cyst is also formed within the

regenerated cartilage rather than bony restoration [437].

In a recent clinical study, 15 patients with almost similar lesion grade and an

average size of 2 cm2 are treated with TruFit plugs. After 1 year, same as the

previous clinical study, 80% of patients are improved. Three patients out of 15 have

undergone reoperation in less than 1 year. The study is undergoing to evaluate the

efficacy of TruFit in the long term [450].

14.3.7.5 NeoCart

NeoCart implant (Histogenics Corporation, Waltham, Massachusetts) is a 3D

biodegradable bovine collagen type I scaffold. For cartilage tissue engineering

application, NeoCart is seeded with autologous chondrocytes followed by in vitro

cultured in bioreactor to promote cartilage regeneration. The resulting product is a

chondrogenic active implant, which is rich in proteoglycan and glycosaminoglycan

compounds. Preclinical trials and in vitro studies demonstrated that NeoCart

implantation at lesion site leads to hyaline cartilage repair at full-thickness defect

sites. It is proposed that NeoCart can be used for the treatment of full-thickness

(grade III) cartilage lesion of femoral condyle. The treatment process comprised of

five main steps, namely, biopsy, cell isolation, cell expansion, 3D culture in

bioreactor and implantation [438].

Different in vitro and animal studies are performed to investigate the efficacy of

this method for articular cartilage treatment [438]. The development process of

NeoCart commenced from the isolation of chondrocyte cells from biopsy specimen

taken from the patient. For harvesting cells, approximately 200–400 mg of tissue is

taken from non-weight-bearing portion of femoral condyle or from the femoral

notch of the lateral knee. During this process, the subchondral bone is not inter-

fered. The biopsy specimen is then processed in laboratory to isolate chondrocyte

cells. The cells are then seeded on 3D collagen type I hydrogel and culture in

bioreactor. The operation condition, such as hydrostatic pressure, inside the biore-

actor is tuned to stimulate chondrocytes to synthesise cartilage glycoprotein

[439, 451]. After the levels of produced glycosaminoglycan and proteoglycan

approached to a defined value, the scaffolds are removed from the bioreactor and

further cultured in static condition. The average culture time (i.e. dynamic and

static) is 67� 18 days. The cartilage lesion site is then shaved and trimmed before

the implantation of the NeoCart. After this step the implant is cut to fit in the

defected site and implanted by an open surgery. The surgical knee is then

immobilised for 10� 2 days after the surgery [438] followed by a passive range

of motion to strengthen the joint and surrounding muscles. For 6 weeks after

implantation, the surgical knee is non-load bearing with restriction only to rehabil-

itation similar to femoral condyle microstructure and ACI-type protocols.
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The efficacy of NeoCart for the treatment of full-thickness articular cartilage

defect is studied on ten patients with grade III cartilage lesion of femoral condyle

with an average defected size of 2.2 cm2. The patients are in the range of

18–55 years old. In two cases, the implants are damaged due to intraoperative

motion testings and the procedure is not preceded. The other patients had an

isolated grade III chondral injury to the weight-bearing region either in the medial

or lateral condyle. Based on visual analogue scale and pain scores, there are

significant improvements in all 8 patients. The results of average range of motion

evaluation and also knee function assessment with IKDC scale, however, indicated

that 7 out of 8 patients had improvement after operation using this implant [438].

14.3.7.6 Pluronic and PEG-da Systems

Pluronic®4 is a commercially available polymeric system that undergoes physical

crosslinking at physiological temperature (37 �C). This biomaterial is used as an

injectable system for cartilage regeneration. Chondrocyte suspended in pluronic

solution is used for mandibular condylar reconstruction [452]. Pluronic® solution is

advantaged by its mild gelation and favourable biocompatibility properties. How-

ever, the application of pluronic solution in cartilage tissue engineering is limited

due to its very poor mechanical strength, quick dissolution and high permeability

[400]. A combination of Pluronic® with other injectable polymers has been used.

These formulations include Pluronic®/PEG/NIPAAm, Pluronic®/poly(lactic acid/

glycolic acid) (PLGA)[401, 402], Pluronic®/chitosan and Pluronic®/

HAPromising [397].

Pluronic®/HA known as a X-HA is used at articular defect model of full-

thickness defect of rabbit [413]. Adipose-derived stem cells are stimulated to

undergo chondrogenic differentiation, using X-HA hydrogel, loaded with TGF-β.
Copolymer of hyaluronic acid conjugated with heparin and Pluronic ® is

synthesised to form the hydrogel at 37 �C in less than 10 min. TGF-β3 is success-

fully loaded within the structure of this hydrogel and could be released continuously

in 20 days, which promoted cartilage ECM formation at full-thickness cartilage

defect of rabbit knee [413]. Due to superior biological properties of naturally

derived polymers, different protein-based polymers such as elastin-like polypep-

tides are also used for fabrication of hydrogel.

A PEG-da-based injectable hydrogel achieved clinical trial for the treatment of

cartilage defects [453]. This PEG-da-based hydrogel is designed to support carti-

lage matrix production with easy surgical applications. In this approach, to bond the

PEG-da-based hydrogel with the cartilage, chondroitin sulphate adhesive is first

applied to the lesion site, and the joint is filled with polymer solution. The polymer

solution contains 100 mg/ml PEG-da, 5 mg/ml hyaluronic acid and 0.5 mg/ml of

Irgacure as photo-initiator in PBS [453]. A specially designed cone is used to apply

4Pluronic® is triblock copolymer of PEO–PPO–PEO.
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light to the polymer solution to induce the gelation at a constant rate. Fifteen

patients with symptomatic cartilage defects are treated with this injectable hydrogel

after microfracture, and three patients are treated just with microfracture as control.

After 6 months of surgery, no adverse effect is reported and the use of adhesive

photo-crosslinked polymer allowed for greater filling of the defected site [453]. In

addition, the patients who are treated with the injectable hydrogels reported a

decrease in overall pain severity overtime

14.4 Conclusion

Articular cartilage is highly resilient connective tissue with unique mechanical

properties which facilitate the mobility of the human body. The avascular structure

and low metabolic activity of this tissue resulted in limited capability of this tissue

for self-regeneration and repair. Early treatment approaches lead to unpredictable

outcomes which are substantially interrelated with age, gender and physical con-

ditions of patients. Tissue engineering approaches are therefore deemed to be more

efficient for in vitro or in vivo regeneration of cartilage. Clinical studies on the

commercially available biomaterials for cartilage tissue engineering showed that in

the most of cases, the long-term final outcomes are unpredictable. The success rate

in the best cases based on current results is 80% for TruFit and 85% for NeoCart.

Many available treatments involve open surgery for transplantation of implant. The

massive invasion in the joint has adverse impacts on the healing process of surgical

knees. As a result, complicated rehabilitation protocols are generally recommended

to patients after surgeries. The side effects of open surgeries and also not fully

satisfied rehabilitation process in patients result in the failure of many treatment

cases. Additionally, the defected cartilage may include an irregular shape that

cannot be repaired by standard-sized scaffolds. Therefore, less invasive approaches

such as injectable systems for delivery of cartilaginous construct to the defected site

are favoured to tackle the current problems in cartilage tissue engineering. Inject-

able hydrogels have been contemplated as a non-invasive means for cartilage tissue

engineering applicable for regular and irregular shaped cartilage lesions.
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