
 123

Transactions on
Computational
Collective Intelligence XXIVLN

CS
 9

77
0

Ngoc Thanh Nguyen • Ryszard Kowalczyk
Editors-in-Chief

Jo
ur

na
l S

ub
lin

e Joaquim Filipe
Guest Editor

Lecture Notes in Computer Science 9770

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Zurich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbrücken, Germany

More information about this series at http://www.springer.com/series/8851

http://www.springer.com/series/8851

Ngoc Thanh Nguyen • Ryszard Kowalczyk
Joaquim Filipe (Eds.)

Transactions on
Computational
Collective Intelligence XXIV

123

Editors-in-Chief

Ngoc Thanh Nguyen
Faculty of Computer Science
and Management

Wrocław University of Technology
Wrocław
Poland

Guest Editor

Joaquim Filipe
Escola Superior de Tecnologiy de Setébual
Setúbal
Portugal

Ryszard Kowalczyk
Swinburne University of Technology
Hawthorn
Australia

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-662-53524-0 ISBN 978-3-662-53525-7 (eBook)
DOI 10.1007/978-3-662-53525-7

Library of Congress Control Number: 2016953315

© Springer-Verlag Berlin Heidelberg 2016
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer-Verlag Berlin Heidelberg
The registered company address is: Heidelberger Platz 3, 14197 Berlin, Germany

Transactions on Computational
Collective Intelligence XXIV

Preface

The present special issue of Transactions on Computational Collective Intelligence
(TCCI) includes extended and revised versions of a set of selected papers from the
International Joint Conference on Computational Intelligence – IJCCI 2013 and IJCCI
2015.

The purpose of IJCCI is to bring together researchers, engineers, and practitioners
interested in several areas of computational intelligence, including theory and appli-
cations of evolutionary computing, fuzzy systems, and neural networks.

After a strict reviewing process, three papers from IJCCI 2013 and six papers from
IJCCI 2015 were selected for this volume of TCCI, encompassing relevant topics of
current research on computational intelligence.

Particle swarms continue to attract research efforts, as exemplified by two of the
selected papers: “Dynamic Topologies for Particle Swarms” authored by Carlos M.
Fernandes, J.L.J. Laredo, J.J. Merelo, C. Cotta, and A.C. Rosa, and “Evaluative Study
of PSO/Snake Hybrid Algorithm and Gradient Path Labeling for Calculating Solar
Differential Rotation” authored by Ehsan Shahamatnia, André Mora, Ivan Dorotovič,
Rita A. Ribeiro, and José M. Fonseca.

We selected three papers that presented relevant research work on evolutionary
optimization and genetic programming, namely, “The Uncertainty Quandary: A Study
in the Context of the Evolutionary Optimization in Games and Other Uncertain Envi-
ronments” authored by Juan J. Merelo et al., “Hybrid Single Node Genetic Programming
for Symbolic Regression” authored by Jiri Kubalik, Eduard Alibekov, Jan Zegklitz, and
Robert Babuska, and a paper about Lindenmayer systems (L-systems) entitled “L2
Designer: A Tool for Genetic L-system Programming in Context of Generative Art,”
authored by Tomáš Konrády, Kamila Štekerová, and Barbora Tesařová.

The field of machine learning is another hot topic that deserves plenty of attention from
the research community on computational intelligence and we selected three papers that
present different applications of machine learning, including a paper on developmental
robotics using humanoid robots, entitled “Manifold Learning Approach Toward
Constructing State Representation for Robot Motion Generation,” authored by Yuichi
Kobayashi and RyosukeMatsui, a paper describing applied research to functional magnetic
resonance imaging (fMRI) entitled “The Existence of Two Variant Processes in Human
Declarative Memory: Evidence Using Machine Learning Classification Techniques in
Retrieval Tasks,” by Alex Frid, Hananel Hazan, Ester Koilis, Larry M. Manevitz, Maayan
Merhav, and Gal Star, and also a paper involving time series forecasting, entitled “Divide

and Conquer Ensemble Method for Time Series Forecasting,” authored by Jan Kostrzewa,
Giovanni Mazzocco, and Dariusz Plewczynski.

Finally, we concluded our selection with a paper that presents a survey of a new
research area, ephemeral computing, related to bioinspired optimization, evolutionary
computation, complex systems, and autonomic computing. This paper, entitled
“Application Areas of Ephemeral Computing: A Survey,” was authored by Carlos
Cotta et al. and is another good example of the application focus of this conference,
without forgetting the importance of theoretical aspects because, as Ludwig Boltzmann
taught us, “there is nothing more practical than a good theory.”

We would like to thank all the authors for their contributions and also the reviewers
for their time and expertise. Finally, we would also like to express our gratitude to the
LNCS editorial staff of Springer and in particular to Prof. Ryszard Kowalczyk for his
patience and availability during this process.

July 2016 Joaquim Filipe

VI Transactions on Computational Collective Intelligence XXIV

Organization

Transactions on Computational Collective Intelligence

This Springer journal focuses on research on the applications of the computer-based
methods of computational collective intelligence (CCI) and their applications in a wide
range of fields such as the Semantic Web, social networks, and multi-agent systems.
It aims to provide a forum for the presentation of scientific research and technological
achievements accomplished by the international community.

The topics addressed by this journal include all solutions to real-life problems for
which it is necessary to use CCI technologies to achieve effective results. The emphasis
of the papers is on novel and original research and technological advancements. Special
features on specific topics are welcome.

Editor-in-Chief

Ngoc Thanh Nguyen Wroclaw University of Technology, Poland

Co-Editor-in-Chief

Ryszard Kowalczyk Swinburne University of Technology, Australia

Editorial Board

John Breslin National University of Ireland, Galway, Ireland
Shi-Kuo Chang University of Pittsburgh, USA
Longbing Cao University of Technology Sydney, Australia
Oscar Cordon European Centre for Soft Computing, Spain
Tzung-Pei Hong National University of Kaohsiung, Taiwan
Gordan Jezic University of Zagreb, Croatia
Piotr Jędrzejowicz Gdynia Maritime University, Poland
Kang-Huyn Jo University of Ulsan, Korea
Jozef Korbicz University of Zielona Gora, Poland
Hoai An Le Thi Lorraine University, France
Pierre Lévy University of Ottawa, Canada
Tokuro Matsuo Yamagata University, Japan
Kazumi Nakamatsu University of Hyogo, Japan
Toyoaki Nishida Kyoto University, Japan
Manuel Núñez Universidad Complutense de Madrid, Spain
Julian Padget University of Bath, UK
Witold Pedrycz University of Alberta, Canada

Debbie Richards Macquarie University, Australia
Roman Slowiński Poznan University of Technology, Poland
Edward Szczerbicki University of Newcastle, Australia
Tadeusz Szuba AGH University of Science and Technology, Poland
Kristinn R. Thorisson Reykjavik University, Iceland
Gloria Phillips-Wren Loyola University Maryland, USA
Slawomir Zadrożny Institute of Research Systems, PAS, Poland
Bernadetta Maleszka Assistant Editor, Wroclaw University of Technology,

Poland

VIII Organization

Contents

Dynamic Topologies for Particle Swarms . 1
Carlos M. Fernandes, J.L.J. Laredo, J.J. Merelo, C. Cotta,
and A.C. Rosa

Evaluative Study of PSO/Snake Hybrid Algorithm and Gradient Path
Labeling for Calculating Solar Differential Rotation. 19

Ehsan Shahamatnia, André Mora, Ivan Dorotovič, Rita A. Ribeiro,
and José M. Fonseca

The Uncertainty Quandary: A Study in the Context of the Evolutionary
Optimization in Games and Other Uncertain Environments. 40

Juan J. Merelo, Federico Liberatore, Antonio Fernández Ares,
Rubén García, Zeineb Chelly, Carlos Cotta, Nuria Rico,
Antonio M. Mora, Pablo García-Sánchez, Alberto Tonda,
Paloma de las Cuevas, and Pedro A. Castillo

Hybrid Single Node Genetic Programming for Symbolic Regression 61
Jiří Kubalík, Eduard Alibekov, Jan Žegklitz, and Robert Babuška

L2 Designer: A Tool for Genetic L-system Programming in Context
of Generative Art . 83

Tomáš Konrády, Kamila Štekerová, and Barbora Tesařová

Manifold Learning Approach Toward Constructing State Representation
for Robot Motion Generation . 101

Yuichi Kobayashi and Ryosuke Matsui

The Existence of Two Variant Processes in Human Declarative Memory:
Evidence Using Machine Learning Classification Techniques
in Retrieval Tasks . 117

Alex Frid, Hananel Hazan, Ester Koilis, Larry M. Manevitz,
Maayan Merhav, and Gal Star

Divide and Conquer Ensemble Method for Time Series Forecasting 134
Jan Kostrzewa, Giovanni Mazzocco, and Dariusz Plewczynski

Application Areas of Ephemeral Computing: A Survey 153
Carlos Cotta, Antonio J. Fernández-Leiva, Francisco Fernández de Vega,
Francisco Chávez, Juan J. Merelo, Pedro A. Castillo, David Camacho,
and María D. R-Moreno

Author Index . 169

http://dx.doi.org/10.1007/978-3-662-53525-7_1
http://dx.doi.org/10.1007/978-3-662-53525-7_2
http://dx.doi.org/10.1007/978-3-662-53525-7_2
http://dx.doi.org/10.1007/978-3-662-53525-7_3
http://dx.doi.org/10.1007/978-3-662-53525-7_3
http://dx.doi.org/10.1007/978-3-662-53525-7_4
http://dx.doi.org/10.1007/978-3-662-53525-7_5
http://dx.doi.org/10.1007/978-3-662-53525-7_5
http://dx.doi.org/10.1007/978-3-662-53525-7_6
http://dx.doi.org/10.1007/978-3-662-53525-7_6
http://dx.doi.org/10.1007/978-3-662-53525-7_7
http://dx.doi.org/10.1007/978-3-662-53525-7_7
http://dx.doi.org/10.1007/978-3-662-53525-7_7
http://dx.doi.org/10.1007/978-3-662-53525-7_8
http://dx.doi.org/10.1007/978-3-662-53525-7_9

Dynamic Topologies for Particle Swarms

Carlos M. Fernandes1,2(&), J.L.J. Laredo2, J.J. Merelo2, C. Cotta3,
and A.C. Rosa1

1 LARSyS: Laboratory for Robotics and Systems in Engineering and Science,
University of Lisbon, Lisbon, Portugal

{cfernandes,acrosa}@laseeb.org
2 Department of Architecture and Computer Technology,

University of Granada, Granada, Spain
juanlu.jimenez@gmai.com, jmerelo@gmail.com
3 Departamento de Lenguages y Ciencias de la Computación,

University of Malaga, Malaga, Spain
ccottap@lcc.uma.es

Abstract. The Particle Swarm Optimization (PSO) algorithm is a
population-based metaheuristics in which the individuals communicate through
decentralized networks. The network can be of many forms but traditionally its
structure is predetermined and remains fixed during the search. This paper
investigates an alternative approach. The particles are positioned on a
2-dimensional grid of nodes. During the run, they move through the network
according to simple rules, while interacting with each other using signs that they
leave on the nodes. The links between the particles – and consequently the
information flow – are then defined at each time step by the position of the
particle on the grid. As a result, each particle’s set of neighbors and connectivity
degree varies during the search progress. The particles can move randomly or
instead track signs left by other particles on the grid. In this paper, after a formal
description of the general model, two different strategies (random and
sign-based) are tested and compared to standard topologies on unimodal and
multimodal functions, including a rotated and a shifted function with noise from
the CEC benchmark. The experiments demonstrate that the dynamics provided
by the proposed structure results in a more consistent and stable performance
throughout the test set. The working mechanisms of the model are simple and
easy to implement.

1 Introduction

The Particle Swarm Optimization (PSO) is an optimization algorithm inspired by the
social behavior of bird flocks and fish schools [5]. PSO search is performed by a swarm
of candidate solutions (called particles) that move around a fitness landscape guided by
mathematical rules that define their velocity and position at each time step. Each
particle’s velocity vector is influenced by its best known position and by the best
known positions of its neighbors. The neighborhood of each particle – and conse-
quently the flow of information throughout the population – is defined a priori by a

© Springer-Verlag Berlin Heidelberg 2016
N.T. Nguyen et al. (Eds.): TCCI XXIV, LNCS 9770, pp. 1–18, 2016.
DOI: 10.1007/978-3-662-53525-7_1

population topology. Therefore, the chosen structure deeply affects the convergence
skills of the algorithm.

The particles are interconnected so that they acquire information on the regions
explored by other particles. In fact, it has been claimed that the distinctiveness of the
algorithm lies in the interactions of the particles [7]. These networks of individuals may
be of any possible structure, from sparse to dense (or even fully connected) graphs,
with different degrees of connectivity and clustering in between. The most commonly
used PSO population structures are the lbest (which connects the individuals to a local
neighborhood) and the gbest (in which each particle is connected to every other
individual). These topologies are well-studied and the major conclusions are that gbest
is fast but frequently trapped by local optima, while lbest is slower but converges more
often to the neighborhood of the global optima.

Since the first experiments with these topologies, researchers have tried to design
structures that hold both lbest and gbest qualities. Other studies try to understand what
makes a good structure. In [7], for instance, Kennedy and Mendes investigate several
types of topologies and recommend the use of a lattice with von Neumann neigh-
borhood (resulting in a connectivity degree between that of lbest and gbest).

In the proposed topology, n particles are placed randomly in a 2-dimensional grid
with q� s nodes where q� s� l and l is the population size of the algorithm. A simple
set of rules guides the transit of the particles through the nodes. Every time-step, each
individual checks its von Neumann neighborhood and, as in the standard PSO, updates
its velocity and position using the information given by the neighbors. However, while
the connectivity degree of the von Neumann structure is k ¼ 5, in the proposed topology
some of the particle’s neighboring nodes may be empty at that given time step. Con-
sequently, the connectivity degree is variable in the range 1� k� 5. Furthermore, the
structure is dynamic: in each time-step, every particle updates its position on the grid
(which is a different concept from the position of the particle in the fitness landscape)
according to a pre-defined rule. This rule, which is implemented locally and without any
knowledge on the global state of the system, can be based on stigmergy [3] – the
particles leave signals on the nodes, which are followed by other particles – or on
Brownian motion [8] – the particles choose the destination node randomly from the
neighboring empty sites.

In Fernandes et al. [1], preliminary tests with Brownian motion demonstrated the
validity of the approach. In this paper, a formal description of the model is given, the
set of test functions is enlarged, the signal-based configuration is tested and compared
to the Brownian version and the effects of the grid size in the performance are studied.
The results show that the dynamic structures clearly improve the performance of
standard configurations. Furthermore, the proposed structure performs more consis-
tently than the other topologies. Grid size affects the performance but a 1:2 ratio
between the particles and nodes seems to be a good design choice for several types of
optimization problems. We believe that these results, together with the simplicity of the
approach and its potential as a basis for more complex movement rules validate the
proposed study.

The present work is organized as follows. The next section describes PSO and its
topologies, while giving a general overview on previous studies of population structures.

2 C.M. Fernandes et al.

Section 3 describes the proposed model. Section 4 describes the experiments and dis-
cuses the results. Finally, Sect. 5 concludes the paper and outlines future lines of research.

2 Particle Swarms and Population Structure

PSO is described by a simple set of equations that define the velocity and position of
each particle. The position vector of the i-th particle is given by ~Xi ¼ xi;1; xi;2; . . .x1;D

� �
,

where D is the dimension of the search space. The velocity is given by
~Vi ¼ vi;1; vi;2; . . .v1;D

� �
). The particles are evaluated with a fitness function f ~Xi

� �
in

each time step and then their positions and velocities are updated by:

vi;d tð Þ ¼ vi;d t � 1ð Þþ c1r1 pi;d � xi;d t � 1ð Þ� �þ c2r2 pg;d � xi;d t � 1ð Þ� � ð1Þ

xi;d tð Þ ¼ xi;d t � 1ð Þþ vi;d tð Þ ð2Þ

were pi is the best solution found so far by particle i and pg is the best solution found so
far by the neighborhood of the particle. Parameters r1 and r2 are random numbers
uniformly distributed in the range [0, 1] and c1 and c2 are acceleration coefficients that
tune the relative influence of each term of the formula. The first term, influenced by the
particle’s best solution found so far, is known as the cognitive part, since it relies on the
particle’s own experience. The last term is the social part, since it describes the
contribution of the community to the velocity of the particle.

In order to prevent particles from stepping out of the limits of the search space, the
positions xi;d tð Þ of the particles are limited by constants that, in general, correspond to
the domain of the problem: xi;d tð Þ 2 �Xmax;Xmax½ �: Velocity may also be limited
within a range in order to prevent uncontrolled growth of the velocity vector:
vi;d tð Þ 2 �Vmax;Vmax½ �. Usually, Xmax ¼ Vmax.

For achieving a better balance between local and global search, Shi and Eberhart
[15] introduced the inertia weight x as a multiplying factor of the first term of Eq. 1.
The modified velocity equation is:

vi;d tð Þ ¼ x:vi;d t � 1ð Þþ c1r1 pi;d � xi;d t � 1ð Þ� �þ c2r2 pg;d � xi;d t � 1ð Þ� � ð3Þ

By adjusting x (usually within the range [0, 1.0]) together with the constants c1 and
c2, it is possible to balance exploration and exploitation abilities of the PSO (please
refer to [14] for a survey on exploration and exploitation in evolutionary algorithms).
This paper uses PSOs with inertia weight.

The neighborhood of the particle (which defines in each time-step the value of pg)
is a key factor in the performance of PSO. Most of PSOs use one of two simple
sociometric principles for defining the neighborhood network. One connects all the
members of the swarm to one another, and it is called gbest, were g stands for global.
The degree of connectivity of gbest is k ¼ n, where n is the number of particles.

The other typical configuration, called lbest (where l stands for local), creates a
neighborhood that comprises the particle itself and its k nearest neighbors. The most

Dynamic Topologies for Particle Swarms 3

common lbest topology is the ring structure: particles are arranged in a ring structure
(resulting in a degree of connectivity k ¼ 3, including the particle).

As stated above, the topology of the population affects the performance of the PSO
and it must be chosen according to the target-problem. Furthermore, each topology has
its own typical behavior and its choice may also depend on the objectives or tolerance
of the optimization process. Since all the particles are connected to every other and
information spreads easily through the network, the gbest topology is known to con-
verge fast but unreliably (it often converges to local optima).

The lbest converges slower than the gbest structure because information spreads
slower through the network. However, and for the same reason, it is also less prone to
converge prematurely to local optima. In-between the ring structure with k ¼ 3 and the
gbest with k ¼ l (where l is the population size) there are several types of structures,
each one with its advantages for a certain type of fitness landscape. However, some-
times it is not possible to assure the best configuration: the structure of the problem
may be unknown, or the time requirements do not permit preliminary tests. Therefore,
the research community has dedicated substantial efforts on studying the properties of
population topologies for PSO.

Kennedy and Mendes [7] published an exhaustive study on topologies for PSOs.
They tested several types, including lbest, gbest and von Neumann configuration with
radius 1 (also kown as L5 neighborhood). They also tested populations arranged in
randomly generated graphs. The authors conclude that when the configurations are
ranked by the performance the structures with k = 5 (like the L5) perform better, but
when ranked according to the number of iterations needed to meet the criteria, con-
figurations with higher degree of connectivity perform better. These results are con-
sistent with the premise that low connectivity favors robustness, while higher
connectivity favors convergence speed (at the expense of reliability). Amongst the
large set of graphs tested in [7], the Von Neumann with radius 1 configuration per-
formed more consistently and the authors recommend its use.

Alternative topologies that combine the characteristics of standard topologies or
introduce some kind of dynamics in the connections have been also proposed. In [11],
Parsopoulos and Vrahatis proposed a unified PSO (UPSO) which combines both gbest
and lbest configurations. Equation 1 is modified in order to include a term with pg and a
term with pi. A parameter balances the weight of each term. The authors argue that the
proposed scheme exploits the good properties of gbest and lbest. The same algorithm
was later applied to dynamic optimization problems [12].

Peram et al. [13] proposed the fitness–distance-ratio-based PSO (FDR-PSO). The
neighborhood of a particle is defined as the set of its k closest particles in the population
(measured in Euclidean distance). A selective scheme is also included: the particle
selects near particles that have also visited a position of higher fitness. The algorithm is
compared to a standard PSO and the authors claim that FDR-PSO performs better on
several test functions. However, the FDR-PSO is compared only to a gbest configu-
ration, which is known to converge frequently to local optima in the majority of the
functions of the test set.

A comprehensive-learning PSO (CLPSO) was proposed in [10]. Its learning
strategy abandons the global best information and introduces a complex and dynamic

4 C.M. Fernandes et al.

scheme that uses all other particles’ past best information. CLPSO can significantly
improve the performance of the original PSO on multimodal problems.

More recently, Ni et al. [9] proposed a dynamic probabilistic PSO. The authors
generate random topologies for the PSO that they use at different stages of the search.
According to the authors, their strategy achieves better results than traditional static
population topologies. In 2015, Augusto et al. [1] proposed a dynamic topology for
PSO using probabilistic methods to choose which particles communicate and update in
each time-step. The algorithm was applied to a nuclear engineering problem and the
authors report that the proposed method gives better solutions than other
metaheuristics.

Other strategies deal with the population in a centralized manner. For instance, in
[4], the PSO varies the size of the swarm during the run, while running a solution-
sharing scheme that, like in [10], uses the past best information from every particle.

The present work uses a 2-dimensional framework to force a dynamic behavior in
the population structure and variability in the connectivity degree. The main objective
is to search for a good compromise between high and low connectivity schemes, using
dynamic connections and local interactions provided by the supporting framework.
Since the Von Neumann configuration was recommended in [7], we use it as a
base-structure. The following section gives a formal description of the proposed net-
work and presents the transition rules that define the model.

3 Dynamic Structures

Let us consider a rectangular grid G of size q� s� l, where l is the size of the
population of any population-based metaheuristics or model. Each node Guv of the grid
is a tuple guv; fuvh i, where guv 2 1; . . .; lf g[�f g and fuv 2 D� Nð Þ [�f g for some
domain D. The value guv indicates the index of the individual that occupies the position
u; vh i in the grid. If guv ¼ � then the corresponding position is empty. However, that
same position may still have information, namely a sign (or clue) fuv. If fuv ¼ � then
the position is empty and unsigned. Please note that when q� s ¼ l, the topology is a
static 2-dimensional lattice and when q� s ¼ l and q ¼ s the topology is the standard
square grid graph.

In the case of a PSO, the signs are placed by particles that occupied that position in
the past and they consist of information about those particles, like their fitness f fuv or
position in the fitness landscape, as well as a time stamp ftuv that indicates the iteration
in which the mark was placed. The signs have a lifespan of L iterations, after which
they are deleted. In this paper, L has been set to 1, i.e., the signs only remain in the
habitat for an iteration. An investigation on the effects of longer lifespan on the
dynamics of the particles is intended for a future work.

Initially, Guv ¼ ð�; �Þ for all u; vh i. Then, the particles are placed randomly on the
grid (only one particle per node). Afterwards, all particles are subject to a movement
phase (or grid position update), followed by a PSO phase. The process (position update
and PSO phase) repeats until a stop criterion is met.

Dynamic Topologies for Particle Swarms 5

The PSO phase is the standard iteration of a PSO, comprising position and velocity
update. The only difference to a static structure is that in this case a particle may find
empty nodes in its neighbourhood.

In the position update phase, each individual moves to an adjacent empty node.
Adjacency is defined by the Moore neighborhood of radius r, so an individual i at
qg ið Þ ¼ u; vh i can move to an empty node u0; v0h i for which L1 u; vh i; u0; v0h ið Þ� r. If
empty positions are unavailable, the individual stays in the same node. Otherwise, it
picks a neighboring empty node according to the signs on them. If there are no signs,
the destination is chosen randomly amongst the free nodes. The described behavior, in
which the parts of a system communicate with one another indirectly by modifying and
sensing the environment, is called stigmergy, a term proposed by Grassé [3]. However,
if the signals are neutral or null, the dynamics is reduced to Brownian movement.
Therefore, within the framework there are two possibilities for the position update
phase: stimergic, whereby the individuals place and look for signs; Brownian, whereby
the individual disregards the signs and randomly selects an empty neighbor.

For the first option, let N u; vh i ¼ u 1ð Þ; v 1ð Þ� �
; . . .; uw; vwh i� �

. be the collection of
empty neighboring nodes and let i be the individual to move. Then, the individual
attempts to move to a node whose sign is as close as possible to the global optima.
(Other strategies are possible but in this paper we have restricted the investigation to a
follow the best policy.) If there are no signs in the neighborhood, the individual moves
to an adjacent cell picked at random. In the alternative Brownian policy, the individual
moves to an adjacent empty position picked at random. In either case, the process is
repeated for the whole population. Table 1 gives the pseudo-code of a PSO with
sign-based update phase (here the sign is the fitness of the particle.)

Figure 1 illustrates the dynamics of the sign-based strategy. At t ¼ 0, 1200 particles
with random fitness are randomly placed on a 60� 60 grid. When moving through the
grid, the particles leave signs that represent their current fitness. When deciding the
destination node, the particles prefer the cells with signs that represent better fitness
values. Using this local rule, the particles tend to form clusters as time progresses. As
seen in Fig. 1, the clusters are highly dynamic, dramatically changing in a few gen-
erations. The sign-based strategy yields dynamic topologies, but, at the same time,
provides a kind of order to the whole system: emergence of clusters of particles that, if
isolated, function as a kind of sub-population. Please note that the structure emerges
from the local rules, without central coordination. One of the objectives of this paper is
to investigate if these structures between order and randomness provided by stigmergic
strategies are advantageous when compared to the simple random dynamics of the
Brownian strategy.

The following section describes the experiments with the Brownian (B) and
sign-based (S) structures. The algorithms are referred in the remaining of the paper has
PSO-B and PSO-S, respectively.

6 C.M. Fernandes et al.

Table 1. Pseudo-code of the PSO with sign-based dynamic topology.

Fig. 1. Positions of particles at different time-steps t. q � s: 60�60; l = 1200.

Dynamic Topologies for Particle Swarms 7

4 Experiments and Results

4.1 PSO-B: Precision and Convergence Speed

The first objective of this study is to compare PSO-B with standard topologies: lbest,
gbest and regular lattice with von Neumann (L5) neighborhood. For that purpose, an
experimental setup was constructed with eleven benchmark unimodal and multimodal
minimization problems that are commonly used for evaluating the performance of PSO.
The functions are described in Table 2: f1 and f2 are the unimodal Sphere and Quadric
function (also known as Schwefel 1.2 problem); f3 is the Rosenbrock function, which
has one global minimum situated in a narrow, parabolic valley and can be treated as a
multimodal problem; f4–f9 are multimodal problems with many local optima; f10 is the
shifted Quadric (f2) function with noise and f11 is the rotated Griewank (f5) function.
The global optimum vector for f10 and the orthogonal matrix for f11 were taken from the
CEC2005 benchmark.

Table 2. Benchmark problems.

Function Mathematical representation Range of search/range of
initialization

Stop
criterion

Sphere
f1

f1 ~xð Þ ¼PD
i¼1

x2i
ð�100; 100ÞD
(50; 100ÞD

0.01

Quadric
f2 f2 ~xð Þ ¼PD

i¼1

Pi
j¼1

xj

 !2 ð�100; 100ÞD
(50; 100ÞD

0.01

Rosenbrock
f3

f3 ~xð Þ ¼ PD�1

i¼1
100 xiþ 1 � x2i
� �� �2 þ xi � 1ð Þ2 ð�100; 100ÞD

ð15; 30ÞD
10

Rastrigin
f4

f4 ~xð Þ ¼PD
i¼1

x2i � 10 cos 2pxið Þþ 10
� � ð�10; 10ÞD

ð2:56; 5:12ÞD
100

Griewank
f5

f5 ~xð Þ ¼ 1þ 1
4000

PD
i¼1

x2i �
QD
i¼1

cos xiffi
i

p
	
 ð�600; 600ÞD

ð300; 600ÞD
0.05

Schaffer
f6

f6 ~xð Þ ¼ 0:5þ sin
ffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p� �2
� 0:5

1:0 þ 0:001 x2 þ y2ð Þð Þ2
ð�100; 100Þ2
ð15; 30Þ2

0.00001

Weierstrass
f7 f7 ~xð Þ ¼

XD
i¼1

Xkmax
k¼0

akcos 2pbk xi þ 0:5ð Þ� �� � !
�D

Xkmax
k¼0

akcos 2pbk � 0:5� �� �
;

a ¼ 0:5; b ¼ 3; kmax ¼ 20

ð�0:5; 0:5ÞD
ð�0:5; 0:2ÞD

0.01

Ackley
f8 f8 ~xð Þ ¼ �20exp �0:2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
D

PD
i¼1

x2i

s !
� exp 1

D

PD
i¼1

cos 2pxið Þ
 �

þ 20þ e
ð�32:768; 32:768ÞD
ð2:56; 5:12ÞD

0.01

Schwefel
f9

f9 ~xð Þ ¼ 418:9829� D�PD
i¼1

xisin x
1
2
i

���	
 ð�500; 500ÞD
ð�500; 500ÞD

3000

shifted quadric
with noise

f10

f10 ~zð Þ ¼PD
i¼1

Pi
j¼1

zj

 !2

	 1þ 0:4 N 0:1ð Þj jð Þ;

~z ¼~x�~o, ~o ¼ o1 ; o2 ; . . .:oD½ � : shifted global optimum

ð�100; 100ÞD
ð50; 100ÞD

0.01

Rotated
Griewank

f11

f11 ~zð Þ ¼ 1þ 1
4000

PD
i¼1

z2i �
QD
i¼1

cos ziffi
i

p
	

~z ¼ M~x, M: ortoghonal matrix

ð�600; 600ÞD
ð300; 600ÞD

0.05

8 C.M. Fernandes et al.

The dimension of the search space is set to D ¼ 30 (except f6, for which D ¼ 2). In
order to obtain a square grid for the standard von Neumann topology, the population
size l is set to 49, a value that lies within the typical range of PSO population size [6].
Following [16], the acceleration coefficients were set to 1.494 and the inertia weight is
0.729. Xmax is defined as usual by the domain’s upper limit and Vmax ¼ Xmax. A total
of 50 runs for each experiment are conducted. Asymmetrical initialization is used (the
initialization range for each function is in Table 2). PSO-B grid size was set to 10� 10
and lifespan L of the signs to 1 (please see Sect. 3).

Two experiments were conducted. Firstly, the algorithms were run for a limited
amount of function evaluations (49000 for f1 and f5, 980000 for the remaining) and the
fitness of the best solution found was averaged over 50 runs. In the second experiment

Table 3. Statistical measures of the best fitness values empirical distributions (50 runs): mean,
standard deviation, median, minimum and maximum values.

PSOLBEST PSOGBEST PSOVN PSO-B

f1 Mean (SD) 4.53e−06 (2.31e−06) 3.80e+03 (5.67e+03) 1.54e−09 (1.45e−09) 4.23e−10 (3.18e−10)

Median 3.98e−06 3.28e−16 1.03e−09 3.14e−10

Min/max 1.16e−06/1.10e−05 4.23e−20/2.00e+04 2.13e−10/6.89e−09 3.31e-11/1.38e−09

f2 Mean (SD) 8.44e−13 (1.43e−12) 1.51e+04 (1.17e+04) 2.50e−22 (8.08e−22) 1.48e-28 (3.66e-28)

Median 3.67e−13 1.50e+04 1.23e−23 1.55e−29

Min/max 1.25e−14/9.21e−12 00e00/5.67e+04 1.21e−25/5.02e−21 2.27e−31/1.77e−27

f3 Mean (SD) 4.90e00 (1.47e+01) 1.33e00 (1.85e00) 1.56e00 (2.67e00) 9.20e−01 (1.62e00)

Median 6.10e−02 6.78e−04 9.32e−02 6.12e−02

Min/max 7.34e−06/8.56e+01 1.80e−08/4.36e00 3.55e−06/1.53e+01 5.87e−08/4.20e00

f4 Mean (SD) 1.10e+02 (1.81e+01) 9.86e+01 (2.84e+01) 6.28e+01 (1.67e+01) 6.23e+01 (1.88e+01)

Median 1.09e+02 1.00e+02 6.02e+01 6.07e+01

Min/max 6.57e+01/1.53e+02 4.98e+01/1.61e+02 3.38e+01/1.09e+02 3.48e+01/1.24e+02

f5 Mean (SD) 2.95e−04 (2.09e−03) 3.80e+01 (5.80e+01) 5.61e−03 (8.78e−03) 7.73e−03 (9.50e−03)

Median 1.08e−19 4.18e−02 1.09e−19 7.40e−03

Min/max 00e00/1.48e−02 1.08e−19/1.81e02 00e00/3.69e−02 00e00/4.41e−02

f6 Mean (SD) 1.94e−04 (1.37e−03) 1.36e−03 (3.41e−03) 0.00e00 (0.00e00) 0.00e00 (0.00e00)

Median 0.00e00 0.00e00 0.00e00 0.00e00

Min/max 0.00e00/9.72e−03 0.00e00/9.72e−03 0.00e00/00e00 0.00e00/00e00

f7 Mean(SD) 2.86e−05 (0.00e+00) 4.52e00 (2.52e00) 4.43e−02 (1.69e−01) 4.61e−02 (2.50e−01)

Median 2.86e−05 4.07e00 2.86e−05 2.86e−05

Min/max 2.86e−05/2.86e−05 5.70e−01/1.18e+01 2.86e−05/9.84e−01 2.86e−05/1.76e00

f8 Mean (SD) 1.26e−15 (1.64e−16) 7.38e−01 (1.05e00) 1.12e−15 (2.24e−16) 1.12e−15 (2.24e−16)

Median 1.33e−15 2.00e−15 1.33e−15 1.33e−15

Min/max 8.88e−16/1.33e−15 1.33e−15/3.26e00 8.88e−16/1.33e−15 8.88e−16/1.33e−15

f9 Mean (SD) 3.53e+03 (4.99e+02) 3.26e+03 (6.24e+02) 3.07e+03 (4.92e+02) 2.80e+03 (6.85e+02)

Median 3.52e+03 3.33e+03 3.04e+03 2.80e+03

Min/max 2.25e+03/4.68e+03 1.90e+03/4.72e+03 2.27e+03/4.72e+03 1.80e+03/4.36e+03

f10 Mean (SD) 2.33e+02 (1.91e+02) 3.10e+02 (1.05e+03) 7.40e00 (3.64e01) 6.89e00 (3.41e+01)

Median 1.74e+02 3.52e−05 4.76e−02 7.29e−06

Min/max 3.41e+01/1.07e+03 1.54e−08/5.29e+03 4.87e−04/2.05e+02 3.57e−08/1.81e+02

f11 Mean (SD) 3.34e−04 (1.73e−03) 3.62e+01 (5.47e+01) 5.27e−03 (7.41e−03) 6.60 e−03 (8.28e−03)

Median 1.09e−19 2.83e−02 1.08e−19 1.08e−19

Min/max 0.00e00/9.86e−03 1.09e−19/1.81e+02 0.00e00/2.46e−02 0.00e00/2.70e−02

Dynamic Topologies for Particle Swarms 9

the algorithms were run for 980000 evaluations (corresponding to 20000 iterations of
standard PSO with n ¼ 49) or until reaching the stop criterion. For each problem and
each algorithm, the number of evaluations required to meet the criteria was recorded

Table 4. Statistical measures of the empirical distributions of evaluations required to meet the
stop criteria (50 runs) and success rates (SR).

PSOLBEST SR PSOGBEST SR PSOVN SR PSO-B SR

f1 Mean
(SD)

32489.0 (921.5) 50 16082.4 (2697.4) 33 23530.8 (954.7) 50 22700.7 (906.4) 50

Median 32364.5 15582 23471 22760.5

Min/max 30576/34692 12642/24451 21658/25921 20874/24696

f2 Mean
(SD)

362086.5
(23302.4)

50 125758.5
(22692.6)

6 213141.2
(16261.0)

50 180237.7
(11115.8)

50

Median 360787 124435.5 214130 180418

Min/max 320558/432768 95158/156310 180859/242354 151851/209769

f3 Mean
(SD)

262951.0
(196868.2)

50 199609.3
(158500.2)

50 392370.0
(196716.6)

49 422088.9
(177503.7)

50

Median 210381.5 170324 388570 446880

Min/max 50274/843927 16807/804335 32291/807569 31948/813253

f4 Mean
(SD)

233260.2
(281453.6)

17 9602.0 (3599.0) 25 18424.0
(11082.8)

49 15114.5 (3939.7) 48

Median 77518 8722 15582 14724.5

Min/max 21462/86617 5292/21805 9604/74872 9359/30968

f5 Mean
(SD)

30200.7 (1703.9) 50 14856.1 (2028.1) 27 22015.7 (1304.6) 50 21574.7 (1107.6) 50

Median 29988 14700 22074.5 21364

Min/max 27587/34398 11270/20188 19404/25823 19600/23814

f6 Mean
(SD)

26263.0 (27266.9) 49 13933.1 (21576.6) 43 17622.4
(16056.7)

50 10741.8 (10658.2) 50

Median 18865 6174 12323.5 7570.5

Min/max 5243/145334 1960/86485 3626/80213 3871/65660

f7 Mean
(SD)

62057.5 (3031.3) 50 - 0 41677.8 (1360.4) 44 38976.0 (1654.1) 42

Median 61201 - 41821.5 38832.5

Min/max 56497/69923 - 37730/44296 36652/45766

f8 Mean
(SD)

35323.1 (1655.2) 50 17474.6 (2575.5) 32 24420.6 (958.8) 50 24410.9 (1533.3) 50

Median 35206.5 17297 24206 24083.5

Min/max 31556/39249 13573/23275 22834/28028 21119/29057

f9 Mean
(SD)

24883.8 (12417.7) 6 6394.5 (2626.5) 20 21384.1
(20450.2)

22 12943.9 (3422.2) 31

Median 23299,5 6125 15288 12054

Min/max 9996/46256 2352/12593 7693/97069 7693/19894

f10 Mean
(SD)

- 0 661395.9
(136614.7)

40 875793.3
(70624.8)

9 630285.0
(119539.5)

48

Median - 647510.5 883911 617620.5

Min/max - 412335/942760 758961/976962 453642/93428

f11 Mean
(SD)

30302.6 (1670.7) 50 14112.0 (2006.4) 32 22078.4 (1136.1) 50 21222.9 (995.9) 50

Median 30282 13622 22001 21070

Min/max 26411/33222 11515/18767 19355/25088 19306/24549

10 C.M. Fernandes et al.

and averaged over 50 runs. The success measure is defined as the number of runs in
which an algorithm attains the fitness established as stop criterion.

The results are in Tables 3 and 4. In general, PSO-B is more precise and faster than
the other algorithms. Please note that even if gbest is faster in several functions, the
success rates are significantly lower than those of PSO-B, as expected (see Sect. 2).

The non-parametric Mann-Whitney U test was performed to compare the empirical
distributions of fitness values of PSOVN and PSO-B in each function. Results of the
tests are significant at p� 0:05 for f1; f2, i.e., the null hypothesis that the two samples
come from the same population is rejected. For the remaining functions the null
hypothesis is not rejected. As for the speed of convergence, the results of the
Mann-Whitney U test comparing PSOVN and PSO-B is significant in functions f1, f2, f4,
f7, f9, f10 and f11.

4.2 PSO-B and PSO-S

Following the comparison with standard topologies, PSO-B has been tested against
PSO-S. Results are in Table 5. PSO-B and PSO-S attain equivalent results in most of
the problems. However, PSO-S average best fitness is better in f1 and the result of the
statistical test comparing the two distributions is significant.

As for the number of evaluations, PSO-S is fasrer than PSO-B in f5, f8 and f11 and
the result of the statistical test is significant in each case. For f7, the null hypothesis is
not rejected, but PSO-S attains higher success rate (47, against 42 by PSO-B). PSO-S is
competitive with PSO-B, being better in three functions. Therefore, we may conclude
that a sign-based strategy is the best choice for this test set.

4.3 Grid Size

In the previous experiments, PSO-B and PSO-S were tested on a grid of size 10� 10.
This value was chosen in order to have a ratio between occupied nodes and total nodes
of approximately 1:2. With this ratio, the expected connectivity degree after a random
distribution of the particles is roughly k*3, lower than k ¼ 5 of PSOVN and identical
to the degree of lbest. The objective was to attain good solutions, like lbest, expecting
that the dynamics of the connectivity – which makes it possible for a particle to
communicate with many other particles in a few generations – would increase con-
vergence speed (lbest is precise but slow, while gbest, with higher k, is fast but
inaccurate). Experiments confirmed this assumption.

Figure 2 describes the variation of PSO-B connectivity degree in four typical runs
with different grid size. As predicted, the connectivity degree of grid 10� 10 fluctuates
around k ¼ 3. Smaller grids constrain the movements and increase the expected k value
(see k of grid 8� 8). The connectivity of 20� 20 grids oscillates between 1 and 2, i.e.,
isolated particles (k ¼ 1) occur frequently. As a consequence, the speed of convergence
is expected to decrease: large grids create sparse networks in which the flow of
information is delayed due to the isolation of the particles.

Dynamic Topologies for Particle Swarms 11

Figure 3 shows the number of particles by their averaged connectivity over a
typical run of PSO-B with grid 10� 10. Most of the particles have k ¼ 2 and k ¼ 3.
Please remember that the connectivity of lbest is k ¼ 3. However, as demonstrated in

Table 5. Numerical results and statistical measures of PSO-B and PSO-S.

PSO-B PSO-S PSO-B PSO-S PSO-B PSO-S

Best fitness Function evaluations SR SR

f1 Mean (SD) 4.23e−10 (3.18e
−10)

2.48e−10
(2.21e-10)

22700.7 (906.4) 22491.98 (859.69) 50 50

Median 3.14e−10 1.90e−10 22760.5 22442

Min/max 3.31e−11/1.38e−09 1.49e−11/1.13e−09 20874/24696 20335/24353

f2 Mean(SD) 1.48e−28 (3.66e
−28)

1.02e−28 (5.35e
−28)

180237.7
(11115.8)

176352.0
(17653.2)

50 50

Median 1.55e−29 3.41e−30 180418 177894.5

Min/max 2.27e−31/1.77e−27 4.56e-33/3.78e−27 151851/209769 148617/256858

f3 Mean (SD) 9.20e−01 (1.62e00) 2.73e00 (1.04e+01) 422088.9
(177503.7)

351711.8
(181910.8)

50 50

Median 6.12e−02 3.16e−02 446880 357430.5

Min/max 5.87e−08/4.20e00 3.36e−06/7.33e+01 31948/813253 33467/753424

f4 Mean (SD) 6.23e+01 (1.88e
+01)

6.55e+01 (1.57+01) 15114.5 (3939.7) 15109.4 (4194.9) 48 48

Median 6.07e+01 6.37e+01 14724.5 14455

Min/max 3.48e+01/1.24e+02 4.28e+01/1.12e+02 9359/30968 8869/30233

f5 Mean (SD) 7.73e-03 (9.50e
−03)

6.10e−03 (8.81e
−03)

21574.7 (1107.6) 20814.2 (1465.4) 50 50

Median 7.40e−03 1.084e−19 21364 20604,5

Min/max 00e00/4.41e−02 0.00e00/4.65e−02 19600/23814 18473/26509

f6 Mean (SD) 0.00e00 (0.00e00) 0.00e00 (0.00e00) 10741.8 (10658.2) 13500.5 (2386.1) 50 50

Median 0.00e00 0.00e00 7570.5 7644

Min/max 0.00e00/00e00 0.00e00/00e00 3871/65660 3528/76734

f7 Mean (SD) 4.61e−02 (2.50e
−01)

4.12e−02 (2.21e
−01)

38976.0 (1654.1) 39179.2 (2386.1) 42 47

Median 2.86e−05 2.86e−05 38832.5 38857

Min/max 2.86e−05/1.76e00 2.86e−05/1.50e00 36652/45766 36015/49931

f8 Mean (SD) 1.12e−15 (2.24e
−16)

1.16e−15 (2.18e
−16)

24410.9 (1533.3) 22864.4 (1092.2) 50 50

Median 1.33e−15 1.33e−15 24083.5 22907.5

Min/max 8.88e−16/1.33e−15 8.88e−16/1.33e−15 21119/29057 20384/25235

f9 Mean (SD) 2.80e+03 (6.85e
+02)

2.73e+03 (7.06e
+02)

12943.9 (3422.2) 13063.1 (7845.7) 31 32

Median 2.80e+03 2.71e+03 12054 10804.5

Min/max 1.80e+03/4.36e+03 1.22e+03/4.17e+03 7693/19894 5684/50617

f10 Mean (SD) 6.89e00 (3.41e+01) 1.33e+01 (5.53e
+01)

630285.0
(119539.5)

657859.4
(118062.2)

48 47

Median 7.29e−06 1.57e−05 617620.5 636363

Min/max 3.57e−08/1.81e+02 7.24e−08/3.07e+02 453642/93428 433650/918064

f11 Mean(SD) 6.60 e−03 (8.28e
−03)

6.10e−03 (8.818e
−03)

21222.9 (995.9) 20814.2 (1465.4) 50 50

Median 1.08e−19 1.08e−19 21070 20604.5

Min/max 0.00e00/2.70e−02 0.00e00/4.65−02 19306/24549 18473/26509

12 C.M. Fernandes et al.

the previous section, PSO-B with size 10� 10 performs better than lbest in the
majority of the scenarios. It is plausible that the efficiency of the proposed strategy
comes from a combination of factors, namely, the average connectivity degree and the
dynamic topology. However, further experiments are required in order to understand
better the role of each feature in the performance of the algorithm. Understanding the
weight of these factors may lead to more efficient dynamic structures, based on the
interaction of the particles and their particular status (fitness, velocity and position).

The significant variation of the average k with the grid is expected to have some
kind of impact in the dynamic behavior of the algorithms. The following experiment
intends to shed light on the effects of the grid in the performance of the proposed
topology. PSO-B and PSO-S were tested with grid size 8� 8, 10� 10, 15� 15 and

Fig. 2. PSO-B connectivity degree (k) in 100 iterations. Brownian movement.

Fig. 3. Number of particles by connectivity degree. Values averaged over 1000 iterations of a
typical run. Brownian movement.

Dynamic Topologies for Particle Swarms 13

20� 20 under the same experimental setup described in Sect. 4.1. The average best
solution and number of evaluations to meet the stop criteria were averaged over 50 runs
and then plotted for each algorithm and each function. Figures 4, 5, 6 and 7 show that
the performance of PSO-B and PSO-S may vary with the size of the grid. The nature of
that variation depends on the type of fitness landscape.

For unimodal functions (Fig. 4), the performance tends to deteriorate with the size
of the grid. In this case, an 8� 8 grid would be the best design choice. However, as
demonstrated above, PSO-B and PSO-S with grid 10� 10 significantly improve other
algorithms performance in functions f1 and f2. For the multimodal functions, the pre-
cision of the solutions tend to improve with grid size, while the convergence speed
decreases (see Fig. 5). A 10� 10 grid seems to provide a good compromise between
speed and accuracy when optimizing f4, f5, f7, f8 and f9. Figure 6 shows an atypical
behavior of PSO-B and PSO-S on f3 and f6. Further studies are required to confirm this
hypothesis, but it is possible that this is related to the exceptionality of the functions
within the test set: f3 is a unimodal function that can be treated as multimodal. How-
ever, it is different from multimodal functions f4–f9, which have many local optima: f3
has a global minimum situated in a narrow valley that can be very hard to find. Problem
f6 is defined in 2 dimensions, while the other functions have D ¼ 30. Independently of
the causes for observed behavior, 10� 10 seems to be an acceptable design choice for
f3 and f6. Finally, Fig. 7 shows that in the rotated and shifted functions with noise the
algorithms behave like in multimodal problems: the accuracy of the solutions tend to
improve with grid size; the convergence speed decreases.

Fig. 4. Sphere (f1) and Quadric (f2) functions. Average best fitness (left) and average evaluations
(right). PSO-B and PSO-S with different grid size.

14 C.M. Fernandes et al.

Fig. 5. Multimodal problems. Mean best fitness (left) and mean evaluations (right).

Dynamic Topologies for Particle Swarms 15

Fig. 6. Rosenbrock (f3) and Schaffer function (f6). Average best fitness (left) and average
function evaluations.

Fig. 7. Shifted Quadric with noise and rotated Griewank. Average best fitness (left) and average
function evaluations.

16 C.M. Fernandes et al.

5 Conclusions

This paper investigates a model of dynamic population structures for population-based
metaheuristics. Here, the model is tested with the Particle Swarm Optimization
(PSO) algorithm. The particles are placed on a 2-dimensional regular network with size
q� s� l, where l is the population size of the algorithm. The particles move on the
grid according to simple rules. The motion can be random (Brownian) or guided by
signs that the particle leave on the nodes (stigmergic, or sign-based). The flow of
information is defined by the particle’s position on the grid and its neighborhood (von
Neumann vicinity is considered here).

Brownian and sign-based strategies have been implemented, tested and compared
to PSOs with standard topologies. The results of the experiments show that the pro-
posed model performs more consistently throughout the test set, improving the other
topologies in the majority of the scenarios and under different performance evaluation
criteria. The size q� s of the network affects the performance of the algorithm.
However, a grid size that guaranties a ratio l : ðq� sÞ of approximately 1:2 is a good
design choice independently of the test function.

Future research will be mainly focused on sign-based movement strategies. Scal-
ability with problem dimension will also be studied. Furthermore, the environmental
grid will be investigated as a possible medium for the particles to exchange information
about the search.

Acknowledgements. The first author wishes to thank FCT, Ministério da Ciência e Tecnologia,
his Research Fellowship SFRH/BPD/66876/2009). This work was supported by FCT PROJECT
[PEst-OE/EEI/LA0009/2013], EPHEMECH (TIN2014-56494-C4-3-P, Spanish Ministry of
Economy and Competitivity), PROY-PP2015-06 (Plan Propio 2015 UGR), and project
CEI2015-MP-V17 of the Microprojects program 2015 from CEI BioTIC Granada.

References

1. Augusto, J.P., Nicolau, A.S., Schirru, R.: PSO with dynamic topology and random keys
method applied to nuclear reactor reload. Prog. Nucl. Energy 83, 191–196 (2015)

2. Fernandes, C.M., Laredo, J.L.J., Merelo, J.J., Cotta, C., Nogueras, R., Rosa, A.C.:
Performance and scalability of particle swarms with dynamic and partially connected grid
topologies. In: Proceedings of the 5th International Joint Conference on Computational
Intelligence (IJCCI 2013), pp. 47–55 (2013)

3. Grassé, P.-P.: La reconstrucion du nid et les coordinations interindividuelles chez
bellicositermes et cubitermes sp. La théorie de la stigmergie: Essai d’interpretation du
comportement des termites constructeurs, Insectes Sociaux, 6, 41–80 (1959)

4. Hseigh, S.-T., Sun, T.-Y., Liu, C.-C., Tsai, S.-J.: Efficient population utilization strategy for
particle swarm optimizers. IEEE Trans. Syst. Man Cybern. Part B 39(2), 444–456 (2009)

5. Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proceedings of IEEE
International Conference on Neural Networks, vol. 4, pp. 1942–1948 (1995)

6. Kennedy, J., Eberhart, R.: Swarm Intelligence. Morgan Kaufmann, San Francisco (2001)

Dynamic Topologies for Particle Swarms 17

7. Kennedy, J., Mendes, R.: Population structure and particle swarm performance. In:
Proceedings of the IEEE World Congress on Evolutionary Computation, pp. 1671–1676
(2002)

8. Morters, P., Peres, Y.: Brownian Motion. Cambridge Press, Cambridge (2010)
9. Ni, Q., Cao, C., Yin, X.: A new dynamic probabilistic particle swarm optimization with

dynamic random population topology. In: 2014 IEEE Congress on Evolutionary Compu-
tation, pp. 1321–1327 (2014)

10. Liang, J.J., Qin, A.K., Suganthan, P.N., Baskar, S.: Comprehensive learning particle swarm
optimizer for global optimization of multimodal functions. IEEE Trans. Evol. Comput.
10(3), 281–296 (2006)

11. Parsopoulos, K.E., Vrahatis, M.N.: UPSO: a unified particle swarm optimization scheme. In:
Proceedings of the International Conference of Computational Methods in Sciences and
Engineering (ICCMSE 2004), Lecture Series on Computer and Computational Sciences, vol.
1, pp. 868–887 (2004)

12. Parsopoulos, K.E., Vrahatis, M.N.: Unified particle swarm optimization in dynamic
environments. In: Rothlauf, F., et al. (eds.) EvoWorkshops 2005. LNCS, vol. 3449,
pp. 590–599. Springer, Heidelberg (2005)

13. Peram, T., Veeramachaneni, K., Mohan, C.K.: Fitness-distance-ratio based particle swarm
optimization. In: Proceedings of Swarm Intelligence Symposium, pp. 174–181 (2003)

14. Crepinsek, M., Liu, S.-H., Mernik, M.: Exploration and exploitation in evolutionary
algorithms: a survey. ACM Comput. Surv. 45(3), 35 (2013). article n. 35

15. Shi, Y., Eberhart, R.C.: A Modified particle swarm optimizer. In: Proceedings of IEEE 1998
International Conference on Evolutionary Computation, pp. 69–73. IEEE Press (1998)

16. Trelea, I.C.: The particle swarm optimization algorithm: convergence analysis and parameter
selection. Inf. Process. Lett. 85, 317–325 (2003)

18 C.M. Fernandes et al.

Evaluative Study of PSO/Snake Hybrid
Algorithm and Gradient Path Labeling

for Calculating Solar Differential Rotation

Ehsan Shahamatnia1,2(&), André Mora1,2, Ivan Dorotovič1,3,
Rita A. Ribeiro1,2, and José M. Fonseca1,2

1 Computational Intelligence Group of CTS/UNINOVA, Caparica, Portugal
{ehs,atm,id,rar,jmf}@uninova.pt

2 FCT/NOVA University of Lisbon, 2829-516 Monte de Caparica, Portugal
3 Slovak Central Observatory, Hurbanovo, Slovak Republic

Abstract. PSO/Snake hybrid algorithm is a merge of particle swarm opti-
mization (PSO), a successful population based optimization technique, and the
Snake model, a specialized image processing algorithm. In the PSO/Snake
hybrid algorithm each particle in the population represents only a portion of the
solution and the population, as a whole, will converge to the final complete
solution. In this model there is a one-to-one relation between Snake model
snaxels and PSO particles with the PSO’s kinematics being modified accord-
ingly to the snake model dynamics. This paper provides an evaluative study on
the performance of the customized PSO/Snake algorithm in solving a real-world
problem from astrophysics domain and comparing the results with Gradient Path
Labeling (GPL) image segmentation algorithm. The GPL algorithm segments
the image into regions according to its intensity from where the relevant ones
can be selected based on their features. A specific type of solar features called
coronal bright points have been tracked in a series of solar images using both
algorithms and the solar differential rotation is calculated accordingly. The final
results are compared with those already reported in the literature.

Keywords: Particle swarm optimization � Snake model � PSO/Snake hybrid
algorithm � Gradient path labeling � Image processing � Image segmentation �
Object tracking � Solar images

1 Introduction

Particle swarm optimization (PSO), first introduced by [1], is a collective, anarchic,
iterative method, with the emphasis on cooperation [2]. PSO is a general search method
that can be used to solve a wide range of problems, but it is particularly useful for
solving difficult problems, as there are often specific methods for solving easier
problems, which are more effective. One such example is the resolution of linear
systems, where PSO is not at all the best tool [2]. PSO is a stochastic algorithm based
on the analogy of collective behavior of birds’ swarms. PSO consists of a population of
particles, each similar to a bird searching for the best place to find food. Each particle in
PSO is a candidate solution. In PSO, particles are governed under their cognitive and

© Springer-Verlag Berlin Heidelberg 2016
N.T. Nguyen et al. (Eds.): TCCI XXIV, LNCS 9770, pp. 19–39, 2016.
DOI: 10.1007/978-3-662-53525-7_2

social behaviors, which make them able to exchange information and share their
experience of explored space, and finally converge towards the optimum of search
space, which is the solution to the formulated problem.

One of the main problems in digital image processing is image segmentation, for
which more than a thousand different algorithms have been developed [3]. Deformable
models are popular spatial segmentation techniques for outlining object boundaries
using contours [4]. Active Contour Model (ACM), a technique based on deformable
model, was introduced by Kass et al. [5] for 2D image segmentation. The basic idea of
ACM, also known as snake model, is to evolve a contour (a curve or a surface) under
some constraints to match certain image features. Snake model has been successfully
employed in a variety of problem domains such as object tracking, shape modeling
image segmentation and stereo vision [5–10].

To drive the snake control points we can use PSO, although limiting the particle
search space to avoid premature convergence to the global optimum. There are already
several solutions published, for instance Tseng et al. [11] and Li et al. [12] defined
multiple PSO populations, in which each control point is confined to a sub-swarm
spatially distinct from other sub-swarms. A polar coordinate system that limits the
snake control points search space was proposed by Ballerini [13] and Nebti and
Meshoul [14]. Another alternative solution proposed by Zeng and Zhou [15] was to
iteratively rank the best particles position and by analytical calculations prevent par-
ticles from intersecting.

Most of the aforementioned methods act only as a general problem solver and take
the approach of formulating the snake model calculations as a minimization problem
and then just solving this optimization problem. In this paper, we take the hybrid
PSO/Snake approach introduced in [16] and show its versatility by further extending it
to solve a real world problem from the astrophysics domain. The PSO/Snake algorithm
has already been successfully tested for detection and tracking of small deformable
structures such as endothelium cells from cornea microscopic images [17] and tracking
sunspots [18].

Snakes model experiences several problems, namely, snake initialization, concave
boundaries, sensitivity to noise and local minima. In this work we present a method to
customizes PSO to overcomes these problems, maintaining its simple structure. The
solution has a low order of complexity and consequently a fast processing time, while
precisely calculating the differential rotation of solar features.

In previous paper [19] we presented the PSO/Snake hybrid algorithm for tracking
CBPs and calculating solar differential rotation. In this article the PSO/Snake approach
is compared with Gradient Path Labeling (GPL) segmentation method, proposed by
Mora et al. [20], associated with a region matching process to identify the relevant solar
features. The GPL segmentation method uses the image gradient as the basis for a pixel
labeling procedure which groups ascending paths that belong to the same regional
maximum. Its segmentation result is comparable to the Watershed Transform, with the
advantage of having a lower over-segmentation effect, good computation efficiency and
customizable segmentation effect. The method produces an image segmented in several
intensity regions that are then filtered to match the relevant solar features.

In this paper we address the problem of calculating solar differential rotation to
evaluate the PSO/Snake algorithm performance in comparison with the GPL method.

20 E. Shahamatnia et al.

We calculate the solar differential rotation as a function of coronal latitude, by tracking
some solar feature as markers. We use a dataset of consecutive images taken by the
AIA instrument on board the SDO spacecraft. As solar feature markers for tracking we
use Coronal Bright Points (CBPs) which are small and bright structures observed in the
extreme ultraviolet (EUV) and the X-ray part of the solar spectrum [21]. They are
known to have a mean lifetime of about 8 h. CBPs can reach up to 2 � 108 Km2 in size
but still they look like a tiny shape on the solar images. CBPs are associated with
bipolar magnetic features and a large quantity of them (several thousands) emerge over
the surface of the Sun per day and thereby in total they bring up huge magnetic fluxes.
Physicists and space weather scientists will benefit from a CBP tracking system, since
these automatic tools allow them to precisely process large amounts of solar data and
consequently improve their solar models [19].

The aim of this paper is to compare the result of applying the PSO/Snake and GPL
algorithms for tracking coronal bright points. The tracking results are used for calcu-
lating the coronal differential rotation and are cross-referenced with pertinent results
reported in the literature.

The remainder of this article is presented in the following order: Sect. 2 looks at the
PSO/Snake hybrid algorithms and underlying concepts. The GPL algorithm is
described in Sect. 3. The results and discussions are provided in Sect. 4 and in Sect. 5
conclusions and future work are presented.

2 PSO/Snake Hybrid Algorithm

We considered three main reasons to apply the customized bio-inspired PSO/Snake
algorithm to the problem of tracking CBPs and calculating solar differential rotation:

• It can overcome the problem of noisy data [16]. CBPs are small in size and the solar
images that are used to study them have a fair amount of pixel-size structures that
make detecting CBPs more difficult. A noise-tolerant algorithm can improve the
accuracy of the detection.

• For precise detection of CBPs, while finding and tracking their shape boundaries,
several potential local-optima can be encountered in the process. Bio-inspired
solutions, in general, are well suited for multimodal problems [22].

• PSO/Snake algorithm uses PSO dynamics. It is an adaptive algorithm, and can be
applied in real world problems of dynamic and uncertain natures. CBPs, similar to
sunspots [23], are deformable features on the solar disk that evolve during their life
span and because of their loose definition, measuring their evolution bears inherent
uncertainty.

As mentioned before, two main concepts driving the hybrid PSO/Snake algorithm
are snake model, with its parametric contour concept and PSO with its particle move-
ment mechanism. Snake model is driven by an energy minimization concept. It com-
prises of an energy function which should be minimized in order to find the optimal
contour (snake). The function considers the similarity between the contour and the
image features (e.g. object boundaries, image gradient, image intensity, texture, color,
etc.) as well as the similarity of the contour to a prior model contour [3].

Evaluative Study of PSO/Snake Hybrid Algorithm 21

User interaction can also be involved to define the regions of interest for the snake
algorithm [5]. After that whereabouts of the Region Of Interest (ROI) is approximated,
the snake will evolve to latch to the exact boundary object edges. Snake model is in
essence an optimization algorithm. Canonical snake model proposed by Kass et al. [5]
implements the minimization process by solving Euler-Lagrange models of the problem.
Details of the canonical snake model and a survey on snake model is provided in [24].

In our model, contour or snake has an energy associated with it, which correlates
with the location of the snake in the image and its geometrical characteristics. The idea
is to minimize the integral measure which represents the total snake energy, by
evolving the snake over time. The original algorithm that controls the snake model
iteratively solves a pair of Euler equations on the discrete grid, seeking the mini-
mization of the total snake energy [10]. One of drawbacks is that it is time consuming
to achieve good snake models.

To represent snakes we used a parametric approach, since it is computationally
efficient and easy to interact with users [25]. Here, the snake is defined as a curve p
(s) = (x(s), y(s)), composed by arc lengths where s is the snaxel point. As it is shown in
Eq. (1), a number of discrete points called control points or snaxels characterize the
snake [5]. In our implementation we use the parametric snake (curve) presentation as
follows:

p s; tð Þ ¼ x s; tð Þ; y s; tð Þð Þ; s 2 0; 1½ � ð1Þ

In this equation, time step for each snaxel point s is denotes by t. Equation (2)
shows how the total snake energy is calculated as the sum of integrals of the snake
internal energy and external energy coming from the image. In the PSO/Snake hybrid
algorithm, the objective function calculates the total snake energy. Since in this
implementation the whole population altogether represents one candidate solution to
the problem, the objective is to find the contour with the least total snake energy. The
lesser the total snake energy, the better it matches the ROI or moves towards it.

Esnake ¼
Z 1

0
Eint p sð Þð Þdsþ

Z 1

0
Eext p sð Þð Þds ð2Þ

The snake model is considered to be a controlled continuity spline under the
influence of internal and external forces, which induce the snake energy. Internal
energy consists of two terms, the first and the second derivatives of the snake with
respect to s. First term coerces the spline to act like a membrane and the second term
makes the snake act like a thin plate [5]. The external energy determines the snake
relationship to the image. It is formulated in a way that its local minima corresponds to
the image features of interest. Various external energies can be employed such as image
intensity, image gradient, object size or shape. One common definition used for
gray-level images is the gradient of Gaussian.

PSO is a class of evolutionary optimization algorithms, based on a population of
particles (swarm), where each one is a potential solution to the optimization problem. It
is the leading part of proposed PSO/Snake hybrid algorithm. Besides the information
related to the optimization problem, which represents his position in the search space,

22 E. Shahamatnia et al.

each particle is also characterized with a speed. Iteratively, the particles’ positions are
recalculated according to their velocity, their best solution and also their neighbors’
solutions. Each particle position and corresponding fitness score are stored as their best
solution and form the cognitive aspect of particle evolution. The influence of neighbors
in the position update process is related to their social behavior, which can be defined
with various topologies such as ring, star, Von Neumann and random.

If the particle neighborhood is restricted to a subset of swarm it is called local best
PSO (lbest), while if the neighborhood equals the whole swarm it is called global best
PSO (gbest). The proposed PSO/Snake hybrid algorithm uses lbest with ring structure
and radius of 3. The following equations show the dynamics of the canonical PSO
algorithm for updating particle velocity and position:

vi tþ 1ð Þ ¼ x tð Þvi tð Þþ c1r1 yi tð Þ � xi tð Þð Þþ c2r2 ŷi tð Þ � xi tð Þð Þ ð3Þ

xi tþ 1ð Þ ¼ xi tð Þþ vi tþ 1ð Þ ð4Þ

where xi(t) and vi(t) are position and velocity of i-th particle at time t, yi(t) and ŷi(t)
denote the best solutions discovered by the i-th particle and its neighborhood up to the
time t, i.e. pbest and lbest respectively. x(t) is the inertia weight which controls the
impact of the previous velocity and prevents radical changes. Usually, inertia weight is
decreased dynamically during the iterative process to balance between exploration in
the initial iterations and exploitation when converging to a good solution. Coefficients
r1 and r2 are uniform random numbers in the range [0,1] to introduce stochastic
movement to the PSO particles. Weights of cognitive and social aspects of the algo-
rithm are represented by acceleration factors c1 and c2 respectively. As it is shown in
[26] regulated values for inertia and acceleration weights can be used to achieve
guaranteed convergence. Pseudo-code of a typical standard PSO algorithm is presented
in Table 1.

Figure 1 shows the block diagram for a typical scenario where PSO/Snake tech-
nique is used for object detection and tracking. In [27] it is discussed how a modular
design for solar image processing applications could boost the extendibility and
reusability of the applications. As the block diagram shows, PSO/Snake model is
implemented in a modular way, making it possible to be customized for specific
applications. The PSO/Snake hybrid algorithm integrates the snake model mechanisms
with PSO dynamics. While most of swarm intelligence approaches in the literature used
in conjunction with snake model tries to optimize the snake model equations,
PSO/Snake hybrid does not employ PSO algorithm only as a general problem solver to
optimize snake energy minimization, but it also customizes the standard PSO to better
solve this specific type of image processing problems. Early experiments on medical
image segmentation [16] and sunspot tracking [18] reported promising results. The
hybrid model helps to overcome the major drawbacks of traditional snakes: initial-
ization and poor convergence to the boundary concavities, while benefitting from PSO
robustness and simplicity. In the Hybrid PSO/Snake model we use a population of
particles where each particle is a snaxel of the contour. All particles together form the
contour and hence the population itself is the final solution. As the algorithm runs, each

Evaluative Study of PSO/Snake Hybrid Algorithm 23

particle updates its position and its velocity according to its personal best experience,
local best experience, and also according to the internal force of the snake and external
force of the image. This gives the PSO/Snake dynamics a wider range of informative
guides to update the particle position so that it converges to the ROI.

PSO/Snake hybrid explores the search space according to PSO trajectory disci-
plines. This eliminates the need to have a separate searching window around each
particle as many swarm based snake optimization algorithms do [11, 14, 25]. These
methods consider a searching window around each particle and evaluate every position
inside that window to determine the snaxels’ next position. Since this local search is
performed for each particle per iteration, it is a computationally expensive operation
that is avoided in the PSO/hybrid model. The velocity update equation in PSO/Snake is
as follows:

Table 1. Particle Swarm Optimization pseudo-code

Fig. 1. Block diagram of PSO/Snake algorithm for object detection and tracking

24 E. Shahamatnia et al.

vi tþ 1ð Þ ¼xvi tð Þ
þ c1r1 pbesti tð Þ � xi tð Þð Þ
þ c1r1 pbesti tð Þ � xi tð Þð Þ
þ c3r3 �x tð Þ � xi tð Þð Þ
þ c4 f :Imageið Þ

ð5Þ

where pbesti(t) and lbesti(t) are personal best velocity and local best velocity terms
respectively. x̄(t) is the average of positions at time step t, approximating the center of
mass of the particles. This term pushes the snake to contract or expand with respect to
the sign of its weighting factor, r3. This term speeds up the algorithm and is particularly
useful when the snake is stagnated and there is no other compelling force. If the snake
is initialized far from the ROI, this term allows the snake to either expand or shrink
towards the ROI and hence it increases the convergence rate and speed. f.Imagei is the
normalized image force corresponding to external energy from snake model principles.
For particle i, f.Imagei gives the image force at the position specified by that particle.
Image gradient or gradient of Gaussian functional are generally accepted for obtaining
the image force with acceptable performance. Note that it does not vary along time is
computed one single time. c4 is the weighting factor to control the effect of image force.
Inertia weight, x, is taken to be a relatively small constant and r1, r2 and r3 denote
random numbers. Coefficients c1, c2, c3 and c4 are determined dynamically in a way
that, if there is a higher image force c4 it always gets a higher value. This ensures that if
a snaxel is next to the object boundary, it will latch to the object of interest. As Fig. 2
shows, this is implemented by a negative logarithmic function. For each pixel that a
particle visits, the dynamic coefficients get negative logarithmic value for the corre-
sponding image force in that pixel. Table 2 provides pseudo-code of the PSO/Snake
algorithm used for CBP detection and tracking. A detailed description of the
PSO/Snake algorithm is given in [19].

A main difference between PSO and PSO/Snake algorithm is that in the classical
PSO population evolves over time, but in the end only one particle (or a limited subset
of particles) embody the final solution, where in the PSO/Snake each particle of the
population contributes to the solution and final solution is comprised of all particles of
the population. In order to control the particle evolution in a tractable manner, velocity
control strategies such as velocity strapping is used. PSO being an stochastic approach
will provide different results in each because of random seed. PSO/Snake also has
stochastic component, but since the initial particle positions are not random, and also
because the velocity strapping mechanism along with cognitive and social components
of the velocity update prevents particles from drastic changes, the result of several runs
of PSO/Snake algorithm is the same. The randomness of the algorithm affects the speed
(no of iterations) that it takes to converge to the final results.

Evaluative Study of PSO/Snake Hybrid Algorithm 25

3 GPL Algorithm

The Gradient Path Labeling (GPL) segmentation algorithm was designed and proposed
to segment retinal images [20] and its accuracy and flexibility made it suitable to be
applied in other domains, as it was the case of 2D ion mobility spectra analysis [28] and

Table 2. PSO/Snake pseudo-code

26 E. Shahamatnia et al.

microscopy image analysis [29]. The segmentation and tracking of CBPs in solar
images is also a promising domain for the application of GPL, since CBPs are higher
intensity regions with distinguishable boundaries. The GPL is a pixel-level segmen-
tation algorithm that groups ascending paths belonging to the same regional maximum
resulting in a segmented image where higher intensity regions are labeled individually.
The results are comparable to the Watershed Transform although with better noise
independence. Another advantage is that it follows a simple pixel labeling approach
allowing it to get a fast segmentation with a complexity proportional only to the image
size.

The approach to segment CBPs follows a three step process that starts by pre-
processing the image in order to reduce noise, followed by the GPL segmentation.
Finally, the generated segmentation regions are filtered to select the region that matches
a CBP, and its center of mass location is determined. Table 3 presents the pseudo-code
for the GPL algorithm.

3.1 Image Preprocessing

In order to get a more accurate segmentation, a preprocessing step is applied to the
original image. The first step is to define the CBP initial position and create a squared
ROI centered on this location with a predefined width that encompasses the CBP
boundaries to limit the complexity of the GPL segmentation filtering process. Then the
ROI, as shown in Fig. 3, is filtered by a 3 � 3 median filter and green channel is
selected for the further processing steps (Fig. 4a-c). As it can be seen in Fig. 4b, the
median filter is successful in smoothening the image and removing the salt and pepper
noise. It should be noted that for this study we have used the JPEG images (accessible
from the SDO image repository from NASA) to test the algorithms. However, for the

Fig. 2. Dynamic coefficients of C1, C2 and C3. These coefficients control the cognitive, social
and expansion behavior of the PSO/Snake population with a negative logarithmic functional of
image force. Horizontal axe shows the normalized image force and the vertical axe shows the
corresponding value for the dynamic coefficients for a pixel with the corresponding image force.

Evaluative Study of PSO/Snake Hybrid Algorithm 27

astrophysical applications the use of the FITS file format, that preserves the raw
observation data, is common. In the AIA images used in this study, solar feature
locations and boundaries are clearer in the green channel; in the blue channel only the
more intense events can be perceived; and in the red channel high intensity CBPs
location can usually be observed but less intense ones cannot be perceived (Fig. 3). To
obtain the CBP boundaries using the GPL segmentation, it should be applied to the
gradient image using the Sobel operator. Comparing the three segmentation results (see

Table 3. GPL pseudo-code

28 E. Shahamatnia et al.

Fig. 3. Solar image of AIA 94Å. (a) Original image with a CBP marked, (b) a zoomed view of
the CBP, (c) Red channel of the original RGB-color image, (d) Green channel, (e) Blue channel.
(Image courtesy of NASAS/DO) (Color figure online)

Fig. 4. Example of a CBP detection. (a) original image; (b) median filtered image; (c) green
channel; (d) gradient image using Sobel operator; (e) GPL segmentation contours over the
gradient image; (f) and (g) GPL segmentation contours over the green image respectively with
and without gradient preprocessing; (h) final GPL result. (Color figure online)

Evaluative Study of PSO/Snake Hybrid Algorithm 29

Fig. 4) one can see that in the upper image (g) CBP is correctly segmented, although
the region boundaries do not overlap the CBP boundaries. However, by applying the
GPL to the gradient image (f) this problem is resolved and the CBP boundaries match
the segmentation boundaries.

3.2 GPL Image Segmentation

By visualizing an image gradient in a quiver plot it can be noticed that in the proximity
of higher intensity regions gradient vectors are directed towards their intensity maxi-
mum (Fig. 5a). The confluence of several ascending paths reveals the presence of a
regional intensity maximum and the pixels belonging to these paths define its area of
influence. This is the principle of the Gradient Path Labeling segmentation algorithm
[20]. The algorithm is divided into two main stages: label propagation and labels
merging.

The labelling process starts by a sequential pixel analysis following a top-left to
bottom-right direction. In this sequence each unlabeled pixel will receive a new label
(sequential number) that will be propagated to other pixels along the gradient path. This
path is composed by azimuths, obtained using the 3 � 3 Sobel operator (Fig. 5b), that
follow an ascending intensity path. This propagation continues until an already labelled
or outside image boundaries pixel is found (Fig. 5c and d). Whenever we have the
confluence of two paths, i.e., the propagation ends on a labelled pixel, the two path
labels are defined as equivalents (for example labels 2, 4, 6, 10 in Fig. 5d and e).

Fig. 5. Example of GPL segmentation algorithm. (a) Original image; (b) Image gradient;
(c) Label propagation directions; (d) Initial label propagation – (label propagation on the two
upper rows); (e) Label equivalences table; (f) Segmentation results and their maximum point
highlighted.

30 E. Shahamatnia et al.

After analyzing all the image, the equivalent labels will be merged together and
replaced by the lowest one (Fig. 5f). The GPL result is a segmented image with as
many labels as higher intensity regions.

The GPL algorithm has a tendency to produce over-segmented images, in particular
when they have flat valleys or flat hills. A merging procedure was introduced to
overcome this problem. The merging algorithm is based on a connectivity graph
analysis where adjacent regions are merged if they can be connected by a path that does
not go lower than a predefined amplitude. At this stage regional maximums are
detected and their area of influence is defined.

3.3 CBP Matching

The GPL segmentation produces several regions from which the CBP must be selected.
From the segmented regions the most discriminant CBP features are based on color and
intensity rather than shape, since CBPs do not have a predefined and static shape. The
gradient of the image and the maximum, minimum and mean intensities for each color
channel are extracted, as well as the centroid (x, y) location and the difference to its
previous location. From a statistical analysis of the extracted features, the most dis-
criminant ones are red and green maximum and mean intensities and centroid location
difference. Using these parameters, a multi-criteria score Eq. (6) was computed con-
sidering 50 % for location and 50 % for color features. As a result, the highest scored
region is selected as the tracked CBP. As it can be seen in the Fig. 4h, GPL is able to
detect the CBP boundaries, although at the cost of an over-segmentation effect. By
computing the ranking Eq. (6) we are able to identify and select the correct CBP region
and track it along consecutive images.

score ¼ 50% � rankðcentroid distanceÞ
þ 12:5% � rankðred maximumÞ
þ 12:5% � rankðred meanÞ
þ 12:5% � rankðgreenmaximumÞ
þ 12:5% � rankðgreenmeanÞ

ð6Þ

Due to the CBP diversity in intensity and shape this ranking based criteria obtained
a better selection accuracy when compared to a relative or absolute one, obtained using
computational intelligence techniques such as decision trees. However, whenever the
CBP is very fade or simply disappears this selection process will fail to reject all
regions. The use of computational intelligence could be applied after the selection
process to reject or accept the selected region as a CBP. Since in this work this step was
not implemented, regions are selected only if a manual evaluation is available.

Evaluative Study of PSO/Snake Hybrid Algorithm 31

4 Results and Discussions

4.1 Dataset and Experiment Setup

As benchmark data we use SDO-AIA corona images, downloaded from NASA-SDO
repository1. We have used selected images taken at 9.4 nm wavelength in the timespan
between 14 September 2010 and 20 October 2010. For comparison purposes we use
the manual CBP marking done by an expert in [30] and the database used in [19]. The
tracking process starts by choosing a CBP to track. In this comparative study we the
CBP marking data done by an expert as our benchmark data. After choosing a CBP, we
run PSO/Snake and GPL algorithms independently on that CBP. Each CBP is chosen
in the first image and then tracked automatically until it disappears below a predefined
size. GPL uses similar criteria, but the decision about stopping the algorithm is
embedded in the CBP matching unit. That is if a CBP cannot be matched with a
predefined confidence level, the tracking stops. Determining the exact moment for start
and ending the lifetime of a CBP is subjective. In this study, since we are comparing
the precision of tracking the CBP movement, we consider the life time of CBP
according to the manual data availability. For PSO/Snake algorithm the input images
are converted to 8-bit grayscale and image force is calculated by a gradient of Gaussian
functional with r = 3. Images are resized to 512 � 512 pixels. Altogether, in GPL
algorithm we have tested 41 CBP structures, being tracked in 6 days (3098 measure-
ments). PSO/Snake parameters and running conditions are presented in Table 4.

A screenshot of PSO/Snake CBP tracking is shown in Fig. 6. The red circle shows
the initial snake around a CBP chosen by an operator. After detection, each CBP is
characterized by the heliographic coordinates their center of mass. On the next frame
the previous CBP contour is used as a baseline to automatically track its new position.
In Fig. 7 is presented the snake contour evolution for a tracked CBP. It shows that, due
to the dynamic nature of PSO/Snake hybrid algorithm, detected contours are flexible
and can adjust to the dynamic shape and size of deformable objects like CBPs. Figure 8
shows an example of GPL segmentation and tracking of a CBP region in five con-
secutive images.

4.2 Comparison of Results

First we compare the precision of the GPL and PSO/Snake algorithm in tracking CBP
movements against the ground truth obtained by manual tracking data. The calculated
angular rotational velocity of solar corona is compared against reported values in the
literature to test the feasibility of using these methods in solving real world problems.
In the manual procedure [30], an expert operator determined the CBPs positions as they
moved. In our study we use the manual CBP markings as our benchmark data.

Several parameters that were reported in the original reference papers [30] and [19]
were used for comparison purposes in this paper. Reference [30] manually marks CBPs
for the entire dataset, while in [19] PSO/Snake algorithm is used for automatic CBP

1 http://sdo.gsfc.nasa.gov/data/aiahmi/browse.php.

32 E. Shahamatnia et al.

http://sdo.gsfc.nasa.gov/data/aiahmi/browse.php

Table 4. PSO/Snake parameters and running conditions

Parameter Value

No. of iterations 750
No. of particles 15
Image force Gradient of Gaussian
Image force normalization? Yes
Gradient sigma 3
C1, C2, C3 Dynamic
C4 1
r1, r2, r3 Random numbers in range (0,1)
w 0.01
Max velocity 1

Fig. 6. Screenshot of the PSO/Snake CBP tracking. (Left) initial snake on the first image at time
t, (Center) the detected CBP at time t, (Right) the tracked CBP at time t + 10. The boundary
fitting snake is shown with cyan contour, expert’s marking is shown with red square and the
yellow circle is the center of mass for the tracked CBP by PSO/Snake. (Color figure online)

Fig. 7. The evolution of the snake to detect CBP boundaries can be seen.

Evaluative Study of PSO/Snake Hybrid Algorithm 33

tracking. Based on the CBP positions, angular rotational velocity of the Sun is cal-
culated. Both references report x (angular rotation velocity) and Dx (measurement
error at 95 % confidence level). In this study we report measurements for these
parameters using the GPL algorithm. Figure 9 shows the calculated rotational speed in
different solar latitudes in this study in comparison with the values obtained by other
authors. Further details can be found in [30]. The + markers in this image show the
tracked CBP structures that, as it can be seen, are well scattered between the ±60°
latitude but not in proximity of the solar limb. It is a technically challenging problem to
study the solar disk near the limb, since the projection of the sphere shape of the Sun
into a 2D image causes projection errors that are even more important in the limbs. For
this reason, we focus on comparing the results in the ±5° solar latitude (Fig. 9 Bot-
tom). This figure illustrates the main results comparing the PSO/Snake algorithm vs.
GPL algorithm for calculating solar differential rotation. As it can be seen in the figure,
both the PSO/Snake and GPL algorithms perform well in approximating the solar
rotational velocity in comparison with the ground truth and other reported results. Both
methods generate acceptable results matching the scientific community state of the art
data. However, PSO/Snake has better conformity with previous results, and a more
smooth curve-fitting results, which improves its extendibility in dealing with bigger
databases.

To take a closer look at the performance of two methods, results obtained for some
sample CBP structures is reported in Table 5. This table shows the comparison
between the results obtained with the manual CBP tracking, the results obtained by the
PSO/Snake hybrid algorithm and the GPL algorithm for some sample structures. In this
table, the structure is the identifier of CBP, b is the heliographic latitude of CBP and x
E is the orbital angular rotation velocity of the Earth that can be looked up from solar
almanacs. As with Fig. 9, Table 5, shows that the obtained results in both methods are
very close to the results of manual CBP tracking, but with some deviations.

By extending the CBP tracking results for whole life-time of a CBP, we can
calculate the accumulated error for the calculated x by each CBP. Figure 10 show the
deviation of the results from the benchmark data for b, x;Dx, and x E, for the
PSO/Snake results and the GPL results of all CBP structure during their lifetime. The
PSO/Snake algorithm measures the rotational speed of the Sun within ±0.2 of the
benchmark data most of the time. For the GPL algorithm, the slight error in calculation
of b leads to a greater offset in x results. The error in this case is −18 degree/day in the

Fig. 8. Examples of GPL segmentation and tracking of the CBP region in five consecutive
frames.

34 E. Shahamatnia et al.

highest. This shows that accumulated deviation error for PSO/Snake algorithm is less
than the GPL method. It should be noted that part of this deviation is due to code
implementation differences, which, in precise calculations, impose a minute variation.
It is also worth mentioning that, in several cases, results displayed bigger differences.
Closer investigation by a solar physicist expert (co-author), found out that the
PSO/Snake hybrid algorithm behaves consistently and that the user-error is the main
cause.

Fig. 9. Rotational speed in different solar latitudes calculated by tracking CBPs in comparison
with the values obtained by other works (Top). The black dashed curve and the cyan dotted curve
show the fit to the mean x(b) values as a function of latitude b, for the GPL (present work) and
the PSO/Snake algorithms (based on [19]) respectively. Results from [30–32] are superimposed
for comparison. The black + markers are the calculated GPL data points (Bottom). A cropped
and zoomed view of the plot above, confined in the ±50 degree solar latitude. In both images the
confidence level is set to 95 %. (Color figure online)

Evaluative Study of PSO/Snake Hybrid Algorithm 35

Table 5. Comparison of the results reported in [30] with results from PSO/Snake [19] and GPL
algorithms for some sample structures

Structure Parameter PSO/Snake Benchmark GPL

xy0510.01 b 67.103 66.7 67.57
x 11.213 10.295 10.21
Dx ±0.642 ±0.327 ±0.411

xy0510.03 b 21.057 20.5 21.367
x 14.387 14.586 14.611
Dx ±0.303 ±0.099 ±0.182

xy0510.04 b −32.27 −33.8 −32.409
x 13.803 13.648 14.878
Dx ±0.342 ±0.209 ±0.432

xy0510.07 b 28.170 27.8 28.290
x 15.112 14.478 14.530
Dx ±0.439 ±0.116 ±0.226

Fig. 10. Deviation of the results from the benchmark data. The differences in b, x;Dx, and x E

are represented with blue, green, red and cyan lines. (Top) The PSO/Snake results error (based on
[19]) compared to the benchmark data are within 1.5 degree/day. (Bottom) The GPL results error
compared to the benchmark data are within 18 degree/day. (Color figure online)

36 E. Shahamatnia et al.

5 Conclusions

In our previous paper [19] we presented the PSO/Snake hybrid algorithm for solving a
real solar physic and space weather problem, i.e. tracking CBPs and calculating solar
differential rotation. This study compares the PSO/Snake hybrid algorithm and Gra-
dient Path Labeling algorithm. Both methods are applied for determining the speed of
sidereal angular rotation of the Sun by analyzing solar images and tracking specific
features on a series of successive images. Based on the analysis of the results and
comparison with a manual method the resulting values of rotational speed are reliable
for both methods. The deviation between these two techniques from the benchmark
was similar and both methods calculated solar rotational velocity comparable to the
established values reported in the literature. However, by calculating the accumulated
deviation during the extended lifetime of all CBP structures, PSO/Snake algorithm
demonstrated better performance and lower accumulated deviation. This is because of
the dynamic nature of the PSO/Snake algorithm.

For tracking CBP in every new image, information about the CBP profile and its
contour is passed from the previous image to the current state, and these data are used
only as starting point to recalculate the CBP contour in the current image. The GPL
algorithm benefits from the lower computational complexity outperforming the
PSO/Snake in calculation speed. PSO/Snake algorithm is an iterative process, which
increases its execution time. Particularly calculating image force matrix is the bottle-
neck of this algorithm. Although GPL achieved reasonable results, PSO/Snake showed
a superior performance especially handling the incomplete information and
extendibility of the method.

The hybrid combination of PSO with snake model, preserved the PSO simplicity
and overcome some of the snake drawbacks. Adding two new terms to the PSO
velocity calculation increased the robustness of the algorithm allowing it to evolve even
if some component is missing or misleading. The particle/snaxels velocity information
embedded in this algorithm, makes it more suitable for object tracking in image pro-
cessing applications, since it adapts itself to the movement of the object in the images.
PSO/Snake algorithm is particularly good in handling noisy data, such as tested solar
images. CBPs are small in size and the solar images that are used to study them have a
fair amount of pixel-size structures that make detecting CBPs more difficult.

PSO/Snake algorithm is not a general problem solver like PSO. It takes advantage
of PSO dynamics, for pushing particle to find the object boundaries in an image. The
PSO/Snake algorithm has already been successfully tested for detection and tracking of
small deformable structures such as endothelium cells from cornea microscopic images
[17] and tracking sunspots [18] and its successful application on CBP test problem can
be extended to other problem domains with similar nature. It can be applied in real
world problems with dynamic and uncertain nature, where tracking a deformable-shape
object is desired.

This work does not consider the splitting and merging of CBPs. As future work we
plan to extend the capability of the algorithms for automatic detection of CBPs and
analyzing their shape relative to other objects adjacent to them. This will enable the
algorithm to determine if a CBP is splitting or merging. A combination of the current

Evaluative Study of PSO/Snake Hybrid Algorithm 37

PSO/Snake algorithm for tracking and the GPL capability in CBP matching can be
used for implementation of this feature.

Acknowledgments. This work was partially supported by Fundação para a Ciência e a Tec-
nologia (FCT), MCTES, Portugal through grants SFRH/BPD/44018/2008 (I.D.) and SFRH/
BD/62249/2009 (E.S.) and by FCT Strategic Program UID/EEA/00066/203 of UNINOVA, CTS.
We would like to also thank the SDO (NASA) and AIA science team for the provided obser-
vational material.

References

1. Kennedy, J., Eberhart, R.: Particle swarm optimization. In: IEEE International Conference
on Neural Networks, Proceedings, pp. 1942–1948. IEEE, Perth (1995)

2. Clerc, M.: Particle swarm optimization. ISTE Ltd (2006)
3. Morel, J.-M., Solimini, S.: Variational methods in image segmentation: with seven image

processing experiments, vol. 14. Springer, Boston (2012)
4. McInerney, T., Terzopoulos, D.: Deformable models in medical image analysis: a survey.

Med. Image Anal. 1, 91–108 (1996)
5. Kass, M., Witkin, A., Terzopoulos, D.: Snakes: active contour models. Int. J. Comput. Vis.

1, 321–331 (1988)
6. Ballerini, L., Bocchi, L.: Multiple Genetic Snakes for Bone Segmentation. In: Raidl, G.R.,

Cagnoni, S., Cardalda, J.J., Corne, D.W., Gottlieb, J., Guillot, A., Hart, E., Johnson, C.G.,
Marchiori, E., Meyer, J.-A., Middendorf, M. (eds.) EvoIASP 2003, EvoWorkshops 2003,
EvoSTIM 2003, EvoROB/EvoRobot 2003, EvoCOP 2003, EvoBIO 2003, and EvoMU-
SART 2003. LNCS, vol. 2611, pp. 346–356. Springer, Heidelberg (2003)

7. Tsechpenakis, G., Rapantzikos, K., Tsapatsoulis, N., Kollias, S.: A snake model for object
tracking in natural sequences. 19, 219–238 (2004)

8. Niu, X.: A Geometric active contour model for highway extraction. In: Proceedings of
ASPRS 2006 Annual Conference, Reno, Nevada (2006)

9. Wildenauer, H., Blauensteiner, P., Hanbury, A., Kampel, M.: Motion detection using an
improved colour model. In: Bebis, G., et al. (eds.) ISVC 2006. LNCS, vol. 4292, pp. 607–
616. Springer, Heidelberg (2006)

10. Karlsson, A., Stråhlén, K., Heyden, A.: A fast snake segmentation method applied to
histopathological sections. In: Energy Minimization Methods in Computer Vision and
Pattern Recognition. pp. 261–274. Springer Berlin Heidelberg (2003)

11. Tseng, C., Hsieh, J., Jeng, J.: Active contour model via multi-population particle swarm
optimization, (2009)

12. Li, R., Guo, Y., Xing, Y., Li, M.: A Novel Multi-Swarm Particle Swarm Optimization
algorithm Applied in Active Contour Model. In: Intelligent Systems, 2009. GCIS ’09. WRI
Global Congress on. pp. 139–143. IEEE (2009)

13. Ballerini, L.: Genetic snakes for medical images segmentation. In: Poli, R., Voigt, H.-M.,
Cagnoni, S., Corne, D.W., Smith, G.D., Fogarty, T.C. (eds.) EvoIASP 1999 and EuroEcTel
1999. LNCS, vol. 1596, pp. 59–73. Springer, Heidelberg (1999)

14. Nebti, S., Meshoul, S.: Predator prey optimization for snake-based contour detection. Int.
J. Intell. Comput. Cybern. 2, 228–242 (2009)

38 E. Shahamatnia et al.

15. Zeng, D., Zhou, Z.: Invariant topology snakes driven by particle swarm optimizer. In: 2008
3rd International Conference on Innovative Computing Information and Control. p. 38. IEEE
(2008)

16. Shahamatnia, E., Ebadzadeh, M.M.: Application of particle swarm optimization and snake
model hybrid on medical imaging. In: 2011 IEEE Third International Workshop on
Computational Intelligence in Medical Imaging. pp. 1–8. IEEE, Paris, France (2011)

17. Sharif, S.M., Qahwaji, R., Shahamatnia, E., Alzubaidi, R., Ipson, S., Brahma, A.: An
efficient intelligent analysis system for confocal corneal endothelium images. Comput.
Methods Programs Biomed. 122, 421–436 (2015)

18. Shahamatnia, E., Dorotovič, I., Ribeiro, R.A., Fonseca, J.M.: Towards an automatic sunspot
tracking: Swarm intelligence and snake model hybrid. Acta Futur. 5, 153–161 (2012)

19. Shahamatnia, E., Dorotovič, I., Fonseca, J.M., Ribeiro, R.A.: An evolutionary computation
based algorithm for calculating solar differential rotation by automatic tracking of coronal
bright points. J. Sp. Weather Sp. Clim. 6, A16 (2016)

20. Mora, A.D., Vieira, P.M., Manivannan, A., Fonseca, J.M.: Automated drusen detection in
retinal images using analytical modelling algorithms. Biomed. Eng. Online. 10, 59 (2011)

21. Brajša, R., Wöhl, H., Ruždjak, V., Clette, F., Hochedez, J.-F.: Solar differential rotation
determined by tracing coronal bright points in SOHO-EIT images I. Interactive and
automatic methods of data reduction. Astron. Astrophys. 374, 309–315 (2001)

22. Gálvez, A., Iglesias, A.: A new iterative mutually coupled hybrid GA–PSO approach for
curve fitting in manufacturing. Appl. Soft Comput. 13, 1491–1504 (2013)

23. Shahamatnia, E., Dorotovi, I., Mora, A., Fonseca, J., Ribeiro, R.: Data inconsistency in
sunspot detection. In: Filev, D., et al. (eds.) Intelligent Systems 2014, pp. 567–577. Springer,
Cham (2015)

24. Chen, B., LAI, J.H.: Active contour models on image segmentation: a survey. J. Image
Graph. 1, (2007)

25. Horng, M.-H., Liou, R.-J., Wu, J.: Parametric active contour model by using the honey bee
mating optimization. Expert Syst. Appl. 37, 7015–7025 (2010)

26. Van den Bergh, F.: An analysis of particle swarm optimizers, (2002)
27. Shahamatnia, E., Dorotovic, I., Fonseca, J., Ribeiro, R.: On the importance of an automated

and modular solar image processing tool. In: Proceedings of the European Planetary Science
Congress (EPSC), Portugal (2014)

28. Hakkinen, A., Muthukrishnan, A.-B., Mora, A., Fonseca, J.M., Ribeiro, A.S.: Cell Aging: a
tool to study segregation and partitioning in division in cell lineages of Escherichia coli.
Bioinformatics 29, 1708–1709 (2013)

29. Häkkinen, A., Muthukrishnan, A.B., Mora, A., Fonseca, J.M., Ribeiro, A.S.: Cell Aging: a
tool to study segregation and partitioning in division in cell lineages of Escherichia coli.
Bioinformatics 29, 1708–1709 (2013)

30. Lorenc, M., Rybanský, M., Dorotovič, I.: On rotation of the solar corona. Sol. Phys. 281,
611–619 (2012)

31. Hara, H.: Differential rotation rate of X-ray bright points and source region of their magnetic
fields. Astrophys. J. 697, 980 (2009)

32. Brajša, R., Wöhl, H., Vršnak, B., Ruždjak, V., Clette, F., Hochedez, J.-F., Roša, D.: Height
correction in the measurement of solar differential rotation determined by coronal bright
points. Astron. Astrophys. 414, 707–715 (2004)

Evaluative Study of PSO/Snake Hybrid Algorithm 39

The Uncertainty Quandary: A Study
in the Context of the Evolutionary Optimization
in Games and Other Uncertain Environments

Juan J. Merelo1(B), Federico Liberatore1, Antonio Fernández Ares1,
Rubén Garćıa2, Zeineb Chelly3, Carlos Cotta4, Nuria Rico5,
Antonio M. Mora1, Pablo Garćıa-Sánchez1, Alberto Tonda6,

Paloma de las Cuevas1, and Pedro A. Castillo1

1 Depto. ATC, University of Granada, Granada, Spain
jmerelo@geneura.ugr.es

2 Escuela de Doctorado, University of Granada, Granada, Spain
3 Laboratory LARODEC, Institut Supérieur de Gestion, Tunis, Tunisia

4 Depto. LCC, University of Málaga, Málaga, Spain
5 Depto. EIO, University of Granada, Granada, Spain
6 UMR 782 GMPA, Inra, Thiverval-Grignon, France

Abstract. In many optimization processes, the fitness or the consid-
ered measure of goodness for the candidate solutions presents uncer-
tainty, that is, it yields different values when repeatedly measured, due
to the nature of the evaluation process or the solution itself. This happens
quite often in the context of computational intelligence in games, when
either bots behave stochastically, or the target game possesses intrin-
sic random elements, but it shows up also in other problems as long
as there is some random component. Thus, it is important to examine
the statistical behavior of repeated measurements of performance and,
more specifically, the statistical distribution that better fits them. This
work analyzes four different problems related to computational intel-
ligence in videogames, where Evolutionary Computation methods have
been applied, and the evaluation of each individual is performed by play-
ing the game, and compare them to other problem, neural network opti-
mization, where performance is also a statistical variable. In order to find
possible patterns in the statistical behavior of the variables, we track the
main features of its distributions, skewness and kurtosis. Contrary to the
usual assumption in this kind of problems, we prove that, in general, the
values of two features imply that fitness values do not follow a normal
distribution; they do present a certain common behavior that changes
as evolution proceeds, getting in some cases closer to the standard dis-
tribution and in others drifting apart from it. A clear behavior in this
case cannot be concluded, other than the fact that the statistical dis-
tribution that fitness variables follow is affected by selection in different
directions, that parameters vary in a single generation across them, and
that, in general, this kind of behavior will have to be taken into account
to adequately address uncertainty in fitness in evolutionary algorithms.

c© Springer-Verlag Berlin Heidelberg 2016
N.T. Nguyen et al. (Eds.): TCCI XXIV, LNCS 9770, pp. 40–60, 2016.
DOI: 10.1007/978-3-662-53525-7 3

The Uncertainty Quandary 41

1 Introduction

Optimization methods usually need a single-valued and reliable feedback on the
quality of possible solutions to work correctly. This value, usually called cost or
fitness, informs the algorithm on the goodness of the solution and, when facing
different alternatives, it is used to select a particular solution over others. This
does not imply the necessity of a single floating point number as feedback; since
these methodologies are based on comparisons, it is usually enough if the values
can be partially ordered. In multiobjective optimization [11], for instance, two
solutions can even be considered non-comparable, based on the set of fitness
values they possess. In either case, the answer to the question “Is this solution
better than the other?” needs to be either a ‘Yes’, or ‘No’, or ‘Not decidable’ in
most optimization algorithms.

For many problems, however, the fitness or cost of a solution cannot be
described by a single value or vector, because there is uncertainty when measur-
ing it. Such uncertainty is inherent to most real-world physical systems, such as
the one described in [9], where a control system is optimized through a stochas-
tic procedure, but it also shows in machine learning and, in general, when the
optimization algorithm uses a lower-level method which is, itself, stochastic. In
these cases, the best way to describe the quality of a solution will be a random
variable, not a single value or a vector of deterministic values. In our research,
we routinely find this phenomenon in different optimization problems, such as:

– Optimizing the layout of a web-page using Simulated Annealing (SA) [48].
Since SA is a stochastic procedure, the fitness of an obtained solution will be
a random variable.

– Training any kind of neural network [9,40]; in the first case, also mentioned
above, we dealt with a physical installation, introducing another kind of ran-
domness. Since training a neural network is usually a stochastic procedure,
the error rate obtained after every training run will also follow a statistical
distribution.

– Evolving game bots (autonomous agents) [43]. In this case, the uncertainty
arises from the problem itself; in games, several factors such as the initial
positions of the players or the opponent’s behavior add further stochastic
components, so that the final score will also be uncertain or noisy. In some
cases, too, the bot itself will rely on probabilities to generate its behavior [15],
in which case two different runs with exactly the same initial conditions and
opponent will also yield different scores.

– In coevolutionary algorithms [15,46,47], individuals are evaluated by ran-
domly choosing opponents from a pool, thus resulting in a fitness that is
variable in a single generation and across generations [42].

In all these examples, it cannot be said that there is actually noise added
to a real fitness. Instead, the fitness itself can be represented with a statistical
variable, whose value arises from a stochastic process, evaluation, or training. In
this sense, we are not concerned with the origin of this uncertainty. It could be
noise in the measuring process, uncertainty in the fitness itself, or incomplete

42 J.J. Merelo et al.

information like, for instance, what appears when surrogate models are used. It
might be the case that the statistical nature of the fitness as a random vari-
able might be different, distribution-wise, but we think that, except in the case
that uncertainty is created by adding noise to fitness, the results obtained here
will hold. In the problems used here, the randomness arises from the inherent
stochasticity of the methods used to measure fitness, which, themselves, have a
random element.

Despite a considerable amount of literature on problems with stochastic fit-
ness values, there is a distinct lack of exhaustive research on the behavior of
fitness functions, seen as random variables. That is why, after an initial study of
noise in a specific game in [38], we dug into experimental data discovering that,
even if the distribution in that particular case was always a Gamma, the para-
meters of the distribution were different. In that study, we proposed a solution to
the noise issue, based on using the Wilcoxon comparison [57] as a selection oper-
ator. This meant that the random variable behaved in different ways depending
on the particular individual, the state of evolution and, of course, the specific
problem.

But, more importantly, this initial conclusion disagrees with the usual
assumptions of optimization in uncertain environments, where it is usual to
take a normal distribution of noise with fixed σ as the initial hypothesis [2].
For instance, in the functions of the Black Box Optimization Benchmarks [26],
uncertainty was simulated by adding a Cauchy noise function centered in 0, that
is, a centered, sharp bell-shaped distribution, with different widths. Either mul-
tiplicative or additive noise has been used in different occasions. However, our
initial work hints that this is not the case in real-world optimization problems,
ultimately invalidating the generality of the conclusions on different optimiza-
tion methods obtained through the usual benchmarks. Besides, we also prove
in [38] that, depending on the shape of the statistical distribution of the fit-
ness, different methods could yield the best results. While methods that use
the median or average would work well in centered distributions, other methods
such as our technique, based on the Wilcoxon test, are better in more uncertain
environments or, of course, in the case the noise distribution is not centered.

In this paper, we collect data from several different case studies, which will
be presented later on, to find a stochastic model for the fitness using statistical
tools. Our final objective is to eventually build a model as general as possible,
able to account for most sources of uncertainty; failing that, to devise selection
operators that are able to work with random fitness in a natural way.

This second part, if needed, will be the focus of future research.
The rest of the paper is organized as follows. In Sect. 2 we present the state

of the art for evolutionary algorithms in uncertain environments, to be followed
by a short presentation of the four problems with uncertainty whose measures
will be used in this paper in Sect. 3. Results will be presented in Sect. 4, followed
by our conclusions.

The Uncertainty Quandary 43

2 State of the Art

The most comprehensive, although not recent, review of the state of the art
for evolutionary algorithms in uncertain environments is presented by Jin and
Branke in [29], while more novel papers such as [3,49,50] include brief updates.
Goh and Tan [23] performed a similar survey, focused on multiobjective opti-
mization.

In their survey, Jin and Branke state that uncertainty is categorized into
noise, robustness issues, fitness approximation, and time-varying fitness func-
tions. In addition, different options for dealing with the uncertainty are dis-
cussed. In principle, the approach presented in this paper is designed to model
the first kind of uncertainty, namely, noise or uncertainty in fitness evaluation. It
can be argued that there is uncertainty in the true fitness as stated in the third
category. However, we think that, in general, the third issue refers to the case in
which expensive fitness functions are replaced by surrogate functions which carry
a certain amount of error, and whose value varies as the surrogate models are
updated. Independently from the origin of uncertainty, Jin and Branke suggest
several methods to tackle it, based either on implicit / explicit averaging over
fitness measures [13,27] or on a threshold imposed during the selection phase.
Papers such as Stroud’s [56], Esteban-Dı́az’s [13] or Di Mario’s [12] use this kind
of approach to deal with noise. Other authors [18] propose to use new rank-based
selection and mutation operators in order to evolve a neural network topology
used as a controller for a robot. Results show that those operators are suitable
for problems where the fitness landscape is noisy, but it is still using a central
value for the fitness that might not be always valid.

Since then, several other solutions for uncertainty have been proposed. A
usual approach for scientists more focused on obtaining a straightforward solu-
tion to the optimization problem without modifying existing tools and method-
ologies, is just to disregard the noise in the fitness and take whatever value is
returned by a single evaluation, often after re-evaluating all individuals at each
generation. This option seems to work especially well if the population is large
[27], since the selective pressure is lower and solutions have the chance to be
evaluated several times before being selected or discarded; this leads, if the pop-
ulation is large enough, to an implicit averaging as mentioned in [29]; in fact,
Rattray and Shapiro [53] in their theoretical model compute by how much the
crisp population must be enlarged to overcome the problem of noise. This solu-
tion is exploited in our previous research in games, although one evaluation in
some of these works consists, in fact, of an average of several evaluations, on
different maps or considering different opponents, see for instance [34,42,43], or
in the evolution of neural networks [4,40].

The key to the efficiency of this approach stems from the fact that selection
used in evolutionary algorithms is usually stochastic, so uncertainty in fitness
evaluation could have the same effect as randomness in selection or a higher
mutation rate, which might make the evolutionary process easier in some partic-
ular cases [50]. In fact, Miller and Goldberg proved that an infinite population
would not be affected by noise [41] and Jun-Hua and Ming studied the effect of

44 J.J. Merelo et al.

noise in convergence rates [31], proving that an elitist genetic algorithm finds at
least one solution in noisy environments with probability one, although with a
lowered convergence rate. This possible positive effect of uncertainty in evalua-
tion leads to some authors calling it “a blessing and the curse” in the context of
surrogate models [44], which, as we have seen before, carry with them a degree
of uncertainty and randomness.

In real-world problems, however, populations are finite: in fact, using large
populations decreases the algorithm’s efficiency and can be time consuming,
so the usual approach for dealing with fitness with a degree of randomness is
to enlarge the population to a value bigger than would normally be needed in
a non-noisy environment, while keeping it to a manageable size. Furthermore,
it has been proved recently that using two parents to generate offspring, that
is, crossover, is able to successfully deal with noise [20], while an evolutionary
algorithm based mainly on mutation, such as the μ+1 EA, or evolutionary pro-
gramming [19], would suffer a considerable degradation of performance. However,
crossover is part of the standard kit of evolutionary algorithms, so using it and
increasing the population size has the advantage that no special provision or
change in the implementation has to be made. There is no big decreasing in effi-
ciency as long as oversized populations are not used. Using oversized populations,
however, might have a good effect on the algorithm in general, if appropriate
computational resources are available [33].

Another way to deal with uncertainty which is more theoretically sound is
using real averaging, that is, a statistical central tendency indicator, which usu-
ally is the average; average happens to be equal to the median in the case of
the random variable following the normal distribution. In this case, resampling
is used to acquire a statistically significant amount of measures and then the
average is computed over them. This strategy has been called explicit averag-
ing by Jin and Branke, and it is used, for instance, in [31]. Explicit averaging
decreases the fitness variance, thus reducing uncertainty, but defining the appro-
priate sample size for the averaging process is not straightforward [1]; besides,
this central tendency might not be representative if the noise is not centrally
distributed, as proved in [39]. Our research group uses this approach in some
cases, with an important difference: individuals are not re-evaluated every addi-
tional generation, but their fitness value is the average of several evaluations,
performed immediately [42]. Most authors use several measures of fitness for
each new individual [10], although other averaging strategies have also been
proposed, for example averaging over the neighbourhood of the individual or
using resampling, that is, heuristically requiring more fitness measurements [35].
This assumes that there is, effectively, a real average of the fitness values, which
is true for Gaussian random noise and other distributions (such as Gamma’s or
Cauchy’s), but it does not necessarily hold for all distributions. In this paper, we
are going to model these distributions in order to verify whether this assumption
is indeed correct.

To the best of our knowledge, other central tendency measures such as the
median, which might be more adequate for certain noise models, have not been

The Uncertainty Quandary 45

tested; the median always exists, while the average might not exist for non-
centrally distributed variables. Besides, most models keep the number of evalu-
ations fixed and independent of its value, which might result in bad individuals
being evaluated multiple times before finally being discarded; some authors have
proposed resampling, [51,52], which will effectively increase the number of eval-
uations and thus slow down the search. In any case, using explicit averaging
usually requires just a small change to the algorithm framework, by using the
average of several evaluations as the new fitness function. Thus, it is usually the
method preferred by researchers and practitioners using off-the-shelf libraries
such as ECJ [37].

In order to improve the efficiency of the algorithm, or the running time, these
two averaging approaches that are focused on the evaluation process might be
complemented with changes to the selection process. For instance, a threshold
[52,54] that is related to the noise characteristics to avoid making comparisons
of individuals that might, in fact, be very similar or statistically the same; this is
usually called threshold selection and can be applied either to explicit or implicit
averaging fitness functions. Uncertainty can also be used to compare different
algorithms, with some authors proposing, instead of taking more measures, test-
ing different solvers [8], some of which might be more affected by noise than
others. However, recent papers have proved that sampling might be ineffective
[49] in some types of evolutionary algorithms, adding running time without an
additional benefit in terms of performance. This is one lead we will try to fol-
low in the current paper, by modeling noise in order to eventually design an
algorithm that behaves correctly in that environment.

All the aforementioned approaches still face the issue of the statistical repre-
sentation of the true fitness, even more so if there are instead several measures
that represent, as a set the fitness of an individual, such as the case study
described in [39]. This is what we have been using in many of our papers: a
method that uses resampling via a memory attached to every individual that
stores all fitness measures and uses either explicit averaging or statistical tests
like the non-parametric Wilcoxon test. In order to test this approach on bench-
mark problems more realistic that the ones adopted so far, we need to charac-
terize the noise that actually appears in games and other real-world case studies
for optimization.

3 Case Studies Used in This Paper

The fitness analyzed in the four different case studies, all related to computa-
tional intelligence in games, are described in this paper: generation of charac-
ter backstories in a MAssive Drama Engine for non-player characters (MADE),
described in Subsect. 3.1, optimization of bots for playing the real time strat-
egy game (RTS) Planet Wars in Subsect. 3.2, optimization of the ghost team in
Ms. Pac-Man, which will be described in Subsect. 3.3, automatic generation of
autonomous players for the famous RTS StarCraft, explained in Subsect. 3.4 and
an artificial neural network optimization problem using an EA Subsect. 3.5.

46 J.J. Merelo et al.

These five problems have been chosen for two main reasons: the origin of
uncertainty is different for each of the case studies; and data for the experiments
is readily available, with the possibility of running further experimental trials,
if needed. In the case of MADE, fitness is computed through a simulation; in
the case of Planet Wars, the bot themselves have a random component, with its
representation including probabilities of different courses of action; in Ms. Pac-
Man, uncertainty lies in the nature of the game itself; and the huge amount of
possibilities in StarCraft, with a considerable number of units behaving indepen-
dently, creates an extremely high source of uncertainty. These scenarios are not
a complete representation of all possible causes of uncertainty in optimization,
but we think that the sample is big and varied enough to generalize the obtained
results, which will be presented in the next section.

In all cases, three generations were chosen, and they are different depending
on the problem. We feature the first generation (except in the case of MADE),
a intermediate generation and one close to the end of the evolution, containing
individuals close to the solution. These were chosen to check the progress of the
two statistical parameters in different situations: close to random in the case of
the first generations, and close to the real value, in the case of the last ones. The
particular number of generations is not really important, the importance is how
close they are to the end of the evolution, which is different in each case.

We will next examine the creation of character backstories in the problem
called MADE.

3.1 Creation of Character Backstories

MADE [21] is a framework for the automatic generation of virtual worlds that
allow the emergence of backstories for secondary characters that can later on be
included in videogames. In this context, an archetype is a well-known behaviour
present in the imaginary collective (for example, a “hero” or a “villain”). Given
a fitness that takes into account the existence of different Na archetypes for
a virtual world, MADE uses a Genetic Algorithm (GA) [24] to optimize the
parameter values of a Finite State Machine (FSM) that models the agents of
that world. For the evaluation, a world is simulated using this parameter set,
and the log is analyzed to detect behaviours of the world agents that match the
desired archetypes.

As the evolved parameters are the probabilities to jump from one state to
another in the FSM, each fitness evaluation is performed executing the vir-
tual world five times per individual, obtaining the average fitness. Selection is,
therefore, performed comparing this average fitness, with a binary tournament.
Fitness values range from 0 to Na, and are calculated taking into account the
rate of occurrence of the archetypes in the execution log.

3.2 A ‘Simple’ Real-Time Strategy Game: Planet Wars

Planet Wars [16] is a simple Real-Time strategy (RTS) game. In RTS games, the
objective is to defeat the enemy using resources available in the map to build

The Uncertainty Quandary 47

and manage units and structures: differently from turn-based strategy games, in
RTS all choices have to be performed in real time.

Planet Wars provides a simplification of the usual elements in RTS games:
one kind of unit (spaceships) and one kind of resources and structures (planets).
Spaceships are automatically generated on the planets controlled by a player,
and they are used to conquer enemy planets, the main way to defeat the enemy.

In this paper we are using the results obtained from the Genebot algorithm
[17]. This algorithm optimizes seven parameters of a hand-coded FSM, two of
which are probabilities. These values are used in expressions used by the bot
to take decisions, such as the selection of the target planet to attack or rein-
force; this implies that the actions of the bot will be different every time the
bot acts, that is, some state transitions are based on probabilities. Fitness is
calculated confronting the bot obtained from the parameter set of the FSM five
times against a competitive hand-coded bot. The result of each match takes into
account the ‘slope’ of the number of player spaceships during the time of the
match. Positive results mean that the bot won, as the slope will be positive, and
vice versa. Theoretical values are in the range [−1, 1], although these extremes
are impossible to attain in the game. A value of −1 would indicate that the
player lost all their ships at startup, while 1 would mean the contrary: it gener-
ated all the spaceships and won in the initial time. The fitness of an individual
is the sum of all five results, and therefore is in the range [−5, 5].

3.3 Ghost Team Optimization

Ms. Pac-Man is a variant of the famous Pac-Man game that extends its mechanics
with several extra features, the most interesting being the inclusion of a random
event that reverses the direction of the ghosts. This game is used in the Ms. Pac-
Man vs Ghosts competition [36], where participants can submit controllers for
both Ms. Pac-Man and the Ghost Team, the first trying to maximize its score,
the second trying to minimize Ms. Pac-Man’s. The framework used to test the
methodology analyzed defines the following restrictions for the Ghost Team:

– A ghost can never stop and if it is in a corridor it must move forward.
– A ghost can choose its direction only at a junction.
– Every time a ghost is at a junction the controller has to provide a direction

from a set of feasible directions.
– After 4000 game ticks, a level is considered completed and the game moves

on to the next one.

In the methodology applied to this case study, published in [34], the fitness
of each individual is computed as the maximum score obtained by eight different
Ms. Pac-Man controllers. Some of these controllers are the champions of past
editions of the international competition, so they are very tough rivals for the
ghost team.

48 J.J. Merelo et al.

3.4 A Complex Real-Time Strategy Game: StarCraft

StarCraft has become a de facto testbed for AI research in complex RTS games
[45]. In fact, given the high variety of game features, such as configuration
options, game modes, units, maps, etc.; along with the existence of several frame-
works and tools related with it; researchers have exploited the game for a great
variety of topics: micro and macro management of units, temporal and spatial
reasoning, battle planning, combat results prediction, optimal paths and dealing
with problems such as the one that is the topic of this paper, uncertainty in the
evaluation of the fitness, among others.

The individuals described in this subsection have been generated using Star-
CraftGP [22], a Genetic Programming (GP) [32] framework that automatically
generates the source code of high-level strategies of bots. In this case, Linear
GP [55] was used to generate the building order of the units to create, and also
the rules to activate during the game: for example, when to attack the enemy or
when to collect more materials. Each individual is a source code file in C++ that
is compiled during the evaluation. A population of 32 individuals was evolved
during 30 generations. The rest of the parameters used are presented in [22].

As in some of the games described above, the fitness of one individual is
computed pitting the bot against different enemies, each one following a different
strategy. More specifically, in this case every individual faces three divisions of
enemies (considered as weak, medium and strong rivals), each division containing
four different enemies.

The original fitness function assigned a higher weight to a victory against
the stronger enemies, i.e. it used a lexicographical fitness, so one victory in a
higher tier was considered better than more victories in the immediately lower
one. For example, one individual that wins 1 time against one enemy of every
tier was considered better than one individual that beats all individuals from
the medium and weak tier, but none in the strong one.

Conversely, to ease comparisons among noise in the present study, we have
calculated an aggregated fitness function that still respects this decision, that is,
prioritizing victories of harder divisions, by giving different weights to each one.
The following equation describes the fitness function:

FStarCraft = 21 × A + 5 × B + C + R (1)

where A is the number of victories against enemies in the strongest tier, B is
the number of victories against the middle tier, and C is the number of victories
against the weakest enemies. Thus, for example, one victory in the middle tier
is worth more points (5 points) than 4 victories in the weak tier (4 points).
Also, a coefficient of the aggregated score at the end of all the games, R has
been added, in order to deal with ties in number of victories. This is in fact an
internal score computed by the game, that takes into account all the aspects of
a match, ranging from the number of kills to the type and quality of units built.

Moreover, the evaluation process is quite time-consuming, so in order to save
execution time, at least one enemy of the weak tiers must be defeated before
allowing the individual to proceed to fight the next one. To this end, if a bot

The Uncertainty Quandary 49

does not win against weaker rivals, we consider it cannot defeat the stronger
ones: so the evaluation terminates at that point, with the current score.

3.5 Artificial Neural Networks Optimization Using an EA: GProp

The design of an Artificial Neural Network (ANN) [28] requires to set both, the
structure of its set of hidden layers, along with the parameters it uses, weights
and learning constants).

G-Prop (“genetic backpropagation”) [5–7] aims to solve the problem of find-
ing appropriate initial weights, number of neurons in the hidden layer and learn-
ing parameters for a Multilayer Perceptron (MLP) with a single hidden layer. It
does so by combining an EA and the QuickProp method [14] for training MLPs.
The EA selects the MLP’s initial weights, picks its learning rate, and changes
the number of neurons in the hidden layer through the application of specific
genetic operators. Since this representation of the neural network is then trained
using QuickProp, which is an stochastic gradient-descent algorithm, the results
will have a certain variability, resulting in the uncertainty in the fitness that will
be studied here. In this problem, fitness is the classification accuracy or success
rate; this fitness is obtained after training the MLP, which sets its weights, and
then testing it on a test set. After classification, weights will be different, so the
test result will also be, making fitness noisy and thus amenable to analysis in
the paper.

4 Experiments and Results

With the case studies presented above, data on fitness values is collected by
selecting a few random individuals in every generation of the considered EAs,
and measuring their fitness 100 times, intentionally using much more repetitions
than a normal optimization method would. Thus, every individual is represented
by a random variable sampled 100 times. According to the usual assumptions,
this random variable should follow a normal distribution, with a certain σ and
centered on the true fitness value. In order to verify this hypothesis, we plotted
the distribution’s skewness, that is, its asymmetry, and its kurtosis, which is a
parameter related to its shape [25] A symmetrical distribution, like the normal
distribution, has skewness and kurtosis equal to 0; asymmetric distributions,
such as the Gamma that we had found in previous papers [38], have non-zero
skewness and kurtosis, related to their θ and κ parameters, for instance. These
parameters are what defines the statistical distribution; κ is the shape parameter
and skewness is 2/

√
κ, which means that it is only 0, corresponding to normality,

if κ grows to infinity. Kurtosis is 6/κ, implying the same. A random variable can
have skewness and kurtosis fixed at any value: thus, we present these values in
the following figures, with skewness plotted as the x axis against kurtosis on the
y axis.

Figure 1 represents skewness and kurtosis in the MADE case study, for which
we took measures of a variable amount of individuals every generation, from

50 J.J. Merelo et al.

Fig. 1. Skewness and kurtosis for fitness in several generations of the MADE problem.
Different colors represent different generations. (Color figure online)

100 in generation 64 to around 50 in the latest generation. The number was
variable because some of them stopped before finishing. Anyway, the number of
measurements is enough for the statistical analysis. You can already see that the
distribution is not normal, since almost no individual has a kurtosis and skewness
equal to zero; some of them, however, are close. This will be the case for the rest
of the experiments, too; in some very limited cases fitness distribution will be
almost normal in the first or the last generations, but that will never be the case
for all individuals or even a significant fraction, nullifying the hypothesis of fitness
behaving like a crisp fitness with gaussian added noise. As generations proceed,
a curious convergence towards the normal distribution is observed; in the first
generations, values of skewness and kurtosis are quite high and correspond to an
arbitrary distribution (Beta or uniform): however, as the simulation proceeds, the
two values approach zero. It must be noted, however, that they do not converge

The Uncertainty Quandary 51

exactly to 0, meaning that, even if uncertainty in this case can be approached
by a normal distribution, such an approximation would only be correct for the
latest generations of the simulation. In general, individual fitness in MADE will
follow an arbitrary distribution with a general shape and asymmetry.

The shape of the graph for the Planet Wars case study, shown in Fig. 2 for
two different generations, is different but shares some similarities. The dispersion
also decreases as evolution proceeds, with the shape of the distribution becom-
ing closer to the normal distribution in generation 50. Nevertheless, the initial
kurtosis is quite high and values above 2 and below 0 are found even later in the
evolution. Noise is, thus, noisy and does not conform to a single shape, even less
a normal one; this implies that using a single statistical model to represent noise
will never be too close to reality, since the shapes of the statistical distribution
are, in general, quite different from the normal distribution and then different

Fig. 2. Skewness and kurtosis for fitness in several generations of the Planet Wars
problem. Different colors represent different generations. (Color figure online)

52 J.J. Merelo et al.

among themselves even for a single problem, that is, the shape of the statistical
distribution of fitness values in uncertain environments is, itself, uncertain or
noisy.

The graph for the third case study, ghosts in Ms. Pac-Man, is different in
several aspects, and is shown in Fig. 3. First we have to take into account, as
explained in Subsect. 3.3, that differently from the previous cases, the fitness
for a ghost team is the maximum, not an average of several values. This causes
a curious behavior of fitness: in the first generation, several individuals have
crisp values; however, this is less and less true, becoming more “random” as
generations proceed, that is, the set of values the fitness has got begins to have
many different values while in the first generations it had one or a few. To put it
in another words, in the first generation the set of fitness measures could look like
{x x x y x x x}. As evolution proceeds, the measures in the set tend to be all

Fig. 3. Skewness and kurtosis for fitness in several generations of the Ms. Pac-Man
problem. Different colors represent different generations. (Color figure online)

The Uncertainty Quandary 53

different That is why the behavior shown in the graph is completely different:
distributions get increasingly asymmetric and their shape grows further away
from a normal distribution and closer to a Beta distribution. Even if the trend
is different from the other two problems, the overall aspect is the same: there
is no single distribution that is able to describe the shape of fitness with an
uncertainty component, for all considered generations.

Fig. 4. Skewness and kurtosis for fitness in several generations of the StarCraft game.
Different colors (or shades of gray) represent different generations. (Color figure online)

The last game we have evaluated is StarCraft, with kurtosis and skewness
shown in Fig. 4. In this case evaluation takes a very long time, that is why only a
few samples were available. That might be the reason it is not quite clear if there
is a trend. The latest generation seems to be a bit closer to normal distribution,
but intermediate generations tend to have a high value. However, even if values
seem to be closer in generation 30, they are in some cases positive and in other

54 J.J. Merelo et al.

Fig. 5. Skewness and kurtosis for fitness in several generations of the MLP training
problem. Different colors (or shades of gray) represent different generations. (Color
figure online)

negative, indicating a distribution that is flatter than the Gaussian and with the
bump more loaded to the right of the center. Once again, this proves that using
non-parametric methods like Wilcoxon are a better approach than using central
measures such as the average.

For the sake of completeness, we have also included in this paper a problem
that comes from a different area: genetic optimization of neural networks. The
skewness/kurtosis graph is included in Fig. 5. Since the problem is completely
different, the distribution of the values is also completely different. For starters,
skewness tends to be negative, indicating distributions with a long tail to the
right; that means that, even if the value is centered along a particular value, there
are many values that are larger that this central value. Once again, resampling
cannot change the fact that the average will not be an accurate description

The Uncertainty Quandary 55

for the whole data. Besides, values tend to get closer to 0 although in every
generation there are values quite far away from them; e.g. in the last generation,
a neural net whose fitness distribution has kurtosis of 15, indicating a very sharp
bump, is present, but it also has a low kurtosis of almost −4 indicating a long
tail to the right. The conclusion in this case is similar in the sense that values
tend to change while they keep away from a single kurtosis and skewness; even
having less values than the latter if both of them are set to 0.

5 Conclusions

In this paper, we set out to study the statistical distribution that best fits the
stochastic fitness values of single individuals in several case studies in the area
of games; we have also included a genetically optimized neural network for the
sake of comparison. Stochastic optimization evolutionary algorithms applied to
MADE, Planet Wars, Ms. Pac-Man, and StarCraft exploit different ways to com-
pute the fitness values, but for all of them the fitness value is not a fixed number
but a random variable. This is also the case in G-Prop, the genetically opti-
mized multilayer perceptron. We prove the hypothesis that not only noise does
not follow the normal, or Gaussian, distribution, or other centrally-distributed
models such as Cauchy, which have been used repeatedly in literature for bench-
marking selection methods in the presence of noise; but also it does not follow
a single, particular distribution even when considering a single case study or a
single generation.

This conclusion follows from our study of the parameters of the statistical
variables that describe fitness. The best way to describe them is using two para-
meters: kurtosis and skewness. These two parameters have been computed and
plotted for candidate solutions extracted from each of the case studies, proving
that not only distributions are asymmetrical and not bell-shaped, but that their
shape changes within a single problem and in different stages of the computa-
tion; this is in accordance with the conclusions reached by Rattray and Shapiro
in [53] for evolution of finite populations in the presence of noise. In some cases,
like MADE, it seems clear that due to the fact that averages are used as a rep-
resentative for selection, individuals whose fitness is closer to a central shape
are oversampled and thus selected preferably, with almost-central individuals
in the latest stages being a consequence of this fact. In other cases, when fit-
ness is computed in a different way or selection takes another form, the effect is
exactly the opposite. Using averages or other central measures like the median
does not seem to be supported by the results of this paper since in many cases
and almost always in the early stages of the evolution, fitness, being a random
variable, does not pass a centrality test and it might not even possess a reliable,
that is, statistically significant, average. A better way of comparing any fitness
with uncertainty would be, as proposed by the authors, using non-parametric
tests such as the Wilcoxon test that impose a partial order on the individuals
[38]. This partial order can be used, in several different ways, for selection.

The fact that there is no single model representing the distribution of fitness
also implies that it is an error to use centrally distributed random variables added

56 J.J. Merelo et al.

to an actual fitness to test operators and algorithms that operate in uncertainty.
Either real values should be used, such as the ones proposed above, or a distrib-
ution with varying shape and symmetry such as Beta. However, in this case we
should take into account that “true” or “crisp” fitness does not really exist, so
any modelization of uncertain values that uses noise added to a fitness value is,
in the more general case, wrong, although it might still return correct results in
some cases. If the fitness evaluation is expensive and tests have to be performed
for new selection operators, the best way to model uncertainty would be to use
different statistical models applied to every individual, with different skewness
and kurtosis. However, this would be only a first-order approximation and it
might still favor methods that use averages. Following the model proposed by
Jin [30] for surrogate models, assuming normality in fitness will make selectable
some individuals that should not be. Assessing this error and its impact on selec-
tion, and comparing how different methods, such as the one based in statistical
techniques and proposed previously, reduce that error is also left as future work.

What remains to be done is to effectively apply Wilcoxon-based compar-
isons to the case studies above. Since real-world case studies are computation-
ally expensive to evaluate, we plan to create a benchmark for problems with
uncertainty which reflects in the best possible way how fitness is organized in a
wide array of problems. In order to attain this goal, we will examine as many
uncertain problems as possible, in the attempt to deduce a model of noise what
as general as possible.

Acknowledgements. This work has been supported in part by projects TIN2014-
56494-C4-3-P (Spanish Ministry of Economy and Competitiveness), SPIP2014-01437
(Dirección General de Tráfico), PRY142/14 (Fundación Pública Andaluza Centro de
Estudios Andaluces en la IX Convocatoria de Proyectos de Investigación), PROY-
PP2015-06 (Plan Propio 2015 UGR), and project CEI2015-MP-V17 of the Micropro-
jects program 2015 from CEI BioTIC Granada. We would like also to thank the anony-
mous reviewers for this paper, for suggesting new readings and avenues of research.

References

1. Aizawa, A.N., Wah, B.W.: Scheduling of genetic algorithms in a noisy environment.
Evol. Comput. 2(2), 97–122 (1994)

2. Arnold, D.: Evolution strategies in noisy environments-a survey of existing work.
In: Kallel, L., Naudts, B., Rogers, A. (eds.) Theoretical Aspects of Evolutionary
Computing. Natural Computing Series, pp. 239–250. Springer, Heidelberg (2001).
doi:10.1007/978-3-662-04448-3 11

3. Bhattacharya, M., Islam, R., Mahmood, A.: Uncertainty and evolutionary opti-
mization: a novel approach. In: 2014 IEEE 9th Conference on Industrial Electronics
and Applications (ICIEA), pp. 988–993, June 2014

4. Castillo, P.A., González, J., Merelo-Guervós, J.J., Prieto, A., Rivas, V., Romero,
G.: G-Prop-III: global optimization of multilayer perceptrons using an evolution-
ary algorithm. In: GECCO 1999: Proceedings of the Genetic and Evolutionary
Computation Conference, p. 942 (1999)

http://dx.doi.org/10.1007/978-3-662-04448-3_11

The Uncertainty Quandary 57

5. Castillo, P.A., Merelo-Guervós, J.J., Prieto, A., Rivas, V., Romero, G.: G-Prop:
global optimization of multilayer perceptrons using GAs. Neurocomputing 35,
149–163 (2000). http://dx.doi.org/10.1016/S0925-2312(00)00302–7, available from
http://geneura.ugr.es/pub/papers/castilloNC.ps.gz

6. Castillo, P., Carpio, J., Merelo-Guervós, J.J., Rivas, V., Romero, G., Prieto,
A.: Evolving multilayer perceptrons. Neural Process. Lett. 12, 115–127 (2000).
http://dx.doi.org/10.1023/A:1009684907680

7. Castillo, P., Merelo-Guervós, J.J., Prieto, A., Rojas, I., Romero, G.: Statistical
analysis of the parameters of a neuro-genetic algorithm. IEEE Trans. Neural Netw.
13(6), 1374–1394 (2002). http://ieeexplore.ieee.org/iel5/72/22620/01058074.pdf

8. Cauwet, M.L., Liu, J., Teytaud, O., et al.: Algorithm portfolios for noisy optimiza-
tion: compare solvers early. In: Learning and Intelligent Optimization Conference
(2014)

9. Chiaberge, M., Merelo, J.J., Reyneri, L.M., Prieto, A., Zocca, L.: A comparison of
neural networks, linear controllers, genetic algorithms and simulated annealing for
real time control. In: De Facto, B. (ed.)Proceedings of the European Symposium on
Artificial Neural Networks, pp. 205–210 (1994). Index available from http://www.
dice.ucl.ac.be/esann/proceedings/esann1994/content.htm, available from http://
polimage.polito.it/∼marcello/articoli/esann.94.jj.pdf, and a scanned version from
http://www.dice.ucl.ac.be/Proceedings/esann/esannpdf/es1994-533-S.pdf

10. Costa, A., Vargas, P., Tinós, R.: Using explicit averaging fitness for studying the
behaviour of rats in a maze. In: Advances in Artificial Life, ECAL, vol. 12, pp.
940–946 (2013)

11. Deb, K.: Multi-objective Optimization Using Evolutionary Algorithms, vol. 16.
John Wiley & Sons, New York (2001)

12. Di Mario, E., Navarro, I., Martinoli, A.: A distributed noise-resistant parti-
cle swarm optimization algorithm for high-dimensional multi-robot learning. In:
Robotics and Automation (ICRA), pp. 5970–5976, May 2015

13. Esteban-Diaz, J., Handl, J.: Implicit and explicit averaging strategies for
simulation-based optimization of a real-world production planning problem. Infor-
matica (03505596) 39(2) (2015)

14. Fahlman, S.: Faster-learning variations on back-propagation: an empirical study.
In: Proceedings of the 1988 Connectionist Models Summer School. Morgan Kauf-
mann (1988)

15. Fernández-Ares, A., Mora, A.M., Garćıa-Arenas, M., Guervós, J.J.M., Garćıa-
Sánchez, P., Castillo, P.A.: Co-evolutionary optimization of autonomous agents in
a real-time strategy game. In: Esparcia-Alcázar, A.I., Mora, A.M. (eds.) EvoAp-
plications 2014. LNCS, vol. 8602, pp. 374–385. Springer, Heidelberg (2014). doi:10.
1007/978-3-662-45523-4 31

16. Fernández-Ares, A., Mora, A.M., Guervós, J.J.M., Garćıa-Sánchez, P.,
Fernandes, C.: Optimizing player behavior in a real-time strategy game using
evolutionary algorithms. In: IEEE Congress on Evolutionary Computation, pp.
2017–2024. IEEE (2011)

17. Fernández-Ares, A., Mora, A.M., Merelo, J.J., Garćıa-Sánchez, P., Fernandes,
C.M.: Optimizing strategy parameters in a game bot. In: Cabestany, J., Rojas,
I., Joya, G. (eds.) IWANN 2011. LNCS, vol. 6692, pp. 325–332. Springer,
Heidelberg (2011). doi:10.1007/978-3-642-21498-1 41

18. Flores, D.: Rank based evolution of real parameters on noisy fitness functions:
evolving a robot neurocontroller. In: 10th Mexican International Conference on
Artificial Intelligence (MICAI), pp. 72–76. IEEE (2011)

http://dx.doi.org/10.1016/S0925-2312(00)00302--7
http://geneura.ugr.es/pub/papers/castilloNC.ps.gz
http://dx.doi.org/10.1023/A:1009684907680
http://ieeexplore.ieee.org/iel5/72/22620/01058074.pdf
http://www.dice.ucl.ac.be/esann/proceedings/esann1994/content.htm
http://www.dice.ucl.ac.be/esann/proceedings/esann1994/content.htm
http://polimage.polito.it/~marcello/articoli/esann.94.jj.pdf
http://polimage.polito.it/~marcello/articoli/esann.94.jj.pdf
http://www.dice.ucl.ac.be/Proceedings/esann/esannpdf/es1994-533-S.pdf
http://dx.doi.org/10.1007/978-3-662-45523-4_31
http://dx.doi.org/10.1007/978-3-662-45523-4_31
http://dx.doi.org/10.1007/978-3-642-21498-1_41

58 J.J. Merelo et al.

19. Fogel, L.J., Owens, A.J., Walsh, M.J.: Artificial Intelligence Through Simulated
Evolution. John Wiley, New York (1966)

20. Friedrich, T., Kötzing, T., Krejca, M., Sutton, A.M.: The Benefit of Sex in Noisy
Evolutionary Search. ArXiv e-prints, February 2015

21. Garćıa-Ortega, R.H., Garćıa-Sánchez, P., Mora, A.M., Merelo, J.: My life as a sim:
evolving unique and engaging life stories using virtual worlds. In: ALIFE 2014:
The Fourteenth Conference on the Synthesis and Simulation of Living Systems,
vol. 14, pp. 580–587 (2014)

22. Garćıa-Sánchez, P., Tonda, A.P., Mora, A.M., Squillero, G., Guervós, J.J.M.:
Towards automatic starcraft strategy generation using genetic programming. In:
2015 IEEE Conference on Computational Intelligence and Games, CIG 2015,
Tainan, Taiwan, 31 August – 2 September 2015, pp. 284–291. IEEE (2015)

23. Goh, C.K., Tan, K.C.: An investigation on noisy environments in evolutionary
multiobjective optimization. IEEE Trans. Evol. Comput. 11(3), 354–381 (2007)

24. Goldberg, D.E.: Genetic Algorithms in Search, Optimization and Machine Learn-
ing. Addison Wesley, Reading (1989)

25. Groeneveld, R.A., Meeden, G.: Measuring skewness and kurtosis. The Statistician,
391–399 (1984)

26. Hansen, N., Finck, S., Ros, R., Auger, A.: Real-parameter black-box optimization
benchmarking 2009: noisy functions definitions (2009)

27. Hansen, N., Niederberger, A.S., Guzzella, L., Koumoutsakos, P.: A method for
handling uncertainty in evolutionary optimization with an application to feedback
control of combustion. IEEE Trans. Evol. Comput. 13(1), 180–197 (2009)

28. Haykin, S.: Neural Networks: A Comprehensive Foundation, 2nd edn. Prentice Hall
PTR, Upper Saddle River (1998)

29. Jin, Y., Branke, J.: Evolutionary optimization in uncertain environments - a survey.
IEEE Trans. Evol. Comput. 9(3), 303–317 (2005). Cited by (since 1996) 576

30. Jin, Y.: Surrogate-assisted evolutionary computation: recent advances and future
challenges. Swarm Evol. Comput. 1(2), 61–70 (2011)

31. Jun-hua, L., Ming, L.: An analysis on convergence and convergence rate esti-
mateof elitist genetic algorithms in noisy environments. Optik Int. J. Light
Electron Opt. 124(24), 6780–6785 (2013). http://www.sciencedirect.com/science/
article/pii/S0030402613007730

32. Koza, J.R.: Genetic Programming - on the Programming of Computers by Means
of Natural Selection. Complex Adaptive Systems. MIT Press, Cambridge (1993)

33. Jiménez Laredo, J.L., Dorronsoro, B., Fernandes, C., Merelo, J.J., Bouvry, P.:
Oversized populations and cooperative selection: dealing with massive resources in
parallel infrastructures. In: Nicosia, G., Pardalos, P. (eds.) LION 2013. LNCS, vol.
7997, pp. 444–449. Springer, Heidelberg (2013). doi:10.1007/978-3-642-44973-4 47

34. Liberatore, F., Mora, A., Castillo, P., Merelo, J.: Comparing heterogeneous and
homogeneous flocking strategies for the ghost team in the game of Ms. Pac-Man.
IEEE Trans. Comput. Intell. AI Games PP(99), 1 (2015)

35. Liu, J., St-Pierre, D.L., Teytaud, O.: A mathematically derived number ofresam-
plings for noisy optimization. In: Proceedings of the 2014 Conference Companion
on Genetic and Evolutionary Computation Companion, GECCO Comp 2014, pp.
61–62. ACM, New York (2014). http://doi.acm.org/10.1145/2598394.2598458

36. Lucas, S.M.: Ms Pac-Man versus ghost-team competition. In: 2009 IEEE Sympo-
sium on Computational Intelligence and Games, CIG 2009, p. 1, September 2009

http://www.sciencedirect.com/science/article/pii/S0030402613007730
http://www.sciencedirect.com/science/article/pii/S0030402613007730
http://dx.doi.org/10.1007/978-3-642-44973-4_47
http://doi.acm.org/10.1145/2598394.2598458

The Uncertainty Quandary 59

37. Luke, S., Panait, L., Balan, G., Paus, S., Skolicki, Z., Bassett, J., Hubley, R.,
Chircop, A.: ECJ: a java-based evolutionary computation research system (2006).
Downloadable versions and documentation can be found at the following url:
http://cs.gmu.edu/eclab/projects/ecj

38. Merelo, J.J., Castillo, P.A., Mora, A., Fernández-Ares, A., Esparcia-Alcázar, A.I.,
Cotta, C., Rico, N.: Studying and tackling noisy fitness in evolutionary design of
game characters. In: Rosa, A., Merelo, J.J., Filipe, J. (eds.) ECTA 2014 - Proceed-
ings of the International Conference on Evolutionary Computation Theory and
Applications, pp. 76–85 (2014)

39. Merelo, J.J., Chelly, Z., Mora, A., Fernández-Ares, A., Esparcia-Alcázar, A.I.,
Cotta, C., Cuevas, P., Rico, N.: A statistical approach to dealing with noisy fitness
in evolutionary algorithms. In: Merelo, J.J., Rosa, A., Cadenas, J.M., Dourado, A.,
Madani, K., Filipe, J. (eds.) Computational Intelligence. SCI, vol. 620, pp. 79–95.
Springer, Heidelberg (2016). doi:10.1007/978-3-319-26393-9 6

40. Merelo-Guervós, J.J., Prieto, A., Morán, F.: Optimization of classifiers using
genetic algorithms, pp. 91–108. MIT Press (2001). Chap. 4, iSBN:0262162016,
draft available from http://geneura.ugr.es/pub/papers/g-lvq-book.ps.gz

41. Miller, B.L., Goldberg, D.E.: Genetic algorithms, selection schemes, and the vary-
ing effects of noise. Evol. Comput. 4(2), 113–131 (1996)

42. Mora, A.M., Fernández-Ares, A., Merelo-Guervós, J.J., Garćıa-Sánchez, P., Fer-
nandes, C.M.: Effect of noisy fitness in real-time strategy games player behaviour
optimisation using evolutionary algorithms. J. Comput. Sci. Technol. 27(5), 1007–
1023 (2012)

43. Mora, A.M., Montoya, R., Merelo, J.J., Sánchez, P.G., Castillo, P.Á., Laredo,
J.L.J., Mart́ınez, A.I., Espacia, A.: Evolving bot AI in unrealTM. In: Chio, C.,
Cagnoni, S., Cotta, C., Ebner, M., Ekárt, A., Esparcia-Alcazar, A.I., Goh, C.-K.,
Merelo, J.J., Neri, F., Preuß, M., Togelius, J., Yannakakis, G.N. (eds.) EvoAppli-
cations 2010. LNCS, vol. 6024, pp. 171–180. Springer, Heidelberg (2010). doi:10.
1007/978-3-642-12239-2 18

44. Ong, Y.S., Zhou, Z., Lim, D.: Curse and blessing of uncertainty in evolutionary
algorithm using approximation. In: 2006 IEEE Congress on Evolutionary Compu-
tation, CEC 2006, pp. 2928–2935. IEEE (2006)

45. Ontañón, S., Synnaeve, G., Uriarte, A., Richoux, F., Churchill, D., Preuss, M.: A
survey of real-time strategy game AI research and competition in starcraft. IEEE
Trans. Comput. Intellig. AI Games 5(4), 293–311 (2013)

46. Paredis, J.: Coevolutionary computation. Artif. Life 2(4), 355–375 (1995)
47. Parras-Gutierrez, E., Arenas, M.G., Rivas, V.M., del Jesus, M.J.: Coevolutionof

lags and RBFNs for time series forecasting: L-Co-R algorithm. Soft Comput. 16(6),
919–942 (2012). http://dx.doi.org/10.1007/s00500-011-0784-2

48. Peñalver, J.G., Merelo, J.J.: Optimizing web page layout using an annealed
genetic algorithm as client-side script. In: Eiben, A.E., Bäck, T., Schoenauer,
M., Schwefel, H.-P. (eds.) PPSN 1998. LNCS, vol. 1498, pp. 1018–1027. Springer,
Heidelberg (1998). doi:10.1007/BFb0056943. http://www.springerlink.com/link.
asp?id=2gqqar9cv3et5nlg

49. Qian, C., Yu, Y., Jin, Y., Zhou, Z.-H.: On the effectiveness of sampling for evo-
lutionary optimization in noisy environments. In: Bartz-Beielstein, T., Branke, J.,
Filipič, B., Smith, J. (eds.) PPSN 2014. LNCS, vol. 8672, pp. 302–311. Springer,
Heidelberg (2014). doi:10.1007/978-3-319-10762-2 30

50. Qian, C., Yu, Y., Zhou, Z.H.: Analyzing evolutionary optimization in noisy envi-
ronments. CoRR abs/1311.4987 (2013)

http://cs.gmu.edu/eclab/projects/ecj
http://dx.doi.org/10.1007/978-3-319-26393-9_6
http://geneura.ugr.es/pub/papers/g-lvq-book.ps.gz
http://dx.doi.org/10.1007/978-3-642-12239-2_18
http://dx.doi.org/10.1007/978-3-642-12239-2_18
http://dx.doi.org/10.1007/s00500-011-0784-2
http://dx.doi.org/10.1007/BFb0056943
http://www.springerlink.com/link.asp?id=2gqqar9cv3et5nlg
http://www.springerlink.com/link.asp?id=2gqqar9cv3et5nlg
http://dx.doi.org/10.1007/978-3-319-10762-2_30

60 J.J. Merelo et al.

51. Rada-Vilela, J., Johnston, M., Zhang, M.: Population statistics for parti-
cle swarm optimization: resampling methods in noisy optimization problems.
Swarm Evol. Comput. 17, 37–59 (2014). http://www.sciencedirect.com/science/
article/pii/S2210650214000261

52. Rakshit, P., Konar, A., Nagar, A.: Artificial bee colony induced multi-objective
optimization in presence of noise. In: 2014 IEEE Congress on Evolutionary Com-
putation (CEC), pp. 3176–3183, July 2014

53. Rattray, M., Shapiro, J.: Noisy fitness evaluation in genetic algorithms and the
dynamics of learning, pp. 117–139 (1998)

54. Rudolph, G.: A partial order approach to noisy fitness functions. In: Proceedings
of the IEEE Conference on Evolutionary Computation, ICEC, vol. 1, pp. 318–325
(2001)

55. Squillero, G.: MicroGP-an evolutionary assembly program generator. Genet.
Program Evolvable Mach. 6(3), 247–263 (2005). http://dx.doi.org/10.1007
/s10710-005-2985-x

56. Stroud, P.D.: Kalman-extended genetic algorithm for search in nonstationary envi-
ronments with noisy fitness evaluations. IEEE Trans. Evol. Comput. 5(1), 66–77
(2001)

57. Wilcoxon, F.: Individual comparisons by ranking methods. Biometrics Bull. 1(6),
80–83 (1945)

http://www.sciencedirect.com/science/article/pii/S2210650214000261
http://www.sciencedirect.com/science/article/pii/S2210650214000261
http://dx.doi.org/10.1007/s10710-005-2985-x
http://dx.doi.org/10.1007/s10710-005-2985-x

Hybrid Single Node Genetic Programming
for Symbolic Regression

Jǐŕı Kubaĺık1(B), Eduard Alibekov1,2, Jan Žegklitz1,2, and Robert Babuška1,3

1 Czech Institute of Informatics, Robotics, and Cybernetics,
CTU in Prague, Prague, Czech Republic

{kubalik,babuska}@ciirc.cvut.cz
2 Department of Cybernetics, Faculty of Electrical Engineering,

CTU in Prague, Prague, Czech Republic
3 Delft Center for Systems and Control,

Delft University of Technology, Delft, The Netherlands

Abstract. This paper presents a first step of our research on designing
an effective and efficient GP-based method for symbolic regression. First,
we propose three extensions of the standard Single Node GP, namely (1)
a selection strategy for choosing nodes to be mutated based on depth and
performance of the nodes, (2) operators for placing a compact version
of the best-performing graph to the beginning and to the end of the
population, respectively, and (3) a local search strategy with multiple
mutations applied in each iteration. All the proposed modifications have
been experimentally evaluated on five symbolic regression benchmarks
and compared with standard GP and SNGP. The achieved results are
promising showing the potential of the proposed modifications to improve
the performance of the SNGP algorithm. We then propose two variants of
hybrid SNGP utilizing a linear regression technique, LASSO, to improve
its performance. The proposed algorithms have been compared to the
state-of-the-art symbolic regression methods that also make use of the
linear regression techniques on four real-world benchmarks. The results
show the hybrid SNGP algorithms are at least competitive with or better
than the compared methods.

Keywords: Genetic programming · Single node genetic programming ·
Symbolic regression

1 Introduction

This paper presents a first step of our research on genetic programming (GP) for
the symbolic regression problem. The ultimate goal of our project is to design an
effective and efficient GP-based method for solving dynamic symbolic regression
problems where the target function evolves in time. Symbolic regression (SR) is
a type of regression analysis that searches the space of mathematical expressions
to find the model that best fits a given dataset, both in terms of accuracy and
simplicity1.
1 https://en.wikipedia.org/wiki/Symbolic regression.

c© Springer-Verlag Berlin Heidelberg 2016
N.T. Nguyen et al. (Eds.): TCCI XXIV, LNCS 9770, pp. 61–82, 2016.
DOI: 10.1007/978-3-662-53525-7 4

https://en.wikipedia.org/wiki/Symbolic_regression

62 J. Kubaĺık et al.

Genetic programming belongs to effective and efficient methods for solving the
SR problem. Besides the standard Koza’s tree-based GP [12], many other vari-
ants have been proposed. They include, for instance, Grammatical Evolution (GE)
[20] which evolves programs whose syntax is defined by a user-specified gram-
mar (usually a grammar in Backus-Naur form). Gene Expression Programming
(GEP) [4] is another GP variant successful in solving the SR problems. Similarly
to GE it evolves linear chromosomes that are expressed as tree structures through
a genotype-phenotype mapping. A graph-based Cartesian GP (CGP) [18], is a GP
technique that uses a very simple integer based genetic representation of a program
in the form of a directed graph. In its classic form, CGP uses a variant of a sim-
ple algorithm called (1 + λ)-Evolution Strategy with a point mutation variation
operator. When searching the space of candidate solutions, CGP makes use of so
called neutral mutations, meaning that a move to the new state is accepted if it
does not worsen the quality of the current solution. This allows an introduction of
new pieces of genetic code that can be plugged into the functional code later on
and allows for traversing plateaus of the fitness landscape.

A Single Node GP (SNGP) [9,10] is a rather new graph-based GP system
that evolves a population of individuals, each consisting of a single program node.
Similarly to CGP, the evolution is carried out via a hill-climbing mechanism
using a single reversible mutation operator. The first experiments with SNGP
were very promising as they showed that SNGP significantly outperforms the
standard GP on various problems including the SR problem. In this work we take
the standard SNGP as the baseline approach and propose several modifications
to further improve its performance.

The goals of this work are twofold. The first goal is to verify performance
of the vanilla SNGP compared to the standard GP on various SR benchmarks
and to investigate the impact of the following three design aspects of the SNGP
algorithm:

– a strategy to select the nodes to be mutated,
– a strategy according to which the nodes of the best-performing expression are

treated in the population,
– and a type of the search strategy used to guide the optimization process.

The second goal is to propose a hybrid variant of SNGP which incorporates
the LASSO regression technique for creating linear-in-parameters nonlinear mod-
els. We compare its performance with other state-of-the-art symbolic regression
methods which also make use of linear regression techniques.

The paper is organized as follows. Section 2 describes the SNGP algorithm.
In Sect. 3, three modifications of the SNGP algorithm are proposed. Experimen-
tal evaluation of the modified SNGP and its comparison to the standard SNGP
and standard Koza’s GP is presented in Sect. 4. Section 5 describes two variants
of the SNGP utilizing the linear regression technique, LASSO, to improve its
performance. The two versions of SNGP with LASSO are compared to other
symbolic regression methods making use of the linear regression techniques in
Sect. 6. Finally, Sect. 7 concludes the paper and proposes directions for the fur-
ther research on this topic.

Hybrid Single Node Genetic Programming for Symbolic Regression 63

2 Single Node Genetic Programming

2.1 Representation

The Single Node Genetic Programming is a GP system that evolves a population
of individuals, each consisting of a single program node. The node can be either
terminal, i.e. a constant or a variable node, or a function from a set of functions
defined for the problem at hand. Importantly, individuals are not isolated in the
population, they are interlinked in a graph structure similar to that of CGP,
with population members acting as operands of other members [9].

Formally, a SNGP population is a set of N individuals M =
{m0,m1, . . . ,mN−1}, with each individual mi being a single node represented
by the tuple mi = 〈ui, fi, Succi, P redi, Oi〉, where

– ui ∈ T ∪ F is either an element chosen from a function set F or a terminal
set T defined for the problem,

– fi is the fitness of the individual,
– Succi is a set of successors of this node, i.e. the nodes whose output serves as

the input to the node,
– Predi is a set of predecessors of this node, i.e. the nodes that use this individual

as an operand,
– Oi is a vector of outputs produced by this node.

Typically, the population is partitioned so that the first Nterm nodes, at posi-
tions 0 to Nterm −1, are terminals (variables and constants in case of the SR prob-
lem), followed by function nodes. Importantly, a function node at position i can
use as its successor (i.e. the operand) any node that is positioned lower down in
the population relative to the node i. This means that for each s ∈ Succi we have
0 ≤ s < i [9]. Similarly, predecessors of individual i must occupy higher positions
in the population, i.e. for each p ∈ Predi we have i < p < N . Note that each
function node is in fact a root of a direct acyclic graph that can be constructed by
recursively traversing through successors until the leaf terminal nodes.

2.2 Evolutionary Model

In [9], a single evolutionary operator called successor mutate (smut) has been
proposed. It picks one individual of the population at random and then one of its
successors is replaced by a reference to another individual of the population mak-
ing sure that the constraint imposed on the successors is satisfied. Predecessor
lists of all affected individuals are updated accordingly. Moreover, all individuals
affected by this action must be reevaluated as well. For more details refer to [9].

The evolution is carried out via a hill-climbing mechanism using a smut
operator and an acceptance rule, which can have various forms. In [9], it was
based on fitness measurements across the whole population, rather than on sin-
gle individuals. This means that once the population has been changed by a
single application of the smut operator and all affected individuals have been
re-evaluated, the new population is accepted if and only if the sum of the fitness

64 J. Kubaĺık et al.

values of all individuals in the population is no worse than the sum of fitness
values before the mutation. Otherwise, the modifications made by the mutation
are reversed. In [10] the acceptance rule is based only on the best fitness in the
population. The latter acceptance rule will be used in this work as well. The
reason for this choice is explained in Sect. 3.4.

3 Proposed Modifications

In this section, the following three modifications of the SNGP algorithm will be
proposed:

1. A selection strategy for choosing nodes to be mutated based on depth and
performance of nodes.

2. Operators for placing a compact version of the tree rooted in the best per-
forming node to the beginning and to the end of the population, respectively.

3. A local search strategy with multiple mutations applied in each iteration.

In the following text, the term “best tree” is used to denote the tree rooted
in the best performing node.

3.1 Depthwise Selection Strategy

The first modification focuses on the strategy for selecting the nodes to be
mutated. In the standard SNGP, the node to be mutated is chosen at ran-
dom. This means that all function nodes have the same probability of selection
irrespectively of (1) how well they are performing and (2) how well the trees of
which they are a part are performing. This is not in line with the evolutionary
paradigm where the well fit individuals should have higher chance to take part
in the process of an evolution of the population.

One way to narrow this situation is to select nodes according to their fitness.
However, this would prefer just the root nodes of trees with high fitness while
neglecting the nodes at the deeper levels of such well-performing trees which
themselves have rather poor fitness. In fact, imposing high selection pressure on
the root nodes might be counter-productive in the end as the mutations applied
on the root nodes are less likely to bring an improvement than mutations applied
on the deeper structures of the trees.

We propose a selection strategy that takes into account the quality of the
mutated trees, so that better performing trees are preferred, as well as the depth
of the mutated nodes so that deeper nodes of the trees are preferred to the shallow
ones. The selection procedure has four steps:

1. A function node n is chosen at random.
2. A tree t with the best fitness out of all trees that use the node n is chosen.
3. All nodes of the tree t are collected in a set S. Each node is assigned a score

equal to its depth in the tree t.
4. One node is chosen from the set S using a binary tournament selection con-

sidering the score values in the higher the better manner.

Hybrid Single Node Genetic Programming for Symbolic Regression 65

3.2 Organization of the Population

The second modification aims at improving the exploration capabilities of the
SNGP algorithm. Two operators for placing a compact version of the best per-
forming graph to the beginning and to the end of the population, respectively,
are proposed.

Move left operator. Let us first describe the motivation for and the realization
of the operator that places the compact version of the best graph to the begin-
ning of the population. The motivation for this operator, denoted as moveLeft
operator, is that well-performing nodes (and the whole graph structure rooted
in this node) can represent a suitable building block for constructing even better
trees when used as a successor of other nodes in the population. Since the chance
of any node of being selected as a successor is higher if the node is more to the
left in the population, it might be beneficial to store the well-performing graphs
at lower positions in the population. Thus, the operator takes the best graph,
Gbest, and places it in a compact form to the very beginning of the population.
By the compact form of a graph G we mean a sequence of nodes representing the
whole G such that it contains only nodes involved in G. The moveLeft operator
works as follows:

1. Extract nodes of the graph Gbest rooted in the best-performing node and put
the nodes into a compact ordered list L.

2. Set all successor and predecessor links of nodes within L so that L represents
the same graph as the original graph Gbest.

3. Place L to the beginning of the population, i.e. the first node of L being at
the first function node position in the population.

4. Update the successor links of nodes of the original graph Gbest so that it
retains the same functionality as it had before the action.

It must be made sure that all nodes of the original Gbest have properly set
their successors. If for example some successor of a node of the original Gbest

gets modified (i.e. the successor falls into the portion of the population newly
occupied by the compact form of the Gbest), then the successor reference
is updated accordingly. In Fig. 1, this is for example the case of the second
successor of the node at position 8, which originally pointed to the node
number 4 and after the moveLeft operation has been redirected to the node
number 2.

5. Update the predecessor lists of nodes in the compact form of Gbest) in order
to reestablish links to other nodes in the population that use the nodes as
successors.

In the example in Fig. 1 this is the case of the predecessor number 7 of
node number 4 and the predecessor number 9 of node number 5, respectively.

66 J. Kubaĺık et al.

Fig. 1. Illustration of the moveLeft operator. Function nodes involved in the original
and compact form of the best graph are shown in red. After the application of the
moveLeft operator the population contains two occurrences of the best graph, the one
represented by a sequence of nodes [0, 1, 2, 6, 8, 10] and the one represented by nodes
[0, 1, 2, 3, 4, 5]. (Color figure online)

Note that after the application of the moveLeft operator the population
contains two versions of the Gbest, the original one and the compact one, see the
example in Fig. 1.

Move right operator. Similarly, an operator that places the compact version
of the best graph Gbest to the end of the population is proposed. The motivation
for this operator, denoted as moveRight operator, is that a performance of some
well-performing graphs can more likely be improved by mutations applied to
the nodes on deeper levels of the graph than by mutations applied to the root
node or shallow nodes of the graph. In order to increase the number of possible
structural changes to the deeper nodes of the best graph the compact version
of the graph is placed to the end of the population. The working scenario for
the operator is similar to the one of the moveLeft operator, see Fig. 2. Note that
the application of the moveRight operator might result in the final population
that contains just a single occurrence of the Gbest. This might happen when the
nodes of the original Gbest fall into the area of its compact form.

3.3 Local Search Strategy

The last modification of the standard SNGP algorithm consists in allowing mul-
tiple mutation in a single iteration of the local search procedure. The idea behind
this modification is rather straightforward. During the course of the optimization
process the population might converge to the local optimum state where it is

Hybrid Single Node Genetic Programming for Symbolic Regression 67

Fig. 2. Illustration of the moveRight operator. Function nodes involved in the original
and compact version of the best graph are shown in red. In this example, the final
population contains just one occurrence of the best graph represented by a sequence
of nodes [0, 7, 8, 9, 10, 11]. (Color figure online)

hard to find further improvement by just one application of the smut operator.
With multiple mutations applied in each iteration, the probability of getting
stuck in such local optimal should be reduced. In this work, a parameter upToN
specifying the maximum number of mutation applications is used. Thus, if the
parameter is set for example to 5, a randomly chosen number from interval 〈1, 5〉
of mutations are applied to the population in each iteration.

3.4 Outline of Modified SNGP Algorithm

This section presents an outline of the generic SNGP algorithm with possible uti-
lization of the proposed modifications, see Fig. 3. In each generation, k mutations
are applied to nodes of the population, see steps 8–10. In case of the standard
SNGP just a single mutation is applied in each generation. After all k mutations
have been applied, the nodes affected by this action gets reevaluated. If the best
fitness of the modified population is not worse than the current best-so-far fit-
ness than the modified population becomes the current population for the next
generation, see step 15. Here, the fitness of each individual is calculated as the
sum of absolute errors (SAE) generated by the individual over all training
samples. In step 16, the operators moving the best tree to the beginning or to
the end of the population are applied to the population, if applicable. Then
the fitness evaluation counter is incremented and if there are still some fitness
evaluations left the next generation is carried out. Once the maximal number
of fitness evaluations is used the best node (and its tree) of the population is
returned.

68 J. Kubaĺık et al.

Fig. 3. Outline of the modified SNGP algorithm.

In this work, we use the acceptance criterion, step 13, working with the best
fitness in the population, not the average fitness of the population. The reason
is that when the moveLeft and moveRight operators are used, they might
significantly change the average fitness of the population while the best fitness
stays intact.

4 Experiments with Modified SNGP

This section presents experiments carried out with standard GP, standard SNGP
and SNGP with the proposed modifications.

4.1 Artificial Benchmarks

The algorithms have been tested on five symbolic regression benchmarks

– f1(x) = 4x4 − 3x3 + 2x2 − x,
32 training samples equidistantly sampled from 〈0, 1.0),

– f2(x) = x6 − 2x4 + x2,
100 training samples equidistantly sampled from 〈−1.0, 1.0)

Hybrid Single Node Genetic Programming for Symbolic Regression 69

– f3(x) = x6 − 2.6x4 + 1.7x2,
100 training samples equidistantly sampled from 〈−1.0, 1.0)

– f4(x) = x6 − 2.6x4 + 1.7x2 − x,
100 training samples equidistantly sampled from 〈−1.4, 1.4)

– f5(x1, x2) = (x1−3)4+(x2−3)3−(x2−3)
(x2−2)4+10 ,

100 training samples equidistantly sampled from 〈0.05, 6.05)

The first two functions are rather simple polynomials with small integer
constants. We chose the function f1 since it was used in the original SNGP
paper [9]. Function f2 is the Koza-3 function taken from [17]. Functions f3
and f4 are modifications of the Koza-3 function so that they involve non-trivial
decimal constants. Thus, these functions should represent harder instances than
f1 and f2. The function f4 is made even harder than f3 while breaking the
symmetry by adding the term “−x”. The last function f5 is a representative
of a rational function of two variables. This function, known as Vladislavleva-8
function [17], represents the hardest SR problem used in this work.

4.2 Experimental Setup

All the tested variants of the SNGP use a population of size 400. The population
starts with terminal nodes representing the variable x1 and x2 and a constant
1.0 followed by function nodes of types {+, −, *, /}. SNGP was run for 25,000
iterations, in each iteration just a single population reevaluation is computed
(note, just the nodes that were affected by the mutation are reevaluated). The
number of iterations was chosen so as to make the comparisons of the GP and
SNGP as fair as possible. This way a balance between processed nodes and fitness
evaluations is found, see [19].

The proposed modifications of the SNGP algorithm are configured with the
following parameters:

– upToN ∈ {1, 5},
– selection is either random (denoted as ‘r’) or depthwise (denoted as ‘d’)
– moveType is either moveLeft (denoted as ‘l’), moveRight (denoted as ‘r’) or

no move (denoted as ‘n’).

Names of the tested configurations of the SNGP are constructed as fol-
lows “SNGP upToN selection moveType”. The standard SNGP is denoted as
SNGP 1 r n, i.e. SNGP with a random selection and no move operator applying
a single mutation per generation.

Standard GP with generational replacement strategy was used with the fol-
lowing parameters:

– Function set: {+,−, ∗, /}
– Terminal set: {x1, x2, 1.0}
– Population size: 500
– Initialization method: Ramped half-and-half
– Tournament selection: 5 candidates

70 J. Kubaĺık et al.

– Number of generations: 55, i.e. 54 generations plus initialization of the whole
population

– Crossover probability: 90 %
– Reproduction probability: 10 %
– Probability of choosing internal node as crossover point: 90 %

For the experiments with the GP we used the Java-based Evolutionary Com-
putation Research System ECJ 222.

One hundred independent runs were carried out with each tested algorithm
on each benchmark and the observed performance characteristics are

– fitness – the mean best fitness (i.e. the sum of absolute errors) over 100 runs;
– sample rate – the mean number of successfully solved samples by the best-

fitted individual calculated over 100 runs, where the sample is considered to
be successfully solved by the individual iff the absolute error achieved by the
individual on this sample is less then 0.01;

– solution rate – the percentage of complete solutions found within 100 runs,
where the runs completely solves the problem iff the best individual generates
on all training samples the absolute error less than 0.01;

– size – the mean number of nodes of the best solution found calculated over
100 runs.

4.3 Results

Results obtained with the compared algorithms are presented in Table 1. The
first observation is that the results obtained on the benchmark f1 are quite
different than the results presented in [9], as the performance of the SNGP
is not as good as the SNGP performance presented there whilst the standard
GP performs much better than presented in [9]. This might be caused by dif-
ferent configurations of the SNGP and GP used in our work and in [9]. We
used different acceptance criterion in SNGP and the generational instead of the
steady-state replacement strategy in GP. This observation might indicate that
both approaches are quite sensitive to the proper setting of their individual
components.

The second observation is that the modified versions of SNGP systematically
outperform the standard SNGP with respect to the fitness, sample rate and
solution rate performance measures. On the other hand, the modified SNGP is
not a clear winner over the standard GP. The SNGP outperforms GP on f2, f4
and f5. On f1 it performs equally well as the GP. On f3, all versions of SNGP
get outperformed by the GP with respect to the fitness. It turns out functions
f3, f4 and f5 represent a real challenge for all tested algorithms since no one was
able to find a single correct solution within the 100 runs. We hypothesize the
hardness of f3 and f4 stems from the fact these benchmarks involve non-trivial
constants that might be hard to evolve. Function f5 is hard since it is a rational
function.
2 https://cs.gmu.edu/∼eclab/projects/ecj/.

https://cs.gmu.edu/~eclab/projects/ecj/

Hybrid Single Node Genetic Programming for Symbolic Regression 71

Table 1. Results of the modified SNGP variants and standard GP on artificial bench-
marks f1 – f5. The best mean fitness value for each benchmark is highlighted.

Function Algorithm Fitness Sample rate (%) Solution rate (%) Nodes

f1 GP 0.14 82.8 49 151

SNGP 1 r n 0.65 37.2 5 26.8

SNGP 1 d n 0.29 63.4 18 33.7

SNGP 1 r l 0.62 38.1 3 22.5

SNGP 1 d l 0.25 68.4 24 33.9

SNGP 1 r r 0.66 35.9 4 34.5

SNGP 1 d r 0.28 66.9 17 56.6

SNGP 5 d n 0.16 78.8 49 32.3

SNGP 5 d l 0.17 77.5 49 28.5

SNGP 5 d r 0.14 84.7 53 52.4

f2 GP 0.78 88.7 69 175.1

SNGP 1 r n 0.85 73.4 33 27.7

SNGP 1 d n 0.17 94.4 78 27.6

SNGP 1 r l 0.75 78 33 30.8

SNGP 1 d l 0.25 92.8 65 27.7

SNGP 1 r r 0.84 72.7 17 47

SNGP 1 d r 0.15 94.3 82 40.9

SNGP 5 d n 1e-6∗ 100 100 22.6

SNGP 5 d l 0.08 97.8 87 21.2

SNGP 5 d r 0.05 98.2 91 37.2

f3 GP 1.19 68.4 0 155

SNGP 1 r n 2.7 40 0 28.9

SNGP 1 d n 1.5 54.0 0 33.6

SNGP 1 r l 2.39 43.7 0 30.1

SNGP 1 d l 1.4 59.2 0 35

SNGP 1 r r 2.75 37.2 0 43.4

SNGP 1 d r 1.6 51.6 0 56.2

SNGP 5 d n 1.37 59.2 0 32.6

SNGP 5 d l 1.23 65.6 0 30.3

SNGP 5 d r 1.35 60.8 0 57.2

f4 GP 11.0 19.4 0 146.8

SNGP 1 r n 10.5 12.9 0 26.1

SNGP 1 d n 7.8 21.7 0 34.2

SNGP 1 r l 11.2 10.8 0 26.5

SNGP 1 d l 8.3 19.0 0 32.9

SNGP 1 r r 8.9 19.0 0 45.8

SNGP 1 d r 7.4 22.4 0 53.9

SNGP 5 d n 7.15 25.8 0 31.5

SNGP 5 d l 7.4 24.0 0 28

SNGP 5 d r 6.7 27.2 0 50.8

f5 GP 71.2 4.4 0 194.3

SNGP 1 r n 64.1 4.0 0 26.0

SNGP 1 d n 61.6 3.8 0 35.6

SNGP 1 r l 64.9 3.8 0 27.3

SNGP 1 d l 60.0 4.1 0 34.9

SNGP 1 r r 63.6 4.4 0 44.3

SNGP 1 d r 61.1 4.1 0 51.6

SNGP 5 d n 60.7 3.7 0 32.8

SNGP 5 d l 60.9 3.6 0 31.9

SNGP 5 d r 60.4 4.0 0 51.1

72 J. Kubaĺık et al.

The third observation is that there is a clear trend showing that the depthwise
node selection works significantly better than the random one. Whenever the
SNGP configurations differ just in the selection type the one using the depthwise
selection outperforms the one with the random selection.

The fourth observation is that the reorganization of the population using
either the moveLeft or moveRight operator does not have any systematic
impact on the overall performance of the algorithm. It happens only rarely that
the SNGP using moveLeft or moveRight outperforms its counterpart configu-
ration with no move operator used. In particular, the moveLeft operator was
significantly better3 than noMove in four cases, the moveRight operator was sig-
nificantly better than noMove in two cases, all the cases indicated by underlined
values. On the other hand, the noMove configuration happened to outperform
both the moveLeft and moveRight configuration on function f2 as indicated
by an asterisk.

The fifth observation is that the local search strategy allowing multiple muta-
tions in one iteration outperforms the standard local search procedure with just a
single application of the mutation operator per iteration. This is with agreement
with our expectations.

Last but not least, the SNGP consistently finds much smaller trees than
the GP. This is very important since very often solutions of small size that are
interpretable by human are sought in practice.

5 Hybrid SNGP with Linear Regression

It has widely been reported in the literature that the evolutionary algorithms
work much better when hybridized with local search techniques, the concept
known as the memetic algorithms [7]. EA serves as a global search strategy,
while the local search technique provides an efficient means for fine-tuning the
solutions. A similar approach can be used to develop efficient methods for sym-
bolic regression.

Recently, several methods emerged [1,2,15,21,22] that explicitly restrict the
class of models to generalized linear models, i.e. to a linear combination of pos-
sibly non-linear basis functions. With the help of linear regression techniques
applied to the basis functions, such models can be learned much faster.

GPTIPS [21,22] is an open-source SR toolbox for MATLAB. It is an imple-
mentation of Multi-Gene Genetic Programming (MGGP) [8] and thus has its
roots in classical GP. Each solution is composed of multiple independent trees,
called genes, and their outputs are linearly combined. The coefficients of this
linear combination are computed optimally with respect to the MSE of the
final output to the true target values by classical least-squares linear regression.
GPTIPS (MGGP) is based on classical Genetic Program- ming. This means that
it works with a population of fixed size, subtree mutation, subtree crossover,
tournament selection, standard initialization procedures, and is able to handle

3 Checked using the t-test calculated with the significance level α = 0.05.

Hybrid Single Node Genetic Programming for Symbolic Regression 73

the internal constants of the model (to certain extent) using ephemeral random
constants. The output of GPTIPS is a population of models; it is up to the
user to choose the final one. By default, GPTIPS uses Lexicographic Parsimony
Pressure [13] using (by default) Expressional Complexity [24] of the models.
MGGP was shown to be faster and more accurate than conventional GP [8] and
also a comparable or better alternative to classical methods like Support Vector
Regression and Artificial Neural Networks [6].

FFX, or Fast Function Extraction [2], is a deterministic algorithm for sym-
bolic regression. It first exhaustively generates a massive set of basis functions,
which are then linearly combined using Pathwise Regularized Learning [5,25] to
produce sparse models. The algorithm produces a Pareto-front of models with
respect to their accuracy and complexity. Again, it is up to the user to choose
the final model. There are two kinds of bases that are generated: univariate bases
and bivariate bases. Univariate bases are: a variable raised to a power (chosen
from a fixed set of options) and (non-linear) functions applied to another univari-
ate base. Bivariate bases are products of all pairs of univariate bases excluding
the pairs where both the bases are of function-type; the author argues that such
products are “deemed to be complex”. FFX also includes a trick that allows it to
produce rational functions of the bases using the same learning procedure. The
original paper reports FFX to be more accurate than many classical methods
including conventional GP, neural networks and SVM.

EFS, or Evolutionary Feature Synthesis [2] is a recent evolutionary-based
algorithm. In EFS, the population does not consist of complete models but
rather of features which, collectively, form a single model. The initial population
is formed by the original features of the dataset. Then, in each generation, a
model is composed of the features in the current population by Pathwise Reg-
ularized Learning and is stored if it is the best. The next step in a generation
is the composition of new features by applying unary and binary functions to
the features already present in the current population. This way, more complex
features are created from simpler ones. Also, the features are selected during this
composition step according to the Pearson correlation coefficient with the fea-
ture’s parents. EFS does not build the symbolic model explicitly – it works with
the data of the features in a vectorial fashion and only stores the structure for
logging purposes. This results in a very fast algorithm. The original paper reports
EFS being comparable to neural networks and similar or better than Multiple
Regression Genetic Programming [1] which itself was reported to outperform
conventional GP, multiple regression and Scaled Symbolic Regression [11].

In this section we propose two variants of hybrid SNGP that make use of
the linear regression technique to improve its performance. Both use the Least
Absolute Shrinkage and Selection (LASSO) regression technique, the one used
in EFS, to build generalized linear regression models. The first one, denoted as
Single-Run SNGP with LASSO (s-SNGPL), evolves a population of candidate
features for the LASSO regression in a single run of the SNGP. The second
variant, denoted as Iterated SNGP with LASSO (i-SNGPL), builds the LASSO

74 J. Kubaĺık et al.

model in an iterative manner where in each iteration a new feature for the
LASSO model is evolved in a separate SNGP run.

5.1 Single-Run SNGP with LASSO

In this method, all features of the generalized linear regression model are evolved
in a single run of the SNGP. The outline of the algorithm, see Fig. 4, is very
much like the one of the modified SNGP, see Fig. 3. The only difference is in the
evaluation of individual nodes in the population and in assessment of the overall
population’s quality after the content of the population has been altered in each
generation. First, a quality of each node is calculated as the Pearson product-
moment correlation coefficient between the node’s output and the desired output
values (line 11). Then, a generalized linear regression model of a subset of features
present in the population is calculated using the LASSO technique (line 12).
Finally, the fitness of the whole population is calculated as the sum of absolute
errors between the LASSO regression model output and the desired output
values. Thus, the hybrid SNGP uses the same fitness as the modified SNGP, see
Sect. 3.4.

The complexity of the LASSO model is controlled by (1) the maximal depth
of features evolved in the population and (2) the maximum number of features
the LASSO model can be composed of. Note, the features can be non-linear
functions.

5.2 Iterated SNGP with LASSO

Unlike the s-SNGPL, here the set of candidate features F for the LASSO regres-
sion model is not evolved within a single population of SNGP. Instead, an exter-
nal set F is build incrementally, starting from an empty set and adding one
feature in each iteration, see Fig. 5.

Each feature fi is evolved in a separate run of the SNGP (line 6) such that
it correlates the most with the residua R (i.e. the vector of error values over all
training samples) produced by the current LASSO regression model composed of
i−1 features. The residua are initialized to desired output values of the training
samples. The idea is that in each iteration a new feature is evolved such that it
possibly helps to reduce the error of the resulting LASSO model. The algorithm
stops when either the set of candidate features reached the preset maximum or
the error of the LASSO model becomes zero.

6 Experiments with Hybrid SNGP

First experiments with hybrid SNGP variants s-SNGPL and i-SNGPL are carried
out on the artificial benchmarks listed in Sect. 4.1. Another series of experiments
are carried out on real-world benchmarks described in the following section.

Hybrid Single Node Genetic Programming for Symbolic Regression 75

Fig. 4. Outline of the Single-Run SNGP with LASSO.

Fig. 5. Outline of the Iterated SNGP with LASSO.

76 J. Kubaĺık et al.

6.1 Real-World Benchmarks

Following four real-world benchmarks, acquired from the UCI repository [14],
were used in this work

– Energy Efficiency of Cooling (ENC) and Heating (ENH) are datasets
regarding the energy efficiency of cooling and heating of buildings. Dimension
is 8, number of datapoints is 768.

– Concrete Compressive Strength (CCS) is a dataset representing a highly
non-linear function of concrete age and ingredients. Dimension of the dataset
is 8, the number of datapoints is 1030.

– Airfoil Self-Noise (ASN) is a dataset regarding the sound pressure levels of
airfoils based on measurements from a wind tunnel. Dimension of the dataset
is 5, the number of datapoints is 1503.

These benchmarks were used in the work on EFS [2] and other relevant
literature.

Each dataset was split 100 times (using the 0.7/0.3 ratio for training/testing).
Each algorithm was run once on each of the dataset instances producing a single
model. The accuracy and complexity of the resulting models are then aggregated
and statistically compared.

6.2 Experimental Setup

We compare the proposed hybrid SNGP algorithms to the GPTIPS, EFS and
FFX. We used GPTIPS version 2 retrieved from [23], FFX in version 1.3.4
retrieved from [16], EFS was retrieved from [3]. The goal is to perform a compar-
ison of the chosen methods as ready-to-use tools. Therefore we didn’t modify to
the code of the algorithms4, and we left all of the settings at their default values.
We set a timeout to 10 min for both EFS and GPTIPS. FFX has no support
for timeout. However, the algorithms’s performances have not been analyzed
from the computation time point of view. No parameter tuning method was
used to find an optimal configuration of the compared algorithms for particular
benchmarks.

The most important for our evaluation purposes is how the algorithms control
the resulting model complexity. GPTIPS has (user-defined) limits on the maxi-
mum number of nodes and/or maximum depth, and on the maximum number
of bases. By default there is a depth limit of 4, and maximum number of bases
(not counting the intercept) is also 4. EFS computes the maximum number of
bases from the number of input features, p; the number of bases was set to 3p
and maximum number of nodes in a base is hard-coded to 5. The FFX procedure
results in a maximum model depth of 5.

The hybrid SNGP algorithms with LASSO regression were run on artificial
benchmarks with the same population size and the sets of terminals and functions
4 The only exception is EFS: we changed the round variable to false (which was orig-

inally hard-coded to true) according to the issue on the algorithm’s GitHub reposi-
tory, see https://github.com/exgp/efs/issues/1.

https://github.com/exgp/efs/issues/1

Hybrid Single Node Genetic Programming for Symbolic Regression 77

as were used in Sect. 4.2. The maximum number of generations of s-SNGPL was
set to 1000. The maximum number of generations of each individual SNGP run
of the i-SNGPL was set to 1000 as well. The maximum number of features the
LASSO model can be composed of was set to 15 and the maximum depth of the
evolved features was set to 4.

The modified SNGP and hybrid SNGP algorithms with LASSO regression
were run on real-world benchmarks with the following changes in the configura-
tion. The set of terminals was extended with constants 2.0, 3.0 and 4.0 and the
set of functions was extended with functions square, cube, sqrt and sin. Similarly
to EFS, the maximum number of features was set to 3p, unless stated otherwise.

On the real-world benchmarks, we compare the resulting models with respect
to the root mean square error (RMSE) and the number of nodes used in the
model. We define the number of nodes as a sum of the numbers of nodes in the
model’s bases, i.e. we count neither the coefficients (including the intercept) of
the linear combination, nor the multiplications between these coefficients and the
bases. FFX’s hinge functions, having a form max(0;x − threshold) or similar,
count as 5 nodes.

6.3 Results on Artificial Benchmarks

Table 2 shows results of the modified SNGP algorithm and the two hybrid SNGP
algorithms using LASSO regression on the artificial benchmarks. Only the best
performing configuration of the modified SNGP is selected for each benchmark
based on the results presented in Table 1.

There is no single winner algorithm consistently outperforming the others
on all five benchmarks. However, there is a clear trend showing that the SNGP
without LASSO is doing well on rather simple benchmarks f1 and f2 (it is even
better than both hybrid algorithms on f2), i.e. the polynomials that involve only
trivial integer constants. As the difficulty of the target model increases (from f3
to f5) the hybrid SNGP algorithms start to dominate. Of the two variants the
i-SNGPL is better with respect to the SAE performance measure. Note, the
superiority of the i-SNGPL is achieved at the cost of rather highly complex
models, approximately 150 nodes and more compared to 65 to 118 nodes in case
of s-SNGPL and 30 to 50 nodes in case of simple SNGP. These observations are
in accordance with our expectations.

6.4 Results on Real-World Benchmarks

This section presents comparisons of the proposed modified and hybrid SNGP
algorithms with GPTIPS, EFS, and FFX on the real-world benchmarks. The
first observation based on results in Table 3 is that the simple SNGP without
LASSO regression gets defeated by the other algorithms on all benchmarks.

The i-SNGPL outperforms the other algorithms on all benchmarks but the
CCS, where the FFX exhibits the best median RMSE value. However, this is
at the cost of very large models produced, see Table 4. Also the superiority of
i-SNGPL on the three benchmarks is thank to large models produced by the

78 J. Kubaĺık et al.

Table 2. Comparisons of the modified SNGP with two variants of hybrid SNGP using
LASSO regression on artificial benchmarks f1 – f5. The best mean SAE value in each
row is highlighted. For f3, f4 and f5 the highlighted mean value was significantly better
than the other two values as supported by the t-test calculated with the significance
level α = 0.05.

Function Algorithm SAE Sample rate (%) Solution rate (%) Nodes

f1 SNGP 5 d r 0.14 84.7 53 52.4

s-SNGPL 0.58 44.1 0 42.0

i-SNGPL 0.11 97.5 54 74.8

f2 SNGP 5 d n 1e-6 100 100 22.6

s-SNGPL 0.07 99.9 97 85.5

i-SNGPL 0.34 93.6 44 124.5

f3 SNGP 5 d l 1.23 65.6 0 30.3

s-SNGPL 0.13 99.5 84 83.6

i-SNGPL 0.4 90.8 40 146.6

f4 SNGP 5 d r 6.7 27.2 0 50.8

s-SNGPL 6.3 18.0 0 64.8

i-SNGPL 2.53 34.5 0 147

f5 SNGP 1 d l 60.0 4.1 0 34.9

s-SNGPL 27.8 3.3 0 117.9

i-SNGPL 15.9 4.0 0 170.1

Table 3. Comparisons of SNGP 5 d n, s-SNGPL and i-SNGPL with GPTIPS, EFS
and FFX on the real-world benchmarks with respect to the median RMSE observed
on testing data. The best value in each row is highlighted. In all cases the highlighted
value was significantly better than the other values as supported by the Mann-Whitney
U-test calculated with the significance level α = 0.01.

GPTIPS EFS FFX SNGP 5 d n s-SNGPL i-SNGPL

ENC 2.9073 1.6398 1.7906 3.5657 1.7076 1.3978

ENH 2.5375 0.5455 1.0455 3.4295 0.6583 0.4754

CCS 8.7618 6.4293 5.9860 10.55 6.4052 6.2144

ASN 4.1384 3.6232 3.5804 6.6852 6.1353 2.9561

algorithm. The s-SNGPL is competitive to the three compared algorithms with
respect to the median RMSE as well as the model size.

Tables 5 and 6 show the performance of s-SNGPL and i-SNGPL achieved
with smaller LASSO models. Values k1 . . . k4 specify the maximum number of
features the algorithms are allowed to use in the LASSO regression models. An
interesting observation is that both algorithms, and especially the i-SNGPL one,
stay competitive with the compared algorithms even when producing smaller
models.

Hybrid Single Node Genetic Programming for Symbolic Regression 79

Table 4. Median number of nodes for each algorithm and dataset

GPTIPS EFS FFX SNGP 5 d n s-SNGPL i-SNGPL

ENC 48 108 136 22 115.5 201

ENH 47.5 105 146 20.5 107 196.5

CCS 43 108 474.5 23 127 201

ASN 58 67 52.5 22.5 88 131

Table 5. Median RMSE and median number of nodes observed for s-SNGPL on test-
ing data. Performance of the algorithms is tested for different values of the maximum
number of features allowed for the LASSO model. Values k1 = 12, k2 = 16, k3 = 20
and k4 = 24 are tested on benchmarks ENC, ENH and CCS. Values k1 = 8, k2 = 10,
k3 = 12 and k4 = 15 are tested on benchmark ASN.

k1 k2 k3 k4

RMSE #nodes RMSE #nodes RMSE #nodes RMSE nodes

ENC 1.8582 58.5 1.7694 82 1.6897 94 1.7076 115.5

ENH 1.0842 60 0.8461 75 0.8123 95 0.6583 107

CCS 6.8929 63 6.6912 82 6.5595 102 6.4053 127

ASN 4.0013 48 3.8395 61 3.7463 70 3.4817 88

Table 6. Median RMSE and median number of nodes observed for i-SNGPL on test-
ing data. Performance of the algorithms is tested for different values of the maximum
number of features allowed for the LASSO model. Values k1 = 12, k2 = 16, k3 = 20
and k4 = 24 are tested on benchmarks ENC, ENH and CCS. Values k1 = 8, k2 = 10,
k3 = 12 and k4 = 15 are tested on benchmark ASN.

k1 k2 k3 k4

RMSE #nodes RMSE #nodes RMSE #nodes RMSE nodes

ENC 1.5490 101.5 1.4502 133 1.4085 170 1.3978 201.5

ENH 0.5648 97 0.5179 130.5 0.4978 166 0.4754 196.5

CCS 6.5912 103 6.4412 135 6.2973 167 6.2144 201

ASN 3.3894 71 3.2492 89.5 3.0989 106 2.9561 131

Figure 6 presents progress plots observed for the s-SNGPL algorithm on real-
world benchmarks. In each generation, the mean of the best-so-far fitness (i.e.
SAE) calculated over 100 independent runs is shown. It illustrates the effect
of the evolutionary component of the algorithm as there is a clear continuous
improvement in the best-so-far fitness along the whole run.

80 J. Kubaĺık et al.

Fig. 6. Plots showing an average progress of the best SAE value for s-SNGPL on
real-world benchmarks.

7 Conclusions

This paper deals with the Single Node Genetic Programming method, proposes
its modifications and ways of hybridization to improve its performance.

First, three extensions of the standard SNGP, namely (1) a selection strategy
for choosing nodes to be mutated based on the depth and performance of nodes,
(2) operators for placing a compact version of the best-performing graph to the
beginning and to the end of the population, respectively, and (3) a local search
strategy with multiple mutations applied in each iteration were proposed.

These modifications have been experimentally evaluated on five artificial
symbolic regression benchmarks and compared with standard GP and SNGP.
The achieved results are promising showing the potential of the proposed mod-
ifications to improve the performance of the SNGP algorithm.

Further, two variants of hybrid SNGP utilizing the linear regression tech-
nique, LASSO, were proposed. The proposed hybrid algorithms have been com-
pared to the state-of-the-art symbolic regression methods making use of the lin-
ear regression techniques on four real-world benchmarks. The results show the
proposed algorithms are at least competitive with or better than the compared
methods.

The next step of our research will be to carry out a thorough experimental
evaluation of the modified SNGP algorithms with the primary objectives being
the speed of convergence and the ability to react fast to the changes of the

Hybrid Single Node Genetic Programming for Symbolic Regression 81

environment in order to be able to deploy the algorithm within the dynamic
symbolic regression scenario. Further investigations will include utilization of
new mutation operators, identification of suitable “high-level” basic functions to
the SNGP’s function set, design of mechanisms to evolve inner constants of the
models and mechanisms for escaping from local optima.

Acknowledgment. This research was supported by the Grant Agency of the Czech
Republic (GAČR) with the grant no. 15-22731S entitled “Symbolic Regression for
Reinforcement Learning in Continuous Spaces”.

References

1. Arnaldo, I., Krawiec, K., O’Reilly, U.-M.: Multiple regression genetic program-
ming. In: Proceedings of the 2014 Annual Conference on Genetic and Evolutionary
Computation, GECCO 2014, pp. 879–886. ACM, New York (2014)

2. Arnaldo, I., O’Reilly, U.-M., Veeramachaneni, K.: Building predictive models via
feature synthesis. In: Proceedings of the 2015 Annual Conference on Genetic and
Evolutionary Computation, GECCO 2015, pp. 983–990. ACM, New York (2015)

3. EFS commit 6d991fa. http://github.com/exgp/efs/tree/6d991fa
4. Ferreira, C.: Gene expression programming: a new adaptive algorithm for solving

problems. Complex Syst. 13(2), 87–129 (2001)
5. Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear

models via coordinate descent. J. Stat. Softw. 33(1), 1–22 (2010)
6. Garg, A., Garg, A., Tai, K.: A multi-gene genetic programming model for estimat-

ing stress-dependent soil water retention curves. Comput. Geosci. 18(1), 45–56
(2013)

7. Hart, E., Smith, J.E., Krasnogor, N.: Recent Advances in Memetic Algorithms.
STUDFUZZ, vol. 166. Springer, Heidelberg (2005)

8. Hinchliffe, M., Hiden, H., McKay, B., Willis, M., Tham, M., Barton, G. Modelling
chemical process systems using a multi-gene genetic programming algorithm. In:
Koza, J.R. (ed.) Late Breaking Papers at the Genetic Programming 1996 Confer-
ence, pp. 56–65 (1996)

9. Jackson, D.: A new, node-focused model for genetic programming. In: Moraglio,
A., Silva, S., Krawiec, K., Machado, P., Cotta, C. (eds.) EuroGP 2012. LNCS, vol.
7244, pp. 49–60. Springer, Heidelberg (2012). doi:10.1007/978-3-642-29139-5 5

10. Jackson, D.: Single node genetic programming on problems with side effects. In:
Coello, C.A.C., Cutello, V., Deb, K., Forrest, S., Nicosia, G., Pavone, M. (eds.)
PPSN 2012. LNCS, vol. 7491, pp. 327–336. Springer, Heidelberg (2012). doi:10.
1007/978-3-642-32937-1 33

11. Keijzer, M.: Scaled symbolic regression. Genet. Program Evolvable Mach. 5(3),
259–269 (2004)

12. Koza, J.: On the Programming of Computers by Means of Natural Selection, 2nd
edn. MIT Press, Cambridge (1992)

13. Luke, S., Panait, L.: Lexicographic parsimony pressure. In: Proceedings of GECCO
2002, pp. 829–836. Morgan Kaufmann Publishers (2002)

14. Lichman, M.: UCI Machine Learning Repository. University of California, School
of Information and Computer Science, Irvine (2013). http://archive.ics.uci.edu/ml

15. McConaghy, T.: Fast, scalable, deterministic symbolic regression technology. In:
Riolo, R., Vladislavleva, E., Moore, J.H. (eds.) Genetic Programming Theory and
Practice IX, Genetic and Evolutionary Computation, pp. 235–260 (2011)

http://github.com/exgp/efs/tree/6d991fa
http://dx.doi.org/10.1007/978-3-642-29139-5_5
http://dx.doi.org/10.1007/978-3-642-32937-1_33
http://dx.doi.org/10.1007/978-3-642-32937-1_33
http://archive.ics.uci.edu/ml

82 J. Kubaĺık et al.

16. FFX 1.3.4. http://pypi.python.org/pypi/ffx/1.3.4
17. McDermott, J., et al.: Genetic programming needs better benchmarks. In: Pro-

ceedings of the GECCO 2012, pp. 791–798. ACM, New York (2012)
18. Miller, J.F., Thomson, P.: Cartesian genetic programming. In: Poli, R., Banzhaf, W.,

Langdon, W.B., Miller, J., Nordin, P., Fogarty, T.C. (eds.) EuroGP 2000. LNCS, vol.
1802, pp. 121–132. Springer, Heidelberg (2000). doi:10.1007/978-3-540-46239-2 9

19. Ryan, C., Azad, R.M.A.: A simple approach to lifetime learning in genetic
programming-based symbolic regression. Evol. Comput. 22(2), 287–317 (2014)

20. Ryan, C., Collins, J.J., Neill, M.O.: Grammatical evolution: evolving programs for
an arbitrary language. In: Banzhaf, W., Poli, R., Schoenauer, M., Fogarty, T.C.
(eds.) EuroGP 1998. LNCS, vol. 1391, pp. 83–96. Springer, Heidelberg (1998).
doi:10.1007/BFb0055930

21. Searson, D.P., Leahy, D.E., Willis, M.J.: Gptips: an open source genetic program-
ming toolbox for multigene symbolic regression. In International MultiConference
of Engineers and Computer Scientists, vol. 1, pp. 77–80 (2010)

22. Searson, D.P.: GPTIPS 2: an open-source software platform for symbolic datamin-
ing. In: Gandomi, A.H., Alavi, A.H., Ryan, C. (eds.) Springer Handbook of Genetic
Programming Applications, pp. 551–573. Springer, Switzerland (2015)

23. GPTIPS 2. http://sites.google.com/site/gptips4matlab
24. Vladislavleva, E.J., Smits, G.F., Den Hertog, D.: Order of nonlinearity as a com-

plexity measure for models generated by symbolic regression via pareto genetic
programming. Trans. Evol. Comp. 13(2), 333–349 (2009)

25. Zou, H., Hastie, T.: Regularization and variable selection via the elastic net. J.
Roy. Stat. Soc. Ser. B (Stat. Methodol.) 67(2), 301–320 (2005)

http://pypi.python.org/pypi/ffx/1.3.4
http://dx.doi.org/10.1007/978-3-540-46239-2_9
http://dx.doi.org/10.1007/BFb0055930
http://sites.google.com/site/gptips4matlab

L2 Designer

A Tool for Genetic L-system Programming in Context
of Generative Art

Tomáš Konrády(&), Kamila Štekerová, and Barbora Tesařová

Faculty of Informatics and Management, University of Hradec Králové,
Rokitanského 62, Hradec Králové, Czech Republic
{tomas.konrady,kamila.stekerova,

barbora.tesarova}@uhk.cz

Abstract. We propose a new format to define parametric L-systems (L2 lan-
guage) and its implementation in JavaScript (L2 Designer). Our language allows
us to create formal definition of the hierarchy of L-systems. The L2 Designer
enables us to discover L-system grammars by means of interactive evolution -
the common method used in Evolutionary art.
We provide an example of L2 program and we illustrate possibilities of L2

Designer on the two case studies. First case study was inspired by an artistic
decorative floral pattern. Second case study describes the detailed process of
developing a new L-system grammar that leads to the original graphics.

Keywords: Formal grammar � L-system � Generative art � Evolutionary art �
Genetic programming

1 Introduction

Lindenmayer systems (L-systems) are formal grammars with parallel rewriting
mechanism that were originally developed for modelling and visualization of the
growth process of various types of algae [17]. Later they were applied in the field of
computer graphics. The best known graphical interpretation of L-systems is based on
usage of a relative cursor upon a Cartesian plane (turtle graphics). The L-systems are
frequently used in combination with evolutionary techniques, e.g. [9] presents a
parametric L-system for drawing virtual creatures for computer animations.

In this contribution we explore the emergence phenomena growing from combi-
nation of L-systems, genetic programming and interactive evolution, primarily we are
interested in its application in generative art and artificial creativity. We were inspired
by shape grammars that also originated from the theory of formal grammars: it was
shown that even simple rules of shape grammars produce complex results [22]
moreover [8] applied shape grammars in design.

The key issue in our research area is the definition of the fitness function. Artificial
neural networks or design principles measurements are well-applicable techniques.
Methods that do provide automatic fitness function for aesthetic evaluation are

© Springer-Verlag Berlin Heidelberg 2016
N.T. Nguyen et al. (Eds.): TCCI XXIV, LNCS 9770, pp. 83–100, 2016.
DOI: 10.1007/978-3-662-53525-7_5

classified as Computational Aesthetic Evaluation (EAC) systems. For relevant results
see e.g. [1, 2, 18, 19].

In our case we chose opposite approach: the fitness of the individuals is assigned
manually by the user. The approach is known as interactive evolutionary computation
(IEC) [7].

The graphical interpretation of L-system strongly depends on its definition, because
even minor changes of parameters lead to completely different and surprising results.
The evolutionary techniques help to search the large space of parameters and to modify
production rules.

Current implementations of the L-system theory are based on extensions of general
purpose programming languages. From the technical point of view, languages such as
L+C [12], L-Py [4] or XL [13] are complex and their implementations are platform
dependent. Our intention is to provide easy-to-use tool for partly interactive creation of
various types of graphical outputs. On the contrary, our tool does not make user to
directly write production rules, in fact the user does not need to know the grammar of
the L-system at all.

In following sections of this paper we propose a new formal language (L2 lan-
guage) which is easy to parse to the tree representation. Then we provide a platform
independent tool (L2 Designer) which enables specification of L-systems within L2
language, with its subsequent evolution based on genetic programming. Finally, the
graphical interpretation of outputs is presented.

2 L2 Language and L-system Extensions

L2 language is designed for defining stochastic context free parametric L-systems
grammars. In contrast to L+C or L-py, L2 does not include anything else but features
that we need for the purpose of the definition of L-system. As well as L+C, L2 supports
the advanced properties of L-systems:

• Sub-L-systems – it is possible to divide large L-systems into smaller reusable parts,
• Interpretation production rules – it lets us separate topology of the L-system from

its representation, therefore the application of genetic programming operators is
easier.

For detail specification of L2 language, see the documentation [14]. Here we
provide a sample code. Its explanation and interpretation is shown below.

As shown in Fig. 1, the L2 program consists of three main parts:

• Alphabet - a set of symbols (line 1),
• L-script encapsulating L-systems (line 5),
• L-system - the unit defining production rules, default axiom and default number of

derivations (lines 6, 16).

Both the variable and parameter names start with a symbol $. The L-script contains
the main L-system (line 29).

A derive statement (line 31) launches the derivation process of the L-script, whose
identifier is passed as the argument.

84 T. Konrády et al.

BranchingLScript contains a definition of two L-systems called Bloom and
Branching (lines 6–16, 17–28). The heading of the L-system consists of:

• name,
• default axiom,
• default number of derivations,
• alphabet.

The body of L-system contains the list of productions. For the L-system productions
we use either the—> operator (line 10) or the −h > for interpretation rules (line 12). The
replacement string on the right side of the production rule can contain sublsystem
statement (line 27) that calls derivation of the other L-system within the same L-script.

01. alphabet Turtle2D {
02. F, f, L, R, PU, PS
03. };
04. $black = __rgb(0,0,0,255);
05. lscript BranchingLScript {
06. lsystem Bloom(F(0.01), 3) using Turtle2D {
07. $angle = 90;
08. $colorA = __rgb(255,100,0,200);
09. $colorB = __rgb(150,50,50,200);
10. F(a) --> F($a) L($angle) F($a) A($a);
11. F(a) --> F($a) R($angle) F($a) A($a);
12. F(a) -h> F($a, 0.003, __rgb(0,0,0,0));
13. A(a) -h>
14. [F(0.0001, $a * 1.5 * __random(), $colorA)]
15. | [F(0.0001, $a * 1.5 * __random(), $colorB)];
16. };
17. lsystem Branching(G(0.1), 4) using Turtle2D {
18. $ratio = 0.9;
19. $angle = 60;
20. $anglePrec = 50;
21. $stroke = 0.003;
22. G(a) --> F($a) [L($angle) ($ratio * $a)B($a)]
23. [R($angle) G($ratio * $a) B($a)];
24. L(a) -h> L($a - $anglePrec * 0.5);
25. R(a) -h> R($a - $anglePrec * 0.5);
26. F(a) -h> F($a, $stroke, $black)
27. [sublsystem Bloom(F($a / 10), 6)];
28. };
29. main call Branching();
30. };
31. derive BranchingLScript;

Fig. 1. L2 sample code

L2 Designer 85

3 L2JS Library

The L2 language is accessible within our L2JS library which is the core of L2 Designer.
The library includes compiler, interpreter and module for genetic programming.

3.1 Compilation Process

The compiler of the L2JS library translates L2 to JavaScript. The scripting language
was chosen due to its flexibility, dynamic scoping, closures and both functional and
object-oriented programming support.

The usage of JavaScript allows us to distribute the computing within the web
browser and Node.js web server.

Figure 2 shows the flow of the compiling process. The compilation starts with the
linking of the input source files. The whole code is parsed by Jison parser [11] into the
abstract syntax tree (AST). The AST consists of the nodes representing statements,
arguments, entities, names, variables and expressions. Jison is a JavaScript imple-
mentation of the combination of [5] and [3]. The parser requires the L2 grammar
description file. After the L2 AST is created by Jison, the translation to the JavaScript
code can be performed.

Our compiler is able to decompile L2 AST back to the L2 code. This feature is
essential for further application of genetic programming.

Fig. 2. Scheme of the L2JS library

86 T. Konrády et al.

The output of the compilation process is a JavaScript program representing the
derivation of the L-script.

3.2 Interpretation

The Interpreter operates with an alphabet of the L-system to resolve the type of
interpretation. In our sample code, an alphabet Turtle2D is used in which the symbols
of the alphabet are understood as the instructions for the turtle graphics (Fig. 3). The
interpretation of the symbols is drawn to the HTML5 Canvas directly inside the
browser. For the description of the symbols see [20].

The Interpreter works with rules that specify how symbols are related to the set of
statements from the alphabet. E.g. the module F(a) is replaced with F($a, 0.003, __rgb
(0,0,0,0)) according to the corresponding interpretation rule (line 12 in Fig. 1). The
interpretation in this particular case results in a-long line with 0.003 size filled with
transparent colour.

The Evolver implements the L-system genetic programming over the hierarchy of
L-systems in L2 language. Details are provided in the next section.

4 Genetic Programming

Genetic programming is involved in the process of iterative modifications of L-scripts.
After the initial L-script is provided to the Evolver module, it becomes the base for

the initial generation. Each individual is represented by the L-script which is converted
to L2 AST (see Fig. 4 for illustration). The user has to specify which of sub-L-systems
should be modified by the Evolver.

To represent the genotype in the Evolver module we decided to use a tree data
structure, as it was originally introduced by Koza in [15]. Genetic operators modify the

Fig. 3. Turtle graphics for the sample code

L2 Designer 87

abstract syntax trees using crossover or mutation. The genetic operators designed for
the parametric L-systems were originally proposed by [19].

For chosen types of the AST nodes, we are using different operators. The operators
are applied either on the L-systems (axiom, production rules) or on the expressions
used within the program (variable assignments, expressions within modules). The
Evolver module supports:

• mutation of production rules,
• crossover of production rules,
• mutation of expressions – variation, creation and colour mutation.

The main task was to identify the right terminals. We found the way of an auto-
matic detection of terminals without the need of its explicit specification by the user.

In the case of production rule mutation, the set of terminals consists of distinct
symbols occurring in all production rules of parent L-system.

Fig. 4. Example of simple AST of L2 script

88 T. Konrády et al.

The set of terminals depends on the context of expression in the case of expression
mutation. On the other hand the terminals within the rule are enriched with parameters
from the ancestor of the rule.

The Evolver implements two types of mutations. The first of them modifies the
numbers only (variation mutation), the second one generates new expressions (creative
mutation).

Special mutation operator was developed for the colours: user can specify maxi-
mum percentage of modification for each of the channel of the colour model. For hue
channel it is possible to specify an exact angle that can be added or reduced.

We are using a tree representation of the production rules similarly to [10]. Every
leaf is a module of the rule and every new level of the tree is determined by stack
symbols ([,]).

For example representation of the L-system string F [G [H] I [J K]] is shown in
the Fig. 5.

The crossover is represented by an exchange of the branches from the tree repre-
sentation of L-systems. The newly created production rule either replaces the rule
which was selected for the crossover (parent rule) or is added to the definition of the
L-system. Probability of the newly created rule is determined by product of the
probability of parent rule and a predefined constant.

In the process of the fitness evaluation, the user selects the best solutions generated
by the program and assigns the integer fitness values to these solutions. In comparison
with other methods, IEC is more time consuming, only small populations and low
number of generations can be processed effectively. On the other hand, with IEC the
user can apply his aesthetic preferences.

The linear rank selection mechanism is combined with elitism. For details of this
method see [21].

Fig. 5. Tree representation of the string containing nested stack symbols

L2 Designer 89

5 Implementation

The L2Designer is a web-based JavaScript application enabling the interactive designing
of L-systems. The core of the application is L2JS library. The server is running onNode.js.
Other main technologies we are using are MongoDB and Angular.js.

Within the L2 Designer the user can manage projects and directories of scripts. The
main focus is on the process of designing new L-systems (Fig. 6). The source codes are
available together with their interpretations.

6 Case Studies

Let us demonstrate the L2 Designer workflow. We prepared two case studies of
L-systems generating complex images. The first one is meant to be visually similar to
already existing art piece; however the second case study is intended to create the
original graphics.

6.1 Michaelmas Daisy

Let us demonstrate the L2 Designer workflow. The decorative floral pattern
Michaelmas Daisy 1929 (Fig. 10) was our inspiration.

The process starts with creation of L-script which contains several sub-L-systems.
The first part of L-systems represents basic shapes (flower petal, leaf, disc floret); the

Fig. 6. Interface of L2 Designer with a visualization of L-system

90 T. Konrády et al.

second part represents a layout of basic shapes (flower head, layout of flowers, layout of
leaves).

The aim of interactive evolutionary computation is to increase the similarity of the
output graphic interpretation of L-system with the original pattern. The original pattern

Fig. 7. Layout of leaves before the interactive evolution computation: completely regular
distribution of leaves of one size, with limited number of colour shades (Color figure online)

Fig. 8. Layout of leaves after the interactive evolution computation: irregular distribution of
leaves on the canvas, higher number of colour shades and variable sizes (Color figure online)

L2 Designer 91

background is covered with leaves. The interpretation of the L-system before and after
the process of IEC is shown in Figs. 7 and 8 respectively. The next step is the creation
of the main L-system which generates the layout of flowers. First of all it is necessary to
define L-system for random distribution of flower heads over the canvas. This initial
result still does not correspond to the original artifact (Fig. 9): there is a lack of the
grouping of flowers of the same type. Again, this issue can be solved by evolution of
the L-system.

See Fig. 10 for the final pattern. Notice that our L-script does not cope in any way
with external image files or predefined patterns. Every shape is produced solely by the
turtle graphics interpretation of our L2 script. The source code of the L-script is
available online [6].

6.2 Generative Scenery

For the second example we decided to develop the L-system without explicit reference
to already known visual art piece. Originally the L-system was intended to represent
the abstract drawing of the landscape containing the cloudy sky and the grassy surface.

Sky. Starting with the sky we searched for the sub-L-system, which creates simple 2D
artifacts. Such L-system was meant to be used by the parental L-system (evolved

Fig. 9. Random distribution of flowers

92 T. Konrády et al.

Hilbert curve) to cover the canvas. However during the process of evolving the
sub-L-system we found that the combination of different individuals is sufficient
enough to make the drawing of the sky completed without need of usage the parental
Hilbert curve.

Respectively Figs. 11 and 12 show both the interpretation and L2 code for the
original spiral L-system. The simple L-system contains only one rule for each type of
production rules.

Each derivation adds the symbol C with increased parameter $f by the constant $inc
to the resulting string. Symbol C is interpreted with the corresponding interpretation
rule as the circle with the radius $f, filled with the colour represented by HSV model.

Fig. 10. Final pattern resulting from the evolution of L-system (left) inspired by Michaelmas
Daisy (right) [23]

Fig. 11. Original spiral L-system

L2 Designer 93

The spiral L-system determined the individual for the first generation of the
evolving process. Table 1 shows the summary of parameters used during the evolution
process. Moreover the settings were used for the design of all L-systems in this case
study.

Selection of several interesting individuals shows the Fig. 13. The last example
from the figure shows the pattern which sufficiently covered the canvas to be con-
sidered as the base L-system for the next evolution process. For the code of L-system
SpiralSkyBase see Fig. 14. Our Evolver made changes to both constants $angel and
$inc. Next changes were made in the main production rule for the symbol A.

At the first sight, the evolved expressions are unnecessarily complex. E.g. the
$f * $f - $f - $f + $f + ($f)) can be easily simplified to $f * $f. However the complexity
of the expression is important for our implementation of the crossover operator. Due to
larger expression tree there is higher probability of creative permutations in the next
generations. The maximum level of the expression tree can be explicitly set to our
Evolver module.

In the evolution of L-system SpiralSkyBase we searched for the colourful indi-
viduals as well as for the patterns preserving the central composition. We picked
several of the individuals to compose the drawing of the sky. The Fig. 15 shows each

$skyHue = 200;
$skyAlpha = 50;
lsystem SpiralCircle(A(0.04), 6) using Turtle2D {
 $angle = 60;
 $inc = 1.1;
 A(f) --> [f(2 * $f) C($f)] L($angle) A($f * $inc);
 C(f) -h> C($f, __hsv($skyHue,1,1,$skyAlpha));
};

Fig. 12. L2 code for the spiral L-system

Table 1. Settings for the evolution process of the spiral L-system

Parameter Value

Population size 100
Elite individuals 10
Probability of expression mutation 0.5
Probability of rule crossover 0.8
Probability of rule mutation 0.5
Probability of adding the rule as a new rule
(rule created by crossover operator)

0.3

Probability of adding the rule as a new rule
(rule created by mutation operator)

0.3

Colour variation of the H/S/V channels 5 %/5 %/5 %
Set of angles that can be added to the H-channel when applying
the colour mutation

{60°, 30°, 90°}

94 T. Konrády et al.

of them separately. During the process we found L-system Sun that is placing circles in
different sizes on top of each other. The L-system suits well as the sun for our drawing.
The L-system SkyBackground is a denser stochastic version of the original L-system
SpiralSkyBase. To add more colours we picked the stochastic L-system SkyHue.

Fig. 13. Sample of individuals from evolution of spiral L-system

lsystem SpiralSkyBase(A(0.04), 6) using Turtle2D {
 $angle = 70.23168000000001;
 $inc = 1.1891;
 A(f) -->
 [f(2 * $f) C($f)] A($f + $f + ($f))
 [A($f) A($f * $f - $f - $f + $f + ($f))]
 L($angle) A($f * $inc);
 C(f) -h> C($f, __hsv($skyHue,1,1,$skyAlpha));
};

Fig. 14. L2 code for SpiralSkyBase

L2 Designer 95

Finally the L-system SkyReflection will be placed on the top of the drawing to make
feeling of reflection of the sun in the landscape.

In both of the L-systems Sun and SunReflection we manually changed the $hue
constant to make the sun yellow and the reflection white.

We can see that the evolved L-systems were further more complex than the original
one - according to both grammar and visual interpretation.

Countryside. To add the actual land into our drawing, we chose to evolve Hilbert
curve. Such L-system is going to place 2D artifacts in certain spots to make the texture
of the countryside. Hilbert curve was well suited as the member of Space-filling curves

Fig. 15. Picked individuals for the sky drawing in order: SkyReflection, Sun, SkyHue,
SkyBackground (Color figure online)

Fig. 16. Base L-system ColoredHilbertCurve

96 T. Konrády et al.

$grassHue = 10;
$grassAlpha = 100;
lsystem ColoredHilbertCurve(A(0.01), 3) using Turtle2D {
 $angle = 90;
 A(f) --> L($angle) B($f) F($f) R($angle) A($f) F($f)
 A($f) R($angle) F($f) B($f) L($angle);
 B(f) --> R($angle) A($f) F($f) L($angle) B($f) F($f)
 B($f) L($angle) F($f) A($f) R($angle);
 F(f) -h> f($f)
 [F($f * 4, $f,
 __hsv($grassHue,1,1,$grassAlpha))];
 F(f) -h> f($f)
 [F($f * 4, $f,
 __hsv($grassHue + 50,1,1,$grassAlpha))];
};

Fig. 17. L2 code for the ColoredHilbertCurve (Color figure online)

Fig. 18. Sample of individuals from the evolution of ColoredHilbertCurve. Last two were
selected for the drawing of the countryside. (Color figure online)

L2 Designer 97

with Hausdorff dimension 2. Figure 16 shows the interpretation of the base L-system
for our final evolution process.

The code Fig. 17 uses the rules forming the classical Hilbert curve. The difference
can be found in the interpretation rules for the F symbol. Instead of drawing simple
line, we draw the rectangle with following dimensions: 4*$f x $f. The rule is stochastic
considering the fill colour of the rectangle.

Some of individuals from the evolution process are shown in the Fig. 18. Last two
were actually used in the final image. For the demonstration of colour mutation
operator see Fig. 19. The figure shows the complex production rule from one of the
final L-systems.

In resulting L-system we adjusted $grassHue constant to make the land coloured in
blue.

F(f) -h> F($f * 4, $f,
 __hsv(
 $grassHue + 44.13,
 0.941,
 0.828,
 1.067 * $grassAlpha)
)
 [F($f * 4, $f,
 __hsv($grassHue + 50,1,1,$grassAlpha))];

Fig. 19. Example of evolved complex production rule (Color figure online)

Fig. 20. Final image of the landscape drawn by the several evolved L-systems

98 T. Konrády et al.

Composition. Finally, we wrote parental L-system that composes our evolved
L-systems into the final drawing (Fig. 20). Stochastic nature of L-system allows
generating different images by each derivation (Fig. 21). The complete source code and
the animation from the interpretation can be found in [16].

7 Conclusions

The current version of L2 Designer is capable of evolving stochastic parametric
L-systems which are described by L2 language and generate complex graphical pat-
terns. The proposed case studies shows that evolving simple L-systems grammars by
our Evolver module can lead to both complex grammars and interesting graphical
interpretations.

Our evolutionary process is strongly influenced by user preference; the results are
generally unique for every new process of the design.

Our next intention is to improve the effectiveness of genetic operators to speed up
the fitness evaluation. For that we are going to implement a module for the processing
of user’s input using graphic tablet or vector image file.

The development of L2 language continues. New features will be added such as
decomposition rules or rule conditions.

Finally, with respect to the generative art applications, we want to explore the pos-
sibility of integration of L2 Designer with graphical editors to support creativity in users.

Acknowledgements. Excellence Project “MAS Applications in Modeling of Complex
Socioeconomic Systems and Intelligent Environments” is gratefully acknowledged.

Fig. 21. Stochastic nature of the final L-system

L2 Designer 99

References

1. Ashlock, D., Bryden, K.M.: Evolutionary control of Lsystem interpretation. In: CEC 2004,
vol. 2, pp. 2273–2279 (2004)

2. Bergen, S., Ross, B.J.: Aesthetic 3D model evolution. Genet. Program. Evol. Mach. 14, 339–
367 (2013)

3. Bison (2015). http://www.gnu.org/software/bison/
4. Boudon, F., et al.: L-Py: an L-system simulation framework for modeling plant architecture

development based on a dynamic language. Front. Plant Sci. 3, 76 (2012)
5. Flex (2015). http://flex.sourceforge.net/
6. Flower Pattern Source Code [WWW Document], n.d. GitHub. https://raw.githubusercontent.

com/tommmyy/l2js/master/app/js/lscripts/flowerpatternevolved.l2. Accessed 20 Feb 2016
7. Galanter, P.: Computational aesthetic evaluation: past and future. In: McCormack, J.,

d’Inverno, M. (eds.) Computers and Creativity, pp. 255–293. Springer, Heidelberg (2012)
8. Chakrabarti, A., Shea, K., Stone, R., et al.: Computer-based design synthesis research: an

overview. J. Comput. Inf. Sci. Eng. 11, 021003 (2011)
9. Hornby, G.S., Pollack, J.B.: Evolving L-systems to generate virtual creatures. Comput.

Graph. Artif. Life 25, 1041–1048 (2001). doi:10.1016/S0097-8493(01)00157-1
10. Jacob, C.: Genetic L-system programming. In: Davidor, Y., Männer, Reinhard, Schwefel,

Hans-Paul (eds.) PPSN 1994. LNCS, vol. 866, pp. 333–343. Springer, Heidelberg (1994)
11. Jison (2015). http://zaach.github.io/jison/
12. Karwowski, R., Prusinkiewicz, P.: Design and implementation of the L+C modeling

language. Electron. Notes Theor. Comput. Sci. 86(2), 134–152 (2003)
13. Kniemeyer, Ole, Kurth, Winfried: The modelling platform GroIMP and the programming

language XL. In: Schürr, Andy, Nagl, Manfred, Zündorf, Albert (eds.) AGTIVE 2007.
LNCS, vol. 5088, pp. 570–572. Springer, Heidelberg (2008)

14. Konrády, T.: L2 documentation (2015). https://github.com/tommmyy/l2js/wiki/
Documentation. Accessed 20 Feb 2016

15. Koza, J.R.: Genetic Programming. 1: On the Programming of Computers by Means of
Natural Selection. MIT Press, Cambridge (2000)

16. Landscape Source Code [WWW Document], n.d. GitHub. https://github.com/tommmyy/
l2js/tree/master/app/js/lscripts/landscape. Accessed 1 Jan 2016

17. Lindenmayer, A.: Mathematical models for cellular interactions in development. J. Theor.
Biol. 18, 280–315 (1968). Elsevier, Part I and II

18. McCormack, J.: The application of L-systems and developmental models to computer art,
animation and music synthesis (2003). http://www.csse.monash.edu.au/*jonmc/research/
thesis.html

19. McCormack, J.: Evolutionary L-systems. In: Hingston, P.F., Barone, L.C., Michalewicz, Z.
(eds.) Design by Evolution, Natural Computing Series, pp. 169–196. Springer, Heidelberg
(2008)

20. Node.js (2015). https://nodejs.org/
21. Sivaraj, R., Ravichandran, T.: A review of selection methods in genetic algorithm. Int.

J. Eng. Sci. Technol. 3, 3792–3797 (2011)
22. Stiny, G.: Shape rules: closure, continuity, and emergence. Environ. Plan. 21, 49–78 (1994)
23. The Warner Textile Archive (2015). http://www.warnertextilearchive.co.uk/

100 T. Konrády et al.

http://www.gnu.org/software/bison/
http://flex.sourceforge.net/
https://raw.githubusercontent.com/tommmyy/l2js/master/app/js/lscripts/flowerpatternevolved.l2
https://raw.githubusercontent.com/tommmyy/l2js/master/app/js/lscripts/flowerpatternevolved.l2
http://dx.doi.org/10.1016/S0097-8493(01)00157-1
http://zaach.github.io/jison/
https://github.com/tommmyy/l2js/wiki/Documentation
https://github.com/tommmyy/l2js/wiki/Documentation
https://github.com/tommmyy/l2js/tree/master/app/js/lscripts/landscape
https://github.com/tommmyy/l2js/tree/master/app/js/lscripts/landscape
http://www.csse.monash.edu.au/%7ejonmc/research/thesis.html
http://www.csse.monash.edu.au/%7ejonmc/research/thesis.html
https://nodejs.org/
http://www.warnertextilearchive.co.uk/

Manifold Learning Approach Toward
Constructing State Representation

for Robot Motion Generation

Yuichi Kobayashi(B) and Ryosuke Matsui

Department of Mechanical Engineering, Shizuoka University,
3-5-1 Johoku, Naka-ku, Hamamatsu, Shizuoka, Japan

kobayashi.yuichi@shizuoka.ac.jp

http://www.sensor.eng.shizuoka.ac.jp/~koba

Abstract. This paper presents a bottom-up approach to building inter-
nal representation of an autonomous robot. The robot creates its state
space for planning and generating actions adaptively based on collected
information of image features without pre-programmed physical model
of the world. For this purpose, image-feature-based state space construc-
tion method is proposed using manifold learning approach. The visual
feature is extracted from sample images by SIFT (scale invariant feature
transform). SOM (Self Organizing Map) is introduced to find appro-
priate labels of image features throughout images with different config-
urations of robot. The vector of visual feature points mapped to low
dimensional space express relation between the robot and its environ-
ment with LLE (locally linear embedding). The proposed method was
evaluated by experiment with a humanoid robot collision classification
and motion generation in an obstacle avoidance task.

Keywords: Developmental robotics · Humanoid robot · Manifold
learning · Image features

1 Introduction

One of the difficulties which autonomous robots face in non-structured environ-
ment is that they are not ready to unexpected factors and changes of their envi-
ronments. In actual applications, it is not robots themselves but human designers
or operators that detect, analyze and find solutions for the unexpected factors.
In other words, adaptability of autonomous robots with current technologies is
not sufficient as to let them act in environments close to our daily life. One
promising approach to overcome the lack of adaptability of autonomous robots
is to build intelligence of robots in a bottom-up manner, known as developmental
robotics [13] and autonomous mental development [20]. They have a common
idea for building robot intelligence, e.g., stress on embodiment, self-verification
[17], mimicking developmental process of human (infant) [15], etc.

c© Springer-Verlag Berlin Heidelberg 2016
N.T. Nguyen et al. (Eds.): TCCI XXIV, LNCS 9770, pp. 101–116, 2016.
DOI: 10.1007/978-3-662-53525-7 6

102 Y. Kobayashi and R. Matsui

Among various concerns in the field of developmental robotics, problem of
building state space, with which a robot can plan and control its action, is rather
important but has not been gathering sufficient attention. One reason for this is
that imitation learning, generating appropriate robot motions based on human
demonstration [2,3], is much more effective to generate complex motions with
high degrees of freedom. It is known that acquisition of motion without any
pre-defined knowledge on robot tasks, e.g., by reinforcement learning [18,19],
takes numerous trials. Thus, it is not directly applicable to continuous high-
dimensional control problems, except for some cases where motions of robots are
restricted to continuous trajectory generation without interacting with objects
(e.g., [4,5]). The problem of constructing state space, however, is remaining to
be of great importance for autonomous robots to finally generate, control and
modify their motions adaptively, even though prototype motion could be built
by imitation initially.

Generation of space which is suitable for robot motion learning has been
investigated from various viewpoints. One example of space construction is
related to visual attention [6], where sequences of successful motions had been
provided with robot in advance. Poincaré map is another example of abstract
representation for complex robotic behavior learning [14], where periodic walking
pattern by a biped robot was considered.

Apart from researches on acquisition of behavior of robot itself, such as walk-
ing, jumping, and standing up, state space construction has not been regarded as
an important issue. In general, configurations of objects and robots are assumed
to be observable in researches on manipulating objects, where positions and pos-
tures of objects in the Cartesian (world) coordinate system are used as a solid
base.

But in the real world application, measurement of 3D configurations of
objects is difficult. It contains difficulties in multiple levels:

1. The framework of 3D configuration measurement inherently requires mea-
suring precise shape of an object, but it is difficult to measure whole shape
of an object because measurement by camera or laser scanner is normally
unilateral.

2. Spatial relation between robot and object is generally very important for both
object manipulation and collision avoidance, whereas an object is more likely
to be occluded by the robot when the robot is approaching to the object.

3. Deformation of object is normally not considered or requires specific model for
mathematical analysis. But it is difficult to precisely model the deformation.

From the viewpoint of the developmental robotics, the 3D representation in the
world coordinate is not a sole way to express the state for a robot. If a robot
can build representation of its environment based only on what it can verify by
itself, the representation might not suffer from the above-mentioned difficulties
(as can be seen in a learning approach [7]).

This paper presents an approach to the interest of building a representation
of a robot for motion planning and control in an adaptive way without any pre-
defined knowledge. To consider relation between the robot and its environment,

Manifold Learning Toward Constructing State for Motion Generation 103

image features based on SIFT (Scale Invariant Feature Transform) [12] are used.
Image feature-based learning of robot behavior was presented in [9], but it did
not deal with relation between an object and the robot with a quantitative
representation. In this paper, application of a manifold learning is introduced,
which enables not only to classify state of the robot but also to evaluate how
much the robot is close to a certain state. In addition, the obtained representation
will be utilized for motion generation of collision avoidance.

Locally Linear Embedding (LLE) [16] is used as a means for manifold learning
because continuous property of the system can hold only in a local region in the
problem of recognition of environment by a robot. For the application of LLE,
vector generation based on SIFT-features matching is proposed to deal with
a problem that keypoints of SIFT are not consistent through all the images.
The proposed framework is evaluated in experiment using a humanoid robot,
preceded by preliminary verification of LLE framework with simulated image
vectors.

The remainder of the paper is organized as follows. The problem settings are
described in Sect. 2. The proposed method of constructing state representation
including its application to motion generation is described in Sect. 3.

2 Problem Settings

Images obtained by CCD camera attached at the head of a robot are considered
as input to the robot system, as indicated in Fig. 1. Humanoid robot NAO [1] is
considered both in simulation and experiment. The images contains part of body
of the robot, an object which can contact with the robot’s body and background
which are not affected by configuration of the robot. The configuration of the
robot arm is shown in Fig. 2. Shoulder roll joint and shoulder pitch joint are con-
trolled (φ1 and φ2), while other two joints are fixed throughout the experiment.
This implies that the motion of the robot arm is constrained on a plane which
is vertical to optical axis of the CCD camera. A red plane in Fig. 1 is parallel to
the motion constraint plane.

Image features are extracted from each image, as shown as circles in the right
hand of Fig. 1. Keypoints of SIFT [12] are used as image features. The robot does
NOT have knowledge on properties of image features, that is, the robot does not
have labels of what is object or what is robot’s body in the image in advance.
The robot collects images while changing configuration of its arm. Position of
the object can also differ irrelevantly to the position of the arm.

Objective of the robot system is to construct a space which provides the
following functions:

1. Estimating closeness of its hand to the object
2. Predicting collision of its hand with the object

The first function allows the robot to plan its hand trajectory so as not to be
too close to the object, when the robot intends to achieve a task while avoid-
ing collision with obstacles. The second function does not directly allows the

104 Y. Kobayashi and R. Matsui

Fig. 1. Humanoid robot NAO and its image (Color figure online)

Fig. 2. Configuration of robot arm (right)

robot to avoid collision, but can contribute to the ability by integration of other
techniques, e.g., prediction of robot’s hand in the image space.

3 Manifold Learning Using Image Features

Manifold learning by LLE is applied to the SIFT keypoints to obtain a contin-
uous space which reflect relation between the hand and its environment. Each
keypoint has 128-dimensional feature vector that can be utilized for identifica-
tion and matching to other keypoints. By the matching process, a keypoint can
be traced through multiple images if it is extracted commonly in those images.
One problem in generating a vector for manifold learning is that feature vector
of a keypoint is not consistent in different images due to change of posture of the
arm. The arm, which consists of serial links, inevitably change its posture even

Manifold Learning Toward Constructing State for Motion Generation 105

when the end of the arm is making translation. Under an assumption that each
keypoint tracks a certain part of the arm, a method for matching and labeling
is proposed using Self Organizing Map (SOM) [11].

Figure 3 shows an overview of the proposed state space construction app-
roach. Images captured by the camera at the head of the robot are source of
the process. SIFT keypoints provide vectors which express positions of feature
points in the images. A low-dimensional space is constructed based on the vector
by using LLE.

Fig. 3. Overview of state space construction

Hereafter, D denote dimension of image vector, N denote total number of
images and I(i) ∈ R

D, i = 1, · · · , N denote vector of image i. M(i) denote
number of keypoints in image i.

3.1 Matching and Labeling of Features

First, image vectors I(i), i = 1, · · · , N are used to generate a SOM. Let K denotes
total number of nodes in SOM. Image vectors are divided into sets by the nodes
of the SOM.

G(k) = {i|k = arg min
�

‖I(i) − w�‖2}, (3.1)

where wk ∈ R
D denotes weight vector of node k. G(k) denotes set of images

that are similar to wk. For each node, a representative image is decided as

īk = arg min
i∈G(k)

‖wk − I(i)‖2, k = 1, · · · ,K. (3.2)

Image īk is used for generating labels of keypoints. Labels are generated by
Algorithm 1. As a sequel to the labeling procedure, totally

∑K
k=1 M (̄ik) labels

are generated.
Although feature vector of a keypoint can differ by the change of the robot’s

configuration, it is likely that feature vectors in images with small differences are
similar. By using topological neighbor of SOM, correspondence between keypoint
labels can be found. Figure 4 indicates the idea of combining redundant labels.

106 Y. Kobayashi and R. Matsui

Algorithm 1. Labeling of keypoints
for k = 1 to K do

Select representative image īk for node k
for � = 1 to M (̄ik) do

Select keypoint � in image īk
for i = 1 to N do

if i /∈ G(k) then
Apply SIFT matching with keypoint � to all keypoints in image i
If matching found, label it

end if
end for

end for
end for

For representative node īk in node k, feature vectors of keypoints are averaged
within matched keypoints of images i ∈ G(k). Using the averaged feature vectors,
labels are integrated by Algorithm 2.

Fig. 4. Matching of image features

By finding correspondence between neighbor nodes, labels which correspond
to the same part of the real world are integrated into one label.

3.2 Space Construction with LLE

Using the obtained labels in the previous section, vectors are defined as follows.
Let L denote the number of integrated labels. Keypoint information of image i

Manifold Learning Toward Constructing State for Motion Generation 107

Algorithm 2. Integration of labels
for k = 1 to K do

Find neighbor nodes of node k as i′ ∈ N (k)
for � = 1 to M (̄ik) do

for i′ = 1 to |N (k)| do
Apply SIFT matching with keypoint � by average feature vector
If matching found, record correspondence between � and the matched label

end for
If no matching found, remove label �

end for
end for
Integrate all labels using recorded correspondence

is converted to vector xi ∈ R
2L, where xi is defined by

xi = [u(i)
1 v

(i)
1 u

(i)
2 v

(i)
2 · · · u

(i)
L v

(i)
L]T . (3.3)

(u(i)
� , v

(i)
�) denotes position (image coordinate) of keypoint whose label is � in

image i. If keypoint whose label is � does not exist in image i, averages over all
images are used for (u(i)

� , v
(i)
�). Finally, data matrix for LLE is constructed as

H = [x1 x2 · · · xN] ∈ R
2L×N . (3.4)

LLE is a method which maps a high-dimensional vector (2L in this application)
to a low-dimensional vector while preserving local linear structure of each data
around its neighborhood. Weighting coefficient vi

j , j = 1, · · · , n for sample i,
where n denotes the number of neighborhood, is calculated so that the cost
function defined by the following is minimized.

ε1 =
N∑

i=1

‖xi −
n∑

j=1

vi
jx

i
j‖2, (3.5)

where xi
j denotes neighborhood sample of xi. A low-dimensional vector yi ∈

R
d, corresponding to xi, is calculated so that the following cost function is

minimized.

ε2 =
N∑

i=1

‖ yi −
n∑

j=1

vi
jy

i
j ‖2, (3.6)

where yi
j , j = 1, · · · , d denotes neighborhood of yi and d denotes dimension of

the low-dimensional space.

3.3 Motion Generation

Dynamic programming with discrete state representation [18] is applied for
motion generation. The state for motion generation is defined by the joint angle

108 Y. Kobayashi and R. Matsui

space. The discrete state s ∈ S is given by discretising the joint angles of the
robot (φ1, φ2) into Ns1 × Ns2 grids, where S denotes set of states and Ns1 and
Ns2 denote grid size for φ1 and φ2, respectively. Action a ∈ A is defined as four
directional transitions from a grid to its adjacent grids, where A denotes set of
actions. Let G ⊂ S denote set of goal states. The reward r(s, a) for s ∈ S and
a ∈ A is given by the following:

r(s, a) =

⎧
⎪⎨

⎪⎩

0, if s′ ∈ G

−100, if collision happens
−1, otherwise,

(3.7)

where s′ denotes the next state reached by action a from state s. Using
this reward setting, motion with minimum time (action-step) can be obtained
through the value iteration.

The value function V (s) is calculated by the Bellman equation with deter-
ministic state transition:

V (s) = max
a∈A

[r(s, a) + γV (s′)], ∀s ∈ S, (3.8)

where s′ denotes the next state after transition, γ(0 < γ ≤ 1) denotes the
discount factor. The action value function Q(s, a) is given by the following:

Q(s, a) = [r(s, a) + γV (s′)]. (3.9)

At every time step, the robot decides its action using the following the obtained
policy a = π(s), which is given by the following:

π(s) = arg max
a∈A

Q(s, a) (3.10)

Based on the policy, the robot moves its joint angles (φ1, φ2) toward its adjacent
grid value.

4 Experiment

The proposed representation was evaluated by experiment in two ways, with
simulated images and actual images obtained by a CCD camera attached at the
head of the robot. A motion generation of collision avoidance was also performed
based on dynamic programming.

4.1 Evaluation with Simulated Image

Fundamental property of LLE was tested in conditions similar to the problem
setting. Virtual keypoints are generated as indicated in Fig. 5. It was assumed
that an object and the robot hand is captured in a image frame of 400 × 400
[pix] size. There were 10 keypoints to be detected on the object, 10 on the robot

Manifold Learning Toward Constructing State for Motion Generation 109

hand and 5 in background. The positions of the object and the hand were varied
with uniform distribution for collecting samples. Total number of images was set
as N = 1000. Number of keypoints was set as m = 25. Thus, data matrix for
LLE was H ∈ R

50×1000. Dimension of the mapping was set as d = 3. To simulate
matching error of keypoints, position information of 10 % of the keypoints in the
data vector were removed. That is, 10 % of the elements of H was replaced by
the average value of positions of the corresponding keypoint.

Fig. 5. Simulated keypoints

The result of mapping by LLE is depicted in Figs. 6 and 7. The two figures
show the same point information from different perspectives. Y1, Y2 and Y3 in
the figures correspond to low-dimensional vector y in (3.6) and hence they do
not have units. The colors of the points denote distances between the object and
the hand in the corresponding images (Note that original distance information
in pixel with maximum 550 pixel was converted to 64 levels.). It can be seen in
the figure that one direction in the feature space reflect the distance between
the object and the hand.

4.2 Evaluation with Real Image of Humanoid

The evaluation in the previous section did not include keypoints extraction and
matching. In the experiment with the humanoid robot, the proposed method
described in Sect. 3 was tested. Image size was 640 × 480. The number of nodes
of SOM was set as 6 × 6. Joint angles φ1 and φ2 were changed an interval
of 2 [deg]. Position of the object was changed simultaneously and totally 732
images were taken. (Fig. 8 in original manuscript was removed.) After labeling
(Algorithm 1) and integration of labels (Algorithm 2), 1674 labels were obtained.

Images assigned to a node as example are shown in Fig. 8. It can be seen
that similar images, corresponding to close positions of the object and the hand,
were assigned to a node. Two examples of matching of keypoints are shown in
Fig. 9. All of the four images were assigned to a node, while the upper images
are the same ones. Lines in the figure indicate matching of keypoints. It can be

110 Y. Kobayashi and R. Matsui

Fig. 6. Distance from object

Fig. 7. Distance from object (different perspective)

Table 1. Discrimination of collision with LLE

Collision [%] No collision [%]

Recognized as collision 95/115 [82.6] 111/617 [18.0]

Recognized as no collision 20/115 [17.4] 506/617 [82.0]

understood that matching results were different even within images belonging
to the same node.

Manifold Learning Toward Constructing State for Motion Generation 111

Fig. 8. Images stored in a node in SOM

Table 2. Discrimination of collision with PCA

Collision [%] No collision [%]

Recognized as collision 63/115 [54.8] 132/617 [21.4]

Recognized as no collision 52/115 [45.2] 485/617 [78.6]

Fig. 9. Matching result of SIFT keypoints within a node

Figure 10 shows 3-dimensional mapping obtained by the proposed method.
Each point (circle or cross) indicates a vector obtained by converting vector xi

by LLE. Cross indicates that the image corresponds to a situation where the hand
is contacting with the object. Circle indicates that there is no contact. It can be

112 Y. Kobayashi and R. Matsui

Fig. 10. Obtained mapping with LLE

seen that crosses are concentrating around a certain region. Distance between the
object and the hand, however, could not be seen in the obtained map.

Test images, which were not contained in the images for training (generating
LLE mapping), were mapped onto the obtained space. Boxes in Fig. 11 indicates
test samples, where corresponding images are also displayed. It can be seen that
image in which the hand is the most distant from the object is located at the
furthest from the region with dense crosses. Images in which the hand is closer
are gradually located closer in the mapped space. But there is a jump at the last
step to contact with the object into the region with dense crosses.

Using the obtained map, classification of collision was evaluated. Collision of
the hand with the object was classified by whether a sample is included in the
sphere whose center is the average of the crosses. The optimal radius was set as
r = 0.74, which was found empirically so that the discrimination performance is
the best. Table 1 shows the classification result.

For comparison, a linear mapping was also implemented. Figure 12 shows the
result of mapping with PCA (Principal Component Analysis) using the same
data matrix. Crosses, corresponding to contact of the hand with the object, are
more dispersing compared with Fig. 10. Classification result with PCA is shown
in Table 2. It can be seen that consideration of nonlinearity brings conspicuous
difference of classification performance.

4.3 Obstacle Avoidance

A sequence of snapshots of motion generated by DP described in Sect. 3.3 is
shown in Fig. 13. Grid sizes for the discrete state space was set as Ns1 = 8

Manifold Learning Toward Constructing State for Motion Generation 113

Fig. 11. Prediction of collision with test sample

Fig. 12. Mapping result with PCA

and Ns2 = 12. Large negative reward was given for collision based on (3.7),
where collision was judged by a correct recognition result for images adopted in
Table 1. (1) in the figure denotes the initial configuration of the robot hand. The
tip of the hand is located above the object in (11), corresponding to the target

114 Y. Kobayashi and R. Matsui

Fig. 13. Snapshots of obstacle avoidance motion

configuration. It can be seen that the robot hand could reach a destination while
avoiding collision with the object, given that appropriate evaluation of closeness
(or collision) with the object.

5 Discussion

5.1 Labeling of Keypoints

The labels of keypoints obtained by the proposed method was still numerous
even after integration of Algorithm 2. It is possible to consider reliability of the
keypoints by evaluating frequency of appearance. It should be also considered
that there are not so many keypoints stably detected on the hand of NAO. From
Fig. 9 it is also clear that mismatching of keypoints was often happening, which
deteriorated the LLE mapping. Not only improving reliability of image features
(e.g., using PCA-SIFT [8]) but also applying multiple kinds of features will be
important to generate good data matrix.

Mismatching of keypoints is substantially inevitable when a part of the robot
changes its posture. Therefore, it will be important to expand the framework to
a more flexible one, which can continuously map a vector whose elements are
partly lost.

5.2 State Space Representation Toward Motion Generation

Motion of the robot hand could be generated by dynamic programming frame-
work, but it is not sufficient as a framework for robot motion generation since

Manifold Learning Toward Constructing State for Motion Generation 115

LLE space was not fully utilized for evaluation of relation between the robot hand
and the object. In the experiment described above, only image information cor-
responding to collision was utilized for collision avoidance. However, when LLE
reflect more precise relation between the object and the hand, contact of the
hand with the object can be predicted using internal simulation using the LLE
space.

It is possible to extract keypoints that are relevant to the robot hand by
finding correlation between motion of the keypoints and control command (pre-
sented in [21,22]). Using the technique, virtual input vector can be generated by
changing only position information of keypoints that are relevant to the robot
body. The proposed LLE state space can be further utilized by this extension.

6 Conclusions

In this paper, an adaptive approach to building representation of a robot for
motion planning, especially collision avoidance, based on a manifold learning
method. This approach does not require any specific knowledge on the robot
and its environment regarding the collision avoidance motion planning, while
only relying on actually-observed sensor information.

In the evaluation of simulated image vectors, it was verified that the distance
between the robot hand and the object was reflected in the map. In the evaluation
of experiment with real images, the robot could classify images whether the robot
is colliding with the object based on the obtained mapping. Moreover, manifold
learning turned out to be superior to linear dimensionality reduction, PCA. The
proposed framework was demonstrated through motion generation of collision
avoidance. Further improvement of prediction of collision and evaluation of close-
ness to collision will be required for more general and various motion generation.
Apart from motion planning of collision avoidance, e.g., manipulating objects,
additional structures such as one which enables flexible extention of robot body
schema (e.g.,[23]) will be required for approaching to more autonomous robots.

As a next step, it will be required to extend the idea of bottom-up construc-
tion of a low-dimensional space to the case where features frequently disappears.
Probabilistic framework (e.g. [10]) can be a promising tool for this extension.

Acknowledgment. This work was partly supported by Kayamori Foundation of
Informational Science Advancement.

References

1. Aldebaran Robotics. Technical Specifications Document (2009). http://www.
aldebaran-robotics.com/

2. Argall, B.D., Chernova, S., Veloso, M., Browning, B.: A survey of robot learning
from demonstration. Robot. Auton. Syst. 57(5), 469–483 (2009)

3. Minato, T., Thomas, D., Yoshikawa, Y., Ishiguro, H.: A model to explain the emer-
gence of imitation development based on predictability preference. IEEE Trans.
Autonomous Mental Develop. 4(1), 17–28 (2012)

http://www.aldebaran-robotics.com/
http://www.aldebaran-robotics.com/

116 Y. Kobayashi and R. Matsui

4. Theodorou, E., Buchli, J., Schaal, S.: A path integral approach. In: Proceedings
of IEEE International Conference on Robotics and Automation, pp. 2397–2403
(2010)

5. Sugimoto, N., Morimoto, J.: Application to humanoid robot motor learning in the
real environment. In: Proceedings of IEEE International Conference on Robotics
and Automation, pp. 1311–1316 (2013)

6. Minato, T., Asada, M.: Towards selective attention: generating image features by
learning a visuo-motor map. Robot. Auton. Syst. 45(3–4), 211–221 (2006)

7. Prankl, J., Zillich, M., Vincze, M.: 3d piecewise planar object model for robotics
manipulation. In: 2011 IEEE International Conference on Robotics and Automa-
tion (ICRA), pp. 1784–1790 (2011)

8. Ke, Y., Sukthankar, R.: A more distinctive representation for local image descrip-
tors. In: Computer Vision and Pattern Recognition (2004)

9. Kobayashi, Y., Okamoto, T., Onishi, M.: Generation of obstacle avoidance based
on image features and embodiment. Intl. J. Robot. Autom. 24(4), 364–376 (2012)

10. Somei, T., Kobayashi, Y., Shimizu, A., Kaneko, T.: Clustering of image features
based on contact and occlusion among robot body and objects. In: Proceedings of
the 2013 IEEE Workshop on Robot Vision (WoRV2013), pp. 203–208 (2013)

11. Kohonen, T.: Self-Organizing Maps. Springer, Heidelberg (1995)
12. Lowe, D.G.: Object recognition from local scale-invariant features. In: Proceedings

of IEEE International Conference on Computer Vision, vol. 2, pp. 1150–1157 (1999)
13. Lungarella, M., Metta, G., Pfeifer, R., Sandini, G.: Developmental robotics: a sur-

vey. Connect. Sci. 15, 151–190 (2003)
14. Morimoto, J., Nakanishi, J., Endo, G., Cheng, G., Atkeson, C.G., Zeglin, G.:

Poincaré-map-based reinforcement learning for biped walking. In: Proceedings of
IEEE International Conference on Robotics and Automation (2005)

15. Oudeyer, P.Y., Kaplan, F., Hafner, V.: Intrinsic motivation systems for autonomous
mental development. IEEE Trans. Evol. Comput. 11(2), 265–286 (2007)

16. Saul, L.K., Roweis, S.T.: Think globally, fit locally: unsupervised learning of low
dimensional manifolds. J. Mach. Learn. Res. 4, 119–155 (2003)

17. Stoytchev, A.: Some basic principles of developmental robotics. IEEE Trans.
Autonomous Mental Develop. 1(2), 122–130 (2009)

18. Sutton, R.S., Barto, A.G.: Reinforcement learning: an introduction (Adaptive
Computation and Machine Learning). In: A Bradford Book (1998)

19. Kober, J., Bagnell, D., Peters, J.: Reinforcement learning in robotics: a survey.
Intl. J. Robot. Res. 11, 1238–1274 (2013)

20. Weng, J., McClelland, J., Pentland, A., Sporns, O., Stockman, I., Sur, M., Thelen,
E.: Autonomous mental development by robots and animals. Science 291, 599–600
(2001)

21. Fitzpatrick, P., Metta, G., Natalc, L., Rao, S., Sandini, G.: Learning about objects
through action - initial steps towards artificial cognition. In: Proceedings of IEEE
International Conference on Robotics and Automation, pp. 3140–3145 (2003)

22. Stoytchev, A.: Toward video-guided robot behaviors. In: Proceedings of the 7th
International Conference on Epigenetic Robotics, pp. 165–172 (2007)

23. Kobayashi, Y., Hosoe, S.: Planning-space shift motion generation: variable-space
motion planning toward flexible extension of body schema. J. Intell. Robot. Syst.
62(3), 467–500 (2011)

The Existence of Two Variant Processes
in Human Declarative Memory: Evidence
Using Machine Learning Classification

Techniques in Retrieval Tasks

Alex Frid1(&), Hananel Hazan2, Ester Koilis1, Larry M. Manevitz1,
Maayan Merhav3, and Gal Star1

1 Computer Science Department, University of Haifa, Haifa, Israel
alex.frid@gmail.com, esterkoilis@yahoo.com,

manevitz@cs.haifa.ac.il, gal.star3051@gmail.com
2 Network Biology Research Laboratory, Technion, Haifa, Israel

hananel@hazan.org.il
3 German Center for Neurodegenerative Diseases (DZNE),

Magdeburg, Germany
themaayan@yahoo.com

Abstract. This work use supervised machine learning methods on fMRI brain
scans, taken/measured during a memory-retrieval task, to support establishing
the existence of two distinct systems for human declarative memory (“Explicit
Encoding” (EE) and “Fast Mapping” (FM)). The importance of using retrieval is
that it allows a direct comparison between exemplars designed to use EE and
those designed to use FM. This is not directly available under acquisition tasks
because of the nature of the purported memory systems since the tasks are
necessarily somewhat distinct between the two systems under acquisition. This
means that there could be a confounding of the distinction in the task with the
difference in the representation and mechanism of the internal memory system
during analysis. Retrieval tasks, on the other hand allow for identity of task.
Thus this work fills a lacuna in earlier work which used memory acquisition
tasks. In addition, since the data used in this work was gathered over a two day
period, the classification methods is also able to identify a distinction in the
consolidation of the memories in the two systems. The results presented here
clearly support the existence of the two distinct memory systems.

Keywords: Machine learning � Classification � Functional Magnetic
Resonance Imaging (fMRI) � Feature selection � Support vector machines �
Decision trees � Radial basis function kernel � Declarative memory �
Consolidation � Semantic memory � Informational biomarkers

1 Introduction

Human declarative memory is defined as the conscious recollection of facts and events
[1]. Under the theory of declarative memory systems, novel information is encoded into
the memory using, amongst other brain parts, the hippocampus [2]. In this study,

© Springer-Verlag Berlin Heidelberg 2016
N.T. Nguyen et al. (Eds.): TCCI XXIV, LNCS 9770, pp. 117–133, 2016.
DOI: 10.1007/978-3-662-53525-7_7

standard, hippocampal dependent memory is represented by “Explicit Encoding (EE)”
procedure. According to memory transformation theories of declarative memory, the
encoded information is slowly transferred from the hippocampus to the neo-cortex
where it becomes permanently stored [3, 4]. Over time, the initially hippocampal
dependent memories become independent of the hippocampus. It has been suggested
that this re-organization process is done during sleep [5].

Amongst toddlers, the process of rapid language acquisition occurs prior to the full
development of the hippocampus [6, 7]. Moreover, some evidence from hippocampal
injured subjects demonstrated an ability to acquire information which seems to have
declarative-like characteristics, despite severe damages in the hippocampus [8, 9] and
so, must involve a different brain network than the one which engages the hippocampus
This alternative learning mechanism can be acquired via “Fast Mapping (FM)”. It is
unclear if the memory representations following FM undergo consolidation processes
overtime, as do memories gained through EE. However, since it was shown that
patients with hippocampal damages as well as healthy controls could learn and store
information acquired via FM [8, 9], the scheme used to explain memory consolidation
of declarative memories cannot be applied for FM in a straightforward manner.

In this work we aim to demonstrate the distinctiveness of brain systems, which
support EE and FM memory process, by extracting activity patterns directly from brain
data, using Functional Magnetic Resonance Imaging (fMRI) method. fMRI captures
information from thousands of different localities (voxels) of the brain, simultaneously.
Then multivariate pattern analysis approach (MVPA) [10] utilizes these activities by
looking for changes in Blood Oxygen Level-Dependent (BOLD) signal across different
voxels. Different methods can be used for analysis on such complex data depending on
the question of study (retrieval or decoding stimuli, mental states, behavior and other
variables of interest). A growing number of studies [11–14] shows some of the
capability in using machine learning methods for analysis of neuroimaging data.
Moreover, the feasibility to achieve successful results using machine learning on fMRI
multivariate data is not trivial and relies on the sensitive choice of features to be
considered in the analysis.

In this work we focused on classification techniques, in particular using SVM and
decision trees. The overriding motif was that if machine learning can distinguish
between tasks from the fMRI data, then they are performed differently.

2 Related Work

The mechanism of FM was examined among healthy individuals [14, 15]. It was
shown that two learning mechanisms, EE and FM, can be discriminated from fMRI
data during memory acquisition, using machine learning based classifiers. In addition,
scans taken while memory acquisition were tested for success in a consecutive retrieval
task, outside the fMRI machine. Successful accuracy results were achieved when
identifying scans corresponding to correct and incorrect retrieval, within the EE group
and within the FM group, for each participant separately and cross-participant.

However, the different nature of the procedures used for acquisition of information
(EE and FM), did not allow for complete control over the task with regard to the

118 A. Frid et al.

behavioral experience. Therefore, the possibility remained that the successful classi-
fication obtained in the experiment was a result of differences in the acquisition pro-
cedures and not in the learning mechanisms.

To overcome this limitation, in this work we examine data obtained in another
study [16]. There, the neural correlates of FM and EE were explored during a retrieval
procedure, designed to be identical for both mechanisms. In addition, the study focused
on overnight re-organization of memory representations, following both EE and FM,
by comparing recent memories to remote ones (obtained in the previous day). Findings
suggested that, despite the identical retrieval tasks, memories that were gained through
FM induced distinct neural substrates from those involved EE [16]. While retrieval of
data learned through EE engaged the expected hippocampal and vmPFC related net-
work, retrieval of information acquired through FM immediately engaged an ATL
related network, typically supporting well-established semantic knowledge. In addition,
analysis of neuroimaging data associated with EE showed the expected overnight
changes in network connectivity where for FM minimal overnight changes were pre-
sented. The analysis was performed by a multivariate technique of Spatiotemporal
Partial Least Squares (PLS), helping to identify assemblies of brain regions that co-vary
together.

3 Current Study

In this study, fMRI brain data were captured during the retrieval of memories, acquired
through either EE or FM. The goal is to provide a biomarker directly from these fMRI
scans using machine learning methods. Such classification ability based on the neural
activity data gives strong evidence for the existence of distinct neural processes
associated with EE and FM.

Multivariate classification is performed on fMRI features obtained during memory
retrieval where tasks performed by the participants are identical for EE and FM. We
also perform classification to explore the overnight re-organization processes following
both learning mechanisms. Classification was performed over brain scans which were
acquired either 30 min before scanning (recent memory) or a day before scanning
(remote memory).

Regarding the distinction between the two memory processes during retrieval, we
address two questions:

• Is it possible to distinguish between the two learning modes (i.e. EE and FM) based
on neural activity information, collected during the retrieval of memories?

• Is it possible to distinguish between items learned recently and remotely?

4 Experiment Procedure

4.1 Participants

The experiment, full details of which can be seen in Merhav et al. [16], was conducted
in Rotman Research Institute at Baycrest, Canada. Here, we mention the salient points.

The Existence of Two Variant Processes in Human Declarative Memory 119

22 participants were recruited and randomly assigned to one of the two groups (EE
or FM). All participants were English native speakers, right-handed and had no history
of neurological or psychiatric disorders and no learning disabilities. A written informed
consent was obtained according to Baycrest’s Research Ethics Board’s guidelines.
Gender and age distributions (10 females in each group) were similar in the FM and in
the EE groups, respectively. The two groups also did not differ on the number of years
of education, I.Q. estimates and WMS-III Verbal Paired Associates retention.

4.2 Experiment Paradigm and Procedure

22 healthy adult participants were randomly assigned of one to two groups (EE or FM).
On day 1 the participants learned 50 new unfamiliar picture-word associations. On day

Fig. 1. (A) The experiment structure. (B) Examples of acquisition through FM (left) and
through EE (right). (C) Retrieval test design which took place inside the fMRI scanner.

120 A. Frid et al.

2 (24 h later) they learned another set of 50 new picture-word associations. A retrieval
memory test for all the 100 new picture-word associations took place 30 min after the
acquisition of the second set of associations. During the retrieval, brain activity was
scanned (Fig. 1A). Therefore, the participants were tested on both recently and
remotely encoded information. The two learning tasks (EE / FM) were designed dif-
ferently due to different nature of both learning procedures (Fig. 1B).

The retrieval task was designed as an event related fMRI experiment in which
memory for all 100 items was assessed via an associative four-alternative forced choice
recognition task. The retrieval procedure was identical for EE and FM as it was
performed inside the scanner (Fig. 1C). Retrieval trial of each item was 12.5 s long and
contained the following intervals: blank screen (1 s), target label as text and auditory
input (1.5 s), 4 choice pictures appeared on screen, below the target label (2.5 s), the
word “choose” appeared onscreen and participants had to respond by selecting the
appropriate key (5 s), confidence rating (2.5 s).

The experiment was intentionally designed to have participants perform either EE
or FM, rather than perform both EE and FM tasks. It was important that learning
through FM will be implicit and unintentional, so participants should not know that the
task involves memory. However, in EE, participants are explicitly asked to remember
the name of the item.

4.3 Data Acquisition and Pre-processing

The participants were scanned using the Siemens Trio 3T scanner, at Baycrest Institute.
They acquired T2*-weighted images, covering the whole brain using an echo-planar
imaging (EPI) sequence of 50 slices, with repetition time (TR) of 2500 ms, echo time

Fig. 2. Examples for pre-processing steps on fMRI data. (A) Correction of individual’s
hemodynamic responses slices acquired aligned to the exact same time [18]. (B) Performance of
spatial smoothing on fMRI volume taken from single participant.

The Existence of Two Variant Processes in Human Declarative Memory 121

(TE) of 27 ms, 64 � 64 matrix, slice thickness of 3.5 mm and a field of view (FOV) of
200 mm. The procedure was designed as an event related fMRI study.

The pre-processing steps included conversion to 4-dimensional AFNI format [25],
followed by slice timing correction using the first slice as a reference (Fig. 2A), latter
movement correction for unintended head motions and spatial smoothing with 6 mm
FWHM Gaussian kernel to increase signal-to-noise ratio was applied (Fig. 2B).
Finally, the individual participant’s data was converted to a standard coordinate system
(Talairach [26]) to allow data analysis across individuals.

The scanning of each participant was done during four runs, creating a joint dataset
out of four time-series datasets, with approximately 150 data volumes each of size
109 � 91 � 91, resulted as a dataset with approximately 600 data volumes. Therefore,
each data volume (data point) contained 1490580 different voxels. We demonstrate the
structure of the collected data in Fig. 3.

5 Methods

The data points used for analysis were constructed using scan data obtained for TR=2.
This temporal cut was selected after performing pre-test classification as suggested in
Atir-Sharon et al. work [14], taking into consideration the accordance to the expected
HRF response.

We performed further pre-processing over the time-series data. At first, all
non-brain voxels were removed using a mask. This was done by selecting voxels from
the fMRI dataset that correspond to non-zero elements in the mask (creating data points
of approximately 200,000 voxels). Afterwards, linear de-trending was performed on
each participant’s data set and for each run separately in order to remove low frequency
signal intensity drifts.

Then, normalization over all scans was conducted. The normalization was done
voxel-wise using z-score for each participant separately. In our case, the combined
dataset involved scans from different groups and participants taken from different
distributions. Therefore, transformation of features from different scales to a single
scale, with consideration to the original distributions, was needed. The z-score method
considers the different distribution characteristics of every group [17], hence, it was
chosen as the normalization procedure. The z-score formula is presented in (1), where
z-val is the new z-scored value, f-val is the original feature value and (l, r) are the
mean and standard deviation values:

Fig. 3. 4-dimensional structure of AFNI format BRIK (Cox, 1996) file including 3-dimensional
dataset over time sequence.

122 A. Frid et al.

z-val ¼ f-val� lð Þ=r ð1Þ

For the mean and standard deviation computation in the z-score equation, several
assignments were tested: (i) from all scans in the dataset; (ii) from individual participants’
scans and (iii) from the distribution of scans marked as control (baseline) in the training
set. Best classification results were achieved by using the mean and standard deviation
normalization as computed from the distribution of baseline scans (option (iii)).

Each volume was represented as an individual data point in the dataset (i.e. each
voxel was considered as a feature). Since the amount of scans from EE and FM groups
was not equal, counter-balancing of the dataset was performed. This was done by
randomly sampling data points from the smaller group. This method was applied only
on the training set. (Otherwise, more weight would have been given to prediction
accuracies of duplicated data points against weight of accuracies for data points that
were not duplicated.) Therefore, the testing set was left untouched.

Machine learning classification techniques were used for data analysis. Considering
the high dimensionality of data used in the current study, feature selection procedures
were performed. The purpose of these procedures is to reduce the number of
feature-voxels used for multivariate classification analysis. Such reduction is meant to
remove irrelevant voxels and to improve training time.

There are several generic methods for selecting informative features. We aimed to
select the features that best discriminate between conditions based on their activation
values. It was achieved by ranking the importance of each feature according to the
ANOVA F-score value obtained for the corresponding contrast (e.g., Correct vs.
Incorrect Retrieval in FM condition) comparisons.

To find the optimal subset of features for analysis, we examined different sizes of
features sets starting from 10 features to full brain scans. Eventually, based on the
obtained accuracy values, the top 1000 voxels with highest F-scores were selected.
This relatively large number of features was chosen to include some weakly infor-
mative voxels which can contribute to an increase in classification rates [19].

In Fig. 4, we illustrate the extracted features in the form of a brain map. In this
example, we display selected subset of features for retrieval (Correct vs. Incorrect)
classification. This brain map is an example showing the voxels selected on a specific
individual’s fMRI data that belongs to the FM group. Although not reproduced here, a
detailed list of the top ANOVA chosen features for FM task shows the ATL area well
represented and this accords with current ideas of the location of the FM activity.

In the first stage, a cross-validation classification scheme using Support Vector
Machine classifier [20] with RBF (Radial Basis Function) kernel [21] was applied to
the selected features. Parameters that are not learnt directly within estimators can be set
by searching a parameter space for the best cross-validation score. Grid search for C
and gamma parameters was performed in the ranges of 2−5 to 215 and 2−15 to 23

respectively. Grid search was executed before training on a training portion of the
dataset to achieve increase in accuracy rates. A pseudo-code for the performed grid
search is presented in Fig. 5. In all runs parameters C and gamma were set to 1 and 2−3

respectively.

The Existence of Two Variant Processes in Human Declarative Memory 123

Fig. 4. Brain map displaying features selected for classification analysis

Fig. 5. Pseudo-code for the grid search procedure.

124 A. Frid et al.

In cases where the testing set consisted of scans that were taken from one group
only (i.e. all scans were EE or all scans were FM), a decision making function was
applied. We used majority voting method as a decision making function, defined as
follows: if the majority of the scans were rated correctly per participant, the accuracy
was set to 1, otherwise, the accuracy was set to 0.

The software used for the classification was developed using Python programming
language and based on LibSVM [22] and PyMVPA software packages [23]. In Fig. 6
we present a complete analysis flow diagram including all the relevant pre-processing
and processing stages.

Later we saw that this approach has several disadvantages in the context of this
problem: (i) a best kernel for the specific problem needs to be found, (ii) an exhaustive
parameter search need to be applied in order to optimize the parameters of the kernel
for a specific problem, and (iii) the initial dimension of the data is already high (1000
features after the feature selection process), so projection of this data into a much
higher space results in sparsity (due to the relatively small set of the data points) and
hence a poorer generalization during the margins maximization process (which in turn
results in a relatively high standard deviation). (In addition, as a practical matter, the
computational resources for SVM are rather high which limits the freedom of exper-
imentation of variants. In our work, the SVM methodology including the grid search
for the parameters “C” and “Gamma” as well as the cross-validation means the time
was of the order of several hours for each experiment. Further, it is important to notice

Fig. 6. Schematic diagram of the steps performed for whole brain analysis procedure. It consists
of the following stages: (A) The initial stage representing the neuroimaging data delivery.
(B) The pre-processing stage. (C) Data reduction stage: reducing data variability efficiently by
feature selection. (D) Learning stage: performing multiple times by cross validation procedure.

The Existence of Two Variant Processes in Human Declarative Memory 125

that for the current task (giving evidence for the existence of two declarative memory
systems) it is not a priority to optimize the classification capability of the system. That
is, it suffices to show that the systems can be separated in a significant manner.

Taking into account all of these issues we decided to also use a version of Decision
trees [27] with a Gini index [28] as a splitting criteria, a competitive machine learning
tool. That is, in our case, the splitting value for each node is calculated by choosing the

Fig. 7. An example of a Decision Tree trained on EE versus FM, on 70 % of the data and
limited to minimum of 7 observations per tree leaf, the result for this tree on the test data is 70 %.

Fig. 8. The Decision tree algorithm that used in this study for fMRI data classification

126 A. Frid et al.

value for each potential feature that maximizes the homogeneity of the “Gini impurity
function” over the split. (See [28] for a full description.) Note that machine learning
generation of decision trees have a long history [27, 28]. Its advantages include (i) it is
typically created in a “greedy” fashion and so needs much less computational
resources, both time and memory (ii) it creates its tree in the original feature space and
so this helps in later understanding of the classification. In addition, the use of alter-
native methods gives some additional insight into the results. The pseudo-code for tree
creation is given below in Fig. 8. (While the time complexity of such a tree can be as
the square of the number of features; in actual practice we found that the depth of the
tree is quite small, and so it scales linearly as the number of features. See Fig. 7 for a
typical tree. Including the cross validation calculations results in calculations that takes
less than a minute. We mention that this speedup suggests the possibility of using a
“wrapper approach” for the choice of features instead of the ANOVA and in future
work, we will explore this possibility.)

6 Results

6.1 Memory Performance

In the information retrieval test as fully presented in Merhav et al. [16], correct
response rates for the recent and for the remote associations were significantly above
chance (binomial tests, p < 0.0001, for both times-of-acquisition, in both learning
groups). Overall, participants from the FM group were less successful in retrieval,
compared to those from the EE group, in both the recent and the remote conditions (F
(1,30) = 12.2, p < 0.005).

In both groups, recent items were better recognized than remotely presented items
(F(1) = 9.12, p = 0.005) with no significant interaction between the time of acquisition
and the learning mode (F(1,15) = 0.334, p = 0.565).

6.2 Classification

First, we addressed the question of classifying scans obtained during correct and
incorrect retrieval. Using the proposed classification scheme, we performed 4-fold
(leave one run out) cross-validation within participants. However, the mean values of
classification accuracy were close to the chance level for both groups (EE and FM). We
theorized that the reason could be the existence of two additional different sub-groups,
recent and remote acquisition, within each of the initial groups.

Accordingly, we classified correct and incorrect scans within each possibility: EE
recent, EE remote, FM recent, FM remote. For each possibility we chose 10 % of all
data points randomly as a testing set. The rest of the data points were used for training.
Then, 10-fold cross validation was performed. We report the values for mean and
standard deviation of classification accuracy over 10 cross-validation folds for EE in
Table 1 and for FM in Table 2.

These results show that a trained classifier was able to distinguish scans obtained
during correct and incorrect word retrieval within each group. The accuracy is higher

The Existence of Two Variant Processes in Human Declarative Memory 127

for classification of scans for words learned recently, rather than for words learned
remotely. Furthermore, the discriminating ability is better within EE group rather than
within FM group. From Tables 1 and 2 we see that some significant change has taken
place in the activation overnight for EE; and not much can be seen in FM.

This is in accordance with the current idea of how EE and FM are stored; i.e. FM is
directly stored in cortex and EE initially involves the hippocampus and over some time
undergoes consolidation into the cortex. It is possible that there is more variation in the
specific activations in the prior to consolidation voxels than in the cortical ones; ac-
cordingly more of the ANOVA voxels are in the hippocampus. This would help
account for the lowered accuracy in EE after time as seen in Table 1 and the continued
lower accuracy in FM in Table 2. However, clarification of this point will require
further experimentation.

Next, we classified whether the process used for information acquisition was EE or
FM using only scans from the successful retrieval attempts in the behavioral experi-
ment. We chose randomly 10 % from all these scans of all participants as a testing set.
The rest of these scans were used as a training set. Under this protocol there is
substantial training data from each participant. Table 3 shows that in this case EE and
FM scans can be very well distinguished.

Table 1. Correct vs. Incorrect classification within Explicit Encoding (EE) using 10-fold cross
validation.

Mean accuracy Standard deviation

Recent 0.708 0.09
Remote 0.584 0.067

Table 2. Correct vs. Incorrect classification within Fast Mapping (FM) using 10-fold cross
validation.

Mean Accuracy Standard deviation

Recent 0.599 0.063
Remote 0.55 0.068

Table 3. EE vs. FM (using only scans with correct retrieval) random scan selection
cross-validation.

Testing set selection method Mean accuracy Standard deviation

Random selection 0.937 0.069

128 A. Frid et al.

These results raise the question of whether the representation of all the participants
in the training set is crucial to the classification success. That is, can a machine learning
classifier, trained over the collected data, successfully distinguish which label to assign
to a new individual’s scan, despite the fact that the classifier has never seen data from
this participant. To answer this question, we performed a leave-one-participant-out
classification. This was done across all 16 (one from EE and one from FM) participants
in a cross-validation manner (leave one out). Note that per iteration, the scans in the
testing set are all EE or all FM. Therefore, we were able to use the majority voting
method for this analysis. The results averaged across all participants presented in
Table 4.

Table 4. EE vs. FM (using only scans with correct retrieval scans) across participants using
16-fold cross-validation

Testing set selection method Mean accuracy Standard deviation

Leave one
participant out

0.638 0.07

Table 5. EE versus FM Confusion Matrix, average accuracy is 73 %

EE FM

EE 67.88 ± 4.68 32.12 ± 4.68
FM 22.68 ± 3.65 77.32 ± 3.65

Table 6. Recent (EE versus FM) Confusion Matrix, average accuracy is 70 %

EE FM

EE 0.6425 ± 0.0738 0.3575 ± 0.0738
FM 0.2516 ± 0.0568 0.7484 ± 0.0568

Table 7. Remote (EE versus FM) Confusion Matrix, average accuracy is 68 %

EE FM

EE 62.56 ± 7.54 37.44 ± 7.54
FM 25.71 ± 5.15 74.29 ± 5.15

Table 8. Recent versus Remote Confusion Matrix, average accuracy is 61 %

Recent Remote

Recent 60.45 ± 4.29 39.55 ± 4.29
Remote 38.99 ± 4.97 61.01 ± 4.97

The Existence of Two Variant Processes in Human Declarative Memory 129

Tables 5, 6, 7, 8, 9 and 10 presents the classification results using 1000 best
features selected by ANOVA F-score from the whole brain using the alternative
Decision Tree methodology. To avoid over-fitting a minimum of 7 observations per
tree leaf was required. All the results were generated using 80 cross-validation cycles
with randomly chosen scans for testing and training. (The division was 30 % for testing
and 70 % for training.)

Tables 5, 6 and 7 show how the decision trees succeed in separating EE from FM.
In all cases (both all data and separated by time since acquisition) they can be separated
in a significant fashion.

Tables 8, 9 and 10 relate to the issue of consolidation. The general conception
(“standard model” [1] is that EE undergoes a transition between storage very dependent
on the hippocampus to one based on the cortex; whereas under FM this process may be
quite different. Comparing Tables 9 and 10, this is borne out.

In summary, we see that these results strongly affirm the distinction between EE
and FM. In addition, we see that the retrievals between recent and remote are distin-
guishable only in EE. This indicates that re-organization takes place in the time frame
of the experiment for EE examples; while we were unable to discern such a distinction
for the FM mechanism. This corresponds to the theoretical expectation of the two
system and further supports their existence.

7 Discussion and Conclusions

In this work, we showed that it is possible to identify correct and incorrect retrieval of
memories acquired through two learning mechanisms: either Explicit Encoding (EE) or
Fast Mapping (FM) directly from neuroimaging data, using machine learning tech-
niques. The findings suggest (Tables 1 and 9) that it is easier to identify retrieval
success and failure for information acquired recently rather than for information after a
period of time through EE mechanism. At the same time, no significant change
(Tables 2 and 10) between retrieval results of recent and remote acquisition was seen
within the FM mechanism. This may indicate that FM does not engage reorganization
processes during the 24 h since encoding.

It was also observed that one could directly classify which memory system was
used regardless of when the memory was acquired (Tables 5, 6 and 7).

Table 9. EE (Recent versus Remote) Confusion Matrix, average accuracy is 63 %

Recent Remote

Recent 61.83 ± 6.28 38.17 ± 6.28
Remote 36.81 ± 6.22 63.19 ± 6.22

Table 10. FM (Recent versus Remote) Confusion Matrix, average accuracy is 50 %

Recent Remote

Recent 49.81 ± 6.90 50.19 ± 6.90
Remote 49.11 ± 6.64 50.89 ± 6.64

130 A. Frid et al.

Accordingly, the current results provide additional evidence for the existence of
two memory formation processes by successfully classifying scans of correct retrievals
following EE and FM. Note that the classification results for scans taken from an
individual’s data, which were not used previously for training, were still significant.
These findings suggest that associative learning through FM employs alternative neural
pathways to acquire and maintain declarative knowledge. This also indicates that the
FM process is eligible for therapeutic approach for people with hippocampal brain
injuries.

8 Future Work

Future work should include mapping of the brain regions and extraction of functional
networks associated with all four group combinations, EE recent, EE remote, FM
recent and FM remote. A list of possible implementation approaches includes con-
structing brain maps using “searchlight” techniques [12].

Another novel approach is to consider the actual voxels used in the Decision Trees.
Looking at a typical example (Fig. 7) shows many interesting aspects. Note that the
decision is made by a very small number of voxels. Furthermore, the interaction
between the voxels on each path through the tree is clearly indicated. This means that,
taking into an account of the location of each voxel used, a careful analysis should
indicate the interaction between areas of the brain for each memory system.

In addition, future work should include brain regions correlations tests during the
retrieval of memory through EE and through FM in recent and in remote modes. Those
correlations would provide information regarding the involvement of the hippocampus
and vmPFC regions in the consolidation processes. To achieve that, one may use
causality analysis techniques [24] to reveal the causality influences the brain regions,
which are involved with each learning procedure, have on each other. This could help
reveal new information regarding the mechanism involved in memory consolidation
processes of FM.

Acknowlegments. Part of this work appears in the M.Sc thesis of Ms. Gal Star at University of
Haifa under the supervision of Prof. Larry Manevitz at the Neuro-Computation Laboratory at
Caesarea Rothschild Institute (CRI), Haifa, Israel.

The research is based on data gathered by Rotman Research Institute at Baycrest, Toronto,
Canada. The examining of this data was suggested by Dr. A. Gilboa and complements the work
of Merhav, Karni and Gilboa [16]. The computational analysis of the data was performed at the
Neuro-Computation Laboratory at the Caesarea Rothschild Institute at the University of Haifa,
Israel under the supervision of Prof. Larry Manevitz. The authors are listed in alphabetical order.

References

1. Squire, L.R.: Declarative and non-declarative memory: multiple brain systems supporting
learning and memory. J. Cogn. Neurosci. 4(3), 232–243 (1992)

The Existence of Two Variant Processes in Human Declarative Memory 131

2. McClelland, L., McNaughton, B.L., O’Reilly, R.C.: Why there are complementary learning
system in the hippocampus and neo-cortex: insights from the successes and failure of
connectionist models of learning and memory. Psychol. Rev. 102(3), 419–457 (1995)

3. Squire, L.R., Alvarez, P.: Retrograde amnesia and memory consolidation: a neurobiological
perspective. Current Opin. Neurobiol. 5(2), 169–177 (1995)

4. Frankland, P.W., Bontempi, B.: The organization of recent and remote memories. Nature
Rev. Neurosci. 6, 119–130 (2005)

5. Gais, S., Albouy, G., Boly, M., Dang-Vu, T.T., Darsaud, A., Desseilles, M., Rauchs, G.,
Schabus, M., Sterpenich, V., Vandewalle, G., Maquet, P., Peigneux, P.: Sleep transforms the
cerebral trace of declarative memories. Proc. Nat. Acad. Sci. USA 104(47), 18778–18783
(2007)

6. Bauer, P.J.: Toward a neuro-developmental account of the development of declarative
memory. Dev. Psychobiol. 50(1), 19–31 (2008)

7. Uematsu, A., Matsui, M., Tanaka, C., Takahashi, T., Noguchi, K., Suzuki, M., Nishijo, H.:
Developmental trajectories of amygdale and hippocampus from infancy to early adulthood in
healthy individuals. PLoS ONE 7(10), e46970 (2012)

8. Sharon, T., Moscovitch, M., Gilboa, A.: Rapid neocortical acquisition of long-tem arbitrary
associations independent of the hippocampus. Proc. Nat. Acad. Sci. USA 108(3), 1146–1151
(2011)

9. Merhav, M., Karni, A., Gilboa, A.: Neocortical catastrophic interference in healthy and
amnesic adults: A paradoxical matter of time. Hippocampus 24(12), 1653–1662 (2014)

10. Norman, K.A., Polyn, S.M., Detre, G.J., Haxby, J.V.: Beyond mind-reading: multi-voxel
pattern analysis of fMRI data. Trends Cogn. Sci. 10(9), 424–430 (2006)

11. Mitchell, T., Shinkareva, S., Carlson, A., Chang, K.M., Malave, V.L., Mason, R., Just,
M.A.: Predicting human brain activity associated with the meanings of nouns. Science 320
(5880), 1191–1195 (2008)

12. Kriegeskorte, N., Goebel, R., Bandettini, P.: Information-based functional brain mapping.
Proc. Nat. Acad. Sci. USA 103(10), 3863–3868 (2006)

13. Nawa, N.E., Ando, H.: Classification of self-driven mental tasks from whole-brain activity
patterns. PLoS ONE 9(5), e97296 (2014)

14. Atir-Sharon, T., Gilboa, A., Hazan, H., Koilis, E., Manevitz, L.M.: Decoding the formation
of new semantics: MVPA investigation of rapid neocortical plasticity during associative
encoding through Fast Mapping. Neural Plast. 2015, 17 (2015)

15. Gilboa, A., Hazan, H., Koilis, E., Manevitz, L., Sharon, T.: Two memory systems:
identifying human memory encoding mechanisms from psychological fMRI data via
machine learning techniques. In: Proceedings of the International Joint Conference on
Neural Networks (IJCNN), p. 54 (2011)

16. Merhav, M., Karni, A., Gilboa, A.: Not all declarative memories are created equal: fast
mapping as a direct route to cortical declarative representations. Neuroimage 117, 80–92
(2015)

17. Wiesen, J.P.: Benefits, Drawbacks, and Pitfalls of z-Score Weighting. In: 30th
Annual IPMAAC Conference (2006). http://annex.ipacweb.org/library/conf/06/wiesen.pdf,
27 Jun 2006

18. Sladky, R., Friston, K.J., Tröstl, J., Cunnington, R., Moser, E., Windischberger, C.:
Slice-timing effects and their correction in functional MRI. Neuroimage 58(2), 588–594
(2011)

19. Gonzalez-Castillo, J., Saad, Z.S., Handwerker, D.A., Inati, S.J., Brenowitz, N., Bandettini,
P.A.: Whole-brain, time-locked activation with simple tasks revealed using massive
averaging and model-free analysis. Proc. Nat. Acad. Sci. 109(14), 5487–5492 (2012)

20. Vapnik, V.: Statistical learning theory. Wiley, New York (1998)

132 A. Frid et al.

http://annex.ipacweb.org/library/conf/06/wiesen.pdf

21. Vert, J.P., Tsuda, K., Schölkopf, B.: A primer on kernel methods. Kernel Methods in
Computational Biology (2004)

22. Chang, C.C., Lin, C.J.: LIBSVM: a library for support vector machines. ACM Trans. Intell.
Syst. Technol. (2011). http://www.csie.ntu.edu.tw/*cjlin/libsvm

23. Hanke, M., Sederberg, P.B., Hanson, S.J., Haxby, J.V., Pollmann, S.: PyMVPA: A python
toolbox for multivariate pattern analysis of fMRI data. Neuroinformatics 7(1), 37–53 (2009)

24. Hu, S., Liang, H.: Causality analysis of neural connectivity: New tool and limitations of
spectral granger causality. Neurocomputing 76(1), 44–47 (2012)

25. Cox, C.: AFNI: software for analysis and visualization of functional magnetic resonance
images. Comput. Biomed. Res. 29, 126–173 (1996)

26. Talairach, J., Tournoux, P.: Co-planar stereotaxic atlas of the human brain. 3-Dimensional
proportional system: an approach to cerebral imaging (1988)

27. Breiman, L., Friedman, J., Olshen, R., Stone, C.: Classification and Regression Trees. CRC
Press, Boca Raton (1984)

28. Gelfand, S.B., Ravishankar, C.S., Delp, E.J.: An iterative growing and pruning algorithm for
classification tree design. IEEE Trans. Pattern Anal. Mach. Intell. 13(2), 163–174 (1991)

The Existence of Two Variant Processes in Human Declarative Memory 133

http://www.csie.ntu.edu.tw/%7ecjlin/libsvm

Divide and Conquer Ensemble Method
for Time Series Forecasting

Jan Kostrzewa1,2, Giovanni Mazzocco1,2(B), and Dariusz Plewczynski2

1 Institute of Computer Science, Polish Academy of Sciences,
ul. Jana Kazimierza 5, 01-248 Warsaw, Poland

g.mazzocco@cent.uw.edu.pl
2 Centrum of New Technologies, University of Warsaw,

ul.Banacha 2c, 02-097 Warsaw, Poland

Abstract. Time series forecasting have attracted a great deal of atten-
tion from various research communities. There are many methods which
divide time series into subseries. Information granules, fuzzy clustering
and data segmentation are among the most popular methods in this
field. However all these methods are designed to recognize dependencies
between adjacent points. In order to do so, they divide the time series
into time intervals. This imply some limitations in findings strongly non-
local dependencies between points scatter across whole time series. The
Divide and Conquer ensemble algorithm here presented was designed to
address such limitations. The model samples the series into many sub-
series, searches for possible patterns and finally chooses the most signif-
icant subseries for further investigation. Since the prediction error eval-
uated on the subseries is lower than the one evaluated on the original
time-series, the proposed strategy can significantly mitigate the over-
all prediction error. In order to evaluate the efficiency of our approach
we performed the analysis on various artificial datasets. In a real world
example our algorithm showed a 3-fold improvement of the accuracy with
respect to other state-of-the-art methods. Although the algorithm was
designed for time-series forecasting, it can be easily used for noise fil-
tering purposes. Simulations reported in the present work illustrate the
potential of the method in this field of application.

Keywords: Time series · Forecasting · Prediction · Data mining ·
Divide and conquer · Ensemble

1 Introduction

Time series forecasting is a rich and dynamically growing scientific field and
its methods are applied in numerous areas such as medicine, genomics, eco-
nomics, finance, engineering and many others (Wu 2005, Zhang 2007, Zhang
2003, Tong 1983). The Divide and conquer (D&C) approach is a well known
paradigm used in algorithm design. It acts by breaking down a given problem

c© Springer-Verlag Berlin Heidelberg 2016
N.T. Nguyen et al. (Eds.): TCCI XXIV, LNCS 9770, pp. 134–152, 2016.
DOI: 10.1007/978-3-662-53525-7 8

Divide and Conquer Ensemble Method for Time Series Forecasting 135

into sub-problems of the same type (divide phase), solving them separately (con-
quer phase) and merging the local results into a final solution. Although in the
context of time series forecasting the term Divide and Conquer is not very used,
the idea of splitting time series into subseries to increase the prediction accuracy,
is fairly common. This approach is applied in time series clustering, fuzzy clus-
tering, segmentation, information granules, knowledge discovery, discretization
and even Fast Fourier transformation. In the seminal book “Data Mining: Con-
cepts and Techniques” by Morgan Kaufmann. (Han 2001) five major categories
of clustering are discussed: partitioning methods (e.g. k-mean algorithm Mac-
Queen 1967), hierarchical methods (e.g. Chameleon algorithm Karypis 1999),
density based methods (e.g. DBSCAN algorithm Ester 1996), grid-based meth-
ods (e.g. STING algorithm Wang 1997) and model-based methods (e.g. Auto-
Class algorithm Cheeseman 1996). Other data segmentation procedures includes
time-series segmentation (Keogh 2004, Kovai 1995), granulation (1979, Pedrycz
2001, Wang 2015), knowledge discovery (de Boor 1978, Hppner 2002, Ramsay
and Silverman 1997, JF 1983) and SAX algorithms Jessica Lin 2007.

The majority of these methods rely upon grouping elements within inter-
vals, although this approach doesn’t allow to identify patters spread across the
whole timeseries. The proposed approach overcome this issue by decomposing
the original problem into simpler sub-problems and applying the divide function
evaluated during the training phase. The existence of a deterministic pattern
within the original time series is initially assumed. The method is trained on
the generated subseries implying the potential reduction of the prediction error
with respect to the original time series (divide phase). Elements which are not
included in the chosen subseries are grouped into a complementary subseries.
Due to the deterministic nature of the divide function we know to which sub-
series the predicted elements belong to.

Currently there are many popular and well developed methods for time series
forecasting such as ARIMA models, Neural Networks and Fuzzy Cognitive Maps
(Makridakis 1997, Han 2003, Song and Miao 2010). Our ensemble approach
leverages the prediction capabilities od such methods. Initially these forecasting
methods can be used to evaluate the divide function (divide phase) and predict
the values of every subseries separately (conquer phase). The next phase consists
in merging the previously predicted values in order to obtain the prediction on
the whole time-series (merge phase).

This paper is organized as follows. The proposed approach is described
in detail in Sect. 2. The computational complexity of the algorithm overhead
(according to the time series’ length) is estimated in Sect. 3. The simulations
performed on different series are presented in Sect. 4. The last Sect. 5 concludes
the paper.

2 Methods

Any discrete time series can be decomposed into a finite number of subseries, each
including a finite set of data points. The majority of the known methodologies

136 J. Kostrzewa et al.

Fig. 1. The time series above was created by perturbing with random noise each sec-
ond element of the IceTarget time series (Fig. 6). The k-mean clustering (top figure)
generates subseries by splitting the original time series into intervals. The proposed
approach (bottom figure) generates subseries by applying the divide function which
selects meaningful points from the entire series. The second approach is capable of
identifying the original IceTarget patterns whereas the first method is not.

rely upon grouping elements within time intervals. By definition this strategy can
uniquely find dependencies between points which are contained in the same inter-
val, failing to recognize general patterns possibly embedded throughout the whole

Divide and Conquer Ensemble Method for Time Series Forecasting 137

time series. Our approach tackle this problem by applying a divide function to orig-
inal time series. Such function generates subseries by selecting elements scattered
across the whole time series. Such crucial difference between our approach and the
already existent state of the art methods, is appreciable in Fig. 1. In the presented
method the selection of suchpoints is performedbyadeterministic function (Fig. 1)
for a graphical representation. Our assumption is that there exist subseries which
are easier to predict than the original data series. Hence we introduce a Divide and
Conquer (D&C) method which combines the subseries predictions in order to opti-
mize the whole time series forecasting. The schematic description of the method-
ology is briefly resumed in Fig. 2.

Fig. 2. Divide And Conquer method description

Our approach relies on finding a function named having the following prop-
erties:

1. It splits the vector X into subseries X1 and its complement X2 such that
prediction error of that subseries would be lower then prediction error of
time series X.

2. For any natural number t it assigns element at time t to the subseries X1 or
X2.

After splitting X into subseries we use one of the previously mentioned methods
(see Sect. 1) on the X1 and X2 subseries separately. Then we merge the results
according to the above mentioned divide function. This procedure allows to
perform a prediction on the original time series. The error is evaluated using the
mean square error (MSE) metric.

MSE =
1
n

n∑

i=1

(y − ŷ)2 (1)

where n is number of all predicted values, y is real value and ŷ is the predicted
value. In order to provide a clear description of our approach the algorithm is
divided into simple functions which are described separately.

138 J. Kostrzewa et al.

2.1 Divide Function Definition

Let X = (x1, x2, ..., xn) be a time series, then we can define:

τ(xi) = {ti | ti ∈ N} (2)

where xi is the ith data point of the time series and ti is the position in time
associated with that data point. Given the time series X = (x1, x2, ...xn) we can
for instance generate a new subseries xeven including only even elements. xeven =
(xeven

1 , xeven
2 , ..., xeven

n/2). It is worth noticing that xeven
i = x2i so τ(xeven

i) = τ(x2i)
so τ(xeven

1) , τ(xeven
2) , ... , τ(xeven

n/2) = 2, 4, ..., n. This is true because the τ
function returns the time values associated to the original time series and not
those associated to the new subseries.

The binary splitting matrix S is used by the function divide and defines how
the elements of the original time series X are selected by such function. The
binary number at the S(r, t) position, decides if xt ∈ Xr where r and t (time) are
the row and column position respectively and Xr is the correspondent subseries
generated by the divide. Given the time point t the function returns the row
positions of the matrix S for which S(r, t) = 1.

divide(t) = {r | S(r, t) = 1} (3)

where S is proposed during the training process, r is the row number and t is
time. Let the time series forecasting method be defined as:

xn+i = time series forecasting(X, i) (4)

where X is the time series (x1, x2, ..., xn) and xn+i is i steps ahead the predicted
value. For simplicity, let’s consider the Divide and Conquer method with i = 1.
Then our goal is to predict the first consequent value of the time-series.

x = time series forecasting(Xk, 1) (5)

using
divide(n + 1) = m (6)

where n is the time of the last element of the series and n + 1 is the time of
the first predicted value, x is the predicted value of xt+1 and Xm is the mth

subseries.

2.2 Divide Phase

2.2.1 Divide Series into Subseries with Matrix S.
Consider the time series X = (x1, x2, ..., xn) and let Sm = (bm,1, bm,2, ..., bm,n)
be the mth row of the binary matrix S. Let X1 = (x1, x2, ..., xn1) be the subseries
of all the elements xi such that the corresponding b1,i = 1. Analogously let X2

be the subseries of all the elements xi such that in the 2nd row of S, b2,i = 1.
For example:

Divide and Conquer Ensemble Method for Time Series Forecasting 139

X = (x1, x2, ..., xn)

S =
1 1 0 0 1 1 ... 0 0
0 0 1 1 0 0 ... 1 1

X1 = (x1, x2, x5, x6, .., xn)
X2 = (x3, x4...xn−2, xn−1)

2.2.2 Extend Binary Vector
Let s be a binary vector (row of the S matrix) to be extended for prediction
purposes. The first step needed to extend the binary vector s consists in the
generation of a dictionary including binary patterns. The pseudo-code of the
function dedicated to this task is given in Table 2.

An empty dictionary is initialized. The interval of length d + 1 starting from
the first position is generated. If the dictionary contains a binary pattern which
coincides with a given pattern at the first d position but differs at the last position
(d + 1), then such pattern is too short to unequivocally extend the vector s. In
such case the dictionary is cleared, d is incremented by 1 and the whole process is
repeated starting from the first position. In case the dictionary does not contains
the pattern we add it to the dictionary. Then the interval starting position is
incremented by 1 and the whole process is repeat until the end of the interval
don’t exceed the end of the s vector. The function returns the dictionary when
the end of the interval exceeds the end of the s vector (Fig. 3).

Once the dictionary has been computed the s vector can be further extended
applying the extend binary vector function given in Table 3.

Such function takes both the binary vector s to be extended and the expected
length of the new vector as input values. The create dictionary function provides
the dictionary for the binary vector s. Let d be length of every vector in the
dictionary and n be the length of the vector s. In the dictionary we search for
a pattern having S(bn−d+2...bn) excluding the last position. If there is no such
pattern we extend s by including a random binary number. Otherwise we extend
s by the last value of the pattern found within the dictionary. We repeat this
process until s reaches the expected new length (Table 1).

Table 1. Pseudo-code of the subseries generation according to the vector s

FUNCTION create subseries(s,X)

subseries X = []

FOR i=1;i++;i<=size(s)

IF s(i)==1

subseries X = subseries X.add(X(i))

ENDIF
ENDFOR
RETURN subseries X

140 J. Kostrzewa et al.

Table 2. Pseudo-code of the dictionary generation for a given pattern s

FUNCTION create dictionary(s)

d=1

dict = []

i=1

WHILE i<=(size(s)-d)

window = s(i:i+d)

IF ismember(window(1:end-1),dict(1:end-1)

!ismember(window,dict))

d=d+1

i=1

dict = []

ELSE
dict = dict.add new row(window)

ENDIF
i = i+1

ENDWHILE
RETURN dict

Fig. 3. Create dictionary for binary vector

2.2.3 Find Proposition of Best Subseries
A pseudo-code definition of the algorithm for finding the best subseries proposal
is given in Table 4.

The find best subseries function accepts a time series, an arbitrary chosen
constants c and the multiplicity number k. All the possible binary vectors of
length c are generated under the condition that the total number of 1s within c
is equal or greater then � c

2�.

Divide and Conquer Ensemble Method for Time Series Forecasting 141

Table 3. Pseudo-code of algorithm which extends the binary vector

FUNCTION extend binary vector(s,new length)

dict = create dictionary(s)

i = size(s)-length of row(dict)+2

WHILE length(s)<new length

small window = s(i:i+length of row(dict)-2)

index = index of element(small window,dict(:,1:end-1))

IF index>0

s.add(dict.elementAt(index).elementAt(end))

ELSE
s.add(randomly 0 or 1())

ENDIF
i = i+1

ENDWHILE
RETURN s

These vectors are initialized as rows of the matrix S. Hence S has m rows
where m = 2c−1 for odd c values and m = 2c−1 + 1

2

(
c

c/2

)
for even c values. For

every ith row of the S matrix a vector Xi is generated, as described in Sect. 2.2.
Each subseries X1

i is split into the training set Xitrain
and the test set Xitest

including 70 % and 30 % of the series, respectively. The values of the train-to-
test ratio were chosen arbitrarily. After the application of an arbitrary chosen
prediction method (e.g. NN, ARIMA, Fuzzy Cognitive Maps etc.), the MSE
is computed in order to evaluate the prediction performances of the method.
It worth noticing that the process can be computed in parallel on the vectors
X1,X2, ...,Xm ∈ X. This approach can significantly reduce the computational
time required for the prediction. The number of Xi subseries increase exponen-
tially with respect to c making this phase the most computationally expensive
part of the algorithm presented. This part could be further optimized in order
to improve the performances of the method.

Let consider the set of pairs (S1,MSE1) , (S2,MSE2) , (S3,MSE3) ...
(Sm,MSEm) where Si is ith row of the matrix S. We can reject all the rows of
S but � 1

k � of the rows with the lowest MSE. We extend the rows of S using
the function extend binary vector (refer to pseudo-code in Table 3) to obtain the
binary vectors with length k ·c. We obtain the matrix S of dimension [�m

k �×k ·c]
so that every row S1, S2, ..., S� m

k � has length k · c. For every row Si we create the
vectors X1 as previously described in Sect. 2.2. We repeat the MSE calculations,
selecting and extending S until its rows exceed the length of the training set.
The row Si with the corresponding lowest MSE value (Fig. 4) is then returned
by the function as a result. At the next step we create a matrix such that the
first row is a vector returned by the find best subseries function and second
row is the complementary vector with respect to the first row. Hence X can be
divided into X1 and X2.

142 J. Kostrzewa et al.

Table 4. Pseudo-code of algorithm which finds proposition of best subseries

FUNCTION find best subseries(time series,c,k)

S = cob(c)//cob returns all binary combinations

//of length c with 1 on at least c/2 positions

FOR i=1;i++;i<=number of rows(S)

X1(i,:)=create subseries(S(i,:),time series)

Xtrain=X1(1:0.7*size(X))

Xtest =X1(0.7*size(X):end)

MSE = chosen prediction method(Xtrain,Xtest)

S(i,end+1) = MSE

ENDFOR
S = sort ascendning by last column(S)

S = S(1:ceiling(end/k),:)

WHILE c<size(time series)

c=k*c

IF c>size(time series)

c = size(time series

ENDIF
FOR j=1;j++;j<number of rows(S)

S(j,:)=extend binary vector(S(j,:),c)

X(j,:)=create subseries(S(j,:),time series)

Xtrain=X(1:0.7*size(X))

Xtest=X(0.7*size(X):end)

MSE=any prediction method(Xtrain,Xtest)

S(j,end+1) = MSE

ENDFOR
S = sort ascendning by last column(S)

S = S(1:ceiling(end/k),:)

ENDWHILE
//return s with lowest MSE

RETURN S(1,:)

2.3 Conquer Phase

During the conquer phase the subseries are predicted separately. The same pre-
dictive method used in the divide phase can be applied, however any other
forecasting method can be exploited. For this reason the D&C method app-
roach can be defined as an ensemble method. It is important to consider that
although the process of the S matrix evaluation is time consuming (exponential
time complexity with respect to the c parameter as mentioned in Sect. 3), the
subseries prediction has almost no overhead. Hence, while it is recommended to
apply a fast and deterministic methods to the divide function, much more time
consuming and accurate prediction methods can be used during the conquer
phase.

Divide and Conquer Ensemble Method for Time Series Forecasting 143

Fig. 4. Schematic view of the algorithm proposing the best subseries

2.4 Merge Phase

In order to predict the value of xt+1 we need to predict the (t+1)th column within
the S matrix (Table 3). If S(1,t+1) = 1 than we select the prediction calculated
on the subseries X1 otherwise we choose the prediction from the subseries X2,
where X2 is the complementary subseries X1 with respect to X.

3 Complexity of Proposed Approach

Our goal is to show that our approach has time complexity equal to
O(lognkMSE(n)), where MSE is an arbitrary chosen prediction function, k is
the constant multiplicity parameter and n is the series length. We assume that
the prediction function has a complexity greater then O(n). The complexity of
each function of the algorithm is computed separately and presented below.

3.1 Time Complexity of the create subseries Function
Corresponding Subseries

The algorithm creates vectors X1 and X2 from the original series using m the s
is described in the Sect. 2.2. The complexity of the algorithm is O(n) (Fig. 5).

3.2 Time Complexity of the extend binary vector Function

This algorithm extends the binary vector (refer to pseudo-code in Table 3) and is
divided into two parts. Firstly it creates the dictionary needed for the extension
of the binary sequence. We can notice that the maximal number of vectors in
the dictionary is greater then 2d where d is the length of the vector. However,
at the same time the dictionary cannot contain more then c elements where c

144 J. Kostrzewa et al.

Fig. 5. Merge process description

is the length of the vector on which we construct the dictionary. Therefore, for
each given step, the dictionary length is smaller than min(2d, c). Moreover we
know that the algorithm will produce no more that c such dictionaries. Since
the number of operation is equal to

c∑

i=1

min(2d, c) ∗ c < c2 (7)

we can imply that the time complexity of such algorithm is O(c2). Another
part of the algorithm foresee the extension of the binary vector using the dictio-
nary previously prepared. The dictionary is computed only once and it is then
used during the whole prediction process. Finding a specific vector in a dictio-
nary doesn’t cost more than O(log2c). For these reasons extending the binary
vector by n elements costs O(nlog2c).

3.3 Time Complexity of the algorithm finds best subseries

We choose some arbitrary length of the first subseries c and the multiplicity
parameter k. We start with subseries of length c and then in every step we
extend this subseries k times. We also removes all the rows of S but � 1

k �. The
number of operations can be approximated by:

Divide and Conquer Ensemble Method for Time Series Forecasting 145

2c−1MSE(c) + 2c−1c2 + clog2(c)+

�1
k

�2c−1MSE(kc) + kclog2(c) + �(1
k

)2�2c−1MSE(k2c)+

k2clog2(c) + ... + �(1
k

)log
n/c
k �2c−1MSE(n)

which is equal to

2c−1c2 +
log

n/c
k∑

i=0

�(1
k

)i�2c−1(MSE(kic) + kiclog2c) (8)

where 2c−1 is number of all proposals of S proposed in the first step, c2 is
maximal cost for creation binary vector dictionary (refer to Sect. 3.2), log

n/c
k is

the maximal number of steps after which length of S reaches n, MSE(kic) is cost
of approximation prediction error on every step for every S proposal, kiclog2c is
cost of extending binary vector S k times. Taking into account this equation we
can say that the number of operation considered in our approach is definitely
smaller than

2cc2 + log
n/c
k (2c)(MSE(n) + (nlog2c)) (9)

Taking into consideration that the complexity of MSE(n) is not less than O(n)
and omitting constant operations, we can affirm that the complexity of our app-
roach with respect to n can be approximated to:

O(lognkMSE(n)) (10)

On the contrary, the time complexity with respect to c can be approximated to:

O(2c) (11)

It is worth noticing that algorithm can be processed in parallel and consequently
the time of computation can decrease significantly.

4 Simulations

In order to check the efficiency of our approach we made several simulations. In
our simulations we used neural networks (NN) with one hidden layer and a delay
value equal to 2 (refer to diagram on Fig. 7). As a neural network training method
we used Levenberg-Marquardt back-propagation algorithm (Marquardt 1963).
During the simulations comparative to our method, we used neural networks with
the same structure, training rate, training method and number of iterations with
respect to other methods. The only difference was that while the Neural Networks
used in our approach were trained on subseries chosen by our algorithm, the NN
used in the comparative simulations were trained on the whole training set. In
every simulation the constant number c = 12 and the multiplicity parameter
k = 2 were used. In order to avoid random bias we repeated every simulation

146 J. Kostrzewa et al.

10 times and reported the mean results. We also used IceTargets data which
contains a time series of 219 scalar values representing measurements of global
ice volume over the last 440,000 years (Fig. 6). Time series is available at [http://
lib.stat.cmu.edu/datasets/], or in the standard Matlab library as ice dataset.

Fig. 6. IceTargets series plot

4.1 IceTargets with Random Noise

We modified the IceTargets series by adding random numbers generated from a
uniform distribution upon the interval [−1.81, 2.12], where the extremes of the
interval represents the minimum and maximum values of the IceTargets series,
respectively. The pseudo-random number occurrence scheme is defined by the
following relation:

X = (rand(1),IceTargets(1),rand(2),IceTargets(2), ... IceTargets(219),rand
(220))

Our approach produces the matrix:

S =
0 1 0 1 0 1 0 1
1 0 1 0 1 0 1 0

http://lib.stat.cmu.edu/datasets/
http://lib.stat.cmu.edu/datasets/

Divide and Conquer Ensemble Method for Time Series Forecasting 147

Fig. 7. Diagram of neural network used in simulations

Table 5. Comparisons with other methods for time series based on MSE.

IceTargets IceTargets Quarterly Gross

merged with noise merged with cos Farm Product

Our approach 0,62 0,0170 0,007

Single Neural Network 0,93 0,5144 0,0211

Increase efficiency 1,5 times 30,25 times 3,014 times

which was found to identify the correct pattern, splitting the time series accord-
ing to it. For this reason, NN are able to predict IceTargets series and random
noise separately. Our approach displayed a mean MSE value equal to 0.62 while
the neural networks trained on the whole dataset shows a MSE value equal to
0.93. The results are presented in Table 5.

4.2 Cosinus with IceTargets

We created time series by merging cosinus and IceTargets time series using
pattern:

X = (cos(0.1), IceTargets(1), cos(0.2), cos(0.3), IceTargets(2), IceTargets(3),
cos(0.4), IceTargets(4), cos(0.5), cos(0.6), IceTargets(5), IceTargets(6) ...)

The pattern can be described by matrix:

148 J. Kostrzewa et al.

Fig. 8. Table which presents on different time series plots of subseries X1 and X2 after
divide with our approach

Divide and Conquer Ensemble Method for Time Series Forecasting 149

S =
1 0 1 1 0 0 1 0 1 1 0 0 1 0 1 1 0 0 1 0 1 1 0 0 ...
0 1 0 0 1 1 0 1 0 0 1 1 0 1 0 0 1 1 0 1 0 0 1 1 ...

Our approach is able to identify the correct pattern by splitting the time series
into the expected subseries (Fig. 8). Neural networks trained on the subseries
shows MSE = 0, 0170, while neural network trained on whole training set gives
MSE = 0, 5144.

4.3 Quarterly Australian Gross Farm Product

In this simulation we used the real statistic data of the Quarterly Australian
Gross Farm Product $m 1989/90 prices. The time series is constituted by 135
data points representing the values measured between September 1959 and
March 1993. These data are available at (Australian Bureau of Statistics Aus-
tralian Bureau of Statistics [2015]). The data were normalized to a 0-1 interval.
The average MSE value calculated using our approach was equal to 0,007 while
the average value of MSE achieved by a single neural network was equal to
0,0211 (refer to Table 5).

4.4 Series Predicted with Different Methods

In all previous simulations we used our approach to transform time series into
subseries and then we predict their values with the same method - neural net-
work. However, our approach gives the possibility to use different methods of
prediction on each subseries. For this reason we can choose different methods
according to specific prediction properties of each subseries and take advantage
of such methods. In order to display such possibility we merged two series with
completely different prediction properties into one time series. We choose a sim-
ple series which grows linearly with respect to time but doesn’t seems to change
in time with respect to the IceTargets statistic data. Since such series show a
mixed behaviour influenced by the different nature of its constitutive compo-
nents, we can laverage the predicting capabilities of different methods which act
optimally on each given component. The subseries were merged conforming to
the following pattern:

X = (1, 2, IceTargets(1), IceTargets(2), 3, 4, IceTargets(3),IceTargets(4),
5, 6, IceTargets(5), IceTargets(6) ...)

Such pattern is described by the matrix

S =
1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 ...
0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 ...

The algorithm divides the original time series into two subseries (Fig. 8). Exploit-
ing the different properties of such subseries we selected linear regression and
neural network to predict X1 and X2, respectively. This strategy allowed to
lower the MSE value down to 0.0101. In comparison, the application of a single

150 J. Kostrzewa et al.

neural network method displayed an average MSE = 2535.45 while the usage of
a single linear regression method showed MSE = 30.35 (Table 6) This example
exhibit the potential benefit of the ensemble approach proposed with respect to
single predictors.

Table 6. Comparison of MSE calculated with different methods for the time series
created by merging linear function and IceTarget.

Method Neural Network Linear regression Our approach

MSE 2535.45 30.35 0,0101

5 Conclusions

In presented work, we proposed a novel method for time series forecasting. Our
approach is based on dividing the series into a subseries and its complement,
predicting their values separately and then merging the prediction results in
the final prediction. This strategy can lower the potential prediction error with
respect to the prediction based on whole set. Moreover it allows the application
of different prediction methods to both subseries, combining their respective
benefits. The proposed approach is not associated with any specific time series
forecasting method and can be applied as a generic solution for several time series
pre-processing problems. We show that our approach is capable of performing
noise filtering. In order to validate the efficiency of the introduced solution we
conducted a series of experiments. The results obtained showed a significant
improvement of the prediction accuracy of the ensemble method with respect to
the respective base learners. Moreover we have shown that the overhead gener-
ated by the algorithm is asymptotically logarithmic with respect to the length
of the time series. The computations can be processed in parallel decreasing the
computational time required for the forecasting.

Our solution opens up broad prospects of further work. In the current imple-
mentation the method divide series into exactly two subseries. It would be
worth investigating the division into multiple subseries. Furthermore the ele-
ments belonging to such generated subseries could be sampled simultaneously
and combined into new prediction proposals. The impact of the c parameter and
the minimal acceptable subseries length also need further investigation. Wide
scale studies on real data could help to identify the optimal field of application
for the proposed method. One of future area of research could also include the
design and implementation of automated procedures targeted to the selection of
different prediction methods to be applied on the proposed subseries.

We believe that the algorithm here presented could give a contribution to
the field of time series forecasting.

Divide and Conquer Ensemble Method for Time Series Forecasting 151

Acknowledgements. This research was supported by the European Union from
financial resources of the European Social Fund, Project PO KL Information tech-
nologies: Research and their interdisciplinary applications and by the Polish National
Science Centre with the grants 2014/15/B/ST6/05082 and 2013/09/B/NZ2/00121.

References

Australian Bureau of Statistics. https://datamarket.com/data/set/22xn/
quarterly-australian-gross-farm-product-m-198990-prices-sep-59-mar-93/,
Accessed 19-July-2015

de Boor, C.: A practical guide to splines (1978)
Karypis, G., Han, E.H., Kumar, V.: Chameleon: hierarchical clustering using dynamic

modeling. Computer 32, 68–75 (1999)
http://lib.stat.cmu.edu/datasets/
Wu, H., Sharp, G., Salzberg, B., Kaeli, D., Shirato, H., Jiang, S.: Subsequence matching

on structured time series data. In: SIGMOD (2005)
Hppner, F.: Knowledge discovery from sequential data (2002)
Han, J., Kamber, M.: Data mining: Concepts and techniques. Morgan Kaufmann, San

Francisco (2001)
Han, J., Kamber, M.: Application of neural networks to an emerging financial market:

forecasting and trading the taiwan stock index. Comput. Oper. Res. 30, 901–923
(2003)

Lin, J., Keogh, E., Wei, L., Lonardi, S.: Experiencing sax: a novel symbolic represen-
tation of time series. Data Min. Knowl. Discov. 15(2), 107–144 (2007)

JF, A.: Maintaining knowledge about temporal intervals, pp. 832–843 (1983)
Keogh, E.: A survey and novel approach, pp. 1–22 (2004)
Kovai, Z.: Time series analysis, faculty of economics (1995)
La, Z.: Fuzzy sets and information granularity, pp. 3–18 (1979)
Ester, M., Kriegel, H.-P., Jiirg, S., Xiaowei, X.: A densitybased algorithm for discov-

ering clusters in large spatial databases. In: Proceedings of the 1996 International
Conference on Knowledge Discovery and Data Mining (KDD 1996) (1996)

MacQueen, J.: Some methods for classification and analysis of multivariate observa-
tions. In: Proceedings of 5th Berkeley Symposium on Mathematical Statistics and
Probability 1, pp. 281–297. University of California Press (1967)

Marquardt, D.: An algorithm for least-squares estimation of nonlinear parameters.
SIAM J. Appl. Math. 11(2), 431–441 (1963)

Cheeseman, P., Stutz, J.: Sting: a statistical information grid approach to spatial data
mining. Bayesian classification (AutoClass): theory and results. In: Fayyard, U.M.,
Piatetsky-Shapiro, G., Smyth, P., Uthurusamy, R. (eds.) Advances in Knowledge
Discovery and Data Mining. AAAI/MIT Press, Cambridge, MA (1996)

Pedrycz, W., Vukovich, G.: Abstraction and specialization of information granules, pp.
106–111 (2001)

Ramsay, J.O., Silverman, B.W.: Functional data analysis (1997)
Makridakis, S., Wheelwright, S., Hyndman, R.: Forecasting: Methods and applications.

Wiley, New York (1997)
Song, H.J., Shen, Z.Q., Miao, C., Miao, Y.C.: Fuzzy cognitive map learning based

on multi-objective particle swarm optimization. IEEE Trans. Fuzzy 18(2), 233–250
(2010)

Tong, H.: Threshold models in non-linear time series analysis. Springer, Heidelberg
(1983)

https://datamarket.com/data/set/22xn/quarterly-australian-gross-farm-product-m-198990-prices-sep-59-mar-93/
https://datamarket.com/data/set/22xn/quarterly-australian-gross-farm-product-m-198990-prices-sep-59-mar-93/
http://lib.stat.cmu.edu/datasets/

152 J. Kostrzewa et al.

Wang, W., Yang, J., Reeves, M.R.: Sting: a statistical information grid approach to
spatial data mining. In: Proceedings of the 1997 International Conference on Very
Large Data Base (VLDB 1997) (1997)

Wang, W., WitoldPedry, X.L.: Time series long-term forecasting model based on infor-
mation granules and fuzzy clustering, pp. 17–24 (2015)

Zhang, G.: Time series forecasting using a hybrid arima and neural network model.
Neurocomputing 50, 159–175 (2003)

Zhang, G.: A neural network ensemble method with jittered training data for time
series forecasting. Inf. Sci. 177, 5329–5346 (2007)

Application Areas of Ephemeral Computing:
A Survey

Carlos Cotta1, Antonio J. Fernández-Leiva1, Francisco Fernández de Vega2,
Francisco Chávez3(B), Juan J. Merelo4, Pedro A. Castillo4,

David Camacho5, and Maŕıa D. R-Moreno5

1 Dept. Lenguajes Y Ciencias de la Computación,
Universidad de Málaga, Malaga, Spain

{ccottap,afdez}@lcc.uma.es
2 Dept. Tecnoloǵıa de los Computadores y de las Comunicaciones,

Universidad de Extremadura, Merida, Spain
fcofdez@unex.es

3 Dept. Ingenieŕıa En Sistemas Informáticos Y Telemáticos,
Universidad de Extremadura, Merida, Spain

fchavez@unex.es
4 Dept. Arquitectura Y Tecnoloǵıa de los Computadores,

Universidad de Granada, Granada, Spain
{jmerelo,pacv}@ugr.es

5 Dept. Ingenieŕıa Informática, Universidad Autónoma de Madrid, Madrid, Spain
{david.camacho,gema.bello}@uam.es

Abstract. It is increasingly common that computational devices with
significant computing power are underexploited. Some of the reasons for
that are due to frequent idle-time or to the low computational demand of
the tasks they perform, either sporadically or in their regular duty. The
exploitation of this (otherwise-wasted) computational power is a cost-
effective solution for solving complex computational tasks. Individually
(device-wise), this computational power can sometimes comprise a sta-
ble, long-lasting availability window but it will more frequently take the
form of brief, ephemeral bursts. Then, in this context a highly dynamic
and volatile computational landscape emerges from the collective con-
tribution of such numerous devices. Algorithms consciously running on
this kind of environment require specific properties in terms of flexibil-
ity, plasticity and robustness. Bioinspired algorithms are particularly well
suited to this endeavor, thanks to some of the features they inherit from
their biological sources of inspiration, namely decentralized functioning,
intrinsic parallelism, resilience, and adaptiveness. Deploying bioinspired
techniques on this scenario, and conducting analysis and modelling of the
underlying Ephemeral Computing environment will also pave the way for
the application of other non-bioinspired techniques on this computational
domain. Computational creativity and content generation in video games
are applications areas of the foremost economical interest and are well
suited to Ephemeral Computing due to their intrinsic ephemeral nature
and the widespread abundance of gaming applications in all kinds of
devices. In this paper, we will explain why and how they can be adapted
to this new environment.

c© Springer-Verlag Berlin Heidelberg 2016
N.T. Nguyen et al. (Eds.): TCCI XXIV, LNCS 9770, pp. 153–167, 2016.
DOI: 10.1007/978-3-662-53525-7 9

154 C. Cotta et al.

Keywords: Ephemeral computing · Bioinspired optimization · Evolu-
tionary computation · Complex systems · Autonomic computing · Dis-
tributed computing

1 Ephemeral Computing: What and Why

This paper revolves around the notion of Ephemeral Computing (Eph-C) which
can be defined as “the use and exploitation of computing resources whose avail-
ability is ephemeral (i.e., transitory and short-lived) in order to carry out complex
computational tasks”. The main goal in Eph-C is thus making an effective use of
highly-volatile resources whose computational power (which can be collectively
enormous) would be otherwise wasted or under-exploited. Think for example
of the pervasive abundance of networked handheld devices, tablets and, lately,
wearables –not to mention more classical devices such as desktop computers–
whose computational capabilities are often not fully exploited. Hence, the con-
cept of Eph-Cpartially overlaps with ubiquitous computing, volunteer computing
and distributed computing. Due to these research fields deal with the concept of
ephemerality are explained in next section, but exhibits its own distinctive fea-
tures, mainly in terms of the extreme dynamism of the underlying resources, and
the ephemerality-aware nature of the computation which autonomously adapt to
the ever-changing computational landscape. These concepts not trying to fit to
the inherent volatility of the latter but even trying to use it for its own advantage.

In light of the computational context described above, it is clear that the
algorithmic processes deployed onto it should be flexible (to work on a variety
of computational scenarios), resilient (to cope with sudden failures and with the
phenomenon of churn [55]), (self-)adaptive (to react autonomously to changes in
the environment and optimize its own performance in a smart way), and intrinsi-
cally decentralized (since centralized control strategies cannot consistently com-
prehend the state of the computational landscape and decisions emerging from
them would lag behind the changing conditions of the latter). Some bioinspired
algorithms, like the Evolutionary algorithms (EAs) fit nicely into this scenario.
However, few works have previously considered the interest of endowing evo-
lutionary algorithms with the capability for coping with transient behaviors in
underlaying computer systems. Moreover, in the age when the term Big Data [35]
is present in many initiatives requiring large amount of computational resources
for storing, processing, and learning from huge amount of data, new methods
and algorithms for properly managing heterogeneous computing resources widely
distributed along the world are required. Energy consumption must also be con-
sidered from the point of view of both algorithms and hardware resources, given
the large differences among large computing infrastructures typically devoted to
running massively parallel algorithms when compared to smart devices optimized
for reducing battery consumption. It is of the foremost interest to research on the
basic features allowing to provide efficient and reliable ephemeral evolutionary
services.

The paper is structured as follows. Section 2 gives an onverview of Eph-C.
Then, we analyze an important parameter in Eph-C: the energy consumption.

Application Areas of Ephemeral Computing: A Survey 155

Next, the optimization criterion is presented by means of bioinspired algorithms.
Section 5 presents a short revision on bioinspired methods and applications that
could be affected by Eph-C characteristics. Finally, the conclusions are outlined.

2 Ephemeral Computing in Perspective

According to the Oxford Dictionary, the term ephemeral means “lasting for a
very short time”. It thus encompasses things or events with a transitory nature,
with a brief existence. A number of phenomena and resources in computer science
are endowed with that feature (e.g. in computing networking, an ephemeral
port is a TCP port, for instance, dynamically assigned to a client application
for a brief period of time, in contrast with well known ports) [10]. Ephemeral
behaviors can be also observed in the way users collaborate in volunteer networks
of computers.

Although ephemeral phenomena naturally arise in several areas such as ubiq-
uitous computing, volunteer computing or traditional research areas like dis-
tributed computing, some issues arise when dealing with ephemeral behavior.
In cloud computing [3], for instance, the opposite is usually looked for: per-
sistence. Although services are commonly associated with computations among
autonomous heterogeneous parties in dynamic environments, exceptions must
be handled to take corrective actions. Ephemeral services are thus commonly
seen more as a problem than a solution [28].

On the other hand, in ubiquitous computing the main goal is to leverage
computation everywhere and anywhere, so that computation can occur using
any kind of device, in any location, starting and ending at any time and using
any format and during any amount of time. The main efforts in this area have
been oriented to design and develop the underlying technologies needed to sup-
port ubiquitous computing [37] (like advanced middleware, operating systems,
mobile code, sensors, microprocessors, new I/O and user interfaces, networks or
mobile protocols). However, and in the same way it happens with cloud comput-
ing, the main target in ubiquitous computing is to allow stable and persistent
computation processes perform a complete execution of the programs. When
this area handles the concept of ephemeral devices, services or computation, the
main solution is to stop the process, or processes, and resume once new devices
are ready [59]. Previous hypothesis and assumptions can be extrapolated to dis-
tributed computing, where the concept of ephemeral services can be a problem
that could eventually generate a failure in the execution of the process [54].

As stated before, the main focus of Eph-C is different from the above
approaches: rather than trying to build layers onto the network of ephemeral
resources in order to “hide” their transient nature and provide the illusion of
a virtual stable environment, Eph-C applications are fully aware of the nature
of the computational landscape and are specifically built to live (and optimize
their performance) in this realm. Note that this does not imply the latter have
a lower-level vision of the underlying computational substrate, or at least not
markedly so. In fact, most low-level features can be abstracted without preclud-
ing attaining a more accurate vision of this fluctuating substrate.

156 C. Cotta et al.

To some extent, some of these ephemerality issues are also present in areas
such as volunteer computing (VC) [53], whereby a dynamic collection of com-
puting devices collaborate in solving a massive computational task, decomposing
it into small processing chunks. Most VC approaches follow a centralized mas-
ter/slave scheme though, and typically deal with resource volatility via redun-
dant computation. A much more decentralized, emergent approach can be found
in amorphous computing [1], but that paradigm is more geared towards program-
mable materials and their use to attack massive simulation problems. Massive
problems are also the theme in ultrascale computing, where issues such as scal-
ability, resilience to failures, energy management, and handling of large volume
of data are of paramount importance [30,46]. Note however that Eph-C is not
necessarily exascale nor it is oriented towards supercomputing.

3 Energy Consumption of Algorithms

When dealing with Eph-C, a relevant parameter to be taken into account is energy
consumption, given that mobile devices frequently provide hardware resources
to run programs, and battery consumption is always a concern for this kind
of devices. During the last decades, researchers have focused on energy con-
sumption for some kind of algorithms; for instance, encryption algorithms, that
are frequently required in wireless communication, consume significant amount
of computing resources such as CPU time, memory, and battery power, which
affects every mobile device with wireless connection [51]. Sorting algorithms have
been also analysed from this point of view [11].

Researchers have been interested in finding a proper way to map energy
consumption to program structure [18]. But not always this mapping can be
easily found, particularly when dealing with stochastic algorithms. The focus has
been typically placed on the infrastructures behind the algorithms and the way
they are exploited and offered to companies, which is the case for cloud models
[8]; and not so frequently on the way algorithms can be optimized to better
exploit those infrastructures. Thus, the term Green Computing has emerged
when refering to the practice of using computing resources more efficiently while
maintaining or increasing overall performance [26].

But we are more interested in the relationship between algorithms and the
time and energy required to solve a problem. Although initially we could find a
direct relationship between CPU cycles and energy required to run an algorithm,
when optimization problems are faced by means stochastic algorithms affected
by a series of parameters, such a relationship is not so straightforward, especially
when different hardware architectures and operating systems can be chosen to
run the algorithms: x86 family based computers running Linux or Windows,
ARM based mobile devices with Android, etc. Moreover, even in a single platform
and a given algorithm, different data structures that could be employed within
the algorithm also affect energy consumed by some physical components of the
computer, such as cache memories, and therefore can also be optimized to save
energy, even when the time required to run an algorithm may not change [2].

Application Areas of Ephemeral Computing: A Survey 157

If we specifically deal with ubiquitous computing, and given that the com-
putation can occur using any kind of device, in any location, energy consump-
tion should be considered when deciding which of the available devices will be
employed. But also in a more standard setting, total energy consumed on a
given hardware platform could in the future decide which is the preferred one,
regardless of the time required to run the algorithm: sometimes the investment
applied when finding a solution could be more importantly considered than time
to solution.

4 Bioinspired Algorithms and Ephemerality

The term bioinspired algorithms usually refers to methods that draw some inspi-
ration from Nature to solve search, optimization or pattern recognition problems.
If we focus on optimization problems, the most prominent bioinspired paradigms
are evolutionary computation and swarm intelligence. We are particularly inter-
ested in this kind of population-based search and optimization algorithms, which
have a natural path to distributed computing by simply distributing the popu-
lation among the different computing nodes, the issue being how to do it in an
algorithmically efficient and scalable way. Eph-C, besides the obvious fact that
the contribution of a node might come and go at any time, adds several other
dimensions to the design of algorithms:

– Inclusion: all nodes should have a meaningful contribution to the final result,
and they should be incorporated to the distributed system in such a way that
they do.

– Energy Consumption: Different algorithm parameters influences time to result
which in combination with specific hardware architectures behind each node
implies a given energy consumption.

– Asynchrony: nodes communicate with the others without a fixed schedule due
to their different performance.

– Resilience: the sudden disappearance of computing nodes must not destabilize
the functioning of the algorithm.

– Emergence: the nature of the computational environment does not allow a
centralized control and requires decentralized, emergent behavior.

– Self-adaptation: the algorithm should adapt itself to the changing computa-
tional landscape.

This latter issue is particularly important, and encompasses a number of
self-� properties [4] the system must exhibit in order to exert advanced control
on its own functioning and/or structure, e.g., self-maintaining in proper state,
self-healing externally infringed damage [20], self-adapting to different environ-
mental conditions [48], and even self-generating new functionalities just to cite a
few examples, see also [14,16]. Quite interestingly, these properties are frequently
intrinsic features of the system, that is, emergent properties of its complex struc-
ture, rather than the result of endowing it with a central command. This also

158 C. Cotta et al.

implies there is no need for a central control in the system; every node sched-
ules itself. This decentralization implies a certain fault-tolerance due to the lack
of a single point of failure, but it also means resilience must be built into the
algorithms present in each node so that their sensitivity to changes in the rest
of the system is minimal. This will include measures such as population sizing
and the conservation of diversity in each node, as indicated by Cantú-Paz in [13]
but taken to new meanings in this context. Indeed, models and algorithms have
to be designed to be fault-tolerant [47] so that inclusion of new nodes will be
done in a self-adaptive way, but also in such a way that its disappearance from
the network will not have a big impact on performance. In fact, VC systems,
which are an early example of Eph-C, have been proved to be fault tolerant to a
certain point [22], but this fault tolerance will have to be taken into account not
just at the implementation level (backing up solutions, for instance) but also at
the model and algorithm level, measuring the impact of different churn models
[33,49].

Regarding Energy Consumption and Bioinspired Algorithms, we know
that they have already been applied to optimize problems related to energy
management and consumption, such as HAVC (heating, ventilating and air-
conditioning) systems [19]. Yet, to the best of our knowledge, an analysis between
the different flavors of available EAs, the parameters affecting them, and the rela-
tionship with different available configurations, time to solution, and energy con-
sumed to reach the solution when different hardware architectures are employed
have not been addressed. We think that this issue provides a new perspective to
apply a multiobjective analysis of the algorithms considering time to solution,
energy required, hardware architectures available in relatinship with algorithms
configurations and main parameters. And this issue is particularly important
when Eph-C is available.

5 Ephemeral Computing-Based Applications

From a practical perspective, the application, development and even deploy-
ment of any application that should be executed in an ephemeral environment
will need to take into account those features described in Sect. 4. Therefore,
the application to ephemeral environments of traditional techniques and meth-
ods, as bio-inspired computation, will generate some interesting challenges and
opportunities that can be analyzed.

This section provides a short revision on some of those bioinspired methods
and applications that could be affected by Eph-C characteristics.

5.1 Big Data and Bio-Inspired Clustering

The data volume and the multitude of sources have experienced an exponential
growing with new technological and application challenges. The data generation
has been estimated as 2.5 quintillion bytes of data per day1. This data comes
1 http://www-01.ibm.com/software/data/bigdata/what-is-big-data.html.

http://www-01.ibm.com/software/data/bigdata/what-is-big-data.html

Application Areas of Ephemeral Computing: A Survey 159

from everywhere: sensors used to gather climate, traffic, air flight information,
posts to social media sites (i.e. Twitter or Facebook as popular examples), dig-
ital pictures and videos (YouTube users upload 72 h of new video content per
minute2), purchase transaction records, or cell phone GPS signals to name a few.
The classic methods, algorithms, frameworks or tools for data management have
become both inadequate for processing these amount of data and unable to offer
effective solutions to deal with the data growing. The management, handling
and extraction of useful knowledge from these data sources is currently one of
the most popular and hot topics in computing research.

In this context, Big Data is a popular phenomenon which aims to provide
an alternative to traditional solutions database and data analysis, leading to a
revolution not only in terms of technology but also in business. It is not just
about storage of and access to data, Big Data solutions aim to analyze data in
order to make sense of that data and exploiting its value. One of the current
main challenges in Data Mining related to Big Data problems is to find ade-
quate approaches to analyze massive data online (or data streams) [43]. Due to
classification methods requires from a previous labelling process, these methods
need high efforts for real-time analysis. However, due to unsupervised techniques
do not need this previous process, clustering becomes a promising field for real-
time analysis. Clustering is perhaps one of the most popular approaches used
in unsupervised machine learning and in Data Mining [25]. It is used to find
hidden information or patterns in an unlabelled dataset and has several applica-
tions related to biomedicine, marketing [24], or image segmentation [50] amongst
others. Clustering algorithms provide a large number of methods to search for
“blind” patterns in data, some of these approaches are based on Bio-inspired
methods such as evolutionary computation [21,27], swarm intelligence [9] or
neural networks amongst others.

In the last years, and due to the fast growing of large Big Data-based prob-
lems, new challenges are appearing in previous research areas to manage the
new features and problems that these types of problems produce. New kinds of
algorithms, as online clustering or streaming clustering are appearing to deal
with the main problems related to Big Data domains. When data streams are
analyzed, it is important to consider the analysis goal, in order to determine the
best type of algorithm to be used. We could divide data stream analysis in two
main categories:

– Offline analysis: we consider a portion of data (usually large data) and apply
an offline clustering algorithm to analyze this data.

– Online analysis: the data are analyzed in real-time. These kinds of algorithms
are constantly receiving new data instances and are not usually able to keep
past information. The most relevant limitations of these systems are: the
data order matters and can not be modified; the data can not be stored or
re-analyzed during the process; the results of the analysis depend on the time

2 http://aci.info/2014/07/12/the-data-explosion-in-2014-minute-by-minute-
infographic/.

http://aci.info/2014/07/12/the-data-explosion-in-2014-minute-by-minute-infographic/
http://aci.info/2014/07/12/the-data-explosion-in-2014-minute-by-minute-infographic/

160 C. Cotta et al.

the algorithm has been stopped. The main problem of these algorithms is
that they need a specific space to update the information. This reduces the
possibilities of the new algorithm.

From our previous experience in different complex and industrial prob-
lems in different areas from Social Networks Analysis [6,7], Project Schedul-
ing, Videogames, Music classification, Unmmaned Systems, or Bio-informatics,
we have designed and developed several bioinspired algorithms for clustering
or graph-based computing with the aim to handle Big Data-based problems.
We can distinguish from two main types of algorithms, those that have com-
bined evolutionary strategies (mainly genetic algorithms) [42,44] and the second
ones which have been designed using swarm intelligence approaches (ant colonies
optimization algorithms) [23].

5.2 Social-Based Analysis and Mining

With the large number and fast growing of Social Media systems and applica-
tions, Social-based applications for Data Mining, Data Analysis, Big Data com-
putation, Social Mining, etc. has become an important and hot topic for a wide
number of research areas [5]. Although there exists a large number of existing
systems (e.g., frameworks, libraries or software applications) which have been
developed, and currently are used in various domains and applications based
on Social Media. The applications and their main technologies used are mainly
based on Big Data, Cloud or Grid Computing. The concept of Ephemeral com-
puting has been rarely considered.

Most of the current challenges under study in Social-based analysis and min-
ing are related to the problem of efficient knowledge representation, management
and discovery. Areas as Social Network Analysis (SNA), Social Media Analytics
(SMA) and Big Data, have as main aims to track, trends discovery or forecasting,
so methods and techniques from: Opinion Mining, Sentiment Analysis, Multime-
dia management or Social Mining are commonly used. For example, when anyone
tries to analyze how a Social Network is evolving using a straightforward rep-
resentation based on a graph, but ignoring the information flow between nodes
the information extracted from this analysis will be very limited. Other simple
example, based on SNA, is an application that could try to extract behavioral
patterns among users connected to a particular social network without taking
into account their connections, their strengthens, or how their relationships are
evolving through time. Social Big Data analysis, instead, aims to study large-
scale Web phenomena such as Social Networks from a holistic point of view, i.e.,
by concurrently taking into account all the socio-technical aspects involved in
their dynamic evolution.

Previous domains could be joined into a more general application area named
Social Big Data. This area, or application domain, comes from the joining efforts
of two domains: Social Media and Big Data. Therefore, Social Big Data will be
based on the analysis of very-large to huge amount of data, which could belong
to several distributed sources, but with a strong focus on Social media. Hence,

Application Areas of Ephemeral Computing: A Survey 161

Social Big Data analysis [12,38] is inherently interdisciplinary and spans areas
such as Data Mining, Machine Learning, Statistics, Graph Mining, Information
Retrieval, Linguistics, Natural Language Processing, Semantic Web, Ontologies,
or Big Data Computing, amongst others. Their applications can be extended to
a wide number of domains such as health and political trending and forecast-
ing, hobbies, e-business, cyber-crime, counter terrorism, time-evolving opinion
mining, social network analysis, or human-machine interaction.

Taking into account the nature of Social Big Data sources and the necessary
processes and methods that will be required for data processing, the knowledge
models, and possibly the analysis and visualization techniques to allow discover
meaningful patterns [29], the potential application of Eph-C features could gen-
erate a new kind of algorithms that would be suitably applied in ephemeral
environments.

5.3 Artificial Intelligence in Computer Games and Ephemerality

The application of artificial/computational intelligence to games (game AI/CI)
has seen major advancements in the last decade and has settled as a separate
research field [32,60]. One of the main focus of the research is to provide com-
puters with the capacity to perform tasks that are believed to require human
intelligence, and that results in a number of interesting sub-fields such as AI-
assisted game design, computational narrative, procedural content generation,
non-player-character (NPC) behavior learning, NPC affective computing, believ-
able bots, social simulation, and player modeling, among others [36]. Many of
the problems that arise in these areas require creativity [34] and cannot be solved
just proficiently but also in a human-like style; many interactions and relations
emerge naturally in games what creates a complex system that is usually not
easy to understand by a human but that can provide interesting results from
a human perspective [56]. Moreover, many games have an ephemeral nature,
hard to manage computationally. Some game assets (i.e., game contents, NPC
behavior/game AI, game goals and even game rules) can be seen as volatile in
the sense that one cannot guarantee they occur again. Thus, it does make sense
to consider creating them ephemerally.

Furthermore, the recent boom of casual games played in mobile devices pro-
vokes that both the design and gameplay of games demand resources that appear
and evaporate continuously during the execution of a game. This precisely occurs
in the so-called pervasive games (i.e., “games that have one or more salient fea-
tures that expand the contractual magic circle of play spatially, temporally, or
socially” [45]) where the gaming experience is extended out in the real world.
Playing games in the physical world requires computations that should be exe-
cuted on the fly in the user’s mobile device and having into account that players
can decide to join or drop out the game in each instant. This same situation
happens in most of the multiplayer games.

But we should not focus our attention just to this specific genre of games as
many areas of application for Eph-C can be easily found in the game universe.
So, it is not unreasonable to think about the concept of ephemeral games as

162 C. Cotta et al.

those games that can be only placed once or that expires in some way; one can
find many reasons for their creation as for instance: economic intentions (e.g.,
the player will be supposed to demand extensions of the game in the future) or
creative aspects (e.g., provide unique game experiences by playing a game with
irreversible actions). In addition, one can think about ephemeral goals/events
that have temporary existence in games as these appear (and disappear) as con-
sequences of the actions and preferences of the players. These goals/events are
usually secondary (as the main goal is well-defined and related with the primary
story of the game) but help significantly to improve the game experience and thus
they are critical to increase user satisfaction (incidentally, the maximum objec-
tive of games). Other issue to consider is the reversibility of player’s actions:
most games provide the option to save the current state to reload it later, basi-
cally implying that players do not face the consequences of their acts as they can
go back to a previous state; while this is interesting (and desirable) in a num-
ber of games, it is also truth that it is inconvenient in certain types of games
as in multiplayer on-line games (e.g., first-person-shooter, real-time strategy, or
role-playing games, among others) where the actions of a player influence the
universe of the game and thus affect other players; goals, players? alliances, and
even rewards have to be rearranged according to the game progress what grants
temporality to the nature of game. This transitory essence of games produces
important problems that are difficult to manage computationally, and where and
how to create the volatile features of a game is a question that remains opens
and that Eph-C can help to solve/mitigate.

Other issue to consider is the energy consumption, specially from the hard-
ware resources. Videogames are played on a wide set of platforms including game
consoles, personal computers and mobile devices, and all of them consume a large
amount of kilowatt-hours per gaming session (not to mention the energy use of
the monitors or other pheripherical devices); moreover, even if the user leaves
the game for a while (perhaps hours), the gaming plaftform can consume as
much energy as in an active play. In mobile devices this issue particularly affects
battery consumption. Can Eph-Chelp to manage the energy cosumption in gam-
ing sessions without negatively affecting the player’s game experience, that is
to say, without turning off the game platform or enabling the automatic power-
down feature built into the device? This is the question that remains open and
provides interesting lines of research. Moreover, in games that demand physical
activity (such as dance games or pervasive games) it is important to manage
the physical effort of the player; in this context Eph-Cmight help to do it by
arranging the ephemeral goals wiht this goal in mind.

5.4 Computational Creativity

Computational Creativity has gained attention in the last few years [40]. The
idea is not to exclude human artists from creative processes, substituting them by
computer algorithms, but instead to extend human creativity by computer aided
processes. Although many approaches to the concept are possible, several models
arising from the Computational Intelligence (CI) area have been developed in

Application Areas of Ephemeral Computing: A Survey 163

the last decade. These models include the possibility of human interaction within
the algorithms [57]. Art, design and content generations are areas of interest for
both CI and audiovisual industry [58].

Interactive EAs (IEAs) as well as Human-Based Computational Intelligence
[31] are interesting starting points in the area. With the advent of IEAs, and
their possibilities for developing creativity (applications can be found in music
composition [15], videogames plot induction and story generation [41], automatic
poetry [39], etc.), a new problem arose: user fatigue due to multiple evaluations
required when the fitness function is substituted by a human in charge of aes-
thetic evaluations. It is thus required to improve available IEAs so that new
autonomous software tools can be developed and this implies a better under-
standing of human creative processes. Recently, a new proposal based on EAs
has tried to analyze creativity when developed by human artists [17]. Results
have provided clues that may lead in the future to new genetic operators or
algorithms. Yet, high computational costs are associated with computer based
creative processes [52], and distributed infrastructures are required. Among the
possibilities, Eph-C-based models share some features with the way a team of
artists can collaborate when developing evolutionary art following evolution-
ary approaches: highly asynchronous processes; completely distributed and fre-
quently isolated way of working with some interaction along the work: artists
work alone in their particular ?atelier?, and sometimes share their ideas in collec-
tive ephemeral activities, such as public exhibition, where the interaction with
the audience and critics is exhibited. Therefore, ephemeral behavior is inher-
ent to the way artists work and react to colleagues and the public. Previous
models [17] could be thus studied from this point of view to improve existing
methodologies.

6 Conclusions

Ephemeral computation provides an interesting new, and promising, research
area with significant differences when it is compared against other areas as grid
computing, or traditional distributed computing. Although Eph-C presents some
features close to volunteer computing or amorphous computing, the combination
of their main features: inclusion, asynchrony, resilience, emergence, and self-
adaptation, defines it more precisely.

Therefore, the main focus of Eph-C is different from the above approaches.
Rather than trying to build layers onto the network of ephemeral resources in
order to “hide” their transient nature and provide the illusion of a virtual stable
environment, Eph-C applications are fully aware of the nature of the computa-
tional landscape and are specifically built to live (and optimize their perfor-
mance) in this realm.

Related to the application of traditional methods and techniques from
Machine Learning to Big Data problems, our previous experience has shown
the high performance that bioinspired algorithms can achieve in huge, open and
dynamic problems, showing how bioinspired approaches can be used to improve

164 C. Cotta et al.

the performance of unsupervised approaches. In the near future, and taking into
account the new restrictions and features imposed by Eph-C environments, a new
suit of algorithms able to efficiently handle the new challenges in data manage-
ment and knowledge discovery in large Big Data-based problems will be studied
and analyzed.

Acknowledgements. This work is supported by MINECO project EphemeCH
(TIN2014-56494-C4-1-P, -2-P, -3-P and -4-P) – Check http://blog.epheme.ch.

References

1. Abelson,H.,Allen,D.,Coore,D.,Hanson,C.,Homsy,G.,KnightJr.,T.F.,Nagpal,R.,
Rauch, E., Sussman, G.J., Weiss, R.: Amorphous computing. Commun. ACM 43(5),
74–82 (2000)

2. Álvarez, J.D., Colmenar, J.M., Risco-Mart́ın, J.L., Lanchares, J., Garnica, O.:
Optimizing l1 cache for embedded systems through grammaticalevolution. Soft
Comput. 20, 1–15 (2015)

3. Armbrust, M., Fox, A., Griffith, R., Joseph, A.D., Katz, R., Konwinski, A., Lee, G.,
Patterson, D., Rabkin, A., Stoica, I., et al.: A view of cloud computing. Commun.
ACM 53(4), 50–58 (2010)

4. Babaoglu,O., Jelasity,M.,Montresor,A., Fetzer,C., Leonardi, S.,Moorsel,A., Steen,
M.: The self-star vision. In: Babaoglu, O., Jelasity, M., Montresor, A., Fetzer, C.,
Leonardi, S., Moorsel, A., Steen, M. (eds.) SELF-STAR 2004. LNCS, vol. 3460, pp.
1–20. Springer, Heidelberg (2005). doi:10.1007/11428589 1

5. Bello-Orgaz, G., Jung, J.J., Camacho, D.: Social big data: recent achievements and
new challenges. Inf. Fusion 28, 45–59 (2016)

6. Bello-Orgaz, G., Menéndez, H., Okazaki, S., Camacho, D.: Combining social-based
data mining techniques to extract collective trends from twitter. Malaysian J.
Comput. Sci. 27(2), 95–111 (2014)

7. Bello-Orgaz, G., Menendez, H.D., Camacho, D.: Adaptive k-means algorithm for
overlapped graph clustering. Int. J. Neu. Syst. 22(05), 1250018 (2012)

8. Berl, A., Gelenbe, E., Di Girolamo, M., Giuliani, G., De Meer, H., Dang, M.Q.,
Pentikousis, K.: Energy-efficient cloud computing. Comput. J. 53(7), 1045–1051
(2010)

9. Bonabeau, E., Dorigo, M., Theraulaz, G.: Swarm Intelligence: From Natural to
Artificial Systems. Oxford University Press Inc., New York (1999)

10. Borella, M.S., Grabelsky, D., Nessett, D.M., Sidhu, I.S.: Method and system for
locating network services with distributednetwork address translation. US Patent
6,055,236 (2000)

11. Bunse, C., Hopfner, H., Mansour, E., Roychoudhury, S.: Exploring the energy
consumption of data sorting algorithms inembedded and mobile environments. In:
Tenth International Conference on Mobile Data Management: Systems, Services
and Middleware, MDM 2009, pp. 600–607. IEEE (2009)

12. Cambria, E., Rajagopal, D., Olsher, D., Das, D.: Big social data analysis. Big Data
Comput. 13, 401–414 (2013)

13. Cantú-Paz, E.: A survey of parallel genetic algorithms. Calculateurs paralleles
reseaux et systems repartis 10(2), 141–171 (1998)

14. Cotta, C., Sevaux, M., Sörensen, K. (eds.): Adaptive and Multilevel Metaheuristics.
SCI, vol. 136. Springer, Heidelberg (2008)

http://blog.epheme.ch
http://dx.doi.org/10.1007/11428589_1

Application Areas of Ephemeral Computing: A Survey 165

15. Diaz-Jerez, G.: Composing with melomics: delving into the computational world
formusical inspiration. Leonardo Music J. 21, 13–14 (2011)

16. Eiben, A.E.: Evolutionary computing and autonomic computing: shared prob-
lems, shared solutions? In: Babaoglu, O., Jelasity, M., Montresor, A., Fetzer, C.,
Leonardi, S., Moorsel, A., Steen, M. (eds.) SELF-STAR 2004. LNCS, vol. 3460,
pp. 36–48. Springer, Heidelberg (2005). doi:10.1007/11428589 3

17. Fernández de Vega, F., Navarro, L., Cruz, C., Chavez, F., Espada, L., Hernandez,
P., Gallego, T.: Unplugging evolutionary algorithms: on the sources of novelty and
creativity. In: IEEE Congress on Evolutionary Computation (CEC), pp. 2856–2863.
IEEE (2013)

18. Flinn, J., Satyanarayanan, M.: Powerscope: a tool for profiling the energy usage
of mobile applications. In: Second IEEE Workshop on Mobile Computing Systems
and Applications, Proceedings, WMCSA 1999, pp. 2–10. IEEE (1999)

19. Fong, K.F., Hanby, V.I., Chow, T.-T.: HVAC system optimization for energy man-
agement by evolutionary programming. Energy Buildings 38(3), 220–231 (2006)

20. Frei, R., McWilliam, R., Derrick, B., Purvis, A., Tiwari, A., DI Marzo Serugendo,
G.: Self-healing and self-repairing technologies. Int. J. Adv. Manuf. Technol. 69(5–
8), 1033–1061 (2013)

21. Goldberg, D.E.: Genetic Algorithms in Search, Optimization and Machine Learn-
ing, 1st edn. Addison-Wesley Longman Publishing Co., Inc., Reading (1989)

22. Lombraña González, D., Jiménez Laredo, J.L., Fernández de Vega, F., Merelo
Guervós, J.J.: Characterizing fault-tolerance of genetic algorithms in desktop grid
systems. In: Cowling, P., Merz, P. (eds.) EvoCOP 2010. LNCS, vol. 6022, pp.
131–142. Springer, Heidelberg (2010). doi:10.1007/978-3-642-12139-5 12

23. Gonzalez-Pardo, A., Camacho, D.: Solving project scheduling problems through
swarm-based approaches. Int. J. BioInspired Comput. (IJBIC) (2015, inpress)

24. Haider, P., Chiarandini, L., Brefeld, U.: Discriminative clustering for market seg-
mentation. In: Proceedings of the 18th ACM SIGKDD international conferenceon
Knowledge discovery and data mining, KDD 2012, pp. 417–425. ACM, New York
(2012)

25. Han, J., Kamber, M.: Data Mining: Concepts and Techniques. Morgan Kaufmann,
San Francisco (2006)

26. Harmon, R.R., Auseklis, N.: Sustainable it services: assessing the impact of green
computing practices. In: Portland International Conference on Management of
Engineering & Technology, PICMET 2009, pp. 1707–1717. IEEE (2009)

27. Holland, J.H.: Adaptation in Natural and Artificial Systems: An Introductory
Analysis with Applications to Biology, Control and Artificial Intelligence. MIT
Press, Cambridge (1992)

28. Huhns, M.N., Singh, M.P.: Service-oriented computing: key concepts and princi-
ples. IEEE Internet Comput. 9(1), 75–81 (2005)

29. Kaisler, S., Armour, F., Espinosa, J.A., Money, W.: Big data: issues and chal-
lenges moving forward. In: 46th Hawaii InternationalConference on System Sci-
ences (HICSS), pp. 995–1004. IEEE (2013)

30. Kamil, S., Shalf, J., Oliker, L., Skinner, D.: Understanding ultra-scale application
communication requirements. In: Proceedings of the IEEE International Workload
Characterization Symposium, 2005, pp. 178–187. IEEE (2005)

31. Kosorukoff, A.: Human based genetic algorithm. In: IEEE International Conference
on Systems, Man, and Cybernetics, vol. 5, pp. 3464–3469. IEEE (2001)

32. Lara-Cabrera, R., Cotta, C., Fernández-Leiva, A.J.: A review of computational
intelligence in rts games. In: IEEE Symposium on Foundations of Computational
Intelligence, pp. 114-121. IEEE Press, Singapore (2013)

http://dx.doi.org/10.1007/11428589_3
http://dx.doi.org/10.1007/978-3-642-12139-5_12

166 C. Cotta et al.

33. Laredo, J.L.J., Castillo, P.A., Mora, A.M., Merelo, J.J., Fernandes, C.: Resilience
to churn of a peer-to-peer evolutionary algorithm. Int. J. High Performance Syst.
Architect. 1(4), 260–268 (2008)

34. Liapis, A., Yannakakis, G.N., Togelius, J.: Computational game creativity. In: Pro-
ceedings of the Fifth International Conference on Computational Creativity (ICCC
2014) (2014)

35. Lohr, S.: The age of big data. New York Times, 11 February 2012. Online. Accessed
5 Sept. 2014

36. Lucas, S.M., Mateas, M., Preuss, M., Spronck, P., Togelius, J., (eds.) Artificial
and Computational Intelligence in Games, vol. 6. Dagstuhl Follow-Ups. Schloss
Dagstuhl - Leibniz-Zentrum fuer Informatik (2013)

37. Lyytinen, K., Yoo, Y.: Ubiquitous computing. Commun. ACM 45(12), 63–96
(2002)

38. Manovich, L.: Trending: the promises and the challenges of big social data. In:
Debates in the Digital Humanities, pp. 460–475 (2011)

39. Manurung, H.: An evolutionary algorithm approach to poetry generation. PhD
thesis, University of Edinburgh. College of Science and Engineering. School of
Informatics (2004)

40. McCormack, J., D’Iverno, M.: Computers and Creativity. Springer, Heidelberg
(2012)

41. McIntyre, N., Lapata, M.: Plot induction and evolutionary search for story gen-
eration. In: Proceedings of the 48th Annual Meeting of the Association for Com-
putational Linguistics, pp. 1562–1572. Association for Computational Linguistics
(2010)

42. Menéndez, H.D., Barrero, D.F., Camacho, D.: A genetic graph-based approach for
partitional clustering. Int. J. Neural Syst. 24(03) (2014a)

43. Menéndez, H.D., Otero, F.B., Camacho, D.: Extending the SACOC algorithm
through the Nystrom method for bigdata analysis. Int. J. Bio-Inspired Comput.
(2016, in press)

44. Menéndez, H.D., Otero, F.E.B., Camacho, D.: MACOC: a medoid-based ACO clus-
tering algorithm. In: Dorigo, M., Birattari, M., Garnier, S., Hamann, H., Montes de
Oca, M., Solnon, C., Stützle, T. (eds.) ANTS 2014. LNCS, vol. 8667, pp. 122–133.
Springer, Heidelberg (2014). doi:10.1007/978-3-319-09952-1 11

45. Montola, M., Stenros, J., Waern, A.: Pervasive Games. Morgan Kaufmann, Boston
(2009)

46. Network for Sustainable Ultrascale Computing. The future of ultrascale computing
under study (2014). Online, Accessed 8 Sept. 2014

47. Nogueras, R., Cotta, C.: Studying fault-tolerance in island-based evolution-
ary and multimemetic algorithms. J. Grid Comput. (2015a). doi:10.1007/
s10723-014-9315-6

48. Nogueras, R., Cotta, C.: Studying self-balancing strategies in island-based multi-
memetic algorithms. J. Comput. Applied Math. (2015b). doi:10.1016/j.cam.2015.
03.047

49. Nogueras, R., Cotta, C.: Towards resilient multimemetic systems on unstable net-
works with complex topology. In: Papa, G. (ed.) Advances in Evolutionary Algo-
rithm Research. Nova Science Pub. (2015c, in press)

50. Pascual, A., Barcéna, M., Merelo, J.J., Carazo, J.-M.: Application of the fuzzy
Kohonen clustering network to biological macromolecules images classification. In:
Mira, J., Sánchez-Andrés, J.V. (eds.) IWANN 1999. LNCS, vol. 1607, pp. 331–340.
Springer, Heidelberg (1999). doi:10.1007/BFb0100500

http://dx.doi.org/10.1007/978-3-319-09952-1_11
http://dx.doi.org/10.1007/s10723-014-9315-6
http://dx.doi.org/10.1007/s10723-014-9315-6
http://dx.doi.org/10.1016/j.cam.2015.03.047
http://dx.doi.org/10.1016/j.cam.2015.03.047
http://dx.doi.org/10.1007/BFb0100500

Application Areas of Ephemeral Computing: A Survey 167

51. Prasithsangaree, P., Krishnamurthy, P.: Analysis of energy consumption of RC4
and AES algorithms in wireless LANs. In: Global Telecommunications Conference,
GLOBECOM 2003, vol. 3, pp. 1445–1449. IEEE (2003)

52. Reis, G., de Vega, F.F., Ferreira, A.: Automatic transcription of polyphonic piano
music using genetic algorithms, adaptive spectral envelope modeling, and dynamic
noise level estimation. IEEE Trans. Audio Speech Lang. Process. 20(8), 2313–2328
(2012)

53. Sarmenta, L.F., Hirano, S.: Bayanihan: building and studying web-based volunteer
computing systems using Java. Future Gener. Comput. Syst. 15(5), 675–686 (1999)

54. Sharmin, M., Ahmed, S., Ahamed, S.I.: SAFE-RD (secure, adaptive, fault tolerant,
and efficient resource discovery) in pervasive computing environments. In: Inter-
national Conference on Information Technology: Coding and Computing, ITCC
2005, vol. 2, pp. 271–276. IEEE (2005)

55. Stutzbach, D., Rejaie, R.: Understanding churn in peer-to-peer networks. In: Pro-
ceedings of the 6th ACM SIGCOMM Conference on Internet Measurement, IMC
2006, pp. 189–202. ACM, New York (2006)

56. Sweetser, P.: Emergence in Games. Game Development. Charles River Media,
Boston (2008)

57. Takagi, H.: Humanized computational intelligence with interactive evolutionary
computation. In: Fogel, D.B., Robinson, C.J. (eds.) Computational Intelligence:
The Experts Speak, pp. 207–218. Wiley (2003)

58. Togelius, J., Yannakakis, G.N., Stanley, K.O., Browne, C.: Search-based procedural
content generation: a taxonomy and survey. IEEE Trans. Comput. Intell. AI Games
3(3), 172–186 (2011)

59. Wang, B., Bodily, J., Gupta, S.K.: Supporting persistent social groups in ubiq-
uitous computing environments using context-aware ephemeral group service. In:
Proceedings of the Second IEEE Annual Conference on Pervasive Computing and
Communications, PerCom 2004, pp. 287–296. IEEE (2004)

60. Yannakakis, G., Togelius, J.: A panorama of artificial and computational intelli-
gence in games. IEEE Trans. Comput. Intell. AI Games 7(4), 317–335 (2015)

Author Index

Alibekov, Eduard 61
Ares, Antonio Fernández 40

Babuška, Robert 61

Camacho, David 153
Castillo, Pedro A. 40, 153
Chávez, Francisco 153
Chelly, Zeineb 40
Cotta, Carlos 1, 40, 153

de las Cuevas, Paloma 40
de Vega, Francisco Fernández 153
Dorotovič, Ivan 19

Fernandes, Carlos M. 1
Fernández-Leiva, Antonio J. 153
Fonseca, José M. 19
Frid, Alex 117

García, Rubén 40
García-Sánchez, Pablo 40

Hazan, Hananel 117

Kobayashi, Yuichi 101
Koilis, Ester 117
Konrády, Tomáš 83

Kostrzewa, Jan 134
Kubalík, Jiří 61

Laredo, J.L.J. 1
Liberatore, Federico 40

Manevitz, Larry M. 117
Matsui, Ryosuke 101
Mazzocco, Giovanni 134
Merelo, Juan J. 1, 40, 153
Merhav, Maayan 117
Mora, André 19
Mora, Antonio M. 40

Plewczynski, Dariusz 134

Ribeiro, Rita A. 19
Rico, Nuria 40
R-Moreno, María D. 153
Rosa, A.C. 1

Shahamatnia, Ehsan 19
Star, Gal 117
Štekerová, Kamila 83

Tesařová, Barbora 83
Tonda, Alberto 40

Žegklitz, Jan 61

	Transactions on Computational Collective Intelligence XXIV
	Preface

	Organization
	Contents
	Dynamic Topologies for Particle Swarms
	Abstract
	1 Introduction
	2 Particle Swarms and Population Structure
	3 Dynamic Structures
	4 Experiments and Results
	4.1 PSO-B: Precision and Convergence Speed
	4.2 PSO-B and PSO-S
	4.3 Grid Size

	5 Conclusions
	Acknowledgements
	References

	Evaluative Study of PSO/Snake Hybrid Algorithm and Gradient Path Labeling for Calculating Solar Differential Rotation
	Abstract
	1 Introduction
	2 PSO/Snake Hybrid Algorithm
	3 GPL Algorithm
	3.1 Image Preprocessing
	3.2 GPL Image Segmentation
	3.3 CBP Matching

	4 Results and Discussions
	4.1 Dataset and Experiment Setup
	4.2 Comparison of Results

	5 Conclusions
	Acknowledgments
	References

	The Uncertainty Quandary: A Study in the Context of the Evolutionary Optimization in Games and Other Uncertain Environments
	1 Introduction
	2 State of the Art
	3 Case Studies Used in This Paper
	3.1 Creation of Character Backstories
	3.2 A `Simple' Real-Time Strategy Game: Planet Wars
	3.3 Ghost Team Optimization
	3.4 A Complex Real-Time Strategy Game: StarCraft
	3.5 Artificial Neural Networks Optimization Using an EA: GProp

	4 Experiments and Results
	5 Conclusions
	References

	Hybrid Single Node Genetic Programming for Symbolic Regression
	1 Introduction
	2 Single Node Genetic Programming
	2.1 Representation
	2.2 Evolutionary Model

	3 Proposed Modifications
	3.1 Depthwise Selection Strategy
	3.2 Organization of the Population
	3.3 Local Search Strategy
	3.4 Outline of Modified SNGP Algorithm

	4 Experiments with Modified SNGP
	4.1 Artificial Benchmarks
	4.2 Experimental Setup
	4.3 Results

	5 Hybrid SNGP with Linear Regression
	5.1 Single-Run SNGP with LASSO
	5.2 Iterated SNGP with LASSO

	6 Experiments with Hybrid SNGP
	6.1 Real-World Benchmarks
	6.2 Experimental Setup
	6.3 Results on Artificial Benchmarks
	6.4 Results on Real-World Benchmarks

	7 Conclusions
	References

	L2 Designer
	Abstract
	1 Introduction
	2 L2 Language and L-system Extensions
	3 L2JS Library
	3.1 Compilation Process
	3.2 Interpretation

	4 Genetic Programming
	5 Implementation
	6 Case Studies
	6.1 Michaelmas Daisy
	6.2 Generative Scenery

	7 Conclusions
	Acknowledgements
	References

	Manifold Learning Approach Toward Constructing State Representation for Robot Motion Generation
	1 Introduction
	2 Problem Settings
	3 Manifold Learning Using Image Features
	3.1 Matching and Labeling of Features
	3.2 Space Construction with LLE
	3.3 Motion Generation

	4 Experiment
	4.1 Evaluation with Simulated Image
	4.2 Evaluation with Real Image of Humanoid
	4.3 Obstacle Avoidance

	5 Discussion
	5.1 Labeling of Keypoints
	5.2 State Space Representation Toward Motion Generation

	6 Conclusions
	References

	The Existence of Two Variant Processes in Human Declarative Memory: Evidence Using Machine Learning Classification Techniques in Retrieval Tasks
	Abstract
	1 Introduction
	2 Related Work
	3 Current Study
	4 Experiment Procedure
	4.1 Participants
	4.2 Experiment Paradigm and Procedure
	4.3 Data Acquisition and Pre-processing

	5 Methods
	6 Results
	6.1 Memory Performance
	6.2 Classification

	7 Discussion and Conclusions
	8 Future Work
	Acknowlegments
	References

	Divide and Conquer Ensemble Method for Time Series Forecasting
	1 Introduction
	2 Methods
	2.1 Divide Function Definition
	2.2 Divide Phase
	2.3 Conquer Phase
	2.4 Merge Phase

	3 Complexity of Proposed Approach
	3.1 Time Complexity of the create_subseries Function Corresponding Subseries
	3.2 Time Complexity of the extend_binary_vector Function
	3.3 Time Complexity of the algorithm finds_ best_subseries

	4 Simulations
	4.1 IceTargets with Random Noise
	4.2 Cosinus with IceTargets
	4.3 Quarterly Australian Gross Farm Product
	4.4 Series Predicted with Different Methods

	5 Conclusions
	References

	Application Areas of Ephemeral Computing: A Survey
	1 Ephemeral Computing: What and Why
	2 Ephemeral Computing in Perspective
	3 Energy Consumption of Algorithms
	4 Bioinspired Algorithms and Ephemerality
	5 Ephemeral Computing-Based Applications
	5.1 Big Data and Bio-Inspired Clustering
	5.2 Social-Based Analysis and Mining
	5.3 Artificial Intelligence in Computer Games and Ephemerality
	5.4 Computational Creativity

	6 Conclusions
	References

	Author Index

