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Abstract. Fomin and Villanger ([14], STACS 2010) proved that Max-

imum Independent Set, Feedback Vertex Set, and more generally
the problem of finding a maximum induced subgraph of treewith at most
a constant t, can be solved in polynomial time on graph classes with
polynomially many minimal separators. We extend these results in two
directions. Let Gpoly be the class of graphs with at most poly(n) minimal
separators, for some polynomial poly.

We show that the odd powers of a graph G have at most as many
minimal separators as G. Consequently, Distance-d Independent Set,
which consists in finding maximum set of vertices at pairwise distance at
least d, is polynomial on Gpoly, for any even d. The problem is NP-hard
on chordal graphs for any odd d ≥ 3 [12].

We also provide polynomial algorithms for Connected Vertex

Cover and Connected Feedback Vertex Set on subclasses of Gpoly

including chordal and circular-arc graphs, and we discuss variants of
independent domination problems.

1 Introduction

Several natural graph classes are known to have polynomially many minimal
separators, w.r.t. the number n of vertices of the graph. It is the case for chordal
graphs, which have at most n minimal separators [19], weakly chordal, circular-
arc and circle graphs, which have O(n2) minimal separators [4,16].

The property of having polynomially many minimal separators has been used
in algorithms for decades, initially in an ad-hoc manner, i.e., algorithms were
based on minimal separators but also other specific features of particular graph
classes (see, e.g., [3,16]). Later, it was observed that minimal separators are suf-
ficient for solving problems like Treewidth or Minimum fill-in [4,5]. Both
problems are related to minimal triangulations. Given an arbitrary graph G, a
minimal triangulation is a minimal chordal supergraph H of G, on the same
vertex set. Bouchitté and Todinca [4] introduced the notion of potential maxi-
mal clique, that is, a vertex set of G inducing a maximal clique in some minimal
triangulation H of G. Their algorithm for treewidth is based on dynamic pro-
gramming over minimal separators and potential maximal cliques. The same
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authors proved that the number of potential maximal cliques is polynomially
bounded in the number of minimal separators [5].

Fomin and Villanger [14] found a more surprising application of minimal sep-
arators and potential maximal cliques, proving that they were sufficient for solv-
ing problems like Maximum Independent Set, Maximum Induced Forest,
and more generally for finding a maximum induced subgraph G[F ] of treewidth
at most t, where t is a constant.

More formally, let poly be some polynomial. We call Gpoly the family of
graphs such that G ∈ Gpoly if and only if G has at most poly(n) minimal
separators. By [14], the problem of finding a maximum induced subgraph of
treewidth at most t can be solved in polynomial time on Gpoly. The exponent of
the polynomial depends on poly and on t. In [13], Fomin et al. further extend
the technique to compute large induced subgraphs of bounded treewidth, and
satisfying some CMSO property (expressible in counting monadic second-order
logic). That allows to capture problems like Longest induced path. They also
point out some limits of the approach. It is asked in [13] whether the techniques
can be extended for solving the Connected Vertex Cover problem, which
is equivalent to finding a maximum independent set F such that G − F is con-
nected. More generally, their algorithm computes an induced subgraph G[F ] of
treewidth at most t satisfying some CMSO property, but is not able to ensure
any property relating the induced subgraph to the initial graph.

Here we make some progress in this direction. First, we consider the problem
Distance-d Independent Set on Gpoly, where the goal is to find a maximum
independent set F of the input graph G, such that the vertices of F are at
pairwise distance at least d in G (in the literature this problem is also known as
d-Scattered-Set). This is equivalent to finding a maximum independent set in
graph Gd−1, the (d−1)-th power of G. Eto et al. [12] already studied the problem
on chordal graphs, and proved that it is polynomial for every even d, and NP-
hard for any odd d ≥ 3 (it is even W [1]-hard when parameterized by the solution
size). Their positive result is based on the observation that for any even d, if G
is chordal then so is Gd−1. Eto et al. [12] ask if Distance-d Independent Set

is polynomial on chordal bipartite graphs (which are not chordal but weakly
chordal, see Sect. 2), a subclass of Gpoly. We bring a positive answer to their
question for even values d, by a result of combinatorial nature: for any graph
G and any odd k, the graph Gk has no more minimal separators than G (see
Sect. 3). Consequently, Distance-d Independent Set is polynomial on Gpoly,
for any even value d and any polynomial poly, and NP-hard for any odd d ≥ 3
and any poly(n) asymptotically larger than n. Such a dichotomy between odd
and even values also appears when computing large d-clubs, that are induced
subgraphs of diameter at most d [15], and for quite similar reasons.

Second, we consider Connected Vertex Cover, Connected Feedback

Vertex Set and more generally the problem of finding a maximum induced
subgraph G[F ] of treewidth at most t, such that G − F is connected. We show
(Sect. 4) that the problems are polynomially solvable for subclasses of Gpoly, like
chordal and circular-arc graphs. This does not settle the complexity of these
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problems on Gpoly. As we shall discuss in Sect. 5, when restricted to bipartite
graphs in Gpoly, Connected Vertex Cover can be reduced from Red-Blue

Dominating Set (see [10]). It might be that this latter problem is NP-hard
on bipartite graphs of Gpoly; that was our hope, since the very related problem
Independent Dominating Set is NP-hard on chordal bipartite graphs [8],
and on circle graphs [6]. This question is still open, however we will observe that
the Red-Blue Dominating Set is polynomial on the two natural classes of
bipartite graphs with polynomially many minimal separators: chordal bipartite
and circle bipartite graphs.

2 Preliminaries

Let G = (V,E) be a graph. Let distG(u, v) denote the distance between vertices
u and v (the minimum number of edges of a uv-path). We denote by Nk

G[v] the
set of vertices at distance at most k from v. Let also Nk

G(v) = Nk
G[v]\{v}, and we

call these sets the closed and open neighborhoods at distance k of v, respectively.
Similarly, for a set of vertices U ⊆ V , we call the sets Nk

G(U) = ∪u∈UNk
G(u)\ U

and Nk
G[U ] = ∪u∈UNk

G[u] the open and closed neighborhoods at distance k of
U , respectively. For k = 1, we simply denote by NG(U), respectively NG[U ], the
open and closed neighborhoods of U ; the subscript is omitted if clear from the
context.

A clique (resp. independent set) of G is a set of pairwise adjacent (resp. non-
adjacent) vertices. A distance-d independent set is a set of vertices at pairwise
distance at least d. Equivalently, it is an independent set of the (d− 1)-th power
Gd−1 of G. Graph Gk = (V,Ek) is obtained from G by adding an edge between
every pair of vertices at distance at most k.

Given a vertex subset C of G, we denote by G[C] the subgraph induced by
C. We say that C is a connected component of G if G[C] is connected and C
is inclusion-maximal for this property. For S ⊆ V , we simply denote G − S the
graph G[V \ S]. We say that S is a a, b-minimal separator of G if a and b are in
distinct components C and D of G − S, and N(C) = N(D) = S. We also say
that S is a minimal separator if it is an a, b-minimal separator for some pair of
vertices a and b.

Proposition 1 ([2]). Let G = (V,E) be a graph, C be a connected set of vertices,
and let D be a component of G−N [C]. Then N(D) is an a, b-minimal separator
of G, for any a ∈ C and b ∈ D.

2.1 Graph Classes

A graph is chordal if it has no induced cycle with more than three vertices.
A graph G is weakly chordal if G and its complement G have no induced cycle
with more than four vertices.

The classes of circle and circular-arc graphs are defined by their intersection
model. A graph G is a circle graph (resp. a circular-arc graph) if every vertex
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of the graph can be associated to a chord (resp. to an arc) of a circle such
that two vertices are adjacent in G if and only if the corresponding chords
(resp. arcs) intersect. We may assume w.l.o.g. that, in the intersection model,
no two chords (resp. no two arcs) share an endpoint. On the circle, we add
a scanpoint between each two consecutive endpoints of the set of chords (resp.
arcs). A scanline is a line segment between two scanpoints. Given an intersection
model of a circle (resp. circular-arc) graph G, for any minimal separator S of G
there is a scanline such that the vertices of S correspond exactly to the chords
(resp. arcs) intersecting the scanline, see, e.g., [16].

Chordal graphs have at most n minimal separators [19]; weakly chordal, circle
and circular-arc graphs all have O(n2) minimal separators [4,16].

Definition 1. Let poly be some polynomial. We call Gpoly the family of graphs
such that G ∈ Gpoly if and only if G has at most poly(n) minimal separators,
where n = |V (G)|.

2.2 Dynamic Programming over Minimal Triangulations

Let G = (V,E) be an arbitrary graph. A chordal supergraph H = (V,E′) (i.e.,
with E ⊆ E′), is called a triangulation of G. If, moreover, E′ is inclusion-minimal
among all possible triangulations, we say that H is a minimal triangulation of
G.

The treewidth of a chordal graph is its maximum clique size, minus one.
Forests have treewidth 1, and graphs with no edges have treewidth 0. The
treewidth tw(G) of an arbitrary graph G is the minimum treewidth over all
(minimal) triangulations H of G.

Cliques of minimal triangulations play a central role in treewidth. A potential
maximal clique of G is a set of vertices that induces a maximal clique in some
minimal triangulation H of G. By [4], if Ω is a potential maximal clique, then
for every component Ci of G − Ω, its neighborhood Si is a minimal separator.
Moreover, the sets Si are exactly the minimal separators of G contained in Ω.

Proposition 2 ([1,5]). For any polynomial poly, there is a polynomial-time
algorithm enumerating the minimal separators and the potential maximal cliques
of graphs on Gpoly.

Minimal separators and potential maximal cliques have been used for com-
puting treewidth and other parameters related to minimal triangulations, on
Gpoly. Fomin and Villanger [14] extend the techniques to a family of problems:

Proposition 3 ([14]). For any polynomial poly and any constant t, there
is a polynomial algorithm computing a Maximum Induced Subgraph of

Treewidth at most t on Gpoly.

Clearly, Maximum Independent Set (which is equivalent to Minimum

Vertex Cover) and Maximum Induced Forest (which is equivalent to Min-

imum Feedback Vertex Set) fit into this framework: they consist in finding
maximum induced subgraphs G[F ] of treewidth at most 0, respectively at most
1. The first ingredient of [14] is the following observation.
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Proposition 4 ([14]). Let G = (V,E) be a graph, F ⊆ V , and let HF be a
minimal triangulation of G[F ]. There exists a minimal triangulation HG of G
such that HG[F ] = HF . We say that HG respects the minimal triangulation HF

of G[F ].

Note that, for any clique Ω of HG, we have that F ∩ Ω induces a clique in
HF . In particular, if tw(G[F ]) ≤ t and the clique size of HF is at most t + 1,
then every maximal clique of HG intersects F in at most t + 1 vertices.

The second ingredient is a dynamic programming scheme that we describe
below. Let S be a minimal separator of G, and C be a component of G−S such
that N(C) = S. The pair (S,C) is called a block. Let Ω be a potential maximal
clique such that S ⊂ Ω ⊆ S ∪ C. Then (S,C,Ω) is called a good triple. In the
sequel, W denotes a set of at most t + 1 vertices.

Definition 2. Let (S,C) (resp. (S,Ω,C)) be a block (resp. a good triple) and
let W ⊆ S (resp. W ⊆ Ω) be a set of vertices of size at most t + 1. We say
that a vertex set F is a partial solution compatible with (S,C,W ) (resp. with
(S,C,Ω,W )) if:

1. G[F ] is of treewidth at most t,
2. F ⊆ S ∪ C,
3. W = F ∩ S (resp. W = F ∩ Ω),
4. there is a minimal triangulation H of G respecting some minimal triangula-

tion of G[F ] of treewidth at most t, such that S is a minimal separator (resp.
S is a minimal separator and Ω is a maximal clique) of H.

Observe that the two variants of compatibility differ by parameter Ω and the
last two conditions. We denote by α(S,C,W ) (resp. β(S,C,Ω,W )) the size of a
largest partial solution compatible with (S,C,W ) (resp. (S,C,Ω,W )). We now
show how these quantities can be computed over all blocks and all good triples.
The dynamic programming will proceed by increasing size over the blocks (S,C),
the size of the block being |S ∪ C|.

It is based on the following equations (see [13,14] for details and proofs and
Fig. 1 for an illustration).

Base case. It occurs for good triples (S,C,Ω) such that Ω = S ∪C. In this case,
for each subset W of Ω of size at most t + 1,

β(S,C,Ω,W ) = |W |. (1)

Computing α from β. The following equation allows to compute the α values
from β values:

α(S,C,W ) = max
Ω,W ′

β(S,C,Ω,W ′), (2)

where the maximum is taken over all potential maximal cliques Ω such that
(S,C,Ω) is a good triple, and all subsets W ′ of Ω, of size at most t + 1, such
that W = W ′ ∩ S.
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Fig. 1. Computing α form β (left), and β from α (right)

Computing βfrom α. Let (S,C,Ω) be a good triple, and fix an order
C1, C2, . . . , Cp on the connected components of G[C \ Ω]. Let Si = NG(Ci),
for all 1 ≤ i ≤ p. By [4], (Si, Ci) are also blocks of G.

A partial solution F compatible with (S,C,Ω,W ) is obtained as a union of
partial solutions Fi compatible with (Si, Ci,W ∩Si), for each 1 ≤ i ≤ p, and the
set W .

Denote by γi(S,C,Ω,W ) the size of the largest partial solution F compatible1

with (S,C,Ω,W ), contained in Ω ∪ C1 ∪ · · · ∪ Ci (hence F is not allowed to
intersect the components Ci+1 to Cp).

We have the following equations.

γ1(S,C,Ω,W ) = α(S,C,Ω,W ∩ S1) + |W | − |W ∩ S1|. (3)

For all i, 2 ≤ i ≤ p,

γi(S,C,Ω,W ) = γi−1(S,C,Ω,W ) + α(S,C,Ω,W ∩ Si) − |W ∩ Si|. (4)

and finally
β(S,C,Ω,W ) = γp(S,C,Ω,W ). (5)

For convenience we also consider that ∅ is a minimal separator, and (∅, V )
is a block. Then the size of the optimal global solution is simply α(∅, V, ∅). The
algorithm can be adapted to output an optimal solution, not only its size.

3 Powers of Graphs with Polynomially Many Minimal
Separators

Let us prove that for any odd k, Gk has no more minimal separators than G.

Theorem 1. Consider a graph G, an odd number k = 2l + 1 with l ≥ 0, and a
minimal separator S of Gk. Then there exists a minimal separator S of G such
that S = N l

G[S].
1 To be precise, the γ function is not required at this stage, if we only compute largest

induced subgraphs of treewidth at most t. However it becomes necessary when we
request the solution to satisfy additional properties, as it will happen in Sect. 4.
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Proof. The lemma is trivially true if S = ∅. Let a, b ∈ V such that S 
= ∅ is an
a, b-minimal separator in Gk, and call Ca, Cb the components of Gk − S that
contain a and b, respectively. Let us call Da = N l

G[Ca] and Db = N l
G[Cb].

Claim 1: distG(Da,Db) ≥ 2. Suppose that distG(Da,Db) < 2, and pick x ∈
Da, y ∈ Db with distG(x, y) ≤ 1 (notice that possibly x = y). Let xa ∈ Ca and
xb ∈ Cb be such that there exists an xa, x-path and a y, xb -path in G, each
one of length at most l, called Pa and Pb, respectively. This implies that there
must be a xa, xb-path of length at most 2l + 1 = k in G, which means that
{xa, xb} ∈ E(Gk), a contradiction with the fact that S separates Ca from Cb

in Gk.

Claim 2: S̃ = S \ (Da ∪ Db) separates a and b in G. Notice first that NG(Da) ⊆
N l+1

G (Ca) ⊆ S. Suppose that S̃ does not separate a and b, and let P be an a, b-
path in G that does not pass through S̃. Let x1, . . . , xs−2 the internal nodes of
P , where s = |P |, and consider i = max{j | xj ∈ Da ∩ P}. Since P ∩ S̃ = ∅,
necessarily xi+1 ∈ Db, a contradiction with Claim 1.

Claim 3: Da and Db are connected subsets of G. This is straightforward from
the definition of the sets, Da = N l

G[Ca] and Db = N l
G[Cb], and the fact that Ca

and Cb are connected in G.
Let C̃b be the connected component of G − NG[Da] that contains b, and

denote S = NG(C̃b). Note that S ⊆ S̃ ⊂ S. By applying Proposition 1, we have
that S is a minimal a, b-separator in G. Call C̃a the component of G − S that
contains a. Since S ⊆ S̃, we have that Db ⊆ C̃b and Da ⊆ C̃a.

Claim 4: N l
G[S] = S. We first prove that N l

G[S] ⊆ S. By construction, S ⊆
NG(Da). Consequently S ⊆ N l+1

G (Ca)\N l
G(Ca), therefore N l

G[S] ⊆ N2l+1
G (Ca) =

NGk(Ca) = S. Conversely, we must show that every vertex x of S is in N l
G[S].

By contradiction, let x ∈ S \ N l
G[S]. We distinguish two cases : x ∈ C̃a, and

x ∈ S \ C̃a. In the first case, since NGk(Cb) = S, there exists a path from
some vertex y ∈ Cb to x of length at most k, in graph G. Let us call P one
of those y, x-paths. Observe that the first l + 1 vertices of the path belong to
Db ⊆ C̃b, and none of the last l + 1 vertices of the path belongs to S (otherwise
x ∈ N l

G[S]). Then P is a path that connects C̃b with C̃a without passing through
S, a contradiction with the fact that S separates a and b in graph G.

It remains to prove the last case, when x ∈ S \ C̃a. Since NGk(Ca) = S, there
exists a node y ∈ Ca such that there is a y, x-path P of length at most k in G.
Since the first l + 1 vertices of the path belong to Da, and the last l + 1 vertices
of the path do not belong to S, we deduce that P is an y, x-path in G that does
not intersect S. The path can be extended (through Ca) into an a, x-path that
does not intersect S, a contradiction with the fact that x does not belong to C̃a.
This concludes the proof of our theorem. ��

Recall that Distance-d Independent set on G is equivalent to Maximum

Independent Set on Gd−1. Since the latter problem is polynomial on Gpoly by
Proposition 3, we deduce:

Theorem 2. For any even value d, and any polynomial poly, problem
Distance-d Independent set is polynomially solvable on Gpoly.
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We remind that for any odd value d, problem Distance-d Independent

set is NP-hard on chordal graphs [12], thus on Gpoly for any polynomial poly
asymptotically larger than n. The construction of [12] also shows that even
powers of chordal graphs may contain exponentially many minimal separators.

4 On Connected Vertex Cover and Connected Feedback
Vertex Set

Let us consider the problem of finding a maximum induced subgraph G[F ] such
that tw(G[F ]) ≤ t and G−F is connected. One can easily observe that, for t = 0
(resp. t = 1), this problem is equivalent to Connected Vertex Cover (resp.
Connected Feedback Vertex Set), in the sense that if F is an optimal
solution for the former, than V (G) − F is an optimal solution for the latter.

Our goal is to enrich the dynamic programming scheme described in
Subsect. 2.2 in order to ensure the connectivity of G − F . One should think
of this dynamic programming scheme of Subsect. 2.2 as similar to dynamic pro-
gramming algorithms for bounded treewidth. The difference is that the bags
(here, the potential maximal cliques) are not small but polynomially many, and
we parse simultaneously through a set of decompositions. Nevertheless, we can
borrow several classical ideas from treewidth-based algorithms.

In general, for checking some property for the solution F , we add a notion
of characteristics of partial solutions. Then, for a characteristic c, we update
the Definition 2 in order to define partial solutions compatible with (S,C,W, c)
(resp. (S,C,Ω,W, c)), by requesting the partial solution to be compatible
with characteristic c. Parameter c will also appear in the updated version of
Eqs. 1 to 5.

As usual in dynamic programming, the characteristics must satisfy several
properties: (1) we must be able to compute the characteristic for the base case,
(2) the characteristic of a partial solution F obtained from gluing smaller partial
solutions Fi must only depend on the characteristics of Fi, and (3) the char-
acteristic of a global solution should indicate whether it is acceptable or not.
Moreover, for a polynomial algorithm, we need the set of possible characteristics
to be polynomially bounded.

For checking connectivity conditions on G − F , we define the characteristics
of partial solutions in a natural way. Consider a block (S,C) (resp. a good triple
(S,C,Ω)) and a subset W of S (resp. of Ω). Let F be a partial solution com-
patible with (S,C,W ) (resp. (S,C,Ω,W )), see Definition 2. The characteristic
c of F for (S,C,W ) (resp. for (S,C,Ω,W )) is defined as the partition induced
on S \ W (resp. on Ω \ W ) by the connected components of G[S ∪ C] − F . More
formally, let D1, . . . , Dq denote the connected components of G[S ∪ C] − F , and
let Pj = Dj ∩S (resp. Pj = Dj ∩Ω), for all 1 ≤ j ≤ q. Then c = {P1, . . . , Pq}. We
decide that if S 
= ∅, partial solutions F having some component Dj that does
not intersect S (resp. Ω) are immediately rejected; indeed, for any extension F ′

of F , the graph G − F ′ remains disconnected. Hence we may assume that all
sets Pj are non-empty.
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We say that a partial solution F is compatible with (S,C,W, c) (resp. with
(S,C,Ω,W, c)) if it satisfies the conditions of Definition 2, and c is the charac-
teristic of F for (S,C,W ) (resp. for (S,C,Ω,W )).

We also define functions α(S,C,W, c), β(S,C,Ω,W, c) and γi(S,C,Ω,W, c)
like in Subsect. 2.2, as the maximum size of partial solutions F compatible with
the parameters. For further details refer to [17].

In general, the number of characteristics may be exponential. Nevertheless,
there are classes of graphs with the property that each minimal separator S and
each potential maximal clique Ω can be partitioned into at most a constant num-
ber of cliques. With this constraint, the number of characteristics is polynomial
(even constant, for any given triple (S,C,W ) or quadruple (S,C,Ω,W )).

This is the case for chordal graphs, where each minimal separator and each
potential maximal clique induces a clique in G.

It is also the case for circular-arc graphs. Recall that each minimal separator
corresponds to the set of arcs intersecting a pair of scanpoints [16]. Moreover,
by [4,16], each potential maximal clique corresponds to the set of arcs intersect-
ing a triple of scanpoints. Since arcs intersecting a given scanpoint form a clique,
we have that each minimal separator can be partitioned into two cliques, and
each potential maximal clique can be partitioned into three cliques.

We deduce:

Theorem 3. On chordal and circular-arc graphs, problems Connected Ver-

tex Cover and Connected Feedback Vertex Set are solvable in poly-
nomial time. More generally, one can compute in polynomial time a maximum
vertex subset F such that G[F ] is of treewidth at most t and G−F is connected.

Note that Escoffier et al. [11] already observed that Connected Vertex

Cover is polynomial for chordal graphs.

5 Independent Dominating Set and Variants

The Independent Dominating Set problem consists in finding a minimum
independent set F of G such that F dominates G. Hence the solution F induces
a graph of treewidth 0 and it is natural to ask if similar techniques work in
this case. The fact that we have a minimization problem is not a difficulty: the
general dynamic programming scheme applies in this case, and for any weighted
problem with polynomially bounded weights, including negative ones [13,14].

Independent Dominating Set is known to be NP-complete in chordal
bipartite graphs [8] and in circle graphs [6]. Therefore, it is NP-hard on Gpoly for
some polynomials poly. But, again, we can use our scheme in the case of circular-
arc graphs, for this problem or any problem of the type minimum dominating
induced subgraph of treewidth at most a constant t.

Let (S,C) be a block an let F ⊆ S ∪C be a partial solution compatible with
(S,C,W ) for some W ⊆ S of size at most t + 1 (in the sense of Definition 2).
The natural way for defining the characteristic of F is to specify which vertices
of S are dominated by F and which are not (we already know that F ∩S = W ).
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It is thus enough to memorize which vertices of S are dominated by F ∩ C. In
circular-arc graphs, this information can be encoded using a polynomial number
of characteristics. Indeed, a minimal separator S corresponds to arcs intersecting
a scanline, between two scanpoints p1 and p2 of some intersection model of G.
Moreover (see [16]), the vertices of component C correspond to the arcs situated
on one of the sides of the scanline. Let s11, s

1
2, . . . , s

1
l1

be the arcs of the model
containing scanpoint p1, ordered by increasing intersection with the side of p1p2
corresponding to C. Simply observe that if F ∩ C dominates vertex s1i , it also
dominates all vertices s1j with j > i. Therefore we only have to store the vertex
s1min1

dominated by F ∩ C which has a minimum intersection with the side of
the scanline corresponding to component C, and proceed similarly for the arcs of
S containing scanpoint p2. These two vertices of S will define the characteristic
of F , and they suffice to identify all vertices of S dominated by F ∩ C.

These characteristics can be used to compute a minimum dominating induced
subgraph of treewidth at most t, for circular-arc graphs, in polynomial time. We
will not show, in details, how to do it, since the technique is quite classical.
Problem Independent Dominating Set is already known to be polynomial
for this class [7,20]. The algorithm of Vatshelle [20] is more general, based on
parameters called boolean-width and MIM-width, which are small (O(log n) for
the former, constant for the latter) on circular-arc graphs and also other graph
classes. Another problem of similar flavor, combining domination and indepen-
dence, is Red-Blue Dominating Set. In this problem we are given a bipartite
graph G = (R,B,E) with red and blue vertices, and an integer k, and the goal
is to find a set of at most k blue vertices dominating all the red ones. Red-

Blue Dominating Set can be reduced to Connected Vertex Cover as
follows [10]. Let G′ be the graph obtained from G = (R,B,E) by adding a new
vertex u adjacent to all vertices of B and then, for each v ∈ R ∪ {u}, a pendant
vertex v′ adjacent only to v. Then G has a red-blue dominating set of size at
most k if and only if G′ has a connected vertex cover of size at most k + |B|+1.
Indeed any minimum connected vertex cover of G′ must contain u, R, and a
subset of B dominating R. It is not hard to prove that this reduction increases
the number of minimal separators by at most O(n).

Therefore, if Red-Blue Dominating Set is NP-hard on (bipartite) Gpoly

for some poly, so is Connected Vertex Cover. There are two natural, well-
studied classes of bipartite graphs with polynomial number of minimal separa-
tors, and it turns out that Red-Blue Dominating Set is polynomial for both.
One is the class of chordal bipartite graphs (which are actually defined as the
bipartite, weakly chordal graphs). For this class, Red-Blue Dominating Set

is polynomial by [8]. Reference [8] considers the total domination problem for
the class, but the approach is based on red-blue domination.

The second natural class is the class of circle bipartite graphs, i.e., bipartite
graphs that are also circle graphs. They have an elegant characterization estab-
lished by de Fraysseix [9]. Let H = (V,E) be a planar multigraph, and partition
its edge set into two parts ER and EB such that T = (V,ER) is a spanning tree
of H. Let B(H,ER) = (ER, EB , E′) be the bipartite graph defined as follows:
ER is the set of red vertices, EB is the set of blue vertices, and eR ∈ ER is
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adjacent to eB ∈ EB if the unique cycle obtained from the spanning tree T by
adding eB contains the edge eR. We say that B(H,ER) is a fundamental graph
of H. By [9], a graph is circle bipartite if and only if it is the fundamental graph
B(H,ER) of a planar multigraph H.

Consider now the Tree augmentation problem that consists in finding,
on input G and a spanning tree T of G, a minimum set of edges D ⊆ E(G) −
E(T ) such that each edge in E(T ) is contained in at least one cycle of G′ =
(V,E(T ) ∪ D). In [18] is shown that Tree augmentation is polynomial when
the input graph is planar. Is direct to see that a set S ⊆ EB is a solution of the
Tree augmentation problem on input H = (V,ER ∪ EB) and T = (V,ER),
if and only if S is a solution of Red-Blue Dominating Set on input B(H) =
(ER, EB , E′). This observation, together with [9] and [18], imply that Red-Blue

Dominating Set is polynomial in circle bipartite graphs.

6 Discussion

We showed how the dynamic programming scheme of [13,14] can be extended
for other optimization problems, on subclasses of Gpoly. Note that the algorithm
of [13] allows to find in polynomial time, on Gpoly, a maximum (weight) subgraph
G[F ] of treewidth at most t, satisfying some property expressible in CMSO.
It also handles annotated versions, where the vertices/edges of G[F ] must be
selected from a prescribed set.

We have seen that Distance-d Independent Set can be solved in polyno-
mial time on Gpoly for any even d. This also holds for the more general problem
of finding an induced subgraph G[F ] whose components are at pairwise distance
at least d, and such that each component is isomorphic to a graph in a fixed
family. E.g., each component could be an edge, to have a variant of Maximum

Induced Matching where edges should be at pairwise distance at least d. For
this we need to solve the corresponding problem on Gd−1, using only edges from
G, as in [13].

When seeking for maximum (resp. minimum) induced subgraphs G[F ] of
treewidth at most t such that G − F is connected (resp. F dominates G) on
particular subclasses of Gpoly, we can add any CMSO condition on G[F ]. It is
not unlikely that the techniques can be extended to other classes than circular-
arc graphs (and chordal graphs, for connectivity constraints).

We also believe that the interplay between graphs of bounded MIM-width [20]
and Gpoly deserves to be studied. None of the classes contains the other, but
several natural graph classes are in their intersection, and they are both somehow
related to induced matchings.

We leave as open problems the complexity of Connected Vertex Cover

and Connected Feedback Vertex set in weakly chordal graphs, and on
Gpoly. We have examples showing that, even for weakly chordal graphs, the
natural set of characteristics that we used in Sect. 4 is not polynomially bounded.

Acknowledgements. We thank Iyad Kanj for fruitful discussions on the subject.
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5. Bouchitté, V., Todinca, I.: Listing all potential maximal cliques of a graph. Theor.
Comput. Sci. 276(1–2), 17–32 (2002)
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