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Preface

The 42nd International Workshop on Graph-Theoretic Concepts in Computer Science
(WG 2016) took place in Istanbul, Turkey, on the south campus of Boğaziçi University
during June 22–24, 2016. This volume contains the papers presented at the conference.

The WG conference series has a long tradition. Since 1975, it has taken place 23
times in Germany, four times in The Netherlands, three times in France, twice in Austria
and the Czech Republic, as well as once in Greece, Israel, Italy, Norway, Slovakia,
Switzerland, Turkey, and the UK. The WG conferences aim to connect theory and
practice by demonstrating how graph-theoretic concepts can be applied to various areas
of computer science and by extracting new graph problems from applications. Their goal
is to present new research results and to identify and explore directions of future
research.

WG 2016 received 74 submissions. Each submission was carefully reviewed by at
least three members of the Program Committee. The Program Committee accepted
25 papers for presentation at WG 2016. The WG 2016 Best Paper Award was given to
Emile Ziedan, Deepak Rajendraprasad, Rogers Mathew, Martin Charles Golumbic, and
Jeremie Dusart for their paper on “Induced Separation Dimension”. The WG 2016 Best
Student Paper Award was given to Linda Kleist for her paper on “Drawing Planar
Graphs with Prescribed Face Areas”. The program included three inspiring invited
talks: Saket Saurabh gave a talk on “Lossy Kernelization”, Kavitha Telikepalli on
“Popular Matchings”, and Dominique de Werra on “Minimal Reinforcement of Edges:
A Problem of Reliability in Graphs”.

I would like to thank the authors of all the papers submitted for possible presentation
at WG 2016, the speakers of the 25 talks presenting the accepted papers, the three
invited speakers, the members of the Program Committee, and the external reviewers.
Special thanks to the local Organizing Committee at Boğaziçi University; their out-
standing performance made WG 2016 a great success.

WG 2016 is grateful to the Research Council of Norway for financial support; the
University of Bergen, Norway, for financial and administrative support; Boğaziçi
University, Turkey, for administrative and practical support; and Springer, Germany,
for funding the Best Paper Award. The work of the Program Committee was conducted
and the proceedings were prepared using the EasyChair conference management sys-
tem, which provided an excellent working environment.

August 2016 Pinar Heggernes
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Sequences of Radius k for Complete
Bipartite Graphs

Micha�l D ↪ebski1, Zbigniew Lonc2, and Pawe�l Rz ↪ażewski2(B)

1 Faculty of Mathematics, Informatics and Mechanics,
University of Warsaw, Warsaw, Poland

michal.debski87@gmail.com
2 Faculty of Mathematics and Information Science,
Warsaw University of Technology, Warsaw, Poland

{zblonc,p.rzazewski}@mini.pw.edu.pl

Abstract. Let G be a graph. A k-radius sequence for G is a sequence
of vertices of G such that for every edge uv of G vertices u and v appear
at least once within distance k in the sequence. The length of a shortest
k-radius sequence for G is denoted by fk(G).

Such sequences appear in a problem related to computing values of
some 2-argument functions. Suppose we have a set V of large objects,
stored in an external database, and our cache can accommodate at most
k + 1 objects from V at one time. If we are given a set E of pairs of
objects for which we want to compute the value of some 2-argument
function, and assume that our cache is managed in FIFO manner, then
fk(G) (where G = (V, E)) is the minimum number of times we need to
copy an object from the database to the cache.

We give an asymptotically tight estimation on fk(G) for complete
bipartite graphs. We show that for every ε > 0 we have fk(Km,n) ≤
(1 + ε)dk

mn
k

, provided that both m and n are sufficiently large – where
dk depends only on k. This upper bound asymptotically coincides with
the lower bound fk(G) ≥ dk

e(G)
k

, valid for all bipartite graphs.
We also show that determining fk(G) for an arbitrary graph G is

NP-hard for every constant k > 1.

1 Introduction

1.1 k-radius Sequences

Suppose we need to compute values of a two-argument function, say H, for all
pairs of large objects. The objects are stored in a remote database. To compute
the values of the function, we need to place these objects in our cache before
carrying out the computations. The cache is limited in size – it can hold up to
k + 1 objects at one time. Our task is to provide a shortest possible sequence of
(costly) read operations to ensure that each pair of objects will at some point

Research supported by the Polish National Science Center, decision nr DEC-
2012/05/B/ST1/00652.

c© Springer-Verlag GmbH Germany 2016
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2 M. D ↪ebski et al.

reside in the cache together so that we can compute the values of H for all pairs
of objects. This problem appeared in practice in processing large medical images
(see Jaromczyk and Lonc [11]).

The read operation assumes that, if the cache is full, the next object takes
the place of one of the objects currently residing in the cache. So far most of the
research related to this problem has been concentrated on a special case when we
assume that the replacement of objects is based on the first-in first-out strategy.
This leads to the concept of a k-radius sequence. Let k and n be positive integers
and let V be an n-element set (of objects). We say that a sequence (with possible
repetitions) of elements of V is a k-radius sequence (or has a k-radius property)
if every two elements in V are at distance at most k somewhere in the sequence.
Observe that short k-radius sequences correspond to efficient caching strategies
for our problem. Indeed, if x1, x2, . . . , xm is a k-radius sequence, then at time t
we load the element xt and after this loading (for t ≥ k + 1) the cache holds the
elements xt−k, xt−k+1, . . . , xt. The k-radius property guarantees that any pair of
elements of V resides in the cache together at some point. We denote by fk(n)
the length of a shortest k-radius sequence over an n-element set of objects.

The problem of constructing short k-radius sequences has been considered by
several researchers (see Blackburn [3], Blackburn and McKee [4], Chee et al. [5],
Dȩbski and Lonc [7], Jaromczyk and Lonc [11], Jaromczyk et al. [12]).

1.2 k-radius Sequences for Graphs

In this paper we consider a more general problem – we assume that the values
of the function H need not be computed for all pairs of objects but only for
some of them. Let V be a set of objects and let G = (V,E) be a graph. We ask:
what is the smallest number ck(G) of read operations that guarantees that each
pair of vertices adjacent in G resides in the (k + 1)-element cache together at
some point?

If we assume additionally that the replacement of objects in the cache is
based on the first-in first-out strategy, then we get the following generalization
of k-radius sequences. A sequence of vertices of a graph G = (V,E) is called a
k-radius sequence for G (or alternatively, it has a k-radius property with respect
to G) if each pair of adjacent vertices of G appears at distance at most k in
the sequence. More precisely, a sequence x1, x2, . . . , xm of vertices of a graph
G = (V,E) is called a k-radius sequence if for each two vertices u and v adjacent
in G there are i, j, 1 ≤ i, j ≤ m, such that u = xi, v = xj and |j − i| ≤ k.
We denote by fk(G) the length of a shortest k-radius sequence for the graph
G. Clearly, assuming the first-in first-out strategy, fk(G) is equal to the least
number of read operations that guarantees that each pair of vertices adjacent in
G resides in the cache together at some point. Thus fk(G) ≥ ck(G).

We shall always assume that G has more than k + 1 non-isolated vertices
because otherwise the problems of finding ck(G) and fk(G) are trivial. If G
satisfies this condition, then there is an obvious lower bound for both numbers
ck(G) and fk(G):



Sequences of Radius k for Complete Bipartite Graphs 3

fk(G) ≥ ck(G) ≥ e(G)
k

+
k + 1

2
, (1)

where e(G) is the number of edges in G.
Indeed, consider a strategy that requires m = ck(G) read operations only

and guarantees that each pair of vertices adjacent in G resides in the cache
together at some point. Observe that if after loading a vertex the cache stores
j vertices, then it contains at most j − 1 pairs of adjacent vertices which were
not together in the cache before. Thus, as we start from an empty cache, after
m read operations at most 0+1+ . . .+(k −1)+(m−k)k = mk − (

k+1
2

)
pairs of

adjacent vertices have been in the cache together at some point. Consequently,
e(G) ≤ mk − (

k+1
2

)
, which is equivalent to (1).

Using the terminology we have introduced, the initial problem mentioned in
Sect. 1.1 is a special case of our generalization, where G = Kn (the complete
graph on n vertices). Blackburn [3] gave a simple replacement strategy that
shows that, for a fixed k, ck(Kn) is asymptotically equal to the lower bound
(1). Moreover, he proved using a non-constructive method that imposing the
restriction to a first-in first-out strategy does not affect the asymptotic efficiency,
i.e. that also the number fk(Kn) is asymptotically equal to the lower bound (1).
Currently, the best known upper bound for fk(Kn) is fk(Kn) = n2

2k + O(n1+ε).
It was proved by a constructive method by Jaromczyk et al. [12].

Now, consider the case when G is a complete bipartite graph Km,n. In terms
of the initial motivation it means that we want to compute the values of a two-
argument function H whose domain is a Cartesian product X ×Y , where X and
Y are the sets that form the bipartition in G.

If k is fixed and both m and n are large, then ck(Km,n) is asymptotically equal
to the lower bound (1) – more precisely, we have ck(Km,n) = mn

k + O(m + n).
This bound is attained by the following replacement strategy: pick k vertices
from X and keep them in the cache while cycling through all vertices from Y ,
and repeat the process a total of

⌈
|X|
k

⌉
times, each time picking k – or possibly

less than k in the last iteration – different vertices from X.

1.3 Our Contributions

The main result of this paper is that for every k there is a constant dk such
that fk(Km,n) is roughly equal to dk

mn
k , in case when m and n are sufficiently

large – that is, a shortest k-radius sequence for a complete bipartite graph is
roughly dk times longer than the trivial lower bound (1) would imply. We have
1 ≤ dk < 1

2−√
2
≈ 1.71 (and dk is close to 1

2−√
2

for large k). Here is a precise
statement of this result (see the end of Sect. 2 for the proof).

Theorem 1. Let k be a positive integer. For every ε > 0 if m and n are suffi-
ciently large, then

dk
mn

k
≤ fk (Km,n) ≤ (1 + ε) dk

mn

k
,

where k

2k−
√

2k(k−1)
≤ dk ≤ k+1

2k−
√

2k(k−1)
.
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It is worth highlighting that the lower bound in Theorem1 generalizes to all
bipartite graphs. The following result is a reformulation of our Corollary 7.

Theorem 2. Let k be a positive integer. For every bipartite graph G we have
fk(G) ≥ dk

e(G)
k , where dk is the constant from Theorem1.

1.4 Related Problems

An additional motivation of our study comes from its relationship to maximum
cuts in some graphs. A maximum cut in a graph G is a bipartition of the set of
vertices of G maximizing the size of the cut, i.e. the number of edges that join
vertices of the two sets of the bipartition; the size of the maximum cut in G is
denoted mc(G). Finding a maximum cut in a graph is a widely studied problem
which is important in both graph theory and combinatorial optimization (see
Newman [13] and a survey by Poljak and Tuza [14]).

Let Ck
n denote a circulant graph obtained from the cycle Cn on n vertices by

joining with edges all vertices at distance at most k. Our considerations yield
an estimation on the size of a maximum cut in Ck

n (see the end of Sect. 2 for a
proof).

Corollary 3. For a fixed k, we have mc(Ck
n) = kn

dk
(1 − o(1)) , where dk is the

constant from Theorem1.

The implications go both ways – given the size of a maximum cut in a graph G
we can derive a lower bound on fk(G). Note that a k-radius sequence for G must
be also a k-radius sequence for every subgraph of G (in particular, the bipartite
subgraph induced by the maximum cut). It gives an immediate consequence of
Theorem 2.

Corollary 4. For every graph G, we have fk(G) ≥ dk
mc(G)

k , where dk is the
constant from Theorem1.

The problem of finding a shortest k-radius sequence for a graph is also related
to the bandwidth problem. The bandwidth of a graph G = (V,E) is the minimum
of the values max{|i − j| : vivj ∈ E} over all orderings (v1, v2, . . . , vn) of V . Let
us call such an ordering bw-optimal. Informally speaking, we want to place the
vertices of G in integer points of a line in such a way, that the longest edge is as
short as possible (see for example Chinn et al. [6]).

Consider a graph G with bandwidth k and the bw-optimal ordering of its
vertices. It is easy to observe that it is a k-radius sequence for G. Thus the
graph (with no isolated vertices) has a k-radius sequence containing each vertex
exactly once if and only if its bandwidth is at most k. Since determining the
bandwidth is NP-hard, even for subcubic graphs (see Garey et al. [10]), the
problem of determining the existence of a k-radius sequence of length n is NP-
hard as well (if k is a part of the instance).

In Sect. 3 we give stronger complexity results. We show the problem of deter-
mining fk(G) for an arbitrary graph G is NP-hard even if k is a constant greater
than 1. Moreover, determining ck(G) for an arbitrary graph G is NP-hard for
every constant k ≥ 1.
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2 Asymptotically Shortest k-radius Sequences for
Complete Bipartite Graphs

For technical reasons it will be convenient to assume in this section that binary
sequences we consider are cyclic. In other words we shall assume that the terms of
a binary sequence b1b2 . . . bs are arranged in a “cyclic way”, i.e. b1 is a successor
of bs. Consequently, we redefine the notion of the distance for cyclic sequences
to dc(bi, bj) = min(|i− j|, s− |i− j|). Moreover, we shall omit commas in binary
sequences to simplify the notation.

When we construct a k-radius sequence for a bipartite graph G, we have to
jump from one bipartition class of vertices to the other many times. Let X and
Y be the bipartition classes in G, |X| = m and |Y | = n and let a = a1, a2, . . . , as

be a sequence with the k-radius property for the graph G. We define the binary
sequence b(a) = b1b2 . . . bs such that bi = 0 whenever ai ∈ X and bi = 1
whenever ai ∈ Y . Every appearance of two identical symbols at distance at
most k in b(a) corresponds to a pair of vertices of G which are at the same
distance in a but do not form an edge in G. Therefore, we will call the pair of
indices of such a pair of terms in b(a) a bad pair.

Formally, an unordered pair ij, i �= j, is a k-bad pair (resp. a k-good pair) in
a cyclic binary sequence b, if dc(bi, bj) = min(|i − j|, s − |i − j|) ≤ k and bi = bj

(resp. bi �= bj). For every k and s we will be interested in constructing a cyclic
binary sequence b of length s with the least possible number of k-bad pairs. Let
wk(s) be this number.

The number of all pairs of terms at distance at most k in a cyclic binary
sequence of length s is equal to ks. Let M be the length of a shortest k-radius
sequence for a bipartite graph G. Then, we obtain that kM ≥ e(G) + wk(M).
So, if prove that wk(s) ≥ αs, for some α < k, then we will get

fk(G) ≥ e(G)
k − α

. (2)

Clearly, w1(s) = 0 if s is even because the cyclic sequence 0101 . . . 01 has no
1-bad pairs. For a similar reason w1(s) = 1 when s is odd.

Let Bk be the de Bruijn graph, i.e. the directed graph, whose vertices are
all k-term binary sequences and an ordered pair of vertices vu is an edge if the
(k − 1)-term suffix of v is the (k − 1)-term prefix of u. We identify each edge
with the (k + 1)-term binary sequence which starts with the first term of v and
is followed by all the terms of u.

Clearly, every binary cyclic sequence of length s corresponds to a directed
closed walk of length s in Bk (both vertices and edges can appear in a walk
an arbitrary number of times). We assign to every edge e in Bk the weight
tk(e) which is equal to the number of appearances of the first term of e on
the remaining k positions of e. For instance, if e = 010001 (here k = 5), then
t5(e) = 3. The weight tk(C) of a closed walk C in Bk is just the sum of weights
of its edges (we count each edge as many times as it appears in the walk).
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Proposition 5. The number of k-bad pairs in a cyclic binary sequence is equal
to the weight of the corresponding closed walk in the de Bruijn graph Bk.

Proof. To see this, it suffices to observe that every k-bad pair contributes to the
weight of exactly one edge of the corresponding closed walk – the edge starting
with the element of the pair, which appears first in the sequence. �	

The normalized weight of a closed walk C in Bk is the ratio tk(C)
|C| (where |C| is

the number of edges in C - again we count each edge as many times as it appears
in C).

Let ak be the least possible normalized weight of a cycle in Bk, i.e.

ak = min
{

tk(C)
|C| : C is a cycle in Bk

}

(we allow neither multiple appearances of vertices nor edges in cycles).

Proposition 6. For integers k, s > 0, it holds aks ≤ wk(s) < aks + k(2k + k).

Proof. By Proposition 5, wk(s) is equal to the least possible weight of a closed
walk, say C, of length s in the de Bruijn graph Bk. Clearly, the multiset of edges
of the closed walk C can be split into sets of edges of cycles, say C1, C2, . . . , Cp,
in Bk.

By the definition of ak, we have tk(Ci) ≥ ak|Ci|, for i = 1, . . . , p. Hence,

wk(s) = tk(C) = tk(C1) + . . . + tk(Cp) ≥ ak(|C1| + . . . + |Cp|) = ak|C| = aks.

To complete the proof we need to construct a binary sequence of length s with
less than aks + k(2k + k) bad pairs. Let � be the length of a cycle C in Bk with
the normalized weight equal to ak. Moreover, let q = 
 s

� � and r = s − q� ≤
� − 1 < |V (Bk)| = 2k. We define C ′ to be the closed walk in Bk obtained by
traversing the cycle C q times. Clearly, tk(C ′) = qtk(C) = q�ak ≤ sak.

We insert anywhere in the cyclic sequence corresponding to the closed walk
C ′ a sequence of r consecutive 0’s. The number of bad pairs in the resulting
binary sequence is not larger than tk(C ′) + (k + r)k < aks + k(2k + k). �	
It follows from the proof of Proposition 6 that if s is divisible by the length � of a
cycle in Bk of minimum normalized weight (equal to ak), then wk(s) = aks and
there is a cyclic binary sequence with exactly aks bad pairs which is periodic
with the period equal to �.

Moreover, by Proposition 6,

lim
s→∞

wk(s)
s

= ak. (3)

Clearly, the cyclic sequence 0101 . . . 01 of length 2s proves that wk(2s) ≤ ks,
so ak ≤ k

2 < k. Thus, Proposition 6 and the inequality (2) give now the following
statement.
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Corollary 7. Let k be a positive integer. For every bipartite graph G, we have
fk(G) ≥ e(G)

k−ak
. �	

It turns out that this lower bound is asymptotically tight for Km,n.

Theorem 8. For every integer k and real ε > 0, if m and n are sufficiently
large, then fk(Km,n) ≤ mn

k−ak
(1 + ε).

Proof (sketch). We shall use the following theorem by Frankl and Rödl [8] from
hypergraph theory. Recall that a hypergraph is r-uniform if all its edges have
cardinality r. It is d-regular if each of its vertices is contained in exactly d edges.
By the codegree codegH(v, u) of a pair of distinct vertices v and u in a hypergraph
H we mean the number of edges containing both v and u. Finally, a covering of
H is a set of edges whose union is equal to the set of all vertices of H.

Theorem (Frankl, Rödl [8])1. Let r ∈ N and δ > 0 be fixed. There exist d0 ∈
N and δ′ > 0 such that for every N ≥ d ≥ d0 the following holds. If H is an
r-uniform hypergraph with N vertices satisfying the conditions:

1. H is d-regular,
2. codegH(v, u) ≤ δ′ · d for any vertices v,u,v �= u,

then H has a covering by at most (1 + δ)N
r edges.

Let Ck be a cycle in Bk with the normalized weight equal to ak. We denote by
� the length of Ck. Let qCk be the closed walk in Bk obtained by traversing the
cycle Ck q times, where q =

⌈
1+ε

ε · k(k+1)
�(k−ak)

⌉
. Clearly, the number of k-good pairs

in the cyclic sequence c′ corresponding to the closed walk qCk is (k − ak)q�. Let
c be the (non-cyclic) binary sequence of length q� obtained from c′ by cutting
it at some point and let r be the number of k-good pairs in c. Observe that
a k-good pair in c′ is either still k-good in c, or it is no longer at distance at
most k. Since c′ has k(k+1)

2 fewer pairs at distance at most k than c, we get
r ≥ (k − ak)q� − k(k+1)

2 . We denote by c0 the number of 0’s and by c1 = q� − c0
the number of 1’s in c.

Let X and Y be the bipartition classes in Km,n, with |X| = m and |Y | = n.
We denote by H be the hypergraph whose vertices are all ordered pairs xy such
that x ∈ X, y ∈ Y . For every sequence a of q� distinct vertices in Km,n such
that b(a) = c we define an edge ea in H. The edge ea consists of such vertices
xy of H that x and y are at distance at most k in a.

It can be checked that H satisfies the assumptions of the Frankl-Rödl
Theorem and thus there is a covering of the vertex set of H by at most (1+ ε

2 )mn
r

edges. Let us consider a sequence obtained by concatenation of the sequences
corresponding to these edges. In this sequence every two vertices forming an edge
in Km,n are at distance at most k. Using the definition of q it can be shown that
the length of this sequence is at most mn

(k−ak)
(1 + ε) which completes the proof

our theorem. �	
1 This is a special case of a version of the original theorem that appears in Alon and

Spencer [1, Theorem 4.7.1].
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In view of Theorem 8 and Corollary 7 it would be interesting to find the
exact values of ak. The values of ak for k ≤ 5 as well as the optimal cycles in
Bk (i.e. the cycles for which the normalized weight is equal to ak) are shown in
Table 1. We denote by (b1, b2, . . . , bp)∗ the cycle in Bk whose consecutive edges
are b1b2 . . . bk, b2b3 . . . bk+1, . . . , bpb1 . . . bk−1 (indices are computed modulo p).

It is routine to show that the normalized weight of the cycle (0t1t)∗ (t 0’s

followed by t 1’s) in Bk is equal to (t
2)+(k−t+1

2 )
t , for k

2 ≤ t ≤ k + 1. Let

bk = min
k
2 ≤t≤k+1

(
t
2

)
+

(
k−t+1

2

)

t
= min

k
2 ≤t≤k+1

(
t +

(k + 1)k
2t

− k − 1
)

. (4)

Obviously, ak ≤ bk. We conjecture that ak = bk for all positive integers k. The
values of ak in Table 1 show that the conjecture is true for k ≤ 5.

Table 1. The values of ak and optimal cycles in Bk for small k

k ak Optimal cycles in Bk

1 0 (01)∗

2 1/2 (0011)∗

3 1 (01)∗, (0011)∗, (000111)∗, (00011)∗, (00111)∗

4 4/3 (000111)∗

5 7/4 (00001111)∗

Our next theorem gives a lower bound for ak which is “very close” to bk.

Theorem 9. For every positive integer k, we have ak ≥ √
2k(k − 1) − k.

Proof (sketch). Clearly, the theorem holds for k = 1, so we assume from now on
that k ≥ 2.

Consider a cyclic binary sequence b = b0b1 . . . bs−1 of length s with minimum
possible number wk(s) of k-bad pairs. For i = 0, 1, . . . , s−1 let �i (resp. �i) denote
the number of k-bad (resp. k-good) pairs containing the term bi. Clearly �i+�i =
2k for all i and wk(s) = 1

2

∑s−1
i=0 �i. For a maximal segment b′ = bhbh+1 . . . bh+t−1

in b of terms of the same value we define the score Sc(b′) = 1
t

∑t−1
j=0 �h+j .

By an analysis of the structure of b′ and considering the cases t < 2k−1
3 ;

2k−1
3 ≤ t ≤ k −1; and k ≤ t ≤ k +1 separately, we can prove that Sc(b′) ≥ u(t),

where

u(t) =

⎧
⎨

⎩

k − 2 − (t−1)2

4t for t < 2k−1
3 ,

k − 2 − 1
t (k − t − 1)(2t − k) for 2k−1

3 ≤ t ≤ k − 1,
t − 3 for k ≤ t ≤ k + 1

is a real-valued function. It is routine to check that for k ≥ 2, u(t) reaches its

minimum value in the interval [1, k + 1] at t =
√

k(k−1)
2 .
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Thus we obtain Sc(b′) ≥ u

(√
k(k−1)

2

)
= 2

√
2k(k − 1) − 2k.

We divide b to maximal segments b1, b2, . . . , br of terms of the same value.
Let ti denote the length of bi. Clearly, the number of k-bad pairs in b is
1
2

∑s−1
i=0 �i = 1

2

∑r
i=1 Sc(bi)ti. Thus,

wk(s) =
1
2

r∑

i=1

Sc(bi)ti ≥
r∑

i=1

(
√

2k(k − 1) − k)ti = (
√

2k(k − 1) − k)s.

Hence, by (3), ak = lims→∞
wk(s)

s ≥ √
2k(k − 1) − k. �	

We have shown that
√

2k(k − 1) − k ≤ ak ≤ bk. (5)

We shall see now that these bounds for ak are very close to each other.
First observe that there exists a positive integer t such that

t +
(k + 1)k

2t
≤

√
2(k + 1)k + 1. (6)

Indeed, consider the function f(x) = x + (k+1)k
2x and let x1 =

√
(k+1)k

2 + 1
4 − 1

2 .
It is easy to verify that for x ∈ [x1, x1 + 1], f(x) ≤ f(x1) = f(x1 + 1) =√

2(k + 1)k + 1, so we define t to be the unique integer in the interval [x1, x1+1).
By (4) and (6) we get

bk = min
k
2 ≤t≤k+1

(
t +

(k + 1)k
2t

− k − 1
)

≤
√

2(k + 1)k + 1 − k − 1.

Using the inequality above one can readily verify that the difference between
the upper and the lower bound for ak given in (5) is smaller than 0.5 for k ≥ 5
(and it tends to

√
2− 1 as k tends to infinity). Thus, since the actual value of a4

differs from the lower bound in (5) by less than 0.5 too (see Table 1), we have
the following statement.

Corollary 10. For all k ≥ 4 it holds that
√

2k(k − 1) − k ≤ ak <
√

2k(k − 1) − k + 1/2.

Proof of Theorem 1. Theorem 1 follows immediately from Theorem8 and
Corollary 7 by defining dk = k

k−ak
. The bounds for dk given in Theorem 1 can be

easily obtained from Corollary 10 for k ≥ 4 and by direct computations (using
Table 1) for k < 4. �	
Proof of Corollary 3. Let v1, . . . , vn be the vertices of Ck

n, in a natural order.
Any cyclic binary sequence b = b1b2 . . . bn defines a bipartition (V0, V1) of the
vertex set of Ck

n: a vertex vi goes to V0 if bi = 0 and it goes to V1 otherwise.
One can readily verify that the number of good pairs in b is equal to the size
of the bipartition (V0, V1), i.e. the number of edges joining vertices of the two
sets V0 and V1. Consequently, the size of a maximum cut in Ck

n is equal to the
maximum number kn−wk(n) of good pairs in a cyclic binary sequence of length
n. Therefore, the proof is complete by the equalities (3) and dk = k

k−ak
. �	
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3 Complexity Results for Arbitrary Graphs

In this section we consider problems of finding the numbers fk(G) and ck(G) for
arbitrary connected graphs G.

Let us first make the definition of ck(G) a bit more precise. We define for a
graph G and k < |V (G)| a k-cover sequence c = c1, . . . , cm to be a sequence of
(k+1)-subsets of V (G) such that every two consecutive sets in c differ by one ele-
ment (that is, |ci \ ci+1| = |ci+1 \ ci| = 1 for i = 1, . . . , m−1) and for every edge
e ∈ E(G) we have e ⊆ ci for some i. Clearly, a k-cover sequence describes replace-
ments of objects in the cache; if we assume that at time 0 the cache holds the set
c1, then at time t (for 1 ≤ t ≤ m−1) we replace the only object of ct\ct+1 by the
only object of ct+1\ct. The number of read operations in this scenario is equal to
m+k (because we have to read the k +1 elements of c1 at start). Consequently,
ck(G) is equal to the sum of k and the length of a shortest k-cover sequence for G.

We shall discuss the computational complexities of the following two decision
problems.

Problem Rk

Instance: a connected graph G and an integer M .
Question: Is there a k-radius sequence of length M for the graph G?

Problem Bk

Instance: a connected graph G and an integer M .
Question: Is there a k-cover sequence of length M for the graph G?

Let us consider the problem Rk first. We start with a simple lower bound for
the value of fk(G).

Proposition 11. For any graph G it holds that fk(G) ≥ ∑
v∈V

⌈
deg v
2k

⌉
.

Proof. Consider a shortest k-radius sequence x for G and for each vertex v let
m(v) denote the number of appearances of v in x. For every appearance of v in x,
at most 2k neighbors of v appear at distance at most k in x. Thus m(v) ≥

⌈
deg v
2k

⌉

and fk(G) =
∑

v∈V m(v) ≥ ∑
v∈V

⌈
deg v
2k

⌉
. �	

First consider the case k = 1. The problem R1 asks for a sequence of vertices of
G, in which the endvertices of every edge appear as consecutive elements. Let
G be a connected graph with n vertices and m edges. Denote by no the number
of vertices of odd degree in G. We add n0/2 edges between them, creating a
multigraph G′, which has an Euler circuit. This Euler circuit corresponds to a
1-radius sequence in G of length m+n0/2, which matches the lower bound given
in Proposition 11. Thus the problem R1 is polynomially solvable.

Theorem 12. For k ≥ 2 the problem Rk is NP-complete.

Proof (main idea). To prove NP-hardness, we show a reduction from the problem
of determining existence of a Hamiltonian path in a cubic triangle-free graph (see
Garey and Johnson [9, p. 199]).
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Let F be a cubic triangle-free graph with n vertices. For every vertex v in F
we add k − 2 pendant edges e1v, . . . , ek−2

v incident with v and call the resulting
graph F ′. We define G to be the line graph of F ′. Then we prove that there
exists a k-radius sequence for G of length 2

k+1e(G) + 1 if and only if F has a
Hamiltonian path. �	
We proceed to the problem Bk.

Theorem 13. For all k ≥ 1 the problem Bk is NP-complete.

Proof (main idea). Clearly the problem is in NP. To show NP-hardness for k = 1
we observe that a graph H has a 1-cover sequence of length e(H) if and only
if its line graph L(H) has a Hamiltonian path. Determining the existence of a
Hamiltonian path in a line graph in NP-complete [2].

For k ≥ 2 we show NP-hardness by a reduction from B1. Let H be a graph
with m edges and let N =

(
k
2

)
(m− 1)+

(
k+1
2

)
+3. We define a graph G in which

every edge uv of H is replaced by the “edge gadget” Guv, depicted in Fig. 1.
We prove that there exists a k-cover sequence of length mN +(m− 1)(k − 1)

for G if and only if there exists a 1-cover sequence of length m for H. �	

y1
uv

y2
uv

y3
uv

yN−2
uv

Kku v

Fig. 1. The “edge gadget” Guv used in the reduction from B1 to Bk, for k ≥ 2 (Kk

denotes the complete graph on k vertices; the remaining N vertices of Guv are joined
by edges with all vertices of Kk)

4 Concluding Remarks and Open Problems

Theorem 1 gives a good estimate of fk(Km,n) when both m and n are large
(tending to infinity), which leaves the following question open: what happens
when only one of these parameters goes to infinity? This problem probably
cannot be solved using the same proof technique (in particular, the assumption
(2) of Frankl-Rödl theorem will not be satisfied) and it is not clear what the
precise answer should be.

Problem 1. Give an asymptotically tight estimate on fk(Km,n) when m is con-
stant and n tends to infinity.



12 M. D ↪ebski et al.

We would like to see an analog of Theorem 1 for other classes of graphs – in
particular, for tripartite complete t-partite graphs Kn1,n2,...,nt

(for fixed t and
large n1, n2, . . . , nt). Proofs of Proposition 6, Corollary 7 and Theorem 8 can be
adapted to the t-partite case, but the main difficulty is determining (the analog
of) the constant ak.

Since this problem seems to be interesting on its own, we will make it more
precise. An unordered pair ij, where i �= j, is a k-bad pair in a t-ary sequence
r if |j − i| ≤ k and ri = rj . Let wk,t(s) be the minimum number of k-bad pairs
in a t-ary sequence of length s and set ak,t = lims→∞

wk,t(s)
s . (The existence of

this limit follows from an analog of Proposition 6 for t-ary sequences.)

Problem 2. Give a good estimate on ak,t.

Note that Corollary 10 gives a value of ak,2 that is accurate only up to 1
2 , which

means that we do not know the exact value of the constant dk in Theorem 1.
We know the values of ak,2 for k ≤ 5 (see Table 1) and it would be interesting
to find a precise formula for k > 5.
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Abstract. A vertex set X of a graph G is an association set if each
component of G − X is a clique, or a dissociation set if each component
of G − X is a single vertex or a single edge. Interestingly, G − X is
then precisely a graph containing no induced P3’s or containing no P3’s,
respectively. We observe some special structures and show that if none of
them exists, then the minimum association set problem can be reduced
to the minimum (weighted) dissociation set problem. This yields the first
nontrivial approximation algorithm for the association set problem, with
approximation ratio is 2.5. The reduction is based on a combinatorial
study of modular decomposition of graphs free of these special structures.
Further, a novel algorithmic use of modular decomposition enables us to
implement this approach in O(mn + n2) time.

1 Introduction

A cluster graph comprises a family of disjoint cliques, each an association. Cluster
graphs have been an important model in the study of clustering objects based
on their pairwise similarities, particularly in computational biology and machine
learning [3]. If we represent each object with a vertex, and add an edge between
two objects that are similar, we would expect a cluster graph. If this fails, a
natural problem is then to find and exclude a minimum number of vertices
such that the rest forms a cluster graph; this is the association set problem.
This problem has recently received significant interest from the community of
parameterized computation, where it is more commonly called cluster vertex
deletion [4,15]. The cardinality of a minimum association set of a graph is also
known as its distance to clusters. It is one of the few structural parameters for
dense graphs [9,10], in contrast with a multitude of structural parameters for
sparse graphs, thereby providing another motivation for this line of research. For
example, Bruhn et al. [5] recently showed that the boxicity problem (of deciding
the minimum d such that a graph G can be represented as an intersection graph

Supported in part by NSFC under grants 61572414 and 61420106009, and RGC
under grant 252026/15E.

c© Springer-Verlag GmbH Germany 2016
P. Heggernes (Ed.): WG 2016, LNCS 9941, pp. 13–24, 2016.
DOI: 10.1007/978-3-662-53536-3 2



14 J. You et al.

of axis-aligned boxes in the d-dimension Euclidean space) is fixed-parameter
tractable parameterized by the distance to clusters.

The association set problem belongs to the family of vertex deletion problems
studied by Yannakakis et al. [16,18]. The task in these problems is to delete
the minimum number of vertices from a graph so that the remaining subgraph
satisfies a hereditary property; recall that a graph property is hereditary if it
is closed under taking induced subgraphs [16]. It is known that a hereditary
property can be characterized by a (possibly infinite) set of forbidden induced
subgraphs. In our case, the property is “being a cluster graph,” and the forbidden
induced subgraphs are P3’s (i.e., paths on three vertices). A trivial approximation
algorithm of ratio 3 can be derived as follows. We search for induced P3’s, and
we delete all its three vertices if one is found. This trivial upper bound is hitherto
the best known. Indeed, this is a simple application of Lund and Yannakakis’s
observation [18], which applies to all graph classes with finite forbidden induced
subgraphs.

Closely related is the cluster editing problem, which allows us to use, instead
of vertex deletions, both edge additions and deletions [3]. Approximation algo-
rithms of the cluster editing problem have been intensively studied, and the
current best approximation ratio is 2.5 [1,2,8]. Our main result is the first non-
trivial approximation algorithm for the association set problem, with a ratio
matching the best ratio of the closely related cluster editing problem. As usual,
n and m denote the numbers of vertices and edges respectively in the input
graph. Without loss of generality, we assume throughout the paper that the
input graph contains no isolated vertices (vertices of degree 0), hence n = O(m).

Theorem 1. There is an O(mn)-time approximation algorithm of ratio 2.5 for
the association set problem.

Our approach is to reduce the association set problem to the weighted disso-
ciation set problem. Given a vertex-weighted graph, the weighted dissociation set
problem asks for a set of vertices with the minimum weight such that its deletion
breaks all P3’s, thereby leaving a graph of maximum degree 1 or 0. This problem
was first studied by Yannakakis [25], who proved that its unweighted version is
already NP-hard on bipartite graphs. Note that a P3 that is not induced must
be in a triangle. Thus, in triangle-free graphs, the weighted version of the asso-
ciation set problem is equivalent to the weighted dissociation set problem. It is
easy to observe that for the association set problem, vertices in a twin class (i.e.,
whose vertices have the same closed neighborhood) are either fully contained in
or disjoint from a minimum solution. This observation inspires us to transform
the input graph G into a vertex-weighted graph Q by identifying each twin class
of G with a vertex of Q whose weight is the size of the corresponding twin class.
We further observe that there are five small graphs such that if G has none
of them as an induced subgraph, then Q either has a simple structure, hence
trivially solvable, or is triangle-free, and can be solved using the ratio-2 approx-
imation algorithm for the weighted dissociation set problem [21,22]. From the
obtained solution for Q we can easily retrieve a solution for the original graph
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G. Since each of these five graphs has at most five vertices and at least two of
them need to be deleted to make it free of induced P3’s, the approximation ratio
2.5 follows.

The main idea of this paper appears in the argument justifying the reduction
from the (unweighted) association set problem to the weighted dissociation set
problem. Indeed, we are able to provide a stronger algorithmic result that implies
the aforementioned combinatorial result. We develop an efficient algorithm that
detects one of the five graphs in G, solves the problem completely, or determines
that Q is already triangle-free. Our principal tool is modular decomposition.
A similar use of modular decomposition was recently invented by the authors [17]
in parameterized algorithms. It is worth noting that the basic observation on
vertex deletion problems to graph properties with finite forbidden induced sub-
graphs has been used on both approximation and parameterized algorithms, by
Lund and Yannakakis [18] and by Cai [6] respectively.

After a preliminary version of this work appeared in arxiv, Fiorini et al. [11]
managed to further improve the ratio to 7/3. The first part of their algorithm
is similar as ours, with more small induced subgraphs taken into consideration,
while their analysis, using the “local ratio” technique, is quite different from
ours.

As a final remark, cluster editing has a 2k-vertex kernel [7], while it remains
an open problem to find a linear-vertex kernel for the association set (cluster
vertex deletion) problem.

2 Preliminaries

This paper will be only concerned with undirected and simple graphs. The vertex
set and edge set of a graph G are denoted by V (G) and E(G) respectively. For
� ≥ 3, let P� and C� denote respectively an induced path and an induced cycle
on � vertices. A C3 is also called a triangle. For a given set F of graphs, a
graph G is F-free if it contains no graph in F as an induced subgraph. When
F consists of a single graph F , we use also F -free for short. For each vertex v
in V (G), its neighborhood and closed neighborhood are denoted by NG(v) and
NG[v] respectively.

A subset M of vertices forms a module of G if all vertices in M have the same
neighborhood outside M . In other words, for every pair of vertices u, v ∈ M ,
a vertex x �∈ M is adjacent to u if and only if it is adjacent to v as well. The
set V (G) and all singleton vertex sets are modules, called trivial. A graph on at
least four vertices is prime if it contains only trivial modules, e.g., a P4 and a
C5. Given any partition {M1, . . . ,Mp} of V (G) such that Mi for every 1 ≤ i ≤ p
is a module of G, we can derive a p-vertex quotient graph Q such that for any
pair of distinct i, j with 1 ≤ i, j ≤ p, the ith and jth vertices of Q are adjacent
if and only if Mi and Mj are adjacent in G (every vertex in Mi is adjacent to
every vertex in Mj). It should be noted that a single-vertex graph and G itself
are both trivial quotient graphs of G, defined by the trivial module partitions
{V (G)} and {{v1}, . . . , {vn}} respectively.
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A module M is strong if for every other module M ′ that intersects M , one of
M and M ′ is a proper subset of the other. All trivial modules are clearly strong.
We say that a strong module M different from V (G) is maximal if the only strong
module properly containing M is V (G). (It can be contained by non-strong
modules, e.g., in a graph that is a clique, the maximal strong modules are simply
the singletons, while every subset of vertices is a module.) The set of maximal
strong modules of G partitions V (G), and defines a special quotient graph of G,
denoted by Q̃(G).1 The reader who is unfamiliar with modular decomposition is
referred to the survey of Habib and Paul [13] for more information. The following
proposition will be crucial for our algorithm.

Proposition 1. [12,20] If a graph G is connected, then Q̃(G) is either a clique
or prime. Any prime graph contains an induced P4.

Let Q be a quotient graph of G, and let M be a module of G in the module
partition defining Q. By abuse of notation, we will also use M to denote the
corresponding node of Q; hence M ∈ V (Q) and M ⊆ V (G), and its meaning
will be clear from context. Accordingly, by NG(M) we mean those vertices of G
adjacent to M in G, and by NQ(M) we mean those nodes of Q adjacent to M in
Q—note that the union of those vertices of G represented by NQ(M) is exactly
NG(M). Sets NG[M ] and NQ[M ] are understood analogously.

The weighted versions of the associated set problem and the dissociation set
problem are formally defined as follows.

Associated set

Input: A vertex-weighted graph G.
Task: find a subset X ⊂ V (G) of the minimum weight such that every compo-

nent of G − X is a clique.

Dissociation set

Input: A vertex-weighted graph G.
Task: find a subset X ⊂ V (G) of the minimum weight such that every compo-

nent of G − X is a single vertex or a single edge.

Let asso(G) and diss(G) denote respectively the weights of minimum asso-
ciation sets and minimum dissociation sets of a weighted graph G. It is routine
to verify that asso(G) ≤ diss(G). Their gap can be arbitrarily large, e.g., if G
is a clique on n vertices, then asso(G) = 0 and diss(G) = n−2. A vertex set X
is an association set or a dissociation set of a graph G if and only if G − X con-
tains no P3 as an induced subgraph or as a subgraph, respectively. The following
proposition follows from the fact that every P3 in a C3-free graph is induced.

1 If G is a clique or an independent set, then ˜Q(G) is isomorphic to G and is the largest

quotient graph of G; if ˜Q(G) is prime, then it is the smallest nontrivial quotient graph
of G, both cardinality-wise and inclusion-wise (see Lemma 5). Otherwise, there can

be other quotient graph larger or smaller than ˜Q(G).
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Proposition 2. If a graph G is C3-free, then asso(G) = diss(G).

Theorem 2 ([21,22]). There is an O(mn)-time approximation algorithm of
ratio 2 for the weighted dissociation set problem.

Note that an unweighted graph can be treated as a special weighted graph
where every vertex receives a unit weight. In this case, asso(G) is the same as
the cardinality of the minimum association set of G.

A {C4, P4}-free graph is called a trivially perfect graph. A vertex is universal
if it is adjacent to all other vertices in this graph, i.e., has degree n−1. It is easy
to verify that each universal vertex is a maximal strong module of the graph.

Proposition 3 ([14,23,24]). Every connected trivially perfect graph has a uni-
versal vertex. One can in O(m)-time either decide that a graph is a trivially
perfect graph, or detect an induced P4 or C4.

3 The Approximation Algorithm

The association set problem admits a naive 3-approximation algorithm [18]. It
finds an induced P3 and deletes from G all the three vertices in this P3, and
repeats. Since any minimum association set has to contain some of the three
vertices, the approximation ratio is at most 3. A P3 can be found in linear time,
while the process can be repeated at most n/3 times, and thus the algorithm can
be implemented in time O(mn). We present here a very simple 2.5-approximation
algorithm, which runs in a high-order polynomial time, and we will show in the
next section how to implement it in an efficient way to achieve the running time
claimed in Theorem 1.

Fig. 1. Small subgraphs on 4 or 5 vertices.

Let F denote the set of five small graphs depicted in Fig. 1, i.e., {C4, bull,
dart, fox, gem}. A quick glance of Fig. 1 convinces us that from each induced
subgraph in F , at least two vertices need to be deleted to make it P3-free.

Proposition 4. Let X ⊆ V (G). If G[X] ∈ F , then asso(G − X) ≤ asso(G)−2.

In polynomial time we can decide whether G contains an induced subgraph
in F , and find one if it exists. We delete all its vertices if it is found. If G
is not connected, then we work on its components one by one. In the rest of
this section we may focus on connected F-free graphs. In such a graph, every
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nontrivial module M induces a {C4, P4}-free subgraph: A P4 in G[M ], together
with any v ∈ NG(M) (it exists because G is connected and M is nontrivial),
makes a gem.

One may use the definition of modular decomposition to derive the following
combinatorial properties of F-free graphs. Since we will present a stronger result
in the next section that implies this lemma, its proof is omitted here.

Lemma 1. Let G be an F-free graph that is not a clique, and let Q = Q̃(G).
Either G consists of a set of universal vertices and two disjoint cliques, or Q is
C3-free and the following hold for every maximal strong module M of G:

(1) The subgraph G[M ] is a cluster graph. If it is not a clique, then |NG(M)| = 1.
(2) If |NQ(M)| > 2, then the module M is trivial (consisting of a single vertex

of G).

In the first case, G has simply two intersecting cliques C1 and C2, and the
problem is trivial: We delete either C1 ∩ C2 (i.e., all universal vertices), or one
of C1 \ C2 and C2 \ C1, whichever is smaller. Therefore, we focus on the other
case where Q̃(G) is C3-free. If some maximal strong module M does not induce
a clique in a connected F-free graph G, then we can delete the unique neighbor
of M and consider the smaller graph G−NG[M ]. Now that G is not a clique but
every maximal strong module M of G is, we can define a vertex-weighted graph
Q isomorphic to the quotient graph Q̃(G), where the weight of each vertex in
Q is the number of vertices in the corresponding module, i.e., |M |. We apply
the algorithm of Tu and Zhou [21] to find a dissociation set of this weighted
graph Q. Since Q is C3-free, by Proposition 2 and Theorem 2, the total weight
of the obtained dissociation set is at most 2diss(Q) = 2asso(Q) = 2asso(G).
Putting together these steps, an approximation algorithm with ratio 2.5 follows
(see Fig. 2).

Theorem 3. The output of algorithm approx-asso(G) is an association set of
the input graph G and its size is at most 2.5asso(G).

4 An Efficient Implementation

We now discuss the implementation issues that lead to the claimed running time.
A simpleminded implementation of the algorithm given in Fig. 2 takes O(n6)
time, which is decided by the disposal of induced subgraphs in F (step 3). It
is unclear to us how to detect them in a more efficient way than the O(n5)-
time enumeration. But we observe that what we need are no more than the
conditions stipulated in Lemma 1, for which being F-free is sufficient but not
necessary. The following relaxation is sufficient for our algorithmic purpose: We
either detect an induced subgraph in F or determine that G has already satisfied
these conditions. Once a subgraph is found, we can delete all its vertices and
repeat the process. In summary, we are after an O(mn)-time procedure that
finds a set of subgraphs in F such that its deletion leaves a graph satisfying the
conditions of Lemma 1.
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Fig. 2. Outline of the approximation algorithm for association set.

Toward this end a particular obstacle is the C3-free condition in the second
case of Lemma 1. Indeed, the detection of triangles in linear time is a notorious
open problem that we are not able to solve. Therefore, we may have to aban-
don the simple “search and remove” approach. The first idea here is that we
may dispose of all triangles of Q̃(G) in O(mn) time. This is, however, still not
sufficient, because after deleting a set X of some vertices, its maximal strong
modules change, and more importantly, Q̃(G − X) may not be an (induced)
subgraph of Q̃(G); see, e.g., Fig. 3. Our observation is that Q̃(G − X) is either
a clique, an independent set, or an induced subgraph of Q̃(G[M ]) for some (not
necessarily maximal) strong module M of G.

We start from recalling some simple facts about modular decomposition.
For each maximal strong module M of G, we can further take the maximal
strong modules and the quotient graph Q̃(G[M ]). This process can be recursively
applied until every module consists of a single vertex. If we represent each module
used in this process as a node, and add edges connecting every M with all
maximal strong modules of G[M ], we obtain a tree rooted at V (G), called the
modular decomposition tree of G. The nodes of the modular decomposition tree
are precisely all strong modules of G, where the leaves are all singleton vertex
sets, and for every non-leaf node M , its children are the maximal strong modules
of G[M ] [12]. It is known that the modular decomposition tree can be constructed
in linear time [19].

Proposition 5. If Q̃(G) is prime, then every nontrivial quotient graph of G

contains Q̃(G) as an induced subgraph.
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Fig. 3. ˜Q(G[U ]) may not be an induced subgraph of ˜Q(G).

On the one hand, since V (G) itself is a strong module of G, every vertex set
U ⊆ V (G) is contained in some strong module. On the other hand, since two
strong modules are either disjoint or one containing the other, there is a unique
one that is inclusion-wise minimal of all strong modules containing U .

Theorem 4. Let U ⊆ V (G) be a subset of vertices of G, and let M be the
inclusion-wise minimal strong module of G that contains U . If Q̃(G[U ]) is prime,
then it is a subgraph of Q̃(G[M ]) induced by those maximal strong modules of
G[M ] that intersect U .

We remark that if Q̃(G[U ]) is a clique or independent set, then it is not
necessarily an induced subgraph of Q̃(G[M ]); see, e.g., Fig. 3.

We are now ready to present the efficient implementation for the first phase,
which would replace the first three steps of algorithm approx-asso (Fig. 2).

Lemma 2. In O(mn) time we can find a set H of disjoint induced subgraphs of
G such that each H ∈ H is in F and G − ⋃

H∈H V (H) satisfies the conditions
of Lemma 1.

Proof. We use the procedure described in Fig. 4. Step 0 is trivial. Step 1 uses the
algorithm of McConnell and Spinrad [19], and step 2 uses simple enumeration,
i.e., for each edge uv, we find all the common neighbors of u and v, which can
be done in time O(nm). This leads the disposal of triangles in step 3. During
its progress, a maximal strong module M of the input graph G may not remain
a maximal strong module of the current graph (i.e., G − X). But if M is not
completely deleted (i.e., M �⊆ X), then its remnant (i.e., M \ X) is always a
module of G − X.

Note that the three modules in each triangle must have the same parent in
the modular decomposition tree. For each triangle {M1,M2,M3}, we focus on
their parent M (in the modular decomposition tree) and the subgraph G[M ]
(step 3.1). All the modules mentioned in steps 3.2–3.7 are maximal strong mod-
ules of subgraph G[M ]; they correspond to V (Q). If either of the conditions of
steps 3.2 and 3.3 is true, then the triangle has been disposed of and we can
continue to the next one. If the deletion of vertices in previous iterations has
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Fig. 4. Procedure for the first phase.
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made NQ[Mi] = NQ[Mj ] for some 1 ≤ i < j ≤ 3, then Mi ∪ Mj is a module of
G[M \ X]. Note that after they are merged, both Mi and Mj refer to the new
module. Now that the procedure has passed steps 3.2–3.4, for each 1 ≤ i < j ≤ 3,
we can find a module adjacent to only one of Mi and Mj . This justifies step 3.5,
and we may assume without loss of generality that the module M ′ is adjacent
to M2 but not M1; the other case can be dealt with a symmetric way, which is
omitted. In step 3.6, depending on the adjacency between M ′′ and M1,M

′, we
are in one of the following three cases: − if M ′′ is adjacent to neither of M1,M

′,
then there is a dart; − if M ′′ is adjacent to precisely one of M1,M

′, then there
is a gem; or − otherwise (M ′′ is adjacent to both of M1,M

′), there is a C4;
This forbidden subgraph can be constructed by taking one vertex from each

of M1,M2,M3,M
′, and M ′′. We can actually find min{|M1|, |M2|, |M3|, |M ′|,

|M ′′|} number of gems or darts, or min{|M1|, |M3|, |M ′|, |M ′′|} number of C4’s,
which we all move into X. It is similar for step 3.7.

After step 3, G might become disconnected. Then we work on its components
one by one. Steps 4.1 and 4.2 are simple. The fact that the quotient graph Q built
in step 4.3 is either a clique or is C3-free can be argued using Theorem 4. Suppose
for contradiction that Q is not a clique but contains a C3; by Proposition 1,
Q is prime. Then by Theorem 4, Q is a subgraph of Q̃(G[M ]) for some strong
module M of G. Let {M1,M2,M3} be the triangle of Q̃(G[M ]) corresponding to
a triangle in Q. But in step 3, either one of {M1,M2,M3} has been completely
put into X, or two of them have been merged (then unless Q is a clique or
an independent set, they will always be in the same maximal strong module).
Therefore, Q must be C3-free if it is not a clique.

Note that the algorithm enters at most one of steps 4.4–4.8. The correctness
of step 4.4 is clear. If Q is a clique and it passes step 4.4, then all but one maximal
strong module are trivial: Recall that each universal vertex is a maximal strong
module. A P4 of M together with a vertex in NG(M) makes a gem (4.5.1). Now
that G[M ] is {P4, C4}-free, and has no universal vertex (a universal vertex of
G[M ] is a universal vertex of G as well), according to Proposition 3, G[M ] is
disconnected. Since step 4.2 does not apply, in step 4.5.2, at least one component
is not a clique, and has a P3, which, together with a vertex u ∈ NG(M) and any
vertex from another component of G[M ], makes a dart. Otherwise (step 4.5.3),
G[M ] has at least three components, and we can find a fox by taking three
vertices from different components of G[M ] and two vertices from NG(M): Recall
that when it enters step 4.5, G must have at least two universal vertices. In
step 4.6, Q is not a clique, and assume that there is a module M that is not
a cluster, then it must be {P4, C4}-free since the same reason as step 4.5.1.
Now that if M is not connected, then a P3 can be found in some component,
which, together with some vertex in some other component of M and a vertex in
NG(M), forms a dart. Therefore, M is connected and contains a P3. It is sure that
NG(N [M ]) is not empty since Q is not a clique, thus a dart can be found: Recall
that if there are only two modules then G[M ] cannot have universal vertices.
After step 4.6, Q is always C3-free. Therefore, modules M1,M2 in step 4.7 and
modules M1,M2,M3 in step 4.8 are (pairwise) nonadjacent.
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If G consists of two intersecting cliques, the procedure returns at step 4.2.
Hence we may assume that it is not the case. The quotient graph Q̃(G) is C3-
free because Theorem 4 and the algorithm has passed step 4.5. Conditions (1)
and (2) of Lemma 1 follow from the correctness argument for steps 4.6–4.8. We
now calculate the running time of the procedure. Note that the total number of
edges of the subgraphs induced the strong modules of G is upper bounded by
m. Thus, all the triangles can be listed in O(mn) time in step 2. Each iteration
of step 3 takes O(m) time, and it decreases the order of Q by at least one, and
thus step 3 takes O(mn) time in total. Each iteration of step 4 takes O(m) time,
and it decreases the order of G by at least one, and hence step 4 takes O(mn)
time in total. This concludes the proof of this lemma. 	
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Abstract. We study several parameters of geodetic convexity for graph
classes defined by restrictions concerning short induced paths. Partially
answering a question posed by Araujo et al., we show that computing
the geodetic hull number of a given P9-free graph is NP-hard. Similarly,
we show that computing the geodetic interval number of a given P5-
free graph is NP-hard. On the positive side, we identify several graph
classes for which the geodetic hull number can be computed efficiently.
Furthermore, following a suggestion of Campos et al., we show that the
geodetic interval number, the geodetic convexity number, the geodetic
Carathéodory number, and the geodetic Radon number can all be com-
puted in polynomial time for (q, q − 4)-graphs.

Keywords: Geodetic convexity · Hull number · Geodetic number ·
Interval number · Convexity number · Carathéodory number · Radon
number · Pk-free graphs · (q, q − 4)-graphs

1 Introduction

In the present paper we study five prominent graph parameters of geodetic
convexity, the hull number, the interval number, the convexity number, the
Carathéodory number, and the Radon number, for graph classes defined by
restrictions concerning short induced paths. Our motivation mainly comes from
two recent papers. In [7] Campos, Sampaio, Silva, and Szwarcfiter show that
for the P3-convexity, the above parameters can be determined in linear time for
(q, q − 4)-graphs. In their conclusion they suggest to consider the geodetic ver-
sions of the parameters for these graphs. In [3] Araujo, Morel, Sampaio, Soares,
and Weber study the geodetic hull number of P5-free graphs. They show that this
number can be computed in polynomial time for triangle-free P5-free graphs, and
ask about the computational complexity of the geodetic hull number of Pk-free
graphs in general.

Before we discuss further related work and our own contribution, we collect
some relevant definitions. All graphs will be finite, simple, and undirected, and
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we use standard terminology and notation. A graph G is F-free for some graph
F if G does not contain an induced subgraph that is isomorphic to F . For a
positive integer n, let Kn, Pn, K1,n−1, and Cn be the complete graph, the path,
the star, and the cycle of order n, respectively. For an integer q at least 4, a
graph G is a (q, q − 4)-graph [5] if every set of q vertices of G induces at most
q − 4 distinct P4s. The clique number ω(G) of a graph G is the maximum order
of a clique in G, which is a set of pairwise adjacent vertices. The independence
number α(G) of a graph G is the maximum order of an independent set in G,
which is a set of pairwise non-adjacent vertices. A vertex of a graph is simplicial
if its neighborhood is a clique. For an integer k, let [k] be the set of all positive
integers at most k.

For a set X of vertices of a graph G, the interval IG(X) of X in G is the set
of vertices of G that contains X as well as all vertices of G that lie on shortest
paths between vertices from X. If IG(X) = X, then X is a convex set. The hull
HG(X) of X in G is the smallest convex set that contains X. If HG(X) = V (G),
then X is a hull set of G, and if IG(X) = V (G), then X is an interval set of G.
The hull number h(G) of G [24] is the smallest order of a hull set of G. Similarly,
the interval number i(G) of G, also known as the geodetic number [28], is the
smallest order of an interval set of G. The convexity number cx(G) of G [11] is
the maximum cardinality of a convex set that is a proper subset of the vertex
set of G. Inspired by a classical theorem of Carathéodory [6], the Carathéodory
number cth(G) of G [19] is the minimum integer k such that for every set X of
vertices of G, and every vertex x in HG(X), there is a subset Y of X of order at
most k such that x belongs to HG(Y ). Similarly, inspired by a classical theorem
by Radon [30], the Radon number r(G) of G [13,14] is the minimum integer k
such that for every set X of at least k vertices of G, there is a subset X1 of X
such that HG(X1)∩HG(X \X1) �= ∅. A set A of vertices of G is anti-Radon if A
has no subset A1 with HG(A1)∩HG(A\A1) �= ∅. It is easy to see that the Radon
number is exactly one more than the maximum cardinality of an anti-Radon set.
Note that a clique is anti-Radon.

For reduction arguments useful to prove Theorem6 below, we consider a
second kind of convexity. For a set X of vertices of a graph G, the restricted
interval I ′

G(X) of X in G is the set of vertices of G that contains X as well as all
vertices of G that lie on an induced P3 between vertices from X, that is, we only
consider shortest paths of order 3. This leads to a convexity that has recently
been studied on its own right [4], and is different from the above-mentioned
P3-convexity. If I ′

G(X) = X, then X is restricted convex. The restricted hull
H ′

G(X) of X in G, a restricted hull set of G, a restricted interval set of G, the
restricted hull number h′(G) of G, the restricted interval number i′(G) of G,
the restricted convexity number cx′(G) of G, the restricted Carathéorody number
cth′(G) of G, the restricted Radon number r′(G) of G, and restricted anti-Radon
sets are all defined in the obvious way. Note that I ′

G(X) ⊆ IG(X), which implies
H ′

G(X) ⊆ HG(X). Hence, every anti-Radon set is a restricted anti-Radon set.
We briefly survey some known related results. The hull number is NP-hard for
bipartite graphs [2] and even for partial cubes [1], but can be computed in
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polynomial time for cographs [12], (q, q − 4)-graphs [2], {C3, P5}-free graphs [3],
distance-hereditary graphs [29], and chordal graphs [29]. Bounds on the hull
number are given in [2,15,24]. The interval number is NP-hard for cobipartite
graphs [22] and for chordal graphs as well as for chordal bipartite graphs [16], but
can be computed in polynomial time for split graphs [16], proper interval graphs
[23], block-cactus graphs [22], and monopolar chordal graphs [22]. The convexity
number is NP-hard for bipartite graphs [17,27]. Finally, also the Carathéodory
number [19] as well as the Radon number [14] are NP-hard. Next to the geodetic
convexity and the P3-convexity, further well-studied graphs convexities are the
induced paths convexity, also known as the monophonic convexity [18,21,25],
the all paths convexity [8], the triangle path convexity [9,10], and the convexity
based on induced paths of order at least 4 [20].

Our contributions are as follows. Partially answering the question posed by
Araujo et al. [3], we show that computing the hull number of a given P�-free
graph is NP-hard for every � ≥ 9. Similarly, we show that computing the inter-
val number of a given P�-free graph is NP-hard for every � ≥ 5. Furthermore,
we extend the result of Araujo et al. [3] that the hull number can be com-
puted in polynomial time for {C3, P5}-free graphs to {paw, P5}-free graphs, to
triangle-free graphs in which every six vertices induce at most one P5, and to
{C3, . . . , Ck−2, Pk}-free graphs for every integer k. Following the suggestion of
Campos et al. [7], we show that the interval number, the convexity number, the
Carathéodory number, and the Radon number as well as their restricted versions
can all be computed in polynomial time for (q, q − 4)-graphs. Section 2 contains
our complexity results. In Sect. 3 we present the efficiently solvable cases, and in
Sect. 4 we list some open problems.

2 Complexity Results

Theorem 1. For a given P9-free graph G, and a given integer k, it is NP-
complete to decide whether h(G) ≤ k.

Proof. Since the hull of a set of vertices can be computed in polynomial time, the
considered decision problem belongs to NP. In order to prove NP-completeness,
we describe a polynomial reduction from a restricted version of Satisfiabil-
ity. Therefore, let C be an instance of Satisfiability consisting of m clauses
C1, . . . , Cm over n boolean variables x1, . . . , xn such that every clause in C con-
tains at most three literals, and, for every variable xi, there are at most three
clauses in C that contain either xi or x̄i. Note that Satisfiability is still NP-
complete for such instances (cf. [LO1] in [26]).

Clearly, we may assume that no clause in C contains a variable as well as its
negation, and that n ≥ 2. If, for some variable xi, no clause in C contains x̄i,
then setting xi to true, and removing all clauses from C that contain xi, leads to
an equivalent instance. Therefore, by symmetry, we may assume that, for every
variable xi, some clause in C contains xi, and some clause in C contains x̄i. If,
for some variable xi, there is only one clause in C containing xi, and only one
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clause in C containing x̄i, then introducing two new variables xn+1 and xn+2,
and adding the three clauses xi ∨ xn+1 ∨ xn+2, x̄n+1 ∨ xn+2, and xn+1 ∨ x̄n+2,
leads to an equivalent instance. Therefore, by symmetry, we may assume that,
for every variable xi, there are exactly three clauses in C that contain either
xi or x̄i. If, for some variable xi, there is one clause in C containing xi, and
two clauses in C containing x̄i, then exchanging xi with x̄i within C, leads to an
equivalent instance. Altogether, we may assume that, for every variable xi, there
are exactly two clauses in C, say C

j
(1)
i

and C
j
(2)
i

, that contain xi, and exactly
one clause in C, say C

j
(3)
i

, that contains x̄i. Furthermore, these three clauses are
distinct.

Let the graph G be constructed as follows starting with the empty graph:

– For every j ∈ [m], add a vertex cj .
– For every i ∈ [n], add a copy Gi of the graph in Fig. 1, and denote the vertices

as indicated in the figure.
– Add two further vertices w1 and w2.
– Add further edges to turn the set

C = {cj : j ∈ [m]} ∪ {yi : i ∈ [n]} ∪ {vi : i ∈ [n]}

into a clique.
– For every i in [n], add the three edges x

(1)
i c

j
(1)
i

, x
(2)
i c

j
(2)
i

, and x̄icj
(3)
i

.
– For every i in [n], add the two edges viw1 and viw2.

See Fig. 2 for a partial illustration.

Fig. 1. The graph Gi.

Let k = 2n + 2. Note that the order of G is 9n + m + 2. It remains to show that
G is P9-free, and that C is satisfiable if and only if h(G) ≤ k.

Let P be an induced path in G. Since C is a clique, the subgraph G[V (P )∩C]
of P induced by C is a (possibly empty) path of order at most 2. Note that all
components of G[V (G)\C] have order at most 5, and only contain induced paths
of order at most 3. This implies that P has order at most 3 + 2 + 3, that is, G
is P9-free.

First, let S be a satisfying truth assignment for C. Let

S = {w1, w2} ∪
⋃

i∈[n]: xi true inS
{xi, x

′
i} ∪

⋃

i∈[n]: xi false inS
{x̄i, x̄

′
i}.
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Fig. 2. Part of G, where C1 : x1 ∨ x2 ∨ x3, C2 : x1 ∨ x̄2 ∨ x3, and C3 : x̄1 ∨ x2 ∨ x̄3.
For the sake of visibility, the edges within C as well as the vertices w1 and w2 are not
shown.

Clearly, |S| = k. Since {v1, . . . , vn} ⊆ HG({w1, w2}), and yi ∈ HG({x′
i, vi}) ∩

HG({x̄′
i, vi}) for i ∈ [n], we obtain {v1, . . . , vn} ∪ {y1, . . . , yn} ⊆ HG(S). If

i ∈ [n] is such that xi is true in S, and � ∈ [n] \ {i}, then ui ∈ HG({xi, vi}),
x̄′

i ∈ HG({yi, ui}), and
{

c
j
(1)
i

, c
j
(2)
i

, x
(1)
i , x

(2)
i

}
⊆ HG({xi, v�}). If i ∈ [n] is

such that xi is false in S, then ui ∈ HG({x̄′
i, vi}), x′

i ∈ HG({x̄i, yi}), and
c
j
(3)
i

∈ HG({x̄i, vi}). Since S is a satisfying truth assignment, this implies
{x′

1, . . . , x
′
n} ∪ {x̄′

1, . . . , x̄
′
n} ∪ {u1, . . . , un} ∪ {c1, . . . , cm} ⊆ HG(S). For i ∈ [n],

we have
{

x
(1)
i , x

(2)
i

}
⊆ HG

({
ui, cj

(1)
i

, c
j
(2)
i

})
, xi ∈ HG

({
x
(1)
i , x

(2)
i

})
, x̄i ∈

HG

({
x′

i, cj
(3)
i

})
. This implies

⋃

i∈[n]

{
xi, x

(1)
i , x

(2)
i , x̄i

}
⊆ HG(S).

Altogether, it follows that S is a hull set, and, hence, h(G) ≤ |S| = k.
Conversely, let S be a hull set of order at most 2n + 2. Since w1 and w2 are

simplicial, we have w1, w2 ∈ S. For i ∈ [n], let

V
(1)
i =

{
xi, x

(1)
i , x

(2)
i , ui, x̄

′
i

}
, V

(2)
i = {x′

i, x̄i} , and V
(3)
i = {x̄′

i, yi, x
′
i} .

Since NG

(
V

(1)
i

)
\ V

(1)
i ⊆ C, NG

(
V

(2)
i

)
\ V

(2)
i ⊆ C, and C is a clique, the two

sets V (G) \ V
(1)
i and V (G) \ V

(2)
i are convex, which implies that S intersects

V
(1)
i as well as V

(2)
i . Since uivicj

(3)
i

x̄i is a path of order 4 between ui and x̄i, no

shortest path between two vertices in V (G) \ V
(3)
i contains the two vertices x̄′

i

and x′
i. Since NG(yi) \ {x̄′

i, x
′
i} ⊆ C, no shortest path between two vertices in

V (G)\V
(3)
i intersects V

(3)
i only in yi. Since ui has distance at most 2 from every

vertex in C, no shortest path between two vertices in V (G) \ V
(3)
i contains x̄′

i

and yi. Since x̄i has distance at most 2 from every vertex in C, no shortest path
between two vertices in V (G)\V

(3)
i contains yi and x′

i. Altogether, it follows, that
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V (G) \ V
(3)
i is convex, which implies that S intersects V

(3)
i . Since S \ {w1, w2}

has order exactly 2n, it follows that S contains exactly one vertex from V
(1)
i ,

exactly one vertex from V
(2)
i , and intersects {x̄′

i, x
′
i}. Since yi, x

′
i ∈ HG({x̄′

i, x̄i}),
we may assume that x̄′

i ∈ S implies S ∩ V (Gi) = {x̄i, x̄
′
i}. Since {v1, . . . , vn} ⊆

HG({w1, w2}) and ui, x̄
′
i, yi, x

(1)
i , x

(2)
i ∈ HG({xi, x

′
i, vi, v�}) for every � ∈ [n]\{i},

we may assume that x′
i ∈ S implies S ∩ V (Gi) = {xi, x

′
i}. Altogether, for every

i ∈ [n], we obtain that

S ∩ V (Gi) ∈ {{xi, x
′
i}, {x̄i, x̄

′
i}} . (1)

Let S be the truth assignment, where we set xi to be true exactly if S ∩V (Gi) =
{xi, x

′
i}.

For j ∈ [m], let

Vj = {cj} ∪
⋃

i∈[n]:j=j
(1)
i

{
xi, x

(1)
i

}
∪

⋃

i∈[n]:j=j
(2)
i

{
xi, x

(2)
i

}
∪

⋃

i∈[n]:j=j
(3)
i

{x̄i} .

Fig. 3. The set V1 for the clause C1 = x1 ∨ x2 ∨ x̄3, where j
(1)
1 = j

(2)
2 = 1.

See Fig. 3 for an illustration. Note that NG(cj) \ Vj = C \ {cj}. Furthermore, if

i ∈ [n] is such that j = j
(1)
i , then NG

({
xi, x

(1)
i

})
\ Vj =

{
ui, x

(2)
i

}
, if i ∈ [n]

is such that j = j
(2)
i , then NG

({
xi, x

(2)
i

})
\ Vj =

{
ui, x

(1)
i

}
, and, if i ∈ [n] is

such that j = j
(3)
i , then NG ({x̄i}) \ Vj = {x′

i}. Since C \ {cj} is a clique, no
shortest path between two vertices in V (G) \ Vj intersects Vj only in cj . If a
shortest path P between two vertices in V (G)\Vj contains a vertex x

(r)
i from Vj

for some r ∈ [2], then, possibly exchanging xi with ui on P , we may assume that
P contains the vertex ui. Since every two vertices in {u1, . . . , un} ∪ {x′

1, . . . , x
′
n}

have distance at most three, no shortest path between two vertices in V (G) \ Vj

contains two vertices from

Vj ∩
({

x
(1)
1 , . . . , x(1)

n

}
∪

{
x
(2)
1 , . . . , x(2)

n

}
∪ {x̄1, . . . , x̄n}

)
.
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This implies that, since ui has distance at most two from each vertex in C \{cj}
for every i ∈ [n], no shortest path between two vertices in V (G) \ Vj contains a
vertex from

Vj ∩
({

x
(1)
1 , . . . , x(1)

n

}
∪

{
x
(2)
1 , . . . , x(2)

n

})
.

Similarly, since x′
i has distance at most two from each vertex in C \{cj} for every

i ∈ [n], no shortest path between two vertices in V (G) \ Vj contains a vertex
from

Vj ∩ {x̄1, . . . , x̄n} .

Altogether, it follows that V (G) \ Vj is convex, which implies that S intersects
⋃

i∈[n]:j=j
(1)
i

{
xi, x

(1)
i

}
∪

⋃

i∈[n]:j=j
(2)
i

{
xi, x

(2)
i

}
∪

⋃

i∈[n]:j=j
(3)
i

{x̄i}

for every j ∈ [m]. By (1) and the definition of S, this implies that S is a satisfying
truth assignment for C, which completes the proof. ��
Theorem 2. For a given P5-free graph G, and a given integer k, it is NP-
complete to decide whether i(G) ≤ k.

3 Efficiently Solvable Cases

As observed in the introduction, Araujo et al. [3] show that the hull number can
be computed in polynomial time for {C3, P5}-free graphs. We extend their result
in several ways.

The paw is the unique graph with degree sequence 1, 2, 2, 3. Note that the
paw arises by attaching an endvertex to one vertex of a triangle.

Theorem 3. The hull number of a given {paw, P5}-free graph can be computed
in polynomial time.

Proof. Let G be a {paw, P5}-free graph. Clearly, we may assume that G is con-
nected. If G is P4-free, then G is a cograph, and the statement follows from [12].
Hence, we may assume that G contains an induced path P : u1u2u3u4 of order
4. For a positive integer d, let Vd = {v ∈ V (G) : distG(v, V (P )) = d}, where
distG(v, V (P )) = min{distG(v, u) : u ∈ V (P )}. Let X be the union of V (P ) and
the set of all simplicial vertices. We will show that adding at most one vertex to
X yields a hull set of G, which implies that a minimum hull set can be found
efficiently. In fact, every hull set contains all simplicial vertices, and considering
the polynomially many extensions of the set of simplicial vertices by at most 5
vertices will yield a minimum hull set.

Let v ∈ V1. First, we assume that v is adjacent to u1. If v is adjacent to u2,
then, since G is paw-free, v is adjacent to all vertices of P . If v is not adjacent
to u2, then, since G is {paw, P5}-free, NG(v) ∩ V (P ) ∈ {{u1, u3}, {u1, u4}}.
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Next, we assume that v is not adjacent to u1 or u4. Since G is paw-free, we
obtain NG(v) ∩ V (P ) ∈ {{u2}, {u3}}. Altogether, by symmetry, we obtain that
NG(v) ∩ V (P ) is one of the sets {u2}, {u3}, {u1, u3}, {u2, u4}, {u1, u4}, and
V (P ). Note that a vertex v in V1 does not lie in HG(V (P )) ⊆ HG(X) only if
NG(v) ∩ V (P ) ∈ {{u2}, {u3}}.

If w ∈ V2, and v is a neighbor of w in V1, then, since G is {paw, P5}-free,
NG(v) ∩ V (P ) is one of the sets {u1, u3} and {u2, u4}. Since G is P5-free, this
implies V3 = ∅, that is, V (G) = V (P ) ∪ V1 ∪ V2. Suppose that w1 and w2 are
adjacent vertices in V2. Let w1vui be a path between w1 and V (P ). By symmetry,
we may assume that i < 4. Since G is paw-free, the vertex w2 is not adjacent to v.
Now, w2w1vuiui+1 is a P5. Hence, V2 is independent. Recall that every neighbor
v in V1 of a vertex in V2 lies in HG(V (P )). Therefore, every non-simplicial vertex
in V2 lies in HG(V (P )) ⊆ HG(X), that is, V (P ) ∪ V2 ⊆ HG(X).

Let V ′
1 be the set of non-simplicial vertices in V1 that do not belong to

HG(X). If V ′
1 = ∅, then V1 ⊆ HG(X), and X is a hull set. Hence, we may

assume that V ′
1 is not empty. If A = {v ∈ V ′

1 : NG(v) ∩ V (P ) = {u2}}, and
B = {v ∈ V ′

1 : NG(v) ∩ V (P ) = {u3}}, then V ′
1 = A ∪ B. Since G is paw-free,

the sets A and B are independent. Since every vertex in V ′
1 is non-simplicial,

it has two non-adjacent neighbors, at least one of which does not belong to
HG(X). It follows that every vertex in A has a neighbor in B, and every vertex
in B has a neighbor in A. Note that this implies that A and B are both not
empty. Let H be the bipartite induced subgraph G[A ∪ B] of G with partite
sets A and B. If a1, a2 ∈ A and b1, b2 ∈ B are such that a1b1, a2b2 ∈ E(G) and
a1b2, a2b1 �∈ E(G), then b1a1u2a2b2 is a P5. Hence, H is 2K2-free. Let a1 be a
vertex in A of maximum degree dH(a1) in H. Suppose that a1 is not adjacent
to some vertex b2 in B. Let a2 be a neighbor of b2 in A. Since dH(a1) ≥ dH(a2),
there is a neighbor b1 of a1 in B that is not adjacent to a2. Now, a1, a2 ∈ A and
b1, b2 ∈ B are as above, which is a contradiction. Hence, NH(a1) = B, which
implies that B ⊆ HG({a1, u3}) ⊆ HG(X ∪ {a1}). Since A ⊆ HG(B ∪ {u2}), it
follows that V ′

1 ⊆ HG(X ∪{a1}), that is, X ∪{a1} is a hull set, which completes
the proof. ��

We proceed to our next generalization of the result of Araujo et al. [3].

Theorem 4. Let k be a fixed positive integer.
For a given {Ci : 3 ≤ i ≤ k − 2} ∪ {Pk}-free graph G, the hull number h(G)

can be computed in polynomial time.

Proof. The proof is by induction on k. For k ≤ 4, the graph G is a cograph, and
the statement follows from [12]. For k = 5, the statement follows from the result
of Araujo et al. [3], or from Theorem 3. Now, let k ≥ 6. The proof for k = 6
is similar to the proof of Theorem 3, and is given in the appendix. Hence, let
k ≥ 7.

Let G be a connected {Ci : 3 ≤ i ≤ k−2}∪{Pk}-free graph. If G is Pk−1-free,
then the result follows by induction. Hence, we may assume that G contains an
induced path P : u1 . . . uk−1 of order k − 1. Let X be the union of V (P ) and
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the set of all simplicial vertices. We will show that X is a hull set of G, which
implies that a minimum hull set can be found efficiently. ��
Claim 1. G has only cycles of orders k − 1 and k, and every cycle of G is
induced.

Proof. Suppose that G has a cycle of order at least k + 1. Let C : x0 . . . x�−1x0

be a shortest cycle in G of order � at least k + 1. Since G is Pk-free, the cycle C
is not induced. Let xixj be an edge such that j − i = distC(xi, xj) is minimum.
By symmetry, we may assume that i = 0. Since x0x1 . . . xjx0 is an induced
cycle of order j + 1, we obtain j ≥ k − 2. Since x0x1 . . . xj−1 is an induced
path of order j, we obtain j ≤ k − 1, that is, j ∈ {k − 2, k − 1}. First, we
assume that j = k − 1. Since the path x1x2 . . . xk is not induced, the choice
of xixj implies that x1xk is an edge. Now, x1xkxk−1x0x1 is a cycle of order
4, which is a contradiction. Hence j = k − 2. Since the path x1x2 . . . xk is
not induced, the choice of xixj implies that there is an edge between {x1, x2}
and {xk−1, xk}. Since G is {C4, C5}-free, we obtain that x2xk is an edge. Since
x0x1x2xkxk−1xk−2x0 is an induced cycle of order 6, we obtain k = 7, which
implies j = 5 and � ≥ 8. Since x0x5x4x3x2x7x8 . . . x0 is a cycle of order � − 2,
the choice of C implies � ≤ 9. Now, x0x5x6 . . . x�−1x0 is a cycle of order �−4 ≤ 5,
which is a contradiction. Hence, G has no cycle of order at least k+1. In view of
the forbidden induced subgraphs, this implies that G has only cycles of orders
k − 1 or k, and that every cycle of G is induced. ��

For a positive integer d, let Vd = {v ∈ V (G) : distG(v, V (P )) = d}.

Claim 2. Vd �= ∅ implies d ≤ ⌊
k
2

⌋ − 1.

Proof. Suppose that Vd is non-empty for some d ≥ ⌊
k
2

⌋
. Let x0 . . . xd be

a shortest path between a vertex x0 in Vd and some vertex xd of P . By
symmetry, we may assume that xd = ui, where i ≥ ⌈

k
2

⌉
. If xd−1 has a

neighbor in
{
uj : i − ⌈

k−2
2

⌉ ≤ j ≤ i − 1
}
, then G has a cycle of order at most⌈

k−2
2

⌉
+2 ≤ k−2, which is a contradiction. Hence, x0 . . . xdui−1ui−2 . . . ui− k−2

2 �
is an induced path of order d + 1 +

⌈
k−2
2

⌉ ≥ ⌊
k
2

⌋
+ 1 +

⌈
k−2
2

⌉
= k, which is a

contradiction. ��
Claim 3. For every d at least 2, every vertex in Vd has exactly one neighbor in
Vd−1.

Proof. Suppose that for some d at least 2, some vertex in Vd has two neighbors
in Vd−1. This implies the existence of two distinct paths Q : x0x1 . . . xd and
Q′ : x0x

′
1 . . . x′

d between some vertex x0 in Vd and vertices xd and x′
d of P . Since

2d ≤ k−2, we obtain that V (Q)∩V (Q′) = {x0}. Let xd = ui and x′
d = uj , where

j > i. The union of Q, Q′, and the path ui . . . uj is a cycle C. First, we assume
that C has order k. Recall that, by Claim 1, all cycles of G are induced. Since
d ≥ 2, we obtain j − i = k − 2d ≤ k − 4. Hence, since P has order k − 1, we may
assume that i ≥ 2. Since the path ui−1 . . . ujx

′
d−1 . . . x′

1x0x1 . . . xd−2 of order k
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is not induced, we obtain that ui−1 is adjacent to x′
d−1. By Claim 1, this implies

that j − i ≤ 2. Now, ui−1 . . . ujx
′
d−1ui−1 is a cycle of order at most 5, which is a

contradiction. Hence, by Claim 1, the order of C is k −1. Since d ≥ 2, we obtain
j−i ≤ k−5. Hence, since P has order k−1, we may assume that i ≥ 3. Similarly
as above, we obtain that x′

d−1 is adjacent to ui−1 or ui−2. If x′
d−1 is adjacent

to ui−1, then j − i = 1, and ui−1uiujx
′
d−1ui−1 is a cycle of order 4, which is

a contradiction. Hence, x′
d−1 is adjacent to ui−2. By Claim 1, this implies that

j − i ≤ 2. Similarly as above, if j − i = 1, then G contains a cycle of order 5,
which is a contradiction. Hence j − i = 2, and ui−2 . . . ujx

′
d−1ui−2 is a cycle of

order 6, which implies that k = 7 and d = 2. If j ≤ 5, then ui−1x2x1x0x
′
1x

′
2uj+1

is an induced path of order 7, which is a contradiction. Hence j = 6, which
implies that i = j − 2 = 4. Now, u1u2x

′
1x0x1u4u5 is an induced path of order 7,

which is a contradiction. ��
Claim 4. For every d at least 2, the set Vd is independent.

Proof. Suppose that for some d at least 2, the set Vd is not independent. This
implies the existence of two distinct paths Q : x0x1 . . . xd and Q′ : x′

0x
′
1 . . . x′

d

between two adjacent vertices x0 and x′
0 in Vd and vertices xd and x′

d of P . If
V (Q)∩V (Q′) �= ∅, then Claims 1 and 2 imply that xd = x′

d, V (Q)∩V (Q′) = {xd},
and d = k

2 − 1. By symmetry, we may assume that xd = ui, where i ≥ 3. Now,
ui−2ui−1xdxd−1 . . . x1x0x

′
0x

′
1 . . . x′

d−2 is an induced path of order k, which is a
contradiction. Hence, V (Q) ∩ V (Q′) = ∅. Let xd = ui and x′

d = uj , where j > i.
The union of Q, Q′, the edge x0x

′
0, and the path ui . . . uj is a cycle C. First,

we assume that C has order k. Since d ≥ 2, we obtain j − i = k − 2d − 1 ≤
k − 5. Hence, since P has order k − 1, we may assume that i ≥ 2. Since the
path ui−1 . . . ujx

′
d−1 . . . x′

1x
′
0x0x1 . . . xd−2 of order k is not induced, we obtain

that ui−1 is adjacent to x′
d−1. By Claim 1, this implies that j − i ≤ 2. Now,

ui−1 . . . ujx
′
d−1ui−1 is a cycle of order at most 5, which is a contradiction. Hence,

by Claim 1, the order of C is k−1. Since d ≥ 2, we obtain j−i = k−1−2d−1 ≤
k − 6. Hence, since P has order k − 1, we may assume that i ≥ 3. Similarly as in
the proof of Claim 3, we obtain that x′

d−1 is adjacent to ui−2. By Claim 1, this
implies that j − i ≤ 2. Similarly as above, if j − i = 1, then G contains a cycle
of order 5, which is a contradiction. Hence j − i = 2, and ui−2 . . . ujx

′
d−1ui−2 is

a cycle of order 6, which implies that k = 7. Now, j − i ≤ k − 6 = 1, which is a
contradiction. ��

Recall that X is the union of V (P ) and the set of all simplicial vertices.
Let u ∈ Vd for some d ≥ 2. Let d′ ≥ d and u′ ∈ Vd′ be such that u lies on a

shortest path between u′ and some vertex of P , and d′ is maximum. Note that
d′ = d and u′ = u is allowed. Since u′ has no neighbor in Vd′+1, Claims 3 and 4
imply that u′ is simplicial, and, hence, u ∈ HG({u′} ∪ V (P )) ⊆ HG(X).

Let u ∈ V1 \HG(X). It follows that u does not have two neighbors on P , and
also no neighbor in V2. Since u is not simplicial, this implies that u has exactly
one neighbor ui on P as well as some neighbor u′ in V1. Let uj be a neighbor
of u′ on P . Clearly, i �= j. Note that uiuu′uj is a path of order 4. Hence, since
u �∈ HG(V (P )), the distance in G between ui and uj is at most 2, which implies
the contradiction that G contains a cycle of order at most 5.
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It follows that X is a hull set of G, which completes the proof. ��
We present another generalization of the result of Araujo et al. [3], and

consider triangle-free graphs in which every six vertices induce at most one P5.
Obviously, these graphs have been inspired by the (q, q − 4)-graphs [5], and,
consequently, we refer to them as (6,1)-graphs.

Theorem 5. If G is a connected triangle-free (6, 1)-graph, then either G is P5-
free or G arises from a star K1,p with p ≥ 2 by subdividing two edges once and
all remaining edges at most once.

Corollary 1. The hull number of a given triangle-free (6, 1)-graph can be com-
puted in polynomial time.

Using the structural properties of (q, q − 4)-graphs [5,7], and establishing
suitable recursions for the convexity parameters, we obtain our final result.

Theorem 6. Let q be a fixed integer at least 4.
For a given (q, q−4)-graph G, all parameters h(G), h′(G), i(G), i′(G), cx(G),

cx′(G), cth(G), cth′(G), r(G), and r′(G) can be computed in polynomial time.

4 Conclusion

We conclude with a number of questions. Can the considered parameters be
determined in linear time for (q, q − 4)-graphs? What is the complexity of the
hull number for Pk-free graphs for k ∈ {5, 6, 7, 8}? What is the complexity of
the other convexity parameters for {Ci : 3 ≤ i ≤ k − 2} ∪ {Pk}-free graphs or
(triangle-free) (6, 1)-graphs?

For an integer q at least 5, let the (q, q − 5)-graphs be those graphs in which
every q vertices induce at most q−5 distinct P5s. Do the (triangle-free) (q, q−5)-
graphs allow a similar decomposition as the (q, q − 4)-graphs [5,7]? Do these
graphs have nice structural features?
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Abstract. In a finite undirected graph G = (V,E), a vertex v ∈ V dom-
inates itself and its neighbors in G. A vertex set D ⊆ V is an efficient
dominating set (e.d.s. for short) of G if every v ∈ V is dominated in G by
exactly one vertex of D. The Efficient Domination (ED) problem, which
asks for the existence of an e.d.s. in G, is known to be NP-complete for
P7-free graphs and solvable in polynomial time for P5-free graphs. The
P6-free case was the last open question for the complexity of ED on
F -free graphs.

Recently, Lokshtanov, Pilipczuk and van Leeuwen showed that
weighted ED is solvable in polynomial time for P6-free graphs, based
on their quasi-polynomial algorithm for the Maximum Weight Indepen-
dent Set problem for P6-free graphs. Independently, by a direct app-
roach which is simpler and faster, we found an O(n5m) time solution for
weighted ED on P6-free graphs. Moreover, we showed that weighted ED
is solvable in linear time for P5-free graphs which solves another open
question for the complexity of (weighted) ED.

1 Introduction

Let G = (V,E) be a finite undirected graph without loops and multiple edges;
let |V | = n and |E| = m. A vertex v ∈ V dominates itself and its neighbors.
A vertex subset D ⊆ V is an efficient dominating set (e.d.s. for short) of G if
every vertex of G is dominated by exactly one vertex in D.

The notion of efficient domination was introduced by Biggs [1] under the
name perfect code. Note that not every graph has an e.d.s.; the Efficient Dom-
inating Set (ED) problem asks for the existence of an e.d.s. in a given graph G.
We can assume that G is connected; if not then the ED problem for G can be
splitted into ED for each of its connected components. If a graph G with vertex
weight function w : V → Z ∪ {∞,−∞} and an integer k is given, the Minimum
Weight Efficient Dominating Set (WED) problem asks whether G has an
e.d.s. D of total weight w(D) := Σx∈Dw(x) ≤ k.

As mentioned in [4], the maximization version of WED can be defined analo-
gously, replacing the condition w(D) ≤ k with w(D) ≥ k. Since negative weights
c© Springer-Verlag GmbH Germany 2016
P. Heggernes (Ed.): WG 2016, LNCS 9941, pp. 38–49, 2016.
DOI: 10.1007/978-3-662-53536-3 4
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are allowed, the maximization version of WED is equivalent to its minimization
version; subsequently we restrict the problem to the minimization version WED.
The vertex weight ∞ plays a special role; vertices which are definitely not in any
e.d.s. get weight ∞, and thus, in the WED problem we are asking for an e.d.s.
of finite minimum weight. Let γed(G,w) denote the minimum weight of an e.d.s.
in G. We call a vertex x ∈ V forced if x is contained in every e.d.s. of finite
weight in G.

The importance of the ED problem for graphs mostly results from the fact
that it is a special case of the Exact Cover problem for hypergraphs (prob-
lem [SP2] of [9]); ED is the Exact Cover problem for the closed neighborhood
hypergraph of G.

For a subset U ⊆ V , let G[U ] denote the induced subgraph of G with vertex
set U . For a graph F , a graph G is F -free if G does not contain any induced
subgraph isomorphic to F . Let Pk denote a chordless path with k vertices. F +F ′

denotes the disjoint union of graphs F and F ′; for example, 2P3 denotes P3+P3.
Many papers have studied the complexity of ED on special graph classes - see

e.g. [3–6,12] for references. In particular, a standard reduction from the Exact
Cover problem shows that ED remains NP-complete for 2P3-free (and thus, for
P7-free) chordal graphs. For P6-free graphs, the question whether ED can be
solved in polynomial time was the last open case for F -free graphs [5]; it was
the main open question in [6]. As a first step towards a dichotomy, it was shown
in [3] that for P6-free chordal graphs, WED is solvable in polynomial time.

Recently, it has been shown by Lokshtanov et al. [10] that WED is solvable in
polynomial time for P6-free graphs (the time bound is more than O(n500)). Their
result for WED is based on their quasi-polynomial algorithm for the Maximum
Weight Independent Set problem for P6-free graphs. Independently, in [7] we
found a polynomial time solution for WED on P6-free graphs using a direct
approach which is simpler than the one in [10] and leads to the much better time
bound O(n5m). According to [5], the results of [7,10] finally lead to a dichotomy
for the WED problem on Pk-free graphs and moreover on F -free graphs.

In our approach, we need the following notion: A graph G = (V,E) is unipolar
if there is a partition of V into sets A and B such that G[A] is P3-free (i.e., the
disjoint union of cliques) and G[B] is a complete graph. See e.g. [8,11] for recent
work on unipolar graphs. Note that ED remains NP-complete for unipolar graphs
[8] (which can also be seen by the standard reduction from Exact Cover; there,
every clique in G[A] has only two vertices). Clearly, every unipolar graph is 2P3-
free and thus P7-free. It follows that for each k ≥ 7, WED is NP-complete for
Pk-free unipolar graphs.

The main results of this paper are the following:

1. In Sect. 2, we give a polynomial time reduction of the WED problem for
P6-free graphs to WED for P6-free unipolar graphs.

2. In Sect. 3, we solve WED for P6-free unipolar graphs in polynomial time.
3. In Sect. 4, we describe the polynomial time algorithm for the WED problem

on P6-free graphs. Thus, we obtain a dichotomy for the WED problem on
F -free graphs, and in particular on Pk-free graphs and on Pk-free unipolar
graphs.
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In the full version of this paper, we describe a linear time algorithm for
WED on P5-free graphs based on modular decomposition (see [2] for details);
this answers another open question in [6].

Due to space limitation, most of the proofs and the linear time algorithm for
WED on P5-free graphs cannot be given here.

2 Reducing WED on P6-Free Graphs
to WED on P6-Free Unipolar Graphs

Throughout this section, let G = (V,E) be a connected P6-free graph. Subse-
quently we consider the distance levels of v ∈ V according to the usual approach
which is used already in various papers such as [6]. For v ∈ V , let Ni(v) denote
the i-th distance level of v, that is Ni(v) = {u ∈ V | dG(u, v) = i}. Then, since
G is P6-free, we have Ni(v) = ∅ for each i ≥ 5. If v ∈ D for an e.d.s. D of G
then, by the e.d.s. property, we have

(N1(v) ∪ N2(v)) ∩ D = ∅. (1)

Let Gv := (N2(v)∪N3(v)∪N4(v), Ev) such that N2(v) is turned into a clique
by correspondingly adding edges, i.e., Ev = E′ ∪ F where E′ is the set of the
original edges in G[N2(v)∪N3(v)∪N4(v)] and F is the set of new edges turning
N2(v) into a clique, and let w(x) := ∞ for every x ∈ N2(v). We first claim:

Proposition 1. Gv is P6-free.

Proof. Suppose to the contrary that there is a P6 P in Gv, say with vertices
a, b, c, d, e, f and edges ab, bc, cd, de, ef . If {ab, bc, cd, de, ef} ∩ F = ∅ then P
would be a P6 in G which is a contradiction. Thus, {ab, bc, cd, de, ef} ∩ F �= ∅.
Then clearly, |{ab, bc, cd, de, ef} ∩ F | = 1 since N2(v) is a clique in Gv. Now in
any case, we get a P6 in G by adding N [v] and the corresponding edges in N [v]
and between N1(v) and N2(v) which is a contradiction. �

Obviously, the following holds:

Proposition 2.

(i) For vertex v ∈ V with w(v) < ∞, D is a finite weight e.d.s. in G with v ∈ D
if and only if D \ {v} is a finite weight e.d.s. in Gv.

(ii) Thus, if for every v ∈ V , WED is solvable in time T for Gv then WED is
solvable in time n · T for G.

From now on, let D(v) denote an e.d.s. of finite weight of Gv. We call a vertex
x v-forced if x ∈ D(v) for every e.d.s. D(v) of finite weight of Gv and v-excluded
if x /∈ D(v) for every such e.d.s. D(v) of Gv. Clearly, if x is v-excluded then we
can set w(x) = ∞, e.g., for all x ∈ N2(v), w(x) = ∞ as above.

Let Q1, . . . , Qr denote the connected components of Gv[N3(v) ∪ N4(v)] (i.e.,
of G[N3(v) ∪ N4(v)]). By (1), we have:

For each i ∈ {1, . . . , r}, we have |Qi ∩ D(v)| ≥ 1. (2)
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Clearly, the D(v)-candidates in Qi must have finite weight.
A component Qi is trivial if |Qi| = 1. Obviously, by (2), the vertices of the

trivial components are v-forced.
Clearly, since D(v) is an e.d.s. of finite weight, every x ∈ N2(v) must contact

a component Qi for some i ∈ {1, . . . , r}.

2.1 Join-Reduction

Now we consider a graph G = (A ∪ B,E) such that A1, . . . , Ak are the com-
ponents of G[A], and a vertex weight function w with w(b) = ∞ for all b ∈ B.
Assume that G has an e.d.s. D of finite weight. As above, we can assume that
every component Ai is nontrivial since any trivial component Ai consists of a
forced D-vertex.

By the e.d.s. property of D, we have (analogously to condition (2)):

For every x ∈ B, x 1©Ai for at most one i ∈ {1, . . . , k}. (3)

Thus, from now on, we can assume that every vertex x ∈ B has a join to
at most one component Ai. Moreover, if x 1©Ai for some i ∈ {1, . . . , k} then for
every neighbor y ∈ Aj of x, j �= i, y /∈ D, i.e., we can set w(y) = ∞, and thus,
y /∈ D for any e.d.s. D of finite weight of G.

For any vertex x ∈ B with x 1©Ai for exactly one i ∈ {1, . . . , k}, by the e.d.s.
property of D, |D ∩ Ai| ≥ 2 is impossible. Thus, x is correctly dominated if
|D ∩ Ai| = 1, that is, the D-candidates in Ai are universal for Ai; let Ui denote
the set of universal vertices in Ai (note that Ui is a clique). Clearly, for x 1©Ai

we have:

If Ui = ∅ then Ghas no finite weight e.d.s. (4)

Thus, for every Ai such that there is a vertex x ∈ B with x 1©Ai, we can
reduce Ai to the clique Ui, we can omit x in B, and for every neighbor y ∈ Aj

of x, j �= i, we set w(y) = ∞. The following algorithm is needed twice in this
manuscript:

Join-Reduction Algorithm

Given: A graph G = (A ∪ B,E) such that A1, . . . , Ak are the components of
G[A], and a vertex weight function w with w(b) = ∞ for all b ∈ B.

Task: Reduce G in time O(n3) to an induced subgraph G′ = (A′ ∪ B′, E′) with
weight function w′ and components A′

1, . . . , A
′
k of G[A′] such that we have:

(i) For every b ∈ B′ and every i ∈ {1, . . . , k}, if b contacts (nontrivial) compo-
nent A′

i then b distinguishes A′
i.

(ii) γed(G,w) = γed(G′, w′) < ∞ or state that G has no such e.d.s.
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begin

(a) Determine the sets
Bjoin := {b ∈ B | there is an i ∈ {1, . . . , k} with b 1©Ai} and
Ajoin := {Ai | i ∈ {1, . . . , k} and there is a b ∈ B with b 1©Ai}.

(b) If there is a vertex b ∈ Bjoin and there are i �= j with b 1©Ai and b 1©Aj then
STOP − G does not have an e.d.s. of finite weight.
{From now on, every b ∈ Bjoin has a join to exactly one Ai ∈ Ajoin.}

(c) For all b ∈ Bjoin and Ai ∈ Ajoin such that b 1©Ai do
begin

(c.1) Determine the set Ui of universal vertices in Ai. If Ui = ∅ then STOP − G
does not have an e.d.s. of finite weight else set A′

i := Ui.
(c.2) For every neighbor y ∈ A \ Ai of b, set w′(y) := ∞.
end

(d) For every Ai /∈ Ajoin, set A′
i := Ai, and finally set A′ := A′

1 ∪ . . . ∪ A′
k, B′ :=

B \ Bjoin and G′ := G[A′ ∪ B′].

end

Lemma 1. The Join-Reduction Algorithm is correct and can be done in time
O(n3).

For applying the Join-Reduction Algorithm to Gv, we set B := N2(v) and
A := N3(v) ∪ N4(v). For reducing WED on G to WED on a unipolar graph G′,
this is a first step which, by condition (i) of the Task, leads to the fact that
finally, for every nontrivial component Qj of G[N3(v) ∪ N4(v)], every vertex in
N2(v) which contacts Qj also distinguishes Qj .

2.2 Component-Reduction

Let G′
v = (A′ ∪B′, E′) be the result of applying the Join-Reduction algorithm to

Gv; let B′ be the corresponding subset of N2(v) and let A′ be the corresponding
subset of N3(v) ∪ N4(v). Recall that in G′

v, B′ is a clique. In the next step, we
reduce WED for Gv to WED for unipolar graphs.

We consider the components Qi of G′
v[A′] which are not yet a clique; as

already mentioned, we can assume that if x ∈ B′ has a neighbor in Qi then it
has a neighbor and a non-neighbor in Qi. For 1 ≤ i ≤ r, let Q+

i (x) := Qi ∩N(x)
and Q−

i (x) := Qi \ N(x). Since Qi is connected, we have: If x distinguishes Qi

then it distinguishes an edge in Qi.
For x, x′ ∈ B′ and edges y1z1 in Qi, y2z2 in Qj , i �= j, let xy1 ∈ E, xz1 /∈ E

and x′y2 ∈ E, x′z2 /∈ E. Then, since G and Gv are P6-free, we have:

xy2 ∈ E or xz2 ∈ E or x′y1 ∈ E or x′z1 ∈ E. (5)

Another useful P6-freeness argument is the following:

Forx ∈ B′ and y ∈ Q+
i (x), y does not distinguish any edge inQ−

i (x). (6)
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We claim:

There is a vertex b∗ ∈ B′ which contacts Qi for every i ∈ {1, . . . , r}. (7)

Let q∗ ∈ D(v) be the vertex dominating b∗; without loss of generality assume
that q∗ ∈ Q1, and let D(v, q∗) denote a finite weight e.d.s. of Gv containing q∗.
Q1 is partitioned into

Z := N [q∗] ∩ Q1,
W := Q1 ∩ N(b∗) \ Z, and
Y := Q1 \ (Z ∪ W ).

Then clearly, the following properties hold:

Lemma 2.

(i) Z ∩ D(v, q∗) = {q∗}.
(ii) W ∩ D(v, q∗) = ∅.

(iii) Z 0©Y .
(iv) For every component K of G[Y ], the set of D(v, q∗)-candidate vertices in

K is a clique.

For the algorithmic approach, we set w(y) = ∞ for every y ∈ W and for
every non-universal vertex y ∈ K in any component K of Gv[Y ].

For i ≥ 2, let Q+
i := Qi ∩ N(b∗) and Q−

i := Qi \ N(b∗). Clearly, by the
e.d.s. property, for every i ≥ 2, Q+

i ∩ D(v, q∗) = ∅; set w(y) = ∞ for every y ∈
Q+

i . Thus, the components of G[Q−
i ] must contain the corresponding D(v, q∗)-

vertices.
Again, as in Lemma 2 (iv), for each such component K, the D(v, q∗)-

candidates must be universal vertices for K since by (6), two such D(v, q∗)-
candidates in K would have a common neighbor in Q+

i , i.e., only the universal
vertices of component K are the D(v, q∗)-candidate vertices; set w(y) = ∞ for
every non-universal vertex y ∈ K.

Let I := {a ∈ A′ : w(a) = ∞}. Then I admits a partition {I1, I2, I3} as
defined below:

– I1 is formed by those vertices of I which are either in Z, or in Y , or in Q−
i for

i ≥ 2.
– I2 is formed by those vertices of I which are either in W and contact exactly

one component of G[Y ] or in Q+
i and contact exactly one component of G[Q−

i ]
for i ≥ 2.

– I3 is formed by those vertices of I which are either in W \ I2 or in Q+
i \ I2 for

i ≥ 2.

Note that we have:

(a) By construction and by the e.d.s. property, if I3 �= ∅ then D(v, q∗) does not
exist (in fact each vertex of I3 either would not be dominated by any D(v, q∗)-
candidate or would be dominated by more than one D(v, q∗)-candidate).
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(b) By construction, if D(v, q∗) exists then D(v, q∗) is an e.d.s. of G′
v[(A′ ∪B′)\

(I1 ∪ I2)] as well; in particular, by construction and by (6), each vertex of
I1 ∪ I2 is dominated in G′

v by exactly one vertex of D(v, q∗); then vertices
of I1 ∪ I2 can be removed.

(c) G′
v[(A′ ∪ B′) \ (I1 ∪ I2)] is unipolar (once assuming that I3 = ∅).

Then for every potential D(v)-neighbor q∗ of b∗, we can reduce the WED
problem for G′

v to the WED problem for G′
v(q∗) consisting of B′ and the P3-

free subgraph induced by {q∗} and by the corresponding cliques of universal
vertices in components K as described above with respect to D(v, q∗). Clearly,
the D(v, q∗)-candidates in the cliques of the P3-free subgraph can be chosen
corresponding to optimal weights.

Summarizing, we can do the following:

Component-Reduction Algorithm

Given: The result H = G′
v = (A′ ∪ B′, E′) with vertex weight function w of

applying the Join-Reduction algorithm to Gv such that K1, . . . ,Ks denote the
clique components and Q1, . . . , Qr denote the non-clique components of G′

v[A′].

Task: Reduce H in time O(n3) to (less than n) unipolar graphs H� = G′(q∗)
with weight function w�, 1 ≤ � < n, such that γed(H,w) = min� γed(H�, w�) or
state that H has no e.d.s. of finite weight.

begin

(a) Determine a vertex b∗ ∈ B′ contacting every Qi, i ∈ {1, . . . , r}.
(b) For every q∗ ∈ N(b∗)∩A′ with w(q∗) < ∞, say q∗ ∈ Qi, reduce Qi according

to Lemma 2 and for all j, j �= i, reduce Qj according to the paragraph after
the proof of Lemma 2 such that finally, the resulting subgraph G′(q∗) is
unipolar.

end

Lemma 3. The Component-Reduction Algorithm is correct and can be done in
time O(n3).

Corollary 1. If WED is solvable in polynomial time on P6-free unipolar graphs
then it is solvable in polynomial time on P6-free graphs.

3 Solving WED on P6-Free Unipolar Graphs
in Polynomial Time

Throughout this section, let G = (V,E) be a connected P6-free unipolar graph
with partition V = A ∪ B such that G[A] is the disjoint union of cliques
A1, . . . , Ak, and G[B] is a complete subgraph. Clearly, if k ≤ 3 then every e.d.s. of
G contains at most four vertices. Thus, from now on, we can assume that k ≥ 4.
In particular, for any e.d.s. D of G, |D ∩ B| ≤ 1. Thus, WED for such graphs is
solvable in polynomial time if and only if WED is solvable in polynomial time
for e.d.s. D with B ∩ D = ∅.

Clearly, for a P6-free unipolar graph, the following holds (recall (5)):
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Claim 1. If for distinct b1, b2 ∈ B, b1 distinguishes an edge x1x2 in Ai and b2
distinguishes an edge y1y2 in Aj, i �= j, then either b2 contacts {x1, x2} or b1
contacts {y1, y2}.

The key result of this section is the following:

Lemma 4. For connected unipolar graphs fulfilling Claim 1, it can be checked
in polynomial time whether G has a finite weight e.d.s. D with B ∩ D = ∅.

Lemma 4 is based on various propositions described subsequently. As a first
step, we again reduce G corresponding to the Join-Reduction Algorithm of
Sect. 2: Since B ∩ D = ∅, clearly, |D ∩ Ai| = 1 for every i ∈ {1, . . . , k}. Thus, if
Ai = {ai} then ai is a forced D-vertex; from now on, we can assume that every
Ai is nontrivial.

Moreover, every b ∈ B must contact at least one Ai, and if b has a join to
two components Ai, Aj , i �= j, then G does not have an e.d.s. Thus, by (3) and
the subsequent paragraph in Sect. 2, from now on, we can assume that no vertex
b ∈ B has a join to any Ai, i.e., if b contacts Ai then it distinguishes Ai.

Again, as by (7), there is a vertex b∗ ∈ B which contacts every Ai. However,
we need a stronger property. For this, we define the following notions:

Definition 1. For vertices b1, b2 ∈ B and a nontrivial component K = Ai of A,
we say:

(i) b2 overtakes b1 for K if b2 distinguishes an edge in K \ N(b1).
(ii) b2 includes b1 for K if N(b2) ∩ K ⊇ N(b1) ∩ K.

(iii) b2 strictly includes b1 for K if N(b2) ∩ K ⊃ N(b1) ∩ K.
(iv) b1 and b2 cover K if N(b1) ∪ N(b2) = K.
(v) b1 → b2 if b2 overtakes b1 for at least three distinct nontrivial components

of A.
(vi) b∗ ∈ B is a good vertex of B if for none of the vertices b ∈ B \{b∗}, b∗ → b

holds.

Assume that G has an e.d.s. D of finite weight.

Claim 2. For vertices b1, b2 ∈ B, we have:

(i) b1 and b2 cover at most two Ai, Aj, i, j ∈ {1, . . . , k}, i �= j.
(ii) If b2 overtakes b1 for Ai then for any Aj, j �= i, b1 does not overtake b2.

(iii) If b2 overtakes b1 for some Ai, Aj, i �= j, then b2 strictly includes b1 for
Ai, Aj.

(iv) If b2 overtakes b1 for some Ai, Aj, i �= j, then b2 includes b1 for all but at
most two A�, 1 ≤ � ≤ k.

(v) If b2 strictly includes b1 for some Ai then b2 includes b1 for all but at most
two A�, 1 ≤ � ≤ k.

Let H = (B,F ) denote the directed graph with vertex set B and edges
b → b′ ∈ F as in Definition 1 (v). Thus, a good vertex of B is one with outdegree 0
with respect to H. As usual, H is a directed acyclic graph (dag for short) if there
is no directed cycle in H.
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Claim 3. H is a dag.

It is well known that any dag has a vertex with outdegree 0. Thus, Claim 3
implies:

Claim 4. There is a good vertex b∗ ∈ B.

Let b∗ be such a good vertex. Then, since by the condition in Lemma4,
B ∩ D = ∅, b∗ must have a D-neighbor a∗ ∈ A ∩ N(b∗) ∩ D; the algorithm tries
all possible vertices in A ∩ N(b∗). Let D(a∗) denote an e.d.s. with a∗ ∈ D(a∗);
without loss of generality, assume that a∗ ∈ A1. Clearly, (A1 \{a∗})∩D(a∗) = ∅.
Without loss of generality, let us assume that A1 = {a∗}. Since a∗ dominates
b∗, each neighbor of b∗ in Ai, i ≥ 2, is not in D(a∗). For i ∈ {2, . . . , k}, let
A′

i := Ai \ N(b∗), and let A′ = {a∗} ∪ A′
2 ∪ . . . ∪ A′

k. Obviously, we have:

(a) For each A′
i, |A′

i ∩ D(a∗)| = 1.
Moreover, as before, we can assume:

(b) For each vertex b ∈ B, b does not have a join to two distinct A′
i, A′

j , i �= j.
(c) If vertex b ∈ B has a join to exactly one A′

i then it does not contact the
remaining components A′

j , j �= i.
Thus, again by (3) and the subsequent paragraph in Sect. 2, from now on,
we can assume that no vertex b ∈ B has a join to any Ai, i.e., if b contacts
Ai then it distinguishes Ai. Next we claim:

(d) At most two distinct components A′
i, A

′
j are distinguished by some vertex

of B \ {b∗}.

Summarizing, by the above, D(a∗) exists if and only if

(i) the above properties hold and
(ii) G[A′ ∪ B] has a (weighted) e.d.s. D(a∗) with B ∩ D(a∗) = ∅.

Checking (i) can be done in polynomial time (actually one should just check
if some of the above properties hold). Checking (ii) can be done in polynomial
time as shown below: For the components of G[A′], let

– C1(A′) be the set of those components of G[A′] which are not distinguished
by any vertex of B, and

– C2(A′) be the set of those components of G[A′] which are distinguished by
some vertex of B.

For each member K of C1(A′), any vertex of K (of minimum weight, for
WED) can be assumed to be the only vertex in D(a∗) ∩ K, without loss of gen-
erality since such vertices form a clique and have respectively the same neighbors
in G[(A′ ∪ B) \ K] (for WED, one can select a vertex of minimum weight).

Concerning C2(A′), we have |C2(A′)| ≤ 2 by property (d). Then the set
{(a∗, a2, . . . , ak) | ai ∈ A′

i, i ∈ {2, . . . , k}} of k-tuples of candidate vertices in
D(a∗) contains O(n2) members by property (d). Thus one can check in polyno-
mial time if D(a∗) exists.
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Algorithm WED for P6-free unipolar graphs

Given: A connected P6-free unipolar graph G = (A ∪ B,E) such that B is a
clique and G[A] is the disjoint union of cliques A1, . . . , Ak.

Task: Determine an e.d.s. of G with minimum finite weight if there is one or
state that G does not have such an e.d.s.

(a) Reduce G to G′ by the Join-Reduction Algorithm. {From now on, we can
assume that for every b ∈ B and every i ∈ {1, . . . , k}, b distinguishes Ai if b
contacts Ai.}

(b) Construct the dag H according to Definition 1 (v), and determine a good
vertex b∗ ∈ B in H.

(c) For every neighbor a∗ ∈ A′ of b∗, determine the O(n2) possible tuples of
D(a∗)-candidates and check whether they are an e.d.s. of finite weight.

(d) Finally, choose an e.d.s. of minimum finite weight or state that G′ does not
have such an e.d.s.

Theorem 1. Algorithm WED for P6-free unipolar graphs is correct and can be
done in time O(n3m).

4 The Algorithm for WED on P6-Free Graphs

By combining the principles described above (and in particular by Corollary 1,
Lemma 4, and Theorem 1) we obtain:

Algorithm WED for P6-free graphs

Given: A P6-free graph G = (V,E).

Task: Determine an e.d.s. of G with minimum finite weight if there is one or
state that G does not have such an e.d.s.
For every v ∈ V do
begin

(a) Determine the distance levels Ni(v), 1 ≤ i ≤ 4.
(b) For Gv as defined in Sect. 2, with B = N2(v) and A = N3(v)∪N4(v), reduce

Gv to G′
v by the Join-Reduction Algorithm. {From now on, we can assume

that for every b ∈ B and every i ∈ {1, . . . , k}, b distinguishes Ai if b contacts
Ai.}

(c) According to the Component-Reduction Algorithm, determine a vertex b∗ ∈
B contacting every component in G[A] which is not a clique, and for every
neighbor q∗ ∈ N(b∗) ∩ A, do:

(c.1) Reduce G′
v to G′(v, q∗) by the Component-Reduction Algorithm. {Now,

G′(v, q∗) is P6-free unipolar.}
(c.2) Carry out the Algorithm WED for P6-free unipolar graphs for input

G′(v, q∗) with its weight function.
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(d) Finally, for every resulting candidate e.d.s., check whether it is indeed a
finite weight e.d.s. of G, choose an e.d.s. of minimum finite weight of G or
state that G does not have such an e.d.s.

end

Theorem 2. Algorithm WED for P6-free graphs is correct and can be done in
time O(n5m).

5 Conclusion

As mentioned, the direct approach for solving WED on P6-free graphs gives a
dichotomy result for the complexity of WED on F -free graphs. In [3], using an
approach via G2, it was shown that WED can be solved in polynomial time for
P6-free chordal graphs, and a conjecture in [3] says that for P6-free graphs with
e.d.s., the square is perfect which would also lead to a polynomial time algorithm
for WED on P6-free graphs but anyway, the time bound of our direct approach
is better than in the case when the conjecture would be true.

Acknowledgments. The first author thanks Martin Milanič for discussions and com-
ments about the WED problem for P5-free graphs and for some subclasses of P6-free
graphs.
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Abstract. Max coloring is a well known generalization of the usual
Min Coloring problem, widely studied from (standard) complexity and
approximation viewpoints. Here, we tackle this problem under the frame-
work of parameterized complexity. In particular, we first show to what
extend the result of [3] - saving colors from the trivial bound of n on the
chromatic number - extends to Max Coloring. Then we consider possi-
ble improvements of these results by considering the problem of saving
colors/weight with respect to a better bound on the chromatic number.
Finally, we consider the fixed parameterized tractability of Max Coloring
in restricted graph classes under standard parameterization.

1 Introduction

As it is well known for decades, deciding whether a given simple graph is
3-colorable is an NP -complete problem. As an immediate consequence, deal-
ing with parameterized complexity, the coloring problem parameterized by the
value of the solution (number of colors) is not in XP unless P = NP . This result
stimulates the study of this fundamental problem under other parameterizations.
For instance, in [2,10] is considered the coloring problem parameterized by the
distance (adding/removing vertices or edges) of the input graph to a polynomial
time solvable class of graphs. Chor et al. [3] considered the problem of “saving
k colors”, by addressing the following question: given a graph G = (V,E) with
n vertices and an integer k, is it possible to color G with n − k colors? In other
words, can we save k colors with respect to the trivial coloring (with n colors)?
They show that the problem is FPT, and admits a linear kernel.

On the other hand, among the many variants or generalizations of the col-
oring problem, Max Coloring (sometimes called Weighted Coloring) has been
deeply investigated in the last ten years, see for instance [1,4,5,11,12] and refer-
ences therein. In this problem, coming from batch scheduling, each vertex v has
a nonnegative integer weight w(v); the weight of a color is the maximum weight
of its vertices, and the weight of a coloring is the sum of the weights of its colors.
The goal is to find a coloring of minimum weight.1 This is a generalization of
1 In batch scheduling, a color is a set of tasks (batch) processed together; then the

weight of the color is the time to process the batch, and the total weight is the time
to process every batch, i.e., every task.
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the usual coloring problem, which corresponds to the particular case where all
the vertices have weight 1. Max Coloring is much harder than coloring; it is for
instance NP -hard in bipartite graphs [5], in interval graphs [6], and has been
recently shown even not solvable in polynomial time in trees under ETH [1].

The goal of this work is threefold, by addressing the following questions:

1. Is it possible to save weights for Max Coloring problem as it is possible to
save colors in the usual coloring problem?

2. Is it possible to strengthen these results by starting with a less trivial upper
bound on χ(G)? This question holds for the usual coloring problem: can we
save k colors not with respect to n but with respect to another bound b < n?
If so, how does this extend to saving weights for Max Coloring?

3. Under the standard parameterization (number of colors), could we say some-
thing on Max Coloring in classes of graphs where the usual coloring problem
is polynomial?

Let us first deal with the first point. The bound of n for min coloring consists
of giving one color per vertex; this coloring has value W =

∑n
i=1 w(vi) for Max

Coloring. Assume that weights are in non-increasing order. Then, there are two
questions that naturally generalizes the question of coloring a graph with n − k
colors: given k, can we save a total weight of k, i.e., does there exist a coloring
of weight at most W − k? Or, can we save k vertex weights, i.e., does there exist
a coloring of weight at most

∑n−k
i=1 w(vi)? We tackle these questions in Sect. 2

and show that both problems are FPT with respect to k.
Let us now consider the second point. For the usual coloring problem, saving

k colors in FPT-time can be reached as follows: starting from the initial coloring
with n colors we save colors by merging together pairs of non adjacent vertices.
If it is possible to do this k times, then we have saved k colors. Otherwise, the
graph is composed by a clique plus O(k) vertices, and an optimal coloring is
computable by matching techniques in FPT-time. Let us call a coloring non
trivial if it is not possible to merge two colors of this coloring. It is very easy to
build a non trivial coloring (in polynomial time), or to transform a coloring into
a non trivial one without increasing the number of colors. Let c be the number
of colors used by a non trivial coloring, and m be the number of edges in the
graph. Since we have an edge between any pair of colors, we have m ≥ c(c−1)/2,

meaning χ(G) ≤ c ≤ f(m) =
⌊
1
2 +

√
2m + 1

4

⌋
. This bound f(m) is generally

much smaller than n, and it is worth considering the possibility to save colors
with respect to this bound f(m). In other words, the following question holds:
Given a graph G and an integer k, is it possible to color G with f(m)−k colors?

We will focus on this question in Sect. 3. Interestingly, we show that while
the problem of saving k colors wrt f(m) is still FPT, it does not admit a linear
kernel under ETH, but (only) a quadratic one. Then we tackle the possible
extension of this result to Max Coloring. More precisely, we consider the question
of determining whether a coloring of weight at most

∑f(m)
i=1 w(vi)−k exists or not.

We show that the problem is in XP. The core of the proof is a polynomial time
reduction to a very specific class of graphs, namely graphs made of two cliques
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plus O(k) vertices. This reduction should be also useful while determining if the
problem is FPT, that we leave as an open question.

Then, in Sect. 4, we derive from previous works some results on Max Coloring
under standard parameterization, in classes of graphs where min coloring is
polynomial but Max Coloring remains hard: Max Coloring is FPT in chordal
graphs (hence in interval graphs and trees), while it is not in XP for bipartite
graphs (hence for perfect graphs). We give in Sect. 5 some concluding remarks.

Due to space constraints, some proofs are omitted or sketched.

2 Saving Weight for Max Coloring

In the Max Coloring problem, the input is a vertex-weighted graph (G,w),
where w(vi) ∈ N

∗ denotes the weight of the vertex vi. Given a coloring C =
(S1, S2, . . . , Sc) of G, the weight of a color Sj is w(Sj) = max{w(vi), vi ∈ Sj},
and the weight of the coloring - to be minimized - is w(C) =

∑c
j=1 w(Sj).

We assume that the vertices are ordered in non increasing weight, i.e. w(v1) ≥
w(v2) ≥ · · · ≥ w(vn). We also denote W =

∑n
i=1 w(vi).

As a generalization of the unweighted case, we consider the following problem.

Problem 1.

– Input: a vertex-weighted graph (G,w), and an integer k.
– Parameter: k
– Question: does there exist a coloring of G of weight at most W − k?

Let us also define Problem 1’ which is the same as Problem 1 up to the fact
that the question is now to determine if there exists a coloring of weight at most∑n−k

i=1 wi.
We show that these problems are FPT. The technique generalizes the one

for the unweighted case, by using matchings in a properly weighted graph. More
precisely, we first show how matching techniques allow to solve Max Coloring in
complement of bipartite graphs in polynomial time (this result will be also useful
later in Sect. 3.2). Then we reduce the problem to the case where the graph has
a very large clique, and use brute force to produce an FPT number of instances
of Max Coloring in complement of bipartite graphs.

Lemma 1. Max Coloring is polynomially solvable in the class of complement of
bipartite graphs.

Proof. Let G be a graph, whose vertices are partitioned into 2 cliques C1 and C2.
We consider the complement graph G of G (same vertex set, and an edge is in G
iff it is not in G), and we assign to edge (vi, vj) in G the weight min{w(vi), w(vj)}.
This corresponds to the amount of weight saved by using the same color for vi

and vj .
Consider a matching in G. This defines a coloring of G: an unmatched vertex

constitutes one color, two matched vertices constitute one color. Reciprocally, any
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coloring of G defines a matching in G. The weight of a matching M in G is w(M) =∑
(vi,vj)∈M min{w(vi), w(vj)}, and the weight of the associated coloring C is:

w(C) =
∑

v∈M

w(v) +
∑

(vi,vj)∈M

max{w(vi), w(vj)}

=
∑

v∈V

w(v) −
∑

(vi,vj)∈M

min{w(vi), w(vj)} =
∑

v∈V

w(v) − w(M)

where M is the set of vertices unmatched in M . So we can solve Max Coloring
in G by computing a maximum weight matching in G. ��
Theorem 1. Problems 1 and 1’ are FPT, solvable in time 2O(k log k)p(n) for
some polynomial p.

Proof. As for the unweighted case, consider first a maximal anti-matching
(matching in the complement graph). If it contains at least k anti-edges, it
means that we can save at least k weights, so a global weight at least k, and
we answer YES (for both problems). Otherwise, we have t ≤ k anti-edges in the
matching, meaning that the other n − 2t vertices form a clique. Let C be this
clique, and R be the endpoints of the anti-matching.

We consider all possible colorings of the vertices in R. Consider one of these
colorings, with colors CR = (R1, · · · , Rs). We contract in G all colors Ri, meaning
that we replace vertices in Ri by one vertex ri, adjacent to all neighbors of the
contracted vertices, and assign the weight w(ri) = max{w(v), v ∈ ri} to this new
vertex. We also make the set of ri’s a clique. Clearly, there exists in G a coloring
of weight at most B where vertices in R are colored as in CR if and only if there
exists a coloring of weight at most B in the contracted graph. This contracted
graph is made of 2 cliques, so we can solve Max Coloring in polynomial time due
to Lemma 1.

Then it is sufficient to produce all the possible colorings of R and to see if one
allows to answer YES. There are at most 2O(t log t) = 2O(k log k) such colorings,
so the result follows. ��

Speaking about kernels, it does not seem obvious to generalize the approach
of [3] leading to a linear kernel (vertex size). Indeed, the crown reduction does
not seem to directly lead to such a result. So the following question occurs: what
size of kernel can be achieved for Problems 1 and 1’?

3 Saving Colors from Non Trivial Colorings

3.1 Coloring with f(m) − k Colors

We now concentrate on saving colors with respect to an (improved) upper bound
on the chromatic number. As explained in the introduction, we consider here
the problem of saving k colors with respect to the ‘non trivial coloring bound’,

formalized as follows - where f(m) =
⌊
1
2 +

√
2m + 1

4

⌋
.



54 B. Escoffier

Problem 2.

– Input: A graph G = (V,E) on n edges and m vertices, an integer k.
– Parameter: k
– Question: is χ(G) ≤ f(m) − k?

We first show that the problem is FPT and provide a quadratic kernel for
it. The idea of the FPT algorithm is to reduce the problem to the one of saving
k colors from the trivial coloring with n colors. Note that the bounds n and
f(m) become equal (only) when the graph is complete. The distance between
the bounds gets bigger while the density of the graph decreases. Even for graphs
of density 1/2, we have roughly n2/4 edges, so f(m) is roughly n/

√
2, much

lower than n. So for the reduction we need to reach a graph which is almost
complete; this is achievable by iteratively removing vertices of ‘low’ degree.

Theorem 2. Problem 2 is FPT. It admits a kernel of vertex size - and edge size
- O(k2).

Proof. Let (G, k) be an instance of the problem. Let b = f(m) − k.
It is easy to see that if a vertex v of a graph H has degree d(v) < c, then H

is c-colorable if and only if H \ {v} is c-colorable. Then starting from (G, k) we
apply the following reduction rule:

Rule 1: while there exists a vertex of degree at most b − 1, remove it from G.
After the application of Rule 1, we get a graph G′ = (V ′, E′) with n′ vertices

and m′ edges, and every vertex of degree at least b = f(m) − k ≥ f(m′) − k.
Clearly, G′ is b-colorable iff G is b-colorable. Note that if f(m′) ≤ 2k then the
problem is trivially solvable in FPT-time, so assume now that f(m′) ≥ 2k + 1.
Summing up the degrees, we get 2m′ =

∑
v∈V ′ dG′(v) ≥ n′(f(m′) − k). Then,

since
√

2m′ ≤ f(m′) + 1/2:

n′ − f(m′) ≤ (f(m′) + 1/2)2 − f(m′)(f(m′) − k)
f(m′) − k

=
(k + 1)(f(m′) − k) + (k + 1/2)2

f(m′) − k
≤ k + 1 +

(k + 1)2

f(m′) − k
≤ 2(k + 1)

where the last inequality uses f(m′) ≥ 2k + 1.
So, b = f(m) − k ≥ f(m′) − k ≥ n′ − 3k − 2. If b ≥ n′ the answer is trivially

yes (G′ is b-colorable, and so is G), otherwise we solve the problem in FPT-time
using the FPT algorithm of [3] for deciding whether G′ is b = n′ − k′ colorable
or not, where k′ = n′ − b ≤ 3k + 2 (and k′ ≥ 0).

The previous arguments can be easily turned into a kernelization algorithm:

– We first apply Rule 1, and get the graph G′. (G, k) is a yes-instance iff (G′, k1)
with k1 = k + f(m′) − f(m) ≤ k is a yes-instance.

– If f(m′) ≤ 2k, we have m′ = O(k2) and n′ ≤ 2m′ = O(k2) (since isolated
vertices can be removed), so we have the claimed quadratic kernel.



Saving Colors and Max Coloring 55

– Otherwise we have f(m′)−k1 = n′ −k′ for k′ = O(k). Applying the kerneliza-
tion by Chor et al. [3], either we find an answer, or we have a graph (G′′, k′′)
where G′′ has O(k′) = O(k) vertices - hence O(k2) edges - such that G′′ has
an n′′ − k′′ coloring iff G′ has a n′ − k′ coloring, hence iff G has a f(m) − k
coloring. n′′ − k′′ = f(m′′) − k2 for some k2 ≤ k′′, and the result follows. ��
The kernelization algorithm produces a graph with O(k2) vertices and edges.

While being of the same order in term of size of the graph O(m + n), the size
of the kernel in term of number of vertices is significantly bigger than the one
obtained by [3] with the problem of coloring a graph with n−k colors. However,
we show that finding a smaller kernel for Problem2 is quite improbable, since
this would contradict ETH.

Theorem 3. Problem 2 does not admit a kernel of vertex size o(k2) under ETH.

Proof. Min coloring is not solvable in subexponential time under ETH even in
graphs with a linear number of edges2. More precisely, under ETH there exist
two constant ε > 0 and d such that min coloring is not solvable in time O(2εn)
in graphs where m ≤ dn.

Suppose that there is for Problem2 a kernelization algorithm that, given an
instance (G, k), produces an equivalent instance (G′, k′) where the number of
vertices in G′ is n′ = o(k2). Take a graph G with m ≤ dn edges. Let c ≤ n, we
want to determine whether G is c-colorable or not. Let k = f(m) − c. If k ≤ 0
we can easily find a c-coloring of G in polynomial time. Otherwise, apply the
kernelization algorithm to get in polynomial time (G′, k′) where G′ is (f(m′) −
k′)-colorable iff G is c-colorable, with n′ = o(k2). k ≤ f(m) = O(

√
m) = O(

√
n)

(since m ≤ dn), so n′ = o(k2) = o(n). We can optimally color G′ in time
2O(n′) = 2o(n), thus determining in time 2o(n) if G is c-colorable or not. Then
we can determine the chromatic number of G in subexpontential time, thus
contradicting ETH. ��

To conclude this section, let us briefly mention other bounds on the chromatic
number. A well known upper bound is χ(G) ≤ Δ + 1 where Δ is the maximum
degree of vertices in the graph. However, 3-coloring is NP -complete in graphs of
maximum degree 4 [7], meaning that saving k colors with respect to the bound
Δ+ 1 is not in XP if P �= NP . The same occurs for a refinement of this bound,
namely χ(G) ≤ max{min{d(vi) + 1, i}, i = 1, · · · , n}. Dealing with the lower
bound ω(G) (size of the maximum clique), the NP -completeness of 3-coloring
[7] also shows that determining whether a graph is ω(G) + k colorable is not in
XP if P �= NP (even if a maximum clique is given).

3.2 Coloring with Weight
∑f(m)

i=1 wi − k

We now generalize Problem 2 to Max Coloring. Since any non trivial coloring

uses at most f(m) =
⌊
1
2 +

√
2m + 1

4

⌋
colors, there always exists a coloring of

2 A classical reduction from 3-SAT produces a graph with Θ(var + clauses) vertices
and edges, where var and clauses are the number of variables and clauses, see for
instance http://cgi.csc.liv.ac.uk/∼igor/COMP309/3CP.pdf.

http://cgi.csc.liv.ac.uk/~{}igor/COMP309/3CP.pdf
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weight at most
∑f(m)

i=1 w(vi) (recall that vi are in non-increasing order of weight).
So we consider the following problem.

Problem 3.

– Input: a vertex-weighted graph (G,w), and an integer k.
– Parameter: k
– Question: does there exist a coloring of G of weight at most

∑f(m)
i=1 w(vi)−k?

In this problem, we can save weight either by reducing the number of colors
(wrt f(m)), or by producing colors with “small” weights, for instance by grouping
together vertices of large weights (note that an optimal solution for max coloring
may use a number of colors much larger than the chromatic number).

A first idea would be to use Rule 1 devised for the unweighted case (removing
vertices of low degree), but this is no longer sound, because of this possibility
to save on color weights. Even if there is an isolated vertex of large weight,
removing it does not produce an equivalent instance (putting it with another
vertex of large weight allows to save something). This case of isolated vertices
can be handled (by properly modifying some weight in the remaining instance)
but vertices of large weights cannot be removed even if they have small degree.

Then, vertices of large weight behave differently than vertices of small weight.
Thus we decompose the vertex set according to the weights of the vertices, and
this distinction is crucial in the solution of the problem. To make this distinc-
tion, we define w∗ = wf(m): this is the smallest weight considered in the bound
∑f(m)

i=1 w(vi). We define V> (resp. V≤) as the set of vertices of weight greater
than w∗ (resp. at most w∗), and n> = |V>|, n≤ = |V≤|.

The idea is to show that, unless a particular case occurs where we can safely
answer YES, we can reduce the instance to a very particular case where the
input graph is made of two cliques, plus O(k) vertices. Then, in XP-time we can
further reduce the graph to two cliques, instance on which we can solve the Max
Coloring problem in polynomial time using Lemma1. It is worth noticing that
the only ‘XP-time’ step consists of dealing with the O(k) extra-vertices.

We first consider two reduction rules.

Rule 2. While there exists in V≤ a vertex of degree at most f(m)−k−1, remove it.
The following Lemma states that this rule is sound.

Lemma 2. Let (G,w, k) be an instance of Problem 3, v� a vertex in V≤ of degree
at most f(m) − k − 1, and G′ the graph obtained from G by removing v�

3.
Let k′ =

∑f(m′)
i=1 w(v′

i) + k − ∑f(m)
i=1 w(vi). Then (G,w, k) is a YES-instance iff

(G′, w, k′) is a YES-instance.

Note that after this step if k′ ≤ 0 we can safely answer YES.

Rule 3. Compute a maximal matching M in the complement of G[V>]. If M has
size at least k, answer YES.

3 We use v′
i to denote vertices of G′ (so v′

i = vi for i < � and v′
i = vi+1 for i ≥ �).
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Lemma 3. Rule 3 is sound.

As a consequence, once Rules 2 and 3 have been applied, we get an equivalent
instance where:

– Condition 1: every vertex in V≤ has degree at least f(m) − k;
– Condition 2: V> is made of a clique C> on at least n> − 2k vertices, plus at

most 2k vertices.

Now, we consider Algorithm 1.
Algorithm 1

STEP 0: Compute a coloring C = (S1, S2, . . . ) of G;
STEP 1: While there exists a vertex v in Sj which has no neighbor

in some color Si with i < j, color v with Si;
STEP 2: If it is possible to empty a color Si, do it and go to STEP 1
STEP 3: Take any pair of colors of size 2, any pair of colors of size 1

If it is possible to re-color these 6 vertices with 3 colors,
do it and go to STEP 1.

Lemma 4. Algorithm 1 runs in polynomial time. Moreover, let (G,w, k) be an
instance satisfying conditions 1 and 2. If G has more than (k + 1)4 edges, then
Algorithm 1:

– Either produces a coloring with at most f(m) − k colors;
– Or allows to find a decomposition of V into (C1, C2, T ) where C1 and C2 are

two cliques, and |T | = O(k).

Proof. Only the general idea of the proof is given. We first explain why
Algorithm 1 takes polynomial time:

– Step 1 is clearly polynomial, since each vertex changes color at most n times.
– For the second step, Si being an independent set, emptying Si is not possible

if and only if there is a vertex in Si adjacent to all other colors, so this step
is also polynomial.

– Step 3 is clearly polynomial, since it involves 4 colors and 6 vertices.
– Since the number of colors reduces in steps 2 and 3, the steps are executed

O(n) times.

Now we deal with the claimed property. Let C = (S1, . . . , Sp) be the coloring
output by the algorithm.

Thanks to Step 1, C is non trivial, hence p ≤ f(m). If p ≤ f(m) − k, then
the property of the Lemma holds (case 1). So we consider that p > f(m) − k,
meaning f(m) ≤ p+k−1. Since f(m)+1/2 ≥ √

2m, we get that m < (p+k)2/2.
This bound on the number of edges allows to show that, thanks to Step 1, almost
all the colors in C have size one. More precisely, let s be the number of colors of
size at least 2.

Fact 1. The number of colors of size at least 2 is s = o(p).
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Assume4 that these are the first s colors in C. Now, thanks to Step 2, in each
color Si there is a vertex which is adjacent to all other colors, let zi be such a
vertex. Note that for i > s zi is the unique vertex of Si. Denote Z1 = {zi, i ≤ s},
Z2 = {zi, i > s} and Z = Z1 ∪ Z2. The second step of the proof is to show that
almost all vertices of ‘small’ weights are in Z. More precisely, let Q be the set of
vertices outside Z of ‘small’ weight: Q = V≤ \ Z.
Fact 2. The number of vertices in Q is at most 4k + 10

Now, thanks to condition 2, the set of vertices of large weight V> is made
of a clique C> plus O(k) vertices. Then, besides Z and C>, G contains O(k)
vertices: O(k) vertices from V≤ (the set Q), and the remaining O(k) vertices
from V>. The third step of the proof is to show that Z is almost a clique, and
this is where Step 3 of the algorithm intervenes: we can show that Z is almost
a clique otherwise we could recolor 2 colors of size 2 and 2 colors of size 1 with
3 colors in total.
Fact 3. Z is made of a clique plus O(k) vertices.

Then, from the previous facts we immediately get that our graph is made of:

– A clique CZ which is a subset of Z
– A clique C> which is a subset of V>

– O(k) other vertices. ��
Now, we are ready to show that the Problem 3 is in XP.

Theorem 4. Problem 3 is in XP.

Proof. We apply rules 2 and 3. Either we answer YES, or we have an equivalent
instance satisfying conditions 1 and 2.

First consider the case where m < (k + 1)4. In this case we can solve the
problem in FPT time. Indeed, if there are at least two isolated vertices y1, y2 in
the graph with w(y1) ≥ w(y2), they can be replaced by one vertex y with weight
w(y1): optimal colorings have obviously the same weight before and after this
replacement, so we just have to adjust (reduce) the parameter if w(y2) ≥ w∗, so
that the value

∑f(m)
i=1 w(vi) − k remains the same.

Hence, we can assume that there is at most one isolated vertex in G, and
n ≤ 2m + 1 ≤ 2(k + 1)4 + 1, so the graph is already a kernel.

Now, suppose that m ≥ (k + 1)4. Then we apply Algorithm 1. If this gives a
coloring using at most f(m) − k colors, then this coloring has a weight at most
∑f(m)−k

i=1 w(vi) ≤ ∑f(m)
i=1 w(vi) − k so we answer YES.

Otherwise, using Lemma 4 we get a partition of the graph into 2 cliques C1

and C2 and a set T of size |T | = O(k).
Vertices of T ∪ C2 will be colored with between |C2| and |T | + |C2| colors:

for vertices of T , we consider the O((|C2| + |T |)|T |) = nO(k) possibilities for
vertices in T , by putting each vertex in one of the possible colors. In each of

4 Thanks to Step 2, each color of size 1 is adjacent to all other colors, so we can reorder
colors if needed to put colors of size 1 at the end while preserving the fact that each
vertex in Sj is adjacent to each color Si, i < j.
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these cases, we contract the vertices in the same color into one vertex (with
weight the maximum weight of merged vertices), and produce in each case a
clique C ′

2. Then we only have to solve the problem on the obtained graph made
of 2 cliques, in polynomial time, using Lemma1. The global running time is
nO(k), so the result follows. ��

Theorem 4 leaves the question of fixed parameterized tractability open: is
problem 3 FPT? In the light of our proof, it suffices to show that the problem
is (or is not) FPT on the class of graphs that are the union of two cliques and
O(k) vertices.

4 Max Coloring Under Standard Parameterization

As mentioned in introduction, Max Coloring is hard to solve in classes of graphs
where the usual coloring problem is polynomial. In particular:

– It is NP -hard in bipartite and interval graphs (hence in chordal and perfect
graphs) [5,6];

– It is not solvable in polynomial time in trees under ETH [1].

Note that Max Coloring is in APX in perfect graphs [12], and admits an
approximation scheme in interval graphs [11].

The question of the parameterized complexity of this problem under standard
parameterization occurs for Max Coloring in these graph classes.

Problem 4.

– Input: a vertex-weighted graph (G,w), an integer B.
– Parameter: B.
– Question: does there exist a coloring with weight at most B?

Dealing with bipartite graphs, the following result settles the question.

Theorem 5. [5] In bipartite graphs, it is NP -hard to distinguish between
instances where there exists a coloring of weight at most 7 from instances where
each coloring has weight at least 8.

As an immediate corollary, we get that Problem 4 is not in XP in bipartite
graphs assuming P �= NP .

Let us now concentrate on trees/interval graphs/chordal graphs. We show
that Problem 4 is FPT in these classes of graphs, using dynamic programming
on tree decompositions, based on the following result.

Theorem 6. [8] In graphs of maximum treewidth k, the problem of finding the
lightest coloring having at most r colors is solvable in O(nr+1).
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Here, the O-notation hides the dependency in k, which is rO(k). Actually, it can
be easily seen from the proof that this result can be restated as follows: given
any sets of r integers a1 ≥ a2 ≥ · · · ≥ ar ≥ 0, determining whether there exists
a coloring with r colors S1, . . . , Sr such that w(Si) ≤ ai can be done in time
rO(k)nO(1) in graphs of treewidth at most k.

Restated like this, we can derive that Problem4 is FPT in chordal graphs.

Theorem 7. Problem 4 is FPT in chordal graphs.

Proof. Given a chordal graph G, let c be the size of a maximum clique (com-
putable in polynomial time). If c > B then we can safely answer NO. Otherwise,
c ≤ B. G being chordal, its treewidth is c − 1 ≤ B − 1.

On the other hand, there exists at most (B + 1)B ways to choose B weights
a1 ≥ a2 ≥ · · · ≥ aB ≥ 0 whose sum is at most B, hence (B + 1)B tuples of
color weights to check in order to determine if there exists a coloring of weight
at most B. Applying the result of [8] restated as above, the problem is solved
FPT-time 2O(B log B)nO(1). ��

To conclude this section, let us mention that another parameterization is very
natural: the maximum weight of vertices. When parameterized by the maximum
weight of vertices wmax, Max Coloring is:

– not in XP in bipartite graphs (from the fact that in Theorem5 weights at
most 4 are used):

– FPT in trees, from Theorem 7 since in trees the optimum value is at most
twice the maximum weight (take a coloring with two colors).

However, what happens in interval (or chordal) graphs? As far as we know,
the (standard) complexity of Max Coloring in interval graphs with bounded
weights is still an open question. Dealing with parameterized complexity: is Max
Coloring FPT in interval graphs when parameterized by the maximum weight?
Is it in XP?

5 Conclusion

Besides the open questions mentioned above, and besides other coloring problems
where a similar approach could be considered, analogous questions should be also
interesting for other kinds of problems. Let us mention that the same arguments
as for coloring show that the problem of saving k bins in bin packing is FPT,
as well as other partitioning problems. Indeed, consider a problem where we
have to partition a set X of size n into a minimum number of subsets, where
only some subsets are admissible - stable sets in coloring, elements with sum
of lengths at most 1 in bin packing - (see [9] for similar questions dealing with
approximation). If any subset of an admissible subset is admissible, as it is the
case in the two previous problems, then the question of determining whether
there exists a partition with at most n − k sets or not is FPT. Indeed, one
computes a maximal set of admissible pairs. If there are at least k pairs then
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we are done (singletons are admissible, otherwise the problem has no feasible
solution), otherwise the remaining n−O(k) elements must be each in a separate
subset. Then using brute force on the O(k) elements in the pairs and solving
maximum matchings, we get an FPT algorithm. Improving upon better bounds
could be also interesting for these problems.
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Abstract. We consider the problem of finding, for two pairs (s1, t1)
and (s2, t2) of vertices in an undirected graph, an (s1, t1)-path P1 and an
(s2, t2)-path P2 such that P1 and P2 share no edges and the length of each
Pi satisfies Li, where Li ∈ {≤ ki, = ki, ≥ ki, ≤ ∞}. We regard k1 and
k2 as parameters and investigate the parameterized complexity of the
above problem when at least one of P1 and P2 has a length constraint
(note that Li = “ ≤ ∞” indicates that Pi has no length constraint).
For the nine different cases of (L1, L2), we obtain FPT algorithms for
seven of them. Our algorithms uses random partition backed by some
structural results. On the other hand, we prove that the problem admits
no polynomial kernel for all nine cases unless NP ⊆ coNP/poly.

Keywords: Edge-disjoint paths · Random partition · Parameterized
complexity · Kernelization

1 Introduction

Disjoint paths in graphs are fundamental and have been studied extensively in
the literature. Given k pairs of terminal vertices (si, ti) for 1 ≤ i ≤ k in an
undirected graph G, the classical Edge-Disjoint Paths problem asks whether
G contains k pairwise edge-disjoint paths Pi between si and ti for all 1 ≤ i ≤
k. The problem is NP-complete as shown by Even et al. [8], but is solvable
in time O(mn) by network flow [16] if all vertices si (resp., ti) are the same
vertex s (resp., t). When we regard k as a parameter, a celebrated result of
Robertson and Seymour [17] on vertex-disjoint paths can be used to obtain
an FPT algorithm for Edge-Disjoint Paths. On the other hand, Bodlaender
et al. [4] have shown that Edge-Disjoint Paths admits no polynomial kernel
unless NP ⊆ coNP/poly.

In this paper, we study Edge-Disjoint Paths with length constraints Li

on (si, ti)-paths Pi and focus on the problem for two pairs of terminal vertices.
The length constraints Li ∈ {≤ ki, = ki, ≥ ki, ≤ ∞} indicate that the length
of Pi need to satisfy Li. We regard k1 and k2 as parameters, and study the
parameterized complexity of the following problem.
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Edge-Disjoint (L1, L2)-Paths
Instance: Graph G = (V,E), two pairs (s1, t1) and (s2, t2) of vertices.
Question: Does G contain (si, ti)-paths Pi for i = 1, 2 such that P1 and P2

share no edge and the length of Pi satisfies Li?

There are nine different length constraints on two paths (note that Edge-
Disjoint (≤ ∞,≤ ∞)-Paths puts no length constraint on two paths). For
instance, Edge-Disjoint (= k1,≤ ∞)-Paths requires that |P1| = k1 but P2

has no length constraint, and Edge-Disjoint (= k1,≥ k2)-Paths requires that
|P1| = k1 and |P2| ≥ k2.

Related Work. Edge-Disjoint (L1, L2)-Paths has been studied under the
framework of classical complexity. Ohtsuki [15], Seymour [18], Shiloah [20],
and Thomasssen [21] independently gave polynomial-time algorithms for Edge-
Disjoint (≤ ∞,≤ ∞)-Paths. Tragoudas and Varol [22] proved the NP-
completeness of Edge-Disjoint (≤ k1,≤ k2)-Paths, and Eilam-Tzoreff [7]
showed the NP-completeness of Edge-Disjoint (≤ k1,≤ ∞)-Paths even when
k1 equals the (s1, t1)-distance. For Edge-Disjoint (L1, L2)-Paths with L1 = k1
or ≥ k1 (same for L2 = k2 or ≥ k2), we can easily establish its NP-completeness
by reductions from the classical Hamiltonian Path problem.

As for the parameterized complexity, there are a few results in connection
with our Edge-Disjoint (L1, L2)-Paths. Golovach and Thilikos [13] obtained
an 2O(kl)m log n-time algorithm for Edge-Disjoint Paths when every path has
length at most l. For a single pair (s, t) of vertices, an (s, t)-path of length exactly
l can be found in time O(2.6181lm log2 n) [9,19] and O∗(2.5961l) [23]. (Note that
l-Path that finds a path of length l can be solved in time O(2.6181ln log2 n)
[9,19].) For the problem of finding an (s, t)-path of length at least l,
Bodlaender [1] derived an O(22l(2l)!n + m)-time algorithm, Gabow and Nie [12]
designed an ll2O(l)mn log n-time algorithm, and FPT algorithms of Fomin et
al. [10] for cycles and paths can be adapted to yield an 8l+o(l)m log2 n-time
algorithm.

Our Contributions. In this paper, we investigate the parameterized complexity
of Edge-Disjoint (L1, L2)-Paths for the nine different length constraints and
have obtained FPT algorithms for seven of them (see Table 1 for a summary).

In particular, we use random partition in an interesting way to obtain FPT
algorithms for Edge-Disjoint (= k1,≤ ∞)-Paths and Edge-Disjoint (=
k1,≥ k2)-Paths. This is achieved by bounding the number of some special edges,
called “nearby-edges”, in the two paths P1 and P2 by a function of k1 and k2
alone. We also consider polynomial kernels and prove that all nines cases admit
no polynomial kernel unless NP ⊆ coNP/poly.

Notation and Definitions. All graphs in the paper are simple undirected
connected graphs. For a graph G, we use V (G) and E(G) to denote its vertex
set and edge set respectively, and n and m, respectively, are numbers of vertices
and edges of G. For two vertices s and t, the distance between s and t is denoted
by d(s, t).
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Table 1. Running times of FPT algorithms for Edge-Disjoint (L1, L2)-Paths with
length constraints Li ∈ {≤ ki, = ki, ≥ ki, ≤ ∞} for i = 1, 2. Note that r1 =
k1 + k2, r2 = k2

1 + 5k2, and r3 = k2
2 + 5k1.

Constraints |P2| ≤ k2 |P2| = k2 |P2| ≥ k2 ≤ ∞
|P1| ≤ k1 O(2.01r1m logn) O(2.01r2m log3 n) O(2.01k2

1m logn)

|P1| = k1 O(5.24r1m log3 n) O(2.01k2
1m log3 n)

|P1| ≥ k1 O(2.01r3m log3 n) Open

An instance (I, k) of a parameterized problem Π consists of two parts: an
input I and a parameter k. We say that a parameterized problem Π is fixed-
parameter tractable (FPT) if there is an algorithm solving every instance (I, k)
in time f(k)|I|O(1) for some computable function f . A kernelization algorithm
for a parameterized problem Π maps an instance (I, k) in time polynomial in
|I| + k into a smaller instance (I ′, k′) such that (I, k) is a yes-instance iff (I ′, k′)
is a yes-instance and |I ′| + k′ ≤ g(k) for some computable function g. Problem
Π has a polynomial kernel if g(k) is a polynomial function.

For simplicity, we write O(2.01f(k)) for 2f(k)+o(f(k)) as the latter is O((2 +
ε)f(k)) for any constant ε > 0 and we choose ε = 0.01. In particular, 2kkO(log k) =
2k+O(log2 k) = O(2.01k).

In the rest of the paper, we present FPT algorithms for seven cases in Sect. 2,
and show the nonexistence of polynomial kernels in Sect. 3. We conclude with
some open problems in Sect. 4.

2 FPT Algorithms

Random partition provides a natural tool for finding edge-disjoint (L1, L2)-paths
in a graph G: We randomly partition edges of G to form two graphs G1 and G2,
and then independently find paths P1 in G1 (resp., P2 in G2) whose lengths
satisfy L1 (resp., L2).

When our problem satisfies the following two conditions, the above approach
yields a randomized FPT algorithm and can typically be derandomized by uni-
versal sets.

1. Whenever G has a solution, the probability of “G1 contains required P1 and
G2 contains required P2” is bounded below by a function of k1 and k2 alone.

2. It takes FPT time to find required paths P1 in G1 and P2 in G2.

Indeed, straightforward applications of the above method yield FPT algo-
rithms for Edge-Disjoint (L1, L2)-Paths when Li ∈ {≤ ki, = ki} for i = 1, 2.

Theorem 1. Edge-Disjoint (L1, L2)-Paths can be solved in O(2.01k1+k2

m log n) time for (L1, L2) = (≤ k1, ≤ k2), and O(5.24k1+k2m log3 n) time for
(L1, L2) = (≤ k1, = k2) or (= k1, = k2).
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Proof. Let r = k1 + k2. We randomly color each edge by color 1 or 2 with
probability 1/2 to define a random partition of edges. Denote by Gi, i = 1, 2,
the graph consisting of edges of color i. Then for all three cases of (L1, L2), the
probability that both G1 and G2 contain required paths is at least 1/2r when
Edge-Disjoint (L1, L2)-Paths has a solution.

We can use BFS starting from si to determine whether Gi contains an (si, ti)-
path of length at most ki in time O(m), and an algorithm of Fomin et al. [10]
to determine whether Gi contains an (si, ti)-path of length exactly l in time
O(2.6181lm log2 n). Furthermore, we use a family of (m, r)-universal sets of size
2rrO(log r) log m [14] for derandomization. Therefore Edge-Disjoint (L1, L2)-
Paths can be solved in time

2rrO(log r) log m ∗ m = 2rrO(log r)m log n = O(2.01rm log n)

for (L1, L2) = (≤ k1, ≤ k2), and time

2rrO(log r) log m ∗ (2.6181k1 + 2.6181k2)m log2 n = O(5.24rm log3 n)

for (L1, L2) = (≤ k1, = k2) or (= k1, = k2). �	
For other cases of (L1, L2), a random edge partition of G does not, unfortu-

nately, gurantee condition (1) because of the possible existence of a long path in
a solution. To handle such cases, we will compute some special edges and then
use random partition on such edges to ensure condition (1). For this purpose,
we call a vertex v a nearby-vertex if d(s1, v) + d(v, t1) ≤ k1, and call an edge
a nearby-edge if its two endpoints are both nearby-vertices. We will show that
there exists a solution where the number of nearby-edges is bounded above by
a polynomial in k1 and k2 alone, which enables us to apply random partition
to nearby-edges to ensure condition (1) and hence to obtain FPT algorithms.
We note that such a clever way of applying random partition has been used by
Cygan et al. [6] in obtaining an Eulerian graph by deleting at most k edges.

In the next two subsections, we rely on random partition of nearby-edges to
obtain FPT algorithms to solve Edge-Disjoint (L1, L2)-Paths for the following
four cases of (L1, L2): (≤ k1,≤ ∞), (= k1,≤ ∞), (≤ k1,≥ k2) and (= k1,≥ k2).

2.1 One Short and One Unconstrained

In this subsection, we use random partition on nearby-edges to obtain FPT
algorithms for Edge-Disjoint (L1, L2)-Paths when (L1, L2) is (≤ k1,≤ ∞) or
(= k1,≤ ∞). To lay the foundation of our FPT algorithms, we first present the
following crucial property on the number of nearby-edges in a special solution.
Recall that a nearby-vertex v satisfies d(s1, v)+d(v, t1) ≤ k1 and both endpoints
of a nearby-edge are nearby-vertices.

Lemma 1. Let (s1, t1) and (s2, t2) be two pairs of vertices in a graph G =
(V,E), P1 an (s1, t1)-path of length at most k1, and P2 a minimum-length (s2, t2)-
path edge-disjoint from P1. Then
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1. all edges in P1 are nearby-edges, and
2. P2 contains at most (k1 + 1)2 nearby-edges.

Proof. Statement 1 is obvious and we focus on Statement 2.
For a vertex v in P2, we say that v is a P1-near vertex if there is a vertex u in

P1 such that G contains a (u, v)-path of length at most k1/2 that is edge-disjoint
from P1. We call v a u-near vertex when we want to emphasize the endpoint u,
and refer to such a (u, v)-path as a P1-near (u, v)-path.

Let v∗ be a nearby-vertex in P2. Since d(s1, v∗) + d(v∗, t1) ≤ k1, there is an
(s1, v∗)-path or a (t1, v∗)-path of length at most k1/2. As s1 and t1 are vertices of
P1, v

∗ must be a P1-near vertex. Therefore each nearby-vertex in P2 is a P1-near
vertex, and we bound the number of P1-near vertices to prove this lemma.

Suppose to the contrary that P2 contains at least (k1 + 1)2 + 1 P1-near
vertices. Then by pigeonhole principle, there exists a vertex u in P1 that has at
least k1 + 2 u-near vertices. Sort these vertices along P2 from s2 to t2. Let v1
and v2 be the first and last vertex respectively. Then the (v1, v2)-section of P2

has length at least k1 +1. Let W be the (v1, v2)-walk concatenating the P1-near
(u, v1)-path and the P1-near (u, v2)-path. Then W contains at most k1 edges
and is edge-disjoint from P1 by the definition of P1-near path. So we can replace
the (v1, v2)-section by W to obtain an (s2, t2)-walk that contains an (s2, t2)-path
shorter than P2, contradicting to the minimality of P2. Therefore P2 contains at
most (k1 + 1)2 P1-near vertices and thus nearby-vertices, which implies that P2

contains at most (k1 + 1)2 nearby-edges. �	
The above lemma lays the ground for an FPT algorithm based on random

partition. Let {E1, E2} be a random partition of nearby-edges, and construct
G1 = G[E1] and G2 = G−E(G1). Note that whenever G admits a solution, it has
a solution (P1, P2) such that P2 is a minimum-length (s2, t2)-path edge disjoint
from P1. Lemma 1 implies that P1 is inside G1 with probability ≥ 1/2k1 , and P2

is inside G2 with probability ≥ 1/2(k1+1)2 . This ensures that, with probability
≥ 1/2k1 , G1 contains an (s1, t1)-path of length at most k1 and, with probability
at least 1/2(k1+1)2 , G2 contains an (s2, t2)-path. Therefore with probability ≥
1/2k1+(k1+1)2 , we will be able to find a solution for G by finding an (s1, t1)-path
of length at most k1 in G1 and an (s2, t2)-path in G2. This paves the way for the
following randomized FPT algorithm for Edge-Disjoint (≤ k1, ≤ ∞)-Paths.
Note that the algorithm also works for Edge-Disjoint (= k1, ≤ ∞)-Paths
once we change “length ≤ k1” to “length k1” in Step 3.

Algorithm 1.

1. Find all nearby-edges in O(m) time by two rounds of BFS, one from s1 and
the other from t1.

2. Randomly color each nearby-edge by color 1 or 2 with probability 1/2, and
color all remaining edges of G by color 2. Let Gi (i = 1, 2) be the graph
consisting of edges of color i.

3. Find an (s1, t1)-path P1 of length ≤ k1 in G1, and an (s2, t2)-path P2 in
G2. Return (P1, P2) as a solution if both P1 and P2 exist, and return “No”
otherwise.
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Algorithm 1 solves Edge-Disjoint (≤ k1, ≤ ∞)-Paths with probability
≥ 1/2k1+(k1+1)2 and runs in O(m) time, as the two tasks in Step 3 for G1 and G2

also take O(m) time. Let m′ be the number of nearby-edges and r = k1+(k1+1)2.
We can use (m′, r)-universal sets to derandomize our algorithm, and obtain a
deterministic FPT algorithm running in time

2rrO(log r) log n ∗ m′ = O(2.01k
2
1m log n).

For Edge-Disjoint (= k1, ≤ ∞)-Paths, Step 3 takes more time as it takes
O(2.6181k1m log2 n) time to find an (s1, t1)-path P1 of length k1. Therefore our
deterministic FPT algorithm for the problem takes time

2rrO(log r) log m′ ∗ 2.6181k1m log2 n = O(2.01k
2
1m log3 n).

Theorem 2. Edge-Disjoint (≤ k1,≤ ∞)-Paths and Edge-Disjoint (=
k1,≤ ∞)-Paths can be solved in time O(2.01k

2
1m log n) and O(2.01k

2
1m log3 n)

respectively.

2.2 One Short and One Long

Now we consider Edge-Disjoint (L1, L2)-Paths when (L1, L2) is (≤ k1,≥
k2) or (= k1,≥ k2). The main difficulty lies in the possibility that one path
may be long, and we overcome this obstacle by the following lemma similar
to Lemma 1 to upper bound the number of nearby-edges in a special solution.
Again, the lemma enables us to use random partition on nearby-edges to obtain
FPT algorithms for both cases.

For an (s1, t1)-path P , a P -valid (s2, t2)-path is an (s2, t2)-path that is edge-
disjoint from P and has length at least k2.

Lemma 2. Let (s1, t1) and (s2, t2) be two pairs of vertices in a graph G =
(V,E), P an (s1, t1)-path of length at most k1, and Q a P -valid (s2, t2)-path of
minimum length. Then

1. all edges in P are nearby-edges, and
2. at most k2

1 + 3k1 + 2k2 edges of Q are nearby-edges.

The proof is omitted due to the space limit, and will appear in the full version
of this paper.

The above lemma enables us to obtain a randomized FPT for Edge-
Disjoint (≤ k1, ≥ k2) by replacing Step 3 of Algorithm 1 as follows:

Step 3: Find an (s1, t1)-path P1 of length ≤ k1 in G1, and an (s2, t2)-path P2

of length ≥ k2 in G2. Return (P1, P2) as a solution if both P1 and P2 exist, and
return “No” otherwise.

By Lemma 2, the randomized algorithm solves Edge-Disjoint (≤ k1, ≥ k2)-
Paths with probability ≥ 1/2k

2
1+4k1+2k2 . Since an (s2, t2)-path P2 of length

≥ k2 can be found in time 8k2+o(k2)m log2 n [10] as mentioned earlier in the
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introduction, the two tasks in Step 3 takes 8k2+o(k2)m log2 n time and thus the
randomized algorithm runs in the same time. Let m′ be the number of nearby-
edges and r = k2

1 + 4k1 + 2k2. We can use (m′, r)-universal sets to derandomize
our algorithm, and obtain a deterministic FPT algorithm for Edge-Disjoint
(≤ k1, ≥ k2)-Paths running in time

2rrO(log r) log m′ ∗ 8k2+o(k2)m log2 n = O(2.01k
2
1+5k2m log3 n).

For Edge-Disjoint (= k1, ≥ k2)-Paths, Step 3 needs to find an (s1, t1)-
path P1 of length k1 which takes O(2.6181k1m log2 n) time. Therefore our deter-
ministic FPT algorithm for the problem takes time

2rrO(log r) logm′ ∗ O(2.6181k1m log2 n + 8k2+o(k2)m log2 n) = O(2.01k2
1+5k2m log3 n).

Theorem 3. Both Edge-Disjoint (≤ k1,≥ k2)-Paths and Edge-Disjoint

(= k1,≥ k2)-Paths can be solved in time O(2.01k
2
1+5k2m log3 n).

3 Incompressibility

Having obtained FPT algorithms, we are impelled to investigate the existence
of polynomial kernels for Edge-Disjoint (L1, L2)-Paths. Our findings are neg-
ative as we will show that, unless NP ⊆ coNP/poly, the problem admits no
polynomial kernel for all nine different cases of length constraints (L1, L2).

We start with relaxed-composition algorithms defined by Cai and Cai [5],
which is a relaxation of composition algorithms introduced by Bodlaender et
al. [2] in their pioneer work on the nonexistence of polynomial kernels, and a
clipped version of cross-composition [3] without polynomial equivalence rela-
tions.

Definition 1 (relaxed-composition [5]). A relaxed-composition algorithm
for a parameterized problem Π takes w instances (I1, k), . . . , (Iw, k) ∈ Π as
input and, in time polynomial in

∑w
i=1 |Ii| + k, outputs an instance (I, k) ∈ Π

such that

1. (I, k) is a yes-instance of Π iff some (Ii, k) is a yes-instance of Π, and
2. k′ is polynomial in maxw

i=1 |Ii| + log w.

Note that relaxed-composition algorithms relax the requirement in compo-
sition algorithms [2] for parameter k′ from polynomial in k to polynomial in
maxw

i=1 |Ii| + log w. As observed by Cai and Cai [5], the following important
result is implicitly established in Bodlaender et al. [2].

Theorem 4 [2,3,11]. If an NP-complete parameterized problem admits a
relaxed-composition algorithm, then it has no polynomial kernel, unless NP ⊆
coNP/poly.
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We also need the following polynomial parameter transformation (ppt-
reduction in short).

Definition 2 (ppt-reduction [4,5]). A ppt-reduction from a parameterized
problem Π to another parameterized problem Π′ is an algorithm that, for input
(I, k) ∈ Π, takes time polynomial in |I| + k and outputs an instance (I ′, k) ∈ Π′

such that

1. (I, k) is a yes-instance of Π iff (I ′, k′) is a yes-instance of Π′, and
2. parameter k′ is bounded above by a polynomial of k.

Theorem 5 [4]. If there is a ppt-reduction from a parameterized problem Π to
another parameterized problem Π′, then Π′ admits no polynomial kernel when-
ever Π admits no polynomial kernel.

Now we show the nonexistence of polynomial kernels for seven easy cases. We
first use relaxed-compositions to show the nonexistence of polynomial kernels
of (s, t)-k-Path (resp., Long (s, t)-Path) that are NP-complete problems of
finding an (s, t)-path of length k (resp., ≥ k). Then we present ppt-reductions
from these two problems to Edge-Disjoint (L1, L2)-Paths problems.

Lemma 3. Both (s, t)-k-Path and Long (s, t)-Path admit no polynomial ker-
nel unless NP ⊆ coNP/poly.

Proof. Given w instances of (s, t)-k-Path with si and ti being the two terminal
vertices of the i-th instance for 1 ≤ i ≤ w, we can relaxed-composite these
w instances into one instance by identifying si (resp., ti) as one vertex for all
1 ≤ i ≤ w. Then, by Theorem 4, (s, t)-k-Path admits no polynomial kernel
unless NP ⊆ coNP/poly. By the same relaxed-composition, we can deduce that
Long (s, t)-Path admits no polynomial kernel unless NP ⊆ coNP/poly. �	
Theorem 6. Edge-Disjoint (L1, L2)-Paths for (L1, L2) being (≤ k1,=
k2), (≤ k1,≥ k2), (= k1,= k2), (= k1,≤ ∞), (= k1,≥ k2), (≥ k1,≤ ∞) or
(≥ k1,≥ k2), admits no polynomial kernel unless NP ⊆ coNP/poly.

Proof. Given an instance of (s, t)-k-Path, we construct an instance of Edge-
Disjoint (= k1, ≤ ∞)-Paths as following:

1. Set s1 = s and t1 = t, and k1 = k,
2. add new vertices s2 and t2, and edge s2t2.

The above reduction is clearly a ppt-reduction, and thus Edge-Disjoint
(= k1, ≤ ∞)-Paths admits no polynomial kernel unless NP ⊆ coNP/poly. For
the other six cases, similar ppt-reductions from (s, t)-k-Path or Long (s, t)-
Path will work. �	

Now we consider the remaining two cases of length constraints (≤ k1,≤ k2)
and (≤ k1,≤ ∞). Following our argument for the other cases, we can easily
construct ppt-reductions from the problem of determining whether G contains
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an (s, t)-path of length at most k. Unfortunately, this short path problem is
solvable in polynomial time and thus admits a polynomial kernel, which makes
such ppt-reductions meaningless for the purpose of proving the nonexistence of
polynomial kernels. In fact, these two cases are difficult to deal with, and we will
design delicate relaxed-composition algorithms to establish the nonexistence of
their polynomial kernels.

Theorem 7. Both Edge-Disjoint (≤ k1,≤ k2)-Paths and Edge-Disjoint
(≤ k1,≤ ∞)-Paths admit no polynomial kernel unless NP ⊆ coNP/poly.

Proof. Let (G1,≤ k1,≤ k2), . . . , (Gw,≤ k1,≤ k2) be w instances of Edge-
Disjoint (≤ k1,≤ k2)-Paths, and n = maxw

i=1 |V (Gi)|. Let (si1, t
i
1) and (si2, t

i
2)

be the two pairs of vertices of the i-th instance for 1 ≤ i ≤ w. Assume that w is
a power of two, say w = 2d. Otherwise we can add some redundant no-instances
to make w a power of two.

We first show how to composite two instances into one instance, which is
the crucial step of our relaxed-composition. Given the i-th instance and j-th
instance, we construct a new instance (G′,≤ k′

1,≤ k′
2) as following (See Fig. 1

for an illustration.):

1. Create two pairs of vertices (s′
1, t

′
1) and (s′

2, t
′
2), and four vertices u1, u2, v1

and v2.
2. Connect these new vertices with graph Gi and Gj as showed in Fig. 1, where

each dashed/dotted edge is a short-path of length one, and each normal edge
is a long-path of length k1 + 4.

3. Denote by G′ the new graph and set k′
1 = k1 + 4, k′

2 = k2 + 3(k1 + 4) + 1.

tj2

tj1sj1

sj2

ti2

ti1si1

si2

s1

s2

t1

t2
Gi

Gj

u1 u2 v1 v2

Fig. 1. The relaxed-composition for two instances. Here a dashed/dotted edge is a
short-path of length one, and a normal edge is a long-path of length k′

1 = k1 + 4.
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We claim that (G′,≤ k′
1,≤ k′

2) is a yes-instance iff one of these two instances
is a yes-instance.

Suppose that one of these two instances has a solution. Without loss of
generality, assume that (Gi,≤ k1,≤ k2) has a solution (P1, P2). Let P ′

1 be the
(s′

1, t
′
1)-path concatenated by P1 and the four dashed short-paths, and P ′

2 be the
(s′

2, t
′
2)-path going through u1, u2, s

i
2 and ti2, whose (si2, t

i
2)-section is P2. By the

edge-disjointness between P1 and P2, P
′
1 and P ′

2 are edge-disjoint. Furthermore,
we have |P ′

1| ≤ k′
1 and |P ′

2| ≤ k′
2 as |P ′

1| ≤ k1 and |P ′
2| ≤ k2. Then (P ′

1, P
′
2) is a

solution of (G′,≤ k′
1,≤ k′

2).
Conversely, suppose that (P ′

1, P
′
2) is a solution of (G′,≤ k′

1,≤ k′
2). Since P ′

1

has length at most k′
1 = k1+4, and each long-path has length k1+4, P ′

1 contains
either all dotted short-paths or dashed short-paths. Assume that P ′

1 contains all
dotted short-paths. (The argument is similar when P ′

1 contains all dashed short-
paths.) Then the (sj1, t

j
1)-section P1 of P ′

1 is an (sj1, t
j
1)-path in Gj of length at

most k1. Moreover, P ′
2 must be an (s′

2, t
′
2)-path going through the (s′

2, s
j
2)-long-

path Ps and the (tj2, v1)-long-path Pt. Since d(v1, t′2) = k1+5, the (sj2, t
j
2)-section

P2 ∈ Gj of P ′
2 has length at most

|P ′
2| − |Ps| − |Pt| − d(v1, t2) ≤ (k2 + 3k1 + 13) − 2(k1 + 4) − (k1 + 5) ≤ k2.

Then (P1, P2) is a solution of (Gj ,≤ k1,≤ k2).
Now we are ready to present our relaxed-composition that contains d = log w

iterations. In the i-th iteration, there are 2d−i+1 instances and we group these
instances into 2d−i pairs for 1 ≤ i ≤ d. For each pair, we composite them into
one instance as presented above. Finally, there remains only one instance which
completes the relaxed-composition. Let (≤ ki

1,≤ ki
2) be the length constraints

after the i-th iteration for 0 ≤ i ≤ d. Note that k0
1 = k1 and k0

2 = k2. The
recursion relation for ki

1 and ki
2 is

ki+1
1 = ki

1 + 4and ki+1
2 = ki

2 + 3ki+1
1 + 1,

as short-path and long-path respectively have length 1 and ki+1
1 in the i-th

iteration. We have ki
1 = k1 +4i and ki

2 = k2 +(3k1 +1)i+6i(i+1) for 0 ≤ i ≤ d.
Let (G′′,≤ k′′

1 ,≤ k′′
2 ) be the final instance, where k′′

1 = kd
1 = k1 + 4d and

k′′
2 = kd

1 = k2 + (3k1 + 1)d + 6d(d + 1). By above proof for the composition
of two instances, we can deduce that (G′′,≤ k′′

1 ,≤ k′′
2 ) has a solution iff one of

these w instances has a solution. Both k′′
1 and k′′

2 are polynomially bounded in
n + log w as d = log w. This composition is a valid relaxed-composition. Since
Edge-Disjoint (≤ k1,≤ k2)-Paths is NP-complete, by Theorem 4, it admits
no polynomial kernel unless NP ⊆ coNP/poly.

The relaxed-composition also holds if we discard the length constraint for
the second path, i.e. discard the length constraints “ ≤ k2” and “ ≤ k′

2”, which
yields that Edge-Disjoint (≤ k1,≤ ∞)-Paths admits no polynomial kernel
unless NP ⊆ coNP/poly. �	
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4 Concluding Remarks

We have obtained FPT algorithms to solve Edge-Disjoint (L1, L2)-Paths
for seven of the nine different cases of length constraints (L1, L2), and also
established the nonexistence of polynomial kernels for all nine cases, assum-
ing NP 
⊆ coNP/poly. However parameterized complexities of the remaining
two cases are open.

Problem 1. Determine the parameterized complexities of Edge-Disjoint (≥
k1,≤ ∞)-Paths and Edge-Disjoint (≥ k1,≥ k2)-Paths.

Note that an FPT algorithm for Edge-Disjoint (≥ k1,≥ k2)-Paths will
yield a new polynomial-time algorithm to solve Edge-Disjoint Paths for two
pairs of terminal vertices (i.e., Edge-Disjoint (≤ ∞,≤ ∞)-Paths).

We can consider vertex-disjoint paths, instead of edge-disjoint paths, and
form Vertex-Disjoint (L1, L2)-Paths problems for nine different length con-
straints (L1, L2). It is straightforward to obtain FPT algorithms by color-coding
or random partition for the three cases of (L1, L2) being (≤ k1,≤ k2), (= k1,≤
k2) or (= k1,= k2). Interestingly, both Vertex-Disjoint (≥ k1,≤ ∞)-Paths
and Vertex-Disjoint (≥ k1,≥ k2)-Paths can be solved by finding a minor that
is a disjoint union of two paths, and thus are FPT by the graph minor theorem.
(Note that we can not use this approach to solve Problem 1 by transforming
edge-disjoint paths into vertex-disjoint paths through line graphs, because paths
in line graphs may not correspond to paths in original graphs.) The remaining
four cases seem much harder than their corresponding edge-disjoint counter-
parts. We note that structural properties similar to Lemmas 1 and 2 seem not
hold for vertex-disjoint paths with length constraints.

On the other hand, our proofs for the nonexistence of polynomial kernels
also work for Vertex-Disjoint (L1, L2)-Paths, and hence Vertex-Disjoint
(L1, L2)-Paths admits no polynomial kernel unless NP ⊆ coNP/poly for all
nine different cases of length constraints (L1, L2).

Finally, we can consider both edge-disjoint and vertex-disjoint paths with
length constraints for digraphs, which appear to be much harder than these
problems on undirected graphs.

Problem 2. For digraphs, determine the parameterized complexity of Edge-
Disjoint (L1, L2)-Paths and Vertex-Disjoint (L1, L2)-Paths for various
length constraints (L1, L2).
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We say that a graph class C has the vertex/edge Erdö–Pósa property (shortly
v/e-E&P property) for some graph class G if there is a function f : N → N,
called a gap function, such that, for every graph G in G and every non-negative
integer k, either G has a vertex/edge C-packing of size k or G has a vertex/edge
C-cover of size f(k). In the case where G is the class of all graphs we simply say
that C has the v/e-E&P property. An interesting topic in Graph Theory, related
to the notion of duality between graph parameters, is to detect instantiations
of C and G such that C has the v/e-E&P property for G and, if yes, optimize
the corresponding gap. Certainly, the first result of this type was the celebrated
result of Erdős and Pósa in [11] who proved that the class of all cycles has the
v-E&P property with gap function O(k · log k). This result have triggered a lot of
research on its possible extensions. One of the most general ones was given in [22]
where its was proven that the class of graphs that are contractible to some graph
H have the v-E&P property iff H is planar (see also [4,5,8] for improvements
on the gap function).

Other instantiations of C for which the v-E&P property has been proved con-
cern odd cycles [16,19], long cycles [2], and graphs containing cliques as minors [9]
(see also [13,15,21] for results on more general combinatorial structures).

As noticed in [8], cycles have the e-E&P property as well. Interestingly, only
few more results exist for the cases where the e-E&P property is satisfied. It
is known for instance that graphs contractible to θr (i.e. the graph consisting
of two vertices and an edge of multiplicity r between them) have the e-E&P
property [3]. Moreover it was proven that odd cycles have the e-E&P property
for planar graphs [17] and for 4-edge-connected graphs [16].

Given two graphs G and H, we say that H is an immersion of G if H can
be obtained from some subgraph of G by lifting incident edges (see Sect. 2 for
the definition of the lift operation). Given a graph H, we denote by I(H) the
set of all graphs that contain H as an immersion. Using this terminology, the
edge variant of the original result of Erdős and Pósa in [11] implies that the
class I(θ2) has the v-E&P property (and, according to [8], the e-E&P prop-
erty as well). A natural question is whether this can be extended for I(H), for
other H’s, different than θ2. This is the question that we consider in this paper.
A distinct line of research is to identify the graph classes G such that for every
graph H, I(H) has the e-E&P property for G. In this direction, it was recently
proved in [18] that for every graph H, I(H) has the e-E&P property for 4-edge-
connected graphs.

In this paper we show that if H is non-trivial (i.e., has at least one edge),
connected, planar, and subcubic, i.e., each vertex is incident to at most 3 edges,
then I(H) has the v/e-E&P property (with polynomial gap in both cases). More
concretely, our main result is the following.

Theorem 1. Let H be a connected planar subcubic graph of h > 0 edges, let
k ∈ N, and let G be a graph without any I(H)-vertex/edge packing of size greater
than k. Then G has a I(H)-vertex/edge cover of size bounded by a polynomial
function of h and k.
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The main tools of our proof are the graph invariants of tree-cut width and
tree-partititon width, defined in [24] and [10] respectively (see Sect. 2 for the
formal definitions). Our proof uses the fact that every graph of polynomially (on
k) big tree-cut width contains a wall of height k as an immersion (as proved
in [24]). This permits us to consider only graphs of bounded tree-cut width
and, by applying suitable reductions, we finally reduce the problem to graphs of
bounded tree partition width (Theorem 2). The result follows as we next prove
that for every H, the class I(H) has the e-E&P property for graphs of bounded
tree-partition width (Theorem 3).

One might conjecture that the result in Theorem 1 is tight in the sense that
both being planar and subcubic are necessary for H in order I(H) to have the
e-E&P property. In this direction, in Sect. 7, we give counterexamples for the
cases where H is planar but not subcubic and is subcubic but not planar.

2 Definitions and Preliminary Results

We use N
+ for the set of all positive integers and we set N = N

+ ∪ {0}.

Graphs. As already mentioned, we deal with loopless graphs where multiedges
are allowed. Given a graph G, we denote by V (G) its set of vertices and by
E(G) its multiset of edges. The notation |E(G)| stands for the total number of
edges, that is, counting multiplicities. We use the term multiedge to refer to a
2-element set of adjacent vertices and the term edge to deal with one particular
instanciation of the multiedge connecting two vertices. The function multG maps
a set of two vertices of G to the multiplicity of the edge connecting them, or zero
if they are not adjacent. If multG({u, v}) = k for some k ∈ N

+, we denote by
{u, v}1, . . . , {u, v}k the distinct edges connecting u and v. For the sake of clarity,
we identify a multiedge of multiplicity one and its edge and write {u, v} instead
of {u, v}1 when multG({u, v}) = 1.

We denote by degG(v) the degree of a vertex v in a graph G, that is, the
number of vertices that are adjacent to v. The multidegree of v, that we write
mdegG(v), is the number of edges (i.e. counting multiplicities) incident with v.
We drop the subscript when it is clear from the context.

Immersions. Let H and G be graphs. We say that G contains H as an immer-
sion if there is a pair of functions (φ, ψ), called an H-immersion model, such that
φ is an injection of V (H) → V (G) and ψ sends {u, v}i to a path of G between
φ(u) and φ(v), for every {u, v} ∈ E(H) and every i ∈ {1, . . . ,multH({u, v})}, in
a way such that distinct edges are sent to edge-disjoint paths. Every vertex in the
image of φ is called a branch vertex. An H-immersion expansion M in a graph
G is a subgraph of G defined as follows: V (M) = φ(V (H)) ∪ ⋃

e∈H V (ψ(e)) and
E(M) =

⋃
e∈E(H) E(ψ(e)) for some H-immersion model (φ, ψ) of G. We call the

paths in ψ(E(H)) certifying paths of the H-immersion expansion M .
We say that two edges are incident if they share some endpoint. A lift of two

incident edges e1 = {x, y} and e2 = {y, z} of G is the operation that removes
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the edges e1 and e2 from the graph and then, if x �= z, adds the edge {x, z} (or
increases the multiplicity of {x, z} by 1 if this edge already exists). Notice that
H is an immersion of G if and only if a graph isomorphic to H can be obtained
from some subgraph of G after applying lifts of incident edges1.

Packings and Coverings. An H-cover of G is a set C ⊆ E(G) such that G\C
does not contain H as an immersion. An H-packing in G is a collection of edge-
disjoint H-immersion expansions in G. We denote by packH(G) the maximum
size of an H-packing and by coverH(G) the minimum size of an H-cover in G.

Rooted Trees. A rooted tree is a pair (T, s) where T is a tree and s ∈ V (T ) is
a vertex referred to as the root. Given a vertex x ∈ V (T ), the descendants of x
in (T, s), denoted by desc(T,s)(x), is the set containing each vertex w such that
the unique path from w to s in T contains x. If y is a descendant of x and is
adjacent to x, then it is a child of x. Two vertices of T are siblings if they are
children of the same vertex. Given a rooted tree (T, s) and a vertex x ∈ V (G),
the height of x in (T, s) is the maximum distance between x and a vertex in
desc(T,s)(x).

We now define two types of decompositions of graphs: tree-partitions (cf.
[14,23]) and tree-cut decompositions (cf. [24]).

Tree-Partitions. We introduce, especially for the needs of our proof, a multi-
graph extension of the parameter of tree-partition width defined in [14,23] where
we could consider the number of edges between the bags and the number of ver-
tices in the bags. A tree-partition of a graph G is a pair D = (T,X ) where T is a
tree and X = {Xt}t∈V (T ) is a partition of V (G) such that either |V (T )| = 1 or for
every {x, y} ∈ E(G), there exists an edge {t, t′} ∈ E(T ) where {x, y} ⊆ Xt ∪Xt′ .
We call the elements of X bags of D. Given an edge f = {t, t′} ∈ E(T ), we define
Ef as the set of edges with one endpoint in Xt and the other in Xt′ . The width
of D is defined as max{|Xt|}t∈V (T ) ∪ {|Ef |}f∈E(T ). The tree-partition width of
G is the minimum width over all tree-partitions of G and will be denoted by
tpw(G). A rooted tree-partition of a graph G is a triple D = ((T, s), X ) where
(T, s) is a rooted tree and (X , T ) is a tree-partition of G.

Tree-Cut Decompositions. A near-partition of a set S is a collection of pair-
wise disjoint subsets S1, . . . , Sk ⊆ S (for some k ∈ N) such that

⋃k
i=1 Si = S.

Observe that this definition allows a set of the family to be empty. A tree-
cut decomposition of a graph G is a pair D = (T,X ) where T is a tree and
X = {Xt}t∈V (T ) is a near-partition of V (G). As in the case of tree-partitions,
we call the elements of X bags of D. A rooted tree-cut decomposition of a graph

1 While we mentioned this definition in the introduction, we now adopt the more
technical definition of immersion in terms of immersion models as this will facilitate
the presentation of the proofs.
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G is a triple D = ((T, s),X ) where (T, s) is a rooted tree and (T,X ) is a
tree-cut decomposition of G. Given that D = ((T, s), X ) is a rooted tree par-
tition or a rooted tree-cut decomposition of G and given t ∈ V (T ), we set
Gt = G

[⋃
t∈desc(T,s)(t)

Xt

]
.

The torso of a tree-cut decomposition (T,X ) at a node t is the graph obtained
from G as follows. If V (T ) = {t}, then the torso at t is G. Otherwise let T1, . . . , T�

be the connected components of T \ t. The torso Ht at t is obtained from G by
consolidating each vertex set

⋃
b∈V (Ti)

Xb into a single vertex zi. The operation
of consolidating a vertex set Z into z is to replace Z with z in G, and for each
edge e between Z and v ∈ V (G) \ Z, adding an edge zv in the new graph.
Given a graph G and X ⊆ V (G), let the 3-center of (G,X) be the unique graph
obtained from G by suppressing vertices in V (G) \X of degree two and deleting
vertices of degree at most 1. For each node t of T , we denote by H̃t the 3-center
of (Ht,Xt), where Ht is the torso of (T,X ) at t.

Let D = ((T, s),X ) be a rooted tree-cut decomposition of G. The adhe-
sion of a vertex t of T , that we write adhD(t), is the number of edges with
exactly one endpoint in Gt. The width of a tree-cut decomposition (X , T ) of G

is maxt∈V (T ){adhD(t), |H̃t|}. The tree-cut width of G, denoted by tcw(G), is the
minimum width over all tree-cut decompositions of G.

A vertex t ∈ V (T ) is thin if adhD(t) ≤ 2, and bold otherwise. We also
say that D is nice if for every thin vertex t ∈ V (T ) we have N(V (Gt)) ∩⋃

b is a sibling of t V (Gb) = ∅. In other words, there is no edge from a vertex of Gt

to a vertex of Gb, for any sibling b of t, whenever t is thin. The notion of nice tree-
cut decompositions has been introdued by Ganian et al. in [12]. Furthermore,
they proved the following result.

Proposition 1 [12]. Every rooted tree-cut decomposition can be transformed
into a nice one without increasing the width.

We say than an edge of G crosses the bag Xt, for some t ∈ V (T ) if its
endpoints belongs to bags Xt1 and Xt2 , for some t1, t2 ∈ V (T ) such that t
belongs to the interior of the (unique) path of T connecting t1 to t2.

3 From Tree-Cut Decompositions to Tree-Partitions

The purpose of this section is to prove the following theorem.

Theorem 2. For every connected graph G, and every connected graph H with
at least one edge, there is a graph G′ such that

– tpw(G′) ≤ (tcw(G) + 1)2/2,
– packH+(G′) ≤ packH(G), and
– coverH(G) ≤ coverH+(G′).
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Theorem 2 will allow us in Sect. 4 to consider graphs of bounded tree-partition
width instead of graphs of bounded tree-cut width.

For every graph G, we define G+ as the graph obtained if, for every vertex
v, we add two new vertices v′ and v′′ and the edges {v′, v′′} (of multiplicity
2), {v, v′} and {v, v′′} (both of multiplicity 1). Observe that for every G, every
vertex of G+ has degree at least 3. We also define G∗ as the graph obtained by
adding, for every vertex v, the new vertices v′

1, . . . , v
′
mdeg(v) and v′′

1 , . . . , v′′
mdeg(v)

and the edges {v′
i, v

′′
i } (of multiplicity 2), {v, v′

i}, and {v, v′′
i } (both of multiplicity

1), for every i ∈ {1, . . . ,deg(v)}. If v is a vertex of G, then we denote by Zv,i

the subgraph G∗[{v, v′
i, v

′′
i }] for every i ∈ {1, . . . ,mdegG(v)}. Our first aim is to

prove the following three lemmata.

Lemma 1 (�2). Let G be a graph, let H be a connected graph with at least one
edge and let G′ be a subdivision of G∗. Then we have

– packH+(G∗) = packH+(G′) and
– coverH+(G∗) = coverH+(G′).

Lemma 2 (�). For every two graphs H and G such that H is connected and
has at least one edge, we have packH+(G∗) ≤ packH(G).

Lemma 3 (�). For every two graphs H and G such that H is connected and
has at least one edge, we have coverH(G) ≤ coverH+(G∗).

We are now ready to prove Theorem 2.

Proof (of Theorem 2). Let k = tcw(G). We examine the nontrivial case where
G is not a tree, i.e., tcw(G) ≥ 2. Let us consider the graph G∗. We claim that
tcw(G∗) = tcw(G). Indeed, starting from an optimal tree-cut decomposition of
G, we can, for every vertex v of G and for every i ∈ {1, . . . ,mdegG(v)}, create
a bag that is a children of the one of v and contains {v′

i, v
′′
i }. According to the

definition of G∗, this creates a tree-cut decomposition D = ((T, s), {Xt}t∈V (T ))
of G∗. Observe that for every vertex x that we introduced to the tree of the
decomposition during this process, adhD(x) = 2 and the corresponding bag has
size two. This proves that tcw(G∗) ≤ max(tcw(G), 2) = tcw(G). As G is a
subgraph of G∗, we obtain tcw(G) ≤ tcw(G∗) and the proof of the claim is
complete.

According to Proposition 1, we can assume that G∗ has a nice rooted tree-
cut decomposition of width ≤ k. For notational simplicity we again denote it by
D = ((T, s), {Xt}t∈V (T )) and, obviously, we can also assume that all leaves of T
correspond to non-empty bags.

Our next step is to transform the rooted tree-cut decomposition D into a
rooted tree-partition D′ = ((T, s), {X ′

t}t∈V (T )) of a subdivision G′ of G∗. Notice
that the only differences between two decompositions are that, in a tree-cut
decomposition, empty bags are allowed as well as edges connecting vertices of
bags corresponding to non-adjacent vertices of T .

2 All proofs with a (�) have been omitted from this extended abstract.
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We proceed as follows: if X is a bag crossed by edges, we subdivide every
edge crossing X and add the obtained subdivision vertex to X. By repeating
this process we decrease at each step the number of bags crossed by edges, that
eventually reaches zero. Let G′ be the obtained graph and observe that G′ is a
subdivision of G. As G is connected, the obtained rooted tree-cut decomposition
D′ = ((T, s), {X ′

t}t∈V (T )) is a rooted tree partition of G′.
Notice that the adhesion of any bag of T in D is the same as in D′. However,

the bags of D′ may grow during the construction of G′. Let t be a vertex of T
and let {t1, . . . , tm} be the set of children of t. We claim that |X ′

t| ≤ (k + 1)2/2.
Let Et be the set of edges crossing Xt in G. Let Ht be the torso of D at t, and

let H ′
t = Ht \Xt. Observe that |Et| is the same as the number of edges in H ′

t. Let
zp be the vertex of H ′

t corresponding to the parent of t, and similarly for each
i ∈ {1, . . . , m} let zi be the vertex of H ′

t corresponding to the child ti of t. Notice
that if ti is a thin child of t, then zi can be adjacent to only zp as D is a nice rooted
tree-cut decomposition. Thus the sum of the number of incident edges with zi in
H ′

t for all thin children ti of t is at most adhD(t) ≤ k. On the other hand, if ti is a
bold child of t, then zi has at least 3 neighbors in Ht, and thus it is contained in
the 3-center of (Ht,Xt). Thus, the number of all bold children of t is bounded by
k−|Xt|. Since each vertex in H ′

t is incident with at most k edges, the total number
of edges in H ′

t is at most (k − |Xt| + 1)k/2 + k. As |E(H ′
t)| = |Et| = |X ′

t \ Xt|, it
implies that |X ′

t| ≤ |Xt|+k ·(k−|Xt|+2)/2 ≤ max{2k, k(k+2)/2} ≤ (k+1)2/2.
We conclude that G′ has a rooted tree partition of width at most (tcw(G)+1)2/2.

Recall that G′ is a subdivision of G∗. By the virtue of Lemmas 3, 2, and
1, we obtain that packH+(G′) ≤ packH(G) and coverH(G) ≤ coverH+(G′).
Hence G′ satisfies the desired properties. ��

4 Erdős-Pósa for Bounded Tree-Partition Width

Before we proceed, we require the following lemma and an easy observation.

Lemma 4 (�). Let G and H be two graphs and let X ⊆ V (G). Let C be the
collection of connected components of G\X. If M is an H-immersion expansion
of G then M contains vertices from at most (|X| + 1) · |E(H)| graphs of C.
Observation 1. Let G and H be graphs and let F ⊆ E(G). Then it holds that
coverH(G) ≤ coverH(G \ F ) + |F |.
For a graph H, we define ωH : N → N so that ωH(r) =

⌈
r · 3r+1

2 · |E(H)|⌉ . The
next Theorem is an important ingredient of our results.

Theorem 3. Let H be a connected graph with at least one edge. Then for every
graph G it holds that coverH(G) ≤ ωH(tpw(G)) · packH(G)

Proof. Let us show by induction on k that if packH(G) ≤ k and tpw(G) ≤ r
then coverH(G) ≤ ωH(r) · k.

The case k = 0 is trivial. Let us now assume that k ≥ 1 and that for every
graph G of tree-partition width at most r and such that packH(G) = k − 1, we
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have coverH(G) ≤ ωH(r)(k − 1). Let G be a graph such that packH(G) = k
and tpw(G) ≤ r. Let also D = ((T, s), {Xt}t∈V (T )) be an optimal rooted tree
partition of G. We say that a vertex t ∈ V (T ) is infected if Gt contains an H-
immersion expansion. Let t be an infected vertex of T of minimum height.

Claim. If some of the H-immersion expansions of G shares an edge with Gt′ for
some child t′ of t, then it also shares an edge with E{t,t′}.

Proof of Claim: Let M be some H-immersion expansions of G. Notice that, by
the choice of t, M cannot be entirely inside in Gt′ . This fact, together with the
connectivity of M , implies that E(M) ∩ E{t,t′} �= ∅. ��

Suppose that M is an H-immersion expansion of Gt and let U be the set of
children of t corresponding to bags which share vertices with M . We define the
multisets A = E(G[Xt]) ∩ E(M), B =

⋃
t′∈U E{t,t′} and C =

⋃
t′∈U E(G′

t). We
also set D = A ∪ B. By the definition of U , it follows that E(M) ⊆ C ∪ D (1).

Let us upper-bound the size of |D|. Applying Lemma 4 for Gt, H, and Xt,
we have |U | ≤ (r +1) · |E(H)|, hence |B| ≤ r(r +1) · |E(H)|. Besides, every path
of M connecting two branch vertices meets every vertex of Xt at most once (as
it is a path), thus E(M) does not contain an edge of G[Xt] with a multiplicity
larger than |E(H)|. It follows that |A| ≤ r(r−1)

2 · |E(H)| and finally we obtain
that |D| = |A| ∪ |B| ≤ r · 3r+1

2 · |E(H)| = ωH(r).
Let G′ = G \ D. We now show that packH(G′) ≤ k − 1. Let us consider

an H-immersion expansion M ′ in G′. As E(M ′) ⊆ E(G) \ D, if follows that
E(M ′) ∩ D = ∅. (2).

Recall that B ⊆ D, which together with (2) implies that E(M ′)∩B = ∅. This
fact, combined with the claim above, implies that E(M ′) ∩ C = ∅. (3) From (2)
and (3), we obtain that E(M ′) ∩ (C ∪ D) = ∅, which, combined with (1),
implies that E(M) ∩ E(M)′ �= ∅. Consequently, every maximum packing of H-
immersion expansions in G′ is edge-disjoint from M . If such a packing had size
≥ k, it would form together with M a packing of size k+1 in G, a contradiction.
Thus packH(G′) ≤ k−1, as desired. By the induction hypothesis applied on G′,
coverH(G′) ≤ ωH(r)·(k−1) edges. Therefore, from Observation 1, coverH(G) ≤
|D| + coverH(G′) ≤ |D| + ωH(r) · (k − 1) ≤ ωH(r) · k edges as required. ��
Theorem 4. Let H be a connected graph with at least one edge, r ∈ N, and G
be a graph where tcw(G) ≤ r. Then coverH(G) ≤ σ(r) · (4 · |V (H)| + |E(H)|) ·
packH(G), where σ(r) =

⌈
1
8 (3(r + 1)4 + 2(r + 1)2)

⌉
.

Proof. Clearly, we can assume that G is connected, otherwise we work on each
of its connected components separately. By Theorem 2, there is a graph G′

where tpw(G′) ≤ (r + 1)2/2, packH+(G′) ≤ packH(G) and coverH(G) ≤
coverH+(G′). The result follows as, from Theorem 3, coverH+(G′) ≤ ωH+((r +
1)2/2) ·packH+(G′) and ωH+((r +1)2/2) = σ(r) · |E(H+)| ≤ σ(r) · (4 · |V (H)|+
|E(H)|). ��
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5 Erdős-Pósa for Immersions of Subcubic Planar Graphs

Grids and Walls. Let k and r be positive integers where k, r ≥ 2. The (k × r)-
grid Γk,r is the Cartesian product of two paths of lengths k − 1 and r − 1
respectively. We denote by Γk the (k × k)-grid. The k-wall Wk is the graph
obtained from a ((k+1)× (2 ·k+2))-grid with vertices (x, y), x ∈ {1, . . . , k+1},
y ∈ {1, . . . , 2k + 2}, after the removal of the “vertical” edges {(x, y), (x + 1, y)}
for odd x + y, and then the removal of all vertices of degree 1. We say that k is
the height of the wall.

Lemma 5 (�). Every connected planar subcubic graph H is an immersion of
the wall W|V (H)|.

By combining [24, Theorem 17] with the main result of [7] (see also [6]) we
can readily obtain the following.

Theorem 5. There is a function τ : N+ → N such that the following holds: for
every graph G and r ∈ N

+, if tcw(G) ≥ f(r) then Wr is an immersion of G.
Moreover, f(r) = O(r29polylog(r)).

Lemma 6. Let G be a graph and let H be a connected planar subcubic graph
on h vertices. Then tcw(G) = O(h29 · (packI(H)(G))14.5 · (polylog(h) +
polylog(packI(H)(G))).

Proof. Let packH(G) ≤ k. Let g(h, k) = f((h + 1) · (k + 1)1/2�), where f is the
function of Theorem 5. Suppose that tcw(G) ≥ g(h, k). Then, from Theorem 5,
we obtain that G contains the wall W of height (h + 1) · (k + 1)1/2� as an
immersion. Notice that W contains k+1 vertex-disjoint walls W1,W2, . . . , Wk+1

of height h. From Lemma 5, each one of these walls contains H as an immersion
and thus an H-immersion expansion. Since, these walls are vertex-disjoint they
are also edge-disjoint. Hence, we have found a packing of H of size k + 1 > k, a
contradiction. Therefore, tcw(G) ≤ g(h, k). Notice now that, from Theorem 5,
g(h, k) = O(h29k14.5(polylog(h) + polylog(k)) as required. ��

The edge version of Theorem 1 follows as a corollary of Theorem 4
and Lemma 6.

6 The Vertex Case

To prove the vertex version of Theorem 1, is a much easier task. For this, we
follow the same methodology by using the graph parameter of treewidth instead
of tree-cut width, and topological minors instead of immersions. Due to lack of
space the necessary definitions and the proof have been omitted.
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7 Discussion

Notice that in Theorem 1 we demand that H is a connected graph. It is easy
to extend this result if instead of H we consider some collection H of finite con-
nected graphs containing one that is planar subcubic, and where I(H) contains
all graphs containing some graph in H as an immersion. Moreover, it is easy to
drop the connectivity condition for the vertex variant using arguments from [22].
However it remains open whether this can be done for the edge variant as well.

Naturally, the most challenging problem on the Erdö–Pósa properties of
immersions is to characterize the graph classes:

Hv/e = {H | I(H) has the v/e-E&P property}

In this paper we prove that both Hv and He contain all planar subcubic graphs.
It is an interesting question whether Hv/e are wider than this. Using arguments
similar to [20,22] it is possible to prove the following.

Lemma 7. None of Hv and He contains a non-planar subcubic graph.

For the non-subcubic case, we can first observe that K1,4, which is planar
and non-subcubic belongs in both Hv and He. However, this is not the case for
all planar and non-subcubic graphs as is indicated in the following observation.

Observation 2 (�). There exists a 3-connected non-subcubic planar graph H
that does belong neither to Hv nor to He.

Providing an exact characterization of Hv and He is a challenging open prob-

lem. A first step to deal with this problem could be the cases of θ4 = and

the 4-wheel . Especially for the 4-wheel, the structural results in [1] might
be useful in this direction.
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Abstract. We present a polynomial-time algorithm that finds a maxi-
mum weight stable set in a graph that does not contain as an induced
subgraph an induced path on six vertices or a bull (the graph with ver-
tices a, b, c, d, e and edges ab, bc, cd, be, ce).

Keywords: Stability · P6-free · Bull-free · Polynomial time · Algorithm

1 Introduction

In a graph G, a stable set (also called independent set) is any subset of pairwise
non-adjacent vertices. The maximum stable set problem (henceforth MSS)
is the problem of finding a stable set of maximum size. In the weighted version
of this problem, each vertex x of G has a weight w(x), and the weight of any
subset of vertices is defined as the total weight of its elements. The maximum
weight stable set problem (MWSS) is then the problem of finding a stable
set of maximum weight. It is well-known that MSS (and consequently MWSS)
is NP-hard in general, even under various restrictions [15].

Given a fixed graph F , a graph G contains F when F is isomorphic to an
induced subgraph of G. A graph G is said to be F -free if it does not contain F .
Let us say that F is special if every component of F is a tree with no vertex of
degree at least four and with at most one vertex of degree three. Alekseev [1]
proved that MSS remains NP-complete in the class of F -free graphs whenever
F is not special. On the other hand, when F is a special graph, it is still an
open problem to know if MSS can be solved in polynomial time in the class of
F -free graphs for most instances of F . It is known that MWSS is polynomial-
time solvable in the class of F -free graphs when F is any special graph on at
most five vertices [2,20,22]. Hence the new frontier to explore now is the case
where F has six or more vertices.

We denote by Pn the path on n vertices. The complexity (polynomial or not)
of MSS in the class of P6-free graph is still unknown, but it has recently been
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proved that it is quasi-polynomial [19]. There are several results on the existence
of polynomial-time algorithms for MSS in subclasses of P6-free graphs; see for
example [17,18,24–26].

The bull is the graph with five vertices a, b, c, d, e and edges ab, bc, cd, be, ce
(see Fig. 1). Our main result is the following.

Fig. 1. The bull.

Theorem 1. MWSS can be solved in time O(n7) for every graph on n vertices
in the class of (P6, bull)-free graphs.

Before presenting the proofs, we recall some closely related results.
Brandstädt and Mosca [7] showed that MWSS can be solved in polynomial

time in the class of (odd-hole, bull)-free graphs. This class does not contain the
class of (P6,bull)-free graphs, notably because of the graph C5.

Thomassé, Trotignon and Vušković [29] use the decomposition theorem for
bull-free trigraphs, due to Chudnovsky [8,9], to prove that MWSS is FPT in
the class of bull-free graphs. The bottleneck against polynomiality is a subclass
called T1. It might be that one can prove that MWSS is polynomial in the class
of P6-free graphs in T1. However the algorithm from [29] runs in O(n9) time,
while our algorithm runs in O(n7) time and is, we believe, conceptually simpler.

The proof of Theorem 1 works along the following lines. First, we reduce
the problem to prime graphs, using modular decomposition (the technical terms
will be defined precisely below). Next, we will show that if a prime (P6,bull)-free
graph G contains a certain graph G7, then G has a structure from which we can
solve MWSS in polynomial time on G. Finally, we will show that if a prime
(P6,bull)-free graph G contains no G7, then the non-neighborhood of any vertex
x is perfect, which implies that a maximum weight stable set containing x can
be found in polynomial time, and it suffices to repeat this for every vertex x.

Let us recall some definitions and results we need. Let G be a graph. For
each vertex v ∈ V (G), we denote by N(v) the set of vertices adjacent to v
(the neighbors of v) in G. For any subset S of V (G) we write NS(v) instead of
N(v)∩S; and for a subgraph H we write NH(v) instead of NV (H)(v). We denote
by G[S] the induced subgraph of G with vertex-set S, and we denote by N(S)
the set {v ∈ V (G) \S | v has a neighbor in S}. The complement of G is denoted
by G. We say that a vertex v is complete to S if v is adjacent to every vertex
in S, and that v is anticomplete to S if v has no neighbor in S. For two sets
S, T ⊆ V (G) we say that S is complete to T if every vertex of S is adjacent to
every vertex of T , and we say that S is anticomplete to T if no vertex of S is
adjacent to any vertex of T .
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Let ω(G) denote the maximum size of a clique in G, and let χ(G) denote the
chromatic number of G (the smallest number of colors needed to color the vertices
of G in such a way that no two adjacent vertices receive the same color). A graph
G is perfect [3–5] if every induced subgraph H of G satisfies χ(H) = ω(H). By
the Strong Perfect Graph Theorem [10], a graph is perfect if and only if G and
G contain no induced �-cycle for any odd � ≥ 5.

In a graph G a homogeneous set is a set S ⊆ V (G) such that every vertex
in V (G) \ S is either complete to S or anticomplete to S. A homogeneous set is
proper if it contains at least two vertices and is different from V (G). A graph is
prime if it has no proper homogeneous set. Note that prime graphs are connected.

A class of graphs is hereditary if, for every graph G in the class, every induced
subgraph of G is also in the class. For example, for any family F of graphs, the
class of F-free graphs is hereditary. We will use the following theorem of Lozin
and Milanič [21].

Theorem 2 ([21]). Let G be a hereditary class of graphs. Suppose that there is
a constant c ≥ 1 such that the MWSS problem can be solved in time O(|V (G)|c)
for every prime graph G in G. Then the MWSS problem can be solved in time
O(|V (G)|c + |E(G)|) for every graph G in G.
Clearly, the class of (P6,bull)-free graphs is hereditary. By Theorem 2, in order
to prove Theorem 1 it suffices to prove it for prime graphs. This is the object of
the following theorem.

Theorem 3. Let G be a prime (P6, bull)-free graph, and let x be any vertex in
G. Suppose that there is a 5-cycle induced by non-neighbors of x. Then there
is a (possibly empty) clique F in G such that the induced subgraph G \ F is
triangle-free, and such a set F can be found in time O(n2).

The proof of Theorem 3 is given in the next section. We close this section by
showing how to obtain a proof of Theorem 1 on the basis of Theorem 3.

Our algorithm relies on results concerning graphs of bounded clique-width.
We will not develop all the technical aspects concerning the clique-width, but
we recall its definition and the results that we use. The concept of clique-width
was first introduced in [11]. The clique-width of a graph G is defined as the
minimum number of labels which are necessary to generate G by using the
following operations:

– Create a vertex v labeled by integer i.
– Make the disjoint union of two labeled graphs.
– Join all vertices with label i to all vertices with label j for two labels i �= j.
– Relabel all vertices of label i by label j.

A c-expression for a graph G of clique-width c is a sequence of the above four
operations that generate G and use at most c different labels. A class of graphs
C has bounded clique-width if there exists a constant c such that every graph G
in C has clique-width at most c.
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Theorem 4 ([12]). If a class of graphs C has bounded clique-width c, and there
is a function f such that for every graph G in C with n vertices and m edges a
c-expression can be found in time O(f(n,m)), then the maximum weight stable
set problem can be solved in time O(f(n,m)) for every graph G in C.
Theorem 5 ([6]). The class of (P6, triangle)-free graphs has bounded clique-
width c, and a c-expression can be found in time O(|V (G)|2) for every graph G
in this class.

Hence, as observed in [6], Theorems 4 and 5 imply the following.

Corollary 6 ([6]). For any (P6, triangle)-free graph G on n vertices one can
find a maximum weight stable set of G in time O(n2).

A k-wheel is a graph that consists of a k-cycle plus a vertex (called the center)
adjacent to all vertices of the cycle. The following lemma was proved for k ≥ 7
in [28]; actually the same proof holds for all k ≥ 6 as observed in [14].

Lemma 7 ([14,28]). Let G be a bull-free graph. If G contains a k-wheel for any
k ≥ 6, then G has a proper homogeneous set.

Note that the bull is a self-complementary graph, so the preceding lemma also
says that if G is prime then it does not contain the complementary graph of a
k-wheel with k ≥ 6.

Theorem 8. Let G be a prime (P6, bull)-free graph on n vertices. Then a max-
imum weight stable set of G can be found in time O(n7).

Proof. Let G be a prime (P6,bull)-free graph. Let w : V (G) → N be a weight
function on the vertex set of G. To find the maximum weight stable set in G it
is sufficient to compute, for every vertex x of G, a maximum weight stable set
containing x. So let x be any vertex in G. We want to compute the weight of a
maximum stable set containing x. Clearly it suffices to compute the maximum
weight stable set in each component of the induced subgraph G\({x}∪N(x)) and
make the sum over all components. Let K be any component of G\({x}∪N(x)).
We claim that:

Either K is perfect or it contains a 5-cycle. (1)

Proof of (1): Suppose that K is not perfect. Note that K contains no odd hole
of length at least 7 since G is P6-free. By the Strong Perfect Graph Theorem K
contains an odd antihole C. If C has length at least 7 then V (C) ∪ {x} induces
a wheel in G, so G has a proper homogeneous set by Lemma 7, a contradiction
because G is prime. So C has length 5, i.e., C is a 5-cycle. So (1) holds.

We can test in time O(n5) if K contains a 5-cycle. This leads to the following
two cases.

Suppose that K contains no 5-cycle. Then (1) imples that K is perfect. In
that case we can use the algorithms from either [13] or [27], which compute a
maximal weight stable set in a bull-free perfect graph in polynomial time. The
algorithm from [27] has time complexity O(n6).
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Now suppose that K contains a 5-cycle. Then by Theorem 3 we can find in
time O(n2) a clique F such that G \ F is triangle-free. Consider any stable set
S in K. If S contains no vertex from F , then S is in the subgraph G \ F , which
is triangle-free. By Corollary 6 we can find a maximum weight stable set SF

in G \ F in time O(n2). If S contains a vertex f from F , then S \ f is in the
subgraph G\ ({f}∪N(f)), which, since F is a clique, is a subgraph of G\F and
consequently is also triangle-free. By Corollary 6 we can find a maximum weight
stable set S′

f in G \ ({f} ∪ N(f)) in time O(n2). Then we set Sf = S′
f ∪ {f}.

We do this for every vertex f ∈ F . Now we need only compare the set SF and
the sets Sf (for all f ∈ F ) and select the one with the largest weight. This takes
time O(n3) for each component K that contains a 5-cycle.

Repeating the above for each component takes time O(n6) as the components
are disjoint. Repeating this for every vertex x, the total complexity is O(n7). 	


Now Theorem 1 follows directly from Theorems 2 and 8.

2 Proofs

In a graph G, let H be a subgraph of G. For each k > 0, a k-neighbor of H is
any vertex in V (G) \ V (H) that has exactly k neighbors in H.

Lemma 9. Let G be a bull-free graph. Let C be an induced 5-cycle in G, with
vertices c1, . . . , c5 and edges cici+1 for each i modulo 5. Then:

(i) Every 2-neighbor of C is adjacent to ci and ci+2 for some i.
(ii) Every 3-neighbor of C is adjacent to ci, ci+1 and ci+2 for some i.
(iii) Every 5-neighbor of C is adjacent to every k-neighbor with k ∈ {1, 2}.
(iv) If C has a 4-neighbor non-adjacent to ci for some i, then every 1-neighbor

of C is adjacent to ci.
(v) If a non-neighbor of C is adjacent to a k-neighbor of C, then k ∈ {1, 2, 5}.
Proof. If either (i) or (ii) fails, there is a vertex x that is either a 2-neighbor
adjacent to ci and ci+1 or a 3-neighbor adjacent to ci, ci+1 and ci+3 for some i,
and then {ci−1, ci, x, ci+1, ci+2} induces a bull.

(iii) Let u be a 5-neighbor of C and x be a k-neighbor of C with k ∈ {1, 2}.
So for some i the vertex x is adjacent to ci and maybe to ci+2. Then u is adjacent
to x, for otherwise {x, ci, ci+1, u, ci+3} induces a bull.

(iv) Let f be a 4-neighbor of C non-adjacent to ci. Suppose that there is a
1-neighbor x not adjacent to ci. So, up to symmetry, x is adjacent to ci+1 or
ci+2. Then x is adjacent to f , for otherwise {x, ci+1, ci+2, f, ci−1} induces a bull;
but then {x, f, ci−2, ci−1, ci} induces a bull.

(v) Let z be a non-neighbor of C that is adjacent to a k-neighbor x with
k ∈ {3, 4}. So there is an integer i such that x is adjacent to ci and ci+1 and not
adjacent to ci+2. Then {z, x, ci, ci+1, ci+2} induces a bull. 	


An umbrella is a graph that consists of a 5-wheel plus a vertex adjacent to
the center of the 5-wheel only.
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Lemma 10. Let G be a bull-free graph. If G contains an umbrella, then G has
a homogeneous set (that contains the 5-cycle of the umbrella).

Proof. Let C be the 5-cycle of the umbrella, with vertices c1, . . . , c5 and edges
cici+1 for all i modulo 5. Let A be the set of vertices that are complete to C,
and let Z be the set of vertices that are anticomplete to C. Let:

A′ = {a ∈ A | ahas a neighbor inZ}.

A′′ = {a ∈ A \ A′ | ahas a non-neighbor inA′}.

By the hypothesis that C is part of an umbrella, we have A′ �= ∅. Let H be the
component of G \ (A′ ∪ A′′) that contains V (C). We claim that:

A′ ∪ A′′is complete to V (H). (2)

Proof: Pick any b ∈ A′ ∪ A′′ and u ∈ V (H), and let us prove that b is adjacent
to u. We use the following notation. If b ∈ A′, then b has a neighbor z ∈ Z. If
b ∈ A′′, then b has a non-neighbor a′ ∈ A′, and a′ has a neighbor z ∈ Z, and b
is not adjacent to z, for otherwise we would have b ∈ A′.

By the definition of H, there is a shortest path u0-· · · -up in H with u0 ∈ V (C)
and up = u, and p ≥ 0. We know that b is adjacent to u0 by the definition of A.
First, we show that b is adjacent to u1 and finally by induction on j = 2, . . . p,
we show that b is adjacent to uj .

Now suppose that p ≥ 1. The vertex u1 is a k-neighbor of C for some k ≥ 1.
If k ∈ {1, 2}, then b is adjacent to u1 by Lemma 9 (iii). Suppose that k ∈ {3, 4}.
Then there is an integer i such that u1 is adjacent to ci and not to ci+1. By
Lemma 9 (v), z is not adjacent to u1. If b ∈ A′, then b is adjacent to u1, for
otherwise {z, b, ci+1, ci, u1} induces a bull. If b ∈ A′′, then, by the preceding
sentence we know that a′ is adjacent to u1; and then b is adjacent to u1, for
otherwise {z, a′, u1, u0, b} induces a bull. Suppose that k = 5. So u1 ∈ A. Then
u1 is not adjacent to z, for otherwise we would have u1 ∈ A′. If b ∈ A′, then b
is adjacent to u1 for otherwise we would have u1 ∈ A′′. If b ∈ A′′, then, by the
preceding sentence we know that a′ is adjacent to u1; and then b is adjacent to
u1, for otherwise {z, a′, u1, u0, b} induces a bull.

Finally suppose that p ≥ 2. So u2, . . . , up are non-neighbors of C. Since
u2 ∈ Z, we have k �= 5, for otherwise we would have u1 ∈ A′. So there is an
integer h such that u1 is adjacent to ch and not to ch+2. We may assume up to
relabeling that u0 = ch. It follows that ch+2 has no neighbor in {u0, . . . , up}.
Then, by induction on j = 2, . . . , p, the vertex b is adjacent to uj , for otherwise
{ch+2, b, uj−2, uj−1, uj} induces a bull. So b is adjacent to u. Thus (2) holds.

Let R = V (G) \ (A′ ∪ A′′ ∪ V (H)). By the definition of H, there is no edge
between V (H) and R. By (2), V (H) is complete to A′ ∪ A′′. Hence V (H) is a
homogeneous set that contains V (C), and it is proper since A′ �= ∅. 	

Lemma 11. Let G be a prime (P6, bull)-free graph. Let C be an induced 5-cycle
in G. If a non-neighbor of C is adjacent to a k-neighbor of C, then k = 2.
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Proof. Let C have vertices c1, . . . , c5 and edges cici+1 for each i modulo 5.
Suppose that a non-neighbor z of C is adjacent to a k-neighbor x of C. By
Lemma 9 (v), we have k ∈ {1, 2, 5}. If k = 1, say x is adjacent to ci, then z-x-
ci-ci+1-ci+2-ci+3 is an induced P6 in G. If k = 5, then V (H) ∪ {x, y} induces an
umbrella, so, by Lemma 10, G has a proper homogeneous set, a contradiction.
So k = 2. 	


Let G7 be the graph with vertex-set {c1, . . . , c5, d, x} and edge-set {cici+1 |
for all i mod 5} ∪ {dc1, dc4, dx}. See Fig. 2.

c1

c2

c3c4

c5d

x

G7

Fig. 2. The graph G7.

Lemma 12. Let G be a prime (P6, bull)-free graph. Assume that G contains
a 5-cycle C, with vertices c1, . . . , c5 and edges cici+1 for all i mod 5. Moreover
assume that C has a non-neighbor x in G. Then:

(i) There is a neighbor d of x that is a 2-neighbor of C. And consequently,
V (C) ∪ {d, x} induces a G7.

(ii) C has no 3-neighbor and no 5-neighbor.
(iii) If the vertex d from (i) is (up to symmetry) adjacent to c1 and c4, then

every 4-neighbor of C is non-adjacent to c5.

Proof. Since G is prime it is connected, so there is a shortest path from C to x
in G. Let x0-· · · -xp be such a path, where x0 ∈ V (C) and xp = x, and p ≥ 2. By
Lemma 11, x1 is a 2-neighbor of C, so up to relabeling we may assume that x1 is
adjacent to c1 and c4. Then p = 2 for otherwise x3-x2-x1-c1-c2-c3 is an induced
P6. So (i) holds with d = x1. Clearly, {c1, . . . , c5, x1, x} induces a G7.

Therefore we may assume, up to symmetry, that the vertex d from (i) is
adjacent to c1 and c4.

Suppose that there is a vertex u that is either a 5-neighbor of C or a 4-
neighbor adjacent to c5. In either case we may assume, up to symmetry, that u
is adjacent to c1, c3 and c5. Then u is adjacent to d, for otherwise {d, c1, c5, u, c3}
induces a bull, and u is adjacent to x, for otherwise {x, d, c1, u, c3} induces a bull.
But then u and x contradict Lemma 11. This proves item (iii) and that C has
no 5-neighbor.

Finally suppose that C has a 3-neighbor u, adjacent to ci−1, ci, ci+1; we
may assume up to symmetry that i ∈ {5, 1, 2}. Let X be the set of vertices that
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are complete to {ci−1, ci+1} and anticomplete to {ci−2, ci+2}, and let Y be the
vertex-set of the component of G[X] that contains ci and u. Since G is prime,
Y is not a homogeneous set, so there is a vertex t in V (G) \ Y and vertices y, z
in Y such that t is adjacent to y and not to z, and since Y is connected we may
choose y and z adjacent. We claim that:

t is adjacent to ci−2 and ci+2 and to at least one of ci−1 and ci+1. (3)

Proof: If t has no neighbor in {ci−1, ci+1}, then t is adjacent to ci−2, for otherwise
{t, y, z, ci−1, ci−2} induces a bull, and similarly t is adjacent to ci+2; but then
{ci−1, ci−2, t, ci+2, ci+1} induces a bull. Hence t has a neighbor in {ci−1, ci+1}.
Suppose that t is adjacent to both ci−1 and ci+1. Since t is not in Y it must
have a neighbor in {ci−2, ci+2}, and actually t is complete to {ci−2, ci+2}, for
otherwise t is a 3-neighbor of the 5-cycle induced by {z, ci−1, ci−2, ci+2, ci+1}
that violates Lemma 9 (ii). Now suppose that t is adjacent to exactly one of
ci−1, ci+1, say up to symmetry to ci−1. Then t is adjacent to ci−2, for otherwise
{ci−2, ci−1, t, y, ci+1} induces a bull, and t is adjacent to ci+2, for otherwise
{ci+2, ci−2, t, ci−1, z} induces a bull. Thus (3) holds.

Now we claim that:

x has no neighbor in Y ∪ {t}. (4)

Proof: Suppose that x has a neighbor in Y . Since x also has a non-neighbor
ci in Y , and Y is connected, there are adjacent vertices v, v′ in Y such that x
is adjacent to v and not to v′, and then {x, v, v′, ci−1, ci−2} induces a bull, a
contradiction. So x has no neighbor in Y . In particular x is not adjacent to y,
so x has no neighbor in the 5-cycle Cy induced by {y, ci−1, ci−2, ci+2, ci+1}. By
(3), t is a 3- or 4-neighbor of Cy. By Lemma 11, x is not adjacent to t. Thus (4)
holds.

Suppose that i = 5. By (3), t is adjacent to c2 and c3 and, up to symmetry,
to c1. Then d is not adjacent to y, for otherwise {x, d, y, c1, c2} induces a bull,
and d is not adjacent to t, for otherwise {x, d, c1, t, c3} induces a bull; but then
{d, c1, y, t, c3} induces a bull, a contradiction.

Suppose that i = 1. By (3), t is adjacent to c3 and c4. Then d is adjacent
to y, for otherwise x-d-c4-c3-c2-y is an induced P6, and similarly d is adjacent
to z. Then t is adjacent to d, for otherwise {x, d, z, y, t} induces a bull, and t is
adjacent to c2, for otherwise {x, d, t, y, c2} induces a bull; but then {x, d, c4, t, c2}
induces a bull.

Finally suppose that i = 2. By (3), t is adjacent to c4 and c5. Then d is not
adjacent to y, for otherwise {x, d, c1, y, c3} induces a bull, and d is adjacent to
t, for otherwise {d, c4, c5, t, y} induces a bull; but then {x, d, c4, t, y} induces a
bull, a contradiction. 	

Theorem 13. Let G be a prime (P6, bull)-free graph. Suppose that G contains
a G7, with vertex-set {c1, . . . , c5, d, x} and edge-set {cici+1 | for all i mod 5} ∪
{dc1, dc4, dx}. Let:
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– C be the 5-cycle induced by {c1, . . . , c5};
– F be the set of 4-neighbors of C;
– T be the set of 2-neighbors of C;
– W be the set of 1-neighbors and non-neighbors of C.

Then the following properties hold:

(i) V (G) = {c1, . . . , c5} ∪ F ∪ T ∪ W .
(ii) F is complete to {c1, . . . , c4} and anticomplete to {c5, x, d}.
(iii) F is a clique.
(iv) G \ F is triangle-free.

Proof. Note that d ∈ T and x ∈ W . Clearly the sets {c1, . . . , c5}, F , T , and W
are pairwise disjoint subsets of V (G). We observe that item (i) follows directly
from the definition of the sets F , T , W and Lemma 12 (ii).

Now we prove item (ii). Consider any f ∈ F . By Lemma 12 (iii), f is non-
adjacent to c5, and consequently f is complete to {c1, . . . , c4}. Then f is not
adjacent to x, for otherwise {x, f, c3, c4, c5} induces a bull; and f is not adjacent
to d, for otherwise {x, d, c1, f, c3} induces a bull. Thus (ii) holds.

Now we prove item (iii). Suppose on the contrary that F is not a clique. So
G[F ] has an anticomponent whose vertex-set F ′ satisfies |F ′| ≥ 2. Since G is
prime, F ′ is not a homogeneous set, so there are vertices y, z ∈ F ′ and a vertex
t ∈ V (G) \ F ′ that is adjacent to y and not to z, and since F ′ is anticonnected
we may choose y and z non-adjacent. By the definition of F ′, we have t /∈ F .
By (ii), we have t /∈ V (C). Therefore, By (i), we have t ∈ T ∪ W .

Suppose that t ∈ T , so t is adjacent to ci−1 and ci+1 for some i in (up to
symmetry) {1, 2, 5}. If i = 1, then {z, c2, y, t, c5} induces a bull. If i = 2, then
{t, c3, z, c4, c5} induces a bull. So i = 5. Then t is not adjacent to x, for otherwise
{x, t, c1, y, c3} induces a bull. Then x is a non-neighbor of the 5-cycle induced by
{c1, c2, c3, c4, t}, and y is a 5-neighbor of that cycle, which contradicts Lemma 12.

Hence t ∈ W . By Lemma 9 (iv), t is anticomplete to {c1, c2, c3, c4}. Then t is
adjacent to each u ∈ {c5, d}, for otherwise {t, y, c3, c4, u} induces a bull. So t is a
1-neighbor of C, and by Lemma 11, t is not adjacent to x. But then x-d-t-y-c3-z
is an induced P6. Thus (iii) holds.

There remains to prove item (iv). Suppose on the contrary that G\F contains
a triangle, with vertex-set R = {u, v, w}. Clearly C and R have at most two
common vertices. Moreover:

C and R have at most one common vertex. (5)

Proof: Suppose on the contrary that u, v ∈ V (C), and consequently w /∈ V (C).
By Lemma 9 (i), w is a k-neighbor of C for some k ≥ 3. Since w /∈ F , we have
k �= 4, so k ∈ {3, 5}; but this contradicts Lemma 12 (ii). So (5) holds.

Suppose that G\F is not connected. Consider the component K of G\F that
contains C; then K also contains T . Pick any vertex z in another component.
By Lemma 12 (i), the vertex z must have a neighbor in T , a contradiction.
Hence G \ F is connected. It follows that there is a path from C to R in G \ F .



94 F. Maffray and L. Pastor

Let P = p0-· · · -p� be a shortest such path, with p0 ∈ V (C), p� = u, and � ≥ 0.
Note that if � ≥ 1, the vertices p1, . . . , p� are not in C. We choose R so as to
minimize �. Let H be the component of G[N(u)] that contains v and w. Since G
is prime, V (H) is not a homogeneous set, so there are two vertices y, z ∈ V (H)
and a vertex a ∈ V (G) \ V (H) such that a is adjacent to y and not to z, and
since H is connected we may choose y and z adjacent. By the definition of H,
the vertex a is not adjacent to u.

Suppose that � = 0. So u = p0 = ci for some i ∈ {1, . . . , 5}. By (5) the vertices
y, z are not in C and are anticomplete to {ci−1, ci+1}. So, by Lemma 9 (ii), each
of y and z is a 1- or 2-neighbor of C. The vertex a is adjacent to ci−1, for
otherwise {a, y, z, ci, ci−1} induces a bull; and similarly a is adjacent to ci+1.
Note that this implies a /∈ V (C). Suppose that a has no neighbor in {ci−2, ci+2}.
Then one of y, z has a neighbor in {ci−2, ci+2}, for otherwise z-y-a-ci+1-ci+2-
ci−2 is an induced P6. So assume up to symmetry that one of y, z is adjacent
to ci+2. Then both y, z are adjacent to ci+2, for otherwise {ci+2, y, z, ci, ci−1}
induces a bull. So y and z are 2-neighbors of C, and they are not adjacent to
ci−2. But then {a, y, z, ci+2, ci−2} induces a bull, a contradiction. Hence a has a
neighbor in {ci−2, ci+2}. By Lemma 9 (ii) and Lemma 12 (ii), a must be adjacent
to both ci−2, ci+2, so a is a 4-neighbor of C. Hence a ∈ F , and i = 5, and by (iii)
a has no neighbor in {d, x}. The vertex z is not adjacent to c2, for otherwise
{z, c2, c1, a, c4} induces a bull; and similarly z is not adjacent to c3. Then y is
not adjacent to c2, for otherwise {c4, c5, z, y, c2} induces a bull; and similarly y is
not adjacent to c3. So y and z are 1-neighbors of C, and by Lemma 11 they are
not adjacent to x. Then d is adjacent to y, for otherwise {d, c1, c2, a, y} induces
a bull, and d is not adjacent to z, for otherwise {x, d, z, y, a} induces a bull; but
then z-y-d-c1-c2-c3 is an induced P6, a contradiction. Therefore � ≥ 1.

We deduce that:

Every vertex ci in C has at most one neighbor in {u, y, z}. (6)

For otherwise, ci and two of its neighbors in {u, y, z} form a triangle that con-
tradicts the choice of R (the minimality of �). Thus (6) holds.

Suppose that � ≥ 2. By Lemma 11 (applied to p1 and p2), p1 is a 2-neighbor
of C, adjacent to ci−1 and ci+1 for some i. The vertex y has no neighbor cj in
C, for otherwise the path cj-y contradicts the choice of P . The vertex p2 has no
neighbor cj in C, for otherwise the path cj-p2-· · · -p� contradicts the choice of
P . Put p′ = p3 if � ≥ 3 and p′ = y if � = 2. Then p′-p2-p1-ci+1-ci+2-ci−2 is an
induced P6, a contradiction.

Therefore � = 1, so u = p1. By (i), and since u /∈ F , u is either a 1-neighbor
or a 2-neighbor of C.

Suppose that u is a 1-neighbor of C, adjacent to ci for some i. By (6), y and
z are not adjacent to ci. Then a is adjacent to ci, for otherwise {a, y, z, u, ci}
induces a bull. If a has a neighbor in {ci−1, ci+1}, then, by Lemma 9 (ii) and
Lemma 12 (ii), a is a 4-neighbor of C; but then a and u violate Lemma 9 (iv). So
a has no neighbor in {ci−1, ci+1}. Then z is not adjacent to ci+1, for otherwise,
by (6), {a, y, u, z, ci+1} induces a bull; and z has no neighbor c in {ci−2, ci+2},



MWSS in (P6, bull)-Free Graphs 95

for otherwise, by (6), {ci, u, y, z, c} induces a bull. But then z-u-ci-ci+1-ci+2-ci−2

is an induced P6, a contradiction.
Therefore u is a 2-neighbor of C, adjacent to ci−1 and ci+1 for some i.

By (6), y and z are anticomplete to {ci−1, ci+1}. The vertex ci+2 has no neigh-
bor in {y, z}, for otherwise, by (6), {ci+2, y, z, u, ci−1} induces a bull. Likewise,
ci−2 has no neighbor in {y, z}. The vertex a is adjacent to ci−1, for otherwise
{a, y, z, u, ci−1} induces a bull, and similarly a is adjacent to ci+1. Then a has
a neighbor in {ci−2, ci+2}, for otherwise z-y-a-ci+1-ci+2-ci−2 is an induced P6.
By Lemma 9 (ii) and Lemma 12 (ii), a is a 4-neighbor of C, so i = 5, and a has
no neighbor in {c5, d, x}. Then y is adjacent to c5, for otherwise {y, a, c3, c4, c5}
induces a bull; and by (6), z is not adjacent to c5. But then z-y-c5-c4-c3-c2 is an
induced P6, a contradiction. This completes the proof of the theorem. 	

Finally, Theorem 3 follows as a direct consequence of Lemma 12 and Theorem 13.

3 Conclusion

In a parallel paper [23], but using different techniques, we proved that the prob-
lem of 4-coloring (P6,bull)-free graphs can be solved in polynomial time. It is not
known if there exists a polynomial-time algorithm that determines 4-colorability
in the whole class of P6-free graphs. We note that the class of (P6,bull)-free
graph does not have bounded clique-width, since it contains the class of com-
plements of bipartite graphs, which has unbounded clique-width [16]. Hence the
main result of this paper and of [23] cannot be obtained solely with a bounded
clique-width argument.
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Abstract. We study a recently introduced generalization of the Ver-
tex Cover (VC) problem, called Power Vertex Cover (PVC). In
this problem, each edge of the input graph is supplied with a positive
integer demand. A solution is an assignment of (power) values to the
vertices, so that for each edge one of its endpoints has value as high as
the demand, and the total sum of power values assigned is minimized.

We investigate how this generalization affects the complexity of Ver-
tex Cover from the point of view of parameterized algorithms. On the
positive side, when parameterized by the value of the optimal P , we give
an O∗(1.274P ) branching algorithm (O∗ is used to hide factors polyno-
mial in the input size), and also an O∗(1.325P ) algorithm for the more
general asymmetric case of the problem, where the demand of each edge
may differ for its two endpoints. When the parameter is the number of
vertices k that receive positive value, we give O∗(1.619k) and O∗(kk)
algorithms for the symmetric and asymmetric cases respectively, as well
as a simple quadratic kernel for the asymmetric case.

We also show that PVC becomes significantly harder than classical
VC when parameterized by the graph’s treewidth t. More specifically,
we prove that unless the ETH is false, there is no no(t) algorithm for
PVC. We give a method to overcome this hardness by designing an FPT
approximation scheme which obtains a (1+ε)-approximation to the opti-
mal solution in time FPT in parameters t and 1/ε.

1 Introduction

In the classical Vertex Cover (VC) problem, we are given a graph G = (V,E)
and we aim to find a minimum cardinality cover of the edges, i.e. a subset of
the vertices C ⊆ V such that for every edge e ∈ E, at least one of its endpoints
belongs to C. Vertex Cover is one of the most extensively studied NP-hard
problems in both approximation and parameterized algorithms [13,15].

In this paper, we study a natural generalization of the VC problem, which
we call Power Vertex Cover (PVC). In this generalization, we are given an
edge-weighted graph G = (V,E) and we are asked to assign (power) values to
its vertices. We say that an edge e is covered if at least one of its endpoints is
c© Springer-Verlag GmbH Germany 2016
P. Heggernes (Ed.): WG 2016, LNCS 9941, pp. 97–108, 2016.
DOI: 10.1007/978-3-662-53536-3 9
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assigned a value greater than or equal to the weight of e. The goal is to determine
a valuation such that all edges are covered and the sum of all values assigned is
minimized. Clearly, if all edge weights are equal to 1, then this problem coincides
with VC.

Power Vertex Cover was recently introduced in [1], motivated by practi-
cal applications in sensor networks (hence the term “power”). The main question
posed in [1] was whether this more general problem is harder to approximate
than VC. It was then shown that PVC retains enough of the desirable structure
of VC to admit a similar 2-approximation algorithm, even for the more general
case where the power needed to cover the edge (u, v) is not the same for u and
v (a case referred to as Directed Power Vertex Cover (DPVC)).

The goal of this paper is to pose a similar question in the context of para-
meterized complexity: is it possible to leverage known FPT results for VC to
obtain FPT algorithms for this more general version? We offer a number of both
positive and negative results. Specifically:

- When the parameter is the value of the optimal solution P (and all weights
are positive integers), we show an O∗(1.274P ) branching algorithm for PVC,
and an O∗(1.325P ) algorithm for DPVC. Thus, in this case, the two problems
behave similarly to classical VC.

- When the parameter is the cardinality k of the optimal solution, that is,
the number of vertices to be assigned non-zero values, we show O∗(1.619k)
and O∗(kk) algorithms for PVC and DPVC respectively, as well as a simple
quadratic (vertex) kernel for DPVC, similar to the classical Buss kernel for VC.
This raises the question of whether a kernel of order linear in k can be obtained.
We give some negative evidence in this direction, by showing that an LP-based
approach is very unlikely to succeed. More strongly, we show that, given an opti-
mal fractional solution to PVC which assigns value 0 to a vertex, it is NP-hard
to decide if an optimal solution exists that does the same.

- When the parameter is the treewidth t of the input graph, we show through
an FPT reduction from Clique that there is no no(t) algorithm for PVC unless
the ETH is false. This is essentially tight, since we also supply an O∗((Δ + 1)t)
algorithm, where Δ is the maximum degree of the graph, and is in stark contrast
to VC, which admits an O∗(2t) algorithm. We complement this hardness result
with an FPT approximation scheme, that is, an algorithm which, for any ε > 0
returns a (1 + ε)-approximate solution while running in time FPT in t and 1

ε .

Specifically, our algorithm runs in time
(
O( log n

ε )
)t

nO(1).

Our results thus indicate that PVC occupies a very interesting spot in terms
of its parameterized complexity. On the one hand, PVC carries over many of the
desirable algorithmic properties of VC: branching algorithms and simple kernel-
ization algorithms can be directly applied. On the other, this problem seems to
be considerably harder in several (sometimes surprising) respects. In particular,
neither the standard treewidth-based DP techniques, nor the Nemhauser-Trotter
theorem can be applied to obtain results comparable to those for VC. In fact,
in the latter case, the existence of edge weights turns a trivial problem (all
vertices with fractional optimal value 0 are placed in the independent set) to
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an NP-hard one. Yet, despite its added hardness, PVC in fact admits an FPT
approximation scheme, a property that is at the moment known for only a hand-
ful of other W-hard problems. Because of all these, we view the results of this
paper as a first step towards a deeper understanding of a natural generalization
of VC that merits further investigation.

Due to space constraints, some proofs are missing or sketched.

Previous Work. As mentioned, PVC and DPVC were introduced in [1], where
2-approximation algorithms were presented for general graphs and it was proved
that, like VC, the problem can be solved in polynomial time for bipartite graphs.

Vertex Cover is one of the most studied problems in FPT algorithms, and
the complexity of the fastest algorithm as a function of k has led to a long “race”
of improving results, see [3,14] and references therein. The current best result
is a O∗(1.274k)-time polynomial-space algorithm. Another direction of intense
interest has been kernelization algorithms for VC, with the current best being a
kernel with (slightly less than) 2k vertices [4,7,9]. Because of the importance of
this problem, numerous variations and generalizations have also been thoroughly
investigated. These include (among others): Weighted VC (where each vertex
has a cost) [14], Connected VC (where the solution is required to be connected)
[5,12], Partial VC (where the solution size is fixed and we seek to maximize the
number of covered edges) [8,11] and Capacitated VC (where each vertex has
a capacity of edges it can dominate) [6,8]. Of these, all except Partial VC are
FPT when parameterized by k, while all except Capacitated VC are FPT when
parameterized by the input graph’s treewidth t. Partial VC is known to admit
an FPT approximation scheme parameterized by k [11], while Capacitated VC
admits a bi-criteria FPT approximation scheme parameterized by t [10], that
is, an algorithm that returns a solution that has optimal size, but may violate
some capacity constraints by a factor (1 + ε).

In view of the above, and the results of this paper, we observe that PVC
displays a different behavior than most VC variants, with Capacitated VC
being the most similar. Note though, that for PVC we are able to obtain a
(much simpler) (1 + ε)-approximation for the problem, as opposed to the bi-
criteria approximation known for Capacitated VC. This is a consequence of
a “smoothness” property displayed by one problem and not the other, namely,
that any solution that slightly violates the feasibility constraints of PVC can be
transformed into a feasible solution with almost the same value. This property
separates the two problems, motivating the further study of PVC.

2 Preliminaries

We use standard graph theory terminology. We use n to denote the order of a
graph, and Δ to denote its maximum degree. We also use standard parameterized
complexity terminology, and refer the reader to related textbook [13] for the
definitions of notions such as FPT, kernel, treewidth.

In the DPVC problem we are given a graph G(V,E) and for each edge
(u, v) ∈ E two positive integer values wu,v and wv,u. A feasible solution is a
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function that assigns to each v ∈ V a value pv such that for all edges we have
either pu ≥ wu,v or pv ≥ wv,u. If for all edges we have wu,v = wv,u we say that
we have an instance of PVC.

Both of these problems generalize Vertex Cover, which is the case where
wu,v = 1 for all edges (u, v) ∈ E. In fact, there are simple cases where the
problems are considerable harder.

Theorem 1. PVC is NP-hard in complete graphs, even if the weights are
restricted to {1, 2}. It is even APX-hard in this class of graphs, as hard to approx-
imate as VC.

As a consequence of the above, PVC is hard on any class of graphs that
contains cliques, such interval graphs. In the remainder we focus on classes that
do not contain all cliques, such as graphs of bounded treewidth.

3 Parameterizing by Treewidth

3.1 Hardness for Treewidth

Theorem 2. If there exists an algorithm which, given an instance G(V,E) of
PVC with treewidth t, computes an optimal solution in time |V |o(t), then the
ETH is false. This result holds even if all weights are polynomially bounded
in |V |.

Fig. 1. Main gadgets of Theorem 2. Thick lines represent weight n edges

Proof. We describe a reduction from k-Multicolored Independent Set. In this
problem we are given a graph whose vertex set has been partitioned into k
cliques V1, . . . , Vk and we are asked if this graph contains an independent set of
size k. We assume without loss of generality that |V1| = |V2| = . . . = |Vk| = n
and that the vertices of each part are numbered {1, . . . , n}. It is known that if
an algorithm can solve this problem in no(k) time then the ETH is false.

Our reduction relies on two main gadgets, depicted in Fig. 1. We first describe
the choice gadget, depicted on the left side of the figure. This gadget contains
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two vertices u, u′ that will be connected to the rest of the graph. In addition, it
contains n independent edges, each of which is given weight n. Each edge has
one of its endpoints connected to u and the other to u′. The weights assigned
are such that no two edges incident on u have the same weight, and for each
internal edge the weight of the edges connecting it to u, u′ add up to n + 1.

The first step of our construction is to take k independent copies of the choice
gadget, and label the high-degree vertices u1, . . . , uk and u′

1, . . . , u
′
k. As we will

see, the idea of the reduction is that the power assigned to ui will encode the
choice of vertex for the independent set in Vi in the original graph.

We now consider the second gadget of the figure (the checker), which consists
of a K4, all of whose edges have weight n. We complete the construction as
follows: for every edge of the original graph, if its endpoints are the i-th vertex
of Vc and the j-th vertex of Vd, we add a copy of the checker gadget, where
each of the vertices uc, u

′
c, ud, u

′
d is connected to a distinct vertex of the K4. The

weights are i + 1, n − i + 1, j + 1, n − j + 1 for the edges incident on uc, u
′
c, ud, u

′
d

respectively.
This completes the description of the graph. We now ask if there exists a

power vertex cover with total cost at most k(n2 + n) + 3mn, where m is the
number of edges of the original graph. Observe that the treewidth of the con-
structed graph is 2k + O(1), because deleting the vertices ui, u

′
i, i ∈ {1, . . . , k}

turns the graph into a disconnected collection of K2s and K4s.
First, suppose that the original graph has an independent set of size k. If

the independent set contains vertex i from the set Vc, we assign the value i to
uc and n − i to u′

c. Inside each choice gadget, we consider each edge incident on
uc not yet covered, and we assign value n to its other endpoint. Similarly, we
consider each edge incident on u′

c not yet covered and assign value n to its other
endpoint. Since all weights are distinct and from {1, . . . , n}, we will thus select
n − i vertices from the uncovered edges incident on ui and i vertices from the
uncovered edges incident on u′

i, thus the total value spent on each choice gadget
is n2 + n. To see that this assignment covers also the weight n edges inside the
matching, observe that since the edges connecting each to u, u′ have total weight
n + 1, at least one is not covered by uc or u′

c, thus one of the internal endpoints
is taken.

Let us now consider the checker gadgets. Recall that we have one such gadget
for every edge. Consider an edge between the i-th vertex of Vc and the j-th vertex
of Vd, so that the weights are those depicted in Fig. 1. Because we started from an
independent set of G we know that for the values we have assigned at least one
of the following is true: puc

�= i or pud
�= j, since these values correspond to the

indices of the vertices of the independent set. Suppose without loss of generality
that puc

�= i, therefore puc
> i or puc

< i. In the first case, the edge connecting
uc to the K4 is already covered, so we simply assign value n to each of the three
vertices of the K4 not connected to uc. In the second case, we recall that we
have assigned pu′

c
= n − puc

therefore the edge incident on u′
c is covered. Thus,

in both cases we can cover all edges of the gadget for a total cost of 3n. Thus,
if we started from an independent set of the original graph we can construct a
power vertex cover of total cost k(n2 + n) + 3mn.
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For the other direction, suppose that a vertex cover of cost at most k(n2 +
n) + 3mn exists. First, observe that since the checker gadget contains a K4 of
weight n edges, any solution must spend at least 3n to cover it. There are m such
gadgets, thus the solution spends at most k(n2 + n) on the remaining vertices.

Consider now the solution restricted to a choice gadget. A first observation
is that there exists an optimal solution that assigns all degree 2 vertices values
either 0 or n. To see this, suppose that one such vertex has value i, and suppose
without loss of generality that it is a neighbor of u. We set its value to 0 and
the value of u to max{i, pu}. This is still a feasible solution of the same or lower
cost.

Suppose that the optimal solution assigns total value at most n2 + n to the
vertices of a choice gadget. It cannot be using fewer than n degree-two vertices,
because then one of the internal weight n edges will be uncovered, thus it spends
at least n2 on such vertices. Furthermore, it cannot be using n+1 such vertices,
because then it would have to assign 0 value to ui, u

′
i and some edges would be

uncovered. Therefore, the optimal solution uses exactly n degree-two vertices,
and assigns total value at most n to ui, u

′
i. We now claim that the total value

assigned to ui, u
′
i must be exactly n. To see this, suppose that pui

+pu′
i
< n. The

total number of edges covered by ui, u
′
i is then strictly less than n. There exist

therefore n+ 1 edges incident on ui, u
′
i which must be covered by other vertices.

By pigeonhole principle, two of them must be connected to the same edge. But
since we only selected one of the two endpoints of this edge, one of the edges
must be uncovered.

Because of the above we can now argue that if the optimal solution has total
cost at most k(n2 + n) + 3mn it must assign value exactly 3n to each checker
gadget and n2 +n to each choice gadget. Furthermore, this can only be achieved
if puc

+ pu′
c

= n for all c ∈ {1, . . . , k}. We can now see that selecting the vertex
with index puc

in Vc in the original graph gives an independent set. To see this,
suppose that puc

= i and pud
= j and suppose that an edge existed between

the corresponding vertices in the original graph. It is not hard to see that in the
checker gadget for this edge none of the vertices uc, u

′
c, ud, u

′
d covers its incident

edge. Therefore, it is impossible to cover everything by spending exactly 3n on
this gadget. ��

3.2 Exact and Approximation Algorithms for Treewidth

In the previous section we showed that PVC is much harder than Vertex Cover,
when parameterized by treewidth. This raises the natural question of how one
may be able to work around this added complexity. Our first observation is
that, using standard techniques, it is possible to obtain FPT algorithms for this
problem by adding extra parameters. In particular, if M is the maximum weight
of any edge and Δ is the maximum degree of the input graph, we have the
following:

Theorem 3. There exists an algorithm which, given an instance of DPVC
and a tree decomposition of width t, computes an optimal solution in time
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(M + 1)tnO(1). Similarly, there exists an algorithm that performs the same in
time (Δ + 1)tnO(1).

Theorem 3 indicates that the problem’s hardness for treewidth is not purely
combinatorial; rather, it stems mostly from the existence of large numbers, which
force the natural DP table to grow out of proportion. Using this intuition we
are able to state the main algorithmic result of this section which shows that,
in a sense, the problem’s W-hardness with respect to treewidth is “soft”: even
if we do not add extra parameters, it is always possible to obtain in FPT time
a solution that comes arbitrarily close to the optimal.

Theorem 4. There exists an algorithm which, given an instance of DPVC,
G(V,E) and a graph decomposition of G of width t, for any ε > 0, produces a

(1+ε)-approximation of the optimal in time
(
O( log n

ε )
)t

nO(1). Therefore, DPVC

admits an FPT approximation scheme parameterized by treewidth.

Proof (Sketch). The proof relies on two rounding steps. In the first, we deal
with the case where the maximum weight is not polynomially bounded in n. In
that case, we divide all weights by an appropriate value, so that the maximum
weight becomes polynomial in n, while losing a (1 + ε) factor in optimality (this
is similar to standard techniques, e.g. for Knapsack). We now have an (almost)
equivalent instance where M = nc. We now replace all edge weights by setting
wu,v := �log(1+ε)(wu,v)	. The idea is that this does not significantly affect the
feasibility constraints (by more than (1+ ε)); indeed, a vertex that was receiving
value pv in the old instance may now take value �log(1+ε) pv	 in the new one. We
can now modify the algorithm of Theorem3 to calculate the optimal solution in
the new instance. Because the new maximum value is now log(1+ε) M we get the
promised running time. ��

4 Parameterizing by Total Power

We focus in this section on the standard parameterization: given an edge-
weighted graph G and an integer P (the parameter), we want to determine
if there exists a solution of total power at most P . We first focus on PVC and
show that it is solvable within time O∗(1.274P ), thus reaching the same bound as
VC (when parameterized by the solution value). We then tackle DPVC where
a more involved analysis is needed, and we reach time O∗(1.325P ).

4.1 PVC

The algorithm for PVC is based on the following simple property.

Property 1. Consider an edge e = (u, v) of maximum weight. Then, in any opti-
mal solution either pu = we or pv = we.
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This property can be turned into a branching rule: considering an edge e =
(u, v) of maximum weight, then either set pu = we (remove u and incident
edges), or set pv = we (remove v and incident edges). This already shows that
the problem is FPT, leading to an algorithm in O∗(2P ). To improve this and get
the claimed bound, we also use the following reduction rule.

(RR1) Suppose that there is (u, v) with wu,v = M , and the maximum weight of
other edges incident to u and v is B ≤ M − 1. Then set wu,v = B, and
do P ← P − (M − B).

Property 2. (RR1) is correct.

Now, consider the following branching algorithm.

Algorithm 1
STEP 1: While (RR1) is applicable, apply it;
STEP 2: If P < 0 return NO;

If the graph has no edge return YES;
STEP 3: If the maximum weight of edges is 1:

Apply an algorithm in O∗(1.274k) for VC;
STEP 4: Take two adjacent edges e = (u, v) and f = (u,w) of

maximum weight. Branch as follows:
- either set pu = we (remove u, set P ← P − we);
- or set pv = pw = we (remove v and w, set P ← P − 2we)

Theorem 5. Algorithm1 solves PVC in time O∗(1.274P ).

4.2 DPVC

For DPVC, the previous simple approach does not work. Indeed, there might
be no pair of vertices (u, v) such that both wu,v is the maximum weight of
arcs starting at u, and wv,u is the maximum weight of arcs starting at v. If we
branch on a pair (u, v), the only thing that we know is that either pu ≥ wu,v, or
pv ≥ wv,u. Setting a constraint pu ≥ w corresponds to the following operation
Adjust(u,w).

Definition 1. Adjust(u,w) consists of decreasing weights of each arc starting
at u by w, and decreasing P by w.

Of course, if the weight of an arc becomes 0 or negative, then it is removed (as
well as the reverse arc). In our algorithm, a typical branching will be to take
an edge (u, v), and either to apply Adjust(u,wu,v) (and solve recursively), or to
apply Adjust(v, wv,u) (and solve recursively). Another possibility is to set the
power of a vertex u to a certain power w. In this case we must use v to cover
(v, u) if wu,v > w. Formally:

Definition 2. Set(u,w) consists of (1) setting pu = w, removing u (and incident
edges), (2) decreasing P by w, (3) applying Adjust(v, wv,u) for all (v, u) such
that wu,v > w.
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Using this it is already easy to show that the problem is solvable in FPT-time
O∗(1.619P ). To reach the claimed bound of O∗(1.325P ) we need some more
ingredients. Let M(u) be the maximum weight of outgoing arcs from u, and
P (u) be the sum of weights of arcs (z, u) (incoming in u). We first define two
reduction rules and one branching rule.

(RR2) If there exists u such that P (u) ≤ M(u), do Adjust(v, wv,u) where v is
such that wu,v = M(u).

(RR3) If there is (u, v) with wu,v = wv,u = 2, and all other arcs outgoing from
u and v have weight 1, then set wu,v = wv,u = 1, and do P ← P − 1.

(BR1) If there exists u with P (u) ≥ 5, branch as follows: either Set(u, 0), or
Adjust(u, 1).

Property 3. (RR2) and (RR3) are correct. (BR1) has a branching factor (at
worst) (−1,−5).

Now, before giving the whole algorithm, we detail the case where the maxi-
mum weight is 2, where a careful case analysis is needed.

Lemma 1. Let us consider an instance where (1) (RR2) and (RR3) have been
extensively applied, and (2) the maximum edge-weight is wu,v = 2. Then there
is a branching algorithm with branching factor (at worst) (−1,−5) or (−2,−3).

We are now ready to describe the main algorithm. N(u) denotes the set of
neighbors of u, and N2(u) the set of vertices at distance 2 from u.

Algorithm 2
STEP 1: While (RR2) or (RR3) is applicable, apply them;
STEP 2: If P < 0 return NO;

If the graph has no edge return YES;
STEP 3: If there is a vertex u with P (u) ≥ 5: apply (BR1);
STEP 4: If there exists (u, v) with either wu,v + wv,u ≥ 6, or

wu,v = 2 and wv,u = 3: branch by either Adjust(u,wu,v),
or Adjust(v, wv,u);

STEP 5: If there exists (u, v) of weight wu,v = 3:
- if N2(u) = {t} and all arcs (t, z), z ∈ N(u) have weight 1:

- either Adjust(t, 1);
- or Set(t, 0);

- otherwise:
- either Adjust(v, 1);
- or Set(u, 3), and Set(z, 0) for all z ∈ N(u);

STEP 6: If the maximum weight is at most 2, then branch as in Lemma 1.

Theorem 6. Algorithm2 solves DPVC in time O∗(1.325P ).

Proof. Note that 1.325 corresponds to branching factors (−1,−5) and (−2,−3).
We have already seen that (RR2) and (RR3) are sound, and that (BR1) gives a
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branching factor (−1,−5). For Step 4, if wu,v + wv,u ≥ 6 this gives in the worst
case a branching factor (−1,−5). If wu,v = 2 and wv,u = 3 the branching factor
is (−2,−3). At this point (after Step 4) there cannot remain an edge (u, v) with
weight wu,v ≥ 5, since Step 4 would have been applied. If there is an edge (u, v)
with wu,v = 4, then either P (u) ≥ 5 (which is impossible since (BR1) would
have been applied), or P (u) ≤ 4 (which is impossible since (RR2) would have
been applied). So, the maximum edge weight after step 4 is at most 3. Thanks
to Lemma 1, what remains to do is to focus on Step 5, with wu,v = 3 = M(u).
First, note that then P (u) = 4 (otherwise (RR2) or (BR1) would have been
applied), and wv,u = 1 (otherwise Step 4 would have been applied). We consider
two cases.

– If N2(u) = {t} and all arcs (t, z), z ∈ N(u) have weight wt,z = 1. As explained
in the algorithm, we branch on t: either pt ≥ 1, or pt = 0. If pt ≥ 1, all arcs
(t, z), z ∈ N(u) are covered, so we need to cover edges incident to u (which
are now disconnected from the rest of the graph), and we need at least 2 for
this. If pt = 0, we need to optimally cover the edges incident to a vertex in
N(u), and we need at least 2 for this. P reduces by at least 3 in one branch,
by at least 2 in the other, leading to a branching factor (−3,−2).

– If |N2(u)| ≥ 2, or if N2(u) = {t} with at least one arc (t, z), z ∈ N(u) of
weight 2: setting pu = 3 is only interesting if all neighbors of u receive weight
0 - otherwise distributing the power 3 of u on neighbors of u to cover all
arcs (v, u) is always at least as good. Then in this case we have to cover arcs
between N(u) and N2(u), so a power at least 2. Then either we have pu < 3
and in this case pv ≥ 1, or we set pu = 3, pz = 0 for neighbors z of u, and
we fix at least 2 in N2(u). In the first branch P reduces by at least 1, in the
other by at least 5, leading to a branching factor (−1,−5). ��

5 Parameterizing by the Number k of Vertices

We now consider as parameter the number k of vertices that will receive a positive
value in the optimal solution. Note that by definition k ≤ P ; therefore, we expect
any FPT algorithm with respect to k to have the same or worse performance
than the best algorithm for parameter P .

Theorem 7. PVC is solvable in time O∗(1.619k). DPVC is solvable in time
O∗(kk).

Following Theorem 7, a natural question is whether DPVC is solvable in
single exponential time with respect to k or not. This does not seem obvious. In
particular, it is not clear whether DPVC is solvable in single exponential time
with respect to the number of vertices n, since the simple brute-force algorithm
which guesses the value of each vertex needs nO(n) time.

Interestingly, though we are not able to resolve these questions, we can show
that they are actually equivalent.

Theorem 8. If there exists an O∗(γn) algorithm for DPVC, then there exists
an O∗((4γ)k) algorithm for DPVC.
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6 Kernelization and Linear Programming

Moving to the subject of kernels, we first notice that the same technique as for
VC gives a quadratic kernel for DPVC when the parameter is k (and therefore
also when the parameter is P ):

Theorem 9. There exists a kernelization algorithm for DPVC that produces a
kernel with O(k2) vertices.

We observe that the above theorem gives a bi-kernel also for PVC. We leave
it as an open question whether a pure quadratic kernel exists for PVC.

Let us now consider the question whether the kernel of Theorem 9 could
be improved to linear. A way to reach a linear kernel for VC is by means of
linear programming. We consider this approach now and show that it seems to
fail for the generalization we consider here. Let us consider the following ILP
formulation for DPVC, where we have one variable per vertex (xi is the power
of ui), and one variable xi,j(i < j) per edge (ui, uj). xi,j = 1 (resp. 0) means
that ui (resp uj) covers the edge.

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Min
∑n

i=1 xi

xi ≥ wi,jxi,j ,∀(ui, uj) ∈ E, i < j
xj ≥ wj,i(1 − xi,j),∀(ui, uj) ∈ E, i < j
xi,j ∈ {0, 1},∀(ui, uj) ∈ E, i < j
xi ≥ 0, i = 1, · · · , n

Can we use the relaxation of this ILP to get a linear kernel? Let us focus on
PVC, where the relaxation can be written in an equivalent simpler form1:

⎧
⎨

⎩

Min
∑n

i=1 xi

xi + xj ≥ wi,j ,∀(ui, uj) ∈ E, i < j
xi ≥ 0, i = 1, · · · , n

Let us call RPV C this LP. We can show that, similarly as for VC, RPV C
has the semi-integrality property: in an optimal (extremal) solution x∗, 2x∗

i ∈
N for all i. However, we cannot remove vertices receiving value 0, as in the
case of VC. Indeed, there does exist vertices that receive weight 0 in the above
relaxation which are in any optimal (integer) solution. To see this, consider
two edges (u1, v1) and (u2, v2) both with weight 2, and a vertex v adjacent to
all 4 previous vertices with edges of weight 1. Then, there is only one optimal
fractional solution, with pu1 = pv1 = pu2 = pv2 = 1, and pv = 0. But any
(integer) solution has value 5 and gives power 2 to u1 or v1, to u2 or v2, and
weight 1 to v. The difficulty is actually deeper, since we have the following.

Theorem 10. The following problem is NP-hard: given an instance of PVC,
an optimal (extremal) solution x∗ of RPV C and i such that x∗

i = 0, does there
exists an optimal (integer) solution of PVC not containing vi?
1 A solution of the relaxation of the former is clearly a solution of the latter. Conversely,

if xi + xj ≥ wi,j , set xi,j = xi/wi,j to get a solution of the former.



108 E. Angel et al.

References

1. Angel, E., Bampis, E., Chau, V., Kononov, A.: Min-power covering problems. In:
Elbassioni, K., et al. (eds.) ISAAC 2015. LNCS, vol. 9472, pp. 367–377. Springer,
Heidelberg (2015). doi:10.1007/978-3-662-48971-0 32

2. Bodlaender, H.L., Koster, A.M.C.A.: Combinatorial optimization on graphs of
bounded treewidth. Comput. J. 51(3), 255–269 (2008)

3. Chen, J., Kanj, I.A., Xia, G.: Improved upper bounds for vertex cover. Theor.
Comput. Sci. 411(4042), 3736–3756 (2010)
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Abstract. We describe an algorithm for generating all k-critical H-free
graphs, based on a method of Hoàng et al. Using this algorithm, we
prove that there are only finitely many 4-critical (P7, Ck)-free graphs,
for both k = 4 and k = 5. We also show that there are only finitely
many 4-critical (P8, C4)-free graphs. For each case of these cases we also
give the complete lists of critical graphs and vertex-critical graphs. These
results generalize previous work by Hell and Huang, and yield certifying
algorithms for the 3-colorability problem in the respective classes.

Moreover, we prove that for every t, the class of 4-critical planar Pt-free
graphs is finite. We also determine all 52 4-critical planar P7-free graphs.
We also prove that every P11-free graph of girth at least five is 3-colorable,
and show that this is best possible by determining the smallest 4-chromatic
P12-free graph of girth at least five. Moreover, we show that every P14-free
graph of girth at least six and every P17-free graph of girth at least seven
is 3-colorable. This strengthens results of Golovach et al.

Keywords: Graph coloring · Critical graph · H-free graph · Graph
generation

1 Introduction

Given a graph G, a k-coloring is a mapping c : V (G) → {1, . . . , k} with c(u) �=
c(v) for all edges uv of G. If a k-coloring exists for G, we call Gk-colorable.
Moreover G is called k-chromatic if it is k-colorable, but not (k − 1)-colorable.

The graph G is called k-critical if it is k-chromatic, but every proper subgraph
of G is (k − 1)-colorable. For example, the class of 3-critical graphs equals the
family of odd cycles. The characterization of k-critical graphs is a notorious
problem in graph theory.

To get a grip on this problem, it is common to consider graphs with restricted
structure, as follows. Let a graph H and a number k be given. An H-free graph
is a graph that does not contain H as an induced subgraph. We say that a
graph G is k-critical H-free if G is H-free, k-chromatic, and every H-free proper
subgraph of G is (k − 1)-colorable. If H is a set of graphs, then we say that a
c© Springer-Verlag GmbH Germany 2016
P. Heggernes (Ed.): WG 2016, LNCS 9941, pp. 109–120, 2016.
DOI: 10.1007/978-3-662-53536-3 10
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graph G is H-free if G is H-free for each H ∈ H. The definition of a k-critical
H-free graph is analogous.

A notion similar to critical graphs is that of k-vertex-critical graphs: k-
chromatic graphs for which every proper induced subgraph is (k − 1)-colorable.
We define k-vertex-critical H-free and k-vertex-critical H-free graphs accord-
ingly. Note that, unlike for critical graphs, the set of k-vertex-critical H-free
graphs equals the set of H-free k-vertex-critical graphs.

We remark that every k-critical graph is k-vertex-critical. Moreover, as noted
by Hoàng et al. [11], there are finitely many k-critical H-free graphs if and
only if there are finitely many k-vertex-critical H-free graphs, for any family of
graphs H.

The study of k-critical graphs in a particular graph class received a significant
amount of interest in the past decade, which is partly due to the interest in the
design of certifying algorithms. Given a decision problem, a solution algorithm
is called certifying if it provides, together with the yes/no decision, a polynomial
time verifiable certificate for this decision. In case of k-colorability for H-free
graphs, a canonical certificate would be either a k-coloring or an induced sub-
graph of the input graph which is (a) not k-colorable and (b) of constant size.
However, assertion (b) can only be realized if there is a finite list of (k+1)-critical
H-free graphs.

Let us now mention some results in this line of research. From [7,12–15] we
know that the k-colorability problem remains NP-complete for H-free graphs,
unless H is the disjoint union of paths. This motivates the study of graph classes
in which some path is forbidden as induced subgraph.

Bruce et al. [5] proved that there are exactly six 4-critical P5-free graphs,
where Pt denotes the path on t vertices. Later, Maffray and Morel [16], by char-
acterizing the 4-vertex-critical P5-free graphs, designed a linear time algorithm
to decide 3-colorability of P5-free graphs. Randerath et al. [19] have shown that
the only 4-critical (P6, C3)-free graph is the Grötzsch graph. More recently, Hell
and Huang [10] proved that there are four 4-critical (P6, C4)-free graphs. They
also proved that in general, there are only finitely many k-critical (P6, C4)-free
graphs.

In a companion paper, we proved the following dichotomy theorem together
with Chudnovsky and Zhong for the case of a single forbidden induced subgraph,
answering questions of Golovach et al. and Seymour.

Theorem 1 (Chudnovsky et al. [6]). Let H be a connected graph. There are
finitely many 4-critical H-free graphs if and only if H is a subgraph of P6.

The main difficulty in the proof of the above theorem is to show that there are
only finitely many 4-critical P6-free graphs, namely 24. A substantial step in this
proof, in turn, is to show that there only finitely many 4-critical (P6,diamond)-
free graphs. After unsuccessfully trying to prove this by hand, we developed
an algorithm to automatize the huge amount of case distinctions, based on a
method recently proposed by Hoàng et al. [11].
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In the present paper, we thoroughly extend this algorithm in order to derive
more characterizations of 4-critical H-free graphs. As a demonstration of the
power of this algorithm, we prove the following results.

– There are exactly 6 4-critical (P7, C4)-free graphs.
– There are exactly 17 4-critical (P7, C5)-free graphs.
– There are exactly 94 4-critical (P8, C4)-free graphs.
– There are exactly 52 4-critical planar P7-free graphs. In addition, using a

result of Böhme et al. [1] we show that for every t there are only finitely many
4-critical planar Pt-free graphs.

– Every P11-free graph of girth at least five is 3-colorable and there is a 4-
chromatic P12-free graph of girth 5.

– Every P14-free graph of girth at least six is 3-colorable.
– Every P17-free graph of girth at least seven is 3-colorable.

Our results extend and/or strengthen previous results of Hell and Huang [10]
and Golovach et al. [9]. Besides these results we see the algorithm as the main
contribution of our paper. Its modular design allows to easily implement new
expansion rules, which makes it adaptable to closely related problems in this line
of research. To this end, we also mention a case that was out of reach with the
current algorithm, but where we have a good feeling that there is only a finite
set of obstructions.

In the next section we propose a number of lemmas that give necessary
conditions for k-critical graphs. Our generation algorithm, which we also present
in the next section, is built on these lemmas.

In Sect. 3 we give more details and background on the above mentioned
results. The proofs, however, we defer to the full-length version of the paper
due to space constraints.

2 A Generic Algorithm to Find All k-Critical H-Free
Graphs

We build upon a method recently proposed by Hoàng et al. [11]. With this
method they have shown that there is a finite number of 5-critical (P5, C5)-free
graphs.

The idea is to use necessary conditions for a graph to be critical to generate
all critical graphs. The algorithm then performs all remaining case distinctions
automatically. In order to deal with more advanced cases, we need to thoroughly
alter the approach of Hoàng et al. [11]. We remark that the algorithm presented
below is, moreover, a substantial strenghtening of that used in the proof of
Theorem 1, and this strenghtening is necessary in order to derive the results of
the present paper.
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2.1 Preparation

In this section we prove a number of lemmas which will later be used as expansion
rules for our generation algorithm. Although none of them is particularly deep,
they turn out to be very useful for our purposes.

We use the following notation. The set NG(v) denotes the neighborhood of a
vertex v in G. If it is clear from the context which graph is meant, we abbreviate
this to N(v). The graph G|U denotes the subgraph of G induced by the vertex
subset U ⊆ V (G). Moreover, for a vertex subset U ⊆ V (G) we denote by G − U
the induced subgraph G|(V (G)\U) of G.

Let G be a k-colorable graph. The k-hull of G, which we denote Gk, is the
graph obtained from G by making two vertices u and v adjacent if and only if
there is no k-coloring of G under which u and v receive the same color. Clearly
Gk is a supergraph of G without loops, and Gk is k-colorable.

It is a folklore fact that a k-critical graph cannot contain two distinct vertices
u and v with N(u) ⊆ N(v). The following observation is a proper generalization
of this fact, and we proved it together with Chudnovsky and Zhong in [6].

Lemma 1 (Chudnovsky et al. [6]). Let G = (V,E) be a k-vertex-critical
graph and let U,W be two non-empty disjoint vertex subsets of G. Let H :=
(G−U)k−1. If there exists a homomorphism φ : G|U �→ H|W , then NG(u)\U �⊆
NH(φ(u)) for some u ∈ U .

We make use of Lemma 1 in the following way. Assume that G′ is a k-
vertex-critical graph and G is a (k − 1)-colorable induced subgraph of G′. Then
pick two disjoint vertex subsets U and W of G, both non-empty, and let H :=
(G − U)k−1. Assume that there is a homomorphism φ : G|U �→ H|W with
NG(u)\U ⊆ NH(φ(u)) for each u ∈ U . Then we know that there is a vertex
x ∈ V (G′)\V (G) adjacent to some u ∈ U but non-adjacent to φ(u), in the graph
G′. Also x is non-adjacent to φ(u) in (G′ − U)k−1.

Recall that any k-critical graph G must have minimum degree at least k − 1.
As otherwise, any (k −1)-coloring of G−u can be extended to a (k −1)-coloring
of G, where u is some vertex in G of degree at most k − 2. The following is an
immediate strengthening.

Lemma 2. Let G be a k-vertex-critical graph and u ∈ V (G). Then in any (k −
1)-coloring of G − u, the set NG(u) receives k − 1 distinct colors.

We make use of Lemma 2 in the following way. Assume that G is a (k − 1)-
colorable graph that is an induced subgraph of some k-vertex-critical graph G′.
Suppose that there is a vertex u such that there is no (k − 1)-coloring of G − u
in which the set NG(u) receives k − 1 distinct colors. Let us say that � is the
maximum number of distinct colors that the set NG(u) can receive in a (k − 1)-
coloring of G − u. Then there must be some vertex v ∈ NG′(u)\V (G) such that
there is a (k − 1)-coloring of G′|(V (G − u) ∪ {v}) in which the set NG(u) ∪ {v}
receives � + 1 distinct colors.

We also need the following fact which is folklore: every cutset of a critical
graph contains at least two non-adjacent vertices, where a cutset is a vertex
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subset whose removal increases the number of connected components of the
graph.

Lemma 3. Let G be a k-critical graph, and let X be a clique of G. Then G−X
is a connected graph.

In fact, we only need that a k-critical graph does not have a cutvertex, that
is, a cutset of size 1. We use Lemma 3 as follows. Given a (k−1)-colorable graph
G that is an induced subgraph of some k-vertex-critical graph G′. Suppose that
there is a cutvertex u in G. Then there must be some vertex v ∈ V (G′)\V (G)
with at least one neighbor in V (G)\{u}.

The next lemma is custom-made for the case of 4-critical graphs.

Lemma 4. Let G be a 4-vertex-critical graph. Suppose that there is an induced
cycle C where all vertices are of degree three. Then C has odd length, and there is
a 3-coloring of G−V (C) for which every member of the set (

⋃
c∈V (C) N(c))\V (C)

receives the same color.

We use Lemma 4 as follows. Given a 3-colorable graph G that is an induced
subgraph of some 4-vertex-critical graph G′. Suppose that there is an induced
cycle C in G where all vertices are of degree three. Moreover, suppose that C
has even length, or C has odd length and in every 3-coloring of G−V (C) the set
(
⋃

c∈V (C) N(c))\V (C) is not monochromatic. Then there must be some vertex
v ∈ V (G′)\V (G) with at least one neighbor in V (C).

The next lemma tells us from which graphs we have to start our enumeration
algorithm.

Lemma 5. Every k-critical Pt-free graph different from Kk contains one of the
following graphs as induced subgraph:

– an odd hole C2s+1, for 2 ≤ s ≤ 	(t − 1)/2
, or
– an odd antihole C2s+1, for 3 ≤ s ≤ k − 1.

2.2 The Enumeration Algorithm

We use Algorithm 1 below to enumerate all H-free k-critical graphs. In
order to keep things short, we use the following conventions for a (k − 1)-
colorable graph G.

We call a pair (u, v) of distinct vertices for which NG(u) ⊆ N(G−u)k−1(v)
similar vertices. Similarly, we call a 4-tuple (u, v, u′, v′) of distinct vertices with
uv, u′v′ ∈ E(G) such that NG(u)\{v} ⊆ N(G−{u,v})k−1(u

′) and NG(v)\{u} ⊆
N(G−{u,v})k−1(v

′) similar edges. Finally, we define similar triangles in an analo-
gous fashion.

Recall that a diamond is the graph obtained from K4 by removing one edge.
We define similar diamonds in complete analogy to similar triangles.

Let u be a vertex of G for which, in every (k − 1)-coloring of G − u, the set
NG(u) receives at most k − 2 distinct colors. Then we call u a poor vertex.
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Let C be an induced cycle in G such that every vertex of C has degree
three. We say that C is a weak cycle if C is of even length or, if C has odd
length, there is no 3-coloring of G − V (C) for which every member of the set
(
⋃

c∈V (C) N(c))\V (C) receives the same color.

Algorithm 1. Generate H-free k-critical graphs
1: let F be an empty list
2: Construct(Kk) // i.e. perform Algorithm 2
3: for all graphs G mentioned in Lemma 5 do
4: Construct(G) // i.e. perform Algorithm 2
5: end for
6: Output F

We now state that Algorithm 1 is correct.

Theorem 2. Assume that Algorithm 1 terminates, and outputs the list of graphs
F . Then F is the list of all k-critical H-free graphs.

We implemented this algorithm in C with some further optimizations. We
used the program nauty [18] to make sure that no isomorphic graphs are
accepted. More specifically, we use nauty to compute a canonical form of the
graphs. We maintain a list of the canonical forms of all non-isomorphic graphs
which were generated so far and only accept a graph if it was not generated
before (in which case its canonical form is added to the list). More sophisticated
isomorphism rejection techniques are known (such as the canonical construction
path method [17]), but these methods are not compatible with the destruction
of similar elements in Algorithm 2. Furthermore isomorphism rejection is not a
bottleneck in our program.

Our program does indeed terminate in several cases. More details about this
can be found in the next section, Sect. 3. The source code of the program can
be downloaded from [8] and in the full version of the paper we describe how we
extensively tested the correctness of our implementation.

Due to space constraints, we skip the description of the implementation
details and additional optimizations and refer to the full version of the paper.

3 Results

This section describes the main results obtained with our implementation of
Algorithm 1. The adjacency lists of all new critical graphs from this section
can be found in the appendix of the full paper, and these graphs can also be
downloaded from the House of Graphs [3] at http://hog.grinvin.org/Critical

http://hog.grinvin.org/Critical
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Algorithm 2. Construct(Graph G)
1: if G is H-free AND not generated before then

2: if G is not (k − 1)-colorable then
3: if G is k-critical H-free then
4: add G to the list F
5: end if
6: else
7: if G contains similar vertices (u, v) then
8: for every graph H obtained from G by attaching a new vertex x and incident edges

in all possible ways, such that ux ∈ E(H), but vx /∈ E((H − u)k−1) do
9: Construct(H)

10: end for
11: else if G contains a poor vertex u then

12: for every graph H obtained from G by attaching a new vertex x and incident edges
in all possible ways, such that ux ∈ E(H) and the maximum number of distinct
colors the set NH(u) recieves in some (k − 1)-coloring of H − u properly increased
do

13: Construct(H)
14: end for

15: else if G contains similar edges (u, v, u′, v′) then

16: for every graph H obtained from G by attaching a new vertex x and incident edges
in all possible ways, such that rx ∈ E(H) and r′x /∈ E((H − {u, v})k−1) for some
r ∈ {u, v} do

17: Construct(H)

18: end for

19: else if G contains similar triangles (u, v, w, u′, v′, w′) then
20: for every graph H obtained from G by attaching a new vertex x and incident edges

in all possible ways, such that rx ∈ E(H) and r′x /∈ E((H−{u, v, w})k−1) for some
r ∈ {u, v, w} do

21: Construct(H)
22: end for

23: else if G contains similar diamonds (u, v, w, x, u′, v′, w′, x′) then

24: for every graph H obtained from G by attaching a new vertex y and incident edges
in all possible ways, such that ry ∈ E(H) and r′y /∈ E((H − {u, v, w, x})k−1) for
some r ∈ {u, v, w, x} do

25: Construct(H)

26: end for
27: else if k = 4 and G contains a weak cycle C then
28: for every graph H obtained from G by attaching a new vertex x with a neighbor

in C and incident edges in all possible ways do

29: Construct(H)
30: end for

31: else if G contains a cutvertex u then
32: for every graph H obtained from G by attaching a new vertex x adjacent to some

member of V (G) \ {u} and incident edges in all possible ways do

33: Construct(H)
34: end for

35: else

36: for every graph H obtained from G by attaching a new vertex x and incident edges
in all possible ways do

37: Construct(H)

38: end for

39: end if

40: end if
41: end if
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3.1 4-Critical (Pr, Cs)-Free Graphs

It is known [6] that there is an infinite family of 4-critical P7-free graphs. How-
ever, a careful observation shows that all members of this family contain a Ck for
all k = 3, 4, 5, and are C�-free for � = 6, 7. This motivates the study of 4-critical
(P7, Ck)-free graphs when k = 3, 4, 5, since there might be only finitely many of
these. We can solve the cases of k = 4 and k = 5 using Algorithm 1. Moreover,
we can also solve the (P8, C4)-free case.

Theorem 3. The following assertions hold.

(a) There are exactly 17 4-critical (P7, C4)-free graphs.
(b) There are exactly 94 4-critical (P8, C4)-free graphs.
(c) There are exactly 6 4-critical (P7, C5)-free graphs.

The 4-critical (P7, C5)-free graphs are shown in Fig. 1. The adjacency lists of
all of these graphs can be found in appendix of the full version of the paper.

We also determined that there are exactly 35 4-vertex-critical (P7, C4)-
free graphs, 164 4-vertex-critical (P8, C4)-free graphs, and 27 4-vertex-critical
(P7, C5)-free graphs.

The Tables 1, 2, and 3 give an overview of the counts of the 4-critical and
4-vertex-critical graphs mentioned in Theorem 3.

We did not succeed in solving the (P7, C3)-free case. However, we were able to
determine all 4-critical (P7, C3)-free graphs with at most 35 vertices. These are
shown in Fig. 2, the counts are shown in Table 4 and their adjacency lists can be
found in the appendix of the full paper. Since the largest 4-critical (P7, C3)-free
graph up to 35 vertices has only 16 vertices, we conjecture the following.

Fig. 1. All 6 4-critical (P7, C5)-free graphs

Table 1. Counts of all 4-critical and 4-vertex-critical (P7, C4)-free graphs

Vertices 4 6 7 8 9 10 13 Total

Critical graphs 1 1 1 2 3 8 1 17

Vertex-critical graphs 1 1 1 2 4 24 2 35

Table 2. Counts of all 4-critical and 4-vertex-critical (P8, C4)-free graphs

Vertices 4 6 7 8 9 10 11 12 13 14 Total

Critical graphs 1 1 1 2 3 15 28 34 8 1 94

Vertex-critical graphs 1 1 1 2 4 33 54 53 14 1 164
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Table 3. Counts of all 4-critical and 4-vertex-critical (P7, C5)-free graphs

Vertices 4 7 8 9 10 13 Total

Critical graphs 1 1 1 1 1 1 6

Vertex-critical graphs 1 1 1 6 17 1 27

Conjecture 1. The seven graphs from Fig. 2 are the only 4-critical (P7, C3)-free
graphs.

Fig. 2. All seven 4-critical (P7, C3)-free graphs with at most 35 vertices

Table 4. Counts of all 7 4-critical (P7, C3)-free graphs with at most 35 vertices. The
number of 4-vertex-critical graphs is the same

Vertices 11 12 13 15 16 Total

Critical graphs 1 1 2 2 1 7

3.2 4-Critical Graphs with a Given Minimal Girth

In the 1980s, Sumner [20] proved that every (P5, C3)-free graph is 3-colorable.
This result has been extended in various directions, e.g., Golovach et al. [9]
proved that every P7-free graph of girth at least five is 3-colorable. They mention
the Brinkmann graph, constructed by Brinkmann and Meringer in [4], as an
example of a P10-free graph of girth five which is not 3-colorable. However, this
claim is not entirely correct since the Brinkmann graph contains a P12 as an
induced subgraph. Using Algorithm 1 we can in fact show that every P11-free
graph with girth at least five is 3-colorable. We also improve upon results of
Golovach et al. [9] in the cases of girth at least six, and at least seven. These
results are also summarized in Table 5.
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Theorem 4. The following assertions hold.

(a) Every P11-free graph of girth at least five is 3-colorable.
(b) There is a 4-chromatic P12-free graph of girth five, and the smallest such

graph has 21 vertices.
(c) Every P14-free graph of girth at least six is 3-colorable.
(d) Every P17-free graph of girth at least seven is 3-colorable.

We remark that the 4-critical P12-free graph with girth five mentioned in
Theorem 4.(b) is the only such graph up to at least 30 vertices. This graph is
shown in Fig. 3 and its adjacency list can be found in the appendix of the full
paper. It can also be obtained from the House of Graphs [3] by searching for the
keywords “4-critical P12-free * girth 5”.

Note that a graph with girth at least five cannot contain similar vertices (u, v)
which both have degree at least two. Experiments showed that when searching
for critical Pt-free graphs with a given minimal girth, It is best only to try to
apply the following expansion rules in Algorithm 2: poor vertices (line 2), weak
cycles (line 2) and cutvertices (line 2). This saves a significant amount of CPU
time since then one does not have to search for similar elements or compute
k-hulls.

Table 5. Old and new lower bounds such that every Pk-free graph with girth at least
g is 3-colorable

Girth Old lower bound [9] New lower bound

4 P5-free (exact) P5-free (exact)

5 P7-free P11-free (exact)

6 P10-free P14-free

7 P12-free P17-free

3.3 4-Critical Planar Graphs

In this section we turn to planar critical graphs. Due to the four-color theorem,
we may restrict our attention to 4-critical graphs. Let us first note that if an
induced path is forbidden, there are only finitely many vertex-critical planar
graphs. This implies that there are only finitely many 4-critical planar Pt-free
graphs, for all t ∈ N.

Theorem 5. For any integer t there are only finitely many vertex-critical graphs
that are both planar and Pt-free.

The proof of Theorem 5 uses the following result of Böhme et al. [1], which
we state in a slightly different fashion than in the original paper.
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Fig. 3. The smallest 4-critical P12-free graph with girth 5. It has 21 vertices and it is
the only 4-critical P12-free graph with girth at least five up to at least 30 vertices.

Theorem 6 (Böhme et al. [1]). For every k, s, t ∈ N there is a number n =
n(k, s, t) such that every k-connected graph on at least n vertices contains an
induced path on t vertices or a subdivision of K2,s.

Unfortunately, Theorem 5 does not provide a list of 4-critical graphs, nor
yield a useful bound on their order. Using a slight modification of our algorithm,
involving the planarity test of Boyer and Myrvold [2], we obtained the following
result.

Theorem 7. There are exactly 52 4-critical planar P7-free graphs.

Note that, as mentioned earlier, if the planarity condition is dropped there
are infinitely many 4-critical P7-free graphs. The counts of the 4-critical and 4-
vertex-critical planar P7-free graphs can be found in Table 6. The graphs them-
selves can be downloaded from http://hog.grinvin.org/Critical.

Table 6. Counts of all planar 4-critical P7-free graphs

Vertices 4 6 7 8 9 10 11 12 13 Total

Critical graphs 1 1 2 2 14 19 4 6 3 52

Vertex-critical graphs 1 1 6 2 65 347 6 19 15 462
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database of interesting graphs. Discrete Appl. Math. 161(1–2), 311–314 (2013).
http://hog.grinvin.org/

4. Brinkmann, G., Meringer, M.: The smallest 4-regular 4-chromatic graphs with girth
5. Graph Theor. Notes New York 32, 40–41 (1997)
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Abstract. A linear ordering of the vertices of a graph G separates two
edges of G if both the endpoints of one precede both the endpoints of
the other in the order. We call two edges {a, b} and {c, d} of G strongly
independent if the set of endpoints {a, b, c, d} induces a 2K2 in G. The
induced separation dimension of a graph G is the smallest cardinality of
a family L of linear orders of V (G) such that every pair of strongly inde-
pendent edges in G are separated in at least one of the linear orders in L.
For each k ∈ N, the family of graphs with induced separation dimension
at most k is denoted by ISD(k).

In this article, we initiate a study of this new dimensional parame-
ter. The class ISD(1) or, equivalently, the family of graphs which can
be embedded on a line so that every pair of strongly independent edges
are disjoint line segments, is already an interesting case. On the posi-
tive side, we give characterizations for chordal graphs in ISD(1) which
immediately lead to a polynomial time algorithm which determines the
induced separation dimension of chordal graphs. On the negative side, we
show that the recognition problem for ISD(1) is NP-complete for general
graphs. We then briefly study ISD(2) and show that it contains many
important graph classes like outerplanar graphs, chordal graphs, circular
arc graphs and polygon-circle graphs. Finally, we describe two techniques
to construct graphs with large induced separation dimension. The first
one is used to show that the maximum induced separation dimension of
a graph on n vertices is Θ(lg n) and the second one is used to construct
AT-free graphs with arbitrarily large induced separation dimension.

1 Introduction

Vertex orderings which meet certain local conditions have turned out to be a
very useful tool in the study of graphs. Perfect elimination orderings of a chordal
graph is perhaps the most striking example. Graph families like comparability
graphs, interval graphs, unit interval graphs, strongly chordal graphs and thresh-
old graphs can be characterized based on the existence of a vertex ordering with
a certain simple property [4,8]. Such orderings are useful not just in providing
structural insights into the family, but also in designing efficient algorithms on
c© Springer-Verlag GmbH Germany 2016
P. Heggernes (Ed.): WG 2016, LNCS 9941, pp. 121–132, 2016.
DOI: 10.1007/978-3-662-53536-3 11
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those families for problems which are NP-hard on general graphs. In addition,
some of these algorithms can be extended to a larger family formed by working
with a small family of vertex orderings rather than a single one. Such extensions
have resulted in the introduction of many “dimensional” parameters on graphs
like boxicity [18], cubicity [18], threshold dimension [7], hypergraph dimension
[10], separation dimension [2], etc. and efficient algorithms on families in which
one of these dimensions is bounded.

In this article, we use vertex orderings to define a graph parameter, which we
call “induced separation dimension”, and show that several interesting classes of
graphs have a small induced separation dimension.

Let σ be a linear order on the elements of a set U . For two disjoint subsets A
and B of U , we say A ≺σ B when every element of A precedes every element of
B in σ, i.e., a ≺σ b, ∀(a, b) ∈ A × B. We say that σ separates A and B if either
A ≺σ B or B ≺σ A.

Definition 1 (Induced separation dimension). Two edges {a, b} and {c, d}
of a graph G are called strongly independent if G[{a, b, c, d}], the subgraph of G
induced on vertices {a, b, c, d}, is isomorphic to 2K2, the disjoint union of two
edges. A family L of linear orders of V (G) is called weakly separating if every
pair of strongly independent edges in G is separated in at least one order in
L. The smallest cardinality of a weakly separating family of linear orders for G
is called the induced separation dimension of G and is denoted by isd(G). For
each k ∈ N, the family of graphs with induced separation dimension at most k
is denoted by ISD(k).

For example, one may easily check that a complete graph, a chordless path on
at least 5 vertices and a chordless cycle on at least 6 vertices have induced sepa-
ration dimension, respectively, 0, 1 and 2. Indeed, a graph G has induced separa-
tion dimension 0 if and only if G is 2K2-free or, equivalently, if the complement
graph G is C4-free. Hence, ISD(0) = {G : G is 2K2-free} =

{
G : G is C4-free

}
.

The family of 2K2-free graphs have received considerable attention in literature,
resulting in many structural, algorithmic and extremal results [5,6,16]. The left
endpoint order of an interval representation of an interval graph separates every
pair of strongly independent edges. Hence, interval graphs belong to ISD(1).
Every pair of strongly independent edges in a (rooted) tree is separated either
in the DFS pre-order or in the DFS post-order traversal. Thus, trees belong to
ISD(2).

Relation to Separation Dimension. The cardinality of a smallest family L of
linear orders on the vertices of a graph G such that every pair of non-incident
edges (two edges with no common endpoints) is separated in at least one of the
linear orders in L is called the separation dimension of G [2]. There has been
a detailed recent study on the separation dimension of graphs and hypergraphs
[1–3]. It follows by definition that the induced separation dimension of a graph is
at most its separation dimension. In particular, the induced separation dimension
of an n-vertex graph is at most O(lg n) [3].
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But, what we find more interesting is the difference between the two notions.
One of the main sources of this difference is that, while separation dimension is a
monotone parameter (adding edges cannot decrease the separation dimension of
a graph), induced separation dimension is not. Thus, dense graphs, even if highly
structured, tend to have large separation dimension. On the other hand, induced
separation dimension of some dense but structured graph families is very low.
For instance, while separation dimension of cocomparability graphs and chordal
graphs is unbounded, their induced separation dimension, as we establish here, is
bounded above by 1 and 2 respectively. Their difference is also highlighted by the
fact that while the family of graphs with separation dimension 1 has a complete
characterization which leads to an easy linear-time recognition algorithm [3], we
show here that it is NP-complete to decide whether a graph belongs to ISD(1).

1.1 Results and Organization

We begin by showing that a weakly separating family of linear orders for a
graph G corresponds closely with a special family of acyclic orientations of the
complement graph G (Sect. 2). This characterization is later used to derive both
upper and lower bounds on induced separation dimension and also to establish
an NP-hardness result.

In Sect. 3, we focus on the graph class ISD(1), i.e., graphs with a single
vertex ordering that separates every pair of strongly independent edges. The
characterization mentioned above helps us conclude that all cocomparability
graphs belong to ISD(1). The same characterization is also used to establish NP-
hardness of the recognition problem for ISD(1). We then describe a forbidden
configuration for graphs in ISD(1), namely, an asteroidal triple of edges (ATE)
and show that a chordal graph belongs to ISD(1) if and only if it is ATE-free. We
also note that a tree belongs to ISD(1) if and only if it is a caterpillar with toes.

In Sect. 4, we go one step further and briefly study the graph class ISD(2).
The main result here is that ISD(2) contains the class of interval filament graphs.
Since the class of interval filament graphs contains many important graph classes
like chordal graphs, circular arc graphs and polygon-circle graphs, we conclude
that all of them belong to ISD(2). Since chordal graphs belong to ISD(2) and the
characterization of chordal graphs in ISD(1) as ATE-free graphs is testable in
polynomial time, we get a poly-time algorithm to determine the induced separa-
tion dimension of chordal graphs. From the literature on separation dimension,
we know that outerplanar graphs belong to ISD(2) and planar graphs belong to
ISD(3) [3]. We do not yet know whether planar graphs belong to ISD(2).

Finally, in Sect. 5, we describe two techniques to construct graphs with large
induced separation dimension. Using the first one, we construct n-vertex graphs
with induced separation dimension at least lg n, showing that the upper bound
of O(lg n) which follows from the relation to separation dimension is tight up to
a constant factor. The second construction is used to show that the family of
AT-free graphs have unbounded induced separation dimension, in stark contrast
to its subfamily of cocomparability graphs.
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1.2 Notations and Definitions

All graphs we study here are finite and simple. The vertex set and edge set
of a graph G are denoted by V (G) and E(G) respectively. For a graph G and
S ⊂ V (G), the subgraph of G induced on S is denoted by G[S]. The complement
graph of G is denoted by G. A graph is called H-free if it has no induced subgraph
isomorphic to H. For a vertex v of G,N(v) denotes the set of neighbors of v and
N [v] = N(v) ∪ {v}.

The complete graph and the chordless cycle on n vertices are denoted, respec-
tively, by Kn and Cn. The vertex disjoint union of k different copies of a graph
is denoted by kG. In particular 2K2 denotes two strongly independent edges.

A cocomparability graph is an undirected graph that connects pairs of ele-
ments that are not comparable to each other in a partial order, i.e., the comple-
ment of a comparability (transitively orientable) graph. A graph is called chordal
if it has no induced cycles of size strictly greater than 3. An interval graph is an
intersection graph of intervals on the real line, and a unit interval graph is an
intersection graph of unit length intervals on the real line. An independent triple
of vertices x, y, z in a graph G is an asteroidal triple (AT) if, between every pair
of vertices in the triple, there is a path that does not contain any neighbor of
the third. A graph without asteroidal triples is called an asteroidal triple-free
(AT-free) graph. A graph is outerplanar if it has a crossing-free embedding in
the plane such that all vertices are on the same face. A caterpillar is a tree with
a dominating path, and a caterpillar with toes is a tree with a 2-step dominating
path. A 2-step dominating path in a graph G is a path P such that every vertex
of G is at distance at most 2 from P .

2 Linear Orders and Orientations of the Complement

We start by giving a graph invariant that is equal to the induced separation
dimension of the complement graph. This equivalent view will be useful in some
of the proofs to come later.

Definition 2 (C4-transitive orientations). An acyclic orientation of an undi-
rected simple graph G is an assignment of directions to each edge of G so that
no directed cycles are formed. A family O of acyclic orientations of G is called
C4-transitive on G if every induced C4 in G is oriented transitively in at least one
orientation in O. The minimum cardinality of a C4-transitive family of acyclic
orientations of G is denoted by η(G).

Theorem 3. For every undirected simple graph G,

isd(G) = η(G).

Proof. Let L be a family of linear orders that is weakly separating for G. For
every linear order σ ∈ L we define an orientation Oσ of G as follows. An edge
{u, v} of G where u ≺σ v is oriented from u to v (denoted −→uv). This orientation
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of G is obviously acyclic. We claim that the family of acyclic orientations {Oσ :
σ ∈ L} is C4-transitive on G. Let (a, b, c, d) be an induced C4 in G. Then the
pair of edges ac and bd forms an induced 2K2 in G. Let σ ∈ L be the total order
which separates the edges ac and bd of G. That is, we have either {a, c} ≺σ {b, d}
or {b, d} ≺σ {a, c}. In both cases, it is easy to check that Oσ is transitive on the
cycle (a, b, c, d).

In the other direction, given a family O of acyclic orientations that is C4-
transitive on G, we construct a family of total orders {≺O: O ∈ O} on V (G),
where for each O ∈ O, the total order ≺O is a linear extension of the transitive
closure of O. We claim that {≺O: O ∈ O} is weakly separating for G. Let the
pair of edges ab and cd be an induced 2K2 in G. Then (a, c, b, d) is an induced C4

in G. Let O ∈ O be the orientation of G which is transitive on (a, c, b, d). There
are only two possible transitive orientations for this cycle, namely {−→ac,

−→
ad,

−→
bc,

−→
bd}

and the orientation obtained by reversing all the directions in the first one. It is
easy to check that {a, b} ≺O {c, d} in the first case and {c, d} ≺O {a, b} in the
second case. �	

3 The Graph Class ISD(1)

The following corollary is a restatement of Theorem 3 for ISD(1) and the next
one is then immediate.

Corollary 4. A graph G belongs to ISD(1) if and only if there exists an acyclic
orientation of G which is transitive on every induced 4-cycle of G.

Corollary 5. The family of cocomparability graphs is contained in ISD(1).

Remark. The path on 5-vertices P5 is an interval graph and has a pair of strongly
independent edges. Hence, interval graphs and thereby cocomparability graphs
are not contained in ISD(0).

Next we use Corollary 4 to show that the recognition problem for ISD(1) is
NP-hard. We do this by reducing the 2-coloring problem on 3-uniform hyper-
graphs to the problem of deciding whether η(G) ≤ 1 for a graph G.

A 3-uniform hypergraph H over a set of vertices V is a collection of 3-element
subsets of V , called hyperedges. A proper coloring of H is a coloring of V so
that every hyperedge in H contains vertices of at least two different colors. A
hypergraph is called 2-colorable if it can be properly colored using 2 colors. It is
a result of Lovász from 1973 that testing 2-colorability of 3-uniform hypergraphs
is NP-hard [15].

Theorem 6. Problem 1 below is polynomial-time reducible to Problem 2.

Problem 1. Given a 3-uniform hypergraph H, decide whether H is 2-colorable.
Problem 2. Given a graph G, decide whether η(G) ≤ 1.
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Proof. Let H contain n vertices v1, . . . , vn and m hyperedges e1, . . . , em. Let L
be a bipartite graph on 6m vertices with color classes A = {a1, . . . , a3m} and
B = {b1, . . . , b3m}. Vertices ai and bj are adjacent in L if and only if |i − j| ≤ 1.
(L is a 3m-ladder graph). For each i ∈ [3m − 1], (ai, bi, ai+1, bi+1) is an induced
C4 in L and these are all the induced C4’s in L. There are only two orientations
of L which are transitive on every induced C4; one which orients every edge from
A-side to B-side and the other which orients every edge from B-side to A-side.

To construct G, we first associate a different copy L(v) of the ladder L for
each vertex v of H. For each hyperedge el = {vi, vj , vk}, i < j < k, we glue
together the three ladders L(vi), L(vj) and L(vk) at their 3l-th level as follows:
the vertex b3l of L(vi) is identified with the vertex a3l of L(vj); b3l of L(vj)
with a3l of L(vk); and b3l of L(vk) with a3k of L(vk); forming a 3-cycle. These
identifications do not create any new induced 4-cycles since we have chosen
to skip 3 levels of the ladder after the modification for each hyperedge. This
completes the construction of the graph G given the hypergraph H and it is
clearly polynomial time. We complete the proof by showing that η(G) ≤ 1 if and
only if H is 2-colorable.

Suppose that H is 2-colorable and let φ : V (H) → {0, 1} be a proper coloring
of H. Orient the edges of G as follows. If φ(v) = 0, orient every edge of L(v) in G
from A-side to B-side and if φ(v) = 1, orient every edge of L(v) from B-side to A-
side. Since all the induced 4-cycles in G are subgraphs of the constituent ladders,
they are all oriented transitively. All the 3-cycles formed by the hyperedges are
oriented acyclically since each of them contains two vertices of different colors.
For every longer cycle C (length 4 or more), at least two consecutive edges of C
belong to the same ladder and hence C is oriented acyclically. Thus, the above
orientation of G is transitive on every induced C4 and acyclic. Thus η(G) ≤ 1.

In the other direction, suppose η(G) ≤ 1 and let O be an acyclic orientation of
G that is transitive on every induced C4 in G. As noted above, there are only two
possible orientations for each ladder that is transitive on every induced C4. Define
a coloring φ : V (H) → {0, 1} based on O as follows: φ(v) = 0 if the edges of L(v)
in G are oriented from A-side to B-side and φ(v) = 1 otherwise, i.e., if every
edge of L(v) is oriented from B-side to A-side. Since O is an acyclic orientation,
the 3-cycle corresponding to each hyperedge of H is oriented acyclically in O.
That is, every hyperedge contains vertices of both colors under φ. Thus, φ is a
proper 2-coloring of H. �	

Since Problem 1 defined in Theorem6 is NP-hard [15], so is Problem 2.
Moreover, Problem 2 is in NP since the number of induced 4-cycles in a graph
is polynomial in the number of vertices. Hence, by Corollary 4, we conclude the
following.

Corollary 7. The recognition problem for ISD(1) is NP-complete.

Next, we give a configuration that is forbidden for graphs in ISD(1). This
will turn out to be useful in characterizing trees and chordal graphs in ISD(1).
The closed neighborhood of an edge {u, v} in a graph G is the set N [u] ∪ N [v].
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Definition 8 (ATE-free graph). An asteroidal triple of edges (ATE) in a
graph G is a collection of three edges in G such that, between every pair of
them, there exists a path in G which does not contain any vertex in the closed
neighborhood of the third edge. A graph without an ATE is called ATE-free.

T3 Δ3 C6

Fig. 1. Examples of graphs with an asteroidal triple of edges. The three edges which
form an asteroidal triple are drawn with thicker lines

Some examples of graphs with an ATE are depicted in Fig. 1. Any ATE-free
graph is thus T3-free, Δ3-free, C6-free and so on.

Remark. Note that the three edges of an ATE themselves need not be pairwise
strongly independent, as illustrated by the cycle C6. Nevertheless, one can verify
that all AT-free graphs are ATE-free.

Theorem 9. All graphs in ISD(1) are ATE-free.

Proof. Let G ∈ ISD(1) and ≺ be a single linear order that separates all the
strongly independent edges in G. Suppose, for the sake of contradiction, that G
contains an ATE. Let aa′, bb′, and cc′ be the three edges forming an ATE in G.
Let Pa be the path between bb′ and cc′ which does not contain any vertex in the
closed neighborhood of aa′. Pb and Pc are defined similarly. It is clear that ≺
separates the edge xx′ from the set V (Px), for each x ∈ {a, b, c}. This demands
that no edge of the ATE is completely sandwiched between the endpoints of
another. Next we show that one of the above two conditions is violated by ≺.
This contradiction shall prove the theorem.

Let S = {a, a′, b, b′, c, c′}. We can assume, after relabelling if necessary, that
a ≺ a′, b ≺ b′, c ≺ c′ and a ≺ b ≺ c. So a is the first vertex of S in ≺. The next
vertex of S in ≺ is not a′, since in that case bb′ is not separated from V (Pb).
Hence, the second vertex from S in ≺ is b. The third vertex is not a′ for the
same reason. Neither is it b′ since, in that case bb′ is sandwiched between a and
a′. Hence, the third vertex is c. The fourth vertex is a′ since otherwise either bb′

or cc′ edge will be sandwiched between a and a′. The fifth vertex has to be b′

since otherwise cc′ will be sandwiched between b and b′. The sixth vertex is c′

by exhaustion. Thus, a ≺ b ≺ c ≺ a′ ≺ b′ ≺ c′. But in this case, V (Pb) is not
separated from bb′. �	
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The converse of Theorem 9 is not true in general. We show later that the fam-
ily of AT-free graphs and thereby the family of ATE-free graphs is not contained
in ISD(k) for any constant k. Nevertheless, we show next that the converse of
Theorem 9 is true for chordal graphs, i.e., ATE-free chordal graphs belong to
ISD(1). We need to define a new notion to streamline the characterization.

Definition 10 (FAT-free graph). A vertex v in a graph G is called simplicial
if N(v) induces a clique in G. We call v lonely if v is simplicial but no neighbor
of v is simplicial. An asteroidal triple A in G is called fat if none of the three
vertices in A is lonely. The graph G is called FAT-free if it contains no fat
asteroidal triples.

Hence, every asteroidal triple of vertices in a FAT-free graph has a simpli-
cial vertex with no simplicial neighbor. We also need one observation regarding
chordal graphs with an AT.

Oservation 11. If G is a chordal graph with an asteroidal triple, then G con-
tains an independent set of three simplicial vertices.

This observation can be verified by looking at a representation of G as an
intersection graph of subtrees of a host tree T with the additional property that
each node of T corresponds to a different maximal clique in G [12, Theorem
4.8]. Hence, each leaf of T is a subtree in the intersection model. These subtrees
correspond to an independent set of simplicial vertices in G. Since G has an AT,
the host tree T is not a path and therefore has at least 3 leaves.

Recalling that a caterpillar is a tree with a dominating path, we now state
and prove a characterization for chordal graphs in ISD(1).

Theorem 12. For a chordal graph G, the following are equivalent:

(i) G ∈ ISD(1).
(ii) G is ATE-free.
(iii) G is FAT-free.
(iv) G is an intersection graph of distinct subtrees of a caterpillar.

The proof is moved to the full version.

Remark. The requirement that the subtrees are distinct is essential in Condition
(iv) above. The family of graphs which have a representation as the intersec-
tion graph of (not necessarily distinct) subtrees of a caterpillar are called catval
graphs. The graph Δ3 depicted in Fig. 1 is a catval graph but it has an ATE and
therefore cannot be represented as an intersection graph of distinct subtrees of a
caterpillar. Catval graphs were introduced by Jan Arne Telle in [19] and further
studied by Habib, Paul and Telle in [14]. The tolerance version was studied by
Eaton and Faubert in [9]. The proof that (iii) =⇒ (iv) in the above theorem
mimics a similar proof in [9].

We conclude this section by specializing the above characterization for trees
in ISD(1). Recall that a caterpillar with toes is a tree with a 2-step dominating
path.
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Theorem 13. For a tree T the following are equivalent:

(i) T ∈ ISD(1).
(ii) T is ATE-free.
(iii) T is T3-free.
(iv) T is a caterpillar with toes.

Proof. Theorem 12 establishes the equivalence of (i) and (ii). (ii) =⇒ (iii) since
T3 contains an ATE. Any longest path in a T3-free tree is 2-step dominating [13]
and thus, (iii) =⇒ (iv). One can verify easily that (iv) =⇒ (ii) by a case
analysis. �	
Remark. More characterizations of caterpillars with toes can be found in [13,
Theorem 3.7].

4 The Graph Class ISD(2)

Since outerplanar graphs have separation dimension at most 2 [3], they also
have induced separation dimension at most 2. This bound is tight since C6 is
outerplanar and isd(C6) > 1. In this section, we show that interval filament
graphs, a class introduced by Gavril [11], belongs to ISD(2). Interval filament
graphs contain many well known graph classes like chordal graphs, circular-arc
graphs (intersection graphs of arcs on a circle), polygon-circle graphs (intersec-
tion graphs of a convex polygons inscribed in a circle), etc. Thus, all of the above
families belong to ISD(2). Since isd(C6) = 2, and C6 is both a circular-arc graph
and a polygon-circle graph, both these classes are not contained in ISD(1).

Definition 14 (Interval filament graph [11]). Let I be a collection of inter-
vals on a horizontal line L embedded in a plane. In the half-plane above L,
construct corresponding to each interval I ∈ I a curve fI connecting the two
endpoints of I such that fI remains within the limits of I. The curve fI is called
an interval filament above I. A graph is an interval filament graph if it has an
intersection model consisting of interval filaments.

Theorem 15. The family of interval filament graphs are contained in ISD(2).

Proof. Let G be an interval filament graph and (I,F) be an interval filament
intersection model of G. That is, each vertex v of G has an associated interval
Iv ∈ I on a horizontal line L, and an interval filament fv ∈ F above Iv such that
G is the intersection graph of F . Also define l(v) and r(v) to be, respectively,
the left and right endpoints of Iv.

Let ≺l and ≺r be two linear orders on V (G) such that l(u) < l(v) =⇒ u ≺l v
and r(u) < r(v) =⇒ u ≺r v. We argue that any pair of strongly independent
edges ab and cd are separated in one of the two permutations above. If two
vertices u and v are non-adjacent in G, then the corresponding intervals Iu and
Iv are either disjoint or one is contained in the other. Without loss of generality,
let a be the vertex with the leftmost left endpoint among {a, b, c, d} and c be the
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vertex with the leftmost left endpoint among {c, d}. If ab is not separated from
cd in ≺l, then l(a) < l(c) < l(b). In this case, since ab is an edge of G, Ia ∩Ib = ∅,
hence Ic ∩ Ia = ∅ and hence Ic ⊂ Ia. Since c and d are adjacent, Ic ∩ Id = ∅,
hence Id ∩ Ia = ∅ and hence Id ⊂ Ia. Now if Ib is contained in either Ic or Id,
we see that fb cannot intersect fa. Thus, Ib is disjoint from Ic and Id. Moreover
since l(c) < l(b) in the case under consideration, we see that Ib has to be to the
right of the interval Ic ∪ Id. Hence, {c, d} ≺r {a, b} in this case. �	

Since chordal graphs are interval filament graphs they belong to ISD(2).
Hence, a chordal graph G has induced separation dimension either 0, 1 or 2. It
is clear that checking whether isd(G) = 0 can be done in polynomial time. A
naive algorithm which tests every triple of edges in G for being an ATE can
determine ATE-freeness in poly-time. Hence, by Theorem 12, we can test in
poly-time whether isd(G) = 1. In short, we have the following corollary.

Corollary 16. The induced separation dimension of chordal graphs can be
determined in polynomial time.

5 Graphs with Large Induced Separation Dimension

The separation dimension of an n-vertex graph is at most O(lg n) [3]. Since
induced separation dimension of a graph is at most its separation dimension, we
observe that the induced separation dimension of an n-vertex graph is at most
O(lg n). In this section, we construct graphs which show that this upper bound
is tight up to a constant factor.

Definition 17 (Bipartite cover). Given a graph G, the bipartite cover BG of
G is the direct product of G with K2. That is, if V (G) = [n], then the two color
classes in V (BG) are A = {a1, . . . , an} and B = {b1, . . . , bn} with ai adjacent to
bj in BG if and only if i is adjacent to j in G.

Theorem 18. For every graph G,

isd(BG) ≥ lg χ(G),

where χ(G) is the chromatic number of G.

Proof. A linear order ≺ of V (BG) is said to cover an edge ij of G if the two
strongly independent edges {aibj , ajbi} are separated in ≺. The set of edges of
G covered by ≺ forms a subgraph of G which we denote by G≺. We now argue
that G≺ is bipartite for any linear order ≺. Color a vertex i ∈ V (G) white if
ai ≺ bi and black otherwise. If an edge ij belongs to G≺ then aibj and ajbi are
separated in ≺. This happens only if ai ≺ bi and aj � bj or vice versa. In both
cases i and j are of different color. Hence, we conclude that G≺ is a bipartite
subgraph of G.

Let L be a family of total orders which separates every pair of strongly
independent edges in BG. For every edge ij in G, the pair of edges {aibj , ajbi}
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are strongly independent in BG. Hence, every edge of G is covered by at least
one linear order in L. It is easy to see that at least lg χ bipartite graphs are
needed to cover all the edges of a χ-chromatic graph. Hence |L| ≥ lg χ(G). �	

The bipartite cover of a complete graph is called a crown graph. By
Theorem 18, we see that the crown graph on 2n vertices has induced separa-
tion dimension at least lg n. Thus, in general, bipartite graphs have unbounded
induced separation dimension.

Another intriguing family is that of AT-free graphs. Since AT-free graphs
have a kind of linear structure (dominating pairs) it is tempting to think that
their induced separation dimension is at most 1. But we know it is not. The
circular ladder CLk is the graph obtained by taking the Cartesian product of
the cycle Ck on k ≥ 3 vertices with an edge. Orienting a single edge of CLk forces
the orientation on every other edge if we want the orientation to be transitive
on each induced C4. It is easy to check that η(CLk) ≤ 1 if and only if k is
even. Corollary 4 shows that isd(CLk) ≤ 1 only when k is even. Notice that for
every odd k ≥ 5, CLk is AT-free (since CLk is triangle-free) and has induced
separation dimension more than 1. Now we amplify this result to show that the
induced separation dimension of the family of AT-free graphs is unbounded.

Definition 19 (Double). Given a graph G, the double DG of G is the Cartesian
product of G with K2. That is, DG consists of two copies of G and a perfect
matching of edges between corresponding vertices in the two copies.

Theorem 20. For every graph G,

η(DG) ≥ lg χ(G),

where χ(G) is the chromatic number of G.

Proof. To every edge e of G, we associate the induced 4-cycle De in DG formed
by the two copies of e and the two matching edges between their endpoints. An
acyclic orientation O of DG is said to cover an edge e of G if the associated
4-cycle De is oriented transitively by O. The set of edges of G covered by O
forms a subgraph of G which we denote by GO. If GO contains an odd cycle Z,
then it means that O transitively oriented every induced C4 in the odd circular
ladder DZ ⊂ DG which we have observed is impossible. Thus, GO is bipartite
for any acyclic orientation O of DG.

Let O be a family of acyclic orientations of DG such that every induced C4

in DG is transitively oriented in at least one orientation in O. Therefore, every
edge of G is covered by at least one orientation in O. Hence |O| ≥ lg χ(G). �	

If G is triangle free, so is DG and therefore the maximum size of an indepen-
dent set in DG is 2 and, in particular, DG is AT-free. There are many classic
constructions of families of triangle-free graphs with unbounded chromatic num-
ber, Mycielski graphs [17] for instance. If G is a family of triangle-free graphs
with unbounded chromatic number,

{
DG : G ∈ G}

is a family of AT-free graphs
with unbounded induced separation dimension.
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Abstract. By a classical result of Gomory and Hu (1961), in every edge-
weighted graph G = (V, E, w), the minimum st-cut values, when ranging
over all s, t ∈ V , take at most |V |−1 distinct values. That is, these

(|V |
2

)

instances exhibit redundancy factor Ω(|V |). They further showed how to
construct from G a tree (V, E′, w′) that stores all minimum st-cut values.
Motivated by this result, we obtain tight bounds for the redundancy
factor of several generalizations of the minimum st-cut problem.

1. Group-Cut: Consider the minimum (A, B)-cut, ranging over all
subsets A, B ⊆ V of given sizes |A| = α and |B| = β. The redun-
dancy factor is Ωα,β(|V |).

2. Multiway-Cut: Consider the minimum cut separating every two
vertices of S ⊆ V , ranging over all subsets of a given size |S| = k.
The redundancy factor is Ωk(|V |).

3. Multicut: Consider the minimum cut separating every demand-pair
in D ⊆ V × V , ranging over collections of |D| = k demand pairs.
The redundancy factor is Ωk(|V |k). This result is a bit surprising, as
the redundancy factor is much larger than in the first two problems.

A natural application of these bounds is to construct small data struc-
tures that stores all relevant cut values, à la the Gomory-Hu tree. We
initiate this direction by giving some upper and lower bounds.

1 Introduction

One of the most fundamental combinatorial optimization problems is minimum
st-cut, where given an edge-weighted graph G = (V,E,w) and two vertices
s, t ∈ V , the goal is to find a set of edges of minimum total weight that sep-
arates s, t (meaning that removing these edges from G ensures there is no s - t
path). This problem was studied extensively, see e.g. the famous minimum-
cut/maximum-flow duality [8], and can be solved in polynomial time. It has
numerous theoretical applications, such as bipartite matching and edge-disjoint
paths, in addition to being extremely useful in many practical settings, includ-
ing network connectivity, network reliability, and image segmentation, see e.g. [1]
for details. Several generalizations of the problem, such as multiway cut, mul-
ticut, and k-cut, have been well-studied in operations research and theoretical
computer science.
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In every graph G = (V,E,w), there are in total
(|V |

2

)
instances of the min-

imum st-cut problem, given by all pairs s, t ∈ V . Potentially, each of these
instances could have a different value for the minimum cut. However, the sem-
inal work of Gomory and Hu [9] discovered that undirected graphs admit a
significantly stronger bound (see also [1, Lemma 8.15] or [7, Sect. 3.5.2]).

Theorem 1 ([9]). Let G = (V,E,w) be an edge-weighted undirected graph.
Then the number of distinct values over all possible

(|V |
2

)
instances of the mini-

mum st-cut problem is at most |V | − 1.

The beautiful argument of Gomory and Hu shows the existence of a tree
T = (V,E′, w′), usually called a flow-equivalent tree, such that for every s, t ∈ V
the minimum st-cut value in T is exactly the same as in G. (They further show
how to construct a so-called cut-equivalent tree, which has the stronger property
that every vertex-partitioning that attains a minimum st-cut in T , also attains
a minimum st-cut in G; see Sect. 1.3 for more details on this and related work.)
Every G which is a tree (e.g., a path) with distinct edge weights has exactly
|V | − 1 distinct values, and hence the Gomory-Hu bound is existentially tight.

Another way to view Theorem1 is that there is always a huge redundancy
between the

(|V |
2

)
minimum st-cut instances in a graph. More precisely, the

“redundancy factor”, measured as the ratio between the number of instances
and the number of distinct optimal values attained by them, is always Ω(|V |).
We study this question of redundancy factor for the following generalizations of
minimum st-cut. Let G = (V,E,w) be an undirected edge-weighted graph.

– Group-cut: Given two disjoint sets A,B ⊆ V find a minimum (A,B)-cut,
i.e., a set of edges of minimum weight that separates every vertex in A from
every vertex in B.

– Multiway-Cut: Given S ⊆ V find a minimum-weight set of edges, whose
removal ensures that for every s �= s′ ∈ S there is no s - s′ path.

– Multicut: Given Q ⊆ V × V find a minimum-weight set of edges, whose
removal ensures that for every (q, q′) ∈ Q there is no q - q′ path.

In order to present our results about the redundancy in these cut problems
in a streamlined way, we introduce next the terminology of vertex partitions and
demand graphs.

Cut Problems via Demand Graphs. Denote by Par(V ) the set of all partitions of
V , where a partition of V is, as usual, a collection of pairwise disjoint subsets of
V whose union is V . Given a partition Π ∈ Par(V ) and a vertex v ∈ V , denote
by Π(v) the unique S ∈ Π satisfying v ∈ S. Given a graph G = (V,E,w), define
the function CutG : Par(V ) → R

≥0 to be CutG(Π) =
∑

uv∈E :Π(u) �=Π(v) w(uv).
We shall usually omit the subscript G, since the graph will be fixed and clear
from the context.

Cut problems as above can be defined by specifying the graph G and a
collection D of demands, which are the vertex pairs that need to be separated. We
can view (V,D) as an (undirected and unweighted) demand graph, and by slight
abuse of notation, D will denote both this graph and its edges. For example,
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an instance of Group-Cut is defined by G and demands that form a complete
bipartite graph KA,B (to formally view it as a graph on V , let us add that
vertices outside of A∪B are isolated). We say that partition Π ∈ Par(V ) agrees
with D if every uv ∈ D satisfies Π(u) �= Π(v). The optimal cut-value for the
instance defined by G and D is given by

mincutG(D) := min{CutG(Π) : Π ∈ Par(V ) agrees with D}.

Redundancy Among Multiple Instances. We study multiple instances on the same
graph G = (V,E,w) by considering a family D of demand graphs. For example,
all minimum st-cut instances in a single G corresponds to the family D of all
demands of the form D = {(s, t)} (i.e., demand graph with one edge). The
collection of optimal cut-values over the entire family D of instances in a single
graph G, is simply {mincut(D) : D ∈ D}. We are interested in the ratio between
the size of this collection as a multiset and its size as a set, i.e., with and without
counting multiplicities. Equivalently, we define the redundancy factor of a family
D of demand graphs to be

redundancy(D) :=
|D|

|{mincut(D) : D ∈ D}| ,

where throughout, |A| denotes the size of A as a set, i.e., ignoring multiplicities.

Motivation and Potential Applications. A natural application of the redundancy
factor is to construct small data structures that stores all relevant cut values.
For the minimum st-cut problem, Gomory and Hu were able to collect all the
cut values into a tree on the same vertex set V . This tree can easily support fast
query time, or a distributed implementation (labeling scheme) [12].

In addition, large redundancy implies that there is a small collection of cuts
that contains a minimum cut for each demand graph. Indeed, first make sure
all cut values in G are distinct (e.g., break ties consistently by perturbing edge
weights), and then pick for each cut-value in {mincut(D) : D ∈ D} just one cut
that realizes it. This yields a data structure that reports, given demands D ∈ D,
a vertex partition that forms a minimum cut (see more in Sect. 1.2).

1.1 Main Results

Throughout, we denote n = |V |. We use the notation Oγ(·) to suppress factors
that depend only on γ, and similarly for Ω and Θ.

The Group-cut problem. In this problem, the demand graph is a complete
bipartite graph KA,B for some subsets A,B ⊂ V . We give a tight bound on the
redundancy factor of the family of all instances where A and B are of given sizes
α and β, respectively. The special case α = β = 1 is just all minimum st-cuts in
G, and thus recovers the Gomory-Hu bound (Theorem1).

Theorem 2. For every graph G = (V,E,w) and for every α, β ∈ N, we have
|{mincut(KA,B) : |A| = α, |B| = β}| = Oα,β(nα+β−1), hence the family of
(α, β)-group-cuts has redundancy factor Ωα,β(n). Furthermore, this bound is
existentially tight (attained by some graph G) for all α, β and n.
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The Multiway-Cut problem. In this problem, the demand graph is a complete
graph KS for some subset S ⊆ V . We give a tight bound on the redundancy
factor of the family of all instances where S is of a given size k ≥ 2. Again, the
Gomory-Hu bound is recovered by the special case k = 2.

Theorem 3. For every graph G = (V,E,w) and for every integer k ∈ N, we
have |{mincut(KS) : |S| = k}| = Ok(nk−1), hence the family of k-multiway-cuts
has redundancy factor Ωk(n). Furthermore, this bound is existentially tight for
all n and k.

The Multicut problem. In this problem, the demand graph is a collection D of
demand pairs. We give a tight bound on the redundancy factor of the family of
all instances where D is of a given size k ∈ N. Again, the Gomory-Hu bound is
recovered by the special case k = 1.

Theorem 4. For every graph G = (V,E,w) and k ∈ N, we have |{mincut(D) :
D ⊆ V × V, |D| = k}| = Ok(nk), and hence the family of k-multicuts has
redundancy factor Ωk(nk). Furthermore, this bound is existentially tight for all
n and k.

Theorem 4 is a bit surprising, since it shows a redundancy factor that is poly-
nomial, rather than linear, in n (for fixed α, β and k), so in general Multicut
has significantly larger redundancy than Group-Cut and Multiway-Cut.

1.2 Extensions and Applications

Our main results above actually apply more generally and have algorithmic
consequences, as discussed below briefly.

Terminals Version. In this version, the vertices to be separated are limited to a
subset T ⊆ V called terminals, i.e., we consider only demands inside T × T . All
our results above (Theorems 2, 3, and 4) immediately extend to this version of
the problem — we simply need to replace |V | by |T | in all the bounds. As an
illustration, the terminals version of Theorem1 states that the

(|T |
2

)
minimum

st-cuts (taken over all s, t ∈ T ) attain at most |T | − 1 distinct values. (See also
[7, Sect. 3.5.2] for this same version.) Extending our proofs to the terminals ver-
sion is straightforward; for example, in Sect. 2.1 we need to consider polynomials
in |T | variables instead of |V | variables.

Data Structures. Flow-equivalent or cut-equivalent trees, such as those con-
structed by Gomory and Hu [9], may be viewed more generally as succinct data
structures that support certain queries, either for the value of an optimal cut,
or for its vertex-partition, respectively. Motivated by this view, we define data
structures, which we call as evaluation schemes, that preprocess an input graph
G, a set of terminals T , and a collection of demand graphs D, so as to answer a cut
query given by a demand graph D ∈ D. The scheme has two flavors, one reports
the minimum cut-value, the second reports a corresponding vertex-partition.
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In Sect. 5 we initiate the study of such schemes, and provide constructions and
lower bounds for some special cases.

Functions Different from Cuts. Recall that the value of the minimum st-cut is
min{CutG(X,V \ X) : X ⊆ V, s ∈ X, t /∈ X}. Cheng and Hu [5] extended the
Gomory-Hu bound (Theorem1) to a wider class of problems as follows. Instead
of a graph G, fix a ground set V and a function f : 2V → R. Now for every
s, t ∈ V , consider the optimal value min{f(X) : X ⊆ V, |X ∩ {s, t}| = 1}. They
showed that ranging over all s, t ∈ V , the number of distinct optimal values is
also at most |V |−1. All our results above (Theorems 2, 3, and 4) actually extend
to every function f : Par(V ) → R. However, to keep the notation simple, we
opted to present all our results only for the function Cut.

Directed Graphs. What happens if we ask the same questions for the directed
variants of the three problems considered previously? Here, an s → t cut means
a set of edges whose removal ensures that no s → t path exists. Under this
definition, we can construct explicit examples for the directed variants of our
three problems above where there is no non-trivial redundancy, i.e., the number
of distinct cut values is asymptotically equal to the total number of instances.

1.3 Related Work

Gomory and Hu [9] showed how to compute a cut-equivalent tree, and in par-
ticular a flow-equivalent tree, using |V | − 1 minimum st-cut computations on
graphs no larger than G. Gusfield [10] has shown a version where all the cut
computations are performed on G itself (avoiding contractions). For unweighted
graphs, a faster (randomized) algorithm for computing a Gomory-Hu tree which
runs in Õ(|E| · |V |) time was recently given by Bhalgat et al. [3].

We have mentioned that Cheng and Hu [5] extended Theorem 1 from cuts to
an arbitrary function f : 2V → R. They further showed how to construct a flow-
equivalent tree for this case (but not a cut-equivalent tree). Benczúr [2] showed
a function f for which there is no cut-equivalent tree. In addition, he showed
that for directed graphs, even flow-equivalent trees do not exist in general.

Another relevant notion here is that of mimicking networks, introduced by
Hagerup et al. [11]. A mimicking network for G = (V,E,w) and a terminals set
T ⊆ V is a graph G′ = (V ′, E′, w′) where T ⊂ V ′ and for every X,Y ∈ T , the
minimum (X,Y )-cut in G and in G′ have the exact same value. They showed
that every graph has a mimicking network with at most 22

|T |
vertices. Some

improved bounds are known, e.g., for graphs that are planar or have bounded
treewidth, as well as some lower bounds [4,13,14]. Mimicking networks deal with
the Group-Cut problem for all A,B ⊂ V ; we consider A,B of bounded size,
and thus typically achieve much smaller bounds.

2 Group-Cut: The Case of Complete Bipartite Demands

This section is devoted to proving Theorem2. First we give two proofs, one in
Sect. 2.1 via polynomials and the second in Sect. 2.2 via matrices, for the bound
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| {mincut(KA,B) : |A| = α, |B| = β}| = Oα,β(nα+β−1). Then in Sect. 2.3 we
construct examples of graphs for which this bound is tight. Since |{KA,B : |A| =
α, |B| = β}| =

(
n
α

) · (
n−α

β

)
= Θα,β(nα+β), it follows that the redundancy factor

is Ωα,β(n).

2.1 Proof via Polynomials

Let r =
(

n
α

)(
n−α

β

)
and the set of demand graphs for (α, β)-Group-Cut be

{KA1,B1 ,KA2,B2 , . . . ,KAr,Br
}. For every vertex v ∈ V we assign a boolean vari-

able denoted by φv. Given an instance A,B we can assume that the optimal
partition only contains two parts, one which contains A and other which con-
tains B, since we can merge other parts into either of these parts.

Fix some j ∈ [r]. Recall that Π = {U, V \ U} ∈ Par(V ) agrees with, i.e.,
is a feasible solution for, the demand graph KAj ,Bj

if and only if the following
holds: Π(u) �= Π(v) whenever u ∈ Aj and v ∈ Bj or vice versa. Fix arbitrary
aj ∈ Aj and bj ∈ Bj . We associate with the demand graph KAj ,Bj

the formal
polynomial Pj over the variables {φv : v ∈ V }

Pj =
∏

b∈Bj

(
φaj

− φb

)
·

∏

a∈Aj\{aj}

(
φa − φbj

)
.

Note that Pj is a polynomial of degree α + β − 1. Given U ⊆ V , we may think
of Π = {U, V \ U} as a vector in {0, 1}n. We denote by Pj(Π) the value of the
polynomial Pj (over F2) when instantiated on Π.

Lemma 1. A partition Π is feasible for the demand graph KAj ,Bj
if and only

if Pj(Π) �= 0

Proof. Suppose Π is feasible for the demand graph KAj ,Bj
. So Π(u) �= Π(v) if

u ∈ Aj , v ∈ Bj or vice versa. Since every term of Pj contains one variable from
each of Aj and Bj , it follows that Pj(Π) �= 0.

Conversely, assume Pj(Π) �= 0. Let u ∈ Aj . Since Π(u) �= Π(bj) and Π(bj) �=
Π(aj) it follows that Π(u) = Π(aj). Similarly for every v ∈ Bj , Π(v) = Π(bj).
Therefore, it follows that Π(u) �= Π(v) whenever u ∈ Aj and v ∈ Bj or vice
versa, i.e., Π is feasible for KAj ,Bj

. 
�
Next we show that the polynomials corresponding to demand graphs with

distinct values under mincut are linearly independent.

Lemma 2. Reorder the demand graphs such that mincut(KA1,B1) < . . . <
mincut(KAq,Bq

). Then the polynomials P1, . . . , Pq are linearly independent.

Proof. Let Π1, . . . , Πq be the optimal partitions for the instances corresponding
to the demand graphs KA1,B1 , . . . ,KAq,Bq

respectively, i.e., for each i ∈ [q] we
have that mincut(KAi,Bi

) = Cut(Πi). Since mincut(KAi,Bi
) < mincut(KAj ,Bj

)
whenever i < j, it follows that Πi is not feasible for the demand graph KAj ,Bj

for all i < j.
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Suppose that the polynomials P1, P2, . . . , Pq are not linearly independent.
Then there exist constants λ1, . . . , λq ∈ R which are not all zero such that P =∑

j∈[q] λjPj is the zero polynomial. We will now show that each of the constants
λ1, λ2, . . . , λq is zero, leading to a contradiction. Instantiate P on Π1. Recall that
Π1 is not feasible for any KAi,Bi

with i ≥ 2. Therefore, by Lemma 1, we have
that Pi(Π1) = 0 for all i ≥ 2. Therefore λ1P1(Π1) = 0. Since Π1 is an (optimal)
feasible partition for instance corresponding to KA1,B1 , applying Lemma 1 we
get that P1(Π1) �= 0. This implies λ1 = 0. Hence, we have P =

∑
2≤j≤q λjPj

is the zero polynomial. Now instantiate P on Π2 to obtain λ2 = 0 via a similar
argument as above. In the last step, we will get that λq−1 = 0 and hence P =
λqPq is the zero polynomial. Instantiating on Πq gives 0 = P (Πq) = λqPq(Πq).
Since Πq is (optimal) feasible partition for the demand graph KAq,Bq

it follows
that Pq(Πq) �= 0, and hence λq = 0. 
�

Note that each of the polynomials P1, P2, . . . , Pq is contained in the vector
space of polynomials with n variables and degree ≤ α+β − 1. This vector space
is spanned by {∏v∈V φrv

v :
∑

v∈V rv ≤ α + β − 1} and therefore is of dimension
(
n+(α+β−1)

α+β−1

)
= Oα,β(nα+β−1). From Lemma 2 and the fact that size of any set

of linearly independent elements is at most the size of a basis, it follows that∣
∣
∣ {mincut(KA,B) : |A| = α, |B| = β}

∣
∣
∣ = Oα,β(nα+β−1).

2.2 Proof via Matrices

We shall prove the (slightly stronger) bound that | {mincut(KA,B) : |A| ≤
α, |B| ≤ β}| = Oα,β(nα+β−1). Let Par2(V ) ⊆ Par(V ) be the set of parti-
tions of V into exactly two parts. Let Q := {(A,B) : |A| ≤ α, |B| ≤ β}.
Consider the matrix M over F2 with |Q| rows (one for each element from Q)
and | Par2(V )| = 2n columns (one for each partition Π of V into two parts).
We now define the entries of M. Given (A,B) ∈ Q and Π ∈ Par2(V ), we
set M(A,B),Π = 1 if and only if the partition Π ∈ Par2(V ) agrees with the
demand graph KA,B , which is equivalent to saying that Π(u) �= Π(v) whenever
u ∈ A and v ∈ B or vice versa. Fix a vertex v0 ∈ V , and consider the set
R := {(A,B) ∈ Q : v0 ∈ A ∪ B} .

Proposition 1. Over F2, the row space of M is spanned by the rows corre-
sponding to elements from R.

Proof. Consider (A,B) ∈ Q and Π ∈ Par2(V ). If v0 ∈ A ∪ B then (A,B) ∈ R.
Henceforth we assume that v0 /∈ A ∪ B. Let

L(Π) := M(A,B),Π +
∑

A′⊂A

M(v0∪A′,B),Π +
∑

B′⊂B

M(A,B′∪v0),Π ,

where addition is over F2. Note that (v0 ∪ A′, B), (A,B′ ∪ v0) ∈ R for every
A′ ⊂ A and B′ ⊂ B, and therefore it is enough to show that L(Π) ≡ 0 (mod 2).

Assume first that M(A,B),Π = 1, i.e. Π agrees with the demand graph KA,B .
Without loss of generality assume that Π(v0) = Π(a) for some a ∈ A. Then we
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have M(v0∪A′,B),Π = 1 for all A′ ⊂ A, and M(A,v0∪B′),Π = 0 for all B′ ⊂ B.
So, L(Π) = 1 + (2|A| − 1) ≡ 0 (mod 2).

Otherwise, we have M(A,B),Π = 0. If for every v ∈ A ∪ B it holds that
Π(v) �= Π(v0) then

L(Π) = 0 + M(v0,B),Π + M(A,v0),Π = 1 + 1 ≡ 0 (mod 2).

Hence suppose that there exists v ∈ A ∪ B such that Π(v) = Π(v0). Without
loss of generality, assume v ∈ A. Then M(A,B′+v0),Π = 0 for all B′ ⊂ B.
Note that if A1, A2 ⊂ A satisfy M(v0∪A1,B),Π = 1 = M(v0∪A2,B),Π , then
M(v0∪A1∪A2,B),Π = 1. Hence there is an inclusion-wise maximal set A∗ ⊆ A
such that M(v0∪A∗,B),Π = 1. Since M(A,B),Π = 0, we conclude that A∗ ⊂ A.
If A∗ = ∅, then since Π(v) = Π(v0), we conclude that there exists v′ ∈ B such
that Π(v′) = Π(v0). Then M(A′+v0,B),Π = 0 for all A′ ⊂ A, and L(Π) = 0.
Otherwise, |A∗| ≥ 1, and therefore

L(Π) = M(A,B),Π +
∑

A′⊂A

M(v0∪A′,B),Π =
∑

A′⊆A∗
M(v0∪A′,B),Π = 2|A∗| ≡ 0 mod(2)


�
An argument similar to Lemma 2 shows that rows corresponding to demand

graphs with distinct values under mincut are linearly independent. Hence, we
have

∣
∣
∣ {mincut(KA,B) : |A| ≤ α, |B| ≤ β}

∣
∣
∣ ≤ rank(M) ≤ |R|, where the last

inequality follows since R spans the row space of M. We now obtain the final
bound

|R| =
∑

i≤α−1,j≤β

(
n−1

i

) · (
n−i−1

j

)
+

∑

j≤β−1,i≤α

(
n−1

j

) · (
n−j−1

i

)

=
∑

i≤α−1,j≤β

Oi,j(ni+j) +
∑

j≤β−1,i≤α

Oi,j(ni+j)

= Oα,β(nα+β−1)

2.3 Lower Bound on Number of Distinct Cuts for (α, β)-Group-Cut

We now turn to prove that the bound given in Theorem2 is existentially
tight. To this end, we construct an infinite family Gα,β

n of graphs satisfying
|{mincut(KA,B) : |A| = α, |B| = β}| ≥ Ωα,β(nα+β−1).

Let n, α, β ∈ N be such that n is odd, and both α and β −1 divide (n−3)/2.
We define a graph Gα,β

n on n vertices as follows. Gα,β
n is composed of two graphs

that share a common vertex Hα
n and Jβ

n defined below.

– Hα
n has (n+1)/2 vertices, and is given by α parallel paths P1, . . . , Pα between

two designated vertices s, t, each path having (n−3)/2α internal vertices. The
edge weights are given by distinct powers of 2, monotonically decreasing from
s to t. All edges in Hα

n incident on t have ∞ weight (see Fig. 1).
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– Jβ
n has (n+1)/2 vertices, and is given by (β −1) parallel paths Q1, . . . , Qβ−1,

between t and a designated vertex u, each having (n − 3)/2(β − 1) internal
vertices. As in Hα

n , edge weights are given by distinct powers of 2, monoton-
ically decreasing from t to u, and all of which are strictly smaller than the
weights of Hα

n . All edges in Jβ
n incident on u have ∞ weight.

The following proposition implies the desired lower bound.

Proposition 2. |{mincut(KA,B) : |A| = α, |B| = β}| ≥ Ωα,β(nα+β−1).

Proof. Pick one internal vertex from each Pi for i ∈ [α] to form A. Similarly for
β − 1 elements in B, we pick one internal vertex from each Qj for j ∈ [β]. In
addition, s ∈ B (as demonstrated in Fig. 1). We claim that every such choice of
A,B gives a distinct value for the minimum (A,B)-cut.

Indeed, for i ∈ [α] let ai be the unique element in A∩Pi. In order to separate
A from B, we need to separate ai from s. This implies that at least one edge
on the segment of Pi between s and ai has to be in the cut. By monotonicity of
weights and minimality of the cut, this must be the edge incident to ai. Similarly,
for every b ∈ B \ {s}, the left edge incident to b must be cut. It is easy to see
(as demonstrated in Fig. 1) that this set of edges also separates A and B.

By the choice of weights, each such cut has a unique value, and therefore
|{mincut(KA,B) : |A| = α, |B| = β}| ≥ ((n − 3)/2α)α((n − 3)/2(β − 1))β−1 =
Ωα,β(nα+β−1). 
�

Fig. 1. The graph Gα,β
n used in the lower bound of Sect. 2.3. The left part of the graph

is Hα
n , consisting of α parallel s - t paths. The right part of the graph is Jβ

n , consisting
of (β − 1) parallel t -u paths. The gray vertices are in A, and the black ones are in B.
The red edges represent the minimum cut for this choice of A and B.

3 Multiway-Cut: The Case of Clique Demands

Our tight bounds for Multiway-Cut are described in Theorem 3. First we
show that for every graph G = (V,E,w) we have | {mincut(KS) : |S| = k}| =
Ok(nk−1). The proof technique for this upper bound is quite similar to that from
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Sect. 2.2. We also show that this bound is tight for paths (with specially chosen
edge-weights). Hence, the redundancy factor is Ωk(n), since |{KS : |S| = k}| =(
n
k

)
= Θk(nk). We refer to the full version [6] for the technical details.

4 Multicut: The Case of Demands with Fixed Number
of Edges

Our tight bounds for Multicut are described in Theorem 4. First we show
that | {mincut(D) : D ⊆ V × V, |D| = k}| = Ok(nk). The proof technique for
this upper bound is quite similar to that from Sect. 2.1. We also show that this
bound is tight for graphs which are perfect matchings (with specially chosen

edge-weights). Since |{D : D ⊆ V × V, |D| = k}| =
((n2)

k

)
= Θk(n2k), it follows

that the redundancy factor is Ωk(nk). We refer to the full version [6] for the
technical details.

5 Evaluation Schemes: Constructing Succinct Data
Structures

Gomory and Hu [9] showed that for every undirected edge-weighted graph G =
(V,E,w) there is a tree T = (V,E′, w′) that represents the minimum st-cuts
exactly both in terms of the cut-values and in terms of their vertex-partitions.
The common terminology, probably due to Benczúr [2], is to say that T is cut-
equivalent to G. A tree T is flow-equivalent to G if it satisfies only the first
property.1

Flow-equivalent and cut-equivalent trees can be viewed more generally as
succinct data structures that support certain queries, either just for the value
of an optimal cut, or also for its vertex-partition. Motivated by this view, we
define two data structures, which we call a flow-evaluation scheme and a cut-
evaluation scheme (analogously to the common terminology in the literature).
These schemes are arbitrary data structures (e.g., need not form a tree), and
address the terminals version of a certain cut problem. Both of these schemes,
first preprocess an input that consists of a graph G = (V,E,w), a terminals set
T ⊂ V , and a collection of demand graphs D. The preprocessed data can then
be used (without further access to G) to answer a cut query given by a demand
graph D ∈ D. The answer of a flow-evaluation scheme is the corresponding
minimum cut-value mincut(D). A cut-evaluation scheme will also give a vertex-
partition that attains this cut-value mincut(D).

A natural goal is to provide succinct constructions and lower bounds for the
storage and query time of flow-evaluation schemes and cut-equivalent schemes,

1 A tree T is flow-equivalent to G if for every s, t ∈ V the minimum st-cut value in T
is exactly the same as in G. We say T is cut-equivalent to G if, in addition, every
vertex partition that attains a minimum st-cut in T , also attains a minimum st-cut
in G.
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for the three cut problems studied in this paper, viz. Group-Cut, Multiway-
Cut and Multicut. In order to analyze the storage size (in terms of bits) of
such data structures, we henceforth assume that all edge weights are integers.
Our bounds on the number of distinct cut values naturally lead to the following
construction of cut-evaluation schemes for the aforementioned three problems.
We state below the result for Group-Cut (proof deferred to the full version [6]);
similar results also hold for the Multiway-Cut and Multicut problems.

Theorem 5. For every α, β ∈ N there is a cut-evaluation scheme such that for
every graph G = (V,E,w), and a set of terminals T ⊆ V , the scheme uses a
storage of Oα,β(|T |α+β−1 · (|T |+log W )) bits, where W =

∑
e∈E w(e), to answer

every (α, β)-Group-Cut query in time Oα,β(|T |α+β−1).

The result of Theorem 5 is especially meaningful for the case where |T | is
much smaller than n. For large |T |, say T = V , the graph G itself serves as a
cut-evaluation scheme of size O(n2 log W ).

We do not know whether the upper bound in Theorem5 is tight, and proving
lower bounds for the storage size of such schemes is left as an interesting open
question. However, for (2, 1)-Group-Cut with V = T and edge weights bounded
by nO(1), we can prove that simply storing the graph G using O(n2 log n) bits is
essentially optimal, even for the weaker notion of flow-evaluation schemes.

5.1 Lower Bound on Flow-Evaluation Schemes for (2, 1)-Group-Cut

Using an information-theoretic argument, we can show the following lower bound
(proof deferred to [6]) on the storage required by any flow-evaluation scheme for
(2, 1)-Group-Cut. We remark that similar arguments give a lower bound of
Ω(n3 log n) by allowing weights which are exponential in n3.

Theorem 6. For every n ≥ 3, a flow-evaluation scheme for (2, 1)-Group-Cut
on graphs with n terminals (in which T = V ) and with edge-weights bounded by
a polynomial in n requires storage of Ω(n2 log n) bits.

6 Future Directions

A natural direction for future work is to construct better data structures for the
problems discussed in this paper. Our tight bounds on the number of distinct cut
values (redundancy factor) yield straightforward schemes with improved storage
requirement, as described in Sect. 5. But one may potentially improve these
schemes in several respects. First, our storage requirement is a factor |T | larger
than the number of distinct cut values. The latter number could possibly be
the “right bound”, and it is important to prove it is a lower bound for required
storage; we only proved this for (2, 1)-Group-Cut. Second, it is desirable to
achieve fast query time, say sublinear in |T | or perhaps even constant. Third, one
may ask for a distributed version of the data structure (i.e., a labeling scheme)
that can report the same cut values; this would extend the known results [12] for
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minimum st-cuts. All these improvements require better understanding of the
structure of the optimal partitions (those that attain minimum cut values). Such
structure is known for minimum st-cuts, where the Gomory-Hu tree essentially
shows the existence of a family of minimum st-cuts, one for each s, t ∈ V , which
is laminar.

Another very interesting question is to explore approximation to the min-
imum cut, i.e., versions of the above problems where we only seek for each
instance a cut within a small factor of the optimal. For instance, the cut val-
ues of (α, β)-Group-Cut can be easily approximated within factor α · β using
Gomory-Hu trees, which requires storage that is linear in |T |, much below the
aforementioned “right bound” of |T |α+β−1.
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2. Benczúr, A.A.: Counterexamples for directed and node capacitated cut-trees. SIAM
J. Comput. 24(3), 505–510 (1995)

3. Bhalgat, A., Hariharan, R., Kavitha, T., Panigrahi, D.: An Õ(mn) Gomory-Hu
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Abstract. Using the characteristic property of chordal graphs that they
are the intersection graphs of subtrees of a tree, Erich Prisner showed
that every chordal graph admits an eccentricity 2-approximating span-
ning tree. That is, every chordal graph G has a spanning tree T such
that eccT (v)−eccG(v) ≤ 2 for every vertex v, where eccG(v) (eccT (v)) is
the eccentricity of a vertex v in G (in T , respectively). Using only met-
ric properties of graphs, we extend that result to a much larger family
of graphs containing among others chordal graphs and the underlying
graphs of 7-systolic complexes. Furthermore, based on our approach,
we propose two heuristics for constructing eccentricity k-approximating
trees with small values of k for general unweighted graphs. We validate
those heuristics on a set of real-world networks and demonstrate that all
those networks have very good eccentricity approximating trees.

1 Introduction

All graphs G = (V,E) occurring in this paper are connected, finite, unweighted,
undirected, loopless and without multiple edges. The length of a path from a
vertex v to a vertex u is the number of edges in the path. The distance dG(u, v)
between two vertices u and v is the length of a shortest path connecting u
and v in G. If no confusion arises, we will omit subindex G. The interval
I(u, v) between u and v consists of all vertices on shortest (u, v)-paths, that
is, it consists of all vertices (metrically) between u and v: I(u, v) = {x ∈ V :
dG(u, x) + dG(x, v) = dG(u, v)}. The eccentricity eccG(v) of a vertex v in G
is defined by maxu∈V dG(u, v), i.e., it is the distance to a most distant ver-
tex. The maximum value of the eccentricity represents the graph’s diameter:
diam(G) = maxu∈V eccG(u) = maxu,v∈V dG(u, v). The minimum value of the
eccentricity represents the graph’s radius: rad(G) = minu∈V eccG(u). The set of
vertices with minimum eccentricity forms the center C(G) of a graph G, i.e.,
C(G) = {u ∈ V : eccG(u) = rad(G)}.

A spanning tree T of a graph G with dT (u, v)−dG(u, v) ≤ k, for all u, v ∈ V,
is known as an additive tree spanner of G [9] and, if it exists for a small integer k,
c© Springer-Verlag GmbH Germany 2016
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then it gives a good approximation of all distances in G by the distances in T .
Many optimization problems involving distances in graphs are known to be NP-
hard in general but have efficient solutions in simpler metric spaces, with well-
understood metric structures, including trees. A solution to such an optimization
problem obtained for a tree spanner T of G usually serves as a good approximate
solution to the problem in G.

In [13], the new notion of eccentricity approximating spanning trees was
introduced by Prisner. A spanning tree T of a graph G is called an eccentricity
k-approximating spanning tree if eccT (v)−eccG(v) ≤ k holds for all v ∈ V . Such
a tree tries to approximately preserve only distances from each vertex v to its
most distant vertices and can tolerate larger increases to nearby vertices. They
are important in applications where vertices measure their degree of centrality
by means of their eccentricity and would tolerate a small surplus to the actual
eccentricities [13]. Note also that Nandakumar and Parthasarasthy considered
in [11] eccentricity-preserving spanning trees (i.e., eccentricity 0-approximating
spanning trees) and showed that a graph G has an eccentricity 0-approximating
spanning tree if and only if: (a) either diam(G) = 2rad(G) and |C(G)| = 1, or
diam(G) = 2rad(G)− 1, |C(G)| = 2, and those two center vertices are adjacent;
(b) every vertex u ∈ V \ C(G) has a neighbor v such that eccG(v) < eccG(u).

Every additive tree k-spanner is clearly eccentricity k-approximating. There-
fore, eccentricity k-approximating spanning trees can be found in every inter-
val graph for k = 2 [9,10,12], and in every asteroidal-triple–free graph [9],
strongly chordal graph [3] and dually chordal graph [3] for k = 3. On the
other hand, although for every k there is a chordal graph without a tree k-
spanner [9,12], yet as Prisner demonstrated in [13], every chordal graph has an
eccentricity 2-approximating spanning tree, i.e., with the slightly weaker concept
of eccentricity-approximation, one can be successful even for chordal graphs.

Unfortunately, the method used by Prisner in [13] heavily relies on a char-
acteristic property of chordal graphs (chordal graphs are exactly the intersection
graphs of subtrees of a tree) and is hardly extendable to larger families of graphs.

In this paper we present a new proof of the result of [13] using only metric
properties of chordal graphs (see Theorem 9 and Corollary 3). This allows us
to extend the result to a much larger family of graphs which includes not only
chordal graphs but also other families of graphs known from the literature.

It is known [4,15] that every chordal graph satisfies the following two metric
properties:

α1-metric: if v ∈ I(u,w) and w ∈ I(v, x) are adjacent, then dG(u, x) ≥
dG(u, v) + dG(v, x) − 1 = dG(u, v) + dG(w, x).
triangle condition: for any three vertices u, v, w with 1 = dG(v, w) <
dG(u, v) = dG(u,w) there exists a common neighbor x of v and w such that
dG(u, x) = dG(u, v) − 1.

A graph G satisfying the α1-metric property is called an α1-metric graph.
If an α1-metric graph G satisfies also the triangle condition then G is called
an (α1,Δ)-metric graph. We prove that every (α1,Δ)-metric graph G = (V,E)
has an eccentricity 2-approximating spanning tree and that such a tree can be
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constructed in O(|V ||E|) total time. As a consequence, we get that the underly-
ing graph of every 7-systolic complex (and, hence, every chordal graph) has an
eccentricity 2-approximating spanning tree.

The paper is organized as follows. In Sect. 2, we present additional notions
and notations and some auxiliary results. In Sect. 3, some useful properties of
the eccentricity function on (α1,Δ)-metric graphs are described. Our eccentricity
approximating spanning tree is constructed and analyzed in Sect. 4. In Sect. 5,
the algorithm for the construction of an eccentricity approximating spanning
tree developed in Sect. 4 for (α1,Δ)-metric graphs is generalized and validated
on some real-world networks. Our experiments show that all those real-world
networks have very good eccentricity approximating trees.

Due to space limitations some proofs are omitted, they can be found in the
full journal version of the paper [1].

2 Preliminaries

For a graph G = (V,E), we use n = |V | and m = |E| to denote the cardinality
of the vertex set and the edge set of G. We denote an induced cycle of length k
by Ck (i.e., it has k vertices) and by Wk an induced wheel of size k which is a Ck

with one extra vertex universal to Ck. For a vertex v of G, NG(v) = {u ∈ V :
uv ∈ E} is called the open neighborhood, and NG[v] = NG(v) ∪ {v} the closed
neighborhood of v. The distance between a vertex v and a set S ⊆ V is defined as
dG(v, S) = minu∈S dG(u, v) and the set of furthest (most distant) vertices from
v is denoted by F (v) = {u ∈ V : dG(u, v) = eccG(v)}.

An induced subgraph of G (or the corresponding vertex set A) is called
convex if for each pair of vertices u, v ∈ A it includes the interval I(v, u) of
G between u, v. An induced subgraph H of G is called isometric if the distance
between any pair of vertices in H is the same as their distance in G. In particular,
convex subgraphs are isometric. The disk D(x, r) with center x and radius r ≥ 0
consists of all vertices of G at distance at most r from x. In particular, the unit
disk D(x, 1) = N [x] comprises x and the neighborhood N(x). For an edge e = xy
of a graph G, let D(e, r) := D(x, r) ∪ D(y, r).

By the definition of α1-metric graphs clearly, such a graph cannot contain
any isometric cycles of length k > 5 and any induced cycle of length 4. The
following results characterize α1-metric graphs and the class of chordal graphs
within the class of α1-metric graphs. Recall that a graph is chordal if all its
induced cycles are of length 3.

Theorem 1 ([15]). G is chordal if and only if it is an α1-metric graph not
containing any induced subgraphs isomorphic to cycle C5 and wheel Wk, k ≥ 5.

Theorem 2 ([15]). G is an α1-metric graph if and only if all disks D(v, k)
(v ∈ V , k ≥ 1) of G are convex and G does not contain the graph W++

6 (see
Fig. 1) as an isometric subgraph.
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Fig. 1. Forbidden isometric subgraph W++
6 .

Theorem 3 ([8,14]). All disks D(v, k) (v ∈ V , k ≥ 1) of a graph G are convex
if and only if G does not contain isometric cycles of length k > 5, and for any
two vertices x, y the neighbors of x in the interval I(x, y) are pairwise adjacent.

A graph G is called a bridged graph if all isometric cycles of G have length
three [8]. The class of bridged graphs is a natural generalization of the class of
chordal graphs. They can be characterized in the following way.

Theorem 4 ([8,14]). G = (V,E) is a bridged graph if and only if the disks
D(v, k) and D(e, k) are convex for all v ∈ V , e ∈ E, and k ≥ 1.

As a consequence of Theorems 2, 3 and 4 we obtain the following equivalences.

Lemma 1. For a graph G = (V,E) the following statements are equivalent:

(a) G is an α1-metric graph not containing an induced C5;
(b) G is a bridged graph not containing W++

6 as an isometric subgraph;
(c) The disks D(v, k) and D(e, k) of G are convex for all v ∈ V , e ∈ E, and

k ≥ 1, and G does not contain W++
6 as an isometric subgraph.

As we will show now the class of (α1,Δ)-metric graphs contains all graphs
described in Lemma 1. An induced C5 is called suspended in G if there is a vertex
in G which is adjacent to all vertices of the C5.

Theorem 5. A graph G is (α1,Δ)-metric if and only if it is an α1-metric graph
where for each induced C5 there is a vertex v ∈ V such that C5 ⊆ N(v), i.e.,
every induced C5 is suspended.

We will also need the following fact.

Lemma 2. Let G = (V,E) be an (α1,Δ)-metric graph, let K be a complete
subgraph of G, and let v be a vertex of G. If for every vertex z ∈ K, d(z, v) = k
holds, then there is a vertex v′ at distance k−1 from v which is adjacent to every
vertex of K.

We note here, without going into the rich theory of systolic complexes, that
the underlying graph of any 7-systolic complex is nothing else than a bridged
graph not containing a 6-wheel W6 as an induced (equivalently, isometric) sub-
graph (see [6] for this fact and a relation of 7-systolic complexes with CAT(0)
complexes). Hence, the class of (α1,Δ)-metric graphs contains the underlying
graphs of 7-systolic complexes.
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3 Eccentricity Function on (α1, Δ)-Metric Graphs

In what follows, by C(G) we denote not only the set of all central vertices of
G but also the subgraph of G induced by this set. We say that the eccentricity
function eccG(v) on G is unimodal if every vertex u ∈ V \C(G) has a neighbor
v such that eccG(v) < eccG(u). In other words, every local minimum of the
eccentricity function eccG(v) is a global minimum on G. It this section we will
often omit subindex G since we deal only with a graph G here. A spanning tree
T of G will be built only in the next section.

In this section, we will show that the eccentricity function eccG(v) on an
(α1,Δ)-metric graph G is almost unimodal and that the radius of the center
C(G) of G is at most 2. Recall that for every graph G, diam(G) ≤ 2rad(G).

Lemma 3. Let G be an α1-metric graph and x be its arbitrary vertex with
ecc(x) ≥ rad(G) + 1. Then, for every vertex z ∈ F (x) and every neighbor v
of x in I(x, z), ecc(v) ≤ ecc(x) holds.

Proof. Assume, by way of contradiction, that ecc(v) > ecc(x) and consider an
arbitrary vertex u ∈ F (v). Since x and v are adjacent, necessarily, d(v, u) =
ecc(v) = ecc(x) + 1 = d(u, x) + 1, i.e., x ∈ I(v, u). By the α1-metric property,
d(u, z) ≥ d(u, x)+d(v, z) = ecc(v)− 1+ ecc(x)− 1 = 2ecc(x)− 1 ≥ 2rad(G)+1.
The latter gives a contradiction to d(u, z) ≤ diam(G) ≤ 2rad(G). ��
Theorem 6. Let G be an (α1,Δ)-metric graph and x be an arbitrary vertex
of G. If (i) ecc(x) > rad(G) + 1 or (ii) ecc(x) = rad(G) + 1 and diam(G) <
2rad(G), then there must exist a neighbor v of x with ecc(v) < ecc(x).

Proof. Define for a neighbor v of x a set Sv := {z ∈ F (x) : v ∈ I(x, z)} of vertices
that are most distant from x and have v on a shortest path from x. Choose a
neighbor v of x which maximizes |Sv|. We claim that ecc(v) < ecc(x). We know,
by Lemma 3, that ecc(v) ≤ ecc(x). Assume ecc(v) = ecc(x) and consider an
arbitrary vertex u ∈ F (v).

Suppose first that x ∈ I(v, u). Then, by the α1-metric property, d(u, z) ≥
d(u, x)+d(v, z) = 2ecc(x)−2 holds for every z ∈ Sv. Hence, if ecc(x) > rad(G)+
1 then d(u, z) > 2rad(G) and thus a contradiction to d(u, z) ≤ diam(G) ≤
2rad(G) arises. If, on the other hand, case (ii) applies, i.e., ecc(x) = rad(G) + 1
and diam(G) < 2rad(G), then it follows that d(u, z) ≥ 2rad(G) > diam(G) and
again a contradiction arises.

Now consider the case that x /∈ I(v, u). Then ecc(v) = ecc(x) implies that
d(u, x) = d(u, v) and u ∈ F (x). By the triangle condition, there must exist a
common neighbor w of x and v such that w ∈ I(x, u)∩I(v, u). Since u belongs to
Sw but not to Sv, then, by the maximality of |Sv|, there must exist a vertex z ∈
F (x) which is in Sv but not in Sw. Thus, d(w, z) > d(v, z) and v ∈ I(w, z) must
hold. Now, the α1-metric property applied to v ∈ I(w, z) and w ∈ I(v, u) gives
d(u, z) ≥ d(u,w) + d(v, z) = 2ecc(x) − 2. As before we get d(u, z) > 2rad(G) ≥
diam(G), if ecc(x) > rad(G) + 1 (case (i)), and d(u, z) ≥ 2rad(G) > diam(G),
if ecc(x) = rad(G)+1 and diam(G) < 2rad(G) (case (ii)). These contradictions
complete the proof. ��
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For each vertex v ∈ V \C(G) of a graph G we can define a parameter loc(v) =
min{d(v, x) : x ∈ V, ecc(x) < ecc(v)} and call it the locality of v. We define the
locality of any vertex from C(G) to be 1. Theorem 6 says that if a vertex v with
loc(v) > 1 exists in an (α1,Δ)-metric graph G then diam(G) = 2rad(G) and
ecc(v) = rad(G) + 1. That is, only in the case that diam(G) = 2rad(G) the
eccentricity function can be not unimodal on G.

Observe that the center C(G) of a graph G = (V,E) can be represented as the
intersection of all the disks of G of radius rad(G), i.e., C(G) =

⋂ {D(v, rad(G)) :
v ∈ V }. Consequently, the center C(G) of an α1-metric graph G is convex (in
particular, it is connected), as the intersection of convex sets is always a convex
set. In general, any set C≤i(G) := {z ∈ V : ecc(z) ≤ rad(G) + i} is a convex set
of G as C≤i(G) =

⋂ {D(v, rad(G) + i) : v ∈ V }.

Corollary 1. In an α1-metric graph G, all sets C≤i(G), i ∈ {0, . . . , diam(G) −
rad(G)}, are convex. In particular, C(G) of an α1-metric graph G is convex.

The following result gives bounds on the diameter and the radius of the center
of an (α1,Δ)-metric graph. Previously it was known that the diameter (the
radius) of the center of a chordal graph is at most 3 (at most 2, respectively) [5].

Theorem 7. For an (α1,Δ)-metric graph G, rad(C(G)) ≤ 2.

Proof. Assume, by way of contradiction, that there are vertices s, t ∈ C(G) such
that d(s, t) = 4. Consider an arbitrary shortest path P = (s = x1, x2, x3, x4, x5 =
t). Since C(G) is convex any shortest path connecting s and t is in C(G).

First we claim that for any vertex u ∈ F (x3) all vertices of P are at distance
r := d(u, x3) = rad(G) from u. As xi ∈ C(G), we know that d(u, xi) ≤ r (1 ≤
i ≤ 5). Assume d(u, xi) = r − 1, d(u, xi+1) = r, and i ≤ 2. Then, the α1-metric
property applied to xi ∈ I(u, xi+1) and xi+1 ∈ I(xi, xi+3) gives d(xi+3, u) ≥
r − 1 + 2 = r + 1 which is a contradiction to d(u, xi+3) ≤ r. So, d(u, x1) =
d(u, x2) = r. By symmetry, also d(u, x4) = d(u, x5) = r.

By the triangle condition, there must exist vertices v and w at distance r −1
from u such that vx1, vx2, wx4, wx5 ∈ E. We claim that x3 is adjacent to neither
v nor w. Assume, without loss of generality, that vx3 ∈ E. Then, d(x5, x1) = 4
implies d(x5, v) = 3 and therefore x3 ∈ I(x5, v). Now, the α1-metric property
applied to x3 ∈ I(x5, v) and v ∈ I(u, x3) gives d(x5, u) ≥ r − 1+2 = r +1 which
is impossible. So, vx3, wx3 /∈ E.

Obviously, vx4, wx2 /∈ E. If d(x4, v) = 3 then x2 ∈ I(x4, v). Thus, by v ∈
I(x2, u) and the α1-metric property, we would get d(x4, u) ≥ r − 1 + 2 = r + 1
which, again, is impossible. Thus, d(x4, v) = 2 must hold. Since, by Theorem 5,
every induced C5 is suspended in G and, further, G cannot contain an induced
C4, we can choose a vertex y ∈ N(v) ∩ N(x4) which is adjacent both to x2 and
x3 as well. If d(y, u) = r then again y ∈ I(v, x5) and v ∈ I(u, y) will imply
d(x5, u) ≥ r − 1 + 2 = r + 1, which is impossible. So, d(y, u) = r − 1 must hold
and, by the convexity of disks, y must be adjacent to w.

All the above holds for every shortest path P = (s = x1, x2, x3, x4, x5 = t)
connecting vertices s and t. Now, assume that P is chosen in such a way that
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among all vertices in I(s, t) that are at distance 2 from s (we will call this set
of vertices S2(s, t)) the vertex x3 has the minimum number of furthest vertices,
i.e., |F (x3)| is as small as possible. Observe that, by convexity of the center,
S2(s, t) ⊆ C(G). As y also belongs to S2(s, t) and has u at distance r − 1, by the
choice of x3, there must exist a vertex u′ ∈ F (y) which is at distance r − 1 from
x3. Applying the previous arguments to the path P ′ := (s = x1, x2, y, x4, x5 = t),
we will have d(xi, u

′) = d(y, u′) = r for i = 1, 2, 4, 5, and get two more vertices
v′ and w′ at distance r − 1 from u′ such that v′x1, v

′x2, w
′x4, w

′x5 ∈ E and
v′y, w′y /∈ E. By the convexity of disk D(u′, r − 1), also v′x3, w

′x3 ∈ E. Now
consider the disk D(x2, 2). Since w,w′ are in the disk and x5 is not, vertices w
and w′ must be adjacent. But then vertices y, x3, w

′, w form a forbidden induced
cycle C4.

The obtained contradictions show that a shortest path P of length 4 cannot
exist in C(G), i.e., diam(C(G)) ≤ 3. As C(G) is a convex set of G, the subgraph
of G induced by C(G) is also an α1-metric graph. According to [15], diam(G) ≥
2rad(G) − 2 holds for every α1-metric graph G. Hence, for a graph induced by
C(G) we have 3 ≥ diam(C(G)) ≥ 2rad(C(G)) − 2, i.e., rad(C(G)) ≤ 2. ��
Corollary 2 ([5]). For a chordal graph G, rad(C(G)) ≤ 2.

For our next arguments we need a generalization of the set S2(s, t), as used
in the proof of Theorem 7. We define a slice of the interval I(u, v) from u to v
for 0 ≤ k ≤ d(u, v) to be the set Sk(u, v) = {w ∈ I(u, v) : d(w, u) = k}.

Theorem 8. Let G be an (α1,Δ)-metric graph. Then, in every slice Sk(u, v)
there is a vertex x that is universal to that slice, i.e., Sk(u, v) ⊆ N [x]. In partic-
ular, if diam(G) = 2rad(G), then diam(C(G)) ≤ 2 and rad(C(G)) ≤ 1.

4 Eccentricity Approximating Spanning Tree
Construction

It this section, we construct an eccentricity approximating spanning tree and
analyze its quality for (α1,Δ)-metric graphs. Here, we will use sub-indices G

and T to indicate whether the distances or the eccentricities are considered in G
or in T . I(u, v) will always mean the interval between vertices u and v in G.

4.1 Tree Construction for Unimodal Eccentricity Functions

First consider the case when the eccentricity function on G is unimodal, that is,
every non-central vertex of G has a neighbor with smaller eccentricity. We will
need the following lemmas.

Lemma 4 ([7]). Let G be an arbitrary graph. The eccentricity function on G is
unimodal if and only if, for every vertex v of G, eccG(v) = dG(v, C(G))+rad(G).
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Lemma 5 ([2]). Let G be an arbitrary α1-metric graph. Let x, y, v, u be vertices
of G such that v ∈ I(x, y), x ∈ I(v, u), and x and v are adjacent. Then d(u, y) =
d(u, x) + d(v, y) holds if and only if there exist a neighbor x′ of x in I(x, u) and
a neighbor v′ of v in I(v, y) with dG(x′, v′) = 2; in particular, x′ and v′ lie on a
common shortest path of G between u and y.

We construct a spanning tree T of G as follows. First find the center C(G) of
G and pick an arbitrary central vertex c of the graph C(G), i.e., c ∈ C(C(G)).
Compute a breadth-first-search tree T ′ of C(G) started at c. Expand this tree T ′

to a spanning tree T of G by identifying for every vertex v ∈ V \C(G) its parent
vertex in the following way: among all neighbors x of v with eccG(x) = eccG(v)−1
pick that vertex which is closest to c in G (break ties arbitrarily).

Lemma 6. Let G be an (α1,Δ)-metric graph whose eccentricity function is uni-
modal. Then, for a tree T constructed as described above and every vertex v of
G, dG(v, c) = dT (v, c) holds, i.e., T is a shortest-path-tree of G started at c.

Proof. Let v be an arbitrary vertex of G and let v′ be a vertex of C(G) closest
to v in T . By Lemma 4 and by the construction of T , dG(v, v′) = dT (v, v′)
and v′ is a vertex of C(G) closest to v in G. By the construction of T ′, also
dG(c, v′) = dT (c, v′) (note that, as C(G) is a convex subgraph of G, clearly,
dC(G)(x, y) = dG(x, y) for every pair x, y of C(G)). So, in the tree T , we have
dT (c, v′)+dT (v′, v) = dT (v, c). If dG(c, v′)+dG(v′, v) = dG(v, c), then dG(v, c) =
dT (v, c), and we are done. Assume, therefore, that dG(c, v′)+dG(v′, v) > dG(v, c)
and among all vertices that fulfill this inequality, let v be the one that is closest
to C(G). Consider the neighbor x of v′ on the path in T from v′ to v. We have
x ∈ I(v′, v) and, by Lemma 4, eccG(x) = rad(G)+1. Note that x = v is possible.

If v′ /∈ I(x, c) then dG(x, c) ≤ dG(v′, c). By the convexity of C(G), x with
eccG(x) = rad(G)+1 cannot be on a shortest path between two central vertices
c and v′. Hence, dG(x, c) = dG(v′, c) holds. By the triangle condition, there must
exist a common neighbor y of v′ and x which is at distance dG(v′, c) − 1 from c.
Since y ∈ I(v′, c), by the convexity of C(G), eccG(y) = rad(G). But then, as y
is closer to c than v′ is, vertex x cannot choose v′ as its parent in T , since y is
a better choice.

If v′ ∈ I(x, c) then, by the α1-metric property, dG(c, v′)+dG(x, v) ≤ dG(v, c).
As dG(c, v′) + dG(v′, v) > dG(v, c), we have dG(c, v′) + dG(x, v) = dG(v, c). By
Lemma 5, there must exist a neighbor x′ of x in I(x, v) and a neighbor v′′ of v′

in I(v′, c) with dG(x′, v′′) = 2. Denote by w a common neighbor of x′ and v′′. We
have dG(x, c) > dG(w, c). Set k := dG(v, v′) = dG(v, C(G)) = eccG(v) − rad(G).
Let PT := (x = a1, . . . , ak = v) be the path in T between x and v. Let PG :=
(w = b1, x

′ = b2, . . . , bk = v) be a shortest path of G between w and v which
shares a longest suffix with PT , that is, aj = bj for all j > i, ai 
= bi, and i is
minimal under these conditions. Note that i = 1 and a2 = b2 = v is possible. By
Lemma 4, eccG(ai) = eccG(bi) = rad(G) + i = eccG(ai+1) − 1.

Since v is a vertex closest to C(G) fulfilling inequality dG(c, v′)+ dG(v′, v) >
dG(v, c), for vertex ai (i < k), the equation dG(c, v′) + dG(v′, ai) =
dG(ai, c) holds. Hence, dG(c, x) + dG(x, ai) = dG(ai, c). Also, by Lemma 5,
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dG(c, w) + dG(w, bi) = dG(bi, c). Consequently, dG(x, c) > dG(w, c) and
dG(x, ai) = dG(w, bi) imply dG(ai, c) > dG(bi, c). Therefore, vertex ai+1 can-
not choose ai as its parent in T , since bi is a better choice.

The obtained contradictions prove that dG(c, v′) + dG(v′, v) = dG(v, c) and
hence dG(v, c) = dT (v, c). ��
Lemma 7. Let G be an (α1,Δ)-metric graph whose eccentricity function is uni-
modal. Then, for a tree T constructed as described above and for every vertex v
of G, eccT (v) ≤ eccG(v) + rad(C(G)) holds.

Proof. Let v be an arbitrary vertex of G, v′ be a vertex of C(G) closest to v
in T , and u be a vertex most distant from v in T , i.e., eccT (v) = dT (v, u). By
Lemma 4 and by the construction of T , dG(v, v′) = dT (v, v′) and v′ is a vertex
of C(G) closest to v in G. We have eccT (v) = dT (v, u) ≤ dT (v, v′) + dT (v′, c) +
dT (c, u), where c ∈ C(C(G)) is the root of the tree T (see the construction of T ).
Since dG(v, v′) = dT (v, v′), dT (v′, c) = dG(v′, c) ≤ rad(C(G)), and dT (c, u) =
dG(c, u) ≤ rad(G) (by Lemma 6 and the fact that c ∈ C(C(G))), we obtain
eccT (v) ≤ dG(v, v′)+rad(C(G))+rad(G) = eccG(v)+rad(C(G)), as dG(v, v′)+
rad(G) = dG(v, C(G)) + rad(G) = eccG(v) by Lemma 4. ��

4.2 Construction for Eccentricity Functions that Are Not Unimodal

Consider now the case when the eccentricity function on G is not unimodal, that
is, there is at least one vertex v /∈ C(G) in G which has no neighbor with smaller
eccentricity. By Theorem 6, eccG(v) = rad(G) + 1, diam(G) = 2rad(G) and v
has a neighbor with the eccentricity equal to eccG(v). We will need the following
weaker version of Lemma 4.

Lemma 8. Let G = (V,E) be an (α1,Δ)-metric graph. Let v be an arbitrary
vertex of G and v′ be an arbitrary vertex of C(G) closest to v. Then,

dG(v, C(G)) + rad(G) − 1 ≤ eccG(v) ≤ dG(v, C(G)) + rad(G).

Furthermore, there is a shortest path P := (v′ = x0, x1, . . . , x� = v), connecting
v with v′, for which the following holds:

(a) if eccG(v) = dG(v, C(G))+rad(G) then eccG(xi) = dG(xi, C(G))+rad(G) =
i + rad(G) for each i ∈ {0, . . . , �};

(b) if eccG(v) = dG(v, C(G)) + rad(G) − 1 then eccG(xi) = dG(xi, C(G)) − 1 +
rad(G) = i − 1 + rad(G) for each i ∈ {3, . . . , �} and eccG(x1) = eccG(x2) =
rad(G) + 1.

In particular, if eccG(v) = rad(G) + 1 then dG(v, C(G)) ≤ 2.

Now we are ready to construct an eccentricity approximating spanning tree
T of G for the case when the eccentricity function is not unimodal. We know
that diam(G) = 2rad(G) in this case and, therefore, C(G) ⊆ Srad(G)(x, y) for
any diametral pair of vertices x and y, i.e., for x, y with dG(x, y) = diam(G).
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By Theorem 8 and since C(G) is convex, there is a vertex c ∈ C(G) such that
C(G) ⊆ N [c]. First we find such a vertex c in C(G) and build a tree T ′ by
making c adjacent with every other vertex of C(G). Then, we expand this tree
T ′ to a spanning tree T of G by identifying for every vertex v ∈ V \C(G) its
parent vertex in the following way: if v has a neighbor with eccentricity less
than eccG(v), then among all such neighbors pick that vertex which is closest to
c in G (break ties arbitrarily); if v has no neighbors with eccentricity less than
eccG(v) (i.e., eccG(v) = rad(G) + 1 by Theorem 6), then among all neighbors x
of v with eccG(x) = eccG(v) = rad(G)+1 pick again that vertex which is closest
to c in G (break ties arbitrarily).

Lemma 9. Let G be an (α1,Δ)-metric graph whose eccentricity function is not
unimodal. Then, for a tree T constructed as described above and every vertex v
of G, dT (v, c) = dG(v, c) holds.

Proof. Assume, by way of contradiction, that dG(v, c) < k := dT (v, c) and let v
be a vertex with such a condition that has smallest eccentricity eccG(v). We may
assume that eccG(v) > rad(G) + 1. Indeed, every v with eccG(v) = rad(G) + 1
either has a neighbor in C(G) or has a neighbor with a neighbor in C(G) (see
Lemma 8). Therefore, if dG(v, c) < dT (v, c) then, by the construction of T ,
necessarily dG(v, c) = 2, dT (v, c) = 3 and the neighbor x of v on the path of T
between v and c must have the eccentricity equal to rad(G) + 1 = eccG(v). But
then, for a common neighbor w of v and c in G, eccG(w) ≤ rad(G) + 1 must
hold and hence vertex v cannot choose x as its parent in T , since w is a better
choice.

So, let eccG(v) > rad(G) + 1. By Lemma 8, there must exist a shortest path
in G between v and c such that the neighbor w of v on this path has eccentricity
eccG(w) = eccG(v) − 1. Hence, by the construction of T , eccG(x) = eccG(v) − 1
must hold for the neighbor x of v on the path of T between v and c. By the
minimality of eccG(v), we have dG(x, c) = dT (x, c) = k − 1. Since dG(w, c) =
dG(v, c)−1 < k−1, a contradiction arises; again v cannot choose x as its parent
in T , since w is a better choice. ��
Lemma 10. Let G be an (α1,Δ)-metric graph with diam(G) = 2rad(G). Then,
for a tree T constructed as described above and every vertex v of G, eccT (v) ≤
eccG(v) + 2 holds.

Proof. Let v be an arbitrary vertex of G and u be a vertex most distant from v
in T , i.e., eccT (v) = dT (v, u). We have eccT (v) = dT (v, u) ≤ dT (v, c)+dT (c, u) =
dG(v, c)+dG(c, u) ≤ dG(v, c)+rad(G) ≤ dG(v, C(G))+1+rad(G) ≤ eccG(v)+2
since dG(c, u) ≤ eccG(c) = rad(G), dG(v, c) ≤ dG(v, C(G)) + 1 (recall that
C(G) ⊆ N [c]), and dG(v, C(G)) − 1 + rad(G) ≤ eccG(v) (by Lemma 8). ��

Our main result is the following theorem. It combines Theorem 7, Lemmas 7
and 10; the complexity follows straightforward.

Theorem 9. Every (α1,Δ)-metric graph G = (V,E) has an eccentricity 2-
approximating spanning tree. Furthermore, such a tree can be constructed in
O(|V ||E|) total time.
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As a consequence we have the following corollary. Note that the result of
Corollary 3 (and hence of Theorem 9) is sharp as there are chordal graphs that
do not have any eccentricity 1-approximating spanning tree [13].

Corollary 3. The underlying graph of every 7-systolic complex has an eccen-
tricity 2-approximating spanning tree. In particular, every chordal graph has an
eccentricity 2-approximating spanning tree.

5 Experimental Results for Some Real-World Networks

We say that a tree T is an eccentricity k-approximating tree for a graph G if
for every vertex v of G, |eccT (v) − eccG(v)| ≤ k holds. If T is a spanning tree,
then eccT (v) ≥ eccG(v), for all v ∈ V , and this new definition agrees with the
definition of an eccentricity k-approximating spanning tree.

Table 1. A spanning tree T constructed by heuristic EAST: for each vertex u ∈ V ,
k(u) = eccT (u) − eccG(u); kmax = maxu∈V k(u); kavg = 1

n

∑

u∈V k(u). A tree T ′

constructed by heuristic EAT: for each vertex u ∈ V , k(u) = eccT ′(u) − eccG(u);
kmax = maxu∈V k(u); kmin = minu∈V k(u); kavg = 1

n

∑

u∈V k(u)

Network diam(G) kmax kavg [kmin, kmax] kavg

of T of T of T ′ of T ′

EMAIL 8 3 1.774 [−1, 0] −0.0009

Facebook 8 2 0.69 [0, 0] 0

Dutch-Elite 22 6 2.083 [−1, 0] −0.771

Jazz 6 2 1.742 [−1, 0] −0.015

EVA 18 2 0.575 [−1, 0] −0.36

AS-Graph-1 9 2 0.64 [0, 1] 0.62

AS-Graph-2 11 3 1.272 [0, 1] 0.949

AS-Graph-3 9 2 0.312 [0, 1] 0.248

E-coli-PI 5 2 0.769 [0, 1] 0.595

Yeast-PI 12 4 0.972 [−1, 0] −0.168

Macaque-brain-1 4 1 0.222 [0, 0] 0

Macaque-brain-2 4 2 1.489 [−1, 0] −0.003

E-coli-metabolic 16 4 1.132 [−1, 0] −0.624

C-elegans-metabolic 7 1 0.349 [0, 1] 0.342

Yeast-transcription 9 3 1.121 [0, 1] 0.019

US-Airlines 6 0 0 [0, 0] 0

POWER-Grid 46 4 1.409 [−3, 0] −1.309

Word-Adjacency 5 1 0.411 [0, 1] 0.152

Food 4 2 1.629 [−1, 0] −0.015
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Based on what we learned from (α1,Δ)-metric graphs in Sect. 4, we propose
two heuristics for constructing eccentricity approximating trees in general graphs
and analyze their performance on a set of real-world networks. Both heuristics
try to mimic the construction for (α1,Δ)-metric graphs that we used in Sect. 4.
For more details on the data-set and the experiments see the full journal version
of the paper [1].

Our first heuristic, named EAST, constructs an Eccetricity Approximating
Spanning Tree TEAST as a shortest-path-tree starting at a vertex c ∈ C(C(G)).
We identify an arbitrary vertex c ∈ C(C(G)) as the root of TEAST , and for each
other vertex v of G define its parent in TEAST as follows: among all neighbors of
v in I(v, c) choose a vertex with minimum eccentricity (break ties arbitrarily).

Our second heuristic, named EAT, constructs for a graph G an Eccetricity
Approximating Tree TEAT (not necessarily a spanning tree; it may have a few
edges not present in graph G) as follows. We again identify an arbitrary vertex
c ∈ C(C(G)) as the root of TEAT and make it adjacent in TEAT to all other
vertices of C(G) (clearly, some of these edges might not be contained in G). Then,
for each vertex v ∈ V \C(G), we find a vertex u with eccG(u) < eccG(v) which
is closest to v, and if there is more than one such vertex, we pick the one which
is closest to c. In other words, among all vertices {u ∈ V : dG(u, v) = loc(v)
and eccG(u) < eccG(v)}, we choose a vertex u which is closest to c (break
ties arbitrarily). Such a vertex u becomes the parent of v in TEAT . Clearly, if
loc(v) > 1 then edge uv of TEAT is not present in G.

We tested both heuristics on a set of real-world networks. Experimental
results obtained are presented in Table 1. See the full journal version of the
paper [1] for more details. It turns out that the eccentricity terrain of each of
those networks resembles the eccentricity terrain of a tree.
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Abstract. We study drawings of planar graphs such that every inner
face has a prescribed area. A plane graph is area-universal if for every
area assignment on the inner faces, there exists a straight-line drawing
realizing the assigned areas. It is known that not all plane graphs are
area-universal. The only counterexample in literature is the octahedron
graph.

We give a counting argument that allows to prove non-area-
universality for a large class of triangulations. Moreover, we relax the
straight-line property of the drawings, namely we allow the edges to
bend. We show that one bend per edge is enough to realize any face area
assignment of every plane graph. For plane bipartite graphs, it suffices
that half of the edges have a bend.

1 Introduction

Planar graphs link graph theory and geometry. Since various real-life problems
are connected to embedded graphs on the surface of our planet, planar graphs
and their representations have many practical applications: in the manufacture of
chips and electrical circuits, in the design of network infrastructure such as roads,
subway, and utility lines. Other applications are in cartography, geography, and
visualization. Consequently, there is a large body of theoretical and applied work
on representations of planar graphs with special features [11].

One direction is the representation of planar graphs with given areas. Pro-
portional contact representations, so-called cartograms, are studied when areas
are assigned to the vertices [2,5].

We are interested in drawings of plane graphs such that the inner faces have
prescribed face areas. Let G = (V,E) be a plane graph and F ′ the set of its inner
faces. A redrawing of G is a drawing such that the set of inner faces remains.
We denote the set of all redrawings of G by D.

A face area assignment is a function A : F ′ → R
+. Let a : F ′ × D → R

+ be
a function measuring the area of an inner face f in a specified redrawing D of
G. A redrawing D of G is A-realizing if a(f,D) = A(f) for each face f ∈ F ′.
The graph G is area-universal if for every face area assignment A there exists an
A-realizing straight-line redrawing of G. The graph G is equiareal if there exists
a straight-line redrawing D of G such that a(f,D) = 1 for each face f ∈ F ′.

c© Springer-Verlag GmbH Germany 2016
P. Heggernes (Ed.): WG 2016, LNCS 9941, pp. 158–170, 2016.
DOI: 10.1007/978-3-662-53536-3 14
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1.1 Previous Work and Our Contribution

Ringel [10] can be seen as the initiator of the study of drawings of plane graphs
with prescribed face areas. He gave examples of equiareal graphs and proved
that not every plane graph is equiareal. Moreover, Ringel conjectured that every
plane 3-regular graph is equiareal. This turned out to be true when Thomassen
[12] proved something stronger: Every plane graph with maximum degree 3 is
area-universal. There are further area-universal graph classes. A straight-forward
result is the class of planar 3-trees, also known as stacked triangulations. Biedl
and Ruiz Velázquez [3] proved that planar 3-trees have realizing drawings with
rational coordinates if the face areas are rational.

To the best of our knowledge, this is the state of the art. Clearly, many
interesting questions remain open. In this paper, we study two directions, namely
negative and positive results. In terms of negative results, all non-area-universal
graphs in literature contain the octahedron graph as a subgraph. This leads to
the following questions:

• Is the octahedron graph the only minimal counterexample (by taking sub-
graphs)? Is it the only 4-connected counterexample?

• Are highly connected planar graphs area-universal?

The answers to these questions are negative. In Sect. 2 we give a broad class of tri-
angulations which are not area-universal. This class contains many 4-connected
graphs. Additionally, we show that the 5-connected icosahedron graph is not
area-universal. Hence, high connectivity does not imply area-universality.

In terms of positive results, we investigate relaxations:

• What drawings can realize all face area assignments for every plane graph?

In Sect. 3 we show that every plane graph has a drawing realizing any face area
assignment such that each edge has at most one bend. Moreover, every plane
bipartite graph has a drawing realizing any face area assignment such that at
most half of the edges have a bend.

2 Non-area-Universal Graphs

In this section we discuss non-area-universality. It is known that the octahedron
graph is not area-universal [10]. There exist two proofs. In both proofs, the used
area assignment is similar to ours; however, the concepts behind the proofs are
different. Ringel [10] shows that the system of equations has no rational solution.
A different proof relies on a classical geometric result on the area of a triangle
inscribed into a triangle. The proof is similar to [1] (for details on the geometric
result see [4]).

In contrast, we give a simple counting argument. Interestingly, the ideas
can be extended to show that every plane Eulerian triangulation is not area-
universal. Indeed, we use the fact that the dual graph of a plane triangulation is
bipartite, and hence has an inner face 2-coloring. An inner face 2-coloring of a
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triangulation is a coloring of the inner faces with white and black such that every
inner edge is incident to a white and black face. For an inner face 2-coloring of
the octahedron graph, see Fig. 1.

Theorem 1. Every plane Eulerian triangulation (on more than 3 vertices) is
not area-universal.

Proof. Let T be a plane triangulation on n vertices with an inner face 2-coloring.
We denote the set of white faces by W and the set of black faces by B. Recall that
the number of inner faces of a triangulation with n vertices is 2n − 5. Without
loss of generality |W | > |B|, that is |W | ≥ n − 2.

We show that for sufficiently small ε > 0, T has no straight-line drawing
realizing the following area assignment with a total area of 1:

A(f) :=

{
ε if f ∈ W,

δε := 1−ε|W |
|B| else.

The idea is to show that an A-realizing drawing has contradicting properties.
One property is that every white face needs a big angle of almost π. Another
property is that every inner vertex can have at most one such big angle, and
every outer vertex has none. Since the number of white faces exceeds the number
of inner vertices this gives a contradiction. To illustrate the idea of the proof,
we start with the degenerate case of ε = 0.

We suppose, for the purpose of contradiction, that there exists an A-realizing
drawing D of T . Since every inner edge e is incident to a black face, e has positive
length in D; otherwise, the area of the black face cannot be realized. This yields
the main property of D: One angle of every white face is of size π, i.e., a big
angle. The area of a white face vanishes only if a vertex lies on a non-incident
edge. Since all edges have positive length, the vertex must lie on an inner point of
the non-incident edge. We assign (the big angle of) this white face to the vertex
with the big angle. Clearly, only inner vertices may have big angles. Recall that
T has n − 2 white faces and n − 3 inner vertices. By the pigeonhole principle,
in every assignment of big angles to inner vertices, there exists a vertex v which
is assigned to two big angles, see Fig. 1. Vertex v is also incident to at least 2
black faces which are separating the white faces. However, due to the two big
angles, no space remains in order to realize the area of the black faces incident
to v. Consequently, D is not a realizing drawing, thus a contradiction.

For the case ε > 0, we suppose that there exists a realizing straight-line draw-
ing. Since triangles are affine equivalent, any two realizing straight-line drawings
are affine equivalent. Hence, we suppose that there exists a straight-line drawing
within an equilateral triangle with area 1 and sidelength L. It has the following
properties:

– The longest edge is of length L.
– Each edge is incident to a black face and, hence, at least of length s := 2δε/L.
– The height of a white face is bounded by 2ε/s.



Drawing Planar Graphs with Prescribed Face Areas 161

Fig. 1. The octahedron graph with
an inner face 2-coloring indicating the
area assignment. In every assignment
of white faces to inner vertices, one
vertex is assigned to two faces. (Color
figure online)

Fig. 2. The icosahedron graph with an
inner face 2-coloring indicating an area
assignment which cannot be realized by
any straight-line drawing. (Color figure
online)

– There exists a small α′
ε, continuously decreasing with ε, such that a white face

angle is either tiny (at most α′
ε) or big (at least αε := π − 2α′

ε).
– Each white face has a big angle.
– There exists βε such that a black face angle is at least of size βε.

Recall that 2α0 + 2β0 > 2π. By continuity of αε and βε, the intermediate
value theorem implies the existence of ε > 0 with

2αε + 2βε > 2π.

Consequently, in every realizing drawing no inner vertex may realize the big
angles of two white faces. However, the number of white faces exceeds the number
of inner vertices. This is a contradiction and, hence, establishes the proof. ��
Remark 1. It suffices to choose ε in the order of n−3.

Remark 2. Indeed, a triangulation has an inner face 2-coloring if and only if it
has a face 2-coloring. This stems from the fact that the number of edges of a
Eulerian inner triangulation of a quadrangle is divisible by 3.

Remark 3. This construction implies that one cannot hope for drawings realizing
the areas up to a constant factor. If ε is small enough, then there is no c such
that a drawing of an Eulerian triangulation fulfills 1/c ·A(f) ≤ a(f,D) ≤ c ·A(f)
for all inner faces f .

Note that the graphs of Theorem 1 are at most 4-connected. With similar
ideas (but more work) we can show that the 5-connected icosahedron graph is
not area-universal. Here, we only sketch the proof idea.
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Theorem 2. The icosahedron graph is not area-universal.

Proof (Sketch). We can show that for ε > 0 small enough, there is no straight-
line drawing of the icosahedron in which the white faces in Fig. 2 have area ε
and the black faces have area δε := 1−10ε

9 . Note that there are three (red)
edges adjacent to two white faces. These edges may become small, therefore, the
adjacent white triangles do not necessarily need a big angle in a realizing drawing.
Hence, a simple counting argument is not sufficient. However, as before, each of
the four white triangles with three black edges needs a big angle. In every big
angle assignment of these four white triangles, there is a red special edge whose
vertices are both assigned. Moreover, the angle between two black edges in a
white face, is either tiny (almost 0) or big (almost π). A case distinction on the
size of the (green) angles opposite to the red special edge yields the result. ��

3 Drawing Planar Graphs with Bends

We now aim for realizing each face area assignment of every plane graph. As
discussed in Sect. 2, this is impossible for straight-line drawings. Therefore, we
relax the straight-line property by allowing the edges to have bends. A drawing
of a plane graph is a k-bend drawing if each edge is a concatenation of at most
k +1 segments. These drawings are also called polyline drawings. In this section
we show that one bend per edge is sufficient.

Theorem 3. Let G be a plane graph and A : F ′ → R
+ a face area assignment.

Then, there exists an A-realizing 1-bend redrawing of G.

Proof. Without loss of generality, we assume that G is a plane triangulation:
If G is not a triangulation, there exists a triangulation T such that G is an
induced subgraph. For each face of G, partition the assigned area between its
subfaces in T and obtain the area assignment A′ of T . Given an A′-realizing
1-bend redrawing of T , delete the artificial vertices and edges. The result is an
A-realizing 1-bend redrawing of G.

We construct the final drawing of G in four steps (see definitions below):

1. Take a ⊥-contact representation C which yields a rectangular layout L.
2. Obtain a weak equivalent rectangular layout L′ realizing the areas.
3. Define a degenerate drawing D⊥.
4. Construct a non-degenerate drawing from D⊥.

The steps are visualized for the octahedron graph in Fig. 3.
In the first step, we construct a ⊥-contact representation C of G. A ⊥-shape

is the union of a horizontal and vertical segment such that the lower end of the
vertical segment lies in the horizontal segment. We call this point of intersection
the heart of the ⊥-shape. Each of the other three ends of the segments is an end
of the ⊥-shape. A ⊥-contact representation of a graph G = (V,E) is a family
of ⊥-shapes {⊥v : v ∈ V } where ⊥u and ⊥v intersect if and only if (u, v) ∈ E.
Moreover, if ⊥u and ⊥v intersect then the intersection must consist of a single
point which is an end of ⊥u or ⊥v. The point is the contact point of ⊥u and ⊥v.
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triangulation
realizing areas

⊥-contact rectangular layout
1-bend drawing
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Fig. 3. Construction of a 1-bend drawing realizing the prescribed areas in 4 steps.

Lemma 1 ([8]). Every plane triangulation has a ⊥-contact representation C
such that each inner face is represented by a rectangular region.

Following the ideas of [8], C can be constructed as described in detail in Sect. 3.1
in [2]. Observe that the ⊥-shapes of two outer vertices may be pruned to segments
such that the outer face is the complement of a rectangle. The segments of the
⊥-shapes of inner vertices partition the rectangle into finitely many rectangles;
such a partition is called a rectangular layout. By Lemma 1, C yields a rectangular
layout L in which every rectangle r corresponds to a face fr of G.

In the second step, we want to achieve correct areas in a weak-equivalent
layout. The maximal segments of a rectangular layout yield a segment contact
graph. Two rectangular layouts are weak-equivalent if their segment contact
graphs are isomorphic. We apply the following lemma.

Lemma 2. For every rectangular layout with area assignment w on the inner
rectangles, there exists a weak-equivalent layout realizing the areas of w.

This lemma has several variants and proofs; we refer to [5,6,13]. For each rectan-
gle r corresponding to the face fr, we set w(r) := A(fr). By Lemma 2, we obtain
a weak-equivalent rectangular layout L′ in which the area of each rectangle r is
w(r). Due to the weak-equivalence of L and L′, the layout L′ can be viewed as
a ⊥-contact representation C′, which now realizes the areas.

In the third step, we obtain a (degenerate) 1-bend drawing D⊥ of G from C′:

– Place each vertex v in the heart of ⊥v; (for a pruned ⊥-shape, the heart
coincides with the bottom or left end of the remaining segment),

– The edges are supported by the segments of C ′ in the following way: If two
vertices u and v share an edge, ⊥u and ⊥v have a point of contact in which a
vertical and a horizontal segment meet. We define the edges to run from the
heart of one ⊥-shape (along the horizontal segment) to the contact point and
then (along the vertical segment) to the heart of the other ⊥-shape.

Up to the fact that two edges may intersect interiorly (but do not cross), the
properties of a plane redrawing of G are fulfilled. We call such an embedding
degenerate drawing. By construction, each edge consists of a horizontal and a
vertical segment and, hence, has at most (and in general exactly) one bend.
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Observation 1. D⊥ is a degenerate 1-bend redrawing of G realizing A.

For the fourth step, it remains to remove the degeneracies of D⊥. A bend of an
edge e can be interpreted as a vertex we of degree 2, which we call bend vertex.
Moreover, we refer to the two incident edges of we as its horizontal and vertical
segments. As part of the degeneracies, bend vertices intersect non-incident edges.
We handle this issue by parallel shifts. A parallel shift of a bend vertex w in a
drawing D yields a (planar) redrawing D′ of D in which only vertex w has a new
special position: Let p and p′ denote the positions of w in D and D′, respectively.
Let � be the line through the two neighbors of w in D. A redrawing D′ of D is
obtained by a parallel shift of w if p′ lies on the line �′ parallel to � through p,
see Fig. 4. A bend vertex w is shiftable if there exists a parallel shift of w.

Observation 2. A parallel shift of a bend vertex keeps all face areas invariant.

The ⊥-contact representation induces a coloring and an orientation of the inner
edges: each edge corresponds to a contact point of two ⊥-shapes. Orient the edge
such that it is an outgoing edge for the vertex belonging to the ⊥-shape whose
end is the contact point. Color the edge red, blue, or green, if the contact point is
the top end, left end, or right end of the ⊥-shape, respectively. (Such a coloring
and orientation is a Schnyder wood of G.) We analyze the typical situation for a
vertex v in D⊥, see Fig. 5. By construction, v has three outgoing edges such that
all incoming edges partially run on one of these outgoing edges. Observe that
the vertical segments of the incoming blue and green edges are free of segments
touching it from the top: Due to the ⊥-contact representation, every horizontal
segment has exactly one vertical segment touching it from above. Moreover, the
vertex is placed on this intersection point. Thus, the bend vertex of the lowest
green and blue incoming edges is shiftable topwards. Due to the fact that every
rectangle has positive area, some space is guaranteed. Therefore, we can parallel
shift the bend vertex such that the edge is free of degeneracies. In particular,
the bend vertex does not intersect non-incident edges anymore. Hence, the bend
vertex of the second lowest incoming edge of v becomes shiftable. We iterate this
process for all v such that all blue and green bend vertices do not intersect non-
incident edges. Afterwards, only red bend vertices are involved in degeneracies.

For every vertex, we consider the incoming red edges, which have either a
left or a right bend with respect to the orientation. Consider the rightmost right
bend (and likewise the leftmost left bend) vertex. Its horizontal segment is free
to the bottom since it is rightmost (leftmost) and the vertical segment is free to
both sides, since by the first step there is no green or blue bend vertex on a red
segment. Consequently, the rightmost right bend (leftmost left) vertex is shiftable
to the bottom. We shift it parallel downwards such that no new degeneracies are
introduced. Hence, the number of degeneracies decreased. Moreover, this process
achieved that the second rightmost (leftmost) bend vertex becomes shiftable. By
iterating, we remove all degeneracies. Finally, we have a 1-bend drawing realizing
the areas prescribed by A. ��
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w
p

p′ �′

�w

Fig. 4. A parallel shift of w. Fig. 5. The neighborhood of a typical vertex in
the degenerate drawing D⊥ and in the final 1-bend
drawing. (Color figure online)

Knowing that one bend per edge is always sufficient, we wonder how many
bends may be necessary to realize a face area assignment of a plane graph? We
construct a family of lower bound examples with the octahedron graph.

Lemma 3. For every k ≥ 3, there is a graph G on n := 4k − 6 vertices and a
face area assignment A, such that in every A-realizing polyline drawing of G at
least 1/12 of the edges have a bend.

Proof. Recall that, by Theorem 1, the octahedron graph is not area-universal.
Hence, there are area assignments such that at least one of its twelve edges needs
a bend. We call such an area assignment bad.

Now, we construct a graph for each k ≥ 3. Take a triangulation on k vertices
with an inner face 2-coloring. Without loss of generality, assume that k−2 inner
faces are white. Stack an octahedron graph into each white face f , i.e., identify
three outer vertices of a plane octahedron graph and with the vertices of f . This
yields a graph G on k+3(k−2) = n vertices, consisting of k−2 octahedron graphs
which are pairwisely edge-disjoint. Let A be a face area assignment such that
the inner faces of the stacked octahedron graphs obtain a bad area assignment
and the remaining black faces receive some arbitrary value.

Consider an A-realizing polyline drawing D of G. By Theorem 1, each of
the octahedron-subgraphs has least one edge with a bend in D. By the edge-
disjointness, every edge with a bend can satisfy only one of the octahedron
graphs. Hence, in each of the octahedron graphs at least one of the twelve edges
has a bend. This implies the claim. ��
Corollary 1. For a plane graph G with area assignment A, let Bk(G,A) denote
the minimum number of bends in a k-bend drawing realizing A. For all k ≥ 1

1/12|E| ≤ max
G

max
A

{Bk(G,A)} ≤ |E|.

Note that the octahedron graph may not yield a better lower bound.

Proposition 1. For every face area assignment of the octahedron graph, there
exists a realizing drawing with at most one bend in total.
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Proof (Sketch). The proof consists of two ideas. Firstly, let G be the octahedron
graph and e an edge of the triangle of inner vertices, see Fig. 1. Deleting e gives
a quadrangle Q. Replacing e by the other diagonal e of Q yields a planar 3-tree.
Planar 3-trees are area-universal.

Secondly, the intermediate value theorem asserts a position for a bend vertex
of e in Q such that the area of Q is arbitrarily split among the two adjacent
faces of e. Hence, each area assignment of G is realizable with a bend on e. ��
Observation 3. The last argument shows that every 2-degenerate quadrangula-
tion is area-universal since it can be constructed by iteratively inserting a degree
2 vertex in a quadrangle.

3.1 Fewer Bends for Planar Bipartite Graphs

Now, we improve the number of sufficient bends for plane bipartite graphs. We
show that at most half of the edges need a bend. Interestingly, no plane bipartite
graph is known that needs a bend.

Theorem 4. Let G = (X ∪ Y,E) be a plane bipartite graph and A : F ′ → R
+

a face area assignment. Then, there exists an A-realizing 1-bend redrawing of G
with at most |E|/2 bends.

Proof. First, we assume that G is a quadrangulation. The proof consists of four
steps, illustrated in Fig. 6. The main difference to the proof of Theorem 3 lies in
Step 1. Steps 3 and 4 are relatively more involved.

1. Take a segment contact representation C yielding a rectangular layout L.
2. Obtain a weak equivalent rectangular layout L′ realizing the areas.
3. Define a degenerate drawing D.
4. Construct a non-degenerate drawing from D by parallel shifts.

The first step is to take a segment contact representation of G = (X ∪ Y,E).
This is a family {sv|v ∈ X ∪ Y } of segments satisfying the following conditions:
sv is vertical if v ∈ X and horizontal if v ∈ Y . Two segments sv and su intersect
if and only if (u, v) ∈ E. If two segments intersect, the point of intersection is
an end of at least one of the two segments.

Fig. 6. Construction of a 1-bend drawing realizing the prescribed areas in 4 steps.
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Lemma 4 ([7,9]). Every plane quadrangulation has a segment contact represen-
tation such that each inner face is represented by a rectangle.

Let C be a segment contact representation of G. The segments of C partition
a rectangle into rectangles, and hence, C yields a rectangular layout L. In the
second step, we obtain a weak equivalent rectangular layout L′ realizing the areas
by Lemma 2; let C′ denote the corresponding segment contact representation. In
the third step, we define a degenerate drawing D from C′. The challenge is to
place the vertices such that, firstly, we save one bend per vertex, and secondly,
the degeneracies can be removed by parallel shifts. We distinguish two cases
depending on the minimal degree δ of G. Note that in a quadrangulation δ is 2
or 3.
Case 1: δ(G) = 3. Since every segment has only two endpoints but at least three
contacts, every segment has an inner contact point. We construct D as follows:

– v ∈ X is placed on topmost inner contact point of the vertical segment sv.
– v ∈ Y is placed on leftmost inner contact point of the horizontal segment sv.
– e = (v, w) ∈ E is supported by the segments sv and sw in C: e runs from v

along sv to the contact point of sv and sw, and then along sw to w.

Observation 4. D is a degenerate (orthogonal) 1-bend redrawing of G realizing
the areas prescribed by A. The number of bends is at most |E| − |V |.
For the number of bends, observe that by placing the vertex on an inner contact
point, the corresponding edge has no bend. Hence, we save one bend per vertex
and the number of bends is at most |E| − |V |.

In the fourth step, we remove the degeneracies; again, by parallel shifts of
bend vertices. Indeed, we iterate twice through all vertices. For a vertex v ∈ X
(v ∈ Y ) with a vertical (horizontal) segment sv, let B1(sv) denote the set of
bend vertices on sv with a horizontal (vertical) segment touching sv from the
right (bottom); we exclude the endpoints of sv. Likewise B2(sv), denotes the set
of bend vertices on sv not in B1(sv).

Loop 1: For each v ∈ X (v ∈ Y ), do: while B1(sv) is not empty, choose the
topmost (leftmost) bend vertex b ∈ B1(sv), parallel shift b. Delete b from B1(sv).
Loop 2: For each v ∈ X (v ∈ Y ), do: while B2(sv) is not empty, choose the
topmost (leftmost) bend vertex b ∈ B2(sv), parallel shift b. Delete b from B2(sv).

In order to prove that Loop 1 is possible, consider a vertex v ∈ X with
vertical segment sv, see Fig. 7. We need to argue that the topmost b ∈ B1(sv)
is shiftable. By definition, each w ∈ Y is placed on the leftmost contact point
of sw. Hence, the horizontal segment of b is the leftmost part of some sw and
therefore free of bend vertices. Since b is the leftmost bend vertex in B1(sv),
the vertical segment of sv is free to the right. Therefore, b is shiftable down-
rightwards. Moreover, after shifting b, the second topmost bend vertex becomes
shiftable. Consequently, by the order from top to bottom, the horizontal segment
of each bend vertex is free to the right if considered. The argument for v ∈ Y is
analogous. After Loop 1, every segment is free to one side in the following way:
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Every vertical segment is free to the right and every horizontal segment is free
to the bottom.

In Loop 2, a considered bend vertex b ∈ B2(sv) is shiftable due to the order
and the 1-side-freeness guaranteed by Loop 1. Now, no bend vertex sits on a non-
incident edge. Consequently, this process yields a non-degenerate 1-bend drawing
of G which realizes the prescribed areas and has at most |E| − |V | bends.

Case 2: δ(G) = 2. If it exists, choose an inner vertex of degree 2 and remove
the segment sv in C′. This results in a quadrangulation where two old faces are
unified to a new face. Assign the sum of the two old face areas to the new face.
Delete inner vertices of degree 2 until all inner vertices are of degree at least 3.
This yields a graph G′ with area assignment A′. Proceed with G′ as in Case 1
with some extra care. If an outer vertex is of degree 2, we injectively place the
outer vertices of degree 2 on incident endpoints of their segments. Moreover, we
make the parallel shifts small enough, such that the following special property
is fulfilled in an A′-realizing drawing of G′: up to a tiny ε with 2nε << Amin,
each face f of G′ contains an axis-aligned rectangle with area A′(f) − ε, where
Amin := minf∈F ′(G) A(f). We use the special property to reinsert the degree 2
vertices in reverse order of deletion and obtain a sequence of drawings G′

i. We
use the invariant that G′

k is a non-degenerate drawing where each face area is
realized by an axis-aligned rectangle up to 2kε. Consider the (k + 1)th vertex v
of degree 2 and the face f in Gk where v must be inserted. Assume f has area
a1 + a2 and must be split into two faces f1 and f2 with area a1 and a2, where
a1, a2 ≥ Amin. By the invariant, f contains an axis-aligned rectangle R of area
a1+a2−2kε, see Fig. 8. Assume that v ∈ X. By the intermediate value theorem,
there exists a vertical segment s within R such that s dissects f into two parts
of area a1 and a2, respectively. Place v on one endpoint of s and a bend vertex
b on the other endpoint of s. Note that the areas of f1 and f2 are realized by a
rectangle up to 2kε. In order to remove the degeneracies, use parallel shifts of v
and b which are small enough to guarantee that fi contains a rectangle of area
ai − 2k+1ε. This ends Case 2.

If G is not a quadrangulation, then we consider a quadrangulation Q with
G as an induced subgraph. For each face in G, dividing its area assignment
among its subfaces in Q yields A′. Clearly, an A′-realizing 1-bend drawing of Q
induces an A-realizing 1-bend drawing of G. However, the number of bends may

Fig. 7. Schematic neighborhood of vertices in D and
after Loop 1.

Fig. 8. Inserting degree
2 vertices in Case 2.
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exceed |E|/2. Therefore, we ensure to save one bend per vertex by placing the
vertices on inner contact points which belong to edges of G. To do so, delete all
segments belonging to artificial vertices in C. If necessary, remove vertices of low
degree iteratively as in Case 2. Afterwards, place vertices, remove degeneracies
and reinsert vertices of G with low degree as in Case 1 and Case 2. Note that
degree 1 vertices may also appear, but are no problem to be reinserted.

A planar bipartite graph has at most (2|V |−4) edges. Therefore, the number
of edges with bends is at most |E|−|V | ≤ |V |−4 and without bends at least |V |.
Consequently, in all cases the number of bends is less than |E|/2. ��

If two adjacent contact points around a corner are chosen, one can save an
additional bend. For the cube graph this saves 4 bends and shows that it is not
only area-universal (partial 3-tree, cubic), but also convex area-universal, i.e. for
every face area assignment there exists a realizing drawing with convex faces.

Proposition 2. The cube graph is convex area-universal.

Proof. Assign the doubled area to the four boundary faces. Theorem 4 and Fig. 9
show the existence of a 1-bend drawing realizing the perturbed face areas with
one bend on each outer edge. Replacing the boundary edges by segments halves
the area of the boundary faces and gives a realizing straight-line drawing with
convex faces. ��

Fig. 9. The cube graph is convex area-universal.

4 Open Questions

Various interesting questions remain. We want to emphasize three of them:

• Are plane bipartite graphs area-universal?
• Are 3-connected plane bipartite graphs convex area-universal?
• How many bends are necessary and sufficient to realize arbitrary prescribed

areas for all planar graphs?

Acknowledgments. We thank Stefan Felsner und Udo Hoffmann for discussions
about the problem and helpful comments on drafts of this manuscript.
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Abstract. A pseudoforest is a graph whose connected components have
at most one cycle. Let X be a pseudoforest modulator of graph G, i.e.
a vertex subset of G such that G − X is a pseudoforest. We show that
Vertex Cover admits a polynomial kernel being parameterized by the
size of the pseudoforest modulator. In other words, we provide a poly-
nomial time algorithm that for an input graph G and integer k, outputs
a graph G′ and integer k′, such that G′ has O(|X|12) vertices and G has
a vertex cover of size k if and only if G′ has vertex cover of size k′. We
complement our findings by proving that there is no polynomial kernel
for Vertex Cover parameterized by the size of a modulator to a mock
forest (a graph where no cycles share a vertex) unless NP ⊆ coNP/poly.
In particular, this also rules out polynomial kernels when parameterized
by the size of a modulator to cactus graphs.

1 Introduction

Kernelization is a fundamental algorithmic methodology rooted in parameterized
complexity. It also serves as a rigorous mathematical tool for analyzing certain
polynomial-time preprocessing or data-reductions algorithms. In this paper we
provide new kernelization algorithm for “structural” parameterization of Ver-
tex Cover.

In the Vertex Cover problem, we are given as input a graph G and a
positive integer k, and are asked if there exists a set S of at most k vertices in G
such that every edge in G is adjacent to at least one of the vertices in S; such an
S is called a vertex cover of G. As a part of a general program on kernelization
with structural parameterization, Jansen and Bodlaender [9] initiated the study
of kernelization for Vertex Cover with “refined” parameterization by showing
that it admits a polynomial kernel when parameterized by the size of a feedback
vertex set, i.e. a forest-modulator. Since a feedback vertex set can be significantly
smaller than a vertex cover, in various situations such a kernel can be preferable.

It is a very natural question if the kernelization result of Jansen and Bodlaender
can be extended to parameters which are “stronger” than the size of a feedback
vertex set. Forests are exactly the graphs of treewidth one and a natural direc-
tion of such an extension would be to explore the parameterization by a constant
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treewidth modulator. However, as it was shown by Cygan et al. [2], for each t ≥ 2,
Vertex Cover does not admit a polynomial kernel being parameterized by the
size of the treewidth t modulator unless NP ⊆ coNP /poly. This result was further
strenghtened by Jansen to also hold for a modulators to outerplanar graphs [8].
Since the result of Jansen rules out polynomial kernels for Vertex Cover even
when parameterized by outerplanar modulators, the next natural step in the study
of polynomial kernelization for Vertex Cover is to see if the problem admits a
polynomial kernel when parameterized by a modulator to some subclasses of out-
erplanar graphs. Towards this end, Majumdar et al. [10] obtain a polynomial kernel
for Vertex Cover parameterized by the size of a degree-2 modulator.

In this work we show that Vertex Cover admits a polynomial kernel when
the parameter is the size of a pseudoforest modulator. More precisely, a pseudo-
forest is an undirected graph in which every connected component has at most
one cycle. In a graph G, a vertex set X is a pseudoforest modulator if the graph
G−X obtained from G by deleting X is a pseudoforest. We define the following
problem.

Vertex Cover/Pseudoforest modulator (VC/PFM)
Input: A simple undirected graph G, a pseudoforest-modulator set X ⊆
V (G) such that G − X is a pseudoforest, integer k.
Parameter: Size of a pseudoforest modulator |X|.
Question: Does G contain a vertex cover of size at most k?

Our Results. We show that VC/PFM admits a polynomial kernel with
O(|X|12) vertices. Since every feedback vertex set is a pseudoforest-modulator
and every degree-2-modulator is also a pseudoforest-modulator, our result
extends the borders of polynomial kernelization for Vertex Cover established
by Jansen and Bodlaender [9] and by Majumdar et al. [10].

We complement our kernelization algorithm with a lower bound. Let us
observe that the works of Cygan et al. and Jansen [2,8] does not rule out the exis-
tence of polynomial kernels when the problem is parameterized by the size of a
modulator to some proper subclass of outerplanar graphs, such as cactus graphs,
i.e. graphs where every 2-connected component is a cycle. We refine the known
lower bounds by proving that a polynomial kernel for Vertex Cover parame-
terized by the size of mock forest modulator would imply NP ⊆ coNP /poly.
(Mock forest is a graph with no two cycles sharing a vertex and thus is outer-
planar.) Since a mock forest is also a cactus graph, this rules out polynomial
kernels parameterized by the size of a modulator to this class as well.

While we state our kernelization result assuming that a pseudoforest mod-
ulator is given as a part of the input, this condition can be omitted. There
are several approximation algorithms for pseudoforest modulator. For example,
computing a modulator to a pseudoforest is a special case of the F-Deletion
problem considered in [4], and there is a randomized constant factor approxi-
mation algorithm of running time O(nm). Also since pseudoforests of a graph
form independent sets of a bicircular matroid, it follows from the generic frame-
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work of Fujito [7] that there is a deterministic polynomial time 2-approximation
algorithm for pseudoforest modulator.

The proof of our main result is constructive and consists of several reduc-
tion rules. While many steps follow Jansen and Bodlaender [9], the essential
part of the proof is different. Our algorithm is based on a novel combinatorial
result about maximum independent sets in pseudotrees (Lemma 4), which is also
interesting in its own.

The remaining part of the paper is organized as follows. In Sect. 2 we develop
the kernelization algorithm for Vertex Cover/Pseudoforest modulator,
which is the main content of this paper. The section containing the proof of
Lemma 4 is quite technical and is found in the full version [5]. We obtain lower
bounds for Vertex Cover parameterized by the vertex deletion distances to
mock forests, in Sect. 3. Graph theoretic notions and standard definitions are
found in [5] together with proofs of lemmata marked with (�).

2 Kernelization

This section contains the kernelization of Vertex Cover/Pseudoforest
modulator and is the main section of the paper. We will first develop a kernel
for Independent Set/Pseudoforest modulator, and then by the immedi-
ate correspondence between the Vertex Cover and Independent Set prob-
lems the kernel for VC/PFM will follow. For the remainder of this section,
we will thus focus on the Independent Set/Pseudoforest modulator
problem:

Independent Set/Pseudoforest modulator (IS/PFM)
Input: A simple undirected graph G, a pseudoforest-modulator set X ⊆
V (G) such that G − X is a pseudoforest, integer k.
Parameter: Size of a pseudoforest modulator |X|.
Question: Does G contain an independent set of size at least k?

Throughout the section, let F := G − X be the induced subgraph remaining
after the modulator X has been removed from G. Note that F is a pseudoforest.

We say that (G,X, k) is a yes-instance of IS/PFM if there exists an inde-
pendent set I of G such that |I| ≥ k. We say it is a no-instance if there is no
such set.

Definition 1 (Conflicts). Let (G,X, k) be an instance of IS/PFM where F ′ ⊆
F is a subgraph of the pseudoforest F and X ′ ⊆ X is a subset of the modulator X.
Then the number of conflicts induced by X ′ on F ′ is defined as ConfF ′(X ′) :=
α(F ′) − α(F ′ − NG(X ′)).

Choosing X ′ to be in the independent set I of G may prevent some vertices in
F ′ from being included in same set I. In particular, no vertex v ∈ V (F ′)∩NG(X ′)
can be chosen to be in I. In light of this, the term ConfF ′(X ′) can be understood
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F
X

X ′

F ′

Fig. 1. Conflicts: In the figure, we observe that α(F ′) = 3, and α(F ′ − NG(X
′)) = 1.

Hence, we get that ConfF ′(X ′) = 2. In other words, the number of conflicts induced
by X ′ on F ′ is 2.

as the price one has to pay in F ′ by choosing to include X ′ in the independent set
(Fig. 1).

Observe that ConfF ′(X ′) is polynomial time computable since the numbers
α(F ′) and α(F ′ − Z) are polynomial time computable for every Z ⊆ V (F ′).

Definition 2 (Chunks). Let (G,X, k) be an instance of IS/PFM. A set X ′ ⊆
X is a chunk if the following hold:

– X ′ is independent in G,
– The size of X ′ is between 1 and 3, i.e. 1 ≤ |X ′| ≤ 3, and
– The number of conflicts induced by X ′ on the pseudoforest F is less than |X|,

i.e. ConfF (X ′) < |X|.
We let X be the collection of all chunks of X.

The collection of chunks X can be seen as all suitable candidate subsets of
size at most 3 from X to be included in a maximum independent set I for G. The
idea is that I may contain a chunk as a subset, but need not include a subset
X ′ ⊆ X of size at most 3 which is not a chunk. This will allow us to discard
potential solutions containing non-chunk subsets of X with size at most 3. In
order for this intuition to hold, we provide the following lemma, originally by
Jansen and Bodlaender [9, Lemma 2] though slightly altered to fit our purposes.

Lemma 1 (�). If there exists an independent set of size k in G, then there
exists an independent set I of G such that |I| ≥ k and for all subsets X ′ ⊆
X ∩ I,ConfF (X ′) < |X|.
Definition 3 (Anchor triangle). Let (G,X, k) be an instance of IS/PFM. Let
P be a connected component in F with V (P ) = {p1, p2, p3} (Fig. 2). Then P is
an anchor triangle if there exists a set {x1, x2, x3} ⊆ X such that:

– NG(p1) = {p2, p3, x1}
– NG(p2) = {p1, p3, x2}
– NG(p3) = {p1, p2, x3}
An anchor triangle is non-redundant if there is no other anchor triangle with
the same open neighborhood in G.
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p1

p2

p3

x1

x2

x3

F
X

Fig. 2. The connected component P ⊆ F with vertices V (P ) = {p1, p2, p3} is an anchor
triangle for the triple {x1, x2, x3} ⊆ X.

Definition 4 (Unnecessary triple). A triple 3X ⊆ X is said to be unnecessary
if there exists an anchor triangle P such that NG(P ) = 3X.

The fact that a triple 3X ⊆ X is unnecessary as defined above should intu-
itively be understood with respect to constructing an independent set. If a triple
3X is unnecessary then there exists a MIS which does not contain all of 3X.
This intuition is supported by the next lemma.

Lemma 2 (�). Let (G,X, k) be an instance of IS/PFM. If there exists an
independent set of size at least k in G, then there exists an independent set I of
G with |I| ≥ k containing no unnecessary triple 3X ⊆ X.

2.1 Reduction Rules

We introduce here the reduction rules. Each reduction receives as input an
instance (G,X, k) of Independent Set/Pseudoforest modulator, and
outputs an equivalent instance (G′,X ′, k′). A reduction is safe if the input and
output instances are equivalent, that is, (G,X, k) is a yes-instance if and only
if (G′,X ′, k′) is a yes-instance. Reductions 1, 2 and 4 originates in [9], though
Reduction 4 is altered to fit the context of a pseudoforest, which also required
some changes to the proof.

Reduction rules will be applied exhaustively starting with lower number rules,
until Reduction 4 is no longer applicable. During this process, a lower number
rule is always applied before a higher number rule if at any point they are both
applicable. Then Reductions 5 and 6 will be applied once each to obtain the final
reduced instance. Note that each reduction is computable in polynomial time.

Reduction 1. If there is a vertex v ∈ X such that ConfF ({v}) ≥ |X|, then
delete v from the graph G and from the set X. We let G′ := G − v,X ′ := X − v
and k′ := k.

Reduction 2. If there are distinct vertices u, v ∈ X with uv /∈ E(G) for which
ConfF ({u, v}) ≥ |X|, then add edge uv to G. We let G′ := (V (G), E(G) ∪
{uv}),X ′ := X and k′ := k.

Reductions 1 and 2 are safe due to Lemma 1.
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Reduction 3. If there are distinct u, v, w ∈ X such that ConfF ({u, v, w}) ≥
|X|, the set {u, v, w} is independent in G, and for which there is no anchor
triangle P with N(P ) = {u, v, w}, then add an anchor triangle P ′ = {pu, pv, pw}
to the graph such that N(P ′) = {u, v, w}, and increase k by one. Let V (G′) :=
V (G)∪{pu, pv, pw} and let E(G′) := E(G)∪{pupv, pupw, pvpw, puu, pvv, pww}).
Further, let X ′ := X and let k′ := k + 1 (Fig. 3).

u v w

F
X

pu pw

pv

u v w

F ′

X ′

Fig. 3. Reduction 3: Adding an anchor triangle to the independent triple {u, v, w}
(k′ = k + 1). This makes {u, v, w} an unnecessary triple in the output instance.

Note that Reduction 3 makes the triple {u, v, w} ⊆ X unnecessary in the reduced
instance as defined in Definition 4.

Lemma 3 (�). Reduction 3 is safe. Let (G,X, k) be an instance of IS/PFM
to which Reduction 3 is applicable, and let (G′,X ′, k′) be the reduced instance.
Then (G,X, k) is a yes-instance if and only if (G′,X ′, k′) is a yes-instance.

Reduction 4. If there exists a connected component P in F which is not a
non-redundant anchor triangle, and for every chunk Y ∈ X there is no conflict
induced by Y on P , i.e. ConfP (Y ) = 0, then remove P from G and reduce k by
α(P ). We let G′ := G − P,X ′ := X and k′ := k − α(P ).

To prove that Reduction 4 is safe, we will rely on the following lemma, which
states that any pseudotree has a small (at most size three) obstruction in terms
of obtaining a maximum independent set.

Lemma 4 (�). Let P be a pseudotree and let Z be a set of vertices such that
α(P ) > α(P −Z). Then there exist three (possibly non-distinct) vertices u, v, w ∈
Z ∩ V (P ) such that α(P ) > α(P − {u, v, w}).

The proof of the above lemma is quite technical, and is omitted here in order
to preserve the flow of the kernelization algorithm. Taking Lemma 4 as a black
box, we are able to make the following observation:

Observation 1. Let P ⊆ F be a connected component in the pseudoforest F
and let X ′ ⊆ X be an independent set such that ConfP (X ′) > 0. Then there
exists some X ′′ ⊆ X ′ with 1 ≤ |X ′′| ≤ 3 such that ConfP (X ′′) > 0.

We see that the observation is true, since by Lemma 4 there exist u, v, w ∈
NG(X ′) ∩ V (P ) such that α(P ) > α(P − {u, v, w}). Then for each element
u, v, w, pick an arbitrary neighbor xu, xv, xw ∈ X ′ (they need not be distinct)
to form the set X ′′ := {xu, xv, xw}. See that then ConfP (X ′′) > 0. We are now
equipped to prove safeness of Reduction 4.
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Lemma 5. Reduction 4 is safe. Let (G,X, k) be an instance of IS/PFM to
which Reduction 4 is applicable, and let (G′,X ′, k′) be the reduced instance. Then
(G,X, k) is a yes-instance if and only if (G′,X ′, k′) is a yes-instance.

Proof. Let P ⊆ F be the connected component which triggered the reduction.
For the forward direction of the proof, assume (G,X, k) is a yes-instance and

let I be an independent set of G with size at least k. Let I ′ := I \ V (P ). Clearly
I ′ is an independent set of G′. Now observe that |I ∩ V (P )| ≤ α(P ), and thus
|I ′| = |I| − |I ∩ V (P )| ≥ k − α(P ) = k′. Hence (G′,X ′, k′) is a yes-instance.

For the backward direction, we assume that (G′,X ′, k′) is a yes-instance,
and has an independent set I ′ of size at least k′. Because of Lemma 2 we can
assume that I ′ contains no unnecessary triples 3X ⊆ X ′ ∩ I ′. We want to show
that we can always pick some independent set IP ⊆ V (P ) with |IP | = α(P )
such that I := I ′ ∪ IP is an independent set with size at least k′ + α(P ) = k.
Since I ′ and V (P ) are disjoint in G by construction, it will suffice to show that
α(P − NG(I ′)) ≥ α(P ).

Assume for the sake of contradiction that α(P − NG(I ′)) < α(P ). Since P
was a connected component in F , all its neighbors NG(P ) are in X. Thus we
have that ConfP (X ′ ∩ I ′) > 0. By Observation 1, we further have that there
exists some X ′′ ⊆ X ′ ∩ I ′ such that 1 ≤ |X ′′| ≤ 3 and ConfP (X ′′) > 0.

For any such X ′′, there are two cases. In the first case, ConfF (X ′′) < |X|.
Because X ′′ is also independent and has size at most 3, it is a chunk of X in the
input instance. This contradicts the preconditions for Reduction 4, so this case
can not happen.

In the second case, ConfF (X ′′) ≥ |X|. But then one of Reductions 1, 2 or 3
would have previously been applied to X ′′, yielding it either unfeasible for an
independent set or making it an unnecessary triple in the input instance. Because
non-redundant anchor triangles are not chosen for removal by Reduction 4, X ′′

is also an unnecessary triple in the output instance, which contradicts that I ′

contains no unnecessary triples. This concludes the proof. �	
Notice that Reduction 4 will remove connected components from F . When

the reduction is not applicable, we should then be able to give some bound on
the number of connected components in F . The next lemma gives such a bound:

Lemma 6 (�). Let (G,X, k) be an instance of IS/PFM which is irreducible
with respect to Reductions 1, 2, 3 and 4. Let CF denote the set of all connected
components P ⊆ F . Then |CF | ≤ |X|4 + |X|3, i.e. @ the number of connected
components in F is at most |X|4 + |X|3.

When the above reduction rules have been exhaustively applied, the next
two reductions will be executed exactly once each.

Reduction 5. Let X̂ ⊆ V (F ) be a set such that X̂ contains exactly one vertex
of each cycle in F . In the reduced graph, let G′ := G,X ′ := X ∪ X̂, and k′ := k.

The reduction is safe because neither G nor k was changed. Observe that
X is now a feedback vertex set (which is fine, since every feedback vertex set
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is also a modulator to pseudoforest). This reduction may increase the size of X
dramatically. This is why the Reduction is applied only once, such that we can
give guarantees for the size of the reduced instance.

Observation 2. Let (G′,X ′, k′) be an instance of IS/PFM after Reduction 5
have been applied to (G,X, k). Then X ′ ≤ |X|4 + |X|3 + |X|.

After Reduction 5 has been applied once, the returned instance (G,X, k) is
ready for the final reduction step. Note that since X is now a feedback vertex
set, (G,X, k) is now an instance of Independent Set/Feedback Vertex
Set as well, and we can for the final reduction apply the kernel of Jansen and
Bodlaender.

Independent Set/Feedback Vertex Set (IS/FVS)
Input: A simple undirected graph G, a feedback vertex set X ⊆ V (G),
integer k.
Parameter: Size of the feedback vertex set |X|.
Question: Does G contain an independence set of size at least k?

Proposition 1 [9, Theorem 2]. Independent Set/Feedback Vertex Set
has a kernel with a cubic number of vertices: There is a polynomial-time
algorithm that transforms an instance (G,X, k) into an equivalent instance
(G′,X ′, k′) such that |X ′| ≤ 2|X|, and |V (G′)| ≤ 56|X|3 + 28|X|2 + 2|X|.
Reduction 6. Let the output instance (G′,X ′, k′) be the reduced instance after
applying Proposition 1. This reduction is applied once only.

2.2 Bound on Size of Reduced Instances

When no reduction rules can be applied to an instance, we call it reduced. In
this section we will prove that the number of vertices in a reduced instance
(G′,X ′, k′) is at most O(|X|12) where |X| is the size of the modulator in the
original problem (G,X, k).

Theorem 1. Independent Set/Pseudoforest modulator admits a kernel
with O(|X|12) vertices.

Proof. In order to prove the theorem, we show that there is a polynomial
time algorithm that transforms an instance (G,X, k) to an equivalent instance
(G′,X ′, k′) such that

– |V (G′)| ≤ 56(|X|4+|X|3+|X|)3+28(|X|4+|X|3+|X|)2+2(|X|4+|X|3+|X|),
– |X ′| ≤ 2|X|4 + 2|X|3 + 2|X|, and
– k′ ≤ k + |X|3.
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We will begin with the proof that k′ ≤ k + |X|3. The only transformation which
increases k is Reduction 3, which rise k by 1 each time it is applied. However, this
transformation will be done less than |X|3 times, since the rule will be applied
at most once for each distinct triple of X.

Next, we focus on the bound |X ′| ≤ 2|X|4 +2|X|3 +2|X|. The only transfor-
mations which increase |X| are Reductions 5 and 6, which are applied only once
each. By Observation 2 we then have that |X ′| ≤ |X|4+ |X|3+ |X| after applying
Reduction 5, and by Proposition 1 we have that the size is at most doubled after
applying Reduction 6. Thus the bound holds.

For the bound on V (G), let us consider the instance of IS/FVS (G′′,X ′′, k′′)
to which Reduction 6 was applied in order to obtain the final reduced instance
(G′,X ′, k′). We have already established that |X ′′| ≤ |X|4+|X|3+|X|. It follows
from Proposition 1 that in the reduced instance, |V (G′)| ≤ 2|X ′′| + 28|X ′′|2 +
56|X ′′|3, which in terms of |X| yields |V (G′)| ≤ 56(|X|4+|X|3+|X|)3+28(|X|4+
|X|3 + |X|)2 + 2(|X|4 + |X|3 + |X|).

Finally, observe that each reduction can be done in polynomial time. �	
Corollary 1. Vertex Cover/Pseudoforest modulator admits a kernel
with O(|X|12) vertices.

3 No Polynomial Kernel for VC/MFM

In this section we show that Vertex Cover/Mock forest modulator
admits no polynomial kernel unless NP ⊆ coNP/poly. Our strategy is to
make a reduction from CNF-SAT parameterized by the number of variables
to IS/MFM. By the immediate correspondance between Vertex Cover and
Independent Set, the result for Vertex Cover/Mock forest modulator
will follow. We define the following problem.

Independent Set/Mock forest modulator (IS/MFM)
Input: A simple undirected graph G, a mock forest modulator X ⊆ V (G)
such that no two cycles of G − X share a vertex, and an integer k.
Parameter: Size of a mock forest modulator |X|.
Question: Does G contain an independent set of size at least k?

Our reduction also shows that there is no polynomial kernel for Vertex
Cover when parameterized by the size of a modulator to cactus graphs as well,
under the same condition. Our strategy is a modification of Jansen’s proof [8]
that Vertex Cover does not have a polynomial kernel when parameterized by
a modulator to outerplanar graphs unless NP ⊆ coNP/poly.

Definition 5 (Polynomial-parameter transformation [1]). Let Q,Q′ ⊆
Σ∗ ×N be parameterized problems. A polynomial-parameter transformation from
Q to Q′ is an algorithm that, on input (x, k) ∈ Σ∗ × N, takes time polynomial
in |x| + k, and outputs an instance (x′, k′) ∈ Σ∗ × N such that k′ is polyno-
mially bounded in k, and (x, k) ∈ Q if and only if (x′, k′) ∈ Q′. For a para-
meterized problem Q ⊆ Σ∗ × N, the unparameterized version of Q is the set
Q̂ = {x1k | (x, k) ∈ Q} where 1 is a new symbol that is added to the alphabet.
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Proposition 2 [1]. Let Q and Q′ be parameterized problems and let Q̂ and Q̂′

be the unparameterized versions of Q and Q′ respectively. Suppose Q̂ is NP-hard
and Q̂′ is in NP. If there is a polynomial-parameter transformation form Q to
Q′, and Q′ has a polynomial kernel, then Q also has a polynomial kernel.

Proposition 3 [3,6]. CNF-SAT parameterized by the number of variables does
not admit a polynomial kernel unless NP ⊆ coNP/poly.

Definition 6 (Clause gadget). Let k ≥ 1 be an integer. The clause gadget
of size k is the graph Gk consisting of k triangles T1, T2, . . . , Tk and two extra
vertices r0 and lk+1 connected as follows: For each triangle Ti, label the three
vertices li,ri, and si ( left vertex, right vertex and spike vertex, respectively).
Then for each i ∈ {0} ∪ [k], let there be an edge rili+1 connecting the right
vertex of Ti to the left vertex of Ti+1. In this way, Gk is a “path” of k connected
triangles, with two extra degree-1 vertices attached at the ends (Fig. 4).

r0

r1 r2 rk

lk+1

l1 l2 lk

s1 s2 sk

Fig. 4. A clause gadget Gk

Observation 3. For a clause gadget Gk, the independence number α(Gk) is
exactly k + 2. This can be obtained by the independent set containing all the
spike vertices as well as r0 and lk+1. We verify that this is also optimal since
at most one vertex can be chosen from each triangle Ti, and there are only two
non-triangle vertices.

Observation 4. For a clause gadget Gk, every maximum independent set I
must contain at least one spike vertex. Removing the spike vertices, what remains
of Gk is an even path with 2k + 2 vertices, yielding a maximum independent set
of size k + 1, which is strictly smaller than α(Gk).

Observation 5. For a clause gadget Gk, let S denote the set of spike vertices.
Observe that for each spike vertex si ∈ S, there exists a maximum independent
set Ii such that si is the only spike in Ii, i.e. Ii ∩ S = {si}.

Theorem 2. Independent Set/Mock forest modulator does not admit
a polynomial kernel unless NP ⊆ coNP/poly.

Proof. Since Vertex Cover is in NP and CNF-SAT is NP-hard, we have
by Propositions 2 and 3, that it is sufficient to show a polynomial-parameter
transformation from CNF-SAT parameterized by the number of variables to
IS/MFM.
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Consider an instance F of CNF-SAT consisting of clauses C1, C2, . . . , Cm

over the variables x1, x2, . . . , xn. For a clause Cj , let h(j) denote the number
of literals in Cj . We will in polynomial time construct an instance (G,X, k) of
IS/MFM such that F is satisfied if and only if (G,X, k) is a yes-instance. We
construct graph G as follows.

For each variable xi, we let there be two vertices ti and fi in V (G). Let
them be connected by an edge tifi ∈ E(G). Which of ti and fi is included in a
maximum independent set for G will represent whether the variable xi is set to
true or false.

For each clause Cj , let �1, �2, . . . , �h(j) denote the literals of Cj . Let Cj be a
copy of the clause gadget Gh(j), and add it to the graph G. Let the spikes of Cj

be denoted s1, s2, . . . , sh(j). We will connect Cj to the rest of G as follows: For
each literal �r ∈ Cj , let there be an edge from sr to fi if and only if �r = xi.
Similarly, let there be an edge from sr to ti if and only if �r = ¬xi. By this
process, every spike of Cj is connected to exactly one vertex outside of Cj , which
is either ti or fi for some i ∈ [n]. This concludes the construction of G.

Let the set X consist of the variable gadget vertices, i.e., let X = {ti | i ∈
[n]} ∪ {fi | i ∈ [n]}. Observe that X is indeed a mock forest modulator for G,
since every connected component of G − X is exactly a clause gadget, and thus
also a mock forest. Also note that |X| = 2n, which is polynomial in the input
parameter. Finally, we let k = n +

∑m
j=1(h(j) + 2). It remains to show that F is

satisfiable if and only if (G,X, k) is a yes-instance.
(⇒) Assume the formula is satisfiable by the assignment ϕ. We will now build

an independent set I in G which has size at least k. Initially, let IX = ∅. For
each variable xi, let ti be in IX if ϕ(xi) is True, and let fi be in IX otherwise.
In this way, n vertices are added to IX . Observe that this process preserves
independence of IX .

For each clause Cj , we know that there exists some satisfied literal �r. In the
corresponding clause gadget Cj , observe that sr /∈ NG[IX ] by the construction
of the graph and the choice of IX . Then by Observation 5, we can choose an
independent set Ij for Cj which is disjoint from NG[IX ].

Finally, let I be the union of IX and
⋃m

j=1 Ij . Observe that independence
is maintained, since there are no edges between IX and Ij for all j ∈ [m], and
there are no edges between Ij and Ij′ for all choices of j, j′ ∈ [m], j �= j′, since
there were no edges between Cj and Cj′ . Further, we note that |IX | = n, and
|Ij | = h(j) + 2 for every j ∈ [m], and that all the sets are vertex disjoint. Thus
we obtain that |I| = n +

∑m
j=1(h(j) + 2).

(⇐) Assume that there exists an independent set I for G with size |I| ≥
n +

∑m
j=1(h(j) + 2). We construct an assignment ϕ which satisfies the SAT

formula F . By Observation 3, we know that |I \X| ≤ ∑m
j=1(h(j)+2). Since G[X]

consists exactly of n pairwise joined vertices, we also know that |I ∩ X| ≤ n.
Thus, |I| ≤ n+

∑m
j=1(h(j)+2), and equality holds for all the relations. For each

variable xi it must thus be the case that either ti ∈ I and fi /∈ I, or vice versa.
We let ϕ(xi) evaluate to True if ti ∈ I, and to False otherwise.
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It remains to show that ϕ is in fact a satisfying assignment. Consider some
clause Cj and its corresponding gadget Cj . Because |I ∩ Cj | = h(j) + 2, we have
by Observation 4 that there exists a spike vertex sr ∈ Cj ∩ I. Assume for the
sake of contradiction that �r ∈ Cj is not satisfied by ϕ. This implies that xi

was assigned a value that would not satisfy �r. Without loss of generality, (by
symmetry) assume �r = xi and ϕ(xi) = False. Then fi ∈ I; however, by the
construction of the graph, there is an edge between sr and fi. This contradicts
that I is independent. Thus �r ∈ Cj is satisfied by ϕ and we have concluded the
proof. �	
Corollary 2. Vertex Cover/Mock forest modulator does not admit a
polynomial kernel unless NP ⊆ coNP/poly.

Finally, let us observe that in the proof of Theorem2, the graph G − X is a
cactus graph. Thus the proof of Theorem2 can be used to show that Indepen-
dent Set parameterized by the size of a modulator to a cactus graph does not
admit a polynomial kernel.
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Univ. Orléans, INSA Centre Val de Loire, LIFO EA 4022, Orléans, France
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Abstract. Fomin and Villanger ([14], STACS 2010) proved that Max-
imum Independent Set, Feedback Vertex Set, and more generally
the problem of finding a maximum induced subgraph of treewith at most
a constant t, can be solved in polynomial time on graph classes with
polynomially many minimal separators. We extend these results in two
directions. Let Gpoly be the class of graphs with at most poly(n) minimal
separators, for some polynomial poly.

We show that the odd powers of a graph G have at most as many
minimal separators as G. Consequently, Distance-d Independent Set,
which consists in finding maximum set of vertices at pairwise distance at
least d, is polynomial on Gpoly, for any even d. The problem is NP-hard
on chordal graphs for any odd d ≥ 3 [12].

We also provide polynomial algorithms for Connected Vertex
Cover and Connected Feedback Vertex Set on subclasses of Gpoly

including chordal and circular-arc graphs, and we discuss variants of
independent domination problems.

1 Introduction

Several natural graph classes are known to have polynomially many minimal
separators, w.r.t. the number n of vertices of the graph. It is the case for chordal
graphs, which have at most n minimal separators [19], weakly chordal, circular-
arc and circle graphs, which have O(n2) minimal separators [4,16].

The property of having polynomially many minimal separators has been used
in algorithms for decades, initially in an ad-hoc manner, i.e., algorithms were
based on minimal separators but also other specific features of particular graph
classes (see, e.g., [3,16]). Later, it was observed that minimal separators are suf-
ficient for solving problems like Treewidth or Minimum fill-in [4,5]. Both
problems are related to minimal triangulations. Given an arbitrary graph G, a
minimal triangulation is a minimal chordal supergraph H of G, on the same
vertex set. Bouchitté and Todinca [4] introduced the notion of potential maxi-
mal clique, that is, a vertex set of G inducing a maximal clique in some minimal
triangulation H of G. Their algorithm for treewidth is based on dynamic pro-
gramming over minimal separators and potential maximal cliques. The same
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authors proved that the number of potential maximal cliques is polynomially
bounded in the number of minimal separators [5].

Fomin and Villanger [14] found a more surprising application of minimal sep-
arators and potential maximal cliques, proving that they were sufficient for solv-
ing problems like Maximum Independent Set, Maximum Induced Forest,
and more generally for finding a maximum induced subgraph G[F ] of treewidth
at most t, where t is a constant.

More formally, let poly be some polynomial. We call Gpoly the family of
graphs such that G ∈ Gpoly if and only if G has at most poly(n) minimal
separators. By [14], the problem of finding a maximum induced subgraph of
treewidth at most t can be solved in polynomial time on Gpoly. The exponent of
the polynomial depends on poly and on t. In [13], Fomin et al. further extend
the technique to compute large induced subgraphs of bounded treewidth, and
satisfying some CMSO property (expressible in counting monadic second-order
logic). That allows to capture problems like Longest induced path. They also
point out some limits of the approach. It is asked in [13] whether the techniques
can be extended for solving the Connected Vertex Cover problem, which
is equivalent to finding a maximum independent set F such that G − F is con-
nected. More generally, their algorithm computes an induced subgraph G[F ] of
treewidth at most t satisfying some CMSO property, but is not able to ensure
any property relating the induced subgraph to the initial graph.

Here we make some progress in this direction. First, we consider the problem
Distance-d Independent Set on Gpoly, where the goal is to find a maximum
independent set F of the input graph G, such that the vertices of F are at
pairwise distance at least d in G (in the literature this problem is also known as
d-Scattered-Set). This is equivalent to finding a maximum independent set in
graph Gd−1, the (d−1)-th power of G. Eto et al. [12] already studied the problem
on chordal graphs, and proved that it is polynomial for every even d, and NP-
hard for any odd d ≥ 3 (it is even W [1]-hard when parameterized by the solution
size). Their positive result is based on the observation that for any even d, if G
is chordal then so is Gd−1. Eto et al. [12] ask if Distance-d Independent Set
is polynomial on chordal bipartite graphs (which are not chordal but weakly
chordal, see Sect. 2), a subclass of Gpoly. We bring a positive answer to their
question for even values d, by a result of combinatorial nature: for any graph
G and any odd k, the graph Gk has no more minimal separators than G (see
Sect. 3). Consequently, Distance-d Independent Set is polynomial on Gpoly,
for any even value d and any polynomial poly, and NP-hard for any odd d ≥ 3
and any poly(n) asymptotically larger than n. Such a dichotomy between odd
and even values also appears when computing large d-clubs, that are induced
subgraphs of diameter at most d [15], and for quite similar reasons.

Second, we consider Connected Vertex Cover, Connected Feedback
Vertex Set and more generally the problem of finding a maximum induced
subgraph G[F ] of treewidth at most t, such that G − F is connected. We show
(Sect. 4) that the problems are polynomially solvable for subclasses of Gpoly, like
chordal and circular-arc graphs. This does not settle the complexity of these
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problems on Gpoly. As we shall discuss in Sect. 5, when restricted to bipartite
graphs in Gpoly, Connected Vertex Cover can be reduced from Red-Blue
Dominating Set (see [10]). It might be that this latter problem is NP-hard
on bipartite graphs of Gpoly; that was our hope, since the very related problem
Independent Dominating Set is NP-hard on chordal bipartite graphs [8],
and on circle graphs [6]. This question is still open, however we will observe that
the Red-Blue Dominating Set is polynomial on the two natural classes of
bipartite graphs with polynomially many minimal separators: chordal bipartite
and circle bipartite graphs.

2 Preliminaries

Let G = (V,E) be a graph. Let distG(u, v) denote the distance between vertices
u and v (the minimum number of edges of a uv-path). We denote by Nk

G[v] the
set of vertices at distance at most k from v. Let also Nk

G(v) = Nk
G[v]\{v}, and we

call these sets the closed and open neighborhoods at distance k of v, respectively.
Similarly, for a set of vertices U ⊆ V , we call the sets Nk

G(U) = ∪u∈UNk
G(u)\ U

and Nk
G[U ] = ∪u∈UNk

G[u] the open and closed neighborhoods at distance k of
U , respectively. For k = 1, we simply denote by NG(U), respectively NG[U ], the
open and closed neighborhoods of U ; the subscript is omitted if clear from the
context.

A clique (resp. independent set) of G is a set of pairwise adjacent (resp. non-
adjacent) vertices. A distance-d independent set is a set of vertices at pairwise
distance at least d. Equivalently, it is an independent set of the (d− 1)-th power
Gd−1 of G. Graph Gk = (V,Ek) is obtained from G by adding an edge between
every pair of vertices at distance at most k.

Given a vertex subset C of G, we denote by G[C] the subgraph induced by
C. We say that C is a connected component of G if G[C] is connected and C
is inclusion-maximal for this property. For S ⊆ V , we simply denote G − S the
graph G[V \ S]. We say that S is a a, b-minimal separator of G if a and b are in
distinct components C and D of G − S, and N(C) = N(D) = S. We also say
that S is a minimal separator if it is an a, b-minimal separator for some pair of
vertices a and b.

Proposition 1 ([2]). Let G = (V,E) be a graph, C be a connected set of vertices,
and let D be a component of G−N [C]. Then N(D) is an a, b-minimal separator
of G, for any a ∈ C and b ∈ D.

2.1 Graph Classes

A graph is chordal if it has no induced cycle with more than three vertices.
A graph G is weakly chordal if G and its complement G have no induced cycle
with more than four vertices.

The classes of circle and circular-arc graphs are defined by their intersection
model. A graph G is a circle graph (resp. a circular-arc graph) if every vertex
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of the graph can be associated to a chord (resp. to an arc) of a circle such
that two vertices are adjacent in G if and only if the corresponding chords
(resp. arcs) intersect. We may assume w.l.o.g. that, in the intersection model,
no two chords (resp. no two arcs) share an endpoint. On the circle, we add
a scanpoint between each two consecutive endpoints of the set of chords (resp.
arcs). A scanline is a line segment between two scanpoints. Given an intersection
model of a circle (resp. circular-arc) graph G, for any minimal separator S of G
there is a scanline such that the vertices of S correspond exactly to the chords
(resp. arcs) intersecting the scanline, see, e.g., [16].

Chordal graphs have at most n minimal separators [19]; weakly chordal, circle
and circular-arc graphs all have O(n2) minimal separators [4,16].

Definition 1. Let poly be some polynomial. We call Gpoly the family of graphs
such that G ∈ Gpoly if and only if G has at most poly(n) minimal separators,
where n = |V (G)|.

2.2 Dynamic Programming over Minimal Triangulations

Let G = (V,E) be an arbitrary graph. A chordal supergraph H = (V,E′) (i.e.,
with E ⊆ E′), is called a triangulation of G. If, moreover, E′ is inclusion-minimal
among all possible triangulations, we say that H is a minimal triangulation of
G.

The treewidth of a chordal graph is its maximum clique size, minus one.
Forests have treewidth 1, and graphs with no edges have treewidth 0. The
treewidth tw(G) of an arbitrary graph G is the minimum treewidth over all
(minimal) triangulations H of G.

Cliques of minimal triangulations play a central role in treewidth. A potential
maximal clique of G is a set of vertices that induces a maximal clique in some
minimal triangulation H of G. By [4], if Ω is a potential maximal clique, then
for every component Ci of G − Ω, its neighborhood Si is a minimal separator.
Moreover, the sets Si are exactly the minimal separators of G contained in Ω.

Proposition 2 ([1,5]). For any polynomial poly, there is a polynomial-time
algorithm enumerating the minimal separators and the potential maximal cliques
of graphs on Gpoly.

Minimal separators and potential maximal cliques have been used for com-
puting treewidth and other parameters related to minimal triangulations, on
Gpoly. Fomin and Villanger [14] extend the techniques to a family of problems:

Proposition 3 ([14]). For any polynomial poly and any constant t, there
is a polynomial algorithm computing a Maximum Induced Subgraph of
Treewidth at most t on Gpoly.

Clearly, Maximum Independent Set (which is equivalent to Minimum
Vertex Cover) and Maximum Induced Forest (which is equivalent to Min-
imum Feedback Vertex Set) fit into this framework: they consist in finding
maximum induced subgraphs G[F ] of treewidth at most 0, respectively at most
1. The first ingredient of [14] is the following observation.
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Proposition 4 ([14]). Let G = (V,E) be a graph, F ⊆ V , and let HF be a
minimal triangulation of G[F ]. There exists a minimal triangulation HG of G
such that HG[F ] = HF . We say that HG respects the minimal triangulation HF

of G[F ].

Note that, for any clique Ω of HG, we have that F ∩ Ω induces a clique in
HF . In particular, if tw(G[F ]) ≤ t and the clique size of HF is at most t + 1,
then every maximal clique of HG intersects F in at most t + 1 vertices.

The second ingredient is a dynamic programming scheme that we describe
below. Let S be a minimal separator of G, and C be a component of G−S such
that N(C) = S. The pair (S,C) is called a block. Let Ω be a potential maximal
clique such that S ⊂ Ω ⊆ S ∪ C. Then (S,C,Ω) is called a good triple. In the
sequel, W denotes a set of at most t + 1 vertices.

Definition 2. Let (S,C) (resp. (S,Ω,C)) be a block (resp. a good triple) and
let W ⊆ S (resp. W ⊆ Ω) be a set of vertices of size at most t + 1. We say
that a vertex set F is a partial solution compatible with (S,C,W ) (resp. with
(S,C,Ω,W )) if:

1. G[F ] is of treewidth at most t,
2. F ⊆ S ∪ C,
3. W = F ∩ S (resp. W = F ∩ Ω),
4. there is a minimal triangulation H of G respecting some minimal triangula-

tion of G[F ] of treewidth at most t, such that S is a minimal separator (resp.
S is a minimal separator and Ω is a maximal clique) of H.

Observe that the two variants of compatibility differ by parameter Ω and the
last two conditions. We denote by α(S,C,W ) (resp. β(S,C,Ω,W )) the size of a
largest partial solution compatible with (S,C,W ) (resp. (S,C,Ω,W )). We now
show how these quantities can be computed over all blocks and all good triples.
The dynamic programming will proceed by increasing size over the blocks (S,C),
the size of the block being |S ∪ C|.

It is based on the following equations (see [13,14] for details and proofs and
Fig. 1 for an illustration).

Base case. It occurs for good triples (S,C,Ω) such that Ω = S ∪C. In this case,
for each subset W of Ω of size at most t + 1,

β(S,C,Ω,W ) = |W |. (1)

Computing α from β. The following equation allows to compute the α values
from β values:

α(S,C,W ) = max
Ω,W ′

β(S,C,Ω,W ′), (2)

where the maximum is taken over all potential maximal cliques Ω such that
(S,C,Ω) is a good triple, and all subsets W ′ of Ω, of size at most t + 1, such
that W = W ′ ∩ S.
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Fig. 1. Computing α form β (left), and β from α (right)

Computing βfrom α. Let (S,C,Ω) be a good triple, and fix an order
C1, C2, . . . , Cp on the connected components of G[C \ Ω]. Let Si = NG(Ci),
for all 1 ≤ i ≤ p. By [4], (Si, Ci) are also blocks of G.

A partial solution F compatible with (S,C,Ω,W ) is obtained as a union of
partial solutions Fi compatible with (Si, Ci,W ∩Si), for each 1 ≤ i ≤ p, and the
set W .

Denote by γi(S,C,Ω,W ) the size of the largest partial solution F compatible1

with (S,C,Ω,W ), contained in Ω ∪ C1 ∪ · · · ∪ Ci (hence F is not allowed to
intersect the components Ci+1 to Cp).

We have the following equations.

γ1(S,C,Ω,W ) = α(S,C,Ω,W ∩ S1) + |W | − |W ∩ S1|. (3)

For all i, 2 ≤ i ≤ p,

γi(S,C,Ω,W ) = γi−1(S,C,Ω,W ) + α(S,C,Ω,W ∩ Si) − |W ∩ Si|. (4)

and finally
β(S,C,Ω,W ) = γp(S,C,Ω,W ). (5)

For convenience we also consider that ∅ is a minimal separator, and (∅, V )
is a block. Then the size of the optimal global solution is simply α(∅, V, ∅). The
algorithm can be adapted to output an optimal solution, not only its size.

3 Powers of Graphs with Polynomially Many Minimal
Separators

Let us prove that for any odd k, Gk has no more minimal separators than G.

Theorem 1. Consider a graph G, an odd number k = 2l + 1 with l ≥ 0, and a
minimal separator S of Gk. Then there exists a minimal separator S of G such
that S = N l

G[S].
1 To be precise, the γ function is not required at this stage, if we only compute largest

induced subgraphs of treewidth at most t. However it becomes necessary when we
request the solution to satisfy additional properties, as it will happen in Sect. 4.
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Proof. The lemma is trivially true if S = ∅. Let a, b ∈ V such that S 
= ∅ is an
a, b-minimal separator in Gk, and call Ca, Cb the components of Gk − S that
contain a and b, respectively. Let us call Da = N l

G[Ca] and Db = N l
G[Cb].

Claim 1: distG(Da,Db) ≥ 2. Suppose that distG(Da,Db) < 2, and pick x ∈
Da, y ∈ Db with distG(x, y) ≤ 1 (notice that possibly x = y). Let xa ∈ Ca and
xb ∈ Cb be such that there exists an xa, x-path and a y, xb -path in G, each
one of length at most l, called Pa and Pb, respectively. This implies that there
must be a xa, xb-path of length at most 2l + 1 = k in G, which means that
{xa, xb} ∈ E(Gk), a contradiction with the fact that S separates Ca from Cb

in Gk.

Claim 2: S̃ = S \ (Da ∪ Db) separates a and b in G. Notice first that NG(Da) ⊆
N l+1

G (Ca) ⊆ S. Suppose that S̃ does not separate a and b, and let P be an a, b-
path in G that does not pass through S̃. Let x1, . . . , xs−2 the internal nodes of
P , where s = |P |, and consider i = max{j | xj ∈ Da ∩ P}. Since P ∩ S̃ = ∅,
necessarily xi+1 ∈ Db, a contradiction with Claim 1.

Claim 3: Da and Db are connected subsets of G. This is straightforward from
the definition of the sets, Da = N l

G[Ca] and Db = N l
G[Cb], and the fact that Ca

and Cb are connected in G.
Let C̃b be the connected component of G − NG[Da] that contains b, and

denote S = NG(C̃b). Note that S ⊆ S̃ ⊂ S. By applying Proposition 1, we have
that S is a minimal a, b-separator in G. Call C̃a the component of G − S that
contains a. Since S ⊆ S̃, we have that Db ⊆ C̃b and Da ⊆ C̃a.

Claim 4: N l
G[S] = S. We first prove that N l

G[S] ⊆ S. By construction, S ⊆
NG(Da). Consequently S ⊆ N l+1

G (Ca)\N l
G(Ca), therefore N l

G[S] ⊆ N2l+1
G (Ca) =

NGk(Ca) = S. Conversely, we must show that every vertex x of S is in N l
G[S].

By contradiction, let x ∈ S \ N l
G[S]. We distinguish two cases : x ∈ C̃a, and

x ∈ S \ C̃a. In the first case, since NGk(Cb) = S, there exists a path from
some vertex y ∈ Cb to x of length at most k, in graph G. Let us call P one
of those y, x-paths. Observe that the first l + 1 vertices of the path belong to
Db ⊆ C̃b, and none of the last l + 1 vertices of the path belongs to S (otherwise
x ∈ N l

G[S]). Then P is a path that connects C̃b with C̃a without passing through
S, a contradiction with the fact that S separates a and b in graph G.

It remains to prove the last case, when x ∈ S \ C̃a. Since NGk(Ca) = S, there
exists a node y ∈ Ca such that there is a y, x-path P of length at most k in G.
Since the first l + 1 vertices of the path belong to Da, and the last l + 1 vertices
of the path do not belong to S, we deduce that P is an y, x-path in G that does
not intersect S. The path can be extended (through Ca) into an a, x-path that
does not intersect S, a contradiction with the fact that x does not belong to C̃a.
This concludes the proof of our theorem. ��

Recall that Distance-d Independent set on G is equivalent to Maximum
Independent Set on Gd−1. Since the latter problem is polynomial on Gpoly by
Proposition 3, we deduce:

Theorem 2. For any even value d, and any polynomial poly, problem
Distance-d Independent set is polynomially solvable on Gpoly.
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We remind that for any odd value d, problem Distance-d Independent
set is NP-hard on chordal graphs [12], thus on Gpoly for any polynomial poly
asymptotically larger than n. The construction of [12] also shows that even
powers of chordal graphs may contain exponentially many minimal separators.

4 On Connected Vertex Cover and Connected Feedback
Vertex Set

Let us consider the problem of finding a maximum induced subgraph G[F ] such
that tw(G[F ]) ≤ t and G−F is connected. One can easily observe that, for t = 0
(resp. t = 1), this problem is equivalent to Connected Vertex Cover (resp.
Connected Feedback Vertex Set), in the sense that if F is an optimal
solution for the former, than V (G) − F is an optimal solution for the latter.

Our goal is to enrich the dynamic programming scheme described in
Subsect. 2.2 in order to ensure the connectivity of G − F . One should think
of this dynamic programming scheme of Subsect. 2.2 as similar to dynamic pro-
gramming algorithms for bounded treewidth. The difference is that the bags
(here, the potential maximal cliques) are not small but polynomially many, and
we parse simultaneously through a set of decompositions. Nevertheless, we can
borrow several classical ideas from treewidth-based algorithms.

In general, for checking some property for the solution F , we add a notion
of characteristics of partial solutions. Then, for a characteristic c, we update
the Definition 2 in order to define partial solutions compatible with (S,C,W, c)
(resp. (S,C,Ω,W, c)), by requesting the partial solution to be compatible
with characteristic c. Parameter c will also appear in the updated version of
Eqs. 1 to 5.

As usual in dynamic programming, the characteristics must satisfy several
properties: (1) we must be able to compute the characteristic for the base case,
(2) the characteristic of a partial solution F obtained from gluing smaller partial
solutions Fi must only depend on the characteristics of Fi, and (3) the char-
acteristic of a global solution should indicate whether it is acceptable or not.
Moreover, for a polynomial algorithm, we need the set of possible characteristics
to be polynomially bounded.

For checking connectivity conditions on G − F , we define the characteristics
of partial solutions in a natural way. Consider a block (S,C) (resp. a good triple
(S,C,Ω)) and a subset W of S (resp. of Ω). Let F be a partial solution com-
patible with (S,C,W ) (resp. (S,C,Ω,W )), see Definition 2. The characteristic
c of F for (S,C,W ) (resp. for (S,C,Ω,W )) is defined as the partition induced
on S \ W (resp. on Ω \ W ) by the connected components of G[S ∪ C] − F . More
formally, let D1, . . . , Dq denote the connected components of G[S ∪ C] − F , and
let Pj = Dj ∩S (resp. Pj = Dj ∩Ω), for all 1 ≤ j ≤ q. Then c = {P1, . . . , Pq}. We
decide that if S 
= ∅, partial solutions F having some component Dj that does
not intersect S (resp. Ω) are immediately rejected; indeed, for any extension F ′

of F , the graph G − F ′ remains disconnected. Hence we may assume that all
sets Pj are non-empty.
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We say that a partial solution F is compatible with (S,C,W, c) (resp. with
(S,C,Ω,W, c)) if it satisfies the conditions of Definition 2, and c is the charac-
teristic of F for (S,C,W ) (resp. for (S,C,Ω,W )).

We also define functions α(S,C,W, c), β(S,C,Ω,W, c) and γi(S,C,Ω,W, c)
like in Subsect. 2.2, as the maximum size of partial solutions F compatible with
the parameters. For further details refer to [17].

In general, the number of characteristics may be exponential. Nevertheless,
there are classes of graphs with the property that each minimal separator S and
each potential maximal clique Ω can be partitioned into at most a constant num-
ber of cliques. With this constraint, the number of characteristics is polynomial
(even constant, for any given triple (S,C,W ) or quadruple (S,C,Ω,W )).

This is the case for chordal graphs, where each minimal separator and each
potential maximal clique induces a clique in G.

It is also the case for circular-arc graphs. Recall that each minimal separator
corresponds to the set of arcs intersecting a pair of scanpoints [16]. Moreover,
by [4,16], each potential maximal clique corresponds to the set of arcs intersect-
ing a triple of scanpoints. Since arcs intersecting a given scanpoint form a clique,
we have that each minimal separator can be partitioned into two cliques, and
each potential maximal clique can be partitioned into three cliques.

We deduce:

Theorem 3. On chordal and circular-arc graphs, problems Connected Ver-
tex Cover and Connected Feedback Vertex Set are solvable in poly-
nomial time. More generally, one can compute in polynomial time a maximum
vertex subset F such that G[F ] is of treewidth at most t and G−F is connected.

Note that Escoffier et al. [11] already observed that Connected Vertex
Cover is polynomial for chordal graphs.

5 Independent Dominating Set and Variants

The Independent Dominating Set problem consists in finding a minimum
independent set F of G such that F dominates G. Hence the solution F induces
a graph of treewidth 0 and it is natural to ask if similar techniques work in
this case. The fact that we have a minimization problem is not a difficulty: the
general dynamic programming scheme applies in this case, and for any weighted
problem with polynomially bounded weights, including negative ones [13,14].

Independent Dominating Set is known to be NP-complete in chordal
bipartite graphs [8] and in circle graphs [6]. Therefore, it is NP-hard on Gpoly for
some polynomials poly. But, again, we can use our scheme in the case of circular-
arc graphs, for this problem or any problem of the type minimum dominating
induced subgraph of treewidth at most a constant t.

Let (S,C) be a block an let F ⊆ S ∪C be a partial solution compatible with
(S,C,W ) for some W ⊆ S of size at most t + 1 (in the sense of Definition 2).
The natural way for defining the characteristic of F is to specify which vertices
of S are dominated by F and which are not (we already know that F ∩S = W ).
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It is thus enough to memorize which vertices of S are dominated by F ∩ C. In
circular-arc graphs, this information can be encoded using a polynomial number
of characteristics. Indeed, a minimal separator S corresponds to arcs intersecting
a scanline, between two scanpoints p1 and p2 of some intersection model of G.
Moreover (see [16]), the vertices of component C correspond to the arcs situated
on one of the sides of the scanline. Let s11, s

1
2, . . . , s

1
l1

be the arcs of the model
containing scanpoint p1, ordered by increasing intersection with the side of p1p2
corresponding to C. Simply observe that if F ∩ C dominates vertex s1i , it also
dominates all vertices s1j with j > i. Therefore we only have to store the vertex
s1min1

dominated by F ∩ C which has a minimum intersection with the side of
the scanline corresponding to component C, and proceed similarly for the arcs of
S containing scanpoint p2. These two vertices of S will define the characteristic
of F , and they suffice to identify all vertices of S dominated by F ∩ C.

These characteristics can be used to compute a minimum dominating induced
subgraph of treewidth at most t, for circular-arc graphs, in polynomial time. We
will not show, in details, how to do it, since the technique is quite classical.
Problem Independent Dominating Set is already known to be polynomial
for this class [7,20]. The algorithm of Vatshelle [20] is more general, based on
parameters called boolean-width and MIM-width, which are small (O(log n) for
the former, constant for the latter) on circular-arc graphs and also other graph
classes. Another problem of similar flavor, combining domination and indepen-
dence, is Red-Blue Dominating Set. In this problem we are given a bipartite
graph G = (R,B,E) with red and blue vertices, and an integer k, and the goal
is to find a set of at most k blue vertices dominating all the red ones. Red-
Blue Dominating Set can be reduced to Connected Vertex Cover as
follows [10]. Let G′ be the graph obtained from G = (R,B,E) by adding a new
vertex u adjacent to all vertices of B and then, for each v ∈ R ∪ {u}, a pendant
vertex v′ adjacent only to v. Then G has a red-blue dominating set of size at
most k if and only if G′ has a connected vertex cover of size at most k + |B|+1.
Indeed any minimum connected vertex cover of G′ must contain u, R, and a
subset of B dominating R. It is not hard to prove that this reduction increases
the number of minimal separators by at most O(n).

Therefore, if Red-Blue Dominating Set is NP-hard on (bipartite) Gpoly

for some poly, so is Connected Vertex Cover. There are two natural, well-
studied classes of bipartite graphs with polynomial number of minimal separa-
tors, and it turns out that Red-Blue Dominating Set is polynomial for both.
One is the class of chordal bipartite graphs (which are actually defined as the
bipartite, weakly chordal graphs). For this class, Red-Blue Dominating Set
is polynomial by [8]. Reference [8] considers the total domination problem for
the class, but the approach is based on red-blue domination.

The second natural class is the class of circle bipartite graphs, i.e., bipartite
graphs that are also circle graphs. They have an elegant characterization estab-
lished by de Fraysseix [9]. Let H = (V,E) be a planar multigraph, and partition
its edge set into two parts ER and EB such that T = (V,ER) is a spanning tree
of H. Let B(H,ER) = (ER, EB , E′) be the bipartite graph defined as follows:
ER is the set of red vertices, EB is the set of blue vertices, and eR ∈ ER is
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adjacent to eB ∈ EB if the unique cycle obtained from the spanning tree T by
adding eB contains the edge eR. We say that B(H,ER) is a fundamental graph
of H. By [9], a graph is circle bipartite if and only if it is the fundamental graph
B(H,ER) of a planar multigraph H.

Consider now the Tree augmentation problem that consists in finding,
on input G and a spanning tree T of G, a minimum set of edges D ⊆ E(G) −
E(T ) such that each edge in E(T ) is contained in at least one cycle of G′ =
(V,E(T ) ∪ D). In [18] is shown that Tree augmentation is polynomial when
the input graph is planar. Is direct to see that a set S ⊆ EB is a solution of the
Tree augmentation problem on input H = (V,ER ∪ EB) and T = (V,ER),
if and only if S is a solution of Red-Blue Dominating Set on input B(H) =
(ER, EB , E′). This observation, together with [9] and [18], imply that Red-Blue
Dominating Set is polynomial in circle bipartite graphs.

6 Discussion

We showed how the dynamic programming scheme of [13,14] can be extended
for other optimization problems, on subclasses of Gpoly. Note that the algorithm
of [13] allows to find in polynomial time, on Gpoly, a maximum (weight) subgraph
G[F ] of treewidth at most t, satisfying some property expressible in CMSO.
It also handles annotated versions, where the vertices/edges of G[F ] must be
selected from a prescribed set.

We have seen that Distance-d Independent Set can be solved in polyno-
mial time on Gpoly for any even d. This also holds for the more general problem
of finding an induced subgraph G[F ] whose components are at pairwise distance
at least d, and such that each component is isomorphic to a graph in a fixed
family. E.g., each component could be an edge, to have a variant of Maximum
Induced Matching where edges should be at pairwise distance at least d. For
this we need to solve the corresponding problem on Gd−1, using only edges from
G, as in [13].

When seeking for maximum (resp. minimum) induced subgraphs G[F ] of
treewidth at most t such that G − F is connected (resp. F dominates G) on
particular subclasses of Gpoly, we can add any CMSO condition on G[F ]. It is
not unlikely that the techniques can be extended to other classes than circular-
arc graphs (and chordal graphs, for connectivity constraints).

We also believe that the interplay between graphs of bounded MIM-width [20]
and Gpoly deserves to be studied. None of the classes contains the other, but
several natural graph classes are in their intersection, and they are both somehow
related to induced matchings.

We leave as open problems the complexity of Connected Vertex Cover
and Connected Feedback Vertex set in weakly chordal graphs, and on
Gpoly. We have examples showing that, even for weakly chordal graphs, the
natural set of characteristics that we used in Sect. 4 is not polynomially bounded.

Acknowledgements. We thank Iyad Kanj for fruitful discussions on the subject.
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1 Introduction

The cost that occurs at a vertex when two incident edges with different colors
are crossed over is referred to as reload cost or changeover cost in the literature.
This cost depends on the colors of the traversed edges. Although the reload cost
concept has important applications in numerous areas such as transportation
networks, energy distribution networks, and cognitive radio networks, it has
received little attention in the literature. In particular, reload/changeover cost
problems have been investigated very little from the perspective of parameterized
complexity; the only previous work we are aware of is the one in [14].

In heterogeneous networks in telecommunications, transiting from a technol-
ogy such as 3G (third generation) to another technology such as wireless local
area network (WLAN) has an overhead in terms of delay, power consumption
etc., depending on the particular setting. This cost has gained increasing impor-
tance due to the recently popular concept of vertical handover [6], which is a
technique that allows a mobile user to stay connected to the Internet (without
a connection loss) by switching to a different wireless network when necessary.
Likewise, switching between different service providers even if they have the same
technology has a non-negligible cost. Recently, cognitive radio networks (CRN)
have gained increasing attention in the communication networks research com-
munity. Unlike other wireless technologies, CRNs are envisioned to operate in
a wide range of frequencies. Therefore, switching from one frequency band to
another frequency band in a CRN has a significant cost in terms of delay and
power consumption [2,13]. This concept has applications in other areas as well.
For instance, the cost of transferring cargo from one mode of transportation
to another has a significant cost that outweighs even the cost of transporting
the cargo from one place to another using a single mode of transportation [19].
In energy distribution networks, transferring energy from one type of carrier to
another has an important cost corresponding to reload costs [8].

The reload cost concept was introduced in [19], where the considered problem
is to find a spanning tree having minimum diameter with respect to reload cost.
In particular, they proved that the problem cannot be approximated within a
factor better than 3 even on graphs with maximum degree 5, in addition to
providing a polynomial-time algorithm for graphs with maximum degree 3. The
work in [8] extended these inapproximability results by proving that the problem
is inapproximable within a factor better than 2 even on graphs with maximum
degree 4. When reload costs satisfy the triangle inequality, they showed that the
problem is inapproximable within any factor better than 5/3.

The work in [10] focused on the minimum reload cost cycle cover problem,
which is to find a set of vertex-disjoint cycles spanning all vertices with min-
imum total reload cost. They showed an inapproximability result for the case
when there are 2 colors, the reload costs are symmetric and satisfy the trian-
gle inequality. They also presented some integer programming formulations and
computational results.

The authors in [12] study the problems of finding a path, trail or walk con-
necting two given vertices with minimum total reload cost. They present several
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polynomial and NP-hard cases for (a)symmetric reload costs and reload costs
with(out) triangle inequality. Furthermore, they show that the problem is poly-
nomial for walks, as previously mentioned by [19], and re-proved later for directed
graphs by [1].

The work in [9] introduced the Minimum Changeover Cost Arborescence
(MinCCA) problem. Given a root vertex, MinCCA problem is to find an
arborescence with minimum total changeover cost starting from the root vertex.
They proved that even on graphs with bounded degree and reload costs adher-
ing to the triangle inequality, MinCCA on directed graphs is inapproximable
within β log log(n) for β > 0 when there are two colors, and within n1/3−ε for
any ε > 0 when there are three colors. The work in [15] investigated several
special cases of the problem such as bounded cost values, bounded degree, and
bounded number of colors. In addition, [15] presented inapproximability results
as well as a polynomial-time algorithm and an approximation algorithm for the
considered special cases.

In this paper, we study the MinCCA problem from the perspective of para-
meterized complexity; see [3,5,7,17]. Unlike the classical complexity theory,
parameterized complexity theory takes into account not only the total input size
n, but also other aspects of the problem encoded in a parameter k. It mainly
aims to find an exact resolution of NP-complete problems. A problem is called
fixed parameter tractable (FPT) if it can be solved in time f(k) ·p(n), where f(k)
is a function depending solely on k and p(n) is a polynomial in n. An algorithm
constituting such a solution is called an FPT algorithm for the problem. Analo-
gously to NP-completeness in classical complexity, the theory of W[1]-hardness
can be used to show that a problem is unlikely to be FPT, i.e., for every algorithm
the parameter has to appear in the exponent of n. The parameterized complex-
ity of reload cost problems is largely unexplored in the literature. To the best
of our knowledge, [14] is the only work that focuses on this issue by studying
the MinCCA problem on bounded treewidth graphs. In particular, [14] showed
that the MinCCA problem is in XP when parameterized by the treewidth of
the input graph and it is FPT when parameterized by the treewidth and the
maximum degree of the input graph. In this paper, we prove that the MinCCA
problem is W[1]-hard parameterized by the treedepth of the input graph, even
on graphs of average degree at most 8. In particular, it is W[1]-hard parame-
terized by the treewidth of the input graph, which answers the main open issue
pointed out by [14]. Furthermore, we prove that it is W[1]-hard on multigraphs
parameterized by the tree-cutwidth of the input multigraph. On the positive
side, we present an FPT algorithm parameterized by the star tree-cutwidth of
the input graph, which is a slightly restricted version of tree-cutwidth that we
introduce here. This algorithm strictly generalizes the FPT algorithm given in
[14]. We also prove that the problem is NP-hard on planar graphs, which are
also graphs of bounded decomposability, even when restricted to instances with
at most 6 colors and 0/1 symmetric costs. In addition, we prove that it remains
NP-hard on planar graphs even when restricted to instances with at most 8
colors, maximum degree bounded by 4, and 0/1 symmetric costs.
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The rest of this paper is organized as follows. In Sect. 2 we introduce some
basic definitions and preliminaries as well as a formal definition of the MinCCA
problem. We present our hardness results in Sect. 3. Finally, Sect. 4 concludes the
paper. Due to space limitations, the proofs of the results marked with ‘[�]’, our
algorithmic results with respect to star tree-cutwidth, as well as several figures,
can be found in the full version of the article, which is permanently available at
[arXiv:1605.00532].

2 Preliminaries

We say that two partial functions f and f ′ agree if they have the same value
everywhere they are both defined, and we denote it by f ∼ f ′. For a set A and
an element x, we use A + x (resp., A − x) as a shorthand for A ∪ {x} (resp.,
A \ {x}). We denote by [i, k] the set of all integers between i and k inclusive,
and [k] = [1, k].

Graphs, Digraphs, Trees, and Forests. Given an undirected (multi)graph
G = (V (G), E(G)) and a subset U ⊆ V (G) of the vertices of G, δG(U) :=
{uu′ ∈ E(G) | u ∈ U, u′ /∈ U} is the cut of G determined by U , i.e., the set of
edges of G that have exactly one end in U . In particular, δG(v) denotes the set
of edges incident to v in G, and dG(v) := |δG(v)| is the degree of v in G. The min-
imum and maximum degrees of G are defined as δ(G) := min {dG(v) | v ∈ V (G)}
and Δ(G) := max {dG(v) | v ∈ V (G)} respectively. We denote by NG(U) (resp.,
NG[U ]) the open (resp., closed) neighborhood of U in G. NG(U) is the set of ver-
tices of V (G) \ U that are adjacent to a vertex of U , and NG[U ] := NG(U) ∪ U .
When there is no ambiguity about the graph G we omit it from the subscripts.
For a subset of vertices U ⊆ V (G), G[U ] denotes the subgraph of G induced
by U .

A digraph T is a rooted tree or arborescence if its underlying graph is a tree
and it contains a root vertex denoted by root(T ) with a directed path from every
other vertex to it. Every other vertex v �= root(T ) has a parent in T , and v is a
child of its parent.

A rooted forest is the disjoint union of rooted trees, that is, each connected
component of it has a root, which will be called a sink of the forest.

Tree Decompositions, Treewidth, and Treedepth. A tree decomposition
of a graph G = (V (G), E(G)) is a tree T , where V (T ) = {B1, B2, . . .} is a set of
subsets (called bags) of V (G) such that the following three conditions are met:

1.
⋃

V (T ) = V (G).
2. For every edge uv ∈ E(G), u, v ∈ Bi for some bag Bi ∈ V (T ).
3. For every Bi, Bj , Bk ∈ V (T ) such that Bk is on the path PT (Bi, Bj), Bi ∩

Bj ⊆ Bk.

The width ω(T ) of a tree decomposition T is defined as the size of its largest
bag minus 1, i.e., ω(T ) = max {|B| | B ∈ V (T )}−1. The treewidth of a graph G,
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denoted as tw(G), is defined as the minimum width among all tree decomposi-
tions of G. When the treewidth of the input graph is bounded, many efficient
algorithms are known for problems that are in general NP-hard. In fact, most
problems are known to be FPT when parameterized by the treewidth of the
input graph. Hence, what we prove in this paper, i.e., the MinCCA problem is
W[1]-hard when parameterized by treewidth, is an interesting result.

The treedepth td(G) of a graph G is the smallest natural number k such that
each vertex of G can be labeled with an element from {1, . . . , k} so that every
path in G joining two vertices with the same label contains a vertex having
a larger label. Intuitively, where the treewidth parameter measures how far a
graph is from being a tree, treedepth measures how far a graph is from being a
star. The treewidth of a graph is at most one less than its treedepth; therefore,
a W[1]-hardness result for treedepth implies a W[1]-hardness for treewidth.

Tree-Cutwidth. We now explain the concept of tree-cutwidth and follow the
notation in [11]. A tree-cut decomposition of a graph G is a pair (T,X ) where
T is a rooted tree and X is a near-partition of V (G) (that is, empty sets are
allowed) where each set Xt of the partition is associated with a node t of T .
That is, X = {Xt ⊆ V (G) : t ∈ V (T )}. The set Xt is termed the bag associated
with the node t. For a node t of T we denote by Yt the union of all the bags
associated with t and its descendants, and Gt = G[Yt]. cut(t) = δ(Yt) is the set
of all edges with exactly one endpoint in Yt.

The adhesion adh(t) of t is |cut(t)|. The torso of t is the graph Ht obtained
from G as follows. Let t1, . . . , t� be the children of t, Yi = Yti for i ∈ [�] and
Y0 = V (G) \ (Xt ∪�

i=1 Yi). We first contract each set Yi to a single vertex yi,
by possibly creating parallel edges. We then remove every vertex yi of degree 1
(with its incident edge), and finally suppress every vertex yi of degree 2 having
2 neighbors, by connecting its two neighbors with an edge and removing yi.
The torso size tor(t) of t is the number of vertices in Ht. The width of a tree-
cut decomposition (T,X ) of G is maxt∈V (T ){adh(t), tor(t)}. The tree-cutwidth
of G, or tcw(G) in short, is the minimum width of (T,X ) over all tree-cut
decompositions (T,X ) of G.

Figure 1 shows the relationship between the graph parameters that we con-
sider in this article. As depicted in Fig. 1, tree-cutwidth provides an intermedi-
ate measurement which allows either to push the boundary of fixed parameter
tractability or strengthen W[1]-hardness result (cf. [11,16,20]). Furthermore,
Fig. 1 also shows that treedepth and tree-cutwidth are unrelated.

Reload and Changeover Costs. We follow the notation and terminology of
[19] where the concept of reload cost was defined. We consider edge colored
graphs G, where the colors are taken from a finite set X and χ : E(G) → X is
the coloring function. Given a coloring function χ, we denote by Eχ

x , or simply
by Ex the set of edges of E colored x, and Gx = (V (G), E(G)x) is the subgraph
of G having the same vertex set as G, but only the edges colored x. The costs
are given by a non-negative function cc : X2 → N0 satisfying
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tw

tcw

tw + Δ

td

Fig. 1. Relationships between several graph parameters. A being a child of B means
that every graph class with bounded A has also bounded B [11]

1. cc(x1, x2) = cc(x2, x1) for every x1, x2 ∈ X.
2. cc(x, x) = 0 for every x ∈ X.

The cost of traversing two incident edges e1, e2 is cc(e1, e2) := cc(χ(e1), χ(e2)).
The changeover cost of a path P = (e1 − e2 − . . . − e�) of length � is cc(P ) :=∑�

i=2 cc(ei−1, ei). Note that cc(P ) = 0 whenever � ≤ 1.
We extend this definition to trees as follows: Given a directed tree T rooted

at r, (resp., an undirected tree T and a vertex r ∈ V (T )), for every outgoing
edge e of r (resp., incident to r) we define prev(e) = e, and for every other edge
prev(e) is the edge preceding e on the path from r to e. The changeover cost
of T with respect to r is cc(T, r) :=

∑
e∈E(T ) cc(prev(e), e). When there is no

ambiguity about the vertex r, we denote cc(T, r) by cc(T ).

Statement of the Problem. The MinCCA problem aims to find a spanning
tree rooted at r with minimum changeover cost [9]. Formally,

MinCCA
Input: A graph G = (V,E) with an edge coloring function χ : E → X, a
vertex r ∈ V and a changeover cost function cc : X2 → N0.
Output: A spanning tree T of G minimizing cc(T, r).

3 Hardness Results

In this section we prove several hardness results for the MinCCA problem.
Our main result is in Subsect. 3.1, where we prove that the problem is W[1]-
hard parameterized by the treedepth of the input graph. We also prove that
the problem is W[1]-hard on multigraphs parameterized by the tree-cutwidth of
the input graph. Both results hold even if the input graph has bounded average
degree. Finally, in Subsect. 3.2 we prove that the problem remains NP-hard on
planar graphs.
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3.1 W[1]-hardness with Parameters Treedepth and Tree-Cutwidth

We need to define the following parameterized problem.

Multicolored k-Clique
Input: A graph G, a coloring function c : V (G) → {1, . . . , k}, and a positive
integer k.
Parameter: k.
Question: Does G contain a clique on k vertices with one vertex from each
color class?

Multicolored k-Clique is known to be W[1]-hard on general graphs, even
in the special case where all color classes have the same number of vertices [18],
and therefore we may make this assumption as well.

Theorem 1. The MinCCA problem is W[1]-hard parameterized by the
treedepth of the input graph, even on graphs with average degree at most 8.

Proof. We reduce from Multicolored k-Clique, where we may assume that
k is odd. Indeed, given an instance (G, c, k) of Multicolored k-Clique, we
can trivially reduce the problem to itself as follows. If k is odd, we do nothing.
Otherwise, we output (G′, c′, k + 1), where G′ is obtained from G by adding a
universal vertex v, and c′ : V (G′) → {1, . . . , k + 1} is such that its restriction to
G equals c, and c(v) = k + 1.

Given an instance (G, c, k) of Multicolored k-Clique with k odd, we
proceed to construct an instance (H,X,χ, r, cc) of MinCCA. Let V (G) = V1 

V2 
 · · · 
 Vk, where the vertices of Vi are colored i for 1 ≤ i ≤ k. Let W be an
arbitrary Eulerian circuit of the complete graph Kk, which exists since k is odd.
If V (Kk) = {v1, . . . , vk}, we can clearly assume without loss of generality1 that
W starts by visiting, in this order, vertices v1, v2, . . . , vk, v1, and that the last
edge of W is {v3, v1}. For every edge {vi, vj} of W , we add to H a vertex si,j .
These vertices are called the selector vertices of H. For every two consecutive
edges {vi, vj}, {vj , v�} of W , we add to H a vertex vi,�

j and we make it adjacent
to both si,j and sj,�. We also add to H a new vertex v0,2

1 adjacent to s1,2, a
new vertex v3,0

1 adjacent to s3,1, and a new vertex r adjacent to v0,2
1 , which will

be the root of H. Note that the graph constructed so far is a simple path P on
2
(
k
2

)
+ 2 vertices. We say that the vertices of the form vi,�

j are occurrences of
vertex vj ∈ V (Kk). For 2 ≤ j ≤ k, we add an edge between the root r and the
first occurrence of vertex vj in P (note that the edge between r and the first
occurrence of v1 already exists).

The first k selector vertices, namely s1,2, s2,3, . . . , sk−1,k, sk,1 will play a spe-
cial role that will become clear later. To this end, for 1 ≤ i ≤ k, we add an edge

1 This assumption is not crucial for the construction, but helps in making it concep-
tually and notationally easier.
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between the selector vertex si,i (mod k)+1 and each of the occurrences of vi that
appear after si,i (mod k)+1 in P . These edges will be called the jumping edges
of H.

Let us denote by F the graph constructed so far. Finally, in order to construct
H, we replace each vertex of the form vi,�

j in F with a whole copy of the vertex
set Vj of G and make each of these new vertices adjacent to all the neighbors
of vi,�

j in F . This completes the construction of H. Note that td(H) ≤ (
k
2

)
+ 1,

as the removal of the
(
k
2

)
selector vertices from H results in a star centered at r

and isolated vertices.
We now proceed to describe the color palette X, the coloring function χ, and

the cost function cc, which altogether will encode the edges of G and will ensure
the desired properties of the reduction. For simplicity, we associate a distinct
color with each edge of H, and thus, with slight abuse of notation, it is enough
to describe the cost function cc for every ordered pair of incident edges of H. We
will use just three different costs: 0, 1, and B, where B can be set as any real
number strictly greater than

(
k
2

)
. For each ordered pair of incident edges e1, e2

of H, we define

cc(e1, e2) =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

0, if e1 = {x̂, si,j} and e2 = {si,j , ŷ} is a jumping edge such that
x̂, ŷ are copies of vertices x, y ∈ Vi, respectively, with x �= y, or
if e1 = {r, x̂} and e2 = {x̂, s1,2}, where x̂ is a copy of a vertex
x ∈ V1, or
if e1 and e2 are the two edges that connect a vertex in a copy
of a color class Vi to a selector vertex.

1, if e1 = {x̂, si,j} and e2 = {si,j , ŷ}, where x̂ is a copy of a vertex
x ∈ Vi and ŷ is a copy of a vertex y ∈ Vj such that {x, y} ∈ E(G).

B, otherwise.

This completes the construction of (H,X,χ, r, cc), which can be clearly per-
formed in polynomial time.

Claim 1 [�]. The average degree of H is bounded by 8.

We now claim that H contains and arborescence T rooted at r with cost at
most

(
k
2

)
if and only if G contains a multicolored k-clique2. Note that the simple

path P described above naturally defines a partial left-to-right ordering among
the vertices of H, and hence any arborescence rooted at r contains forward and
backward edges defined in an unambiguous way. Note also that all costs that
involve a backward edge are equal to B, and therefore no such edge can be
contained in an arborescence of cost at most

(
k
2

)
.

2 If the costs associated with colors are restricted to be strictly positive, we can just
replace cost 0 with cost ε, for an arbitrarily small positive real number ε, and ask
for an arborescence in H of cost strictly smaller than

(

k
2

)

+ 1.
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Suppose first that G contains a multicolored k-clique with vertices
v1, v2, . . . , vk, where vi ∈ Vi for 1 ≤ i ≤ k. Then we define the edges of the
spanning tree T of H as follows. Tree T contains the edges of a left-to-right path
Q that starts at the root r, contains all

(
k
2

)
selector vertices and connects them,

in each occurrence of a set Vi, to the copy of vertex vi defined by the k-clique.
Since in Q the selector vertices connect copies of pairwise adjacent vertices of
G, the cost incurred so far by T is exactly

(
k
2

)
. For 1 ≤ i ≤ k, we add to Q the

edges from r to all vertices in the first occurrence of Vi that are not contained in
Q. Note that the addition of these edges to T incurs no additional cost. Finally,
we will use the jumping edges to reach the uncovered vertices of H. Namely, for
1 ≤ i ≤ k, we add to T an edge between the selector vertex si,i (mod k)+1 and all
occurrences of the vertices in Vi distinct from vi that appear after si,i (mod k)+1.
Note that since the jumping edges in T contain copies of vertices distinct from
the the ones in the k-clique, these edges incur no additional cost either. There-
fore, cc(T, r) =

(
k
2

)
, as we wanted to prove.

Conversely, suppose now that H has an arborescence T rooted at r with
cost at most

(
k
2

)
. Clearly, all costs incurred by the edges in T are either 0 or

1. For a selector vertex si,j , we call the edges joining si,j to the vertices in the
occurrence of Vi right before si,j (resp., in the occurrence of Vj right after si,j)
the left (resp., right) edges of this selector vertex.

Claim 2 [�]. Tree T contains exactly one left edge and exactly one right edge of
each selector vertex of H.

By Claim 2, tree T contains a path Q′ that chooses exactly one vertex from
each occurrence of a color class of G. We shall now prove that, thanks to the
jumping edges, these choices are coherent, which will allow us to extract the
desired multicolored k-clique in G.

Claim 3. For every 1 ≤ i ≤ k, the vertices in the copies of color class Vi

contained in Q′ all correspond to the same vertex of G, denoted by vi.

Proof. Assume for contradiction that for some index i, the vertices in the copies
of color class Vi contained in Q′ correspond to at least two distinct vertices vi

and v′
i of G, in such a way that vi is the selected vertex in the first occurrence

of Vi, and v′
i occurs later, say in the jth occurrence of Vi. Therefore, the copy

of vi in the jth occurrence of Vi does not belong to path Q′, so for this vertex
to be contained in T , by construction it is necessarily an endpoint of a jumping
edge e starting at the selector vertex si,i (mod k)+1. But then the cost incurred
in T by the edges e′ and e, where e′ is the edge joining the copy of vi in the first
occurrence of Vi to the selector vertex si,i (mod k)+1, equals B, contradicting the
hypothesis that cc(T, r) ≤ (

k
2

)
. ��

Finally, we claim that the vertices v1, v2, . . . , vk defined by Claim 3 induce a
multicolored k-clique in G. Indeed, assume for contradiction that there exist two
such vertices vi and vj such that {vi, vj} /∈ E(G). Then the cost in T incurred
by the two edges connecting the copies of vi and vj to the selector vertex si,j
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(by Claim 2, these two edges indeed belong to T ) would be equal to B, contract-
ing again the hypothesis that cc(T, r) ≤ (

k
2

)
. This concludes the proof of the

theorem. ��
In the next theorem we prove that the MinCCA problem is W[1]-hard on

multigraphs parameterized by the tree-cutwidth of the input graph. Note that
this result does not imply Theorem1, which applies to graphs without multiple
edges.

Theorem 2 [�]. The MinCCA problem is W[1]-hard on multigraphs parame-
terized by the tree-cutwidth of the input multigraph.

3.2 NP-hardness on Planar Graphs

In this subsection we prove that the MinCCA problem remains NP-hard on
planar graphs. In order to prove this result, we need to introduce the Planar
Monotone 3-sat problem. An instance of 3-sat is called monotone if each
clause is monotone, that is, each clause consists only of positive variables or
only of negative variables. We call a clause with only positive (resp., negative)
variables a positive (resp., negative) clause. Given an instance φ of 3-sat, we
define the bipartite graph Gφ that has one vertex per each variable and each
clause, and has an edge between a variable-vertex and a clause-vertex if and only
if the variable appears (positively or negatively) in the clause. A monotone recti-
linear representation of a monotone 3-sat instance φ is a planar drawing of Gφ

such that all variable-vertices lie on a path, all positive clause-vertices lie above
the path, and all negative clause-vertices lie below the path. In the Planar
Monotone 3-sat problem, we are given a monotone rectilinear representation
of a planar monotone 3-sat instance φ, and the objective is to determine whether
φ is satisfiable. Berg and Khosravi [4] proved that the Planar Monotone
3-sat problem is NP-complete.

Theorem 3. The MinCCA problem is NP-hard on planar graphs even when
restricted to instances with at most 6 colors and 0/1 symmetric costs.

Proof. We reduce from the Planar Monotone 3-sat problem. Given a
monotone rectilinear representation of a planar monotone 3-sat instance φ, we
build an instance (H,X,χ, r, f) of MinCCA as follows. We denote the variable-
vertices of Gφ as {x1, . . . , xn} and the clause-vertices of Gφ as {C1, . . . , Cm}.
Without loss of generality, we assume that the variable-vertices appear in the
order x1, . . . , xn on the path P of Gφ that links the variable-vertices. For every
variable-vertex xi of Gφ, we add to H a gadget consisting of four vertices
x�

i , x
r
i , x

+
i , x−

i and five edges {x�
i , x

+
i }, {x+

i , xr
i }, {xr

i , x
−
i }, {x−

i , x�
i}, {x+

i , x−
i }.

We add to H a new vertex r, which we set as the root, and we add the edge
{r, x�

1}. For every i ∈ {1, . . . , n − 1}, we add to H the edge {xr
i , x

�
i+1}. We add

to H all clause-vertices C1, . . . , Cm. For every i ∈ {1, . . . , n}, we add an edge
between vertex x+

i and each clause-vertex of Gφ in which variable xi appears
positively, and an edge between vertex x−

i and each clause-vertex of Gφ in which
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variable xi appears negatively. This completes the construction of H. Since Gφ

is planar and all positive (resp., negative) clause-vertices appear above (resp.,
below) the path P , it is easy to see that the graph H is planar as well.

We define the color palette as X = {1, 2, 3, 4, 5, 6}. Let us now describe the
edge-coloring function χ. For every clause-vertex Cj , we color arbitrarily its three
incident edges with the colors {4, 5, 6}, so that each edge incident to Cj gets a
different color. For every i ∈ {1, . . . , n}, we define χ({x�

i , x
+
i }) = χ({xr

i , x
−
i }) =

1, χ({x+
i , xr

i }) = χ({x−
i , x�

i}) = 2, and χ({x+
i , x−

i }) = 3. We set χ({r, x�
1}) = 4

and for every i ∈ {1, . . . , n − 1}, χ({xr
i , x

�
i+1}) = 4. Finally, we define the cost

function cc to be symmetric and, for every i ∈ {1, 2, 3, 4, 5, 6}, we set cc(i, i) = 0.
We define cc(1, 2) = 1 and cc(1, 3) = cc(2, 3) = 0. For every i ∈ {4, 5, 6}, we set
cc(1, i) = cc(2, i) = 0 and cc(3, i) = 1. Finally, for every i, j ∈ {4, 5, 6} with i �= j
we set cc(i, j) = 1. The following claim concludes the proof.

Claim 4 [�]. H contains an arborescence T rooted at r with cost 0 if and only
if the formula φ is satisfiable. ��

Note that the above proof actually implies that MinCCA cannot be approxi-
mated to any positive ratio on planar graphs in polynomial time, since an optimal
solution has cost 0. We do not know whether such a strong inapproximability
result holds even if we do not allow to use costs 0 among different colors.

In the next theorem we present a modification of the previous reduction
showing that the MinCCA problem remains hard even if the maximum degree
of the input planar graph is bounded.

Theorem 4 [�]. The MinCCA problem is NP-hard on planar graphs even when
restricted to instances with at most 8 colors, maximum degree bounded by 4, and
0/1 symmetric costs.

4 Conclusions and Further Research

In this article we proved several hardness results for the MinCCA problem. In
particular, we proved that the problem is W[1]-hard parameterized by treewidth
on general graphs, and that it is NP-hard on planar graphs, but we do not know
whether it is W[1]-hard parameterized by treewidth (or treedepth) on planar
graphs.

On the other hand, we provided an FPT algorithm for a restricted version
of tree-cutwidth, and we proved that the problem is W[1]-hard on multigraphs
parameterized by tree-cutwidth. While we were not able to prove this W[1]-
hardness result on graphs without multiple edges, we believe that it is indeed
the case. It would be natural to consider other structural parameters such as the
size of a vertex cover or a feedback vertex set.

Finally, it would be interesting to try to generalize our techniques to prove
hardness results or to provide efficient algorithms for other reload cost problems
that have been studied in the literature [6,8,10,19].

Acknowledgment. We would like to thank the anonymous referees for helpful com-
ments that improved the presentation of the manuscript
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15. Gözüpek, D., Shalom, M., Voloshin, A., Zaks, S.: On the complexity of construct-
ing minimum changeover cost arborescences. Theorerical Comput. Sci. 540, 40–52
(2014)

16. Kim, E., Oum, S., Paul, C., Sau, I., Thilikos, D.M.: An FPT 2-approximation for
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Abstract. An EPG-representation of a graph G is a collection of paths
in a grid, each corresponding to a single vertex of G, so that two vertices
are adjacent if and only if their corresponding paths share infinitely many
points. In this paper we focus on graphs admitting EPG-representations
by paths with at most 2 bends. We show hardness of the recognition
problem for this class of graphs, along with some subclasses.

We also initiate the study of graphs representable by unaligned poly-
lines, and by polylines, whose every segment is parallel to one of pre-
scribed slopes. We show hardness of recognition and explore the trade-off
between the number of bends and the number of slopes.

1 Introduction

The concept of edge intersection graphs of paths in a grid (EPG-graphs) was
introduced by Golumbic et al. [7]. By an EPG-representation of a graph G we
mean a mapping from vertices of G to paths in a grid, such that two vertices are
adjacent if and only if their corresponding paths share a grid edge. As each graph
can be represented in this way [7], it makes sense to consider representations
with some restricted set of shapes. A usual parameterization is by bounding the
number k of times each path is allowed to change the direction. Graphs with
such a representation are called k-bend graphs. So far, the case of 1-bend graphs
received most attention [4,7].

Since 0-bend graphs are just interval graphs, they can be recognized in poly-
nomial time [1]. The recognition of 1-bend graphs is NP-complete [8], even if the
representation is restricted to any prescribed set of 1-bend objects [4]. However,
the problem becomes trivially solvable when k is at least the maximum degree
of the input graph [8]. Thus it is unclear whether k-bend graphs are hard to
recognize for all k ≥ 2.
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It is worth mentioning the closely related notion of Bk-VPG-graphs. These
graphs are defined as intersection graphs of axis-aligned paths with at most k
bends. So, unlike in the EPG-representation, paths that share a finite number
of points define adjacent vertices. Chaplick et al. [5] showed it is NP-complete
to recognize Bk-VPG-graphs, for all k ≥ 0.

In this paper we explore the problem of recognition of subclasses of EPG-
graphs. Namely, we show that it is NP-complete to recognize 2-bend graphs.
We also consider some restrictions, where we permit just some types of the
curves in an EPG-representation (similarly to [4]). One of these restrictions, i.e.,
monotonic EPG-representations, where each path ascends in rows and columns,
was already considered by Golumbic et al. [7]. Our hardness proof even shows
that between monotonic 2-bend graphs and 2-bend graphs, no polynomially
recognizable class can be found.

The class of 2-bend graphs can be perceived as a generalization of quite
well-studied class of 1-bend graphs. We also consider some generalizations of
the concept of EPG-representations. We do not require individual segments to
be axis-aligned, but we permit them to use any slope. We call such graphs
unaligned EPG-graphs and study the number of bends in this setting. After this
generalization, we may ask about particular restrictions. These restrictions are
represented by restricting number of slopes that segments may use or even by
using just prescribed shapes (in a flavor similar to [4]).

For unaligned EPG-graphs, we show that it is NP-hard to determine whether
a graph is an unaligned 2-bend graph (hardness of the recognition for 1-bend
graphs follows from [4]).

Having introduced unaligned EPG-graphs, we observe that there is a trade-off
between the number of bends and the number of slopes used in a representation.
We also show that representing an unaligned 2-bend graph on n vertices, may
require using Ω(

√
n) slopes. This result follows from our hardness reduction.

2 Preliminaries

For an EPG-representation of a graph G, by Pv we shall denote the path rep-
resenting a vertex v. Often we shall identify the vertex v with Pv. For example,
if we say that two paths are adjacent, we mean that they share infinitely many
points (note that if two paths intersect, one common point is enough).

A central notion in the study of EPG-graphs is the bend number. The bend
number of a graph G, denoted by b(G), is the minimum k, such that G has an
EPG-representation, in which every paths changes it direction at most k times.
W.l.o.g. we can assume that every path in a k-bend EPG-representation bends
exactly k times [4].

Each 2-bend path will be classified as vertical or horizontal, if its middle
segment is resp. vertical or horizontal. This middle segment will be called the
body of the path, while the remaining two segments will be referenced as its legs.

For a set X of shapes of polylines (i.e., piecewise-linear curves), by X-graphs
we shall denote the class of graphs admitting an EPG-representation, in which



On Edge Intersection Graphs of Paths with 2 Bends 209

the shape of every path is in X (similar notation was used in [4]). So for example
monotonic 2-bend graphs are exactly { , }-graphs.

Golumbic et al. [7] analyzed the structure of cliques in 1-bend graphs and
proved that in 1-bend graphs each clique C is either an edge clique or a claw-
clique. A maximal edge clique consists of vertices whose representing paths share
a common grid edge. A claw is a set of three distinct grid edges sharing a single
endpoint and a maximal claw-clique consists of all paths containing two out
of three edges of a given claw. Since we can safely assume that each 1-bend
representation of a graph with n vertices can be embedded in a 2n× 2n grid, we
obtain that the number of maximal cliques in a 1-bend graph is at most O(n2),
i.e., is polynomial in n. This is no longer the case with 2-bend graphs.

Let n be an integer and let K−
2n be the cocktail-party graph, i.e., a complete

graph on 2n vertices with a perfect matching removed. It is clear that K−
2n has

2n = 2|V (K−
2n)|/2 maximal cliques. Figure 1 (left) shows that K−

2n is a 2-bend
graph.

Proposition 1. 2-bend graphs can have exponentially many maximal cliques.

The restricted structure of cliques in 1-bend graphs follows from the fact
that the 1-bend paths representing pairwise adjacent vertices must all share at
least one grid point. It is easy to observe that cliques in 2-bend graphs do not
have such a simple structure. One could be inclined by Fig. 1 (left) that every
maximal clique is contained in the union of two edge-cliques or claw-cliques (a
similar situation appears in unit disk graphs and is the main ingredient of a
polynomial algorithm for Clique in these graphs [3]). However, Fig. 1 (right)
shows it is not true.

Fig. 1. Left:K−
10 as 2-bend graph. Right: A clique is not contained in two edge-cliques.

3 Aligned 2-Bend Graphs

The main results of this section is the following complexity result.

Theorem 1. It is NP-complete to decide if a given graph is a 2-bend graph.

Proof. The NP-membership is obvious. As a polynomial certificate we use a list
of coordinates denoting start- and end-points of straight-line segments. Such a
representation has polynomial size w.r.t. the given graph.
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For the NP-hardness we use a polynomial reduction from Pure-Nae-3-Sat.
The instance of this problem is a set of clauses, each containing three variables.
We ask for the existence of a truth assignment, such that each clause contains
at least one true variable and at least one false variable (we say that such a
clause is satisfied). The problem is NP-complete and equivalent to 2-coloring of
3-uniform hypergraphs [9].

For a given formula ϕ, we shall construct a graph G, which is a 2-bend graph
iff the formula is satisfiable. We start by replicating ϕ 21 times (each time over
a distinct copy of the set of variables), obtaining an equivalent formula ϕ′. The
reason of this operation will be made clear in a while.

We start the construction of G with two special vertices a and b. Then for each
variable i of ϕ, we add a vertex vi adjacent to both a and b. For each occurence of
i in a clause z of ϕ′, we add another vertex oi,z, adjacent to a, b, and vi. Finally,
for each clause z = (i, j, k) we add mutually non-adjacent vertices cz, dz, ez, and
fz, with the following neighbors: N(cz) = {oi,z, oj,z, ok,z}; N(dz) = {oi,z, oj,z};
N(ez) = {oi,z, ok,z}; and N(fz) = {oj,z, ok,z} (see Fig. 2 (left)).

dz fz

cz

ez

o1,z o2,z o3,z

v1 v2 v3

a b

ab
v1

o1,z

v2o2,z v3 o3,z

cz

fz

dz

ez

Fig. 2. Left: The graph obtained from a formula consisting of a single clause z =
(1, 2, 3). For clarity we did not replicate the formula. Right: An EPG-representation
of the graph on the left. The variable 1 is false, while 2 and 3 are true.

Now let us explain the main ideas behind the reduction. The purpose of
vertices a and b is to cover the legs of each Pvi

and Poi,z
, keeping just their

bodies exposed for possible intersections with clause-vertices. This assumption
may fail, as some Pvi

or Poi,z
can be positioned over an end of a segment of Pa

or Pb, or on an intersection point of Pa and Pb. However, each end can be used
at most once and each intersection point at most twice (see Fig. 3). As Pa and Pb

have (together) 12 ends of segments and at most 4 intersection points, we have
at most 20 special situations. But since we replicated ϕ 21 times, we are sure
that for at least one copy of ϕ our assumption holds (this type of trick we call
the “quantitative trick” and we use it to cope with some obstructions which may
appear only a constant number of times). Let us focus on this “clean” copy of ϕ in
ϕ′. One leg of each Poi,j

is adjacent to a and the other one is adjacent to b. Also,
at least one of them has to be adjacent to Pvi

, since otherwise clause-vertices
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would be adjacent to vi. Thus the body of Poi,j
is exposed for representing clause-

related vertices. Moreover, the orientation of the body (and this of whole path) is
the same as the orientation of Pvi

, so all variable-occurences are “synchronized”.
The orientation of the paths will decide on truth assignment (horizontal means
false, vertical means true).

Fig. 3. Left: 6 pairwise non-adjacent segments may exit a 2-bend path without having
to bend inside it. Right: At most 8 pairwise non-adjacent 2-bend paths may be adjacent
to both Pa and Pb and contain their intersection point.

First we show irrepresentabililty of the graph for an unsatisfiable formula. Let
z = (i, j, k) be an unsatisfied clause. We will show that it cannot be represented.
Observe that it is impossible to have a 2-bend path adjacent to three parallel,
pairwise non-collinear segments, while it is possible for two parallel and one
perpendicular segments (see Fig. 4 left).

The situation with three parallel segments corresponds to all-true or all-false
clause. So, if no pair of middle segments of Poi,z

, Poj,z
, Pok,z

(and thus Pvi
, Pvj

,
Pvk

) is collinear, we cannot represent cz.
However, it might still happen that the bodies of, say, Poi,z

and Poj,z
are

lying on the same line. But this pair of segments cannot be adjacent to more
than one 2-bend path (see Fig. 4 (middle)). So if we represent cz, then we cannot
represent dz, ez, or fz. This shows irrepresentability of an unsatisfied clause.

Not enough bends!

Not enough bends! ...

Fig. 4. Left: It is impossible to intersect three parallel, pairwise non-collinear seg-
ments with a 2-bend path, while two parallel and one perpendicular segments can be
intersected. Middle: Two collinear segments cannot be adjacent to two mutually non-
adjacent 2-bend paths. Right: This is possible for two mutually intersecting segments
or two non-collinear parallel segments.

For a representable formula, we build a canonical representation shown in
Fig. 2 (right) (for a clause with one false and two true literals, we rotate every-
thing except of a and b by 90 ◦). Figure 2 shows one clause in one of (21) repli-
cated copies and one occurence of each variable. The full construction with all
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21 copies would consist of 21 copies of all items present in the picture, except for
Pa and Pb. Note that there are no edges between vertices belonging to different
copies of ϕ. Further occurences, e.g., of v2 in the same formula can be repre-
sented next to o2,z intersecting v2 in the bottom (or top) horizontal leg (where
it simultaneously intersects a (or b, respectively and it has to avoid legs of other
possible occurences). Anyway, their truth assignments are “synchronized” in all
possible cases as they have to intersect a or b together with the vertex represen-
tative v2. Considering two (and more) clauses in the representation, each clause
has its own occurences, so the representation of one clause does not influence
representations of other clauses (as representatives of distinct occurences are
not mutually adjacent, i.e., they are disjoint up to finitely many points). In this
representation, the body of each Poi,z

intersects the body of each Poj,z
, for all

i evaluated to true and j evaluated to false. Thus it is possible to represent all
clause-vertices, just as depicted. ��

3.1 Subclasses of Aligned 2-Bend Graphs

Here we focus on the recognition of particular subclasses of 2-bend graphs. Note
that as there are many classes (whose recognition is often NP-hard), it is impor-
tant to ask whether even some polynomially recognizable class can exist “in
between”. This concept is called sandwiching. Formally, having two classes of
graphs A ⊆ B, a class C is sandwiched between Aand B if A ⊆ C ⊆ B. For
optimization problems, it holds that if an algorithm works for class B, it works
also for the class A. Also a hardness result for A carries over to B. However,
the recognition problem behaves in a different way. As a trivial example we may
pick a class A containing only complete graphs (this class is polynomially recog-
nizable), for class B we may take class of all graphs (which is also polynomially
recognizable) and between them we can find, e.g., classes of 2-bend graphs, whose
recognition is NP-complete, as shown in Theorem 1. Similarly, between two NP-
hard classes, a polynomially-recognizable class can be sandwiched (consider e.g.
3-colorable planar graphs, planar graphs, and 4-colorable graphs).

In this section we do not only show the recognition hardness of individual
classes, but we are trying to find the smallest class A and the largest class B,
such that no polynomially-recognizable class can be sandwiched between them.

We start with first two subclasses where our reduction for 2-bend graphs
can be applied directly. One of them is a class of monotonic 2-bend graphs (i.e.,
{ , }-graphs) and the other is the class of { , }-graphs.

We observe that in the proof of Theorem 1 we produce a monotonic 2-bend
graph from each satisfiable formula. As a non-satisfiable formula cannot be rep-
resented by any 2-bend graph, if there was a polynomially-recognizable class
between monotonic 2-bend graphs and 2-bend graphs, we would be able to dis-
tinguish satisfiable formulae from non-satisfiable ones, showing P=NP.

It is very simple to redraw the representation used in the proof of Theorem 1,
using only and -shapes.
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Corollary 1. It is NP-complete to recognize monotonic 2-bend graphs and
{ , }-graphs. Moreover, between 2-bend graphs and any of these classes, or
even their intersection, no polynomially recognizable class can be sandwiched
(unless P=NP).

Now we shall modify the construction a bit to show a cascade of further
results. Note that there are four possible patterns of horizontal paths ( , , ,
) and another four for vertical paths. As we want to show that it is NP-complete

to recognize graphs of any class X ∈ { , , , }×{ , , , }, we need to start
with exploring the symmetries, to classify possible classes X.

So consider a pair or shapes, one of which is horizontal and the other one is
vertical. If both legs of each shape bend in the same direction, we obtain the class
{ , }, which is equivalent to each { , }, { , }, and { , } (consider a rotation
of flipping of an EPG-representation). If both legs of one shape bend in the same
direction, and the legs of the other shape bend in opposite directions, we get the
class { , } (again, up to symmetry). Finally, if the legs of both shapes bend
in opposite directions, we get two possibilities, i.e., { , } (monotonic 2-bend
graphs) and { , }. Although for the latter two classes we have already shown
NP-hardness, now we show yet one construction that works for all four cases.
Such a general construction is important from the point of view of sandwiching.

The new construction, in fact, is just a simplified version of the one in the
proof of Theorem 1. Again, for a formula ϕ, we replicate it to obtain ϕ′ (using
“quantitative trick”) and introduce variable-vertices vi and occurence-vertices
oi,z. The difference is that now each clause z = (i, j, k) is represented by just
one vertex cz, adjacent to oi,z, oj,z, and ok,z (so we omit vertices dz, ez, and fz).
For a formula ϕ, let us call such constructed graph G(ϕ′).

Using this construction we can show that it is NP-complete to recognize X-
graphs for each of the pairs X of permitted shapes, one of which is vertical and
the other horizontal.

Lemma 1. It is NP-complete to recognize X-graphs, for any X ∈ { , , , }×
{ , , , }.
Note that the lemma above shows that, both, an intersection and a union of
the mentioned subclasses (as well as anything sandwiched between them) is
NP-hard to get recognized. Also, note that it does not show that all classes
representable by a given subset of 2-bend shapes (which includes at least one
vertical and at least one horizontal shape) are NP-complete to get recognized.
It still may happen that there exists such a set X of patterns, that X-graphs
can be polynomially recognized. However, we know that if such a class exists, it
must not contain even the intersection of { , }-graphs and { , }-graphs.

Finally, let us try to explore limits of the original hardness reduction for 2-
bend graphs (Theorem 1). We know that it works for 2-bend graphs, for { , }-
graphs, and for { , }-graphs (and where the inclusion-relation applies, then
also for everything in between). However, we may show that the reduction works
also for all triples of 2-bend shapes, in which at least one shape is vertical, at
least one is horizontal, and they are not symmetric to the triple { , , }, i.e.,
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w.l.o.g., two vertical shapes, one having its legs in the same direction, the other
having legs in mutually opposite directions, and the legs of the horizontal one go
in the same direction and yet in the direction “towards the common angle” of the
other two gadgets. It is easy to observe that the “simplified” construction can be
represented, so we need to show, for a particular satisfied clause z = (i, j, k), how
to represent vertices dz, ez, and fz. Suppose w.l.o.g. i, j are evaluated true and k
is evaluated false. The path Pcz passes through the intersection point of Poi,z

and
Pok,z

, and through the intersection point of Poj,z
and Pok,z

. In order to represent
dz (adjacent to oi,z and oj,z) we need to use the same intersection-point, i.e., we
need the angle obtained from cz rotated by 180 ◦. The case analysis shows that
this is possible.

As a corollary of the previous statement, the reduction works for all such
4-tuples of 2-bend shapes, where at least one shape is vertical and at least one
horizontal (non-trivial situation arises only when extending { , , }). Note
also that the reduction works for any k-tuple of 2-bend shapes for k ≥ 5 (as
there are just 4 vertical and 4 horizontal shapes, we are sure that at least one
will be horizontal and at least one will be vertical).

Summing up the results from this section, we obtain the following.

Theorem 2. It is NP-complete to recognize X-graphs, where X is:

(i) any of { , , , } × { , , , },
(ii) any triple of 2-bend shapes containing at least one vertical and one hori-

zontal shape, and is not symmetric to { , , }.
(iii) any 4-tuple of 2-bend shapes, containing at least one horizontal and one

vertical shape.
(iv) any k-tuple of 2-bend shapes for k ≥ 5.

Moreover, one cannot sandwich any polynomially recognizable class between:

(a) the intersection of { , , , } × { , , , }
(b) intersection of classes given in (ii),

and the class of 2-bend graphs.

4 More Slopes

In this section we relax the definition of an EPG-representation. By an unaligned
EPG-representation of a graph G we mean a mapping from vertices of G to a set
of polylines (piecewise linear curves), such that two vertices are adjacent iff their
corresponding polylines share infinitely many points. Again, we are interested in
keeping the number of bends (or equivalently, segments in a polyline) small.

Here we show hardness of the recognition of unaligned 2-bend graphs and
conclude the section with discussion of a trade-off between the number of slopes
used and the number of bends.

Theorem 3. It is NP-hard to recognize unaligned 2-bend graphs.
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Proof. This time we reduce from 3-Coloring. For a graph G we shall construct
a graph H, which is an unaligned 2-bend graph iff G is 3-colorable.

The reduction uses ideas similar to the reduction for aligned 2-bend graphs.
This time we use 12 service vertices and again we want our gadgets to avoid
being represented over the ends of segments of these service vertices, and over
their mutual intersection points. So we use the “quantitative trick” again. This
time we may have no more than 1 260 special places (12 · 2 · 3 ends of segments,(
12
2

) · 9 possible intersection points, each of which can be used at most twice).
Thus we take 1 261 disjoint copies of the graph G, obtaining the graph G′ (clearly
G′ is 3-colorable iff G is 3-colorable).

The main idea of the reduction is that one service vertex of H, named a,
simulates the 3-coloring of G′. The individual segments of Pa correspond to
three color classes. Each vertex v of G′ will be represented by several vertices
of H. One of them, called v2, will have the property that one of the legs of Pv2

lies on a segment of Pa (thus defining the color of v in a 3-coloring of G′), and
the remaining two segments of Pv2 will be fully covered by some other paths,
non-adjacent to edge-representatives. An edge uv of G′ will be represented by a
pair of mutually non-adjacent vertices of H. Both of them will be made adjacent
to a and the representatives of both u and v. The main idea is that we cannot
construct edge-representatives, if v2 and u2 are adjacent to the same segment of
a (and thus v and u get the same color). This part of H is illustrated in Fig. 5.

w
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e
e1

e2 a f2
f1

v2 u2 w2

b a

color 3

color 1

color 2

f1

f2
e1

e2

w2

v2

u2

b

Fig. 5. Left: The graph G. Middle: The main part of H. For clarity, just the main
vertex-representants are depicted. Also the replication (“quantitative trick”) was not
performed. Right: An unaligned 2-bend representation of H. Note that we are unable
to represent the edge vw (having fixed representations of v2 and u2).

Formally, the graph H has 12 service vertices a0, a0.5, a1, a1.5, a2, a2.5, a3, a3.5,
a, b, aB , and bB . For each vertex v of G′, we add to H vertices v1, v1.5, v2, v2.5, v3,
and vb (we will call them v-vertices). The vertex vb is adjacent to all other v-
vertices. Furthermore, v1.5 is adjacent to v1, v2, and v2.5 is adjacent to v2, v3.
Finally, each v-vertex is adjacent to two service vertices: v1 to a0, a1, v1.5 to
a0.5, a1.5, v2 to a, b, v2.5 to a2.5, a3.5, v3 to a2, a3. For each edge e = uv we add
a pair of mutually non-adjacent vertices e1, e2, both adjacent to a, u2, and v2.
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Suppose we have an unaligned 2-bend representation of H. First, by the
“quantitative trick”, we know that at least for one copy of G, for any vertex v,
all vertices vi (i ∈ {1, 1.5, 2, 2.5, 3, b}) are represented by 2-bend paths having
both legs covered by the segments of the appropriate pair of service vertices. Let
us focus on this copy of G.

We observe that the body of Pv2 (for any v) is covered by (at least)
Pvb

. This follows from the fact that Pvb
can intersect the other v-vertices

only by its body (as one leg lies on PaB
, and the second on PbB ). Thus

the bodies of Pv1 , Pv1.5 , . . . , Pv3 , Pvb
must form an interval representation of

H[{v1, v1.5, . . . , v3, vb}] and in no such representation the body of Pv2 can exceed
the body of Pvb

. Therefore the body of Pv2 is fully covered by (at least) the body
of Pvb

.
Now, we are in a desired situation. Consider an edge e = uv. For each Pu2 and

Pv2 , only the leg lying on Pa, can be made adjacent to both Pe1 and Pe2 , as using
any other segment would cause some unwanted adjacency. If these legs are on
distinct segments of Pa, obviously we can represent both e1 and e2. Conversely,
if they are on the same segment of Pa, we can represent at most one of them
(similarly to Fig. 4 (left)). This shows irrepresentability for a non-3-colorable G.

On the other hand, if G has a 3-coloring, we use it for distributing segments
of Pv2 of each vertex v over the segments of Pa. Note that we may create a
representation, where the bodies of Pv2 , for all v, are parallel. Then other v-
vertices may be represented in the way shown in Fig. 6. For any edge e, paths
Pe1 and Pe2 connect two non-collinear segments, which can be easily done. ��

vb

ub

v1
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u1.5

v2
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aB
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a

a1.5
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b

a2

a3.5

bB

a3

Fig. 6. Left: A graph H for G being an edge uv (replication is omitted). Unla-
beled vertices between aB and bB are, respectively: a0, a1, a0.5, a1.5, a, b, a2.5, a3.5, a2, a3.
Right: Unaligned 2-bend representation of H.

4.1 Slopes and Bends

Defining unaligned bend graphs permits us to introduce a new measure of com-
plexity of a representation, i.e., the number of slopes used. There is an obvious
trade-off between the number of bends and the number of slopes. Before we
explore this relation a little more, let us try to minimize the number of different
slopes used by the unaligned 2-bend representation.
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Proposition 2. In order to represent all unaligned 2-bend graphs on n vertices,
we need Ω(

√
n) slopes.

Proof. The proof follows from the construction in the proof of Theorem 3. Let
G ∼ Km,m,1 be a complete bipartite graph with biparition classes X,Y , both of
size m, and one extra vertex z adjacent to all other ones.

We replicate G 1261 times, obtaining G′, and construct H in the way
described in the proof of Theorem 3. Since G has 2m + 1 vertices and Θ(m2)
edges, H has n = Θ(m2) vertices.

As G is 3-colorable, H has an unaligned 2-bend representation. As always,
we will focus on the “clean” copy of G. Consider the path Pa, and let p, q, r
denote its three segments. By the properties of H, w.l.o.g. one leg of every Px2

for x ∈ X lies on p, while one leg of every Py2 for y ∈ Y lies on r.
Now consider the paths Pe1 (for e = xy, x ∈ X, y ∈ Y ). There are m2 such

paths. We observe that every slope � can be used by the bodies of at most 2m
paths Pe1 . To see this, we use a sweeping line, parallel to �. As each path Pe1

connects a pair of segments of a different pair (Px2 , Py2), the sweeping line must
leave at least one of the segments before meeting a new one. As there are in total
2m segments of Px2 or Py2 on Pa, at most 2m paths Pe1 can have their bodies

parallel to �. Thus we need at least
⌈

m2

2m

⌉
= Θ(m) = Θ(

√
n) different slopes to

represent the bodies of paths Pe1 . ��
To see a trade-off between the number of bends and the number of slopes,

observe that the for G ∼ Km,m,1, the graph H can be easily represented by 3-
bend paths, using only 2 slopes (Pa is represented by a -shape with segments
of Pv2 on three different segments of it).

4.2 d-bend Number

Let us conclude the section with some generalization of the bend number. Fix
a set D of d pairwise non-parallel lines (slopes) containing the origin point. We
say that an unaligned EPG-representation is a EPG(D)-representation if every
segment of each polyline is parallel to some line in D.

The d-bend number bd(G) of a graph G is the minimum k for which there
exists a set D of d slopes, such that G has an EPG(D)-representation in which
every path bends at most k times. We also define b∞(G) := min

d∈N

bd(G), which

corresponds to unaligned EPG-representations.
Observe that the 2-bend number is just the classical bend number. It is also

straightforward to observe that if d1 < d2, then bd1(G) ≥ bd2(G) for all graphs
G. Moreover, if there exists d ∈ N such that bd(G) = 0, then bd′(G) = 0 for all
d′ ∈ N (as this means that G is an interval graph).

As we have seen in Proposition 2, introducing more slopes may help us reduce
the number of bends needed to represent a given graph. Here we show two more
examples of this. Consider a wheel graph Wn on n+1 vertices (n ≥ 3). It follows
from the work of Golumbic et al. [7] that Wn is not a 1-bend graph (using 2
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slopes only) and one can easily find a representation using 2 bends. On the other
hand, for d ≥ 3, we can represent Wn using 1-bend paths (see Fig. 7 (left)). Thus
b2(Wn) = 2 and bd(Wn) = 1 for all d ≥ 3.

Fig. 7. Left: Representation of a wheel using 1-bend paths. Right: Representations
of K2,s with 1-bend paths.

Another examples of graphs with bend number depending on the number
of slopes are complete bipartite graphs. Consider e.g. a graph K2,s. When only
2 slopes are available, then K2,s has a 1-bend representation only for s ≤ 4.
Introducing a third slope allows us to represent K2,5 and K2,6. Fourth slope
allows representing K2,7 and K2,8. By analyzing the possible intersection points
of two 1-bend paths, we observe that K2,s for any s ≥ 9 does not have a 1-bend
representation for any number of slopes. On the other hand, every K2,s is a
2-bend graph on 2 slopes (see Fig. 7 (right) and Fig. 4 (right)).

5 Conclusions and Open Problems

Although all non-trivial classes of EPG-graphs are considered hard for recogni-
tion, not much is known. It is an open problem whether the recognition problem
remains NP-hard for k-bend graphs (for k ≥ 3).

Problem 1. Is the recognition of k-bend graphs NP-complete for every fixed k ≥ 1?
For unaligned bend graphs and aligned bend graphs, using more than 2

slopes, naturally arises the question on inclusions between different classes. Also
the complexity of the recognition problem is unknown (for more than 1 bend,
when we restrict the number of slopes). Note that none of our reductions can be
easily used. The unaligned version increases the number of slopes, while in the
aligned version a new slope introduces a new “truth value”, but in a way that
does not seem to be suitable for a reduction from any form of coloring.

As mentioned before, the Clique problem is polynomially solvable in 1-bend
graphs. On the other hand, the problem is shown to be NP-complete in 2-interval
graphs [6]. Since every 2-interval graph is a 3-bend graph and also a 2-bend graph
with 3 slopes, we know that the problem is NP-complete is these classes as well.
The complexity for 2-bend graphs remains open.

Problem 2. What is the complexity of the Cliqueproblem is 2-bend graphs?
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It is not hard to observe that for any two sets D,D′ with |D| = |D′| = 3,
one can transform an EPG(D)-representation of any graph G to its EPG(D′)-
representation. However, it is not clear if the same holds for sets with at least 4
direction of slopes. It is worth mentioning that there are infinitely many classes
of intersection graphs of segments, each of which is parallel one of 4 slopes [2].
Problem 3. Is the minimum number of bends (per path) in an EPG(D)-
representation of a graph Galways equal to bd(G), for any set Dof d > 3slopes?

Our generalization rises yet further questions. Especially, we may put indi-
vidual vertices into points with integral coordinates. Now, we may ask, how
large grid is necessary and sufficient to represent any graph with n vertices and
prescribed number of permitted slopes, or even, with prescribed slopes.
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Abstract. The Almost Induced Matching problem asks whether we
can delete at most k vertices from a graph such that the remaining
graph is an induced matching, i.e., a graph with each vertex of degree 1.
This paper studies parameterized algorithms for this problem by tak-
ing the size of deletion set k as the parameter. By using the techniques
of finding maximal 3-path packings and an extended crown decomposi-
tion, we obtain the first linear vertex kernel for this problem, improv-
ing the previous quadratic kernel. We also present an O∗(1.7485k)-time
and polynomial-space algorithm, which is the best known parameterized
algorithm for this problem.

Keywords: Maximum induced matching · Linear kernel ·
Parameterized Algorithms · Graph algorithms

1 Introduction

An induced subgraph is called an induced matching if each vertex is a degree-1
vertex in the subgraph. The Maximum Induced Matching problem, to find
an induced matching of maximum size, is an important problem in algorithmic
graph theory. Golumbic and Lewenstein [7] demonstrated applications of induced
matchings in secure communication channels, VLSI design and network flow
problems. Some other applications of induced matchings can be found in [4,8,
17,19,21].

A maximum induced matching can be found in polynomial time in many
graph classes, such as trees [7], chordal graphs [2], circular arc graphs [8] and
interval graphs [7]. However, Maximum Induced Matching is NP-hard even
in planar 3-regular graphs or planar bipartite graphs with degree-2 vertices in
one part and degree-3 vertices in the other part [4,11,19]. The NP-hardness
of this problem in Hamiltonian graphs, claw-free graphs, chair-free graphs, line
graphs and regular graphs is proved by Kobler and Rotics [12].
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In terms of exact algorithms, Gupta, Raman and Saurabh showed that Max-
imum Induced Matching can be solved in O∗(1.6957n) time [9]. Xiao and
Tan gave an O∗(1.4391n)-time algorithm [21] and further improved the result to
O∗(1.3752n) [22]. Basavaraju et al. showed that all maximal induced matchings
in a triangle-free graph can be listed in O∗(1.4423n) time [1].

In terms of parameterized complexity, the size k′ of the induced matching is
one of the frequently considered parameters. However, the problem parameter-
ized by k′ is W[1]-hard in general graphs [16]. Moser and Sidkar showed that it
becomes fixed-parameter tractable (FPT) when the graph is a planar graph by
giving a linear-size problem kernel [15]. The kernel size was improved to 40k′ by
Kanj et al. [10]. In this paper, we study parameterized algorithms for Maximum
Induced Matching by considering another parameter. We take the number k
of vertices not in the induced matching as our parameter. Formally, our problem
is defined as follows.

Almost Induced Matching
Instance: A graph G = (V,E) and an integer parameter k.
Question: Is there a vertex subset S ⊆ V of size at most k whose deletion
makes the graph an induced matching?

When the size k of the deletion set is taken as the parameter, the problem
becomes FPT. Moser and Thilikos gave a kernel of O(k3) vertices [16], and
Mathieson and Szeider improved the kernel size to O(k2) [14]. In fact, these two
papers consider more general problems: to delete at most k vertices to make
the remaining graph a regular graph with a constant degree or a graph such
that every vertex has a specified degree bounded by a constant. In this paper,
we will give the first linear-vertex kernel for Almost Induced Matching. We
first find a proper 3-path packing in the graph and partition the vertex set of
the graph according to the 3-path packing. Then we use a technique, called
“double bi-crown decomposition,” to reduce the graph size. Finally, we can get
a problem kernel of 8k vertices. We also design a parameterized algorithm for
Almost Induced Matching, which runs in O∗(1.7485k) time and polynomial
space. Due to space limitation, the proofs of some lemmas are omitted, which
can be found in the full version of this paper.

2 Preliminaries

In this paper, we use G = (V,E) to denote a simple and undirected graph with
n = |V | vertices and m = |E| edges. A singleton {v} may be simply denoted by
v. The vertex set and edge set of a graph G′ are denoted by V (G′) and E(G′),
respectively. For a vertex subset X, the subgraph induced by X is denoted by
G[X], and G[V \ X] is also written as G \ X. A vertex in a subgraph or a vertex
subset X is called an X-vertex. Let N(X) denote the set of open neighbors of a
vertex subset X, i.e., the vertices in V \ X adjacent to some vertex in X, and
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N [X] = N(X) ∪ X denote the set of closed neighbors of X. The degree of a
vertex v in G, denoted by d(v), is defined to be |N(v)|, and a vertex in N(v) is
called a neighbor of v. Two vertex-disjoint subgraphs X1 and X2 are adjacent if
there is an edge with one endpoint in X1 and the other in X2. A graph is called
an induced matching if each vertex in the graph is a degree-1 vertex. A vertex
subset S is called an AIM-deletion set of G if G \ S is an induced matching.

A 3-path, denoted by P3, is a simple path with three different vertices and
two edges. Given a graph G = (V,E), a P3-packing P = {L1, L2, ..., Lt} of size t
is a collection of t vertex-disjoint 3-paths, i.e., each element Li ∈ P is a 3-path
and V (Li1)∩V (Li2) = ∅ for any two different 3-paths Li1 , Li2 ∈ P. A P3-packing
is maximal if it is not properly contained in any strictly larger P3-packing in G.
The set of vertices in 3-paths in P is denoted by V (P).

For a maximal P3-packing P, each connected component of the graph induced
by Q = V \ V (P) is either a single vertex or a single edge [13], which follows
immediately from the maximality of P. Let Q0 be the set of degree-0 vertices
in G[Q] and Q1 be the set of degree-1 vertices in G[Q]. A component of two
vertices in G[Q] is called a Q1-edge. For each Li ∈ P, Let Q(Li) denote the set
of Q-vertices that are in the components of G[Q] adjacent to Li.

3 Kernelization

In this section, we show that Almost Induced Matching allows a kernel of
8k vertices. The main idea of our algorithm is as follows. We first partition the
vertex set of G into two parts P and Q, where the size of P is at most 3k and
Q induces a graph of maximum degree at most 1. Then we use a technique to
bound the number of components in the induced graph G[Q] and then bound
the size of Q. We will find a maximal P3-packing P in G and let P = V (P).
Each 3-path must contain at least one vertex in each AIM-deletion set. So the
instance is a yes-instance if and only if |P| ≤ k. Initially we let P be an arbitrary
maximal P3-packing in G. Then we use two rules to update P. In fact, these two
rules contain several rules used in [3,20] to design kernelization algorithms for
the P3-packing problem.

Rule 1. If there is a 3-path Li ∈ P with Vi = Q(Li)∪V (Li) such that G[Vi] con-
tains at least two vertex-disjoint 3-paths, then replace Li by these 3-paths in P.

Some cases of this rule are illustrated in Fig. 1. Each execution of this rule
can in implemented in linear time since there are constant number of different
configurations. Each execution will increase the number of 3-paths in P by at
least 1, where the size of 3-path packing P is a lower bound for k.

Rule 2. If there is a 3-path Li ∈ P with two vertices adjacent to two differ-
ent Q0-vertices respectively, then use the operations in Fig. 2 to replace Li with
another 3-path in P.
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Fig. 1. Some cases of Rule 1: the 3-paths with dark edges mean the 3-paths in P

Fig. 2. The operations of Rule 2: the 3-paths with dark edges mean the 3-paths in P

It is not hard to see that each execution of Rule 2 will increase the number of
Q1-edges by at least 1. We will apply Rule 2 only when Rule 1 is not applicable
on the graph. Note that in a graph where Rule 1 is not applicable, after each
application of Rule 2, the P3-packing P is still maximal.

A maximal P3-packing P is proper if neither Rule 1 nor Rule 2 is applicable.
We have the following properties for proper P3-packings.

Lemma 1. For any initially maximal P3-packing P in G, we can apply Rules 1
and 2 for less than 2n times to change P to a proper P3-packing.

Lemma 2. Let P be a proper P3-packing in G and Li be an arbitrary 3-path
in P. It holds that:

(a) If more than one Q0-vertex is adjacent to Li, then all these Q0-vertices are
adjacent to the same and unique vertex in Li;

(b) If more than one Q1-edge is adjacent to Li, then all these Q1-edges are
adjacent to the same and unique vertex in Li;

(c) If more than one vertex in Li is adjacent to Q0-vertices, then all these
vertices in Li are adjacent to the same and unique Q0-vertex;

(d) If more than one vertex in Li is adjacent to Q1-edges, then all these vertices
in Li are adjacent to the same and unique Q1-edge.

It is easy to verify Lemma 2: (a) and (c) hold because Rule 2 is not applicable,
and (b) and (d) hold because Rule 1 is not applicable.

For a proper P3-packing P, a 3-path Li ∈ P is crucial if exactly one vertex in
Li is adjacent to some Q1-edge, a 3-path Li ∈ P is normal if it is not crucial, a
Q1-edge is crucial if it is adjacent to only crucial 3-paths in P, and a Q1-edge is
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I

C

R

(a) A proper P3-packing (b) A double bi-crown decomposition

0Q -verticescrucial     -edges normal     -edges

crucial 3-paths normal 3-paths

1Q 1Q

Fig. 3. Two decompositions

normal if it is adjacent to at least one normal 3-path in P. A vertex in a crucial
(resp., normal) Q1-edge is also called a crucial (resp., normal) Q1-vertex. See
Fig. 3(a) for an illustration of these notations. By Lemma 2, we know that

Lemma 3. Given a proper P3-packing P, the number of normal Q1-edges is at
most the number of normal 3-paths in P.

Next we are going to bound the number of vertices in Q = V \ V (P) based
on a proper P3-packing P. We can bound the number of Q0-vertices directly by
using the following lemma.

Lemma 4. If there is an AIM-deletion set of size at most k in G, then there are
at most k components of a single vertex in G \ V (P) for any proper P3-packing
P in G.

Proof. Assume that S∗ ⊆ V is a minimum AIM-deletion set of G. Recall that
Q0 is the set of vertices in components of a single vertex in G \ V (P). We only
need to prove that |S∗| ≥ |Q0|.

Let X1 = Q0 ∩ S∗ and X2 = Q0 \ X1. In G \ S∗, each vertex vi ∈ X2

has exactly one neighbor ui since each vertex in G \ S∗ has degree 1, and ui

is a vertex in V (P) since vi is a Q0-vertex. Let Li ∈ P denote the 3-path
containing ui. Since ui is also a degree-1 vertex in G \ S∗, we know that at
least one vertex in Li is in S∗, which is a neighbor of ui. For any two different
vertices vi, vj ∈ X2, the two neighbors ui and uj of them in G \ S∗ are different,
otherwise G\S∗ would have a vertex of degree 2 and it would not be an induced
matching. Furthermore, ui and uj are in two different 3-paths Li and Lj in P
by Lemma 2(a) and (c). Thus, for each vertex vi ∈ X2, there is a corresponding
vertex in a 3-path Li that is in S∗, and for any two vertices in X2, the two
corresponding vertices in S∗ are different. We know that |S∗ \Q0| ≥ |X2|, which
implies |S∗| = |S∗ \ Q0| + |X1| ≥ |X2| + |X1| = |Q0|. 	


Lemma 4 is not enough to get a kernel for our problem. We still need to
bound the number of Q1-vertices. Lemma 3 gives a good bound on the number
of normal Q1-edges. We only need to bound the number of crucial Q1-edges. To
do this, we use a technique called “double bi-crown decomposition”. Let A and
B be two disjoint vertex subsets. An edge set M between A and B is called a
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2-full matching from A to B if each vertex in A is in exactly two edges in M
and each vertex in B is in at most one edge in M .

Definition 1. A double bi-crown decomposition of a graph G is a decomposition
(I, C,R) of the vertex set of G such that

1. there is no edge between I and R;
2. each connected component of the induced subgraph G[I] has exactly two ver-

tices;
3. there is a 2-full matching M from C to I.

Figure 3(b) illustrates a double bi-crown decomposition. Note that our double
bi-crown decomposition is different from the double crown decomposition defined
in [18], which requires G[I] to be an independent set. We have the following
lemma for double bi-crown decompositions.

Lemma 5. Let (I, C,R) be a double bi-crown decomposition of a graph G. For
any minimum AIM-deletion set K of the induced subgraph G[R], S = K ∪ C is
a minimum AIM-deletion set of G.

Based on Lemma 5, given a double bi-crown decomposition (I, C,R) of the
graph we can reduce the instance by including vertex set C to the deletion set
and deleting it from the graph. We will show that when the graph satisfies some
properties the graph always allows a double bi-crown decomposition and it can
be computed in polynomial time.

Lemma 6. Let G = (V,E) be a graph with each component containing more
than two vertices and (A,B,D) be a decomposition of V such that (i) no vertex
in A is adjacent to a vertex in D; (ii) each connected component in the induced
subgraph G[A] has exactly two vertices. If |A| ≥ 4|B|, then the graph allows a
double bi-crown decomposition (I, C,R) with ∅ �= I ⊆ A and ∅ �= C ⊆ B, and
(I, C,R) can be computed in O(

√
nm) time.

We construct an algorithm to prove this lemma. The main idea of the algo-
rithm is as follows. Let A′ ⊆ A be the set of vertices in A that are adjacent to
some vertices in B. Our algorithm first finds a maximum edge set M between A′

and B with the constraints that each vertex in A′ appears in at most one edge
in M and each vertex in B appears in at most two edges in M . The edge set M
can be computed in O(

√
nm) time by finding a certain maximum flow between

A′ and B: We add a vertex s adjacent to each vertex in B via an edge with
capacity 2, and add a vertex t adjacent to each vertex in A′ via an edge with
capacity 1. The capacity of each edge between A′ and B is 1. We only need to
find a maximum flow from s to t. By using the algorithm in [6] we can solve the
maximum flow problem in O(

√
nm) time. Next, our algorithm computes sets I

and C based on M . A vertex in A′ is M -unsaturated if it does not appear in any
edge in M . A path with all edges between A′ and B is called an M -alternating
path if it alternates between edges not in M and edges in M . We will let I ′ be
the set of vertices in A′ that are reachable from an M -unsaturated vertex via
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Input: A graph G = (V,E) with each component containing more than two vertices
and a partition (A,B,D) of the vertex set V satisfying the conditions in Lemma 6.
Output: Two sets I ⊆ A and C ⊆ B such that (I, C, V \ (I ∪C)) is a double bi-crown
decomposition.

1. Let A′ = N(B) ∩ A.
2. Compute a maximum edge set M between A′ and B with the constraints that each

vertex in A′ appears in at most one edge in M and each vertex in B appears in at
most two edges in M .

3. Let I ′ be ∅ if there is no M -unsaturated vertex, and the set of vertices in A′

connected with at least one M -unsaturated vertex via an M -alternating path (to-
gether with all M -unsaturated vertices) otherwise.
Let I = I ′ ∪ (N(I ′) ∩ A).
Let C be ∅ if there is no M -unsaturated vertex, and the set of vertices in B connect-
ed with at least one M -unsaturated vertex via an M -alternating path otherwise.

4. Return (I, C).

Fig. 4. Algorithm decomp(G,A,B,D)

an M -alternating path (I ′ also includes all M -unsaturated vertices), I be the
set of vertices in components of G[A] containing vertices in I ′, and C be the set
of vertices in B that are reachable from an M -unsaturated vertex via an M -
alternating path. We will prove that (I, C,R = V \ (I ∪C)) is a double bi-crown
decomposition. The detailed steps of the algorithm is presented in Fig. 4.

Lemma 7. Algorithm decomp(G,A,B,D) runs in O(
√

nm) time and returns
two vertex subsets I ⊆ A and C ⊆ B such that

(a) (I, C, V \ (I ∪ C)) is a double bi-crown decomposition of G;
(b) |A \ I| ≤ 4|B \ C|.

Lemma 7 implies Lemma 6. Our algorithm will first compute a vertex par-
tition (A,B,D) satisfying the condition in Lemma 6 based on a proper P3-
packing. We will let A be the set of crucial Q1-vertices and B = N(A). Then
we use decomp(G,A,B,D) to find a double bi-crown decomposition. The whole
algorithm is described in Fig. 5.

Based on the above analysis, we can get the following result, the full proof
of which can be found in the full version of this paper.

Lemma 8. Algorithm kernel(G, k) runs in O(n(n + m)) time and returns an
equivalent instance with at most 8k vertices.

4 A Parameterized Algorithm

In this section we will design a parameterized algorithm for Almost Induced
Matching. Our algorithm is a branch-and-reduce algorithm that runs in
O∗(1.7485k) time and polynomial space. In branch-and-reduce algorithms, the
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Input: An undirected graph G = (V,E) and a non-negative integer k.
Output: a graph G′ and an integer k′ such that k′ ≤ k and G′ has at most 8k vertices,
or ‘no’ to indicate that the instance is a no-instance.

1. Delete any connected component of two vertices from the graph.
2. Let V0 be the set of single vertices in G. Let G = G \ V0 and k = k − |V0|.
3. Find an arbitrary maximal P3-packing P in G
4. Iteratively apply Rules 1 and 2 to update P until none of them can be applied

anymore.
5. If |P| > k, then return ‘no’ and halt.
6. let P = V (P) and Q = V \ P .
7. If |Q0| > k, then return ‘no’ and halt.
8. Let A be the set of crucial Q1-vertices and B = N(A).
9. Let (I, C) = decomp(G,A,B, V \ (A ∪ B)).

10. Return G′ = G \ (I ∪ C) and k′ = k − |C|.

Fig. 5. Algorithm kernel(G, k)

exponential part of the running time is determined by the branching operations
in the algorithm. In a branching operation, the algorithm solves the current
instance I by solving several smaller instances. We will use the parameter k as
the measure of the instance and use T (k) to denote the maximum size of the
search tree generated by the algorithm running on any instance with parameter
at most k. Clearly, when k ≤ 0 we can solve the instance in linear time. If a
branching operation generates l branches and the measure k in the i-th instance
decreases by at least ci, then this operation creates a recurrence relation

T (k) ≤ T (k − c1) + T (k − c2) + · · · + T (k − cl) + 1.

The largest root of the function f(x) = 1 − ∑l
i=1 x−ci is called the branching

factor of the recurrence. Let γ be the maximum branching factor among all
branching factors in the algorithm. The running time of the algorithm is bounded
by O∗(γk). More details about the analysis and how to solve recurrences can be
found in the monograph [5].

4.1 Branching Rules

For any vertex v, it is either deleted (included to the deletion set) or remained
in the induced matching. We get a simple branching rule

Branching rule (B1): Branch on v to generate |N [v]| branches by either (i)
deleting v from the graph and including it to the deletion set, or (ii) for each
neighbor u of v, deleting N [{u, v}] from the graph and including N({u, v}) to
the deletion set.

This branching rule may not always be effective. To obtain a better run-
ning time bound, we also use different branching rules for some special graph
structures.
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A vertex v is dominated by a neighbor u of it if v is adjacent to all neighbors
of u. The following property of dominated vertices has been proved and used
in [9,21].

Lemma 9. Let v be a vertex dominated by u. If there is a maximum induced
matching M of G such that v ∈ V (M), then there is a maximum induced match-
ing M ′ of G such that v, u ∈ V (M).

Based on this lemma, we design the following branching rule.
Branching rule (B2): Branch on a vertex v dominated by another vertex u
to generate two instances by either (i) deleting v from the graph and including
it to the deletion set, or (ii) deleting N [{u, v}] from the graph and including
N({u, v}) to the deletion set.

4.2 The Algorithm

We will use aim(G, k) to denote our parameterized algorithm. The algorithm
contains 7 steps. When we execute one step, we assume that all previous steps
are not applicable anymore on the current graph. We will analyze each step after
describing it.

Step 1 (Trivial cases). If k < 0 or the graph is an empty graph, then return
the result directly. If the graph has a component of maximum degree 2, then solve
this component directly in linear time.

After Step 1, each component of the graph contains at least three vertices.
A degree-1 vertex v is called a tail if its neighbor u is a degree-2 vertex. We have
the following property for tails.

Lemma 10. If a graph G has a tail v, then there is a maximum induced match-
ing of G containing the unique edge incident on v.

Proof. Let u be the degree-2 neighbor of the tail v, and w be the other neighbor
of u. If an edge e incident on w is in a maximum induced matching M , then the
edge vu cannot be in M . For this case, we can replace e with vu in M to get
a maximum induced matching containing vu. If no edge incident on w is in a
maximum induced matching M , then by the maximality of M we know that vu
is in M . So there is always a maximum induced matching containing vu. 	

Step 2 (Tails). If there is a degree-1 vertex v with a degree-2 neighbor u, then
return aim(G \ N [{v, u}], k − 1).

Step 3 (Dominated vertices of degree ≥ 3). If there is a vertex v of degree
≥ 3 dominated by u, then branch on v with Rule (B2) to generate two branches

aim(G \ {v}, k − 1) and aim(G \ N [{v, u}], k − |N({v, u})|).
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Lemma 9 guarantees the correctness of this step. Note that |N({v, u})| = d(v)−1.
This step generates a recurrence

T (k) ≤ T (k − 1) + T (k − (d(v) − 1)) + 1, (1)

where d(v) ≥ 3. For the worst case that d(v) = 3, the branching factor of it is
1.6181.

After Step 2 the remaining graph may still have degree-1 vertices with a
neighbor of degree ≥ 3. These vertices will be handled in Step 3. So after Step 3,
the graph has no vertices of degree ≤ 1.

Next, we consider degree-2 vertices. A path u0u1u2u3u4 of five vertices is
called a chain if the first vertex u0 is of degree ≥ 3 and the three middle vertices
are of degree 2, where we allow u4 = u0. A path u0u1u2u3 of four vertices is
called a short chain if the first vertex u0 and last vertex u3 are of degree ≥ 3
and the two middle vertices are of degree 2, where we allow u3 = u0. A chain or
a short chain can be found in linear time if it exists.

Step 4 (Chains). If there is a chain u0u1u2u3u4, then branch on u1 with Rule
(B1). In the branch where u1 is deleted and included to the deletion set, we get
a tail u2 and then further deal with the tail as what we do in Step 2. Then we
get the following three branches

aim(G \ {u1, u2, u3, u4}, k − 2), aim(G \ N [{u0, u1}], k − |N({u0, u1})|)
and aim(G \ N [{u1, u2}], k − |N({u1, u2})|).

The corresponding recurrence is

T (k) ≤ T (k − 2) + T (k − d(u0)) + T (k − 2) + 1,

where d(u0) ≥ 3. For the worst case that d(u0) = 3, the branching factor of it is
1.6181.

Step 5 (Short chains). If there is a short chain u0u1u2u3, then branch on u1

with Rule (B1). In the branch where u1 is deleted and included to the deletion
set, we get a dominated vertex u3 and then further branch on u3 with Rule (B2).
We get the following four branches

aim(G \ {u1, u2, u3}, k − 3), aim(G \ N [{u2, u3}], k − |N({u2, u3})|),
aim(G \ N [{u0, u1}], k − |N({u0, u1})|), and aim(G \ N [{u1, u2}], k − |N({u1, u2})|).

The corresponding recurrence is

T (k) ≤ T (k − 3) + T (k − d(u3)) + T (k − d(u0)) + T (k − 2) + 1,

where d(u0), d(u3) ≥ 3. For the worst case that d(u0) = d(u3) = 3, the branching
factor of it is 1.6717.

After Step 5, each degree-2 vertex in the graph has two neighbors of degree
≥ 3. Furthermore, the two neighbors of it are not adjacent to each other, since
otherwise they would be dominated vertices of degree ≥ 3 and Step 3 would be
applied.
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Step 6 (Vertices of degree �= 3). If there is a vertex v of d(v) �= 3, then
branch on v with Rule (B1) to generate d(v) + 1 branches

aim(G \ {v}, k − 1) and aim(G \ N [{v, u}], k − |N({v, u})|) for each u ∈ N(v).

We analyze the corresponding recurrence by considering the degree or v is 2
or not.

Assume that d(v) = 2. Let u1 and u2 denote the two neighbors of v. Then
u1 and u2 are nonadjacent vertices of degree ≥ 3. The branching operation
will generate three branches. Since u1 and u2 are not adjacent, we can see that
|N(v, ui)| = d(ui) − 1 + 1 = d(ui) ≥ 3 (i = 1, 2). This leads to a recurrence

T (k) ≤ T (k − 1) + T (k − d(u1)) + T (k − d(u2)) + 1,

where d(u1), d(u2) ≥ 3. For the worst case that d(u1) = d(u2) = 3, the branching
factor of it is 1.6957.

Assume that d(v) ≥ 4. Since v a vertex of degree ≥ 3 and then it can not
be dominated by any neighbor of it now, we know that each neighbor u of it
is adjacent to a vertex not in N [v] and then |N(v, u)| ≥ d(v). So we get a
recurrence

T (k) ≤ T (k − 1) + d(v) · T (k − d(v)) + 1,

where d(v) ≥ 4. For the worst case that d(v) = 4, the branching factor of 1.7485.
After Step 6, if the graph is not an empty graph, then the graph can only be

a 3-regular graph.

Step 7 (3-regular graphs). Pick up an arbitrary vertex v and branch on it
with Rule (B1).

We do not analyze the branching factor for this step, because this step will
not exponentially increase the running time bound of the algorithm. Note that
any proper subgraph of a connected 3-regular graph is not a 3-regular graph.
For each connected component of a 3-regular graph, Step 7 can be applied for
at most one time and all other branching operations have a branching factor
of at most 1.6957. Then each connected component of a 3-regular graph can be
solved in O∗(1.6957k) time. Before getting a connected component of a 3-regular
graph, the algorithm can always branch with branching factors of at most 1.7485.
Therefore, we have the following result.

Theorem 1. Almost Induced Matching can be solved in O∗(1.7485k) time
and polynomial space.

5 Concluding Remarks

In this paper, we give the first linear kernel and a fast parameterized algo-
rithm for Almost Induced Matching. Almost Induced Matching is a
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special case of Regular Induced Subgraph and Degree-Specified Ver-
tex Deletion, which are going to check whether we can delete k vertices from
a graph to make the remaining graph a d-regular graph or a graph such that
every vertex has a specified degree bounded by d. There is a quadratic kernel for
Degree-Specified Vertex Deletion for each constant d ≥ 0 [14]. Whether
Degree-Specified Vertex Deletion (even Regular Induced Subgraph)
allows a linear kernel for each fixed d ≥ 2 is still unknown. The techniques in this
paper cannot be used to solve this general problem directly. The main reason is
that we do not find a decomposition similar to Definition 1 and a lemma similar
to Lemma 5 for general d.
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Abstract. For a class of graphs P, the Bounded P-Block Vertex
Deletion problem asks, given a graph G on n vertices and positive
integers k and d, whether there is a set S of at most k vertices such that
each block of G − S has at most d vertices and is in P. We show that
when P satisfies a natural hereditary property and is recognizable in
polynomial time, Bounded P-Block Vertex Deletion can be solved
in time 2O(k log d)nO(1), and this running time cannot be improved to
2o(k log d)nO(1), in general, unless the Exponential Time Hypothesis fails.
On the other hand, if P consists of only complete graphs, or only K1,K2,
and cycle graphs, then Bounded P-Block Vertex Deletion admits
a cknO(1)-time algorithm for some constant c independent of d. We also
show that Bounded P-Block Vertex Deletion admits a kernel with
O(k2d7) vertices.

1 Introduction

Vertex deletion problems are formulated as follows: given a graph G and a class
of graphs G, is there a set of at most k vertices whose deletion transforms G
into a graph in G? A graph class G is hereditary if whenever G is in G, every
induced subgraph H of G is also in G. Lewis and Yannakakis [14] proved that
for every non-trivial hereditary graph class decidable in polynomial time, the
vertex deletion problem for this class is NP-complete. On the other hand, a
class is hereditary if and only if it can be characterized by a set of forbidden
induced subgraphs F , and Cai [2] showed that if F is finite, with each graph in
F having at most c vertices, then there is an O(cknc+1)-time algorithm for the
corresponding vertex deletion problem.

A block of a graph is a maximal connected subgraph B such that B has no
cut vertices. Every maximal 2-connected subgraph is a block, but a block may
just consist of one or two vertices. We consider vertex deletion problems for
hereditary graph classes where all blocks of a graph in the class satisfy a certain
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common property. It is natural to describe such a class by the set of permissible
blocks P. For ease of notation, we do not require that P is itself hereditary, but
the resulting class, where graphs consist of blocks in P, should be. To achieve
this, we say that a class of graphs P is block-hereditary if, whenever G is in P
and H is an induced subgraph of G, every block of H is isomorphic to a graph
in P. For a block-hereditary class of graphs P, we define ΦP as the class of all
graphs whose blocks are in P. Several well-known graph classes can be defined
in this way. For instance, a forest is a graph in the class Φ{K1,K2}, a cactus
graph is a graph in the class ΦC where C consists of K1,K2 and all cycles, and a
complete-block graph1 is a graph in ΦK where K consists of all complete graphs.
We note that C is not a hereditary class, but it is block-hereditary; this is what
motivates our use of the term.

Let P be a block-hereditary class such that ΦP is a non-trivial hereditary
class. The result of Lewis and Yannakakis [14] implies that the vertex deletion
problem for ΦP is NP-complete. We define the following parameterized problem
for a fixed block-hereditary class of graphs P.

P-Block Vertex Deletion Parameter: k
Input: A graph G and a non-negative integer k.
Question: Is there a set S ⊆ V (G) with |S| � k such that each block of G − S
is in P?

This problem generalizes the well-studied parameterized problems Vertex
Cover, when P = {K1}, and Feedback Vertex Set, when P = {K1,K2}.
Moreover, if ΦP can be characterized by a finite set of forbidden induced sub-
graphs, then Cai’s approach [2] can be used to obtain a fixed-parameter tractable
(FPT) algorithm that runs in time 2O(k)nO(1).

In this paper, we are primarily interested in the variant of this problem where,
additionally, the number of vertices in each block is at most d. The value d is a
parameter given in the input.

Bounded P-Block Vertex Deletion Parameter: d, k
Input: A graph G, a positive integer d, and a non-negative integer k.
Question: Is there a set S ⊆ V (G) with |S| � k such that each block of G − S
has at most d vertices and is in P?

We also consider this problem when parameterized only by k. When d = 1,
this problem is equivalent to Vertex Cover. This implies that the Bound-
ed P-Block Vertex Deletion problem is para-NP-hard when parameterized
only by d.

The Bounded P-Block Vertex Deletion problem is also equivalent to
Vertex Cover when P is a class of edgeless graphs. Since Vertex Cover is
well studied, we assume that d � 2, and focus on classes that contain a graph
1 A block graph is the usual name in the literature for a graph where each block is a

complete subgraph. However, since we are dealing here with both blocks and block
graphs, to avoid confusion we instead use the term complete-block graph and call the
corresponding vertex deletion problem Complete Block Vertex Deletion.
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with at least one edge. We call such a class non-degenerate. When P is the class
of all graphs, we refer to Bounded P-Block Vertex Deletion as Bounded
Block VD.

Related Work. The analogue of Bounded Block VD for connected com-
ponents, rather than blocks, is known as Component Order Connectivity.
For this problem, the question is whether a given graph G has a set of vertices S
of size at most k such that each connected component of G − S has at most d
vertices. Drange et al. [3] showed that Component Order Connectivity is
W [1]-hard when parameterized by k or by d, but FPT when parameterized by
k + d, with an algorithm running in 2O(k log d)n time.

Clearly, the vertex deletion problem for either cactus graphs, or complete-
block graphs, is a specialization of P-Block Vertex Deletion. A graph is a
cactus graph if and only if it does not contain a subdivision of the diamond [4],
the graph obtained by removing an edge from the complete graph on four ver-
tices. For this reason, the problem for cactus graphs is known as Diamond
Hitting Set. For complete-block graphs, we call it Complete Block Ver-
tex Deletion. General results imply that there is a cknO(1)-time algorithm
for Diamond Hitting Set [6,9,11], but an exact value for c is not forthcom-
ing from these approaches. However, Kolay et al. [13] obtained a 12knO(1)-time
randomized algorithm. For the variant where each cycle must additionally be
odd (that is, P consists of K1,K2, and all odd cycles), there is a 50knO(1)-time
deterministic algorithm due to Misra et al. [15]. For Complete Block Ver-
tex Deletion, Kim and Kwon [10] showed that there is an algorithm that runs
in 10knO(1) time, and there is a kernel with O(k6) vertices. Agrawal et al. [1]
improved this running time to 4knO(1), and also obtained a kernel with O(k4)
vertices.

When considering a minor-closed class, rather than a hereditary class, the
vertex deletion problem is known as F-minor-free Deletion. When F is a
set of connected graphs containing at least one planar graph, Fomin et al. [6]
showed there is a deterministic FPT algorithm for this problem running in time
2O(k) · O(n log2 n). One can observe that the class of all graphs whose blocks
have size at most d is closed under taking minors. Thus, P-Block Vertex
Deletion has a single-exponential FPT algorithm and a polynomial kernel,
when P contains all connected graphs with no cut vertices and at most d vertices.
However, it does not tell us anything about the parameterized complexity of
Bounded P-Block Vertex Deletion, which we consider in this paper.

Our Contribution. The main contribution of this paper is the following:

Theorem 1.1. Let P be a non-degenerate block-hereditary class of graphs that is
recognizable in polynomial time. Then, Bounded P-Block Vertex Deletion

(i) can be solved in 2O(k log d)nO(1) time, and
(ii) admits a kernel with O(k2d7) vertices.

Theorem 1.1 (i) can be viewed as a generalization of the single-exponential
FPT algorithm for Feedback Vertex Set [12]. The running time is essen-
tially optimal when ΦP is the class of all graphs, unless the Exponential Time
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Hypothesis (ETH) [8] fails. One may expect that if the permissible blocks in P
have a simpler structure, then the problem becomes easier. However, we obtain
the same lower bound when ΦP contains all split graphs.

Theorem 1.2. Let P be a block-hereditary class. If ΦP contains all split graphs,
then Bounded P-Block Vertex Deletion is not solvable in 2o(k log d)nO(1)

time, unless the ETH fails.

Formally, there is no function f(x) = o(x) such that there is a 2f(k log d)nO(1)-
time algorithm for Bounded P-Block Vertex Deletion, unless the ETH
fails. This theorem can be proved by a reduction from the k×k Clique problem,
similar to [3, Theorem 14].

On the other hand, the running time can be improved to cknO(1) for some c,
independent of d, when P consists of all complete graphs, or when P consists
of K1,K2, and all cycles. We refer to these problems as Bounded Complete
Block VD and Bounded Cactus Graph VD respectively.

Theorem 1.3. Bounded Complete Block VD can be solved in time
O∗(10k), and admits a kernel with O(k2d3) vertices.

Theorem 1.4. Bounded Cactus Graph VD can be solved in time O∗(26k),
and admits a kernel with O(k2d4) vertices.

The proofs of Theorems 1.3 and 1.4 use the well-known technique of iterative
compression [16], but are omitted due to space constraints. Note that, when d =
|V (G)|, these become O∗(ck)-time algorithms for Complete Block Vertex
Deletion and Diamond Hitting Set respectively.

To obtain the general FPT algorithm in Theorem 1.1 (i), we start by search-
ing for one of two types of obstruction of bounded size: a biconnected subgraph
with at least d + 1 and at most 2d − 2 vertices, or a biconnected subgraph with
at most d vertices that is not in P. Once we find such an obstruction, we branch
by removing one of the vertices. The key observation is that if there are no such
obstructions, then the graph can be decomposed into small pieces, which we call
“clusters”, that are biconnected induced subgraphs in P. Then, it remains only
to detect long cycles that are not fully contained in a cluster (Lemmas 3.1 and
3.3), which we can do by reducing the problem to Subset Feedback Vertex
Set (Proposition 3.2).

Theorem 1.1 (ii) is a generalization of the 4k2 kernel for Feedback Ver-
tex Set given by Thomassé in [18]. In order to obtain this kernel, we first
develop a (2d + 6)-approximation algorithm for the unparameterized version of
the problem, using the 8-approximation algorithm for Subset Feedback Ver-
tex Set [5]. The rest of the kernelization algorithm is similar to the one for
Feedback Vertex Set; however, a more general result than Gallai’s A-path
theorem is needed. To this end, we develop a ‘packing and covering’-type result
for (A, d)-trees, which are trees with at least d vertices whose leaves are in A
(Proposition 4.4). Note that Gallai’s A-path theorem can be seen as a packing
and covering result for (A, 2)-trees. Using this, we can efficiently find either a
flower structure, or a small deleting set, which helps to reduce the instance to a
smaller instance using the α-expansion lemma.
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2 Preliminaries

All graphs considered in this paper are undirected, and have no loops and no
parallel edges. Let G be a graph. We denote by NG(v) the set of neighbors of
a vertex v in G, and let NG(S) :=

⋃
v∈S NG(v) \ S for any set of vertices S.

For X ⊆ V (G), the deletion of X from G is the graph obtained by removing X
and all edges incident to a vertex in X, and is denoted G − X. For x ∈ V (G),
we simply use G − x to refer to G − {x}. Let F be a set of graphs; then G is
F-free if it has no induced subgraph isomorphic to a graph in F . For n � 1, the
complete graph on n vertices is denoted Kn.

A vertex v of G is a cut vertex if the deletion of v from G increases the
number of connected components. We say G is biconnected if it is connected and
has no cut vertices. A block of G is a maximal biconnected subgraph of G. The
graph G is 2-connected if it is biconnected and |V (G)| � 3. In this paper we are
frequently dealing with blocks, so the notion of being biconnected is often more
natural than that of being 2-connected. The block tree of G is a bipartite graph
B(G) with bipartition (B,X), where B is the set of blocks of G,X is the set of
cut vertices of G, and a block B ∈ B and a cut vertex x ∈ X are adjacent in
B(G) if and only if B contains x.

Parameterized Complexity. A parameterized problem Q ⊆ Σ∗ × N is fixed-
parameter tractable (FPT ) if there is an algorithm that decides whether (x, k)
belongs to Q in time f(k) · |x|O(1) for some computable function f . Such an
algorithm is called an FPT algorithm. A parameterized problem is said to admit
a polynomial kernel if there is a polynomial time algorithm in |x| + k, called
a kernelization algorithm, that reduces an input instance into an instance with
size bounded by a polynomial function in k, while preserving the Yes or No
answer.

3 Clustering

Agrawal et al. [1] described an efficient FPT algorithm for Complete Block
Vertex Deletion using a two stage approach. Firstly, small forbidden induced
subgraphs are eliminated using a branching algorithm. More specifically, for
each diamond or cycle of length four, at least one vertex must be removed in a
solution, which can be done in O∗(4k) time. The resulting graph has the following
structural property: any two distinct maximal cliques have at most one vertex
in common. Thus, in the second stage, it remains only to eliminate all cycles
not fully contained in a maximal clique, so the problem can be reduced to an
instance of Weighted Feedback Vertex Set. We generalize this process
and refer to it as “clustering”, where the “clusters”, in the case of Complete
Block Vertex Deletion, are the maximal cliques. We use this to obtain an
algorithm for Bounded P-Block Vertex Deletion in Sect. 3.2.

3.1 P-clusters

Let P be a block-hereditary class of graphs. We may assume that P contains
only biconnected graphs; otherwise there is some block-hereditary P ′ such that
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P ′ ⊂ P and ΦP′ = ΦP . Let G be a graph. A P-cluster of G is a maximal induced
subgraph H of G with the property that H is isomorphic either to K1 or a graph
in P. We say that G is P-clusterable if for any distinct P-clusters H1 and H2

of G, we have |V (H1) ∩ V (H2)| � 1. For a P-clusterable graph, if v ∈ V (G) is
contained in at least two distinct P-clusters, then v is called an external vertex.

The following property of P-clusters is essential. We say that X ⊆ V (G) hits
a cycle C if X ∩ V (C) �= ∅, and a cycle C is contained in a P-cluster of G if
V (C) ⊆ V (H) for some P-cluster H of G.

Lemma 3.1. Let P be a non-degenerate block-hereditary class of graphs, let G
be a graph, and let S ⊆ V (G). Then G−S ∈ ΦP if and only if S hits every cycle
not contained in a P-cluster of G.

The next proposition follows from the fact that P-Block Vertex Dele-
tion can be reduced to Subset Feedback Vertex Set if the input graph
is P-clusterable, and Subset Feedback Vertex Set can be solved in time
O∗(4k) [19]. We omit the proof, but the idea of the reduction is illustrated in
Fig. 1.

Subset Feedback Vertex Set Parameter: k
Input: A graph G, a set X ⊆ V (G), and a non-negative integer k.
Question: Is there a set S ⊆ V (G) with |S| � k such that no cycle in G − S
contains a vertex of X?

Proposition 3.2. Let P be a non-degenerate block-hereditary class of graphs
recognizable in polynomial time. Given a P-clusterable graph G together with the
set of P-clusters of G, and a non-negative integer k, there is an O∗(4k)-time
algorithm that determines whether there is a set S ⊆ V (G) with |S| � k such
that G − S ∈ ΦP .

By Proposition 3.2, the P-Block Vertex Deletion problem admits an
efficient FPT algorithm provided we can reduce the input to P-clusterable
graphs. In the next section, we show that this is possible for any finite block-
hereditary P where the permissible blocks in P have at most d vertices. In
particular, we use this to show there is an O∗(2O(k log d))-time algorithm for
Bounded P-Block Vertex Deletion.

3.2 An FPT Algorithm for Bounded P-Block Vertex Deletion

In this section we describe an FPT algorithm for Bounded P-Block Vertex
Deletion using the clustering approach. For positive integers x and y, let Bx,y

be the class of all biconnected graphs with at least x vertices and at most y
vertices. When x > y,Bx,y = ∅.

Lemma 3.3. Let P be a non-degenerate block-hereditary class, and let d � 2 be
an integer. If a graph G is Bd+1,2d−2-free and (B2,d\P)-free, then G is (P∩B2,d)-
clusterable.
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Fig. 1. Example construction of a Subset Feedback Vertex Set instance (G′, X, k)
from a P-clusterable graph G. (Color figure online)

Proposition 3.4. Let d � 2 be an integer, and let P be a non-degenerate block-
hereditary class recognizable in polynomial time. There is a polynomial-time algo-
rithm that, given a graph G, either

(i) outputs an induced subgraph of G in B2,d \ P, or
(ii) outputs an induced subgraph of G in Bd+1,2d−2, or
(iii) correctly answers that G is ((B2,d \ P) ∪ Bd+1,2d−2)-free.

Lemma 3.5. Let d � 2 be an integer, and let P be a non-degenerate block-
hereditary class recognizable in polynomial time. Then there is a polynomial-time
algorithm that, given a ((B2,d \ P) ∪ Bd+1,2d−2)-free graph G, outputs the set of
(P ∩ B2,d)-clusters of G.

Theorem 3.6. Let P be a non-degenerate block-hereditary class of graphs recog-
nizable in polynomial time. Then Bounded P-Block Vertex Deletion can
be solved in time 2O(k log d)nO(1).

Proof. We describe a branching algorithm for Bounded P-Block Vertex
Deletion on the instance (G, d, k). If G contains an induced subgraph in (B2,d \
P) ∪ Bd+1,2d−2, then any solution S contains at least one vertex of this induced
subgraph. We first run the algorithm of Proposition 3.4, and if it outputs such
an induced subgraph J , then we branch on each vertex v ∈ V (J), recursively
applying the algorithm on (G − v, d, k − 1). Since |V (J)| � 2d − 2, there are at
most 2d−2 branches. If one of these branches has a solution S′, then S′∪{v} is a
solution for G. Otherwise, if every branch returns No, we return that (G, d, k) is
a No-instance. On the other hand, if there is no such induced subgraph, then G
is (P ∩B2,d)-clusterable, by Lemma 3.3, and we can find the set of all (P ∩B2,d)-
clusters in polynomial time, by Lemma 3.5. We can now run the O∗(4k)-time
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algorithm of Proposition 3.2 and return the result. Thus, an upper bound for
the running time is given by the following recurrence:

T (n, k) =

⎧
⎪⎨

⎪⎩

1 if k = 0 or n = 0,

4knO(1) if ((B2,d \ P) ∪ Bd+1,2d−2)-free,
(2d − 2)T (n − 1, k − 1) + nO(1) otherwise.

Hence, we have an algorithm that runs in time O∗(2O(k log d)). 	


4 Polynomial Kernels

In this section, we prove the following:

Theorem 4.1. Let P be a non-degenerate block-hereditary class of graphs recog-
nizable in polynomial time. Then Bounded P-Block Vertex Deletion
admits a kernel with O(k2d7) vertices.

We fix a block-hereditary class of graphs P recognizable in polynomial time. The
block tree of a graph can be computed in time O(|V (G)| + |E(G)|) [7]. Thus,
one can test whether a given graph is in ΦP∩B2,d in polynomial time.

Before describing the algorithm, we observe that there is a (2d + 6)-
approximation algorithm for the (unparameterized) minimization version of the
Bounded P-Block Vertex Deletion problem. We first run the algorithm of
Proposition 3.4. When we find an induced subgraph in (B2,d \ P) ∪ Bd+1,2d−2,
instead of branching on the removal of one of the vertices, we remove all the
vertices of the subgraph, then rerun the algorithm. Hence, we can reduce to
a (P ∩ B2,d)-clusterable graph by removing at most (2d − 2) · OPT vertices.
Moreover, we can obtain the set of all (P ∩ B2,d)-clusters using the algorithm
in Lemma 3.5. Arguments in the proof of Proposition 3.2 and the known 8-
approximation algorithm for Subset Feedback Vertex Set [5] imply that
there is a (2d + 6)-approximation algorithm for Bounded P-Block Vertex
Deletion.

We start with the straightforward reduction rules. Let (G, d, k) be an instance
of Bounded P-Block Vertex Deletion.

Reduction Rule 1 (Component rule). If G has a connected component H ∈
ΦP∩B2,d , then remove H.

Reduction Rule 2 (Cut vertex rule). Let v be a cut vertex of G such that
G − v contains a connected component H where G[V (H) ∪ {v}] is a block in
P ∩ B2,d. Then remove H from G.

Now, we introduce a so-called bypassing rule. We first run the (2d + 6)-
approximation algorithm, and if it outputs a solution of more than (2d + 6)k
vertices, then we have a No-instance. Thus, we may assume that the algorithm
outputs a solution of size at most (2d + 6)k. Let us fix such a set U .
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Reduction Rule 3 (Bypassing rule). Let v1, v2, . . . , vt be a sequence of cut
vertices of G − U with 2 � t � d + 1, and let B1, . . . , Bt−1 be blocks of G − U
such that

(1) for each i ∈ {1, . . . , t−1}, Bi is the unique block of G−U containing vi and
vi+1 and no other cut vertices of G − U ;

(2) G has no edges between (
⋃

1�i�t−1 V (Bi)) \ {v1, vt} and U ; and
(3) |⋃1�i�t−1 V (Bi))| � d + 1.

If
⋃

1�i�t−1 V (Bi) \ {v1, . . . , vt} = ∅, then contract v1v2; otherwise, choose a
vertex in

⋃
1�i�t−1 V (Bi) that is not a cut vertex of G − U , and remove it.

See Fig. 2 for an example application of Reduction Rule 3. Note that this rule
can be applied in polynomial time using the block tree of G − U .

Fig. 2. An example application of Reduction Rule 3 when d = 9

Lemma 4.2. Reduction Rule 3 is safe.

We show that after applying Reduction Rules 1 to 3, if the reduced graph is
still large, then there is a vertex of large degree. This follows from the fact that
the block tree of G−U has no path of 2d+2 vertices where the internal vertices
have degree 2 in G − U .

Lemma 4.3. Let (G, d, k) be an instance reduced under Reduction Rules 1 to
3. If (G, d, k) is a Yes-instance and |V (G)| � 4d(2d + 3)(d + 3)k�, for some
integer �, then G contains a vertex of degree at least � + 1.

Now, we discuss a “sunflower structure” that allows us to find a vertex that
can be safely removed. A similar technique was used in [1,10,17]; there, Gallai’s
A-path Theorem is used to find many obstructions whose pairwise intersections
are exactly one vertex; here, we use different objects to achieve the same thing.

Let A ⊆ V (G) and let d � 2. An (A, d)-tree in G is a tree subgraph of G
on at least d vertices whose leaves are contained in A. Let v be a vertex of G.
If there is an (NG(v), d)-tree T in G − v, then G[V (T ) ∪ {v}] is a 2-connected
graph with at least d + 1 vertices. This implies that if there are k + 1 pairwise
vertex-disjoint (NG(v), d)-trees in G − v, then we can safely remove v, as any
solution should contain v.

We prove that if G does not have any set of k + 1 pairwise vertex-disjoint
(A, d)-trees, then there exists S ⊆ V (G) where the size of S is bounded by a
function of k and d, and every connected component of G − S has fewer than
d vertices of A. Note that G − S may still have some (A, d)-trees, as a path of
length d − 1 between two vertices in A is also an (A, d)-tree.
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Proposition 4.4. Let G be a graph, let k and d be positive integers, and let
A ⊆ V (G). There is an algorithm that, in time O(d|V (G)|3), finds either:

(i) k pairwise vertex-disjoint (A, d)-trees in G, or
(ii) a vertex subset S ⊆ V (G) of size at most 2(2k − 1)(d2 − d + 1) such that

each connected component of G − S contains fewer than d vertices of A.

Reduction Rule 4 (Sunflower rule 1). Let v be a vertex of G. If there are
k+1 pairwise vertex-disjoint (NG(v), d)-trees in G−v, then remove v and reduce
k by 1.

After exhaustively applying Reduction Rule 4, we may assume, by Propo-
sition 4.4, that for each v ∈ V (G), there exists Sv ⊆ V (G − v) with |Sv| �
2(2k + 1)(d2 − d + 1) such that v has at most d − 1 neighbors in each con-
nected component of G − (Sv ∪ {v}). In the remainder of this section, we use
Sv to denote such a set for any v ∈ V (G). To find many connected components
of G − (Sv ∪ {v}) where each connected component C has the property that
G[V (C) ∪ {v}] ∈ φP∩B2,d , we apply the next two reduction rules.

Reduction Rule 5 (Disjoint obstructions rule). If there are k+1 connected
components of G − (Sv ∪ {v}) such that each connected component is not in
φP∩B2,d , then conclude that (G, d, k) is a No-instance.

Reduction Rule 6 (Sunflower rule 2). If there are k + 1 connected compo-
nents of G − (Sv ∪ {v}) where each connected component C is in φP∩B2,d but
G[V (C) ∪ {v}] /∈ φP∩B2,d , then remove v and decrease k by 1.

We can perform these two rules in polynomial time using the block tree
of G[V (C) ∪ {v}]. Then we may assume that G − (Sv ∪ {v}) contains at
most 2k connected components such that the connected component C satis-
fies G[V (C) ∪ {v}] /∈ φP∩B2,d . Thus, if v has degree at least �, there are at least
�−2(2k+1)(d2−d+1)

d−1 − 2k connected components of G − (Sv ∪ {v}) such that the
connected component C satisfies G[V (C) ∪ {v}] ∈ φP∩B2,d . As G is reduced
under Reduction Rule 2, there is an edge between any such connected compo-
nent C and Sv. We introduce a final reduction rule, which uses the α-expansion
lemma [17].

Lemma 4.5 (α-expansion lemma). Let α be a positive integer, and let F be
a bipartite graph with vertex bipartition (X,Y ) such that |Y | � α|X| and every
vertex of Y has at least one neighbor in X. Then there exist non-empty subsets
X ′ ⊆ X and Y ′ ⊆ Y and a function φ : X ′ → (

Y ′

α

)
such that

– NF (Y ′) ∩ X = X ′,
– φ(x) ⊆ NF (x) for each x ∈ X ′, and
– the sets in {φ(x) : x ∈ X ′} are pairwise disjoint.

In addition, such a pair X ′, Y ′ can be computed in time polynomial in α|V (F )|.
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Reduction Rule 7 (Large degree rule). Let v be a vertex of G. If there is a
set C of connected components of G− (Sv ∪{v}) such that |C| � 2d(2k +1)(d2 −
d + 1) and, for each C ∈ C, we have G[V (C) ∪ {v}] ∈ φP∩B2,d , then do the
following: (1) Construct an auxiliary bipartite graph H with bipartition (Sv, C)
where w ∈ Sv and C ∈ C are adjacent in H if and only if w has a neighbor
in C. (2) Compute sets C′ ⊆ C and S′

v ⊆ Sv obtained by applying Lemma 4.5
to H with α = d. (3) Remove all edges in G between v and each connected
component C of C′. (4) Add d − 1 internally vertex-disjoint paths of length 2
between v and each vertex x ∈ S′

v. (5) Remove all vertices of degree 1 in the
resulting graph.

Lemma 4.6. Reduction Rule 7 is safe.

Lemma 4.7. Reduction Rules 1 to 7 can be applied exhaustively in polynomial
time.

Proof (Proof of Theorem 4.1). We apply Reduction Rules 1 to 7 exhaustively.
Note that this takes polynomial time, by Lemma 4.7. Suppose that (G, d, k)
is the reduced instance, and |V (G)| � 4dk(� − 1)(2d + 3)(d + 3) where � =
2d2(2k + 1)(d2 − d + 3). Then, by Lemma 4.3, there exists a vertex v of degree
at least �.

By Proposition 4.4, v has at most d − 1 neighbors in each connected com-
ponent of G − (Sv ∪ {v}). Since � = 2d2(2k + 1)(d2 − d + 3), the subgraph
G − (Sv ∪ {v}) contains at least �−2(2k+1)(d2−d+1)

d−1 � 2d(2k + 1)(d2 − d + 3)
connected components. By Reduction Rules 5 and 6, G − (Sv ∪ {v}) contains at
least 2d(2k +1)(d2 −d+1) connected components such that, for each connected
component C,G[V (C) ∪ {v}] ∈ φP∩B2,d . Then we can apply Reduction Rule 7,
contradicting our assumption. We conclude that |V (G)| = O(k2d7). 	


One might ask whether the kernel with O(k2d7) vertices can be improved
upon. Regarding the k2 factor, reducing it to linear in k would imply a linear
kernel for Feedback Vertex Set. On the other hand, it is possible to reduce
the d7 factor depending on the block-hereditary class P.

Theorem 4.8.

– Bounded Block VD admits a kernel with O(k2d6)
vertices.

– Bounded Complete Block VD admits a kernel with O(k2d3) vertices.
– Bounded Cactus Graph VD admits a kernel with O(k2d4) vertices.
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17. Thomassé, S.: A quadratic kernel for feedback vertex set. In: Proceedings of the
Twentieth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2009,
New York, NY, USA, 4–6 January 2009, pp. 115–119 (2009)
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Abstract. A harmonious coloring of a graph is a partitioning of its ver-
tex set into parts such that, there are no edges inside each part, and there
is at most one edge between any pair of parts. It is known that finding a
minimum harmonious coloring number is NP-hard even in special classes
of graphs like trees and split graphs.

We initiate a study of parameterized and exact exponential time com-
plexity of harmonious coloring. We consider various parameterizations
like by solution size, by above or below known guaranteed bounds and
by the vertex cover number of the graph. While the problem has a sim-
ple quadratic kernel when parameterized by the solution size, our main
result is that the problem is fixed-parameter tractable when parameter-
ized by the size of a vertex cover of the graph. This is shown by reducing
the problem to multiple instances of fixed variable integer linear pro-
gramming.

We also observe that it is W [1]-hard to determine whether at most
n − k or Δ + 1 + k colors are sufficient in a harmonious coloring of an
n-vertex graph G, where Δ is the maximum degree of G and k is the
parameter. Concerning exact exponential time algorithms, we develop a
2nnO(1) algorithm for finding a minimum harmonious coloring in split
graphs improving on the naive 2O(n logn) algorithm.

1 Introduction and Motivation

Graph Coloring is the problem of partitioning the vertex set of a graph to satisfy
some constraints. Coloring problems have been extensively studied in discrete
mathematics and theoretical computer science. Given a coloring χ of a graph G,
the set of vertices that receive the same color is said to be a color class. One of
the most well-known coloring problems is the chromatic number problem that
seeks the minimum number of colors required so that each color class induces
an independent set (i.e. no pair of vertices in a set is adjacent), and it is one
of Karp’s 21 NP-complete problems from 1972 [18]. Lawler gave an algorithm
for the problem running in time 2.4423nnO(1) on an n-vertex graph [19]. Later,
using the principle of inclusion-exclusion Björklund et al. [5] gave an algorithm

c© Springer-Verlag GmbH Germany 2016
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running in time 2nnO(1) on an n-vertex graph and this is the fastest known exact
algorithm for the problem.

Different variants of the graph coloring problem have been studied in the
literature. The Achromatic Number seeks the maximum number of colors
required so that each color class induces an independent set, and there is at least
one edge between every pair of color classes. A characterization for this problem
was given in [14] using which one can obtain an FPT algorithm for Achro-
matic Number parameterized by the solution size (see Sect. 2.1 for definitions
on parameterized complexity). The Pseudo-Achromatic Number problem is
a generalization of Achromatic Number, and does not demand that each color
class induces an independent set. This problem is also FPT parameterized by
the solution size [7]. Another related problem is the b-Chromatic Number.
Here the objective is to color the vertices with the same properties as that in
Achromatic Number, but insist that in each color class there is a vertex that
has a neighbor in every other color class. This problem was introduced in [2].
The problem is W[1]-hard when parameterized by the solution size [22].

In 1989, Hopcroft and Krishnamoorthy [15] introduced the notion of harmo-
nious coloring. A harmonious coloring of a graph is a partition of the vertex
set into sets such that every set induces an independent set and additionally
between any pair of sets, there is at most one edge. The minimum number of
sets in such a partition is called the harmonious coloring number of the graph.
Determining whether a graph has harmonious coloring using at most k colors is
known to be NP-complete [15], even in trees [13], split graphs [3], interval graphs
[3,6] and several other classes of graphs [3,4,6,12,13,16]. Polynomial time algo-
rithms are known for some special classes of graphs [21], the most important
being for trees of bounded degree [11].

In this paper, we initiate the parameterized complexity of the problem under
natural parameterizations. With solution size k (the harmonious coloring num-
ber) as a parameter, there is a trivial kernel on O(k2) vertices and edges, and
this is discussed in Sect. 4.1. In this section, we also discuss parameterized com-
plexity of parameterizing above or below some known bounds for harmonious
coloring number. As the problem is NP-complete on trees, the problem parame-
terized by the treewidth or feedback vertex set is trivially para NP-hard. Our
main result is that the problem is fixed-parameter tractable when parameterized
by the size of the minimum vertex cover of the graph. This is shown by solv-
ing several bounded variable integer linear programming (ILP) problems. The
number of ILPs is upper bounded by a function of minimum vertex cover. This
is developed in Sect. 4.2. In Sect. 5, we discuss exact exponential algorithms for
harmonious coloring, and give an 2O(n) algorithm in split graphs, improving on
the naive 2O(n log n) algorithm. In Sect. 3, we develop improved upper bounds on
the harmonious coloring number in terms of the vertex cover number and the
maximum degree of the graph. Results marked with a (�) have their proofs in
the full version of this paper.
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2 Preliminaries

We use N and Z to denote the set of natural numbers and set of integers, respec-
tively. For n ∈ N we use [n] to denote {1, . . . , n}. We use standard notations from
graph theory [9]. By “graph” we mean simple undirected graph. The vertex set
and edge set of a graph G are denoted as V (G) and E(G) respectively. The com-
plement of a graph G, denoted by G, has V (G) as its vertex set and

(
V (G)

2

)\E(G)
as its edge set. Here,

(
V (G)

2

)
denotes the family of two sized subsets of V (G). The

neighborhood of a vertex v is represented as NG(v), or, when the context of the
graph is clear, simply as N(v). The closed neighborhood of a vertex v, denoted
by N [v], is the subset N(v)∪{v}. For set U , we define N(U) as union of N(v) all
vertices v in U . If U = ∅ then N(U) = ∅. For two disjoint subsets V1, V2 ⊆ V (G),
E(V1, V2) is set of edges where one end point is in V1 and another is in V2. An
edge in the set E(V1, V2) is said to be going across. A trivial component of graph
is a component which does not contain any edge. A non-trivial component of a
graph is a connected component of G that has at least two vertices. The function
dG : V (G) × V (G) → N corresponds to the minimum distance between a pair of
vertices in the graph G. A d-degenerate graph is a graph G where V (G) has an
ordering in which any vertex has at most d neighbors with indices lower than
that of the vertex. For a graph G, a set S ⊆ V (G) is called a vertex cover of G
if G − S is an independent set. A graph G is called a split graph if V (G) has a
bipartition (V1, V2) such that G[V1] is an induced clique and G[V2] is an induced
independent set. In this case, (G[V1], G[V2]) is called a split partition of G. No
split graph contains a 4-cycle (C4), a 5-cycle (C5) or the complement of a 4-cycle
(2K2) as an induced subgraph. The finite set of graphs {C4, C5, 2K2} is said to
be a finite forbidden set of the class of split graphs. Each graph in the finite
forbidden set is referred to as a forbidden structure.

A function h : V (G) → [k], where k is a positive integer, is called a coloring
function. For a coloring function h and for any i ∈ [k], the vertex subset h−1(i)
is called the ith color class of h. If no edge has both its end points in the same
color class then coloring function is said to be proper. Harmonious coloring is a
proper coloring with additional property that there is at most one edge across
any two color classes. The minimum number of colors required for a harmonious
coloring of a graph G is denoted by hc(G). The restriction of a coloring function
h to a subset V ′ ⊆ V (G), denoted by h|V ′ , is a coloring function such that
h|V ′ : V ′ → [k], and h|V ′(u) = h(u) for each vertex u ∈ V ′. In this case, h is said
to be an extension of h|V ′ . For a subset V ′ ⊆ V (G), h(V ′) = {i|h−1(i)∩V ′ �= ∅}.

The technical tool we use to prove that Harmonious Coloring is fixed-
parameter tractable (defined in next section) by size of vertex cover is the fact
that Integer Linear Programming is fixed-parameter tractable parameter-
ized by the number of variables. An instance of Integer Linear Program-
ming consists of a matrix A ∈ Z

m×p, a vector b ∈ Z
m and a vector c ∈ Z

p. The
goal is to find a vector x ∈ Z

p which satisfies Ax ≤ b and minimizes the value of
c ·x (scalar product of c and x). We assume that an input is given in binary and
thus the size of the input is the number of bits in its binary representation.
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Proposition 1 ([17], [20]). An Integer Linear Programming instance of
size L with p variables can be solved using O(p2.5p+o(p)·(L+log Mx)·log(Mx·Mc))
arithmetic operations and space polynomial in L+log Mx, where Mx is an upper
bound on the absolute value a variable can take in a solution, and Mc is the
largest absolute value of a coefficient in the vector c.

2.1 Parameterized Complexity

The goal of parameterized complexity is to find ways of solving NP-hard prob-
lems more efficiently than brute force by associating a small parameter to each
instance. Formally, a parameterization of a problem is assigning a positive integer
parameter k to each input instance and we say that a parameterized problem is
fixed-parameter tractable (FPT) if there is an algorithm that solves the problem
in time f(k) · |I|O(1), where |I| is the size of the input and f is an arbitrary
computable function depending only on the parameter k. Such an algorithm is
called an FPT algorithm and such a running time is called FPT running time.
There is also an accompanying theory of hardness using which one can identify
parameterized problems that are unlikely to admit FPT algorithms. The hard
classes are W [i], i ∈ N. For the purpose of this paper, it is enough to know that
the Independent Set problem is W[1]-hard [10].

A parameterized problem is said to be in the class para-NP if it has a nonde-
terministic algorithm with FPT running time. To show that a problem is para-
NP-hard, we need to show that the problem is NP-hard when the parameter
takes a value from a finite set of positive integers.

Another direction of research is in providing a refinement of the FPT class,
through the concept of kernelization. A parameterized problem is said to admit
a h(k)-kernel if there is a polynomial time algorithm (the degree of the poly-
nomial is independent of k), called a kernelization algorithm, that reduces the
input instance to an instance with size upper bounded by h(k), while preserving
the answer. If the function h(k) is polynomial in k, then we say that the prob-
lem admits a polynomial kernel. For more on parameterized complexity, see the
recent book [8].

3 Upper and Lower Bounds and Structural Results

In this section, we give some general upper bounds of harmonious coloring num-
ber based on other natural graph parameters and show some structural results
which are used later in our algorithms.

Observation 1. For a given graph G and two vertices u, v, if u and v belong
to the same harmonious color class then dG(u, v) > 2.

Definition 1 (Identify). For a graph G, identifying a vertex set U of V (G)
is the operation of deleting U , adding a new vertex w and the edge set {wx|x /∈
U,∃u ∈ Uandxu ∈ E(G)}.
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Observation 2 (�). For a graph G, let φ be an optimal harmonious coloring.
Suppose the graph G′ is formed by identifying a color class of φ. Then hc(G) =
hc(G′).

Lemma 1 (�). Let G be a graph without isolated vertices, X be a vertex cover
of G, and let H be the auxiliary graph defined such that V (H) = V (G − X) and
for u, v ∈ V (H), uv ∈ E(H) if dG(u, v) = 2. A coloring function h of G, where
(1) h(X)∩h(V (G−X)) = ∅, (2) h(i) �= h(j) for all i �= j ∈ X, is a harmonious
coloring of G if and only if h|V (G−X) is a proper coloring of H.

Let Δ(G) denote the maximum degree of the graph, and vc(G) denote the
vertex cover number of G. We use Δ if the graph G is clear from the context.
We show the following bound for general graphs.

Theorem 1. For any graph G with Δ ≥ 2,Δ + 1 ≤ hc(G) ≤ vc(G) + Δ(Δ − 1).

Proof. By Observation 1, any two vertices in the same harmonious color class
should be at a distance three or more from each other. This implies that for any
vertex u, every vertex in its closed neighbourhood gets a separate color. Since
this is true for a vertex with the highest degree, lower bound on harmonious
coloring follows.

We first construct a harmonious coloring with vc(G) + Δ(Δ − 1) + 1 many
colors and then apply a trick to save one color. Let X be a vertex cover of graph
G. Construct a coloring φ : V (G) → [vc(G) + Δ(Δ − 1) + 1] in the following
fashion: Color each vertex in vertex cover X with separate color which will not
be used for remaining vertices. Construct an auxiliary graph H as mentioned
in Lemma 1. Notice that Δ(H) = Δ(G)(Δ(G) − 1). Graph H can be properly
colored using Δ(H) + 1 many colors ([9] p.115). Coloring φ|V (G−X) is proper
coloring of H and satisfies the premises of Lemma 1 hence it is harmonious
coloring of G.

We now show how to save one color from this coloring using a similar idea
from [1]. Let X be the vertex cover. If our greedy coloring above used only
Δ(Δ−1) colors to color vertices of V (G)\X, then we are already done. Otherwise,
pick any vertex u in X. We recolor u using a color used by vertices in V (G) \X.
Let u be adjacent to i ≤ Δ − 1 vertices in X (If all neighbors of u are in X,
then u can be moved out of X, without loss of generality). Hence there are at
most i(Δ − 1) vertices in V (G) \ X which are at distance two from vertex u.
There are at most Δ − i vertices adjacent to u in V (G) \ X. Colors used by all
these vertices can not be used to recolor vertex u because of Observation 1 but
u can be colored with any other color. Thus the number of forbidden colors is
i(Δ − 1) + Δ − i = i(Δ − 2) + Δ. But i(Δ − 2) + Δ ≤ (Δ − 1)(Δ − 2) + Δ =
Δ(Δ− 1)−Δ+2 ≤ Δ(Δ− 1) when Δ ≥ 2 and hence we can always find a color
to recolor vertex u reducing the upper bound by 1. �

The upper bound is tight for C4, a cycle on 4 vertices.

Theorem 2 (�). If G is a d-degenerate graph, then Δ + 1 ≤ hc(G) ≤ vc(G) +
d(Δ − 1) + Δ(d − 1) + 1.
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The following corollary follows from Theorem 2 as a forest is 1-degenerate.

Corollary 1. If G is a forest with at least one edge, then Δ + 1 ≤ hc(G) ≤
vc(G) + Δ.

The upper bounds in Theorem 1 and Corollary 1 improve respectively the
bounds of Theorems 6 and 4 of [1].

4 Parameterized Complexity of Harmonious Coloring

4.1 ‘Standard’ and ‘Above/Below Guarantee’ Parameterizations

In this subsection, we capture some easy observations on the parameterized
complexity of harmonious coloring under some standard parameterizations. We
start with the following theorem whose proof (given in the full version of this
paper) follows from the observation that if the number of edges is ‘large’, then
the harmonious coloring number has to be large.

Lemma 2 (�). Let G be a graph on n vertices and m edges. Harmonious
Coloring, parameterized by the number of colors used, is FPTwith a quadratic
kernel.

The proof of the above theorem suggests that the harmonious coloring num-
ber of most graphs is large with respect to the number of vertices. The number
of vertices n is a trivial upper bound and Theorem 1 gives a lower bound of
Δ+1 for the harmonious coloring number of a graph. So the natural question is:
is it FPT to determine whether one can harmoniously color using at most n − k
or Δ + k + 1 colors where the parameter is k. We prove the following theorem.

Theorem 3 (�). (i) It is W[1]-hard to determine whether a given n-vertex graph
has harmonious coloring number at most n − k where k is the parameter. (ii) It
is para-NP-hard to determine whether a given graph has a harmonious coloring
number at most Δ + 1 + k where Δ is the maximum degree of the graph, and k
is the parameter.

4.2 Parameterization by Size of Vertex Cover

As the Harmonious coloring is NP-complete on trees, it is trivially para NP-
hard when parameterized by the treewidth of the graph or the feedback vertex
set size of the graph. In this section, we consider the structural parameterization
by the well-studied vertex cover number of the graph. We describe an FPT
algorithm for Harmonious coloring when parameterized by the size of a
vertex cover of the input graph. We show that the problem reduces to several
instances of Integer Linear Programming. We assume that the input graph
G has no isolated vertices. Otherwise, for any harmonious coloring of the input
graph G, we can include the set of isolated vertices into any one of the color
classes.
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In case of structural parameters, sometimes it is necessary to demand a wit-
ness of the required structure as part of the input. However, when the size of a
vertex cover is the parameter, this is not a serious demand. Suppose the input
parameter is �. We find a 2-approximation of the minimum vertex cover of the
input graph G(pp 11,[23]). If the size of the approximate vertex cover is strictly
more than 2�, then we have verified that the input parameter does not corre-
spond to a valid vertex cover number of G. Otherwise, the approximate vertex
cover is of size 2� and we can use this vertex cover as a witness. Thus, we may
assume that we are solving the following problem.

VC-Harmonious Coloring Parameter: |X|
Input: A graph G, a vertex cover X of G, a non-negative integer k
Question: Is there a harmonious coloring of G with k colors?

The idea is to enumerate over all the possible harmonious coloring of G[X]
and for each harmonious coloring, verify whether it can be extended to G using
a total of k colors. As we will see, the problem of extending harmonious coloring
of G[X] to the entire graph is equivalent to that of finding harmonious coloring
of the graph such that each color class contains at most one vertex from the
vertex cover. We first observe some properties of such a harmonious coloring.

In the remaining section, unless stated otherwise, G is the input graph with
vertex cover X of size � and I = V (G) \ X is an independent set.

Observation 3 (�). For any harmonious coloring of G the size of a color class
is at most �.

For each vertex u in I we associate a brand.

Definition 2. The brand of a vertex v in I with respect to X is the set N(v).

The number of different brands is upper bounded by the number of nonempty
subsets of X which is 2� −1. For vertices u, v in I if brand(u)∩brand(v) �= ∅ then
dG(u, v) = 2 and by Observation 1 these two vertices can not belong to the same
harmonious color class. For S ⊆ X, we define set I(S) = {v ∈ I|brand(u) = S}.

Consider a harmonious coloring h : V (G) → [k] and two vertices u, v in I,
such that brand(u) = brand(v). Let h(u) = i and h(v) = j. Define a coloring h̃

on V (G) as h̃(w) = h(w) for all w in V (G) \ {u, v}, and h̃(u) = j and h̃(v) = i.

Observation 4 (�). For a given harmonious coloring h of G, let u, v be two
vertices in I such that brand(u) = brand(v). If coloring h̃ is as defined above
then h̃ is also a harmonious coloring of G.

Thus we can characterize a harmonious color class based on the brand of the
vertices which are part of it. Once the brands which make up the color class are
fixed, it does not matter which vertex having that brand is chosen for the color
class. This leads us to the definition of a type of a potential color class.

Definition 3 (type). A type Z with respect to X is a �+1 sized tuple where the
first entry is subset of X of cardinality at most 1, and each of the remaining �
entries is either ∅ or a distinct brand of a vertex in I.
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A type Z can be represented as (Y ;S1, S2, . . . , S�) where Y is either an empty
set or a singleton set from X. All the entries in this tuple are subsets of X
but we distinguish the first entry from the remaining entries. The number of
different types is at most � ·(2�

�

)
, which is at most � ·2�2 . Any color class C which

contains at most one vertex from the vertex cover and at most � vertices from
the independent set can be labeled with some type.

Definition 4 (Color Class of type Z). Let h be a harmonious coloring of G
such that each color class contains at most one vertex from X, and let Z =
(Y ;S1, S2, . . . , S�) be a type defined with respect to X. Color class C of h is of
type Z if C ∩ X = Y and for every u ∈ C ∩ I there exists Si in type Z such that
brand(u) = Si.

Not all the types can be used to label a harmonious color class. We define
the notion of valid types to filter out such types.

Definition 5 (Valid type). A type Z = (Y ;S1, S2, . . . , S�) is said to be valid if
all the sets in the family {N [Y ], S1, S2, . . . S�} are pairwise disjoint.

The validity constraints imply that if a vertex set is labeled with a valid
type Z, then for any u, v in that set, the minimum distance between u and v
is strictly greater than 2. Only the valid types can be used to label harmonious
color classes.

Definition 6 (Compatible types). Two valid types Z = (Y ;S1, S2, . . . , S�)
and Z ′ = (Y ′;S′

1, S
′
2, . . . , S

′
�) are said to be compatible with each other if |Y ∩

(S′
1 ∪ S′

2 ∪ · · · ∪ S′
�)| + |Y ′ ∩ (S1 ∪ S2 ∪ · · · ∪ S�)| ≤ 1.

The compatibility condition of types encodes that the number of edges run-
ning across two harmonious color classes is at most 1. Two harmonious color
classes C and C ′ can be of type Z and Z ′ respectively only if these two types are
compatible with each other.

Lemma 3. Let C and C ′ are two disjoint sets of V (G) of valid types Z =
(Y ;S1, S2, . . . , S�) and Z ′ = (Y ′;S′

1, S
′
2, . . . , S

′
�) respectively. |E(C,C ′)| ≤ 1 if

and only if Z and Z ′ are campatible with each other.

Proof. (⇒) If |E(C,C ′)| = 0 then there is no edge across C ′ and C and hence
|Y ∩ (S′

1 ∪ S′
2 ∪ · · · ∪ S′

�)| = |Y ′ ∩ (S1 ∪ S2 ∪ · · · ∪ S�)| = 0 making types Z
and Z ′ compatible. Consider the case when |E(C,C ′)| = 1. With out loss of
generality, let x ∈ C ∩ X and z′ ∈ C ′ and xz′ is the edge across C and C ′. For
any u in C \ X, E({u}, Y ′) = ∅ implying N(u) ∩ Y ′ = ∅ which is equivalent
to |Y ′ ∩ (S1 ∪ S2 ∪ · · · ∪ S�)| = 0. Since xz′ is the only edge across C and C ′,
|Y ∩ (S′

1 ∪ S′
2 ∪ · · · ∪ S′

�)| is 0 or 1 depending on whether z′ is in X or not. In
either case, types Z and Z ′ are compatible.

(⇐) If |Y ∩ (S′
1 ∪ S′

2 ∪ · · · ∪ S′
�)| = |Y ′ ∩ (S1 ∪ S2 ∪ · · · ∪ S�)| = 0 then there is

no edge across C and C ′ whose one end point is outside vertex cover X. Since
Y and Y ′ has cardinality of at most 1, |E(C,C ′)| ≤ 1. So now we are in a case
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where |Y ∩ (S′
1 ∪ S′

2 ∪ · · · ∪ S′
�)| + |Y ′ ∩ (S1 ∪ S2 ∪ · · · ∪ S�)| = 1. Without loss

of generality, assume that |Y ∩ (S′
1 ∪ S′

2 ∪ · · · ∪ S′
�)| = 1. This imply that there

is an edge whose one end point is in Y and another end point is in C ′ \ Y ′.
Also, |Y ′ ∩ (S1 ∪ S2 ∪ · · · ∪ S�)| = 0 implies that there is no edge with one
end point incident on Y ′ and another end point in C \ Y . The only thing that
remains to argue that in this situation E(Y, Y ′) = ∅. If this is not the case then
Y ∩ N(Y ′) �= ∅. But there exists S′

i such that Y ∩ S′
i �= ∅. Since Y is singleton

set, this implies N(Y ′) ∩ S′
i �= ∅ which contradicts the fact that type Z ′ is valid.

Hence E(Y, Y ′) = ∅ which concludes the proof of |E(C,C ′)| ≤ 1. �
For a given graph G and a vertex cover X of G, we construct a set Z consisting
of all types with respect to X which are valid. For every subset Z ′ of Z such that
any two types in Z ′ are compatible with each other, we construct an instance
JZ′ of Integer Linear Programming as follows.

We define a variable zi as the number of color class of type Zi used in the
coloring. In the following objective function, we encode the aim of minimizing
number of color classes used.

minimize
|Z′|∑

i=1

zi

For every S ⊆ X and j ∈ [|Z ′|] define

bS
j = 1 if there is brandS in typeZj ; otherwise 0

There are exactly |I(S)| many vertices of brand S.

|Z′|∑

j=1

zj · bS
j = |I(S)| ∀S ⊆ X (1)

For every x ∈ X and j ∈ [|Z ′|] define

cx
j = 1 if {x} is the first entry in typeZj ; otherwise 0

There can be at most one color class which contains vertex x in X.

|Z′|∑

j=1

zj · cx
j = 1 ∀x ∈ X (2)

Corollary 2. An instance JZ′ can be solved in time 2O(2�2 ·�3)nO(1).

Proof. The number of variables in instance JZ′ is |Z ′| which is upper bounded
by � · 2�2 . The maximum value, any variable zi can take, is n and the largest
value any coefficient in the objective function can take is 1. The coefficients in
the constraints are upper bounded by n. The number of constraints is at most
2� + �. By Proposition 1, instance JZ′ can be solved in time 2O(2�2 ·�3)nO(1). �
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Recall that for a given graph G and its vertex cover X, Z is the set of all
valid types with respect to X and Z ′ is a subset of Z such that any two types in
Z ′ are compatible with each other.

Lemma 4 (�). Given a graph G with a vertex cover X, an integer k, there
exists a harmonious coloring of G with at most k colors and each color class
contains at most one vertex from X if and only if there exists Z ′ ⊆ Z such that
the minimum value for an instance IZ′ is at most k.

This leads us to the main theorem of this section.

Theorem 4 (�). Harmonious Coloring, parameterized by the size of a ver-
tex cover of the input graph, is fixed-parameter tractable.

While it is an interesting open problem to improve the bound of the FPT
algorithm, we show that when the input graph is a forest, the bound can be
substantially improved to show the following.

Theorem 5 (�). Given a forest G, a vertex cover X of size �, we can find
the minimum harmonious number, and the corresponding coloring of G in
2O(�2)nO(1) time.

The main reason for the improved bound is that the number of brands for vertices
in V (I) comes down to at most 2� − 1 (from 2� − 1). Also, except for � brands,
all others have at most one vertex having that brand. Furthermore, we can run
through some careful choices and avoid solving the integer linear programming.
The details are in the full version of this paper.

5 Exact Algorithm on Split Graphs

As the number of vertices is a trivial upper bound for the harmonious color-
ing number, a naive algorithm to find the minimum harmonious number runs
through all the nn possible colorings to find the minimum number. It is know
that Harmonious Coloring on Split graphs is NP-Complete. In this section,
we give an exact algorithm for Harmonious coloring on the class of split
graphs improving on this 2n log n bound to 2nnO(1). We make use of a relation
between a harmonious coloring of a split graph and a proper coloring of an auxil-
iary graph to obtain our improved algorithm. We can relate the number of colors
required for a harmonious coloring of the graph G with that for a harmonious
coloring of its non-trivial component.

Observation 5 (�). Let G be an input split graph with E(G) �= ∅ and let C be
a non-trivial component of G. Then hc(G) = hc(C).

Observation 6 ([21]). For any harmonious coloring h of G and a split-partition
(K, I), each vertex in K must be given a distinct color.

As a corollary to Lemma 1, we obtain the following relation in split graphs.
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Corollary 3 (�). Let G be a connected split graph with a split-partition (K, I),
and let H be the auxiliary graph defined from G as in the statement of Lemma 1.
A coloring function h is a harmonious coloring of G if and only if (i)h(K) ∩
h(I) = ∅, (ii) each vertex of K gets distinct color, and (iii)h|I is a proper
coloring of H.

Theorem 6. Given a split graph G, there is an algorithm, running in 2nnO(1)

time, that computes the minimum harmonious coloring of graph G.

Proof. By Observation 5, we can assume that G is a connected graph. Let (K, I)
be a split partition of G. By Observation 6, in any harmonious coloring of G,
each vertex of K must get a distinct color. Also, by connectivity, each vertex in
V (I) must be adjacent to a vertex in V (K). Hence, in any harmonious coloring
of G, the vertices of V (I) must be colored distinctly from the vertices of V (K).
From Corollary 3, the minimum proper coloring of the auxiliary graph H gives
the minimum harmonious coloring of G extending the coloring of K. Thus, it is
enough to find the minimum proper coloring of H, which can be done in time
2nnO(1) using the algorithm of Björklund et al. [5]. �

We obtain an improved FPT algorithm for split graphs as a corollary.

Corollary 4 (�). Given a split graph G and a non-negative integer k, we can
determine whether G has a harmoniously coloring with at most k colors in
2O(k2)nO(1) time.

6 Conclusions

We have shown that the harmonious coloring problem is fixed-parameter
tractable when parameterized by the harmonious coloring number or the vertex
cover number. While improving the bounds for our FPT algorithms is a natural
open problem, we end with the following specific open problems.

– When parameterizing by k, the harmonious coloring number, can the kernel
size of O(k2) be improved?

– When parameterizing by the vertex cover number �, is there a c�nO(1) algo-
rithm, for some constant c, at least on trees?
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Abstract. We introduce a new Steiner-type problem for directed graphs
named q-Root Steiner Tree. Here one is given a directed graph G =
(V, A) and two subsets of its vertices, R of size q and T , and the task is to
find a minimum size subgraph of G that contains a path from each vertex
of R to each vertex of T . The special case of this problem with q = 1 is
the well known Directed Steiner Tree problem, while the special case
with T = R is the Strongly Connected Steiner Subgraph problem.

We first show that the problem is W[1]-hard with respect to |T | for any
q ≥ 2. Then we restrict ourselves to instances with R ⊆ T (Pedestal
version). Generalizing the methods of Feldman and Ruhl [SIAM J. Com-
put. 2006], we present an algorithm for this restriction with running time
O(22q+4|T | · n2q+O(1)), i.e., this restriction is FPT with respect to |T | for
any constant q. We further show that we can, without significantly affect-
ing the achievable running time, loosen the restriction to only requiring
that in the solution there is a vertex v and a path from each vertex of R
to v and from v to each vertex of T (Trunk version).

Finally, we use the methods of Chitnis et al. [SODA 2014] to
show that the Pedestal version can be solved in planar graphs in
O(2O(q log q+|T | log q) · nO(

√
q)) time.

1 Introduction

Steiner type problems are one of the most fundamental problems in the net-
work design. In general words the task is to connect a given set of points at the
minimum cost. The study of these problems in graphs was initiated indepen-
dently by Hakimi [16] and Levin [21]. In the classic Steiner Tree one is given
a (weighted) undirected graph G = (V,E) and a set T of its vertices (terminals)
and the task is to find a minimum cost connected subgraph containing all the
terminals.

In directed graphs, the notion of connectivity is more complicated. The notion
which turns out to be the closest to the undirected Steiner Tree is that of
Directed Steiner Tree (DST), where one is given a (weighted) directed
graph G = (V,A), a set T of terminals, and additionally a root vertex r and
the task is to find a minimum weight subgraph that provides a path from r to
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each vertex of T . Another natural option is, given a digraph G = (V,A) and
a set T of terminals, to search for a minimum weight subgraph that provides
a path between each pair of terminals in both directions. This is problem is
called Strongly Connected Steiner Subgraph (SCSS). The most general
problem allows to prescribe the demanded connection between the terminals.
Namely, in Directed Steiner Network (DSN) one is given a digraph G =
(V,A) and a set of q pairs of vertices {(s1, t1), . . . (sq, tq)} and is asked to find a
minimum weight subgraph H of G that contains a directed path from si to ti
for every i.

Obviously, DSN is a generalization of both DST and SCSS. In this paper we
consider a special case of DSN, which is still a very natural generalization of
both DST and SCSS, namely the following problem:

q-Root Steiner Tree (q-RST)
Input: A directed graph G = (V,A), two subsets of its vertices R, T ⊆ V
with |R| = q, and a positive integer k.
Question: Is there a set S ⊆ V of size at most k such that in G[R ∪ S ∪ T ]
there is a directed path from r to t for every r ∈ R and every t ∈ T?

If q = 1, then q-RST problem is equal to (unweighted) DST. On the other
hand, if we let T = R, then the problem is equivalent to (unweighted) SCSS
on the terminal set T . We study the problem from a multivariate perspective,
examining the influence of various parameters on the complexity of the problem.
We focus on the following parameters: number of roots q = |R|, number of
terminals |T |, and to a limited extent also to the budget k. Thorough the paper
we denote n = |V | and m = |A|. Before we present our results, let us summarize
what is known about the problems.

Known Results: Steiner Tree is NP-hard [14] and remains so even in very
restricted planar cases [13]. As the NP-hardness can be easily transferred also
to DST and SCSS, the problems were studied from approximation perspective.
However, in general terms, the problems are also hard to approximate. The best
known approximation factor for DST and SCSS is O(|T |ε) for any fixed ε > 0 [3].
On the other hand, the problems cannot be approximated to within a factor
of O(log2−ε n) for any ε > 0, unless NP has quasi-polynomial time Las Vegas
algorithms [17]. For the most general DSN problem the best known ratio is n2/3+ε

for any ε > 0 and the problem cannot be approximated to within O(2log
1−ε n)

for any ε > 0, unless NP has quasi-polynomial time algorithms [1]. We refer
to surveys, e.g., [20], for more information on the numerous polynomial-time
approximation results for Steiner-type problems.

From the perspective of parameterized algorithms [6,7] the problems are
mostly studied with respect to the number of terminals. It follows from the
classical result of Dreyfus and Wagner [8] (independently found by Levin [21]),
that Steiner Tree and also DST can be solved in O(3|T | · nO(1)) time. The
algorithm was subsequently improved [2,9,12] with the latest algorithm of
Nederlof [23] achieving O(2|T | · nO(1)) time and polynomial space complexity.
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For the SCSS and DSN with q terminals and q terminal pairs, Feldman
and Ruhl [10] showed that the problems can be solved roughly in O(n2q−1)
and O(n4q) time, respectively. We cannot expect fixed parameter tractability
for these problems, since the problems are W[1]-hard with respect to this para-
meter [15] (and even with respect to the total size of the sought graph). In
fact, unless the Exponential Time Hypothesis (ETH)1 [18] fails, SCSS cannot
be solved in f(q)no(q/ log q) time on general graphs and DSN cannot be solved
in f(q)no(q) time even on planar DAGs [4]. Chitnis et al. [4] also showed that
on planar graphs SCSS can be solved within 2O(q log q)nO(

√
q) time, but it is still

W[1]-hard and cannot be solved within f(q)no(
√

q) time, unless ETH fails. These
results hold for any computable function f .

With respect to the less studied parameter “number of nonterminals in the
solution”, representing one possible measure of the solution size, all the prob-
lems are on general graphs W[2]-hard by an easy reduction from Set Cover
(see, e.g., Guo et al. [15]). Chitnis et al. [5] considered FPT-approximations for
the problems. Notable SCSS admits a factor-2 FPT-approximation. On planar
graphs, only DST was studied with respect to this parameter, achieving fixed
parameter tractability [19].

An independent paper on the topics similar to the topics covered in this
paper appeared in the proceeding of ICALP 2016 [11].

Our Contribution: In this paper our aim is to generalize the positive results
for DST and SCSS also to q-RST. Unfortunately, as our first result, we show
that q-RST is still too general to achieve this goal. Namely, we show that for
any constant q ≥ 2 the q-RST is W[1]-hard with respect to |T | even on directed
acyclic graphs and cannot be solved within f(|T |)no(|T |/ log |T |) time, unless ETH
fails. In fact the same results hold even if we replace |T | by (k + |T |), the total
number of vertices in the resulting subgraph (minus q).

Then, we restrict the problem further to its special case by requiring R ⊆ T .
In fact, for better readability we require the solution to provide a path from each
r ∈ R to each vertex t ∈ R ∪ T and assume T ∩ R = ∅. We call the resulting
problem q-Root Steiner Tree with Pedestal (q-RST-P). Observe that it
still generalizes DST as well as SCSS.

We show that we can generalize the algorithm of Feldman and Ruhl [10] for
SCSS to q-RST-P, using an algorithm for DST as a subroutine. The running
time of our algorithm is O(22q+4|T | · n2q+O(1)), i.e., the problem is FPT with
respect to |T | for any constant q and the exponent of the polynomial depends
linearly on q. The lower bounds for SCSS indicate that this dependency on q is
almost optimal. In fact if T = ∅, then our algorithm is exactly the algorithm of
Feldman and Ruhl, while if q = 1, the algorithm boils down to a single call to
the DST subroutine.

The algorithm of Feldman and Ruhl is based on a token game, where the
tokens trace the path required in the solution. The solution of the instance is

1 ETH states that there is a positive constant c such that no algorithm can solve
n-variable 3-SAT in O(2cn) time.
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then represented by a sequence of moves of the tokens between two specified
configurations. We first enrich the game by introducing new tokens that trace
the path to vertices of T while using the original tokens to trace paths between
the vertices in R. We call this game cautious.

We then show that the solutions can be represented by move sequences with
further interesting properties. These allow us to group the moves and reduce
the number of intermediate configurations. The resulting game, which we call
accelerated, has moves very similar to the original game of Feldman and Ruhl,
but each move is now equipped by a subset of vertices of T that is also reached
in this move. We use this similarity for further results in our paper.

The crucial property of the problem that allows us to come up with the
algorithm is that there is a vertex such that every path required by the solution
can be dragged through this specific vertex (allowing the vertices to repeat on
the path). To illustrate this, we introduce another variant of the problem named
q-Root Steiner Tree with Trunk (q-RST-T), which is the same as q-RST,
but the solution is further required to contain a vertex which has a path from each
vertex in R and to each vertex in T . We show that this problem can be solved
in similar running time as q-RST-P, namely O(22q+4|T | ·n3q+O(1)). Qualitatively
similar running time can be also achieved if the special vertex provides all but
a constant number of the paths required by the problem.

We further generalize the result of Chitnis et al. [4] giving the improved
algorithm for SCSS in planar graphs to obtain an algorithm for q-RST-P in
planar graphs with running time O(2O(q log q+|T | log q) · nO(

√
q)).

While the hardness result applies to the decision variant, the algorithms
directly apply to the (cardinality) optimization case. Moreover, it is straightfor-
ward to generalize them to the case of vertex weights (we might want to use
different, more suitable, DST algorithm as a subroutine, based on the actual
range of the weights). In order to use arc weights, one just has to subdivide each
arc and give the weight of the arc to the newly created vertex. Thus our algo-
rithms also apply to vertex weighted and arc weighted variants of the problems.
Nevertheless, for ease of presentation, we formulate all our results only for the
cardinality case.

Organization of the paper: In Sect. 2 we present the hardness result for the
unrestricted version of q-RST. Section 3 describes the games and the algorithm
for q-RST-P. This is generalized to q-RST-T in Sect. 4. The improved algorithm
for q-RST-P in planar graphs is contained in Sect. 5. We conclude the paper with
outlook in Sect. 6.

Due to space constraints many proofs and explanations had to be deferred
to the full version of the paper, preprint of which is available on arXiv [25].

2 Unrestricted Case

This section is devoted to the proof of the following theorem.
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Theorem 1 (�).2 q-RST is W[1]-hard with respect to |T | even on directed
acyclic graphs for every q ≥ 2. Moreover, there is no algorithm for q-RST on
directed acyclic graphs running in f(|T |)no( |T |

log |T | ) time for any constant q ≥ 2,
unless ETH fails.

Our starting point are the known results for the following problem.

Partitioned Subgraph Isomorphism (PSI)
Input: Undirected graphs H = (VH , EH) and G = (VG, EG) and a coloring
function col : VH → VG.
Question: Is there an injection φ : VG → VH such that for every i ∈ VG,
col(φ(i)) = i and for every {i, j} ∈ EG, {φ(i), φ(j)} ∈ EH?

PSI is known to be W[1]-hard [24]. We also need the following lemma.

Lemma 1 ([22, Corollary 6.3]). Partitioned Subgraph Isomorphism

cannot be solved in time f(k)|VH |o( k
log k ) where f is an arbitrary function and

k = |EG| is the number of edges in the smaller graph G unless ETH fails.

We provide a parameterized reduction from PSI parameterized by |EG| to
q-RST parameterized by |T |. Let us start with the case q = 2.

Let (H = (VH , EH), G = (VG, EG), col) be an instance of PSI and let there
be some strict linear orders < on the vertices in VH and in VG such that if u < v,
then col(u) < col(v). We also assume that for every edge {u, v} ∈ Eh we have
{col(u), col(v)} ∈ EG and that G is connected and has at least one edge.

We start by constructing the directed graph G′ = (V ′, A′) We let V ′ =
R ∪ VH ∪ E′ ∪ F ∪ T , where R = {rV , rE}, E′ = {au,v | {u, v} ∈ EH , u < v},
F = {bu,v, bv,u | {u, v} ∈ E}, and T = {ti,j , tj,i | {i, j} ∈ EG, i < j}.

The set of arcs is constructed as follows. We add arcs from rV to all vertices
in VH and from rE to all vertices in E′. For every edge {u, v} where u < v, we
add the following set of arcs: an arc from au,v to bu,v and an arc from au,v to
bv,u; an arc from u to bu,v and an arc from v to bv,u; and an arc from bu,v to
tcol(u),col(v) and an arc from bv,u to tcol(v),col(u).

To finish the construction we let k′ = 3|EG| + �. Note that we have |T | =
2|EG|, i.e., the new parameter depends linearly on the original one and the
constructed graph is a directed acyclic graph.

The proof that the instance (G′, R, T, k′) of 2-RST is equivalent to the original
one is deferred to the full paper. For the case q > 2 it is enough to add q − 2
vertices to R, each having an arc only to rV .

3 Restriction to Solutions with Pedestal

Having shown in the previous section that we cannot show q-RST FPT like we
got for DST (which is 1-RST), in this section we restrict ourselves further. To
this end, we modify the definition of our problem in the sense that we do not
2 Proofs of statements marked with (�) were deferred to the full version of the paper.
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require to obtain a path from each vertex of R only to each vertex of T , but also
to each other vertex of R.

q-Root Steiner Tree with Pedestal (q-RST-P)
Input: A directed graph G = (V,A), two subsets of its vertices R, T ⊆ V
with |R| = q.
Task: Find a minimum size of a set S ⊆ V such that in G[R ∪ S ∪ T ] there
is a directed path from r to t for every r ∈ R and every t ∈ R ∪ T .

Note that this variant of q-RST could be also modeled by requiring R ⊆ T .
However, to simplify the description, we assume R ∩ T = ∅.

Theorem 2. For every q ≥ 1 the problem q-RST-P is fixed-parameter tractable
with respect to |T |. Namely there is an algorithm solving it in O(22q+4|T | ·
n2q+O(1)) time, where the constants hidden in the O() notations are indepen-
dent of |T | and q.

The rest of this section is devoted to the proof of this theorem.
The q-RST-P problem with the set T empty is exactly the SCSS problem

(with q terminals). This problem was shown to be polynomial time solvable for
every constant q by Feldman and Ruhl [10] using a modeling by a token game.
The cost of an optimal strategy for that game equals cost of the smallest solution
to the SCSS instance.

We first slightly modify this game to model the problem for arbitrary T in
Subsect. 3.1. We show there that optimal strategies for this game have some
interesting properties which we can further use. Then, in Subsect. 3.2, we intro-
duce a new game with more powerful moves which allows us to make many moves
of the original game at once. Finally, in Subsect. 3.3, we show that the optimal
strategies for the new game can be computed in the claimed running time.

3.1 Cautious Token Game

In this subsection we show how to modify the original token of Feldman and
Ruhl in order to model the q-RST-P problem. We fix a vertex r0 ∈ R and let
R′ = R \ {r0}. For a solution S the graph G[R ∪ S ∪ T ] will contain a path from
r0 to t for each vertex t in R′ ∪ T . These paths together form an out-tree rooted
at r0 which is called the backward tree. Also there is a path from each of the
vertices in R′ to r0, and these together form an in-tree rooted at r0, called the
forward tree.

The game traces the two trees by having three types of tokens, where two
of them behave similarly. First, we have an F -token at each of the vertices of
R′ and this token moves forward along the arcs of graph G. Second, we have a
B-token at each vertex of R′, moving backward against the direction of the arcs
of G. The third type of tokens we use (different from Feldman and Ruhl) are
D-tokens which are originally placed one on each of the vertices of T and move
similarly as B-tokens.

The purpose of the tokens is to trace the forward and backward tree. Hence,
whenever two tokens of the same type arrive at the same vertex we can merge
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them to one token. This is also the case for B-tokens and D-tokens, and in
case a B-token merges with a D-token we let the merged token be a B-token.
The purpose of introducing the D-tokens is to show that these are somewhat
less important for the game than B-tokens and, hence, they can be treated in a
different way in the new game we will introduce in the next subsection.

The state of the game can be described by tree subset of vertices (F,B,D)
representing the set of vertices occupied by F -tokens, B-tokens, and D-tokens,
respectively. Note that |F | ≤ q, |B| ≤ q, |D| ≤ |T | during the whole game. Hence
we take F,B ∈ (

V
≤q

)
and D ∈ (

V
≤|T |

)
(here and on

(
V
≤q

)
is the set of subsets of V

of size at most q).
The allowed moves are the following:

(1) Single moves for respective tokens: For every arc (u, v) ∈ A and all sets
F,B ∈ (

V
≤q

)
and D ∈ (

V
≤|T |

)
we introduce the following moves:

(a) If u ∈ F , then we have a move (F,B,D) c−→ ((F \{u})∪{v}, B,D), where
the cost c of the move is 1 if v /∈ F ∪ B ∪ D and 0 otherwise.

(b) If v ∈ B, then we have a move (F,B,D) c−→ (F (B \ {v}) ∪ {u},D \ {u}),
where the cost c of the move is 1 if u /∈ F ∪ B ∪ D and 0 otherwise.

(c) If v ∈ D, then we have a move (F,B,D) c−→ (F,B(D \ {v}) ∪ ({u} \ B)),
where the cost c of the move is 1 if u /∈ F ∪ B ∪ D and 0 otherwise.

(2) Flipping: For all sets F,B ∈ (
V
≤q

)
and D ∈ (

V
≤|T |

)
we introduce the following

moves:
(a) if F ′ ⊆ F , B′ ⊆ B, D′ ⊆ D, f ∈ F ′, and b ∈ B′, then we have a move

(F,B,D) c−→ ((F \ F ′) ∪ {b}(B \ B′) ∪ {f},D \ (D′ ∪ {f})), where c is
the number of vertices on a shortest walk from f to b going through all
vertices in F ′ ∪B′ ∪D′. Here each vertex is counted each time it is visited,
but vertices in F ′ ∪ B′ ∪ D′ are counted once less.

(b) if F ′ ⊆ F , B′ ⊆ B, B′ 
= ∅, D′ ⊆ D, f ∈ F ′, and d ∈ D′, then we have a
move (F,B,D) c−→ ((F \ F ′) ∪ {d}(B \ B′) ∪ {f},D \ (D′ ∪ {f})), where
c is the number of vertices on a shortest walk from f to d going through
all vertices in F ′ ∪ B′ ∪ D′. Here, again, each vertex is counted each time
it is visited, but vertices in F ′ ∪ B′ ∪ D′ are counted once less.

(c) if F ′ ⊆ F , D′ ⊆ D, f ∈ F ′, and d ∈ D′, then we have a move (F,B,D) c−→
((F \ F ′) ∪ {d}, B(D \ D′) ∪ ({f} \ B)), where c is the number of vertices
on a shortest walk from f to d going through all vertices in F ′ ∪ D′. As
in the previous cases, each vertex is counted each time it is visited, but
vertices in F ′ ∪ D′ are counted once less.

The original game of Feldman and Ruhl has only three types of moves: Single
moves for F -tokens (exactly as (1-a)), single moves for B-tokens (similar as (1-b)
and (1-c)) and flipping (all of (2)). If we did not distinguish the B-tokens and
D-tokens (and consider all of them as B-tokens), then we would get exactly this
three types of moves. We make use of this fact in the proof of the equivalence of
costs of optimal strategies for this game and sizes of solutions for the q-RST-P
instance.
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We distinguish the B- and D-tokens since we aim to show, e.g., that there
is an optimal strategy for the game not using any moves of type (2-c). During
the whole game the moves ensure that the invariant D ∩ B = ∅ is maintained.
This could be easily achieved by taking D = D \B after each move, however, we
prefer to be more specific in taking out only the vertices which could actually
newly appear in the intersection.

Now we would like to claim, that the game represents the instance (G,R, T )
of q-RST-P. Namely, that the minimum size of a solution to (G,R, T ) is exactly
one less than the minimum cost of moves to get from (R′, R′, T ) to ({r0}, {r0}, ∅)
in the cautious token game. The easier direction is summarized by the following
lemma (see also Lemma 3.1 of [10]):

Lemma 2. If there is a move sequence from (R′, R′, T ) to ({r0}, {r0}, ∅) of total
cost c, then there is a set S ⊆ V of size at most c − 1 such that in G[R ∪ S ∪ T ]
there is a directed path from r to t for every r ∈ R and every t ∈ R∪T . Moreover,
given the sequence, the corresponding set S is easy to find.

The proof of this lemma follows from the definition of the moves of the game.
If we let S be the set of newly encountered vertices in the moves of the sequence
excluding r0 we get |S| + 1 ≤ c, as the cost of each move is an upper bound on
the number of newly encountered vertices including r0.

The next lemma provides the counterpart. The aim is to construct a move
sequence, where all intermediate position of tokens are in H = G[R∪S ∪T ]. Let
us call a move of type (2) path-driven, if the minimum size walk in the definition
of the cost of the move can be taken as a simple path. We subsequently show
that the move sequence can be selected such that: all moves of type (2) are path-
driven; there are no moves of type (2-c); and if a D-token meets with an F -token,
then it stays on place until it is merged with some B-token. More details can be
found in the full version of the paper.

Lemma 3 (�). If there is a solution S ⊆ V of size at most c − 1 for (G,R, T ),
then there is a move sequence from (R′, R′, T ) to ({r0}, {r0}, ∅) of total cost at
most c in which all type (2) moves are path-driven and, moreover, there are
no moves of type (2-c). Furthermore, in this sequence of moves, whenever after
some move an F -token and a D-token sit together on a vertex v ∈ V , then the
next move touching the D-token is either of type (2), or single-move (type (1-b))
of some B-token merging with the D-token.

3.2 Accelerated Token Game

In the accelerated game the D-tokens stay at their places until the move in
which they should be merged with a B-token. The moves then also include the
costs of moving the D-tokens from their original places to the vertex where they
get merged with the B-token. Therefore, we now represent the positions of the
D-tokens only as subsets of T .

To define the costs of the moves we use the following notion. Let ST (r,X)
be the minimum number of vertices in a set S such that in G[{r} ∪ X ∪ S] there
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is a path from r to every x ∈ X. I.e., this is a variation of DST with root r and
terminals X.

We have the following moves (we number the moves from (3), as not to
confuse them with the moves of the cautious game).

(3) Single moves: For every arc (u, v) ∈ A and all sets F,B ∈ (
V
≤q

)
and D ⊆ T

we introduce the following moves:
(a) If u ∈ F , then we have a move (F,B,D) c−→ ((F \{u})∪{v}, B,D), where

the cost c of the move is 1 if v /∈ F ∪ B ∪ D and 0 otherwise.
(b) If v ∈ B and D′ ⊆ D then we have a move (F,B,D) c−→ (F (B \ {v}) ∪

{u},D\(D′∪{u})), where the cost c is ST (u,D′∪{v})+1 if u /∈ F ∪B∪D
and ST (u,D′ ∪ {v}) otherwise.

(4) Flipping : For all sets F,B ∈ (
V
≤q

)
and D ⊆ T we introduce the following

moves:
(a) if F ′ ⊆ F , B′ ⊆ B, D′ ⊆ D, f ∈ F ′, and b ∈ B′, then we have a move

(F,B,D) c−→ ((F \ F ′) ∪ {b}(B \ B′) ∪ {f},D \ (D′ ∪ {f})), where c is as
described below.

(b) if F ′ ⊆ F , B′ ⊆ B, B′ 
= ∅, D′ ⊆ D, D′ 
= ∅, f ∈ F ′, and v is an arbitrary
vertex in V \ B, then we have a move (F,B,D) c−→ ((F \ F ′) ∪ {v}(B \
B′) ∪ {f},D \ (D′ ∪ {f})), where c is as described below.

(5) Finishing : For all sets D ⊆ T we have a move ({r0}, {r0},D) c−→
({r0}, {r0}, ∅), where c = ST (r0,D).

Let us now explain the intuition behind the moves. It is clear for (3-a). We
consider the move (3-b) to move the B-token from v as well as the D-tokens
from D′ to u. The move (4-a) moves all B- and D-tokens from B′ ∪ D′ to f at
the same time moving the F -tokens from F ′ to b. The move (4-b) does the same
thing, except that the F -tokens are taken to a vertex v. The move (5) moves the
D-tokens from D to r0.

We would like to define the cost of moves of type (4) as the minimum number
of vertices in a subgraph that provides a walk from f to b (or from f to v) through
all vertices in F ′ ∪ B′ and at the same time a path from f to each vertex of D′,
where the vertices in F ′ ∪ B′ ∪ D′ again do not count. In fact the solution will
again use this type of moves only when there is a simple path from f to b (or
from f to v) through all vertices in F ′ ∪ B′.

As this condition is complicated to test and the desired cost is complicated
to compute, we will define a cost of a move which provides an upper bound on
the desired cost, and coincides with the desired cost whenever the optimal walk
is actually a simple path.

We define the cost of the type (4-a) moves c to be the minimum over all
bijections φ : {2, . . . , |F ′ ∪ B′| − 1} → (F ′ ∪ B′) \ {f, b} (representing the order
of the vertices of (F ′ ∪ B′) \ {f, b} along the walk) and all mappings ψ : D′ →
(F ′ ∪B′)\{b} (representing the part of the path at which the particular D-token
joins it) of the sum

∑|F ′∪B′|−1
i=1 ST (φ(i), ψ−1(φ(i))∪{φ(i+1)}), where φ(1) = f

and φ(|F ′ ∪ B′|) = b.
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Similarly, the cost of a (4-b) move is the minimum over all bijections φ :
{2, . . . , |F ′∪B′|} → (F ′∪B′)\{f} and all mappings ψ : D′ → (F ′∪B′) of the sum
∑|F ′∪B′|

i=1 ST (φ(i), ψ−1(φ(i)) ∪ {φ(i + 1)}), where φ(1) = f and φ(|F ′ ∪ B′|) = v.
Here, the cost is increased by one if v /∈ (D ∪ F ).

The following two lemmata show that solving the instance of q-RST-P again
corresponds to finding a cheapest possible move sequence from (R′, R′, T ) to
({r0}, {r0}, ∅) in the accelerated token game.

Lemma 4. If there is a move sequence of the accelerated game from (R′, R′, T )
to ({r0}, {r0}, ∅) of total cost c, then there is a solution S ⊆ V for (G,R, T ) of
size at most c − 1.

Lemma 5 (�). If there is a solution S ⊆ V for (G,R, T ) of size at most c −
1, then there is a move sequence of the accelerated game from (R′, R′, T ) to
({r0}, {r0}, ∅) of total cost at most c.

3.3 The Algorithm

The algorithm first computes the so-called “game graph” for the accelerated
game. The vertex set V ′ of this directed graph is formed by all possible configu-
rations of the tokens in the game, i.e., by all triples (F,B,D), where F,B ∈ (

V
≤q

)

and D ⊆ T . The arcs A′ of this graph correspond to legal moves of the acceler-
ated game, i.e., moves of type (3), (4), and (5). The length of each arc is equal
to the cost of the corresponding move of the game.

Once the game graph is constructed, we simply find the shortest path from
the vertex (R′, R′, T ) to the vertex ({r0}, {r0}, ∅). Since each arc of the graph
corresponds to a move of the game, the shortest path corresponds to an optimal
sequence of moves to get from the configuration (R′, R′, T ) to the configuration
({r0}, {r0}, ∅). By Lemmatas 4 and 5 such a sequence of cost c exists if and only
if there is a solution of size c − 1 for the instance (G,R, T ) of q-RST-P.

We defer the running time analysis of the algorithm to the full version of the
paper.

4 Restriction to Solutions with Trunk

In this section we relax the conditions on the solutions of the problem, namely,
we consider the following problem:

q-Root Steiner Tree with Trunk (q-RST-T)
Input: A directed graph G = (V,A), two subsets of its vertices R, T ⊆ V
with |R| = q.
Task: Find a minimum size of a set S ⊆ V such that in G[R ∪ S ∪ T ] there
is a vertex v, a directed path from r to v for every r ∈ R, and a directed
path from v to t for every t ∈ T .

We show that this problem can be solved in asymptotically similar time as
q-RST-P.
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Theorem 3 (�). For every q ≥ 1 the problem q-RST-T is fixed-parameter
tractable with respect to T . Namely, there is an algorithm solving it in O(22q+4|T |·
n3q+O(1)) time.

Suppose now that we restrict to solutions such that there is a vertex v that
is in all but a constant number h of the required paths. More formally, for all
but h (given) pairs (r, t) ∈ R×T the solution contains a path from r to v and at
the same time a path from v to t. We can solve also this variant of the problem
in O(2O(q+|T |) · nO(q+h)) time.

5 Planar Graphs

In this section we show how to modify the method of Chitnis et al. [4] for SCSS
in planar graphs (and graphs excluding a fixed minor) to show the following
result.

Theorem 4 (�). q-Root Steiner Tree with Pedestal in planar graphs
and graphs excluding a fixed minor can be solved in O(2O(q log q+|T | log q) ·nO(

√
q))

time.

6 Conclusion and Future Directions

We have shown that there is a nice special case of DSN that allows for as effec-
tive algorithms as were known for DST and SCSS, even with respect to planar
graphs. We characterized that the crucial property of the solution to allow this
is the existence of a vertex over which almost all paths required by the problem
definition “factorize”. An interesting open question is what is the complexity of
q-RST (the unrestricted variant) in planar graphs.

Another interesting question is tied to the other parameterization of the
problems. We are not aware of any result determining the complexity of SCSS in
planar graphs with respect to the parameterization the number of nonterminals
in the solution.
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subset convolution. In: STOC 2007, pp. 67–74. ACM (2007)

3. Charikar, M., Chekuri, C., Cheung, T.Y., Dai, Z., Goel, A., Guha, S., Li, M.:
Approximation algorithms for directed Steiner problems. J. Algorithms 33(1), 73–
91 (1999)

4. Chitnis, R., Hajiaghayi, M., Marx, D.: Tight bounds for planar strongly connected
Steiner subgraph with fixed number of terminals (and extensions). In: SODA 2014,
pp. 1782–1801. SIAM (2014)



268 O. Suchý
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Abstract. In the Group Feedback Edge Set (�) (Group FES(�))
problem, the input is a group-labeled graph G over a group Γ of order
� and an integer k and the objective is to test whether there exists a
set of at most k edges intersecting every non-null cycle in G. The study
of the parameterized complexity of Group FES(�) was motivated by
the fact that it generalizes the classical Edge Bipartization problem
when � = 2. Guillemot [IWPEC 2008, Discrete Optimization 2011] ini-
tiated the study of the parameterized complexity of this problem and
proved that it is fixed-parameter tractable (FPT) parameterized by k.
Subsequently, Wahlström [SODA 2014] and Iwata et al. [2014] presented
algorithms running in time O(4knO(1)) (even in the oracle access model)
and O(�2km) respectively. In this paper, we give an algorithm for Group
FES(�) running in time O(4kk3�(m + n)). Our algorithm matches that
of Iwata et al. when � = 2 (upto a multiplicative factor of k3) and gives
an improvement for � > 2.

1 Introduction

In a covering problem we are given a universe of elements U , a family F (F
could be given implicitly) and an integer k and the objective is to check whether
there exists a subset of U of size at most k which intersects all the elements of F .
Several natural problems on graphs can be framed as a covering problem. One of
the most well-studied covering problems are the feedback set problems. In these
problems, the family F is a succinctly defined subset of the set of cycles in the
given graph. For instance, in the Feedback Vertex Set problem, the objective
is to decide whether there exists a vertex subset S (also called a transversal) of
size at most k which intersects all cycles in the graph. That is, F is the set
of all cycles in the input graph. In the classical Odd Cycle Transversal
(Edge Bipartization) problem, the objective is to decide whether there exists
a vertex subset (respectively edge subset) S of size at most k which intersects
all odd cycles.

Yet another kind of feedback set problem deals with gain-graphs or group-
labeled graphs and is called Group Feedback Vertex Set. Group-labeled
graphs are generalizations of the well-studied class of signed-graphs introduced
by Harary [11]. These are directed graphs where the arcs are labeled by elements
of a group Γ and whenever multiplying the arc labels in order around a cycle
c© Springer-Verlag GmbH Germany 2016
P. Heggernes (Ed.): WG 2016, LNCS 9941, pp. 269–281, 2016.
DOI: 10.1007/978-3-662-53536-3 23
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results in an element other than 1Γ – the identity element of the group, the cycle
under consideration is called a non-null cycle.

In the Group Feedback Edge Set (Group FES) problem, the objective
is to check whether there is a set of at most k arcs that intersect all non-null
cycles in a given Γ -labeled graph for some finite group Γ . In the Group FES(�)
problem, we require Γ to have order �. Similarly, in the Group FVS problem,
the objective is to hit all non-null cycles with at most k vertices and in Group
FVS(�), the group is required to have order �. Although group-labeled graphs
and the Group FVS problem has been studied from a graph-theoretic point of
view (see for example [9,14,21]) the study of the parameterized complexity of
both versions of this problem was first initiated by Guillemot [10]. Formally, a
parameterization of a problem is the assignment of an integer k to each input
instance and we say that a parameterized problem is FPT if there is an algorithm
that solves the problem in time f(k) · |I|O(1), where |I| is the size of the input
instance and f is an arbitrary computable function depending only on the para-
meter k. For more background, the reader is referred to the books [3,7,8,18].
Guillemot [10] showed that Group FVS(�) is FPT parameterized by k and �
and Group FES(�) is FPT parameterized by k by giving algorithms running in
time O∗((4� + 1)k) and O∗((8k + 1)k) respectively (the O∗() notation subsumes
polynomial factors).

The first single-exponential FPT algorithm for Group FES was given by
Wahlström [20] who extended the branching algorithm of Guillemot to a more
sophisticated LP-guided branching algorithm based on newly developed tools
from the theory of valued constraint satisfaction. We remark that this algorithm,
which runs in time O∗(4k) was designed for the more general vertex version of
the problem and improved upon the work of Cygan et al. [4] who obtained
the first FPT algorithm for Group FVS parameterized only by k. In fact, the
algorithm of Wahlström as well as that of Cygan et al. works in the oracle
access model where the group is not given via its multiplication table but in
the form of a polynomial time oracle. However, this algorithm relies on solving
linear programs and hence has a dependence on the input-size that is far from
linear even when the group-size � is constant. A recently studied generalization
of Group FES(�) is the Unique Label Cover(�) problem where the input is
a graph labeled by permutations of [�], that is, elements of the symmetric group
S� and the objective is to delete at most k edges such that the resulting graph
can be labeled by elements of [�] in a way that ‘respects’ the permutations of [�]
on the arcs. The fact that Unique Label Cover(�) generalizes Group FES(�)
follows from Cayley’s Theorem which states that every finite group of order � is
isomorphic to a subgroup of S�.

Chitnis et al. [2] were the first to prove that Unique Label Cover(�) is FPT
parameterized by � and k. In fact they showed that under standard complexity
hypotheses, to obtain fixed-parameter tractability, parameterizing by both � and
k is unavoidable. Subsequently, Wahlström [20] improved upon this result by
giving an algorithm that runs in time O∗(�2k). Following this work, Iwata et al.
[13] gave an algorithm for Unique Label Cover(�) that runs in time O(�2km)
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where m is the number of edges in the input graph. This was the first linear-time
FPT algorithm for this problem and implies an algorithm for Group FES(�)
running in time O(�2km). Hence, prior to this work, the O∗(4k) algorithm in
[20] and the O(�2km) algorithm in [13] were the best known FPT algorithms
for Group FES(�) with respect to dependence on the parameter and the input
and group sizes respectively. In this paper, we give an algorithm for Group
FES(�) that comes close to matching the best of both algorithms. We obtain
an algorithm that has a dependence of 4k+O(log k) on k and a dependence of
O(�(m + n)) on the input and group-sizes. In fact this algorithm outperforms
that of Iwata et al. [13] for all � > 2. We now give a formal description of the
problem under consideration and state our result.

Group FES(�) Parameter: k
Input: A Γ -labeled graph (G, Λ) where |Γ | = � ≥ 2, integer k.
Question: Is there a set X ⊆ A(G) of size at most k such that G − X has no
non-null cycles?

Theorem 1. Group FES(�) can be solved in time O(4kk3�(m + n)) where m
and n denote the number of arcs and vertices in the input graph respectively.

Methodology. We closely follow the template developed for solving graph
separation problems via important separators in [1,16], those via LP-guided
branching in [5,10,12,15], the Valued CSP-based algorithms in [13,20] and the
skew-symmetric branching algorithm for 2-SAT Deletion in [19]. The common
thread connecting these algorithms is that they all begin by proving a ‘persis-
tence lemma’ or Nemhauser-Trotter-type theorem. In these lemmas, one proves
that the solution to an appropriate linear program or a maximum-flow question
on an appropriate network can be used to ‘fix a configuration’ for vertices which
satisfy certain properties. For instance, the classical Nemhauser-Trotter Theo-
rem [17] for Vertex Cover states that if an optimal solution to the standard
relaxation of the Vertex Cover Integer Linear Program (ILP) assigns 0 or 1 to
a vertex then there is also an optimal solution to the ILP which does the same
with respect to this vertex.

However, in this work the persistence lemma we prove will be based directly
on the solution to a max-flow question in a network as opposed to using the
solution to a linear program. The reason behind this is that the structural prop-
erties of Group FES(�) closely resemble those of the classical Edge Multiway
Cut problem while the vertex version, Group FVS(�) is closely related to the
Node Multiway Cut problem (see [4,10]). As a result, we are able to design
our persistence lemma using an appropriate analogue of the classical notion of
‘isolating cuts’ from [6]. Once we prove this lemma, we design a natural reduc-
tion rule based on it and describe a subroutine that runs in polynomial time
(with a linear dependence on � and m+n) and either finds a valid application of
the reduction rule or an arc on which a naive branching step will decrease a pre-
determined measure for the input. Finally, we remark that while the structure
of our algorithm strongly resembles that of the algorithms in the works cited
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above, the fact that we are dealing with groups of order greater than 2 while
trying to simultaneously optimize the dependence of the running time in ‘three-
dimensions’ – parameter, input-size and group-size, poses non-trivial obstacles
when it comes to actually implementing each step.

2 Preliminaries

Let Γ be a group with identity element 1Γ . A Γ -labeled graph is a pair (G,Λ)
where G is a digraph with at most one arc between every pair of vertices and
Λ : A(G) → Γ . If (u, v) ∈ A(G), then we denote by Λ(v, u) the group element
Λ(u, v)−1. For a digraph G, we denote by G̃ the underlying undirected graph.
Let P = v1, . . . , v� be a path in G̃. We denote by Λ(P ) the group element
Λ(v1, v2) · Λ(v2, v3) · · · Λ(v�−1, v�). Let C = v1, . . . , v�, v1 be a cycle in G̃. We
denote by Λ(C) the group element Λ(v1, v2) · Λ(v2, v3) · Λ(v�−1, v�) · · · Λ(v�, v1).
We call C non-null if Λ(C) �= 1Γ . Note that even though different choices of the
vertex v1 in the same cycle may lead to different values for Λ(C), it is easy to
see that if for one choice of v1 the value of Λ(C) is not 1Γ then for no choice of
v1 is it 1Γ .

For an undirected graph H and vertex set Z ⊆ V (H), we denote by δ(Z) the
set of edges which have exactly one endpoint in Z. We denote by E(Z) the edges
of H which have both endpoints in Z. This notation also extends to directed
graphs as A(Z). For a set X of edges in an undirected graph or arcs in a directed
graph, we denote by V (X) the set of endpoints of the edges or arcs in X. For a
vertex subset X, N(X) denotes the set of neighbors of X and N [X] denotes the
set X ∪ N(X). For an undirected graph G and disjoint vertex sets X and Y , a
path is called an X-Y path if it has one endpoint in X and the other in Y and
a set S ⊆ E(G) is said to be an X-Y separator if there is no X-Y path in the
graph G−S. We denote the vertices in the components of G−S which intersect
X by R(X,S). We denote by λG(X,Y ) the size of the smallest X-Y separator
in G. Due to space constraints, proofs of Lemmas marked [�] have been omitted
from the extended abstract and can be found in the full version of the paper.

3 Consistent Labelings and the Auxiliary Graph

In this section, we begin by recalling known results on group-labeled graphs that
exclude a non-null cycle. Following that, we will associate an auxiliary graph with
every instance of Group FES(�).

Definition 1. Let (G,Λ) be a Γ -labeled graph and let Ψ : V (G) → Γ . We say
that Ψ is a consistent labeling for this graph if for all (u, v) = a ∈ A(G),
Ψ(u) · Λ(a) = Ψ(v).

Lemma 1 [10]. Let (G,Λ) be a Γ -labeled graph. There is no non-null cycle in
G if and only if G has a consistent labeling.
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Observation 2. Let (G,Λ) be a Γ -labeled graph. If G has a consistent labeling,
then for every v ∈ V (G) and g ∈ Γ , there is a consistent labeling ψv

g for G such
that ψv

g (v) = g.

Definition 2. Let (G,Λ) be a Γ -labeled graph and let Ψ : V (G) → Γ be a
consistent labeling for G. For a set Z ⊆ V (G) and a function τ : Z → Γ , we say
that Ψ agrees with τ on Z if for every v ∈ Z, Ψ(v) = τ(v).

We consider a slightly more general formulation of the Group FES(�) prob-
lem, where the input contains (G,Λ, k), a set Ẑ such that G[Ẑ] is connected
and a function τ : Ẑ → Γ such that τ is a consistent labeling for G[Ẑ] and the
objective is to find a solution given that if there is a solution then there is one
whose deletion leaves a graph which has a consistent labeling that agrees with τ
on Ẑ. That is, we may assume that we are looking for a solution whose deletion
allows a consistent labeling that ‘extends’ τ . Clearly this formulation is more
general since we can simply set Ẑ = ∅ to begin with and leave τ undefined. For a
given Ẑ and τ : Ẑ → Γ , we denote by Ẑτ the set {zα|z ∈ Ẑ, α = τ(z)}. We now
define the auxiliary graph associated with the instance. We will be performing
almost all of our computations in this graph.

The Auxiliary Graph and Some Properties. For an instance I =
(G,Λ, k, Ẑ, τ) of Group FES(�), we define an associated auxiliary graph HI

as follows. The vertex set of HI is {vg|v ∈ V (G), g ∈ Γ}. The vertex vg repre-
sents the existence of an (eventual) consistent labeling of G where v is assigned
the group element g. The edge set of HI is defined as follows. For every arc
a = (u, v) ∈ A(G) and for every g ∈ Γ , there is an edge (ug, vg·Λ(a)). Observe
that corresponding to a, there are exactly � edges in HI and furthermore, these
form a matching. Therefore, HI has �n vertices and �m edges, where n and m
are the number of vertices and edges in G respectively. Note that the graph
HI in fact only depends on (G,Λ). However, we choose to denote the graph as
HI in order to facilitate an easier presentation in the description of the algo-
rithm. Moving forward, we will characterize the dependencies between vertices
when subjected to certain constraints. Before we do so, we need the following
definitions and observation.

Definition 3. Let I = (G,Λ, k, τ) be an instance of Group FES(�). For v ∈
V (G), we use [v] to denote the set {vg|g ∈ Γ}. For a subset S ⊆ V (G), we
use [S] to denote the set

⋃
v∈S [v]. Similarly, for an arc a = (u, v) ∈ A(G), we

use [a] to denote the set {(ui, vj)}i∈Γ,j=Λ(a)·i of edges in HI and for a subset
X ⊆ A(G), we use [X] to denote the set

⋃
a∈X [a]. For the sake of convenience,

we also reuse the same notation in the following way. For every v ∈ V (G) and
α ∈ Γ , we denote by [vα] the set [v]. Similarly, for every a = (u, v) ∈ A(G)
and α, β ∈ Γ such that e = (uα, vβ) ∈ E(HI), we denote by [e] the set [a].
This definition extends in a natural way to sets of vertices and edges of the
auxiliary graph HI . For a set S ⊆ V (HI) ∪ E(HI), we denote by S−1 the set
{s|s ∈ V (G) ∪ A(G) : [s] ∩ S �= ∅}. For an arc a ∈ A(G) and edge e ∈ [a], we
also use e−1 to denote the arc a.
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Observation 3 Let I = (G,Λ, k, Ẑ, τ) be an instance of Group FES(�). Then
the following statements hold. (a) For every v ∈ V (G), for every distinct g1, g2 ∈
Γ , vg1 and vg2 have no common neighbors in HI . (b) For a set S ⊆ A(G),
HI − [S] = HI′ where I ′ = (G − S,Λ, 0, Ẑ, τ). (c) If Ψ is a consistent labeling
for G, then for any u, v ∈ V (G), if ug is in the same connected component as
vg′ in HI where g = ψ(v) then Ψ(u) = g′.

Definition 4. Let I = (G,Λ, k, Ẑ, τ) be an instance of Group FES(�). We say
that a set Z ⊆ V (HI) ∪ E(HI) is regular if |Z ∩ [v]| ≤ 1 for any v ∈ V (G) and
|Z ∩ [a]| ≤ 1 for any a ∈ A(G). We say that Z is irregular otherwise. That is,
regular sets contain at most 1 copy of any vertex and arc of G.

Now that we have defined the notion of regularity of sets, we prove the fol-
lowing lemma which shows that the auxiliary graph displays a certain symmetry
with respect to regular paths. This will allow us to transfer arguments which
involve a regular path between vertices vg1 and ug2 to one between vertices vg3

and ug4 where g1 �= g3 and g2 �= g4.

Lemma 2 [�]. Let I = (G,Λ, k, Ẑ, τ) be an instance of Group FES(�). Let P
be a regular path in HI from vg to ug′ for some u, v ∈ V (G) and g, g′ ∈ Γ .
Let V (P ) denote the set of vertices of G in P and let U denote the set [V (P )].
Then, there is a set P = {Pr}r∈Γ of � vertex disjoint regular paths in HI and a
partition U of U into sets {Ur}r∈Γ such that for each γ ∈ Γ , V (Pγ) = Uγ and
Pγ is a path from vγ to uγ·Λ(P −1).

Observation 4 Let I = (G,Λ, k, Ẑ, τ) be an instance of Group FES(�). Then,
the following statements hold. (a) The set Ẑτ is regular and furthemore, HI [Ẑτ ]
is connected. (b) If S ⊆ A(G) is such that [S] intersects all Ẑτ − [Ẑ]\ Ẑτ paths in
HI then R(Ẑτ , [S]) is regular. (c) If S ⊆ A(G) is a minimal set such that G − S
has a consistent labeling that agrees with τ on Ẑ, then [S] is disjoint from A(Ẑ).

Using the observations and structural lemmas proved so far, we will now
give a forbidden-structure characterization of ‘solved’ Yes instances of Group
FES(�), that is instances where k = 0.

Lemma 3 [�]. Let I = (G,Λ, 0, Ẑ, τ) be a Yes instance of Group FES(�)
where G is connected. Let v ∈ V (G) and g ∈ Γ . Then, there is a consistent
labeling Ψ such that Ψ(v) = g if and only if there is no g′ ∈ Γ such that vg and
vg′ are in the same connected component of HI .

In the next lemma, we extend the statement of the previous lemma to include
a description of general Yes instances of the Group FES(�) problem.

Lemma 4. Let I = (G,Λ, k, Ẑ, τ) be an instance of Group FES(�). Then, I
is a Yes instance if and only if there is a set S ⊆ A(G) of size at most k such
that for every vertex v ∈ V (G), there is no path in HI − [S] from vg to vg′ for
any g′ �= g. Furthermore, if G − S has a consistent labeling that agrees with τ
on Ẑ then, [S] intersects all Ẑτ − ([Ẑ] \ Ẑτ ) paths in HI .
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Proof. We first argue both directions in the first part of the statement. In the
forward direction, suppose that I is a Yes instance and let S ⊆ A(G) be a
solution. That is, G − S has a consistent labeling. Now, suppose that for some
distinct g, g′ ∈ Γ , there is a path in HI from vg to vg′ disjoint from [S]. But by
Observation 3(b), this path exists in HI′ where I ′ = (G−S,Λ, 0, Ẑ, τ). However,
since G − S has a consistent labeling, this contradicts Lemma 3, completing the
argument in the forward direction.

In the converse direction, suppose that S ⊆ A(G) such that [S] intersects
all paths from vg to vg′ for every v ∈ V (G) and g �= g′ in the graph HI . Let
I ′ = (G − S,Λ, 0, Ẑ, τ). By Observation 3(b), we know that there are no vg-vg′

paths in HI′ for any v ∈ V (G) and distinct g, g′ ∈ Γ . But applying Lemma 3 on
each connected component of G − S (since the premise of this lemma requires
connectivity of the graph), we conclude that G − S has a consistent labeling.
This completes the argument in the converse direction.

For the second statement, suppose that Ψ is a consistent labeling of G that
agrees with τ on Ẑ. Suppose that for some u, v ∈ Ẑ and g, g′ ∈ Γ where ug ∈ Ẑτ

and vg′ /∈ Ẑτ , vg is in the same component of HI − [S] as ug′ . Then, Observa-
tion 3(c) implies that Ψ(u) = g′, a contradiction to our assumption that Ψ agrees
with τ on Ẑ. This completes the proof of the lemma. 
�

Using the above lemma, we will interpret the Group FES(�) problem as a
parameterized cut-problem. Furthermore, observe that due to this lemma, the
size of a minimum Ẑτ − [Z]\ Ẑτ separator in HI is a natural lower bound on the
number of edges of HI which correspond to the arcs in a solution for the given
instance. Note that although for a solution S ⊆ A(G), a naive upper bound on
the number of edges in [S] that are required to hit all Ẑτ − [Z] \ Ẑτ paths in HI

is �k, we will prove shortly that the actual bound is much tighter and is in fact,
independent of the group-size. This is a crucial difference between the vertex and
edge variants of this problem as a similar property does not exist in the vertex
version. We conclude this subsection by stating the following consequence of
Lemma 4 and Observation 4(b).

Lemma 5 [�]. Let I = (G,Λ, k, Ẑ, τ) be an instance of Group FES(�) and let
S ⊆ A(G) be a solution for this instance such that G−S has a consistent labeling
that agrees with τ on Ẑ. Then, R(Ẑτ , [S]) is regular.

Closed and Open Edges. Here, we will examine the set of edges crossing a
regular set and divide them into ‘closed’ and ‘open’ edges. These notions are
crucial for the description of our reduction rule. Intuitively, an edge e crossing
a regular set Z in HI is considered open if its image in G, e−1 also crosses Z−1

in G. Otherwise, it is considered closed. We now define these notions in a way
that is most convenient for us to invoke in our proofs.

Definition 5. Let Z ⊆ V (HI) be a regular set in HI and let u, v ∈ V (G) and
α, β ∈ Γ be such that e = (uα, vβ) ∈ δ(Z). We call e a closed edge in HI with
respect to Z if Z ∩ [u] and Z ∩ [v] are both non-empty. Otherwise, we say that e
is an open edge in HI with respect to Z.
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Observation 5. Let Z ⊆ V (HI) be a regular set in HI and let u, v ∈ V (G) and
α, β ∈ Γ be such that e = (uα, vβ) ∈ δ(Z). Then, the following statements hold.

(a) If e is closed with respect to Z then e−1 has both endpoints in Z−1.
(b) If e is closed with respect to Z then HI has no edge between Z ∩ [u] and

Z ∩ [v].
(c) If e is open with respect to Z then, e−1 ∈ δG̃(Z−1).

We now state and prove a crucial fact regarding the number of open and
closed edges crossing any regular set in HI .

Lemma 6 [�]. Let I = (G,Λ, Ẑ, k, τ) be an instance of Group FES(�) and let
Y ⊆ V (HI) be a regular set. Then, for every edge e ∈ δ(Y ), |δ(Y ) ∩ [e−1]| = 1 if
e is open with respect to Y and |δ(Y ) ∩ [e−1]| = 2 otherwise.

Figure 1 illustrates the structure of the edges crossing a regular set, guaran-
teed by Lemma 6. As a consequence of Lemma 6 and Observation 4(b), we have
the following.

Lemma 7. Let I = (G,Λ, k, Ẑ, τ) be an instance of Group FES(�) and let
S ⊆ A(G) be a set of size at most k such that [S] intersects all Ẑτ − [Ẑ] \ Ẑτ

paths in HI . Then, |δ(R(Ẑτ , [S]))| ≤ 2k.
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Fig. 1. An illustration of all the edges crossing the regular set Z. The four sets in
the figure denote the four regular ‘copies’ of Z−1 in the graph HI . Here, the edges
(a2, b3), (a3, b1), (c2, d4), (c4, d2) are closed and the edges (x1, y1), (p1, q3) are open with
respect to Z which is the set containing v1
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Lemma 7 implies that even though [S] can contain up to �k edges, at most
2k of these are required to separate Ẑτ from [Ẑ] \ Ẑτ . Motivated by this fact, we
define the following measure on instances of Group FES(�) which captures the
gap between the budget k which is the upper bound on the size of the solution
S and the size of the smallest Ẑτ − [Ẑ] \ Ẑτ separator in HI which is a lower
bound on 2|S|. Lemma 7 implies that for a Yes instance I, the gap μ(I) is always
non-negative. Furthermore, it will be easy to see that for any given instance I,
we can check whether μ(I) is non-negative in time O(k�(m + n)).

Definition 6. Let I = (G,Λ, k, Ẑ, τ) be an instance of Group FES(�). The
gap μ(I) is defined as μ(I) = k − 1

2 (λHI
(Ẑτ , [Z] \ Ẑτ )).

Proof of Persistence and Description of the Reduction Rule. We are
now ready to prove the Persistence Lemma which plays a major role in the
design of the algorithm. In essence this lemma says that if we find a minimum
Ẑτ − [Ẑ] \ Ẑτ separator S such that R(Ẑτ , S) is regular, then we can correctly
fix the labels of all vertices which have exactly one copy in R(Ẑτ , S) and look
for a solution whose deletion allows a consistent labeling that is an extension of
this one. It will be shown later that once we fix the labels of these vertices, the
subsequent exhaustive branching steps will decrease the gap μ(I) by at least 1

2
and since μ(I) is always required to be non-negative, the depth of the search tree
will be bounded by 2μ(I).

Lemma 8 [�](Persistence Lemma). Let I = (G,Λ, k, Ẑ, τ) be a Yes instance
of Group FES(�). Let X ⊆ A(G) be a minimal set of size at most k such that
G − X has a consistent labeling Ψ agreeing with τ on Ẑ. Let T denote the set
[Ẑ] \ Ẑτ . Let S be a minimum Ẑτ − T separator in HI and let Z = R(Ẑτ , [S]).
Then, there is a solution for the given instance disjoint from A(Z−1).

Having proved the Persistence Lemma, we proceed to describe the reduction
rule based on it. Before we do so, we need to prove the following lemmas.

Lemma 9 [�]. Let I = (G,Λ, k, Ẑ, τ) be a Yes instance of Group FES(�) and
let S be a minimum Ẑτ − [Ẑ]\ Ẑτ separator in HI and let Y = R(Ẑτ , [S]). Then,
δ(Y ) is also a minimum Ẑτ − [Ẑ] \ Ẑτ separator in HI . Furthermore, if S is not
regular, then there is an edge e ∈ δ(Y ) which is closed with respect to Y .

Lemma 10 [�]. Let I = (G,Λ, k, Ẑ, τ) be a Yes instance of Group FES(�)
and let S be a minimum Ẑτ − [Ẑ] \ Ẑτ separator in HI . If S is not regular, then
there is an edge e ∈ [S] which is closed with respect to R(Ẑτ , S) and a solution
for the given instance containing e−1. Moreover, given the instance and the set
S, the arc e−1 can be computed in time O(�(m + n)).

This leads us to the following reduction rule.

Reduction Rule 1. Given an instance I = (G,Λ, k, Ẑ, τ) of Group FES(�)
and a set S which is both irregular and a minimum Ẑτ − [Ẑ]\Ẑτ separator in HI ,
execute the algorithm of Lemma10 to compute the arc a and return the instance
I ′ = (G − {a}, Λ, k − 1, Ẑ, τ).
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The correctness as well as the fact that it can be applied in time O(�(m+n))
follows from Lemma 10. However, observe that in order to apply this rule, we
need the set S. As a result, we cannot apply this rule exhaustively and we
will only apply it selectively during our algorithm. For this, we will also have a
slightly modified version of the above reduction rule. We remark that this rule is
introduced only in order to maintain a linear dependence on � at certain points
in the algorithm.

Reduction Rule 2. Given an instance I = (G,Λ, k, Ẑ, τ) of Group FES(�)
and an arc a ∈ A(G) such that there is an irregular minimum Ẑτ − [Ẑ] \
Ẑτ separator in HI that contains 2 edges of [a], return the instance I ′ =
(G − {a}, Λ, k − 1, Ẑ, τ).

Observe that in the above reduction rule, we have skipped the intermediate
step of computing a from the irregular minimum separator. This is because
sometimes, we can detect the arc a faster than we can compute the irregular
minimum separator. We conclude this subsection by arguing that applying these
reduction rules to a given instance of Group FES(�) does not increase the gap.
That is, if I ′ is the instance resulting from I by an application of these rules, then
it should not be the case that μ(I ′) > μ(I). In order to prove this (Lemma 12),
we need the next lemma.

Lemma 11 [�]. Let I = (G,Λ, k, Ẑ, τ) be an instance of Group FES(�). Let
v ∈ V (G), g ∈ Γ and Y be a regular set containing Ẑτ such that δ(Y ) is a
minimum Ẑτ − [Ẑ] \ Ẑτ separator and let r = |δ(Y )|. Let e ∈ δ(Y ) be an edge
closed with respect to Y and a = e−1. Then, the size of a minimum Ẑτ − [Ẑ]\ Ẑτ

separator in HI − [a] is exactly r − 2.

Lemma 12 [�]. Let I = (G,Λ, k, Ẑ, τ) be an instance of Group FES(�) and let
I ′ = (G − {a}, Λ, k − 1, Ẑ, τ) be the instance obtained from I by an application
of Reduction Rule 1 or Reduction Rule 2 on the arc a. Then, μ(I) = μ(I ′).

Proof. Recall that μ(I) = k − 1
2 (λHI

(Ẑτ , [Z] \ Ẑτ )) and μ(I ′) = (k − 1) −
1
2 (λH′

I
(Ẑτ , [Z] \ Ẑτ )). Let r = λHI

(Ẑτ , [Z] \ Ẑτ ) and r′ = λH′
I
(Ẑτ , [Z] \ Ẑτ ).

Lemma 11 implies that r′ = r − 2. Hence, μ(I ′) = (k − 1) − 1
2 (r − 2) = k − 1

2r =
μ(I). This completes the proof of the lemma. 
�

Having stated the reduction rules, we are almost ready to describe the algo-
rithm. Before we do so, we need two subroutines. The first subroutine simply
checks whether we can apply Reduction Rule 2 for a given arc. The second one
is the main subroutine which either allows us to say No or apply one of the
two reduction rules or compute a pair of ‘branchable’ arcs or computes an arc
which is part of some ‘farthest’ minimum isolating cut separating Ẑτ from the
rest of [Ẑ].

Lemma 13 [�]. There is an algorithm that, given an instance I = (G,Λ, k, Ẑ, τ)
of Group FES(�) and an arc a ∈ A(G), runs in time O(k�(m+n)) and correctly
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concludes either that there exists a minimum Ẑτ − [Ẑ] \ Ẑτ separator containing
at least 2 edges of [a] or that no such separator exists. Furthermore, in the latter
case, λHI−[a](Ẑτ , [Ẑ] \ Ẑτ ) ≥ λHI

(Ẑτ , [Ẑ] \ Ẑτ )-1.

Lemma 14 [�](Main Subroutine). There is an algorithm that, given an
instance I = (G,Λ, k, Ẑ, τ) of Group FES(�), runs in time O(k2�(m + n))
and

(a) correctly concludes that the given instance is a No instance or
(b) returns an irregular minimum Ẑτ − [Ẑ] \ Ẑτ separator of size at most 2k or

an arc a ∈ A(G) such that two edges of [a] appear in such a separator or
(c) returns a pair of edges e1, e2 ∈ E(HI) such that there is always a solution

intersecting the set {e−1
1 , e−1

2 } and there is no irregular minimum Ẑτ − [Ẑ] \
Ẑτ separator containing at least 2 edges from [e1] or [e2] or

(d) returns a regular set Z ⊇ Ẑτ such that δ(Z) is a minimum Ẑτ − [Ẑ] \ Ẑτ

separator and an edge e	 = (uα, vβ) ∈ δ(Z) where uα ∈ Z, such that there
is no (Z ∪ {vβ}) − [Z ∪ {vβ})] \ (Z ∪ {vβ}) separator of size at most |δ(Z)|
and there is no minimum Ẑτ − [Ẑ] \ Ẑτ separator containing at least 2 edges
from [e	].

4 Description of the FPT Algorithm for Group FES(�)

Let I = (G,Λ, k, Ẑ, τ) be the given instance of Group FES(�). The algorithm
we describe is a recursive algorithm with k = 0 as the base case. If k = 0 then
we return Yes if and only if G already has a consistent labelling. Furthermore,
if λHI

(Ẑτ , [Ẑ] \ Ẑτ ) = 0 (there is no path in HI from Ẑτ to [Ẑ] \ Ẑτ ), then we
recurse on the instance (G,Λ, k, ∅, τ ′), where τ ′ is undefined. The correctness of
this operation follows from applying Lemma 3 to the connected component of G
containing Ẑ. Finally, if Ẑ = ∅, then we pick an arbitrary vertex v in a component
of G which does not already have a consistent labeling, pick an arbitrary g ∈ Γ
and recurse on the instance (G,Λ, k, {v}, τ ′) where τ ′(v) = g. The correctness of
this step follows from Observation 2. We now describe the steps executed by the
algorithm when k > 0 and none of the aforementioned conditions hold. We begin
by executing the main subroutine (Lemma 14) on the given instance and describe
subsequent steps of the algorithm based on the output of this subroutine.

Case (a): In this case, we simply return No.
Case (b): In this case, we apply Reduction Rule 1 or Reduction Rule 2 as appro-
priate and recurse on the resulting instance.
Case (c): In this case, we branch on the arcs a1, a2 where a1 = [e−1

1 ] and
a2 = [e−1

2 ]. That is, we recursively call the algorithm on the tuples I1 = (G −
a1, Λ, k − 1, Ẑ, τ) and I2 = (G − a2, Λ, k − 1, Ẑ, τ).
Case (d): Let Z ⊇ Ẑτ be the returned regular set and let e	 = (uα, vβ) ∈ δ(Z)
be the edge such that uα ∈ Z, there is no (Z ∪ {vβ}) − [Z ∪ {vβ})] \ (Z ∪ {vβ}))
separator of size at most |δ(Z)| and there is no minimum Ẑτ − [Ẑ]\ Ẑτ separator
that contains more than one edge from [e	]. Let a ∈ A(G) such that e	 ∈ [a].
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We now branch by either adding a to the solution or by choosing not to pick
a in the solution. Formally speaking, we recursively call the algorithm on the
tuples I1 = (G − a, Λ, k − 1, Ẑ, τ) and I2 = (G,Λ, k, Ẑ ∪ {v}, τ ′) where τ ′ is the
same as τ on Ẑ and τ ′(v) = β.

This completes the description of the algorithm. The correctness of the algo-
rithm follows from the correctness of Lemmas 8 and 14, and the fact that the
branching is exhaustive. It remains to analyze the running time. Observe that
the time taken at each step of the recursion is dominated by the time required
to execute the subroutine of Lemma 14 which runs in time O(k2�(m + n)). Fur-
thermore, along any root to leaf path, Reduction Rule 1 applies at most k times.
Hence, the running time is bounded by the product of O(k3�(m + n)) and the
number of root to leaf paths in the search tree resulting from a run of the algo-
rithm on the input instance I = (G,Λ, k, Ẑ, τ).

To complete the proof of Theorem 1, we prove by induction on μ(I) that the
number of leaves in the search tree resulting from a run on input I is bounded
by 4μ(I).

5 Concluding Remarks

We have presented an FPT algorithm for Group FES(�) that for finite groups
of fixed size has linear dependence on the input-size and matches the best known
parameter dependence upto polynomial factors. For this, we had to assume that
the multiplication table of the group is explicitly known. A natural question that
remains is whether it is possible to obtain a linear time FPT algorithm in the
oracle model assuming constant query time. Finally, we leave open the question
of improving upon the 4k dependence on the parameter for Group FES(�) even
at the cost of superlinear (but still polynomial) dependence on the input-size
and group-size.

Acknowledgments. The author acknowledges support from the Austrian Science
Fund (FWF), project P26696 X-TRACT.
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Abstract. We introduce sequence hypergraphs by extending the con-
cept of a directed edge (from simple directed graphs) to hypergraphs.
Specifically, every hyperedge of a sequence hypergraph is defined as a
sequence of vertices (imagine it as a directed path). Note that this dif-
fers substantially from the standard definition of directed hypergraphs.
Sequence hypergraphs are motivated by problems in public transporta-
tion networks, as they conveniently represent transportation lines. We
study the complexity of some classic algorithmic problems, arising (not
only) in transportation, in the setting of sequence hypergraphs. In par-
ticular, we consider the problem of finding a shortest st-hyperpath: a
minimum set of hyperedges that “connects” (allows to travel to) t from
s; finding a minimum st-hypercut : a minimum set of hyperedges whose
removal “disconnects” t from s; or finding a maximum st-hyperflow : a
maximum number of hyperedge-disjoint st-hyperpaths.

We show that many of these problems are APX-hard, even in acyclic
sequence hypergraphs or with hyperedges of constant length. However,
if all the hyperedges are of length at most 2, we show, these problems
become polynomially solvable. We also study the special setting in which
for every hyperedge there also is a hyperedge with the same sequence,
but in the reverse order. Finally, we briefly discuss other algorithmic
problems (e.g., finding a minimum spanning tree, or connected compo-
nents).

Keywords: Colored graphs · Labeled problems · Oriented hyper-
graphs · Algorithms · Complexity

1 Introduction

Consider a public transportation network, e.g. a bus network, where each bus
line is specified as a fixed sequence of stops. Clearly, one can travel in the network
c© Springer-Verlag GmbH Germany 2016
P. Heggernes (Ed.): WG 2016, LNCS 9941, pp. 282–294, 2016.
DOI: 10.1007/978-3-662-53536-3 24
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by taking a bus and following the stops in the order fixed by the corresponding
line. Note that we think of a line as a sequence of stops in one direction only,
since there might be one-way streets or other obstacles that cause that the bus
can travel the stops in a single direction only. Then, interesting questions arise:
How can one travel from s to t using the minimum number of lines? How many
lines must break down, so that t is not reachable from s? Are there two ways to
travel from s to t that both use different lines?

These kind of questions are traditionally modeled by algorithmic graph the-
ory, but we lacked a model that would capture all the necessary aspects of the
problems formulated as above. We propose the following non-standard, but a
very natural way to extend the concept of directed graphs to hypergraphs.

A hypergraph H = (V, E) with an ordering of the vertices of every hyperedge
is called a sequence hypergraph. Formally, the sequence hypergraph H consists
of the set of vertices V = {v1, v2, . . . , vn}, and the set of (sequence) hyperedges
E = {E1, E2, . . . , Ek}, where each hyperedge E = (vi1 , vi2 , . . . , vil) is defined as a
sequence of vertices without repetition. We remark that this definition substan-
tially differs from the commonly used definition of directed hypergraphs [1,2,13],
where each directed hyperedge is a pair (From,To) of disjoint subsets of V.1 We
note that the order of vertices in a sequence hyperedge does not imply any order
of the vertices of other hyperedges. Furthermore, the sequence hypergraphs do
not impose any global order on V.

There is another way to look at sequence hypergraphs coming from our moti-
vation in transportation. For a sequence hypergraph H = (V, E), we construct
a directed colored multigraph G = (V,E, c) as follows. The set of vertices V
is identical to V, and for a hyperedge Ei = (v1, v2, . . . , vl) from E , the multi-
graph G contains l − 1 edges (vj , vj+1) for j = 1, . . . , l − 1, all colored with
color c(Ei). Therefore, each edge of G is colored by one of the k = |E| colors
C = {c(E1), c(E2), . . . , c(Ek) | Ei ∈ E}. Clearly, the edges of each color form a
directed path in G. We refer to G as the underlying colored graph of H.

In this paper, we study some standard graph algorithmic problems in the set-
ting of sequence hypergraphs. In particular, we consider the problem of finding
a shortest st-hyperpath: an st-path that uses the minimum number of sequence
hyperedges; finding a minimum st-hypercut : an st-cut that uses the minimum
number of sequence hyperedges; or finding a maximum st-hyperflow : a max-
imum number of hyperedge-disjoint st-hyperpaths. We note that the shortest
st-hyperpath problem was already considered by Böhmová et al. [5] in the set-
ting of finding good routes in public transportation networks (studied under a
quite different terminology), who mainly focused on the problem of listing short-
est paths in public transportation networks, but also showed that minimizing the
number of lines in an st-path is hard to approximate.

In the present paper we show that the shortest st-hyperpath can be found in
polynomial time if the given sequence hypergraph is acyclic. On the other hand,
we show that both maximum st-hyperflow and minimum st-hypercut are APX-

1 To avoid confusion with directed hypergraphs, we prefer the term sequence hyper-
graphs to refer to the hypergraphs with hyperedges formed as sequences of vertices.
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hard to find even in acyclic sequence hypergraphs. We then consider sequence
hypergraphs with sequence hyperedges of constant length (defined as the number
of vertices minus one). We note that the shortest st-hyperpath problem remains
hard to approximate even with hyperedges of length at most 5, and we show that
the maximum st-hyperflow problem remains APX-hard even with hyperedges of
length at most 3. On the other hand, we show that if all the hyperedges are of
length at most 2, all 3 problems become polynomially solvable. We also study the
complexity in a special setting in which for each hyperedge there also is a hyper-
edge with the same sequence, but in the opposite direction. We show that the
shortest st-hyperpath problem becomes polynomially solvable, but both maxi-
mum st-hyperflow and minimum st-hypercut are NP-hard to find also in this
setting, and we give a 2-approximation algorithm for the minimum st-hypercut
problem. Finally, we briefly study the complexity of other algorithmic problems
(finding minimum spanning tree, or connected components) in sequence hyper-
graphs. For a summary of the results see Table 1. The table also shows known
results for related labeled graphs (discussed below).

Table 1. Summary of the complexity of some classic problems in the setting of colored
(labeled) graphs and sequence hypergraphs. The last row indicates whether the sizes
of the maximum st-flow and the minimum st-cut equal in the considered setting. The
cells in gray indicate our contribution

Colored/labeled graphs Sequence hypergraphs

General Span 1 General Acyclic Backward Length≤ 2

Shortest st-path APX-hard [8,17] P [8] APX-hard [5] P P P

Minimum st-cut APX-hard [8,23] P [8] APX-hard APX-hard NP-hard P

Maximum st-flow APX-hard [18] P [8] APX-hard APX-hard NP-hard P

MaxFlow-MinCut Duality × [8]
√

[8] × × × √

Related Work. Recently, there has been a lot of research concerning optimiza-
tion problems in (multi)graphs with colored edges, where the cost of a solution
is measured by the number of colors used, e.g., one may ask for an st-path using
the minimum number of colors. The motivation comes from applications in opti-
cal or other communication networks, where a group of links (i.e., edges) can
fail simultaneously and a goal is to find resilient solutions. Similar situation may
occur in economics, when certain commodities are sold (and priced) in bundles.

Formally, colored graphs or labeled graphs, are (mostly undirected) graphs
where each edge has one color, and in general there is no restriction on a set of
edges of the same color. Some of the studies consider a slightly different definition
of a colored graphs, where to each edge corresponds a set of colors instead of a
single color. Since the computational complexity problems may differ in the two
models, the transformations between the two models have been investigated [9].

The minimum label path problem, which asks for an st-path of a minimum
number of colors, is NP-hard and hard to approximate [6–8,15,17,22]. The 2
label disjoint paths problem, which asks for a pair of st-paths such that the sets
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of colors appearing on the two paths are disjoint, is NP-hard [18]. The minimum
label cut problem, which asks for a set of edges of minimum number of colors that
forms an st-cut, is NP-hard and hard to approximate [8,23]. The minimum label
spanning tree problem, which asks for a spanning tree using edges of minimum
number of colors, is NP-hard and hard to approximate [17,20].

Hassin et al. [17] give a log(n)-approximation algorithm for the minimum
label spanning tree problem and a

√
n-approximation algorithm for the minimum

label path problem. Zhang et al. [23] give a
√

m-approximation algorithm for the
minimum label cut problem. Fellows et al. study the parameterized complexity
of minimum label problems [12]. Coudert et al. [8,9] consider special cases when
the span is 1, i.e., each color forms a connected component; or when the graph
has a star property, i.e., the edges of every color are adjacent to one vertex.

Note that, since most of these results consider undirected labeled graphs,
they provide almost no implications on the complexity of similar problems in the
setting of sequence hypergraphs. In our setting, not only we work with directed
label graphs, but we also require edges of each color to form a directed path,
which implies a very specific structure that, to the best of our knowledge, has
not been considered in the setting of labeled graphs.

On the other hand, we are not the first to define hypergraphs with hyper-
edges specified as sequences of vertices. However, this type of hypergraphs are
usually not explored from an algorithmic graph theory point of view. In fact,
mostly, these hypergraphs are taken merely as a tool, convenient to capture cer-
tain relations, but they are not studied further. We shortly list a few articles
where sequence hypergraphs appeared, but we do not give details, since there is
very little relation to our area of study. Berry et al. [4] introduce and describe
the basic architecture of a software tool for (hyper)graph drawing. Wachman
et al. [21] present a kernel for learning from ordered hypergraphs, a formalization
that captures relational data as used in Inductive Logic Programming. Erdös
et al. [11] study Sperner-families and as an application of a derived result they
study the maximum number of edges of a so called directed Sperner-hypergraph.

Finally, a special case of sequence hypergraphs arose as a generalization to
tournaments [3,16]: A k-hypertournament can be seen as a sequence hypergraph
where for every subset of k vertices there is exactly one sequence hyperedge.
Gutin et al. [16] studied the Hamiltonicity of k-hypertournaments.

2 On the Shortest st-Hyperpath

In this section, we briefly discuss the complexity of the shortest st-hyperpath
problem in general sequence hypergraphs and in acyclic sequence hypergraphs.

Definition 1 (st-hyperpath). Let s and t be two vertices of a sequence hyper-
graph H = (V, E). A set of hyperedges P ⊆ E forms a hyperpath from s to
t, if the underlying (multi)graph G′ of the sequence subhypergraph H′ = (V, P )
contains an st-path, and P is minimal with respect to inclusion. We call such
an st-path an underlying path of P.
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The length of an st-hyperpath P is defined as the number of hyperedges in P .
The number of switches of an st-hyperpath P is the minimum number of changes
between the hyperedges of P , when following an underlying st-path of P .

We note that each hyperpath may have multiple underlying paths. Also note
that, even though the number of switches of an st-hyperpath P gives an upper
bound on the length of P , the actual length of P can be much smaller than the
number of switches of P (see Fig. 1a).

s
ta) b) s

t

Fig. 1. In both figures, the grey-dotted curve, and the black curve depict two sequence
hyperedges. (a) The length of the st-hyperpath is 2, but the number of switches is 7.
(b) The st-hyperpath consists of two sequence hyperedges that also form a hypercycle.

Proposition 1. Given a sequence hypergraph, and two vertices s and t, an st-
hyperpath minimizing the number of switches can be found in polynomial time.

This can be done, e.g., by a modified Dijkstra algorithm (starting from s,
following the outgoing sequence hyperedges and for each vertex storing the min-
imum number of switches necessary to reach it).

On the other hand, by a reduction from the set cover problem, Böhmová
et al. [5] showed the following result (in a slightly different setting).

Theorem 1 ([5]). Shortest st-hyperpath in sequence hypergraphs is NP-hard to
approximate within a factor of (1 − ε) ln n, unless P = NP .

However, if the given sequence hypergraph is acyclic, we show that the short-
est st-hyperpath can be found in polynomial time.

Definition 2 (acyclic sequence hypergraph). A set of hyperedges O ⊆ E
forms a hypercycle, if there are two vertices a �= b such that O forms both
a hyperpath from a to b, and a hyperpath from b to a. A sequence hypergraph
without hypercycles is called acyclic.

Observe that an st-hyperpath may also be a hypercycle (see Fig. 1b).

Definition 3 (edges of a hyperedge). Let E = (v1, v2, . . . , vk) be a hyper-
edge of a sequence hypergraph H. We call the set of directed edges {ei =
(vi, vi+1) for i = 1, . . . , k − 1} the edges of E. The edges of E are exactly the
edges of color c(E) in the underlying colored graph of H. The length of a hyper-
edge is defined as the number of its edges.

For a fixed order V O = (v1, v2, . . . , vn) of vertices V, an edge e of a hyperedge
E is called a forward edge with respect to V O, if its orientation agrees with the
order V O. Similarly, e is a backward edge, if its orientation disagrees with V O.
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Theorem 2. The problem of finding the shortest st-hyperpath in acyclic
sequence hypergraphs can be solved in polynomial time.

Proof (Sketch). Observe that for every st-hyperpath, there is an underlying path
where all the edges of each hyperedge appear consecutively. Thus, finding the
shortest st-hyperpath P in H is the same as finding a hyperpath minimizing the
number of switches, which can be done in polynomial time by Proposition 1. ��

3 On the Maximum st-Hyperflow

We consider the problem of finding a number of hyperedge-disjoint st-
hyperpaths. Capturing a similar relation as in graphs (between a set of k edge-
disjoint st-paths and an st-flow of size k, when all the capacities are 1), for
simplicity and brevity, we refer to a set of hyperedge-disjoint st-hyperpaths as
an st-hyperflow.

Definition 4 (st-hyperflow). Let s and t be two vertices of a sequence hyper-
graph H = (V, E). Let F ⊆ 2E be a set of pairwise hyperedge-disjoint st-
hyperpaths F = {P1, . . . , Pk}. Then, F is an st-hyperflow of size |F| = k.

We show that deciding whether the given sequence hypergraph contains an
st-hyperflow of size 2 is NP-hard, and thus finding a maximum st-hyperflow is
inapproximable within a factor 2 − ε unless P=NP. This remains true even for
acyclic sequence hypergraphs with all the hyperedges of length at most 3.

Theorem 3. Given an acyclic sequence hypergraph H = (V, E) with all hyper-
edges of length at most 3, and two vertices s and t, it is NP-complete to decide
whether there are two hyperedge-disjoint st-hyperpaths.

Proof. We construct a reduction from the NP-complete 3-Sat problem [14].
Let I be an instance of the 3-Sat problem, given as a set of m clauses C =
{c1, . . . , cm} over a set X = {x1, . . . , xn} of Boolean variables. The goal is to
find an assignment to the variables of X that satisfies all clauses of C.

From I we construct a sequence hypergraph H = (V, E) as follows (cf.
Figure 2 along with the construction). The set of vertices V consists of 2 +
(m + 1) + (n + 1) +

∑
ci∈C |ci| vertices: a source vertex s, and a target vertex

t; a vertex ci for each clause ci ∈ C and a dummy vertex cm+1; a vertex xj

for each variable xj ∈ X and a dummy vertex xn+1; and finally a vertex xjci
for each pair (xj , ci) such that xj ∈ ci, and similarly, xjci for each xj ∈ ci.
Let us fix an arbitrary order CO of the clauses in C. The set of hyperedges E
consists of 4 + 2n + |I| hyperedges: There are 2 source hyperedges (s, c1) and
(s, x1), and 2 target hyperedges (cm+1, t) and (xn+1, t). There are 2n auxiliary
hyperedges (xi, xick) and (xi, xick′) for i = 1, . . . , n, where ck, or ck′ is always
the first clause (with respect to CO) containing xi, or xi, respectively. In case
there is no clause containing xi (or xi), the corresponding auxiliary hyperedge
is (xi, xi+1). Finally, there are |I| lit-in-clause hyperedges as follows. For each
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c1
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−
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x5

s t

x1c1 x2c1 x3c1x1c2 x2c2

x1c3 x3c3 x4c2

Φ = ( x1 ∨ x2 ∨ x3 ) ∧ ( x1 ∨ x2 ∨ x4 ) ∧ ( x1 ∨ x3 )

Fig. 2. Deciding st-hyperflow of size 2 is as hard as 3-Sat.

appearance of a variable xj in a clause ci as a positive literal there is one lit-in-
clause hyperedge (ci, ci+1, xjci, xjck), where ck is the next clause (with respect
to CO) after ci where xj appears as a positive literal (in case, there is no such ck,
then the hyperedge ends in xj+1 instead). Similarly, if xj is in ci as a negative
literal, there is one lit-in-clause hyperedge (ci, ci+1, xjci, xjck), where ck is the
next clause containing the negative literal xj (or it ends in xj+1).

Clearly, each hyperedge is of length at most 3. We now observe that the
constructed sequence hypergraph H is acyclic. All the hyperedges of H agree
with the following order: the source vertex s; all the vertices ci ∈ C ordered
according to CO, and the dummy vertex cm+1; the vertex x1 followed by all the
vertices x1ci ordered according to CO, and then followed by the vertices x1ci
again ordered according to CO; the vertex x2 followed by all x2ci and then all
x2ci; . . . ; the vertex xn followed by all xnci and then all xnci; and finally the
dummy vertex xn+1 and the target vertex t.

We show that the formula I is satisfiable if and only if the sequence hyper-
graph H contains two hyperedge-disjoint st-hyperpaths. There are 3 possible
types of st-paths in the underlying graph of H: first one leads through all the
vertices c1, c2, . . . , cm+1 in this order; second one leads through all the vertices
x1, x2, . . . , xm+1 in this order and between xj , xj+1 it goes either through all
the xjc∗ vertices or through all the xjc∗ vertices; and the third possible st-path
starts the same as the first option and ends as the second one. Based on this
observation, notice that there can be at most 2 hyperedge-disjoint st-hyperpaths:
necessarily, one of them has an underlying path of the first type, while the other
one has an underlying path of the second type.

From a satisfying assignment A of I we can construct the two disjoint st-
hyperpaths as follows. The underlying path of one hyperpath leads from s to t
via the vertices c1, c2, . . . , cm+1, and to move from ci to ci+1 it uses a lit-in-clause
hyperedge that corresponds to a pair (l, ci) such that l is one of the literals that
satisfy the clause ci in A. The second hyperpath has an underlying path of the
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second type, it leads via x1, x2, . . . , xn+1 and from xj to xj+1 it uses the vertices
containing only the literals that are not satisfied by the assignment A. Thus, the
second hyperpath uses only those lit-in-clause hyperedges that corresponds to
pairs containing literals that are not satisfied by A. This implies that the two
constructed st-hyperpaths are hyperedge-disjoint.

Let P and Q be two hyperedge-disjoint st-hyperpaths of H. Let P has an
underlying path p of the first type and Q has an underlying path q of the second
type. We can construct a satisfying assignment for I by setting to FALSE the
literals that occur in the vertices on q. Then, the hyperpath P suggests how the
clauses of I are satisfied by this assignment. ��

4 On the Minimum st-Hypercut

Quite naturally, we define an st-hypercut of a sequence hypergraph H as a set C
of hyperedges, whose removal from H leaves s and t disconnected.

Definition 5 (st-hypercut). Let s and t be two vertices of a sequence hyper-
graph H = (V, E). A set of hyperedges X ⊆ E is an st-hypercut, if the subhyper-
graph H′ = (V, E \ X) does not contain any hyperpath from s to t. The size of
an st-hypercut X is |X|, that is the number of hyperedges in X.

For directed (multi)graphs, the famous MaxFlow-MinCut Duality Theo-
rem [10] states that the size of a maximum st-flow is equal to the size of a
minimum st-cut. In sequence hypergraphs, this duality does not hold, even in
acyclic sequence hypergraphs as Fig. 3 shows. But, of course, the size of an st-
hyperflow is a lower bound on the size of an st-hypercut.

s

t

Fig. 3. Acyclic sequence hypergraph with minimum st-hypercut of size 2, and no two
hyperedge-disjoint st-hyperpaths.

We showed maximum st-hyperflow to be APX-hard even in acyclic sequence
hypergraphs. It turns out that also minimum st-hypercut problem in acyclic
sequence hypergraphs is APX-hard.

Theorem 4. Minimum st-hypercut in acyclic sequence hypergraphs is hard to
approximate within a factor 2 − ε under UGC, or within a factor 7/6 − ε unless
P=NP.

Proof. We construct an approximation preserving reduction from the vertex
cover problem, which has the claimed inapproximability [19]. ��
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5 Sequence Hypergraphs with Hyperedges of Length ≤ 2

We have seen that some of the classic, polynomially solvable problems in
(directed) graphs become APX-hard in sequence hypergraphs. Note that this
often remains true even if all the hyperedges are of constant length. In partic-
ular, the shortest st-hyperpath problem is APX-hard even if all the hyperedges
are of length at most 5 (the proof given in [5] needs just a slight modification);
Fig. 2 illustrates that the duality between minimum st-hypercut and maximum
st-hyperflow breaks already with a single hyperedge of length 3; and Theorem 3
holds even if all hyperedges are of length at most 3.

It is an interesting question to investigate the complexity of the problems for
hyperedge lengths smaller than 5 or 3. We show that, if all the hyperedges of the
given sequence hypergraph are of length at most 2, the shortest st-hyperpath,
the minimum st-hypercut, and the maximum st-hyperflow can all be found in
polynomial time.

Theorem 5. The shortest st-hyperpath problem in sequence hypergraphs with
hyperedges of length at most 2 can be solved in polynomial time.

The proof is based on similar ideas as in the proof of Theorem 2.

Theorem 6. The maximum st-hyperflow problem and the minimum st-hypercut
problem can be solved in polynomial time in sequence hypergraphs with hyperedges
of length at most 2. The size of the maximum st-hyperflow then equals the size
of the minimum st-hypercut.

Proof. Let H = (V, E) be a sequence hypergraph with hyperedges of length at
most 2, and let s and t be two of its vertices. Then, using a standard graph
algorithms we can find a maximum st-flow f in the underlying directed multi-
graph G of H with edge capacities 1. Thus, the flow f of size |f | gives us a set
of |f | edge-disjoint st-paths p1, . . . , p|f | in G (note that any directed cycles in f
can be easily removed).

We iteratively transform p1, . . . , p|f | into a set of st-paths such that all the
edges of each hyperedge appear on only one of these paths. Let E = (u, v, w)
be a hyperedge that lies on two different paths, i.e., (u, v) ∈ pi and (v, w) ∈ pj ,
for some i, j ∈ [|f |]. Then, pi consists of an su-path, edge (u, v), and a vt-path.
Similarly, pj consists of an sv-path, edge (v, w), and a wt-path. Since all these
paths and edges are pairwise edge-disjoint, by setting pi to consist of the su-
path, edge (u, v), edge (v, w), and the wt-path; and at the same time setting
pj to consist of the sv-path, and the vt-path, we again obtain two edge-disjoint
st-paths pi and pj . However, now the hyperedge E is present only on pi. At
the same time, since each hyperedge is of length at most 2, all the edges of a
hyperedge appear on any st-path consecutively, and any hyperedge that was
present on only one of pi, pj , is not affected by the above rerouting and still is
present on one of the two paths only.

Thus, the rerouting decreased the number of hyperedges present on more than
one paths, and after at most |E| iterations of this transformation we obtain |f |
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hyperedge-disjoint st-paths, which gives us an st-hyperflow F of size |F | = |f |.
It is easy to observe that the size of the hyperflow is bounded from above by the
size of the flow in the underlying multigraph. Thus, we obtained a maximum
st-hyperflow in H.

Since in directed multigraphs the size of the minimum cut equals the size of
the maximum flow [10], it follows that we can find |F | edges e1, . . . , e|F | of G
that forms a minimum cut of G. Observe that each of these edges corresponds
to exactly one hyperedge. Thus, we obtain a set C of at most |F | hyperedges
that forms an st-hypercut. Since any st-hypercut is bounded from below by the
size of the hyperflow, C is a minimum st-hypercut of size |C| = |F |. ��

6 Sequence Hypergraphs with Backward Hyperedges

We consider a special class of sequence hypergraphs where for every hyperedge,
there is the exact same hyperedge, but oriented in the opposite direction.

Definition 6 (backward hyperedges). Let E = (v1, v2, . . . , vk) be a hyper-
edge of a sequence hypergraph H = (V, E). We say that E′ is a backward hyper-
edge2 of E, if E′ = (vk, . . . , v2, v1). If for every E of E, there is exactly one
backward hyperedge in E, we refer to H as sequence hypergraph with backward
hyperedges.

Such a situation arise naturally in urban public transportation networks,
for instance most of the tram lines have also a “backward” line (which has the
exact same stops as the “forward” line, but goes in the opposite order). We study
the complexity of shortest st-hyperpath, minimum st-hypercut, and maximum
st-hyperflow under this setting. We show that, in this setting, we can find a
shortest st-hyperpath in polynomial time. On the other hand, we show that
minimum st-hypercut and maximum st-hyperflow remain NP-hard, and we give
a 2-approximation algorithm for the minimum st-hypercut. The positive results
are based on existing algorithms for standard hypergraphs, the negative results
are obtained by a modification of the hardness proofs in Sects. 3 and 4.

Theorem 7. The shortest st-hyperpath problem in sequence hypergraphs with
backward hyperedges is in P.

Proof. Let H = (V, E) be a sequence hypergraph with backward hyperedges,
and let s and t be two vertices of H. We construct a (standard) hypergraph
H∗ = (V∗ = V, E∗) from H in such a way that for each sequence hyperedge
E of E , E∗ contains a (non-oriented) hyperedge E∗ that corresponds to the
set of vertices of E. Note that E and its backward hyperedge E′ consist of
the same set of vertices, thus the corresponding E∗ and E′∗ are the same. A
shortest st-hyperpath3 P ∗ in (the standard) hypergraph H∗ can be found in

2 Note, if E′ is a backward hyperedge of E, also E is a backward hyperedge of E′.
3 An st-hyperpath P ∗ and its underlying path are defined as in sequence hypergraphs.
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polynomial time. Observe that the size of P ∗ gives us a lower bound |P ∗| on the
length of the shortest path in the sequence hypergraph H.

In fact, we can construct from P ∗ an st-hyperpath in H of size |P ∗| as follows.
Let us fix p∗ to be an underlying path of P ∗. Let (s = v1, v2, . . . , v|P∗|+1 = t)
be a sequence of vertices, subsequence of p∗, such that for each i = 1, . . . , |P ∗|,
there is a hyperedge E∗ in P ∗ that contains both vi and vi+1, and vi is the first
vertex of E∗ seen on p∗, and vi+1 is the last vertex of E∗ seen on p∗. Since every
hyperedge E∗ of E∗ corresponds to the set of vertices of some hyperedge E of
E , there is a sequence of sequence hyperedges (E1, E2, . . . , E|P∗|), Ei ∈ E , such
that vi, vi+1 are vertices in Ei. Since H is sequence hypergraph with backward
hyperedges, for every hyperedge E of E and a pair its of vertices vi, vi+1 of E,
there is an vivi+1-hyperpath in H of size 1, which consists of E or its backward
hyperedge E′. Therefore, there is an st-hyperpath of size |P ∗| in H. ��
Theorem 8. The maximum st-hyperflow problem in sequence hypergraphs with
backward hyperedges is NP-hard.

Theorem 9. The minimum st-hypercut problem in sequence hypergraphs with
backward hyperedges is NP-hard.

Theorem 10. The minimum st-hypercut problem in sequence hypergraphs with
backward hyperedges can be 2-approximated.

7 On Other Algorithmic Problems

We briefly consider some other standard graph algorithmic problems.

Definition 7 (rooted spanning hypergraph). Let H = (V, E) be a sequence
hypergraph. We define s-rooted spanning hypergraph T as a subset of E such
that for every v ∈ V, T is an sv-hyperpath. The size of T is defined as |T |.
Theorem 11. Minimum s-rooted spanning hypergraph in acyclic sequence
hypergraphs is NP-hard to approximate within a factor of (1 − ε) ln n, unless
P = NP .

Definition 8 (strongly connected component). Let H = (V, E) be a
sequence hypergraph. We say that a set C ⊆ E forms a strongly connected com-
ponent if for every two vertices u, v ∈ V ′, V ′ being all the vertices of V present
in C, the set C is a uv-hyperpath. We say that the vertices in V ′ are covered
by C.

Clearly, we can decide in polynomial time whether the given set of hyperedges
C forms a strongly connected component as follows. Consider the underlying
graph G of H induced by the set of sequence hyperedges C and find a maximum
strongly connected component there. If this component spans the whole G, then
C is a strongly connected component in H.
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Theorem 12. Given a sequence hypergraph H = (V, E), it is NP-hard to find a
minimum number of hyperedges that form a strongly connected component C so
that a) C is any non-empty set, or b) all the vertices in V are covered by C.

Theorem 13. Given a sequence hypergraph H = (V, E), finding a maximum
number of hyperedges that form a strongly connected component C so that a) C
is any non-empty set, or b) all the vertices in V are covered by C, is polynomial-
time solvable.
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Abstract. A k-uniform hypergraph has degeneracy bounded by d if
every induced subgraph has a vertex of degree at most d. Given a k-
uniform hypergraph H = (V (H), E(H)), we show there exists an induced
subgraph of size at least

∑

v∈V (H)

min

{

1, ck

(

d + 1

dH(v) + 1

)1/(k−1)
}

,

where ck = 2−(1+ 1
k−1 )

(

1 − 1
k

)

and dH(v) denotes the degree of vertex
v in the hypergraph H. This extends and generalizes a result of Alon-
Kahn-Seymour (Graphs and Combinatorics, 1987) for graphs, as well as a
result of Dutta-Mubayi-Subramanian (SIAM Journal on Discrete Math-
ematics, 2012) for linear hypergraphs, to general k-uniform hypergraphs.
We also generalize the results of Srinivasan and Shachnai (SIAM Jour-
nal on Discrete Mathematics, 2004) from independent sets (0-degenerate
subgraphs) to d-degenerate subgraphs. We further give a simple non-
probabilistic proof of the Dutta-Mubayi-Subramanian bound for linear
k-uniform hypergraphs, which extends the Alon-Kahn-Seymour (Graphs
and Combinatorics, 1987) proof technique to hypergraphs. Our proof
combines the random permutation technique of Bopanna-Caro-Wei (see
e.g. The Probabilistic Method, N. Alon and J. H. Spencer; Dutta-Mubayi-
Subramanian) and also Beame-Luby (SODA, 1990) together with a new
local density argument which may be of independent interest. We also
provide some applications in discrete geometry, and address some natural
algorithmic questions.

Keywords: Degenerate graphs · Independent sets · Hypergraphs ·
Random permutations

1 Introduction

For k ≥ 2, a k-uniform hypergraph is a pair (V (H), E(H)) where E(H) ⊆(
V (H)

k

)
. We will call V (H) and E(H) the vertex set and edge set of H respectively.

When there is no chance of confusion, we will use V and E to denote V (H) and
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DOI: 10.1007/978-3-662-53536-3 25
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E(H). For a vertex v ∈ V (H), degree dH(v) of V (H) will denote |{e : e ∈
E(H), v ∈ e}|. For readability, k − 1 will be denoted by t.

For a subset I ⊆ V (H), the induced k-uniform hypergraph H(I) of I denotes
the hypergraph (I, E(H) ∩ (

I
k

)
). A hypergraph is linear if every pair of vertices

are contained in at most a single hyperedge, i.e. any pair of hyperedges intersect
in at most one vertex. A hypergraph H = (V,E) is d-degenerate if the induced
hypergraph of all subsets of V has a vertex of degree at most d, i.e., for all
I ⊆ V , there exists v ∈ I such that dH(I)(v) ≤ d. For a k-uniform hypergraph
H = (V,E), we will denote by αk, d(H) the size of a maximum-sized subset of
V whose induced hypergraph is d-degenerate, i.e.,

αk, d(H) = max {|I| : I ⊆ V, H(I) is d-degenerate} .

Observe that α(H) := αk, 0(H) is the independence number of the hyper-
graph H.

1.1 Previous Results

Turán [Tur41] gave a lower bound on the independence number of graphs:
α(G) ≥ n

d+1 where d is the average degree of vertices in G.
Caro [Car79] and Wei [Wei81] independently showed that for graphs

α(G) ≥
∑

v∈V (G)

1
dG(v) + 1

,

see [AS08]. This degree-sequence based bound improves on the original average-
degree based lower bound of Turán, and matches it in the case when all degrees
are equal.

For hypergraphs, Spencer [Spe72] gave a bound on the independence number,
based on the average degree d: α(H) ≥ ck

(
n

d1/t

)
, where ck is independent of n

and d. Caro and Tuza [CT91] generalized the Caro-Wei result to the case of
hypergraphs:

Theorem 1. For all k-uniform hypergraph H, we have

α(H) ≥
∑

v∈V

1
(
dH(v)+1/t

dH(v)

) .

The above theorem directly implies the following corollary, which gives Spencer’s
bound:

Corollary 1. For all k ≥ 2, There exists dk > 0 such that all k-uniform hyper-
graphs H satisfy

α(H) ≥ dk

∑

v∈V

1
(1 + dH(v))1/t

.
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Further, Thiele [Thi99] obtained a lower bound on the independence number
of arbitrary (non-uniform) hypergraphs, in terms of the degree rank, a general-
ization of the degree sequence.

On the algorithmic side, Srinivasan and Shachnai [SS04], used the random
permutation method of Beame and Luby [BL90] and also Bopanna-Caro-Wei (see
e.g. [AS08,DMS12]), together with the FKG correlation inequality, to obtain a
randomized parallel algorithm for independent sets, which matched the asymp-
totic form of the Caro-Tuza bound. Dutta, Mubayi and Subramanian [DMS12]
also used the Bopanna-Caro-Wei method; using elementary techniques they
obtained degree-sequence based lower bounds on the independence numbers of
Kr-free graphs and linear k-uniform hypergraphs, which generalized the earlier
average-degree based bounds of Ajtai et al. [AKS80], Shearer [She83,She95] and
Duke, Lefmann and Rödl [DLR95], in terms of degree sequences. 1

Average Degree vs. Degree-Sequence. In general, a bound using the degree
sequence would be intuitively expected to be better than a bound using just the
average degree, since it has more information about the graph. For the above
bounds on the independence numbers, this essentially follows from the convexity
of the function x−1/t. Dutta-Mubayi-Subramanian [DMS12] gave constructions
of hypergraphs which show that the bounds based on the degree-sequence can
be stronger than those based on the average degree by a polylogarithmic (in the
number of vertices) factor.

Large d-degenerate Subgraphs. Compared to independent sets, d-
degenerate subgraphs have been less well-investigated. However, it includes
as special cases zero-degenerate subgraphs i.e. independent sets, as well as 1-
degenerate subgraphs, i.e. maximum induced forests, whose complements are
the well-known hitting set and feedback vertex set problems respectively. The
best known result on this question is that of Alon, Kahn and Seymour [AKS87],
who proved the following lower bound for α2, d(G): 2

Theorem 2 [AKS87]. For all graphs G = (V,E) we have

α2, d(G) ≥
∑

v∈V

min
{

1,
d + 1

dG(v) + 1

}
.

This bound is sharp for every G which is a disjoint union of cliques. Moreover,
they gave a polynomial time algorithm that finds in G an induced d-degenerate
subgraph of at least this size.

1 Their proof also yields an elementary proof of the main bound of Srinivasan and
Shachnai [SS04] without using correlation inequalities, though they do not state this
explicitly.

2 Alon, Kahn and Seymour [AKS87] actually defined a d-degenerate graph as one
where every subgraph has a vertex of degree less than d, whereas we use the more
usual definition in which every subgraph has a vertex of degree at most d.
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On the algorithmic side, Pilipczuk and Pilipczuk [PP12] addressed the ques-
tion of finding a maximum d-degenerate subgraph of a graph, giving the first
algorithm with running time o(2n). Zaker [Zak13] studied a more general version
of degeneracy and gave upper and lower bounds for finding the largest subgraph
of a 2-uniform graph having a given generalized degeneracy.

The proof of Dutta-Mubayi-Subramanian [DMS12] implies the following
lower bound on αk, d for linear hypergraphs (though not explicitly stated in
their paper):

Theorem 3 [DMS12]. Let G = (V,E) be a linear k-uniform hypergraph, and
for all v ∈ V , dG(v) denote the degree of v in G. Then

αk, d(G) ≥ w(G) :=
∑

v∈V

wG(v), (1)

where

w(v) =

⎧
⎨

⎩

1 if dG(v) ≤ d

1
1+(t(d+1))−1

(dG(v)
d+1 )

( dG(v)+1/t
dG(v)−d−1)

if dG(v) > d.
(2)

Our Results

We first give a completely different and an extremely simple proof of
Theorem 3 using a weight function. Our proof follows along the lines of the
proof of Theorem 2 due to Alon, Kahn and Seymour [AKS87].

Next, we extend Theorem 3 to the case of general hypergraphs:

Theorem 4. Let G = (V,E) be a k-uniform hypergraph, and for all v ∈ V ,
dG(v) denote the degree of v in G. Then

αk, d(G) ≥
∑

v∈V

min

{

1, ck

(
d + 1

d(v) + 1

)1/t
}

, (3)

where t = k − 1 and ck = 2−1−1/(k−1). There exists a randomized algorithm that
can extract a d-degenerate set of above size in expectation.

Our proof uses the random permutation method [AS08] of Bopanna-Caro-Wei,
together with a new local density argument, avoiding advanced correlation
inequalities. As a consequence, we obtain a simpler proof as well as a gener-
alization of the result of Srinivasan-Shachnai [SS04].

As an application of Theorem 4 we will prove the following result in inci-
dence geometry, which generalizes a result of Payne and Wood [PW13] on the
maximum size of a subset, out of n points in the plane, such that no three points
in the subset are collinear.
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Lemma 1. 1. Let P be a set of n points in the plane such that for any line l
in the plane |l ∩ P | ≤ �. For d ≤ O(n log � + �2) there exists a subset S ⊆ P
with at most d|S| collinear triples in S and

|S| = Ω

(√
dn2

n log � + �2

)

.

And if � ≤ O(
√

n), then

|S| = Ω

(√
dn

log �

)

.

2. Let P be a set of n points in the plane such that for any line l in the plane
|l ∩ P | ≤ �. Let k ≥ 4 be a constant and d ≤ O(�k−3n + �k−1). Then there
exists a subset S ⊆ P of size

Ω

(

n

(
d

�k−3n + �k−1

)1/(k−1)
)

such that S has at most d|S| collinear k-tuples in S. And if � ≤ O(
√

n), then

|S| = Ω

((
nk−2d

�k−3

)1/(k−1)
)

.

The proof of Lemma 1 uses the following lemma by Payne and Wood [PW13],
proved using Szemerédi-Trotter theorem [ST83] on incidence geometry.

Lemma 2 [PW13].

1. Let P be a set of n points in the plane such that for any line l in the plane
|l∩P | ≤ �. Then the number of collinear 3-tuples in P is at most O(n2 log �+
n�2).

2. Let P be a set of n points in the plane such that for any line l in the plane
|l ∩ P | ≤ �. Then, for k ≥ 4, the number of collinear k-tuples in P is at most
O(�k−3n2 + �k−1n).

Proof (Lemma 1). Let H be a k-uniform hypergraph with V (H) = P , and
{p1, . . . , pk} ∈ E(H) if there exists a line a line l in the plane with {p1, . . . , pk} ∈
l. Lemma 2 bounds the size of E(H). The result now follows directly from
Theorem 4.

The rest of the paper is organised as follows: Sect. 2 has the simpler proof of
Theorem 3, and Sect. 3 has the proof of Theorem 4. Finally in the Conclusions
section there are some remarks and open questions.
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2 Linear Hypergraphs

In this section we will give an alternative proof of the Theorem 3. The proof will
follow exactly along the lines of the proof by Alon, Kahn and Seymour [AKS87]
of Theorem 2.

First observe that
(
dG(v)

r

)

(
dG(v)+1/t
dG(v)−r

) =
1

(
1 + 1

t(r+1)

)
. . .

(
1 + 1

tdG(v)

)

This implies that w(v) is decreasing in dG(v) for all values of dG(v) ≥ r. Also,
observe that (

dG(v)−1
r

)

(
dG(v)−1+1/t
dG(v)−1−r

) =
(

1 +
1

t dG(v)

) (
dG(v)

r

)

(
dG(v)+1/t
dG(v)−r

) (4)

The alternative proof will be by induction on the number n of vertices of the
k-uniform hypergraph G. The base case of n = 1 follows trivially. Assuming the
result holds for n − 1, we will now show that the result also holds for n.

Case 1. If we have a vertex v ∈ V (G) with dG(v) ≤ d, then consider the
hypergraph H = G(V ′) where V ′ = V \{v}. Observe that αk, d(G) = αk, d(H)+1.
Since ∀u ∈ V ′, we have from Eq. (4), wG(u) ≤ wH(u). This implies

w(H) =
∑

u∈V ′
wH(u) ≥

∑

u∈V ′
wG(u) = w(G) − 1.

The last inequality follows from the fact that wG(v) = 1 since dG(v) ≤ d.
Using the induction hypothesis αk, d(G) ≥ w(G) and the fact that αk, d(G) =
αk, d(H) + 1, we get

αk, d(G) = αk, d(H) + 1 ≥ w(H) + 1 ≥ w(G).

Case 2. Now we will consider the case where dG(v) > d, ∀v ∈ V (G). Let
Δ = maxu∈V (G) dG(u), and let v ∈ V (G) be a vertex with dG(v) = Δ. Let
u1, . . . , ul, where l = tΔ, be the neighbors of v in G. Note that l = tΔ follows
from the fact that G is a linear hypergraph. We will now show that w(H) ≥ w(G),
where H = G(V ′) and V ′ = V \ {v}. We will now show w(H) ≥ w(G).

w(H) =
∑

u∈V ′
wH(u)

= w(G) − wG(v) −
l∑

i=1

wG(ui) +
l∑

i=1

wH(ui)
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= w(G) − wG(v) +
l∑

i=1

wG(ui)
t dG(ui)

≥ w(G)

The second last inequality follows from the facts that dH(ui) = dG(ui) − 1 (as
G is a linear hypergraph) and Eq. (4). The last inequality follows from the facts
that dG(u) ≤ Δ for all u ∈ V and wG(ui) ≥ wG(v) (direct consequence of
Eq. (4)). From induction hypothesis we have

αk, d(H) ≥ w(H) ≥ w(G).

This completes the proof of Theorem 3 since αk, d(G) ≥ αk, d(H).

3 General K-uniform Hypergraphs

In this section we shall prove a lower bound on αk,d(H) for general k-uniform
hypergraph H in terms of its degree sequence. We will give a very simple random-
ized algorithm to obtain an d-degenerate subgraph of a k-uniform hypergraph,
whose analysis in expectation will yield the desired bound in Theorem 4.

3.1 Details of the Algorithm

Before we can give the details of the algorithm, we will need some definitions.

Definition 1. Let σ be an ordering of the vertices of H.

– Fix a vertex v ∈ V (H). Call a hyperedge e ∈ E(H) with v ∈ e a backward
edge with respect to σ, if ∀u ∈ e \ {v}, σ(u) < σ(v).

– We will denote by bσ(v) the number of backward edges of the vertex v with
respect to the ordering σ.

Algorithm 1. RandPermute
Input: H := (V, E) and d;
// H is a k-uniform hypergraph
Random odering: Let σ be a random ordering of the vertex set V ;
Initialization: I ← ∅;
// I will be the degenerate subset we output;
for v ∈ V do

Compute: bσ(v);
if bσ(v) ≤ d then

I ← I ∪ {v};
end if

end for
Output: I;
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3.2 Analysis of the Algorithm

Theorem 4 directly follows from the following result.

Claim.

E [|I|] ≥
∑

v∈V

min

{

1, ck

(
d + 1

dH(v) + 1

)1/t
}

,

where ck = ck = 2−(1+ 1
k−1 )

(
1 − 1

k

)
= 2−(1+ok(1)).

Proof. For all vertices v ∈ V , we will denote by N(v) the neighbors of v in H.
Given an arbitrary vertex v ∈ V , and a random ordering of the vertices σ, we

need to bound Pr [v ∈ I] from below. Since the event of v being selected depends
on the relative ordering of the vertices in N(v), therefore, the probability v
being selected in I in a random ordering is the number of orderings for which v
is selected, divided by (|N(v)| + 1)!. Let σ be an ordering of the vertices of V ,
such that v is selected in I in the ordering σ. Given a vertex v ∈ V , consider now
Lv := (V (Lv), E(Lv)), the (k−1)-uniform link hypergraph on the neighbourhood
of v, defined as follows:

V (Lv) := N(v), and
E(Lv) := {S ⊂ V (Lv) : S ∪ {v} ∈ E},

i.e., the vertices are the neighbours of v, and the edges are those edges of the
original hypergraph H which contained v, but with v removed. Clearly |E(Lv)| =
dH(v). Let F ⊂ V (Lv) be

F := {u ∈ N(v) : σ(u) < σ(v)} ,

i.e., the vertices in the neighbourhood of v which occur before v in the ordering
σ. We want Lv(F ) to have at most d hyperedges. The vertices occurring before
v can be ordered arbitrarily amongst themselves, and similarly for the vertices
occuring after v. So we get that the probability that v is selected in I is given by:

Pr [v ∈ I] =
∑

J⊂V (Lv) : |E(Lv(J))|≤d

(|J |)! (|V (Lv)| − |J |)!
(|V (Lv)| + 1)!

=
1

|V (Lv)| + 1

∑

J⊂V (Lv) : |E(Lv(J))|≤d

1
(|V (Lv)|

|J|
)

For k = 2, the link hypergraph is a 1-graph i.e. a set of vertices, each vertex
being a 1-edge. Hence the summation in the RHS evaluates to d + 1 (counting 1
for each case when there are exactly 0, 1, . . . , d vertices before v, in the random
ordering). Therefore

E [|I|] =
∑

v∈V

Pr [v ∈ I] =
∑

v∈V

min
{

1,
d + 1

d(v) + 1

}
,
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and we get the theorem of Alon-Kahn-Seymour (Theorem 2).
For general k-uniform hypergraphs, observe that if dH(v) ≤ d, then

Pr [v ∈ I] = 1. However, if dH(v) > d, then we need to look at the link hyper-
graph which can be an arbitrary k−1-uniform hypergraph. In this case, we shall
prove the following general lemma, (which may be of independent interest).

Lemma 3. For each k-uniform hypergraph H = (V,E), such that |V | = n,
|E| = m, we have

∑

J⊂V (H) : |E(J)|≤a

1
(

n
|J|

) ≥ c′
kn

(a + 1
m

)1/k

.

where c′
k = 2−(1+1/k).

Indeed, we get that the probability that v is selected in I is given by:

Pr [v ∈ I] =
1

|V (Lv)| + 1

∑

J⊂V (Lv) : |E(Lv(J))|≤d

1
(|V (Lv)|

|J|
)

≥ c′
k−1 |V (Lv)|
|V (Lv)| + 1

× (d + 1)1/(k−1)

|E(Lv)|1/(k−1)
(from Lemma 3)

≥ c′
k−1 |V (Lv)|
|V (Lv)| + 1

× (d + 1)1/(k−1)

dH(v)1/(k−1)
(as |E(Lv)| = dH(v))

≥ ck

(
d + 1

dH(v) + 1

)1/(k−1)

, (5)

where

ck = 2−(1+ 1
k−1 )

(
1 − 1

k

)
= 2−(1+ok(1)).

Note that Inequality (5) follows from the fact that since dH(v) > d ≥ 0, we must
have at least k − 1 vertices in the hypergraph Lv, i.e., |V (Lv)| ≥ k − 1.

It only remains to prove Lemma 3, which we will prove using a local density
argument.

Proof (of Lemma 3). For all 1 ≤ s ≤ n, we define

ρs := E|S|=s [|E(H(S))|] =

∑
S⊆V, |S|=s E(H(S))

(
n
s

) .

Note that the expectation is taken over all subsets of V of size s, and E(H(S)) =
{e ∈ E(H) : e ⊆ S}.

Counting the number of pairs (e, S), where e ∈ E(H), and S ⊂ V : |S| =
s, e ∈ S, in two ways, we get the average local density of sets of size s is

ρs =
m

(
n−k
s−k

)

(
n
s

) =
m(s)k

(n)k
≤ msk

nk
.
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(Here
(
a
b

)
:= 0 if b < 0). This is as follows: let

z := #
{

(e, S) : e ∈ E,S ∈
(

V

s

)
, e ⊂ S

}
.

Then each of the
(
n
s

)
sets of size s contributes, on average, ρs-many entries to

z. On the other hand, each edge e ∈ E(H) belongs to
(
n−k
s−k

)
-many sets of size s.

Equating the two summations gives the claimed average local density.
Now, we use the above observation to prove the lemma. Partition the sum-

mands on the LHS into n parts, depending on the size of the set J (i.e. the
number of neighbouring vertices which precede v in the random ordering):

n∑

i=1

⎛

⎝
∑

J⊆V : |J|=i, |E(H(J))|<a

1
(
n
i

)

⎞

⎠ .

When i < k, it is easy to see that the inner summation is 1. The main idea of
the proof is the following: first, observe that for any i ∈ [n], the inner summation
is just the probability that a randomly picked set of exactly i vertices has fewer
than a+1 edges. Then for small enough i, the expected number of edges is upper
bounded by ρi, and is much smaller than (a + 1)/2. So the probability that a
random i-set contains more than twice the expected number, is at most half.
Therefore for all such i, the contribution to the outer sum is at least 1/2. The
number of such terms in the outer sum, then gives the claimed lower bound.

Formally, let Xi be a random variable giving the number of edges contained
in a randomly chosen set on i vertices. By Markov’s inequality:

Pr [Xi ≥ 2.E [Xi]] ≤ 1
2
.

We have that E [Xi] = ρi. Therefore, the LHS becomes:

n∑

i=1

Pr [Xi < a + 1] = 1 −
n∑

i=1

Pr [Xi ≥ a + 1]

With foresight, we split the above sum into two parts, when i ≤ t∗ := n(a+1)1/k

(2m)1/k
,

and when i > t∗. Observe that when i ≤ t∗, we have that mik

nk ≤ a+1
2 . We get

n∑

i=1

Pr [Xi < a + 1] =
t∗

∑

i=1

Pr [Xi < a + 1] +
∑

i>t∗
Pr [Xi < a + 1]

≥
t∗

∑

i=1

(
1 − E [Xi]

a + 1

)

=
t∗

∑

i=1

(
1 − m(i)k

(a + 1)(n)k

)



On Subgraphs of Bounded Degeneracy in Hypergraphs 305

≥
t∗

∑

i=1

(
1 − mik

(a + 1)nk

)

≥
t∗

∑

i=1

(
1 − 1

2
)

≥ n(a + 1)1/k

2(2m)1/k

where in the second step we used Markov’s inequality on the first summation,
and in the penultimate step we used the observation on t∗ noted above.

Remark 1 (Regarding the constant “ck”).

1. Observe that

ck = 2−(1+ 1
k−1 )

(
1 − 1

k

)
≥ 1

8
,

for all k ≥ 2, and ck → 1
2 as k → ∞.

2. For simplicity of exposition we did not try to optimize ck.

4 Conclusion

Our randomized algorithm for finding d-degenerate subgraphs of k-uniform
hypergraphs inherits the analysis of Srinivasan-Shachnai [SS04] for independent
sets:

(i) The RandPermute algorithm runs in RNC, as long as d is polylogarithmic
in the number of vertices and edges.

(ii) Our proof technique generalizes to non-uniform hypergraphs.
(iii) All our results generalize to the vertex-weighted scenario, where we want

an induced d-degenerate subgraph of maximum weight.

It is interesting to ask if the RandPermute algorithm can be used to obtain
lower bounds for the generalized degeneracy of Zaker, or to solve the conjecture
of Beame and Luby [BL90], which asks whether iterating the RandPermute
algorithm always yields a maximal independent set.
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[AKS80] Ajtai, M., Komlós, J., Szemerédi, E.: A note on Ramsey numbers. J. Comb.
Theory, Ser. A 29(3), 354–360 (1980)

[AKS87] Alon, N., Kahn, J., Seymour, P.D.: Large induced degenerate subgraphs.
Graphs Comb. 3(1), 203–211 (1987)

[AS08] Alon, N., Spencer, J.H.: The Probabilistic Method. Wiley, Hoboken (2008)
[BL90] Beame, P., Luby, M.: Parallel search for maximal independence given minimal

dependence. In: Proceedings of the 1st Annual ACM-SIAM Symposium on
Discrete Algorithms, SODA 1990, pp. 212–218 (1990)

[Car79] Caro, Y.: New results on the independence number. Technical report, Tel
Aviv University (1979)

[CT91] Caro, Y., Tuza, Z.: Improved lower bounds on k-independence. J. Graph
Theory 15(1), 99–107 (1991)
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