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Abstract. In a finite undirected graph G = (V,E), a vertex v ∈ V dom-
inates itself and its neighbors in G. A vertex set D ⊆ V is an efficient
dominating set (e.d.s. for short) of G if every v ∈ V is dominated in G by
exactly one vertex of D. The Efficient Domination (ED) problem, which
asks for the existence of an e.d.s. in G, is known to be NP-complete for
P7-free graphs and solvable in polynomial time for P5-free graphs. The
P6-free case was the last open question for the complexity of ED on
F -free graphs.

Recently, Lokshtanov, Pilipczuk and van Leeuwen showed that
weighted ED is solvable in polynomial time for P6-free graphs, based
on their quasi-polynomial algorithm for the Maximum Weight Indepen-
dent Set problem for P6-free graphs. Independently, by a direct app-
roach which is simpler and faster, we found an O(n5m) time solution for
weighted ED on P6-free graphs. Moreover, we showed that weighted ED
is solvable in linear time for P5-free graphs which solves another open
question for the complexity of (weighted) ED.

1 Introduction

Let G = (V,E) be a finite undirected graph without loops and multiple edges;
let |V | = n and |E| = m. A vertex v ∈ V dominates itself and its neighbors.
A vertex subset D ⊆ V is an efficient dominating set (e.d.s. for short) of G if
every vertex of G is dominated by exactly one vertex in D.

The notion of efficient domination was introduced by Biggs [1] under the
name perfect code. Note that not every graph has an e.d.s.; the Efficient Dom-
inating Set (ED) problem asks for the existence of an e.d.s. in a given graph G.
We can assume that G is connected; if not then the ED problem for G can be
splitted into ED for each of its connected components. If a graph G with vertex
weight function w : V → Z ∪ {∞,−∞} and an integer k is given, the Minimum
Weight Efficient Dominating Set (WED) problem asks whether G has an
e.d.s. D of total weight w(D) := Σx∈Dw(x) ≤ k.

As mentioned in [4], the maximization version of WED can be defined analo-
gously, replacing the condition w(D) ≤ k with w(D) ≥ k. Since negative weights
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are allowed, the maximization version of WED is equivalent to its minimization
version; subsequently we restrict the problem to the minimization version WED.
The vertex weight ∞ plays a special role; vertices which are definitely not in any
e.d.s. get weight ∞, and thus, in the WED problem we are asking for an e.d.s.
of finite minimum weight. Let γed(G,w) denote the minimum weight of an e.d.s.
in G. We call a vertex x ∈ V forced if x is contained in every e.d.s. of finite
weight in G.

The importance of the ED problem for graphs mostly results from the fact
that it is a special case of the Exact Cover problem for hypergraphs (prob-
lem [SP2] of [9]); ED is the Exact Cover problem for the closed neighborhood
hypergraph of G.

For a subset U ⊆ V , let G[U ] denote the induced subgraph of G with vertex
set U . For a graph F , a graph G is F -free if G does not contain any induced
subgraph isomorphic to F . Let Pk denote a chordless path with k vertices. F +F ′

denotes the disjoint union of graphs F and F ′; for example, 2P3 denotes P3+P3.
Many papers have studied the complexity of ED on special graph classes - see

e.g. [3–6,12] for references. In particular, a standard reduction from the Exact
Cover problem shows that ED remains NP-complete for 2P3-free (and thus, for
P7-free) chordal graphs. For P6-free graphs, the question whether ED can be
solved in polynomial time was the last open case for F -free graphs [5]; it was
the main open question in [6]. As a first step towards a dichotomy, it was shown
in [3] that for P6-free chordal graphs, WED is solvable in polynomial time.

Recently, it has been shown by Lokshtanov et al. [10] that WED is solvable in
polynomial time for P6-free graphs (the time bound is more than O(n500)). Their
result for WED is based on their quasi-polynomial algorithm for the Maximum
Weight Independent Set problem for P6-free graphs. Independently, in [7] we
found a polynomial time solution for WED on P6-free graphs using a direct
approach which is simpler than the one in [10] and leads to the much better time
bound O(n5m). According to [5], the results of [7,10] finally lead to a dichotomy
for the WED problem on Pk-free graphs and moreover on F -free graphs.

In our approach, we need the following notion: A graph G = (V,E) is unipolar
if there is a partition of V into sets A and B such that G[A] is P3-free (i.e., the
disjoint union of cliques) and G[B] is a complete graph. See e.g. [8,11] for recent
work on unipolar graphs. Note that ED remains NP-complete for unipolar graphs
[8] (which can also be seen by the standard reduction from Exact Cover; there,
every clique in G[A] has only two vertices). Clearly, every unipolar graph is 2P3-
free and thus P7-free. It follows that for each k ≥ 7, WED is NP-complete for
Pk-free unipolar graphs.

The main results of this paper are the following:

1. In Sect. 2, we give a polynomial time reduction of the WED problem for
P6-free graphs to WED for P6-free unipolar graphs.

2. In Sect. 3, we solve WED for P6-free unipolar graphs in polynomial time.
3. In Sect. 4, we describe the polynomial time algorithm for the WED problem

on P6-free graphs. Thus, we obtain a dichotomy for the WED problem on
F -free graphs, and in particular on Pk-free graphs and on Pk-free unipolar
graphs.
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In the full version of this paper, we describe a linear time algorithm for
WED on P5-free graphs based on modular decomposition (see [2] for details);
this answers another open question in [6].

Due to space limitation, most of the proofs and the linear time algorithm for
WED on P5-free graphs cannot be given here.

2 Reducing WED on P6-Free Graphs
to WED on P6-Free Unipolar Graphs

Throughout this section, let G = (V,E) be a connected P6-free graph. Subse-
quently we consider the distance levels of v ∈ V according to the usual approach
which is used already in various papers such as [6]. For v ∈ V , let Ni(v) denote
the i-th distance level of v, that is Ni(v) = {u ∈ V | dG(u, v) = i}. Then, since
G is P6-free, we have Ni(v) = ∅ for each i ≥ 5. If v ∈ D for an e.d.s. D of G
then, by the e.d.s. property, we have

(N1(v) ∪ N2(v)) ∩ D = ∅. (1)

Let Gv := (N2(v)∪N3(v)∪N4(v), Ev) such that N2(v) is turned into a clique
by correspondingly adding edges, i.e., Ev = E′ ∪ F where E′ is the set of the
original edges in G[N2(v)∪N3(v)∪N4(v)] and F is the set of new edges turning
N2(v) into a clique, and let w(x) := ∞ for every x ∈ N2(v). We first claim:

Proposition 1. Gv is P6-free.

Proof. Suppose to the contrary that there is a P6 P in Gv, say with vertices
a, b, c, d, e, f and edges ab, bc, cd, de, ef . If {ab, bc, cd, de, ef} ∩ F = ∅ then P
would be a P6 in G which is a contradiction. Thus, {ab, bc, cd, de, ef} ∩ F �= ∅.
Then clearly, |{ab, bc, cd, de, ef} ∩ F | = 1 since N2(v) is a clique in Gv. Now in
any case, we get a P6 in G by adding N [v] and the corresponding edges in N [v]
and between N1(v) and N2(v) which is a contradiction. �


Obviously, the following holds:

Proposition 2.

(i) For vertex v ∈ V with w(v) < ∞, D is a finite weight e.d.s. in G with v ∈ D
if and only if D \ {v} is a finite weight e.d.s. in Gv.

(ii) Thus, if for every v ∈ V , WED is solvable in time T for Gv then WED is
solvable in time n · T for G.

From now on, let D(v) denote an e.d.s. of finite weight of Gv. We call a vertex
x v-forced if x ∈ D(v) for every e.d.s. D(v) of finite weight of Gv and v-excluded
if x /∈ D(v) for every such e.d.s. D(v) of Gv. Clearly, if x is v-excluded then we
can set w(x) = ∞, e.g., for all x ∈ N2(v), w(x) = ∞ as above.

Let Q1, . . . , Qr denote the connected components of Gv[N3(v) ∪ N4(v)] (i.e.,
of G[N3(v) ∪ N4(v)]). By (1), we have:

For each i ∈ {1, . . . , r}, we have |Qi ∩ D(v)| ≥ 1. (2)
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Clearly, the D(v)-candidates in Qi must have finite weight.
A component Qi is trivial if |Qi| = 1. Obviously, by (2), the vertices of the

trivial components are v-forced.
Clearly, since D(v) is an e.d.s. of finite weight, every x ∈ N2(v) must contact

a component Qi for some i ∈ {1, . . . , r}.

2.1 Join-Reduction

Now we consider a graph G = (A ∪ B,E) such that A1, . . . , Ak are the com-
ponents of G[A], and a vertex weight function w with w(b) = ∞ for all b ∈ B.
Assume that G has an e.d.s. D of finite weight. As above, we can assume that
every component Ai is nontrivial since any trivial component Ai consists of a
forced D-vertex.

By the e.d.s. property of D, we have (analogously to condition (2)):

For every x ∈ B, x 1©Ai for at most one i ∈ {1, . . . , k}. (3)

Thus, from now on, we can assume that every vertex x ∈ B has a join to
at most one component Ai. Moreover, if x 1©Ai for some i ∈ {1, . . . , k} then for
every neighbor y ∈ Aj of x, j �= i, y /∈ D, i.e., we can set w(y) = ∞, and thus,
y /∈ D for any e.d.s. D of finite weight of G.

For any vertex x ∈ B with x 1©Ai for exactly one i ∈ {1, . . . , k}, by the e.d.s.
property of D, |D ∩ Ai| ≥ 2 is impossible. Thus, x is correctly dominated if
|D ∩ Ai| = 1, that is, the D-candidates in Ai are universal for Ai; let Ui denote
the set of universal vertices in Ai (note that Ui is a clique). Clearly, for x 1©Ai

we have:

If Ui = ∅ then Ghas no finite weight e.d.s. (4)

Thus, for every Ai such that there is a vertex x ∈ B with x 1©Ai, we can
reduce Ai to the clique Ui, we can omit x in B, and for every neighbor y ∈ Aj

of x, j �= i, we set w(y) = ∞. The following algorithm is needed twice in this
manuscript:

Join-Reduction Algorithm

Given: A graph G = (A ∪ B,E) such that A1, . . . , Ak are the components of
G[A], and a vertex weight function w with w(b) = ∞ for all b ∈ B.

Task: Reduce G in time O(n3) to an induced subgraph G′ = (A′ ∪ B′, E′) with
weight function w′ and components A′

1, . . . , A
′
k of G[A′] such that we have:

(i) For every b ∈ B′ and every i ∈ {1, . . . , k}, if b contacts (nontrivial) compo-
nent A′

i then b distinguishes A′
i.

(ii) γed(G,w) = γed(G′, w′) < ∞ or state that G has no such e.d.s.
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begin

(a) Determine the sets
Bjoin := {b ∈ B | there is an i ∈ {1, . . . , k} with b 1©Ai} and
Ajoin := {Ai | i ∈ {1, . . . , k} and there is a b ∈ B with b 1©Ai}.

(b) If there is a vertex b ∈ Bjoin and there are i �= j with b 1©Ai and b 1©Aj then
STOP − G does not have an e.d.s. of finite weight.
{From now on, every b ∈ Bjoin has a join to exactly one Ai ∈ Ajoin.}

(c) For all b ∈ Bjoin and Ai ∈ Ajoin such that b 1©Ai do
begin

(c.1) Determine the set Ui of universal vertices in Ai. If Ui = ∅ then STOP − G
does not have an e.d.s. of finite weight else set A′

i := Ui.
(c.2) For every neighbor y ∈ A \ Ai of b, set w′(y) := ∞.
end

(d) For every Ai /∈ Ajoin, set A′
i := Ai, and finally set A′ := A′

1 ∪ . . . ∪ A′
k, B′ :=

B \ Bjoin and G′ := G[A′ ∪ B′].

end

Lemma 1. The Join-Reduction Algorithm is correct and can be done in time
O(n3).

For applying the Join-Reduction Algorithm to Gv, we set B := N2(v) and
A := N3(v) ∪ N4(v). For reducing WED on G to WED on a unipolar graph G′,
this is a first step which, by condition (i) of the Task, leads to the fact that
finally, for every nontrivial component Qj of G[N3(v) ∪ N4(v)], every vertex in
N2(v) which contacts Qj also distinguishes Qj .

2.2 Component-Reduction

Let G′
v = (A′ ∪B′, E′) be the result of applying the Join-Reduction algorithm to

Gv; let B′ be the corresponding subset of N2(v) and let A′ be the corresponding
subset of N3(v) ∪ N4(v). Recall that in G′

v, B′ is a clique. In the next step, we
reduce WED for Gv to WED for unipolar graphs.

We consider the components Qi of G′
v[A′] which are not yet a clique; as

already mentioned, we can assume that if x ∈ B′ has a neighbor in Qi then it
has a neighbor and a non-neighbor in Qi. For 1 ≤ i ≤ r, let Q+

i (x) := Qi ∩N(x)
and Q−

i (x) := Qi \ N(x). Since Qi is connected, we have: If x distinguishes Qi

then it distinguishes an edge in Qi.
For x, x′ ∈ B′ and edges y1z1 in Qi, y2z2 in Qj , i �= j, let xy1 ∈ E, xz1 /∈ E

and x′y2 ∈ E, x′z2 /∈ E. Then, since G and Gv are P6-free, we have:

xy2 ∈ E or xz2 ∈ E or x′y1 ∈ E or x′z1 ∈ E. (5)

Another useful P6-freeness argument is the following:

Forx ∈ B′ and y ∈ Q+
i (x), y does not distinguish any edge inQ−

i (x). (6)
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We claim:

There is a vertex b∗ ∈ B′ which contacts Qi for every i ∈ {1, . . . , r}. (7)

Let q∗ ∈ D(v) be the vertex dominating b∗; without loss of generality assume
that q∗ ∈ Q1, and let D(v, q∗) denote a finite weight e.d.s. of Gv containing q∗.
Q1 is partitioned into

Z := N [q∗] ∩ Q1,
W := Q1 ∩ N(b∗) \ Z, and
Y := Q1 \ (Z ∪ W ).

Then clearly, the following properties hold:

Lemma 2.

(i) Z ∩ D(v, q∗) = {q∗}.
(ii) W ∩ D(v, q∗) = ∅.

(iii) Z 0©Y .
(iv) For every component K of G[Y ], the set of D(v, q∗)-candidate vertices in

K is a clique.

For the algorithmic approach, we set w(y) = ∞ for every y ∈ W and for
every non-universal vertex y ∈ K in any component K of Gv[Y ].

For i ≥ 2, let Q+
i := Qi ∩ N(b∗) and Q−

i := Qi \ N(b∗). Clearly, by the
e.d.s. property, for every i ≥ 2, Q+

i ∩ D(v, q∗) = ∅; set w(y) = ∞ for every y ∈
Q+

i . Thus, the components of G[Q−
i ] must contain the corresponding D(v, q∗)-

vertices.
Again, as in Lemma 2 (iv), for each such component K, the D(v, q∗)-

candidates must be universal vertices for K since by (6), two such D(v, q∗)-
candidates in K would have a common neighbor in Q+

i , i.e., only the universal
vertices of component K are the D(v, q∗)-candidate vertices; set w(y) = ∞ for
every non-universal vertex y ∈ K.

Let I := {a ∈ A′ : w(a) = ∞}. Then I admits a partition {I1, I2, I3} as
defined below:

– I1 is formed by those vertices of I which are either in Z, or in Y , or in Q−
i for

i ≥ 2.
– I2 is formed by those vertices of I which are either in W and contact exactly

one component of G[Y ] or in Q+
i and contact exactly one component of G[Q−

i ]
for i ≥ 2.

– I3 is formed by those vertices of I which are either in W \ I2 or in Q+
i \ I2 for

i ≥ 2.

Note that we have:

(a) By construction and by the e.d.s. property, if I3 �= ∅ then D(v, q∗) does not
exist (in fact each vertex of I3 either would not be dominated by any D(v, q∗)-
candidate or would be dominated by more than one D(v, q∗)-candidate).
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(b) By construction, if D(v, q∗) exists then D(v, q∗) is an e.d.s. of G′
v[(A′ ∪B′)\

(I1 ∪ I2)] as well; in particular, by construction and by (6), each vertex of
I1 ∪ I2 is dominated in G′

v by exactly one vertex of D(v, q∗); then vertices
of I1 ∪ I2 can be removed.

(c) G′
v[(A′ ∪ B′) \ (I1 ∪ I2)] is unipolar (once assuming that I3 = ∅).

Then for every potential D(v)-neighbor q∗ of b∗, we can reduce the WED
problem for G′

v to the WED problem for G′
v(q∗) consisting of B′ and the P3-

free subgraph induced by {q∗} and by the corresponding cliques of universal
vertices in components K as described above with respect to D(v, q∗). Clearly,
the D(v, q∗)-candidates in the cliques of the P3-free subgraph can be chosen
corresponding to optimal weights.

Summarizing, we can do the following:

Component-Reduction Algorithm

Given: The result H = G′
v = (A′ ∪ B′, E′) with vertex weight function w of

applying the Join-Reduction algorithm to Gv such that K1, . . . ,Ks denote the
clique components and Q1, . . . , Qr denote the non-clique components of G′

v[A′].

Task: Reduce H in time O(n3) to (less than n) unipolar graphs H� = G′(q∗)
with weight function w�, 1 ≤ � < n, such that γed(H,w) = min� γed(H�, w�) or
state that H has no e.d.s. of finite weight.

begin

(a) Determine a vertex b∗ ∈ B′ contacting every Qi, i ∈ {1, . . . , r}.
(b) For every q∗ ∈ N(b∗)∩A′ with w(q∗) < ∞, say q∗ ∈ Qi, reduce Qi according

to Lemma 2 and for all j, j �= i, reduce Qj according to the paragraph after
the proof of Lemma 2 such that finally, the resulting subgraph G′(q∗) is
unipolar.

end

Lemma 3. The Component-Reduction Algorithm is correct and can be done in
time O(n3).

Corollary 1. If WED is solvable in polynomial time on P6-free unipolar graphs
then it is solvable in polynomial time on P6-free graphs.

3 Solving WED on P6-Free Unipolar Graphs
in Polynomial Time

Throughout this section, let G = (V,E) be a connected P6-free unipolar graph
with partition V = A ∪ B such that G[A] is the disjoint union of cliques
A1, . . . , Ak, and G[B] is a complete subgraph. Clearly, if k ≤ 3 then every e.d.s. of
G contains at most four vertices. Thus, from now on, we can assume that k ≥ 4.
In particular, for any e.d.s. D of G, |D ∩ B| ≤ 1. Thus, WED for such graphs is
solvable in polynomial time if and only if WED is solvable in polynomial time
for e.d.s. D with B ∩ D = ∅.

Clearly, for a P6-free unipolar graph, the following holds (recall (5)):



Weighted Efficient Domination 45

Claim 1. If for distinct b1, b2 ∈ B, b1 distinguishes an edge x1x2 in Ai and b2
distinguishes an edge y1y2 in Aj, i �= j, then either b2 contacts {x1, x2} or b1
contacts {y1, y2}.

The key result of this section is the following:

Lemma 4. For connected unipolar graphs fulfilling Claim 1, it can be checked
in polynomial time whether G has a finite weight e.d.s. D with B ∩ D = ∅.

Lemma 4 is based on various propositions described subsequently. As a first
step, we again reduce G corresponding to the Join-Reduction Algorithm of
Sect. 2: Since B ∩ D = ∅, clearly, |D ∩ Ai| = 1 for every i ∈ {1, . . . , k}. Thus, if
Ai = {ai} then ai is a forced D-vertex; from now on, we can assume that every
Ai is nontrivial.

Moreover, every b ∈ B must contact at least one Ai, and if b has a join to
two components Ai, Aj , i �= j, then G does not have an e.d.s. Thus, by (3) and
the subsequent paragraph in Sect. 2, from now on, we can assume that no vertex
b ∈ B has a join to any Ai, i.e., if b contacts Ai then it distinguishes Ai.

Again, as by (7), there is a vertex b∗ ∈ B which contacts every Ai. However,
we need a stronger property. For this, we define the following notions:

Definition 1. For vertices b1, b2 ∈ B and a nontrivial component K = Ai of A,
we say:

(i) b2 overtakes b1 for K if b2 distinguishes an edge in K \ N(b1).
(ii) b2 includes b1 for K if N(b2) ∩ K ⊇ N(b1) ∩ K.

(iii) b2 strictly includes b1 for K if N(b2) ∩ K ⊃ N(b1) ∩ K.
(iv) b1 and b2 cover K if N(b1) ∪ N(b2) = K.
(v) b1 → b2 if b2 overtakes b1 for at least three distinct nontrivial components

of A.
(vi) b∗ ∈ B is a good vertex of B if for none of the vertices b ∈ B \{b∗}, b∗ → b

holds.

Assume that G has an e.d.s. D of finite weight.

Claim 2. For vertices b1, b2 ∈ B, we have:

(i) b1 and b2 cover at most two Ai, Aj, i, j ∈ {1, . . . , k}, i �= j.
(ii) If b2 overtakes b1 for Ai then for any Aj, j �= i, b1 does not overtake b2.

(iii) If b2 overtakes b1 for some Ai, Aj, i �= j, then b2 strictly includes b1 for
Ai, Aj.

(iv) If b2 overtakes b1 for some Ai, Aj, i �= j, then b2 includes b1 for all but at
most two A�, 1 ≤ � ≤ k.

(v) If b2 strictly includes b1 for some Ai then b2 includes b1 for all but at most
two A�, 1 ≤ � ≤ k.

Let H = (B,F ) denote the directed graph with vertex set B and edges
b → b′ ∈ F as in Definition 1 (v). Thus, a good vertex of B is one with outdegree 0
with respect to H. As usual, H is a directed acyclic graph (dag for short) if there
is no directed cycle in H.
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Claim 3. H is a dag.

It is well known that any dag has a vertex with outdegree 0. Thus, Claim 3
implies:

Claim 4. There is a good vertex b∗ ∈ B.

Let b∗ be such a good vertex. Then, since by the condition in Lemma4,
B ∩ D = ∅, b∗ must have a D-neighbor a∗ ∈ A ∩ N(b∗) ∩ D; the algorithm tries
all possible vertices in A ∩ N(b∗). Let D(a∗) denote an e.d.s. with a∗ ∈ D(a∗);
without loss of generality, assume that a∗ ∈ A1. Clearly, (A1 \{a∗})∩D(a∗) = ∅.
Without loss of generality, let us assume that A1 = {a∗}. Since a∗ dominates
b∗, each neighbor of b∗ in Ai, i ≥ 2, is not in D(a∗). For i ∈ {2, . . . , k}, let
A′

i := Ai \ N(b∗), and let A′ = {a∗} ∪ A′
2 ∪ . . . ∪ A′

k. Obviously, we have:

(a) For each A′
i, |A′

i ∩ D(a∗)| = 1.
Moreover, as before, we can assume:

(b) For each vertex b ∈ B, b does not have a join to two distinct A′
i, A′

j , i �= j.
(c) If vertex b ∈ B has a join to exactly one A′

i then it does not contact the
remaining components A′

j , j �= i.
Thus, again by (3) and the subsequent paragraph in Sect. 2, from now on,
we can assume that no vertex b ∈ B has a join to any Ai, i.e., if b contacts
Ai then it distinguishes Ai. Next we claim:

(d) At most two distinct components A′
i, A

′
j are distinguished by some vertex

of B \ {b∗}.

Summarizing, by the above, D(a∗) exists if and only if

(i) the above properties hold and
(ii) G[A′ ∪ B] has a (weighted) e.d.s. D(a∗) with B ∩ D(a∗) = ∅.

Checking (i) can be done in polynomial time (actually one should just check
if some of the above properties hold). Checking (ii) can be done in polynomial
time as shown below: For the components of G[A′], let

– C1(A′) be the set of those components of G[A′] which are not distinguished
by any vertex of B, and

– C2(A′) be the set of those components of G[A′] which are distinguished by
some vertex of B.

For each member K of C1(A′), any vertex of K (of minimum weight, for
WED) can be assumed to be the only vertex in D(a∗) ∩ K, without loss of gen-
erality since such vertices form a clique and have respectively the same neighbors
in G[(A′ ∪ B) \ K] (for WED, one can select a vertex of minimum weight).

Concerning C2(A′), we have |C2(A′)| ≤ 2 by property (d). Then the set
{(a∗, a2, . . . , ak) | ai ∈ A′

i, i ∈ {2, . . . , k}} of k-tuples of candidate vertices in
D(a∗) contains O(n2) members by property (d). Thus one can check in polyno-
mial time if D(a∗) exists.
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Algorithm WED for P6-free unipolar graphs

Given: A connected P6-free unipolar graph G = (A ∪ B,E) such that B is a
clique and G[A] is the disjoint union of cliques A1, . . . , Ak.

Task: Determine an e.d.s. of G with minimum finite weight if there is one or
state that G does not have such an e.d.s.

(a) Reduce G to G′ by the Join-Reduction Algorithm. {From now on, we can
assume that for every b ∈ B and every i ∈ {1, . . . , k}, b distinguishes Ai if b
contacts Ai.}

(b) Construct the dag H according to Definition 1 (v), and determine a good
vertex b∗ ∈ B in H.

(c) For every neighbor a∗ ∈ A′ of b∗, determine the O(n2) possible tuples of
D(a∗)-candidates and check whether they are an e.d.s. of finite weight.

(d) Finally, choose an e.d.s. of minimum finite weight or state that G′ does not
have such an e.d.s.

Theorem 1. Algorithm WED for P6-free unipolar graphs is correct and can be
done in time O(n3m).

4 The Algorithm for WED on P6-Free Graphs

By combining the principles described above (and in particular by Corollary 1,
Lemma 4, and Theorem 1) we obtain:

Algorithm WED for P6-free graphs

Given: A P6-free graph G = (V,E).

Task: Determine an e.d.s. of G with minimum finite weight if there is one or
state that G does not have such an e.d.s.
For every v ∈ V do
begin

(a) Determine the distance levels Ni(v), 1 ≤ i ≤ 4.
(b) For Gv as defined in Sect. 2, with B = N2(v) and A = N3(v)∪N4(v), reduce

Gv to G′
v by the Join-Reduction Algorithm. {From now on, we can assume

that for every b ∈ B and every i ∈ {1, . . . , k}, b distinguishes Ai if b contacts
Ai.}

(c) According to the Component-Reduction Algorithm, determine a vertex b∗ ∈
B contacting every component in G[A] which is not a clique, and for every
neighbor q∗ ∈ N(b∗) ∩ A, do:

(c.1) Reduce G′
v to G′(v, q∗) by the Component-Reduction Algorithm. {Now,

G′(v, q∗) is P6-free unipolar.}
(c.2) Carry out the Algorithm WED for P6-free unipolar graphs for input

G′(v, q∗) with its weight function.
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(d) Finally, for every resulting candidate e.d.s., check whether it is indeed a
finite weight e.d.s. of G, choose an e.d.s. of minimum finite weight of G or
state that G does not have such an e.d.s.

end

Theorem 2. Algorithm WED for P6-free graphs is correct and can be done in
time O(n5m).

5 Conclusion

As mentioned, the direct approach for solving WED on P6-free graphs gives a
dichotomy result for the complexity of WED on F -free graphs. In [3], using an
approach via G2, it was shown that WED can be solved in polynomial time for
P6-free chordal graphs, and a conjecture in [3] says that for P6-free graphs with
e.d.s., the square is perfect which would also lead to a polynomial time algorithm
for WED on P6-free graphs but anyway, the time bound of our direct approach
is better than in the case when the conjecture would be true.

Acknowledgments. The first author thanks Martin Milanič for discussions and com-
ments about the WED problem for P5-free graphs and for some subclasses of P6-free
graphs.
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